$\left\|C_{C}(f)\right\|_{B_{p}(f)} \leq \left(\frac{1-1|\mathcal{A}(0)|}{1-|\mathcal{A}(0)|}\right)^{1} \left\|f\right\|_{B_{p}(f)}$

remark (2-2-9)[1]: We have included the proof, al thought it is very elementary, because the change of variable at the right moment can improve the estimate of the norm

[where $\|C_{\#} \oplus B_{\rho}$, B_{ρ} is estimated by $\left(\frac{1+|\phi(0)|}{1-|\phi(0)|}\right)^{2}$].

we are mainly concerned with analyzing when hankel aperators improve the condition of integrableility. To this purpose we need the following notion

Given $A_{A}(B) \longrightarrow A_{A}(Z)$ analytic, let us consider the following image measure $A_{A}(B) \longrightarrow A^{A}(Z)$ for any Borel set $B \longrightarrow A^{A}(Z)$ Theorem (2-2-10) [1] : Let $\circ A \longrightarrow A^{A}(Z)$ and $A \longrightarrow A^{A}(Z)$ analytic. The following are equivalent

(a)
$$I = I(a)$$

(b) $A = I = I(a)$
 $I = I(a)$
(b) $A = I = I(a)$
 $I = I(a)$
 $I = I(a)$

Proof :-

Since (2.1.12) to this case and get that (I) measure

$$\int \frac{dA(w)}{|1-q(w)z|^{\frac{2}{p}}} = O\left(\frac{1}{(1-|z|)^{\frac{i}{p}}}\right) ,$$

which in terms of the image measure 🐁 says

$$\int \frac{dA_{\varphi}(w)}{|1-wz|^{\frac{2+\varepsilon}{p}}} = O\left(\frac{1}{(1-|z|)^{\frac{t}{p}}}\right) \quad . \tag{16}$$

Alook at lemma (2.2.2) shows that (10) is equivalent to the fact that \cdot is a $\frac{1}{2}$. Car lesson measure .

Remark : 2.2.11)[1]: Observe that (16) for r^{-2} and p^{-4} gives the following interesting characterization for the norm of r^{-1} as an operator on $B_{1}(D)$

$$\left\|C_{\phi}\right\|_{\xi(B_{1},B_{1})} \approx \sup_{|z|<1} \int_{0} \left|\Phi_{2}'(w)\right|^{2} dA_{\phi}(w)$$
(17)

where $\phi_2(w) = \frac{w-z}{1-zw}$.

$$m_{\mathcal{A}}(B) \longrightarrow m((\mathcal{A})^{-+}(B)) \tag{18}$$

(stands for the normalized lebesque measure on the unite circle)

Arguing as in theorem (2-2-10) it is easy to get the next result. Theorem (2-2-12)[1]: Let be Dini weight such that $f \in b_1$, and P = P - analytic $C_{\varphi}: B_1(P) = P^{-1}$ if and only if T_1 is a $P^{(1)} = C_{\varphi}$ car leson measure.

Remark (2-2-13) [1] :-

It was pointed out that $C_{\phi}: H^{p} \longrightarrow H^{1}$ is equivalent to $C_{\phi}: H^{1} \longrightarrow H^{V_{p}}$.