
1

Sudan University of Science & Technology

College of Graduate Studies

Improving a Framework for SQL Attack Detection and

Prevention on Web Applications

 هجوم الحقن علي تطبيقات الويب اكتشاف إطار عمل لمنع و تحسين

A Thesis submitted in partial Fulfillment of the requirement of master

degree in computer science

 By:

Esraa Yagoop Abd Alhameed Mohamed Ali

Supervision by:

 Dr. Faisal Mohammed Abdallah Ali

January - 2023

i

 الآيت

 بِسْمِ الِله الرَّحْمهِ الرَّحِيمِ

 قال تعالى:

 لَهُ يَقُولُ فَإِوَّمَا أَمْرًا قَضَىٰ وَإِذَا ۖ وَالْأَرْضِ السَّمَاوَاثِ بَدِيعُ}

{فَيَكُونُ كُهْ

{111البقرة:}

 صدق الله العظيم

ii

ACKNOWLEDGEMENT

I would first like to thanks my God to give me another chance to complete my

higher Education and to learn enormous skills and knowledge through all these

years of study at the university.

To my Supervisor Dr. Faisal Mohammed Abdullah Ali

To my parents for their love and support throughout my life,

To my beloved Sisters, my husband, my children, and everyone who have been a

part of my life.

iii

Abstract

The website become are more common used these days according to its features and used to

present services, this making these applications more susceptible to be hacked, common hacking

of these sites is SQL injection. The core of this study is improving frame aid the developer to

how prevent from that hacking. The researcher builds two websites the first is vulnerable and the

second applied of security policy within framework and applying hacking on both them. The

results show the validate of frame work invented procedure and security policy used in its (User

validation and Prepared statement), and the risk analysis phase is more important in framework

to determine vulnerabilities. And also find registration path not effect in the security actively but

may affect passively. The researcher recommends by use proposed frame work and the policies

to prevent hacking.

iv

 المستخلص

الاخٍسة احساع اسخخداو يٕاقغ الاَخسَج ٔذنك نًا فٍٓا يٍ يًٍزاث ٔبانخانً اصبحج انؼدٌد أََتَلاحظ فً

يٍ انخدياث حقدو يٍ خلال حهك انًٕاقغ ٔكرنك ػسض انًُخجاث، يًا ٌجؼهٓا اكثس ػسضت نهٓجًاث، ٔاْى

 حساػد جٍتبُاء يُٓ بحثان اٍاَاث. ٌٔؼخبس انٓدف انسئٍسً نٓرْرِ انٓجًاث ْجًاث انحقٍ نقٕاػد انب

 انًطٕزٌٍ نهٕقاٌت يٍ حهك انٓجًاث. ػًم انباحث ػهى بُاء يٕقؼٍٍ الأل آيٍ ٔالاخس غٍس آيٍ حٍث طبُقج

 ًُٓجٍت أ اطازفاػهٍت انضحج أ ػهى الأل ٔٔضغ كلا انًٕقؼٍٍ ححج الاخخباز. انُخائج حأيٍُّسٍاساث

انخً اسخخديج ػًهج ػهى انٕقاٌت يٍ حهك ُت انخايٍانسٍاساث ًقأيت ْرا انُٕع يٍ انٓجًاث ٔكرنك ن انؼًم

ححهٍم انًخاطس نكم يٕقغ ٔفقاً نُٕع أ انضسٔزي ، كًا اثبج يٍ انًٓىانٓجًاث بخلاف انًٕقغ انغٍس آيٍ

كًا اثبخج انًلاحظت اٌ صفحاث انخسجٍم لا حًثم ، انثغساث انخً ًٌكٍ اسخغلانٓا ٔحاكٍدانخديت انخً ٌقديٓا

حًثم حٓدٌد غٍس فؼال. ٌٕصً انباحث باحباع انًُٓجٍت انًقخسحت ندزاست أيٍ يٕقغ يغ حٓدٌد فؼال ٔزبًا

 حطبٍقاث انسٍاساث انًُاسبت ٔفقاً نهًُٓجٍت ٔانخحهٍم انكايم نهًخاطس.

v

Table of Contents

ةلآي ا ……………………………………………………………………………..i

ACKNOWLEDGEMENT ………………………………………………….....ii

Abstract ……………………………………………………………………….iii

 iv..……………………………………………………………………… انًسخخهص

 List of Contents ……………………………………………………………….v

List of Figures …………………………………………………………………viii

List of Table ……………………………………………………………………ix

 List of Abbreviation…………………………………………………..x

Chapter One : Introduction ………………………………………………..

1.1 Introduction ……………………………………………………………1

1.2 Problem Statement …………………………………………………....2

1.3 Research Objectives ………………………………………… 2

1.4 Research Importance …………………………………………………..3

1.5 Research Scope………………………………………………………3

1.6 Research Methodology ……………………………………………….4

1.7 Expected Results(Hypothesis)…………………………………………5

1.8 Research structure ……………………………………………..5

Chapter Two : literature Review and Related Work……………………..

2.1 web application ………………………………………………………….6

2.2 Web Application Threats ……………………………………………..6

2.3 Countermeasures ……………………………………………………….....7

 2.4 Web application exploitation ……………………………………………..9

vi

 2.4.1 example of authentication credentials ………………………………..9

2.5 SQL Injection ……………………………………………………………….10

2.6 SQL Injection Attack ………………………………………………………12

2.7 Classification Of SQLIA……………………………………………………14

 2.7.1 Classical Types of SQLIA………………………………………….......14

 2.7.2 Modern types of SQLIA ………………………………………………16

2.8 Prevention methods of SQL Injection Attacks …………………………..18

2.9 SQLIAs detection and prevention techniques……………………………..20

2.10 Suggested Hybrid Technique……………………………………….........21

2.10.1 Normal Data Exchanging Strategy………………………………..22

2.10.2 Replicate system databases……………………………………….22

2.10.3 Redirect SQL queries……………………………………………..23

2.10.4 Simple SQL syntax checking………………………………………23

2.10.5 Virtual execution………………………………………………… 24

2.10.6 SQLIA Detection ………………………………………………….24

2.11 Related Work ……………………………………………………….........24

2.12 Summary of related work ………………………………………………..27

Chapter Three : The methodology……………………………………….

3.1 introduction…………………………………………………………………….31

3.2 The Frame Work ……………………………………………………………….31

3.3 Proposed Method Diagram ……………………………………………………32

3.4 Flow Chart……………………………………………………………………….34

3.5 Device Requirements ………………………………………………………….35

 3.5.1 Device types ……………………………………………………………35

3.5.2 Performance characteristics ……………………………………………..35

3.6 Management Tasks ……………………………………………………………...35

Chapter Four : Implementation And Result………………….

vii

4.1 Introduction ……………………………………………………………………..36

 4.2 The first page …………………………………………………………...............36

4.3 The second page …………………………………………………………………..37

4.4 The last page ……………………………………………………………………….38

4.5 The login page non prevention…………………………………………………….39

 4.6 Applied the method: User Validation and Prepared Statements for prevention

SQLIA :………………………………………………………………………………….40

 4.7 The implemented Code by using Prepared Statements Method (with Parameterized

Queries) …………………………………………………………………………………41

4.8 Using SQL Chars For Detection SQLIA ……………………………………….42

4.9 Applied the Script for detect SQLIA ………………………………………………45

4.9 Comparing Table ………………………………………………………………….48

4.10 The Analysis ………………………………………………………………………49

4.11 The Results …………………………………………………………………………54

Chapter Five : Conclusion and Recommendation ……..………..…………………..

 5.1 Conclusion ………………………………………………………………………….55

 5.2 Recommendation ……………………………………………………………………56

References ………………………………………………………………………………….57

viii

List of Figures

Figures No Page No

Figure No(2.1) 6

Figure No(2.2) 10

Figure No(2.3) 12

Figure No(2.4) 13

Figure No((3.1) 32

Figure No (3.2) 34

figure NO(4.1) 36

figure NO(4.2) 37

figure NO(4.3) 38

figure NO(4.4) 39

figure NO (4.5) 40

figure NO (4.6) 41

figure NO(4.7) 41

figure NO(4.8) 42

figure NO(4.9) 43

figure NO(4.10) 43

figure NO(4.11) 44

figure NO(4.12) 44

figure NO(4.13) 45

figure NO(4.14) 46

figure NO(4.15) 46

figure NO(4.16) 47

figure NO(4.17) 49

figure NO(4.18) 50

figure NO(4.19) 50

figure NO(4.20) 51

figure NO(4.21) 51

figure NO(4.22) 52

figure NO(4.23) 52

figure NO(4.24) 53

figure NO(4.25) 53

ix

List of Table

Table no Page no

 Table(4.5) Summary of related work 27

Table(4.5) Comparing table 48

x

List of Abbreviation

Syncopation WORED

SQLIA SQL injection attack

SQL Structured Query Language

DDOS Distributed Denial of Service

RDBMS Relational Database Management System

XSS Cross Site Scripting

DNS Domain Name Server

WPSCAN Word Press Scan

COMMIX Command injection exploiter

RIA Rich Internet application

IDS Intrusion Detection System

DOS Denial of Service

xi

Chapter One

Introduction

1

Chapter One

Introduction

1.1 Introduction:

Cyber security has become an important and interesting topic. Poorly designed web applications

may include, improper handling of requests, lack of input validation, lack of output validation,

poor business-logic design & implementation [1].

In today‟s digital world, Web applications are being used in numerous ways in recent years to

provide online services such as banking, shopping, social networking, etc. These applications

operate with sensitive user information and hence there is greater need for assuring their

confidentiality, integrity, and availability. Extensive use of websites and web applications has

attracted hackers to attack on it using various tricks and techniques [2]

SQL injection is one of most used attack we face nowadays. In SQL Injection Attack (SQLIA)

the attacker can trick the server to obtain illegal authorization and asses the database using SQL

queries. This is because the developers of the applications do not know fully about the attacks by

SQL injection and its causes. This research paper focused on how to detect and prevent SQL

injection attacks on websites and web applications. Of those attacks, a serious role is controlled

by SQL injection attacks (SQLIA). SQL injection attack is one amongst the intense dangers to

web application accustomed gain unauthorized access to database or to retrieve the confidential

data present on the database. A SQL injection attack is done by insertion or "injection" of a SQL

query with the input data from the user to the application. A successful SQL injection can read

sensitive data from the database, alter database data and perform query such as

Insert/Update/Delete and perform administration operations on the database such as shutdown

the Database, recover the data present in a file on the Database and perform some commands on

the operating system. [3]

SQLA and Cross Site Scripting Attack (XSS) are perhaps a few of the most common attack

techniques used by attackers to manipulate or delete the content through inputting unwanted

command strings in the coding part. The attacker attacks in such a way that the code

manipulated will look as the original code. [4]

2

Most of the companies use anti-virus software and other security measures to prevent Cyber

Attacks. There is, however, a significant difference in risk mitigation costs. A recent U.S. study

found that large enterprises allocate on average 12% of their IT budget on Cyber Security [5].

1.2 Problem Statement:

The weak input filtration and validation of dynamic web applications and using a single

detection and prevention technique against SQL injection attacks.

1.3 Research Objectives:

1.3.1 Main objectives:

 1. Design a new Framework based on dynamic Analyzer and tester performed well to detect

and prevent the SQL injection attacks.

 2. To investigate the effect of poor input validation of SQL query to discriminate the

parameters used for injection malicious SQL on the security of server database.

3. Improve the filtration level of a user input from real one and a malicious one on dynamic

web applications.

1.3.2 Sub objectives:

 1. Decrease the response time that is taken by using tools to prevent and detect SQLIA .

 2. The proposed solution also needs less modification of the source code of the web

application and use minimum resources of the system.

3

1.4 Research Importance:

i. Many of the web applications use databases as their back-end data store. Although new

web programming languages offer new ways of more secure database programming

features, still there are many applications that are vulnerable to SQL injection attack.

ii. Because of the nature of this attack which is unauthorized access to the confidential

information and inserting or modifying it, this kind of attack is very popular among

attackers and again because of the mentioned reason it is vital to make web applications

secure against them.

1.5 Research Scope:

Place Scope: The area which we decide to conduct the research into Internet.

Applied Scope: Web Sites

4

1.6 Research Methodology:

The proposed solution based on dynamic Analyzer and tester by using some tools and methods,

it performed well as four phases to detect and block the SQLIA.

1. Planning phase:

1.1 Scope and strategy of the assignment is Determine.

1.2 Existing security policies, standards are used for defining the scope.

2. Discovery phase:

2.1 Collect as much information as possible about the system including data in the system,

user names and even passwords. This is also called as Fingerprinting.

2.2 Design the system by using Asp.net language & Microsoft SQL Server Management

Studio database.

2.3 Scan and Probe into the port.

2.4 Check for vulnerabilities of system by using some tools and methods.

3. Attack phase:

3.1 Find exploits for various vulnerabilities that is need necessary security privileges to

exploit the system, also using some tools and methods that is used in security

4. Reporting phase:

4.1 report must contain detailed findings

4.2 Risks of vulnerabilities found and their Impact on business

4.3 Recommendation and solution, if any

5

1.7 Expected Results (Hypothesis):

Before a web site can be compromised, an attacker needs to find applications that are vulnerable

to SQL injection using queries to learn the SQL application methods and its response

mechanisms. The attacker has two ways to identify SQL injection vulnerabilities:

i. Error messages:

 The attacker constructs the correct SQL syntax based on errors messages propagated from

the SQL server via the front-end web application. Using the errors received, the hacker learns

the internal SQL database structure and how to attack by injecting SQL queries via the Web

application parameters.

ii. Blindfolded Injection:

 This technique is used by hackers in situations when there are no error messages or response

content is returned from the database. In these cases the attacker has limited ability to learn the

backend SQL queries in order to balance the SQL injection query. In the lack of database

content output.

1.8 Research Structure:

This research is organized as fives chapters

Chapter One: This chapter provides an Introduction of the research topic, Problem Statement,

Importance, Hypothesis, Objective, Bounders of Research, Research Methodology, and Thesis

Structure.

Chapter Two: This chapter provides a literature Review and Related work

Chapter Three: This chapter provides the methodology

Chapter Four: This chapter provides the implementation, result and Analysis

Chapter Five: This chapter provides recommendations and Conclusion

6

Chapter Two

Literature Review and Related Works

6

2.1 Web Application

A web application (aka website) is an application based on the client-server model. The server

provides the database access and the business logic. It is hosted on a web server. The client

application runs on the client web browser. Web applications are usually written in languages

such as Java, C#, and VB.Net, PHP, ColdFusion Markup Language, etc. the database engines

used in web applications include MySQL, MS SQL Server, Posture SQL, SQLite ..etc [6] .

SQLIA‟s take place largely in web applications, thus working of a web application needs to be

understood first. Web applications comprise of three tiers. The first tier is on the users side and

has a basic browser. The second tier contains a dynamic content generator write in PHP or JSP.

Tier three is where the database resides. This is the tier prone to SQL Injection attack [7].

Figure (2.1): Web application and database communication [8]

2.2 Web Application Threats:

Most web applications are hosted on public servers accessible via the Internet. This makes them

vulnerable to attacks due to easy accessibility. The following are common web application

threats:

https://www.guru99.com/sql.html

7

2.2 .1 SQL Injection : the goal of this threat could be to bypass login algorithms,

sabotage the data, etc.

2.2.2 Denial of Service Attacks : the goal of this threat could be to deny legitimate users

access to the resource

2.2.3 Cross Site Scripting (XSS): the goal of this threat could be to inject code that can be

executed on the client side browser.

2.2.4 Cookie/Session Poisoning: the goal of this threat is to modify cookies/session data

by an attacker to gain unauthorized access.

2.2.5 Form Tampering: the goal of this threat is to modify form data such as prices in e-

commerce applications so that the attacker can get items at reduced prices.

2.2.6 Code Injection: the goal of this threat is to inject code such as PHP, Python, etc. that

can be executed on the server. The code can install backdoors, reveal sensitive information,

etc.

2.2.7 Defacement: the goal of this threat is to modify the page been displayed on a website

and redirecting all page requests to a single page that contains the attacker‟s message [9]

2.3 Countermeasures:

An organization can adopt the following policy to protect itself against web server attacks:

2.3.1 SQL Injection:

 Sanitizing and Validating user parameters before submitting them to the database for

processing can help reduce the chances of been attacked via SQL Injection. Database engines

such as MS SQL Server, MySQL, etc. support parameters, and prepared statements. They are

much safer than traditional SQL statements

8

2.3.2 Denial of Service Attacks :

Firewalls can be used to drop traffic from suspicious IP address if the attack is a simple DOS.

Proper configuration of networks and Intrusion Detection System can also help reduce the

chances of a DOS attack been successful.

2.3.3 Cross Site Scripting:

Validating and sanitizing headers, parameters passed via the URL, form parameters and

hidden values can help reduce XSS attacks.

2.3.4 QS Cookie/Session Poisoning:

This can be prevented by encrypting the contents of the cookies, timing out the cookies after

some time, associating the cookies with the client IP address that was used to create them.

2.3.5 Form Tempering:

This can be prevented by validating and verifying the user input before processing it.

2.3.6 Code Injection:

This can be prevented by treating all parameters as data rather than executable code.

Sanitization and Validation can be used to implement this.

2.3.7 Defacement:

 A good web application development security policy should ensure that it seals the

commonly used vulnerabilities to access the web server. This can be a proper configuration

of the operating system, web server software, and best security practices when developing

web applications [10]

9

2.4 Web application exploitation:

Malicious users must have to find an input field that lies in the SQL query of the database. In

order for an SQL injection attack to take place, the vulnerable website needs direct user input in

the SQL query that is injected in the SQL statement. In this way the malicious users inject a

payload that is included in SQL query and hence it should be used to attack against the database

server. Before the actual attack, first check how the server responds to user‟s input for

authentication mechanism [11]

2.4.1 Example of authentication credentials:

This was an example of how the user‟s authentication credentials are checked or verified by the

database server.

// define POST variables

$Uname = $_POST[„name‟];

$Upassword = $_POST[„password‟];

// sql query vulnerable to SQLi

$sql = “SELECT id from users where username = „Uname‟ && password = „Upassword‟ “;

// execute the Sql query by database

Database .execute ($ Sql);

As shown the above code is vulnerable to SQL injection, the malicious user can gain access to

the web application by submitting the malicious payload in the SQL query that would alter the

SQL statement being executed by the database server.

A simple example of an SQL injection payload could be something as simple as setting the

password field to password‟ OR „1‟=‟1′

10

where this condition is always true.

This would result in the following SQL query being run against the database server.

SELECT id FROM users WHERE username=’username’ AND password=’password’ OR

1=1’

Actually in Figure Blow:

Figure (2.2): Example of SQLIA [12]

 2.5 SQL Injection:

According to Wikipedia, SQL injection is a code injection technique that exploits a security

vulnerability occurring in the database layer of an application. The vulnerability is present when

user input is either incorrectly filtered for string literal escape characters embedded in SQL

statements or user input is not strongly typed and thereby unexpectedly executed. It is an

instance of a more general class of vulnerabilities that can occur whenever one programming or

scripting language is embedded inside another. SQL injection attacks are also known as SQL

11

insertion attacks. SQL (Structured Query Language) is a programming language used to work

with the databases, commonly Relational Database Management Systems are brought into work.

SQL language can be used to update, modify or delete the databases or the tables, columns, rows

within RDBMS databases. It is a powerful language to attack databases itself. Attackers can use

this language to exploit databases of the web applications and take control of the application

without the Administrator‟s consent. SQL Injection is a malicious attack where malicious users

can inject SQL commands (commonly referred to as malicious payload) in SQL statement that

controls the web application database (commonly referred to as Relational Database

Management System – RDBMS), within the web input field. [13]

The SQL injection vulnerability can damage any website or web application that is currently

using SQL-based database. This is one of the most dangerous web Attacks where the malicious

users tend to exploit the web applications. The malicious users can get unauthorized access to the

web application, by making use of the SQL injection to bypass the authentication and

authorization mechanism defined by any web application. This vulnerability in web applications

give illegal access to the malicious user to modify, update or delete the database or make

changes to any particular row and columns, in result the data integrity of SQL-based database

should be affected.

Keeping the above in mind, when considering the following, it‟s easier to understand how

lucrative a successful SQL injection attack can be for an attacker. An attacker can use SQL

injection to bypass authentication or even impersonate specific users. SQL is used to delete

records from a database. So an attacker could use an SQL injection vulnerability to delete data

from a database. Even if an appropriate backup strategy is employed, deletion of data could

affect an application‟s availability until the database is restored. One of SQL‟s primary functions

is to select data based on a query and output the result of that query.

An SQL injection vulnerability could allow the complete disclosure of data residing on a

database server. Since web applications use SQL to alter data within a database, an attacker

could use SQL injection to alter data stored in a database. Altering data affects data integrity and

could cause repudiation issues, for instance, issues such as voiding transactions, altering balances

and other records. Some database servers are configured (intentional or otherwise) to allow

arbitrary execution of operating system commands on the database server [14]. Given the right

12

conditions, an attacker could use SQL injection as the initial vector in an attack of an internal

network that sits behind a firewall. Show figure blow:

Figure (2.3) : SQL injection and how to prevent an attack[15]

2.6 SQL Injection Attack:

SQL injection is harmful and the risks associated with it provide motivation for attackers to

attack the database. The main consequences of these vulnerabilities are attacks on the

following:

2.6.1 Authorization:

Critical data that are stored in a vulnerable SQL database may be altered by a successful SQLIA.

2.6.2 Authentication:

If there is no any proper control on input fields inside the authentication page, it may

be possible to login into a system as a normal user without knowing the authenticated user.

13

2.6.3 Confidentially:

Usually databases are consisting of sensitive data such as personal information, credit card

numbers and/ or social numbers. Therefore, loss of confidentially is a terrible problem with

SQL Injection vulnerability.

2.6.4 Integrity:

By a successful SQLIA not only an attacker reads sensitive information, but also, it is possible to

change or delete this private information.

2.6.5 Database Fingerprinting:

The attacker can determine the type of database being used in backend so that he can use

database-specific attacks that correspond to weakness in a particular database management

system . [16]

Figure (2.4): SQL injection attack-web based Application Security [17]

14

2.7 Classification of SQLIA:

There are numerous research papers that present a classical SQL Injection attacks, and Detection

and Prevention techniques, while the modern SQL Injection attacks, which are the most dangers,

are not presented. Therefore, in the following subsections we will discuss and analysis the

modern types of SQLIA besides present the classical types.

2.7.1 Classical Types of SQLIA:

As presented in many papers, the classical types of SQLIA can be listed as follows:

1. Tautologies: Tautology-based attacks work through injecting code by one or more

conditional SQL statement queries in order to make the SQL command evaluate as a

true condition such as (1=1) or (- -). The most common use of this technique is to

bypass authentication on web pages resulting in access to the database

select* from employees where employee_ID=’1’ OR ’1=1’- ’

AND employee_password= ’1234’;

2. Piggy-backed Query: Piggy-backed queries is a type of attack that compromises a

database using a query delimiter.

In this method the first query is original whereas the subsequent queries are injected. This

attack is very dangerous; attacker can use it to inject virtually any type of SQL command.

Piggy-backed query attack:

Select pass from userTable where user _ID=’ user’

AND password= 0;

Drop userTable

3. Logically Incorrect: Logically Incorrect attack takes advantage of the error messages

that are returned by the database for an incorrect query. These database error

15

messages often contain useful information that allow attacker to find out the

vulnerable parameter in an application and the database schema. The SQL query

mention Logically Incorrect attack as blow:

Select * from userTable where user _ID=’ 1111’

AND password= ’ 1234’ AND CONVERT(char,no)

4. Union query: Union query injection is called as statement injection attack. In this

attack, attacker insert additional statement into the original SQL statement. This

attack can be done by inserting either a UNION query or a statement of the form “;<

SQL statement >” into vulnerable parameter . The result of this attack is that the

database returns a dataset that is the union of the results of the original query with the

results of the injected query

Select * from userTable where user _ID=’ 1111’ UNION select8 from memberTable

where member _ID=’ admin’— ’

5. Stored Procedure: In this technique, attacker focuses on the stored procedures which

are present in the database system. Stored procedures run directly by the database

engine. it is a piece of code which is exploitable. Stored procedure gives true or false

values for the authorized or unauthorized clients. For SQLIA, attacker will write “;

SHUTDOWN; --" with login or secret key.

Select Username from userTable where user _name=’user1’ AND pass=’ ’;

6. Inference: Using Inference attack, enable the attacker changing the behavior of a

database or application. This type of attack can be classified into two well-known

techniques, which are: Blind injection and timing attack.

Select pass from userTable where user name=’user’ and 1=0—AND pass-AND pin=0

Select info from userTable where user name=’user’ and=1—AND pass= AND pass=0

16

7. Alternate Encodings: This type of attack occurs when attacker modify the injection

query via using alternate encoding, such as hexadecimal, ASCII, and Unicode. By

means of this way, the attacker can escape from developers‟ filter, which scan input

queries for special known "bad character". When this type of attack combines with

other attacks techniques it could be strong, because it can target different layers in the

application so developers need to be familiar to all of them to provide an effective

defensive coding to prevent the alternate encoding attacks. [18]

Select accounts from userTable where login=”AND pin=0;

Exec(char(0x7687574646f776e))

2.7.2 Modern types of SQLIA

In this subsection is presented an overview for modern types of SQLIA and mention example for

each type, as follows:

1. Fast Flux SQL Injection Attack:

 By using this type of SQLIA , attacker intents to extract data from the database and phishing.

The phishing is a social engineering attack in which an attacker fraudulently acquires sensitive

information from the user by incorporating a third party.

Traditional phishing host can be detected very easily just by tracking down the public Domain

Name Server (DNS) or the IP address. This trace back technique could lead to the shutdown of

the hosting websites. The attacker realized that conducting like that attack could have significant

effect on load balancing of a server; Therefore , to protect its criminal assets, the operator of

phishing websites started using Fast Flux technique. Fast Flux is a Domain Name Server

technique which is used to hide phishing and malware distribution sites behind an ever changing

network of compromised host.

17

2. Compounded SQL Injection Attack:

This type of SQLIA is a combination derived from a conjunction of SQLIA and other Web

Application Attacks. The attacker intents to attack the database and cause more serious effect

then other classical types of SQLIA (which are previously discussed).

The rapid development of prevention and detection techniques against various SQLA , enforced

the malicious attackers to develop a technique called compounded SQL Injection.

3. SQL Injection + D Dos (Distributed Denial of Service) Attacks:

This attack is used to hang a server, exhaust the resources so that the user cannot able to access

it. The different SQL commands which can be used in SQL Injection in order to keep track with

DDOS Attack is to encode, compress, join etc.

4. SQL Injection + DNS (Domain Name Service) Hijacking:

By using this type of attack, the attacker intent to embed the SQL query in DNS request and to

capture it and makes its way onto the internet.

5. SQL Injection + XSS (Cross Site Scripting):

XSS is the client side code injection attack where an attacker can inject malicious code into the

input fields of an application. After inserted the XSS script, it will execute and try to connect

with the database of an application. The extraction code for data from the database can be

implemented using the I frame command.

 SQLIA using Cross Domain Policies of Rich Internet application (RIA): Cross Domain policies

is an XML file which gives permission to web client application, such as Java, Adobe Flash,

Adobe Reader, etc., to access data in multiple domains.

Cross-domain policies define the list of RIP hosting domains that are allowed to retrieve content

from the content providers‟ domain.

18

6. SQL Injection + Insufficient Authentication:

This type of attack occurs when the user or an administrator is a novice. The security parameters

have not been initialized and the attacker can access to the sensitive content without verifying the

identity of the user. There by the attacker exploits this vulnerability to inject SQL injection code.

Hence, this type of attack is trouble-free as compared with the other types of attack.

The first step is to find whether the application has insufficient authentication and if it has then

the SQL Injection attack can take place [19]

2.8 Prevention methods Of SQL Injection Attacks:

There are numbers of methods to prevent the SQL injection attacks and to keep your database

safe you can apply some of them, which are:

2.8 .1 Using Prepared Statements (with Parameterized Queries) :

Using Prepared Statements is one of the best ways to prevent SQL injection. It‟s also simple to

write and easier to understand than dynamic SQL queries. This is where the SQL Command uses

a parameter instead of inserting the values directly into the command, thus prevent the backend

from running malicious queries that are harmful to the database. So if the user entered 12345 or

1=1 as the input, the parameterized query would search in the table for a match with the entire

string 12345 or 1=1.

Language specific recommendations:

Java EE – use Prepared Statement () with bind variables

.NET – use parameterized queries like SQL command () or DB command () with bind variables

PHP – use PDO with strongly typed parameterized queries

Hibernate - use create Query () with bind variables (called named parameters in Hibernate)

19

SQLite - use sqlite3 prepare () to create a statement object

For example, using prepared statement in PHP:

$ stmt = $ dbh->prepare('SELECT * FROM customers WHERE ssn = : ssn');

$ stmt-> bindParam(':ssn' => $ ssn);

2.8.2 Using Stored Procedures

Stored Procedures adds an extra security layer to your database be side using Prepared

Statements. It performs the escaping required so that the app treats input as data to be operated

on rather than SQL code to be executed. The difference between prepared statements and stored

procedures is that the SQL code for a stored procedure is written and stored in the database

server, and then called from the web app. If user access to the database is only ever permitted via

stored procedures, permission for users to directly access data doesn‟t need to be explicitly

granted on any database table. This way, your database is still safe.

2.8 .3 Validating user input

Even when you are using Prepared Statements, you should do an input validation first to make

sure the value is of the accepted type, length, format, etc. Only the input which passed the

validation can be processed to the database. It‟s like checking who is at the door of your house

before you open it and let them in. But remember, this method can only stop the most trivial

attacks; it does not fix the underlying vulnerability.

2.8 .4 Limiting privileges

Don‟t connect to your database using an account with root access unless required because the

attackers might have access to the entire system. Therefore, it‟s best to use an account with

limited privileges to limit the scope of damages in case of SQL Injection.

20

2.8 .5 Hiding info from the error message

Error messages are useful for attackers to learn more about your database architecture, so be sure

that you show only the necessary information. It‟s better to show a generic error message telling

something goes wrong and encourage users to contact the technical support team in case the

problem persists.

2.8 .6 Updating your system

SQL injection vulnerability is a frequent programming error and it‟s discovered regularly, so it‟s

vital to apply patches and updates your system to the most up-to-date version as you can,

especially for your SQL Server.

2.8 .7 Keeping database credentials separate and encrypted

If you are considering where to store your database credentials, also consider how much

damaging it can be if it falls into the wrong hands. So always store your database credentials in a

separate file and encrypt it securely to make sure that the attackers can‟t benefit much. Also,

don‟t store sensitive data if you don‟t need it and delete information when it‟s no longer in use.

2.8 .8 Disabling shell and any other functionality you don’t need

Shell access could be very useful indeed for a hacker. That‟s why you should turn it off if

possible. Remove or disable all functionalities that you don‟t need too [20]

2.9 SQLIAs detection and prevention techniques:

 Most of methods showed that insufficient input validation detection technique adopted will

allow malicious code to be executed without proper verification of its intention.

21

Therefore, any detection technique should prevent attacker to take great advantages of

insufficient input validation which threat the target database and help the attacker to utilize

malicious SQL code to conduct attacks easily [21]

SQLIAs detection and prevention techniques have followed various aspects in order to come up

with an appropriate solution so as to prevent SQLIAs from being applied to different types of

databases. Some of these aspects are :

2.9.1 Static Analysis:

Static analysis is a principle that depends on finding the weaknesses and malicious codes in the

system source code prior to reaching the execution stage.

Generally, this principle has been one of the most widely used to detect or prevent SQLIAs.

2.9.2 Runtime Analysis:

It is a technique which has been used to detect a specific type of attacks that should be identified

in advance without the need of Modifying the development lifecycle nor the need of the source

code of the system. Such a technique depends on tracking the events of the system through its

execution process and detects if there is any of attack that is happing while execution .

2.9.3 Static and Runtime Analysis:

 In this type of analysis, different researches had Chosen to combine the two aforementioned

techniques to create a more effective and reliable solution to obtain a higher quality with a faster

development and testing processes.

 2.10 Suggested Hybrid Technique:

This section focuses on the main idea of the suggested hybrid technique for detecting and

preventing SQLIAs.

22

2.10.1 Normal Data Exchanging Strategy:

There is much architecture to manage and to organize any data-driven systems, but the most

common architecture that has been used is the three-tier architecture that depends on dividing the

system into three tiers as follows:

1. Presentation Tier (a Web browser or rendering engine).

2. Logic Tier (a server code, such as C#, ASP, .NET, PHP, JSP, etc. …).

3. Storage Tier (a database such as Microsoft SQL Server, MySQL, Oracle, etc.).

4. Suggested Approach Strategy

The suggested approach is a runtime detection and prevention methodology that follows the

same steps as the normal approach to exchange the queries between the architecture parties

(Presentation-Logic-Storage), however, it provides an extra defense line on the Data-Tier to

ensure that this side will not execute any abnormal codes that incase affect the system partially or

Completely or it affects the hosted operating system and devices.

This approach is based on providing security controlling methodology on the database server

side to ensures that all requested SQL queries from an inside or an outside the system are

executed securely without any database fabrication or hacking. The suggested approach is based

on different stages to reject any malicious query from being passed through the database engine

before its execution process.

2.10.2 Replicate system databases:

For each database to be secured from SQLIAs, there should be a new replication database and it

should contain a small amount of sample data.

Creating “database_Behaviors” database: The suggested approach should have a separate

Database called “database_Behaviors” that contains all system database queries and their

expected behaviors that have resulted from SQL queries execution in normal cases. This

database is placed in the replicated instances.

23

2.10.3 Redirect SQL queries:

 Any SQL query assigned to be executed in the target database will be initially delayed and

replicated by the database engine then this replicated query is sent to the virtual database

(Schema Replicated database). Hence, the original SQL query will be not executed yet in this

stage and it will be delayed to a later stage.

2.10.4 Simple SQL syntax checking:

 All SQL queries that are passing through the replicated database should also pass through

multiple check processes before they move to the next step namely, “The execution

process”. The following list presents the checks processes that the SQL queries should pass

through:

1. Encoding analysis: Before continuing to any next step the received SQL queries should be

analyzed to determine the character encoding that has been used to write these queries. There are

many techniques that can be used to do this analysis process such as “Automatic Identification of

Language and Encoding”

2. Simple White-Box validation: The query should go through simple syntax validation and

filtering for specific SQL reserved words especially those that use (EXECUTE, SHELL

commands).

3. Parameters replacement: Any parameter that has been found in the SQL query should be

replaced by an indexing parameter names. Such as (@par_1, @par_2 … @par _n).

2.10.5 Virtual execution:

After the SQL syntax checking process, the SQL query will be executed on the replicated

database “Virtual Database” in which it is a process that is running simultaneously with the

execution process, it monitors and traces the behaviors of the SQL query.

2.10.6 SQLIA Detection:

This stage is the most important stage in the suggested technique, its purpose is to detect whether

the received SQL query is valid and expected query or not. The idea here is to catch the objects

24

that have been affected by the current SQL query whatever the type of such objects and create a

list of these objects to use them in the next step of this stage. The resulted list of affected objects

will be compared with the “database Behaviors”.

If there is a query that handles all of the listed objects with the same type of behavior that is

detected from the previous step then this behavior query will be added to a new list (Expected

Queries). Any resulted behavior that is detected as a suspicious should be rejected and deleted

from the actual database instance execution queue, otherwise the query will be transferred to the

actual database instance for being executed [22]

2.11 Related Work

 A number of electronic journals articles from IEEE journals and from ACM, and gathered some

information from web sites to gain sufficient knowledge about SQL injection attacks. Following

are the papers from which I covered different important strategies to prevent and detect

SQL injection attacks.

The Paper [23]

The paper looks into frequent SQL injection attack forms, their mechanisms, and a way of

identifying them based on the SQL query's existence. They propose a comprehensive

framework for determining the effectiveness of techniques that address certain issues following

the essence of the attack, using hybrid (Statistic and dynamic) and machine learning. An

extensive examination of the model based on a test set indicates that the Hybrid and ANN

approaches outperform Naive Bayes, SVM, and Decision trees in terms of accuracy in

classifying injected Queries. However, when it came to web loading time during testing, Nave

Bayes outperformed. The Hybrid Method improved the accuracy of SQL injection attack

prevention, according to the test findings. Although They used a limited dataset for training

and testing in our study, it is advised that the dataset be expanded and the model be tested in a

real-world setting.

25

The Paper [24]

The paper, They propose a SQL injection detection method that does not rely on background rule

base by using a natural language processing model and deep learning framework on the basis of

comprehensive domestic and international research. The method can improve the accuracy and

reduce the false alarm rate while allowing the machine to automatically learn the language model

features of SQL injection attacks, greatly reducing human intervention and providing some

defense against 0day attacks that never occur. The paper implements a SQL injection detection

system based on a deep learning framework and combining data preprocessing and lexical

analysis techniques. The experiments show that the system can detect first-order SQL injection

attacks more accurately and efficiently

The Paper [25]

This paper successfully proposed a new comprehensive method using an improved

parameterized stored procedure to overcome the three issues highlighted in preventing web

application from SQL injection attack ; In this study, a stored procedure is constructed that

consists of a comprehensive method to address these three issues which are built in the code. To

prove the effectiveness, the proposed method was evaluated through three approach of attack

simulation, namely using SQLMap software, Netsparker and web browser. The experiments

conclude that SQL injection does not successfully penetrate web applications and databases

when the proposed method is implemented hence able to overcome the limitations faced by the

existing methods. That indicates that the SQL injection prevention method developed has

successfully prevents SQL injection from occurring. The proposed method is also evaluated from

the perspective of time used and its impact on the overall system. Evaluations using Microsoft

SQL Server Client Statistics and SQLQueryStress software have concluded that although there

are slight differences in time processing, the proposed method uses a shorter query processing

time when compared with dynamic SQL. It can be concluded that the SQL injection prevention

method used does not generate high overhead that may lead to high response time.

.

26

The Paper [26]

A novel approach to detect and prevent SQL injection and XSS attacks is presented in this paper.

The various types and patterns of the attacks were first studied, then a parse tree was designed to

represent the patterns. Based on the identified patterns, a filter() function was formulated using

the KMP string matching algorithm. The formulated filter() function detects and prevents any

form of SQL injection and XSS attack; The test results show that the technique can successfully

detect and prevent the attacks, log the attack entry in the database, block the system using its

Mac Address to prevent further attack, and issue a blocked message

The Paper [27] presented some different papers with several proposed methods and tools to

detect and prevent the SQL injection attack to be able to get a wide range of ideas in this way

and compare them against each other. They defined a methodology in our research to be able to

get more information from each paper. So, after that it was much easier to compare the methods

and analyzing them.

They focused on main parts and phases of each method proposed in each paper and then They

found the advantages and limitations of them at the end. The techniques that is used in this paper :

Analysis and Monitoring for Neutralizing(AMNESIA) , Preventing SQL Injection Attacks

(SQLrand), Syntactic and Semantic Analysis for Automated Testing against SQL

Injection(Sania), A specification–based Approach for SQL-injection Detection(SQL-IDS) ,

Location-specific signatures prevent SQL injection attacks(SDriver) , A heuristic-based approach

for detecting SQL injection vulnerabilities in Web applications, Learning Fingerprints for a

Database Intrusion Detection System.

27

2.1 Summary of related works

Name of Paper Date Author Techniques result

Attacks on SQL

Injection and

Developing

Compressive

Framework

Using a Hybrid and

Machine Learning

Approach [23]

February

8th, 2022

Fitsum Gizachew

Deriba , Tsegay

Mullu Kassa ,

Wubetu Baud

Demi lie

using hybrid and

machine

learning

techniques

They employed three

injection

parameters in various

forms in this study. The

first is through a user

input field, which allows

a web application used to

request information

from a backend database

using HTTP POST and

GET, and the second is

through cookies, which

may be used to restore a

client's state information

when they return to a

Web application. If a Web

application uses the

contents of cookies to

construct SQL queries, an

attacker can exploit this

vulnerability to change

cookies and submit them

to the database server.

Finally, by analyzing

session usage information

and

Recognizing browsing

behaviors, a server

variable can be created.

Because attackers can

forge the values that are

placed in HTTP and

network headers by

entering malicious input

into the client-end of the

application or by crafting

their request to the server,

if these variables are

logged to a database

without sanitization, that

could result in SQL

injection vulnerability.

That attack parameter

includes all of the attack

types mentioned in the

paper .

28

SQL Injection Attack

Detection and

Prevention Techniques

Using Deep

Learning[24]

2021

Ding Chen*,

Qiseng Yan,

Chunwang Wu,

Jun Zhao

based on a deep

learning

framework and

combining data

preprocessing

and lexical

analysis

techniques

The paper implements a

SQL injection detection

system based on a deep

learning framework and

combining data

preprocessing and lexical

analysis techniques. The

experiments show that the

system can detect first-

order SQL injection

attacks more accurately

and efficiently.

Subsequent research will

focus on advanced SQL

injection attack methods,

such as second-order

injection and hybrid

attacks.

A Method to Prevent

SQL Injection Attack

using an Improved

Parameterized Stored

Procedure

 [25]

2021

Kamsuriah Ahmad

, Mayshara Karim

parameterized

stored procedure

In The paper , a stored

procedure is constructed

that consists of a

comprehensive method to

address these three issues

which are built in the

code. To prove the

effectiveness, the

proposed method was

evaluated through three

approach of attack

simulation, namely using

SQL Map software, Nets

parker and web browser.

The experiments conclude

that SQL injection does

not successfully penetrate

web applications and

databases when the

proposed method is

implemented hence able

to overcome the

limitations faced by the

existing methods. This

indicates that the SQL

injection prevention

method developed has

successfully prevents

SQL injection from

occurring. The proposed

method is also evaluated

29

from the perspective of

time used and its impact

on the overall system.

Evaluations using

Microsoft SQL Server

Client Statistics and SQL

QueryStress software

have concluded that

although there are slight

differences in time

processing, the proposed

method uses a shorter

query processing time

when compared with

dynamic SQL. It can be

concluded that the SQL

injection prevention

method used does not

generate high overhead

that may lead to high

response time. This study

can be further improved

by focusing the

prevention of SQL

injection in network

systems. There are

various factors to be

considered such as the

types of server used,

network traffic and the

attacks from various

sources. More efforts are

needed and further

enhancements are

required to improve

database security

A novel technique to

prevent SQL injection

and cross-site scripting

attacks using

Knuth-Morris-Pratt

string match algorithm

[26]

2020 Oluwakemi

Christiana

Abikoye,

Abdullahi

Abubakar,

Ahmed Haruna

Dokoro ,

Oluwatobi Noah

Akande and

Aderonke

Anthonia Kayode

Knuth-Morris-

Pratt (KMP)

string matching

algorithm

The test results show that

the technique can

successfully detect and

prevent the attacks, log

the attack entry in the

database, block the

system using its Mac

Address to prevent further

attack, and

issue a blocked message.

A comparison of the

proposed

technique with existing

techniques revealed that

30

the proposed technique is

more efficient because it

is not limited to a

particular form of attack,

and it can handle

different forms of SQL

injection and XSS attacks.

 SQL Injection

Attacks: Detection

And Prevention

Techniques [27]

2019

Rania Alsahafi SQLrand ,

SQL-ID , Sania

,

SDriver

Many different

approaches have been

proposed to detect and in

consequence prevent SQL

injection attacks. Some of

them are trying to find

vulnerabilities in the web

applications and then

trying to solve the

problems; some others are

focusing on the user

inputs and verifying them

based on some predefined

patterns and algorithms.

Some of the methods and

tools are relying on some

others and some of them

have brand new ideas. We

tried to study as many

different methods as

possible.

Table (2.1) : summary of related work

31

Chapter Three

Methodology

31

3.1 Introduction:

In our example hack showed you how to bypass the login page: a huge security flaw for a

banking site. More complex attacks will allow an attacker to run arbitrary statements on the

database. In the past, hackers have used injection attacks to: Extract sensitive information, like

Social Security numbers, or credit card details. Enumerate the authentication details of users

registered on a website, so these logins can be used in attacks on other sites. Delete data or drop

tables, corrupting the database, and making the website unusable. Inject further malicious code to

be executed when users visit the site. SQL injection attacks are astonishingly common. Major

companies like Yahoo and Sony have had their applications compromised. In other cases, hacker

groups targeted specific or wrote scripts intended to harvest authentication details. Not

even security firms are immune [28]

3.2 The Frame Work :

1. Study the risk in fine details.

2. Determine the expect risk.

3. Understood the vulnerability nature.

4. Determine the impact of that risk.

5. Suggest policies and applying it.

6. Measure and write the result matrix.

http://www.cbsnews.com/news/yahoo-reportedly-hacked-is-your-account-safe
http://www.electronista.com/articles/11/06/02/lulz.security.hits.sony.again.in.security.message
http://arstechnica.com/tech-policy/2011/02/anonymous-speaks-the-inside-story-of-the-hbgary-hack

32

3.3 Proposed Method Diagram:

The proposed model based on dynamic analyzer that works as:

Figure (3.1) : Framework process

3.3.1 Planning Phase:

This is the First Phase in Methodology, divided into two Steps:

1. Scope and strategy of the assignment is determined.

2. Existing security policies, standards are used for defining the scope.

3.3.2 Discovery Phase:

The Second Phase divided into Four Steps:

1. Collect as much information as possible about the system including data in the

system, user names and even passwords. This is also called as FINGERPRINTING.

2. Design the system by using Asp.net language & Microsoft SQL Server

Management Studio database.

3. Scan and Probe into the port.

4. Check for vulnerabilities of system by using Two method for prevention and

detection SQLIA called: Validating user input, Using Prepared Statements (with

Parameterized Queries) SQLMAP,WPSCAN,COMMIX

Planning

phase

Discovery

phase

Attack

phase

Reporting

phase

33

3.3.3 Attack phase:

At this very important Stage of my research Methodology :

1. Find exploits for various vulnerabilities that is need necessary security Privileges to

exploit the system, also using LINUX KHALI operating system platform and there

tools that is used in security such as: SQLMAP,WPSCAN,COMMIX

3.3.4 Reporting phase:

This is the last Stage of the research and Result:

1. report must contain detailed findings

2. Risks of vulnerabilities found and their Impact on business

3. Recommendation and conclusion, if any

34

3.3 Flow Chart:

 No

 Yes

 No

 No

Find Strategy and

Existing security polices

User validation

And

Prepared statement

with Parameter Query

Error

 Check for

vulnerabilitie

s

If user

valid

If Exist

System is

protected

If it

implemented

in DB

No

Yes

 Yes

Yes

Yes

Figure (3.2): flow chart of methodology

 Start

End

Check

detect by

SQL Map

35

3.5 Device Requirements:

1. Device types

2. Performance characteristics

3. Internet

3.5.1 Device types:

1. Generic computer devices : PCs and Laptops .

2. Servers: storage servers and application servers.

3.5.2 Performance characteristics:

1. Storage

2. Processor

3. Memory

4. Operating System

5. Device driver

3.6 Management Tasks :

1. Even processing

2. Monitoring

3. Attack detection and troubleshooting

4. Accounting of vulnerability

5. Security polices and information of the system

36

Chapter Four

Analysis and Implementation

36

4.1 Introduction :

This Chapter present the Design of webpages by ASP.NET and connected to data base (SQL

Server management studio) , I build two web sites the first one isn‟t applying the prevention

policy, but the second applying policy and third one acts as ready package to compare between

them. Also applies two of these methods and evaluated by normal methods. The implements

done through web site include three page linked by hyper link showed in figures below:

 4.2 The first page:

 acts as LOGIN page which is the attacker target. The page consist two text box as input of

username, his password and bottom. This page build firstly as pure page without apply any

prevention method. The same page repeated as improved page by applying the more than one

prevention methods .Each field must fill by the same data types as defined.

The operation done through this page illustrated in The Figure (4.1):

Figure (4.1): The page login1

37

The figure (4.2) : Shows The same page repeated as improved page by applying the more

than one prevention methods.

Figure (4.2): The page Login2

 4.3 The second page:

 The second page is REGISTRATION page which is include the (first name, last name,

address, e-mail address, phone number, password and confirm password).

The data base build on SQL Server include one table which is registration table.

The Figure (4.3) : Shows registration form ,the user write all this information correctly Then

click the button register

38

Figure (4.3): Registration Form

4.4 The last page:

The last page is CONFIRM page which is include welcome express to insure that right

operation executed without any error and attack operation may be execute where in the

case no apply any policy of SQL injection prevention. Shows Figure (4.4)

39

Figure (4.4): Welcome Page

4.5 The login page (not prevention)

the figure(4.5): shows the login page that is not prevention for SQLIA, when the user write the

username and password in correctly ,the page not response and print this message but it define

what is happen in the system and shows the vulnerability in system

40

Figure (4.5): login1 not prevention

4.6 Applied the Method: User Validation and Prepared Statements to prevention SQLIA:

The figure(4.6): shows the message Login Error , here in this page applied the code for

prevention SQLIA by using the method s user validation and prepared statement

41

Figure (4.6):login2 prevention

4.7 The implemented Code by using Prepared Statements Method (with Parameterized

Queries) :

Figure (4.7): The implemented Code

42

4.8 Using SQL chars For Detection SQLIA:

 The figure(4.8) ,(4.9),(4.10),(4.11),(4.12) Using SQL chars like("\ „) that it used for

detection SQLIA in Web Pages ,firstly filling the form registration by added („)at ended of

number, and then complete the registration; also Shows the welcome page that‟s indicates the

success of the operation.

Figure (4.8) : using special char

43

The Figure (4.9): complete form

Figure (4.10): The welcome page

44

The figure (4.11): Shows the long message that‟s indicates here founded and Detected SQLIA

Figure (4.11):login1 by using SQL char

The figure (4.12): Shows the Error message (Login Error) that‟s indicates this web page

prevention of SQLIA and can‟t permission to login it .

figure(4.12): login2 by using SQL char

45

4.9 Applied the Script for detect SQLIA:

Using the script below for detected SQLIA:

<script> document .location= http://yousufkomor.freeasphost.net/login.aspx </script>

<script> alter (1) </script>

The SQLIA founded in Header by using (Get, Post function), textbox and payload.

figure(4.13),(4.14) : Shows the execution of the script and the Result message that‟s said

A potentially dangerous Request : form value was detected from the client…

Figure (4.13): script alter at login 1

46

Figure (4.14): The result of the Script

The figure (4.15),(4.16) : Shows the Error message (Login Error) that‟s indicates this web page

prevention of SQLIA and can‟t permission to login it and execute the same Script in login 1

Figure (4.15): script alter at login 2

47

Figure (4.16): script document. location at login 2

48

4.2 Comparing Table:

Property

 methods

Ability Detecting and

Prevent.

Implementation. Protect Efficiency.

Updating your system.

May Prevent. Easy. Weak and dependency

on the updating if not

done.

Hiding info from the error

message.

Prevent Only. Needs some

knowledge of errors

messages.

Best for analysis area.

Limiting privileges.

Prevent Only. Need recognized

methods.

Weak, for other

allowed.

Using Stored Procedures.

Detect and Prevent. Relay on the

prepared statements.

Weak, prevent done in

data base.

Validating user input.

Detect and Prevent. Require user input

known.

More efficient acts as

filter.

Using Prepared Statements. Detect and Prevent. Requires all states of

the hacker that

perform operations.

Full control and

prevention if implies

with user validating.

Table (4.1): comparing table

49

4.10 The Analysis:

By Linux Kali operating System and There Tools , Here Applied SQL Map Tool for

Detection SQLIA.

SQLMAP is an open source penetration testing tool that automates the process of detecting

and exploiting SQL injection flaws and taking over of database servers. It comes with a

powerful detection engine, many niche features for the ultimate penetration tester and a

broad range of switches lasting from database fingerprinting, over data fetching from the

database, to accessing the underlying file system and executing commands on the operating

system via out-of-band connections [29]

Figure (4.17): Shows the starting of SQL MAP tool in Linux Khali

Figure (4.17): Starting SQL Map WITH URL login page

50

Figure (4.18): the process continue

Figure (4.19): info for data base

51

Figure (4.20): testing payloads

Figure (4.21): tested parameter

52

Figure (4.22): Starting the Analysis in URL login2

Figure (4.23): the process continue

53

Figure (4.24) (4.25): the Analysis with SQLMAP detected by Three Types of SQLIA :

1. UNION query-based

2. Boolean- based blind

3. Error based

Figure (4.24): detected three types of SQLIA

Figure (4.25): Info for database (MY SQL)

Here the sql map founded the database of my web site and information about it .

54

4. 11 Results:

According to the analysis and practical part the flowing results are gutted:

1. There are numbers of methods to detect the SQL injection which are Header by using (Get, Post

function), textbox and payload.

2. Each method flows specific procedure to applying.

3. There are three main vulnerabilities which are SQL Injection, XSS and client-side attack as

common vulnerabilities. To prevent from that risk there, have numbers of policies may be

applying which are: Using Prepared Statements (with Parameterized Queries), Validating user

input.

4. Any registration form not acts as active vulnerability.

5. Hacking May done on header or on entry textbox, but not done through check box or radon

bottom or on select menus.

6. SQLMAP tool is best for detected SQL injection attack rather than Commix and Web Scan.

55

Chapter Five

Conclusion and Recommendation

55

5.1 Conclusion:

SQL injection attack is a code injection technique that exploits a security vulnerability

occurring in the database layer of an application. The vulnerability is present when user input is

either incorrectly filtered for string literal escape characters embedded in SQL statements or user

input is not strongly typed and thereby unexpectedly executed. It is an instance of a more general

class of vulnerabilities that can occur whenever one programming or scripting language is

embedded inside another, in this research proposed method for detection and prevention of SQL

attack is introduced the problem of this research acts in the SQL injection detection and

prevention, the problem is one common issue of internet security and system, which begin at

starting design web site. The research did an overview of the problem solution techniques

applying two methods of prevention and other for detection SQLIA and tests the prevented

system normally , The proposed model based on dynamic analyzer that work as four phases are

Planning Phase, Discovery Phase, Attack phase , Reporting phase . The results of the research

the system secure against SQL injection attack .

56

5.2 Recommendation:

After practical part and interpreting the results I recommend by the flowing:

1. Use the exceptions handler function to perform the prevention.

2. Suggest new methods to execute SQL Command.

3. Full fill of registration form or similar of it to prevent this type of attacks.

57

References:

[1] http:// www.cgi security.com access time 10:00 pm -14.2.2021

[2] http:// www.Zone -h.org/archive . com access time 1:00 am -1.2.2021

[3] http:// www.security doc.com/library/2651 access time 1:15 am -15.2.2021

[4] http:// www.Comsecurity concepts.wordpress.com access time 9:00 am -5.3.2021

[5] http:// www. Sec lists .org/ bugtraq /2020/ Feb/0288.html access time 2:20 pm -10.3.2021

[6] http://www. Phoenixnap.com access time 9:00 pm -10.3.2021

[7] http:// www.imperva.com/resources/whiteapers access time 6:00 am -11.3.2021

[8] http:// www. Researchgate.net .com access time 9:00 am -11.3.2021

[9] http:// www.wikipedia.com access time 4:00 pm -15.3.2021

[10] http:// www.Techopedia.com access time 6:00 am -1.4.2021

[11] http:// www.net-security.org /d1/article/blind-SQL injection.pdf

 Access time 10:00 am -1.4.2021

[12] http:// www.OWASP.com /blind SQL injection-OWASP.html

Access time 6:00 am -4.4.2021

[13] http:// www. link.springer.com access time 7:00 am - 4.4.2021

[14] http:// www.help net security.com access time 8:00 am - 4.4.2021

[15] Rania Alsahafi , “SQL Injection Attacks: Detection And Prevention Techniques”

International Journal Of Scientific & Technology Research , JANUARY 2019

[16] http:// www. Spanning.com access time 6:00 am -15.4.2021

[17] http:// www. Issue .com access time 6:00 am -20.4.2021

[18] http:// www.cloudacademy.com access time 8:00 am -25.4.2021

[19] http:// www. github .com access time 9:00 am -25.4.2021

[20] http:// www. cyper-today.com access time 11:00 am -27.4.2021

http://www.cgi/
http://zone-h.org/archive
http://www.security/
http://www.imperva.com/resources/whiteapers
http://www.wikipedia.com/
http://www.net-security.org/
http://www.owasp.com/
http://www.help/
http://www.cloudacademy.com/

58

[21] http:// www. Linux security.expert.com access time 12:00 am -27.4.2021

[22] https://doi.org/10.21203/rs.3.rs-1321852/v1

[23] F. G.Deriba , T.M.Kassa , W.B.Demi lie ,” Attacks on SQL Injection and Developing

Compressive Framework Using a Hybrid and Machine Learning Approach” , vol. 12, no. 6,

pp.324–332, 2022.

[24] D. Chen, Q. Yan, C. Wu, J. Zhao,” SQL Injection Attack Detection and Prevention

Techniques Using Deep Learning”, 2021 J. Phys.: Conf. Ser. 1757 012055,

doi:10.1088/1742-6596/1757/1/012055

[25] K. Ahmad , M. Karim ,” A Method to Prevent SQL Injection Attack using an Improved

Parameterized Stored Procedure” , International Journal of Computer Applications, Vol. 12,

No. 6, 2021

[26] O. C. Abikoye, A. Abubakar, A. H.Dokoro , O. N. Akande and A. A Kayode , “A novel

technique to prevent SQL injection and cross-site scripting attacks using Knuth-Morris-Pratt

string match algorithm” , Journal on Information Security (2020) 2020:14

https://doi.org/10.1186/s13635-020-00113-y

[27] Rania Alsahafi ,” SQL Injection Attacks: Detection And Prevention Techniques” ,

International Journal of scientific & Technology Research Vol .8 , ISSUE 01,

JANUARY 2019 ISSN 2277-8616

[28] M. A. Azman, M. F. Marhusin, R. Sulaiman, U. Sains, M. F. Marhusin, and U. Sains,

“Machine Learning-Based Technique to Detect SQL Injection Attack,” pp. 1–8, 2021, DOI:

10.3844/jcssp.2021.296.303.

[29] http:// www. sqlmap .org access time 5:00 pm -1.5.2021

https://doi.org/10.1186/s13635-020-00113-y

