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  : قال تعالـــــــــــــــى

  

)27 ( هانأَلْو فلتخامِ معالأَنو ابوالداسِ والن نمو

  كَذَلك إِنما يخشى اللَّه من عباده الْعلَماء 

غَفُور زِيزع 28(إِنَّ اللَّه(  

  

  صدق االله العظيم                 

  سورة فاطــر                                          

  )28(ية الأ
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:الإھــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــدآ   

رضعتني أول  التـي أ..... إلي تلك الرائعة المتوسدة كل فؤادي 
و ملل أو إنتظار مقابل  ووداً  دون كللٍ أ... حباً ...... معاني الحیاة 
عِلماً وحُباً وصِدقاً... ملاً مُفرِحاً  ن تراني أ إلا أ  

 تریاق الحنایا فـي كل اللحظات

 عُصارة قلبي ونبض حیاتي

میرتي الجمیلة أ  

......مـي  أ......    

...إلي مُعلمي الأول  

ثقةً ... مُھدِد اللیالي الحّیرني ... الإنسان خُلقاً ... فارسي المغوار 
 وفخراً وعِذة

 مُلبسي ثوب الكبریاء

 أنیسُ روحي 

...أبــي ...   

...ذات ذلك العقد الفرید ...... إلي تلك النُسیمات العزبة   

...زُملائي ...أخواتي ... إخوتي   

...شھِدنا لھم منذ الحروف الأُول ... إلي مُنیري العِذ بقنادیلھم   

 أساتذتنا الأجلآ 

...وكل من أعاننا ووقف معنا   

..ولو بحرف .. ومشجعاً .. وصابراً .. دافعاً   
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Abstract : 

In this research, we studied a number of aspects of the integral 
equations. In chapter one we introduce the kernel an integral 

operator and symmetric integral transformations and also how to 
find eigenvalues in the integral operator. 

 In chapter tow we define differential operator and adjoint 
operator and their respective fields and also differential operator 

from second-order, and the symmetry faithfully to the ideals of 
some of the non-homogeneous problems and how to solve them. In 
chapter three we have some applications to eigenfunction and use 
a Green's function assigned to the processes to resolve its issues 

and also halt to clarify the representation of spectra and the 
Green's functions, and finally in chapter Four studied the 

classification and division of integral equations and the successive 
approximation methods for the solution processes and 

representation and equivalence with differential equations and we 
got a replacement Fredholm. 
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:الخلاصة   

 في هذا البحث تطرقنا إلي دراسة عدد من الجوانب المتعلقة 

.بالمعادلات التكاملية  

ففي الباب الأول تعرفنا علي النواة كمؤثر تكاملي والتحويلات التكاملية 
. ية في المؤثرالتكاملي المتماثلة وأيضاً كيفية إيجاد القيم الزات  

وفي الباب الثاني قمنا بتعريف المؤثر التفاضلي وتعرفنا علي المرافق لة 
والتماثل فية ومثلنا لبعض ،ومجالة وأيضاً المؤثرالتفاضلي من الدرجة الثانية 

 المسائل 

.غير المتجانسة وكيفية حلها   

ية وإستخدام وفي الباب الثالث قمنا ببعض التطبيقات علي الدوال الزات
 دالة قرين في عمليات حل مسائلها وأيضا عرجنا إلي توضيح تمثيل الأطياف 

، ودوال قرين   

وأخيرا في الباب الرابع عمدنا إلي تصنيف وتقسيم المعادلات التكاملية 
والطرق التقريبية المتعاقبة لعمليات الحل وتماثلها وتكافؤها مع المعادلات 

.بديل فردهولمالتفاضلية وتعرفنا علي   
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Chapter (1) 

Integral operators 

In this chapter we shall be concerned with the study of linear transformations 

whose domain is an infinite-dimensional Euclidean vector space. In order to 

provide an introduction to the various concepts involved, we will restrict ourselves 

to one particular vector space and one particular linear transformation. 

Section (1.1): The kernel of an integral operator 
The vector space we shall consider will have as element function belonging to the 

set, R = R (ܽ, b),of all real functions which are Riemann integral on the finite 

interval  ܽ ≤ ݔ ≤ ܾ. 

Definition (1.1.1):- 

If f and g are in R then we define 

(݂ + g)(ݔ) = (ݔ)݂ + g(ݔ) 

(ݔ)(݂ ܿ) =  .real scalar c,(ݔ)݂ ܿ

(݂, g) = න ݔ݀(ݔ)g(ݔ)݂




 

Then it easily seen that R satisfies all the axioms of a Euclidean vector space , 

except possibly the positivity of the inner product. However , this difficulty can be 

overcome, as in the case of finite-dimensional spaces. 
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 Definition (1.1.2):- 

By introducing the relation of equivalence,≈,between vectors. We say that  ݂ ≈ g 

if ݂ and g differ only on a set of measure zero, or, which is equivalent:  

݂ ≈ g   if    න |݂ − g|ଶ݀ݔ



=  

Consequently, we have that (݂, ݂)  = 0 if and only if ݂ ≈  0. In this way we obtain 

a Euclidean vector space with ≈ replacing =. 

Definition (1.1.3):- 

Let ݔ)ܭ,                              be a real continuous function defined on the square (ݕ

ܽ ≤ ݔ ≤ ܾ, ܽ ≤ ݕ ≤ ܾ .It induces a transformation K on R to R by means of the 

relation 

(ݔ)݂ܭ = g(ݔ) = න ,ݔ)ܭ ݕ݀(ݕ)݂(ݕ




(1.1) 

The function ݔ)ܭ,  .is called the kernel of integral transformation K(ݕ

 Definition (1.1.4):- 

The range of ܭis not all of R .In fact K carries every f into a continuous function. 

This can be seen as follow .Since ݔ)ܭ,  is continuous on bounded closed set, it is (ݕ

also uniformly continuous. Therefore, for any ε > 0 there is(ݔ)ߜ > 0 such that, for 

points ݔଵ, ,ଶݔ ,ଵݕ ,ܽ] ଶinݕ ܾ], 

,ଵݔ)ܭ| (ଵݕ − ,ଶݔ)ܭ |(ଶݕ <  ߝ

When 

ଵݔ| − |ଶݔ < ,(ߝ)ߜ ଵݕ| − |ଶݕ <  (1.2)                         (ߝ)ߜ
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Hence, 

(ݔ)݂ܭ| − |(ݐ)݂ܭ = ቮන[ݔ)ܭ, (ݕ − ,ݐ)ܭ ݕ݀(ݕ)݂[(ݕ




ቮ 

≤ න|ݔ)ܭ, (ݕ − ,ݐ)ܭ ݕ݀|(ݕ)݂||(ݕ




 

≤ ߝ න|݂(ݕ)|݀ݕ




 

Whenever |ݔ − |ݐ <  and it follows that (ߝ)ߜ

lim
௫→௧

(ݔ)݂ܭ =  (ݐ)݂ܭ

From the continuity of ݂ܭ it follows that if݂ܭ is equal to the zero vector then it is 

identically zero .Because, if (ݐ)݂ܭ ≠ 0 then by continuity(ݔ)݂ܭ ≠ 0 for all ݔin 

some interval containing ݐ.Thus  Kf  is non-zero on a set which is not of measure 

zero. 

Definition (1.1.5):- 

Similarly we could consider the complex Euclidean vector space R∗ = R∗(ܽ, ܾ) of 

complex-valued integrable functions on  ܽ ≤ ݔ ≤ b .The inner product in this case 

is given by 

(݂, g) = න (ݔ)g(ݔ)݂



 (1.3)      .ݔ݀

Tow elements of ܴ∗ will be said to be equal if they differ at most on a set of 

measure zero.The complex-valued continuous function ݔ)ܭ,                               defined on (ݕ
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ܽ ≤ ݔ ≤ ܾ, ܽ ≤ ݕ ≤ ܾThat induces by (1.1) .A linear transform k on R∗to R∗, the 

transformed function (ݔ)݂ܭ, being a complex continuous function. 

Definition (1.1.6):- 

In both R and R∗ we define the adjoint of k to be the integral transformation k∗, 

given by 

(ݔ)݂∗ܭ = න ,ݕ)ܭ (ݔ



 (1.4)                    ݕ݀(ݕ)݂

From this definition it follows that 

,݂ܭ) g) = න ቊන ,ݔ)ܭ (ݕ)݂(ݕ



ቋ




g(ݔ) ݀ݔ 

                                 = න ቐන ,ݔ)ܭ ݔ݀(ݔ)g(ݕ




ቑ




݀(ݕ)݂ = (݂,  (g∗ܭ

Hence we have that 

,݂ܭ)                                           g) = (݂,  g)                             (1.5)∗ܭ

The equation (1.5) determines the adjoint transformation K∗uniquely, because if 

there is another transformation M such that (K݂, g) = (݂, Mg) For all f and gin 

R∗,then, if we subtract this result form (1.5), it follows that  (݂, (R∗ − M)g) = 0 for 

every f and g in R.Therefore R∗ = M as required. 

As may be anticipated, integral transformations, defined over an infinite-

dimensional vector space, have many properties similar to those of the linear 

transformations defined on a finite dimensional vector space. 

Theorem (1.1.7):- 
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‖ܭ‖ ≤ ቆන න ,ݔ)|ܭ ݔଶ݀|(ݕ



ݕ݀




ቇ

ଵ/ଶ

 

 

Proof:- 

If we choose f so that ‖݂‖ = 1 Then 

ଶ|(ݔ)݂ܭ| = ቮන ,ݔ)ܭ (ݕ




ቮݕ݀(ݕ)݂

ଶ

≤ න|ݔ)ܭ, ଶ|(ݕ





ݕ݀ න|݂(ݕ)|ଶ݀ݕ = න|ݔ)ܭ, ݕଶ݀|(ݕ








 

Therefore 

ଶ‖(ݔ)݂ܭ‖ = න|(ݔ)݂ܭ|ଶ݀ݔ ≤ න න|ݔ)݇ܭ, ଶ|(ݕ





ݔ݀ݕ݀








 

and we write 

‖ܭ‖ = ݈. .ݑ ܾ. ‖݂‖|‖(ݔ)݂ܭ‖} = 1} ≤ ቆන න ,ݔ)|ܭ ݔଶ݀|(ݕ



ݕ݀




ቇ

ଵ/ଶ

. 

The property of boundedness of the transformation is intimately connected with 

continuity. Recall for a moment some result for linear transformation. 

 

 Definition (1.1.8):- 

The linear transformation T, form the vector space Vଵto the vector space Vଶ is 

called continuous at ݔ in Vଶif the sequence {ܶݔ} Converges to Tݔwhenever the 
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sequence {ݔ} converges to ݔ .It follows that an equivalent definition of continuity 

is given by the  statement for every ߝ > 0,there is aߝ)ߜ, (ݔ > 0  Such that 

ݕܶ‖ − ‖ݔܶ < ݕ‖  Whenever  ߝ − ‖ݔ < ,ߝ)ߜ  (ݔ

The transformation T is bounded if and only if it is continuous for all ݔ.Indeed, if 

T is bounded and { ݔ} Converges to ݔ we see that 

ݔܶ‖ − ‖ݔܶ = ݔ)ܶ‖ − ‖(ݔ ≤ ݔ‖‖ܶ‖ −  ‖ݔ

Since T is bounded .consequently, since {ݔ} Converges to ݔthe right-hand side 

can be made arbitrarily small, and it follows that {ܶݔ}Converges to ܶݔ. 

Conversely, if T is continuous atݔ = 0 then for ߝ > 0 there is a δ(ε) > 0 such that 

‖ݔܶ‖ < ‖ݔ‖ wheneverߝ < ݕ , now if ,ߜ ≠ 0 is given element, write 

ݖ =
(1)ߜ

2
ݕ

 ଶ‖ݕ‖

and we have that 

‖ݖ‖ =
(1)ߜ

2
<  (1)ߝ

and‖ܶݖ‖ < 1 

Consequently, as we can write 

y =
2

δ(1)
‖y‖z, 

It follow from the above inequality that 

‖ݕܶ‖ ≤
2

(1)ߜ
 ‖ݕ‖

Which is true even when ݕ = 0 .therefore T is bounded. 
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Definition (1.1.9):- 

The integral transformations with which we are primarily concerned have an even 

stronger property than boundednes ـthat of complete countinuity 

Definition (1.1.10):- 

A linear transformation Ton VଵtoVଶis completely continuous or compact if forevery 

sequence {ܶݔ}.With uniformly bounded norms (that is {ݔ} < ܿfor ܿ > 0 and 

all݊) there exists that {ܶݔ}Converges to y . 

Compactness implies boundedness for if T Were a compact but unbounded 

transformation there would exist a sequence {ݔ} 

Such that‖ܶݔ‖ > ݕ ‖.Writingݔ‖݊ = ‖ݕ‖‖we haveݔ‖/ݔ ≤ 1 but‖ܶݕ‖ >

݊consequently no sequence {ܶݕ} would then converge. 

Definition (1.1.11):- 

Linear transformations T,whose domains are finite – dimensional are necessarily 

compact T is bound when Vଵ = Vଶand we see that if ‖ݔ‖ < ܿ 

Then 

‖ݔܶ‖ ≤ ‖ݔ‖‖ܶ‖ ≤ ‖ܶ‖ܿ. 

Consequently {ܶݔ} is uniformly bounded .It follows that a convergent 

subsequence exists for infinite dimensional space and integral transformations we 

can obtain the following result. 

Theorem (1.1.12):- 

A continuous kernel ݔ)ܭ,  defines a compact transformation (ݕ

Proof:- 

If  { ݂} is a sequence of function in r such that 
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‖ ݂‖ = ቆන | ݂|ଶ



ቇݔ݀

ଵ/ଶ

≤ ܿ. 

then 

ܭ| ݂(ݔ)| = ቮන ,ݔ)ܭ (ݕ ݂(ݕ)݀ݕ




ቮ ≤ ቌන ,ݔ)ܭ ݔଶ݀(ݕ




ቍ

ଵ
ଶൗ

ቌන| ݂(ݕ)|ଶ





ቍݕ݀

ଵ
ଶൗ

 

and it follows that the functions K ݂(ݔ) are uniformly bounded .Also see that for 

points ݔଵ, ,ܽ] ଶinݔ ܾ] 

ܭ| ݂(ݔଶ) − ܭ ݂(ݔଵ)| = ቮන(ݔ)ܭଶ, (ݕ − ,ଵݔ)ܭ ((ݕ ݂(ݕ)݀ݕ




ቮ

≤ ቌන|ݔ)ܭଶ, (ݕ − ,ଵݔ)ܭ ݕଶ݀|(ݕ




ቍ

భ
మ

ቌන| ݂(ݕ)|ଶ݀ݕ




ቍ

భ
మ

 

≤ ܾ)ߝ − ܽ)ଵ
ଶൗ ܿ  When   |ݔଶ − |ଵݔ <  (ߝ)ߜ

Where we have used equations (1.2) and (1.6). 

Therefore the sequence {ܭ ݂(ݔ)} is equicontinuous and it follows that there is a 

sequence {ܭ ݂(ݔ)} which converges uniformly to a function ݂(ݔ),continuous 

on[ܽ, ܾ].Because of the uniform convergence we can obtain the result that 

lim
→∞

ฮܭ ݂ − ݂ฮ
ଶ

= lim
→∞

නหܭ ݂ − ݂ห
ଶ





 ݔ݀

                                      = න lim
→∞

หܭ ݂ − ݂หଶ




 ݔ݀

    = 0 
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Which establishes the theorem. 

 

 

Definition (1.1.13):- 

The integral transformation k is said to be symmetric if for all elements                     

݂and g of R. 

,݂ܭ) g) = (݂,  (gܭ

Then ܭ is symmetric if and only if  ܭ =  ∗ܭ

Definition (1.1.14):- 

Areal kernel ݔ)ܭ, ,ݔ)ܭ is said to be symmetric if (ݕ (ݕ = ,ݕ)ܭ ,ݔ for all(ݔ  such ݕ

that ܽ ≤ ݔ ≤ ܾ, ܽ ≤ ݕ ≤ ܾ. 

Definition (1.1.15):- 

A kernel ݔ)ܭ, ,ݔ)ܭ defined on R∗is called Hermitian if(ݕ (ݕ = ,ݔ)ܭ  തതതതതതതതത(ݕ

Theorem (1.1.16):- 

The integral transformation K is symmetric if and only if it has a symmetric kernel 

Proof:- 

If f and g are elements of R then 

,݂ܭ) g) = න ቐන ,ݔ)ܭ ݕ݀(ݕ)݂(ݕ




ቑ g(ݔ)݀ݔ = න න ,ݔ)ܭ ݔ݀ݕ݀(ݔ)g(ݕ)݂(ݕ












 

and 
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(݂, (gܭ = න (ݕ)݂ ቐන ,ݕ)ܭ ݔ݀(ݔ)g(ݔ




ቑ ݕ݀




 

        = න න ,ݕ)ܭ ݕ݀ݔ݀(ݔ)g(ݕ)݂(ݔ








 

If ݔ)ܭ, ,ݔ)ܭ is symmetric(ݕ (ݕ = ,ݕ)ܭ  and a change of order of integration(ݔ

establishes that (݂ܭ, g) = (݂,  (gܭ

Conversely, we assume that ݔ)ܭ,  is not symmetric, and we try to obtain a (ݕ

contradiction. If there are valuesݔଵand ݔଶ in[ܽ, b] for which K(ݔଵ, (ଶݔ < ,ଶݔ)ܭ  (ଵݔ

then from the continuity of K(ݔ,                  there will exist closed intervals (ݕ

:ଵܫ ܿଵ ≤ ݀ଵ and ܫଶ: ܿଶ ≤ ݀ଶ in the interval [a, b] which are such thatݔଵis in Iଵand ݔଶ 

is in Iଶand 

m =  l. u. b. {K(ݔ. , {in Iଵ,y inIଶݔ| (ݕ g. l. b. ,ݔ)ܭ} Iଶy in Iଵ,ൟ݊݅ݔห(ݕ = M 

Now define functions ϕ(Iଵ, ,and ϕ(Iଶ (ݔ  the characteristic functions of Iଵand(ݔ

Iଶrespectively to be such that 

ϕ൫I୨, ൯ݔ = ቊ
1, for ݊݅ݔI୨
0, for ݊݅ݐ݊ݔI୨

� 

Where j=1, 2 

Then if  ݂(ݔ) = ϕ(ܫଵ, (ݔ)andg (ݔ = ϕ(ܫଶ,  we see that(ݔ

,݂ܭ) g) = න ቐන ,ݔ)ܭ ݕ݀(ݕ)݂(ݕ




ቑ g(ݔ)݀ݔ.




 

= න න ,ݔ)ܭ ݔ݀ݕ݀(ݕ

ௗమ

మ

ௗభ

భ
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≥ ଵ݀)ܯ − ܿଵ)(݀ଶ − ܿଶ) 

 

and 

,݂ܭ) g) = න ቐන ,ݔ)ܭ ݕ݀(ݕ)݂(ݕ




ቑ g(ݔ)݀ݔ.




 

= න න ,ݔ)ܭ ݔ݀ݕ݀(ݕ

ௗమ

మ

ௗభ

భ

 

≤ ݉(݀ଵ − ܿଵ)(݀ଶ − ܿଶ) 

Consequently K could not be a symmetric transformation 

We now establish a theorem relating to the eigenvalues of symmetric integral 

transformation 

Theorem (1.1.17):- 

The eigenvector corresponding to distinct eigenvalues of a symmetric integral 

transformation k are orthongonal 

Proof:- 

Let f and g be tow elements of R and λ,μ tow distinct eigenvalues of asymmetric 

integral transformations. 

Then 

݂ܭ =  ݂ߣ

gܭ =  gߤ

And it follows that, since K is symmetric 
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,݂)ߣ g) = ,݂ߣ) g) = ,݂ܭ) g) = (݂, (gܭ = (݂, (gߤ = ,݂)ߤ g) 

Therefore 

ߣ) − ,݂)(ߤ g) = 0 

And since λ and ߤ are distinct, it follows that  f and g must be orthogonal. 

Definition (1.1.18):- 

The simplest of symmetric kernel have the form 

,ݔ)ܭ (ݕ =  ܿℎ(ݔ)ℎ(ݕ)


,ୀଵ

                                (1.7) 

Where c୧୨ = c୨୧and ℎ(ݔ) are continuous function defined on [ܽ, b]. 

Definition (1.1.19):- 

The kernel,K(ݔ,  which can be expressed as a finite linear combination of (ݕ

products of a function of x alone and a function of y alone is said to be a separable 

kernel, in the particular of (1.7) the kernel is said to be a symmetric separable 

kernel 

Definition (1.1.20):- 

Although we shall be discussing this kernel in detail, it is worth noting here that 

such a kernel induces an integral transformation which has only a finite number of 

non-zero eigenvalues, and a symmetric integral transformation which has a finite 

number of non-zero eigenvalues must have a separable kernel 

Definition (1.1.21):- 

Information concerning the eigenvalues and eigenvector of   transformations with 

separable kernels can be obtained by using the corresponding results obtained when 

dealing with systems of finite order. 
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Theorem (1.1.22):- 

Let K(ݔ,   be a symmetric separable kernel which is not identically zero, then (ݕ

there exists an orthonormal set of vector ଵ݂(ݔ), … … … … . ݂(ݔ) in ܴ and non-zero 

real scalars ߣଵ … … ܭ such theߣ ݂(ݔ) = ߣ ݂(ݔ) for ݅ = 1, 2, … … ݉; also if  g(ݔ) 

is in R and orthogonal to ݂(ݔ) for all I then kg(ݔ) = 0 .the scalars ߣare the only 

non-zero eigenvalues of K ,and there is only a finite number of linear independent 

eigenvectors corresponding to each eigenvalues 

Proof:- 

Let V be the collection of all vector of the form 

݀ଵℎଵ(ݔ) +. . . … + ݀ℎ(ݔ). 

Such a collection as Vis in fact a vector space, and its dimension q, say is the 

number of linearly independent vector in the set 

ℎଵ(ݔ) … … … . … ℎ(ݔ) 

Since the kernel ݔ)ܭ,  is also assumed to be defined in terms of (ݕ

ℎଵ(ݔ) … … … . … ℎ(ݔ)as in (1.7), we find that for any arbitrary function p(y) in V 

න ,ݔ)ܭ ݕ݀(ݕ)(ݕ =  ܿ න ℎ(ݕ)ݕ݀(ݕ)ℎ(ݔ)           (1.8)






,ୀଵ





 

From (1.8) we readily see that k transformations V into itself. further  since  k(ݔ,  (ݕ

is symmetric ,as we have assumed dim V=q, that there exist ݍ orthonormal vectors 

݂(ݔ), ݅ = 1,2, … … ݅ , such thatܸ݊݅ݍ = 1,2, … . . ܭ if ݍ ݂(ݔ) = ߣ ݂(ݔ) for              

݅ = 1,2, … … ݉andߣ ≠ 0, i =  m + 1, … . q,ߣ = 0we obtain the set of 

vector ݂(ݔ), i = 1,2, … … . . m required by the theorem however ,if 0i  ݅ =

1,2, … … then K ݍ ݂(ݔ)  = 0 and hence K(ݔ)  = 0 for all function (ݔ) in V since 

the function  ݂, ݅ = 1,2 … . .  theݔ form a basis of V .Now for a fixed value ofݍ
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kernel ݔ)ܭ,  given by (1.7) is a continues function of y in v and we can write in (ݕ

this case  ݔ)ܭ, (ݕ  =  hence(ݕ)

ܭ = 0 = න ,ݔ)ܭ ݕ݀(ݕ)(ݕ = න|(ݕ)|ଶ









 ݕ݀

And we conclude that (ݔ) = 0 for all y since x can assume any arbitrary but fixed 

value, it follows that (ݔ) = ,ݔ)ܭ (ݕ  = 0 for all ݔand ݕ. This result contradicts the 

hypothesis of the theorem; therefore not all the λ୧ are zero we thus assume ߣ ≠ 0, 

i = 1,2 … . . m and ߣ = 0 , i = m  + 1, … … q ,in R, let g be a function which is 

orthogonal to ݂, ݅ = 1,2, … . . ݉and define 

(ݔ) = g(ݔ) −  ቀg(ݔ), ݂(ݔ)ቁ ݂ (ݔ)


ୀାଵ

                      (1.9) 

Then it is easily verified, by first forming the inner product (, ݂) that p is 

orthogonal to ݂, ݅ = 1,2, … . . ,consequently ,since the functions  ݂ ݍ i =

1,2, … . .  must also be orthongonal to the(ݔ) form a basis for V the functionݍ

functions ℎଵ(ݔ) … … … . … ℎ(ݔ), therefore , by (1.8) we see that (ݔ)ܭ = 0 .In 

addition we see that when ݆ = ݉ + 1, … … . then K ,ݍ ୧݂ = 0. Combining these 

several results and using (1.5) we find that ܭg = 0 as required . 

To prove the remaining part of the theorem, we notice that if F is an arbitrary 

function in R then (1.8) implies that KF(ݔ) is in V .In particular,ifܨܭ = ܨߣ ≠ 0 

Then (ݔ)ܨ = (1 ⁄ߣ  is in V and has the representation (ݔ)ܨܭ(

(ݔ)ܨ = ܽଵ ଵ݂(ݔ) + ⋯ + ܽ ݂  (ݔ)

For scalars ܽ = (݂, ݂), it follows from theorem (1.1.17) that ܽ = 0unless ݂is 

associated with the eigenvector  λ .This statement is sufficient to complete the 

proof of the theorem. 
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It  may be felt that more generality can be obtained by considering the kernel to the 

form 

,ݔ)ܭ (ݕ =  ݂(ݔ)g(ݕ)


ୀଵ

                         (1.10) 

This is not the case as such a kernel can always be reduced to the form (1.7) and 

when K(ݔ, is symmetric we shall obtain coefficients c୧୨ (ݕ = c୨୧,all that is  required 

is that we should express the 2p functions ݂(ݔ)and g୨(ݔ)in terms of a set of q 

linearly independent functions h୨(ݔ) provided of course that dimension of the 

space is q in this case (1.10) becomes 

,ݔ)ܭ (ݕ =   ܽℎ(ݔ


ୀଵ

)


ୀଵ

 ܾℎ(ݕ)


ୀଵ

 

=  ܿℎ(ݔ)ℎ(ݕ)


,ୀଵ

 

Where 

ܿ =  ܾܽ



ୀଵ

 

Similarly we can obtain 

,ݔ)ܭ (ݕ =  ܿℎ(ݕ)ℎ(ݔ)


,ୀଵ

=  ܿℎ(ݔ)ℎ(ݕ)


,ୀଵ

 

When we have that K(ݔ, (ݕ = K(ݕ,  assures us(ݔ)the linear independence of ℎ (ݔ

that for fixed ݔ 
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 ܿℎ(ݔ)


ୀଵ

=  ܿℎ(ݔ)


ୀଵ

 

and it follow that ܿ = ܿ 

The practical evaluation of the non-zero eigenvalues λ୧is best obtained if we start 

with the kernel in the form (1.10).If F(ݔ) is in R and an eigenvector of k we may 

write 

(ݔ)ܨܭ = න  ݂(ݔ)g(ݔ)(ݕ)ܨ


ୀଵ





ݕ݀ =  (ݔ)ܨߣ

Writing 

ܽ = න g(ݕ)(ݕ)ܨ




 (1.11)                                     ݕ݀

We obtain 

(ݔ)ܨ =
1
ߣ  ܽ ݂(ݔ)



ୀଵ

                                      (1.12) 

Combining (1.12) and (1.11) we obtain 

ܽߣ =  ܽ



,ୀଵ

න g(ݕ) ݂(ݕ)




 ݕ݀

This last equation is a representation of the set of linear algebraic equations for the 

unknown ܽ୫and as such will only possess a non-trivial solution when the 

characteristic determinant vanishes that is when 

ݐ݁݀ ቐߜߣ − න g(ݕ) ݂(ݕ)




ቑݕ݀ = 0                          (1.14) 
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therefore once the eigenvalues have been determined from (1.14) 

the corresponding eigenvectors follow from(1.12) 

Example (1.1.23):- 

Find the non-zero eigenvalues of the kernel 

K(ݔ, (ݕ = 1 + cos(ݔ − ,(ݕ ߨ− ≤ ݔ ≤ ,ߨ ߨ− ≤ ݕ ≤  ߨ

We must solve 

(ݔ)ܨܭ = ,(ݔ)݂ߣ ߣ ≠ 0 

that is 

න(1 + cos(ݔ − ݕ݀(ݕ)ܨ((ݕ
గ

ିగ

= λF(ݔ) ,    ߣ ≠ 0 

Expanding the cosine term and using (1.11) we may write this equation in the form 

ܽଵ +  ܽଶcosݔ + ܽଷsinݔ =  (ݖ)݂ߣ

Where 

ܽଵ =
1
ߣ න (ݕ)ܨ

గ

ିగ

 ݕ݀

ܽଶ =
1
ߣ න cos ݕ (ݕ)ܨ

గ

ିగ

 ݕ݀

ܽଵ =
1
ߣ

න sin ݕ (ݕ)ܨ
గ

ିగ

 ݕ݀
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From(1.13) we have the alternative forms 

ܽଵ =
1
ߣ

න(ܽଵ + ܽଶ cos ݕ + ܽଷ sin (ݕ
గ

ିగ

 ݕ݀

ܽଶ =
1
ߣ

න cos ݕ (ܽଵ + ܽଶ cos ݕ + ܽଷ sin (ݕ
గ

ିగ

 ݕ݀

ܽଷ =
1
ߣ න sin ݕ (ܽଵ + ܽଶ cos ݕ + ܽଷ sin (ݕ

గ

ିగ

 ݕ݀

That is on expanding the kernel K(ݔ,  we have written (ݕ

ଵ݂(ݔ) = 1, ଶ݂(ݔ) = (ݔ)ଷ݂   , ݔݏܿ  =  ݔ݊݅ݏ

gଵ(ݕ) = 1,   gଶ(ݕ) = cosy, gଷ(ݕ) = sinݕ. 

integratingtheseequationsweobtain 

ଵܽߣ =  ଵܽߨ2

λܽଶ = πܽଶ 

λܽଷ =  ଷܽߨ

From which it follow that the possible values of λ for non-zero eigenvector 

F(ݔ)areλ = 2π and λ = π.When λ = π the equations show that ܽଵ = 0 whilst 

ܽଶand ܽଷcan take arbitrary values . Consequently from (1.12) we obtain 

(ݔ)ܨ =
1
ߨ

{ܽଶ cos ݔ + ܽଷ sin  {ݕ

Similarly when λ = 2π it follows that ܽଶ = ܽଷ = 0 whilst ܽଵcan be arbitrary and 

we obtain the corresponding eigenvector 
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(ݔ)ܨ =
ܽଶ

ߨ2
 

Consequently it follow that there are three linearly independent solutions of the 

given equations (1.15), namely 

Fଵ(ݔ)  = , ݔݏܿ  (ݔ)ଶܨ = , ݔ݊݅ݏ  Fଷ(ݔ) = 1 

As it happens these are orthogonal eigenvectors which when normalized may be 

written 

(ݔ)ଵܩ =
(ݔ)ଵܨ

‖(ݔ)ଵܨ‖ =
cos ݔ

ඥ(ߨ)
 

(ݔ)ଶܩ =
(ݔ)ଶܨ

‖(ݔ)ଶܨ‖ =
sin ݔ
ඥ(ߨ)

 

(ݔ)ଷܩ =
(ݔ)ଷܨ

‖(ݔ)ଷܨ‖ =
1

ඥ(ߨ)
 

Example (1.1.24):-  

Repeat the above problem but with the kernel 

,ݔ)ܭ (ݕ = ݊݅ݏ ݔ ݏܿ ݕ , ߨ− ≤ ݔ ≤ , ߨ ߨ− ≤ ݕ ≤  ߨ

We are now required to solve 

(ݔ)ܨܭ = න ݊݅ݏ ݔ ݏܿ ݕ (ݕ)ܨ
గ

ିగ

ݕ݀ =  (ݔ)ܨߣ

This we may write in the form 

ܽ sin ݔ =  (ݔ)ܨߣ

Where 
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ܽ = න ݏܿ ݕ (ݕ)ܨ
గ

ିగ

ݕ݀ = න ݏܿ ݕ ൬
1
ߣ ܽ sin ൰ݕ

గ

ିగ

ݕ݀ = 0 

Therefore there are no non-zero eigenvalues of this kernel when the domain with 

which we are concerned is the square −ߨ ≤ ݔ ≤ , ߨ ߨ− ≤ ݕ ≤  we remark that ߨ

this   kernel is not symmetric if we changed the domain so that                            

0 ≤ ݔ ≤ ,  2/ߨ 0 ≤ ݕ ≤ ߣ  then we would obtain one non-zero eigenvalue 2/ߨ = ଵ
ଶ
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Section (1.2):Eigenvalues of symmetric integral operator 

Let K be asymmetric integral transformation defined on the real Euclidean 

vector space R of integrable function on ܽ ≤ ݔ ≤ ܾ.In this section we 

establish a number of important results for such operators which we shall find 

useful later. 

Theorem (1.2.1):- 

The number of distinct non-zero eigenvalues of a symmetric integral 

transformation K is at most afinite number of linearly independent 

eigenvector. 

Proof:- 

We have already seen that eigenvectors corresponding to distinct eigenvalues 

are orthogonal further since any finite set of linearly independent eigenvectors 

corresponding to the same eigenvalue may be replaced by orthonormal 

eigenvectors, we may assume that any finite set of linearly independent 

eigenvectors is in fact an orthonormal set. 

Let ݂, ݅ = 1, 2, … … . , ݉ be a finite set of orthonormal eiginvectors 

corresponding to the eiginvalues݅ which need not be distinct. Now for a fixed 

value of ݔthe function g(ݕ)  = ,ݔ)ܭ   is a function in R and we have (ݕ

൫ g(ݕ), ݂(ݕ)൯ = න ,ݔ)ܭ (ݕ ݂(ݕ)




ݕ݀ = ܭ ݂(ݔ) = ߣ ݂(ݔ) 

Bessel’s inequality enables us to write  

 ߣ
ଶ



ୀଵ  

| ݂
≥   ଶ|(ݔ)�� න ,ݔ)��ܭ| ݕଶ݀|(ݕ




                                (1.17) 
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and on integrating this with respect to ݔwe obtain 

  ଶߣ


ୀଵ

≤ න න|ݔ)ܭ�, �ଶ|(ݕ




ݔ݀ݕ݀




                                    (1.18) 

The right-hand side is independent of ݉. This fact coupled with the result of 

theorem (1.1.22) indicates that there can be at most a finite number of linearly 

independent eigenvalues. This inequality also implies that there can be at most 

a finite number of linearly independent eigenvectors with eigednvalues greater 

in absolute value than unity or with eigenvalues whose absolute values lie in 

the range 

1
2݊ < ݔ <

1
݊  , ݊ = 1, 2, …. 

The distinct eigenvalues can now be counted because we count first those with 

absolute value greater than unity then those in the range  ½ < ݔ < 1  and so 

on thus, every non-zero eigenvalue can be counted. 

It is customary to order the eigenvalues according to their absolute value and 

then to display them in the following form: 

ଵିߣ ≤ ଶିߣ ≤ . . . . . <  0 < . . . . . . ≤ ଵߣ ≤  ଶߣ

where the final separation has been effected with respect to the signs of the 

eigenvalues . Eash  eigenvalue  is repeated in such adisplay a number of times 

equal to the number of linearly independent eigenvectors associated with it 

.such a display of the eigenvalues of the operator K is known as spectrum of 

the operator Acorollary theorem(1.2.1) having a direct bearing on the notion 

of the spectrum of an operator can be stated as follows. 
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Corollary(1.2.2):- 

If K has at least one non-zero eigenvalue then there exist non-negative integers 

M and N not both zero but possibly in finite and an orthonormal set of vectors  

݂(ݔ) , −∞ ≤ ܯ− ≤ ݅ ≤ ܰ ≤ ∞, ݅ ≠ 0 

such that ܭ ݂(ݔ) = ߣ ݂(ݔ) with   

ଵିߣ ≤ ଶିߣ ≤ . . . . . <  0 < . . . . . . ≤ ଶߣ ≤  .ଵߣ

The set of numbersߣincludes every non-zero eigenvalue of K, and every 

eigenvector of K corresponding to a non-zero eigenvalue ߣ is a finite linear 

combination of eigenvectors ݂(ݔ) associated with the eigenvalue ߣ. Finally we 

have that: 

  
ଶ



| ݂(ݔ)|ଶ ≤ න|ݔ)ܭ, ݕଶ݀|(ݕ




                 (1.19) 

  
ଶ න න|ݔ)ܭ, ݔ݀ݕଶ݀|(ݕ









                            (1.20) 

These last equations follow directly form (1.17) and (1.18). Also, from (1.20) 

it follows that if  ܰ = ∞ then lim→∞ ߣ = 0 and if ܯ = ∞ then  lim→∞ ିߣ =

0  The question of the existence of a non-zero eigenvalue can be answered if 

we first develop for integral transformations results an alogous to those 

already obtained for linear transformations  we recall that if ܶis a linear 

transformations on afinite-dimensional Euclidean vector space the largest and 

smallest eigenvalues ߣଵ and ߣ respectively are given by  

ଵߣ  = ݈. .ݑ ܾ. ,ݔܶ)} = ݔ   (ݔ  1} 

ߣ =  g. ݈. ܾ. ,ݔܶ)} = ݔ   (ݔ  1}. 
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Similar results can also be obtained for integral operators, as we now see. 

Theorem (1.2.3):- 

 Let  =  ݈. .ݑ ܾ. ,݂ܭ)} ݂)|  ݂  = ݍ݀݊ܽ {1  = g . ݈. ܾ. {(K݂, ݂) |  ݂  = 1}  

then if  > 0 it is the largest non-zero eigenvalue and if ݍ < 0 it is the 

smallest non-zero eigenvalue. 

Proof:- 

If 

ܲ` = ݈. .ݑ ܾ. {(−K݂, ݂)| ‖݂‖ =  1} =  ݈. .ݑ ܾ {(K݂, ݂) |‖݂‖ =  1 } 

is the largest eigenvalue of – – then ܭ ܲ` must be the smallest eigenvalue of ܭ 

and – ܲ` =  Therefore , it will be sufficient for us to prove the theorem with. ݍ

regard to ,and the statement regarding ݍ will follow if we consider the 

transformation –  ܭ

 If   

݂ܭ = ݂ for݂ߣ  = 1 

Then it follows at once that 

ߣ = ,݂)ߣ ݂) = (K݂, ݂) ≤  

consequently if is an eigenvalue it must be the largest. Therefore to establish 

the theorem we must show that  is indeed an eigenvalue consider initially the 

case when the kernel ofܭ is separable. Then when  > 0 the kernel cannot be 

identically zero and theorem (1.1.22) implies the existence of m orthonormal 

vectors ݂, and non-zero eigenvalue ݅ߣ having theߣଵ  ≥ ଶߣ  ≥ ⋯ ≥   suchߣ 

that for any vector g orthogonal to ݂ for all ݅, ܭg(ݔ) = 0 let ܸbe the linear 

manifold spanned by ݂ then if  
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ℎ(ݔ) =  ܽ ݂(ݔ)


ୀଵ
 

is any function in ܸit follows that ܭℎ(ݔ) is also in ܸsince  ܭ ݂(ݔ) =

 Thus we have that.(ݔ)୧݂ߣ

୧ߣ = ݈. .ݑ ܾ. {(Kℎ, ℎ)| ℎ = 1 , ℎ in V }                                           

            ≤ ݈. .ݑ ܾ. {(k݂, ݂)  | ‖݂‖ = 1 , ݂ܴ݅݊ }  =  (1.21)                         

If we can now show that the reverse inequality is also true then we can assert 

that since  =  must be an eigenvalue of k . Now when ݂is in R and  ,ଵߣ

  ݂  = 1 we may write  

݂ = ℎ + g  , h in V and  g in Vୄ 

Where Vୄ is the space of functions orthogonal to ܸ therefore,               

(ݔ)gܭ = 0, K݂(ݔ) = Kℎ(ݔ) is in ܸand 

,݂ܭ) ݂) = ,ℎܭ) ℎ + g) = ,ℎܭ) ℎ),                                     (1.22) 

also we have that  

(݂, ݂) = (ℎ + g, ℎ + g) = (ℎ, ℎ) + (g, g), 

where 

0 ≤  ℎ ≤  ݂  = 1 

If we restrict our choice of ݂ to ensure (݂݇, ݂) > 0 it follows from (1.22) that 

since  > 0, ,ℎܭ) ℎ) > 0, ‖ℎ‖ ≠ 0 and 

,݂ܭ) ݂) =  ℎ ଶ(ܭ, ( ≤ ,ܭ)  ,(

where 

(ݔ) =
ℎ(ݔ)
 ℎ(ݔ) 

 is in ܸ 
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Hence we have that 

l. u. b. ,݂ܭ)} ݂ |(  = 1, ݂ܴ݅݊ } ≤ l. u. b{(ܭ, =  |( 1,  (1.23)          ܸ݊݅

Which establishes that  ≤   ଵ combining (1.21) and (1.23) we see thatߣ

 =  ଵ, and the theorem follows for integral  transformations with separableߣ

kernels. 

We will now consider the case when ݔ)ܭ,  is any continuous symmetric(ݕ

kernel. To establish the theorem in this case we shall need to use the following 

result 

For every ߝ > 0 there is a symmetric separable kernel ݔ)ܪ,  such that (ݕ

න න ,ݔ)ܭ| (ݕ − ,ݔ)ܪ ݕ݀ݔଶ݀|(ݕ ≤ ߝ








 

This means that we can find a sequence ݇(ݔ,  of symmetric separable (ݕ

kernels such that 

ܭ‖ − ‖ଶܭ ≤ න න|ݔ)ܭ, (ݕ − ,ݔ)ܭ ଶ|(ݕ









 ݕ݀ݔ݀

≤
1

݊ଶ  (ݕܽݏ) 

Where we have used theorem (1.1.7) we shall write: 

 = l. u. b. ,݂ܭ)} ݂)| ݂  = 1}, 

and assert that  

 = ݈݅݉
→ஶ
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To prove this assertion we notice that if ‖݂‖ = 1 then 

,݂ܭ)| ݂) − ,݂ܭ) ݂)| = ܭ)| − ,݂(ܭ ݂| 

                                             ≤ ܭ)‖ −  ‖݂‖‖݂(ܭ

                                 ≤ ܭ‖ −  ‖ܭ

                     ≤
1
݊

 

Therefore 

,݂ܭ) ݂) ≤ ,݂ܭ) ݂) +
1
݊

 

 ≤  +
1
݊ 

Similarly we can show that 

 ≤  +
1
݊ 

Which finally establishes our assertion that  = ݈݅݉→ஶ  since > 0 we 

may restrict any further discussion to sequences for which  > 0.We have 

proved the theorem for symmetric separable kernels so we can write as 

eigenvalues of the operator ܭ and denote by ݂ the corresponding 

eigenvectors thus we have that 

ܭ ݂ =  ݂ , ‖ ݂‖ = 1 

We will now show that  

݈݅݉
→ஶ

ܭ‖ ݂ −  ݂‖ = 0 
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Hence it follows that  

ܭ‖ ݂ −  ݂‖ ≤ ܭ‖ ݂ − ܭ ݂‖ + ‖ ݂ −  ݂‖ 

≤ ܭ‖ − ‖ܭ + | −  |

In view of the fact that ܭ is a compact operator theorem (1.1.12) there is a g in 

ܴand a sub sequence { ݂} such that  

݈݅݉
→ஶ

ฮܭ ݂ − gฮ = 0                             (1.24) 

Then the inequality 

ฮg −  ݂ฮ ≤ ‖g − ݇K‖ + ฮܭ ݂ −  ݂ฮ 

Together with (1.24) and (1.25) establishes that  

݈݅݉
→ஶ

ฮg −  ݂ฮ = 0                               (1.25) 

Hence it follows that 

‖g‖ = ݈݅݉
→ஶ

ฮ ݂ฮ = || ≠ 0 

Finally we must show that g is an eigenvector of ܭ with eigenvalue P using 

(1.24) and (1.25) we see that since 

gܭ‖ − ‖g ≤ ฮܭg − ܭ ݂ฮ + ฮܭ ݂ − gฮ

≤ ‖K‖ฮg −  ݂ฮ + ܭฮ|| ݂ − gฮ 

The required result follows immediately this completes the proof of the 

theorem. 

Notice that the result  = ݈݅݉→ஶ   enables quite readily to obtain

approximate values of ܲ.  
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This is due to the fact that the value of  is easily calculated by the method 

out lined in section (1.1) since  

‖ܭ‖ = l. u. b. ,݂ܭ)|} ݂)||‖݂‖ = 1, ݂ܴ݅݊} 

The theorem shows that whenever ‖݇‖ ≠ 0 the transformation ܭ has a non-

zero eigenvalue equal to ±‖ܭ‖. We will now show that a non-zero eigenvalue 

always exists unless the kernel is identically zero. 

Theorem (1.2.4):- 

Ifݔ)ܭ, ,݂ܭ) is continuous and symmetric (ݕ ݂) = 0 for all ݂ if and only 

ifݔ)ܭ, (ݕ = 0. 

Proof:- 

,݂ܭ) ݂) = 0for all݂ implies that (݂ܭ, g) = 0 for all ݂ and g. This follows from 

identity  

,݂ܭ) g) =
1
2

݂)ܭ)} + g), ݂ + g) − ,݂ܭ) ݂) − ,gܭ) g)} 

Now, taking g =  we have that ݂ܭ

,݂ܭ) g) = ,݂ܭ) (݂ܭ = 0 

Hence using the fundamental property of scalar products that  

݂ܭ = න ,ݔ)ܭ ݕ݀(ݕ)݂(ݕ = 0, ܽ ≤ ݔ ≤ ܾ, ݂ܴ݅݊.




 

For fixed ݔ the kernel ݔ)ܭ, (ݕ = ℎ(ݕ)is clearly in ܴ so if we choose ݂ = ℎ we 

obtain 

න|ℎ|ଶ





ݕ݀ = 0 
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That is ݔ)ܭ, (ݕ = 0, ܽ ≤ ݔ ≤ ܾ, ܽ ≤ ݕ ≤ ܾ. 

Theorem (1.2.5):- 

Let ܭ ݂ = ߣ ݂ , ݆ = 1,2, … … , ݉.where the ݂  are orthonormal eigenvectors of 

݇ then there is an eigenvector g of ݇ with a corresponding non-zero eigenvalue 

which is orthogonal to ݂ ߣ , ݆ = 1,2, … … , ݉if and only if g is also an 

eigenvector with non-zero eigenvalue ߣ of operator ܪ whose kernel is  

,ݔ)ܪ (ݕ = ,ݔ)ܭ (ݕ −  ߣ ݂(ݔ) ݂(ݕ)


ୀଵ

                              (1.26) 

Proof:- 

Suppose ܪg = ߣ     ,gߣ ≠ 0,    g ≠ 0 then we have 

ܪ ݂ = ܭ ݂ −  ߣ ݂(ݔ)൫ ݂, ݂൯


ୀଵ

 

= ܭ ݂ − ߣ ݂  

= 0 ݂  

Therefore by theorem (1.1.22) we must have that ݃is orthogonal to          

݂ , ݆ = 1,2, … … , ݉ consequently 

gߣ = gܪ = gܭ −  ߣ



ୀଵ
݂(ݔ)൫g, ݂൯ =  , gܭ

and it follows that ݃ must be an eigenvector of ܭ with eigenvalue ߣ. 

Conversely if g is orthogonal to ݂ , ݆ = 1,2, … … , ݉ when  K = ߣ ݂             

then  ܪg = gܭ =  .gߣ
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     As an immediate consequence of this theorem we can establish that a 

symmetric integral transformation with a finite number of non-zero eigenvalue 

must have a separable kernel .This result will be the converse of            

theorem (1.1.22). 

Theorem (1.2.6):- 

Let ݂ , ݆ = 1,2, … … , ݉be a basis of an orthonormal eigenvector of ݇ 

corresponding non-zero eigenvalues ߣ , ݆ = 1,2, … … , ݉ if ݇has no other non-

zero eigenvalues then  

,ݔ)ܭ (ݕ =  ߣ ݂(ݔ) ݂(ݕ)


ୀଵ

 

Proof:-  

The operator ܪcorresponding to the kernel ݔ)ܪ,  given by (1.26) has no (ݕ

non-zero eigenvalues in view of theorem (1.2.5) and hence by theorem (1.2.4) 

,ݔ)ܪ  .must be identically zero the theorem follows immediately (ݕ

Finally in this section we use the notation introduced in theorem (1.2.1) to 

prove the following theorem. 

Theorem (1.2.7):- 

(a)  If 

݅ < ܰ,  ାଵߣ

                = l. u. b. ൛(݂݇, ݂)ห‖݂‖ = 1, ݂ orthogonal to ݂ , ݆ = 1, … . , ݅ൟ 

(b)If  

−݅ > ,ܯ−  ିଵିߣ

                    = g. l. b. ൛(݂ܭ, ݂)ห‖݂‖ = 1 , ݂ orthogonal to   ݂, ݆ = −1, . . . , −݅ൟ 
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Proof:- 

When ܰ > 0 theorem (1.2.3) allows us to write 

݈. .ݑ ܾ. ,݂ܭ)} ݂)|‖݂‖ = 1} =  ߣ

Ifܰ > ݅, let  

,ݔ)ܭ (ݕ = ,ݔ)ܭ (ݕ −  ߣ ݂(ݔ) ݂(ݕ)
୧

୨ୀଵ

 

Then from the results of theorem (1.2.5) we have that the integral 

transformation ܭhas exactly ߣାଵ, ,ାଶߣ …. as positive eigenvalues with 

݂ାଵ(ݔ), ݂ାଶ(ݔ), … .. as corresponding eigenvectors. It follows that 

ାଵߣ = l. u. b. ܭ)} ݂, ݂)|‖݂‖ = 1} 

However when ݂ is orthogonal to ݂ , ݆ = 1, … . . , ݅ 

݂ܭ =  ݂ܭ

Therefore 

ାଵߣ ≥ l. u. b. ൛(ܭ݂, ݂)ห‖݂‖ = 1, ݂ orthogonal to ݂ , ݆ = 1,2, … . , ݅ൟ

= l. u. b. ൛(݂ܭ, ݂)ห‖݂‖ = 1, ݂ orthogonal to ݂ , ݆ = 1,2, … . , ݅ൟ

≥ ܭ) ݂ାଵ, ݂ାଵ) =  .ାଵߣ

The inequalities thus become equalities, and the proof of the first part of the 

theorem is complete the remaining result for negative eigenvalues can be 

obtained in a similar manner by considering the operator –  with only a few ܭ

slight modifications the corresponding theorems for integral transformations 

overܴ∗can be established. 
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Definition (1.2.8):- 

When we were concerned with asymmetric linear transformationܶ on n-

dimensional Euclidean vector space ܧ we saw that it was possible to find ݊ 

orthononrmal vector ݔ , ݅ = 1,2, … . , ݊ satifying 

ݔܶ =  ݔߣ

 Such that if ݕ is in ܧ, then  

ݕ = (ݕ, ݔ(ݔ



ୀଵ

 

ݕܶ =  ,ݕ)ߣ ݔ(ݔ



ୀଵ

 

That is, we obtained an expansion for any element y in ܧ in terms of a system 

of orthonormal vectors ݔ,   ݅ = 1,2,3, … . ݊. 

We now enquire whether or not similar expansions are available in infinite 

dimensional spaces when linear transformations replaced by integral 

transformations. 

We will start our investigation by considering again the kernel used in 

examples (1.1.23) .For the kernel: 

,ݔ)ܭ (ݕ = 1 + ݏܿ ݔ ݏܿ ݕ + ݊݅ݏ ݔ ݊݅ݏ        ,ݕ

ߨ− ≤ ݔ ≤ ; ߨ ߨ−  ≤ ݕ ≤  (1.27)      ߨ

We found only three orthogonal solutions of ݂ܭ = , ݂ߣ ߣ ≠ 0. 

These were 1, ܿݔݏand ݔ݊݅ݏ . 
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Definition (1.2.9):- 

 Despite the fact that any linear combination of these three is a continuous 

function, this does not imply that they span R, since not every continuous 

function can be expressed as a linear combination of them. For example, 

suppose we assume that the following expansion is admissible:  

ݔ2ݏܿ = ܽ + ݔݏܿ ܾ + −    ,ݔ݊݅ݏ ܿ ߨ ≤ ݔ ≤  (1.28)                                 ߨ

Integrating (1.28) over−ߨ ≤ ݔ ≤ ܽ we findߨ = 0 similarly, by first 

multiplying by either  ݔ݊݅ݏorܿݔݏand then integrating over the same range, 

we find that ܾ = 0 ܽ݊݀ܿ = 0. Thus (1.28) is not an admissible expansion, as 

could have been anticipated from the results of elementary of view, since we 

have in fact discarded all those eigenvectors with zero eigenvalue. 

 

Definition (1.2.10):- 

 In an attempt to include these additional eigenvectors, we first notice the 

following integral relationships:  

න ݏܿ ݔ ݏܿ ݔݍ
గ

ିగ
ݔ݀ = න ݊݅ݏ ݔ ݊݅ݏ ݔݍ ݔ݀ = ൜

0,  ≠ ,ݍ , ݍ = 0,1, …
,ߨ  = ,ݍ ,ݍ  = 1,2, …

�
గ

ିగ
 

න ݊݅ݏ ݔ ݏܿ ݔݍ ݔ݀ = 0,  = 1,2, … . , ݍ = 0,1,2, … .
గ

ିగ
 

Consequently it follows that:  

1, , ݔ݊ ݏ݊ܿ , ݔ݊ ݊݅ݏ ݊ =  1,2, … , ߨ− ≤ ݔ ≤  , ߨ

are orthogonal. As a result,ܿݔ݊ݏ, ,ݔ݊݊݅ݏ ݊ = 2,3,4, … ., must be eigenvectors 

with zero eigenvalue for the integral transformation having the kernel (1.2.6). 
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Definition (1.2.11):- 

 Having gone this far we may as well try to find any remaining eigenvectors, 

g, which have zero eigenvalues. If there is such a function, g, then by Theorem 

(1.1.17) g must be orthogonal to 1, ,ݔݏܿ  the eigenvectors with non-zero ,ݔ݊݅ݏ

eigenvalues. Further, g will also be orthogonal to the eigenvectors      

,ݔ݊ݏܿ , ݔ݊݊݅ݏ ݊ =  2,3, …. we shall see in the vectors      ܿݔ݊ݏ, , ݔ݊݊݅ݏ ݊ =

 0.1, …, must necessarily be the zero vector. 

Definition (1.2.12):- 

 Assuming this fact for the moment, we conclude that 1, ,ݔ݊ݏܿ ,ݔ݊݊݅ݏ ݊ =

1,2 …, constitute a maximal set of eigenvectors of ܭ.when normalized, the 

eigenvectors may be written. 

݂(ݔ) =
1

ඥ(2ߨ)
, ଶ݂ିଵ(ݔ) =

ݏܿ ݔ݆

ඥ(ߨ)
, ଶ݂(ݔ) =

݊݅ݏ ݔ݆

ඥ(ߨ)
, ݆ = 1,2, .. 

Therefore, the required extension of the results for linear transformations on a 

finite- dimensional space to integral transformations will be achieved if we 

expand any element g of R in infinite series in the form: 

g(ݔ) = ൫g, ݂൯ ݂(ݔ) =  ቆන g(ݕ) ݂(ݕ)݀ݕ
గ

ିగ
ቇ ݂(ݔ)

ஶ

ୀଵ

ஶ

ୀ

. 

This has the alternative form: 

g(ݔ) =
ܽ

2
+ (ܽ ݏܿ ݔ݊ + ܾ ݊݅ݏ (ݔ݊

ஶ

ୀଵ
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Where:  

ܽ =
1
ߨ

න g(ݕ) ݏܿ ݕ݊ ݊    ,ݕ݀ = 0,1,2, …
గ

ିగ
 

ܾ =
1
ߨ

න g(ݕ) ݊݅ݏ ݕ݊ ݊     ,ݕ݀ = 1,2, …
గ

ିగ
 

This last form of expansion is known as a Fourier series expansion. Whilst we 

shall not enter into a detailed study of such series, we will observe that, 

although not every continuous function can be expanded in a convergent 

Fourier series, an extension of the expansion theorem for linear operations to 

integral operators is still possible. 

The extension of the result ܶݕ = ∑ ,ݕ)ߣ ݔ(ݔ

ୀଵ to integral operators in more 

readily obtained, and is, in fact, given by the following theorem.  

Theorem (1.2.13):-  

Let {ߣ}, −∞ ≤ ܯ ≤ ݅ ≤ ܰ ≤ ∞, ݅ ≠ 0 is the spectrum of the integral operator 

}associated with the eigenvectors ܭ ݂}. If g is any element ofܴ then. 

gܭ =  ,(gߣ ݂) ݂ = (ܭg, ݂) ݂


                           (1.29) 

Andthe series is absolutely uniformly convergent an ܽ ≤ ݔ ≤ ܾ 

Proof:- 

The series (1.29) converges absolutely uniformly on ܽ ≤ ݔ ≤ ܾ if for 

everyߝ > 0 there is an integer ଵܰ( ) > 0 such that: 

|ߣܽ ݂(ݔ)|


ୀ

< ܽ ߝ = (݃, ݂)                                  (1.30) 
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Whenever ݉ܽ݊݀݊ have the same sign, with |݉| > ଵܰܽ݊݀|݊| > ଵܰ to show 

that this is the case, let: 

A ≥ l. u. b ቊන |K(ݔ, y)|ଶdy |
ୠ

ୟ
a ≤ ݔ ≤ bቋ 

Notice also that as a consequence of Bessel’s inequality we can write: 

|ܽ|ଶ ≤  ‖g‖


 

Where the prime denotes that ݅ = 0 has been excluded from the summation. 

Then it follows that there exist numbers n, m having the same sign and 

satisfying |݊| > ଵܰ, |݉| > ଵܰ for some integer N1 such that: 

|ߣܽ ݂|


ୀ

≤ ൭|ܽ|ଶ


ୀ

൱

భ
మ

൭ ߣ
ଶ| ݂|ଶ



ୀ

൱

భ
మ

 

                     ≤ ቆ
ଶߝ

ܣ
ቇ

భ
మ

ቆන ,ݔ)ܭ| ଶ|(ݕ



ቇݕ݀

భ
మ

 

≤                            .ߝ

Thus the inequality (1.30) is established. It remains to show that the series 

converges to ܭg. It would perhaps be appropriate to digress for a moment and 

elaborate on this particular use of the Schwarz inequality. 

Although it is a well-established result for finite series with a development 

which is independent of the notions of vector spaces and inner products, it in 

no way conflicts with our present requirements. In, fact, if we write ܵ =

ߣ) ݂ , ଶାଵߣ ݂ାଵ, … , ߣ ݂) andܣ = (ܽ, ܽାଵ, … , ܽ) then the left – hand 

side is clearly an inner product form defined in the usual manner for finite-

dimensional spaces   
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by:  

(ܵ, (ܣ =  ߣ ݂ܽ


 

The application of Schwarz inequality is then clear. Returning to the proof of 

the theorem, we remark that if the number of eigenvalues is finite then by 

Theorem (1.2.6) the kernel ݔ )ܭ,  :is separable, and we have (ݕ

,ݔ)ܭ (ݕ =  ߣ ݂(ݔ) ݂(ݕ)


 

From this it follows that: 

gܭ =  ,(gߣ ݂) ݂


 

As required. 

Now consider the case when there is an infinite number of eigenvalues. We 

will assume ܰ = ܯ = ∞ the other cases being treated similarly. Then:  

݈݅݉
→ஶ

ߣ = 0 = ݈݅݉
→ஶ

 ିߣ

If we denote by h any vector orthogonal to the vectors  

ଵ݂, ଶ݂, … . , ݂ , ݂ି ଵ, … , ݂ି                                                (1.31) 

Then from Theorem (1.2.7) we have that: 

‖ℎ‖ଶିߣିଵ ≤ ,ℎܭ) ℎ) ≤ ‖ℎ‖ଶߣାଵ. 

Therefore, for any sequence of vectors (ℎ) such that (ℎ) is orthogonal to 

every member of the set (1.31) for all j, and having the property that, 

‖ℎ‖  ≤   :we have ,ܤ 
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݈݅݉
→ஶ

หܭℎ , ℎห = 0                                        (1.32) 

Let ൛ܪൟ be any other sequence of vectors with ฮܪฮ ≤  and Hi orthogonal toܤ 

the set (1.31) for any j. Then vectors൫ℎ ±  ൯are also orthogonal to set (1.31)ܪ

for all j and||hi ± Hi || ≤ 2B.If now we use the result (1.32) in conjunction with 

the identity:  

,ℎܭ) (ܪ =
1
4

ℎ)ܭ)} + ,(ܪ ℎ + (ܪ − ℎ)ܭ) − ,(ܪ ℎ −  ,{(ܪ

We see that:  

݈݅݉
→ஶ

ห൫ܭℎ , ൯หܪ = 0.                                 (1.33) 

We establish the theorem by selecting particular sequences ൛ℎൟand ൛ܪൟas 

follows. Let: 

ℎ = g −  (g, ݂) ݂



ୀି

 

Then hiiscertainly orthogonal to the set (1.31) for all j, and 

||ℎ ||  ≤  ||g||.Corollary which states that:  

ቯg −  (g, ݂) ݂
ୀି

ቯ ≤ ቯg −  ܿ ݂
ୀି

ቯ 

For arbitrary ܿ, in particularܿ =  0  
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Similarly if we let:  

ܪ = ℎܭ = gܭ − ൫g, ݂൯ߣ ݂



ୀ

 

                        = gܭ −  ൫g, ܭ ݂൯ ݂



ୀି

 

                             = gܭ −  ,gܭ) ݂) ݂



ୀି

 

Then we see that ܪ is orthogonal to ଵ݂, ଶ݂, … . , ݂ , ݂ି ଵ, … , ݂ି  and  

|| ܪ||  ≤  .||gܭ|| 

 

With these choices of ℎand ܪequation (1.33) becomes: 

݈݅݉
ୀஶ

ห(ܭℎ, ℎ)หܭ = 0 

That is: 

݈݅݉
→ஶ

න ቮܭg −  ,(gߣ ݂) ݂



ୀି

ቮ

ଶ

ݔ݀



= 0 

In view of the uniform convergence, this may be written:  

න อܭg −  ,(gߣ ݂) ݂


อ
ଶ

ݔ݀



= 0 
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Therefore, because of the continuity of the integral we have  

gܭ =  ,(gߣ ݂) ݂ 

And the theorem is complete.  

Definition (1.2.14):- 

This theorem is an extension of one concerned with the diagonalization of 

linear transformations defined on an n-dimensional Euclidean vector space. 

The results of the theorem may be given an interesting, but at the moment an 

imprecise interpretation. If we can write the function g in the form∑ (g, ݂) ݂ 

then, using the terminology of linear transformations, we can say that there is 

a basis ( ݂) with respect to which the function g has the co-ordinate 

representation[(g, ݂)].It follows that Kg has the representation[ߣ(g, ݂)] with 

respect to the same basis.  

That is, in some sense the operator K performs essentially an operation of 

multiplication. To make this interpretation more precise we need to introduce 

the concept of a iterated kernel, which will enable us to obtain an expansion 

for our kernel, similar to that in the case of only a finite number of 

eigenvalues. Such an expansion is not always possible, in general. However, 

we shall see that the operator ܭ , ݊ >  1 has such an expansion. 

Definition (1.2.15):- 

Let ܲ(ݔ, ,ݔ) ܳ݀݊ܽ (ݕ ܽ  be continuous on the square (ݕ ≤ ݔ ≤  ܾ;  ܽ ≤ ݕ ≤ ܾ 

and define:  

,ݔ)ܴ (ݕ = න ,ݔ)ܲ ,ݐ)ܳ(ݐ (ݕ



, ݐ݀ ܽ ≤ ݔ ≤ ܾ: ܽ ≤ ݕ ≤ ܾ.         (1.34) 
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We notice that ܴ( ݔ, ≥ ܽ is continuous on the square (ݕ ݔ ≤  ܾ, ܽ ≤ ݕ ≤ ܾbut 

need not be symmetric, even when ܲ( ݔ, ,ݔ) ܳ݀݊ܽ ( ݕ  .are symmetric (ݕ

However, if we also have: 

න ,ݔ)ܲ ,ݐ)ܳ(ݐ (ݕ



ݐ݀ = න ,ݔ)ܳ ,ݐ)ܲ(ݐ (ݕ




 (1.35)                 ݐ݀

Then ܴ(ݔ,  :is symmetric since (ݕ

,ݔ)ܴ        (ݕ = න ,ݔ)ܲ ,ݐ)ܳ(ݐ (ݕ



ݐ݀ = න ,ݔ)ܳ ,ݐ)ܲ(ݐ (ݕ




 ݐ݀

= න ,ݕ)ܲ ,ݐ)ܳ(ݐ (ݔ



ݐ݀ = ,ݕ)ܴ  .(ݔ

The kernel defined by (1.34) defines an operator R and we have: 

(ݔ)݂ܴ  = න න ,ݔ)ܲ ,ݐ)ܳ(ݐ (ݕ



ݐ݀




ݕ݀(ݕ)݂ = න ,ݔ)ܲ (ݐ න ,ݐ)ܳ (ݕ)݂(ݕ




ݕ݀




 ݐ݀

= න ,ݔ)ܲ (ݐ)൯(ݕ)൫݂ܳ(ݐ



ݐ݀ = ܲ(݂ܳ) = ݂ܲܳ                                 

Where we have introduced two operators P and ܳ which have an obvious 

definition. Therefore we see that ܴ(ݔ,  is in fact the kernel of the operator(ݕ

ܲܳ and we have ܴ = ܲܳ. In the case when (1.35) holds we have ܲܳ = ܳܲ 

and it follows that: 

ܴܲ = ܲ(ܲܳ) = ܲ(ܳܲ) = (ܲܳ)ܲ = ܴܲ . 

Hence, when (1.35) is valid, P and R commute. In particular if we define: 

,ݔ)ܭ (ݕ = න ,ݔ)ܭ ,ݐ)ିଵܭ(ݐ ݐ݀(ݕ



, ݊ = 1,2, … … 
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Where ܭଵ( ݔ, (ݕ = ,ݔ)ܭ ,ݔ)ଵܭ is symmetric then (ݕ  is also symmetric and (ݕ

is the kernel of the integral transformation Kn. The kernel ܭ(ݔ,  is called (ݕ

the nth iterated kernelof ݔ)ܭ,  Such a kernel will be given a more natural .(ݕ

development when we deal with the topic of integral equations. 

 Finally we notice that if ݊ = ݎ  + ܭ then ݏ =  :ௌandܭܭ

,ݔ)ܭ (ݕ = න ,ݔ)ܭ ,ݐ)௦ܭ(ݐ (ݕ



 ݐ݀

Theorem (1.2.16):-  

If {ߣ} and { ݂} are defined as in Theorem (1.2.13), then:  

,ݔ)ܪ (ݕ =  ߣ



݂(ݔ) ݂(ݕ), ݊ = 2,3, ….      (1.36) 

And the series converges absolutely uniformly on:  

ܽ ≤ ݔ ≤ ܾ ∶ ܽ ≤ ݕ ≤ ܾ . 

Proof:- 

For fixed y, define g(ݔ) = ,ݔ)ିଵܭ   :then ,(ݕ

(ݔ)gܭ = න ,ݖ)ܭ ݐ݀(ݐ)g(ݐ



= න ,ݖ)ܭ ,ݐ)ିଵܭ(ݐ ݐ݀(ݕ




= ,ݖ)ܭ  (ݕ

Theorem (1.2.13) states that every function of the form ܭg(ݔ) has an 

expansion in eigenvectors given by: 

(ݔ)gܭ = (ܭg, ݂) ݂(ݔ)
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Where, in this case,  

,gܭ) ݂) = න ,ݑ)ܭ (ݕ ݂(ݕ)݀ݑ



= ܭ

݂(ݕ) = ߣ


݂(ݕ) 

This yields the expansion (1.36) which converges uniformly in x for each 

fixed y by Theorem (1.2.13). To complete the proof we must show that the 

series is absolutely uniformly convergent in both x and y. To this end, first 

notice that in the case when ݊ = 2 we have: 

,ݔ)ଶܭ (ݔ =  ߣ
ଶ| ݂(ݔ)|ଶ



, ܽ ≤ ݔ ≤ ܾ . 

This series converges uniformly. Therefore there exists an integer ܰ(ߝ) such 

that if݉ܽ݊݀݊have the same sign and |݊| <  :then (ߝ)ܰ

 ߣ
ଶ| ݂(ݔ)|ଶ < , ߝ



ୀ
ܽ ≤ ݔ ≤ ܾ. 

Further we may choose ܰ(ߝ)large enough to ensure that |ߣ| < 1 for           

݅ >   :consequently, on applying Schwarz’s inequality we obtain(ߝ)ܰ

อ ߣ
ଶ

݂(ݔ) ݂(ݕ)


ୀ

อ
ଶ

≤ |ߣ|| ݂(ݔ)|ଶ


ୀ

|ߣ|| ݂(ݕ)|ଶ


ୀ

 

≤ |ߣ|ଶ| ݂(ݔ)|ଶ


ୀ

|ߣ|ଶ| ݂(ݕ)|ଶ


ୀ

 

≤          , ଶߝ

ܽ ≤ ݔ ≤ ܾ; ܽ ≤ ݕ ≤ ܾ. 

In view of the Cauchy criterion for convergence, the theorem follows.  
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Definition (1.2.17):- 

We will now examine the eigenvalues of the operator Kn. We shall find that 

just as in the finite dimensional case, the eigenvalue are the ݊th   powers of the 

eigenvalues of K. 

Theorem (1.2.18):- 

If {ߣ} and { ݂} are defined as in theorem (1.2.13), the non-zero eigenvalues of 

ߣ areܭ
. Further, if ܵ(ݎ) is the set of indices ݅ such that ߣ

 = ݎ ≠ 0, then 

the number of linearly independent eigenvectors of ܭ  with eigenvalue ݎis the 

number of indices in ܵ(ݎ). 

Proof:- 

Let ܭg = ,gݎ ݎ ≠ 0. Then by means of the uniform convergence established 

in Theorem (1.2.16), we can write: 

gܭ =  ߣ
(g, ݂) ݂



 

Every eigenvector of K corresponding to an eigenvalue ߣis also an 

eigenvector ofܭ but corresponding to an eigenvalue ߣ
 since: 

ܭ
݂ = ܭିଵܭ ݂ = ିଵܭߣ

݂. 

Therefore by Theorem (1.2.13) we must have (g, ݂) = 0 unless݅is in ܵ(ݎ) 

consequently we have 

gݎ = gܭ =  ߣ
(g, ݂) ݂

∈௦()
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This shows that g is a linear combination of eigenvectors of ܭcorresponding 

to the eigenvalue ߣ
.Henceݎ = ߣ

and the number of linearly independent 

eigenvectors of ܭfor eigenvalueݎis exactly the number of indices in S(ݎ) . 

The expansions developed in Theorems (1.2.16) and (1.2.18) are not true, in 

general for n=1 as can be seen by examining once again theorem 

(1.2.13).However, such expansions are not the only ones possible as the next 

theorem shows. 

Theorem (1.2.19):- 

݈݅݉
→ஶ

න อݔ)ܭ, (ݕ −  ߣ ݂(ݔ) ݂(ݕ)


ୀି

อ
ଶ

ݔ݀



= 0 

Uniformly on ܽ ≤ ݕ ≤ ܾ 

Proof:- 

Writing  

න อݔ)ܭ, (ݕ −  ߣ ݂(ݔ) ݂(ݕ)


ୀି

อ
ଶ


ݔ݀ = න |ܺ − ܻ|ଶ




 ݔ݀

We see that 

න |ܺ − ܻ|ଶ݀ݔ



= (ܺ − ܻ, ܺ − ܻ) = (ܺ, ܺ) − (ܻ, ܻ) − (ܻ, ܺ) + (ܻ, ܻ). 
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Then 

(ܺ, ܺ) = න ,ݔ)ܭ ,ݔ)ܭ(ݕ ݔ݀(ݕ



= ,ݕ)ଶܭ  .(ݕ

(ܺ, ܻ) = න ,ݔ)ܭ (ݕ



 ߣ ݂(ݔ) ݂(ݕ)



ୀି

 ݔ݀

   =  ߣ ݂(ݕ)(ݕ)݂ܭ


ୀି

 

  =  | ݂(ݕ)|ଶ


ୀି

 

(ܻ, ܻ)ଶ = න  ߣ ݂(ݔ) ݂(ݕ)  ߣ ݂(ݔ) ݂(ݕ)


ୀି



ୀି

ݕ݀



 

=  ߣ
ଶ | ݂(ݕ)|ଶ 

This last result follows from the orthonormality of the vectors ݂. 

 Therefore we have: 

න อݔ)ܭ, (ݕ −  ߣ ݂(ݔ) ݂(ݕ)


ୀି

อ
ଶ


ݔ݀ = ,ݕ)ଶܭ (ݕ −  ߣ

ଶ| ݂(ݕ)|ଶ


ୀି

 

The theorem then follows as a result of Theorem (1.2.16). 

Definition (1.2.20):- 

The symmetric kernel ݔ)ܭ,  is said to be positive definite when it defines a (ݕ

positive definite transformation, that is, when (݂ܭ, ݂) > 0 for all f in R and 

݂ ≠ 0,the symmetric kernel is said to be positive semi-definite if (݂ܭ, ݂) ≥
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0,for all f in R It follows directly from Theorem (1.2.7) that the kernel is 

positive semi-definite if and only if all its eigenvalues are non-negative. 

Theorem (1.2.21):- 

If ݔ)ܭ, ,ݔ)ܭ is positive semi-definite then (ݕ (ݔ ≥ 0for ܽ ≤ ݔ ≤ ܾ. 

Proof:- 

 Suppose ݖ)ܭ, (ݖ < 0for some ݖ, then there is an interval I containing z such 

that ݔ)ܭ, (ݕ < 0forݔin ܫ and y in ܫ. Now choose ݂(ݔ)  =  1 for ݔ in ܬ and zero 

elsewhere, and we find that:  

,݂ܭ) ݂) = න න ,ݔ)݇ ݕ݀ݔ݀(ݕ < 0
ூூ

. 

This contradiction consequently establishes the theorem. 

Theorem (1.2.22):- 

If ݔ)ܭ,  :is positive semi-definite then (ݕ

,ݔ)ܭ (ݕ =  ߣ ݂(ݔ) ݂(ݕ)


 

And the series converges absolutely uniformly for ܽ ≤ ݔ ≤  ܾ;  ܽ ≤ ݕ ≤  ܾ. 

Proof:- 

The kernel 

,ݔ)ܪ (ݕ = ,ݔ)ܭ (ݕ −  ߣ ݂(ݔ) ݂(ݕ)


ୀଵ
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Generates a transformation which has non-zero eigenvalues 

,ାଵߣ ,ାଶߣ … … 

Since they are non-zero the kernel ݔ)ܪ,  must be positive semi definite and(ݕ

we have by Theorem (1.2.21) that 

,ݔ)ܭ (ݔ −  |ߣ ݂(ݔ)|ଶ


ୀଵ

≥ 0 

In the limit as ݊ → ∞ we have 

 |ߣ ݂(ݔ)|ଶ


ୀଵ

≤ ,ݔ)ܭ  (1.37)                   (ݔ

Therefore for fixed ݔ we can find an integer ܰ(ߝ), for all ߝ > 0, such that: 

 |ߣ ݂(ݔ)|ଶ


ୀଵ

≤  ଶߝ

Whenever ݊ ≥  ݉ ≥  (ߝ)ܰ

Now by Schwarz’s inequality  

อ ߣ ݂(ݔ) ݂(ݕ)


ୀ

อ
ଶ

≤  |ߣ ݂(ݔ)|ଶ  |ߣ ݂(ݕ)|ଶ


ୀ



ୀ

≤  ଶܣଶߝ

Where: 

ܣ = l. u. b. ,ݕ)ܭ} ܽ|(ݕ ≤ ݕ ≤ ܾ} ≥  |ߣ ݂(ݕ)|ଶ,
 



 (1.37)ݕܾ
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This inequality together with the Cauchy criterion establishes that our series 

converges uniformly in ݕfor fixed ݔ(Similarly with respect to ݔfor fixed ݕ). 

Now 

න อݔ)ܭ, (ݕ −  ߣ ݂(ݔ) ݂(ݕ)
 



อ
ଶ


ݕ݀

≤ 2 න อݔ)ܭ, (ݕ −  ߣ ݂(ݔ) ݂(ݕ)


ୀଵ

อ
ଶ


ݕ݀

+ 2 න อݔ)ܭ, (ݕ −  ߣ ݂(ݔ) ݂(ݕ)


ୀଵ

อ
ଶ


 ,ݕ݀

And by theorem (1.2.19) and the uniform convergence just established we 

obtain 

න อݔ)ܭ, (ݕ −  ߣ ݂(ݔ) ݂(ݕ)
 

 

อ
ଶ


ݕ݀ = 0, ܽ ≤ ݔ ≤ ܾ. 

Finally, we must establish the uniform convergence in both ݔ and y.  

 

Putting  ݔ =   in (1.38) we obtain ݕ 

,ݔ)ܭ (ݕ =  |ߣ ݂|ଶ



 

 This series is uniformly convergent. Therefore, there exists M(ε) for ε > 0 

such that  

 |ߣ ݂(ݔ)|ଶ


ୀ

< ,   ߝ ݊ > ݉ >  (1.39)              (ε)ܯ
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Hence, on using the result  

൭ ߣ ݂(ݔ) ݂(ݕ)
୬

୧ୀ୫

൱
ଶ

≤  |ߣ ݂(ݕ)|ଶ  |ߣ ݂(ݕ)|ଶ


ୀ

୬

୧ୀ୫

 

In conjunction with (1.39) we readily establish the absolute uniform 

convergence. 

   In this, as in previous cases, similar results can be developed for the space 

R∗ provided the usual minor modifications are made.  
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Chapter (2) 

Differential operators 
 Section (2.1):Inverse operators and the ࢾ–function 

Definition (2.1.1):- 

Let ܮ be a linear ordinary differential operators acting on the space of functions (ݔ)ݑ. 

The inverse operator to L is ିܮଵand it is such that ିܮܮଵ =  ଵିܮ  We assume that.ܮଵିܮ

is an integral operator with kernel ݔ)ܭ,   so that (ݐ

ݑଵିܮ = න ,ݔ)ܭ  ݐ݀(ݐ)ݑ(ݐ

Then formally at least we may write  

(ݔ)ݑ = ݑܫ = ݑଵିܮܮ = ܮ න ,ݔ)ܭ  ݐ݀(ݐ)ݑ(ݐ

Since ܮ is a differential operator with respect to the variable ݔ , we see that, formally,  

(ݔ)ݑ = න ,ݔ)ܭܮ ݐ݀(ݐ)ݑ(ݐ                        (1.2) 

We may write the kernel of this integral operator in the form  

,ݔ)ܭܮ (ݐ  = g(ݔ ,  (ݐ

and obtain  

(ݔ)ݑ = න g(ݔ, ݐ݀(ݐ)ݑ(ݐ                        (2.2) 

Now, if this result is to be true for all continuous (ݐ)ݑ it follows that g(ݔ,  must be (ݐ

zero whenever ݔ ≠ ݔ and when ݐ =  the integral on the right must reduce identically ݐ
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to (ݔ)ݑ.To ensure that this was always the case, Dirac introduced his celebrated ߜ-

functions in place of g(ݔ ,   and obtained (ݐ

න ݐ)ߜ − ݐ݀(ݐ)ݑ(ݔ                               (2.3) 

Where  (ݔ)ߜ = 0 , if ݔ ≠ 0 

Such a function is zero everywhere except at the origin, where it becomes infinite in 

such a way as to ensure  

න ݔ݀(ݔ)ߜ = 1
ାஶ

ିஶ
 

At first sight, such a functions ,would appear to be nothing short of sheer nonsense. 

We conclude therefore that at best ,(ݔ)ߜ is not a function in the ordinary sense .That 

this is indeed the case has been elegantly demonstrated by Laurent Schwartz in this 

theory of distributions where he justifies not only the use of the ߜ −function as 

defined above but also the use of all its derivatives the theory of distributions 

provides a powerful mathematical tool on two main counts first it allows us to 

interchange limiting operations where such an interchange is not  valid for ordinary 

functions. Secondly it allows us to use series which under normal circumstances we 

would call divergent for example the fact that (ݔ)ߜ is not a function in the ordinary 

sense indicates that (2.3) is not a valid consequence of (2.1) this in turn stems from 

the fact that in order to  obtain  (2.3) we had to interchange the operations of 

integration and differentiation and this was not justified however Schwartz showed 

that if the equations are understood in the sense of the theory of distributions such 

interchange are perfectly justified and (2.3) becomes a valid consequence of(2.1) we 

shall make extensive use of the result form this theory whilst such results will be 

stated before they are used no proof will be given and we referred to original sources 

Definition (2.1.2):- 
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The most important property of the ߜ-function and that which makes it so useful is 

the following for ever continuous function ߶(ݔ) 

න ݔ݀(ݔ)߶(ݔ)ߜ = ߶(0)
ାஶ

ିஶ
                   (2.4) 

That is the -function can be handled algebraically as if it were an ordinary function. 

Whilst this may be, so we, must always interpret any equation involving (ݔ)ߜas 

follow. If the equation is multiplied throughout by an arbitrary continuous function 

,∞−) and integrated over the range (ݔ)߶ +∞) and, if (2.4) is used to evaluate 

integrals involving (ݔ)ߜ, then the resulting equation is correct and involves only 

ordinary functions.  

For example  

(ݔ)ߜݔ = 0                  (2.5) 

Because for any arbitrary continuous function ߶(ݔ) we have on writing           

(ݔ)߶ݔ =  (ݔ)߰

න ݔ݀(ݔ)߶ݔ(ݔ)ߜ = න ݔ݀(ݔ)ߜ(ݔ)߱ = ߰(0) = 0
ାஶ

ିஶ

ାஶ

ିஶ
 

Finally in this introduction to the use of the ߜ-function we remark that the familiar 

techniques of integration such as integration by part and substitution can be shown to 

apply to integrals involving ߜ-functions as an example, consider the integral  

ܫ = න ݔ݀(ݔ)∅൯(ݔ)൫݂ߜ
ାஶ

ିஶ
 

Where ߶(ݔ)is an arbitrary continuous function and ݂(ݔ) is a monotonic function of 

ݔ which vanishes when ݔ = ݕ writeݔ = ݕand it follows that d (ݔ)݂ =  .ݔ݀(ݔ)′݂

The integral then becomes 
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ܫ = න ݕ݀(ݕ)߰(ݕ)ߜ
ାஶ

ିஶ
 

Where߰(ݕ) =  and the modulus sign is to ensure that the integration is ,|(ݔ)ᇱ݂|/(ݔ)

always from +∞ to−∞ hence  

ܫ = ߰(0) =
(ݔ)߶

|݂ᇱ(ݔ)| 

Consequently if by ݔ)ߜ −   ) we understandݔ

߶ න ݔ)ߜ − ݔ݀(ݔ)߶(ݔ = (ݔ)∅
ାஶ

ିஶ
 

It follows that  

൯(ݔ)൫݂ߜ =
ݔ)ߜ − (ݔ
|݂ᇱ(ݔ)|                           (2.6) 

As two special cases of (2.6) we have  

න ݔܽ)ߜ − ݔ݀(ݔ)߶(ܾ = |ܽ|ିଵ߶(ܾܽିଵ)
ାஶ

ିஶ
 

and 

(ݔ)ߜ =  (ݔ−)ߜ

The arbitrary continuous function ߶ we have used to test the validity of (2.5) and 

(2.6) we shall in future to as a testing function for our study of differential equation it 

will be convenient to restrict the term testing function to mean those function ߶ 

which are continuous have continuous derivatives of all orders and vanish outside a 

certain finite interval since ߶ has continuous derivatives of all orders we say that it 

belongs to the space of ܥஶfunctions. in addition as ߶ vanishes outside a finite 

interval we say that it has compact support  where by the support of ߶ we mean the 

closure of the set of points where ߶ is non-vanishing these two properties of the 
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testing functions which we shall use we can sum up in notational form by saying  ߶ 

is in ܥ
ஶthe space of functions with continuous derivatives of all orders and having 

compact support we notice that the restriction of testing function to ܥ
ஶ functions in 

no way invalidates (2.5) or (2.6) 

Definition (2.1.3):- 

The set of all such testing functions as we have described can easily be seen to form a 

linear vector space we find however that it is more convenient to work with the basic 

notions of convergence than to introduce an inner product into this space. We say that 

a sequence of testing functions {߶} converges to zero if the functions ߶ and all their 

derivatives converge uniformly to zero and if all the function ߶vanish identically 

outside the same finite interval. 

We define a linear functional ܨ(߶) on the space of testing functions ߶ as          

follows :ܨ(߶) is a linear   functional on the space of testing functions if to every 

testing function∅in this space a real or complex number ܨ(∅) is assigned such that  

ଵ߶)ܨ + ߶ଶ) = (ଵ߶)ܨ +  (ଶ߶)ܨ

(߶ܴ)ܨ =  (߶)ܨܴ

For any scalar quantity ܴ such a functional is said to be continuous if the sequence of 

numbers ܨ(߶) converges to zero whenever the sequence of testing function  {߶(ݔ)} 

converges to zero in the sense described above. Schwartz refers to any continuous 

linear functional on the space of testing functions as a distribution.   

Typical examples of continuous linear functional are  

(߶)ଵܨ = ߶ᇱ(0) 

(߶)ଶܨ = න ݔ݀(ݔ)߶
ଵ


 



67 
 

 

 

Definition (2.1.4):- 

Any continuous linear functional on space S for which there is defined an inner 

product can be expressed as an inner product of element of ܵ it therefore seems 

strange that we have deliberately avoided introducing an inner product into our space 

of testing function it would seem natural to introduce the inner product  

(߶, ߰) = න (ݔ)߶
ାஶ

ିஶ
 ݔ݀(ݔ)߰

However if this is done we find that the space of testing functions so restricted is not 

complete, the following example illustrates this point 

Example (2.1.5):- 

Consider the linear vector space of functions ݂(ݐ) continuous on [0,1] we define the 

scalar product by  

(݂, g) = න ݔ݀(ݔ)g(ݔ)݂
ଵ


 

Now consider the sequences of continuous functions 

݂(ݐ) =

⎩
⎪
⎨

⎪
⎧ 0,                                                              0 ≤ ݐ ≤

1
2

−
1

2݊

݊ ൬ݐ −
1
2൰ +

1
2 ,                         

1
2 −

1
2݊ ≤ ݐ ≤

1
2 +

1
2݊

1,                                                               
1
2

+
1

2݊
≤ ݐ ≤ 1

� 

For ݊ = 1,2,3 … … it is easy to show that these functions converge in the Cauchy 

sense that is given ߝ > 0 
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‖ ݂ − ݂‖ଶ = න ( ݂ − ݂)ଶ݀ݐ < ߝ
ଵ


 

  Whenever n and m are greater than some suitably chosen ܰ(ߝ).However the limit of 

this sequence is the function  

(ݔ)݂ = ൞
0;           0 ≤ ݔ ≤

1
2

1;          
1
2

≤ ݔ ≤ 1
� 

Which is discontinuous and therefore does not belong to the space under 

consideration. 

 Nevertheless, we would still like to express a continuous linear functional  ܨ(߶) as 

an integral preferably in the form   

(߶)ܨ = න ݔ݀(ݔ)߶(ݔ)ݏ
ାஶ

ିஶ
 

Sometimes this is possible as for example in the case of the functional ܨଶ(߶) 

(߶)ଶܨ = න (ݔ)߶
ଵ


 ݔ݀

Where in this case  

(ݔ)ݏ = ቄ1,           0 ≤ ݔ ≤ 1
ݔ                   ,0 > 1

� 

Such a representation is not so immediate in the case of ܨଵ(߶) = ߶ᇱ(0) or.     

(߶)ଷܨ = ߶ᇱ(0) 

However we have seen that 

߶(0) = න ݔ݀(ݔ)߶(ݔ)ߜ
ାஶ

ିஶ
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and consequently  

(߶)ଷܨ = ߶(0) = න ݔ݀(ݔ)߶(ݔ)ߜ
ାஶ

ିஶ
 

Where we have chosen (ݔ)ݏ =  function in this context is an-ߜ the use of the (ݔ)ߜ

example of a symbolic function by the term symbolic function we mean a symbol  

 on the space (߶)ܨ ,which enables us to write any continuous linear functional (ݔ)ݏ

of testing function in the form  

(߶)ܨ = න ݔ݀(ݔ)߶(ݔ)ݏ
ାஶ

ିஶ
 

These symbolic functions need not necessarily have any numerical values. They only 

have values when multiplied by a testing function and integrated. We notice that if 

  is an integral function, then (ݔ)݂

න ݔ݀(ݔ)߶(ݔ)݂
ାஶ

ିஶ
 

Is a continuous linear functional on the space of testing functions. 

consequently every integrable function is a symbolic function but there are many 

symbolic functions as for example the function which are neither integrable nor 

functions in the ordinary sense we summarize what is proved in the theory of 

distributions by saying that symbolic functions may be manipulated as if they were 

ordinary functions however any equation involving symbolic functions to be equation 

involving symbolic function is to be understood in the sense that if that equation is 

first multiplied throughout by an arbitrary testing function and then integrated 

over(−∞, +∞),the result is a correct equation involving only ordinary functions. 



70 
 

 

 

Definition (2.1.6):- 

The symbolic function is defined by the functional it produces and it would seem 

natural to try to define the derivative of a symbolic function in terms of the derivative 

of an ordinary function this we can do if first we notice that for any integrable 

function f possessing a continuous first derivative,  

න ݂ᇱ(ݔ)߶(ݔ)݀ݔ
ାஶ

ିஶ
= − න ݔ݀(ݔ)ᇱ߶(ݔ)݂

ାஶ

ିஶ
 

This follow as a result of one integration by parts and noticing that the testing 

function has compact support we use the result to define the derivative of a symbolic 

function as follow we say that (ݔ)′ݏ is the derivative of (ݔ)ݏ if  

න ݔ݀(ݔ)߶(ݔ)ᇱݏ
ାஶ

ିஶ
= − න ݔ݀(ݔ)ᇱ߶(ݔ)ݏ

ାஶ

ିஶ
     (2.7) 

For every testing function ߶(ݔ).  

For example the symbolic function ߜᇱ(ݔ)is defined by  

න ݔ݀(ݔ)߶(ݔ)ᇱߜ
ାஶ

ିஶ
= − න ݔ݀(ݔ)ᇱ߶(ݔ)ߜ

ାஶ

ିஶ
= −߶ᇱ(0) 

and we see that  ߜᇱ(ݔ)is produces that functional which assigns the value−߶ᇱ(ݔ) to  

the testing function ߶(ݔ).Similarly we define  by ߜᇱ′(ݔ)is  

න ݔ݀(ݔ)߶(ݔ)"ߜ
ାஶ

ିஶ
= − න ݔ݀(ݔ)ᇱ߶(ݔ)ᇱߜ

ାஶ

ିஶ
= −߶"(0) 
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With this definition of a derivative a available we can show that the function has a 

representation in terms of the derivative of the Haeaviside unit function (ݔ)ܪ  

defined as  

 

(ݔ)ܪ   = ݔ     ,1 > 0 

            = ݔ     ,0 < 0 

To see this we use (2.7) to obtain  

න ݔ݀(ݔ)߶(ݔ)ᇱܪ
ାஶ

ିஶ
= − න ݔ݀(ݔ)ᇱ߶(ݔ)ܪ

ାஶ

ିஶ
 

                                = − න ߶ᇱ(ݔ)݀ݔ
ஶ


 

                        = ߶(0)             

Since the testing function has compact support hence by comparison with (2.4) we 

see that  

(ݔ)′ܪ  =  (ݔ)ߜ

It can be shown that the definition of derivative as afforded by (2.7) enables us to use 

all the usual rules of differentiation which are employed when dealing with ordinary 

functions. 

These notions of symbolic functions and symbolic derivative enable us to attach a 

meaning to the derivative of a function that has a jump discontinuity at ݔ =   ofݔ

magnitudeܽଵ but that everywhere else has a piecewise continuous derivative then the 

derivative of ݂(ݔ) is ݂′(ݔ) for ݔ < ݔ ଵandݔ >  ଵbut is undefined forݔ

ݔ =  (ݔ)݂ of (ݔ)ଵhowever we can define a symbolic derivative ݂′௦ݔ
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by means of (2.7) to this end let  

g(ݔ) = (ݔ)݂ − ܽଵݔ)ܪ −  (ଵݔ

Where                                         ݔ)ܪ − (ଵݔ = 1; ݔ         >  ଵݔ

                          = 0, ݔ <  ଵݔ

Then for any testing function ߶(ݔ),  

න ݔ݀(ݔ)ᇱ߶(ݔ)݂
ାஶ

ିஶ
= න g(ݔ)߶′(ݔ)݀ݔ

ାஶ

ିஶ
+ ܽଵ න ݔ)ܪ − ݔ݀(ݔ)ଵ)߶ᇱݔ

ାஶ

ିஶ
 

= න gᇱ(ݔ)߶(ݔ)݀ݔ − ܽଵ߶(ݔଵ)
ஶ

ିஶ
 

Using (2.7) to define ݂′௦(ݔ)we also have  

න ௦݂
ᇱ߶(ݔ)݀ݔ = න {gᇱ(ݔ) + ܽଵݔ)ߜ − ݔ݀(ݔ)ଵ)}߶ᇱݔ

ஶ

ିஶ

ஶ

ିஶ
 

and it follows that we can write  

௦݂
ᇱ = gᇱ(ݔ) + ܽଵݔ)ߜ −  (ଵݔ

Since gᇱ(ݔ) = ݂ᇱ(ݔ) + ܽଵݔ)ߜ − ′݂ ଵ) It follow thatݔ = g′ except at ݔ =  ଵݔ

This is easily generalized to functions ݂(ݔ) having jumps magnitude ܽଵ, … … . , ܽat 

the points ݔଵ, … . . , ݔ  we then obtain  

௦݂
ᇱ = ݂ᇱ + ܽଵݔ)ߜ − (ଵݔ + ܽଶݔ)ߜ − (ଶݔ + ⋯ . +ܽݔ)ߜ −  (ݔ

For the symbolic derivative of such   a piecewise differentiable function  

We shall be using the symbolic derivative very frequently and in the light of what we 

have just said the omission of the subscript s will cause no ambiguity. 
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Example (2.1.7):- 

Consider ݂(ݔ) =  We will determine the symbolic derivative of such a function.|ݔ|

  if is any testing function we have from (2.7)(ݔ)߶

 

න ݂ᇱ(ݔ)߶(ݔ)݀ݔ
ାஶ

ିஶ
= − න ݔ݀(ݔ)ᇱ߶(ݔ)݂

ାஶ

ିஶ
 

                                = − න (ݔ−)


ିஶ
߶ᇱ(ݔ)݀ݔ − න ݔ݀(ݔ)ᇱ߶ݔ

ஶ


 

  = − න ݔ݀(ݔ)߶


ିஶ
+ න ݔ݀(ݔ)߶

ஶ


 

 = න ݔ݀(ݔ)߶(ݔ݊݃ݏ)
ஶ

ିஶ
 

Therefore  

݂ᇱ(ݔ) = ᇱ|ݔ| = sgn(ݔ) 

Where sgn x is the function signumݔ and is defined to be (−1)for ݔ negative and 

(+1) for ݔ positive  

Example (2.1.8):- 

The function 

sgn ݔ = ݔ           ,1 > 0 

           = ݔ        ,1− < 0 

has a jump magnitude 2 at ݔ = 0 consequently the symbolic derivative of such a 

function is given by (2.8) as  
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݀
ݔ݀

(ݔ݊݃ݏ) =  (ݔ)ߜ2

These functions and their associated function are useful in many other fielder of 

analysis. For instance we can evaluate  

ܫ = න |ݔ| ݔ݀(ݔ)"߰
ାଵ

ିଵ
 

By means of repeated integration by parts as follow 

ܫ = {(ݔ)ᇱ߰|ݔ|} ቚ+1
−1

� − න ݔ݀(ݔ)ᇱ߰ᇱ|ݔ|
ାଵ

ିଵ
 

= ߰ᇱ(1) − ߰ᇱ(−1) − {(ݔ)ᇱ߰ݔ} ቚ+1
−1

� + න ݔ݀(ݔ)߰"|ݔ|
ାଵ

ିଵ
 

= ߰ᇱ(1) − ߰ᇱ(−1) − {(ݔ)߰(ݔ)݊݃ݏ} ቤ+1
−1 + 2 න ݔ݀(ݔ)߰(ݔ)ߜ

ାଵ

ିଵ

� 

= ߰ᇱ(1) − ߰ᇱ(−1) − ߰(1) − ߰(−1) + 2߰(0) 

This process should be compared with the method of evaluation which we begin by 

writing  

ܫ = − න ݔ݀(ݔ)"߰ݔ + න ݔ݀(ݔ)"߰ݔ
ଵ





ିଵ
 

We now return to the problem of inverting the differential operator ܮ Let ߶(ݔ)and 

  be two testing function and consider the equation(ݔ)߰

߰ܮ = ߶ 

We will assume that when the inverse operator exists it does so in the form of an 

integral operator with a kernel ݔ)ܭ,   such that ,(ݐ
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(ݔ)߶ଵିܮ = න ,ݔ)ܭ  ݐ݀(ݐ)߶(ݐ

  But now we allow ݔ)ܭ,  to be a symbolic function in the sense defined above(ݐ

applying the operator ܮ to both sides of this equation we obtain: 

(ݔ)߶ଵିܮܮ = (ݔ)߶ = න ,ݔ)ܭܮ  ݔ݀(ݐ)߶(ݐ

 

This equation will be satisfied if we can find ݔ)ܭ,   such that (ݐ

,ݔ)ܭܮ (ݐ = ݔ)ߜ −  (ݐ

Where all differentiation is to be understood as being symbolic differentiation    

 

Example (2.1.9):- 

Invert the operator ܮ ≡ ݀ଶ/݀ݔଶin this case equation (2.9) educes to  

݀ଶ

ଶݔ݀ ,ݔ)ܭ (ݐ = ݔ)ߜ −  (2.10)               (ݐ

Since (ݔ)′ܪ  =   One integration yields (ݔ)ߜ

ܭ݀
ݔ݀

,ݔ) (ݐ = ݔ)ܪ −  (ݐ)ߙ(ݐ

Where (ݐ)ߙ is some arbitrary function. 

 Integrating, we get  

,ݔ)ܭ (ݐ = න ݔ)ܪ − ݔ݀(ݐ + (ݐ)ߙݔ +  (ݐ)ߚ

= ݔ) − ݔ)ܪ(ݐ − (ݐ + (ݐ)ߙ ݔ +  (2.11)                         (ݐ)ߚ 
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Where (ݐ)ߚ is an arbitrary function .It can be shown (Schwartz) that any symbolic 

function which is a solution of (2.10) can be written in the form (2.11) we see that 

,ݔ)ܭ  in (2.11) is a continuous  piecewise differentiable function, further we notice (ݐ

that if ݂(ݔ) is any integrable function with compact support the function 

(ݔ)ݑ = න ,ݔ)ܭ  ݐ݀(ݐ)݂(ݐ

 

Satisfies the equation  

݀ଶݑ
ଶݔ݀ =  (2.12)                                                   (ݔ)݂

The final expression (2.11) for ݔ)ܭ,  contains two arbitrary functions    and    so in (ݐ

general we would expect to be able to satisfy two boundary conditions for the 

equation (2.12)  

 

Example (2.1.10):- 

Find the function (ݔ)ݑ which satisfies  

݀ଶݑ
ଶݔ݀  = ;   (ݔ)݂ (0)ݑ = (1)ݑ = 0                  (2.13) 

This equation has as we have seen a solution in the form  

(ݔ)ݑ = න ,ݔ)ܭ  ݐ݀(ݐ)݂(ݐ

Where ݇(ݔ,   is given by (2.11) consequently (ݐ

(ݔ)ݑ = න ݔ) − ݐ݀(ݐ)݂(ݐ
௫

ିஶ
+ ݔ න ݐ݀(ݐ)݂(ݐ)ߙ

ାஶ

ିஶ
+ න ݐ݀݀(ݐ)݂(ݐ)ߚ

ାஶ

ିஶ
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Substituting ݔ = 0 and ݔ = 1 into this equation and using the boundary values 

imposed on (ݔ)ݑ we obtain  

0 = − න ݐ݀(ݐ)݂ݐ


ିஶ
+ න ݐ݀(ݐ)݂(ݐ)ߚ

ஶ

ିஶ
 

0 = න (1 − ݐ݀(ݐ)݂(ݐ
ଵ

ିஶ
+ න ݐ݀(ݐ)݂(ݐ)ߙ

ାஶ

ିஶ
+ න ݐ݀(ݐ)݂(ݐ)ߚ

ஶ

ିஶ
 

 

From the first of these equations we see that  

(ݐ)ߚ  =  (ݐ−)ܪݐ

Whilst from the second  

(ݐ)ߙ              = −1 + ,(ݐ)ܪݐ −∞ ≤ ݐ ≤ 1 

 = 0, ݐ > 1 

Inserting these results in the form of the solution, we obtain  

(ݔ)ݑ =  න ݔ) − ݐ݀(ݐ)݂(ݐ
௫


− ݔ න (1 − ݐ݀(ݐ)݂(ݐ

ଵ


                          (2.14) 

In this case we see that the kernel has the particular form 

,ݔ)ܭ (ݐ = ݔ) − ݔ)ܪ(ݐ − (ݐ − 1)ݔ −  (2.15)                                 (ݐ

For 0 ≤ ݔ ≤ 1 andݐ ≤ 1 

We readily see that the kernel ݔ)ܭ,  satisfies the same boundary conditions as (ݕ

  that is(ݔ)ݑ

,0)ܭ (ݐ = ,1)ܭ (ݐ = 0 
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We shall find that even for more general differential operators .The kernel of the 

inverse operators considered as a function of ݔ satisfies the same boundary conditions 

as does the solution of the differential equation 

 

Definition (2.1.11):- 

Before we can continue with the problem of inverting a differential operator we must 

be more precise in our definition of the operator itself. since in this chapter we shall 

be primarily concerned with linear, ordinary second-order differential operators we 

will write  

ܮ ≡ (ݔ)ܽ
݀ଶ

ଶݔ݀ + (ݔ)ܾ
݀

ݔ݀ +  (ݔ)ܿ

 Where for the time being we will assume that ܽ(ݔ) ,ܾ(ݔ) and ܿ(ݔ) are continuous 

functions of ݔ having defined the form of the operator, it now remains to specify the 

linear vector space ܵ of function on which the operator ܮ acts we shall be concerned 

primarily with differential equations defined over a finite interval and this we may 

conveniently take to be the interval [0,1] consequently we will take ܵ to be the space 

of all real-valued functions which are Lebesgus square integrable over [0,1] that is 

ܵ contains all real functions (ݔ)ݑ defined for 0 ≤ ݔ ≤ 1 and such that  

න ݔଶ݀(ݔ)ݑ < ∞
ଵ


 

For physical applications the distinction between Riemann and Lebesgue integrals is 

unimportant mathematically we require the Lebesgue integral formulation to ensure 

that the space ܵ is complete  ifݑ and ݒ are functions belonging to ܵ we introduce an 

inner product into ܵ by the definition 

,ݑ) (ݒ = න ݔ݀(ݔ)ݒ(ݔ)ݑ
ଵ
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Definition (2.1.12):- 

The operator ܮ is a differential operator and consequently cannot be applied to all 

elements of ܵ since there is no reason to suppose that every function in ܵ is in fact 

differentiable .Also even when a certain function u is in ܵ the result ݑܮ may not be 

for example (ݔ)ݑ = ݔ) ݊݅ݏ ݔ − 1) is in ܵ and is differentiable but its derivative  

(ݔ)ᇱݑ =  (ଵିݔ)ݏܿ ଵିݔ –(ଵିݔ)݊݅ݏ

is not in ܵ consequently we will consider ܮ to act only on those functions u in 

ܵ which ensure that (ݔ)ݑܮ is also in ܵ  

Finally from our previous discussion of differential operators we appreciate that in 

order to obtain a unique solution of the differential equation  

(ݔ)ݑܮ =  (2.16)                (ݔ)݂

It is not sufficient simply to specify L we also require conditions on (ݔ)ݑ itself for 

convenience we take these conditions to be  

(ݑ)ଵܤ = (0)ݑଵߙ + ᇱ(0)ݑଵଵߙ + (1)ݑଵߚ + ᇱ(1)ݑଵଵߚ = 0                          

(ݑ)ଶܤ = (0)ݑଶߙ + ᇱ(0)ݑଶଵߙ + (1)ݑଶߚ + ᇱ(1)ݑଶଵߚ = 0                      (2.17) 

Where the ߙ and ߚare known constants strictly, for each different set of conditions 

(2,17) we should use a different symbol for the operator ܮ although it is only the 

conditions which change however we shall not do this as the resulting complication 

in notation would serve no useful practical purpose  

Definition (2.1.13):- 

The domain of the operator ܮ as follow: it is the set of all functions ݑ in ܵ which have 

piecewise continuous second derivatives satisfy (2.17) and ensure that ݑܮ is also in ܵ  
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The domain of ܮ which is clearly a linear manifold of ܵ need not necessarily be a 

subspace (i.e. a complete linear manifold) of ܵ that is there could exist a sequence of 

functions ݑ(ݔ) in the domain which converge to limit (ݔ)ݑin ܵ, although this limit, 

 ܮ is not in the domain of (ݔ)ݑ

 

 

 

Definition (2.1.14):- 

In order we may apply the theory of linear operator to the differential operator ܮ we 

need to be able to define the adjoin operator ܮ∗previously we defined the adjoin 

operator ܮ∗by the equation  

, ݒ) (ݑ ܮ = ,ݒ∗ܮ)  (ݑ

When dealing with differential operators we may employ a similar method to fi ݔ our 

ideas, we will consider a particular example 

 

Example (2.1.15):- 

Let ܮ = ௗ
ௗ௫

 on a manifold ,ܯ of S defined by the condition (0)ݒ  =  , Then .(1)ݒ2 

,ݑ) (ݒܮ = න ݑ
ݕ݀
ݔ݀ ݔ݀

ଵ


 

       = [ݒݑ]
ଵ − න ݒ

ݑ݀
ݔ݀

ݔ݀
ଵ


 

                                  = (1)ݑ](1)ݒ − [(0)ݑ2 − න ݒ
ݑ݀
ݔ݀

ݔ݀
ଵ
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= ,ݑ∗ܮ)               (ݒ

We see that ܮ∗ consists of two parts ; a differential operator −݀/݀ݔ, and some 

boundary terms .In this example the differential operator −݀/݀ݔ  is called the formal 

adjoint of the differential operator ݀/݀ݔ. The adjoint to ܮ on the manifold M will de 

the operator −݀/݀ݔ on the manifold defined by (1)ݑ =   Therefore we have .(0)ݑ2

,ݑ) (ݒܮ = ,ݑ∗ܮ)  (ݒ

Where            ݑ∗ܮ = − ௗ௨
ௗ௫

 

And (ݔ)ݑ satisfies (1)ݑ  =  (0)ݑ2

We notice that in this example ܮ acts on the manifold of square integrable functions 

which satisfy (0) (ݔ)ݑ =  acts on the manifold of square integrable∗ܮ but, (1)ݒ2

functions (ݔ)ݑ which are such that (0)ݑ =  In general the manifold on which .2/(1)ݑ

 acts is different form that on which L acts .One manifold is said to be the dual of∗ܮ

the other , if ܮ =  the differential operator is said to be formally self-adjoint . If, in∗ܮ 

addition the boundary conditions for ܮ and ܮ∗ are equivalent in the sense that they 

define the same manifold then the differential operator is said to be self-adjoint. 

 

Example (2.1.16):- 

Let  

ܮ ≡ ݁௫ ݀ଶ

ଶݔ݀ + ݁௫ ݀
ݔ݀

 

On the manifold defined by  

(0)′ݑ = 0; (1)ݑ = 0 

Then  
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,ݒ) (ݑܮ = න ݒ ቊ݁௫ ݀ଶ

ଶݔ݀ + ݁௫ ݀
ݔ݀

ቋ ݔ݀ݑ
ଵ


 

= න ݔᇱ݀{′ݑ௫݁}ݒ
ଵ


 

                         = [′ݑ௫݁ݒ]
ଵ − [ݑ௫݁′ݒ]

ଵ + න ݔᇱ݀(′ݒ௫݁)ݑ
ଵ


 

                                                 = ଵ݁(1)ݒᇱ(1)ݑ + ݒ ᇱ(0)(0)ݑ + න "ݒ௫݁}ݑ + ݁௫ݔ݀{′ݒ
ଵ


 

Thus we see that the differential operator in the adjoin operator has the form:  

݁௫ ݀ଶ

ଶݔ݀ + ݁௫ ݀
 ݔ݀

and L is consequently formally self-adjoin  

In order that 

, ݒ) (ݑ ܮ = ,ݒ∗ܮ)  (ݑ

For all u the boundary conditions satisfied by   v must be 

ܸ′(0) = 0; (1)ݒ = 0 

Therefore, since (ݔ)ݑ and (ݔ)ݒ now satisfy the same boundary conditions it follows 

that ܮ is self-adjoint  

Notice, that the general second-order operator     

ݑܮ = (ݔ)ܽ
݀ଶݑ
 ଶݔ݀

has a formal adjoins defined by  

ݒ∗ܮ =
݀ଶ

ଶݔ݀ (ܽ, (ݒ −
݀

ݔ݀
(ݒܾ) +  ݒܿ
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It then follows that  

න ݑܮݒ] − ݔ݀[ݒ∗ܮݑ
ఉ

ఈ
= ,ݒ)ܬ] ఈ[(ݑ

ఉ                          (2.18) 

Where  

,ݒ)ܬ (ݑ = ᇱݑݒܽ − ᇱ(ݒܽ)ݑ +  ݒݑܾ

,ݒ)ܬ  .ݑ and ݒ is call the conjunct of the functions(ݑ

Section(2.2): 

Green’s functions and second-order differential operators 

A large number of problems in mathematical physics reduce to the study of second-

order differential equations. Consequently in this section we consider second-order 

differential operators in some detail unless otherwise stated e will take as our second-

order operators the general form  

ݑܮ = −
1
߱

ᇱ(′ݑ) +  (2.19)                                   ݑݍ

and this is self-ad joint, provided the scalar product is chosen to be 

, ݑ) (ݒ = න ߱(ݔ)ݒ(ݔ)ݑ
ଵ



 (2.20)                        ݔ݀(ݔ)

The minus sign in the definition of L is to ensure that the operator is positive definite. 

That this is the case can be seen as follows:  

,ݑ) (ݑܮ = න ݑ ൬−
1
߱

ᇱ(ᇱݑ) + ൰ݑݍ
ଵ



      ݔ݀߱
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                   = �න(ݑ′ଶ + ݔ݀(ଶݑ߱ݍݑ − ′ݑݑݑ
ଵ



ቮ
1
0

 

Consequently if,  > 0, ݍ > 0, ߱ > 0, and the boundary conditions are such that the 

integrated terms vanish we have that  

,ݑ) (ݑܮ > 0 

as required  

A part from this one mention of boundary conditions all we have achieved so far is 

the requirement for ܮ to be formal self-adjoint we now wish to find the conditions 

which will ensure that L is self-adjoint to this end if we examine the difference 

, ݒ) (ݑܮ − ,ݒܮ)   using (2.18)we see that ,(ݑ

,ݒ) (ݑܮ − ,ݒܮ) (ݑ = , ݒ)ܬ� |(ݑ
1
0

= ᇱݑݒ)(ݔ)�− − ݒݑ ᇱ)|
1
0

 

Therefore, ܬ will be self-adjoint if ݒ)ܬ,  vanishes identically when u and v are in the (ݑ

same manifold. Tow particular special cases arise which will have important 

applications later.  

  (1) Unmixed boundary conditions 

Boundary conditions are said to be unmixed if they involve the function and its 

derivative at either ݔ = ݔ or ݎ 0 = 1 but not at both. A typical example of an 

unmixed boundary condition is 

(0)ݑܽ + ᇱ(0)ݑܾ = 0 

It is easy to show that if ݑ satisfies an unmixed condition at ݔ = 0 and an unmixed 

condition at ݔ = 1 then ܮ as defined by (2.19) is self-adjoint. 

    (2) Periodic boundary conditions 
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  Bounded conditions are said to be periodic if they have the form: 

(0)ݑ = ;(1)ݑ ᇱ(0)ݑ   =  ᇱ(1)ݑ

Again it is easy to show that, for such conditions,ܮ is self-adjoint. We now prove the 

following theorem. 

 

Theorem (2.2.1):- 

If ݑ is any solution of ݑܮ = 0 and if ݒ is any solution of ݒ∗ܮ = 0, the conjunct of ݑ 

and ݒ is a constant whose value depends on ݑ and ݒ. 

Proof   

 are formal self-adjoint in the space ܵ thus from the definition of the conjunct∗ ܮand ܮ

we have that  

,ݑ)ܬ� |(ݒ
ߚ
ߙ = න(ݑܮݒ − ݔ݀(ݒ∗ܮݑ = 0

ఉ

ఈ

 

Therefore the value of ݒ)ܬ, = ݔ at(ݑ ݔ and ߙ =  ߙ      must be the same for arbitrary ߚ

and ߚ hence ݒ) ܬ,  must be a constant (ݑ

Corollary (2.2.2):- 

If ܮ is a formally self-adjoint operator and ݑଵand ݑଶ are two solutions of ݑܮ = 0 then 

the conjunct of ݑଵand ݑଶ is a constant whose value depends on ݑଵand ݑଶ 

Corollary (2.2.3): -  

  If ܮ is self-ad joint and ݑଵand ݑଶ are two solutions of ݑܮ = 0 and if ݑ)ܬଵ,  (ଶݑ

vanishes for some value of ݔ for which (ݔ) ≠  0 then ݑଵand ݑଶ are linearly 

dependent.  
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Proof  

From corollary (2.2.3) it follows that the conjunct must vanish for all ݔ consequently  

ଶݑଵݑ
ᇱ − ଶݑ

ᇱ ଵݑ = 0 

This implies that  

ଶݑଵݑ
ᇱ − ଵݑଶݑ

ᇱ

ଶݑ
ଶ  

One  integration establishes that (ݑଵ/ݑଶ) is a constant and hence ݑଵ and ݑଶ are 

linearly dependent. 

Definition (2.2.4):- 

So far we have only examined homogeneous boundary value problems  however we 

shall often encounter the following type of non-homogeneous problem :to find  

  such that (ݔ)ݑ

(ݔ)′′ݑ = ;(ݔ)݂ (0)ݑ      = (1)ݑ        ,ܽ = ܾ 

A possible approach to the solution of such a problem is to reduce the given problem 

to the consideration of homogeneous boundary values problems by writing  

ݑ = ଵݑ +  ଶݑ

Where  

ଵݑ
" = ;(ݔ)݂ ଵ(0)ݑ  = ଵ(1)ݑ ;0 = 0 

and 

ଶݑ
" = 0; ଶ(0)ݑ   = ଶ(1)ݑ ;ܽ = ܾ  

A more convenient method however is to extend the ideas we presently have of an 

operator in much the same way as we extended the notion of a derivative by defining 
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symbolic differentiation. when we  extended the processes of different ion by 

defining symbolic differentiation we considered a space of testing functions and then 

defined the symbolic derivative of a function by integrating by parts the product of 

the function with the ordinary derivative of a testing function we will do just this to 

extend the definition of a differential operator. 

Definition (2.2.5):- 

 First we consider an example   

ܭ = −
݀ଶ

ଶݔ݀                          (2.21) 

With associated boundary conditions,  

(0)ݑ = (1)ݑ = 0 

Then it is easily seen that ܭ is self-adjoint and that M the domain of ݇ is the set of 

functions u in ܵ such that ݑ" exists and belongs to ܵ and such that (0)ݑ = (1)ݑ  = 0  

If now ݒ belongs to ܯ and if ܹ belongs to ܵ we will write  

,ݒܭ) (ݓ = ,ݒ)  (ݓܭ

 And use the left –hand side to define the symbolic function ݇ݓ we must consider ݇ݓ 

as a symbolic function because ݓ may not belong to the domain of ݇ even though it 

is in ܵ by hypothesis. Therefore we have  

,ݒܭ) (ݓ = − න ݔ݀ݓ"ݒ = (1)ݓ(1)′ݒ− + (0)ݓ(0)′ݒ − න ݔ݀"ݓݒ
ଵ



ଵ



 

Since v belongs to ܯ the right-hand side of this equation is clearly a linear function 

for functions in ܯ and consequently it may be used to define a symbolic function ݇ݓ. 

We see then that  
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න ݔ݀ݓ݇ݒ
ଵ



= − න ݔ݀"ݓݒ − (1)ݓ(1)′ݒ + (0)ݓ(0)′ݒ
ଵ



= න "ݓ−}ݒ + ݔ)′ߜ(1)ݓ − 1) − {(ݔ)′ߜ(0)ݓ
ଵ



 ݔ݀

Therefore  

ݓܭ = ݓ− ᇱᇱ + ݔ)ᇱߜ(1)ݓ − 1) −  (2.22)                    (ݔ)ᇱߜ(0)ݓ

 

We should note at this point that in our previous discussions of theߜ-function, we 

obtained the results  

න ݔ)ߜ(ݔ)߶ − ݔ݀(ܽ = ߶(ܽ) 

න ݔ)ᇱߜ(ݔ)߶ − ݔ݀(ܽ = −߶′(ܽ)                                      (2.23) 

Provided  ݔ = ܽ was an interior point in the rang of integration we extend the 

definition of the ߜ-function by assuming that (2.23) holds, even when ݔ = ܽ is an end 

point of the range we could equally well define  

න ݔ)ߜ(ݔ)߶ − ݔ݀(ܽ =
1
2

߶(ܽ) 

න ݔ)ᇱߜ(ݔ)߶ − ݔ݀(ܽ = −
1
2 ߶′(ܽ) 

When ݔ = ܽboth these extensions of the definition of the ߜfunction can be justified 

(Schwartz) and one or the other can be used provided it is used consistently for our 

purposes (2.23) will be quite adequate.  

In the event that ܹ belongs to ܯ then (2.22) reduces to  
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ݓܭ =  "ݓ−

as it should however, (2.22) is also applicable to function not in ܯ for example if 

(ݔ)ݓ = ܿ a constant in [0,1] then  

ݓܭ = ݔ)′ߜܿ − 1) −  (ݔ)′ߜܿ

And we say that ݓܭ, as defined by (2.22) is the result of applying the symbolic 

operator ܭ to ݓ 

 

Example (2.2.6):- 

To find (ݔ)ݑ such that  

(ݔ)"ݑ = ;(ݔ)݂ (0)ݑ     = ܽ; (1)ݑ    = ܾ                   (2.24) 

Using the ideas of symbolic operators introduced above and in particular (2.21) and 

(2.22) we can restate the problem as follows: to find a function (ݔ)ݑ in S, such that  

ݑܭ = (ݔ)݂−  + ݔ)′ߜܾ − 1) −  (ݔ)′ߜܽ 

Now, we have seen in example (2.1.9) that the function g(x, t) satisfying  

gܭ = ݔ)ߜ− − 1)                                                 (2.25) 

Is  

g(ݔ, t) = ݔ) − t)H(ݔ − t) − 1)ݔ − t),          0 ≤ ݔ ∶ ݐ  ≤ 1                (2.26) 

If we multiply (2.26) by ݂(ݐ) and integrate with respect to t from 0 to 1 we obtain a 

function ݑଵ(ݔ) given by   

(ݔ)ଵݑݔ = න ,ݔ)g(ݐ)݂ t)dt = න(ݔ − t)݂(ݐ)݀ݐ − ݔ න(1 − (ݐ
ଵ



.ݐ݀
௫



ଵ
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This is a solution of ݑܭଵ = −݂ as can be seen by noticing that   

Kuଵ = K න ,ݔ)g(ݐ)݂ ݐ݀(ݐ = න ,ݔ)g݇(ݐ)݂ ݐ݀(ݐ
ଵ



ଵ



 

= − න ݔ)ߜ(ݐ)݂ − ݐ݀(ݐ
ଵ



 

  =  (ݔ)݂−

 

To complete the solution we require a function ݑ ଶsuch that  

Kݑଶ = bδᇱ(−1) − aδᇱ(ݔ)                                  (2.27) 

Thes we can obtain by differentiation of (2.25) and (2.26) with respect to t.  

K
∂g
∂t

= δ′(ݔ − 1)                                    (2.28) 

∂g
∂t

= ݔ)ܪ− − (ݐ +  (2.29)                               ݔ

From these last two results we see that if we write  

uଶ = b �∂g
∂tฬ

୲ୀଵ
− �a

∂g
∂tฬ

୲ୀ
 

Then ݑ ଶsatisfies (2.27) 

 Since  

�∂g
∂t

ฬ
୲ୀଵ

= ݔ)ܪ− − 1) + ݔ =  in [0,1] ݔ for all      ,ݔ

�∂g
∂t

ฬ
௧ୀ

= (ݔ)ܪ− + ݔ = ݔ − 1,        for all ݔ in [0,1] 
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It follows that  

ଶݑ = ݔܾ − ݔ)ܽ − 1) 

Consequently the solution to the given problem is  

ݑ = ଵݑ +  ଶݑ

ݑ = න(ݔ − (ݐ)݂(ݐ
௫



− ݔ න(1 − (ݐ)݂(ݐ
ଵ



+ ݔܾ − ݔ)ܽ − 1) 

These several results which we have obtained for a particular differential operator 

may be extended to arbitrary differential operators. 

 

Definition (2.2.7):- 

let L be an arbitrary differential operator with domain ܯ and denote by ܮ ∗the adjoint 

of which is assumed to have a domain ܯ ∗we say that the functions belonging to M* 

are testing functions for ܮ.  

Consider a function w belonging to ܵ but not to ܯ we wish to define ݓܮ but cannot 

do so immediately because ݓ is not in ܯ however if ݒ is a testing function for ܮ that 

is ݒ is contained in M* then L*v is defined and the scalar product (L*v,w) has a 

meaning to define the symbolic function L w we combine the properties of symbolic 

operators and ad joint operators by writing    

,ݒ∗ܮ) (ݓ = ,ݒ)  (2.30)                               (ݓܮ

The left-hand side of (2.30) is used to define the symbolic function ݓܮ this extended 

definition of an operator as provided by (2.30) enables us to restrict ourselves to the 

consideration of operator with homogeneous boundary conditions because as we saw 

in the case of the operator ݇ any problem with non-homogeneous boundary 

conditions may be changed into a non-homogeneousproblem involving an operator 
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having homogeneous boundary conditions consequently we will only consider 

homogeneous boundary conditions in future. 

 

Definition (2.2.8):- 

We are now in a position to consider more general forms of  second –order 

differentional operators and their inverses we have already seen that the 

differentional operators ܭ = ݀ଶ ⁄ଶݔ݀ with the associated boundary conditions has an 

inverse in the form of an integral operator whose kernel g(ݔ,   satisfies (ݐ

݀ଶ

ଶݔ݀ g(ݔ, (ݐ = ݔ)ߜ −  (ݐ

We saw in this case  

g(ݔ, (ݐ = ݔ) − ݔ)ܪ(ݐ − (ݐ − ݔ)ݔ − 0,(ݐ ≤ ݐ   ,ݔ ≤ 1 

Now, suppose that L is a general second-order differential operators in x with domain 

M. We wish to find a function g(ݔ,   such that (ݐ

,ݔ)gܮ (ݐ = ݔ)ߜ −  (2.31)                                        (ݐ

We notice that here L must be considered as a symbolic operator when applied to 

g(ݔ, ,ݔ)since g ݔ though of as a function of (ݐ  .is not necessarily in the domain of L (ݐ

Also we must use the extended definition of the operator; consequently the boundary 

conditions are automatically satisfied. 

 

Definition (2.2.9):- 

In conformity with our previous, rather particular discussion, we will call  g(ݔ,  the (ݐ

Green's function of the operator ܮ.It is readily seen that g(ݔ,  is the kernel of an (ݐ

integral operator which invertsܮ, for, if we write  
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(ݔ)ݑ = න g(ݔ,  ݐ݀(ݐ)݂(ݐ

then 

ݑܮ = න ݐg݂݀ܮ = න ݔ)ߜ − ݐ݀(ݐ)݂(ݐ =  (ݐ)݂

 

Which implies that 

(ݔ)ݑ = (ݔ)ଵ݂ିܮ = න g(ݔ,  ݐ݀(ݐ)݂(ݐ

So that we may proceed with the solution of (2.31) we will assume that ܮ has the self-

adjoint form: 

ܮ ≡ −
݀

ݔ݀
൬(ݔ)

݀
ݔ݀

൰ +  (2.32)                                  (ݔ)ݍ

together with some homogeneous boundary conditions. We assume that (ݔ) and 

,are continuous functions in [0 (ݔ)ݍ 1], and further that (ݔ) ݅s non-vanishing in this 

interval. 

Consider initially the case when (ݔ)ݍ = 0 .The solution of (2.31) in this case we will 

denote by g(ݔ, t) . Combining (2.31) and (2.32) we have in this case  

−
݀

ݔ݀
൬(ݔ)

݀
ݔ݀

൰ g(ݔ, (ݐ = ݔ)ߜ −  (2.33)                             (ݐ

This we can integrate to obtain  

g(ݔ, (ݐ = ,ݔ)ܪ− (ݐ න
ݑ݀

(ݑ)

௫

௧

+ (ݐ)ߙ න
ݑ݀

(ݑ) + (ݐ)ߚ
௫



                  (2.34) 

Where    (t) is a constant of integration.  



94 
 

From equations (2.33) and (2.34) we notice that ݃(ݔ,  ݔ  is a continuous function of (ݐ

and also its derivative is a continuous function of ݔ except at the point ݔ =  where , ݐ

it has a jump of magnitude (−1/(ݐ)). 

In order to show that g(ݔ, ,ݔ)has properties similar to those of g (ݐ  we shall use (ݐ

the following theorem quoted without proof , from the theory of differential 

equations which concerns functions which are differentiable in the ordinary sense  

Theorem (2.2.10):- 

Let (ݔ) ,  in [0,1] and assume ݔ be piecewise continuous functions of (ݔ)݂ and (ݔ)ݍ

that (ݔ) is positive in this interval. Then there exists a continuous function u such 

that (ݔ)′ݑ(ݔ) exists and is continuous for all ݔ , and which satisfies (0)ݑ =

(0)′ݑ  = 0 and (ݑ′)′ − ݑݍ = ݂ , for all values of ݔ for which both sides are 

continuous functions of ݔ . 

We can now show that g(ݔ, ,ݔ)has properties similar to those of g (ݐ  :If we write.(ݐ

g(ݔ, (ݐ = g(ݔ, (ݐ + ℎ(ݔ,  (ݐ

and substitute this into equation (2.31) ,we find that  

,ݔ)ℎܮ (ݐ = ,ݔ)g(ݔ)ݍ−  (2.35)                   (ݐ

 

Theorem (2.2.11):- 

When ܮ is given by (2.32) the Green’s function satisfies the homogeneous equation. 

When ܮ has an extended definition according to (2.30) the Green’s function is 

everywhere continuous, but its derivative has a jump discontinuity, at ݔ =  of ,ݐ

magnitude (−1\(ݐ)). 

Since we have seen that ܮg = 0 everywhere save at ݔ = ,ݐ g(ݔ,  is not a symbolic (ݐ

function, it is an ordinary function.  Further, since we are using the extended 
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definition of the operator ܮ it follows that g(ݔ, t) considered as a function of ݔ, mast 

satisfy the boundary conditions, If this were not the case then g(ݔ, t)would 

necessarily involve certain symbolic functions such as ݔ)ߜ − ݔ)ᇱߜ and (ݐ −  (ݐ

.Therefore, we shall always considerg(ݔ, t) as an ordinary function of ݔ ,    satisfying 

the same boundary conditions which help to specify the operator. 

 

Once the Green’s function has been determined the non-homogeneous equation  

ݑܮ = ݂                             (2.36) 

With assigned boundary conditions can be solved immediately. The solution is  

(ݔ)ݑ = න ,ݔ)g(ݔ)݂ ݐ݀(ݐ
ଵ



              (2.37) 

That such a function as is defined by (2.37) does indeed satisfies (2.37) can be as 

follows: 

ݑܮ = න ,ݔ)gܮ(ݐ)݂ t)݀ݐ = න ݔ)ߜ(ݐ)݂ − ݐ݀(ݐ = (ݔ)݂
ଵ



ଵ


 

And (ݔ)ݑ must satisfy the boundary conditions since g(ݔ, t) as a function of ݔ 

satisfies them. 

 

Example (2.2.12):- 

Find the Green’s function for the operator  

ܮ ≡ −݀ଶ/݀ݔଶ ; (0)ݑ  = ᇱ(0)ݑ = 0 

The required Green’s function,g(ݔ, t) is geven as the solution of the equation  
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݀ଶg
ଶݔ݀ = ݔ)ߜ− −  (2.38)                            (ݐ

With the conditions  

g(0, t) = g௫(0, t) = 0.                     (2.39) 

 

 

We have already seen that g(ݔ, t)satisfies  

݀ଶg
ଶݔ݀ = 0                                     (2.40) 

Everywhere except at ݔ =  where it is continuous but its derivative has a jump ݐ

discontinuity which for this particular operator is equal to (−1) . 

An arbitrary solution of (2.40) is  

g(ݔ, t) = ݔ(ݐ)ߙ +  (2.41)                      .(ݐ)ߚ

When ݔ <  the application of (2.39) to (2.40) shows that ݐ

(ݐ)ߙ = (ݐ)ߚ = 0. 

Therefore  

g(ݔ, t) = 0 , ݔ <  (2.42)                      . ݐ

For the case ݔ ≥  we use (2.41) together with the particular properties of Green’s ݐ

functions, namely the continuity of the solutions at ݔ =  and the discontinuity ݐ

condition on the derivative atݔ =  .ݐ

 From (2.41) we have 

߲g
ݔ߲ =  (ݐ)ߙ
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And it follows from (2.42) and the fact that the magnitude of the jump in the 

derivative at ݔ =   is (−1) that ݐ

ߙ = −1. 

Finally, since g(ݔ, t)is continuous at ݔ =   we must have ݐ

lim
௫→௧ష

g(ݔ, t) = lim
௫→௧శ

g(ݔ, t), 

From which it follows that  

ߚ =  ݐ

Since g(ݔ, t) = 0, ݔ <  .ݐ

Therefore, we have as a solution to (2.38) 

g(ݔ, t)  = ݔ           , 0 <  ݐ

            = ݐ − ݔ        ,ݔ >  ݐ

or 

g(ݔ, t) = ݔ)− − ݔ)ܪ(ݐ −  (2.43)                       (ݐ

For all ݔ.to see that this value of g(ݔ, t)satisfies (2.38) and (2.39) we differentiate 

(2.43) twice with respect to x to obtain  

gᇱᇱ(ݔ, t) = ݔ)ᇱܪ2− − (ݐ − ݔ) − ݔ)ᇱᇱܪ(ݐ −  (ݐ

            = ݔ)ߜ− − (ݐ − ݔ) − ݔ)ᇱߜ(ݐ −  .(ݐ

If ߶(ݔ) is a testing function, multiply this last result throughout by ߶(ݔ)  and 

integrate over the range of ݔ we obtain 

න ,ݔ)gᇱᇱ(ݔ)߶ t)
ଵ



ݔ݀ = −2 න ݔ)ߜ − (ݔ)߶(ݐ
ଵ



ݔ݀ − න ݔ)(ݔ)߶ − ݔ)ᇱߜ(ݐ − (ݐ
ଵ



     ݔ݀
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         = (ݐ)߶2− + ݔ)} − ᇱ{(ݔ)߶(ݐ ቚ
 
ݔ

� 

=                                     .(ݐ)߶−

This is precisely the result we would obtain by multiplying (2.38) by ߶(ݔ)  and 

integrating over the range of ݔ.  

 

Example (2.2.13):-  

Solve the non-homogeneous equation  

−
݀ଶ

ଶݔ݀ (ݔ)ݑ =  (ݔ)݂

Subject to the conditions  

(0)ݑ = ᇱ(0)ݑ = 0. 

Usung (2.37) and the the particular form for g(ݔ, t) given by (2.43) we see that the 

solution is given by  

(ݔ)ݑ               = න ݔ)(ݐ)݂ − (ݐ
ଵ



ݔ)ܪ −                                                          ݐ݀(ݐ

=    න ݔ)(ݐ)݂ − (ݐ
௫



 .ݐ݀

This is easily seen, by direct substitution, to be a solution of the given boundary value 

problem. 

Example (2.2.14):- 

To solve  
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−
݀ଶ

ଶݔ݀ (ݔ)ݑ =  (ݔ)݂

Subject to the conditions: 

(0)ݑ = ᇱ(0)ݑ  ;  ܾ = ܽ 

We use the extended definition of  . If S the space of square integrable functions 

defined over [0,1], is the space of functions with which we are dealing, then  

∗ܮ = −
݀ଶ

 ଶݔ݀

With boundary conditions  

(1)ݒ = ݒ ᇱ(1) = 0 

Let (ݔ)ݒ be a testing function for ܮ, that is let ݒ be a function in ܯ∗ the domain of ܮ∗. 

The extended definition of ܮ acting on ݑ is given by  

,ݑܮ) (ݒ = ,ݑ) (ݒ∗ܮ = − න ݒݑ ᇱᇱ

ଵ



                             ݔ݀

= − න ᇱᇱݑݒ

ଵ



ݔ݀ − ݒݑ) ᇱ − (ݒᇱݑ ฬ
1
0

� 

  = − න ᇱᇱݑݒ

ଵ



ݔ݀ + ݒܾ ᇱ(0) −  .(0)ݒܽ

Consequently, we see that  

ݑܮ = (ݔ)݂ − (ݔ)ߜܽ −  (2.44)                    (ݔ)ᇱߜܾ

As the extended form of ܮ in this case. As might be expected, when ܽ = ܾ = 0 we 

see that ܮ is actually, rather than formal, self-adjoint.  
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Writing   

ଵݑ = න ݔ)(ݐ)݂ − (ݐ
௫



 ݐ݀

We know that  

ଵݑܮ =  .(ݔ)݂

Therefore, it remains to find a function ݑଶ such that  

ଶݑܮ = (ݔ)ߜܽ− −  (ݔ)ᇱߜܾ

When this is done then the solution of (2.44) will be  

ݑ = ଵݑ +  ଶݑ

Now since  

,ݔ)gܮ (ݐ = ݔ)ߜ −  (ݐ

We see that  

ܮ ൜−ܽg(ݔ, 0) + ܾ
߲g
ݔ߲ ,ݔ) 0)ൠ − (ݔ)ߜܽ −  .(ݔ)ᇱߜܾ

But, from (2.43), we see that  

g(ݔ, 0) =  ݔ−

߲g
ݔ߲

,ݔ) 0) = 1 

Therefore 

ଶݑ = ݔܽ + ܾ 

And the solution of our given problem is  
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ݑ = න ݔ)(ݐ)݂ − (ݐ
௫



ݐ݀ + ݔܽ + ܾ. 

Admittedly this solution could have been obtained much more directly however the 

example was chosen primarily to illustrate, as simply as possible, a general method. 

 

 

Example (2.2.15):- 

We now change the boundary value problems so that both end-points of range are 

involved.  We wish to solve  

ݑܮ =
݀ଶݑ
ଶݔ݀ =  (ݔ)݂

Subject to the conditions  

(0)ݑ = 0 ; (1)ݑ     = 0 

The Green’s function,g(ݔ, t) , in this case is given by the solution of  

−
݀ଶ

ଶݔ݀ g(ݔ, t) = ݔ)ߜ −  (ݐ

On the manifold defined by the conditions  

g(0, t) = g(1, t) = 0 

The Green’ s function is given by a solution of the homogeneous equation at all 

values of ݔ save ݔ = ݔ For. ݐ <  the solution of the homogeneous equation which ݐ

satisfies g(0, t) = 0 must be proportional to ݔ , and similarly for ݔ >  that solution ݐ

which satisfiesg(1, t) = 0 must be proportional to (1 −   .(ݔ

Therefore as a trial form for g(ݔ, t)we could write  
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 g(ݔ, t) = ݔ         ,ݔ <  ݐ

              = 1 − ݔ    ,ݔ >  ݐ

This certainly satisfies the homogeneous equation everywhere saves at =  and also , ݐ

ensures that the boundary conditions are satisfied. 

However, such a solution does not satisfy the requirements of a Green’s function, if 

only because it is not continuous at ݔ =  .ݐ

That is  

lim
௫→௧ష

g(ݔ, t) =  ݐ

lim
௫→௧శ

g(ݔ, t) = 1 −  . ݐ

To overcome this and , as it turns out , also meet the requirements of the jump 

discontinuity in the first derivative , multiply the value of g(x, t)for ݔ >  by the ݐ

value of g(ݔ, t) for ݔ > ݔ evaluated at ݐ = ,ݔ)and multiply the value of g , ݐ  for (ݐ

ݔ > ,ݔ)by the value of g ݐ t) for ݔ > ݔ evaluated at ݐ =  :This gives . ݐ

g(ݔ, t) = 1)ݔ − ݔ       ,(ݐ >  (2.45)                ݐ

= (1 − ,ݐ(ݔ ݔ >  ݐ

We readily see that this form for g(ݔ, t) ,apart from satisfying the required equation 

and boundary conditions, is continuous at ݔ =  and has there a jump discontinuity in ݐ

its first derivative of magnitude. 

ݐ− − (1 − (ݐ  =  −1 

As required. 

 

Definition (2.2.16):- 
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The Green’s function g(ݔ, t)for the operator ܮ ≡ −݀ଶ/݀ݔଶ in the manifold defined 

by (0)ݑ = (1)ݑ = 0 is given by (7.45) and may be written in the more convenient 

form: 

g(ݔ, (ݐ  = 1)ݔ  − ݐ)ܪ(ݐ − (ݔ + 1)ݐ − ݔ)ܪ(ݔ −  (ݐ

                                          =
1
2

ݔ) + (ݐ −
1
2

ݔ)| − |(ݐ −  (2.46)                                    ݐݔ

We notice that g(ݔ, t) = g(t,  in this case. This symmetry of the Green’s function is (ݔ

generally true for self-adjoint operators. We Check that (2.46) is in fact a solution by 

differentiation as follows: 

݀g
ݔ݀ =

1
2 − ݐ −

1
2 ݔ)g݊ݏ −  (ݐ

݀ଶg
ଶݔ݀ = ݔ)ߜ− −                  .(ݐ

 

Example (2.2.17):- 

We wish to solve the following non-homogeneous boundary value problem  

ᇱᇱݑ + ݇ଶݑ =  (2.47)                                 (ݔ)݂−

(0)ݑ = ܽ  ; ᇱ(1)ݑ = ܾ                             (2.48) 

Our first task is to determine the Green's function g(ݔ, t)for the operator                

ܮ ≡ −(݀ଶ ݀⁄ ଶݔ + ݇ଶ)subject to the homogeneous condition (0)ݑ = ᇱ(1)ݑ = 0once 

this is achieved we extend the definition of ܮto cater for the actual         boundary 

value (2.48). 

To determine the Green's function g(ݔ, t)we use the same technique here as in 

Example (2.2.16) since g(x, t)is a solution of 
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dଶg
dݔଶ + kଶg = −δ(ݔ − t) 

g(0, t) = g௫(1, t) = 0, 

We first consider solutions of the homogeneous equation for g(x, t)and choose them 

so that the boundary conditions at ݔ = 0 and ݔ = 1are satisfied. 

 

 Doing this we obtain 

g(ݔ, t) = ݊݅ݏ ݔܭ ݔ            ,  <  ݐ

               = cos 1)ܭ − (ݔ , ݔ >  .ݐ

Since this form of g(ݔ, t)is not continuous at ݔ =  we multiply the first expression ݐ

by the value of the second at ݔ =  and vice-versa, to obtain a function which is ݐ

continuous at ݔ =  namely,ݐ

         g(ݔ, t)  = sin ݔܭ cos 1)ܭ − (ݐ ݔ    , <  (2.49)          ݐ

 = cos 1)ܭ − (ݔ sin ݐܭ ݔ      , >  .ݐ

We now examine the derivative of this function in the neighborhood of ݔ =  the ݐ

jump in the magnitude of the derivative at ݔ =   is given by ݐ

ܭ sin 1)ܭ − (ݐ sin ݐܭ − ܭ cos ݐܭ cos 1)ܭ − (ݐ = ܭ− cos  .ܭ

It follows from the form of ܮ ,that this jump should be (-1) to correct the value of 

g(ݔ, t)we must divide the value obtained in (2.49) by ܭ cos  :to obtain the find from ܭ

g(ݔ, t) = sin ݔܭ 1)ܭݏܿ − (ݐ ܭ cos ⁄ܭ ݔ   ,  <  ݐ

             = cos 1)ܭ − (ݔ sin ݐܭ ܭ cos ⁄ܭ ݔ   , >  ݐ

Or                                                                                                                     (2.50) 
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g(ݔ, t) =
sin ݔܭ 1)ܭݏܿ − (ݐ

ܭ cos ܭ
ݐ)ܪ − (ݔ +

1)ܭݏܿ − (ݔ sin ݐܭ
ܭ cos ܭ

ݔ)ܪ −  (ݐ

For all ݔ.that this is in fact a solution of the equation defining the Green's function for 

the problem in hand is readily established by direct differentiation.We notice that 

once again the Green's function is symmetric in ݔand ݐ. Returning to the original 

problem we first consider the extended definition of  . Evidently ܮ  is formally self-

adjoint and so ܮ =  in this case any function in the) ܮ be a testing function of ݒ let.∗ܮ

domain of ܮ will do) then extending the definition of ܮ we obtain: 

,ݑܮ) (ݒ = ,ݑ) (ݒܮ = න ݒ)ݑ ᇱᇱ + ݇ଶݒ)
ଵ



                                                         ݔ݀

           = න ᇱᇱݑ)ݒ + ݇ଶݑ)
ଵ



ݔ݀ − ݒݑ) ᇱ − (ݒᇱݑ ฬ
1
0

� 

= න (ݔ)݂ݒ
ଵ



ݔ݀ + ݒܽ ᇱ(0) +  .(1)ݒܾ

Consequently 

ݑܮ = (ݔ)݂ + ݔ)ߜܾ − 1) −  .(ݔ)ᇱߜܽ

Proceeding as before we first write 

ଵݑܮ = ݂ 

We now need to find a function ݑଶ such that 

ଶݑܮ = ݔ)ߜܾ − 1) −  (2.51)                                              (ݔ)ᇱߜܽ

And then ݑ = ଵݑ +  .ଶ will be the required solutionݑ

Since 
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Lg(ݔ, t) = −δ(ݔ − t) 

We see that 

L ൜bg(ݔ, 1) + a
∂g(ݔ, 0)

∂t ൠ = ݔ)ߜܾ − 1) −  (2.52)                 .(ݔ)ᇱߜܽ

 

From (2.50) we see that  

g(ݔ, 1) =
݊݅ݏ ݔܭ

ܭ ݏܿ  ܭ

∂g(ݔ, 0)
∂t

=
ݏܿ 1)ܭ − (ݔ

ݏܿ ܭ
. 

Consequently on comparing (2.51) and (2.52) we obtain 

(ݔ)ଶݑ =
ܾ ݊݅ݏ ݔܭ
ܭ ݏܿ ܭ

+
ܽ ݏܿ 1)ܭ − (ݔ

ݏܿ ܭ
. 

The final solution to our problem is given by 

ݑ = න (ݐ)݂
ଵ



g(ݔ, t)dt +
ܾ ݊݅ݏ ݔܭ
ܭ ݏܿ ܭ +

ܽ ݏܿ 1)ܭ − (ݔ
ݏܿ ܭ ,       (2.53) 

Where g(ݔ, t) is given by (2.51). 

The method used to determine the Green's function g(ݔ,  in the last example is very(ݐ

useful in practice as we now demonstrate by considering the following unmixed 

boundary value problem : to find the Green's function for the general second-order 

ordinary differential operator. 

ܮ = −
݀

ݔ݀
൬

݀
ݔ݀

൰ +  ݍ

When the domain is defined by the general unmixed conditions (2.17) 



107 
 

(ݑ)ଵܤ = (ݑ)ଶܤ = 0 

It is assumed that ܤଵ(ݑ) only involves values at ݔ = 0 whilst ܤଶ(ݑ) only involves 

values at ݔ = 1 further we will assume (ݔ) ≠ 0 in the range 0 ≤ ݔ ≤ 1. 

The Green's function g(ݔ, t)is that solution of the equation 

Lg = −δ(ݔ −  (ݐ

That is 

௫(g௫) − gݍ = −δ(ݔ − t),                            (2.54) 

Which satisfies the boundary conditions?  

ଵ(g)ܤ = ଶ(g)ܤ = 0                          (2.55) 

In order to construct the Green's function we first of all examine the homogeneous 

form of equation (2.54) and consider solutions independent of any boundary 

conditions. Formally, such solutions exist and we will suppose that ݒଵ(ݔ) and ݒଶ(ݔ) 

are any two linearly independent solutions of the homogenous equations. Now 

letwଵ(ݔ) be a linear combination of vଵ(ݔ) and ݒଶ(ݔ) which satisfies ܤଵ(wଵ) = 0 and 

let ݓଶ(ݔ) be a linear combination of ݒଵ(ݔ) and ݒଶ(ݔ) which ensures ܤଶ(ݓଶ) = 0 

then as a first possibility for the form of the required Green's function we write  

g(ݔ, t) = wଵ(ݔ),         ݔ <  ݐ

         = wଶ(ݔ),      ݔ >  ݐ

This function g(ݔ, t) clearly satisfies (2.54) for ݔ ≠  and also the boundary ݐ

conditions (2.55). However it does not necessarily satisfies the required properties of 

a Green's function namely continuity at ݔ =  and a jump discontinuity in derivative ݐ

of magnitude(−1 ⁄((ݔ) . To make g(ݔ, t) continuous at ݔ =  we proceed as before ݐ

to multiply the first expression by the value of the second at  ݔ =  and multiply the ݐ

second expression by the value of the first atݔ =  .ݐ
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We thus obtain 

                   g(ݔ, t) = wଵ(ݔ)wଶ(ݐ),     ݔ <  (2.56)                    ݐ

= wଶ(ݔ)wଵ(ݐ),      ݔ >  .ݐ

 

The jump in the derivative with respect to ݔ evaluated ݔ =  is ݐ

wᇱ
ଶ(ݐ)wଵ(ݐ) − wᇱ

ଵ(ݐ)wଶ(ݐ) =
−J(wଶ, wଵ)

(ݐ)
 

Where J(wଶ, wଵ) is the conjunct of the solutions wଵ(ݔ) andwଶ(ݔ). To give this jump 

discontinuity the correct magnitude we divide the right-hand side of (2.56) by 

J(wଶ, wଵ) to obtain 

g(ݔ, (ݐ = (ݐ)ଶݓ(ݔ)ଵݓ ,ଶݓ)ܬ ⁄(ଵݓ ݔ             , <  (2.57)         ݐ

= (ݐ)ଵݓ(ݔ)ଶݓ ,ଶݓ)ܬ ⁄(ଵݓ ݔ           , >  .ݐ

Dividing throughout by J(wଶ, wଵ) does not alter the fact that g(ݔ, t) is a solution of 

(2.54) since J(wଶ, wଵ) is in general only a function of ݐ. In addition in this case since 

 is self-adjoint we have the further assurance that our solution is not disturbed since ܮ

by theorem (2.2.2). J(wଶ, wଵ)most be a true constant 

The fact that J(wଶ, wଵ) is a constant is of great practical significance since it means 

that we need not evaluate it at ݔ =  for ݔ but may do so at any convenient value of ݐ

instance in Example (2.2.18) the conjunct of cos 1)ܭ − and sin (ݔ  has to be ݔܭ

determined.  

We obtain 

J(cos 1)ܭ − (ݔ , sin (ݔܭ = ܭ cos 1)ܭ − (ݔ cos ݔܭ − ܭ sin 1)ܭ − (ݔ sin  ݔܭ
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and this must be a constant consequently its value at ݔ = 0 must be the same as at 

any other point thus on setting ݔ = 0 in the above we obtain  

J(cos 1)ܭ − (ݔ , sin (ݔܭ = ܭ cos  .ܭ

The final form for the Green's function is  

g(ݔ, t) =
1

J(wଶ, wଵ) {wଵ(ݔ)wଶ(ݐ)ݐ)ܪ − (ݔ + wଶ(ݔ)wଵ(ݐ)ݔ)ܪ −  (2.58)        .{(ݐ

This formula breaks down wheneverJ(wଶ, wଵ) = 0. By theorem (2.2.2) and its 

corollaries we see that a vanishing conjunct implies that one solution wଶ(ݔ) is a 

multiple of the other solution wଵ(ݔ). This is contrary to our hypothesis that 

wଵ(ݔ)and wଶ(ݔ)  are linearly independent. However we will examine the 

consequences of a vanishing conjunct. If wଶ(ݔ) is a multiple of wଵ(ݔ) then since 

Bଵ(wଵ) = 0 and Bଶ(wଶ) = 0 it follows thatBଵ(wଵ) = Bଶ(wଶ) = 0. Therefore we 

see that (wଶ) is a non-trivial solution of the equation 

ᇱ(ᇱݑ) − ݑݍ = 0 

With boundary conditions 

Bଵ(u) = Bଶ(u) = 0 

Consequently wଶ(ݔ) must be an eigenfunction of the operator L with eigenvalue  

 = 0. 

We now turn our attention to the solution of a non-homogeneous equation with non-

homogeneous boundary condition we proceed as befor to extend the definition of the 

following example. 

 

Example (2.2.18):- 
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To find a solution ݑܮ = ݂ such that Bଵ(u) = ܽ, and Bଶ(u) = b the operator L is as 

before the formally self-ad joint operator 

ܮ = −
݀

ݔ݀ ൬(ݔ)
݀

൰ݔ݀ +  (ݔ)ݍ

 

 

And the boundary conditions are the general unmixed conditions in (2.17). We know 

that the function 

uଵ(ݔ) = න (ݔ)݂
ଵ



g(ݔ, t)dt 

Where g(ݔ, t) is the Green's function for ܮ and homogeneous boundary conditions is 

solution of 

Luଵ = ݂ 

Such that  

Bଵ(u) = Bଶ(u) = 0 

To solve our original problem we require finding a further function uଶ(x) which is a 

solution of the equation 

uଶܮ = 0; ݔ ≠ 1; ݔ ≠ 0 

But satisfying 

Bଵ(uଶ) = a ;  Bଶ(uଶ) = ܾ 

For definiteness we will assume that the boundary conditions have that precise form 

Bଵ(u) = u(0) cos α + uᇱ(0) sin α 
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Bଶ(u) = u(1) cos β + uᇱ(1) sin β 

Where α and β are constants. 

Since ܮ is formula self-adjoint any function  ݒ in the domain of ܮ is a testing function 

for ܮ  and we obtain the extended definition for ܮ acting on ݑ by considering the 

inner product (ݑ, ,ݑܮ)and (ݒܮ  .(ݒ

 

,ݑܮ) (ݒ = ,ݒ)   (ݑܮ

= න ݒ)−]ݑ ᇱ)ᇱ + [ݒݍ
ଵ



                       ݔ݀

                                     = න ᇱ(ᇱݑ)−]ݒ + [ݑݍ
ଵ



ݔ݀ − ݒݑ) ᇱ − (ᇱݑݒ ฬ
1
0

�.           (2.59)  

From the specific form of the boundary conditions we have adapted, we obtain 

ݒݑ) ᇱ − (ᇱݑݒ ฬ
1
0

� = (1)ݒ]ܾ(1)− sin ߚ − ᇱ(1)ݒ cos  [ߚ

(0)ݒ]ܽ(0) +                                                   sin ߙ − ᇱ(0)ݒ cos  (2.60)                       .[ߙ

Consequently from (2.59) and (2.60) we obtain as the extended definition of ݑܮ the 

expression 

ݑܮ = (ݔ)݂ + ݔ)ߜ](1)ܾ − 1) sin ߚ − ݔ)ᇱߜ − 1) cos [ߚ

− (ݔ)ߜ](0)ܽ sin ߙ − (ݔ)ᇱߜ cos  .[ߙ

Therefore to complete our solution we require a function uଶ(ݔ) such that 

uଶܮ = ݔ)ߜ](1)ܾ − 1) sin ߚ − ݔ)ᇱߜ − 1) cos [ߚ

− (ݔ)ߜ](0)ܽ sin ߙ − (ݔ)ᇱߜ cos  (2.61)                               .[ߙ
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Now as 

,ݔ)gܮ t) = ,ݔ)ߜ−  (ݐ

 

 

 

 

We see that 

uଶ = (1)ܾ ቊg(ݔ, t) sin ߚ −
߲g(ݔ, t)

ݐ߲
cos  ቋߚ

(0)ܽ−                                  ቊg(ݔ, t) sin ߙ −
߲g(ݔ, 0)

ݐ߲
cos  ቋߙ

Is a solution of (2.61). 

We remark here that ߲g ⁄ݐ߲  appears in the above expression rather than ߲g ⁄ݔ߲  

because ߲ ⁄ݔ߲  and ܮ do not commute but ߲ ⁄ݐ߲  and ܮ do, thus enabling us to obtain 

an alternative expression for ߜᇱ(ݔ − ,ݔ)from the equation defining g (ݐ  .(ݐ

To obtain the precise form of uଶ(ݔ) we use (2.58) to eliminate g(x, t) from the above 

expression and obtain 

uଶ(ݔ) =
wଵ(x)(1)ܾ

J(wଶ, wଵ) {wଶ(1) sin ߚ − wᇱ
ଶ(1) cos {ߚ

−
wଶ(x)(1)ܽ

J(wଶ, wଵ) {wଵ(0) sin ߙ − wᇱ
ଵ(0) cos  (2.62)                           {ߙ

Similarly we obtain 
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uଵ(ݔ) =
wଶ(x)

J(wଶ, wଵ) න (ݐ)݂(ݐ)ଵݓ
௫



ݐ݀ +
wଵ(x)

J(wଶ, wଵ) න (ݐ)݂(ݐ)ଶݓ
ଵ

௫

 (2.63)                 ݐ݀

The required solution is then  

ݑ = ଵݑ +  ଶݑ
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Chapter (3) 

The Problem of Eigenfunctions 

Section (3.1):Eigenfunctions 

The Green’s function technique so far as we have presently developed it, requires that 

we find a function g(ݔ,    defined as that solution of the differential equation(ݐ

,ݔ)gܮ (ݐ = ݔ)ߜ− −  which satisfies the same boundary conditions as the unknown (ݐ

function in the original problem. We have seen that in certain cases when the boundary 

conditions are homogeneous the method breaks down (see Example(2.2.18)). This we 

noticed, was due essentially to the fact that the equation ݑܮ = 0, with associated 

homogeneous boundary condition possesses a non-trivial solution, that is to say (ݔ)ݑis 

an eigenfunction of the operator ܮ, and corresponds to the eigenvalue zero. The main 

purpose of this section is to examine this situation in more detail and the principal result 

which we shall obtain is contained in the following theorem. 

Theorem (3.1.1):- 

Let (ݔ)ݓ be a unique solution a part possibly form an additive constant of the self-

adjoint homogeneous differential equation: 

ݑܮ ≡ ݓ)− ᇱ)ᇱ + ݓݍ = 0, 

which satisfies the conditions 

(ݓ)ଵܤ = (ݓ)ଶܤ = 0. 

Then the non-homogeneous equation 

ݑܮ = ݂                                                              (3.1) 

 



115 
 

With boundary conditions 

(ݑ)ଵܤ = (ݓ)ଶܤ = 0 

 

has a solution if and only if 

,ݓ) ݂) = න (ݔ)ݓ(ݔ)݂
ଵ


ݔ݀ = 0.                           (3.2) 

Proof:- 

We will assume that the boundary conditions are unmixed. The theorem however is also 

valid for arbitrary boundary conditions. 

Let ݑ be a solution of (3.1) then since self-adjoint we have 

0 = ,ݑ) (ݑܮ − ,ݓ) (ݑܮ = ,ݓ)− ݂) 

and we see that (3.2) is satisfied. 

Conversely, suppose (3.2) is true. Let (ݔ)ݒbe a solution of 

ݑܮ = 0 

Which is independent of (ݔ)ݓ. Then by using the Green’s function technique as 

illustrated in Examples(2.2.12) and (2.2.13) we can find a solution of (3.1) satisfying 

the boundary condition (0)ݑ = ᇱ(0)ݑ = 0, rather than ܤଵ(ݑ) = (ݑ)ଶܤ = 0 as follows. 

The required Green’s function g(ݔ,  can be assumed to have the form(ݐ

g(ݔ, (ݐ = (ݔ)ݒ(ݐ)ߙ +  .(ݔ)ݓ(ݐ)ߚ

In the range ݔ < (0)ݒ the requirement ݐ = ݒ ᇱ(0) = 0 yields,  

g(ݔ, (ݐ = ,(ݔ)ݒ(ݐ)ߙ ݔ <  .ݐ
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For ݔ >  we are at liberty to choose ݐ

g(ݔ, (ݐ = ݔ   ,(ݔ)ݓ(ݐ)ߚ >  .ݐ

Then adjusting (ݐ)ߙand (ݐ)ߚto ensure the continuity of g(ݔ, ݔ at(ݐ =  we obtain ݐ

g(ݔ, (ݐ = ݔ   ,(ݐ)ݓ(ݔ)ݒ <  ݐ

                    = ,(ݐ)ݒ(ݔ)ݓ ݔ >  .ݐ

Finally to ensure the correct magnitude of the jump in the discontinuity of the derivative 

we must divide by ݓ)ܬ,  :Therefore the required Green’s function in this case is .(ݒ

g(ݔ, (ݐ =
ݐ)ܪ(ݔ)ݒ(ݐ)ݓ − (ݔ

,ݒ)ܬ (ݓ
+

ݔ)ܪ(ݔ)ݓ(ݐ)ݒ − (ݐ
,ݒ)ܬ (ݓ

            (3.3) 

The solution (3.1) which satisfies the conditions (0)ݑ = ᇱ(0)ݑ = 0 is then given by: 

(ݔ)ݑ =
(ݔ)ݒ

,ݓ)ܬ (ݒ
න ൫(ݐ)ݒ + (ݐ)൯݂(ݐ)ݓ

ଵ

௫
ݐ݀ +

(ݔ)ݒ) + ((ݔ)ݓ
,ݓ)ܬ (ݒ

න (ݐ)݂(ݐ)ݒ
௫


 ݐ݀

Re-arranging and using (3.2) we finally obtain 

(ݔ)ݑ =
(ݔ)ݒ

,ݓ)ܬ (ݒ න (ݐ)ݒ(ݐ)݂
௫


ݐ݀ −

(ݔ)ݒ
,ݓ)ܬ (ݒ න (ݐ)ݓ(ݐ)݂

௫


 (3.4)           .ݐ݀

We remark that since ܮ is formally self-adjoint ݓ)ܬ,  it ݔ is aconstant for all values of(ݒ

now remains to show that the function (ݔ)ݑ defined by (3.4) is a solution to the original 

problem. That such a function satisfies the equation ݑܮ = ݂ is clear enough and we 

need only investigate the boundary conditions since the boundary conditions are linear 

homogeneous and unmixed we may write them in the form 

(ݑ)ଵܤ = (0)ݑଵߙ +  ᇱ(0)ݑଵߚ

(ݑ)ଶܤ = (1)ݑଶߙ +  ᇱ(1)ݑଶߚ

Where ߙଵ, ,ଶߙ ,ଵߚ  .ଶ are given constantߚ
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From the fact that (ݔ)ݑin (3.4) satisfies (0)ݑ = ᇱ(0)ݑ = 0 it is clear that ܤଵ = 0 is 

satisfied. To establish the section that having used (3.2) we have form (3.4): 

(1)ݑ =
(ݔ)ݓ

,ݓ)ܬ (ݒ
න (ݐ)ݒ(ݐ)݂

ଵ


 .ݐ݀

Also on differentiating (ݔ)ݑ in (3.4) with respect to ݔ and setting ݔ = 1 we have  

ᇱ(1)ݑ =
(ݔ)′ݓ

,ݓ)ܬ (ݒ න (ݐ)ݒ(ݐ)݂
ଵ


 .ݐ݀

Combining these last two results we see that 

(ݑ)ଶܤ =
(ݓ)ଵܤ

,ݓ)ܬ) (ݒ
න (ݐ)ݒ(ݐ)݂

ଵ


ݐ݀ = 0 

Because of the assumption regarding the nature of ݓ. This completes the proof of the 

theorem. 

In more general cases when the boundary conditions are mixed, the Green’s function 

can be found in a straightforward manner as is illustrated by the following example. 

 

Example (3.1.3):- 

The Green’s function g(ݔ,   is defined to be that solution of the equation (ݐ

௫(g௫) − ݍ = ݔ)ߜ− −  (ݐ

Which satisfies the conditions 

ଵ(g)ܤ = ଶ(g)ܤ = 0. 

Let (ݔ)ݒand (ݔ)ݓbe two independent solutions of the equation 

௫(௫ݑ) − ݑݍ = 0. 
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Then  

g(ݔ, (ݐ = (ݔ)ݒߙ + (ݔ)ݓߚ +
1

,ݓ)ܬ (ݒ
ݐ)ܪ(ݐ)ݓ(ݔ)ݒ} − (ݔ + ݔ)ܪ(ݐ)ݒ(ݔ)ݓ −  (3.5)    {(ݐ

Where ߙ and ߚare two constant which must be chosen to ensure that g(ݔ,  satisfies the(ݐ

conditions at ݔ = ଵ(g)ܤ and ݐ = ଶ(g)ܤ = 0. as usual ݓ)ܬ,  is the conjunct of the (ݒ

solutions (ݔ)ݓand (ݔ)ݒevaluated at ݔ =  are independent the(ݔ)ݒ and(ݔ)ݓ and since ݐ

conjunct is non-vanishing of g(ݔ,  defined in (3.5) is obvious. The magnitude in the (ݐ

derivative of g(ݔ, ݔ at (ݐ =  isݐ

(ݐ)ݒ(ݐ)ᇱݓ − ݒ(ݔ)ݓ ᇱ(ݔ)
,ݓ)ܬ (ݒ

= −
1


 

Therefore g(ݔ,  defined in (3.5) satisfies the requirements of a Green’s functions at (ݐ

ݔ =  we now examine the boundary conditions since they are linear we have ݐ

ଵ(g)ܤ = (ݒ)ଵܤߙ + (ݓ)ଵܤߚ + (ݎ)ଵܤ = 0
ଶ(g)ܤ = (ݒ)ଶܤߙ + (ݓ)ଶܤߚ + (ݎ)ଶܤ = 0 

Where  

ݎ =
1

,ݓ)ܬ (ݒ
ݐ)ܪ(ݐ)ݓ(ݔ)ݒ} − (ݔ − ݔ)ܪ(ݔ)ݓ(ݐ)ݒ −  .{(ݐ

From these two algebraic equations we can obtain non-trivial solutions for ߙ and ߚ 

provided 

ฬܤଵ(ݒ) (ݓ)ଵܤ
(ݒ)ଶܤ ฬ(ݓ)ଶܤ ≠ 0. 

If this determinant vanishes then either ܤଵ(ݒ) + (ݒ)ଶܤ = 0 which implies that (ݔ)ݒis 
an eigenfunction of the given operator, corresponding to the eigenvalue zero, or there is 
a constant ܴ such that 

(ݒ)ଵܤ + (ݑ)ଶܤܭ = 0
(ݒ)ଵܤ + (ݓ)ଶܤܭ = 0 
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Which imply that ܤଵ(ݒ + (ݓܭ = ݒ)ଶܤ + (ݓܭ = 0 and that (ݒ +  is an eigenvector (ݓ݇
of the given operator again corresponding to the eigenvalue zero. 

Therefore provided there is no eigenfunction of the given operator corresponding to the 

eigenvalue zero then the function defined in (3.5) is a Green’s function for the related 

problem. 
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Section (3.2):Green’s functions and the adjoint operator 

In this section we establish a theorem the result of which whilst certainly of importance 

in the theory of ordinary differential operators has perhaps greater significance in the 

study of partial differential equations. 

 

Theorem (3.2.1):- 

Let g(ݔ,  on a manifold defined by certainܮ be the Green’s function for an operator(ݐ

boundary conditions and let ℎ(ݔ,  on∗ܮ be the Green’s function for the adjoint operator(ݐ

the manifold defined by adjoint boundary conditions. 

Then 

g(ݔ, (ݐ = ℎ(ݐ,  (ݔ

In the case when ܮ is self-adjoint g(ݔ,  .ݐ andݔ is a symmetric function of(ݐ

Proof:- 

By hypothesis we have 

,ݔ)݃ܮ (ݐ = ݔ)ߜ− − (ݐ
,ݔ)ℎ∗ܮ (ݐ = ݔ)ߜ− −  (3.6)                       (ݐ

From the defining property of an adjoint operator we have 

න ℎ(ݔ, ,ݔ)gܮ(ݐ (ݏ ݔ݀ = න ,ݔℎ൫∗ܮ ,ݔ)g(ݐ ൯(ݏ  .ݔ݀

This can be reduced by using (3.5) to yield 

න ℎ(ݔ, ݔ)ߜ(ݐ − (ݏ ݔ݀ = න ݔ)ߜ − ,ݔ)g(ݐ (ݏ  .ݔ݀

 



121 
 

Therefore  

ℎ(ݏ, (ݐ = g(ݐ,  (ݏ

If ܮ = then g ∗ܮ = ℎ and g(ݏ, (ݐ = g(ݐ,  which with an insignificant change in (ݏ

notation provides us with the statement of the theorem 

  



122 
 

Section (3.3):Spectral representation and Green’s functions 

Finally we will discuss in a purely formal manner on alternative method for solving 

boundary value problems, which is based on the theory of eigenfunctions of linear 

operators, and in so doing we will indicate its connection with our own approach. 

In our previous discussion of abstract linear operators we saw that there exist two 

fundamental methods for solving the equation 

ݑܮ = ݂. 

Where ܮis a linear operator, ݂agiven vector and ݑ an unknown vector 

One method is to construct the inverse operator ିܮଵand so obtain 

ݑ =  .ଵ݂ିܮ

When ܮ is a differential operator, this method leads as we have seen to the 

consideration of integral operators which have as kernels the Green’s function of the 

given differential operator. The other method is to use the spectral representation of the 

operator ܮ. That is to use the say we assume that the eigenvectors of ܮ span the space 

and that 

݂ =  ܽݒ 

Where ݒ is an eigenvector of ܮ corresponding to the eigenvalue ߣ. 

Then we write 

ݑ =  ܾݒ .        (3.7) 
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Where ܾ the coefficients have to be determined this is accomplished by using the 

orthonormality of the eigenvectors as follows 

ݑܮ =  ݒܾߣ =  ܽݒ              (3.8) 

Consequently  

ܾ =
ܽ

ߣ
 

and 

ݑ =  ൬
ܽݒ

ߣ
൰ 

The representation of ݑ and ݑܮ in (3.7) and (3.8) is called the spectral representation of 

the operator ܮ. 

These ideas are particularly simple to apply when ܮ is an operator in a finite-

dimensional space. However, when  ܮ acts in an infinite-dimensional space there are 

difficult questions to answer regarding the convergence of (3.7) and (3.8) and whether 

or not the eigenvectors of ܮ span the space. For the time being however we will tacitly 

assume that such aspectral. 

Representation of ܮ is available and further for our immediate convenience that ܮ is 

self-adjoint. Then by successive application of the above reasoning we obtain for any 

polynomial (ߣ) inߣ the result 

ݑ(ܮ) =  ܽ(ߣ)ݒ                       (3.9) 

This may be further generalized to embrace continuous function of ߣ by means of the 

following definition 

ݑ(ܮ)݂ =  ݂ܽ(ߣ)ݒ                        (3.10) 
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When rigorously established this last result has many important applications, for 

instance the inverse operator (ܮ −  ଵ is given byି(ߣ

ܮ) − ݑଵି(ߣ = (ߣ − ݒଵܽି(ߣ . 

Of course if ߣ is an eigenvalue of the operator ܮ the result is completely meaning unless 

the appropriate ܽ is zero. 

The spectral representation of ܽ operator ܮ depends upon the study of the inverse of 

the operator (ܮ −  .ߣ for all complex  values of (ߣ

We say that the operator (ܮ −  has an inverse for any vector ݂ which lies in the range (ߣ

of (ܮ − ܮ) in the domain of ݑ if there exist a unique vector (ߣ −  such that (ߣ

ܮ) − ݑ(ߣ = ݂. 

We have seen that a necessary and sufficient condition for the existence of an inverse is 

that the homogeneous equation 

ܮ) − ݑ(ߣ = 0. 

Possesses only the trivial solution ݑ ≡ 0. If this homogeneous equation has a non-trivial  

solutionߣ is an eigenvalue of the operator  ܮ and ݑ the corresponding eigenvector. In 

this case ߣ is said to belong to the point spectrum or discrete spectrum of ܮ. 

Suppose that the homogeneous equation has only the trivial solution ݑ = 0 then as we 

know (ܮ −  may be the whole space ܵ and the inverse is a bounded operator. This (ߣ

means that for every vector ݂ ݅݊  ܵ there exist a unique vector ݑ which satisfies 

ܮ) − ݑ(ߣ = ݂. and such that (௨,௨)
(,)

 is bounded. 

In this case ߣ is said to belong to the resolvent set of the operator ܮ. Secondly, the range 

or the closer of the range of  (ܮ −  may be the whole space but the inverse (ߣ

operator݈.In this case ߣ is said belong to the continuous spectrum of the operator ܮ. 



125 
 

Finally the range or the closer of the range (ܮ −  may be a proper sub set of ܵ.In this  (ߣ

case ߣ belongs residual spectrum of ܮ. 

 

Definition (3.3.1):- 

          The spectrum of the operatorܮ consists of all values of ߣ which belong to the 

discrete the continuous or the residual spectrum. 

The application of this theory to differential operators define over space with infinite 

dimension has many difficulties which are not in evidence when dealing with linear 

operators defined over finite-dimensional space. One such difficulty we have already 

mentioned the uncertainty concerning whether or not the eigenvectors of the operators 

span the space that is the domain of ܮin the case of ordinary linear self-adjoint 

differential operators this question can be answered the eigenvectors of the operators in 

this case do indeed span the domain of the operator. Whilst this knowledge is 

comforting in it self we recall that there are many differential operator which are not 

self-adjoint. 

Another and even more profound difficulty arises whenever we consider the possibility 

of ߣbelonging to the spectrum of ܮ. It can be shown that an ordinary differential 

operator has no residual spectrum so we need only consider when ߣ is in either the 

discrete spectrum or the continuous spectrum. When ߣ is in the discrete spectrum no 

inverse of(ܮ −  exists and the problems almost resolve themselves. The nature of the (ߣ

continuous spectrum is the main difficulty in the theory of differential operators. It is 

important to be able decide when an operator has a continuousspectrumand when it 

dose how this continuous spectrum can be used to give a spectral representation of the 

operator. These several questions can be answered by a consideration of the Green’s 

function approach would appear to be more fundamental, to illustrate the connection 

between the two approaches, let ܮ be an ordinary self-adjoint differential operator with 
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eigenfunction ݑଵ, ,ଶݑ … ..  and associated eigenvalues ߣଵ, ,ଶߣ … … . We well assume that 

the eigenfunctions span the domain of the given operator and that in consequence any 

square integrable function ݑ can be expanded in the form: 

(ݔ)ݑ =   (ݔ)ݑߙ

whereߙ = ,ݑ)  (ݑ

now it follows that: 

(ݔ)ݑܮ  =  (ݔ)ݑܮߙ =   ݑߣߙ

And if ݂(ݐ) = ߣ) −   ଵ we obtainି(ݐ

1
ߣ) − (ݐ (ݔ)ݑ = 

(ݔ)ݑߙ
ߣ) − (ߣ

.                       (3.11) 

The left-hand side of these equation can be expressed in terms of the Green’s function 

for the differential operator (ܮ − (ݔ)ݓ To see this let .(ߣ = ܮ) −  then if;(ݔ)ݑ(ߣ

,ݔ)ܩ ;ݕ ܮ)is the Green’s function for the operator (ߣ −   We have shown that .(ߣ

(ݔ)ݓ = − න ,ݔ)ܩ ;ߦ (ߣ  .ߦ݀(ߦ)ݑ

If now, we integrate (3.11) over the large circle of radius R in the complex ߣ plane, we 

obtain  

1
݅ߨ2 න

(ݔ)ݑ
ܮ − ߣ ߣ݀ = 

1
݅ߨ2 න

(ݔ)ݑߙ
ߣ) − (ߣ  ߣ݀

When the radius of the circle increases without bound, the right-hand side includes 

more and more residues, and we obtain: 

lim
ோ→ஶ

1
݅ߨ2

න
(ݔ)ݑ
ܮ − ߣ

ߣ݀ = −  (ݔ)ݑߙ = .(ݔ)ݑ−                 (3.12) 
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 This result, which connects the Green’s function with the eigenfunctions, was obtained, 

as already stressed, on the basis of a number of assumptions regarding the existence and 

completeness of the eigenfunctions. In practice, to overcome the difficulties, the above 

reasoning is usually followed through in the  reverse direction. Starting with a 

knowledge of the Green’s function, ݔ)ܩ, ;ߦ ܮ) for the operator,(ߣ −  we consider the (ߣ

following integral in the complex ߣ-plane; 

1
݅ߨ2 න

(ݔ)ݑ
ܮ − ߣ ߣ݀ =

1
݅ߨ2 න ߣ݀ න ,ݔ)ܩ ;ߦ  ,ߦ݀(ߦ)ݑ(ߣ

And by evaluating this in terms of residues we hope to obtain (3.12),that in expansion 

of (ݔ)ݑ  in terms of the eigenfunctions of ܮ. 

 

Definition (3.3.2):- 

The spectral representation of operators despite the difficulties mentioned has many 

useful applications. For example a number of partial differential equations can be 

solved if we can assign a meaning to functions of certain ordinary differential operators. 

Although such functions can be made meaningful in terms of the spectrum of the 

ordinary differential operators, in practice as we have seen we also really require a 

knowledge of the associated Green’s functions of the differential operators. Therefore a 

part from this one brief and purely formal mention of spectral representations of 

operators, we shall confine ourselves to determining the Green’s functions of ordinary 

and partial differential operators. Once such function are determined then if it is felt 

necessary, a spectral representation approach can be followed with greater degree of 

confidence.  
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Chapter (4) 

Integral Equation's 

 
Section (4.1):Classification of integral equations 
 

 
Definition (4.1.1):- 
 

Equations in which the unknown appears under an integral sign are 
known as integral equations. 
 

 
Definition (4.1.2):- 
 

If the range of integration is assumed to be fixed the equations are known 
as Fredholm equations. 
 
Definition (4.1.3):- 
 

If the range of integration is not fixed the equations are known as 
Volterra equations. 
To be precise the equation 

(ݔ)݂ = න ,ݔ)ܭ (ݖ)ݕ(ݖ
௫



 (4.1)                                .ݖ݀

Where ݕ the unknown is function and ݂ is a known function, is a Volterra 
equation of the first kind with kernel ݔ)ܭ,  .(ݖ
A Fredholm equation of the first kind with kernel ݔ)ܭ,  is (ݖ

(ݔ)݂ = න ,ݔ)ܭ (ݖ)ݕ(ݖ




 (4.2)                                 .ݖ݀

Corresponding integral equations of the second kind involve an unknown 
function which appears not only under the integral sign, but outside as 
well for instance  
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(ݔ)ݕ + න ,ݔ)ܭ (ݖ)ݕ(ݖ
௫



ݖ݀ =  (4.3)                    (ݔ)݂

And 

(ݔ)ݕ + න ,ݔ)ܭ (ݖ)ݕ(ݖ




= ݖ݀ g(ݔ)                      (4.4) 

are respectively non-homogeneous Volterra and Fredholm equations of 
the kind with kernel ݔ)ܭ,  are zero the equations (ݔ)and g (ݔ)݂ when (ݖ
become homogeneous. 
We shall see that boundary value problems for elliptic partial differential 
equations lead to Fredholm integral equations where the region of integral 
has a fixed size. Initial value problems for hyperbolic partial differential 
equations, on the other hand lead to Volterra integral equations where the 
region of integration is no longer fixed. 
 
Definition (4.1.4):- 
 

In practice integral equations of the second kind are much easier to 
handle, than those of the first kind, and it is a very fortunate fact that the 
majority of problems of mathematical physics happen to reduce to the 
former rather than the latter. For this reason and also because Volterra 
equations can be thought of as special cases of the Fredholm equations 
for which the kernel ݔ)ܭ,  lies outside a region depending ݐ vanishes if ,(ݐ
on ݔ we shall only consider Fredholm equations of the second kind. 
That is given 

(ݔ)߶ − ߣ න ,ݔ)ܭ (ݐ)߶(ݐ ݐ݀ =  (4.5)                   ,(ݔ)݂

where the kernel ݔ)ܭ,  are assumed known, we require to ߣ and scalar (ݐ
determine the unknown function ߶ for all functions ݂ of some suitable 
class. The integral in (4.5) is understood to extend over a fixed domain, 
which also constitutes the range of ݔ. 
 
 
Definition (4.1.5):- 
 
In keeping our previous discussion of integral operator, we introduce the 
notation 
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߶ܭ = න ,ݔ)ܭ (ݐ)߶(ݐ  (4.6)                        .ݐ݀

The integral equation (4.5) then assumes the form  
߶ − ߶ܭߣ = ݂                                             (4.7) 

Probably the first method which comes to mind for solving (4.7) is that of 
successive approximation. 
 
To this end we will rewrite (4.7) in the form 

߶ = ݂ +  (4.8)                        ,߶ܭߣ
as a zero-order approximation we take 

߶(ݔ) =  ,(ݔ)݂
we now substitute this zero-order approximation into the right-hand side 
of (4.8) to obtain the first order approximation ߶ଵ(ݔ) 

߶ଵ(ݔ) = ݂ +  .݂ܭߣ
Similarly we substitute this first-order approximation into the right-hand 
side of (4.8) to obtain the second-order approximation and so on if the 
nth-order approximation ߶(ݔ) has been obtained in this way the 
(݊ + 1)Theapproximation,߶ାଵ(ݔ) is taken to be the result of 
substituting ߶(ݔ) into the right-hand side of (4.8). In this manner 
successive approximations are obtain from the recurrence relation. 

߶ାଵ = ݂ +  .                      (4.9)߶ܭߣ
If these successive approximations tend uniformly to a limit than as we 
will presently show, this limit must certainly be a solution of (4.8). If the 
limit does not exist then clearly, the method of successive approximations 
has now meaning. 
We will now examine the detailed structure of the successive that the 
approximations. For definiteness, in this examination we will assume that 
the range of integration is ܽ ≤ ݐ ≤ ܾ.Consequently 

߶ଵ(ݔ) = (ݔ)݂ + (ݐ)݂ܭߣ = (ݔ)݂ + ߣ න ,ݔ)ܭ (ݐ)݂(ݐ




 .ݐ݀
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And 
߶ଶ(ݔ) = (ݔ)݂  +  (ݐ)ଵ߶ܭߣ

  = (ݔ)݂ + ߣ න ,ݔ)ܭ (ݐ)ଵ߶(ݐ




                                                         ݐ݀

          = (ݔ)݂ + ߣ න ,ݔ)ܭ ݐ(ݐ)݂(ݐ




+ ݐ݀ ଶߣ න ,ݔ)ܭ (ݐ




ݐ݀ න ,ݔ)ܭ (ݏ)݂(ݏ




 .ݏ݀

In the double integral appearing in the expression for ߶ଶ(ݔ) , let us 
change the order of integration and write for brevity. 

,ݔ)ଶܭ (ݏ = න ,ݔ)ܭ ,ݔ)ܭ(ݐ (ݏ




 .ݐ݀

Then with this notation, we obtain 

߶ଶ(ݔ) = (ݔ)݂ + ߣ න ,ݔ)ܭ (ݏ)݂(ݏ




ݏ݀ + ଶߣ න ,ݔ)ଶܭ (ݏ)݂(ݏ




 .ݏ݀

Similarly we fined 

߶ଷ(ݔ) = (ݔ)݂ + ߣ න ,ݔ)ܭ (ݏ)݂(ݏ




ݏ݀ + ଶߣ න ,ݔ)ଶܭ (ݏ)݂(ݏ




         ݏ݀

ଷߣ+                                                                                                            න ,ݔ)ଶܭ (ݏ)݂(ݏ




 .ݏ݀

Where 

,ݔ)ଷܭ (ݏ = න ,ݔ)ܭ ,ݔ)ܭ(ݐ (ݏ




 .ݐ݀

Continuing in this manner we obtained the general from 

߶(ݔ) = (ݔ)݂ +  ߣ න ,ݔ)ܭ (ݏ)݂(ݏ




ݏ݀


ୀଵ

.                                       (4.10) 

Where ܭ(ݔ,  is determined by the recurrence relations (ݏ

,ݔ)ଵܭ (ݏ = ,ݔ)ܭ ;(ݏ ,ݔ)ܭ  (ݏ = න ,ݔ)ܭ ,ݐ)ିଵܭ(ݐ (ݏ




 (4.11)                   .ݐ݀
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The function ܭ(ݔ,  is called the ݉th iterated kernel in relation to the (ݏ
given kernel ݔ)ܭ, ,ݔ)ܭ It can readily be shown that .(ݏ  also satisfies (ݏ
the more general recurrence 

,ݔ)ܭ (ݏ = න ,ݔ)ܭ ,ݐ)ିܭ(ݐ (ݏ




ݎ          ,ݐ݀ ≤ ݉ .                              (4.12) 

In keeping with the notation introduced in (4.6) it is evident that 

߶ଶܭ = (߶ܭ)ܭ = න ,ݔ)ܭ (ݐ




න ,ݐ)ܭ (ݏ)߶(ݏ




 ݐ݀ ݏ݀

And hence 

߶ଶܭ = න ,ݔ)ଶܭ (ݏ)߶(ݏ




 ݏ݀

 
Continuing in this manner we find that. 

߶ܭ = න ,ݔ)ܭ (ݏ)߶(ݏ




 (4.13)                              ݏ݀

Where ܭ(ݔ, ,ݔ)ܭ is the ݊Th iterated kernel obtained from (ݏ  Thus .(ݏ
(4.10) may be written in the form 

߶(ݔ) = (ݔ)݂ +  ݂ܭߣ


ୀଵ

.                           (4.14) 

Once we established the uniform convergence of the series in (4.14) it 
will be seen that this interchange of integration and summation sign is 
also permissible as ݊ tends to infinity. 
 
Definition (4.1.6):- 
 

In the limit as ݊ tends to words infinity we are led to a consideration of 
the series 

(ݔ)݂ +  ݂ܭߣ
ஶ

ୀଵ

.                           (4.15) 

If this series converges uniformly to a function ߶(ݔ) then this function 
will satisfy the equation (4.7).  
This readily seen since the assumed uniform convergence of the series 
(4.15) allows term-by-term integration, and have that. 
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߶ܭߣ              = ݂ܭߣ +  ାଵ݂ܭାଵߣ
ஶ

ୀଵ

=  ݂ܭߣ
ஶ

ୀଵ

                                                                   

= ߶ − ݂ 
As required therefore the solution of the integral equation 

߶ − ߶ܭߣ = ݂ 
Is given by 

(ݔ)߶ = (ݔ)݂ +  ݂ܭߣ
ஶ

ୀଵ

                       (4.16) 

Whenever the series is uniformly convergent. To examine the natural of 
the convergence of the series in (4.16) we first notice that  

ଶ(݂ܭ) = ቐන ,ݔ)ܭ (ݐ)݂(ݐ




ቑݐ݀

ଶ

 

And by means of the Schwarz inequality we obtain the inequality: 

ଶ(݂ܭ) ≤ ‖݂‖ଶ න ,ݔ)ܭ ଶ(ݐ





 .ݐ݀

To be precise we have define in our solution space the familiar inner 
product 

(߶, ߰) = න (ݔ)߰(ݔ)߶  ݔ݀

And associated norm 
‖߶‖ = (߶, ߶)ଵ/ଶ 

If we integrate each side of the above inequality with respect to ݔ we 
obtain: 

‖ଶ݂ܭ‖ ≤ ‖݂‖ଶ න න ,ݔ)ܭ ଶ(ݐ





 ݐ݀




 .ݔ݀

If we assume that the kernel ݔ)ܭ,  in ݐ and ݔ is square integrable for all (ݐ
[ܽ, ܾ] then we may set 

ଶܤ = න න ,ݔ)ܭ ଶ(ݐ





ݐ݀




ݔ݀ < ∞ 
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And obtain finally 
‖݂ܭ‖ ≤  .ܤ‖݂‖

Similarly we see that 

ଶ(ଶ݂ܭ) = ଶ[(݂ܭ)ܭ] ≤ ‖ଶ݂ܭ‖ න ,ݔ)ܭ ଶ(ݐ





 ,ݐ݀

And on integrating each side with respect to ݔ we obtain 
‖ଶ݂ܭ‖ ≤  .ଶܤ‖݂‖

Proceeding inductively we find that 
‖݂ܭ‖ ≤               (4.17)ܤ‖݂‖

Consequently the series in (4.16) is majorized by the series 

‖݂‖  ܤ|ߣ|
ஶ

ୀ

 

This is a geometric series which is convergent provided 
ܤ|ߣ| < 1.                                   (4.18) 

Therefore by the Weierstrassܯ-test, the series in (4.16) is uniformly 
convergent whenever (4.18) is satisfied. Under these conditions it is 
evident that (ݔ) , the required solution, is unique. Suppose the contrary 
and let ߶ଵ and ߶ଶbe two solutions of (4.7) then 

߶ଵ − ଵ߶ܭߣ = ݂ 
߶ଶ − ଶ߶ܭߣ = ݂ 

Subtracting these tow equations and setting (ݔ)ݓ = ߶ଵ(ݔ) − ߶ଶ(ݔ) we 
obtain 

(ݔ)ݓ − (ݔ)ݓܭߣ = 0. 
From the Schwarz inequality it follows that  

(ݔ)ଶݓ ≤ ଶ|ߣ| න ,ݔ)ܭ (ݐ




ݐ݀ න (ݐ)ଶݓ




 ݐ݀

And on integrating with respect to ݔ we obtain  
ଶ‖(ݔ)ݓ‖ ≤  .ଶ‖(ݔ)ݓ‖ଶܤଶߣ

Therefore  
(1 − ଶ‖(ݔ)ݓ‖(ଶܤଶߣ ≤ 0 

Now the first factor on the left is strictly positive, hence from the 
definition of norm, it follows that (ݔ)ݓ ≡ 0 and the uniqueness is 
established. 
These results we can summarize in the form of a theorem  
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Theorem (4.1.7):- 
The Fredholm equation of the second kind 

߶ − ߶݇ߣ = ݂                                     (4.17) 
With kernel ݔ)ܭ,  has a unique solution given by the uniformly (ݐ
convergent Neumann series  

(ݔ)߶ = (ݔ)݂ +  ܭߣ
ஶ

ୀ

݂                (4.16) 

Provided  
(1)  ݂  Is square integrable                                                                   (4.19) 

(2) න න ,ݔ)ܭ ݔଶ݀(ݐ








ݐ݀ = ଶܤ < ∞                                                     (4.20) 

ܤ|ߣ|(3) < 1.                                                                                          (4.21) 
An alternative representation of the solution may be obtained as follows. 
We can rewrite the equation (4.7) in the operator form  

(1 − ߶(ܭߣ = ݂                                     (4.22) 
Where ܫ is identity operator consequently, whenever the inverse operator 
ܫ) −   ଵ exist we may writeି(ܭߣ

߶ = ܫ) −  ଵ݂ି(ܭߣ
A formal expansion by the binomial theorem yields 

߶ = ݂ + ݂ܭߣ + ଶ݂ܭଶߣ + ⋯ 
By definition the norm of the operator ܭ is given by 

‖ܭ‖ = ݈. .ݑ ܾ
݂ .

‖݂ܭ‖
‖݂‖ = ݈ . . ݑ ܾ

‖݂‖ = 1.  ‖݂ܭ‖

Consequently 
‖݂ܭ‖ ≤  ‖݂‖‖ܭ‖

Similarly by first writing ݂ܭ = g say and applying Schwarz’s inequality 
we find that  

‖ଶ݂ܭ‖ = ‖(݂ܭ)ܭ‖ = ‖gܭ‖ ≤ ‖g‖‖ܭ‖ =  ‖݂ܭ‖
Therefore  

‖ଶ݂ܭ‖ ≤  ‖݂‖ଶ‖ܭ‖
Thus the solution to integral equation in the form 

߶ = (1 + ܭߣ + ଶܭଶߣ + ⋯ )݂ 
Is majorized by the series  

(1 + ‖ܭ‖|ߣ| + ଶ‖ܭ‖ଶ|ߣ| + ⋯ )‖݂‖ 
Which is uniformly convergent provided that ݂ is bounded in norm and  
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‖ܭ‖|ߣ| < 1 
Under these condition it is evident that the solution ߶ is unique. 
Introducing the reciprocal or resolvent operator ܴ by 

ܴ = ܭ + ଶܭߣ + ଷܭଶߣ + ⋯                               (4.23) 
We may represent the solution ߶ as 

߶ = ݂ + ݂ܴߣ = (1 +  (4.24)                                  ݂(ܴߣ
So for the only restriction that we have placed on ݂ is that it should be 
square integrable and we have not really enquired whether or not this 
condition is both necessary and sufficient for solution ߶ of (4.7) to exist 
 
Definition (4.1.8):- 
In order to establish a necessary condition for the existence of a solution 
to (4.7) we first introduce the transposed integral equation to (4.7) 
Equation (4.7) is  

߶ − ߶ܭߣ = ݂ 
Where the Fredholm operator ܭ has kernel ݔ)ܭ,   and is given by (ݐ

߶ܭ = න ,ݔ)ܭ (ݐ)߶(ݐ  ݐ݀

The transposed integral equation is 
߰ − ߰∗ܭߣ = g                                                          (4.25) 

Where that conjugate Fredholm operator  ܭ∗߰ has a kernel  ݔ)ܭ,  and (ݐ
is given by 

߰∗ܭ = න ,ݔ)ܭ (ݐ)߰(ݐ  (4.26)                                        ݐ݀

Where ݔ)ܭ,  is complex, the transposed kernel is given by the complex (ݐ
conjugate of (ݔ,  .the arguments transposed , (ݐ
We will not introduce any special notation to emphasize this point but 
will simply assume that whenever it is appropriate to do so the complex 
conjugate is taken. 
Conjugate operators are connected by the important relationship 

,߶ܭ) ߰) = (߶,  (4.27)                                             (߰∗ܭ
 
 
Definition (4.1.9):- 
 

Let ߰ be an eigenfunction of the transposed equation that is, let ߰ is 
satisfy: 

߰ − ߰∗ܭߣ = 0                                                   (4.28) 
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Now let us examine the inner product(߰, ݂). 
(߰, ݂)   = (߰, [߶ − ([߶ܭߣ = (߰, ߶) − ,߰)ߣ  (߶ܭ

   = (߰, ߶) − ,߰∗ܭ)ߣ ߶) 
= ([߰ − ,[߶∗ܭߣ ߶). 

Therefore from (4.28) and the defining properties of the inner product it 
follows that 

(߰, ݂) = 0                                                            (4.29) 
 
 
Definition (4.1.10):- 
With the notation introduced in the previous section we will examine in 
detail the following four integral equations 

߶ − ߶ܭߣ = ݂                                      (4.30) 
߶ − ߶ܭߣ = 0                                     (4.31) 
߰ − ߰∗ܭߣ = g                                    (4.32) 
߰ − ߰∗ܭߣ = 0                                   (4.33) 

 
Theorem (4.1.11):(The Fredholm Alternative) 
 

If the homogeneous equation (4.31) and (4.33) possess only the trivial 
solution ߶ = ߰ = 0 than the non-homogenous equation (4.30) and (4.32) 
have unique solutions ߶ and ߰ respectively for all square integrable 
functions ݂and g. 
If the homogenous equations (4.31) and (4.33) have non-trivial solution 
(eigenfunction) ߶ଵ, ߶ଶ, … … , ߶ and ߰ଵ, ߰ଶ, … … , ߰ then the number of 
these solutions which are linearly independent is the same for each 
equation. 
In such case the non-homogenous equation (4.30) has a solution if and 
only if ݂ is orthogonal to the ݉ eigenfunction ߰ of (4.33) that is  

(߰ , ݂) = 0    ,   ݅ = 1,2, … … , ݉  .                   (4.34) 
Similarly (4.32) will have a solution if and only if 

(߶, g) = 0    ,   ݅ = 1,2, … … , ݇  .                   (4.35) 
The proof of this theorem will be our main concern for the remainder of 
this section. 
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Definition (4.1.12):- 

We will first demonstrate the theorem for integral equations with a 
particular type of kernel, namely, a degenerate kernel. We have already 
encountered such kernels under the heading of separable kernels (section 
(1.1)) which is their more usual title in the theory of abstract linear 
operator .For the purposes of this section, in order to conform with the 
language of the theory of integral equations, we will use the synonymous 
title of degenerate kernel, and write such kernels in the form  

,ݔ)ܭ (ݕ =  (4.36)                         (ݐ)ߚ(ݔ)ߙ


ୀ

 

The more general problem will be treated afterwards by approximating 
the arbitrary kernel by a degenerate kernel. 

With no loss of generality we can assume that ߣ = 1and examine the 
Fredholm equation: 

߶ − ݇߶ = ݂                                                       (4.37) 

Which may also be written 

(ݔ)߶ −  (ݔ)ߙ ቀߚ(ݐ), ቁ(ݐ)߶ = (4.38)              (ݔ)݂


ୀଵ

 

The homogeneous transposed equations  

(ݔ)߰ − ݇∗߰ = 0 

may be written in a like manner as 

(ݔ)߰ −  ቀ߰(ݐ), ቁ(ݐ)ߙ (ݔ)ߚ = 0           (4.39)


ୀଵ

 

Which shows that the solutions ߰(ݔ) are linear combinations of 
,ଵߚ … … . ,    which are themselves a linearly indendent and even anߚ
orthonormal set of functions.  

We therefore decompose given function݂ into  

݂ = ଵ݂ + ଶ݂ 
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Where ଵ݂is a linear combination of the functions ߚଵ, … . . ,   and ଶ݂ isߚ
orthogonal to functionߚ , ݅ = 1,2, … . , ݊, that is  

( ଶ݂, (ߚ = 0,     ݅ = 1,2, … . ݊ 

Thus, it follows that  

ܭ ଶ݂ = (ߙ(௫)((ݐ)ߚ, ଶ݂(ݐ))


ୀଵ

= 0, 

and the substitution  

߶ = ߶ଵ + ଶ݂, 

reduces the equation (4.38) to 

߶ଵ =  ,(ݐ)ߚ൫(ݔ)ߙ ߶ଵ(ݐ)൯ = ଵ݂                           (4.40)


ୀଵ

 

It is therefore sufficient to discuss the special case when ଶ݂ = 0which 
will imply that ݂ = ଵ݂and ߶ = ߶ଵ. 

To solve the integral equation (4.40) we reduce it to an equivalent system 
of algebraic equations. To this end we write  

ܿ = ߚ) , ߶ଵ),      ݅ = 1,2, … . . ݊                           (4.41) 

andݕ = ,ߚ) ݂),        ݅ = 1,2, … … ݊                    (4.42) 

Then (4.40) takes on the form: 

ܿ −  ܽ ܿ



ୀଵ

=                         (4.43)ݕ 

 

Where 

ܽ = ൫ߙ,  ൯(4.44)ߚ

Notice that throughout we have assumed that the ߙ(x) and ߚ(ݔ) are 
linearly independent. If this were not case, the number of terms in (4.36) 
would simply be reduced. The assigning of the function݂ in the original 
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integral equation (4.37) is thus equivalent to assigning the numbers ݕin 
the algebraic set (4.43). It follows that whenever a solution vector 
{ܿଵ, ܿଶ, … … . , ܿ} of (4.43) exists we can construct a function ߶ in the 
form  

(ݔ)߶ = (ݔ)݂ +  ܿߙ(ݔ)                                 (4.45)


ୀଵ

 

and clearly such a function satisfies (4.41) and the integral equation 
(4.80). Thus we see that the given integral equation can be solved if and 
only if the system of simultaneous algebraic equation (4.43) can be 
solved. 

In order that (4.43) should possess a unique solution for ܥ , ݆ = 1,2, … , ݊, 
it is necessary and sufficient that the determinant of the coefficients 
appearing on the left-hand side should be non-zero. It follows that, when 
this the case, the integral equation (4.37) also has a unique solution. In 
particular we notice that if ߶ = 0is the only solution of (4.37) for       
݂ = 0, then the above reasoning indicates that the determinant of the 
coefficients in (4.43) is again non-zero. Therefore (4.37) is soluble for 
ever choice of݂.   

 

Definition (4.1.13):-  

Turning for a moment to the homogeneous transposed equation (4.39) 
,we obtain , on forming the inner product with ߙ, the corresponding 
system of algebraic equations to (4.43) , namely : 

 

ܾ −  ܾܽ



ୀଵ

= 0                                         (4.46) 

Where                           ܾ = (߰,  )                                     (4.47)ߙ

Form this system, and in particular (4.47), we see that any solution ߰ of 
(4.39) which does not vanish identically cannot be orthogonal to all the 
functions ߙ. Therefore such solutions must generate a non-trivial 
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solution vector {ܾଵ, … . ܾ}of the system (4.46). Conversely, any non-
trivial solution of (4.46) defines a function 

߰ =  ܾߚ



ୀଵ

                                                        (4.48) 

Which is always different from zero somewhere, and satisfies both (4.47) 
and (4.39). Furthermore, given such an eigenfunction as (4.48) of (4.39) 
we can multiply (4.43) by ܾand sum over all݅to obtain: 

 ܾݕ =  ܾܿ −  ܾܽ ܿ



,ୀଵ



ୀଵ



ୀଵ

 

               =   ܾ −  ܾܽ



ୀଵ

 ܿ



ୀଵ

 

                                    = 0                                               (4.49) 

Finally, form (4.42) we have  

 ܾݕ = (( ܾߚ), ݂) = (߮, ݂) = 0               (4.50)


ୀଵ

 

So that (4.49) is simply a re-statement of the orthogonality condition 
(4.29).Since the transpose of a determinant has the same numerical value 
as determinant itself, it follows that the determinants of the coefficients of 
the systems (4.43) and (4.46) have the same value. Thus, in the case 
under discussion, when the determinant of coefficients in non-vanishing it 
follows that non-trivial solutions of (4.46) , and hence (4.39), do not 
exist. Consequently the orthogonality condition (4.29) imposes no 
restrictions at all on the function ݂. 

When the determinant of the coefficients of (4.43) vanishes , the 
corresponding matrix of the coefficients has a rank ݎ < ݊ ,and the vectors  
,ଵݕ) … …  ) for which (4.43) possesses a solution only span subspace ofݕ
the n-dimensional Euclidean space ; the subspace has the smaller 
dimension ݎ. since the matrix of coefficients of the transposed system 
(4.46) of the homogeneous algebraic equations has the same rank ݎ , the 
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eigenvectors (ܾଵ, ܾଶ, … . , ܾ) of (4.46) generate another subspace of 
dimension ݉ = ݊ − -now according to (4.49) the m-dimensional and r ,ݎ
dimensional manifolds must be orthogonal , and consequently their union 
must be the whole n-dimensional Euclidean space. It therefore follows 
that the vectors (ݕଵ, … . . ,  ) for which (4.45) is soluble are preciselyݕ
those which fulfill the orthogonality condition (4.49) for every solution 
(ܾଵ, … . , ܾ) of (4.46). 

 

Definition (4.1.14):- 

The established equivalence of integral and algebraic equation in both the 
homogeneous and non-homogeneous cases implies, in con-junction with 
the relation (4.50), that a solution of the fredholm integral equation of the 
second kind (4.37) exists if and only if the right-hand side, ݂, is 
orthogonal to every solution ߰   of the homogeneous transposed equation 
(4.39). Since the eigenvectors (ܾଵ, ܾଶ, … , ܾ)  span a subspace of 
dimension m , this amounts to the m condition : 

(߰,݂) = 0, ݅ = 1,2, … . ݉, 

Where the ߰ are m linearly independent eigenfunctions of the 
homogeneous transposed equation (4.39). This completes the prove of the 
Fredholm alternative in the case of degenerate kernels. It remains to show 
that theorem is also true for more general kernels. 

Given an arbitrary, square integrable kernel ݇we will use the Neumann 
series representation (4.16) to reduce the given problem to one associated 
with a degenerate kernel which we now know how to solve. 

In our previous discussions of integral operators we saw that it was 
always possible to approximate a given kernel by a degenerate kernel in 
such a manner that the difference between the two kernels was as small as 
we wished. In this particular case we will choose the approximating 
degenerate kernel,ܭ(ݔ.  to be such that the  difference(ݐ

,ݔ)ܭ (ݐ = ,ݔ)ܭ (ݐ − ,ݔ)ܭ  (4.51)                  (ݐ

Satisfies the inequality  
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ඵ ,ݔ)෩ܭ ଶ(ݐ ݏ݀ݐ݀ < 1                                (4.52) 

Imposing this restriction on the kernel ܭෙ(ݔ,  ensures that we can use the(ݐ
results of theorem (4.1.7).that is, the Fredholm equation 

߶෨ − ෩߶෨ܭ = ሚ݂                        (4.53) 

Where ܭ෩ is an integral operator with kernel ܭ෩(ݔ,  has a solution ߶෨,(ݐ
which may be represented as 

߶෨ = ሚ݂ + ෨ܴ ሚ݂                            (4.54) 

Where ෨ܴ is the resolvent operator associated with the operatorܭ෩. We will 
use this representation of the solution of an integral equation having a 
kernel similar to (4.53), to reduce the unrestricted fredholm equation: 

߶ − ߶ ܭ = ݂                         (4.55) 

To a degenerate integral equation. This we accomplish as follows. 
Emphasizing the fact that we will denote operator s by the same letter as 
used to denote their kernel , but without any arguments attached (that is , 
,ݔ)ܭ denotes the operator generated by the kernel ܭ  we see that in ((ݐ
terms of the approximation(4.51) our given equation (4.55) may be 
written:  

߶ − ߶෩ܭ = ݂ +  ߶                                                      (4.56)ܭ

This equation has the same structure as (4.54); in particular it has the 
same kernel, thus its solution has the representation 

߶ = (݂ + (߶ܭ + ෨ܴ(݂ +  ߶)                                  (4.57)ܭ

Or, which is the same thing: 

߶ − ൫ܭ + ෨ܴܭ൯߶ = ݂ + ෨ܴ݂                                    (4.58) 

Clearly, this is a Fredholm equation of the second kind, and it must have 
a solution ߶  which is identical to the equation (4.51). At first sight it 
would appear that no great progress has been made. However, this is not 
the case since we can show that (4.58) has a degenerate kernel, and we 
have already established the Fredholm Alternative for such equations. 
That ܭ is degenerate follow by hypothesis. To show that ෨ܴܭ  has a 
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degenerate kernel we first observe that, since we have introduced the 
inner product 

(݂, g) = න  ݔ݀(ݔ)g(ݔ)݂

Into our space, we may write ܭ߶ in the form 

߶ܭ = න ,ݔ)ܭ ݐ݀(ݐ)߶(ݐ = ,ݔ)ܭ) ,(ݐ  ((ݐ)߶

Similarly for all other operators appearing in our work ; in particular  

ෘܴ߶ = ෩ܭൣ + ෩ଶܭ + ෩ଷܭ + ⋯ ൧߶        

                                 = ቀܭ෩(ݏ, ,(ݔ ቁ(ݔ)߶ + ቀܭ෩ଶ(ݏ, ,(ݔ ቁ(ݔ)߶ + ⋯ 

= ቀ ෨ܴ(ݏ, ,(ݔ  ቁ(ݔ)߶

It then follows immediately that 

෨ܴܭ߶ = ൫ܴ(ݏ, ,(ݔ ,(ݐ)ߚ)൯(ݔ)ߙ ((ݐ)߶


ୀଵ

 

And clearly ෨ܴܭ has a degenerate kernel 

൫ܴ(ݏ, ,(ݔ (ݐ)ߚ൯(ݔ)ߙ


ୀଵ

 

Therefore , the kernel of equation (4.58) is degenerate . since we have 
already established the Fredholm Alternative for degenerate Fredholm 
equations , it follows that (4.58), and consequently(4.55), is soluble if and 
only if the orthogonality condition 

൫ ෨߰, [݂ + ෨ܴ݂]൯ = 0                                      (4.59) 

Is satisfied for every eigenfunction ෨߰ , of the homogeneous transposed 
equation  

෨߰ − ൫ܭ + ෨ܴܭ൯∗ ෨߰                                     (4.60) 
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If we are to prove the theorm for such kernels as we presently consideried 
, we must show that the condition (4.60) is equivalent to  

(߰, ݂) = 0                                                      (4.61) 

Where ߰ is any eigenfunction of homogeneous transposed equation 

߰ − ߰∗ܭ = 0                                                   (4.62) 

Admittedly we have anticipated (4.61), as such a result would prove the 
theorem.  

That it is indeed true we can establish fairly easily , as follows. let us 
write: 

߰ = ෨߰ + ܴ∗෪ ෨߰ = ൫ܫ + ܴ∗෪൯ ෨߰                                               (4.63) 

Where ෨ܴ∗ is the resolvent operator associated with ܭ෩∗ and  

(1 − ෩∗)ିଵܭ = ൫ܫ + ෨ܴ∗൯ 

Consequently, from (4.63) we obtain 

෨߰ = ൫ܫ −  ෩∗൯߰                                                                         (4.64)ܭ

Which gives ෨߰ in terms of, since ܭ and ܭ∗ are related by (4.27) it can 
easily be shown that the operator in (4.60) can be re-written  

ܭ) + ෨ܴܭ)∗ = ܭ
∗ + ܭ

∗ ෨ܴ∗                                              (4.65) 

Thus on substituting (4.65) and (4.60) can be obtain  

൫ܫ − ෩∗൯߰ܭ − ൫ܭ
∗ + ܭ

∗ ෨ܴ∗൯൫ܫ −                                                               ෩∗൯߰ܭ

           = ߰ − ൫ܭ෩∗ + ෩ܭ
∗൯߰ + ܭ

∗൫ ෨ܴ∗ + ෨ܴ∗ܭ෩∗ − ෨ܴ∗൯߰ = 0          (4.66) 

From the definition of ෨ܴ∗ we see that  

෨ܴ∗ = ∗෩ܭ + ∗෩ଶܭ + ∗෩ଷܭ + ⋯ 

= ܫ)∗෩ܭ −  ෩∗)ିଵܭ

= ܫ൫∗ܭ + ෨ܴ∗൯ 
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Consequently , the last term in (4.66) vanishes, and we have 

߰ − ൫ ෨݇∗ + ݇
∗ ൯߰ = ߰ − ݇∗߰ = 0 

Thus (4.60) and (4.62) are synonymous, and the eigenfunctions ෨߰, of 
(4.60), transform into the eigenfunctions߰ ,of (4.62). consequently 
(4.59)and(4.61) must have the same significance ,and the demonstration 
of Fredholm’s alternative for square integrable kernels is complete . 

In many applications of the Fredholm theory to boundary value problems, 
the kernel involved in the integral equations are not square integrable. 
However, under certain suitable conditions, the Fregholm theory is still 
applicable in such instances, as we will now show. 

Definition (4.1.15):- 

In the foregoing demonstration of the Fredholm alternative we laid great 
emphasis on the requirement that the associated kernel should be square 
integrable. This ensured that the resulting Neumann series was 
convergent. However ,the square integrability of the kernel was only 
essential if we were working in an inner product space (usually a Hillbert 
space); all that really is required is that  

‖݇‖|ߣ| < 1 

Where ‖݇‖ is the norm of the integral operator involved. In fact the 
Fredholm alternative can be shown to be valid in general Banach space. It 
follows, then ,from the above discussion, that the reduction of an integral 
equation with arbitrary kernel ݔ)ܭ,  to degenerate integral equation may(ݐ
always be carried out provided ݔ)ܭ,  can be approximated arbitrarily (ݐ
well , in whatever norm is used , by a degenerate kernel. That is, given 
ߝ > 0, on matter how small, we can write ܭ in the form 

ܭ = ܭ + ෩ฮܭ෩ฮܭ <  (4.67)                               ߝ

whereܭis integral operator with degenerate kernel. Such kernels are 
called completely continuous. A restatement of this property, which is 
more in keeping with our previous discussions linear operators is that 
 transforms any bounded set into a compact set ;that is ,for any ܭ
sequence of functions {߶}    which are such that    ‖߶‖ <  the    ܭ
sequence {߰}  where ߰ =  .   contains a convergent subsequence߶ܭ
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Therefore the Fredholm alternative is valid for any integral equation  

߶ − ߶ܭߣ = ݂ 

Which has an operator with a completely continuous kernel. 

With this slight preamble we are now in a position to extend the 
Fredholm alternative to certain kernel which are not square integreble 

Definition (4.1.16):- 

The kernel in question arise frequently in the study of boundary value 
problems , and are known as weakly singular kernels. They have the form 

,ݔ)ܭ (ݐ =
,ݔ)݇ (ݐ

ఒݎ          0 ≤ ߣ < ݊                     (4.68) 

Where ݇(ݔ,  ݔ is the distance between ݎ , ݐ andݔ is bounded function of(ݐ
and ݐ , and n is the dimension of the region of interest , ܦ.Unlike the case 
of square integrable kernels, we shall find it necessary in this case to 
assume that the domain ܦ is bounded . we will first show that the kernel 
(4.68) are completely continuous in the sense of the definition (4.67)  

Writing  

,ݔ)ᇱܭ (ݐ = ൜ݔ)ܭ, ݎ          ,(ݐ ≥ ߜ
ݎ                     ,0 < ߜ

� 

,ݔ)ᇱᇱܭ (ݐ = ൜0,                   ݎ ≥ ߜ
,ݔ)ܭ ݎ         ,(ݐ < ߜ

� 

For some > 0 , we effectively truncate the singularity ିݎఒ and obtain the 
decomposition 

,ݔ)ܭ (ݐ = ,ݔ)ᇱܭ (ݐ + ,ݔ)ᇱᇱܭ  .(ݐ

Because of our assumption regarding the boundedness of ܦ, the kernel 
,ݔ)’ܭ  is clearly square integrable and may , therefore , be approximated (ݐ
arbitrarily well in norm  by a degenerate kernel. In fact if ܭ(ݔ,  is a  (ݐ
degenerate kernel , Schwarz’s inequality shows that  

,ݔ)ᇱܭ‖ (ݐ − ,ݔ)ܭ ଶ‖(ݐ ≤ න න[ܭᇱ(ݔ, (ݐ − ,ݔ)ܭ ଶ[(ݐ ݔ݀  ݐ݀
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Consequently we must now show that ݔ)”ܭ,  can be made arbitrarily(ݐ
small in norm, to this end we notice that if ܯis a bound for ݇(ݔ,  (ݐ

ଶ(߶ᇱᇱܭ) = ,ݔ)ᇱᇱܭ) ,(ݐ ଶ((ݐ)߶ ≤ ଶܯ ቈන
|߶|
ఒݎ

 

ழఋ
ݐ݀

ଶ

. 

Applying Schwarz’s inequality we obtain  

ቈන
|߶|
ఒݎ

 

ழఋ
ݐ݀

ଶ

=  ቈන
|߶|

ݎ
ഊ
మ

 

ழఋ

ݐ݀

ݎ
ഊ
మ


ଶ

 

                                                ≤ ቈන
|߶|ଶ

ఒݎ

 

ழఋ
ݐ݀ ቈන

ݐ݀
ଶݎ

 

ழఋ
 

As we have stated, ݎ is the distance between the points ݔand ݐ and it 
should be emphasized that, when we are working in more than one 
dimension,ݔ represents the point with co-ordinates (ݔଵ, ,ଶݔ … .  (ݔ

And similarly for t. therefore the retraction ݎ >  confines our attention ߜ
to the interior of a small ‘circle’ centred at ݔand radius ߜ. Consequently 
,sinceߣ < ݊ , 

න
ݐ݀
ఒݎ

 

ழఋ
≤ (ߜ)ܦ < ∞ 

Where the number (ߜ)ܦ, as indicated, depends on the value of ߜ ;for 
example, in two dimensions we get: 

න
ݐ݀
ఒݎ

 

ழఋ

≤
ߨ2

2 − ߣ
 ଶିఒ(ߜ)

Clearly as a result of the restriction on (ߜ)ܦ ,ߣwill tend to zero with ߜ 
with these several results available we can now write  

ଶ‖߶"ܭ‖ = න(ܭ߶)ଶ݀ݔ
 



 

≤ (ߜ)ܦଶܯ න න
|߶|ଶ

ఒݎ ݔ݀ݐ݀
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Where ܦ௭ and ܦ௧ indicate the domain of integration together with the 
variable in the integration process. This can be further simplified by 
Fubini’stheorem , as follows 

න න
|߶|ଶ

ఒݎ ݔ݀ݐ݀
 



 

ೣ

= න |߶|ଶ
 



ቊන
ݔ݀
ఒݎ

 

ೣ

ቋ  ݐ݀

                          ≤  න
|߶|ଶ

ఒݎ ݐ݀
 



  න
ݔ݀
ఒݎ

 

ழௗ

 

 Where ݀ is the diameter ܦ, arguing as before it is apparent that since ܦ 
is bounded the integral 

න
ݔ݀
ఒݎ

 

ழௗ

 

Must also be bounded and equal to ܤ, say.  

Therefore combining these result we have  

ଶ‖߶"ܭ‖ ≤  .ܤଶ‖߶‖(ߜ)ܦଶܯ

Consequently since ܯ and ܤ are by definition finite, and since (ߜ)ܦ can 
be made arbitrarily small by choice of ߜ sufficiently small it follows that  

‖′′ܭ‖ = ݈. .ݑ ܾ.
‖߶"ܭ‖

‖߶‖  

Can be made arbitrarily small. Therefore it follows that kernels such as  
,ݔ)ܭ  which have a weak singularity may be approximated arbitrarily ,(ݐ
well in norm by degenerate kernels which establishes the validity of the 
Fredholm alternative for such kernels. 
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Section (4.2):Symmetric integral equations 

Definition (4.2.1):- 

 The theory of integral equations can be developed in much greater detail 
when the kernel ݔ)ܭ,  happens to be symmetric. Such a development(ݐ
will be a special case of the Fredholm theory, which we have already 
briefly examined, and is usually referred to as the Hilbert-Schmidt theory 
of integral equations. We have already studied in some detail in chapter1 
the properties of integral operators which symmetric kernel, and the 
results we obtained there may be summarized as follows. 

 

Theorem (4.2.2):-  

Every continuous symmetric kernel which does not vanish identically 
possesses eigenvalues and eigenfunction; their number is denumerable 
infinite if and only if the kernel is non-degenerate. All the eigenvalues of 
a real symmetric kernel are real. In the application of the theory of 
integral equations, in particular when the kernel is symmetric we often 
find it necessary to consider the possibility of expanding a given function 
in݂ a series of the form  

(ݔ)݂ = (݂, ߶)߶(ݔ) 

Where ߶ is anorthonormal sequence of functions. Consequently we must 
examine in what sense such a formal expansion might represent the 
function ݂and under what circumstances the sequence of functions ߶ is 
complete. The next two theorems will answer these questions.  

 

Theorem (4.2.3):- 

Any square integrable function ݂ is orthogonal to all the eigenfunctions 
߶ of the symmetric kernel ݔ)ܭ, ,ݔ)ܭ)  if and only if (ݕ ,(ݐ ((ݐ)݂ ≡ 0 for 
the sequence of eigenfunctions {߶}to be complete, it is necessary and 
sufficient that (ݔ)ܭ, ,(ݐ ((ݐ)݂ ≢ 0 for every ݂ ≢ 0 
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Prove:- 

The eigenfunctions∅are the non-trivial solutions of  

߶ܭߣ = ,ݔ)ܭ൫ߣ ,(ݐ ߶(ݐ)൯ = ߶(ݔ)                 (4.69) 

Consequently if the square integrable function ݂ is orthogonal to the 
kernel ݔ)ܭ,   we have (ݐ

൫ݔ)ܭ, ,(ݐ ൯(ݔ)݂ = ݂ܭ = 0                                   (4.70) 

Forming the inner product of (4.69)with݂ we have 

(߶, ݂) = ,߶ܭ)ߣ ݂) = ,(߶ߣ  (݂ܭ

The right-hand side vanishes by virtue of (4.70), and so ݂must be 
orthogonal to ߶ for all ݅. 

If now we assume that ݂ is orthogonal to all the eigenfunctions ߶ of 
,ݔ)ܭ ‖݂ܭ‖ we must show that (ݐ = 0.to this end, introduce thekernel 

,ݔ)ܭ (ݐ = ,ݔ)ܭ (ݐ − 
1
ߣ

{߶(ݔ)߶(ݐ)}


ୀଵ

                                            (4.71) 

Then because ݂ is orthogonal to all the ߶ 

݂ܭ = ൬൜ݔ)ܭ, (ݐ − 
߶(ݔ)߶(ݐ)

ߣ
ൠ , ൰(ݐ)݂ =  ݂                               (4.72)ܭ

Where ܭ is the integral operator with kernel (4.71) 

Therefore  

‖݂ܭ‖ = ‖݂ܭ‖ ≤  ‖‖݂‖                                                                     (4.73)ܭ‖

Since the eigenvalue ߣ  tend to infinity enables us to assert that 

‖ܭ‖ =
1

ାଵߣ
→ 0 

As ݊ → ∞ thus the system of eigenfunctions spans the space and the 
theorem is established. 
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It would perhaps be instructive to establish that  ‖݇‖ → 0 independently 
of ݊and reference to the aforementioned theorem. To this end, we notice 
that for an integral operator ܭ with symmetric kernel ݔ)ܭ,  and (ݐ
eigenvalues ߣ  with associated eigenvector ߶ 

,߶ܭ) ߶) = ൬
1
ߣ

߶, ߶൰ ≤
‖߶‖ଶ

|ߣ|
 

And  

,߶ܭ) ߶) ≤ ‖‖‖߶߶ܭ‖ ≤  ‖ଶ߶‖‖ܭ‖

If we combine these results, it follows from the definition of  ‖ܭ‖ that  

‖ܭ‖ ≥
1
ߣ

 

To prove that the reverse inequality is also true, we write  

߰ =  ߶ܭ

Then 

‖ଶ߶ܭ‖ = ,߶ܭ) (߶ܭ = ,߶ܭ) ߰) = (߶, (߰ܭ = ൬߶,
߶ܭ

ߣ
൰ 

Form which it follows that  

‖ଶ߶ܭ‖ ≤ ‖߶‖
‖߶ܭ‖

|ߣ|  

And the reverse inequality is established which allows us to write  

‖ܭ‖ =
1

 |ߣ|

Using this result conjunction with the symmetric kernel ܭ(ݔ,  it is (ݏ
easily established that 

‖ܭ‖ =
1

ାଵߣ
 

In the special case when the kernel is degenerate its system of 
eigenfunction cannot be complete since they span only a finite-
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dimensional space. When the kernel is not degenerate its system of 
eigenfunctions span an infinite-dimensional space. However this infinite-
dimensional space may, or may not be the whole Hilbert space in which 
are situated our solutions and therefore it still remains to examine the 
sense in which a formal eigenfunction expansion of an arbitrary function 
݂ is to be interpreted. 

This point can be resolved by means of the celebrated Hilbert-Schmidt 
theorem. 

 

Theorem (4.2.4): (Hilbert-Schmidt) 

Any function ݂ which can be expressed in the form 

݂ = gܭ = ൫ݔ)ܭ, ,(ݐ g(ݔ)൯                                                    (4.74) 

Where gis some square integrable function and ܭ a linear integral 
operator with symmetric kernel ݔ)ܭ,  has an absolutely and uniformly (ݐ
convergent representation 

(ݔ)݂ = (߶, ݂)߶(ݔ)
ஶ

ୀଵ

=  
(߶, g)

ߣ
߶(ݔ)

ஶ

ୀଵ

              (4.75) 

In terms of the eigenfunctions߶ of ܭ 

Proof:- 

All question regarding the completeness of the system of eigenfunctions 
are answered by the previous theorem. Consequently it only remains to 
examine the uniform convergence. 

 Since 

(߶, ݂) = (߶, (gܭ = ,߶ܭ) g) =
1
ߣ

(߶, g) 
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An application of Schwarz’s inequality enables us to write 

൭(߶, ݂)߶



ୀ

൱
ଶ

= ൭
(߶ , g)

ߣ
߶



ୀ

൱
ଶ

 

                                               ≤ ൭(߶, g)ଶ


ୀ

൱ ൭
߶

ଶ

ߣ
ଶ



ୀ

൱. 

Bessel’s inequality 

(߶, g)ଶ
ஶ

ୀଵ

≤ ‖g‖ଶ < ∞ 

Shows that the first factor on the right can be made arbitrarily small by 
taking ݉ and ݊ large enough (Cauchy criterion of convergence). 

Further from the orthonormality of the ߶ it follows that 


߶

ଶ

ߣ



ୀଵ

≤ න ,ݔ)ܭ ଶ(ݐ ݐ݀ < ∞ 

Since the kernel  ݔ)ܭ,  is bonded. Thus it follows that the infinite series (ݐ
in (4.75) converges absolutely and uniformly. 

Tow show that the series actually converges to ݂ it will be sufficient to 
show that the series converges to ݂ in the mean since ݂ and ߶ are 
uniformly continuous. This follows at once since  

ะ݂ − (߶ , ݂)߶



ୀଵ

ะ = ะܭg − (߶, g)߶



ୀଵ

 ะߣ/

      =  ‖gܭ‖

Where ܭ is given by (4.71)  

Applying Schwarz’s inequality we obtain  

‖gܭ‖ ≤ ‖‖‖gܭ‖ =
‖g‖

ାଵߣ
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And the right-hand side clearly tends to zero as ݊ tends to infinity thus 
the series converges to ݂ in norm, and the proof of the theorem is 
complete. 

 

Definition (4.2.5):- 

Consider, initially, the differential equation  

ݑܮ = −݂                                                        (4.76) 

Where ܮ is the self-adjoint, second –order ordinary differential operator 
introduced in equation (2.32) and ݂ is a piecewise continuous function 
defined over [0.1] .in section (2.2)we were concerned with the boundary 
value problem; to find a solution ,ݑ, of (4.76) which satisfied given 
homogeneous boundary conditions on the boundary of [0,1].we saw that 
the required solution could be expressed as  

(ݔ)ݑ = න ,ݔ)ܩ   ݐ݀(ݐ)݂(ݐ
ଵ



                           (4.77) 

Where ݔ)ܩ,  ܮ was that Green’s function associated with the operator(ݐ
over [0.1] which satisfied the same boundary conditions as the unknown 
function ݑ. 

We now propose to examine the more general boundary value problem 
associated with the linear family of differential equations  

ݑܮ + ݑߣ = −݂                ,  > 0             (2.78) 

Which depend upon a parameterߣ. As before, the operator ܮ is defined by 
(2.32),݂ is assumed to be piecewise continuous over [0,1] and 
homogeneous boundary conditions are imposed. If the Green’s 
functions,ݔ)ܩ,  under the given boundaryܮ exists for the operator ,(ݐ
conditions, then the solution,ݑ, to (4.78) can be obtained in the form 
(4.77) if we first write  

(ݔ)∅ = ݑߣ −  (ݔ)݂
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It then follows that  

(ݔ)ݑ = ߣ න ,ݔ)ܩ ݐ݀(ݐ)ݑ(ݐ)(ݐ + g(ݔ)
ଵ



             (4.79) 

Where  

g(ݔ) = − න ,ݔ)ܩ (4.80)                                     ݐ݀(ݐ)݂(ݐ
ଵ



 

Is a known continuous function of ݔ.therefore (4.79) is equivalent to 
(4.78). Hence finding a solution (ݔ)ݑ,of (4.78), subject to the prescribed 
boundary conditions is equivalent to solving the integral equation 
(4.79).also the homogeneous equation  

ݑܮ + ݑߣ = 0 

Corresponds to the homogeneous integral equation 

(ݔ)ݑ = ߣ න ,ݔ)ܩ (4.82)                        ݐ݀(ݐ)ݑ(ݐ)(ݐ
ଵ



 

This last equation can be cast into a particularly convenient form if we 
introduce  

(ݔ)ݖ = ߣ න ,ݔ)݇   ݐ݀(ݐ)ݖ(ݐ
ଵ



                            (4.83) 

The kernel of (4.88) is symmetric since ܮ is self-adjoint. Therefore the 
theory of symmetric integral equations is applicable. By combining the 
several results which we obtained in the previous sections we readily see 
that the follow alternatives hold for the relation between the boundary 
values problems for non-homogeneous and homogeneous differential 
equations.  

 Either, for fixed ߣ, every solution of the homogeneous differential 
equation (4.81) vanishes identically (ߣ is not an eigenvalue of (4.81)); 
then the non-homogeneous differential equation (4.78) has a unique 
solution for an arbitrary choice of݂, or for some value ߣ = ߣ ,the 
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homogeneous equation (4.81) has a non-trivial solution  ݑ(ߣis an 
eigenvalue of (4.81) with corresponding eigenfunction ݑ); the solution of 
the non-homogeneous equation (4.78) for ߣ = ߣ  exists if and only if  

න ݔ݂݀ݑ = 0
ଵ



 

Is true for every eigenfunctionݑ associated with  ߣ . 

In addition, there exists a sequence of eigenvalues{ߣ}, ݅ = 1,2, … . .,with 
associated eigenfunctions ݑ which form an infinite set of orthogonal 
functions satisfying  

න ݔ݀ݑݑ = 0, ݅ ≠ ݇
ଵ


 

න ݑ
ଶ݀ݔ = 1

ଵ



 

If, with the appropriate Green’s function as kernel, we can represent a 
function g(ݔ) by a piecewise continuous ߶(ݔ)in the form  

g(ݔ) = න ,ݔ)ܩ ݐ݀(ݐ)߶(ݐ
ଵ



 

Then g(ݔ) can be expanded in terms of eigenfunction into a series  

g(ݔ) =  ܿݑ(ݔ)
ஶ

ୀଵ

 

ܿ = න gݔ݀ݑ
ଵ



 

Which is absolutely and uniformly convergent. 
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List symbols:- 

No.page The meaning symbols 

10 Integration න   

11 Determinate |    | 

12 Limit lim
 

  

13 Norm ‖   ‖ 

19  Least upper bounded  l. u. b 

21 Summation    

25 Determinant det{  } 

28 Square root √    

32 Great lower bounder g. l. b 

74 Differentiation d
dx 

89 Partial ∂
∂x 

131 Double integral ඵ   
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