
 الرحيم الرحمن الله بسم

Sudan University of Science & Technology

College of Postgraduate Studies

A thesis submitted in partial fulfillment of the requirements for the

degree of M. Sc. in Information Technology

Prepared by:

                 Isam Abdel Nabi Osman Mohammed

Ali

Supervised by:

                        Dr. Yahia Abdalla Mohammed 

November 2005



الرحيم الرحمن الله بسم

: تعالى قال

 الذي ربك باسم  إقرأ
من النسسان خلق  خلق
الكررم وربك أقرأ  علق

بالقلم علم الذي علم
 يعلم مالم النسسان

العظيم الله صدق

  1-5اليات العلق سورة

ACKNOWLEDGEMENT

I



I like to acknowledge the contributions

of my supervisor Dr. Yahia Abdalla

Mohammed who helps brilliant creativity

support, and have guided this project from

its conception to its completion, and I

would like to send my special thanks to

him.  

I thank the teaching staff of the

department of electronic engineering and

International Institute of Information

Technology   (I2 IT India), who gave me

their considerations and were always

behind me helping and encouraging.

Special thanks for Rehab Mohi eldeen,

Hassabalah Abdel gayom, and all others

for their usual supports without

limitations, to accomplish this work and

standing behind me.

II



DEDICATION

Thank you god, for giving me

the courage, ability and

strength to accomplish this

work.

I dedicate this deepest love and

affection to my parents. Their

love, vulnerability and wisdom

have inspired me to do the best

I can.

To my friends, thanks for the

endearing friendship, for the joy

I have always shared, for the

days filled with humor and

laughter and for bond of endless

understanding.

III



To all the people who helped me

to accomplish this work. 

With my greater love

    Isam …

ABSTRACT
The need for security in the networks has become most essential due to many

reasons, the most important reason is to protect data and information from hackers

and keep confidential data out of reach from unauthorized access by other people.

One of the ways to implement security enforcement in network is  to use

“Firewall  Technique”;  Firewall  technique  is  the  process  of  separating protected

network from unprotected network through central checkpoint with aid of software

and hardware.

 To maintain firewall, the network topology, cabling, system, devices, and

OSI layers should be determined first. In addition to the above requirements it is

important to select the protocol (TCP/IP), routing, and Client/Server interaction.

The  firewall  strategy  is  strongly  based  on  security  policy  that  has  been

selected and implemented by the firewall.

Firewalls has helped in improvement of security and reducing server risks

and blocking the services that could attack by hackers, and provide us developing

control access to network sites.

For  importance  of  the  firewalls  this  project  discusses  the  principles  of

firewall, and the firewall types. A simple firewall has been designed to run under the

Linux operating  system;  which  consider  as  open source,  inexpensive,  and more

IV



reliable  than  most  desktop  oriented  operating  systems.  The  firewall  has  been

implemented, and gave a good result when tested.         

V



مستخلص
أهجم عديجدة، لسججباب الضجروريات مجن اصججبحت الشجبكات فجى للمجن الحاججة

والبيانسججات المعلومججات حمايججة هججو الهمية غاية فى الشبكات تأمين تجعل التى السباب

مصججرح غيججر شججخص اى وصججول عن بعيدا السرية البيانسات لحفظ وايضا المتطفلين من

له.

فصججل تقنيججة وهى النار جدار تقنية هى الحماية فى المستخدمة الطرق أهم أحد

يججتركرز مركرزيججة نسقطججة فججى الخارجيججة الشبكات عن حمايتها المطلوب الداخلية الشبكة

عتاد.  و برمجيات بواسطة وذلك المن فيها

لل الشجبكة تلججك لتحليجل شججبكة أى فججى النججار جججدار تقنيججة تطبيق قبل نسحتاج تحلي

لل لا شجام للشججبكة والنظجر والجهججزة والتشججبيك بالشججبكة، الخاصججة التقنيججة فيججه موضججح

)،OSI( الججج نسمجوذج طبقججات علجى اعتمججادا المحميججة نسججوع معرفججة المهججم مجن وكرجذلك  

كرججل ووظيفججة المسججتفيد/المخججدم عمججل طبيعة وكرذلك والتوجيه المستخدم البروتوكرول

منهما.

الشججبكة فججى المطلوبججة المنية المعايير تحديد من لبد النار جدار تقنية ولتطبيق

. النار جدار بواسطة السياسة هذه وتنفيذ المنية بالسياسة يدعى فيما

تتعججرض الججتى المخاطر وتقليل الشبكات سرية تطوير فى النار جدران ساعدت

المخربيججن بواسججطة اسججغللها يمكججن الججتى الخججدمات عزل الى بالضافة المخدمات لها

الشبكة. الى الوصول فى بالتحكم وذلك

جججدران اساسججيات الججى التطججرق البحججث هججذا فججى تججم النججار جججدران ولهميججة 

 ) والججذىLinux(  التشججغيل نسظججام على ليعمل بسيط نسار جدار تصميم الناروانسواعها. تم

التشججغيل بانسظمججة مقارنسججة اعتماديججة والكرججثر تكلفة القل المفتوحة، المصادر احد يمثل

اختباره. عند جيدة نستائج واعطى النار جدار تنفيذ المكتب. تم سطحية

VI



TABLE OF CONTENTS
 Acknowledgement.................................................................................................................I
 Dedication...........................................................................................................................III
 Abstract...............................................................................................................................IV
VI.................................................................................................................................مستخلص 
 Table of Contents...............................................................................................................VII
1. List OF FIGURES............................................................................................................IX
2. Chapter one: Introduction.................................................................................................11

2.1 Introduction................................................................................................................11
2.2 Problem Definition.....................................................................................................11
2.3 Thesis Layout.............................................................................................................12

3. Chapter two: background.................................................................................................14
3.1 Security Policies.........................................................................................................14
3.2 Your Security Policy...................................................................................................14
3.3 Security Policy Contents............................................................................................15

3.3.1 Explanations........................................................................................................15
3.3.2 Everybody's responsibilities................................................................................15
3.3.3 Regular language.................................................................................................17
3.3.4 Enforcement authority.........................................................................................17
3.3.5 Provision for reviews...........................................................................................17

3.4 Getting Strategic Decisions made..............................................................................18
3.4.1 Insertion of Everybody Who's Affected..............................................................18
3.4.2 Wrong Decisions Acceptability...........................................................................18
3.4.3 Surprises Avoidance............................................................................................18
3.4.4 Concentration to the Important Decisions, with Implications.............................18
3.4.5 Justification of Everything Else in Terms of Those Decisions............................19
3.4.6 Indication to the NonTechnical Issues.................................................................19
3.4.7 Understanding of Anything.................................................................................19

4. Chapter Three: FIREWALLs...........................................................................................21
4.1 Internet Firewall.........................................................................................................21
4.2 Firewall Architectures................................................................................................24

4.2.1 Dual-Homed Host Architecture...........................................................................24
4.2.2 Screened Host Architecture.................................................................................26
4.2.3 Screened Subnet Architecture.............................................................................27

5. chapter four: system Environment...................................................................................34
5.1 Introduction................................................................................................................34
5.2 Linux Operating System.............................................................................................34

5.2.1 Primary Advantages of Linux..............................................................................35
5.2.2 Common Linux Features.....................................................................................35
5.2.3 Chosen Red Hat Linux 8.....................................................................................36

5.3 Gimp Tool Kit (GTK).................................................................................................37
5.4 Design of the environment.........................................................................................38
5.5 Implementation...........................................................................................................40

5.5.1 External computer want connect to our HTTP server:........................................40
5.5.2 External computer want connect to our FTP server:...........................................41
5.5.3 Internal computer want connect to our FTP /HTTP server:................................42
5.5.4 Internal computer want connect to external server:............................................45

VII



6. Chapter five: Testing and Results.....................................................................................48
6.1 Test and Results..........................................................................................................48
6.2 Conclusion..................................................................................................................53
6.3 Recommendations......................................................................................................54

 References...........................................................................................................................55
 Appendixes..........................................................................................................................56

 Appendix A: Source Code...............................................................................................56
 Appendix B: Copy of Incoming Rules............................................................................90
 Appendix C: Copy of Outgoing Rules............................................................................90
 Appendix D: Copy of Logging File.................................................................................91
 Appendix E: Graphical User Interface............................................................................92

VIII



1. LIST OF FIGURES

Figure 3.1: A firewall usually separates an internal network from the Internet...................22
Figure 3.2: Dual-homed host architecture............................................................................25
Figure 3.3: Screened host architecture.................................................................................26
Figure 3.4: Screened subnet architecture (using two routers)..............................................28
Figure 4.1: Logical Network Design....................................................................................38
 Figure 4.2: Physical Network Design.................................................................................39
Figure 4.3: Flowchart for the packet from internet to our HTTP/FTP Server.....................42
Figure 4.4: Flowchart for the packet from our HTTP/FTP Servers to Internet....................42
Figure 4.5: The Packet coming from local client to our FTP/HTTP Server........................44
Figure 4.6: Flowchart of the packet from our FTP/HTTP server to Local client.................45
Figure 4.7: Flowchart for the packet from local client to the Internet.................................46
Figure 5.1: The Logical Testing Network............................................................................49
Figure 5.2: The Physical Testing Network...........................................................................49
Figure 5.3: Before starting the Firewall...............................................................................50
 Figure 5.4: After starting the Firewall.................................................................................51
Figure 5.5: Appling the Incoming policy.............................................................................51
Figure 5.6: After applying the policy...................................................................................52
Figure 5.7: Log File after Appling the policy.......................................................................52
Figure E1Main Graphical User Interface for Firewall.........................................................93
Figure E2Graphical User Interface for Adding Incoming Rules..........................................93
Figure E3Graphical User Interface for Deleting Incoming Rules........................................94
Figure E4Graphical User Interface for viewing Incoming Rules........................................94
Figure E5Graphical User Interface for Adding Outgoing Rules..........................................95
Figure E6Graphical User Interface for Deleting Outgoing Rules........................................95
Figure E7Graphical User Interface for viewing Outgoing Rules.........................................96
Figure E8Graphical User Interface for viewing Logging File.............................................96
Figure E9Graphical User Interface for Setting the Firewall................................................97
Figure E10Graphical User Interface about the Firewall......................................................97

IX



Chapter One



2. CHAPTER ONE: 
INTRODUCTION
2.1 Introduction

Computer networks have evolved considerably over the last 30 years. In the

beginning, computer systems were stand-alone entities. Access to mainframes was

provided via dumb terminals over serial line. All security and control was managed

centrally. Early computer networks were usually comprised of private connections

using  propriety  network  media  and  protocols.  Specific  communication  methods

varied from vender to vender. This model started to change with the advent of local

area  networks  (LANs)  in  the  early  1980s  and  the  introduction  of  Transmission

Control  Protocol/  Internet  Protocol  (TCP/IP).  As  the  TCP/IP  protocol  gained

momentum, distributed computing started to replace the mainframe/dumb terminal

model. Interoperability between different platforms and standardization of network

protocols stripped away the insulation of proprietary communication mechanisms.

As this transformation took place, security challenges arose. However, TCP/IP and

its  network-based applications (Telnet,  FTP,  and HTTP) were not designed with

security in mind. As Internet accessibility become a method of communication for

commercial entities, security weakness were appeared. Companies were now able to

directly  communicate  with  their  customers  and  business  partners  over  low-cost

public networks. 

2.2  Problem Definition
As mentioned the Internet is a wonderful technological advance that provides

access to information, and the ability to publish information, but it's also a major

danger that provides the ability to infect and destroy information.

When a private network is attached to the Internet, there are three areas of

potentials concerns or risk [1]:

 Information

Someone can steal or destroy the information that stored on the

private network.



 Resources

Someone can damage or misuse the computer systems on the

private network.

 Reputation

Someone  can  damage  the  reputation  of  a  business  by

demonstrating vulnerabilities in its network security.

So that this project is about one way to balance the advantages and the

risks, to take part in the Internet while still protecting you using “Firewalls",

which is a component or set of components that restricts access between a

protected network and the Internet, or between other sets of networks. 

2.3 Thesis Layout 
Chapter One  

This chapter gives introduction to Firewall and the risks when connecting a

private network to the Internet.

Chapter Two

This  chapter  is  about  Security  policy,  and  its  contents  and  how  to  get

Strategic and Policy Decisions Made

Chapter Three

This chapter is about a Firewall architectures, Dual-homed host architecture,

Screened Host Architecture, and Screened Subnet Architecture with its components.

Chapter Four

This chapter is about the system environment, design, and implementation of

the Firewall.

Chapter Five

This chapter is about the testing and result of the designed firewall with the

conclusion and recommendations.



Chapter Two



3. CHAPTER TWO: 
BACKGROUND
3.1 Security Policies

A security policy is a formal statement of the rules that people who are given

access to an organization's technology and information assets must follow it. The

policy communicates the security goals to all of the users, the administrators, and

the managers. The goals will be largely determined by the following key tradeoffs:

  Services offered versus security provided.

  Ease of use versus security. 

 Cost of security versus risk of loss. 

The  main  purpose  of  a  security  policy  is  to  inform  the  users,  the

administrators  and  the  managers  of  their  obligatory  requirements  for  protecting

technology  and  information  assets.  The  policy  should  specify  the  mechanisms

through which these  requirements  can be  met.  Another  purpose  is  to  provide a

baseline from which to acquire, configure and audit computer systems and networks

for compliance with the policy. In order for a security policy to be appropriate and

effective, it needs to have the acceptance and support of all levels of employees

within the organization. A good security policy must [1]:

 Be able to be implemented through system administration procedures,

publishing of acceptable use guidelines, or other appropriate methods

 Be able to be enforced with security tools, where appropriate, and with

sanctions, where actual prevention is not technically feasible

 Clearly define the areas of responsibility for the users, the administrators,

and the managers

 Be communicated to all once it is established

 Be flexible to the changing environment of a computer network since it

is a living document

3.2 Your Security Policy



Most technical computer people consider a single, unified, published security

policy to be desirable in the abstract, but attempting to come up with one is going to

be extremely painful. There is no doubt that putting together a security policy is

going to be a long, involved process, and that it's the exact opposite of the types of

tasks most technical people enjoy. 

Every one wants the best security that meets his requirements for [1]: 

 Affordability 

How much money does the security cost?

 Functionality 

Can you still use your computers?

 Cultural compatibility 

Does it  conflict  with the way people at  your site normally interact

with each other and the outside world?

 Legality 

Does it meet the site's legal requirements?

3.3 Security Policy Contents
First and foremost, a security policy is a way of communicating with users

and managers. It should tell them how to make their security decisions.

3.3.1 Explanations

It's important that the policy be explicit and understandable about why

certain decisions have been made. Most people will not follow rules unless

they  understand  why  they  are  important.  A policy  that  specifies  what's

supposed to be done, but not why, is doomed. As soon as the people who

wrote it leave, or forget why they made those decisions, it's going to stop

having any effect.

3.3.2 Everybody's responsibilities

A policy  sets  explicit  expectations  and  responsibilities  users,  and

mangier; it lets all of you know what to expect from each other. It's a mistake



to distribute a policy that concentrates entirely on what users need to do to

make the site secure, or entirely on what system administrators need to do. 



3.3.3 Regular language

It's  more  important  to  make  your  security  policy  friendly  and

understandable than to make it precise and official-looking. Write it as if you

were explaining it to a reasonably bright but non technical friend. Keep it a

communication  between  peers.  If  that's  not  acceptable  in  your  corporate

culture, write two separate policy descriptions. 

3.3.4 Enforcement authority

Writing down the policy is not the point; living by it is. That means that

when the policy isn't followed, something should happen to fix it. Somebody

needs to be responsible for making those corrections happen, and the policy

needs to specify how that's going to be and the general range of corrections.

Here are some examples of what a security policy might specify: 

 Managers of certain services have the authority to revoke access.

 Managers  will  be  asked  to  take  care  of  some  kinds  of

transgressions.

 Facilities that don't meet certain standards may be cut off from the

corporate network and external access by the people who it.

The  policy  should  specify  who  is  going  to  decide  and  give  some

indications of what kinds of penalties are available to them. It should not

specify  exactly  what  will  happen  when;  it's  a  policy,  not  a  mandatory

sentencing law. 

3.3.5 Provision for reviews

It can't expect to set a policy up once and forget it. The needs of your

site  will  change over  time,  and policies  that  were perfectly sensible  may

become either too restrictive or too lax. You still need to review and change

your policies on a regular basis.



3.4 Getting Strategic Decisions made
Strategic  decisions  need  to  be  understood  and  made  by  top-level

management  or  they  will  never  be  successfully  implemented.  If  the  top-level

management dose not support for security, there is no way to have security; it's that

simple. Here are some things to consider in making decisions.

3.4.1 Insertion of Everybody Who's Affected

Strategic  and  policy  decisions  must  be  made  by  people  working

together. No body can't just come up with a policy he likes, take it around to

a lot of people, and have them rubber stamp it. Even if he manages to get

them to do it which may well be more difficult than getting them to help

make intelligent decisions they won't actually follow it. 

3.4.2 Wrong Decisions Acceptability

Sometimes the security policy we come up with is one that we don't

particularly  like.  If  this  happens  because  the  people  who  made  it  don't

understand what they have done, then the fight should be done strongly to

get it fixed. If, on the other hand, people understand the risks, decision like

this one may be acceptable.  

3.4.3 Surprises Avoidance

When it  comes  to  security,  nobody likes  surprises.  That's  why the

need for making sure that the relevant people understand the relevant issues

and  are  aware  of,  and  agree  with,  the  decisions  made  concerning  those

issues. In particular, people need to know about the consequences of their

decisions, including best, worst, and probable outcomes. Consequences that

are obvious to someone may not be obvious to other people. 

3.4.4 Concentration to the Important Decisions, with 
Implications

The decision shouldn't offer to the people unless they have both the

authority and the information with which to make those decisions. Always



make  it  clear  why  they  are  being  asked  to  decide.  In  most  cases,  the

avoidance of open-ended questions is needed, because it gives the replier the

option of  saying "nothing,"  which is  probably not  an answer  for  making

decisions.

3.4.5 Justification of Everything Else in Terms of Those 
Decisions

All of the technical and implementation decisions make should follow

from the high-level guidance obtained from the top managers and executives.

If there is no way to go with a technical issue because it depends on non

technical issues, there is a need to request more guidance on that issue. The

explanation of the problem must be clearly; the options and the implications

of each option. 

3.4.6 Indication to the NonTechnical Issues

Certain problems, which some people try to characterize or solve as

technical  problems,  are  really  management  or  personnel  problems.  For

example, some managers worry that their employees will spend all their time

at work reading use net  news or surfing the Web. However,  this  is  not a

technical  problem,  but  a  personnel  problem:  the  online  equivalent  of

employees spending the day at their desks reading the newspaper. 

3.4.7 Understanding of Anything

Certain  things  that  seem  obvious  to  a  technical  person  who  is

interested in security may not be at all obvious to non technical managers

and executives. For example it's obvious to anyone who understands IP that

packet filtering will allow you to restrict access to services by IP addresses,

but not by user (unless you can tie specific users to specific IP addresses),

because "user" is not a concept in IP, and there's nothing in the IP packet that

reflects what "user" is responsible for that packet. Conversely, certain things

that  seem obvious  to  managers  and  executives  are  not  at  all  obvious  to

technical staff.



Chapter Three



4. CHAPTER THREE: FIREWALLS
4.1 Internet Firewall

The Internet is a wonderful  technological advance that provides access to

information, and the ability to publish information, in revolutionary ways. But it's

also a major danger that provides the ability to infect and destroy information in

revolutionary ways. One way to balance the advantages and the risks, to take part in

the Internet while still protecting sites is by “Firewalls”. 

A firewall is a component or set of components that restricts access between

a protected network and the Internet, or between other sets of networks. 

This section briefly describes what Internet firewalls can do for your overall

site security. 

In building construction, a firewall is designed to keep a fire from spreading

from one part of the building to another.  In theory, an Internet firewall serves a

similar  purpose:  it  prevents  the  dangers  of  the  Internet  from spreading  to  your

internal network. In practice, an Internet firewall is more like a moat of a medieval

castle than a firewall in a modern building. It serves multiple purposes [1]: 

 It restricts entrance of people at a carefully controlled point.

 It prevents attackers from getting close to your other defenses.

 It restricts people to leaving at a carefully controlled point.

Logically, a firewall is a separator,  a restrictor,  an analyzer. Most often, a

firewall  is  a  set  of  hardware  components -  a  router,  a  host  computer,  or  some

combination  of  routers,  computers,  and networks  with  appropriate  software.  An

Internet firewall is most often installed at the point where your protected internal

network connects to the Internet, as shown in Figure 3.1. 



Figure 3.1: A firewall usually separates an internal network from the Internet

All traffic coming from the Internet or going out from your internal network

passes through the firewall.  Because it  does,  the firewall  has the opportunity to

make sure that this traffic is acceptable, which means that whatever is being done -

email, file transfers, remote logins, or any kinds of specific interactions between

specific systems - conforms to the security policy of the site. Security policies are

different  for  every  site;  some are  highly  restrictive  and others  fairly  open.  The

physical implementation of the firewall may vary from site to site. There are various

ways  to  configure  this  equipment;  the  configuration  will  depend  upon  a  site's

particular security policy, budget, and overall operations. A firewall is very rarely a

single physical object, although some of the newest commercial products attempt to

put everything into the same box. Usually, a firewall has multiple parts, and some of

these parts  may do other  tasks besides functioning as part  of  the firewall.  Your

Internet  connection  is  almost  always  part  of  your  firewall.  Even if  you have  a

firewall in a box, it isn't going to be neatly separable from the rest of your site; it's

not  something  you  can  just  drop  in.  Given  the  limitations  and  drawbacks  of

firewalls, why would anybody bother to install one? Because a firewall is the most

effective way to connect a network to the Internet and still protect that network. The

Internet  presents  wonderful  opportunities.  Millions  of  people  are  out  there

exchanging  information.  The  benefits  are  obvious:  the  chances  for  publicity,

Intenal Network

INTERNET

Firewall



customer  service,  and  information  gathering.  The  popularity  of  the  information

superhighway is increasing everybody's desire to get out there. The risks should also

be obvious: any time you get millions of people together, you get crime; it's true in a

city, and it's true on the Internet. Any superhighway is fun only while you are in a

car. If you have to live or work by the highway, it's loud, smelly, and dangerous.

How  can  you  benefit  from  the  good  parts  of  the  Internet  without  being

overwhelmed  by  the  bad?  You  need  to  carefully  control  the  contact  that  your

network has to the Internet. A firewall is a tool for doing that, and in most situations,

it's the single most effective tool for doing that. There are other uses of firewalls.

For example, they can be used as firewalls in a building that divide parts of a site

from  each  other  when  these  parts  have  distinct  security  needs.  Firewalls  offer

significant benefits, but they can't solve every security problem. Firewalls can do a

lot for your site's security as described below [1].

 A firewall is a focus for security decisions

Think of a firewall as a choke point. All traffic in and out must pass

through this single, narrow checkpoint. A firewall gives you an enormous

amount of leverage for network security because it lets you concentrate your

security measures on this checkpoint: the point where your network connects

to the Internet.

 A firewall can enforce security policy

Many of the services that people want from the Internet are inherently

insecure.  The firewall  is  the traffic  cop for these services.  It  enforces the

site's security policy, allowing only "approved" services to pass through and

those only within the rules set up for them.

 A firewall can log Internet activity efficiently

Because all traffic passes through the firewall, the firewall provides a

good  place  to  collect  information  about  system  and  network  use -  and

misuse.  As  a  single  point  of  access,  the  firewall  can  record  what  occurs

between  the  protected  network  and  the  external  network.  Firewalls  offer

excellent  protection  against  network  threats,  but  they  aren't  a  complete

security solution. Certain threats are outside the control of the firewall. You

need to figure out other ways to protect against these threats by incorporating



physical security, host security, and user education into your overall security

plan. Some of the weaknesses of firewalls are discussed below.

 A firewall can't protect you against malicious insiders

A  firewall  might  keep  a  system  user  from  being  able  to  send

proprietary information out of an organization over a network connection; so

would simply not have a network connection. But that same user could copy

the data onto disk, tape, or paper and carry it out of the building in his or her

briefcase.

 firewall can't protect against connections  don't go through it

A firewall  can effectively control  the traffic  that  passes through it;

however,  there is nothing a firewall  can do about traffic that doesn't  pass

through it

 A firewall can't protect against viruses

Firewalls can't keep PC viruses out of a network. Although many firewalls

scan all incoming traffic to determine whether it is allowed to pass through to the

internal network, the scanning is mostly for source and destination addresses and

port numbers, not for the details of the data. Even with sophisticated packet filtering

or proxying software, virus protection in a firewall is not very practical. There are

simply too many types of viruses and too many ways a virus can hide within data.

4.2 Firewall Architectures

There are three  types of firewall  architecture,  which will  be  described in

details in the next section [1]:

 Dual-Homed Host Architecture

 Screened Host Architecture

 Screened Subnet Architecture

4.2.1 Dual-Homed Host Architecture

Dual-homed host  architecture  is  built  around  the  dual-homed host

computer, a computer which has at least two network interfaces. Such a host

could act as a router between the networks these interfaces are attached to; it

is capable of routing IP packets from one network to another. However, to



implement a dual-homed host type of firewalls architecture, you disable this

routing function. Thus, IP packets from one network (e.g., the Internet) are

not  directly  routed  to  the  other  network  (e.g.,  the  internal,  protected

network). Systems inside the firewall can communicate with the dual-homed

host,  and systems outside  the  firewall  (on the  Internet)  can communicate

with the dual-homed host, but these systems can't communicate directly with

each  other.  IP traffic  between  them is  completely  blocked.  The  network

architecture for a dual-homed host firewall is pretty simple: the dual homed

host sits between, and is connected to, the Internet and the internal network. 

Figure 3.2 shows this architecture.

Figure 3.2: Dual-homed host architecture

Dual-homed hosts  can provide a  very high level  of  control.  If  the

packets aren't allowing between external and internal networks at all, you can

be sure that any packet on the internal network that has an external source is

evidence of some kind of security problem. In some cases,  a dual-homed

host will  allow you to reject connections that claim to be for a particular

service  but  that  didn't  actually  contain  the  right  kind  of  data.  A packet

filtering system, on the other hand, has difficulty with this level of control;

however,  it  takes considerable work to consistently take advantage of the

potential  advantages  of  dual-homed  hosts.  A dual-homed  host  can  only

provide  services  by  proxying  them,  or  by  having  users  log  into  the

Intenal Network

INTERNET

Firewall



dual-homed host directly, user accounts present significant security problems

by themselves. They present special problems on dual-homed hosts, where

they may unexpectedly enable services you consider insecure. Furthermore,

most users find it inconvenient to use a dual-homed host by logging into it.

Proxying is much less problematic, but may not be available for all services

you are interested in. 

4.2.2 Screened Host Architecture

Whereas a dual-homed host architecture provides services from a host

that's attached to multiple networks (but has routing turned off), a screened

host architecture provides services from a host  that's  attached to only the

internal network,  using a separate router.  In this  architecture,  the primary

security is provided by packet filtering. (For example, packet filtering is what

Prevents  people  from  going  around  proxy  servers  to  make  direct

connections.)  Figure  3.3  shows  a  simple  version  of  screened  host

architecture.

Figure 3.3: Screened host architecture

The bastion host sits on the internal network. The packet filtering on

the screening router is set up in such a way that the bastion host is the only

system  on  the  internal  network  that  hosts  on  the  Internet  can  open

Intenal Network

INTERNET

Bastion Host

 Firewall                                                           Screening Router



connections to (for  example,  to deliver incoming email).  Even then,  only

certain  types  of  connections  are  allowed.  Any  external  system  trying  to

access internal systems or services will  have to connect to this host.  The

bastion host thus needs to maintain a high level of host security. The packet

filtering also permits the bastion host to open allowable connections (what is

"allowable" will be determined by your site's particular security policy) to

the outside world. The packet filtering configuration in the screening router

may do one of the following: 

 Allow other internal hosts  to open connections to hosts  on the

Internet for certain services (allowing those services via packet

filtering).

 Disallow all connections from internal hosts (forcing those hosts

to use proxy services via the bastion host.

You can mix and match these approaches for different services; some may

be allowed directly via packet filtering, while others may be allowed only indirectly

via proxy. It  all  depends on the particular  policy your site  is  trying to enforce.

Because this architecture allows packets to move from the Internet to the internal

networks, it may seem more risky than a dual-homed host architecture, which is

designed so that  no external  packet  can reach the internal  network.  In practice,

however, the dual-homed host architecture is also prone to failures that let packets

actually cross from the external network to the internal network. (Because this type

of failure is  completely unexpected,  there are  unlikely to be protections  against

attacks of this kind.) Furthermore, it's easier to protect a router, which provides a

very limited set  of services,  than it  is to protect  a host.  For most purposes,  the

screened host architecture provides both better security and better usability than the

dual-homed host architecture. 

4.2.3 Screened Subnet Architecture

The screened subnet architecture adds an extra layer of security to the

screened host architecture by adding a perimeter network that further isolates

the internal network from the Internet, by their nature, bastion hosts are the

most  vulnerable  machines  on  your  network.  Despite  your  best  efforts  to

protect them, they are the machines most likely to be attacked, because they

are the machines that can be attacked. If, as in screened host architecture,



your internal network is wide open to attack from your bastion host, then

your  bastion  host  is  a  very  tempting  target.  There  are  no  other  defenses

between it and your other internal. If someone successfully breaks into the

bastion host in screened host architecture, he's hit the jackpot. By isolating

the bastion host  on a perimeter  network,  you can reduce the impact of a

break-in on the bastion host. It is no longer an instantaneous jackpot; it gives

an  intruder  some access,  but  not  all.  With  the  simplest  type  of  screened

subnet architecture, there are two screening routers, each connected to the

perimeter net. One sits between the perimeter net and the internal network,

and  the  other  sits  between  the  perimeter  net  and  the  external  network

(usually the Internet). To break into the internal network with this type of

architecture,  an attacker would have to get  past  both routers.  Even if  the

attacker somehow broke in to the bastion host, he should still have to get past

the interior router. There is no single vulnerable point that will compromise

the internal network. Figure 3.4 shows a possible firewall configuration that

uses the  screened subnet  architecture.  The next  few sections  describe  the

components in this type of architecture.

Figure 3.4: Screened subnet architecture (using two routers)

4.2.3.1 Perimeter network

The perimeter network is another layer of security, an additional

network  between  the  external  network  and  your  protected  internal

Primeter Network

Intenal Network

Bastion

INTERNET

Firewall

  Host

Interior Router

Exterior Router



network. If an attacker successfully breaks into the outer reaches of your

firewall,  the  perimeter  net  offers  an  additional  layer  of  protection

between that attacker and your internal systems. Here's an example of

why a perimeter network can be helpful. In many network setups, it's

possible for any machine on a given network to see the traffic for every

machine on that network. This is true for most Ethernet-based networks,

(and  Ethernet  is  by  far  the  most  common  local  area  networking

technology  in  use  today);  it  is  also  true  for  several  other  popular

technologies, such as token ring and FDDI. Snoopers may succeed in

picking up passwords by watching for those used during Telnet,  FTP,

and rlogin  sessions.  Even if  passwords  aren't  compromised,  snoopers

can still peek at the contents of sensitive files people may be accessing,

interesting  email  they  may  be  reading,  and  so  on;  the  snooper  can

essentially "watch over the shoulder" of anyone using the network. With

a  perimeter  network,  if  someone  breaks  into  a  bastion  host  on  the

perimeter net, he shall be able to snoop only on traffic on that net. All

the traffic on the perimeter net should be either to or from the bastion

host, or to or from the Internet. Because no strictly internal traffic (that

is, traffic between two internal hosts, which is presumably sensitive or

proprietary) passes over the perimeter net, internal traffic will be safe

from prying eyes if the bastion host is compromised. Obviously, traffic

to and from the bastion host, or the external world, will still be visible

4.2.3.2 Bastion host

Bastion Host is a computer system that must be highly secured

because it is exposed to the Internet and is a main point of contact for

users  of  internal network.  With the  screened subnet  architecture,  you

attach a bastion host (or hosts) to the perimeter net; this host is the main

point of contact for incoming connections from the outside world; for

example: 

 For  incoming  email  (SMTP)  sessions  to  deliver  electronic

mail to the site



 For incoming FTP connections to the site's anonymous FTP

server

 For incoming domain name service (DNS) queries about the

site.

Outbound  services  (from  internal  clients  to  servers  on  the

Internet) are handled in either of these ways: 

Set up packet filtering on both the exterior and interior routers to allow

internal clients to access external servers directly.

Set up proxy servers to run on the bastion host (if your firewall

uses proxy software) to allow internal clients to access external servers

indirectly. You would also set up packet filtering to allow the internal

clients to talk to the proxy servers on the bastion host and vice versa,

but to prohibit direct communications between internal clients and the

outside world. In either case, the packet filtering allows the bastion host

to connect to, and accept connections from, hosts on the Internet; which

hosts, and for what services, are dictated by the site's security policy.

4.2.3.3 Interior router

The interior router (sometimes called the choke router in firewalls

literature) protects the internal network both from the Internet and from

the perimeter net. The interior router does most of the packet filtering

for your firewall. It allows selected services outbound from the internal

net to the Internet. These services are the services your site can safely

support and safely provide using packet filtering rather than proxies. The

services you allow might include outgoing Telnet, FTP, WAIS, Archie,

Gopher,  and others,  as appropriate for your own needs and concerns.

The services the interior router allows between your bastion host (on the

perimeter net itself) and your internal net are not necessarily the same

services the interior router allows between the Internet and your internal

net. The reason for limiting the services between the bastion host and the

internal network is to reduce the number of machines (and the number of

services on those machines) that can be attacked from the bastion host,

should it be compromised. 



4.2.3.4 Exterior router

In theory, the exterior router (sometimes called the access router

in firewalls literature) protects both the perimeter net and the internal net

from  the  Internet.  In  practice,  exterior  routers  tend  to  allow  almost

anything outbound from the perimeter net, and they generally do very

little  packet  filtering.  The  packet  filtering  rules  to  protect  internal

machines  would need to be  essentially  the  same on both the  interior

router and the exterior router; if there's an error in the rules that allows

access to an attacker, the error will probably be present on both routers.

Frequently,  the  exterior  router  is  provided by an external  group,  and

your access to it may be limited. An external group that's maintaining a

router will probably be willing to put in a few general packet filtering

rules,  but  wouldn't  want  to  maintain  a  complicated  or  frequently

changing rule set. You also may not trust them as much as you trust your

own routers. If the router breaks and they install a new one, are they

going to remember to reinstall the filters? Are they even going to bother

to mention that they replaced the router so that you know to check? The

only packet filtering rules that are really special on the exterior router

are those that  protect  the machines  on the  perimeter  net  (that  is,  the

bastion  hosts  and the  internal  router).  Generally,  however,  not  much

protection  is  necessary,  because  the  hosts  on  the  perimeter  net  are

protected primarily through host security. The rest of the rules that you

could put on the exterior router are duplicates of the rules on the interior

router.  These  are  the  rules  that  prevent  insecure  traffic  from  going

between  internal  hosts  and  the  Internet.  To  support  proxy  services,

where the interior router will let the internal hosts send some protocols

as long as they are talking to the bastion host, the exterior router could

let those protocols through as long as they are coming from the bastion

host. These rules are desirable for an extra level of security, but they are

theoretically blocking only packets  that  can't  exist  because they have

already been blocked by the interior router. If they do exist, either the

interior router has failed, or somebody has connected an unexpected host

to the perimeter network. So, what does the exterior router actually need



to do? One of the security tasks that  the exterior  router can usefully

perform - a task that usually can't easily be done anywhere else - is the

blocking of any incoming packets  from the Internet that  have forged

source  addresses.  Such  packets  claim to  have  come from within  the

internal  network,  but  actually  are  coming  in  from  the  Internet.  The

interior router could do this, but it can't tell if packets that claim to be

from the perimeter  net  are  forged.  While  the  perimeter  net  shouldn't

have anything fully trusted on it, it's still going to be more trusted than

the external universe; being able to forge packets from it will give an

attacker  most  of  the  benefits  of  compromising  the  bastion  host.  The

exterior  router  is  at  a  clearer boundary.  The interior  router  also can't

protect the systems on the perimeter net against forged packets. 



 

Chapter Four



5. CHAPTER FOUR: SYSTEM 
ENVIRONMENT           
5.1 Introduction

The environment of the designed firewall consist of Linux Red Hat 8 as an 

Operating System, and Gimp Tool Kit (GTK) as a tool to create the graphical user 

interface of the simple firewall ( software components), and general purpose 

personal computer with two network cards, and network switches ( hardware 

components).

5.2 Linux Operating System
Linux (pronounced Lih-nucks) is a UNIX-like operating system that runs on

many  different  computers.  Although  many  people  might  refer  to  Linux  as  the

operating system and included software, strictly speaking, Linux is the operating

system kernel, which comes with a distribution of software. Linux was first released

in 1991 by its author Linus Torvalds at the University of Helsinki. Since then it has

grown tremendously in popularity as programmers around the world embraced his

project of building a free operating system, adding features, and fixing problems.

Linux is popular with today’s generation of computer users for the same reasons

early versions of the UNIX operating system enticed fans more than 20 years ago.

Linux is portable, which means you’ll find versions running on name-brand or clone

PCs,  Apple  Macintoshes,  Sun  workstations,  or  Digital  Equipment  Corporation

Alpha-based computers. Linux also comes with source code, so you can change or

customize the software to adapt to your needs. Red Hat Linux is the most popular

commercial distribution of Linux. Red Hat and other commercial distributions, such

as Caldera’s, OpenLinux have taken the Linux concept a step further. With Red Hat

Linux  users  can  rely  on  Red  Hat  Software  to  provide  tested  versions  of  that

software  and  technical  support  if  there  are  problems.  Finally,  Linux  is  a  great

operating system, rich in features adopted from other versions of UNIX [2]:



5.2.1 Primary Advantages of Linux 

When  compared  to  different  commercially  available  operating

systems,  Linux is  best  assets  are  its  price  and its  reliability.  In  terms  of

reliability,  the  general  agreement  is  that  Linux  is  comparable  to  many

commercial  UNIX systems  but  more  reliable  than  most  desktop-oriented

operating  systems.  This  is  especially  true  if  you  rely  on  your  computer

system  to  stay  up  because  it  is  a  Web  server  or  a  file  server.  Another

advantage of using Linux is that help is always available on the Internet. 

5.2.2 Common Linux Features 

No matter what version of Linux you use, the price of code common

to all is Linux kernel. Although the kernel can be modified to include support

for features you want, every Linux kernel can offer the following features:

 Multi-user

Not only can you have many user accounts available on Linux

system, you can also have multiple users logged in and working on

the system at the same time. User can have their own environments

arranged the way the want. 

 Multitasking 

In Linux, it is possible to have many programs running at the

same time, which means that not only can you have many programs

going at once, but that the Linux Operating System can itself have

programs running in the background. Many of these system processes

make it possible for Linux to work as a server, with these background

processes  listening  to  the  network  for  requests  to  log  in  to  your

system.

 Graphical User Interface ( X Widow System)

The  powerful  framework  for  working  with  graphical

applications  in  Linux  is  referred  to  as  X Widow  System, which

handles  the  functions  of  opening  X-based  GUI  applications  and

displaying them on an X server process.

 Hardware Support



You can configure support for almost every type of hardware

that can be connected to a computer. There is support for floppy disk

drive, CD-ROMs, removable disks, sound cards and so on…

 Networking Connectivity

To  connect  your  Linux  system  to  a  network,  Linux  offers

support a variety of local area network (LAN) boards, modems, and

serial devices. The most popular protocol supported by the Linux is

TCP/IP (which used to connect to the Internet). Other protocols, such

as IPX (for Novell networks), and X.25 (a packet-switching network

type that is popular in Europe), are available.   

 Network Servers

Providing networking services to the client computers on LAN

or to  the  entire  Internet  is  what  Linux dose the  best.  A variety of

software packages are available that enable you to use Linux as a print

server, file server, FTP server, mail server, web server etc. 

 Application Support

Because  of  compatibility  with  POSIX  and  several  different

application programming interface (APIs); a wide range of freeware

and shareware software is available for  Linux.  The most important

thing for us here is that Linux has more than one tool to create GUI

applications like GTK (Gimp Tool Kit) which used to create the code

with aid of standard C-language.

5.2.3 Chosen Red Hat Linux 8 

To  distinguish  themselves  from  other  versions  of  Linux,  each

distribution  adds  some  extra  features  so  the  Red  Hat  Linux  8  has  been

chosen for following reasons which are:

 Desktop environment system.

 Easy installation.

  Administration tools.

 Easy to configure and play with.

 Have more built in tools to create GUI applications like GTK.



5.3 Gimp Tool Kit (GTK)
The  Gimp  Tool  Kit  (GTK)  is  widely  used  for  writing  X  Windows

applications on Linux and other versions of UNIX. In order to help maintain both

portability and software maintenance, GTK is built on top of two other libraries that

you may want to use independently of GTK:

 Glib:

 Supplies C libraries for linked lists, hash tables, string utilities,

and so on.

 GDK:

A library  that  is  layered  on Xlib.  All  GTK windowing  and

graphics calls are made through GDK, not directly to XLib.

GTK has its own Web site (www.gtk.org) where latest version of GTK is

available and read a very good GTK tutorial. In this part, we will introduce GTK.

The GTK is an easy-to-use, high-level toolkit for writing GUI applications. GTK

was written to support  the GIMP graphics-editing program. GTK was originally

written by Peter Mattis,  Spencer Kimball, and Josh MacDonald. The GTK toolkit

contains a rich set of data types and utility functions. A complete description of

GTK is beyond the scope of this short introductory part. Still, reading this chapter

will get you started. For more information, consult the online tutorial and example

programs included in the examples directory in the standard GTK distribution [9].

GTK has its own type of widget; the C data structure for this type is called

GtkWidget Windows and any display components created using GTK can all be

referenced using a variable of type GtkWidget. Although GTK is written in C, GTK

has a strong object-oriented flavor. A GtkWidget object encapsulates data, maintains

references to Callback functions, and so on.

GTK widgets “inherit” from GtkWidget by defining a GtkWidget object as

the first item in their own structure definition. A pointer to any type of GtkWidget

can be safely coerced to the type (GtkWidget *) and the fields in the GtkWidget

structure can be directly accessed. So, even though GTK is implemented in the C

programming language and does not support private data, it has an object-oriented

flavor [9].



5.4 Design of the environment
The design of the network used to implement the firewall on it is assumed to

publish website via Internet connection and give an FTP service. It has only one IP

address, and the HTTP and FTP servers are located on the internal network. The

firewall has the external IP address INET_IP (212.1.1.1), and the HTTP server has

the internal IP address HTTP_IP (192.168.2.28) and the FTP server has the internal

IP address FTP_IP (192.168.2.30) and finally the firewall has the internal IP address

LAN_IP (192.168.2.29) as shown in figures 4.1, and 4.2 below.

Figure 4.1: Logical Network Design 

Firewall

192.168.2.29

Internet

192.168.2.11
Client 1

192.168.2.10
Client 2

LAN 1

192.168.2.12
Client 3

ISP Router

212.1.1.1

192.168.2.13
Printer

192.168.2.30
FTP Server

192.168.2.28
HTTP Server



Figure 4.2: Physical Network Design

Internet

HTTP Server
192.168.2.28

Client 1
192.168.2.11

Firewall

printer
192.168.2.13

192.168.2.29

Client 3
192.168.2.12

Clien t2
192.168.2.10

FTP Server
192.168.2.30

ISP Router

212.1.1.1



5.5 Implementation
All packets from the Internet going to port 80 on our firewall with INET_IP

are redirected to our internal HTTP server and all packets from the Internet going to

port 21 on our firewall with INET_IP are redirected to our internal FTP server after

passing the incoming rule table file  and check all  lines on it  for  legality of the

packet to pass. First it check the destination address, destination port, protocol type,

and source address with that extract from the incoming packet and compare all with

each line if they are equally with one line it apply the policy specified in that line

(accept, reject, or drop) .    All packets from the local LAN must change their source

address to be INET_IP after passing the outgoing rule table file and check all lines

on it for legality of the packet to pass first it check the destination address, protocol

type, and source address with that extract from the outgoing packet and compare all

with each line if they are equally with one line it apply the policy specified in that

line (accept, reject, or drop). Implementing of firewall happen with those scenarios: 

5.5.1 External computer want connect to our HTTP server:

The external box has IP address EXT_BOX, to maintain readability. 

Packet leaves the connecting host going to INET_IP and source EXT_BOX. 

 Packet reaches the firewall. 

 Firewall check the port is it 80.

 Firewall check is it an illegal packet or not at the incoming table?

 If it’s not legal it will drop it or rejected according to the rule. 

 If it is legal firewall redirect the packet to the HTTP server.

 Packet leaves the firewall and travels to the HTTP_IP. 

 Packet reaches the HTTP server, and the HTTP box reply back

through the firewall, if that is the box that the routing database has

entered as the gateway for EXT_BOX. Normally, this would be

the default gateway of the HTTP server. 

 Firewall redirects the packet again, so the packet looks as if it was

replied to from the firewall itself. 

 Reply packet travels as usual back to the client EXT_BOX. 



5.5.2 External computer want connect to our FTP server:

Packet  leaves  the  connecting  host  going  to  INET_IP  and  source

EXT_BOX. 

 Packet reaches the firewall. 

 Firewall check the port is it 21.

 Firewall check is it an illegal packet or not at the incoming table?

 If it's not legal it will drop it or rejected according to the rule. 

 If it is legal firewall redirect the packet to the FTP server.

 Packet leaves the firewall and travels to the FTP_IP. 

 Packet  reaches  the  FTP  server,  and  the  FTP  box  reply  back

through the firewall, if that is the box that the routing database has

entered as the gateway for EXT_BOX. Normally, this would be

the default gateway of the FTP server. 

 Firewall redirects the packet again, so the packet looks as if it was

replied to from the firewall itself. 

 Reply packet travels as usual back to the client EXT_BOX. 



Figure 4.3: Flowchart for the packet from internet to our HTTP/FTP Server

Figure 4.4: Flowchart for the packet from our HTTP/FTP Servers to Internet

5.5.3 Internal computer want connect to our FTP /HTTP server:

Now,  we  will  consider  what  happens  if  the  packet  was  instead

generated by a client on the same network as the HTTP or FTP server itself.

The client has the IP address  LAN_BOX,  while the rest of the machines

maintain the same settings. 

 Packet leaves LAN_BOX to INET_IP. 

 The packet reaches the firewall.

 Firewall check the port is it 80 to redirect the packet the HTTP

server or FTP server the port is 21.

 Firewall check is it an illegal packet or not at the outgoing table?

 If it’s not legal it will drop it or rejected according to the rule. 

Handeling The Outgoing Packets
From FTP/HTTP Servers

Check is it
legal packet

Change the
Source address

from
192.168.2.28/30
to be 212.1.1.1

Yes

Drop the packet
and report that

No

Stop

Start

Forward it to it's
destination

Handling the Outgoing packets from 
FTP/HTTP Servers



 The packet gets changing in source IP address to be the internal

firewall IP address. 

 The  packet  leaves  the  firewall  and  reaches  the  HTTP or  FTP

server. Packet reaches the HTTP or FTP server, and the HTTP or

FTP box replies back through the firewall.

 Firewall redirects the packet again, so the packet looks as if it was

replied to from the firewall itself. 

 Reply packet travels as usual back to the client LAN_BOX. 

Check the
port 80/21

Handeling The
Incomming Packets

From local client

Change the Source
address  212.1.1.1 to

be 192.168.2.29

Port is 21 Port is 80

Check is it
legal packet

Forward it to it's
destination

Yes

Drop the packet
and report that

No

Stop

Start

Change the Source
address  212.1.1.1 to

be 192.168.2.29

Hanling the Incoming 
packets from local client



Figure 4.5: The Packet coming from local client to our FTP/HTTP Server



Figure 4.6: Flowchart of the packet from our FTP/HTTP server to Local client 

5.5.4 Internal computer want connect to external server:

Now,  we  will  consider  what  happens  if  the  packet  was  instead

generated  by  a  client  on  the  local  network  which  wants  to  connect  an

external  HTTP  or  FTP  or  any  other  server  and  it  has  the  IP  address

LAN_BOX.

 Packet leaves  LAN_BOX to  LAN_IP  because it  is  the default

gateway. 

 The packet reaches the firewall.

 Firewall check is it an illegal packet or not at the outgoing table?

 If it's not legal it will drop it or rejected according to the rule. 

Handeling The Outgoing Packets
From FTP/HTTP Servers

Check is it legal
packet

Change the Destination
address from

192.168.2.29 to the
address of the

requesting local client IP

Yes

Drop the packet
and report that

No

Stop

Start

Forward it to it's
destination

Handling the Outgoing packets 
from FTP/HTTP Servers



 If it is legal firewall change the  LAN_BOX to  INET_IP of the

packet and send out to the Internet and keep information about the

original source to redirect to it again.

 The packet leaves the firewall and reaches the external HTTP or

FTP server.  Packet  reaches  the  HTTP or  FTP server,  and  the

HTTP or FTP box replies back to the firewall.

 Firewall check is it an illegal packet or not at the incoming table?

 If it’s not legal it will drop it or rejected according to the rule. 

 If it is legal firewall redirect the packet to the LAN_BOX.

Figure 4.7: Flowchart for the packet from local client to the Internet

Handeling The Outgoing Packets
From local client totIe internet

Check is it legal
packet

Change theSource
address from requesting

local client IP to be
212.1.1.1

Yes

Drop the packet
and report that

No

Stop

Start

Forward it to it's
destination

Handling the Outgoing Packet 
from Local Client to the 

Internet



Chapter Five



6. CHAPTER FIVE: TESTING AND 
RESULTS
6.1 Test and Results

As shown in figures 5.1, and 5.2 below the testing network consist of two local

area  networks  (LAN1 and  LAN2)  LAN1 consist  of  switch1,  client1  –  with  IP

address 192.168.2.2 - , and server1 – with IP address 192.168.2.28 – as FTP server,

and the firewall (dual host) with net card one which has the IP address 192.168.2.29

and the other IP address is 212.1.1.1 and act as default gateway for LAN1.

LAN2 consist of switch1, client1 – with IP address 212.1.1.32 -, and server1 –

with IP address 212.1.1.28 – as HTTP server. The protected network is LAN1 the

outgoing and incoming packet goes through the firewall with its two NICs. The

policies applied for incoming packets are: 

num target protocol source destination port
1 REJECT tcp 212.1.1.32 192.168.2.28  tcp dpt:21
2 REJECT tcp 64.1.39.2.30 192.168.2.28  tcp dpt:80
3 ACCEPT udp 212.0.139.1 192.168.2.30  tcp dpt:21
4 DROP icmp 212.0.139.1 192.168.2.28  tcp dpt:80

… … … … … …

The policies applied for outgoing packet are: 

num target protocol source destination

1 REJECT tcp 192.168.2.2 212.1.1.28
2 REJECT tcp 192.168.2.12 64.1.39.2.30
3 ACCEPT udp 192.168.2.20 212.0.139.1
4 DROP icmp 192.168.2.4 212.0.139.1
5 REJECT all 192.168.2.5 212.0.139.1

… … … … …



Figure 5.1: The Logical Testing Network

Figure 5.2: The Physical Testing Network

192.168.2.28      FTP Server192.168.2.2 Client1

212.1.1.1
NIC2

        192.168.2.29
    NIC 1

212.1.1.28        HTTP Server
212.1.1.32 Client2

Switch 1

LAN 2

LAN 1

Firewall

192.168.2.29212.1.1.1LAN 2

192.168.2.2
Client 1

192.168.2.28
FTP Server

LAN 1

212.1.1.28
HTTP Server212.1.1.32

Client 2



The screens that stated the work of the firewall have been captured as the 

testing results as shown below:

 The status of the client 212.1.1.32 before starting the firewall (can't 

establish a connection to our FTP server).

 The status of the client 212.1.1.32 after starting the firewall (can 

establish a connection to our FTP server and list its content).

 The status of the client 212.1.1.32 after applying the policy which rejects

the tcp connection to our FTP server.

 The log File shows that the packets come from the client 212.1.1.32 to 

our FTP server was rejected.

Figure 5.3: Before starting the Firewall.



Figure 5.4: After starting the Firewall.

Figure 5.5: Appling the Incoming policy.

Source Add. 
212.1.1.32

Destination Add. 
FTP Server



Figure 5.6: After applying the policy.

Figure 5.7: Log File after Appling the policy.

Source Add. 
212.1.1.32

Destination Add. 
FTP Server



6.2 Conclusion
The study concluded that firewalls are necessary tools for data protection.

Since firewall is an approach to security it requires a combination of component of

hardware  and  software  to  control  the  flow  of  information  within  and  between

networks.

The  goal  of  this  research  was  to  build  and  implement  packet-filtering

firewall. This was implemented by using the ordinary personal computer with Gimp

Tool  Kit  (GTK),  ordinary  C–Language,  and  Red  Hat  Linux  8  as  an  Operating

System.  The  software  was  implemented  to  deny  some  information  as  well  as

permitting others according to the policy that designed for that information.

Each firewall system serve specific function according to the security policy

that you need it. Then, it can use more than one security policy with one-firewall

techniques.

This research is  elaborate on the  packet  filtering  firewall  technology that

depends on the IP address and protocols for users in specific network. It considered

as easier software and allows freedom for users to choose all available services in

the network, that it is not assign in other techniques.



6.3 Recommendations 
The Packet filtering was made as simple as possible. This software can be

considered as a start point for further work related to network security programming

for those who want to improve this application, this software dosen't support the

Internet Protocol version 6 (IPv6); so the addressing scheme must be known well

and the method for cheking the protocol version must be added to get  software

portability.

For  those  who  want  to  develop  this  software  the  following  points  are

considered as further work:

 This  software  filters  TCP,  UDP  and  ICMP  packets  and  can  be

modified to filter the SMTP packets.

 Instead of working with IP addresses, the software can be modified to

use servers name with the aid of DNS.

 This software is designed to work with Ethernet technology, but it can

be modified to work with other technologies.



REFERENCES 

1. D. Brent Chapman & Elizabeth D. Zwicky, Building Internet Firewall, O'Reilly 

& Associates, Inc., Second Edition, June 2000.  

2. Christopher Negus, Red Hat Linux 8.0 Bible, Wiley Publishing, Inc., First 

Edition, 2003. 

3. Mathew Strebe and Charles Perkins, Firewalls 24seven, SYBEX Inc., First 

Edition, 2000.

4. Bill Ball & Stephen Smoogen, SAMS' Teach Yourself LINUX in 24 Hours, 

SAMS Publishing and Red Hat Press, First Edition, 1998.

5. Kurt Wall, Mark Watson, and Mark Whitis, Linux Programming Unleashed, 

SAMS Publishing, First Edition, 1999.

6. Michael Timann, Official Red Hat Linux8 Administrator's Guide, Wiley 

Publishing, Inc, First Edition, 2003. 

7. Mark Grennan, Firewall and Proxy Server HOWTO, http://www.grennan.com/, 

February 2000.

8. Kevin Fenzi & Dave Wreski, Linux Security-How-To, http://www.linuxdoc.org, 

February 2002.

9. Warren W. Gay, Linux Socket Programming By Examples, Macmillan 

Computer Publishing, Inc.,



APPENDIXES  

Appendix A: Source Code
include<stdio.h>
include<netinet/in.h>
include<sys/types.h>
include<string.h>
include<arpa/inet.h>
include<netdb.h>
include<sys/socket.h>
include <gtk/gtk.h>
include<string.h>
struct ipaddresses

 {
  char HTTP[20];
  char FTP[20];
  char FLOCAL[20];
  char FPUBLIC[20];
  char SUB[30];
 }x;

struct del
{
int no;
char in[120];
char flog[120];
char fin[120];
};

FILE *fp;
typedef struct _ProgressData {
GtkWidget *window;
GtkWidget *pbar;
int timer;
gboolean activity_mode;
} ProgressData;
GtkWidget *buttonp;
GtkWidget *vboxp;
char prot[8]=" -p all ";
char soip[24];
char policy[11]=" -j REJECT ";
char dsip[24];
void comand();
void comand1();
void act_tcp();
void act_udp();
void act_icmp();
void act_all();



void act_accept();
void act_drop();
void act_reject();
void get_soip( GtkWidget *widget,GtkWidget *entry );
void get_dsip( GtkWidget *widget,GtkWidget *entry );
void add_in_rule();
void add_out_rule();
void remove_in_rule();
void remove_out_rule();
void del_in_rule( GtkWidget *widget,GtkWidget *entry);
void del_out_rule( GtkWidget *widget,GtkWidget *entry);
void helpabout( );
static void menuitem_response( );
static void view_all_in();
static void view_all_out();
void save();
void reset();
void restore();
void reset_log();
void destroy_progress( GtkWidget *widget,ProgressData *pdata);
gint progress_timeout( gpointer data );
void error_sip();
void prog();
void view_backup();
void reset_backup();
void getFPUBLIC( GtkWidget *widget,GtkWidget *entry );
void getFLOCAL( GtkWidget *widget,GtkWidget *entry );
void getHTTP( GtkWidget *widget,GtkWidget *entry );
void getFTP( GtkWidget *widget,GtkWidget *entry );
void getSUB( GtkWidget *widget,GtkWidget *entry );
void apply();
void error_fpip();
void error_flip();
void error_ftp();
void error_http();
void entry_toggle_editable( GtkWidget *checkbutton,GtkWidget *entry );
void setting();
void help();
int main( int   argc,char *argv[] )
{
GtkWidget *window;
GtkWidget *frame;
GtkWidget *button;
GtkWidget *main_vbox;
GtkWidget *hbox;
GtkWidget *vbox;
GtkWidget *bbox;
GtkWidget *frame_vert;
GtkWidget *hbox1;



GtkWidget *vbox1;
GtkWidget *hbox2;
GtkWidget *frame1;
GtkWidget *label;
GtkWidget *menu;
GtkWidget *menu_bar;
GtkWidget *root_menu;
GtkWidget *root_menu1;
GtkWidget *menu1;
GtkWidget *root_menu2;
GtkWidget *menu2;
GtkWidget *root_menu3;
GtkWidget *menu3;
GtkWidget *root_menu4;
GtkWidget *menu4;
GtkWidget *menu_items;
GtkWidget *image;  
gtk_init (&argc, &argv);
restore();
system(" insmod ip_conntrack_ftp ");
system("insmod ip_nat_ftp");
window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
gtk_window_set_title (GTK_WINDOW (window), "Firewall Program");
g_signal_connect (G_OBJECT (window), "destroy",

                        G_CALLBACK (gtk_main_quit), NULL);
gtk_widget_set_size_request (window, 780, 530);
gtk_container_set_border_width (GTK_CONTAINER (window),0);
frame = gtk_frame_new (NULL);
gtk_container_add (GTK_CONTAINER (window), frame);
gtk_container_set_border_width (GTK_CONTAINER (frame), 20);
main_vbox = gtk_vbox_new (FALSE,10);
gtk_container_add (GTK_CONTAINER (frame), main_vbox);
gtk_container_set_border_width (GTK_CONTAINER (main_vbox), 0);
menu = gtk_menu_new ();
/*Create File Menu*/
menu_items = gtk_menu_item_new_with_label ("View Log File");
gtk_menu_shell_append (GTK_MENU_SHELL (menu), menu_items);
g_signal_connect_swapped (G_OBJECT (menu_items), "activate",
                          G_CALLBACK (menuitem_response),g_strdup (NULL));
gtk_widget_show (menu_items);
menu_items = gtk_menu_item_new_with_label ("Reset All Rules");
gtk_menu_shell_append (GTK_MENU_SHELL (menu), menu_items);
g_signal_connect_swapped (G_OBJECT (menu_items), "activate",

                                         G_CALLBACK (reset),g_strdup (NULL));
gtk_widget_show (menu_items);
menu_items = gtk_menu_item_new_with_label ("Reset Log File");
gtk_menu_shell_append (GTK_MENU_SHELL (menu), menu_items);
g_signal_connect_swapped (G_OBJECT (menu_items), "activate",

                                G_CALLBACK (reset_log),g_strdup (NULL));



gtk_widget_show (menu_items);
menu_items = gtk_menu_item_new_with_label ("Exit");
gtk_menu_shell_append (GTK_MENU_SHELL (menu), menu_items);
gtk_widget_show (menu_items);
g_signal_connect_swapped (G_OBJECT (menu_items), "activate",

                                      G_CALLBACK (gtk_widget_destroy), window);
root_menu = gtk_menu_item_new_with_label ("File");
gtk_widget_show (root_menu);
gtk_menu_item_set_submenu (GTK_MENU_ITEM (root_menu), menu);
vbox = gtk_vbox_new (TRUE, 10);
gtk_container_add (GTK_CONTAINER (main_vbox), vbox);
gtk_widget_show (vbox);
menu_bar = gtk_menu_bar_new ();
gtk_box_pack_start (GTK_BOX (vbox), menu_bar, FALSE, FALSE, 4);
gtk_widget_show (menu_bar);
gtk_menu_shell_append (GTK_MENU_SHELL (menu_bar), root_menu);
menu1 = gtk_menu_new ();
menu_items = gtk_menu_item_new_with_label ("Add Rule");
gtk_menu_shell_append (GTK_MENU_SHELL (menu1), menu_items);
g_signal_connect_swapped (G_OBJECT (menu_items), "activate",

                               G_CALLBACK (add_in_rule),g_strdup (NULL));
gtk_widget_show (menu_items);
menu_items = gtk_menu_item_new_with_label ("Remove Rule");
g_signal_connect_swapped (G_OBJECT (menu_items), "activate",

                  G_CALLBACK (remove_in_rule),g_strdup (NULL));
gtk_menu_shell_append (GTK_MENU_SHELL (menu1), menu_items);
gtk_widget_show (menu_items);  
menu_items = gtk_menu_item_new_with_label ("View All Rules");
gtk_menu_shell_append (GTK_MENU_SHELL (menu1), menu_items);
g_signal_connect_swapped (G_OBJECT (menu_items), "activate",

                               G_CALLBACK (view_all_in),g_strdup (NULL));
gtk_widget_show (menu_items);
root_menu1 = gtk_menu_item_new_with_label ("Incomming Rules");
gtk_menu_item_set_submenu (GTK_MENU_ITEM (root_menu1), menu1);
gtk_box_pack_start (GTK_BOX (vbox), menu_bar, FALSE, FALSE, 4);
gtk_widget_show (menu_bar);
gtk_menu_shell_append (GTK_MENU_SHELL (menu_bar), root_menu1);
menu2 = gtk_menu_new ();
menu_items = gtk_menu_item_new_with_label ("Add Rule");
gtk_menu_shell_append (GTK_MENU_SHELL (menu2), menu_items);
g_signal_connect_swapped (G_OBJECT (menu_items), "activate",

                                G_CALLBACK (add_out_rule),g_strdup (NULL));
gtk_widget_show (menu_items);
menu_items = gtk_menu_item_new_with_label ("Remove Rule");
gtk_menu_shell_append (GTK_MENU_SHELL (menu2), menu_items);
g_signal_connect_swapped (G_OBJECT (menu_items), "activate",

                                         G_CALLBACK (remove_out_rule),g_strdup (NULL));
gtk_widget_show (menu_items);
menu_items = gtk_menu_item_new_with_label ("View All Rules");



gtk_menu_shell_append (GTK_MENU_SHELL (menu2), menu_items);
g_signal_connect_swapped (G_OBJECT (menu_items), "activate",

                                                  G_CALLBACK (view_all_out),g_strdup (NULL));
gtk_widget_show (menu_items);
root_menu2 = gtk_menu_item_new_with_label ("Outgoing Rules");
gtk_menu_item_set_submenu (GTK_MENU_ITEM (root_menu2), menu2);
gtk_box_pack_start (GTK_BOX (vbox), menu_bar, FALSE, FALSE, 0);
gtk_widget_show (menu_bar);
gtk_menu_shell_append (GTK_MENU_SHELL (menu_bar), root_menu2);
/*Create Setting  Menu*/
menu4 = gtk_menu_new ();
menu_items = gtk_menu_item_new_with_label ("Firewall Setting");
gtk_menu_shell_append (GTK_MENU_SHELL (menu4), menu_items);
g_signal_connect_swapped (G_OBJECT (menu_items), "activate",

                                                 G_CALLBACK (setting),g_strdup (NULL));
gtk_widget_show (menu_items);
menu_items = gtk_menu_item_new_with_label ("View Log Backup File");
gtk_menu_shell_append (GTK_MENU_SHELL (menu4), menu_items);
g_signal_connect_swapped (G_OBJECT (menu_items), "activate",

                                              G_CALLBACK (view_backup),g_strdup (NULL));
gtk_widget_show (menu_items);
menu_items = gtk_menu_item_new_with_label ("Reset Log Backup File");
gtk_menu_shell_append (GTK_MENU_SHELL (menu4), menu_items);
g_signal_connect_swapped (G_OBJECT (menu_items), "activate",

                                               G_CALLBACK (reset_backup),g_strdup (NULL));
gtk_widget_show (menu_items);
root_menu4 = gtk_menu_item_new_with_label ("Setting");
gtk_menu_item_set_submenu (GTK_MENU_ITEM (root_menu4), menu4);
gtk_box_pack_start (GTK_BOX (vbox), menu_bar, FALSE, FALSE, 0);
gtk_widget_show (menu_bar);
gtk_menu_shell_append (GTK_MENU_SHELL (menu_bar), root_menu4);
/*Create Help Menu*/
menu3 = gtk_menu_new ();
menu_items = gtk_menu_item_new_with_label ("How To Use");
gtk_menu_shell_append (GTK_MENU_SHELL (menu3), menu_items);
g_signal_connect_swapped (G_OBJECT (menu_items), "activate",

                                              G_CALLBACK (help),g_strdup (NULL));
gtk_widget_show (menu_items);
menu_items = gtk_menu_item_new_with_label ("About Firewall");
gtk_menu_shell_append (GTK_MENU_SHELL (menu3), menu_items);
g_signal_connect_swapped (G_OBJECT (menu_items), "activate",

                                               G_CALLBACK (helpabout),g_strdup (NULL));
gtk_widget_show (menu_items);
root_menu3 = gtk_menu_item_new_with_label ("Help");
gtk_menu_item_set_submenu (GTK_MENU_ITEM (root_menu3), menu3);
gtk_box_pack_start (GTK_BOX (vbox), menu_bar, FALSE, FALSE, 0);
gtk_widget_show (menu_bar);
gtk_menu_shell_append (GTK_MENU_SHELL (menu_bar), root_menu3);
/*Create Frame for the Program lable*/40



frame = gtk_frame_new (NULL);
hbox = gtk_hbox_new (FALSE,10);
gtk_container_add (GTK_CONTAINER (frame), hbox);
image = gtk_image_new_from_file ("sust.jpg");
gtk_container_add (GTK_CONTAINER (hbox), image);
gtk_box_pack_start(GTK_BOX(frame),hbox,FALSE,FALSE,0);
gtk_widget_show(image);
label = gtk_label_new ("\n\nSudan University of Science and Technolog\n\tCollege 
of Post Graduate Studies\n\t\tThis is Firewall Program\n\t    Created by:  Isam 
Abdelnabi\n\tSupervised by: Dr. Yahia Abdalla\n\n");
gtk_container_add (GTK_CONTAINER (hbox), label);
gtk_container_set_border_width (GTK_CONTAINER (frame), 20);
gtk_box_pack_start (GTK_BOX (main_vbox), frame, FALSE, FALSE, 0);
image = gtk_image_new_from_file ("sust.jpg");
gtk_container_add (GTK_CONTAINER (hbox), image);
gtk_box_pack_start(GTK_BOX(frame),hbox,FALSE,FALSE,0);
gtk_widget_show(image);
/*************************************************************/
     /*Creat Button box for Incomming Rules*/
/*************************************************************/
hbox1 = gtk_hbox_new(TRUE,0);
gtk_box_pack_start (GTK_BOX (main_vbox), hbox1, TRUE, TRUE, 0);
frame1 = gtk_frame_new("Incomming Rules");
gtk_container_add (GTK_CONTAINER (hbox1), frame1);
gtk_container_set_border_width (GTK_CONTAINER (frame1), 20);
vbox1 = gtk_vbox_new (TRUE, 0);
gtk_container_add (GTK_CONTAINER (frame1), vbox1);
gtk_container_set_border_width (GTK_CONTAINER (vbox), 10);
hbox2 = gtk_hbox_new(TRUE,0);
image = gtk_image_new_from_file ("test.png");
gtk_container_add (GTK_CONTAINER (hbox2), image);
gtk_box_pack_start(GTK_BOX(vbox1),hbox2,FALSE,FALSE,0);
gtk_widget_show(image);
bbox = gtk_hbutton_box_new ();
gtk_container_set_border_width (GTK_CONTAINER (bbox), 5);
gtk_container_add (GTK_CONTAINER (vbox1), bbox);
/* Set the appearance of the Button Box */
gtk_button_box_set_layout (GTK_BUTTON_BOX 
(bbox),GTK_BUTTONBOX_SPREAD);
gtk_box_set_spacing (GTK_BOX (bbox), 10);
/*gtk_button_box_set_child_size (GTK_BUTTON_BOX (bbox), child_w, 
child_h);*/
button = gtk_button_new_from_stock (GTK_STOCK_ADD);
gtk_container_add (GTK_CONTAINER (bbox), button);
g_signal_connect_swapped (G_OBJECT (button), "clicked",

                                               G_CALLBACK (add_in_rule),g_strdup (NULL) );
button = gtk_button_new_from_stock (GTK_STOCK_DELETE);
gtk_container_add (GTK_CONTAINER (bbox), button);



g_signal_connect_swapped (G_OBJECT (button), "clicked",
                                              G_CALLBACK (remove_in_rule),g_strdup (NULL) );
gtk_box_pack_start (GTK_BOX (hbox),frame1,TRUE,TRUE,10);
frame1 = gtk_frame_new("Outgoing Rules");
gtk_container_add (GTK_CONTAINER (hbox1), frame1);
gtk_container_set_border_width (GTK_CONTAINER (frame1), 20);
vbox1 = gtk_vbox_new (TRUE, 0);
gtk_container_add (GTK_CONTAINER (frame1), vbox1);
gtk_container_set_border_width (GTK_CONTAINER (vbox), 10);
hbox2 = gtk_hbox_new(TRUE,0);
image = gtk_image_new_from_file ("test1.png");
gtk_container_add (GTK_CONTAINER (hbox2), image);
gtk_box_pack_start(GTK_BOX(vbox1),hbox2,FALSE,FALSE,0);
gtk_widget_show(image);
bbox = gtk_hbutton_box_new ();
gtk_container_set_border_width (GTK_CONTAINER (bbox), 20);
gtk_container_add (GTK_CONTAINER (vbox1), bbox);
/* Set the appearance of the Button Box */
gtk_button_box_set_layout (GTK_BUTTON_BOX 
(bbox),GTK_BUTTONBOX_SPREAD);
gtk_box_set_spacing (GTK_BOX (bbox), 10);
/*gtk_button_box_set_child_size (GTK_BUTTON_BOX (bbox), child_w, 
child_h);*/
button = gtk_button_new_from_stock (GTK_STOCK_ADD);
gtk_container_add (GTK_CONTAINER (bbox), button);
g_signal_connect_swapped (G_OBJECT (button), "clicked",

                                               G_CALLBACK (add_out_rule),g_strdup (NULL) );
button = gtk_button_new_from_stock (GTK_STOCK_DELETE);
gtk_container_add (GTK_CONTAINER (bbox), button);
g_signal_connect_swapped (G_OBJECT (button), "clicked",
                                            G_CALLBACK (remove_out_rule),g_strdup (NULL) );
gtk_box_pack_start (GTK_BOX (hbox),frame1,TRUE,TRUE,10);
/**************************************************************/  
     /*Create Button Box for the Whole Application*/
/**************************************************************/  
frame_vert = gtk_hbox_new(FALSE,0);
gtk_box_pack_start (GTK_BOX (main_vbox), frame_vert, TRUE, TRUE, 0);
hbox = gtk_hbox_new (FALSE, 0);
gtk_container_set_border_width (GTK_CONTAINER (hbox), 10);
gtk_container_add (GTK_CONTAINER (frame_vert), hbox);
bbox = gtk_hbutton_box_new ();
gtk_container_set_border_width (GTK_CONTAINER (bbox), 20);
gtk_container_add (GTK_CONTAINER (hbox), bbox);
/* Set the appearance of the Button Box */
gtk_button_box_set_layout (GTK_BUTTON_BOX

            (bbox),GTK_BUTTONBOX_SPREAD);
gtk_box_set_spacing (GTK_BOX (bbox),10);
button = gtk_button_new_from_stock (GTK_STOCK_QUIT);
gtk_container_add (GTK_CONTAINER (bbox), button);



g_signal_connect_swapped (G_OBJECT (button), "clicked",
                 G_CALLBACK (save), NULL);

g_signal_connect_swapped (G_OBJECT (button), "clicked",
                                               G_CALLBACK (gtk_widget_destroy), window);

/*Create a View Log File Button for a Whole Application*/
button = gtk_button_new_with_label ("View Log File");
g_signal_connect_swapped (G_OBJECT (button), "clicked",
                                       G_CALLBACK (menuitem_response),g_strdup (NULL) );

gtk_container_add (GTK_CONTAINER (bbox), button);
/*Creat A Help Button*/
button = gtk_button_new_from_stock (GTK_STOCK_HELP);
gtk_container_add (GTK_CONTAINER (bbox), button);
gtk_box_pack_start (GTK_BOX (hbox),frame,TRUE,TRUE,10);
g_signal_connect_swapped (G_OBJECT (button), "clicked",

                                       G_CALLBACK (help),g_strdup (NULL) );
/* Display the window */
gtk_widget_show_all (window);
/* Enter the event loop */
gtk_main ();
system("clear");  
return 0;
}
void comand()
{
char temp1[120]="",temp2[120]="";
char in[120]= "iptables -A INPUT ";
char inf[120]= "iptables -A FORWARD  ";
char logf[120]= "iptables -A FORWARD  ";
char din[120]= "iptables -D INPUT ";
char dinf[120]= "iptables -D FORWARD  ";
char dlogf[120]= "iptables -D FORWARD  ";
struct hostent *ptrh;
struct hostent *ptrh1;
struct del delin;
fp=fopen("setting.dat","r");
while(!feof(fp))

   {
          fread(&x,sizeof x,1,fp);
   }

fclose(fp);
ptrh = gethostbyname(dsip);
ptrh1 = gethostbyname(soip);
if((((char*)ptrh) == NULL)||((char*)ptrh1) == NULL)
          printf("error");
else    

   {
    strcat(temp1," -s ");
    strcat(temp1,soip);
    strcat(temp1," -d ");



    strcat(temp1,dsip);
    if(strcmp(dsip,x.HTTP)==0||strcmp(dsip,x.FTP)==0)

 strncat(temp1," -p tcp ",8);
    else
    strncat(temp1,prot,8);
    strcpy(temp2,temp1);
    strncat(temp1,policy,10);
    strcat(in,temp1);
    strcat(din,temp1);
    strcat(temp2," -j LOG --log-prefix Firewall --log-ip-options");
    strcat(inf,temp1);
    strcat(dinf,temp1);
    strcat(logf,temp2);
    strcat(dlogf,temp2);
    if(strcmp(dsip,x.HTTP)==0)
     {
       strcat(in," --dport 80 ");
       strcat(din," --dport 80 ");
       strcat(logf," --dport 80 ");
       strcat(dlogf," --dport 80 ");
       strcat(inf," --dport 80 ");
       strcat(dinf," --dport 80 ");
     }
    if(strcmp(dsip,x.FTP)==0)
     {
       strcat(in," --dport 21 ");
       strcat(din," --dport 21 ");
       strcat(logf," --dport 21 ");
       strcat(dlogf," --dport 21 ");
       strcat(inf," --dport 21 ");
       strcat(dinf," --dport 21 ");
     }
  system(in);
  system(logf);
  system(inf);
  save();
  fp=fopen("delin.dat","a");
  delin.no = 1;
  strcpy(delin.in,din);
  strcpy(delin.flog,dlogf);
  strcpy(delin.fin,dinf);
  fwrite(&delin,sizeof delin,1,fp);
  fclose(fp);
  save();
  prog();
   }

}
void comand1()
{



char temp1[120]="",temp2[120]="";
char in[120]= "iptables -A OUTPUT ";
char inf[120]= "iptables -A FORWARD  ";
char logf[120]= "iptables -A FORWARD  ";
char din[120]= "iptables -D OUTPUT ";
char dinf[120]= "iptables -D FORWARD  ";
char dlogf[120]= "iptables -D FORWARD  ";
struct hostent *ptrh;
struct hostent *ptrh1;
struct del delin;
fp=fopen("setting.dat","r");
while(!feof(fp))

 {
          fread(&x,sizeof x,1,fp);
  }

fclose(fp);
ptrh = gethostbyname(dsip);
ptrh1 = gethostbyname(soip);
if((((char*)ptrh) == NULL)||((char*)ptrh1) == NULL)

  printf("error");
else    

   {
    strcat(temp1," -s ");
    strcat(temp1,soip);
    strcat(temp1," -d ");
    strcat(temp1,dsip);
    if(strcmp(dsip,x.HTTP)==0||strcmp(dsip,x.FTP)==0)

 strncat(temp1," -p tcp ",8);
    else
    strncat(temp1,prot,8);
    strcpy(temp2,temp1);
    strncat(temp1,policy,10);
    strcat(in,temp1);
    strcat(din,temp1);
    strcat(temp2," -j LOG --log-prefix Firewall --log-ip-options");
    strcat(inf,temp1);
    strcat(dinf,temp1);
    strcat(logf,temp2);
    strcat(dlogf,temp2);
    if(strcmp(dsip,x.HTTP)==0)
    {
    strcat(in," --dport 80 ");
    strcat(din," --dport 80 ");
    strcat(logf," --dport 80 ");
    strcat(dlogf," --dport 80 ");
    strcat(inf," --dport 80 ");
    strcat(dinf," --dport 80 ");
    }
    if(strcmp(dsip,x.FTP)==0)



    {
    strcat(in," --dport 21 ");
    strcat(din," --dport 21 ");
    strcat(logf," --dport 21 ");
    strcat(dlogf," --dport 21 ");
    strcat(inf," --dport 21 ");
     strcat(dinf," --dport 21 ");
     }
     system(in);
     system(logf);
     system(inf);
     save();
    fp=fopen("delout.dat","a");
    delin.no = 1;
    strcpy(delin.in,din);
    strcpy(delin.flog,dlogf);
    strcpy(delin.fin,dinf);
    fwrite(&delin,sizeof delin,1,fp);
    fclose(fp);
    save();
    prog();
    }

}
void reset_log()
{
system("dmesg -c -s 16392 | grep Firewall> Backup_of_log_file.txt");
prog();
}
void act_tcp()
{

   strcpy(prot," -p tcp ");
}
void act_udp()
{

   strcpy(prot," -p udp ");
}
void act_icmp()
{

   strcpy(prot," -p icmp ");
}
void act_all()
{

   strcpy(prot," -p all ");
}
void act_accept()
{

   strcpy(policy," -j ACCEPT ");
}
void act_drop()



{
   strcpy(policy,"  -j DROP  ");

}
void act_reject()
{

        strcpy(policy," -j REJECT ");
}

void get_soip(GtkWidget *widget,GtkWidget *entry)
{
struct hostent *ptrh;
const gchar *entry_text;
entry_text = gtk_entry_get_text (GTK_ENTRY (entry));
strcpy(soip,entry_text);
ptrh = gethostbyname(soip);
if(((char*)ptrh) == NULL)
          {

    error_sip(); 
}

}
void get_dsip( GtkWidget *widget,GtkWidget *entry )
{
struct hostent *ptrh;
const gchar *entry_text;
entry_text = gtk_entry_get_text (GTK_ENTRY (entry));
 strcpy(dsip,entry_text);
 ptrh = gethostbyname(dsip);
 if(((char*)ptrh) == NULL)
       {
            error_dip();
       }
}
void error_sip()
{
 GtkWidget *dialog;
 GtkWidget *window1;
 char text[50]=("Error Invalid Source Address: ");
 strcat(text,soip);
 window1 = gtk_window_new (GTK_WINDOW_TOPLEVEL);
dialog=gtk_message_dialog_new(window1,

GTK_DIALOG_DESTROY_WITH_PARENT,GTK_MESSAGE_ERROR,
GTK_BUTTONS_CLOSE,text);
gtk_window_set_position (dialog, GTK_WIN_POS_CENTER_ALWAYS);
gtk_dialog_run (GTK_DIALOG (dialog));
gtk_widget_destroy (dialog);
}
void error_dip()
{
GtkWidget *dialog1;



GtkWidget *window1;
char text[50]=("Error Invalid Destination Address: ");
strcat(text,dsip);
window1 = gtk_window_new (GTK_WINDOW_TOPLEVEL);
dialog1 = gtk_message_dialog_new (window1,

GTK_DIALOG_DESTROY_WITH_PARENT,GTK_MESSAGE_ERROR,
GTK_BUTTONS_CLOSE,text);
gtk_window_set_position (dialog1, GTK_WIN_POS_CENTER_ALWAYS);
gtk_dialog_run (GTK_DIALOG (dialog1));
gtk_widget_destroy (dialog1);
}
void add_in_rule()
{
/* GtkWidget is the storage type for widgets */
GtkWidget *window;
GtkWidget *frame;
GtkWidget *entry;
GtkWidget *entry1;
GtkWidget *vbox;
GtkWidget *hbox;
GtkWidget *box2;
GtkWidget *box1;
GtkWidget *main_box;
GtkWidget *button;
GtkWidget *button1;
GtkWidget *button2;
GtkWidget *button3;
GtkWidget *button4;
GtkWidget *button5;
GtkWidget *button6;
GtkWidget *button7;
GtkWidget *label;
GSList *group;
GSList *group1;
gint tmp_pos;
window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
gtk_window_set_title (GTK_WINDOW (window), "Adding Incomming Rule");
gtk_widget_set_size_request (window, 350, 380);
gtk_window_set_position (window, GTK_WIN_POS_CENTER_ALWAYS);
gtk_window_set_resizable(window,FALSE);
/* Sets the border width of the window. */
gtk_container_set_border_width (GTK_CONTAINER (window), 10);
/* Create a Frame */
frame = gtk_frame_new (NULL);
gtk_container_add (GTK_CONTAINER (window), frame);
gtk_box_pack_start (GTK_BOX (window), frame, FALSE, FALSE, 10);
gtk_widget_show (frame);
/*Show Enery Boxes*/
main_box = gtk_vbox_new (FALSE, 0);



gtk_container_add (GTK_CONTAINER (frame), main_box);
gtk_container_set_border_width (GTK_CONTAINER (main_box), 10);
gtk_box_pack_start (GTK_BOX (frame), main_box, FALSE, FALSE, 10);
gtk_widget_show (main_box);
hbox = gtk_hbox_new (TRUE, 0);
label = gtk_label_new ("Source IP Address:        Distenation IP Address:");
gtk_container_add (GTK_CONTAINER (hbox), label);
gtk_container_set_border_width (GTK_CONTAINER (hbox), 10);
hbox = gtk_hbox_new (FALSE, 10);
gtk_container_add (GTK_CONTAINER (main_box), hbox);
gtk_container_set_border_width (GTK_CONTAINER (hbox), 10);
gtk_box_pack_start (GTK_BOX (main_box), hbox, FALSE, FALSE, 0);
gtk_widget_show (hbox);
vbox = gtk_vbox_new (FALSE, 0);
gtk_container_add (GTK_CONTAINER (hbox), vbox);
gtk_box_pack_start (GTK_BOX (hbox), vbox, FALSE, FALSE, 0);
gtk_widget_show (vbox);
entry = gtk_entry_new ();
gtk_entry_set_max_length (GTK_ENTRY (entry), 20);
gtk_entry_set_text (GTK_ENTRY (entry), "Sour. IP");
tmp_pos = GTK_ENTRY (entry)->text_length;
gtk_editable_insert_text (GTK_EDITABLE (entry), " Address", -1, &tmp_pos);
gtk_editable_select_region (GTK_EDITABLE (entry),0, GTK_ENTRY 
(entry)->text_length);
gtk_box_pack_start (GTK_BOX (vbox), entry, TRUE, TRUE,0);
gtk_widget_show (entry);
vbox = gtk_vbox_new (FALSE, 0);
gtk_container_add (GTK_CONTAINER (hbox), vbox);
gtk_widget_show (vbox);
entry1 = gtk_entry_new ();
gtk_entry_set_max_length (GTK_ENTRY (entry1), 20);
gtk_entry_set_text (GTK_ENTRY (entry1), "Dist. IP ");
tmp_pos = GTK_ENTRY (entry1)->text_length;
gtk_editable_insert_text (GTK_EDITABLE (entry1), "Address", -1, &tmp_pos);
gtk_editable_select_region (GTK_EDITABLE (entry1),0, GTK_ENTRY 
(entry1)->text_length);
gtk_box_pack_start (GTK_BOX (vbox), entry1, TRUE, TRUE,0);
gtk_widget_show (entry1);
 /*Create Protocols Radiobutton Box*/
box1 = gtk_hbox_new (FALSE, 10);
gtk_container_add (GTK_CONTAINER (main_box), box1);
gtk_container_set_border_width (GTK_CONTAINER (box1), 10);
gtk_box_pack_start (GTK_BOX (main_box), box1, FALSE, FALSE, 10);
gtk_widget_show (box1);
frame = gtk_frame_new ("Protocols");
gtk_container_add (GTK_CONTAINER (box1), frame);
gtk_box_pack_start (GTK_BOX (box1), frame, FALSE, FALSE, 10);
gtk_widget_show (frame);
box2 = gtk_vbox_new (FALSE, 10);



gtk_container_set_border_width (GTK_CONTAINER (box2), 10);
gtk_container_add (GTK_CONTAINER (frame), box2);
gtk_box_pack_start (GTK_BOX (frame), box2, TRUE, TRUE, 20);
gtk_widget_show (box2);
button = gtk_radio_button_new_with_label (NULL, "TCP");
gtk_box_pack_start (GTK_BOX (box2), button, TRUE, TRUE, 0);
g_signal_connect (G_OBJECT (button), "pressed",

G_CALLBACK (act_tcp),NULL);
gtk_widget_show (button);
group = gtk_radio_button_get_group (GTK_RADIO_BUTTON (button));
button1 = gtk_radio_button_new_with_label (group, "UDP");
g_signal_connect (G_OBJECT (button1), "pressed",

G_CALLBACK (act_udp),NULL);
gtk_box_pack_start (GTK_BOX (box2), button1, TRUE, TRUE, 0);
gtk_widget_show (button1);
button2 = gtk_radio_button_new_with_label_from_widget (

GTK_RADIO_BUTTON (button),"ICMP");
gtk_box_pack_start (GTK_BOX (box2), button2, TRUE, TRUE, 0);
g_signal_connect (G_OBJECT (button2), "pressed",

G_CALLBACK (act_icmp),NULL);
gtk_widget_show (button2);
button3 = gtk_radio_button_new_with_label_from_widget (

       GTK_RADIO_BUTTON (button),"ALL");
gtk_toggle_button_set_active (GTK_TOGGLE_BUTTON (button3), TRUE);
g_signal_connect (G_OBJECT (button3), "pressed",

G_CALLBACK (act_all),NULL);
gtk_box_pack_start (GTK_BOX (box2), button3, TRUE, TRUE, 0);
gtk_widget_show (button3);
/*Create Polcy Button Box*/
frame = gtk_frame_new ("Policy");
gtk_container_add (GTK_CONTAINER (box1), frame);
gtk_box_pack_start (GTK_BOX (box1), frame, FALSE, FALSE, 0);
gtk_widget_show (frame);
box2 = gtk_vbox_new (FALSE, 10);
gtk_container_set_border_width (GTK_CONTAINER (box2), 5);
gtk_container_add (GTK_CONTAINER (frame), box2);
gtk_box_pack_start (GTK_BOX (frame), box2, TRUE, TRUE, 20);
gtk_widget_show (box2);
button4 = gtk_radio_button_new_with_label (NULL, "Accept");
gtk_box_pack_start (GTK_BOX (box2), button4, TRUE, TRUE, 0);
g_signal_connect (G_OBJECT (button4), "pressed",

G_CALLBACK (act_accept),NULL);
gtk_widget_show (button4);
group1 = gtk_radio_button_get_group (GTK_RADIO_BUTTON (button4));
button5 = gtk_radio_button_new_with_label (group1, "Drop");
g_signal_connect (G_OBJECT (button5), "pressed",

G_CALLBACK (act_drop),NULL);
gtk_box_pack_start (GTK_BOX (box2), button5, TRUE, TRUE, 0);
gtk_widget_show (button5);



button6 = gtk_radio_button_new_with_label_from_widget (
GTK_RADIO_BUTTON (button4),"Reject");

gtk_toggle_button_set_active (GTK_TOGGLE_BUTTON (button6), TRUE);
g_signal_connect (G_OBJECT (button6), "pressed",

G_CALLBACK (act_reject),NULL);
gtk_box_pack_start (GTK_BOX (box2), button6, TRUE, TRUE, 0);
gtk_widget_show (button6);
box2 = gtk_hbox_new (TRUE, 10);
gtk_container_set_border_width (GTK_CONTAINER (box2), 10);
gtk_box_pack_start (GTK_BOX (main_box), box2, FALSE, TRUE, 0);
gtk_widget_show (box2);
button7= gtk_button_new_from_stock (GTK_STOCK_APPLY);
gtk_box_pack_start (GTK_BOX (box2), button7, TRUE, TRUE, 0);
g_signal_connect (G_OBJECT (button7), "clicked", 

G_CALLBACK(get_soip),entry);
g_signal_connect (G_OBJECT (button7), "clicked",

 G_CALLBACK (get_dsip),entry1);
g_signal_connect (G_OBJECT (button7), "clicked",

G_CALLBACK (comand),NULL);
gtk_widget_show (button);
button = gtk_button_new_from_stock (GTK_STOCK_CANCEL);
gtk_box_pack_start (GTK_BOX (box2), button, TRUE, TRUE, 0);
GTK_WIDGET_SET_FLAGS (button, GTK_CAN_DEFAULT);
gtk_widget_grab_default (button);
g_signal_connect_swapped (G_OBJECT (button), "clicked",

     G_CALLBACK (gtk_widget_destroy), window);
button = gtk_button_new_from_stock (GTK_STOCK_CLOSE);
gtk_box_pack_start (GTK_BOX (box2), button, TRUE, TRUE, 0);
g_signal_connect_swapped (G_OBJECT (button), "clicked",

                                     G_CALLBACK (gtk_widget_destroy), window);
gtk_widget_show (button);
gtk_widget_show_all (window);
}
void reset()
{
FILE *fp;
char http[120]="",ftp[120]="",pos[120]="",outhttp[120]="",outftp[120]="";
fp=fopen("save.dat","w");
fclose(fp);
fp=fopen("delin.dat","w");
fclose(fp);
fp=fopen("delout.dat","w");
fclose(fp);
fp=fopen("setting.dat","r");
while(!feof(fp))
      {
       fread(&x,sizeof x,1,fp);
      }
fclose(fp);



system("service iptables stop");
system("service iptables start");
strcat(pos,"iptables -t nat -A POSTROUTING -j SNAT --to-source  ");
strcat(pos,x.FPUBLIC);
strcat(pos," -s ");
strcat(pos,x.SUB);
strcat(http,"iptables -t nat -A PREROUTING -p tcp --dport 80 -d  ");
strcat(http,x.FPUBLIC);
strcat(http," -j DNAT  --to-destination  ");
strcat(http,x.HTTP);
strcat(ftp,"iptables -t nat -A PREROUTING -p tcp  --dport 21 -d  ");
strcat(ftp,x.FPUBLIC);
strcat(ftp," -j DNAT  --to-destination  ");
strcat(ftp,x.FTP);
strcat(outhttp,"iptables -t nat -A OUTPUT -p tcp --dport 80 -d  ");
strcat(outhttp,x.FPUBLIC);
strcat(outhttp," -j DNAT  --to-destination  ");
strcat(outhttp,x.HTTP);
strcat(outftp,"iptables -t nat -A OUTPUT -p tcp  --dport 21 -d  ");
strcat(outftp,x.FPUBLIC);
strcat(outftp," -j DNAT  --to-destination  ");
strcat(outftp,x.FTP);
system(ftp);
system(http);
system(outftp);
system(outhttp);
system(pos);
save();
prog();
}
void restore()
{
system("iptables-restore save.dat");
}
void save()
{
system("iptables-save -c >save.dat");
}
void add_out_rule()
{
/* GtkWidget is the storage type for widgets */
GtkWidget *window;
GtkWidget *frame;
GtkWidget *entry;
GtkWidget *entry1;
GtkWidget *vbox;
GtkWidget *hbox;
GtkWidget *box2;
GtkWidget *box1;



GtkWidget *main_box;
GtkWidget *button;
GtkWidget *button1;
GtkWidget *button2;
GtkWidget *button3;
GtkWidget *button4;
GtkWidget *button5;
GtkWidget *button6;
GtkWidget *button7;
GtkWidget *label;
GSList *group;
GSList *group1;
gint tmp_pos;
window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
gtk_window_set_title (GTK_WINDOW (window), "Adding Outgoing Rule");
gtk_widget_set_size_request (window, 350, 380);
gtk_window_set_position (window, GTK_WIN_POS_CENTER_ALWAYS);
gtk_window_set_resizable(window,FALSE);
/* Sets the border width of the window. */
gtk_container_set_border_width (GTK_CONTAINER (window), 10);
/* Create a Frame */
frame = gtk_frame_new (NULL);
gtk_container_add (GTK_CONTAINER (window), frame);
gtk_box_pack_start (GTK_BOX (window), frame, FALSE, FALSE, 10);
gtk_widget_show (frame);
/*Show Enery Boxes*/
main_box = gtk_vbox_new (FALSE, 0);
gtk_container_add (GTK_CONTAINER (frame), main_box);
gtk_container_set_border_width (GTK_CONTAINER (main_box), 10);
gtk_box_pack_start (GTK_BOX (frame), main_box, FALSE, FALSE, 10);
gtk_widget_show (main_box);
hbox = gtk_hbox_new (TRUE, 0);
label = gtk_label_new ("Source IP Address:        Distenation IP Address:");
gtk_container_add (GTK_CONTAINER (hbox), label);
gtk_container_set_border_width (GTK_CONTAINER (hbox), 10);
hbox = gtk_hbox_new (FALSE, 10);
gtk_container_add (GTK_CONTAINER (main_box), hbox);
gtk_container_set_border_width (GTK_CONTAINER (hbox), 10);
gtk_box_pack_start (GTK_BOX (main_box), hbox, FALSE, FALSE, 0);
gtk_widget_show (hbox);
vbox = gtk_vbox_new (FALSE, 0);
gtk_container_add (GTK_CONTAINER (hbox), vbox);
gtk_box_pack_start (GTK_BOX (hbox), vbox, FALSE, FALSE, 0);
gtk_widget_show (vbox);
entry = gtk_entry_new ();
gtk_entry_set_max_length (GTK_ENTRY (entry), 20);
gtk_entry_set_text (GTK_ENTRY (entry), "Sour. IP");
tmp_pos = GTK_ENTRY (entry)->text_length;
gtk_editable_insert_text (GTK_EDITABLE (entry), " Address", -1, &tmp_pos);



gtk_editable_select_region (GTK_EDITABLE (entry),0, GTK_ENTRY 
(entry)->text_length);
gtk_box_pack_start (GTK_BOX (vbox), entry, TRUE, TRUE,0);
gtk_widget_show (entry);
vbox = gtk_vbox_new (FALSE, 0);
gtk_container_add (GTK_CONTAINER (hbox), vbox);
gtk_widget_show (vbox);
entry1 = gtk_entry_new ();
gtk_entry_set_max_length (GTK_ENTRY (entry1), 20);
gtk_entry_set_text (GTK_ENTRY (entry1), "Dist. IP ");
tmp_pos = GTK_ENTRY (entry1)->text_length;
gtk_editable_insert_text (GTK_EDITABLE (entry1), "Address", -1, &tmp_pos);
gtk_editable_select_region (GTK_EDITABLE (entry1),0, GTK_ENTRY 
(entry1)->text_length);
gtk_box_pack_start (GTK_BOX (vbox), entry1, TRUE, TRUE,0);
gtk_widget_show (entry1);
/*Create Protocols Radiobutton Box*/
box1 = gtk_hbox_new (FALSE, 10);
gtk_container_add (GTK_CONTAINER (main_box), box1);
gtk_container_set_border_width (GTK_CONTAINER (box1), 10);
gtk_box_pack_start (GTK_BOX (main_box), box1, FALSE, FALSE, 10);
gtk_widget_show (box1);
frame = gtk_frame_new ("Protocols");
gtk_container_add (GTK_CONTAINER (box1), frame);
gtk_box_pack_start (GTK_BOX (box1), frame, FALSE, FALSE, 10);
gtk_widget_show (frame);
box2 = gtk_vbox_new (FALSE, 10);
gtk_container_set_border_width (GTK_CONTAINER (box2), 10);
gtk_container_add (GTK_CONTAINER (frame), box2);
gtk_box_pack_start (GTK_BOX (frame), box2, TRUE, TRUE, 20);
gtk_widget_show (box2);
button = gtk_radio_button_new_with_label (NULL, "TCP");
gtk_box_pack_start (GTK_BOX (box2), button, TRUE, TRUE, 0);
g_signal_connect (G_OBJECT (button), "pressed",

G_CALLBACK (act_tcp),NULL);
gtk_widget_show (button);
group = gtk_radio_button_get_group (GTK_RADIO_BUTTON (button));
button1 = gtk_radio_button_new_with_label (group, "UDP");
g_signal_connect (G_OBJECT (button1), "pressed",

G_CALLBACK (act_udp),NULL);
gtk_box_pack_start (GTK_BOX (box2), button1, TRUE, TRUE, 0);
gtk_widget_show (button1);
button2 = gtk_radio_button_new_with_label_from_widget (

 GTK_RADIO_BUTTON (button),"ICMP");
gtk_box_pack_start (GTK_BOX (box2), button2, TRUE, TRUE, 0);
g_signal_connect (G_OBJECT (button2), "pressed",

G_CALLBACK (act_icmp),NULL);
gtk_widget_show (button2);
button3 = gtk_radio_button_new_with_label_from_widget (



GTK_RADIO_BUTTON (button),"ALL");
gtk_toggle_button_set_active (GTK_TOGGLE_BUTTON (button3), TRUE);
g_signal_connect (G_OBJECT (button3), "pressed",

G_CALLBACK (act_all),NULL);
gtk_box_pack_start (GTK_BOX (box2), button3, TRUE, TRUE, 0);
gtk_widget_show (button3);
/*Create Polcy Button Box*/
frame = gtk_frame_new ("Policy");
gtk_container_add (GTK_CONTAINER (box1), frame);
gtk_box_pack_start (GTK_BOX (box1), frame, FALSE, FALSE, 0);
gtk_widget_show (frame);
box2 = gtk_vbox_new (FALSE, 10);
gtk_container_set_border_width (GTK_CONTAINER (box2), 5);
gtk_container_add (GTK_CONTAINER (frame), box2);
gtk_box_pack_start (GTK_BOX (frame), box2, TRUE, TRUE, 20);
gtk_widget_show (box2);
button4 = gtk_radio_button_new_with_label (NULL, "Accept");
gtk_box_pack_start (GTK_BOX (box2), button4, TRUE, TRUE, 0);
g_signal_connect (G_OBJECT (button4), "pressed",

G_CALLBACK (act_accept),NULL);
gtk_widget_show (button4);
group1 = gtk_radio_button_get_group (GTK_RADIO_BUTTON (button4));
button5 = gtk_radio_button_new_with_label (group1, "Drop");
g_signal_connect (G_OBJECT (button5), "pressed",

G_CALLBACK (act_drop),NULL);
gtk_box_pack_start (GTK_BOX (box2), button5, TRUE, TRUE, 0);
gtk_widget_show (button5);
button6 = gtk_radio_button_new_with_label_from_widget (

GTK_RADIO_BUTTON (button4),"Reject");
gtk_toggle_button_set_active (GTK_TOGGLE_BUTTON (button6), TRUE);
g_signal_connect (G_OBJECT (button6), "pressed",

G_CALLBACK (act_reject),NULL);
gtk_box_pack_start (GTK_BOX (box2), button6, TRUE, TRUE, 0);
gtk_widget_show (button6);
box2 = gtk_hbox_new (TRUE, 10);
gtk_container_set_border_width (GTK_CONTAINER (box2), 10);
gtk_box_pack_start (GTK_BOX (main_box), box2, FALSE, TRUE, 0);
gtk_widget_show (box2);
button7= gtk_button_new_from_stock (GTK_STOCK_APPLY);
gtk_box_pack_start (GTK_BOX (box2), button7, TRUE, TRUE, 0);
g_signal_connect (G_OBJECT (button7), "clicked", 

G_CALLBACK(get_soip),entry);
g_signal_connect (G_OBJECT (button7), "clicked",

 G_CALLBACK (get_dsip),entry1);
g_signal_connect (G_OBJECT (button7), "clicked", 

G_CALLBACK (comand1),NULL);
button = gtk_button_new_from_stock (GTK_STOCK_CANCEL);
gtk_box_pack_start (GTK_BOX (box2), button, TRUE, TRUE, 0);
GTK_WIDGET_SET_FLAGS (button, GTK_CAN_DEFAULT);



gtk_widget_grab_default (button);
g_signal_connect_swapped (G_OBJECT (button), "clicked",

                            G_CALLBACK (gtk_widget_destroy), window);
button = gtk_button_new_from_stock (GTK_STOCK_CLOSE);
gtk_box_pack_start (GTK_BOX (box2), button, TRUE, TRUE, 0);
g_signal_connect_swapped (G_OBJECT (button), "clicked",

                            G_CALLBACK (gtk_widget_destroy), window);
gtk_widget_show (button);
gtk_widget_show_all (window);
}
void del_in_rule( GtkWidget *widget,GtkWidget *entry )
{
const char *entry_text;
int de,k,i=1;
struct del delin,m,temp[100];
fp=fopen("delin.dat","r");
while(!feof(fp))

       {
         fread(&m,sizeof m,1,fp);
         temp[i]=m;

 i++;
       }

fclose(fp);
entry_text=gtk_entry_get_text (GTK_ENTRY (entry));
de=atoi(entry_text);
temp[de].no=0;
delin=temp[de];
system(delin.in);
system(delin.flog);
system(delin.fin);
fp=fopen("delin.dat","w");
fclose(fp);
fp=fopen("delin.dat","a");
for(k=1;k<i-1;k++)

   {
    if(temp[k].no!=1)

continue;
    else
    fwrite(&temp[k],sizeof temp[k],1,fp);
   }

fclose(fp);
save();
prog();
}
void del_out_rule( GtkWidget *widget,GtkWidget *entry )
{
const char *entry_text;
int de,k,i=1;
struct del delin,m,temp[100];



fp=fopen("delout.dat","r");
while(!feof(fp))

       {
         fread(&m,sizeof m,1,fp);
         temp[i]=m;

 i++;
       }

 fclose(fp);
 entry_text=gtk_entry_get_text (GTK_ENTRY (entry));
 de=atoi(entry_text);
 temp[de].no=0;
 delin=temp[de];
 system(delin.in);
 system(delin.flog);
 system(delin.fin);
 fp=fopen("delout.dat","w");
 fclose(fp);
 fp=fopen("delout.dat","a");
 for(k=1;k<i-1;k++)

   {
    if(temp[k].no!=1)

continue;
    else
    fwrite(&temp[k],sizeof temp[k],1,fp);
   }

fclose(fp);
save();
prog();
}
void remove_in_rule()
{
GtkWidget *window;
GtkWidget *frame;
GtkWidget *button;
GtkWidget *hbox;
GtkWidget *main_box;
GtkWidget *vbox;
GtkWidget *box2;
GtkWidget *entry;
GtkWidget *label;
gint tmp_pos;
window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
gtk_window_set_title (GTK_WINDOW (window), "Deleting Incomming Rule");
gtk_widget_set_size_request (window, 280, 180);
gtk_container_set_border_width (GTK_CONTAINER (window), 10);
gtk_window_set_position (window, GTK_WIN_POS_CENTER_ALWAYS);
gtk_window_set_resizable(window,FALSE);
frame = gtk_frame_new (NULL);
gtk_container_add (GTK_CONTAINER (window), frame);



gtk_frame_set_shadow_type (GTK_FRAME (frame), 
GTK_SHADOW_ETCHED_OUT);

gtk_widget_show (frame);
main_box = gtk_vbox_new (FALSE, 0);
gtk_container_add (GTK_CONTAINER (frame), main_box);
gtk_container_set_border_width (GTK_CONTAINER (main_box), 10);
gtk_box_pack_start (GTK_BOX (frame), main_box, FALSE, FALSE, 10);
gtk_widget_show (main_box);
hbox = gtk_hbox_new (TRUE, 0);
label = gtk_label_new ("The No of Deleated Rule:");
gtk_container_add (GTK_CONTAINER (hbox), label);
gtk_container_set_border_width (GTK_CONTAINER (hbox), 0);
gtk_box_pack_start (GTK_BOX (main_box), hbox, FALSE,FALSE,0);
hbox = gtk_hbox_new (FALSE, 0);
gtk_container_add (GTK_CONTAINER (main_box), hbox);
gtk_container_set_border_width (GTK_CONTAINER (hbox), 10);
gtk_box_pack_start (GTK_BOX (main_box), hbox, FALSE, FALSE, 0);
gtk_widget_show (hbox);
vbox = gtk_vbox_new (FALSE, 10);
gtk_container_add (GTK_CONTAINER (hbox), vbox);
gtk_box_pack_start (GTK_BOX (hbox), vbox, FALSE, FALSE, 0);
gtk_widget_show (vbox);
entry = gtk_entry_new ();
gtk_entry_set_max_length (GTK_ENTRY (entry), 40);
gtk_entry_set_text (GTK_ENTRY (entry), "Enter The Deleted");
tmp_pos = GTK_ENTRY (entry)->text_length;
gtk_editable_insert_text (GTK_EDITABLE (entry), " Rule No", -1, &tmp_pos);
gtk_editable_select_region (GTK_EDITABLE (entry),0, GTK_ENTRY 
(entry)->text_length);
gtk_box_pack_start (GTK_BOX (vbox), entry, TRUE, TRUE,0);
gtk_widget_show (entry);
box2 = gtk_hbox_new (TRUE, 10);
gtk_container_set_border_width (GTK_CONTAINER (box2), 10);
gtk_container_add (GTK_CONTAINER (main_box), box2);
gtk_box_pack_start (GTK_BOX (main_box), box2, TRUE, TRUE, 20);
gtk_widget_show (box2);
button= gtk_button_new_from_stock (GTK_STOCK_APPLY);
gtk_box_pack_start (GTK_BOX (box2), button, TRUE, TRUE, 0);
g_signal_connect (G_OBJECT (button), "clicked",

 G_CALLBACK(del_in_rule),entry);
gtk_widget_show (button);
button = gtk_button_new_from_stock (GTK_STOCK_CANCEL);
gtk_box_pack_start (GTK_BOX (box2), button, TRUE, TRUE, 0);
GTK_WIDGET_SET_FLAGS (button, GTK_CAN_DEFAULT);
gtk_widget_grab_default (button);
g_signal_connect_swapped (G_OBJECT (button), "clicked",

                             G_CALLBACK (gtk_widget_destroy), window);
button= gtk_button_new_from_stock (GTK_STOCK_CLOSE);
gtk_box_pack_start (GTK_BOX (box2), button, TRUE, TRUE, 0);



g_signal_connect_swapped (G_OBJECT (button), "clicked",
                            G_CALLBACK (gtk_widget_destroy), window);

gtk_widget_show (button);
button = gtk_button_new_with_label ("View all Rules");
gtk_box_pack_start (GTK_BOX (vbox), button, TRUE, TRUE, 0);
g_signal_connect (G_OBJECT (button), "clicked",

 G_CALLBACK (view_all_in),NULL);
gtk_widget_show_all (window);
}
/*View Log File*/
static void menuitem_response( )
{
system("dmesg | grep Firewall > log.txt");
system("cat heder_view_log >view_log_table|cat log.txt>> view_log_table|gedit 
view_log_table ");
}
static void view_all_in()
{
system("cat heder_in > incoming_rule_table|iptables -L INPUT  -n --line-numbers 
|cat>>incoming_rule_table|gedit incoming_rule_table");
}
static void view_all_out()
{
system("cat heder_out > outgoing_rule_table | iptables --line-numbers -n -L 
OUTPUT | cat >> outgoing_rule_table | gedit outgoing_rule_table");
}
void helpabout( )
{
GtkWidget *window;
GtkWidget *frame;
GtkWidget *label;
window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
gtk_window_set_title (GTK_WINDOW (window), "About Firewall Program");
gtk_widget_set_size_request (window, 300, 200);
gtk_window_set_position (window, GTK_WIN_POS_CENTER_ALWAYS);
gtk_window_set_resizable(window,FALSE);
gtk_container_set_border_width (GTK_CONTAINER (window), 10);
frame = gtk_frame_new (NULL);
gtk_container_add (GTK_CONTAINER (window), frame);
gtk_box_pack_start (GTK_BOX (window), frame, FALSE, FALSE, 10);
gtk_widget_show (frame);
label = gtk_label_new ("\nSudan University of Science and Technolog\n\tCollege of
Post Graduate Studies\n\n\n\t    This is Firewall Program \n\n      Created by:  Isam 
Abdelnabi\n      Supervised by: Dr. Yahia Abdalla\n\n\t\t\t July 2005");
gtk_container_add (GTK_CONTAINER (frame), label);
gtk_box_pack_start (GTK_BOX (frame), label, FALSE, FALSE, 0);
gtk_widget_show (label);
gtk_widget_show (window);
}



void remove_out_rule()
{
GtkWidget *window;
GtkWidget *frame;
GtkWidget *button;
GtkWidget *hbox;
GtkWidget *main_box;
GtkWidget *vbox;
GtkWidget *box2;
GtkWidget *entry;
GtkWidget *label;
gint tmp_pos;
window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
gtk_window_set_title (GTK_WINDOW (window), "Deleting Outgoing Rule");
gtk_widget_set_size_request (window, 280, 180);
gtk_container_set_border_width (GTK_CONTAINER (window), 10);
gtk_window_set_position (window, GTK_WIN_POS_CENTER_ALWAYS);
gtk_window_set_resizable(window,FALSE);
frame = gtk_frame_new (NULL);
gtk_container_add (GTK_CONTAINER (window), frame);
gtk_frame_set_shadow_type (GTK_FRAME (frame), 

GTK_SHADOW_ETCHED_OUT);
gtk_widget_show (frame);
main_box = gtk_vbox_new (FALSE, 0);
gtk_container_add (GTK_CONTAINER (frame), main_box);
gtk_container_set_border_width (GTK_CONTAINER (main_box), 10);
gtk_box_pack_start (GTK_BOX (frame), main_box, FALSE, FALSE, 10);
gtk_widget_show (main_box);
hbox = gtk_hbox_new (TRUE, 0);
label = gtk_label_new ("The No of Deleated Rule:");
gtk_container_add (GTK_CONTAINER (hbox), label);
gtk_container_set_border_width (GTK_CONTAINER (hbox), 0);
gtk_box_pack_start (GTK_BOX (main_box), hbox, FALSE,FALSE,0);
hbox = gtk_hbox_new (FALSE, 0);
gtk_container_add (GTK_CONTAINER (main_box), hbox);
gtk_container_set_border_width (GTK_CONTAINER (hbox), 10);
gtk_box_pack_start (GTK_BOX (main_box), hbox, FALSE, FALSE, 0);
gtk_widget_show (hbox);
vbox = gtk_vbox_new (FALSE, 10);
gtk_container_add (GTK_CONTAINER (hbox), vbox);
gtk_box_pack_start (GTK_BOX (hbox), vbox, FALSE, FALSE, 0);
gtk_widget_show (vbox);
entry = gtk_entry_new ();
gtk_entry_set_max_length (GTK_ENTRY (entry), 40);
gtk_entry_set_text (GTK_ENTRY (entry), "Enter The Deleted");
tmp_pos = GTK_ENTRY (entry)->text_length;
gtk_editable_insert_text (GTK_EDITABLE (entry), " Rule No", -1, &tmp_pos);
gtk_editable_select_region (GTK_EDITABLE (entry),0, GTK_ENTRY 
(entry)->text_length);



gtk_box_pack_start (GTK_BOX (vbox), entry, TRUE, TRUE,0);
gtk_widget_show (entry);
box2 = gtk_hbox_new (TRUE, 10);
gtk_container_set_border_width (GTK_CONTAINER (box2), 10);
gtk_container_add (GTK_CONTAINER (main_box), box2);
gtk_box_pack_start (GTK_BOX (main_box), box2, TRUE, TRUE, 20);
gtk_widget_show (box2);
button= gtk_button_new_from_stock (GTK_STOCK_APPLY);
gtk_box_pack_start (GTK_BOX (box2), button, TRUE, TRUE, 0);
g_signal_connect (G_OBJECT (button), "clicked",

 G_CALLBACK(del_out_rule),entry);
gtk_widget_show (button);
button = gtk_button_new_from_stock (GTK_STOCK_CANCEL);
gtk_box_pack_start (GTK_BOX (box2), button, TRUE, TRUE, 0);
GTK_WIDGET_SET_FLAGS (button, GTK_CAN_DEFAULT);
gtk_widget_grab_default (button);
g_signal_connect_swapped (G_OBJECT (button), "clicked",

                            G_CALLBACK (gtk_widget_destroy), window);
button= gtk_button_new_from_stock (GTK_STOCK_CLOSE);
gtk_box_pack_start (GTK_BOX (box2), button, TRUE, TRUE, 0);
g_signal_connect_swapped (G_OBJECT (button), "clicked",

                            G_CALLBACK (gtk_widget_destroy), window);
gtk_widget_show (button);
button = gtk_button_new_with_label ("View all Rules");
gtk_box_pack_start (GTK_BOX (vbox), button, TRUE, TRUE, 0);
g_signal_connect (G_OBJECT (button), "clicked", G_CALLBACK (

view_all_out),NULL);
gtk_widget_show_all (window);
}
/* Clean up allocated memory and remove the timer */
void destroy_progress( GtkWidget *widget,ProgressData *pdata)
{
gtk_timeout_remove (pdata->timer);
pdata->timer = 0;
pdata->window = NULL;
g_free (pdata);
gtk_main_quit ();
}
/* Update the value of the progress bar so that we get some movement */
gint progress_timeout( gpointer data )
{
ProgressData *pdata = (ProgressData *)data;
gdouble new_val;
pdata->activity_mode=FALSE;
if (pdata->activity_mode) 
gtk_progress_bar_pulse (GTK_PROGRESS_BAR (pdata->pbar));
else 
{



/* Calculate the value of the progress bar using the value range set in the adjustment
object */
 new_val = gtk_progress_bar_get_fraction (GTK_PROGRESS_BAR 
(pdata->pbar)) + 0.01;
if (new_val > 1.0)
{
buttonp=gtk_button_new_from_stock (GTK_STOCK_CLOSE);
gtk_box_pack_start (GTK_BOX (vboxp), buttonp, TRUE, FALSE,0);
g_signal_connect_swapped (G_OBJECT (buttonp), "clicked",

                                   G_CALLBACK (gtk_widget_destroy), pdata->window);
gtk_widget_show (buttonp);
return FALSE;
}      
/* Set the new value */
gtk_progress_bar_set_fraction (GTK_PROGRESS_BAR (pdata->pbar), new_val);
}
/* As this is a timeout function, return TRUE so that it continues to get called */
return TRUE;
} 
void prog()
{
ProgressData *pdata;
GtkWidget *align;
/* Allocate memory for the data that is passed to the callbacks */
pdata = g_malloc (sizeof (ProgressData));
pdata->window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
gtk_window_set_resizable (GTK_WINDOW (pdata->window), TRUE);
g_signal_connect (G_OBJECT (pdata->window), "destroy",

              G_CALLBACK (destroy_progress),pdata);
gtk_window_set_position (pdata->window, 

GTK_WIN_POS_CENTER_ALWAYS);
gtk_window_set_resizable(pdata->window,FALSE);
gtk_window_set_title (GTK_WINDOW (pdata->window), "System Udate ...");
gtk_container_set_border_width (GTK_CONTAINER (pdata->window), 0);
vboxp = gtk_vbox_new (FALSE, 5);
gtk_container_set_border_width (GTK_CONTAINER (vboxp), 10);
gtk_container_add (GTK_CONTAINER (pdata->window), vboxp);
gtk_widget_show (vboxp);
/* Create a centering alignment object */
align = gtk_alignment_new (0.5, 0.5, 0, 0);
gtk_box_pack_start (GTK_BOX (vboxp), align, FALSE, FALSE, 5);
gtk_widget_show (align);
/* Create the GtkProgressBar */
pdata->pbar = gtk_progress_bar_new ();
gtk_container_add (GTK_CONTAINER (align), pdata->pbar);
gtk_widget_show (pdata->pbar);
pdata->activity_mode = !pdata->activity_mode;
/* Add a timer callback to update the value of the progress bar */
pdata->timer = gtk_timeout_add (30, progress_timeout, pdata);



gtk_widget_show (pdata->window);
gtk_main ();
}
void view_backup()
{
system("cat heder_view_log_backup >view_log_table_backup|cat  gedit 
Backup_of_log_file.txt>> view_log_table_backup|gedit view_log_table_backup ");
}
void reset_backup()
{
FILE *fp;
fp=fopen("Backup_of_log_file.txt","w");
fclose(fp);
prog();
}
void getFPUBLIC( GtkWidget *widget,GtkWidget *entry )
{
struct hostent *ptrh;
const char *entry_text1;
entry_text1= gtk_entry_get_text (GTK_ENTRY (entry));
strcpy(x.FPUBLIC,entry_text1);
ptrh = gethostbyname(x.FPUBLIC);
if(((char*)ptrh) == NULL)
       {
         error_fpip(); 
       }
}
void getFLOCAL( GtkWidget *widget,GtkWidget *entry )
{
struct hostent *ptrh;
const char *entry_text2;
entry_text2 = gtk_entry_get_text (GTK_ENTRY (entry));
strcpy(x.FLOCAL,entry_text2);
ptrh = gethostbyname(x.FLOCAL);
if(((char*)ptrh) == NULL)
        {
          error_flip();
        }
}
void apply()
{
char http[120]="", ftp[120]="",pos[120]="";
char outhttp[120]="", outftp[120]="";
struct hostent *ptrh1,*ptrh2,*ptrh3,*ptrh4;
ptrh1 = gethostbyname(x.FPUBLIC);
ptrh2 = gethostbyname(x.FLOCAL);
ptrh3 = gethostbyname(x.FTP);
ptrh4 = gethostbyname(x.HTTP);



if((((char*)ptrh1) == NULL)||(((char*)ptrh2) == NULL)||(((char*)ptrh3) == 
NULL)||(((char*)ptrh4) == NULL))
printf("");  
else   
{
system("iptables -t nat -D PREROUTING 2");
system("iptables -t nat -D PREROUTING  1");
system("iptables -t nat -D OUTPUT 2");
system("iptables -t nat -D OUTPUT  1");
system("iptables -t nat -D POSTROUTING  1");
strcat(pos,"iptables -t nat -A POSTROUTING -j SNAT --to-source  "); 
strcat(pos,x.FPUBLIC);
strcat(pos," -s ");
strcat(pos,x.SUB);
strcat(http,"iptables -t nat -A PREROUTING -p tcp --dport 80 -d  ");
strcat(http,x.FPUBLIC);
strcat(http," -j DNAT  --to-destination  ");
strcat(http,x.HTTP);
strcat(outhttp,"iptables -t nat -A OUTPUT -p tcp --dport 80 -d  ");
strcat(outhttp,x.FPUBLIC);
strcat(outhttp," -j DNAT  --to-destination  ");
strcat(outhttp,x.HTTP);
strcat(ftp,"iptables -t nat -A PREROUTING -p tcp  --dport 21 -d  ");
strcat(ftp,x.FPUBLIC);
strcat(ftp," -j DNAT  --to-destination  ");
strcat(ftp,x.FTP);
strcat(outftp,"iptables -t nat -A OUTPUT -p tcp  --dport 21 -d  ");
strcat(outftp,x.FPUBLIC);
strcat(outftp," -j DNAT  --to-destination  ");
strcat(outftp,x.FTP);
system(pos);
system(ftp);
system(http);
system(outftp);
system(outhttp);
prog();
fp=fopen("setting.dat","w");
fwrite(&x,sizeof x,1,fp); 
fclose(fp);
save();
}
}
void getFTP( GtkWidget *widget,GtkWidget *entry )
{
struct hostent *ptrh;
const char *entry_text3;
entry_text3 = gtk_entry_get_text (GTK_ENTRY (entry));
strcpy(x.FTP,entry_text3);
ptrh = gethostbyname(x.FTP);



if(((char*)ptrh) == NULL)
       {
         error_ftp();
       }
}
void getHTTP( GtkWidget *widget,GtkWidget *entry )
{
struct hostent *ptrh;
const char *entry_text4;
entry_text4 = gtk_entry_get_text (GTK_ENTRY (entry));
strcpy(x.HTTP,entry_text4);
ptrh = gethostbyname(x.HTTP);
if(((char*)ptrh) == NULL)
       {
        error_http();
       }
}
void getSUB( GtkWidget *widget,GtkWidget *entry )
{
const char *entry_text5;
entry_text5 = gtk_entry_get_text (GTK_ENTRY (entry));
strcpy(x.SUB,entry_text5);
}
void error_fpip()
{
GtkWidget *dialog1;
GtkWidget *window1;
char text[50]=("Error Invalid Firewall Public Address: ");
strcat(text,x.FPUBLIC);
window1 = gtk_window_new (GTK_WINDOW_TOPLEVEL);
dialog1 = gtk_message_dialog_new (window1,
GTK_DIALOG_DESTROY_WITH_PARENT,GTK_MESSAGE_ERROR,GTK_B

UTTONS_CLOSE,text);
gtk_window_set_position (dialog1, GTK_WIN_POS_CENTER_ALWAYS);
gtk_dialog_run (GTK_DIALOG (dialog1));
gtk_widget_destroy (dialog1);
}
void error_flip()
{
GtkWidget *dialog1;
GtkWidget *window1;
char text[50]=("Error Invalid Firewall Local Address: ");
strcat(text,x.FLOCAL);
window1 = gtk_window_new (GTK_WINDOW_TOPLEVEL);
dialog1 = gtk_message_dialog_new (window1,
GTK_DIALOG_DESTROY_WITH_PARENT,GTK_MESSAGE_ERROR,GTK_B

UTTONS_CLOSE,text);
gtk_window_set_position (dialog1, GTK_WIN_POS_CENTER_ALWAYS);
gtk_dialog_run (GTK_DIALOG (dialog1));



gtk_widget_destroy (dialog1);
}
void error_http()
{
GtkWidget *dialog1;
GtkWidget *window1;
char text[50]=("Error Invalid HTTP Address: ");
strcat(text,x.HTTP);
window1 = gtk_window_new (GTK_WINDOW_TOPLEVEL);
dialog1 = gtk_message_dialog_new (window1,
GTK_DIALOG_DESTROY_WITH_PARENT,GTK_MESSAGE_ERROR,GTK_B

UTTONS_CLOSE,text);
gtk_window_set_position (dialog1, GTK_WIN_POS_CENTER_ALWAYS);
gtk_dialog_run (GTK_DIALOG (dialog1));
gtk_widget_destroy (dialog1);
}
void error_ftp()
{
GtkWidget *dialog1;
GtkWidget *window1;
char text[50]=("Error Invalid FTP Address: ");
strcat(text,x.FTP);
window1 = gtk_window_new (GTK_WINDOW_TOPLEVEL);
dialog1 = gtk_message_dialog_new (window1,
GTK_DIALOG_DESTROY_WITH_PARENT,GTK_MESSAGE_ERROR,GTK_B

UTTONS_CLOSE,text);
gtk_window_set_position (dialog1, GTK_WIN_POS_CENTER_ALWAYS);
gtk_dialog_run (GTK_DIALOG (dialog1));
gtk_widget_destroy (dialog1);
}
void entry_toggle_editable( GtkWidget *checkbutton,GtkWidget *entry )
{
gtk_editable_set_editable (GTK_EDITABLE (entry),

GTK_TOGGLE_BUTTON (checkbutton)->active);
}
void setting()
{
GtkWidget *window;
GtkWidget *vbox;
GtkWidget *hbox;
GtkWidget *hbox1;
GtkWidget *hbox2;
GtkWidget *main_vbox;
GtkWidget *entry,*entry1,*entry2,*entry3,*entry4;
GtkWidget *button;
GtkWidget *frame;
GtkWidget *label;
GtkWidget *check;
struct ipaddresses  s;



fp=fopen("setting.dat","r");
while(!feof(fp))
{
fread(&s,sizeof s,1,fp);
}
fclose(fp);
/* create a new window */
window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
gtk_widget_set_size_request (GTK_WIDGET (window), 300, 270);
gtk_window_set_position (window, GTK_WIN_POS_CENTER_ALWAYS);
gtk_window_set_resizable(window,FALSE);
gtk_window_set_title (GTK_WINDOW (window), "Firewall Setting");
g_signal_connect (G_OBJECT (window), "destroy",

G_CALLBACK (gtk_widget_destroy), window);
frame = gtk_frame_new (NULL);
gtk_container_add (GTK_CONTAINER (window), frame);
gtk_container_set_border_width (GTK_CONTAINER (frame), 10);
/*Create Main Box to hold all other forms*/
main_vbox = gtk_vbox_new (FALSE,0);
gtk_container_add (GTK_CONTAINER (frame), main_vbox);
gtk_container_set_border_width (GTK_CONTAINER (main_vbox), 10);
hbox = gtk_hbox_new (TRUE, 20);
gtk_container_add (GTK_CONTAINER (main_vbox), hbox);
gtk_container_set_border_width (GTK_CONTAINER (main_vbox), 0);
gtk_widget_show (hbox);
vbox = gtk_vbox_new (FALSE, 10);
gtk_container_add (GTK_CONTAINER (hbox), vbox);
gtk_container_set_border_width (GTK_CONTAINER (hbox), 10);
gtk_widget_show (vbox);
label = gtk_label_new ("Firewall Public IP:    ");
gtk_box_pack_start (GTK_BOX (vbox), label, TRUE, TRUE, 0);
entry = gtk_entry_new ();
gtk_entry_set_max_length (GTK_ENTRY (entry), 50);
g_signal_connect (G_OBJECT (entry), "activate",

 G_CALLBACK (getFPUBLIC),entry);
gtk_entry_set_text (GTK_ENTRY (entry),s.FPUBLIC);
gtk_entry_set_visibility (GTK_ENTRY (entry),TRUE);
gtk_editable_set_editable(GTK_ENTRY (entry),FALSE);
gtk_box_pack_start (GTK_BOX (vbox), entry, TRUE, TRUE, 0);
gtk_widget_show (entry);
label = gtk_label_new ("Firewall Local IP:     ");
gtk_box_pack_start (GTK_BOX (vbox), label, TRUE, TRUE, 0);
entry1 = gtk_entry_new ();
gtk_entry_set_max_length (GTK_ENTRY (entry1), 50);
g_signal_connect (G_OBJECT (entry1), "activate",

 G_CALLBACK (getFLOCAL),entry1);
gtk_editable_set_editable(GTK_ENTRY (entry1),FALSE);
gtk_entry_set_text (GTK_ENTRY (entry1),s.FLOCAL);
gtk_entry_set_visibility (GTK_ENTRY (entry1),TRUE);



gtk_box_pack_start (GTK_BOX (vbox), entry1, TRUE, TRUE, 0);
gtk_widget_show (entry1);
label = gtk_label_new ("Subnet Add./mask:");
gtk_box_pack_start (GTK_BOX (vbox), label, TRUE, TRUE, 0);
entry4 = gtk_entry_new ();
gtk_entry_set_max_length (GTK_ENTRY (entry4), 50);
g_signal_connect (G_OBJECT (entry4), "activate",

 G_CALLBACK (getSUB),entry4);
gtk_editable_set_editable(GTK_ENTRY (entry4),FALSE);
gtk_entry_set_text (GTK_ENTRY (entry4), s.SUB);
gtk_entry_set_visibility (GTK_ENTRY (entry4),TRUE);
gtk_box_pack_start (GTK_BOX (vbox), entry4, TRUE, TRUE,0);
gtk_widget_show (entry4);
vbox = gtk_vbox_new (FALSE, 10);
gtk_container_add (GTK_CONTAINER (hbox), vbox);
gtk_container_set_border_width (GTK_CONTAINER (hbox), 10);
gtk_widget_show (vbox);
label = gtk_label_new ("HTTP Server IP:      ");
gtk_box_pack_start (GTK_BOX (vbox), label, TRUE, TRUE, 0);
entry2 = gtk_entry_new ();
gtk_entry_set_max_length (GTK_ENTRY (entry2), 50);
g_signal_connect (G_OBJECT (entry2), "activate",

 G_CALLBACK (getHTTP),entry2);
gtk_editable_set_editable(GTK_ENTRY (entry2),FALSE);
gtk_entry_set_text (GTK_ENTRY (entry2), s.HTTP);
gtk_entry_set_visibility (GTK_ENTRY (entry2),TRUE);
gtk_box_pack_start (GTK_BOX (vbox), entry2, TRUE, TRUE, 0);
gtk_widget_show (entry2);
label = gtk_label_new ("FTP Server IP:\t      ");
gtk_box_pack_start (GTK_BOX (vbox), label, TRUE, TRUE, 0);
entry3 = gtk_entry_new ();
gtk_entry_set_max_length (GTK_ENTRY (entry3), 50);
g_signal_connect (G_OBJECT (entry3), "activate",

 G_CALLBACK (getFTP),entry3);
gtk_editable_set_editable(GTK_ENTRY (entry3),FALSE);
gtk_entry_set_text (GTK_ENTRY (entry3), s.FTP);
gtk_entry_set_visibility (GTK_ENTRY (entry3),TRUE);
gtk_box_pack_start (GTK_BOX (vbox), entry3, TRUE, TRUE, 0);
gtk_widget_show (entry3);
hbox2 = gtk_hbox_new (FALSE, 0);
gtk_box_pack_start (GTK_BOX (main_vbox), hbox2, TRUE, TRUE,10);
gtk_container_add (GTK_CONTAINER (main_vbox), hbox2);
gtk_widget_show (hbox2);
label = gtk_label_new (" ");
gtk_box_pack_start (GTK_BOX (vbox), label, TRUE, TRUE, 0);
check = gtk_check_button_new_with_label ("Change Setting");
gtk_box_pack_start (GTK_BOX (vbox), check, TRUE, TRUE,0);
gtk_toggle_button_set_active (GTK_TOGGLE_BUTTON (check), FALSE);
g_signal_connect (G_OBJECT (check), "toggled",



G_CALLBACK (entry_toggle_editable), entry);
g_signal_connect (G_OBJECT (check), "toggled",

G_CALLBACK (entry_toggle_editable), entry1);
g_signal_connect (G_OBJECT (check), "toggled",

G_CALLBACK (entry_toggle_editable), entry2);
g_signal_connect (G_OBJECT (check), "toggled",

G_CALLBACK (entry_toggle_editable), entry3);
g_signal_connect (G_OBJECT (check), "toggled",

G_CALLBACK (entry_toggle_editable), entry4);
gtk_widget_show (check);
hbox1 = gtk_hbox_new (FALSE,0);
gtk_box_pack_start (GTK_BOX (main_vbox), hbox1, TRUE, TRUE,10);
gtk_container_add (GTK_CONTAINER (main_vbox), hbox1);
gtk_widget_show (hbox1);
button = gtk_button_new_from_stock (GTK_STOCK_OK);
gtk_box_pack_start(GTK_BOX (hbox1), button, TRUE, TRUE,10);
g_signal_connect (G_OBJECT (button), "clicked", G_CALLBACK(apply),NULL);
g_signal_connect (G_OBJECT (button), "clicked", 

G_CALLBACK (getFPUBLIC),entry);
g_signal_connect (G_OBJECT (button), "clicked", 

G_CALLBACK (getFLOCAL),entry1);
g_signal_connect (G_OBJECT (button), "clicked",

 G_CALLBACK (getHTTP),entry2);
g_signal_connect(G_OBJECT (button), "clicked", 

G_CALLBACK (getFTP),entry3);
g_signal_connect(G_OBJECT (button), "clicked", 

G_CALLBACK (getSUB),entry4);
gtk_widget_show (button);
button = gtk_button_new_from_stock (GTK_STOCK_CLOSE);
g_signal_connect_swapped(G_OBJECT (button),"clicked",

G_CALLBACK(gtk_widget_destroy),window);
gtk_box_pack_start (GTK_BOX (hbox1), button, TRUE, TRUE,10);
GTK_WIDGET_SET_FLAGS (button, GTK_CAN_DEFAULT);
gtk_widget_grab_default (button);
gtk_widget_show (button);
gtk_widget_show_all (window);
}
viod help()
{
system("gedit  help.txt ");
}



Appendix B: Copy of Incoming Rules 

Sudan University of Science and Technology
Firewall Program

Incoming Rules Table

Appendix C: Copy of Outgoing Rules

Sudan University of Science and Technology
Firewall Program

Outgoing Rules Table

num target prot source destination

1 REJECT tcp 64.1.39.2.30 192.168.2.30  tcp dpt:21
2 REJECT tcp 64.1.39.2.30 192.168.2.28  tcp dpt:80
3 ACCEPT udp 212.0.139.1 192.168.2.30  tcp dpt:21
4 DROP icmp 212.0.139.1 192.168.2.28  tcp dpt:80
5 REJECT all 212.0.139.1 192.168.2.30  tcp dpt:21
6 DROP udp 212.0.139.1 192.168.2.28  tcp dpt:80
7 REJECT tcp 99.168.2.19 192.168.2.30  tcp dpt:21
8 ACCEPT tcp 56.1.2.30 192.168.2.28  tcp dpt:80
9 REJECT tcp 99.168.2.19 192.168.2.30  tcp dpt:21
10 ACCEPT udp 99.168.2.19 192.168.2.28  tcp dpt:80
11 DROP udp 56.1.2.30 192.168.2.30  tcp dpt:21
12 DROP icmp 64.1.39.2.30 192.168.2.28  tcp dpt:80
13 REJECT icmp 64.1.39.2.30 192.168.2.30  tcp dpt:21
14 ACCEPT icmp 64.1.39.2.30 192.168.2.28  tcp dpt:80
15 ACCEPT icmp 64.1.39.2.30 192.168.2.30  tcp dpt:21
16 REJECT tcp 56.1.2.30 192.168.2.28  tcp dpt:80
17 REJECT tcp 99.168.2.19 192.168.2.30  tcp dpt:21
18 ACCEPT tcp 99.168.2.19 192.168.2.28  tcp dpt:80
19 REJECT tcp 99.168.2.19 192.168.2.30  tcp dpt:21
20 REJECT tcp 99.168.2.19 192.168.2.28  tcp dpt:80
21 REJECT tcp 64.1.39.2.30 192.168.2.30  tcp dpt:21
22 REJECT tcp 64.1.39.2.30 192.168.2.28  tcp dpt:80
23 REJECT tcp 64.1.39.2.40 192.168.2.28  tcp dpt:80



Appendix D: Copy of Logging File
FirewallIN=eth0 OUT=eth1 SRC=212.1.1.32 DST=192.168.2.28 LEN=48 
TOS=0x00 PREC=0x00 TTL=127 ID=809 DF PROTO=TCP SPT=1071 DPT=80 
WINDOW=16384 RES=0x00 SYN URGP=0 
FirewallIN=eth1 OUT=eth1 SRC=212.1.1.32 DST=192.168.2.28 LEN=48 
TOS=0x00 PREC=0x00 TTL=127 ID=811 DF PROTO=TCP SPT=1071 DPT=80 
WINDOW=16384 RES=0x00 SYN URGP=0 
FirewallIN=eth0 OUT=eth1 SRC=212.1.1.32 DST=192.168.2.28 LEN=48 
TOS=0x00 PREC=0x00 TTL=127 ID=812 DF PROTO=TCP SPT=1071 DPT=80 
WINDOW=16384 RES=0x00 SYN URGP=0 
FirewallIN=eth1 OUT=eth1 SRC=192.168.2.35 DST=192.168.2.28 LEN=48 
TOS=0x00 PREC=0x00 TTL=127 ID=799 DF PROTO=TCP SPT=1103 DPT=80 
WINDOW=16384 RES=0x00 SYN URGP=0 
FirewallIN=eth1 OUT=eth1 SRC=192.168.2.35 DST=192.168.2.28 LEN=48 
TOS=0x00 PREC=0x00 TTL=127 ID=801 DF PROTO=TCP SPT=1103 DPT=80 
WINDOW=16384 RES=0x00 SYN URGP=0 
FirewallIN=eth1 OUT=eth1 SRC=192.168.2.35 DST=192.168.2.28 LEN=48 
TOS=0x00 PREC=0x00 TTL=127 ID=802 DF PROTO=TCP SPT=1103 DPT=80 
WINDOW=16384 RES=0x00 SYN URGP=0 

num target prot source destination

6 REJECT tcp 192.168.2.3 64.1.39.2.30
7 REJECT tcp 192.168.2.2 64.1.39.2.30
8 ACCEPT udp 192.168.2.20 212.0.139.1
9 DROP icmp 192.168.2.4 212.0.139.1
10 REJECT all 192.168.2.5 212.0.139.1
11 DROP udp 192.168.2.7 212.0.139.1
12 REJECT tcp 192.168.2.8 99.168.2.19
13 ACCEPT tcp 192.168.2.1 56.1.2.30
14 REJECT tcp 192.168.2.18 99.168.2.19
15 ACCEPT udp 192.168.2.22 99.168.2.19
16 DROP udp 192.168.2.24 56.1.2.30
17 DROP icmp 192.168.2.13 64.1.39.2.30
18 REJECT icmp 192.168.2.25 64.1.39.2.30
19 ACCEPT icmp 192.168.2.31 64.1.39.2.30
20 ACCEPT icmp 192.168.2.32 64.1.39.2.30
21 REJECT tcp 192.168.2.11 56.1.2.30
22 REJECT tcp 192.168.2.17 99.168.2.19
23 ACCEPT tcp 192.168.2.43 99.168.2.19
24 REJECT tcp 192.168.2.55 99.168.2.19
25 REJECT tcp 192.168.2.56 99.168.2.19
26 REJECT tcp 192.168.2.23 64.1.39.2.30
27 REJECT tcp 192.168.2.22 64.1.39.2.30
28 REJECT tcp 192.168.2.25 64.1.39.2.30
29 REJECT tcp 192.168.2.24 64.1.39.2.30



FirewallIN=eth0 OUT=eth1 SRC=212.1.1.50 DST=192.168.2.28 LEN=237 
TOS=0x00 PREC=0x00 TTL=127 ID=887 DF PROTO=TCP SPT=1072 DPT=80 
WINDOW=16844 RES=0x00 ACK PSH URGP=0 
FirewallIN=eth0 OUT=eth1 SRC=212.1.1.50 DST=192.168.2.28 LEN=237 
TOS=0x00 PREC=0x00 TTL=127 ID=889 DF PROTO=TCP SPT=1072 DPT=80 
WINDOW=16844 RES=0x00 ACK PSH URGP=0 
FirewallIN=eth0 OUT=eth1 SRC=212.1.1.50 DST=192.168.2.28 LEN=237 
TOS=0x00 PREC=0x00 TTL=127 ID=890 DF PROTO=TCP SPT=1072 DPT=80 
WINDOW=16844 RES=0x00 ACK PSH URGP=0 
FirewallIN=eth0 OUT=eth1 SRC=212.1.1.50 DST=192.168.2.28 LEN=237 
TOS=0x00 PREC=0x00 TTL=127 ID=891 DF PROTO=TCP SPT=1072 DPT=80 
WINDOW=16844 RES=0x00 ACK PSH URGP=0 
FirewallIN=eth0 OUT=eth1 SRC=212.1.1.50 DST=192.168.2.28 LEN=237 
TOS=0x00 PREC=0x00 TTL=127 ID=892 DF PROTO=TCP SPT=1072 DPT=80 
WINDOW=16844 RES=0x00 ACK PSH URGP=0 
FirewallIN=eth0 OUT=eth1 SRC=212.1.1.50 DST=192.168.2.28 LEN=237 
TOS=0x00 PREC=0x00 TTL=127 ID=894 DF PROTO=TCP SPT=1072 DPT=80 
WINDOW=16844 RES=0x00 ACK PSH URGP=0 
FirewallIN=eth0 OUT=eth1 SRC=212.1.1.50 DST=192.168.2.28 LEN=48 
TOS=0x00 PREC=0x00 TTL=127 ID=896 DF PROTO=TCP SPT=1073 DPT=80 
WINDOW=16384 RES=0x00 SYN URGP=0 
FirewallIN=eth0 OUT=eth1 SRC=212.1.1.50 DST=192.168.2.28 LEN=48 
TOS=0x00 PREC=0x00 TTL=127 ID=898 DF PROTO=TCP SPT=1073 DPT=80 
WINDOW=16384 RES=0x00 SYN URGP=0 
FirewallIN=eth0 OUT=eth1 SRC=212.1.1.50 DST=192.168.2.28 LEN=48 
TOS=0x00 PREC=0x00 TTL=127 ID=899 DF PROTO=TCP SPT=1073 DPT=80 
WINDOW=16384 RES=0x00 SYN URGP=0 

Appendix E: Graphical User Interface 



Figure E1 Main Graphical User Interface for Firewall 

Figure E2 Graphical User Interface for Adding Incoming Rules.



Figure E3 Graphical User Interface for Deleting Incoming Rules.

Figure E4 Graphical User Interface for viewing Incoming Rules



Figure E5 Graphical User Interface for Adding Outgoing Rules.

Figure E6 Graphical User Interface for Deleting Outgoing Rules.



Figure E7 Graphical User Interface for viewing Outgoing Rules

Figure E8 Graphical User Interface for viewing Logging File.



Figure E9 Graphical User Interface for Setting the Firewall.

Figure E10 Graphical User Interface about the Firewall.


	Acknowledgement
	Dedication
	Abstract
	مستخلص
	Table of Contents
	1. List OF FIGURES
	2. Chapter one: Introduction
	2.1 Introduction
	2.2 Problem Definition
	2.3 Thesis Layout

	3. Chapter two: background
	3.1 Security Policies
	3.2 Your Security Policy
	3.3 Security Policy Contents
	3.3.1 Explanations
	3.3.2 Everybody's responsibilities
	3.3.3 Regular language
	3.3.4 Enforcement authority
	3.3.5 Provision for reviews

	3.4 Getting Strategic Decisions made
	3.4.1 Insertion of Everybody Who's Affected
	3.4.2 Wrong Decisions Acceptability
	3.4.3 Surprises Avoidance
	3.4.4 Concentration to the Important Decisions, with Implications
	3.4.5 Justification of Everything Else in Terms of Those Decisions
	3.4.6 Indication to the NonTechnical Issues
	3.4.7 Understanding of Anything


	4. Chapter Three: FIREWALLs
	4.1 Internet Firewall
	4.2 Firewall Architectures
	4.2.1 Dual-Homed Host Architecture
	4.2.2 Screened Host Architecture
	4.2.3 Screened Subnet Architecture
	4.2.3.1 Perimeter network
	4.2.3.2 Bastion host
	4.2.3.3 Interior router
	4.2.3.4 Exterior router



	5. chapter four: system Environment
	5.1 Introduction
	5.2 Linux Operating System
	5.2.1 Primary Advantages of Linux
	5.2.2 Common Linux Features
	5.2.3 Chosen Red Hat Linux 8

	5.3 Gimp Tool Kit (GTK)
	5.4 Design of the environment
	5.5 Implementation
	5.5.1 External computer want connect to our HTTP server:
	5.5.2 External computer want connect to our FTP server:
	5.5.3 Internal computer want connect to our FTP /HTTP server:
	5.5.4 Internal computer want connect to external server:


	6. Chapter five: Testing and Results
	6.1 Test and Results
	6.2 Conclusion
	6.3 Recommendations

	References
	Appendixes
	Appendix A: Source Code
	Appendix B: Copy of Incoming Rules
	Appendix C: Copy of Outgoing Rules
	Appendix D: Copy of Logging File
	Appendix E: Graphical User Interface


