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ABSTRACT

Association rule mining is an important technique to discover hidden
relationships among items in the transaction. The problem is that association rules are
generated by first mining of frequent itemsets in distributed datasets does not gain the
best and most accuracy rules.The goal of the thesis is to experimentally finding the
most frequent itemsets from distributed data sources which is first phase of association
rules generation. Firstly, the global frequent itemsetare generated from global dataset.
Secondly, the global datasetare divided into three sites, and then generating the local
frequent itemsets from each site. A comprehensive search for the best way to combine
the local itemset has been conducted. In this search we find that the union of smallest
and biggest of itemsets intersected with the middle always gives result which is

equivalent to global itemsets.
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Chapterl
1.1 Introduction

Association rule mining (ARM) is an active data mining research area. Most
ARM algorithms focus on sequential or centralized environments where no external
communication is required. Although nowadays there is huge data in distributed
database and no standard approach to build efficient association rule mining in these
data.

1.2 Problem

Modern organizations are geographically distributed. Typically, each site locally
stores its ever-increasing amount of day-to-day data. Using centralized data mining to
discover useful patterns in such organizations' data isn't always feasible because
merging datasets from different sites into a centralized site incurs huge network
communication costs. Data from these organizations are not only distributed over
various locations but also vertically fragmented, making it difficult if not impossible to
combine them in a central location. Most Distributed Association rule mining (DARM)
algorithms don't have an efficient message optimization technique, so they exchange
numerous messages during the mining process. Distributed data mining has thus

emerged as an active sub-area of data mining research.

1.3 Objectives

Distributed ARM system aims to generate rules from different database spread
over various geographical sites. Hence, they require external communications
throughout the entire process. DARM algorithms must reduce communication costs so
that generating global association rules costs less than combining the participating

sites' datasets into a centralized site.

1.4Methodologies

We have two main steps:
14.1.1 Local Rules Generating
Each site generates the frequent itemsets. Then it will be used to generate
association rules that satisfy minimum confidence.
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1.4.2 Global Rules Refining
After generating the local frequent itemsets and the rules at each site, generates

the globally frequent itemsets.

1.5 Scope

We can generate Association Rule from any datasets that distributed among

various sites to discover the most frequent itemsets.

1.6 Thesis Structure

This thesis contains four chapters as follows:
Chapter 2 presents the background of the data mining. It covers in detail about the data

mining, association rule mining and distributed association rule mining. In addition
discuses some related works on distributed association rule  mining.
Chapter 3 contains proposed system, the experiments and the results. Chapter 4

discusses the conclusion and Future work.
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Chapter 2
AssociationRuleMining
2.1 Introduction

In this chapter a background of data mining and association rule mining is
discussed. This chapter also covers in detail about the distributed association rule

mining algorithms. Also it provides of some related works.

2.2 Data Mining

2.2.1 Backgrounds
There are basically two most important reasons that data mining (DM) has

attracted a great deal of attention in the recent years. First, our capability to collect and
store the hugeamount of data is rapidly increasing day by day. The second reason is the
need to turn such data into useful information and knowledge. The knowledge that is
acquired through the help of data mining can be applied into various applications like
business management, retail and market analysis, engineering design and scientific
exploration.[1]

There are many definitions for data mining:

e Data mining (sometimes called data or Knowledge Discovery in Database
KDD) is the process of analyzing data from different perspective and
summarizing it into useful information. [3]

e Data mining or Knowledge Discovery in Database (KDD) is a collection of
exploration techniques based on advanced analytical methods and tools for
handling large amount of information. [5]

Data mining software is one of a number of analytical tools for analyzing data.
It allows users to analyze data from many different dimensions or angles,
categorize it, and summarize the relationships identified. Technically, data
mining is the process of finding correlations or patterns among many fields in
large databases. Data mining tools and techniques are used to generate

information from the data that we have stored in our repositories over the years.



2.2.2 Data Mining Tasks
The process of mining is often controlled by the requirements of the users. The

user may be a business analyst or may be a marketing manager. Different users have
different need of information. Depending on the requirements we can use different data

mining tasks.[2]

Data Mining Tasks

Predictive Descriptive

Classfication Regression Time Series Deviation Clustering Summarizafion Association Sequence
Analysis ~ Detection Rues  Discovery
Figure 2.1: Data Mining Tasks

2.3 Association Rules Mining

Association rule mining is an interesting data mining technique. That is used to

find out interesting patterns or associations among the data items stored in the
database. Support and confidence are two measures of the interestingness for the mined
patterns.
Databases or data warehouses may store a huge amount of data to be mined. Mining
association rules in such databases may require substantial processing power. A
possible solution to this problem can be a distributed system. Moreover, many large
databases are distributed in nature which may make it more feasible to use distributed
algorithms. Major cost of mining association rules is the computation of the set of large
itemsets in the database. Distributed computing of large itemsets encounters some new
problems. One may compute locally large itemsets easily, but a locally large itemsets
may not be globally large. [2]

Many parallel or distributed ARM algorithms were designed for shared memory
parallel environments. Based on the nature and implementation of each algorithm, we

can divide the existing algorithms into two groups: parallel ARM and DARM.
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2.3.1 Parallel ARM
We can categorize parallel ARM algorithms as data-parallelism or task-

parallelism algorithms. In the former, the algorithms partition the datasets among
different nodes; each site performs the task independently but must access the entire
dataset. [5]

The main challenges associated with parallel data mining include minimizing
I/0, minimizing synchronization and communication, effective load balancing,
effective data layout, deciding on the best search procedure to use. The parallel
algorithms are Count Distribution, Candidate Distribution and Hybrid Count and
Candidate Distribution. [6]

2.3.2 Distributed ARM
DARM discovers rules from various geographically distributed datasets.

However, the network connection between those datasets isn't as fast as in a parallel
environment, sodistributed mining usually aims to minimize communication costs.
Distributed ARM algorithms involve distributed association rule learning,
collective decision tree learning, distributed hierarchical clustering, other distributed
clustering algorithms, collective Bayesian network learning, collective multi-variate

regression. [7]

2.3.2.1 FDM (Fast Distributed Mining of association rules):

FDM mine rules from distributed datasets partitioned among different sites. In
each site, FDM finds the local support counts and prunes all infrequent local support
counts. After completing local pruning, each site broadcasts messages containing all
the remaining candidate sets to all other sites to request their support counts. It then
decides whether large itemsets are globally frequent or not. Then generates the
candidate itemsets from those globally frequent itemsets. [5]

Generally FDM has the following distinct features:
1. Some relationships between locally large sets and globally large ones are explored to
generate a smaller set of candidate sets at each iteration and thus reduce the number of

messages to be passed.



2. After the candidate sets have been generated, two pruning techniques, local pruning
and global pruning, are developed to prune away some candidate sets at each
individual site.

3. In order to determine whether a candidate set is large, this algorithm requires O (n)

messages for support count exchange, where n is the number of sites in the network.

2.4 Distributed Data Mining (DDM)

When data mining is undertaken in an environment where users, data, hardware and
the mining software are geographically dispersed, it is called distributed data mining.
Thus distributed data mining refers to the mining of distributed datasets. The datasets
are stored in local databases hosted by local computers which are connected through a
computer network. Data mining takes place at a local level and at a global level where
local data mining results are combined to gain global findings. Distributed data mining
is often mentioned with parallel data mining in literature. While both attempt to
improve the performance of traditional data mining systems they assume different
system architectures and take different approaches. In distributed data mining
computers are distributed and communicate through message passing. In parallel data
mining a parallel computer is assumed with processors sharing memory and or disk.
Computers in a distributed data mining system may be viewed as processors sharing
nothing. This difference in architecture affected in algorithm design, cost model, and
performance measure in distributed and parallel data mining. Typically, such
environments are also characterized by heterogeneity of data and multiple users. DDM
offers techniques to discover knowledge in distributed data. [3] A typical DDM

framework is shown in figure 2.2.
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2.5 Literature Review

Data Source

In Market Basket Analysis If we think of the universe as the set of items
available at the store, and then each item has a Boolean variable representing the
presence or absence of that item. Each basket can then be represented by a
Boolean vector of values assigned to these variables. The Boolean vectors can be
analyzed for buying patterns that reflect items that are frequently associatedor
purchased together. These patterns can be represented in the form of association
rules.

For example, the information that customers who purchase computers also tend
to buy antivirus software at the same time is represented in Association Rule 2.1
below:

Computer =>antivirus software [support = 2%; confidence = 60%](2.1)
Rule support and confidence are two measures of rule interestingness. They

respectively reflect the usefulness and certainty of discovered rules.



A support of 2% for Association Rule (2.1) means that 2% of all the
transactions under analysis show that computer and antivirus software are
purchased together.

A confidence of 60% means that 60% of the customers who purchased a
computer also bought the software. Typically, association rules are considered
interesting if they satisfy both a minimum support threshold and a minimum
confidence threshold. [7]

2.5.1 Frequent Itemsetsand Association Rules

Let 1= {I1, I12...Im} be a set of items. Let D, the task-relevant data, is a set
of database transactions where each transaction T is a set of items such that T is
in I. Each transaction is associated with an identifier, called TID.

An association rule is an implication of the form A=>B, where Aisinl,Bisin |
, and A and B are disjoint. The rule A=>B holds in the transaction set D with
support s, where s is the percentage of transactions in D that contain A union
B.This is taken to be the probability, P (A union B).
The rule A=>B has confidencec in the transaction set D, where c is the
percentage of transactions in D containing A that also contain B.This is taken to
be the conditional probability, P (B|A). That is,

Support(A=>B) = P (A union B) (2.2)

Confidence(A=>B) = P (B|A): (2.3)
Rules that satisfy both a minimum support threshold (min sup) and a minimum
confidence threshold (min conf) are called strong.
From Equation (2.3) we have:
Confidence(A=>B) = P(B|A) = support (A union B) / support (A). (2.4)
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2.5.2 Apriori Algorithm

Apriori is a seminal algorithm proposed by R. Agrawal and R. Srikant in
1994 for mining frequent itemsets for Boolean association rules. The name of the
algorithm is based on the fact that the algorithm uses prior knowledge of
frequent itemset properties. Apriori employs an iterative approach known as a
level-wise search, where k-itemsets are used to explore (k+1)-itemsets. First, the
set of frequent 1-itemsets is found by scanning the database to accumulate the
count for each item, and collecting those items that satisfy minimum support.
The resulting set is denoted L1. Next, L1 is used to find L2, the set of frequent 2-
itemsets, which is used to find L3, and so on, until no more frequent k-itemsets

can be found. The finding of each Elk requires one full scan of the database.[1]

2.5.2.1 Example

Let Set of items: I1={1, 2, 3, 4, 5}.

Transactions: D = {t100, t200, t300, t400}.

Support of an itemset: Percentage of transactions which contain that itemset.
Large (Frequent) itemset: Itemset whose number of occurrences is above a
threshold.

11
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2.6 Related Works

Many algorithms have been proposed to find frequentitemsets from a very large
datasets. The number of datasets scans required for the task has been reduced from a
numberequal to the size of the largest itemsets in Apriori, totypically just a single scan
in modern ARM algorithms such as Sampling. When data is saved in a distributed
datasets, a distributed data mining algorithm is needed to mine association rules. It has
been addressed by some researches and number of distributed algorithms has been
proposed. [4]

The partition algorithm is based on apriori algorithm. It consists of two phases.
Firstly partitions the data into a number of non-overlapping partitions. For each
partition, all frequentitemsets are found. These are referred as local frequent itemsets.A
local frequent itemset may or may not be frequent with respect to the entire dataset D.
Any itemset that is potentially frequent with respect to D must occur as afrequent
itemset in at least one of the partitions. Therefore all local frequent itemsetsare

candidate itemsets with respect to D. The collection of frequent itemsets from
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allpartitions forms the global candidate itemsets with respect to D.Finally the
algorithmunion all the local frequent itemsets to generate global frequent itemsets. It
reduces the number of complete database scans up to two and hence improves the
performance of mining algorithm. [10].

Sampling algorithm (mining on a subset of a given data) is also based on apriori
algorithm. The basic idea of the samplingapproach is to pick a random sample S of the
given data D, and then search forfrequent itemsets in S instead of D. In this way, we
trade off some degree of accuracyagainst efficiency. The sample size of S is such that
the search for frequent itemsets inS can be done in main memory, and so only one scan
of the transactions in S inrequired overall [10]. Sampling can reduce I/O costs by
drastically shrinkingthe number of transaction to be considered. It can speed up the
mining processby more than an order of magnitude.in another hand, because we are
searching for frequent itemsets in S rather than in D,it is possible that some of the
global frequent itemsets was missed. [15]

E. Ansari, G.H. Dastghaibifard, M. Keshtkaran, H.Kaabi presented a new
distributed Trie-based algorithm (DTFIM) to find frequent itemsets. This algorithm
isproposed for a multi-computer environment. They added an idea from FDM
algorithm for candidategeneration step.The point of this algorithm is that every site
keeps a copyof Trie locally, and they synchronize their data so that all localTrie copies
are the same at the end of each stage. After localsupport is counted, all sites share their
support counts and determine the global support counts, in order to removeinfrequent
itemsets from their local Trie. These resultsshow Trie data structure can be used for

distributedassociation rule mining not just for sequential algorithms. [12]
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Chapter 3

Proposed System
3.1 Introduction

This chapter describes the proposed system, the dataset, the experiments and

the results.Figure 3.1 is an overview of the proposed system for distributed association

rules mining. The chapter also reports and discusses the experiments’ results.

Data Source 2

Data Source

n

Data Source

O

U

Run Apriori
Algorithm

Run Apriori
Algorithm

I

Run Apriori
Algorithm

U

O

U

Fetch Local frequent

Fetch Local frequent

Fetch Local frequent

Itemsets Itemsets Itemsets
Combination the frequent
—y itemsets from all data €
Snlireces

v

Most Frequent Itemset

Figure 3.1: The Proposed System Structure

3.2Experiments Dataset

The dataset have been downloaded from the university of California site
(UCI);this data was extracted from the census income database. It goal is to predict
whether income exceeds 50.000$/year. Table 3.1 summarizes details of the dataset and

Table 3.2 describes dataset attributes.
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Table 3.1: Dataset Statistics

Dataset Characteristics: Multivariate

Attribute Characteristics: | Categorical, Integer

Number of Instances: 48843
Number of Attributes: 13

Area: Social
Date Donated 1996-05-01

16



Table 3.2: Dataset Attributes Description

Attribute Description

Age Continuous

Work Class Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-
gov, State-gov, Without-pay, Never-worked

Education Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-

acdm, Assoc-voc, 9th, 7th-8th, 12th, Masters, 1st-4th, 10th,
Doctorate, 5th-6th, Preschool

Martial-Status

Married-civ-spouse, Divorced, Never-married, Separated,
Widowed, Married-spouse-absent, Married-AF-spouse

Occupation

Tech-support, Craft-repair, Other-service, Sales, Exec-
managerial, Prof-specialty, Handlers-cleaners, Machine-op-
inspct, Adm-clerical, Farming-fishing, Transport-moving, Priv-
house-serv, Protective-serv, Armed-Forces

Relationship

Wife, Own-child, Husband, Not-in-family, Other-relative,
Unmarried

Race

White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other,
Black

Sex

Female, Male

Gain

Continuous

Loss

Continuous

Hours-per-week

Continuous

Country

United-States, Cambodia, England, Puerto-Rico, Canada,
Germany, Outlying-US(Guam-USVI-etc), India, Japan,
Greece, South, China, Cuba, Iran, Honduras, Philippines, Italy,
Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland, France,
Dominican-Republic, Laos, Ecuador, Taiwan, Haiti, Columbia,
Hungary, Guatemala, Nicaragua, Scotland, Thailand,
Yugoslavia, EI-Salvador, Trinadad&Tobago, Peru, Hong,
Holand-Netherlands

Salary

>50K, <=50K

17




3.3 Preprocessing Stage

We use WEKA tool to generate the association rules from sites.
The proposed system is divided into two phases. First generate local frequent itemsets
for each site. Second Local frequent itemsets from each site are combined to generate

global frequent itemsets.

3.3.1Generate local frequent itemsets

At each site we apply apriori algorithm. Figure 3.2 shows the datasets uploaded

in WEKA and figure 3.3 shows the association rule that collected from the dataset.

| & Weka Explorer

Preprocess | Classify | Cluster | Assodiate | select attributes | visualize |
[ Open file... ] [ Open URL... ] [ Open DB... ] [ Generate... ] ’ Undo ] ’ Edit... ] ’ Save.. ] I
Filter
Current relation Selected attribute
Relation: census_sitel Attributes: 13 MName: age Type: Nominal
Instances: 16279 Sum of weights: 16279 Missing: 0 (0%) Distinct: 4 Unique: 0 (0%)
Attributes Mo. Label Count Weight
[ al ] [ PTRES ] [ P ] [ Pattern ] 1| middle-aged 7912 7912.0
2| senior 3161 3161.0
3| young 4878 4878.0
A 2w 4[old 328 328.0
2| |workdass
3| Jeducation
4 |marital
5 L} occupation Class: salary (Mom) * || Visualize Al
6| relationship i !
7| Jrace
8| |sex Talz
9|["|gain
10[loss
11{[“jhours .
12{["|country
13([Csalary 3161
Remove
e
Status
. (]

Figure 3.2: Dataset at Sitel

Attributes at Sitelare visualized in Figure 3.3.
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3.3.2 Generate Global frequent itemsets

After generates the local frequent itemsets from each site, we combined them to

I ] b

Figure 3.3: Visualize Attributes at Sitel

generates the most frequent itemsets. Table 3.3shows the total number of records,

minimum support and frequent itemsets for global CENSUS dataset.

Table 3.3: Global CENSUS Dataset

Total Rows | MinSup Frequent Itemsets
CENSUS 48,843 0.2 3

Table 3.4 shows the results after divided the CENSUS dataset into 3 sites.

Table 3.4: CENSUS Dataset (3 Sites)

Total Rows | MinSup Frequent Itemsets
Sitel 16,280 0.2 3
Site2 16,280 0.2 4
Site3 16,280 0.2 3

19



Figure 3.4 and Figure 3.5 shows the result in details.

-
| £| Optimized Association Rule Mining in Distributed Database

Result:
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Freguent ltem Set

| »

Generated sets of large itemsets
Size of set of large itemsets L{1): 16
Size of set of large itemsets L(2): 36
Size of set of large itemsets L{3) 20
Size of set of large itemsets L(4): 3

Best rules found:

1. age=young marital=Never-married 3633 === salary=<=50K 3579 co
2. workclass=Private marital=Never-married country=United-Siates 3623
3. workclass=Private marital=Never-married 4058 === salary=<=50K 38
4. marital=Mever-married country=United-States 4903 === salary===50K
5. marital=Mever-married 5435 === salary===50K 5183 conf{0.98)

6. age=young workclass=Private 3701 === salary=<=50K 3524 conf({0
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3. workclass=Private marital=Mever-married country=United-States 3651
4. workclass=Private marital=Mever-married race=White 3438 === salary
5. marital=MNever-married 5324 === salary===50K 5087 conf.(0.96)

6. marital=Never-married country=United-States 4766 === salary=<=50HK

| »

— - —\Whi: — ——

Il [¥] |[a i [ ]
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Generated sets of large itemsets |

Size of set of large itemsets L{1): 17

Size of set of large itemsets L{2). 35 =

Size of set of large itemsets L(3); 20

Size of set of large itemsets Li4): 3

Best rules found:

1. age=young marital=Never-married 3573 === salary=<=50K 3531 co

2. workclass=Private marital=Never-married country=United-States 3617—|

3. workclass=Private marital=Never-married 4063 === salary===50K 38

4. marital=MNever-married country=United-States 4811 === salary===50K

5. marital=Mever-married 5357 === salary===50K 5103 conf{0.95)

6. age=young workclass=Private 3835 === salary=<=50K 3650 conf{0|_|

|? a0e=vouna 4878 === salary===00K 4632 |Conf'r[] 95) I ll

1 [l 4
w Hide Log <<

Fiduré 3.4: The Local Frequent Itemsets and Association Rules in Sitel, Site2, Site3
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| £/ Large Item Set Viewer -— ==

large item sets of site 1 (L1)is .3

race=\White sex=Male hours=fulldtime country=United-States
workclass=Private race=White hours=full4time country=United-States
workclass=FPrivate race=White sex=Male country=United-States

large item sets of site 2 (L2)is 4

race=\White sex=Male hours=fulldtime country=United-States
marital=Married-civ-spouse relationship=Husband race=White sex=Male
workclass=Private race=White hours=full4time country=United-States
workclass=FPrivate race=White sex=Male country=United-States

large item sets of site 3 (L3)is .3

race=\White sex=Male hours=fulldtime country=United-States
workclass=FPrivate race=White hours=fullime country=United-States
warkclass=Private race=White sex=Male country=Linited-States

calculating mast frequent itermm sets using the following formula ;
(L1 union L2} intersect L3

The most frequent item sets is 3

race=White sex=Male hours=full{ime country=United-States
workclass=Private race=White hours=fulldtime country=United-States
workclass=FPrivate race=White sex=Male country=United-States

Figure 3.5: The Details of Frequent Itemsets

21



3.4 The Results

To generate the most frequent itemset firstly we divide the datasets into 3 sites

S1, S2, S3. Then we generate the large itemsets from each site L1, L2, L3. Lastly we

combine the large itemsets by using the proposed rule. Table 3.5 shows the total
number of records and frequent itemsets at each site in CENSUS, CAR, NURSERY,
SAMPLE_MODELING datasets.

Table 3.5: The Local Frequent Itemsets in Sitel, Site2, Site3

Datasets No of Global Local Frequent | Local Frequent | Local Frequent
Records Frequent Itemsets in Sitel Itemsets in Itemsets in
Itemset Site2 Site3
CENSUS 48,000 3 3 4 3
CAR 1728 11 16 29 30
NURSERY 12960 16 12 8 13
SAMPLE_MODELING 75,000 5 5 1 5

Union and intersection the local frequent itemsets was applied to generate the most frequent

itemset, union gives frequent itemset greater than the actual frequent itemset. And intersection

gives frequent itemset less than the actual frequent itemset. See table 3.6.

Table 3.6: Union all and Intersect all Local Frequent Itemsets

Datasets Global frequent itemsets | Union Interest
all all
CENSUS 3 4 3
CAR 11 64 0
NURSERY 16 20 11
SAMPLE_MODELING 5 5 1

Because this problem we proposed a rule to generate frequent itemset that equal the

actual frequent itemset in global dataset. See table 3.7.

Table 3.7: The Proposed Rule

No of Distributed

Datasets

Large Itemsets

Mining Frequent Itemsets

3

L1,L2,L3

(L1UL3)NL2

Such that L1 is the large itemset in sitel, L2 is the large itemset in site2and L3 is the

large itemset in site3.
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We union the maximum number of large itemset (L3) and the minimum number of

large itemset (L1), then intersect the result with the third large itemset (L2) to generates

the most frequent itemset.

(MAX large itemsetw MIN large itemset) » Third large itemset.

Table 3.8 shows the results of frequent itemsets after apply the proposed rule.

Table 3.8: Rules applied over datasets

Dataset Global | Union | Interes | (L1UI3 | (L1n | (L1nI2) | (L1 (L2u | (L2n
frequen | all tall | Yyal2 [B)UR| UIB |[UVI2)A| IB)n | BYUNL
t 13 11
itemsets
CENSUS 3 4 3 3 3 4 3 3 3
CAR 11 64 0 11 16 30 16 0 27
NURSERY 16 20 11 16 29 18 11 11 18
SAMPLE 5 5 1 5 5 5 5 1 5

In alldatasets the proposed rule generate the truth frequent itemsets. But other rules

generate number of frequent itemsets greater or less than the actual frequent itemsets.

Table 3.9 shows the differencesof results.

Table 3.9: Differences of Frequent Itemsets, +1 means combined local itemsets is

greater than global itemsets by I and —I means less by I. while & indicate same

numbers

Dataset | Union | Interes | (L1UI3 | (L1n | (L1nI2) | (L1 (L2u | (L2n

all tall Yl [Bulk| Uld [ulR)A| BN [IBuUL

13 11

CENSU +1 %) %] %] +1 %] %] %)
S
CAR +48 -16 %) %) +14 +5 -16 +11
NURSE +9 %] %) +17 +7 -5 %] +7
RY
SAMPL | @& -4 %] %] %] %] -4 %]
E
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Chapter 4
Conclusion and Future Work

4.1 Conclusion

In this thesis we have discussed a new approach to obtained frequent
itemsetsfrom distributed data sources. Firstly,we generate the global frequent itemset
from global dataset. Secondly,we divide theglobal dataset into three sites,and then we
generate the local frequent itemsets from each site. A comprehensive search for the
best way to combine the local itemset has been conducted. In this search we find that
the union of smallest and biggest of itemsets intersected with the middle always gives
result which is equivalent to global itemsets. The experiment of this thesis has been

conducted on four different datasets. These datasets have different sizes and attribute

types.

4.2 Future Work

Some of the future work that could done to find more result on the topic of this

thesis could be:

» Doing more experiments for more than 3 sites with different sizes.

e Generating a tool that allows users to obtained frequent itemsets from
distributed datasets. And embedding this tool in one of the famous data mining
software like weka.

» Suggesting a way for generate the global frequent itemsets from datasets that are

not uniformly distributed.
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