Table of contents

Abstract (English).	i
Abstract (Arabic).	iii
Acknowledgements.	v
Table of Contents.	vi
List of Figures.	x
List of Tables .	xii
	_
Chapter 1: Introduction	1
1.1 Motivation.	2
1.2 Problem areas:	6
1.2.1 Problems with heterogeneous distributed	6
database systems.	-
1.2.2 Difficulties of heterogeneous distributed database.	7
1.2.3 The research problem.	12
1.3 Aims and Issues.	14
1.4 Assumptions.	16
1.5 Hypothesis.	16
1.6 Limitations.	17
1.7 Thesis Outline.	18
1.8 Terms and Keywords.	18
1.6 Terms and Reywords.	10
Chapter 2: Literature Review	21
2.1. Background.	22
2.2. Distributed Database models:	23
2.2.1 The Current Distributed Database Models.	23
2.2.2 Distributed Database Models Under Development.	25
2.3. Problems with distributed database:	27
2.3.1. Replication:	27
2.3.1.1 Eager Replication.	29
2.3.1.2 Lazy Replication.	30
2.3.2 Allocation.	33
2.3.3 Distributed Query Processing:	35
2.3.3.1 Architecture of a Query Processor.	35
2.3.3.2 Query Optimization.	38
2.3.3.2.1 Plan Enumeration with Dynamic Programming.	39
2.3.3.2.2 Cost Estimation for Plans.	40
2.3.3.3 Query Execution Techniques:	41

2.3.3.1 Row Blocking.	42		
2.3.3.3.2 Optimization of Multicasts.	43		
2.3.3.3.3 Multithreaded Query Execution.	43		
2.3.3.3.4 Joins with Horizontally Partitioned Data.	44		
2.3.3.3.5 Semijoins.	44		
2.3.3.3.6 Double-Pipelined Hash Joins.	46		
2.3.3.3.7 Pointer-Based Joins and Distributed Object	47		
Assembly.			
2.3.3.3.8 Top N and Bottom N Queries.	48		
2.3.4 Concurrency control.	49		
2.4 Related Issues:	53		
2.4.1 Data Integration.	53		
2.4.2 Administration of Distributed Database Systems.	56		
2.4.3 Federated processing.	57		
2.4.4 Information Integration and Enterprise Resource	60		
Planning (ERP).			
2.5 Summary and Conclusions:	64		
2.5.1 The Traditional Model.	64		
2.5.2 Distributed Models Under Development.	65		
2.5.3 Problems with distributed Database Models.	67		
2.5.4 Integrated Systems.	68		
2.5.5 Concluding Remark.	68		
Chapter 3: The Proposed Approach for the Heterogeneou	70		
Distributed Database Systems Integration (AHDDI)	70		
3.1 Introduction.	71		
3.2 The AHDDI algorithm:	72		
3.2.1 Divide-Conquer Algorithm.	73		
3.3 Appling the divide-conquer rule of the	75		
distributed processing (Testing the approach).			
3.4 AHDDI Architecture:	77		
3.4.1 The Bottom Up Technique.	77		
3.5 Design of the Distributed database:	81		
3.5.1 The Architecture of AHDDI Distributed	81		
Database.			
3.5.2 The Design Algorithm.	82		
3.5.3 AHDDI Data Fragmentation:			
3.5.3.1 Vertical Fragmentation.	83		
3.5.3.2 Horizontal Fragmentation.	84		
3.5.3.3 Hybrid Fragmentation.	85		

3.5.4 The data Allocation.	86
3.5.5 The data Replication:	86
3.5.5.1 AHDDI Eager Replication.	88
3.5.5.2 AHDDI Lazy Replication.	89
3.5.5.3 Joins Replications Techniques in AHDDI.	89
3.5.5.4 The Feature of AHDDI Replication.	91
3.6 AHDDI Transaction and Query Processing:	92
3.6.1 Queries for detail processing.	94
3.6.1.1 The algorithms of QDP that work on local	96
data.	
3.6.1.1.1 The algorithm of the QDP that making the	96
update within the transaction time.	
3.6.1.1.2 The QDP that making updating after	98
transaction.	
3.6.1.2 The algorithms of QDP that work on remote	99
data.	
3.6.2 Queries for manipulation and data retrieving.	100
3.6.2.1 QMR in retrieving data.	100
3.6.2.2 QMR in administration the data.	103
3.7 AHDDI Communications and Transaction Management:	103
3.7.1 Application layer for local processing (ALL).	105
3.7.2 Application layer for global processing (ALG).	105
3.8 Further Issues:	108
3.8.1 Extendibility:	108
3.8.1.1 Adding new system or application to the	108
existing distributed system.	
3.8.1.2 Developing distributed AHDDI model from	110
existing application.	
3.8.2 AHDDI Enterprise and Information Integration.	111
3.8.3 AHDDI information networking.	113
Chapter 4: Implementation:	114
4.1 The Hierarchical Structure of the System.	115
4.2 The Bottom up Technique:	117
4.2.1 The Admission System (AS).	118
4.2.2 The Student Services and Information System	120
(Student Affair System SAS).	_ •
4.2.3 The Timetable System (TS).	121
4.2.4 The Registration System (RS).	123
4.2.5 The Examination System (ES).	124
- , ,	

4.2.6 The Student Payroll System (SPS).	126
4.2.7 The Payroll System (PS).	126
4.2.8 The Academic Affair System (AAS).	127
4.3 Combining the subsystem:	127
4.3.1 Building the LANs systems.	127
4.3.2 Building the WAN.	130
4.4 Fragmentation:	132
4.4.1 Vertical fragmentation.	133
4.4.2 Horizontal fragmentation.	134
4.4.3 Hybrid fragmentation.	135
4.5 Data Allocation.	136
4.6 Data Replication:	137
4.6.1 Eager Replication.	137
4.6.2 Lazy Replication.	138
4.6.3 Joins Replications Techniques.	139
4.7 Query Processing	140
4.8 Software, DBMS, and Protocols used in the experiment.	143
4.9 Summary and Results.	143
Chapter 5: The Conclusions	145
5.1 Results and Contributions.	146
9.2 Limitations and Future Work.	151
References	153

List of Figures

Figure	2.1	Phases of query processing.	36
Figure	2.2	Dynamic programming algorithm for query	39
		optimization.	
Figure	3.1	Implementing divide-conquer rule in a	76
		University System.	
Figure	3.2	AHDDI first level architecture.	78
Figure	3.3	The architecture of the complete	80
		Distributed Model AHDDI.	
Figure	3.4	Vertical Fragmentation.	84
Figure	3.5	Horizontal Fragmentation.	85
Figure	3.6	Hybrid Fragmentation.	85
Figure	3.7	Remote Oracle database's tables linked	100
		into local Microsoft Access DBMS.	
Figure	3.8	Practical DAO programming code for	101
		combining two DBMSs.	
-		The architecture of ODBC.	104
-) AHDDI communications.	106
-		L ADO programming code for linking DBMS.	107
Figure	4.1	A Map shows the distributed of the 18	116
_		Colleges over Saudi Country.	
-		The hierarchical of the Colleges systems	117
Figure	4.3	The activities and data in Acceptance	119
		System (AS).	
Figure	4.4	The main interface screen of the	119
		Acceptance System (AS).	
Figure	4.5	: An example from the SAS User interface	121
		an integrated application of SAS and	
_ ·		ACS.	100
Figure	4.63	: An example from one of the TS User	123
	4 7	interface.	104
Figure	4./	The follow up of the Registration	124
	4 0	System(RS).	100
Figure	4.8	The activities, the process and the data	125
Figure	1 0	in ES system.	106
rigure	エ・フ	An example representing one of an ER user interface.	126
Figure	<u>4</u> 10) The architecture of the LANs Systems.	128
-		L A practical example of bringing remote	120 129
rigure	<u>т</u> •т]	A PLACETCAL ENAMPLE OF DEFINYING TEMOLE	エムク

	(data into local table using DAO code.	
Figure	4.12	The integration application menus (the	131
	1	menu that popped down represent parts	
	:	from TS and parts from RS).	
Figure	4.13	The architecture of Hail system.	132
Figure	4.14	Teacher College System: An	135
		implementation of horizontal	
		fragmentation.	
Figure	4.15	The hybrid fragmentation in Hail system	136
Figure	4.16	Updating user interface. Example of an	139
		administration transaction that updates	
		main data and known replicated data.	
Figure	4.15	An example: A report generated from	142
		several heterogeneous databases.	

List of Tables

		Classification of Replication Mechanisms.	29
Table	2.2	Evaluation and Comparison Between the	66
		Distributed Database Models.	
Table	4.1	An example of constituent of a field of	120
		SAS database table.	
Table	4.2	An example of the field of a timetable	122
		database table.	
Table	4.3	An example of the field of an AAS database	127
		table.	
Table	4.4	A sample of database: A snapshot of	133
		Academic System (ACS) main data.	
Table	5.1	Comparison Between the Distributed	150
		-	100
		Database Models and AHDDI.	