List of Figures

Fig. (1): Regression line of the relationship between cleaning	
Interval and ionized Ammonia concentration	49
Fig. (2): Regression line of the relationship between cleaning	
Interval and unionized Ammonia concentration	49
Fig. (3): Regression line of the relationship between cleaning	
Interval and nitrates concentration	50
Fig. (4): Regression line of the relationship between cleaning	
Interval and nitrites concentration.	50
Fig. (5): Regression line of the relationship between cleaning	
Interval and hydrogen ion concentration	51
Fig. (6): Regression line of the relationship between haemoglobin	
Of fish and Ammonia concentration	58
Fig.(7): Regression line of the relationship between haemoglobin	
Of fish and unionized ammonia concentration.	58
Fig.(8): Regression line of the relationship between haemoglobin	
Of fish and nitrates concentration	59
Fig. (9): Regression line of the relationship between haemoglobin	
Of fish and nitrites concentration	59
Fig.(10): Regression line of the relationship between packed cell	
Volume of fish and ionized Ammonia concentration	60
Fig. (11): Regression line of the relationship between packed cell	
Volume of fish and unionized ammonia concentration	60
Fig. (12): Regression line of the relationship between packed cell	
volume of fish and nitrates concentration	61

Fig. (13): Regression line of the relationship between packed cell	
Volume of fish and nitrites concentration	61
Fig. (14): Regression line of the relationship between MCV	
of fish and ionized ammonia concentration	62
Fig. (15): Regression line of the relationship between MCV	
of fish and unionized ammonia concentration	62
Fig. (16): Regression line of the relationship between MCV	
of fish and nitrates concentration	63
Fig. (17): Regression line of the relationship between MCV	
of fish and nitrites concentration	63
Fig. (18): Regression line of the relationship between MCH	
of fish and ionized ammonia concentration	64
Fig. (19): Regression line of the relationship between MCH	
of fish and unionized ammonia concentration	64
Fig. (20): Regression line of the relationship between MCH	
of fish and nitrates concentration	65
Fig. (21): Regression line of the relationship between MCH	
of fish and nitrites concentration	65
Fig. (22): Regression line of the relationship between RBCs	
of fish and ionized ammonia concentration	66
Fig. (23): Regression line of the relationship between RBCs	
of fish and unionized ammonia concentration	66

Fig. (24): Regression line of the relationship between RBCs	
of fish and nitrates concentration	67
Fig. (25): Regression line of the relationship between RBCs	
of fish and nitrites concentration	67
Fig. (26): Regression line of the relationship between WBCs	
of fish and ionized ammonia concentration	77
Fig. (27): Regression line of the relationship between WBCs	
of fish and unionized ammonia concentration	77
Fig. (28): Regression line of the relationship between WBCs	
of fish and nitrates concentration	78
Fig. (29): Regression line of the relationship between WBCs	
of fish and nitrites concentration	78
Fig. (30): Regression line of the relationship between lymphocytes	
of fish and ionized ammonia concentration	79
Fig. (31): Regression line of the relationship between lymphocytes	
of fish and unionized ammonia concentration	79
Fig. (32): Regression line of the relationship between lymphocytes	
of fish and nitrates concentration	80
Fig. (33): Regression line of the relationship between lymphocytes	
of fish and nitrites concentration	80
Fig. (34): Regression line of the relationship between monocytes	
of fish and ionized ammonia concentration	81
Fig.(35): Regression line of the relationship between monocytes	
of fish and unionized ammonia concentration	81
Fig.(36):): Regression line of the relationship between monocytes	
of fish and nitrates concentration	82
Fig.(37):): Regression line of the relationship between monocytes	
of fish and nitrites concentration	82

Fig. (38): Regression line of the relationship between neutrophils	
of fish and ionized ammonia concentration	83
Fig. (39): Regression line of the relationship between neutrophils	
of fish and unionized ammonia concentration	83
Fig. (40): Regression line of the relationship between neutrophils	
of fish and nitrates concentration	84
Fig. (41): Regression line of the relationship between neutrophils	
of fish and nitrites concentration	84
Fig. (42): Regression line of the relationship between thrombocytes	
of fish and ionized ammonia concentration	85
Fig. (43): Regression line of the relationship between thrombocytes	
of fish and unionized ammonia concentration	85
Fig. (44): Regression line of the relationship between thrombocytes	
of fish and nitrates concentration	86
Fig. (45): Regression line of the relationship between thrombocytes	
of fish and nitrites concentration	86
Fig. (46): Regression line of the relationship between esinophils	
of fish and ionized ammonia concentration	87
Fig. (47): Regression line of the relationship between esinophils	
of fish and unionized ammonia concentration	87
Fig. (48): Regression line of the relationship between esinophils	
of fish and nitrates concentration	88
Fig.(49): Regression line of the relationship between esinophils	
of fish and nitrites concentration	88
Fig.(50): Regression line of the relationship between basophils	
of fish and ionized ammonia concentration	89

of fish and unionized ammonia concentration Figure (62): Average mean corpuscular haemoglobin of fish as Fig. (52): Regression line of the relationship between basophils	89
of fish and nitrates concentration and control Fig. (53): Regression line of the relationship between basophils	90 118
Figure (63): Average Red Blood Cell of fish as affected by water of fish and nitrites concentration	90 119
Figure (62): Average Wenter Bipudc Elif bheinb gkobife of effsby awater Figure (54): Average ionized ammonia concentration (mg/l) of water affiacted ebistic stien different effistheoind if the counting liponds From different sources	128 104 118
Figure (55): Average unionized ammonia concentration (mg/l) of Figure (63)chavactegisRied Bildotfettent ofshiphndsaffecteentbylwater Water from different sources	129 105 119
from different sources	106
Figure (57): Average nitrite concentration (mg/l) of water	
from different sources	107
Figure (58): Average hydrogen ion concentration (pH) of water	
from different sources	108
Figure (59): Average haemoglobin concentration of fish as affected	
by water characteristics in different fishponds and control	
Figure (60): Average packed cell volume of fish as affected	
by water characteristics in different fishponds and control	
Figure (61): Average mean corpuscular volume of fish as affected	
by water characteristics in different fishponds and control	