

1

CHAPTER 1

INTRODUCTION

 1.0 Introduction

This chapter is an introductory chapter to the research thesis. It presents

background of software testing, Model based testing. Also it states the problem

and explores the objective of the research.

1.1 Background

 Software testing is an important technique for assessing the quality of software

product. Software testing is the process of analyzing software item to detect the

difference between existing and required condition (that is, bugs) and to

evaluate the features of the software item.

Traditionally the testing process is based on manual work. Manual testing is an

expensive, time consuming. Moreover, testing should be repeated each time a

system is modified. Hence testing would be an ideal candidate for automation.

Consequently there are many test tools available nowadays. Most of these tools

support the test execution process. (Jan Tretmans, 2002)

 Automating software testing can save significant amount of money, and

save as high as 80% of manual testing effort have been achieved and produce

better quality software more quickly than would have been possible by manual

testing. (Mark Fewster, 1994)

2

Model Base Testing (MBT) is the automatic generation of software test

procedures, using models of system requirements and behavior.

Model base testing process involves many steps: model the system under test

(SUT), generate abstract tests from the model and then execute the tests on the

SUT. The steps of modeling and generation tests are distinguish model based

testing from other kinds of testing, in online model-based testing tools, generate

abstract tests and execute them are usually merged into one step, whereas in

offline model based testing, they are usually separate. (Mark Utting) this

research focused on offline model based testing.

Model based testing helps to reduce testing effort while increasing test quality.

An automate test execution requires the generation of test scripts.

An automated testing helps in shorten the development cycles, avoid

cumbersome repetitive tasks and help improve software quality. Once the test

suit is automated, no human intervention is required. (guru99.com)

 The test script may be written in some standards programming or scripting

language or in special testing language. In execution test, doing the same for

number of test cases will result in one script for each test case, this requires

more cost, time and effort. Test scripts are a necessary part of test automation.

(Mark Fewster, 1994)

 Model Driven Architecture (MDA) is defined and supported by the Object

Management Group (OMG). This process uses Unified Modeling Language

(UML) as the main development language. MDA is aimed at increasing

productivity and re-use through separation of concern and raising abstraction. A

Platform Independent Model (PIM) is an abstract model which describes the

application concepts while Platform Specific Model (PSM) is an

implementation level. MDA has the capability to define transformations that

map from PIMs to PSMs. MDA is aimed to automate software development. To

3

automate this process Object Management Group (OMG) has developed a

Query/ View/Transformation (QVT) tool (OMG, 2007).

 QVT rules define standard way to transform source models into target models

1.2 Problem Statement:

Testing is expensive. To use a test execution tool to automate tests, you will be

writing scripts. An automated test script is more expensive to write and requires

more effort and time.

This research focuses on how to automate test scripts using MDA.

Using MDA aimed to reduce cost through the application life cycle, reduce

development time and to improve software quality.

1.3 Objectives:

There are some objectives of this research

 Developing PIM metamodel tests

 Developing PSM metamodel for implementing of test

 Develop mapping Rules for PIM to PSM

 Evaluating the proposed solution

4

1.4 Thesis Organization

This layout of this thesis is organized as following:

The second Chapter discusses the concepts of Software testing and its

principles, MBT and its goals and benefits, test script and its principles,

metamodel, MDA and its Models, QVT language. Finally discusses many

related works to this research. So this is about the state of the art in this field.

The third Chapter discusses the approach which we followed to automate

generating Test script from Test case. It shows how the principles of MDA are

applied developing PIM metamodel to represent Test case, and developing PSM

metamodel to represent Test script, then shows the mapping rules to automate

transform of PIM to PSM.

Finally, the fourth Chapter presents discussion and conclusion of this research.

5

CHAPTER 2

LITERATURE REVIEW

2.0 Introduction

This chapter is about the state of the art. This research draws on lot, it talks

about software testing, the MBT goals and benefits, test script and its principles,

metamodel, MDA, QVT, and related work.

2.1 Software testing

 In any software module there are almost always software bugs and

design defects, that means complete testing is infeasible.

Software testing is the process of executing a program or system to finding

errors, it performs to evaluate the software item to find the difference between

the input and expected output, also to evaluate the software feature. The process

of the testing should be done during the development process. (Mark Fewster,

1999)

In other words, software testing is verification and validation process,

verification is the process that makes sure that the product performed the

required conditions at the beginning of the development phase, where the

validation is the process that makes sure that the product performed the specific

requirement at the end of the development phase. (Mark Utting et al, 2007)

6

2.1.1 Principles of Sofware Testing

 There are two principles of software testing: blackbox testing and whitebox

testing.

Blackbox testing(functional testing) is a testing technique whereby the design of

tests is based on just the requirements or specification of the system under test,

not on knowledge about the implementation of the system (Mark Utting , 2007).

And Whitebox testing (structural testing) is a testing technique wherein the

design of tests uses knowledge about the implementation of the system (Utting

et al ,2007).

 Black box testing is often used for validation, and white box testing is often

used for verification.

In current software engineering cycle the design and testing activities are

separated. The testing has a long history but basically faces two common

problems, the maintenance problem which means changes on SUT interfaces,

for example, or the requirements. And the automation (i.e. testcases) problem.

Model-based testing is a trend to solve the two problems. It focus on model as

first class as stated by Robert (1999) testing is about models.

2.2 Model Based Testing

Model based testing is a set of techniques and tools to automate the

generating of test cases relies on a model of a system (Requirements, behavior).

 Also it is executing artifacts to perform software testing or system testing.

http://en.wikipedia.org/wiki/Software_testing
http://en.wikipedia.org/wiki/System_testing

7

The model is usually created manually from information specifications or

requirements, and then automatically test suite is generated that contain test

sequences and the test oracle.

The test sequences is used to control the system under test, using it in

different conditions to test it for conformance with the model, and the test oracle

watch the progress of the implementation and issues a pass or fail verdict.

 2.2.1 Model Based Testing Goals

 To bring the benefits of automation to an additional portion of the test cycle.

 To provide testers with more effective tools to create test cases

 Trace to requirements

 Justify risk based decisions

 Reduce cost and cycle time. (Mark Utting)

After write an abstract model of the system under test, the model based

testing tool generates a set of test cases from the model.

 The model based testing process divides into the following five main steps:

1. Model the system under test and/or its environment. In this step of

MBT write an abstract model of th system which want to test, then use tools

(automate tools) to check if the model is consistent with the desire behavior.

2. Generate abstract tests from the model. In this step use some test

selection criteria to generate abstract test from the model, which are sequnces of

operations. This abstract test is the main outputs of this step.

8

3. Concretize the abstract tests to make them executable. This step use to

transform abstract tests into executable concrete tests using transformation tool

or writing some adapter code that wraps around the SUT, this step aimed to

remove the gab between the abstract test and the concrete SUT.

 4. Execute the test on the SUT and assign verdicts. In this step execute the

concrete test. There are two ways of execution , online Model-based testing

and offline Model-based testing. In online MBT the test will execute during

produce, that means the tool which uses will manage the process of execution

and record the result. In offline MBT first generate tests then execute them and

record the result.

5. Analyze the test result. This is the final step, after execute the test must

analyze the result of execution and reports the failure for each test.

2.2.1 Concretization phase

This step is an important step of MBT processes it to transform the test case to

test script, it involves three main approaches: 1.The Adaptation Approach in

this approach, a wrapper is adding around the SUT to lift up the SUT interface

to the abstract level so that the abstract tests can be interpreted at that level.

2. The transformation approach this approach involves transformation all

abstract tests into an executable test scripts by adding the necessary details and

translate them into some executable languages.

3. The Mixed Approach is a combination of two previous approaches, in this

approach add some adapter code around the SUT to raise its abstraction level

part of the way toward the model and make testing easier, then transform the

9

abstract test into more concrete forms that match the adapter interface. There are

some benefits of this approach that the transformation can be easier, since the

levels of abstraction are closer, and the adapter can be more model-specific,

which may allow it to be reused for many different models.

Generally, online testing requires the use of the adaptation approach, and offline

testing may use either approach or a combination of two approaches.

2.2.2 Benefits of MBT

MBT have various benefits

1. SUT Fault Detection. Testing is aimed to finding errors in the SUT. Model-

based testing find greater than or equal to the number of errors that is finding by

manually design test suits, but this depends on the experience and skills of the

tester, deposite this the Model-based testing is as good as or better at fault

detection than manually design test.

2. Reduce Testing Cost and Time. Model-based testing takes less time and

effort to write and maintain the model and to generating tests.

3. Improved Test Quality. Design process of test manually is depending on

ability and skills of engineers, this makes this process not qualify to generating

test. By using MBT can handle this problem, that because MBT generates test

cases automate, that makes the design Process is systematic and repeatable.

MBT can uses to measure quality of the test suit by using the model. Because

MBT takes less time and cost, it can generate more tests than it possible to

generate by manual test.

10

4. Requirement Defect Detection. In MBT after build abstract model of SUT

can exposes the model issues in informal requirement. During generating tests if

that an error or missing in requirements, the modeling phase will exposes that.

Requirements problems are the major source of the system problems. Any

defect detects in requirement phase that better, easy to fix and cheaper than

detect later.

5. Traceability. MBT has ability to bind test case with the model and with

informal requirement in process that called traceability. By using traceability

can explain why test case is generated and when optimize test execution. It

helps to execute just the tests that effects by any change of model. Traceability

makes important Relation between informal requirement and test case which

consist of three aspects, Reqs-Model traceability, Model-Test traceability, and

Reqs-Test traceability which it combine the Requirement and test case. The

Requirement Traceability can use as a measure of test suit quality.

6. Requirement Evolution. In manual test if the Requirements are changes, these

changes requires a large amount of time and effort to update the test suit. But

with MBT just update the model then generates the test, this requires less time

and effort. When the Requirements or the model evolves that requires tools to

analyze the different between the old Requirements and the new one. (Mark).

2.3 Test script

A test script is the most important concept in this research so it will be dealt

with first in this section. A test script is a test case transformed into executable

language on the SUT

11

 “A test script is an executable version of a test case, which is usually

written in a programming language, a scripting language, or a tool-specific

executable notation.” (Mark Utting, 2005). Test script is an essential part of

automation testing.

 “A test script is the data and/or instructions with a formal syntax use by test

execution automation tool, typically held in a file. A test script can implement

one or more test cases.” (Mark Fewster, 1999).

 Scripting can created manually. And can written in a formal language so the

tool can understand, written and editing script, that makes using tool is best than

people with programming knowledge.

2.3.1 Good script

Script is very flexible. And to perform a task there will usually be many ways of

coding a script.

 Since script form is an important part of most test automation, we should

insure it is good. A good script must be easy to use, easy to maintain. Writing a

good script requires more effort, there are many principles to reduce the effort

in writing a good script and to achieve the reusability and increase productivity

and decrease the maintenance cost.

 Annotated, to guide both the user and the maintainer.

 Functional, performing a single task, encouraging reuse.

 Structured, for ease of reading, understanding, and maintenance.

 Understandable, for ease of maintenance.

 Documented, to aid reuse and maintenance. (Mark Fewster, 1999).

12

2.3.2 Script techniques

There are different scripting techniques. These techniques will be used together.

Each one of them has some advantages and disadvantages that affect the time

and effort, it takes in implementing test cases supported by the scripts.

The scripting techniques described are:

 Linear scripts

 Structured scripts

 Shared scripts

 Data-driven scripts

 Keyword-driven scripts (Mark Fewster, 1999).

2.3.2.1 Linear Scripts

Linear script is scripting technique uses when record the whole of each test case

performed manually. In this technique uses a single script to replay a test case in

its entirety. Thus with more complex application and test, this process is likely

to take long time. Linear scripts can records manual task and starts automating

without planning. Any user can uses it not just programmer. Linear scripts good

for demonstrations. These are some advantages makes the linear scripts ideal for

some tasks. Linear script can use to automate any repetitive action, to automate

edit to update automated tests. Linear scripts can be useful for conversation, and

for demonstrations or training.

Linear scripts do have a number of disadvantages:

 To automate test needs for too long time than running it manually. And

needs some maintenance effort when the SUT changes.

 There is no reuse of scripts

13

 Linear scripts are vulnerable to software changes

 They are expensive to change. (High maintenance cost).

2.3.2.2 Structured scripts

Structured script is the same with structured programming; it uses some control

structures to control the execution of the script. These control structures are:

sequence, selection and iteration, they are gives a script the ability to make a

decision by using „if statement‟, and ability to repeat a sequence of instructions

when it requires by using „loops‟.

A good using of these control structures leads to maintainable and adaptable

script that will support an effective and efficient automated testing regime. So

these using requires for programming skills.

 In structured scripting the script can be made more robust to test and to check

the reasons of the test fail, however the script is more complex.

2.3.2.3 Shared scripts

Shared scripts are shared by more than one test case, this help to writing or

recording the actions required in less time. By using this technique can start

automate test with rapidly changing software, this reduce the maintenance effort

and cost, and take less effort to implement the same tests. This technique is

suitable for small system.

2.3.2.4 Data-driven scripts

A data-driven scripting technique uses a separate data file to store the test inputs

and read this inputs from it. In this technique the same script enables to run

different tests with different inputs and different outcomes, so can implement

more test cases with little effort. Testers can add a new tests even has no

knowledge about scripting tools, this adding can be done very quickly. This

14

technique requires little maintenance effort. The disadvantages of this technique

are that the writing of control scripts needs programming skills, and the initial

set-up needs more time more effort.

2.3.2.5 Keyword- driven scripts

A keyword- driven script is the extension of the data-driven technique, this

technique uses a single control script to support a wider variation associated test

cases. The implementation of automated test cases is more complex.

Specify of any action in details makes scripts very complex. The keyword-

driven technique uses data-driven technique to specify automated test cases

without details by using a set of keywords, this keyword interpreted by the

control script.

 Data-driven testing uses a set of scripts, these scripts are more generic and

reusable, which reduce the maintenance problem.

2.4 Automated software testing

Automated software testing becomes very important control mechanism to

ensure accuracy and stability of the software through each build .

To reduce a hard human effort in testing, can attitude automated software

testing by using some existing frameworks or tools to automate some activities

in software testing, such as the JUnit testing framework to write unit test inputs

and their expected outputs.

There are several reasons to use automated tests:

 Speed up testing to accelerate release

 Allow testing to happen more frequently, and be done with less skill

 Reduce cost of testing by reducing manual labor

 Improve testing coverage and reliability

 Ensure consistency

15

 Make testing more interesting

 Develop programmer skills.

2.5 Metamodel

This concept is central to the methodology (MDA) we used for the solution of

the problem so it will be explained as a second important component. A

metamodel is a model of a model. It‟s a model that defines the language for

expressing a model. Metamodel is needed to store the modeling data in form of

the metadata and helps to model the system. The MDA metamodel is a data hub

in the development of the system with any modeling languages. (Prabhu

Shankar Kaliappan). The metamodelling technologies often use an abstract

syntax. The UML metamodel is viewed as defining the language for creating a

model, and the MOF as defining the language for creating metamodels (Colin

Atkinson, 2002).

2.6 Model Driven Architecture (MDA)

The Object Management Group (OMG) is founded in 1989 as standards

organization to help reduce complexity, lower costs and to present a new

software applications, some of it's accomplishments are the Unifide Modelling

language (UML), Meta Object Faciliy (MOF) and XML Metadata Interchange

(XMI). These standerds helps in model driven development. Later OMG

adopted a new framework called Model Driven architecture (MDA) using by

OMG as approach for using model (Frank Truyan, 2006).

 MDA provided a new way to use models than use traditional source code.

Model is an abstraction of a system, it can provides a simple view of the system,

and can uses for planning. The most commonly used models are the UML

models which uses as a programming language.

16

MDA has three advantages against other methodologies of software

development: transferability that is connected with platform independency,

interoperability that is closely related to standard development and reusability

that is the result of the previous two advantages. (Martin Kardos, 2010).

MDA aimed to increase the application reuse, reduce the cost and complexity of

application development, reduce the time, and improve application quality (Igor

Sacevski).

2.6.1 MDA Models

The basic concepts of the MDA are the following models: Computation

Independent Model (CIM), Platform Independent Model (PIM) and Platform

Specification Model (PSM), and the transformation techniques and mapping

(Frank Truyan, 2006).

2.6.1.1 Platform Independet Model(PIM)

PIM is a model with high level abstraction independent on the implementation

technology, developed using many notations like UML. MDA usually has

multiple levels of PIMs, these levels may different from basic to advances

structural and behavioral modling.

PIM is stored in Meta Object Facility and it considered as input to the mapping

step which will produce a Platform Specific Model (Prabhu Shankar Kaliappan,

2007).

2.6.1.2 Platform Specific Model (PSM)

The PSM is a technology metamodel where native APIs of the platform is

modeled in abstract way. It can be also produced by the transformation from

PIM. PSM is different from PIM in abstraction level where implementation

17

concepts appear while in PIM only application concepts like in student

registration system only the concepts related to the academic business. PSM

contains enough information to allow code generation. The platform model

provides concepts for use in the PSM. Because we need to map PIM to PSM

often using automated tools the next section is about that.

2.6.1.3 Transformation Techniques

A central aspect of MDA is the concept of model transformation, in which one

model is converted into another model of the same system. A mapping is a set

of rules and techniques used for this modification, a mapping tells how elements

of a certain type should be transformed into elements of another type. In MDA

the most typical case is transformation from PIM to PSM, using standard

mappings like XMI (XML Metadata Interchange). However transformations

may be used between PIMs, between PSMs, from PSM to PIM as well as from

PIM to PSM. The output model of transformation may be simple code (Prabhu

Shankar Kaliappan, 2007).

Figure 2.1: The MDA Transformation process

(Prabhu Shankar Kaliappan, 2007).

18

Figure 2.2: Dimensions of Transformation between PIM and PSM

(Xiuhua Zhang, 2002)

2.7 Query View Transform (QVT)

A model transformation mapping must be specified using some languages, it

can be a natural language, an action language, or a dedicated mapping language.

QVT is a standard for model transformations language in the MDA architecture

developed by the OMG (Object Management Group). It is central to any

proposed MDA. It provides a way to transform source models to target models.

These source and target models must adapt to the MOF meta-model.

Specifically, this means that the abstract syntax of QVT must conform to the

MOF 2.0 meta-model. QVT defines three specific languages named: Relations,

core and operational/mapping. These languages are organized in the layered

architecture.

There is an open source tool set allow to develop projects using MDA

methodology, these are like MediniQVT and EMF [www.eclipse.org/emf].

19

In recent years, several works on testing and test scripts have been proposed.

We presented a brief overview of some best known works.

2.8 Related Works

(A.Z. Javed and et al, , 2007) proposed a method that generates test cases from

the Platform-independent model of an application using MDA tools. This

method is based on sequence diagrams. They devised two sets of

transformations: horizontal transformations using Tefkat(PIM to PIM), and

vertical transformation using MOFScript (PIM to PSM). They used MDA

approach for generating unit test cases in two steps. In the first step, they

modeled a sequence diagram as sequence of models calls (SMC) which is then

automatically transform into a general unit test case model by applying model-

to-model transformations. In the second step, model -to-text transformation are

applied on the xUnit model to generate platform specific test cases that are

concrete and executable. They have implemented prototype tool for generating

test cases (PSM) from sequences of method (PIM). During execution of test

cases, the return values of method are checked and the method invocation chain

is monitored using a tracing tool.

 (Fuqing Wang and etal, 2009) proposed an efficient way to transform test

cases in word documents to executable programs using MDA. by using MDA

they presented a more efficient way to software development by giving a

higher-level abstraction with standarized model and implementing the automatic

transformation among different levels of model or code. There are three phases

in this proposed method according to MDA: transformation from CIM to PIM,

transformation from PIM to PSM, transformation from PSM to code. By using

this method they could reduced the cost of testing because in this way lots of

duplicated work is diminished, and also they could inproved the testing

efficiency, and reused the artifact easily. Results show that the development

20

time of executable test cases (Test Scripts) are considerably redused and test

maintenance is simplified.

 (Yang Liu and et al, 2010) proposed a methodology of automatic generation

of test cases based on MDA. the process of generating test cases is that a

platform- independent model is converted into a platform-independent test

model through level conversation, and the platform-independent test model is

converted into the corresponding test cases through vertical conversation. They

have PIM model represented by UML and PIT test model represented by U2TP

in the conversion from the PIM to the PIT, They make the PIM as a source

model, the PIT as a target model. The conversation rules from the system model

to the test model are designed using the ATL model to model conversation

method . The conversation rules test model to the test cases are designed using

the MOFScript model to code conversation method . then the revelant test cases

are generated.

 All papers mentioned in this research based on MBT and transformation

concepts from model-to-model, and used the MDA as a solution approach as

this research. They used the MDA approach for the easy transformation and its

support for automated based on different model transformation languages. (A.

Z. Javed and etal, , 2007) , (Yang Liu and et al, 2010) are focused on test cases.

While (Fuqing Wang and etal, 2009) focused on test cases and test scripts like

this research. This research based on automated generation of test script using

QVT language. They have used different transformation tools like

ATL/MOFScript, and Telfkat.

 This research proposed methodology of automatic generating of test script

from test case using MDA (PIM-to-PSM) to reduce cost, time and improve

software quality. This generating is done by QVT transformation rules.

21

CHAPTER 3

AUTOMATING TEST SCRIPTS

GENERATION PROCESS

3.0 Introduction

 This research proposed a way to automate generating test script from test case.

Test case is a sequence of SUT interactions. Test script is executable version of

a test case.

This can be done by automated transform test case to test script using MDA

methodology for automation by using QVT transformation rules as standard for

model transformations.

3.1 Methodology Steps

 The ways we followed in this research can be summarized in these steps:

 Developing PIM metamodel tests

 Developing PSM metamodel for implementing of test

 Develop mapping Rules for PIM to PSM

 Automatic transformation from PIM to PSM

22

3.1.1Developing PIM metamodel Tests

In this section we develop a PIM metamodel for test case [see the Figure 3.1]

PIM is an abstract model which contains enough information to drive one or

more Platform Specific Model (PSM).

Figure: 3.1Test case Metamodel (PIM)

The PIM metamodel is expressing the test case which modeling by using UML.

This figure describes the elements of the test case in this research. These

elements are: test suit, test case, method, transition, parameter, guard, and

output. The instance of test suit has attribute called name which is string type,

the attribute of test case is id integer type, the instance of test suit is a set of test

cases, the method instance has attribute name which is string type, this attribute

23

represent the method name, the transition instance has attribute kind which is

string type, which represent the transition kind (source and target) and has

association with method, their association is source and target. The instance of

the test case has association with the instance method and with the instance

transition. The instance parameter has three attributes name, value and data

type which is string type. The name represents the parameter name and the

value represents the parameter value. The instance guard has attribute input

which is string type. The instance output has two attributes in and out which is

string type. The method instance has association with the parameter. And the

transition has association with the guard and output.

The case study is a developed an Automatic Teller Machine (ATM) specification

written by [Mark] for its software which represents our SUT. The ATM will

service one customer at a time. A session starts with the insertion of a customer

ATM card into the card reader slot of the machine. Then the ATM reads the card.

(If the reader cannot read the card to any insertion problem, the card is ejected,

and displayed an error screen and the session is aborted). Then ATM asked the

customer to enter a personal identification number (PIN), and then allowed to

perform one or more transactions, choosing from a menu of possible types of

transactions (withdrawal, deposit, transfer, inquiry) in each case. After each

transaction, the ATM asked the customer if would like to perform another. The

ATM must be able to provide all above services to the customer.

In withdrawal transaction a customer must be able to do a cash withdrawal from

any suitable account linked to the card, in multiples of 10.00 SDG. Customer

must be get approval from the bank before cash is disbursed.

A withdrawal transaction asks the customer to choose a type of account to

withdrawal from (checking) a menu of possible accounts, and to choose a dollar

amount from a menu of possible amounts. The system verifies that it has

sufficient money on hand to satisfy the request before sending the transaction to

24

the bank. (If not, the customer is informed and asked to enter a different amount.)

If the transaction is approved by the bank, the appropriate amount of cash is

dispensed by the machine before it issues a receipt. A withdrawal transaction can

be cancelled by the customer pressing the cancel key any time prior to choosing

the dollar amount. (Mark Utting, 2007).

ATM Test case sample

Testing Withdrawal data gathering

switchOn (); setCash(100); custInsertCard(card1); custEnterPin(PIN_OK);

 custSelectTrans(WITHDRAWAL); custSelectAcct(CHECKING);

custEnterAmount(20); custAnotherTrans(false); switchOff();

Withdrawal is the name of test case, the switchOn is the value of the id attribute,

the methods names of test case are switchOn, setCash, custInsertCard,

custEnterPin, custSelectTrans, custSelectAcct, custEnterAmount,

custAnotherTrans, switchOff. The parameters for each method, switchOn and

switchOff methods has no parameters, the rest parameters values and names are a

value 100,name card1, name PIN_OK, name CHECKING, a value 20, name

false. The transitions (in\out) of the test case are, Start machine\ message insert

card, Card detected by card reader\enter card, Request sends to bank\ check,

Right PIN\ PIN_OK, Message select account\”_”, Message enter amount\”_”,

Yes\select deposit, NO\”_”, Presses cancel key\end session. These transitions

appear in the figure 3.2 of state machine diagram which contains events and

transitions.

Figure 3.2 Behavioral Model of the SUT diagram

25

 Start machine \ message insert card

Card detected by card reader\ enter PIN

Request sends to bank\ check

 Check

No\”-“ Yes\Deposit Message select account \”-“

 Message enter amount \”-“

 Presses cancel key \ end session

Switch on

Insert card

Enter PIN

Connect
bank

Fail

Success

Select Trans Select another
Trans

Withdrawal

Select account

Enter amount

Change balance

Printing the Receipt

Switch off

Deposit

Eject card

26

3.1.2 Developing PSM Metamodel Tests

 In this section we develop a PSM metamodel which represent the test scripts

platform concepts (see the Figure 3.3).

Figure: 3.3Test script Metamodel (PSM)

To write test script (manually) for test case must use some software technology

or platform like scripting languages. The test script for test case withdrawal is

written in JUnit in the example in Figure 3.4. The test script is generated in

concretization step by transform all test cases into test scripts.

27

public class ATM Test case

{

Private Card card;

Private Account account;

 Private Trans Trans;

Private balance balance;

public setUp()

{

}

public void main()

{

Public enum PIN_TYPE {PIN_OK,PIN_KO};

Public enum Trans_TYPE{Transfer, Withdrawal};

Public ATM atm:new ATM;

Messageresult= atm.insertcard();

Messageresult=atm.enterPIN();

Messageresult=atm.enteraccount();

assertEqual(result,MESSAGE.SUCCESS);

assertTrue(user pin PIN[1]:PIN_OK);

messageresult=atm.selectTrans();

result=atm.withdrawal();

result = atm.balance(100);

 Message result=atm.enteramount (20);

assertEqual(account.balance,accuont.balance - amount(20));

assertEqual(account.balance,account.balance - amount(20) == 80);

assertTrue (account. Balance (80));

}

}

Figure 3.4Test script for ATM using JUnit

From test case withdrawal

28

Scripttestsuit is a collection of many testscripts. Scripttestsuit has attribute

name which string type, this name is a name of scripttestsuit, testscript has

attribute id which is integer type, any testscript has message with interface, the

message has attribute returnvalue which is string type, interface has attribute

interfaceNO which is integer type, and any interface has parameter with

attribute in and out which represent input value and output value, the kind of the

interface is operation, The oracleinformation instance has two attributes input

and output which is represent the input value of the testscript and the expected

output, it has two kinds method and value, the value has value specification, seq

has attribute kind which is string type, and has association with interface in

association of source and destination. Testscript has association with seq.

3.1.3 Developing Mapping Rules

The foundation of MDA architecture is creation of models. Models are

representing the APIs of the platform and application specification. However,

there is an important issue – transformation among these models.

Transformation of a model is a process when one model is a source, converted

into another model – destination with the use of certain transformation rules

(Kardos et al, 2010).

For any transformation, first we should map every metamodel element(s) in the

source to their corresponding target element(s) (model-to-model

transformation). In this research mapping PIM to PSM done specify informally

table [3.1] which shows how the test case metamodel elements mapped to test

script metamodel elements:

29

 Table 3.1 Mapping rules table

3.1.4Automatic transformation from PIM to PSM

To automate generating test script from test case we have used MDA

automation machinery which baisclly centered on QVT engine.

The following are steps practically followed to do this automation which

depends on EMF [www.eclipse.org/emf] which is rich model manipulation case

tool developed as open source for MDA programming, MediniQVT for written

executable rules of mapping and XMI [www.omg.org/index.html]which enables

migration of models from tool to another tool without much effort.

Test Script Metamodel Elements

(PSM)

Test case Metamodel Ele ments

(PIM)

Script testsuit-name-string Test suit-name-string

Test script- id- integer Test case-id-integer

Seq- kind – string Transition-kind-string

Seq- source – string Transition – source-string

Seq- destination – string Transition – target-string

 Oracle Infomation-input-string output- in-string

Interface - name-string Parameter-name-string

30

These steps are:

1. After drawing the PIM and PSM models in the Magic draw tool, export

them to XMI files.

2. Using Eclipse tool create new project as EMF project (Eclipse Model

Framework).

3. Import the XMI files to Eclipse as EMF project to create Ecore files

Metamodel and .genmodel files based on UML.

4. Write java file to create PIMInstance.

5. In the QVTmedini import The PIM Ecore and PSM Ecorse (metamodels

files).

6. Write QVT rules to mapping source to target.

7. After determine source, target, and qvt mapping file and create trace

folder does the configuration of the run.

8. Do run to generate the result of mapping (PSM instance).

To automate test scripts, firstly create the PIM instance, which is a result of the

first four steps. This PIM instance created in Eclipse tool.

31

Figure 3.5 Eclipse Tool

Figure 3.6 PIM Instance

PIMInstance.xmi

?<xml version="1.0" encoding="UTF-8">?

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:PIM="http:///PIM.ecore"

xsi:schemaLocation="http:///PIM.ecore PIM.ecore">

 <PIM:testsuit name="TestSuitInstance/">

 <PIM:testcase id="1/">

 <PIM:transition target="/6" Kind="TRInstance" Source="/5/">

 <PIM:method name="Adds1/">

 <PIM:method name="Adds2/">

 <PIM:method name="removes1/">

 <PIM:method name="removes2/">

 <PIM:parameter name="PARInstance" value="PARValInstance/">

 <PIM:guard input="GRInstance/">

 <PIM:output in="InInstance" out="OutInstance/">

</xmi:XMI>

32

/* --*This transformation is uni-directional in direction "Test script" and maps test case

elements to test script elements..

*It is based upon the example in the official QVT specification at http://www.omg.org/cgi-

bin/apps/doc?ptc/05-11-01.pdf.

 */

transformation pim2psm (pim:PIM, psm:Data) {

-- map each Test Case to Test Script
--**

 top relation TS2scriptTS {

 pn: String;

 checkonly domain pim p : PIM::testsuit{name = pn};

 enforce domain psm s : Data::Scripttestsuit{name = pn};

 enforce domain pim x : PIM::testcase{};

 enforce domain psm m : Data::TestScript{};

 }

 top relation TC2TS{

 no:Integer;

 checkonly domain pim x : PIM::testcase{id=no};

 enforce domain psm m : Data::TestScript{id=no};

 }

 top relation method2Oper{

 nm:String;

checkonly domain pim mth : PIM::method{name = nm};

enforce domain psm Oper : Data::Operation{name = nm}

 }

top relation Trans2Sequ{

k: String;

 checkonly domain pim tra : PIM::transition{kind=k};

 enforce domain psm S : Data::Seq{kind=k};

 }

 top relation output2Oracinfo{

outp: String;

 checkonly domain pim op : PIM::output{out=outp};

 enforce domain psm orcinfo :

Data::Oracleinformation{ouput=outp};

 }

 }

Figure 3.7 QVT Mapping Rules

http://www.omg.org/cgi-bin/apps/doc?ptc/05-11-01.pdf
http://www.omg.org/cgi-bin/apps/doc?ptc/05-11-01.pdf

33

Figure 3.8 MediniQVT Tool

34

The result of mapping is the generating of PSMinstance

PSMInstance.xmi

<?xml version="1.0" encoding="UTF-8"?>

<xmi:XMIxmi:version="2.0"

xmlns:xmi="http://www.omg.org/XMI"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:Data="http:///Data.ecore"

xsi:schemaLocation="http:///Data.ecore Data.ecore">

 <Data:Oracleinformation output="OutInstance"/>

 <Data:Seq kind="TRInstance"/>

 <Data:Operation name="removes2"/>

 <Data:Operation name="removes1"/>

 <Data:Operation name="Adds2"/>

 <Data:Operation name="Adds1"/>

 <Data:TestScript id="1"/>

 <Data:Scripttestsuit name="TestSuitInstance"/>

 <Data:TestScript/>

</xmi:XMI>

Figure 3.9 PSM Instance

35

CHAPTER 4

CONCLUSION

4.0 Discussion and Conclusion

This research proposed a method that generates test script from test case using

MDA tool without using much programming skills. This trend was adopted by

OMG (nonprofit organization) in an innovation called MDA.

In MDA principles transformations from test case to test script using standard

mapping tool like QVT focal.

 In MDA there are different alternatives to get new information in the

transformation from one model to another (e.g. using profile, using metamodels,

patterns and markings, etc) for this research a metamodel mapping approach to

specify the transformation. They are PIMs and PSMs where the former is used

to represent the test case and the later is for test scripts

 The objectives of this research have been implemented in followed steps:

Firstly the PIM have been developed for testcase by using UML which

described in (Figure 3.1). This figure contains all the elements of test case. This

model is build based on real case study (a number of testcases). Secondly the

PSM have been developed for testscript (after investigating real testscripts for

that testcase written manully) by using UML which described in (figure 3.3).

This figure contains all the elements of test script.

36

After the creation of the PIM and the PSM, we transformed the elements of test

case to the elements of testscript in mapping table. This mapping has been

mapped formally into QVT rules using MediniQVT to automate transformation

from PIM to PSM.

The result of evaluation can be mapped by:

The PIM is capable for representing any testcase in any system with different

element for the testcase.

 The PSM is more difficult to be developed in representing the testscript, the

difficulty comes from the representation of oracle, but we could represent a

certain kind like on a Transition of Statemachine which can be automated.

The result of this research can be interpreted as how the generation of test

scripts automatically helped in shortens the development cycles, and avoided

the repetitive tasks.

The advantages provided by MDA are reduction of costs through reusing PIM

and especially PSM for different sets of problems in a domain of testing. This

will lead to improve testing quality. It also simplifies the maintenance test script

which is a common problem in testing. This is achieved because MDA was

based on assuming PIM or PSM or mapping rules are not stable. This facilitates

changing PIM which in this case represents the scenario of having new different

TestSuits.

The change in PSM which represent different scripting platforms (i.e. instead of

Junit a Ruby) although is not studied in this research but its affordable. On other

hand this will not hid the complexity of this problem part of that is diversity on

testing platforms so more future research is needed.

37

 REFRENCES:

Mark Utting, Bruno Legeard. practical model-based testing a tools approach. San Francisco: Morgan

Kaufmann,Elsevier Inc, 2007.

MARK FEWSTER, DOROTHY GRAHAM. Software Test Automation Effective use of test execution tool.

Association for Computing Machinery Inc, 1994.

A. Z. Javed, P. A. Strooper and G. N. Watson. "Automated Generation of Test Cases Using Model-

Driven Architecture." Second International Workshop on Automation of Software Test (AST'07).

Australia: IEEE, 2007.

Tracy Gardner, Catherine Griffin, Jane Koehler, and Rainer Hauser. A review of OMG MOF2.0 Query /
View / Transformations Submission and Recommendations towards the final Standard,

Igor Sacevski , Sachead@gmx.net , Jadranka Veseli , jaca@gmx.at .Introduction to Model Driven
Architecture(MDA), June 2007.

Prabhu Shankar Kaliappan, psk@informatik.tu-cottbus.de . State of the Art Model Driven
Architecture, December 2007.

Frank Truyen. The Fast Guide to Model Driven Architecture, The Basics of Model Driven Architecture
(MDA) Cephas Consulting Corp, January 2006.

I. Arrassen, A.Meziane, R. Sbai, M. Erramdami. QVT transformation by modeling from UML Model to
MD Model, 2011.

Paul Baker, Zhen Ru Dia, Jens Grabowski, Qystein Haugen, Ina Schieferdecker, Clay Williams. Model-
Driven Testing using the UML Testing Profile, 2007.

Mikko Aleksi Makinen. Model Based Appraoch to Software Testing, 2007.

Robert Binder. " Testing Object-Oriented Systems: Models, Patterns, and Tools,1999"

Santiago Melia, Andreas Kraus, and Nora Koch. MDA Transformations Applied to Web Application
Development. Santi@dlsi.ua.es , {kochn,krausa}@pst.ifi.lmu.de.

Martin Kardos, Matilda Drozdova. Analytical Method of CIM to PIM Transformation in Model Driven
Architecture (MDA), 2010. Martin.cardos@fri.uniza.sk , Matilda.drozdova@fri.uniza.sk

Yang Liu, Yafen Li, Pu Wang. "Design and Implementation of Automatic Generation of Test Cases

Based on Model Driven Architecture." Second International Conference on Information Technology

and Computer Science. Beijing: IEEE, 2010. 1-4.

mailto:Sachead@gmx.net
mailto:jaca@gmx.at
mailto:psk@informatik.tu-cottbus.de
mailto:Santi@dlsi.ua.es
mailto:Martin.cardos@fri.uniza.sk
mailto:Matilda.drozdova@fri.uniza.sk

38

Fuqing Wang, Shuai Wang, Yindong Ji. "An Automatic Generation Method of Executable Test Case

Using Model- Driven Architecture." Fourth International Conference on Innovative Computing,

Information and Control. Beijing: IEEE, 2009. 1-5.

Jan Tretmans, Marinus J. Plasmeijer: Gast: Generic Automated Software Testing. IFL 2002: 84-100

Xiuhua Zhang "Tools for Mapping Technigue between PIM and PSM" Oslo June 2002

OMG. MDA Guide Version 1.0.1. 2003.

—. MDA: Executive Overview. 2005. http://www.omg.org/mda/executive_overview.htm (accessed

10 21, 2005).

—. Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification version 1.0. OMG, 2008.

OMG. "OMG Unified Modeling Language (OMG UML),Superstructure, V2.1.2." 2007 b: OMG

Document Number: formal/2007-11-02.

ORMSC, Architecture Board. " Model Driven Architecture (MDA)." 2001.

—. "Model Driven Architecture ." 2001.

http://www.informatik.uni-trier.de/~ley/db/conf/ifl/ifl2002.html#KoopmanATP02

