(f) 1 $\epsilon(t) \leq \frac{1}{1 + \phi(0)}$ $(f)\big|_{B_p(f)} \leq \left(\frac{1 + |\phi(0)|}{1 + |\phi(0)|}\right)^{\frac{1}{2}} \|f\|_{B_p(f)}$ *p* $C_c(f)|_{B_p(f)} \leq \frac{1 + |\phi(0)|}{1 + |\phi(0)|} \Big)^{\frac{1}{2}} \|f\|_{B_p}$ $\frac{1}{2}$ $\overline{\mathbf{y}}$ $\bigl($ ($\overline{\mathbf{C}}$ $\frac{+}{-}$ $\leq \frac{1 + \phi}{1 - \phi}$ φ

remark (2-2-9)[1] : We have included the proof , al thought it is very elementary, because the change of variable at the right moment can improve the estimate of the norm

 $\left[\begin{array}{ccc} \text{where} & \sqrt{2} & \text{if } \mathbb{R} \\ \text{where} & \sqrt{2} & \text{if } \mathbb{R} \end{array}\right]$ is estimated by $\left(\frac{1+\left|\mathcal{A}(0)\right|}{1-\left|\mathcal{A}(0)\right|}\right)^2$ $\frac{1}{1 - 00}$ $\frac{1+|{\phi}(0)|}{1-|{\phi}(0)|}$ $\overline{}$ \overline{X} $\sqrt{2}$ Ų \overline{C} − + φ $\frac{\phi(0)}{\phi(0)}$].

we are mainly concerned with analyzing when hankel aperators improve the condition of integrableility. To this purpose we need the following notion

Given ^φ: *^D*→*^D* analytic, let us consider the following image *G*iven [∞]^{*n*} → analytic, let us consider the following i
measure \rightarrow *A A B*) = $\int_{\mathbb{R}^d(E)} dA(z)$ for any Borel set \rightarrow B → B → B Theorem (2-2-10) [1] : Let $\circ \rightarrow \circ$ and $\circ \rightarrow \circ$ analytic. The following are equivalent $\epsilon_{\mathscr{B}}(B) \longrightarrow$

(a)
\n
$$
C_{\varphi}: B_{\rho}(D) \longrightarrow D(D)
$$

\n(b)
\n $\uparrow \qquad \qquad \downarrow$
\n $\uparrow \qquad \qquad \downarrow$
\n $\uparrow \qquad \qquad \downarrow$
\n \uparrow
\n \uparrow
\n \downarrow
\n \uparrow
\nCarleson measure.

Proof :-

Since *⇔* → ∈¹_{t+}</sup> for any ^{t>0}, we can apply theorem (2.1.12) to this case and get that (I) measure

$$
\int_{\left|1-\phi(w)z\right|^{\frac{2+\sigma}{p}}}^{dA(w)} = 0 \left(\frac{1}{\left(1+|z|\right)^{\frac{t}{p}}},\right)
$$

which in terms of the image measure \sim says

$$
\int_{\left|1-wz\right|^{\frac{2+\sigma}{p}}}^{\frac{dA_{\phi}(w)}{2+\sigma}} = o\left(\frac{1}{\left(1+z\right)^{\frac{t}{p}}}\right) \qquad (16)
$$

Alook at lemma (2.2.2) shows that (10) is equivalent to the fact that **A** is a *p* . Car lesson measure .

Remark : 2.2.11)[1]: Observe that (16) for \leftarrow and \leftarrow gives the following interesting characterization for the norm of ^{*c*} as an operator on $B_1(D)$

$$
\|C_{\phi}\|_{L_{\left(B_{1},B_{1}\right)}} \approx \sup_{|z|<1} \int_{0}^{\left[\Phi\right]'}_{2}(w)|^{2} dA_{\phi}(w) \tag{17}
$$

where $\varphi(w) = \frac{w - z}{1 - zw}$ $\phi_2(w) = \frac{w - z}{1 - zw}$

As before our results can used to describe composition operators acting on ^{*H_p*} spaces for $\circ \neg P \neg P$ </sup>. Given $\circ \neg P \neg P$ analytic, write \cdot for the "function" (defined a.e.) consisting of its boundary limits. Let us consider the following image measure *m*² on *defined by*

(18)

 $\mathcal{C} \rightarrow \text{OH} \rightarrow \text{H}$
 $\mathcal{C} \rightarrow \text{H} \rightarrow \text{H}$

(*^m* stands for the normalized lebesque measure on the unite circle)

Arguing as in theorem (2-2-10) it is easy to get the next result. Theorem (2-2-12)[1]: Let be Dini weight such that *t*^{∈k}, and ϕ *D*→**D** - analytic $C_{\phi}: B_1(p) \to H^1$ if and only if *n* is a *tp*(*t*)− car leson measure.

Remark (2-2-13) [1] :-

It was pointed out that $C_{\varphi}: H^p \to H^1$ is equivalent to C_{ϕ} : H^{1} \longrightarrow H^{Vp} $\qquad \bullet$