CONTENTS

Dedication	Ι
Acknowledgement	
Abstract	III
Arabic Abstract	V
Contents	VI
List of Figures	XI
List of Tables	XIV
Chapter One Introduction	1
1.1 Problem definition	1
1.2 Objectives	1
1.3 Hypotheses	1
1.4 Theses methodology	2
1.5 Theses overview	2
1.6 Related work	3
Chapter Two Failures and dependability attributes	5
2.1 The dependability of networks	6
2.2 The threats	7
2.3 The means	8
2.4 Failure rate	8
2.5 Overall data	
2.6 Failure severity	13
2.7 Failure ratio	14
2.8 Life cycle process	15
2.9 The exponential law of failure	21
2.10 The Weibull distribution	22
2.11 Down time and repair time	23
2.12 Hazard and risk	25
2.13 Quantifying failure	26

2.14 Dependability planning of networks	27
2.15 Models used for dependability	28
2.16 The cost of dependability	30
Chapter Three Failure analysis and human factors	
3.1 Fault Tree Analysis (FTA)	32
3.2 Failure Mode and Effect Analysis (FMEA)	37
3.3 Root Cause Failure Analysis (RCFA)	42
3.5 Fault analysis	47
3.6 Operating procedures	47
3.7 Training/safety culture	48
3.8 Environmental control	48
3.9 Human factors	50
Chapter Four Data collection and analysis	55
4.1 General hints in dependability data collection	56
4.2 Reasons for dependability data collection	57
4.3 Information and difficulties	58
4.4 Spread sheets	59
4.5 Free text	61
4.6 SUST network field data	63
4.7 PSTN data	74
4.8 FTA for SUST network sites	87
4.9 Summary table	89
Chapter Five Network reliability modeling and measurement	90
5.1 Reliability modeling	91
5.2 Redundancy	92
5.3 Reliability measurement	96
5.4 Microelectronic basic data reliability	98
5.5 Software reliability	102
5.6 Reliability modeling concepts	103
5.7 Using Annual Failure Rate (AFR)	110

5.8 The SUST network reliability measurement	110
5.9 Engineering campus reliability	114
5.10 Human development college reliability	115
5.11 X-Ray college reliability	115
5.12 Agricultural studies campus reliability	115
5.13 Animal production campus reliability	116
5.14 Forestry studies campus reliability	116
5.14 General approach for reliability modeling of PSTN	117
5.15 Estimating PSTN reliability from customer data	120
5.16 The overall reliability of PSTN of the country	121
5.17 Overall SUST network average reliability	
5.18 Reliability growth modeling	122
Chapter Six Network availability	123
6.1 Understanding availability	124
6.2 Availability modeling	124
6.3 Effect of system operation on item availability	126
6.4 Network availability	128
6.5 Availability using downtime	129
6.6 SUST network availability calculation	130
6.7 Engineering campus availability	133
6.8 Human development site availability	
6.9 Agricultural studies site availability	134
6.10 Animal production site availability	134
6.11 Forestry studies site availability	134
6.12 PSTN availability	135
6.13 The SUST network average availability	139
6.14 The network availability assumed nines	139
6.15 Effect of the two phases on SUST network availability	140

Chapter Seven Network maintainability	142
7.1 Maintainability subsets	144
7.2 Maintenance task	147
7.3 Maintenance task classification	148
7.4 Maintainability function	152
7.5 Cost of maintenance tasks	155
7.6 Maintenance levels	157
7.7 Selecting the suitable maintenance level for networks	159
7.8 COTS systems	160
7.9 Network maintenance policy	160
7.10 Inspection based maintenance policy	163
7.11 Opportunity based maintenance policy	166
7.12 The suitable policy for networks	166
Chapter Eight Dependability of wireless networks	168
8.1 Introduction	169
8.2 Wireless building block	169
8.3 WLAN reliability	170
8.4 WLAN availability	171
8.5 Mobile network dependability	172
Chapter Nine Results	179
9.1 Importance of network dependability	180
9.2 General guidance	180
9.3 Relationship between reliability, availability, and maintainability	181
9.4 Impact of redundancy	182
9.5 Decision making	189
9.6 Availability classes and management	190
9.7 SUST network results	191
8.8 Benefits of low MTTR	193
9.9 Network Critical Physical Infrastructure (NCPI)	194
9.10 Optimum design level determination	196

R	eferences	202
	9.12 Recommendations	200
	9.11 Conclusion	197

Appendices		204
Appendix 1	Acronym	1/14
Appendix 2	PSTN sources of failures	5/14
Appendix 3	Many items in series destroy system reliability	6/14
Appendix 4	Effect of λ on exponential pdf	7/14
Appendix 5	Effect of γ on exponential reliability function	8/14
Appendix 6	MTBM and MDT relationship for fixed availability	9/14
Appendix 7	EITT Failure Report Form	10/14
Appendix 8	Probability rules, Binomial and Bayes theorems	11/14
Appendix 9	Human errors rates	14/14