Dedication

To those who brought us to life our beloved parents

To those who assisted us in our study our respectable teachers

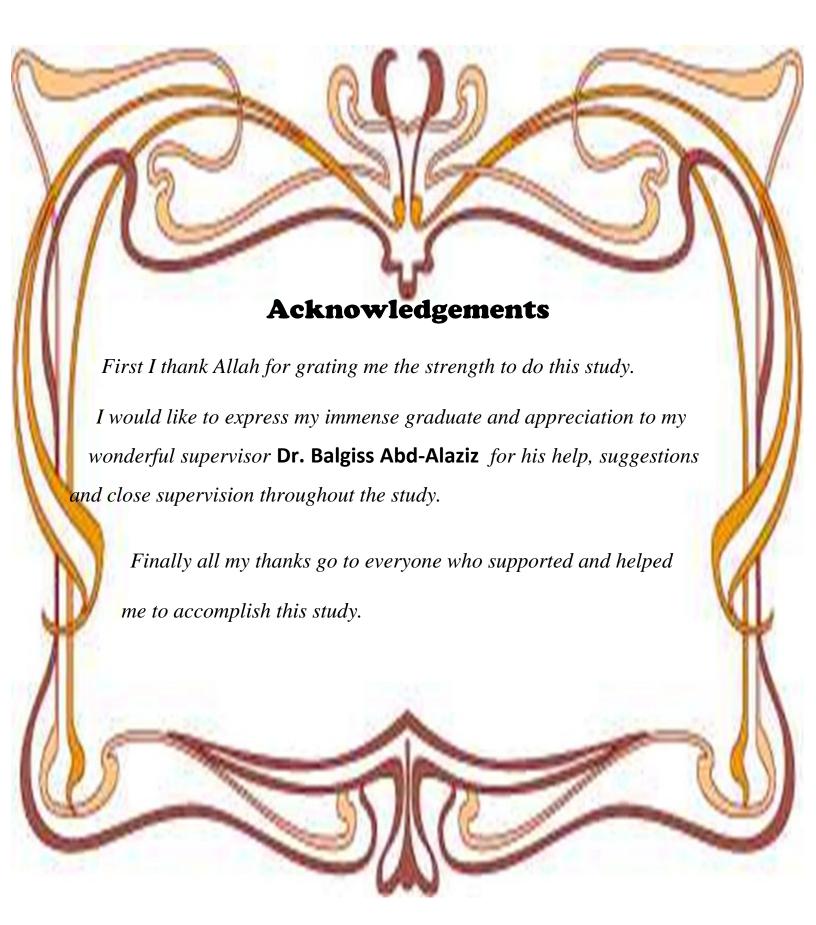
To those who share us very joy and tear

Brothers

Friends

Colleagues

To them all we dedicate this work



Abestracti

We study the ring, field and we prove some theorems of homomorphism of a field and isomorphism between two rings. Define the field of fraction, the characteristic of fields. Field extension.

Also we study the transcendental and algebraic element. And we give some application geometry.

Finally we study the finite fields, Galois group and Galois extension.

Contents

Title	Page
Dedication	I
Acknowledgement	ΙΙ
Abstract	III
Contents	IV

Chapter (1): Rings and field Section (1) Definition and basic properties 1 Sub rings, ideals and Homorphism 4 The field of fractions of an integral domain 12 The characteristic of a field 16 A remainder of some group theory 19 Section (2) Integral domain and polynomial Euclidean 23 domain The Euclidean algorithm 25 **Polynomials** 30

Chapter (2): Field Extension		
Section (1)		
The degree of an extension	43	
Extensions and poly nominal	46	
Polynomials and extension	51	
Section (2)		
Ruler and compasses construction	57	
Splitting field	63	
Chapter 3: Finite Fields		
Section (1)		
The Galois Group monomorphism	65	
Between field		
Automorphisms, group and subfields	68	
Normal extension	75	
Section (2)		
Separable extensions	79	
The Galois correspondence	85	
The fundamental theorem	90	