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Chapter 1 
Nevanlinna and Hardy classes of vectors 

The purpose of this chapter is to set down the most basic concerning 
Nevanlinna and Hardy classis of vector and operator valued holomorphic 
function. The emphasis in the chapter is on characterizations of the 
classes and boundary behavior. After these ideas have been worked out, 
generalizations; of many familiar results from the scalar theory follow in 
a routine way. Example of such results is given in Great generality and 
completeness is not objectives of the chapter. In our choice of material 
we are guided mainly by what is needed for subsequ8ent applications. 
 We assume familiarity with the scalar theory of Nevalinna and Hardy 
classes on a disk or half-plane. What we need may be found, for example, 
in Daren, Hoffman, and Krylov. Other prerequisites from the theory of 
subharomonic functions are collected .These are given in Hille and 
Phillips. 
Let X  denotes a complex   Banach space with, norm .

x
.  

We write s  for a separable Hilbert space and .
s

 for the norm and inner 

product on .,.
s

. The norm ons . The space. Of bounded linear operator 

onE , is written  .
E

. 

Sec (1.1):Nevanlinna Hardy_orliez classes and their characterization:  
The key definitions are conveniently made in terms of harmonic major 
ants for sub harmonic functions. To begin we show how sub harmonic 
function arises in the study of holomorphic functions with values in a 
Banach space. 
 
Theorem (1.1.1): 
 If  f z  is a zoomorphic X -valued function on a region C ,then 
each of the functions listed below is sub harmonic on: 

(i)  log
x

f z , 

(ii)  log
x

f z , 

(iii)   0
p

x
f z for p , and 

(iv)   log ,
x

f z  , where   is any no decreasing convex function ,   

Here  log max log ,0 0 log0t t fort and    
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Proof: 
 We show that  log

x
f z  is sub harmonic on. Let  ,D a r , and let 

 p z  any polynomial such that    log
x

f z Rep t  on  ,D a r .Then 

    exp 1
x

p z f z   on  ,D a r .By the maximum principle (Hille 

and Phillips), the same inequality extends to  ,D a r , and therefore 

   log
x

f z Rep t  on  ,D a r . Hence  log
x

f z  is sub harmonic on
. 
Once it is known that  log

x
f z  is sub harmonic, it follows by standard 

properties of sub harmonic functions that all of the functions listed in the 
theorem are sub harmonic. 
 
Definition (1.1.2): 
 Let  be any region. 

(i) A holomorphic X -valued function  f z  on  is of bounded type on  

if  log
x

f z  has a harmonic major ant on. The class of all such 

functions is denoted  xN  . 

(ii) If   is any strongly convex function then by  x ,K  we mean the class 

of all holomorphic X -valued functions  f z  on such that 

  log
x

f z   has a harmonic major on. 

(iii) We define    ,x xN 
  K , where the union is over all strongly 

convex function . 
(iv) By  xH

   we mean the set of all bounded holomorphic X -valued 
functions on. 
The sets  XN   and  xN

   are called Nevanlinna classes, and  x ,K  
is aHardy-Orlicz class. The term ‘bounded type' comes from the property 
expressed in Theorem (1.1.5) below. 
When X C  in the absolute valued norm, we droop the subscriptX , and 
write simply        , , ,N N H

    K  for the classes. We refer to 
this as the scalar case 
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Theorem (1.1.3): 
For any region  and strongly convex function  , xH   ,  ,x xN

K

and  xN   are linear spaces and  

                           ,x x x xH N N
       K .                       (1) 

Proof: 
 We use the elementary inequalities 
                                  log log logxy y    ، 

                         log max log 2 log log log2x y x x y        
In the proof 
It is clear that  xH

  is a linear space. 

Let ,, xf g K  and let a.Then 

                  log log log logx x xf f M f K           
For constants 0M   and 0K  by properties of a strongly convex 
function since  ,xf  K , the right side has a harmonic majorant is 

.Hence  ,xf   K .Examining separately the cases    
x x

f z p z  

and    
x x

f z g z . We see that 

                       log log 2 log 2x x xf g f g       . 

It follows easily that  ,xf g   K  and so  ,x K  is linear space. 

The proof that  xN
   is a linear space is straightforward once it is 

known that for any two strongly convex functions 1 , and 2  there exists 
a strongly convex function   such that 1  , and 2  .To see this 
,result that a convex function is the integral of a no decreasing function. 
By the properties of a strongly convex function we can write 

                       2

x

j px g t dt c x


    , 

Where jg  is nonnegative and no decreasing on    , ,g t  as

t, and 0, 1,2jc f  . Constant in any way a nonnegative and no 

decreasing functiongo ,  such that  Q t  as 1,t g g   and

2g g  on ,  , and    1 2g t g t   for all realt . These conditions. 
Then in a straightforward way we see that 
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                                  ,
x

x g t dt x


   , 

Have the required properties. It follows that  xN
   is a linear space. 

The fact that  xN t  is a linear space follows from the inequalities  

                           log log log
x x
f f x    , 

                        log log log log2
x x

f g f g  


   , 

Which hold for any  , 2f g N   and. 

The first two inclusions in are obvious. If  xf n   then  ,xf  K  

for some strongly convex function . Choose 0   such that   / 1t t   

for t a .Then  log logx xf f a    .Therefore  xf N   and 

the third inclusion of follows. 
 
Theorem (1.1.4): 
 Let f  belong to one of classes      ,, , xH N

  K  or  xN   for 
some region. 

(i) If h is holomorphic on a region   and  h  , then f h  belong to 
the corresponding class on   
(ii)If   is a region contained is .then f   belongs to the 
corresponding class on  . 
Proof: 
 The assertions are immediate from the definition of the classes. 
 
Theorem (1.1.5): 
 Let f  be a holomorphic X -valued function on. 

(i) A sufficient condition for f  to belong to  xN   is that /f g u , where 

 xg H   and u  is a scalar valued holomorphic function 0 1u   on
. 

(ii) If  is simply connected, then the sufficient condition of  t  is also 
necessary. 
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Proof: 
   i Let /f g u  in  i .We can assume without loss of generality that 

1
x

g  on.Then 

                         log log log 1/ log
x x
f g u u     

On. Since log u  is harmonic,  xf N  . This proves  i . 

 ii  Assume that  is simply connected and  xf N  .Let  i  be a 

harmonic Majorant for log
x
f . For each disk  ,D a y  there is a 

holomorphic function k , on  ,D a r  such that ,a rk h  on  ,D a r .By the 
monodromy theorem (Rudin), there a holomorphic function k  on  such 
that Rek k  on . 
Then /f g u .where kg fe  and ku e  have the required properties. 
For example, 
                              log log Re

x x
f f h k    

And so 1k
x x

g fe  . The theorem follows. 

When the region   is a disk or half-plane, the defining properties for the 
Nevanlinna and Hardy-Ortiz classes have useful equivalent forms. 
 
Theorem (1.1.6): 
 Let D  or, and let X  be a holomorphic.-valued function on. 
The following are equivalent: 

(i) f  is of bounded type, that is,  xf N  ; 

(ii) log
x
f has a harmonic major on ; 

(iii) According as D or , 

                                
0 1
sup log i

x
t

f re d 


                                 (2) 

Or 

                            
 
 220

log
sup

1
x

p

f x iy
dx

x y



 




  ;                              (3) 

(iv) /f g u Where g is a bounded holomorphic X -valued function on 
and u  is a scalar valued holomorphic function such that 0 1u   on. 
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Proof: 
 The equivalence of  i  and  ii  is by the definition of the classes 

 xN   concerning  iii  see the criteria for the existence of harmonic 

major ants and for  iv  use Theorem (1.1.5). 
 
Theorem (1.1.7): 
 Let D  or, and let  be a strongly convex function. If f  is a 
holomorphic X -valued function on ,then the following are equivalent: 

(i)  ,z xf  K ; 

(ii)  log xf   has a harmonic major ant on ;   

 iii  According as D  or, 

                             
0 1
sup log i

xr
f re d 

  

                                 (4) 

Or 

                         
  
 220

log
sup

1
x

y

f x iy
dx

x y

 

 




  ;                           (5)  

  iv  Same as iii , but with ‘ log ’replaced by ‘ log" 
Proof: 
 The equivalence of i , ii  and  iii  follows from the definition.and the 
criteria for the existence of harmonic major ants since 
                       log log log 0x x xf f f       

 iii Is equivalent to  iv . 
 
Theorem (1.1.8): 
 Let D  or, and let f  be a holomorphic X -valued function on 
.The following are equivalent: 

(i)  xf N  ; 

(ii)  ,xf  K   for some strongly convex function ;   
(iii) /f h v , whereh: is a bounded holomorphic X -valued function on  

and v  is a scalar valued outer function such that 0 1v   on. 

Moreover, in the case    ,D i iii  , are equivalent to: 
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(iv) The function   
0 1

log i

x r
f re

 
are uniformly integrable with respect to 

normalized Lebesgue measure   on. 
See the definition of a uniformly integrable family of function. 
Proof: 
The equivalence. Of  i  and  ii is by the definition When D , the 

equivalence of  ii  and  iv  follows from a theorem of de la Vallce 

Poussin and Nagumo. It remains to show that  ii   and  iii  is 
Equivalent. It is sufficient to treat the case  since the other case then 
follows is by conformal mapping. 
Assume  iii  Without loss of generality we can further assume that 

1xh   onD. Since v  is an outer function, 

                         log log log 1/
x x

f z h z v z     

                                              log , logit itv z p z e v e d


    

OnD. The family consisting of the single function  log it

x
v e . In 

 1L   is uniformly integrable, so by the theorem of de la. Vallee Poussin 
and Nagumo, there is a strongly convex function  such that  

                                log itv e d 


   

By Jensen's inequality (Rudin), 

                            log , logit it
x

f z P z e v e d  



 
  

 
  

                                                  , logit itP z e v e d 


   

And hence 

                          log i i

x
f re d e  


  

                                   , logi it i it itP re e d e v e d e   
 

   

                                log it itv e d e 


  . 
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It follows; that   log f x   has a harmonic Major ant. Therefore 

 ,xf DK   and (ii) holds. 
            Assume (ii) trivial case 0f  .It is easy to see that the function 

   
x

u z f z  Satisfies the hypotheses of the Szegö-Solomentsev 
theorem .The inequality in the second part of that theorem may be written 
                                       /

x
f gS S  , 

Where g is a scalar valued outer function and ,S S   are scalar valued 
singular inner functions. By our assumption. (ii) And the third part of the 
Szegö-Solomentsev theorem, S . Is a constant of modulus 1. Choose an 

outer function v   such that 0 1v   and 1vg   onD. Settingh vf , we 

obtain /f h v as required in iii . 
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Sec (1.2): Hardy classes and Fatou's lemma: 
We define if    ,

p
x xH D DK , where   ,0ptt e p    . The class

 xH D  has previously been defined 
  
Theorem (1.2.1): 
 Let 0 p   is a holomorphic f -va1ued function onD, 
Then the following are equivalent: 

(i)  p
xf H D ; 

(ii) p

x
f  has  harmonic major ant on D; 

(iii) 	∫ ห݂൫݁ݎఏ൯หܲܺ
	
 		ߪ݀	 < ∞ழழଵ

௦௨  
Proof: 
 By Theorem (1.1.1), 

p

x
f  is subharmonic onD. It is easy to see that 

 pXf harmonic majorant onD. Hence the result follows from the 

definition of  p
XH D  and the condition for the existence of a harmonic 

majorant for subharmonic function on D . 
For each  ,0p

Xf H D p  ,set 

‖݂‖ = 	൭නห݂൫݁ݎఏ൯หܲܺ

	



൱ߪ݀	
ଵ ⁄

ழழଵ
௦௨  

Since   p
X

f z  is sub harmonic on D we can see also write this as  

                              
1/

1
lim

p
di

p r X
f f re d 




 
  

 
 . 

For  Xf H D  set.  

                                   sup
xzD

f f z

 .  

As in the scalar case (Duren), we define two kinds of Hardy classes or. 
The upper half-plane.  
First kind. Let ,0p

XH p  be the set of all holomorphicX .-valued 
functions F  on  such that  
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1/

0
sup

p
p

p Xp
F F x iy



 

 
   

 
 .   

The class  XH
   is as previously defined. For any  XF H    

                                         
0

sup
xp

F F z



 . 

 Second kind. Let  ,0p
x p  K  be the set of all holomorphic X -

valued - functions F  on  such that p
xF H where   is the mapping 

of D on  given by  
                                      : 1 / 1w i w w    .  

For each  p
xF K  set 

                                   
pp

F F   .  

 
Theorem (1.2.2): 
Let0 p  . If F  is a holomorphic X  -valued function on   then the 
following are equivalent:  

(i)  p
XF K ;  

(ii) p

X
F  has a harmonic majorant on ; 

(iii) 
 
 220

sup
1

p

X

y

F x iy
dx

x y



 




  . 

Proof: 
 The equivalence, of  i  and  ii  follows from Theorem  p

X K  and the 

definition of  ii and the equivalence of D and is by theorem of Flett and 
Kuran. 
 
Theorem (1.2.3): 
 If0 p  , then  

                  X XH D N D   And      p p
X X XH N    K . 

Proof: 
 The inclusion follows easily from definitions and characterizations of the 
classes given above.  
From now on we assume that X either Hilbert space E  or the space

 R E  of bounded linear operators onE . 
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In this section we prove version of Fatou’s theorem on the existence of 
nontangential limits at boundary points. Boundary behavior in general is 
discussed latter. 
FATou's Theorem i  each f  in  H D

E  has a nonangertial limit 

                                       lim
i

i

z e
f e f z






 . 

. .ae . In the strong topology ofE . 
 ii  Each F  in    H D

R E
 a nontangential limit  

                                          lim
i

i

z e
F e F z






  

. .ae  In the strong operator topology on  R E .  
We digress briefly to review some notions from measure theory. As this 
material is widely used and well generally known, we merely give and 
state the facts, we need 'without proof.  
Let  , ,A uF  be a measure space. A E -valued function f  on A is 

weakly measurable if  . ,f a
E

 is measurable for eachaE . A  R E -

valued function F  on A is weakly measurable if  . ,F a b
E

 is 

measurable for all ,a bE .  
 Let fg  be weakly measurable E  -valued function, and let ,F G be 
weakly measurable  B E -valued function onA. Then Ff  is a weekly 

measurable E -valued function, Fg is a weekly measurable  R E -valued 

function, and      . , . .f g f
E,, E

 and     
.F

R E
 are measurable scalar 

valued functions onA.  
Let f be a weakly measurable E -valued function and F  a weakly 
measurable  B E -valued function on A such that  

                      
A

f d  E
      And           

A

f d  B E
. 

We define 
                         

A

fd e           And       
A

Fd C  , 

And so 
                          , it itf z p z e e d 



  .                                         (6) 

Let E  be a countable dence in E  .  By the scalar version of Fatou's 
theorem, there is a   -null set N L  'such that 
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                          lim ,
i

it it i

z e
P z e e a d e a



  




   E E
                 (7) 

Nontangentially for each \ie N   andaE . 
Fix \ie N  .  Let D be an open triangular sector in D with vertex ie 

given 
 <٠ ، D,choose aE  such that    /2ie a  

E
. By (6),  

                      ,i it it if z e p z e e a e d   


     E
E

. 

                                            , it it iP z e e a d e a  


    E E
. . 

Hence by (7), 
                          limsup 2

i

i i

z e
z S

f z e e a


   



   
E E

. 

By the arbitrariness of    , 0if z e  
E

 for , iz S z e  . 

We thus obtain  i  with    i if e e   for all \ie N   

(i) Let E  be as above, and apply  i  to  F z a for each fixedE . Since  E  is' 
countable,  there , is a  -null set N such that 

                                    lim
i

i
az e

F z a e





   

Exists nontangentially for all \ie I N  andaE .  
 Fix \ie N  . Define  0

is e   on E E  by 

                        ,
0 , , , , ,i i

as e a b e b a b  
E,,

E   

For any 1 2 1 2, , ,a a b b E , 

                 ,
0 : 1 0 2 2, , , ,i is e a b s e a b   

                            1 1 2 1 2 2lim , ,
is e
F z a b b F z a b


   

E E
 

                        1 1 2 1 2 2F a b b F a a b
 

   
E E E E

. 

Therefore  ,
0 , ,is e    has unique extension by continuity  ,, ,is e    to

E E . By construction. 
                                  ; , lim ,

i

i

z e
s e a b F z a b








E
 

Nontangentially for all ,a bE . Routine arguments now show that 
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 , ,is e    is a bounded sesquilinear form on E  with s F


 . Hence 

there is an operator    iF e B E  such that  
 

iF e F



R E

 and 

                         , , , ,i is e a b F e a b a b  
E

E . 

It follows that    iF z a F e a  nontangentially in the norm of E   for 

allaE . Since  F z  is bounded onD . The same holds for allaE . The 
result follows. 
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Chapter-2 
Bounded functions and Hardy classes 

 
Sec (2.1): Boundary Behavior of bounded functions:  
The boundary properties of vector and operator valued functions of 
bounded type are very similar to the scalar theory. The most serious loss 
is that in the case of operator valued functions, Fatou's theorem fails in 
the norm topology However, as we have seen Fatou'stheorem holds 
relative to the strong operator topology, and this is an dequate substitute. 
 
Theorem (2.1.1): 
 Let X  E  or  R E . For each  Xf N D  a nontangenrial limit  

                                    lim
i

i

z e
f e f z






                                           (1)  

Exists . .ae  . On  in the strong topology if X  E  and strong operator 
topology if  X R E .Also, for X  E  or  R E ,  

                                  lim
i

i
XX z e

f e f z





                                       (2)  

Nontangentially . .ae . On. Moreover, if 0f   onD, then 

                                      1log i

X
f e L                                        (3) 

 Proof: 
 Assume 0f  . By, Theorem (1.1.6) iv , we may further assume that f  
is bounded onD. Then the existence of a nontangential boundary 
function (1) follows from Fatou's theorem. We obtain (3) from the 
Szergo-Solomentsev theorem applied to the function    

X
u z f z   

.(When X  E (2) is clear. Ii remains to prow; (2) when  X R E

.Choose a  -null set N such that for each  \ ,i ie N f e   exists, 
and is nonzero and  

                        
 

 
 

lim , log log
i

i i i

z e
r

P z e f e d f e


  


 B E R E
      (4) 

nontangentially.Fix \ie N  , and let S  be a triangular sector in D with 
vertex ie . For all z D , 
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                            log , logi i
X X

r

f z P z e f e d     

Hence by (4), 
                                      

 
limsup

i

i

z e
z S

f z f e








R E R E

. 

For any , 1a b a b  
E

E, E , 

                             
, lim , liminf

i i

i

z e z e
z S z S

f e a b f z a b f z
 



 
 

 
E R EE

 

By the arbitrariness of  a  andb, 
                        

 
   

liminf
i

i

z e
z S

f e f z








R ER E

. 

Therefore, 
                           

 
   

lim
i

i

z e
z S

f e f z








R ER E

. 

Since the sector S  is arbitrary, the result follows. 
 
Theorem (2.1.2): 
 Let X  E  or  R E . For each   Xf N  , a nontangential limit 

                           lim
z x

f x f z


                                                     (5) 

Exists .ae . On  ,   in the strong topology ifX  E , and strong 

operator topology if  X R E .Also, for X  E or  R E . 

                                   lim
X Xz x

f x f z


                                        (6) 

Nontangentially .ae . On  ,  . Moreover, either 0f   on  or 

                                    
 
2

log
1
f t

dt
t






 .                                         (7)  

Proof: 
 The mapping    : 1 / 1w i w w     takes D onto  and  \ 1  onto

 ,  .It is conformal at all points of  \ 1D . We thus Obtain Theorem 
(2.1.2) from Theorem (2.1.1) by a routine change of variables. 
 
Theorem (2.1.3): 
 LetX  E  or  R E , and let  cf.) be a strongly convex function. 
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(i) If  Xf N D , then  ,Xf DK   if and only if 

                            log i

X
f e d 



 .                                      (8) 

In this case, 

                           1
lim log logi i

r X X
f re d f e d    


 

  .      (9) 

(i) If X  E  and  lim 0t t  , then also for each  ,f D EK  

                          1
lim log 0i i

r
f e f re d  




  E
.                        (10) 

(ii) Assertion fails if E  is replaced by  R E . 
Proof: 
  i  Let  Xf N D  and 0f  . If  ,Xf DK , then by Theorem (2.1.2), 
and Fatous's lemms. 

               1
log lim logit it

rX X
f e d f re d   


 

   

                                            1
lim log it

r X
f re d 




           (11)   

Thus (8) holds. 
Conversely suppose that (8) holds. For all z D  ، 

                                      log , logit it
X X

f z P z e f e d


  . 

 By Jensen's inequality (Rudin)  
              

           log . logit it
X X

f z P z e f e d  


  . 

Hence for0 1r  , 

    log i i

X
f re d e  


  

             , log logi it i it it it it

X X
P re e d e f e d e f e d e     

  

   . (12) 

A similar argument with “log” replaced by ”“log  yields 

                            log logi it

X X
f re d f e d    

 

  , 

Whereby (8) the integral on the right is finite .In particular,  ,Xf DK  
by Theorem (2.1.2). Moreover.we obtain (9) by combining (11) and (12). 
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 i  Let  , , 0f D f EK , and assume that   0   , where

   limx x   . Fix a sequence , 1r   and set    ,i i
tf e f r e   on 

 for each 1,2,3,n Let 0t   be given. By (8) there is a 0   such 
that    and  
                              log f d  



 E
                         (13)                            

For every Borel set with   b   .By Egoroff’s theorem we can 

choose   such that      and 0nf f 
E

 uniformly on \ 

.Since   0   ,   log 0nf f  
E

uniformly on \ , and so 

                                  
\

lim log 0nn
f f d 


 

  E
.          (14)                           

By the definition of a strongly convex function there exist constants 
0M   and 0K   such that    log2t M t K     for ll realt . Then 

for all 1,2,3,n , 

                     1log log log2
2n nf f f f 

         E E
 

                                          
1log
2 nM f f K

        E
 

                                             max log , log nM f f K  
E E

 

                                           log log nM f f K     E E
.  

-a.e .on  .Since  . 
                         log logn nf f d M K M f d    

 

    E E
 

By (13). By (9) and (13), 
                 limsup log n

n
f d 

 
 E

 

                        
\

lim log liminf logn nn n
f d f d   

 
  

  E E
 

                      
\

log logf d f d   
  

  E E
 

                  log f d 


  E
 . 

Therefore for all sufficiently largen , 
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                          log 2nf f d M K  


   E
. 

By the arbitrariness of ,s , 

                               lim log _ 0nn
f f d 




 E
.        (15)                                    

Combining (14) and (15), we obtain (10) first for r  tending to 1 through 
the sequence nr I  and then as asserted by the arbitrariness of the 

sequence nr I . 
This completes the proof. 
 
Definition (2.1.4): 
 LetX  E  or  R E . We write    , p

X XN H  . For the classes of 

boundary functions of functions in    , p
X XN D H D  . We define 

   , ,p
X XN R H R  similarly from    , ,p

X XN H   

The mapping    if z f e from  XN D  to  XN   is one-to-one and 

linear. If        ,F z G z N D
R E

and    f z N D E , then    F z G z  is 

in    N D
R E

 and has boundary function    i iF e G e  , and    F z f z in 

 N DE  and has boundary function    i iF e f e  .we caution that there is 
more. Here than meets the eyes since multiplication is not continuous in 
the strong operator topology. However; Theorem (2.1.1), we can reduce 
the assertions to the case of bounded then they are easily proved. The 
situation for  XN   and  XN R  is similar. 
It is not easy to derive-the main facts concerning boundary behavior for 
the Hardy classes. 
 
Theorem (2.1.5): 
 Let X  E   or  R E  

(i) For      0 , p p
X X Xp H N L       ,  

(ii) If  0 p  , and  p
Xf H D  then  

                           lim
P pp i i

P r I X X
f f re d f e d  


 

   . 

(iii) If  Xf H D , then 



19 
 

                               
1

limmax sup i
Xr z r X

f f z ess f e
   
   

 
 
 
Proof: 
 (i) For 0 p  this follows from, Theorem (2.1.3).with   ptt e  . The 

inclusion      p
X X XH N L       is clear, and we obtain the reverse 

inclusion, from the result. 
(i)  Apply Theorem (2.1.3)   ptt e  . 

(ii) The first equality follows from the definition of f


  and the maximum 
modulus principle (Hille and Phillips). Another application of the results 
yields 
                                     sup i

X
f ess f e




 . 

This inequality is also a consequence of the Poisson representation in 
Theorem (2.1.3) below. The reverse inequality follows from (2). 
 
Theorem (2.1.6): 
 If  ,0pf H D p  E  , then 

                                 
1

lim 0
pi i

r
f e f re d  




  E
. 

Proof:- 
 Apply Theorem (2.1.3) with   ptt e  . 
 
Theorem (2.1.7): 
 Let X  E  or  R E . 

(i) If 1 P , then  XH D  is the subspace of  p
XL   consisting of all 

functions  if e  in  p
XL   such that  

                           0, 1,2,3,i if e e d j  


  .            (16)                     

(ii) If  ,1p
Xf H D p  , then for all z D , 

                                ,
1

i
it it

it

f e
f z d P z e f e d

ze



 
 

 
  .   (17)                   

The integrals in (16) and (17) re taken in the weak sense. 
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The two formulates for  f z  in (17) are called the Cauchy and Poisson 
representations, respectively. 
 
 
Proof: 
 We take the result as known in the scalar case (Duren; Hoffman ) If 
 f z  belongs to  ,p

XH D I p  , then the boundary function  if e  

belongs to  p
XL   by Theorem (2.1.1) .Then (16)and (17) follow by 

applying the scalar version of the theorem to the functions  ,f z c
E

 

when X  E  and   ,f z a b
E

 when  X R E  for arbitrary , ,a b cE . 

Conversely, let  if e  be a given function in  p
XL   satisfying (16). 

Then since  

                                 1 , ,
1 1

it
it

it it

zeP z e P z e
ze ze   

 
. 

There is a function  f z  on D satisfying (17) .The first representation of 

 f z  in (17) shows that  f z  is holomorphic, and by familiar properties 

of the Poisson kernel the second implies that  f z  is in  p
XH D . It 

remains to show that the boundary function of  f z  is the given function 

 if e .For definiteness suppose thatX  E . It is enough to show that for 

a countable dense set of vectors cE .the boundary function of 

 ,f z c
E

 is equal to  , -a.eif e c 
E

 . This follows from the scalar 

version of the theorem. The case  X R E  is treated similarly.  
 
Theorem (2.1.8): 
 Let X  E  or  R E  . If 1 p   , then  p

XH D  and  p
XH   are 

Banach spaces (the norm in  p
XH   is that of  p

XL   . The mapping 

   if z f e  is an isometry from  p
XH D  on to  p

XH  . 

Proof:- 
 This results may be obtained as a corollary of Theorem (2.1.3). 
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Section (2.2): Hardy classes on the disk and half plane: 
The scalar theory for the half-plane is given in Duren [1970], Day and 
McKean [1972], Hoffman [1962], and Krylov [1939]. As in the disk case, 
vector and operator generalizations of many theorems follows in a 
straightforward way from the classical theory and results. The results 
stated below present no unusual difficulties, and the proofs can be safely 
omitted. 
 
Theorem (2.2.1):- 
.let X  E  or  R E . If  p

X ,1g p   K , then  

                                        
 2 2

, 0
g tyg z dt y

t x y





 
  .   (18)    

                    
Theorem (2.2.2):- 
 Let X  E  or  R E  and  1,fixp  ’ 

(i) If  g z  is  p
XH  , then the boundary function  g x  to  ,p

XL   , 

                                   1 , 0
2

g t
g z dt y

i t z





 
 ,        (19)                              

And  

                                
 10 , 0

2
g t

dt y
i t z





 
                     (20)                        

(ii) Conversely let  g x  be a given function in  ,p
XL    which satisfies 

(4-27). 
Then (18) and (19) define one and the same function  g z  on  ,g z , 

belongs to  p
XH   , and its boundary function is the given function. 

  
Theorem (2.2.3): 
 Let X  E  and  B E  fix  1,p  . Then  p

XH   and  p
XH R  are 

Banach spaces, and the mapping    g z g x  is an isometry from 

 p
XH   onto  p

XH R . 
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The norm in  p
XH R  is that  ,p

XL   . A similar result holds for 

 p
X K  and  p

X RH , provided that norm in  p
X RH  is defined by  

                                        
 

1/

2

1
1

pp

X
p

g x
g dx

z x





 
 

 
 
 ,  

If 1 p   and  

                                   sup
xx

g ess g x
  
 . 

If p. 
The case 2p   and X  E (tractable to the Plancherel theorem and Paley-
Wiener representation. 
 
Theorem (2.2.4): 
(Planchearel Theorem).There is an isometry ˆ:F FF  of  2 ,L  E  

onto itself such that for each  2 ,F L  E , 

                                  1ˆ lim
2

A
i

A
A

F x e F t dt


 




   

And 

                                  1 ˆlim
2

A
i

A
A

F x e F t dt


 




   

With convergence in the metric of  2 ,L  E  . 
 
Theorem (2.2.5): 
 (Palley-Wiener Representation). Given  , 0,Xf L  ,define  

                                      
0

1 , 0
2

itzF z e f t dt y




  .  

Then the mapping :U f F  is an isometry from  0,pL E  onto  pH E

. If f  andF . 
Are related in this way, then for each 0y  , 

                            0,1lim
2 0, 0,

yxA
ixt

A
A

e f x x
e F t iy dt

x







   


  

With convergence in the metric of  2 ,L  E . 



23 
 

In particular,  pH E   is a Hilbert space which is naturally isomorphic 

with  2 0,L E . 
Theorem (2.2.6): 
For any F  pH E ∫ ݔ)ܨ| + 2|(ݕ݅

E
ஶݔ݀

ିஶ , is a nonincreasing function of

0y  . For any  , pF G H E . 

                                2 0
, lim ,

r
F G F x iy G x iy dx






   E
 

And 

                                      2

0
lim 0
r

F x iy F x dx





   E
. 
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Chapter-3 
Operator Valued Inner and Outer Functions 

In this Chapter we  construct an inner outer factorization theory for   
operator valued functions that are of bounded type on  a disk or half-
plane. The theory is less complete than in the scalar case, but it retains 
many of the characteristic features of the classical situation. In the case of 
bounded functions we obtain our results from the factorization theory for 
Toeplitz operator. Unbounded functions are handled with the aid of scalar 
mollifies. We characterize outer functions in terms of extremal properties. 
In particular, E  always denotes a. separable Hilbert space, and D and  
arc the open unit disk and open upper half-plane. 
Let D or. 
 
Section (3.1)Inner and outer functions with Beur ling|-lax theorem 
and canonical factorization functions 
 
Definition (3.1.1): 
 If    A H 

R E
,then: 

(i) A is inner function if the operator  
                                         2: ,T A f Af f H  E .                     (1) 

Is a partial isometry on  2H E ; 
(ii) A an outer function if  

                                2 2: MAf f H H    E                               (2) 

For some subspace M  ofE . 
We use a scalar mollifier to extend the definition of an outer function to 
allow for unbounded functions. 
 
Definition (3.1.2): 
 A holomorphic  R E -valued function F  on  is an outer   function if 
there is a bounded scalar valued outer function 0   on  such that F  
is bounded in the sense of  Definition(3.1.1). 
The boundary function of an inner (resp. outer) function is also called an 
inner (resp.outer) function. The function identically zero is both inner and 
outer by DefinitionC. 
 
Theorem (3.1.3): 
 In this scalr case except for the function identically zero, the classes of 
inner and outer functions obtained from Definitions (3.1.1) and (3.1.2) 
coincide with the classes obtained from the classical definitions. 
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The classical definitions and properties of inner and outer function are 
given in Duren [1970] and Hoffman [1962]. 
Proof : 
 For definitions take D . In the scalar case,  a function A in 

 , 0H D   Is inner in the sense of definition (3.1.1) if and only if

2 2
, ,f Ag f g . Or what is the same thing, 

                              2i i i i iA e f e g e d f e g e d     
 

  . 

For all  2,f g H D .This holds if and only if   1 -a.eiA e   , that is, 

A is inner in the classical sense. 
The equivalence of the two definitions of an outer Lunction follows from 
Beurling's theorem (Duren) in the case of bounded functions. The general 
case is easily reduced to this case. 
The canonical shift operators on  2H DE  and  2H E are defined by 

                                  2:S f z zf z on H D E                           (3) 
And  

                                2: z iS f z f z on H
z i


 
 E .                    (4)  

These operators are unitarily equivalent by means of the isomorphism. 
Therefore the results for the operator 
(3) Transfer to analogous results for (4). In either case, D . Or, we 
set  
                      0ker and 1S P SS   K . 

By the Wold decomposition, 0P  is the projection of  2H E  onK   

each  2H E  has an expansion 

                                      0
0

j jf S PS f


                                         (5) 

Which converges in the metric of  2H E .The expansion (5) also 
converges pointwise on   in the norm of and is easily identified -in 
classical terms. 
 
Theorem (3.1.4): 
 i When ,D K  is the space of constant function in  2H E , that is 

with an obvious identification, K = E . For each  2f H D E , (5) 
coincides with the Taylor expansion 
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0

,ijf z a z z D


  . 

 ii When , K  is the space of function of the form  1/2 /c z i   , 

wherecE . For each  2f H E  coincides with the expansion 

                       
1/2

0
,
j

ja z if z z
z i z i

       
 , 

Where 0 1, ,a a  are the Taylor coefficients of the function  2g H D E

such that         11/2 /f z z i g z i z i      for all z. 
 
Corollary (3.1.5): 
 A subspace M  of  2H E  reduces the canonical shift operator S  if and 

only  2
MH M  for some subspace M  ofE . 

The next result enables us to translate many theorems on operators, such 
as the theorems for Toephtz. Operator::, into analogous theorems on 
operator valued function. 
 
Theorem (3.1.6): 
 Let S  be the canonical shift operator on  2H E . Let    A H D

B E
 and 

define  T A  on  2H E  by (1). Then: 

(i)  T A   is Sanalytic in this  sense of 1.6, and every S -analytic operator 

on  2H E  has this form؛ 

(ii)  T A is S -constant in the sense of 1.6 if and only if  A z  const. on 
; 

(iii)  T A  is s-inner (rep. S -outer ) in the sense of 1.6 if and only if A  is an 
inner (resp. outer) function؛ 

(iv)  T A  Both S -inner and C-constant if and only if   0A z A  on where 

 0A B E  is a partial isometry. 
These results are straightforward, and we omit the proofs.  
It turns out that. Any.  B E -valued inner function A does all of its 
work on a subspace M  of E  and is trivial on the orthogonal complement 
ofM . This subspace if. Denoted  inM A . The formal definition and key 
properties are. Given below. 
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Theorem (3.1.7): 
 Let A be a  B E -valued inner function on D  or. There exists a 
subspace M  of E  such that  
                     2 2

2 2: and Mf f H Af f H      

And 0Ag   for all  2
Ng H  , whereN M  . 

Proof: 
 The set, of functions f  in.  2H E  such that 

2 2
Af f   is a reducing 

subspace for the canonical shift operator S  by Theorem (3.1.3). By 
(corollary to Theorem (3.1.4)), this subspace has the form  2

MH   for 
some subspace M  ofE . Moreover, 0Ag   for every

   2 2
M Ng H H    , whereN M  . 

 
Definition (3.1.8): 
 We write  inM A  for the subspace M  in the situation of Theorem 
(3.1.3).  
 
Theorem (3.1.9): 
 For any  B E -valued inner function A on D  or. 

                              in w
M A A w




0
∨ B

E .                                        (6) 

Where 0  is any subset of  that has an accumulation point in. 
Proof: 
 For definition let D .If  inM M A , then  2

MH D  is the initial 

space of the partial  T A  defined by (5-1). Equivalently,  2
MH D  is the 

range of  T A  .Function of the form  / 1 ,c zw c E  span a dense 

subset of  2H DE , and  

                            : / 1 / 1T A c zw A w c zw    . 
Thus (6) follows. 
  
Theorem (3.1.10): 
Let A  be a  B E -valued inner functionM D  or. Then the values of 
the nontangential boundary function of A are partial isometrics on with-
initial space   -a.einM M A  .on or .aeon ,   
Depending on the case.A converse result is given. 
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Proof: 
 It is sufficient to prove this when D . Let MP  be the projection of E  
onM . Since the operators (1) is a partial isometry with initial space

 2
MH D , 

                             ,i i itj kjBA e A e a b e d  
 




E

 

                  
2 2

, ,j k j k
M Mz A z a z A z b z P a z P b   

                 ( ), i j k
MP a b e d 



  E
  

 For all , , , 0,1,2,a b j k  E .Hence     -a.ei i
MA e A e P  


 . On

,and the result follows. 
We show that values of any  B E -valued outer; function F- on D  
have ranges that are dence in a constant subspace M  ofE . This subspace 
denoted  outM F .The formal definition follows a prelimiminary result. 
Except where otherwise stated. We assume that D  or. 
 
Theorem (3.1.11): 
 Let  B E  be a C-valued holomorphic function on, and let 0   and 

0   be bounded scalar valued holomorphic function such that F  and 
F  are bounded on. If   and   are outers, then 

                          2 2FH FH 
 

  E E . 
By Theorem (3.1.10), this is a special case of 1.12. Similarly, the 
assertions following 1.12 yields companion uniqueness result. 
 
Theorem (3.1.12): 
 If    2 2AH CH  E E  for two function ,A C  on  D   or , then 

                            0 0,C z A z B A z B  On. 

Where  0B B E  is apartial isometry with initial space  inM C  and 

finial space  inM A . Conversal, if two inner functions ,A C  on  are so 

related, then    2 2AH CH  E E  . 
Let D  or. Every    F N 

B E
 has a representation  

                                   /F AG b                                                    (7)  
Where A is a  B E -valued inner function, G  is a  B E  -valued outer 
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function with    out inM G M A , and b  scalar valued singular -inner 
function. For any representation (7), either  

                               -a.ei i i iF e e G e G e    
 

  On            (8) 
Or  
                              .e on ,F x F x G x G x a               (9)  
Depending on the case. For any 0w , there exists a representation (7) 
such that  0 0G w   
Proof: 
 We take D  and 0 0w  . The general case follows by conformal 
mapping for any    C H D

B E
,let  T C be the operator multiplication 

by C on  2H DE . 

Suppose first that    F H D
B E

 . By 3.6 and 5.2, Theorem (3.1.10), 

                                        T F T A T G  
 For some inner function A and some bounded outer function G such 
that in    in outM A M G . ThenF AG , so there exists a factorization 
(7) with 1b . Moreover by 3.6 we can choose the factorization so that for 
all cE   
                                     

2
0 , , 0G c c G z c c 

E
,  

That  0 0G   
 Now any    F N D

B E
. By 4.3. Theorem (3.1.3) 0, /F F u , where 

   0F H D
B E

 and u  is a scalar valued holomorphic function such that 

0 1u   onD. Factor 0 0 0F AG  as above with  0 0 0G  . Factoru bv , 

whereb  is inner and v   is outer with  0 0v  . Since 0u   on  ,D b  is 
singular inner function. The required factorizations (7) is then obtained 
with 0 0, /A A G G v  , and the singular innerb.  
We prove (8) for any factorization (7). First let    ,F G H D

B E
 and 

1b .By 3.6, 
                                     T F T F T G T G  .                            (10) 

Hence for any  2
1 2,f f H D E ,  

                              1 2 1 22 2
, ,Ff Ff Gf Gf .                                   (11) 

And so  
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                                    1 2,i i i iF e F e f e f e d    



 E

 

                                      1 2,i i i iG e G e f e f e d    




 
E

           (12)  

By the arbitrariness of 1 2,f f  (8) follows. 
The general case of (8) can be reduced to the special case Consider any 
factorization (7). By 4.3, Theorem (3.1.3)  0, / ,F F u u  where 

   0 0, ,iF H D u u
B E

 are scalar valued functions, iu is a singular inner 

function, and 0u  is an outer function such that 00 1u   onD. By5-2, 

0 /G G v ,where 0G is a bounded outer function and v is a bounded scalar 
valued outer function onD. By (7), 
                                         0 1 0 0b vF u A u G .  
Applying, the special case to this factorization, we get 

                             0 0
i i i i i ib e v e F e b e v e F e     

        

                                          0 0 0 0
i i i iu e G e u e G e   

         , 

. .ae  On, which implies (8).  
Let D or   every    F N 

B E
 has representation •  

                                        F AG  ,                                              (13)  
Where A is  B E -valued inner function and G is a  B E -valued outer 

function such that    out inM G M A .For any representation (13) either 
(8) or (9) holds, depending on the case. For any 0w  there a 
representation (13) such that  0 0G w  .  
Proof: 
The argument is essentially the same as for 5.6.In place of Section 4.3 
Theorem (3.1.3), use Theorem (3.1.10).  
 
Corollary (3.1.13): 
 If D  or    ,N  

B E
 is the smallest algebra containing an ll  R E -

valued inner and outer functions on. 
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Sec(3.2):Uniqueness of inner –Outer factorization and outer 
functions on the disk and half _plane: 
Let    , ,F G N D  

B E
 or. 

 
Theorem (3.2.1): 
 If G is outer, the following are equivalent: 

(i) The boundary function of F  andG satisfy (8) or (9), depending on the 
case; 

(ii) F G for some  B E -valued inner functionAsuch that  inM A   

 outM G . 
Proof: 
   i ii  For definition take D . Using 4.3, Theorem (3.1.10), we 
easily reduce to the case in whichF  andG are bounded. In this 
multiplication by Fand multiplication by G are bounded operators 
 T F  and  T G  on  2H DE . Our hypothesis (8) implies (12) for 

arbitrary  2
1 2,f f h D E . Hence (11) and (10) hold, and  ii  follows from 

3.5, Theorem (3.1.3) 
   ii i This follows from5.7. 
 
Theorem (3.2.2): 
If ,F G  are both outer, the following are equivalent: 

(i) The boundary function of F  and G satisfy (8) or (9). Depending on the 
case; 

(ii)    G z CF z  And    F z C g z  on  where  CB E  is a partial 

isometry with initial space  outM F  and final space  outM G . 
Proof: 
Argue is in the proof of Theorem (3.2.1) but in place of 3.5, Theorem A 
use the corollary to 3.5, Theorem (3.2.1). 
 
Theorem (3.2.3): 
 Let ,F G  both be outer, and let their boundary function satisfy (8) or (9), 
depending on the case. If  0 0F w   and  0 0G w   for some 0w , 
then F G on. 
Proof: 
 Without loss of generality we can take D  and 0 0w  . It is easy to 
reduce the assertion to the case where F  and G are bounded, and then 
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the result follows from 3.5, Theorem (3.2.2).   
Throughout this section S  denotes the canonical shift operator on  2H DE

. We identify =kerSK  with E  in the obvious way. The Taylor 
coefficients of  B E  valued holographic functions , ,A B on the disk 

are denoted    
0 0

, ,j jA B
 

 . If    A H D
B E

. Then  T A  is the 

operator multiplication by A on  2H DE . The matrix of  T A  as definied 
in 3.2 is given by 

                                

0

1 0

2 1 0

0 0
0

A
A A

T A
A A A

 
 
 
 
 
 









 

 
Theorem (3.2.4): 
 Let    C N D

B E
. Then C is outer if and only if  

                                  0 0 0 0C C A A                                                  (14) 

For every    A N D
B E

such that 

                          -a.ei i i iA e A e C e C e    
 

                     (15) 

In this case, for every    A N D
B E

satisfying (15), we have 

                             
0 0

, 0,1,2,
n n

j j j jC C A A n                      (16) 

Proof: 
 If we replace    N D

B E
 by    H D

B E
, the theorem follows from 

3.10(see Theorem (3.2.4) and the corollary to Theorem (3.2.4)). We 
deduce the general result from the bounded version. 
Consider any    C N D

B E
. By4.3, Theorem (3.1.10), there is a scalar 

value, outer function v  such that  0 0,0 1v v   , and C vc  is 
bounded onD . For each 1,2,3 ,k   , the function defined on D by 

                        
2

0

1exp log min ,1
2

n i
i

k i

e zv z k v e d
e z




 


 
  

  

Is outer, 0 1kv  ,and   kC k v C   is bounded onD. Moreover, 
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  1kv z    
Uniformly on all compact subsets of D.Thus، 

                               
  0

1 ,jjk
jk

z z D
v z






  , 

Then، 

                           
1, 0,

lim
0, 1.jkk

j
j





  

                                        (17) 

Suppose that A  is outer. Or any    A N D
B E

 satisfying (15), set

, 1k
kA v A k  , for 1k  ، 

                                   k k k ki i i iA e A e C e C e    
 . 

-a.e . On. Since  kC  is bounded on D so is  kA  by 4,7, 
Theorem(3.2.4). By the special case of the theorem not A above، 

                            

0 0
, 0,1,2,

n n
k k k k
j j j j

j j
C C A A n 

 

   . 

By (17), (16) follows on letting k.In particular. (14) Holds. 
Conversely, suppose that (14) holds for every    A N D

B E
 that 

satisfies (15). Consider any    A N D
B E

 such that 

                               i i i iA e A e C e C e    
     

-a.e . On. By 4.7, Theorem (3.2.4)    ,A N D
B E

. If / ,A A v  then 

   A N D
B E

 and (15) holds. Then assumption (14) holds so 

                        2 2
0 0 0 0 0 00 0C C v C C v A A       

Since the result is knows for bounded function, C is outer. Hence C is 
outer.  
This completes the proof. 
Let EP  be the set of polynomials   0 1

n
np z p p z p z     with 

coefficients inE . 
 
Theorem (3.2.5): 
 Let    C N D

B E
. And assume that  C z  belong to  2H DE  for each

aE . Then C is outer if and only if for allaE , 
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       0 0 , inf ,i i i i i i

p
C C a a C e C e a e p e a e p e d      






    
E

E P E

  (18) 

In this case, for allAand A 

                                               
0

,
n

j jC C a a
E

 

           1 1inf ,i n i ni i i i

p
C e C e a e p e a e p e d     

  




    
EP E

  (19)  

The infimum in (18) may he viewed as a form of Szego's infimum 
(Ahiezer [1056]. Grenander and Szego [19581 and Dyrn and McKean 
[1972]  
Proof: 
Assume that C is outer. The proof of (19) is similar to the 
Proof .of 3.10, Theorem (3.1.10)    , i iii .Fix aE  and 0n .Let 

 outM M C  , so  2: MCp p H EP . The infimum of
21

2

nCa S g . 

Over all  2
MH D is   attained with 1ng S  . Thus 

                      1 1inf ,i n i ni i i i

p
C e C e a e p e a e p e d     

  




   
EP E

 

                  
21

2
inf n

ap
C S Cp


 

EP
 

                  
 2

21

2
inf
M

n
an H D
C S h


   

                  
21 1

2

n n
aC S S Ca     

                  
0

,
n

j jC C a a 
E

   

This proves (19), and (18) follows as a special case. 
Conversely, assume thatC satisfies (18) for allaE . We apply Theorem 
(3.2.4) to show that C is outer. Let    A N D

B E
, and suppose that (15) 

holds. For anyAaE , by (18) and (15) 

            0 0 , inf ,i i i i i

p
C C a a A e A e a e p e a e d     






    
E

E P E

 

                             
21

1 2
inf
p

A z a zp z


   
EP

 

                          
2

0
a

A
E
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                         0 0 ,A A a e
E

 

Thus (5-18) holds, and C is outer by Theorem (3.2.4). ، .•  
Let S  be the canonical shift operator on  2H DE ,that is,S  is 

multiplication by,    /z i z i  . For each 0t  , define tV ,on  2H DE  by 

   itz
pV f z e f z   

The identity 

                                       1

0

1 2 itzz i e e di
z i




 
                                 (20) 

Holds for each z. Weshow that it also holds in an operator theoretic 
sence. 
Theorem (3.2.4) we have  

                                     
0

1 2 , ,iS e V dt


                                        (21) 

Where the integral is taken in the weak sense defined in 4.5. 
Proof it is enough to show that 

                      1 1
2 2 2

0

, , 2 , ,Sf g f g e e V f g dt


                     (22) 

For all  2f H D E  and all Ain some set whose linear span is dense in

 2H E , 
Choose g  of the form 

                                    1 ,
2

cg z z
i w z

 


.                        (23) 

Where w andcE . In this case, reduces to (20) with z w , and the 
result follows. 
Theorem (3.2.5).The clouser .In the weak operator topology of the linear 
span of   0t tV


 containsS .   

Proof. By theorem (3.2.4), 

                
0

1 2 , 2 , 2 2
a

t t t a

a a

S e V dt e v dt e dt e
 

          . 

The two integrals involving te V , are taken in the weak sense defined 

before it is easy to see that Riemann sums for
0

,
a te v dt , converge to the 

integral in the weak operator topology as well, and so the result follows. 
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Theorem (3.2.6): 
 Let    C N 

B E
. For C  to be outer it is necessary and sufficient that  

                              2 2

0 0

, 0
t t

v s ds u s ds t  E E
,                         (24) 

Whenever 

                         

     

     

0

0

1 , ,
2

1 , ,
2

isz

isz

C z a z e v s ds z

A z a z e u s ds z










 



  




            (25)  

For some    A N 
B E

 such that         .A x A x C x C x aee  on 

 ,   and some  a N E   such that  2,aC Aa H E . 
The integrals in (25) give the Paley-Wiener representation of the 
functions  2,Ca Aa H E  Thus  2, 0,u v L E . Note that by the 
Plancherel theorem, since  

                                   2 2
A x a x C x a x

E E
 

.ae  On ,  , we have  

                               2 2

0 0

v s ds u s ds
 

 E E
                                      (26) 

In the sufficiency direction, the proof can easily be made to show more. 
Assume only that the condition holds when A is outer, and, for any fixed 
outer A for a set of 'a s such that the span of vectorsE , is dense in A 
.Then A is outer,  
Proof: 
 We begin with some preliminary remarks, concerning the Paley-Wiener 
representation. Every  2f N E  has a representation  

                                 1 ,
2

z

itz

t

f z e h s ds z




  , 

Where  2 0,h L E . It is easy to see that for any 0t  , 

                       
0

1 ,
2

isz
tV f z e h s t ds z




    . 

Hence by the Plancherel theorem, 
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2 2

2t
t

V f h s ds


   E
. 

Assume that is outer. Let ,u v satisfy (25) for some A and a  as in the 
theorem. By, theorem (3.2.4) A=BC  for some inner functionB.  Such 
that    in outM B M C .Appling, to the operator multiplication by Bon 

 2H E  we obtain  

                               
2 2 2

2 2 2t t tV ca V BCa V Aa      

For all 0t  .By (25) and the remarks at the   beginning of the proof, this 
yields 

                                   2 2
, 0

t t

v s ds u s ds t
 

  E E
.  

 Then (24) follows from (26). 
 Conversely, assume that (24) holds whenever ,u v are related -as in the 
theorem.C BA , where A  is outer, B is inner  outM A , and

       a.eA x A x C x C x  . On ,   . For this choice of A and any 

aas in the theorem, there exist  2, 0,u v L E .satisfying (25), and then 
(24) holds by assumption. By what we proved above with the roles of A 
and C  interchanged now A is outer), equality holds in (24). Arguing as 
in tilt proof necessity, we obtain  
                           

2
; 0i tV Aa V Ba t                                   (27)  

We now apply. To the operator  T B  of multiplication by B on  2H E . 

, choose j j J
V


, to be the family  0t tV


, and let  k k Kg


 be the set of 

functions Aa with a as in the theorem. Notice that holds by (27). By 
Theorem (3.2.5) above, the hypothesis Win. Satisfied. Hypothesis (ii) in 
3.11 LemmaB, requires that the vectors    A i a i   span a dense set in

 inM B , and this holds. Hence T (B) is an A-constant inner operator, 
and hence B is a constant inner function. Since C BA  is outer and A  
outer and    ,in outM B M A C  is outer.  
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Chapter 4 
Factorization of Nonnegative Operator Valued functions 

If   1
n

nQ x Qx Q x    is a polynomial with operator coefficients, 

then      P x Q x x  is polynomial such that   0P x   for all real x . 

We shall, conversely, every polynomial  P x  with operator coefficients 

such that   0P x   for all real has this form. 
‘More generally, We study the  operator analogue Szegő’s  problem.this 
is interpreted as the problem of giving condition on an operator valued 
function  F   on the circle  on line R which imply that  

                                               F G G    , 

Where  G   is the boundary function of a holomorphic operator valued 

function of classN  on the unit disk. DOr upper half-plane  inspired, 
respectively. Our results are inspired principally by three theorems in 
classical function theory to Feier. Riesz. Alliezer [1948] and Szego 
[1921]. 
FeJER- RIESZ, Theorem. Any trigonometric polynomial, 

  ni ij
jn

f e a e 


  that is nonnegative on the joint circle  ,has the 

form     2i if e g e   , where   0

ni ij
jg e b e   is an analytic 

trigonometric polynomial such that   0

n j
jg z b z   has no zero on the 

diskD .  
An elementary proof can be based on the fundamental theorem of 
algebra. See Riesz and Sz.-Nagy [1955].  
AHIEZER’S Theorem. Let  f z  be an entire function of exponential 
type that is nonnegative on the real axis and satisfies  

                                
 
2

log
1
f x

dx
x






  

Then there exists an entire function  g z of exponential type / 2  

hunting no zeros for 0y   such that     2
f x g x  on the real axis. 

Ahjezer; s theorem is a  g z  generalization of the Fejer-Riesz theorem 
(Boas [1954]). 
SZBGO'S Theorem. Let  if e  be a nonnegative function in  1L  . For 

the existence a function  g z  in  2H D  having no zeros onD , such that
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    2i if e g e  . On, it is necessary and sufficient that 

                                 log if e d 


 .  

We obtain extension of these results to operator valued function. The 
operator versions of the Fejer-Riesz and Ahiezer theorems follow as 
special cases of a general factorization theorem for till pseudoincromm 
functions. We also prove a generalization of Krein; s theorem for operator 
valued functions. 
ThusE denotes a separable Hilbert space. 
By S  we always mean the canonical shift operator defined on  2H DE  or 

 2H E .Equivalently, we may view S  as acting on boundary function, so 
that either 
                                2: i i iS f e e f e on H   E  

Or  

ܵ: (ݔ)݂ →
ݔ − ݅
ݔ + ݅

Eܪ		݊			(ݔ)݂
ଶ (ܴ) 

Depending on the case.  
 
Sec(4.1):Toilets operators with operators valued and 
Pseudomeromorphic Functions Analyticity: 
Consider the disk case we describe the class of S -Toilets operators on 

 2H E nd relate the factorization properties of these operators to the 
problem at hand.  
Let P  be the projection of  2L E  on  2H E . 
Theorem (4.1.1): 
 Abounded linear operator T  on  2H E   isS  -Toilets in the sense, if and 

only if  T t W , where _   

                             2: ,T W f PWf f H  E ,                       (1) 

For some    W N 
B E

. In this case, T W


 ,  

When      ,W H T W 
B E

 is S -analytic, and (1) may be-written 

                             2: ,T W f Wf f H  E .                             (2) 
Conversely. Theorem (4.1.2), every S -analytic operator has this form. 
 Proof: 
  Let be defined by (1) for some . Cleary .   T W    W L 

B E  T W
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For any , 

    . 

 Hence .That is  is -Toeplitz.Sufficiengy 
follows. 
Conversely, let  be an -Toeplitz operator on . Set

, where  is the operator on  

defined by (3).Then  is dense in  and 

                     . 
For each , set 
                       . 

Then  is a bounded sequillinear form on  with ‖ܵ‖ ≤ ‖ܶ‖ 
.Since ܵ∗ܶܵ = ܶ by assumption and ,for any  

                 

                               . 

Hence there is a bounded sequilinear form  on  that extends 

each and satisfies .Let  be the unique operator on 

 such that  

                           

And  .For , 

                         

              . 

Therefore   and . By the lemma.  Has form (4) for 
some with .For any . 

                

                             ,  

It follows that  .By construction . The reverse 
inequality holds automatically as in the proof. Of sufficiency, so the 
result follows.  

 2,f g H E

         
2 2

, , ,i i i i iT W Sf Sg W e e f e e g e d T W f g     


  E

   S T W S T W   T W S

T S  2H E

 2 , 0,1,2,n
n U H n   EK U  2L E

n0

 K  2H E

   2 2
0 1 2H L     E EK K K

0n 
  n2

, , , ,n n
ns f g TU f U g f g K

 ,ns   nK

0S U K , ntf gK

  1 1
1 2 2

, ,n n n
n ts f g TU f U g TSU f SU g  
  

 
2

, ,n
nTU f U g s f g 

 ,s    2L K

 ,ns   s T L
 2L E

   2
2

, , , ,s f g Lf g f g L   E

L s T  1, , 0nf g n K

   2, , ,nLUf Ug s Uf Ug s Uf Ug 

   1 22
, , , ,nTU uf U Ug s f g s f g Lf g 

   

U LU L  LU UL L
   W L 

B E
W L T


   2,f g H E

 02 2
, , ,Tf g s f g Lf g 

       
2

1

, ,i i iW e f e g e d T W f g     E

 T T W W T
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Theorem (4.1.2): 
Let    W L 

B E
 and    A H  

B E
.  

(i)   0T W   if and only if   0iW e   on   0T W  ;  

(ii)      T W T A T A . If and only if       - .i i iW e A e A e ae   


  on 

 
Proof: 
  If . On , then 

               

For every , so . 

Conversely, Let .Construct on  as in the proof of 
Theorem(4.1.1). Then , so                    

 

For every .It follows that  on . 

Since .  Is multiplication by  on 
Thus  

 If and only if for all . 
                 〈T(W)f, g〉ଶ = 〈Af, Ag〉ଶ 
That is, 
   , 

Of equivalently  on . 

The exterior of the unit circle denoted ; the lower half-plane, ;that is, 
                  And     ,                       (8) 

If  is -valued function on a set , the reflection of 
with respect to  is the function 
                   On    .             (9) 
The reflection of  with respect to  is 
                    On       .                (10) 
Whether (9) or (10) is intended will. Either is clear from context or 
indicated. 
The notion of a Laurent .expansion has a routine extension to -

 i   0 -a.eiW e  

     2
, , 0i iT W f f W e f e d  



  E

   2f H 
B E   0T W 

  0T T W  L  2L E

0L
     , 0i i iW e f e f e d   



 E

   2f H 
B E   0 -a.eiW e  

 ii      A H t A


 
B E

A A  2H E

   T W T A  2,f g H E

      -a.ei i iW e A e A e   


 

D 
 : 1D z z   : Im 0z z 

F F  B E  F


   1/F z F z   :1/z z  
F R

   F z F z   :z z  

 B E
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valued functions. Removable singularities, essential singularities, poles, 
and   principal parts are then defined in the usual wav. We assume that 
removable singularities have been removed. -va1ued function  

is meromorphic on an open set in  if it is holornorphic 
on.  Except for poles.  
 
Lemma (4.1.3): 
 Bounded linear operator L on  2L E  commutes with the operator  

                                : i i iU f e e f e                                            (3) 

On  2L E  if and only if 
                                      :L f Wf                                                (4) 
For some    W L 

B E
. In this case W L


  

Proof: 
  Cleary any operator of the form (4) comutes with U  and L W


 . 

Conversely, suppose that LU UL  Then j jLU U L .for all
0, 1, 2,j    . 

Hence 
                           2,L f Lf f L    

B E
.                            (5)  

For any trigonometric polynomial    with scalar coefficients.  By a 
routine approximation argument, (5) holds for all continuous complex 
valued functions  on. 

Let E  be a countable dense set in E .For eachcE , let  ing e  be a 

represntatative in the coset Lc.Four any fixed ,a bE . 

                       lim , , ,
i

i i i
n nw e

P w e g e b d g e b


  




 E E
             (6) 

Nontangentially -a.e . On  by Fatou; s theorem. Since E  is countable, 
we can choose  -null set N   such that (6) holds for all ,a bE  and

\ie N  . 
Fix \ie N  . Define  0 , ,is e     on E E  by 

                               0 , , , , ,i i
ns e a b g e b b  

E
E . 

Define    1/2
,it i

w e P w e   for , itw D e  . By (5).  

 AB E F
  C C   
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2 2

, , , ,it it
a w w wP w e g e b d La b L a b   



  E
 

So by (6) 
                                0 2

; , lim ,
i

i
w ww e

s e a b L a b


  


                          (7) 

Nontangentially for all ,a bE  . It is.easy to see that the limit on the right 
of (7) exists for all ,a bE  and defines a bounded sesquilinear form 

 , ,is e   on  0 , ,is e      and satisfies s L . Hence there is an operator

   iW e B E . Such that  
 

iW e L 
B E

 and 

                      , , , , ,i is e a b W e a b a b  
E

E    

Now consider.  iW e  As a function of ie . By construction, 

   W L 
B E

  and W L

 . For  , : ic L c W e c E . In a 

straightforward way we obtain (4)  
And the result follows .  
 
Definition (4.1.4): 
 i  Let ,u v be nonzero scalar valued functions in    ,N A  B E . 

Valued function F  . On  is of class  ,u vM  if    ,uF vF N  
B E

.  

 ii Let u, v nonzero scalar valued functions in    N R A B E  valued 

functionsF   on Ris of class  ,u vM  if    ,uF vF N R 
B E

 

.Functions of class  ,u vM .are called. Pseudomerornorphic because of 
the –characterizations in Theorems (4.1.1) and (4.1.2) below. The class

 ,u vM  . Does not depend on outer factors in u  and :v F   is of class. 

 ,u vM If and only if it is of class  ,i iu vM , where ,i iu v are the inner 
factors of ,u v , respectively. 
  
Example (4.1.5): 
Let    ,i im i inu e e v e e     , where ,m nare nonnegative integers. Every 
trigonometric polynormial 

                                           
n

i ij
j

m
F e A e 



                                   (11) 

With coefficients in  R E  is of class  ,u vM . 
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 i  If    1F L 
B E

 and F  is of class  ,u vM ,then F  has the form (11). 

For, Theorem            2 1, ,A uF vF N L H      
B E B E B E

, .Hence, for 
all, 
j>1. 

*( ) ( ) ( ) ( ) 0ij i i ij i ie u e F e d e v e F e d      
 

    

There for j>m or j<-n 
( ) 0ij ie F e d  



    

By the Cauchy representation (17), 0t    has the form (11) 
(ii) For each (0,1)p  , there is a function   ( )pF L 

R E
 of class ( , )M u v and 

not of the form(11) 
An example 0 0( ) /( 1)i iF e F e   for any nonzero  0F R E . 
 
Theorem(4.1.6): 
Let 0 0( ), ( )i iu e v e  be nonzero scalar valued function in ( )N   , and let 
u(z),v(z) be thecorresponding functions in ( )N D ,let F(z) be a  R E -
valued meromorphic functiom on D D such that 

(i) the restrictions of uF an v F  to D are in   ( )N D
R E

; 
(ii) ( )iF re   has the same strong limit 0 ( )iF e  for r↑any1 and r↑1 . .a e on Г, 

Then 0 ( )iF e   is of class 0 0( , )M u v . Conversely, every function of class 
0 0( , )M u v has this form. 

Proof:  
The restrictions of uF and v F to D have boundary  functions 0 0u F  and 

*
0 0v F  . These functions therefore belong to   ( )N  

R E
, and hence 0F is of 

class. ℳ(ݑ,  . (ݒ
Conversely ,let 0G  be any  R E -valued function of class 0 0( , )u v . Then 

 
*

0 0 0 0, ( )u G v G N  
R E

 and so *
0 0 0 0,u G v G  are the boundary functions of some 

functions ,G G   in   ( )N D
R E

. Set 

(ݖ)ܩ = ൜
(ݖ)ାܩ ݖ									,(ݖ)ݑ ∈ ⁄,ܦ 	
(ݖ)෨ିܩ ⁄(ݖ)ݒ ݖ									,	 ∈ ෩,ܦ

� 

A routine check shows that 0G  and G are related in the required manner 
 
Theorem(4.1.7): 
Let 0 0( ), ( )u x v x  be nonzero scalar valued functions in ( )N R , and let 
u(z),v(z) be the corresponding functions in  ( )N   . Let F(z) be  R E -
valued meromorphic  function on            such that: 
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(i)   the restr ictions of uF an v F to   are in   ( )N  
R E

; 
(ii)  F(x+iy) has the same strong limit 0 ( )F x for y↓0 and y↑0 , .a e  on 
( , )  . 
Then 0 ( )F x is of class 0 0( , )M u v . Conversely, every function of class 

0 0( , )M u v  has this form. 
Proof:  
This follows from Theorem(4.1.6) by a change of variables. 
Let  or , and Let  be an open subset of . Define 

 or  as in (8) . 
 
 Definition(4.1.8): 
In the situation of either Theorem(4.1.6) or Theorem(4.1.7) , we say that 
F is of class M(u,v). We refer to 0F as the boundary function of  F. 
 
Definition (4.1.9): 
Memorphic  B E -valued function F  on   is analytic across   if 
F  can be defined on   so that when viewed as a function on
F , M  is holomorphic at each point of . 
A holomorphic scalar valued function f  on   is said to have an analytic 
continuation across   if f g  , where g  is holomorphic on some 
open set G  containing . The following result generalized a theorem 
of Carleman [1944], 
  
Theorem (4.1.10): 
 Let F  be a meromorphic  B E -valued function on   of class M  

for some nonzero functions ,u  . Assume that: 
(i) M  have analytic continuations across  ; 
(ii)  If oF  is the boundary function ofF , then for eachܽ ∈ L, the scalar 

valued function M  is integrable over every compact subset of . 
Then F  is analytic across . 
The function in the lemma below are scalar valued. 
Proof: 
 We give the proof for the case . Then the other case follows by a 
change of variables. 
We may assume that , and that the analytic 
continuations of  and  across  have no zeroes on . For if there 
are zeroes, we can contract the interval slightly and reduce to the case of 
a finite number of zeros; dividing out factors to remove these zeros does 

D   
D or    M



 , ,       
u M  
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not change  because the factors are outer functions. 
Consider an interval  such that  has a strong 

limit for  as . We can choose such an interval with  
arbitrary near  and  arbitrary near . Choose a rectangle

, where  is small enough that the analytic 

continuations of  across  are defined and nonnegative on . Define 

. 

Our assumptions imply that  is sufficiently regular on  for the 
integral to exists in the weak sense:  remains bounded for

, by the uniform boundedness principle. The function 

 is holomorphic on . To complete the proof, we show that  

coincides with  on . By considering the scalar valued 
functions (.) ,F a a

E
 and (.) ,G a a

E
 for arbitrary a E  , we can assume 

without loss of generality that we are in the scalar case, that is,  and  
are themselves scalar valued functions. 
Set  for any . By Cauchy's theorem, 

. 

We show that 

                        (12). 

By assumption,  is of class , so . By the lemma, (1) 
holds with  replaced by . The assumptions on  imply that we can 
drop the factor , and (12) follows. Letting , we obtain 

(ݖ)ܨ =
1
݅ߨ2

න
(ݐ)ܨ
ݐ − ݖ

	

డொశ
,			ݐ݀ ݖ ∈ ܳା 

Where  and the boundary function of  is used on the 
lower edge. Combining this formula with an analogous formula for

, we obtain  

. 

M
   , ,c d    F x iy

,x c d 0y  c
 d 

   , ,Q c d     0 

M  Q

   1 ,
2 Q

F t
G z dt z Q

i t z 

 


F Q
 F x iy

, , 0x c d y 

 G z Q F

G  Q  

F G

     , ,Q c d      0, 

     
 

1 ,
2 Q

F t
F z dt z Q

i t z


  

  


   
0

lim 0
d

y
c

F iyx F x dx


  
F M  uF N  

F uF u
u 0 

Q Q   F

Q Q  

     1 ,
2 Q

F t
F z dt z Q

i t z  
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Thus , and the result follows. 
 
Lemma (4.1.11): 
 Let  f N    and suppose that 

  
b p

a
f x dx  , where a b    and 0 b . Then  

   
0

lim 0
d

p

y
c

f x f x iy dx


    

For every closed subinterval  ,c d  of  ,a b . 
Proof: 
  Choose q  such that 1pq  . Let g  be an outer function such that 

  1g x   on  ,a b  and      1
q

g x x f x   otherwise. Then 

 /h g N     and   ph x dx



 . Therefore  ph H   and 

   
0

lim 0
p

y
h x h x iy dx






    

(See Krylov [1939]). The function g  has an analytic continuation across
 ,a b , and so    0limy g x iy g x    uniformly on every closed 

subinterval  ,c d  of  ,a b . In view of the elementary inequality 

    max 2 ,2 2 ,
pp p ppu v u v u v   , 

This is sufficient to simply the lemma. 
 
Theorem (4.1.12): 
Let v  be any nonzero scalar valued function in  N    or  N R . If M  

is any nonnegative  R E -valued function of class  ,u vM  on   orR , 
then 
F G G                                     (13) 
 -a.e. on   or a.e. onR , where G  is an outer function of class  1,vM  
on   orR , respectively. 
The factorization is essentially unique, Theorem (4.1.2) 
Proof: 
We give the proof in the circle case. The other case then follows by a 
change of variables. Since  ,u vM  does not depend on the outer factor in
v , we may that v  Inner  

 onF G Q  
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Since F  of class      , ,u v uF N 
B E

M . Theorem (4.1.7), there a 

bounded scalar valued outer function (1). On   such the    vf H  
B E . 

Since 1 - .v c ae ,on , the function W F   belongs to    L 
B E . Let 

P  be the projection of  2L E  on  2H E , and define the Toeplitz 

operator  T W ., Theorem (4.1.2), and thus is applicable. We show that 
condition (iii) of is satisfied. For each cE   and 0,1,2n  .  

 2
, 22

( ) sup ( ) : ( ), ( ) , 1n
n cI c T W S f f H T W f f   E  

Here e is viewed as a constant function inܪE
ଶ ( ). Set ` 

  ,i i ie e e      
For any 2( )f H  E

, 

2
( ) , ) ,n n

c cT W S f W X f d




  E
 

                                2/ , n

r

vc P vFf d      E
 

                                 21/ 2/ ,n

r

P P vc v F f d     
E

 

                               1/ 2 1/2/ ,n

r

F P P vc vF f d       E
 

                                 
1/ 2

21/2
2

/ ,n

r

F P P vc d T W f f     
  
 
 E

 

By the choice of 1/ 2,F  is bounded  

   
1/2

2
/n

n
r

I c const P P vc d    
  

 
 E

 

2rconst S g  

Where  /cg P vc  . Since S  is a shift operator,   0 asnI c n  . 
Thus condition (iii) is satisfied. There is an outer function A  such that 
W A A    -a.e. on   . Therefore  

   / / / /F W A A G G        
 -a.e. on  , where /G A   is outer. 
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We show that G is of class  1,vM . Consider the function  /C vA    

in    L 
B E . By the choice of    2,CA vF H    

B E . Thus  

 2 2( ) ( )C AH H  
E E

 

Since A  is outer,   2AH


E  reduces S . Hence if g  is in  2H E  and 

orthogonal to   2AH


E , so is , 0,1,2,jS g j  . Then for any

 2 and 0u H j  E , 

2
, , , 0j jA g d g Au d S g Au    

 

    EE
 

Therefore 0A g   -a.e. on , and so 0gC  -a.e. on . It follows 
that  

   2 2C H H   E E  

And hence    C H 
B E . Therefore    vG C H    

B E , and so

   vG N 
B E . Trivially    G N 

B E , and hence G  is of class  1,vM . 
This completes the proof. 
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Sec (4.2):Fejér-Riesz Operator and Rational Functions with Entire 
Functions of Exponential Type: 
 
Theorem (4.2.1): 
Let   ni ij

jn
F e A e 


  be trigonometric polynomial with coefficients in 

 B E  such that   0iF e    on . Then  

      ,i i i iF e G e G e e   
                      (14) 

Where  iG e  is an outer function of the form   0

ni ij
jG e B e   with 

coefficients in  B E . 
Proof: 
 In view of the example this follows as a special case 
 
Theorem (4.2.2): 
Let   2

0
n j

jP x Px  be a polynomial with coefficients in  B E  such 

that   0P x   for all x , then 

                                 ,P x Q x Q x x R  ,                            (15) 

Where  Q x  is outer function of the form   0

n j
jQ x Q x . 

Proof: 

Set      /n nv x x i x i   and      2 1
n

F x x P x


  . Then    v x f x  

and   nv x F  are the boundary functions of functions that are bounded and 

holomorphic. Hence F  is of class  ,u vM , so       .F x G x G x ae . 

On ,  , where  G x  is an outer function of class  ,u vM . 

      .F x G x G x ae On ,  , where  G x  is an outer function of 

class  1,vM .Consider the associated meromorphic function  G z   as, 

Theorem (4.2.2). Since  G x  and    v x G x 
 are bounded functions in 

     ,N R G z
B E

and    v z G z  are bounded on  Hence  
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                             1 ,
nnz i G z M z z    , 

For some constant 0M  .We have    nz i G z  is an entire function. 

Therefore by the Cauchy estimates,      nQ z z i G z   is a polynomial 

of degree at mostn  . Since  G x  is outer as a function on ,  , so is

 Q x . By construction, (15) holds. 

A  B E - Valued function  F x  is called relation rational if it is 

meromorphic on  nC C   . It is not hard to see that  F z   is rational 

if and only if      /F z P z q z , where  P z   is a  B E -valued 

polynomial and  q z  is a scalar valued polynomial. 
 
Theorem (4.2.3): 
 Let  F z  be a  B E - valued relational function that is either non-

negative at all points ie  that are not poles, or nonnegative at all 
points x R that are one poles. In the circle case, 
                                           F z G z G z  , 

Where  G z  is a  B E -valued relational function that is holomorphic 
on Dand whose restriction to D is outer. In the line case there is a 
similar factorization with respect to the half-plane. 
The tide notation. Thus    1/G z G z   or    G z G z  , depending on 
the case. 
Proof: 
In the disk case, choose a scalar polynomial  q z  whose restriction toD  

is outer such that      P z q z F z   is a polynomial is z  and1/ z . Then 

  0iP e   on, so by 6.6, 

                                       i i iP e Q e Q e  
  

Where  Q z  is a polynomial whose restriction to D is outer. The 

required factorization is obtained with      i iG z Q e Q e 
 . 

In the half-plane case, choose a scalar polynomial  q z  whose restriction 

to D is outer such that      P z q z f z  is a polynomial in z . Argue as 
above using 6.7 instead of 6.6. 



52 
 

The notion of mean type for scalar valued function in  N   is defined in 
the Appendix, Section 6. We now extend this notion to functions F  in

   N 
B E

. For eachcs , defineF   by 

                                  ,0F z F z c z 
E

. 

Definition (4.2.4): 
The mean type of a function F  in    N 

B E
is the number supc c  s

,where is the mean type of cF  for anycs . 
 
Theorem (4.2.5): 
The mean type   of any F  in    N 

B E
 satisfies   , with 

    only if 0 . 
Proof: 
 Let c  be the mean type of cF  for anycE .  

                
1 1limsup log limsup logc c

y y
y F iy y F iy  

 
 

B E
. 

By Theorem (4.2.1), there is a scalar valued holomorphic function u  such 
that 0 1u   and   1uF 

B E
 on . Then 

                        
1limsup log

y
y F iy

 B E
 

                                   1 1limsup log log
y

y u iy F iy y u iy 



    B E
 

                            1lim log
y

y u iy


   

                         m . 
Where m is finite real constant. Thus c m    for every cs  and 
  .If   , then c    for every cE .Hence 0cF   for every 
cs  and 0F  . 
If F is  B E -valued entire function, define cF , for any cs  by 

                          , ,cF z F z c c z
s

 

 
Definition (4.2.6): 
  B E -valued entire function F  is of expontial type if there is a  real 
constant m such that for eachcE , 
                         ,m z

c cF z M e z  , 

c
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For some 0cM  .In this case the exact type  of F  is the infimum of all 
suchm. 

                    
  ,

sup limsuplogF
c z

F z c c

z


 

 
 
 
 

s

s
 

We say that F  is of exponential type  if F  is of exponential type and
F  . 

It is easy to see that F is of exponential type  and only if cF is of 
exponential type  for each cs .The exact type F is the supermum of 
the exact types of all functions F c s .As in the scalar case, either 

0F   
And F   ,or 0F  and 0F  . 

If F  is a  R E -valued entire function, let F  be the reflection F  with 

respect to the real line:    ,F z F z z   .The following result 
generalizes Kreĭn’s theorem. 
 
Theorem (4.2.7): 
 IfF  is a  B E -valued entire function, the following are equivalent; 

(i) F  is of exponential type and 

                        
   

2

log

1

F x
dx

x








B E ;                                (16) 

(ii) The restrictions of F  and F  to   are of bounded type, that is they 
belong to    N 

B E
. 

Let F  satisfy these conditions, and let ,    be the mean types of the 

restriction of ,F F  to   respectively. Then  
                                       0                                           (17) 
And 
                                   ,max F                                  (18) 

Where F  is the exact type ofF . 

For  aB E -valued function F  on   or , define F ,for each cs  as 
in (10) 
Proof: 
 Let  satisfy  F
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 Let  be the exact type of  and choose .For each  

there is a constant  such that . 
 Claim: the restrictions of  and to  belong to  .This is 
trivial if , so suppose 0. By the scalar version of Kreln’s 
theorem the mean type of these restrictions do not exceed   .Since , 

and  are entire the restriction of  and  to  have no singular 
inner function in their canonical factorizations Thus  
                          And                                (19) 
On , where  and ,are Blaschke product, and  is 
outer (the outer factor may be chosen the same in each case since  and 

 have the same modulus on ).Therefore the restrictions of 

,and  to  belong to  this proves the claim. 
In view of the claim just proved and (16), the lemma implies that the 
restrictions of  and  to  belong to .Hence the 

restrictions of  and  to  are of bounded type that is  holds. 

Conversely, let  holds. By theorem  satisfied (16).Let  be 

the mean type the restrictons of  to . For any , let  be 

the mean type of the restrictions of , to.  By the scalar version of 
Kren’s theorem ,is of exponential type and exct type equal to max

. Since 
                                       ߬± = ∈ݑݏ 	߬±                                (20) 

Max ≤ max  ( are finite). Hence  is of exponential 

type and exact type  .In particular,  holds. 

If  then by the first part of the proof,  for all

 and so  a contradiction. Hence 

.Since  for all ,by (21),  

.By an elementary argument this implies ,and the 
proof is complete. 
Let  and . -valued entire function  is of class 

 if the restriction of  to  is of bounded type and mean 

 i F F Fm  cs
0cM    ,m z

c cF t M e z 
imc

ce F imz
ce F   N  

0cF  cF 
m cF

cF cF cF 

1
ipz

cF e B g 2
iqz

cF e B g

 1, ,p m q m B  2B g
cF

cF R imc
ce F

imc
ce F   N 

imze F imzc F     N 
B E

F F   ii
 ii ,B f ,  

,F F  cs ,c c  

,c cF F 

cF
 ,c c  

 ,c c    ,c c    F
 max ,F     i

 max ,F    c F  
cs  max ,F      

 max ,F    0c c    cE 0   

 max ,    

1 0  2 0   AR E F
 1 2, K F 
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type  and the restriction of  to is of bounded type and mean 

type .The classes  re called Krein classes. 
 
 
 
 
Lemma (4.2.8): 
  AR s -valued holomorphic function F  on   belongs to    N  

B E
 if 

and only if: 
 

(i)  F N
   for each cE , and 

(ii) The limit     0 0limyF x f x iy   exists in the weak operator topology 

.ae  on R, and 

                             
   0

2

log

1

F z
dx

x








R s .                            (21) 

Proof: 
 Necessary follows. 
Conversely, assume that  i  and  ii  holds. By (19) there is scalar valued 

outer function 0v  onR such that   0 01/ max 1 a.v F e
R E

 . On R then 

0v  and  0 0 1 .v F z e
R E

 onR. Multiplying  0v t  by  1/ t i  if 

necessary, we can assume that 

                                  

2
0 vv t F t dt





 B E
 ‘ 

Let v  be the outer function on   whose boundary function is 0v . By 

 , ci vF ܰା(ܫܫ) for eachcE . Since cvF  has a square summable 

boundary function, it belongs to  2H  and 

                     
   0 ,1 0

2
vv t F t c c

dt z
i t z





 
 . 

By the arbitrariness ofc , 

                        
   0 01 0,

2
v t F t

dt z
i t z





 



. 

1 F F

2  1 2, K
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By Theorem        2
0 0,B v F H R N R 

B E B E
.it follows that 0 0v F  is the 

boundary function of some    G N 
B E

.For eachcs , the scalar 

valued function cvF , and cG  belong to  N   and have the same  
 
 
 
boundary function. 
 
Hence cvF G , on . Therefore vF G .Since    G N 

B E
 and v  is 

outer,    F N 
B E

 
 
Theorem (4.2.4): 
Let    1 2,it x it xu x e v x e   for all real x . Let 0F  be a weakly measurable 

 B E -valued function on R such that  0F B E
 is integrable over every 

bounded interval. Then 0F  is of class  ,u vM  if and only if 0F  is equal 

a.e .  To the restriction to R of  B E  -valued entire function F  of class

 1 2, K  . 
Proof: 
 Let 0F  be class  ,u vM .  Is equal .ae . To the restriction to R of an 

entire function F  such that the restriction to   of ,it ze F  and 2it ze F  
belong to    N  

B E
. It follows that the restrictions to   of F  and F  are 

of bounded type and mean type at most 1  and 2  respectively, that is F  

is of class  1 2, K . 

Conversely, let    0 .F x F x ae . On R where F  is  B E –valued 

entire function of class  1 2, K .For c   in  E ,let cF and cF  be definied 
By  
        ( ) ( ) ,cF z F z c c

E
   And ( ) ( ) ,cF z F z c c 

E
  

 For z . Then cF  is entire and the restrictions of cF  and cF  to   have 
canonical factorizations of the form (20), where 1 2,p q   .Hence the 

restrictions of ,it z
ce F  and 

2it z
ce F  to   belong to  N  . Since F  

satisfies (16) the implies that the restriction of 1it ze F  and 2it ze F  to   

0F
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belong to    N  
B E

.The boundary function of these restrictions are 0uF  

and 0uF .Hence    0 0,uF uF N R 
B E

 and 0F  is of class  ,u vM  
We now apply the preceding results to generalize Ahezer’s theorem. 
 
 
 
 
Theorem (4.2.5): 
Let F  be  B E  -valued centre function of exponential type , 0  
such that   0F x   for all real x , and 

                                        
   

2

log

1

F x
dx

x








B E . 

Then F GG   for some  B E -valued entire function G  such that 
/2itze G  is of exponential type / 2  and the restriction of G  two  is an 

outer function 
Here    ,G z G z z     
Proof: 
The function F  is of class  , K .The restriction 0F of F  to Rbe of 

class  ,u vM , where   itxv x e  for all real x . Hence by (5),

0 0 0 .F G G ae . onR , where 0G  is outer and of class  1,vM on R.By 
since (12), 0G  is the restriction to R of an entire functionGof class

 0,K .Since 0 0 0 .F G G ae .on, ,R F GG   .Since G  is of class 

  / 20, , itze G K  is of class  /2 /2 K ,  and hence of exponential type 
/ 2 .The restriction of G  two   is of bounded type and has boundary 

function 0G .Since is outer on 0G , the restriction of G  to  is an outer 
function on  . 
The following result generalization Szego’s theorem. 
 
Theorem (4.2.6): 
Let F  be a weakly measurable nonnegative  B E -valued function that 
has invertible values . .a e . On  or .ae . OnR. In the circle case assume 
that 
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 1 1log logi iF e and F e L  
  

B E B E

, 

And in the case of the real line assume that  

         
 

 1 1 12 2 11 log 1 log ,x F x and x F x L
      

B E
B E  

Then . .F G G ae  .on  or .ae  on R for some  B E -valid outer 
function G  on  or R respectively. 
 
 
Proof: 
We first reduce to the case in which F  is bounded Introduce 1 /F F f , 

where   1max 1f F
B E

 on .Since   21log ,f L f g   for 

some outer function g  on. If 1 1 1 . .F G G ae . On  for some  B E -

valued outer function 1G , then .F G G ae  . On, where 1G gG  is 
outer. Since 1F  satisfies the hypotheses of the theorem and is bounded, 
we may assume without loss of general that F  is bounded 
We apply to the Toeplitz operator  2T T F  induced on  2H E  by F  

.Choose  1T T I E .where    
 

1
1/ .it ic F e a e 


 

B E

. On. By 

an elementary argument / - .F a e  E . On. Therefore 1 2T T  .We 

check the hypotheses  i and ii . 

Our assumptions imply that  1L  , so 
2   for some  H   . 

If 1A  is multiplication by I E  on  2H E , then 1A is analytic and

1 1 1T A A . 

 ii Let  1nf


is sequence in  2H E such that 

                             2 2,
lim 0n k n kn k

T f f f f


                              (22) 

And 
                                       1 1

lim 0n nn
T f f


                                      (23) 
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