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Abstract 
       The scope and Aim of Mechanics is the science of motion. It 
has a twofold object: 

     First, to describe the motions of bodies an interpret, them by 
means of a few laws and principles, which are generalizations   
derived from observation and experience. 

   Second ,to predict the motion of bodies for all times when the 
circumstances of the motion for any one instant are given ,in 
addition to the special laws which govern the motion .  

This research aims to cover some of these concepts, and it is 
organized and divided in two chapters:- 

In chapter one, we discuss the Newton Mechanic’s, and the 
equations of motion according to Newton laws of motion and 
their solution. Also we study the Lagrangian mechanics and law, 
and we explain the concepts’ of the action and symmetries with 
some applications and examples. 

In the last chapter, we illustrate the concept of the conic section; 
also we study the central force two body problems with some 
applications and examples. 
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 ملخص
-:وھي تحتوي على قسمین . أنھا علم الحركھ نطاق وھدف المكنیكا  

وتفسیرھا عن طریق عدد قلیل من لوصف حركات الاجسام , اولا
.القوانین والمبادئ التي تستمد  تعمیماتھا من التجربھ والملاحظھ  

للتنبؤ بحركھ الاجسام لجمیع الازمان عندما تكون ظروف ,ثانیا
بالاضافھ  الى القوانین الخاصھ التي , الحركھ لاجل لحظھ ما معطاه 

,تحكم الحركھ   

وقد نظم وقسم الى , ه المفاھیمیھدف ھذا البحث الى تغطیھ بعض ھذ
-:اثنین من الابواب  

في الباب الاول ناقشنا المكنیكا النیوتینیھ لمعادلات الحركھ وفقا لقانون 
, ایضا درسنا مكنیكا وقوانین لاجرانج. نیوتن للحركھ وحلولھا

.ووضحنا مفاھیم العمل وتماثلات مع بعض التطبیقات والامثلھ  

وایضا درسنا , فھوم القسم المخروطي وضحنا م, في الباب الاخیر 
,القوه المركزیھ لمسالھ جسمین مع بعض التطبیقات والامثلھ  
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Chapter (1) 

Newton and lagrangian mechanics 

Section (1.1): Newton Mechanic’s 

Sir Isaac Newton was a Master of the Mint. He also formulated three 

celebrated Laws of mechanics, which we can paraphrase as follows: 

The First law:-  

A particle not subject to any force moves on a straight line at constant 

Speed. 

The second law:- 

In the presence of a force, the position of a particle obeys the 

equations of Motion 

					mẍ୧ 	= 	 F୧(x, ẋ	)	.                                         (1.1) 

The Third law:- 

The force exerted by a particle on another is equal in magnitude, but 

op posited in direction, to the force exerted by the other particle on the first. 

A “particle” is here thought of as an entity characterized by its mass 

m, its location in space x	(t), and by nothing else, the aim of Newton’s 

mechanics is to predict the location at arbitrary times, given the position and 

velocity at some initial time, this is done by means of a solution of the 

differential equations above. 
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I	 ∈ 	 {1, 2, 3} eq. (1.1) stands for three separate equations. Throughout we 

employ Einstein’s summation convention, which means that whenever a 

certain Index occurs twice in a particular term, a sum over all its allowed 

values is understood. 

x୧y୧ = ∑ x୧y୧ଷ
୧ୀଵ = ∑ x୨y୨ଷ

୧ୀଵ = x୨y୨                                                        (1.2) 

Now we discuss Analytical and Hamiltonian mechanics a physicist 

might follow Newton in using them to predict the position of the planets as 

they go around the sun, and will conclude that they are very meaningful. 

Analytical mechanics is at once more general and more special than 

Newton’s Theory; it is more general because it is more abstract. Its 

equations do not necessarily describe the positions of particles, but may be 

applied to much more general physical systems (such as field theories, 

including Einstein’s general relativity theory), in the version we will study it 

is more special because only a restricted set of forces are allowed in eq. 

(1.1). It can be reformulated as the statement that the total momentum of a 

system composed of several particles is conserved: 

																			ୢ୮౟
ୢ୲
= ୢ

ୢ୲
∑ mẋ୧୮ୟ୰୲୧ୡ୪ୣୱ = 0		                                                  (1.3) 

Where the sum is over all the particles in the system, now consider the 

function 

E = T + V = ୫୶̇మ

ଶ
	+ V(x)                              (1.4) 

Where V is some function of	x, known as the potential energy. The function 

Is called the kinetic energy, while E itself is the energy of the system, clearly 
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E = ẋ(mẍ୧ + ∂୧V(x))																																																																					(1.5) 

It follows that if the force is given by 

F୧(x, ẋ	) 	= 	 F୧(x) 	= 	− ∂୧V	(x)                                     (1.6) 

Then the energy of the system is conserved. Systems for which a conserved 

Energy function exists are called conservative. In our example, and indeed in 

many interesting cases, the energy can be divided into kinetic and potential 

Parts, and the equation of motion is given by 

mẍ୧ 	= 	− ∂୧V	(x)                                                                      (1.7) 

This move is typical of analytical mechanics, where vectors are usually 

derived from scalar functions analytical mechanics devises methods to 

derive the differential equations de scribing a given system, strategies for 

solving them, and ways of describing the solutions if they cannot be 

obtained in explicit form. We will tentatively restrict ourselves to 

conservative systems only. If you like, this is a strengthening of the third 

law. Indeed, we will deal with a special form of analytical mechanics called 

Hamiltonian mechanics, which is believed to apply to all isolated systems in 

Nature. 

What we are trying to do is to find some properties that all the Laws of 

Physics, and in particular all allowed equations of motion, have in common. 

Now the philosopher Leibnitz—who was the other of the two inventors of 

Differential Calculus—argued that we live in the best of all possible worlds.  

as was first realized Half a century after the publication of Newton’s 

Principia, The inspiration Came from optics, and the laws of reflection and 
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refraction, It is known that The angle of reflection is equal to the angle of 

incidence, and it was observed By the Greeks that this implies that light 

always travels on the shortest path available between two points A and B, 

subject to the restriction that it should be reflected against the surface. If the 

angle of reflection were to differ from the angle of incidence, the distance 

covered by light in going from A	to	B would be greater than it has to be, for 

refraction, we have Snell’s Law. Any Medium can be assigned an index of 

refraction n, and the angle of refraction is related to the angle of incidence 

through 

n1	sin	θ୧ 	= 	n2	sin	θ୰	.                                (1.8) 

Fermat noted that if 

n = ୡ
୴
                                                                      (1.9) 

Where v is the velocity of light in the medium and c is a constant, then 

Snell’s law can be derived from what is now known as Fermat’s principle, 

 Namely that the time taken for light to go from A	to	B is a minimum, 

Fermat’s principle unifies the laws of refraction and reflection, since it also 

implies the equality between the angles of incidence and reflection. 

Consider two pointsA	and	B, and suppose that a particle starts out at	A 

at time t	 = 	 tଵ, and then moves along an arbitrary path from A	to	B with 

whatever speed that is consistent with the requirement that it should arrive at 

B at the time t	 = 	 tଶ, in mathematical terms we are dealing with a function 

x	(t)such that  

x(tଵ) = 	 x୅																																				x(tଶ) 	= 	 x୆	,												           (1.10) 
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But otherwise arbitrary   , for any such function x (t) we can evaluate the 

integral 

s[x(t)] = ∫ (t − v)dt = ∫ (୫௫̇
మ

ଶ
− ୲మ	[((ݔ)ݒ

୲భ
୲మ
୲భ

                                        (1.11) 

S is known as the action. It is a functional, i.e. a function of a function—the 

Functional	ܵ[ݔ	(ݐ)]	assigns a real number to any function ݔ	(ݐ).	Note that 

 ଶ, but this isݐଵ andݐ	,஻ݔ,஺ݔit is a function of ,ݐ is not a function of [(ݐ)	ݔ]ܵ

rarely written out explicitly. 

The statement, to be verified in the next section, is that the action 

functional (1.11) has extremism (not necessarily a minimum) for precisely 

that function x (t) which obeys the differential equation (1.7). This is known 

as Hamilton’s Principle, or—with less than perfect historical accuracy—as 

the principle of Least Action, Hamiltonian mechanics deals with those, and 

only those. This is a much more general class than that given by eq. (1.7), 

but it does exclude some cases of physical interest, and forms only a part of 

analytical Mechanics. Note once again what is going on. The original task of 

mechanics was to predict the trajectory of a particle, given a small set of data 

concerning its state at some initial timeݐ. We claim that there exists another 

formulation of the problem, where we can deduce the trajectory given half, 

as much data at each of two different times. So there seems to be a local 

causal way of looking at things, And at a first sight quite different global 

Teleological viewpoint, the claim begins to look reasonable when we 

observe that the amount of “free data” in the two formulations are the same. 

Moreover, if the two times1ݐ, and ݐଶ approach each other infinitesimally 

closely, then what we are in effect, specifying is the position and the velocity 
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at time1ݐ, just as in the causal Approach, we are eternizing a quantity 

evaluated along a path, and the path actually taken By matter in nature is the 

one which makes the quantity in question assume an extremely value, the 

point about extreme—not only minima—is that if the path is varied slightly 

away from the extremely path, to a path which differs to Order ߳ from the 

extremely one. Then the value of the path dependent quantity suffers a 

change, which is of order ߳ squared at extremism the first derivative 

Vanishes. In the case of optics, we know that the description of light as a 

bundle of rays is valid only in the approximation, where the wavelength of 

light is much less, than the distance between	ܣ	݀݊ܽ	ܤ, in the wave theory, in 

a way, every path between	ܣ	݀݊ܽ	ܤ	is allowed. If we vary the path slightly, 

the time taken by light to arrive from ܣ	݋ݐ	ܤ	changes, and this means that it 

arrives out of phase with the light arriving along the first path, If the 

wavelength Is very small, phases from light arriving by different paths will 

be randomly distributed, and will cancel each other out through destructive 

interference. 

This argument fails precisely for the extremely paths: for them, 

neighboring paths take approximately the same time, light from all 

neighboring paths will arrive with the same phase, and constructive 

interference takes place. Thus, whenever the wavelength is negligibly small, 

it will appear that light always travels along extremely paths. Only in the 

twentieth century was it realized that Hamilton’s Principle works for the 

same reason, that Fermat’s Principle works, Classical mechanics is a kind of 

geometrical optics limit of a “wave mechanics” of matter, operating in 

configuration space, but that is another story. 
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Now we study the calculus of variations, let us now verify the claim 

made in the first section, namely that Newton’s differential equations for 

suitable choices of the dynamical system are mathematically equivalent to 

the requirement that a certain functional of all possible paths of the particles 

should assume an extremism value at the actual trajectory. 

First, we stare at the definition of the action functional: 

[(ݐ)ݔ]ܵ = ∫ ௠)ݐ݀
ଶ

௧మ
௧భ

 (1.12)																																																								((ݔ)ݒ_ଶ̇ݔ

 For a function ݂ of an ordinary numberݔ, it 

Is easy enough to find the extreme, we consider how the function values 

 (ݔ)݂

Change as we change the numberݔ: 

(ݔ)݂ߜ 	≡ 	ݔ)݂	 + (ݔߜ	 	− (ݔ)݂	 	=  (1.13)                   (ݔ)݂ݔ߲ݔߜ	

If the derivative is zero at the point	ݔ, the function has a minimum, or a 

maximum, or at least an inflection point there, for a function of several 

variables, the condition for extremism (a minimum, a maximum, or a saddle 

point) is that 

(ݔ)݂ߜ               = ∑ ௜ݔߜ
డ௙
డ௫೔

,ଵݔ) … , (ேݔ = 0௜                              (1.14) 

For arbitrary choices of theݔߜ௜, which means that all the ܰ partial 

derivatives? Have to vanish at the extremely points. Now a functional of a 

function ݔ	(ݐ) can be regarded as a function of an infinite number of 

variables, say of the Fourier coefficients of the original function. You can 
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also regard t as a label of the infinite number of variables on which the 

functional depends—a kind of continuous index—and then what we have to 

do is to replace the sum in eq. (1.14) with an integral, like this: 

	ݏߜ = (ݐ)	ݔ]ܵ	 	+ [(ݐ)	ݔߜ	 	− [(ݐ)	ݔ]ܵ	 	= 	∫ (ݐ)ݔߜݐ݀ ఋ௦
ఋ௫

௧మ
௧భ

 (1.15)       (ݐ)

We assume that it is possible to bring as to this form. Then the functional 

Derivative of S[x] will be defined as the very expression that occurs to the 

Right in the integrand, the equations of motion, as obtained from Hamilton’s 

principle, then state that the functional derivative of the action is zero, since 

the form of the function ݔߜ	(ݐ) is arbitrary. 

It remains to be seen if we really can bring as to this form—if not, we would 

Have to conclude that	ܵ[ݔ	(ݐ)] is “not differentiable”. First of all, note that 

we are all the time evaluating the action between definite integration limits? 

Then the extremism, if it exists, will be given by that particular trajectory 

which starts at the point ݔ	(ݐଵ) at time1ݐ, and ends at the point ݔ	(2ݐ)	at time 

 and for which the functional derivative vanishes. We can make this work ,2ݐ

for the action functional (1.12), Imagine that we know its value for a 

particular function ݔ	(ݐ), and ask how this value changes if we evaluate it for 

a slightly different function 

(ݐ)෤ݔ			 	= (ݐ)	ݔ	 	+ ,(ݐ)	ݔߜ	 (ݐ)	ߜ 	=	∈  (1.16)                       (ݐ)	݂

Where ݂	(ݐ) is, for the time being, an arbitrary function while ߳ is an 

infinitesimally small constant, it is important for the following argument that 

 is arbitrary, or nearly so, that ߳ is “infinitesimally small” simply means (ݐ)	݂
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that we will neglect terms of quadratic and higher orders in ߳in the 

calculation, which follows: 

ܵߜ = [ݐ)ݔ]ܵ − [(ݐ)ݔ]ܵ = න )ݐ݀
݉
2

௧ଶ

௧ଵ
൫̇ݔ + ଶ̇൯ݔߜ − ݔ)ܸ + (ݔߜ − [(ݐ)ݔ]ܵ = 

																				න )ݐ݀
݉
2
ଶ̇ݔ ݔ̇ߜݔ̇݉+ − (ݔ)ܸ − (ݔ)ݒݔ߲ݔߜ + ܱ(߳ଶ))

௧ଶ

௧ଵ
=	

[(ݐ)	ݔ]ܵ 	= ∫ ݔ̇ߜݔ̇݉)ݐ݀ − (ݔ)ܸݔ߲ݔߜ + ܱ(߳ଶ))௧మ
௧భ

	                   (1.17) 

The action functional has an extremism at the particular function x (t) for 

Which this expression vanishes to first order in ǫ, what we want to see is 

What kind of restrictions this requirement sets on the function. To see this, 

we perform a partial integration 

ܵߜ = ∫ ݔ̈݉)ݔߜ_)ݐ݀ + ((ݔ)ܸݔ߲ + ௗ
ௗ௧
௧మ((ݔ̇ݔߜ݉)

௧భ
                       (1.18) 

Unfortunately this is not quite of the form (1.15), due to the presence of the 

total derivative in the integrand, Therefore we impose a restriction on the so 

far arbitrary function f (t) that went into the definition of ax, so that 

(1ݐ)ݔߜ 	= (2ݐ)ݔߜ	 	= 	0                               (1.19) 

This is a way of saying that. We are interested only in functions x (t) that 

Have certain reassigned starting and end points at specified times. With this 

restriction, the total derivative in eq. (1.18) goes away. The first term has to 

vanish for all allowed choices of the functions ax (t). After a moment’s 

reflection, we see that this can happen only if the factor-multiplying ax in 
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the integrand is zero! Hence, we have proved that the action functional has 

extremism, among all possible functions obeying 

(ଵݐ)	ݔ = 	 ,		஺ݔ (ଶݐ)ݔ 	= 	  ஻                              (1.20)ݔ

For those and only those functions which obey 

ݔ̈݉ 	= 	−߲௫ܸ(ݔ)																																																																									(1.21) 

 That Newton’s equations of motion can be derived from the condition. That 

a certain action functional to obtain a definite Trajectory, it is not enough to 

impose the equations of motion. It is also necessary to set some initial 

values, for differential equations of Second order. It is natural to make a 

choice ofݔ	(0)	݀݊ܽ	ݔ̇	(0)	, from the point of view of the action. It is natural 

to impose the value of ݔ	(ݐ) at two different times, that whatever values of 

 we choose, there is always a unique solution for some range	(0)	ݔ̇	݀݊ܽ	(0)ݔ

of	ܶ, while it is perfectly possible that the equation of motion is such that 

there is no solution, or several solutions. For a given Pair 

ofݔ	(ݐଵ)	ܽ݊݀	ݔ	(ݐଶ), the rest of this course is an elaboration of the contents 

of this section. If you have not understood everything perfectly yet there is 

still time. 

It is one thing to be able to set up equations for a physical system, and 

perhaps to prove theorems to the effect that a solution always exists and is 

unique, given suitable initial conditions, another issue of obvious interest is 

how to solve these equations, or at least how to extract information from 

them. What precisely do we mean when we say that a differential equation is 

“soluble”? Consider, as an exercise, a first order differential equation for a 

single variable: 
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ݔ̇ =  (1.22)                                  (ݔ)݂

Where f is some function. This can be solved by means of separation of 

variables: 

࢚ࢊ = ࢞ࢊ
(࢞)ࢌ

	⟹ ࢚(࢞) = ∫ ᇱ࢞ࢊ
(ᇱ࢞)ࢌ

			࢞
ࢉ                                      (1.23) 

Where c is a constant determined by the initial condition. If we do this 

integral, and then invert the resulting function t(x) to obtain the function x 

(t), we have solved the equation, we will regard eq. (1.23) as an implicit 

definition of x (t), and eq. (1.22) is soluble in this sense. This is reasonable, 

since the manipulations required to extract t(x) can be easily done on a 

computer, to any desired accuracy, even if we cannot express the integral in 

terms of elementary functions, but there are some limitations here: It may 

not be possible to invert the function t(x) except for small times, Next, 

consider a second order equation, such as the equation of motion for A 

harmonic oscillator: 

̈࢞࢓ = −࢑࢞                                                                     (1.24) 

This is a linear equation, and we know how to express the solution in terms 

of trigonometric functions, but our third example—a pendulum of length l—

is already somewhat worse: 

ࣂ૛̈࢒࢓ = ࢒࢓ࢍ−  (1.25)                                                          ࣂ࢔࢏࢙

Let us therefore approach eq. (1.24) in a systematic fashion, which might 
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Yield results also for the pendulum. As a first step, note that any second 

order Differential equation can be rewritten as a pair of coupled first order 

equations: 

̇࢖ = ̇࢞࢓																	࢑࢞− =  (1.26)                                                ࢖

The second equation defines the new variable p. unfortunately coupled first 

order equations are difficult to solve, except in the linear case when they can 

be decoupled through a Fourier transformation. 

The number of degrees of freedom of a dynamical system is defined 

to be one half times the number of first order differential equations, needed 

to describe the evolution. It will turn out that, for systems whose equations 

of motion are derivable from the action principle, the number of first order 

equations will always be even. Therefore, the number of degrees of freedom 

is always an integer for such systems. A system with n degrees of freedom 

will, in general, be described by a set of 2n coupled first order equations, and 

the difficulties one encounters in trying to solve them will rapidly become 

severe. In the cases at hand, with one degree of freedom only, one uses the 

fact that these are conservative systems, which will enable us to reduce the 

problem to that of solving a single first order equation, for the harmonic 

oscillator the conserved quantity is 

ࡱ							 = ૛̇࢞࢓

૛
+ ࢑࢞૛

૛
                                                                      (1.27) 

The number E does not depend on t. equivalently 

						࢞̇૛ = ૛ࡱ
࢓
− ࢑

࢓
࢞૛                                                                    (1.28) 
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Taking a square root we are back to the situation we know, and we proceed 

As before: 

࢚ࢊ = ට࢞ࢊ ࢓
૛࢑࢞ିࡱ૛

	 ⟺ ࢚(࢞) = ∫ ට′࢞ࢊ ࢓
૛࢑࢞ିࡱᇱ૛

࢞
ࢉ                       (1.29) 

Inverting the function defined by the integral, we find the solution x (t). The 

Answer is a trigonometric function, with two arbitrary constants E and c, 

which determine the phase and the amplitude. For our purposes the 

trigonometric function is defined by this procedure! 

We can play the same trick with the non-linear equation for the pendulum, 

Moreover, we end up with 

(ߠ)ݐ = ∫ ௗఏᇱ

ට మ
೘೗మ	(ாା௚௠௟௖௢௦ఏᇱ)

ఏ
௖                                                     (1.30) 

We integrate, and we invert. This defines the function θ (t). We could leave 

it at that, but since our example is a famous one, we manipulate the integral 

a bit further for the fun of it. Make the substitution 

࢔࢏࢙ ᇱࣂ
૛
= ࢑ ′∅࢔࢏࢙ ⟹ ᇱࣂࢊ	 = ૛࢙࢕ࢉ࢑∅ᇱࢊ∅ᇱ

ඥ૚ି࢑૛࢙࢔࢏૛∅ᇱ
                                 (1.31) 

This converts the integral to 

(ߠ)ݐ         = ට ௟
ଶ௚ ∫

ଶ௞ ௖௢௦∅ᇱௗ∅ᇱ

ඥଵି௞మ௦௜௡మ∅ᇱට ಶ
೒೘೗ାଵିଶ௦௜௡

మഇᇲ
మ

∅(ఏ)
௖                               (1.32) 

Now we choose the so far undetermined constant k by 
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2݇ଶ ≡ ா
௚௠௟

+ 1                                                          (1.33) 

The integrand then simplifies, and one further substitution takes us to our 

Desired standard form; 

(ࣂ)࢚ = ට ࢒
∫ࢍ

ᇱ∅ࢊ
ඥ૚ି࢑૛࢙࢔࢏૛∅ᇱ

(ࣂ)∅
ࢉ = ࢔࢏࢙| ∅′ ≡ ࢞′| = ට ࢒

∫ࢍ
ᇱ࢞ࢊ

ටቀ૚ି࢞ᇲ૛ቁ(૚ି࢑૛࢞ᇱ૛)

(ࣂ)࢞
ࢉ  

(1.34)  

Just as eq. (1.29) can be taken as an implicit definition of a trigonometric 

Function, this integral implicitly defines the function θ (t) as an elliptic 

function. 

If you compare it with the previous integral (1.29), you see that an elliptic 

Function is a natural generalization of a trigonometric, i.e. “circular”, 

function. Since elliptic functions turn up in many contexts, they have been 

Studied in depth by mathematicians, anyway, the above examples were 

some of the simplest examples of completely soluble dynamical system; just 

wait until we get to the insoluble ones! 

Why did this work at all? The answer is that we had one degree of freedom, 

In addition, one constant of the motion, namely Ethos reduced the problem 

to that of solving a single uncoupled equation. This suggests a general 

strategy for solving the equations of motion for a system containing n 

degrees of freedom, i.e. solving 2n coupled first order equations: One must 

find a set of n constants of the motion with suitable properties, so that the 

problem reduces to that of computing n integrals, this idea forms the core of 
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Hamilton-Jacobi theory. It works sometimes, but not very often: a typical 

Hamiltonian system will exhibit an amount of “chaotic” behavior, as a result 

the notion of what it means to “solve” a set of differential equations evolved 

somewhat: a solution might consist, say, of a convergent power series in t. 

But frequently this strategy also fails, and there may not exist any effective 

procedure to generate the long term behavior of the solutions on a computer, 

what one has to do then is to find out which questions one can reasonably 

ask concerning such systems. Even in situations where one can solve the 

equations, things may not be altogether simple, Consider two harmonic 

oscillators, with the explicit solution 

ݔ = ܽ ݐଵ߱)ݏ݋ܿ + (ଵߜ ݕ						 = ܾ ଶ௧߱)ݏ݋ܿ +  ଶ)                  (1.35)ߜ

The trajectory in the x-y-plane is a Lissajous-figure, Examples are 

readily produced with a computer, If ω1 = ω2 the trajectory is an ellipse, 

with circles and straight lines as special cases. More generally, if there exist 

integers m and n such that 

ଵݓ	݉ =  ଶ                                     (1.36)ݓ݊

The trajectory is a closed curve. If there are no such integers the trajectory 

Eventually fills a rectangle densely, and never closes on itself. Put yourself 

into the position of an experimentalist trying to determine by means of 

measurements whether the trajectory will be closed or not! 

Now we discuss Phase space it is worthwhile formalizing things a bit 

further. With the understanding that every set of ordinary differential 

equations can be written in first order form, 
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We write down the general form of N coupled first order equations for N 

real Variables zip: 

௜ݖ̇ = ௜݂൫ݖଵ,…,ݖே; ,1	൯ݐ ≤ ࢏ ≤  (1.37)                               ࡺ

Where the N functions if is arbitrary. We simplify things by assuming that 

There is no explicit dependence on time, 

࢏ࢠ̇											 = ,࢏ࢠ)࢏ࢌ … ,  (1.38)                                        (ࡺࢠ

There are theorems that guarantee the existence and uniqueness of such 

systems for some range of the parameter t, thus 

࢏ࢠ = ,૙૚ࢠ)࢏ࢠ … , ,ࡺ૙ࢠ ࢚)                                              (1.39) 

Where z0i are the initial values of zip (There is no guarantee that such 

solution can be obtained in any explicit form) we assume that the physical 

systems. 

We are interested in—as far as we attempt to describe them—can be fully 

characterized by the N real numbers zip, we imagine a space whose points 

these numbers label in a one-to-one fashion, and call it phase space. 

The set of all possible states of a physical system is in one-to-one 

correspond-Dance with the points of an N dimensional phase space. The 

time development of a system is uniquely determined by its position in 

phase space. 

This is the first of several abstract spaces that we will encounter, and 

you must get used to the idea of abstract spaces, a particle moving in space 

has a 6 dimensional phase space, because its position (3 numbers) and its 
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velocity (3 numbers) at a given time determine its position at all times, given 

Newton’s laws. Anything else can either be computed from these numbers—

this is true for its acceleration—or else it can be ignored—this would be true 

for how it smells, if it does. The particle also has a mass, but this number is 

not included in phase space because it is given once and for all, two particles 

moving in space have a 12 dimensional phase Space, so high dimensional 

phase spaces are often encountered. We will have to picture them as best we 

may now consider time evolution according to eq. (1.38). Because of the 

theorems I alluded to; we know that through any point z0 there passes a 

unique curve Z (t), with a unique tangent vector z˙, these curves never cross 

each other. 

When the system is at a definite point in phase space, it knows where 

it is going, the curves are called trajectories, and their tangent vectors define 

a Vector field on phase space called the phase space flow. Imagine that we 

can see such a flow. Then there are some interesting things to be observed. 

We Say that the flow has a fixed point wherever the tangent vectors vanish. 

If the System starts out at a fixed point at t = 0, it stays there forever. There 

is an important distinction to be made between stable and unstable fixed 

points, If You start out a system close to an unstable fixed point it starts to 

move away From it, while in the stable case it will stay close forever. The 

stable fixed point May be an attractor, in which case a system that starts out 

close to the fixed? 

Point will start moving towards it. The region of phase space which is close 

enough for this to happen is called the basin of attraction for the attractor. 

Consider a one dimensional phase space, with the first order system 
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ࢠ̇															 =  (1.40)                                                                               (ࢠ)ࢌ

For generic choices of the function f all fixed points are either stable 

attractor, or unstable resellers, but for special choices of f we can have fixed 

a point that is approached by the flow only on one side. The latter are 

structurally Unstable, in the sense that the smallest change in f will either 

turn them into Pairs of attractors and resellers, or cause them to disappear 

altogether. 

In two dimensions there are more possibilities. We can have sources and 

Sinks, as well as stable elliptic and unstable hyperbolic fixed points, to see 

what the latter two look like, we return to the examples given in section 1.3. 

The phase space of the harmonic oscillator is R2, and it contains one elliptic 

fixed point, it is elliptic because it is surrounded by closed trajectories, and 

hence it is stable. In the case of the pendulum phase space has a non-trivial 

Topology: since one of the coordinates is a periodic angle phase space is the 

Surface of an infinitely long cylinder, it contains two fixed points. One of 

them Is elliptic, and the other—the state where the pendulum is pointing 

upwards— Is hyperbolic, what is special about the hyperbolic fixed point is 

that there Are two trajectories leading into it, and two leading out of it? The 

length of the Tangent vectors θ˙ decrease as the fixed point is approached. 

Taking the global Structure of phase space into account we see that a 

trajectory leaving the fixed Point is in fact identical to one of the incoming 

ones. Hence there are really only Two special trajectories, a striking fact 

about them is that they divide phase Space into regions with qualitatively 

different behavior, One region where The trajectories go around the elliptic 

fixed point, and two regions where the Trajectories go around the cylinder. 

For this reason the special trajectories are called separatrices, and the regions 
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into which they divide phase space are called invariant sets —by definition 

an invariant set in phase space is a region that one cannot leave by following 

the phase space flow. 

It is very important that you see how to relate this abstract discussion of the 

phase space of the pendulum to known facts about real pendulum, Do this! 

It is not by accident that the phase space of the pendulum is free of sources 

And sinks, the reason is, as we will see in section 7.1, that only elliptic or 

hyperbolic fixed points can occur in Hamiltonian mechanics. Real pendulum 

Tend to have some amount of dissipation present (because they are 

imperfectly Isolated from the environment), and then the situation changes; 

see exercise 6. Speaking of Hamiltonian systems it is worthwhile to point 

out that the Example of the two harmonic oscillators in eq. (1.35) is less 

frivolous than it 14 The Best of all Possible Worlds May appear, the phase 

space is four dimensional, but there are two conserved Quantities 

૛ࡱ૚ = ૚૛࢖ + ࣓૚
૛࢞૚૛																	૛ࡱ૛ = ૛૛࢖ + ࣓૛

૛࢞૛૛			             (1.41) 

This means that any given trajectory will be confined to a two dimensional 

Surface in phase space, labeled by E1 and E2. This surface is a torus, with 

Topology S1 × S1, in a sense to be made clear later, non-chaotic motion in a 

Hamiltonian system always takes place on a torus in phase space. 

Finally we observe that we have the beginnings of a strategy to understand 

any given dynamical system. We begin by locating the fixed points of the 

Phase space flow. Then we try to determine the nature of these fixed points. 

If the equations are linear this is straightforward. If not, we can try 
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linearization of the equations around the fixed points, there is a theorem that 

we can lean on here: 

The Hartman-Gorman theorem: The nature of the fixed points is unchanged 

by linearization, as long as the fixed points are isolated and as long as no 

Elliptic fixed points occur. Thus, consider the pendulum. You know that its 

phase space is a cylinder Described by the coordinates (θ, p_), to see if the 

phase space flow has any fixed points, you set 

ߠ̇ = ଵ
௠௟మ

ఏ݌ = ఏ̇݌													0 = −݈݃݉ ݊݅ݏ ߠ = 0                          (1.42) 

Hence there are fixed points at (θ, p_) = (0, 0) and (π, 0). Linear zing around 

them you find the former to be elliptic and the latter to be hyperbolic. If this 

remains true for the non-linear equations you can easily draw a qualitatively 

correct picture of the phase space flow. No integration is needed. Were we 

justified in assuming that the fixed points are elliptic? To see what can go 

wrong, consider the non-linear equation 

࢞̈ + ࣕ࢞૛࢞̇ + ࢞ = ૙                                              (1.43) 

In the linearised case (ǫ = 0) there is a single elliptic fixed point. In the Non-

linear system the flow will actually spiral in or out from the fixed point, 

Depending on the sign of ǫ, so this is an example where the exception to 

The Hartman-Gorman theorem is important. But in the case of the “pure” 

Pendulum we know that the non-linear system is Hamiltonian, and therefore 

Sources and sinks cannot appear—our analysis of the pendulum was 

therefore Accurate, Our tentative strategy works very well when the phase 

space is two dimensional, But if the dimension of phase space exceeds two 
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things can get very Complicated indeed, A famous example is the at first 

sight innocent looking Lorenz equations 

൝
૚ࢠ̇ = ૚ࢠࢇ− + ૛ࢠࢇ

૛ࢠ̇ = ૚ࢠ࢈ − ૛ࢠ − ૜ࢠ૚ࢠ
૜ࢠ̇ = ૜ࢠࢉ− + ૛ࢠ૚ࢠ

�                            (1.44) 

They capture some aspects of thermal convection in a fluid. Lorenz was a 

Meteorologist interested in the long term accuracy of weather prediction, but 

He found himself unable to do long term prediction even in this simple 

model. 

The non-linear terms have a dramatic effect, and the slightest change in the 

Initial data will cause the trajectory to go to completely different regions of 

the three dimensional phase space.  

ࡱ = ∫ ࢑)࢞ࢊ
૛
࢟ᇱᇱ࢟ᇱᇱ − ࢒(࢟(࢞)࢖

૙                              (1.45) 

Where the slash denotes differentiation with respect to x and k is a constant, 

the Bar will minimize its energy. Analyze the variation problem to see what 

equation determines the equilibrium position, and what conditions one must 

impose on the end of the bar in order to obtain a unique solution, Archers 

want their bows to bend like Circles. Conclude that bows must have a value 

of k that depends on x. 
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Section (1.2):- 

Lagrangian mechanics 

With the agreement that the action integral is an important object, we give a 

name also to its integrand, and call it the Lagrangian, in the examples that 

we considered so far, and in fact in most cases of interest, the Lagrangian is 

a Function of a set of n variables quid and their n first order derivatives quid: 

[(࢚)ࢗ]࢙ = ∫ ,࢏ࢗ)ࡸ࢚ࢊ (࢏̇ࢗ
࢚૛
࢚૚

		                                 (1.46) 

We use “q” to denote the coordinates because the Lagrangian formalism is 

very general, and can be applied to all sorts of systems where the 

interpretation of the variables may differ from the interpretation of “x” as the 

position of some particle. The space on which ݍ௜ are the coordinates is called 

the con- figuration space, while ̇ݍ௜ are its the tangent vectors. Its dimension 

is one half that of phase space, it is an intrinsic property of the physical 

system we are Studying, and is a very useful concept. You should try to 

think as much as Possible in terms of the configuration space itself, and not 

in terms of the Particular coordinates that we happen to use (the as), since 

the latter can be Changed by coordinate transformations, In fact one of the 

advantages of the Lagrangian formalism is that it is easy to perform 

coordinate transformations directly in the Lagrangian. We will see examples 

of this later on. Moreover there are situations—such as that of a particle 

moving on a sphere—when one needs several coordinate systems to cover 

the whole configuration space. 
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In this case one sees clearly that the important thing is the sphere itself, not 

the coordinates that are being used to describe it, which is not to say that 

Coordinates are not useful in calculations—they definitely are! 

Now we Study the scope of Lagrangian mechanics among all those functions 

 are equal to some arbitrarily Prescribed (ଶݐ)௜ݍ and (ଵݐ)௜ݍ ௜(t) for whichݍ

values, the action functional has extremism for precisely those functions 

quid (t) which obey the Euler-Lagrange equations 

డ௅
డ௤೔

− ௗ
ௗ௧
ቀ డ௅
డ௤̇೔
ቁ = 0                                 (1.47) 

Provided such functions exist. This is straightforward to verify by means of 

The calculus of variations; indeed (suppressing indices) 

࢙ࣔ = ∫ ࢚ࢊ ቀࣔࢗ ࡸࣔ
ࢗࣔ
+ ̇ࢗࣔ ࡸࣔ

̇ࢗࣔ
ቁ = ∫ ࢚ࢗࣔࢊ ቀࣔࡸ

ࢗࣔ
− ࢊ

࢚ࢊ
ࡸࣔ
̇ࢗࣔ
ቁ + ࢊ

࢚ࢊ
ࢗࣔ) ࡸࣔ

̇ࢗࣔ
)࢚૛

࢚૚
࢚૛
࢚૚

    (1.48) 

The total derivative term gives rise to a boundary term that vanishes because 

We are only varying the functions whose values at t1 and t2 are kept fixed, 

so that ݍߜ  is zero at the boundary. The Euler-Lagrange equations follow as 

advertized. 

The question is to what extent the equations of motion that actually Occur in 

physics are of this form. 

There are some that cannot be brought to this form by any means, including 

some of considerable physical interest; most of them involve dissipation of 

Energy of some sort, the archetypical example is that of white elephant 
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sliding down a hillside covered with flowers, and is described by the 

equation of motion 

ݔ̈݉ = ݃ −  (1.49)                                   ݔ̇ߛ

Due to the form of its right hand side this equation cannot be derived from a 

Lagrangian, However, in some sense the frictional force involved here is Not 

a fundamental force. A complete description of the motion of the elephant 

Would involve the motion of the atoms in the elephant and in the flowers, 

Both being “heated” by friction, it is believed that all complete, fundamental 

Equations are derivable from Hamilton’s principle, and hence that they fall 

within the scope of Lagrangian mechanics (or quantum mechanics, which is 

structurally similar in this regard). 

Generally speaking we expect Lagrangian mechanics to be applicable 

whenever there is no dissipation of energy. For many simple mechanical 

systems the Lagrangian equals the difference between the kinetic and the 

potential energy, 

,࢞)ࡸ ࢞̇) =T(x ̇)-V(x)                                            (1.50) 

For instance, 

ࡸ = ૛̇࢞࢓

૛
− (࢞)ࢂ ⟹ ૙ = ࡸࣔ

ࣔ࢞
− ࢊ

࢚ࢊ
ࡸࣔ
ࣔ࢞̇
= ࢂࣔ

ࣔ࢞
 (1.51)                   ̈࢞࢓−

Even in some situations where there is no conservation of energy, analytical 

Mechanics applies. The simplest examples involve Lagrangians which 

depend explicitly on the time t. Dissipation is not involved because we keep 

careful track of the way that energy is entering or leaving the system.  
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Now for an example where the Lagrangian formalism is useful.  Suppose we 

Wish to describe a free particle in spherical polar coordinates 

࢞ = ࢘ ࢙࢕ࢉ ∅ ࢟														ࣂ࢔࢏࢙ = ࢘ ∅࢔࢏࢙ ࢔࢏࢙ ࣂ ࢠ												 = ࢘ ࢙࢕ࢉ  (1.52)           ࣂ

That is to say, we wish to derive the equations for	̈ݎ, ,ߠ̈ ܽ݊݀	∅̈. This requires 

a certain amount of calculation. The amount shrinks if we perform the 

change of variables directly in the Lagrangian: 

ࡸ = ࢓
૛
(࢞̇૛ + ࢟̇૛ + (૛ࢠ̇ = ࢓

૛
൫࢘̇૛ + ࢘૛̇ࣂ૛ + ࢘૛࢙࢔࢏૛ࣂ∅̇૛൯           (1.53) 

Then we obtain the answer as the Euler-Lagrange equations from this 

Lagrangian. 

(Do the calculation both ways, and see!) This is often the simplest way to 

perform a coordinate transformation even if the Lagrangian is not Known, so 

that one first has to spend some time in deriving it, A famous example for 

which ܮ ≠ ܶ − ܸis that of an electrically charged Particle moving in an 

external electromagnetic field, this example is so important That we will 

give it in some detail, First of all, “external” signifies that We are dealing 

with an approximation, in which we ignore that, the presence of The 

electrically charged particle will affect the electromagnetic field in which it 

Moves, in many situations, this is an excellent approximation. The equations 

Of motion to be derived are the Lorentz equations 

࢏̈࢞࢓             = ,࢞)࢏ࡱ൫ࢋ ࢚) + ,࢞)࢑࡮࢐࢑࢞̇࢐࢏ࣕ ࢚)൯                              (1.54) 
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The epsilon tensor occurring here may be unfamiliar .For the moment let me 

just say that the second term on the right hand side means. The cross product 

of the velocity and the magnetic field, with this hint you Should be able to 

follow the argument at least in outline, so we proceed, this Example is 

trickier than the previous ones, since the force depends not only. On the 

position but also on the velocity of the particle (as well as explicitly on 

Time, but this is no big deal). It turns out that in order to derive the Lorentz 

equation from a Lagrangian , we need not only one but four potentials, as 

Follows: 

,࢞)࢏ࡱ ࢚) = ,࢞)∅࢏ࣔ− ࢚) − ,࢞)࢏࡭࢚ࣔ ,࢞)࢏࡮			(࢚ ࢚) = ,࢞)࢑࡭࢐࢑ࣔ࢐࢏ࣕ ࢚)    (1.55) 

Here φ is known as the scalar potential and Ai as the vector potential. It is 

possible to show that the Following action yields the Lorentz equation when 

varied with respect to x: 

࢙[࢞(࢚)] = ̇࢞࢓)࢚ࢊ∫
૛

૛
+ ,࢞)࢏࡭࢏̇࢞ࢋ ࢚) − ,࢞)∅ࢋ ࢚))                                (1.56) 

Please verify this! If we consider a time independent electric field with no 

magnetic field Present, the Lorentz equation reduces to the more familiar 

form 

࢏̈࢞࢓ =  (1.57)                               (࢞)∅࢏ࣔࢋ−

This has the same form as Newton’s Law of Gravity, if the potential is 

specified Correctly, The reason why the full Lorentz equation is much more 

complicated Has to do with the special relativity theory, the magnetic field is 

a relativistic Effect, The relativistic version of Newton’s law of gravity is yet 

more complicated, And is given by Einstein’s general relativity theory, 
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An important difference between gravity and electricity, also in the no 

relativistic Case, is that particles couple to gravity through the mass, and all 

Particles have mass while only some have electric charge. Moreover the 

mass Serving as “charge” for gravitational forces is the same as the mass 

occurring On the left hand side of Newton’s equations, Now we illustrate 

constrained systems There is a delightful trick, due to Lagrange, which 

illustrates the suppleness of Variation calculus very nicely, the type of 

problem to be considered is this: A Particle is moving in space but, one way 

or another; it is constrained to move on A two dimensional surface, The 

Lagrangian formalism is well suited to derive Equations of motion 

consistent with this requirement, for definiteness, let the Surface be a sphere 

defined by the equation 

࢞૛૚࢞૛૛࢞૛૜ = ૚                                              (1.58) 

The first idea that springs to mind is that one should solve this for 

 			࢞૜ = ࢞૜(࢞૚, ࢞૛) = ±ඥ૚ − ࢞૚૛ − ࢞૛૛                                         (1.59) 

And insert the result back into the action that describes the free particle, i.e. 

,ଵݔ]ݏ				 [ଶݔ = ∫ ௠ଶݐ݀ ଵݔ̇)
ଶ + ଶଶݔ̇ + ,ଵݔ)ଷଶݔ̇  ଶ)ଶ)                    (1.60)ݔ

This can be done, and will indeed result in a set of Euler-Lagrange equations 

describing a particle confined to the surface of a sphere, but there are 

drawbacks. 

From eq. (1.60) it appears at first sight as if the configuration space is the 

unit disk in the plane, since x1 and x2 are not allowed to take values? 
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Outside this disk, at second sight it appears that the configuration space is 

two copies of the unit disk, since there are two branches of the square root. 

But the true configurations space is a sphere. What we see is a reflection of 

the known fact that it is impossible to cover a sphere with a single 

coordinate System—our equations have only a “local” validity. This is in a 

way an Unavoidable problem, but the procedure contains some arbitrariness, 

and it is rather clumsy. 

A better way is to transform to polar coordinates, after which the constraint 

Will inform us to keep the value of r fixed, But this procedure has some of 

the Same drawbacks, and moreover such a “natural” coordinate system 

exists only In very special cases (such as the sphere), while we are heading 

for the general problem: Consider a Lagrangian L0 defined on an n 

dimensional configuration Space, with coordinates q1, an, and suppose that 

the system is confined to Live in the (n − m) dimensional sub manifold 

defined by the m conditions 

,૚ࢗ)ࡵࢶ … , (૛ࢗ = ૙										૚ ≤ ࡵ ≤  (1.61)                                  ࢓

Derive equations of motion consistent with this requirement. One way to do 

this is to solve for m of the as, q1, am say, by means of the m conditions 

(1.61), and insert the result in the action. In general this will be a lot of hard 

work, and the difficulties we had with coordinatizing the sphere will recur 

with a vengeance, the method of Lagrange multipliers is more convenient. It 

does not avoid the difficulties with coordinatizing, but postpones them to a 

later stage. The claim that we will verify is that the following action is 

equivalent to the previous One: 

,ࢗ]࢙ [࡭ = ,ࢗ)૙ࡸ࢚ࢊ∫ (̇ࢗ + (ࢗ)૚ࢶ૚࡭ + ⋯+  (1.62)                      (ࢗ)࢓ࢶ࢓࡭
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The _s are the Lagrange multipliers, to be treated as new dynamical 

variables. 

When the action (1.61) is varied with respect to the _s we obtain the 

constraints (1.60) as equations of motion, When we vary with respect to the 

as the Resulting equations will contain the otherwise undetermined Lagrange 

multipliers, and it not obvious that these equations have anything to do with 

the Problem we wanted to consider. But they do. Consider the analogous 

problem Encountered in trying to find the extreme of an ordinary function f 

(q) of the N variables q, subject to the m conditions _ (q) = 0. (Remember 

suppression of indices) First suppose that we use the constraints to solve for 

m of the as— It will not matter which ones—and call them y, leaving n − m 

independent Variables x, the extreme of f (q) may be found through the 

equations 

0 = ߲݂ = ௫߲௫݂ߜ +  ௬߲௬݂                                         (1.63)ߜ

Where, however, the variations ݕߜ	are not independent variations, but have 

to be consistent with the constraints. In fact they are linear function of the 

axes, given by the conditions 

0 = ߔߜ = ߔ௫߲ݔߜ +  (1.64)                                                        	ߔ௬߲ݕߜ

This equation has to be solved for ݕߜ and the result inserted into eq. (1.63), 

Which is therefore really an expression of the form? ݂ݔ߲)ݔߜ	 +

(݁ݏ݈݁	ℎ݅݊݃ݐ݁݉݋ݏ = 0. It does not imply ߲݂݅	 = 	0.	

Since δ_ = 0 for the variations we consider, nothing prevents us from 

rewriting eq. (1.63) in the form 
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૙ = ࢌࢾ = ࢌࢾ + ࢶࢾ࡭ = ࢌ࢞ࣔ)࢞ࢾ + (ࢶ࢞ࣔ࡭ + ࢌ࢟ࣔ)࢟ࢾ +               (ࢶ࢟ࣔ࡭

(1.65) 

Where the _s are arbitrary functions, the yes are still given in terms of the 

axes, So it would seem at first sight that we cannot conclude that ∂if + _∂x_ 

= 0, But and here comes the punch line—in fact we can, provided we choose 

the So far arbitrary functions _ in such a way that ∂if + _∂y_ = 0. Since the 

Division of the as into as and yes was arbitrary, we see that the “restricted” 

way Of finding the extreme—making variations consistent with the 

constraints—is Equivalent to solving the n + m equations 

(ݍ)ߔ = 0																߲௤݂ + ߔ௤߲ܣ = 0                                    (1.66) 

For q and, But these are precisely the equations that we obtain from the 

Lagrange Multiplier method, in which we do not care about the constraints 

while Varying the action! In all fairness though, we have not solved the 

equations, we have just derived them in a convenient way. 

As long as the constraints depend only on q (and not on q˙) it is 

straightforward to generalize the argument from functions to functional. 

From the Action 

,ࢗ]࢙ [࡭ = ࢙૙[ࢗ] +  (1.67)                 (ࢗ)ࢶ࡭࢚ࢊ∫

We redeliver the constraints, together with the equations of motion 

డௌ
డ௤
= డௌబ

డ௤
+ ߔ௤߲ܣ = 0                    (1.68) 

This is the analogue of the second equation (1.66). 
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The generalization from functions to functional is not straightforward in all 

Cases: the Lagrange multiplier method works only and for homonymic 

constraint, that is constraints that involve the configuration space variables 

only. But consider a ball moving without friction across a plane. The 

configuration space Have five dimensions: the position (x, y) of the center of 

mass, and three angular coordinates describing the orientation of the ball, 

now suppose instead that the ball rolls without slipping. If we are given the 

position of the center of Mass as a function of time then the motion of the 

ball is fully determined, Which suggests that x and y are the “true” degrees 

of freedom, and that the Constrained configuration space is two dimensional. 

But the situation is more complicated than that (and cannot be described by 

homonymic constraints). It is impossible to solve for the angular coordinates 

in terms of x and y. Indeed From our experience with such things we know 

that the orientation of the Ball at a given point depends on how it got there. 

Mathematically there is a Constraint relating the velocity of the center of 

mass to the angular velocity; the Ball spins in a way determined by the 

motion of its center of mass. Constraints that cannot be expressed as 

conditions on the configuration space are called a homonymic; we take the 

simple way out and restrict ourselves to homonymic Constraints only, 

We do a simple example in detail. We choose a free particle in three 

dimensions, with the unconstrained Lagrangian 

ࡸ = ࢓
૛
(࢞̇૛ + ࢟̇૛ −  ૛)                                                           (1.69)ࢠ̇
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The minus sign here is unusual, indeed in its unconstrained form this 

Lagrangian is pathological. (Why?) We constrain the particle to the 

hyperboloid 

࢞૛ + ૛ࢅ − ૛ࢆ = −૚,							ࢆ > ૙	                                    (1.70) 

There are two physical degrees of freedom. One way, among many, to see 

This is to observe that any point on the hyperboloid can be described by the 

Coordinates r and φ, where 

ࢄ = ࢎ࢔࢏࢙ ࢘ ࢙࢕ࢉ ࢅ								∅ = ࢘ࢎ࢔࢏࢙ ࢔࢏࢙ ࢆ												∅ = ࢎ࢙࢕ࢉ ࢘                 (1.71) 

You can convince yourself that there is a one-to-one correspondence 

between the pairs (r, φ) and the points (X, Y, Z) on the hyperboloid. 

Actually this is an exceptional situation: it is often impossible to find a set of 

coordinates that cover the entire constraint surface. If we use Esq. (2.26) in 

the Lagrangian we obtain 

ࡸ = ࢓
૛
(࢘̇૛ +  ૛࢘∅̇૛)                                                  (1.72)ࢎ࢔࢏࢙

The Lagrangian is equal to the kinetic energy T of the particle. It can be 

Checked that it is a conserved quantity, here we see an advantage with using 

The physical degrees of freedom only, because it is now evident that the 

kinetic Energy is bounded from below, a physically important property that 

was not at all obvious in the original Lagrangian. 

The advantages of the Lagrange multiplier method make themselves felt 

when we look for further constants of the motion, from 
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ܮ = ௠
ଶ
ଶݔ̇) + ଶݕ̇ − (ଶݖ̇ + ଶݔ)ܣ + ଶݕ + ଶݖ + 1)                      (1.73) 

We get the equations of motion 

ࢄ̈࢓ = ૛ࢄ࡭							̈࢟࢓ = ૛ࢅ࡭					ࢆ̈࢓ = ૛(1.74)                                   ࢆ࡭ 

It is then evident that we have three constants of the motion 

࢞ࡶ = ࢅ̇ࢆ − ࢟ࡶ					ࢆ̇ࢅ = ࢄࢆ − ̇ࢆ̇ࢄ ࢠࡶ						 = ࢅ̇ࢄ − ̇	ࢄࢅ                     (1.75) 

Using Esq. (2.26) we can express these constants of the motion 

ቐ
࢞ࡶ = ࢘̇ ࢔࢏࢙ ∅ + ࢎ࢙࢕ࢉ∅ ࢘ ࢘ࢎ࢔࢏࢙ ࢙࢕ࢉ ∅
࢟ࡶ = ࢘̇ ࢙࢕ࢉ ∅ − ࢎ࢙࢕ࢉ∅ ࢘ ࢘ࢎ࢔࢏࢙ ࢔࢏࢙ ∅

ࢠࡶ = ૛࢘ࢎ࢔࢏࢙∅
�                              (1.76) 

It is possible to check directly, using the equations of motion for r and φ, 

that these are constants of the motion—but only JZ is “obviously” 

conserved. The Coordinate system (r, φ) somehow “hides” the others. By the 

way, the kinetic Energy can be expressed as 

ࢀ = ࢓
૛
૛࢞ࡶ) + ૛࢟ࡶ +  ૛)                            (1.77)ࢠࡶ

This example gives a little bit of the flavor of constrained systems. It is not 

Taken quite out of the blue, since it describes motion of a particle on a 

surface with constant negative curvature, as opposed to a sphere which has 

constant Positive curvature, but this is by the way. 
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Now we discuss Symmetries. Let us return to Newton’s Third Law. It 

amounts to a restriction on the kind of forces that are allowed in the second 

law, and implies that there exist a Set of constants of the motion, namely the 

moment. (The terminology is a Little unfortunate, since we will soon 

introduce something called “canonical Moment”, they are indeed identical 

with the conserved moment in simple Cases, but logically there need be no 

connection.) Constants of the motion are useful when trying to solve the 

equations of motion, and Emmy Nether Proved a theorem explaining when 

and why they exist. We present the proof for a Lagrangian of the general 

form L = L (q, q˙), and afterwards we discuss a Simple example, Let us say 

at the outset that the argument is quite subtle. 

Consider first an arbitrary variation of the action. According to eq. (2.3) the 

result is 

ࡿࢾ = ∫ ࢗࢾ ቀࣔ࢒
ࢗࣔ
− ࢊ

࢚ࢊ
ࡸࣔ
̇ࢗࣔ
ቁ +࢚૛

࢚૚
ࢗࢾ] ࢒ࣔ

̇ࢗࣔ
]
࢚૛
࢚૚

                          (1.80) 

In deriving the equations of motion the variations δq (t) were restricted in 

such a way that the boundary terms vanish. This time we do something 

different. 

The variations are left unrestricted, but we assume that the function q (t) that 

we vary around obeys the Euler-Lagrange equations. Then the only no 

vanishing Term is the boundary term, and 

ݏߜ = ߳൫ܳ(ݐଵ) − ,൯(ଶݐ)ܳ (ݐ)ܳ߳ ≡ ݍߜ డ௅
డ௤
							                    (1.81) 

Here and in the following ǫ is the constant occurring inݍߜ	 = 	݂߳, where f is 

an Arbitrary function of t, the point is to ensure that there is nothing 
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infinitesimal About Q, So far nothing has been assumed about the variations. 

Now suppose that, for the given Lagrangian, there exists a set of variations 

δq of some specified Form 

	ݍߜ = ,ݍ)ݍߜ	  (1.82)   																						,	(˙ݍ

Such that for these special variations 

	ܵߜ = 	0 .                                                   (1.83) 

It is understood that the Lagrangian is such that eq. (1.83) holds as an 

identity, Regardless of the choice of (ݐ)ݍ, for the special variationsݍߜ. (Note 

that, given a Lagrange an, it is not always the case that such variations exist. 

But sometimes they do.) 

Next comes the crux of the argument. Consider variations of the particular 

kind that makes eq. (1.83) hold as an identity—so that ݍߜ	 = 	݂߳ is a known 

Function—and restrict attention to q (t) s that obeys the equations of motion. 

With both these restrictions in force, we can combine Esq. (1.83) and (1.81) 

to conclude that 

0	 = 	ܵߜ	 = 	ǫ	(ܳ(ݐଶ) 	−  (1.84)                                 .	((ଵݐ)ܳ	

The times t1 and t2 are arbitrary, and therefore we can conclude that ܳ	 =	

,ݍ)	ܳ  .A constant of the motion ݏ݅	(˙ݍ

What this theorem does for us is to transform the problem of looking for 

Constants of the motion to the problem of looking for variations under 

which the variation of the action is identically zero. Before we turn to 
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examples we generalize the argument slightly, and state the theorem 

properly. Thus, suppose that there exists a special form of ݍߜ, such that 

ܵߜ = ∫ 	ݐ݀ ௗ
ௗ௧

௧మ
௧భ

,ݍ)߉  (1.85)                                     (ݍ̇

Here ߉ can be any function—the important and unusual thing is that the 

Integrand is a total time derivative. Then the quantity Q, defined by 

,ݍ)ܳ߳ (ݍ̇ = ௜ݍߜ
డ௅
డ௤೔

− ,ݍ)߉  (1.86)                     (ݍ̇

Is a constant of the motion? This is easy to see along the lines we followed 

Above, The theorem can now be stated as follows: 

No ether’s theorem: To any variation for which as takes the form (2.38), 

there Corresponds a constant of the motion given by eq. (1.86), we will have 

to investigate whether Lagrangians can be found for which such variations 

exist, otherwise the theorem is empty. Fortunately it is by no means empty, 

indeed eventually we will see that all useful constants of the motion Arise in 

this way. 

For now, one example—but one that has much symmetry—will have to 

suffice. Consider a free particle described by 

ܮ = ௠
ଶ
 ௜                                (1.87)ݔ௜̇ݔ̇

Since only x˙ appears in the Lagrangian, we can choose 

	݅ݔߜ = 	 ߳௜          (1.88) 
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Where߳௜ is independent of time. Then the variation of the action is 

automatically Zero, No ether’s theorem applies, and we obtain a vector’s 

worth of Conserved charges 

௜݌ =
డ௅
డ௫̇೔

=  ௜                    (1.89)ݔ̇݉

We use the letter P rather than Q because this is the familiar conserved 

Momentum vector whose presence is postulated in Newton’s Third Law. 

Another set of three conserved charges can be found easily, since 

	݅ݔߜ = 	ǫ݆݅݇ǫ݆݇ݔ	 ⇒ 	ܵߜ	 = 	0	.    (1.90) 

Here if is again independent of t, and ink is the totally anti-symmetric 

epsilon Tensor, No ether’s theorem now implies the existence of another 

conserved Vector, namely 

	݅ܮ = 	ǫ݆݅݇˙ݔ݆ݔ	݇	(1.91)                                                                

This is the angular momentum vector. 

We know that there is at least one more conserved quantity, namely the 

Kinetic energy, actually there are several, but the story now becomes a bit 

more complicated because we have to deal with variations for which the 

variation of the Lagrangian is a total derivative, rather than zero. Thus 

௜ݔߜ = ௜ݔ̇߳ ⟹ ܵߜ = ݐ݀∫ ௗ
ௗ௧
(ఢ௠
ଶ
 ଶ)             (1.92)ݔ̇

Using eq. (1.91) we obtain the constant of the motion 

ࡱ = ࢓
૛
 (1.93)                                    ࢏̇࢞࢏̇࢞
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This is the conserved energy of the particle. There is yet another conserved 

Quantity that differs from the others in being an explicit function of time—

but its total time derivative vanishes since it also depends on the time 

dependent Dynamical variables, thus 

௜ݔߜ = −߳௜ݐ ⟹ ܵߜ = ݐ݀∫ ௗ
ௗ௧

(−݉߳௜ݔ௜)         (1.94) 

Give the conserved charge 

ܳ௜ 	= ௜ݔ݉	 	− ௜ݔ̇݉ݐ	 	,                                            (1.95) 

And it is easy to check that its total time derivative vanishes as a 

consequence Of the equations of motion, our analysis of the free particle 

ends here, but us Will return to it in a moment, to show that the conserved 

quantities have a Clear physical meaning. To see this, select a solution q (t) 

of the equations of motion. We know that this gives an extremum of the 

action. Then consider (ݐ)′ݍ 	= (ݐ)ݍ	 	+  where the variation is of the	,(ݐ)ݍߜ	

special kind that leaves the value of the action unchanged. Obviously then 

[(ݐ)′ݍ]ܵ 	=  so that the extremum is not an isolated point in the ,[(ݐ)ݍ]ܵ	

space Of allݏݍ, but rather occurs for a set of ݏݍ that can be reached from 

each other By means of iteration of the special variation (ݐ)ݍߜ, In other 

words, given a Particular solution of the equations of motion, we can get a 

whole set of new Solutions if we apply the special variation, without going 

through the work of Solving the equations of motion again, this leads to an 

important definition: 

A symmetry transformation is any transformation of the space of functions 
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q (T) having the property that it maps solutions of the equations of motion to 

other solutions, this is not a property of the individual solutions, but of the 

set of all solutions. The special variations occurring in the statement of No 

ether’s theorem are Examples of symmetry transformations, given the 

converse of the statement That we proved (which is also true), namely that 

any constant of the motion Gives rise to a special variation of the kind 

considered by Nether, we observe That any constant of the motion arises 

because of the presence of symmetry, Let us interpret the symmetry 

transformations that we found for the free Particle, beginning with eq. 

(1.95), this is clearly a translation in space. Therefore Momentum 

conservation is a consequence of translation invariance. It is Immediate that 

we can iterate the infinitesimal translations used in No ether’s Theorem to 

obtain finite translations and the statement is that given a solution To the 

equations of motion all trajectories that can be obtained by translating This 

solution is solutions, too. To be definite, given that (vat, 0, 0) is a solution 

for constant ݒ, (ܽ + ,ݐݒ ܾ, ܿ)	is a solution too, for all real values of (a, b, c). 

Translation invariance acquires more content when used in the fashion of 

Newton’s Third law, which we can restate as “the action for a set of particles 

has Translation symmetry”, for free particles this is automatic. When 

interactions between two particles are added, the law becomes a restriction 

on the kind of Potentials that is admitted in 

ܮ = ௠మ

ଶ
ଵଶݔ̇ +

௠మ

ଶ
ଶଶݔ̇ − ,ଵݔ)ܸ  ଶ)             (1.96)ݔ

Indeed invariance under (1.95) requires that V (ݔଵ,ݔଶ) = V (ݔଵ −  ଶ), whichݔ

is a strong restriction, expresses the fact that the Lagrangian has rotation 
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symmetry, While, is an infinitesimal translation in time: Given a solution 

 the function,(ݐ)	ݔ

(ݐ)ݔ́ = ݐ)ݔ + (଴ݐ = (ݐ)ݔ + (ݐ)ݔ଴̇ݐ +  (1.97)      (଴ଶݐ)݋

Is a solution too, so we can make the elegant summary that conservation of 

Momentum, angular momentum and energy are consequences of symmetries 

Under translations and rotations in space, together with translations in time, 

Eq. (1.97) expresses invariance under “boosts”, since it changes all 

velocities By a constant amount, the free particle is exceptional because we 

can reach Any solution by a symmetry transformation, starting from any 

given solution, Having said all this, it is not true that every symmetry gives 

rise to a Constant of the motion, discrete symmetries like reflections, that 

does not arise By iterating an infinitesimal symmetry, To sum up, 

symmetries are important from two quite different points of View, given the 

equations they facilitate the search for solutions, but they Also facilitate the 

search for the correct equations (if we believe that they Should exhibit 

certain symmetry), No ether’s theorem is a tool for discovering Symmetries, 

as well as for deducing their corresponding 
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Chapter 2 

Conic sections and central force two body problems 

Section (2.1): Conic sections 

The theory of conic sections was one of the crowning achievements of the 

Greeks, Their results will be important in the gravitational two body 

problem, But the theory is no longer as well known as it deserves to be, so 

here is a brief Account, By definition a conic section is the intersection of a 

circular cone with a plane, the straight lines running through the apex of the 

cone are called Its generators and we will consider a cone that extends in 

both directions From its apex,  It is the set of one dimensional subspace in a 

three dimensional vector space,  Generically, a plane will intersect the cone 

in such a Way that every generator crosses the plane once, or in such a way 

that exactly Two of the generators miss the plane. Apollonius proved that the 

intersection is an ellipse in the first case and a hyperbola in the second, there 

is a borderline Case when exactly one generator is missing. Then the 

intersection is a parabola. This is all very easy if we use the machinery of 

analytic geometry. For Simplicity, choose a cone with circular base, 

symmetry axis orthogonal to the Base and opening angle 90 degrees. It 

consists of all points obeying 

ଶݔ ଶݕ	+ 	− ଶݖ	 	= 	0	.                         (2.1) 

 Without loss of generality, the plane can be described by 

	ݔܿ + 	ݖ	 = 	݀ .                                     (2.2) 
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Inserting the solution for z in the equation it is easy to see that the 

intersection is either an ellipse, a hyperbola, or a parabola—provided you 

recognize their Equations, as I assume. The section is a circle if c = 0 and a 

parabola if c = ±1. 

It is an interesting exercise to prove this in the style of Apollonius. Let the 

Cone have arbitrary opening angle. Take the case when the plane intersects 

Every generator once, let us says in the upper half of the cone. Place two 

Spheres inside the cone, one above and one below the cone, and let them 

grow Until each touches the plane in a point and the cone in a circle, this 

clearly Defines the spheres uniquely, Denote the points by F1 and F2, and 

the circles By C1 and C2, Now consider a point P in the intersection of the 

cone and The plane, the generator passing through P intersects the circles C1 

and C2 In the points Q1 and Q2, Now the trick is to prove that the distance 

PF1 Interlude: Conic sections 31 

Equals the distance PQ1, and similarly the distance PF2 equals the distance 

PQ2. This is true because the distances measure the lengths of two tangents 

to the sphere, meeting at the same point, it then follows that the sum of the 

Distances PF1 and PF2 is constant and equal to the length of the segment of 

The generator between the circles ܥଵ and	ܥଶ, independently of which point P 

On the intersection we choose, this property defines the ellipse. This is the 

Proof that the intersection between the cone and the plane is an ellipse with 

its foci at ܨଵ andܨଶ, if you are unable to see this, consult an old fashioned 

Geometry book, for our purposes it is convenient to define the ellipse 

somewhat differently. 
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An ellipse of eccentricity e < 1 can be defined as the set of points whose 

Distance from a given point, called a focus, is e times the distance to a 

straight Line, called a directory, for the circle e = 0, and the directory is at 

infinity. 

The lotus rectum of an ellipse is a chord through the focus parallel to the 

Directory, and has length 2p. Now place the origin of a coordinate system at 

that focuses, with the x-axis pointing towards the directory. The distance of 

a Point on the ellipse to the focus is 

	ݎ = (ݔ݅ݎݐܿ݁ݎ݅݀	ℎ݁ݐ	݋ݐ	݁ܿ݊ܽݐݏ݅݀)݁	 = 	݁ ቀ௣
௘
− 	ቁ           (2.3)ݔ

(To see this, note that the distance from the focus to the directory is P/E.) 

Otherwise expressed 

r = p − err coos φ ⇔		௣
௥
		= 1 + e coos φ,            (2.4) 

Where φ = 0 gives the point closest to the directory. For a general point on 

the Ellipse we find 

ଶݔ 	+ ଶݕ	 	= 	 ଶݎ 	= 	 ݌) − ଶ(ݔ݁ 	⇔ (௫ା௘௔)
௔మ

ଶ
+ ௬మ

௕మ
= 1           (2.5) 

Where 

A ≡ ௣
ଵି௘మ

													ܾଶ = 1)ܽ݌ − ݁ଶ)ܽଶ                               (2.6) 

The major axis of the ellipse is 2a, and the minor axis is 2b. Finally the 

Distance between the center and the focus equals ea. To see this we set φ = 0 

And φ = π in eq. (3.4), and calculate 
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௥(గ)ି௥(଴)
ଶ

= ௣
ଶ
ቀ ଵ
ଵି௘

− ଵ
ଵା௘

ቁ = ݁ܽ                                 (2.7) 

For some further information consult exercise 1. 

Similar treatments can be given for the hyperbola, for which e > 1, and for 

the parabola, for which e = 1. 

In our study of the two-body problem we will find it interesting to relate an 

ellipse centered at a focus to an ellipse centered at the origin. The latter is 

described in Cartesian coordinates by the complex trajectory 

(ݐ)ݓ 	= 	ݐ	ݏ݋ܿ	ܽ	 +  (2.8)               . ݐ	݊݅ݏ	ܾ݅	

The parameter t must not be confused with the angle between the radiuses 

Vector and the x-axis, surprisingly; if we square this ellipse we obtain an 

ellipse Centered at the origin: 

(࢚)ࢆ = ૛ࢃ = ૛࢈૛ାࢇ

૛
࢙࢕ࢉ ૛࢚ + ࢈ࢇ࢏ ૛࢚࢔࢏࢙ + ૛࢈૛ିࢇ

૛
≡ ࢙࢕ࢉ࡭ ૛࢚ +

࡮࢏ ૛࢚࢔࢏࢙ +  (2.9) 	࡭ࡱ

Where 

	࡭ࡱ = ૛࡭√	  ૛                          (2.10)࡮−

E is the eccentricity of an ellipse with semi-major axis A and semi-minor 

axis B, and consequently EA is the distance between its focus and its 

center. This is again an ellipse, but centered at one of its foci and 

traversed twice as the Original ellipse is traversed once. This trick was 

introduced by Karl Bohlen, working at the Pullover observatory In 

Russia in 1911, His point was that the transformation w = √Z is not 
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Analytic at the origin, this enabled him to deal with collisions between 

points Particles thought of as limiting cases of elliptical orbits whose 

eccentricity Approaches 1, at the collision the particle presumably 

reverse its direction, But this is a rather singular occurrence. In terms 

of the variable w it is an Unromantic event. 
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Section (2.2): The central force two-body problem  

Johannes Keller spent his life pondering the observations of the solar 

system Made by Tyco Brahe, and found that the motion of the planets 

around the Sun follows three simple rules: 

1. A planet moves along an ellipse with the sun in one of the foci. 

2. The radius vector covers equal areas in equal times. 

3. The square of the period of all the planets is proportional to the 

cube of their major axes. 

To appreciate Keller’s work fully, note that there are important facts 

about 

The solar system (such as what the distances are) that do not follow 

simple 

Rules, Moreover the observational data gave the planetary orbits 

projected on A sphere centered at a point which itself moves along an 

ellipse around the Sun, so it was not obvious that they admitted of a 

simple description at all. Newton derived Keller’s laws from his own 

Laws, with the additional assumption That the force between the 

planets and the sun is directed along The radius vector (the force is 

central) and is inversely proportional to the Square of the distance, this 

remains the number one success story of physics, So we should be clear 

about why this is so. Naively Keller’s laws may seem Simpler than 

Newton’s, but this is not so, for at least two reasons. One is that 

Newton’s laws unify a large body of phenomena, from the motion of 

planets To the falling of stones close to the Earth, The other reason is 
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that improved Observations reveal that Keller’s laws are not quite 

exact, and the corrections Can be worked out mathematically from 

Newton’s laws, For Mercury (which is hard to observe) the eccentricity 

e = 0.21, for the Earth e = 0.02, and for Mars e = 0.09. Keller’s main 

concern was with Mars. If e = 0 the ellipse becomes a circle. Unbound 

motion through the solar system is described by hyperbolas with e > 1, 

but Keller did not know this. 

Now we Study the problem and its formal solution. We want to derive 

Keller’s laws. As an approximation we assume that it suffices to treat 

the planets independently of each other, moreover we asset that the 

precise shapes of the sun and the planets are unimportant and that they 

can be approximated as being point like. (In the Principia, Newton 

proved from properties of the inverse square law that this 

approximation is exact for Spherical bodies) Later on, we can go back 

to these assumptions and see if we can relax them—this will give the 

corrections referred to above. So we have decided that the configuration 

space of our problem has six Dimensions, spanned by the positions of the 

sun (X) and one planet (up), and we try the Lagrangian 

ܮ = ௠
ଶ
ܺ̇௜ܺ̇௜ +

௠೛

ଶ
௣೔ݔ̇ ௣೔ݔ̇ − ܸ(ܺ,  ௣)            (2.11)ݔ

Depending on the form of the function V we may have to exclude the points 

X = up from the configuration space—we insist that the function V takes 

Finite values only as a function on configuration space, anyway this will 

give six Coupled second order differential equations. In general they will not 

admit any Simple solutions, Keller’s work implies that the solutions should 
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be simple, so we try to build some symmetry into the problem. We aim for at 

least six conserved quantitative, one for each degree of freedom, since this 

should Result in a soluble problem. Conservation of momentum and energy 

is already Postulated, so we need two more, the answer is rotational 

symmetry. It is not An objection that an ellipse is not symmetric under 

rotations, all we need is That if a particular ellipse is a solution, then any 

ellipse which can be obtained From it by means of rotations is a solution too, 

even if there is no planet moving Along it due to the choice of initial 

conditions, it might seem that rotational Symmetry is overdoing it, since it 

will yield three conserved quantitative, but— For reasons fully explained by 

Hamilton-Jacobi theory—only two of these are Really useful, With 

translational and rotational symmetry in place, we find 

ܸ	(ܺ, (	ܲݔ 	= 	ܸ	(ܺ	 − (	ܲݔ	 	= 	ܸ	(|ܺ	 −  (2.12)     (|	ܲݔ	

 This works for any function V of one variable. Next we introduce 

coordinates Xi = pie−Xi which are invariant under translations, together 

with coordinates Describing the center of mass, then the center of mass 

coordinates decouple, And their equations can be solved and set aside. There 

remains a Lagrangian for a one-body problem, involving only three degrees 

of freedom: 

ܮ = ௠
ଶ
௜ଶݔ̇ −  (2.13)                                           (|ݔ|)ܸ

Here m is the reduced mass, almost equal to the mass of the planet since the 

sun is very heavy in comparison, the coordinate xi vanishes at the center of 

mass of the system, which is well inside the sun, and can be approximately 

identified? With the center of the sun, this maneuver should be familiar from 
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elementary Mechanics, I just want to emphasize that it is translational 

symmetry in action. Rotational symmetry implies the existence of a 

conserved vector 

	݅ܮ = 	݉߳௜௝௞ݔ݆̇ݔ௞ .                               (2.14) 

This vector is orthogonal to both x and x˙, which means that the motion Is 

confined to a plane orthogonal to the angular momentum vector, we are 

Down to a two dimensional configuration space, to take maximal advantage 

of Spherical symmetry we introduce spherical polar coordinates, chosen so 

that The plane containing the orbit is at θ = π/2. The Lagrangian simplifies to 

ܮ = ௠
ଶ
ଶݎ̇) + ଶ∅̇ଶݎ −  (2.15)            	(ݎ)ܸ

We have used the constant direction of the angular momentum vector. But 

Its magnitude is constant too. This happens because the Lagrangian (2.14) is 

Invariant under translations in the angle φ. Using No ether’s theorem we 

find the constant of the motion 

࢒ = ࡸࣔ
ࣔ∅̇
=  ૛∅̇                  (2.16)࢘࢓

This equation is of considerable interest in itself. It says that 

̇࡭ = ࢘૛∅̇
૛
= ૚

૛࢓
=  (2.17)                                        ࢚࢔ࢇ࢚࢙࢔࢕ࢉ

Where ˙A is the area covered by the radius vector per unit time. But this is 

Keller’s Second Law, which therefore holds for all central forces. We are on 

the right track! 
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Together with Keller’s second law, energy conservation is enough to solve 

the problem, using eq. (2.16) the conserved energy is 

ࡱ = ࢓
૛
൫࢘̇૛ + ࢘૛∅̇૛൯ + (࢘)ࢂ = ૛̇࢘࢓

૛
+ ૛࢒

૛࢘࢓૛
+ (࢘)ࢂ =                              ࢚࢙࢔࢕ࢉ

(2.18) 

This gives the formal solution 

࢚ࢊ = ࢘ࢊ

ට૛
ିࡱ)࢓

૛࢒

૛࢘࢓૛
((࢘)ࢂି

                         (2.19) 

It may or may not, depending on our choice of V (r), be possible to do the 

Integral in terms of elementary functions, but anyway this equation 

determines the function r (t), and hence solves the problem. To find φ (t) we 

combine Esq. (2.16) and (2.19), and get 

∅ࢊ = ࢚ࢊ࢒
૛࢘࢓

= ࢘ࢊ࢒

࢘૛ට૛ିࡱ)࢓ ૛࢒

૛࢘࢓૛
((࢘)ࢂି

                        (2.20) 

This equation determines φ(r (t)), and the central force problem is thereby 

Fully solved at the formal level, If we are only interested in the form of the 

Orbits, and not the time development, eq. (2.20) is all we need—it will give 

us Φ(r), and after inversion r (φ), which is the equation for the form of the 

orbit. 

Now we study the existence and stability of circular orbits. There is a special 

kind of solution that we can look for directly, with no great Expense of 

effort, namely circular orbits, from the expression (4.8) we see that the two 
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body central force problem has been reduced to one dimensional Motion in 

the effective potential 

௘ܸ௙௙(ݎ) =
௟మ

ଶ௠௥మ
+  (2.21)                     		(ݎ)ܸ

A simple case is V (r) = 0, i.e. no force at all. In the effective one 

dimensional Problem this corresponds to a repulsive Jeff—the particle 

comes in from infinity, Reaches a minimum value of r, and then disappears 

to infinity again. If we want a bound orbit the potential V (r) must be 

attractive. A circular orbit is one for which r˙ = 0 identically, which means 

that the Particle is sitting at the bottom of the effective potential—if it does 

have a Bottom, The radius r of the circular orbit must obey 

ܸ′௘௙௙(ݎ) = 0                                     (2.22) 

If this happens at a local maximum of Jeff the solution instable, and 

Unlikely to be realized in Nature, The orbit is stable under small 

perturbations If and only if 

ࢌࢌࢋ"ࢂ > ૙                                              (2.23) 

At the value of r for which V ′ 

Off = 0. 

We look into these equations for the special choice 

(ݎ)ܸ = ఈݎ݇− ⟹ ௘ܸ௙௙(ݎ) =
௟మ

ଶ௠௥మ
−  ఈ     (2.24)ݎ݇

With α arbitrary, the radius of the circular orbit is found to be 
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࢘ = (− ૛࢒

࢓࢑ࢻ
)

૚
 శ૛                                   (2.25)ࢻ

This makes sense only if l2 6= 0—a question of initial conditions—and eke 

< 0. (The case α = −2 is special.) Stability of the circular orbit requires in 

addition that 

	ߙ > 	−2 .                                          (2.26) 

There is still the question whether small departures from the circular orbit 

will give rise to ellipses, or to something more complicated. This is really a 

Question about the ratio between the times it takes for the planet to complete 

A full revolution in φ, to the time it takes to complete a full oscillation in r. 

If the orbit is an ellipse centered at a focus these times must be equal, and 

this. 

Is likely to happen only for a very special V (r), for general bounded motion 

The amount by which the perihelion processes during one period of the 

radial Motion follows from eq. (4.10). It is 

∆∅ = ૛∫ ࢘ࢊ࢒

࢘
૛ට૛࢓(ࡱషࢌࢌࢋࢂ(࢘))

࢞ࢇ࢓ࢀ
࢔࢏࢓ࢀ

                (2.27) 

For the planets, Keller’s first law requires that _φ = 2π. 

A final comment: if we do choose α = −1 we have the problem that the 

Energy is unbounded from below. We now see that this problem cannot be 

too Serious, because 

(࢘)ࢌࢌࢋࢂ =
૛࢒

૛࢘࢓૛
− ࢑

࢘
                                         (2.28) 
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Is in fact bounded from below whenever l 6= 0. The case when l = 0 is 

indeed Troublesome from a physical point of view, because then the two 

bodies will Collide, and we do not have a prescription for what is to happen 

after the Collision, The case of coinciding particles is not included in our 

configuration Space, 

Now we discuss the Keller’s First Law. What force laws are consistent with 

Keller’s First Law? Hooke’s law does give Elliptical orbits. This is most 

easily seen by transforming the Lagrangian back to Cartesian coordinates: 

ࡸ = ࢓
૛
൫࢘̇૛ + ࢘૛∅̇૛൯ − ࢑࢘૛ = ࢓

૛
(࢞̇૛ + ࢟̇૛) − ࢑(࢞૛ + ࢟૛)               (2.29) 

This is two harmonic oscillators of equal frequencies, and the corresponding 

Lissajous figures are indeed ellipses. They are not the right kind of ellipses 

However, since they are centered at the origin. Let us call them Hooke 

ellipses. They can be related to Keller ellipses (centered at a focus) by means 

Of Bohlen’s trick If 

w = a coos t + if sin t                                (2.30) 

Is a Hooke ellipse, then? 

ࢆ = ࢝૛ = ૛࢈૛ିࢇ

૛
+ ૛࢈૛ାࢇ

૛
࢙࢕ࢉ ૛࢚ + ࢈ࢇ࢏  ૛࢚                           (2.31)࢔࢏࢙

This is indeed an ellipse centered at a focus, as we saw in chapter 3. For the 

Hooke ellipse w (t) we know that the force law is 

ݓ̈ = 	ݓ−	 ⇒ 	 ଶ|ݓ̇| ଶ|ݓ|	+ 	= 	2߳                             (2.32) 
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Moreover Keller’s second law holds, so then 

|௪|మௗ∅
ௗ௧

=  (2.33)                                              ݐ݊ܽݐݏ݊݋ܿ

This relates the parameter t to the angle φ between the radius vector and the 

Major axis, the idea now is to introduce a new time τ, related to t in such a 

Way that Keller’s second law holds also for the ellipse we get when we 

square The Hooke ellipse, thus we require 

૛|ࢆ|૛ࢊ∅
࢘ࢊ

=  (2.34)                            ࢚࢔ࢇ࢚࢙࢔࢕ࢉ

A suitable choice of the two constants gives the desired relation 

࢘ࢊ
࢚ࢊ
= ૛|ࢆ|

|࢝|૛
= |࢝|૛                                (2.35) 

The rest is a simple calculation, using eq. (4.22): 

ࢆ૛ࢊ
૛࢘ࢊ

= ૚
|࢝|૛

ࢊ
࢚ࢊ
ቀ ૚
|࢝|૛

૛࢝ࢊ

࢚ࢊ
ቁ = ૛

|࢝|૛
ࢊ
࢚ࢊ
ቀ࢝̇
ഥ࢝
ቁ = ⋯ = −૝ࣕ ࢆ

૜|ࢆ|
              (2.36) 

Where ǫ is the constant energy of the Hooke ellipse, but this is precisely 

Newton’s Force law for gravity. So we conclude that Keller’s First and 

Second Laws Together imply the inverse square law, with the potential 

(࢘)ࢂ = − ࢑
࢘
                                                    (2.37) 

There is no other solution. The argument is water tight because every Keller 

Ellipse can be obtained from a Hooke ellipse using Bohlen’s trick, and a 

Hooke Ellipse arises only in the harmonic oscillator potential. 

To confirm our conclusion, let us go back to eq. (2.20), which gives a formal 
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Solution for the form of the orbit, we choose eq. (2.37) for V (r), and we also 

Perform the substitution 

࢛ = ૚
࢘
⟹ ࢛ࢊ = − ࢘ࢊ

࢘૛
                             (2.38) 

The result is 

݀∅ = − ௟ௗ௨
√ଶ௠ாି௟మ௨మାଶ௠௞௨

                      (2.39) 

This defines u as a trigonometric function of φ, with the energy E < 0 and 

the phase φ0 as undetermined integration constants, in fact  

∅ = ∅૙ − ࢘ࢇ ࢙࢕ࢉ
૛࢛࢒
࢑ି૚࢓

ට૚ା૛࢒ࡱ
૛

࢑૛࢓

                                          (2.40) 

Inverting this, and cleaning up the answer a little, we obtain 

૛࢒

࢑࢘࢓
= ૛࢛࢒

࢑࢓
= ૚ + ට૚ + ૛࢒ࡱ૛

࢑૛࢓
∅)࢙࢕ࢉ − ∅૙)                    (2.41) 

The constant φ0 is the value of the coordinate φ for which the planet is at its 

perihelion that is when it is closest to the sun, Comparing to eq. (2.4) we 

Read off that the eccentricity of the ellipse is 

ࢋ = ට૚ + ૛࢒ࡱ૛

࢑૛࢓
                               (2.42) 

The semi-major axis of the ellipse is 

ࢇ = ࢖ ૚
૚ିࢋ૛

= ૛࢒

࢑࢓
࢑૛࢓

૛|࢒|ࡱ૛
= ࢑

૛|ࡱ|
                          (2.43) 
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The solution remains valid also for E > 0, in which case it describes a 

hyperbola With e > 1, physically this is an unbound trajectory, like that of a 

Spaceship heading for the stars, 

Now we discuss the Keller’s Third Law. Keller’s Third Law awaits proof. 

Here is a simple one: since the areal velocity is constant, the period T is 

simply related to the area of the ellipse. For the Special case we are looking 

at eq. (4.7), together with exercise 3.1, implies that 

࡭ = ࢒
૛࢓

ࢀ =  (2.44)                                     ࢈ࢇ࣊

Remembering that b2 = ape, and using eq. (2.41) to identify the lotus rectum 

P gives 

૛ࢀ = ૝࣊૛࢓૛ࢇ૜࢖
૛࢒

= ૝࣊૛ ࢓
࢑
 ૜                                   (2.45)ࢇ

This is Keller’s Third Law. We see that it holds only to the extent that we 

Can regard the reduced masses m of all the planets to be the same, here is a 

more involved proof, using the full force of our solution (2.9). We Rewrite it 

using our expressions for a and ݁: 

࢚ࢊ = ටࢇ࢓
࢑

࢘ࢊ࢘

ටି ૛࢒

૛ࡱ|࢓|ା૛࢘ି࢘ࢇ
૛
= ටࢇ࢓

࢑
࢘ࢊ࢘

ඥࢇ૛ࢋ૛ି(࢘ିࢇ)૛
                  (2.46) 

4.5 Self-similarity and the viral theorem 41 

If we use the substitution 

	ݎ = 	ܽ	 +  (2.47)                          ߪ	ݏ݋ܿ	݁ܽ	
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We can do the integral, and d with a suitable choice of the integration 

constant we obtain 

࢚ = ටࢇ࢓૜

࢑
(࣌ + ࢔࢏࢙ࢋ ࣌)                             (2.48) 

Taken together, Esq. (2.47-2.48) provide a parametric representation of the 

Orbit and we can read off its period 

ࢀ = ૛࣊ටࢇ࢓૜

࢑
                                                  (2.49) 

This is Keller’s Third Law once again. 

Now we study Self-similarity and the viral theorem. Keller’s Third Law says 

that, given a solution, one can simply enlarge it to get Another solution—

provided one also slows down the rate at which things are Happening, it is 

really a consequence of mechanical similarity or self-similarity, A kind of 

symmetry not covered by No ether’s theorem, it arises as follows. Take the 

Lagrangian 

ࡸ = ࢓
૛
૛̇ࢗ −  (2.50)                               (ࢗ)ࢂ

And assume that the potential is homogeneous of degree β, meaning that 

there exists a real number β such that for any real non-zero number λ 

(ݍߣ)	ܸ 	= 	  (2.51)                              .	(ݍ)	ఉܸߣ

There could be several variables quid. For simplicity I write only q. Let us 

also Change the time scale, and define a new function q′ by 
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(࢚)ࢗ 	→ (′࢚)′ࢗ 	= ᇱ࢚ ,(T)ࢗࣅ	 = ࣅ
૛షࢼ
૛ ࢚                     (2.52) 

It follows that 

ᇱ̇ࢗ ≡ ᇲࢗࢊ

ᇲ࢚ࢊ
= ࢚ࢊ

ᇲ࢚ࢊ
ࢊ
࢚ࢊ
ቀࢗࣅ(࢚)ቁ = ࣅ

ࢼ
૛(2.53)                    ̇ࢗ 

(This is a slight abuse of the dot notation.) We can now check that our 

rescaling Represent a symmetry because, under this transformation, 

,ݍ)ܮ (	ݍ̇ 	→ ,′ݍ)ܮ	 (′ݍ̇ 	= 	 ,ݍ)ܮఉߣ  (2.54)              . (˙ݍ

This has the effect of changing the value of the action with a constant factor, 

and it follows that q′ (t′) is an extremism of S [q′ (t′)] if q (t) is an extremism 

of S [q (t)], in this sense it is a symmetry of the action. (Compare problem 

2.5. If you find the argument difficult, you can check directly that q′ (t′) is a 

solution whenever q (t) is) 

The harmonic oscillator has a potential V ∼ q2, homogeneous with β = 2. 

Scaling symmetry is present with t′ = t. Given a solution q (t) there is 

another Solution that is a blown up version of this, with amplitude a factor of 

λ larger, Because t = t′ the period of the oscillations are unaffected by the 

scaling, And we see—without looking at any explicit solutions—that the 

period of The oscillations are independent of their amplitudes. Galilee first 

made this Observation while celebrating mass in the cathedral of Pisa, 

Newton’s law of gravity uses a homogeneous potential with β = −1, so 

Similarity holds with t → t′ = λ3/2t. Two ellipses with the same shape (and 

The planetary orbits are all close to circular) will therefore have their periods 

and their axes related by 
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ࡾ → ᇱࡾ = ࢀ																	ࡾࣅ → ᇱࢀ = ࣅ
૜
૛ൗ ࢀ ⟹ ᇱ૛ࢀ

૛ࢀ
= ᇱ૜ࡾ

૜ࡾ
          (2.55) 

This is Keller’s Third Law for the third time. Another dramatic theorem can 

be proved for self-similar systems. It is called The Viral Theorem, and 

relates the time averages of the kinetic and potential Energies to each other, 

if it exists, the time average of a function f (t) is defined 

By 

〈ࢌ〉 ≡ ஶ→࢚࢓࢏࢒
૚

࢚ି࢚૙
∫ ᇱ࢚࢚ࢊ
࢚૙

 (2.56)                                 (′࢚)ࢌ

For the argument to follow it is important that the time average of the 

derivative of a bounded function is zero, i.e. 

ࢌࢊ〉
࢚ࢊ
〉 = ஶ→࢚࢓࢏࢒

૚
࢚
൫ࢌ(࢚) − ൯(૙࢚)ࢌ = ૙	          (2.57) 

Whenever f (t) < ∞ for all t. We are ready to study the time average of the 

kinetic energy, given the Assumptions that the system obeys Newton’s law 

௜ݔ̈݉ 	=  (2.58)                                        ,	(ݔ)	ܸ߲݅−	

That the potential is homogeneous of degree β that the motion is bounded in 

Space, and that the velocities are everywhere finite, On the other hand we 

are Not restricting the index I. It could run between 1 ≤ I ≤ 3N, in which 

case we Are actually studying an N-body problem; this could be a cluster of 

galaxies Under the tentative assumption that the cluster is a bound system or 

it could Are 1023 atoms confined in a box? Regardless of the number of 

variables Euler’s Theorem on homogeneous functions states that  
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(ݔߣ)	ܸ = 	 (ݔ)	ఉܸߣ ⇒ (ݔ)	ܸ߲݅݅ݔ	 =  (2.59)								(ݔ)	ܸߚ	

Then 

૛〈ࢀ〉 = 〈૛̇࢞࢓〉 = 〈 ࢊ
࢚ࢊ
(࢏̇࢞࢏࢞࢓) 〈࢏̈࢞࢏࢞࢓− = (࢏̈࢞࢓࢏࢞)− = 〈(࢞)ࢂ࢏ࣔ࢏࢞〉 =

 (2.60)    〈(࢞)ࢂ〉ࢼ

This is the conclusion we were after. For bounded motion in homogeneous 

potentials 

2	〈ܶ〉 	=  (2.61)                               〈ܸ〉ߚ	

Where β is the degree of homogeneity of V (x), for the inverse square law 

the viral theorem implies that 

〈2ܶ + ܸ〉 = 	0	 ⇒ 	 〈ܧ〉 	= 	 〈ܶ + ܸ〉 	= 	−〈ܶ〉 	≤ 	0 .             (2.62) 

This is the familiar fact that motion bounded by gravity can take place only 

If the total energy is negative, for the harmonic oscillator we deduce that the 

Time averages hit and he I are equal. 

The calculation in eq. (2.60) is of interest even for non-potential forces, if 

we break it off after the first line: 

2〈ܶ〉 =  (2.63)                             . 〈௜ܨ௜ݔ〉−

If the forces are the constraint forces keeping an ideal gas contained inside a 

Box, we can use this relation to deduce the ideal gas law. We turn the sum 

into an integral, recall the definition of the pressure P as force per unit area, 

and apply Gauss’ law to the result: 

૛〈ࢀ〉 = ࢏࢞࢏࡭ࢊ∫࢖ = ࢏࢞࢏ࣔࢂࢊ∫࢖ = ૜(2.64)          ࢂࡼ 
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If we are willing to identify hit with (a factor times) the temperature T we 

Have Boyle’s Law, 

ܸܲ	 = 	ܴܶ	.                                                   (2.65) 

Now we Study the three-body problem, the three-body problem—three 

masses interacting according to Newton’s Law of Gravity—is not soluble in 

the sense that the two-body problem is. The Number of conserved quantities 

is the same in both problems, and for the Nine degrees of freedom in the 

three-body problem this is not enough. But The three-body problem is also a 

very important one, and in fact it motivated Many of the developments that 

we will come to later on, A natural first step is to look for special exact 

solutions, which may be used As starting points for perturbation theory, or in 

other ways, an interesting example Was found by Lagrange, Let us begin by 

assuming that the motion takes Place in a plane, and use complex numbers 

zip (t) to denote the trajectories. The Equations are 

⎩
⎪
⎨

⎪
૚ࢆ̈⎧ = ૛࢓−

૛ࢆ૚ିࢆ
૛|૜ࢆ૚ିࢆ|

૜࢓−
૜ࢆ૚ିࢆ
૜|૜ࢆ૚ିࢆ|

૛ࢆ̈ = ૜࢓−
૜ࢆ૛ିࢆ
૜|૜ࢆ૛ିࢆ|

૚࢓−
૚ࢆ૛ିࢆ
૚|૜ࢆ૛ିࢆ|

૜ࢆ̈ = ૚࢓−
૚ࢆ૜ିࢆ
૚|૜ࢆ૜ିࢆ|

૛࢓−
૛ࢆ૜ିࢆ
૛|૜ࢆ૜ିࢆ|

�																					       (2.66) 

We assume that the center of mass is at rest, 

	1ݖ1݉ + 	2ݖ2݉	 + 	3ݖ3݉	 = 	0	.                    (2.67) 

The particles form a triangle, with sides represented by 

	1ݓ = 	3ݖ	 − ,	2ݖ	 	2ݓ = 	1ݖ	 − ,	3ݖ	 	3ݓ = 	2ݖ	 −  (2.68)                .	1ݖ	
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In terms of these variables the equations of motion take the form 

⎩
⎪
⎨

⎪
⎧ܹ̈ଵ = −݉ ௪భ

|௪భ|య
+݉ଵܽ

ܹ̈ଶ = −݉ ௪మ
|௪మ|య

+݉ଶܽ

Ẅଷ = −m ୵య
|୵య|య

+ mଷa

�	                         (2.69) 

ܕ = ૚ܕ ૛ܕ+  ૜             (2.70)ܕ+

܉ = ૚ܟ
૚|૜ܟ|

+ ૛ܟ
૛|૜ܟ|

+ ૜ܟ
૜|૜ܟ|

                       (2.71) 

This time we are looking for a special solution, not at the general case. So let 

we assume that the triangle is an equilateral one, 

w2	 = ܍	
૛ૈܑ

૜ൗ w1	, w3	 = 	 e
ସ஠౟

ଷൗ w1	. (2.72) 

Then a = 0, and the only equation we need to solve is 

૚ܟ̈ = ܕ− ૚ܟ
૚|૜ܟ|

				                                                     (2.73) 

This we know how to do. 

To interpret the solution, solve for 

mz1	 = 	m3w2	 − 	m2w3	 ⇒ 	mଶ|zଵ|ଶ = 	 (mଶ
ଶ 	+ 	m2m3	 +	mଷ

ଶ)|wଵ|ଶ	                            

(2.74) 

And so on. We can use this to show that 

z̈ଵ = − (୫మ
మା୫మ୫యା୫య

మ)య మൗ

୫య
୸భ
|୸భ|య

                                   (2.75) 

And similarly for the other two particles, hence the particles are all being 
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Accelerated towards their common center of mass, with “effective masses” 

that take an unexpected form. Each particle travels on an ellipse, but they do 

so in unison, in such a way that they always span an equilateral triangle, 

A special case of this solution is of considerable physical interest. Let one of 

the particles have legibly small mass, Then the remaining pair trace out 

The same orbits that they would follow in the absence of the third member. 

Nevertheless the three particles span an equilateral triangle. This is the 

origin of the two Lagrange points on the orbit of a planet, where small 

bodies may sit, to draw this conclusion we should also investigate whether 

the exact solution Is stable under small perturbations, this turns out to be the 

case. The Lagrange points we have found are called L4 and L5, since there 

is Another set of three unstable equilibrium on the axis through the two 

bodies About a thousand asteroids have in fact been found close to the 

Lagrange Points L4 and L5 on the orbit of Jupiter, They are known as the 

Trojan Asteroids, it has been observed that the Earth’s Lagrange points are 

suitable Places where an alien civilization could place a satellite surveying 

the Earth; 

However, when the STEREO spacecrafts passed through (in 2009) they 

found nothing of the sort, but what can we say about the three-body problem 

in general? To celebrate The sixtieth anniversary of King Oscar II of 

Sweden and Norway a large prize Was offered for a solution to the 

following problem: “For a system of arbitrarily Many mass points that 

attract each other according to Newton’s laws, Assuming that no two points 

ever collide, give the coordinates of the individual Points for all time as the 

sum of a uniformly convergent series whose terms Are made up of known 
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functions” The prize was awarded to Herne Poincare, Who did not solve the 

problem but whose contribution laid the foundations of? The modern theory 

of possibly chaotic dynamical systems, for the three-body Problem a 

solution was in fact found by Karl F. Sandman in 1912. He did express a 

generic solution as a uniformly convergent power series in	tଵ ଷൗ . The Catch is 

that the series converges very slowly. It is estimated that, in order to get 

useful information, one would have to sum the first 10଼଴଴଴଴଴଴ terms. Hence 

the interest in the exact general solution dwindled from that point in. 

With the advent of the computer it has become possible to follow a large 

Number of solutions to the three body problem on the screen, with no 

special Effort, The zoo of solutions include ones where the third body 

escapes from The system, leaving the remaining pair more tightly bound 

than before. 
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