Sudan University of Science And Technology

College of Engineering Biomedical Engineering Department

Lower Limbs Prosthics Evaluation In Sudan

Submitted in partial fulfillment of the requirement of B.sc (honor) degree in Biomedical engineering

Presented by:

Waad Tag ELsir Mustafa Awad Tsneem Hashim Omer Asmally

Supervisor:

Dr. Elias Sidieg Mohammed Hassan

Contents:

الآية	I
الاهدا	II
Acknowledgment	III
Contents	IV
List of figures.	VII
List of tables	X
Abbreviations	XI
Abstract	XII
المستخلص	XIII
Chapter one: introduction	1
1.1 General review	2
1.2 Problems statement	2
1.3 Solutions	2
1.4 objectives	3
1.4.1 General objectives	3
1.4.2 Specific objectives.	3
1.5 Thesis layout	3
Chapter two: theoretical fundamental	4
2.1 Anatomy of lower limb	5
2.1.1 Femur	5
2.1.2 Tibia	6
2.1.3 Fibula	7
2.1.4 Foot	8
2.2 Definition of amputation	9
2.3 Types of Lower limb Amputation	9
2.3.1 Toe Amputation	9

2.3.2 Transphalangeal Amputation	9
2.3.3 Transmetatarsal Amputation	9
2.3.4 Lisfranc Amputation	9
2.3.5 Chopart Amputation	9
2.3.6 Syme Amputation	9
2.3.7 Transtibial Amputation	11
2.3.8 Knee Disarticulation	11
2.3.9 Supracondylar Amputation	11
2.3.10 Transfemoral Amputation	11
2.3.11 Hip Disarticulation	11
2.3.12 Hemipelvectomy	11
2.4 Types of prosthetic devices	13
2.4 Types of prosthetic limbs in term o	13
2.4.1 The injury and its location in the body	13
2.4.2 The period of time for use	13
2.4.3 The function	13
CHAPTER THREE: Background study	15
CHAPTER FOUR :Methodology	18
4.1 Data collection from visiting to specialist centers	18
4.1.1 Alamal center	18
4.1.1.1 Administrative building	18
4.1.1.2 Hospital Accident	18
4.1.1.3 The Department of Physical Therapy	18

4.1.1.4 Prosthetics factory	21
4.1.1.5 The vocational training center	25
4.1.1.6 Disabled housing	26
4.1.1.7 Housing administrative	26
4.1.1.8 Aljmneziom	26
4.1.1.9 Mosque	26
4.1.1.10 Club	32
4.1.1.11 Commercial center and services	32
4.1.1.12 Healthy youth sports	32
4.1.2 National Association of Prosthics and orthotics	38
4.1.3 Aotad prosthetics and orthotics	42
4.1.3.1 Unit Affairs patients	42
4.1.3.2 Specialized clinics	42
4.1.3.3 Workshop for the manufacture of artificial limbs	42
4.2 The following questionnaire was distributed to a group of patients	47
4.2.1 The questionnaire:	47
4.2.2 Result of questionnaire	48
4.2.2.1 Demographics of patients	48
4.2.2.2 Kind of injury by demographics	50
4.2.2.3 Amputee Hospitalization	51
4.2.2.4 Cause of Injury	52
4.2.2.4.1 War Wounded	52
4.2.2.4.2 Traumatic	54
12213 Congenital	56

4.2.2.4.4 Diseases of Affection	57
4.2.2.4.5 Amputee Date & State of Injury	59
4.2.2.4.6 Amputee Lower	60
4.2.2.4.6 Amputee Services	61
CHAPTER FIVE :Discussion	62
CHAPTER SIX: Recommendation	64
CHAPTER SEVEN :References and Supplement	66
References.	67

List of Figures

Figure 2.1: Anatomy of femur	5
Figure 2.2: Anatomy of tibia	6
Figure 2.3: Anatomy of fibula	7
Figure 2.4: Anatomy of foot	8
Figure 2.5: foot amputation	10
Figure 2.6: leg amputation.	12
Figure 4.1: This device is used to heat the paraffin used in the thermal treatment	19
Figure 4.2: Used to treat with heat	19
Figure 4.3: Used for radiotherapy	20
Figure $4.4 - a$, b: this device uses the microwave for the rehabilitation of muscle	20
Figure 4.5: Room to take the sizes of the patient for prosthesis	21
Figure 4.7: The second step fill the size of plaster	21
Figure 4.8: Slabs of propylene	22
Figure 4.9: PP small piece for formation.	22
Figure 4.10: Board of propylene after the formation	23
Figure 4.11: Machine to remove the appendages	23
Figure 4.12: Prosthesis in final form.	24
Figure 4.13: Hall of training after wearing the prosthesis	25
Figure 4.14: Swimming Pool.	26
Figure 4.15: Machine training the patient after wearing the prosthesis with a certain weights	27
Figure 4.16: Training the patient with artificial limb to climb the ladder	28
Figure 4.17: Wheel to train the patient to move the artificial limb	29

Figure 4.18: Device to train the patient to balance the pressure	29
Figure 4.19: Machine to train patients to move quickly with artificial limb	30
Figure 4.20: Hall to train disabled children	30
Figure 4.21: Machine to train handicapped children to climb and descend	31
Figure 4.22: Machine to train disabled children to stand	31
Figure 4.23: Machine to train handicapped children at certain weights	32
Figure 4.24: Patient wearing an artificial limb and trained to walk	41
Figure 4.25: Oven for melting propylene	42
Figure 4.26: Stage of the formation of artificial limb	43
Figure 4.27: Collection phase full artificial limb	43
Figure 4.28: Patient wearing a artificial limb	44
Figure 4.29 - a, b: artificial limb in final form in different colors	44
Figure 4.30: Machine integrated sports	45
Figure 4.31: Parts Store	45
Figure 4.32: Store of raw materials	46
Figure 4.33: The demographics of the patients in terms of gender	48
Figure 4.34: demographics of the patient in Sudan state	49
Figure 4.35: Average age of patients	49
Figure 4.36: Date and type of injury demographics	50
Figure 4.37: The demographics of the patients in terms of gender & type of injury.	50
Figure 4.38: Amputee Hospitalization demographics	51
Figure 4.39: Amputee Hospitalization in/out Sudan	51
Figure 4.40: Cause of Injury demographics	52
Figure 4.41: War Wounded demographics	53

Figure 4.42: War Wounded in terms of gender	53
Figure 4.43: War Wounded in terms of Hospitalization	54
Figure 4.44: Traumatic demographics	54
Figure 4.45: Traumatic in terms of gender	55
Figure 4.46: Traumatic in terms of Hospitalization	55
Figure 4.47: Congenital demographics	56
Figure 4.48: Congenital in terms of gender	56
Figure 4.49: Diseases of Affection demographics	57
Figure 4.50: Diseases of Affection in terms of gender	57
Figure 4.51: Diseases of Affection in terms of Hospitalization	58
Figure 4.52: Amputee Date demographics	59
Figure 4.53: State of Injury demographics	59
Figure 4.54: Amputee Lower demographics	60
Figure 4.55: Amputee Services demographics	61

List of Tables

Table 4.1: number of patient & Cause of disability on 2009	33
Table 4.2: Admittance to department of prosthetics	34
Table 4.3: number of patient & Cause of disability on 2010	34
Table 4.4: Admittance to department of prosthetics	35
Table 4.5: number of patient & Cause of disability on 2011	35
Table 4.6: number of patient & Cause of disability on 2012	36
Table 4.7: number of patient & Cause of disability on 2013	37
Table 4.8: number of patients & type of amputation	39
Table 4.9: number of patients & Admittance years	40
Table 4.10: number of patients & Cause of disability	40

Abbreviations

AKA Above knee Amputation

BKA Blow knee Amputation

TMA Tran metatarsal Amputation

NAPO National Association of Prosthics and orthotics

Abstract

Despite the progress and technological development and technical progress and the means of modern science, but the complications of diseases and conditions of the war and traffic accidents left disabilities stretched and affected families and the surrounding community for the disabled, prompting a scientific project of integrated services to provide medical services to the Sudanese people.

المستخلص:

رغم التقدم والتطور التكنلوجي والتقني وتقدم وسائط العلم الحديث وإلا أن مضاعفات الامراض وظروف الحرب وحوداث المرور خلفت اعاقات امتدت وطالت الاسر والمجتمع المحيط بالمعاق مما استدعى قيام مشروع علمي متكامل لتطوير الخدمات الطبية لتقديم خدمات للشعب السوداني.

CHAPTER One

Introduction

1.1 General review

Sources mention that the actual design of the prosthetic began in 1529 when he designed one of the surgeons forward industrial to help veterans who have lost some of their limbs during the wars, but the idea of using prostheses date back to the fifth century BC, when one prisoners of war to cut off his leg in order to escape from the chains prison, and then he saw people walking, was amazed and so when considering checked and found that he used a wooden party. Industrial parties began in Sudan after the Second World War and was manufacturing workshops are competent in the mechanical maintenance of existing industrial zone of Khartoum. The manufacturing is of local materials such as wood, iron, leather etc

These were the parties limited movement - somewhat - compared with the parties that are currently available, but it was that enables users of movement. Seem to be competent institution industry prosthetic limbs, a National Authority for the parties to engage in industrial action and so in 1964 and has been tracking the transfer of mechanical.

1.2 Problems statement:

The deterioration in the Sudan in the field of prosthetics and many individuals with disabilities do not have artificial limbs and even the disabled who have prostheses are facing problem in use and maintenance. International used high-quality materials in the manufacture of artificial limbs such as propylene, In Sudan used plastic which is not the quality of the materials used globally.

1.3 Solutions:

Must provide artificial limbs for the disabled and trained to use and provide maintenance centers.

Provide high quality materials as possible.

1.4 objectives:

1.4.1 General objectives:

- 1- General evaluation of Lower limbs prosthics.
- 2-Improve and develop the industry of artificial limbs to reach the international standards.
- 3- Helping the Disabled.

1.4.2 Specific objectives:

- 1- Link between biomedical engineering department and working in the field of prosthetics.
- 2- Applied science in the prosthetics.

1.5 Thesis layout:-

Chapter ONE: determine the problems that facing the individuals with disabilities in Sudan.

Chapter two: view background of anatomy, amputation levels and types of prosthics.

Chapter three: view Background study.

Chapter four: view the methods Followed in this research (visiting centers, questionnaire).

Chapter five: show the Discussion and Recommendation.

Chapter six: shown the References and Supplement.