

(وَوَصَيْنَا الْإِنْسَانَ بِوَالدَيْهِ حَمَلَتْهُ أُمُهُ وَهُنّا عَلَى وَهُن وَفَصَالُهُ فِي عَامَيْنِ الْنِ اشْكُرْ لِي وَلوَالدَكَ إِلَيَ الْمُصِيرُ (14) وَإِنْ جَاهَدَكَ عَلَى أَنْ تُشْرِكَ بِي مَا لَيْسَ لَكَ بِ عُلْمُ فَلَا تُطعْهُ مَا وَصَاحِبْهُمَا فِي الدُنْيَا مَعْرُو قًا وَاتَبِعْ سَبِيلَ مَن لَيْسَ لَكَ بِ عُلْمُ فَلَا تُطعْهُ مَا وَصَاحِبْهُمَا فِي الدُنْيَا مَعْرُو قًا وَاتَبِعْ سَبِيلَ مَن لَيْسَ لَكَ بِ عُلْمُ فَلَا تُطعْهُ مَا وَصَاحِبْهُمَا فِي الدُنْيَا مَعْرُو قًا وَاتَبِعْ سَبِيلَ مَن الْنَابَ إِلَي مَرْجِعُكُمْ فَأُنبَئِكُمْ بِمَا كُنْتُمْ تَعْمَلُونَ (15) يَا بُنَي إِنَهَا إِنْ تَكُ مَتْ فَلَا تَعْمَلُونَ (15) يَا بُنَي وَلِي السَمَاوَاتِ أَوْ فِي السَمَاوَاتِ أَوْ فِي السَمَاوَاتِ أَوْ فِي الْأَرْضِ مَرْدَةٍ أَوْ فِي السَمَاوَاتِ أَوْ فِي السَمَاوَاتِ أَوْ فِي الْأَرْضِ مَرْدَةً أَوْ فِي السَمَاوَاتِ أَوْ فِي الْأَرْضِ مَرْدُوفَ وَانْهَ عَن الْمُنكِرِ وَاصْبِرْ عَلَى مَا أَصَابِكَ إِنَ ذَلِكَ مِنْ عَزْمِ اللّهَ لَا مُورِ (الْأَمُورِ (اللّهَ لَل يُحِب عُلْ اللّهَ لَا يُحِب عُلْ اللّهَ لَا يُحِب عُلْ اللّهَ لَا يُحِب عُلْ اللّهُ لَا يُحِب عُلْ اللّهَ لَا يُحِب عُلْ اللّهَ لَل يُحْدِي مَشْكِ وَاغْضُضْ مِنْ صَوْتِكَ إِنَ اللّهَ لَا يُحِب عُلْ الْمُورِ (اللّهَ لَل اللّهُ لَا يُحِب عُلْ الْمُعْرُونِ (18) وَا قُصِدْ فِي مَشْكِ وَاغْضُضْ مِنْ صَوْتِكَ إِنَ اللّهَ لَا يُحِب عُلْ الْمَواتِ لَصَوْرَ اللّهَ الْمُعَرِونَ اللّهَ وَالْمَورِ (18) وَا قُصِدْ فِي مَشْكِ وَاغْضُصْ مِنْ صَوْتِكَ إِنَ اللّهَ لَا يُحِب عُلْ الْمَورِ (اللّهَ الْمُورِ (اللّهَ الْمُورِ (اللّهَ اللّهُ الْمُؤْمِورِ (اللّهُ الْمُعُورِ (اللّهُ الْمُؤْمِ (اللّهُ الْمُؤْمِورِ اللّهُ الْمُؤْمِ اللّهُ الللّهُ اللّهُ اللّهُ اللّهُ اللّهُ الللّهُ الللّهُ الللّهُ اللّهُ اللّهُ اللّهُ ال

سورة ل قمان (14-19)

Dedication

To

The soul of my father for his watching me pushing and supported me through my life; God bless him,

My mother she is always there for me,

Sisters and brothers for their unlimited support,

Colleagues and friends wherever they are,

My family for inspire me and lightening my life.

Seifeldin

ACKNOWLEDGMENT

In the Name of Allah, the most gracious the most Merciful. Prays be to Allah alone, Lord of all the worlds.

Prays be to Allah who enable me to accomplish this work.

I am particularly indebted to my supervisor Dr. Awad Alkarim Mustafa for his help and his guidance, patients, assistance and advice during the period of this study, especially for giving me the confident that I can make a different.

In this respect I would like to express my deep appreciations to professor Galal Abd Allah Ali for his teaching us the meaning of commitment.

In this opportunity I express my great thanks and my deep appreciations to Dr. Sami Abd Allah for his continuous encouragement and guidance's I would like to express my appreciation to Ustaz Abas Badawi Laz for spent his whole life teaching us.

And deep thanks to Dr. Ahmed Mohammad Alsharif for his introducing me to the world of material and geotechnical engineer. I extend my great thanks to my colleague at Building and Road Research Institute University of Khartoum I specify my thanks to Mohammad Mohammad Ali, Abd Al Ilah Mohammad Hassan, and Abd Al Ilah Al Sidig.

Thanks to Engineer Nahla Hassan, Engineer Rafat Bitech and Mr. Jourge at National Highway Nationality laboratory.

I extend my thanks to Engineer Anwar Alzibare at Constructional and Environmental Labs. Centre Co. Ltd. Engineer Omer Shambat at Shirian Alshamal for Roads and Dams.

My great thanks to my colleague, Mohammad Alfadil, Wail Mustafa, Abu baker Ahmed Osman, Bashir Salaheldin Mohammad Isa and Ibrahim Mohammad Ahmed.

In this opportunity I express my respect and million of thanks are delivered to my family, my mother, sisters and brothers.

Thanks to all.

Table of contents

		Page		
Qur	I			
Ded	II			
Ack	Acknowledgment			
Tab	le of contents	V		
List	VIII			
List	IX			
Abs	X			
Abs	XI			
List	XII			
Cha	pter One: Introduction			
1.1	General	1		
1.2	Transportation Demands	1		
1.3	Importance of Roads	2		
1.4	Problem Statement	3		
15	Justification	$\it \Delta$		

1.6	Object	5	
1.7	Resear	5	
1.8	Resear	6	
1.9	Thesis	7	
Cha	pter Two	o: Literature Review	
2.1	Genera	ıl	8
2.2	Histori	cal Review	8
	2.2.1	Background	8
	2.2.2	Historical Milestone	10
2.3	Moder	n Asphalt Usage	12
	2.3.1	Asphalt	12
	2.3.2	Uses of Asphalt in Sudan	14
	2.3.3	Terms Relating to Asphalt and Its Uses	15
Cha	pter Thr	ree: Asphalt Review	
3.1	Genei	General	
3.2	Asphalt Production		26
3.3	Refini	ng Crude Petroleum	28
	3.3.1	Steam and Vacuum Refining	28
	3.3.2	Solvent Extraction Method	29
3.4	Petrole	eum Asphalt types	31
	3.4.1	Asphalt Cement	31
	3.4.2	Cutback Asphalt	31
	3.4.3	Emulsified Asphalt	32

3.5	Characte	eristics of Asphalt Cement	33
	3.5.1	Consistency	33
	3.5.2	Purity	34
	3.5.3	Safety	34
	3.5.4	Durable, workable and weather resistant	35
	3.5.5	Cementitious property	35
3.6	Asphalt (Cement Specifications and Tests	35
	3.6.1	General	35
	3.6.2	Penetration Test	38
	3.6.3	Viscosity	39
	3.6.4	Absolute Viscosity	42
	3.6.5	Flash Point Test	42
	3.6.6	Thin Film Oven Test	43
	3.6.7	Rolling Thin Film Oven Test	44
	3.6.8	Ductility Test	46
3.7	Superpay	ve System	48
3.8	Elemental Analysis		
Chap	ter Four: I	Laboratory Testing	
4.1	Study Sam	ples	52
4.2 .1	Consister	ncy Tests	52
4.2.2	Cementit	rious Property Tests	52
4.2.3	Safety Te	sts (Flash and Fire Tests)	53
4.3	Viscosity '	Tests	53
4.3.1	Arithmetic	Deduction for Absolute and Kinematic Units	53
4.4 Te	ests Results	and Analysis	55
Chap	ter Five: D	iscussion and Analysis	
5.1	General		60

5.2	Penetration Grade System in Sudan			
5.2.1	Advantages and Disadvantages of Penetration Grade System61			
5.3	Viscosity	y Grade System		
	5.3.1	Advantages of Viscosity Grade System	62	
	5.3.2	Disadvantages of Viscosity Grade System	63	
Chap	ter Six: Co	onclusion and Recommendations		
6.2	Summa	ry	64	
6.3	Recomn	nendations	64	
Refer	ences		66	

Appendix A: tables of Viscosity Tests and Specifications

Appendix B: Figures of Asphalt Tests and Specifications

List of Figure

Page Figure 3-1: Trinidad Lake Asphalt ...27 Figure 3-2: Main Types of Asphalt used in road construction ...30 Figure 3-3: Penetration test apparatus ... 38 Figure 3-4: A deck of Cards show stress shape ...40 Figure 3-5a: Viscometer ...40 Figure 3-5b: Asphalt Institute Vacuum Viscometer ...41 Figure 3-6: Cleave land Open Cup (COC) ...43 Figure 3-7: Rolling -Thin Oven Test (RTFO) ...45 Figure 3-8: RTFO ...46

Figure 3-9: a - b Ductility Test apparatus ...47

Figure 4-1: Schematic Illustration of Kinematic viscosity
For 11 samples of asphalt grade 60/70
...58

List of Tables

Table 4.1: Viscosity Grading System ASTM D3381 ...54

Table 4.2: Results to asphalt source Egypt ... 55

Table 4.3: Results to asphalt source Saudi ... 55

Table 4.4: Results to asphalt source Iran ... 56

Table 4.5: Results obtained for samples (Egypt, Saudi and Iran) ...56

Table 4.6: Results obtained for random samples of asphalt ...57 (unknown source) within year 2009/2010

Table 4.7: Results for asphalt random samples ...57

Table 4.8: Classifying asphalt to penetration and viscosity grade ...59

إهتمت الدراسة بتطبيق نظام اللزوجة في إختيار الاسفلت المستخدم في تشييد الطرق بالسودان والتي تخص المهندسين، الإستشاريين، الم قاولين، الموردين والجهات الحكومية مثل الهيئة السودانية للمواصفات والم قايس.

يستورد السودان الأسفلت حسب نظام الغرز من عدة مصادرمثل مصر ،السعودية ، إيران.

شملت الدراسة نبذة تاريخية عن إستخدامات الأسفلت وتطوره المستمر، هذه النظرة التاريخية تساعدنا على معرفة مو قع السودان من هذا التطور والإتجاه الذي يجب أن يسلكه في ما يتعلق بنظام إختيار الأسفلت.

الأسفلت مادة ثيرموبلاستيكية يعني أن صلابته تعتمد على درجة الحرارة ، فالصلابة تول بإرتفاع درجة حرارة الأسفلت . هذه العلاقة بين الصلابة ودرجة الحرارة تختلف من أسفلت لآخر لنفس درجة الغرز حسب نوع المصدر وطرقة تكرير خام البترول. عليه من الواضح أنه يجب تحد يد درجة الحرارة المناسبة لإجراء الأختبار لإختيار الأسفلت وم قارنته . فإختبار الغرز عند درجة حرارة C^{0} يعطي نوع معين مثلا (C^{0}) في نفس الوقت إختبار لزوجة حركية عند درجة حرارة C^{0} لنفس الأنواع C^{0} تعطي صلابة مختلفة عند هذه الدرجة التي تساوي تقريباً درجة حرارة الخلط والفرش والمندلة .

أثبتت الدراسة أن الأسفلت ذو درجة الغرز 70/60 من مصادر مختلفة له خواص هندسية ولزوجة حركية مختلفة. أو صت الدراسة بتطبيق نظام اللزوجة في إختيار الأسفلت المستخدم في الخلطات الأسفلتية في السودان وذلك لمواكبة التطور في صناعة وتشييد الطرق.

ABSTRACT

This study reviewed the Viscosity Grading System to be adapted in Sudan. It concerns Engineers, Consultants, Contractors, Suppliers and Local Authorities involved.

The Asphalt imported to Sudan from different sources (Egypt, Saudi, Iran ...etc) according to penetration grade system.

The study reviewed the history of grading Asphalt and its uses. This review will assist us to knowing how far Sudan has come to and where it should be in long term so as grading and selecting asphalt are concerned.

Asphalt is a thermoplastic material, that is, its stiffness is dependent on temperature, stiffness decreases as temperature increases, this temperature verses stiffness relationship is different for asphalt based on the origin of the Petroleum Crude and/or method of refining. It is clear we should define a test temperature at which the grading will be done and asphalt compared, (Penetration grade system is done on 25°c and Viscosity Test is carried out on 135°c)

The study proved that same penetration grade of asphalt 60/70 from different sources has different stiffness and hence different engineering properties.

The study recommended adapting Viscosity Grade System in Sudan for selecting Asphalt to be used in HMA

List of Abbreviation

HMA Hot Mix Asphalt

ASTM American Society for Testing and Material

AASHTO American Association of State Highway and

Transportation Official

SHRP Strategic Highway Research Program

TRL Transportation Research Laboratory

AI Asphalt Institute

PG Performance Grade

VG Viscosity Grade

API American Petroleum Institute

RTFO Rolling Thin Film Oven