GENERALIZED FUNCTIONS IN INFINITE DIMENSIONAL ANALYSIS

By

Amany Barackat Mohammed Barackat

A thesis Submitted in Partial Fulfillment for the Degree of M.Sc. in Mathematics

Sudan University Of Science And Technology College Of Science 2003

CHAPTER 1 BACKGROUND FACTS

In this chapter we present some basic concepts of the L^p -spaces and Tensor products .

Radon-Nikodgm Theorem (1.1) [3] :-

If (X, S, μ) is a σ -finite measure space and v is σ -finite measure on S such that $v \ll \mu$ then there exists a finite valued non-negative measurable function f on X such that for each $E \in S$, $v(E) = | f d\mu$. Also f is unique in the sense that if $v(E) = | g d\mu$ for each $E \in S$ then f = g a.e(μ). Proof :-

We show first that we may assume $\mu(X) < \infty$ and $\mu(X) < \infty$ and $v(X) < \infty$ and so we suppose the result has been proved for that case . We have $x \rightarrow \mu(A_n) < \infty$ and $x \rightarrow \mu(B_m) < \infty$ and $\{A_n\}, \{B_m\}$ may be supposed to be sequences of disjoint sets . So setting $x \rightarrow \mu(A_n) < \infty$ we obtain X as the union of disjoint sets on which both μ and v are finite, say $x \rightarrow \mu(X)$.

Let S_n = { $E \cap X_n : E \in S$ } .

A σ -algebra over X_n , and considering μ and v restricted to S_n we obtain a function F_n such that if $E \in S_n$, $v(E) = \int_{E}^{f_n d\mu} d\mu$. So if $A \in S$, $\neg -\Box \neg \neg$ where $A_n \in S_n$, defining $F = f_n$ on X_n gives a measurable function on X and

$$v(A) = \sum_{n=1}^{\infty} f_n d\mu = \int_A f d\mu$$

and the general case follows .

So we need only with finite measures . Let K be the class of non-negative functions measurable with respect to μ and satisfying $\int_{E}^{\mathbf{f}} d\mu e^{-\frac{1}{2}\mathbf{r}(E)}$ for all $E \in \mathbf{S}$. Then K is non-empty as $0 \in \mathbf{K}$.

Let $\alpha = \sup \{ \int f d\mu : f \in K \}$ and let $\{f_n\}$ be a sequence in K such that $\lim \int f_n d\mu = \alpha$.

If B is any fixed measurable set , n a fixed positive integer and $g_m = max (f_1, ..., f_m)$ then , by induction , B may be written as a union of disjoint measurable sets B_i , i = 1, ..., n, such that $g_n = f_i$ on B_i , i = 1, ..., n.

For let n=2 and let $B_1 = \{x : x \in B , f_1(x) \ge f_2(x) \}$, $B_2 = B - B_1$, then $B = B_1 \cup B_2$ has the desired property.

Supposing the result true for n , let $g_{n+1} = \max (f_1 , \dots f_{n+1}) = \max (g_n , f_{n+1})$, so $B = f_n \cup B_{n+1}$ where $g_{n+1} = f_{n+1}$ on B_{n+1} and $g_{n+1} = g_n$ on f_n and $f_n \cap B_{n+1} = \phi$.

But then by the inductive hypothesis we have $f_n = \prod_{i=1}^{n} B_i$ and $g_{n+1}(x) = f_i(x)$ for $x \in B_i$, i = 1, ..., n+1.

Then

$$\int_{B} g_n d\mu = \sum_{i=1}^n \int_{B_i} f_i d\mu \leq \sum_{i=1}^n V(B_i) = V(B)$$

as each $f_{i} \in K$.

The Lebegue monotone convergence theorem implies that

$$\int_{E} f_0 d\boldsymbol{\mu} = \lim \int_{E} g_n d\boldsymbol{\mu} \leq v(E)$$

So $f_{\scriptscriptstyle 0} \in \, K$. Hence

So $\mathfrak{S}_{f_0} d\mu$

Since $\int f_0 d\mu exists$, there exists a finite-valued measurable function f, also non-negative, such that $f = f_0$ a.e(μ). We will show now that if $v_0(E) = v(E) - \int_E f d\mu e$, then $v_0(E) = 0$. If v_0 is not

identically zero on S , let $C \in \ S$ and $v_0(C) \geq 0$. Then for a suitable ϵ .

 $0 < \epsilon < 1$, $(v_0 - \epsilon \mu)$ (C) > 0. We can find A such that $(v_0 - \epsilon \mu)$ (A) > 0 where A is a positive set with respect to $v_0 - \epsilon \mu$. Also $\mu(A) > 0$ for otherwise, as $v << \mu$. We would have v(A) = 0 and hence $(v_0 - \epsilon \mu)$ (A) = 0 so, for $E \in S$

$$\mathcal{E}(E \cap A) \leq v_0(E \cap A) = v(E \cap A) - \int_{E \cap A} f \, d\mu$$

Hence if $g = f + \epsilon \chi_A$, for each $E \in S$ we have

$$\int_{E} g \, d\mu = \int_{E} f \, d\mu + \epsilon \mu (E \frown A) \leq \int_{E \to A} f \, d\mu + \nu (E \frown A) \leq \nu(E)$$

and so $g \in K$. But $\int d\alpha = \int d\alpha = \int$

Then by the definition of v_0 , f has the desired properties . Let g also have these properties.

So for $E \in S$, $\int_{E} (f-g) d\mu = 0$.

And taking $E = \{ x : f(x) > g(x) \}$. We get $f \le g$.

And similarly $f \ge g$ a.e. So f is unique in the sense stated .

Definition (1.2) [3] :-

If (X, S, μ) is a measure space and p > 0, we define $L^p(X, \mu)$, or more briefly $L^p(\mu)$, to be the class of measurable function $\lfloor f : \int f \rfloor^p d\mu$, with the convention that any two functions equal almost every where specify the same element of $L^p(\mu)$. On the real line, if X = (a, b) and μ is Lebesgue measure we will write $L^p(a, b)$ for the corresponding space.

Strictly, the elements of the space $L^p(\mu)$ are not functions but classes of functions such that in each class any two functions are equal almost every where . Since any two functions equal almost every where have the same integrals over each set of S the distinction is not important for many purposes.

We write $f \in L^{p}(\mu)$ as an abbreviation for :

F measurable and $\int \mathbf{f} \, e^{\mathbf{p} \, d\mathbf{\mu}} \, \mathbf{r}$.

To ask , however , for the value of an element of $L^p(\mu)$ at a particular point is , in general , meaningless .

If p=1, we obtain the integrable functions which we denoted by $L(X, \mu)$. We will use the alternative notation $L^{1}(\mu)$ if we wish to emphasize that the above convention applies.

Definition (1.3) [3] :-

Let $f \in L^p(\mu)$, then the L^p -norm of f, denoted by $\|f\|_p$ is given by $(\int |f|^p d\mu < \infty)^{\frac{1}{p}}$.

Theorem (1.4) [3] :-

Let f , $g \in L^{p}(\mu)$ and let a , b be constants , then af $-bg \in L^{p}(\mu)$.

Proof :-

Clearly , if $f \in L^p(\mu)$, and af $\in L^p(\mu)$ for each constant a. Also if f, $g \in L^p(\mu)$ we have $f + g \in L^p(\mu)$ since

 $| f - g |^p = 2^p \max \left(| f |^p, | g |^p \right) = 2^p \left(f |^p - g |^p \right)$

giving the result .

If f is the element of $L^{p}(\mu)$ containing the function F and G that containing g, then if we define aF +bG as the element containing af + bg, this is easily seen to be independent of the particular f in F and g in G. Hence these theorems shows that $L^{p}(\mu)$ is a vector space. We may use , accordingly , the same notation for elements of $L^{p}(\mu)$ and for function.

Definition (1.5) [3] :-

If (X, S, μ) is a measure space we define $L^{\infty}(X, \mu)$ or $L^{\infty}(\mu)$, to be the class of measurable functions { f : ess sup $|f| < \infty$ }, with the same convention as definition (1.2). Corresponding to definition (1.3) we have the L^{∞} -norm :

Example (1.6) [3] :-

Show that $L^{\infty}\!\left(X\;,\,\mu\right)$ is a vector space over the real numbers .

Solution :-

Ess sup $|af + bg| \le |a|$ ess sup |f| + |b| ess sub |g|.

Now we show Holder's inequality.

Theorem (1.7) [3] :-

Let $i , <math display="inline">1 < q < \infty$, $\ \frac{1}{p} + \frac{1}{q} = 1$ and let $f \in L^p(\mu)$, $g \in L^q(\mu)$ then $fg \in \ L^1(\mu) \text{ and }$

(1)

Proof :-

If a > 0, b > 0

$$a^{\frac{1}{p}} b^{\frac{1}{q}} \leq \frac{a}{p} + \frac{b}{q} \qquad \dots$$

(2)

Now, if $\|e\|_{\mu} = 0$ or $\|e\|_{\mu} = 0$ then fg =0 a.e and (1) is trivial. If $\|e\|_{\mu} > 0$ and $\|e\|_{\mu} > 0$ write

$$a=\!\frac{\left|\,f\,\right|^p}{\left(\left\|\,f\,\right\|_p\right)^p}\quad\text{,}\quad b=\!\frac{\left|\,g\,\right|^q}{\left(\left\|\,g\,\right\|_q\right)^q}$$

in (2) to get

$$\frac{\left\|\mathbf{f}\,\mathbf{g}\,\right\|^{\mathrm{p}}}{\left\|\mathbf{f}\,\right\|_{\mathrm{p}}\left\|\mathbf{g}\,\right\|_{\mathrm{q}}} \leq \frac{1}{p} \frac{\left\|\mathbf{f}\,\right\|^{\mathrm{p}}}{\left(\left\|\mathbf{f}\,\right\|_{\mathrm{p}}\right)^{\mathrm{p}}} + \frac{1}{q} \frac{\left\|\mathbf{g}\,\right\|^{\mathrm{q}}}{\left(\left\|\mathbf{g}\,\right\|_{\mathrm{q}}\right)^{q}} \quad \dots \dots$$

(3)

The right – hand side is integrable so $fg \in L^1(\mu)$. Integrate both sides to get

The most important special case of Theorem (1.7) occurs when p = q = 2 and is called the Schwartz inequality .

Example (1.8) [3] :-

If f and g are non-negative measurable functions show that equality occurs in Holder's inequality if and only if

for some constants s, t not both zero.

Solution :-

Suppose equality occurs (1) . Then if $\|f\|_{\infty} > 0$ and $\|g\|_{\infty} > 0$ we must have equality in (3) a.e.

But in (2) equality implies a = b so that $f^p = \alpha g^q$ a.e., where $\alpha > 0$, i.e(4). If say, = 0 then f = 0 a.e. and (4) holds. Conversely, if (4) holds we may substitute into (1) to eliminate f or g and we obtain equality.

Theorem (1.9) [3] :-

Every inner product space V is a normd linear space with the norm $\|\mathbf{x}\| = (\mathbf{x}, \mathbf{x})^{\frac{1}{2}} \quad .$

Proof :-

Since V is a vector space , we need only verify that $\hfill has all the properties of a norm .$

All of these properties can be proved , except the triangle inequality .

Suppose x , $y \in \, V \,$ Then

$$\|x - y^{+}\|^{2} = (x,x) + (x,y) + (y,x) + (y,y)$$
$$= (x,x) + 2\operatorname{Re}(x,y) + (y,y)$$
$$\leq (x,x) + 2 | (x,y) | + (y,y)$$
$$\leq (x,x) + 2(x,x)^{\frac{1}{2}} + 2(y,y)^{\frac{1}{2}} + (y,y)$$

by the Schwartz inequality. Thus

which proves the triangle inequality .

Definition (1.10) [3] :-

A class of subsets of an arbitrary space X is said to be σ -algebra (sigma algebra) or , by some authors , a σ -field , if X belongs to the class and the class is closed under the formation of countable unions and of complements .

Definition (1.11) [3] :-

If in Definition (1.10) we consider only finite unions we obtain an algebra (or a field) .

We will denote by M the class of Lebesgue – measurable sets .

Theorem (1.12) [3] :-

The class M is σ -algebra .

Proof :-

From definition above $c \in M$, and the symmetry in definition between E and cE implies that if $E \in M$ then $cE \in M$. So if (E) is a sequence of sets of M it remains to be shown that $\square^{E_i} \xrightarrow{\cong} A$. Now if A, $B \in M$ then A - B = c ($cA \cup B$) $\in M$. Also , by induction , gives that the union of any finite collection of sets of M in M. Now we may write

$$\prod_{i=1}^{\infty} E_i = E_1 (E_1 E_2) \ldots (\prod_{i=1}^{n} E_i - \prod_{i=1}^{n-4} E_i) \ldots$$

a union of disjoint measurable sets and hence without loss of generality we may assume the original sets (E_i) disjoint. Then for each set A, since $\prod_{i=1}^{n} E_i$ is measurable

$$m^*(A) = m^* \left(A \bigcap_{i=1}^n E_i \right) + m^* \left(A \bigcap_{i=1}^n E_i \right)$$

But

$$C \bigsqcup_{i=1}^{n} E_{i} = \left(\bigsqcup_{i=n-4}^{\infty} E_{i} \right) \mathcal{L} \bigsqcup_{i=1}^{\infty} E_{i}$$

So

$$m^*(A) \ge m^* \left(A \frown \bigcup_{i=1}^n E_i \right) + m^* \left(A \frown C \bigsqcup_{i=1}^\infty E_i \right)$$

$$\geq \sum_{i=1}^{n} m^{*} (A \frown E_{i}) + m^{*} \left(A \frown C \prod_{i=1}^{\infty} E_{i} \right)$$

for all n . So

$$m^{*}(A) \geq \sum_{i=1}^{\infty} m^{*}(A \frown E_{i}) + m^{*}\left(A \frown C \bigsqcup_{i=1}^{\infty} E_{i}\right)$$
$$\geq m^{*}\left(A \frown \Box \bigsqcup_{i=1}^{\infty} E_{i}\right) + m^{*}\left(A \frown \Box \bigsqcup_{i=1}^{\infty} E_{i}\right)$$

Then the result follows .

In the following we describe some aspects of the theory of tensor production of operators on Hilbert spaces . Let A and B be densely defined operators on Hilbert spaces H respectively. We will denote by $D(A) \otimes D(B)$ the set of finite linear combinations of vectors of the form $\Phi \otimes \Psi$ where $\Phi \in D(A)$ and $\Psi \in D(B)$.

 $D(A) \otimes D(B)$ is dense in \otimes . We defined $A \otimes B$ on $D(A) \otimes D(B)$ by

 $(A\otimes B)\ (\Phi\otimes \Psi)=A\Phi\otimes B\Psi\(4)$ and extend by linearity .

Proposition (1.13) [4] :-

The operator $A\otimes B$ is well defined . Further , if A and B are closable , so is $A\otimes B$.

Proof :-

(5)

Since the two expressions for f give the same vector $\overrightarrow{}$ $\overrightarrow{}$ $\overrightarrow{}$ for each pair <k, t>.

Thus,

$$(A \otimes B) \sum_{i} (\Phi_{i} \otimes \mu_{i}) = \sum_{i} \left(\sum_{i} C_{i} \phi_{ki}^{i} \right) (A \eta \otimes B \theta_{i})$$
$$= \sum_{i} \left(\sum_{j} d_{j} f_{ki}^{i} \right) (A \eta \otimes B \theta_{i})$$
$$= (A \otimes B) \sum_{i} (\Phi_{i} \otimes \mu_{i})$$

So $A \otimes B$ is well defined .

If g is any vector in $D(A^*) \otimes D(B^*)$, then

 $(A \otimes B f, g) = (f, A^* \otimes B^*g)$ so

 $D(A^*) \otimes D(B^*) \subset D((A \otimes B)^*)$

If A and B are closable $D(A^*)$ and $D(B^*)$ are dense.

Therefore , in that case $(A \otimes B)^*$ is densely defined which proves that $A \otimes B$ is closable .

Similarly , if A and B are closable then A \otimes I + I \otimes B , defined on

 $D(A) \otimes D(B)$, is closable.

Definition (1.14) [4] :-

Let A and B closable operators on Hilbert spaces H_1 and H_2 . The tensor product of A and B is closure of the operator $A \otimes B$ defined on $D(A) \otimes D(B)$.

We will denote the closure by $A \otimes B$ also .

Usually A + B will denoted the closure of A \otimes I + I \otimes B on D(A) \otimes D(B).

Proposition (1.15) [4] :-

Let A and B bounded operators on Hilbert spaces H_1 and H_2 . Then

Proof :-

Let $\{\Phi_k\}$ and $\{\Psi_k\}$ be orthonormal bases for H_1 and H_2 and suppose is a finite sum.

Then

$$\| (A \otimes) \sum_{k} (\operatorname{p} \otimes \mathcal{A}) \|^{2} = \sum_{k} A \otimes \left| A \otimes \mathcal{A} \right|^{2}$$

$$\leq \sum_{k} A \|^{2} \sum_{k} C_{kL} \|^{2}$$

$$= \| A \|^{2} \| \sum_{k} (\operatorname{p} \otimes \mathcal{A}) \|^{2}$$

Since the set of such finite sums is dense in $H_1\otimes H_2\,$ we conclude that ______ . Thus

We remark that propositions (1.13) (1.15) have natural generalizations on arbitrary finite tensor products of operators . This can be proven directly or by using the associativity of the tensor product of Hilbert spaces . We turn now to questions of self-adjointness and spectrum . Let $\{A_k\}_{k=1}^N$ be a family of operators , A_k self-adjoint on H_k . We will denote the closure of $I_1 \otimes \ldots \otimes A_k \otimes \ldots$ I on $D = \otimes D(A_k)$ by Ak also . Let $p(x_1, \ldots, x_N)$ be a polynomial with real coefficients of degree n_k in x_k .

Then , the operator $p(A_1, ..., A_N)$ makes sense on $\otimes_k D(A^{nk})$ since $D(A^{nk}) \subset$

D(A') for all $L \leq n_n$.

In fact, P is essentially self-adjoint on that domain.

Theorem (1.16) [4] :-

Let A_n be a self – adjoint operator on H_k . Let $p(x_1, ..., x_n)$ be a polynomial with real coefficients of degree n_k in the kth variable and suppose that π is domain of essential self – adjointness for A_k^* . Then

(1) $p(A_1, ..., A_N)$ is essentially self – adjoint on

$$D^e = \bigotimes_{k=1}^N D^e_k$$

(2) The spectrum of $\overline{P(A_1, \dots, A_N)}$ is the closure of the range of p on the product of the spectra of the A_k .

That is

 $\overline{\boldsymbol{A}}_{1},\ldots,\boldsymbol{A}_{n} = \overline{p(\boldsymbol{A}_{1}),\ldots,\boldsymbol{A}_{N}}$

Corollary (1.17) [4] :-

Let A_1 , ..., A_N be self – adjoint operators on H_1 , ..., H_N and suppose that , for each k, D_k is domain of essential self-adjointness for A_k . Then

- (1) The operators $A_1 \otimes ... \otimes A_N$ and $A_{\varepsilon} = A_1 + ... + A_N$ are essentially self-adjoint on $D \longrightarrow D_k$.
- (2) $\sigma(A_{\pi}) = \overline{\prod_{k=1}^{N} \sigma(A_{k}')}$ and $\sigma(A_{\varepsilon}') = \overline{\sum_{k=1}^{N} \sigma(A_{k}')}$.

Example (1.18) [4] :-

Suppose that v(x) is a potential so that $H_1 = -w_k + v(x)$ is essentially self-adjoint on (\mathbb{R}^3) . Then $H_2 = -w_x + v(x) + -w_y + v(y)$ is essentially self-adjoint on the set of finite sums of products $\Phi(x) \psi(y)$, with $\Phi, \psi \in (\mathbb{R}^3)$. Further $\triangleleft_{H_2} = \overline{\triangleleft_{H_1} + \triangleleft_{H_1}}$.