Chapterl
Shift Operators

In this chapter are assumed to be Hilbert .We write B (X ) for the set of
bounded linear operators on X and B (X , X ) for the set of bounded linear

operators on X t0X. Triangular brackets <,> denote an inner Product

Sec (1.1): Partial isometeries and Wold Decomposition with inner
operators Hilbert spaces:

Definition (1.1.1):
An operator S in B (X ) is a shift operator if S is an isometric and

S*an—)O forall finX .

It is convenient to present the general theory of shift operators as a chapter
in pure theory. The central structure theorem is the World decomposition,
which shows, in particular, that a shift operator is determined up to unitary
equivalence by its multiplicity operators that commute with a shift operators
play a special role in both theory and applications. A universal model for
linear operators-on a Hilbert space the Beurling-Lax theorem which
characterizes the invariant subspace of a shift operator the lifting theorem a
concrete realization for an arbitrary shift operator.

At the same time, the study of shift operators should not be separated from

S™ — 0 strongly, that is,

the study of examples. The operator multiplication by z on 2 (D) ,
defined by S : f(Z) — Zf(Z) for all f(Z) inH"> (D) a shift operator
with adjoint

S*:f(z)—> Z[f(z)—f(o)]lz

For any Hilbert space & the operators S : (00,01,02 - 1) —> (Oaco,") on
IE2 =E@E@--- is ashift operator. [ + 5 Ad joint is

;" (co,cl,cz,. ) —> (01,02,03,. . ) These examples are sufficient for

illustrating the results in the chapter.
Additional examples of shift operators are given in the Examples.



An operator W in B (X ) is a Partial isometric if W is isometric on the

_ 1
orthogonal complement of its kernel. In this case we call M = (kew) the

initial space and N = wM the final space of w operator version of the
Would Decomposition.

Theorem (1.1.2):
Let V € B (5) be an isometric then:
(i) P, =1-VV" is the projection of EonéOVE ;
(i) asn —> oo,V "V " converges strongly to a projection operator P ;
iy PE=[ V°E;
(iv) Z:O ViPV™ converges strongly to Q:1— P;
v 0i={ge&lim, [ g|=ol:
(vi)  Q&and P& reduce V' ;
(vii) V‘Pf is unitary;
(viii) V ‘Qf is a shift operator;
(ix) 1=P+) VRV~

E=PEDY VRS

Either version can be proved directly or deduced from the other. We prove
the operator version only.
Proof:

The projection of & on V&so P, =1—VV" is the projection of & on
EOV —& onV"E . This provesS(i).

For any n,1,2,...,V"V"™" is the projection of & on V'"& hand

sty sl _ g (VV*)V*n <y

Therefore (ii ) and (iii) follow. The identity.



Shiey =3 (1)’

— 1 _ Vn+1V*n+l

Implies
For any (ii)
Hence (v) holds. Forany n=0,1,2,--- ., VV"V™" = V"™V Letting

n — oo, we get VP = PV ,s0 (VI) holds similarly, VPV" = P and (vi)
follows.

Let § =V |Q& : Thens™" = V™"

shift operator and (viii) holds.
The first relation in (ix) follows from (IV). Arguing as in the proof of (me),
we see that

VPV =y/y -yttt
Is the projection of & onV/EQV/HE = V/P &9 Thus
PEPEVPEVPPE,.. . are orthogonal subspaces of & with associated

projections P, P ,VPV", VZPOV*2 ,... Hence the second relation in (ix)
follows, and this completes the proof.

Q& — 0 strongly by (v). Thus & is a

Corollary (1.1.3):
Anisometry V € B (f ) is a shift operator if and only if ﬂz VIE = {O} :

Specializing the Wold decomposition the case of a shift operator we obtain.
Corollary (1.1.4):

If 5@()( ) is a shift operator and X = kerd”, then X = f = Z5jk5’
0

Wherekj,ex,j > 0. In this case Hsz Zinsz and

Kj:E)S*jf > ]ZO,
Where P, =1—SS" the projection of X onX .



When S is multiplication by Z onH’ (D),X =kers” is the set of
constant function in H (D) If we identity X with C in the obvious way,

then the expansion of any function in /4 ? (D) takes the form

o0
f (Z ) = Z a jZ /" and coincides with the Taylor series representation.
0

Corollary (1.1.5):
Let S € @(X ) be a shift operator. A subspace M of X reduces S if and
only if.

M:i@SjMO;
0

Where M is a subspace of? X = ker S”
Proof:

If = <Ag A4,K,K > reduces S, then Sm =.S/M is a shift operator on M
and S, =S"|M . LetM , =ker S, . ThenM , c kerS* =X .

Let X be a Hilbert space. A subspace € of X is called cyclic for an
operator A € @(X ) it "A'E=X.

Theorem (1.1.6):
IfSead (X ) 1s a shift operator, then X =kerS" is cyclic forS', and dim

X < dim E for every cyclic subspaceE for S .
Proof:
Corollary (1.1.4) implies that X is cyclic forS'. Let E be any cyclic

E isin

subspace for S. If p  is the Projection of X on X then 7= P,

fB(E,X ) claim7TE = X . To see this, consider any ke X OTE for all
ecE,

(e.k)=(e.p fe)=(Pg.k)=0



Becausek L. TE = PE . Since X =X ©SX we also have

S 1k,j=1,2,3,.... Thusk L 8’E forall j =0,1,2,... and since E
is cyclic k =0 Thereforeﬁ =X.

Now 7" € B(X,E) and Ker 77 "= X ®F Hence T" is one-to one, and by
lemma (1.1.7), dimX < dimE.

We define the multiplicity of a shift operator S € B (X ) to be the
minimum dimension of a cyclic subspace forS .By Theorem (1.1.6). The
multiplicity of S is dimX , where X = kerS”. For any Hilbert space &
the multiplicity of S : (CO,Cl,Cz,...) —> (O,CO,CI,...) on ]2§ is to the

dimension of& .

Lemma (1.1.7):
Let X, and X, be two Hilbert spaces. If there exists a one-to one operator
AeB(X,,X,) thendim X, < dim X,

Proof:
Let A = WB be the Polar decomposition of A4, so that Bis a nonnegative

operator in @(X ) )and w is a Partial isometry on X, to X, with initial

space BX, and Final space AX .
Sinceker B =ker 4 = {O} , we have (BX )L =kerB" =kerB = {O}
and BX, = X, .Thus wis an isometry on X toX . If {ej}j €J isan

orthogonal basis for X |, then {We /_} is an orthonormal set inX ,. Hence

jeJ
dim X, < dimX,.
Shift operators have the following remarkable property:
Up to unitary equivalence and multiplication constants, the classes of

operators I =0 ‘M , where S is a shift bounded and M is invariant

subspace ford~ include every bounded Linear on a Hilbert space.

Theorem (1.1.8):



Let 7" be a bounded linear on a Hilbert space X such that HT H <land
HT "f H —> oforeach f € X LetS be a shift operator on a Hilbert space

& of multiplicity = dim((l—T T )X )7. Then there exists an invariant

subspace M of S* such that 7" is unitarily equivalent to S*[M.
If7T €B (X ) and7T does not satisfy the hypotheses of the theorem, then

cT will satisfy the hypotheses for any scalar ¢ # 0 such thatHCT H <Il.In
This case, it is necessary to choose a shift operator S whose multiplicity is

X

Proof:
LetX = kerS”. Our assumptions imply that.

dim((l ~77) " X ) - dim((l -77) " X )_Into
X Define W : X — &by
Wf = iSfJ(1 ~T'T) "T'f, f X
0

By corollary (1.1.5) for any f € X

il =3

_ Z::H1 -7 1|

2

J(1-1T) 11| &

0

= lim <T*f (1-7'1)1' 7, f>

= tim . *X [

n—0

2 2

X) =I/IFx
Hence W is an isometry on X toé.LetM =W X .
ThenW is a Hilbert space isomorphism of X onto M . For each

feX swr =350 (1-1°1) " 1/ (1) = Wy

It follows that M is invariant underS", and7" is unitarily equivalent to
S*IM.



(1)
(i)
(iii)

Let S €® (X ) be a shift operator. An operator 4 € @(X )
is S analytic if A4S =S4,

S —inner if A is analytic and partially isometric, and
S — Outer if A is analytic and AX reducesS .
An analytic operator A € B (X ) is said to be Constant if is A* also

analytic. The terminology analytic, inner, and outer is also used when there
is no possibility of confusion. To justify the terminology, consider the
example where S is multiplication by z on H?(D).

Let S € B (X )be a shift operator, and let X

Theorem (1.1.9):
The initial space of any inner operator B € B (X )reduces S
Proof:
The initial space of B is given by M = {f e X HBfH = HfH} If
f eXand

|B7]| = (7] shen [ BS7]| = }sBf]|= /]| = 5]

Hence M is invariant under S . Since M~ = ker B and BS = SB, M *is

also invariant under S Thus M reduces S .
We next describe all of the S constant inner operators onX . To construct

an example, choose a partial isometry Bo € B (X ) By corollary (1.1.5),

each / € X has the form / = ZSjkj , Where{K /}: < X . Define an
0

operator B € @(x ) by setting
B f=Ys/Bk,
0
In this situation. It is easy to see that B is inner Moreover,
B f=ZOZSngKj
w .
If f = ZS 'k ; as above. Hence B is also inner, and B is Constant. This
0

example is general.



Theorem (1.1.10):
Every Constant inner operator B € B (x ) has the form just described for

Some partial isometry B, € B (X ) :

Proof:
First note that X reduces B . For since B°S = S*B, BX < X, and since

BS=SB, X =S X is also invariant under B . Therefore the projection P of

X on X commutes with B, and hence P, also commutes with B .

Theorem (1.1.11):
The final space of an inner operator B € B (X ) reduces S if and only if

B is Constant.
Proof:

If Bis Constant, then B” is also inner. The final space for B is the initial
space for B " . Hence the sufficiency part follows from Theorem (1.1.9).
Conversely, suppose that the final space N of B reducesS . By BB’

Is the projection of X on N ? Since N reduces S,S (BB*) = (BB*)S
.Therefore B(SB* —B*S) = Oand(SB* —B*S)X c kerB.

Claim :( SB* — B*S) X L Ker B.Forif u € ker B , then S"u € ker B by
Theorem (1.1.9).Hence for any

feX <(SB* —B*S>f,u> = <f,BS*u> —(Sf,Bu) =0.
The Claim follows. Then

(SB* —B*S)X c ker BN (kerB)L ={0}

So SB" = B*S .Thus B analytic and so B is S—constant.

Theorem (1.1.12):
Let S e @(X )be a shift operator, and letX =kerS™. If T € @(X ) then

the following are equivalent:



(i) T=AA*for some S-analytic operator A € B (X );
(i) T —-STS* =J"J forsome operator J € @(X , X );

(i) 7 —STS™ >0 And the rank of 7 — STS™ does not exceed the
multiplicity of S .
The rank of an operator is the dimension of closure of its range.

Proof:

(i) & (ii) If T = AA" where A is S-analytic, then
T-STS"=A(I-SS")A"=ARA"=J"J .
Where P, = — SS” is the projection of X onX and

J=PA € (B(X , X ) conversely, where J € @(X X )? Repeated
application of the equation

T—-STS" =J"J Yields.
T -S"™TS™ " =>8'JJS"
0

n=0,1,2,... .viewing J an operator on X to X ,we obtain

n

(Tf.g)—(S"'TS™f .g)=D(JS"f.JS"g)

:<Zsfjs*ff,ZSfJS*fg>
0 0
Forallf,g € X and n =0,1,2,... Define 4 € @(X)

Sothat 4~ = ZS 7JS ™ ltis easy to see that the series for A~ converges
0

strongly and A is S -analytic. Letting 7 — o0 in the preceding identity, we
obtain

(Tf.g)=(4"f,A'g) Forall f,g€X soT = AA".
(ii ) < (iii )LetT —STS™ = J"J , where J € B(X,X).

ClearlyT —ST'S" > 0.Let ] = WB be the polar decomposition of J.Thus
B = (J * J)'/? and Wis a Partial isometry onX ToX With initial space



BX .Therange of T —STS" is contained in BX since
T-STS"=J"J =B’ Since W maps BX isometrically into X , the
rank of 7' —ST'S™ does not exceed dimX  which is the multiplicity ofS.
Hence (ii) implies (iii) .

172
Conversely, Let (iii) hold, and set B = (T —STS ) . Since the range of

B and the range of B> =T —STS " have the same closure
dim BX < dim X .Therefore there is an isometry W in B (BX , X )

Then] =WB € B(X ,X )and T —STS™ =J"J ; thatis, (ii) holds .

Theorem (1.1.13):

LetS € B (X ) be a shift operator, letX = kerS™, andlet Py = 1 —

$S*be the projection of X onX .

By the support of an S-analytic operator 4 € B (x )We mean the smallest
* 1

reducing subspace M (A) for S containing A" X = (ker A) :

Equivalently, M (A) is the smallest reducing subspace N for S such that

AN+ = 0

Thus M (A) reduces S , show that

M(4)=Y @8'M, (4).

Where M (A) = POA*X . Indeed, M (A) contains
(I-88")4'X = PLAX and
M(A4)2D> @S'M,(4).
0
The direct sum on the right reduces S and contains A" X . Forif f € X
and A*f =7 Sjkj
kj = PoSTA*f = PLA*S™ f € My(A).

Lemma (1.1.14):

10



For any projection P on a separable Hilbert X and any orthonormal basis
{ej}jej forX ,
, 2
dim PX = ZHPejH
jeJ
Proof:
Let { i } 1 0¢ an orthonormal basis for PX . Then

fre [ =23 Kpe )
=S SWe, s )

Kek jeJ

=2 |

kek

=dimPX

2

2

b

11



Sec (1-2): Beurling-Lax and lifting Theorems with concrete Realization
of a shift operator:

Theorem (1.2.1):

Let S be a shift operator on a Hilbert space X .A subspace M of X is
invariant under .S if and only if M = AX for some S -inner operator 4
onX .

This representation of an invariant subspace is essentially unique. Suppose
that an invariant subspace M of S is represented as M = AX and

M = CX fortwo S -inner operators A and C .Then4A4A™ = CC", so
C=AB And A=CB’

Where B is an S -constant inner operator whose initial space the support is
of C and whose final space is the support of A . Conversely.

AX =CX

Whenever A and C are S -inner operators related in this way.

Proof:

IfM = AX , where A is S -inner, then SM = SAX = AS¥X € AX = M.
Conversely, assume that M is invariant under S . Let P be the projection of
X onM . Then SPS” is the projection of X onSM and

O =P —SPS" is the projection of X on M © SM.

We show that the dimension of QX does not exceed the multiplicity of S ,

that is, dim OX < dimX , where X =kerS". If X is infinite
dimensional of any cardinality, then dimQOX < dim X = dim X let X

be finite dimensional with orthonormal basis {ey }iex-Then {S/e;: k €
K,j =0,1,2,..}is an orthonormal basis for X . In this case X is

separable,
dim QX = z Z(stek,sf er)

| keK j=0
= lim 2 2 (P—SPS™)Se;, S ey)

n—-oo

k€K j=0

= 111_1:1;10 2 (PSnek,Snek)

k€K
<> ek = dimX
As required =

12



It follows from what we have shown that P satisfies condition (iii)

P = AA* for some S -analytic operator A . Since P is a projection, A is
partially isometric and hence S -inner. By construction, M = PX = AX ,
and this completes the proof.

The commutant of an operator ] € B (X ) is the setC (T )) of all

X e @(X )such that X7T' = TX . More generally, if 1| € @(x . )any

T, e @(Xz), let C(TI,TZ) be the set ofall X € @(XI,XZ) such that
X1, =T, X . The lifting characterizes C (TlaTz) when 7} and 7, is

represented as in the universal model.

Theorem (1.2.2):
Let M be an invariant sub space for S, and let P be can the projection of
X onM .Let M' be an invariant sub space for R". Let X € @(X , X )
satisfy

i) XM M g xM™ = {0},

(i) PSX = XR,

(iii) X' X<T
Then there exists an operator Y € B(X,X) such that

(i') X = PY,
(ii') SY =YR,
(iii') Y'Y<T.
Proof:

LetQ=1—P.ThenSOX < OX , and S ‘Qx is an isometry. Let F,
be the projection of X onKer((S|0X)*) = QX © SQX. Thus
P,=0Q-SQOS",andforj,k=0,1,2,..,

0 if j#k,

*k cj —
PyS™ S’ P {Po if j=k,

And

PSYX=0 And X'PS'P,=0
We inductively construct sequences {B,}>; and {Yn }j - @(X , X )such
that

13



=X,

Y,
n
Y, X+ZSJB]-, n=20,12,..,
0
We require forn = —1,0,1, 2, ..., that
a(n): B, € B(%, PyX),
p(n): Y;Y, —R*Y,Y,R = BB,
y(n): YpY, <T < R'TR,
And forn=0,1, 2, ... that
5(n):B,,=BR.
Let B_; = QSX .Since QS*QSX = QS*(1—P)SX =QX —QS*XR =0 —
0=0,
PyB_; = (Q —SQS*)QSX = QSX = B_4
Thus & (—l)holds. Also,
XX —R'X*XR=X"X—-X"S"PSX = X*S*"QSX = B*,B_,4,
So B(—1) holds. The two inequalities in y(—1) hold by assumption.
Suppose that B_q, By, ..., B,, , have been constructed for somen > —1. Then

BB, =YY, -RYY,R<R (T-YY,)R.
e fB(x ,PX ) such that

By the lemma there exists an operator C, ;.

HCnHH <1 and
1/2

Let

Bn+1 - Cn+1 (T - }/n*}/n )2
Cleary & (n + 1) and O (n + 1) hold. Hence.

Bn+1 = })()Bn+1 >
B:+15*n+1Yn = f3;1k+1])05*n-’-1 [X T iéjBJ = O
0

Therefore

Y;:+1Yn+1 o R*Y;:+1Yn+1R

= (Zﬁ‘ + Brya ST (Y + S™ By ) — R (Vg + Bryy ST (Y +
S™* Bn41)R

14



=Y,V + Br*1+1Bn+1
— R*(YpYn + Bry1Bny )R
= (Y;Yn — R*Y;YnR)
+ (Br*L+1Bn+1 - R*B;+1Bn+1R)
= BpB, + (Br*l+1Bn+1
- B;;Bn)
= Bpy1Bns1,

So B(n+1) holds. Similarly,
Y'Y

Y S XH(T=T) €LC, (T=1T)
1Y, +(T-17,)
=T,

And Y (n + 1) follows. This completes the inductive construction.

It follows that {Yn }: converges strongly to an operator Y € B(X, X). Thus

Y=X+ZSij
0

Where the series converges strongly. The assertions (i ') (and(iii ') are

immediate. For each 1,2,...,

Y,R = XR + ZSijR
0

n-1

=XR+B_; + z S/*1B;
0

n-1
= PSX + QSX + z SI*1B;
n—1 0

SX + z SI*B; = SY, 4
0

Thus (ii ') holds and the results follow.

15



(1)
(i)

Lemma (1.2.3):

Let A € B(X,,%;3), Ce B(X,,X,),andf > 0 be given. The following are
equivalent:

A = BC forsome B € B(¥;,X;3) suchthat || B lI< f;

A"A< B*CC.
Proof:
Assume (i7 ) For each f € X,

larli=(aar s ) < pr(ccr o). = Bler [,
Hence we may define By: CX,_ X5 by Bo(Cf)= AF, f € X,.we have ||B,|| <
B . Extend B, to on operator B € B(X,,X3) such that B is zero on

X,©CX;.Then A = BC and |l B |I< B; that is, (i) follows.
Let ¢ be a Hilbert space with inner product (..), and norm||,. The

4
norm on B(£)is denoted| . |p(s).

Definition (1.2.4):
By H /2 (D) we mean the space of all /-valued holomorphic function on
D for which the quantity

e \d@ S

Remains bounded for(0 < 7 < 1.
For the rudiments of the theory of vector and operator valued holomorphic

functions .It is easy to see that /1 /2 (D) is a Hilbert space with inner

product
(r2)=lim o [ (7 (=) (")) @0=2 (a0,
F or any f Z a, 2z’ and g Z b 2’0 in the space. Thus

H /2 (D) is 1somorph1c with L’/ the correspondence between a function

and its Taylor coefficients. As a consequence of this isomorphism, we
obtain:

Theorem (1.2.5):

16



The operator multiplication by Z on H /2 (D) , defined by
o f(Z) —> Zf(Z): for all f(Z) ian2 (D), is a shift operator of
multiplicitydim £ . The ad joint of S is $* = f(2) - [f(2) — f(0)]/=z.

Corollary (1.2.6):
Every shift operator on a Hilbert space is unitarily equivalent to

multiplication by z on /2 (D) for some choice of /.

By H ;O( ;) We mean the Banach algebra of bounded B (ﬁ)—valued
holomorphic function 4 on D in the norm |4 |, =sup{|4(z)|} . Each

B(/)

Ae H;j(g) (D)induces an, operator T(A) on H; (D) called

multiplication by A defined by

T(A):f—> Af, feH;(D)

Theorem (1.2.7):
Let S be multiplication by z on /2 (D) , A bounded linear operator 7" on

H; (D) is S-analytic if and only if T’ =T (A) for some A € Hy, (D)

In this case, TH = HA‘ o and T is S-constant if and only if 4 = const .
Proof:

T =T (A) where 4 € H ;j( ) (D), then it is clear that7" is S-analytic
and [T < 4] .

Conversely, assume that 7 is S-analytic. We may view any ¢ € ¢ a constant
function in H/2 (D) IfT :c —> f,, Then forany w e D the mapping

A(W) e f, (W) on £ to ¢ belongs to fb’(ﬁ) as a function of z, A(2)is

holomorphic on D . By construction, 7" : ¢ — A(Z)c for allc € /. Since
TS =ST,
T :cz’ —)ZjA(Z)C

17



Forall ce / andj = 0,1,2, ... everyf(Z) in Hf (D) has a

- ,
representation f (Z) = Zo a;z ’ that converges both point wise on D

and in the metric of H f (D) . Since T’ is continuous

(T )(2)=2.0T{a,7| =2.2'4(z)e,
= A(z)f(z@).
T° :c/(l—Wz)—) A(w)* c/(l—vT/Z)
For each ¢ € / andw € D . Hence
N 2 " _
A(w) 0,4/ 1—‘w‘ )zHA(w) c/(l—wz)
<|r [ lc/o-w2),
=[Pl /(1= of )
Thus 4 € H;j(g) (D) And‘ AHOO < HTH Byl = T(A).
HenceHTH < HAHOO, and so‘ TH = HAHOO :
Suppose I' =T (A)is S-constant. Then T* = T(C) for some

2
2

Ce H;j(g) (D) by what we just proved.C(z) = A(w)* Forall z,w € D
.Hence A(Z) =const. OrD , conversely, it is clear that if A(Z) = const,
onD, then T =T (A) is S-constant.

Lemma (1.2.8):
Forallf(Z) in H)(D),cet,andw € D,

<f(z),c/(1—v_vz)>2 = <f(w),c>g.

Compute the left and right sides of the identity in terms of the Taylor
explosions of f(Z)and C/(l — VT/Z).

. The only reducing sub spaces of a shift operator S € B(X) of multiplicity 1
are {O} and X .

18



2. Operators 4 € @(X ) and B € B(X) are called similar if A =X 'BX

some invertible operator X € B(X, X).Tow isometries that are similar are
unitarily equivalent
3. () If M is an invariant sub space of a shift operators S, then S|M is a
shift operator of multiplicity not greater than the multiplicity of's.

(ii) Let S € B(X) be a shift operator. If N is a subspace of X such
that S/N L S¥N whenever j # k, jk =0,1,2,... then the dimension of

N does not exceed the multiplicity of S.

a
4.LetA=|:

b
: 2
viewed as an operator on¢” . Then

1
1\2
2

Where N = ‘a‘z + ‘b‘z + ‘C‘z + ‘d‘z andD = ad — bc.
A| <1 ifand only if N <1+|D[ .

5. Inequality of Neumann and the invariant form of scharaos lemma.
(I) prove Non Neumann’s inequality: if T € B (X ) anyHT H <1, then

c

4=+ (v7 4|
2 2

In particular,

lp(T)|| < 1 for every polynomial p(Z) such that ‘p(z)‘ <1 for‘Z‘ <1I.

a b
(i) Let] = 0 :| onX = C?, where a,c € D and
C

" =(1=[af" ) (1=[c]").

Then HT H =1 and for any polynomial p(Z ) )

b[p(a)-p(c)]
(T) — [p(a) a—c ]
P o p(©

Hence if ‘P(Z)‘ <1 for‘Z‘ <1, then Hp(T)H <1 and so

p(2)=p(w)[ _1-|p() 1=|p(w)

2 2
Zow =z 1=

‘2

, Z,WweD .

19



(iii) Let f (Z) be holomorphic and satisfy‘ f (Z)‘ <1 onD . Use (ii) and

an approximation argument to show that
2
f(2)=s )] =1 17 (w)
= 2 2
S T

2
Then use the identity |1 — uv|?L? = (1 — |u|?)(1 — |v|2)+‘u — v‘ to
deduce

‘2

z,weD

z—Ww

f(z)-1 ()
1=/ (w)f(2)

Similar results are given by Williams

A connection between von Neumann’s inequality and the Pick-Nevanlinna

theorem is shown in Rovnyak

Has shown that von Neumann’s inequality is false in general for every

Banach space

That is not a Hilbert space. For the classical view of Schwarz; s lemma.

. Laguerre shift. The laguerre polynomials of order 0 can be defined by either
of the relations

<

—|, z,weD
1—wz

n
e~tL (t) = %(%) (the ), n=012, ..
(1 — Z)_l e/=) = Z:Ln (t)z", ‘Z‘ <1,

For each
X

[ ta® dt = 1060 = a0,

0

0

1 1 1

n n+l
e L, (t)dt=|6—=| /| 6+=| ,Res>——
2 2 2

0

The function {Ethn (If )} form an orthonormal basis for L (O,oo) :
0

0

Theorem (1.2.9):
(i ) Let be the shift operator on L’ (O, OO) such that

S:e'L, (1)—>eL,,(t),n>0
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Then for each f € L’ (0,00),

X

S F(0) = F(x) — j 25 OF(t) dt.

0
(ii ) Let T be the symmetric operator id /dx on L (0,00) ,where the

domain of 7" is taken as the set of (locally) absolutely functions [
continuous functions f on (0,00) such that f, f' € I (0,00) and
f(x) — 0asx 4 0.
Then. §= (T —il)(T —3i)7?
We call S the leaguered shift on L’ (O, OO) :
Proof:

(i)By holds if f (b) = 5%Ln (l‘) for somen > 0. The general case of
follows by line arty and approximation.

(i [ ) By the elementary theory of symmetric operators, 0 are the clayey

Trans for of the symmetric operators to with graph.
1
G(Ty) = {(f - Sf,zi(f + Sf)) . f € L2(0, oo)}.
Thus (P,q) € KG(T,) ifand only if

oL
p(x)=e .[eztf(t)dt
0
X
1 1 1,
a0 = if () - 5ie T [ e2f (@) de
0
For some [ € L (O, o0 ) .A straight forward argument then shows that

G(TO) coincides with the graph of 7", and (ii) follows.
7. Shift operators and the Chebychev polynomials. The Chebychev
polynomials{Tn (x)}o and {Un( )} can be defined by formal
expansions
1 0
— — = x|t
1-2x¢ +¢* ? 1-2xt + Z‘U( )
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For each n> 0, T,,(cos#) = cosnf, U, (cos@) = sin((n + 1)9)/ siné.

Theorem (1.2.10):
Let S € B(X) be a shift operator. Write S = X + iY, where

X =ReS, Y =1ImS,andletF, be the projection onX = ker S*. Then
SnPO = Un(X)Po, IYSnP0=Tn+1(X)
Foralln > 0, and

1= U, (X)RU,(X)

With convergence in the strong operator to apology.
Proof:
By induction using the identities

U,.,(x)=2xU,, (x)-U,(x),n20,and

T (x)= %[UH (x)=U, , (x)].n>1. Then

Follows by the world decomposition.

Theorem (1.2.11):

There is unique shift operator S, on I (-1, 1) such that
So: (1 —xHY*U, (x) » (1 —x»Y*U,,,(x), N=0.

For each f € L’ (—1,1),

(1 (147

SO:f(x)—»g”(x)—PV;lTJ; e (072

The real part of Sy X, = Re S, is multiplication by x on L?(—1,1), that is

X, f(x)—> xf(x).
Proof:
The existence of S follows from the fact that the functions

{(2/7[)1/2 (1 —xz)

First cheek on basis elements using the identity

L(1-¢ szn(t)
V}J( t)_x d=T.,x). x| <1

-1

1/4 ®
U, (x )} form an orthonormal basis for L?(—1,1).
0
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Theorem (1.2.12):
The general form of a shift operator S on L’ (—l,l)whose real Part

X = Re S coincides with the real part X, = Re S, of the operator is
1

S,of (x)—>af (x)—PV%'l[(l_xz)4(1_t2)45(x)C(t)f (t)dt.

t—x
Where C (x) is a measurable function such that
‘C(x)‘ =1 a.e on (—1,1).

8. The functional equationg(x) — g(2x) = f(x)
We follow Rochberg Let X, be the Hilbert space of measurable complex
valued functions f(x) on (—OO,OO) such thatf(x + 1) = f(x) a.e.

I =i o s <o exic =0

The operator f(x ) _ﬁp(zx ) on X, is a shift operator with ad joint
. I .(1 1,.(1 1
So:f (x)%?f (Ex}‘}f (—x +—j-1f£0 = kerS,, then for eachn =

2 2
0,12, ..,
S"Xy = V{expQmi(2j + 1)2™x):j =0,+1,%+2, .. }.
(ii) Let S € B(¥) be any shift operator, and let f be a vector in ¥ for
which the coefficients in the expansion f = Y& S/ k; of satisfy
|&i|| < mMrl, j =0,

For some constant? € (O,I)and M € (0, ).then the equationg — Sg = f
has a solution g € X ifand only if

257
0
(iii) Call a function f (x) in X, smooth if the coefficient is in the

expansion

2
liml =0.

n—)oon
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2
<Mr",n>0, for

a(z j+1)2"

f(X)= Y ae™™ Satisty 3
J=—w

j#0

some constants 7 € (0,1) and M € (0,00). Forf(x) to be smooth, it is

sufficient that satisfy a Holder condition of order > —

Theorem (1.2.13):
If f (x) is a smooth function in X ,, then a necessary and sufficient

condition for the existence ofa g (x ) in X o such that
g(x)-g(2x) = f(x) ae. on (-w»,»)
: if(ij)

0

1
lim — j

When a solution g (x ) , 1t is unique and also smooth.

2
dx =0

9. A shift operator S € B(¥) of multiplicity 1 has no square root in B (X )
10. If C, is defined on L?(0,1) by
) =x1[Tf(dt, 0<x<1,

Then 1 — C| is a shift operator of multiplicity 1.
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(1)

(i)

Chapter 2
Pick-Nevanlinna and Loewner types with Interpolation

For Q=D orll ,let B (Q) be the set of all function W (Z ) that are
holographic and bounded by 1 on €2 we are concerned with interpolation
theorems for B (Q) that is characterizations of functions in B (Q) in

terms of data on subset of {2 or 0Q when the data are prescribed inQ2 two
classical theorems serve as prototypes: the pick-Nevanlinna theorem. And
the Caratheodory-Fejer theorem the prototypes for the situation in which
data are prescribed on 0C2 is Loewner’s theorem we use an operator method
based on the lifting. We also ketch the theory of monotone operator
functions.

Sec (2-1): Generalization of the pick- Nevanlinna and Caretheodory-
Fejer Theorems Restrictions Boundary Functions Pick class:
For any complex vector space? , let r’ be the space fall linear functional on

7, and let& (I’) is the space of all linear operators on 7 to? . The value of
. : . 1
functional x" € ¥’ on a vector x € r is ertten(x,x ) Each A €

& (r) induces an operator A" € £ (r') such that.

(Ax,x") = (x,A’'x")
Forall x € ¥ and x" € ' .We use no topology on r, so questions
concerning continuity do not arise.

Theorem (2.1.1):
Let Aeé (r) and b,C € r be given let®D C ' be linear sub space such

that A'D < © and

Z::‘(Ajc,x’)

For every X' € ©. The following are equivalent:
There exist w(z) = Y.0° szj in B(D) such that

(b,x") =7 Wj(Ajc,xj), x' €D
Foral x' € D

2
<0
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2
Proof:

(Ajb,x’) (A’c x)

3

Think of H (D) as the space of power series Z a ]Z ! with square
0

summable coefficient. Let S be the shift operator.
§:f(2) = zf(2)
OnH> (D) :

Assume (ii ) . We apply the lifting theorem with & I H? (D)and

S;=S,j=1,2.for each X' € @,Z(AJC,X’)Zj, is in H * (D), and
0

S* {Z(Ajc,x’)zj} = Z(Aj“c,x’)zj = Z(Ajc,A’x’)zj.
0 0 0

Let X, be the closure in H ° (D) of all seriesZ:(AjC,)C1 )Zj, where
0

x' € D. Since A'D C D, it follows that X1 is invariant under
oX , = H* (D) iJ =1,2,by (ii) there is a unique
operator X € fB(x X, ) such that ‘

X (Ajc,x’)zj} = > (4’b,x")7’.
e},

Xs* (Afc,x')zf}= (A7b,x")Z’
» 2.
X = (Ajc,x’)zj}.
>

Thus X7, = T, X , and the hypotheses of the lifting are satisfied. By the

!
For eachX € (D’

lifting theorem, X =Y \X . for some operatory on H’ (D) such that
YS*=SY andHYH = HXH < 1.we obtain
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Y'f =wf, f € H*(D),

For some function V_V(Z) = ZVT/]ZJ inB(D). For any X' € D
0

(b,x") = (Alc,xNz7, 1)
2

X (Ajc,x’)zj}, 1)
>

Z(Aj c,xNz7, Y*{l})

0 2

(Ajc,x’)zj, v_v-zj>

2 :

|
Z::(Ajc,x’)wj.

Thus W(Z) =Y w,Z” isin B(D) and (i) holds.
0

2

Il
/N

2

Il
/N

r

2

Conversely, assume(i). Let Y be the operator on H° (D) such that Y is

multiplication by V_V(Z) = ZVT/]-ZJ .ThenHYH <1 .For each x" € D and
0

k=01,2,..
(Akb,x’) = (b,A’kx') = i(Ajc,A'kx')wj = Z(Aj+kc,x')wj
0

Hence if Y{Z(AjC,X’)Z]}:ngzk,Then
0 0
= Y{ (Ajc,x’)zj},Sk{1}>
= > |
= <Z(Aj c,xNz7, Y*Sk{1}>
0

27
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We have shown that for all X' € ©

y{i(/uc,x')zf -3 (b}
Since|Y]| < 1. 0 O

Theorem (2.1.2):
Let r = C°“% be the space of all indexed sets x = {xj}je] in C with

coordinate wise addition and scalar multiplication. Define and b, ¢ € r by
b = {Wj}jE],And c= {Cj}je] where CJ. =1,j € J Let D be the set all

linear functional x" one 7 of the form

where {aj}je] c C and {j: a; # O} Is finite.

Theorem (2.1.3):
a 0 0 0
a, ao 0 0
T(aOI ) an) = a, aq Qo 0
an  An-y Gn-z o Qoo gy

The norm HMH ofa(n + l)x (n + 1) matrix M is its norm as an

+1 . .
operator on C""" in the usual inner product.

Theorem (2.1.4):
Givenb,,...,b € C, there exists W € B (D) such that.
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W(Z) =b, + b, Z +--- 4+ b, Z" +higher powers if and only if
|7 (By»-...5,)| <1.

With no extra effort we obtain a more general result.

Theorem (2.1.5):

Given b,,...,b,,Cy,...,c, € C there exists W(Z) = ZWij in B(D)
0

such that

by = cyw,

b = cw

\bn = cWw, +ew,, ++c W,
If and only if

T(bo,...,bn)T(bo,...,bn)* ST(co,...,cn)T(co,...,cn)*
Proof:

Inletr=c"", 4= T(O,I,O,. . .,0),b = [bo,. . .,bn]t ,C= [CO,. . .,Cn]t, and
D =r'"since A’ =0 forj >n, condition(i ).asserts existence of
W(Z) = ZWij in B(D) such that for all x’ € 1/,
0
(b,x") =wy(c,x") + wy(Ac,x") + -+ w,(A"c, x"),

That is holds. Any x’ € r' can be represented as an inner product
(x,x') = <x,a> =a'x forsome a = [ay, ..., a,]} € C"*'then
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a A'b|

ab‘ +‘

Z‘ Afb x

2
:‘boaz0 +---+bnan

+ ‘boaz1

2
T(bys....b,) d|

Similarly with b replaced by ¢ thus condition (ii) of 2.3 asserts that for all
a € Cn+1

— 2 — 2
+---+bn_1an‘ +---+‘b0an‘ =

1T (by, ... bp)*all? < IIT(co, - cs)"all?,

Theorem (2.1.6):
Fora,f €D, set
L Z K., (a, B)sPt
1—(a+s)(B+E) L pa
For|S|, |t| sufficiently small. Differentiation of the identity
do

1—af - (1 — aei®)(1 — fe~i0)

Kpq(@ ) = L <i)” <aaﬁ>q 1 —1a/§

p!q!
el@—a)0
= j (1 _ a,ele)p+1(1 _ ﬁe—Le)q+1 do
T

Yields

Forall P,q=0,1,2,...
For simplicity, consider first the Pick and caratheodory- Fejer themes.
Define T(ao,...,an)for Ay,-..,a, €C As

Theorem (2.1.7):
Let Z:{ZJ}ﬁ =1 D Foreach j=1,...,n, Let biys---sb; (i)be

Jsr

given complex numbers. There exists W € B (D) such that for each

j=L...n, w(Z)=b, +b( )+ +b, (Z Z)()higher
if and only if

J{J)
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T(b)P(2)T(b) <P(Z

)
Where T(b) = [T]k (b)]j . and P(Z) [ij( )] are black matrices
o, T (b) and ij(z) have order

defined as follows: for each j,k =1,. ;

( (])+1) ( (k)+1),and
Ty (b)=T(bygsnsby, ) i j =k
T,(b)=0 if j#k
P(2)=|k,(2,,2,) |[P=0,...r(j).q=0....r (k)

Theorem (2.1.8):
LetZ :[Zj:'jeJ C D, and for each j =J let biyse-sb;, (]) and

( J ) be given complex numbers. There exists W € B (D) such

CigsensCy

that for each j € J the coefficients in the expansion

W(Z)=wo+w, (Z-Z)+w,(Z2-2,) +

Satisfy
(bjo = CjOWjO
bjl = CjOle + Cj1Wj0
4
\bjr(jy = CoWjr() T CaWir(H-1 T F Gr(nhWio
If and only if

T(b)P(Z)T(b) <T(C)P(Z)T(CY
TJk (b)} joked and

{P " (Z )} L€ J as cxceP + that the index set j is used in place
Js
]. Define T’ (C) similarly by replacing all the b, s by ¢, s the

Similar to that used in Theorem. Define 1’ (b) {

P(Z)=
of[T,...,n

meaning of is that
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Z a;T,(b) P (Z)T, (b) ak < Z a;T, ()P (Z)T, (¢) a

j,keJ j,keJ

rj)+ . .
Where ever CZ].EC(])+ ,jeJ, and {j:aj;t()} is finite.
Proof:

Let 7 be the set of all indexed sets X = {X j} o where
Jje

Xje ¢ ,J €J , with linear operations coordinate wise. Let
X X ]
A {XJ}jEJ _){Af J}]EJ
Where
Zj
1 Zj 0
A] - 1 . ;j € ]

(r(N+Dxr()+1)

Letb= {bj}jeJ ,C= {Cj}jej, where for all j € J

. . t

b, :[bjo,...,bj’r(])] and, c; :[cjo,...,cj’r(])] .

Let D be the set of all linear functional X" one# of the form
(x,x")= Za;‘ij
jeJ

Where a; € C"U*1 j € [ and {] ra; # 0} is finite.
It is convenient to introduce a functional calculus for A. For any
holomorphic function f (Z ) onD, define (A) on ¥ by

f(A) : {xj}jeJ - {f<Aj)xj}jeJ
Where for each j, f(A;) is defined by the standard matrix calculus. The main
fact concerning the matrix calculus that we need this: for any square matrix
M with eigenvalues in D if
f(2) = fo+ fiz + f,z% + -~ Then f(M) = fol + 1M + fLM? + -,
Condition of assets the existence of W€ B (D) such that b = W(A)C— is

b, = W(Al.)c ; forall j €J— that is coefficients satisfy for all j € J.
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We interpret condition. Let u# = e’ andlet X' €D be given by Then

0 00 2
Z|(Apb,x’)|2 =j Z(Apb,x’)up
0 r 0

do(u)
jl((l — Au)71b,x") |2 do(u)
T

2

. -1
j Za] (I] —AJU) b] dO'(U),
r |Jj€l
Where [ is the identity operator on 7 and I ; is the identity matrix on

Cr(i)+l,j €J. Forany j €J andu €T, set

hiw) = [1/ - zw), u/A — zw)?, .., u™D /(1 — zu)rD+1]"
Then (]j _Aj”)Tjj(b)hj(”) =b,
And so

(Ij _Aj”)_l b, =T, (b)h,(u)

J

Hence

- 2

D larh ) = [ Y @ity | dotw,

0 r |j€J

[ @00 e Tea b i o)
I Jjkej
= z a; Tjj (D) (2) Ty (b) " a
J.KE]
For the last equality we used the identity
r

Similarly

DA = > T (p@ () ax
0 J.k€j
The result follows
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We characterize the restrictions of boundary functions of function in

B(Q),Q =D orll, to an arbitrary Borel sub set A of 0.

To shorten formulas in the disk case, we write u = e v=e for typical

points on L = 0D, measure theoretic notions are relative to normalized
Lebesque measure bon L.
Theorem. Let b,c be measurable complex valued functions on a Borel set

A cC . There exists we B (D) such that

b(u) = w(u)c(u) o—a.e onA
If and only if ~
c(v) — b(w)b _
lim j j c(”)c(lv)_ rzu(;) ®) ) E@)do)do@) = 0
A A

For every measurable complex valued function ¢ on A such that

bo,ch e L’ (A)

Proof: Let ¥ be the space of complex valued functions on A of the form
f =Pb+gc where P,q oare Poly nominal’s .Thus b,c € 7 Define

A:f(u)—)uf(u)

On 7let D be the set of linear functional X’ on 7 the form
(f,x") =jf®da, fer
A

Where ¢ is a measurable function such that b ¢, c¢p € L2(A). Then
A'D < D.For every functional. ¥§|(4c, x’)|2 < oo Because the Fourier
coefficient of a square summable function are square summable .Thus the
hypotheses of satisfied .Condition holds if and onle if there exists w(z) =
Y0 w;z’ in B (D) such that
Jyb@) pda(w) = L w; fyu! c(w) p(w)do (W)
= limyry I§ 1w fywc() pwdo(w)
= li?f Jyw(we@) p(w)do(w)
T
fy wu)e@) p@)do(w)
For all ¢ such thatb ¢, c¢p € L?(A), that is holds.
o , 2 o , 2
Y| ,wb odo|” < X7\ [ ulc pdo]|.
Now
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2
u'bpdb| =
A

[u'bgab(r)

=13%1L !u"bqbdb = Li[{u‘sbgbdb)rjtj db(t)
ol ¢b(u)g :
:1}%1L { %Lf;’)db(u) db(t)

:1}%1.[”1 rut) 1 rut) ()P () {u)(u)ab () e )

i [ ”(“_)bu(;) (u)F () db(u)db(U)

We define the Pick class® as the set of holomorphic functions f on 17
such that f(Z)2>0,Z el
There is a one —to-one correspondence between D and B (H ) \ {1} is the

function identically 1 on ‘H if weB (U )‘ {] } if we (—OO) then

anc

f—z(1+w)/(1—w)
Is in @ in the Pick class D that is not identically zero is an over function in
particular each fin @ has on tangential boundary function defined a.e.on

(0.0).
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Section (2.2): Generalized Loewner Thermos and Hilbert Transform
with Imaginary functions:

Theorem (2.2.1):
Let f (x ) be a measurable complex valued function on a Borel subset A

of (—O0,00) .There exists f € D such that

f(x)=fo(x) ae. on A

If and only if
n [[Lo8) 200 515
lg(l)l I i ( )¢()dsdt20
Whenever,f ¢ € L’ (A) ,
Proof:

Apply with b = fy —i,c = f, + i and use the correspondence. Between D
and B (11 /{1}).

The L* theory of Hilbert transforms is sufficient for our purposes. Although
this 1s well known, we include statements of the principal results for the
convenience of the reader and later reference.

If¢ (x ) el’ (—oo, OO) , it's Hilbert transform is defined by

(H$) ) = PV~ "’()

— 00

Where PV a Cauchy principal indicates value integral:

Pt |

—x|>¢

Theorem (2.2.2):
If¢ (x ) el’ (—oo, oo) , then the limit in existsa.e . And in the metric of

L’ (—oo,oo). If

Then
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CD(x +iO)—CD(x —iO) :¢(x )
O(x +i0)+P(x —i0)=—i (Hp)(x)
ae. On(—O0,00) , where @ (x +i 0) = limwO CD(x +iy ) , whenever the
limit exists.
Let Abe a fixed Borel subset of (—O0,00) Ifgp e L’ (A) , set

1ol
(H,¢p)(x)=PV ;!g dt ae.on A.
This defines a bounded linear operator on L’ (A) with ad jointH | =—H

Theorem (2.2.3):
Letf, (x )be a measurable complex valued function on A .There exists

f €such that

f(x) = folx) a.e. on A

Re<( =il )f o, ¢>

Wheneverd,f, € L’ (A)
Proof:
We show that for any @,y € L’ (A) ,

lim”% dsdt = 7r<(HA —i[)¢,l//>2

0 ;
s eLs [&

If and only if

To this end, set

j Z)dt y #0
A

lim®(x +i¢) :%[iqﬁ(x)—i (H9)(x)]

ev0

ae.OnA in the metric of L’ (A) Therefore,

lim | | % dsd = | [hm M}p(z )dt

0 ; 0 _ ;
OSLS 1€ AR t+1¢
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= (mi(=¢ — iHx, ),
If §.f @ eLz( ) then

elojj ) fO( )¢(X)q.’_>(t)ds dt,

= ((H, il )f ¢, ¢§ n((H —i1)¢,fo¢>
=27 Re((H, —il )f$.9), .

Theorem (2.2.4):
Let (x ) be a real valued measurable function on a Borel subset A of

(—O0,00) . There exists f € @D such that

f(x)=fo(x) ae on A

eloj jfo() fO()c],’)( YB(E)ds dt,

E (9
Whenever @,f ¢ € L (A) where

E (8) = {(S,t):S,t e A and |S —t| > 8} For eache > 0.
Proof:
By Theorem (2.2.2) if@,f ¢ € L’ (A) then

eloj jfo() fO()c],’)( YB(E)ds dt,

E (9
= limle fA (IAXE(S) (S' t) fO(SSi(I;(S)) $(t)dt

—limeyo f, (Jy X5 (5, ) 22 ds) o) ()t
=7 (H \f $-9), — 7 {H 8./ ),
=27 Re(H ,f$.9),
=27 Re((H, —il )f $.9),.

Here Xg () the characteristic function of E (¢) the last equality holds because

If and only if

f, isreal valued. Thus the result follows from the.
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(1)
(i)

(iii)

A holomorphic function f* on IT is said to have an analytic continuation
across an open subset A of (—O0,00) iff =g ‘H , where g 1s holomorphic

on anset G containing [T\UA
Suppose that f € @ andf has an analytic continuation across an open

subset A of (—O0,00) .Suppose further that continuation is real valued on A

.Then we may extend f to a holomorphic function on [J U [] U A such

~ fO=f@ zeulua
Where [| = {z: Im z < 0}. The next result characterizes this class of
functions.

Theorem (2.2.5):
Let g, be a nonnegative measurable function on a Borel subset A of

(—O0,00). The following are equivalent:

There exists f € @D such that
f(x) =igy(x) a.e.On A
Whenever @, go (@) € L?(A)

j|HA®|290(x)dXSj 1812 go (x)dx
A A

Proof:
We first prove theorem under the hypothesis that g, € L (A) AL~ (A) )

We show that in this case (I) and (ii) are equivalent to.
There exists h € D such that
h(x) = —(Hpgo)(x) a.e. On A,

(ii ) = (iii )Assume(ii ), and set fy = —Hpg, forany ¢ € L° (A) N (A)
we haveg, g, € L’ (A) , SO

Re{(Hy ~ Do, 0); = 5 (Ha(fo), 0)z +5 (9, Ha(fo0)):
- % j (B(HaD) + (Ha®)D)Hpgodx
A
—— [{H(9(H.8) + (1,97 )
= (1.0 1o Joste >0
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(i ) < (iii ) Assume (iii ) , and choose h € D such that holds then.

f (Z)z%jgo(t)dﬂrh(z) ,z ell

t—z
Defines a function inD.

| :
f (x)zE-Zz {go(x)—z (HAgO)(x )}+h(x)
=ig,(x) ae on A
So (I) hold.
Conversely .Let (i ) holds and close f € @D such that

f(x)zigo(x) ae on A
Define /1 on that/] so that holds since g, is essentially bounded on A his

bounded below on AIm and exp (ih )eh ” (H) But

Y go(t)
Imh(Z)=Imf (Z )—— dt ,Y >0
Where

lim— 5
Y¢07Z'A(t—x) +Y °

And thus /1 (x ) >0 aeon (—O0,00). Therefore the boundary function of

y go(f) g go(x) aeon A
0 ae on (—00,00)‘A

exp(ih)is bounded by la.e on (—O0,00) and so ‘exp (ih) S‘ onll.

Hence
h € . Since.

) =1 (v) =521 (g0 (v) =1 (H,2,) ()}

=—(H,g,)(x) , 0eon A,(iii ) follows.
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Lemma (2.2.6):
Let  be a locally bound Borel function on A = (a,b ) let =>0beaC”

1
function with compact support in (—1,1) such that I 1¢a’l‘ =1.For each

e, 0<e<(b-a)/2, setf,(x)= [ ¢(c)(x +er)ds
OnAgz(a—i-g,b—g).ThenfgECOO(Ag) andfg(x)—)f (x) at

every point X € A where f is continuous.
Proof:

Extend @,f to(—OO, OO). By setting both equal to zero off their domains.
Then

0

S (x): j8_1¢((s —x)/g)f (S)ds X €A,

With this representation the proof become a pleasant exercise in real
analysis.

Theorem (2.2.7):
Let f be a monotone matrix function on A as a first case suppose that f is
continuously differentiable on A then.

k(x.y ):{Ef(ix))—f (v)]/(x —yx)a:xyi’ys

Is continuous on A XA . We show that

> k(4;,%4)C,C, 20

jk=l
Whenever {21, ..,ﬂ,n} c A and{cl,. ..,cn} < C .Without less of
generality we can assume that A4,,..., A are distinct.

Let X be a Hilbert space with dimX =# and let e,,...,e, be on
orthonormal basis forX . Let 4 = Zj /lej where P, = <~,ej >el.l.s the
projection of X on the span of e; ,j =1,...,n . Then 4 a self-ad joint
operator withsP (A ) C A setB =A +&Q , where

0 :<'9V>V, v=e +:-+e, And € >0
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For all sufficiently &,SP (B ) c A.Sinced <B .
f(4)<f(B)
ilj(.g)Pj(g) that AJ(.E) — 4, and Pj(g) —> P, as ¢ 0.
1
0<f (B)=f (4)=Y k(4.4 )PrOP;

=
Dividing by € , and then letting 7", we obtain

Sk (4.4 )PP, 20
Jok,

n
Pv+u= z cje;.
Then the inequality '
> k(24 )(P,OPu.u)20.

Jok=l
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Chapter 3
Factorization of Toeplitz Operators

Sec (3-1): Factorization of Non negative Invertible Toeplitz operators
Assume that S a shift operator on a Hilbert space, We write P, =1—.SS

*

for the projection of X onk =kerS". Analytic. Inner, over, and S -
Constance operators are defined relative.

Definition (3.1.1):
An operator T € B(X) Toeplitz or more precisely- Toeplitz if
S*'TS =T.

Example (3.1.2):

Let S,:(C,,C,,C,,...)—>(0,C,,C,,...) OnL’, and let T is a bounded
: 2 . . *

linear operator on L~ with matr1x[wjk ]j,k =0. Thus

T: (ao,al,az) — (bo,bl,bz) If and only if

b= wea, j=012..

k=0

The matrix of S” TS iS[Wj+1,k+1:|

0

L= 0. Hence T is an S,-Toilets operator
Js

if and only if its matrix has the form [C ;T k ] =0 for some sequence

J.k
{CM }O—Ooo

Such a matrix is called a Toeplitz matrix.

Example (3.1.3):

In general Examples of Toeplitz operators are easily constructed from
analytic operators. If A, C € B(x) are analytic, then the operators 4,C*, C*A
are Toeplitz.

ForifT =C A, thenS'TS =S'C'AS =C'S"SA=C'A=T.

To eachT € B(X) we associative a matrix of operators in

B(X): T~[Ap] jx = 0,
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Where _
A = PoSYTS*PyX j,k = 0.

Theorem (3.1.4):
LetT € B(X) and7 U {Aﬂ‘}j,k:o'
For any, f € ¥ ify3 S/ a;, then, where

Ay Ay Ay - a, bo_
Ao Ay Ay | o | b
A4, 4, 4, ... a, b,
l;roof: T

If Tf = Z:Sjbj where

b; = P SYTf = P ST XYY S*ay, =Y Ajrar, j = 0.
The some are strongly convergent, and the sequence of relation is equivalent
to the correspondence T~[Ajy] ]°-f’k=0 is clearly linear and well behaved with

respect to a djoints: if, ¢ then, T*~[A;x] 7%= Where Bj, = Ay; for all

i k>0

Theorem (3.1.5):
If T1~[Ajk] fk=0 andT2~[Bjk] ;?k=09 then, T1T2~[Cjk] szo where
Cre = zk_oAlelk, j k=0,
With convergence of the series in the strong operator topology.
Proof:
By the word decomposition
I =Y5 ,StP,S*t.
With convergence in the strong operator topology. Hence for any j,k > 0,
Cix = PoSYT,T,S*%

= P,S*T, S1P,S*IT, S*P,%
=0

l
> AuBy
k=0

An operator T € B(X) is if and only if its matrix has the form
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Ay A_; A_,..
[4j_1]5%=0 = |41 Ao A-q.. (*)
A, A1 Ao
P,S*TP,% >0
In this case 4; = 0 Il ok, 1f ] (x*)
PoTS J PO lf ] > 0

A matrix of the from(x ) is called Toepltiz matrix[A jk] . 0.Then
Js

S*TS* =T forallk > 0. Hence
. {P 0STRKTPX, if j =k
T PyTS*IPy%, if j=k
Thus that the matrix (*) where the entries are defined by (**).
Conversely, let the matrix of 7" have the form (*) then by the operators T

and S"T'S have the same matrix. Hence 7 = S"TS and T is Toeplitz.

Corollary (3.1.6):
An operator A € B(X) is analytic if and only if its matrix has the form.

4, 0 0

4 4 0
Az Al Ao
In this case _
A] =P05*]APO%, ]2 0.

Moreover, 4 is S-constant if and only if A = Ofor all j > 1, that is, the

matrix of A has the
diag{Ag, Ay, Ao, -}
Let T € B(X) be anon negative Toeplitz operator. Since 7' > 0. There exists

a unique non negative. Square root 7’ Y2 Since T is Toeplitz, S' TS =
and so for any f € (X) .

[t =(s7sp. )= (1r. ) = | 1|

It follows that there exists a unique isometry on TY/2¥ toT /2% that maps
T"? ftoT Usz for each f € (X). The extension by continuity of this

isometry to T1/2X plays a central role in what follows.
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Definition (3.1.7):
Let T € B(X) be anon negative Toeplitz operator. We set

%T = Tl/Z%
And view X7 as a Hilbert space in the inner product of X.

Theorem (3.1.8):
Let T € (X) be anon negative Toeplitz operator. The following assertions
are equivalent:

(i) T = A*A for same analytic operator A € B(X)

(i) Lowdenslager’s isometry S is a shift, operator;
(iii)  For all vectors C in some dense subset D of X.
lim (sup {(T., S"f)]: f € X,(Tf, f) = 1) = 0
Proof:
(i) — (ii) Let T = A" A, where A € B(¥) let analytic. If. c € ¥, f € X,
and(Tf,f) =1, then
2

(1o |05 |5t
< [IS™AclPIAfII? = IS Acl*(Tf, £} = IS Acl|?
§"" Ac| =0 so (iif)

2

For each n=0,1,2--- since S is a shift operator,
holds with D = X .
(iii) — (ii)Assume(iii). Claim: for each ¢ € D and n > 0.
|72 T 2¢|| = sup {KTc, S"f)I: f € GXTS,f) = 1.
To see this, note that forany f € X .
<TC,S"f> _ <T1/2C,T1/2S"f> _ <T1/2C,S;Tl/2>
_ <S;"T1/2C,T1/2f>

The claim then follows from the fact that the set of vectors 7> f, where

f €X and(Tf,f) =1, is dense in the unit sphere of X

Since we assume ||S;"g|| — O forall g € ¥, of the form g = TY%c,c € D .
Suppose next that g = T/25%¢ for some ¢ € D and K >(.Then for
nzKk,

S;ng — S;nTl/ZSkC — S;nSzlle/Zc — S;n—le/Zc
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And a gainHS;n g H — (). A routine an approximation argument shows that

(ii ) —> (i ) Let Sy be a shift operator. By the definitions of S, for all.
fex, geXx;

<T1/2S;g—S*T1/2g,f> _ <g,STT1/2f>—<g,T1/2fo> 0

S;ngH — 0 forevery g € X7 ,s0 (ii) follows.

Hence

TiSp, = S'T%, g€ X,
And Tz(kerS%) € S* . Set ¥y = kerS; Then J = T2%, € B(¥y,X) . By
the polar decomposition of an operator, /* = V*R where (JJ *)% € B(X) and

V € B(X7,X) is a partial isometry with initial space ] * X .A actually V is
and 1sometry. For,

1
kerV =X © ] *X = ker] C kerTz,
And at the same time

1
kerV € Xr= X © kerTz,
So kerV ={0}

Since S, is a shift operator, each g € X; has a unique representation

g:ZS;Kj Where {k;}y € X
0
Set
K, = ;SJVK].

This defines an isometry K that maps X into X and satisfies KS, = SK .
Define A € B(X) by
Af = K TY?%f fEX
Forany f € X
ASf = K TY2Sf = K S;TY?f = SKTY?f = SAf,
And

<77,f> _ <T1/2f,T1/2f> _
<KT1/2f,KT1/2f> _ <Af,Af>
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Thus AS = SAand T = A*A ; that is, (l) holds.

We complete the proof by showing that the operator A constructed above is
outer and Ay = PyAPyX is nonnegative. Setting M, = VX; , we obtain

AX = KT1?X = KX, = 3. @S/ M,,
And so AX reduces S. Thus A is outer. The operator R constructed above
is non negative. We show that 4, = R.If ¢ € X , then.
Aoc = PyAPyc = PyKT/?c
Let T%c =20 S%kj as in so KT%C = %& S/Vk; .Hence

Aoc = PoKTY?¢ = P, ZSijj =Vk,
0

If P, is the projection of X ontoXy, then ky = P;TY2¢c = J*c, and so
Ayc =Vky=V]'c =Rc
Therefore A, = R >0, and the proof is complete.

Theorem (3.1.9):
Let A € B(¥X) be analytic, and let C € B(X) be outer. Then 4“4 =C"C if

and only if A=BC, o
Where B € B(X) is inner and has initial space CX .
Proof:

Assume that 4" 4 = C*C Then for anyf € X,

|4 =(a°47.7)=(Ccr. f)=[crf
Hence there is a unique partial isometry B € B(¥) with initial space CX
such that 4 = BC'. For anyf € ¥,

(SB—-BS)Cf = SAf — ASf =0

Thus SB and BScoincide on Since C is outer, CX reduces S'. Therefore
g 1 CX implies Sg L CX .
Since B is zero on (CX)*,SBg = 0 = BSg forall g € (CX)' hence
SB = BS, so B is inner.
Conversely, let A= BC, where B € B(X) is inner with initial space CX .

Then BB is the projection of ¥ on CX¥ .Hence A A=C"B"BC=C"C.

Corollary (3.1.10):
Let A,C € B(X) , be two outer operators. Then 4" 4 = C"C if and only if
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A=BC
Where B € B(X) is on S -constant inner operator with initial space CX
and final space AX?

Theorem (3,1.11):
Let A, C € B(X) be outer operators, and let 4,,C, be the diagonal entries

in their matrices. If 4’ A=C"C, 4,20, andC, >0, then4 = C.
Proof:

If A" A = C"C, then by the corollary to theorem (3.1.6), where B is an
S -constant inner operator with initial space CX and finial space AX the

diagonal entries 4, B,,C, of A, B,C satisfy
A4, = B,C, Hence
A4;=C,B;B,C,<C;
Inter changing the roles of A and C, we obtain also Cg < A’, and hence

A? = C; Since A, and ¢, are non negative, 4, = C,. Since 4, = B,C,
coincides with the identity operator on CoX . Since CoX =PoCX .
CX =35 @5/ (CoX).

Thus each f € CX has the form f = ZSJK]-, where k; € CoX . Then
0

w:;y%&:;y&f

It follows that B coincides with the identity operator on C X. Since
A= BC , we therefore have 4 = C.

Lemma (3.1.12):
If A€ B(X) isouter, then

AX = 33 @S M, (4Y),
Where M,(A*) = P,AX .
Proof:
Since A is outer, AX reduces .

AX =Y3 ®S'M

Where M= P,(AX). SinceP,(A¥) is closed andP,AX € P,(AX) we
have PjAX € P,(AX) =M.
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Conversely, if g € M, then g€ AX so g = lim,,_,,, Af,, for some

0

sequence {fn}l in, Then g = Pyg = lim,,_,,Py Af,, € PAX .Thus M =
PyAX , and the results follows.

Theorem (3.1.13):
If A € B(X) is analytic, then
A=BC
Where C € B(¥) isouterand B € B(¥X) is inner with initials space CX .

For any such factorization, 44 = C"C
Moreover, we may choose the factorization so that the diagonal entry €, in

the matrix for C Satisfies C, = 0, and then the factors B and C are unique
Proof:
Applying to the operator T = A" A, we obtain an outer operator C € B(¥)

suchthat 4"4A =C"C and C, = PyCP,X > 0, there is an inner operator
B € B(X) with initial space CX¥ such that 4 = BC

Theorem (3.1.14):
Let A= BC be any factorization where C € B(X)is outer and B € B(X) is

inner with initial space CX. B"B Is the projection of ¥ onCX... There Fore?
A A=C'B'BC=C"C

Uniqueness of the outer factor, C whenC,, = 0.

It remains to show that the inner factor B also unique. If B1 ,32 are two

inner operators with initial spaceCX. Such that B,C = B,C, then B, and

B, coincide on CX. Since B, and B,are both zero on the orthogonal

complement of CX,
B; = B,. The result follows.
We give sufficient conditions on a nonnegative Toeplitz operator T € B(X)

for the existence of an analytic operator A € B(X) such that 7 = 4" 4.

Theorem (3.1.15):
Let T € B(X) be nonnegative Toeplit operator .If T > &I for some

number § > 0, then T = A" A for some analytic operator A € B(¥X).

50



(1)
(i)

(1)

Proof:
The hypotheses imply that 7 is invertible X; = ¥ , and S; = TY/25T~1/2

It follows that S;" — O strongly. So S is a shift operators, and the results
follows.

Theorem (3.1.16):
Let Ty, T, € B(X) be two nonnegative Toeplitz operators with7} < 7).

Assume that
T, = A1A, for some analytic operator A € B(X)

lim(T2 I fn> = Ofor every sequence { f, };O in X such that
n—>0
limn,k—wo(TZ(fn - fk)» fn - fk) =0 and
Lim(T,f, f,)=0
n—»0
Then T, = A, A, for some analytic operator 4, € B(X)

Proof:
The Lowdenslager is isometrey Sy, is a shift operator on X7, . We show that

ST2 is a shift operator on Xr, .

Since; <7, foreach f € X
IT £ |1° = (Tuf ) < ATf ) = T2

Hence there is a unique C € B(Xr,Xr,) such that
CT,Y?f =T,"*f ,fex.

The assumption implies that kerC = {0}, and hence the range of C” is
dense in Xr,. For each f € ¥and n > 0,

CSRT,Y2f = CT,Y/2snf = T2 f = SET, V2 f =
SECTM?f .
Thus CS';2 =ST7"C and S;:C* = C*S;lnfor all n=0,1,2,...
Since Sy, is a shift operator, S;ln — Ostrongly on X1, .Hence S;zn g—0

for each g € C*Xr, . Since the range of C” is dense in X7, St = 0 onXy,.
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Sec (3.2): Scalar Analytic operators and Extremely Properties of outer
operators
We call V € B(X) Scalar analytic if AV = VA for every analytic A inB(X).

Theorem (3.2.1):

An operator V € B(X) is scalar analytic if and only if its matrix. Where
each entry is a scalar multiple of the identity operator on X .

Proof:

If V' is scalar analytic, then V is analytic, so its matrix must further
commute with diag{B,, By, By, -.. } for every By € B(¥) and hence the
commute with all operators inB(X). Therefore the entries of scalar
multiples of the indent operator on X.

For the other direction it is enough to check that two matrices of commute if
all entries of one commute with all entries of the other. The calculation is
routine.

We state our result here but. We understand that whenever A, C € B(X) are
analytic, their matrices are

(4, 0 0 c, 0 0
A 4 0 c C, 0
AZ Al AO , CZ Cl CO

Respectively, so for all j = 0,1,2, ..., _
Aj = P,S™ APy|X

Theorem (3.2.2):

Let C € B(X) be outer, and let V € B(X) be scalar analytic. Then
et <|vaf]

For every analytic operator A € B(¥) suchthat 4"4 = C"C and every

f EX

Proof:

IfA € B(¥X) is analytic with 44 =C"C A=BC for some inner operator
B € B(X) with initial space CX. Applying lemma (3.2.6) with g=Cf, we
obtain
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(@

(i)
(iii)

Corollary (3.2.3):
If C € B(X) is outer, then

S =Y a4, n=012,.
0 0

For every analytic operator A € B(¥) suchthat 44 =C"C.
Proof:

By theorem (3.2.2). If A € B(¥) be analytic with 4" 4 = C"C . In theorem

choose V' =S fora fixed 7>0 Set f = P for an arbitrary h € X.

Then yields
IS 1CPoh|| < IS AP A
By the arbitrariness of h,

])Oc*Sn+lS*n+1C])O S ])()A*Sn+ls*n+1APO
Since P, =1— 85", we get

n n
P,C* <1 _ z SIP,S*i ) CPy < PLA" <1 _ z 51P05*1'> AP,

0 0
Since C *C.z A*_A , this is the same as
SR Py C*SI Py S CPy = Y PyA*SI PyS*I AP,

Theorem (3.2.4):
Let C € B(X) be analytic. Let {Vj}je] C B(c) be scalar analytic operators,

and let {f; }xex S X be vectors such that

vt | <[y 4f)).je s eek
For every analytic operator A € B(X) such that

A" A=C"C . Assume that:
The closure in the weak operator topology of the linear span of {V] }jE]

contains .
The closed linear span of {Po fk } LK isX.

Then C is outer
Proof:
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By there is factorization C = BA, where A is outer, B is inner with initial

space AX and 4"A = C"C claim: Bis S-constant we apply Lemma
(3.2.7) with g,, = Afy. Forallj €], k € K,

V7 8e:| = el <[y an] =77 &
Since the reverse inequality is automatic by Lemma (3.2.6) holds. The only
hypothesis in Lemma(3.2.7) that is not Cleary met is that the closed linear

span of the vectors P g, .k € K, is R M , where M = "AX the initial space

of is B.To see this, note that ), 4 = F, AF,, and hence
Pg, =P Af, =R AP f, .k € K. Since by hypothesis the vectors

P, f,,k € K span a dense subset K , we have
ke (Pogi} = PoAX = PoAX = PoM
The hypotheses of Lemma (3.2.7) are thus satisfied. By Lemma (3.2.7) B is

S -constant.
Since B is S -constant and A is outer, C = BA is also outer.

Theorem (3.2.5):
Let C € B(X) be analytic. The following are equivalent:

@ Cis outer
i) C,C, > A, A, for every analytic operator A suchthat 4”4 =C"C;
(iii) foreachk € X,
(CoCok, k) = ((C*CUk = S), k — Sf).
Moreover, if C is outer, then
(BB CiCik, k) = [AC*Clke — STAF), ke — S™f)
Forallk € ¥ and n=0,1,2,...

Proof:
(i) = (iii) Let C be outer, so CX reduces S .Fix K € X and 77> 0, the

infimum of Hck ~ 8§ gH overall geCX is attainable with g = S™""'ck .

Hence
FLCClke = S™AF), k — S™If)
= fflIck — smcf|?
= JxllCk — S"*1g||? = ||Ck — S™1S™1Ck||?
= |[Z8s/(1 - 557 I ck|” = SE||PoST k||’
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2 *
= Z8[ICik||” = (X5 ¢ ik, k).
Thus holds and (iii ) follows.
(iii) — (ii)Assume(iii), and let A be analytic with 4”4 = C"C. Then
for anykeX,
(CoCok, k) = (A" Ak — SP), k — Sf)
= Ak - SAf |

> llAk - Sgl)*

=(4;4,K K ).

Hence (i1) holds-

(ii ) = (i ) , Assume (i) C = BAwhere A is outer and B is inner with
initial space AX andC"C =A4"A4. By(ii),CgCO > A; A,. Since C=BA,
Co = ByAy, Where By = PyBPy|X satisﬁesHBoH <1 HenceC*Cy, < A*A, so

Co* C, = AO* A, and B, is isometric on AX . for any keX,

lAokll = IIBoAokll = [[PoBAok|l < lIBAokIl < [l Aokl
Therefore equality holds throughout, and so
Pvok == PoBAok == BAok

Thus B and B, coincide on A,X Then BS’ and S’ B, coincide on 4%

for any j = 0. Hence for any j = 0,
BS/A,X = S'ByA X = S/CyX.

CT = BAX = <Z®51A0%> - Z@sfcoae.
0 0

It follows that CX reduces S; that is (i) holds. This completes the proof.

Lemma (3.2.6):
Let B € B(X) be a partial isometry with initial space M . If V € B(X),VB =

BV,and g € M ,then
[7°s| <[
With equality if and only if BV*g = V*Bg.
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(i)

Proof:
B’ B1s the projection of ¥ on M ? Hence B"Bg = g and

IVigll = lV*B*Bgll = [IB*V*Bgll < lIV*Bgll.
If equality holds, then ¥ “Bg in the initial space of B”, hence V" Bg = Bh
for some h € M .Then B'V"Bg = B"Bh,V"BBg = B Bh and so
V'g=h Thus V'Bg = Bh= BV g . Conversely, if BV g =V Bg,
then

* — % < %

|"Bg|=|2v"g| <|7"¢]

And so equality holds.

Lemma (3.2.7):
Let B € B(X) be inner with initial space M .let {Vj}je] C B(X) with
V.B=BV,,je€J andlet {gk}keK C M be vectors such that

lvigkll = [|v/Bgk|,  jeJs kek
Assume that:
The closure in the weak operator topology of the linear span of {V] }jE]

contains .S .
The closed linear span of {Pygk} ek is LM .

Then B is S-constant.
Proof:
By Lemma (3.2.6)
BV'g.=V'Bgr, Jj€J, keEK
Hence by (1),
BS*gk=S*ng, keK
Act on both sides with S anduse P, =1—S"S to get
BPng=Pong, kekK
Hence by(ii) ,BX € X, and so B has a diagonal matrix. Therefore Bis
S -constant

These operators are unitarily equivalent by meant of the isomorphism
Ujk € B(%],%]) Such that

U9 > ¢, n=012,..
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The isomorphism Us, is the. Paley- wiener representation of [ 2 (R) That
is Uy, = F7'\L*(0,00) where

Fif (x) - 53 TR ()t

T
=/
— |e

21 "
Is the Fourier-Plancherel operator on L?(—o0,00) [L2(0, o) is viewed as a
subspace of L’ (—O0,00)].

Theorem (3.2.8):
Letw € L”(0) and w € L™ (—o0, ) be related by
1.
Wix)=w <x i%), xreal,
x+El

Define operatorsTy, T,, T5, Ty as above. Then for each j =1,2,3,4
Cnen = (Tj$) ", ¢, )y,  mn=012, ..
Therefore the operators1;,7,,T;,T, are unitarily equivalent by means of the
Isomorphism Ujy, j, k = 1,2,3,4.
Proof:
By the definition of7;, for any m,n =0,1,2,...

(qu.)in), ¢1(m))3€1 = Cm-n

jw(eit)eit(n—m)do.(eit) — (T2¢§n)'¢2(m))%2'
r

; 1. 1.
Changing variables with the substitution € ‘= (X — 21) / (X + 2ljwe

obtain also

Cr = jw(eit)eit(n—m)da(eit)_
r
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(1)

= (1245, 85™)x,
= (QWF¢5" F ™)y,
= (FQF ' FWF¢5", 5™,
= (P, FWF 15", ™),
= (T3¢§n)' ém))xg-
For the next to last equality we used the relation Q=F ~1PF, which is a

consequence of the Paley-Wiener representation of H2(R). The result
follows.

IfK el (—O0,00) , then the operator
T:f(x)—> [k(x—2)f(t)at
0

Is everywhere defined and bounded on L (O, OO) .where

(e0)

w(x) = j ek (t)dt

0
Examples (3.2.9):

For w (e“) = Cost = %(e” +e " ) ,we have

1/2 f n==1
Cn:{ if

0 other wise
And
X —5i x? — 1 1 ¢ 1
W) =w i = 41} =1 —3 j exte 2t gt
L 2 4 =
X+ 21 x< + 7 oo
Thus
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(i)

OlOO

2

Lo Lo
I ]2 2 OnX, = [?
0+ 0 1

2 2

T,f ;P(cost)f, f e_aez = H2(T)
Ty f(x) — fGO) =2 [ e Uf(Ddt, f € %5 = 12(0,00),

1
2
x_i
T,=P+ ‘l‘f, feH,=H(R)
2
Xt +—

P‘ <1,set

For any complex part meter P,

it 1_P2
W(e ): 2
1-2Pcost+ P
Then C, = P" n =0,+1,+2, ..., Setting it = (l—I-P)/(l—P), we find
that Re 1t > 0 and

1. , 1
x—al X +—
wlx)=w| —- ==
X+—i xXT+—
2 ke
- l(ﬂz ~1) f°° eixte—%ltldt
4 —00
Thus_ )
1 P P P
P 1 P P
z[l On %1=12

59



1 — P?
1—2Pclost+P2f'
T3=f(x)—>ﬂf(x)—z(u2

(e0)

Tf =P

f €%, = H*(I),

~1) j o ~2Hxt F(0)de, f €X; = 12(0,0)
0

x% —

—t f €%, = H(®).
x2 +%u2

ST

Tof =P+

Any number of similar examples can in principle be constructed. However,
it is typically the case that an operator is simple and ‘natural 'in new scheme
and complicated or unrecogyni zable in another. We invite the reader to try
the example

T:f(x) = [ K(x—)f()dt, f € L>(0,0) Where
K(x) = fliol y le Y dy.
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(1)
(i)
(iii)

Chapter 4
Concrete Spectral Theory

In this chapter we sketch the explicit diagonalization of a self-ad joint
Toeplitz operator when the underlying shift has multiplicity 1.

. Notion and Preliminaries. Let S be multiplication by e® on H ? (F ) , and

Let P be the Projection L? (o) of on H 2 (F) For any w € L (o) define
T(W) on H’ (F) by
T(w)f=Pwf , feH*(I)
T (W) Is S-Toeplitz andHT (W)H = HWHOO Every S -Toeplitz operator has

this for. Moreover:
T (W) is self-ad joint if and only if W is essentially real valued;

T(W)ZOifandonlyifWZ 0Oc—a.e ;
Ifac H” (F), then T(w) = T(a)*T(a) if and only ifw = |a|?c — a.e.

. Let w be a real valued function in L*(¢) .Then T’ (W) is self- ad joint with

spectrum
SP(T(W)) = [c,d], where ¢ = ess inf w infw andd = ess sup w.

If w is not equal 0 — a.e to a constant. Then T’ (W) has no point
spectrum.

Theorem (4.1):
Let w be a real valued function in L* (o) , and setc = ess inf w. For any

a, EDandZEC\[C,OO)

(T(w) —zD7Y(1—a@et) ", (1 - feit) ),
a(a,z)a(B,z)/(1 —ap)

Proof:
Where for @ € D and z € ¢\ [c,oo)

By no analyticity it is enough to Prove forz = x,x <c.
By the Lemma (4.2) for suchx
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(T(w)—x])_l :T(a(.,x))T(a(.,x))*

a(a,z) = exp (—lf eitmlog[w(e“) — Z] da)

2/Teit_g

With the principal branch of the logarithm,

Lemma (4.2):
If>6 o —a.e.Forsome> 0, then T(W) 1s invertible and

Tw) ! =T(@)T(a)* where a € H” (F) is any function such that

2
1/w=‘a‘ o—a.e..

Proof:
By no. 1(iii)) T(w) = T(1/a)*T(1/a).

Theorem (4.3):
Let w a real valued function in L” (O' ) Af wisnotequalo —a.e.. To a

constant, then 7’ (W) is absolutely continuous.

Proof:

Let T(w) = fl‘dE(l‘).For a € DsetK(e??) = (1 - &eie)_l , the
function ¢ — <E (l‘ ) P K, > is continuous on (—O0,00)and constant on

(—oo,c] ,[d,) (c=ess infw,d =ess supw)
z€C\ [c,)

X d(E(t)ka; ka)z

T (t —x)? + y?

— 00

1

= ;Im<|:T(w) ~20] K, K, >2

— ! (1—‘05‘2)_1 Ima(a,z)a(a,z)

=711 - |a|®>)"! Imexp <— j P(a, eie) log[w(eie) — z] da)

r
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= 11— |a]®)texp <— j P(af,eie) log|w(ei9)
r

] da).sin <- [ P arglw(ei®) da)

r
<t 1(1- |0:|2)_1 exp <— J P(a,e%)log|lw(e®) — x| da)
r

By Lemma (4.5) and the Stieltjes inversion formulas the function
> <E(I)Ka K, >2 is absolutely continuous on(C, d). Hence K,

belongs to the absolutely continuous sub space X, for 7’ (W) Since a € D
is arbitrary, X, = H2(T') and the result follows

Lemma (4.4):
For almost all x ,

J - log||lw(e®) — x||do < co.

Proof:
For ¢t > HWHoo ande®® € I,
¢ t—w(e'f) t+w(e'f)
jlog|w(ei9) — x| dx = j logy dy + j logy dy
—t 0 0

[t — W(eie)] log[t - W(eie)] + [t + W(eie)] log[t + W(eie)] -2t =2 K,
Where K; , is a constant, K; > —oo ? Hence

t
j jlog|w(ei9) — x| dxdo > —oo
r —t

And the result follows.

Lemma (4.5):

If ess infw <s<t<esssupwAnda €D,
t

j exp <- j P(a, ) log|w (e™?) - x|da> dx < o

S r

Proof:
The function V,(z) = Im a(a, Z2)a(a, z) is positive and harmonic on I1, so
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f_oooo V,(x)(1 + x?) tdx < o
For any fixed e'® € I . .
iy loglv(e) - x - 5] = loghw(e) — x| = 2y (¢©)
Where y(x) = {e®*:w(e'?) < x} .Thus

1re®+a .
T 0 ,
V,(z) = l)}{%l Im exp _Ej T_&log[w(e‘ )—x— Ly] do

e—l
.0 F
1 (e +a . _
- Ej - alog[w(ele) - X — Ly] da)
r

= Imexp <— j P(a',eie)[log|w(ei9) — x| — in)(y(x)(eie)]da>

= exp <— J P(a,ef)log|lw(e®) — x| da) sin <T[ J P(a, eia)da>
r

Y0

Theorem (4.6):
There is a direct integral Hilbert space

= [® X(x)du
Where X = SP (T ) , such that 7" is unitarily equivalent to multiplication

by x onx.
We shall not prove this theorem, but we include the definition of the space.

X Is a compact sub set(—OO, OO), and (1 1s a finite non negative Borel

measure on X .
For pu-a.e.x € X,X(x) . Is a separable Hilbert space.
Aclass M of ‘measureable ‘function is assumed given such that:

(M l)He elements of M are function for X such that f(x) € X(x)u-a.e
(M 2)For any f,g € M the scalar valued function x = (f (x), g(x))x

U 1s- measurable

(M3) If g isa functionon X such that g(x) € X(x)u-a.e. And x -
(f (x), g(x))x(x) is -measurable for all € M, then g € M .

(M4) There is a sequence {p ]}zo € M such that X(x) = V{p;(x):j =
1,2,..} p-a.e

There is a sequence B, such that B,.
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Function that are equal u-a.e . Are identified. The Hilbert space it defined as
the

Space of all f € M such that fxll f (x)llazg(x)du < oo in the inner product
(f,9) = [{f (0, g0y, du
In order to define the space it is thus necessary to specify a class of functions

Satisfying(M,;) — (M,).
In applications, the following result is helpful for this purpose

Lemma (4.7):
Let 4 be a finite nonnegative Borel measure on a compact set XS (—o0, ).

For u-a. e .xe X, let X(x) be a separable Hilbert space. Assume given a

sequence {q ; }1 of function on X' suchq j(x)ex(x)- For each j > 1,
and
(I) foreachj,k = 1,x - (q;(x), qx(x))x, is p- measurable, and
(ii) V{qj(x):j =1,2, } = X(x)u-a.e.
. Define M to be class of all function f on X such the
. And f(x) € X(x)u-a.e and x - (f(x), q;(x) )x(x) is {4 measurable for
Each j > 1. Then u satisfies (M1) — (M4) , and M is he only such

0

containing {qi }1
In the situation of theorem A, we define m(x) = dim X(x) u-a.e on
SP (T )We call a multiplicity function for 7 .The quantities

(sp(T), m, u) are called the unitary invariants for 7" . The terminology
is justified by the following result.

Theorem (4.8):
Let T i be a bounded self-ad joint operator on a separable Hilbert space ;

write associated triple (sp(Tj), m;, i j) as above j =1,2. Then T and
T, are unitarily equivalent if and only if (i ) SP (T1 ) =SSP (T2 ) ,
(ii) pq and 1, are mutually absolutely continuous, that is, they have the
same class of null sets, and (iil) . m; = m, pj-a.e. (j = 1,2).

Proof:

T Ts absolutely contagious andsp(T) = [c,d]. Hence if T has spectral
representation
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T = deE(x), then forany f,g € H’ (F),

<Tf,g>,= fcdx% < E)f,g >, dx.
The strategy of the proof is to use the generation's formula for resolvents to
compute this for,f = k,, g = kﬁ, a, B € D where forany o € D
ko(e??)=1—ae ) tonl.
i<E( )K,.K,)=1lim> :
dx Yioﬂ-_oo (t— ) +y2
llmylo ( < (T —=z)"Yko kg >,—< (T = ZI)"Yky, kg >3)
_lim 1 a(a Z)a(B,z)-a(a,z)a(B,2)

° <E(f)Ka’Kﬂ>2

ylo 2Tl 1-ap
1 a(ax—i0)a(B,x+i0)—a(a,x+i0)a(B,x—i0)
2mi 1-ap

= 8(B)+¢.(a)
= X X
£, ()5 () A
o ) _ 1 a(a,x—i0)
Hence, foranya € D &,(x) = a(a,x+i0) and ¢, (a) = 271 a(@xti0)
The limits a(a, x +i0) = lima(a, x + iy) exist for all x satisfying

elt+a

log|lw(e™) — x|da).

elt—q

a(a x 10) = exp (—lfr
exp(+—

e +0.'
2mi VT /Eyx elt—¢ dO'),
Where Ex = {e : w(eit) > x} as in (ii)Thus

1 ) ell+a
(@) = — = exp (—m fr 5t

- e (mi [1 5 )

By the lemma (4.9),
Gx(B)+Px(a) _ dvy .
1-ap Jr (aeDa—pe ) ke kg >120,),

Where V. is nonnegative singular Boral measure on I such that dim L (Vx) =

Index of £
Hence
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d _
— <E)kq, kg >2= $a(x)Ep(x) < ko kg >120,),
And
d —_—
<T <kg kg >,= [ x8a(x) Ep(x) < ka, kg >12¢5, dx.

Lemma (4.9):
Let £ < I'. Be a Boral set, and let

it
¢(z) ZZLmeXPKM;[Z” ijda} zeD

The Re@(z) > 0 none D, and Re@(e'?) = 0 o-a.e onI". There is a
nonnegative singular Borel measure /' on I such that

6(B) + B(a) _ dv
1-Ba j (1 —ae)(1 - pe ™) ©pED
y
We have L’ (v) =index of E
Proof:
Forany z€ D

el 4z _
Re@(z) = (2n) 'exp| Re m’jeit_ do |sin T[jP(Z, edo

E

Hence Re¢ (Z) >0 on D. By Fatou’s theorem. The sine factor tends none
tangentially to sin (n)(E (eie)) = 0o0-a.e ., and hence

Re@(eie) = 0o-a.e. By the Riesz Herglotz theorem, there nonnegative Borel
measure V' on I such that holds. Since, Red)(eie) = 0o-a. e is singular by
Fatou’s theorem.

Suppose that the index of E is a positive integer 7 .Then modulo ao null set,
E=EU....UE, where, E; = {eie: a <6< bj},j =1, ....,n and the arcs
proper and disjoint. By direct calculation,

. ibj _
_ 1 —ino(E)pn ez
?(z2) = Zm'e I elaj—z’

Hence ¢ is rational with 72 simple poles, which all lie on I" . Therefore 7 consists
of »n point masses, and so.

Conversely, let dim L’ (v) be positive integer 7. Then V' consists of 7

point masses, @ is a rational function with 7 simple poles, allonI".
ForzeD,
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argi®(Z) = m [, p(z,e")do
Where the argument is chosen in [0, T ] Passing to the boundary, we obtain
argi@(eie) = n)(E(eie) o-a.e
Since are i@(e'?) is contains except at the zero and Poles of @, E is anion of
intervals modulo o-null set. Hence by the argument of the Preceding

paragraph, L’ (V) =n=index of £ .

Theorem (4.10):
There is a unique isometry ¥ mapping H (F )onto L?(p) such that for all
aeD
(Vka) () = (@) (1 — @ela®)2((1 - ge@)2] 1,
Where { K, }aeD is as Further more:
(i) VTV ~!is multiplication by x on L?(p), and
(i) if /e L*(P)thenforalla € D,

VIH@ = [ fF) VED®) dp@
Proof:

This can be deduced from the constructions for alla, feD,
b, (a) = L ezl 1z
X T om 1-qe~ia
And so o
¢X(€)_t—j;>x(a) — p’(x)(l _ &eia) —1(1 _ Beia) -1
Then we obtain

% < E(kg kg >,=p' () [P(a,x)(1 — @e'*)*(1 — Be'?)]™?
[ (B, x)(1 — @e™)?(1— pe®)?]

Example (4.11):

Let w(eit ) = COS? then [c,d] = [—1,1], and we can choose

b(x)=—a(x)=arc cosx for—1<x<I
Thus
1
p'(x) = (1 — x?)z,-1<x<1.
Since
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2it

1 .
‘cost—x‘ =5‘1—2xe” +e
We see by in section that
1 it | 2it
|cost — x| =§|1—2xe‘ + e“t |,

1 1
Y(a,x) =272(1 — 2xa + a?)2
It follows that

1
3 -1
VK, )(x)=2*(1-2xa +a’)
o 1
=322 Un (x)a™"
n=0
Forall ¢ € D, where {U,,(x)}3 are Chebychev polynomials. If f € L?(p) then
27 [ .
V H(a) = — jf(x)(l — 2xa + a?)7 (1 — x?)2dx,
-1
a € D. Operator V diagonalizes T (W)

Example (4.12):
For fixed K > 0 consider the Wiener-Hopf operator

(Tof)(x) = j ekt f()de,  f € [2(0,00).
0
Then 7, is diagonalized by the isometric operator U, mapping I (O, oo)

ontoL?(v,) such that

2 dw
dvg(w) = — T R? on(0, o),
With

(U f)(w) = j (w cos wt + K sinwt)f(t)dt
For each f € L?(0,) N L1(0, ), ;nd

Uty (@) = j (w cos wt + K sin wt) g(w)dvg(w)
0

For each g € L?(v,) N L1 (v},), we find that
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Uk TeU ' g)(w) = g(w)

w? + k?
For each g € L?(vy).
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