Content

From the meaning of Quran	I
Acknowledgments	II
List of figures	VIII
List of schemes	XI
List of tables	XII
Abstract	XIV
Chapter one	
1. Introduction	1
1.1 Chemistry of chalcones	1
1.1.1 Spectral properties of chalcones	1
1.1.1.1. IR spectral features of enones	2
1.1.1.2. ¹ H-NMR spectral features of enones	2
1.1.1.3. ¹³ C-NMR spectral features of enones	2
1.1.1.4. Mass spectral features of enones	3
1.1.2 Synthesis of chalcones	3
1.1.2.1. Claisen–Schmidt condensation	3
1.1.2.2. Synthesis of chalcones using acidic conditions	3
1.1.2.3. Synthesis of chalcones using PEG as solvent	4
1.1.2.4. Synthesis of chalcones using Solid Phase	4
1.1.2.5. Synthesis of chalcones using microwave irradiation	4
1.1.3 Reaction of chalcones	4
1.1.3.1. Synthesis of isoxazolidin-3-yl-3-phosphonate	5
1.1.3.2. Reduction of chalcones to dihydrochalcones by Zn/HOAc	5
1.1.3.3. Oxidation of chalcones by N – chloronicotinamide	5
1.1.3.4. Synthesis of benzofuranones from chalcones	5
1.1.3.5. Synthesis of pyrazolines from chalcones	5
1.1.3.6. Synthesis of pyrimidines from chalcones	6
1.1.3.7. Synthesis of flavanones from chalcones	6
1.1.4 Biological activity of chalcones	6

1.2 Chemistry of pyrimidines	7
1.2.1 Physical properties of pyrimidines	8
1.2.1.1 IR spectral features of pyrimidines	8
1.2.1.2. ¹ H-NMR spectral features of pyrimidines	8
1.2.1.3. ¹³ C-NMR spectral features of pyrimidines	9
1.2.2 Synthesis of pyrimidines ring system	9
1.2.2.1. Synthesis of pyrimidines via direct oxidative one-pot reaction	10
1.2.2.2. Synthesis of pyrimidines via microwave assistance	10
1.2.2.3. Synthesis of 2,4- diamino-6-hydroxypyrimidine	10
1.2.2.4. Synthesis of pyrimidine-2,4,6 (1 <i>H</i> ,3 <i>H</i> ,5 <i>H</i>)-trione	11
1.2.2.5. Synthesis of pyrido[4,3-d] pyrimidines	11
1.2.2.6. Synthesis of 2H- pyrido[4,3-d] pyrimidines	11
1.2.2.7. Synthesis of cytosine	11
1.2.2.8. Synthesis of anhydroarabinonucleoside	12
1.2.2.9. Synthesis of steroidal pyrimidines	12
1.2.2.10. Synthesis of 5-Amino-2-mercaptopyrimidine-4,6-diol	12
1.2.2.11. Synthesis of pyrazolo[1,5-a]pyrimidine	13
1.2.3 Reactions of Pyrimidines	13
1.2.3.1. Synthesis of 2,4-bis anilino pyrimidines	13
1.2.3.2. Sonogashira cross-coupling reaction	13
1.2.3.3. Synthesis of iodopyrimidinols	14
1.2.3.4. Protonation of pyrimidine	14
1.2.3.5. Transformation of pyrimidine to pyrazole	14
1.2.3.6. Reaction of uracil with dimethyldioxirane	14
1.2.4. Biological activity of pyrimidines	15
1.3 Chemistry of isoxazoles	17
1.3.1 Physical properties of isoxazoles	17
1.3.1.1. IR spectral features of isoxzazoles	17
1.3.1.2. ¹ H-NMR spectral features of isoxazoles	17
1.3.1.3. ¹³ C-NMR spectral features of isoxazoles	18
1.3.2 Synthesis of Isoxazoles ring system	18

1.3.2.2. Synthesis of polysubstituted isoxazole	18
1.3.2.3. Synthesis of 3 -(4 -(tert-Butyldimethylsilyloxy) -3,	
5-dimethoxyphenyl)-5- (3,4,5-trimethoxy-phenyl) isoxazole	19
1.3.2.4. Synthesis of 5- (3- (2- hydroxyphenyl) isoxazole -5 -yl)–	
N-phenylpentanamide	19
1.3.2.5. Synthesis of isoxazoles from 1,3 dicarbonyl	19
1.3.3 Reactions of Isoxazoles	20
1.3.3.1. Direct nitration of Isoxazoles	20
1.3.3.2. Synthesis of isoxazole Schiff bases	20
1.3.3.3. Halogenation of isoxazole	20
1.3.3.4. Isoxazole ring opening reaction	21
1.3.4. Biological activities of Isoxazoles	21
1.4 Chemistry of pyrazoles	22
1.4.1 Physical properties of pyrazoles	23
1.4.1.1. IR spectral features of pyrazoles	23
1.4.1.2. ¹ H-NMR spectral features of pyrazoles	23
1.4.1.3. ¹³ C-NMR spectral features of pyrazoles	24
1.4.2 Synthesis of Pyrazoles ring system	24
1.4.2.1. Synthesis of pyrazoles from chalcones	24
1.4.2.2. Synthesis of pyrazoles from diketone	24
1.4.2.3. Synthesis of pyrazole using microwave irradiation	25
1.4.2.4. Synthesis of pyrazole from isoxazole	25
1.4.2.5. Synthesis of pyrazole from vinamidinium salt	25
1.4.2.7. Synthesis of 5-trifluoromethyl-3-substituted pyrazoles	26
1.4.3 Reactions of Pyrazoles	26
1.4.3.1. Reaction of pyrazoles with alkyl halide	26
1.4.3.2. Reaction of pyrazole with aldehyde	27
1.4.3.3. Halogenation of pyrazole	27
1.4.4. Biological activities of Pyrazoles	27
1.5 The Aims of this study	29

Chapter two

2. Experimental	31
2.1 Materials	31
2.1.1. Chemicals	31
2.1.2 Instruments	31
2.1.2.1. Fourier transform infrared	31
2.1.2.2. Nuclear magnetic resonance	32
2.1.2.3. Gas chromatography mass spectroscopy	32
2.1.2.4. Ultraviolet-visible spectroscopy	32
2.1.2.5. Ultrasound path	33
2.1.2.6. Microwave oven	33
2.1.2.7. Thin layer chromatography	33
2.2 General Methods	33
2.2.1. Synthesis of 1,3- diaryl-prop-2-en-1-ones (I-XV)	33
2.2.2. Synthesis of of 2-amino- 4,6-diaryl-pyrimidine (XVI-XXIX)	33
2.2.3. Synthesis of 3,5-diaryl-pyrazoles (XXX-XLIII)	34
2.2.4 Synthesis of 3,5-diaryl-isoxazoles (XLIV-LVII)	34
Chapter three	
3. Discussion	78
3.1 Synthesis of chalcone	78
3.2 Ultrasound-assisted microwave synthesis	79
3.2 Synthesis of pyrimidine derivatives	80
3.3 Synthesis of Pyrazoles derivatives	81
3.4 Synthesis of Isoxazole derivatives	83
3.5. Spectral data of the prepared compounds	84
3.5.1. Infrared spectroscopy	84
3.5.2. Mass spectroscopy	85
3.5.3. Proton nuclear magnetic resonance	89
3.5.4. Ultraviolet spectroscopy	90
3.6 Determination of reaction mechanism	90

Chapter four

6. Conclusion and recommendation	
Chapter five	
5. References	95
Appendex	108

List of Figures

Figure 1.1: Enone functional group	1
Figure 1.2: Synthesis of isoxazolidin-3-yl-3-phosphonates	5
Figure 1.3: Reduction of Chalcones to Dihydrochalcones	5
Figure 1.4: Synthesis of benzofuranone from chalcone	5
Figure 1.5: general structure of some chalcones with	
antimicrobial activity	6
Figure 1.6: Thiazolyl chalcones with antibacterial activity	6
Figure 1.7: anti-inflammatory and antioxidant chalcones	7
Figure 1.8: Pyrimidine heterocyclic	7
Figure 1.9: The bases of RNA pyrimidines derivatives	7
Figure 1.10: The chemical shifts of protons in pyrimidine ring	8
Figure 1.11: The chemical shift of ¹³ C pyrimidine ring	9
Figure 1.12: Preparation of pyrimidine	9
Figure 1.13: Synthesis of pyrimidine via direct oxidative	10
Figure 1.14: Synthesis of pyrimidine via microwave	10
Figure 1.15: Synthesis of 2,4-diamino-6-hydroxypyrimidine	10
Figure 1.16: Synthesis of pyrimidine-2,4,6 (1 <i>H</i> ,3 <i>H</i> ,5 <i>H</i>)-trione	11
Figure 1.17: Synthesis of pyrido[4,3-d] pyrimidines	11
Figure 1.18: Synthesis of 2H- pyrido[4,3-d] pyrimidines	11
Figure 1.19: Synthesis of cytosine	12
Figure 1.20: Synthesis of anhydroarabinonucleoside	12
Figure 1.21: Synthesis of steroidal pyrimidines	12
Figure 1.22: Synthesis of 5-Amino-2-mercaptopyrimidine-4,6-diol	12
Figure 1.23: Synthesis of pyrazolo[1,5-a]pyrimidine	13
Figure 1.24: Synthesis of 2,4-bis anilino pyrimidines	13
Figure 1.25: Sonogashira cross-coupling reaction	14
Figure 1.26: Synthesis of iodopyrimidinols	14
Figure 1.27: Synthesis of iodopyrimidinols	14

Figure 1.28: Reaction of uracil with dimethyldioxirane	15
Figure 1.29: anti-cancer pyrimidine derivative	15
Figure 1.30: anti-fungal and anti-bacterial pyrimidine	16
Figure 1.31: anti-HIV pyrimidine	16
Figure 1.32: anti-inflammatory active pyrimidine	16
Figure 1.33: Isoxazole ring	17
Figure 1.34: The chemical shift of protons in isoxazole ring	18
Figure 1.35: The chemical shift of ¹³ C in isoxazole ring	18
Figure 1.36: General method for cyclization to isoxazole	18
Figure 1.37: Synthesis of polysubstituted isoxazole	19
Figure 1.38: Synthesis of isoxazole from alkyne and oxime	19
Figure 1.39: Synthesis of Isoxazole from alkyne and chloroxime	19
Figure 1.40: Synthesis of LPA antagonistic Isoxazole	20
Figure 1.41: Synthesis Isoxazole using OHNH ₂ .HCl	20
Figure 1.42: Direct nitration of Isoxazoles	20
Figure 1.43: isoxazole Schiff base	20
Figure 1.44: isoxazole ring opening reaction	21
Figure 1.45: anti-cancer isoxazole derivative	21
Figure 1.46: Anti-bacterial Substituted perhydropyrrolo	
[3,4-d]isoxazole-4,6-diones	21
Figure 1.47: Active isoxazole against the	
multidrug-resistant M. tuberculosis	22
Figure 1.48: Anti-psychotic isoxazole	22
Figure 1.49: Anti-viral isoxazole	22
Figure 1.50: pyrazoles ring and its tautomers	22
Figure 1.51: The chemical shift of protons of pyrazole ring	23
Figure 1.52: The chemical shift of ¹³ C of pyrazole ring	24
Figure 1.53: synthesis of pyrazole from chalcone	24
Figure 1.54: synthesis of pyrazole from 1,3 diketone	24

Figure 1.55: Synthesis of pyrazole using PSSA catalyst	25
Figure 1.56: Synthesis of pyrazole from ethyl acetoacetate	25
Figure 1.57: Synthesis of pyrazole from isoxazole	25
Figure 1.58: Synthesis of pyrazole from vinamidinium salt	26
Figure 1.59: Synthesis of pyrazoles from pyridine	26
Figure 1.60: Reaction of pyrazole with alkyl halide	26
Figure 1.61: Reaction of pyrazole with aldehyde	27
Figure 1.62.: Reaction of pyrazole with N-halosuccinimides	27
Figure 1.63: PDE4 inhibitors Pyrazole	28
Figure 1.64: Carboxyamidepyrazoles	28
Figure 1.65: Steroidal pyrazole	28
Figure 1.66: oxazolyl thiazolyl sulfonyl methyl pyrazoles	29
Figure 1.67: Anti-bacterial pyrazoles	29
Figure 1.68: Kinase inhibitors pyrazoles	29
Figure 3.1: Retrosynthesis of chalcone	78
Figure 3.2: Mechanisms of reaction of chalcone formation	78
Figure 3.3: Retrosynthesis of pyrimidine heterocycle	80
Figure 3.4: Mechanisms of reaction of pyrimidine synthesis	80
Figure 3.5: The second approach; mechanisms of reaction	
of pyrimidine synthesis	81
Figure 3.6: Retrosynthesis of pyrazole heterocycle	81
Figure 3.7: Mechanism of reaction of pyrazole synthesis	82
Figure 3.8: Retrosynthesis of isoxazole heterocycles	83
Figure 3.9: Mechanisms of reaction of isoxazole heterocycle	83
Figure 3.10: Structure of 3-phenyl-5-(ethenyl-2-phenyl)-isoxazole	
and their intermediates	91
Figure 3.11: Interested parts of ¹ H NMR of 1,5-diphenyl	
(2E,4E)-pentadien-1-oxime	92
Figure 3.12: 1,5-diphenyl (2E,4E)-pentadien-1-oxime and	

its possible regioisomer	93
Figure 3.13: 1-(p-nitrophenyl)-5-phenyl-(2E,4E)-pentadiene-1-one	
and its possible products of conjugate and direct addition.	93

List of Schemes

Scheme 2.1: Chemical structure of synthesized 3-aryl-1-phenyl-2propen-	
1-ones	35
Scheme 2.2: Chemical structure of synthesized 3-aryl-1-(<i>p</i> -bromophenyl)	
-2-propen-1-ones	36
Scheme 2.3: Chemical structure of synthesized 3-aryl-1-(<i>p</i> -nitrophenyl)	
-2-propen-1-ones	37
Scheme 2.4: Chemical structure of synthesized 2-amino- 4,6-	
diaryl-pyrimidine	38
Scheme 2.5: Chemical structure of synthesized 3,5-diaryl-pyrazole	39
Scheme 2.6: Chemical structure of synthesized 3,5-diaryl-isoxazole	40
Scheme 2.7: Chemical structure of observaed 4,5 dihydro and	
regioisomer of 3,5-diaryl-isoxazole	41
Scheme 2.9: Non complete synthesis of some pyrazoles and	
pyrimidine observed by GC_MS	42
Scheme 3.10: General fragmentation pathways of the prepared chalcones	85
Scheme 3.11: General fragmentation pathways of the prepared pyrimidines	86
Scheme 3.12: General fragmentation pathways of the prepared pyrazoles	87
Scheme 3.13: General fragmentation pathways of the prepared isoxazoles	88
Scheme 3.14: General fragmentation pathways of the prepared	
isoxazole intermediate	88

List of tables

Tables 2.1: Chemical names of the prepared compounds	43
Table 2.1.1: Chemical names of the prepared of 1,3-diaryl-2 propen-1-ones	43
Table 2.1.2: Chemical names of the prepared 2- amino 4,6-diaryl-pyrimidine	44
Table 2.1.3: Chemical names of the prepared 3,5-diphenyl-pyrazole	45
Table 2.1.4: Chemical names of the prepared and purified	
3,5-diphenyl-isoxazole	46
Table 2.1.5: Chemical names of the prepared and isolated	
isoxazole intermediate	46
Tables 2.2 Reaction conditions of the prepared compounds	47
Table 2.2.1: Reaction conditions of the prepared 1,3-diaryl-2E-propen-1-ones	47
Table 2.2.2: Reaction conditions of the prepared 2- amino 4,6-diaryl-pyrimidine	48
Table 2.2.3: Reaction conditions of the prepared 3,5-diphenyl-pyrazole	49
Table 2.2.4: Reaction conditions of the prepared and purified	
3,5-diphenyl-isoxazole	50
Table 2.2.5: Reaction conditions of the prepared and isolated	
isoxazole intermediate	50
Tables 2.3: Infrared spectroscopy of the prepared compounds	51
Table 2.3.1: Infrared spectral data of the prepared	
1-aryl-3-phenyl-prop-2-en-1-ones	51
Table 2.3.2: Infrared spectral data of the prepared 2- amino	
4,6-diaryl-pyrimidine	52
Table 2.3.3: Infrared spectral data of the prepared 3,5-diphenyl-pyrazole	53
Table 2.3.4: Infrared spectral data of the prepared and purified	
3,5-diphenyl-isoxazole	54
Table 2.3.5: Infrared spectral data of the prepared and isolated	
isoxazole intermediates	54

Tables 2.4 Mass spectroscopy of th	ne prepared compounds	
Table 2.4.1: Mass spectral data of the prep	ared 1-aryl-3-phenyl-	
prop-2-en-1-ones	Ę	55
Table 2.4.2: Mass spectral data of the prep	pared 2- amino	
4,6-diaryl-pyrimidine	5	56
Table 2.4.3: Mass spectral data of the prepare	pared 3,5-diphenyl-pyrazole	57
Table 2.4.4: Mass spectral data of the prepare	pared 3,5-diphenyl-isoxazole	58
Table 2.4.5: Mass spectral data of the prep	ared isoxazole regioisomers	59
Table 2.4.6: Mass spectral data of the prepare	pared isoxazole intermediates	60
Tables 2.5: ¹HNMR Spectral data of the pr	repared compounds	61
Table 2.5.1: ¹ HNMR Spectral data 1-aryl-	3-phenyl-2propen-1-ones	61
Table 2.5.2: ¹HNMR Spectral data 2-amin	o- 4-phenyl-6-aryl-pyrimidines	64
Table 2.5.3: ¹ HNMR Spectral data of 3-arg	yl-5-phenyl-pyrazole	66
Table 2.5.4: ¹HNMR Spectral data of isola	ted and purified isoxazoles	68
Table 2.5.5: ¹HNMR Spectral data of the p	prepared and isolated	
isoxazole intermediate	(69
Tables 2.6: UV-Vis spectral data of the pro-	epared compounds	70
Table 2.6.1: UV-Vis spectral data of the pa	repared 1,3-diaryl-2propen-1-ones	70
Table 2.6.2: UV-Vis spectral data of the pa	repared 2- amino 4,6-diaryl-pyrimidine	71
Table 2.6.3: UV-Vis spectral data of the pa	repared 3,5-diphenyl-pyrazole	72
Table 2.6.4: UV-Vis spectral data of the pa	repared and purified	
3,5-diphenyl-isoxazole		73
Table 2.6.5: UV-Vis spectral data of the pa	repared and isolated isoxazole	
intermediate		73
Tables 2.7: TLC profile of the prepared co	ompounds	74
Table 2.1.1: TLC profile of the prepared 2	1,3-diaryl-2propen-1-ones	74
Table 2.1.2: TLC profile of the prepared 2	- amino 4,6-diaryl-pyrimidine	75
Table 2.1.3: TLC profile of the prepared 3	,5-diphenyl-pyrazole	76
Table 2.1.4: TLC profile of the prepared a	nd purified 3,5-diphenyl-isoxazole	77

Table 2.1.5: TLC profile of the prepared and isolated isoxazole intermediate	77
Appendcex	108
A.1: IR spectra of 1,3-diphenyl-(2E)-propen-1-one [I]	108
A.2: IR spectra of 1-(<i>p</i> -nitrophenyl)-3-(<i>o</i> -hydroxyllphenyl)-	
(2E)-propen-1-one [XII]	108
A.3: IR spectra of 2- amino 4-(<i>p</i> -methoxyphenyl) 6-phenyl pyrimidine [XVII]	109
A.4: IR spectra of 2- amino 4-(<i>p</i> -methoxyphenyl) 6-phenyl pyrimidine [XVII]	109
A.5: IR spectra of 3-(p -bromophenyl)-5-(p -N,Ndimethylaminophenyl)-pyrazole [XXVIII]	110
A.6: IR spectra of 3-(<i>p</i> -nitrophenyl)-5-(ethenyl-2-phenyl)-pyrazole [XXXIII]	110
A.7: IR spectra of 3-(p -nitrophenyl)-5-(ethenyl-2-phenyl)-4,6-dihydroisoxazole [XLVII-b]	111
A.8: IR spectra of 1,5- diphenylpenta- (2E,4E)-dien-1 oxime [XXXVII-b]	111
B.1: MS spectra of 3-(<i>p</i> -N,N dimethylaminophenyl)-1-phenyl-(2E)	
-propen-1-one [II]	112
B.2: MS spectra of 1-(<i>p</i> -bromophenyl)-3-phenyl-(2E)-propen-1-one [V]	112
B.3: MS spectra of 2- amino 4-(<i>p</i> -bromophenyl)	
6-(<i>p</i> -N,N dimethylaminophenyl) pyrimidine [XVIII]	113
B.4: MS spectra of 2- amino 4-(<i>p</i> -bromophenyl)	
6-(<i>p</i> -methoxyphenyl) pyrimidine [XIX]	113
B.5: MS spectra of 3-(<i>p</i> -nitrophenyl)-5-phenyl-pyrazole [XXX]	114
B.6: MS spectra of 3-(<i>p</i> -nitrophenyl)-5-(furyl)-pyrazole [XXXII]	114
B.7: MS spectra of 3-(<i>p</i> -nitrophenyl)-5-(4-N,Ndimethylaminophenyl)	
-isoxazole [XLIV]	115
B.8: MS spectra of 1,5- diphenylpenta- (2E,4E)-dien-1 oxime [XXXVII-b]	115
C.1: ¹ H NMR spectra of 3-(<i>p</i> -methoxyphenyl)-1-phenyl-(2E)-propen-1-one [III]	116
C.2: ¹ H NMR spectra of 1-(<i>p</i> -bromophenyl)-3-(<i>o</i> -hydroxylphenyl)	
-(2E)-propen-1-one [VII]	116
C.3: ¹ H NMR spectra of 2- amino 4-(<i>p</i> -nitrophenyl)	
-6-(<i>p</i> -N,Ndimethylaminophenyl)-pyrimidine [XXII]	117

C.4: ¹ H NMR spectra of 2- amino 4-(<i>p</i> -nitrophenyl)	
-6-(<i>p</i> -methoxyphenyl) pyrimidine [XXIII]	117
C.5: ¹ H NMR spectra of 3-phenyl-5-(<i>p</i> -methoxyphenyl)- pyrazole [XVII]	118
C.6: ¹ H NMR spectra of 3-(<i>p</i> -nitrophenyl)-5-(<i>p</i> -methoxyphenyl)	
-pyrazole [XXXI]	118
C.7: ¹ H NMR spectra of 3-(<i>p</i> -nitrophenyl)-5-(ethenyl-2-phenyl)	
-4,6-dihydroisoxazole [XLVII-b]	119
C.8: ¹ H NMR spectra of 1,5- diphenylpenta-	
(2E,4E)-dien-1 oxime [XXXVII-b]	119
D.1: UV-Vis spectra of 1,5-diphenyl-(2E,4E)-pentadiene-1-one [IV]	120
D.2: UV-Vis spectra of 1-(<i>p</i> -bromophenyl)-3-(<i>p</i> -N,N dimethylaminophenyl)	
-(2E)- propen-1-one [VI]	120
D.3: UV-Vis spectra of 2- amino 4-(<i>p</i> -bromophenyl)	
6-(ethenyl-2-phenyl) pyrimidine [XXI]	121
D.4: UV-Vis spectra of 2- amino 4-(<i>p</i> -nitrophenyl)	
-6-(<i>p</i> -methoxyphenyl) pyrimidine [XXIII]	121
D.5: UV-Vis spectra of 3,5-diphenyl-pyrazole [XXV]	122
D.6: UV-Vis spectra of 3-phenyl-5-(<i>p</i> -methoxyphenyl)- pyrazole [XXVII]	122
D.7: UV-Vis spectra of 3-(<i>p</i> -nitrophenyl)-5-(ethenyl-2-phenyl)	
-isoxazole [XLVII-a]	123
D.8: UV-Vis spectra of 1,5- diphenylpenta- (2E,4E)	
-dien-1 oxime [XXXVII-b]	123