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Abstract :

In this research, we studied a number of aspects of the mtegral
equations. In chapter one we mtroduce the kernel an mtegral
operator and svmmetric mtegral transformations and also how to
{ind etoenvalues in the mtegral operator.

In chapter tow we define differential operator and adjome
operator and their respective fields and also ditferential operator
from second-order, and the symmetry faithfully to the deals of
some of the non-homogeneous problems and how to solve them. In
chaapter three we have some applications to eigenfunction and use
a Green's function assigned to the processes to resolve 1ts 1ssues
and also halt to clarify the representation of spectra and the
Green's functions, and fmally i chapter Four studied the
classtfication and division of integral equations and the successive
approximation methods for the solution processes and
representation and equivalence with differential equations and we
o0t replacement Fredholm.
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Chapter (1)

Integral operators

In this chapter we shall be concerned with the study of linear transformations
whose domain is an infinite-dimensional Euclidean vector space. In order to
provide an introduction to the various concepts involved, we will restrict ourselves

to one particular vector space and one particular linear transformation.

Section (1.1): The kernel of an integral operator
The vector space we shall consider will have as element function belonging to the
set, R = R (a, b),of all real functions which are Riemann integral on the finite

interval a < x < b.
Definition (1.1.1):-
If f and g are in R then we define
(f +8)x) = f(x) +g(x)

(c f)(x) = ¢ f(x),real scalar c.

b
(f.g) = f F()g(0)dx

Then it easily seen that R satisfies all the axioms of a Euclidean vector space ,
except possibly the positivity of the inner product. However , this difficulty can be

overcome, as in the case of finite-dimensional spaces.
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Definition (1.1.2):-

By introducing the relation of equivalence,~,between vectors. We say that f = g

if f and g differ only on a set of measure zero, or, which is equivalent:

b
frg if f If — gl?dx = 0
a

Consequently, we have that (f, f) = 0if and only if f = 0. In this way we obtain

a Euclidean vector space with = replacing =.
Definition (1.1.3):-

Let K(x, y) be a real continuous function defined on the square
a < x <b,a <y < b .lItinduces a transformation K on R to R by means of the

relation

b

Kf(x) = g(x) = f K y)f (7)dy (1.1)

a

The function K (x, y)is called the kernel of integral transformation K.
Definition (1.1.4):-

The range of Kis not all of R .In fact K carries every f into a continuous function.
This can be seen as follow .Since K (x, y) is continuous on bounded closed set, it is
also uniformly continuous. Therefore, for any € > 0 there isé(x) > 0 such that, for
points x4, X5, Y1, y2in [a, b],

|K(x1,y1) = K(x2,y2)| < €

When

X1 — X2| <6(€), |y — ya| < 8(e) (1.2)
12



Hence,

b
IKf () — KF ()] = f (K (x,y) — K(t,0)If 5)dy
b
SﬁKmf%Kﬁwmﬂwmy

b
Seflf(y)ldy

Whenever [x — t| < §(¢) and it follows that
lirr%Kf(x) = Kf(t)
X—

From the continuity of Kf it follows that ifK f is equal to the zero vector then it is
identically zero .Because, if Kf (t) # 0 then by continuityKf (x) # 0 for all xin
some interval containing t.Thus Kf is non-zero on a set which is not of measure

Zero.
Definition (1.1.5):-

Similarly we could consider the complex Euclidean vector space R* = R*(a, b) of
complex-valued integrable functions on a < x < b .The inner product in this case

is given by

b —_
(f,g) = f FRG) dx.  (13)

Tow elements of R* will be said to be equal if they differ at most on a set of

measure zero.The complex-valued continuous function K (x, y) defined on

13



a <x <b,a <y < bThat induces by (1.1) .A linear transform k on R*to R*, the

transformed function Kf (x), being a complex continuous function.
Definition (1.1.6):-
In both R and R* we define the adjoint of k to be the integral transformation k*,
given by
b

K*f(x) = f KO, f)dy (1.4)

a

From this definition it follows that

b ( b L
(Kf,g) = f { f K(x,y)ﬂy)}g(x) dx

b

b
f f K(x,)g@dx b Fd = (f,k°g)

a

Hence we have that

Kf. &)= (f,K"g) (1.5)

The equation (1.5) determines the adjoint transformation K*uniquely, because if
there is another transformation M such that (Kf, g) = (f, Mg) For all f and gin
R*,then, if we subtract this result form (1.5), it follows that (f, (R* — M)g) = 0 for
every fand g in R.Therefore R* = M as required.

As may be anticipated, integral transformations, defined over an infinite-
dimensional vector space, have many properties similar to those of the linear

transformations defined on a finite dimensional vector space.

Theorem (1.1.7):-

]



b ~b 1/2
IKIl < ( f K|(X,}’)|2d9fd3’>
a ‘a

Proof:-
If we choose f'so that ||[f|| = 1 Then

b 2

KF I = f K(x,y) fo)dy

b b b
< f IK G, )12 dy f FO)IEdy = f IK (e, y)|2dy

Therefore

b

b b
IKFOOI? = f IKF () |2dx < f f Kk (x, y)[2 dydx

a

and we write

b b 1/2
IKIl = Lu.b.{IKfFCOlllllfIl =1} < (f f Kl(x,Y)lzdde> :

The property of boundedness of the transformation is intimately connected with

continuity. Recall for a moment some result for linear transformation.

Definition (1.1.8):-

The linear transformation T, form the vector space V;to the vector space V, is

called continuous at x in V,if the sequence {Tx,} Converges to Txwhenever the



sequence {x,} converges to x .It follows that an equivalent definition of continuity

is given by the statement for every € > 0,there is ad(g,x) > 0 Such that
ITy — Tx|| < &€ Whenever ||y — x|l < §(g, x)

The transformation T is bounded if and only if it is continuous for all x.Indeed, if

T is bounded and { x,,} Converges to x we see that
ITxn, — Tx|| = [ITCtn — )l < [T, — [l

Since T is bounded .consequently, since {x,,} Converges to xthe right-hand side

can be made arbitrarily small, and it follows that {Tx,, }Converges to Tx.

Conversely, if T is continuous atx = 0 then for € > 0 there is a 8(¢) > 0 such that

ITx|| < ewhenever ||x|| < &§, now if , y # 0 is given element, write

_8() y
2 lyll®
and we have that
6(1)

=— 1
|zl 5 e(1)
and||Tz|| < 1

Consequently, as we can write

y= EIIYIIL

It follow from the above inequality that
<
ITyll < 50D Iyl

Which is true even when y = 0 .therefore T is bounded.

16



Definition (1.1.9):-

The integral transformations with which we are primarily concerned have an even

stronger property than boundednes -that of complete countinuity
Definition (1.1.10):-

A linear transformation Ton V;toV,is completely continuous or compact if forevery
sequence {Tx,}.With uniformly bounded norms (that is {x,} < cfor ¢ > 0 and

alln) there exists that /T'x;}Converges to y .

Compactness implies boundedness for if T Were a compact but unbounded

transformation there would exist a sequence {x,, }

Such that||Tx, || > n||x, ||.Writing y,, = x,,/||x,||we havel|y, || < 1 but||Ty,| >

nconsequently no sequence {Ty,} would then converge.
Definition (1.1.11):-

Linear transformations T,whose domains are finite — dimensional are necessarily

compact T is bound when V; = V,and we see that if ||x,,|| < c
Then
T3l < T 2]l < NIT1le.

Consequently {Tx,} is uniformly bounded .It follows that a convergent
subsequence exists for infinite dimensional space and integral transformations we

can obtain the following result.

Theorem (1.1.12):-

A continuous kernel K (x, y) defines a compact transformation
Proof:-

If {f,} is a sequence of function in r such that

l7



b 1/2
Ifall = (f |fnl? dx) <c.

then
b b 1/2 b 1/2
K fu ()| = f G fu0)dy| < f K(x, y)*dx f .02 dy

and it follows that the functions Kf,, (x) are uniformly bounded .Also see that for

points x4, x,in [a, b]

b
Ko () — Kf ()| = f (K2 ) — K o)) fa 0y

b 2 /b 2
< fIK(xz,y)—K(xl,y)lzdy flfn(y)lzdy

< e - a)l/Zc When [x, —x4| < §(¢)
Where we have used equations (1.2) and (1.6).

Therefore the sequence {K f,,(x)} is equicontinuous and it follows that there is a
sequence {K f,, (x)} which converges uniformly to a function f (x),continuous

on[a, b].Because of the uniform convergence we can obtain the result that

b
tim||K oy = £ = tim [ [Kcfos = £I" dx
a

b
=fl_im|Kfnj—f|2dx
j—ooo

a
=0

18



Which establishes the theorem.

Definition (1.1.13):-

The integral transformation k is said to be symmetric if for all elements

fand g of R.

(Kf,g8) = (f, Kg)

Then K is symmetric if and only if K = K*
Definition (1.1.14):-

Areal kernel K (x, y) is said to be symmetric if K (x,y) = K(y, x)for all x, y such

thata <x <b,a<y<bh.

Definition (1.1.15):-

A kernel K (x, y)defined on R*is called Hermitian if K (x,y) = K (x, y)

Theorem (1.1.16):-

The integral transformation K is symmetric if and only if it has a symmetric kernel
Proof:-

If f and g are elements of R then

b (b

b b
(Kf,g) = f f K, y)f )dy b g(o)dx = f f K () f g0 dydx

a a

and

1y



b

b
(f,Kg) = f fO) f K(y, )g()dx \ dy

a

b b
= j'j‘K(y,x)f(y)g(x)dxdy

If K (x, y)is symmetric K(x,y) = K(y,x)and a change of order of integration
establishes that (Kf,g) = (f, Kg)

Conversely, we assume that K (x, y) is not symmetric, and we try to obtain a
contradiction. If there are valuesx;and x, in[a, b] for which K(x;,x,) < K(x5,x;)
then from the continuity of K(x, y) there will exist closed intervals

I;:cy < dqand I,: ¢, < d, in the interval [a, b] which are such thatx,is in I;and x,

is in [,and
m = Lu.b.{K(x.y) |xin Iy inl;}, gL b.{K(x,y)|xinl,yinl; } =M

Now define functions ¢(I4, x) and ¢ (1, x)the characteristic functions of 1;and

[,respectively to be such that

I 1, for xinI]-
CI>( ]-,x) 10, for xnotinl;

Where j=1, 2

Then if f(x) = (14, x) andg(x) = (1, x)we see that

b (b

mﬂQ=j‘fK@JV@Myg&Mx
d, d,

=f fK(x,y)dydx

C1 C2



> M(d; — c)(dy — ¢3)

and

b (b

(Kf,g) = f f K (e, y)f 0)dy b g()dx.

a a

d; dp

=f fK(x,y)dydx

€1 G
<m(d; — ¢1)(d; — ¢3)
Consequently K could not be a symmetric transformation

We now establish a theorem relating to the eigenvalues of symmetric integral

transformation
Theorem (1.1.17):-

The eigenvector corresponding to distinct eigenvalues of a symmetric integral

transformation k are orthongonal
Proof:-

Let f and g be tow elements of R and A, tow distinct eigenvalues of asymmetric

integral transformations.

Then

Kf = Af

Kg _ ug

And it follows that, since K is symmetric



Af,g) = (Uf,8) = (Kf,g) = (f,Kg) = (f,ug) = u(f,g)

Therefore

“A-w(f,e=0
And since A and u are distinct, it follows that f and g must be orthogonal.
Definition (1.1.18):-

The simplest of symmetric kernel have the form

n

Ky) = ) chiCOhy () (1.7

ij=1
Where cj; = cj;and h;(x) are continuous function defined on [a, b].
Definition (1.1.19):-

The kernel,K(x, y) which can be expressed as a finite linear combination of
products of a function of x alone and a function of y alone is said to be a separable
kernel, in the particular of (1.7) the kernel is said to be a symmetric separable

kernel
Definition (1.1.20):-

Although we shall be discussing this kernel in detail, it is worth noting here that
such a kernel induces an integral transformation which has only a finite number of
non-zero eigenvalues, and a symmetric integral transformation which has a finite

number of non-zero eigenvalues must have a separable kernel
Definition (1.1.21):-

Information concerning the eigenvalues and eigenvector of transformations with
separable kernels can be obtained by using the corresponding results obtained when

dealing with systems of finite order.

[ =
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Theorem (1.1.22):-
Let K(x, y) be a symmetric separable kernel which is not identically zero, then

there exists an orthonormal set of vector f;(x), ... ... ... .... fin(x) in R and non-zero
real scalars 4, ... ... Amsuch the Kf;(x) = A;f;(x) fori = 1,2, ... ... m; also if g(x)
is in R and orthogonal to f;(x) for all I then kg(x) = 0 .the scalars A;are the only

non-zero eigenvalues of K ,and there is only a finite number of linear independent

eigenvectors corresponding to each eigenvalues

Proof:-

Let V be the collection of all vector of the form
dihi(x) +... ... + dphy, ().

Such a collection as Vis in fact a vector space, and its dimension q, say is the

number of linearly independent vector in the set

hi(x) e e hyy ()

Since the kernel K(x, y) is also assumed to be defined in terms of

hi(x) .. oo oo hy(X)as in (1.7), we find that for any arbitrary function p(y) in V
b n b
f K(x, y)p(y)dy = Z Cij f hi W)p(y)dyh;(x) (1.8)
a Lj=1  a

From (1.8) we readily see that k transformations V into itself. further since k(x,y)
is symmetric ,as we have assumed dim }V'=q, that there exist g orthonormal vectors
fix),i=12,.... qinVsuch that , i = 1,2, .....q if Kf;(x) = A;f;(x) for
i=12,.... mand4; # 0,i = m + 1, ....q,4; = Owe obtain the set of
vectorf;(x),i = 1,2, ... .....m required by the theorem however ,if , =0i =

1,2, ... q then Kf;(x) = 0 and hence Kp(x) = 0 for all function p(x) in V since
the function f;,i = 1,2 .....qform a basis of V .Now for a fixed value of xthe

2



kernel K(x,y) given by (1.7) is a continues function of y in vand we can write in

this case K(x,y) = p(y)hence

b b
Kp=0= f K (x,y)p()dy = f PG dy

And we conclude that p(x) = 0 for all y since x can assume any arbitrary but fixed
value, it follows that p(x) = K(x,y) = 0 for all xand y. This result contradicts the
hypothesis of the theorem; therefore not all the A; are zero we thus assume A; # 0,
i=12..mand4; =0,i=m +1,.... q,in R, let g be a function which is

orthogonal to f;,i = 1,2, .....mand define

q

P =g - ) (860./®)[® (19)
j=m+1
Then it is easily verified, by first forming the inner product (p, f;) that p is
orthogonal to f;,i = 1,2, .....q consequently ,since the functions f;,i =
1,2, .....qform a basis for V the function p(x)must also be orthongonal to the
functions hq (x) ... ... ... ... by (), therefore , by (1.8) we see that Kp(x) = 0 .In
addition we see that when j = m + 1, ... .... q, then Kf; = 0. Combining these

several results and using (1.5) we find that Kg = 0 as required .

To prove the remaining part of the theorem, we notice that if F is an arbitrary

function in R then (1.8) implies that KF(x) is in V .In particular,ifKF = AF # 0
Then F(x) = (1/A)KF(x) is in V and has the representation
F(x) = aifi(x) + -+ agfg (x)

For scalars a; = (f, f;), it follows from theorem (1.1.17) that a; = Ounless f;is
associated with the eigenvector A .This statement is sufficient to complete the

proof of the theorem.



It may be felt that more generality can be obtained by considering the kernel to the

form

p
K(y) = ) 08 (1.10)
i=1

This is not the case as such a kernel can always be reduced to the form (1.7) and
when K(x, y) is symmetric we shall obtain coefficients c;; = cjj,all that is required
is that we should express the 2p functions f;(x)and g;(x)in terms of a set of q
linearly independent functions h;(x) provided of course that dimension of the

space is q in this case (1.10) becomes

K(x,y) = zp: zq: Qi () zq: bmjh;(y)
=1

m=1i=1

q
= ) bl o)
ij=1
Where
p
Cij = Z amibmj
m=1
Similarly we can obtain
q q
Ky = ) eyhihi() = D eihihy)
ij=1 ij=1

When we have that K(x, y) = K(y, x) the linear independence of h;(x)assures us
that for fixed x

[ =
=1



q q

Z cijhi(x) = Z cjihi(x)

i=1 i=1

and it follow that Cij = le'

The practical evaluation of the non-zero eigenvalues A;is best obtained if we start

with the kernel in the form (1.10).If F(x) is in R and an eigenvector of k we may

write
b p
KFG) = [ fu (gm0 dy = 27 (3)
a m=1
Writing
b
am = [ en@IFO) dy (111)
We obtain
1 14
FOO =7 ) apfn(0) (1.12)
m=1

Combining (1.12) and (1.11) we obtain

14 b
Ala, = Z a; f gmMfi(y) dy
jm=1 g

This last equation is a representation of the set of linear algebraic equations for the
unknown a,,and as such will only possess a non-trivial solution when the

characteristic determinant vanishes that is when

b
det} 16~ [ BnOIfm) dy (=0 (114)

a

2%



therefore once the eigenvalues have been determined from (1.14)
the corresponding eigenvectors follow from(1.12)
Example (1.1.23):-
Find the non-zero eigenvalues of the kernel
K(x,y) =1+ cos(x —y), —n<x<m-n<y<m®
We must solve
KF(x) =Af(x),A+0

that 1s

f(l + cos(x — y))F(y)dy =AF(x), A#0

Expanding the cosine term and using (1.11) we may write this equation in the form
a, + acosx + azsinx = Af(z2)

Where

Vs

1
w=7 [Foray

-7

T
1
a, =z fcosyF(y)dy
-

Vs
1
a1 =7 fsinyF(y)dy
-7

[ =
-1



From(1.13) we have the alternative forms

TL'
1
a, =7 f(al-l—az cosy + azsiny)dy
-7

Vs

a, =7 fcosy(a1+a2 cosy +assiny)dy

-7
TL'

as =~ fsiny(al-l—az cosy +azsiny)dy

-1
That is on expanding the kernel K(x, y) we have written
filx) =1, fo(x) = cosx, f3(x) = sinx

g1(y) =1, g,(y) = cosy,gz(y) = siny.

integratingtheseequationsweobtain

Aa; = 2nay
7\.a2 = nda,
has = mas

From which it follow that the possible values of A for non-zero eigenvector

F(x)areh = 2n and A = n.When A = & the equations show that a; = 0 whilst

a,and ascan take arbitrary values . Consequently from (1.12) we obtain

1
F(x) = E{az cos x + as siny}

Similarly when A = 2z it follows that a, = a; = 0 whilst a,can be arbitrary and

we obtain the corresponding eigenvector



F(x) = 2
x_ZTE

Consequently it follow that there are three linearly independent solutions of the

given equations (1.15), namely
Fi(x) = cosx ,F,(x) = sinx,F3(x) =1

As it happens these are orthogonal eigenvectors which when normalized may be

written
) = [T = 3‘%
6.0 = - 3%
G0 = &igu = J%
Example (1.1.24):-

Repeat the above problem but with the kernel
K(x,y) =sinxcosy,-n<x<mn,-nm<y<m

We are now required to solve

KF(x) = fsinxcosyF(y) dy = AF(x)

-7
This we may write in the form
asinx = AF (x)

Where



TL' TL'
1
a= fcosyF(y)dy= fcosy(zasiny)dy=0
-7 -1

Therefore there are no non-zero eigenvalues of this kernel when the domain with
which we are concerned is the square —m < x < m,—7 < y < m we remark that

this kernel is not symmetric if we changed the domain so that

0<x<m/2,0<y<m/2then we would obtain one non-zero eigenvalue A = %

A



Section (1.2):Eigenvalues of symmetric integral operator

Let K be asymmetric integral transformation defined on the real Euclidean
vector space R of integrable function on a < x < b.In this section we
establish a number of important results for such operators which we shall find

useful later.
Theorem (1.2.1):-

The number of distinct non-zero eigenvalues of a symmetric integral
transformation K is at most afinite number of linearly independent

eigenvector.
Proof:-

We have already seen that eigenvectors corresponding to distinct eigenvalues
are orthogonal further since any finite set of linearly independent eigenvectors
corresponding to the same eigenvalue may be replaced by orthonormal
eigenvectors, we may assume that any finite set of linearly independent

eigenvectors is in fact an orthonormal set.

Letf;,i =1,2,.......,m be a finite set of orthonormal eiginvectors
corresponding to the eiginvaluesi which need not be distinct. Now for a fixed

value of xthe function g(y) = K(x,y) is a function in R and we have

b
(g0, fi()) = f K )fi() dy = KFfi(x) = 1:£,(x)

Bessel’s inequality enables us to write

m b
DA @E < [ IKGwldy (117)
i=1 a

al



and on integrating this with respect to xwe obtain

m b b
ZAZ < ff|1<(x,y)|2dydx (1.18)
i=1 a a

The right-hand side is independent of m. This fact coupled with the result of
theorem (1.1.22) indicates that there can be at most a finite number of linearly
independent eigenvalues. This inequality also implies that there can be at most
a finite number of linearly independent eigenvectors with eigednvalues greater
in absolute value than unity or with eigenvalues whose absolute values lie in

the range

1 1
—<x<-,n=12,...
2n n

The distinct eigenvalues can now be counted because we count first those with
absolute value greater than unity then those in the range % < x < 1 and so

on thus, every non-zero eigenvalue can be counted.

It is customary to order the eigenvalues according to their absolute value and

then to display them in the following form:
A<, <0<..... <A <A

where the final separation has been effected with respect to the signs of the
eigenvalues . Eash eigenvalue is repeated in such adisplay a number of times
equal to the number of linearly independent eigenvectors associated with it
.such a display of the eigenvalues of the operator K is known as spectrum of
the operator Acorollary theorem(1.2.1) having a direct bearing on the notion

of the spectrum of an operator can be stated as follows.



Corollary(1.2.2):-

If K has at least one non-zero eigenvalue then there exist non-negative integers
M and N not both zero but possibly in finite and an orthonormal set of vectors

fi(x),—0<-M<i<N<owi%0
such that K f;(x) = A;f;(x) with
A1 <A< <0 <...... <1, <A

The set of numbers4;includes every non-zero eigenvalue of K, and every
eigenvector of K corresponding to a non-zero eigenvalue A is a finite linear
combination of eigenvectorsf; (x) associated with the eigenvalue A. Finally we

have that:

b
> AP < [IKe Py (1.19)

l

Z /ll.szll((x,y)lzdydx (1.20)

These last equations follow directly form (1.17) and (1.18). Also, from (1.20)
it follows that if N = oo then lim;_, A; = 0 and if M = o then lim;_,,A_; =
0 The question of the existence of a non-zero eigenvalue can be answered if
we first develop for integral transformations results an alogous to those
already obtained for linear transformations we recall that if T'is a linear
transformations on afinite-dimensional Euclidean vector space the largest and

smallest eigenvalues A4, and A,, respectively are given by
A =Lu b {(Tx,x)x = 1}

An=glLb{(Tx,x)x= 1}.

»



Similar results can also be obtained for integral operators, as we now see.

Theorem (1.2.3):-

Letp = Lw.b.{(Kf,)|f= 1}andqg=g.Lb.{(Kf, )| f =1}

then if p > 0 it is the largest non-zero eigenvalue and if g < 0 it is the

smallest non-zero eigenvalue.
Proof:-

If

P =Lu.b{(=Kf,OIIfll = 1} = Lu.b{(Kf, ) |lIfll = 1}

is the largest eigenvalue of - K then - P* must be the smallest eigenvalue of K

and - P° = q .Therefore , it will be sufficient for us to prove the theorem with

regard top ,and the statement regarding g will follow if we consider the

transformation - K

If

Kf = Afforf =1

Then it follows at once that

A=A, f)=Kf.f)<p

consequently if pis an eigenvalue it must be the largest. Therefore to establish
the theorem we must show that p is indeed an eigenvalue consider initially the
case when the kernel ofK is separable. Then when p > 0 the kernel cannot be
identically zero and theorem (1.1.22) implies the existence of m orthonormal
vectors f;, and non-zero eigenvalue Ai having theA; = 1, = +-- = 1, such
that for any vector g orthogonal to f; for all i, Kg(x) = 0 let V'be the linear
manifold spanned by f; then if

A



R =" aifi)

is any function in Vit follows that Kh(x) is also in Vsince Kf;(x) =

Aif (x). Thus we have that
Ai=Lu.b.{(Kh,h)lh=1,hinV}

<Lub AKS ) IIIfll=1,finR} =p (1.21)

If we can now show that the reverse inequality is also true then we can assert
that since p = A4, p must be an eigenvalue of k. Now when fis in R and

f = 1 we may write
f=h+g,hinVand ginV,

Where V| is the space of functions orthogonal to V therefore,
Kg(x) = 0,Kf (x) = Kh(x) is in Vand

(Kf,f) = (Kh,h +g) = (Kh, h), (1.22)
also we have that
(f,f)=(h+gh+g =(h)+ (g8,
where
0<h<sf=1

If we restrict our choice of f to ensure (kf, f) > 0 it follows from (1.22) that
since p > 0,(Kh,h) > 0, ||h|| # 0 and

(Kf,f) = h*(Kp,p) < (Kp,p),

where




Hence we have that

Lub.{(Kf,p)If =1,finR} < Lu.b{(Kp,p)|p = 1,pinV (1.23)

Which establishes that p < 4; combining (1.21) and (1.23) we see that
p = A4, and the theorem follows for integral transformations with separable

kernels.

We will now consider the case when K (x, y)is any continuous symmetric
kernel. To establish the theorem in this case we shall need to use the following
result

For every € > 0 there is a symmetric separable kernel H(x, y) such that

b
b

ff |K(x,y) — H(x,y)|?dxdy < ¢
a

a

This means that we can find a sequence k,,(x, y) of symmetric separable

kernels such that

b b
1K — K, |12 < f f IK G, y) — Ky (x, )12 dxdy

a a

1
=7 (say)
Where we have used theorem (1.1.7) we shall write:

pn = Lu.b. {(anff)lf =1},

and assert that

p = lim p,

n—->oo

36



To prove this assertion we notice that if ||f|| = 1 then

((Kf, ) = (Kaf, P = (K = Kn)f,

< ICK =KD FINIAI
< [IK — Kyl
1
<=
n

Therefore

1
KF ) < (Kuf )+

1
pSpn"’E

Similarly we can show that

1
anp+;

Which finally establishes our assertion that p = lim,,_,,, p,, sincep > 0 we
may restrict any further discussion to sequences for which p,, > 0.We have
proved the theorem for symmetric separable kernels so we can write p,as
eigenvalues of the operator K, and denote by f,, the corresponding

eigenvectors thus we have that

Knfn = Pnfn ”fn” =1

We will now show that

rlll_ﬁlo”Kfn - pfn” =0



Hence it follows that
”Kfn - pfn” < ”Kfn - ann” + ”pnfn - pfn”
< [|IK = Kl + |pn — pl

In view of the fact that K is a compact operator theorem (1.1.12) there is a g in

Rand a sub sequence {fy;} such that

lim||Kfnj — gl =0 (1.24)

j—oo
Then the inequality
lg = pfajll < llg = KKIl + [|K frj = pfnj]|

Together with (1.24) and (1.25) establishes that
lim||g = pfuj| = 0 (1.25)
Hence it follows that
lell = lim[lpfoll = Ipl = 0

Finally we must show that g is an eigenvector of K with eigenvalue P using

(1.24) and (1.25) we see that since

IKg — pgll < ||Kg — Kpfnsl| + |lpKfnj — P8
< IKll||e - anj” + |P|||Kfnj —g|

The required result follows immediately this completes the proof of the

theorem.

Notice that the result p = lim,,_,,, p,, enables quite readily to obtain

approximate values of P.

EAl



This is due to the fact that the value of p,, is easily calculated by the method

out lined in section (1.1) since

IKIl = Lu.b. {{(Kf, OIIIFIl = 1, finR}

The theorem shows that whenever || k|| # 0 the transformation K has a non-
zero eigenvalue equal to +||K||. We will now show that a non-zero eigenvalue

always exists unless the kernel is identically zero.
Theorem (1.2.4):-

IfK (x, y) is continuous and symmetric (Kf, f) = 0 for all f if and only
ifK(x,y) = 0.

Proof:-

(Kf, f) = Ofor allf implies that (Kf,g) = 0 for all f and g. This follows from
identity

1
(Kf,8) = {K(f +8).f +8) - (Kf.f) - (Kg 8)}
Now, taking g = Kf we have that

(Kf,8) = (Kf,Kf) =0

Hence using the fundamental property of scalar products that

b
Kf = fK(x,y)f(y)dy =0,a <x < b, finR.

For fixed x the kernel K (x,y) = h(y)is clearly in R so if we choose f = h we

obtain

b
f|h|2dy=o
a

K



Thatis K(x,y) =0,a < x < b,a <y < b.
Theorem (1.2.5):-

Let Kf; = A;fj, ] = 1,2, ... ... , m.where the f; are orthonormal eigenvectors of
k then there is an eigenvector g of k with a corresponding non-zero eigenvalue
A which is orthogonal to fj,j =12, .... ,mif and only if g is also an

eigenvector with non-zero eigenvalue A of operator H whose kernel is

Hy) = KGoy) = ) 4 (0f0) (1.26)
j=1

Proof:-

Suppose Hg = Ag, A # 0, g # 0 then we have
m
Hy = Kfy = ) M (fuf)
i=1

= Kf; = 4f

Therefore by theorem (1.1.22) we must have that gis orthogonal to

firJ =12, .. ,m consequently
m
Ag =Hg=Kg— lefj(x)(g,fj) = Kg,
j=1

and it follows that g must be an eigenvector of K with eigenvalue A.

Conversely if g is orthogonal to f;,j = 1,2, ... ... ,m when K = Af;
then Hg = Kg = Ag.

10



As an immediate consequence of this theorem we can establish that a
symmetric integral transformation with a finite number of non-zero eigenvalue
must have a separable kernel .This result will be the converse of

theorem (1.1.22).

Theorem (1.2.6):-
Let fj,j = 1,2, ... ... ,mbe a basis of an orthonormal eigenvector of k
corresponding non-zero eigenvalues 4;,j = 1,2, ... ... ,m if khas no other non-

zero eigenvalues then
m
K(y) = ) 4f(0f0)
j=1

Proof:-

The operator Hcorresponding to the kernel H(x,y) given by (1.26) has no
non-zero eigenvalues in view of theorem (1.2.5) and hence by theorem (1.2.4)

H (x,y) must be identically zero the theorem follows immediately.

Finally in this section we use the notation introduced in theorem (1.2.1) to

prove the following theorem.
Theorem (1.2.7):-
(a) If
[ <N,
= Lu.b.{Ckf, O|lIfIl = 1, f orthogonal to f;,j = 1, ...., i}

(b)If
_l > _M, /1_1:_1

= g.l.b.{(Kf,f)|||f|| =1, f orthogonalto f;,j = —1,...,—i}

il



Proof:-

When N > 0 theorem (1.2.3) allows us to write

Lu.bAKf, DIl =1} =2

IfN > i, let

Ki(xy) = Ko y) = ) AfFG)
j=1

Then from the results of theorem (1.2.5) we have that the integral
transformation K;has exactly 4;,1, 4,4, ... as positive eigenvalues with

fi+1(x), fj+2(x), ... . as corresponding eigenvectors. It follows that

Aigr = Lwb A&, OIIfI = 13

However when f is orthogonal to fj,j =1,....,1i
K f = Kf
Therefore

Aivr = Lub {(Kf, O|IIfIl = 1, f orthogonal to f;,j = 1,2, ..., i}
=1 u.b.{(Kf,f)|||f|| = 1, f orthogonal to fj,j = 1,2, ....,i}
= (Kfi+1'fi+1) = Aiy1-

The inequalities thus become equalities, and the proof of the first part of the
theorem is complete the remaining result for negative eigenvalues can be
obtained in a similar manner by considering the operator - K with only a few
slight modifications the corresponding theorems for integral transformations

overR *can be established.



Definition (1.2.8):-

When we were concerned with asymmetric linear transformationT on n-
dimensional Euclidean vector space E,, we saw that it was possible to find n

orthononrmal vector x;,i = 1,2, ...., n satifying
Txl- = Aixl-

Such that if y is in E},, then
n
y= Z(}” Xi)%;
i=1

n
Ty = Z Ay, x)x;
i=1
That is, we obtained an expansion for any element y in E,, in terms of a system

of orthonormal vectors x;, i = 1,2,3, ....n.

We now enquire whether or not similar expansions are available in infinite
dimensional spaces when linear transformations replaced by integral

transformations.

We will start our investigation by considering again the kernel used in

examples (1.1.23) .For the kernel:
K(x,y) =1+ cosxcosy + sinxsiny,
—nt<x<m; n<y<mn (1.27)
We found only three orthogonal solutions of Kf = Af ,A # 0.

These were 1, cosxand sinx .

5



Definition (1.2.9):-

Despite the fact that any linear combination of these three is a continuous
function, this does not imply that they span R, since not every continuous
function can be expressed as a linear combination of them. For example,

suppose we assume that the following expansion is admissible:
cos2x =a+bcosx+csinx, —-m<x<m (1.28)

Integrating (1.28) over—m < x < mwe find a = 0 similarly, by first
multiplying by either sinxorcosxand then integrating over the same range,
we find that b = 0 andc = 0. Thus (1.28) is not an admissible expansion, as
could have been anticipated from the results of elementary of view, since we

have in fact discarded all those eigenvectors with zero eigenvalue.

Definition (1.2.10):-

In an attempt to include these additional eigenvectors, we first notice the

following integral relationships:

0,p#4q,p,q=0,1,..

T T
cospxcosqgxdx = sinpx sin xdx={
f—n P 1 LT p 1 T,p=4q,q9,p=12,..

T
f sinpxcosqxdx =0,p=12,...,q=0,12, ....
-7

Consequently it follows that:
1, cons nx, sin nx, n=12,.,-tr<x<m,

are orthogonal. As a result,cosnx, sinnx,n = 2,34, ...., must be eigenvectors

with zero eigenvalue for the integral transformation having the kernel (1.2.6).

1l



Definition (1.2.11):-

Having gone this far we may as well try to find any remaining eigenvectors,
g, which have zero eigenvalues. If there is such a function, g, then by Theorem
(1.1.17) g must be orthogonal to 1, cosx, sinx, the eigenvectors with non-zero
eigenvalues. Further, g will also be orthogonal to the eigenvectors
cosnx,sinnx, n = 2,3, ... we shall see in the vectors  cosnx,sinnx,n =

0.1, ..., must necessarily be the zero vector.
Definition (1.2.12):-

Assuming this fact for the moment, we conclude that 1, cosnx, sinnx,n =
1,2 ..., constitute a maximal set of eigenvectors of K.when normalized, the

eigenvectors may be written.

sin jx

1
Jan' x/ﬁ V@

Therefore, the required extension of the results for linear transformations on a

folx) = —,j=12,.

f2] 1( ) ﬁf2]( )

finite- dimensional space to integral transformations will be achieved if we

expand any element g of R in infinite series in the form:

ZOEDYCINIOEDY ( | a5 (y)dy>fj(x)-
j=0 j=1 "
This has the alternative form:

a
g(x) = 70 + Z (a, cosnx + b,, sinnx)

n=1



Where:

1 T

a, = —f g(y)cosnydy, n=0,12,..
n -1
1 T

b, = —f g(y)sinnydy, n=1.2,..
TJ) g

This last form of expansion is known as a Fourier series expansion. Whilst we
shall not enter into a detailed study of such series, we will observe that,
although not every continuous function can be expanded in a convergent
Fourier series, an extension of the expansion theorem for linear operations to

integral operators is still possible.

The extension of the result Ty = Y7, A; (v, x;)x;to integral operators in more

readily obtained, and is, in fact, given by the following theorem.
Theorem (1.2.13):-

Let{4;},—0 <M <i <N < o,i # 0 is the spectrum of the integral operator

K associated with the eigenvectors{f;}. If g is any element ofR then.
Ke= Y M@ fofi = Y (Keff (1.29)
i i

Andthe series is absolutely uniformly convergentana < x < b
Proof:-

The series (1.29) converges absolutely uniformly on a < x < b if for

everye > 0 there is an integer N; (&) > 0 such that:

D Ihafi(ol < e a; = (g.£) (130)
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Whenever mandn have the same sign, with |m| > N;yand|n| > N; to show

that this is the case, let:

b
A> l.u.b{f IK(x,y)|?dy |a < x Sb}
a

Notice also that as a consequence of Bessel’s inequality we can write:

Dlad? < gl
i

Where the prime denotes that i = 0 has been excluded from the summation.
Then it follows that there exist numbers n, m having the same sign and

satisfying |n| > Ny, |m| > N; for some integer N, such that:

|Aiaifil < (Zlai|2> (Z Aizlfi|2>
g? 1
< | —
<(%)

b 2
( | ke dy)
a
Thus the inequality (1.30) is established. It remains to show that the series

1
2

n
i=m

1
2

IA
™

converges to Kg. It would perhaps be appropriate to digress for a moment and

elaborate on this particular use of the Schwarz inequality.

Although it is a well-established result for finite series with a development
which is independent of the notions of vector spaces and inner products, it in
no way conflicts with our present requirements. In, fact, if we write S =
S Aamatifma1s - Anfn) andA = (a,, Ay, - Ay) then the left — hand
side is clearly an inner product form defined in the usual manner for finite-

dimensional spaces



(5,4) = ) Aifiay

The application of Schwarz inequality is then clear. Returning to the proof of
the theorem, we remark that if the number of eigenvalues is finite then by

Theorem (1.2.6) the kernel K( x, y) is separable, and we have:
K(y) = ) M)
i
From this it follows that:
Kg= ) X(ef)f
i

As required.

Now consider the case when there is an infinite number of eigenvalues. We

will assume N = M = oo the other cases being treated similarly. Then:

lim Ai =0=1Ilim A—i

i—00 i—>co
If we denote by h any vector orthogonal to the vectors
fu for s fis ot n f= (1.31)
Then from Theorem (1.2.7) we have that:

IRIZA_j-1 < (Kh,h) < |[R1*244

Therefore, for any sequence of vectors (h;) such that (h;) is orthogonal to

every member of the set (1.31) for all j, and having the property that,

llh;]l < B, we have:

18



lim|Khj, hj| = 0 (1.32)

j—oo

Let {H j} be any other sequence of vectors with ||H ; || < Band H; orthogonal to

the set (1.31) for any j. Then Vectors(hj + Hj)are also orthogonal to set (1.31)
for all j and||h; = H; || < 2B.If now we use the result (1.32) in conjunction with

the identity:

(Kh,H) = %{(K(h +H),h+H)— (K(h—H),h—H)},
We see that:

lim|(Khj, H;)| = 0. (1.33)

j—oo

We establish the theorem by selecting particular sequences {hj}and {H j}as

follows. Let:
J
h=g- ) @ff

i==j
Then hjiscertainly orthogonal to the set (1.31) for all j, and
[|h; || < ||g]|-Corollary which states that:

g= > G| < |- D e
i=—j i=—j

For arbitrary c;, in particularc; = 0

1Y



Similarly if we let:

j
Hj = Kh; = Kg - Z(g'fj)ﬂjfj
=

J
=Kg— ) (e Kf)S

i==j
Jj
= Kg— ) (Kgf)f,
i==j
Then we see that H; is orthogonal to f3, f5, ..., fi, f—1, - ,f_j and

IH; 1| = [IKg]l.

With these choices of h;and H;equation (1.33) becomes:
lim|(Khj, Khj)| = 0
]=OO

That is:

2
b

J
lim | |Kg— > 2(e ff| dx=0
==

In view of the uniform convergence, this may be written:

[

2
dx =20

Kg =) M@ ff:



Therefore, because of the continuity of the integral we have

Ke=) X f)f
And the theorem is complete.
Definition (1.2.14):-

This theorem is an extension of one concerned with the diagonalization of
linear transformations defined on an n-dimensional Euclidean vector space.
The results of the theorem may be given an interesting, but at the moment an
imprecise interpretation. If we can write the function g in the form};(g, f;) f;
then, using the terminology of linear transformations, we can say that there is
a basis (f;) with respect to which the function g has the co-ordinate
representation[(g, f;)].It follows that Kg has the representation[A;(g, f;)] with

respect to the same basis.

That is, in some sense the operator K performs essentially an operation of
multiplication. To make this interpretation more precise we need to introduce
the concept of a iterated kernel, which will enable us to obtain an expansion
for our kernel, similar to that in the case of only a finite number of
eigenvalues. Such an expansion is not always possible, in general. However,

we shall see that the operator K™, n > 1 has such an expansion.
Definition (1.2.15):-

Let P(x,y) andQ (x,y) be continuous on the square a <x < b; a<y<b

and define:

b
R(x,y) =f P(x,t)Q(t,y)dt,a<x<b:a<y<bh. (1.34)



We notice that R( x, y) is continuous on the squarea < x < b,a <y < bbut
need not be symmetric, even when P( x,y ) andQ (x,y) are symmetric.

However, if we also have:

b b
f P(x,t)Q(t,y)dt =f Q(x,t)P(t,y)dt (1.35)

Then R(x,y) is symmetric since:

b b
R(x,y) = f P(x, )0, y) dt = f Q(x, P (¢, y) dt

b
- [ Pe.00 ) dt = ROV,

The kernel defined by (1.34) defines an operator R and we have:

b b b b
Rf(x) = f f P(x, )Q(t,y) dt f(y)dy = f P(x, ) f 0t ) f ) dy dt

b
- [ Pn(erm)® de = pp) = Por

Where we have introduced two operators P and Q@ which have an obvious
definition. Therefore we see that R(x, y)is in fact the kernel of the operator
PQ and we have R = PQ. In the case when (1.35) holds we have PQ = QP
and it follows that:

PR = P(PQ) = P(QP) = (PQ)P = RP.

Hence, when (1.35) is valid, P and R commute. In particular if we define:

b
K"(x,y) = f K(x, )K" 1(t,y)dt, n=12,....
a

S
| =)



Where K ( x,y) = K(x,y) is symmetric then K(x, y) is also symmetric and
is the kernel of the integral transformation K". The kernel K™ (x, y) is called
the nth iterated kernelof K (x, y). Such a kernel will be given a more natural

development when we deal with the topic of integral equations.

Finally we notice that if n = r + s then K™ = K" KSand:

b
K"(x,y) =f K" (x,t)K°(t,y) dt

Theorem (1.2.16):-

If {A;} and {f;} are defined as in Theorem (1.2.13), then:

H™(x,y) = Zai"fi(x)fi(y), n=123,.. (136)

And the series converges absolutely uniformly on:
a<x<b:a<y<b.
Proof:-

For fixed y, define g(x) = K" 1(x, y), then:

b a
Kg(x) =f K(z,t)g(t)dt =f K(z, )K" 1(t,y)dt = K"(z,y)

Theorem (1.2.13) states that every function of the form Kg(x) has an

expansion in eigenvectors given by:

Keg(o) = ) (Kg, ffi ()



Where, in this case,

b
(Kg f)) = f K" (u, ) ) du = K () = A" ()

This yields the expansion (1.36) which converges uniformly in x for each
fixed y by Theorem (1.2.13). To complete the proof we must show that the
series is absolutely uniformly convergent in both x and y. To this end, first

notice that in the case when n = 2 we have:

K?(x,x) = Zlizlfi(x)lz,a <x<b.
i

This series converges uniformly. Therefore there exists an integer N (¢) such

that ifmandnhave the same sign and |n| < N(¢) then:

n
Z A2 fi))?<e,a<x<b
i=m

Further we may choose N (¢&)large enough to ensure that |4;| < 1 for

[ > N(&)consequently, on applying Schwarz’s inequality we obtain:

2 n n
< D AR ) AP

D A@AO)

< D IPIA@E ) IAPIAO)P

< e?,

a<x<b;a<y<bh.

In view of the Cauchy criterion for convergence, the theorem follows.



Definition (1.2.17):-

We will now examine the eigenvalues of the operator K". We shall find that
just as in the finite dimensional case, the eigenvalue are the nth powers of the

eigenvalues of K.
Theorem (1.2.18):-

If {A;} and {f;} are defined as in theorem (1.2.13), the non-zero eigenvalues of
K™are A;". Further, if S(r) is the set of indices i such that 1;,* = r # 0, then
the number of linearly independent eigenvectors of K™ with eigenvalue ris the

number of indices in S(7).
Proof:-

Let K"g = rg,r # 0. Then by means of the uniform convergence established

in Theorem (1.2.16), we can write:
K"g= ) "8 ff
i

Every eigenvector of K corresponding to an eigenvalue A;is also an

eigenvector ofK™ but corresponding to an eigenvalue A;" since:
K"f; = K" 'Kf; = L, K" f;.

Therefore by Theorem (1.2.13) we must have (g, f;) = 0 unlessiis in S(7)

consequently we have

rg=K"g= ) A"@ff

ies(r)

=1
=1



This shows that g is a linear combination of eigenvectors of K" corresponding
to the eigenvalue A;,"".Hencer = 4;"and the number of linearly independent

eigenvectors of K™ for eigenvalueris exactly the number of indices in S(r) .

The expansions developed in Theorems (1.2.16) and (1.2.18) are not true, in
general for n=1 as can be seen by examining once again theorem
(1.2.13).However, such expansions are not the only ones possible as the next

theorem shows.

Theorem (1.2.19):-
b n 2
tm [ k@ = Y 2R d=0
a i=—n

Uniformlyona <y < b

Proof:-
Writing
b n 2 b
[ @y = > afiso)| dr= [ x-vizax
a P —y a
We see that

b
f X =Y]2dx=(X-Y,X-Y)=(XX) = (,Y) = (V,X) + (V,Y).



Then

b
X, X) = f K (x, y)K(x, y)dx = K*(y, ).

b n
K0 = [ K@) Y AR dx

l=—n

= ) MAOIKFO)

l=—n

= Z KO

l=—n

v ry=| Z AfGOfi) Z AR ) dy

= > 22 R)P

This last result follows from the orthonormality of the vectorsf;.

Therefore we have:

[

The theorem then follows as a result of Theorem (1.2.16).

2

dx = K20, = ) AEIHO)P

l=—n

Ky = ) @A)

l=—n

Definition (1.2.20):-

The symmetric kernel K(x,y) is said to be positive definite when it defines a
positive definite transformation, that is, when (Kf, f) > 0 for all f in R and

f # 0,the symmetric kernel is said to be positive semi-definite if (Kf, f) =

W



0,for all fin R It follows directly from Theorem (1.2.7) that the kernel is

positive semi-definite if and only if all its eigenvalues are non-negative.
Theorem (1.2.21):-

If K(x,y) is positive semi-definite then K (x,x) = Ofora < x < b.
Proof:-

Suppose K (z,z) < Ofor some z, then there is an interval I containing z such
that K (x,y) < Oforxin [ and y in I. Now choose f(x) = 1 for x in ] and zero

elsewhere, and we find that:

(Kf,f)=f f k(x,y)dxdy < 0.
1 i

This contradiction consequently establishes the theorem.
Theorem (1.2.22):-

If K(x,y) is positive semi-definite then:
Ky) = ) M)
i

And the series converges absolutely uniformly fora < x < b; a <y < b.
Proof:-

The kernel

H(y) = Koy) = ) Afitfi)
i=1



Generates a transformation which has non-zero eigenvalues

/1i+1, /1i+2, ......

Since they are non-zero the kernel H (x, y)must be positive semi definite and

we have by Theorem (1.2.21) that
n
KGox) = D AP =0
i=1
In the limit as n — oo we have
n
D MA@ < K@) (1.37)
i=1
Therefore for fixed x we can find an integer N(¢), for all € > 0, such that:
n
D MA@ <
i=1

Whenevern = m = N(¢)

Now by Schwarz’s inequality

n 2 n n
D ARG < D AP ) MIAOE < e242

Where:

A=lLub{K@la<y<b)= Zlilfi(y)lz,by(l.37)



This inequality together with the Cauchy criterion establishes that our series
converges uniformly in yfor fixed x(Similarly with respect to xfor fixed y).

Now

2

dy

[

KGy) = ) Afi(0f0)

b n
<2 kG =Y 2@ dy
a i=1

b n
+2[ K@y =Y Aiofio)| @,
a i=1

And by theorem (1.2.19) and the uniform convergence just established we

obtain

2
f
b

Finally, we must establish the uniform convergence in both x and y.

K@y) = ) Mfifi0)

dy =0, a<x<h.

Putting x = y in (1.38) we obtain
K(xy) = ) Mlfl
i

This series is uniformly convergent. Therefore, there exists M(g) fore > 0

such that

Zaim(x)v <& n>m>ME) (1.39)
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Hence, on using the result

n 2 n n
(Z Aifl(x)fi(y)) < > MADIE Y Al

In conjunction with (1.39) we readily establish the absolute uniform

convergence.

In this, as in previous cases, similar results can be developed for the space

R* provided the usual minor modifications are made.
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Chapter (2)

Differential operators
Section (2.1):Inverse operators and the §—function
Definition (2.1.1):-

Let L be a linear ordinary differential operators acting on the space of functions u(x).
The inverse operator to L is L™tand it is such that LL™! = L™1L . We assume that L™!

is an integral operator with kernel K (x, t) so that
L tu= fK(x, Hu(t)dt
Then formally at least we may write
ux)=Iu=LLu=1L f K(x, Hu(t)dt
Since L is a differential operator with respect to the variable x , we see that, formally,
u(x) = fLK(x, Hu(t)dt (1.2)

We may write the kernel of this integral operator in the form
LK(x,t) =g(x,t)

and obtain

u(x) = fg(x, Hu(t)dt (2.2)

Now, if this result is to be true for all continuous u(t) it follows that g(x, t) must be

zero whenever x # t and when x = t the integral on the right must reduce identically



to u(x).To ensure that this was always the case, Dirac introduced his celebrated 6-

functions in place of g(x , t) and obtained
f 6(t — x)u(t)dt (2.3)

Where §(x) =0,ifx #0

Such a function is zero everywhere except at the origin, where it becomes infinite in

such a way as to ensure

f+oo6(x)dx =1

—00

At first sight, such a functions ,would appear to be nothing short of sheer nonsense.
We conclude therefore that at best ,6(x) is not a function in the ordinary sense .That
this is indeed the case has been elegantly demonstrated by Laurent Schwartz in this
theory of distributions where he justifies not only the use of the § —function as
defined above but also the use of all its derivatives the theory of distributions
provides a powerful mathematical tool on two main counts first it allows us to
interchange limiting operations where such an interchange is not valid for ordinary
functions. Secondly it allows us to use series which under normal circumstances we
would call divergent for example the fact that §(x) is not a function in the ordinary
sense indicates that (2.3) is not a valid consequence of (2.1) this in turn stems from
the fact that in order to obtain (2.3) we had to interchange the operations of
integration and differentiation and this was not justified however Schwartz showed
that if the equations are understood in the sense of the theory of distributions such
interchange are perfectly justified and (2.3) becomes a valid consequence of(2.1) we
shall make extensive use of the result form this theory whilst such results will be

stated before they are used no proof will be given and we referred to original sources

Definition (2.1.2):-
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The most important property of the §-function and that which makes it so useful is

the following for ever continuous function ¢ (x)

f 5 x)dx = $(0) 2.4)

[oe]

That is the & -function can be handled algebraically as if it were an ordinary function.
Whilst this may be, so we, must always interpret any equation involving & (x)as
follow. If the equation is multiplied throughout by an arbitrary continuous function
¢ (x) and integrated over the range (—o0, +00) and, if (2.4) is used to evaluate
integrals involving §(x), then the resulting equation is correct and involves only

ordinary functions.
For example
x6(x) =0 (2.5)

Because for any arbitrary continuous function ¢(x) we have on writing
xp(x) = P(x)
+00

f+oo6(x)x¢(x)dx = f w(x)6(x)dx =¢(0) =0

— 00

Finally in this introduction to the use of the §-function we remark that the familiar
techniques of integration such as integration by part and substitution can be shown to

apply to integrals involving §-functions as an example, consider the integral

I=f 6(f(x))(b(x)dx

Where ¢ (x)is an arbitrary continuous function and f (x) is a monotonic function of

x which vanishes when x = xywrite y = f(x) and it follows that dy = f'(x)dx.

The integral then becomes

il



1=f 5 dy

Wherey (y) = (x)/|f'(x)|, and the modulus sign is to ensure that the integration is

always from +oo to—oo hence

¢ (xo)
£ (x0)]

I'=4(0)=

Consequently if by 6 (x — x) we understand

¢[_6@—%wwa=m%)

It follows that

6(x = xo)

VO =Trr

(2.6)

As two special cases of (2.6) we have

f w5(ax —b)p(x)dx = |a|~*Pp(ba™)

and
5(x) =6(—x)

The arbitrary continuous function ¢ we have used to test the validity of (2.5) and
(2.6) we shall in future to as a testing function for our study of differential equation it
will be convenient to restrict the term testing function to mean those function ¢
which are continuous have continuous derivatives of all orders and vanish outside a
certain finite interval since ¢ has continuous derivatives of all orders we say that it
belongs to the space of € “functions. in addition as ¢ vanishes outside a finite
interval we say that it has compact support where by the support of ¢ we mean the

closure of the set of points where ¢ is non-vanishing these two properties of the
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testing functions which we shall use we can sum up in notational form by saying ¢
is in C5°the space of functions with continuous derivatives of all orders and having
compact support we notice that the restriction of testing function to C;° functions in

no way invalidates (2.5) or (2.6)
Definition (2.1.3):-

The set of all such testing functions as we have described can easily be seen to form a
linear vector space we find however that it is more convenient to work with the basic

notions of convergence than to introduce an inner product into this space. We say that
a sequence of testing functions {¢} converges to zero if the functions ¢,, and all their
derivatives converge uniformly to zero and if all the function ¢,,vanish identically

outside the same finite interval.

We define a linear functional F (¢) on the space of testing functions ¢ as
follows :F(¢) is a linear functional on the space of testing functions if to every

testing function@in this space a real or complex number F (@) is assigned such that

F(¢, + ¢,) = F(¢1) + F(P2)
F(R¢p) = RF(¢)

For any scalar quantity R such a functional is said to be continuous if the sequence of
numbers F(¢) converges to zero whenever the sequence of testing function {¢,,(x)}
converges to zero in the sense described above. Schwartz refers to any continuous

linear functional on the space of testing functions as a distribution.

Typical examples of continuous linear functional are

Fi1(¢) = ¢'(0)

1
Fy(¢h) = f () dx
0
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Definition (2.1.4):-

Any continuous linear functional on space S for which there is defined an inner
product can be expressed as an inner product of element of S it therefore seems
strange that we have deliberately avoided introducing an inner product into our space

of testing function it would seem natural to introduce the inner product

(¢¢)=£ () Y(x)dx

However if this is done we find that the space of testing functions so restricted is not

complete, the following example illustrates this point
Example (2.1.5):-

Consider the linear vector space of functions f(t) continuous on [0,1] we define the

scalar product by

1
(ﬂ@=ffwmwa
0

Now consider the sequences of continuous functions

(O O<t<1 !
’ -T2 2n
£0) = 4 . 1 1 1 1<t<1+1
n "( _2)+2’ 2 m -T2
1 1+ - <t<l1
- 2 2n= "
Forn=1,23 ..... it is easy to show that these functions converge in the Cauchy

sense that is given € > 0



1
If, = fnll? = f (fu— f.)2dt <
0

Whenever n and m are greater than some suitably chosen N (¢).However the limit of

this sequence is the function

0;
flx) =
1;

N+~ O
IA IA
= =
IA IA
=N e

Which is discontinuous and therefore does not belong to the space under

consideration.

Nevertheless, we would still like to express a continuous linear functional F(¢) as

an integral preferably in the form

+ 00

F($) = f s(Ob () dx

Sometimes this is possible as for example in the case of the functional F,(¢)

1
Fy(¢) = f $(x) dx
0

Where in this case

1, 0<x<1
S(x)_{O, x>1

Such a representation is not so immediate in the case of F; (¢p) = ¢'(0) or.
F5(¢) = ¢'(0)

However we have seen that

$(0) = f 5(x)(x)dx

(o]
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and consequently

Fy(¢) = $(0) = f 5 (x)dx

[oe]

Where we have chosen s(x) = §(x) the use of the §-function in this context is an
example of a symbolic function by the term symbolic function we mean a symbol
s(x) which enables us to write any continuous linear functional, F(¢) on the space

of testing function in the form

+ 00

F($) = f s(OP(0)dx

These symbolic functions need not necessarily have any numerical values. They only
have values when multiplied by a testing function and integrated. We notice that if

f(x) is an integral function, then

f FO$()dx

Is a continuous linear functional on the space of testing functions.

consequently every integrable function is a symbolic function but there are many
symbolic functions as for example the function which are neither integrable nor
functions in the ordinary sense we summarize what is proved in the theory of
distributions by saying that symbolic functions may be manipulated as if they were
ordinary functions however any equation involving symbolic functions to be equation
involving symbolic function is to be understood in the sense that if that equation is
first multiplied throughout by an arbitrary testing function and then integrated

over(—oo, +00),the result is a correct equation involving only ordinary functions.

6Y



Definition (2.1.6):-

The symbolic function is defined by the functional it produces and it would seem
natural to try to define the derivative of a symbolic function in terms of the derivative
of an ordinary function this we can do if first we notice that for any integrable

function f possessing a continuous first derivative,

f £ ()dx = — f £ () dx

This follow as a result of one integration by parts and noticing that the testing
function has compact support we use the result to define the derivative of a symbolic
function as follow we say that s’(x) is the derivative of s(x) if

+o0 +00

f s’(x)(p(x)dx:—f s(x)p'(x)dx  (2.7)

For every testing function ¢ (x).

For example the symbolic function &' (x)is defined by
+

f 5" () (x)dx = — f 5(x)¢’ (x)dx = —¢'(0)

and we see that &’ (x)is produces that functional which assigns the value—¢’(x) to

the testing function ¢ (x).Similarly we define by §''(x)is

+

f_ 6" () p(x)dx = —f §'()¢" (x)dx = —¢"(0)

[0¢] —00



With this definition of a derivative a available we can show that the function has a

representation in terms of the derivative of the Haeaviside unit function H (x)

defined as

To see this we use (2.7) to obtain
+

f H' (x)¢p(x)dx = —f H(x)¢p'(x)dx

—00

=— f "¢ @

= ¢(0)

Since the testing function has compact support hence by comparison with (2.4) we

see that
H'(x) =6(x)

It can be shown that the definition of derivative as afforded by (2.7) enables us to use
all the usual rules of differentiation which are employed when dealing with ordinary

functions.

These notions of symbolic functions and symbolic derivative enable us to attach a
meaning to the derivative of a function that has a jump discontinuity at x = x; of
magnitudea, but that everywhere else has a piecewise continuous derivative then the

derivative of f(x) is f'(x) for x < x;and x > x,but is undefined for

x = x,however we can define a symbolic derivative f's(x) of f(x)



by means of (2.7) to this end let
g(x) = f(x) —aH(x — x,)
Where Hx—x) =1; X > xq
=0, x <X

Then for any testing function ¢ (x),

+ oo

f FG$! () dx = f 8GO ()dx + ay f Hx — x)@' (x)dx

—00

=f g (x)p(x)dx — a;Pp(x;)

Using (2.7) to define f' (x)we also have

f FoG)dx = f (&' () + w0 — x)}¢ (D

and it follows that we can write
fi =8 () +a;6(x —xq)
Since g'(x) = f'(x) + a;6(x — x) It follow that f" = g’ except at x = x;

This is easily generalized to functions f (x) having jumps magnitude aq, ... ...., a;zat

the points x4, ....., X, we then obtain
ff=f"+a;6(x—x)+a,6(x—x,)+ . +a,6(x —x,,)
For the symbolic derivative of such a piecewise differentiable function

We shall be using the symbolic derivative very frequently and in the light of what we

have just said the omission of the subscript s will cause no ambiguity.

-
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Example (2.1.7):-

Consider f(x) = |x|.We will determine the symbolic derivative of such a function

¢ (x)if is any testing function we have from (2.7)

[ +:f'<x)¢<x)dx . f:of(xW(x)dx
--| l(—x) ¢ (x)dx — fo " ()dx
= —f_(;(p(x)dx + fooo(p(x)dx

= foo (sgnx)¢(x)dx

Therefore

f'(x) = |x|" = sgn(x)

Where sgn x is the function signumx and is defined to be (—1)for x negative and

(+1) for x positive
Example (2.1.8):-

The function

= -1, x<0

has a jump magnitude 2 at x = 0 consequently the symbolic derivative of such a

function is given by (2.8) as



d
Tx (sgnx) = 26(x)

These functions and their associated function are useful in many other fielder of

analysis. For instance we can evaluate

+1
I = f—1 x| ¥"(x)dx

By means of repeated integration by parts as follow

+

1
=t e [ - |l eods

-1

+1
RO CE R eR e} M PR TTEOL:
-1

+

1
= /(1) = (=) — (sgn(P()) ‘f} +2 | GwEdx

-1
=9’ (D) -y’ (=D) =) —y(=1) + 2¢(0)

This process should be compared with the method of evaluation which we begin by

writing

0 1
I = —f_lxlp"(x)dx+f0 xyP"(x)dx

We now return to the problem of inverting the differential operator L Let ¢p(x)and

Y (x)be two testing function and consider the equation

Ly =9¢

We will assume that when the inverse operator exists it does so in the form of an

integral operator with a kernel K (x, t), such that



[(x) = f K(x, O(0)dt

But now we allow K (x, t)to be a symbolic function in the sense defined above

applying the operator L to both sides of this equation we obtain:

LI (x) = p(x) = f LK (x, ) (D) dx

This equation will be satisfied if we can find K (x, t) such that
LK(x,t) =6(x —1t)

Where all differentiation is to be understood as being symbolic differentiation

Example (2.1.9):-

Invert the operator L = d?/dx?in this case equation (2.9) educes to

2

%K(x, t)=6(x—1t) (2.10)

Since H'(x) = &6(x) One integration yields

dK 3
I (x,t) =H(x —t)a(t)

Where a(t) is some arbitrary function.

Integrating, we get
K(x,t) = f H(x —t)dx + xa(t) + B(t)

=(x—-—t)H(x —t) +x a(t) + B(t) (2.11)

-
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Where S (t) is an arbitrary function .It can be shown (Schwartz) that any symbolic
function which is a solution of (2.10) can be written in the form (2.11) we see that
K(x,t) in (2.11) is a continuous piecewise differentiable function, further we notice

that if f(x) 1s any integrable function with compact support the function

u(x) =fK(x,t)f(t)dt

Satisfies the equation

d?u
dx?

= f(x) (2.12)

The final expression (2.11) for K(x, t) contains two arbitrary functions and so in
general we would expect to be able to satisfy two boundary conditions for the

equation (2.12)

Example (2.1.10):-

Find the function u(x) which satisfies

d?u

— =f(0) 5u(0) =u(1) = 0 (213)

This equation has as we have seen a solution in the form

u(x) =fK(x,t)f(t)dt

Where k(x, t) is given by (2.11) consequently

u(x)=f (x—t)f(t)dt+xf a(t)f(t)dt+f B(O)f(t)ddt

(o]



Substituting x = 0 and x = 1 into this equation and using the boundary values

imposed on u(x) we obtain

0 [e's)
0= —f tf(t)dt+f B f(t)dt

1 + 0o o
0 =f (1—t)f(t)dt+f a(t)f(t)dt+f B f(t)dt

From the first of these equations we see that
B(t) =tH(-t)
Whilst from the second
a(t) =—1+tH(t),—0o<t<1
=0, t>1

Inserting these results in the form of the solution, we obtain

X 1
ulx) = f (x —t)f(t)dt — xf (1-t)f(t)dt (2.14)
0 0

In this case we see that the kernel has the particular form
Kx,t)=(x—t)Hx—t) —x(1 —1) (2.15)

For0<x<1landt<1

We readily see that the kernel K (x, y) satisties the same boundary conditions as

u(x)that is

K(0,6) = K(1,t) =0

-1
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We shall find that even for more general differential operators .The kernel of the
inverse operators considered as a function of x satisfies the same boundary conditions

as does the solution of the differential equation

Definition (2.1.11):-

Before we can continue with the problem of inverting a differential operator we must
be more precise in our definition of the operator itself. since in this chapter we shall
be primarily concerned with linear, ordinary second-order differential operators we

will write

2 d
L= a(x)ﬁ+ b(x)a+ c(x)

Where for the time being we will assume that a(x) ,b(x) and c(x) are continuous
functions of x having defined the form of the operator, it now remains to specify the
linear vector space S of function on which the operator L acts we shall be concerned
primarily with differential equations defined over a finite interval and this we may
conveniently take to be the interval [0,1] consequently we will take S to be the space
of all real-valued functions which are Lebesgus square integrable over [0,1] that is

S contains all real functions u(x) defined for 0 < x < 1 and such that

1
f u(x)?dx < o
0

For physical applications the distinction between Riemann and Lebesgue integrals is
unimportant mathematically we require the Lebesgue integral formulation to ensure
that the space S is complete ifu and v are functions belonging to S we introduce an

inner product into S by the definition

1
(u,v) =f u(x)v(x)dx
0

It}



Definition (2.1.12):-

The operator L is a differential operator and consequently cannot be applied to all
elements of S since there is no reason to suppose that every function in S is in fact
differentiable .Also even when a certain function u is in S the result Lu may not be

for example u(x) = x sin (x — 1) is in S and 1s differentiable but its derivative
u'(x) = sin(x™1)- x71 cos(x™1)

is not in S consequently we will consider L to act only on those functions u in

S which ensure that Lu(x) is also in S

Finally from our previous discussion of differential operators we appreciate that in

order to obtain a unique solution of the differential equation

Lu(x) = f(x) (2.16)

It is not sufficient simply to specify L we also require conditions on u(x) itself for

convenience we take these conditions to be

B;(u) = a;ou(0) + a;1u’(0) + Bou(l) + B11u'(1) =0
B, (u) = azou(0) + az1u’(0) + Byou(l) + B1u'(1) =0 (2.17)

Where the a;; and f;jare known constants strictly, for each different set of conditions

(2,17) we should use a different symbol for the operator L although it is only the
conditions which change however we shall not do this as the resulting complication

in notation would serve no useful practical purpose
Definition (2.1.13):-

The domain of the operator L as follow: it is the set of all functions u in S which have

piecewise continuous second derivatives satisfy (2.17) and ensure that Lu is also in S



The domain of L which is clearly a linear manifold of S need not necessarily be a
subspace (i.e. a complete linear manifold) of S that is there could exist a sequence of
functions u,, (x) in the domain which converge to limit u(x)in S, although this limit,

u(x) is not in the domain of L

Definition (2.1.14):-

In order we may apply the theory of linear operator to the differential operator L we
need to be able to define the adjoin operator L*previously we defined the adjoin

operator L*by the equation
(v,Lu)=(L'v,u)

When dealing with differential operators we may employ a similar method to fi x our

ideas, we will consider a particular example

Example (2.1.15):-

LetL = % on a manifold ,M of S defined by the condition v(0) = 2v(1). Then,

— 1 fl dud
= [uv]; Ovdx X

1

= v(D[u(1l) — 2u(0)] — f v;l—l;dx

0

\{



= (L"'u,v)

We see that L* consists of two parts ; a differential operator —d /dx, and some
boundary terms .In this example the differential operator —d /dx is called the formal
adjoint of the differential operator d /dx. The adjoint to L on the manifold M will de
the operator —d /dx on the manifold defined by u(1) = 2u(0). Therefore we have

(u,Lv) = (L*'u,v)

du
Where L'u=——
dx

And u(x) satisfies u(1) = 2u(0)

We notice that in this example L acts on the manifold of square integrable functions
u(x) which satisfy (0) = 2v(1) ,but L*acts on the manifold of square integrable
functions u(x) which are such that u(0) = u(1)/2. In general the manifold on which
L*acts is different form that on which L acts .One manifold is said to be the dual of
the other , if L = L*the differential operator is said to be formally self-adjoint . If, in

addition the boundary conditions for L and L* are equivalent in the sense that they

define the same manifold then the differential operator is said to be self-adjoint.

Example (2.1.16):-
Let

Lol oxd
=€ dx? edx

On the manifold defined by
u'(0)=0;u(l)=0

Then

Sl



1 d? d
vie* —+ e*—tudx

(v, Lu) = f dx? dx

0

1
= f v{e*u'} dx
0

1
= [ve*u'l} — [v'e*ul} +f u(e*v") dx
0

1
=u'(DvD)e! +v'(0)u(0) + f u{e*v" + e*v'}dx
0

Thus we see that the differential operator in the adjoin operator has the form:

and L is consequently formally self-adjoin
In order that
(v,Lu) = (L'v,u)
For all u the boundary conditions satisfied by v must be
V'(@0)=0;v(1)=0
Therefore, since u(x) and v(x) now satisfy the same boundary conditions it follows
that L 1s self-adjoint
Notice, that the general second-order operator

d?u

Lu = a(x) T2

has a formal adjoins defined by

ro= @) - Lo +
v—dxz a,v dx v Cv
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It then follows that
B
f [vLu — uLl*v]dx = [](v,u)]g (2.18)
a

Where
J(w,u) = avu' —u(av)' + buv
J(v,u)is call the conjunct of the functions v and u.
Section(2.2):
Green’s functions and second-order differential operators

A large number of problems in mathematical physics reduce to the study of second-
order differential equations. Consequently in this section we consider second-order
differential operators in some detail unless otherwise stated e will take as our second-

order operators the general form
1
Lu=— ” (pu') + qu (2.19)

and this is self-ad joint, provided the scalar product is chosen to be

1

(u,v) = fu(x)v(x)w (x)dx (2.20)

0

The minus sign in the definition of L is to ensure that the operator is positive definite.

That this is the case can be seen as follows:

1

(u,Lu) = f u (—%(pu’)’ + qu) wdx
0

5



1

1

- f(pu’2 + uqwu?)dx — upuu’ 0
0

Consequently if, p > 0,q > 0, w > 0, and the boundary conditions are such that the

integrated terms vanish we have that
(u,Lu) >0
as required

A part from this one mention of boundary conditions all we have achieved so far is
the requirement for L to be formal self-adjoint we now wish to find the conditions
which will ensure that L is self-adjoint to this end if we examine the difference

(v,Lu) — (Lv,u), using (2.18)we see that

1 1
(v,Lw) = (Lo, w) = J@, W)l ) = =pCOU’ —uv)] |

Therefore, ] will be self-adjoint if (v, u) vanishes identically when u and v are in the
same manifold. Tow particular special cases arise which will have important

applications later.
(1) Unmixed boundary conditions

Boundary conditions are said to be unmixed if they involve the function and its
derivative at either x = 0 or or x = 1 but not at both. A typical example of an

unmixed boundary condition is
au(0) + bu'(0) =0

It is easy to show that if u satisfies an unmixed condition at x = 0 and an unmixed

condition at x = 1 then L as defined by (2.19) is self-adjoint.

(2) Periodic boundary conditions
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Bounded conditions are said to be periodic if they have the form:
u(0) = u(1); u'(0) =u'(1)

Again it is easy to show that, for such conditions,L is self-adjoint. We now prove the

following theorem.

Theorem (2.2.1):-

If u is any solution of Lu = 0 and if v is any solution of L*v = 0, the conjunct of u

and v is a constant whose value depends on u and v.
Proof

L andL *are formal self-adjoint in the space S thus from the definition of the conjunct

we have that
B
J(u, v)li = f(vLu —ul*v)dx =0
a

Therefore the value of J(v,u)at x = @ and x = § must be the same for arbitrary «

and S hence J (v, u) must be a constant
Corollary (2.2.2):-

If L 1s a formally self-adjoint operator and u;and u, are two solutions of Lu = 0 then

the conjunct of u;and u, is a constant whose value depends on u;and u,
Corollary (2.2.3): -

If L 1s self-ad joint and u;and u, are two solutions of Lu = 0 and if J (uq, u,)
vanishes for some value of x for which p(x) # 0 then u;and u, are linearly

dependent.
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Proof

From corollary (2.2.3) it follows that the conjunct must vanish for all x consequently
uu, —uUsuy =0

This implies that

Ugly — Uplly

2
Uus

One integration establishes that (1, /u,) is a constant and hence u; and u, are

linearly dependent.
Definition (2.2.4):-

So far we have only examined homogeneous boundary value problems however we
shall often encounter the following type of non-homogeneous problem :to find

u(x) such that

u'(x)=fx); uw0)=a ud)=>hb

A possible approach to the solution of such a problem is to reduce the given problem

to the consideration of homogeneous boundary values problems by writing
u=1u;+u,
Where
up = f(x); ug(0) = 0; uy (1) = 0
and
U, = 0; uy(0) =a; u,(1) =b

A more convenient method however is to extend the ideas we presently have of an

operator in much the same way as we extended the notion of a derivative by defining
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symbolic differentiation. when we extended the processes of different ion by
defining symbolic differentiation we considered a space of testing functions and then
defined the symbolic derivative of a function by integrating by parts the product of
the function with the ordinary derivative of a testing function we will do just this to

extend the definition of a differential operator.
Definition (2.2.5):-

First we consider an example

K=—— (2.21)

With associated boundary conditions,
u(0)=u(1) =0

Then it is easily seen that K is self-adjoint and that M the domain of k is the set of

functions u in S such that u" exists and belongs to S and such thatu(0) = u(1) =0
If now v belongs to M and if W belongs to S we will write
(Kv,w) = (v,Kw)

And use the left —hand side to define the symbolic function kw we must consider kw
as a symbolic function because w may not belong to the domain of k even though it

is in S by hypothesis. Therefore we have

1 1
(Kv,w) = — f v'wdx = —v'(D)w(1) + v'(0)w(0) — fvw"dx
0 0

Since v belongs to M the right-hand side of this equation is clearly a linear function

for functions in M and consequently it may be used to define a symbolic function kw.

We see then that



1 1
kawdx = — f vw"dx — v (D)w(1) + v'(0)w(0)
0 0

1
- f v{—w" + w(1)8'(x — 1) — w(0)8'(x)} dx
0

Therefore

Kw=-w"+w()d§ (x—-1) —w(0)d'(x) (2.22)

We should note at this point that in our previous discussions of thed-function, we

obtained the results

f $(0)6(x — a)dx = ¢(a)

f d(x)8'(x — a)dx = —¢'(a) (2.23)

Provided x = a was an interior point in the rang of integration we extend the
definition of the §-function by assuming that (2.23) holds, even when x = a is an end

point of the range we could equally well define

1
[ 6@t - yix =5 0(@

[ 6008/ - @ = ~3 '@

When x = aboth these extensions of the definition of the §function can be justified
(Schwartz) and one or the other can be used provided it is used consistently for our

purposes (2.23) will be quite adequate.

In the event that W belongs to M then (2.22) reduces to

8



Kw = —w

as it should however, (2.22) is also applicable to function not in M for example if

w(x) = c a constant in [0,1] then
Kw=c¢é'(x—1) —c§'(x)

And we say that Kw, as defined by (2.22) is the result of applying the symbolic

operator K to w

Example (2.2.6):-
To find u(x) such that
u'x)=f(x); u0)=a u(l)=> (2.24)

Using the ideas of symbolic operators introduced above and in particular (2.21) and

(2.22) we can restate the problem as follows: to find a function u(x) in S, such that
Ku=—f(x) +bd'(x—1) — ad’'(x)
Now, we have seen in example (2.1.9) that the function g(x, t) satisfying
Kg=-6(x—-1) (2.25)
Is
glx,t) = (x —t)H(x —t) —x(1 — 1), 0<x:t<1 (2.26)

If we multiply (2.26) by f(t) and integrate with respect to t from 0 to 1 we obtain a

function u; (x) given by

1 x 1
xuq(x) = ff(t)g(x, t)dt = f(x —t)f(t)dt —x f(l —t) dt.
0 0 0
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This is a solution of Ku; = —f as can be seen by noticing that

1 1
Ku; = Kff(t)g(x, t)dt = ff(t)kg(x, t)dt
0 0

1
= —ff(t)(S(x —t)dt
0
=—f()
To complete the solution we require a function u ,such that

Ku, = bd'(—1) —ad’'(x) (2.27)

Thes we can obtain by differentiation of (2.25) and (2.26) with respect to t.

Kag—S' 1 2.28
- 1) (228)
og

a =—H(x—-t)+x (2.29)

From these last two results we see that if we write

Jg
— a —
ot

og

Uz =ba

t=0

Then u ,satisfies (2.27)

Since
dg ;
—| =—-H(x—-1)+x=x, forallxin[0,1]
Otli=1
dg i
= =—-H® +x=x-1, forallxin[0,1]
Otli=o

0



It follows that
U, =bx—a(x—1)
Consequently the solution to the given problem is

u=1u+u,

x 1
u=f(x—t)f(t)—xf(l—t)f(t)+bx—a(x—1)
0 0

These several results which we have obtained for a particular differential operator

may be extended to arbitrary differential operators.

Definition (2.2.7):-

let L be an arbitrary differential operator with domain M and denote by L *the adjoint
of which is assumed to have a domain M *we say that the functions belonging to M*

are testing functions for L.

Consider a function w belonging to S but not to M we wish to define Lw but cannot
do so immediately because w is not in M however if v is a testing function for L that
is v 1s contained in M* then L*v is defined and the scalar product (L*v,w) has a
meaning to define the symbolic function L w we combine the properties of symbolic

operators and ad joint operators by writing
(L*v,w) = (v,Lw) (2.30)

The left-hand side of (2.30) is used to define the symbolic function Lw this extended
definition of an operator as provided by (2.30) enables us to restrict ourselves to the
consideration of operator with homogeneous boundary conditions because as we saw
in the case of the operator k any problem with non-homogeneous boundary

conditions may be changed into a non-homogeneousproblem involving an operator
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having homogeneous boundary conditions consequently we will only consider

homogeneous boundary conditions in future.

Definition (2.2.8):-

We are now in a position to consider more general forms of second —order
differentional operators and their inverses we have already seen that the
differentional operators K = d?/dx?with the associated boundary conditions has an

inverse in the form of an integral operator whose kernel g(x, t) satisfies

d2
Wg(x, t)=6(x—1t)

We saw in this case
gx,t) =(x—t)H(x—t) —x(x—1t),0<x, t<1

Now, suppose that L is a general second-order differential operators in x with domain

M. We wish to find a function g(x, t) such that
Lg(x,t) =6(x —t) (2.31)

We notice that here L must be considered as a symbolic operator when applied to
g(x, t) though of as a function of x since g(x, t) is not necessarily in the domain of L.
Also we must use the extended definition of the operator; consequently the boundary

conditions are automatically satisfied.

Definition (2.2.9):-

In conformity with our previous, rather particular discussion, we will call g(x,t) the
Green's function of the operator L.It is readily seen that g(x, t) is the kernel of an

integral operator which invertsL, for, if we write

i



u(x) = f o(x, Df (Ddt

then

Lu = ngfdt = f S(x —t)f(t)dt = f(t)

Which implies that

w(x) = L f () = f g(x, O (Ddt

So that we may proceed with the solution of (2.31) we will assume that L has the self-
adjoint form:

d d
= -—(p )+ a0 (2:32)

together with some homogeneous boundary conditions. We assume that p(x) and
q(x) are continuous functions in [0, 1], and further that p(x) is non-vanishing in this

interval.

Consider initially the case when q(x) = 0 .The solution of (2.31) in this case we will

denote by g (x,t) . Combining (2.31) and (2.32) we have in this case

d
dx

d

(P ) 8o ) = 6Ge— 1) (233)

This we can integrate to obtain
X X
() = ~HEo D) [ b a@ [ 54 B 234)
x,t) = —H(x, —+a — :
s ) e " ) P

Where B (t) is a constant of integration.
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From equations (2.33) and (2.34) we notice that g(x, t) is a continuous function of x
and also its derivative is a continuous function of x except at the point x = t , where

it has a jump of magnitude (—1/p(t)).

In order to show that g(x, t) has properties similar to those of go(x, t) we shall use
the following theorem quoted without proof , from the theory of differential

equations which concerns functions which are differentiable in the ordinary sense
Theorem (2.2.10):-

Let p(x),q(x) and f(x) be piecewise continuous functions of x in [0,1] and assume
that p(x) is positive in this interval. Then there exists a continuous function u such
that p(x)u’(x) exists and is continuous for all x , and which satisfies u(0) =

u'(0) =0and (pu")’' —qu = f, for all values of x for which both sides are

continuous functions of x .
We can now show that g(x, t) has properties similar to those of g, (x, t).If we write:

g(x,t) = go(x, 1) + h(x, )

and substitute this into equation (2.31) ,we find that

Lh(x,t) = —q(x)go(x, 1) (2.35)

Theorem (2.2.11):-

When L is given by (2.32) the Green’s function satisfies the homogeneous equation.
When L has an extended definition according to (2.30) the Green’s function is
everywhere continuous, but its derivative has a jump discontinuity, at x = t, of

magnitude (—1\p(t)).

Since we have seen that Lg = 0 everywhere save at x = t, g(x, t) is not a symbolic

function, it is an ordinary function. Further, since we are using the extended
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definition of the operator L it follows that g(x, t) considered as a function of x, mast
satisfy the boundary conditions, If this were not the case then g(x, t)would
necessarily involve certain symbolic functions such as §(x — t) and §'(x — t)
.Therefore, we shall always considerg(x, t) as an ordinary function of x , satisfying

the same boundary conditions which help to specify the operator.

Once the Green’s function has been determined the non-homogeneous equation
Lu=f (2.36)

With assigned boundary conditions can be solved immediately. The solution is

1
u(x) = ff(x)g(x, t)dt (2.37)
0

That such a function as is defined by (2.37) does indeed satisfies (2.37) can be as

follows:

1 1
Lu = f f(t)Lg(x, t)dt = f f@®)6(x —t)dt = f(x)
0 0

And u(x) must satisfy the boundary conditions since g(x, t) as a function of x

satisfies them.

Example (2.2.12):-
Find the Green’s function for the operator
L=—-d?/dx?; u(0) =u'(0) =0

The required Green’s function,g(x, t) is geven as the solution of the equation



d’g
W =—-6(x—1t) (2.38)

With the conditions

g(0,0) = g,.(0,t) = 0. (2.39)

We have already seen that g(x, t)satisfies

d?g

Everywhere except at x = t where it is continuous but its derivative has a jump

discontinuity which for this particular operator is equal to (—1) .
An arbitrary solution of (2.40) is
glx,t) = a(t)x + B(t). (2.41)
When x < t the application of (2.39) to (2.40) shows that
a(t) = p(t) = 0.
Therefore
glx,t) =0,x<t. (2.42)

For the case x = t we use (2.41) together with the particular properties of Green’s
functions, namely the continuity of the solutions at x = t and the discontinuity

condition on the derivative atx = t.

From (2.41) we have

0x
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And it follows from (2.42) and the fact that the magnitude of the jump in the

derivative at x = t is (—1) that
a=-—1.
Finally, since g(x, t)is continuous at x = t we must have
lim g(x,t) = lim, g(x, 1),

From which it follows that

Since g(x,t) =0, x < t.
Therefore, we have as a solution to (2.38)
glx,t) =0, x<t
=t—x, x>t
or
gx,t) =—(x—t)H(x —t) (2.43)

For all x.to see that this value of g(x, t)satisfies (2.38) and (2.39) we differentiate

(2.43) twice with respect to x to obtain
g'(x,t) = 2H'(x—t) —(x—t)H"(x — t)
=—0x—t)—(x—1t)d' (x —1t).

If ¢ (x) is a testing function, multiply this last result throughout by ¢p(x) and

integrate over the range of x we obtain

1

1 1
f dp(x)g'" (x,t)dx = -2 f S(x—t)p(x)dx — f dp(x)(x —t)8'(x —t) dx
0 0

0

Y



= —2¢() + {(x — )p(x)Y

X
= —¢(0).

This is precisely the result we would obtain by multiplying (2.38) by ¢p(x) and

integrating over the range of x.

Example (2.2.13):-

Solve the non-homogeneous equation

2

- () = f(®)

Subject to the conditions
u(0) =u'(0) = 0.

Usung (2.37) and the the particular form for g(x, t) given by (2.43) we see that the

solution is given by

1
u(x) = ff(t)(x —t)H(x —t)dt
0

= ff(t)(x —t) dt.
0

This is easily seen, by direct substitution, to be a solution of the given boundary value

problem.
Example (2.2.14):-

To solve
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2

d
——u(@ = f(x)

Subject to the conditions:
u@)=b; u'(0)=a

We use the extended definition of . If S the space of square integrable functions

defined over [0,1], is the space of functions with which we are dealing, then

d2
I'=——
dx?
With boundary conditions
v(D)=v'(1)=0

Let v(x) be a testing function for L, that is let v be a function in M* the domain of L*.

The extended definition of L acting on u is given by

1

(Lu,v) = (u,L'v) = — f uv'' dx
0

1

1

= —fvu” dx — (uv' —u'v) |0
0

1
= — f vu'" dx + bv'(0) — av(0).
0

Consequently, we see that
Lu = f(x) —adé(x) —bs'(x) (2.44)

As the extended form of L in this case. As might be expected, whena = b = 0 we

see that L is actually, rather than formal, self-adjoint.
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Writing
uy = | f(O)(x—t)dt
!

We know that

Lu; = f(x).
Therefore, it remains to find a function u, such that

Lu, = —adé(x) — bd'(x)

When this is done then the solution of (2.44) will be

u=1u;+u,
Now since

Lg(x,t) =8(x —t)

We see that
dg
L {—ag(x, 0)+b EP (x, O)} —ad(x) — b6'(x).
But, from (2.43), we see that
g(x,0) = —x

%8 (x,0) =
axx' -

Therefore
u, =ax +»>b

And the solution of our given problem is

100



u=ff(t)(x—t)dt+ax+b.
0

Admittedly this solution could have been obtained much more directly however the

example was chosen primarily to illustrate, as simply as possible, a general method.

Example (2.2.15):-

We now change the boundary value problems so that both end-points of range are

involved. We wish to solve

d?u

Lu=——=f@)

dx?
Subject to the conditions
u(0)=0; u(1)=0

The Green’s function,g(x, t) , in this case is given by the solution of

2
—Wg(x,t) =6(x —1t)

On the manifold defined by the conditions

g(0,)=g(1,t)=0

The Green’ s function is given by a solution of the homogeneous equation at all
values of x save x = t .For x < t the solution of the homogeneous equation which
satisfies g(0, t) = 0 must be proportional to x , and similarly for x > t that solution

which satisfiesg(1,t) = 0 must be proportional to (1 — x).

Therefore as a trial form for g(x, t)we could write

101



glx,t) =x, x<t
=1—x, x>t

This certainly satisfies the homogeneous equation everywhere saves at = t , and also

ensures that the boundary conditions are satisfied.

However, such a solution does not satisfy the requirements of a Green’s function, if

only because it is not continuous at x = t.
That is
Jim g0 = ¢
)gl_)r{gr glx,t)=1—t.

To overcome this and , as it turns out , also meet the requirements of the jump
discontinuity in the first derivative , multiply the value of g(x, t)for x > t by the
value of g(x, t) for x > t evaluated at x = t , and multiply the value of g(x, t) for

x > t by the value of g(x, t) for x > t evaluated at x = t . This gives:
glx,t) =x(1—-t), x>t (2.45)
= (1-x)t, x>t

We readily see that this form for g(x, t) ,apart from satisfying the required equation
and boundary conditions, is continuous at x = t and has there a jump discontinuity in

its first derivative of magnitude.
—t—(1-¢t) = -1

As required.

Definition (2.2.16):-
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The Green’s function g(x, t)for the operator L = —d?/dx? in the manifold defined
by u(0) = u(1) = 0 is given by (7.45) and may be written in the more convenient

form:
glx,t) = x(1—-t)H({t—x) +t(1 —x)H(x —t)
1 1
=E(x+t)—5|(x—t)|—xt (2.46)

We notice that g(x,t) = g(t, x) in this case. This symmetry of the Green’s function is
generally true for self-adjoint operators. We Check that (2.46) is in fact a solution by

differentiation as follows:

dg 1 . 1 .
dx 2 7 Sen(x — 1)
d?g

W=—6(X—t).

Example (2.2.17):-

We wish to solve the following non-homogeneous boundary value problem
u” + k*u=—f(x) (2.47)
u(0) =a;u'(1)=> (2.48)

Our first task is to determine the Green's function g(x, t)for the operator
L = —(d?/d x? + k?)subject to the homogeneous condition u(0) = u’(1) = Oonce
this is achieved we extend the definition of Lto cater for the actual boundary

value (2.48).

To determine the Green's function g(x, t)we use the same technique here as in

Example (2.2.16) since g(x, t)is a solution of
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d?g
@‘I‘ kzg =—-0(x—1t)

g(0,t) = gx(1,t) = 0,

We first consider solutions of the homogeneous equation for g(x, t)and choose them

so that the boundary conditions at x = 0 and x = lare satisfied.

Doing this we obtain
g(x,t) =sinKx , x <t
=cosK(1—x),x >t.

Since this form of g(x, t)is not continuous at x = t we multiply the first expression
by the value of the second at x = t and vice-versa, to obtain a function which is

continuous at x = t,namely
g(x,t) =sinKxcosK(1—-1t), x<t (2.49)
=cosK(1—x)sinKt, x>t

We now examine the derivative of this function in the neighborhood of x = t the

jump in the magnitude of the derivative at x =t is given by
KsinK(1—1t)sinKt — K cosKtcosK(1—1t) =—KcosK.

It follows from the form of L ,that this jump should be (-1) to correct the value of
g(x, t)we must divide the value obtained in (2.49) by K cos K to obtain the find from:

g(x,t) =sinKxcosK(1 —t)/KcosK , x<t
=cosK(1—x)sinKt/KcosK, x>t

Or (2.50)
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sin Kx cosK(1 —t) cosK(1 — x) sinKt
H(t—x)+
K cos K K cos K

gx,t) = H(x —1t)

For all x.that this is in fact a solution of the equation defining the Green's function for
the problem in hand is readily established by direct differentiation. We notice that
once again the Green's function is symmetric in xand t. Returning to the original
problem we first consider the extended definition of . Evidently L is formally self-
adjoint and so L = L*.let v be a testing function of L (in this case any function in the

domain of L will do) then extending the definition of L we obtain:

1
(Lu,v) = (u,Lv) = fu(v” + k2%v) dx
0

1
= f vu" + k*u)dx — (uv’ —u'v)
0

1
0

1

= fvf(x) dx + av'(0) + bv(1).
0

Consequently
Lu=f(x)+bs5(x—1)—ad'(x).
Proceeding as before we first write
Lu, = f
We now need to find a function u, such that
Lu, =bS(x—1) —ad'(x) (2.51)
And then u = u; + u, will be the required solution.

Since
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Lg(x,t) = —=8(x — t)

We see that
dg(x,0
L{bg(x, ) +a g(at )} = b6(x — 1) — b’ (x). (2.52)
From (2.50) we see that
(1) = sin Kx
B = K eosK

dg(x,0) cosK(1—x)
at  cosK

Consequently on comparing (2.51) and (2.52) we obtain

bsinKx+acosK(1—x)
K cos K cosK '

uy(x) =
The final solution to our problem is given by

bsinKx+acosK(1 —X)
K cos K cosK

1
u= ff(t) g(x, t)dt + ,  (2.53)
0

Where g(x,t) is given by (2.51).

The method used to determine the Green's function g(x, t)in the last example is very
useful in practice as we now demonstrate by considering the following unmixed
boundary value problem : to find the Green's function for the general second-order

ordinary differential operator.

p=-2 ( : )+
C dx P dx 1
When the domain is defined by the general unmixed conditions (2.17)
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Bi(w) =B,(u) =0

It is assumed that B; (1) only involves values at x = 0 whilst B, (u) only involves

values at x = 1 further we will assume p(x) # 0 in the range 0 < x < 1.

The Green's function g(x, t)is that solution of the equation
Lg=—-6(x—1)

That is

(Pgx)x —qg = —8(x — 1), (2.54)

Which satisfies the boundary conditions?

B,(g) = B,(g) =0 (2.55)

In order to construct the Green's function we first of all examine the homogeneous
form of equation (2.54) and consider solutions independent of any boundary
conditions. Formally, such solutions exist and we will suppose that v, (x) and v, (x)
are any two linearly independent solutions of the homogenous equations. Now

letw, (x) be a linear combination of v, (x) and v,(x) which satisfies B; (w;) = 0 and
let w,(x) be a linear combination of v, (x) and v, (x) which ensures B, (w,) = 0

then as a first possibility for the form of the required Green's function we write
g(x,t) = wy(x), x<t
=w,(x), x>t

This function g(x, t) clearly satisfies (2.54) for x # t and also the boundary
conditions (2.55). However it does not necessarily satisfies the required properties of
a Green's function namely continuity at x = t and a jump discontinuity in derivative
of magnitude(—1/p(x)). To make g(x,t) continuous at x = t we proceed as before
to multiply the first expression by the value of the second at x = t and multiply the

second expression by the value of the first atx = t.
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We thus obtain
glx,t) = wi()wy(t), x<t (2.56)

=w,(x)wy(t), x>t.

The jump in the derivative with respect to x evaluated x = ¢ is

—J(wy, wy)

p(t)

W (Owy () — w1 (w,(t) =

Where J(w,, wy) is the conjunct of the solutions w, (x) andw, (x). To give this jump
discontinuity the correct magnitude we divide the right-hand side of (2.56) by

J(w,, w,) to obtain
glx, t) = wi Ow, (1) /] (wy,wy), x <t (2.57)

= wy(X)w,(t) /] (wy, wy), x > t.

Dividing throughout by J(w,, w;) does not alter the fact that g(x, t) is a solution of
(2.54) since J(w,, wq) is in general only a function of t. In addition in this case since
L is self-adjoint we have the further assurance that our solution is not disturbed since

by theorem (2.2.2). J(w,, w;)most be a true constant

The fact that J(w,, w;) is a constant is of great practical significance since it means
that we need not evaluate it at x = ¢ but may do so at any convenient value of x for
instance in Example (2.2.18) the conjunct of cos K(1 — x) and sin Kx has to be

determined.
We obtain

J(cosK(1 — x),sinKx) = KcosK(1 —x)cosKx — KsinK(1 —x)sinKx
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and this must be a constant consequently its value at x = 0 must be the same as at

any other point thus on setting x = 0 in the above we obtain
J(cosK(1 — x),sinKx) = K cos K.

The final form for the Green's function is

1
glxt) = m{wl(x)Wz(t)H(t — ) +w(wi(DH(x - )}, (2.58)

This formula breaks down whenever](w,, w;) = 0. By theorem (2.2.2) and its
corollaries we see that a vanishing conjunct implies that one solution w,(x) is a
multiple of the other solution w; (x). This is contrary to our hypothesis that
wq(x)and w,(x) are linearly independent. However we will examine the
consequences of a vanishing conjunct. If w,(x) is a multiple of w4 (x) then since
B;(w;) = 0 and B,(w,) = 0 it follows thatB, (w;) = B,(w,) = 0. Therefore we

see that (w,) is a non-trivial solution of the equation
(pu) —qu =20
With boundary conditions
By(w) =B, (w) =0

Consequently w,(x) must be an eigenfunction of the operator L with eigenvalue

= 0.

We now turn our attention to the solution of a non-homogeneous equation with non-
homogeneous boundary condition we proceed as befor to extend the definition of the

following example.

Example (2.2.18):-
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To find a solution Lu = f such that B;(u) = a, and B,(u) = b the operator L is as

before the formally self-ad joint operator

L=~ (pe) o) + 460

And the boundary conditions are the general unmixed conditions in (2.17). We know

that the function

1
uy (%) = f 0 g(x, dt
0

Where g(x, t) is the Green's function for L and homogeneous boundary conditions is

solution of
Lu; = f
Such that
B;(u) =B,(w) =0

To solve our original problem we require finding a further function u,(x) which is a

solution of the equation
Lu, =0;x #1;x+0
But satisfying
B;(uy) =a; By(uy) =b
For definiteness we will assume that the boundary conditions have that precise form

Bi(u) =u(0)cosa+ u'(0)sina

]



B,(u) = u(l) cosB+u'(1)sinp
Where a and 3 are constants.

Since L is formula self-adjoint any function v in the domain of L is a testing function
for L and we obtain the extended definition for L acting on u by considering the

inner product (u, Lv) and(Lu, v).

(Lu,v) = (v,Lu)

1

= fu[—(pv’)’ + qv]dx
0

1

= f v[—(pu")' + qu] dx — p(uv' — vu') (1) (2.59)
0

From the specific form of the boundary conditions we have adapted, we obtain

(1) = —p(1)b[v(1) sin B — v'(1) cos B]

p(uv' —vu')

+ p(0)al[v(0) sina — v'(0) cos a]. (2.60)

Consequently from (2.59) and (2.60) we obtain as the extended definition of Lu the

expression

Lu=f(x)+ bp(1)[6(x —1)sinf — §'(x — 1) cos B]
—ap(0)[6(x) sina — &' (x) cos a].

Therefore to complete our solution we require a function u,(x) such that

Lu, = bp(1)[6(x — 1)sinB — 6'(x — 1) cos B]
—ap(0)[6(x) sina — 6’ (x) cos a. (2.61)
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Now as

Lg(x,t) = =8(x,t)

We see that

u, = bp(1) {g(x, t)sin B — ag((;;, v cos ,8}

—ap(0) {g(x, t)sina — aggi’ O cos a}

Is a solution of (2.61).

We remark here that dg/dt appears in the above expression rather than dg/dx
because d/0dx and L do not commute but /9t and L do, thus enabling us to obtain

an alternative expression for §'(x — t) from the equation defining g(x, t).

To obtain the precise form of u,(x) we use (2.58) to eliminate g(x, t) from the above

expression and obtain

bp(1
0200 = S a0 i 'y (1) cos)
- %{wl(o) sina —w',(0) cos a} (2.62)

Similarly we obtain
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x 1
_ wy(x) wy(X)
uy (x) = m———= | w1 (O)f(t) dt +](W2’W1)xsz(t)f(t) dt (2.63)

](Werl)
0

The required solution is then

u=u+u,
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Chapter (3)

The Problem of Eigenfunctions

Section (3.1):Eigenfunctions

The Green’s function technique so far as we have presently developed it, requires that
we find a function g(x, t)defined as that solution of the differential equation

Lg(x,t) = —8(x — t) which satisfies the same boundary conditions as the unknown
function in the original problem. We have seen that in certain cases when the boundary
conditions are homogeneous the method breaks down (see Example(2.2.18)). This we
noticed, was due essentially to the fact that the equation Lu = 0, with associated
homogeneous boundary condition possesses a non-trivial solution, that is to say u(x)is
an eigenfunction of the operator L, and corresponds to the eigenvalue zero. The main
purpose of this section is to examine this situation in more detail and the principal result

which we shall obtain is contained in the following theorem.
Theorem (3.1.1):-

Let w(x) be a unique solution a part possibly form an additive constant of the self-

adjoint homogeneous differential equation:
Lu=—-(pw") +qw=0,
which satisfies the conditions
B;(w) = B,(w) = 0.
Then the non-homogeneous equation

Lu=f (3.1)

i



With boundary conditions

Bi(u) = B,(w) =0

has a solution if and only if

1
w,f) = f flow(x)dx = 0. (3.2)
0

Proof:-

We will assume that the boundary conditions are unmixed. The theorem however is also

valid for arbitrary boundary conditions.
Let u be a solution of (3.1) then since self-adjoint we have
0=(u,Lu) — (w,Lu) =—(w,f)
and we see that (3.2) is satisfied.
Conversely, suppose (3.2) is true. Let v(x)be a solution of
Lu=0

Which is independent of w(x). Then by using the Green’s function technique as
illustrated in Examples(2.2.12) and (2.2.13) we can find a solution of (3.1) satisfying
the boundary condition u(0) = u'(0) = 0, rather than B;(u) = B,(u) = 0 as follows.

The required Green’s function g(x, t)can be assumed to have the form

g(x,t) = a(®)v(x) + B(Ow(x).
In the range x < t the requirement v(0) = v'(0) = 0 yields,

g(x,t) = a(t)v(x), x < t.



For x > t we are at liberty to choose
glx,t) = (w(x), x>t
Then adjusting a(t)and S (t)to ensure the continuity of g(x, t)at x = t we obtain
glx,t) =v()w(t), x <t
=w(x)v(t), x> t.

Finally to ensure the correct magnitude of the jump in the discontinuity of the derivative

we must divide by J(w, v). Therefore the required Green’s function in this case is:

w(®)v(x)H(t — x) N v()w(x)H(x — t)
J(w,w) J(v,w)

glx,t) = (3.3)

The solution (3.1) which satisfies the conditions u(0) = u'(0) = 0 is then given by:

X

J

v(x)
Jw,v)

1 X
u(x) = f (v(®) + w(©)f () di + 2 (;’L”)(")) fo v(Of (£) dt

Re-arranging and using (3.2) we finally obtain

v(x) (¥ v(x) [*
J(w, v)fo f(t)v(t) dt _](W—,U)_fo f(t)W(t) dt. (3.4)

u(x) =

We remark that since L is formally self-adjoint J(w, v)is aconstant for all values of x it
now remains to show that the function u(x) defined by (3.4) is a solution to the original
problem. That such a function satisfies the equation Lu = f is clear enough and we
need only investigate the boundary conditions since the boundary conditions are linear

homogeneous and unmixed we may write them in the form
By (w) = a;u(0) + p1u’(0)
B,(w) = a,u(1) + Bu'(1)
Where a4, a,, B4, B, are given constant.
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From the fact that u(x)in (3.4) satisfies u(0) = u'(0) = 0 it is clear that B; = 0 is
satisfied. To establish the section that having used (3.2) we have form (3.4):

_ow(x) (!
u(1) _]—(W,U)fo f(®v(t) dt.

Also on differentiating u(x) in (3.4) with respect to x and setting x = 1 we have

w'(x)
Jw,v)

1
u'(1) = f f(®v(t)dt.
0

Combining these last two results we see that

Bi(w)

500 = G

1
f fv()dt =0

0
Because of the assumption regarding the nature of w. This completes the proof of the
theorem.

In more general cases when the boundary conditions are mixed, the Green’s function

can be found in a straightforward manner as is illustrated by the following example.

Example (3.1.3):-
The Green’s function g(x, t) is defined to be that solution of the equation

(Pgx)x —qp = —6(x — t)

Which satisfies the conditions

Bi(g) = B,(g) = 0.

Let v(x)and w(x)be two independent solutions of the equation

(puy)x —qu = 0.



Then

glx,t) = av(x) + pw(x) +

1
T(w,v) fvOwW@®H(t — x) + wx)v(t)H(x — t)} (3.5)

Where a and fare two constant which must be chosen to ensure that g(x, t)satisfies the
conditions at x = t and B;(g) = B,(g) = 0. as usual J(w, v) is the conjunct of the
solutions w(x)and v(x)evaluated at x = t and since w(x)and v(x)are independent the
conjunct is non-vanishing of g(x, t) defined in (3.5) is obvious. The magnitude in the

derivative of g(x, t) at x = tis

w' (®)v(t) —wlx)v'(x) 1

J(w,v) P

Therefore g(x, t) defined in (3.5) satisfies the requirements of a Green’s functions at

x = t we now examine the boundary conditions since they are linear we have

B,(g) = aB;(v) + fB1(w) + B1(r) = 0
B,(g) = aB,(v) + BBy(w) + B,(r) = 0

Where

1
J(w,v)

fv)wWw(@®)H(t — x) —v(®)w(x)H(x —t)}.

From these two algebraic equations we can obtain non-trivial solutions for @ and

provided

Bi(v) Bi(w)
By(v) B,w)l * "

If this determinant vanishes then either B, (v) + B, (v) = 0 which implies that v(x)is
an eigenfunction of the given operator, corresponding to the eigenvalue zero, or there is
a constant R such that

Bl(v) + KBz(W) =0
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Which imply that B; (v + Kw) = B,(v + Kw) = 0 and that (v + kw) is an eigenvector
of the given operator again corresponding to the eigenvalue zero.

Therefore provided there is no eigenfunction of the given operator corresponding to the

eigenvalue zero then the function defined in (3.5) is a Green’s function for the related

problem.

19



Section (3.2):Green’s functions and the adjoint operator

In this section we establish a theorem the result of which whilst certainly of importance
in the theory of ordinary differential operators has perhaps greater significance in the

study of partial differential equations.

Theorem (3.2.1):-

Let g(x, t)be the Green’s function for an operator Lon a manifold defined by certain
boundary conditions and let h(x, t)be the Green’s function for the adjoint operator L*on

the manifold defined by adjoint boundary conditions.

Then
g(x,t) = h(t,x)
In the case when L is self-adjoint g(x, t)is a symmetric function of xand t.
Proof:-
By hypothesis we have

Lg(x,t) = —6(x —t)

L'h(x,t) = —6(x — t) (36)

From the defining property of an adjoint operator we have

f h(x,t)Lg(x,s) dx = f L*h(x, t)g(x, s)) dx.

This can be reduced by using (3.5) to yield

f h(x,t)6(x —s)dx = f d(x —t)g(x,s) dx.
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Therefore

h(s,t) = g(t,s)

If L = L then g = h and g(s,t) = g(t,s) which with an insignificant change in

notation provides us with the statement of the theorem
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Section (3.3):Spectral representation and Green’s functions

Finally we will discuss in a purely formal manner on alternative method for solving
boundary value problems, which is based on the theory of eigenfunctions of linear

operators, and in so doing we will indicate its connection with our own approach.

In our previous discussion of abstract linear operators we saw that there exist two

fundamental methods for solving the equation
Lu=f.
Where Lis a linear operator, fagiven vector and u an unknown vector
One method is to construct the inverse operator L™ tand so obtain
u=L"1f,

When L is a differential operator, this method leads as we have seen to the
consideration of integral operators which have as kernels the Green’s function of the
given differential operator. The other method is to use the spectral representation of the
operator L. That is to use the say we assume that the eigenvectors of L span the space

and that

f=D anm

Where v,, is an eigenvector of L corresponding to the eigenvalue 4,,.

Then we write

" = Z bov,. (3.7
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Where b,, the coefficients have to be determined this is accomplished by using the

orthonormality of the eigenvectors as follows

Lu = Z Apbp vy, = Z anVn (3.8)

Consequently

and

Dow
u= 7
The representation of u and Lu in (3.7) and (3.8) is called the spectral representation of

the operator L.

These ideas are particularly simple to apply when L is an operator in a finite-
dimensional space. However, when L acts in an infinite-dimensional space there are
difficult questions to answer regarding the convergence of (3.7) and (3.8) and whether
or not the eigenvectors of L span the space. For the time being however we will tacitly

assume that such aspectral.

Representation of L is available and further for our immediate convenience that L is
self-adjoint. Then by successive application of the above reasoning we obtain for any

polynomial p(4) inA the result

pLu =) anp(n)vn (3:9)

This may be further generalized to embrace continuous function of A by means of the

following definition
FWu = anf)vn (3.10)
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When rigorously established this last result has many important applications, for

instance the inverse operator (L — 1)1 is given by

(L—2)"tu= Z(An — D la,v,

Of course if A is an eigenvalue of the operator L the result is completely meaning unless

the appropriate a,, is zero.

The spectral representation of a,, operator L depends upon the study of the inverse of

the operator (L — A) for all complex values of A.

We say that the operator (L — A) has an inverse for any vector f which lies in the range

of (L — A) if there exist a unique vector u in the domain of (L — A) such that

(L—Du=f.

We have seen that a necessary and sufficient condition for the existence of an inverse is

that the homogeneous equation
(L—MADu=0.

Possesses only the trivial solution u = 0. If this homogeneous equation has a non-trivial
solutionA is an eigenvalue of the operator L and u the corresponding eigenvector. In

this case A is said to belong to the point spectrum or discrete spectrum of L.

Suppose that the homogeneous equation has only the trivial solution u = 0 then as we
know (L — A1) may be the whole space S and the inverse is a bounded operator. This

means that for every vector f in S there exist a unique vector u which satisfies

(L — A)u = f. and such that % is bounded.

)

In this case A is said to belong to the resolvent set of the operator L. Secondly, the range
or the closer of the range of (L — A1) may be the whole space but the inverse

operatorl.In this case A is said belong to the continuous spectrum of the operator L.
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Finally the range or the closer of the range (L — A) may be a proper sub set of S.In this

case A belongs residual spectrum of L.

Definition (3.3.1):-

The spectrum of the operatorL consists of all values of 4 which belong to the

discrete the continuous or the residual spectrum.

The application of this theory to differential operators define over space with infinite
dimension has many difficulties which are not in evidence when dealing with linear
operators defined over finite-dimensional space. One such difficulty we have already
mentioned the uncertainty concerning whether or not the eigenvectors of the operators
span the space that is the domain of Lin the case of ordinary linear self-adjoint
differential operators this question can be answered the eigenvectors of the operators in
this case do indeed span the domain of the operator. Whilst this knowledge is
comforting in it self we recall that there are many differential operator which are not

self-adjoint.

Another and even more profound difficulty arises whenever we consider the possibility
of Abelonging to the spectrum of L. It can be shown that an ordinary differential
operator has no residual spectrum so we need only consider when A is in either the
discrete spectrum or the continuous spectrum. When A is in the discrete spectrum no
inverse of(L — A) exists and the problems almost resolve themselves. The nature of the
continuous spectrum is the main difficulty in the theory of differential operators. It is
important to be able decide when an operator has a continuousspectrumand when it
dose how this continuous spectrum can be used to give a spectral representation of the
operator. These several questions can be answered by a consideration of the Green’s
function approach would appear to be more fundamental, to illustrate the connection

between the two approaches, let L be an ordinary self-adjoint differential operator with
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eigenfunction uq, uy, ... .. and associated eigenvalues A4, 45, ... ... . We well assume that
the eigenfunctions span the domain of the given operator and that in consequence any

square integrable function u can be expanded in the form:

u() = ) @ ()
wherea, = (uy, u)
now it follows that:
Lu(x) = Z apLug(x) = Z A AUy,

And if f(t) = (A — t)~! we obtain

1 _ Uy (x)
GO =2 G-

(3.11)

The left-hand side of these equation can be expressed in terms of the Green’s function
for the differential operator (L — A). To see this let w(x) = (L — A)u(x);then if
G(x,y; A) is the Green’s function for the operator(L — 1). We have shown that

Wwx) = — f G (x, & 1) u(E)de.

If now, we integrate (3.11) over the large circle of radius R in the complex A plane, we

obtain

1 1
L[5 4 3L (G,
2ni ) L— A4 2mi ) (A —Ay)

When the radius of the circle increases without bound, the right-hand side includes

more and more residues, and we obtain:

y 1 [ u(x)
row2mi ) L= 2

dA = —Z apuy(x) = —u(x). (3.12)
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This result, which connects the Green’s function with the eigenfunctions, was obtained,
as already stressed, on the basis of a number of assumptions regarding the existence and
completeness of the eigenfunctions. In practice, to overcome the difficulties, the above
reasoning is usually followed through in the reverse direction. Starting with a
knowledge of the Green’s function, G (x, &; A1),for the operator (L — 1) we consider the
following integral in the complex A-plane;

1 u(x)
2mi ) L— A

1
ar= f dz f G(x, & Du(®)ds,

And by evaluating this in terms of residues we hope to obtain (3.12),that in expansion

of u(x) in terms of the eigenfunctions of L.

Definition (3.3.2):-

The spectral representation of operators despite the difficulties mentioned has many
useful applications. For example a number of partial differential equations can be

solved if we can assign a meaning to functions of certain ordinary differential operators.

Although such functions can be made meaningful in terms of the spectrum of the
ordinary differential operators, in practice as we have seen we also really require a
knowledge of the associated Green’s functions of the differential operators. Therefore a
part from this one brief and purely formal mention of spectral representations of
operators, we shall confine ourselves to determining the Green’s functions of ordinary
and partial differential operators. Once such function are determined then if it is felt
necessary, a spectral representation approach can be followed with greater degree of

confidence.



Chapter (4)

Integral Equation’s

Section (4.1):Classification of integral equations

Definition (4.1.1):-

Equations in which the unknown appears under an integral sign are
known as integral equations.

Definition (4.1.2):-

If the range of integration is assumed to be fixed the equations are known
as Fredholm equations.

Definition (4.1.3):-

If the range of integration is not fixed the equations are known as
Volterra equations.

To be precise the equation
X

f(x) = fK(x, z)y(z) dz. (4.1)

a
Where y the unknown is function and f is a known function, is a Volterra

equation of the first kind with kernel K (x, z).
A Fredholm equation of the first kind with kernel K (x, z) is
b

flx) = f K(x,z)y(z)dz. (4.2)

a
Corresponding integral equations of the second kind involve an unknown

function which appears not only under the integral sign, but outside as
well for instance
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X

() + f K (x, 2)y(2) dz = f(x) (4.3)

And
b
() + f K(x, 2)y(2) dz = g(x) (4.4)

a
are respectively non-homogeneous Volterra and Fredholm equations of

the kind with kernel K (x, z) when f(x) and g(x) are zero the equations
become homogeneous.

We shall see that boundary value problems for elliptic partial differential
equations lead to Fredholm integral equations where the region of integral
has a fixed size. Initial value problems for hyperbolic partial differential
equations, on the other hand lead to Volterra integral equations where the
region of integration is no longer fixed.

Definition (4.1.4):-

In practice integral equations of the second kind are much easier to
handle, than those of the first kind, and it is a very fortunate fact that the
majority of problems of mathematical physics happen to reduce to the
former rather than the latter. For this reason and also because Volterra
equations can be thought of as special cases of the Fredholm equations
for which the kernel K (x, t), vanishes if t lies outside a region depending
on x we shall only consider Fredholm equations of the second kind.

That is given

$(x) — 1 f K(x, (0 dt = F(x), (4.5)

where the kernel K (x, t) and scalar A are assumed known, we require to
determine the unknown function ¢ for all functions f of some suitable
class. The integral in (4.5) is understood to extend over a fixed domain,
which also constitutes the range of x.

Definition (4.1.5):-

In keeping our previous discussion of integral operator, we introduce the
notation
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K¢ = fK(x, t)p(t) dt. (4.6)
The integral equation (4.5) then assumes the form

¢~ AK$ = f (4.7)
Probably the first method which comes to mind for solving (4.7) is that of
successive approximation.

To this end we will rewrite (4.7) in the form

¢ =f+ 1Ko, (4.8)
as a zero-order approximation we take
¢0(x) = f(x)i

we now substitute this zero-order approximation into the right-hand side
of (4.8) to obtain the first order approximation ¢ (x)
$1(x) = f + AKf.

Similarly we substitute this first-order approximation into the right-hand
side of (4.8) to obtain the second-order approximation and so on if the
nth-order approximation ¢,,(x) has been obtained in this way the
(n + 1)Theapproximation,¢,, +1 (x) is taken to be the result of
substituting ¢,,(x) into the right-hand side of (4.8). In this manner
successive approximations are obtain from the recurrence relation.

Pns1 = f + AK by, (4.9)
If these successive approximations tend uniformly to a limit than as we
will presently show, this limit must certainly be a solution of (4.8). If the
limit does not exist then clearly, the method of successive approximations
has now meaning.
We will now examine the detailed structure of the successive that the
approximations. For definiteness, in this examination we will assume that

the range of integration is a < t < b.Consequently
b

d1(x) = f(x) + AKf(t) = f(x) + Af K(x, t)f(t) dt.

a
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And
$o(x) = f(x) + AKp1(t)

b

= F(0) +2 f K (x, )y (£) dt

a

b b b
=f(x)+AfK(x,t)f(t)tdt +AZfK(x,t)dth(x,s)f(s)ds.

In the double integral appearing in the expression for ¢, (x) , let us

change the order of integration and write for brevity.
b

K,(x,s) = f K(x,t)K (x,s) dt.

Then with this notation, we obtain
b b

¢2(x) = f(x) +/1f1<(x,s)f(s) ds +Asz2(x,s)f(s) ds.

a a
Similarly we fined
b b

d3(x) = f(x) +AfK(x,s)f(s) ds+Asz2(x,s)f(s) ds

a a
b

+A3fK2(x, s)f (s) ds.

Where
b

K;(x,s) = f K(x,t)K (x,s) dt.
a
Continuing in this manner we obtained the general from

n b
b (x) = F(x) + Z am f K, (x,5)f(s) ds. (4.10)
m=1 g

Where K, (x, s) is determined by the recurrence relations
b

K,(x,s) = K(x,s); K,,(x,s) = fK(x, t) K1 (t, s) dt. (4.11)

a
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The function K, (x, s) is called the mth iterated kernel in relation to the
given kernel K (x, s). It can readily be shown that K,,, (x, s) also satisfies

the more general recurrence
b

K, (x,s) = fKr (x, t)K,,,_-(t,s) dt, r<m. (4.12)

a
In keeping with the notation introduced in (4.6) it is evident that
b b

K?¢p = K(K¢) = fK(x,t)fK(t,s)(p(s) ds dt

And hence

b
K2 = f K, (x, ) (s) ds

Continuing in this manner we find that.

b
K" = fKn(x,s)(p(s) ds (4.13)

Where K, (x, s) is the nTh iterated kernel obtained from K (x, s). Thus
(4.10) may be written in the form

b (x) = f(x) + Z AmKm™ (4.14)
m=1

Once we established the uniform convergence of the series in (4.14) it
will be seen that this interchange of integration and summation sign is
also permissible as n tends to infinity.

Definition (4.1.6):-

In the limit as n tends to words infinity we are led to a consideration of
the series

£ + Z Amgmy. (4.15)
m=1

If this series converges uniformly to a function ¢ (x) then this function
will satisfy the equation (4.7).

This readily seen since the assumed uniform convergence of the series
(4.15) allows term-by-term integration, and have that.

132



AKp = AKf + Z ALK f
m=1

[oe]

= > amkm

m=1
=¢-f
As required therefore the solution of the integral equation
¢ —AKp = f
Is given by

B0 = FO)+ ) ATK™f (4.16)
m=1

Whenever the series is uniformly convergent. To examine the natural of
the convergence of the series in (4.16) we first notice that
b 2
(Kf)? = fK(x, t)f(t)dt

a

And by means of the Schwarz inequality we obtain the inequality:
b

WﬂZSWWfK@mYm.
a
To be precise we have define in our solution space the familiar inner

product

@) = [ pLpo) dx
And associated norm

lpll = (¢, p)*/2

If we integrate each side of the above inequality with respect to x we
obtain:

b b
|WFHSWWffK@JYde

If we assume that the kernel K (x, t) is square integrable for all x and ¢t in
[a, b] then we may set

b b
Bz=ffK(x,t)2dtdx<oo
a a
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And obtain finally
IKfFI < lIf1IB.

Similarly we see that

b
(K2)2 = [KK)I? < IKF2] f K(x,0)? dt,

And on integrating each side with respect to x we obtain

IK2fIl < NIfIIB2.
Proceeding inductively we find that
IK" Il < [IFIB™ (4.17)

Consequently the series in (4.16) is majorized by the series

Il ) 1AmB™
m=0
This is a geometric series which is convergent provided
|A|B < 1. (4.18)

Therefore by the WeierstrassM -test, the series in (4.16) is uniformly
convergent whenever (4.18) is satisfied. Under these conditions it is
evident that (x) , the required solution, is unique. Suppose the contrary
and let ¢p; and ¢,be two solutions of (4.7) then

$1—AKp1 = f

¢ — K¢, = f
Subtracting these tow equations and setting w(x) = ¢, (x) — ¢, (x) we
obtain

w(x) — AKw(x) = 0.

From the Schwarz inequality it follows that
b b

wi(x) < Illsz(x,t) dtfwz(t) dt

a a
And on integrating with respect to x we obtain

Iw@)II? < 22B2[lw(x)|I>.
Therefore
(1= 2BH)llw@)I?> <0
Now the first factor on the left is strictly positive, hence from the
definition of norm, it follows that w(x) = 0 and the uniqueness is
established.
These results we can summarize in the form of a theorem
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Theorem (4.1.7):-
The Fredholm equation of the second kind
¢—kdp=f (4.17)
With kernel K (x, t) has a unique solution given by the uniformly
convergent Neumann series

d(x) = f(x) + i AMK™ f (4.16)
Provided "
(1) f Issquare integrable (4.19)
(2) ffbl((x, t)2dx dt = B?> < o (4.20)
(3)T,1|6;3 <1. (4.21)

An alternative representation of the solution may be obtained as follows.
We can rewrite the equation (4.7) in the operator form
1-2K)p =f (4.22)
Where I is identity operator consequently, whenever the inverse operator
(I — AK) ™1 exist we may write
¢ =U—-AK)"'f

A formal expansion by the binomial theorem yields

¢ =f +AKf + 1*K*f + -
By definition the norm of the operator K is given by

Lub IKFIl _ 1.u.b
K]l = f -”f_”= ”f” =1 ”Kf”
Consequently
IKFI < IKIHIA
Similarly by first writing Kf = g say and applying Schwarz’s inequality
we find that
IK2f1 = KNI = IIKgll < IKllIgll = IKfI
Therefore
IKZFI < NIKIZNA

Thus the solution to integral equation in the form

¢ =1+ AK + 12K* + --)f
Is majorized by the series

(1 + [AHKI A+ [APPNKNZ A+ DN f

Which is uniformly convergent provided that f is bounded in norm and
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IAKI < 1
Under these condition it is evident that the solution ¢ is unique.
Introducing the reciprocal or resolvent operator R by

R =K+ AK? + 22K3 + --- (4.23)
We may represent the solution ¢ as
¢=f+ARf = (1 +AR)f (4.24)

So for the only restriction that we have placed on f is that it should be
square integrable and we have not really enquired whether or not this
condition is both necessary and sufficient for solution ¢ of (4.7) to exist

Definition (4.1.8):-
In order to establish a necessary condition for the existence of a solution
to (4.7) we first introduce the transposed integral equation to (4.7)
Equation (4.7) is

¢—AKp = f
Where the Fredholm operator K has kernel K(x, t) and is given by

K¢ = f K(x, t)p(t) dt
The transposed integral equation is
Y—AK"Y =g (4.25)
Where that conjugate Fredholm operator K* has a kernel K(x,t) and
is given by

Ky = f K (x, DY(t) dt (4.26)

Where K (x, t) is complex, the transposed kernel is given by the complex
conjugate of (x, t) , the arguments transposed.

We will not introduce any special notation to emphasize this point but
will simply assume that whenever it is appropriate to do so the complex
conjugate is taken.

Conjugate operators are connected by the important relationship

(Ko, ¥) = (¢, K™Y) (4.27)

Definition (4.1.9):-

Let 1 be an eigenfunction of the transposed equation that is, let Y is
satisfy:
Y—AK*Y =0 (4.28)
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Now let us examine the inner product(y, f).
W.f) =@, [¢—2K$D) = @, ¢) — AP, K¢)
=W, ¢) —AKY,¢)
= ([¥ - AK" 9], ¢).
Therefore from (4.28) and the defining properties of the inner product it
follows that

W, f)=0 (4.29)

Definition (4.1.10):-
With the notation introduced in the previous section we will examine in
detail the following four integral equations

¢—AKp = f (4.30)
¢ —AK$p =0 (4.31)
Y—AKY =g (4.32)
W —AK*Pp =0 (4.33)

Theorem (4.1.11):(The Fredholm Alternative)

If the homogeneous equation (4.31) and (4.33) possess only the trivial
solution ¢p = Y = 0 than the non-homogenous equation (4.30) and (4.32)
have unique solutions ¢ and ¥ respectively for all square integrable
functions fand g.

If the homogenous equations (4.31) and (4.33) have non-trivial solution
(eigenfunction) ¢4, ¢, ... ... , g and P4, P, ... ... , Yk then the number of
these solutions which are linearly independent is the same for each
equation.

In such case the non-homogenous equation (4.30) has a solution if and
only if f is orthogonal to the m eigenfunction y; of (4.33) that is

W f)=0 ,i=12,.....m. (4.34)
Similarly (4.32) will have a solution if and only if
(P8 =0 , i=12,.....k. (4.35)

The proof of this theorem will be our main concern for the remainder of
this section.



Definition (4.1.12):-

We will first demonstrate the theorem for integral equations with a
particular type of kernel, namely, a degenerate kernel. We have already
encountered such kernels under the heading of separable kernels (section
(1.1)) which is their more usual title in the theory of abstract linear
operator .For the purposes of this section, in order to conform with the
language of the theory of integral equations, we will use the synonymous
title of degenerate kernel, and write such kernels in the form

n

Kat) = ) (08 (4:36)

j=i

The more general problem will be treated afterwards by approximating
the arbitrary kernel by a degenerate kernel.

With no loss of generality we can assume that A = land examine the
Fredholm equation:

b—knp=f (4.37)

Which may also be written

$(x) Z @ ([O.6®)=fC)  *38)

The homogeneous transposed equations

Yo — k'Y =0

may be written in a like manner as

e Z PO,40) [0 =0 (439)

Which shows that the solutions ¥(x) are linear combinations of
p1, - -, B, which are themselves a linearly indendent and even an
orthonormal set of functions.

We therefore decompose given functionf into

f=h+1
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Where f;is a linear combination of the functions fy, ....., By and f; is
orthogonal to functionf;,i = 1,2, ....,n, that is

(f,B)=0, i=12,...n

Thus, it follows that

n

Kufs = ) (G (BO, o) =0,

J=1

and the substitution

¢ =¢1+ 12
reduces the equation (4.38) to

n

b1 =) (B ©,6:0) = i (4:40)

J=1

It is therefore sufficient to discuss the special case when f, = Owhich
will imply that f = fiand ¢ = ¢;.

To solve the integral equation (4.40) we reduce it to an equivalent system
of algebraic equations. To this end we write

ci=Bid), =12, ....n (4.41)
andy; = (Bi, f), i=12,.... n (4.42)
Then (4.40) takes on the form:

Cr — Z ajxCi = Yk (4.43)

J=1

Where

ajx = (@, Br) (4.44)

Notice that throughout we have assumed that the a;(x) and S;(x) are
linearly independent. If this were not case, the number of terms in (4.36)
would simply be reduced. The assigning of the functionf in the original
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integral equation (4.37) is thus equivalent to assigning the numbers yjin
the algebraic set (4.43). It follows that whenever a solution vector

{c1,€p) v een, €} Of (4.43) exists we can construct a function ¢ in the
form
n
B0 = F)+ ) Geyx) (4:45)
j=1

and clearly such a function satisfies (4.41) and the integral equation
(4.80). Thus we see that the given integral equation can be solved if and
only if the system of simultaneous algebraic equation (4.43) can be
solved.

In order that (4.43) should possess a unique solution for Cj,j = 1,2, ..., n,
it is necessary and sufficient that the determinant of the coefficients
appearing on the left-hand side should be non-zero. It follows that, when
this the case, the integral equation (4.37) also has a unique solution. In
particular we notice that if ¢p = Ois the only solution of (4.37) for

f = 0, then the above reasoning indicates that the determinant of the
coefficients in (4.43) is again non-zero. Therefore (4.37) is soluble for
ever choice off.

Definition (4.1.13):-

Turning for a moment to the homogeneous transposed equation (4.39)
,we obtain , on forming the inner product with «;, the corresponding
system of algebraic equations to (4.43) , namely :

n

bk - Z ajkbk = 0 (4‘4‘6)
=1

Where by = (Y, ay) (4.47)

Form this system, and in particular (4.47), we see that any solution i of
(4.39) which does not vanish identically cannot be orthogonal to all the
functions «a;,. Therefore such solutions must generate a non-trivial
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solution vector {by, .... b, }of the system (4.46). Conversely, any non-
trivial solution of (4.46) defines a function

Y= bif (4.48)
i=1

Which is always different from zero somewhere, and satisfies both (4.47)
and (4.39). Furthermore, given such an eigenfunction as (4.48) of (4.39)
we can multiply (4.43) by b;and sum over allito obtain:

n n n
Z by; = Z bic; — Z b;a;;c;
i=1 i=1

i,j=1
n
= Z b; —ijaij Cj
j=1 j=1
=0 (4.49)

Finally, form (4.42) we have

D byi=(Q b H=(@H=0 (450
i=1

So that (4.49) is simply a re-statement of the orthogonality condition
(4.29).Since the transpose of a determinant has the same numerical value
as determinant itself, it follows that the determinants of the coefficients of
the systems (4.43) and (4.46) have the same value. Thus, in the case
under discussion, when the determinant of coefficients in non-vanishing it
follows that non-trivial solutions of (4.46) , and hence (4.39), do not

exist. Consequently the orthogonality condition (4.29) imposes no
restrictions at all on the function f.

When the determinant of the coefficients of (4.43) vanishes , the
corresponding matrix of the coefficients has a rank r < n ,and the vectors
(V1) wor oer v, for which (4.43) possesses a solution only span subspace of
the n-dimensional Euclidean space ; the subspace has the smaller
dimension 7. since the matrix of coefficients of the transposed system
(4.46) of the homogeneous algebraic equations has the same rank r , the
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eigenvectors (bq, b, ...., by,) of (4.46) generate another subspace of
dimension m = n — r, now according to (4.49) the m-dimensional and r-
dimensional manifolds must be orthogonal , and consequently their union
must be the whole n-dimensional Euclidean space. It therefore follows
that the vectors (yq, -...., ¥,) for which (4.45) is soluble are precisely
those which fulfill the orthogonality condition (4.49) for every solution
(b1, - -, by) of (4.46).

Definition (4.1.14):-

The established equivalence of integral and algebraic equation in both the
homogeneous and non-homogeneous cases implies, in con-junction with
the relation (4.50), that a solution of the fredholm integral equation of the
second kind (4.37) exists if and only if the right-hand side, f, is
orthogonal to every solution ¢y of the homogeneous transposed equation
(4.39). Since the eigenvectors (b4, by, ..., b,,) span a subspace of
dimension m , this amounts to the m condition :

W f)=0,i=12,...m,

Where the 1; are m linearly independent eigenfunctions of the
homogeneous transposed equation (4.39). This completes the prove of the
Fredholm alternative in the case of degenerate kernels. It remains to show
that theorem is also true for more general kernels.

Given an arbitrary, square integrable kernel kwe will use the Neumann
series representation (4.16) to reduce the given problem to one associated
with a degenerate kernel which we now know how to solve.

In our previous discussions of integral operators we saw that it was
always possible to approximate a given kernel by a degenerate kernel in
such a manner that the difference between the two kernels was as small as
we wished. In this particular case we will choose the approximating
degenerate kernel,K,, (x. t)to be such that the difference

K(x,t) = K(x,t) — K, (x, t) (4.51)

Satisfies the inequality
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ﬂ K(x,t)?dtds < 1 (4.52)

Imposing this restriction on the kernel K (x, t)ensures that we can use the
results of theorem (4.1.7).that is, the Fredholm equation

¢-Kp=f (4.53)

Where K is an integral operator with kernel K (x, t),has a solution ¢
which may be represented as

¢=f+Rf (4.54)
Where R is the resolvent operator associated with the operatorK. We will

use this representation of the solution of an integral equation having a
kernel similar to (4.53), to reduce the unrestricted fredholm equation:

p—Kop=f (4.55)

To a degenerate integral equation. This we accomplish as follows.
Emphasizing the fact that we will denote operator s by the same letter as
used to denote their kernel , but without any arguments attached (that is,
K denotes the operator generated by the kernel K(x, t)) we see that in
terms of the approximation(4.51) our given equation (4.55) may be
written:

dp—Kp=Ff+K,p (4.56)

This equation has the same structure as (4.54); in particular it has the
same kernel, thus its solution has the representation

¢ = (f + Kn$) + R(f + Kp9) (4.57)
Or, which is the same thing:
¢ — (K, + RK,)$ = f + Rf (4.58)

Clearly, this is a Fredholm equation of the second kind, and it must have
a solution ¢p which is identical to the equation (4.51). At first sight it
would appear that no great progress has been made. However, this is not
the case since we can show that (4.58) has a degenerate kernel, and we
have already established the Fredholm Alternative for such equations.
That K,, is degenerate follow by hypothesis. To show that RK,, has a
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degenerate kernel we first observe that, since we have introduced the
inner product

(f.g) = f (080 dx

Into our space, we may write K, ¢ in the form

Knp = f K, (o, D (0)dt = (Ko (x, £), $())

Similarly for all other operators appearing in our work ; in particular

Rp=[K+K*+K3+-]p
= (R(s,2),0(®)) + (R?(s,x), p(x) ) + -+
= (R(s,2), ()

It then follows immediately that

Riu = (R(5, ), 0:(0) (Bi(0), $ (1))
i=1

And clearly RK,, has a degenerate kernel

n

Z(R(s, x), a;(x)) B (1)

=1

Therefore , the kernel of equation (4.58) is degenerate . since we have
already established the Fredholm Alternative for degenerate Fredholm
equations , it follows that (4.58), and consequently(4.55), is soluble if and
only if the orthogonality condition

(. [f +Rf1) =0 (4.59)

Is satisfied for every eigenfunctiony , of the homogeneous transposed
equation

W — (K, + RK,) (4.60)
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If we are to prove the theorm for such kernels as we presently consideried
, we must show that the condition (4.60) is equivalent to

W.f)=0 (4.61)
Where 1) is any eigenfunction of homogeneous transposed equation
Y—-—KY=0 (4.62)

Admittedly we have anticipated (4.61), as such a result would prove the
theorem.

That it is indeed true we can establish fairly easily , as follows. let us
write:

V=9+R¢PY=(1+R)P (4.63)
Where R* is the resolvent operator associated with K* and
(1-KHt=(I+R")
Consequently, from (4.63) we obtain
p=(-K)y (4.64)

Which gives ) in terms of, since K and K* are related by (4.27) it can
easily be shown that the operator in (4.60) can be re-written

(K, + RK,))* = K,” + K,"R* (4.65)
Thus on substituting (4.65) and (4.60) can be obtain
(1=K — (K" + K R (1 = K )y
=p— (K" +K, W +K, (RR+RK—R)p=0  (4.66)
From the definition of R* we see that
R*=K"+K* + K% + -
_ I?*(I _ I?*)_l

=K*(I +R")



Consequently , the last term in (4.66) vanishes, and we have
v—(k"+k)p=yv—-k'p=0

Thus (4.60) and (4.62) are synonymous, and the eigenfunctionsy), of
(4.60), transform into the eigenfunctionsy ,of (4.62). consequently
(4.59)and(4.61) must have the same significance ,and the demonstration
of Fredholm’s alternative for square integrable kernels is complete .

In many applications of the Fredholm theory to boundary value problems,
the kernel involved in the integral equations are not square integrable.
However, under certain suitable conditions, the Fregholm theory is still
applicable in such instances, as we will now show.

Definition (4.1.15):-

In the foregoing demonstration of the Fredholm alternative we laid great
emphasis on the requirement that the associated kernel should be square
integrable. This ensured that the resulting Neumann series was
convergent. However ,the square integrability of the kernel was only
essential if we were working in an inner product space (usually a Hillbert
space); all that really is required is that

1Ak < 1

Where || k|| is the norm of the integral operator involved. In fact the
Fredholm alternative can be shown to be valid in general Banach space. It
follows, then ,from the above discussion, that the reduction of an integral
equation with arbitrary kernel K (x, t)to degenerate integral equation may
always be carried out provided K (x, t) can be approximated arbitrarily
well , in whatever norm is used , by a degenerate kernel. That is, given

&€ > 0, on matter how small, we can write K in the form

K=K, +K|K|| <e (4.67)

whereK, is integral operator with degenerate kernel. Such kernels are
called completely continuous. A restatement of this property, which is
more in keeping with our previous discussions linear operators is that
K transforms any bounded set into a compact set ;that is ,for any
sequence of functions {¢,,} which are such that ||¢,|| < K the
sequence {y,,} where Y,, = K¢,, contains a convergent subsequence.
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Therefore the Fredholm alternative is valid for any integral equation
¢—AKp = f
Which has an operator with a completely continuous kernel.

With this slight preamble we are now in a position to extend the
Fredholm alternative to certain kernel which are not square integreble

Definition (4.1.16):-

The kernel in question arise frequently in the study of boundary value
problems , and are known as weakly singular kernels. They have the form

k(x,©)
o 0<i<n (4.68)

K(x,t) =

Where k(x, t)is bounded function of xand t , r is the distance between x
and t , and n is the dimension of the region of interest , D.Unlike the case
of square integrable kernels, we shall find it necessary in this case to
assume that the domain D is bounded . we will first show that the kernel
(4.68) are completely continuous in the sense of the definition (4.67)

Writing
' K(x,t), r=>0
K(x,t)={0( ) r<é
" _ O, r=06
K (x’t)_{K(x,t), r<é

For some > 0 , we effectively truncate the singularity ~* and obtain the
decomposition

K(x,t) =K' (x,t) + K" (x, t).

Because of our assumption regarding the boundedness of D, the kernel
K'(x,t) is clearly square integrable and may , therefore , be approximated
arbitrarily well in norm by a degenerate kernel. In fact if K, (x, t) isa
degenerate kernel , Schwarz’s inequality shows that

IK'(x,t) — K,(x, )| < ff[K’(x, t) — K,(x,t)]* dx dt



Consequently we must now show that K”(x, t)can be made arbitrarily
small in norm, to this end we notice that if Mis a bound for k(x, t)

2
[ 9l
r<s T
2

[ -1

<6 rz r2

| el

As we have stated, r is the distance between the points xand t and it

(K"¢)? = (K" (x, 1), $())* < M?

Applying Schwarz’s inequality we obtain

should be emphasized that, when we are working in more than one
dimension,x represents the point with co-ordinates (xq, x5, .... X,)

And similarly for t. therefore the retraction r > § confines our attention
to the interior of a small ‘circle’ centred at xand radius 6. Consequently
,sinced < n,

dt
f 2 < D) <
r<é

Where the number D (§), as indicated, depends on the value of § ;for
example, in two dimensions we get:
dt 2m
— <
r<é

Clearly as a result of the restriction on A, D (§)will tend to zero with §
with these several results available we can now write

nwwv=fmwmx

D,

2

< M2D(5) f fl%ldtdx
D, D;
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Where D, and D, indicate the domain of integration together with the
variable in the integration process. This can be further simplified by
Fubini’stheorem , as follows

f l(f—lzdtdx = Ltld)lz{fm%}dt

Dy D¢

Dy

Where d is the diameter D, arguing as before it is apparent that since D
is bounded the integral

dx
rxl
r<d

Must also be bounded and equal to B, say.
Therefore combining these result we have
IK"¢lI> < M2D(8)lI9lI*B.

Consequently since M and B are by definition finite, and since D (§) can
be made arbitrarily small by choice of § sufficiently small it follows that

K"
IK"|| = L.u.b.
ol

Can be made arbitrarily small. Therefore it follows that kernels such as
K(x,t), which have a weak singularity may be approximated arbitrarily

well in norm by degenerate kernels which establishes the validity of the
Fredholm alternative for such kernels.
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Section (4.2):Symmetric integral equations
Definition (4.2.1):-

The theory of integral equations can be developed in much greater detail
when the kernel K (x, t)happens to be symmetric. Such a development
will be a special case of the Fredholm theory, which we have already
briefly examined, and is usually referred to as the Hilbert-Schmidt theory
of integral equations. We have already studied in some detail in chapterl
the properties of integral operators which symmetric kernel, and the
results we obtained there may be summarized as follows.

Theorem (4.2.2):-

Every continuous symmetric kernel which does not vanish identically
possesses eigenvalues and eigenfunction; their number is denumerable
infinite if and only if the kernel is non-degenerate. All the eigenvalues of
a real symmetric kernel are real. In the application of the theory of
integral equations, in particular when the kernel is symmetric we often
find it necessary to consider the possibility of expanding a given function
inf a series of the form

F0) =) (£,

Where ¢; is anorthonormal sequence of functions. Consequently we must
examine in what sense such a formal expansion might represent the
function fand under what circumstances the sequence of functions ¢; is
complete. The next two theorems will answer these questions.

Theorem (4.2.3):-

Any square integrable function f is orthogonal to all the eigenfunctions
¢; of the symmetric kernel K (x,y) if and only if (K(x,t), f(t)) = 0 for
the sequence of eigenfunctions {¢; }to be complete, it is necessary and
sufficient that (K (x, t), f(t)) # 0 for every f # 0
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Prove:-
The eigenfunctions®;are the non-trivial solutions of
AiKp; = 2;(K(x, 1), ;(£)) = ¢;(x) (4.69)

Consequently if the square integrable function f is orthogonal to the
kernel K (x, t) we have

(K(x,t),f(x)) =Kf =0 (4.70)
Forming the inner product of (4.69)withf we have

(¢u, f) = 4i(Koy, f) = 4 (¢, Kf)

The right-hand side vanishes by virtue of (4.70), and so fmust be
orthogonal to ¢; for all i.

If now we assume that f is orthogonal to all the eigenfunctions ¢; of
K (x,t) we must show that ||Kf|| = 0.to this end, introduce thekernel

o1
Kn(r,0) = K(o8) = ) — (i) pi(0)) (4.71)
i=1 "

Then because f is orthogonal to all the ¢;

kf = (jk@o - %},f@)) = Kof (4.72)

Where K, is the integral operator with kernel (4.71)

Therefore

IKFII = 1K1l < 1K IAl (4.73)

Since the eigenvalue A; tend to infinity enables us to assert that

1
1Kl = 5

n+1

-0

As n — oo thus the system of eigenfunctions spans the space and the
theorem is established.



It would perhaps be instructive to establish that ||k,|| = 0 independently
of nand reference to the aforementioned theorem. To this end, we notice
that for an integral operator K with symmetric kernel K (x, t) and
eigenvalues A; with associated eigenvector ¢;

1 i 2
(Ko, ¢) = (A_ di, (I)i) < ”|¢;L.|||

And

(Koi d:) < 1Kol < 1K1
If we combine these results, it follows from the definition of ||K|| that
Kl =
=

To prove that the reverse inequality is also true, we write

Y, =Ko,
Then

Ko;
IK$:lI? = (Kpi, Kopy) = (Kpi, 1) = (¢, Kpy) = (¢lT¢)

Form which it follows that

1Kl
1K ill> < Nlpill =5
|21

And the reverse inequality is established which allows us to write

Il = —
|2
Using this result conjunction with the symmetric kernel K, (x, s) it is
easily established that

1
IKnll =

Anta

In the special case when the kernel is degenerate its system of
eigenfunction cannot be complete since they span only a finite-



dimensional space. When the kernel is not degenerate its system of
eigenfunctions span an infinite-dimensional space. However this infinite-
dimensional space may, or may not be the whole Hilbert space in which
are situated our solutions and therefore it still remains to examine the
sense in which a formal eigenfunction expansion of an arbitrary function
f is to be interpreted.

This point can be resolved by means of the celebrated Hilbert-Schmidt
theorem.

Theorem (4.2.4): (Hilbert-Schmidt)
Any function f which can be expressed in the form
f=Kg=(K(x1),gx)) (4.74)

Where gis some square integrable function and K a linear integral
operator with symmetric kernel K (x, t) has an absolutely and uniformly
convergent representation

F =Y @t = y g @rs)
i=1 =1

In terms of the eigenfunctions¢; of K
Proof:-

All question regarding the completeness of the system of eigenfunctions
are answered by the previous theorem. Consequently it only remains to
examine the uniform convergence.

Since

1
(¢i,f) = (i, Kg) = (K, 8) = ;(qbi,g)



An application of Schwarz’s inequality enables us to write

(Z(cpl,f)cp) ( (d’i’l_g)cpi)

2

Bessel’s inequality

D @ < llgll? <o
i=1

Shows that the first factor on the right can be made arbitrarily small by
taking m and n large enough (Cauchy criterion of convergence).

Further from the orthonormality of the ¢; it follows that

n ¢2
—LSfK&Jth<w
i A
i=1
Since the kernel K (x,t) is bonded. Thus it follows that the infinite series

in (4.75) converges absolutely and uniformly.

Tow show that the series actually converges to f it will be sufficient to
show that the series converges to f in the mean since f and ¢; are
uniformly continuous. This follows at once since

Hf - zn:(¢i’f)¢iH =
i=1

= Kl

Kg — Z(d)i' g /A
i=1

Where K,, is given by (4.71)
Applying Schwarz’s inequality we obtain

gl

Ant1

IKngll < 1K IllIgll =



And the right-hand side clearly tends to zero as n tends to infinity thus
the series converges to f in norm, and the proof of the theorem is
complete.

Definition (4.2.5):-
Consider, initially, the differential equation
Lu=—f (4.76)

Where L is the self-adjoint, second —order ordinary differential operator
introduced in equation (2.32) and f is a piecewise continuous function
defined over [0.1] .in section (2.2)we were concerned with the boundary
value problem; to find a solution ,u, of (4.76) which satisfied given
homogeneous boundary conditions on the boundary of [0,1].we saw that
the required solution could be expressed as

1

u(x) =fG(x,t)f(t)dt (4.77)

0

Where G (x, t)was that Green’s function associated with the operator L
over [0.1] which satisfied the same boundary conditions as the unknown
function u.

We now propose to examine the more general boundary value problem
associated with the linear family of differential equations

Lu+ Apu = —f ,p>0 (2.78)

Which depend upon a parameterd. As before, the operator L is defined by
(2.32),f is assumed to be piecewise continuous over [0,1] and
homogeneous boundary conditions are imposed. If the Green’s
functions,G (x, t), exists for the operator Lunder the given boundary
conditions, then the solution,u, to (4.78) can be obtained in the form
(4.77) if we first write

B(x) = Apu — f(x)



It then follows that
1

u(x) = Af G(x, )p(®)u(t)dt + g(x) (4.79)
0

Where

1

g(x) = —f G(x,t)f(t)dt (4.80)

0

Is a known continuous function of x.therefore (4.79) is equivalent to
(4.78). Hence finding a solution u(x),of (4.78), subject to the prescribed
boundary conditions is equivalent to solving the integral equation
(4.79).also the homogeneous equation

Lu+Apu =20

Corresponds to the homogeneous integral equation

1

u(x) = Af G(x,t)p(Hu(t)dt (4.82)
0

This last equation can be cast into a particularly convenient form if we
introduce

1

z(x) = Af k(x, t)z(t)dt (4.83)

0

The kernel of (4.88) is symmetric since L is self-adjoint. Therefore the
theory of symmetric integral equations is applicable. By combining the
several results which we obtained in the previous sections we readily see
that the follow alternatives hold for the relation between the boundary
values problems for non-homogeneous and homogeneous differential
equations.

Either, for fixed 4, every solution of the homogeneous differential
equation (4.81) vanishes identically (A is not an eigenvalue of (4.81));
then the non-homogeneous differential equation (4.78) has a unique
solution for an arbitrary choice off, or for some value A = 4;,the
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homogeneous equation (4.81) has a non-trivial solution u;(4;is an
eigenvalue of (4.81) with corresponding eigenfunction u;); the solution of
the non-homogeneous equation (4.78) for A = A; exists if and only if

1

f’puifdx =0

0

Is true for every eigenfunctionu; associated with A;.

In addition, there exists a sequence of eigenvalues{A;},i = 1,2, .....,with
associated eigenfunctions u; which form an infinite set of orthogonal
functions satisfying

1
f puudx = 0, [ #k
0

1

2 3, —
f’puidx—l
0

If, with the appropriate Green’s function as kernel, we can represent a
function g(x) by a piecewise continuous ¢ (x)in the form

1

g@)=jlxnﬂ¢aﬁu

0

Then g(x) can be expanded in terms of eigenfunction into a series

[oe]

8 = ) cattn(®)

n=1

1
Cp = f gpudx
0

Which is absolutely and uniformly convergent.



List symbols..

symbols The meaning No.page

| | Determinate Il

[l Norm 3

z Summation 3

Vv Square root 28

d Ditferentiation Il

j f Double integral 1
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