
1

CHAPTER 1

INTRODUCTION

1.0 Introduction

Software Product Line approach is a development methodology which

approves the ability of increase the productivity and reduce time and costs of

developing products. The main idea of SPL is the rapid development of

systems member by using reusable assets from all phases of the development

life cycle (Klaus Pohl, 2005). Several methods have been developed for SPL

such as KobrA, FAST, FODA, and PuLSE. KobrA method is considered as

the most practical method compared to others (Michalis, 2002).

KobrA was created at Fraunhofer Institute for Experimental Software

Engineering (IESE) at the beginning of this decade. Its development

methodology combines the SPL with Component Based Development. It use

component concept to drive the developments in all phases of the software

life-cycle, so components aren’t just as an executable modules implement

through specific construct such as JavaBeans (Colin Atkinson, 2001). It uses

Unified Modeling Language (UML) to describe components at conceptual

level.

KobrA design to be suitable for both single system and family of

systems, it divided into two phases - the framework and application phase.

The former one provides a generic description of the software elements

which makes up a family of applications (reference architecture), it involves

2

all the variable features of applications. But the later one uses the framework

repeatedly to build up single product from that family of products. So KobrA

goal is to develop applications containing specific variants corresponding to

particular customers’ requirements. Modeling variability is a key to the

former. In this research we only concentrate on framework phase.

Model driven architecture is a new approach for software

development is introduced by Object Management Group few years ago

(OMG, 2005). In MDA the software development is driven by constructing

models in all phases of the development life cycle. The main modeling

language of MDA is Unified Modeling Language (UML) and its subset like

MOF (OMG, 2008).

It is a new way to design applications. The purpose of this approach is

to separate the logic description of system, from any technical platforms.

Indeed, the technical platform is going through many changes over time,

unlike the logical description, therefore the idea of separating the two of

them will make it easier developing systems with less costs to migrate into

new technology, MDA capture this separation by developing two models:

the Platform independent model (PIM) and platform specific model (PSM).

MDA automatically enable the transformation between models using

OMG’s Query/View/Transformation (QVT) tool. It reduce the time and cost

of developing software through reusing PIM, PSM or QVT rules.

3

1.1 Problem Statement

 Despite the advantages of using KobrA method in developing a family

of products in some domain but without automation support the effort and

time of development being consumed, it would be difficult to build

framework for a family of product. In addition, facing the continuous change

in platforms and embraces of new ones would be a challenge.

1.2 Objectives

The objective of this research is basically to reengineering KobrA

using MDA which reduces human intervention. The specific goals are:

• Understanding the difference between MDA and KorbA.

• Find the corresponding KobrA artifacts to PIM and PSM in MDA.

• Develop Metamodels including mapping rules.

1.3 Thesis And Outline

 This thesis is divided into four chapters:

1. Introduction:

 It contains a simplified introduction about Software Product Line ,

KobrA and Model Driven Architecture. Motivation for thesis :

KobrA weaknesses.

4

2. Literature review:

 Complete description about what is KobrA and MDA. The

different between MDA and KobrA

3. Reengineering KobrA using MDA:

 Reengineering steps to enhanced KobrA using MDA tool. The

different between MDA and KobrA.

4. Conclusion:

 The thesis results toward reengineering KobrA using MDA ,

which enhanced KobrA method.

5

CHAPTER 2

LITERATURE REVIEW

2.0 Introduction

In this chapter we present a literature review that spans areas related

to this research: KobrA method, Model Driven Architecture approach and

preview for Software Product Line methodology.

2.1 Software Product Line

Software Product Line Development is a development methodology

that focuses on high-level reuse of large software pieces. In contrast to other

methodology it produces family of products, all products would be result of

integration rather than creation.

 “A software product line is a set of software- intensive system sharing

a common managed set of features that satisfy the specific needs of a

particular market segment or mission and that are developed from a

common set of core assets in prescribed way “(Klaus Pohl, 2005).

That’s mean SPL develops core assets which contains the commons

and variables features of systems, it used to produce family of systems

instead of developing them from scratch. SPL goals is to increase the

productivity (the core assets are reused), quality (those reused are verified

and tested) and decrease time to market (Klaus Pohl, 2005).

6

2.1.1 Software Product Line Methods

Several methods have been established for product-line engineering

such as feature-oriented domain analysis (FODA), Product Line UML-based

Software Engineering (PLUS) and KobrA. But they are supporting family of

systems from high level of abstraction without concrete guidance on how

they effectively apply in practices (Michalis, 2002). Therefore the

practitioners will face challenges and obstacle while they are applying them

and limit their use in practice. Except KobrA method is considered as the

most practical and concrete method compared to others (Michalis, 2002).

2.2 KobrA Method

KobrA stands for “Komponentenbasierte Anwendungsentwicklung”

that is German which means “component based application development”. It

develops in BMBF- supported KobrA project by Softlab GmbH, Psipenta

GmbH, GMDFIRST and Fraunhofer IESE (Colin Atkinson, 2000).

KobrA approach is combination of two reuse concepts, the reuse in

small concept in component based approach and reuse in large concept in

software product line methodology (Colin Atkinson, 2002).

Atkinson et al. claim that "the product-line and component-based

approaches to software development seem to have complementary strengths.

They both represent powerful techniques to support reuse, but essentially at

the opposite ends of the granularity spectrum”.

In KobrA architecture the high level description of component

separated from implementation technology (Colin Atkinson, 2001).

7

KobrA components (komponents) aren’t physical but rather logical ,

they have properties of class and module of Unified Modeling Language

(UML) which means they represent their own behavior like class and act as

containers for other components like module (Colin Atkinson , 2002).

2.2.1 KobrA Activities

The KobrA method fundamentally has two major phases which are

the framework and application engineering. The first phase provide generic

reusable framework with contain common and variable features of products

family but in second phase the products are initiated from framework.

KobrA phases aim to develop applications corresponding to particular

customers’ requirements (Colin Atkinson, 2002). In this research we only

concentrate on framework phase or it’s also called in literature domain

engineering. Variability modeling is essential to this phase.

2.2.2 KobrA Framework

KobrA framework contains set of komponents organized in a form of

tree, the identification of variabilities define along with creation of

komponents. The variabilities are features vary from product to another, they

represent using UML stereotype and decisions models which contain the

relation between the variable features (Colin Atkinson, 2001). Each

komponents are described at two levels of abstraction, the specification and

realization level through interrelated suit of UML diagrams. So the overall

framework will be a set of komponent specifications and realizations.

8

2.2.2.1 Komponent Specification

The specification level describes visible characteristics and behavior

of komponents. It contains information intended to be externally visible to

other komponents. It defines the interface of komponent with list of

operations that it supports, but also with additional behavioral and structural

information. These are described by using four models as it is shown in

Figure 2.1 (Colin Atkinson, 2001):

1. Structure model: include (i) class diagram and (ii) object

diagram. (i) Define the classes, operations, attribute and the

relationship between classes. It contains simple, komponent

and subject class (komponent under specification). (ii) Instances

of class and it show how they link together.

2. Functional models are textual description for komponent

operations. It contains description for effect of execute

operations.

3. Behavior model use state diagram to captures the dynamic

behaviors of komponent

4. Decision models are textural model contain information about

variation between komponent models. Each diagram has

decision model because they all contain variability, the decision

models organize in hierarchy and the result of one decision will

effects the other decisions.

9

Figure 2.1 UML-based Component Modeling (Colin Atkinson, 2001)

2.2.2.2 Komponent Realization

Realization level describes internal structure of komponents (private

design), how it makes use of other komponents and what internal data

structure it uses. These are described by using four models as it is shown in

Figure 2.1 (Colin Atkinson, 2001):

1. Structure model: include (i) class diagram and (ii) object

diagram. (i) Define the classes, operations, attribute and the

relationship between classes. It contains simple, komponent and

subject class (komponent under specification). (ii) Instances of

class and it show how they link together.

2. Interaction model use collaboration diagrams to describe how

operations of komponent are realized in term of interaction.

10

3. Activity models used to describe the algorithms used to realize

the operations of the komponent

4. Decision models are textural model contain information about

variation between komponent models. Each diagram has

decision model because they all contain variability, the decision

models organize in hierarchy and the result of one decision will

effects the other decisions.

2.2.3 Komponent Modeling

The models that used in KobrA are based on some principles and

guidance, in addition KobrA develops specific formalism for model

komponents.

2.2.3.1 Modeling Principles

KobrA model komponents based on four principles, to make sure that

description of komponents is relatively explicit and systematic (Colin

Atkinson, 2002):

1. Uniformity: all komponents in tree model using same set of

UML models as describe before, therefore every komponent

can be treated as system in its own right or can be used again

with other system by that it encourage the reuse concept.

2. Parsimony: this principle emphasized that each diagrams that

describe single komponent should contain only needed

information.

11

3. Locality: the locality principle means that no komponent has

comprehensive view to all komponent in containment tree.

4. Encapsulation: Separate the specification of komponent from

realization. Specification which describes what is komponent

do and the realization describes how komponent realize its

specification.

2.2.3.2 Model Formalism

KobrA models based on UML but it depends on its own formalism to

model komponents using UML stereotype. The komponents tagged with

stereotype <<Komponent>>, the subject tagged with stereotype

<<Subject>> and the variability tagged with stereotype <<variant>>

(Joachim Bayer, 2001).

 The variant stereotypes are applied in class diagram for komponent

and simple classes, in functional models in description of komponent

operation, in state diagram in its internal activity and in message of

collaboration and sequences diagram, in addition the relation between all

variant elements are defined textual form in the decision models, therefore

KobrA provides guidance for developer to choice the variable entities during

framework specialization phase (Colin Atkinson, 2002).

2.2.4 Containment Tree

The framework tree known as containment and it created by the

recursive developments process of nested komponents of realizations and

specifications. Having tree structure enable avoid the repetition between

12

models in which the parent / child relationship represents (a parent is

composed of its children) (Colin Atkinson, 2002). That’s mean one

komponent can be a part of another komponent and one big komponent can

include other many small komponents (Colin Atkinson, 2000).

As example taken from Library system the ReservationManager

komponent identified during the realization of LoanManager komponent,

and once the LoanManager realization complete its sub komponent such as

ReservationManager can be model (Joachim Bayer, 2001).

Butting komponents in tree require several fundamental principles and

guidance to drive this process.

2.2.4.1 Consistency Rules

 There’re six consistency rules must be satisfied to make sure that

komponents containment tree is well formed and consistent, as it show in

Figure 2.2 (Colin Atkinson, 2002):

1. Intra-diagram rules: ensure that all individual diagrams are well

formed.

2. Inter-diagram rules: the diagrams within a specification or a

realization are consistent with each other.

3. Realization rules: The realizations komponents must be correct

representation of its specification.

4. Specialization rules: ensure that a specialized component

conforms to the component from which it was specialized.

13

5. Containment rules: ensure that a component’s relationships

with other components are consistent with its location in the

containment tree.

6. Clientship rules (contract): ensure that a client and server both

fulfill their contract.

Figure 2.2 Consistency Rules (Colin Atkinson, 2002)

2.2.4.2 Visibility Rules

What component can see in tree are introduce by visibility rules which

based on komponent position in the containment hierarchy, they originally

adapted from UML package visibility rules.

14

First rule: komponent can see another komponent only if its

immediate child, Second rule: komponent can see another komponent only if

its immediate parent, Third rule: komponent can see another komponent if

both share same parent, Fourth rule: komponents can see up and across from

its location in the tree (Colin Atkinson, 2002).

2.2.5 KobrA Property

KobrA method consider systematic method, it provide the developer

with set of precise and unambiguous guidance. The consistency rules give

concrete guidance as to which models should be used and what the

necessary information they should contain (Colin Atkinson, 2002).

KobrA separation of concern principles is identified as being central

aspect for developing complex systems, it make use of three basic principles

(Colin Atkinson, 2000):

1. Separate the component description from implementation make

it compatible with many of practical implementation and

middleware technologies.

2. Separate the description of what komponent do (specification)

from how do it (realization).

3. Separation of process and products, what products should be

built from process, KobrA representation of system separately

from activities and guidelines used to create and maintain them.

15

2.3 Model Driven Architecture (MDA)

Model driven architecture is new approach for software development

is introduced by Object Management Group (OMG, 2003) in few years. The

central idea of MDA is to use models to drive the development in all phases

of software lifecycle. It raises a slogan “Design once and build it on many”.

2.3.1 MDA Structure

The MDA approach emphasis on two kinds of models with respect to

specific platforms: the Platform Independent Models (PIM) and the Platform

Specific Models (PSM).

2.3.1.1 Platform Independent Model (PIM)

The Platform Independent Model is high level abstraction model, it

represent the business functionality and behavior excluding the platform

specific details (Anneke Klepper, 2003). The PIM define by The Unified

Modeling Language.

The Platform Independent Models provides two basic advantages

(MDA, 2001):

1. The developer responsible for defining business functionality

without any platform detail, make it easy validate correctness of

model. The PIM keep intact.

2. Since the functionality is extract from any platform details, so

it’s easy to produce implementation on different platforms.

http://www.amazon.com/s/ref=ntt_athr_dp_sr_1/192-4984391-5637063?_encoding=UTF8&field-author=Anneke%20Kleppe&search-alias=books&sort=relevancerank

16

2.3.1.2 Platform Specific Model (PSM)

The platform Specific Model (PSM) represent the specification of

platform, it specifies how system functionality brought to specific platform

and produce as result of transforming PIM (MDA, 2001).

The PSM describe in one of two ways (MDA, 2001):

1. Using UML diagrams such as class and sequence

diagram.

2. Interface definition in a concrete implementation

technology (e.g. XML , Java).

2.3.2 Metamodel

Metamodel have important role in MDA, the metamodel is model for

describe model, in other words the metamodel is used to define language for

expressing model at high level of abstraction than modeling language itself

(Anneke Klepper, 2003). As in natural language, all languages have

grammars that describe structure of language. The programming languages

have metamodel called Backus–Naur Form (BNF), to describe right syntax.

MDA based on metamodeling language Meta Object Facility (MOF),

which is used to define the Unified modeling language. All model of UML

fundamentally based on MOF.

http://www.amazon.com/s/ref=ntt_athr_dp_sr_1/192-4984391-5637063?_encoding=UTF8&field-author=Anneke%20Kleppe&search-alias=books&sort=relevancerank

17

2.3.3 MDA- Development Process

MDA development process is carried out through appropriate

transformation or mapping between models. The transformation is process

of converting one model to another model (OMG, 2003).

The Query View Transform (QVT) is standard language for

specifying model transformation in the MDA, It introduce by OMG with

collection of transformation rules to illustrate the model elements mapping

(MOF, 2008).

There are four kinds for model transformation (MDA, 2001):

1. PIM to PIM: In this transformation the models are enhanced,

filtered without any platforms information, therefore the

transformation for model refinement.

2. PIM to PSM: In this transformation the PIM is refined to be

expected to execute on specific platform

3. PSM to PSM: This kind of transformation need for component

realization and deployment, which relate to platform model

refinement.

4. PSM to PIM: This transformation is often used for abstracting

models of existing implementations into platform independent

models, and the result of transformation would be same as PIM

to PSM transformation.

18

2.3.4 MDA Benefits

MDA develops with goals of increase productivity , portability ,

cross-platforms interoperability by separating system abstract architecture

from platform concrete architecture and it ability to implement abstract

architecture into different platform automatically by that it reduce time and

cost of development (OMG,2003).

2.4 MDA And KobrA

KobrA provides foundation for automation as it uses UML notation to

model the components (Colin Atkinson, 2002). UML notation can be used

with any developmental practice, thus MDA development process would be

suitable to incorporate with KobrA approach as it concentrate on high level

specification .

According to description of komponents, KobrA separate the

component specification (interface) from realization (design) where it allows

replacing one component with another by keeping the interface and replace

design of component. Depending on model driven architecture principles

this means component specification capture at level of platform independent

model, and the realization at level of platform specific model.

Mapping between artifacts is more systematic in MDA has been

automated which is manually and not a systematic in KorbA.

19

CHAPTER 3

REENGINEERING KOBRA USING MDA

3.0 Introduction

In this chapter we aim to show how to reduce human intervention in

process of developing family of product in some domain by using MDA

automation facility. MDA automated process is carried out through

transformation between PIM and PSM using QVT specification , this can be

achieved by building metamodels of each source and target model, then

defining a mapping between them (OMG,2003). The library system would

be used as case study. It is represented by Fraunhofer Institute for

Experimental Software Engineering (IESE) (Joachim Bayer, 2001) to

illustrate basic KorbA concepts. The library framework used to initiates a

family of system such as national and academic libraries with different

features.

3.1 Reengineering KobrA

 KobrA framework is the representation of a set of komponents, in

order for komponents to be established, KobrA define two different tasks:

the specification (interface) and realization (design). Both tasks represented

by using UML models (Colin Atkinson, 2001).

20

 But most of the work in KobrA requires the human interfere, therefore

the quality and cost of development consumed especially in phasing

continuous change in platforms and embraces of new ones.

 The MDA approach is basically depends on using models in all phase

of software development, the basic step in MDA is to separate the logic

description of system from any technical platforms, allowing the same

logical description to be implemented automatically with different platform

technologies (OMG, 2005). So using MDA would:

 Decrease the development effort: especially in making platform

specific code.

 Decrease the cost of development: the system specification is

designed once and implemented with different platforms

(redeployment).

 Increase the quality: the faults and errors are reduced (less human

intervention).

Therefore using MDA to reengineering KobrA would present results that

would solve KobrA insufficiency issue. KobrA method is considered as

good candidate to be reengineering using MDA for two reasons:

 KobrA’s ability to separate komponent implementation from abstract

description makes it easy for MDA to be used with.

 KobrA basically depends on using UML models to describe its core

development artifacts (komponents).

21

3.2 Reengineering Steps

MDA engineering will be used for library framework which is

developed by KobrA, which would be obtained by following a number of

steps which are as follow. MDA steps help classifying KobrA artifacts

according to it.

 Step one: PIMs and PSM.

 Step two: Developing Metamodels.

 Step three: Mapping rules.

 Step four: Automating transformation.

3.2.1 PIM And PSM

According to KobrA concepts, the komponents are the main

component of the framework. Each komponent is described with two levels

of abstraction: the specification and realization level using UML models

(Colin Atkinson, 2001).

The specification describes what komponent should do and what the

visible properties are, it also represents the requirements needed to meet

business objective. On the other hand the realization describes how to

accomplish the requirements defined in specification and represents the

private design of komponent. So depending on model driven architecture

principles, specification models are considered as PIM and the realization

models as PSM.

22

3.2.2 PIMs Metamodels

We have developed metamodels for komponent specification which

include, class, state and class of realization which all together represent

PIMs. The reason of considering the class realization as PIM metamodel

because it is refinement of class specification metamodel.

3.2.2.1 Class Metamodel

This meta-model extends the UML class meta-model (OMG, 2007).

To model variability, isVariant attribute is used in metamodel elements as

Boolean value which determines the variability or non variability of

elements (see figure 3.1). As in figure 3.1 Class metamodel has seven

elements: class, simple, komponent, subject, property, operation and

association.

The abstract class is specialized into simple, komponent and subject.

Komponent and simple instances contain name and isVariant attributes.

Whereas subject instances contain name attribute, as shown in figure 3.1.

In general the class is made up of set of properties and operations. The

abstract class has association with operation and property instances. The

operation instances have name, id and isVariant attributes. But the property

instances have isComposite , name and id attributes , as shown in figure 3.1.

IsComposite indicates whether the association end composite or not.

 It is important to point out that the property represents the attribute of

class and association end of association, therefore abstract association has

association with property instances, as shown in figure 3.1.

23

Figure 3.1 Class Specification Metamodel

3.2.2.2 State Metamodel

This meta-model extends the UML state meta-model (OMG, 2007).

To model variability, isVariant attribute is used in metamodel elements as

Boolean value which determines the variability or non variability of

elements (see figure 3.2). As in figure 3.2 State metamodel has five

elements: stateMachine, state, internalActivity, transition and

transitionString.

 The State machine consists of a set of states and transitions.

StateMachine is abstract class has association with state instances. State

instances contain isSimple and name attributes, it is associated with

internalActivity instances which contain name and is Variant attributes, as

shown in figure 3.2.

24

The Transition connects a source and a target state. Transition

instances have kind attribute. Furthermore, transition instances associated to

transitionString instances which have name attribute, as shown in figure 3.2.

Figure 3.2 State Metamodel

3.2.2.3 Class Realization Metamodel

This meta-model extends the UML class meta-model (OMG, 2007).

To model variability, isVariant attribute is used in metamodel elements as

Boolean value which determines the variability or non variability of

elements (see figure 3.3). As in figure 3.3 Class metamodel has seven

elements: classPIM, simplePIM, komponentPIM, subjectPIM, propertyPIM,

operationPIM and associationPIM .

The abstract class is specialized into simplePIM, komponentPIM and

subjectPIM. KomponentPIM and SimplePIM instances contain name and

25

isVariant attributes. Whereas SubjectPIM instances contains name attribute,

as shown in figure 3.3.

In general the class is made up of set of properties and operations. The

abstract class has association with operationPIM and propertyPIM instances.

The operationPIM instances have name, id and isVariant attributes. But the

propertyPIM instances have isComposite , name and id attributes, as shown

in figure 3.3. IsComposite indicating whether the association end composite

or not.

It is important to point out that the propertyPIM that represent the

attribute of class and association end of abstract associationPIM , therefore

abstract associationPIM has association with propertyPIM instances, as

shown in figure 3.3 .

Figure 3.3 Class Realization Metamodel

26

3.2.3 PSM Metamodel

The PSM metamodel we develop for Activity model of komponent

realization. This meta-model extends the UML activity meta-model (OMG,

2007). To model variability, is Variant attribute is used in metamodel

elements as Boolean value that determine the variability or non variability of

elements (see figure 3.4). As in figure 3.4 Activity metamodel has nine

elements: activityNode, initialNode, activityFinalNode, decisionNode,

activity, activityPartition, controlFlow, activityEdge and constraint.

The abstract activityNode is specialized into initialNode,

activityFinalNode and decisionNode. All classes mention above are abstract

classes, as shown in figure 3.4.

The activityNode has association with activity and activityPartition

instances. Activity instances have name and isVariant attributes. Whereas

activityPartition instances have isVariant and name attributes, as shown in

figure 3.4.

The target and source node of activityNode are link by controlFlow.

The abstract activityNode has association with abstract ActivityEdge which

is specialized into controlFlow. The controlFlow instances have isVariant

attribute. ControlFlow is associated with abstract constraint class, as shown

in figure 3.4.

27

Figure 3.4 Activity Metamodel

3.2.4 Mapping Rules

This section explains the rule of mapping need to be done among

models for library framework as an example of software product line need to

be developed using KorbA. The model transformation is a process of

converting a model expressed by one metamodel to another model which

expressed using different metamodel. The transformation is done by

mapping (OMG, 2003) using standard language also developed by OMG.

The mapping contains set of rules which specify which model

elements should map to another models element (OMG, 2003). At first we

need to illustrate metamodels mapping .The library meta-models mapping

divided into two parts: the structural meta-models and behavior meta-models

mapping. Note that the mapping according to QVT is at metamodels level

where instances of the source is essential.

28

In structural meta-models mapping, the class metamodel (PIM) is

mapped to class Realization metamodel (PIM), therefore the mapping is

horizontal because both metamodels describe komponent at the same level

of abstraction (Frank Truyen, 2006). Table 3.1 shows the structural

metamodel elements mapping.

Elements in class metamodel (PIM) Corresponding elements in class realization

metamodel (PIIM)

Subject SubjectPIM

Subject Operations SubjectPIM Operation

Variant Subject Operation Variant SubjectPIM Operation

Komponent KomponentPIM

Komponent Operation KomponentPIM Operation

Simple SimplePIM

 Variant Simple Variant SimplePIM

Simple attributes SimplePIM attributes

Table 3.1 Structural mapping rules

In the behavior meta-models mapping, the state metamodel (PIM) is

mapped to activity metamodel (PSM), therefore the mapping is vertical

because both metamodels describe komponent at different level of

abstraction (Frank Truyen, 2006). Table 3.2 shows the behavior metamodel

elements mapping.

29

Elements in state metamodel (PIM) Corresponding elements in activity

metamodel (PSM)

Internal state activity Activity

Variant InternalActivity Variant Activity

Transition String Activity

Table 3.2 behavioural mapping rules

3.2.5 Automating Transformation

The purpose of this section is to show how to automate the

transformation between models. The transformation between models

realized by using MediniQVT, which is a tool that implement the QVT

specification defined by OMG for model transformation (OMG, 2008).

The MediniQVT tool inputs are 1) source metamodel, 2) target

metamodel, 3) source model and 4) mapping rules. The source and target

metamodels define in Ecore using Eclipse Modeling Framework, but the

source model must be conforming to source metamodel. The MediniQVT

produces target model as output that is conforms to given target metamodel.

 The automated transformation divided into two parts:

 Structural models transformation.

 Behavioral models transformation.

30

3.2.5.1 Structural Models Transformation

The structural models represent the structure nature of komponents. In

the structural transformation the class specification transform to class

realization, both model consider PIM because they describe the komponent

from same level of abstraction. To automate models transformation the

MediniQVT tool should take number of inputs as illustrate below.

3.2.5.1.1 Source Metamodel

 The source metamodel is Class metamodel which describe at section

3.2.2.1, it design at magic draw tool, as shown in figure 3.1.

Class metamodel would used in MediniQVT as ecore file which obtain

by export Class metamodel from magic draw as EMF XMI file and then

import EMF XMI file into Eclipse Modeling Framework (EMF) tool to

create ecore file.

3.2.5.1.2 Target Metamodel

 The target metamodel is Class realization metamodel which

describe at section 3.2.2.3, as shown in figure 3.3.

Class realization metamodel would used in MediniQVT as ecore file and

obtained as we describe the Class metamodel.

3.2.5.1.3 Source Model

The source model is PIM (class model) which is instance of Class

metamodel. PIM instance created at EMF tool as java file, with existence of

ecore file of Class metamodel. PIM instance would used in Medini as XMI

31

file which obtain by export instance as XMI file from EMF and then import

XMI file to Medini . The XMI file of PIM shows in figure 3.5

Figure 3.5 Structural, PIM instance – XMI file

PIMInstance.xmi

<?xml version="1.0" encoding="UTF-8"?>

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:class="http:///class.ecore"

xsi:schemaLocation="http:///class.ecore class.ecore">

 <class:Subject Name="LoanManager"/>

 <class:Operation Name="loanItem" id="1"/>

 <class:Operation isVariant="true" Name="ReserveItem" id="1"/>

 <class:Komponent Name="MessageHandler"/>

 <class:Operation Name="DisplyMessage" id="2"/>

 <class:Simple Name="Account"/>

 <class:Property Name="id" id="3"/>

 <class:Simple isVariant="true" Name="Reservation"/>

</xmi:XMI>

32

3.2.5.1.4 Mapping Rules

The mapping rules specify which model elements should map to

another models element.

The structural model mapping rules represent in table 3.1. At

MediniQVT we create qvt file to represent the mapping rules as in figure

3.6.

33

Figure 3.6 Structural, qvt file

classSpeToclassRea.qvt

 transformation PIM2PIIM(PIM :class , PIIM:pim) {

 top relation SubjectToSubjectP {

 sn : String; on:String; onv:Boolean;

 checkonly domain PIM s : class::Subject { Name=sn };

 enforce domain PIIM si :pim::SubjectPIM { Name = sn };

 checkonly domain PIM o : class::Operation {isVariant = onv,

 Name = on , id = 1 };

 enforce domain PIIM oi :pim::OperationPIM{isVariant = onv,

 Name = on , id = 1 };}

 top relation komtokomp{

 kn:String ; isk : Boolean; okv:Boolean ; okn : String;

 checkonly domain PIM k :class::Komponent{ Name=kn

,isVariant=isk};

enforce domain PIIM ki :pim::KomponentPIM{Name=kn ,

isVariant=isk};

checkonly domain PIM ok : class::Operation {isVariant = okv,

 Name = okn , id = 2};

enforce domain PIIM oki :pim::OperationPIM{

 isVariant = okv,

 Name = okn , id = 2};}

 top relation classtoclass{

 cn: String ; civ : Boolean ; pn : String ;

 checkonly domain PIM c :class::Simple{ Name=cn , isVariant=civ};

 enforce domain PIIM ci :pim::SimplePIM{Name=cn ,isVariant=civ};

 checkonly domain PIM ca : class::Property{ Name = pn , id = 3};

 enforce domain PIIM cai :pim::PropertyPIM{Name = pn , id = 3};

}}}

34

3.2.5.1.5 Target Model

The target model is PIIM (class realization model) which is instance

of Class realization metamodel. PIIM instance would produce as result of

running MediniQVT with ecore file of both Class realization and Class

specification, in addition the PIM. Note that PIIM produce as XMI file as

shown in figure 3.7

Figure 3.7 PIIM instance – XMI file

PIIMInstance.xmi

<?xml version="1.0" encoding="UTF-8"?>

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:pim="http:///pim.ecore"

xsi:schemaLocation="http:///pim.ecore pim.ecore">

 <pim:SimplePIM isVariant="true" Name="Reservation"/>

 <pim:PropertyPIM Name="id" id="3"/>

 <pim:SimplePIM Name="Account"/>

 <pim:OperationPIM Name="DisplyMessage" id="2"/>

 <pim:KomponentPIM Name="MessageHandler"/>

 <pim:SubjectPIM Name="LoanManager"/>

 <pim:OperationPIM isVariant="true" Name="ReserveItem"id="1"/>

 <pim:OperationPIM Name="loanItem" id="1"/>

</xmi:XMI>

35

3.2.5.2 Behavioral Models Transformation

The behavioral models represent the behavior aspects of komponent.

In the behavioral transformation the state model (PIM) transform to activity

model (PSM), both model at different level of abstraction. To automate

models transformation the MediniQVT tool should take number of inputs as

illustrate below.

3.2.5.2.1 Source Metamodel

 The source metamodel is State metamodel which describe at section

3.2.2.2 , it design using magic draw tool , as shown in figure 3.2

State metamodel would used in Medini as ecore file which obtain by

export State metamodel from magic draw as EMF XMI file and then import

EMF XMI file into Eclipse Modeling Framework (EMF) tool to create ecore

file.

3.2.5.2.2 Target Metamodel

 The target metamodel is Activity metamodel which describe at

section 3.2.3, as shown in figure 3.4.

Activity metamodel would used in Medini as ecore file and obtained as

we describe the State metamodel.

3.2.5.2.3 Source Model

The source model is PIM (state model) which is instance of State

metamodel. PIM instance created at EMF tool as java file , with existence of

ecore file of State metamodel .

36

PIM instance would used in Medini as XMI file which obtain by

export instance as XMI file EMF and then import XMI file to Medini . The

XMI file of PIM shows in figure 3.8

Figure 3.8 Behaviour , PIM instance XMI file

PIMInstance.xmi

<?xml version="1.0" encoding="UTF-8"?>

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:stat="http:///stat.ecore" xsi:schemaLocation="http:///stat.ecore

stat.ecore">

 <stat:State isSimple="true" Name="accountIdentified"/>

 <stat:InternalActivity Name="loanItem"/>

 <stat:InternalActivity Name="returnItem"/>

 <stat:InternalActivity isVariant="true" Name="reserveItem"/>

 <stat:Transition kind="external"/>

 <stat:TransitionString Name="setAccout"/>

 <stat:TransitionString Name="cloaseAccout"/>

</xmi:XMI>

37

3.2.5.2.4 Mapping Rules

The mapping rules specify which model elements should map to

another models elements. The structural models mapping rules represent in

table 1.2. At Medini we create qvt file to represent the mapping rules as in

figure 3.9

 Figure 3.9 Behavior, qvt file

StateToActivity.qvt

 transformation PIM2PSM(PIM :stat , PSM:activity) {

 top relation IntertoAc {

 ian :String ;d:Boolean;

 checkonly domain PIM s :stat::State{};

 checkonly domain PIM is:stat::InternalActivity{Name = ian

,isVariant=d};

enforce domain PSM a :activity::Activity{Name = ian ,

isVariant=d};}

top relation trStringtoActivity {

 trn:String;

 checkonly domain PIM s:stat::TransitionString{Name = trn};

 enforce domain PSM a :activity::Activity{

 Name = trn};

 } }

38

3.2.5.2.5 Target Model

The target model is PSM (activity model) which is instance of

Activity metamodel.

PSM instance would produce as result of running Medini with ecore

file of both Activity and State metamodel, in addition the PIM. Note that

PSM produce as XMI file as shown in figure 3.10

Figure 3.10 PSM instance – XMI file

PSMInstance.xmi

<?xml version="1.0" encoding="UTF-8"?>

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:activity="http:///activity.ecore"

xsi:schemaLocation="http:///activity.ecore activity.ecore">

 <activity:Activity Name="cloaseAccout"/>

 <activity:Activity Name="setAccout"/>

 <activity:Activity isVariant="true" Name="reserveItem"/>

 <activity:Activity Name="returnItem"/>

 <activity:Activity Name="loanItem"/>

</xmi:XMI>

39

CHAPTER 4

CONCLUSION

4.0 Conclusion And Discussion

In this research we have presented our results toward reengineering

KobrA method using MDA approach. The lack of automation in KobrA

which reduces the quality of engineering process and product, the time and

the cost of development.

 MDA has built-in machinery of automation and synchronization

between metamodels which provides an opportunity to enhance KorbA. The

key in MDA is formazling metamodels which enables automation. MDA

development depends on two different abstraction levels PIM(application

level) and PSM (implementation level) and automation of mapping among

them using standard mapping language like QVT.

Special PIMs and PSM are developed for KobrA. A customization to

UML metamodels is done to adopt KorbA concepts. A QVT rules are

developed to automate mapping from PIM to PIM and PIM to PSM. It is

also tested using MediniQVT engine. The PIMs would be reused with

different PSMs through applying MDA development process. That’s mean

the komponent interface (PIM) can be reused with other komponent design

(PSM). Moreover, KobrA can meet the continuous change in platforms and

embraces of new ones , through adopting reengineering approach .

40

 The concepts of KorbA is well organized with MDA as mapped only

into two abstraction levels which are more easier to manipulate in terms of

engineering. Furthermore it adds a classification terminology help

distinguish KorbA artifacts. More important KorbA has no implementation

model so MDA has added this descriptor (PSM).

In this research MDA enhanced KobrA basically in two points: firstly

in automated mapping between Komponent description and implementation

, secondly in brings high degree of reuse for KobrA artifacts which reduce

the complexity especially the instable of requirements. In library systems

framework develop by KobrA has no automated mapping from komponent

description to komponent implementation and also in dealing with different

implementation technology.

41

REFRENCES:

Anneke Kleppe , Jos Warmer , Wim Bast ,“MDA Explained - The Model Driven Architecture:

Practice and Promise”, Addison-Wesley, 2003 .

Colin Atkinson, Joachim Bayer, Oliver Laitenberger and Jörg Zettel. ”Component-Based Software

Engineering: The KobrA Approach.” Fraunhofer Institute Experimental Software Engineering

(IESE) , 2000.

Colin Atkinson, Joachim Bayer, Christian Bunse, Erik Kamsties, Oliver Laitenberger, Roland

Laqua, Dirk Muthig, Barbara Paech, Jürgen Wüst, and Jörg Zettel. Component-based product line

engineering with UML. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2002.

Colin Atkinson, Barbara Paech , Jens Reinhold , Torsten Sander. ” Developing and Applying

Component-Based Model-Driven Architectures in KobrA.” Fraunhofer Institute for Experimental

Software Engineering, Kaiserslautern. Germany, 2001.

Frank Truyen.” The Fast Guide to Model Driven Architecture.”the Cephas Consulting Corp ,

January 2006 .

Klaus Pohl, Günter Böckle, Frank J. van der Linden.” Software Product Line Engineering:

Foundations, Principles and Techniques, 1st ed.” Springer, 2005.

Michalis Anastasopoulos, Colin Atkinson, and Dirk Muthig.” A Concrete Method for Developing

and Applying Product Line Architectures.” Fraunhofer Institute Experimental Software

Engineering (IESE) , 2002.

Joachim Bayer , Dirk Muthig and Brigitte Göpfert. “The library system product line - a kobra case

study.” Technical report, Fraunhofer IESE-Report No. 024.01/E, IESE, 2001.

Model Driven Architecture (MDA) Document number ormsc/2001-07-01 Architecture Board

ORMSC1 July 9, 2001

OMG.MDA: Executive Overview. 2005. http://www.omg.org/mda/executive_overview.htm

(accessed 10 21, 2005).

OMG. Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification version 1.0.

OMG, 2008.

http://www.amazon.com/s/ref=ntt_athr_dp_sr_1/192-4984391-5637063?_encoding=UTF8&field-author=Anneke%20Kleppe&search-alias=books&sort=relevancerank
http://www.amazon.com/s/ref=ntt_athr_dp_sr_2/192-4984391-5637063?_encoding=UTF8&field-author=Jos%20Warmer&search-alias=books&sort=relevancerank
http://www.amazon.com/Wim-Bast/e/B004LUEA92/ref=ntt_athr_dp_pel_3/192-4984391-5637063

42

OMG: MDA-Guide, Version 1.0.1, omg /03-06-01 (2003) .

OMG. "OMG Unified Modeling Language (OMG UML),Superstructure, V2.1.2." 2007 b: OMG

Document Number: formal/2007-11-02.

43

