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CHAPTER 1

BACKGROUND FACTS

In this chapter we present some basic concepts of the Lp-spaces and 

Tensor products .

Radon-Nikodgm Theorem (1.1) [3] :-

If ( X , S , µ) is a σ-finite measure space and v is σ-finite measure on S 

such that v << µ then there exists a finite valued non-negative measurable 

function f on X such that for each E ∈ S  , v(E) = ∫
E

f dµ .  Also f is unique in 

the sense that if v(E) = ∫
E

g dµ for each E ∈ S then f = g a.e(µ) .

Proof :-

We show first that we may assume µ(X) < ∞ and µ (X) < ∞   and v(X) 

<∞ and so we suppose the result has been proved for that case .  We have 


∞

=

=
1n

nAX ,   µ(An) <  ∞  and  
∞

=

=
1m

mBX   ,  v(Bm) < ∞ and { An} , { Bm} 

may be supposed to be sequences of disjoint sets .  So setting 

( )
∞

=

∩=
1mn,

mn BAX  we obtain X as the union of disjoint sets on which both µ 

and v are finite ,  say  
∞

=

=
1n

nXX  .

Let Sn = { E ∩ Xn : E ∈ S } .

A σ-algebra over Xn , and considering µ and v restricted to Sn we obtain a 

function Fn such that if E ∈ Sn , v(E) = ∫
E

µdfn  .  So if A ∈ S , 
∞

=

=
1n

nAA  

where An ∈ Sn , defining F = fn on Xn gives a measurable function on X .and 

                             ∫∑∫
∞

=

==
An A

n dfdfAv
n

µµ
1

)(

and the general case follows .
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So we need only with finite measures . Let K be the class of non-negative 

functions measurable with respect to µ and satisfying )(d f Ev
E

≤∫ µ  for all E 

∈ S .  Then K is non-empty as 0 ∈ K .

Let α = sup { ∫ f dµ : f ∈ K } and let {fn} be a sequence in K such that 

lim ∫ fn dµ  = α .

If B is any fixed measurable set ,  n a fixed positive integer and gm = max (f1 , 

… fm) then , by induction , B may be written as a union of disjoint measurable 

sets Bi , i = 1 , .. , n  ,  such that gn = fi on Bi , i = 1 , .. , n .

For let n=2 and let B1 = {x : x ∈ B , f1(x) ≥ f2(x) } , B2 = B –  B1 ,   then 

B = B1 ∪  B2 has the desired property . 

Supposing the result true for n , let gn+1 = max (f1 , … fn+1) = max (gn , fn+1) , so 

B = fn ∪ Bn+1 where gn+1 = fn+1 on Bn+1 and gn+1 = gn on fn and fn ∩ Bn+1 = φ.

But then by the inductive hypothesis we have 
n

i
in Bf

1=

= and gn+1(x) = fi (x) 

for x ∈ Bi , i = 1 , … , n+1 .

Then 

                             ∑∑∫∫
==

=≤=
n

i
i

n

i B

i

B

n BvBvdfdg
i

11

)()(µµ

as each fi ∈ K .

The Lebegue monotone convergence theorem implies that 

                             )(lim0 Evdgdf
E

n

E

≤= ∫∫ µµ

So f0 ∈ K .  Hence 

                             ∫∫∫ ≥≥≥ µµµα dfdgdf nn0  .

So ∫= µα df0

Since ∞<≤∫ )(0 xvdf µ  , there exists a finite-valued measurable function f 

, also non-negative , such that f = f0 a.e(µ) .

We will show now that if ∫=
E

0  -  v(E) (E)v µdf , then v0(E) = 0 .  If v0 is not 

identically zero on S , let C ∈ S and v0(C) > 0 .  Then for a suitable ε .
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0 < ε < 1 , (v0 - εµ) (C) > 0 .  We can find A such that  (v0 - εµ) (A) > 0 where 

A is a positive set with respect to  v0 - εµ .  Also µ(A) > 0 for otherwise , as 

v << µ .  We would have v(A) = 0 and hence (v0 - εµ) (A) = 0 so , for E ∈ S

                             ( ) ( ) ( ) ∫
∩

−∩=∩≤∩
AE

dfAEvAEvAE µµε 0 .

Hence if g = f + ε χA , for each E ∈ S we have 

                              ( ) ( ) ( )EvAEvdfAEdfdg
AEEE

≤∩+≤∩+= ∫∫∫
−

µµεµµ

and so g ∈ K . But αεµµµ >+=∫∫ )(Adfdg , contradicting the 

maximality of α .  So v0 = 0 on S . 

Then by the definition of v0 , f  has the desired properties .  Let g also have 

these properties.

So for E ∈ S  , ( ) 0=−∫ µdgf
E

.

And taking E = { x : f(x) > g(x) } . We get       f ≤ g . 

And similarly f ≥g a.e .  So f is unique in the sense stated .

Definition (1.2) [3] :-

If ( X , S , µ) is a measure space and p > 0 ,  we define Lp(X , µ) , or 

more briefly Lp(µ) , to be the class of measurable function [ ]∫ ∞<µdff
p

:  

, with the convention that any two functions equal almost every where specify 

the same element of Lp(µ) .  On the real line , if X = (a , b) and  µ is Lebesgue 

measure we will write Lp(a , b) for the corresponding space .

Strictly , the elements of the space Lp(µ) are not functions but classes of 

functions such that in each class any two functions are equal almost every 

where . Since any two functions equal almost every where have the same 

integrals over each set of S the distinction is not important for many purposes.

We write f ∈ Lp(µ) as an abbreviation for :

F measurable and ∫ ∞<dμf
p  .
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To ask , however , for the value of an element of Lp(µ) at a particular point is , 

in general , meaningless .

If p=1 ,  we obtain the integrable functions which we denoted by L(X , µ) .

We will use the alternative notation L1(µ) if we wish to emphasize that the 

above convention applies .

Definition (1.3) [3] :-

Let f∈Lp(µ) , then the Lp-norm of f , denoted by p
f is given by 

( ) p
1

p
dμf∫ ∞< .

Theorem (1.4) [3] :-

Let f , g ∈ Lp(µ) and let a , b be constants , then af – bg ∈ Lp(µ) .

Proof :-

Clearly , if f ∈ Lp(µ) , and af ∈ Lp(µ) for each constant a .  Also if f , g ∈ 

Lp(µ) we have f + g ∈ Lp(µ) since 

                             ( ) ( )ppPppPp
gfgfgf +≤≤+ 2,max2

giving the result .

If f is the element of Lp(µ) containing the function F and G that containing g , 

then if we define aF +bG as the element containing af + bg , this is easily seen 

to be independent of the particular f in F and g in G .  Hence these theorems 

shows that Lp(µ) is a vector space .  We may use , accordingly , the same 

notation for elements of Lp(µ) and for function .

Definition (1.5) [3] :-

If ( X , S , µ) is a measure space we define L∞(X , µ) or L∞(µ) , to be the 

class of measurable functions { f : ess sup f< ∞ } , with the same 

convention as definition (1.2) . Corresponding to definition (1.3) we have the 

L∞-norm :
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                             fessf sup=
∞  .

Example (1.6) [3] :-

Show that L∞(X , µ) is a vector space over the real numbers .

Solution :-

Ess sup af + bg ≤ a ess supf + b ess sub g .

Now we show Holder’s inequality .

Theorem (1.7) [3] :-

Let i < p < ∞ , 1 < q < ∞ , 1
q

1

p

1
=+  and let f  ∈ Lp(µ) ,  g ∈ Lq(µ) then

fg ∈ L1(µ) and

                             ( ) ( ) qqpp
dgdfdgf

11

∫∫∫ ⊂≤ µµµ  ……………….. 

(1)

Proof :-

If  a > 0 , b > 0 

                             q

b

p

a
ba qp +≤

11

 ……………………………………… 

(2)

Now , if p
f = 0 or q

g = 0 then fg =0 a.e and (1) is trivial .  If p
f > 0 

and q
g >0 write 

                             ( ) ( ) q

q

q

p

p

p

g

g
b,

f

f
a ==    

in (2) to get

                             ( ) ( )qqp
q

q

p

p

p

qp

p

g

g1

f

f1

gf

gf
+≤ ……………… 

(3)

The right – hand side is integrable so fg ∈ L1(µ) . Integrate  both sides to get 

qp1
gfgf ≤ which is (1) .

The most important special case of Theorem (1.7) occurs when p = q = 2 and 

is called the Schwartz inequality .
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Example (1.8) [3] :-

If f and g are non-negative measurable functions show that equality occurs in 

Holder’s inequality if and only if 

                             s fP+ t gq = 0   a.e ……………………….………………  (4)

for some constants s , t  not both zero .

Solution :-

Suppose equality occurs (1) .  Then if p
f > 0 and q

g >0 we must have 

equality in (3) a.e .

But in (2) equality implies a = b so that fP = α gq a.e , where α > 0 , i.e(4) . If 

say , p
f = 0  then f = 0 a.e and (4) holds .  Conversely , if (4) holds we may 

substitute into (1) to eliminate f or g and we obtain equality .

Theorem (1.9) [3] :-

Every inner product space V is a normd linear space with the norm 

( )2

1

x,xx = .

Proof :-

Since V is a vector space , we need only verify that .  has all the properties 

of a norm .

All of these properties can be proved , except the triangle inequality .

Suppose x , y ∈ V  Then

                             2
yx+   =  (x,x) + (x,y) + (y,x) + (y,y)

                                           = (x,x) + 2Re(x,y) + (y,y)

                                           ≤ (x,x) + 2 (x,y) + (y,y)

                                           ≤ (x,x) +  x),2(x 2
1 +  y),2(y 2

1  + (y,y)

by the Schwartz inequality .  Thus 

                             ( )22
yxyx +≤+

which proves the triangle inequality .
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Definition (1.10) [3] :-

A class of subsets of an arbitrary space X is said to be σ-algebra (sigma 

algebra) or , by some authors , a σ-field , if X belongs to the class and the 

class is closed under the formation of countable unions and of complements .

Definition (1.11) [3] :-

If in Definition (1.10) we consider only finite unions we obtain an 

algebra ( or a field) .

We will denote by M the class of Lebesgue – measurable sets .

Theorem (1.12) [3] :-

The class M is σ-algebra .

Proof :-

From definition above c ∈ M , and the symmetry  in definition between 

E and cE implies that if E ∈ M then cE ∈ M .  So if iE is a sequence of sets 

of M it remains to be shown that 
∞

=

∈
1i

i ME  .  Now if A , B ∈ M then A – B = 

c ( cA ∪ B) ∈ M .  Also , by induction , gives that the union of any finite 

collection of sets of M in M .  Now we may write

                             ( ) ......
1 1

1

1
211 ∪




 −∪∪∪∪=
∞

= =

−

=
  
i

n

i

n

i
iii EEEEEE

a union of disjoint measurable sets and hence without loss of generality we 

may assume the original sets iE  disjoint .  Then for each set A , since 
n

i
iE

1=

is measurable 

                             





∩+





∩=

==

n

i
i

n

i
i EAmEAmAm

1

*

1

** )(

But

                             
∞

=

∞

+==

∪




=
111 i

i
ni

i

n

i
i ECEEC

So 

                             





∩+





∩≥

∞

==


1

*

1

** )(
i

i

n

i
i ECAmEAmAm
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                                      ( ) 




 ∩+∩≥
∞

==
∑ 

1

**

1 i
ii

n

i

ECAmEAm

for all n .  So

                             ( ) 



 ∩+∩≥

∞

=

∞

=
∑ 

1

**

1

* )(
i

ii
i

ECAmEAmAm

                                      



 ∩+



 ∩≥

∞

=

∞

=


1

*

1

*

i
i

i
i ECAmEAm

Then the result follows .

In the following we describe some aspects of the theory of tensor 

production of operators on Hilbert spaces .  Let A and B be densely defined 

operators on Hilbert spaces H  respectively .  We will denote by D(A) ⊗ D(B) 

the set of finite linear combinations of vectors of the form Φ ⊗ Ψ where Φ ∈ 

D(A) and Ψ ∈ D(B) .

D(A) ⊗ D(B) is dense in ⊗ .  We defined A ⊗ B on D(A) ⊗ D(B) by

                             (A ⊗ B) (Φ ⊗ Ψ) = AΦ ⊗ BΨ ………………………… (4)

and extend by linearity .

Proposition (1.13) [4] :-

The operator A ⊗ B is well defined . Further , if A and B are closable , 

so is A ⊗ B .

Proof :-

Suppose that ∑ ⊗Φ iiic ψ and ∑ ′⊗Φ′ jjjd ψ  are two representation of the 

same vector f ∈ D(A) ⊗ D(B)  using Gram-Schmidt orthogonalization we can 

obtain bases {ηk} and {θt} for the spaces spanned by {Φi} { } { }ii Φ′∪Φ  and 

{ } { }jj ψψ ′∪  respectively so that ηk ∈ D(A) and θt ∈ D(B) . Φi ⊗ Ψi  and ψ  or 

ψ
jj ψ′⊗Φ′  can be expressed 

                             
tk

j
ktjj

tk
i
ktii

θηβψ

θηαψ

∑

∑

⊗=′⊗Φ′

⊗=⊗Φ

           ………………………… 

(5)
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Since the two expressions for f give the same vector 

∑∑ = j
ktj

i
kti djCi βα for each pair <k , t> .

Thus ,

                             ( ) ( ) ( ) ( )tkt i

i
ktiiii BACCBA θηαψ ⊗=⊗Φ⊗ ∑ ∑∑  

                                                               ( )( )∑∑ ⊗=
kt tkj

j
ktj BAd θηβ

                                                              ( ) ( )∑ ′⊗Φ′⊗= jjjdBA ψ

So A ⊗ B is well defined .

If g is any vector in D(A*) ⊗ D(B*) , then 

(A ⊗ B f ,g ) = (f , A* ⊗ B*g) so

                             D(A*) ⊗ D(B*) ⊂ D( (A ⊗ B)* )

If A and B are closable D(A*) and D(B*) are dense .

Therefore , in that case (A ⊗ B)* is densely defined which proves that A ⊗ B 

is closable .

Similarly , if A and B are closable then A ⊗ I + I ⊗ B , defined on 

D(A) ⊗ D(B) , is closable .

Definition (1.14) [4] :-

Let A and B closable operators on Hilbert spaces H1 and H2 .  The 

tensor product of A and B is closure of the operator A ⊗ B defined on D(A) 

⊗ D(B) . 

We will denote the closure by A ⊗ B also . 

Usually A + B will denoted the closure of A ⊗ I + I ⊗ B on D(A) ⊗ D(B) . 

Proposition (1.15) [4] :-

Let A and B bounded operators on Hilbert spaces H1 and H2 .  Then 

BABA =⊗  .

Proof :-
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Let {Φk} and {Ψk} be orthonormal bases for H1 and H2 and suppose 

∑ ⊗Φ lkC ψ  is a finite sum .

Then

                             ( ) ( )
2

2 ∑∑∑ Φ=⊗Φ⊗
L k

kkLLkkL ACCIA ψ

                                         ∑ ∑≤
L k

kLCA
22

                                        ( ) 22 ∑ ⊗Φ= LkkLCA ψ

Since the set of such finite sums is dense in H1 ⊗ H2  we conclude that 

A≤⊗tA . Thus

                             BABIIAB ≤⊗⊗≤⊗A .

Conversely , given ε > 0 , there exist unit vectors  Φ ∈ H1 ,  ψ ∈ H2 so that 

ε−≥ΦAA and εψ −≥BB  .  Then  

                             ψψ BABA Φ=⊗Φ⊗ )()(  

                                                          2εεε +−−≤ BABA

Since ε>0 is arbitrary BAB ≥⊗A  which concludes the proof .

We remark that propositions (1.13) (1.15) have natural generalizations on 

arbitrary finite tensor products of operators .  This can be proven directly or 

by using the associativity of the tensor product of Hilbert spaces .  We turn 

now to questions of  self-adjointness and spectrum .  Let { }N

kkA 1= be a family 

of operators , Ak self-adjoint on Hk .  We will denote the closure of I1 ⊗ … 

⊗Ak ⊗ … I on D = ⊗ D(Ak) by Ak also .  Let p(x1 , … , xN) be a polynomial 

with real coefficients of degree nk in xk .

Then , the operator p(A1 , … , AN) makes sense on ⊗k D(Ank) since D(Ank) ⊂ 

D(A′) for all L ≤ nn .

In fact , P  is essentially self-adjoint on that domain .
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Theorem (1.16) [4] :-

Let An be a self –  adjoint operator on Hk .  Let p (x1 , …  , xn) be a 

polynomial with real coefficients of degree nk in the kth variable and suppose 

that e
kD is domain of essential self – adjointness for nk

kA .

Then

(1) p (A1 , … , AN) is essentially self – adjoint on 

                             e
k

N

k

e DD
1=

⊗=

(2) The spectrum of  ( )NAAp ,...,1  is the closure of the range of p on the 

product of the spectra of the Ak .

That is 

                             ( ) ( ))(,...,)(,..., 11 Nn AApAA σσσ =

Corollary (1.17) [4] :-

Let A1 , … , AN be self – adjoint operators on H1 , … , HN and suppose 

that , for each k , Dk is domain of essential self-adjointness for Ak .  Then 

(1) The operators π
A  = A1 ⊗ … ⊗ AN and Aε = A1 + … + AN are essentially 

self-adjoint on k
N
k DD 1=⊗=  .

(2) ∏
=

′=
N

k
kAA

1

)()( σσ
π

and ( ) ( )∑
=

′=′
N

k
kAA

1

σσ ε   .

Example (1.18) [4] :-

Suppose that v(x) is a potential so that H1 = - ∆
k + v(x) is essentially 

self-adjoint on  (R3) .  Then H2 = - ∆
x + v(x) + - ∆

y + v(y) is essentially self-

adjoint on the set of finite sums of products Φ(x) ψ(y) , with Φ, ψ ∈   (R3). 

Further ( ) ( ) ( )112 HHH σσσ += . 
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