Declaration

I declare that the work embodied in this thesis has not previously been submitted, and is not currently being submitted, for any other degree than that of the degree of Doctor of philosophy of the Sudan University of science and Technology. All work reported herein is my own, except where acknowledged in the text.

 (CANDIDATE)
 (SUPERVISORS)

Dedication

I dedicate this work to the soul of My Father, To My Mother, To My Wife (Abeer), To My Children (Eiman, Abdalla, Raya, Deema, and Duha), To My Sisters (Yusra, Yusr, Myasar, and Muneera). To Mousab, Assem, Ahmed, Qutaeba, Jenan, Hannan, and Mahasen.

Acknowledgement

First and for most, I should offer my thanks, obedience and gratitude to Allah the great from whom I receive guidance and help.

I would like to express my deepest thanks, appreciation and gratitude to my Supervisory committee members Associate Prof . Mohammed Adam Abbo and, Assistant Prof. Elfatih Ahmed Hassan for their direct supervision, encouragement and assistance in the experimental work, correcting the manuscript and continous advice and guidance.

Thanks are due to Dr. Ahmed Al-Ajlouni for assistance in doing the research inside his lab in the Department of Chemical Sciences at Jordan University of Science and Technology – Irbid – Jordan.

I am very grateful to my friends, Ibrahim Javarneh, Ayman Amarat, Dr. Abbas Al–Akhras, Amer Al-sheikh, Adeeb Al-Faqeeh, Mohammed Al-Shorman, Faris-Jaradat, and Ata-Bader .for their encouragement

Table of Contents

Subject	Page
Declaration	i
Dedication	
Acknowledgement	iii
List of Figures	viii
List of Tables	xiii
Abstract (Arabic)	xiv
Abstract	xvi
Chapter One: Introduction	1
1.1 Water pollution	1
1.1.1 Introduction	1
1.1.2 Sources of water pollution	1
1.1.3 Causes of water pollution	2
1.1.4 Forms of water pollution	3
1.1.5 Classifying of water pollution	3
1.1.6 Preventing of water pollution	4
1.1.7 Water pollution in Jordan	5
1.1.8 Wastewater	6
1.2 Removing of water pollutants	7
1.2.1 Photo-induced Heterogeneous Catalysts	7
1.2.2 Homogeneous Catalysts	8
1.3 Oxidizing agents	13
1.4 Hydrogen peroxide (H ₂ O ₂)	14
1.4.1 Why use H ₂ O ₂	14
1.4.2 Disadvantages of H ₂ O ₂	15
1.4.3 Catalytic activation of hydrogen peroxide	16
1.5 Phenols compounds	19
1.5.1 Properties of Phenols	19
1.5.2 Methods of removing of phenols from wastewater	20
1.5.3 Catalytic oxidation of phenols	22
1.6 Objectives of our study	25

	Subject	Page
	Chapter two: Experimental	26
2.1	Preparation of [Bu ₃ NH] ₃ [PhPW ₃ O ₁₉ H ₂] (Ph-HWPA)	26
2.2	Preparation of Na ₅ Mo ₁₀ V ₂ PO ₄₀ (HMoVPA)	27

2.3 Standardization of H ₂ O ₂	27
2.4 Materials and Methods	28
Chapter three: Results	34
3.1 Kinetic study of H ₃ PW ₁₂ O ₄₀ (HWPA)	34
3.1.1 Calculation of initial rate	34
3.1.2 Calculation of observed rate constants (K _{obs} .)	34
3.1.3Calculation of Catalyzed and uncatalyzed rate constants.	34
(K _{cat} ,K _{uncat})	
3.1.4 Effect of increasing the concentration of reactants on the rate of	42
reaction	
3.1.5 Derivation of rate expression for catalytic reactions	42
3.1.6 Hammet – correlation	47
3.1.7 Effect of temperature on the rate of reaction	47
3.1.8 Effect of oxygen (air) on the rate of reaction	52
3.1.9 Isotope effect on the rate of reaction	52
3.1.10 Effect of ionic strength on the rate of reaction	52
3.1.11 Effect of acidity on the rate of reaction	
3.1.12 Effect of solvent on the rate of reaction	
3.1.13 Base- adduct effect on the rate of reaction	
3.1.13.1 Calculation of equilibrium constant (K_{eq}) for the reaction of	60
HWPA with immidazole	
3.1.13.2 Variation of initial rate with concentration of immidazole	62
3.2 Kinetic study of H ₃ PMo ₁₂ O ₄₀ (HMoPA)	65
3.2.1 Calculation of catalyzed rate constant	65
3.2.2 Effect of increasing the concentration of reactants on the rate of	
reaction	
3.2.3 Hammet - correlation	
3.2.4 Effect of temperature on rate of reaction	
3.2.5 Isotope effect	
3.2.6 Effect of ionic strength	
3.2.7 Effect of acidity	75
3.2.8 Effect of solvent	75
3.2.9 Base–adduct effect	75

Subject	Page
3.3 Kinetic study of Ph-HWPA	80
3.3.1 Effect of increasing the concentration of reactants on the rate of	80
reaction	
3.3.2 Hammet – correlation	80

3.3.3 Effect of temperature	80
3.4 Kinetic study of Na ₅ Mo ₁₀ V ₂ PO ₄₀ (HMoVPA)	85
3.4.1 Effect of increasing the concentration of HMoVPA on the rate of	85
reaction	
3.4.2 Hammet – correlation	85
3.4.3 Effect of temperature	85
3.5 Evidence for the reaction as free – radical	89
3.6 Reactivity of phenol and para-Benzoquinone with HWPA to	89
activate H ₂ O ₂ at 80C°	
3.7 Identification of the products of catalytic reactions	93
3.7.1 IR-spectroscopy	93
3.7.2 GC-Mass spectroscopy	93
3.7.3 Br ₂ -test	93
3.7.4 pH-test	93
3.8 GC-Mass spectra for a true sample of wastewater	99
Chapter Four: Discussion	103
4.1 observed and catalyzed rate constants for catalytic reaction	103
4.2 Effect of increasing the concentration of reactants on the rate of	106
catalytic reactions	
4.3 Hammet –correlation	107
4.4 Effect of temperature	108
4.5 Effect of oxygen (air)	109
4.6 Isotope effect	109
4.7 Effect of ionic strength	110
4.8 Effect of acidity	110
4.9 Effect of solvent	111
4.10 Base-adduct effect	111
4.11 Evidences for the reaction to be free-radical	112
4.11.1 Hammet-correlation	112
4.11.2 Methacrylic acid test	112
4.12 Identification of the products of catalytic reactions	113
412.1 Comparison between the reactivity of phenol and para-	113
Benzoquinone with HWPA to activate H_2O_2 at 80 C °	

Subject	Page
4.12.2 IR-spectroscopy	113
4.12.3 GC-Mass spectroscopy	114
4.13 Suggested mechanisms, for catalytic reactions	115

Chapter Five: Summary and Conclusion	116
References	120

List of Figures

Figure	Description	Page
Figure	Variation of Absorbance with time (minute) for the reaction of	35
(3.1)	HWPA (1.25 \times 10 ⁻³ M) with para-Cresol (6 \times 10 ⁻³ M) to activate H ₂ O ₂	
	(0.35M) at 25C° and λ = 380 nm. (Slope = dA/ dt= 0.0254 ,	
	Initial rate=Slope / $\Delta \epsilon = 2.75 \times 10^{-5}$, $\Delta \epsilon = 920 \text{ cm}^{-1} \text{ dm}^{3} \text{ mole}^{-1}$)	
Figure	Variation of Absorbance with time (min) for the reaction of	36
(3.2)	HWPA ($3X10^{-4}M$) with para-Cresol ($6X10^{-3}M$) to activate H_2O_2	
	(0.35M)at 25C° and λ = 380 nm. (K _{obs} =m ₃ = 0.02)	
Figure	Variation of Absorbance with time (minute) for the reaction of	37
(3.3)	HWPA (7.5 x 10^{-4} M) with para-Nitrophenol (6x 10^{-3} M) to activate H ₂ O ₂	
	(0.35M) at 25C° and λ = 380 nm. (K _{obs} = m ₃ = 0.00094)	
Figure	Variation of K_{obs} with the concentration of HWPA reacted with	39
(3.4)	meta-Cresol (6 x 10^{-3} M) to activate H ₂ O ₂ (0.35M) at 25C° (Slope=	
	K _{cat} =172.3; intercept=K _{uncat.} =0.0043)	
Figure	Variation of K_{obs} with the concentration of HWPA reacted with	40
(3.5)	para-Nitrophenol (6x10 ⁻³ M) to activate H_2O_2 (0.35M) at 25C° (Slope=	
	$K_{cat} = 1.90)$	
Figure	Variation of initial rate with the concentration of	44
(3.6)	para-Cresol reacted with HWPA (8×10^{-4} M) to activate H ₂ O ₂ (0.35M)	
	at 25C°.	
Figure	Variation of initial rate with the concentration of HWPA	45
(3.7)	reacted with para-Cresol ($6x10^{-3}M$) to activate H_2O_2 (0.35M) at 25C°.	
	(Slope = Catalyzed rate = 0.029).	
D • .		10
Figure	Variation of initial rate with the concentration of H_2U_2 activated by the reaction of LIMDA (9X10 ⁻⁴ M), with para Greecel (Gy10 ⁻³ M), at	46
(3.0)	by the reaction of HWPA (6A10 W) with para-Cresol (6X10 W) at 250° (K = 1.0 K = 0.05 k = 15 k = k/k = 20)	
Figure	2.5C. $(\mathbf{R}_1 - 1.0, \mathbf{R}_1 - 0.05, \mathbf{R}_2 - 15, \mathbf{R}_{eq} - \mathbf{R}_1/\mathbf{R}_1 - 20)$.	10
(3.9)	FIGURE OF LOG(KX/ K_h) versus O for the reaction of HWPA with substituted phonols ($F_{\rm W}10^{-3}M$) to activate H O (0.25M) at 25C2 (Slare	43
(0.0)	Substituted phenois ($\delta x 10^{-1} \text{M}$) to activate H_2O_2 (0.35M) at 25C ⁻¹ . (Slope	
Figure	$-\mu - 1.//J$.	E 1
rigure (2.10)	FIGURES OF LIN(K/T) VERSUS (1/T) FOR THE REACTION OF HWPA WITH Dara-Cresole (6x10 ⁻³ M) to activate $H_{2}O_{2}$ (0.25M)	21
(3.10)		

Figure	Description	Page
Figure (3.11)	Variation of Absorbance with time (min) for the reaction of HWPA (8x10 ⁻⁴ M) with para-Cresol - (6x10 ⁻³ M) to activate H_2O_2 (0.35M) at 25C° in the presence of O_2 (air), at λ = 380 nm.(K _{obs} = m ₃ = 0.035)	53
Figure (3.12)	Variation of Absorbance with time (min) for the reaction of HWPA (8x10 ⁻⁴ M) with para-Cresol (6x10 ⁻³ M) to activate H ₂ O ₂ (0.35M) at 25C° under the flushing of N ₂ gas at λ = 380 nm. (K _{obs} = m ₃ = 0.035).	54
Figure (3.13)	Variation of Absorbance with time (min) for the reaction of HWPA (7.5x10 ⁻⁴ M) with meta-Cresol (6x10 ⁻³ M) to activate H_2O_2 (0.35M) at 25C° and λ = 380 nm. H_2O was used as a solvent. (K _{obs} = m ₃ = 0.150)	55
Figure (3.14)	Variation of Absorbance with time (min) for the reaction of HWPA (7.5x10 ⁻⁴ M) with meta-Cresol (6x10 ⁻³ M) to activate H_2O_2 (0.35M) at 25C° and λ = 380 nm. D_2O was used as a solvent. (K _{obs} = m_3 = 0.027)	56
Figure (3.15)	Variation of K_{obs} with the concentration of $Na_2SO_4.10H_2O$ solution for the reaction of HWPA (9x10 ⁻⁴ M) with para-Cresol (6x10 ⁻³ M) to activate H_2O_2 (0.35M) at 25C°.	57
Figure (3.16)	Variation of initial rate with the concentration of H_2SO_4 solution for the reaction of HWPA (9x10 ⁻⁴ M) with para-Cresol (6x10 ⁻³ M) to activate H_2O_2 (0.35M) at 25C°.	58
Figure (3.17)	Variation of initial rate with volume percentage of Acetonitrile for the reaction of HWPA ($8x10^{-4}M$) with para-Cresol ($6x10^{-3}M$) to activate H_2O_2 (0.35M) at 25C°.	59
Figure (3.18)	Variation of (Absorbance/[HWPA]) with concentration of immidazole for the reaction of HWPA (1x 10^{-4} M) with immidaole at 25C° and λ = 380 nm. ($\epsilon_1 = \epsilon_{complex} = 421$ mole ⁻¹ cm ⁻¹ dm ³ , $\epsilon_2 = \epsilon_{HWPA} = 60$ mole ⁻¹ cm ⁻¹ dm ³ , $K_{eq} = 1.9 \times 10^3$)	63
Figure (3.19)	Variation of initial rate with concentration of immidazole for the reaction of HWPA (8x10 ⁻⁴ M) with para-Cresol (6x10 ⁻³ M) to activate H_2O_2 (0.35M) at 25C°.	64

Figure	Description	Page
Figure	Variation of initial rate with concentration of HMoPA reacted	67
(3.20)	with para-Cresol ($6x10^{-3}M$) to activate H_2O_2 (0.35M) at 25C°. (Slope = catalyzed rate = 0.009).	
Figure	Variation of initial rate with concentration of para-Cresol	68
(3.21)	reacted with HMoPA ($2x10^{-4}$ M) to activate H_2O_2 (0.35M) at 25C°.	
Figure	Variation of initial rate with concentration of H_2O_2 activated by	69
(3.22)	the reaction of HMoPA (2X10 ⁻⁴ M) with para-Cresol (6x10 ⁻³ M) at 25C°	
	.(K ₁ =0.15,K ₋₁ =0.016, K ₂ =2.85, K _{eq} =K ₁ /K ₋₁ = 9.38).	
Figure	Plotting of Log(k_x/K_h) versus σ for the reaction of HMoPA with	72
(3.23)	substituted phenols (6x10 ⁻³ M) to activate H ₂ O ₂ (0.35M) at 25C°. (Slope	
	= ρ= -2.2).	
Figure	Plotting of Lin(k/T) versus (1/T) for the reaction of HMoPA with para-Cresol ($6x10^{3}$ M) to activate H ₂ O ₂ (0.35M)	74
Figure	Variation of initial rate with concentration of Na ₂ SO ₄ .10H ₂ O	76
(3.25)	solution for the reaction of HMoPA ($2x10^{-4}M$) with para-Cresol ($6x10^{-1}$, 0
	3 M) to activate H ₂ O ₂ (0.35M) at 25C°.	
Figure	Variation of initial rate with concentration of HCLO ₄ solution	77
(3.26)	for the reaction of HMoPA (2x10 ⁻⁴ M) with para-Cresol (6x10 ⁻³ M) to	
	activate H_2O_2 (0.35M) at 25C°.	
Figure	Variation of initial rate with volume percentage of Acetonitrile	78
(3.27)	for the reaction of HMoPA (2x10 ⁻⁴ M) with para-Cresol (6x10 ⁻³ M) to	
	activate H_2O_2 (0.35M) at 25C°.	
Figure	Variation of initial rate with concentration of immidazole for the	79
(3.28)	reaction of HMIOPA (2x10 $^{\circ}$ M) with para-Cresol (6x10 $^{\circ}$ M) to activate	
F igure	H_2O_2 (0.35M) at 25C ² .	01
(3 20)	Variation of initial rate with $Concentration of ph-HWPA$ reacted with para-Cresol ($6v10^{-3}M$) to activate $H_{2}O_{2}$	01
(3.23)	(0.35M) at 25C° (Slope = Catalyzed rate = 0.004)	
Figure	Variation of initial rate with concentration of H_2O_2 activated by	82
(3.30)	the reaction of ph-HWPA (7.5X10 ⁻⁴ M) with para-Cresol ($6x10^{-3}$ M) at	02
	25C°. (K ₁ =0.07, K ₋₁ =0.008, K ₂ =4, K _{ed} =K ₁ /K ₋₁ = 8.75).	
Figure	Plotting of Log(S_x/S_h) versus σ for the reaction of	83
(3.31)	ph-HWPA with substituted phenols ($6x10^{-3}M$) to activate H ₂ O ₂ (0.35M)	
	at 25C°. (Slope = ρ = -1.4).	
Figure	Plotting of $Lin(R_{cat}/T)$ versus (1/T) for the reaction of ph-HWPA	84
(3.32)	with para-Cresol ($6x10^{-3}$ M) to activate H ₂ O ₂ (0.35M).	

Figure	Description	Page
Figure	Variation of initial rate with concentration of HMoVPA reacted	86
(3.33)	with para-Cresol ($6x10^{-3}$ M) to activate H ₂ O ₂ (0.35M) at 25C°. (Slope =	
	Catalyzed rate = 0.005).	
Figure	Plotting of Log(S _x /S _n) versus σ for the reaction of HMoVPA with	87
(3.34)	substituted phenols (6x10 ⁻³ M) to activate H ₂ O ₂ (0.35M) at 25C°. (Slope	
	$= \rho = -2.3$).	
Figure	Plotting of Lin(R _{cat} /T) versus (1/T) for the reaction of HMoVPA	88
(3.35)	with para-Cresol ($6x10^{-3}$ M) to activate H ₂ O ₂ (0.35M).	
Figure	Variation of Absorbance with time (min) for the reaction of	90
(3.36)	HWPA($5x10^{-6}M$) with phenol($5x10^{-5}M$) to activate H ₂ O ₂ (0.05M) at	
	80C° and λ =380 nm. (Slope = 0.025, Initial rate = slope/ ϵ = 3x10 ⁻⁵ , ϵ =	
	820 dm ³ cm ⁻¹ mole ⁻¹).	
Figure	Variation of Absorbance with time (min) for the reaction of	91
(3.37)	HWPA (5x10 ⁻⁶ M) with para-Benzoquinone (5x10 ⁻⁵ M) to activate H_2O_2	
	(0.05M) at 80C° and λ =242 nm.(Slope = 0.006, Initial rate = slope / ϵ =	
	$2x10^{-7}$, $\varepsilon = 24000 \text{ dm}^3 \text{cm}^{-1} \text{mole}^{-1}$).	
Figure	Variation of Absorbance with time (min) for the reaction of	92
(3.38)	HWPA (1.25x10 ⁻³ M) with phenol (6x10 ⁻³ M) to activate H_2O_2 (0.35M) at	
	25C° and λ =380 nm.	
Figure	IR-Spectra for para-Benzoquinone (6x10 ⁻⁵ M) at 25C°. using	94
(3.39)	CH ₂ Cl ₂ as a solvent.	
Figure	IR-Spectra for the organic products extracted by CH ₂ Cl ₂ , which	95
(3.40)	were resulted from the reaction of para-Benzoquinone (6x10 ⁻³ M) with	
	H_2O_2 (0.35M) at 25C°. (Reaction's time = 24 hrs).	
Figure	IR-Spectra for the organic products extracted by CH ₂ CL ₂ which	96
(3.41)	were resulted from the reaction of para-Benzoquinone (6x10 ⁻³ M) with	
	HWPA(1.25X10 ⁻³ M) to activate $H_2O_2(0.35M)$ at 25C ⁻⁰ . (Reaction's time	
	= 24 hrs).	~ -
Figure	IR-Spectra for the organic products extracted by CH_2Cl_2 , which	97
(3.42)	were resulted from the reaction of phenol	
	$(6x10^{\circ}M)$ with HWPA(1.25X10 ^o M) to activate H ₂ O ₂ (0.35M) at 25C ^o .	
	(Reaction's time =7 days).	00
Figure	(a) GC-Mass, spectra for phenol ($6x10^{\circ}$ M). using CH ₂ CL ₂ as a solvent.	98
(3.43)	(D) GC-Mass spectra for para-Benzoquinone (6x10°MI). Using CH ₂ Cl ₂	
	as a suivelli.	
	which were resulted from the reaction of $HWDA$ (1.25×10 ⁻³ M) with	
	nhenol ($6x10^{-3}M$) to activate $H_2\Omega_2$ (0.25M)	
	pnenoi ($bx10$ $iv1$) to activate H_2U_2 (0.35 $iv1$).	

Figure	Description	Page
Figure	GC-Mass spectra for a true sample of wastewater	100
(3.44)	(10 ml extracted by CH ₂ CL ₂)	
Figure	GC-Mass spectra for the organic products extracted	101
(3.45)	by CH ₂ Cl ₂ , which were resulted the reaction of HWPA (1.25x10 ⁻³ M)	
	with true sample of wastewater (6ml) to activate H_2O_2 (0.5M)	
	(Reaction's time = 7 days).	
Figure	GC-Mass spectra for the organic products extracted	102
(3.46)	by CH ₂ Cl ₂ , which were resulted from the reaction of HWPA (1.25x10 ⁻	
	3 M) with true sample of wastewater (6ml) to activate H ₂ O ₂ (0.5M)	
	(Reaction's time = 14 days).	

List of Tables

Table	Description	Page
Table (3.1)	Values of K _{obs.} for the reaction of HWPA (7.5X10 ⁻	38
	⁴ M) with substituted phenols (6X10 ⁻³ M) to activate	
	H ₂ O ₂ (0.35M) at 25C°	
Table (3.2)	Values of Catalyzed and unCatalyzed rate	41
	constants for the reaction of HWPA with	
	substituted phenols (6X10°M) to activate	
	$H_2O_2(0.35M)$ at 25C°	40
Table (3.3)	Values of Catalyzed rate constants and σ for the	48
	reaction of HWPA with substituted phenols	
	(6X10 ⁻³ M) to activate H ₂ O ₂ (0.35M) at 25C°	
Table (3.4)	Values of catalyzed rate constants variated with	50
	temperature for the reaction of HWPA with para-	
Table (2 5)	Cresol ($6X10^{\circ}MI$) to activate $H_2O_2(0.35MI)$	<u> </u>
1 able (3.5)	variation of total absorbance with concentration of immidately for the reaction of $HWDA$ (1V10 ⁻⁴ M)	02
	$\frac{1}{10000000000000000000000000000000000$	
Table (2.0)	with initiazole at λ = 380 mil, and Temp. = 25C	66
1 abie (5.0)	of HMoPA with substituted phenols(6X10 ⁻³ M) to	00
	activate $H_2\Omega_2$ (0.35M) at 25C °	
Table (3.7)	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	71
	Values of $Log(K_x/K_h)$ and O for the reaction of	/1
	HWPA with substituted phenois(6×10^{-1} M) to	
$\mathbf{T}_{\mathbf{h}} \mathbf{h} \mathbf{h} \mathbf{h} \mathbf{h} \mathbf{h} \mathbf{h} h$	activate $H_2O_2(0.35M)$ at 25C $^{\circ}$	70
1 able (3.8)	values of Catalyzed rate constant variated with	/3
	random matching for the reaction of finite A with para-Cresol (6X10-3M) to activate H2O2(0.35M)	
Table (5.1)	Comparison of the values of catalyzed rate	118
	constants for the reaction of HWPA and HMoPA	110
	with substituted phenols to activate H_2O_2 (0.35M)	
	at 25C°	
Table (5.2)	Values of rate constant (K ₂), catalyzed rate, ΔH^{\neq}	119
	and reaction constant (Ω) for catalytic reactions	
	with substituted phenols to activate H_2O_2	

ملخص

تم دراسة سرعة أكسدة الفينـولات فـي الميـاه العادمـة بواسـطة مفاعلتهـا مـع مركبـات المعـادن عديـدة الأكاسـيد لتنشيط بيروكسيد الهيدروجين. الفينولات التي تمـت دراسـتها هي: فينول، بارا- كريسول، ميتا - كريسول، بارا –كلوروفينول، وبارا – نيتروفينول.

مركبات المعـادن عديـدة الاكاسـيد الـتي تمـت دراسـتها هـي: HWPA,

.HMoVPA و Ph-HWPA, HMoPA

تم حساب السرعة وثابت السرعة لجميع هذه التفاعلات بتغيير تركيز كل من الفينول، بيروكسـيد الهيـدورجين ومركـب المعدن، وتبين بأن ميتا –كريسول له اكثر ثـابت سـرعة وبـارا-نيتروفينول له أقل ثابت سرعة. وقد تبين أيضاً بأن سرعة هذه التفاعلات تزداد بزيادة تركيز المتفاعلات وزيادة درجة الحرارة وتزداد قليلاً بزيادة القوة الأيونية.

تم استخدام معادلة هامت من أجـل دراسـة تـأثير وجـود مجموعات مانحة للإلكترونات (مجموعـة ميثيـل) ومجموعـات كاسبة للإلكترونات (مجموعة كلورو، ومجموعـة نـايترو) علـى الفينول على سرعة هـذه التفـاعلات وتـبين بـأن المجموعـات المانحـة للإلكترونـات تزيـد مـن سـرعة التفـاعلات ولكـن المجموعـات الكاسـبة للإلكترونـات تقلـل مـن سـرعة هـذه التفـاعلات، وكـذلك تـم حسـاب ثـابت التفاعـل (ρ) لجميـع التفاعلات باستخدام معادلة هامت. تـم اسـتخدام معادلـة إيرنـج مـن أجـل حسـاب حـرارة التنشيط لهذه التفاعلات وتبين بان الـ HWPA لـه اقـل طاقـة تنشيط (KJ/ mole 38.7) وأن HMoVPA له أكثر طاقة تنشيط (KJ/mole 110.8).

تـم دراسـة تـأثير الأوكسـجين (الهـواء) علـى سـرعة التفاعلات وتبين بأنه ليس له تأثير على سرعة هذه التفـاعلات. تقل سـرعة هـذه التفـاعلات بزيـادة الحامضـية وزيـادة نسـبة الاسيتونايترايل وكذلك بإضافة الإميدازول إلى هذه التفـاعلات. الماء هو أفضل مذيب يستخدم لهذه التفاعلات. الـ HWPA هو أفضل مركب معدن عديد الأكاسـيد (عامـل مسـاعد) لتحطيـم الفينولات كاملاً في المياه العادمة.

تم استخدام جهـاز غـاز الكروماتوغرافيـا وجهـاز الأشـعة تحت الحمراء من اجل تشخيص نواتـج هـذه التفـاعلات والـتي من الممكن أن تكون: غاز ثاني أوكسيد الكربون، مـاء، وبعـض الحوامض العضوية.

Abstract

The rate of oxidation of substituted phenols in wastewater was studied by reaction of phenols with polyoxometalate catalysts to activate H₂O₂. The substituted phenols used in this study are, phenol, para-Cresol, meta-Cresol, para-Chlorophenol, and para-nitrophenol. The polyoxometalates used are, H₃PW₁₂O₄₀ (HWPA), ph-H₃PW₁₂O₄₀ (ph-HWPA), H₃PMo₁₂O₄₀ (HMoPA), and Na₅Mo₁₀V₂PO₄₀(HMoVPA).

The catalyzed rate and catalyzed rate constants were calculated for these catalytic reactions. meta-Cresol has the highest value of rate constant, while para-nitrophenol has the lowest value. The rate of these reactions increases with increasing the concentration of H₂O₂, catalyst, and substituted phenol. Also, increase in temperature increases the rate of these reactions while increase in ionic strength increases them only slightly.

Hammet equation was used to study the effect of the presence of electron donating and withdrawing groups on phenol on the rate of these reaction. Electron donating groups (eg. -CH₃ group) on phenol increase the rate of these reactions, but electron withdrawing groups (NO₂, and CL groups) on phenol decrease the rate. Also, the reaction constant (ρ) was calculated for these reactions by using Hammet equation and it was observed to be negative value, which indicates that, the reaction follows free-radical mechanism.

Eyring equation was used to calculate the enthalpy of activation for these reactions. HWPA has the lowest value of enthalpy of activation ($\Delta H^{#}$ =38.7 kJ/mole), but HMoVPA has the highest value (($\Delta H^{#}$ =110.8 kJ/mole). It means that, HWPA is the most reactive catalyst, while HMoVPA is the lowest reactive among the catalysts studied.

q

The effect of oxygen (air) was studied. It was found that it has no effect on the rate of these reactions. The rate of these reactions decreases with increase in acidity, and also with increase in volume percentage of Acetonitrile. Immidazole decreases the rate of these reactions.

Water was found to be the best solvent for these reactions. HWPA was the most effective catalyst among the group of catalysts studied, for complete degradation of substituted phenols in wastewater. GC-Mass spectroscopy and IR - spectroscopy were used to identify the products of these reactions, which were CO₂, H₂O, and some organic acids. Methacrylic acid test was used to prove that, the reaction follows free-radical mechanism.