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In these chapter we study ring , field and the ideal , homomorphism , 

subbing . We prove some theorem . we also study the ring Zp and some of its 

properties , we define the field of fractions , integral domain , Characteristic of 

field and we prove that characteristic of field is only Zero or p (Prime).  

Section (1-1): Definition and basic properties: 

Although any assumption is that any reader has some knowledge of abstract 

algebra, a few remainders of basic definitions may be necessary, and have the 

added advantages of establishing the notations and conventions I shall use 

throughout the research. Introductory texts in abstract algebra are often titled or 

substituted “Groups, Rings and Fields”, with fields playing only a minor part. Yet 

the theory of fields, through which both geometry and the classical theory of 

equations are illuminated by abstract algebra, contains some of the deepest and 

most remarkable insights in all mathematics. The hero of the narrative ahead is 

Evariste Galois, who died in a duel before his twenty-first birthday. 

Definition (1-1-1): 

  A ring   (     ) is a non-empty set   furnished with two binary 

operations   (called addition) and   (called multiplication) with the following 

properties. (Under the usual convention the dot for multiplication is omitted). 

(  ) the associative law for addition: 

(   )      (   )     (        )  

(  ) the commutative law for addition: 

            (     )  

(  ) the existence of  : there exists   in   such that, for all   in    

       

(  ) the existence of negatives: for all   in   there exists –   in   such that 

  (  )     
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(  ) the associative law for multiplication: 

(  )   (  )     (        ) 

(  ) the distributive laws: 

 (   )             (   )            (       ) 

We shall be concerned only with commutative rings, which have the following 

extra property 

(  ) the commutative law for multiplicative: 

          (     ) 

A ring with unity   has the properties (  ) (  ), together with the following 

property. 

(  ) the existence of 1: there exists     in   such that, for all   in  , 

         

The element 1 is called the unity element, or the (multiplicative) identity of  . 

Definition (1-1-2): 

A commutative ring   with unity is called an integral domain or, if the 

context allows, just a domain, if it has the following property.  

(  ) cancellation: for all       in  , with    , 

          

Definition (1-1-3): 

A commutative ring   with unity is called a field if it has the following 

property. 

(   ) the existence of inverses: for all     in   there exists     in   such that 

        

We frequently wish to denote     by    . 
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  It is easy to see that (   ) implies (  ). The converses implication, 

however, is not true: the ring   of integers is an obvious example. It is worth 

nothing also that (  ) is equivalent to 

(  )  no divisor of zero: for all     in  , 

                    

   It is useful also at this stage to remind ourselves of a group.  

Definition (1-1-4): 

 A group   (   ) is a non-empty set furnished with a binary operation   

(usually omitted) with the following properties. 

(  ) the associative law: 

(  )   (  )     (       )  

(  ) the existence of an identity element: there exists   in   such that, for all   in 

 , 

      

(  ) the existence of inverses: for all   in   there exists     in   such that 

        

An abelian group has the extra property 

(  ) the commutative law: 

          (     )  

Remark (1-1-5): 

 If (     ) is a ring, then (   ) is an abelian group. If (     ) is a field and 

    * +, then (    ) is an abelian group. 

Let   be a commutative group with unity, and let 

  *    (    )     +  
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It is easy to verify that   is an abelian group with respect to multiplication in  . 

We say that   is the group of units of the ring  . If     in   are such that      

for some   in  , we say that   and   are associates, and write    . For example, 

in the ring   the group of units is *    + and     for all   in  . 

Remark (1-1-6):  

  The group of units of a field   is the group    of all non-zero elements of 

 . 

In a field, every non-zero element divides every other, but in an integral 

domain   the notion of divisibility plays a very significant role. If     * + and 

   , we say that   divides  , or that   is a divisor of  , or that   is a factor of , 

if there exists   in   such that     . We write    , and occasionally write     

if   does not divide  . We say that   is a proper divisor, or a proper factor, of  , or 

that   properly divides  , if   is not a unit. Equivalently,   is a proper divisor of   

if     and    . 

Sub rings, Ideals and Homomorphism: 

  Much of the material in this section can be applied, with occasional 

modifications, to rings in general, but we shall suppose, without explicit mention, 

that all our rings are commutative. We shall use standard algebraic short hands: in 

particular, we write     instead of   (  ). 

Definition (1-1-7): 

 A sub ring   of a ring   is a non-empty subset of   with the property that, 

for all     in  , 

                                                                            ( ) 

 Equivalently,  (  ) is a subring if, for all     in  , 

                                                     ( ) 

It is easy to see that    : simply choose   from the non-empty set  , and deduce 

from (1) that        . 
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Definition (1-1-8): 

 A subfield of a field   is a subring which is a field. Equivalently, it is a 

subset   of  , containing at least two elements, such that  

                        * +                  ( ) 

Again, we may replace the second implication of (3) by the implications  

                   * +                                              ( ) 

 If     we say that   is a proper subfield of  . 

Definition (1-1-9): 

  An ideal of   is a non-empty subset   of   with the properties 

                                                             ( ) 

Definition (1-1-10): 

 An ideal is certainly a sub ring, but not every sub ring is ideal. The sub ring 

  of the field   of rational numbers provides an example. Among the ideals of   

are * + and  . An ideal   such that * +      is called proper. 

Theorem (1-1-11): 

 Let   *          + be a finite subset of a commutative ring  . Then the 

set  

             ( *                            +) 

is the smallest ideal of   containing  . 

Proof: 

 The set               is certainly an ideal, since, for all 

                      

in  , 
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(                )  (                ) 

 (     )   (     )     (     )   

                

and, for all   in  , 

 (                )  (   )   (   )     (   )   

                

It is clear that every ideal   containing *          + contains the element 

                 for every choice of            in  , and so     

           . 

We refer to               as the ideal generated by           , and 

frequently write it as 〈          〉. Of special integers is the case where the ideal 

is generated by a single element   in  ;  we say that    〈 〉 is a principal ideal. 

There is close connection between ideals and divisibility: 

Theorem (1-1-12): 

 Let   be an integral domain with group of units  , and let      * +. 

Then: 

(i) 〈 〉  〈 〉 if and only if    ; 

(ii) 〈 〉  〈 〉 if and only if    . 

(iii) 〈 〉    if and only if    . 

Proof: 

(i) Suppose first that    . Then      for some   in  , and so 

〈 〉            〈 〉 

Conversely, suppose that 〈 〉  〈 〉. Then there exists   in   such that 

     and so    . 

(ii) Suppose first that    . Then there exists   in   such that      and 

            . Hence (  )   (  )         , and so, by 

cancellation,     . Thus   and   are units, and so    . 
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(iii) It is clear that 〈 〉   . Hence by (ii), 〈 〉    if and only if    , that is, 

if and only if   is a unit. 

A homomorphism from a ring   into a ring   is a mapping       with the 

properties 

 (   )   ( )   ( )       (  )   ( ) ( )                     ( ) 

Among the homeomorphisms from   into   is the zero mapping   given by 

 ( )    (   )                                                                             ( ) 

 While some of the theorems we establish will apply to all homomorphisms, 

including  , others will apply only to non-zero homomorphisms. 

Some elementary properties of ring homeomorphisms are gathered together 

in the following theorem: 

Theorem (1-1-13): 

  Let     be rings, with zero elements      , respectively, and let       

be a homomorphism. Then 

(i)  (  )    ; 

(ii)  (  )    ( ) for all   in  ; 

(iii)  ( ) is a subring of  . 

Proof: 

(i) Since 

 ( )   (  )   (    )   ( )  

we can deduce that 

 (  )      (  )    ( )   ( )   (  )    ( )   ( )           ( ) 

(ii) Since, for all   in  , 

 ( )   (  )   (  (  ))   (  )      ( )  (  ( ))  

it follows that 
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 (  )    ( )                                                        ( ) 

(iii) Let  ( )  ( ) be arbitrary elements of  ( ), with      . Then 

 ( ) ( )   (  )   ( ) 

and by virtue of (9), 

 ( )   ( )   ( )   (  )   (  (  ))   ( ) 

Thus  ( ) is a subring. 

The following corollary is an immediate consequence of the above proof. 

Corollary (1-1-14): 

  If       is a ring homomorphism and      , then  (   )   ( )  

 ( ). 

 Let       be a homomorphism. If   is one-to-one, we call it a 

monomorphism, or an embedding, and if   is also onto we call it an isomorphism. 

We say that the rings   and   are isomorphic (to each other) and write    . For 

example, the ring   {   √       } is isomorphic to the ring 

  {.
  
   

/       }                                  (  ) 

with the operations of matrix addition and multiplication, the isomorphism being 

     √  .
  
   

/  

We shall eventually be interested in the case where the rings   and   

coincide: an isomorphism from   onto itself is called an automorphism. 

If       is a monomorphism, then the subring  ( ) of   is isomorphic to 

 . Since the rings   and  ( ) are abstractly identical, we often wish to identify 

 ( ) with   and regard   itself as a subring of  . For example, if   is the ring 

defined by (10), there is a monomorphism       given by 

 ( )  .
  
  

/     (   )  
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and the identification of the integer   with the     scalar matrix  ( ) allows us 

to consider   as effectively a subring of  . We say that   contains   up to 

isomorphism. 

Let       be a homomorphism, where   and   are rings, with zero 

elements      , respectively, and let 

     (  )( *     ( )    +)                                      (  ) 

We refer to   as the kernel of the homomorphism  , and write it as     . 

If      , then  ( )   ( )     and so certainly  (   )   ; hence 

     . If     and    , then  (  )   ( ) ( )   ( )   . Hence 

    . We deduce that the kernel of a homomorphism is an ideal. 

In fact the last remark records only one of the ways in which the notions of 

homomorphism and ideal are linked. Let   be an ideal of a ring  , and let    . 

The set     *       + is called the residue class of a modulo  . We now 

show that, for all     in  , 

                                                                                       (  ) 

and 

(   )  (   )  (   )         (   )(   )                   (  ) 

To prove the first of these statements, suppose that        . Then, in 

particular,              , and so there exists   in   such that     

 . Thus        . Conversely, suppose that      . Then, for all   in  , 

we have that        , where   (   )     . Thus        , and 

the reverse inclusion is proved in the same way. 

To prove the first statement in (13), let       and let 

  (   )  (   )  (   )  (   )  

Then   (   )  (   )  (   )   . Conversely, if     and   

(   )    (   )   , then   (   )  (   )  (   )  (   ). 
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The second statement follows in a similar way. Let       and let   

(   )(   )  (   )(   ). Then      (        )      . 

The set of     of all residue classes modulo   forms a ring with respect to 

the operations 

(   )  (   )  (   )         (   )(   )                         (  )    

called the residue class ring modulo  . The verifications are routine. The zero 

element is      ; the negative of     is –   . The mapping         , 

given by 

                    ( )          (   )                                                                (  ) 

is a homomorphism onto    , with kernel  . It is called the natural homomorphism 

from   onto    . 

The motivation example of a residue class ring is the ring    of integers 

mod  . Here the ideal is 〈 〉    , the set of integers divisible by  , and the 

elements of    are the classes   〈 〉, with    . There are exactly are exactly   

classes, namely 

〈 〉   〈 〉   〈 〉   (   )  〈 〉  

A strong connection with number theory is revealed by the following theorem: 

 Theorem (1-1-15): 

 Let   be a positive integer. The residue class ring      〈 〉 is a field if 

and only if   is prime. 

Proof: 

 Suppose first that   is not prime. Then     , where       and 

     . Then   〈 〉    〈 〉 and   〈 〉    〈 〉, but 

(  〈 〉)(  〈 〉)    〈 〉    〈 〉  

Thus    contains divisor of 0, and so is certainly not a field. 
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 Now let   be a prime, and suppose that (  〈 〉)(  〈 〉)    〈 〉. Then 

    , and so (since   is prime) either     or    . That is, either   〈 〉    or 

  〈 〉   . Thus    has no divisors of zero, and so is an integral domain. 

The next theorem, which has counterparts in many branches of algebra, tells 

us that every homomorphic image of a ring   is isomorphic to a suitably chosen 

residue class ring. 

Theorem (1-1-16): 

 Let   be a commutative ring, and let   be a homomorphism from   onto a 

commutative ring  , with kernel  . Then there is an isomorphism         

such that the diagram  

 

 

 

 

 

 

commutes. 

Proof: 

 Define   by the rule that 

 (   )   ( )          (       )  

The mapping is both well-defined and injective, for 

               (   )     ( )   ( )  

It is clearly maps onto  , since   is onto. It is a homomorphism, since  

 ((   )  (   ))   ((   )   )   (   ) 

  

             R                    S 
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  ( )   ( )   (   )   (   )  

and 

 ((   )  (   ))   (    )   (  )   ( ) ( )

  (   ) (   )  

Hence   is an isomorphism. The commuting of the diagram is clear, since, for all   

in  , 

 (  ( ))   (   )   ( )  

and so       . 

The Field of Fractions of an Integral Domain: 

 We know that every finite integral domain is a field. In this section we show how 

to construct a field out of an arbitrary integral domain. 

 Let   be an integral domain. Let 

    ( * +)  *(   )          +  

Define a relation   on the set   by the rule that 

(   )  (     ) if and only if        . 

Lemma (1-1-17): 

 The relation   is an equivalence. 

We must prove that, for all (   ) (     ) (       ) in  , 

(i) (   )  (   ) (the reflexive law); 

(ii) (   )  (     )  (     )  (   ) (the symmetric law); 

(iii) (   )  (     ) and (     )  (       )  (   )  (       ) (the 

transitive law). 

The properties (i) and (ii) are immediate from the definition. As for (iii), from 

(   )  (     ) and (     )  (       ) we have that         and            . 

Hence 
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  (    )  (   )             (     )           (    )  

Since     , we can use the cancellation axiom to obtain          , and so 

(   )  (       )  

The quotient set     is denoted by  ( ). Its elements are equivalence classes 

,   -  *(   )    (   )  (   )+, and, for reasons that will become obvious. 

We choose to denote the classes by fraction symbols    . Two classes are equal if 

their (arbitrary chosen) representative pairs in the set   are equivalent: 

 

 
 

 

 
 if and only if      . 

In particular, note that 

 

 
 

  

  
 

for all     in  . 

We define addition and multiplication in  ( ) by the rules 

 

 
 

 

 
 

     

  
      

 

 
 
 

 
 

  

  
                   (  ) 

Lemma (1-1-18):  

  The additional multiplication defined by (16) are well-defined. 

Proof: 

 Suppose that 
 

 
       and         . Then         and        , 

and so 

(       )                                 (         )   

Hence  

 

 
 

 

 
 

     

  
 

         

    
 

  

  
 

  

  
  

Similarly, 



14 
 

(  )(    )  (   )(   )  (   )(   )  (    )(  )  

and so 

 

 
 
 

 
 

  

  
 
  

  
  

These operations turn  ( ) into a commutative ring with unity. The verifications 

are tedious but not difficult. For example, 

 

 
(
 

 
 

 

 
)  

 

 
 
     

  
 

       

   
  

 

 
 
 

 
 

 

 
 
 

 
 

  

  
 

  

  
 

         

    
 

       

   
  

The zero element is     (     for all     in  ). The unity element is     

(     for all     in  ). The negative of     is (  )  . 

The ring  ( ) is in fact a field, since for all     with     we have that 

 

 
 
 

 
 

  

  
 

 

 
  

We refer to the field  ( ) as the field of fractions of the domain  . 

Lemma (1-1-19): 

 The mapping      ( ) given by 

 ( )  
 

 
     (   )                                                         (  ) 

is monomorphism. 

Proof: 

 From (16) it is clear that 

 ( )   ( )  
 

 
 

 

 
 

   

 
  (   )         ( ) ( )  

 

 
 
 

 
 

  

 
  (  ) 

Also 
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 ( )   ( )  
 

 
 

 

 
      

If we identify     with  , we can regard  ( ) as containing   as a subring. The 

field  ( ) is the smallest field containing  , in the following sense. 

Theorem (1-1-20): 

 Let   be an integral domain, let   be the monomorphism from   into  ( ) 

given by (17) and let   be a field with the property that there is a monomorphism 

  from   into  . Then there exists a monomorphism    ( )    such that the 

diagram  

 

 

 

 

 

commutes. 

Proof: 

 Define a mapping    ( )    by the rule that 

 .
 

 
/  

 ( )

 ( )
  

(Note that  ( )   , since   is a monomorphism). This is well-defined end one-to-

one, since 

 

 
 

 

 
        ( ) ( ) ( )  

 ( )

 ( )
 

 ( )

 ( )
 

and it is a homomorphism, since 

 .
 

 
 

 

 
/   (

     

  
)  

 (     )

 (  )
 

 ( ) ( )   ( ) ( )

 ( ) ( )
 

                          

            D                   K 

                             

 

          ( ) 
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 ( )

 ( )
 

 ( )

 ( )
  .

 

 
/   .

 

 
/  

and similarly 

 .
 

 
 
 

 
/   .

 

 
/ .

 

 
/  

The commuting of the diagram is clear, since, for all   in  , 

 ( ( ))   .
 

 
/  

 ( )

 ( )
  ( )  

More informally, Theorem (1-1-6) tell us that any field containing   

contains (up to isomorphism) the field  ( ). 

When    , it is clear that  ( )   . This is the classical example of the 

field of quotients, but we shall soon see that it is not the only one. 

The characteristic of a Field: 

  In a ring   containing an element   it is reasonable to denote     by 

  ,and, more generally, if   is a natural number we may write    for the sum 

        (  summands). If we define       and (  )  to be  (  ), we 

can give a meaning to    for every integer  . The following properties are easy to 

establish: for       and      , 

(   )              (   )             (  )   (  )              

        (  )  (  )   (  )      (  )(  )  (  )(  )          (  ) 

Consider a commutative ring   with unity element   . Then there are two 

possibilities; either 

(i) The element    (         ) are all distinct; or 

(ii) There exist     in   such that     (   )  . 

In former case we say that   has characteristic zero, and write         , in the 

latter case we notice that     (   )          , and so      . The 

least positive   for which holds is called the characteristic of the ring  . Note that, 
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if   is a ring of characteristic  , then       for all   in  , for    (   )  

    . We write         . 

Theorem (1-1-21): 

 The characteristic of a field is either   or a prime number  . 

Proof: 

 The former possibility can certainly occur:     and   are all fields of 

characteristic  . Let   be a field and suppose that      , where   is not 

prime. Then     , where            , and the minimal property of   

implies that       . On the other hand, form (18) we deduce that 

(   )(   )  (  )           

and this is impossible, since   being a field, has no zero divisors. 

 Let   be a field with characteristic 0. Then the elements    (   ) are all 

distinct, and form a subring of   isomorphic to  . Indeed, the set 

 ( )  {                 }                                       (  ) 

is a subfield of   isomorphic to  .any subfield of   must contain 1 and 0 and so 

must contain  ( ), which is called the prime subfield of  . 

If   has prime characteristic  , the prime subfield is  

 ( )  *    (  )   (   )(  )+                                     (  ) 

and this is isomorphic to   . 

The fields   and    play a central role in the theory of fields. They have no 

proper subfields, and every field contains as a subfield an isomorphic copy of one 

or other of them. We frequently want to express this may saying that every field of 

characteristic 0 is an extension of  , and every field of prime characteristic   is an 

extension   . 

We record this observations formally in a theorem. 



18 
 

Theorem (1-1-22):  

  Let   be a field. Then   contains a prime subfield  ( ) contained in every 

subfield. If          then  ( ), described by (19), is isomorphic to  . If 

           is a prime number, then  ( ), described by (20), is isomorphic to 

  . 

Remark (1-1-23): 

 Given an element   of a field  , we sometimes like to denote   (  ) 

simply by    . If          this is no problem, but if          then we cannot 

assign a meaning to     if   is a multiple of  . Thus, for example, the formula 

   
 

 
((   )  (   ) ) 

is not valid in a field of characteristic 2, since the quantity on the right reduces to 

    and so is undefined. 

In fields with finite characteristic we encounter some surprising formulae. 

Theorem (1-1-24): 

  Let   be a field of characteristic  . Then, for all     in  , 

(   )         

Proof: 

 By the binomial theorem, valid in any commutative ring with unity, we have 

that 

(   )  ∑.
 
 
/        

 

   

                                 (  ) 

For          , the binomial coefficient  

.
 
 
/  

 (   ) (     )
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is an integer, and so    divides  (   ) (     ). Since   is prime and   

 , no factor of    can be divisible by  . Hence    divides (   ) (     ), 

and so .
 
 
/ is an integer divisible by  . Hence, for          , 

.
 
 
/          

and so, in (21), only the first and last terms survive. 

Remark (1-1-25): 

 The fields      〈 〉 are important building blocks in field theory. We 

usually find it convenient to write    *         +, with addition and 

multiplication carried out modulo  . So, for example, the multiplication table for 

   is 

 0     1    2    3    4 

0 

1   

2 

3 

4 

0     0    0    0   0 

0     1    2    3   4 

0     2    4    1   3 

0     3    1    4   2 

0     4    3    2   1 

When it comes to   , it is usually more convenient to write    *      +. 

Again, we might at times find it convenient to write    as *       + obtaining 

the table 

 0     1      2     -2    -1 

0 

1   

2 

-2 

-1 

0     0     0      0     0 

0     1     2     -2   -1 

0     2    -1     1    -2 

0    -2     1    -1     2 

0    -1    -2     2     1 

A remainder of Some Group Theory: 

It is perhaps paradoxical, given the extensive list of axioms that define a field, that 

a serious study of fields requires a knowledge of more general objects. Rings we 

have encountered already, though in fact we do not need to explore any further 

than integral domains. More surprisingly, w 
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e need to know some group theory. This does not come into play until well through 

the book, and you may prefer to skip this section and to return to it when the 

material is needed. For the most part I will give sketch proofs only: more detail can 

mostly be found. As the title suggests, this section is a remainder of the basic ideas 

and definitions. More specialized bits of group theory, not necessarily covered in a 

first course in abstract algebra, will be explained when they are needed, and some 

proofs will be consigned to an appendix. 

 The axioms for a group were recorded in section 1.1. it follows from these 

axioms that the element   in    and the element     in    are both unique and that 

                          

 Also, for all      , 

(  )           

Definition (1-1-26): 

The group (   ) is called a finite group if the set   is finite. The cardinality 

   of   called the order of the group. 

In the usual way, we write         (where    ) for the products  

        , and we write     to mean (   )  (  )  . By    we mean the 

identity element  . 

Definition (1-1-27): 

A group   is called cyclic if there is exists an element   in   such that 

  *      +. If the powers    are all distinct,   is the infinite cyclic group. 

Otherwise, there is a least     such that     . The division algorithm then 

implies, for all   in  , that there exists integers   and   such that 

         (  )        

and        . Thus   *             +, the cyclic group of order   

both the finite cyclic group and the cyclic group of oder   are abelian. 

 A non-empty subset   of   is called a subgroup of   if, for all      ,  
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                                                (  ) 

or equivalent, 

                                                                     (  ) 

Every subgroup contains the identity element  . For each element   in the group  , 

the set *      + is a subgroup, called the cyclic subgroup generated by  , and 

denoted by 〈 〉. If   is finite, this cannot be the infinite cyclic group, and the order 

of the cyclic subgroup generated by   is called the order of the element  . It is the 

smallest positive integer   such that     , and is denoted by  ( ). 

 Let   be a subgroup of a group   and let    . The subset    

*      + is called a left coset of  . Then       if and only if       . 

Among the left cosets is   itself. The distinct left cosets form a partition of  : that 

is, every element of   belongs to exactly one left coset of  . The mapping 

     from   into    is easily seen to be both one-one and onto, and so, in a 

finite group, every left coset has the same number of elements as  . Thus 

        (the number of left cosets), 

and we have Lagrange’s theorem. 

Theorem (1-1-28): 

 Let     be groups, and let   a homomorphism from   onto  , with kernel 

 . Then there exists a unique isomorphism         such that the diagram  

 

 

 

 

 

 

commutes. 

                          

            G                   H 
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Proof: 

 The mapping       ( ) is well defined, one-one, and a homomorphism 

– and       . 
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Section (1-2): Integral Domains and Polynomials: 

Euclidean Domain: 

 An integral domain   is called a Euclidean domain if there is a mapping   

from   into the set    of non-negatives with the property that  ( )    and, for 

all   in   and all   in  * +, there exist     in   such that  

                      ( )   ( )                                      (  ) 

From the definition it follows that    * +  * +, for if  ( ) were equal to 0 it 

would not be possible to find   such that  ( )   ( ). 

 The most important example is the ring  , where  ( ) is defined as    , and 

where the process, known as the division algorithm, is the familiar one (which we 

have indeed already used in chapter 1) of dividing   by   and obtaining a quotient 

  and a remainder  . If   is positive, the there exists   such that 

   (   )   

Thus         , and so, taking   as     , we see that        and 

       . If   is negative, then there exists   such that 

(   )        

Thus           , and so again        and        . We shall come 

across another important example later. 

 An integral domain   is called a principal ideal domain if all of its ideals are 

principal. 

Theorem (1-2-1): 

 Every Euclidean domain is a ideal domain. 

Proof: 

 Let   be a Euclidean domain. The ideal * + is certainly principal. Let   be a 

non-zero ideal, and let   be a non-zero element of   such that 
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 ( )     * ( )      +  

Let    . Then there exist     such that        and  ( )   ( ). Since 

        , we have a contradiction unless    . Thus     , and so 

     〈 〉, a principal ideal. 

 Suppose now that     are non-zero members of a principal ideal domain  , 

and let 〈   〉  *           + be the ideal generated by   and  . (see 

Theorem (1-11)) By our assumption that   is a principal ideal domain, there exists 

  in   such that 〈   〉  〈 〉. Since 〈 〉  〈 〉 and 〈 〉  〈 〉, we have, from 

Theorem (1-12), that     and    . Since   〈   〉, there exist     in   such that 

       . If      and     , then         . That is,     . We say that   is 

greatest common factor, of   and  . It is effectively unique, for, if 〈   〉  〈 〉  

〈  〉, it follows from Theorem (1-12) (iii) that     . 

 To summarise,   is the greatest common divisor of   and   (write   

   (   )) if it has the following properties: 

(    )      and    . 

(    ) if      and     , then     .   (   )  , we say that   and   are coprime, 

or relatively prime. 

 In the case of the domain  , where the group of unit is *    +, we have, for 

example, that 〈     〉  〈 〉  〈  〉. 

Remark (1-2-2): 

     A simple modification of the above argument enables us to conclude that, in a 

principal ideal domain  , every finite set *          + has a greatest common 

divisor. 

 In the argument leading to the existence of the greatest common divisor, we 

assert that “there exists   such that 〈   〉  〈 〉,” but give no indication of how 

this element   might be found. If the domain is Euclidean, we do have an 

algorithm. 
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The Euclidean Algorithm: 

 Suppose that   and   are non-zero elements of a Euclidean domain  , and 

suppose, without loss of generality, that  ( )   ( ). Then there exist         

and         such that 

               (  )   ( ) 

                (  )   (  ) 

                 (  )   (  ) 

                 (  )   (  )  
                       }

 
 

 
 

                   (  ) 

 The process must end with some     , the final equations being 

                         (    ) (    ) 
                                                                

 

Now, from the equation of (25), we deduce that 

〈   〉  〈    〉                                     (  ) 

for every element       in 〈   〉 can be rewritten as (     )      〈    〉, 

and every element        in 〈    〉 can be written as    (     )  〈   〉. 

Similarly, the subsequent equations give 

〈    〉  〈     〉    〈     〉  〈     〉     
〈         〉  〈         〉    〈         〉  〈    〉 

                        (  ) 

From (26) and (25) it follows that 〈   〉  〈    〉, and so      is the (essentially 

unique) greatest common divisor of   and  . 

Unique Factorisation: 

 Let   be an integral domain with group   of units, and let     be such 

that        . Then   is said to be irreducible if it has no proper factor. An 

equivalent definition in terms of ideals is available, as a result of the following 

theorem. 
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Theorem (1-2-3): 

 Let   be an element of a principal ideal domain  . Then the following 

statements are equivalent: 

(i)   is irreducible; 

(ii) 〈 〉 is a maximal proper ideal of  . 

(iii)   〈 〉 is a field. 

Proof: 

(i)   (ii). Suppose that   is irreducible. Then   is not a unit, and so 〈 〉 is a 

proper ideal of  . Suppose, for a contradiction, that there is a (principal) ideal 

〈 〉 such that 〈 〉  〈 〉   . Then   〈 〉, and so      for some non-unit 

 . This contradicts the supposed irreducibility of  . 

(ii)   (iii). Let   〈 〉 be a non-zero element of   〈 〉. Then   〈 〉, and so 

the ideal 〈 〉  〈 〉 properly contains 〈 〉. We are assuming that 〈 〉 is maximal, 

and so it follows that 〈 〉  〈 〉  *           +   . Hence there exist 

    in   such that        , and from this we deduce that (  〈 〉)(  

〈 〉)    〈 〉. Thus   〈 〉 is a field. 

 (iii)   (i). if   is not irreducible, then there exist non-units   and   such that 

    . Then   〈 〉 and   〈 〉 are both non-zero elements of   〈 〉, but    

(  〈 〉)(  〈 〉)    〈 〉    〈 〉  

Thus   〈 〉 has divisor of zero, and so certainly is not a field. 

 An element   of an integral domain   has a factorization into irreducible 

elements if there exist irreducible elements            such that             . 

The factorization is essentially unique if, for irreducible elements            and 

           

                  

implies that     and, for some permutation   *       +  *       +,  

     ( )   (         )  
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 An integral domain   is said to be a factorial domain, or to be a unique 

factorization domain, if every non-unite     of   has an essentially unique 

factorization into irreducible elements. Here again  , in which the (positive and 

negative) prime numbers are the irreducible elements, provides a familiar example: 

          , and the factorization is essentially unique, for nothing more 

different than (say) (  )  (  )      is possible. 

Theorem (1-2-4): 

  Every principal ideal domain is factorial. 

Proof: 

  We begin with the lemma which at first sight deals with something quite 

different. 

Lemma (1-2-5): 

 In principal ideal domain there are no infinite ascending chains of ideals. 

Proof: 

 In any integral domain  , an ascending chain 

           

of ideals has the property that          is an ideal. To see this, first observe that, 

if      , then there exist     such that          , and so         *   +   . 

Also, if     and    , then      for some  , and so        . 

 Now suppose that   is a principal ideal domain, and let 

〈  〉  〈  〉  〈  〉                                   (  ) 

be an ascending chain of (principal) ideals. From the previous paragraph, we know 

that the union of all ideal in this chain must be an ideal, and by our assumption 

about  , this must be a principal ideal 〈 〉. Since       〈  〉, we must have that 

  〈  〉 for some  . Thus 〈 〉  〈  〉 and, since it is clear that we also have 

〈  〉  〈 〉, it follows that 〈 〉  〈  〉. Hence  
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〈  〉  〈    〉  〈    〉   〈 〉  

and so the infinite chain of inclusions (28) terminates at 〈  〉. 

 Returning now to the proof of Theorem (1-2-3), we show first that any 

    in   can be expressed as a product of irreducible elements. Let   be a non-

unit in  . Then either   is irreducible, or it has a proper divisor   . Similarly, 

either    is irreducible, or    has a proper divisor   . Continuing, we obtain a 

sequence               in which, for            is a proper divisor of     . 

The sequence must terminate at some   , since otherwise we would have an 

infinite ascending sequence  

〈 〉  〈  〉  〈  〉     

and Lemma (1-2-5) would be contradicted. Hence   has a proper irreducible 

divisor      , and       . If    is irreducible, then the proof is complete. 

Otherwise we can repeat the argument we used for   to find a proper irreducible 

divisor    of   , and         . We continue this process. It too must terminate, 

since otherwise we would have an infinite ascending sequence 

〈 〉  〈  〉  〈  〉     

in contradiction to Lemma (1-2-5). Hence some    must be irreducible, and so 

              is a product of irreducible elements. 

 To show that the product is essentially unique, we need another lemma. 

Lemma (1-2-6): 

 Let   be a principal ideal domain, let   be an irreducible element in  , and 

let      . Then 

                   

Proof: 

 Suppose that      and    . Then the greatest common divisor of   and   

must be 1, and so there exist     in   such that        . Hence         

 , and so, since   clearly divides        , it follows that    . 
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It is a routine matter to extend this result to product of more than two elements. 

Corollary (1-2-7): 

  Let   be a principal ideal domain, let   be an irreducible element in  , and 

let             . Then  

                                           

To complete the proof of Theorem (2-4), suppose that 

                                                 (  ) 

where            and            are irreducible. Suppose first that    . Then 

   , since         is irreducible, and so      . Suppose inductively that, for 

all     and all    , any statement of the form (29) implies that     and that, 

for some permutation   of *       +, 

     ( )   (         )  

Let    . Since           , it follows from Corollary (1-2-7) that       for 

some   in *       +. Since    is irreducible and    is not a unit, we deduce that 

     , and by cancellation we then have 

                        

By the induction hypothesis, we have that         and that, for   

*       + * +      ( ) for some permutation   of *       +. Hence, extending 

  to a permutation   of *       + by defining  ( )   , we obtain the desired 

result. 

 As a consequence of Theorem (1-2-1), we have the following immediate 

corollary. 

Corollary (1-2-8): 

  Every Euclidean domain is factorial. 
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Polynomials: 

 Throughout this section,   is an integral domain and   is a field. 

For reasons that will emerge, we begin by describing a polynomial in abstract 

terms. The more familiar description of a polynomial will appear shortly. A 

polynomial   with coefficients in   is a sequence (       ), where      for all 

   , and where only finitely many of *       + are non-zero. If the last non-

zero element in the sequence is   , we say that   has degree  , and write     . 

The entry    is called the leading coefficient of  . If      we say that the 

polynomial is monic. In the case where all of the coefficients are 0, it is convenient 

to ascribe the formal degree of    to the polynomial (       ), and to make the 

conventions, for every   in  , 

        (  )                            (  ) 

Polynomials (       ) of degree 0 or   are called constant. For others of small 

degree we have names as follows: 

   1 2 3 4 5 6 

name linear quadratic Cubic quartic Quintic sextic 

(Fortunately we shall have no occasion to refer to “septic” polynomials!) 

 Addition of polynomials is defined as follows: 

(       )  (       )  (             )  

Multiplication is more complicated: 

(       )(       )  (       )  

where, for          , 

   ∑     

*(   )      +

  

Thus  
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With respect to these two operations, the set   of all polynomials with coefficient 

in   becomes a commutative ring with unity. Most of the ring axioms are easily 

verified, and it is clear that the zero element is (       ), the unity element is 

(       ) and the negative of (       ) is (         ). The only axiom that 

causes significant difficultly is the associativity of multiplication. Let   

(       )   (       )   (       ) be polynomials. (Recall that in each 

case, only finitely many entries are non-zero). Then (  )  (       ), where, 

for           

   ∑ ( ∑     

*(   )      +

)  

*(   )      +

 ∑       

*(     )        +

 

 ∑   ( ∑     

*(   )      +

)
*(   )      +

  

Which is the  th entry of   (  ). Thus multiplication is associative. 

 There is a monomorphism       given by 

 ( )  (       )    (   )  

We may identity the constant polynomial  ( )  (       ) with the element   of 

 . 

 Let   be the polynomial (         ). Then the multiplication rule gives 

   (         )    (           ) and, in general, 

   (       )          {
               
              

 

The a polynomial 

(                ) 

of degree   can be written as 

 (  )   (  )   (  ) 
     (  )    
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or as 

          
                                      (  ) 

if we make the identification of  (  ) with   . 

 We have arrived at the common definition of a polynomial, in which   is 

regarded as an “indeterminate”. The notation (31) is clearly useful, and assuredly 

makes the definition of multiplication seem less arbitrary. It is important, however, 

to note that we are talking here of polynomial forms, wholly determined by the 

coefficients   , and that   is not a number of  , or indeed of anything else, except 

of course of the ring   of polynomials. We sometimes write    ( ) and say that 

it is a polynomial over   in the indeterminate  . The ring   of all such 

polynomials is written  , -. We refer to it simply as the polynomial ring of  . 

 We summarise some of the main facts about polynomials, some of which we 

already know. 

Theorem (1-2-9): 

   Let   be an integral domain, and let  , - be the polynomial ring of  . Then  

(i)  , - is an integral domain. 

(ii) If      , -, then 

 (   )     *     +  

(iii) For all     in  , -. 

(iv) The group of units of  , - coincides with the group of units of  . 

Proof: 

(i) We have already noted that  , - is a commutative ring with unity. To 

show that there are no divisors of 0, suppose that   and   are non-zero 

polynomials with leading terms       respectively. The product of   

and   then has leading term     . Since  , by assumption, has no zero 

divisor, the coefficient      is non-zero, and so certainly     . 

(ii) Let   and   be non-zero. Suppose that          , and suppose 

without loss of generality, that    . If     then it is clear that the 

leading term of     is   , and so  (   )     *     +. If    , 
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then we may have        , and so all we can say is that  (  

 )     *     +. The conventions established in (30) ensure that this 

result holds also if one or both of     are equal to 0. 

(iii) By the argument in (i), if   and   are non-zero, then  (  )      

     . If one or both of   and   are zero, then the result holds by the 

conventions established in (30). 

(iv) Let      , -, and suppose that     . From part (iii) we deduce that 

       . Thus      , and      if and only if   and   are in the 

group of units of  . 

 Since the ring of polynomials over the integral domain   is itself an integral 

domain, we can repeat the process, and form the ring of polynomials with 

coefficients in  , -. We need to use a different letter for a new indeterminate, 

and the new integral domain is ( , -), -, more usually denoted by  ,   -. It 

consists of polynomials in the two indeterminates   and   with coefficients in 

 . This can be repeated, and we obtain the integral domain  ,          -.  

 The field of fractions of  , - consists of rational forms 

             

             
  

  where the denominator is not the zero polynomial. The field is denoted by 

 ( ) (with round rather than square brackets). In a similar way one arrives at 

the field  (          ) of rational forms in the   indeterminates 

           with coefficients in  . 

 The point already made, that a polynomial is wholly determinate by its 

coefficients, is underlined by the following result. 

Theorem (1-2-10): 

 Let      be integral domain, and let        be an isomorphism. Then 

the mapping    , -    , - denoted by 

 (             )   (  )   (  )     (  )   

is an isomorphism. 
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Proof: 

 The proof is routine. 

The isomorphism   is called the canonical extension of  . A further extension 

    ( )    ( ) is defined by 

  (   )   ̂( )  ̂( )⁄      (     ( ))                               (  ) 

 We shall be specially interested in the ring  , - of polynomials over a field 

 . The group of units of  , - is the group of units of  , namely the group    of 

non-zero elements of the field  , and the usual way we write     if      for 

some   in   . 

 The integral domain  , - has an important property closed analogous to a 

property of the domain on integers. 

Theorem (1-2-11): 

  Let   be a field, and let     be elements of the polynomial ring  , -, with 

   . Then there exists unique elements     in  , - such that        and 

     . 

Proof: 

 If     the result is trivial, since       . So suppose that    . The 

proof is by induction on   . First, suppose that     , so that     . If      

also, let       and    ; otherwise, let     and    . 

 Suppose now that     , and suppose also that the theorem holds for all 

polynomials   of all degrees up to    . If      , let     and    . So 

suppose now that      . Let     have leading terms          , respectively, 

where    . Then the polynomial 

    (
  

  
    )  



35 
 

has degree at most    , and so we may assume that there exist       such that 

       , with      . It follows that       , where      

(     )    . 

To prove uniqueness, suppose that 

                               

Then      (    ) , and so  ((    ) )   (    )    . By Theorem 

(1-2-9), this cannot happen unless     , and consequently      also. 

Theorem (1-2-12): 

  If   is a field, then  , - is a Euclidean domain. 

Proof: 

 The map   does not quite have the properties of the map   involved in the 

definition of a Euclidean domain, but if, for all   in  , - we define  ( ) as    , 

with the convention that      , we have exactly the right properties. 

 As a consequence of Theorem (1-2-1), Corollary (1-2-8) and Theorem (1-2-

3) we can summarise the important properties of  , - as follows. 

Theorem (1-2-13): 

 Let   be a field. Then 

(i) Every pair (   ) of polynomials in  , - has a greatest common divisor 

 , which can be expressed as      , with     in  , -; 

(ii)  , - is a principal ideal domain; 

(iii)  , - is a factorial domain; 

(iv) If    , -, then  , - 〈 〉 is a field if and only if   is irreducible. 

Multiplication is a little more difficult: 

(     〈    〉)(     〈    〉) 

    (     )       〈    〉 
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                           (     )  (     )    (    )  (    ) 

 (     )  (     )  (    )  

 This is reminiscent of the rule for adding multiplying complex numbers. Indeed it 

is more than reminiscent: the map    , - 〈    〉   , given by 

 (     〈    〉)         (     )  

is in fact an isomorphism. 

 We have already emphasized that polynomials, as we have defined them, are 

polynomial forms, entirely determined by their coefficients. For example, if we 

write                  , we mean that   is the zero polynomial, that 

is to say,             . Let   be an integral domain and let    . The 

homomorphism    from  , - into   is defined by 

  (             )                                    (  ) 

The verification that this is a homomorphism is entirely routing, and is omitted. 

We frequently want to write   ( ) more simply as  ( ). 

 If  ( )   , then we say that   is a root, or a zero, of the polynomial  . The 

following result is crucial to the understanding of roots and factorisations.  

Theorem (1-2-14): (The Remainder Theorem): 

 Let   be a field, let     and let   be a non-zero polynomial in  , -. Then 

the remainder upon dividing   by     is  ( ). In particular,   is a root of   if 

and only if (   )  . 

Proof: 

 By the division algorithm (Theorem (2-11)), there exist     in  , - such 

that 

  (   )                 (   )                            (  ) 

Thus   is a constant. Substituting   for  , we see that  ( )   . In particular, 

 ( )    if and only if    , that is. If and only if (   )  . 
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Irreducible polynomials: 

 We saw away of constructing the complex field from the real field. This is a 

very special case of a more general technique. 

Theorem (1-2-15): 

 Let   be a field, and let  ( ) be an irreducible polynomial in  , -. Then 

 , - 〈 〈 〉〉 is a field containing   up to isomorphism. 

Proof: 

 We know from Theorem (2-13) that  , - 〈 〈 〉〉 is a field. The map 

     , - 〈 〈 〉〉 given by 

 ( )    〈 〈 〉〉     (   ) 

is easily seen to be a homomorphism. It is even a monomorphism, since  

  〈 〈 〉〉    〈 〈 〉〉      〈 〈 〉〉       

It is clear, therefore, that we will have a highly effective method of constructing 

new fields provided we have a way of identifying irreducible polynomials. 

Certainly every linear polynomial is irreducible, and if the field of coefficients is 

the complex field  , that is the end of the matter, for, by the fundamental theorem 

of algebra, every polynomial in  , - factorises, essentially uniquely, into linear 

factors. Linear polynomials, it must be said, are of little interest as far as Theorem 

(2-15) is concerned, for  , - 〈 〈 〉〉 coincides with  ( ) in this case, and so is 

isomorphic to  : if  ( )     , then, for all   in  , - we have that   

 (   )   ( ), and so   〈 〉   〈 〉   ( ). 

 For polynomials in  , - the situation is only a little more complicated. 

Consider a typical polynomial  

 ( )            
                                   (  ) 

in  , -. If       is a root, then 
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Hence the complex conjugate of the left-hand side is zero also. That is, since the 

coefficients            are real,  

   ̅       ̅
       ̅      

Thus the non-real roots of the polynomial occur in conjugate pairs, and we obtain a 

factorization  

 ( )    (    ) (    )(    )(   ̅ ) (    )(   ̅ )  

in  , -, where                             and       . This gives 

rise to a factorisation 

  (    ) (    )( 
  (    ̅ )     ̅ ) (   (    ̅ )     ̅ ) 

in  , -. In this factorisation the quadratic factors are irreducible in  , -, for if 

they had real linear factors, they would have two distinct factorisations in  , -, 

and we know that this cannot happen. 

 We have proved the following result.         

Theorem (1-2-16): 

  The irreducible elements of the polynomial ring  , - are either linear or 

quadratic. Every polynomial (35) in  , - has a unique factorisation 

  (    ) (    )( 
        ) (         )  

in  , -, where            and     . 

We can of course easily determine whether a quadratic polynomial          

in  , - is irreducible: it is irreducible if and only if the discriminant         . 

 This much is relatively straightforward. Unfortunately, we shall be mostly 

interested in  , -, and here the situation is not so easy, for, as we shall see, in 

 , - there are irreducible polynomials of arbitrarily large degree. 

 Quadratic polynomials present no great problem. 
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Theorem (1-2-17): 

 Let  ( )            be a polynomial with coefficients in  . Then: 

(i) If  ( ) is irreducible over  , then it is irreducible over  ; 

(ii) If  ( )  (    )(    ), with        , then  ( ) is irreducible 

in  , - if and only if    and    are irrational. 

Proof: 

(i) Let  ( ) be irreducible over  . If  ( )  (    )(    ) were a 

factorisation in  , -, it would also be a factorisation in  , -, and we 

would have a contradiction. 

(ii) If       were rational we would have a factorisation in  , -, and  ( ) 

would not be irreducible. If       are irrational, then (    )(    ) 

is the only factorisation in  , -, and so a factorisation in  , - into 

linear factors is not possible. 

Remark (1-2-18): 

 With regard to part (ii) of the theorem, it is clear that, if one or other of 

      is irrational, then both are irrational. 

Theorem (1-2-19): (Gauss’s Lemma): 

 Let   be a polynomial in  , -, irreducible over  . Then  , considered as a 

polynomial in  , -, is irreducible over  . 

Proof: 

 Suppose, for a contradiction, that     , with      , - and       

  . Then there exists a positive integer   such that        , where        , -. 

Let us suppose that   is the smallest positive integer with this property. Let 

               
                      

   

If    , then          , and we have an immediate contradiction. Otherwise, 

let   be a prime factor of  . 
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Lemma (1-2-20): 

 Either   divides all the coefficients of    or   divides all the coefficients of 

  . 

Proof: 

 Suppose, for a contradiction, that   does not divide all the coefficients of   , 

and that   does not divide all the coefficients of   . Suppose that   divides 

         , but     , and that   divides          , but     . The coefficient of 

     in    is 

                        

In this sum, all the terms preceding      are divisible by  , since   divides 

         ; and all the terms following      are divisible by  , since   divides 

         . Hence only the terms      is not divisible by  , and it follows that the 

coefficient of      in    is not divisible by  . This gives a contradiction, since the 

coefficients of   are integers, and so certainly all the coefficients of    are 

divisible by  . 

 Returning now to the proof of theorem (1-2-19), we may suppose, without 

loss of generality, that          , -. It follows that (   )       , and this 

contradicts the choice of   as the least positive integer with this property. Hence a 

factorisation over   is not possible, and   is irreducible over  . 

 We have seen that there is no difficulty in determining the irreducibility of 

quadratic polynomials in  , -. Theorem (1-2-19) makes it reasonably straight-

forward to deal with monic cubic polynomials over  . 

 This technique will not work for a polynomial of degree exceeding 3, and 

indeed there is no easy way to determine irreducibility over  . One important 

technique, due to Eisenstein, is as follows. 
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Theorem (1-2-21): (Eisenstein’s criterion): 

  Let 

 ( )                

be a polynomial in  , -. Suppose that there exists a prime number   such that  

(i)     , 

(ii)          (         ), 

(iii)      . 

Then   is irreducible over  . 

Proof: 

 By Gauss’s lemma (Theorem (2-19)), it is sufficient to prove that   is 

irreducible over  . Suppose, for a contradiction, that     , wher 

              
                     

   

with       and      . Since        , it follows from (ii) that      or 

    . Since      , the coefficients    and    cannot both be divisible by  , and 

we assume, without loss of generality, that 

                                       (  ) 

Suppose inductively that   divides             , where      . Then 

                              

Since   divides each of                        , it follows that       , and 

hence, form (36),     . 

 We conclude that     , and so, since        , we have that     , a 

contradiction to the assumption (i). hence   is irreducible. 

Remark (1-2-22): 

 It is clear from Theorem (1-2-21) that there exist irreducible polynomials in 

 , - of arbitrary high degree. 
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Another device for determining irreducibility over   (and consequently over  ) is 

to map the polynomial onto   , - for some suitably chosen prime  . Let      

            , -, and let   be a prime not dividing   . For each   in 

*       +, let  ̅  denote the residue class    〈 〉 in the field      〈 〉, and 

write the polynomial  ̅   ̅      ̅    as  ̅. Our choice of   ensures that 

  ̅   . Suppose that    , with          and         . Then 

 ̅   ̅   ̅. If we can show that  ̅ is irreducible in   , -, then we have a 

contradiction, and we deduce that   is irreducible. The advantage of transferring 

the problem from  , - to   , - is that    is finite, and the verification of 

irreducibility is a matter of checking a finite number of cases. 

Remark (1-2-23): 

 The choice of prime   is, of course, crucial. If, we had used    , we 

would have obtained  ̅      , and in   , - this is far from irreducible, since 

     (   ) . It is important to realize that if our  ̅ is not irreducible then 

we can draw no conclusion at all. 
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 In these chapter we study the field extension , defined the  

trans centennial and algebraic elements, monic polynomial and we give some 

application geometry , also we study the splitting field. 

Section (2-1): 

The Degree of an Extension: 

 In this section it necessary to have some knowledge of the basic concepts of 

linear algebra, including linear independence, spanning sets, bases and dimension. 

 If     are fields and       is a monomorphism, we say that   is an 

extension of  , and we sometimes find it result to write "    is a (field) 

extension". As we have seen, this is not essentially different from saying that   is a 

subfield of  , since we may always identify   with its image  ( ). Then   can be 

regarded as a vector space over  , since the vector space axioms 

(V1) (   )      (   )    (       )  

(V2)            (     )  

(V3) there exists   in   such that          (   )  

(V4) for all   in   there exists –   in   such that   (  )       

(V5)  (   )           (         )  

(V6) (   )           (         )  

(V7) (  )   (  )    (         )  

(V8)         (   )  

are all consequences of the field axioms for  . Hence there exists a basis of   over 

 . Different bases have the same cardinality, and there is a well-defined dimension 

of  , equal to the cardinality of an arbitrarily chosen basis. The term used in field 

theory for this dimension is the degree of   over  , or the degree of the extension 

   ; and we denote it by ,   -. We say that   is a finite extension of   if ,   - is 

finite; otherwise   is an infinite extension. 
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Theorem (2-1-1): 

 Let     be a field extension. Then     if and only if ,   -   . 

Proof: 

 This is a standard property of finite-dimensional vector spaces, but for 

completeness we prove it here. 

 Suppose first that    . Then * + is a basis for   over  , since every 

element   of   is expressible as   , with   in  . Thus ,   -   . 

 Conversely, suppose that ,   -   , and that * +, where    , is a basis of 

  over  . Thus, in particular, there exists   in   such that     , and so   

  ⁄   . For every   in   there exists   in   such that        ⁄ . Thus 

   . We have shown that    . 

 Suppose now that we have field extensions     and    . That is, there are 

monomorphisms      . Then         is a monomorphism, and so   is 

an extension of  . With these definitions we now have the following theorem, in 

which the equality is intended to include the information that if either of ,   - and 

,   - is infinite then so is ,   -. We shall make the usual identifications, 

regarding   as a subfield of   and   as a subfield of  . 

Theorem (2-1-2): 

 Let      and     be field extensions. Then 

,   -,   -  ,   -  

Proof: 

 Let *          + be a linearly independent subset of   over  , and let 

*          + be a linearly independent subset of   over  . We show that 

{                          }          (  ) 

is a linearly independent subset of   over  . For let us suppose that 
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∑∑       

 

   

 

   

    

with       for all   and  . Rewriting this as 

∑(∑     

 

   

)  

 

   

    

we deduce, since the    are linearly independent over  , that 

∑     

 

   

      (         )  

Then, since the    are linearly independent over  , we conclude that       for all 

  and  . 

 If either of ,   - and ,   - is infinite, then either   or   can be made 

arbitrarily large, and so the set (1) can be made arbitrarily large. Hence ,   - is 

infinite. So now suppose that 

,   -          ,   -       

that *          + is a basis of   over  , and that *          + is a basis of   

over  . For each   in   there exist            in   such that   ∑     
 
   . Also, 

for each    there exist             in   such that    ∑      
 
   . Hence 

  ∑∑   (    )

 

   

 

   

  

The set (1), being both linearly independent and a spanning set for   over   , is a 

basis, and so 

,   -     ,   -,   -  

 The following easy consequence is worth recording at this stage. 
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Corollary (2-1-3): 

Let            be fields, and suppose that          is an extension, for 

       . Then 

,     -  ,       -,         - ,     -  

Extensions and Polynomials: 

We are familiar with the observation that equation      cannot be solve 

within the rational field, but has the solutions  √  in the field   of real numbers. 

In fact its solution lie within a much smaller field than  , namely the extension 

 [√ ]  {   √       } 

of  . It is not perhaps quite obvious that this is a field, but it is easy to verify the 

subfield conditions (3). If    √     √    [√ ], then 

(   √ )  (   √ )  (   )  (   )√   [√ ] 

and (if    √    ) 

(   √ )(   √ )
  

 
(   √ )(   √ )

(   √ )(   √ )
    √   

where 

  
      

      
        

     

      
   

Note that from the irrationality of √  it follows that          if and only if 

     . 

This is a special case of a general result, which we now proceed to 

investigate. 

We begin with something quite general. Let   be a sub field   and let   be a 

subset of  . Let  ( ) be the intersection of all the subfields of   containing    . 

(There is at least one such subfield, namely   itself.) It is clear that  ( ) is the 
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smallest subfield containing    , and we call it the subfield of   generated over 

  by  . If   *          + is finite, we write  ( ) as  (          ).    

Theorem (2-1-4): 

The subfield  ( ) of the field   coincides the set   of all elements of   that 

can be expressed as quotients of finite linear combinations (with coefficients in  ) 

of finite products of elements of  . 

Proof: 

Denote by   the set of all finite linear combination of finite products of 

elements of  . If      , then         . Hence, if     ⁄  and     ⁄  are 

typical elements of  , with         in   and      , we see that     

(     ) (  )⁄   , and (provided    )   ⁄  (  ) (  )⁄   . We deduce 

that   is a subfield of   containing   and  , and so  ( )   . Also any subfield 

containing   and   must contain all finite products of elements in  , all linear 

combinations of such products, and all quotients of such linear combinations. In 

short, it must contain  . Hence, in particular,  ( )   . 

Of particular interest is the case where   has just one element  (  ). Then, 

from Theorem (2-1-4), we deduce that  ( ) is the set of all quotients polynomials 

in   with coefficients in  . We say that  ( ) is a simple extension of  . The link 

with polynomials is important, as the next result shows: 

Theorem (2-1-5): 

Let   be a field, let   be a subfield and let    . Then either 

(i)  ( ) is isomorphic to  ( ), the field of all rational forms with coefficients 

in  ; or 

(ii) There exists a unique monic irreducible polynomial   in  , - with 

property that, for all   in  , -, 

a)  ( )   , if and only if   ⁄ ; 

b) The field  ( ) coincides with  , -, the ring of all polynomials in   

with coefficients in  ; and 

c) , , -  -    .  
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Proof: 

Suppose first that there is no non-zero polynomial   in  , - such that 

 ( )   . (This means in particular that    , since in that case we may take   

as    ) The there is a mapping      ( ) given by 

 (  ⁄ )   ( )  ( )⁄   

(for we are assuming that  ( )    only if   is the zero polynomial). It is routine 

to verify that   is a homomorphism, and it clearly maps onto  ( ). To see that it 

is well defined and one-to-one, suppose that         are polynomials, with 

     . Then 

 (  ⁄ )   (  ⁄ )   ( ) ( )   ( ) ( )          

                               , - 

                  ⁄    ⁄       ( )  

Now suppose that there does exist a non-zero polynomial   such that 

 ( )   . Indeed, let us suppose that   is a polynomial with least degree having 

this property. If   is the leading coefficient of  , then   ⁄  is a monic polynomial. 

Denote   ⁄  by  . Certain  ( )   . 

It is clear that  ( )    if   ⁄ . Conversely, suppose that  ( )   . Then 

by Theorem (1-2-11),       , where      . Now 

   ( )   ( ) ( )   ( )     ( )   ( )  

Since      , this gives a contradiction unless   is the zero polynomial. Hence 

    , and so   ⁄ . 

To show that   is unique, suppose that    is another polynomial with the 

same properties. Then  ( )       and so    ⁄  and    ⁄ . Since both 

polynomials are monic, we conclude that     . 

To show that   is irreducible, suppose for a contradiction, there exist 

polynomials   and   such that     , with         . Then  ( ) ( )  
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 ( )   , and so either  ( )    or  ( )   . This is impossible, since both   

and   are of smaller degree than  . 

Next, consider a typical element  ( )  ( )⁄  in  ( ), where  ( )   . 

Then   does not divide  , and it follows, since   has no divisors other than itself 

and  , that the greatest common divisor of    and   is  . Hence, by Theorem (1-2-

13), there exist polynomials     such that        , and so, substituting   for 

 , we have  ( ) ( )   . Thus 

 ( )

 ( )
  ( ) ( )   , -  

Finally, suppose that     , and let  ( )   , -   ( ), where   is a 

polynomial. Then       , where        . It follows that  ( )   ( ), 

and so there exist              (the coefficients of  , some of which may, of 

course, be zero) in   such that  ( )                
   . Hence 

*          + is a spanning set for  , -. 

Moreover, the set *          + is linearly independent over  , for 

elements              of   are such that               
     , then 

              , since otherwise we would have a non-zero polynomial 

                
    of degree at most     such that  ( )   . Thus 

*          + is a basis of  ( ) over  , and so , ( )  -   . 

The polynomial   defined above is called the minimum polynomial of the 

element  . 

Theorem (2-1-6): 

Let  ( ) be a simple transcendental extension of a field  . Then the degree 

of  ( ) over   is infinite. 

Proof: 

The elements          are linearly independent over  . 

An extension   of   is said to be an algebraic extension if every element of 

  is algebraic over  . Otherwise   is a transcendental extension. 
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Theorem (2-1-7): 

Let     and     be field extensions, and let    . If   is algebraic over 

 , then it is also algebraic over  . 

Proof: 

Since   is algebraic over  , there exists a non-zero polynomial   in  , - 

such that  ( )   . Since   is also in  , -, we deduce that   is algebraic over  . 

 

Theorem (2-1-8):  

Let   be an extension of a field  , and let  ( ) be the set of all elements in 

  that are algebraic over  . Then  ( ) is a subfield of  . 

Proof: 

Suppose that      ( ). Then 

     (   )  ( , -), -  

By Theorem (2-1-9),   is algebraic over  , -, and so both , , -  - and 

[( , -), -  , -] are finite. From Theorem (2-1-5) it follows that , (   )  - is 

finite, and so, by Theorem (2-1-8),     is algebraic over  . An identical 

argument shows that   ⁄   ( ) for all   and  (  ) in  ( ). 

If we take   as the field   of rational numbers and   as the field   of 

complex numbers, then  ( ) is the field   of algebraic numbers. 

Theorem (2-1-9): 

The field   of algebraic numbers is countable.  

Proof: 

The proof depends on some knowledge of the arithmetic of infinite cardinal 

numbers. It is know  that   is countable. To put it in the standard notation for 

cardinal numbers,       . Since    , we know that       . 
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Now, the number of monic polynomials of degree   with coefficients in   is 

  
    . Each such polynomial has at most   distinct roots in  , and so the 

number of monic polynomials of degree   is at most       . Hence the number 

of roots of monic polynomials of all possible degree is at most         . Thus 

      , and the result follows. 

Remark (2-1-10): 

We cannot assert equality in the formula (2). For example, 

[ √   ]  [ √   ]  [ √   ]     

but [ (√  √  √ )  ]   .       

Polynomials and Extensions: 

 In the last section, called Extensions and polynomials, the main result was 

that every simple algebraic extension  ( ) within a field   is associated with a 

polynomial, the minimum polynomial of  . We required to exist within a field  . 

By changing the order of the words in the title we change the question: given a 

field   and a monic irreducible polynomial   with coefficients in  , can we create 

a field, an extension of  , containing an element   whose minimum polynomial is 

 ? 

Let   be a field, and let    , - be irreducible and monic. Let    , - 〈 〉. 

Then   is a field, by Theorem (1-2-3). By Theorem (1-2-15), the mapping   

  〈 〉 is a monomorphism from   into  , and so   is an extension of  . Let 

    〈 〉. Then, for each polynomial             
         in 

 , -, 

              ( )               

      (  〈 〉)    (  〈 〉)      (  〈 〉) 

      (  〈 〉)    ( 
  〈 〉)      (   〈 〉)

 (          
        )  〈 〉 

   〈 〉                                                                      

and so  ( )    if and only if    . Thus   is the minimum polynomial of  . We  
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Theorem (2-1-11): 

Let      be field, and let        be an isomorphism with canonical 

extension  ̂  , -    , -. Let             
         be an 

irreducible polynomial of degree   with coefficients in  , and let     ̂( )  

 (  )    (    ) 
       (  ). Let   be an extension of   containing a 

root   of  , and let    be an extension of    containing a root    of   . Then there is 

an isomorphism   from   ,  -, an extension of  . 

Proof: 

 The field  , - consists of polynomials               
   , with the 

obvious addition, and where multiplication is carried out using the equation 

    
 

  

(           )  

The mapping   is defined by 

 (              
   )   (  )   (  ) 

     (    )(  )     

In a more compact notation, we have that, for each polynomial   in  , - with 

    , 

 ( ( ))  ( ̂( ))(  )  

It is clear that   is one-one and onto, and that it extends the isomorphism     

  . 

 Let      , -, where          . Then it is clear that 

 ( ( )   ( ))   ( ( )   ( ))  

The corresponding equality for multiplication is less clear. We multiply  ( ) and 

 ( ) and use the minimum polynomial to reduce the answer to  ( ), say where 

      . Precisely, we use the division algorithm to write        , 

where     . Hence 

 ( ( ) ( ))   ( ( ))  ( ̂( ))(  )                               (  ) 
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The isomorphism  ̂ assures us that the division algorithm in   , - gives  

 ̂( ) ̂( )   ̂( ) ̂( )   ̂( )                               (  ) 

 Hence 

 ( ( )) ( ( ))  ( ̂( ))(  )( ̂( ))(  ) 

                      ( ̂( ) ̂( ))(  ) 

                                                                 ( ̂( ) ̂( )   ̂( ))(  )    (     (  )) 

                                                              ( ̂( ))(  )( ̂( ))(  )  ( ̂( ))(  ) 

                                                              ( ̂( ))(  )    (      ( ̂( ))(  )   ) 

Comparing this with (39) gives the required result. 

It is worth recording as a corollary the result we obtain when   and    are 

the same field. 

Remark (2-1-12): 

 By the fundamental theorem of algebra every polynomial with coefficients 

in   factories into linear factors. In particular, if   is irreducible in  , -, then   

factorises completely in  , -. If we know these factors, it is therefore easier and 

more natural to deal, for example, with the subfield  [ √ ]  {    √       } 

of   than with  , - 〈    〉. The two fields are, of course, isomorphic to each 

other. 

If, however, we are dealing, say, with extensions of   , then we are in effect 

obliged to carry out the more abstract procedure. 
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Section (2-2): Applications to geometry:  

Ruler and Compasses Constructions: 

 Undoubtedly one of the early triumphs of abstract algebra was the light it 

shed on some classical problems of Greek mathematics, the most significant of 

which was referred to as “squaring the circle”. This is one of very few phrases 

from serious mathematics to have entered the language, though a (totally 

unscientific) poll of non-mathematical friends suggests that its mathematical 

meaning is not even remotely understood. “Something to do with    , is it?” is a 

common answer, and indeed that is correct, but it does not get to the heart of the 

matter. 

Remark (2-2-1): 

 This construction works just as well if   lies on the line   . 

An Algebraic Approach: 

 A Cartesian coordinate system in the plane depends on 

(i) Specifying two axes at right angles to each other, meeting at a point  , 

the origin; 

(ii) Choosing a point  , distinct from  , on one of the axes, and giving it 

coordinates (   ). 

Let    be a set of points in the plane. There are two permitted operations on the 

points of   : 

(1) (Ruler) though any two points of   , draw a straight line; 

(2) (Compasses) draw a circle whose centre is a point in   , and whose radius is 

the distance between two points in   . 

Any point which is an intersection of two lines, or two circles, or a line and a 

circle, obtained by means of the operations (1) and (2), is said to be constructed 

from    in one step. Denote the set of such points by  (  ), and let       

 (  ). We can continue the process, defining 

         (    )     (         )                 (  ) 
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A point is said to be constructible from    if it belongs to    for some  . A point 

that is constructible from *   + is said to be constructible. 

Theorem (2-2-2): 

 Let   be a constructible point, belonging (in the notation (41)) to   , where 

   *(   )(   )+. For          , let    be the field generated over   by   . 

Then ,    - is a power of 2. 

Proof: 

 It is clear that ,    -      . We suppose inductively that ,      -     

for some    . We require to show that ,       - is a power of 2. 

 New points in    are obtained by 

(1) The intersection of two lines; or 

(2) The intersection of a line and a circle; or 

(3) The intersection of two circles. 

Case (1) is the easiest. Suppose that we have lines    and   , where   (     ), 

  (     )                , and that all these coordinates are in     . The 

equations of the lines are 

(    )(     )  (    )(     )      (    )(     )  (    )(     )  

and the coordinates of their intersection are obtained by solving these two 

simultaneous linear equations. The details are unimportant: the crucial observation 

is that the solution process involves only rational operations (addition, subtraction, 

multiplication and division), and so takes place entirely within the field     . The 

coordinates of the intersection of    and    lie inside the field     . 

For case (2), suppose that we have a line    intersecting a circle with center 

  and radius   , where     are points with coordinates in     .     

Taking the coordinates of     and   as in the previous paragraph, with all 

coordinates in     , we must solve the equations 

(    )(     )  (    )(     )  
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(    )
  (    )

      

where        . We have to solve two simultaneous equations, one linear and 

one quadratic, with coefficients in     . Again the details are unimportant, but the 

standard method of doing this is to express   in terms of   using the linear 

equation, and then to substitute in the equation of circle, obtaining a quadratic 

equation in  , with coefficients in     . The standard solution involves √ , where 

  is the discriminate of the quadratic equation, and so the coordinates of the points 

of intersection belong to the field     [√ ]. (This will coincide with     , if by 

chance, √      ). 

 For case (3), suppose that we have a circle with center   and radius   and a 

circle with center   with radius  , where         . With the same notation as 

before, we must solve the simultaneous equations 

(    )
  (    )

      

(    )
  (    )

      

By subtracting we obtain a linear equation (in fact the equation of the chord 

connection the points of intersection of the circles) and so we have reduced this 

case to case (2). 

 The conclusion is that the elements in    are either in      or in     [√ ] 

for some   in     . Hence, for some    . 

       (√   √     √  )  

and so ,       - is a power of 2. 

 In the light of this theorem, we now consider the three classical problems 

mentioned at the beginning of the chapter. 
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Splitting Field: 

 When we consider a polynomial such as      and extend the field   to 

 [ √ ] by adjoining one of the complex roots of the polynomial, we obtain a 

“bonus”, in that the other root   √  is also in the extended field. Over  [ √ ] we 

have that 

     (   √ )(   √ )  

We say that the polynomial splits completely (into linear factor) over  [ √ ]. It is 

indeed clear that this must happen for a polynomial of degree 2, since the “other” 

factor must also be linear. 

 By contrast, if we look at the cubic polynomial     , which is irreducible 

over   (by the Eisenstein criterion) and if we extend   to  , -, where   √ 
 

, 

we obtain the factorization 

     (   )(        )  

but the quadratic factor is certainly irreducible over  , -. (it is indeed irreducible 

over  , since the discriminant is     ). Over the complex field we have the 

factorization 

     (   )(         )(          ) 

and, since         
 

 
(    √ ), we can say that      splits completely over 

 (√ 
 

  √ ). The degree of the extension is 6. 

In general, let us consider a field   and a polynomial   in  , -. We say that 

an extension   of   is a splitting field for   over  , or that     is a splitting field 

extension, if 

(i)   splits completely over  ; 

(ii)   does not split completely over any proper subfield   of  . 

Thus, for example,  [ √ ] is a splitting field for      over  , and  (√ 
 

  √ ) 

is a splitting field of      over  . 
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Theorem (2-2-3): 

 Let   be a field and let    , - have degree  . Then there exists a splitting 

field   for   over  , and ,   -    . 

Proof: 

  The polynomial   has at least one irreducible factor   (which may be   

itself). If, as in Theorem (2-1-17), we form the field     , - 〈 〉 and denote the 

element   〈 〉 by  , then   has minimum polynomial  , and so  ( )   . 

Hence   has a linear factor     in the polynomial ring   , -. Moreover 

,    -      . 

We proceed inductively. Suppose that, for each   in *       +, we have 

constructed an extension    of   such that   has at least   linear factor in   , -, 

and 

,    - (   ) (     )  

Thus, in   , -,  

  (    )(    ) (    )    

and        . We repeat the argument in the previous paragraph, constructing 

an extension      of    in which    has a linear factor        and ,       -  

   . We conclude that 

,      -  ,       -,    -   (   ) (   )  

Hence, by induction, there exists a field    such that   splits completely over   , 

and ,    -    . 

Now let    (          )    , where            (not necessarily all 

distinct) are the roots of   in   . Then   splits completely over  , and cannot split 

completely over any proper subfield of  . 

Theorem (2-2-4): 

     Let   and    be fields, and let        be an isomorphism, extending to an 

isomorphism  ̂  , -    , -. Let    , -, and let      be (respectively) 
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splitting fields of   over   and  ̂( ) over   . Then there is an isomorphism 

        extending  . 

Proof: 

 Suppose that      and that in  , - we have the factorization 

   (    )(    ) (    )  

where  , the leading coefficient of  , lies in  , and             . We may 

suppose that, for some   *       +, the roots            are not in  , and 

that            . We shall prove the theorem by induction on  . 

If    , then all the roots are in  , and so   itself is a splitting field for  . 

Hence, in   , -, we have 

 ̂( )   ( )(   (  ))(   (  )) (   (  ))  

thus    is a splitting field for  ̂( ), and for     . 

Suppose now that    . We make the inductive hypothesis that, for every 

field   and every polynomial   in  , - having fewer than   roots outside   in a 

splitting field   of  , every isomorphism of   can be extended to an isomorphism 

of  . 
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In these chapter we study  the finite fields , study the Galois group and  

Galois extension . Also we prove some theorem of homomorphism between fields 

automorphism . Finally we study the normal extension separable extension, and 

define the perfect field . 

Section (3-1): 

We certainly know that finite fields exist. To summaries what we know 

already, from Theorem (1-1-21) and (1-1-29) we know that a finite field   has 

characteristic   , a prime number, and that its minimal subfield, known as its prime 

subfield, is 

*       (  )   (   )(  )+  

The prime subfield is isomorphic to   , the field of integers modulo  . 

Also, in Chapter (1) (Theorem (1-1-24)) we established that, for all     in a 

field   of characteristic  , and for all    , 

(   )  
    

    
           (  ) 

Using the theory developed in the intervening chapters, we can give a 

complete classification of finite fields. We need one preliminary idea, which 

applies to all fields. Let 

                

be a polynomial with coefficients in a field  . The formal derivative    of   is 

defined by 

                               (  ) 

Although this is a formal procedure and has nothing to do with the analytic process 

of differentiation, the familiar formulae 

 (  )   (  )      (   )           (     , -    )      (  ) 

and 
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 (  )  (  )   (  )    (     , -)          (  ) 

are still valid. 

Theorem (3-1-1): 

Let   be a polynomial with coefficients in a field  , and let   be a splitting 

field for   over  . Then the roots of   in   are all distinct if and only if f         

have no non-constant common factor. 

Proof: 

Suppose first that   has a repeated root   in  , so that   (   )  , 

where    . Then 

   (   ) (  )   (   )      

and so  and    have the common factor    . 

Conversely, suppose that   has no repeated roots. Then, for each root   of   

in  , we have   (   ) , where  ( )   . Hence, from (45), 

     (   )(  )  

and so (  )( )   ( )   . Thus, by remainder theorem (Theorem (1-2-14)), 

(   )   . This holds for every factor of   in  , -, and so   in  , -, and so   

and    must be coprime. 

We now state the result that classifies all finite fields: 

Theorem (3-1-2): 

(i) Let   be a finite field. Then        for some prime   and some integer 

   . Every element of   is a root of the polynomial    
  , and   is 

a splitting field of this polynomial over the prime subfield   . 

(ii) Let   be a prime, and let     be an integer. There exists, up 

isomorphism, exactly one field of order   . 
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Proof:  

(i) Let   have characteristic  . Then   is a finite extension of   , of 

degree  , say. If *          + is a basis of   over   , then every 

element of   is uniquely expressible as a linear combination 

                  

with coefficients in   . For each coefficient    there are   choices, namely 

         , and so there are    linear combinations in all. Thus       . 

The group    is of order     . Let     . Then, by Lagrange's theorem 

(Theorem (1-1-28)), the order of  , which is the order of the subgroup 〈 〉 

generated by  , divides     . Certainly      
  . Thus    

     and, 

since we also have    
    , we conclude that every element of   is a root of 

the polynomial    
  . 

It follows that the polynomial    
   splits completely over  , since 

    is a linear factor for each of the    elements   of  . It clearly cannot split 

completely over any proper subfield of  , and so    must be the splitting field of 

   
   over   . 

(ii) Let   and   be given, and let   be the splitting field of      
   

over   . Then, since the field is of characteristic  , 

        
       

Thus   and    are certainly coprime, and so, by Theorem (3-1-1),    
   has    

distinct roots in  . Let   be the set consisting of those roots. We show that   is a 

subfield of  . The elements     are clearly in  . suppose that      . Then, by 

(3-1), 

(   )  
    

    
      

and so      . Also, if    , 

(    )  
    

(   
)
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and so       . The field   is in fact itself the splitting field, since it contains 

(indeed consists of) all the roots of    
  , and clearly no proper subfield of   

has this property. 

We have shown that, for all primes   and all integers    , there exists a 

field of order   . We have shown also that any field of order    is the splitting 

field of    
   over   , and so, by Theorem (1-1-6), all such field are 

isomorphic. 

We have achieved a remarkably complete classification of finite fields: only 

fields of prime-power order exist, and in effect, for a given   and   there is exactly 

one field of order   . We call in the Galois field of order   , and denote it by 

  (  ). To complete the description we need to prove one final result: 

Theorem (3-1-3): 

 The group of non-zero elements of the Galois field   (  ) is cyclic. 

To prove this we need some group theory. Let   be a finite group. Recall 

that the order  ( ) of an element   in   is the least positive integer   such that 

     (we are writing the identity element of   as  ) and that      if and only 

if  ( ) divides  . The exponent    ( ) of   is the smallest positive integer 

   ( ) with the property that      for all   in  . The exponent always exists 

(in a finite group): it is the least common multiple of the orders of  the elements of 

 . Since  ( ) divides     for every  , we can deduce that  ( ) divides    . 

In a non-abelian group   it is possible that  ( )   ( ) for all   in  . For 

example, in the smallest non-abelian group    *           +, with 

multiplication table 
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we have  ( )     ( )   ( )   ( )     ( )   ( )   , and  (  )   . 

This cannot happen, however, if the group is abelian: 

Theorem (3-1-4):     

   Let   be a finite abelian group with exponent  . Then there exists an 

element   in   such that  ( )   . 

Proof: 

Suppose that 

    
    

     
    

where            are distinct primes and             . Since   is the least 

common multiple of the orders of the elements of  , there must exist an element 

   whose order is divisible by   
  : thus  (  )    

    , where    divides 

  
     

  .  Let      
  . Then, for all    , we have   

    
   , and this is 

equal to   if and only if   
    |   , that is, if and only if   

    . Thus  (  )  

  
  . 

Similarly, for        , we can find an element    of order   
  . Let 

           

and let    ( ). Thus 

     
   

    
    

(this is where we are using the abelian property) and so 

  
    

     
    

Let     
     

  . Then, since   
      for        , it follows that   

    . 

Thus   
   divides   , and so, since    and   are coprime,   

   divides  . 

Similarly,   
   divides   for        , and we deduce that    . Since, from 

the definition of the exponent, we also have    , we deduce that  ( )   . 

The following corollary is immediate: 



65 
 

Corollary (3-1-5): 

If   is a finite abelian group such that  ( )     , then   is cyclic. 

Remark (3-1-6): 

Since all fields of order    are isomorphic, we can construct   (  ) simply 

by finding an irreducible polynomial   of degree n in   , -. Then   (  )  

  , - 〈 〉⁄ . There will, however, normally be may choices for  . 

The Galois Group 

Monomorphisms between Fields: 

Mathematicians frequently draw a distinction between the theory of fields 

and Galois theory. The distinction is to some extent artificial, but the study of 

fields enters a new phase when we consider automorphisms. It is worth 

emphasizing  that the language we use (automorphisms, groups, normal subgroups 

etc.) was not available to Galois .Even with the convenient language of abstract 

algebra, the chain of argument in this chapter is long and, at times, far from easy: 

the theory developed by Galois, who lacked our advantages, is surely one of the 

most remarkable achievements in all mathematics.  

We begin with something quite general. Let   be a field, and let   be a non-

empty set. Let   be the set of mappings from   into  . If      , then    , 

defined by 

(   )( )   ( )   ( )    (   )          (  ) 

is a mapping from   into  , and so belongs to  . Similarly, if     and    , 

then   , defined by 

(  )( )    ( )    (   )          (  ) 

belongs to  . It is easy to verify that   is a vector space with respect to these two 

operations. The zero vector in   is the mapping   given by 

 ( )       (   )         (  ) 



66 
 

We shall normally denote the mapping   simply by  , since the context will 

usually make it clear whether we mean the zero element of   or the mapping  . 

A set *          + of elements of   is linearly independent if, for all 

           in  , 

    ( )      ( )        ( )    

for all   in   if and only if             . More compactly, we can write 

the condition as 

                   (strictly,  )              . 

Then next result, due to Dedekind, is concerned with the case where   is itself a 

field. It will be one of the many important stages in the proof of the fundamental 

result. 

Theorem (3-1-7): 

Let   and   be fields, and let            be distinct monomorphisms from 

  into  . Then *          + is a linearly independent set in the vector space   of 

all mapping from   into  . 

Proof: 

We prove the theorem by induction on  . It is clearly true for    , since 

  , being a monomorphism, maps the identity   of   to the identity   of  , and so 

is not the zero mapping defined by (48). 

Assume now that we have established that every set of fewer than   distinct 

monomorphisms of   into   is linearly independent. Suppose, for a contradiction, 

that there exist            in  , not all zero, such that 

                            (  ) 

In fact we may assume that all of the    are non-zero: if, for example,     , then 

*            + is linearly dependent, in contradiction to the induction hypothesis. 

Dividing by    in (49) gives 

                               (  ) 
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where        ⁄  (           ). 

  The monomorphisms    and    are by assumption distinct, and so there 

exists   in   such that   ( )    ( ); the element   is certainly non-zero, as are 

both   ( ) and   ( ). For every   in  , 

    (  )            (  )    (  )              (  ) 

and so, since            are monomorphisms, 

    ( )  ( )            ( )    ( )    ( )  ( )             (  ) 

Dividing this by   ( ) gives the result that, for all   in  , 

  

  ( )

  ( )
  ( )        

    ( )

  ( )
    ( )    ( )              (  ) 

Rewriting this as an equation concerning mappings gives 

  

  ( )

  ( )
         

    ( )

  ( )
                    (  ) 

where the   on the right now stands for the zero mapping defined by (48). We 

subtract (54) from (50) and obtain 

  (  
  ( )

  ( )
)         (  

    ( )

  ( )
)                (  ) 

Our choice of   as an element such that   ( )     means that the coefficient of 

   is non-zero. Thus (55) implies that the set *            + is linearly 

dependent, in contradiction to the induction hypothesis. 

Remark (3-1-8): 

It is important to realise that the set of monomorphisms from   into   is not 

a subspace of the vector space  : if    and    are monomorphisms, and if    and 

   are (respectively) the identities of   and  , then 

(     )(  )    (  )    (  )            

and so       is not a monomorphism. 
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Automorphisms, Groups and Subfields: 

The first result, stated and proved for fields, applies to much more general 

types of algebra: 

Theorem (3-1-9): 

Let   be a field. Then the set       of Automorphisms of   forms a group 

under composition of mappings. 

Proof: 

Composition of mappings is always associative, since, for all   in   and all 

    and   in      , 

,(   )   -( )  (   ), ( )-   . ( ( ))/  

,  (   )-( )   (,   -( ))   . ( ( ))/  

There exists an identity automorphism   in      , defined by the property that 

 ( )    for all   in  , and clearly           for all   in      . finally, for 

every automorphism   in      , there is an inverse mapping     defined by the 

property that     is the unique   in   such that  ( )   . This map is also an 

automorphism. To see this, let      , and let    ( )       ( )   ; then 

 ( )     ( )   , and so  (   )     . Hence 

   ( )     ( )         ( (   ))     (   )  

and we can show similarly that 

(   ( ))(   ( ))     (  )  

Thus      , and has the property that            . Hence   is a group. 

We refer to       as the group of automorphisms of  . 

 Let   be an extension of a field  . An automorphism   of   is called a  -

automorphism if  ( )    for every   in  . the set of all  -automorphisms of   is 

denoted by    (   ) and is called the Galois group of   over  . The Galois group 



69 
 

   ( ) of a polynomial   in  , - is defined as    (   ), where   is a splitting 

field of   over  . The Galois group is the key to the connection between classical 

algebra, dominated by the theory of equations, and modern abstract algebra, and 

this chapter is devoted to establishing the properties that make it such an important 

idea. First, we hasten to justify the use of the word "group": 

Theorem (3-1-10): 

Let     be a field extension. Then the set    (   ) of all  -automorphisms 

of   is a subgroup of      . 

Proof: 

 Certainly      (   ). Let        (   ). Then, for all   in  , 

     ( ( ))     ( )  

and so 

 (   ( ))   ( )     

Thus         (   ), and so, by (23),    (   ) is a subgroup of      . 

We now introduce an important idea connecting the subfield   of   

containing   and the subgroups   of the group    (   ). For each   we define 

 ( )  *           ( )                   +          (  ) 

and for each   we define 

 ( )  *      ( )                    +          (  ) 

The essence of Galois theory is contained in these two mappings, and the principal 

thrust of this chapter is to find conditions under which they are mutually inverse. 

There are many technicalities involved in obtaining these conditions, but these 

must not obscure the final goal, which is Theorem (3-2-13). The technicalities 

concern the properties of the extension     that will make the maps   and   

mutually inverse. We require the extension to be "normal" and "separable", and 

these two notions are explored later. 
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The following property is easily established:   

Theorem (3-1-11): 

Let     be a field extension. 

(i) For every subfield   of   containing  , the set  ( ) is a subgroup of 

    (   ). 

(ii) For every subgroup   of     (   ), the set  ( ) is a subfield of   

containing  . 

Proof: 

(i) Certainly  ( ) is non-empty, since it contains  , the identity 

automorphism. Also,  ( )      (   ), since every automorphism 

fixing all elements of   automatically fixes all elements of  . 

Let      ( ). Then, for all   in   

 (   ( ))   .   ( ( ))/   ( )     

and so       ( ). Hence, by (23),  ( ) is a subgroup. 

(ii) It  is clear that    ( ), since every automorphism in    (   ) 

fixes the elements of  . Let      ( ). Then,  for all   in  , 

 (   )   ( )   ( )       

and so      ( ). If    , then, for all   in  , 

 (    )   ( ) (   )   ( )( ( ))
  

 

                                    

and so       ( ). Thus  ( ) is a subfield of  . 

At this point we have established a two-way connection between subfields of 

  containing   and subgroups of the group    (   ). It is an "order-reversing" 

connection: 
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Theorem (3-1-12): 

 Let     be a field extension. 

(i) If    and    are subfields of   containing  , then 

       (  )   (  )  

(ii) If     and    are subgroups of    (   ), then 

       (  )   (  )  

Proof: 

(i) Suppose that      , and let    (  ). Then   fixes every element 

of    and so certainly  fixes every element of   . Hence    (  ). 

(ii) Suppose that      , and let    (  ). Then  ( )    for every   

in   , and so certainly for every   in   . Hence    (  ). 

The next natural question is concerned with whether the two mappings   and 

  are mutually inverse. In fact they need not be. 

Theorem (3-1-13):    

   Let   be a field, let   be an extension of  , and let      . If   is a root of 

a polynomial   with coefficients in  , and if      (   ), then  ( ) is also a 

root of  . 

Proof: 

Let                , where             , and suppose that 

 ( )   . Then 

 ( ( ))        ( )      ( ( ))
 

 

                                   (  )   (  ) ( )     (  ) (  ) 

                                           (             ) 

  ( )            
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Theorem (3-1-14): 

Let   be a finite extension of a field  , and let   be a finite subgroup of 

   (   ). Then ,   ( )-     . 

Proof: 

To prove this we need to recall some standard linear algebra. Let   and   

be finite-dimensional vector spaces over a field  , with dimensions    , 

respectively, and let       be a linear mapping. The image      of   is the set 

* ( )    +. It is a subspace of  , and its dimension    (    ) is called the 

rank  ( ) of  . The kernel is the set *     ( )   +. It is a subspace of  , and 

its dimension    (    ) is called the nullity  ( ) of  . A standard result in linear 

algebra states that 

 ( )   ( )                   (  ) 

If    , then certainly  ( )     , and so  ( )   . Thus there exists a non-

zero vector   in   such that  ( )   . 

In more concrete terms, if we have an     matrix   [   ]   
 with 

entries in  , and  -dimensional vector  , the map      is a linear mapping 

from the vector space    into the vector space   . From the final sentence of the 

last paragraph we deduce that, if    , then there exists a non-zero vector   such 

that     . That is, there exist            in  , not all zero, such that 

                       (         )           (  ) 

We are now ready to prove the statement of the theorem. Let       and 

,   ( )-   . We show first that the statement     leads to a contradiction, 

using the piece of linear algebra above. 

 So suppose that    , and write   *            +, where   is the 

identity map, and suppose that *          + is a basis for   over  ( ). 

Consider     the matrix 
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[

  (  )   (  )    (  )

  (  )   (  )    (  )
           

  (  )   (  )

 
 

 
  (  )

]  

From (59) we deduce that there exist            in  , not all zero, such that 

  (  )     (  )       (  )        (         )          (  ) 

Let    . We are supposing that *          + is a basis for   over  ( ), and so 

there exist elements            of  ( ) such that 

                             (  ) 

Multiplying the   equations (60) by            (respectively) gives 

    (  )       (  )         (  )     (         )     (  ) 

Now recall that, since the    all lie in  ( ) and the    all lie in  , we have 

     (  ) for all   and  . Thus we may rewrite the equations (62) as 

  (    )     (    )       (    )      (          )     (  ) 

If we these   equations together, and make use of (61), we obtain 

    ( )      ( )        ( )     

This holds for all   in  , and so the automorphisms            are linearly 

dependent. By Theorem (3-1-7), this is impossible. Hence    . 

Next, suppose that   ,   ( )-   . Again we use linear algebra. This time we 

have subset *            + of   which is linearly independent over 

[

  (  )   (  )    (    )

  (  )   (  )    (    )
           

  (  )   (  )

 
 

 
  (    )

]  

By (18), there exists              in  , not all zero, such that 

  (  )     (  )       (    )        (         )   
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Let us suppose that the elements              are chosen so that as few as 

possible are non-zero. We may relabel the elements so that            are non-

zero, and              . So now we have 

  (  )     (  )       (  )      (         )           (  ) 

Dividing (64) by    gives a modified set of   equations 

  (  )  
      (    )    

    (  )     (          )           (  ) 

where   
      ⁄  (           ). We defined    to be the identity of  , and 

so the first of these equation is 

    
            

                                        (  ) 

If all of the elements   
        

  belonged to  ( ), then *          + would be 

linearly dependent over  ( ), and we know that this is not so. Hence at least one 

of   
        

  does not belong to  ( ): without loss of generality, we may 

suppose that   
   ( ). That is,   

  is not fixed by every automorphism in  , and 

so there is an automorphism in  , which we may take to be   , such that 

  (  
 )    

                                                             (  ) 

We apply    to the equations (66): for          ,     

(    )(  )  (  
 )    (    )(    )  (    

 )  (    )(  )              (  )  

Now, since   is a group, the set *                + is the same as the set 

*          +: only the order of the elements is different. Hence we may change 

the order of the listed equations (68) and obtain 

  (  )  (  
 )      (    )  (    

 )    (  )     (         )       (  )  

Subtracting (69) from (65) gives, for          , 

  (  )(  
    (  

 ))      (    )(    
    (    

 ))              (  ) 

Let      
    (  

 ) for             and      for              . 

Then (70) becomes 
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  (  )       (  )       (    )        (         )        (  ) 

From (67) we know that the elements    are not all zero, and we have arranged that 

no more than     of the    are non-zero. This is a contradiction to the stated 

property of the elements             , and so we conclude that it is not possible 

to have ,   ( )-   . Hence ,   ( )-   .    

Normal Extensions: 

In the next two sections, with a view to establishing the conditions under 

which the maps   and   studied in the last section are mutually inverse, we 

introduce two new ides. Among the examples we have considered are two 

extensions of  , namely,  (√ ) and  (√ 
 

). In the first case     , the 

minimum polynomial of √ , splits completely over  (√ ); in the second case we 

see that     , the minimum polynomial of √ 
 

, does not split completely over 

 (√ 
 

). This is an important difference. However, although it is convenient at 

times to consider arbitrary extensions    , our primary interest is with Galois 

groups of polynomials, when   is a splitting field over   for some polynomial. We 

shall certainly achieve this closed focus if we suppose that     is a normal 

extension, by which we mean that every irreducible polynomial in  , - having at 

least one root in   splits completely over  . One the face of it this is a very strong 

property, and indeed it is not immediately clear that even  (√ ) is a normal 

extension of  . However, we have the following result: 

Theorem (3-1-15):   

A finite extension   of a field   is normal if and only if it is a splitting field 

for some polynomial in  , -. 

Now 

, ( )  -,   -  , ( )  -  , ( )  ( )-, ( )  -           (  ) 

and 

, ( )  -,   -  , ( )  -  , ( )  ( )-, ( )  -           (  ) 
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Since   and   are roots of the same irreducible polynomial  , it follows from 

Corollary (2-1-19) that there is a  -isomorphism   from  ( ) onto  ( ). 

Certainly 

, ( )  -  , ( )  -                                                 (  ) 

since   is a splitting field for   over  , it follows that  ( ) is a splitting field for 

  over  ( ) and  ( ) is a splitting field for   over  ( ). Hence, by Theorem (2-

2-4), there is an isomorphism   from  ( ) onto  ( ), extending the  -

isomorphism   from  ( ) onto  ( ). It follows in particular that 

, ( )  ( )-  , ( )  ( )-           (  ) 

 Now , ( )  -   , since     by assumption. Hence 

, ( )  -,   -  , ( )  ( )-, ( )  -    (   (  )) 

                                               , ( )  ( )-, ( )  -    (   (  )     (  )) 

               , ( )  -,   -    (   (  )) 

 ,   -                           

  Thus , ( )  -    and so    , as required. 

Two corollaries are worth recording at this stage: 

Corollary (3-1-16): 

Let   be a normal extension of finite degree over a field  . If    and    are a 

roots in   of an irreducible polynomial in  , -, then there exists a  -

automorphism   of   such that  (  )    . 

Proof: 

 By Theorem (2-1-19), there is a  -automorphism from  (  ) onto  (  ). 

By Corollary (3-1-17), this extends to a  -automorphism   of  .  
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Theorem (3-1-17): 

      Let   be a finite extension of a field  . Then, 

(i) There exists a normal closure   of   over  ; 

(ii) If    is a finite extension over   such that there is a  -automorphism 

      , and if    is a normal closure of    over  , then there is a 

 -isomorphism        such that the diagram 

 

 

 

 

 

 

(in which   is the identity map and unmarked maps are inclusions) commuted. 

Proof: 

(i) Let *          + be a basis for   over  . Each    is algebraic over  , 

with minimum polynomial    (say). Let          , and let   

be a splitting field for   over  . By the proof of Theorem (3-1-16),   

is a normal extension of  . It contains all the roots of each of the 

polynomials   , and so certainly contains           . Hence   

contains  . Let   be a subfield of   containing  , and suppose that   

is normal. For each   in *       + the field   contains one root of   , 

namely   . By the definition of normality it follows that   contains all 

root of all the    and so    . We have shown that   is a normal 

closure. 

(ii) Let   be a normal closure of    over  . Every element of   has a 

unique extension                 , where             . 

Let     ( ) be an arbitrary element of   . Then there is a unique  -

tuple (          ) of elements of   such that 

 

K  L  N 

                                                 

K         
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    ( )   (                ) 

                                         (  )     (  )       (  )  

and it is easy to see that * (  )  (  )    (  )+ is a basis for    over  . The 

isomorphism   also ensures that, for          , the minimum polynomial of 

 (  ) is  ̂(  ) (where  ̂ denotes the canonical extension of   to the polynomial 

ring  , -). Since    is by assumption a normal extension of   , it must contain all 

the roots of all of the  ̂(  ), and must in fact be a splitting field of  ̂( )  

 ̂(  ) ̂(  )  ̂(  ). The existence of the isomorphism   now follows from 

Theorem (2-2-4).            

  Corollary (3-1-18): 

Let   be a finite extension of   and let   be a normal closure of  . Then 

              

where            are subfields containing  , each of them isomorphic to  . 

Proof: 

By the theorem just proved, we may suppose that    (          ), that 

           are (respectively) the minimum polynomials of           . Let 

and that   is a splitting field over   for the polynomial        . Let   

 *       + and let   
  be a root of   . Then, for all choices of   and   

  the field 

 (          )          (  ) 

is isomorphic to  . The field   is generated over   by the set *          + of all 

the roots of all the polynomials           , and hence by the fields of type 

(76).  
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Section (3-2): 

Separable Extensions: 

Some of the ideas in this section have already been touched upon in the last 

chapter, but it is useful at this stage to explore the topic a little further. If   is an 

irreducible polynomial with coefficients in a field  , the automorphism in     ( ) 

permute the roots of   in the splitting field  . Since the study of these permutations 

would be hampered if   had repeated roots in  , there is a good case for restricting 

to extensions where this does not happen. An irreducible polynomial   with 

coefficients in a field   is said to be separable over   if it has no repeated roots in 

a splitting field. That is, in a splitting field   of  , 

   (    )(    ) (    )  

where the roots            are all distinct. More generally, 

 an arbitrary polynomial   in  , - is called separable over   if all its 

irreducible factors are separable over  ; 

 an algebraic element in an extension   of   is called separable over   if its 

minimum polynomial is separable over  ; 

 an algebraic extension   of   is called separable if every   in   is separable 

over  ; 

 a field   is called perfect if every polynomial in  , - is separable over  . 

Separability is the second property (after normality) that will ensure that the 

maps   and   are mutually inverse. Fortunately separability is in the most 

interesting case guaranteed, for we shall see that all fields of characteristic zero 

and all finite fields are perfect. 

From Theorem (3-1-1) we know that the irreducible polynomial   has 

repeated roots in its splitting field if and only if   and    have a non-trivial 

common factor. This is the key to the next observation. 
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Theorem (3-2-1): 

Let   be an irreducible polynomial with coefficients in a field  . 

(i) If   has characteristic  , then   is separable over    

(ii) If   has a finite characteristic  , then   is separable unless it is of the 

form 

      
     

            

Proof: 

Let                , with       , and suppose that   is not 

separable. Then  and    have a common factor   of degree at least  . Since   is 

irreducible, the factor   must be a constant multiple (an associate) of  , and this 

cannot divide    unless 

                     

is the zero polynomial. Hence, 

                         (  ) 

If   has characteristic  , this implies that   is the constant polynomial   , 

and we have a contradiction. Thus   must be separable. 

Suppose now that         . Then       implies that      if and 

only if    . Hence the only non-zero terms in   are of the form     
  , for 

         . Writing     as    gives the required conclusion. 

From Part (i) of the theorem we immediately have the following conclusion: 

Corollary (3-2-2): 

Every field of characteristic   is perfect. 

For fields of finite characteristic the situation is more complicated. We must 

examine conditions under which a polynomial  ( )   (  )        
  

   
           is irreducible. 
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Theorem (3-2-3): 

Let    be a field with finite characteristic  , and let 

 ( )   (  )        
     

            

Then the following statements are equivalent: 

(i)   is irreducible in  , -; 

(ii)   is irreducible in  , -, and not all of the coefficients    are  th 

powers of elements of  . 

Proof: 

(i) (ii). If   has a non-trivial factorization  ( )   ( ) ( ), then   has a 

factorization 

 ( )   (  )   (  ) (  )  

and we have a contradiction. Hence   is irreducible. If      
 
 for          , 

then, by Theorem (1-1-24), 

 ( )   (  )    
 

 (   )    (    )  

 (             )   

and again we have a contradiction. Hence not all of the coefficients    are  th 

powers. 

(ii) (i). We shall in fact power the (equivalent) contrapositive version, that 

¬(i)  (ii). (Here the symbol  stands for "not''.) Suppose that   is reducible: we 

must prove either that   is reducible, or that all the coefficients of   are  th 

powers. We have two cases: 

1.     , where     and   is irreducible; 

2.     , where        , and   and   are coprime. 

Case (1). Suppose first that    ⁄ . Then   (   ⁄ )
 

    (say). If 
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then 

     (            
 )    

 
   

 
       

 
     

by Theorem (1-1-24), and so all the coefficients of   are  th powers. We have 

proved   (ii). 

Next, suppose that   ⁄ . The definition of   in the statement of the theorem 

assure us that     ; thus 

      (  )     

and so     . Thus we may write 

 ( )        
       

    (  )  

and 

 (  )   ( )  ( ( ))
 
 ( (  ))

 
  

Thus  ( )  ( ( ))
 
, and so   is not irreducible. Again, we have proved  (ii). 

Case (2). Since  , - is a Euclidean domain, there exist     in  , - such that 

                                               (  ) 

Also, from      we deduce that 

(  )   (  )                         (  ) 

From (78) and (79) we have that  

  (  )     (  )  (  )(    )    (  )  

and so 

     (  )    (  )  

Hence    ⁄ . Since  (  )    , we must have that     . Similarly,     , 

and so we may write 

 ( )        
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 ( )        
       

    

If we define  ̅( )        
       

   and  ̅( )        
    

   
  , then 

 (  )   ( )   ( ) ( )   ̅(  ) ̅(  )  

and so  ( )   ̅( ) ̅( ). Thus   is not irreducible. Again, we have proved  (ii), 

and the proof is complete. 

We can now establish the following result: 

 

Theorem (3-2-4):    

Every finite field is perfect. 

Proof: 

Let   be a finite field of characteristic  . Then the Frobenius mapping 

     is an automorphism of  , and so every element of   is a  th power. From 

Theorem (3-2-1), the only candidate for an inseparable irreducible polynomial is 

something of the form 

        
           

However, since all the coefficients are  th powers, Theorem (3-2-3) tells us that 

even polynomials of this form are reducible. Hence   is perfect. 

Since all fields of characteristic zero and all finite fields are perfect, it is 

reasonable to ask whether there are any "imperfect" fields at al. evidently, such a 

field has to be infinite and of finite characteristic, and so far we have not explicitly 

mentioned any such field. The most obvious example, however, is     ( ), the 

field of all rational forms with coefficients in   . For polynomials with coefficients 

in   we must use a different letter, such as  , for the indeterminate. We look at the 

polynomial      in  , -. By Theorem (3-2-3), this is irreducible unless –  is a 

 th power in the field  , that is, unless there exists an element  ( )  ( )⁄  in   

such that , ( )  ( )⁄ -    . If we suppose that such an element exists, we 
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deduce that   , ( )-  , ( )- . But then    (, ( )- ) and    (, ( )- ), 

and so we have a contradiction. Thus  ( )       is irreducible in  , -. Let   

be a splitting field for   over  , and let   be a root of   in  . Thus     , and the 

factorisation of   in   is 

 ( )             (   )   

The polynomial   is as irreducible as it is possible to be! 

 We shall have occasion later in the chapter to make use of the following 

observation: 

 

Theorem (3-2-5): 

Let   be a finite separable extension of a field  , and let   be a subfield of   

containing  . Then   is a separable extension of  . 

Proof: 

Let    , and let       be the minimum polynomials of   over   and  , 

respectively. Suppose that    is separable. Within  , - we can use the division 

algorithm 

            (      )  

and it follows that 

 ( )    ( )   ( )  ( )         

This is a contradiction to the minimality of the polynomial    unless    . 

Hence        in the ring  , -. 

If    is not separable, then there is a non-constant polynomial   dividing 

   and    . Since              , it follows that   divides    and 

   . This can happen only if    has at least one repeated root in a splitting field, 

and so we have a contradiction. Hence    is separable. 
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Remark (3-2-6):   

    We emphasise at this stage that, by Corollary (3-2-2) separability is 

guaranteed for fields of characteristic  .When we come to the applications of 

Galois theory to polynomial equations, we will (as is reasonable in a first 

course) confine ourselves to fields of characteristic zero, and separability ceases 

to be an issue. 

The Galois Correspondence: 

A finite extension of a field   that is both normal and separable is called a 

Galois extension. The object of this section is to prove that for a Galois 

extension the mappings   and   are mutually inverse. This is result, and we 

still have some spadework to do. 

If we look at  (√   √ ) and  (√ 
 

  √ ), we notice that in both case the 

order of the Galois group is equal to the degree over   of the extension. Both of 

those examples are Galois extensions: they are certainly separable, by Corollary 

(3-2-2) and they are normal, being splitting fields (respectively) for (   

 )(    ) and     . We now set out to show that these are special case of a 

general result. We shall prove that, if     is a normal, separable extension of 

degree  , and   is the Galois group of   over  , then     ,   -. in fact, it is 

useful to begin with something slightly more general:  

Theorem (3-2-7):         

Let     be a separable extension of finite degree  . Then there are precisely 

  distinct  -monomorphism of   into a normal closure   of   over  . 

Proof: 

The is by induction on the degree ,   -. If ,   -   , then      , and 

the only  -monomorphism of   into   is the identity mapping  . 

Suppose now that the result is established for all      , and suppose 

that ,   -     . Let       , and let   (with       ) be the minimum 

polynomial of    over  . Thus    (  )   , and , (  )  -   . Then  , 

being irreducible and having one root    in the normal extension  , splits 
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completely over  . Since   is separable, the roots of   are all distinct: suppose 

that the roots are           . Let ,   (  )-   ; then      , and     . 

The field   is a normal closure of  (  ), and so, by the induction 

hypothesis, we may suppose that the number of  (  )-monomorphisms from   

into   is precisely  : denote them by           . By Corollary (3-18) there are   

distinct  -automorphisms            of  , where   (  )    (         ). 

Define maps         by 

   ( )    .  ( )/    (               )           (  ) 

The definitions make it clear that the maps are all  -monomorphisms. 

We show that the maps     are all distinct. First observe that 

   (  )    .  (  )/    (  )               (  ) 

Hence, if        , it follows that    . Suppose now that        . Then, for 

all   in  , 

  .  ( )/    .  ( )/  

Since    is one-one, it follows that   ( )    ( ) for all   in  , and so    . 

Thus the maps     are all distinct, and from (80) we now deduce that there are at 

least      distinct  -monomrphisms from   into  . 

To show that there are no more than,  , we must show that every  -

monomorphism   from   into   coincides with one of the maps    . The map   

must map    to another root    of   in  . Let       be defined by 

 ( )    
  ( ( ))  

This is certainly a  -monomorphism; indeed, since 

 (  )    
  ( (  ))    

  (  )        (   )  

it is a  (  )-monomorphism, and so must coincide with one of           , say 

  . Thus , for all   in  , 
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  ( )    
  ( ( ))  

and so  ( )    .  ( )/. Thus      . 

 If, in the statement of the Theorem (3-2-7), we suppose that   is normal well 

as separable, then   is its own normal closure, and we obtain the following 

important corollary: 

Corollary (3-2-8): 

 Let   be a Galois extension of  , and let   be the Galois group of   over  . 

Then     ,   -. 

 We shall eventually see that normality and separability are the conditions 

required  for the maps   and   defined by (55) and (56) to be mutually inverse. 

The next theorem establishes part of that result: 

Theorem (3-2-9): 

 Let   be a finite extension of  . Then  (    (   ))    if and only if   is 

a separable normal extension of  . 

Proof: 

 Suppose that   is a separable and normal extension of  , and let ,   -   . 

by Corollary (3-2-8),      (   )   . Denote  (    (   )) by   ; then, from 

Theorem (3-1-14), we know that     . By Theorem (2-1-11), we have that 

,    -   . Hence, since      and ,   -  ,    -, it follows that     . 

 Conversely, suppose that     . Let 

    (   )  *            +  

Let   be an irreducible polynomial in  , - having a root   in  . To show that   is 

normal, we need to establish that   splits completely over  . 

 The images of   under the  -automorphisms            need not all be 

distinct: we know that   ( )   , and we may re-lable the elements of     (   ) 

so that   ( )     ( ) are the remaining distinct images of   under the 
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automorphisms in     (   ). For notational simplicity, let us write   ( )  

    (         ). Note that     . 

 

Lemma (3-2-10): 

 For each    in     (   ), the sets 

*          +      {  (  )   (  )     (  )} 

are identical. 

Proof: 

 We note   (  ) is equal to (    )( ), and this is equal to    for some  , 

since          (   ). Since    is one-one, we conclude that it merely permutes 

the elements           . 

 Now let   be the polynomial 

(    )(    ) (    )        
      (  )            (  ) 

where the coefficients            are the elementary symmetric functions 

   ∑  

 

   

        ∑      

 

   

                    

These coefficients are unchanged by permutation of           , and so, by 

Lemma (3-2-10), are unchanged by each    in     (   ). Thus   is a polynomial 

with coefficients in  (    (   )), which (we are assuming) coincides with  . 

 Recall now that   was defined to be a root in   of the irreducible polynomial 

  in  , -. 
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Lemma (3-2-11): 

 The polynomial   defined by (82) is the minimum polynomial of   over  . 

 

Proof: 

 We must show that every polynomial in  , - having   as a root is divisible 

by  . So suppose that 

                 

 with coefficients in  , is such that 

                 

We can apply each    to this relation: since    leaves the coefficients    

unchanged, we obtain 

              
       (         )  

and it follows that   is divisible by each of                 . Thus   

divisible by  . 

 Now, among the polynomials in  , - having a root   in   is the polynomial 

  with which (some time ago) we began. By Lemma (3-2-11),   is divisible by  , 

and so, since   was supposed to be irreducible,   is a constant multiple of  . Since 

  spilt completely over  , so does  . Moreover, all its roots are distinct, and so   

is, as required, a separable normal extension of  . 

 We end this section with another theorem concerning separable normal 

extensions: 

Theorem (3-2-12): 

 Let   be a Galois extension of a field  , and let   be a subfield of   

containing  . If       (   ), then  ( ( ))    ( )   . 
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Proof: 

        Write  ( )      ( )    and  (  )    . We must show that    

     . Accordingly, let    ; we shall show that         . Let       and 

let   be the unique element of   such that  ( )    . Then, since   fixes all the 

elements of  , 

(     )(  )  (     )( )   ( ( ))   ( )      

 and so         . We have shown that         . 

 To show the opposite inclusion, let    be an arbitrary element of   , and let 

   . Then  ( )    , and so   ( ( ))   ( ). Hence 

(      )( )  (    )( )     

and so         ( ). We have shown that         , from follows 

immediately that         . 

The Fundamental Theorem: 

 We finish it by gathering together all the  bits and pieces in order to prove a 

theorem which, while easy to understand, has required a long sequence of 

preliminary results. 

Theorem (3-2-13): (The Fundamental Theorem of Galois Theory): 

 Let   be a separable normal extension of a field  , with finite degree  . 

(i) For all subfields   of   containing  , and for all subgroups   of the 

Galois group     (   ), 

 ( ( ))         ( ( ))     

Also, 

  ( )  ,   -         (   )   ( ) ⁄  ,   -  

(ii) A subfield   is a normal extension of   if and only if  ( ) is a 

normal subgroup of     (   ). If   is a normal extension, then 

    (   ) is isomorphic to the quotient group     (   )  ( )⁄ . 
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Proof: 

(i) Let   be a subfield of   containing  . We know that   is a normal 

extension of  . Also, by Theorem (3-2-5),L is a separable extension 

of E.   ( )  ,   -. From Theorem (2-1-2) and Corollary (3-2-8) it 

follows that 

,   -  ,   - ,   -       (   )  ( )⁄  ⁄   

Since  ( )      (   ), it follows from Theorem (3-2-9) that 

 ( ( ))     

 Now let   be any subgroup of the finite group     (   ). from Theorem (3-

1-14) we know that 

   ( ( ))             (  ) 

Denote  ( ( )) by   . We have that 

 ( )   ( , ( )-)   (  )  

From Theorem (2-1-11) we have that 

    ,   ( )-  ,   (  )-        

This, together with (83) and the finiteness of     (   ), tells     . That is, 

 ( ( ))     

(ii) Suppose now that   is a normal extension. Let       (   ), and let 

   be the restriction of   to  . Then    is a monomorphism from   

into   and so, by Theorem (3-21), is a  -automorphism of  . Since 

 ( )    ( )   , it follows by Theorem (3-2-12) that 

 ( )   ( ( ))    ( )     

This  ( ) is a normal subgroup of     (   ). 

 Conversely, suppose that  ( ) is a normal subgroup of     (   ). Let    be 

a  -monomorphism from   into  . By Corollary (3-2-17), this extends to a  -
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automorphism   of  . The normality of  ( ) within     (   ) means that 

  ( )     ( ), and hence, by Theorem (3-2-12), 

 ( ( ))   ( )  

Since   is one-one, it follows that  ( )    ( )   . Thus    is a  -

automorphism of  . We have shown that every  -monomorphism of   into   is a 

 -automorphism of  . From Theorem (3-2-12) it follows that   is a normal 

extension of  . 

 It remains to show that, if   is a normal extension, then     (   )  

    (   )  ( )⁄ . So suppose that   is a normal and, as above, let    be the 

restriction to   of the  -automorphism   of  . We have seen that        (   ). 

Let       (   )      (   ) be defined by 

 ( )      

Then   is a group homomorphism: for all       in     (   ), with  (  )    
  and 

 (  )    
 , and for all   in  , 

(, (  )-, (  )-)( )  (  
   

 )( )    
 (  ( )) 

                                          (  ( ))  (    )( ) 

                         ( (    ))( )  

Hence 

, (  )-, (  )-   (    )  

The kernel of this homomorphism is the set of all   in     (   ) such that    is the 

identity map on  , and this none other than  ( ). The result now follows from 

Theorem (1-1-29). 

 It is convenient at this point to establish two technical consequences of 

Theorem (3-2-13). First, let   and   be subgroup of a group  . Then it is a routine 

matter to show that     is a subgroup of  . In general     is not a subgroup, 

but there is always a smallest subgroup containing   and  , consisting of all 
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products               (for all  ) with                    . We denote 

this by    , and all it the join of   and    

 Similarly, if   and   are subfield of a field  , then     is also a subfield, 

and there is a subfield      ( )   ( ), the join of   and  . The order-

reversing Galois correspondence established in Theorem (3-2-13) has the 

following consequence: 

 Theorem (3-2-14): 

 Let   be a Galois extension of finite degree over  , with Galois group  , 

and let       be subfields of   containing  . If   (  )     and  (  )    , then 

 (     )             (     )         

Proof: 

 Since         , it follows from the order-reversing property of the 

Galois correspondence that  (     )   (  )    . Similarly,  (     )  

  , and so 

 (     )         

 To show the opposite inclusion, consider an element   of      . Since 

      (  )  ( )    for all   in   , and similarly  ( )    for all   in   . 

Now, by Theorem (2-1-4), the elements of         (  ) are quotients of finite 

linear combinations (with coefficients in   ) of finite products of elements of   , 

and so it follows that  ( )    for all   in      . Thus    (     ), and so 

the first assertion of the theorem is proved. 

 From          it follows that     (  )   (     ). Similarly, 

    (     ), and so 

       (     )  

To show the opposite inclusion, let   be an element of   not in       -say   

  . Since    is precisely the fixed of   , there exists  ( )   . We deduce that 

        implies    (     ). That is,  (     )       , and the 

Galois correspondence gives  (     )       . 
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Theorem (3-2-15): 

 Let   be a field of characteristic zero, and let    , -. Let 

   (          ) 

be a splitting field for   over  . Let   be a field containing  , and let   be a 

splitting field of   over  . Then, up to isomorphism,   is a subfield of   and 

    (   )      (     ). 

Proof: 

 

 

  

 

   

 

 

 

The field   is an extension of  , and hence of  , such that   splits completely in 

 , -. Hence, by the definition of a splitting field,   is, up  to isomorphism a 

subfield of  , and we may write   as  (          ). 

 Let       (   ), and let    . Then the restriction    of   to   is a 

monomorphism from   into  . Since   fixes the elements of  , it certainly fixes 

the elements of  ; hence so does   . Moreover, since (by Theorem (2-1-9))   maps 

each root    of   to another root of  , so also must   . The conclusion is that    is 

a monomorphism of   into itself. Since   is an automorphism of   

 (          ), every root    of   is the image of some root of   under  , and so 

N 

  

                     M                       L 

 

                                             

       

       K 
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also under   . Hence    maps onto    (          ) and so is a  -

automorphism. 

 We thus have a mapping   from   into the group       (   ), given by 

 ( )    . The map is one-one, for if     and      , then    and    act 

identically on the roots           , and so    . It is also a group 

homomorphism, since the restriction of    to   is     . Thus    ( ). 

 It remains to show that the image of   is the subgroup     (     ) of  . 

Since each   in   fixes the elements of  , it clear that each     fixes the elements 

of    . Thus      ( ( )), and so, by the Galois correspondence, 

 ( )      (     )            (  ) 

Let    be an element of   not belonging to     . Thus    . Since   is the 

precise field whose elements are fixed by  , there is an element   in   for which 

 ( )   . Then certainly ( ( ))( )   , and so    ( ( )). We have shown 

that  ( ( ))      , and it follows that 

    (     )   ( )           (  ) 

From (84) and (85) we have that 

    (     )   

 ( )        (   )  
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