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CHAPTER 1
BACKGROUND FACTS

In this chapter we present some basic concepts of the LP-spaces and

Tensor products .

Radon-Nikodgm Theorem (1.1) [3] :-

If (X, S, W) is a o-finite measure space and v is O-finite measure on S

such that v << [ then there exists a finite valued non-negative measurable

function f on X such that foreach E S , v(E)= = fdu. Also f is unique in

the sense that if v(E) = g du foreach E [J S then f = g a.e(M) .
Proof :-
We show first that we may assume U(X) < oo and [l (X) < oo and v(X)
<o and so we suppose the result has been proved for that case . We have
~ =i~ . MUA,) < o and > —ti= | v(Bp) <oand { A}, { Bn}
may be supposed to be sequences of disjoint sets . So setting

< —fl<. —=.> we obtain X as the union of disjoint sets on which both u

and v are finite, say = =i
LetS,={En X,:EUS}.

A o-algebra over X, , and considering 1 and v restricted to S, we obtain a

function F, such that if E 0 S, , v(E) = J4% | Soif AOS, ~ —fi~.

where A, [J S, , defining F = f, on X, gives a measurable function on X .and

oo

V(A) = S[f, dee = [f drs

n='A,

and the general case follows .



So we need only with finite measures . Let K be the class of non-negative

functions measurable with respect to  and satisfying J* 4= for all E

[JS. Then K is non-empty as 0 Ll K.

Leta =sup { [ fdu:fOK } and let {f,} be a sequence in K such that

lim[f,dy =a.

If B is any fixed measurable set, n a fixed positive integer and g, = max (f; ,
.. fm) then , by induction , B may be written as a union of disjoint measurable

sets Bi,i=1,..,n, suchthatg,=fionB;,i=1,..,n.

For let n=2 and let B = {x : x U B, fi(x) 2 f3,(x) } , B, =B - B, then

B = B: [J B, has the desired property .

Supposing the result true for n, let g1 = max (fi, ... fos1) = max (gn, fui1) , SO

B = f, U Bnii where gnii = forr on By and gn = gnon fyand fo N Boa = @.

But then by the inductive hypothesis we have 7 =[15 and g..1(x) = fi (x)

forxOB;,i=1,...,n+1.
Then

[0, dee=>[F, dpr=Sv(B) =v(B)

aseach fi 1 K.
The Lebegue monotone convergence theorem implies that

dge=1i dpe=v(E
7!"fo = 4 lm!gn £ L=V(E)

So f, K. Hence

g7, A7, de =T, e

SO ——f7, d .-
Since _#7. 9ce=co —= _ there exists a finite-valued measurable function f

, also non-negative , such that f = f; a.e([) .
We will show now that if Vo™ =V -7 da “then vy(E) = 0. If vy is not

identically zeroon S, let C I S and v¢(C) > 0 . Then for a suitable € .



0<e<1,(vo-€M)(C)>0. We can find A such that (vo - 1) (A) > 0 where
A is a positive set with respect to vo - €. Also (A) > 0 for otherwise , as
v << . We would have v(A) = 0 and hence (vo - E41) (A) =0so, forE 1S

=g LE A) =v,(E mA) =v(E mA) — Jrar

Hence if g =f + € Xa, for each E [ S we have

1!‘g dy:l!'f dpevr=g(E A) s.f-!:\f deevv (E mA) =v(E)

and so g [0 K . But _Fdec—graeccr=e == _ contradicting the
maximality of a. Sovo=00nS.

Then by the definition of vy, f has the desired properties . Let g also have
these properties.

SoforEOS , J(f—9)de=o

Andtaking E={x:f(x)>g(x) } . Weget f<g.

And similarly f >g a.e . So f is unique in the sense stated .

Definition (1.2) [3] :-

If (X,S, ) is ameasure space and p > 0, we define L?(X , W), or
more briefly LP() , to be the class of measurable function L7: gr7 1" dee=i
, with the convention that any two functions equal almost every where specify
the same element of LP() . On the real line , if X = (a, b) and W is Lebesgue
measure we will write L?(a , b) for the corresponding space .

Strictly , the elements of the space LP(|1) are not functions but classes of

functions such that in each class any two functions are equal almost every
where . Since any two functions equal almost every where have the same

integrals over each set of S the distinction is not important for many purposes.

We write f [1 LP(l) as an abbreviation for :

F measurable and _s7 1" an —



To ask , however , for the value of an element of LP([l) at a particular point is ,
in general , meaningless .

If p=1, we obtain the integrable functions which we denoted by L(X , L) .
We will use the alternative notation L'(l) if we wish to emphasize that the

above convention applies .

Definition (1.3) [3] :-
Let flJL°(4) , then the LP-norm of f , denoted by ' is given by

(_ﬂf\p dp <oc;/]/P .

Theorem (1.4) [3] :-

Letf, g [0 LP(W) and let a, b be constants , then af — bg [J LP(J) .
Proof :-
Clearly , if f O L?(4) , and af [J LP(M4) for each constant a . Also if f, g [
LP() we have f + g [J LP(4) since

| r =& |7 ==" max (r|”.]g|” )= Cr " —=1|")

giving the result .
If f is the element of LP(1) containing the function F and G that containing g ,

then if we define aF +bG as the element containing af + bg , this is easily seen

to be independent of the particular f in F and g in G . Hence these theorems
shows that LP([L) is a vector space . We may use , accordingly , the same

notation for elements of L°() and for function .

Definition (1.5) [3] :-

If (X,S, ) is a measure space we define L”(X , 1) or L®(M) , to be the
class of measurable functions { f : ess sup [f[KK o } | with the same
convention as definition (1.2) . Corresponding to definition (1.3) we have the

L”-norm :



| 7 |l —em = | 7 |

Example (1.6) [3] :-
Show that L*(X, W) is a vector space over the real numbers .

Solution :-
Ess sup [af + bgll< [alless suplf[1+ [blJess sub [gll.

Now we show Holder’s inequality .

Theorem (1.7) [3] :-
Leti<p<o,l<q<o, 5 *+o=' andletf OLP(W), g LW) then
fg O L'(u) and

fraae=(flrIrdd” olfal dd™ i,

(1)
Proof :-
If a>0,b>0
P pfa < b
b TG e
(2)

Now , if "= =Qor "=. =0 then fg =0 a.e and (1) is trivial . If ' >0
and '=. >0 write

£ —_ &l

R (TY0 ER (PYRE
in (2) to get

[fel” [£1° 1 sl

1
1= e 4 —
FELlel, = p ()7 a(a))7  ceoeeeeeeenneeeen

(3

The right — hand side is integrable so fg [0 L'(l) . Integrate both sides to get
lheei, ===1.lI=lI. which is (1) .

The most important special case of Theorem (1.7) occurs when p = q = 2 and

is called the Schwartz inequality .



Example (1.8) [3] :-
If f and g are non-negative measurable functions show that equality occurs in
Holder’s inequality if and only if

STPHTEI=0 @8 ceiririiiiie e (4)
for some constants s , t not both zero .
Solution :-
Suppose equality occurs (1) . Then if . >0 and '='- >0 we must have
equality in (3) a.e.
But in (2) equality implies a = b so that f* = a g* a.e , where a > 0, i.e(4) . If
say, ' =0 thenf=0a.eand (4)holds. Conversely, if (4) holds we may

substitute into (1) to eliminate f or g and we obtain equality .

Theorem (1.9) [3] :-

Every inner product space V is a normd linear space with the norm
Il =Cx.x )
Proof :-
Since V is a vector space , we need only verify that -1 has all the properties

of a norm .

All of these properties can be proved , except the triangle inequality .
Suppose x , y UV Then
et = (X)) () F (%) (1Y)
= (x%,x) + 2Re(x,y) * (V,y)
< (x%,x) + 2 Ux,y)U+ (v,y)
S(Xx)+ 20"+ 20.v° +(V,Y)
by the Schwartz inequality . Thus
I —mfi " —G x| > >

which proves the triangle inequality .



Definition (1.10) [3] :-
A class of subsets of an arbitrary space X is said to be g-algebra (sigma

algebra) or , by some authors , a g-field , if X belongs to the class and the

class is closed under the formation of countable unions and of complements .

Definition (1.11) [3] :-
If in Definition (1.10) we consider only finite unions we obtain an
algebra (or a field) .

We will denote by M the class of Lebesgue — measurable sets .

Theorem (1.12) [3] :-
The class M is g-algebra .
Proof :-

From definition above ¢ [1 M, and the symmetry in definition between
E and cE implies that if E 0 M then cE I M. Soif @ isa sequence of sets
of M it remains to be shown that @=> | Nowif A,BOMthen A-B=

c(cAUB)UOM. Also, by induction , gives that the union of any finite

collection of sets of M in M. Now we may write

oo n—t
[]E =F, {E, CE,) 1. :%Ei — E, %:l
i—t i=%

a union of disjoint measurable sets and hence without loss of generality we

may assume the original sets « disjoint . Then for each set A , since 0=

is measurable

o = [ o = B [ s |
But

e =fd s Fles
So

i = [ o [ [ e |



= Zm*(A NE,) +m*% mciD:lE,. E
foralln. So

m"(A) = “Zm* (A mE,) +m" % r‘\C'jOEi E

=" =] m Her =] dE |
Then the result follows .

In the following we describe some aspects of the theory of tensor

production of operators on Hilbert spaces . Let A and B be densely defined

operators on Hilbert spaces H respectively . We will denote by D(A) [l D(B)

the set of finite linear combinations of vectors of the form ® [1 W where ® []

D(A) and W [0 D(B) .

D(A) U0 D(B) is dense in [1. We defined A [ B on D(A) I D(B) by
ALOB)(PUW)=ADPUBWY ... 4)

and extend by linearity .

Proposition (1.13) [4] :-
The operator A [1 B is well defined . Further , if A and B are closable ,
soisALB.

Proof :-

Suppose that =<*4a and == -<*+42+ are two representation of the

same vector f [1 D(A) [ D(B) using Gram-Schmidt orthogonalization we can

obtain bases {n«} and {6} for the spaces spanned by {®i} {®!o{#} and

tet st respectively so that Ny 0 D(A) and 6,1 D(B) . ®; 0 W; and = or
s cx  can be expressed

© Oy = S,z 08

B Oy =>7 0

(5)



Since the two expressions for f give the same vector
=<, <« ==, «# for each pair <k, t>.
Thus,
(a0B) SC(wow) = 5, (S a)(ar0Ba)
=S (>4, Z)(AarrrB o)
= (ArB) =7, (<>r2s)
So A [J B is well defined .
If g is any vector in D(A*) [ D(B*), then
(AOBf,g)=(f, A* 1 B*g)so
D(A*) O D(B*) UD( (A O B)*)
If A and B are closable D(A*) and D(B*) are dense .
Therefore , in that case (A [J B)* is densely defined which proves that A [1 B

is closable .

Similarly , if A and B are closable then A [ I + I [J B, defined on
D(A) U0 D(B), is closable .

Definition (1.14) [4] :-

Let A and B closable operators on Hilbert spaces H; and H, . The
tensor product of A and B is closure of the operator A [1 B defined on D(A)
[0 D(B) .

We will denote the closure by A [J B also .
Usually A + B will denoted the closure of A 11+ 10 B on D(A) [ D(B) .

Proposition (1.15) [4] :-
Let A and B bounded operators on Hilbert spaces H; and H, . Then

[ =~

|1 =1

Proof :-

10



Let {®«} and {W} be orthonormal bases for H; and H, and suppose

==<%=rzr g a finite sum .

Then
|(arem) =5 (aer 2| =S A<
= STAl Scu
=lAl’ || =Ewu (e

Since the set of such finite sums is dense in H; [ H, we conclude that

Rl - . Thus

|~ wz= . wer=|| || == ||

Conversely , given € > 0, there exist unit vectors ® [1 H; , Y [ H; so that
I~ —fm—p—ayy —— gpd 1 = ——+— — _ Then
I €A EErES T = e = —{{me> =l

—=n || || B || ——= || TS || e
Since £>0 is arbitrary '~ ==+ ==+ which concludes the proof .

We remark that propositions (1.13) (1.15) have natural generalizations on
arbitrary finite tensor products of operators . This can be proven directly or

by using the associativity of the tensor product of Hilbert spaces . We turn
now to questions of self-adjointness and spectrum . Let {a}. be a family
of operators , Ax self-adjoint on Hy, . We will denote the closure of I, [J ...

HAx O ... Ton D=0 D(Ay) by Ak also . Let p(xi, ..., Xx) be a polynomial
with real coefficients of degree ny in xx .

Then , the operator p(A,, ..., Ax) makes sense on [, D(A™) since D(A™) O
D(A") forallL <n,.

In fact, P is essentially self-adjoint on that domain .

11



Theorem (1.16) [4] :-
Let A, be a self — adjoint operator on Hy . Let p (X1, ..., Xn) be a
polynomial with real coefficients of degree ny in the kth variable and suppose

that @ is domain of essential self — adjointness for « .
Then

M p (A1, ..., An) is essentially self — adjoint on

2 The spectrum of »~CA.---A) is the closure of the range of p on the

product of the spectra of the Ay .
That is

A, L., A = p(<cor)..... <AL )

Corollary (1.17) [4] :-
Let A, ..., Ax be self — adjoint operators on H; , ... , Hy and suppose

that , for each k , Dy is domain of essential self-adjointness for Ax. Then
(1) The operators ' =A; ... J Axand A, = A, + ... + Ay are essentially

self-adjoint on » ==L o

2 oA = !N:P(A;) and ofAl) = ZO(AL)

Example (1.18) [4] :-

Suppose that v(x) is a potential so that H; = - ¢ + v(x) is essentially
self-adjoint on (R’). Then H, =- +v(x) +- + v(y) is essentially self-
adjoint on the set of finite sums of products ®(x) Y(y) , with @, ¢ O (R?).

Further <f(#.) = <H,) +~H,)

12
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