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Abstract

We obtain the spectrum and an effective estimate for the Lebesgue
measure of the preimages of iterates of Farey and Gauss maps. The
intervals and dichotomy between Farey fractions and sequence in the
limit of infinite level and uniform distribution of the Stern-Brocot are
determined. The structure, topology, separation and measure properties
of the self-similar sets and Fractals and interated function systems of
bounded distortion are characterize. We examine the asymptotic
behavior of the Lebesgue measure of sum-level sets of continued
function, self-similarity and nonempty interior. The family of self-affin
and self-conformal sets with uniqueness, simultaneous and positive
Hausdorff measure are studied. The nultigemetric. Subsum sets of
sequences with recovering a purely atomic finite measure and
Cantorvals with Lebesgue measure of M-Contorvals of Farey type are
established.
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Introduction

We introduce Hilbert spaces of holomorphic functions given by
generalized Borel and Laplace transforms which are left invariant by the transfer
operators of the Farey map and its induced transformation, the Gauss map,

respectively. The modified Farey sequence consists, at each level k, of rational

fractions ™ , with n = 1,2,...,2% + 1. We consider I°’, the total length of

(one set of) alternate intervals between Farey fractions that are new (i.e., appear

for the first time) at level k, 1,§e> =)y (rk(“) - rk(‘”_z)) . We show that
lim inf 19 = 0, and conjecture that in fact lim 19 = 0. We employ infinite

ergodic theory to show that the even SternBrocot sequence and the Farey
sequence are uniformly distributed mod 1 with respect to certain canonical
weightings

We investigate topological properties of a uniquely determined compact
set K such that K = );ca f1(K), where eachf; is a weak contraction of a
complete metric space and A = {1,2,"’,m} or A = N. Such a set K is said to
be self-similar. Even though the open set condition (OSC) is generally accepted
as the right condition to control overlaps of self-similar sets, it seems unclear how
it relates to the actual size of the overlap. We study a general separation property
for subsystems G, whose attractor K; is a sub-self-similar set. This is a
generalization of the Lau-Ngai weak separation property for the bounded
distortion case. For subsystems with positive Hausdorff measure in its similarity
dimension, we characterize the subsets of K; with positive measure where the
separation property may fail.

For a sequence x € [;\cyo, ONe can consider the achievement set E (x) of
all subsums of series };-; x (n). It is known that E (x) is one of the following
types of sets: finite union of closed intervals, homeomorphic to the Cantor set,

homeomorphic to the set Tof subsums of }.7°-; c(n) where c(2n—1) = 4% and

c(2n) = f—n (Cantorval). Given a finite subset 2 < R and a positive real number

q < 1 we study topological and measuretheoretic properties of the self-similar
set K(2;9) =Yme1 2,9 (@n)new € 2 2}, which is the unique compact
solution of the equation K = X + gK. A sequence of real numbers converging to
zero need not be summable, but it has many summable subsequences. The set of
sums of all summable (infinite, finite, or empty) subsequences is a closed set of
real numbers which we call the subsum set of the sequence. When the sequence
Is not absolutely summable, its subsum set is an unbounded closed interval which
includes zero.



We give a detailed measure theoretical analysis of what we call sum-level
sets for regular continued fraction expansions. The first main result is to settle a
recent conjecture of Fiala and Kleban, which asserts that the Lebesgue measure
of these level sets decays to zero, for the level tending to infinity. The second and
third main results then give precise asymptotic estimates for this decay. Using
techniques from infinite ergodic theory, Kessebéhmer and Stratmann determined
the asymptotic behavior of the Lebesgue measure of sets of the form F™"[a, 8],
where [a, 8] € (0,1] and F is the Farey map.

Let By, B, > 1and Ti(x,y) = ((x + )/B1, (y + )/B2),i € {£1}. Let
A := Ap;, B, be the unique compact set satisfying A = T;(4) U T~1(4). We
give a detailed analysis of A and the parameters (5, ) where A satisfies various
topological properties. In particular, we show that if 8; < B, < 1.202, then A
has a non-empty interior, thus significantly improving the bound from Dajani et
al we prove that the connectedness locus for this family studied in Solomyak is
not simply connected. We investigate the Hausdorff measure and content on a
class of quasi self-similar sets that include, for example, graph-directed and sub
self-similar and self-conformal sets. We show that any Hausdorff measurable
subset of such a set has comparable Hausdorff measure and Hausdorff content.
In particular, this proves that graph-directed and sub self-conformal sets with
positive Hausdorff measure are Ahlfors regular, irrespective of separation
conditions. We introduce BBI spaces (“big balls of itself””), which based on the
notion of BPI spaces (“big pieces of itself”) used by David and Semmes to study
self-similarity.

A special family of multigeometric series is considered from the point of
view of behaviour of their sets of subsums. A sufficient condition for their sets of
subsums to be M-Cantorvals is proven. The Lebesgue measure of those special
M-Cantorvals is computed and it is shown to be equal to the sum of lengths of all
component intervals of the M-Cantorvals. For pu be a purely atomic finite
measure. By the range of 1 we understand the set rng(u) = {u(E) : E < N}.
Given a positive integer number m, we consider the M-Cantorval K =

{2;‘;;1 ‘" _: )€ {0,2,3,...,2m,2m + 1,2m + 3}N}. We show that

2m+2)n
this set is an attractor of iterated function system.

Vi
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Chapter 1
Spectrum with Intervals between Farey Fractions and a Dichotomy between Uniform
Distributions
We are able to study simultaneously the spectrum of both these operators along with
the analytic properties of associated dynamical zeta functions. This construction establishes
an explicit connection between previously unrelated results of Mayer and Rugh (see [21]
and [32]). The simple geometrical property of the Farey fractions turns out to be surprisingly
subtle, with no apparent simple interpretation. The conjecture is equivalent to l}l—{{)lo S, =0,

where S, is the sum over the inverse squares of the new denominators at level k, S, :=

_ 2
Zflk:f 1/ (d,(f”)) . Our result makes use of bounds for Farey fraction intervals in terms of

their “parent” intervals at lower levels. We derive the precise asymptotic for the Lebesgue
measure of continued fraction sum-level sets as well as connections to asymptotic
behaviours of geometrically and arithmetically restricted Poincaré series. We give relations
of our main results to elementary observations for the Stern-Brocot tree.
Section (1.1): Farey and Gauss Maps

The spectral analysis of transfer operators for smooth uniformly expanding maps of
the unit interval [0, 1] is now fairly well understood (see [5], [2]). The spectrum depends
crucially on the function space considered which is in general a Banach space. For Banach
spaces of sufficiently regular functions, e.g. the space C* of k-times differentiable functions
on [0, 1] with k > 0, the transfer operator is quasi-compact. This means that its spectrum is
made out of a finite or at most countable set of isolated eigenvalues with finite multiplicity
(the discrete spectrum) and its complementary, the essential spectrum. The latter is a disk
whose radius is a function both of k and the expanding constant p of the map (see e.g. [6]),
in such a way that if we let p — 1 from above (e.g. approaching an intermittency transition)
the essential spectral radius tends to coincide with the spectral radius itself. In particular, in
order to understand the nature of the spectrum lying under the ‘essential spectrum rug’ we
have to consider increasingly smooth test functions as p approaches 1. This suggests, for
instance, that for a type 1 intermittency model at the tangent bifurcation point (see [27]) one
should consider suitable spaces of analytic functions. We construct a Hilbert space H, of
analytic functions which is left invariant by the transfer operator P of the Farey map, a
prototype of smooth intermittent interval map, having a neutral fixed point at the origin. As
a result, the spectrum of P when acting on H, turns out to be the interval [0, 1] with
embedded eigenvalues 0 and 1, plus a finite or countably infinite set of eigenvalues of finite
multiplicity. The latter is conjectured to be empty. This would improve for this example a
previous result obtained by Rugh in a more general framework [32]. The above and related
achievements are obtained by (a slightly modified version of) an inducing procedure which
was introduced for the first time in [28] (see also [30], [16], [18]) for a rather general class
of intermittent interval maps. The main tool in this construction is an operator-valued
function @, which enjoys simple algebraic relations both with 2 and the transfer operator
Q of the Gauss map, the latter being obtained by inducing the Farey map with respect to the
first passage time a subset of [0, 1] away from the neutral fixed point. The spectral properties
of @, when acting on a Hilbert space H; c H, are then suitably translated into those of Q
in H; as well as P in H,,. We devoted to introduce the Farey-Gauss pair, briefly discussing
some (mostly known) properties of these maps and of their invariant measures and ending
with a short account of their intimate connection with number theory. Further material on
these general facts can be found in [4], [19], [12], [22]. The main results are contained in
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the two subsequent. We deal with the spectral analysis of transfer operators. We first
introduce the operator valued function Q, and establish simple algebraic identities. We then
extend to Q, some previous results of Mayer and Roepstorff (see [24], [25]) for the Gauss
transfer operator Q obtaining as a by-product an analytic continuation of @, outside the unit
disk which is crucial to exploit the above identities for spectral analysis purposes
(Proposition (1.1.6)). The main results on the spectrum of 2 (Theorem (1.1.16) and Theorem
(1.1.17)) are then obtained by combining these identities with an explicit integral
representation of P on the Hilbert space H, (Theorem (1.1.15)). We apply the construction
to study analytic properties of the dynamical zeta functions [3] for the Farey-Gauss pair.
The role of Q, is here played by a two-variable zeta function ¢, (s, z) which simply relates
to the Farey and Gauss zetas and whose analytic structure is directly connected to the
spectrum of Q,. As a result, the zeta function of the Farey map turns out to extend
meromorphically to the cut plane C\[1, o).

We point out that some generalized version (involving a ‘temperature’ parameter 3)
of these functions were previously studied in [21], [22], [23] for the Gauss map and in [8]
for the Farey map paired with an induced version conjugated to the Gauss map 1. In the
more general of piecewise analytic map with a neutral fixed point results yielding
meromorphic continuation to the cut plane for zeta functions as well as regularized
Fredholm determinants were obtained in [32].

We first consider the Farey map of the interval [0, 1] into itself defined as

Fo(x), if0=sx< %
F(x) = ) (1)
F;(x), if§<xs 1,
where
B 1 B 1—x )
CF(x) x @)

X
FO(X)!=m and Fl(X):=F0(1—X)
The inverse branches are
1 X 1 1/1—x
Wy () = B = o= =5 -5 (1)

1+x 2 2\1+x
W()=F-1()—L—1+1(1_x) 3
W= M Ty T2 2w )
For x # 0 the map ¥, (x) is conjugated to the right translation x - S(x) = x + 1, i.e.
Yo=JoSo] with J(x)=]'(x)=1/x (4)
This yields for the n-iterate
n = o n o = .
PG =] oS0 J(0) = 5)
Moreover ¥, (x) satisfies
P1(x) =] o S(x). (6)

Let A ={A,},>1 be the countable partition of [0, 1] given by A, =[1/(n+
1),1/n]. Setting A, = [0, 1] it is easy to check that F(4,) = A,_, foralln > 1. Let X be
the residual set of points in [0, 1] which are not preimages of 1 with respect to the map F,,

namely X = (0, 1]\ {%}ml. The first passage time 7: X — N in the interval A, is defined as

T(x) =1+ minfn > 0: F*(x) € A} = E], (7)



where [a] is the integer part of a. We see that A,, is the closure of the set {x € X: 1 (x) = n}.
On the other hand, the return time function r: A; - N U {0} in the interval A, is given by
r(x) =min{n > 1: F*(x) € A;} = Tt o F(x). (8)
We now consider the map G: X — X obtained from F by inducing w.r.t. the first passage
time 1, i.e.
G(x) = F*™(x), 9)
which can be extended to all of [0, 1] setting G(0) = 1,G(1) = 0,
lirrll G(x) =0, lirrll G(x)=1, n>1,

1 1 .
and whenever x € (——) we have, using (5),
n+l'n

1 1
GO = Gu(0) = F"(0) = F o Ff' ) =——n=-—1(x).  (10)
In other words the induced map is the celebrated Gauss map

1 .

G(x) = {{E} iyx#0, (11)
0, ifx=0,

where {a} denotes the fractional part of a. It has countably many inverse branches &,, given

by

1
o) =G, (x) =——, > 1. 12
W00 =Gl =——, n (12)
It is an easy task to verify that the o-finite absolutely continuous measure
1 dx
dx) = dx = —— — 13
v(dx) = e(dx = -z (13)

is invariant for the dynamical system ([0, 1], F). Note that v(4,,) = (log2) ! log (1 + %)
and v([0,1]) = . Let B,, = {x € A;:r(x) = n}. Using (8) we have F; (B,) = A,,. We now
show that v(4,,) = Xxsn V(By). Indeed, for n = 1 we have };»; v(By) =v(4,) = 1.
Moreover, since v is F-invariant, v(4,) = V(F_l(An)) =v(A4,,+1) + v(B,4+1), and the
assertion follows by induction. Therefore the expected return time is infinite:

@) = [ rev@ =Y v =Y v =v(0 =, (4)

Ay n=1 n=1

where v, is the conditional probability measure defined as v, (E) = v(E N 4,)/v(4,). It
IS known that in this situation there is the coexistence of two different statistics for the

dynamical system (F, [0, 1]): besides v, the ergodic means %Z?gol 8 i (x) converge weakly

to the Dirac delta at O (see [26], [17]). Let p be the probability measure obtained by pushing
forward v with F, i.e.

p(E) = (F).V)(E) = (ve ¥)(E). (15)
Reasoning as above one readily verifies that the converse relation is
v(E) =) (p o ¥(E). (16)
nz0

In particular we have v(4,) = Y;=n p(4;) and p(4,) = p(F,(B,)) = v(B,), where By, is
as above. We then have

p(E) = (ve¥)(E) =Z(p°W3°W1)(E) = p(GT'E), (17)

n=0

3



which says that p is G-invariant. Moreover p is ergodic with respect to G (see e.g. [4]).
Setting h(x) = p(dx)/dx we get

(00]

h=1¥-eo,, e= ) (¥) -houyk (18)
k=0
which gives the well known result
hee) = —— . 19
X = log2 (1+x) (19)

The primitive H(x) of h(x), with H(0) = 0, is H(x) = log(1 + x) /log 2. Setting q,,: =
H (ni) = (log2)~"log (1 + ﬁ) we have v(4,) = q, and p(4,) = qn_1 — 5. We see

+1
that gn is a (strict) Kaluza sequence, i.e. foralln > 1
1=qo>q1..>q,>0 and g7 < gn_1Gn+1- (20)
Finally, by (7), (8), (14) and (15) we have
p(0) = (F).v)([@) =v(te F) =v(r) = . (21)

On the other hand we have the following,
Lemma (1.1.1)[1]: The function log t is in L, (p) and satisfies

n-—1
1 :
lim —z logt (GJ (x)) = p(log(t) = K, p—a.e., (22)
n-oo N —d
j=
where the positive constant K is defined by
o logk
1 log 2
K _ -
¢ _g <1+k(k+2)) ' (23)

Proof. We have

plogt) = > p(4)-logk = > (qis — i) - logk
k=1 k=1

-1

logk | (1+1)(1+ ! )
log2 5 K k+ 1
logk | (1+ . ) K <

. _ | = 00,
log2 B\" Tk(k +2)

k=1
This computation shows both that logt € L;(p) and the last equality in (22). The first
equality in (22) now follows from the ergodic theorem [4].
The constant K which appears above is known in number theory as Khinchin’s constant.
This is not a coincidence, as we now briefly explain.

I
i NgE

The Farey sum over two rationals % and % Is the mediant operation given by [15]

1

a" a+d
. b" b+b
It is easy to see that Z— falls in the interval (%%) Now, having fixed n > 0, let F,

14}

be the ascending sequence of irreducible fractions between 0 and 1 obtained inductively in

the following way. Set first F, = (%%) Then F, is obtained from F,,_, by inserting among

(24)

1

!
each pair of consecutive rationals ~ and - in F,,_; their mediant - as above. Thus F; =
4



(9,1,1),7-‘2 = (9,1,1,3,1),7-‘3 = (9,1,1,3,1,3,3,3,1) and so on. The elements of F,
1°2°1 132_3 1°4°3°'5°2°'5"3°'4°1 . .
are called Farey fractions. The name of the map F can be related to the easily verified
observation that the set of pre-images Ut; F~*{0} coincides with F, for all n > 0. In
particular, this implies that Ui, F~*{0} = Q n [0, 1] (notice that the same is true for the
induced map: Uy, G *{0} =Qn[0,1]).

We recall that every real number 0 < x < 1 has a continued fraction expansion of the

form [19]
1

1 = [kl,kz,k3,...], (25)
kit —1"

k, + o
3 XE]
with k; € N. By applying Euclid’s algorithm one sees that the above expansion terminates

if and only if x is a rational number. There is an intimate connection between the partial
quotients k4, k,, ... and the Gauss map G. Indeed, given x as above we can write

1 1 1 1 1
*TTTM M k+6H) 1 - 1
6 AT it ko T
1 dey ool e
= 1 = ... (26)
Iy e
Therefore, k; = [1/x],k, = [1/G(x)], k3 = [1/G?*(x)] and so on. Alternatively,
if x=|lkykyks...] then G(x)=[ky ks,...]. (27)

Farey fractions have close relationships with continued fractions. Let us say that a Farey
fraction has order n if it belongs to F,\F,_,. Given n > 1 there are exactly 2! Farey
fractions of order n (they form the set F~™+1{0}) and it is possible to show (see below eq.
(28)) that the integers k; in their (finite) continued fraction expansion sum up to n + 1.
Furthermore, it is easy to realize that all Farey fractions which fall in the interval (1/(n +
1),1/n) have order greater than or equal to n + 1, whereas their continued fraction
expansion starts with k; = n. Thus, the map F acts on Farey fractions by reducing their
order of one unit. We can write an explicit expression for the action of F on continued

fraction expansions. Indeed, if 1/2 <x <1 then k; =1 and F(x) = i —k; =G(x). If

instead 0 < x < 1/2thenk, > 1and F(x) = 1/(i — 1). Therefore,
lf X = [kl,kz,kg,...] then F(X) = [kl_l,kz,k3,...], (28)
with [0, k,, ks,...] = [k, k3,...] (compare to (27)). Now, it is well known that for almost
all x € (0, 1) the arithmetic mean of the partial quotients is infinite (see, e.g., [19]), i.e.
. k1 + +k7’l
lim ——— =00, (a.e.) (29)

n—-oo n
From the above discussion and (7) we get k; = [Gl‘;l(x)] =1 (Gl‘l(x)), which forl > 1 is

the time between the (I — 1)-st and the I-th passage in A, of the orbit of x with F. Therefore,
the total number S,, of iterates of F needed to observe n passages in A4, that is the function

Sp(x) = 7(x) + T(G(x)) -+ +7(G" (%)), (30)
satisfies



Sy (x
lim nTE ) = 00 (a.e.) (31)

n—>00
Since p is absolutely continuous w.r.t. the Lebesgue measure on [0, 1], the properties
expressed by (21) and (31) can be regarded as an instance of validity of the ergodic theorem
for the non-integrable function t. As a consequence of ([19], Theorem 30) we have that for

almost all x € (0, 1) the inequality

Sp(x) = nlogn (32)
Is satisfied for an infinite number of values of n. On the other hand, Lemma (1.1.1) can now
be rephrased by saying that the geometric mean of the partial quotients has a certain finite
value (a.e.). This, in turn, is a corollary of a theorem of Khinchin ([19], Theorem 35), which
says that for any function f (k) defined on the positive integers and satisfying f (k) = O(kP)

with0 <p < %we have, for almost all x € (0, 1),

1
2 (k) - f(; 1g<1+m> < e(n) (33)

i=j
where the error function e(n) is any posmve function decreasing to zero as n—oo so that
> n72-€e7%(n) < co. Lemma (1.1.1) then corresponds to the choice f (k) = logk.

We start by establishing some formal algebraic relations between the transfer
operators P and M associated to the maps F and G, respectively (see [2]). They describe
the action of the differentiable dynamical systems F and G on the density f of a measure
absolutely continuous measure wrt Lebesgue by

Pf(x) = (Po + Pf () = [P - f(Wo(x)) + P10 - f(¥1(x))
(N X 1
_(x+1) [f(x+1)+f(x+1)]’ (34)

and
0f (x) = z Quu(x) = Z [BACOI - F(Pn ()
; (x+n) (xj—n) (35)
We first notice that

Qnf (x) = P(f - xn) (x) = PP f (), (36)
where y,, is the indicator function of A,. Let Sf(x):= f oS(x) = f(x + 1) be the shift
operator. Note by (4) and (6) we have

PiPof (x) = SPy f(x), (37)

Qnf(x) = PLPGHf(x) = S P £ (x). (38)
More generally, for z € C, we shall consider a formal operator-valued power series Q,
defined by

and therefore (36) yields

(0]

0.f(0) = ) @) |0y ()] - (0, () = 2P (1 = 2P)) () (39)
n=1
so that Q; = Q. The following operator relations are in force and are independent of the
function space the operators are acting on.
Proposition (1.1.2)[1]: Let z € C be such that (39) is absolutely convergent. Then we have
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1-9,)(1—zPy) =1—-2zP (40)
and

1-z801-9,)=1-zP. (41)
where P = S + P;see [28], [30], [8], [16], [18].
Proof. Using the first identity in (38) we get

(1-0)(1—7P) = (1 -> Z"?1?6“1> (1-2Py)

n=1
00

=1-2zP, —z AN +z zZ"IP Pl =1—2Py—zP, =1—zP.
n=1

In a similar way, using the second identity in (38) one shows (41).
Corollary (1.1.3)[1]: Let z # 0 be such that (39) is absolutely convergent and assume that
the kernel of 1 — zP, is empty. Then 1 is an eigenvalue of Q, if and only if z71 is an
eigenvalue both of P and P, and they have the same geometric multiplicity. Furthermore,
the corresponding eigenfunctions e, of P and h, of P and Q, are related by h, =
(1—2zPye,orelsee, =Y, zEPkh,.
Proof. Assume that Q,h, = h,. From (40) it then follows that (1 — zP) Yo, z*Pkh, =
0. Conversely, assume that zPe, = ez, then we have (1 — Q,)(1 — zP,)e, = 0. Inthe same
way, from (41) it follows that Q,h, = h, if and only if Ph, = z1h,.

Having fixed an open connected domam Q c C let H(Q) be the Frechet space of
functions which are holomorphic in Q with the topology generated by the family of sup
norms on compact subsets of Q. Moreover, we let A, () € H (Q) denote the Banach space
given by the subset of functions in 7 (€2) having continuous extension to 0, endowed with
the norm

IfIl = sup |f(w)l, (42)

wE(

(where w = x +1iy). We let first 9, act on the Banach space A, (D) with D =
{w € C:|w — 1] < 1}. Itis easy to verify that @, (D) c D forall n € N. Standard arguments
(see [22]) then imply that whenever the power series in (39) is uniformly convergent Q,
defines a nuclear operator of order zero on A, (D).

Lemma (1.1.4)[1]: The power series of Q,: A, (D) = A, (D) has radius of convergence
bounded from below by 1 and, moreover, it converges absolutely at every point of the unit
circle.

1
Proof. The radius of convergence of @, is lim ||Q,,|| = (here || || denotes the operator norm
n—oo
as well). We have sup |Q,f(w)| < € n?||f|| and therefore ||Q,,|| < Cn~2.

WED
We now introduce a subspace of A, (D) on which the action of @, will turn out to be

particularly expressive. This is achieved via a generalized Laplace transform.
Definition (1.1.5)[1]: We let #; denote the Hilbert space of all complex-valued functions f
which have a representation as generalized Laplace transform

(00]

F) = CLlpD)i= [ e p@dm(@) (43)
0
where ¢ € L,(m) and dm is the measure on ir* given by
dm(t) = p: t_ 1dt. (44)

As a Hilbert space #; is endowed with the inner product
7



(0]

(f1.f2) = J p1(O(Dam(t) if f; = Llg;]. (45)
0
The following Proposition generalizes corresponding results obtained by Mayer and

Roepstorff (see [24], [25]) for the operator Q.
Proposition (1.1.6)[1]: For each z # 0 with |z| < 1, the space #; is invariant under Q,.
More precisely we have

Q,L[lp] = L[z(1 - M)(1 — zM) 'K ¢], (46)
where M: L,(m) — L,(m) is the multiplication operator
Mo(t) = e o(t) (47)
and K: L,(m) — L,(m) is the integral operator
_[* Ju(2Vst)
o = | 2 p)dm( (48)

and J, denotes the Bessel function of order p.
Proof. Letting f = L[¢] we have from (39) and (38)

z" @ _t
sz(W) = nZl m]o dm(t)e W+n(p(t). (49)

n

t
Clearly, for |z| <1, the sum Y., (Wi—n)ze_m is uniformly convergent in t € ir*.
Therefore interchanging summation and mtegratlon we get

Zn _L Z t)kz
—_—e win =
2 2+k
] (w+n) £ (w+ n)
(—t)*
_z 20z, + 2w+ 1) (50)
k=0
where @(z,a,b) = Y0, (b e Is the Lerch transcendental function which, for Ra > 1,
possesses the integral representatlon
sa- 1 —(b 1)s
®(z,a,b) = Z 0 +n)a r(a)J ——ads. (51)
This yields
1 00 Sk+1e—ws
D 2 1) = . 2
(zk+2,w+1) (k+1)!fo S ds (52)
Noting that
st)k 2+/st
(—st) 11( Vst) (53)

(k+ 1! k! Vst
where J; (x) is the Bessel function of the first kind, we have thus found that
Zs e~ Ws .[OO dm ( )]1(2\/_)
— . st
= j dm(s)e™S(z(1 — M)(1 — zM) 1K p)(s)

= (L[z(1 = M)A — 2M) K p])(W). (54)

(00]

0.fw) = | ds—;

0




Notice that for each t € irt the function J;(2+st)/+/st is uniformly bounded and
continuous for s € ir*. It is then an easy task to verify that for ¢ € L,(m) and for |z| < 1
the function (1 — M)(1 — zM) 1K ¢ isin L,(m) as well.

Indeed, the operator (1 — zM) is invertible in L, (m) with bounded inverse provided
é ¢ [0, 1]. Therefore, for any ¢ € L,(m) the integral in (46) converges uniformly in any

compact region of the complex z-plane not containing points of the ray (1, +o0). Moreover,
it has been proved in [24] that the operator K is compact (actually trace-class) in L,(m).
Therefore, as long as (1 — zM) has bounded inverse the operator (1 — M)(1 — zM)™1K is
compact as well (being the composition of a compact operator with a bounded operator).
Proposition (1.1.6) and the above observations prove the following result,
Theorem (1.1.7)[1]: The operator-valued function z — Q,, when acting on #;, can be
analytically continued to the entire z-plane with a cross cut along the ray (1, +), and for
each z in this domain is isomorphic to the operator

Ky=z(1—-M)(1—-zM)"'K (55)
acting on L, (m). They are both compact operators.
Remark (1.1.8)[1]: Putting

Hs: = {w € C:Rw > &} (56)
one sees that a function f = L[p] with ¢ € L,(m) can be extended to a function
holomorphic in the half-plane H 1.

2
If, in addition, f is an eigenfunction corresponding to a non-zero eigenvalue A of Q, in H;,
for some non-zero z € C\(1, =), then

B _[1=e7"\ [*](2Vst)
ot = (0 =( T | R e@dne. 67

Since the integral in the r.h.s. is bounded for all t € [0, o) the function ¢(t) is bounded as
well is this domain and therefore f is holomorphic in the half plane H_;.
Putting together the above, Proposition (1.1.2) along with standard arguments (see [9]) we
get,
Corollary (1.1.9)[1]: The operator-valued function - (1 — @,)~1, when acting on H;, is
analytic in the open unit disk {z: |z| < 1} and can be meromorphically continued to the
entire z-plane with a cross cut along the ray [1, +0). It has a pole whenever X, has 1 as an
eigenvalue.

Now, from Proposition (1.1.2) we obtain the following formal relation for the
resolvent R, of P:

Ry=(A—P) L= (A —P)" (1 _ Ql)_ | (58)
A

The analytic properties of the first factor in the r.h.s. can be understood in terms of the
spectrum of the operator P, when acting on a suitable function space invariant under the
action of . A calculation along the same lines as in the proof of Proposition (1.1.6) shows
that, for f € H; with f = L[],

1 ® _t
(1—2?0)‘1f(W)=m f e we'z N (K,p)([®)dm(t). (59)

We shall therefore characterize the space #, to be acted on by P as follows:
Definition (1.1.10)[1]: We denote by #, the Hilbert space of all complex-valued functions
f which can be represented as a generalized Borel transform

9



(0]

1 t
fw) = (BlpDw): = ﬁj e wetp(t)dm(t), @ €L,(m), (60)

0

(0]

(Fuf) = | P@00dm@ it fi = Blo (61)
0
Remark (1.1.11)[1]: A function f € H, is holomorphic in the disk
D1={WE(C:§R%>%}={WE(C:|W—1|<1}. (62)

For w real and positive a simple change of variable makes (60) in the form

1 (0]
== epemds with w© = (==)e®. (63
. _
Remark (1.1.12)[1]: The F-invariant density e (see (13)) can be represented as

1 1—et
€= (log Z)B [ t ]' (64)
whereas for the G-invariant density h we have
1 1—et 1 (1—e )2
h=(10g2>L[ t ]=(log2)B[ t ] (65)

In the representation of Remark (1.1.11) we have that if f =e-log2 then Y(t) =1
whereas for f = h-log2 we find (t) = 1 — e~*. Both these functions can be viewed as
ordinary Borel transforms of a sequence {a,, }n=o, i.6. Y(t) = Yoy t™a,/n!so thatby (63)
we have w - f(w) = Y-, w"a,. In the former case we find a, = 1 and a,, = 0 forn >
0, in the latter a, = 0 and a,, = (—1)™! for n > 0. Therefore in both cases the integral
(63) provides a continuation of w - f(w) outside the disk D, (see [34]).
We now have the following,
Lemma (1.1.13)[1]: For all ¢ € L,(m)

Llp] = B[(1 - M)XK ¢] (66)
where Mo (t) = e t(t) and X is the symmetric integral operator defined in (48).
Proof. The proof is an easy calculation based on Tricomi’s theorem (see [33])

up1+1 fooo dt e_%<P(t) - .[000 dte™ .[ooo ds G)g]p(zﬁ)‘/’(s)’ (67)

with p = 1, and therefore we omit it.
It is now not difficult to verify that

PBlo] = L]¢], (68)
and
PoBle] = B[Me]. (69)
In addition we have
SL[p] = LIMg], (70)
so that
PP Blo] = S"' P Blo] = LM tg], (71)
and therefore
Q,Blp] = z- L[(1 — zM) " ¢]. (72)

We thus see that P, leaves H, invariant and by (70) its spectral properties in H, are identical
to those of S in ;. Moreover P; maps H, into H; c H,, and the same does Q, forall z €
C\ (1, 4+00). Notice that using Lemma (1.1.13) and (72) we immediately recover Proposition
(1.1.6), in that
Q.Llp] = Q,B[(1 - MKl = L[ z- (1 — zM) (1 — M)K o] = L[K,p]. (73)
10



We are now in the position to write explicit representations for P and its resolvent R, in the
space H.
Remark (1.1.14)[1]: Note that for ¢ € L,(m) the functions
M and (1-M)XKe (76)

are bounded at infinity and therefore, by (74), the function P with f = B[¢] is analytic in
the half-plane #,. In particular so is any eigenfunction of P in F.
Theorem (1.1.15)[1]: Let f € H,, that is f = B[¢] for some ¢ € L,(m), then

. Pf=BIM+ (1 -MK)e], (74)
an

Ryf=(—P)if =B [(1 - :K%)_ (A— M)‘1<p]. (75)

Proof. From (69) and (68) one obtains Pf = B[M¢] + L[], so that (74) follows using
Lemma (1.1.13). The expression for R, can now be obtained directly from (74). But we can
also make use of (72) and (54) to obtain, for a given f = B[¢],

T [acmz _ M)-1<p] 77
2 y)

and therefore

-1 -1
(1—9%) f=Blp]+L (1—76%) (A—M)‘lgol. (78)
This expression along with (58), (59) and (69) yield

\scritRyf = B[(A—M) o] + B|X1 (1 — 7(1)_1 1- M)‘l(p]
|7 )

=B [(1 — K%>_1 (11— M)—lgo].

Using Corollary (1.1.9) we see that R, extends to a meromorphic (operator-valued) function
in C\[0, 1].

The next theorem (partially) describes the spectrum of P in H,.
Theorem (1.1.16)[1]: The spectrum of the operator P: H, — H,, is the union of [0, 1] and
a finite or countably infinite set of eigenvalues of finite multiplicity.
Proof. By Theorem (1.1.15) the action of transfer operator P on H, can be explicitly
expressed in the form

PBly] = B[Tg], (79)
with

(TP)(©): = e~ (t) + f K(s, D(s)ds (80)
and

K(s,t) = et (Zs — 1) \E J1(2v/s0). (81)

We check that M when acting upon L, (m) is self-adjoint and its spectrum is the line segment
[0,1] = Cl{e~t:t € ir*} (see, e.g., [7]). Therefore the spectrum of P in H, is given by a
compact perturbation of the continuous spectrum o, = [0,1]. The assertion is now a
consequence of Theorem 5.2 in [14].

We shall now characterize some properties of the eigenfuctions of P in H,. First, it
Is easy to see that A = 0 is an eigenvalue of infinite multiplicity. This follows by noting that

11



(see (3) and (34)) any function f € H, whichisoddw.rt.x =1/2,e.g. f(w) =1—-2w =
B[(1 —t)(1 — e~ )] lies in the kernel of P.
Now suppose that Pf = A f for some f € H, and 1 # 0, or explicitly
1 1 \? w 1
f(W)_(W+1> [f(w+1)+f<w+1)]' (82)
By Remark (1.1.14) f(w) extends analytically to the half-plane H,. If we transform this
equation by substituting 1/w for w and then dividing through w? we get

o ()= ) ) Gl e
Wfw_w+1 fw+1 fw+1' (83)
Therefore f satisfies
1 1
wfw) =—f (W) (84)
for all w € H,. Note that applying (84) to each term of the r.h.s. in (82) one obtains
1 1
Awf(w)=wf(w+1)+wf<1+w>. (85)

For A = 1 thisyields w f(w) = 1. Note that for f = B[¢] we have

0

1
w2f (W) = j e Welp(t)dm(t) = B[(1 - M)KXM 1p]. (86)
0

Therefore the functional equation (84) can be written as

(1—-MKXM 1o = . (87)
Now, given a continuous function i on ir* one can define (a version of) its Hankel
transform (of order 1) as the integral

uno= |

0

J1(2v5%) ﬁ Y(s)ds. (88)

From the estimates /;(t) ~tast —» 0% and J;(t) = 0 (t‘E) ast — oo ([11], vol.ll) we see

that the conditions on  sufficient to give the absolute convergence of the integral (88) are
Y(©) =0(t7#)ast > cowithp > —1/4and P(t) = 0(t*) as t » 0" with @ > —1. The
identity (87) then says that the function (cf. Remark (1.1.11))

PO = (7= 0© (89)
satisfies
P(t) = j J1(2Vst) ﬁ P(s)ds. (90)

Note that the simplest solution of this equation is y=1 and corresponds to f=e (more general
self-reciprocal functions satisfying equations related to (90) are discussed, e.g., in [35]).
Furthermore, putting together (84), (86) and (89) we have that

foy = [ e (91)
0
for all w € H,. Finally, one easily checks that if ¢ € L,(m) then ¢ € L, (i) where
dm(t) = e’ -e™) dt
e =T log 2

We summarize the above in the following

12



Theorem (1.1.17)[1]: If f € H, satisfies Pf = A f for some A # 0 then f is the (ordinary)
Laplace transform of a function ¥ € L, (M) which is self-reciprocal w.r.t. Hankel transform
of order 1, namely f and v satisfy (91) and (90), respectively.
Now from Corollary (1.1.3) we know that a function f = B[¢] satisfies Pf = Af if
and only if (the analytic continuation of) K1: L,(m) — L, (m) satisfies Ki¢p = ¢, which can
A A
also be written as
—et A—et
(Hp)(©) = T— = 2(0) = 0} (92)
Expressing the integral operator I in terms of the Hankel transform (88) we get (K ¢)(t) =
% J(exp_; - ¥)(t), where we have defined the function exp, :ir — ir by exp, (t) = et

Identities (90) and (92) then yield the integral equation

J(exp_y -) = (A(exp_q —) - JY. (93)
Once more, y=1 satisfies this equation with A=1 (recall that Jexp_; =1 —exp_; ). On
the other hand, the above discussion suggests that there are no A € C\{0, 1} such that (93)
has a (non-constant) solution ¢ € L, (71). We are thus are led to formulate the following,
Conjecture (1.1.18)[1]: The only (non-zero) eigenvalue of P: Hy, - H, isA = 1.
We end with two additional remarks.
Remark (1.1.19)[1]: (92) is a particular case of the Lewis functional equation

+1 1
fw) —fw+1) = 1/w2@+df (1 + W)’ (94)

which is related to the so called Maass cusp forms, i.e. PSL(2,Z)-invariant eigenfunctions
of the Laplacian on the Poincar’e upper half-plane which vanish at the cusp (see [20]).
Another type of functions equivalent to (even) Maass forms and considered in [20] are those
satisfying an integral equation which in our notation writes

* ]2q+1(2\/§) 5\4
t) = - s)dm(s). 95
9= | 2 (0) 9@dm(s) (95)
By the foregoing (see Remark (1.1.12)) we see that for g = 0 we have the relation

f =Blgl. (96)
Remark (1.1.20)[1]: In the recent work [29], following [28] ten years later and somehow
inspred by the construction presented here, Thomas Prellberg has studied the spectrum of (a
generalized version of) P in a space of functions which is identical to H, with the exception
that the measure on ir™ is slightly different from (44), being given by
dm(t) = t e~ tdt. (97)
It is easy to see that with this new measure the operator @, is isomorphic under generalized
Laplace transform (cf. Theorem (1.1.7)) to X,: L, (1) — L, (i) given by

K, =z(1-zM)'K, (98)
where
~ B J1(2Vst)
%¢@)—L amO L= (0 (99)

Notice that K, = (1 — M)XK which is not symmetric anymore. On the other hand, the
relation given by Lemma (1.1.13) now writes (we keep using the symbols £ and B to denote
generalized Laplace and Borel transforms w.r.t. the measure m):

L[p] = B[K ] (100)
and hence the integral representation of P becomes
PBle] = B[(M + X)g], (101)
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which is now symmetric (cf. (74)). Thus, everything goes as if the operators P and Q were
not ‘symmetrizable’ both at the same time. Also notice that the function log 2-e if expressed
as a generalized Borel transform now yields the function ¢ (s) = 1/s which is notin L, (7).

We now consider the dynamical zeta functions { and {, associated to the maps F
and G, respectively, and defined by the following formal series [3]

zF(z>—exp2 - 7.(F) and CG(S)—esz S 2.6, (102)

where the ‘partition functlons Z (F ) and Z,,(G) are given by

Z,(F) = Z 1_[ F (Fk(x))l and Z,(G)

x=F"(x) k=0
n-—1

1
- z 1_[ — . (103)
x=G"(x) k=0 |G (Gk(x))l
Let us frst examine how {z(z) and {;(z) are related to one another. Let Per F and Per G
denote the sets of all periodic points of the maps F and G, respectively. It is not difficult to
realize that, as subsets of [0, 1], Per F\{0} = Per G. Accordingly, given x in either of these
sets, we let pr(x) and p; (x) denote the periods of x w.r.t. to F and G, respectively. They
are related by

pr(x) =7 (x) + 7 (G(x)) +-- +71 (G”G(x)‘l(x)). (104)
Moreover from the definitions of F and G we have
pr(x)—1 pg(x)—1 pc(x)-1
1_[ ; = 1_[ ; — 1_[ (Gk(x))z (105)
k=0 [F'(F<C0)] k=0 |6 (G*())| k=0

Using this facts we write Z,,(F) as follows:
m-—1

n

Z,(F) =1+ z his z 1_[ (Gk(x))z- (106)
m=1 mx=F”(x)=Gm(x) k=0

The second sum ranges over the (::l__ 11) ways to write the integer n as a sum of m positive

integers. Therefore,

%} -1
Tl

> L z,() = 10g (7 )+iz% Yoo ] (¢w)

3

n=1 n=1 m=1 x=F"(x)=G™(x) k=0
1 2
— pr(x) k
()3 LS o] )
= x=G?(x)

We are thus led to study the grand partltlon function’ = (z) given by

Z(2):= z ZpF(x)l_[ (Gk(x))
k=0

x=G¥(x)
oo £-1 5
:Z 2t4m z 1_[ (6*@) . (107)
n=0 x=Gt(x)=Ft*1(x) k=0
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n+{’—1)= (n+{’—1
_ -1 n
the number of ways of distributing n identical objects into £ distinct boxes. According to

(27), (28) and (107) we can also write =,(z) in the following way:
oo £

a@=Y 2 || ke 108)

n=0 ki+..+kp=n+f i=1
where xy  , = [ky,...,k,] denotes the irrational number whose continued fraction
expansion is periodic of period € and starts with the entries k_1, ..., k,. Putting together the
above observations we obtain the next result, to be compared with Proposition (1.1.2):
Proposition (1.1.21)[1]: Consider the two-variable zeta function given by

X p
Ga(s,2) = exp ) - 5,(2) (109)
=1

The sum over periodic points yields ( ) terms, corresponding to

Then we have:

$2(L,z) = (1—-2){r(2) and {5(s,1) = {(s) (110)
wherever the series expansions converge absolutely.
In order to study the analytic properties of the function ¢, (s, z) we further generalize (39)
by introducing a family of operator-valued functions @, ,,q = 0,1, ..., acting as (see [21]

and [8] for related quantities)

oo

Quaf () = (1)1 ) 2@ - |@ (O[ - f(2, (), (111)
n=1
together with a family of function spaces H; , S 3, such that a function f € #; , can be

represented as

fw) = (Lglpl)w):= J dm(e™"tlp(t), ¢ €L,(m). (112)
0

In particular @, = Q,, £, = £ and H; o = H;. We have the following result.
Proposition (1.1.22)[1]: For any given g = 0, 1.... the operator valued function z - Q,,
when acting on {; , can be analytically continued to the entre z-plane with a cross cut along
the ray (1, +o0). For each z in this domain we have
Qz,q['q [p] = Lq [jcz,qgo]r (113)
where X, ;: L,(m) — L,(m) is given by
Jaq+1(2st)

(JCz,qgo)(t): =(-1z(1-M)(1 - zM)‘lj0 dm(s) N @ (s). (114)

The operators Q, ,: 3, ; = H;y 4 and K, 4: L, (m) — L, (m) are both of trace class.

Proof. The first part follows from a straightforward extension to non zero g values of the
arguments. The proof of the last assertion can be extracted from ([21], Theorem 3).
Now, the trace of the operator X, , is easily obtained (see also [21]):

tr 3, g = (—1)7z j IZZjl—_(Z)dt = (-1)4 z zk J ek ], 01 (20)dt
0 i 0

© x2(q+1)
=(—1)qz zk —, (115)
] 1+ x?
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k?+4—k

where the numbers x,;, = = [k, k, k,...] = [k] are the fixed points of G (x) and the
identity [10]
e ViZ+4—k)
j e MJ,(2t)dt = ( ) ,
0 2P\Vk2 + 4
has been used. From (115) we immediately obtain the trace formula
51(2) =tr Ko — tr K, 4. (117)
But we can say more. Indeed, a straightforward adaptation of ([21], Corollaries 4 and 5) to
our z-dependent situation leads to the following general expressions:

p=0,1,... (116)

Eo(z) = tr Kfg — tr KL, = tr MLy — tr MYy, (118)
with
- {')—1 xi(qulk) k
tr Kpq = (=1)% Z ghattl O (119)
1- (_1){) Hf=1 xl%i...kgkl...kg_l

Formula (118) along with standard arguments (see [21]) allow us to write the twovariables
zeta function (109) as a ratio of Fredholm determinants,

S det(1—s%,,) det(l—sMy,,)
$2(s,2) = eXp; 7 5@ = det(1—s%,,) det(1—sM,,)’ (120)
where by definition )
det(1 — s %,,) = exp (—2 S;tr %qu) (121)
=1

Is in the sense of Grothendieck [13]. We have thus proved the following result.

Theorem (1.1.23)[1]: Set X, = K, ,, then we have:

(@) for each s € C, the function {,(s,z), considered as a function of the variable z,
extends to a meromorphic function in the cut plane C\[1, ). Its poles are located
among those z-values such that ,: L,(m) — L,(m) has 1/s as an eigenvalue;

(b) for each z € C\(1, =), the function {, (s, z), considered as a function of the variable
s, extends to a meromorphic function in C. Its poles are located among the inverses
of the eigenvalues of K,: L, (m) — L,(m).

Putting together the above Theorem and Proposition (1.1.21) we obtain

Corollary (1.1.24)[1]: The dynamical zeta functions { and {; of the Farey and Gauss maps

have the following properties:

(@ {r(2) has a meromorphic extension to the cut plane C\[1, «);

(b) ¢ (s) has a meromorphic extension to C. All poles are real and are located among the
inverses of the eigenvalues of K: L,(m) — L,(m) see [23], [32], [31].

Section (1.2): The Limit of Infinite Level
()

The Farey fractions (modified Farey sequence) may be defined as rk("): = %, with
k

gcd (n,(c"), d,(c")) = 1, and n denoted the order of the Farey fraction at level k. Level k = 0

consists of the two fractions {%%} Succeeding levels are generated by keeping all the
fractions from level k in level k + 1, and including new fractions. The new fractions at level
k + 1 are defined via d*: = d™ + d"* and n2Y: = 2l + n"*Y 50 that
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Note that n = 1,..., 2% + 1. It follows that the fractions at a given level are in increasing
order. The Farey fractions may also be defined using products of the 2 X 2 matrices A =

(1 (1)) and B = ((1) 1) (see [40]).

Our main result concerns the sum of lengths of half of the intervals between “new”
Farey fractions. Theorem (1.2.1) proves that the lim inf of this sum vanishes in the limit of
infinite level k. Based on numerical evidence, we also conjecture that the limit of this sum
vanishes. This very simple geometric property of the Farey fractions is not very apparent.
The intervals chosen are alternating, and there seems no obvious reason why the sum of
their lengths should vanish in this limit.

We focus on the “Farey tree”, which means retaining only the 2%~ even Farey
fractions at each level k > 1. These are exactly the new fractions at each level. In our

notation they are of even order, i.e., rk(zn) so for each level k > 1 we obtain the set
{rk(zn)|n = 1,...,2"_1}.

The lengths of the intervals between even (new) Farey fractions at every level k>1 are
denoted

= (rE = 5EP) > 0, (122)
where n = 2,3,4,...,2%1. In what follows, for brevity, we abuse the terminology slightly

and refer to I,E") as an interval. Whenn itselfiseven (i.e.,n = 2,4,...,2"(k — 1)) , we refer

to these as even intervals. (Note that there are 2%~2 even intervals at level k.) The
complementary intervals in the unit interval [0, 1] i.e., those with n odd (n=
3,5,...,2%"1 — 1), including the two extra intervals at the ends of the unit interval, namely

(rk(z) —~ rk(l)) and (rk(z"“) — rk(z")), are the odd intervals. (Note that odd and even interva

alternate.) From the definition of the Farey fractions it is easy to verify that each of the extra
intervals has length 1/(k + 1). Thus we combine them and define

IM:=2/(k + 1), (123)
see Fig. 1. (As a result there are 2%=2 odd intervals at level k, the same as the number of
even intervals.)

) }
_ 0 1 1 2 1
k=2 T 3 z 3 T
: | |
. (2]
: I,
-
(2n-2) (2n) |l.”+1 ! (2n+2) (2n+4)
k k 'rx " r.lr r.c
. . . . . .
L L
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Fig. (1)[36]: Definition of Farey fraction intervals. Even (odd) intervals are shown via a
line below (above) the fractions (note that in the lower diagram, n is even). The dashed

line in the upper diagram indicates the combining of the two “extra” intervals into [ ,El). In

this figure and those below the intervals are not to scale.
Next we define total length of even intervals at level k

2k—2
1) = z 12D, (124)
i=1
and similarly for the odd intervals
2k—2
1©): = 2 J&D), (125)
i=1
It follows that
19+ 19 =1, (126)
forall k > 2.
The quantity
2’(—1
s Z _t (127)
k= 2

Is the sum over the inverse squares of the new denominators at level k. As we will see, S,

is closely related to 1.

By identifying intervals at different levels and examining their evolution from level to level,
we prove our main result
Theorem (1.2.1)[36]:

lim inf 19 = 0. (128)
Numerical evidence then leads us to the Conjecture.
lim 19 = 0. (129)

We contain some further remarks concerning this conjecture. 2.
Proof. We prove Theorem (1.2.1) i.e., 1i1£n inf I,Ee) = 0. The key step is Lemma (1.2.7),

which bounds an arbitrary odd interval in terms of its “parent” even interval at a lower level.
In addition, we present numerical evidence for the Conjecture (129).

It is convenient to use the full set of Farey fractions, even though only the even ones enter
I,Ee) (see (124)). As mentioned, including % and % there are 2% + 1 fractions at level k > 1.

In notation, at a given level k > 1, the even-numbered fractions are new, having been “born”
at that level, while the odd-numbered ones are kept from the preceding level. Recall, also,
that the intervals in (124) are exactly the I,E") with n even.

The rightmost inequality in (136) follows immediately from (126).

Now clearly I,Ee) > 0 for any finite value of k. On the other hand, if there were an € >

0 such that I,Ee) > € for all k, the left hand side of (136) would diverge as k — oo. Thus
Lemma (1.2.8) implies Theorem (1.2.1).
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Fig. (2)[36]: Interval changes between levels of Farey fractions. The new Farey fractions
(i.e., those “born” at level k + 1) are depicted by empty circles. Note that any interval, even
or odd, at level k gives rise to an odd interval at level k + 1.

We prove Lemma (1.2.8) by understanding how even and odd intervals evolve from
level k to level k + 1 (see Fig. 2 ??). To proceed, first note that the nth Farey fraction at
level k will be at order 2n — 1 in level k + 1. Therefore we have
Lemma (1.2.2)[36]: The transformation of the order for any Farey fraction in going from
levelk - k+Lis

n-2n—-1)+1. (130)
The first step in our argument involves identifying intervals at successive levels. We do this
via their “middle” Farey fractions. In a slight abuse of notation, let 3, be the “middle” Farey

fraction of the interval I at level k, i.e., 7y = r 2™ " (see (122)). We use this to identify
any set of intervals at different levels with the same “middle” fraction r,. Thus, since ry, is
necessarily of odd order, an interval at level k is the “parent” of the odd interval at level k +
1 with the same ry,.

It follows that any even interval I(zm) at level k will produce a (necessarily smaller)

odd interval at level k + 1, with 1, = r*™ ™ = ™3 similarly, any odd interval

produces an (odd) interval with the same 7, at the next level (see Fig. 1). In addition, there
are new even intervals that are born at each level. Their “middle” fractions are the ends of
the even intervals from the previous level.

At level k = 2, we have one even interval, which lies between the two “extra”

intervals comprising 12(1) at the ends of the unit interval. It follows that all odd intervals at

level k > 2 (except I,El)) are born from even intervals at some previous level. Further, every
0dd interval shrinks from level to level while preserving its “middle” Farey fraction. This
establishes

Lemma (1.2.3)[36]: For any level k > 2, the unit interval is covered by a set of 2*~1 — 1
alternating even and odd intervals plus the two “end” intervals comprising I,El). The even
intervals are “newborn”, while each of the odd intervals (except [ ,El)) is the offspring of an
even interval born at a previous level.

The next step is to determine what fraction of a given interval at level k remains at
level k + 1. In doing this, it is useful to recall that the difference between any two successive
fractions at a given level is """ — 0 = 1/d"*Pa™ (see for example [40], [38]).
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Now consider an arbitrary even interval I,Ei’;) at level k + 2 (for k = 0; note thatn =

1,2,...,25). Its “middle” fraction r, = r, " is of odd order, and was therefore carried

over from level k + 1, where it is indexed as 1y, = rk(i’ll). This fraction is even, and therefore

newborn at level k + 1. Hence the neighboring fractions to its left and right, rk(i’f_l) and

(2”“), respectively, are odd. These two fractions, therefore, appear at level k as rk(") and

Tke+1
rD | respectively.
Now the denominators of odd order fractions carry over from the previous level, i.e.,

d,({inl_l) = d,({n), while those at even order (since they belong to “new” Farey fractions) are

the sum of their neighbors, i.e., o) = "0 4 g = ¢ 4 gD
Putting these things together with Lemma (1.2.3) gives
Lemma (1.2.4)[36]: Forany k > 0 andn = 1,2,...,2%, i.e., any even interval at level k +
2, we have
1 = :
(0 +2d) (24 + d )

furthermore, forany [ > 1,
-1 _
12,800 = @ 1) (1 + @+ DAgP) (A + DA + 1) (132)

(131)

k+1+1
[ ] [a] [ ] (o] [ ]
e
3 o) |

L ] o] [ ] O‘. L ] b L ] (o] L ]

e % | e |
[ oqy | | 0@ | [Toqy |

[ ] Q L ] o [ ] o L ] Q [ ] [s] [ o [ ] Q [ ] o [ ]

e | L e | Le | Le |

Fig. (3)[36]: Even and odd interval lineage. The numbers indicate age of a given odd
interval.
where, for [ > 1, (132) includes, at level k + [ + 1, all descendants of the 2% even intervals
at level k.

Lemma (1.2.4) is illustrated in Fig. 3.

Now (except for I,El)) every odd interval (for k > 2) is the descendant of a unique
even interval at some lower level. Therefore (132) is valid for all 2%t~ — 1 odd intervals

at any level k + 1 + 1 with k > 0 and [ > 1, omitting I,El). Consider the identity 2%*+-1 —

1= Z{-‘;zl 2472, it expresses the number of odd intervals at level k + [ + 1 in terms of a sum
over the numbers of (even) “parent” intervals at each lower level 1, with 2 < i < k + L.
At this point, we consider the ratio of an arbitrary odd interval, as given by (132), to

its parent interval I,Ei’;). For simplicity, we letm = k+2andj = [ — 1, so that m > 2 and

j > 0, and relabel the lhs of (132) as I([Z"'j]), to indicate that it is the jth descendant of the

m+j
2nth interval at level m (note that I{2™°D = 1™ Then, with z: = d™ /d™* we find
Lemma (1.2.5)[36]: Form > 2and j > 0,
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I([Zn iD

mej 2 +3 (1+22)(2+z)
i (133)
1G) 3 ((+D+G+2)2)(G+2)+(+Dz)

Lemma (1.2.5) expresses each successive descendent odd interval in terms of its parent even
interval. It leads immediately, via elementary computations, to
Lemma (1.2.6)[36]: Forj > 0 and m = 2,

(24D

2(2j + 3) mj 3
3+ 1D(G +2) = (Zn) T 2j+3
The lower bound in (134) arises from (133) at z = 0 or z = oo, and the upper bound from
(133) at z = 1. In the case of Farey fraction denominators none of these z values actually
occurs. However, the important point is that these bounds are independent of both the parent
level m and the initial (parent) even interval.

Let I,(,Eij ) denote the sum of all odd intervals at level m + j that are descendants of

the even intervals at an arbitrary level m > 2. Then
Lemma (1.2.7)[36]: Forj > 0 and m > 2
@2__Z+3 o) @3
mn 3(1+1)(]+2)_ mej = im 2j+3
Lemma (1.2.8)[36]: For any k > 2 we have the bounds

k-2
2 2 2ji+ 3
(e) ] (0)
1 I <1, 136
k+173 Z (136)
=

(134)

(135)

IG+D(G+2) "k

and
k-2

2 3
(e) (0)
k—+1+21k12]+3—1 (137)

j=1
Proof. The remainder of the proof is as follows. First, relabel the “parent” level in Lemma
(127)asm =k —j. Ifwefixk =m+j > 2,since mvariesovertherange2 <m < k —

1,j satisfies 1 < j < k — 2. Thus all the odd intervals at an arbitrary level k are included,

except the “end” interval I,El). The leftmost inequality in (136) and the inequality in (137)
then follow directly on summing (135) and using (123).

Finally, A. Zhigljavsky [43] has verified numerically, up to level k = 34, that I;;

continues to decrease as k increases. His results are consistent with the result that I,Ee)
1/log, (k) as k — oo found in [39].

The conjecture (129) is, as already pointed out, very simple. However a proof is
apparently quite elusive, at least using the methods employed. Even establishing that I,Ee) IS
monotonically decreasing with k, which, given (128), would be sufficient, appears very non-
trivial. However several recent approaches to proving this conjecture have been proposed
([43], [41], [39]), based, respectively, on the Chacon-Ornstein ergodic theorem, continued
fractions, and a measure theoretic analysis.

The problem treated here arose from previous investigations of the Farey fraction spin
chains, a set of statistical mechanical models based on the Farey fractions (see [40], [38]).
It follows directly from their definitions that the “Farey tree partition function” Zf (8) (see

[38]) satisfies ZF (1) = I?, while the “even Knauf partition function” Zg.(B) (see the
equation after (124) in [38]) satisfies Zj,(2) = Sy.
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Therefore the inequality (132), proven in [38], can be rewritten as
S < I < 4S,_,, (138)
which immediately proves
Lemma (1.2.9)[36]: The conjecture (129) is equivalent to
lim S, = 0. (139)

k—o00

Note that the term “partition function” is used in its statistical mechanical sense here, which
in general has no connection with the number theoretic usage.

As mentioned, several proofs of Conjecture (129) using different methods have been
proposed. The method employed here does not seem capable of establishing Conjecture
(129), however it gives detailed information about the evolution of the intervals not
otherwise available.

There are several spin chains known to have the same free energy, and thus the same
thermodynamic behavior. They all exhibit a second-order phase transition at non-zero
_logZ{ (B)

kp
transition is a singularity in f(f8)— see [38]) The Farey tree model is employed in [37] for a
study of multifractal behavior associated with chaotic maps exhibiting intermittency. The
critical point (phase transition) in this model occurs at g = 1. Therefore, physically,

ZE() = I,Ee) is the value of the partition function at the critical point. (The value of the
partition function at one point is, however, generally of no physical interest.)

In proving that the free energy of the Farey tree model is the same as the free energy
for other Farey statistical models, it was already demonstrated [38] that as k — oo, Zf (8) —
0 for B > 1, while ZE(B) - « for B < 1. (This, incidentally, also establishes that the
Hausdorff dimension is S, = 1.) However, exactly at the critical point, it was only shown
that 0 < Z£ (1) < 1. To our knowledge, the result (128) found here, and extended by [43],
[41], [39], is new.

Finally, we note that [42] contains some related work, giving results on the large k
behavior of the quantity

temperature. (The free energy is defined via f(f):= llim ( ) and a phase

2k

ox(B):= z (rk(”l) — rk(i))ﬁ, (140)

i=1
forg > 1.
Section (1.3): The Stern-Brocot and the Farey Sequence
We consider weighted uniform distributions (mod 1) for the following two canonical
sequences: the Farey sequence (F,),,ey Which is given by

Fpi= {S:O <p<qg<ngcdlpq) = 1},
and the even Stern-Brocot sequence (S,,),,ey Which is given by

S
Sn:={ nE k= 1,...,2n—1},

tn,zk
where the integers s, , and t,, , are defined recursively by

SO,l: =0 and SO,Z: = tO,l: = tO,Z: = 1;
R _— _ n .
STL+1,2k—1' —_— sn'k and tn+1’2k_1. —_— tn’k, fOI‘ k — 1, ey, 2 + 1,
fp— [ — n
Sn+12k' = Snk T Spk+1 AN Lni1oki = b + byt for k=1,---,2™
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The following theorem states the main results, where &, denotes the Dirac distribution at
x € [0,1], =-lim the weak limit of measures, and A the Lebesgue measure on [0, 1]. Note
that, throughout, all appearing fractions will always be assumed to be reduced.

In fact, for the derivation of the assertion in (134) we will show that the following
more general measure theoretical result holds. In here, T: [0, 1] — [0, 1] denotes the Farey

map defined by
X

T(x):= 1=x 12
(1-x)/x for x€ (E'l]'

In a nutshell, the proofs of these results are obtained as follows. The convergence in
(135) is derived from combining Toeplitz’s Lemma and a classical result by Landau [58]
and Mikolas [59] with a well-know estimate for the Euler totient function ¢(n):=
card{l1 <m < n:gcd(m,n) = 1}. Whereas, the proof of Theorem (1.3.9), and
consequently the proof of (134), is obtained from the following slightly more technical
result, which will be derived by employing some recent progress in infinite ergodic theory.

The result in Proposition (1.3.5) has the following immediate elementary number
theoretical implication, which has been the main result of [53] and which there led to the
confirmation of a conjecture by Fiala and Kleban [49]. In particular, Proposition (1.3.5)
hence gives rise to an alternative proof of this conjecture. But let us first recall that the

regular continued fraction expansion of a number x € (0, 1] is given by

1
X =:[x,%x5,...]: = —mm—,

1
x1+x2+...

where all the x; are positive integers. Also, we write a,, ~ b,, if lim a, /b, = 1.
n—oo
Corollary (1.3.1)[44]: We have that

k
1
A({[xl,xz,...]:z x; =nk€ ND ~ log,

i=1
Further immediate consequences of the results in Theorem (1.3.10) and Theorem (1.3.9) are
given in the following two corollaries.

Corollary (1.3.2)[44]: We have that

1
for x € [O, —]

2(2) * —lim log(n?)
* —lim —= q %6p =1 and === q %6p = A.
oo m q n q
ge[o,l] gz[xl,...,xk]
2loggsn Z{-‘zl Xisn

The latter dichotomy can also be expressed in more down-to-earth terms as a dichotomy
between partial geometric Poincaré sums and partial algebraic Poincaré sums for the
modular group I': = P SL,(Z). For results of this type on the algebraic growth rates of
Poincaré series for more general Kleinian groups see [54]. In the following, d refers to the
hyperbolic metric in the upper plane model of hyperbolic space and |-| denotes the word
length in " with respect to the two generators z — z + 1 and z — —1/z of the modular
group I'. Also, we write a,, = b, if a, /b, is uniformly bounded away from zero and
infinity.

Corollary (1.3.3)[44]: We have that

23



Z e=d(0¥®) = 5 and Z e=d(0y (@) = n

logn’
YEr YEr

d(0,y(0))=n lylsn
Remark (1.3.4)[44]: (i) Note that the results in Theorem (1.3.10) complement well-known
results on weak convergence of empirical measures with constant weight 1 for the sequences
(%,) and (S,,). More precisely, in [59] (see [47], [48], [55], [56], [58]) it was shown that
(F,) is uniformly distributed, that is,

1
—lim—— op = A. 131
*n—}éom card(F,) pz 3 (131)

Eer,
q
On the other hand, it is known that the Stern-Brocot sequence is not uniformly distributed.

In fact, an immediate consequence of the results in [52] is that
1
" card(S,) 3 Mr

where my refers to the measure of maximal entropy for the Farey map T. Here, We might
like to recall that the distribution function of m is equal to the Minkowski question mark
function (see e.g. [52]) and hence, the two measures my and A are mutually singular. In fact,
a numerical calculation has shown that the Hausdorff dimension dim, (m;):=
inf{dimy, (X):m;(X) = 1} of the measure m, is approximable equal to 0.875 (see e.g.
[52], [57], [61]).

(i1) In order to tie the results in Theorem (1.3.10) (134) and Theorem (1.3.9) to elementary
number theory and, in particular, to give a clarification of the factor vw in Theorem (1.3.9),
we mention the following observation for the even Stern-Brocot tree. For each reduced

fraction v/w € (0,1) and for all n € N,;, we have

1 1

b (132)
2er7(3)
To see this first in an elementary way, note that we have p/q € S, ifandonly if T~1(p/q) =
{p/p+q),q/(p +q)} € S,,+1. Furthermore, with k:U, ey S, = R given by k(p/q): =

1/(pq), one immediately verifies that

k(p/(p +q)) +x(q/(p +q)) = x(p/q).
The proof now follows by induction. Note that for the special case v/w =1/2 one
immediately verifies that S,, = T~™~1(1/2), and then (132) becomes

z i=1, forall n € N,

~ pq

g€

which has also been observed by the Canadian music theorist Pierre Lamothe (see by
Bogomolny in [46]).

Alternatively, the equality in (132) can also be deduced immediately from the wellknown
fixed point equation for the Perron-Frobenius operator £ associated with the Farey map T.
For this let h denote the eigenfunction of £ associated with the eigenvalue 1. It is well known
that h is given by h(x): = 1/x, which consequently gives that

[(T™)' (y)| " h(y) = h(x), forall x € (0,1) andn € N,.

YET~™(x)
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Since |(Tn)’(§)| = q%/w? for all p/q € T "(v/w), the statement in (132) follows.

Finally, let us apply Theorem (1.3.9) to obtain yet another proof of the statement in (132),
and this proof will then implicitly use dual aspects of the Perron-Frobenius operator. By
applying Theorem (1.3.9) twice, we obtain the following, which immediately implies (132).
For each n € N, and for every reduced fraction v/w € (0, 1), we have
1
— A= z * —lim logk Z q %6p
pe vy P4 p iy s q
2 () e ) s€77()
1 1
= —x —lim log(k"") Z q %6p=—"A
VW k- » ’ q vw
GeT~m(F)

As already mentioned, the proof of the Proposition (1.3.5) will make use of some
results from infinite ergodic theory. Therefore, let us first recall a few basic facts and results
from infinite ergodic theory for the Farey map. (For an overview, further definitions and
details concerning infinite ergodic theory in general, see [45].) It is well known that the
Farey system ([0,1],T,A,n) is a conservative ergodic measure preserving dynamical
systems. Here, A refers to the Borel c-algebra of [0, 1] and the measure p is the infinite o-
finite T -invariant measure absolutely continuous with respect to the Lebesgue measure A.
(Recall that conservative and ergodic means that forall f € LT (u):= {f € L,(1):f = 0and
u(f - 1jo,11) > 0} we have p—almost everywhere 3,0 T™(f) = o, where 1po,47 refers to
the characteristic function of [0,1]; also, invariance of p under T means T(1(91)) = 104],

where T denotes the transfer operator defined below.) In fact, with ¢,:[0,1] — [0, 1]
defined by ¢, (x): = x, the measure p is explicitly given by

dA = @ dp.
Recall that the transfer operator T: L, (1) — L, () associated with the Farey system is the
positive linear operator which is given by

w(1c 7)) = u(lriy - f),  forall fe€L(w),CEA
Note that the Perron-Frobenius operator £: L, (1) — L, () of the Farey system is given by
L) = lugl - (f eug) + lugl - (fewy),  forall feL;(p),
where u, and u, refer to the inverse branches of T, which are given for x € [0, 1] by
Ug(x) =x/(1+x) and u;(x) =1/(1+ x).
One then immediately verifies that the two operators T and £ are related through
T(f) = @o - L(f/po),  forall f € Ly(p).
Now, the crucial notion for proving Proposition (1.3.5) is provided by the following concept
of a uniformly returning set which was introduced in [50].

A set C € A with 0 < pu(C) < oo is called uniformly returning for f € L if there
exists a positive increasing sequence (w,),ey Of positive reals such that p—almost
everywhere and uniformly in C we have

lim w, T"(F) = u(f).
In [50] it was shown that for the Farey system we have that every interval contained in [1/2,
1] is uniformly returning, for each function f which has the property that
T"(f) e D:={g € c%([0,1]):g9' = 0,g9" < 0}.
In [50] it was shown that in the situation of the Farey system the sequence (w,,),,en Can be
chosen to be equal to (logn),ey - (For further examples of one dimensional dynamical
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systems which allow uniformly returning sets for some appropriate functions we refer to
[60].) We are now in the position to give the proof of Proposition (1.3.5).
Proposition (1.3.5)[44]: For each interval [a, §] < (0, 1] we have that

_ logn
*ohim | — Arngapy | =4
log (E)

Proof. Consider the function ¢, given by ¢,: x — x - exp(tx). The first aim is to show that
forall t € [—1,1] we have

T, €D.
Pt
Indeed, for t € [—1, 0] this is an immediate consequence of the facts that ¢, is increasing

and concave and that T (D) c D. For t € (0, 1], a straight forward computation shows that
the first derivative at x € [0, 1] is given by

4 X I} 1 1 X
(To.) () =(pt(x+1)_X(pt(x+1)+(pt(x+1)_(pt(x+1)

Pt (x + 1)° (x + 1)2 /
For the second derivative we then obtain

SN (=2 xt — 6x + 2t + xt? + 2x3 — 4tx? — 4) exp (xt—fl)
T = —
( (pt) &) (x + 1)°
(2tx — 6x — 2t + xt2? + 2x3 + 4tx? —4)exp( t )
+ x + 1
(x+1)° :

This immediately implies that (T¢,)" <0, for all t € (0,1]. Therefore, (Tg,) is
decreasing on [0, 1] with (T¢,) (1) = 0, which shows that on [0, 1] we have that (T¢p,) =
0. Hence, we can apply [51], which then implies that T, € D, forall t € [—1,1].

We proceed by noting that [51] guarantees that every interval contained in [1/2, 1] is
a uniformly returning set for ¢;, for each t € [—1, 1]. In order to complete the proof of the
proposition, we employ the method of moments as follows. We show that for each [a, 8] C

(0,1] and for each t € [—1, 1] we have for the moment generating function at t that

lim j ex (tx)-loi- 17-n dA(x) =j exp(tx) dA(x)
n—oo p u([a’ﬁ]) T~ "([a.B]) p .

To see this, we argue by induction as follows. For [a, 8] © E 1], we have that
logn lim logn
lim jex tx) - ————"-17-n x)dA(x) = 2=2>2——. + 1p-n
) e gy ey (N = ey e tre)
ogn

= lim e 8D W(T"p; - g p) = w(@p) = J exp(tx) dA(x).

Next, suppose that the assertion holds for any interval which is contained in the set €,;: =
URZs T7%([1/2,1]), and consider an interval [a, 8] € T™" (E 1]) \E&,.Since T([a,B]) ©
€,., we then have
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 Lp-m((a,p7) (X)) dA(x)

_ logm
jim, | e

logm o
= nllll’)lgo —u([a '3]) . u (T (pt . (1T‘1(T([a,,8])) - 1T_1(T([a,ﬁ])) N En))
logm - N
- rmo u([a BD <“(Tm+1 Lrap) — (T 1T—1(T([a.m))nsn)>

u([ o5 (17 D) = (77 (1 D) N €))

= f exp(tx)d)t(x).
This finishes the proof of Proposition (1.3.5).

k
T-=D([1/2,1]) = ( [xl,xz,...]:z x; =nk€ N),

i=1

K
log 2
A({[xl,xz,...]:z x; =nk€ N}) ~ logn

i=1
The following two lemmata will be required in the proof of Theorem (1.3.9). Note
that the first lemma of these has already been obtained in [53]. However, in order to keep as

self contained as possible, we include a proof here.
Lemma (1.3.7)[44]:
z a7 logn

—ESn
Proof. First note that there isa 1- 1 correspondence between the sequence (S,,) and the set
of connected components of T-™=Y([1/2,1]). That is, if p/q = [a4,...,a,] € S, where
a,, > 1, then one of these connected component is given by
Co(p/qQ): = {[x1,%2,...]:x; = a; forl <i<n}
U{[xy,x...Jix; =aq;forl<i<n-1,x,=a,—1,x,,1 =1}

it follows that

Using standard Diophantine estimates we find that (Cn (S)) = 1/q>. Hence, an
application of Corollary (1.3.1) finishes the proof of the lemma.
For the next lemma note that the sequence (S,,) can also be expressed in terms of the inverse
branches u; and u, of the Farey map T. Namely, one immediately verifies that the orbit of
the unit interval under the free semi-group @ generated by u, and u, is in 1-1
correspondence to the set of all Stern-Brocot intervals

S S
{ —n'k, n’k+1> :n €Ny, k= 1,...,2”}.
tn,k tn,k+1

Note that for each rational number v/w € (0, 1] we have that

v v
-n)_1{. — —).
iGNt ={r (7)ve o)
Note that the ®-orbit of 1 is equal to the set of rational numbers in (0, 1). More precisely,
we have that if y € @ then y(1) = v/w, for some v,w € N such that v <w and
gcd(v,w) = 1, and for the modulus of the derivative of y at 1 we then have that |y’ (1)| =

W—2
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We let U,.(x) denote the interval centred at x € R of Euclidean diameter diam(’ug(x))

equal to € > 0.

Lemma (1.3.8)[44]: For each g € @ there exists A: (0,1] - R, with liné A(s) = 0 such
S—

that for each h € @ and € > 0 sufficiently small, we have
diam ( (Ue(9(1)))) — & | (R (9(D))|| < £ 1ChgY (DI

Proof. By the bounded distortion property, we have for each z € (0, 1) that there exists
A,:(0,1] = R, with lir% A,(s) = 0 such that, for each € > 0 sufficiently small,
S—

ly' ()]
x,YEUL(2) |V’(}’)|
yED

This implies that for fixed g € @ we have, for each h € @ and € > 0 sufficiently small,
diam (h (‘Us(g(l))))
e[n'(g(1))|

-1

< A,(e).

-1 < Ag(l) (8)

From this we deduce that

|(hg)'(1)]
diam(hu 1 )—eh’ 1 ‘<e—
This finishes the proof.
Theorem (1.3.9)[44]: For each rational number v/w € (0, 1] we have that

* —lim log(n"") z q %6p = A (133)

n—oo » v q
EET_n{W}

Proof. Let g € @ be given and define, for € > 0 sufficiently small,
Ugen:= T~ (ue(g(l)))

Let uy 1= 1/p (‘ug(g(l))) =1/log (g ”*E), and consider the measure v, ., Which is
given, for each n € N, by

A_g(1)(e) = £|(hg) (D]A(e).

(
9(1)—5

Vgen = Ugelogn - /1|'ug,&n-
By Proposition (1.3.5), we then have that * —lim v, ., = 4. Also, consider the atomic

n—oo

measure p, ., Which is given, for each n € N, by
elf' (D)
pg,e,n: = ug,g IOng m . (5f(1).
fFeT- =D (g(1))
Now, observe that

. . E . g

W e =l T =9
2 &
log——=% (1) —5
TR S

and let the measures p, , be defined by
lf' (D]
pgni=9g(1)logn Tzl 8r(1)-

f(er--1(g(1))
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Using Lemma (1.3.7) and Lemma (1.3.8), we now obtain the following for all x € [0, 1],
where Eg(g)n,lfg(’g’)n and F(p) denote the distribution functions of the measures vy . », Pg en
and pg », and where we wrlte a, < b,k if a,, /b, is uniformly bounded from above,

Fion )~ ER 0| < R - Fn | + [F20 0 - ER 0
: |(hg)' (1)]
diam (h (‘ug(g(l)))) o
hg(DeT-(=1(g(1))

eu, .logn ,

L + |g(1) sug,s|10gn z lf' ()]

fer-=1(g(1))

< (euged@ +]g(D) —euge)logn > If(
fer-m=1(g(1))

K uyelogn

K |g(1) — eug,g| + g(1D)A(e).
This holds for >0 arbitrary small and hence, we obtain that
* —lim pgn, = A

n—oo

The proof of Theorem (1.3.9) now follows, if we insert in the definition of p, ,, the fact that

g(1) can be written in form of a reduced fraction v/w and that then |g'(1)| = w2, as well
as similarly, that f(1) can be written in form of a reduced fraction p/q and that then

If'(D]=q72
Theorem (1.3.10)[44]: For the even Stern-Brocot sequence we have that
* —11m log(n?) z q 26p = (134)
esn

and for the Farey sequence we have that

¢(2)

q %6p = A. (135)

Proof. Define F,:= {%: 0<p<n,gcd(p,n) = 1} and Y(n): = card(F,). We then

clearly have that ¢ (n) = card(F,;) and that ¥»(n) ~ ﬁ Next, observe that the statement

in (131) implies that we have, for each continuous function f: [0, 1] = R.,,

Xn:= 26(2) Z f(r) = A(f), for n tending to infinity.

r€F,
An application of Toeplitz’s Lemma then gives that

lim

n—oo lognz PR AP
By setting f,,: = dem f (g) we next observe that, forn > 2,

n n k n n
1 1 _ 20(2) 1 B 20(2) 1
lognz k%~ Togn Zk3 Z fm = logn z z s I
k=1 k=1 m=1 m=1k=m

By comparing the sum ¥7%_.. k=3 with the corresponding integral fz x~3dx, we obtain
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¢(2) fq ¢(2)
lognq q? nzlognzfq lognZka
SN fu @) g DN

“lognZuq? n?logn logn q3
q=1 q=1 q=1

Finally, note that we clearly have that
¢(2) A
nzlognzfq 2logn
and that
(DN 9@ fi _Ifllo(82)’

lognq=1 q3 @_ {(3)logn °
2 flleo

Hence, it now follows that

n
! (”2 2. (8= hm g ), pxe= 20
Jim logn " now logndy kXK T .
_Ej:'q k=1
This finishes the proof of the assertion in Theorem (1.3.10) (135).
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Chapter 2
Topology and Separation Properties

We shall discuss the interesting problem presented by R. F. Williams. For connected
self-similar sets in the plane, that a finite overlap implies OSC. On the other hand, there are
Cantor sets with arbitrary small dimensions which do not fulfil the OSC. We exhibit two
examples of fractal sets, one not satisfying the weak separation property and whose
existence was questioned by Zerner, the other having positive Hausdorff measure in its
dimension and with the separation property failing on a subset of positive measure.
Section (2.1): Structure of Self-Similar Sets

The notion of fractals” was introduced by Mandelbrot [91] in the description of
Nature. A set S is said to be a fractal provided that the Hausdorff dimension of S strictly
exceeds the topological dimension of S. For example, Cantor’s ternary set is a typical
example of fractals. It is a classical problem to investigate such fractal sets in Mathematics.
Indeed, measure theory is a fundamental and powerful tool to analyse fractals. See Rogers
[106], Falconer [74]. On the other hand, as is pointed out by Mandelbrot, “self-similanty”
Is very important in the study of such sets. Actually, most classical fractal sets constructed
by many mathematicians have the self-similanty in some sense.

We investigate various topological structures of selfsimilar sets, whose Definition
will be given later, and to analyse many classical pathological sets and curves through the
notion of self-similarity. With this for-mulation, one can easily create and handle self-
similar fractals.

For X be a separable complete metric space with a metric d. A mapping f: X — X is
said to be a contraction provided that the Lipschitz constant

. d(f(x), f(¥))
Li = su 1
p () P iCry) (1)
satisfies Lip (f) < 1. Every contraction f has a unique fixed point Fix (f) in X. Recent] y
Hutchinson [83] considered the non-empty subset K X satisfying
K=fE)Uf(K)U-U firn(K) (2)

where m > 2 and {f;} _._is agiven finite family of contractions.
On the other hand, Williams [115] studied the following set

K = closure ( | U Fix(fi, © fig - ofl)) (3)

toward a study of generic properties of the action of free (non-abelian) groups on manifolds.
He proved essentially that there exists a unique compact solution of (2); it is therefore given
by (3). This result was also proved by Hutchinson in a different way. Several properties of
K on geometric measure theory were proved in [83]. Mattila [93] strengthened some of
them.

The equation (2) will be generalized to weak contractions and the solution K will be
regarded as a fixed point of some set-dynamical system.

For another method to describe self-similar fractals using endomorphisms of words
in free groups, see Dekking [70].

We begin with some Definitions. Let X be the same space.
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Definition (2.1.1)[62]: A mapping f: X — X is said to be a weak contraction provided that
2(t) = S“jgl wy (s) <t forany ¢t > 0, where w, is the modulus of continuity off:
wr(s) = sup d(f(x),f(¥) (4)
d(x,y)s<s
Obviously £2¢(t) is non-decreasing and right-continuous. Note that every weak contraction
f is uniformly continuous in X and has a unique fixed point Fix (f) in X. The regularity of
wy may depend on the space X. Indeed, if X is compact, wy is rightcontinuous; that is, 2y =
wg. 1T X is a closed convex subset of a Banach space, then w; is concave, therefore 2 = wy
Is continuous. For example, ] etX be the unit interval with the Euclidean distance. Then the
function f(x) = x/(1 + x) is a weak contraction with w, = f, while f is not a contraction
since Lip (f) = 1.
The power set 2% of all subsets of X forms a poset under set-inclusion in a natural
way; x < y means x is a subset ofy. Moreover, 2% is a complete lattice with operations “ +
” (ioin, set-union) and ” (meet, set-intersection). See Birkholf [65] for lattice theory.
Let C(X) c 2% be the set of all non-empty compact subsets of X. C(X) is not a lattice but a
join-semilattice. It is known that C(X) is a complete metric space equipped with the
Hausdorff metric:
dy(x,y) = max (inf{e > 0; N.(x) = y}, inf{e > 0;N.(y) =x}), (5)
where N.(x) is an e-neighborhood of the set x. Michael [94] proved that if X is compact,
then ¢ (X) is also compact. Note that the mapping : X — C(X) , which maps a point p into
the set consisting of the single point p, is an isometry.)
We now give a remark. Let {x,},,=; be a Cauchy sequence in (X) . Then we will denote by
lim x;, the unique limit of {x,} in (X) ; this means lim x;, = N> Closure (Unsmxn) in

the usual notation. Therefore, an infinite sum Y.;—, y,,, if it exists, means the set closure
(Unzl Yn) .

For any continuous mapping f: X — X, we can define the induced mapping f*: C(X) -
C(X) by f*(x) = f(x) in a natural way.

Definition (2.1.2)[62]: A set K € C(X) is said to be self-similar provided that the set K can
be expressed in the form

K= fi (), (6)

A€
where {f3}1c4 IS a set of weak contractions of X and the index set A is {1, 2, ---, m},m = 2,

or N.

(6) means that the set K consists of a finite or an infinite number of miniatures of K itself.
Note that Hutchinson’s Definition of [s,] f-similarity differs from ours; he required some
separation conditions in addition.

A mapping F: C(X) — C(X) is said to be isotone provided that x < y implies (x)—< F(y)
; @ join-endomorphism provided that F(x + y) = F(x) + F(y) for any x,y € C(X) . Let
F (C’ X )) be the set of all isotone join-endomorphisms (not necessarily continuous) defined
on (X) . Obviously every induced mapping belongs to F(€(X)) and is further continuous.
Again vReject (C'(X)) becomes ajoin-semilattice; F < G means F(x) < G(x) and F + G
means (F + G)(x) = F(x) + G(x) for any € C(X) . The following properties on the
induced mappings were proved by [80].
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Lemma (2.1.3)[62]: If f is a weak contraction of X, then f* is also a weak contraction of
¢ (X) with 2, = 0. Moreover, if {ff}1<j<m is a finite set of weak contractions of X, then

F =Y7%, fj is also a weak contraction of C(X) with 2z(t) < max;< jsm-Qf]-(t) :

We shall discuss the equation (6) and generalize the results of Williams and
Hutchinson mentioned. In addition, we shall discuss different types of set-equations.
By Lemma (2.1.3) we get a generalization of Hutchinson’s result immediately.

Theorem (2.1.4)[62]: Suppose that {ff}1<j<m’ m = 2, is a finite set of weak contractions of

X. Then there exists a unique compact subset K = K(f3,-* , f,,,) satisfying the equation (6)
with A = {1,2,---, m}. Moreover, for any compact subset € C(X) , we have

lim F"(Q) = K(fy, - fn) (7)
where = Y72, £ € F(C(X)).
To investigate the structure of the set (fy,::-, f;,) , it IS convenient to introduce the one-
sided symbol space X = {1, 2,, m}" on m symbols. Endowed with the metric

A (@) = ) 27 t(an B) for @ = (@) . = (B) €2, (8)

nz1
where t(in=1ifi # jand (i;) = 0ifi = j, X becomes a compact metric spaoe. Then we
J) J ]

have
Theorem (2.1.5)[62]: Suppose that {fj}1<j<

X. Then there exists a continuous onto mapping ¥: 2 = K(f3, -+, f;»n) such that the following
diagram is commutative:

o m > 2, 1s afinite set of weak contractions of

o
F——2X
W {w
K—s K
1

where o; is the right-shift operator: gj(aya; ) = tiaya, -++) for any 1 <j~ <m. In
particular, Williams’ formula (3) holds true.
Proof. Let 2(t) = max,< jemdly; (t) for brevity. First we will show that the sequence

defined by pn(a) = fy, © fa, © = ° fa, (o), n = 1, is a Cauchy sequence in X. To show
this, for any € > 0, define a sufficiently large integer N = N (&) such that

NN(M) < & — qe) where = 1211'?7% d (po,fj(po)) :
Then d(py(a), pns1(@)) < OV(M) < e—0(e) < ¢ for any a € X. Suppose tiow that
d (pN(a),pN+j(a)) <eforany1l <j<kanda € 2. Then it follows that
d(pN(a)»PN+k+1(a)) < d(PN(“);PNH(a)) + d(PN+1(“)»pN+k+1(05))
<e—-0NE)+N (d (pN(a’)PN+k(a’))> <eg,
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where a' = (a,a3 ) . Hence d (pN(a),pN+j(a)) < ¢ for any j = 1 by induction and
therefore {p,(a)} is a Cauchy sequence. It is easily seen that p,(a) =limp, (a) Iis

independent of the choice of p,.

Now define (a) = po(a) for a € Z. Since d(po,(a),py(a)) <&, the set () is

bounded and therefore y is continuous. Thus ¥ (X) is a compact subset satisfying the

equation (2). Therefore we have K(f,*, f;,) = Y (2) by Theorem (2.1.4).

For a fixed weak contraction f of X, let W(X) be the set of all weak contractions g

satisfying 24(t) < 2,(¢t) for any ¢t > 0. W,(X) is endowed with topology of uniform

convergence on compact sets. Then we have

Theorem (2.1.6)[62]: Suppose that f is a weak contraction of X. Then the mapping
K:We(X) X- - -X Wr(X) - C(X),

which maps (f, -+, f;,,) into the set K(fy, -+, f,,) , IS continuous.

Proof. Suppose that g](.") —gj as n-oin |l (X) for 1 <j<m. Put d* = diam
(K(g1, -+, gm)) for brevity. Let G§ be the closure of {(x,y);e <x < d*, y = 2;(x) =
x — 6} for, § > 0. Then it follows that for any fixed € > 0, G§ = ¢ for a sufficiently small
= §(e) . Thus there exists n(e) such that H"(d*) < € for any n > n(e) where H(x) =
On the other hand, there exists N = N(&) = n(¢) such that

sup d (gj(.n) (x),gj(x)) < §(¢)

where = K(g4,*** ,9m) € C’(;(E)Q. Then
a (g% 0 g% 0, Gay © Gy 0 )
foranyl1<j<m,n>=N
<d(g{" 0 g% 0,987 ga2 0 ) + d( gal © Guz )
<0, (a(9Q o ga20) )+ 8 = H(d (g5 o g2 )).
Continuing in this way, we arrive at d(gg)"--- ,gag---) < fP(d*) < e for n > N;

therefore dy (K (gin), ---,g,(lm),K(gl, ---,gm)) < &. Since ¢ is arbitrary, this completes

the proof.
For the case 4 = N, we have
Theorem (2.1.7)[62]: Suppose that {f;,},,>1 IS a family of weak contractions of X satisfying

lim 2, (t) = 0 for any ¢ > 0. Suppose further the set U,,»; Fix(f,) is precompact. Then

n—-oo

there exists a unique compact subset K = K(f3, f5, -+ ) satisfying the equation (6) with A =
N. Moreover, for any compact € C(X) , we have

lim F™(Q) = K(fu, for ) 9)
where = Y51 fn € F(C(X)) .
Proof. We first show that the operator F = }.,,5, f» is well-defined. It suffices to show the

set Upsqfrn (x) is pre-compact for any € C(X) . We denote by y(M) Kuratowski’s
noncompactness measure [87] of a bounded subset M of X. For any € C(X) , put Q =
Y1 Fix(f,) € C(X)and d* = sup {d(p,q);p € x,q € Q} for brevity. Then, for any € >
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0, there exists N = N (&) such that d(Fix(f;,) , f,,(p)) < .Q]n(d(Fix(fn),p)) <0 (d") <
e forany p € x, n = N. This implies f,,(x) € N.(Q) and therefore

r(Jro <[ | Jho ]| sr@@) sy +2 =2

n=1 n=N

Since ¢ is arbitrary, it follows that U,,», f,, (x) is pre-compact.

Now define 27(t) = sup,»,42;_(t) forany i > 0. Evidently we have Q. (t) < 27(¢). Also
it is easily verified that 2* is a non-decreasing right-continuous function satisfying 2*(t) <
t for t > 0. This implies that F is a weak contraction of C(X}; this completes the proof.
Note that the symbol space ~ = NV is complete (not compact) with the metric (8). Then we
have

Theorem (2.1.8)[62]: Suppose that {f,},>; satisfies the same conditions as in Theorem
(2.1.7). Then there exists a continuous mapping Y.: N¥ - K(fy, f>,-++) such that

K(fi, for ) = closure (1) (NV))

= closure (U Fix(fis...° f)). (10)

The proof is similar to that of Theorem (2.1.5) and easily verified.

We now remark that it is quite interesting to take off the restriction that {f;} _ . Isasetof

1<j<
weak contractions in the equation ((2.1.3)). As an example, consider a rational function
R(z) on the Riemann sphere C. The Julia set J of R(z) is defined by the set of C where the
family of the iteration {R™(z)} is not normal. It is well-known that J is a closed, perfect and
completely invariant set under R; that is, ] = R(J) = R~1(J) (see [5]). On the other hand
one can easily show that a set Y is completely invariant under R if and only if the set y
satisfies

Y =R(y) + R(y). (11)
Then we conclude that the Julia set is the smallest closed solution of ((2.1.8)) which
contains a repulsive periodic point, since Julia showed that J is the closure of the set of all
repulsive periodic points. (This will correspond to Williams’ formula (3).) As a second

example, consider the action in C of a discrete subgroup G of Mébius transformations. For
simplicity, we suppose that G = (4, B) is not elementary. Then the limit set L of G is defined
by the closure of the set of points fixed by some elements of G. It is well-known that L is a
perfect and G-invariant set; that is, L = V(L) for all y in G (see e.g. Beardon [63]). In other
words, L is the smallest nonempty closed set satisfying
L=AL)+AY(L)+B(L)+B (). (12)
Finally we will give an interesting example of a set-equation different from (6). Let X be
the unit interval [0,1] with the usual Euclidean distance. Then we consider the set-equation
K=fi(K-A)+ f,(KA,), (13)
where A; =[0,a], 4, =[a,1] and fi(s) =1+ b(s —a), f,(s) = b(s —a) with two
parameters 0 < a < 1,0 < b < 1 (Fig. 1(a)). The equation (13) originates in the study of
some discontinuous dynamical system done by [77]. In fact, the attractor of the dynamical
system becomes a compact solution of (13) for almost all parameters. The uniqueness of
such a solution follows from the fact that the attractor is minimal. If (a, b) belongs to the
domain D,, numbered by n in Fig. I(b),
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(a) (b)

Fig. (1)[62]:

the solution K of (13) consists of n points. On the other hand, 1f(a, b) belongs to the
remainder set R = (0,1)? — ¥,.», D,, K becomes a Cantor set with zero Hausdorff
dimension. Note that the mapping F(x) = fi"(x - A;) + f; (x - A,)" for x € ¢(X) belongs
to F(¢(X)) , while it is discontinuous in €(X) . We will give a generalization of the above
fact as follows:

Theorem (2.1.9)[62]: Suppose that X consists of m > 2 closed convex subsets 4, , -+, 4,
of RP with the usual Euclidean distance. Let f;: A; - X be a weak contraction for 1 < j <
m. Then the equation

K= f(K-4) (14)
=1

has the maximal compact solution K,,; that is, every compact solution K of (14) satisfies
K < Ky Ifinaddition K, - A; - A; = @ forany i # j, then K, is a unique compact solution
of (14) if and only if K, is minimal; that is,

K =] | D P (tap foranyae Ky, (15)
i1 j>i
where (x) = Y7, fi(x-4;) e F(eX)) .
Proof. It is known that there exists a retraction r;: RP — A; such that Lip (r;) < 1 for 1 <
j < m. Hence the extension f; = f; o r;off; becomes a weak contraction of X. Put Q =
K(fi,+ , fn) Tor brevity. Then
m

0= @z £ (0-4)=FQ)
=1 =1

and therefore there exists Q., = lim Q,, = lim F" (Q) € €(X) since F is isotone. We now
n—-oo n—oo

show Q,, satisfies the equation (14). One can easily show that (i) if Q. - Aj = ¢, then Qy -
Aj = ¢ for some N; (ii) if Q. - Aj # ¢, then Q,, - A; = Qs - Aj asn — o in C(X) . Hence
Qn+1 =F Q) =X fi (Qn-45) = 2 f (Qw - 45) = F(Qs) as required.

Put £ = =1 f] Then for every compact solution K of (14), we have
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F"(K)=ij*(K)Zij*(K-Aj)=K,
j=1 j=1

and therefore Q = li_r>n F™ (K) = K by Theorem (2.1.4). Hence

o Qw = lim F*(Q) = lim F™* (K) = K.
Thus K, = Q is the maximal Sgﬁj?ion of (14).71_)00
We now show the second part of the theorem. It suffices to deduce the minimality from the
uniqueness of K,,. For any fixed q € Kj,, put @ = lim Q™ where Q" = X.;.,, F' ({q}) .
Then we have o

F@Q7=) f;(Q" 4)~ ) ;(Q”-4) = F(@") asn o,
j=1 j=1

since {¥} is a decreasing sequence in C(X) . Hence F(¥) > ijnﬂ F/ ({q}) = Q**! and
therefore F(Q*) = Q*. Since Q% < Ky, {Q°° -Aj}1<]_<m are pairwise disjoint compact

subsets by assumption. Therefore F(Q*) < Q* and we get Q* = K, by uniqueness. This
completes the proof.

We will discuss the connectedness of self-similar sets. Throughout, dim4({Q) denotes
the (topological) dimension of a set Q in the Menger-Urysohn sense (see e.g. Hurewicz-
Wallman [82] ); W (n) denotes the set of all finite words with length n on symbols {1, 2, ,
m}. First of all, we have

Theorem (2.1.10)[62]: (Williams [s’4]). Suppose that {ff}1<]_<m is a finite set of

contractions of X satisfying X7 ;Lip(f;) <1. Then K =K(fy,",fn) is totally

disconnected and therefore dim(K) = 0.

It will be interesting to consider a higher dimensional version of this theorem; is it true or
p

not that, if X7, (Lip(fj)) < 1, then dim;(K) < p — 1? In connection with this, we have

Theorem (2.1.11)[62]: Suppose X < RP and {f]} - Is a finite set of contractions of X

1<j<
b
satisfying Y7, (Lip(fj)) < 1. Then Riemann’s p-dimensional outer area of the set

K(f1,+, f,n) is zero. In particular, it also holds true for the p-dimensional Lebesgue
measure.

Proof. Consider a closed ball B ¢ RP contaimng the set = K(fy, -, f,n) - The outer area in
the sense of Riemann of a bounded set Q will be denoted by s(Q) . Then

SO D sVENS ) sVBN<FBE) ) (Linh))

\vEW (n) VVEW (n) wWEW (n)
m n
p
<s(B) Z (Lip(fj)) —0asn - o,
f=1

where f, = fy,, o fy, forany w = (wy wy) € W(n) . Hence s(K) = 0 as required.
Using the mapping ¢¥: 2 — K(f;, - , f,n) defined in Theorem (2.1.5), we can get two
theorems concerning the topological stiuctures of the set K for weak contractions.
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Theorem (2.1.12)[62]: Suppose that {fj}1<j<

of X. Suppose further that Fix(f;) # I'ix(f;) for some i # j. Then the set K = K(f3, -+, fm)
Is perfect and therefore K is uncountaf,le.

Proof. Suppose, on the contrary, that y(a) is an isolated point of K for some a = («,,) €
2. By the continuity of ¥, there existsa § > 0 such that Y (a) = y(B) forany g € Ns(a) .
Put @ = (@, .ayiii---) and a = (a; --- ayjjj -+ ) for a sufficiently large N. Then Y (a) =
Y(a) = y(a) implies Fix(f;) = 'ix(f;) , contrary to the assumption.

Theorem (2.1.13)[62]: Suppose that { ff}1<j<m is a finite set of one to one weak contractions

. Is a finite set of one to one weak contractions

of X. Suppose further that {fj (K)}1<j<m are pairwise disjoint where = K(f,*+, f;,) - Then

the set K is totally disconnected andperfect (therefore dim¢(K) = 0 and K is uncountable).
Example (2.1.14)[62]: Let X = [0,1] with the usual Euclidean distance and
filkx)=axand f,(x) =b(x—1)+1, (16)
where 0 <a < 1land0 < b < 1 are two parameters. Ifa + b < 1,theset K = K(fy, f2) is
totally disconnected and perfect by Theorems (2.1.10) and (2.1.12). This also follows from
Theorem (2.1.13). In particular, if a = b = 1/3, then K becomes Cantor’s ternary set. On
the other hand, if a + b > 1, it is clear that K = [0,1] and therefore dim(K) = 1.
Remark (2.1.15)[62]: There exist two weak contractions f;, f, of X = [0,1] such that Lip
(f1) = Lip(f2) = 1 and K(fy, f>) is totally disconnected and perfect. For example, put

X 2—Xx
fi®) = 7= and fo(x) = 5——, (17)

and apply Theorems (2.1.12) and (2.1.13). One can also construct f;, f, for which K(f3, f5)
Is totally disconnected, perfect and of positive measure.
Remark (2.1.16)[62]: There exists a finite set of contractions {fj}1<]_<

Y7, Lip (f;) < 1, for which the set K(fy, -+ , f;n) is totally disconnected and perfect, and
the mapping ¥: ¥ — K is not a homeomorphism. For example, let X = [0,1] and

X x 3 x 3

i) =7 .00 =7+zand =7 +7. (18)
In fact, K(f1, f2, f3) has the required properties by Theorems (2.1.10) and (2.1.12), while y
is not a homeomorphism since Fix (f,) = Fix(f5 o f;) . One can easily construct such an
example for any m > 3. This gives a counter-example for Williams’. Indeed, m = 2 is the
only correct case and its proof will be given later.
We need some Definitions.
Definition (2.1.17)[62]: A set Q < X is said to be locally connected at p € Q provided that
for any neighborhood U of p, there exists a neighborhood V of p such the Q - V lies in a
single component of Q - U containing p. A set Q which is locally connected at every point
of Q is said to be locally connected. A finite sequence of points {p,,-:-, p,} is said to be an
g-chain joining p; and p,, provided that d(p;, p;+1) < eforany 1 <i<n-—1.AsetQ c
X is said to be well-chained provided that for any £ > 0, any two points p, g € Q can be
joined by an e-chain of points all lying in Q. A finite sequence of subsets {Q,, Q,,} is said to
be a finite chain joining Q; and Q,, provided that Q; - Q;,; # ¢ forany1 <i<n—1.

Theorem (2.1.18)[62]: Let {ff}1<j<m be afinite set of weak contractions of X. Then the set

K = K(fy,+, fm) 1s a locally connected continuum if and only iffor any 1 <i <j <m,
there exists a sequence {ry, ---,1,} < {1,2,,m} such that {f;(K), f, (KD ,, f.,(K) , f;(K)} is
a finite chain.

am2 3, satisfying
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Proof. It suffices to show the condition is sufficient. Let K(w) = f,,; o -2 f;,, (K) € C(X)

forany = (w; ---wy,,) € W(n) . We first prove the following proposition by induction on k;
for any finite words u # v € W (k) , there exists a sequence {w?,---,w™} € W (k) such that
{K(w),K(wh),, K(w™),K(v)} is a finite chain. By assumption, this holds true for k = 1.
Suppose next that this holds true for k = . Then we must show this is also valid for k =
[ + 1. Suppose, on the contrary, that there exist u = v € W(l + 1) for which there are no
finite chains joining K(u) and (v) . Put W' ={w € W(l + 1) ; there exists a finite
chainjoining K(u) and K(w)}. Thenu e Wandv e W' = W(l + 1) — W'. Thus we have
a separation

K = ZK(W)+ z Kw) =K' +K" (19)
wew'’ Yvew'

Therefore there exists a word w* € W (1) satisfying K(w*) - K' = (8 # K(w*) - K"' Since
Kw*) =KWw*o1) + -+ KWw*om)", there exist i # j satisfying K(w*ol) - K' # ¢ #
K(w*J]) - K" Now let {K(i),K(ry),, K(r;),K(j)} be a finite chain joining K (1) and K(j) .
Then it is clear that {K(w™°i), K(w*ory), -, K(w*er,),K(w* o J)} is a finite chain. This
implies w*ej € W and therefore K(w*ej) € K' - K", contrary to (19). This completes the
proof of our proposition.

Now for any p,q € K, there exist w?, w9 € W(n) such that p € K(w?P) and q €
Kw9) . Then by our proposition, there exists a finite chain
{K(wP), K(wh),, K(w™), K(w%)}. Choose a finite sequence of points {s;} satisfying s; €
KWP) - K(WY), -+, 5541 € KW™) - K(w9) . Since diam (K(w)) < 2"(diam(K)) for any
w € W(n) where (t) = max;<j<mflr (t) , the sequence {p, sy, ,Sn+1, q} becomes an e-
chain for a sufficiently large n. Since ¢ is arbitrary, K is well-chained and therefore K is
connected (Whyburn [114]). Note that K (w) is also connected and for any € > 0, the set K
Is the sum of a finite number of connected sets each ofdiameter less than . Hence K is
locally connected [114]. This completes the proof.

Remark (2.1.19)[62]: There exists a set of contractions {f;,},,; of X = R? for which the

set K(f;, f>,+++) is not locally connected. For example, let Q = Q, + ). K,,, where Q, is
the square with vertices (0,0), (1,0), (1,- 1) and (0,1) , and K, is the straight line interval
from (1/n,0) to (1/n,1) forn = 1 (Fig. 2). Then one can easily construct

'

1

Fig. (2)[62]:
{f»}>1 such that Q = K(f;, f5, -+ ) using compositions of a dilation, a rotation, a translation
and J(x,y) = x/2.
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Theorem (2.1.18) raises the following question: is it true or not that for any locally connected
continuum @ < X, there exists a finite set of weak contractions {fj}1<j<m of X such that

Q = K(f1,:* , f,n) ? In other words, is it possible to characterize locally connected continua
by the self-similarity defined by (6)?
Note that for a fixed m > 2, there exists a locally connected continuum Q < R™ for which
Q # K(fy, -+, fn) for any m weak contractions {f;} of R™. For example, an (m.—1)-
dimensional sphere in R™ has the required property by the LusternikSchnirelman-Borsuk
theorem (Granas [76]).
Finally, combining Theorems (2.1.10) and (2.1.18), we have immediately
Corollary (2.1.20)[62]: (Williams’ Theorem D for m = 2). Let f;andf, be one to one
contractions of X satisfying Lip(f;) + Lip(f;) <1 and Fix(f;) # Fix(f;) . Then the
mapping Y: 2 - K(fy, f2) is @ homeomorphism.

To state further properties of self-similar sets, we need some Definitions.
Definition (2.1.21)[62]: A point p of a connected set Q is said to be a cut point of Q provided
that Q — p is the sum of two mutually separated sets; an end point of Q provided that there
exist arbitranly small neighborhoods of p in Q each of whose boundanes consists of a single
point. Two points p, g of a connected set Q are said to be conjugate provided that no points
separate p and g in Q. If p is neither a cut point nor an end point of a connected set Q, the
set consisting of p together with all points of Q conjugate to p is called a simple link of Q.
A continuum Q is said to be an acyclic curve provided that it is locally connected and
contains no simple links.
It is known that any simple link of a continuum @ is a nondegenerate continuum; that is, it
contains more than one point ([114]). Every point of Q is either a cut point, an end point or
a point of a single simple link of Q. We now state our main theorem.
Theorem (2.1.22)[62]: Suppose that { fj} . Is a finite set of one to one weak contractions

1<j<
of X such that Fix(f;) # I'ix(f;) for some j = j. Suppose further that the set K =
K(f1,+, f,n) 1s @an acyclic curve. Then either K is a simple arc or K has an infinite number
of end points.

Proof. Put K(w) = f,,, -+ o f,,. (K) for any = (w; w,,) € W(n) . Suppose that K has a
finite number of end points, say el, e?, ---, eM. Then it suffices to show N = 2, since a
continuum is a simple arc if and only if it has exactly two non-cut points ([114]). Suppose,
on the contrary, that N > 3. The remainder of the proof is devoted to demonstrating a
contradiction.

1st Step. There exists a finite word w € W (n) for some n for which every poim of K(w) is
a cut point of K.

Proof. Suppose, on the contrary, that K(u) contains at least one of the end points of K for
any € W(n), n = 1. Take a sufficiently large integer n so that

1 .
diam (K(u)) < Q"(diam(K)) < > min d(el,ef) , (20)
for any u € W(n) where 2(t) = max;< ,Smnfj(t) . Obviously (20) contradicts the

connectedness of K. Thus there exists a word w € W (n) possessing the required property.
PutF = f0-01f,, andp = I'ix(P] for brevity. Evidently F (K) = K(w) has exactly N end

points {F(e’)}. Note that p is not an end point of (K) . For otherwise, p = F(e’) for some
j: hence p = e/, contrary to the above Definition of K (w) .
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2nd Step. There exists a simple arc A;joining e andpfor 1 < j < Nsuch that 4; - A = p
foranyi # j.
Proof. Since F(e/) is a cut point of K, we have a separation

K —F(eh) = P(j) +Q(), (21)
where P(j) - Q(J) = P(J) - Q(J) = ¢ and P(J) contains the connected set F(K) — F(e/) .
Then there exists a non-cut point ¢/ of Q(j) such that ¢/ # F(e’) since Q(j) = Q(i) +
F(e’) is a nondegenerate continuum. Evidently ¢’ is an end point not only of Q(j) but also
of K. We also have q* # g/ for any i # j since Q(1) - Q(j) = ¢ for any i # j. Therefore
Q(J) has exactly two end points g/ and (e") ; hence Q(j) is a simple arc. Thus this enables

us to define the permutation 7 on the set {1, 2, ---, N} such that e/ = g™’ (Fig. 3(a)) .
Now we define

S; (n) =0(n()) +F (6<n2(j))) + o+ F1(Q(761()) - (22)
Then (22) implies that S;(n) is a simple arc joining e/ and F™(e™ ?) , and that S;(1) <
5i(2) < -+ (Fig. 3(b)). Put A; = lim §; (n) in (X) . We first show that the set 4; is a simple

arc. For otherwise, p € Q(1) for some i; hence p is an end point of F(K) , contrary to the
result in 1st Step. We next show that A4; - A; = p forany i # j. For

()

Fleil)

Py D

*"-'J Fle™in
Fﬂ'ﬁﬂ?ﬁu

b}

Fig. (3)[62]: (a) F(K) is the heavy curve. The end points of K and F(K) are indicated by -
and O respectively.
(b) Simple arc S;(n) .
otherwise, there exist two integers r > s satisfying

F1 (Q(nr(l))) s (Q(nS(j))) £ 0. (23)
since Q(n" (1)) - Q(n" () = ¢, we have r > s; hence F™~ (Q(7f(0))) - Q) # o.
Then it follows that F(e™ ) € F~ (E(nr(l))) since (™) = F(K) - Q(t(J)) . Hence
r—s=1and " 1(l) = n5() , contrary to i # j. Thus A4; -Aj=p forany i #j as
required. Note that Ag,jec: + 4; is a simple arc joining e’ and e’ through the point p.
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3rd Step. We are now ready to prove our theorem. Let f. be one of the weak contractions
{f;} satisfying # I'ix(f;) . Note that every point off; o f#K) is a cut point of K since f;: K —
K (s) is a homeomorphism. By the same arguments as in 1st and 2nd Steps, we conclude
that for any i # j, there exists a simple arcjoining e and e’/ through the point p’ =
x(f; o F) # p.

Consider now three end points e, e? and e>. Since A; - A; = p for any i # j, there exist at
least two simple arcs, say A; and A,, such that p’ € A; + A,. Thus we have two different
simple arcs joining e! and e?. This contradicts the fact that a locally connected continuum
Is an acyclic curve if and only if there exists a unique simple arc joining any two points
([114]). This completes the proof.

A finite sequence of sets {Q,, Q,,":*, Q,,} is said to be a regular chain provided that Q; - Q;
consists of exactly one point forany 1 <i <n — 1whereas Q; - Q; = ¢ if

|i —j1 > 1. Then we have

Theorem (2.1.23)[62]: Let {fj}1<j<m be a finite set of one to one weak contractions of X

satisfying Fix (f;) # I'ix(f;) for some i = j. Let K; = f;(K(fi, , fm)), 1 <j < m, for
brevity. For any i # j, suppose that the set K; - K; consists of at most one point and that
there exists a unique regular chain joining K; and K. Then either K = K(fy,*+ , frn) IS @
simple arc or K has an infinite number of end points.
Proof. By Theorems (2.1.22), it suffices to show that K is acyclic. Suppose, on the contrary,
that K has a simple link. Since any two conjugate points of a locally connected continuum
lie together on a Jordan closed curve [114], there exists a Jordan closed curve J in K such
that ] < K(w) and J - f,,(K;) = @ =] - f,,(K;) for some w € W(n) and some r # s,
where Kj’ =K-Y K, Hence] = f,1()) satisfies J' - K. # ¢ # ]' - K, contrary to the
assumption.
Example (2.1.24)[62]: Let X = C with the usual Euclidean distance and put

fi(z) = azand f,(2) = |a|* + (1 — |a|*)zZ, (24)
where a is a complex parameter satisfying |a| <1,|1—al <1and Ima # 0. Then itis
easily seen that K = K(f3, f>) is not a simple arc and that K, - K, = |a|?; hence K has an
infinite number of end points (Fig. 4(a) and (b)).

Vf r“g g-}:
= ‘t“‘ﬁ* *”*“ "
%wvgmﬁw%%f’ SR
0 ! i o w1
@a=1+20 (b) 0 = 0.3 + 0.3i.
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(c) Lévy curve.

Fig. (4)[62]:

Example (2.1.25)[62]: There exist two contractions f;, f, such that the set K = K(f1, f2)
has an infinite number of simple links. For example, let X = C and put
fiz)=azand f,(z) =1 —-a)z+«a, (25)
where «a is a complex parameter satisfying |a| < 1 and |1 — a| <]. It was pointed out by
Lévy [89] that for « = 1/2 + i/2, the measure of K is positive and that the set of multiple
points of K is uncountable and dense in K (Fig. 4(c)).

We will discuss the parameterizations of.self-similar sets using some kind of
functional equations. First of all, we have
Theorem (2.1.26)[62]: (de Rham [103]). Let f; and f, be two contractions of X = RP. Then
the functional equation

1
f1(G(2t)) for 0 StSE,
G(t) = . (26)
(G2t —-1)) for SSts 1,
has a unique continuous solution if and only if
A (Fix(£)) = f-(Fix(f1)) - (27)
Note that de Rham’s theorem gives a parameterization of the set K(f3, f) if the condition
(27) is fulfilled. Indeed, we have

G([01]) = G ([0%]) +6 (E 1]) = A6 + £6a0.1D

and therefore G([0,1]) = K(fi, f>) by Theorem (2.1.4).
We now generalize de Rham’s Theorem (2.1.26). The following Definitions are essentially
taken from Milnor-Thurston [96]:
Definition (2.1.27)[62]: A continuous function h of [a, b] is said to be piecewise.monotone
provided that the interval [a, b] is subdivided into finite subintervals so that the restriction
of h to each subinterval is strictly monotone.
Definition (2.1.28)[62]: For any function H: [0,1] — [0, ], define the mapping vy: [0,1] —
2 by setting
vy(8) = (A@®), A(H®)), - , A(H™(D)),+) (28)

where A(t) = [mt] + [1 —t] for 0 < £ < 1. vy (¢t) is called the itinerary of a point t under
H.
Note that vy is discontinuous for any H since X' is totally disconnected. However, for some
kind of H, the mapping vy is almost continuous’ in the following sense.
Lemma (2.1.29)[62]: Let h;: [0 — 1) /m, j/m] — [0,1] be piecewise-monotone for any 1 <
j < m.Put H(t) = hy (t) for brevity. Then there exist the limits (s £) in 2 for any 0 <
s < 1. Moreover vy is continuous on

={te[01];fF(t) #j/mforanyn=0and1<j<m-—1}, (29)
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which is a dense set of [0,1].
Proof. For any fixed s € (0,1) and N > 1, there exists a sufficiently small € > 0 such that
each of the functions

H(t)JHZ(t)r"'rHN(t) (30)
is strictly monotone, either increasing or decreasing on (s, s + €) and that each of
A®), AH®), AHN®D) (31)

is independent of the choice of t € (s,s + ¢) . Obviously this implies that vy (s +) exists.
Similarly vy (s —) exists forany 0 < s < 1. Suppose how s € I,. Then it follows that each
of the functions (31) is continuous in a sufficiently small neighborhood of s. Therefore
vy (s +) = vy(s —) = vy(s) ; hence vy is continuous at s. Since each h; is piecewise-
monotone, the set y,; ={t fP(t) =j/m} is finite; hence Iy =[0,1] =X, ;Vn; IS
obviously dense in [0,1].

Using this lemma, we can prove the following generalization of Theorem (2.1.26).
Theorem (2.1.30)[62]: Let {f;} _._ beafinite set of weak contractions of X and {;}

1<j<
be the same functions as in Lemma (2.1.29). Then the functional equation

1
f1(G(hy(£))) foro<t<—,
G(t) =

m (32)
fin(G (R (D))  for

<t<1,
has a unique continuous solution G: [0,1] - X if and only if

lpovH(#+>=lpovH(#—)foranylSjSm—l, (33)
where Y: X = K(f1,**+, f,n) 1S the mapping defined in Theorem (2.1.5). If in addition each
h; is onto, the continuous solution G of ((2.1.33)) satisfies G ([0,1]) = K{f1,"*", f) -
Proof. Obviously the condition (33) is necessary, since we have

G(t) = faw) © GOH(t) = fa ° faury © - =P o vy(). (34)
We now show the sufficiency. Put F(t) = y,vy(t) for brevity. Then F is continuous on I,
by Lemma (2.1.29). The condition (33) implies F(0/m) +) = F(0/m) =) for1 <j <m —
1. Since F(t) = fA(t)oF(H(t)) for any t, it follows that F(s +) as well as F (s —) is equal
to one of f,(5)0F(0/m)t) for any s € y, ;. Therefore (s +) = F(s —) . Similarly one can
show that F(s +) = F(s —) for any € y; j, It = 1. Now define F(t) =F(t)ift € I; and
F(t) = F(t +) otherwise. Then it is easily seen that F is continuous on [0,1]. Since
H(Iy) c Iy, we have

- - -1
F(r) = f, (F (hj(t))> forter, . (]T#)
Hence F is a continuous solution of(32) since I is dense in [0,1]. The uniqueness of such
a solution follows from (34). It is obvious that G([0,1]) = K(fy, - , fn) if each h; is onto
for the continuous solution G of (32). This completes the proof.
Applying the above theorem to the case h; = mt — j + 1, we have

Corollary (2.1.31)[62]: Let {f]} . be a finite set of weak contractions of X. Then the
functional equation

1<jsm

m-—1

1<j<
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f1(G(mt)) for0<t<—,
G(t) = o m (35)

fm(G(mt—m+ 1)) for <
(35) has a unique continuous solution if and only if

f2(Fix(f)) = A(lix(f) - f, (Fix(f) = fix(fn)) . (36)

The continuous solution G of (35) gives a parameterization of K(f3, -+, f,,) since each h; is
onto. The conditions (36) are frequently referred to as the D-conditions. As applications of
this kind of functional equations, Denny [71] gave an example of a uniformly continuous
function f: R™ — (0,1) which is almost everywhere one to one; [79] showed the existence
of periodic solutions of a certain functional equation, which are continuous and of bounded
vanation.

Example (6.1.32)[62]: Consider the contractions defined by (24). Since f?(Fix(f,)) =
fo (Fix(fl)) , It is easily seen that the continuous solution G of (32) for
h(®) =] — [(2+V2)t — 1] and hy(t) = 2t — 1 (37)
gives a parameterization of the set K = K(f;, f>) illustrated in Fig. 4(a) and (b). Note that
h, has two fixed points (Fig. 5) and the set ¢ (Z H™™ (1)) gives all end points of K.
1

-

0" : 1
Fig. (5)[62]:
Finally we will study the case where G is a homeomorphism. Compare with Theorem

(2.1.23).

Theorem (2.1.33)[62]: Let {fj}m_<

satisfying Fix(f;) # I'ix(f;) for some i # j. Suppose that the set {K;,---, K,,} is a regular
chain where K; = f; (K(fy, , fn)) for 1 <j <m. Then the set K = K(fy, , fn) is @
simple arc if and only if there exist linear homeomorphisms h;:[(i—])/m,j/m] —
[0,1],1 < j < m, such that ¥ o vy satisfies the condition (33).

Proof. We first show the condition is necessary. Suppose K is a simple arc. Since each K;
is also a simple arc, the point K; - K;,, is an end point of both K; and K;..,. Let g;: [0,1] —
K; be a homeomorphism satisfying g;(1) = g;4+1(0) for 1 <j<m—1. Then G(t) =
Jawy(mt — A(t) + 1):[0,1] - K becomes a homeomorphism. Define

hi(r) = G‘loff_loG(t) for ! ml <t< %
Then obviously h;:[(j —1)/m,j/m] = [0,1] is a homeomorphism and G satisfies the
equation (32); hence ¥ o vy satisfies the condition (33). It is obvious that each hs can be
replaced by a linear homeomorphism fzj such that

() =) ()= (1)
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We now show the sufficiency. It suffices to show the solution G of (32) is a
homeomorphism. Suppose, on the contrary, that G(t;) = G(t,) for some t; <t,. Let
= ={(s,t);G(s) = G(t) for 0 < 5, t < 1}. Without loss of generality, we can assume

t, —t,| = — t]. 38
|t; — &, [max |s — t] (38)

Then (t,) < A(t,) . For otherwise, we have (H(tl),H(tz)) € ——and |H(t;) — H(ty)| =
m|t, — t,|, contrary to (38). Since {K,,, K,,} is a regular chain, it follows that A(t,) =
A(t,) —1,say l. Thus G(t;) = G(t,) = G(l/m) =K, - K;,. Then (t;,l/m) € E implies
(hy(t), by (I/m)) € E and |hy(t1) — hy(Il/m)| = m|t; — I/m|; hence t, — t; = | — mt;.
Similarly (t,,1/m) € E implies (hy41(t2), hip1(I/m)) € Zand |hyy (£) — hypa (I/m)| =
m|t, — 1/m|; hence t, — t; = mt, — L. Combining two inequalities, we have t; > [/m for
m = 3, contrary to A(t;) = t. For the case m = 2, it is easily seen that t; +t, = 1 and
Fix(f;) = Fix(f,) , contrary to the assumption. This completes the proof.
Example (6.1.34)[62]: Let X = C with the usual Euclidean distance and

fiz)=azand ,(z) =1—-a)z + «, (39)
where « is a complex parameter satisfying |a| < 1and |1 — a; < 1. Since {f;, f,} satisfies
the D-condition (36) and K; - K, = a for any |a —1/2| < 1/2, it follows that K =
K(f1, f2) i1s a simple arc by Theorem (2.1.33); hence dim,(K) = 1. Note that Riemann’s
outer area of K is always zero by Theorem (2.1.11). Compare with the examples given by
Osgood [100] and by Besicovitch-Schoenberg [64], which are simple arcs with positive
area. On the other hand, if |a —1/2| = 1/2, it is clear that K(f;, f>) is a closed triangle
with vertices 0,1 and a (Fig. 6(a)); therefore dim;(K) = 2. It was pointed out by de Rham
[103] that for « = 12 ++/3i/6, the solution Gof((2.1.26)0) gives the curve studied by

von Koch [86] (Fig. 6(b)) and that for « = 1/2 + eie/Z, G gives the space-filling curve
studied by Polya [102].

v
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—_— b}
Fig. (6)[62]:

We will discuss the regularity of the continuous solution G of (35). Let X be a closed

subset of a Banach space E and { ff}1<j<m be a finite set of weak contractions of X satisfying

I ©-conditions (36). First of all, we have
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Theorem (2.1.35)[62]: The solution G is HOlder-continuous with exponent a =
—log 6/ log m, where § = maxlsjsmLip(fj) :

Proof. Forany t # s, let n be an integer suchthat m=""1 < |# — s| < m ™. Then it s easily
seen that (t) , G(s) € K(w) + K(w") with K(w) - K(w") # ¢ for some w, w' € W(n) .
Therefore ||G(t) — G(s)|| < diam(K(w)) + diam(K(w")) ; hence

1G4 =GO _ ) i s avn < g ag:
f—sie = m%*diam(K(6m*)™ < 2m*diam(K).
A mapping f:[0,1] — E is said to be of bounded p-variation provided that
1/p
sup | Y 1l f i) = F@IP | <o (40)
i

where the supremum extends over all subdivisions 4: 0 =t, <t; < --- < t, = 1 of [0,1].
Forp = 1, we usually say that f is of bounded variation. Note that every Holder-continuous
mapping with exponent « is of bounded 1/a-variation. Then

Theorem (2.1.36)[62]: Suppose that each f; is one to one and Fix (f;) # I'x(f;,) . If {f;}

satisfies for some a > 0,
m

-a
Z (Lip(f) " > 1, (41)
j=1

then the solution G is not of bounded a-variation.

Proof. Let (n,)) = |GU/m™) — G(( — 1)/m™)||, 1 <j <m™ n =1 for brevity. Then

it is easily verified that

mn m mn—1
—-a
z(v(n,j))a > (Z (Lip(fj‘l)) ) . Z (L(n — 1,j))a
j=1 =1 j=1

Therefore, by (41), it follows that G is not of bounded a-variation, since v(0,1) =
ITix(f,) — Tix(f)|| # 0.

We now turn to the differentiability of G. In this respect, we have the following theorem by
applying the same method as in Lax [88].

Theorem (2.1.37)[62]: Suppose that {f;} satisfies
m

1_[ Lip(f;) < m™™. (42)
j=>1
Then the Frechet derivative DG (t) of the solution G is equal to zero for almost every t.
Proof. Since almost every number is normal in the scale of m (Billingsley [4]), it suffices
to show that DG(t) = 0 for every normal number t € [0,1]. Let s # t be an arbitrary
number and lett =Y, s, t,m ™" and s =), s, m™ " Let N > 1 be the smallest integer
such that ty # sy and let M > N Dbe the smallest integer such that t,, = 1 orty, <m — 2
according to whether t > s or t < s respectively. Then it is easily verified that
mM<|s—t|l<mNland M =N+ o(N)as N - co. (43)
Note that (43) implies s = t ifand only if N — oo,
On the other hand, we have from the equation (35),

|G(s) — G(t)|| < diam(K) ( 1_[ a]rj> , (44)

=1
47



where a; = Lip(fj) and r; = #{] < I'< N — 1;t; = j} for < j < m. Since r; = N/m +
o(N) as N — oo, we have from (44),

m

GO =6O ) Giam@) Ny ml_[ + o(N)
| P | < diam exp mog m .1aj 0
]:
Since m™ [[j%, a; < 1, it follows that DG (t) = 0. This completes the proof.

Corollary (2.1.38)[62]: Suppose that each f; is a strictly monotone increasing function and

Fix (f1) < I'ix(f,,) . Suppose further that {f]} satisfies (42). Then the solution G is a strictly
monotone increasing and purely singular function.

Example (2.1.39)[62]: Consider the contractions defined by (16). If a + b = 1 (this is also
a special case of (39)) and a + 1/2, {f,, f,} satisfies the conditions of Corollary (2.1.38);
therefore G,(t) = G(t) is a strictly monotone increasing and purely singular function with
a parameter a. This function was studied by Salem [108]. It is known that G,(t) is the

distribution function for the Bernoulli trials of unfair coin tossings. See also Lomnicki-Ulam
[90] and de Rham [103], [104].
Concerning the non-differentiability of G, we have

Theorem (2.1.40)[62]: Suppose that each f; is one to one and that {f]} satisfies
m
1_[ Lip(f1) < m™ (45)
j=1

Then the solution G is not Fréchet differeniable at almost every ¢. If in addition Lip (f;) <

m for any 1 < j < m, then G is nowhere differentiable.
Proof. We first show the non-differentiability of G at every normal number t. Let t =

Ynsitpam™ ™. For any N > 1, take a suitable number sy € [0,1] such that ||G(sy) —
G(HY(®)Il = (1/2)diam(K) where H(t) = mt —A(t) + 1. Put t™ =31 m™~7 +
sym~N. Then from the equation (35),

1 L
I1G(t™) - G| = zdiam(K) | |b,”, (46)
ytm] |

-1
where b; = (Lip(fj_l)) andr; = #{1 <i <N, t;=j? for 1 < j < m. Since [tV —¢| <
2m~", we have
(™) -6w, 1. N T , N
| ==l = 7 diam(&) exp | — log { m™ | [b; |+ o)

j=1

Hence (45) implies that G is not differentiable at ¢.
Next assume that mb; > 1 for 1 < j < m instead of (45). Then the same argument
as above can be applied to an arbitrary t, since

m

T
Hb]/z > pN,

j=1
where b, = min; ¢ ;<,,b; > 1/m; hence
G(tM) =G (0)

1
|| = 7 diam(K)(mb,)N
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This completes the proof.
Example (2.1.41)[62]: Consider the contractions defined by (39). Then, by Theorem
(2.1.35), the solution G, (t) = G(t) of (35) has Holder-exponent

log max (||, |1 — a)

log 2

In particular, Koch’s curve (a =1/2 ++/3i/ 6) is Holder-continuous with exponent
log 3/ log 4, which can not be replaced by any larger value by Theorem (2.1.36). For almost
every t, G, (t) = 0 or G, (t) is not differentiable according to whether |a(1 — a)| < 1/4 or
> 1/4 by Theorems (2.1.37) and (2.1.40). Note that the boundary curve |a(1 — a)| = 1/4
is a lemniscate (Fig. 7). Moreover, if |a| > 1/2 and |1 — a| > 1/2, then G, (t) iS nowhere
differentiable, as shown by de Rham [104]. For Pélya’s case (@ = 1/2 + % /2) , the above
results were shown by Lax [88],

Im
)

>K

nowhere differentiable
V /%

Fig. (7)[62]:
We obtained the continuous solution G of (32) using the diagram:

(0, 11— K(fy. o f)
N,
(47)
Such a solution does not exist if K = K(f;,*+, f,,) 1S not connected. Here we will discuss
the existence of a non-trivial continuous mapping R which maps K(f;, - , f,,) into [0,1].

Let {g;}._._ be a finite set of weak contractions of X = [0,1] with the usual Euclidean
J1<jsm

distance and *=y: ¥ = K(g4,***, gm) - Then the desired mapping R will be obtained by
the diagram:

KUy o fa) —— K9y -2 g [0, 1]

LY
AN R
by (48)
Indeed, we have
Theorem (2.1.42)[62]: Let {fj}1<7<m and {g j}1<j<m be two finite sets of weak contractions

of X and [0,1] respectively. Then the functional equations
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R(f1 (x)) =01 (R(x))
R(fn () = gm(R(O)

have a unique continuous onto solution R: K(fy, , fm) = K(g4,:**, gn) if and only if
Y™ (a) = *(B) whenever Y(a) = P(B).
Proof. It is clear that the condition is necessary, since

R(¥(a)) =R fy o P(a(a)) = gaop(0(@)) = 9o © gar, ©---= ¥* (@) (50)
for any a € X, where g: X' — X is the left-shift transformation.
We now show the sufficiency. Define the mapping R: K(f1, ", fm) = K(g1,** , 9m) by
R(¥(a)) = ¥* () . The condition of the theorem implies that R is well-defined. Then it is
clear that R satisfies the equations (49). We must show the continuity of R. Suppose, on the
contrary, that R is discontinuous at y¥(a) for some a € X. Then there exists a sequence
{a™}in X such that

(49)

W (a) — ¢ (a™)]| =26 >0 (51)
and Y(a™) - (a) as n > oo. Without loss of generality, we can assume a™ - @ as
n — oo. Then we have Y(a) = yY(a) and therefore Y*(a) = Y*(a) , contrary to (51). The
uniqueness of such a solution is obvious from (50).

As a corollary, we have immediately

Corollary (2.1.43)[62]: Let {fj}1<j<
{fj(K)}1<j<m are pairwise disjoint where K = K(f;,:-,fn) . Then for any weak

. be a finite set of weak contractions of X such that

contractions ___of[0,1], the reversed equations (49) have a unique continuous onto
'gf 1<jsm

solution R: K (fy,**, fm) = K(g1,*** , gm) -
Example (2.1.44)[62]: Consider the contractions f;, f, defined by (16) and put

t+1

0:(0) = Zand g, () =~ (52)

If +b < 1, the mapping y: 2 — K(f;, f,) becomes a homeomorphism by Theorem (2.1.13).
Then there exists a unique continuous onto solution R, , = R: K(fy7, f2) = K(91,92) =
[0,1] by Corollary (2.1.43). Note that R, ;, is monotone increasing and there exists a unique
extension R, ,:[0,1] - [0,1] of R, ;, which is also monotone increasing and satisfies the
equations (49) for any x € [0,]]. In particular, if a = b = 1/3, R, (t) is the well-known
Cantor function. The functional equations for the Cantor function were studied by
Sierpin’ski [109]. Note that, if = b(< 1/2), itis easily seen that

Lo . 1—-t
L,(t) = f e'™ dR, . (t) = e'/? 1_[ oS ( 5 a") : (53)
0

n20
It is known that L, (t) is not absolutely continuous (Kershner-Wintner [85]). Carleman [67]

has shown that L, (t) does nottend to 0 as |t| - oo, if a = q~1, where g = 3,4,5, Kershner
[84] has shown that L, (t) = 0((log |t])~#) if a = p/q, not the reciprocal of an integer,
while g is a positive function ofp and q. Note that this gives an example of a continuous
function which is not absolutely continuou s and satisfies the Riemann-Lebesgue lemma.
See also Erdos [73].

Example (2.1.45)[62]: De Rham [105] gave an example of a C*-function f(x,y) with two
variables such that the set
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af of
Flera =5
contains an interval, which is analogous to Whitney’s example [113]. De Rham’s function
f is an extension of the solution R of (49) for certain affine contractions of the plane
satisfying the condition of Corollary (2.1.43).
Example (2.1.46)[62]: If the continuous solution G of (32) is a homeomorphism and each

h]-‘1 is a weak contraction of [0,1], then it is clear that R = G~ 1: K(f}, , fm) = [0,1]

satisfies the equations (49) for g; = hj‘l, ] <j < m. For example, let X = [0,1] with the
usual Euclidean distance and put

1
) = —— and f,() = 5—. (54)
Then it is easily seen that the solution R = G71:[0,1] - [0,1] of (49) exists for the
contractions g,, g, defined by (52), which is known as Minkowski’s function [97]. It was
proved by Denjoy [69] that R(t) is purely singular. See also Salem [108].

We will discuss vanous properties of the classical space-filling curves, which will be
obtained by the continuous solution G of the equation (32) for certain simple affine
contractions.

We denote by I? the p-dimensional cube given by [0,1]P. The following theorem is
a standard result. For the proof, see Vitushkin-Khenkin [51].

Theorem (2.1.47)[62]: Suppose that p < g and f:I? — 19 is an onto HOlder-continuous
mapping with exponent «. Then a < p/q. Moreover, there exists an onto Holdercontinuous
mapping f:IP — 19 with exponent p/q — € for any € > 0. If in addition p divides q, then
one can take ¢ to be zero.

Example (2.1.48)[62]: In 1890, Peano [101] gave the first example ofa continuous planar
curve P, (t) filling the unit square P with vertices 0,1,1 + i and i. It is easily seen that P, (t)
IS a continuous solution of (35) for the nine affine contractionS'

z 1+ z 20
i) == fo(2) = @) =3+%
E 1+ 3i z 2 2+2i 21 E 1+
z : =_Z = - 55
z 2 Z 3+ z 242
f7(Z> § §; fe(2) = ; fo(2) = 3 3
Then, it follows that P, (t) is nowhere differentiable by Theorem (2.1.40) and satisfies
1P (£) = Py ()| < 3V5[¢ — 5|/ (56)

Note that the exponent 1/2 in (56) can not be replaced by 1/2 + & for any € > 0 by Theorem
(2.1.47). This a] so follows from Theorem (2.1.36). Cesaro [68] gave the analytic formula
for P, and Moore [98] discussed a generalization of P, by geometrical observation. Using
Moore’s construction, Milne [95] gave an example of a mapping f:I1 — IP, which is
Holder-continuous with exponent p~* and measure-preserving, that is, p,, (A) = p; (F1(4))
for any Borel subset A of P where p,, is the usual product measure on 1P,

Example (2.1.49)[62]: In 1891, Hilbert [81] gave a simpler example of a continuous planar
curve P, (t) filling P. It is easily seen that P, (t) is a continuous solution of (35) for the four
affine contractions:
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i Z i

fi2) =57 H@) =5+ o
z 1+ i_ 241
f3(2)=§+ Rk f1(2) =37+ .
Then P, (t) is nowhere differentiable and satisfies
1P, () = Po(s)Il < 2V5]t — s|*/2 (58)

Example (2.1.50)[62]: Sierpinski [110] gave a slightly different example of a planar curve
P;(t) filling the square with vertices 1+ i, —1+1i,.—1 —i and 1 —i. P;(t) is a unique
continuous periodic solution with period 1 of the equation (32) for the four contractions:
i 1
f1(Z)=E(Z_1_l); fz(Z)=E(Z_1_l)}
i 1 (59)
f3(z) = _E(Z_ 1-1i); fal2) = _E(Z —1-1)
and h;(t) = 4t — 1/8(mod 1) (Fig. 8).
1

Fig. (8)[62]:

Note that {f;} satisfies
fie f4(FiX(f2)2 =fy0 ﬁL(FiX(fZ)) =f30 f4(FiX(f2)) = f42 (Fix(fz)) -
We have Y7, (Lip(fj)) = 1 in all examples.

We begin with some Definitions.
Definition (2.1.51)[62]: For any « > 0 and U c X, we shall denote, for each € > 0, by

AZ(U) the lower bound of the sum Y,..;(diam(S,))" where {S,},>; is an arbitrary
covering of U consisting of closed spheres of diameters less than €. When & — 0+, A% (U)
tends to a unique limit A, (U) (finite or infinite), which we shall call the a-dimensional outer
measure. Then there exists a uniquely determined number such that

sup {a; A, (U) = o} = inf{a; A,(U) = 0},
which we shall call the Hausdorff dimension of U and denote by dimy (U) .

The function of a set A,(lf) thus defined is an outer measure in the sense of
Carathéodory. It is known that every Borel set is measurable and every set is regular with
respect to this measure (Saks [107]).

First of all, we have

Theorem (2.1.52)[62]: Suppose that {fj}1<j<
Then dimy (K(fy, -+, fm)) < A Where 4 is given by
m

> (Lin(5)) = 1. (60)

j=1

- Is a finite set of weak contractions of X.
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Proof. Fix an arbitrary k > A. Consider a closed sphere S containing the set = K(f, - , fn)
Put fi, = fwe o fy, forany word w = (wy ---wy,) . Then we have

n
m

A< Y A0S, Y ALRO) < diamE)F| D Lip(H)) |
weW (n) WEW (n) j=1

where & = 20™(diam(S)) and 2(t) = max;<j<m {2, (t) . Taking the limit as n — oo, it

follows that A,.(K) = 0. This completes the proof.

Theorem (2.1.53)[62]: Suppose that {fj}lsjsm Is a finite set of one to one weak contractions

of X. Suppose further that {fj(K)}1<j<m are pairwise disjoint where = K(fy, -+ , frn) - Then
dimy(K) = A where A is given by

m
-2
2 (Lin(f ) " =1. (61)
j=1
Proof. Fix an arbitrary k < A. By assumption, we have dist (fl- (K),fj(K)) > p > 0 forany
i # j. Consider now an arbitrary closed sphere S satisfying S - K # ¢.

Suppose first that S - K consists of more than Qne point. Then there exist an integer n =
n(S)=0and aword w =w(S) e W(n) suchthat S-K < f,,(K) and S - f,,;(K) #= ¢ #

-1
S - fwe;j (K) for some i # j. Note that diam (S) = a,, -+ a; ¢, p Where a; = (Lip(fj_l))

for1 <j<m.

Suppose next that S - K consists of exactly one point. Then we can take a sufficiently large
integer n =n(S) and a word w=w(S) € W(n) such that S-K =S " f;,(K) and
diam(S) = a,1...ayy, p.

Thus, for any finite covering {Sj}j>1 of K, we have ), f,, (K) = K. Therefore

> (diam(5)) 2 9%, Y (ama@,) 2 0% Y u (i) 2 pFu(K) = p,
Jz21 v(s)) v(s))
where u is the probability measure such that u(fw(K)) = (al,,1 alvn)'1 for any w. Hence

A, (K) = p*. This completes the proof,
In the case X = RP with the usual Euclidean distance, the following theorem is known. For
the proof, see Falconer [74]. See also Moran [99], Marion [92], and Hutchinson [83].

Theorem (2.1.54)[62]: Let {fj}1<j<m be a finite set of contractions of X = RP satisfying

11£;(x) — £l = Lip(f;)llx — y|| for any , ¥ € X. Suppose that there exists a bounded
open set V such that Y72, f; (y) c y and f;(V) - f;(V) = ¢ forany i # j. Then
0 < A; (K(fy, -, fm)) < oo; therefore dimy (K) = A where 1 is given by

m

Z (Lip(f]-))l = 1. (62)

=1
Example (2.1.55)[62]: Consider the contrac{ions defined by (16). If a + b < 1, it follows
that dimy(K(fy, f2)) = A where a* + b* =1 by Theorems (2.1.52) and (2.1.53). In
particular, for Cantor’s ternary set (a = b = 1/3) we have dimy(K) = log 2/ log 3. For
the contractions defined by (24), one can easily verify that {f;, f, } satisfies the condition of
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Theorem (2.1.54). Hence dimy (K) = A where A is given by |a|* + (1 — |a|*)* = 1. Note
that dimy (K) is discontinuous at every real a. On the other hand, the contractions defined
by (25) does not presumably satisfy the condition of Theorem (2.1.54) for Im a # 0.
Example (2.1.56)[62]: Let X = [0,1] with the usual Euclidean distance and put

1
. = 1<j<m, 63
fi) = for1<j<m (63)
where nq, -+ , n,, are m distinct positive integers. Then K(f,:-- , f,n,) is the set of all
continued fractions each of whose partial quotients is either n,, -+, n,,,_; Or n,,, since
1
Y(a) = fo, © fa, © na1 e .- forany a = (a,) € X.

Using Theorems (2.1.52) and (2.1.53), one can easily obtain lower and upper estimates for
dim (K) . In this respect, see Good [75]. Moreover one can get better estimates using the
following fact repeatedly:

K ({fj}lsjsm) =K ({fh ° sz}lsjism) ' (64)
Example (2.1.57)[62]: Let X = C with the usual Euclidean distance and put R,(z) =
az(1 — z) where a is a real parameter satisfying a > 4. It is known that the Julia set J, for
R, (z) is totally disconnected and contained in [0,1] (Brolin [66]). Then it is easily seen that

if > 2 ++/5, J, coincides with the set K(f;, f,) where

fix) = —+ /———andfz(x) = - /———. (65)

From Theorems (2.1.52) and (2.1.53), it follows that if a > 2 + 2v/2,
log 2 < di ) < log 4
loga ~ tm; (K) < log (a? — 4a)
Using (64), we also have the following asymptotic expansion:
log 2
dimg(K)
We will restnct ourselves to the case X = RP with the usual Euclidean distance. The
following theorem has been shown by Williams. Compare with Theorem (2.1.10).
Theorem (2.1.58)[62]: (Williams [115]). Let {f, f>} be two one to one contractions of R
such that Fix (f;) # Fix(f;) and that

Lip (i D™ + Lip(f; D™ = 1. (66)
Then the set K(f;, f>) is a closed line interval.
Here we will give a simple proof for this, which is completely different from Williams’
proof.
Proof. Let L, be the smallest closed interval containing the set = K(f;, f>) . Then there exist

a, B € X such that Ly = [y(a),(B)]. Sinoe f;op(a), fj°p(B) € K, we have L, =
fi(Lc) forj = 1,2; therefore Ly > Ly > L, > --- where F = fi + f; € T(C(R)) and L,, =
F(Lo) for n = 1. Suppose now that L, is connected but L., is not for some k = 0. Since
each f;(Ly) is a closed interval, it follows that f; (Ly) - f2(Lx) = ¢; therefore

diam (Lj;q) > diam(f1 (Lk)) + diam(f2 (Lk))

> (Lip(fy D™ + Lip(f; ) ~Hdiam(Ly) > diam(Ly)
contrary to Ly, < Lj. Therefore every L,, is connected. Hence the set lim L,, = K(f3, f5)

IS connected, as required.

1
= loga——+0(a 2) as a - oo,
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Note that the above theorem holds true even for weak contractions satisfying (66). We now
give a generalization of Theorem (2.1.58) as follows:

Theorem (2.1.59)[62]: Let {ff}1<j<m be a finite set of one to one weak contractions of R

such that Fix (f] # Fix(f;) for some i # j and that
m

2 (Lip(f™)) "sm-1. 67)
=1
Then the set K(f1, -, f;n) is a closed Iine] interval.
Proof. It suffices to show the connectedness of K = K(f;, , f,,) since K is perfect by
Theorem (2.1.12). Suppose, on the contrary, that K is not connected. By Theorem (2.1.18),
there exist two positive integers r and s such that » + s = m and that
Ki-Keyi=¢foranyl<j<rand1<i<s, (68)
where K, = f,,(K) for 1 <n < m.Puta, = Lip(f, )~! for 1 < n < m. Then we geta; +
ar+; <1 forany 1<j<rand 1<i<s. For otherwise, the set K* = K(fj, f;-4;) is
connected by Theorem (2.1.58); therefore, by Theorem (2.1.18), K; - K,,; = f;(K™) .
fr+i(K™) # ¢, contrary to (68). Thus we have
T

N

SZ a; + rz Aryi <TS. (69)

j:]_ i=1
On the other hand,
T S m
SZ a; + rz a,.; = min (r,S)Z a; = min (r,s)-(m—1) = s,
j=1 i=1 j=1

contrary to (69). This completes the proof.
Remark (2.1.60)[62]: The constant m — 1 in (67) can not be replaced by any smaller
number. For example, for an arbitrary € > 0, consider the contractions

f1(x) =%x,fj(x) = (1—e)x+#efor2 <j<m. (70)
Then it is clear that f; ([0,1]) - £;([0,1]) = ¢ for 2 < j < m; therefore K(fy, - , f;) is not
connected by Theorem (2.1.18), while
m

Z(Lip(fj_l))‘l >m—1—em.
=1

In connection with Theorems (2.1.10) and (2.1.58), Williams gave the following problem:
what is the structure of K(fy, f>) for fi, f>: R? - R?, affine contractions satisfying (66)?
Here we will give a partial answer for this. In fact, more generally we haye
Theorem (2.1.61)[62]: Let {f;, >} be two one to one weak contractions of R? such that Fix
(f1) # l'ix(f,) and that

Lip (f )P + Lip(f )P > 1. (71)
Then the set K = K(f}, f>) is a nondegenerate locally connected continuum; therefore
dim(K) > 1.
Proof. Suppose, on the contrary, that K is not connected. Then, by Theorem (2.1.18), we
have f;(K) - f,(K) = ¢. Therefore it follows that dimy(K) > p. This contradiction
completes the proof.
As a corollary, we have immediately
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Corollary (2.1.62)[62]: Theorem (2.1.61) holds true for two one to one weak contractions
{f1, 2} satisfying Fix(f;) # 'ix(f;) and

Lip (fy )™ + Lip(f; )7t > 2070/ (72)
Remark (6.1.63)[62]: For p = 2, the constant+/2 in (72) can not be replaced by any smaller
number. For example, consider the contractions

fl(z)=<s+é>2andf2(z) =(s—é/1§—1>+1, (73)
where s is a real parameter satisfying 0 < s < 1/2. We denote by Q, the closed quadrangle
with vertices 0,1,1 — s + i/2 and s + i/2. Then it is easily seen that f; (Q,) + f2(Qs) < Qs

and f;(Q;) - f,(Qs) = ¢. Therefore the set K(f;, f,) is totally disconnected by Theorem
(2.1.13) (Fig. 9), while

Lip (fif D™+ Lip(f; )7 = 1+ 4s? (74)
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Fig. (9)[62]:

We present the following problem: is it true or not that if one to one weak contractions

{ff}1<j<m of R? satisfym

m

Z (Lin(f ) " =1

j=1
then the set K(f;,, f;,) contains a nondegenerate component?
Section (2.2): Separation of Self-Similar Fractals in the Plane
Given contracting similarity mapsf;, ..., f,,on R%the corresponding self-similar set is the
unique compact set A # @ which satisfies the set equation

A= fi(A)U...Uf,(A).
A consists of similar copies A4; = f;(A)of itself, each A; consists of smaller copies A4;; =
fi(f;(4)),and so on. For any integern,we can consider the set S™ of words i = i;... i, from
the alphabet S = {1,...,m}.Writing f; = f; - f; and A; = f;(A),we have A = U{4;]i €
S™}1.When n tends to infinity, this induces a continuous mapm: S* — Afrom the set S of
sequences s = s;5,S3...0nto the self-similar set, theso-called address map. See [119], [122],
[123], [83].

When the contraction factors r;of f; are small, the pieces A; are disjoint, « is a
homeomorphism and A a Cantor set. For large r;, however, i identifies many addresses, and
the overlaps A; U A; are usually too large to analyse Mathematically. In between there is the
‘just-touching case’ [122] where overlaps are nonempty but sufficiently thin. It is defined
by four equivalent conditions.

(i)  Moran’s open set condition (OSC) [99]: there exists a nonempty open setl/ ¢ R"
with UL, fi(V) € Vand f;(V) n f;(V) = @ fori =j.
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(i)  Positivity of a-dimensional Hausdorff measure:u“(A) > 0, where a denotes the
similarity dimension given by Y. r* = 1[99], [128].

(iii)  The finite clustering property [128]: there exists an integer N such that for every piece
A; of A, with diameter ¢, say, there are at most N incomparable pieces A;of diameter & with
distance < ¢ from A4;. We call A; and A incomparable if j is not a prefix of k and k is not
a prefix of j.

(iv)  The neighbour map condition [120]: the identity map id is not an accumulation point
of the set of neighbour maps of A. A neighbour map has the form h = fi‘lfj where i,j €
S* = U1 S™and i; # j;.Convergence of similarity maps on R¢ is given by the norm
llgll = sup |g(x)I.

[x|<1
With so many equivalent formulations, OSC has become generally accepted as the
adequate separation condition for self-similar fractals. But does it really say that each

overlap A; N A; is small? At first glance, yes. If OSC holds, the overlap is contained in Vi n
I7j,so ithas no interior points, and u“(A; N A;) = 0.We do not know, however, whether the
Hausdorff dimension of overlaps must be smaller than a,except for the case of finite type
[126].

And what about the converse? The finite clustering condition implies that the
cardinality of w=1(x) for x € A is uniformly bounded by some number N.We do not know
whether this property is equivalent to OSC. Here we consider a more special case.

We start with some evidence for a negative answer. A sequence s;S,...is called
recurrent if for each K > 1 thereisan > 1 with s;...5x = Sp41..- Sne+x-We show that any
identificationof a recurrent address will destroy OSC. However, it is not clear whether such
an identification implies other identifications of addresses.

Our main result is an affirmative answer to the problem for d = 2.
We deal with the general case and with the case that A is homeomorphic to an interval. The
proof uses plane topology at some key places. We expect that Theorem (2.2.8) is not true in
higher dimensions.
Examples (2.2.1)[116]: s is a recurrent sequence if arbitrarily long prefixes s;...sgwill
occur inside the sequence. An example is the Cantor sequence

s =212111212111111111212111212... (75)
obtained as limit of the words s™where s(® =2 and s+D = s 13"s™M for n > 0.
Anotherexample is given by taking s(® = 2 and s*D = s 1ngM);

s =2121121211121211212....
A third example is the prominent Fibonacci sequence generated by the substitution 1 —
2,2 - 21:
s =21221212212212....

If s is recurrent, then for each N > 1 there is an index ky such that the word i(N) =
s1... Sk, has N different suffixes which coincide with prefixes of s.The ky are constructed

by induction:let k; = 1 and let k, be the smallest number for which s, , = s;. Let k3 denote
the end point of the first repetition of the word s; ... s, inside s, etc. Our example sequences

all end with k,.
Theorem (2.2.2)[116]: (a) In a self-similar set A, if one point a € A, with a recurrent

addresss belongs to a piece A, with t; # s;, then OSC cannot hold.
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(b) There are self-similar Cantor sets A in Ror R?with arbitrary small Hausdorff
dimensionand with A; # A; for i,j € S* with i # j, which do not fulfil the OSC.

Proof. (a). According to the finite clustering property, a self-similar set A cannotfulfil the
OSC if for every N € N there is a piece A;which intersects at least N other pieces A; and no

piece is a subpiece of another one, with diamA; =diam A4;.
Let N be given and let a € A;, N A, ,s; # t; be a point with recurrent address s =

S1S,S3...and a second address t. There is an initial word i = i;...i,, = s;...s, 0f s which
has N suffixes which coincide with prefixes of s(see below). In other words, there are £, <
ty << Ly <mnsuchthat iy, ;... =5;...5,_p, fork =1,...,N. Now we define

jk = il...l.gktl...tnkfork = 1,...,N,

Where n, is chosen as large as possible so that still diam A;, =diamA;. (If the factors r; are
very different, then to guarantee n,, = 1 exists we have to choose n — ¢y so large that ;-
C Toney < Tt,)-

Now fil---it’k (a)is in A; N A;,.So A; intersects N pieces of A; of at least the same size,and
they are incomparable: for k < k' the (€, + 1)st coordinate of j, is t; and the(#, +
1)stcoordinate of jis iz, 1 = s;. OSC does not hold.

(b) We take similitudes in the complex plane with equal factor r, that is,f;(z) = a;jrz +
bj,_j € S, with a;, b; € Cand |a;| = 1. Then the address t = tyt;t,... € S*is mapped to the
point

0 k-1
n(t) = by, + 2 rkb,, 1_[ a,. (76)
k=1 £=0

Here we start with t, since this gives a power series in r.We also write s = s,5;.... TO
provethe equation, start with f; ; (z) = by, + ra; b, +r2at0atlzand continue by
induction. Note that ™z tends to zero for n — c0.We apply the formula to some very simple
mappings:
fi(z2) =1z, f,(z) =rz+1,f3(z) = wrz +c,

Where c,w are complex numbers,|w| = 1.Suppose we want to identify the points
corresponding to the Cantor sequence (75) s = 212111212...and to 31 = 3111.... Formula
(73) with a; =a, =1,a3 =w and b; =0,b, =1,b; =c gives w(s) =1 +r? +ré +
r8 4. = ¥, = and m(31) = ¢ since (1) = 0. Thus the condition (31) = m(s)holds
if and only if

(00]

c=1+72+716 478 4= 2r"=1_[(1+r2'3").

Skg=2 k=0
Given r €]0,1[, we obtain the corresponding ¢ and w can be chosen on the unit circle. For
theself-similar set A in figurel, we took w =i,r = 0.45 and got ¢ = 1.2125.(For r <

éwhich we assume below the picture would be hardly visible.)
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Figure (1)[116]: Self-similar Cantor set without OSC.

Let us verify the properties of Theorem (2.2.2)(b) for the above example. The
Hausdorff dimension of A is not larger than the similarity dimension « determined by the
equation Yr;* = 3r% = 1[123], [83]. In particular, A is a Cantor set whenever r < 1/3 since
then a < 1 and any compact connected set has Hausdorff dimension of at least1([124]).
Moreover, taking » small enough we get « =In 3/|Inr| as small as we want. For w = 1 we
have A c R. All this holds for arbitrary small r.

Finally, for w = 1 we show that A; = A;with i # jcan hold only for countably many
r.It suffices to show this for fixed words i, j of the same lengthn. Now A; = A; means f; =
fi and f;(z) = r"z + Y325 bp_xr™ where by, € {0,1,c}. Thus f; = f;leads to an equation
of the form p(r) + q(r)c(r) = 0, where p,q are polynomials with coefficients—1,0,1
and c(r) is the above power series. However, an analytic function has only finitely many
zeros in [0,1]see [125], [127].

Let B.(x) denote the ball around x with radiusr. Take a number R >1 with
U™, fi(Br(0)) € Bz(0) and define ||g|| = sup |g(x)| for g: R¢ — R4,

(Ix|=R|

Lemma (2.2.3)[116]: If g and f are similitudes and f (Bz(0)) S Bg(0), then
If~tgf —idll < ¢rllg —id]|,
Where ¢ is a constant depending only on f .
Proof. Let f~'(x) = Gx + b where G is linear and ¢, = ||G||. For x € Bz(0), we have
If7rgf ) —x|=1f"gf ) = )| =16(g(f (x)) — f(x))]
<Gl 1g(f () = fFEI < Gl - |lg — id]]

i
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Figure (2)[116]: Proof of Lemma (2.2.6)._D_rawing by M Mesing.
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Lemma (2.2.4)[116]: Let A be a self-similar set which is not a singleton. For any integer
M > 0 there exists ko and jy, ..., j,; € S*o such that the A; are all disjoint.

Proof. Two maps, say f; and f5,have different fixed points x;, x,.S0 all £*(x,)with k =
1,2,..., M are different. Take j, = 1%2ko=®)for sufficiently large k,.

A simple Jordan curve is the image set of a homeomorphism from [0,1] toR2.

Lemma (2.2.5)[116]: Let A be a connected self-similar set which is not a simple Jordan
curve. Then there exist four points a, b, ¢, g € Asuch that

()  there exist Jordan curves ga, gb, Gc € A4;

(i) ga, qb, gc intersect each other only at the point g:

(iii) |qal = |gb| = |qc| =1";

(iv) ga\{a},gb\{b}and gc\{c}are contained in the interior D°of the closed disc D with
centreq and radiusr’.

Proof. A connected self-similar set is arcwise connected [121], [122], [62]. If A is not a
Jordan curve, there is a point g and a neighbourhood U of g such that A n U\{g}has at least
three components which have q in their closure. Taking a’, b’, ¢’ in these components, we

get disjointarcs ga’, gb’, gc'.Let ' be smaller than the distances of a’, b’, ¢’ to g and let D be
the closeddisc with centre g and radius r'. Starting in g,let a, b, ¢ denote the first points
where the arcshit the boundary aD.
We denote by K the union of the three Jordan curves, that is,K = ga U gb U'gc.
Lemma (2.2.6)[116]: (Perturbation lemma) There isaconstant§ > 0 suchthat K n g(K) #
@ for every similitude g with [|g — id|| < 6.
Proof. In Lemma (2.2.5), D\K is divided into three parts P,, P, and P., where the closure of
P,doesnot contain x. Choose r so small that B,,.(a)does not intersect P,, B,, (b)does not
intersect P, and B, (c) does not intersect P..
Let o be the distance between K\(B,(a) U B,(b) U B,.(c))and the circle aD. Clearly ¢ >
0. We set

8§ =min{r'/2,r,0/2}
and show that ||g — id]| < & impliesg(K) N K # Q.
Since ||g — id|| < 7', the point g(q) is in D°.If g(q) belongs to K, our assertion is true.So
we assume, without loss of generality, that g(q) belongsto P,. Since||g — id|| < r, the point
g(a) isin B,(a), and hence not in P,.Now we show that g(ga)does not intersect bc,the arc
from b to c on the circle dD. The part g(ga n B,.(a))isstill in B,,.(a), so it will not
intersect be,and g(ga\B, (a))is contained in the disc with centregand radius ' — o /2, and
will not intersect aD at all. Now g(ga)must intersect gb U gc and g(K) must intersect
K(figure 2).
Definition (2.2.7)[116]: A self-similar set A is of finite type if there are only finitely many
neighbor maps h = f;"'f; with A n h(A) # @(or equivalently A; N A; # @) and with
similarity factor ry, € (1, 1/r,)where r, = min{ry,..., 1, }-

The meaning of the last condition is that we accept only neighbours h(A4) which fit
the size of A, otherwise we take their pieces or supersets as h(A).If allriare equal, we take
onlyneighbours h(A) which have the same size as A,and the mapshare isometries.

Compared with the finite type concept in Ngai and Wang [126], this definition is a bit
more restrictive but simpler and in our opinion more natural. The following was proved for
equal factors in [118].

Theorem (2.2.8)[116]: A self-similar set of finite type fulfils OSC if f; # f; fori # j.
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Proof. Let
. ] 1
Hy={h= fi_lfj|ll + j,ANh(A) # @, € (n,;)},

let H={fi'hf;,fi hhf;,fi'f;lh € Hyu{id},i,j €S} denote the ‘immediate
successors’ of maps of H,y U {id} and let
H ={heHh(A)NA=0L.

Since for h € H,the compact sets A and h(A) are disjoint, their distance d;, = d(4, h(4)) =
inf{lx —y||lx € A,y € h(A)} is positive. Moreover, |lh —id]| =
max{|h(x) — x||x € A} = d,.If A is of finite type, H, and hence H,are finite. Thus 6§, =
minf{||h — id|||h € Hy} > 0since f; # f; implies id & H, and §; = min{d,|h € H;} > 0.
Any neighbour map g € H, U H; has the formf;"*hf;, f;,""h or hf;with suitable h € Hy U
H,and words i, j € S*. Then d; > djsinced(B’,C) = d(B,C) for B 2 B":

dh
d(fi h(A),4) 2 d(fi th(A), £ (A) = —— d(hf;(4),4) = d(h(4;),4)dn

(for f1 hf;we combine both estimates). This implies ||g — id||[min{&,, §; }.This is true for
all neighbour maps g.So id cannot be an accumulation point and OSC holds.

Now we consider self-similar sets homeomorphic to [0,1] and write | = f,(J) U...U
fm(J )instead of A.If the pieces have finite intersection, each intersection is at most one
point,and we can assume that J; N J;,; = {c;}fori =1,...,m — 1. Furthermore, let ¢, €
Jiand c,, € J,, be the two endpoints of J(those points x for which J\{x}is connected).
Concerningthe addresses of ¢, c,,, four cases are possible (cf [121], [62]):

(Dfi(co) = co and frn(cm) = cpp,i-e.co = (1), ¢y = m(M).

(ii) f1(co) = cp and f,,(cy) = cpp,i.e.cy = m(1)and c,,, = m(m1).

(iii) f1(cm) = co and frn (ci) = Cyl. €. ¢ = T(AM), ¢y = T(M).

(iv) f1(cm) = ¢co and f,,,(cy) = ¢y i.e.cy = m(1m), ¢,, = m(m1).

Theorem (2.2.9)[116]: A self-similar Jordan curve in the plane is of finite type unless

(i) it has endpoint type (i),

(ii) thereexistsani € {1,2,...,m — 1}such that £, (c;) # f;3%(c;)and

(iii) llog "mis irrational for the contraction factors ry,7;, of £y, fn.

o0gry
Proof. We need only check neighbour maps h = fi‘lfjfor pieces J; € J; and J; € J; 0f
approximately the same size which intersect in the point ¢;(i = 1,...,m — 1). We show that
neighbour maps atcirepeat periodically when we go to smaller pieces.
If £;,71(c;) = fi75(cor if we have endpoint type (ii)(cf figure 3), (iii) or (iv), then both
addresses of c; are eventually periodic with the same periodic part:

¢; = n(iuw) = n((i + vw),

Where u,vcan be 1 or m or the empty word (in which case f, =id) and w €
{1, m, 1m, m1}where w is the address of an endpoint of /. This endpoint which we call 0 is
the fixed pointof f,,.What is more important is that it is also the fixed point of all neighbour
maps

h=f71fwithi = iuw™ and j = (i + Dvw™,
since our assumption was c; = f;f,,(0) = f; +1/f,(0). In other words, when (i) or (ii) is not
true then the neighbour maps are rotations around one endpoint of J,composed with a

stretchingand/or a reflection.The conditionr, < 1, < Tifor T = % = [ily, r,}}"”says that

i TiTy

onlyfinitely many differences n' — n are possible.
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Now let us first assume that all similitudes f; are orientation-preserving,f;(z) =
a;z + b;.We choose the origin of our coordinate system at the fixed point 0 of f,, so that
fw(2) = az for some a € c with |a] =1, < 1.Then

h= 72 = i T o fo £ = @ T i fo (78)

Figure (3)[116]: Self-similar Jordan arc of type (ii) with two pieces.

because orientation-preserving similitudes in the plane with a common fixed point
commute. So the neighbour map h depends only on n’ —n ,not on n or n' separately.
Consequently, the number of neighbour maps at c; is finite. (Actually, for case (78) with
w = 1m, we still have to consider i = iuw™1 and /or j = (i + 1)vw™ 1 which increases
the number of neighbour mapsat most by a factor 4.) We have verified the finite type if
either (i) or (ii) is not fulfilled.

What will change if we admit orientation-reversing similitudes, f;(z) = a;z + b;? if
fw(2z) = az we can work with w? = ww instead of w in the above calculations. Since
faow(2) = fi(fin(2)) = |a|?z,equation (78) again holds. The vertex c, in figure4shows such
a case (type (i) but c; = f1(cy) = f2(ca)).

Commutativity could only fail if f,(z) = az with a € R and at the same time
i fislf, is orientation-reversing. In that case one of the maps f;f,, fi+1f, would
preserve and the other one would reverse the orientation. However, this case is not
possiblefor a Jordan curve: by assumption, the fixed point O of f;,is an endpoint of /(namely
co forw = 1lorw = 1m and ¢, for w = m or w = m1). If z, denotes the other endpoint
of /, the curve consists of Jordan arcs connecting points z,, az,, a®z,,.... In other words, the
curveapproaches 0 as a fractal spiral. The mappings f;f,, and f;,1 f,map this spiral to two
spirals with centre c; which represent J; and J;, ;. If these spirals have different orientations,
theyhave plenty of intersection points, contradicting the Jordan curve structure of J.

To finish the proof, we assume both (i) and (ii) and show the finite type if (iii) is not
true that is,r* = r,i‘l'for positive integers k, k'. By (i) and (ii),c; has addresses im and (i +
1)1(oril, (i + 1)m). Let us take the origin of our coordinate system at ;. In the orientation-
preserving case f,(z) —co =a,(z—cy), fm(2) —cyp =an,(z—c,) the sets J;and
Ji+1form two fractal spirals approaching c; = 0,and these spirals are mapped into
themselvesby multiplication with a,, and a,,respectively. (Seen from the centre c,,,the
fractal spiral J connects cg, zy, Z,, . .., Where z, — ¢, = a¥,(co — ¢,,,). NOW fi(2) = az +
fmaps J to J; with c,,, t0 0, ¢, to ¢;_; and hence z, to y,, = a¥,c;_,.Similarly foraland f;, ;.
If f;, f;+,areorientation-reversing the factor is a,,a,.) By, a,, = a} with t = k/k’.Using the
maps f¥and f,ll"instead of f;, fmwe can use the above argument to show finite type at
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c;(instead of factor 4 for w = 1m we have factor kk'). The case that f;or f,, is orientation
reversing leads to real factors as above. The proof is complete.

We should also mention that theorem10does not hold in dimension 3.

Lemma (2.2.10)[116]: If J;, ], < Care Jordan curves with J; N J, = {0} and a,, a, complex
numbers with a,J; < J;and a,J, < J, then there is t > 0 with a, = at.

Proof. Let a; = r - e¥1,a, = rt - e We must show a; = a,,50 let us assume a, —
a, = ¢ € (0,2m).There are points z;,z, # 0 on J;,J,with |z;| = |z,|.We take z;,z, as
endpoints of J,, J,(forgetting points with larger modulus), and we can assume that no other
points of J; U J,has modulus|z2|.Express the curve J, between z;and a,z, inparametric
form @(s) = r(5)e*®),0 < s < 1 where a(s)is continuous (does not jump from 2 to 0).
Let £ =max{a(s) — a(0)|0 < s < 1} and choose n so large that nte > 4w + (.

Let z, = z,a’ and let z; be the first point of J; (starting from z;) which has modulus
equal to |z5| = |z,| - r™. Then z; lies between z,a¥ and z;ak¥*?, where k is the integer part
of nt. Now we parametrize the two Jordan curves [z;, z;/] < J;between the circles |z| = |z, ]
and |z| = |z5| by @;(s) = 1;(s)ei9),0 < s < 1, where y;(s) is continuous and y,(0) €
(—2m, 0],v7,(0) € [0,2m).Then y,(0) < y4(0) but

Y2(1) = y,(0) + nta, = y,(0) + nte + ka; > y,(0)+4n+ f + kay
>y1(0) + B +kay =2y (D).
This proves that /;and J, have an intersection point with modulus |z, |which contradictsthe
assumption.
Theorem (2.2.11)[116]: Let A be a connected self-similar set in the plane. If A; N 4; is a
finite set for i # j, then OSC holds.
Proof. Let
M = max{card(A; N A;)|i #j} +1,

k, the constant in Lemma (2.2.4) and jy,...,j,; € S*0be the words with disjoint Aj, .Let

c = max {cfj|j € S"O}, (77)
Where ¢ is the constant of Lemma (2.2.3).

Suppose the f; do not satisfy OSC. By the neighbour map condition, there are i,i' €

S*with i; # ijand
fi ' fi —id|l < &/c
Where § is the constant in Lemma (2.2.6) and c is from (77). Then by Lemma (2.2.3), we
have
Ifij fy —idll = W fofy —idll < cllfy  fi —idl| < 6
for each j € S0 .Hence firj(A) N f;j(A) # @ by Lemma (2.2.6). Let p; be a point in the
intersection. Then p;,, ..., pj,are all different, and they belong to the set £, (4) N f;, (4)

which contradictsthe definition of M. So the fisatisfy OSC.

For Jordan curves. We show that each self-similar Jordan curve J fulfilsOSC, studying
neighbour maps at each point c;. By Theorem (2.2.9), we can assume (i), (ii) and(iii) because
otherwise J is of finite type and hence OSC by Theorem (2.2.8). Also if ] is containedin a
line, OSC is obvious.

As in the end of the proof of Theorem (2.2.9), c; has addresses im and (i + 1)1. We
assume that f;,f,,, preserve orientation so that /; and J; ., form spirals around c; which remain
invariant under similitudes with factors a,,, a, and centre c;.a,, = atbut this time ¢t
isirrational.
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We show that the neighbour maps h = fi‘lfjwith iy =1iand j; =i+ 1cannot
approach id.We first study arbitrary small pieces J;, J; intersecting at ¢; ,thatis,i = im",j =
(i + 1)1 .Using r;,, = r,we see that we have an infinite type here:

r, = Tit1 rlnl_"t.
T

Since for irrational t the set{n’ — nt|n,n’ € N }is dense in R,the factors r; include a
denseset in(0, ).

We apply f;~in each case so that each J;is mapped onto J,and each J ;is transformed into
some h(J ).The intersection pointis ¢, = f71(c;) = h(cy)for every n and n'.Let ¢,,, = 0
be our origin now. While J is kept fixed, the neighbours h(J )are obtained from h,(J) =
£ fis1(J)by multiplication with a{l""t.We define U = U{h())|h =fi;n1"f(i+1)1n'} as
union of all these neighbours.h(J) N J = {0}for each h implies U N ] = {0}.

Now let us consider the trajectories of the flow s +— zyajwithin the unit circle C.For
each z, = e'® € C we have the spiral

Sa = {2q0a7|s > 0}

Since J is compact and connected, and the spirals do not form self-similar sets
(considercurvature), the set of all z,, for which S, N J # @will be an interval [z, z, Jon C,or
C itself . The same is true for the neighbour set hy(J).Since it is a scaled and rotated copy
of J,itintersects as many spirals S, as J. The set of all z, for which S, NnJ # @will be an
interval [z, z,/] of the same length as [zg, z, ],0r C.

The other neighbours h(J ) determine exactly the same interval, since they are

obtained from h,(J )by multiplication with a{" ~"t which leaves each S, invariant. Thus U
also determines the same interval. However,U is a dense union of Jordan curves and will
occupy a dense set on each S, which it intersects. From this fact it will follow that [zg, z, ]

and [z, z,/]are proper intervals which can intersect only in their endpoints. That is,there

are at most twospirals S, which intersect both J and U.
To prove this, we assume the contrary: there are two spirals S;, S, which, together
with all spirals between them, belong to the interior of both [zg,z,] and [zg/, z,/].Thus ]

intersects Sy, S, in z4, z, and joins them with a Jordan are 77, z,, and hy (J)intersects S;, S,in
Y1, Y2,5ay,and contains a Jordan are y;, y, between them. This arc as well as all its multiples
a;.yi, Yo,where s is taken from a dense set of positive numbers, must not intersect J. This
is only possible if{y;,y,} = b -{z;, z,}for some b = aj € C. It follows thaty;,y, =
b. 7z, z, and that the arcs J and h(J) continue to intersect the spirals in a parallel manner,
because as soon as one of the arcs would turn back, a multiplication of hy(J )by aj with s
very near to 0 would result in an intersection point. On the other hand, since J contains a
spiral point, it contains adense set of spiral points, and can never intersect the spirals in
successive order; it must turnback which is a contradiction.

We proved that J intersects S, for z, in a proper interval [z, z, ],and U can only intersectthe

two boundary spirals Sz and S,.These two spirals will be used to separate J and U

althoughthey may contain points of both sets.
Now it is easy to give a uniform estimate||h — id|| = n > 0 for all these neighbor
maps h, by just using a point z € J which lies on the spiral Sg.,,/,, Which has distance > 7

from U. However, since we have no finite type, we must study also neighbour maps between
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disjoint pieces of J;and J; ;. To get the uniform estimate for all these, we need a more general
argument.
We consider one of the spirals, say Sy,0n all its lengths from O toco. Let § > 0 be
taken so that
Bys(co) NJ € Ji and Bys(cp) N € o (79)
A topological argument below says there is € > 0 such thatfor any isometry g of the
planethere exists a point x, € J with

d (xg,g(So\B(g(O))) = inf{d(xg,y)|y € g(SO\B5(O))} > ¢, (80)
This implies that a map h which transforms J onto some h(J)on the other side of a
spiralisometric to S,,outside the §-neighbourhood of its centre, must fulfil||h — id|| = €.
Let us set n =min{§,r.e}and let us consider the neighbour map h = fi‘lfjwith
intersecting / N h(J ) = {c,,} as above: i =im",j=(+ 1)1“'. By (79) J, does not
intersect Bs(c,,). By (80) there is x* € Jwith d(x*, h(J)\Bs(c,,)) = r.¢ (note that a; 1/, is
iIsometric with J). By (79)d(x*, Bs(¢;,)) = 8.Thus||h — id|| = 7.

Now we take disjoint pieces J; ¢ J;and J; € Jiy1.0fJ; = Jimny, With u; # m, and
westandardize by this new f;~*, the separating spiral will be fi 1 (Sg)which is isometric
to Sy,and the distance of its centre to J is larger than 26 /r;,. Again we get ||h — id|| = 1.

We get all neighbour maps of / when we add the inverses of those

considered(interchanging i and j) and finitely many others. So id is not approached by
neighbour mapsand OSC holds.

| B Sw b A
Tar R B A Amans C
Figure (4)[116]: A self-similar arc with four pieces. At c; and c; we have finite type, at c,
infinite type.

At the end, we give the topological argument for (80). In the space Fof closed subsetsof the
closed ball Bg(0)with Hausdorff metric [122], [83], we consider the subspace F, of
allisometric copies of compact subsets of S,\Bs(0)or of R which have approximately the

same diameter as J.
Fo = {g(F ) € Bx(0)|g isometry, F R or F  S4\Bs(0), omr € (.. )}

diamF
It is well known that F is compact. Moreover,F,is a closed subset and so is also
compact.(Take a sequence g,,(F,) = G.If F, = oo then G is a subset of a line. If infinitely
many F are within a bounded part of Sythere is a subsequence for which both E, and
Jn converge.)Thus J € F has a positive Hausdorff distance e from F,,.(Jcannot be in a spiral
by a simplecurvature argument, and / was assumed not to be ina line,so J & F,). Take F €
Fy.Since dy(J, G) = € for every closed G < Fthereis x* € J withd(x*, F) > .

A
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Section (2.3): Iterated Function Systems of Bounded Distortion
For X be a non-empty closed subset of R™ and let I* = {1,...,#} a finite index
alphabet, £ > 1. An iterated function system (IFS) consists of a family {¢;};c,2 of
contractions on X. That is, fori € I* we have ¢»; : X — X such that
|6:(x) — p:W)| = rilx —y| forallx,y € X,
where 0 <7y, < 1 < hmax < 1,and || represents the euclidean norm in R™.
An IFS determines a unique non empty compact set K satisfying

Which is in general a fractal set [83], [130]. We will denote by I* the set of all words of
lengthk, w = w w,,...,wy, w; € I*,andby I* = U2, I¥ the set of all finite words, for
w € I* we will denote by |w] the length of w. For w = wy,...,w, € I* we will denote
Tw = Totr o Twk Po = ¢w1 oo Py and K, = ¢, (K).
We remark that K;,, € K;, forall w,1 € I*.

We consider the general class of IFS of bounded distortion (BD) [130], that is, we assume
that there are constants M,, M; > 0 such that

Mo |Kpllx = y| < |90 (X) — ¢ W] = My|Kyllx =y, (81)

forallw € I",x,y € X; where|K,| represents the diameter of the compact set K,,. The
BD property (81) is satisfied if the ¢;s are conformal maps,[131], [132] and in particular for
contracting similitudes.

Let us denote by I the space of infinite sequences w = wyw,,...;w; € I' with the usual

: —A; : —
metric: (w, 1) = X%=1 |w1{,' i ,forall w, A € I. We considerthe natural projection map I1 :

]
I — X defined by

n=1
It is clear that d(w, 1) < {)in ifw; = A;forallj = 1,...,n and, conversely, d(w, 1) < gin

implies w; = 4; for all j =1,...,n. Thus [T is a continuous map and II(I) =
Uwer T(w) = K. For a general subset of successions G c I, we will denote by G* the
set of words of length k,w € I* for which there is 2 € I such that wA € G; also G* =
Uiy G-
We say that G < [ is a subsystem of [ if G is compact and shift invariant, that is if v =
wiw,ws5 € G, then w,ws ---€ G. Then the compact subset K; = I1(G) is asub-self-
similar set satisfying K; S U;er @i (Kg). Such constructions were studied by Falconer
[133] for similitudes. Consider for example four similitudes, I1* = {1,2,3,4}, which scale by
1/20nR%:Ty(x) = 2x + py Withpy, = (0,2), p, = (5,2), ps = (0,0)andp, = (0,5).
It is clear that the unit square in R? is the attractor of the system. The subset of all
SUCCESSIONS W = wq w5, ... With the restriction that [130] never follows [83] is a subsystem
and the corresponding sub-self-similar set is shown in Fig.1. See [134] for related illustrative
examples with these transformations.

For a subsystem G let us define the similarity dimension of G by the unique solution
s Of the pressure equation p;(s;) = 0, where p; (s) is defined by
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1
pe(s) = lim --log (Z IKwIS>-

weGk
Separation properties are needed to find formulas for the Hausdorff dimensions of K and

K. If the IFS I satisfies a strong separation property like the Open Set Condition then the
Hausdorff dimension of K coincides with the similarity dimension of I,dim K = s; and
HS1(K) > 0.1 This result extends for general subsystems as was showed by Falconer [133]
and we recall below. On the other hand if I satisfy the weak separation propertyof Lau and
Ngai [135] then dim K coincides with the growth dimension of I, [136] which is in general
smaller than s;.

We study the following separation property. Let G be a subsystem of bounded

Fig. (1)[129]: A sub-self-similar set in the unit square.
distortion, for a non-empty compactset A € X, we will denote by G (A) the family of finite
words

GA) ={w = wy,..., 0 EGC": |Ky| < |A] < |Kyp,,..., 01; K, NA # B},

We will say that a subsystem G is separated if there exists M > 0 such that 4 (G(4)) < M
for all compact A, where # (-) denotes the cardinal (number of elements).
For G = I the separation condition is a reformulation of the Bandt-Graft condition, [120]
which is equivalent to the Open Set Condition. See [128] for contracting similitudes and
[137] for conformal IFS. However is easy to see that our separation property does not
implies the Bandt-Graft condition for general subsystems.

We prove the dimension formula for sub-self-similar sets and some complementary
results. The principal result was proved by Falconer [133] but we give a different proof here.
We contain original results and examples. We characterize the weak separation property and
the growth dimension of K through a subsystem W. We propose a generalized weak
separation property and give an example of a fractal set that satisfies the generalized property
but not the weak separation property. The existence of such fractal set was questioned in
Zerner [136]. We study subsystems for which H5¢(K;) > 0. For G = I this implies
separation but we show that this is not the case for general subsystems. The principal result
characterizes the subsets of K; with positive measure where the separation property fails.
We show a fractal set where we can find such a subset explicitly.

Let G a subsystem, A © X a compact setand k,s > 0, we will denote
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WEGK
e = D IK,P
weGk
K, ,NA=D
Taking into account the bounded distortion and the shift invariance of G is easy to see that
Grem = Y. K0S < MECECEp, (82)
nﬂ.EGk"'m
Inl=k,|A[=m .
Thus log(c¢ ) is a subadditive sequence, the limit p;(s) = Ilim - log(cg ) exists and
M{® e*Pe(s) < ¢, (83)

We know that p. (s) is a continuous decreasing function of s and there exists a unique s; =

0 such that p;(s;) = 0 which is the similarity dimension of G. The following conditions
are trivial consequences of the definition, see [133].

Proposition (2.3.1)[129]: Let s, the similarity dimension of G, then

S = inf{s 20: 22, cgp < o} = sup{s =0: 2, ciy = o},
Sg = inf{sZO:%LTocg,k =0} = sup {s 20:111_{20 Cox =00}

It is not true, in general, that c¢ .., = Cc¢ .c¢ ., for some constant € > 0. However, for

G = I,itiseasy toseethat ¢g ., = Myciycipy, and

M7S ekP1S) < ¢f < MyS ekP1(s), (84)
We remark that if H,G are subsystems, H € G S I, then ¢ < cix < ¢ip Pu(s) <
pe(s) < pi(s), forallk,s > 0,andsy < s; < sj.

The following theorem relates dimK,; with s;. The first part is standard whereas the second
part was proved in [133] for similitudes. Falconer’s proof extends to the bounded distortion
case but we offer a different proof here to keep this work self contained and because it
contains techniques that we will use repeatedly.

Theorem (2.3.2)[129]: Let G a subsystem, then dim K; < s;. If , in addition, G is
separated then dim K, = s; and H¢(K;) > 0.

Proof. Let t > s, then p;(t) < 0. For large k we have %log ctr <—€<0andci, <

e ®€ < 1. This implies that the t-dimensional Hausdorff measure of K; is finite,
HY'(K;) < oo, forall t > s¢, and thus dim K; < s.

Assume now that G is separated, we prove that s; < dim K;. Ifdim K; > s, thereis
nothing to prove, since we have s; < dim K; < s; < s;.

Suppose dim K, < s; and let t be such that

dim K; <t<s;. (85)

We want to prove that there is B > 0 such that ¢, < B forall k. Then p;(t) < 0 which
implies s; < t and thus, since this is true for all ¢ satisfying (85), we have s; < dim K.

By (85) H!(K;) = 0 thus, forall e > 0 and taking into account that K is compact, there

exists a finite cover K; cU U; such that Z|Uj|t <e.Wesete < Mt M~1, where M is the

separation constant, and let [, suchthatré{’ax |K| < |U;|forall j. We use induction to prove
that
ct < Mgtelori®, (86)
for all k.
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For k < [, we have that
¢t < ¢l < MytekPi® < Mgt eloP1®),
by (84) and since p;(t) > 0 by (85). Now, suppose [ > [, and that (86) is truefor all k < [,

we evaluate
U= ) IRl

weG!
Kwnt:t@

----------

r K| < rlo |K| < |Uj|, then w has an initial word n, w = nA, suchthatn € G(U;).

max

Thus
t t
ce,(Up) < z z K| < z Z | Kyal
neG(U;) nAeG! neG(U;) naegi-inl
< Mj z |Kn|tcé’l_|n|SMO‘telOpl(t)Mf 2 K|,
nec(U;) neG(Uj)

by the inductive hypothesis,
< Mgt eloPi® Mt M|U,|,
since |K,| < |U;| and ¥ (G(U;)) < M by the separation property. Thus, since {U;} is a
finite cover of K,
cé, sz c& (U)) < Mo‘telopl(t)Mlth |Uj|t < M;t eloPrOMEiMe
J J
< Myt elopi(®)
Since Y}; |Uj|t < e < M7t M. This complete the proof of (86) and hence dim K, =
sq. Now, to prove that H°¢(K;) > 0, we simply remark that the separation property
implies the conditions of Falconer ([138]) for K.

Recurrent sets and graph-directed sets [139],[140] are standard generalizations of IFS that
corresponds to particular types of subsystems [133]. We consider the following definition.
Let R < I™ and let [I|R] be the subset of all successions w = w,w, - € I with the
restriction that w;,;w;;2,...,w;+, € R for all i. It is easy to see that [I|R] is in fact a
subsystem of I and we say that [I|R] is arecurrent subsystem defined by therestriction R.
The sub-self-similar set of Fig. 1 for example correspond to a recurrent subsystem for the
restriction R = [? — {12}.

We associate [I|R] with a directed graph. Let [I|R]™"! be the vertex set, and we draw an
edge from A to n ifand only if An € [I|R]".If thisdirected graph is strongly connected (i.e.
every two vertices can be connected through a directed path) we say that [I|R] is aconnected
recurrent subsystem. The classical theory of IFS extends to connected recurrent subsystems
and separation properties were studied in that case [141].

If G is a subsystem we consider the recurrent sub-systems [I|Gk]. It is clear that [I|G*] 2

[I|G**1] 2 G forallkand G = N}, [I|G¥] by compactness . MoreoversmGk] tends to

S as we would expect.
Proposition (2.3.3)[129]: Ilim S[I|G"] = S¢.
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Proof. It is clear that S[I|G"] IS a non-increasing sequence S[I|G"] > S[I|Gk+1] > s, then

lim S[I|Gk] =t > s;. Lets > sg, then

k— oo
m
s s(m-1) s
Pigppm = (“[ucklzc)
= M7S (Mjcs,)",
by (82) and taking into account that [I|G,]* = G,. Proposition (2.3.1) implies that
Mfcf, <1 fork great enough, then c[SI| G ]em — 0 when m —oo which implies t <

S[1|Gk] < sandthust = sg.

In some cases, we need to approximate G through a family of systems which are not
necessarily subsystems of I. Let {J1} a family offinite subsets /1 < G* indexed by a positive
real orinteger parameter h. We say that {Ji} approaches G if for each h there are positive
integer numbers k,(h) and k, (h) such that: ko(h) < | A| < ky(h) forall 1 € Ji; ko(h) —
o whenh — oo and, forall w € G*:(h), there exists at leastone 1 € Jj
such that w = An.

Each J; is in fact an alphabet for a system J,, which is not a subsystem of I according to
our definition. However, we have the following result which relates the similarity
dimensions of I and J,.

Proposition (2.3.4)[129]: Let {J+} a family that approaches G, then s; < sy, forall h and
lim s, = sg.

h—oo

Proof. We show first that s; < s;,. For m € N, we remark that for each w € G*1(M™
there exists at least one ¢ € J; suchthat w = af with |f]| < k;(h), thus

S
Cé,kl(h)m SZ |KaB| ,
aB
where |[af]| = ki(h)m,a € J,and |B| < ki(h).Thenifa € J} itresultsthatm — 1 <
n < (ky(h)/ko(h))m. Let m' the integer part of (k;(h)/ko(h))m and M = max {cZ,
k < k,(h)}, then
(m')

S om < MEM z K|S < MSM z Con
a

n=m
If s>s;, then zg‘;’m ¢j,n = 0 when m — o by Proposition (2.3.1). Thus
lim cgp qym = Oforalls >s;, ands; < s;,. Now lets > s; and observe that

m-—oo -
m

Gam < ™I
A€J}
k1 (h) m
<Mz mr Y e,
n =ko(h)
By Proposition (2.3.1) Zfllz(:g(h) Cgn < Mg* forall hgreatenough, thenc;, ,m — 0when
m — oo and this implies that s;,, < s. Thus Aim S;, = Sg-
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We will relate the weak separation property (WSP) of Lau and Ngai [135], [136] with
the existence of a separate subsystem and propose a generalization for IFS of bounded
distortion. First, we make the following general observation whose proof is straightforward
from the subsystem definition.

Proposition (2.3.5)[129]: Suppose we have a succession of subsets G; € I%,G, € I3,...
such that, for all word w,w,,...,w, € G,, we have that w,,...,w, € G,_;. Then G =
{w € I: wywy,...,w, € Gy, for all n}isasubsystemof/and G"* < G,,.

Now, we introduce a total order on I* by setting A < w if [1|] < |w|, and the lexicographic
order if |A| = |w|. Let us define a subsystem W by

W, ={w € I": ¢, # ¢p; forall 1 < w},

and W ={w € I: wq,..., v, € Wy, for all n}. This is a subsystem by the preceding
proposition (we will sketch the argument in Theorem (2.3.7)), moreover it is easy to see that
and K, = K.

We recall now some definitions of Zerner [136]. In what follows we assume that the
¢;’s are similitudes and K is in general position, i.e. not contained in a hyperplane. For
a,b > 0and A4,U < R" let us define

F={¢,: v €I'}={¢,: w € W},

Fy ={¢y €F: 1y € (bt ,b]l}and

Foum ={d0 €Fau: ¢oM)NU *# 0}
Itis clear that there is a one to one correspondence between F and W*. Thegrowth dimension
B; of I is defined as the exponential growth rate of ¥ (F,) for b — 0. In our notation,

consider the family {J}} where J} ={w € W*:r, € (%rmin ,%]} for h > 0, then F% =
{pp:w € Ji}and B, = Aim sy, ([136]). Settinga > 0and M < R™ non-empty, we say
that I satisfy WSP if and only if } (Fa, U, M) is bounded for all U < R™ ([136]). In that
case dim K = f;. With respect to the subsystem W, we have the following result.
Theorem (2.3.6)[129]: 5, = sy, and I satisfy WSP if and only if W is separated. In that
case dim K = sy, and HSY(K) > 0.

Proof. First we observe that {J;} is a family thatapproaches W, then g, = Aim S;, = Sw

by Proposition (2.3.4). Now, we set a =—

TR and M = K, then by the one to one

correspondence between F and W,

b (Foum) =t {w € W*: myin [U| < |Ky| < |U|; Ky NU # 0}, (87)
since |K,| = r,|K| for similitudes. We denote by W, the right-hand set of (87), and
compare it with W(U). Let o € W(U), then |U| < |K,, . w,_,| @Nd Tin [U] < [K,|. I
Tmin |U| < |K,| then w € WU, on the other hand ifry;, |U| < |K,|, then 1y, U] <
1Koy, ] = lUlANd @y, ..., w1 € Wy. Con-verselyletw € Wy. If [K,| < |U]then
thereisa h < ksuchthat [K, .| < [Ul <|Ky, o0, l80d o,...,0, € W(U), 0n
the other hand if [K,, | = |U|, then |K, ;| < |U| and wj € W(U) forsomej € I.

Thus } (Fa,U,M) is bounded if and only if # (W (U)) is bounded, i.e. if and only if W is
separated. The last assertion follows directly from Theorem (2.3.2) since K;, = K.
Now, we move to the bounded distortion case to generalize WSP. The subsystem W was
constructed by eliminating words w such that K, = K, for some word A < w. We propose
a direct generalization by eliminating words w such that K,, © K1) U---U K} for some
words A(1),...,A(k) < w. Specifically, we define: GW,, = {w € I": K, € K;(1) U
U Kl(k);
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forall A(1),...,A(k) < w},
and GW ={w € I: wq,...,w, € GW,, for alln}.

Theorem (2.3.7). GW is a subsystem with K, = K. If GW is separated then dim K =
Sew and H%w (K) > 0.
Proof. We will prove that GW is a subsystem by using Proposition (2.3.5). That K,y = K
is clear from the definition and then the theorem follows from Theorem (2.3.2).
Let w,w,,...,w, € GW, and suppose that w,,...,w, /€ GW,_,, then there are
A(D),...,A(k) < w,,...,w, such that

Ky, © Kapy VU K-
We then remark that w, w,, ..., w, > w,;A(i) and

C ¢o, (Kay YU Kye)
C ¢o, (Ka)) UV ¢y (Kyi))
= Ko,a) YU Ko aw,
which is a contradiction. Thus w,,...,w, € GW, _; and GW is a subsystem.
If GW is separated we say that I satisfy GWSP. The next example shows a system which
satisfy GWSP but do not satisfy WSP.
Example (2.3.8)[129]: Let X = [0,1] X [0,1] the unit squarein R? and let I1 =

{1,2,3,4,5,6,7}. We define seven transformations on X: ¢;(x) = %x + p; with p; =

2 1 2 2 2 1 2
(0,2.p2 =G5 p3 =G5 P = (0,0),ps =(5,0),p6 =(5,0)andp; = (4,0),
where 0 < 6 < § Is an irrational number. In Fig. 2 we schematize these transformations and

the third iter-ate of the IFS, Uges ¢, (X), Which approximates K and shows the
overlapping effect. It is easy to see that K = [0,1] X C, where C is the usual Cantor set.
Now we consider the subsystems W and GW. First we observe that if o = w4,...,w; €
I*, then
1 k
b)) =(3) ¥ +(@ + a:8.a,),

Where q4, g5, q5 are rational numbers, 0 < ¢g;,93 <land 0< g, < % Moreover g, =
e n—1)en
10+ (3% 4t ()" where
_ Difwi #7
& =Yifwi=7"

Taking this into account we can see that ¢, = ¢, ifandonly if o = Aforall w,A € I".
Indeed, if ¢, = ¢,,then w; = 7 ifand only if A; = 7 and then it must be that w = A.
Therefore W = [ which is not separated, that is I does not satisfy WSP.

On the other hand GW;, = GW?! = {1,2,3,4,5,6} since K, € K, U Kz, then GW =
{1,2,3,4,5,6}* which is separated (satisfy OSC) and I satisfy GWSP.

logé log7

We remark that K is a plane self-similar set satisfying dim K = sgy, = l0g5 < g3

sw <dim X = 2, whose existence was questioned in Zerner [136].
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Fig. (2)[129]: A system satisfying GWSP but not WSP. Left side: the seven transformations
which define the IFS over the unit square. Right side: the third iterate of the IFS.
We study subsystems with H%¢(K;) > 0. We know that H3¢ (K;) > 0 implies that

G is separated if G = I (see [128] and [142] for similitudes and [137] for conformal
systems), and it is also true if G is a connected recurrent subsystem

To analyze the general case we must introduce some notation. Let Z < K, the set of
points where the separation property fails: Z = {z € K; : for all N > 0 there exists a
closed set A such that z € A and  (G(A)) = N}. It is easy to see that G is separated if
andonly if Z = @. For w € G let us define:

b(w,n) = lim inf E |K;|%¢,
m—0oo
AeGm
W1.WpAEGTTM

b(w) = inf b(w,n)
n
and

b(w,n) = lim sup,,_e Z |K; |6,

AeG™
W1..WpAEGTTM

b(w) = sup b(w,n)

We remark that 0 < b(w) < b(w,n) < b(w,n) < b(w) < +oo. The functions b(w)
and b(w) are not continuous in general, but we have the following
Proposition (2.3.9)[129]: Letw € G and e > 0.
(i) Thereis 6 > O such that b(n) < b(w) + e foralln € G such that (w,n) <6 .
(ii) If b(w) > N, thenthereis § suchthatb(n) = N —eforally € G suchthat (w,n) <
J .
Proof. To prove (i), let ny such that b(w,ny) < b(w) + ¢, then if d(w,n) < 1/£™ we
have that wy,...,w,, = M,...,My, and
b(m) = b(m,ny) = b(w,ng) < b(w) te.
The proof of (i) follows in a similar way.
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Next, we will characterize subsets of Z with null and positive s;-Hausdorff measure
using these functions. First we will see, in the following example, that is not true in general
that H°¢(K;) > 0 implies H°¢(Z) = 0.

Example (2.3.10)[129]: We consider the system I = {1, 2,3,4} and the restrictions R, =
{11,12,21,22}, R, ={33,34,43,44} and R = R1 U R2 U {13,14,23,24}. Let G1 =
[I|R1], G2 =[I|R2] and G = [ I|R] be the corresponding recurrent subsys-tems; G1 and
G2 are connected whereas G is not.

The associated directed graphs are drawn in Fig. 3.

G1 G2

Fig. (3)[129]: Directed graphs associated.
We assume that s;, < s;; and prove that s; = s;,. In fact, s;; < s; since G; € G.

On the other hand
k
Céckl — 2 |Kw|sc1 +z 2 |Kaﬁ|561
h=1

weG2k aeG1l
p €G2k-h
k
SG1 SG1 SG1 .SG1
< Copp T M z C61,n€62k—n" (88)
h=1

Since G, and G, are connected recurrent subsystems we know that there exist D > 0 such

that céf}c < D fori = 1,2 and all k. Moreover, taking into account that s;, < s;,, we

can choose D such that c;5 < D forall k (indeed, if s;, < sgqthency Sl — Owhenk —
). Then

oo < D + kM® D* < k(D + M;°' D*) and

lim L logc St <0
koo k G2,k — ™7
which implies s; < s¢;.
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(b)

Fig. (4)[129]: Non-separated subsystems of Example (2.3.10). (a) corresponds to the case
Se2 = Sg1 = Sg,and (b) to the case s, < sg; = sg. Leftside: the four transformations
which define the IFS applied to the unit square. Right side: approximations of K,; in gray,
and K, where the separation property fails, in black.

Now, we will consider two particular examples in R? where H56(Z) > 0 and we will study

the values of b and b. Let R : R? — R? the rotation of angle % around the origin and let

b ERO<a<b<V22.
Let
$1(x) = rnR(x),
¢2(x) = r2R(x — (1,0)) + (1,0),
$3(x) = r3R(x),
¢4(x) = nR(x — (1,0)) + (1,0).

For the first example we setr;, =, = bandr, = 13 = a, then sg; = s¢g1 = s¢.
Besides we know that G1 is separated, then H°¢(K;;) > 0. On the other hand G is not
separated: it is easy to see that 0 € Z and then, since for all § € G,a € G1 we have that
af € G, itresults that K;; © Z.Thus H%¢(Z) > 0. In Fig. 4a we show approximations
of K in gray, and K, in black.

We can find a lower bound for c;‘z;,kin a similar way to (88). Then, taking into account that
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o
D L

(b)

Fig. 4. Non-separated subsystems of Example (2.3.10). (a) corresponds to the case s;, =
S¢1 = Sg, and (b) to the case s;, < sy = S¢. Left side: the four transformations which
define the IFS applied to the unit square. Right side: approximations of KG in gray, and
KG1, where the separation property fails, in black.
Sec, = Sg1 = Sg, we have that there is a constant D’ such that

% = D'+ kMy°D".
Thus, if w € Gl,E(w, n) = lim supy_ e cé,Gk = +oo for all n. Therefore we have that
b(w) =+4ooforallw € Gy, itistosayK;; € lN({w € G : b(w) = +o0}).
For the second example we setr;, = bandr, = 13 = 1, = a, then sg, <sg; = Sg.
Again G1 is separated, H°¢(K;;) > 0 and K;; € Z, see Fig.4b. Now, for w €
G2,b(w,n) = lim inf,_,, C;g,k =0 for all n. Then b(w) = 0 for all w € G2 and,
moreover, b(w) = 0 for all w = af such that § € G2. But every successionn € G may
beapproximated by w's such that w = af,f € G2, thenK;; € K; =
IN({w € G: b(w) =0}).
In these examples we found a subset K’ of Z with positive sG-Hausdorff measure and such
that K’ is contained in the closure of a subset where b(w) is arbitrarily small or b(w) is
arbitrarily large. The next Theorem shows that such subset always exist when H%¢(Z) > 0.

The proof follows from two lemmas. Let us define
B'(e) ={w €G: < b(w),b(w) <1/€}; and
B(e) = {w € B'(e):d(ll(w),K; —I(B'(¢))) = €},
where d corresponds to the euclidean distance.
Lemma (2.3.11)[129]: Letn € G*, if there exist § € G suchthat w = nB € B’'(e€), then
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€/2 < Z |K3|°6 < 2/,
Aegk—Inl
nleGgk
for k large enough. In particular, the inequalities follow if n is such that K, N K; <
I1(B'(¢€)).
Proof. From the B(€) definition we have that
liminf Y 1KGI% = b Inl) 2 b) 2 €
Aegk—Inl
nAeGk
limsupe ) Gl = B(w,n)) < B(w) < 1/

Aegk—Inl

nAeGck
and the lemma results from limit properties.
Lemma (2.3.12)[129]: H°¢(Z nII(B(e)) = O forall e > 0.
Proof. We fix € > 0 and suppose Z N II1(B(e)) # @. For N > 0 let us denote by Ay the
family of sets A such that: 0 < |A| <€/3,ANZ NnII(B(e)) = @and & (G(A)) = N. It
is clear that Ay is a Vitali family for Z N I[1(B(€)). Now, for A € Ay we define
Uy = Upeca) Ky 0 Kg, then {Uy}seq, is also a Vitali family for Z n 11(B(€)). By the
Vitali covering theorem ([74]), we have for all e, > 0 that there exists a disjoint finite family
{UAj} such that

HS6(Z N 1(B(€)) < z U, +e (89)

J
Now, we remark that, for k large enough such that |K,,, | < |A;|foralljandall w €

..... Wr—-1
G, we have
SG —_
e,k (UAJ-) = z |Ke %6
weGk
KwﬂUAj#-'@

> > ) |Kyl”

neG(A;) nieGk

=M ) K| ( D umsa\.
neG(4;) \Aeak—lnl /
nleGgk
d(K,,Ks —I(B'(¢€))) = €/3, (90)
foralln € G(4;),since K, NA; # @,A; n1(B(e)) = @ and |Ky| < |4;] < €/3. Thus

K, N K; S I1(B’(¢€)) and using the previous lemma we find that

M3Ge s
e (Us)) 2 : z K| = ¢ Z |u,|* = en|u,
n€G(4;) nEG(4))

We observe that

SG

)
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Fig. (5)[129]: A sub-self-similar set corresponding to a connected, not recurrent, subsystem.

MSG e
where C = (02)% Since |Ky| = riin MolAj| = Tiin M0(|UA |/3) and ¥ (G(4))) =
N. Therefore,

Z |UAJ ’

J ]
for k large enough since Uy, are disjoint sets and Ua, < II(B(€/3)) which follows from
(90).
Now, let m such that |K,| < e¢/3 foralln € G™. If K, nII(B(e/3)) # @ then K, N
K, c II(B'(e/3)) and we have that

a(n(p@))swe Y w3 e

<2 < 6
<oy Q. oila) S g s (B(E/3)), (o)

neem AeGk—m
Ky (5(5)) =0
Ml Y K[,

negm
Knnn<B(§))=¢
for k large enough. Combining this inequality with (89) and (91) we obtain

C
HS6(Z n1I(B(e)) < vt e
for some constant ¢’ > 0 which depends on e but is independent of N and €,. Thus
H%¢(Z nII(B(e)) = 0.
Theorem (2.3.13)[129]: Consider the subset
Z =1 (Neso ({0 € G:b(w) < U{w € G:b(w) = 1/e})),

then HS6(Z —Z") = 0.
Proof. The previous lemma implies that
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HS6 (z n U H(B(e))) ~0.

€>0

Then we only need to show that K; — U.so II(B(€)) = Z'. Let x € K;,x = II(w)
such that x/ € U.so I1(B(€)), then either w ¢ B'(¢) for all € or w € II(B'(¢)) but

d (x, K, — H(B’(e))) < eforall e < g In the first case, either b(w) = 0 or b(w) = ©

and then x € Z'. In the second case, let § = d(x,K; — II(B'(€))). If 0 < § < € then
w € B(5), since w € B'(e) € B'(6) and d(x,K;—IH(B'(8)) = d(x,K; —
I1(B'(e)) = &, whichisacontradiction. Thus mustbe § = 0foralle < €, whichimplies
x € 7.

At last, we consider connected subsystems, which generalize connected recurrent
subsystems. We say that G is a connected subsystem if there exists T > 0 such that, for all

a, B € G*there isa/lﬁ € G*, such that

28| < T and ad’p € G". (92)
For an example, consider again the four transformations of Fig. 1: I* = {1,2,3,4}, and
T,(x) =2x + pyWith p; = (0,2), P, = (,5), ps = (0,0),p = (0,2). Let] c I'
be an infinite subset of words /] = {11,141,1441,14441,...} and let G the subsystem
It is clear that G is not a recurrent subsystem becadge J is infinite, but it is connected since,
for example, a2 € G* forall o, € G* (see Fig. 5).

For a subsystem G and @ € G* we will denote c(@)¢ = X gk |Kal®. Now, we can

aAeG*
state the following result whose proof uses standard techniques and inequalities like (82)

and (83).

Proposition (2.3.14)[129]: If G is a connected subsystem then there are constants C,, C;
such that

CrePe) < c(a)s, < CiSekPe®),

foralla € G”.

Theorem (2.3.15)[129]: Let G a connected subsystem. If H%(K;) > 0 then G is
separated.

Proof. The previous proposition implies that €, "¢ < c(a) % < C,°° forall a € G”.

Therefore C;°¢ < b(w) < b(w) < C,°forallw € G,Z' = @and H%(Z) = 0 from
Theorem(2.3.13). We want to prove that Z = @. Suppose Z # @,letx € Zandforall N >
0 let Ay be a closed set such that x € Ay and 4 (G(Ay)) = N.Leta € G*,A={1 €
G*:|A| <T}and M =} (A). As G is connected, we have that for each n € G(Ay) there
isa A € A such that adn € G*. If N > M then there exists a A € A such that 4 ({n €

G(Ay:aln € G*}) = N M, thus ¥ (G(¢pasr(Ay)) = % We can see in consequence that

foralla € G*thereisaw € Gsuchthatz = IlI(aw) € Z,therefore mustbe H3¢(Z) >
0 which is a contradiction. Then Z = @ and G is separated.

We have presented thenotion of separate subsystem of bounded distortion and shown
how it can help to characterize separation properties in a general. We think it could be useful
to address other related problems for IFS with overlaps. Besides, we study the problem of
when a subsystem with positive Hausdorff measure in its similarity dimension is separated.
Taking into account Example (2.3.10) and Theorems (2.3.13) and (2.3.15) it is not true in
general but it is true for connected subsystems. Connected subsystems generalize recurrent
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connected subsystem but we don’t know if it is possible to relax the connectivity condition
(92) to obtain a more general family of IFS for which positive Hausdorff measure in its
similarity dimension implies separation.
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Chapter 3
Cantorvals with Topological and Measure Properties

We show that all known examples of x’s with E(x) being Cantorvals. We obtain the
results that are applied to studying partial sumsets E (x) = {¥5_o xn&n ¢ (€n)new € {0, 1}}
of some (multigeometric) sequences x = (X,,)nen- We show that the subsum set of an
absolutely summable sequence is one of the following: a finite union of (nontrivial) compact
intervals, a Cantor set, or a “symmetric Cantorval,” a hybrid Cantor-like set with both
trivial and nontrivial components.
Section (3.1): Multigeometric Sequences

Suppose that x = (x (0),x (1),x (2),...) is an absolutely summable sequence with
infinitely many nonzero terms (i.e. x € l;\cyo) and let

(00]

E (x) = 2 e x(n):¢, € {0,1}

n=1
denote the set of all subsums of the series }.»—; x(n), called the achievement set of x. It is

easily seen that for x = (E 2 2 ) the set E(x) is equal to the Cantor tenary set C, and

3 ) 3_2 ) 3_3 ) wan
forx = Gz%z%) we have E(x) = [0, 1].
Achievement sets have been consider by many, some results have been proved several times
(see, for example, [150] and [148]) and even conjectures formulated, despite the fact that
suitable counterexamples had been earlier published (compare [147], [151] and [156]).
Recently, an interesting survey of properties of achievement sets for various (even
divergent) sequences was presented by Rafe Jones in [149]. In particular, the example from
[149] (due to Velleman and Jones), which will be described in Theorem (3.1.2) and Example
(3.1.5).

The following properties of sets E(x) were described in 1914 by S. Kakeya in [150]:

l. E(x) is a compact perfect set.

Il. If |[x(n)| > Y;>, |x(i)| for nsufficiently large, then E(x) is homeomorphic to the
Cantor set C.

1. If [x(n)| > |x(i)| for n sufficiently large, then E(x) is a finite union of closed
intervals. Moreover, if [x(n)| > |x(n + 1)| for almost all n and E(x) is a finite
union of closed intervals, then |x(n)| < X;>» |x(i)] for n sufficiently large.

In the same Kakeya formulated the hypothesis that, for any x € [;\cyo, the set E(x) is
homeomorphic to C or is a finite union of closed intervals. In 1980 it was shown that the
Kakeya conjecture is false [157]. We recall a number of examples in the literature which
demonstrate the falseness of the conjecture. A. D. Weinstein and B. E. Shapiro in [157] gave
an example of a sequence awith a(n) > a(n + 1) > 0 forall n,and a(n) > Y;5,, a(i) for
infinitely many n (hence E(a) is not a finite union of intervals), but having the property that
the set E(a) contains an interval. The sequence a is defined by the formulas:
a(bn+1)=0,24-10""a(5n+2)=0,21-10",a(5n+3) =0,18-10™",a(5n +
4)=10,15-10",a(5n+5) =0,12-10". So,
3-83:73:63-53:-43-8

‘= ( 10 10 10 ’ 10 ’ 10 ’100"")'

However, they did not justify why the interior of E(a) is non-empty.
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Independently, C. Ferens ([146]) constructed a sequence b such that E(b) Is not a finite union

of intervals but contains an interval, putting b(51 — m) = (m + 3)—form =0,1,2,3,4

andl =1, 2,.... Therefore

b—(716151413172 )
N 277 27’7 27 27’7 270 272 )

J. A. Guthrie and J. E. Nymann gave a simpler example of a sequence which achievement
set is not a finite union of closed intervals and is not homeomorphic to the Cantor set,
defining a sequence by formulas:
3 2
c(2n—-1) = yE and c¢(2n) = Y forn=1,2,..

In [147], [154] and [155] J. E. Nymann with J. A. Guthrie and R. A. S"aenz characterized
the topological structure of the set of subsums of infinite series in the following manner:
Theorem (3.1.1)[143]: For any x € [;\cqp, the set E(x) is one of the following types:

(i) afinite union of closed intervals;

(i) homeomorphic to the Cantor set;

(ii) homeomorphic to the set E(c) (of subsums of the sequence (%%1—36%6% e )).
Note, that the set E(c) is homeomorphicto C U U=y S2,-1, Where Sn denotes the union of
the 2™~1 open middle thirds which are removed from [0, 1] at the n-th step in the
construction of the Cantor ternary set C. Such sets are called Cantorvals (to emphasize their
similarity to unions of intervals and to the Cantor set simultaneously). Formally, a Cantorval
(an M-Cantorval - compare [152]) is a non-empty compact subset S of the real line such
that S is the closure of its interior, and both endpoints of any component with non-empty
interior are accumulation points of one-point components of S.

Theorem (3.1.1) states that the space [, can be decomposed into four sets ¢y, C, I and M C,
where | consists of sequences x with E(x) equal to a finite union of intervals, C consists of
sequences x with E(x) homeomorphic to the Cantor set, and M'C consists of sequences x
with E(x) being Cantorvals. Some algebraic properties and topological (Borel) classification
of these subsets of [, have been recently discussed in [144].
Finally, in Jones’ [149] there is presented a sequence

32223 19 2 19 2 19 2 19 3 /19\°

5’5’5’5’5 109’5 109’5 109’5 109’5 (109)’
In [149], R. Jones shows a continuum of sequences generating Cantorvals, indexed by a
parameter g, by proving that, for any positive number q with

1 < ., .2
5<), 4'<3
. 1 2 n=t
(i.e. c<q< H) the sequence

(322232223 )

isnotin C nor I, so it belongs to M'C. Based on Jones’ idea, we will describe one-parameter
families of sequences which contain (in particular) a, b, d and many others.

Forany q € (0, %) we will use the symbol (k,, k,, ..., k,,; q) to denote the sequence

(ki koo ko k1, koq, ... kg, k1%, k42, ... kyq?,...). Such sequences we will call
multigeometric.
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Theorem (3.1.2)[143]: Let ky > k, >---> k,,, be positive integers and = Y1, k;. Assume
that there exist positive integers n, and n such that each of numbers ny,no +1,...,ny + n
can be obtained by summing up the numbers kq, k,, ..., k,, (i.e. ng +j = X%, elk with

g €{0,1},j=1,...,n).1fqg > ﬁ then E(k4,..., ky; @) has a nonempty interior. If g <

..., k., ;@) is not a finite union of intervals. Consequently, if

1 cu< k.,
n+1S15Kk+ ko,
then E(k4,..., k,,; q) is a Cantorval.
Proof. Denote x_q = (ky, ..., kp; ). We start with showing that, for g < 2 E(xq) is

not a finite union of closed intervals. Observe first, that the sequence x,, is non- mcreasmg
Indeed, from the inequality < Kk% it follows that gK + qk,, < k., and

qK
km>m>q1(>q1{1.

Moreover, using the same inequality, we obtain

z Xq(l)—KZ q/ = K—<k

i>m
Hence, for any n € N, we have xq(nm) > Yisnm xq(l) and, according to the second
sentence of the Kakeya property I, E (xq) Is not a finite union of closed intervals.

Suppose now that g > — and consider the sequence

y=(@,...,1,q,...,9,9%...,q%...)
with n repetitions of each term. Note that, for any k € N, the sum

IS, by inequality g > — blgger than or equal to y(nk) = q*~1. Therefore, forany i € N

YD < y()

j>i
and again from the property 11, we obtain that E(y) has non-empty interior. To end the
proof, we show that

oo}

noz q’ + E(y) € E(x,).
j=0

Ift € ng Xj2, g’ + E(y), then there exist p; € {0,1,...,n},i = 0,1,2,... such that

t =My +nyq+...) + (po +p1q+...).
Therefore

t=(my+po)+ My +plg+--
belongs to E(x,).
Using the latter theorem, we can easily check that sequences a, b and d generate

Cantorvals, because they belong to appropriate one-parameter families, indexed by g.
Example (3.1.3)[143]: The Weinstein-Shapiro sequence ([157]).

83



It is clear that if E(x) is a Cantorval, a # 0 and ax = (ax(1), ax(2),...), then E(ox) is a
Cantorval too. To simplify a notation we multiply the sequence a by ? and consider the

family of sequences
ag, =(8,7,6,5,4;q)

forqg € (0%) Summing up 8, 7, 6, 5 and 4, we can get any natural number between n, = 4

and n + ny = 26. Therefore, by Theorem (3.1.2), for any q satisfying inequalities

1 < 4
2359%3y 1
the sequence a, generates a Cantorval. Obviously, the number — used in [157] belongs to

213 ) It is not difficult to check (using Ill) that a, € I for g > —

Example (3.1.4)[143]: The Ferens sequence ([146]).
For the family of sequences
by, =(7,6,5,4,3;q)

Kisequal to 25, n, = 3andn = 19. Hence, forany q € [20 28) b, generates a Cantorval.
In particular, the sequence (7, 6,5, 4,3,;), obtained from the Ferens sequence by

multiplication by a constant, generates a Cantorval. Note that b, € I, for g > —

Example (3.1.5)[143]: The Jones-Velleman sequence ([149]).
Applying Theorem (3.1.2) to the sequence
d; =(3,2,2,2;q)

we obtain K = 9,n, = 2andn = 5,so forany q € E%)E(dq) is a Cantorval. Moreover

dg €1 for>—
We can also consider analogous sequences for more than three 2’s. In fact, any sequence

Xq = (3,2,...,2; q)
k—times

with g € [ generates a Cantorval.

2k’ 2k+ 5)
Note that for k=1 and k=2 the argument of Theorem (3.1.2) breaks down, because i >

T It means, in particular, that Theorem (3.1.2) does not apply to the Guthrie and Nymann

example ¢ = (3, Z’Z)'

However, we can apply Theorem (3.1.2) to “shortly defined” sequences. Indeed, for the
sequence (4,3, 2; gq), numbers K, n, and n are the same as for dg.

It is not difficult to check that, to keep the interval [ ) nonempty, m should be

+1 K+k
greater than 2.

There is a natural question if Theorem (3.1.2) precisely describes the set of g with
(ky,..., km; q) € MC. The upper bounds, for all mentioned examples are exact, because

(ky,...,km;q) €1, forqg > Kk% However, this is not true for all sequences satisfying the

assumptions of Theorem (3.1.2).
Example (3.1.6)[143]: For the sequence h, = (10,9,8,7,6,5,2;q), wehave K = 47,n, =

5 and n = 37. Therefore the interval % K'fr’; ) = 3—18 i) IS nonempty.

84




However, for h = (10,9,8,7,6, 5,2;&) and any n €N, we have };s;,-1 h(i) =

2 n—-1 1.4.7 2 n—-1 ; 2 1
(—) 2+ =4 (—) < h(7n —1). It means that h & I. Since — > —, we have
49 49 49 38

h & Candsoh € MC.

It is not difficult to check, using Il again, that h, & I if and only if g < 5—30

Observe, that E (ky, ..., km; q) € Tiey Cq where C; = E((1; q))and X<, C, denotes the
algebraic sum. In [145] it is proved that, if g < ﬁ then X, Cq is homeomorphic to the

Cantor set. The following theorem improves this result.
Theorem (3.1.7)[143]: Let x = (kq4,..., k,,; q) be a multigeometric sequence and
m

z::{E ek ()T, € {0,131,
If g <1/card (2) then E(x) is a Cl:a;]tor set.
Proof. Clearly, E(x) = X + qE (x). Suppose that g < 1/card (X) and the set E(X) has a
nonempty interior. Therefore E(x) has positive Lebesgue measure A(E (x)) and

A(E(x)) <card (2)-q -A(E(x)) < A(E(x))
which gives a contradiction.
Using the latter theorem to the Weinstein-Shapiro sequence a, = (8,7, 6,5,4; q) (compare

Example (3.1.3)) we obtain X of cardinality 25. It means that E (aq) € C forq € (0,2—15).

We do not know what is the type of E(a, ) for q € [25 —

Analogously, E(b,) € C for q € ( ) (compare Example (3.1.4)), E(d,) € C for q €

(0%) (compare Example (3.1.5)) and E(hq) € C for q e( ) (compare Example

(3.1.6)).
We have just mentioned that Theorem (3.1.2) does not work for sequences (3,2; q)

and (3,2,2;q). However, Guthrie and Nymann have proved that ¢ = (3,2;%) € MC.

Following their method we will find g < ﬁ such that

(3,2,...,2;q)€]\/[6.

K—times

Theorem (3.1.8)[143]: For any sequence of the form

1
=(3,2...,2,——)
Tk < AL 2k+2>

. k—times
the set E'(x;,) is a Cantorval.

Proof. We know that x; & I, because m < m (compare with Example (3.1.5)). It

remains to prove that E (x;) contains an interval.
For a sake of clarity, we will prove a thesis for k = 2, i.e. we will show that E (x,) D [3, 4],
which means that any point

with g; = {0,..., 5} belongs to E(x,).
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Since E (x,) is closed and the set {3 + Xt
in [3, 4], itis enough to show that

.5 €{0,...,5}i<nn= 0,1,...}isdense

3+

i
Q| o
m
Iy
&
=
N
-/

foranyn =0,1,...,¢ =0,...,5.
Forn = 0, we have 3 € E(x,).

Suppose that any number of the form
n—12

' €
t = 3 + Z E (1)
i=1

belongs to E(x,). It means that there exist a;, b;, c; e_{O, 1} such that
n-1

, 3ai+2bi+2ci
pose Stttz

i=1
Let

=1
Ife, =0,2,3,4 or5, then
3a, + 2b, + 2c,

6Tl

t=t'+

for some t’ and suitable a,,, b,, and c,,.

Suppose that &, = 1. Hence

1 1 3+2+2 3+2+2
t=t'+—==1t'— =t +—-

6n 6n—1 + 6n - + 6n
If t' > 3 then t'’ satisfies (1) and the proof is complete. If t’ = 3 then
1 1 7 5 5 5 3+2+2
t=3+§:2+(1—6n_1>+a=2+(g+§+'“+6n_1)+ 61 EE(XZ).

To show that forafixedk > 2,anyn =20,1,...and¢; =0,...,2k + 1
n

g.
T QL
T L @k+2) (i)

1=

and hence [3,4] € E(x;), one can repeat the previous considerations, using the equality
=2 (1o ) S
(2k +2)" k +2)r1) " 2k +2)™

Note that, even for special sequences considered, it is very hard to distinguish sequences
belonging to C from sequences belonging to M'C. In particular, for any sequence of the form

xq=0,2,...,2;9),
where 2’s repeats itself k-times, x, € I if and only if g > zRZT and, by Theorem (3.1.7),

1
card(z)  2k+2’

xq ECforg <

1 1 2
0 +2 ak 2h+5

o

C MC : MC I

We have no idea what are the types of sets E(xq) forq € (Zkiz,i).
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Finally, go back to the Guthrie and Nymann sequence ¢ = (3,2;&) .Z. Nitecki, in [153],

proved that for g < %the sequence

Cq = (3' 2; Q)
belongs to C. The same conclusion follows easily from Theorem (3.1.7). It is not difficult
to check that x, € I if and only if g > 2.

-qus

1
0 T

i

C MC : T
. 1 2

We do not know what is the type of E(x,) for q € (Z'?)'

At last, let us consider one more example from [153] (due to Kenyon).

Example (3.1.9)[143]: The achievement set E(f) of the sequence f = (6,1;%) (in our

notation) is M -Cantorval. To prove it, Nitecki observes that 6 is equal to 2 mod 4 and each
element of Z, can be obtained by summing up the numbers 2 and 1 (compare the proof of
Theorem (3.1.8)). Then he makes use of the Baire category theorem. By our mind, this fact
can be explained in a much simpler way. Indeed,

—1<1221>—1(122321312 . )
f_z ;;4 _2 ) &y 41 41 161-'-'

Hence

1 1 1 1 1
E(f) =§E<12,3,2,31,21,) =§E(C)UE(E(C)+12)

and E(f) is of the same form as E(c). In general, it is easy to observe (in the same way as
above) that the sequences (kq, k5, ..., kny; q) and (q"1ky, q™k,,...,q"mk,,; q) for integers
ny,Ny,..., N, are in the same set among of C,I or MC. Observe, for instance, that

(2, 1; i) €land (3, 8; i) € M C. However, each element of Z, can be obtained by summing

up 2 and 1, but 2 can not be obtained by summing up 3 and 8.
Section (3.2): Some Self-Similar Sets

Suppose that x = (x,,)n=, IS an absolutely summable sequence with infinitely many
nonzero terms and let

(0]

E(x) = {Z EnXn : (En)n=1 € {0, 1}N
n=1

denote the set of all subsums of the series .-, €,x,,, called the achievement set (or a partial
sumset ) of x. The investigation of topological properties of achievement sets was initiated
almost one hundred years ago. In 1914 Soichi Kakeya [150] presented the following result:
Theorem (3.2.1)[158]: (Kakeya). For any sequence x € 1, \ ¢y
(i) E(x) is a perfect compact set.
(i) If |x,| > Xisn |x;| for almost all n, then E'(x) is homeomorphic to the ternary Cantor
set.
(iii) If |x,,| < X;>n |x;| for almost all n, then E(x) is a finite union of closed intervals. In
the case of non-increasing sequence x, the last inequality is also necessary for E(x) to be a
finite union of intervals.

Moreover, Kakeya conjectured that E (x) is either nowhere dense or a finite union of
intervals. Probably, the first counterexample to this conjecture was given by Weinstein and
Shapiro ([157]) and, independently, by Ferens ([146]). The simplest example was presented
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5+(—1)"

4_'".

by Guthrie and Nymann [147]: for the sequence c = ( ) , the set T = E(c)
n=1

contains an interval but is not a finite union of intervals. They formulated the following
theorem, finally proved in [155]:

Theorem (3.2.2)[158]: For any sequence x € [, \ cgo, E (x) is one of the following sets:

(i) a finite union of closed intervals;

(i) homeomorphic to the Cantor set;

(iii) homeomorphic to the set T .

Note, that the set T = E(c) is homeomorphic to C U Uj-; So,,—1 , Where S,, denotes
the union of the 2"~ open middle thirds which are remved from [0, 1] at the n-th step in
the construction of the Cantor ternary set C. Such sets are called Cantorvals (to emphasize
their similarity to unions of intervals and to the Cantor set simultaneously). Formally, a
Cantorval (an M-Cantorval, see [152]) is a non-empty compact subset S of the real line such
that S is the closure of its interior, and both endpoints of any non-degenerated component
are accumulation points of one-point components of S. A non-empty subset C of the real
line R will be called a Cantor set if it is compact, zero-dimensional, and has no isolated
points.

We observe that Theorem (3.2.2) says, that [; can be devided into 4 sets: c,, and the
sets connected with cases (i), (ii) and (iii). Some algebraic and topological properties of
these sets have been recently considered in [144].

We will describe sequences constructed by Weinstein and Shapiro, Ferens and Guthrie and
Nymann using the notion of multigeometric sequence. We call a sequence multigeometric
if it is of the form

(Kos K1y Koy Kogr Kagr s Kmgs Kogz Kigzs -+ King2s Kog3 « )
for some positive numbers k,,..., k,, and g € (0,1). We will denote such a sequence by
(ko, k1,-.., km; q). Keeping in mind that the type of E'(x) is the same as E (ax), for any a >
0, we can describe the Weinstein-Shapiro sequence as

1
— 4 —
a (8) 7) 6) 5) ) 10))

the Ferens sequence as b = (7, 6,5,4,3; %) and the Guthrie-Nymann sequence as ¢ =

(3.24)
Another interesting example of a sequence d with E(d) being Cantorval was presented by
R. Jones in ([149]). The sequence is of the form

d—(3222' 19)
- ;;;1109'

In fact, Jones constructed continuum many sequences generating Cantorvals, indexed by a
parameter g, by proving that, for any positive number g with

1_ i 02
52,7 %9
n=1
(i. e.% <q< %) the achievement set of the sequence

(3,2,2,2;q)
is a Cantorval.
The structure of the achievement sets E (x) for multigeometric sequences x was studied in
[143], which contains a necessary condition for the achivement set E(x) to be an interval
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and sufficient conditions for E (x) to contain an interval or have Lebesgue measure zero. In
the case of a Guthrie-Nymann-Jones sequence

xq=0,2,...,2;9),
of rank m (i.e., with m repeated 2’s), the set E(x,) is an interval if and only if ¢ > 2 2m +

5,E(xq) is a Cantor set of measure zero if g < ﬁ and E(x,) is a Cantorval if q €

1 1 1 .
{2m+2}u [%,st]. We reveal some structural properties of the sets E(xq) for q
1

, ) In particular, we shall show that for
2m+2 " 2m
almost all g in this interval the set E(x,) has positive Lebesgue measure and there is a
decreasing sequence (g,,) convergent to ﬁ for which E(an) Is a Cantor set of zero

Lebesgue measure. The above description of the structure of E(x,) can be presented as
follows:

belonging to the “misterious” interval (

Co MC AT MC T
} - : - - |

1 1 _2 1
2m—+2 2m 2m~+5

where C, (resp. M'C, I) indicates sets of numbers g for which the set E(x,) is a Cantor set
of zero Lebesgue measure (resp. a Cantorval, an interval). The symbol _ + indicates that for
almost all g in a given interval the sets E(x,) have positive Lebesgue measure, which

1 1
means that the set Z = {q € — ,%:A(E(xq)) = 0} has Lebesgue measure A(Z) = 0.
Similar diagrams we use later.

The achievement sets of multigeometric sequences are partial cases of self-similar sets of

the form
K, q) = Z andn : (an)%ozo € Zw}
n=0

where £ c R is a set of real numbers and g € (0,1). The set K(Z, q) is self-similar in the
sense that K(%,q) = 2+ q.K(Z, q). Moreover, the set K(Z,q) can be found as a unique
compact solution K c R of the equation K = X + gK.

It follows that for a multigeometric sequence x, = x,(ko,..., kny, q) the achievement
set E'(x) coincides with the self-similar set K (%, q) for the set

X = kp En: (gn)rr:; € {0, 1}m+1}
2o

of all possible sums of the numbers k,, ..., k,,. This makes possible to apply for studying
the achievement sets E'(x,) the theory of self-similar sets developed in [83], [128] and, first
of all, in [138].

We shall describe some topological and measure properties of the self-similar sets
K (%, q) depending on the value of the similarity ratio g € (0,1), and shall apply the
obtained result to establishing topological and measure properties of achievement sets of
multigeometric progressions. To formulate the principal results we need to introduce some
number characteristics of compact subsets A c R.
Given a compact subset A c R containing more than one point let
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diam A = sup{|la — b|:a,b € A}
be the diameter of A and
6(A) = inf{la — b|:a,b € A,a # b} and A(A) = sup{|la — b|:a,b € A,(a,b) N A = @}
be the smallest and largest gaps in A, respectively. Observe that A is an interval (equal to
[minA,maxA]) if and only if A(A) = 0.
Also put
A(A4)

1(4) = (A) + diam A
In particular, given a finite subset ¥ c R of cardinality |2]| = 2, we will write it as X =
{04, ..., g} for real numbers g; < -+ < g,. Then we have
diam(%) = o5 — 01,6(2) = min(oy4q — 0;),and A(Z) = max (o4 — ;).

Theorem (3.2.3)[158]: Let £ = {ay, ..., a5} for some real numbers o; < -+ < a5 The self-
similar sets K(Z,q) where g € (0, 1) have the following properties:

(i) K(Z; q) isaninterval if and only if g = I(2);

(i) K (Z; q) is not a finite union of intervals if g < I(X) and £(A) € {0, — 01,0, — 0,_41},

(iii) K (Z; q) contains an interval if g = i(2);

. s 11 Vd 1
(iv) If d = Tam(®) 3+2\/Zund ] <7 then for almost all g € (|Z|’_1+\/d) the set

K (Z; q)has positive Lebesgue measure and the set K (2;Vq) contains an interval;

(V) K(Z; q) is a Cantor set of zero Lebesgue measure if g < éor, more generally, if g <
1

o for some n € N where 2, = {375 arq®: (a)i=5 € Z,}-

(vifXo{a,a+1,b+1,c+1,b+ |Z|,c+ |Z|} for some real numbers a, b,c € R with

b # c, then there is a strictly decreasing sequence (q,)nee With lim g, = ésuch that the
n—oo

andi(A) =inf{I(B) : Bc A,2 < |B| < w}.

1 Vd

sets K (Z; g,,) has Lebesgue mesure zero.

The statements (i)—(iii) from this theorem will be proved, the statement (iv) and (v),(vi).
Writing that for almost all g in an interval (a, b) some property P(q) holds we have in mind
that the set Z = {q € (a, b): P(q) does not hold} has Lebesgue measure A(Z) = 0.

We generalize results of [143] detecting the self-similar sets K(Z;q) which are
intervals or Cantorvals. In the following theorem we prove the statements (i)—(iii) of
Theorem (3.2.3).

Theorem (3.2.4)[158]: Let g € (0,1) and £ = {gy, ..., 05} € R be a finite set with g; <
-+ < 0. The self-similar set K(Z; q) = {20 aiq': (@) e € Z¢}
(i) is an interval if and only if g > I(2);
(ii) contains an interval if ¢ = i(2);
(iii) is not a finite union of intervals if ¢ < I(Z) and A(®) € {0, — 01,0, — 0,_1}.
Proof. (i) Observe that diamK(Z;q) = diam(2)/(1 —q). Assuming that > I(2) =
AX)/(A(Z) + diamZ), we conclude that AX)< q - diam(®)/(1 — q) = q -
diamK (Z; q), which implies that

AKE @) =AE+q-K(Eq)) <A(q-K(Zq) =q-K(E q).
Since g < 1 this inequality is possible only in caseA(K(%;q)) = 0, which means that
K(Z; q) is an interval.
If g < AX)/(AZ) + diamX), then A(X) > q - diam(Z)/(1 — q) = q - diam(K(Z; q))
and we can find two consequtive points a <binZwith b=a+AX) >a+
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diam(qK(Z;q)) and conclude that [a,b] N K(Z;q) = [a,b] N (+qK(Z;q)) € [a,a+
diam(qK (Z; q))] # [a, b],so K(Z; q) is not an interval.

(if) Now assume that g = i(Z) and find a subset B < X such that /(B) = i(¥) < q. By the
preceding item, the self-similar set K(B; q) = B + qK(B; q) is an interval. Consequently,
K (%; q) contains the interval K(B; q).

(iii) Finally assume that A(X) = o, — gyand q < I(Z). Since for every a € £ we get K(Z —
a, q) =K(Z;q) — ﬁ ,we can replace X by its shift and assume that o; = 0 and hence

A(X) = 0y, — 0y = g,. Itfollows from g < I(Z) = 0, /(0, + diamZ) that for any € N, the
interval X7 ;11 q"o,,q’ o, is nonempty and disjoint from K(Z; q). Hence, no interval of
the form [0, €] is included in K(Z; q). But 0 € K(Z; q), so K(Z; q) is not a finite union of
closed intervals. By analogy we can consider the case A(X) = g,0,_;.

In particular, Theorem (3.2.4) implies:

Corollary (3.2.5)[158]: Forz = {0,1,2,...,s — 1}theset K(Z; q) isan interval if and only

if g > 1(%) =é.

Corollary (3.2.6)[158]: If {k,k+ 1,...,k+n—1} c X, then i(Z) < % and for every g >

%the set K(Z; g)contains an interval.

In particular, for the Guthrie-Nymann-Jones multigeometric sequence x, = (3,2,...,2; q)
of rank m the sumset £ = {0, 2,...,2m + 1, 2m + 3} has cardinality |2| = 2m + 2,1(Z) =

A0 =2 i(x) = min{—, 2 _ s 1
A(S)+diamE ~ 2m+5 "’ i(Z) = min {Zm'2m+5}'and d = diam(Z) ~ 2m+3 " So, for q€

[Zmz+5 ,1] the set E(x,) = K(Z; q) is an interval and for q € [ﬁ erf+5] aCantorval.

We shall prove the statement (iv) of Theorem (3.2.3) detecting numbers g for which
the self-similar set K(Z; q) has positive Lebesgue measure A(K(X; q)). For this we shall
apply the deep results of Boris Solomyak [162] related to the distribution of the random
series Yo, a,A", where the coefficients an a, € ¥ are chosen independently with
probability éeach.

Given a finite subset £ c R consider the number a(X) = inf{x € (0,1):3(ay)new €
(Z —2)?\{0}*} such that ¥, a,x™ = 0andYs_, na,x™ ! =0.

The first part of the following theorem was proved by Solomyak in [162]:

Theorem (3.2.7)[158]: Let £ c R be a finite subset. If é < a(X), then for almost all g in

the interval (é a(Z)) the self-similar set K (Z; q) has positive Lebesgue measure and the

set K (Z; Vq) contains an interval.
Proof. By [162], for almost all g € (ﬁ,a(Z)) the self-similar set K(Z; g)has positive

Lebesgue measure. Since K (Z;Vq) = K(Z;q) +Vq - K(Z; q), the set K(Z; q) contains an
interval, being the sum of two sets of positive Lebesque measure (according to the famous
Steinhaus Theorem [163]).

The definition of Solomyak’s constant a(Z) does not suggest any efficient way of its
calculation. In [162] Solomyak found an efficient lower bound on a(Z) based on the notion
of a (*)-function, i.e., a function of the form

n—

1 00
g(x)z—Zxk +yx™ + z xk

k=1 k=n+1
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forsomen € Nand y € [—1,1]. In Lemma (3.2.7) [162] Solomyak proved that every (*)-
function g(x) has a unique critical point on [0,1) at which g takes its minimal value.
Moreover, for every d > 0 there is a unique (*)-function g4 (x) such that mingg 1y g4 = —d.
The unique critical point x4 € g4t (—=d) € [0, 1) of g4 will be denoted by a(d).

The following lower bound on the number a(X) follows from Proposition (3.2.8) and
inequality (15) in [162].

Lemma (3.2.8)[158]: For every finite set ¥ c R of cardinality |Z| = 2 we get

(X) = a(d) h d= o)
aZ) =z a where = diam(®)
The function a(d) can be calculated effectively (at least for d < 21) :
Lemma (3.2.9)[158]: If 0 < d <357 then
Vd
et - Sva

Proof. Observe that the minimal value of the (x)-function g(x) = —x + Y, x* = —x +
x? . 1 .

s equal to— —J, which implies that for d € (0 m) _ the number a(d) is equal to
the critical point of the unique (x)-function g(x) = yx + Yp,x* = -1+ (y — 1)x +

i with mingg 1y g = —d. This (x)-function has derivative g'(x) = (y — 1) + - x)2 f
x is the critical point of g, then 1— = (1_1x)2 and the equality
1 X 1
d=-1+{— x +1 — x=_1_(1—x)2+1—x
has the solution
1 Vd

"1+vd 1+ d
which is equal to a(d)

For d > —— the formula for a(d)is more complex.
3+2v2 -

1+d +32-R 2d*2-8d-1

a(d) = + +
a(d) 3 6 3v32 - R

where

R = 3\/4d3 —24d? + 21d — 5 + 3v3+y/1—8d3 + 39d% — 6d
can be found as the unique real solution of the qubic equation
20— 1D+ @ -2d)(x—1)*+3(x—-1) + 1 = 0.
Proof. Since the minimal values of the (x)-functions g,(x) = —x + X, x* and g(x) =

oy — y2 o .k _1 g1 i [ 1 l]
x —x°+ ) =3 x" are equal to 3+N2and 2,respectlvely, ford € 2053 the number

a(d) is equal to the critical point of aunique (*)-function

1
g(x) = —x + yx? +z xF=—-1-2x +(y — Dx? +ﬁ

with ming ;) g = —d. At the crltlcal pomt x the derivative of g equals zero:
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0=9g'(x)=—-24+2(y— Dx +

(1 — x)?
which implies that
1_1(2 1 )_2x2—4x+1
YT T (1-x)2) 2x(1—x)2

After substitution of y — 1to the formula of the function g(x), we get
2x3 —4x? + «x 1

2(1 — x)? Ty
This equation is equivalent to the qubic equation

2x— 13+ 4 -2d)(x—1)?+3(x—-1)+1=0.

Solving this equation with the Cardano formulas we can get the solutiona(d) written in the
lemma.
Theorem (3.2.7) and Lemma (3.2.9) imply:
Corollary (3.2.11)[158]: LetZ c R be a finite subset containing more than three points and

d = 6(©2)/diam(X). If d < +2J “nd1+va then for almost all g in the interval [
(1 Vd

3 ir \/d) the self-similar set K (Z; q) has posmve Lebesgue measure and the set K (Z; \/_)
contains an interval.

—d=-1-2x—

Corollary (3.2.11) guarantees that for almost all g € (ik,ﬂ)the set K (Z; g)contains an
Jv2© ' 1+Vd

interval.
Multigeometric sequences of the form
(k +m,....k + 1,k; q)
with m > k we will call, after [159], Ferens-like sequences. The achievement set E (x) for
a Ferens-like sequence coincides with the self-similar set K (Z; q) for the set
Y={0,kk+1,...,n—kn}

wheren = (m + 1)(2k + m) /2. Sets K (Z; q) withX of this form will be called Ferens-like
fractals.

Note that Guthrie-Nymann-Jones sequence of rank mgenerates a Ferens-like fractal
(with £ ={0,2,3,...,2m + 1,2m + 3}. There are also Ferens-like fractals which are not
originated by any multigeometric sequence (for exam-ple K(Z;q) with X =
{0,4,5,6,7,11}). However, as an easy consequence of the main theorem of [161], we
obtain for Ferens-like fractals “trichotomy” analogous to that formulated in Theorem
(3.2.2). Moreover, some theorems formulated for multigeometric sequences are in fact
proved for K(Z; q) (see for example Theorem 2 in [143]).
Example (3.2.12)[158]: For the Ferens-like sequence x, = (4,3,2; q) we
getX = {0, 2,3,4,5,6,7,9},

5 1 1 Vd 1 1
=————=—<——— and =—>—=[(2).
diam(Z) 9 3 + 2V2 1++d 46

By Corollary (3.2.11) (and Theorem (3.2.4)), for almost all numbers g € (% ,1) the
achievement set E(x,) = K(Z; q) haspositive Lebesgue measure (for g < i =](X) itis

not a finite union of intervals). By Theorem (3.2.4), for anyq € [i(2),I(2)) = [% ; %) the
set K(_; q) is a Cantorval. The structure of the sets E(x,) = K(Z; q) is described in the
diagram:
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For any Ferens-like fractal 2| =n-2k+3,A2)=k,562)=1I1Z) = ﬁ ,i(Z) =

mmr ,1(Z£) and d = —. Moreover, if n > 7 then a(d) = 1+1 Therefore, one can

check that for any Ferens like sequence we have a(d) > i(X), and we can draw an
analogous diagram. The same result we can obtain for any Ferens-like fractal with k = 2
(even if it is not originated by any Ferens-like sequence). However, there are Ferens-like
fractals with a(d) <i(X) (for example K(%;q) with £=1{0,3,4,7} or X=
{0,4,5,6,7,11}).

Example (3.2.13)[158]: For the Guthrie-Nymann-Jones sequence x, = (3,2,...,2;q) of
rank m > 2 we get

$=1{0,23,....2m+1,2m+ 3}, || = 2m + 2,I(%) =

,i(Z)
and Of(d) = 1/(1 ++v2m + 3).
o = E So, we can apply Corollary

—)the self-similar set K (Z; q)

_ 1 2 g 1
min {Zm 2m + 5} 2m + 3
Moreover, we have d < —\Fand a(d) = i(%) >

(3.2.11) and conclude that for almost all numbers g € ( ml+2

has positive measure. By Theorem (3 2. 4) for any g € [i(2), —) the set K(Z;q) is a

For m = 1 we obtain a(d) = a( ) > =, Therefore, for almost all numbers q € (— —) the

set K (Z; q)has positive Lebesgue measure
The results of the preceding yields conditions under which for almost all g in an

interval ( a(Z)) the set K(Z; q) has positive Lebesgue measure. We shall show that this

interval can contain infinitely many numbers q with A(K(Z;q)) = 0 thus proving the
statements (v) and (vi) of Theorem (3.2.3).
Theorem (3.2.14)[158]: If there exists n € N such that

n-—1
2,47
i=0
then the set K (Z; g) has measure zero.
Proof. Denote K: = K(Z, q). From the equality K = £ + gK we obtain, by induction, that

n-1

K= qT+qK.

i=0

Lets, = Xl g's I |Z,] - ¢ < 1, then
A(K) < |Zq] - q" - A(K) < 1-A(K)

which is possible only if A(K) = 0.
To use the latter theorem we need a technical lemma:

q" <1
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Lemma (3.2.15)[158]: For any integer numbers s > 1 and n > 1 the unique positive

solution q of the equation
1

s-1
Is greater than % . Moreover, there is ny, € N such that for any n > n,
(s"=2""1.g" < 1.

x+x2 4 Fx" =

Proof. Clearly

n-—1

L \s s—1 sn=1) “s—1
i=

soq > % From the equality
=20 e
s—1 Zi\s (s —1)sn—2

we obtain

gt = 1 _Zqi< 1 _ZG)I:;
s—1 4 s—1 Lu\s (s —1)sn=2°

=1 =1
Using the latter inequality and the equality
1 q—-q"
s—1 1-g¢
we have
LT gy > (1— ! )
s—1 1 1 1 (s—1)sn=2)
Therefore,

q
1=q>(6-1Da-5=
< 1) and finally

B
S (1 B s"‘l)
From Bernoulli’s inequality it follows that
n

1 n
(1 B s”‘l) =1- sn—1

q
STl—Z

(which means that sq —

q<

and, by (4), we have

1
q" < m
s* (1 B s”‘l)
Consequently,
n (1 - zn—1>
(Sn 2n—1) . qn < s
s* (1 B 57?‘1)
Obviously, for n greater then some n,
2n—1
>n
S

And hence

(2)

(3)

(4)



Which proves (3).
Theorem (3.2.16)[158]: If a finite subset ¥ c R contains the set {a,a+ 1,b+ 1,c +
1,b + |X|, ¢ + |Z|} for some real numbers a, b, c with b # ¢, then there is a decreasing

sequence (g, )n=1 tending to ésuch that, for any n € N,

the self-similar set K(Z, q,,) has Lebesgue measure zero.
Proof. Let s = |Z| and for every n denote by g,, the unique positive solution of the equation
(2) from Lemma (3.2.15). Let n, be a natural number such that
(s"=2"1) - (g)" <1
for any n > n,. Clearly (g,)n=n, is a decreasing sequence and Tlll_)rgo qn = % . It suffices to

show that K (%, q) has measure zero for n > n,.
Taking into account that each g, is a solution of (2), we conclude that
n-1 n—-1

at+ ) (s-1+e) (@) =@+ D+ ) & @)

i=1 =1
forany ¢; € {b + 1,c + 1} c Z. Therefore

n-—1
Z(qn)i 5| < sm—2n 1
i=1
Hence, by Lemma (3.2.15),

D @iz < @<t

and we can apply Theorem (3.2.14) to conclude that K (Z, q) has Lebesgue measure zero.
The condition

fa,a + 1,b + 1,c+1,b+ |Z|,c+|Z]}c X (5
looks a bit artificial but it can be easily verified for many sumsets £ of multigeometric
sequences.
In particular, for the Guthrie-Nymann-Jones sequence of rank m > 1

xq=0,2,...,2;9),

the sumset X = {0,2,3,...,2m + 1,2m + 3} has cardinality |Z| = 2m + 2. Observe that
for the set Z the condition (5) holds for a = 2, b = 1 and ¢ = —1. Because of that Theorem

(3.2.16) yields a sequence (g, )n=1 N 2m1+2 such that for every n € N the self-similar set

E(x,,) is a Cantor sets of zero Lebesgue measure.
By [143], for g = ﬁ the achievement set E(x,) is a Cantorval. Therefore, if m >

2, there are three ratios p < q < r such that E(x, ) and E (x,.)are Cantor sets while E(x, )is
a Cantorval. By our best knowledge it is the first result of this type for multigeometric
sequences.

Now we will focus on Ferens-like sequences x, = (m + k, ..., k; q) where m > k.

For k = 1 the Ferens-like sequence x, = (m + 1,...,2,1;q) has

(m+2)(m+ 1)}

x=40,1,2,...,
| :
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The set E(xq) Is a Cantor set (for g < é) or an interval (for g > é) see Theorem 7 in

[143]), Theorem (3.2.1) or Theorem (3.2.4).
For k = 2, the “shortest” Ferens-like sequence is x, = (4, 3, 2; q). For this sequence

¥ =1{0,2,3,4,5,6,7,9}.
Note that the same X has Guthrie-Nymann-Jones sequence (3,2,2,2;q) (see Example

(3.2.13)). It follows that E(x, )is a Cantor set for g € (0%) and E(x, ) is a Cantorval for =
%. By Theorem (3.2.4), K(Z; q) is an interval for g > I(2) = % and a Cantorval for g €

(% %) As shown in Example (3.2.13), for almost all ¢ € @18,16 _ the setK(%; q) has
positive Lebesgue measure. Using Theorem (3.2.16), we can find a decreasing sequence
(g,,) tending to %for which the sets K (Z; g,,) have zero Lebesgue measure.
For k = 3 the “shortest” Ferens-like sequence is x, = (6,5, 4, 3; q). For this sequence

¥ ={0,3,...,15,18}

and |Z| = 15. Since 1 E%Zthe setZ, =2+1—152 has less than |15|% elements (for

example 4 can be presented as 4 + 0 or as 3 + 1). Therefore i2|22| < 1and forgq = =
152 15

the set E(x, ) is a Cantor set according to Theorem (3.2.14). Moreover, calculating for g =
L > Lthe cardinality
14 15

|Z5] = |Z + qZ + q%Z| = 2655 < 143
and applying Theorem (3.2.14), we conclude that the achievement set E (xq) is a Cantor set
of zero Lebesgue measure for g = 1—14 . On the other hand, Corollary (3.2.11) implies that for

almost all g € (é 1:/1_8) the achievement setE(xq) has positive Lebesque measure. The
setX has (2) = % and I(2) = % = % . S0, in this case we have the diagram:

| - - . . |

0 i i & 7 1

14 13

As in the previous case, we can use Theorem (3.2.16) (takinga = b = 3 and ¢ = —1) and
find a decreasing sequence (g,,) tending to 115 such that all E(an) have zero Lebesgue
measure.

Suppose now that k > 3. For the Ferens-like sequence x, = (k +m,...,k + 1,k; q) its

sumset ¥ contains the number |X|, which implies that | + qZ| < |Z]? for g = |%land
therefore E (xq) is a Cantor set of zero measure according to Theorem (3.2.14).

For a contraction ratio q € {ﬁ:n € N} self-similar sets of positive Lebesgue
measure can be characterizedas follows:
Theorem (3.2.17)[158]: Let X c Z be a finite set, q € {ﬁ:n € N} and 2, = Y"1 q'z

for n € N. For the compact set K = K(Z; q) the following conditions are equivalent:
() |2,] g, = 1foralln € N;

(ii) infn e N |Z,,| - q, > 0,

(iii) A(K) > 0.
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Proof. The implication (iii)=(i) follows from Theorem (3.2.14) while (i)=(ii) is trivial. It
remains to prove (ii)=(iii).

Suppose that A(K) = 0. Given any r > 0 consider the r-neighborhood H(K,r) = {h €
R: dist(h,K) < r}oftheset K = K(Z; q). Take any point z € {¥.{2, x;q": Vi = n x; € &}
and observe that X, +zcC K ={X2,xq" :Vi > (%)iee € Z®}, Which implies that
H(Z, +zr) c H(K,r) forall »r > 0. The continuity of the Lebesgue measure implies that
A(H(K,r)) — 0 when r tends to zero. It follows from £ c Z and ; € N that

s, cqtl-Z
Hence, for any two different points x and y from Z,,, the distance between x and y is no less
then g"~1 > g™.
Therefore, for any n € N,

1 1 1
= (0 (B ) =a(4 (50t 3 7)) (0 )

which means that lim [Z,,]| - g" = 0.

n—>oo
Theorems (3.2.17) combined with Corollary 2.3 of [128] imply the following corollary.
Corollary (3.2.18)[158]: For a finite subset £ ¢ Z and the number g =|?1|< 1 the

following conditions are equivalent:
(i) K(Z; q) has positive Lebesgue measure;
(ii) K(Z;q) contains an interval; (4) for every n € N the set YZ5 ¢* X has cardinality
1Zn| = [Z]".
Section (3.3): Subsum Sets of Null Sequences

When the sequence is not absolutely summable, its subsum set is an unbounded closed
interval which includes zero. The subsum set of an absolutely summable sequence is one of
the following: a finite union of (nontrivial) compact intervals, a Cantor set, or a “symmetric
Cantorval,” a hybrid Cantor-like set with both trivial and nontrivial components.
It is a counterintuitive fact that, while every summable sequence of real numbers must
converge to zero, there are sequences (notably the harmonic sequence {1/n}) which
converge to zero but are not summable.

However, every such sequence has many summable subsequences (for example, the
sequence of negative powers of any integer greater than two is a summable subsequence of
the harmonic one). It seems natural to ask what kind of set is formed by the collection of all
sums of (summable) subsequences of our original one. Such sums are called “subsums” in
[165], [147], and [148] (in the latter, the German word “Teilsumme” is used) and
accordingly we shall refer to this set as the subsum set of our sequence.

The description of the subsum set of a general sequence turns out to be a challenging
question. | set out trying to answer it and came up with a number of interesting conclusions,
but could not come up with a general description of the possible subsum sets on my own. A
comment by Michat Misiurewicz led me by chance to a 1988 J.

A. Guthrie and J. E. Nymann [147] who give a complete topological description of
such sets and review earlier work on the problem, notably the results of S. Kakeya [150]
and H. Hornich [148].

| will briefly describe the results in [167] and then explain the Guthrie-Nymann result
which completes the picture, at least in the case of null sequences. It should be noted that
Jones also obtains some results for sequences which do not converge to zero, although the
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core of what we know (and the most complete picture) is contained in the null sequence
case.

Formally, given a real sequence {x;}, a subsequence can be written in the form {¢;. x;},
where & = {&; };2, is asequence of zeroes and ones (determining which terms of the original
sequence are included). It is a summable subsequence if the sum »;;2,{¢;.x;} converges,
and in that case the sum is a subsum of the original sequence.

The subsum set of {x;}, which we denote Y, ({x;};2,), is the collection of all subsums
of {x;}. Note that in this formulation }({x;};2,) includes the sums of finite subsequences of
{x;} In addition to the sums of (summable) infinite subsequences, and also the empty
subsequence (which sums to zero). The bulk of the discussion is devoted to the case of
positive sequences; the general picture can be deduced from this subcase. Note that positive
convergent (sub) sequences are unconditionally summable; they can be rearranged in any
order without changing their sum. We will work under the standing assumption that the
sequence is reordered to be nonincreasing: x;,,; < x; for all.

When {x;} is not summable (so Y.({x;}i=;) = =), the subsum set is an unbounded
interval [165]. This is formally a special case of [167] which we will state a little later, but
the argument is somewhat different from the summable case.

Proposition (3.3.1)[164]: If {x;} is a null sequence of positive numbers which is not
summable, then Y, ({x;};2,) = [0, o).

The basic observation is that given & > 0, any finite string of successive terms
Xn, Xni1, - Xner With n sufficiently large has each term less than &, but their sum can be
made arbitrarily large by making k sufficiently large. Then given r > 0, we can pick n and
k (sufficiently large) so that x,, + -+ x4 <7 < X, + - + X 4141, this means the sum on
the left is at least r — € and a “bootstrap” argument shows that we can pick a sequence of
strings whose sums add up to exactly r .

Two kinds of behavior are easily observed for positive summable sequences (in which
case every subsequence is summable). Subsums of the sequence {27} are nothing other
than binary representations of numbers in the closed interval[0, 1], and since every such
number has a binary representation it follows that Y’ ({27* }2,) = [0, 1].

By contrast, subsums of the sequence {3~ } are ternary representations of numbers
in [0,1], but only of those which can be expressed without using the digit “2”—and this is
easily seen to be the middle-third Cantor set built on the interval [0, 1/2]. In fact, These two
examples are templates for the topological type of many sequences, in particular the
geometric ones. This can be made clear via an analysis given in [167] and implicit in [147],
and which will also make clear the kind of behavior that leads to a set which is
fundamentally different from either of these two.

Starting from a positive summable sequence{x;}, we call x; the kth term; let us
denote by X, the kth tail obtained by summing all the terms following the kth term:

Xk=le- .

i>k
With this formulation, the sum of the whole series is X,,, and clearly any subsum is contained
in the closed interval [0, X,].

Now partition all the subsums into those that don’t involve the first term x; and those
that do: using our formulation of subsums as determined by binary sequencesé = {¢; }, this
simply corresponds to the choice of &;. If &, = 0, then the subsum s(&) = }.;72,{&;. x;} does
not involve x1 and hence is contained in the interval
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Jo =10,X1],

While if &, = 1, then it is contained in
J1 =[x + X1] =[x, Xo]-

The union

Ci=JoVUJs
of these two intervals contains the whole subsum set. Whether these intervals are disjoint or
not is determined by the relative size of the first term and the first tail. If x; < X;,thenC; =
[0, X,], while if x; > X;, then C; is the union of two disjoint subintervals of [0, X, ]. But we
can apply this argument recursively. Given the binary “initial word” wy, = &;,&,, ..., & of
length k for the binary sequence, denote by s,(wy) = Y% ,(&.x;) the finite sum
corresponding to the sequence consisting of wy, followed by all zeroes; we can guarantee
that any subsum determined by a sequence

Starting with wy, lies in the interval

Jop = [Sk(wi), sk(wi) + X |-
Clearly the whole subsum set is contained in the union C of all the intervals ], as wy
ranges over all the binary sequences of length k. Furthermore, the transition from C,,_; to
Cy, consists of replacing each interval J,, _ with two intervals, J,, _and ], ., corresponding
to the words of length k which start with wj,_;: Wp- = Wk_1,0 and wy; = Wi_1, 1. AS
above, the effect of this substitution is determined by the relation between the kth term and
the kth tail.

Term exceeds Tail if x;, > X;,, then the two intervals are disjoint, so for each word
wy-q Of length k — 1,],,  in Cr_4 is replaced by a disjoint union of two subintervals in
Cy; that is, J,,_, breaks into the disjoint union of j,, and J, ., leaving a “gap” of size
Xy — X in the middle.

Tail bounds Term if x;, < X, , then the two intervals share at least one point, so their
union equals J,, . .

Note that this description of the transition from C,_,to C, is the same for all the
intervals making up Cj_,, independent of the initial word w;_, that determines them.

Note also that the length of each of the intervals J,, is X, . This means in particular
that the difference between two subsums corresponding to binary words whose first k terms
agree is at most X, . But these tails converge to zero, since our (total) series is convergent.
It follows that the map assigning to each binary sequence ¢ the subsum s(§ ) is continuous,
using the product topology on the set {0, 1}" of binary sequences.

This topology turns the set of binary sequences into a Cantor set, and as a consequence the
subsum set, being the continuous image of a compact set, is itself compact (and in particular
closed).

We note in passing that every such subsum set is symmetric, in that the “flip” taking
x € [0,X,] to X, — x takes the subsum s (& ) determined by £ to the subsum s (&) determined
by the sequence & which is obtained from & by replacing each 0 with 1 and vice versa, and
hence takes Y ({x;};=,) onto itself.

When one of the two scenarios above governs the transition from C,_;to C,for everyk, this
construction determines the topology of the subsum set completely.

Proposition (3.3.2)[164]: Suppose that {x;} is a positive, nonincreasing summable
sequence with 72, x; = X,.
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(i) [167] X ({x;}i2,) = [0,X,] if and only if for every k, the kth tail bounds the kth term;
more generally, if this condition holds eventually, then Y. ({x;};2,) is a finite union of
(nontrivial) closed intervals.

(ii) [167] If for every k the term exceeds the tail, then Y:({x;};=,) is a (centered 4) Cantor
set.

The first statement above is a remark given without proof by Kakeya [150] and both
statements are in essence proved by Hornich [148]. To prove that we actually get a Cantor
set in the second scenario—that is, to show the subsum set is totally disconnected—we need
to invoke the fact that the lengths of the intervals J,, go to zero with k.

Furthermore, in the second scenario the set G, consists of 2% disjoint intervals, each of
length X;, from which it follows that the Cantor set we finally obtain has Lebesgue measure
lim 2% X, (this is noted by Jones, but not explicitly by Hornich).

If we want to have a picture of all possible subsum sets for positive null sequences,
we need to handle the slippery ground between these two extreme scenarios—cases where
sometimes the term exceeds the tail and other times the tail bounds the term.

In view of the comments above, this is only a problem when each scenario occurs infinitely
often. Kakeya suggests that to get a totally disconnected subsum set (and hence, in view of
the above, a Cantor set) it might be sufficient to have the terms exceed the tails infinitely
often. One aspect of this vision works, but another doesn’t.

Itis true that if terms exceed tails infinitely often, then the subsum set will have infinitely
many components, some of them consisting of single points. To see this, note that for every
word wy of length k, the interval J,,,, is the translate of the leftmost intervaljy, by sy (wy) =

k | &.x; ; since the sequence is nonincreasing, the smallest such sum (other than the zero
sum) is x,(wy = 0...01). This means that the only interval ], in C intersecting the
interval [0, x;,) IS Jo - In particular, if x; ., exceeds X, 1, the “gap” between Jy;,1 and J k4
separates two actual components of the new set Cy ;.

Since x; — 0, this means the left endpoint 0 alone constitutes a trivial component of the
subsum set (and is a limit of other components). The same argument can be used to show
that the left endpoint of any component of C, (for any k) is a trivial component of the
subsum set, and is a limit of other components. By symmetry, the same is true of all right
endpoints of components.
However, once some tails bound the corresponding terms, the components of C;, for later
k are unions of overlapping intervals ], , and it is possible that some of the gaps introduced
in a given interval J, by the transition to C,,,may be covered by other intervals
corresponding to other words. This leads to the possibility that a particular gap introduced
in one interval ], during the transition from C; to C,,; might never become visible as a
gap in any subsequent sets Cy .., and allows the possibility that even though Y:({x;};=,) has
infinitely many components, some of them might be nontrivial intervals.
In fact this phenomenon does occur. Guthrie and Nymann [147] show that the sequence
given by
3 2
X2k-1 = 2k y X2k = 2k
has a subsum set that contains the interval [3/4, 1]; but the even-numbered terms exceed
the corresponding tails, so there are infinitely many components. Hence the subsum set is
neither a finite union of intervals nor a Cantor set. Jones [167] gives a different example,
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due to Dan Velleman. We give one way to generate many examples. We repeat it here,
inspired by [168].
Proposition (3.3.3)[164]: (R. Kenyon). Suppose we are given n € N and n integers d,,
dy,...,d,such that

d; = j mod n.
Then the set of “generalized base n expansions” using these “digits”

S={Z%}{aie{do,...,dn}

i=1
has nonempty interior,
Proof. The first step is to confirm the somewhat optimistic intuition that, since the digits

include representatives of all the congruence classes mod n, the finite sums of the form

ia" €fd,.. d
'_1niai {0""1 n}

Should, by analogy with the standard case d; = j , have fractional parts that include all

rational numbers of the form ik . The “obvious” reasoning we might expect does not apply.
n
For example, i+ 42—2 = 1—66 while i+ 42—2 = 1% ; the difference is not an integer even though
6 = 2 mod 4. However, it is true that different expressions of this form have different
fractional parts. To see this, suppose we have two such sums with the same fractional part:
a a aix by by by,
_+_+...+—k:—+—2+...+_kN
. ) _n n n n ) )
(Where each a; and b; is one of our digits d,...,d,,_;, and N € N). We can rewrite this as

a,—b, a,—0>b, ay — by
nl n2 Tt nk
and multiply both sides by n* :
n* 1(a, — by) + n*72 n(a, — by) + -+ n(ay_; — by—,) + (ax — by) = nkN.
Taking the congruence class of both sides mod n, we get
a, — by =0mod n.
But since the possible digits belong to different congruence classes mod n, we must have
ak - bk - O
Thus by inductionon k,a; — b; for i =1.2,...,k.

Now, for a given (fixed) k, there are n* sums of the form
k

=N

a;
ni
i=1
as well as n* fractions of the form %with 0 < a < n* . Hence by the pigeonhole principle,
congruence mod n generates a bijection between the two sets, confirming our intuition.
The second step is then to reinterpret this statement to say that the integer translates of
Yiz1{&; - x; } cover the whole real line

U<k+i{€i.xi }) =R

kez
Finally, we invoke the Baire category theorem, which in our context says that if a countable

union of closed sets equals R, then at least one of them has nonempty interior. From this we
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conclude that for at least one integer k, (k + X.;2,{¢&; . x; })has nonempty interior—but since
it is a translate of }.;2,{¢; . x; }, the same is true of 372, {&; . x; }.
For the record, the example shown me by Kenyon is given by
6
Xok-1 = 4K y X2k = 2K
This is not given in decreasing order, but when it is rearranged, as
6/4,6/16,1/4,6/64,1/16,6/256,1/64,...
the term exceeds the tail infinitely often. Thus on one hand its subsum set has infinitely

many components. On the other, using the pair of terms fk and %, we can also obtain either

of the fractions 407 and 4lk ; since the pairs corresponding to different denominators (i.e.,
different k) are disjoint, our subsum set contains all the numbers of the form

Z T 4{0,4,6,7)
k=1

Hence, by the proposition, the subsum set has nonempty interior.
Bartoszewicz et al. [166] extend this class of examples. They consider sequences of the form
ki ky, oo knkiq,... . knq keq?, ...
Consisting of blocks of n multiples of q by integers k4, ..., k,,. They show that if the (finite)
subsums of these integers include some collection of n successive integers, and q satisfies
the estimates
1 min k;
<q<— )
n+1 min k; + Y k;
Then the resulting subsum set has infinitely many components and nonempty interior.
Furthermore, each integer in the collection k;, ..., k,, can be replaced by a multiple of it by
a (nonnegative integer) power of g and still produce a subsum set of this type.
Note that this result in particular applies to a number of other published examples, namely

(R. Jones/D. Velleman [167]) =,=,=,=,—,—,—,—,—,—, .

1 22 222 2 2 2 2 2 2
For any a satisfying - < i, ak < >

(Weinstein and Shapiro [157]) 8.3, 7 i, 6.3, 5.3,4.1, 8. —
10 10 10 10

10 102
And (Ferens [146])727,627,527,427,327,7272, ...

In fact, Guthrie and Nymann give a complete topological classification of the subsum
sets of positive, summable sequences by rounding out the last remaining possibility after
finite unions of nontrivial intervals and Cantor sets. Suppose a subsum set has infinitely
many components but nonempty interior. For each k, we can write this set as the union of
2% translates of the subsum set of the sequence with its first k terms removed. Invoking the
Baire category theorem again (in the weaker form involving a finite union) we conclude that
one, and hence all, of these translates have nonempty interior. In particular, each interval
Jw, in Gy contains a subinterval of }({x;};2,). This means that every point of the whole
subsum set is within distance X, of some subinterval of ) ({x;};=,). SinceX, — 0, the
nontrivial components of . ({x;};2,) are dense in Y. ({x;};2,). At the same time, our
argument showing that there are infinitely many components shows that every endpoint of
a nontrivial component of ), ({x;};2,)is a limit of trivial (singleton) components. Aside from
Guthrie and Nymann, such sets were studied by Mendes and Oliveira [152] in connection
with the structure of arithmetic sums of Cantor sets, motivated by bifurcation phenomena in
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dynamical systems. They dubbed them Cantorvals. three different varieties of Cantorval can
arise, but because of the self-symmetry of subsum sets, the only kind that can arise in our
context is what they call an M-Cantorval.

Definition (3.3.4)[164]: A symmetric Cantorval is a nonempty compact subset S of the real
line such that:

(i) S is the closure of its interior (i.e., the nontrivial components are dense),

(i) both endpoints of any nontrivial component of S are accumulation points of trivial (i.e.,
one-point) components of S.

Using this terminology, we can state Guthrie-Nymann’s characterization of subsum sets as
follows.

Theorem (3.3.5)[164]: [147] The subsum set of any positive summable sequence is one of
the following three possibilities:

(i) a finite union of (disjoint) closed intervals;

(i1) a compact, totally disconnected perfect set (i.e., a Cantor set);

(iii) a symmetric Cantorval.

This statement is, in fact a complete topological classification of such subsum sets.

It is well known that any two Cantor sets are homeomorphic; similarly, Guthrie and Nymann
note the following.

Proposition (3.3.6)[164]: Any two symmetric Cantorvals are homeomaorphic.

Proof. Given two Cantorvals S and S’, first identify the longest component of each; if there
Is some ambiguity (because several components have the same maximal length), then pick
the leftmost one. There is a unique affine, order-preserving homeomorphism between them.

At the same time, consider the gaps (components of the complement in the convex
hull) of each of these sets; in a way similar to the above, find an order-preserving
homeomorphism between the largest gaps to the left (resp. right) of the components
identified above. (Note that, although the gaps are open intervals, the homeomorphism
extends to their closures.)

We have defined order-preserving homeomorphisms between each of three
subintervals of the convex hull of S and the three corresponding intervals of the convex hull
of S. The complement of these intervals consists of four intervals; consider their closures.
The part of each Cantorval in each of these closed intervals is again a Cantorval. Thus, we
can apply the same algorithm to pair the longest nontrivial component in each of the
intervals for S with the corresponding one for S’. Continuing in this way, we get an order-
preserving correspondence between the nontrivial components (resp. gaps) of S and those
ofS’, and an order-preserving homeomorphism between corresponding intervals and gaps.
But this means we have an order-preserving continuous mapping f from the union of the
nontrivial components and the (closures of) gaps of S onto the corresponding set for S’.
These two sets are dense in their convex hulls, which in particular mean their complement
Is nowhere dense. Since f is order-preserving, we see that for any point x, in the
complement of the domain of definition, sup {f (x)} {x < x,} and inf {f (x)} {x > x,} must
agree. This uniquely extends f to a homeomorphism from the convex hull of S onto that of
S, respecting the sets themselves.

So far we have dealt only with positive sequences. However, the description of the subsum
sets of any null sequence {x;} can easily be reduced to the positive case by separating the
two subsequences consisting of all the positive (resp. negative) terms. The partial sums of
each of these subsequences increase (resp. decrease) monotonically, so we can set
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in* =X* €[0,00],

in_ =X~ € [—,0].

If the sequence fails to sum absolutely, then at least one of X*} is infinite, and then the
subsum set is [X~, X*].
If both are finite, the sequence is absolutely summable, and (following [167]), we have

D @) = X+ [ .
It follows that for any null sequence the character of the subsum set is determined by the
relation between the terms and the corresponding tails, not of the sequence itself, but of the
sequence of their absolute values. This leads to a restatement of the Guthrie—~Nymann
characterization of subsum sets, but without the hypothesis that the original sequence is
positive.
Theorem (3.3.7)[164]: The subsum set of any null sequence is one of the following three
possibilities:
(i) A finite union of (disjoint) closed intervals;
(if) A compact, totally disconnected perfect set (i.e., a Cantor set);
(iii) A symmetric Cantorval.
The first of these cases occurs if and only if eventually (i.e., for all sufficiently high k),

ol < ) Il

i=k+1
The second case is guaranteed to happen if eventually

el > ) 1,

i=k+1
But either it or the third case can occur if both relations occur for infinitely many k.
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Chapter 4

Asymptotic Behaviour of the Lebesgue Measure and an Effective Estimate
We show that the proofs of the results are based on recent progress in infinite ergodic theory,
and in particular, they give non-trivial applications of this theory to number theory. We show
that closes with a discussion of the thermodynamical significance of the obtained results,
and with some applications of these to metrical Diophantine analysis. We provide an
effective version of this result, employing mostly basic properties of the transfer operator of
the Farey map and an application of Freud’s effective version of Karamata’s Tauberian
theorem.
Section (4.1): Sum-Level Sets for Continued Fractions

We consider classical number theoretical dynamical systems arising from the Gauss
map g: x — 1/x mod 1 (for x € [0,1]). It is well known that the inverse branches of g give
rise to an expansion of the reals in the unit interval with respect to the infinite alphabet N.

This expansion is given by the regular continued fraction expansion
1
la;,ay,...]:= —
a; +

a,+...
where all the a; are positive integers.

We give a detailed measure-theoretical analysis of the following sets ~;,, forn € N,
which we will refer to as the sum-level sets:

k
i = {[al,az,...] € [0,1]:2 a; =n forsomek € N.
i=1

A first inspection of the sequence of these sets shows that lim inf,, ~;, is equal to the set of
all noble numbers, that is, numbers whose infinite continued fraction expansions end with

an infinite block of 1’s. Also, one immediately verifies that lim sup,, 3, is equal to the set
of all irrational numbers in [0,1]. Hence, at first sight, the sequence of sum-level sets appears

to be far away from being a canonical dynamical entity. In order to state the main results,
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Figure (1)[170]: The first level-sum sets.
note that for the first four members of the sequence of the sum-level sets (cf. Fig. 1) one
iImmediately computes that
A7) =1/2,A(%) =1/3,A(73) = 3/10,A( ~,) = 39/140.
From this one might already suspect that A( ~;,) is decreasing for n tending to infinity. In
fact, it was conjectured by Fiala and Kleban in [36] that A( ;,) tends to zero, as n tends to
infinity. The first main result is to settle this conjecture.

We give two independent proofs of this theorem. The first of these is almost
elementary and only mildly spiced with infinite ergodic theory, whereas the second proof
will be deduced from a significantly stronger result. In a nutshell, here we give a detailed
proof of the fact that the Farey map T is an exact transformation, which in turn allows to use
a criterion of Lin in order to deduce the result. Note that the second proof is very much in
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spirit of the considerations in [190], although, strictly speaking, the class of interval maps
considered there does not contain the Farey map.

For the next station on our journey of investigating the asymptotic behaviour of the sequence
(/1( ’/,;)), we employ the continued fraction mixing property of the induced map of the Farey
map T on A( 7), in order to show that 7 is a Darling-Kac set for T. A computation of the
return sequence of T then leads to the following theorem, where we use the common notation
b, ~ c, to denote that lim b, /c, = 1.

n—oo

Our third theorem gives a significant improvement of Theorem (4.2.6) and Theorem
(4.2.7). That is, by increasing the dosage of infinite ergodic theory, we obtain the following
sharp estimate for the asymptotic behaviour of the Lebesgue measure of the sum-level sets.

We then continue by relating these results on the sum-level sets to the
thermodynamical analysis of the Stern-Brocot system obtained in [183]. We first sight,
slightly surprising result that this thermodynamical analysis can be obtained from an
exclusive use of either the sequence ( ;) or alternatively its complementary sequence
( %), rather than using the Stern-Brocot sequence in total. In particular, this reveals that the
vanishing of 1111_{{)10 A( 7)) is very much a phenomenon of the fact that the Stern-Brocot

system has a phase transition of order two at the point at which infinite ergodic theory takes
over the regime from finite ergodic theory. A detailed discussion of this application to the
thermodynamical formalism is given. We apply Theorem (4.2.8) to classical metrical
Diophantine analysis, and derive in this way a certain algebraic Khintchine-like law (see
[179)).

We defined the sequence ( ~;,) of sum-level sets via the sum of the first entries in the
continued fraction expansions. For later convenience, let us also add “,:= [0,1] to this
sequence. Let us begin with some brief comments on various equivalent ways of expressing
the sum-level sets.

Recall the following classical construction of Stern-Brocot intervals (SB-intervals)
(cf. [187], [173]). For each n € N, the elements of the n-th member of the Stern-Brocot
sequence

S
{L"‘:k = 1,...,2"+1}
tn,k

are defined recursively as follows:

(a) 50’1: =0 and 50,2: = tO,l: = t0,2: = 1,

(b) Sn+1,2k—1: = Sn,k and tn+1,2k—1: = tn,k , for k = 1, ey 2" + 1,

(C) STl+1,2k: = STl,k + Sn,k+1 and tn+1,2k: = tn,k + tn,k+11 fOI‘ k = 1, AL
The set . 4, of SB-intervals of order n is given by

S S
= {[Lk, n’k+1] k= 1,...,2"}.
tn,k tn,k+1
It might be convenient for the reader to recall that for the Lebesgue measure of these Sg

intervals we have A([s,x/tnik Snk+1/tnk+1]) = 1/(Enktnk+1). One then immediately
verifies that in terms of these intervals, the sum-level sets ~;, are given as follows. For n =

a 7 s s 14 7
0,1, we have 7, = [ﬁt(‘j—j and 73 = [s15/t12,S13/t13]. Forn > 1, we have
’ ' 27’1,—2
S _2 S
= U [tnAk Z'tnAk]'
k1 n4k—-2 “n,4k
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Note that this point of view of ~,, is the one chosen in [36], where ~,, was referred to as the
set of even intervals. Also, note that these even intervals are not SB-intervals. However, we
clearly have that each of them is the union of two neighbouring SB-intervals of order n. That
IS,

!Sn,4k—2 Sn,4k] . [Sn,4k—2 Sn,4k—1] U [Sn,4k—1 Sn,4k]
tnak—2 tnak tnak—2 tnak—1 tnak-1 tnak|
Throughout, we will use the notation 7%, to denote the set of SB-intervals of order n that are
not in ~,,. Also, by slight abuse of notation, occasionally we will write I € ~,, for a SB-
interval I € . 4, which is a subset of .
There is also a way of expressing the sequence ( ;) in terms of the maps «, 8: ~, —
7o given by
a(x):=x/(1+x) and pLx):=1/(2—x).
It is well known that the orbit of the unit interval under the free semi-group generated by o
and B is in 1- 1 correspondence to the set of SB-intervals. In fact, by associating the symbol
A to the map o and the symbol B to the map [, one obtains that each SB-interval (with the
exception the SB-interval of order 0) is associated with a unique word made of letters from
the alphabet {A,B}, and vice versa. We will refer to this coding as the Stern-Brocot coding,
and will write I = W if | is the SB-interval whose Stern-Brocot code is given by W €
{A, B}*, for some k € N. The reader might like to recall that there is a dictionary which
translates between Stern-Brocot intervals and continued fraction cylinder sets
lay,...,an]:={[x1, x5,...: x = ax , k = 1,...,n}, which reads as follows. For {X,Y} =
{U,V} = {A, B}, we have
o s v ar - ([ag +1,az,a;3,...,a,] for X =A
XD pRXTE U kV:{[[l,al,az,...,ak]] for X = B.
By using this dictionary, it is not hard to see that for n > 2 we have
vo={1€.,:1=WXYfor{X,Y}={A,B}and W € {4, B}"%}.
To illustrate this way of viewing “;,, we list the first members of this sequence of code
words:

1 B
5 AB BA
73 AAB ABA BAB BBA

74 AAAB AABA ABAB ABBA BAAB BABA BBAB BBBA

The sequence ( ;) can also be expressed with the help of the Farey map T: ~, —
7. For this, recall that T is given by T

X ¢ c 0,1]

or x € |—

T(x):=4 1 7% ‘
(1—x)/xforx € (2’1],

and that the inverse branches of T are given by

uo(x):=1_T_—x and uy(x):=1/(1+ x).

The associated Markov partition is then given by {L, R}, where L: = ~,\ 7; and R: = 7,
and each irrational number in ~, has a Markov coding x = (x4, x5,...) € {L, R}"N, given
by T*~1(x) € x,, forall k € N. This coding will be referred to as the Farey coding, and will
write I 2 W if | is the SB-interval whose Farey code is given by W € {L, R}, for some k €
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N. The dictionary which translates between Farey codes and continued fraction cylinders
reads as follows:

L4~ 1RL[%2~ 1R~ ... [Ak~1R 2 [a,, a,,as,..., 4]
By using this dictionary, it is not hard to see that we have, for each n € N,

vo={l€ 1 2WRforW e{L R}
Again, let us list the first members of this sequence of code words:
7“1+ R
75: LR RR
73:LLR LRR RLR RRR
74 LLLR LLRR LRRR LRLR RRLR RRRR RLRR RLLR

The crucial link between the sequence of sum-level sets and the Farey map is now given by
the following lemma.
Lemma (4.2.1)[170]: For all n € N, we have that

T (g) = 7
Proof. By computing the images of ; under u, and u,, one immediately verifies that
T-1(7]) = 5. We then proceed by way of induction as follows. Assume that for some
neN we have that T~ V()= 7,. Since T™(~)=T" (T‘("‘l)( Vi)) =
T-1(~,), itisthensufficientto showthat T~1( ;) = #,,,,. Forthis, letx = [a,,a,,...] €
7, be given. Then there exists £ € N such that x € [a,,...,a,] and ¥, a; =n. By
computing the images of x under u, and u;, one immediately obtains that T~1(x) =
{[1,a4,a,,...1,[a; + 1,a,,...1}. Clearly,since 1+ ¥¢_, a;=(a; + 1) +3¥f, a;=n+
1, this shows that T~1(x) ¢ “,.4, and hence, T"1( ;) € 1. The reverse inclusion
“n+1 © T71( ) follows for instance by counting the SB-intervals in 7, and using the
dictionary translating between SB-intervals and continued fraction cylinder sets.

For later use we now recall a few elementary facts and results from infinite ergodic
theory for the Farey map. It is well known that the infinite Farey system ( ,, T, /1) is a
conservative ergodic measure preserving dynamical system. Here, . ~/refers to the Borel o-
algebra of ~,, and the measure p is the infinite o-finite T-invariant measure absolutely
continuous with respect to the Lebesgue measure A, which is, up to a multiplicative constant,
unique with respect to these properties (cf. [45]). In fact, with ¢,: 7y = “, defined by
@o(x): = x, itis well known that p is explicitly given by (see e.g. [175], [185] , [186])

dA = @ydp.
Recall that conservative and ergodic means that ¥,,-o T"(f) = oo, p-almost everywhere
and for all f € LT(W):={f € L;(n): f = 0 and u(f- 1,0) > 0}. Here, 1, refers to the
characteristic function of ;. Also, invariance of p under T means 7(1,,) =1, , where

T:L,(p) - L, () denotes the transfer operator associated with the infinite dynamical Farey
system, which is a positive linear operator, given by

1(1c 7)) =l - f),  forallf € Ly(w,C €.
Finally, note that the Perron-Frobenius operator “4 L, (n) — L,(p) of the Farey system is
given by
AS) = lugl - (f eup) + ug - (f ouy), forall f € Ly ().
One then immediately verifies that the two operators T and  are related as follows:
T(f) = @0 Af/po),  forallf € Li(w)
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We give two alternative proofs of Theorem (4.2.6). The first of these is more
elementary, whereas the second uses exactness of T and a criterion for exactness due to Lin.
Lemma (4.2.2)[170]:

liminf,, ., A(7;) = 0.
Proof. Let n € N be fixed such that n>3, and let k € {2,...,n — 2} be arbitrary. Recall that
the set of SB-intervals of order k consists of 2%~2 blocks of four adjacent SB-intervals. Now,
let ] ¢ 7, be a SB-interval of order k such that = W € {4, B}* . We then have that |
contains the interval I, ,_, = WA™ ¥ as well as the interval I ,,_, = W B" % . Note that
Iy n_x and Ig ,_; are two distinct SB-intervals of order n which are both contained in 7.
Also, it is well known (see e.g. [182]) that in this situation we have, where a,, = b,, means
that the quotient a,, /b, is uniformly bounded away from zero and infinity,
A) =(n— k)A(IX,n_k), for each X € {4, B}.
Clearly, Ixn-xNJyn—x =9, for all Xe{A4,B},1,]J€ U +]). Moreover, by
construction, we have for each k,1 € {2,...,n — 2} such that k # [ and such that either k
and | are both odd or both even,
Iyn-r NJyn_y =0, foralll € ~,,] € 7,X € {A B}.
Note that in here we require that k and | are both odd or both even, since for instance for the
interval I € , for which I = AB and the interval ] € 5 for which ] = ABA we have that
Iy n—2 = Jan-3- Also, note that we require k < n — 1, since for instance for the interval I €
“n—1 for which I = W B we have that I, ; € 3. It now follows that for each k <n —1
we have

ﬁl(m: > ﬁt(z): > k).

I€e 7 1€ v, X€{A,B}
Combining these observations we obtain that

Z A /k)~z DD Alxnni) <27,

k=2 k=2 1€, Xe{AB}
To finish the proof, let us assume by way of contradiction that lim inf,,_,,, A( ;) =k > 0.
By the above, we then have that
n-—2 1 n-—1
1=>A(75) > z n—/t( k) > Kz T >» logn,foralln € N,
k=2
where a,, > b,, means that the quotient a,,/b,, is unlformly bounded away from zero. This
gives a contradlctlon and hence finishes the proof.
For the first proof of Theorem (4.2.6) we also require the following lemma. We might
like to recall that the function ¢@,: “, =  is given by @, (x): = x.
Lemma (4.2.3)[170]: On ; we have
Thpo < T" 1, for alln € N.
Proof. Recall that Tg = ¢, - “Ag/@,), where Ag) = Y1, (T™1) - (g o), thatis,
- Ug(x) ) +x-glu(x
Tg(x)=g( o )) g( 1( ))

1+x
By [51] it follows that for D: = {g € C?([0,1]):g' = 0,g"" < 0} we have T(~) € <. The

latter displayed formula in particular also shows that f(1/2) = Tf(1). Moreover, one
immediately verifies that ¢, € “. Hence, for all x € ~; we have
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Thpo(x) < max{T"po(x):x € 74} =T po(1) = T" o(1/2)
= min{T" 1py(x):x € 71} < T" 1py(x).

First proof of Theorem (4.2.6). Using Lemma (4.2.1), Lemma (4.2.3), the T-invariance of
M, and the fact that dA = ¢, - du, we obtain
A 7n41) = ll(l’/n+1 ‘o) = H(lT—“('/l) “g) = H(l “ -’T‘“(<p0)) < H(l " Tn_l(‘ﬂo))

= (1., @) = (7).
Hence, the sequence (/1( ’/,’1)) Is strictly decreasing. Combining this fact with Lemma
(4.2.2), our first proof of Theorem (4.2.6) is complete.

For the second proof of Theorem (4.2.6) recall that a nonsingular transformation S of
the o-finite measure space ( ~y, ~,m) is called exact if and only if for each element A of
the tail o-algebra N,y S™™(. ) we have that m(4) - m(A¢) = 0. Crucial for us here will be
a result of Lin [184] which gives a necessary and sufficient condition for exactness of S in
terms the dual S of S. Lin found that S is exact if and only if

rlll_rLlo ||.§"(f)||1 = 0,forall f € L;(m) such thatm(f) = 0.

We begin with by showing that the infinite Farey system ( ~,, T,-“4/W) is exact. Let us remark
that this fact is probably well known to experts in the field of infinite ergodic theory of
numbers. We were unable to locate a rigorous proof in the literature, and hence decided to
give such a proof here. However, our proof was inspired by the proof of [171].
Proposition (4.2.4)[170]: The Farey map T of the o-finite measure space ( “,, "/, W) IS
exact.

Proof. Let A, €N,y T ™/ be given such that my(4,) >0, where dm,(x) =

(log(Z) 1+ x))_ldxl(x) denotes the Gauss measure. Note that, since p and my, are in the
same measure class, it is sufficient to show the exactness of T with respect to mg, rather
than p. Therefore, the aim is to show that m,(Ag) = 0. For this, first note that, since 4, €
N,en T~ ™ 7/, there exists a sequence (4,),en Such that 4,, € .~7and A, = T "A4,,, for all
n € N. Clearly, we then have that A, = T*A,,, forall k,m € N,. Foreach x € ~, letp
be defined by
p(x):=inf{ln > 0:T"(x) € 1} + 1.

Since T is conservative, we have that p is finite, mg-almost everywhere. Define p,,;: =

2 po(gh), and let < xq,...,x, »>:= {(y1, V2, ..) : Vi = X, k = 1,...,n} denote a
cylinder set arising from the Farey coding. Using the facts that mg is g-invariant and of
bounded mixing type with respect to g (that is, mg([ay, ..., aminl) = my(lay,...,an]) =
Mg ([@m+1, -+ Amanl), forall (ay, ..., am4,) € N™*™ and m,n € N), we obtain for m-
almost every x = (x,x5,) ...[ay, ay,...],
my(Ag NK Xq,..., %) () »)

mg(<< X1y Xp, (x) >>)
_my (T~ A, o N xy, 0%, ) )
My (K Xp,..0, %5 ) )
_mg(gTM Ap 0 NK Xy, X P) My (9T g0 N as, - an])
a My (K x4, Xy () ) Bl my([ay, ..., an])
9 " A, Mg (lay, ..., anl)
mgy(lay, ..., a,])
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Also, by the Martingale Convergence Theorem (cf. [176]), we have for m,-almost every
X =(X1,X3,...),
Al_r)glo mg(A0| K Xpyees Xy (x) >>) = 1,,00).

Combining the two latter observations, it follows that A, = A mod m,, where A is defined
by

A= {x € 7p:liminf, mg(Apn(x)) > 0}.
Since, by assumption, m,(4,) > 0, we now have that m,(A) > 0. Hence, to finish the
proof, we are left to show that m,(A) = 1. For this recall that m, is ergodic and g-invariant.
This gives that it is in fact sufficient to show that g7*A < 4 mod mg. In other words, in

order to complete the proof, we are left to show that lim inf,, m, (Apn(g(x))) > 0 implies

lim inf, my(A, ) > 0.Sinced, = Ap)+pn(g) = Tp(x)Apn(g(x)), this assertion
would follow if we establish that for each € > 0 and ¢ € N there exists k > 0 such that for
all B € .-/with m,(B) > & we have m,(T*B) > k. Hence, let us assume that m,(B) > ¢,
and let ar, denote the Markov partition for the map T*. Clearly, there are 2¢ elements in a,.
This immediately implies that m,(A N B) > g2~¢, for some A € a,. Therefore, using the
fact that T*: A —» , is bijective, A and my are absolutely continuous with respect to each
other and |(T{’)'| >1, we have my(TB)=my(T*(BnA))= A(T*’(B n A))/
(2log2) = A(B nA)/(2log2) = m,(B n A)/2. This implies that m,(T*B) > 2=+ V¢,
Hence, by setting in the above x: = 2=¢*+V¢, the proof follows.

The proof of the following proposition is very much in the spirit of [190]. However,
since the Farey map is strictly speaking not contained in the class of maps considered in
[190] (see [190]), we decided to include the short proof.

Proposition (4.2.5)[170]: For each C € .~/with u(C) < oo, we have that
lim A(T™(C)) = 0.

n—oo

Proof. Let C € ./be given as stated in the proposition. For each A € .~/ for which 0 <
1 (A) < oo, we then have

1 1
A(T—n(c)) — P—(lT‘”(C) . (po) =U(lcoT™ @) = ll<1C o (QDO - P—(jl) " P-(;ll))>

< ‘T”(%-%) 1+u—T_n:8)nAs ||Tn(¢o_%) 1+%
€)
-

for n tending to infinity. Here, the latter follows, since T is exact and u((@o — 14/1(4))) =
0, and hence, Lin’s criterion, mentioned at the beginning, is applicable. Therefore, by
choosing u(A) arbitrarily large, the proposition follows.
Theorem (4.2.6)[170]:

7lli_)r2) A7) =0.
Proof. The following lemma gives the first step in our first proof of Theorem (4.2.6). Note
that the statement of this lemma has already been obtained in [36], where it was the main
result. Nevertheless, as self-contained as possible, we give a short elementary proof of this
result.
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In Proposition (4.2.5) put C = 7, and then use the fact that ~,, = T~V (), for
alln € N.
Theorem (4.2.7)[170]:

n
Pz n
kZ M) ~ ooy
Proof. We employ several standard arguments from infinite ergodic theory. First, note that
it is well known that the induced map T, of the Farey map T on 7 is conjugate to the
Gauss map g. This then immediately gives that T, is continued fraction mixing (see [191]).

Therefore, by [45], it follows that ; is a Darling-Kac set for T. This implies that there
exists a sequence (v,,) (the return sequence of T) such that
n-1

lim V—Z Ti1, .(x) = u( ) = log2, uniformly for u — almost every x € 7.
n—-oo n

In order to determme the asymptotic type of the sequence (v,,), recall from [45] that for a

set C € .7/such that 0 < p (C) < oo, the wandering rate of C is given by the sequence

(W, (C)), where

n

W,(C):= U T-G-DCY |
k=1
Let us compute (Wn(C)) for C = ;. Namely, for all n € N we have

n

w(=ul [ 100 = (1) = togtn+ v
k=1 n+1’

Note that this wandering rate is slowly varying at infinity, that is (see e.g. [172]),
lim M@n(71)
n—>00

W (71)

Also, note that, since T has a Darling-Kac set, it follows from [45] that T is pointwise dual

ergodic with respect to y, that is,
n-—1

lim 1 T'f = u(f), forall f € L*(p).

n—oo Vn

= 1, for each k € N.

In this situation we then have, by [45] that the return sequence and the wandering rate are
related through
lim (n- v /Wa( 7)) = 1.
Combining these observations, the proof of Theorem (4.2.7) follows (cf. [45], [171], [60]).
e The map T is rationally ergodic with respect to y. That is, there exists a constant ¢ >
Oandaset Awith 0 < p(4) < o such that for all n € N

n—-1

L(Z 1A0T> du<c<f Z 1A°Tdu> )

i=0
e The map T has the following mixing property. For A W|th 0 < u(A4) < oo such that
(*) holds, we have for all U,V c 4,
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n-—1

1 .
lim — w(UNT~V) = p)pV).

Theorem (4.2.8)[170]:

A(7) ~ log2 1
Proof. As already mentioned in the introduction, the proof of Theorem (4.2.8) will make
use of some further, slightly more advanced infinite ergodic theory. Let us begin with by
first giving the concepts and results which are relevant for the proof of Theorem (4.2.8). The
following concept of a uniform set is vital in many situations within infinite ergodic theory,
and this is also the case in our situation here. (For further examples of interval maps
(including the Farey map) for which there exist uniform sets we refer to [188], [189].)
(1) [45]) Aset C € .~/with 0 < p(C) < o is called uniform for f € LT (), if p-almost
everywhere and uniformly on C we have that
19
im — » T*(f) = u(f),
e i
where (v,,) denotes the return sequence of T , and uniform convergence is meant with
respect to L, (1|C).
Note that it is not difficult to see that the Farey map T satisfies Thaler’s conditions, among
which Adler’s condition, i.e. T" /(T")? is bounded throughout (0,1), is the most important
one (see [188], [189]). This then immediately implies that we have the following, where,
the function ¢, is given by ¢,(x) = x.
(I1) Let C € .~/be given with A(C) > 0 and so that there exists an €>0 such that x>¢, for
all x € C. We then have that C is a uniform set for the function ¢,.
Now, the crucial notion for proving the sharp asymptotic result of Theorem (4.2.8) is
provided by the following concept of a uniformly returning set. (For further examples of
one dimensional dynamical systems which allow uniformly returning sets for some
appropriate function we refer to [60].)
(1) ([50]) A set € € .~ with 0 < p(C) < oo is called uniformly returning for f € Ly if

there exists an increasing sequence (wy,,) = (wn(f, C)) of positive reals such that p-
almost everywhere and uniformly on C we have
lim w, 7"(f) = u(f).
In order to determine the asymptotic type of the sequence (w,,), we use [50] where we found

that
lim W, (C)/w, =1,forall C €.7/ suchthat0 < p(C) < oo,
n—->oo

where (Wn(C)) denotes the wandering rate, which we already considered in the proof of
Theorem (4.2.7). In [50] it was shown that every uniformly returning set is uniform.
Whereas, in [51] we found explicit conditions under which also the reverse of this
implication holds. Applying these results of [51] to our situation here, one obtains the
following.

(IV) ([51]) Let C €./with 0 < p(C) < o be a uniform set, for some € L. If the

wandering rate (W,(C)) is slowly varying at infinity and if the sequence (T‘"(f)|c)

Is decreasing, then we have that C is a uniformly returning set for f. Moreover, p-
almost everywhere and uniformly on C we have
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lim W,(OT(f) = n(f).
With these preparations, we can now finish the proof of Theorem (4.2.8) as follows.
The idea is to apply the results stated above to the situation in which the set C is equal to
1. For this, first recall that we have already seen that the wandering rate (Wn( ’/1’)) of ]
Is obviously slowly varying at infinity. In fact, as computed in the proof of Theorem (4.2.7),
we have that AI_ILIO n- v, /W,(7;) =1, and also that W,,( ;) ~ logn. Secondly, since ~;

Is bounded away from zero, the result in (II) gives that 7 is a uniform set for ¢,. Thirdly,
by Lemma (4.2.3), we have that the sequence (T‘”(goo)| . ) Is decreasing. Thus, we can
1

apply the result in the first part of (IVV), which then shows that 5 is a uniformly returning
set for the function ¢,. Hence, the second part in (1) gives that p-almost everywhere and
uniformly on ; we have
111_{210 Wo (7T (@) = n(eo) = 1.
Combining these observations, it now follows that
lim (logn - A( 7)) = Jim (W (72) - w(1, - T (po) = (1) = log2.
This finishes the proof of Theorem (4.2.8).

Here we give a brief discussion of some thermodynamical aspects of the results. For
this, recall that in [181] and [183] (see also [182]) we studied the multifractal spectrum

{t(s):s € R}, given by
7(s): = dimy ({x = [a,, a,,...]: lim ZI()ng—qn(x) = s})

n—oo -1 Qi
Here, p,,(x)/q,(x): = [a,, a,,...,a,] denotes the n-th apprOX|mant of x, and dimH refers
to the Hausdorff dimension. In order to recall the results on this spectrum obtained in [183],
we require the concept of the pressure function associated with some family . /=
{ +,:n € N} of sets of subsets of the unit interval. For this, we define the n-th partition
function Z - associated with such a family F by

Z.,®=> (dam®),

(7%
with which we can then define the pressure function of the family . /by

1
P At):= lim —log Z ().

The following results give the main outcome concerning the properties of T and the Stern-
Brocot pressure function P -of the Stern-Brocot family .z = {. 4: n € N}. This complete
thermodynamical description of the Stern-Brocot system was obtained in [183]. Here, y: =

(1 4+ +/5)/2 denotes the Golden Mean, and P*refers to the Legendre transform of P_-given
fors € Rby P*(s): = sup {t -s—PAt)}.

(@ [183], [181]. For each s € [0,2logy], we have that
7(s) = =P'A=s)/s,
with the convention that 7(0):= Li\rg — P*(—s)/s = 1. Also, the dimension
function t is continuous and strictly decreasing on [0,2 logy] and vanishes outside
the interval [0,2log y). Moreover, the left derivative of t at 2log y is equal to —co. The
function P -is convex, non-increasing and differentiable throughout R, and P _As real-
analytic on (—o0,1) and vanishes on [1,00). Furthermore, for each s € (0,2 logy] there
exists an equilibrium measure pg for which dimy (ug) = t(s).
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(b) [178], [30] We have that
P (1—¢) ~—¢/loge, for ¢ tending to zero form above.
In particular, the Farey system has a second order phase transition at t=1, that is, the
function P’ s continuous and P'-is discontinuous at t=1.
Note that the vanishing of AI_)IEIO A( ;) is very much a phenomenon of the fact that

the Stern-Brocot system exhibits a phase transition of order two at t = 1. At this point of
intermittency, finite ergodicity breaks down and infinite ergodic theory enters the scene. In
particular, by (b), this abrupt transition from finite to infinite ergodic theory happens in a
way which is non-smooth.
In the following let ~:= { ~,,:n € N} denote the family of sum-level sets, and let ©: =
{ ~n:n € N,n # 1} be the family of their complementary intervals, that is, - n denotes
the set of intervals given by the 2"~2 + 1 connected components of the complement of 7,
in [0,1].
Proposition (4.2.9)[170]: For each s € (0,2logy] and n € N, we have that

us(77) = us(“n) = 1/2.
Whereas for s = 0 and p,: = u, we have, forall n € N(n # 1),

Ho( “3) =log2, uo(y) = oo, rlll—>ngo A(7) =0 andrlli_{gl0 A7) = 1.
Moreover, the outcome of the above complete thermodynamical description of the Stern
Brocot system stays to be the same if we base this type of analysis exclusively on either
or 7, instead of on. <’In particular, the pressure functions associated with the systems ~, <
and . ~coincide, that is,

P ft)=P (t) =P (t)forallt € R.

Proof. The estimates for the equilibrium measures p, (for s € (0,2logy]) are immediate
consequences of the T-invariance of these measures.

For the equality of the pressure functions one uses the recursive definition of the
Stern-Brocot sequence, with which one immediately verifies that

tn—l,zk—ltn—l,zk = tn,4k—2tn,4k—1 =n tn—1,2k—1tn—1,2k’
and
tn—l,zktn—1,2k+1 < tn,4k—1tn,4ksntn—1,2ktn—1,2k+1-

Combining these estimates, we obtain

n-lel Z (diam(l))ts Z (diam(l))tSn“' z (diam(l))t.

1€ m_q 1€ 7 1€ 44
This shows that P (t) = P ,(t), for all t € R. The proof of P = P., follows by similar
means, and is left to the reader.
Note that for an even interval of any order n € N we have, for all t € R,

t t
diam < Sn,ak-2 ’ Sn,4k]> —( diam (lsn,4k—2 , Sn,4k—1]> + diam <[5n,4k—1 ’ Sn,4k]>
thak—2 tnak tnak-2 tnak-1 thak-1 tnak
t t
—( diam ([Sn,4k—2 ’ Sn,4k—1]> + [ diam ([sn,4k—1 ’ Sn,4k]>
thak-2 tnak-1 thak-1 tnak

—t
t _ _
= ( nAk 2) + (tn,4k—1tn,4k) g

tn,ak-1
Hence, the pressure function P,. associated with the Farey tree model coincides with the
pressure function P.,.
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By giving an application of Theorem (4.2.8) to elementary metrical Diophantine
analysis. For this, first recall the following well-known result of Khintchine (see e.g. [19]),
which states that

log (Zn

Ln) =1,for A
loglogn

In contrast to this well-known Khintchine law, Theorem (4.2.8) now gives rise to the
following algebraic Khintchine-like law. (For some further results on the statistics of the
sum of the first continued fraction digits see [177].)

Lemma (4.2.10)[170]: We have that

log( An+1 )
=1 % < 0,for A — almost every [a,, a,,...].
log log(Z L )
Proof. Foreachn € N and € > 0, let

A= U {[[al,-- ) Qe ] Z a; =N, ag.q 2 n(logn)®y,

keN i=1

.“/n€:= U I.

1€AS
Then note that a routine calculation for the Lebesgue measure of continued fraction cylinder
sets gives, for all k, ¢ € N,

> e G D) = €720y, 0 D),
. ) . ak+1=¢ .
Using this estlmate and Theorem (4.2.8), we obtain

)—z IR SR [ IR )

k=1 (al ak) arg12n(logn)é

lim sup,, o — almost every a4, a,,...|.
n 1, Y2

lim sup,,_, e

and define

l 1 &=
Z Z A([[al,...,ak]])
& e (logn)¢
Zl 1 ai=

= (n(logm)*)™* Z > ey @) = (1ogm)) A %)
k=1 (aq,.-.ar)
Z?:l a;=n
log 2
n(logn)1i+e
A straight forward application of the Borel-Cantelli Lemma then gives that
A(lim sup,, fég = 0,for each € > 0.

Hence, by considering the complement of lim sup,, .4° in 7, we have now shown that,
for each € > 0 and for A-almost all [a, a,,...],

k k €
Appq < (Z ai> (logz al-) ,for all k € N sufficiently large.
i=1

i=1
117



By taking logarithms on both sides of the latter inequality, the lemma follows see [180].
Section (4.2): Lebesgue Measure of Preimages of Iterates of the Farey Map

In a letter to Laplace in 1812, Gauss posed the problem of estimating the error
loglu + 1)
A(ay, ay, .. i [@net, Qnggr -] < u) — W

as n approaches oo, where A is the Lebesgue measure, u € (0, 1) is fixed, and
1
la,,a,,...]:= T (a; EN)
a; +
1T, + -

denotes a regular continued fraction expansion. Let G : [0,1] — [0, 1] be the Gauss map
defined by

_({1/x} ifx+0
6 ={'" iz
anddv = dA/((1 + x)log 2) be the Gauss invariant measure. This problem is equivalent
to estimating
A(GT[0,u)) — v[0,u).(n = ) (D
We write f(x) = 0(g(x)), or equivalently f(x) < g(x), as x — oo if there exist
constants M,N > 0 such that |f(x)| < M|g(x)| for all x = N (when f(x) =

oif lim f()/g(x) = 1

Lévy first showed that (1) is 0(q™) for g = 3.5 — 2+/2, and Wirsing determined
the optimal value of g as 0.30366 ... by discovering the spectral gap in the transfer operator
of the Gauss map. An exact solution to Gauss’s problem was first given by Babenko, who
proved that the transfer operator is compact when restricted to a certain Hilbert space of
functions. This result was later extended by Mayer and Roepstorff. (See [195]).

We concerned with the analogue of Gauss’s problem for the Farey map F : [0,1] — [0,1]

defined by
1
X/(l — x)ifO < x SE
1
(1—x)/x if§<x<1.

Specifically, we analyze the asymptotic behavior of A(F™"[u,1]). The Gauss map is
conjugate to the induced transformation of the Farey map on [1/2, 1] (see [196]). In spite of
this relationship, the Gauss and Farey maps exhibit very different behavior, one of the
reasons being that F preserves the infinite measure du = dA/x.
In the special case u = 1/2, F~ ™ D[y, 1] is the nth sum-level set for continued fractions
k
Cn = {[lai,a;,...] € [0,1]: z a; = nforsomek € N}.
i=1
This follows from the fact that F maps continued fractions [a4, a,, ... ] as follows:

F(x) :=
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Fig. (1)[192]:The graph of F3 and C, shown as the inverse image F~3[1/2,1].

[a;, — 1,a,,...] ifa; = 2
F(lay az.- 1) _{ las,as,...]  ifa; = 1,
from which it is straightforward to see that F~1(¢,) = C,;,, and hence C, =
F~=Y(e,) = F-™=D[1/2,1] (see [170]). This is illustrated in Fig. 1 whenn = 4.
Confirming a conjecture of Fiala and Kleban [36], Kesseb6hmer and Stratmann
proved the asymptotic equivalence [170]

/1(671) ~ ’ (Tl - OO)
log, n
and later, they generalized this result by proving that
A [, 1) ~ L o @)
’ log n

for all u € (0,1]. This in fact follows from their stronger result [44] that the sets of the
form F~™[a, 8], with [a, B] S (0, 1], equidistribute in [0, 1]. Their proofs applied deep
results in infinite ergodic theory following from Aaronson [45], [193], and Kessebohmer
and Slassi [51], [50], to the Farey map. In particular, they used the inverse relationship
between the wandering rate of a uniformly returning set of the Farey map and the decay of
the iterates of the Farey map’s transfer operator. We prove the following result, which
provides an effective version of (2).

Theorem (4.2.1)[192]: For any interval [a, 8] € (0, 1], we have

! 1
A(F—(n—l)[a,ﬁ]) =% (1 + Oa,ﬂ (log—n)> .(n » ) (3)

Instead of proving Theorem (4.2.1) directly, we prove the following result, part (b) of which
resembles [170].

To establish Theorem (4.2.1) from this, note that (a) and (b) imply that for all u €

(0, 1),
1 — log(1 1
/1(6%) < E Z A(C;:+1) = Oli(g /nu) (1 + Ou (log n)) ’

k=0
and
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2n
" 1 u ~_ 1 [(2nlog(l/u) nlog(1/u) 1
MEDZS Y Ak =+ ( - ) (1 +0, (1o n))

e n log 2n log n

- (lolifg—lilu) * O (logi n)) (1 O <log1 n))

_ log(1/u) (1 Lo (

log n

o log(l/u) 1
ACn) = log n (1 O <log n)) (n = )

Then subtracting this expression for u = f from that for u = «a yields (3).
To prove Theorem (4.2.2), we make use of the transfer operator £ : L'(x) — L'(u) of F,
which is the positive linear operator satisfying

j Ffdu= j f du, for all Borel subsets B € [0,1] and f € L'(u),
B

F~1(B)

log n) ’
and hence

and is given by

N x/(1 + x xf(1/(1 + x
Ff(x)=f( /(1 + ))1++ )1:( /A + ))_ @
Unlike how the Gauss problem was addressed, we do not appeal to any spectral properties
of F, as obtaining an effective version of (2) through such means appears to be difficult, by
the examinations of the spectrum by Isola [1] and Prellberg [199]. We also forego applying
strong, general results from infinite ergodic theory to F. Instead, we establish estimates
involving sums of the iterates of £ specifically, and make careful applications of the equality
(6) following from [45] and Karamata’s Tauberian theorem [197], which are important
results underlying much of the machinery used in [44] and [170], so as to obtain error terms.
In particular, we make an application of Freud’s effective

B

T RS e 1 61
: | . : : ) .
0 ! el 3 5 o3 e L1 e
5 1 : 2 3 3
0! 4 - 3. 2 Thi L
Pl 2 3.7 1 3. S P | L |
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oo S § ; S o P : S LT I S
1 2 3 3 4 S5 S5 4 S5 1+ 8 7 7 8 7 5 =+
6 9 11 10 11 13 12 9 9 12 13 11 10 11 9 6 1

Fig. (2)[192]: Thesum-level sets as Stern—Brocot intervals.

version of Karamata’s theorem [194] in establishing an asymptotic estimate of a certain
weighted sum of the measures A(C},,) from an estimate of its Laplace transform derived
from (6). We can then remove the weights to prove (b) by a standard analytic number theory
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argument. See [198] for other asymptotic results derived from operator renewal theory
involving the iterates of transfer operators of infinite measure-preserving systems.

(See Fig. 2.) This was the characterization of C,, considered by Fiala and Kleban [36]
motivated by their study of spin chain models. The relationship between the Farey map and
the Stern—Brocot sequence was exploited in [44] to prove the equidistribution of certain
weighted subsets of the Stern—Brocot sequence.

Theorem (4.2.2)[192]: Letu € (0,1) and C¥ := F~(™=V[y, 1]. Then:

(8) (A(CR))__ is a decreasing sequence;

(b)z =0 A(Ck+1) _nloogT(l,{u) (1 + 0 (log )> (Tl - oo)

Proof. Proof of (a) The case in whichu > 1/2 follows from the proof of [170], so assume
u € (0,1/2). Let @y : [0,1] = [0,1] be defined by ¢y(x) := x (note dA = ¢, du) SO
that

1
Acy) = f Fr=1g, d.

u
By [51], F maps the set of functions {f € C2(0,1): f' > 0,f"” < 0}into itself, and thus
it suffices to show that

Ll Ffd,u<ju1 f du

whenever f € L'(w) is increasing. This follows from

1 1 1 1 -1/(1+w)
| rau- [ Frau=| fdu—f fdu=j fau f du
u u u 1[ul] u/(1+u)

1 u
=j fd,u—f fdu 2<f< (u))log(1+u)>0.
1/(1+u) u/(1+u)

Proof of (b) we first consider the case where u = 1/N, with N e Nand N > 2. Define
the functiona : R - R by

lo]
a(@):= Z ACH),

which is the u- average of the function F0<p0 s= Zl‘” F¥ @, 0on c¥ = [1/N,1] by

lo]
. 1
Frpodyu = z j 0odu =—z ACL,).
u z 0 0 k+1
#(61) cr & log N i Jp-r(ewy log Nk=O

We have the following bound on the difference of £,¢, and a (o).
Lemma (4.2.3)[192]: Forallo € Rand € C}*,
N(N — 1)

|00 () — a(0)] < ——
Proof. Without loss of generality, we assume that 0 = n € N U {0}. By [51], we know
that £, ¢, is increasing. So the difference between E, ¢, (x) and a(n) is at most £, ¢, (1) —
E,0,(1/N). Using the equality
Pk N_ T kn 1 Voae, (-1 . ;
F(Po(]T)—j_lF ‘Po(j_1>_j_1F<P0< ] )(]EN,JZZ)
following from (4), and the fact that F*¢, is increasing for each k € N U {0}, we have
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Fapo) = Fugo (37) = Z (ﬁ"woﬂ) e (%))

k=0

n
N 1
_ Bk _ Sk+1
Z (Fro() ——7F ‘p"(zv = 1)

k=0
N 1 i (N—l)
N1 Po\™N

N 1
ik _ k+1
=N = 14 (F Po(1) = F g (N — 1))
Using this inequality recursively, and also the equality Ff(1) = f(1/2), yields

Fo0(1) — Fn<p0( ) 22 (Fk<p (1) — Fr+N-24p (%))

=g kz (qu) (1) — Fr+N-14 (1)) < N(Nz— 1).

Next, we let S : (0,00) — R be the Laplace transform of a given by

S(a):zj e /9 da(t) =—z e IA(CE )
_ log N —

n=
and prove the following bound similar to Lemma (4.2.3).
Lemma (4.2.4)[192]: Forall x € ¢{andallg > 0,

Z e g, (x) — S(o)| <
n=0

Proof. We first note the equality

i ane ™7 = (1 — e‘l/")i e /o (i ak>, (5)
=0

n=0 k=0
which holds for all sequences (a,,) satisfying -, ax = O(n)asn — candalle > 0.

Letx € C¥,8,(x) := E,0,(x) — a(n),and ¢ > 0. Using (5) twice, we have

D ey = (1 - eV0) Y e hgo()
n=0

n=0

N(N = 1)
—

= (1 - e‘”“)E e (a(n) + 8,(x))

= S@) + (1 - e—l/ff)z e 7S ().
Since |6, (x)| < N(N — 1)/2foralln = 0, we have
(1_6—1/0')2 —n/cré' (x) < (1—8_1/0)2 —no N(N — 1) N(N — 1)

2
To continue the proof we will make use of the followmg equallty given by [45].
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L(i e—mfﬁnf> (1—e~%4/%) dy =i e—"/fffA fdu  (6)

n=0 n=0 n
Here, f is any function in L (u),o is any positive real number, A < [0, 1] is any subset
such that u(A) < o,4, := A4, and 4, := F"A\U?Z} F*4 forn = 1. Also, ¢, :
A — N is the return time function on A deflned by @4(x) := min{n € N: F*(x) € A}.

i — (U — ; . e 1
Letting A = C{ and f = ¢, in (6), and noting that 4,, = n+N,n+N_1) forn > 1, we
have

1 R N _
j Y TRy | (1 4/ =
1N

n=0
N-1 < e /0
= +
N (n+ N)(n + N — 1)

On the other hand, using Lemma (4.2. 4) we see that the left side of the above is also equal
to

1/(n+N-1)

1 N -n/o
+ Z e Qo du
1/(n+N)

n=1

0

(S(o) + Oy (D)) (1 — e 1/9) 1 (z e‘"”’ﬁ"l) (1—e~%4/%)du

1N n=0
ot 1/(n+N-1)
= (S Ony(D)(1—e /0 C¥ —no d
(S() + Oy (D) (1 —e )(u( 1)+; e fww) u)
- + N
= (S(0) + 0y(1))(1 — e7¥/9) logN+z e ™ log (n :l_ - 1)

n=1
aso — oo.(Note that (6) holds for the constant function f = 1 in spite of the fact that 1 &
L*(u) since ¥%_, e ™9 F™1 has finite integral over C*.) For our next step, we determine
the asymptotic behavior of

N-1 < e /0
Nt MmN - D)
Lemma (4.2.5)[192]:
N-1 e MO
N ot N+ N - D)
Proof. Let S, : ]R - R be defined by

[00]

and log N +Z e‘”/010g<

n=1

n+ N )
n+ N-—-1)

log o

—1+0( ) (0 = )

N _1(n+N)(n+N—1)
Thenforo > 0,

N -1 e "o L
Z N)(n TN -1 fo_ e™t/7 dsy (D)

__ j (1 1 )‘t/“dt—l j‘°° e *dx
o), le] + N/ € B o lox] + N’

Since the inequality |t] + N 2% (t + 2) holds fort > 0, we have

]
N -1 1 1 -
S1(8):= L[0,00) (£) + = |t] + N
n 0
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*® e ¥dx ® e™d b 2dx ® 2e7* log o
j — < 2f Sf +f dx < . (o
o lox] + N o ox +2 ), ox +2 J; o o

- 0)
Lemma (4.2.6)[192]: We have
lo N+§: e %o ( nt N )-10 (c+N)+C+0 (10g_0> (0 = o)
8 B\ N —1/)7°8 N )

Where

1 e—x -1 00 e—x

C:=J — dx +f — dx.

0 X 1 X

Proof. Let S, : R — R be defined by
log(t+N)ift = 0

S2(8) = (log N)1jge)(®) + Z1L, log (221 = {89( )l;t ) Then for o >

0,

(0.0]

n+ N @ _
logN+z "/"log< T 1)=f — et dS,(t)
o 0

n=1

(0]

= %fow e " log(|t] + N) dt = jo e *log(|ox] +

= j e *log(lox] + N) dx — j
0
Using the inequality log(1 + x) < x, we have

joo =3 (UxHV)d —jm ~10g(1 479 Vg <<foo
R T A A ox + NS )

whichis 0(c71 log o) as ¢ — oo by the proof of Lemma (4.2.5).
Next, integration by parts yields

j % log(ox + N)dx = I N+jooae_xdx
0 e log(ox x = log o F N

To continue, we consider the integral on the right over [0, 1] by writing

jl ge *dx jl odx fl gle™ — 1)
= + | ——Zax
o 0x+N J, ox+ N J, ox + N

0 & lox] + N

N) dx

)ax.

e *dx

The first integral on the right equals log(oc + N) — log N, while the second equals

1 e X —1 1 e ™ —1 1 e ™ —1 1
[ty s N s T
0 X o Xx(ox + N) 0 X 0

Le™ — 1 log o
=j —dx+0N( ) (0 = ™)

Now considering the integral in (7) over [1,0), we write

N dx
ox + N

f‘” ae‘xdx_f""e‘xd Nj‘“’ e *dx _f‘x’e‘xd ‘o (1)
L, ox+N )| «x * ., x(ox + N) ), «x SRRV

Putting these results together proves the lemma.
Lemmas (4.2.5) and (4.2.6) and the equalities preceding them gives

(5(0) + Oy (1))(1 - e‘l/a) (log(a +N)+C + 0y (10{; 0))
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log o
=1+0<T)' (0 » )

and as a result,
o
S(o) = m"‘ On(1). (o0 » ) ()

At this point, an application of Karamata’s Tauberian theorem [197] then yields

n
Z M) ~ o

k=0
Furthermore, one can apply an adaptation of Freud’s effective version of Karamata’s
theorem [194] (see also [200]) accommaodating logarithms to (8) in order to prove

n
u oy " <;>
Z ACies1) log Nn <1+0N log log n/ )’ (n = )

k=0
To obtain an error term of Oy (1/ log n), we evaluate the equality

n+ N >)=1+0<loia>

(S(o) + 0y (D)) (1 — e71/9) (logN+Z e‘""log(n T—

more precisely. Instead of directly establishing an asymptotic equality for S(o), we divide
by 1 — e~%/9 and multiply the series expression for S(o) together with the other series on

the left side. Together with Lemma (4.2.6), this process yields
log o
o )) (0 = )

i i ACE ey —k) e = o (1 + oN(

)forn > 0. Now a direct application

(n > )

log N

where £y (0) := log N and £y (n) := log (-
of Freud’s effective Tauberian theorem yields

z::) JZ:) /1(6]&1)3N(k—]') =nlogN(1+0N (logl n)) (n —» o)

The left side of this expression is equal to

n k-1
D | Actoog N+ > A(Ch el = )
k=0 j=0
n n-1 n
=l0gNz A(CH ) + z A(CH 1) z ty(k — )
k=0 j=0 k=j+1
- = n—j+ N
=logNz ACE,) + Z A(c;il)log(]T>
k=0 j=0

Z A€ log(n — k + N),

where the second equality foIIows from the definition of £, and telescoping. We can rewrite
the last expression above as
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n n
log(n + N);) ACE ) +kz1 M) log (1 - ——).

So if we can show that
n

then we have
Zn:)t(eu)— " 1+0<1)
L k+17 " logy n N\log n/ "

Since individual terms on the left side of (9) decayto 0 asn — oo, we can consider the sum

starting from k 3. We have
z /1(6’”1)2 (n | N)

Z /1(C’k+1)10g(1— n N)
= z S — kKIA(CH, )
= jin + N) £
- 1 S - 1 1 sddx
<<Z i(n + N)J lo k<<z '(n+N)ff log x
=l Ly log k" Ly s log

« i 1 (n+ 1)/*1
- jn + N)JI\(G + Dlog(n + 1)
]=
« ni 1 (n+1)j<< n
_ ) — 00
logn,lj(j+1)n+N log n (n )
j=
This proves Theorem (4.2.2) in the case thatu = 1/N.

For the general case u € (0,1), let N = [1/u] so that [u,1] € [1/N,1]. Then for x €
[1/N, 1], we have
n

Zﬁk ()—Li ACYNY + 0y (1) = —— 1+0< L ) (n - )
L PolX) = 10g N & ke+1 N " log n Viog n) ) W

Integrating the first and last expressions over [u, 1] yields

nlog (1/uw) 1
Z ACica) = log n (1  On (log n)) (1= )

completing the proof
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Chapter 5
Self-Affine Sets and Self-Conformal Sets with Self-Similarity

We show that the set of points of A which have a unique address has positive
Hausdorff dimension for all (84, 5,). We investigate simultaneous (f;, 5,)-expansions of
reals, which were the initial motivation for studying this family in Gunturk We show when
restricting to self-conformal subsets of the real line with Hausdorff dimension strictly less
than one, that the weak separation condition is equivalent to Ahlfors regularity and its failure
implies full Assouad dimension. In fact, we resolve a self-conformal extension of the
dimension drop conjecture for self-conformal sets with positive Hausdorff measure by
showing that its Hausdorff dimension falls below the expected value if and only if there are
exact overlaps. We show that the “self-similar” construction described by BBI spaces
ensures the equivalence of positive Lebesgue measure and nonempty interior. We apply this
result to self-conformal sets satisfying the WSC and prove that positive Lebesgue measure
implies nonempty interior for such sets. This generalizes Zerner’s corresponding result for
self-similar sets.
Section (5.1): Topology with Uniqueness and Simultaneous Expansions

LetTy(x,y) = ((x +1)/B1, (y +1)/B;) fori = +1and A:= Ap_ gz, be the attractor

of the iterated function system (IFS) {T_;, T;}, i.e. the unique compact set satisfying A =
T (A) UT_,(A). It is well known that A is either connected or totally disconnected [62].
Figures suggest that when f; and f, are ‘sufficiently small’, Ag g is connected, and if, in
addition, they are ‘very small indeed’, then Ag_ has a non-empty interior—see Figure 1.

The main purpose is to make such statements quantifiable, thus expanding results from
[203], [215].

Figure (1)[201]: A1 2,135 A1.4;1.5 and Ay 7,1 5.

Clearly, if g, = B, then this set is either a Cantor set if g, =8, > 2 or a
onedimensional segment otherwise. Hence, the set is trivial. So without loss of generality
we will assume that 8, # B,.

For ease of notation, we will let A =1/8; and p=1/,. Some solutions and
discussions are simplified using A and p, and some with B; and S,. As such, we will use
them interchangeably.

We will denote—1 by m (for ‘minus’) and+1 by p. A word w € {p, m}" is asequence
of p and m of length n. The set {p, m}* will be the set of all finite words, and {p, m}" the
set of all infinite words. For w = w,w, ...w, € {p,m}*, we will denote by T,, the map
Tw,Tw, --- Ty, . 1fu,w € {p,m}*, we will denote by uw the concatenation of u followed by
w. By uw® we will mean the infinite word uwwww ... . We will use for negation.
Thatis,p=m,m=pandw = w;w,....
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We will define the map s, : {p,m}N > Rass,(w) =¥, w;A' =¥, w;/BL We
will define the map  : {p, m} - R? as m(w) = (s3(w), s,(w)). Thus, in this notation,
Ag,p, = {m(w):w € {p,m}"}.
For a point (x,y) € Ag, g, we will say it has address w € {p, m}" if m(w) = (x,y). It
should be noted that a point (x, y) may not have a unique address.
We begin our study by considering the set
Z ={(f1,B2):(0,0) € A°},
where A° is the interior of A. In a slightly different language, Z has been studied by Dajani,
Jiang and Kempton, who showed the following result.
Theorem (5.1.1)[201]: [203] If 1 < B;,B, < 1.05, then (B4,5,) € Z.
We improve this result to obtain the following theorem.
Theorem (5.1.2)[201]: If 5, #+ [, are such that
B2 — BL|  |B2BI (B2 — B1)
B —B{

<2

i

then (51, 5,) € Z.

Figure (2)[201]: Points known to be in Z (grey); points known to be not in Z (black); curve
B1B2 = 2.
As a consequence, we have the following corollary.

Corollary (5.1.3)[201]: If 1 < B4,B, < 1.202then (B4,05;) € Z.

We can also, in some cases, computationally check if (8;,8,) € Z and if (81,52) / € Z.
Many cases unfortunately remain unknown. These are shown in Figure 2. Those points
provably in Z, coming from Theorem (5.1.2), are shown in grey. Those points provably not
in Z, as discussed in Lemma (5.1.12), are shown in black. Note that all points above the
curve 15, = 2 are not in Z either. These results will be discussed.

The question ‘Is (0,0) € A°?’ can be easily extended to higher dimensions. Namely,
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Let
X, +1i Xm +1

B " Bm

Ti(xl,...,xm)z( ) i € {1}

.....

.....

We show in Theorem (5.1.4) that Z,,, is always non-empty, as first conjectured in [206].
Theorem (5.1.4)[201]: For each m > 2 thereexistsa C,,, > 1suchthatifl < f; <<

In the previous study, we bounded those f3;, 5, such that there is a neighborhood
of (0,0) contained in A. We observe that if (0,0) € A by r(w) = (0,0), then n(W) =
(0,0), where, as above, W is the negation of w. In particular, (0, 0) does not have a unique
address under .

For the next question, we examine the other end of this spectrum, namely, for fixed £;
and B,, which points (x, y) € A have aunique address (x,y) = m(w). We say that (x,y) =
m(w) has a unique address if for any w' € {p, m} with w = w’ we have T(w") # (x, y).
We denote by Up, 4, the set of all unique addresses and by Ug_ . the projection m(Ug, 4.),
which we call the set of uniqueness.

For example, if Ag g is totally disconnected, then Up, 5 = {p,m}N and Up 5 =
Ap, p,. On the other hand, if (8,B8,) € Z, then Up 5. G {p,m}Nand Ug 5 & Ap g,

In the self-similar setting (without rotations), the set of uniqueness has been studied in detail
see, e.g. [205], [210] for the one-dimensional case and [214] for higher dimensions. In
particular, it is proved in [214] that if the contraction ratios are sufficiently close to 1, then
the set of uniqueness can contain only fixed points. As we will see, this is very different in
the self-affine setting.

We show in Lemma (5.1.13) that for 8, # [, the set of uniqueness is non-empty.
Furthermore, the set Ug 5 has positive topological entropy (Theorem (5.1.14)), and Ug, 4,
has positive Hausdorff dimension (Corollary (5.1.15)) and no interior points (Proposition
(5.1.16)) for all B5;, 5,. We also give sufficient conditions (albeit not provably necessary) for
apointin Ug, 5 to be on the boundary of Ag s (Proposition (5.1.17)).

Put

Dpp, = {x €R:I@) € [x = Y anfi™ = ) anﬂ;"}.
n=1 n=1
In other words,

Dg, g, = Apyp, N1 Y)Y = x}

(see Figure 6). Studying this set was the original motivation behind the IFS under
consideration see [206], [203]. We prove the following result.

When studying iterated function systems, a common property that is investigated is
I A satisfies the open set condition.
Definition (5.1.5)[201]: Let A be the unique compact set such that A = F; (A) U---U F;, (A),
where the F; are linear contractions. We say that A satisfies the open set condition (OSC) if
there exists a non-empty open set O such that:
* F;(0) c O for all i; and
*F;,(0O)NF;(0)=0foralli # j.
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An even stronger property is that of a set being totally disconnected. Definition. We say
that a set A is totally disconnected if for all x,y € A,x =+ y, there exist open sets O, and
0,, such that:

e x € Oy

‘Y €0y

*0, N0, =@;and
*Ac O, VO,.

A set is disconnected if there exist x and y with the above property. It is clear that if a set
is totally disconnected then it is disconnected. It is known for this case that A: = Ag g, IS
either connected or totally disconnected [62]. Hence, in this case the converse is also true.
That is, if A is disconnected, then it must be totally disconnected.

Put
0 = {(B1,B2):{T-1, T1}satisfies the 0SC},
S = {(B1,B2): A, p, is totally disconnected}.
It is easy to see that S < O. Furthermore, if B; > 2 or g, > 2, then the projection of A
onto the x-(respectively, y-) axis is a Cantorset, whence (84, 5,) € S. Hence forth we will
assume B; < 2and g, < 2.

In Theorem (5.1.24), we give a precise description of a curve S; such that if (51, 5,) is
above this curve, then (5, 8,) € S. As a corollary to this theorem, we get the following
result.

We can also, in some cases, computationally check if (5, 8,) € Sandif (5,,5,) / €
S. Many cases remain unknown. The first are shown in Figure 3. Those points provably in
S are shown in black. These results will be discussed we show that S is disconnected.
There are a number of obvious—and some not so obvious—relations between some of these
sets.

Define

I = {(B4, B2): the attractor A has a non — empty interior}.
Itisclear that Z c I. Itis also clear that Z N S = @. We know very little about I, although it
seems likely that I n O = @. It is not clear if Z & I, or if, in fact, they are equal sets. It is

true that S & 0, as demonstrated by the points (ﬁl(") , ﬁz(")) from Theorem (5.1.24), which

are all points in O but not in S. All of these points (,81(") ,,82(")) are points on the boundary

of 0, as shown by Solomyak [215].
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Figure (3)[201]: Points known to be in S (black). (Level 40 approximation.)

An interesting observation to make is that there are points that are not in Z yet at the same
time are not in O either.

For example, let B; ~ 1.190842710 and B, ~ 1.769542577 be roots of x1 — x19 —
x?—x8+x% — x>+ x*+x% +x%2+x + 1. Wesee by Lemma7.1that (81, 8,) / € 0. As
1P, = 2.107246878 > 2, the Lebesgue measure of A is 0, and hence (5,,5,) / € Z.

As a second example, let B; ~ 1.122195284 and B, ~ 1.776995700 be roots of x*3 —
x12 —x1t—x% —xB 4 x” —x®+ x>+ x*+x3+x%+x +1. Again, by Lemma
(5.2.27), (B, B,) /€ 0. Since p,B, =1.994136194 < 2, the Lebesgue measure
argument does not work here. However, we can, applying techniques discussed in 8§3.3,
show that (5,1, 8,) / € Z (using a level 25 approximation).

This indicates that there is actually more structure here that is not fully explored.

Before beginning our study of properties of A = Ag 5 , we will first introduce and
study K, the convex hull of A. The structure of K will play an important role in later
investigations, from both a computational and a theoretical point of view.

We first give a precise description of those points that are vertices of K. See, for example,
Figure 4.

Theorem (5.1.6)[201]: The vertices of K have addresses p*m* and m* p® for k =
0,12,...

Proof. Without loss of generality, we may assume that 2 < S1. It suffices to show that
the line segments connecting (p*m®) and m(p*+*1m®) lie below A. We will denote this
line
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Figure (4)[201]: A4 g5,1.25 together with vertices and edges of K.

segment by P,. Let us begin at k = 0. We must show that for any w € {p, m}"N, the line

from m(m*) to m(w) lies above the straight line passing through 7(m>) and 7(pm®).
We notice that the line PO from m(mowo) to m(pmoo) is in the direction mw(pm*) —

m(m?) = (5 =Yz Bi's7 — T Bi')

—(—%—Z Bl = ﬁz_i)

i=2 i=2

_ (2 2 )
Pr B/
This will have slope s; = ,/,.
Consider, now, the line from (m®) to w(w) for w € {p,m} where w is not equal to
m® and not equal to pm®™.

n(w) —n(m*) = (2 (a; +1)ﬁ1_i»z (a; +1)ﬁz'i>-

i1 =1
This will have slope s, = (Y21 (a; + B3 )/(Ciz1 (@ + DB).
It is obvious that (w) lies to the right of m(m*). Hence, to show that =(w) lies above
the line P,, it suffices to show that s, > s;.
This will be true if and only if

D @D > Y (@ + DR (D)
i22 i22

We see that the a; + 1 terms are either 0 or 2 (and hence always non-negative). Further,
B, < B, by assumption, and hence B;i*1 > B! for all i > 2. From this, the result
follows. We know that we only get equality if a; + 1 = 0 for all a; = 2. This cannot
happen,asw #= m* and w # pm®.

We now proceed by induction. Consider the line P, from (p*m®) to m(p**1m®).
This is in the direction

m(p**tm®) — n(p*m*) = (2/Bf*,2/B5H).
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This will have slope s; = g¥*1 /g%*1 In particular, notice that these slopes are increasing
as k increases (as 5, /6, > 1).

Consider a word (w) not equal to either m(p*m®) or w(p*+*1m™). We may assume
without loss of generality that (w) lies to the right of m(p*m®). (If not, then there will
exist some k' < k such that w lies to the right of z(p*' m*) and to the left of (p* *1m®).
By induction, w will be above the line P;. As the slopes are increasing, we will have that
m(w) is above the line P;.)

Consider the direction from p*m® to w. As before, we have that

k
W) —m@Fm™) = () (@ — DB + ) (@ + DB,
i=1

izk+1
k

D @ -0+ ) (@ + D).

i=1 izk+1

£1 (@ = DB+ Bisers (o + D5

X (@ — DB+ Sk (@ + DT
We have that s, > s; ifand only if

This will have slope

S»

k
Z (ai _1)ﬁz_i+k+1 + z (ai +1),32_i+k+1
i=1 izk+1
k
> (@ - DA 4 Y (q + DR (@)
i=1 izk+1

In the first sum we see that a; — 1 is always 0 or —2, and B “"**1 < BiHk*+1  Hence, the
first sum of the left-hand side is always greater than or equal to that of the right-hand side.
For the second sum, we see that a; + 1 is always 0 or 2, and B k1 > pri+k+1 Hence,
the second sum of the left-hand side is always greater than or equal to that of the right-hand
side. We also see that we only get equality if w = p*m® or w = p**im®,

The points w(m* p*®) are treated in a similar way.
We notice that the proof shows something stronger, as stated in the following corollary.
Corollary (5.1.7)[201]: The vertices of K have unique addresses.
Proof. To see this, we note that equations (1) and (2) are strict inequalities when w +#
pm®.

Recall that for a finite word w € {p, m}*, we define K, =T, (K)andsetK, = Upyj=n Ku.
It is easy to see that for w,w’ € {p, m}* we have K, < K,,. In particular, this shows that
Ac-cK,,,CcK, c-CK.

A standard result on iterated function systems gives that A = N, K,,.
We will take advantage of this construction in multiple ways. For example, we will show
that:
(@) if (0,0) ¢ K, forsomen > 1, then (0,0) & A;
(b) if T, (K,,) N T_,(K,) = @ for some n > 1, then A is totally disconnected; and
() iIf T, (KJ) NT_1(K?) = @ for some n > 1, then A satisfies the OSC.
We will investigate Z in greater detail. We will provide the main tool for checking if a point
Is in Z and provide a proof of Theorem (5.1.2), giving sufficient conditions for (54, 8,) € Z.

133



We will discuss the higher dimensional analogue of Z. In §3.3, we will give sufficient
conditions for (84,8,) / € Z.

The main tool used to computationally check if a point (4, 8,) € Z and to find a generic
bound for points in Z is a generalization and strengthening of [203].

Using this theorem, it suffices to find a polynomial P in terms of Sy, ..., B,, such
that the four conditions hold for all 1 < g; < C, for some C. This is a purely
computational search.

Consider the polynomial

8 7nR7
_31 ,82,31 (ﬁZ—ﬁl)
P(x) = x® — = x” + :
)= =g B — B
A quick check shows that P(8,) = P(B,) = 0. Further, forall 5;,5, < 1.202, we have

p: —B: +ﬁz7ﬁl7(ﬁz—ﬁ1) <2

.82 .81 .327 - .317

In fact, a stronger result can be shown. By explicitly solving for

p: — B’ +.327.317(.32_.31) <2

Bl — Bl B; —Bi
we find that all 8; # 8, in grey in Figure 2 have the desired properties.

Theorem (5.1.8)[201]: Let P(x) = x™ + b,,_1X,—1 ++-+ +b, Such that:

(i) P(B;) =0forj =1,2,....m

(i) X720 bl < 2;

(iii) b, = b, == b,,,_; = 0; and

(iv) by # 0.

Then there exists a neighbourhood of (0,...,0) in A, based on S, ..., Bm-
Proof. Let P have the required properties.

Letu_,,..., U_p4m—q Satisfy
Bt Bt . B U_p
l ‘ g By . B™ U_p+1
ﬂ;ll ﬂ;lz ,Brzm U_n+m-1

We see that this system will have a solution as all of the §; are distinct. Moreover, we see
that if the x; are sufficiently close to 0, then the u; will also be sufficiently close to 0. Choose

o such that if [x;| < &, then |u;| < 1.

Set u_ppm == uy = 0. We will choose the u; and a; fori =1, 2,3,... by induction,
such that
n-1
U :=a; — (Z bkui—n+k>
k=0

and suchthatu; € [—1,1] and a; € {—1, +1}. We see that this is possible, as, by induction,
luj| < 1forallj <i — 1. Furthermore,

n-—1 n-—1 n—1
Z brUi—nik| < Z |t j| < z |by| < 2,
k=0 k=0 k=0

by our assumption on the b,. Hence, there is a choice of a;, either +1 or —1, such that

a; _ZZ;(l) bkui—n+k € [_1» 1]-
We claim that this sequence of a; has the desired properties.
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Let b,, = 1 for ease of notation. To see this, notice fori = 1, 2 that

Z aj,Bl-_j :Z (S bkuj—n+k>+uj ,Bi_J Z Z b u;_ n+k,3 J

j=1 ]>1 j=z1 k=0
Z > by Z b D e
k=0 ]>1 j=z1
= pi" Z bk.Bi z Uj_ n+k.3- Il
=1
= .BL Z bk.BL z u€+k:81 -k
{=z—n+1
—k
= B 2 b B ( Z upiBi i " +Z ueﬂ#)
k=0 {=—n+1 21
n -k
= (ﬁ{”E bt ) umﬁf*"">+<ﬁrnp(ﬁi)z ufﬁl-‘*’)
k=0 f——n+1 £21

2 2 bl e B

k=0 f=—-n+1
Thus, by our construction, we have b, = b, =---=b,,_; = 0and u,,_, =--=0.

Hence, this simplifies to

0 n -k
D a7 =B D bouB BT ) bl uebt
jz1 £=-n+1 k=m {=-n+1
0 n -k
= B D b BT Y Y bBl0.p
=—n+1 k=m ¥f=—n+1

= bO(u—n+1.8i_1 + u—n+zﬁi_2 +e +u—n+m+1ﬁi_m) = X,
which gives the desired result.
We see from Theorem (5.1.8) that to prove Theorem (5.1.4), it suffices to find P

satisfying certain criteria. We will show that such a polynomial exists for all m
Lemma (5.1.9)[201]: Let P(x) = x™ + ap_1x™ ! +--- +a, be such that ¥ |a;| < 2
and P(B;) =0fori =1,2,...,m. Let Sc{0,1,...,n— 1} be such that |S| < n—m
Then there exists a neighbourhood of (ﬁl,...,ﬁm) such that for all (B,,...,B,,) in this
neighbourhood there exists a polynomial P(x) = x™ + &,_;£" ! +--- +d, where:

ca, = ds forall s € S;

‘X5 lal < 2

-P([;’l) =0fori =1,2,....m
Proof. Let R be such that P(x) = [J(x — B;)R(x). For B, close to p;, we see that the
coefficients of P(x) = [[(x — B;)R(x) = x™ + Gp_1x™ ' +--- +d, are close to those of P.
Forall s € S, let Ty(x) = b, x™ 1 4. +b% be a polynomial such that:

. b§s)l =0 fors €8S,s #s;

« b =1;and
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*T.(B)=0fori=12,...,m
We see that such a polynomial exists as n — |S| > m. Set

P =P+ ) (4 —EIT(0).
SES

It is easy to observe that a, = @, for seS, and that P(B;) = Ofori =1,2,...,m.

Further observe that for B; close to B; we have that 4; are close to a;. Hence, by

continuity, we can choose a neighbourhood of (84,..., 8;;,) such that the resultingb a;

are close enough to a; so that Y, |@;| < 2. We see that P has the desired properties.
Corollary (5.1.10)[201]: If there exists a P € R[x] monic of degree at least 2m — 1 such
thata, =-=a,,_; = 0,Y|q;| < 2and (x — 1)™|P, then there is a neighbourhood around
(1,1,...,1)thatis contained in Z.
Proof. Weuse S = {1, 2,...,m} and the neighbourhood of (1, 1, ..., 1). If a; = 0, then we
can use the polynomial T, to perturb P.
Theorem (5.1.11)[201]: Given m € N, there exists an n € N and a polynomial P(x) =
xMHl _ynm  pxmmOn pp ox(M=2D7 4. 4 by such that (x — 1)™|P and 1+
STt bl < 2.
Proof. Let

P(x) = x™*l —ynm 4 p o xM=Dn 44 h x™ + by,
We see that (x — 1)™|P if and only if P(i) = P'(i) =---= P™ V(i) = 0. Using the
notation n® =nn -1 —2)...(n — k + 1) with n® = 0 for k > n, consider the
kth derivative of P with respect to x for k > 1:
P(k) (x) — (nm + 1)(k)xnm+1—k _ (nm)(k)xnm—k

+(n(m — 1))(k)bm_1x"(m‘1)‘k +o +n® p xmk,
We require that P®) (i) = 0 for k = 0,1,...,m — 1. Evaluating P(x) at x = 1 gives
1—1=by,_y +b,_,+ +h,. 3)
Fork =1,...,m — 1, by dividing by (nm)® and evaluating at x = 1 we have
(mm+1D®  (nm-1)® (nm — 2)
T T m® T T (im)® bm—1 (nm)® bm—z
NG
+ .- +W b;. (4)
Taking the limit as n tends to infinity in (4), we obtain
m—1\" m— 2\" 0\"
0= (5) b () bt (Z) 0 ®

0
fork =0,1,...,m — 1. Here we take (%) = 1. Clearly, solving (5) for the b; is equivalent
to solving the linear system
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1
m—1

m

~

1
m—2

m

b

u ) ()

0 (m—] (m—2
: = m m
m—1 m—1

m—1 m—2 ]
o) (50 ) o
m om m |

The lower left (m — 1) X (m — 1) submatrix is the Vandermonde matrix on the terms (m —
1)/m,(m — 2)/m,...,1/m, with non-zero determinant [[1<;<j<m-1 ((i — j)/m). Hence,
there exists an N such that for all n > N, the system of equations given by (3) and (4) has
non-zero determinant, and hence will always have a solution, regardless of the left hand
side.

We see that the system of equations given by (5) has a solution of b; = 0 for i
0,1,...,m — 1. We see in this case that the sum Y%, |b,,| = 1. (Here, we think of b,,
—1 coming from the coefficient of x™™.)

This implies that there exists an N, > N such that for all n > N,, the solution to equations
(3) and (4) will have solutions by = b; == b,,_; = 0and b,, .1, and Y1~ |b;| = 1. This
gives a polynomial with the desired property and proves Theorem (5.1.4).

To prove that (5, 8,) /€ Z, it suffices to show that (0,0) & A. This is clearly a
sufficient condition, although it is not a necessary condition. To see that it is not necessary,

notice that the (B, BS™) which we will discuss have the property that (0,0) € A, yet 4
satisfies the open set condition. Moreover, by approximating A by K, we see that there are
points arbitrarily close to (0,0) that are not in K, and hence not in A. As such,

B™, By ¢ 7. See Figure 10.

It is interesting to note that (,81(") ,,82(")) Is on the boundary of S. It is not clear if such an
example that is not on the boundary of S would exist.

Recall that we write K,, = T,,(K)and K, = U,y,=n K. The following result holds.
Lemma (5.1.12)[201]: If there exists an n such that (0,0) € K,,, then (0,0) ¢ A and
(B1, B2) € Z.

It would be computationally expensive to compute the entirety of K,,. We observe for
w,w' € {p,m}* that Kww' c K,,. Hence, if (0,0) ¢ K,, then we have that (0,0) ¢ K,,,,
for all w'. This allows for considerably more efficient computations.

In Figure 2 we give those points that are provably not in Z, as shown by examining K,,. We
also give those points that are provably in Z by Theorem (5.1.2).

[?0
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Figure (5)[201]: Ap, g, zoomed in around (0, 0), where B; ~ 1.57125, 8, ~ 1.34067 are
roots of x10—x%—x8 —x7 +x°+x5—x*+x3+x%2+x +1. We have (0,0)€
Ag. p,, but no neighbourhood of (0, 0) lies in A,

Note also that if 8,8, > 2 then, as is well known, the Lebesgue measure of A is zero,
and hence all (84, £5) which satisfy this condition do not belong to Z either.

Example 3.7. Let B; ~ 1.57125,8, ~ 1.34067 be roots ofx1® —x% — x® —x7 + x° +
x> —x*+x3+x%+x + 1. Then we have 3,5, ~ 2.10653 > 2, and hence (5, ,) &
Z.However, (0, 0) clearly belongs to 4, as (0,0) = n((pmmmppmpppp)*), see Figure 5.

Observe that there is a large region of Figure 2 where nothing is known.

Recall that (x, y) = m(w) has a unique address if for any w’ € {p, m} withw = w’,
we have m(w") # (x,y). We denote by Up s, the set of all unique addresses and by
Up, p,the projection (Upg, g,), which we call the set of uniqueness.

A consequence of Corollary (5.1.7) gives the following lemma.

Lemma (5.1.13)[201]: The set of uniqueness Ug, 4, is always non-empty.

Now we are ready to prove the main result. Let E,, (£) be the number of a,a, ...a, that
are prefixes for some infinite word in £  {p, m}N. We say that £ has positive topological
entropy if E,,(£) grows exponentially, that is, if liminf,,_,, (log E,(£L)/n) > 0.
Theorem (5.1.14)[201]: For any (B4, B2), the set Ug_ 5. has positive topological entropy.
Proof. Let [i;...i;] stand for the cylinder {aj};:l c {p,m}N, where a; =i; for j =
1,...,k. As m(p*m™) has a unique address from Corollary (5.1.7), we get that
dist(m(p*m™),m([m]) > 0, where dist stands for the Euclidean metric. Put

L, = min{j = 1:dist(n([p*m’]),n([m])) > 0}
and L = max L. Note that since m(p*m®) tends to w(p) (which is clearly at a positive
distance from mr([m])), the quantity L is well defined.
Put
U' = {pfomkipkz ... |ky > 1,k; > L,i =1}
U {mkopkt m*e - |kg = 1,k; = L,i =1} (6)
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Clearly, U" is a subshift, i.e. a closed set such that if a; a, ---€ U’, then we have a;a; 10, -

€ U' forany j > 2. The set U’ also has positive topological entropy, since it contains the
set [I7° {m® pl*t, mi+1pl}, which has exponential growth. Thus, it suffices to show that
any sequence in U, is a unique address.

By our construction, n([p"m"']) does not intersect w([m]) provided k' > L. This is true
for all k > 1. By symmetry, the same goes for ([m*p*']) and m([p]). This means that for
(x,y) = m(Wowyw, ...) = m(pkomk1 p*2 | ) with k; > L, we necessarily have w, = p.
Hence, the problem of showing that (x y) = n(pkomkl k2 ..) has a unique address
reduces to showing that (x',y") = m(p*e~imks pk2 ..) has a unique address. This
argument is repeated by induction, proving the result
Corollary (5.1.15)[201]: The set of uniqueness U, 5, has positive Hausdorff dimension for
any (B, B2)-

Proof. Putm = m|U". Since U, g, is the set of unique addresses, the map =’ is an injection.
Also, it is Holder continuous, since  is. Let us show that (z')~t:m(U") - U’ is Holder
continuous as well.

Suppose a = a,a, ...and a' = aja; ... with a; =a;,1<i <n—-1and a, # a,. If
n = 1, then, by the above, there exists a constant C > 0suchthat dist(n(a),m(a’)) = C.
Hence, for a general n, we have dist(m(a),m(a’)) = CB;™ (we assume, as always, B; >
). Since the distance between a and a’ is 27", we have

dist(n(a),n(a’)) = C -dist(a,a’)",

where ¥ > 0. Hence, (')~ is Hélder continuous. The Hausdorff dimension on {p, m}"
in the usual metric coincides with the topological entropy, and hence the definition of
Hausdorff dimension together with (')~ being Halder continuous immediately yields
dimH U,31u32 = dlmH Tl'(U,) > 0.
Proposition (5.1.16)[201]: For all (3,4, B2), the set Ug, g, has no interior points,
Proof. We have two cases. Either A is totally disconnected, or T, (A) N T_;(4) # @. In the
first case, the result is trivial.

Assume, therefore, that we are in the second case—i.e. that T; (A) N T_,(4) # @. Assume
that U = Ug, g, has non-empty interior. In particular, let B be an open ball
withh BcUc A  Let (x,y)eT,(A)NT_4(4). We know that A=
cl(Ukz1 Uj,jpe Ty o1 (6, 9))), since A is the unique attractive fixed point of the iterated

function system in the Hausdorff metric. This implies that there exist j,, j, ..., jx such that
T, .r,((xy)) €EBcUc A As (x,y)¢U, we have Ty..Tyu((x,y) €U, a
contradiction. This proves the desired result.

If the attractor has non-empty interior, we do not know whether the set of uniqueness
can contain an interior point of A. We have, however, a partial result in this direction.
Proposition (5.1.17)[201]:

(i) If (x,y) =n(wm®) or m(wp®) is in the set of uniqueness, then (x,y) €
aAﬁLﬂz'
(i)  Wehave m(U") c 04z, p,, Where U’ is given by (6).
Proof. (i) Let (x,y) = n(wm®) (for m(wp®) the result will follow by symmetry). Letw =
a; ...a, and put d; = dist(wm®,n([@,])) and d; = dist(wm®,n([a,...a;_1a,])) for
2 <i <n,where, as usual,e @ = —a. Since (C) is compact for any cylinder C, we have
d = min d; > 0.

1<isn
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Now suppose ¢ < d. Then (x,y — €) is not in the attractor; indeed, if it were, then by our
construction, its address would have to begin with a, ... a,. This would mean that to obtain
(x,y — €), one or several of the subsequent —1 values in the address of (x, y) would have to
be replaced with 1, which would only increase both coordinates. Therefore, there exist
arbitrarily close points in the neighbourhood of (x,y) which are not in the attractor, i.e.
(x,y) cannot be an interior point of A.
(ii) Put

d, = dist(m(p“m®),n([m])) = dist(m(m“p*), n([p]).
We know from the proof of Theorem (5.1.14) that d' = I1(r>1£ d; > 0, and the rest of the
argument goes exactly like in (i), with ¢ < d'.
(if) Simultaneous expansions
Put

Dpp, = {x € R:3(@)F €fpm) |x = ) apfi™ = ) anﬂ;"}
n=1 n=1
= Ag, g, N{(x,y):y = x}

(see Figure 6).
Theorem (5.1.18)[201]:

(i)  Forany pair (8, 8;), the set Dg 5 is non-empty.

(i) 1f min{By, B} < (1 ++/5)/2, then the Hausdorff dimension of the set Dg, g, >

0 is positive.

(iii) If max {$,, B,} < 1.202, then there exists a § > 0.664 suchthat [-§,8] < Dg_ 4. .
Proof. (i) LetA = B;1,u = Byt and assume A < . We first claim that for any k > 0 there
exists a word w € {p, m}* such that m(wm®) is below the diagonal (by which we always
mean the straight line y = x) and w(wp®) is above it.

-
/""/ j

Figure (6)[201]: The attractor intersecting the diagonal for 5; = 1.923,5, = 1.754
Proceed by induction (‘bisection’) and assume the claim is true for k=n and some w. We
will show that it is then true for w’ = wp or wm (or both). We have
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n+2 n+2

n+1 __
1_A>S,1(W)+/1 1-1

in view of 2 > 1/2. Similarly, s,(wmp®) > s,(wpm®). Consider the vector from
m(wpm®) to m(wmp®) given by

sa(wmp®) = s;(w) — A" + = s3(wpm®),

n+2 uTl+2
T(wmp®) — t(wpm®) = 2 </1“+1 — untl — )

1-1" 1—p

We see that this vector has slope

n+1 — —
(;) . le. 1 . 1 A S

—pn 24-1

since A < pandthe functionx ~ (2x —1)/(1 — x) isstrictly increasing. Hence, it would
be impossible for m(wmp™) to be below the diagonal and at the same time for 7(wpm®)
to lie above it. Now, if m(wmp®) is above the diagonal, then we put w’ = wm; if 1(wpm®)
is below the diagonal, then we put w' = wp; and if both of these are true, we can choose
either w' = wmorw’ = wp.

Thus, this allows us to construct a sequence of nested words a; ...a, such that
nm(a,a, ...) lies on the diagonal.

Note, first, that (p*) = (1/(1 — A), u/(1 — p)),and since A < p, we have that =(p*)
lies above the diagonal. Similarly, =(m) lies below it, see Figure 6.

1,

 wp™

1 wmpy

wpm™

wm™

Figure (7)[201]: Projections for g, = 1.75, 5, = 1.45.

(if)Let us look at the bisection algorithm more closely in order to determine when
we can actually choose both wm and wp as w'. Our aim is to construct a sequence of
maps t,, : [0, 1] — [0, 1] which will keep track of all words w such that = (wp ) is above
the diagonal and mw(wm®) is below it. The map tn turns out to be the multi-valued
Btransformation with f = B, which is well understood. Here we have that g™ 1
B, < (/5 + 1)/2. The condition B, < (v/5 + 1)/2 implies that the number of such w
grows exponentially with n, which yields the claim.
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Let h denote the projection along the diagonal onto the y-axis, given by h(x,y) =
(0,y — x).Put (0,a) = h(wm®),(0,b) = h(wpm*), (0,c) = h(wmp*) and, finally,
(0,d) = h(wp™), see Figure 7. Let n stand for the length of w. A straightforward
computation yields that the second coordinates of these points are

IJ‘Tl+2 n+2
a=s,(w)—s;(w) —p"*t — = + Antl +m,
b =s,(w)—s(w) + u"* — fnTJrzu — At 4 1n_+1,
¢ = 5, (W) — s;(w) — ™+ + 1”7: + AL fn_i
d = s, (W) — s;(w) + "1 + 1”n_+2u _ fn—:z

Since 1/2 < 2 < y, we have that a < b < ¢ < d provided n is large enough
(which we may assume without loss of generality). Noticethat b —a = d — c.

We see by assumptionthata < 0andd > 0. We see that z(wmp®) is above the
diagonal if and only if ¢ > 0. Hence, if ¢ > 0 then we can take w' = wm, and if b <
0 then we can take w' = wp. If b < 0 < ¢, then both w' = wm and w' = wp are
allowed inductive steps.

Now let p,, denote the following affine map:
n+1 An+1

t—a t—su(w)+sa(w)+il_ ~1=71
_ _ K
pw (t) “d—a 2untT 2 :
1—-p 1-2

Put
w1 =) =AM /(1= 2)
W2 /(1—p) —Am2 /(1= 2)
We have p,,(a) =0, p,,(d) =1 and
(p_n+1 _ An+1)
pW(b) =+l n+1
! /(+12— W — 4 /(+12— A)
W2 /(1 — ) — A2 /(1 - 2)
W) = — e T

Note that p,, (0) € [0, 1]. We see that if p,,(0) < p,, (c) then we can take w’' = wm. We
observe that

.B(n): Tutl=p,n-> +om.

=1-1/F™W < 1y,

t —a'
pwm(t) = d —d
w2 +2
t —s,(wm) +s;(wm) + T~ A
T 2/ ) - 222 /(1 - D)
t —s,(wm) +s;(wm) + {lnTJrL — A2
T 2um (1) - 222/ (1 - D)
= p™p, ().

In a similar way, if p,,(0) > p,,(b) then we can take w' = wp, and
,pr(t) = ﬂ(n)pw(t) +1- ,B(n)-
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Thus, we have a sequence of finite sets X,, = X,,(8;, B,) suchthat X,, = 7,,(X,,_1),
where 1n is the following multi-valued map on[0, 1]:

L™x 0<x < 1-1/pM,
T,(x) = {B™Wx and p™Wx +1-™ 1-1/p™ <x <1/,
B™x +1—pWW 1/B™ < x < 1.

This is a well-knownp-expansion-generating map (with 8 = 8™) see,e.g.[213].Since
™ < B, < (1++/5)/2, we have that for any x, € (0,1 — 1/8™), there exists k
such that 7y, ... 71 (xo) € (1 — 1/8™,1/8™), i.e. the trajectory of x, bifurcates after k
steps. This is because 7,,(1 — 1/8™) < 1/8™, inview of (B™)2 < ™ + 1. This
proves that Dg_ s, has the cardinality of the continuum.

Furthermore, [204] implies that for the iterations of a single map 7,, with g™ <
(1++/5)/2, we have that, no matter what x, € (0,1), hitting the interval (1 —
1/8™,1/8™) occurs with a positive (lower) asymptotic frequency. The argument for
the sequence of maps{t, }is exactly the same.

Let I, denote the number of 0- 1 words w of length n such that =(wm®) is below
the diagonal and = (wp®) is above it. We have just shown that W, grows exponentially
fast, which implies that the set Dz N {y = x} has positive Hausdorff dimension (for
the same reason as in the proof of Corollary (5.1.15)).

(i1i) This follows from Theorem (5.1.2). Namely, consider in Theorem (5.1.8) the special
case of simultaneous expansions, that is, where x; = x,, with the polynomial
p; — Bt o7+ B2 B{ (B2 — B1)
p; —PB{ p; —Bl
We see that we require |u_g|, |[u—,| < 1. Solving for u_g and u_-, we have
[u_g| = |x11|bol|(B1 + B2)
B3 B{ (B, + B1)

L+ BiBa + BiB: +BiB; + BBy + BiBS + B3
lu_7| = |x1|bo|(B182)
p2BY
L+ BiBa + BiB: + BiB3 +BiBs + BiBs + B3
For B, 6, < 1.202..., we see that both |by|(B, + B2) and |by|B, L, are maximized
when 8, = B, = 1.202.... This is in fact maximized for all 8;, B, where |by| + |b;| <
2 at the exact same value, although this is not needed for the desired result.

The maximum value that |b, | (B, + B,) attains with this restriction is approximately
1.504520168. This shows that for all |x;| < 1/1.504520168 =~ 0.6646637388 we
have |u_,| < 1.

The maximum value that |by|S,£, attains with this restriction is approximately
0.9047548367. This shows that for all |x;| < 1/0.9047548367 ~ 1.105271792 we
have |u_g| < 1.

Combining the two, for all |x;| < 0.664 we have |u_-|, Ju_g| < 1, and hence there
exists a simultaneous expansion of (x;, x;).

We now focus our attention on the pairs (8,4, 5,) for which the IFS satisfies the open
set condition (OSC) or is totally disconnected. We begin with a simple observation.
Clearly, T;(K) c K for i € {£1}. Put K, = Ujyj=n Tw(K); then K,,; C K,,, and
N,.s1 K, = A.Hence, A is disconnected if and only if there exists n such that K, is
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disconnected. (And, therefore, so is K, for all k > n.) This immediately yields the
following proposition.

Figure (8)[201]: Points known to be in S (black). (Level 1 approximation.)
Proposition (5.1.19)[201]: The set S is open.
Proof. Let (8,,5,) € S and n be such that K,, is disconnected. By the continuity of T_;
and Ty, a sufficiently small perturbation of (4, ;) leaves K,, disconnected, and hence A
Is disconnected as well.
For ease of discussion, if T;(KJ) NT_(K?) =@ then we will say that T;(K,) N
T_,(K},) has trivial intersection. Let A be the IFS in question and K the convex hull of
A. We immediately see that a sufficient condition for A to satisfy the OSC, or to be totally
disconnected, is if T;(K) and T_,(K) have trivial, orempty, in tersection. That is, we
have the following lemma.
Lemma (5.1.20)[201]: Let K be the convex hull of A.
*If T, (K°) N T_{(K?°) = @ then A satisfies the open set condition.
«If T, (K) N T_1(K) = 0 then A is totally disconnected.

Here, K° is the interior of K. Although these requirements are sufficient, they are not
necessary. This is because K is a extreme overestimate for the shape of A.

In Figure 8 we have shown those (f;,8,) which satisfy the hypothesis of Lemma
(5.1.20).

This curve is the same curve, after translation of notation, as that found by Solomyak
[215] using somewhat different techniques. This will be shown in Theorem (5.1.26). A
precise description of this curve is given in Theorem (5.1.24).

The idea of approximating A by a simple set K can be generalized. Recall for w €
{p,m}* that K, =T, (K) and we define K,, = Uy|=n K. An immediate, and
profitable, generalization of Lemma (5.1.20) follows.
Lemma (5.1.21)[201]: Let K,, be as above.
(@) F T (K2) N T_,(K7) = @ then A satisfies the open set condition.
(b) If T, (K,,) N T_,(K,) = @ then A is totally disconnected.
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This can be done for any set that contains A as a subset. An advantage of these K,, is that
K, — Ag, p, inthe Hausdorff metric.
In Figure 3 we have given the approximations of S based on K,,. We will call an
approximation of S using Lemma (5.1.21) with a particular K,, a level n approximation.
In Theorem (5.1.6) we gave a precise description of the vertices of K. We can now determine
for which g, B, we satisfy the conditions of Lemma (5.1.20) and, to some extent, 6.3.
Let M, be the line connecting m* p® and m**1p> and, similarly, P, for p*m> and
p**im® (see Figure 4).
Lemma (5.1.22)[201]: For each B, > B, there exists k such that the segment T, (M;)
crosses the y-axis.
It should be noted that this k may not be unique, as it is possible that T; (m* p®) is on
the y-axis. In this case we would say that both k — 1 and k satisfy this criterion.
Proof. We see that m(pm™) lies to the left of the y-axis and that =(p*) lies to the right.
This, combined with the fact that the M, form a decreasing (with respect to the y-coordinate)
sequence of intervals, proves the result.
We will define k: = k(B4, 55).
Lemma (5.1.23)[201]: Assume 5; > f, and let k: = k(B4, B,). Then:
(a) if T, (M) is below the point (0, 0), then T; (K) N T_,(K) = ©;
(b) if T, (M,,) goes through the point (0, 0), then T, (K) N T_;(K) has trivial, but nonempty
intersection; and
(c) if T;(M,,) is above the point (0, 0), then T; (K) N T_,(K) has non-trivial and nonempty
intersection.
We see that the first case gives a sufficient condition for (B4, 5,) € S. Also, the first case
combined with the second one gives criteria for when (S;, 52) € 0. Unfortunately the final
case does not yield anything useful about (f5;,3,); it only indicates that the level of
approximation we are using is insufficient to come to a conclusion.
Proof. This follows from the symmetry of T; (K) and T_(K) and the fact that 5; > £,.
See, for example, Figure 9.
Using this, we can now give criteria for a point (f;,5,) to be in a level 1
approximation.
Define
S1 ={(f1,2)|T.(K) N T_{(K) has trivial but non — empty intersection}.

Theorem (5.1.24)[201]: Let P (x) = x*** — 2x* + 2. Let (B, %)) be the two roots of
P, between 1 and 2, with g% < g%,
(i)  Fork = 4, we have (8%, Y, (8P, %)y € s,.

Figure (9)[201]: Level 1 approximation for §; ~ 1.9,1.75 and 1.6 with 8, = 1.35.
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Figure (10)[201]: ‘Just touching’: we have T_;(A) NT;(A) ={(0,0)} for B, =
1.81618, 5, ~ 1.30022 being roots of x° — 2x* + 2. Furthermore, here T_;(K) N
T, (K) = {(0,0)} as well.
(i) Fork =4, let B < g, < p**V and g < B, < pF*Y satisfy

P (B1)Prs1(B2) — Pry1(BPc(B2) = 0. (7)

Then (B, B2), (B2, B1) € Sy
(i) Letp™ <pB, < B, < B satisfy
P3(B1)PL(B2) — Pa(B1)P3(B2) = 0. )

Then (B, B2), (B2, B1) € Sy

(iv) We have ,BZ(k) - 1,,81(k) - 2ask - +co.

Proof. (i) Assume that T; (K) N T_,(K) has trivial but non-empty intersection. This

implies that one of the edges or corners of T; (K) contains (0, 0). Assume first that (0, 0)

is a corner; then we have that T, (m(m* p®)) = (0, 0). This implies

K+l _ 2Bk 2 =pK1 2Bk +2=0,

which corresponds to the point (,81("), Z(k)). It is worth observing that the above equation

has no solutions for k < 3. This results in the interesting consequence that the first,

second, third and fourth level approximations are all the same.

(ili)  Next, assume that, instead of a corner, it is a line that goes through (0, 0). We see
that the line T, (M,,) will intersect the point (0, 0) if the line from T, (m(m* p))
to T, (m(m**1p*)) goes through (0, 0). Letting (xx,vy) = Ty (m(m* p*)) and
(x*+1 y*+1y = T, (m(m**1p™)), we see that the y-intercept of the line through

these points is
XkYk+1 — YkXk+1

o Xe+1 — Xk
This will equal zero when
_ _ 0 = XpVr+1 — VieXk+1- _ _
Evaluating the above equation at 8, and 3, gives equation (7). It is worth observing that
the line segment between (xy, yx) and (xx41, Vi+1) Will only cross the y-axis if these
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1(k+1) and

two points are on the opposite sides of the axis. This implies thatﬁl(k) <p1 <P
k k
) < g, < g+,
(iii) Similar to (ii).

(iv) Finally, the equation x* = 2(x*~1 — 1) becomes t* =t — % fort =x"1 Itis
clear from the graphs of the left- and right-hand sides that the sequence of smaller
real roots, p, is decreasing, while the sequence of larger real roots, py, is
increasing. Therefore, p¥ — 0, and hence p* — % which is equivalent to Bl(k) -
2 as k —» +oo. On the other hand, p; — 1,since it is always smaller than 1 and

cannot tend to ¥ < 1, since in that case k must be equal to % as well, which is

impossible. Hence ﬁz(k) - 1.

Figure 10 illustrates the above theorem for 5; = ﬁl.(“) i =1,2.
Corollary (5.1.25)[201]: If B, + B, = 3.1294734398566... then (B,,5,) €S. If the
inequality is strict, then (B4, 8,) € O. For all € > 0 there exist §; and S, with §; + 5, =
3.1257839569901 — ¢ where (51, 8,) € O.
Proof. Consider the curves P,(B1)Prs1(3—=pB1+t)— Pri1(BPL(3— B +1t)=0.
Solving for the local maxima of these (with respect to t), we see that the local maximum for
k = 4 is maximal, and obtains a value of

t = 0.1294734398566760176850196318981206812538310097982 ...
when
B, = 1.2356028604456261036844313175875156433117845240595....
Precise algebraic quantities can be given in terms of the roots of a degree 36 polynomial,
which we omit.

It was shown in [215] that all neighbourhoods of (,81("), ,82(") ) contain a point that is
not in S. Taking k = 5 proves the second inequality.
It is worth observing that Solomyak [215] came at this through a different
construction. Solomyak first considered the function
WD =1 —x —o—xk™1 otk okt oxkt2 4 (9)
Following [215], put

Bi_11) = {1 + z a,z" | an € [—1, 1]}.

n=1

For f € B_y1p, let & (f ) < &(f) <--- denote the positive zeroes of f ordered by
magnitude and counted with multiplicity. Let

oy > min{&,(f): f € Bj_1,1), f(¥) = 0}
By [215], the function ¢ is well defined. Furthermore, let @2 ~ 0.649138 be the positive
zero of 2x°> — 8x% + 11x — 4. By the same Proposition, for all y € [1/2, a,] there
exists a unique function h{” such that K" (y) = K" (@(1)) = 0. If y < 1 < @(¥),
then (1/y,1/2) € S.
Theorem (5.1.26)[201]: The curve given by (y,@(y)) is the same as the level 1
approximation of S given by Theorem (5.1.24).
Proof. We note a few things.
«Ift = —1then h,(f)(l/ﬁ) = 0 ifand only if P,_,(B) = 0.
- If t =1 then A" (1/B) = 0 if and only if P, () = 0.
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Hence, the corners of this curve are the same as the corners of the curve S. Letx;, =
s,(pm* p®) and y, = s;(pm”* p*). We showed that if T;(K), the first level convex
approximation of A, ‘just touches’ T_; (K) then

Xk+1Yk — Ye+1Xk = 0. (10)
Furthermore, x;, will be on one side of the axis, and x; ., will be on the other. Let
X
t =2.—L _q, (11)
Xk+1 — Xk

We see that if x;, = 0 (i.e. the corner of K, (x4, yx) = (0,0)) thent = —1. Furthermore,
if x,.; = 0thent = 1. Hence, t ranges between—1 and 1. This implies that

t+1 t —1
5 Xk = T Xke+1- (12)
Using this in equation (10) gives
t+1 t+1
0= Xpt1Vk — Vk+1Xk = o Xe+1Vk — Tyk+1xk
t+1 t—1 t+1 t—1
= 5 Xe+1YVre — N Xe+1Vk+1 = N Yk — o Vi+1-

It is worth noting that the values when t + 1 = 0 and x,, = 0 are when the vertices of
K touch (0, 0) and hence are not actually attained when it is the interior of the edge that
meets (0, 0). Hence, the division and multiplication of 0 are not problematic. We notice

Figure (11)[201]: Points in S. Those in black come from the level 1 approximation. The

additional points come from the level 5 approximation.

that the equation (t + 1)/2y;, — (t —1)/2y,+1 equals O if

0=1/8, —1/BF — —1/BF** +¢/By** +1/B5*> +1/B5™* +-
= 1Y +1(1/8,).
A similar argument shows that h,(fll(l/ﬁl) = 0, as required.
Consider a finite word w € {p, m}". Recall that K,, = T,,(K). By our previous notation,
K, = U|W|=n Ky
To check if T;(K,;,) N T_,(K,) has empty or trivial intersection, it suffices to check

T,(K,) n T_,(K,,) for all words w, w’ € {p, m}". To improve the efficiency of this search,
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we observe that if T, (K,,) N T_;(K,,,) is empty or trivial, then for all words w’, w} we have
that Ty (Kwwo) N T-1 (K1) is empty or trivial.

This allows us to improve the efficiency of the search. We again remark that the level 1
approximation (using K,) is the same as that found in [215]. In fact, this is the same for
levels 2, 3 and 4 as well. At level 5, additional points are discovered to be in S that were not
provable before (see Figure 11). We could, if necessary, construct curves much like
Theorem®6.6. This trend continues as we increase to higher level approximations (see Figure
3).

One might conjecture, when looking at the initial pictures produced, that all of our curves
coming from a level n approximation are connected. If this were true, then this would imply
that S was connected. It turns out, rather surprisingly, that this is not the case. At level 14
we have an occurrence of an island that is not connected to the main body of the curve (see
Figure 12). More surprisingly, as we show, this is not an

Figure (12)[201]: Level 14 approximation of S,f; € [1.32025,1.35275],8, €
[1.6306,1.6631].
artifact of our choice of approximations of A. This is, in fact, a legitimate island of S that
Is disconnected from the main body. This proves that S is not connected, and hence the
connectedness locus N = S°€ studied in detail in [215] is not simply connected.
We gave a technique to show that a point (8,, 5,) corresponded to a totally disconnected set
A. Using this technique, we observed at level 14 that the approximation toS was not
connected (see Figure 12).
We will prove that this region is indeed in a separate connected component with respect
to the rest of S. In Figure 12 we see a chevron-shaped object € which is disconnected
from the main body of the approximation of S. A significant part of our proof'is computer-
assisted. First, we need to show that there exists a point in C which is provably in S. A
quick computer check yields (1.335438104, 1.646743824) € C c S.

To prove that C is separate from the main body of S we will give six path-connected
regions, Ry, ,..., Ry, all disjoint from S, such that R,, overlaps with R, , which in turn
overlaps with R,,_, and so on, where finally R,, overlaps with the original set R,, . These
overlapping sets will surround C—see Figure 13.

We need a criterion for a pair (B4, ;) not to lie in S. As usual, m stands for—1, and p
for 1. We will also use z for 0.

Lemma (5.1.27)[201]: If B, and 3, are distinct roots of P € Z[x] with the coefficients
of P restricted to {p, z, m}, then (8,,5,) / € S.
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Figure (13)[201]: The chevron C and Ry, ,R,,,...,Ry,, along with overlapping
continuous path.

Proof. Let P(x) = a,x™ +-- +a, with a; € {—1,0,1}. Write 2P(x) = P + (x) —
P—(x) with P+ (x)=a} x™ +- +ad ,a; €{—1,1}, and P — (x) = a;; x™ +--
+a— 0,a; € {—1,1}. As P(B;) = P(B,) =0, we have that P, (5;) = P_(f;) and

P, (B2) = P_(B2).
Notice that

s1/Bu((af ay_y .. 0§ )®) = Po(BA/BTH +1/B7T )
= P.(B)(1/BI +1/BF™Y )
= s1/B1((ay an_1...a5 )%).
A similar result holds for 1/, which gives us that
n((ay an-y1-.-ag )*) = n((ay az_q -.-a5 )®).
As a, # 0 we see that a;’ # a;, , and hence
n((@f ab_y...a8 )®) = w((ay ap_y ...a5 )®) € Ty(A) N T_1 (A).
This give that A is connected, and hence (S, 5,) € S.
Next we need a result of Odlyzko and Poonen [211].
Lemma (5.1.28)[201]: Let Y be a topological space. Suppose f : {0,1}N > Y is a
continuous map such that

fwo) N f ([wi]) # @

for all w € {0, 1}". Then the image of f is path connected.
Recall that [i, ... ;] stands for the cylinder {aj};:l c {0,1}N suchthata; =i;forj =

1,2,...,k. Lemma (5.1.28) can be easily generalized to the space {p, z, m}".
Lemma (5.1.29)[201]: Let Y be a topological space. Suppose f : {p,z,m}N - Y is a
continuous map such that

f (wz]) n f ([wp]) # 0,
f (wm]) n f ([wp]) # 0,
f (wm]) n f (Jwz]) # 0

for all w € {p, z, m}*. Then the image of f is path connected.

The proof is a simple variation of the result of Odlyzko and Poonen. We provideit here
for completeness.

Proof. This is, in essence, a bisection method. Given two infinite words w = a,a,a; ...

and w' = b, b, b5 ..., we define the usual metric by dist(w,w’) = zik where a; = b; for
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i =1,....,k—1and a;, # by. If no such k exists,then w = w' and dist(w,w") = 0.
Given two points x" = f(w')and x; = f (w,), we construct two new words w1 and w1

2 2
such that:

f (1) = 7 (wh):

o dist (wo,w1) < dist(wy,w,); and
2
o dist(wy,wy) < dist(wy, wy).
2

To do this, we let w be the common prefix of w, and w; so that w, = wayv, and w; =
waqvq Wlth ag * a. We then ﬁnd Wl € [Wao] and W:{ € [Wal] SO that f (Wl) =

fwi) € f(flwae]) N f([w, a;]). Such a point exists by assumptlon We now mduct on

2
this construction to find points x1 and xs and then x1, x3, xs, x» and so on. We notice by

4 4 8 8 8 8

the continuity of f and the fact the distances between adjacent points go to 0 in the limit,
that this construction will define a continuous path in the image of f.

Let v € {p,m, z}* be a finite word of length n. Furthermore, assume that vl # z.
Define P,(x) = P(x) = vyx™ 1 +--- +v,. If B, B, are distinct roots of P then we see
from Lemma (5.1.27) that (B8,,5,) / € S. Let B{, B, B, B> be distinct roots of the

rational function P(x) + 1/(x — 1), assuming that they exist. Let I, = [Bf,5; ] and
I, =[BF,B]. Let f (x) € {T°W=D w,x~t: w € {p,m, z}"}. We see that if |f'(x)| <
|P'(x)| for all x € I, then P(x) + f (x) will have a unique root in I;. We will denote
this root by g™ . Similarly, if |f'(x)| < |P'(x)| forall x € I,, then P(x) + f (x) will

have a unique root in I,, which we will denote by EZ(W) :
We see that if |P'(x)| > 1/(x — 1)? for all x € I; and x € I,, then there will be

welldefined roots 8™ and B for all w € {p, m, z}".

We will call the existence of 8=, 85 and |P'(x)| > 1/(x — 1)? on I, and I, property
RD. If, for a word v, its associated polynomial P has property RD, then the map f, =

f: {p,z,mN > R given by f(w) = (B™, B*) is well defined. It is easy to see that
such a map is continuous. It is also easy to see that for those infinite words w which only
contain a finite number of non-zero terms, the image corresponds to points that are roots
of a{p, z, m}polynomial, and hence such w are not inS.

To see that any such w satisfies the conditions of Lemma (5.1.29), let v correspond to
the coefficients of P. Suppose w € {p,z,m}*. We see that f,(w,) = f,(wvw) =
f,(wtw). Thus, if we have a polynomial P, which satisfies property RD, then we can
associate with P, a set of values which are not in S and whose closure is path connected.
We will denote this path-connected set by R,,. By Proposition (5.1.19), the complement
of S is closed. Consequently, R, NS = @ for all v satisfying property RD.

It is easy to see that if w satisfies property RD and w is a prefix of w’, then w' satisfies
property RD as well. Furthermore, if w is a prefix of w’, then R, € R,,,.

Lemma (5.1.30)[201]: Let w satisfy property RD. Then f(wm®),f(wp®) € R,,,.
Furthermore, R,, is contained with in the box with side sparallel to the axes and with
cornersat f(wm®™) and f(wp®).

We call such a box a bounding box for Rw. We will also need the concept of a set of
bounding boxes for a continuous path. Let ww, and ww;, be two points within R,,. By
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Lemma (5.1.29), there is a continuous path from ww, to ww; in R,. Let k be fixed. To
construct this path, we find a series of intermediate points w; ,«, €ach with two addresses.

Each of these addresses is such that w; , and w; . ,, ,ragree on the first |w| + k terms.

Denote these terms by a a, ... ay.
Thus, both these terms are found within the subregions R, 4,..q,- Furthermore, by

construction, the path from w; ,« t0 w ;4 ,,x Will also be within this subregion. Hence,

this pair, and the path between this pair, will be contained within the bounding box for
Rya,a,..q, Taking the union over all of these pairs, we get a series of smaller bounding
boxes that contain the continuous path from ww, to ww;. We will call such a series of
boxes the level k bounding boxes for a path in R,,,.
Lemma (5.1.31)[201]: The following words satisfy property RD.
Wi = PMIMmMpzzppzZppzppz,
w, = pmmmzp/mz,
w3 = pmmmzp7mp,
w, = pmmmzp7zm,
W5 = PMMmMpzzZppzpppzpz,
Wg = pmmmpzzpppmp4zp.
Proof. This is a simple calculation that we leave as an exercise for the reader.
Lemma (5.1.32)[201]: The closure of the set of roots generated by the polynomials in
Lemma (5.1.31) surrounds C.
Proof. To see that R,,, isconnectedto R,,,, consider Ry, ,pppzpzp @Nd Ry, 1. The former
has corners at
[1.323453274,1.648718809],[1.314160784, 1.648757942]

1.64876 \

1.64875 | §
Q.

o ———
1.64874 | e
e
==
1.64873 | \ —
| =
1.64872 | b —

13957 :1316; 15817 1318 1319 1:320; 1:321 1322 1:323

Figure (14)[201]: Ry, zpppzpzp @Nd Ry 1.
and the latter has corners at [1.321413068, 1.648715950],[1.315100914, 1.648769575].
The path from [1.323453274,1.648718809] to [1.314160784, 1.648757942] must
intersect the path from [1.321413068, 1.648715950] to [1.315100914, 1.648769575].
See Figure 14 for these two sets, the continuous paths going from f, 5252, (@) 10
fw zpppzpzp(M™)and from f, on sz (0%) 10 fyy, 11 (m™), and the bounding boxes.
To see that R,,,, is connected to R,,., we notice that
fiv, (mmmzp’m) = f,,,(mmmzp’m).

To see that R, is connected to R,,,, we notice that
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fw,(ppzm”) = f,, (pppzm?).
To see that R,,, is connected to R,,, consider R,,,,1+ and R
has corners at
[1.328228762,1.646703763],[1.324717957,1.646712975]
and the latter has corners at
[1.327323576,1.646702692],[1.324894555,1.646715284].
The path from [1.328228762,1.646703763] to [1.324717957,1.646712975] must
intersect the path from [1.327323576,1.646702692] to
[1.324894555,1.646715284]. See Figure 15 and the continuous paths connecting the
extreme points of each of these sets. For the next two, we need to strengthen the idea of
a bounding box as described above.
Consider Ry, mmmp*mppp @A Ry pz422mzmm- S€€ Figure 16 and the continuous paths

connecting the extreme points of each of these sets, as well as the level 9 bounding

wsppzzpppzpmz- 1€ former

S

x,
%
B

“\‘&ifh‘r hs;.

1.646714

1.646712

1.646710

1.646708

1.646706 \.{({

1.646704 E:\ \

[;25 1.326 1:327 B 1.328
Figure (15)[201]: R,,,, 14 and Ry ppzzpppzpma:
boxes for the path in Ry, _mmmp+mppp @Nd the level 2 bounding boxes for the path in
Ry pzm*zzmzmm- Precise coordinates for the bounding boxes for the continuous paths
can be found at [207].

Finally, consider Ry, pmmp7 @Nd Ry, ,ppme,5m- S€€ Figure 17 and the continuous

paths connecting the extreme points of each of these sets, as well as the level 9 bounding
boxes for the path in Ry, _mmmp+mppp @Nd the level 2 bounding boxes for the path in
Ry pzm*zzmzmm- Precise coordinates for the bounding boxes for the continuous paths
can be found at [207].
These surround the region in question, see Figure 13.
Corollary (5.1.33)[201]: The set S is not connected.
Corollary (5.1.34)[201]: The connectedness locus N = S¢ is not simply connected.
There are a great deal of questions that this line of research raises which still remain
unanswered. Here are some of them.
(i) Is it true that if some point of the attractor has a non-empty  neighbourhood, then
so does (0, 0)? In particular, what is the precise relationship between I and Z?
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Figure (16)[201]: Ry mmmprmppp and Ry pzm*zzmzmm:
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Figure (17)[201]: Ry, mmmpe @Nd Ry 2ppm*z5m-

(ii) We see that if (0,0) / € Ag, p,, then (B, B;) & Z. There are examples of (84, 8;) ¢
Z suchthat Ag_ g, nonetheless contains (0, 0), see Figure 5. It would be helpful to find
better criteria for points.

(iii) Find an example of g,, 5, such that:

*(0,0) € Ag p,;

«(0,0) /€ Agl.ﬁz;

* (B1,B2) / € 0S.

154



Figure (18)[201]: The set S together with the diagonal g, + S, = 3. (Level 20
approximation.)

(iv) Can a point with a unique address be an interior point of A?

(v) Does the claim in Theorem (5.1.18)(ii) hold for all pairs (B4, 5,)? Note that given
B € (1,2), almost every x € (0,1/(8 — 1)) has a continuum of B-expansions [212],
and, furthermore, this continuum can be chosen to have an exponential growth [208].
Thus, one could hope to adapt our argument so it would hold for (B, 8,) with both S,
and [, greater than the golden ratio.

(vi) We see that S < 0. Furthermore, (ﬁl(") ,ﬁz(")) € dS N d0. When approximating S

and O computationally, via Lemma (5.1.23), then the level n approximation of O is the
closure of the level n approximation of S. Is O the closure of S?

(VidIsZn O = @?

(viii) Justify the ‘spikes’ in S near (1, 2) and (2, 1). That is, we know that both corners
are limit points of S (Theorem (5.1.24)); is it true that for any h > 0 there exists a point
(B1,B2) in (2 — h,2) X (1,1 + k) which is not in S? By looking at (3™, B™) we get
a partial idea of the structure of S near (1, 2), but not a complete picture.

(ix) As mentioned at the beginning of 87, (8,, 5,) € S where 5; = 1.335438104, 5, =
1.646743824. Thus, we have (£, + B,) = 2.982181928, i.e. some small chunk of S
lies below the diagonal (which is not at all obvious from Figure 3). It would be interesting
to find the smallest e > 0 suchthatS c {(B;,82): 81 + B, > 3 — €}, see Figure 18.
(x) We know that S contains at least three disjoint components (by symmetry around the
line B, = B,). Does it contain a finite number of components or an infinite number of
components?

(xi) Prove or disprove that, for sufficiently small 8; and 3,, the attractor Az g, is simply
connected.

(xii) Show that the lower box (or Hausdorff) dimension of 04z, s, is strictly greater than
1 for all g4, B.
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Section (5.2): Positive Hausdorff Measure

Self-conformal sets are a natural generalisation of self-similar sets. Instead of
similitudes, theyare defined by using contractive conformal maps ¢,,..., @y. The prime
examples include Juliasets of hyperbolic rational functions on C, such as Julia sets for z —
z? + ¢ with |c| = 2.48. Asthe only contractive entire functions on C are the similitudes, one
has to restrict the definitionto a bounded open set Q where the mappings ¢; are contractive.
In the real line, the maps ¢; are contractive C1**-functions with non-vanishing derivative.
The self-conformal set is the uniquenon-empty compact set F satifying

N
F=Jom =[] |J o
i=1 neN ie{1,..,N}"
Where X c Q is any compact set satisfying ¢;(X) < Xand ¢; = @; oo ; forall =i, -
i
We are primarily interested in determining the size of a self-conformal set F. If the
“construction pieces”@; (X) are separated, then, by relying on conformality, one expects the

dimension of F to be close to the value s for which 1 = YN, diam(goi(X))s ~ YN el
Intuitively, one should getbetter and better estimates for the dimension by iterating this idea.
Indeed, this is precisely what happens: it is straightforward to see that in general, the
Hausdorff dimension of F is at most thelimiting value of such approximations, dimy(F) <
P~1(0), where

1
P(s) = lim ~log ) llgill"

and if there is enough separation, then dimy(F) = P~1(0). In fact, Peres, Rams, Simon,
and Solomyak [137] have shown that if s = P71(0), then thes-dimensional Hausdorff
measure of F is positive, H°(F) > 0, if F satisfies the open set condition, a natural
separation condition un-der which the overlapping of the construction pieces of roughly the
same diameter has bounded multiplicity.

We focus on the case dimy (F) < P~1(0). At first, it is easy to see that this occurs when

thereare exact overlaps, meaning that there are i # j for which (pi|F = (pj|F. A related

separation condition is the weak separation condition which, is otherwise the same as
theopen set condition but allows exact overlapping. The famoussdimension drop conjecture
claims that exact overlapping is the only way to drop the Hausdorff dimension of F below
P~1(0). Hochman[222] has verified the conjecture for all self-similar sets in the real line
defined by algebraic parameters.It should be remarked that Hochman’s proof does not
generalise to the self-conformal case.

In the self-similar case, Zerner [136] introduced the identity limit criterion, {(pi‘lo

<pj}ijdoes not accumulate to the identity, and showed that it is equivalent to the weak

separation condition. The self-conformal case is morecomplicated since we cannot use
inverses. We introduce the identity limit criterion for the conformal setting and in our main
technical lemma, Lemma (5.2.13), we show that if it is not satisfied, then there are arbitrary
small § > 0 such that, for some distinct maps ¢; and ¢;,
lp:i(x) — ;)| = Slloill = 5llg)ll
for all x. The lemma thus gives the existence of maps which are arbitrarily close to each
otherin the relative scale. Applying this observation inductively, we infer that the
overlapping of theconstruction pieces of roughly the same diameter has unbounded
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multiplicity and hence, the weak separation condition does not hold. Conversely,
pigeonholing such unbounded multiplicity implies the existence of two maps being
arbitrarily close to each other in the relative scale. Therefore, we see that the identity limit
criterion is equivalent to the weak separation condition also in theself-conformal case. This
Is stated in Theorem (5.2.2).
The role of the identity limit criterion is essential in our considerations. The Assouad
dimension of F, dim,(F), is the maximal Hausdorff dimension of its weak tangents, the
Hausdorff limitsof successive magnifications. In general, the Assouad dimension serves as
an upper bound forthe Hausdorff dimension but if the set is Ahlfors regular, then the two
dimensions agree. Fraser,Henderson, Olson, and Robinson [221] showed that if a self-
similar set in the real line does not satisfythe identity limit criterion, then its Assouad
dimension isl. In Theorem (5.2.17), we generalise this observation to the self-conformal
case. To prove this, we again apply Lemma (5.2.13) inductively tofind small scales
containing as many equally distributed points of F as we wish. This shows thatthe unit
interval appears as a weak tangent and proves the result.
In our main result, Theorem (5.2.7), we prove that if s = dimy (F), then the s-dimensional
Haus-dorff measure and content are equivalent. An almost immediate consequence of this
is that thepositivity of the Hausdorff measure is equivalent to the Ahlfors regularity. The
result generalisesthe corresponding theorem of Farkas and Fraser [220] in the self-similar
case. It should be empha-sized that their proof does not generalise to the self-conformal
case. With this theorem, we cannow address the dimension drop conjecture on self-
conformal sets in the real line having Hausdorff dimension strictly less than 1. Indeed, Lau,
Ngai, Wang [227]have shown that the weak separation condition implies H*(F) > 0 for s =
dimy(F). As mentioned above, this implies Ahlfors regularityand therefore, also the
Assouad dimension is strictly less than 1. Since this further implies the identity limit
criterion and hence also the weak separation condition, we conclude that all of these
conditions are equivalent. As the only difference between the open set condition and the
weak sep-aration condition is the exact overlapping, we see, by recalling the result of Peres,
Rams, Simon, and Solomyak [137], that the dimension drop conjecture holds for self-
conformal sets with positive Hausdorff measure. This can be considered to be the main
consequence of our considerations. The result is stated in Theorem (5.2.5).
We show the equivalence of the Hausdorff measure and content in a slightly more general
setting of quasi self-similar sets. We devoted to the study of self-conformal sets and their
separation conditions in R%. Results in thereal line and dimension drop conjecture are
explored.
Recall that thes-dimensional Hausdorff measure HS of a set A ¢ R¢ is defined by
HS(A) = lim H§(A) = sup Hg(4),
610 5>0
Where
H3(A) = inf{d}; diam(U;)%: A c U, U;and diam(U;) < 6}
is the s-dimensional Hausdorff §-content of A. The Hausdorff measure is Borel regular and
theHausdorff content is an outer measure — usually highly non-additive and not a Borel
measure. However, the Hausdorff content is slightly easier to compute, and is always finite
for bounded sets, irrespective of s. It is straightforward to see that H5(A) = 0 if and only if
H$,(A) = 0 and so the Hausdorff measure and content share the same critical exponent, the
Hausdorff dimension dimj of A which is defined by dimy (4) = inf{s: H*(A) = 0}.
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Observe that the assumptions of Theorem (5.2.7) are stronger than those that define
quasi self-similar sets; see [138] and [130]. Quasi self-similar sets differ to the sets we
consider by only requiring the lower bound in (16) to hold. The upper bound is crucial in
(20) and it seems unlikely that our assumptions are satisfied by quasi self-similarity alone.
The following result is a straightforward corollary of Theorem (5.2.7). We say that a set
A c R4 isAhlforss-regularif there exists a Radon measure pu supported on 4 and a constant
C = 1 such that

Clrs < u(B(x,r)) <Cr® (13)
forallx € Aand 0 < r < diam(A).
Proposition (5.2.1)[216]: Let F c R% be a set satisfying the assumptions of Theorem
(5.2.7). If s = dimy (F), then H°(F) > 0if and only if F is Ahlforss-regular.
Proof. Assuming F to be Ahlforss-regular, let 4 be a measure satisfying (13). Since u(F) <
Yiu(U;) < CY;diam(U;)* for all 5-covers{U;}; of F, we get H§(F) = u(F) > 0 for all
6 > 0 and,consequently, H*(F) > 0. To show the necessity of the Ahlfors regularity,
suppose that H°(F) > 0.By Theorem (5.2.7), there is a constant C > 1 such that

H?|p(B(x,1)) <Cr?® (14)
forallx € Fandr > 0. Foreachx € Fand 0 < r < diam(F), letg,,:F - F n B(x,r) be
as in(16). The existence of such mappings implies
H*|p(B(x,1)) 2 H*(gx,(F)) 2 D™ H*(F)r?

forall x € F and 0 < r < diam(F). Recalling that F is compact, it follows from (14) that
H3(F) < oo and H*| is therefore a Radon measure. We have thus finished the proof.

Let N > 2 and consider the family of N contractions{¢;, ..., y}on R%. We call this
family aniterated function system. If all the mappings ¢;: R* — R¢ are strict contractions,
then there exists a unigque non-empty compact set F, called the attractor of the iterated

function system, satisfying
N
F=|Joum.
i=1

When all the mappings ¢;are similarities the attractor is known as aself-similar set. We
consider the larger class of iterated function systems where all the mappings are conformal
contractions and in this case, we refer to F as a self-conformal set.
We give a precise definition for a conformal iterated function system. Fix an open set Q C
R A Cl-mapping ¢: Q — R%isconformalif the differential ¢’(x):R% -» R%is a
similarity,i.e. satisfies |¢'(x)y| = |¢'(x)||y| = 0 for all x € Q and y € R¥\{0} and, as a
function of x, is H'older continuous, i.e. there exist a, ¢ > 0 such that

lp"(x) ='W < |x — y|* (15)
for all x,y € Q.For d > 2, the H'older continuity follows from the similarity of the
differential and injectivity . In fact, conformal mappings in the plane correspond to the
holomorphic functions on C with non-zero derivative on their respective domain, and in
higher dimensions, by Liouville’s theorem, conformal mappings are either homotheties,
isometries, or compositions of reflections and inversions of a sphere. In the one dimensional
case, conformal mappings are simply the C1*%-functions with non-vanishing derivative. We
say that{e;}Y ,is aconformal iterated functionsystemif each ¢; is an injective conformal
mapping on a bounded open convex set Q such that ¢;(Q) cQ and |¢{|:=
sup |@;(x)| < 1. There exists a compact set X ¢ Q such that UY, ¢;(X) c X, which
X€EQ

158



guarantees the existence of the self-conformal set;for details, see Lemma(5.2.8). Self-
conformal sets are a natural generalisation of self-similar sets.

We shall verify that self-conformal sets satisfy the assumptions of Theorem (5.2.7). We thus
obtain the following result as an immediate corollary of Theorem (5.2.7) and Proposition
(5.2.1).

The above theorem extends to graph-directed and sub self-conformal sets in a
straightforward manner. It is pointed out in [220] that the constant C above cannot be chosen
to be 1. We may thus consider that the theorem generalises there sults of Farkas and Fraser
[220] on graph-directed self-similar sets; see also [219]. It is also worthwhile to emphasize
that the method of Farkas and Fraser cannot be applied to prove Theorem (5.2.9): their
proof relied on an abstract lemma on measurable hulls which can only be applied if the
measure and content of the whole set are equal.

Let{p;}Y_,be aconformal iterated function system and F be the associated self-conformal
set. We use the conven-tion that whenever we speak about a self-conformal set F, then it is
automatically accompaniedwith a conformal iterated function system which defines it. Let
Y ={1,..., N}V be the collectionof all infinite words constructed from integers{1,..., N}.
Ifi =i,i, -+ € X, thenwe define i|,, = i; --- i,, foralln € N. The empty word i|, is denoted
by @. Observe that X, = Uj-, 2, Wwhere X, = {i|,,: i € X}for all n € N, is the free monoid
onX; ={1,...,N}.IfneNandi =i, - i, € 2}, then we write ¢; = @; o--o@; .Fori €
2 \{@}we set i~ = i|;—1, where [i] is the length of i.

We say that F satisfies the weak separation condition if

sup{#d(x,r):x € Fand r > 0} < oo,

Where

O (x,1) = {@;|p: diam(e;(F)) < r < diam(g; — (F)) and ¢;(F) N B(x,) # @}

for all x € R% and r > 0. Furthermore, we say that F satisfies theidentity limit criterion if
inf{llo"ill™* sup lpi(x) — @j(x)|:i,j € X, such that ¢;|r # @;|r} > 0.

The weak separation condition for self-conformal sets was introduced by Lau, Ngai, and
Wang[227]. Our definition is strictly weaker than the original one; see Example (5.2.16).
This modification was needed to be able to find a definition for the identity limit criterion
equivalent to the weak separation condition. The following result is proved.
Theorem (5.2.2)[216]: Let F < R® be a self-conformal set containing at least two points.
Then Fsatisfiesthe weak separation condition if and only if it satisfies the identity limit
criterion.
The weak separation condition provides us with a sufficient condition for the self-conformal
set to have positive measure. The identity limit criterion gives, at least in principle, a
checkable condition for the positivity.
Proposition (5.2.3)[216]: Let F c R%be a self-conformal set satisfying the weak
separation condition and s = dimy(F). Then H*(F) > 0.
The above result was observed first time by Lau, Ngai, and Wang[227]. Its proof follows
imme-diately from [225]. We remark that [225] uses the original definition of Lau, Ngai,
and Wang [227] (see Example (5.2.16)) but its proof applies verbatim also with our
definition of weak separation condition.

The Assouad dimension of a setd c R¢, denoted by dim,(A), is the infimum of all
s satisfyingthe following: There exists a constant C > 1 such that each set A N B(x, R) can
be covered by at most C(R/r)* balls of radius r centered at A for all 0 < r < R. It is easy
to see that dimy (4) < dim,(A) for all sets A c R4,
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The proof of the following theorem is postponed until.
The above result, together with Theorem (5.2.2), generalises the corresponding result

of Fraser, Henderson, Olson, and Robinson [221] on self-similar sets in the real line.
The following corollary generalises the corresponding result of Farkas and Fraser [220] on
self-similar sets.
Corollary (5.2.4)[216]: Let F c R be a self-conformal set containing at least two points
such that s = dimy(F) < 1. Then the following five conditions are equivalent:

(i)  F satisfies the weak separation condition,

(i) HS(F) >0,

(iii) F is Ahlforss-regular,

(iv) dimy(F) =s,

(v) F satisfies the identity limit criterion.
Proof. The fact that (i) implies (ii) follows Proposition (5.2.3). Theorem (5.2.9) guarantees
that (ii) and(iii) are equivalent. It is more or less a triviality that (iii) implies (iv); see, for
example, [224].Finally, Theorems (5.2.17) and (5.2.2) show that (iv) implies (v) and (v)
implies (i), respectively.
A self-conformal set Fsatisfies theopen set condition if there exists a non-empty open set
U c Q such that ¢;(U) c Uforall i and ¢;(U) N @;(U) = @ whenever i # j. Recall that,
by [226], the open set condition is equivalent to

sup{#X(x,r) : x € Fandr > 0} < oo,

Where

X(x,r) ={i € Z,:diam(¢;(F)) < r <diam(¢; — (F)) and ¢;(F) N B(x,r) + @}

for all x € R%and r > 0. Therefore, the open set condition is stronger than the weak

separation condition. The pressure P: [0, ) — R, defined by

1
P(s) = lim ~log ) [l9}lI°,
n-on 4
I€EX,
is well-defined, convex, continuous, and strictly decreasing. In fact, there exists unique
s = 0 for which P(s) = 0. Itis a classical result that if F satisfies the open set condition,
then dimy, (F) = P~1(0); for the latest incarnation of this observation, see [225].
We say that a self-conformal set F has anexact overlap if there exist i, j € X, such that
i # j and ;| = @;|r. Observe that if F satisfies the open set condition, then it cannot
have exact overlaps. For a self-similar set F in the real line, according to a folklore
“dimension drop” conjecture, dimy (F) = min{1, P~1(0)}or otherwise there is an exact
overlap. Hochman [222] has verified the conjecture under a mild assumption which is
satisfied for example when the associated iterated function system is defined by algebraic
parameters; see [222]. To generalize Hochman’s proof for self-conformal sets in the real
line seems difficult since the semigroup generated by C1** maps is simply too large:
there is no invariant metric and dimension d € N for which there is a smooth injection
to R%, which is bi-Lipschitz to its image in any compact neighbourhood of the identity.
However, the following theorem verifies the conjecture for self-conformal sets in the real
line having positive Hausdorff measure. It generalises the corresponding result of Farkas
[218] on self-similar sets.
Theorem (5.2.5)[216]: Let F c Rbe a self-conformal set with H5(F) > 0 for s =
dimy (F) < 1. Then s = P~1(0)if and only if there are no exact overlaps.
Proof. If s = P~1(0), then the assumption that HS(F) > 0 together with [137],implies
that F satisfies the open set condition and hence, cannot have exact overlaps. If there are
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no exact overlaps, then, by Corollary (5.2.4), the assumption H*(F) > 0 implies that F

satisfies the weak separation condition. Therefore, by [217] (see also [225]), the lack of

exact overlaps implies the open set condition and we have s = P~1(0).

For a bounded set A ¢ R%we let

N, (A) = min{k: A c UX_, B(x;,r) for some x,,...,x; € R%}

be the least number of balls of radius » > 0 needed to cover A.
Lemma (5.2.6)[216]: Let F c R%be a set satisfying the assumptions of Theorem (5.2.7). If
s = dimy (F),then

27SHS,(F)r=s < N,(F) < DSr™s
forall» > 0 and H5(F) < (2D)%. In particular,H*(F) > 0 ifand only if 0 < H®(F) < co.
Proof. The first claim follows from the definition of H3,, the existence of mappings g: F —
F N B(x,r) satisfying (16), and [130]. The second claim follows immediately from the first
one.
We are now ready to prove the main theorem.
Theorem (5.2.7)[216]: Let F c R%be a non-empty compact set and s = dimy(F).
Suppose that thereis a constant D > 1such that for each x € Fand 0 < r <diam(F) there
exists a mapping g: F = F n B(x,r)for which
D7'rly —z| < |g(y) — g(2)| < Drly — 2| (16)
for all y, z € F. Then there exists a constant C > 1such that
Hs(F N B(x,r))6Crs
forall x € r* and r > 0, and
H*(FNA) <CH;(FNA)

forall A c R4,
Proof.We may assume that H*(F) > 0 since otherwise there is nothing to prove.This of
course implies that HS (F) > 0. Write € =2-2%D3HS (F)™t. To prove the first
claim,suppose, for a contradiction, that there exist x, € R% and r, > 0 such that

H®(F N B(xg,15)) > Cr5. (17)
Fixn € N and let B,, be a maximal collection of pairwise disjoint closed balls ofradius 27"
centered in . Note that, by [229] and Lemma (5.2.6), we have
272SHS (F)2™ < #B, < 25DS2™ . (18)
Foreach B € B, let gB: F = F n Bbe as in (16). It follows that each ball B in the packing
B,, contains gz (F N B(x,,1y)), a scaled copy of F N B(x,,1,). Therefore, recalling (17),
we get

H3(gg(F N B(xy,15))) = D527 H®(F N B(xy,15)) > CD™27™ r§
= 2.2%p2SHS (F) g (19)
for all B e€ B,. Furthermore, since diam(gg(F N B(xy,15))) < D27*diam(F N
B(xg,19)) < D27"2ry =:6,, we have
H3, (95(F 0 B(x0,70))) = HS (95(F 0 B(x0,7))) < DS2752°75 (20)
forall B € B,,.
Now (19) and (18) imply

Z H? (gB(F N B(xo,ro))) > #B, 245 SHID2SYS (F)Yrg = 2-225D%5r§ (21)

BEB,
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and (20) and (18) give

Z H3, (95(F N B(xo, 7)) ) < #B,DS272575 < 2%D%r5  (22)
BEB,
Since, by the fact that the sets gz (F N B(x,,7,)) are HS-measurable and (21),

HF) = HSP\ | | g5 (F 0 BGo o)) + ) HS (g5(F 0 B(o,10)))

BEB, BEB,

> HS(F\ U gs (F O B(xg,7))) + 2 - 225D25r§
BEB,

and, by (22),

H3, () < H3, P\ | ] g5 F 0 BGro,ro)) + D H3, (95(F 0 BCxo 1))

BEB, BE€By
<P\ | ] g5 (F 0 BGro, o)) + 22025,
BEB,,

we conclude that

HS(F) — Hi (F) 2 2-22D*r5 — 225D%r5 = 225D*r§ > 0.
This is a contradiction since the lower bound is independentofn.To show the second claim,
let A « R%and fix ¢ > 0. Choose a countable collection{B (x;, r;)}iof balls covering F n
Asuch that };(2r;)° < H3,(F n A) + €. Applying the first claim, we get

HS(FNA) < ZHS (FNB(x;1n)) < CZ(Zr)S <CHL(FNA)+¢)

which finishes the proof
The following lemma is standard.
Lemma (5.2.8)[216]: If {¢p;}},is a conformal iterated function system, then there exists
abounded open convex set V c R% such that ¢;(V) cV cV cQ foralli€{1,...,N}.
Furthermore, if F c V isthe associated self-conformal set containing at least two points,
then there exist a constant K > 1 such that
K eilllx =yl < loi(x) — i < lloilllx — vl (23)
forall x,y € Vand i € X,,
1

mdmm(@i(ﬂ) < llo;

foralli € X,,and

K .
| < diam(F) diam(@;(F)) (24)

K2 oilllleill < llegll < lleilille;ll (25)
forall i,j € X.,.
Proof. Write d = dist(U_; ¢,(Q), R4\Q)/4 > 0 and let U; be the opend-neighbourhood
of ¢;(Q).It is easy to see that
dist(U;, R}\Q) = 2d (26)
forall i € {1,..., N}. Indeed, if this was not true, then there are x € U; and w € R%\Q such
that |x —w| < 2d. As x € U,, there is z € ¢;(Q) such that |z — x| < d. Therefore, the
contradiction 4d < |z — w| < |z — x| + |x — w]| < 3d we obtain proves (26).
Define V to be the convex hull of Uli"=1 U;. Let us show that
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dist(V, R*\Q) > 2d. 27)
If this was not the case, then there are z € Vand w € R% \Q such that |z — w| < 2d. We
may assume that z & U, U; since otherwise the contradiction follows immediately from
(26). Let x,y € UN_, U; be such that z is a convex combination of x and y, which we denote
by writing z € [x, y]. Let z’ be the closest point to w in the line containing the segment
[x,v]. If 2’ & [x,y],then there is v € {x,y} such that v € [z,2']. As v € UN, U; and |v —
w| < |z — w| < 2d, we getthe contradiction again from (26). We may thus assume that z’ €
[x, v]\ UX, U;. Notice that (2’ —w) L (y —w) and |z’ —w| < |z—w| < 2d. Let L,, =
{w+ t(y — x) : t € R}be the line parallel to[x, y] going through w. Choose x’,y' € L,,s0
that (x —x") L (y —x) and (y —y") L (y — x). It followsthat w € [x/,y'] and |x — x'| =
ly —v'| = |z’ — w| < 2d. By (26), we therefore have x', y' € Q.But since Q is convex, also
w € Q which is a contradiction. Therefore, (27) holds and it is thusevident that VV c Q.
Hence, ¢;(V) € ¢;(Q) c U; c Vforalli € {1,...,N}.
By [132], the Holder continuity of the differentials implies the existence of a constant K, >
1 for which

lp: (| < Kol ()] (28)
forall x,yeQandie€’,. Fix x,y € Qand definex, = (1 —t)y+tx for all t € [0,1].
Note that,by convexity of Q, x; € Q for all t € [0,1]. The fundamental theorem of calculus
implies that thereexists t, € [0,1] such that

1 d
l9:(x) — : (V)| = j i (xe) o xedt| < i (xe,)l1x = yl, (29)
0

which gives the right-hand side inequality in (23). To showthe other inequality, fix x,y €
Vit [o;(x), 0;(y)] N dp; () # @, we choose z € [¢;(x), p;(y)] to be so close to dp; (Q)
such that @;'([p;(x),z]) € Q and |x — ¢;*(z)| > d, which is possible by (27). If
[@;(X), 0;i(¥)] € @;(), then we write z = ¢;(y). Define z; = (1 — t)z + tp;(x) for all
t € [0,1]. As above, there exists t; € [0,1] such that

1 d
07 (i) = 97 @ = || 07 o) g7t
0
Yielding
_ -1 _
10:(¥) — 0| 2 19i(x) — 2| 2 [0 (2c,)| |x — 07 (D]
-1
> (i) (z,)| “Ix— ﬂmin{LW}- (30)
Note that, by conformality and (28), inf |(¢; 1)’(w)|_1 = inf |@/(W)| =
wEep;(Q) wEQ
K5 t|l@i||-Therefore, the left-hand side inequality in (23) follows from (30) by setting K =
Komax{1,diam(V)/d}.Since both (24) and (25) follow straightforwardly from (23), we have
finished the proof.
The properties (23)—(25) are characteristic for conformal iterated function systems and they
are used as a starting point in generalising self-conformality into metric spaces; see [226]
and [230].
Theorem (5.2.9)[216]: Let F ¢ R be a self-conformal set and s = dim (F). Then there
exists a constant C > 1such that
H*(FNA) <CH5(FNA)

for all A ¢ R®. Furthermore,H®(F) > 0 if and only if F is Ahlforss-regular.

< (o) (@ )lgi(x) — 2]

163



Proof. We may clearly assume that Fcontains at least two points. Let x € Fand 0 < r <

diam(F).Picki € X suchthat lim ¢; (x,) = x forall x, € V and choose n € N for which
n—>0oo

@i, (F) € B(x,r) but ¢; _ (F)\B(x,7)# @.Note that the latter property implies

diam(e;,_, (F)) = r. By (23) and (24), we have

| 00,00 = 20, @ = K72 |0y, || min llofl 1y 21
min ||| min |||
ie{1,.,N} . ie{1,.,N}
> &N g L (F _ gl > KNS
— K2diam(F) lam(@y,,_, (F))ly = z| = K2diam(F) rly =zl

And

K 2K
. — - < dj . —_— < —_ —_
@i, ) — @i, (2)]| < Ziam(F) diam(g;, (F)|y —z| < dl.am(F)rly z|

forall y,z € F. By setting
szlam(F) 2K Y
”901” diam(F)

we have thus shown that for each x € F and 0 < r <diam(F) thereexisti € X andn €
N such that ¢;; (F) € F n B(x,r) and

D7'rly — z| < |9y, ) — ¢4, (2)| < Drly — 7| (31
for all y,z € F. Theorem (5.2.9) follows now immediately from Theorem (5.2.7) and
Proposition (5.2.1).

A sub self-conformal set is a non-empty compact set £ < F which satisfies E c
UM, @;(E),where F is the associated invariant set. Note that sub self-conformal sets are
contained in theinvariant set when mapped under ¢;, that is,p;(E) c F. It is again
straightforward to check that Lemma (5.2.8) and Theorem (5.2.9) hold for sub self-similar
sets. Generally, the images of graph-directed self-conformal sets are not contained in
themselves under ¢; for all i and it is easy to find examples such that the sets F; are not sub
self-conformal. However, some prefer todefine a single graph-directed set using subshifts
of finite type. In our notation this amounts to considering F = U, F;. For such Fwe have
@;(F) c Fand thus F is a sub self-conformal set .
For both cases above we have omitted detailed proofs to avoid cumbersome notation of M-
admissible words and arbitrary subsets.

The proof of Theorem (5.2.2) is split into two parts, Propositions (5.2.10) and
(5.2.14).
Proposition (5.2.10)[216]: Let F c R%be a self-conformal set. If Fsatisfies the identity
limit criterion,then it satisfies the weak separation condition.
Proof. We prove that the failure of the weak separation condition implies the failure of the
identity limit criterion. Our goal, therefore, is to show that for every € > 0 there are i,j €
2.such that

D = max{1,

0 <sup l9:(x) — ()| < emax{|lo; |, ll¢;j[}- (32)

Let K > 1 beasin Lemma (5.2.8), fix e > 0, and choose
-1

2K?*diam(F) 1
,=diam(F),1}. (33)

0< § <min{e| 4 +
. . . 2
in,, diam(e:(F)
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Let{B(x;, )} be a maximal collection of pairwise disjoint closed balls centered at F.
Observe that if § < %diam(F), then M <diam(F)25~4.
Since the weak separation condition does not hold, there exist a point z € F and a radius
r > 0 such that

#D(z,1) > (596" HM,
Note that ¢ (F) c B(z,2r) for all ¢ € &(z,1). Let{Bj}jzlbe a minimal cover of B(z, 2r)
of balls of radius 57 centered at B(z, 2r). Observe thatif § < 1, then L < 5¢5~¢. Moreover,
foreach ¢ € @(z,r) thereisamap y:{1,...,M} - {1,...,L}given by Y (i) = j, wherej €
{1,..., L}such that ¢(x;) € B;. Note that there can be at most L many different maps .
Since #®(z,7) > LM there have to be two maps ¢;, @; € ®(z,7) such that
@i|F # ;| and foreach i € {1,..., M}it holds that ¢;(x,), p; (x;) € B; (34)
forsome j € {1,...,L}.
Leti,j € X, satify (34) Fix x € F and choose x, € {x;}}’ suchthat |x — x,| < |x — x;| for
all i € {1,...,M}. Note that, since {B(x;,26)}}L,covers F, we have |x — x,| < 28. It
follows fromthe triangle inequality, Lemma (5.2.8), and (33) that
lpi(x) — @ ()] = |@i(x) — @i(x0)| + |9i(x0) — @ (X0)| + |9 (x0) — @ (x)]

< ll@illlx = xol + 267 + |l@jll|xo — x|

K?diam(F)
mln dlam(goi(F))

ie{1,..

< 26max{llill, |oj][}{ 2 + < emax{|lo;ll, llo;jll}-
This proves (32) and finishes the proof.
Before going into Proposition (5.2.14), we prove three technical lemmas. We say that F is
uniformly perfect if there exists a constant H > 1 such that
FnB(x,r)\B(x,r/H) = @ (35)
forall x € Fand 0 < r < diam(F).
Lemma (5.2.11)[216]: Let F c R? be a self-conformal set. Then thed following three
conditionsare equiva-lent:
(1)F is uniformly perfect,
(i)dimy(F) > 0,
(iii)F contains at least two points.
Proof. If F is uniformly perfect, then [223] shows that dimy (F) > 0, which clearly implies
that Fcontains at least two points. Therefore, it suffices to show that (iii) implies (i). Let
K > 1 be as in Lemma (5.2.8) and
3K3
H =

lE{l N}”gol“
Letx € Fand 0 < r < diam(F). Since F contains at least two points, there exists a point
y € Fsuchthaty # x.Leti € X besuchthat lim ¢, (y) = x.Writed = [x —y| > 0 and
n—-oo

choose n, € N such that diam(g;,, (F)) < % and

3 2 w2 ( >n0
2dK + K?diam(F) r{I}i?(N}H(plII

1 ; !
(gerc= — aiam(®) ( pas, loil) ), i, lofll

ie{1,.,N} ie{1,..,
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Choose n = n, such that

! 3 . ! !/ 3 . !/
[ (Ed + diam(F) ||<pi|n0 ”) <r <|eoj .l (Ed + diam(F) ”(p“no ”) (36)
and note that it suffices to prove the claim for all 0 < r < r, where 0 < r, < diam(F). Let
Z € ¢y, (F) and observe that x, ¢, (z) € Pilnilng (F).Therefore, by (23) and (24),

lpi, ) — x| < |@i, ) — @i, (@) + |pip,, (2) — x|

3
<\l llly =21 + diam(®) || @}, || < l0h, [Gd + diam(®) |}, [
<r (37)

And
i, ) — x| = |0, ) — @11, (2| — | @iy, (2) — x|
> K7\ofy, llly = 21 — diam(F) || 0,4,

! 1 — . !/
2 [lpy, IIG K™ — diam(F) oy, ID- (38)

-1
min ||(pl||) llg; | lland hence, by (36), the choice of

! < K?
By (25), we have ||(pl|n_1|| =K ( i€{1,.,N}

H > 1, and (38),

3 -t ,
K+ K* (I{mn “(pl”) diam(F)|| o}, |
r< ||(pi|n|| mi ” ,”
" ie{1,.,.N} Pi
< h’l|<ﬂ{|n||(§dk"1 — diam(F)ll¢;,, 1D < Dlgy,, (v) — x|. (39)

Therefore, by (37) and (39),
¢i,(¥) € B(x,7)\B(x,7/H)
and we conclude that F is uniformly perfect.
Lemma (5.2.12)[216]: Let{ep;}_,be a conformal iterated function system. Then there are
constants a, ¢ > 0 such that
lpi(x) — i < cllgilllx — y|“
forall x,y e Vandi € Z,.
Proof. Let x,y € V and fix i = i; - i,, € X,for some n € N. Write ¢/ (i; -+ i,) = g1 o
In
Xj = P iy (%) and y; = @i (V).
and note that, by the chain rule,<p{|j(xj) = @i, (x1) <p{j(xj) for allj € {1,...,n}. We
interpret x,, = x and y,, = y. Write also
d; = <P£j(xj) - @fj()’j)
and observe that, by (15), there exist constants «, ¢ > 0 such that

« a(n-j)
x=yle<c( max i) lx—yle  (40)

|d;] < clxj—y]" < ”‘P;f(i)
forall j € {1,...,n}. Since
P gi-105 () = Pgim1y () = 05D (P gy () = @iy ) + dj iy )
forall j € {1,...,n}, we recursively see that
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@i (x) — 0;(¥) = i, (1) (@5 1y ) — Py ) + A1 P51, ()
= <p£|2(xz)(<p,’,z(i) () = P2y ) + @i, (x1) 202y V) + A1y (V) =+

Z(pl| 1(x] 1) QDIO_j(i)(y). (41)

Observe that, by (25) we have ||<pl| 1||||<pa,(l)|| < K?||p;}|| forall j € {1,...,n}and hence,
by(41) and (40),|

n n
i) = i1 < Y o, (5= 1)| 5] [0y 0] < K2lgill D | ]
= =1

il |x — y|*

as claimed.
Lemma (5.2.13)[216]: Let {¢;}Y_,be a conformal iterated function system and F c R¢ the
associated self-conformal set containing at least two points. If F does not satisfy the identity
limit criterion, then there exists a constant C > 1such that for every ¢ > 0 there are 0 <
6 <eg andi,j e X, for which
Cromax{lloill, eI} < loi(x) — @;(x)| < Comin{l|o;ll, llo; I}

forallx e V.
Proof. By the assumption, for every € > 0 there are i, j € X,such that
0 <suplei(x) = ¢;()| < £ max{[le:ll, lle;l13- (42)

X
Leta,c > 0 beasin Lemma (5.2.12). Recalling that V O F is open, we see that there exists

g, > 0 such that e2/*® < diam(F) and B(x, e2/**®) c V for all x € F. Fix 0 < & < &
and let i,j € X, be such that (42) holds. By compactness of F, the supremum in (42) is
attained by some x, € F.To simplify notation, write f(x) = ¢;(x) —¢;(x) and 6 =
|f (xo)| /max{lle:ll, ll¢;lI}. Note that
If GOl < If (o)l = smax{ll; I, ;I3 < & max{llo;ll, llo;ll} (43)
for all x € F and, in particular, 0 < § < e.
By the triangle inequality and Lemma (5.2.12), we obtain

[LF' O = If" Gel| < 17D = ' ()] < li(¥) — 9i ()| + |9 () — 9} (x0) |

< c(llpill + [|@; )1y = x01* < 2c max{llg;l, ||f][}y — xol (44)

forall y e V. Let H > 1 be as in (35). We will next show that
If'(xo)| < (BH + 20)%"/M+*max{]|o;|, ll o} 13- (45)
To prove (45), we assume the opposite inequality for a contradiction. Since F contains at
least two points, it follows from Lemma (5.2.11) that F is uniformly perfect and there exists
a point z € F N B(x,,8%(1/ (1 + a)) / B(xy, 6 /19 /H). By convexity of V, the line
connecting x, and z is contained in V and hence, z; = (1 —t)x, + tz € V forall t € [0,1].
Recalling (44), we have

If'(2) = f'(x0)| < 2emax{llill || @[} 12 — x0l*
< 28 max{||p; I, [lo5113: (46)
Define unit vectors u and v by setting u = (z — xg) / |z — xo| and v = f'(xo)u/|f (x0)].
As f'(y) is a similarity for all y € V, we have (f'(xo)u, v) = |f'(xo)ul? / |f (xo)]| =
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If'(xo)] and |f'(xo)u — f'(z)ul = |f' (xo) — f'(z:)|. Therefore, by the Cauchy-Schwarz
Iinequality, the assumptionthat (45) does not hold, and (46), we have

(f'zow, v) = (f'(xo)u, v) = {f'(xo)u = f'(z)u, v) 2 |f (x0)| = If (x0) = f'(z0)| 2
3H§*/ 0+ max {||pil, Ilj113(47)

for all t € [0,1]. Since, by conformality, (V{(f (), v),u) = (f (y)u,v) for all y € V, the
fundamental theorem of calculus and the multivariate chain rule imply

Ld 1 d
(0 = (Fav) = | S (f GO v = [ (TG v) 5z de
0

0

1 1
= |z —xolj (V(f(zp),v),uydt = |z —xolf (f'(zp)u,v)dt. (48)
0 0
Hence, by the Cauchy-Schwarz inequality, (48), and (47),

1
F @] = (F),v) = (F (o), v) + 12 — ol j (' (2w, v) dt
0

1/1+a

2 —=|f(xo)| + 3HS/ Y *max{||pill, llojll} = 28max{llo;ll, llo;lI}

> |f (x0) |-

As this contradicts (43), i.e. the maximality of x,, we have shown (45).
Combining (44) and (45), we see that

'O < If o)l + 2emax(llgill, [|oj][}ly — xol
< 3H + 40)8*"*max{ll¢;|l, ll#;l1} (49)

for all y € B(xo, 8Y/1+%). Write r = §/1*% / (6H + 8¢) < 6/*%, fix x € B(x,,7), and
definey t = (1 —t)x, + tx forall t € [0,1]. By the fundamental theorem of calculus, there
exists y € B(x,,r) such that, by (49),

IO = If x| < 1f(x) = f(x)| =

H

< IfF Mx = xol

1 d
-[o f ) E)’tdt

a/(1+a /] ! 1 ! !
< 3H + 40*"" " max{llgill | ¢jll}r = 5 smax{lieilL llg;}.  (50)
Now (43) and (50) imply

1 1
5 omax{lloill {|lojl[} = 1f o)l =5 8 max{lloill llpjl} < 1 ()

< smax{|lg; I, |||} (51)
forall x € B(x,, 7).
Let k € X be such that 1111_r>£10 @k, (x) = xo for any x € Vand choose n € N such that
diam(gy,, (V)) <r and diam(¢y ., (V)) = 7. Note that ¢ (V) < B(x,,r) and hence
(51)holds for all points in @y (V). By (25), we have K~2||@pllll@k || < ll@nk, Il <
lenlllley,, |l forall h € X,. Observe that, by (24),

(K2 mingeqy, || i1l K

diam(F) = ”‘Pkln” = diam(F) 4

Therefore, by (51),
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I (00, )| < smax{ligil |lo}} < 6K2||<p;|n||‘1
SK*diam(F)

N2, I}

!/
mmﬂwmm

max{||e
= i ollofl U 125,
K*(4H + 22+“)dlam(F) , ,
< §@/1ta max{|| @, |l 19, |13
oin lloil

And

|f (@x1, G| 2 8%/ M+K(2H + 2*%) diam(F) max{||@jy, I 9, 1}
for all x € V. Writing

K4(4H+22+“)diam(1~") K

||<p | ~Q@H+ 2v*%)diam(F) |’

C = max

we have thus shown that
crs* *  max{lloje )|, |0, I} < @i, () = @jug,, ()]
< co < max{|of, || lloju, I (52)
forallx e V.
To finish the proof, fix 0 < &’ < diam(F)/(4KC) andtake 0 < & < g, such that */1+% <
e Let0 < & <¢,i’ = ik|,, andj = jk|_n be so that (52) holds and define §' = §%/1+@ <
g®/1+a < e Notice that, by (24), the triangle inequality, and (52),

"(P] ||_ diam(F) Tiame Giam ((P(] )(F)) diam(F) (dlam((pl (F)) +

2c8'max{||opll o) 1}) < k|| oirll + e max{ligpll o) 11

Therefore, if ||<pj 'l = lo;|l, we have

Kdiam(F) —
9711 < Zramer =z 1w < 2Klio |

and similarly the other way around. By (52), we now have
'8 max{lloy |l l9-G) 11} < loy () — @ ()| < 2KC8min{|ly |, lloj |1}
for all x € V, which is what we wanted to show.
Proposition (5.2.14)[216]: Let F c R%be a self-conformal set containing at least two

points. If F satisfies the weak separation condition, then it satisfies the identity limit
criterion.

Proof. Suppose to the contrary that F does not satisfy the identity limit criterion. Let C >
1be as in Lemma (5.2.13) and K > 1 as in Lemma (5.2.8). For each g € N write I(q) =

1--1€X,and e(q) = ECK‘2||<p{(q)||diam(F)/q > (0. Choose g € N to be the smallest
integer for which
K 3g—2 Cllo;n|ldiam(F) — K?%¢
. S, ((pj(F)) c3a-2 loio . (F) (q) 53)
diam(F) jezq 3g+2 (| p;(@)|diam(F) + K2e(q)
We will prove that F does not satisfy the weak separation condition by showing that for
each n € N there exist x € Fand r > 0 such that #®(x,r) = [n/q].
Fix n € N and write &; = &(q). Since Fcontains at least two points and does not satisfy the

identity limit criterion, Lemma (5.2.13) implies that there exist 0 < §; < & and iy, j; € 2,
such that

C71 61 lloi, Il < |y, (x) — @, ()| < Cyllopy, I
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Forall x € V. We will choose 6,, > 0 and i, ji, € 2.,k € {1,...,n}, inductively. Assuming
0 <61 <é€r_1 <1 and iy_q,jx—1 €2, have already been chosen for some k €
{2,...,n}, letusfix 0 < g < (2K>C?)""8,_1ll¢;,__ |l- By Lemma (5.2.13), we then choose
0 < 6, < g and iy, j, € X,such that

C8lloi Il < 19y () — 95, (O] < CEill i (54)
forall x e V.
Define i =i, - iyand k,, =i, = imsifmim—1 - i1for all me {1,...,n}. Fix m,l €
{1,...,n} such that m # land notice that we may assume [ < m, relabeling if necessary. We
claim that

onmmlF * (pklmlF (55)
for all m € Z.. By (25), we have K|l lllojll < llok;ll < llokllligjlifor all k,j € Z..
Therefore,by (23) and (54), we have

|0:(%) = 01, )| = K@i iy, 95, (@5, i, X)) — 0, (@5, i, (X))
> (KO) 6 ll@f i, Nloi Il = (KO8 @], |

and, as 8, < & < 2K°C) 81l @im—1ll << CKCHS @7 -+ Nl also
19:(x) = @, () < K2COpllpy, .., |l

< K2CQKSCH S0, iy @' Cimma || ||,

< K2CQK*CH™8 | ¢f,.. IS QKO T8l . (56)
for all x € V. Since now
|0k, (0) = P (O] 2 [|0:) = 01, ()| = |0:2) = @1, ()|

> (KO T'68| il = @KO 6|0, | = QKO8 0f,,.i,[| > 0

for all x € V, we see that |@y,m(x) — @i, m(x)| > 0for all x € ¢, (V) and m € Z..
Therefore, (55)holds and, in particular, the set

Y= {(pkml(p)lp:m €{1,...,n}} (57)
Has n elements for all p € {1,...,q}.
Letr = max }diam(q)kml(q)(F)) and x = @) (x0), Where x, € F. We will next show
n

me{1,..,
that
diam(@y, 1q)(F)) <1 < diam(g, (F))and @1 (F) N B(x,7) # @ (58)
for all me{1,...,n}. To that end, fixm € {1,...,n}. Choosing y,z € F such that
|Psei(@) V) = Prepica) (@) =diam(@y, 1(q)(F)), We see, by (23), (24), and (53), that

diam (Qkaz(q)(F)) < ||k, |01 @) = Puq)(2)| <K/diam(F)
diam ((pkm (F)) diam ((pl(q)(F))

C||<p{(q)||diam(F) — K?¢(q)

C||<p{(q)||diam(F) + K?%¢e(q)

diam (gy,, (F)). (59)

Note that (56) implies

|pi () = @i, ()| < 2KCO) (@l g
forall x € Vand [ € {1,...,n}. Therefore, by the triangle inequality, (25), and (24),
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diam(@y,uq)(F)) < diam(@yqy(F)) + (KO (@)l

< <1 + Kea) )diam(q)u( y(F)) (60)
Clloi (g l|diam(F) ’

forall l € {1,...,n}. Since, similarly,

diam (Qoil(q)(F)) < diam (‘Pkml(q)(F)) +

we conclude, by (59), (61), and (60), that
diam(fpkm(F)) > ler{r%ax diam(wkll(q)(F)) =r> diam(fpkml(q)(F))

..... n}
as desired. Observe that the role of q is to guarantee the strict inequality above — because of
conformality, it might happen that diam (¢, (F)) = diam(¢g,_(F)) for some k € X,; see
Example (5.2.15).Finally, note that (56), the choice of £(q), (25), (24), and (61) give us

1x = @i, 1) @) | = 190: (1) (*0)) — Ok, (@1 ) X)) < 2KC) e(q) ¢
1 I} ’ . 1 - I .
= §K_3||<Pz(q)||||§0i||dlam(F) =3k efig lldiam(F)

1.
< gdlam(gail(q)(F)) <r

Yielding @y 1)(F) N B(x, ) # @as desired.

Because of the length difference g, we cannot directly apply (58) in the definition of the
weakseparation condition. But relying on (58), we see that foreach m € {1,...,n}there is
Pm € {1,...,q}such that diam (@ 1, (F)) <7 <diam(@x, ipm-1)F)) and
Ok, 1) (F) N B(x,1) # @. Hence,

Py = {Pi,1m|F:m € {1,...,n}and p,, = p} € @(x,7)

forallp € {1,...,q}. By (57), we have ¢, c ¥, #Pp = #{m € {1,...,n}:p,,8 = p}, and
#¥, =n forall p € {1,..., q}. Since the function m — p,, is from{1,...,njto{1,...,q},
there exists p € {1,...,q} such that#®, > [n/q]. Therefore, we have shown
that #& (x,r) = [n/q]and finished the proof.

We finish with two examples. The first one verifies the need to useqin (58) and the second
one examines the difference between the original definition of the weak separation condition
and our definition.

Example (5.2.15)[216]: We exhibit a conformal iterated function system{¢p,, ¢,, @3}on
R? for which the associated self-conformal set F c R? satisfies diam(g;(F)) =
diam(@;_(F)) fori = 32 € X,.

Using complex notation, we define

K?*e(q)
C||p;(@)||diam(F)

diam(@y(qy(F)), (61)

) 9 19 oz
91(2) =15007 " 107 92B =552 9D =555

for all z € C. The mapping ¢, is a strongly contracting homothety, ¢, is a weakly contracting
similarity that involves a rotation by % and ¢3is a M obius transformation with singularity

at 2i.Therefore, all the mappings are injective and holomorphic on C\{2i}. To see that their

collectionis a conformal iterated function system, it is enough to verify that there exists a

bounded open convex set © c Csuch that ¢,(Q) c Q and ||¢j|| = sup lpj(2)| < 1 for all

j € {1,2,3}. *

Write 1y = % and define Q = B°(0,r,), where B°(z,r) is an open ball centered at z €

C with radius » > 0. Note that the singularity 2i is not contained in the closure of Q and
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hence, each ofthe mappings¢g; maps balls in Q onto balls. A simple calculation shows that
©,(Q) = B°(cy,11),Where ¢; = —% and r; = % Since |c; —ry| <71y, We see that
0, () c Q. Similarly, we see that ¢,(Q) = B(O,% 1p) € Q. We determine ¢@3(Q) by

looking at the images of 1y, i1y, and - rpfrom the boundary of €. Indeed, these three points
uniquely describe a circle and hence the ball ¢;(Q) = B°(c3,73). The center point ¢; =

— 21199 can be calculated from the equations
6376398 ]
lc3 — @3(1o)| = |es — ‘ng%%y = |c3 — @3(—=19)l,
where each of the value is the radius r; = T 185195" Since |c3| + 13 < 1y, We see that also
@5 (Q) c Q.Furthermore, a direct calculation shows that ¢1(z) = Tloo,gog (z) = %i, and

2

pi(2) = — TR for all z € C\{2i}. Therefore, as |p3(2)| < 2—1ry) 2 <1 forall z€

Q, we have ||lpj|| <1 for all j € {1,2,3}. The collection {1, @,, @3}is thus a conformal

iterated function system. Let F < C be the associated self-conformal set.

Since @;,(F) € @3(F), to see that the diameters are equal, it suffices to prove that

diam(p5(F)) < diam(¢@3,(F)). Let w = —% € F be the fixed point of ¢,. Defining

0859 ¢ F it follows that
21802

| 1604949
diam(@s2(F)) 2 |01 — @2 | = 350c 77

Showing that this number is an upper bound for diam(¢5(F)) will thus finish the proof.

Calculating as before, we see that ¢, (B(0,w)) = B(— %ﬁ) c B(0O,w),p,(B(0O,w)) =

95 1250 2775
B(O,m) c B(O,w), and ¢@3(B(0,w)) = B(_E'E) c B(0,w). Therefore,F c

B(0,w). Write I ={31,33,321,323,3221,3223,32221,32222,32223} c X,and note
that @3 (F) € Ujer @i;(B(0,w)).Foreachi € I, let c; be the center and r; the radius of the
ball ¢;(B(0,w)). Numerical calculations show that

95
q1 = @3 (W) = o322 € Fand q; = @332,(w) = —

_ ' 1604949

dlam(<p3(F)) < diam LJ(pi(B(O, W)) = ?}g}(ﬂci —¢l+r+r}= 3455617

l

as required.
Example (5.2.16)[216]: We exhibit a conformal iterated function system{¢,, ¢,, @3}on R
for which the associated self-conformal set F c R satisfies the weak separation condition
but has
sup{#®*(x,r) : x € Fandr > 0} = oo, (62)
Where
Q" (x,7) ={p;:diam(p;(F)) <r < diam(@; — (F)) and ¢;(F) N B(x,r) # @}
forall x € Rand r > 0. Since, by [225], the condition sup{#®*(x,r) : x € Fandr > 0} <
oois equivalent to the original definition of Lau, Ngai, and Wang [227], we see that our
definition is strictly weaker in the non-analytic case .
Let
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( 1 5

180(9x — 6x + 1)lf <x<ﬁ
L (o004 7). ir S <o <
gy ={"180\"" ~7* ‘f X S12
ERPR A
120\0% ~ 8+ if p=x <3
\ 0, otherwise,

and notice that 0 < g(x) < 1/2880 for all x € (g,g) and g is continuously differentiable

such that 0 < g'(x) < 1/120 forall x € (5,) and —1/120 < g'(x) < 0 forall x € (5,2).
In fact,g'is apiecewise linear continuous function and hence H'older continuous. Define

1 2 1
P1(x) =3X¢2(x) =gx+ 35,0300 =3x+g(x),
for all x € R and notice that each (pl Is a strictly mcreasmg Cl*2-function. The

collection{¢, @, p3} is therefore a conformal iterated function system and since ¢ |z =
@5 |, the associatedself-conformal set is the standard %—Cantor set F. Note that also{¢,, @, }
defines F and it iswell known that F, defined by these two maps, satisfies the open set
condition. Therefore, as ¢, |r = @3|r, the set F, defined by all three maps, satisfies the weak
separation condition.To see that (62) holds, observe first that diam(¢;(F)) = 37 "for
alli € Y,andn € N. Leti(k) = i;i, --- be the word in X such that i, = 3 and i; = 1 forall
j € N\{k}. Note that 0 € ¢; (|, (F) and
Pigo),,(X) = 3"x + 371 g (37 Ex)

for all xeR k€ {l,...,n},and n € N.Therefore, @;u).. # @iemy,,for all k,me
{1,...,n} with k # m and ©*(0,3™™) has at least n elements for all n € N.

Let E c R be a compact set. For each x € R and » > 0 we define the magnification

M, ,:R — R by setting
- X

Z
Mx,r(z) =
forall z € R. We say that T < [—1,1] is aweak tangentof E if there exist sequences (x,,) en
of points in Rand (7,),ey Of positive real numbers such that M, .. (E) n[-1,1] > T
in Hausdorff distance. Recall that a sequence (E,),en Of closed subsets of [—1,1]
converges to T in Hausdorff distance if

hm Supyeg, dist(x,T) = 0 andhm sup dist(y, E,,) = 0.
© yerT

If T is a weak tangent of E, then it is straightforward to see that dimy (T) < dimy,(E); see
[228].

Theorem (5.2.17)[216]: Let F c R be a self-conformal set containing at least two points.
If Fdoes not satisfy the identity limit criterion, then dim,(F) = 1.

Proof. By the above discussion, it suffices to show that there is a constant D’ > 1such that
for every n € N there exist x € R,r > 0, and points x, < x,,_; <--< x4 In F such that
My r(x) = =1, My (x1) = 1, and

Mx,r(xk) - Mx,r(xk+1) < n+ 1

for all k € {1,...,n—1}. Indeed, by letting n — oo, this implies that [—1,1] is a weak
tangent of F and therefore, F has full Assouad dimension.
Let C > 1 beasinLemma (5.2.13) and K > 1 as in Lemma (5.2.8). Define
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K¢
=— : : (63)
diam(F) rrel)lsn”(p{”
A2
Fix n €N, and choose 0 < ¢ < diam(F)/(4KC)such that (1 + 2D&)*1 <2 and
(1-2De)"t >~
Since F contains at least two points and does not satisfy the identity limit criterion, Lemma
(5.2.13) implies that there exist 0 < §; < € and i3, j; € 2,such that
e max{lly |l llej I} < oy (x) — ;1 ()| < Coymin{lig; |, llej 13 (64)
for all x € V. Recall that, by (23), K~ Y||@}|| < |@;(x)| < ||l¢{|/for all x € Vand i € Z,.
Inparticular, this means that ¢; is either positive or negative and hence, as V c R is an open

interval,each ¢, is strictly monotoneonV. Lety,z € F c V besuchthaty — z = diam(F).
The mean value theorem implies that there exists w € V such that

oi1(y) — 9i1(2) = @(;ry(w)diam(F).
Ifgo{i(w) > 0, then (64) implies

Ly Ly ./ -/ ! ! 1 —_— ! .
0j1() = ¢Ji1(2) 2 91 (Y) =~ ¢i1(2) = 2C8, [y | = (9 (W) =5 KMoy ) diam(F)

> 1y ”gof,) ldiam(F) > 0

= il
and hence, @j; (y) > @j;(2) yielding goj'.{(x) > 0 for all x € V. Similarly, if (p{i(w) <0,
then we see that ¢}, (x) < 0 for all x € V. Therefore, the derivatives ¢;;and ¢ ,have the
same sign. Let i; = iji; and j; = ijj; and notice that, by the chain rule,q; and ¢; are
positive. By (25),(64), and (23), we have

(KO 8 max{lloi, I lj, I} < K gl () — @ (D] < i, (x) — @), ()]
<l llley () — ()| < K2Csymin{llg; | lloj, 13-
Furthermore, since V' c R is an open interval and |¢; (x) — ¢;, (x)| > 0 forall x € V, we
have,by the intermediate value theorem, that ¢; (x) > ¢; (x) for all x € V, relabeling i,
and j, if necessary. Therefore,
(KO o1 llp, | < @1, (i () — @), (91 (x)) < K2C84 |l | (65)

forall x € V and k € X,. Notice that, by the chain rule, there exists k € X, such that ¢, Is
positive. Choose k; = k --- k € X, such that

ellog, Mok, I < billei, Il < ellog, M@k,
and notice that also ¢, is positive. Therefore, it follows from (65) that

-1
(KO ell}yt, Il < 91,1, 00) = 1,0 < KOC (minllpfll) el
forallx e V.
To find more points being predefined distance apart, we continue inductively. Assuming
iLjok €2, le {1,...,k — 1}, have already been chosen for some k € {2,...,n}, we
apply Lemma (5.2.13) as above to find 0 < &, < eK 2|19}, _ k\_,-juk, |l @Nd iy, ji €
%, such that ¢;, and ¢} are positive,and
(KC)_15k||¢£k|| < Oi (Pijrikpeogjikey X)) = @, (P ke yojgkey (X)) < K2C5k||<.0£k||
for all xeV and keZ.Since OSlloill < eK 0] ik @i <
ENDiyjrskprjik, L hETE IS by € X, sUch that ¢y, is positive and
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-1
< K2 (min I91) € 1k rts vt N9
Note that, by (25), K219, Il < i lllokll < K*llof I for all ., k € £.. Therefore,

(K3C)_lg||<Pl{kkkjk_1kk_1---j1k1|| S Qikijiskios-jaks ) = O_Urkijr—1kg—1 = jik1(x)

< K°C (gg;gllwéll) el Ptk iriens Skl (66)
for all x € V. We have thus shown the existence of words iy, ji, kx € 2., k € {1,...,n}, for
whichthe derivatives ¢;,, ¢ , and ¢j, are positive and (66) holds for all k € {1,...,n}.We
will use (66) to define the required points x,, < x,_; << x4in F. Let hy =ik, -
ixkiji-1kk—1 - jik1 and notice that, by the chain rule, ¢y, is positive for all k € {1,...,n}.
Therefore, by (23) and (66), we have

Py, (x) — <Phk+1(x)
< NPiseingn ks | P_Crckicdi—1ki—1 ** J1k1 (%) = @jp ke jreskerr ks (X))

-1
< K¢ (minllgill)  elloh, ]
and, similarly,
Pry(X) = Py, () = (KOO el pp, | > 0

forall x € Vand k € {1,...,n — 1}. Recalling (24) and the definition of D > 1 givenin (63),
wehave thus shown that

D~ lediam ((phk(F)) < @p, (x) — @p,,,(x) < Dediam ((phk(F)) (67)
for all x e Vand k € {1,...,n—1}. Let y,z € F be such that ¢, (¥) — @p,,,(2) =
diam (e, , (F)).Since §0;1k+1 and go;lkare positive, we have z < y and ¢, (2) < @, (¥).
Therefore, by (67), we have

diam (@p,(F)) = @1, () = @1, (2) = diam (pp,,, (F)) — 2Dediam(pp, (F))
And
diam(p,,,(F)) < (1 + 2D¢) diam(¢y, (F))

for all k€ {1,...,n—1}.Choosing zy€Fsuch that @y, () — @p(2) =
diam(¢y, (F)), we similarly see that

diam(gp,,,(F)) = (1 — 2D¢) diam(pp, (F))
forall k € {1,...,n — 1}. By the choice of ¢ > 0, we have thus shown that

%diam (<Ph1(F)) < (1 -2D&)" Ydiam ((phl(F)) < diam ((phk(F))

< (1 + 2De)"diam (¢, (F)) < 2 diam (g, (F)) (68)
forall k € {1,...,n}. Fixx, € F and define x, = ¢y, (xo) forall k € {1,...,n}. It follows
from (67) that x,, < x,,_; << x;. Letting x = (x, + x;)/2and r = (x; — x,)/2, we
have M, . (x,) = —1 and M, .(x;) = 1. Finally, since (67) and (68) imply

n—1 n-1
X=X = ) O (%0) = On,,, (k0) 2 D76 ) diam (@1, (F))
k=1 k=1

> %D'le(n + 1) diam(¢p, (F))

And
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Xk — Xk41 < De diam(op, (F)) < 2Dediam(¢@p, (F))
forall k € {1,...,n — 1}, we see that

2(xx — Xg41) _ 8D?
MX,T(xk) - Mx,r(xk+1) = <

X1—x, n+1

as required.
Section (5.3): Positive Lebesgue Measure and Nonempty Interior

In Euclidean spaces, it is well-known that a set with nonempty interior has positive

Lebesgue measure and the converse is not true. However, motivated by problems of Palis
and Takens [241] on arithmetic sums of Cantor sets, one might expect that positive Lebesgue
measure does imply nonempty interior if the set has some “selfsimilar” construction.
Many works [232], [120], [235], [201], [62], [125], [168], [237], [137], [128], [136] support
this expectation in special cases. Among these results, Schief [128] proves that a self-similar
set in R% which satisfies the open set condition (OSC) and has positive d-dimensional
Lebesgue measure must have nonempty interior. Zerner [136] and Peres et al. [137] extend
Schief’s result to self-similar sets with the weak separation condition (WSC) and self-
conformal sets with the OSC, respectively. So a natural question arises:

For convenience, we recall two manners which describe “self-similarity”. The first

one is the theory of iterated functions system (IFS) (see Hutchinson [83]). An IFS consists
of a family of contractions {S;,..., Sy} on a complete metric space (X, p), often X = R<.
The fundamental property of an IFS {S;,..., Sy} is that it determines a unique nonempty
compactset K < X satisfying K = UY., S;(K), which is called the invariant set of the IFS.
The invariant set is called a self-similar set (self-conformal set or self-affine set) if all S; are
similitudes (conformal mappings or affine mappings, respectively).
To understand the structure of invariant sets, various separation conditions were introduced
to control the overlaps between small copies of an invariant set. The OSC, which means the
overlaps are small, is introduced by Moran [99] and extensively studied in [120], [119],
[116], [236], [83], [137], [128], [245]. Another well-studied separation condition is the WSC
introduced by Lau and Ngai [135], which extends the OSC while allowing exact overlaps
on the iteration, see also [233], [217], [129], [135], [239], [227], [240], [136].

The second manner to describe “self-similarity” is the notion of BPI spaces (“big pieces
ofitself”) introduced by David and Semmes [234], in which they replace IFS by conformally
bi-Lipschitz mappings. Roughly speaking, a metric space X is a BPI space if it is Ahlfors
regular and for any pair of balls in X there are subsets of relatively large measure inside
them which look approximately the same in terms of conformal bi-Lipschitz equivalence.
Asubset K < R%is called a BPI set if it together with the Euclidean metric is a BPI space.
Peres and Solomyak [242] propose the following question: assume that a self-similar set in
R, has positive d-dimensional Lebesgue measure, must it have nonempty interior? Csornyei
et al. [160] answer this question negatively by constructing a family of self-similar sets in
R? with positive Lebesgue measure but empty interior. In fact, these self-similar sets in
[160] are also BPI sets (see Example (5.3.20)). Hence, neither of the two “self-similar”
constructions.

We introduce BBI spaces (“big balls of itself”), which enhance the notion of BPI
spaces by requiring that, for any pair of balls B; and B,, we can find a relatively large ball
In B; and a subset in B, such that they look approximately the same in terms of conformal
bi-Lipschitz equivalence (see Definition (5.3.3)). Similarly, a subset K c\R¢ is called a BBI
set if it together with the Euclidean metric is a BBI space.
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It turns out that the “self-similar” construction described by the BBI.

We remark that the definition of BBI set requires Ahlfors regularity (see Definition
(5.3.3)), so the condition in Theorem (5.3.9) implies immediately that the d-dimensional
Lebesgue measure £L4(K) > 0. Thus, Theorem (5.3.9) asserts that L¢(K) > 0 + some
“self-similar” construction == K° # 0.

As an application, we prove that a self-conformal set with nonempty interior must be a BBI
set.

Finally, we apply above results to the self-conformal sets satisfying the WSC and
prove that, for such sets, positive Lebesgue measure implies nonempty interior. This extends
the results [128], [136] and [137].

We give the definition of BBI spaces and then prove Theorem (5.3.9). We study the
self-conformal sets and prove Theorems (5.3.18) and (5.3.19).

The definitions of BPI spaces and BBI spaces. In the following, we will use B(x, 1)
to denote the open ball and B(x, ) to denote the closed ball. We begin with the definition
of conformally bi-Lipschitz mappings.

Definition (5.3.1)[231]: (Conformally bi-Lipschitz mappings). Given two metric spaces
(X, p1) and (Y, p,) and a mapping f: X — Y , we say that f is C-conformally bi-Lipschitz
with scale factor A if
C™1p1 (%1, %2) < pof (1), f(x2) < CApy (%, %) forall xy,x, € X.

The purpose of introducing scale factor is to eliminate the effect of geometric size on
Lipschitz constant.
Definition (5.3.2)[231]: (BPI spaces, [234]). A metric space X is a BPI space if it is Ahlfors
regular of some dimension d and if there exist constants 8, C > 0 such that for each pair of
balls B(x,,7;) and B(x,,15) in X with 0 <ry,1, < diam X there is a closed set A C
B(x;,7y) with H4(4A) = Or{ and a mapping h: A — B(x,,1;) which is C-conformally
bi-Lipschitz with scale factor r, /1y .

A subset K c R? is called a BPI set if it together with the Euclidean metric is a BPI
space.

Recall that a complete metric space X is said to be Ahlfors regular of dimension d if there
Is a constant C > 0 such that

Cr% <HYB(x,7)) < Cr?

forallx € Xand 0 <r < diam X, where diam X denotes the diameter of X and H? the
d-dimensional Hausdorff measure.
Based on the notion of BPI spaces, we introduce the BBI spaces.
Definition (5.3.3)[231]: (BBI spaces). A metric space X is a BBI space if it is Ahlfors
regular of some dimension d and if there exist constants 8, C > 0 such that for each pair of
balls B(x;,7;) and B(xy, 1) in X with 0 <7y, < diam X there is a closed ball
B(x3,0r) < B(xy,77) and a mapping h: B(x3,01;) — B(x,,13) which isCconformally
bi-Lipschitz with scale factor r, /7;. A subset K < R% is called a BBI set if it together with
the Euclidean metric is a BBI space.

For a nonempty set A in a metric space (X, p), we call

A, ={x € X:dist(x,A) < &}
the e-neighborhood of A, where dist(x,A) = yi2£ p(x,y) is the distance between x and A.

For a pair of nonempty compact sets A, B c X, recall that the Hausdorff metric is given by
dy(A,B) =inf {e:A c B,,Bc A,}.
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We write 4,, d_H) A if A,, converges to A in the Hausdorff metric.

We need two known results in topology.
Theorem (5.3.4)[231]: ([238]). If h: U — R is a continuous one-to-one mapping from an
openset U c R%, then h(U) is an open subset of R%, too.
Lemma (5.3.5)[231]: ([124]). Let X be a compact metric space and K the family of all
nonempty compact subsets of X, then K is compact in the Hausdorff metric.
Lemma (5.3.6)[231]: Let (4,),,>1 be a sequence of nonempty compact sets in a metric

space (X,p) with 4, d_*’) A for some nonempty compact set A c X. Let (x,),»; be a

sequence of points in X with x,, € A,, and x,, — x for some x € A. Fixf > 0. For each
€ > 0, there exists ann, > 1 such that
B(x,,0)NA, c (B(x,0)nA), forn>n,.
Proof. Fix € > 0. Since
ﬂ (B(x,0 + 8)nAs) = B(x,0) N A4,

5>0
there exists a & > 0 such that

B(x,0 + §)nAs < (B(x,0) N A),.
Since A, d_’*} Aand x,, — x,thereexistsann, > 1 such that
B(x,,0)NA, € B(x,0 + §)nAs c (B(x,0)nA),,
forn > n,.

For a bi-Lipschitz mapping h which maps (X, p,) to (Y, p,), its bi-Lipschitz constant bliph
is defined by

blip h := inf{c > 1:c7'py(xy,x0) < Pz(f(x1);f(x2)) = CP1(x1,x2)}-
Lemma (5.3.7)[231]: Let An be a nonempty compact set in a metric space (X, p) and
h,: A, — X a bi-Lipschitz mapping with blip h,, < C for all n > 1. Suppose that

A, d_“) Aand h,(4,) d_H) A*, then there is a bi-Lipschitz bijection h maps A onto A* with
bliph < C.

Proof. Pick a countable dense subset {x,,: m = 1} of A and a countable dense subset
{xZ,,:m = 1}of A*. Since A, d_H> A andh,,(4,,) Cﬁ’) A*, foreachm > 1, we can find two

sequences (Xp,,) . and (x _py) _ suchthat Xpp, X_my € Ay foreveryn > 1and
Xmn = Xm, hn(x—m,n) - xim (69)

as — oo,
We claim that, for every m > 1, the two sequences (x_,), _, and (hn (xm'n)nn) both

have a convergent subsequence. To see this, fix m > 1. Notice that for each k > 1, there
are finitely many balls (Bk,l-)i of radius 1/k which cover A since A is compact. We can find

a ball B, in (Bk’i)i such that B, contains infinitely many points in (x_m,n)7121 since
dist(Xx_;mnA) — 0 as n — oo. It follows that there exists a subsequence (yy)i>; Of
(%_mn), ., such that . € By N {x_pp:n = 1}. Now pick a, € By N A, then (ai)y=1
has a convergence subsequence since A is compact. Consequently, so does (yi)k=1 Since
p(Vi,ar) < 2/k - 0 as k — oo. Therefore, (x_m,n)nﬂalso has a convergence

subsequence. This argument is also applicable to the sequence (hy,(Xmn)) ne1-
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Combining the claim above with Cantor’s diagonal argument, by taking a subsequence of
(n)n = 1 if necessary, we can assume that, foreachm > 1,

X-mn — x—m,hn(xm,n) - xr*m (70)
asn — oo forsomex_,, € Aandx, € A*. Now let 4y ={x,;:m #0} and 4; =
{x;m:m # 0 }. Notice that

X = Xy & Xy = X0 (71)
Indeed, since bliphn < C foralln > 1, we have
Xm = Xp! < 7111_{23 P (XmnXmin) =0

= rlll_fl; p(hn(xm,n)'hn(xmr,n)) =0 < x;;l = x;"u-
It follows from (71) that the mapping hy: x,,, = x;, IS a bijection from A, onto A;. Note
that A, and Ay are dense in A and A*, respectively, since so are {x,,,: m > 1} and {xZ,, :
m > 1}. We claim that
h, is a bi-Lipschitz bijection from A, onto Ay with blip hy, < C. (72)

A standard result in mathematic analysis says that a uniformly continuous function
from a dense subset of a metric space to a complete metric space has a uniformly continuous
extension. (see [244]).

Hence, if the claim (72) is true, then hO can be extend to a uniformly continuous function
h:A — A*. Fordistincty,y" € A, picky,,y, € A,withy, — yandy, — y', thenthe
claim (72) implies

Cp(y,y") = C71 lim p(y, yn) < lim - p(ho (), ho(¥2))
= lim  p(h(yn), k() = p(h(), h(y)) = lim - p(h(yn), h(yn))
= lim  p(ho(y), hoOyn)) < € lim  p(yy, yo) = Cp(y, ).
Thus, h is bi-Lipschitz with bliph < C. It follows that h maps A = A, onto h(4,) =
A% = A*. Consequently, h is desired.
It remains to prove the claim (72). For this, pick a,a’ € A,. By (69) and (70), there exist
a,, a, € A, such that
a, - a,a, - a and hy(ay) > ho(@), hy(ay) = ho(a)
asn - oo. Since blip h,, < Cforalln > 1, we have
C™'pla,a) =" lim play,a;) < lim p(ha(an), hu(ar))
= p(ho(@), ho(a)) = lim  p(hy(an), hn(a;))
< ¢ Jim p(ay,a;) = Cp(a,a).
This proves the claim and the proof is complete.
The following technical lemma, which comes from the idea in the proof of [136], plays an
important role in the proof of Theorem (5.3.9).
LLemma (5.3.8)[231]: Let K be a compact subset of R? with K ° = @. Fix C > 1. For each
8 > 0, there exists g > 0 such that for any compact subset A of K, any x € A and any
bi-Lipschitz mapping h: A - B(0,1) with bliph < C, we have
L4(B(h(x),0) N h(A4))
a 09
where a, denotes the Lebesgue measure of the unit ball in R¢.
Proof. Let us argue by contradiction. Suppose the lemma were false. Then for some 6 > 0,
there exist compact subsets A, € K,x,, € A, and bi-Lipschitz mappings h,: A, —
B(0,1) with blip h,, < C forn > 1 such that
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LA(B(hy(x),0) N hy(4))
ay0¢
Notice that K and B(0,1) are both compact. According to Lemma (5.3.5), by taking a
subsequence of (n)n = 1 if necessary, we can assume that

d d * *

Ay T4, ha(Ag) AT Ry () > (74)
as n — oo for some nonempty compact sets A ¢ K,A* < B(0,1) and some point x* €
B(0,1).

By (74), we can apply Lemma (5.3.6) to (h,(4,,)) and (h,,(x;,)). This gives that for each

€ > 0, there 1s an ne such that
B(h,(x,),0) nh,(A,) € D, forn = n,, (75)

- lasn - o, (73)

where D = B(x*,0) N A™.
It follows from (73) and (75) that
LYD) _ .. LYB(hy(x,),0) N hy(4,))
> lim
ade n—-oo aded
So we have

= 1 for everye > 0.

LE(B(x*,6) N A%) 4 p LD,
where the last equality comes from the fact that D is compact. Thus,
LYB(x*0)NA) = ag8% = LYB(x",0)).
So B(x*,0) n A* is a compact subset of B(x*,8) of full Lebesgue measure. We have
B(x*,0) c A" (76)
Using (74) again, Lemma (5.3.7) gives a bi-Lipschitz bijection h from A onto A*. Now
Theorem (5.3.4) asserts that A° # @ since so does A* (by (76)). Consequently, K* >
A° # @, contrary to the condition K * = .
Theorem (5.3.9)[231]: Let K c R¥ be a compact BBI set of dimension d, then K * # @.
Proof. Let K ¢ R% be a compact BBI set. By definition, K together with the Euclidean
distance p is a BBI space. To avoid confusion, we use B(x,r) and Bx(x, ) to denote open
balls in the two metric spaces R% and K, respectively. For x € K, we have By (x,1) =
B(x,r)NK.
Suppose without loss of generality that diam K = 1. For 0 < r < 1, denote by N, the
largest number of disjoint balls of radius r centered in K. For each 0 <r < 1/2, let

{By (x;, 27’)}1;[:21 be a disjoint family of balls with x; € K. Then
Ny

K c U By (x;, 41). (77)

=1
Notice that K can be regarded as a ball of radius 1 in the BBI space K. By the definition of
BBI space (Definition (5.3.3)), there are two constants 8,C > 0 such that for each 1 <
i < N,,, we can find a closed ball Bg(y;,20r) © Bg(x;,2r) with y; € K and a C-
conformlly bi-Lipschitz mapping
fi: By (v;,20r) - K with scale factor 1/(2r). (78)

1

=1,

Let
Nay

k)= | Beonon.
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It follows from (77) that
NZT NZT

LUK = ) LBy (3, 0r)) = 6740N2ri = ) L9(By (v, 67)
i=1 i=1
NZT NZT
> 6794, U By (y;, 6r) | = 67499, U By (x;,41)
i=1 i=1
> 67994L4(K) (79)
forall 0 <r < 1/2. Now suppose the theorem were false, i.e., K° = @. We claim that,

forevery 0 <r <1/2,
L(Bk(x,0r))
ay04rd
Here &4 is the constant in Lemma (5.3.8) with 2C instead of C.
By assumption, K is Ahlfors regular with dimension d and thus, £L%(K) > 0. We shall
show that (79) and (80) contradict this. In fact, by Lebesgue density theorem and Egoroff’s
theorem, there is a measurable subset K* < K and r, > 0 such that £L¢(K \K*) <
6-40¢ £4(K) and that
LBy (x,1))
agre
Now fix r > 0 with 9r < r,. Notice that (79) implies that K(r) n K* # @. Pick x, €
K(r) N K*. Then (81) gives

< 1—¢g forallx € K(r). (80)

> 1—¢g forallx € K*and 0 <r <. (81)

L%(By (x0,07))
adBdrd

> 1‘—8&

which contradicts (80).
It remains to prove the claim (80) for every 0 < r < 1/2 under the condition K*~ = 0.
Pick x € K(r),thenx € Bg(y;,r) forsome1 < i < N,,. Let f; be asin (78) and
A = fi(Bg(x,0r)) c K.
Leth = g, ° fi"',where g,:t » (t —x)/r. Then h is a bi-Lipschitz mapping with blip
h = 2C since f; is a C-conformlly bi-Lipschitz mapping with scale factor 1/(2r).
We also have
h(A) = gx(Bx(x,0m)) = B(0,6) n g,(K) < B(0,1).
Now we apply Lemma (5.3.8) to A and h with 2C instead of C. Notice that f;(x) € A and
B(h(fi(x)),0) N h(A) = B(0,0) N g, (B (x,6r))
= B(0,6) N gx(K) = gx(Bi (x, 7).
Hence, Lemma (5.3.8) gives
£9(Be (o, 0m) _ £ (9+(Be0m)) £ (B(h(f; 0).0)) n ) _
ay04%rd B ay0¢ B ay 0% -
This proves the claim (80) and the proof is complete.

We contain a brief introduction of self-conformal sets, the WSC and the BDP. For
more details, see [217], [227]. Recall that a C*-map S: V — R% is conformal on an open
subset V. c R? if for each € V , the differential S'(x) is a similarity matrix, i.e., a scalar
multiple of an orthogonal matrix. In such case, we have | det S'(x)| = |IS’(x)||4, where
IIS"CO| := sup{|S'(x)y]|: |y| = 1} is the operator norm of the matrix S’(x).

— &g.
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Let X c R be acompact subsetand S;: X —» Xfor1l < i < N.{S;}, iscalled
a conformal iterated function system if each S; extends to a C?! injective conformal map S; :
V' — V onan open connected setV o X and
0 < inf [|S/()]| <sup IS/ < 1forl < i < N. (82)
X€EV x€V

For such an IFS, the associated invariant set K is called a self-conformal set.
We use the following sets of indices:

20 = {¢},2F:={1,...,N}* and 2* := U zk,
k=0
where @ denotes the empty word. For I = iji,...i, € X*, we denote by |I| = k the
length of I and write I = iji,...i;_q. Define S; = S;; ° S5 ° < S (with the
convention that Sy = identity) and

l; += inf IS;ll, L= min 1, (83)
Ly :=sup [IS/(x)],  L:= max L;.
XEV 1<i<N

For0 < b <1, write
Ihb:={1 € :L; < b<L,_}and A, := {S;: I € I,}.
Definition (5.3.10)[231]: (Weak separation condition [227]). We say that {S;}N; =1
satisfies the weak separation condition (WSC) if there exists a constant y € N and a subset
D c XwithD" # @,suchthatforall0 <b<1landx € X,
#{S €A,:x € S(D)} <.
To see that the OSC implies the WSC, we can take D to be an open set satisfying the OSC
andlety = 1.
Definition (5.3.11)[231]: (Bounded distortion property). Let {S;}), be a conformal IFS.
We say that {S;}, has the bounded distortion property (BDP) if there exists a constant
c; > 0 such that
l; <L < clyforalll € 2. (84)
It is well-known that if each log||S;|| is Ho Ider continuous, then {S;}}_, has the BDP. For
this, see [243].
We provide preliminaries needed in the proof of Theorems (5.3.18) and (5.3.19).
For any a > 0, any bounded subsets D ¢ X and U c R, let
Agup =1{S € Aggiamuv : SD)NU # Qrandy,p = Sl;p #A44,U,D. (85)

Lemma (5.3.12)[231]: ([227]). Let {S;}}, be an IFS of injective C; conformal contractions
onacompactX c R*with X # @. Then {S;}), satisfies the WSC if and only if, for any
a > 0 and any nonempty subset D c X, y,, D < oo.
Theorem (5.3.13)[231]: ([227]). Let K c R? be a self-conformal set that has the BDP and
satisfies the WSC. Then 0 < H%(K) < oo, where ¢ = dimy K.
Let K c R? be a self-conformal set that has the BDP. Recall that, for x €
K,Bg(x,7) = B(x,r) N K denotes the open ball in the metric space K.
Lemma (5.3.14)[231]: Given an open ball Bx(x,r) in K, if
x € 5;(K) € Bgx(x,r)and S; — (K) < Bg(x,1),
then Ir/(c; diam K) < [} < 2r/diamK.
Proof. By S;(K) © Bg(x,r) and (83), we have
[; diam K < diam §;(K) < 2r.
Hence |, < 2r/diam K. By S;_(K) < Bg(x,r) and (83), we have
L;_diam K = diam S;_(K) = r.
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Combining this with (83) and (84), we obtain
L, =2 U, =2 1lL;_/c; = Ir/(c,; diam K).

The following two lemmas concerns the Ahlfors regularity of self-conformal sets. The
proofs can be found in the recent works of Ka'enma'ki and his coauthors, see [216] and
[225]. However, for the completeness and comfortability, we include the proofs here.
Lemma (5.3.15)[231]: Let K = R? be a self-conformal set that has the BDP and positive
d-dimensional Lebesgue measure. Then K is Ahlfors regular of dimension d.

Proof. Given an open ball Bx(x,r) in K with 2r < diam K, note that K ¢ By (x,1).
Hence, we can find an index I € X* such that
x € S;(K) € Bg(x,r)and S;_(K) ¢ Bg(x,r).

By Lemma (5.3.14), we have [; = [, /(c; diam K). Consequently,
294 = HY(B(x,7)) = H*(Bg(x,7))

> HY(S;(K)) = I HY(K) = H*(K)I%r%/(c; diam K)*.  (86)
Notice that H4(K) > 0 since K has d-dimensional positive Lebesgue measure. We
conclude that K is Ahlfors regular of dimension d.
Lemma (5.3.16)[231]: Let K = R< be a self-conformal set that has the BDP and satisfies
the WSC. Then K is Ahlfors regular of dimension a with ¢ = dim, K.
Proof. Letx € Kand0 <r < diamK /2. We need to estimate the upper and lower bound
of H*(BK (x,1)).

For the upper bound, we make use of Lemma (5.3.12). Takinga = 1,U = B(x,r) and
D = K, Lemma (5.3.12) gives

#{S €A, : S(K)NB(x,r)# 0} < y,K < o
forallx € Kand 0 <r < diam K. It follows that

H%(By (x,7)) < z HES(K) < 1, K(2r)“H®(K).
S€Azr S(K)NB(x,1)=0
For the lower bound, we use the same argument in the proof of Lemma (5.3.15) and obtain
the same lower bound as in (86):
H*(BK(x,r)) = H*(K)I*r*/(c, diam K)*.
Finally, we conclude the Ahlfors regularity of K from the upper and lower bound above
since0 < H*(K) < oo (by Theorem (5.3.13)).

Lemma (5.3.17)[231]: Let K < R? be a self-conformal set that has the BDP. IfK © # @
or K satisfies the WSC, then there exist x, € Kand 0 <r 0 < diam K such that for all
indexI € 2*,

S1(Bg (x0,19)) = S;(B(x0,7)) NK.
Proof. We begin with the case K * # @. Clearly, therearex, € Kand0 <r 0 <diamK
with B(x,,7,) © K.Thenforanyl € X* wehave S,(Bx(xo,79)) = S;(B(x0,79) NK) =
S1(B(x0,10)) = S;(B(x,79)) N K,
since S;(B(xq, 1)) € K.

Now suppose that K satisfies the WSC. Pick x € Kand 0 < r < diam K with B(x,r)
X1 Let Ay = B(x,r). We can obtain a sequence of sets A,, 4;,... by induction as follows:
suppose that A, _, is determined, if

S, (Ak-1 NK) & S, (Ak —1) N K for some [, € X7,
let A, = S;, (Ax-1); if such I, does not exist, we stop the procedure.
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Leta = (2 r)~'. We claim that the above induction procedure stops after at most y,, x
steps, where y, x is defined in (85). For otherwise, there would be Ay, A4,,...,4, and
L,...., I, withn >y, suchthat Ay = B(x,7),A, = S;, (A1) and

Si(Ak-1 NK) € S, (A—1)NK forl < k < n. (87)
To prove the claim, we need to deduce a contradiction. Note that 4, = S, ...1;(4p) =
Sp...11(B(x,1)). S0
L...I, = @2r)™'L, ...I; - 2r
This together with (87) implies that foreach 1 < k
Si - Ixs1Jk € Ag diam A, and
D # Sp,(Ak-1) N Sp(K) & Sp (Ak-1 N K). (88)
Hence, A, NSy ... Ly (K) =S ... Iy 44 (S,k(Ak_l)) NS (K) # @. Therefore,
S; St n—1--51, .,J1 € Ag Ank
where A,, A, g is defined by (85). Thus, n > y, x impliesthatthereare 1 < m< k < n
suchthat S, ... Iy Jx = S_(In---Imy1 g, 08,5y, . Then we have

adiam A,,.

>
< n, we can find J, € X" such that

=S
I
k.Imt1)m

1, (Ar) 083,00 = 5, (Ais 0S1y 0 (O) € S, (ks 0K,
This contradicts (88) and so the claim follows.
Clearly, the claim implies that we can find A, = S, ; (B(x,71)) satisfying
S;(A, NK)=5;,(4,)NnK forall] € 2~
Letxo = S, (x)and r, = [, , 7, then B(xo,15) © Ay Foralll € 2,
S1(BK (x0,10)) = S;(B(x0,70) N K) = S;(B(x0,70)) N S;(K)
_ = 5/(B(x0,10)) N S;(An) N Si(K)
= S;(B(x0,10)) N S;(A) NK = S;(B(x,79)) NK.
Hence such x, and r, are desired.
Theorem (5.3.18)[231]: Let K c R be a self-conformal set that has the bounded
distortion property (BDP). Then
K° # @ ©K = K° < K isaBBI set of dimension d.
Theorem (5.3.19)[231]: Let K c R be a self-conformal set that has the BDP and satisfies
the WSC. If dimy; K =d,thenK" # 0.
Proof of Theorems (5.3.18) and (5.3.19). We remark that, in Theorem (5.3.18), K = K °
follows from K © # @ immediately. Indeed, K ° contains U,cy+ S;(K °) and the latter is
dense in K.

Therefore, by Theorem (5.3.9), it suffices to prove that, if K° = @ (for Theorem
(5.3.18)) or K satisfies the WSC with dimy K = d (for Theorem (5.3.19)), then K is a
BBI set of dimension d.

We first observe that, by Lemmas (5.3.15) and (5.3.16), K is Ahlfors regular of dimension
d in both cases. Now let B, (x4,11) and Bk (x5, 1) be two open ballsin K with0 < r;,r, <
diam K. To complete the proof, we need to find constants 8, C (independent of x;, x, and
r,12), a point x; € Bg(xy,7;) and aC-conformally bi-Lipschitz mapping h from
Bk (x3,071;) Into Bg (x,, 1,) with scale factor r, /r;.

For this, suppose without loss of generality that K & By (x,71) and K € B (x,,13).
Thus, we can find two indices I;,I, € X* such that

S,(K) © Bg(xy,m1), Sz (K) & Bg(xy,11)
And
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St (K) © Bg(x3,13), Si; (K) & Bg(xy,132).
It follows from Lemma (5.3.14) that
[ L, 2
——— <— <
ci;diam K — r; — diam K
By Lemma (5.3.17), in both cases, we can find x, € K and 0 <r, < diam K such that
forall index I € X7,

Jfori =1,2. (89)

S1(Bk (x0,79)) = S;(B(x0,7)) N K. (90)
Let x3 = S, (xo) € §,,(K) € Bg(xq,ry)and 6 = Iry/(c, diam K). Then (89) gives
Or; < 1, 1o This together with (83) and (90) implies
By (x3,0711) < EK(X3'1117"0) c Sll(E(XOrrO)) NK = Sll(éx(xo;ro))- (91)
Therefore, we have By (x3,8r;) © By (x1,17) since
S1,(Bk(x0,79)) © S, (K) € Bg(xq,71).
Leth = S, - S;.'.By(91), we have

h(By (x3,017)) C h(Sll(E’K(xo,To))) = S, (EK(xO:rO)) C Bk (x3,17).
Hence h maps (B (x3, 87y)) into By (x5, 73).
It remains to show that h = S, - S,;l is a C-conformally bi-Lipschitz mapping with

scale factor r, /r; for a constant C. Indeed, we have
ZL <l£ < |SIZ i S,;l () =S, - S,;l (x)| < lﬁ < IL
(31111 L, | x =yl L, Cllll ’
for x,y € By(x3,61;). This together with (89) gives
C7H (ra/r)lx — y| < |h(x) —h()| < C(ra/r)lx — ¥,
where C = 2¢?/1.
Example (5.3.20)[231]: Let K c R¢ be a self-conformal set that has the BDP. Suppose that
K has positive d-dimensional Lebesgue measure but no interior, then K is a BPI set but not
BBI set. For an explicit construction of such sets, see [160].
For convenience, we first recall the content of Example (5.3.20) below. Let K ¢ R< be a
self-conformal set that has the BDP. Suppose that K has positive d-dimensional Lebesgue
measure but no interior, then K is a BPI set but not BBI set.
To see this, we use Theorem (5.3.18) to obtain that K is not a BBI set. It remains to show
that K is a BPI set. Note that K is Ahlfor regular by Lemma (5.3.15).
Now let By (xq,71) and Bk (x,,1,) be two open balls in K. Suppose without loss of
generalitythat K & Bg(x;,11) and K & Bg(x,,1,). Thus, we can find two indices I;, I, €
2" such that

S1,(K) © By (x1,1), Sy (K) & Bg(xq,11)
And

S1,(K) © By (x3,17), Si; (K) & Bg(xy,132).
Since K has positive Lebesgue measure, S; (K) and S, (K) are subsets in By (xq,7;) and
Bk (x,,1,) with relatively large measure, respectively. In fact, by Lemma (5.3.14), one can

see that
d

—— ) HYK) - &
c; diam K) (K)-m
By the same reason, this inequality also holds if we replace I;,r; by I,, 7.

H (S, (K)) = I HY(K) = (
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Finally, let h =S, - S,;l: S, (K) - §,(K). Using same argument in
corresponding part, one can check that h is a C-connformally bi-Lipschitz mapping with
scale factor r,, /r; for a constant C. Consequently, K is a BPI set.

Corollary (5.3.21)[269]: (See [231])[269]: Let (4,),>; be a sequence of nonempty

compact sets in a metric space (X, p;_;) with 4,, d_H) A for some nonempty compact set A c
X. Let (xn+j_1)n>1 be a sequence of points in X with x,,,_; € 4, and x4 ;_; — x;_; for
some x;_, € A. Fix e = 0. For each & > 0, there exists an n, = 1 such that

B(xn+j_1, 1+ 26) N4, c (B(xj_l, 1+ 26) N A)S forn > n,.
Proof. Fix € > 0. Since

ﬂ (B(xj_1, (1 +26) +8) NAs) = B(xj_1, 1+ 26) N A,

_ 5>0
there exists a & > 0 such that

B(xj_1, (1 +2€) +8) N A5 < (B(xj_1, 1+ 2¢) N A)e.
Since A, d_’*} Aand x4 = xj_q, there exists an n, = 1 such that
B(xp+j-1,1+2€)NA, € B(xj_1, (1 +2€) +8) N As
c (B(xj—1,1+€)n A)g,
forn > n,.
For a bi-Lipschitz mapping h,, which maps (X,p;) to (Y,p;4+1), its bi-Lipschitz
constant blip h,, is defined by
blip h,, := inf{c > 1:¢7 (%, Xj41) < Pj+a (fm(x]-),fm(xjﬂ)) < cpj(xj,xj+1)}.
Corollary (5.3.22)[269]: (See [231]). Let A,, be a nonempty compact set in a metric space
(X,pj—1) and (h,,)y: A, — X a bi-Lipschitz mapping with blip (h,,), <1+ e foralln >
1. Suppose that A, d_’*} A and (h,,),,(4,) d_”) A*, then there is a bi-Lipschitz bijection h
maps A onto A* with bliph,, <1 + €.
Proof. Pick a countable dense subset {(xj_l)m rmy = 1} of A and a countable dense subset
0

{(xj_l)imo: mo = 1} of A*. Since 4,, d_H) A and (h,y),(4,) d_H) A, for each my > 1, we

can find two sequences ((xj_l)mo,n) and (x]-_1 oc_mo,n)n21 such that x,,  n) X_m,n €

nz1
A, foreveryn > 1 and

(xj—l)mo,n - (xf‘l)mo' (hm)n ((xj_l)—mo:”) - (Xj_l)*_mo (92)
as — oo,

We claim that, for every m, > 1, the two sequences ((Xj—1) " n) and
o n>1

((hm)n ((xj_l)m n) ) both have a convergent subsequence. To see this, fix my > 1.
0" n=1

Notice that for each k > 1, there are finitely many balls (Bk,l-)i of radius 1/k which cover

A since A is compact. We can find a ball By, in (Bk,l-)l_ such that B, contains infinitely many

points in ((xf—l)—mo,n) 1 since dist ((xf—l)—mo,n'A) — 0asn — oo. It follows that there

nz
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exists a subsequence (V;)sq Of ((xj_l) " n) such that y, € B, N {(xj_l) o onz
—to, — 1o,

nz1
1}. Now pick a;, € B, N A, then (a;),=; has a convergence subsequence since A is

compact. Consequently, so does (yx)k»1 Since pj_1 (Vi ax) < 2/k >0 as k — oo,

Therefore, ((xj—l) - n) also has a convergence subsequence. This argument is also
ot n>1

applicable to the sequence ((hm)n ((xj_l)m n))
" 21

Combining the claim above with Cantor’s diagonal argument, by taking a
subsequence of (n),,»; if necessary, we can assume that, for each my > 1,

(xj—l)_mo,n - (xj_1)_m0,(hm)n ((xj—l)mo,n) - (xj—l);or (93)
asn — oo forsome (x;_;) € Aand(x;_;) € A’.Nowletd, = {(xj_l)m : Mgy # 0}
—mto 0 0

and A} = {(xj_l):no: my # 0}. Notice that

(-1, = (1), = (5-0),,, = (3521, - (94)
Indeed, since blip (h,,), <1+ e foralln > 1, we have

(xj—l)mo - (xf—l)m6 < lim Pj-1 ((xj_l)mo,n,(xj_l)méin) =0

n—>0o

& lim pjy ((ndn((x-1) s (354, )
=0 (x5-1),, = (%-1),-

It follows from (94) that the mapping (h,,)o: (xj_l)m - (xj_l)m is a bijection from A4,

0 0

onto Aj. Note that A, and A are dense in A and A*, respectively, since so are

{(xj_l)m ‘m > 1} and {(xj_l)*m tmy = 1}. We claim that
0 —to

(h,)o is a bi-Lipschitz bijection from A, onto Ag with blip (h,,)o < 1 + €. (95)

A standard result in mathematic analysis says that a uniformly continuous function
from a dense subset of a metric space to a complete metric space has a uniformly continuous
extension. (see [244]).

Hence, if the claim (95) is true, then (h,,), can be extend to a uniformly continuous
function h,,: A - A*. For distinct y,y’ € A, pick y,,, v, € A, with y,, > y and y; - y',
then the claim (95) implies

1+ E)_lpj—1(y.y’) =1+e)t 1111—{20 Pj-1Vns Yn)
< lim pj_; ((hm)o(¥n), (hin)o (V)
= rlzl—r>1<>lo pj—l(hm(yn)» hm(yrll))
= pj—l(hm(y)' hm(y,))
= 1111—>r£10 pj—l(hm(Yn)' hm(y;l))
= 111_{{)10 Pj—1((hm)o(Yn)' (hm)o(n))
<@ +e)limpj 1V yn) = A +€)p;1 (3, ).
Thus, hy, is bi-Lipschitz with bliph,, < (1 + ¢€). It follows that h,, maps 4 = 4, onto
hm(4y) = Ay = A™. Consequently, h,, is desired.
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It remains to prove the claim (95). For this, pick a,a’ € 4,. By (92) and (93), there
exist a,,, a,, € A, such that

an = a,a, = a'and (hy)y(ay) = (hp)o(a), (hpdn(ay) = (hpdo(a)
asn — oo, Since blip (h,,),, < (1 +¢€) foralln > 1, we have

L+ pja(aa) = A+ lim pjy(an @)
< lim p;_; ((hm)n(an), (hin)n(an))
= Pj—1((hm)o(a)» (hm)o(a"))
= Jim p; s ((rmdn(@n), () (1))
< (1 +e) lim p;_y(an an) = (1 + €)pj_1(a,a).
This proves the claim and the proof is complete.
Corollary (5.3.23)[269]: Let K,,, be a compact subset of R¢ with K,, = @. Fix € > 0. For

each e > — % there exists ;4. > 0 such t_hat for any compact subset A of K, any x;_; €
A and any bi-Lipschitz mapping h,,,: A = B(0,1) with blip h,,, < (1 + €), we have
£ (B(hy(x7-1), 1 + 2€) 0 hyy (4))
ay;(1+ 2e)4

where a, denotes the Lebesgue measure of the unit ball in R4,
Proof. Let us argue by contradiction. Suppose the lemma were false. Then for some € >

— % there exist compact subsets A, € K,,, (xf—l)n € A,, and bi-Lipschitz mappings
(hy)p: A, = B(0,1) with blip (h,,,),, < (1 + €) forn > 1 such that
£ (B((hdn(2-1), 1+ 2€) 0 (h)u(4))
aq(1+ 2e)?
Notice that K,, and B(0,1) are both compact. According to Lemma 2.1, by taking a
subsequence of (n),,», if necessary, we can assume that
d dy 4+ "

A A, (hdn(A) A (hda ((-1), ) 2 %1 (97)
as n — oo for some nonempty compact sets A c K,,, A* ¢ B(0,1) and some point Xi_1 €
B(0,1).

By (97), we can apply Corollary (5.3.21) to ((h,,),(4,)) and ((hm)n ((xf—l)n)>'
This gives that for each € > 0, there is an ne such that
B ((ha)n ((xj_l)n) 1+ 2€) N (hn)n(4n) € D, forn = n,, (98)
where D = B(x;_1, 1+ 2e) N A
It follows from (96) and (98) that

<1- 1426

— lasn - oo. (96)

L4(D,)
ay(1+ 2¢€)
£ (B (e ((5-1),, ) 1+ 2€) 0 CGrdn(A))
> i = :
_rlll_r)glo 2.1+ 2604 1 forevery e > 0
So we have
LYB(x_,1+2€)n A L4(D
1> (B0 ) )=Ld(D)ad(1+26)d=lim (De) > 1,

- ay(1+ 2¢e)d e->0 ay(1 + 2¢€)d
where the last equality comes from the fact that D is compact. Thus,
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LYB(x/_1,14+26)NA") = ag(1+2e)* = L (B(x;_l, 1+ 26)).
So B(x;_;,1+ 2€) N A" is a compact subset of B(x;_;, 1 + 2¢) of full Lebesgue measure.
We have
B(xj_1,142¢) c A", (99)

Using (97) again, Corollary (5.3.22) gives a bi-Lipschitz bijection h,,, from A onto
A*. Now Brouwer’s invariance of domain theorem asserts that A° = @ since so does 4* (by
(99)). Consequently, K,, > A" # @, contrary to the condition K,, = @.
Corollary (5.3.24)[269]: Let K,, € R% be a compact BBI set of dimension d, then K,,, #
@.
Proof. [231]. Let K,, € R% be a compact BBI set. By definition, K,, together with the
Euclidean distance p;_; is a BBI space. To avoid confusion, we use B(x;_;,7;-;) and
By, (xj_1,77-1) to denote open balls in the two metric spaces R% and K,,,, respectively. For
Xj_1 € K, We have By (Xj_1,7j-1) = B(xj_1,7j-1) N K

Suppose without loss of generality that diam K,,, = 1 For 0 <rj_; < 1, denote by
N,.._, the largest number of disjoint balls of radius r;_, centered in K,,,. Foreach 0 <r;_; <

1/2, let {BKm ((xj_l)i, 273_1)}111 be a disjoint family of balls with (x;_,). € Ky, Then

N2r] 1

K, c U (=), 412, (100)
Notice that K,,, can be regarded as a ball of radlus 1 in the BBI space K,,. By the definition
of BBI space (Definition 2.3), there are two constants € > 0 such that for each 1 <i <
N2r,_,» we can find a closed ball By (vi,2(1+ 2€)rj_1) € By ((x]-_l)i, 21‘]-_1) with y; €
K, and a (1 + €)-conformlly bi-Lipschitz mapping

_ 1
(fm)i: Bk, (vi, 2(1 + 2€)13_,) — K, with scale factor -
j-1

(101)

Let
NZT'j_l

Km(rj—1) = U BKm(yir(l + 25)7}'—1)-

i=1
It follows from (100) that

Noy Noy.

j-1 j—-1

LK (5)) = ) L4Br, 0o (14 26m2)) = ) £4(Bi, (31, 6%1-)

i=1 i=1
Nor;_4

> 67%(1 + 2¢)4L U Bk, (i, 67i—1)
i=1
Nor;_4
> 674(1 + 2¢)4L1 Bi ((x7-1) 47521
i=1

> 6741+ 26)LY(K,,) (= 6 —dOdLd(K).(102)
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forall 0 <r7;_; < 1/2. Now suppose the theorem were false, i.e., K,, = @. We claim that,
forevery 0 <rj_; <1/2,
L (EKm(xj_l, (1+ 26)7‘]-_1))
ay,(1+ 26)drj‘f1
Here &, 4, IS the constant in Corollary (5.3.23) with 2(1 + ¢€) instead of (1 + ¢€).

By assumption, K, is Ahlfors regular with dimension d and thus, £L2(K,,,) > 0. We
shall show that (102) and (103) contradict this. In fact, by Lebesgue density theorem and

Egoroff’s theorem, there is a measurable subset K, € K, and (rj_l)o > 0 such that
LYK, \K) < 6741 + 26)4 £L4(K,,,) and that

£ By, (xj-1,77-1))

<1-¢gypforallx;_; € Km(rj_l). (103)

>1—&142¢

forall x;_; € Kpand 0 <74 < (rj_l)o. (104)
Now fix rj_; > 0 with (1 + 2€)7j_; < (rj_l)o. Notice that (102) implies that K, (rj_1) N
K} #+ 0. Pick (xj_1)0 € K,n(rj-1) N Ky, Then (104) gives

rd (gKm ((xj_l)o, 1+ Ze)rj_l))

aq((1+2e)1+ Ze)drﬂl

which contradicts (103).

It remains to prove the claim (103) for every 0 <1;_; < 1/2 under the condition
Km = @. Pick x;_1 € Kin(rj_1), then x;_; € By, (¥;,7;-1) for some 1 <i < Ny, . Let
(f;n); beasin (101) and

A= (fn)i(Bi,, (xj-1, 1 + 26)15-1)) < Kp.

Let hyy = gx,, © (fdi", Where gyt > (t = xj_1)/15_4. Then hp, is a bi-Lipschitz
mapping with blip h,, = 2(1 4+ €) since (f,,); IS a (1 + e)-conformlly bi-Lipschitz
mapping with scale factor 1/(27;_,).

We also have

> 1 - €142

hon(4) = Gy, (B (%=1, (1 + 26)731))
= B(0,1+ 2€) N gy,_, (Ky) < B(0,1).
Now we apply Corollary (5.3.23) to A and h,,, with 2(1 + €) instead of (1 + €). Notice that
(fm)i(xj-1) € Aand

B (hn ((£di(x7-1) ), 1+ 2€) 0 Ay (4)
= B(0,1+26) N gy _, (B, (-0, (1 + 26)77,))
= B(0,1+26) N gy, (Km) = gz, (B (5-1, (1 + 26)771)).
Hence, Corollary (5.3.23) gives

rd (EKm(xj—lf (1+ 26)7”]-_1)) L4 (ng—1 (EKm(xj—l' 1+ 26)7}'—1)))

aqg(1+2€)r? ay(1+ 2e)?
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Ld( ( ((fm) (% 1)) 1+ 2€)> Nk, (A)

ay(1+ 2¢e)d
This proves the claim (103) and the proof is complete.
Corollary (5.3.25)[269]: (See [231])[269]: Given an open ball By (x;j_1,7j-1) In Ky, if
xj—1 € §;(Km) € By, (%j-1,15-1) and §; — (Kip) © BKm(x]—lrrj—l)
then lr;_; /(c; diam K;;)) < [} < 21j_; /diamKp,.
Proof. By S;(Ky,) < Bk, (xj-1,7j-1) and (3.2), we have
l; diam K;;, < diam S;(Ky,) < 21j_4
Hence [, < 2r;_;/diam K,,. By S;_(Kp,) < By, (xj_1,7j-1) and (3.2), we have
L;_ diam K,;, = diam §;_(K;,) = 1j_1.
Combining this with (3.2) and (3.3), we obtain
L= - =1L /¢y = lrj_1/(c, diam Kpp,).
The following two lemmas concerns the Ahlfors regularity of self-conformal sets.
The proofs can be found in the recent works of Kdenmaki, see [216, Theorem 3.1] and [225].
However, for the completeness, we include the proofs here (see [231]).
Corollary (5.3.26)[269]: [231]. Let K,,, € R® be a self-conformal set that has the BDP and
positive d-dimensional Lebesgue measure. Then K,,, is Ahlfors regular of dimension d.
Proof. Given an open ball By (xj_1,7j-1) in K, With 2r;_; < diam K, note that K, &
By (xj-1,7;-1). Hence, we can find an index I € 2* such that
Xj_1 € §;(Km) € By, (x] T )and Si-(Km) € By, (xj—1,7j-1)
By Corollary (5.3.25), we have [, > L. rioa / (c; diam K,,,). Consequently,

207, = HY(B(xj-1,7j-1)) = H* (BKm(xj 1 Tj- 1))
) Hd(Km)ld d
~ (¢ diam Km)d
Notice that H*(K,,) > 0 since K,, has d-dimensional positive Lebesgue measure. We
conclude that K is Ahlfors regular of dimension d.
Corollary (5.3.27)[269]: Let K,, € R% be a self-conformal set that has the BDP and
satisfies the WSC. Then K, is Ahlfors regular of dimension a with @ = dimy K,,
Proof. Letx;_; € K, and 0 < 1;_; < diam K,,, /2. We need to estimate the upper and lower
bound of H*(By_ (xj_1,7j-1)).
For the upper bound. Taking a = 1,U = B(xj_4,7j-1) and D = K, gives
#{5 € Ayr,_, + S(K) N B(xj-1,7j-1) # B} < y1, Ky < 00
forall x;_; € Ky, and 0 < 7;_; < diam K,,,. It follows that
H“(BKm(xj_l, 7}'—1)) = z HS(Ki)
Serj_q
S(Km)NB(Xj_1,7j—1)=0
a
< ¥1, K (215-1) H*(Kip)-
For the lower bound, we use the same argument in the proof of Corollary (5.3.26) and
obtain the same lower bound as in (105):

H®(By,, (xj-1,77-1)) = H*(K;,)1*7 1/ (c; diam K;,)“.

> HY(S;(Km)) = I HA (K, (105)
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Finally, we conclude the Ahlfors regularity of K,,, from the upper and lower bound
above since 0 < H*(K,;,) < oo.
Corollary (5.3.28)[269]: [231]. Let K,,, € R be a self-conformal set that has the BDP. If
K, # @ or K,, satisfies the WSC, then there exist (xf‘l)o €K, and 0 < (rj_l)o <

diam K,,, such that for all index I € 2*,
S (EKm((xj_l)O’ (7}'—1)0)) =35 (E((xj_l)o, (rj_l)o)) N K.
Proof. We begin with the case K,, = @. Clearly, there are (xf—l)o €EK,and0 < (rj_l)o <

diamK,, with B ((xf—l)o' (rj_l)o) c K,,,. Then for any I € Z*, we have
1 (B ((5-1)y (5-1),)) = 1 (B ((g-) (1)) 0 Kim)
=5 (E ((xj—1)0; (Tj—l)o))
=51 (B ((5-1)y (5-0),) ) 0 Kom
since S, (E ((xf—l)o' (rj_1)0)> C K.

Now suppose that K,,, satisfies the WSC. Pick x;_; € K, and 0 < 1j_; < diam K,
with B(xj_1,7j-1) € X' Let Ay = B(x;_4,7j_1). We can obtain a sequence of sets 4y, Ay, . .
by induction as follows: suppose that A, _, is determined, if
S, (Ak-1 NKp) & Sp, (Ak-1) N K;, forsome [, € 27,
let Ay = S;, (Ak—1); if such I, does not exist, we stop the procedure.
Leta = (er_l)_l. We claim that the above induction procedure stops after at most
Yak,, Steps, where y, x is defined in (3.4). For otherwise, there would be Ay, 44,..., 4,
and Iy,..., I, withn >y, such that Ay = B(xj_q,7j_1), Ax = Sy, (Ak-1) and
S, (A1 NKp) €S, (Ak-1) N Ky, forl <k <n. (106)
To prove the claim, we need to deduce a contradiction. Note that A, =5, ; (Ap) =
Sty (E(xj—l»rj—l))- So
Li,.., = (27}'—1)_1L1n...11 - 2151 2 adiam A,
This together with (106) implies that for each 1 < k < n, we can find J; € 2* such that
S+ Ixs1Jx € Aq diam A, and
@ # S, (Ak-1) NSy, (Kin) & S, (Ag—1 N Kiy). (107)
Hence, A, NS, 17 (Km) =S+ Ik 41 (S,k (Ak_l)) NSy, (Ky) # @. Therefore,
Si oSt In-1--SL, .1,J1 € Aga, k.
where A, 4 is defined by (3.4). Thus, n >y, implies that there are 1 < m, < k <

n SUCh that Sln---lk+1]k = SIn---Im0+1]m0’ .., S]k = SIk-"Imo+1]m0 . Then we have

Si,(Ak=1) N S;, (Kw) = Sy, (Ak—l O St dmg+1)mg (Km)> C Sy, (A1 N Kyy).
This contradicts (107) and so the claim follows.
Clearly, the claim implies that we can find A, = S, |, (E (X1, 7‘]-_1)) satisfying
S (A, NK,) =S54, NnK,, forall I € X~.
Let (xf‘l)o = S;,.1,(xj—1) and (rj_l)o =1, .1,7j-1, then B ((xf‘l)o’ (rj_l)o) c A,,. For
alll € 27,
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»)) =51 (B((5-1)y (50),) N Kim)
—51< ((x] 1), (17-1) ))nS,(Km)

(B (Com1)y (5-1),) ) 151 CAn) 01,

=5, (B (1) (5-1),)
=51 (B ((5-1)y (5-1),) ) 0 Kom

Hence such (x;_,)  and (r;), are desired.

Corollary (5.3.29)[269]: Let K,, ¢ R% be a self-conformal set that has the bounded
distortion property (BDP). Then

K, +0 oK, =K < K, isaBBI set of dimension d.
Corollary (5.3.30)[269]: Let K,, € R? be a self-conformal set that has the BDP and
satisfies the WSC. If dimy K,,, = d, then K, # @.
Proof of Corollary (5.3.29) and (5.3.30). (See [231]). We remark that, in Corollary
(5.3.29), K,,, = K, follows from K,, # @ immediately. Indeed, K, contains U,cs- S;(K;,)
and the latter is dense in K,,,.

Therefore, by Corollary (5.3.24), it suffices to prove that, if K,, = @ (for Corollary
(5.3.29)) or K,, satisfies the WSC with dimy K,,, = d (for Corollary (5.3.30)), then K,,, is a
BBI set of dimension d.

We first observe that, by Corollary (5.3.26) and (5.3.27), K,,, is Ahlfors regular of
dimension d in both cases. Now let B, (x;,77) and Bg (X1, 7j+1) be two open balls in K,
with 0 <7j,74; <diam K,,. To complete the proof, we need to find constants
(1 + 2¢), (1 + €) (mdependent of x;, x4, and 7j,7;,1), @ point x;,, € Bx_(x;,7;) and a
(1 + e)-conformally  bi-Lipschitz mapping h,, from By (xj;,, (1+2€)r;) into
By (xj41,7541) With scale factor 7;,., /7.

For this, suppose without loss of generality that K., ¢ Bx_(x;,7;) and K,
BKm(xj+1»Tj+1)-

Thus, we can find two indices I;, I, € 2™ such that

S, (Km) € BKm(xjrrj)i Si- (Km) & By, (x,77)

N S;(4,) N K,

And

S, (Km) © BKm(xj+1:7}'+1) Sty (Km) € By, (Xj+1, Tj41)-
It follows from Corollary (5.3.25) that

l L, 2
——<—<
¢y diam K,, — r; = diam K,

By Corollary (5.3.28), in both cases, we can find (xj_1)0 € K,,and0 < (rj_l)o < diam K,
such that for all index I € X*,

1 (B ((5-1) g (5-2),)) = 51 (B ((5-0) (50),) ) N Koo (109)

Let Xjt2 = Sy, ((xf‘l)o) € S, (Km) € BKm(xj,rj) and (14 2¢) = l(rj_l)o/
(¢1 diam K,,). Then (108) gives (1 + 2€)r; < I, (7;_1) . This together with (3.2) and (109)
implies

, fori=1,2. (108)
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Bg (%j12, (1 4+ 26)17) © EKm (xj+2, L, (7}'—1)0)
< 51, (B ((5-1) (5-1),) ) 0 o
=S, (EKm (G-1), (rj_1)0)>. (110)

Therefore, we have EKm(xj+2, (1 + 2e)r;) © By, (xj,7;7) since

Sll (EKm ((xj_l)o’ (T}_l)o)> - SIl (Km) c BKm(xJ’rJ)
Let h,, = S;, ° S;.* . By (110), we have

hm(EKm(xj+2, (1+ Ze)rj)) C hp <511 (EKm ((xj—l)o» (7}'_1)0))>

=S, <§Km ((xj—1)0' (7}'—1)0)> C By, (Xj+1, Tj+1)-
Hence h,,, maps (Bk, (xj42, (1 + 2€)17)) into Bi_ (Xj41,Tj41)-
It remains to show that h, = S, - S,;l is a (1 + e)-conformally bi-Lipschitz
mapping with scale factor ;. , /r; for a constant (1 + €). Indeed, we have

by _ by _ 1S oSt Gy) =S, o St (o)l _ by _
C1l£1 _LI1 Bl |xj—1_y| _Lll _C1l11’
for x;_1,¥ € Bg (xj42, (1 + 2€)1;). This together with (108) gives
(A + )7 (T /11 = Y| < T (j—1) = hen ()]

< (14 &) (141 /77) %1 — ¥

)

where (1 + €) = 2¢2/L.
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Chapter 6
M-Cantorvals and Recovering

We show that a new sufficient condition for the set of subsums of a series to be a
Cantor set is formulated and it is used to demonstrate that the discussed multigeometric
series always have Cantor sets as their sets of subsums for sufficiently small ratios of the
series We are interested in the two following questions. Which set can be a range of some
measure p? Can the purely atomic measure p be uniquely recovered from its range. We
shidy The Lebesgue measure of K is computed and it is shown to be equal to the sum of
lengths of all component intervals of the M-Cantorval.
Section (6.1): Ferens Type

The investigation of topological properties of sets of subsums of absolutely
convergent series has been initiated almost one hundred years ago by Soichi Kakeya [150],
[248]. Most of his findings were rediscovered later and published in more accessible
journals [148], [249]. He thought that a set of subsums must be (up to a homeomorphism)
either a finite set or the union of afinite family of closed intervals or a Cantor set. The first
example of a series with a set of subsums of neither of the three mentioned types was stated
without proof by A. D. Weinstein and B. E. Shapiro in a note published in 1980 [252]. Four
years later C. Ferens presented a complete example of another series having an M-Cantorval
as the set of its subsums [146]. A major step in the research took place in 1988 when J.A.
Guthrie and J.E. Nymann published the full topological classication of the sets of subsums
[147] (see also [155]). It consists of exactly four topological types with M-Cantorvals being
the fourth type unknown to Kakeya. The result describes also all possible ranges of purely
atomic probabilistic measures correcting earlier results in the direction [151], [247]. Finding
a complete analytic characterization of when a given series has a Cantor set and when an
M-Cantorval as the set of its subsums remains a challenging problem [147], [149], [250]. A
new exposition of the Guthrie Nymann Classication Theorem, based on the Mendes-
Oliveira characterization of M-Cantorvals [152], can be found in [251]. Some algebraic and
topological aspects of sets of series related to the Guthrie-Nymann Classication Theorem
were investigated in [144] recently.

Since the topological type of the set of subsums of a given absolutely convergent series

Is the same as the type of the series of absolute values of its terms, we will restrict our
attention to convergent series ), a,, of positive terms. Further, since the set of subsums does
not depend on the order of summation, we may assume that the terms of the series decrease.
The set of subsums of the series is defined to be

E(a,):= {x € R:there exists A c N, x = Z an} = z e,a,:e, €{0,1}.
. nea n=1 . .
We agree to write ), ,cp a, = 0. The symbol r;, denotes the k-th remainder of the series

understood sometimes as the series Y.,—; ., a, an and sometimes as the sum of the latter
series which will be clear from the context always.
The symbol E,, denotes the set of subsums of the k-th remainder of the series); a,,, that is,
Er = (E(ay)n=k+1)- Inparticular, E, = E(a,,). Clearly, E} is a subset of the interval [0, 7]
forany k € N,. The set of all k-initial subsums of )’ a,, will be denoted by

k

Fp:= Z epay:foralln € {1,..,k}e, € {0,1}

n=1
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We define F,: = {0} additionally.

It is easy to observe that E = F;, + Ej, for any non-negative integer k. The set of all sums
of finite subseries of ), a,, will be denoted by F, thatis, F = Upey Fi-

Fact (6.1.1)[246]: For any k € N, the following equalities hold

Ep_. = E,U(ay + E) and E = U F+E) .
fEFk
Moreover, E = F.
The first two equalities are elementary [155], the third one follows from the fact that the set
E is closed [150], [248]. In particular, the second equality tells us that the set E is a union
of finitely many translates of the set of subsums of the k-th remainder.
The sets

Iy:= U (f +[0,7])
fEFk
will be called k-th iterates of the set E. When we look at the series Z% having the classic

Cantor ternary set as the set of its subsums, I, is exactly the set obtained in the k-th step of
the standard construction of the classic Cantor set. Thus, the following fact is a
generalization of the classical construction.

Fact (6.1.2)[246]:
E = ﬂ I, for any series Z a, .
k=1

Proof. It follows from the second équality of the Fact (6.1.2) that
E=|Jo+moc|Jo+omnn =1

fEFL fEF

forany k. Thus, E € Ny I.
If x € I, then, by the definiton of I, there isan f € F;, such that the distance d(x, f) < ry.
Hence d(x, F;, ) < r, which implies that d(x, E) < 1. Thus, if x € N I, then d(x,E) =
0 and thus x € E, since the last set is closed.
Fact (6.1.3)[246]: Let m, k be positive integers such that k = m + 1. Then the set of all
possible sums of finitely many distinct summands taken fromamongm,m + 1,...,m + k —
1 (we understand that 0 is the sum of the empty subcollection) is equal to

foju{mm +1,..,s—m—1,s —m} U {s}
Where s = s(m,k):=m+ (m+1) + -+ (m+ k — 1). Moreover,

3
s = Em(m + 1).

Proof. It is obvious for k = 2, since then it must be m = 1.

Assume now that k and m are positive integers such that k > 3and k = m + 1. Given an
n €{0,1,...,k}, letS,, denotes the set of all sums of exactly n distinct summands from
amongm,m+1,..,m+k — 1, thatis

n

Spi= {z bi:b; € {m,m+1,..,m+k—1}and (i # j = b; # bj).
i=1

We assume S, = {0} as usually. Then S,, is a finite set of consecutive positive integers for

any nwith 1 < n < k — 1. Moreover,
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min$, = nm += (n — 1) and maxS, = n(m + k) — "T“n and both finite sequences

(min S,)%Z and (max S,,))%Z1 are increasing.

We will show that there is no gap between any two consecutive sets S,,, that is, given an
l e Nsuchthat2 <1 < k — 1, there is no positive integer y satisfying the double inequality
max S;_; <y <min ;. It sufces to show that min S;_; max S;_; which, in turn, is

equivalent to

m-1 o
-1 ="

The last inequality follows from the assumption k > m + 1 and from the fact that the
function f(x): = E + x does not exceed the value k on the interval x € [2,k — 1].
Finally,

k k-1
USL: OUUSiUSk={O}U{m,m+1,...,s—m—1,s—m}U{s}
=0 i=1

The serles given in [252] by Weinstein and Shapiro as an example escaping the Kakeya
hypothesis can be written in the form

1 1 1 1 1 1 1 1 1 1
8— +7.-—+6.—+5-—+4—+8-—+ 7.—+6.—— +5—+4.—

10 10 110 10 10 102 102 102 102 10
8 —
+ 103 + -

We have dropped a constant factor of liothey used to make the sum of the whole series to be

1.
We dropped the factor to make the structure of the series more visible, since constant non-
zero multipliers have no influence on the topological type of the set of subsums. Weinstein

and Shapiro wrote that it is easy to see that the whole interval [g %] belongs to the set E

of subsums of the series.
The series discussed by Ferens in [146] is similar:
1 b as st (L) ve(Z) 5 (2) +4(2)
27 27 27 , 27 227 27 27 27 27

3 (227) 7 (227) T

We have dropped a constant factor of = 5 Ferens used to obtain a series suitable for the natural
construction of a purely atomic probabilistic measure. Ferens proved that the whole
interval[ % ; %] Is contained in the set of subsums of his series.

Definition (6.1.4)[246]: Let m, k be positive integers such that k > m + 1. A series }; a;
will be said to be of Ferens type if
aj=(m+k—i)q"forallj €N,
where q is a real number from (0,1) and (n, i) is the unique pair of positive integers with
range n € N,i € {1,2,...,k} such that j = k(n — 1) + i. We will denote the series by
F(m, k; q). Itis a special multigeometric series [250]:
Fmk;q) =(m+k—1Dg+(m+k—-2)g+--+mqg+ (m+k—1)qg?
+(m+k—-2)¢g* "+ + mqg*+ (m+ k—1)g>+ (m+k—2)q®+ -
+ mq3 + -

2
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The terms a Ferens type series are strictly decreasing if and only if > (m+ k — 1)q.
Moreover, it is easy to find a closed formula for the kn-th remainder of the series:
had qn+1
Tien = Z a =s

. 1-q

j=kn+1
where s = s(m, k) has been de fined in the statement of the Fact (6.1.3).
Lemma (6.1.5)[246]:

n

Fin = Z eiqiie; €{0}u{mm+1,..,s —m}U{s}
i=1
for any series F(m, k; q) of Ferens type.
It follows from the Fact (6.1.3) by induction easily.

We will investigate a special subset of the set Fy,,:
n

K,:= Z e,qt:e; E{mm+1,..,s —m}
i=1
with the natural order induced from the real line.
Lemma (6.1.6)[246]: If ¢ = . then the distance between any two consecutive points

s—2m+1’
of K, does not exceed q".
Proof. The proof runs by induction on n. Since K; = {mq,(m + 1)q, ..., (s — m)q}, the
distance between any two consecutive points of K; is always g, and hence the thesis holds
forn =1.
Assume now that the thesis holds for a positive integer n. Let h < f be any two consecutive
points of K, + 1. Clearly,

n+1 n+1

f=)fa and k=) hg
i=1 i=1

for a suitable choice of f;,h; e {mym+1,..,s —m}lIf f, + 1 >m, then f —q"*1 €
K,.1. Thus f — q™*! < h < f, and hence the distance from h to f does not exceed g™*?.
Ifh,,; <s—m,thenh + q"** € K,,,,. Thush < f < h + gq"*?, and hence the distance
from h to f does not exceed g™*t.

It remains to consider the case f,,.; = m and h,,.; = s — m. Then the following numbers
n+1

n
f:=Zfiqi and i_lz:Zhiqi
i=1 =1

belong to K,,. Since s —m > m, it must be h < f. Define g := max {x € K,:x < f}. We
get f — g < q™ by our inductional assumption.
Clearly, g + mq™*! € K,,,; and g + mq™*! < f.

Our assumption that g > - implies that
s—-2m+1

g + (S _ m)qn+1 > g + qTL + mqn+1 _ qn+1’

and therefore

g—_l_ (S _ m)qn+1 > f+ mqn+1 _ qn+1 — f _ qn+1.
Thus f € (g+ mq"*t g+ (s —m)q™*! + q"*1], and hence we findk € {m,m+
1,..,s —m}such that 0 < f — (g + kq™*?) < q"*'.Since g+ kq"*! € K,,,.1, we have
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that § + kq™*t! < h < f, and hence the distance from h to f does not exceed g™** which

completes the proof.

Lemma (6.1.7)[246]: Let F(m,k,;q) be a Ferens type series satisfying the condition
1

<q< % Then

s—2m+1

P,y NI, =LY UR, UL

n— _

[ Eq mzq + Tin qu+0r,m
:1 i=1

Zq (S—m)zq + Tkn

for every n € N where

forn>1,

—(s—m)Zq + sq™ (s—m)Eq + sq™ + 14p,
n—1

= (s=m) ) q'+5q"+ (0,74
i=1
Proof. The sequence (P,),~ of closed intervals, where

n n
— [qui,(s—m)Zqi + Tien
i=1 i=1

Is strictly descending in the sense that P, ; cintP, It follows from the inequalities

)

n+1
mz q' < mz q' and (s = m)q"™ + e i) < Tine
i=1 i=1

The first one is obvious and the second one is equivalent to m > 0.
Observe now that B, c I, for all n € N. Fix an n. Then K,, ¢ F,, by the Lemma (6.1.5).

. 1 . . 1 . . . .
The assumption q > pr— implies that g > ey and the last inequality is equivalent to
Tkn = qn.
Thus, since the distance of any two consecutive points of K,, is at most gn by the Lemma
(6.1.6), the union U sex, [f f + 1en] 1s aninterval.

Since minkK,, = mY"-, q' and maxK, = (s — m) X, q*, we conclude that

o= JUrf 47l < JUAf + 0] =l
fE€Kn f€Kn
It follows from the definitions of the iteration I,,, directly that both intervals LY, and L2 are

contained in I,,.
We are now going to show that the open intervals (maxLl; minP,) and
(max P,, minL3) are I,-gaps, but we need three auxiliary inequalities first. Since s >

%m(m + 1) > m?, it follows that s + m > m(m + 1). Thus our assumption g < %
implies that

1
m+1

q < (1D
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Next, = > —— > q and hence sq < m which implies that
sqP*l <mqP forany  p € N,. (2)
Our assumption ¢ < —— is equivalent to

n+1
q

1-q
Consider an f € Fy,. By the Lemma (6.1.5), f is of the form
n

f= Zfiqi with f; e {0} u{m,m+1,...,s —m} U {s}.

=1
Iftheset): = {j € {1,2,...,n}: f; = m}isempty, then f = m ¥, q". If ] # @, define j,: =
min J.
Then either f;, > mor f;, <m.
If fj, > m, then f; =m+ 1and

Jo—1

f>m2q +(m+1)q10—m2q + qlo > qu +m

XY

Iffj, <m,thenf; =0andf; <s fOfl >]0 Hence

S = I <mq" forany n € N,. 3

]0+1

—q

Jo—1 n Jo—1
meZqi+ z sqt —qu + z sqtt <
i i= j0+1 = ]01
Jo—1 - n—
m z gt +m z 2
i= ]01 i=1
Therefore,
n Jo—1
max{f € Fip: f < mzqi}= m Z q‘,
i=1 i=1
and thus
n—1
max{fErknfEFkn,f<mz } Zqi
i=1

Tl+1
<
1— mzq

which means that the open interval m Y- ! q* + r,m, mYI-, q'is an I,,-gap. The proof that
the intervals (max P,, minL?) are I,,,-gaps is fully analogous.
Lemma (6.1.8)[246]: Let F(m, k; q) be a Ferens type series satisfying the condition
1 m
———q < :
s—2m+1 1 s+m
Then the interval [m ﬁ, (s —m) i—q] is a component interval of E(F(m, k; q)).

Proof. The following inclusion holds by the previous lemma
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q q
ﬂPn=[m1_q,(s—m)m]cﬂlkn=E
n n

Since I,.,,-gaps are E-gaps and since maxLl — mlf—qand minl2 - (s —m) éas n -

oo, the endpoints of the interval [m 1f—q,(s —m) ﬁ] are limits of E-gaps. Thus the

interval is a component interval of E.
Theorem (6.1.9)[246]: Let F(m, k; q) be a Ferens type series satisfying the condition
1 m
———q < :
s—2m+1 1 s+m
Then the set of its subsums E = E(F(m, k; q)) is an M-Cantorval. Its Lebesgue measure is

UE = (s — 2m) —— and it is equal to the sum of lengths of all component intervals of E.
1-3q

Proof. The inequality g <% is equivalent to 7, < mgq™ for all n, that is, to the

inequalities ay,, > 1, Which means that E has in nitely many gaps. Hence, by the Guthrie-
Nymann Classication Theorem [147], [251], E must be either an M-Cantorval or a Cantor
set. The Lemma (6.1.8) eliminates the second possibility.

We need good insight into the geometric structure of consecutive iterations I,,,, n € Ny, in
order to compute the Lebesgue measure of E.

Observation (6.1.10)[246]:

2 n—-1

U U (L 0 L )LCEY LIB,LILZ)

i=1 j=1
foralln € N.
A simple proof of this observation is based on the Lemma (6.1.7) and runs by induction on
n.
Observation (6.1.11)[246]: Given j € {1,2,..,n—1},n > 2,i € {1,2}, the following
equality holds

Lilin = & + @' lkn-j)

qui ifi =1,

(s—m)Zq + sq’ ifi = 2.

We are going to prove the Observatlon B in the case i = 1, since the other case is quite
similar.

Givenan x € Iy,, anumber f € Fy,, suchthatx € f + [0, r,,] will be called kpoor of x and
denoted by bxckp. It does not have to be unique. Observe that forany p € N

L, ={x €I : —mz

In particular, the kp-floor of x € L}, is unique Take h € I}, N L}- now. There exists, by the

definition of I,,, an element ¥, e,q' € Fy,, suchthath =Y, e;q' + r forsomer €
[0, 7] Then

Where

—~
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J n
h=Zelql+ Z e qt +r.
=1

1=j+1
Since YL 41 €,9' + 1 € [0,73,], the fact that h € Lj and uniqueness of kj-floor on L; imply
thate; = --- = ¢;_; = mande; = 0, that is,
j-1 n j-1 n—j
h=qul+ z elql+r=mqu+qj Zel+ql+f
=1 I=j+1 =1 =1

for some 7 € [0, Tx(n_jy]. Thus h € m %121 q* + @’ Iy(njy- The inverse inclusion g +
qflk(n_ jy € L}- N I, is straightforward and therefore the proof of the Observation B is
complete.
The next observation is crucial for understanding the building of consecutive iterations I,
n € Ny, and for computing the Lebesgue measure of E.
Observation (6.1.12)[246]: If [«, ] is a component interval of I, then
[, B] N Lyn+1y = [, & + Tany]U[a + mg™?, B — mq™* UL — Tk(ns1)]
The proof of the observation runs by induction on n, so we start withn = 1. Let [, §] be a
component interval of I,.. Since I, = LiLIP,UL3by the Lemma (6.1.7), exactly one of the
following three cases holds:
(aD[a, ] = L1 = [0,7],
(a2)[a, ] = L1 = [sq, 7o,
(a3)[a, B] = Py = [mq, (s —m)q + 1y ].
In the case (al), since qr, = 12, @ = 0,8 = 13, = 5q? + 13, We get
=[a,B] NI, = L3 N1,0bs.B = ql, = qLiLUqP,LUqL?
= [0, 12 ]U[mq?, (s —m)q® + 1o ]U[sq% 7]
= [0,72]U[mq? sq* + 1z — mq*1U[r — 1z, %]
= [a, @ + 1 ]Ula + mq?, f — mq®]U[B — 7y2, B.
The cases (a2) and (a3) are very similar. We omit the details for them and it completes the
stepn = 1.
Now, let n > 2 be a positive integer such that the thesis holds for t = 1,2, ...,n — 1, that is,
for any component interval[a, ] of I,,;, where 1 <t <n — 1, we have
[67;3] N lte1) = [CY: a+ rk(t+1)]|—|[0_( + qul'ﬁ - qul]U[ B — Tk(t+1)!ﬂ]-
Let [a, B] be a component interval of I;,,. The Lemma (6.1.7) combined with Observations
A and C yields
2 n-—-1

b = | [ [et + 9% hn-ap LGLRLERD.
i=1 d=1
Hence exactly one of the following four cases holds:
n-—1
(bDla,f] =Ly =m Y +[0,70,],
=1

n-1

bDle,f] = L = (s=m) ) q"+5q" +[0, i)

=1
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(b3)la, ] = [ Eq(s—m)Zq + Tin

(b4) [a,B] = el +q [ [)’] for some i€{1,2},d e{l,..,n—1}and a component
interval [a, B] of I (,—q). In the case (b1) we get

n-1
(@810 Turny = Lh 0 Teueny0bs.B =m ) gt +q"l

n-—1

Lemma (6.1.7) = qu +Zq + q"

) = ([0, rk] [mgq, (S —m)q + e ]U[sq, sq + 7]
n
=m L+ (Jo, [u[mq™*?, (s —m)q™** +r [U[sq™*t, sq™ + ).
q 'y Tk(n+1) q -, q k(n+1) q -, Sq k(n+1)
=1
(now we apply the identity Y=g+ sq™ ey = mMEET 4L+ 1 = B)|aa +
Tem+n Ul + g™, B —mq™  JU[B — Tk(n+1), B] Computations in the cases (b2) and
(b3) are quite similar and we will leave them out. The case (b4) is relatively the most
complicated.
If [, B] is of the form (b4), then [a, B] c I,, N Ly, and hence
[a ﬁ] N Ik(n+1) ObSA[a: @] N (Ik(T‘l+1) n le) . i
0bsB (el + q%a@ B]) N (eh + q xnr1-ay) = €5+ a*([@ B] ) N Ln—a+1)
(and now we use the inductional assumption)
=y +q% (@ a+ "‘k(n—d+1)]u[6_¥ + mq™™ %, B + mq™ 4| U|B - Tk(n—d+1)'ﬂ])
= [05,0( + Tk(n+1)]|-|[6¥ + mq™*, B+ mqn+1]|—|[.3 - 7”k(n+1)'ﬁ]
which completes the inductional step and hence completes the proof of the Observation C.
We are now ready to describe the geometric building of iterations I,,,. The first of them
I, = I,consist of the single interval 0,% = [0,7,]. Given an n € N, if [ay, B1],i =
1,...,3™1, denote all component intervals of Iy (n-1), that is, if we write

3Tl—1

Iytn-1) = U[apﬁﬂ )

i=1

Then by the Observatlon C

U( a, &y + rplUlay + mq™, By — mq"U[B1 — Tin, B1]) -
i=1
In particular, the iteration I,,, consists of 3 component intervals. There are 3™~ intervals

among them concentric with component intervals of I;,,_1y and 2.3 new intervals —
each of the new ones of length ry,,. In other words, the iteration I, is obtained from the
iteration Iy (,,—1)by removing 2. 3"~1 open intervals - each of length mq™ — ry,,. We can say
that, while passing from I ,_1yto Ikn, each component interval of Iy,_qy shrinks
symmetrically by the same total length of 2mq™ and it produces two new intervals of length
rkn in the process of shrinking. Hence
Pl = .ulk(n—l) —3n 1 qun + 2. 3n_1rknr
and thus,
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(00]

pE = lim uly,, = uly — z 31 2mq™ + Z 2.3, (4)
n
n=1 =
Recall that s > %m(m + 1) by the Fact (6.1.3) and q < —— by our assumption. Thus

m m 2 1
q < < = <-

s+m %m(m+1)+m 3m + 5~ 4

n+1

Which justies convergence of both series in (4). Since 7, = s qqu . We get uE = % —

2qm 25q? . _
reerioen e Rl G b _ _ _
As we have mentioned above, the family of all component intervals of I, consists of

3" 1shrinked component intervals of Iy (n-1yand of 2. 3™"~1 new component intervals. We

agree to say that I, , = [0,%] is the single new component interval of I, ,. If [, 8] is a

new component interval of I,,,, then its length is r;,, which, with our agreement, is true for
n =0 as well. When we pass to the next iteration Iy (,41y,it shrinks by 2mq™tt, but
maintains its center. When we pass t0 Iy (42 , it shrinks further by 2mq™*? and so on. The

intersection of all successive shrinked versions of [a, 8] is a component interval of E of
length

® n+1

rkn—lglzmql = (S—Zm)1 —
Hence each new component interval of I,, is concentric with a component interval of E of
length(s — 2m) ql%l . Since there are 2.3™ ! new component intervals of I,,, (except for
n = 0 when there is only one new component interval of I,) and each of them is concentric
with a component interval of E of length (s — 2m) &H , the sum of lengths of all component

intervals of E concentric with a component mterval of aII possible iterations is

q
s—2m —223"15— ,
( ) ( e
but it is exactly the Lebesgue measure of E. It follows that there are no other component
intervals of E than those concentric with component intervals of iterations and that the sum
of lengths of all component intervals of E is equal to the Lebesque measure of E.
The most accessible example of an M-Cantorval is given by the Guthrie-Nymann set

GN ([147], [251])
GN=CU U Gop1

n=
where C is the classic Cantor ternary set and G, denotes the union of all open intervals
removed from [0,1] in the k-th step of the standard construction. For example, G, =

(1 ,E) U (Z ,§) and G; = (1 2) U (1,3) U (2,2) U (25 26) None of the known
9 °9 9 °9 27’27 27 27 27 27 27 ' 27
M-Cantorvals generated by Ferens type series is equal to the Guthrie-Nymann set GN

([147], [251]), not even up to a dilation, because the ratio of endpoints of the central
connectivity component for the M-Cantorvals.

= (s —2m)
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q

MT—q m m 2 1 2
T4 553 T3m+ls9
ST—¢q 7m(m+1)
e last inequality follows from the fact that the condition g € ,— | implies tha
The last lity follows from the fact that the condit ——,——) implies that

s+m <m(s—2m+ 1) and this inequality requires that m > 2. Hence the question of
existence of a series ) a,, such that GN = E(a,,) remains open which shows distinctly how
little we know about sets of subsums.
Lemma (6.1.13)[246]: Let ); a,, be a convergent series of positive terms. If

o <min{{f —g}:f,g € R, f # g}
for in finitely many n, then E'(a,,) is a Cantor set.
Proof. Given a closed and bounded set S c R, let y§ denote the length of the longest
component of S; more formally, yS: = supuG where u is the Lebesgue measure and where
the supremum is taken over all connectivity components G of S. Now, let (n;) be a sequence
of indices such that

Ty, < Min {{f -9} f,0€ Fpof # g} for all k.
Then the iteration I, of E(a,,) is the union of {Fnk} disjoint closed intervals each of length
Tn, - Vherefore, yI, =mn, . Since the sequence (I,)y-, is descending, the sequence
(v1,)n=1 IS nonincreasing and

yE = lirrln ylL, = lil£n Yy, = lilgn T, =0
and hence E is a Cantor set.
Theorem (6.1.14)[246]: Let F(m,k;q) be a Ferens type series. If q = % then

E(F(m, k; q)) is the whole interval [O,SIf—q] Af g < 5%1 then E(F(m, k; q)) is a Cantor

set.
Proof. If ¢ = ——, then a; < ; for all j, and hence E(F(m,k; q)) is the whole interval

[0, s i—q] by the well-known characterization given by Kakeya [150], [251].

We are going to show that if g < i then

Sqf; foranyn € N, (5)

f,ganI,RleI%m.k:q)lf —9l> 1
f¢g - - -
and then a simple application of the Lemma (6.1.13) completes the proof that E (F(m, k; q))

is a Cantor set for g € (0, i)

s+1
Suppose that g < ﬁ It follows from the Lemma (6.1.5) that
Amin |f —gl=gq.
f#g
Observe that
X . 1—(1+s)g+sq™tt?
qt_zsqz:qt T4

i=t+1
forany t € N, t < n, and hence the inequality g < i implies that
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n n+1

. ;. 5q
— E > : 6
q Sq 1—g (6)

i=t+1

Take any g, h € F,, suchthat g < h. Then

n n
g=) gq" and  h=) g

=1 =1
for a suitable choice of g;,h; € {0}Uu{m,m+1,...,s —m} U {s} by the Lemma (6.1.5)
again. Denote j: = min{i: g; # h;}. Ifj = n, then h,, > g,, and thus

n

h—g=Mh,—g)q"2q">s
Ifj €{1,..,n— 1} then h; = g; + 1 and hence

1—q

y) n n n
. . . . . . , qntl
h—gZzhiq‘—zgiqlzhjq’—gjg’— z sq' =g’ —s z a'> sy
i=1 i=1

i=j+1 i=j+1
and thus (5) has been established.

Unfortunately, an important part of the above theorem has been made obsolete within
the over two years that passed since our manuscript was prepared until it was eventually
(and this time very quickly) accepted in Mathematica Slovaca. Indeed, meantime an
extremely interesting [143] has been published by A. Bartoszewicz, M. Filipczak and E.
Szymonik. Their results are concerned with general multigeometric series and easily apply
to our series of Ferens type. In particular, [143] implies that the set of subsums of a Ferens

type series is a Cantor set if g < S_Zin+3, essentially improving our Theorem (6.1.14).

Further, the Theorem 2.1 from [143] applied to Ferens type series yields the first part of our
Theorem (6.1.9) exactly. Summing up, we do not know the topological type of the set of

. . 1 1
subsums of Ferens type series only for the very narrow interval g € [ ) ) It
s—2m+3 s—-2m+1

requires further research, although some signi cant progress in that direction has been made
in [158].
Section (6.2): Purely Atomic Finite Measure from its Range
Assume that p is a purely atomic finite measure. We may assume that p is defined on
N and u({n}) = u({n + 1}). We assume that measures are always purely atomic, finite and
they are defined on N such that their n+1-st atoms have measures not greater than their n-th
atoms. We are interested in the following questions:
(@) For which subsets R of R there is a measure p such that R is its range (i.e. R =
rng(u): = {u(E): E c N})?
(b)  For which subsets R of R there is exactly one measure p with R = rng(u)?
To simplify the notation let x,, = u({n}) be a measure of the n-th largest atom of p. Note
that

rmg(u) = {u(E):E c N} = {z pu({n}:E c N} = {z EnXni & = {0, 1}N}
neE n=1
The latter set is also denoted by A(x,,) and it is called the achievement set of (x,,) (see

[149]). Let us present here two simple examples.
Example (6.2.1)[253]: Consider the procedure of rolling dice until the value on the dice is
less than 5. For E < N let u, (E) be the probability that the procedure stops for some n from
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E. Then u,({n}) = 3% It is easy to see that for x,, = u, ({n}) the set A(x,,), or rng(u,), is

equal to the classical Cantor ternary set C.
Example (6.2.2)[253]: Consider the procedure of tossing a fair coin until the head appears.
For E c N let u,(E) be the probability that the procedure stops for some n from E. Then

u2({n}) = 5z and rng () = [0,1].
Achievement sets of sequences, defined for all summable sequences (x,), have been
considered by many some results have been rediscovered several times. Let us list basic
properties of A(x,,) (some of them were observed by Kakeya in [150] in 1914):
(i) A(x,) is a compact perfect or finite set,
(i) If |x,| > Xi>n |x;] for all sufficiently large n’s, then A(x,,) is homeomorphic to the
ternary Cantor set C,
(iii) If |x,| < Xisn |x;| for all sufficiently large n’s, then A(x;,) is a finite union of closed
intervals. Moreover, if |x,,| = |x,.1]| for all but finitely many n’s and A(x,,) is a finite
union of closed intervals, then |x,,| < Y.;>, |x;| for all but finitely many n’s.
In particular, for decreasing sequence (x,) the inequality x,, < )., x; for all n is
equivalent to A(x,,) being an interval.
One can see that A(x,,) is finite if and only if x,, = 0 for all but finite number of n’s, i.e.
(x,,) € coo. Kakeya conjectured that if (x,,) € €;\cyo, then A(x,,) is always a Cantor set C
or it is a finite union of intervals.
On the other hand, in 1970 Renyi in [266] repeated the results of Kakeya in terms of purely
atomic measures and he asked if the Cantor sets and finite unions of closed intervals are the
only possible sets being the ranges of finite measures. Geometric properties of achievement
sets of sequences and ranges of purely atomic finite measures are the same. This follows
from the simple observation, that the set of sums of subseries for the series }.n—; x, IS
isometric to the analogous set for the series of their absolute values Y.;°-; |x,|. Therefore a
positive answer for the Renyi’s question is equivalent to the Kakeya’s conjecture.
In 1980 Weinstein and Shapiro in [157] gave an example which showed that the Kakeya
conjecture is false. It follows from the references that they did not know the Renyi’s
problem. On the other hand, Ferens in [146] has given the example similar to that of
Weinstein and Shapiro, solving the problem of Renyi. In this case, We did not know the
conjecture of Kakeya.
In [147] Guthrie and Nymann gave a very simple example of a sequence whose
achievement set is not a finite union of closed intervals but it has a nonempty interior. They

2222 ) Moreover, they formulated the following:

used the sequence (t,) = (—,—,—,—,.
4°4° 16 16
Theorem (6.2.3)[253]: For any (x,,) € £1\cgo, the set A(x;,,) is one of the following types:
(i) a finite union of closed intervals,
(if)a Cantor set C,

(iliyhomeomorphicto the set T = A(t,,) = A (2,2,1—6,1—6,6—4,...).
Although their proof had a gap, the theorem is true and the correct proof was given by
Nymann and Saenz in [155]. Guthrie, Nymann and Saenz have observed that the set T is

homeomorphic to the set N described by the formula

N=10,1\| ] Unn

neN
where U,, denotes the union of 2™~1 open middle thirds which are removed from the interval

[0, 1] at the n-th step in the construction of the classic Cantor ternary set C. Such sets are
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called Cantorvals in the literature (to emphasize the similarity to the interval and to the
Cantor set simultaneously). It is known that a Cantorval is just a nonempty compact set in
R, that it is the closure of its interior and both endpoints of any nontrivial component are
accumulation points of its trivial components. Other topological characterizations of
Cantorvals can be found in [256] and [152].
All known examples of sequences whose achievement sets are Cantorvals belong to the
class of multigeometric sequences or are linear combinations of such sequences, see
[144],[254]. This class was deeply investigated in [149], [143], [246] and [158]. In
particular, the achievement sets of multigeometric series and similar sets obtained in more
general case are the attractors of affine iterated function systems, see [158]. More
information on achievement sets can be found in the surveys [256], [153] and [164].
It is almost obvious that any achievement set E of a summable sequence contains zero and
IS symmetric in the sense that there exists a number tsuch thatif t —x € Ethent +x € E
too. It is a natural question if every compact, perfect set with these properties is an
achievement set for some sequence. This question was posted by W. Kubi$ in £.6dz in 2015.
In particular, in [246] the authors ask if the Cantorval N is an achievement set of any
sequence.
The negative answer to the last question was recently given in [255]. Independently [257]
have showed that the Cantorval T for which the gaps are the intervals of the Guthrie-
Nymann-Cantorval T and vice-versa, is not an achievement set for any sequence.
On the other hand, T. Banakh in Lviv in 2016 asked if Cantor achievement sets are uniquely
defined, i. e. they are achievement sets of only one sequence.
We present gap lemmas and the center of distances notion which are useful tools. We show
that if the range of a mesure p is an interval, in other words p is interval filling, then there
is a measure v such that the sets {u(n):n € N} and {v(n): n € N} are pairwise disjoint. We
also give an example of a symmetric set which is a finite union of intervals but is not the
range of any measure. We give sufficient conditions on a Cantor set which is the range of
some measure to be the range of no other measure. We present also sufficient conditions for
a set R to be a Cantor set achieved by a unique measure . There is given a connection
between achievement sets of multigeometric sequences and IFS fractals. We show that the
Guthrie-Nymann Cantorval is uniquely achieved. We show that some Ferens fractals which
are symmetric Cantors or Cantorvals are not ranges of any measure. We briefly discus the
Guthrie-Nymann-Jones Cantorvals A(r) of one parameter r = 1, 2,... which generalize the
Guthrie-Nymann Cantorval. For some r, A(r) is not a range of any measure; for some r, A(r)
can be achieved in continuum many ways by measure range; A(1) is a Guthrie-Nymann
Cantorval which is uniquely achieved.

We assume that (x;,) is a nonincreasing summable sequence of positive real numbers
— the measures u({n}) of p-atoms. Denote (as in [147], [155], [256]):

co k
R = A(x,) = {Z e %, (&) € {0, 1}N}; F, = {z £.%,: (&) € {0, 1}k}.

n=1 n=1
So F; is a finite approximation of the range R. Let r.: = Y041 Xn. By @ gap in the range
R we understand any interval (a,b) such that a € R,b € R and (a,b) NR = @. The
following two lemmas can be found in [256]. The first is obvious.
Lemma (6.2.4)[253]: (First Gap Lemma) If x;,, > r;, then (1, x;) is a gap in the range R.
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The next observation is extracted from the proof of the crucial Lemma 4 of [155], where it
was formulated as not a quite correct claim (however the Lemma and the main result of
[155] are true). It can be found in [255] or in [256].
Lemma (6.2.5)[253]: (Second Gap Lemma) Let (a, b) be a gap in the range R, and let p be
defined by the formula p: = max{n: xn = b — a}. Then:

(i) b € E,,

@FE, = {7 < [P <...< £ Vand b = 7, thena = £7) + 1,
The next Lemma has recently been proved in [255]. Since it will be used several times and
we present it with the proof.

Lemma (6.2.6)[253]: (Third Gap Lemma) Suppose that (a, b) is a gap in the range R such
that for any gap (a,, b;) with b; < a, we have b — a > b; — a4 (in other words (a, b) is
the longest gap from the left). Then for some k € N we have b = x;,, and a = ry.

Proof. By the Second Gap Lemma b is a finite sum of terms of (x,,). Letb = x,, +...+x,
with x, =...=x, . Suppose that m = 2. Firstly observe that x, = b — a (indeed, if

Xn, < b—athen b —x, € (a,b)NR which is impossible). Of course x, < b and,
since (a, b) is a gap, x, < a.Any gap in the set X:= R N [0,x,, | is shorter than b — a.

On the other hand, beX+(b—x, ) and X+ (b—x, )CR, s0o (ab)n (X +

(b - xnm)) = @,and hence (a — b + x,,_, x,, ) isthe gap in X which gives a contradiction.

Thus m = 1 which means that b = x; for some k € N.

Since a € R, 1, = a. Suppose that 1, > a. Let m be the smallest number satisfying
k1 Xp > Q. Hence Y+l Xn > b,because (a, b) isagap. Letnow X:= R N [0, x,,].

Then the set X + Y-t k+1 Xn is included in E and it has all gaps shorter than b-a, which

gives a contradiction again.

In [257] the authors have introduced the notion of the center of distances of a metric space

X, defined as S(X) = {a:Vx € X3,¢xd(x,y) = a}. They especially consider the case
when X is the achievement set of a sequence (x,,) and observe the following.

Lemma (6.2.7)[253]: ([257]) {x,:n € N}  S(A(x,)) < A(xy,).

We present a short proof of this for the readers’ convenience.

Proof. Letn € N. Fix t € A(x,,). Then thereis E c Nwith t = ),,,cg X,,. If n € E, then
t—x, €A(x,). Ifn¢E, then t + x,, € A(x,,). Therefore for any t € A(x,) there is s €

A(x,) with |t — s| = x,, which means that x,, € S(A(x,)). Since 0 € A(x,,), then for any
t € S(A(x,)) by the definition of the center of distances there is s € A(x,,) with |s — 0] =
t. Since A(x,) consists of nonnegative real numbers, s = t and consequently S(A(xn)) c

A(xy).
[257] have given a variety of examples of sequences for which the equality S(X) = {x,} U

{0} holds. Some of them are geometric sequences (aq™)y=; With g < % a = 0. They also

proved that for the Guthrie-Nymann-Cantorval T = A(x,,), where x,n-1 = f—n,xZn =2 we

47’1
also get S(X) = {x,} U {0}. For more details see [147].
The previous Lemma can be completed as follows.
Lemma (6.2.8)[253]: If xp = xy4q == Xk42j— fOr some k and j, then jx, belongs to

S(A(xy)).
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Proof. Let us observe that if we replace the terms x, x4, ..., X+ -1 in the sequence (x,)
by one term jx,, then in the modified sequence we can obtain any number m,, where m =
1,2,...,k+2j—2 by summing up some of the new terms jx,Xyi1,..., Xk42j—2-
Consequently A(x,) equals the achievement set of the modified sequence. Therefore by
Lemma (6.2.7) we obtain that j,, € S(A(x,)).
We say that a purely atomic finite measure is interval filling if its range is an interval.
A sequence of values of such a measure on its atoms is called an interval filling sequence.
This notion was introduced in [258] and intensively studied f.e. in [259], [260]. By the
Kakeya Theorem, a nonincreasing, summable sequence (x,,) of positive numbers is interval
filling if and only if it is slowly convergent, i.e. if for every n the term x,, is no greater than
the rest ,, = Yp—n+1 Xk ([258] have rediscovered this result). It is almost obvious that we
cannot uniquely recover a sequence if its achievement set is an interval.
Example (6.2.9)[253]: [0,1] = A(x,) = A(y,), Where x_n = Zin,yZn_1 = 3% = y,,. One
can easily observe, that the both sequences (x,,) and (y,) are slowly convergent and
Yn=1 Xn = Xp=1 Yn = 1.
It is worth noticing that it follows from the above example that an algebraic sum of two
copies of the Cantor ternary set is an interval, what was proved by Steinhaus [261] (see
[262]) about three years later than Kakeya has published his results. It is also interesting that
the sets of values of (x,,) and (y,,) are not only different but even disjoint. We denote this
by (x,,) n (y,,) = @. However, with additional assumptions, the authors of [263], [264],
[265] have obtained some uniqueness results for interval filling finite measures. The
following theorem is an improvement of Example (6.2.9).
Theorem (6.2.10)[253]: For a given set R which is the range of some measure, the following
conditions are equivalent:
() Risan interval,
(if) there are two purely atomic measures p and v, both with range R, such that the p-
measures of atoms are all distinct from the v-measures of atoms,
(iii) for any purely atomic measure p with range R, there is another purely atomic measure
v whose values on atoms are distinct from those of ,
(iv) for any purely atomic measure p with range R, there is another purely atomic measure
v whose values on finite nonempty sets are distinct from those of .
Proof. Evidently (iv) = (iii) and (iii) = (ii).
(ii)=(i). Let us assume that R = A(x,) = A(y,,), where x,, = u({n}) and y,, = v({n}), and
suppose that R is not an interval. Then R has a gap. Let (a, b) be the longest gap in R (there
may be finitely many longest gaps and we choose the one from the left side). By Lemma
(6.2.6) there exist natural numbers k and | for which x;, = y; = b. Thus u({k}) = v({l})
which yields a contradiction with (ii).
(i)=(iv). Without loss of generality we may assume that the range R of p equals [0, 1]. Let
us construct inductively (y;,,) such that

(@) y, isany number in G%) \{u(F):F is finite};
(0) Vs >=(A -3y ¥

(©) Ynsr <5 A=y ¥1);
(d) Yniq # u(F) =Y, &y; forany finite F c N and any (g;)iL, € {0, 1}
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Since the set of forbidden numbers p(F) -, &y; for y,,, prescribed in (d) is
countable, the choice of such sequence (y,,) is possible.

n+1
We will show inductively that 1 — X7 y; < (%) . By (a) we have y; > S which implies

1-y, < % Using (b) and the inductive assumption we obtain
n+1 n n
1

n n
1 2
1—2 yi=1—z Vi = Yns1 <1 —2 yi—g(l—z yi)=§(1—2 Yi>
l:1 l:1 l: l:1 l:1
3 \3/ \3

Hence ).;-1 v, = 1. By (a) we have y; < % which implies Y7y yp=1—y; > % > ;.

Using () we obtain .y < (1 =2y ¥) = > X%ne1 Yi =3 Yne1 +5 Dionsa Yi- THUS
Yn < Dicnsq1 Yi forevery n. Therefore A(y,) = R.

Let v be a measure such that v({n}) = y,. Finally we will show that v(G) & {u(F):F is
finite and nonempty} for every nonempty G ¢ N. If maxG = 1, then ¢ = {1} and v(G) =
y;. By (a) we obtain that v(G) & {u(F): F is finite}. Assume now that that maxG =n+ 1
for some n € N. Then v(G) = yn.1 + 2=, &y; for some (&)L, € {0,1}". By (d) we
obtain that v(G) & {u(F): F is finite} as well.

Recall that if the inequality x,, < }.72,,., x; holds for all n > k, then A(x;,,) is a finite union
of closed intervals. A(x_n) = {3, ex;: (e, € {0, 13} + A((x)n>k)- SO, We have:
Proposition (6.2.11)[253]: The range R of a measure is a finite union of intervals if and
only if there exist two measures pu and v with R =rng(u) = rng(v) and the set
{u({n}):n € N} n {v({n}):n € N} is finite.

Proof. It follows from Lemma (6.2.6) and Theorem (6.2.10).

We already know that if the range R of a measure is a finite union of intervals, then the
measure pu with R = rng(u) is not unique. Let us consider the opposite question — for which
sets X being a finite union of intervals is there a measure with rng(u) = X? As it was
mentioned the range rng(p) of a measure p, or achievement set A(x,,), contains zero and is

symmetric. % u(N) is a point of reflection of rg(n). To see it, fix E € N and note that
H(E) + u(N\E) = u(N).

Note that if achievement set is a union of two closed intervals, then both of them have the
same length by symmetry. It is clear that A(x,,) = [0,a] U [b, b + a], where b > a, holds

for x; = b and x,,,, = ;in for n € N, so we may obtain any union of two closed intervals

having the same length as an achievement set. Moreover (a, b) is the only gap, so by Lemma
(6.2.6) we get y, = b for any (y,,) such that A(y,,) = [0,a] U [b, b + a]. The case become
more complicated when we consider the union of three closed intervals, that is [0,a] U
[b,b+c]U[2b—a+c,2b+c] — this is a general form of symmetric union of three
disjoint intervals which contains zero. The question is whether there exists a sequence (x,,)
such that A(x,,) = [0,a] U [b,b+ c]VU [2b —a + ¢, 2b + c]. It turns out that some sets of
the form [0,a] U [b,b + c] U [2b — a + ¢, 2b + c] are not ranges of measures, while some
others are. We are far from the full characterization of finite unions of intervals (or even
unions of three intervals) which are ranges of measures, but we present some partial results
which suggest that such characterization will be complicated.

n+1
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Proposition (6.2.12)[253]: If 2a < ¢ < 2b,then[0,a] U [b,b+c] U [2b—a+c,2b +
c] is not a range of purely atomic measure.

Proof. Suppose that A(x,,) = [0,a] U [b,b +c]U [2b — a + ¢,2b + c] for some (x,). By
Lemma (6.2.6) there exists [ € N such that x; = b. By Lemma (6.2.7) we obtain b €
S(A(xy)). Let x:=b + % Then x € A(x,,), and consequently x + b € A(x,) or x —b €

A(xn). But x +b=2b+-€ (b+c2b—a+c)and x — b = - € (a,b), which are the
gaps of A(x,,). A contradiction.

Proposition (6.2.13)[253]: If a < ¢ < 2a, then there exists a sequence (x,) such that
A(x,) =10,alU [b,b+c]U [2b—a+c,2b +c].

Proof. Define x; =b+c—a,x, =b,xp4p = ;in for n € N. It is clear that A(x,) =
[0,a]U [b,b+c]VU [2b—a+c,2b+ c].

Proposition (6.2.14)[253]: If b = 2a and ¢ = 2b, then there exists a sequence (x,,) such
that A(x,,)) =[0,a] U [b,b+c] U [2b—a+c,2b+c].

Proof. Let ¢ = 2b. Then there exist unique k = 2 and ¢ € [0,b) such that c=kb+c.

Definex1=3a+§,x2=2a+§,xn=2aforn€{3,. k+1}L,x, = —— pr ——forn>k +
2 (or any other slowly con\;irgent series with sum a). Thus
AQty) = {Z et ()17 € (0,141 4+ A((Xndnaks2)
k-1 =1
U Zma 2a+ + 2ma, 3a+ > + 2ma,5a + c + Zma} [0, a].
m=0

Hence

A(x,) =[0,a] U [2a,c + 2ka] U [a + ¢ + 2ka, 2a + ¢ + 2ka]

=[0,a]U[b,b+c]U[2b—a+c,2b+c].

Now we present a characterization of finite unions of intervals which are ranges of purely
atomic measures. However, this characterization will not be very informative. It is hard to
prove using it that some finite union of intervals is not a range of any measure.
Proposition (6.2.15)[253]: Let X be a finite union of intervals. Then X is a range of a finite
measure if and only if there is a measure v on a finite set such that X = rng v + [0, a] for
some a > 0.
Proof. Assume that X = rng(u) for some measure p on N. Let x,, = u({n}). Then there is
m € N such that x,, < r,, for every n > m. Hence the achievement set A((x,,);>m) IS @n
interval, say [0, a]. Let v(n) = u({n}) for n < m. Then v is a finite measure defined on
{1,2,...,m — 1}. Thus

o} m-—1 (o]
rmg(u) = {Z EnXni&n =0, 1} = {z EnXn + z EnXni&n =0, 1}

n=1 n=1

= {Z EnXpi€n =0, 1} {z EnXp:€n =0, 1}— rng(v) + [0, al.

n=1 n=m

On the other hand if X =rng(v) + [0,a] for some measure v on a finite set F =
{1,2,...,n}. Let A be a measure on {n+ 1,n+ 2,...} with rng(41) = [0, a]. Thus the
measure p definedas u(E) =v(E n {1,2,....,n}) + A(E n {n + 1,n + 2,...}) hasthe
range equal to X.
Let us start from the following example.
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Example (6.2.16)[253]: Let R be the range of the measure from Example (6.2.1), that is
u({n}) = 3% Observe that the numbers x,, = 3% are the right ends of the longest gaps of R

from the left. Suppose that A(y,,) = R for some sequence (y,,) with y; =y, = ---. Then
{x,:n € N} c {y,,:n € N}. Observethat ), x, = 1,50y, = x, foreveryn € N. Hence
the ternary Cantor set is obtained in the unique way as achievement set of nonincreasing
sequence by the sequence (x;,).
Now, let us consider the question: which sets R are ranges of the uniquely defined measures
w. More precisely, for which sets R = rng(u) for some measure p, the equality R = rng(v)
for some measure v implies that u = v. A sequence from Example (6.2.16) satisfies x,, =
21, foreachn € N and A(x,,) is the ternary Cantor set, which is obtained in the unique way.
Simple observation shows that the uniqueness of a sequence (x,) generating the
achievement set A(x,,) can be obtained as a direct consequence of Lemma (6.2.6) if x,, >
21, for each n € N. The next theorem improves that result.
Theorem (6.2.17)[253]: Assume that u({n}) > 2u({n + 1}) for n € N. If rng(u) =
rng(v) then u = v.
Proof. Fix m € N. As usually x,, = u({m}). Observe that x,, > r,, where n, =
Ykem+1 Xk Indeed

Xm > 2Xmi1 > Xmi1 T 2Xm42 > Xpg1 T X T 2X43 > oo
Hence x,, > 1, — "ok + Xmax for each k € N. Since (1, — "ok + Xmar)rer IS @
decreasing sequence tending to r;,, we get x,,, > 1;,.
By Lemma (6.2.4) we obtain that (7;,, x,,,) N A(x,,) = @. Now we will show that (7;,,, x,,,)
Is the longest gap from the left in A(x,,). Indeed for each m € N we have

[00)

Xm —Tm = Xm — Z Xk > 2Xm41 — 2 Xk = Xm+1 — 2 Xk

k=m+1 k=m+1 k=m+2
= Xm+1 ~ Tm+1-

Hence no gap of the form (7, x;) is longer than (1, x,,,) for m < k. Suppose now that (a,
b) is the longest gap from the leftand b ¢ {x,,: n € N}. However by Lemma (6.2.6) the point
b should be a term of any sequence (y,) for which A(x,) = A(y,). This yields a
contradiction.

Finally by Lemma (6.2.6) we get that if A(y,,) = A(x,) then (y,,) < (x,,). By comparing
sums of the series Yo—; x, and Y.o—, y, We get y,, = x,,.

Example (6.2.18)[253]: All Cantor sets of the form A(g™) for g < % are uniquely defined.

Theorem (6.2.17) can be used to obtain uniquely defined Cantor sets with positive
Lebesgue measure.

Example (6.2.19)[253]: Let g € (0, %) and x,, = zin + g™ for n € N. Then a sequence (x;,)
satisfies a condition given in Theorem (6.2.17), so the set A(x,,) is the achievement set of
the only one sequence. Moreover the Lebesgue measure of the set A(x,,) can be calculated
n+1
by the formula given in [256], namely A(A(x,)) = lim 2"7, = lim 2" (zin +2 ) = 1.
n—-oo

n—oo 1-q

Hence we constructed a family of uniquely defined Cantors with positive Lebesgue measure.
The next example shows that the assumption x,, > 2x,,, forn € N in Theorem (6.2.17) is
optimal in some sense. One may think that if we assume weaker condition that a series is
quickly convergent, in symbols x,, > r;,, for n € N, then the assertion of Theorem (6.2.17)
Is still true. However it is not, even when we additionally assume that x,, > 2x,,,, forn €
N.
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Example (6.2.20)[253]: Let us consider the multigeometric sequence defined as x,,_; =
Sin,xZn = Sin for each n € N. Observe that x,, > r;,, and x,, = 2x,,,, for each n € N, so the
series )..—1 X, IS quickly convergent, but the condition x,, > 2x,,,, is satisfied only for
even n’s. Define y3,,_5 = Y3p-1 = V3, = Sin Then we have A(x,,) = A(y,).

Theorem (6.2.21)[253]: Assume that R = rng(u) and {(a,, b,): n € N} is a sequence of
gaps in R such that
(i) (aq, by) isthe longest gap in R and any other gap in R is shorter;
(i) |by41 — Any1l < |b, — a,| foreveryn € N;
(iii) (@p41, bp41) is the longest gap in R N [0, a,] and any other gap in R N [0,a,] is
shorter.
Then u({n}) = b,,. Moreover, R is a Cantor set.
Proof. Since (a4, b;) is the only longest gap in R, then the middle point of (a4, b,) equals

%y(N). Thus b; > %y(N). By Lemma (6.2.6) the number b, is equal to some u({n}) and

a; = u(N\{1,2,....,n}). Since only one u({n}) may be greater than %u(N), then b, =

u({1}) and a; = u(N\{1}). Consider a measure u, defined on N\{1} given by u,(E) =
u(E) for E < N\{1}. Then rng(u;) = R n[0,a,]. Then (a,, b,) is the only longest gap in
rng(u, ). Repeating the same argument we obtain that b, = u; ({2}) = u({2}). Proceeding
inductively we obtain that u({n}) = b,.
The "moreover" part of the assertion follows from the inequality b,, > Y.,,,~,, b,, for every
n and from Kakeya’s Theorem.
Note that the existence of a sequence {(a,, b,):n € N} of gaps in R fulfilling conditions
(i)—(iii) from the Theorem (6.2.21) is equivalent to the following statement: between every
two gaps of the same length there is a longer gap.
Theorem (6.2.22)[253]: Assume that R is a compact subset of the real line with minR =
0,a, = maxR > 0 and {(a,, b,):n € N} is a sequence of gaps in R such that

(i) |bps1 — sl < |b, — a,| foreveryn € N;

(ii)(a,41, by41) is the longest gap in R N [0,a,] and any other gap in R N [0,a,] is

shorter for every n > 0;
(iii)%an is a point of reflection of R N [0, a,,] for every n > 0.

Then R = rng(u) with u({n}) = b,,. Moreover, R is a Cantor set.
Proof. Since (a4, by) is the only longest gap in R and a, /2 is the point of reflection of R,
then a, /2 is the middle point of (a4, b,). Similarly (a,, b,) is the only longest gap in R N
[0,a,] and a,/2 is the point of reflection of R N [0, a,]. Thus a; /2 is the middle point of
(a,, by). Since a,/2 is the point of reflection of R, then (b, + a,,b; + b,) isa gap in R.
Note that |a, — (by + b,)| = a,.
The same as in the previous two steps one can show that a, /2 is the middle point of (a3, bs)
and since a, /2 is the point of reflection of R, then (b, + b, + a3, b; + b, + b3) isagap in
R. Note that |ay — (b; + b, + b3)| = a5. Since a,, = 0, then proceeding inductively we
obtain that )7, b, = ap = maxR.
Let R' = A(b,). Note that b,, > a,, = X.;u>n bm. Therefore R’ is a Cantor set. By Lemma
(6.2.5) the gaps in R’ are of the form (an + f](fif](")) where E, = {0 =M < £ ...
< f,,(l”) (n)}. Since b; > b, > -+, then there are no elements of A(b,) in (an +
L &by, by + X1 gb;) where g = 0,1, which shows that these intervals are gaps in

214



R'. Clearly any gap of the length |b,, — a,,| must be of the form (an + YL gb;, by +
-t Sibi) for some ¢; = 0,1. Therefore the set of all gaps in R’ is the following
{(an + X158 &by, by + X1 &b;):n € N, g = 0,1}. Now we will prove inductively that
every gap of R’ is also a gap of R. Clearly R has exactly one gap (a,, b;) of the length
|b; — a,|. Suppose that we have already proved that R has 2"~ gaps of the length |bn-an|
of the form (a, + = &by, by + X151 &b;) forg; = 0,1,

Since a,,/2 is the middle point of (a,1, bn+1), then a, = b,y1 + ap4q. Since a,,_,/2 is
the point of reflection of [0,a,,_;] N R, then (a,,;1, b,,, b,41 + b,) iSagapin[0,a,_,] N
R. Now, since a,,_, /2 is the point of reflection of [0, a,,_,] N R, then (a,;1 + by—_1, by +
b,_,) and (ay4+q + b, + by,_1,by41 + b, + b,,_;) are gap in [0,a,_,] N R. By a simple
induction we obtain that each interval of the form (a, + Y= &by, b, + 2= &b;) for
g =0,1lisagapinR.

Note that R’ is the closure of the endpoints of its gaps. These endpoints belong also to R.
Since R is compact, then R’ < R. This shows that R has no other gaps than those described
above (each such gap would be a gap of R’ as well). Since

n-1 n-1
R' =0, ao]\U {(an + z ib;, b, + z eibi> :neN,g =0, 1},
i=1 i=1

then R c R’, and consequently R = R' = A(b,,).
Theorem (6.2.23)[253]: Assume that R = rng(u) and there is € > 0 such that between any
two gaps of the same length smaller than ¢ there is a longer gap in R. Then R is a Cantor set.
Proof. There exists a sequence of gaps {(a,,, b,,): n € N} of R such that

(i) (a4, by) is the longest gap from the left of the length b; — a, < ¢;

(ii)|bpy1 — Apy1l < |b, — a,| for every n € N;

(iii) (a,.41, b+1) 1s the longest gap in R N [0, a,] and any other gap in R N [0, a,] is

shorter for every n € N.
By Lemma (6.2.6) b; = u({m}) and a; = u({m+1,m+2,...}). Let F,, = {,u(E):E C
{1,2,..., m}}. Thenrng(u) = E,, + rng(u,) where u, isameasureon{m + 1,m + 2,...}
given by u,(E) = u(E) for Ec {m+ 1,m + 2,...}. By Theorem (6.2.21) rng(u,) is a
Cantor set. Thus rng(u) is a Cantor set as well as a union of finitely many shifts of a Cantor
set rng(u,).
Immediately by Theorem (6.2.23) we obtain the necessary condition for a measure range to
be a Cantorval.
Corollary (6.2.24)[253]: If rng(w) is a Cantorval, then there are infinitely many pairs of
gaps in rng(u) of the same length which are not separated by a longer gap.
Let us consider the sequences of the form
Xkm+1 = quk»ka+2 = kzqkr---»ka+m = kmqk

for k =0,1,2,....Such a sequence we call multigeometric of the rank m and denote by
(ky, ko, ..., km; q). As we have mentioned in the Introduction, almost all known examples
of sequences whose achievement sets are Cantorvals belong to this class, see [158], [144],
[254], [143] and [149]. Let us observe that the Guthrie-Nymann Cantorval T (described in

Theorem (6.2.3)) is an achievement set of the bigeometric sequence G,%;%)=
(22%5—6 e ) It is not difficult to see that the achievement set A(k.,..., k,,; q) is equal

to the set O, 6,q" 1:(6,) €ZV} where ¥ =", &k;:(g) €{0,1}™}.
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Consequently, A(k,,..., k.; q@) is an attractor for the iterated function system, in short IFS,
consisting of the affine functions of the form f,(x) = qx + 6 where § € X, and therefore it
is the unique set A = A(Z2, q) satisfying the equality A = X~ + qA. Not all attractors of affine
IFS’s are achievement sets of sequences (or ranges of purely atomic measures). Let us
observe that if A = A(Z, q) = A(x,,) for some sequence (x,,) of positive terms, then 0 € A

and %Z;‘{’zl X, 1S a point of reflection of A. Hence 0 € X and X is symmetric as well. It turns

out that these two conditions for X are not sufficient. Recently [255] showed that the
Cantorval N related to the construction of the ternary Cantor set is not an achievement set
of any sequence but it is an attractor of some affine IFS.

We use the multigeometric sequences to show that there are Cantor sets as well as
Cantorvals which can be defined by continuum many different sequences.

Example (6.2.25)[253]: Consider the Jones-Velleman sequence (x,,) = (4,3, 2; q), defined
as follows x3,_, = 4q™" 1, x3,1 = 3q¢" 1,x3, = 2¢™ ! and its modification (y,) =
(3,2,2,2; q), defined as follows v,,_3 = 3¢™" 1, x40-5 = 2q™ 2, X4pq = 2q™ L, x4y, =
2q™ 1, where g € (0,1). For more details see [149], where the author considered among
others the sequence (x,) with g = g Let us observe that the given modification does not

change the achievement set and we have A(x,) = A(y,) (compare the proof of Lemma

(6.2.8)). We define a family of sequences F as a family of all sequences (z,) which are

constructed as follows:

(@) ineach step we define three or four succeeding elements of (z,,)

(b) inn-thstepwedefinez, ,; =x3p_34;fori €{1,2,3}orz, i = yan_ssifOri €
{1,2,3,4} if we have decided to define three or four elements respectively, where
k.,_, is the number of defined elements in the first n — 1 steps, k, = 0

Then A(z,) = A(x,,) for each sequence (z,,) which belongs to F. Moreover, if we have two

sequences (s,), (w,) € F then w,, = s,, for each n € N if and only if in each step of

constructions of (s,) and (w,) we define the same numbers of elements. Hence the

cardinality of F is continuum. We will call the sequences belonging to F as multigeometric-

like. It is known that the achievement set A(x,,) for some q can be an interval (q > %) a

Cantor set with Lebesgue measure zero (q < %) or a Cantorval (q € Ei)) For more

details see [149] and [143].

For the next theorem the fact, proved by Bielas, Plewik and Walczynska in [257], that the
Guthrie-Nymann— Cantorval’s center of distances consists exactly of the terms of its
generating sequence and zero will be crucial.

Theorem (6.2.26)[253]: Let X = A(x,), Where X,y = =, %5 = — . If X = A(y,) and
Y1 =Y, =y3 =, theny, = x,.

Proof. First note that {y,,:n € N} c {x,,;:n € N}. Take any k € N. By Lemma (6.2.7) we
obtain that y, € S(A(y,)) = S(A(x,)). By the result of Bielas, Plewik and Walczyfiska
mentioned above, S(A(x,)) = {x,:n € N} U {0}. Thus y, € {x,:n € N}.

Now we will prove that the set {y,: € N} of all terms of (y,,) contains every even term of
the basic sequence (x,). Let m € N. Observe that me > er Indeed

5 2
Tam = Z Z %Jr Z 4n_ 3 4m+1 =3 gm Sgm = Yom

n=2m+1 n=m+1 n=m+1

216



Therefore the interval (r,,,, x2,,) iSagap in X and by Lemma (6.2.6) we obtain that x,,, €
{y,:n € N}.

We have already proved that {x,,:n € N} c {y,;:n € N} c {x,;:n € N}. Since the
sequence (x;,,) is one-to-one and S(X) = {x,:n € N} U {0}, then by Lemma (6.2.8) none
term of (y,,) can be repeated more than two times. However, if {y,;: n € N} # {x,,;: n € N},
then some terms of (y,,) must be repeated. This easily follows from the equality }o—, x,, =
Ln=1 Yn-

Now we are ready to prove the assertion. Let us start from the first step of the inductive
prove. Since (y,,) is non-increasing, then y; equals x; or x, (all even terms of (x,) are

among terms of (y,,)). Suppose that y; # x; = %. Since every term of (y,,) can be repeated
at most two times, we have the following inequality

- 11
2 ynSZ'E .'X.'n=?.
n=2

n:
1—61 —g % which means that to obtain (y,) from the sequence

. . 1 .
(%9, X9, X3, X3, X4, X4,...) We need to remove elements which sum equals precisely = Since

=

5
Moreover 3= max X and

%and 136 are greater than % theny, =y, = % Y3 =Yy = 136 . Note that yx = x, = %because
we have to use all even terms of (x,,). Observe that y, +# % Indeed, if y, = %then Y3+ ys +
Ve = é € (%;) but (1, x,) = (15—2%) Is a gap in X. Moreover y, # x5 = 6—1. Indeed, if
Ve = % theny; +y, + yo = Z—Z € (1—52%) It means that we need to remove one element x,

and two elements x5 from the sequence (x5, x5, X3, X3, X4, X4, ... ). BuUt

pop 1,6 14 42 32 1
o TeT ST e T 64 1927 192 6
which yields a contradiction. Thus y; = x;.

Now assume that y; = x; foreachi € {1,...,2m — 1} for some m € N. We will show that
Yom = Xzm ANA Yomy1 = Xomer. If Yom # Xom then Yo, = Xom_y and Yomyq = Xom.
Hence ML e = Y2 Xt X1 > Aty Xt Tom = g which  brings a
contradiction. Therefore y,,, = x,,,,. Suppose that y + (2m + 1) # x,,41. Observe that
(A4 xp)meom+1) = A(x;,). Moreover, if A(x,) = A(y,) and y; = x; for each i€
{1; T Zm} then A((xn)??=2m+1) = A((yn)??=2m+1)- Thus A(xn) = 4‘mA((yn)%)=2m+1) =
A((A™y, ) m=2m+1)- BY the first step of induction we obtain that 4™y,,,,,1 = x; = %‘ Thus

Yom+1 = X1/4™ = x,,,,4+1. This ends the inductive proof.

Let us consider A = A(Z; q) = {352, x,q" 1:(x,) € 2N}, where X is a finite set.
We have X + gqA = A which means that A is the attractor of the affine IFS system {f; },cx,
where f;(x) = qx + o. We also call the set A a fractal - it is more general than the theory
of multigeometric sequences, because X does not have to be the achievement set of any finite
sequence. The important class of attractors are so called Ferens fractals for which X =

{0,p,p+1,....,p+71,2p+r}forsome p,r € N,p = 2. It is known that for g Z#the

set A(X; q) is an interval and for g < 3,20% the set A(Z; q) is not a union of closed intervals,

L= % it is a null Cantor set, see [158], [246] and [143].

in particular for g < T
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Theorem (6.2.27)[253]: Let p € N,p > 2. The Ferens fractal A = A(X; q) for r = p, that
is 2={0,p,p+1,...,p+7r2p+7r}={0,p,p+1,...,2p,3p} and q <i cannot be
obtained as an achievement set for any sequence.

Proof. Note that (a, b) = (i’%z,p) Is the longest gap in A from the left. By Lemma (6.2.6)
and the properties of the center of distances we get p € S(4). We consider the gaps (a, b)
and (2p + a,2p + b). Firstly assume that g € (0, fp—__ll) , Which is equivalenttoa < p — 1.
Fix x=2p—1€A. Then x+p=3p—-1€2p+a2p+b) and x—p=p—1E€
(a,b). Hence p ¢ S(A). Now assume that g € (— —) Thenp — 1 < a < p.Since (a, b)
is the longest gap in AN [0,b) onecanfindy € (1+a—b,1)NA. Fixx =2p—1+y€
A Thenx+p=3p—1+yand2p+a=3p+a—-b<3p—-1+y<3p=2p+b,s0
x+p € (2p+a,2p+b). Analogously we prove x —p € (a,b). Hence p € S(A).

If g = fp—__ll then (a,b) = (p — 1,p) and we take any z € (0,1) N A and then define x =
2p—14+z. Thusx —p € (a,b) and x + p € (2p + a,2p + b). The proof is finished.

On the other hand there exist p € N,p = 2 and r # p such that the Ferens fractal A =
A(Z; @) withy ={0,p,p+ 1,...,p + 1, 2p + r}is obtained as an achievement set for each

q € (0,1). Let us consider the following examples.
Example (6.2.28)[253]: Let us consider the Ferens fractal A =A(2; q) for X =

{0, 2, 3,4, 6}. It is known that for g > % the set A is the interval. By Theorem (6.2.27) the

set Aforg < % cannot be obtained as an achievement set for any sequence.

Example (6.2.29)[253]: Let ¥ ={0,2,3,5}. Here we have r =1<2 =p. Then A =
A(x,,) for the multigeometric sequence x,,+1 = 39", Xop4, = 2q" forn =10,1,2,.... In

particular for g = % we get rescaled by 4 Guthrie and Nymann’s Cantorval. It is also the

Ferens fractal for=2,r =1,q = %. Note that for each p € N and r = 1 we obtain a Ferens

fractal, which can be obtained by the multigeometric sequence.

Example (6.2.30)[253]: Let X ={0,2,3,4,5,7}. Here we have r =3 > 2 = p. Then A =
A(x,) for a multigeometric sequence xs,+1 = 39", X3p42 = 29", X3n43 = 2q™ for n =
0,12,...

So, there are Ferens fractals which are also achievement sets. The next theorem gives the
example of large class of such fractals and shows that for each natural p > 2 we can find r
such that the Ferens fractal A = A(Z; q) is also an achievement set. We will base our
calculation on a simple observation that if X is the achievement set of a finite sequence
{a4,...,a;} then A(X; q) can be obtained by the multigeometric sequence (x,,) defined as
follows xy,.; = ajq" forn e Nu {0} andj € {1,..., k}.

2_
Lemma (6.2.31)[253]: Let p€N,p=2r=="2 Then X={0,p,p+1,...,p+

2_ 2
r,2p+71}= {0, p,p+1,..., 3p2 iy M} is the set of subsums for some finite sequence.

Proof. Define a; = p,a; = (p +j — 2) forj € {2,...,p + 1}. Then Z = A((a,)21)).
As a result we immediately obtain:
Theorem (6.2.32)[253]: Let p € N,p > 2 q € (0,1). The Ferens fractal A = A(X; q) for

2_ —
=P (s0 5= {0, pp+1..,— “p o +p}) is an achievement set for some
multigeometric sequence.
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Proof. Define xgpi1n+1 =09 Xprn+j = @ +j—2)q" for neNu{0},j€
{2,...,p+ 1}. Then A = A(x,,).
2_
Lemma (6.2.33)[253]: Letp € N,p = 2,7 2 22 Then X = {0,p,p+ 1,...,p +7,2p +
r} is the set of subsums for some finite sequence.
2_
Proof. Let us first consider r = 3pr Definea; = (p+j — 1) forj € {1,...,p + 1}. Then

2_
3 = A((an)}%1). Let now consider r > 22 7 = 3p L + k, where k =mp +r form €

Nu{0},7€{0,1,...,p — 1}. Define a; = pforje{l L2+mla=(p+j—m-—2)
for je{3+m,....2+m+k}a=(p+j—m-3) for je3+m+k,....2+m+
p}. Then & = A((a,)2IT*P).

Corollary (6.2.34)[253]: Letp € N,p = 2,q € (0,1). The Ferens fractal A = A(X; q) for
r > 22272 s an achievement set for some multigeometric sequence.

Lemma (6.2.35)[253]: Let p € N,p > 3,7 € (1, 37”22‘3”). Then £ ={0,p,p+1,....,p+

r,2p + r}is not the set of subsums for any finite sequence.

Proof. Let r = p. Assume that 2~ = A(x,,) for some finite sequence (x,). Since p is the
smallest non-zero element, we know that the smallest sum of two or more elements equals
2p. We know that p + r > 2p. Thereforewe get {p,p + 1,...,2p — 1} < (x,). Since 2p €
2 we have to add the another term x,, equal to 2p or one more term x,, equal to p. Thus its
sum is an element of X, but p+(@+D+...+2p=2p+p+(@+D+...2p—-1=
3p%+p

= 2p T it 2p +r =max2X. We get contraditions for both cases. Let r €

2
1,...,p). Smce pp+Lp+2€X and p+2<2p we get p,p+1,p+2E€(x,).
Therefore we have 3p + 3 € X, but max2 = 2p +r < 3p < 3p + 3, which gives us a
contradition.

Lemma (6.236)[253]: Let peN,p =27 € (=) Then x={0,pp+

2
1,...,p +1,2p + r}isnot the set of subsums for any finite sequence.

— 1). Hence 2p € X. We can

obtain it by adding 2p or one more p to our terms. If we add 2p then p+
p+D+...4+@2p—1)+2p =3p2+3p 2> 2p+r, which yields a contradition. So let

us consider (x_n) = {p,p,p +1,...,2p — 1}. We have Y x, = 3 +p E(p+r2p+r).

Since ), x, < 2p + r we have to add next element to the sequence (xn) but we cannot add
an element which is smaller than p. Therefore ). x, +p > 2p + r, which yields a
contradition.
Corollary (6.2.37)[253]: Let p,r € N,q be a positive real number and 2~ = {0,p,p +
1,...,p+712p+r}
(i) Ifp=>3,qg€ (O v )and re (1 pzz 3”) U (3p22_3p,3p22_p), then the Ferens fractal
A= A(Z q) is not an achievement set for the multigeometric sequence

(Ky,o. s @) With (512, eik: (2)) € {0,137} = 2.
(i)lfp=2,q¢€ (O v ) andr € (3p 2_3p,3p2 p), then the Ferens fractal A = A(Z; q)
is not an achievement set for the multigeometric sequence (ky,...,k,;q) with

22, gki(g) €{0,1}"} =2
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We will deal with Ferens fractals of the type A(r) = A(X,q) for ¥ ={0,2,3,...,r +

2,r+4}and = | = ﬁ Itis known that sets A(r) for r = 1, 2,. .. are Cantorvals. It follows

from Kenyon Theorem, (see [153] and [164]) which states that if {n mod r:n € X} = Z
then A(2,1/r) has nonempty interior (it can be also deduced from proofs presented in
[143]).
Note that
(i) for r = 1 the set A(r) is the rescaled Guthrie—-Nymann Cantorval which, by Theorem
(6.2.26) has the unique representation as an achievement set.

(if)For r = 2m — 1 the set A(r) equals to A(x,,) where (x,,) = <3, 2,. 2$) Ifr >
m

5, the Cantorval A(r) has continuum many representations as an achievement set of
multigeometric-like series with the same set X — see Example (6.2.25).

(i) By Theorem (6.2.27) the set A(r) is not an achievement set (or a range of any measure)
forr = 2.

(iv) For r=4 we know that A(r) is not an achievement set for any multigeometric series
generating the same set X.

r+3

(V)For r = 2m > 6 the set A(r) equals to A(x,) where (x,) = (3, 3,2,...,2 i)
m—2
Using the method from Example (6.2.25) for r>10 (or m — 2 = 3) we observe that
the Cantorval A(r) has continuum many representations as an achievement set of
multigeometric-like series with the same set X.
Using methods from [257] one can get some information on geometry and the center of
distances for Cantorvals A(r):

(i) A(r) < [0, 2

r+2
(i1) The interval [2(T+3) r+ 3] Is the longest component of A(r).
(ii)| 0,22 n 4@ = - AW.

(iv) (— 2) is the longest gap from the left and it has the same length as the longest

component of [0 Wzm] N A(r).

2(r+3) (r+4)(r+3) _ (r+4)(r+3)7] .
W7 +3+(A0) n 0,225 Ju (4@ n [r + 3,0 = [ 4 3T] it
follows from the fact that the gaps of the first summand in the above union are exactly

in the same places as the copmonents of the second one and vice versa.
In Example (6.2.38) we present the idea of proving (i)—(v) based on an appropriate picture.

Note that if t € (Z(r:;),r:g r+3) then ¢ € S(A(r)). Recall that 2(r+3) is a left endpoint
of the longest component of A(r) and ﬁ — E is a half of its Iength Slmllarly we have for

every longest component of A(r) from the Ieft. Therefore if ; < 5 — ;, that is if r > 4,

then S(A(r)) contains a sequence of intervals.

This observation suggests that for » > 4 one can look for a multigeometric series (x;,) with
X'+ X and A(x;) = A(x,).

Example (6.2.38)[253]: At Figure 1 we present a GNJ Cantorval A:= A(6), i.e. X =
{0,2,3,...,8,10}and q = %; there are also nine its copies 7 + %A,r € X. The first and the
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last copies, éA and 10 + gA, are equal to the left An [O, 1%] and the right An [10, 11%]
parts of the original Cantorval A, respectively. Other copies cover the rest of A; note that
2+ gA and 3 + gA cover the interval [3, 3 g] since the components interiors of (2 + éA) N

[3, 3 %] are precisely gaps of (3 + gA) N [3, 3 g] and vice versa.

F+——t A | 4 bt
02z 112 2 g 10p2 1412
: 5 F—*1 F+—+A F——F ° i

1

F—tf

= 772 Bg2 9 :;_

Flgure (1)[253]
On the other hand A(6) satisfies also the equality A=2’+%A for X' =

{0,2,25,23,33,45,43,49,53,53,59,69,73,79,8,10}. Let us observe that 2’ is an
8 8 8 8 8 8 8 8 8 8 8 8

achievement set for the finite sequence {3§,2§,2§,2} and hence A(6) =

A (3%, 23, 22, 2;%) as well as A(6) =A (3, 3, 2,2;%). For the clarity and readers’
convenience we present the next picture - Figure 2.

FA—+FA I F F+——+
02 112 2292 992 1002 1h12
' ' FH———A F+——+A FA——" : ' '
292 332 4244 5254 GET 7688
FA—A 0 Fr——+H4 ° F+—A
223 3232 535% 6363 788 889
FH—rtA H—H I--I—H
383% 44 556 657 882 992

Figure (2)[253]
Example (6.2.39)[253]: In [257] the authors found a center of distances of the boundary

Jd— A(l) of the Guthrie-Nymann Cantorval - A(1). The set 6% Is a Cantor set arisen from

Q by removing all interiors of its nontrivial components. It turns out that S (6 %) =

{1 e 4—2 } Therefore if 6@ = A(y,) for some sequence (y,), then {y,:n € N} c
{1 i 412,...} The authors, according to this observatlon claimed that a— is not an

achievement set for any sequence, since 1 + + =+ < == max— However, they did
not observe that terms of (y,,) may repeat. By Lemma (6. 2 8) none of the terms may repeat
more than twice, since the doubling of such term would be in S (6 AS)) But 1 + +7 4+

412 + 412 o= g It turns out that for any positive integer r

aA(r)_A(1 1 1 1 1 )
r+3 “T\Ur+3r+3'(r+3)2’(r+3)2"/
Indeed, by geometric properties of A(r) it follows that
()
0, =C1 +C 1.
[ 2+7’ +3 773 713
Thus
A(r)
d =<C1 +C1>U<1+C1 +C1>.
r+3 T+3 743 743 743
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Section (6.3): The Lebesgue Measure

The investigation of topological properties of a set of subsums of absolutely
convergent series Y x,, (i.e. the set of numbers which are sums of subsequences of (x,,)) has
been initiated over one hundred years ago by Soichi Kakeya (see [150]). Many years later,
J.A. Guthrie and J.E. Nymann (see [147]) presented the full topological classification of the
sets of subsums. They proved that a set of subsums must be (up to a homeomorphism) either
a finite set or the union of a finite family of closed intervals or a Cantor set or a set C U
Un=1 G,,,—1, Where C is the classic Cantor ternary set and G, denotes the union of all open
intervals removed from [0, 1] in the kth step of the standard construction. The last sets are
called M-Cantorvals (some characterization of this set can be found in [152], [251]). In
[146], [147], [149] and [252] examples of series having an M-Cantorval as the set of their
subsums are presented.
Consider a multigeometric series (see [143], [164])

3q +2q + 2q+...+2q + 2q + 3q* + 2% + 2¢*+...+2q* + 2q* +...+3q"

m

m
+2q™ + 2q™+...+2q™ + 2q" +.. ., (7)

m
where g € (0,1). In [158] it is shown that the set of subsums of the series (7) is a partial
case of a set of the form

(00]

K(m;q) = {z e,q":(n) €{0,2,3,...,2m,2m + 1,2m + 3};,  (8)
n=1

where m € Nand g € (0,1).

Moreover, based on analysis in[158], the following conclusions can be drawn:

. 1 .
(i) K (m, @) Is an M-Cantorval,
(iifg < pe— then the set K(m; q) is a Cantor set of zero Lebesgue measure,

(iii)for each g € (ﬁ 1) there exist q;, g, € (Zml”,q) such that the set K(m; q,) is

a null set with respect to Lebesgue measure and K(m;q,) has positive Lebesgue
measure.
1

For these reasons, we decided to investigate the set K: = K (m; 2m+2). Using the fact that

K is an attractor of some iterated function system we describe a construction of this set. We
compute the Lebesgue measure of this special M-Cantorval and we show that it is equal to
the sum of lengths of all its component intervals.
It is worth mentioning that lately an interesting [253] has been published by A.
Bartoszewicz, S. Glab, J. Marchwicki. Part of their article is devoted to research the sets of
the form (8).

We will present a theorem describes a construction of the set . Let’s start with short
introduction.
Let X be a complete metric space with a finite collection contraction maps
{fw;:i =1,2,...N} from X to itself. The set {X;w;:i =1,2,...,N} is called an iterated
function system (IFS). A nonempty compact subset A of X is an attractor of the IFS if A =
UL, w;(4) (see [268], [83]).
Let H (R) be the set of all nonempty compact subsets of R and for an element B € H (R)
let
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2m+2
we) = | ] we),
i=1

where m € N and contraction mappings w;: R — R are defined by
(i) wy () = ——,

.. i X .
(iDw;(x) = 1t fori € {2,...,2m + 1},

2m+3 X
(i) wam2(x) = 2m+2 | 2m+2

It is easy to check that W (K) = K. Therefore K is an attractor of {R; w;:i = 1,...,2m +
2}.
We write ALIB for the disjoint union of the sets A and B and LI};-, Aj for the disjoint union
of the sets Ay, 44,...,A,.

The set W™ (1) is called nth iteration of 7. Note that W™ (1) is the disjoint union of
smaller copies of previous iterations and the interval with endpoints w}(0) and

n 2m+3
Wom+1\Gma1)

Before getting to the proof of the Theorem (6.3.3) we show two lemmas. We start by
introducing a few notations which will ease the presentation of these lemmas.
Let C,,n € N, be the set of all finite sequences (i,)x-, of elements of {1,2,3,...,2m +

1,2m + 2}, m € N. Sequence of C,, is denoted by i,i, ...i,. We will also write i{k]ikJr1 i
if iy =i, =...=1, for some k <n. Now, we define a relation < on C, as follows

iy ..l 2 jijo .. jpifandonlyif i, = j,, forl <k <noriyi,...i, < jijo...jn Where
1ly .lp < J1J2 - Jjn © thereexists N,1 < N < n such that
iy =jrforl <k <jy.
Forexample231(2m+2)(2m+2)<23(2m+2)11.
Let j;...j, € C, and j;...j, € C,,. Denote by C,,[j1..-jn; Ji---Jn] thesetofall iy...i, € C,
such that j;...j, < iy...in 2 J1.. Jn-
Finally, let’s observe that for our contraction mappings w;(1 < i < 2m + 2), we have
a) foranyn € N

w1 = U wy, o..ow; (), )
i1..in€Cn[1[M;(2m+2)[M]]
b) foranyn € Nand i,...i,, € C,

() e T A .
Wiy O Wi & Wi A = 2 T 2m+2)2 T 2m+ )™
where ¢, =<i;, ifi;€{23,..,(2m),2m+ 1)} KH << (10)

2m+3 if [ =2m+2
for1 <1 <n,
c) foranyn e Nandi,...i, EC,andr € R

r
Wi1 o Wiz o,..0 Win(T') = Wi1 o Wiz °,..0 Win(O) + m (11)

Lemma (6.3.1)[267]: Letn,m € N. Foreach i;...i,, € Cp[2!"; (2m + 1)I"~(2m)] there
exists jiy...jn € Cp[2I""13; 2m + 1)M] such that

Wi1 o,..0 Win(O) + = le °,..0 W]n(()) (12)

(2m+2)"
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Proof. We start with simple preliminary observations:
if iy...0,(2m+ 1) € Cypyq1[27H; 2m + DM (2m)]
then i ...i, € Cy[2IM; (2m + DI H(2m)), (13)
ifi... 0 (2m + 2)ig1z - ing1 € Cpia[2M7H; (2m + DM (2m)]
then i...i € C[21; 2m + DU (2m)|, where 1 <k <n. (14)
Now let us prove Lemma (6.3.1) by induction on n. To start with, (12) is valid whenn = 1
since for i € C;[2; (2m)] we have

where i + 1 € C,[3; (2m + 1)].
Next, assume that (12) is valid for alln < N.
Let iy ...iyings € Cyeq[2VFH; (2m + 1)VI(2m)]. There are four cases to be considered

regarding the value of iy, ;.
Case 1. Ifiy,, € {2,3,...,(2m)} then

Wi1 °...°WiN+1(O)+ :Wi1 o"'OWiN(WiN+1(O))+

(2m + 2)N+1 (2m + 2)N+1
1
(11) Wit (0) + m + 2 (15) wi . +1(0) ()
= Wi1 °...0 WiN(O)+ (2m+2)rfvl = Wl'1 °...0 WiN(O)-i'(ZlAH'lT)N = Wl'1
°...0 WiN ° WiN+1+1(O)'
where iy...iy(iys1 + 1) € Cyi1[2M13; (2m + 1IN+,
Case 2. If iy, = 2m + 1 then
1 (10)
Wi, °...o Wi, °Wim+1) (0) + (Zm n 2)N+1 (1=1) Wi, °...o Wi, (0) + m

(from (13) we conclude that i;...iy € Cy[2!V); (2m + DIV=H(2m)] and thus by our
induction hypothesis there exists j;... jy € Cy[2V=13; (2m + 1)V] such that (12) holds)

=wj, o...ow; (0) = w

and j; ...jy1 € Cyiq[21M13; 2m + DIVFH],
Case 3. If iy, = 2m + 2 then
1 (10)

(2m + 2N+t 4 Vi

Wi, ©...0 Wi © Wiam42)(0) + o...ow; (0) +

(2m + 2)N

T am 2

(from (14) we conclude that i;...iy € Cy[2V); (2m + DIV=H(2m)] and thus by our
induction hypothesis there exists j;... jy € C,[2V=113; (2m + 1)IM] such that (12) holds)

2 (10)
(2m + 2)N+1 (11)
and j;...jy2 € C[2IM3; 2m + DIVFH].
Case 4. Let iy, = 1. Then since iy...iy1 € Cyyq[2IV+Y; (2m + 1)VI(2m)], there exists
k,1 <k < N,suchthati, € {3,4,...,2m+1),2m+ 2)}and ij,; € {1,2} for1 <[ <
N + 1 — k. We consider two cases for the value of i.
@ Ifi,€e{3,4,...,(2m),(2m + 1)} then

=wj, o...ow;, (0) + wj, o...ow;, °w,(0)
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W;_ o...0W;

) i, © - Wiy °wy(0)

+ ! D_&a oy 4
Cm+2)NT  2m+2 7 2m+2)k T (2m 4+ 2)N
1

+
(2m + 2)N+1
€1 €, — 1 1 EN

+.. .t
2m + 2+ +(2m+2)" * (2m + 2)k (2m + 2)N
1

T amy

€1 € — 1 2m+1 2m + 2
= +...+——+ +
2m + 2 (2m + 2)* = 2m+2)t  (2m+ 2)N+1
€rs1 En 1 ((6:3.2))

+ (2m + 2)k+1 ot (2m + 2)N * (2m + 2)N+1
= W_i_l o,..0 Wik—l o Wik —1o Wik+1+(2m) °...0 W;n +(2m)
° W(zm+2)(0).
Note that
(i) if k > 1then iy ...i_1 € Cr_q[2F7H; (2m + 1)1,
(ii, — 1€{2,3,...,2m — 1,2m},
(ii)ifk <1theniy,, +2me {2m+1,2m+2}for1 <[l < N —k,
which is the desired conclusion.
(b) Ifi, =2m+ 2then k > 1 and we have
Wi, 0.0 Wy ©Womipow;, oW o w;(0)

4 1 (632) € - 2m+3 f L N
Cm+2)NT  2m4+2 7 2m+2)k T 2m+2)N
1
T @m+
_ & 4 €x-1 4 1 N 1
S 2m4+2 7 2m+ 21 2m+ 2);—1 (2m + 2)k
€k+1 En
T am+ 2 Y amr 2y T am 2
(10) o+ 1 L0 +§: 2+l 2m+2
= . 0 o .
Ha Tt e T am R T em e F T L Gm+ ) Gm+ 2
€k+1 En 1

Cm+ 2 Y Gm Y T @m+ 2"
(from (14) we conclude that i;...i,_; € Cp_1[2!¥=H; (2m + 1)*=21(2m)] and thus by our
induction hypothesis there exists a sequence j,...j,_; in the set Ck_l[z["‘z]B; (2m +
1)M%=11] such that (12) holds)

((63.2)
= Wj, 0.0 Wy, O W1 0 Wy 4o OO Wiy yom © Wamy2(0),

where if k < N we have i,,; +2m € {2m+1,2m + 2} for 1 < k < N — k and the proof
Is complete.

Lemma (6.3.2)[267]: Letn,m e Nand [ = [O,

2m+3
2m+1

]. Then
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2m + 3)]

wi, o..ow, (I) = [wg(O), Wi (m

i1in€Cp[2[M;(2m+1) ]
Proof. Note first that for i ... i, € C,[2!"; (2m + 1)™], we have
w3 (0) <wy, o...owy (0) < wihyiq(0). (16)
Now by Lemma (6.3.1), for each i...i, € C,[2I"; 2m + D*"1(2m)] there exists
Ji--Jn € Cu[2713; 2m + D)IM] such that

Wi1 o0,..0 Win (O) < Wi1 0,,.0 Win (0) + = le o,,.0 an(O)

(2m+ 2)n
2m+ 3 1 (10) 2m+ 3
< Wi, °"'°Win(0)+2m+1.(2m+2)n B ln<2m+1)
2m+ 3
< le 0,..0 an (Zm n 1)
Therefore
2m+ 3
Wi1 o,,.0 Win (I) U le o,..0 an(l) = [Wi1 o...0 Win (0),Wj1 o.,..0 an <2m n 1)]

Hence and by (16), we obtain the assertion of the lemma.
Theorem (6.3.3)[267]: Letm € Nand I = [0 2m+3] Then

x = ﬂ wn(D),

nenN

where W"(I) =W (W™ (1)) and W° = id. Moreover
2m + 3
WD) = |_| wh 0wy (WD) U [wE )W (5o )| 0 || whate®
k

2m+1

°Wom+2 (W (1))- (17)
Proof. The first part of the Theorem (6.3.3) follows immediately from the fact that W (1) c
I and the fact that lim W™(I) = X in the Hausdorff metric (see [268]).

n—->oo

Now, for brevity let us denote
Plvdwii-id= ) weew,m,

. S i1..in€Cnlj1-JniJ1--In]
where ji...jn j1---Jn € Cp.
If we prove that

n-1 n—1
wn(I) = |_| wh o wy (WD) U By [21; 2m + 1)M] |_| w1k
k =0 k=0
o Wamsa (WE(D), (18)

for every positive integers n, then by the Lemma (6.3.2) we conclude that (17) holds and
this completes the proof of the Theorem (6.3.3).

Let’s prove (18) by induction on n. If n = 1, then
2m +2

W= | ] w®=wm@uP2ZEn+DIUwm.O, 19
i=1
where the last equality holds because fori € {2,...,(2m + 1)} we have
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2m+ 3 2m+ 3
1 <2m n 1) < w;(0) < Wami1 (m) < Wam+2(0).

Now, assume that the thesis holds for a positive integer n. Then we have
WD) = w (WD) = wy (W) U...U wam (W™ (D))
(by (19) and W (1) c I)
=wy (WD) U [wo (WD) V..U Wy (WD) U wap s (WD)
(observe that by equation (9) we have w;(W™(I)) = Py [i1";i(2m + 2)[M] for i €
{3,...,(2m)} and from this fact and by our induction hypothesis)
= W1(Wn(1))

n-—1 n-—1

|_| wk o w, (W” 1= k(z)) U B, [2[M; (2m + 1)) |_| w17k

o Wamsz (WD) | U oy [317; (2m) (2m + 2))

n-—1

U Wy i1 |_| w¥ o w,y (W"‘l‘k(l)) U B, [2IM; (2m + 1)IM]

|_| o Wamsz (WED) || Wamaa (WD)

n-—1

= w,(W™(D)) U |_| wE 0wy (WK(D)) U Py [20743; (2m + DI+ 1 |_| wik,

° Wom+2 (W (1)) L W2m+2(W (1)),
where the last equality is a result of the following observations:

(@) for iy...iny1 € Coyq[31M; (2m)(2m + 2)[] we have
n 2m+ 3 n n
w3l o w, <2m n 1) <wzow((0) <w; o.owy  (0) < wypy o Womyo (

< Wit © Wam42(0),
(0)LRZd Wy © i7" o o (WE(D))
= Ppp[22m + DUm + 2);2(2m + 2)M] (by (9)),
(©) URZ5 Wamsr © wk o w, (Wn_l_k(l))
= Ppp1[@m + D1 (2m + 1)2n-11] (by (9)).

2m+3)
2m+1

This finishes the proof.
Theorem (6.3.4)[267]: The Lebesgue measure of the M-Cantorval K is equal to 1 and it is
equal to the sum of lengths of all its component intervals.
Proof. Observe that the Theorem (6.3.3) implies

u(30) = lim - p(W(D).
Therefore to prove that the Lebesgue measure of K is equal to 1 it suffices to show by
induction that for every n € N, we have
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2 3 \"
u(w (I)):Hz +1<2m+2> '

1 — —
It easy to check that (W'(1)) =1+ — (2m+2) Next assume that u(W"(I)) =1+
2 ( ) foreveryn < N — 1,N = 2. By the Theorem (6.3.3) we have
2m+1 \2m+2 N1
2m+3
WV () = IL(! wh o wy (WD) U [ 0wl (5 ) U |_| Wiy

°Wom+2 (Wk(l))-
Thus by our induction hypothesis, we have
k

N
“(WNU))ZZ'Z (2m1+2> '[1 2m2+1<2m+2 ] Z (2:11+2;"

k=1
+2m+3( 1 )N—1+ 2 ( 3 )N
2m+1\2m+2/ = 2m+1\2m+2/ "’
which is our claim.
It remains to show that the Lebesgue measure of X is equal to the sum of lengths of its all

component intervals. To prove this, first note that by Theorem (6.3.3) and the fact that
wi,1 <i < 2m + 2, are one-to-one mappings we have

K Nwsow, (WN‘l‘k(I)) = wk o w, (%), (20)

AW o Wap ey (WH(D) = WhRET* o Wonia (K (21)
forany N e Nand 0 < k < N — 1. Moreover it is easily to see that interval

[Zm 1 ] ﬂ [W? (), Wim+1 @Z : i)]

Is a component interval of K.

Now, we show by induction that the set K contains at least 2 - 3*~1 component intervals
2m-1
2m+1

n
with lengths : (2ml+2) for every n € N. Observe that

2m+ 3
2m + 1)]) U Wam 2 (-

1]) and Wy, 40 ([Zr:ﬁ 1]) are component intervals of 7. Hence, it

(3.1)
K=K W) = w0 u (% [ w200, W

Therefore w, ([

2m+1

Is obvious that K contains at least 2 component intervals with Iengths am-] ( : ) Next,
m+1 2m+2

_ n
assume that # contains at least 2 - 3~ component intervals with lengths am-t, ( : )

2m+1 2m+2
for all n < N. Note that

N
(3.1) 2m+ 3
¥ =3 AWND) = |_| Wk o w, (5) U (u %N [W§V+1(0),W§V,;11 ( )])
k=0

2m+1

N
U |_| WK o Wamy2 (30).

Now, observe that by our induction hypothesis for each n < N sets wi™1 o w; (X) and
wi-t . oWy (K) contain at least 2 - 3¥~™ component intervals with Iengths em-1,
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N+1
1 . .
(2m+2) . Moreover sets wl o wy (K), w1 o w4, (K) contain component intervals

w”owl([zﬂf+1 1]) and wi .1 owy s ([ﬁ 1]) respectively. We conclude from
2m-— 1

these observations that & contains at least 2 - 3N component intervals with Iengths

N+1
(Zml+2) . Thus by induction this statement is true for all n € N.

Now, adding the sum of the lengths of these 2 - 3"~ 1(n € N) intervals to the lengths of the
interval [Ll] we get
2m+1

- 2m —1 1 \" 2m-1_
> Gt ) -
] 2Zm+1 \Zm+ 2 2m + 1
n=
It is exactly the Lebesgue measure of %, which completes the proof.
Example (6.3.5)[267]: The series (7) is called the Guthrie—Nymann—Jones (GNJ) series of

rank m. We conclude from the Theorem (6.3.4) that foreachm e N if g = — then the

Lebesgue measure of the set of subsums of the GNJ series of rank m is equal to 1 It s worth
mentioning that the Lebesgue measure of the set of subsums of the GNJ series of rank 1 is
computed in [257] by a different method.
Example (6.3.6)[267]: A series is called the Ferens type series (see [246]) if it is of the form
F(G.k; 9 =(+k—1)q+(G+k—2)q+...+jg +

G+k—1Dqg*>+ (G +k—2)q*+...+jq* + -

G+k—1q"+ (G +k—-2)qg"+...+jq"+..,,
where j,k e Nandk >j+1andq € (0,1).
The set of subsums of F(j, k; q) is equal to the set

{z €,q™: () €{0,j,j+1,...,s —j, s}, (22)

n=1

2j+k—-1)-k
where = &/¥k=Dk

Note that if j =2 and m: = IS a positive integer number then the set (22) is a
special case of the set of the form (8). Therefore, we may conclude from Theorem (6.3.4)
that the Lebesgue measure of the set of subsums of F (2, k; s—%) is equal to 1.

Corollary (6.3.7)[269]: Let 1+ 2¢,m € N. For each iy...ij42¢ € Cpypc[20142€); (2m +
1)2€l(2m)] there exists jy.. . ji42¢ € Cryze[212€13; (2m + 1)11+2€]] such that

= le °...0 Wj1+26(0)' (23)

(3+k)-k—6

Wi, ©...° Wi1+26(0) + (2m + 2)1+2€
Proof. We start with simple preliminary observations:
if Q1. i142e(2m + 1) € Coepn[212€72); 2m + 1)BF2€1(2m)]
then iy ...i142¢ € Cryae[2172€); (2m + 121 (2m)], (24)
if i iy eMm+ 2izge - lgerz € Coeya[212672); 2m + DITH2€l(2m)]
then iy...i14 € Cipe[2004l; 2m + DIEI(2m)], where e = 0. (25)
Now let us prove Corollary (6.3.7) by induction on n. To start with, (23) is valid whene = 0
since for i € C;[2; (2m)] we have

s = Wit (0), (26)
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wherei + 1 € C{[3; (2m + 1)].

Next, assume that (23) is valid for all € < 0.

Let iy ...iyyeiore € Coye[22%€); 2m + D)1+l (2m)]. There are four cases to be
considered regarding the value of i,, ..

Case 1. Ifi,,. € {2,3,...,(2m)} then

1 1
Wi1 ©::° Wi2+e(0) + (2m + 2)2+e = Wi1 ©...0 Wi1+c.: (Wi2+e(0)) + (Zm + 2)2+e
1
(10) Wiy, (0) + 5= (15)
= Wil o"'OWi1+e(O)+ (2m+2)ﬁ6 = Wil °...0 Wi1+e(0)

wi,, +1(0) v
Where il' . i1+€(i2+6 + 1) € CZ+E[2[1+6]3; (Zm + 1)[2+6]]_
Case 2. If iy, = 2m+ 1 then

1 (10)
(2m + 2)2+e€ (1=1) Wi, (2m + 2)1+€
(from (24) we conclude that i;...iy4c € Cipe[201F€); 2m + DI€1(2m)] and thus by our
induction hypothesis there exists j...j14e € Ci4e[21€13; (2m + 1)I€]] such that (23)
holds)

Wi1 °,..0 Wi1+e ° Wim+1) (0) + %...0 Wi1+5(0) +

(10)
= Wj, °-° Wj1+e(0) (1=1) Wi,
and j; ... jirel € Coye[207€13; (2m + 1)),

Case 3. If iy, = 2m + 2 then

o...0 Wj1+€ °wWq (O)

1 av
(Zm + 2)2t€ 1)

Wil °...0 Wi1+6 ° W(2m+2) (0) +
2

T m+ )
(from (25) we conclude that i;...i14c € Cipe[201+€); 2m + DI€1(2m)] and thus by our
induction hypothesis there exists j...ji4e € Ci42¢[21€3; (2m + 1)12+€1] such that (23)
holds)

©...° Wi1+e(0) + (Zm + 2)1+6

2 (10)
(2m + 2)2*€ (11)
and ji...j14e2 € Crize[2107€13; 2m + 1)[24€),
Case 4. Let ipy. = 1. Then since ij...ij4c1 € Coyc[2127€); (2m + 1DIPFel(2m)], there
exists 1+ €,€ = 0, such that i;, . € {3,4,...,2m+1),(2m + 2)} and i,,,. € {1, 2} for
0 < ee. We consider two cases for the value of i, ..
(¢ Ifi,.€{3,4,...,2m),(2m+ 1)} then

= Wj, °...0 Wj1+e(0) + Wj °...oW;  °W; (0)
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wi, o.owy  o.wy, o wy(0)
1 (10) € €1+e €1+e
n = — 4.+ +. 4+
(2m + 2)2*¢ ~ 2m + 2 (2m + 2)1+€ (2m + 2)1+€
1
+
(2m + 2)2*€
€ €14¢ — 1 1 €
= 2 + S SR ML L.
2m + 2 (2m + 2)1*¢  (2m + 2)1+€ (2m + 2)1+*e
1

T m 1 2)2re

1
€1 €14e¢ — 1 = 2m+1 2m + 2
=——+..+ + E +
2m + 2 (2m + 2)1+e (2m + 2)1*t¢  (2m + 2)?+€

1+e=2+€ 1
€2+e €1+¢ (10)
- +o.+ + =
(2m + 2)?+€ (2m + 2)1*¢ ~ (2m + 2)?*€

= W_i_]. o,..0 Wie o Wi1+e —1o Wi2+6+(2m) o,..0 Wi(1+6) +(2m)
° W(2m+2)(0)-

Note that
(iv) if e > 0then iy ...i. € C[2l¢); @m + D],
(V)iz4e — 1€4{2,3,...,2m — 1,2m},
(vi) ife > 0theniy e +2m e {2m+1,2m + 2} fore > 0,

which is the desired conclusion.
(d Ifi;,.=2m+ 2thene > 0and we have

Wil 0,..0 Wie o W2m+2 o Wi2+e o,.. Wi(1+6) o W1 (O)
N 1 (10) € - 2m+ 3 - €1+
2m4+2)2t¢  2m+2 7 2m4+2)te T (2m 4 2)1te
1
T am T 27
€1 €Ee 1 1
= +...+ + +
2m + 2 2m+2)¢ (2m+2)¢ (2m+ 2)1+e
Core | 4 Stre | .
(2m + 2)2+€ (2m + 2)1*e  (2m + 2)?%*€
(10) NSO SRR +1+6 2+l 2m+2
Pt T am a2 T Gmr e T L Gm+ ) m+2)7
€=
€2+e €1+e 1

Cm+ 227 T Gm 2 T @m ¥ 2)7
(from (25) we conclude that iy...i. € C.[2!€; (2m + 1)!=11(2m)] and thus by our

induction hypothesis there exists a sequence j;... j in the set C.[2!€7113; (2m + 1)!€]] such

that (23) holds)

(10)

= Wj, °%.0W; oWy oW, 1om © .0 Wi _4om © Woma2(0),
where if € > 0 we have iy ,. +2m € {2m+ 1,2m + 2} for 0 < € < 1 and the proof is
complete.

Corollary (6.3.8)[269]: Let 1 + 2e, m e Nand I = [O, 2m+ﬂ. Then

2m+
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2m + 3)]

Wiy o0 Wiy, () = w260, wiiis (5o

i1.1142¢€C142¢[211+2€];(2m+1)[1+2¢€]]
Proof. Note first that for iy ...i142¢ € Crize[21272€); 2m + D)I1+2€]], we have
w3 T2€(0) < wy, o owy,, (0) < wini(0). (27)
Now by Corollary (6.3.7), for each iy...i; z¢ € Ci42[21172€); (2m + 1)[2€1(2m)] there
eXIStS jy. .. j142¢ € Craze[212€13; (2m + 1)I1+2€]] such that

wW;_ o...0 Wi1+26 (0) < Wil o,..0 Wi1+26(0) +

1 (Zm + 2)1+26 = Wj, ©...° Wj1+26(0)
2m+ 3 1 (11)

2m+1 (2m+2)i*2

2m+ 3 2m + 3)

= Wi1 Sxae Wi1+26 (Zm + 1) < Wj1 000 Wj1+2e (Zm +1

< Wi1 o,.,.0 Wi1+26(0) +

Therefore

2m+ 3
Wi1 °...0 Wi1+26(1) U le o,..0 Wj1+26(1) = [Wil °...0 Wi1+26(0):Wj1 °...0 Wj1+26 <2m n 1)]

Hence and by (27), we obtain the assertion. Now we prove Corollary (6.3.9) (see [267]).
Corollary (6.3.9)[269]: Letm € N and [ = [o, 2’”*3]. Then

2m+1
K = ﬂ W1+26(I),
14+2€€eN

where W*t2¢(1) = w(W?2¢(1)) and W° = id. Moreover
2e

2e
2m+ 3
wieey = | | wieow(werm) u i, wiizs (o) |0 | ] wike

e=-1 e=-—1

°Wom+2 (Wle(l))- (28)
The set W1*2¢(]) is called nth iteration of & . Note that W1*2¢(]) is the disjoint union of
smaller copies of previous iterations and the interval with endpoints wi*%€(0) and
wl+2e (2m+3)
2m+1 \om+1/)"
Proof. The first part of the Corollary (6.3.9) follows immediately from the fact that W (1) c
I and the fact that lim W1*2€(I) = K in the Hausdorff metric (see [268]).

E— 0O
Now, for brevity let us denote
PirzeljieJiezes i J142e] = U Wi, °...0 Wi1+26(1)'

il"'i1+26eCl+26[jl'"j1+26;]~1'"]~1+26]

where ji...j112e J1- - Ji+2e € Crize:

If we prove that
2€

W1+26(1) — |_ W21+6 ° Wl(WE—l(I)) L P1+26[2[1+26]; (Zm + 1)[1+26]]

€ =—1

2€
u || weds e wamea (W), (29)
e=—1

for every positive integers n, then by the Corollary (6.3.8) we conclude that (28) holds and
this completes the proof of the Corollary (6.3.9).
Let’s prove (29) by induction on n. If € = 0, then

232




2m +2
W= | ] w®=w@uP2En+ DIUwm.0,  (30)
i=1
where the last equality holds because for i € {2,...,(2m + 1)} we have

2m+ 3 2m+ 3
1 <2m n 1) < w;(0) < wamis (m) < Wom+2(0).

Now, assume that the thesis holds for a positive integer n. Then we have
W26+2(I) — W(w1+26(1)) — Wl(W1+26(1)) U...U Wypip (W1+26(I))
(by 30)and W (1) c I)
= wy (W26(D)) U [wo (W26 (D) U...U Wy (WH26(D)] U wapy o (WEH2E(D))
(observe that by equation (2.2) we have w;(W1+2€(I)) = Py, [i111F2€]; i(2m + 2)[1+2¢]]
fori € {3,...,(2m)} and from this fact and by our induction hypothesis)
— Wl(W1+2€(I))

|_| W1+6 °o Wy We 1(1)) Ll P1+2€[2 [1+2€]. (Zm + 1) [1+2€] ]

e=-1

€
U |_| WZET;I:}FloWZm+2(W1+E(I))

1+€=0
U Py 2[31[1+261- (2m)(2m + 2)11+2¢l]

UWom+1 |_| wt€ 0wy (WD) U Pyype[2072€); (2m + 11142l

e=-1
2€

|_| W2617111°W2m+2(W1+6(1)) W2m+2(W1+26(1))

e+1 =0
14+2¢

-w (W1+26(I)) Ll |_| W1+6 ° Wl(WG(I)) L] P26+2 [2[26+2]; (Zm + 1)[26+2]]

e=—1
2e

U |_| Wim+1 © Woma2 (WHE(I)) . W2m+2(W1+26(1));
1+€=0
where the last equality is a result of the following observations:

(A)fOr iy...ize42 € Coerz[311072€]; (2m)(2m + 2)[1+2¢1] we have
2m+ 3
wat2€ o w, (Zm - 1) <wzow;T2(0) <wy oowy, (0) < o 0 Wi25 (
< Wzlr;ii °© Wam+2(0),
() LZE_1 wy owSyhy o Womio (W1+E(I))
= Ppers [22m + DRI @m + 22;2(V) T by 22)),
(f) UiSezo Wams1 0wy €0 W1(W€_1(1))
= Pyero[2m + 1)10042€]; (2m + 1)212€11] (by (2.2)).

2m+3)
2m+1

This finishes the proof.

Corollary (6.3.10)[269]: [267]. The Lebesgue measure of the M-Cantorval K is equal to 1
and it is equal to the sum of lengths of all its component intervals.
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Proof. Observe that the Corollary (6.3.9) implies
u@) = lim  p(W*zD).

1+2€—00
Therefore to prove that the Lebesgue measure of K is equal to 1 it suffices to show by

induction that for every 1 + 2¢ € N, we have
2 142€
pu(Wi2() =1+ —(

2e\1+ 26)
It easy to check that (W'(I)) =1+ = ( ) Next assume that u(W*2€(1)) =1+

1+2¢

2 ( 3 )1+26
— for every e > 0. By the Corollary (6.3.9) we have

2e \1+2¢

1+e€ 14 1+€
€
W2+E(I) — |—| W1+6 o Wl(WO(I)) |J +6(0) W2+6 (_) L] |_| Wzoe
e=—-1 € 1+e=0
° W1+26(W1+6(1))'
Thus by our induction hypothesis, we have
2+€ 1 1+€ 1 3 1+2€ 2+€ 26 _ 2
=23 () o) |
SUGNSD) , \T+2¢ Te\Tv2e)  |TL Grzore
1 +€€_0 1 2+€ 1 3 2+€ €=0
=1+

* € (1+2€> +E(1+2€) ’

which is our claim.
It remains to show that the Lebesgue measure of XK is equal to the sum of lengths of its all
component intervals. To prove this, first note that by Corollary (6.3.9) and the fact that
Wi4e € = 0, are one-to-one mappings we have
K nwyteow, (WO(I)) = wit€ o wy (X)), (31)
K Nwy, o W1+26(W1+6(1)) = Wye © Wi42e(K)  (32)
forany 2 + € € N and € = —1. Moreover it is easily to see that interval

1= ) ot ()

. . 1+2€€eN
IS a component interval of K.

Now, we show by induction that the set K contains at least 2 - 32¢ component intervals with

e—1 1 1+2€
lengths — (—) for every 1 + 2e € N. Observe that

1+2€
1+¢€

% =K AW %2 Wy () L (zc n [WZ(O),W2€ ( )]) U Wy sy (50).

Therefore wy (E 1]) and wy 45, (E 1]) are component intervals of K. Hence, it is obvious

that K contains at least 2 component intervals with lengths %1 . (ﬁ) Next, assume that

1 142€
) forall e < 1.

XK contains at least 2 - 3%2¢ component intervals with lengths % . (

1+2€
Note that
2+€
1+e€
s =3 awen) = || witows 00 u (e wir,wire (—)])
@2 L4 €
2+€
L |_| Wye © Wype (K.
e=-1
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Now, observe that by our induction hypothesis for each e < 1 sets w2€ o w; (K) and w3 o

_ 3+€
Wy 42 (K) contain at least 2 - 3'7¢ component intervals with lengths E—El (1:25) :

Moreover sets w2t€ o w, (), wzr€ ow;,,.(K) contain component intervals w2*€ o

wq (E 1]) and w3 € o wy o, (E 1]) respectively. We conclude from these observations
_ 3+€

that C contains at least 2 - 32*€ component intervals with lengths % . (L) . Thus by

1+2€
induction this statement is true for all 1 + 2¢ € N.
Now, adding the sum of the lengths of these 2 - 32¢(1 + 2¢e € N) intervals to the lengths of

the interval E 1], we get
1+2€

5:2326 e—1< 1 ) Nt O
. le \1+ 2e€ e
€=

It is exactly the Lebesgue measure of &, which completes the proof.
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