LIST OF FIGURES

Figure No.	Name	Page
(2.1)	General overview of industrial electrical power system	6
(2.2)	Existing power system architecture and communication protocols	7
(2.3)	Components of SCADA system	8
(2.4)	Single SCADA master controlling many substations	11
(2.5)	Typical substation automation architecture	15
(2.6)	Logical scheme of three levels of substation automation	17
(2.7)	Vertical communication in substation automation system	19
(2.8)	Horizontal communication in substation automation system	20
(3.1)	conventional substation	21
(3.2)	IEC61850 substation automation system according to IEC61850	24
(3.3)	The concept of virtualization	27
(3.4)	Virtual and physical entities in 61850	28
(3.5)	Naming of objects in IEC 61850	29
(3.6)	Logical node information categories	31
(3.7)	Building up of IED devices	32
(3.8)	Substation Configuration Language(SCL)	34
(3.9)	SCL steps to system configuration	36
(3.10)	Bus network architecture	38
(3.11)	Ring network architecture	39
(3.12)	Star network architecture	39
(4.1)	Conventional communication via hard wiring	43
(4.2)	Communication via GOOSE	44
(4.3)	IED Server building block	47

(4.4)	Bay interlocking application	52
(4.5)	Circuit breaker failure protection	53
(5.1)	Arc flash detection protection system application	58
(5.2)	Configuration of IED to sense and monitor the arc	59
(5.3)	Feeder single line diagram	60
(5.4)	Single line diagram (SLD) by SCL	61
(5.5)	Load feeder SLD by SCL expert	61
(5.6)	Creating IED_26	62
(5.7)	IED properties dialog box	63
(5.8)	Logical device (LD) naming	63
(5.9)	Logical device creation	64
(5.10)	Creating logical nodes	65
(5.11)	Mapping the logical node to the IED	66
(5.12)	Assigning IED to logical node and logical node container	67
(5.13)	Logical node properties	67
(5.14)	Mapping information in SCD	68
(5.15)	Dataset creation	69
(5.16)	Selecting the data attributes forms IED for the data set	69
(5.17)	GOOSE control block	70
(5.18)	Transmission of GOOSE message	71
(5.19)	Updating the communication parameter to SCD	72
(5.20)	Arc flash detecting protection experiment	73
(5.21)	Network testing	75