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III 

Abstract 

We study the functions of bounded mean ascillation area inequality 

clavceterigation of Bergman spaces in the unit ball of the complex space, Cauchy-

type integrals in several complex variables and best constant in Sobolev trace ine 

qualities on the half-space. We characteribe amass-transportation approach 

Gagliardo-Niverberg type inequality with lvitical and sharp Sebder inequalities. 

We obtain the generalized Gagliardo-Niverberg inequalities using weak lebesgue 

space, Lorentz spaces ltalder spaces and factienal Soboler spaces. The 

censtructire description of Hardy-Soboler spaces on ctranglyconver demans in 

the complex spaces with new shap and sharp trace Gagliardo-Niverberg Sahaler 

ine pqalities for convex cones and improved Borell-Brascomp-lieb inequality are 

considered. 

  



IV 

 الخلاصة
قمنا بدراسة دوال التذبذب المتوسط المحدود وتشخيصات تكامل المساحة لفضاءات بيرجمان 

كوشي في المتغيرات المركبة المتعددة   –في كرة الوحدة للفضاء المركب والتكاملات نوع 

والثابت الأفضل في متباينات أثر سوبوليف على نصف الفضاء. تم تشخيص مقاربة تنقل الكتلة 

نيرنبيرج مع متباينات سوبوليف الحرجة والقاطعة. تم الحصول  –وع جاقلياردو والمتباينة ن

نيرنبيرج المعممة مستخدمين فضاءات لبيغ الضعيفة وفضاءات  –على متباينات جاقلياردو 

لورنتز وفضاءات هولدر وفضاءات سوبوليف الكسرية. قمنا باعتبار وصف البناء لفضاءات 

لمحدب القوي في الفضاءات المركبة مع متباينات سوبوليف على المجال ا –هاردي 

سوبوليف القاطعة والأثر القاطع لأجل المخاريط المحدبة ومتباينة  –نيرنبيرج  –جاقلياردجو 

 ليب المحسنة. –براسكومب  –بوريل 
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Introduction 

We show an inequality expresses a function can approximated in 𝐿1 mean. We 

consider the generalized Gagliardo–Nirenberg inequality in ℝ𝑛 in the 

homogeneous Sobolev space �̇�𝑠,𝑟(ℝ𝑛) with the critical differential order 𝑠 =

 𝑛/𝑟, which describes the embedding such as 𝐿𝑝(ℝ𝑛)  ∩  �̇�
𝑛

𝑟
,𝑟(ℝ𝑛)  ⊂ 𝐿𝑞(ℝ𝑛) 

for all 𝑞 with 𝑝 ≦ 𝑞 <  ∞, where 1 <  𝑝 <  ∞ and 1 <  𝑟 <  ∞. We establish 

the optimal growth rate as 𝑞 →  ∞ of this embedding constant. In particular, we 

realize the limiting end-point 𝑟 =  ∞ as the space of BMO in such a way that 

‖𝑢‖𝐿𝑞(ℝ
𝑛) ≦ 𝐶𝑛𝑞‖𝑢‖𝐿𝑝

𝑝

𝑞 (ℝ𝑛) ‖𝑢‖
BMO

1−
𝑝

𝑞
 with the constant 𝐶𝑛 depending only on 

𝑛. 

We establish real-variable type maximal and area integral characterizations of 

Bergman spaces in the unit ball of 𝐶𝑛. The characterizations are in terms of 

maximal functions and area functions on Bergman balls involving the radial 

derivative, the complex gradient, and the invariant gradient. We present the theory 

of Cauchy–Fantappié integral operators, with emphasis on the situation when the 

domain of integration, 𝐷, has minimal boundary regularity. Among these 

operators we focus on those that are more closely related to the classical Cauchy 

integral for a planar domain, whose kernel is a holomorphic function of the 

parameter 𝑧 ∈  𝐷.  

We show that mass transportation methods provide an elementary and powerful 

approach to the study of certain functional inequalities with a geometric content, 

like sharp Sobolev or Gagliardo–Nirenberg inequalities. Using a mass 

transportation method, we study optimal Sobolev trace inequalities on the half-

space. 

Using elementary arguments based on the Fourier transform we show that for 

1 ≤  𝑞 < 𝑝 <  ∞ and 𝑠 ≥  0 with 𝑠 > 𝑛(1/2 −  1/𝑝), if 𝑓 ∈ 𝐿𝑞,∞(ℝ𝑛)  ∩

 �̇�𝑠(ℝ𝑛), then 𝑓 ∈  𝐿𝑝(ℝ𝑛) and there exists a constant cp,q,s such that ‖𝑓‖𝐿𝑝 ≤

𝑐𝑝,𝑞,𝑠‖𝑓‖𝐿𝑞,∞
𝜃 ‖𝑓‖�̇�𝑠

1−𝜃 , where 1/𝑝 =  𝜃/𝑞 + (1 − 𝜃)(1/2 − 𝑠/𝑛). In particular, 

in ℝ2 we obtain the generalised Ladyzhenskaya inequality ‖𝑓‖𝐿4 ≤

𝑐‖𝑓‖
𝐿2,∞

1

2 ‖𝑓‖
�̇�1

1

2 . We also show that for 𝑠 =  𝑛/2 and 𝑞 >  1 the norm in ‖𝑓‖
�̇�
𝑛
2
 

can be replaced by the norm in BMO. We show some generalized Gagliardo–

Nirenberg interpolation inequalities involving the Lorentz spaces 𝐿𝑝,𝛼, BMO and 

the fractional Sobolev spaces 𝑊𝑠,𝑝, including also �̇�𝜂 Hölder spaces. 



VI 

We use the method of pseudoanalytic continuation to obtain the characterization 

of Hardy-Sobolev spaces on strongly convex domains in terms of polynomial 

approximations.  

We present a simple direct proof of the classical Sobolev inequality in ℝ𝑛 with 

best constant from the geometric Brunn–Minkowski–Lusternik inequality. We 

propose a new Borell–Brascamp–Lieb inequality that leads to novel sharp 

Euclidean inequalities such as Gagliardo–Nirenberg–Sobolev inequalities in ℝ𝑛 

and in the halfspace ℝ+
𝑛 . 
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Chapter 1 

Remarks on Gagliardo–Nirenberg Type Inequality 

 

We make it clear that the well known John–Nirenberg inequality is a consequence of our 

estimate. Furthermore, it is clarified that the 𝐿∞-bound is established by means of the BMO-

norm and the logarithm of the �̇�𝑠,𝑟-norm with 𝑠 >  𝑛/𝑟, which may be regarded as a 

generalization of the Brezis–Gallouet–Wainger inequality. 

Section (1.1): Functions of Bounded Mean Oscillation 

We show an inequality, which has been applied by J. Moser. The inequality expresses that a 

function, which in every subcube 𝐶 of a cube 𝐶0 can be approximated in the 𝐿1 mean by a 

constant 𝑎𝑡 with an error independent of 𝐶, differs then also in the 𝐿p mean from 𝑎𝐶 in 𝐶 by 

an Tor of the same order of magnitude. The measure of the set of points in 𝐶, where the 

function differs from 𝑎𝑐 by more than an amount 𝑎 decreases exponentially as 𝜎 increases. 

We apply Lemma (1.1.2) to denve a result of Weiss and Zygmund [4], and we present an 

extension of Lemma (1.1.1). 

Since for every contiiuooely differentiable function (s) , vanishing at the origin, 

∫ 𝑓
𝐶0

(|𝑢 − 𝑎𝐶0|)𝑑𝑥 = ∫ 𝜇
∞

0

(𝑠)𝑑𝑓(𝑠) , 

inequality implies that 𝑢 belongs to 𝐿p for every finite 𝑝 ≧ 1, and, in fact for 𝑏′ < 𝐾−1𝑏 the 

function 𝑒𝑣
′1u−𝑎𝑐𝜑

∫
 is integrable and 

∫ 𝑒𝑏
′|u−𝑎𝐶0|

𝐶0

𝑑𝑥 ≦ (1 +
𝐵𝑏′

𝐾−1𝑏 − 𝑏
, )𝑚(𝐶0).                      (1) 

A function satisfying for every subcube 𝐶 of 𝐶0 , for come constant 𝑎𝐺, will be said to have 

“mean oscillation ≦ 𝐾 in 𝐶0’ Taking for 𝑎𝐶 the average of 𝑢 in 𝐶 we always have 

(
1

𝑚(𝐶〉
∫ |
𝐶

𝑢 − 𝑎𝐶|𝑑𝑥)

2

≦
1

𝑛(𝐶)
,∫ |
𝐶

𝑢(𝑥) − 𝑎d2𝑑𝑥 

=
1

2
(𝑚(𝐶))

−2
∫ 𝑑
𝐶

𝑥∫ 𝑑
𝐶

𝑦|𝑢(𝑥) − 𝑢(𝑦)|2. 

In particular 𝑢 has mean oscillation ≦ 𝐾, if 𝑢 is bounded and its oscillation |𝑢(𝑥) − 𝑢(𝑦)| 

does not exceed the value √2𝐾 in 𝐶0. 

Boundedness of 𝑢 is not necessary for boundedness of its mean oscillation. 𝐿𝑡 gindeed 𝑢(𝑥) 

be any integrable function in 𝐶0 with the property that we can associate with every subcube 

𝐶 a value 𝑎𝐶 such that the subset 𝑆𝜎 of 𝐶, where 

|𝑢 − 𝑎𝐶| ≧ 𝜎, 

has measure 

𝜇(𝜎) ≦ 𝐵𝑒−𝑏𝜎𝑚(𝐶) 𝑓𝑜𝑟 𝜎 > 0. 
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Then 

∫ |
𝐶

𝑢 − 𝑎0|𝑑𝑥 = ∫ 𝜇
∞

0

(𝜎)𝑑𝜎 ≦
𝐵

𝑏
𝑚(𝐶) 

so that the mean oscillation of 𝑢 does not exceed 𝐵/𝑏. Take now for 𝑢 the function  log |𝑥 −

𝑦|, where 𝑦 is fixed. Let 𝐶 be any cube of side ℎ, and let 𝜉 and 𝜂 be points of 𝐶 for which 

|𝜉 − 𝑦| = max
𝑥∈𝐶

|𝑥 − 𝑦| , |𝜂 − 𝑦| = min
𝑥∈𝐶

  |𝑥 − 𝑦|. 

Take 𝑎𝐶 =  log |𝜉 − 𝑦|. Then for 𝑥 in 𝐶 

|𝑢(𝑥) − 𝑎𝐶| =  log 
|𝜉 − 𝑦|

|𝑥 − 𝑦|
. 

𝑆𝜎 is the subset of 𝐶 lying in the sphere 

|𝑥 − 𝑦| ≦ |𝜉 − 𝑦|𝑒−𝜎 . 

If 𝑆𝜎 is not empty. it must contain 𝜂, so that 

|𝜉 − y|𝑒−𝜎 ≧ |𝜂 − 𝑦| ≧ |𝜉 − 𝑦| − |𝜉 − 𝜂| ≧ |𝜉 − 𝑦| − √𝑛ℎ. 
Thus 

|𝜉 − 𝑦| ≦√𝑛ℎ . 

1 − 𝑒−𝜎 

It follows that 𝑆𝜎 is contained in the sphere 

|𝑥 − 𝑦| ≦
√𝑛ℎ

𝑒𝜎 − 1
 

and that its measure 𝜇(𝜎) does not exceed 

(
√𝑛𝜔

𝑒𝜎 − 1
𝑛)

𝑛

𝑚(𝐶) , 

where the volume of the unit sphere in 𝑛‐space is denoted by (𝑜𝑗𝑛)
𝑛. Since also 𝜇(𝜎) ≦

𝑚(𝐶) for all 𝜎 ≧ 0, we find that 

𝜇(𝜎) ≦ (1 + √𝑛(〉𝑛)
𝑛𝑒−𝑛𝜎𝑛(𝐶) = 𝐵𝑒−𝑏𝜎𝑚(𝐶) 𝑓𝑜𝑟 𝜎 > 0, 

where 𝐵 and 𝑏 do not depend on 𝐶. This proves that  log |𝑥 − 𝑦| is of bounded mean 

oscillation in every cube 𝐶0. The same holds then for any function 𝑢(𝑥) of the form 

𝑢(𝑥) = ∫ 𝜁 (𝑦) log |𝑥 − 𝑦|𝑑𝑦 with ∫ | 𝜁(𝑦)|𝑑𝑦 < ∞.  Lemma (1.1.1) will be derived from 

Lemma (1.1.1)[1]. Let u(x) be integrable in a cube C0 and assume that there is a constant 

κ such that for every parallel subcube C we have 

1

𝑚(𝐶)
∫ |
𝐶

𝑢 − 𝑢𝐶|𝑑𝑥 ≦ 𝜅,                                                             (2) 

where 𝑢𝐶 is the mean vatue of 𝑢 in C. Then if 𝑆𝜎 is the set of points where |𝑢 − 𝑢𝐺𝛷| > 𝜎, 

its reassure 𝑚(𝑆𝜎) satisfies 
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𝑚(𝑆𝜎) ≦
𝐴

𝜅
∫ |
𝐶0

𝑢 − u𝐶𝜑|𝑑𝑥 ⋅ 𝑒
−𝛼𝜎κ−1  𝑓𝑜𝑟 

𝜎

𝜅
≧ 𝑎.                     (3) 

Since 𝑛(𝑆𝜎) ≦ 𝑚(𝐶0) it follows that 

𝑚(𝑆𝜎) ≦ 𝑒
𝛼𝑎𝑒−𝑎𝜎𝜅

−1
𝑚(𝐶0) 𝑓𝑜𝑟 𝜎 > 0.                                        (4) 

Here 𝐴 ≦ 1, 𝛼, 𝑎 are positive 𝑛𝑢𝜈𝑛𝑏𝑒𝑟𝑠 depending only on the dimension 𝑛. 

By a standard type of argnment we can derive, as consequences of (4), the following 

inequalities: for 0 < 𝛽 < 𝛼, 

∫ 𝑒𝛽𝜅
−1u−u𝐶0

𝐶0

𝑑𝑥 ≦ (
𝛼

∞− 𝑝
+ 𝑒𝛽𝑢)𝑚(𝐶0),                             (5) 

∫ (𝑒𝛽𝜅
−11u−𝑢c01 − 1)

𝐶0

𝑑𝑥 ≦ (
𝑒𝛽𝛼 − 1

𝛽𝑎
+
𝐴

𝜅

∞

𝛼 − 𝛽
𝑒𝑎(𝛽−𝑎))∫ |

𝐶0

𝑢 − 𝑢𝑐o|𝑑𝑥

= �̃�∫ |
𝐶0

𝑢 − 𝑢𝐶0|𝑑𝑥 ≦ 2�̃�∫ |
𝐶0

𝑢|𝑑𝑥.                                                                 (6)  

Lemma (1.1.2)[1]. Let 𝑢(𝑥) be an integrable function defined ;𝑛 a finite cube 𝐶0;𝑛𝑛‐

dimensionat space; 𝑥 = (𝑥1, ⋯ . 𝑥𝑛) . Assume that there is a constant 𝐾 such that for every 

parauel subcube C. artd some constant 𝑎𝐶. the inequdity 
1

𝑚(𝐶)
,∫|
𝐶

𝑢 − 𝑎𝐶|dx ≤ 𝐾                                                           (7) 

holds. Here dx denotes element of volume and n(C) is the Lebesgue ,neasure of C. Then, if 

μ(σ) is the measure of the set of points where |u − a0φ1 > σ, we have 

𝜇(𝜎) ≦ 𝐵𝑒−𝑏𝜎|K𝑚(𝐶0) 𝑓𝑜𝑟 𝜎 > 0,                             (8) 
where B, b are constants depending only on n. 

Proof. We may assume without loss of generality that 𝑢𝐶0 = 0 and that 𝜅 = 1, by replacing 

𝑢 by (𝑢 − 𝑢𝐶𝑙)/𝜅. 

Denote by 𝐹(𝜎) the smallest number, depending only on 𝜎 and 𝑛 (and independent of the 

particular function 𝑢 or cube 𝐶𝜗) such that 

𝑚(𝑆𝜎) ≦ 𝐹(𝜎)∫ |
𝐺0

𝑢|𝑑𝑥; 

obviously 𝐹(𝜎) ≦ 1/𝜎. We now prove that, for 𝜎 ≧ 2𝑛. 

𝐹(𝜎) ≦
1

𝑠
𝐹(𝜎 − 2𝑛𝑠) for 2−𝑛𝜎 ≧ 𝑠 ≧ 1.                               (9) 

The inequality (3) is of interest since, in case 𝑢(𝑥) is integrable in an infinite cube �̃�0 and 

satisfies (1) in every finite subcube, we can conclude from (3)  that 
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∫ (
𝐶o

𝑒𝑝𝜅−1I𝑢I − 1)𝑑𝑥 ≦ 2𝐴f ∫ |
𝜁0

𝑢|𝑑𝑥.                                         (10)  

If one wishes to prove (7) directly, without proving (7) , then the proof given below can be 

simplified slightly. 

Lemma (1.1.2) follows easily from For (1) implies that |𝑢𝐶 − 𝑎𝐶| ≦ 𝐾 so that 
1

𝑚(𝐶)
∫|
𝐶

𝑢 − 𝑢𝑐|𝑑𝑥 ≦ 2𝐾. 

By Lemma (1.1.1)   holds, with 𝐾 = 2𝐾, and (2) then folows easily. 

The proof of Lemma (1.1.2) is based of integrable functions which, in one dimension, is due 

to 𝛤. Riesz, 𝑚𝑑 which has been used extensively by Calderon and Zygmund [1] and 

Hörmander [2]. For completeness we include the proof, in a form suitable for application to 

Lemma (1.1.2). 

For 𝑢 be an integrable function defined in a cube 𝐶0 and let 𝑠 be a positive number such that 

𝑠 ≧
1

𝑚(𝐶0)
∫ |
𝐶0

𝑢|𝑑𝑥.                                                       (11) 

There exists a denumerable number of open disjoint cubes 𝐼𝑘 in 𝐶0 such that 

i) |𝑢| ≦ 𝑠 a.e. in 𝐶0 −⋃ 𝐼𝑘k , 

ii) the average value 𝑢𝑘 of 𝑢 in 𝐼𝑘 is bounded in absolute value by 2𝑛𝑠, 

iii) ∑ 𝑚𝑘 (𝐼𝑘) ≦ 𝑠
−1 ∫ |

𝐺0
𝑢1𝑑𝑥. 

Proof. Divide 𝐶0 (by halving each edge) into 2𝑛 equal cubes and let 𝐼11, 𝐼12 , be those open 

cubes over which the average value of |𝑢| is ≧ 𝑠. Then 

𝑠𝑚(𝐼1k) ≦ ∫ |
𝐼1𝑘

𝑢1𝑑𝑢 ≦ 2𝑛𝑠𝑚(𝐼1k) 

by (4). Next subdivide each remaining cube, over which the average of |𝑢1 is < 𝑠, into 2𝑛 

equal cubes, and denote by 𝐼21 . 𝐼22, those cubes thus obtained over which the average of 

|𝑢1 is ≧ 𝑠. Again subdivide the remaining cubes, etc. In this way we obtain a sequence of 

cubes 𝐼𝑖k, which we rename 𝐼𝑘, such that 

𝑠𝑚(𝐼𝑘) ≦ ∫ |
𝐼𝑘

𝑢|𝑑𝑥 < 2𝑛𝑠𝑚(𝐼𝑘) . 

Clearly property ii) is satisfied. Furthermore, summing the left inequality over 𝑘 we obtain 

iii). We observe finally that a point of 𝐶0 which does not belong to any of the 𝐼𝑘 belongs to 

arbitrarily small cubes over which the average of |𝑢| is < 𝑠. Hence |𝑢| ≦ 𝑠a. e. outside all 

the 𝐼𝑘 , venfying i). 

To this end we apply the above to the function 𝑢 in 𝐶0 with 

2−𝑛𝜎 ≧ 𝑠 ≧ 1 ≧
1

𝑚(𝐶0)
∫ |
𝐶𝜑

𝑢|𝑑𝑥, 
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the last inequality following from (7). Because of i) we see that if |𝑢(𝑥)| > 𝜎, then 𝑥 belongs 

to one of the 𝐼𝑘 (except for a set of measure zero). Hence, since the average 𝑢𝑘 of 𝑢 in 𝐼k is 

bounded by 2𝑛𝑠 in absolute value, we see that 

𝑚(𝑆𝜎) = 𝑚{𝑥||𝑢(𝑥)| > 𝜎} ≦∑r

𝑘

𝑛{𝑥|𝑢(𝑥) − 𝑢𝑘| > 𝜎 − 2
𝑛𝑠 𝑖𝑛 𝐼𝑘}. 

Now in the cube 𝐼𝑘 the function 𝑢 − 𝑢𝑘 satisfies the hypotheses of Lemma (1.1.1), in 

particular it satisfies (1)  for every cube in 𝐼∗. Hence, using the definition of (𝜎) , we have 

𝑣𝜄{𝑥|𝑢(𝑥) − 𝑢𝑘| > 𝜎 − 2
𝑛𝑠 𝑖𝑛 𝐼𝑘}  ≦ 𝐹(𝜎 − 2

𝑛𝑠)∫ |
𝐼𝑘

𝑢 − 𝑢𝑘|𝑑𝑥 

≦ 𝐹(𝜎 − 2𝑛𝑠)𝑚(𝐼𝑘) . 

Thus we find 

𝑚(𝑆𝜎) ≦ 𝐹(𝜎 − 2
𝑛𝑠)∑𝜈

𝜄

𝑛(𝐼𝑘) ≦
1

𝑠
𝐹(𝜎 − 2𝑛𝑠)∫ |

𝐶0

𝑢1𝑑𝑥 

by iii) , proving (3). Setting 𝑠 = 𝑒 in (3) we see that if 𝐹(𝜎) ≦ 𝐴𝑒−𝑎𝜎 , ∞ = 1/(2𝑛𝑒) for 

some 𝜎, then 

𝐹(𝜎 + 2𝑛𝑒) ≦
1

𝑒
𝐴𝑒−𝑎𝜎 = 𝐴𝑒−∞(𝜎+2

𝑛𝑒). 

From this it follows that if on some interval of length 2𝑛𝑒 the inequality 𝐹(𝜎) ≦ 𝐴𝑒−𝛼𝜎 

holds, then it holds for all larger 𝜎. But a calculation shows that 

𝐹(𝜎) ≦
1

𝜎
≦
12

10
2−𝑛𝑒−𝑎𝜎  𝑓𝑜𝑟 

2𝑛𝑒

𝑒 − 1
≦ 𝜎 ≦

2𝑛𝑒

𝑒 − 1
+ 2𝑛𝑒. 

(This interval is the one of length 2𝑛𝑒 on which the maximum of 𝑒𝑎𝜎/𝜎 is as small as 

possible.) Thus we conclude that 

𝑚(𝑆𝜎) ≦
12

10
2−𝑛ℓ−𝛼𝜎∫ |

𝐶0

𝑢|𝑑𝑥 𝑓𝑜𝑟 ∝ 𝜎 ≧
1

𝑒 − 1
 , 𝛼 =

1

2𝑛𝑒
, 

that is, we have proved (8)  with 

𝐴 =
12

10
2−𝑛, 𝑎 =

1

2𝑛𝑒
, 𝑎 =

2𝑛𝑒

𝑒 − 1
.                                 (12) 

We have made no attempt here to obtain the best constants. The exponent 𝑎 can be 

considerably improved, i.e. increased, by using the hypothesis (5)  again to sharpen the 

estimate |𝑢𝑘| ≦ 2
𝑛𝑠 that was provided by ii). We mention only that we have proved (8)  with 

a constant 𝛼 which for large 𝑛 behaves like (1/𝑒 log 2)( log 𝑛/𝑘𝑡) . M. Weiss and A. 

Zygmund [4] contains the following 

Theorem (1.1.3)[1]. If F(x) is φeriodiι and for some β > ξ satisfies 

𝐹(𝑥 + ℎ) + 𝐹(𝑥 − ℎ) − 2𝐹(𝑥) = 0 (
ℎ

| log ℎ|𝛽
)                        (13) 

uniformly in 𝑥, then 𝐹 is the indefinite integral of an 𝑓 belonging to every 𝐿𝑔. They also give 
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an example showing that the result does not hold for 𝛽 =
1

2
. 

The proof of the Theorem (1.1.3) in [4] is rather short but it relies on a Theorem (1.1.3) of 

Littlewood and Paley, and it seems of interest to us to show how it may be derived from our 

Lemma (1.1.1). 

Then u satisfies the conditions of Lemma (1.1.1) with some constant κ depending on K, β 

and n so that, consequently, u satisfies (7)   and (8). 

The preceding Theorem (1.1.3) follows easily from this lemma. By convolution of 𝐹 with a 

smooth peaked kernel we may suppose that 𝐹 is infinitely differentiable. It suffices merely 

to estimate the 𝐿𝑝 norm of the denvative 𝑓 of 𝐹. Hypothesis (7) asserts simply that 𝑓 satisfies 

(8) for 𝑛 = 1. Applying Lemma (1.1.4) we obtain from (2)  or (a)  an estimate for the 𝐿𝑝 

norm of 𝑓 depending only on 𝐾 and 𝛽, proving the Theorem (1.1.3). From (3) we find, 

furthermore, that 𝑒𝑎
′|𝑓1 is integtable for some 𝛼′ > 0. 

We show 

Lemma (1.1.4)[1]. Let u(x) be an integrable function defined in a finite cube C0 in n‐space. 

Assume that there is a constant K and a constant β > # such that if C1 and Ca, are any two 

equal subcubes having a futl (n − 1)‐dimensional face in common, then 

|𝑢𝐶1 − 𝑢𝐶8| ≦
𝐾

1 + |log ℎ|
𝛽.                                       (14) 

here uc1 , uC, are the mean values of u in the cubes C1 and C2, and h is the common side 

length.  

Proof. Consider a subcube 𝐶, of side length ℎ subdivided into 2𝑛𝑁 equal cubes 𝐶𝑟 , 𝑟 = 1, 

⋅⋅⋅, 2𝑛𝑁, obtained by dividing each edge into 2𝑁 equal parts, and let 𝑢𝑟 denote the mean 

value of 𝑢 in 𝐶𝑟. Then 
1

𝑚(𝐶)
∫|
𝐶

𝑢 − 𝑢𝐶|𝑑𝑥 = lim
𝑁→∞

2−𝑛𝑁∑|𝑢𝑟 − 𝑢𝐶|. 

Thus to prove (1) it suffices to show that 2−𝑛𝑁 ∑ |𝑢𝑟 − 𝑢𝑐| ≦ 𝜅, with 𝜅 depending only 

on 𝐾, 𝛽 and 𝑛. 

By Schwarz inequality, 

2−𝑛𝑁∑|𝑢𝑟 − 𝑢𝐶| ≦ [2
−𝑛𝑁∑|𝑢𝑟 − 𝑢𝐶|

2]
1/2

= 𝑎𝑁1/2 . 

We shall prove that the 𝑎𝑁 are uniformly bounded by showing that 

𝑎𝑁+1 ≦ 𝑎𝑁 + (
𝑛𝐾

1 + | log ℎ|𝛽
)
2

, ℎ =
𝑘

2𝑁+1
.                            (15) 

Since 𝑎0 = 0, it follows that 
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𝑎𝑁+1 ≦ 𝑛
2𝐾2∑(1+ |𝑗 log 2 −  log 𝑘|𝛽)

−2
∞

𝑗=1

≦ 𝜅a 

for some constant 𝜅 independent of 𝑘, convergence being guaranteed by the fact that 𝛽 >
1

2
. 

Thus to complete the proof we shall establish (9). We observe first that 2−𝑛𝑁 ∑𝑢𝑙 . = 𝑢𝐶  so 

that using the general identity 

𝑘∑𝑏𝑟
2

𝑘

1

= (∑𝑏𝑟)
2

+
1

2
∑(

𝑟,s

𝑏𝑟 − 𝑏𝜀〉
𝔅 

for real 𝑏𝑖 ., we find 

22𝑛𝑁𝑎𝑁 = 2
𝑛𝑁∑|𝑢𝑟 − 𝑢𝐶|

2 =
1

2
∑|

𝑟.𝑠

𝑢𝑟 −−𝑢𝑠1
2.               (16) 

Now, on the next subdivision of 𝐶 into 2𝑛{𝑁+1} cubes each 𝐶𝑟 is divided into 2𝑛 equal cubes 

𝐶𝑖 , 𝑖 = 1, ⋅⋅⋅ 𝑙2
𝑛, of side length ℎ = 𝑘/2𝑁+1. If 𝑢𝑟𝑖 is the mean value of 𝑢 in 𝐶𝑟𝑖 we have 

𝑢𝑟 = 2
−𝑛∑𝑢𝑟𝑙

𝑖

.                                                                  (17) 

Furthermore, since any two 𝐶𝑟:, 𝐶; can be connected by a chain of at most 𝑛 + 1 cubes each 

having a full face in common with the succeeding one, we find from (6) that 

|𝑢𝑟𝑖 − 𝑢𝑟𝐽| ≦
𝑛𝐾

1 + | log ℎ1𝑝
= 𝑀, 

where 𝑀 is so defined. This together with (11) implies 

|𝑢𝑟𝑖 − 𝑢𝑟| ≦ 𝑀. 

According to formula (8)  

2. 22𝑛(𝑁+1)𝑎𝑁+1 = ∑ |

𝑟,𝑠≦2𝑛𝑁

𝑖,𝑗≦2𝑛

𝑢𝑙𝑖 − 𝑢𝑓1
2 =∑[(𝑢𝑟𝑖

2 + 𝑢𝑠J
2 ) − 2𝑢𝑟𝑙𝑢𝑠𝑗]

=∑[ (𝑢𝑟𝑖 − 𝑢𝑟)
2 + (𝑢𝑒𝑗 − 𝑢𝜀)

8
+ 2𝑢𝑟𝑖𝑢𝑟 + 2𝑢𝑠3𝑢𝑠 − 𝑢𝑟

2 − 𝑢𝑙
2 − 2𝑢𝑟𝑖𝑢8𝑗]

=∑[(𝑢𝑟𝑖 − 𝑢𝑟)
2 + (𝑢𝑖𝐽̇ − 𝑢𝜀)

2
]

𝑟,𝑠
𝑖,𝑗

+∑[

𝑟.8

2. 22𝑛(𝑢𝑟
2 + u𝑙

2) − 22𝑛(𝑢𝑟
2 + 𝑢$

g
}

− 2. 2𝔤𝑛𝑢, 𝑢⌋, 

by (9), 

≦ 2𝑀222𝑛𝑁+2𝑛 + 22𝑛∑(𝑢𝑟 − 𝑢𝑠)
2

𝑟.𝜄

= 2. 22𝑛(𝑁+1)𝑀2 + 2. 22𝑛(𝑁+1)𝑎𝑁 , 

by (8), or 

𝑎𝑁+1 ≦ 𝑎𝑁 +𝑀
𝑙 . 

This is the desired inequality (7) and the proof is complete. 



8 

We present briefly a generalization of Lemma(1.1.2). 

Lemma (1.1.5)[1]. Let u be integrable in a finite cube C0 and consider a subdivision of C0 

into a denumerable number of cubes 𝐶𝑖 , no two having acommon interior point. Assume that 

for fixed , 1 < p < ∞, the expression 

{∑𝑚

𝑖

(𝐶𝑖)
1−𝑝|∫ |

𝐶ℓ

𝑢 − 𝑢𝐶𝑙|𝑑𝑥|
p}

1/𝑝

 

is tinite. Denote by Ku the lim 𝑠𝑢𝑝 of such expressions for all possible subdivisions of C0 

of this kind: in general Ku = ∞. If Ku < ∞, the measure m(Sσ) of the set S0., where |u −

uθ0| > σ, satisties 

𝑚(𝑆𝜎) ≦ 𝐴|
𝐾u
𝜎
|𝛷𝑓𝑜𝑟𝜎 > 0, 

for some constant A depending only on n and p. 

The result implies that the function 𝑢 belongs to 𝐿𝑝
′
 for every 𝑝′ < 𝑝. For 𝑝 = ∞ the 

hypothesis of Lemma agrees with that of Lemma (1.1.1).  

Proof. We shall not attempt to obtain the best constants. Let 𝑞 = 𝑝𝑓(𝑝 − 1〉 be the conjugate 

exponent to 𝑝. We may assume that 𝑢C0 = 0. Using induction with respect to the integer 𝑗 

we shall prove that if 

𝑠 =
2−𝑛𝜎

𝜑(𝑞𝑗 − 1) + 1
≧

𝐾𝑢

𝑛(𝐶0)
1
𝑝

,                                     (18) 

then 

𝑚(𝑆𝜎) ≦ 2
−𝑛𝑞1/𝑞+2𝑞

2+⋯+𝑗/𝑞𝑗|2
𝑛 𝑝(1−𝑔1−j)𝐾u

𝜎
|𝑝〈1−1/𝑞

𝑗+1
) (

1

𝐾u
∫ |
𝐶0

𝑢|𝑑𝑥)
1/𝑞𝑗

 Since 

𝑚(𝑆𝜎) ≦
1

𝜎
∫ |
𝐶0

𝑢|𝑑𝑥,                                                                (19) 

Holds for 𝑖 = 0. Suppose then it is true for 𝑖 − 1, we wish to prove it 𝑖or𝑗. Since 

1

𝑚(𝐶0)
∫ |
𝐶0

𝑢|𝑑𝑥 ≦
𝐾𝑢

𝑚(𝐶0)
1𝑓p
,                                                 (20) 

we may apply the 𝑢, with 𝑠 equal to its value in (12). Let 𝑢𝑘 denote the mean value of 𝑢 in 

𝐼𝑘, and set 𝑣𝑘 = 𝑢 − 𝑢𝑘 in 𝐼𝑘. From the definition of 𝐾u we may assert that 

∑𝐾𝑣𝑘
𝑝

𝑘

≦ 𝐾u
𝑝
.                                                                        (21) 

Setting 𝑎𝑘 = ∫ |
𝐼k

𝑣𝑘1𝑑𝑥 we note further (as in (14)) that 



9 

𝑚(𝐼𝑘)
1−𝑝𝑎𝑘

𝛷 ≦ 𝐾𝑣𝑘
′𝑝
                                                       (22) 

so that by Hölder’s inequality 

∑𝑎𝑘 ≦ (∑𝑤 𝜄{𝐼𝑘)
1−𝑝𝑎𝑘

𝑝
)1/𝑝|∑𝑚(𝐼𝑘)|

1𝑙q ≦ (∑𝐾𝑣𝑘
𝑔
)

1/𝑝

|∑ 𝑚(𝐼𝑘)1
1/𝑞 , 

or 

∑𝑎𝑘 ≦ 𝐾u|𝑠
−1∫ |

𝐶0

𝑢|𝑑𝑥|
1
q                                          (23) 

by (15) and iii). 

As in the derivation of (5), we have 

𝑚(𝑆𝜎) ≦∑𝑚

𝑘

{𝑥 ∈ 𝐼𝑘||𝑣𝑘1 > 𝜎 − 2
𝑛𝑠}. 

Applying the induction hypothesis (13), for 𝑗 − 1, to the functions 𝑣𝑘 in 𝐼𝑘 . We find 

𝑚(𝑆𝜎)

≦ [2−𝑛𝑞1∫q+⋯+{𝑙−1)/𝛼
𝑖−1
|
2𝑛𝑝(1 − 𝑞⊣)

𝜎 − 2𝑛𝑠
|𝑣(1−1/i)𝑔] .∑𝐾𝑣𝑘

𝑣{1−1/𝑞𝑗)

k

(
1

𝐾𝑣𝑘
∫ |
𝐼𝑘

𝑣k1𝑑𝑥)

1/q𝑗−1

= [ ]∑𝐾𝑣k
𝑝(1−q1−𝑗)

𝑘

𝑎𝑘
1/q𝑗−1

≦ [ ] (∑𝑎𝑘)
1/𝑞𝑗−1

(∑𝐾𝑣k
𝑝
)
1−𝑎1−𝑗

, 

by Hölder’s inequality, 

≦ [ ]𝐾u
1/𝑎𝑗−1

|𝑠 − 1∫ |
𝐶0

𝑢|𝑑𝑥|1/𝛼
𝑗
𝐾u
𝑝−𝑝𝑞1−′

 

by (17) and (15), so that 

𝑚(𝑆𝜎) ≦
[ ]

𝑠1/q
𝑓 𝐾u

𝑣(1−1′q𝑗+1)
(
1

𝐾u
∫ |
𝐶0

𝑢|𝑑𝑥)

1/𝑞𝑓

 

A slightly tedious calculation shows that this inequality is identical with the desired result 

(l3). 

Having established (13) we may now express it in a more convenient fonn: if (12) holds, 

then, in virtue of (14), there is a constant 𝑘 depending only on 𝑛 and 𝑝 such that 

𝑚(𝑆𝜎) ≦ 𝑘 (
𝐾u
𝜎
)
𝑝(1−1𝑇)

𝑚(𝐶0)
1/q𝑗+1 + 1 

or 
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𝑚(𝑆𝜎) ≦ 𝑘 (
𝐾u
𝜎
)
p

⋅ |
𝜎𝑚(𝐶0)

1/p

𝐾u
|𝑝/e

𝐽+𝜄
 

If now 2∼𝑛𝜎 ≧ 𝐾u𝑚(𝐶0)
−1/𝑝 and we choose the largest integer 𝑗 ≧ 0 so that (12) is 

satisfied, we have the opposite inequality for 𝑖 + 1: 

𝜎𝑚(𝐶0)
1/𝑝

𝐾u
≦ 2∙(𝜑(𝑞𝐽+1 − 1〉 + 1) ≦ 2𝑛𝜑𝑞𝑖+1. 

Inserting into the previous inequality we find 

𝑚(𝑆𝜎) ≦ 𝑘 (
𝐾u
𝜎
)
𝑝(1−

1

𝑞𝑗+1
)

𝑚(𝐶0)
1/𝑞𝑗+1 

≦ 𝐴(
𝐾u
𝜎
)
𝑝

 𝑓𝑜𝑟 𝜎 ≧ 2𝑛𝐾u𝑚(𝐶0〉
−1/p, 

for some constant 𝐴 depending only on 𝑛 and 𝑝. Since (𝑆𝜎) ≦ 𝑚(𝐶0) , the same inequality 

holds for all 𝜎 > 𝜗. with some other constant 𝐴, and the proof of the lemma is complete. 

Inequality (2) in Lemma (1.1.1) can be replaced by the more general inequality 

𝑚(𝑆2𝑛⋆𝜎) ≦ 𝐴𝑒
−𝐵𝜎𝜅−1𝑚(𝑆𝜎)𝑓𝑜𝑟 𝜎 > 0                                     (24) 

with  , 𝐵 depending only on 𝑛. Let 𝜅 = 1, 𝑢𝑂. = 0. For a fixed positive 𝑠 the cubes 𝐼𝑘 shall 

be defined as in the proof of Lemma (1.1.2). Put 

𝜇𝑘(𝜎) = 𝑚(𝑥||𝑢(𝑥) − 𝑢𝑘| > 𝜎 − 2
𝑛 𝑠 𝑖𝑛 𝐼𝑘) 

By definition, 𝜇𝑘(𝜎) is non‐increasing and does not exceed (𝐼𝑘) . By (2)   applied to 𝐼𝑘 , 

𝜇𝑘(𝜎〉 ≦ 𝑚(𝑥||𝑢(𝑥) − 𝑢𝑘1 > 𝜎 − 2
𝑛𝑠 𝑖𝑛 𝐼𝑘) 

≦ 𝑒𝛼𝑎𝑒−𝛼(𝜎−2
𝑛𝑠)𝑚(𝐼𝑘). 

Then 

𝑠𝑚(𝐼𝑘) ≦ ∫ |
𝐼𝑘

𝑢|𝑑𝑥 = ∫ 𝜇k

∞

0

(𝜎)𝑑𝜎 

= ∫ 𝜇𝑘

𝑠/2

0

(𝜎)𝑑𝜎 + ∫ 𝜇k

2𝑛𝑠

s/2

(𝜎)𝑑𝜎 + ∫ 𝜇𝑘

∞

2𝑛𝑠

(𝜎)𝑑𝜎 

≦
𝑠

2
𝑚(𝐼𝑘) + (2

𝑛𝑠 −
𝑠

2
) 𝜇k (

𝑠

2
) +

1

𝛼
𝑒𝛼𝑎𝑚(𝐼𝑘). 

It follows for 𝑠 > 𝛼−12u+2𝑒𝛼𝑎 that 

𝜇𝑘 (
𝑆

2
) ≧

1

2𝑛+1
𝑚(𝐼𝑘) ≧

1

2𝑛+1
𝑒−𝑎𝑎𝑒2

𝑛𝛼𝑠𝜇𝑘(2
𝑛+1𝑠) . 

Then also 

𝑚(𝑆𝑠/2) ≧∑𝜇𝑘
𝑘

(
𝑆

2
) ≧ 2−𝑛−1𝑒−𝛼𝑎𝑒2

𝑛𝑎𝑠
∑𝜇𝑘
𝑘

(2𝑛+1𝑠) 
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= 2−𝑛−1𝑒−𝛼𝑎𝑒2
𝑛𝛼𝑠𝑚(𝑆2𝑛+1) 𝑓𝑜𝑟 𝑠 >

1

𝛼
2𝑛+2𝑒𝛼𝑎 . 

Inequality (7) is an immediate consequence. 

Section (1.2): Critical Sobolev Space and BMO 

We give a systematic treatment to prove the Gagliardo‐Nirenberg type inequality at 

the critical index and its related estimates in the Sobolev space. It is well known that the 

Sobolev space 𝐻𝑠,𝑝(ℝ𝑛) , 1 < 𝑝 < ∞ is continuously imbedded into 𝐿∞(ℝ𝑛) provided 𝑠 >

𝑛/𝑝. The case when 𝑠 = 𝑛/𝑝 is called the critical exponent, which implies 𝐻𝑛/𝑝,𝑝(ℝ𝑛) is 

not imbedded into 𝐿∞(ℝ𝑛) , but into 𝐿𝑞(ℝ𝑛) for all 𝑞 with 𝑝 ≦ 𝑞 < ∞. See, e.g., Adams 

[7]. Then, Ogawa [19], Ogawa and Ozawa [20] and Ozawa [21] gave a precise investigation 

for this imbedding and obtained the following optimal growth rate as 𝑞 → ∞. Indeed, for 

every 𝑝 with 1 < 𝑝 < ∞, it holds 

‖𝑢‖𝐿𝑞(ℝ𝑛) ≦ 𝐶𝑛,𝑝𝑞
1
𝑝‖𝑢‖

𝐿𝑝(ℝ𝑛)

𝑝
𝑞

‖(−△)
𝑛
2𝑝𝑢‖

𝐿𝑝(ℝ𝑛)

1−
𝑝
(𝑞)

                         (25) 

for all 𝑢 ∈ 𝐻𝑛/𝑝,𝑝(ℝ𝑛) and for all 𝑞 with 𝑝 ≦ 𝑞 < ∞, where 𝑝′ = 𝑝/(𝑝 − 1) denotes the 

Hölder conjugate exponent of 𝑝 and 𝐶𝑛,𝑝 is a constant depending on 𝑛 and 𝑝, but not on 𝑞. 

We generalize (25) to the estimate in the homogeneous Sobolev space such as 𝐿𝑝(ℝ𝑛) ∩

�̇�𝑛/𝑟,𝑟(ℝ𝑛) . In fact, we shall prove that 

‖𝑢‖𝐿𝑞(ℝ𝑛) ≦ 𝐶𝑛𝑟
′𝑞
1
𝑟‖𝑢‖

𝐿(ℝ𝑛)

𝑝
𝑞

𝑝‖(−△)
𝑛
2𝑟𝑢‖

𝐿𝑟(ℝ𝑛)

1−
𝑝
𝑞
                      (26) 

holds for all 𝑢 ∈ 𝐿𝑝(ℝ𝑛) ∩ �̇�𝑛/𝑟,𝑟(ℝ𝑛) with 1 ≦ 𝑝 ≦ 𝑞 < ∞ and 1 < 𝑟 < ∞. Here and in 

what follows, we denote by �̇�𝑠,𝑟(ℝ𝑛) the homogeneous Sobolev space defined by 

�̇�𝑠,𝑟(ℝ𝑛):= {𝑢 ∈ 𝑆′(ℝ𝑛); ‖(−△)
𝑠
2𝑢‖𝐿𝑟(ℝ𝑛) < ∞}. 

It should be noted that our constant 𝐶𝑛 in (26) depends only on 𝑛. It seems to be an 

interesting problem to deal with the limiting end‐point of the estimate (26) as 𝑟 → ∞. Our 

second purpose is to show the following estimates treating the marginal case in the space of 

functions of bounded mean oscillation, i.e., BMO. It holds 

‖𝑢‖𝐿𝑞(ℝ𝑛) ≦ 𝐶𝑛𝑞‖𝑢‖𝑝

𝑝
𝐿𝑞(ℝ𝑛)‖𝑢‖𝐵𝑀𝑂

1−
𝑝
𝑞
                         (27) 

for all 𝑢 ∈ 𝐿𝑝(ℝ𝑛) ∩ 𝐵𝑀𝑂 with 1 ≦ 𝑝 < ∞ and for all 𝑞 with 𝑝 ≦ 𝑞 < ∞. Recently, Chen 

and Zhu [11] obtained (27) by means of a variant of the John‐Nirenberg inequality such as 

𝜇({𝑥 ∈ ℝ𝑛; |𝑢(𝑥)| > 𝑡}) 

≦ 𝐶𝑛
‖𝑢‖𝐿1(ℝ𝑛)

‖𝑢‖𝐵𝑀𝑂
 exp (−

𝛼𝑛𝑡

‖𝑢‖𝐵𝑀𝑂
) with 𝑡 > ‖𝑢‖𝐵𝑀𝑂                     (28) 

for all 𝑢 ∈ 𝐿1(ℝ𝑛) ∩ 𝐵𝑀𝑂 with positive constants 𝐶𝑛 and 𝛼𝑛 depending on 𝑛, where 𝜇 

denotes the Lebesgue measure on ℝ𝑛. However, our method is different from theirs. Indeed, 

instead of BMO, we make use of the set 𝑊 defined by 

𝑊 ∶= {𝑢 ∈ 𝐿𝑙𝑜𝑐
1 (ℝ𝑛) ; ‖𝑢‖𝑊 ∶=  sup (𝑢

∗∗(𝑡) − 𝑢∗(𝑡)) < ∞}, 

where 𝑢∗ and 𝑢∗∗ denote the rearrangement of 𝑢 and the average function of 𝑢∗, respectively. 
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First, we prove (27) with BMO replaced by 𝑊. Next, we show the estimate 

‖𝑢‖𝑊 ≦ 𝐶𝑛‖𝑢‖𝐵𝑀𝑂 for all 𝑢 ∈ 𝐵𝑀𝑂. 

It is well‐known that at the critical index, the Gagliardo‐Nirenberg inequality and the 

Trudinger‐Moser one are equivalent. Hence, as a consequence of (27) with 𝑝 = 1, we see 

that there exist two positive constants 𝐶𝑛 and 𝛼𝑛 such that 

∫ ( exp (𝛼𝑛
|𝑢(𝑥)|

||𝑢||𝐵𝑀𝑂
) − 1)

 

ℝ𝑛
𝑑𝑥 ≦ 𝐶𝑛

‖𝑢‖𝐿1(ℝ𝑛)

‖𝑢‖𝐵𝑀𝑂
                       (29) 

holds for all 𝑢 ∈ 𝐿1(ℝ𝑛) ∩ 𝐵𝑀𝑂. Our advantage is to obtain (28) from (29), which implies 

that the John‐Nirenberg type estimate such as (28) is a consequence of (29). As a result, it 

turns out that the Gagliardo‐Nirenberg inequality in 𝐿1(ℝ𝑛) ∩ 𝐵𝑀𝑂 is equivalent to the 

John‐Nirenberg type estimate. We also show the Trudinger‐Moser inequality in 𝐿𝑝(ℝ𝑛) ∩

�̇�𝑛/𝑟,𝑟(ℝ𝑛) which is based on (26). 

   It is known that the 𝐿∞‐norm is dominated by means of the logarithm of the �̇�𝑠,𝑞(ℝ𝑛)‐

norm with 1 < 𝑞 < ∞ and 𝑠 > 𝑛/𝑞 provided the norm of the critical Sobolev space 

𝐿𝑝(ℝ𝑛) ∩ �̇�𝑛/𝑟,𝑟(ℝ𝑛) is added on the right‐hand side of the estimate. This is called the 

Brezis−Gallouet−Wainger inequality. As an application of (27), we show that 

‖𝑢‖𝐿∞(ℝ𝑛) ≦ 𝐶𝑛,𝑝,𝑞,𝑠 (1 + (‖𝑢‖𝐿(ℝ𝑛)𝑝 + ‖𝑢‖𝐵𝑀𝑂) log (𝑒 + ‖(− △)
𝑠

2𝑢‖𝐿(ℝ𝑛)𝑞)) (30)  

holds for all 𝑢 ∈ 𝐿𝑝(ℝ𝑛) ∩ �̇�𝑠,𝑞(ℝ𝑛) , where 1 ≦ 𝑝 < ∞, 1 < 𝑞 < ∞ and 𝑠 > 𝑛/𝑞. A 

similar estimate was proved by Kozono et al. [14] by using the Littlewood‐Paley theory. On 

the other hand, based on (27), we derive (30) in terms of the 𝐿𝑝 − 𝐿𝑞 estimate for the 

semigroup {𝑒−𝑡(−△)
𝑠/2
}
𝑡≧0

, which is different from [14] and Engler [22]. See also Kozono 

and Taniuchi [21] and Ozawa [16]. 

The 𝐿𝑝‐estimate of difference between the shifted and original Riesz potentials plays an 

important role for the proof of (26). The relation between the space of BMO and the set 𝑊 

is clarified. The asymptotic behavior of the semigroup {𝑒−𝑡(−△)
𝑠/2
}
𝑡≧0

 at 𝑡 = 0 and 𝑡 = ∞ 

is established. We shall state main results. First, we show the Gagliardo‐Nirenberg type 

inequality which may be regarded as a generalized version of (25). We shall deal with the 

function defined on ℝ𝑛. For simplicity, we abbreviate 𝐿𝑝(ℝ𝑛) and 𝐻𝑠,𝑝(ℝ𝑛) to 𝐿𝑝 and 𝐻𝑠,𝑝, 

respectively. 

Theorem (1.2.1)[5]: There exists a constant Cn depending only on n such that 

‖𝑢‖𝐿𝑞 ≦ 𝐶𝑛𝑟
′𝑞
1
𝑟‖𝑢‖

𝐿𝑝

𝑝
𝑞
‖(−△)

𝑛
2𝑟𝑢‖

𝐿𝑟

1−
𝑝
𝑞
                                 (31) 

holds for all 𝑢 ∈ 𝐿𝑝 ∩ 𝐻𝑛/𝑟,𝑟 with 1 ≦ 𝑝 < ∞, 1 < 𝑟 < ∞ andfor all 𝑞 with 𝑝 ≦ 𝑞 < ∞. 

   Next, we deal with the limiting end‐point of Theorem (1.2.1) as 𝑟 → ∞. Indeed, we may 

regard the limit of the space �̇�𝑛/𝑟,𝑟 as 𝑟 → ∞ as the space of BMO. 

Proof. We may assume 𝑢 belongs to the Schwartz class 𝑆 since 𝒮 is dense in the function 

space 𝐿𝑝 ∩ �̇�𝑛/𝑟,𝑟. We set 𝑚 : =  max  (𝑛 + 1, 𝑝, 𝑟) . First, we deal with the case 𝑚 ≦ 𝑞 <
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∞. By taking 𝛷(𝜉) = 𝑒−𝜋|𝜉|
2
 and (𝜉) = 1 − 𝛷(𝜉) , we have 

𝑢(𝑥) = ∫ 𝑒2𝜋𝑖𝑥⋅𝜉
 

ℝ𝑛
�̂�(𝜉)𝑑𝜉 

= ∫ 𝑒2𝜋𝑖𝑥⋅𝜉
 

ℝ𝑛
�̂�(𝜉)𝛷(𝜉/𝑅)𝑑𝜉 + ∫ 𝑒2𝜋𝑖𝑥⋅𝜉

 

ℝ𝑛
�̂�(𝜉)𝛹(𝜉/𝑅)𝑑𝜉 

=: 𝑢(𝑥) + 𝑢(𝑥) , 

where 𝑅 > 0 is a parameter determined later. Obviously, û (𝜉) = ℱ𝑢(𝜉) : =

∫ 𝑒−2𝜋𝑖𝑥⋅𝜉
ℝ𝑛

𝑢(𝑥)𝑑𝑥 represents the Fourier transform of 𝑢. Since ℱ−1𝛷(𝑥) = 𝑒−𝜋|𝑥|
2
 , it is 

easy to see that 

‖ℱ−1{𝛷(⋅/𝑅)}‖𝐿𝑆 = 𝑅
𝑛(1−

1
𝑠
)
‖ℱ−1𝛷‖𝐿𝑠 = 𝑅

𝑛(1−
1
𝑠
)
𝑠−

𝑛
2𝑠 ≦ 𝑅

𝑛(1−
1
𝑠
)
 

holds for all 𝑅 > 0 and 𝑠 ≧ 1. Taking 𝑠 so that 1/𝑠 = 1/𝑞 − 1/𝑝 + 1, we have by the Young 

inequality that 

‖𝑢1‖𝐿𝑞 = ‖𝑢 ∗ ℱ
−1{𝛷(⋅/𝑅)}‖𝐿𝑞 ≦ ‖𝑢‖𝐿𝑝‖ℱ

−1{𝛷(⋅/𝑅)}‖𝐿𝑆 

≦ 𝑅
𝑛(1−

1
𝑠
)
‖𝑢‖𝐿𝑝 = 𝑅

𝑛(
1
𝑝
−
1
𝑞
)
‖𝑢‖𝐿𝑝 .                        (32) 

On the other hand, 𝑢2 can be rewritten as: 

𝑢2(𝑥) = ∫ 𝑒2𝜋𝑖𝑥⋅𝜉
 

ℝ𝑛
(2𝜋|𝜉|)

𝑛
𝑟  û (𝜉)

𝛹(𝜉/𝑅)

(2𝜋|𝜉|)
𝑛
𝑟

𝑑𝜉 = (−△)
𝑛
2𝑟𝑢 ∗ 𝐾𝑅(𝑥) ,    (33) 

where 

𝐾𝑅(𝑥) = ℱ
−1 {(2𝜋| ⋅ |)−

𝑛
𝑟(1 − 𝛷(⋅/𝑅))} (𝑥) = 𝐼𝑛

𝑟
(𝑥) − 𝐼𝑛

𝑟
∗ ℱ−1{𝛷(⋅/𝑅)}(𝑥) 

= 𝐼𝑛
𝑟
(𝑥) − 𝐼𝑛

𝑟
∗ (𝑅𝑛𝑒−𝜋|𝑅⋅|

2
)(𝑥) = 𝑅𝑛∫ (𝐼𝑛

𝑟
(𝑥) − 𝐼𝑛

𝑟
(𝑥 − 𝑦))

 

ℝ𝑛
𝑒−𝜋|𝑅𝑦|

2
𝑑𝑦. 

Notice that 𝑅𝑛 ∫ 𝑒−𝜋|𝑅𝑦|
2 

ℝ𝑛
𝑑𝑦 = 1 for all 𝑅 > 0. Let us take 𝑠 so that 

1

𝑠
=
1

𝑞
−
1

𝑟
+ 1. Since 

𝑞 ≧ 𝑚, we have 𝑞 ≧ 𝑟 and 𝑞 > 𝑛, which yield 𝑠 ≧ 1 and 𝑛𝑟′/(𝑛 + 𝑟′) < 𝑠 < 𝑟′. 

Applying the Minkowski inequality and Lemma (1.2.6) with 𝑝 replaced by 𝑟, we see 

‖𝐾𝑅‖𝐿𝑆 = 𝑅
𝑛 (∫ |

 

ℝ𝑛
∫ (𝐼𝑛/𝑟(𝑥) − 𝐼𝑛/𝑟(𝑥 − 𝑦))
 

ℝ𝑛
𝑒−𝜋|𝑅𝑦|

2
𝑑𝑦|𝑠𝑑𝑥)

1
𝑠

 

≦ 𝑅𝑛∫ 𝑒−𝜋|𝑅𝑦|
2

 

ℝ𝑛
(∫ |

 

ℝ𝑛
𝐼𝑛/𝑟(𝑥) − 𝐼𝑛/𝑟(𝑥 − 𝑦)|

𝑠𝑑𝑥)

1
𝑠

𝑑𝑦 

= 𝑅𝑛𝛾(𝑛/𝑟)−1∫ 𝑒−𝜋|𝑅𝑦|
2

 

ℝ𝑛
(∫ |

 

ℝ𝑛
𝐼𝑛/𝑟(𝑥) − 𝐼𝑛/𝑟(𝑥 − 𝑦)|

𝑠𝑑𝑥)

1
𝑠

𝑑𝑦 
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≦ 𝑅𝑛𝛾(𝑛/𝑟)−1∫ 𝑒−𝜋|𝑅𝑦|
2

 

ℝ𝑛
(𝐶𝑛𝑇|𝑦|

𝑛(1−
𝑆
𝑟′
)
)

1
𝑠
𝑑𝑦 

≦ 𝐶𝑛𝛾(𝑛/𝑟)
−1𝑇

1
𝑠𝑅

−
𝑛
𝑞 , 

where 

𝑇:=
𝑟′

𝑟′ − 𝑠
+

𝑟′

(𝑛 + 𝑟′)𝑠 − 𝑛𝑟′
. 

Hence, by (33) and the Young inequality, it holds 

‖𝑢2‖𝐿𝑞 ≦ ‖(−△)
𝑛
2𝑟𝑢‖𝐿𝑟‖𝐾𝑅‖𝐿𝑠 ≦ 𝐶𝑛𝛾(𝑛/𝑟)

−1𝑇
1
𝑠𝑅

−
𝑛
𝑞‖(−△)

𝑛
2𝑟𝑢‖𝐿𝑟  

for all 𝑅 > 0. By (32) and the above estimate, we have 

‖𝑢‖𝐿𝑞 ≦ 𝐶𝑛 (𝑅
𝑛(
1
𝑝
−
1
𝑞
)
‖𝑢‖𝐿𝑝 + 𝛾 (

𝑛

𝑟
)
−1

𝑇
1
𝑠𝑅

−
𝑛
𝑞‖ (−△)

𝑛
2𝑟𝑢‖𝐿𝑟)        (34) 

for all 𝑅 > 0 with 1/𝑠 = 1/𝑞 − 1/𝑟 + 1. Taking 𝑅 = (
‖(−△)𝑛/(2𝑟)𝑢‖𝐿𝑟

||𝑢‖𝐿𝑝
)
𝑝/𝑛

 in (34), we have 

‖𝑢‖𝐿𝑞 ≦ 𝐶𝑛 (1 + 𝑦 (
𝑛

𝑟
)
−1

𝑇
1
𝑠) ‖𝑢‖𝐿𝑝

𝑝
𝑞
‖(−△)

𝑛
2𝑟𝑢‖𝐿𝑟1 −

𝑝

𝑞
          (35) 

for all 𝑞 with 𝑚 =  max  (𝑛 + 1, 𝑝, 𝑟) ≦ 𝑞 < ∞. 

   We next establish a bound 𝑇1/𝑠 in (35) such as 

𝑇
1
𝑠 ≦ 8𝑒

1
𝑒𝑞
1
𝑟                                                        (36) 

Indeed, since 1/𝑠 = 1/𝑞 + 1/𝑟’, we have 

(
𝑟′

𝑟′ − 𝑠
)

1
𝑠

= {𝑞 (
1

𝑞
+
1

𝑟
)}

1
𝑞
+
1
𝑟
= 𝑞

1
𝑞 (
1

𝑞
+
1

𝑟
)

1
𝑞
+
1
𝑟
𝑞
1
𝑟 ≦ 4𝑒

1
𝑒𝑞
1
𝑟 

Note that max𝑡>0𝑡
1/𝑡 = 𝑒1/𝑒 and max

0≦𝑡≦2𝑡
𝑡 = 4. Furthermore, since ≧ 𝑛 + 1 , we have 

similarly as above that 

(
𝑟′

(𝑛 + 𝑟′)𝑠 − 𝑛𝑟′
)

1
𝑠

= (
𝑟′ + 𝑞

𝑟′(𝑞 − 𝑛)
)

1
𝑞
+
1
𝑟

≦ (
𝑟′ + 𝑞

𝑟
)

1
𝑞
+
1
𝑟

 

= {𝑞 (
1

𝑞
+
1

𝑟
)}

1
𝑞
+
1
𝑟
≦ 4𝑒

1
𝑒𝑞
1
𝑟 , 

which yields (36). Since 𝛤(𝛼) = 𝒪(1/𝛼) as 𝛼 → +0, it holds 

𝛾(𝑛/𝑟)−1 ≦ 𝜋−
𝜋
2

𝛤 (
𝑛

(2𝑟′)
)

𝛤 (
𝑛
(2𝑟)

)
≦ 𝐶𝑛

1

𝑟 − 1
                           (37) 

for all 1 < 𝑟 < ∞. From (35), (36) and (37), we obtain 
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‖𝑢‖𝐿𝑞 ≦ 𝐶𝑛
1

𝑟 − 1
𝑞
1
𝑟‖𝑢‖𝑝

𝑝
𝐿𝑞
‖(−△)

𝑛
2𝑟𝑢‖𝐿𝑟1 −

𝑝

𝑞
        (38) 

for all 𝑞 with 𝑞 ≧ 𝑚 =  max  (𝑛 + 1, 𝑝, 𝑟). We next deal with the case 𝑝 ≦ 𝑞 ≦ 𝑚. By the 

Hölder inequality, we have 

‖𝑢‖𝐿𝑞 ≦ ‖𝑢‖𝑝

𝑝
𝐿𝑞
(1−𝜃)

‖𝑢‖𝑚

𝑚
𝐿𝑞
𝜃
, 

where 0 ≦ 𝜃 ≦ 1 is given by 𝑞 = 𝑝(1 − 𝜃) + 𝑚𝜃. Moreover, from (38) with 𝑞 = 𝑚, we 

obtain 

‖𝑢‖𝐿𝑞 ≦ ‖𝑢‖𝐿𝑝

𝑝
𝑞
(1−𝜃)

(𝐶𝑛
𝑚
1
𝑟

𝑟 − 1
‖𝑢‖𝑝

𝑝
𝐿𝑚‖(− △)

𝑛
2𝑟𝑢‖

𝐿𝑟
1−
𝑝
𝑚)

𝑚
𝑞
𝜃

 

≦ 𝐶𝑛
𝑚
1
𝑟

𝑟 − 1
‖𝑢‖

𝐿𝑝

𝑝
𝑞
‖(−△)

𝑛
2𝑟𝑢‖𝐿𝑟1 −

𝑝

𝑞
 

≦
𝐶𝑛
𝑟 − 1

(
𝑚

𝑝
)

1
𝑟
𝑞
1
𝑟‖𝑢‖𝐿𝑝‖(−△)

𝑛
2𝑟𝑢‖𝐿𝑟

𝑝

𝑞
1 −

𝑝

𝑞
                         (39) 

In the above estimates, notice that (𝑞/𝑝)1/𝑟
′
≧ 1 and 

𝑚
1
𝑟

𝑟 − 1
≧

𝑟
1
𝑟

𝑟 − 1
= 𝑟−

1
𝑟

𝑟

𝑟 − 1
≧ 𝑒−

1
𝑒

𝑟

𝑟 − 1
≧ 𝑒−

1
𝑒 , 

which yields 

(
𝑚
1
𝑟

𝑟 − 1
)

𝑚
𝑞
𝜃

≦ 𝑒
1
𝑒
𝑚
1
𝑟

𝑟 − 1
. 

Now, we investigate the constant (𝑚/𝑝)1/𝑟
′
/(𝑟 − 1) in (39). When 𝑝 ≦ 𝑟, we see that 

1

𝑟 − 1
(
𝑚

𝑝
)

1
𝑟
=

1

𝑟 − 1
(
 max (𝑛 + 1, 𝑟)

𝑝
)

1
𝑟

≦
1

𝑟 − 1
(
𝑟 + 𝑛 + 1

𝑝
)

1
𝑟
 

≦
(𝑟 + 𝑛 + 1)

1
𝑟

𝑟 − 1
≦ 𝐶𝑛𝑟

′ 

for all 𝑝 ≦ 𝑟 < ∞. Next, when 𝑝 ≧ 𝑟, we have 

1

𝑟 − 1
(
𝑚

𝑝
)

1
𝑟
=

1

𝑟 − 1
(
 max (𝑛 + 1, 𝑝)

𝑝
)

1
𝑟

≦
1

𝑟 − 1
(
𝑝 + 𝑛 + 1

𝑝
)

1
𝑟
≦ 𝐶𝑛

1

𝑟 − 1
 

for all 1 < 𝑟 ≦ 𝑝 < ∞. Hence, we have by (39) that 
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‖𝑢‖𝐿𝑞 ≦ 𝐶𝑛𝑟
𝛾
𝑝
𝑞
1−
𝑝
𝑞
𝑞
1
𝑟‖𝑢‖𝐿𝑝‖(−△)

𝑛
2𝑟𝑢‖𝐿𝑟                        (40) 

for all 𝑞 with 1 ≦ 𝑞 ≦ 𝑚. From (38) and (40), we obtain the desired result. This completes 

the proof of Theorem (1.2.1). 

Theorem (1.2.2)[5]. There exists a constant Cn depending only on n such that 

‖𝑢‖𝐿𝑞 ≦ 𝐶𝑛𝑞‖𝑢‖𝐿𝑝

𝑝
𝑞
‖𝑢‖𝐵𝑀𝑂

1−
𝑝
𝑞
                                   (41) 

holds for all u ∈ Lp ∩ BMO with 1 ≦ p < ∞ andfor all q with p ≦ q < ∞. 

An immediate consequence of Lemma (1.2.7) and (1.2.8). 

Corollary (1.2.3)[5]. (i) For every 1 < r < ∞, there exists a positive constant αn,r 

depending only on n and r such that thefollowing inequality holds. That is, for every 0 <
α < αn,r, there exists a constant Cn,r,α which depends only on n, r and α such that 

∫ 𝛷𝑝,𝑟

 

ℝ𝑛
(𝛼 (

|𝑢(𝑥)|

‖(−△)
𝑛
2𝑟𝑢‖𝐿𝑟

)

𝑟′

)𝑑𝑥 ≦ 𝐶𝑛,𝑟,𝛼 (
||𝑢‖𝐿𝑝

‖(−△)
𝑛
2𝑟𝑢‖𝐿𝑟

)

𝑝

 

holds for all for all u ∈ Lp ∩ Ḣn/r,r with 1 ≦ p < ∞, where Φp,r is the function defined by 

𝛷𝑝,𝑟(𝑡):=  exp 𝑡 − ∑
𝑡𝑗

𝑗

 

𝑗<
𝑝
𝑟′

𝑗∈ℕ∪{0}

  𝑡 ∈ ℝ. 

(ii) There exists a positive constant αn depending only on n such that the following 

inequality holds. That is, for every 0 < α < αn, there exists a constant Cn,α depending only 

on n and α such that 

∫ �̃�𝑝

 

ℝ𝑛
(𝛼

|𝑢(𝑥)|

||𝑢‖𝐵𝑀𝑂
)𝑑𝑥 ≦ 𝐶𝑛,𝛼 (

||𝑢||𝐿𝑝
||𝑢||𝐵𝑀𝑂

)

𝑝

 

holds for all u ∈ Lp ∩ BMO with 1 ≦ p < ∞, where Φ̃p is defined by 

�̃�𝑝(𝑡): =  exp 𝑡 − ∑
𝑡𝑗

𝑗!

 

𝑗<𝑝,

𝑗∈N∪{0}

, 𝜉 ∈ ℝ. 

By taking 𝑝 = 1 in Corollary (1.2.3)(ii), we have the following generalized John‐Nirenberg 

type inequality. 

Proof. (i) By applying Theorem (1.2.1), we see that 

∫ 𝛷𝑝,𝑟
 

ℝ𝑛
(𝛼 (

|𝑢(𝑥)|

‖(−△)
𝑛
2𝑟𝑢‖𝐿𝑟

)

𝑟′

)𝑑𝑥 = ∫ ∑ , 
𝑗≧

𝑝

𝑟

𝑗∈ℕ

 

ℝ𝑛
 
𝛼𝑗

𝑗!
(

|𝑢(𝑥)|

‖(−△)
𝑛
2𝑟𝑢‖𝐿𝑟

)

𝑟′𝑗

𝑑𝑥 
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=∑,

 

𝑗≧
𝑝
𝑟

𝑗∈ℕ

 
𝛼𝑗

𝑗!

‖𝑢‖
𝐿𝑟
′𝑗

𝑟′𝑗

‖(−△)
𝑛
2𝑟𝑢‖𝐿𝑟

𝑟′𝑗
 

≦∑,

 

𝑗≧
𝑝
𝑟

𝑗∈ℕ

 
𝛼𝑗

𝑗!

(𝐶𝑛𝑟
′(𝑟′𝑗)

1
𝑟||𝑢‖

𝑝
𝐿𝑝𝑟𝑗

1−
𝑝
𝑟𝑗‖(−△)

𝑛
2𝑟𝑢‖𝐿𝑟)

𝑟′𝑗

||(− △)
𝑛
2𝑟𝑢‖𝐿𝑟

𝑟𝑗
 

≦ (∑𝑎𝑗

∞

𝑗=1

(𝛼𝐶𝑛
𝑟′𝑟𝑟𝑟

′+1)
𝑗
)(

||𝑢‖𝐿𝑝

‖(− △)
𝑛
2𝑟𝑢‖𝐿𝑟

)

𝑝

 

where 𝑎𝑗 = 𝑗
𝑗/(𝑗!) . Since lim

𝑗→∞
𝑎𝑗 /𝑎𝑗+1 = 𝑒

−1 , the power series of the above righthand 

side converges provided 𝛼𝐶𝑛
𝑟′𝑟𝑟𝑟

′+1 < 𝑒−1 i.e., 

𝛼 < 𝛼𝑛,𝑟: = (𝐶𝑛
𝑟′𝑟𝑟𝑟

′+1𝑒)
−1

 

   This proves Corollary (1.2.3) (i). 

(ii) In the same way as we have derived Corollary (1.2.3)(i) from Theorem (1.2.1), it is easy 

to see that Theorem (1.2.2) yields Corollary (1.2.3)(ii), so we omit the detail. 

Corollary (1.2.4)[5]. There exist two positive constants Cn and αn depending only on n 

such that 

𝜇({𝑥 ∈ ℝ𝑛; |𝑢(𝑥)| > 𝑡}) ≦ 𝐶𝑛
‖𝑢‖𝐿1

‖𝑢||𝐵𝑀𝑂

1

 exp (
𝛼𝑛𝑡

‖𝑢‖𝐵𝑀𝑂)
− 1

 

holds for all u ∈ L1 ∩ BMO and all t > 0. In particular, we have 

𝜇 ({𝑥 ∈ ℝ𝑛; |𝑢(𝑥)| > 𝑡}) ≦ 𝐶𝑛
||𝑢||𝐿1

‖𝑢‖𝐵𝑀𝑂
 exp (−

𝛼𝑛𝑡

‖𝑢‖𝐵𝑀𝑂
) 

holds for all u ∈ L1 ∩ BMO and for all t > ‖u‖BMO. 

By Corollary (1.2.3)(ii) with = 1 , we have 

∫ ( exp (𝛼𝑛
|𝑢(𝑥)|

||𝑢‖𝐵𝑀𝑂
) − 1)

 

ℝ𝑛
𝑑𝑥 ≦ 𝐶𝑛

||𝑢||𝐿1

||𝑢||𝐵𝑀𝑂
 

for all 𝑢 ∈ 𝐿1 ∩ 𝐵𝑀𝑂. Since the distribution function 𝜆𝑢(𝑡) is non‐increasing, we obtain 

from (48) that 

∫ ( exp (𝛼𝑛
|𝑢(𝑥)|

||𝑢‖𝐵𝑀𝑂
) − 1)

 

ℝ𝑛
𝑑𝑥 =∑

𝛼𝑛
𝑗

𝑗!

∞

𝑗=1

‖𝑢‖𝐿
𝑗𝑗

‖𝑢‖𝐵𝑀𝑂
𝑗
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=∑
𝛼𝑛
𝑗

𝑗!

∞

𝑗=1

𝑗

‖𝑢‖𝐵𝑀𝑂
𝑗

∫ 𝜆𝑢

∞

0

(𝜏)𝜏𝑗−1𝑑𝜏 

≧ 𝜆𝑢(𝑡)∑
𝛼𝑛
𝑗

𝑗!

∞

𝑗=1

𝑗

‖𝑢‖𝐵𝑀𝑂
𝑗

∫ 𝜏𝑗−1
𝑡

0

𝑑𝜏 

= 𝜆𝑢(𝑡)∑
1

𝑗!

∞

𝑗=1

(
𝛼𝑛𝑡

‖𝑢‖𝐵𝑀𝑂
)
𝑗

 

= 𝜆𝑢(𝑡) ( exp (
𝛼𝑛𝑡

‖𝑢‖𝐵𝑀𝑂
) − 1) 

for all 𝑡 > 0. Hence, we have 

𝜆𝑢(𝑡) ≦ 𝐶𝑛
‖𝑢‖𝐿1

‖𝑢||𝐵𝑀𝑂

1

 exp (
𝛼𝑛𝑡

‖𝑢‖𝐵𝑀𝑂
)−1

                            (42) 

for all 𝜆 > 0. In particular, if 𝑡 > ‖𝑢‖𝐵𝑀𝑂, then by (42) it holds that 

𝜆𝑢(𝑡) ≦ 𝐶𝑛
||𝑢||

𝐿I

‖𝑢‖𝐵𝑀𝑂
 exp (−

𝛼𝑛𝑡

‖𝑢‖𝐵𝑀𝑂
) . 

Finally, we shall show the Brezis−Gallouet−Wainger type inequalities Theorem (1.2.5)(i) 

and (ii) by applying Theorems (1.2.1) and (1.2.2), respectively. Since those proofs are quite 

similar, we may only show Theorem (1.2.5)(i).                            

Theorem (1.2.5)[5]. (i) For every 1 ≦ p < ∞, 1 < r < ∞, 1 < q < oo and n/q < s < ∞, 

there exists a constant C = Cn,p,r,q,s such that 

‖𝑢‖𝐿∞ ≦ 𝐶 (1 + (‖𝑢‖𝐿𝑝 + ‖(−△)
𝑛
2𝑟𝑢‖𝑟)( log (𝑒 + ‖(−△)

𝑠
2𝑢‖𝐿𝑞))

1
𝑟

) 

holds for all u ∈ Lp ∩ Ḣn/r,r with (− △)s/2u ∈ Lq. 

(ii) For every 1 ≦ p < ∞, 1 < q < ∞ and n/q < s < ∞, there exists a constant C = Cn,p,q,s 

such that 

‖𝑢‖𝐿∞ ≦ 𝐶 (1 + (‖𝑢‖𝐿𝑝 + ‖𝑢‖𝐵𝑀𝑂) log (𝑒 + ‖(− △)
𝑠
2𝑢‖𝐿𝑞)) 

holds for all u ∈ Lp ∩ BMO with (− △)s/2u ∈ Lq. 

Proof. (i) Let 𝑣 : ℝ𝑛 × [0,∞) → ℝ be the solution of the following heat equation with the 

fractional derivative. 

𝜕𝑣

𝜕𝑡
= −(−△)

𝑠

2𝑣 in ℝ𝑛 × (0,∞) , 

𝑣(⋅, 0) = 𝜙 in ℝ𝑛, 

where 𝜙 is the given initial data belonging to 𝒮. By Lemma (1.2.10), we have the expression 

of 𝑣 such as 
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𝑣(⋅, 𝑡) = 𝐺𝑡
𝑠 ∗ 𝜙. 

Take 𝑢 = 𝑢(𝑥) ∈ 𝐿𝑝 ∩ �̇�𝑛/𝑟,𝑟 with (− △)𝑠/2𝑢 ∈ 𝐿𝑞 for 𝑠 > 𝑛/𝑞. Since 

∫ (−(−△)
𝑠
2𝑢, 𝑣(𝜏))

𝑡

0

𝑑𝜏 = ∫ (𝑢,−(−△)
𝑠
2𝑣(𝜏))

𝑡

0

𝑑𝜏 = ∫ (𝑢,
𝜕𝑣

𝜕𝜏
)

𝑡

0

𝑑𝜏 

= (𝑢, 𝑣(𝑡)) − (𝑢, 𝜙) , 

we have 

|(𝑢, 𝜙)| ≦ |(𝑢, 𝑣(𝑡))| + ∫ |
𝑡

0

((− △)
𝑠
2𝑢, 𝑣(𝜏)) |𝑑𝜏 =: 𝐽1(𝑡) + 𝐽2(𝑡) 

for all 𝑡 > 0. Here, (., ) denotes the usual inner product in 𝐿2. From the Hölder inequality, 

Lemma (1.2.10) and Theorem (1.2.1), we obtain 

𝐽1(𝑡) ≦ ‖𝑢‖𝐿𝑞‖𝑣(𝑡)‖𝐿𝑞′ = ‖𝑢‖𝐿𝑞‖‖𝐺𝑡
𝑠 ∗ 𝜙‖

𝐿𝑞
′ ≦ 𝐶𝑛,𝑟,𝑠�̃�

1
𝑟𝑡
−
𝑛
𝑠𝑞 

× (‖𝑢‖𝐿𝑝 + ‖(−△)
𝑛

2𝑟𝑢‖𝐿𝑟) ‖𝜙‖𝐿1                    (43) 

for all 𝑡 > 0 and 𝑝 ≦ �̃� < ∞, where 𝐶𝑛,𝑟,𝑠 is a constant depending only on 𝑛, 𝑟 and 𝑠. 

   Again by the Hölder inequality and Lemma (1.2.10), we have 

𝐽2(𝑡) ≦ ∫ ‖
𝑡

0

(−△)
𝑠
2𝑢‖𝐿𝑞‖𝑣(𝜏)‖𝐿𝑞′𝑑𝜏 = ‖(− △)

𝑠
2𝑢‖𝐿𝑞∫ ‖

𝑡

0

𝐺𝜏
𝑠 ∗ 𝜙‖

𝐿𝑞
′𝑑𝜏

≦ 𝐶𝑛,𝑞,𝑠 ‖(−△)
𝑠
2𝑢‖𝐿𝑞‖𝜙‖𝐿1∫ 𝜏

−
𝑛
(𝑠𝑞)

𝑡

0

𝑑𝜏

= 𝐶𝑛,𝑞,𝑠𝑡
1−

𝑛
𝑠𝑞 ‖(−△)

𝑠
2𝑢‖𝐿𝑞‖𝜙‖𝐿1                                                              (44) 

for all 𝑡 > 0, where 𝐶𝑛,𝑞,𝑠 is a constant depending only on 𝑛, 𝑞 and 𝑠. Hence, from (43), (44) 

and the duality argument, we obtain 

‖𝑢‖𝐿∞=‖𝜙‖𝐿1  sup |(𝑢, 𝜙)| ≦ 1

≦ 𝐶𝑛,𝑟,𝑞,𝑠 [�̃�
1
𝑟𝑡
−
𝑛
𝑠�̃� (‖𝑢‖𝐿𝑝 + ‖(−△)

𝑛
2𝑟𝑢‖𝐿𝑟)

+ 𝑡
1−

𝑛
𝑠𝑞‖(−△)

𝑠
2𝑢‖𝐿𝑞]                                                                              (45) 

for all 𝑡 > 0 and 𝑝 ≦ �̃� < ∞, where 𝐶𝑛,𝑟,𝑞,𝑠 is a constant depending only on 𝑛, 𝑟, 𝑞 and 𝑠. 

Now we take �̃� ≧ 𝑝 and 𝑡 > 0 in (45) so that 

�̃� =  log (1/𝑡) , 𝑡 = {𝑒𝑝 + ‖(−△)
𝑠
2𝑢‖𝐿𝑞 (1 −

𝑛

𝑠𝑞
)
−1

}

−1
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Since 𝑡−𝑛/(𝑠�̃�) = (𝑡1/ log 𝑡)
𝑛/𝑠

= 𝑒𝑛/𝑠 and since 

𝑡
1−

𝑛
𝑠𝑞‖(− △)

𝑠
2𝑢‖𝐿𝑞= {𝑒

𝑝 + ‖(−△)
𝑠
2𝑢‖𝐿𝑞 (1 −

𝑛

𝑠𝑞
)
−1

}

−(1−
𝑛
𝑠𝑞
)

‖(−△)
𝑠
2𝑢‖𝐿𝑞 ≦ 1, 

we see that such choice of �̃� and 𝑡 in (45) yields the desired estimate. We prepare some 

lemmata for the proof of the main theorems. First, to prove Theorem (1.2.1), we need to 

estimate the difference of 𝐿𝑠‐norm between the translation of the Riesz potential and the 

usual Riesz potential. We denote by 𝐼𝛼 , 0 < 𝛼 < 𝑛 the Riesz kemel defined by 

𝐼𝛼(𝑥):=
1

𝛾(𝛼)
𝐼𝛼(𝑥) with 𝐼𝛼(𝑥):= |𝑥|

−(𝑛−𝛼), 

where 

𝛾(𝛼):=
𝜋
𝑛
22𝛼𝛤 (

𝛼
2)

𝛤 (
𝑛 − 𝛼
2 )

. 

Lemma (1.2.6)[5]. Let 1 < p < ∞. For every s with np′/(n + p′) < s < p′, it holds 

𝐼𝑛/𝑝(⋅ −𝑦) − 𝐼𝑛/𝑝(⋅) ∈ 𝐿
𝑠 

for all y ∈ ℝn. More precisely, we have 

∫ |
 

ℝ𝑛
𝐼𝑛/𝑝(𝑥 − 𝑦) − 𝐼𝑛/𝑝(𝑥)|

𝑠𝑑𝑥 ≦ 𝐶𝑛 (
𝑝′

𝑝′ − 𝑠
+

𝑝′

(𝑛 + 𝑝′)𝑠 − 𝑛𝑝′
) |𝑦|

𝑛(1−
𝑠
𝑝′
)
 

for all y ∈ ℝn with a constant Cn depending only on n. 

Proof. We divide the domain of the integration into two parts. For any ∈ ℝ𝑛 , we have 

∫ |
 

ℝ𝑛
𝐼𝑛/𝑝(𝑥 − 𝑦) − 𝐼𝑛/𝑝(𝑥)|

𝑠𝑑𝑥 = ∫ |
 

{𝑥∈ℝ𝑛;|𝑥|≦2|𝑦|}

𝐼𝑛/𝑝(𝑥 − 𝑦) − 𝐼𝑛/𝑝(𝑥)|
𝑠𝑑𝑥 

+∫ |
 

{𝑥∈ℝ𝑛;|𝑥|>2|𝑦|}

𝐼𝑛/𝑝(𝑥 − y) − 𝐼𝑛/𝑝(𝑥)|
𝑠𝑑𝑥 

=: 𝐽1(𝑦) + 𝐽2(𝑦) . 

As for the estimate for 𝐽1(𝑦) , we see that 

𝐽1(𝑦) ≦ ∫ 𝐼𝑛/𝑝

 

{𝑥∈ℝ𝑛;|𝑥|≦2|𝑦|}

(𝑥 − 𝑦)𝑠𝑑𝑥 

+∫ 𝐼𝑛/𝑝

 

{𝑥∈ℝ𝑛;|𝑥|≦2|𝑦|}

(𝑥)𝑠𝑑𝑥 ≦ 2∫ 𝐼𝑛/𝑝

 

{𝑥∈ℝ𝑛;|𝑥|≦3|𝑦|}

(𝑥)𝑠𝑑𝑥 

= 2∫ |
 

{𝑥∈ℝ𝑛;|𝑥|≦3|𝑦|}

𝑥|
−
𝑛𝑠
𝑝′𝑑𝑥 ≦ 𝐶𝑛

𝑝′

𝑝 − 𝑠
|𝑦|

𝑛(1−
𝑠
𝑝′
)
 ,     (46) 
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Here, we note that ∫ 𝐼𝑛/𝑝
 

{𝑥∈ℝ𝑛;|𝑥|≦3|𝑦|}
(𝑥)𝑠𝑑𝑥 is integrable since 𝑠 < 𝑝′. On the other hand, 

for |𝑥| > 2|𝑦| , we have 

|𝐼𝑛/𝑝(𝑥 − 𝑦) − 𝐼𝑛/𝑝(𝑥)| = |∫
𝑑

𝑑𝜏

1

0

[𝐼𝑛/𝑝(𝑥 − 𝜏𝑦)]𝑑𝜏| = |∫ (𝛻𝐼𝑛/𝑝)
1

0

(𝑥 − 𝜏𝑦) ⋅ (−𝑦)𝑑𝜏| 

=
𝑛

𝑝
|𝑦|∫ |

1

0

𝑥 − 𝜏𝑦|
−
𝑛
𝑝′
−1
𝑑𝜏 ≦

𝑛

𝑝
|𝑦||𝑥|

−
𝑛
𝑝′
−1
×∫ |

1

0

1 − 𝜏
|𝑦|

|𝑥|
|
−
𝑛
𝑝′
−1
𝑑𝜏 

≦
𝑛

𝑝
|𝑦||𝑥|

−
𝑛
𝑝′
−1
∫ (1 −

𝜏

2
)
−
𝑛
𝑝′
−11

0

𝑑𝜏 = 2 (2
𝑛
𝑝′ − 1) |𝑦||𝑥|

−
𝑛
𝑝′
−1

 

which yields 

𝐽2(𝑦) ≦ 2
𝑠 (2

𝑛
𝑝′ − 1)

𝑠

|𝑦|𝑠∫ |
 

{𝑥∈ℝ𝑛;|𝑥|>2|𝑦|}

𝑥|
(−
𝑛
𝑝′
−1)𝑠

𝑑𝑥 ≦ 𝐶𝑛
𝑝′

(𝑛 + 𝑝′)𝑠 − 𝑛𝑝′
| 𝑦|

𝑛(1−
𝑠
𝑝′
)
     (47) 

Notice that since > 𝑛𝑝′/(𝑛 + 𝑝′) , we have ∫ |
 

{𝑥∈ℝ𝑛;|𝑥|>2|𝑦|}
𝑥|(−𝑛/𝑝

′−1)𝑠𝑑𝑥 < ∞. From (46) 

and (47), we obtain the desired estimate. For a measurable function 𝑢 on ℝ𝑛 , let us recall 

the distribution function 𝜆𝑢(𝑡) and the nonincreasing rearrangement 𝑢∗(𝑡) for 𝑡 > 0. For 

detail, see E.M. Stein‐G.Weiss [22]. We denote by 𝑢∗∗ the average function of 𝑢∗ defined 

by 

  𝑢∗∗(𝑡):=
1

𝑡
∫ 𝑢∗
𝑡

0

(𝜏)𝑑𝜏 𝑓𝑜𝑟 𝑡 > 0. 

Notice that 𝑢∗∗ is continuous and nonincreasing on (0,∞) . It is well known that 

‖𝑢‖𝐿𝑝
  = 𝑝∫ 𝜆𝑢

∞

0

(𝑡)𝑡𝑝−1𝑑𝑡 = ∫ 𝑢∗
∞

0

(𝑡)𝑝𝑑𝑡, 1 ≦ 𝑝 < ∞          (48) 

and that 

‖𝑢‖𝐿∞ =  sup 𝑢
∗(𝑡) = lim

𝑡↓0
𝑢∗ (𝑡) =  sup 𝑢∗∗(𝑡) = lim

𝑡↓0
𝑢∗∗ (𝑡) . 

Since 

∫ 𝑢∗
𝑡

0

(𝜏)𝑑𝜏 ≦ 𝑡
1
𝑝‖𝑢‖𝐿𝑝, 1 ≦ 𝑝 ≦ ∞ 

holds for 𝑡 > 0, we have 

𝑢∗(𝑡) ≦ 𝑢∗∗(𝑡) ≦ 𝑡
−
1
𝑝‖𝑢‖𝐿𝑝 , 1 ≦ 𝑝 ≦ ∞            (49) 

for all 𝑡 > 0. See, e.g., Stein and Weiss [22]. Moreover, it is easy to see that if {𝑢𝑚}𝑚=1
∞  

satisfies |𝑢1(𝑥)| ≦ |𝑢2(𝑥)| ≦ ≦ |𝑢𝑚(𝑥)| ≦ with lim
𝑚→∞

| 𝑢𝑚(𝑥)| = |𝑢(𝑥)| for a. e. 𝑥 ∈ ℝ𝑛, 
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then it holds 𝑢1
∗(𝑡) ≦ 𝑢2

∗(𝑡) ≦ ≦ 𝑢𝑚
∗ (𝑡) ≦ with lim

 
𝑢𝑚
∗ (𝑡) = 𝑢∗(𝑡) for all 𝑡 > 0. We define 

a new function space 𝑊 by 

𝑊 ∶= {𝑢 ∈ 𝐿𝑙𝑜𝑐
1 (ℝ𝑛) ; ‖𝑢‖𝑊 ∶=  sup (𝑢

∗∗(𝑡) − 𝑢∗(𝑡)) < ∞}. 

Then, the assertion of Theorem (1.2.2) is an immediate consequence of the following two 

lemmata. 

Lemma (1.2.7)[5]. There exists an absolute constant C such that 

‖𝑢‖𝐿𝑞 ≦ 𝐶𝑞‖𝑢‖𝐿𝑝

𝑝
𝑞
‖𝑢‖𝑊1 −

𝑝

𝑞
 

holds for all u ∈ Lp ∩W with 1 ≦ p < ∞ andfor all q with p ≦ q < ∞. 

Proof. Let 𝑠 > 0. By (48), it holds that 

    ‖𝑢‖𝐿𝑞 = (∫ 𝑢∗
∞

0
(𝑡)𝑞𝑑𝑡)

1

𝑞 ≦ (∫ 𝑢∗
𝑆

0
(𝑡)𝑞𝑑𝑡)

1

𝑞
+ (∫ 𝑢∗

∞

𝑠
(𝑡)𝑞𝑑𝑡)

1

𝑞 ≡ 𝐽1(𝑠) + 𝐽2(𝑠) . 

Since 𝑢∗ is non‐increasing, we have by (48) and (49) that 

𝐽2(𝑠) ≦ ‖𝑢
∗‖𝐿𝑝(𝑠,∞)‖𝑢

∗‖𝐿∞𝑠,∞)
𝑝

𝑞
1 −

𝑝

𝑞, (
 

≦ ‖𝑢∗‖
𝐿𝑝(0,∞)

𝑝
𝑞

𝑢∗(𝑠)
1−
𝑝
𝑞 ≦ 𝑠

−(
1
𝑝
−
1
𝑞
)
‖𝑢‖𝐿𝑝 .                   (50) 

Since 

𝑑

𝑑𝑡
𝑢∗∗(𝑡) = −

𝑑

𝑑𝑡
(
1

𝑡
∫ 𝑢∗
𝑡

0

(𝜏)𝑑𝜏) =
𝑢∗∗(𝑡) − 𝑢∗(𝑡)

𝑡
≦
‖𝑢‖𝑊
𝑡

    (51) 

holds for all 𝑡 > 0, we have 

   𝑢∗∗(𝑡) − 𝑢∗∗(𝑠) = ∫ (−
𝑑

𝑑𝜏
𝑢∗∗(𝜏))

𝑠

𝑡
𝑑𝜏 ≦ ∫

𝑑𝜏

𝜏

𝑠

𝑡
‖𝑢‖𝑊 = ( log 

𝑠

𝑡
) ‖𝑢‖𝑊, 0 < 𝑡 ≦ 𝑠,  

which yields with the aid of (49) that 

𝑢∗∗(𝑡) ≦ 𝑢∗∗(𝑠) + ( log 
𝑠

𝑡
) ‖𝑢‖𝑊 = 𝑠

−
1
𝑝‖𝑢‖𝐿𝑝 + ( log 

𝑠

𝑡
) ‖𝑢‖𝑊 , 0 < 𝑡 ≦ 𝑠.  (52) 

Hence from (49) and (52) we obtain 

𝐽1(𝑠) ≦ (∫ 𝑢∗∗
𝑆

0

(𝑡)𝑞𝑑𝑡)

1
𝑞

≦ 𝑠
−(
1
𝑝
−
1
𝑞
)
‖𝑢‖𝐿𝑝 + (∫ ( log 

𝑠

𝑡
)
𝑞𝑆

0

𝑑𝑡)

1
𝑞

‖𝑢‖𝑊 

= 𝑠
−(
11
𝑝𝑞
)
‖𝑢‖𝐿𝑝 + 𝑠

1
𝑞𝛤(𝑞 + 1)

1
𝑞‖𝑢‖𝑊 ≦ 𝐶𝑞 (𝑠

−(
11
𝑝𝑞
)
‖𝑢‖𝐿𝑝 + 𝑠

1
𝑞‖𝑢‖𝑊) ,      (53) 

where 𝐶 is an absolute constant independent of 𝑞. In the above, we have used the fact that 

𝛤(𝑞 + 1)
1

𝑞 = 𝑂(𝑞) as 𝑞 → ∞. It follows from (50) and (53) that 

‖𝑢‖𝐿𝑞 ≦ 𝐶𝑞 (𝑠
−(
1
𝑝
−
1
𝑞
)
‖𝑢‖𝐿𝑝 + 𝑠

1
𝑞‖𝑢‖𝑊) 
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for all 𝑠 > 0 with an absolute constant 𝐶 independent of 𝑞. Now, taking 𝑠 =
(‖𝑢‖𝐿𝑝/‖𝑢‖𝑊)

𝑝 in this estimate, we have the desired result. 

Lemma (1.2.8)[5]. There exists a constant Cn depending only on n such that 

‖𝑢‖𝑊 ≦ 𝐶𝑛‖𝑢‖𝐵𝑀𝑂 

holds for all u ∈ BMO. 

Proof. For 𝑅 > 0 we denote by 𝑄𝑅 and by 𝜒𝑅 : = 𝜒𝑄𝑅 the cube centered at the origin with 

the side length 𝑅 and the characteristic function on 𝑄𝑅, respectively. It is easy to see that 

(𝑈𝜒𝑅)𝑄𝑅
# = 𝑢𝑄𝑅

# .                                                   (54) 

   For every fixed 𝑡 > 0 we take 𝑅 so that 𝜇(𝑄𝑅)/6 > 𝑡. Since 𝑢𝜒𝑅 ∈ 𝐿
1(ℝ𝑛) with supp 

u𝜒𝑅 ⊂ 𝑄𝑅 , it follows from (54) and Proposition (1.2.9) that 

(𝑢𝜒𝑅)
∗∗(𝑡) − (𝑢𝜒𝑅)

∗(𝑡) ≦ 𝐶𝑛((𝑢𝜒𝑅)𝑄𝑅
# )

∗
(𝑡) = 𝐶𝑛(𝑢𝑄𝑅

# )
∗
(𝑡) ≦ 𝐶𝑛(𝑢ℝ𝑛

# )
∗
(𝑡) , 

which yields that 

(𝑢𝜒𝑅)
∗∗(𝑡) ≦ (𝑢𝜒𝑅)

∗(𝑡) + 𝐶𝑛(𝑢ℝ𝑛
# )

∗
(𝑡) ≦ 𝑢∗(𝑡) + 𝐶𝑛(𝑢ℝ𝑛

# )
∗
(𝑡)         (55) 

for all 𝑡 > 0 and all 𝑅 > 0 such that (6𝑡)1/𝑛 < 𝑅. Since |𝑢𝜒𝑅| ↑ |𝑢| as 𝑅 → ∞ a.e.in ℝ𝑛, it 

holds (𝑢𝜒𝑅)
∗ ↑ 𝑢∗, which yields also (𝑢𝜒𝑅)

∗∗ ↑ 𝑢∗∗ as 𝑅 → ∞. Since ‖𝑢#‖𝐿∞ = ‖𝑢‖𝐵𝑀𝑂, 

by letting 𝑅 → ∞ in (55), we have 

𝑢∗∗(𝑡) − 𝑢∗(𝑡) ≦ 𝐶𝑛(𝑢ℝ𝑛
# )

∗
(𝑡) ≦ 𝐶𝑛‖𝑢ℝ𝑛

# ‖𝐿∞ = 𝐶𝑛‖𝑢‖𝐵𝑀𝑂       (55) 

for all 0 < 𝑡 < ∞. Taking the supremum with respect to 0 < 𝑡 < ∞ in (55), we obtain the 

desired estimate. Finally, for the proof of Theorem (1.2.5) we need the 𝐿𝑝 − 𝐿𝑞 estimates 

for the semigroup {𝑒−𝑡(−△)
𝑠/2
}
𝑡≧0

 defined by 𝑒−𝑡(−△)
𝑠/2
𝑢 = 𝐺𝑡

𝑠 ∗ 𝑢 with 𝐺𝑡
𝑠 : =

ℱ−1(𝑒−(2𝜋|⋅|)
𝑠𝑡) , where ℱ−1 represents the Fourier inverse transformation. 

Next, we introduce the sharp function 𝑢𝛺
#  of 𝑢 relative to the domain 𝛺 ⊂ ℝ𝑛 defined by 

           𝑢𝛺
#(𝑥):= {

�̃� ⊂ 𝛺 sup 
1

𝜇(�̃�)
∫ |
 

�̃�
𝑢(𝑦) − 𝑢𝑄|𝑑𝑦, 𝑥 ∈ 𝛺,

0, 𝑥 ∈ ℝ𝑛\𝛺,
 

with the mean value 𝑢𝑄 : = 𝜇(�̃�)
−1
∫ 𝑢
 

�̃�
(𝑦)𝑑𝑦 on �̃� , where the supremum is taken over all 

cubes that contain 𝑥 and are contained in 𝛺. For the proof of Lemma (1.2.8), we make use 

of the following proposition by Bennett‐Sharpley [9]. 

Proposition (1.2.9)[5]. There exists a constant Cn depending only on n such that 

𝑢∗∗(𝑡) − 𝑢∗(𝑡) ≦ 𝐶𝑛(𝑢𝑄
#)
∗
(𝑡) , 0 < 𝑡 < 𝜇(𝑄)/6 

holds for all cubes Q in ℝn and all u ∈ L1(ℝn) with supp u⊂ Q. 
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Lemma (1.2.10)[5]. For every 0 < s < ∞, there exists a constant Cn,s depending only on n 

and s such that 

‖𝑒−𝑡(−△)
𝑠/2
𝑢‖𝐿𝑞 ≦ 𝑐𝑛,𝑠𝑡 −

𝑛

𝑠
(
1

𝑝
−
1

𝑞
)
‖𝑢‖𝐿𝑝

 

holds for all u ∈ Lp andfor all t > 0, where p and q are any numbers satisfying 1 ≦ p ≦

q ≦ ∞. 

Proof. Let us first recall that ℱ−1(𝑒−(2𝜋|⋅|)
𝑠
) ∈ 𝐿1 ∩ 𝐿∞, which states 

‖𝐺𝑡
𝑠‖𝐿𝑟 = 𝑡

−
𝑛
𝑠
(1−

1
𝑟
)
‖ℱ−1(𝑒−(2𝜋|⋅|)

𝑠
)‖𝐿𝑟 ≦ 𝐶𝑛,𝑠𝑡

−
𝑛
𝑠
(1−

1
𝑟
)
 

for all 𝑡 > 0 and all 1 ≦ 𝑟 ≦ ∞. See e.g., Bendikov [8] and Jacob [13]. For every 1 ≦ 𝑝 ≦

𝑞 ≦ ∞, we take 𝑟 so that 1/𝑟 + 1/𝑝 = 1/𝑞 + 1. Then it follows from the the Young 

inequality that 

‖𝑒−𝑡(−△)
𝑠
2𝑢‖𝐿𝑞 ≦ ‖𝐺𝑡

𝑆‖𝐿𝑟‖𝑢‖𝐿𝑝 ≦ 𝑐𝑛,𝑠𝑡
−
𝑛
𝑠
(1−

1
𝑟
)
‖𝑢‖

𝐿𝑝
=𝐶𝑛,𝑠𝑡

−
𝑛
𝑠
(
1
𝑝
−
1
𝑞
)
‖𝑢‖

𝐿𝑝 ,       

which yields the desired estimate.  
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Chapter 2 

Maximal and Area Integral and Cauchy-Type Integrals 

We show that the proofs utilize some sharp estimates of the Bergman kernel function and 

Bergman metric. The characterizations extend to cover Besov-Sobolev spaces. A special 

case of this is a characterization of 𝐻𝑝 spaces involving only area functions on Bergman 

balls in the unit ball of 𝐶𝑛. We show 𝐿𝑝 estimates for these operators and, as a consequence, 

to obtain 𝐿𝑝 estimates for the canonical Cauchy–Szegö and Bergman projection operators 

(which are not of Cauchy–Fantappié type). 

Section (2.1): Characterizations of Bergman Spaces in the Unit Ball Of 𝑪𝒏 

For ℂ denote the set of complex numbers. We fix a positive integer 𝑛, and let 

ℂ𝑛 = ℂ × ⋅⋅⋅ × ℂ 

denote the Euclidean space of complex dimension 𝑛. Addition, scalar multiplication, and 

conjugation are defined on ℂ𝑛 componentwise. For 𝑧 = (𝑧1, ⋯ , 𝑧𝑛) and 𝑤 = (𝑤1, ⋯ , 𝑤𝑛) 

in ℂ𝑛, we write 

〈𝑧, 𝑤〉 = 𝑧1𝑤1 +⋯+ 𝑧𝑛𝑤𝑛, 

where 𝑤𝑘 is the complex conjugate of 𝑤𝑘. We also write 

|𝑧| = √|𝑧1|
2 ++|𝑧𝑛|

2. 

The open unit ball in ℂ𝑛 is the set 

B𝑛 = {𝑧 ∈ ℂ
𝑛: |𝑧| < 1}. 

The boundary of B𝑛 will be denoted by S𝑛 and is called the unit sphere in ℂ𝑛, i.e., 

S𝑛 = {𝑧 ∈ ℂ
𝑛: |𝑧| = 1}. 

Also, we denote by B𝑛 the closed unit ball, i.e., 

B𝑛 = {𝑧 ∈ ℂ
𝑛: |𝑧| ≤ 1} = B𝑛 ∪ S𝑛. 

The automorphism group of B𝑛, denoted by 𝐴𝑢𝑡(𝐵𝑛), consists of all biholomorphic 

mappings of B𝑛. Traditionally, bi‐holomorphic mappings are also called automorphisms. 

   Recall that for 𝛼 > −1 and 𝑝 > 0 the (weighted) Bergman space 𝒜𝛼
𝑝

 consists of 

holomorphic functions 𝑓 in B𝑛 with 

‖𝑓‖𝑝,𝛼 = (∫ |
 

B𝑛

𝑓(𝑧)|𝑝𝑑𝑣𝛼(𝑧))

1/𝑝

< ∞, 

where the weighted Lebesgue measure 𝑑𝑣𝛼 on B𝑛 is defined by 

𝑑𝑣𝛼(𝑧) = 𝑐𝛼(1 − |𝑧|
2)𝛼𝑑𝑣(𝑧) 

and 𝑐𝛼 = 𝛤(𝑛 + 𝛼 + 1)/[𝑛! 𝛤(𝛼 + 1)] is a normalizing constant so that 𝑑𝑣𝛼 is a probability 

measure on B𝑛. Thus, 

𝒜𝛼
𝑝
= ℋ(B𝑛) ∩ 𝐿

𝑝(B𝑛, 𝑑𝑣𝛼) , 

where ℋ(B𝑛) is the space of all holomorphic functions in B𝑛. When 𝛼 = 0 we simply write 

𝒜𝑝 for 𝒜0
𝑝
. These are the usual Bergman spaces. Note that for 1 ≤ 𝑝 < ∞, 𝒜𝛼

𝑝
 is a Banach 
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space under the norm ‖‖𝑝,𝛼. If 0 < 𝑝 < 1, the space 𝒜𝛼
𝑝

 is a quasi‐Banach space with 𝑝‐

norm ‖𝑓‖𝑝,𝛼
𝑝
. 

   Recall that 𝐷(𝑧, 𝛾) denotes the Bergman metric ball at 𝑧 

𝐷(𝑧, 𝛾) = {𝑤 ∈ B𝑛: 𝛽(𝑧, 𝑤) < 𝛾} 

with 𝛾 > 0, where 𝛽 is the Bergman metric on B𝑛. It is known that 

𝛽(𝑧, 𝑤) =
1

2
 log 

1 + |𝜙𝑧(𝑤)|

1 − |𝜙𝑧(𝑤)|
, 𝑧, 𝑤 ∈ B𝑛, 

whereafter 𝜙𝑧 is the bijective holomorphic mapping in B𝑛, which satisfies 𝜙𝑧(0) = 𝑧, 

𝜙𝑧(𝑧) = 0 and 𝜙𝑧  ∘  𝜙𝑧 = 𝑖𝑑. 

Maximal functions play a crucial role in the real‐variable theory of Hardy spaces (cf. [12] 

we first establish a maximalfunction characterization for the Bergman spaces. To this end, 

we define for each 𝛾 > 0 and ∈ ℋ(B𝑛) : 

(M𝛾𝑓)(𝑧) =  sup
𝑤∈𝐷(𝑧,𝑦)

   |𝑓(𝑤)|, ∀𝑧 ∈ B𝑛.          (1) 

We begin with the following simple result. 

Theorem (2.1.1)[24]: Suppose γ > 0 and α > −1. Let 0 < p < ∞. Then for any f ∈

ℋ(Bn), f ∈ 𝒜α
p
 if and only if Mγf ∈ L

p(Bn, dvα) . Moreover, 

                          ‖𝑓‖𝑝,𝛼 ≈ ‖M𝛾𝑓‖𝑝,𝛼 ,                     (2) 

where (ζ ≈ depends only on γ, α, p, and n. 

The norm appearing on the right‐hand side of (2) can be viewed an analogue of the so‐called 

nontangential maximal function in Hardy spaces. The proof of Theorem (2.1.1) is fairly 

elementary (3), using some basic facts and estimates on the Bergman balls. 

In order to state the real‐variable area integral characterizations of the Bergman spaces, we 

require some more notation. For any 𝑓 ∈ ℋ(B𝑛) and 𝑧 = (𝑧1, … , 𝑧𝑛) ∈ B𝑛 we define 

ℛ𝑓(𝑧) = ∑𝑧𝑘

𝑛

𝑘=1

𝜕𝑓(𝑧)

𝜕𝑧𝑘
 

and call it the radial derivative of 𝑓 at 𝑧. The complex and invariant gradients of 𝑓 at 𝑧 are 

respectively defined as 

𝛻𝑓(𝑧) = (
𝜕𝑓(𝑧)

𝜕𝑧1
, … ,

𝜕𝑓(𝑧)

𝜕𝑧𝑛
) and 𝛻𝑓(𝑧) = 𝛻(𝑓o𝜙𝑧)(0) . 

   Now, for fixed 𝛾 > 0 we define for each 𝑓 ∈ ℋ(B𝑛) and ∈ B𝑛 : 

(i) The radial area function 

𝐴𝛾(ℛ𝑓)(𝑧) = (∫ |
 

𝐷(𝑧,𝛾)

(1 − |𝑤|2)ℛ𝑓(𝑤)|2
𝑑𝑣(𝑤)

(1 − |𝑤|2)𝑛+1
)

1
2

 

(ii) The complex gradient area function 
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𝐴𝛾(𝛻𝑓)(𝑧) = (∫ |
 

𝐷(𝑧,𝛾)

(1 − |𝑤|2)𝛻𝑓(𝑤)|2
𝑑𝑣(𝑤)

(1 − |𝑤|2)𝑛+1
)

1
2

 

(iii) The invariant gradient area function 

𝐴𝛾(�̃�𝑓)(𝑧) = (∫ |
 

𝐷(𝑧,𝛾)

�̃�𝑓(𝑤)|2
𝑑𝑣(𝑤)

(1 − |𝑤|2)𝑛+1
)

1
2

 

We state another main result as follows. 

Theorem (2.1.2)[24]: Suppose γ > 0 and α > −1. Let 0 < p < ∞. Then, for any f ∈

ℋ(Bn) the following conditions are equivalent: 

(i) f ∈ 𝒜α
p
. 

(ii) Aγ(ℛf) is in Lp(Bn, dvα) . 

(iii) Aγ(∇f) is in Lp(Bn, dvα) . 

(v) Aγ(∇̃f) is in Lp(Bn, dvα) . 

Moreover, the quantities 

     |𝑓(0)| + ‖𝐴𝛾(ℛ𝑓)‖𝑝,𝛼 , |𝑓(0)| + ‖𝐴𝛾(𝛻𝑓)‖𝑝,𝛼 , |𝑓(0)| + ‖𝐴𝛾(�̃�𝑓)‖𝑝,𝛼 , 

are all comparable to ‖f‖p,α, where the comparable constants depend only on γ, α, p, and n. 

   In particular, taking the equivalence of (a) and (b), one obtains 

‖𝑓‖𝑝,𝛼 ≈ |𝑓(0)| + ‖𝐴𝛾(ℛ𝑓)‖𝑝,𝛼 , 

which looks tantalizingly simple. There is a mature and powerful real variable Hardy space 

theory which has distilled some of the essential oscillation and cancellation behavior of 

holomorphic functions and then found that behavior ubiquitous. A good introduction to that 

is [33]; a more recent and fuller account is in [25], [35], [36], [37]. However, the real‐

variable theory of the Bergman space is less well developed, even in the case of the unit disc 

(cf. [34]). We remark that the first real‐variable characterization of the Bergman spaces was 

presented by Coifman and Weiss in 1970’s. Recall that 

𝜚(𝑧, 𝑤) = {
||𝑧| − |𝑤|| + |1 −

1

|𝑧||𝑤|
〈𝑧, 𝑤〉|, if 𝑧, 𝑤 ∈ B𝑛 ∖ {0},

|𝑧| + |𝑤|, otherwise

 

is a pseudo‐metric on B𝑛 and (B𝑛, 𝜚, 𝑑𝑣𝛼) is a homogeneous space. By their theory of 

harmonic analysis on homogeneous spaces, Coifman and Weiss [33] can use 𝜚 to obtain a 

real‐variable atomic decomposition for Bergman spaces. However, since the Bergman 

metric 𝛽 underlies the complex geometric structure of the unit ball of ℂ𝑛, one would prefer 

to real‐variable characterizations of the Bergman spaces in terms of 𝛽. Clearly, our results 

above are such a characterization. 

These two real‐variable characterizations can be extended to the so‐called generalized 
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Bergman spaces [40]. For 0 < 𝑝 < ∞ and −∞ < 𝛼 < ∞ we fix a nonnegative integer 𝑘 

with 𝑝𝑘 + 𝛼 > −1 and define 𝒜𝛼
𝑝

 as the space of all 𝑓 ∈ ℋ(B𝑛) such that 

(1 − |𝑧|2)𝑘ℛ𝑘𝑓 ∈ 𝐿𝑝(B𝑛, 𝑑𝑣𝛼) . One then easily observes that 𝒜𝛼
𝑝

 is independent of the 

choice of 𝑘 and consistent with the traditional definition when 𝛼 > −1. Let 𝑁 be the 

smallest nonnegative integer such that 𝑝𝑁 + 𝛼 > −1 and define 

‖𝑓‖𝑝,𝛼 = |𝑓(0)| + (∫ (1 − |𝑧|2)𝑝𝑁
 

B𝑛

|ℛ𝑁𝑓(𝑧)|𝑝𝑑𝑣𝛼(𝑧))

1
𝑝

𝑓 ∈ 𝒜𝛼
𝑝
  (3) 

Equipped with (3), 𝒜𝛼
𝑝

 becomes a Banach space when 𝑝 ≥ 1 and a quasiBanach space for 

0 < 𝑝 < 1. 

Corollary (2.1.3)[24]. Suppose γ > 0 and α ∈ ℝ. Let 0 < p < ∞ and k be a nonnegative 

integer such that pk + α > −1. Then for any ∈ ℋ(Bn) , f ∈ 𝒜α
p
 if and only if Mγ(ℛ

kf) ∈

Lp(Bn, dvα) , where 

M𝛾(ℛ
𝑘𝑓)(𝑧) =  sup

𝑤∈𝐷(𝑧,𝑦)
   |(1 − |𝑤|2)𝑘ℛ𝑘𝑓(𝑤)|, 𝑧 ∈ B𝑛.   (4) 

Moreover, 

‖𝑓‖𝑝,𝛼 ≈ |𝑓(0)| + ‖M𝛾(ℛ
𝑘𝑓)‖𝑝,𝛼 ,              (5) 

where (ζ ≈ depends only on γ, α, p, k, and n. 

Corollary (2.1.4)[24]. Suppose γ > 0 and α ∈ ℝ. Let 0 < p < ∞ and k be a nonnegative 

integer such that pk + α > −1. Then for any ∈ ℋ(Bn) , 

f ∈ 𝒜α
p
 if and only if Aγ(ℛ

k+1f) is in Lp(Bn, dvα) , where 

𝐴𝛾(ℛ
𝑘𝑓)(𝑧) = (∫ |

 

𝐷(𝑧,𝛾)

(1 − |𝑤|2)𝑘ℛ𝑘𝑓(𝑤)|2
𝑑𝑣(𝑤)

(1 − |𝑤|2)𝑛+1
)

1
2

                 (6) 

Moreover, 

‖𝑓‖𝑝,𝛼 ≈ |𝑓(0)| + ‖𝐴𝛾(ℛ
𝑘+1𝑓)‖𝑝,𝛼 ,                                                  (7) 

where (ζ ≈ depends only on γ, α, p, k, and n. To prove Corollaries (2.1.3) and (2.1.4), one 

merely notices that 𝑓 ∈ 𝒜𝛼
𝑝

 if and only if ℛ𝑘𝑓 ∈ 𝐿𝑝(B𝑛, 𝑑𝑣𝛼+𝑝𝑘) and applies Theorems 

(2.1.1) and (2.1.2) respectively to ℛ𝑘𝑓 with the help of Lemma (2.1.10). Note that the family 

of the generalized Bergman spaces 𝒜𝛼
𝑝

 covers most of the spaces of holomorphic functions 

in the unit ball of ℂ𝑛, which has been extensively studied before. For example, 𝐵𝑝
𝑠 = 𝒜𝛼

𝑝
 

with = −(𝑝𝑠 + 1) , where 𝐵𝑝
𝑠 is the classical diagonal Besov space consisting of 

holomorphic functions 𝑓 in B𝑛 such that (1 − |𝑧|2)𝑘−𝑠ℛ𝑘𝑓 belongs to 𝐿𝑝(B𝑛, 𝑑𝑣−1) with 
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𝑘 being any positive integer greater than 𝑠. It is clear that 𝒜𝛼
𝑝
= 𝐵𝑝

𝑠 with 𝑠 = −(𝛼 + 1)/𝑝. 

Thus the generalized Bergman spaces 𝒜𝛼
𝑝

 are exactly the diagonal Besov spaces. See 

Arcozzi‐RochbergSawyer [23], [29] and Volberg‐Wick [39] for some recent results on such 

Besov spaces. On the other hand, if 𝑘 is a positive integer, 𝑝 is positive, and 𝛽 is real, then 

there is the Sobolev space 𝑊𝑘,𝛽
𝑝

 consisting of holomorphic functions 𝑓 in B𝑛 such that the 

partial derivatives of 𝑓 of order up to 𝑘 all belong to 𝐿𝑝(B𝑛, 𝑑𝑣𝛽) (cf. [26],[27], [30]). It is 

easy to see that these holomorphic Sobolev spaces are in the scale of the generalized 

Bergman spaces, i.e., 𝑊𝑘,𝛽
𝑝
= 𝒜𝛼

𝑝
 with = −(𝑝𝑘 − 𝛽 + 1) . There are various 

characterizations for 𝐵𝑝
𝑠 or 𝑊𝑘,𝛽

𝑝
 involving complexvariable quantities in terms of fractional 

differential operators and in terms of higher order (radical) derivatives and/or complex and 

invariant gradients, see [40]. However, Corollaries (2.1.3) and (2.1.4) can be considered as 

a unified characterization for such spaces involving real‐variable quantities. In particular, 

ℋ𝑠
𝑝
= 𝒜𝛼

𝑝
 with 𝛼 = −2𝑠 − 1, where ℋ𝑠

𝑝
 is the Hardy‐Sobolev space defined as the set 

{𝑓 ∈ ℋ(B𝑛): ‖𝑓‖ℋ𝑠
𝑝

𝑝
=  sup ∫ |

 

S𝑛

(𝐼 + ℛ)𝑠𝑓(𝑟𝜁)|𝑝𝑑𝜎(𝜁) < ∞}. 

Here, 

(𝐼 + ℛ)𝑠𝑓 = ∑(1 + 𝑘)𝑠
∞

𝑘=0

𝑓𝑘 

if 𝑓 = ∑ 𝑓𝑘
∞
𝑘=0  is the homogeneous expansion of 𝑓. There are several realvariable 

characterizations of the Hardy‐Sobolev spaces obtained by Ahern. These characterizations 

are in terms of maximal and area functions on the admissible approach region 

      𝐷𝛼(𝜂) = {𝑧 ∈ B𝑛: |1 − 〈𝑧, 𝜂〉| <
𝛼

2
(1 − |𝑧|2)}, 𝜂 ∈ S𝑛, 𝛼 > 1. 

Evidently, Corollaries (2.1.3) and (2.1.4) present new real‐variable descriptions of the 

Hardy‐Sobolev spaces in terms of the Bergman metric. A special case of this is a 

characterization of the usual Hardy space ℋ𝑝 = 𝒜−1
𝑝

 itself. 

We collect a number of auxiliary (and mostly elementary) facts about the Bergman metric 

and Bergman kernel functions, We show Theorems (2.1.1) and an atomic decomposition of 

𝒜𝛼
1  with respect to Carleson tubes, which is of independent interests and crucial for the 

proof of Theorem (2.1.2) in the case of 𝑝 = 1. 

We devoted to the proof of Theorem (2.1.2) in the case of 𝑝 ≥ 1, which is somewhat 

involved and technical. Finally, we show Theorem (2.1.2) in the case of 0 < 𝑝 < 1 by using 

atom decomposition for Bergman spaces due to Coifman and Rochberg [32].  

   In what follows, 𝐶 always denotes a constant depending only on 𝑛, 𝛾, 𝑝, and 𝛼, which may 
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be different in different places. For two nonnegative (possibly infinite) quantities 𝑋 and 𝑌 

by 𝑋 ≈ 𝑌 we mean that there exists a constant 𝐶 > 1 such that 𝐶−1𝑋 ≤ 𝑌 ≤ 𝐶𝑋. Any 

notation and terminology not otherwise explained, are as used in [17] for spaces of 

holomorphic functions in the unit ball of ℂ𝑛. 

   Recall that 𝑃𝛼 is the orthogonal projection from 𝐿2(B𝑛, 𝑑𝑣𝛼) onto 𝒜𝛼
2 , which can be 

expressed as 

     𝑃𝛼𝑓(𝑧) = ∫ 𝐾𝛼
 

B𝑛
(𝑧, 𝑤)𝑓(𝑤)𝑑𝑣𝛼(𝑤) , ∀𝑓 ∈ 𝐿

1(B𝑛, 𝑑𝑣𝛼), 𝛼 > −1, 

where 

𝐾𝛼(𝑧, 𝑤) =
1

(1 − 〈𝑧, 𝑤〉)𝑛+1+𝛼
, 𝑧, 𝑤 ∈ B𝑛. 

𝑃𝛼 extends to a bounded projection from 𝐿𝑝(B𝑛, 𝑑𝑣𝛼) onto 𝒜𝛼
𝑝
(1 < 𝑝 < ∞) .  

   Also, we let 

𝑑(𝑧,𝑤) = |1 − 〈𝑧, 𝑤〉|
1
2, 𝑧, 𝑤 ∈ B𝑛. 

It is known that 𝑑 satisfies the triangle inequality and the restriction of 𝑑 to S𝑛 is a metric. 

As usual, 𝑑 is called the nonisotropic metric. 

   First, we show an inequality for reproducing kernel 𝐾𝛼 associated with 𝑑, which is 

essentially borrowed in [38] with 𝑑 instead of the pseudo‐metric 𝜚 in B𝑛. 

Lemma (2.1.5)[24]. For α > −1 there exists a constant δ > 0 such that for all z, w ∈ Bn, 

ζ ∈ Sn satisfying (z, ζ) > δd(w, ζ) , we have 

|𝐾𝛼(𝑧, 𝑤) − 𝐾𝛼(𝑧, 𝜁)| ≤ 𝐶𝛼,𝑛
𝑑(𝑤, 𝜁)

𝑑(𝑧, 𝜁)2(𝑛+1+𝛼)+1
. 

Proof. Note that 

     𝐾𝛼(𝑧, 𝑤) − 𝐾𝛼(𝑧, 𝜁) = ∫
𝑑

𝑑𝑡

1

0
(

1

(1−〈𝑧,𝜁〉−𝑡〈𝑧,𝑤−𝜁〉)𝑛+1+𝛼
)𝑑𝑡. 

We have 

|𝐾𝛼(𝑧, 𝑤) − 𝐾𝛼(𝑧, 𝜁)| ≤ ∫
(𝑛 + 1 + 𝛼)|〈𝑧, 𝑤 − 𝜁〉|

|1 − 〈𝑧, 𝜁〉 − 𝑡〈𝑧, 𝑤 − 𝜁〉|𝑛+2+𝛼

1

0

𝑑𝑡. 

   Write 𝑧 = 𝑧1 + 𝑧2 and 𝑤 = 𝑤1 + 𝑤2, where 𝑧1 and 𝑤1 are parallel to 𝜁, while 𝑧2 and 𝑤2 

are perpendicular to 𝜁. Then 

〈𝑧, 𝑤〉 − 〈𝑧, 𝜁〉 = 〈𝑧2, 𝑤2〉 − 〈𝑧1, 𝑤1 − 𝜁〉 

and so 

|〈𝑧, 𝑤〉 − 〈𝑧, 𝜁〉| ≤ |𝑧2||𝑤2| + |𝑤1 − 𝜁|. 

Since |𝑤1 − 𝜁| = |1 − 〈𝑤, 𝜁〉|, 

|𝑧2|
2 = |𝑧|2 − |𝑧1|

2 < 1 − |𝑧1|
2 < (1 + |𝑧1|)(1 + |𝑧1|) 

≤ |1 − 〈𝑧1, 𝜁〉| = 2|1 − 〈𝑧, 𝜁〉|, 

and similarly 

|𝑤2|
2 ≤ 2|1 − 〈𝑤, 𝜁〉|, 

we have 

|〈𝑧, 𝑤〉 − 〈𝑧, 𝜁〉| ≤ 2|1 − 〈𝑧, 𝜁〉|1/2|1 − 〈𝑤, 𝜁〉|1/2 + |1 − 〈𝑤, 𝜁〉| 
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= 2𝑑(𝑤, 𝜁)[𝑑(𝑧, 𝜁) + 𝑑(𝑤, 𝜁)] 

≤ 2 (1 +
1

𝛿
)
1

𝛿
𝑑2(𝑧, 𝜁) . 

This concludes that there is 𝛿 > 1 such that 

|〈𝑧, 𝑤 − 𝜁〉| <
1

2
|1 − 〈𝑧, 𝜁〉|, ∀𝑧, 𝑤 ∈ B𝑛, 𝜁 ∈ S𝑛, 

whenever (𝑧, 𝜁) > 𝛿𝑑(𝑤, 𝜁) . Then, we have 

|1 − 〈𝑧, 𝜁〉 − 𝑡〈𝑧, 𝑤 − 𝜁〉| > |1 − 〈𝑧, 𝜁〉| − 𝑡|〈𝑧, 𝜁 − 𝑤〉| >
1

2
|1 − 〈𝑧, 𝜁〉|. 

Therefore, 

|𝐾𝛼(𝑧, 𝑤) − 𝐾𝛼(𝑧, 𝜁)| ≤
2𝑛+3+𝛼(𝑛 + 1 + 𝛼)(1 + 1/𝛿)𝑑(𝑤, 𝜁)𝑑(𝑧, 𝜁)

|1 − 〈𝑧, 𝜁〉|𝑛+2+𝛼
 

≤ 𝐶𝛼,𝑛
𝑑(𝑤, 𝜁)

𝑑(𝑧, 𝜁)2(𝑛+1+𝛼)+1
 

and the lemma is proved. 

   For any 𝜁 ∈ S𝑛 and 𝑟 > 0, the set 

𝑄𝑟(𝜁) = {𝑧 ∈ B𝑛: 𝑑(𝑧, 𝜁) < 𝑟} 

is called a Carleson tube with respect to the nonisotropic metric 𝑑. We usually write 𝑄 =

𝑄𝑟(𝜁) in short. 

   As usual, we define the atoms with respect to the Carleson tube as follows: for 1 < 𝑞 <

∞, 𝑎 ∈ 𝐿𝑞(B𝑛, 𝑑𝑣𝛼) is said to be a(1, 𝑞)𝛼‐atom if there is a Carleson tube 𝑄 such that 

(i) 𝑎 is supported in 𝑄; 

(ii) ‖𝑎‖𝐿𝑞(B𝑛,𝑑𝑣𝛼) ≤ 𝑣𝛼(𝑄)
1

𝑞
−1

; 

(iii) ∫ 𝑎
 

B𝑛
(𝑧)𝑑𝑣𝛼(𝑧) = 0. 

The constant function 1 is also considered to be a(1, 𝑞)𝛼‐atom.  

 By the above lemma, we have the following useful estimates. 

Lemma (2.1.6)[24]. For α > −1 and 1 < q < ∞ there exists a constant Cq,α > 0 such that 

‖𝑃𝛼(𝑎)‖1,𝛼 ≤ 𝐶𝑞,𝛼 

for any (1, q)α‐atom a. 

Proof. When 𝑎 is the constant function 1, the result is clear. Thus we may suppose 𝑎 is 

a(1, 𝑞)𝛼‐atom. Let 𝑎 be supported in a Carleson tuber 𝑄𝑟(𝜁) and 𝛿𝑟 ≤ √2, where 𝛿 is the 

constant in Lemma (2.1.5). Since 𝑃𝛼 is a bounded operator on 𝐿𝑞(B𝑛, 𝑑𝑣𝛼) , we have 

∫ |
 

𝑄𝛿𝑟

𝑃𝛼(𝑎)|𝑑𝑣𝛼(𝑧) ≤ 𝑣𝛼(𝑄𝛿𝑟)
1−1/𝑞‖𝑃𝛼(𝑎)‖𝑞,𝛼 
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≤ ‖𝑃𝛼‖𝐿𝑞(B𝑛,𝑑𝑣𝛼)𝑣𝛼(𝑄𝛿𝑟)
1−1/𝑞‖𝑎‖𝑞,𝛼 

≤ ‖𝑃𝛼‖𝐿𝑞(B𝑛,𝑑𝑣𝛼). 

Next, if 𝑑(𝑧, 𝜁) > 𝛿𝑟 then 

|∫
𝑎(𝑤)

(1 − 〈𝑧, 𝑤〉)𝑛+1+𝛼

 

B𝑛

𝑑𝑣𝛼(𝑤)|

= |∫ 𝑎
 

𝑄𝑟(𝜁)

(𝑤) [
1

(1 − 〈𝑧,𝑤〉)𝑛+1+𝛼
−

1

(1 − 〈𝑧, 𝜁〉)𝑛+1+𝛼
] 𝑑𝑣𝛼(𝑤)|

≤ 𝐶∫ |
 

𝑄𝑟(𝜁)

𝑎(𝑤)|
𝑑(𝑤, 𝜁)

𝑑(𝑧, 𝜁)2(𝑛+1+𝛼)+1
𝑑𝑣𝛼(𝑤)

≤ 𝐶𝑟∫ |
 

𝑄𝑟(𝜁)

𝑎(𝑤)|𝑑𝑣𝛼(𝑤)
1

𝑑(𝑧, 𝜁)2(𝑛+1+𝛼)+1
≤

𝐶𝑟

𝑑(𝑧, 𝜁)2(𝑛+1+𝛼)+1
. 

Then 

∫ |
 

𝑑(𝑧,𝜁)>𝛿𝑟

𝑃𝛼(𝑎)|𝑑𝑣𝛼(𝑧) ≤ 𝐶𝑟 ∫
1

𝑑(𝑧, 𝜁)2(𝑛+1+𝛼)+1

 

𝑑(𝑧,𝜁)>𝛿𝑟

𝑑𝑣𝛼(𝑧) 

= 𝐶𝑟 ∑∫
1

𝑑(𝑧, 𝜁)2(𝑛+1+𝛼)+1

 

2𝑘𝛿𝑟<𝑑(𝑧,𝜁)≤2𝑘+1𝛿𝑟

 

𝑘≥0

𝑑𝑣𝛼(𝑧) ≤ 𝐶𝑟 ∑
𝑣𝛼(𝑄2𝑘+1𝛿𝑟)

(2𝑘𝛿𝑟)2(𝑛+1+𝛼)+1

 

𝑘≥0

≤ 𝐶𝑟 ∑
(2𝑘+1𝛿𝑟)2(𝑛+1+𝛼)

(2𝑘𝛿𝑟)2(𝑛+1+𝛼)+1

∞

𝑘=0

≤ 𝐶, 

where we have used the fact that 𝑣𝛼(𝑄𝑟) ≈ 𝑟
2(𝑛+1+𝛼) in the third inequality in [41]). Thus, 

we get 

    ∫ |
 

B𝑛

𝑃𝛼(𝑎)|𝑑𝑣𝛼(𝑧) = ∫ |
 

𝑄𝛿𝑟

𝑃𝛼(𝑎)|𝑑𝑣𝛼(𝑧) + ∫ |
 

𝑑(𝑧,𝜁)>𝛿𝑟

𝑃𝛼(ℎ)|𝑑𝑣𝛼(𝑧) ≤ 𝐶, 

where 𝐶 depends only on 𝑛 and 𝛼.  

   Note that for any (1, 𝑞)𝛼‐atom 𝑎, 

‖𝑎‖1,𝛼 = ∫|
 

𝑄

𝑎|𝑑𝑣𝛼 ≤ 𝑣𝛼(𝑄)
1−1/𝑞‖𝑎‖𝑞,𝛼 ≤ 1. 

Then, we define 𝒜𝛼
1,𝑞

 as the space of all 𝑓 ∈ 𝒜𝛼
1  which admits a decomposition  

𝑓 =∑𝜆𝑖

 

𝑖

𝑃𝛼𝑎𝑖    𝑎𝑛𝑑    ∑|

 

𝑖

𝜆𝑖| ≤ 𝐶𝑞‖𝑓‖1,𝛼 , 
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where for each 𝑖, 𝑎𝑖 is an (1, 𝑞)𝛼‐atom and 𝜆𝑖 ∈ ℂ so that ∑ | 𝑖 𝜆𝑖| < ∞. We equip this space 

with the norm 

‖𝑓‖
𝒜𝛼
1,𝑞 =  inf {∑|

 

𝑖

𝜆𝑖|: 𝑓 =∑𝜆𝑖

 

𝑖

𝑃𝛼𝑎𝑖} 

where the infimum is taken over all decompositions of 𝑓 described above.  It is easy to see 

that 𝒜𝛼
1,𝑞

 is a Banach space. By Lemma (2.1.6) we have the contractive inclusion 𝒜𝛼
1,𝑞
⊂

𝒜𝛼
1 . We will prove that these two spaces coincide. That establishes the “real‐variable” 

atomic decomposition of the Bergman space 𝒜𝛼
1 .  

In fact, we will show the remaining inclusion 𝒜𝛼
1 ⊂ 𝒜𝛼

1,𝑞
 by duality (Theorem (2.1.14)). 

Recall that the dual space of 𝒜𝛼
1  is the Bloch space ℬ defined as follows (see [41]). The 

Bloch space ℬ of B𝑛 is defined to be the space of holomorphic functions 𝑓 in B𝑛 such that 

‖𝑓‖𝐵 =  sup {|𝛻𝑓(𝑧)|: 𝑧 ∈ B𝑛} < ∞. 

‖‖𝐵 is a semi‐norm on ℬ. ℬ becomes a Banach space with the following norm 

‖𝑓‖ = |𝑓(0)| + ‖𝑓‖𝐵 . 

It is known that the Banach dual of 𝒜𝛼
1  can be identified with ℬ (with equivalent norms) 

under the integral pairing 

〈𝑓, 𝑔〉𝛼 = lim
𝑟→1−

∫ 𝑓
 

B𝑛

(𝑟𝑧)𝑔(𝑧)𝑑𝑣𝛼(𝑧) , 𝑓 ∈ 𝒜𝛼
1 , 𝑔 ∈ ℬ. 

(e.g., see Theorem (2.1.14)7 in [17].) 

In order to prove the atomic decomposition of the Bergman spaces (cf. Theorem (2.1.14)), 

we need the following result, which can be found in [41]). 

Lemma (2.1.7)[24]. Suppose α > −1 and 1 ≤ p < ∞. Then, for any ∈ ℋ(Bn) , f is in ℬ if 

and only if there exists a constant C > 0 depending only on α and p such that 

1

𝑣𝛼(𝑄𝑟(𝜁))
∫ |
 

𝑄𝑟(𝜁)

𝑓 − 𝑓𝛼,𝑄𝑟(𝜁)|
𝑝𝑑𝑣𝛼 ≤ 𝐶 

for all r > 0 and all ζ ∈ Sn, where 

𝑓𝛼,𝑄𝑟(𝜁) =
1

𝑄𝑟(𝜁)
∫ 𝑓
 

𝑄𝑟(𝜁)

(𝑧)𝑑𝑣𝛼(𝑧) . 

Moreover, 

‖𝑓‖𝐵 ≈  sup (
1

𝑣𝛼(𝑄𝑟(𝜁))
∫ |
 

𝑄𝑟(𝜁)

𝑓 − 𝑓𝛼,𝑄𝑟(𝜁)|
𝑝𝑑𝑣𝛼)

1
𝑝

, 

where (ζ ≈ depends only on α, p, and n.  

The following lemma is elementary. 

Lemma (2.1.8)[24]. Suppose γ > 0 and α > −1. If f ∈ 𝒜α
2 , then 
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∫ |
 

B𝑛

𝐴𝛾(�̃�𝑓)(𝑧)|
2𝑑𝑣𝛼 ≈ ∫ |

 

B𝑛

𝑓(𝑧) − 𝑓(0)|2𝑑𝑣𝛼 , 

where “ ≈ “ depends only on γ, α, and n. 

Proof. Note that 𝑣𝛼(𝐷(𝑧, 𝛾)) ≈ (1 − |𝑧|
2)𝑛+1+𝛼. Then 

∫ |
 

B𝑛

𝐴𝛾(�̃�𝑓)(𝑧)|
2𝑑𝑣𝛼 = ∫ ∫ (1 − |𝑤|2)−1−𝑛

 

𝐷(𝑧,𝛾)

 

B𝑛

|�̃�𝑓(𝑤)|2𝑑𝑣(𝑤)𝑑𝑣𝛼(𝑧)

= ∫ 𝑣𝛼

 

B𝑛

(𝐷(𝑤, 𝛾))(1 − |𝑤|2)−1−𝑛|�̃�𝑓(𝑤)|2𝑑𝑣(𝑤) ≈ ∫ |
 

B𝑛

�̃�𝑓(𝑤)|2𝑑𝑣𝛼(𝑤)

≈ ∫ |
 

B𝑛

𝑓(𝑤) − 𝑓(0)|2𝑑𝑣𝛼(𝑤) . 

In the last step we have used (ii) in [41]. 

Let 1 ≤ 𝑝 < ∞ and let ℍ be a complex Hilbert space. We write 𝐿𝛼
𝑝 (B𝑛, ℍ) for the Banach 

space of strongly measurable ℍ‐valued functions on B𝑛 such that 

(∫ ‖
 

B𝑛

𝑓(𝑧)‖𝑝𝑑𝑣𝛼(𝑧))

1
𝑝

< ∞. 

We write 𝒜𝛼
𝑝(B𝑛, ℍ) for the class of weighted ℍ‐valued Bergman space of functions ∈

ℋ(B𝑛, ℍ) ∩ 𝐿𝛼
𝑝 (B𝑛, ℍ) , where ℋ(B𝑛, ℍ) stands for the space of ℍ‐valued holomorphic 

functions in the unit ball B𝑛. Also, we define ℬ(B𝑛, ℍ) the space of all 𝑓 ∈ ℋ(B𝑛, ℍ) so 

that 

‖𝑓‖𝐵 =  sup ‖�̃�𝑓(𝑧)‖ℍ < ∞. 
ℬ(B𝑛, ℍ) with the norm ‖𝑓‖ = ‖𝑓(0)‖ℍ + ‖𝑓‖𝐵 is the ℍ‐valued Bloch space. Then, by 

merely repeating the proof of the scalar case we have the following interpolation result. 

Lemma (2.1.9)[24]. Suppose α > −1 and 

1

𝑝
=
1 − 𝜃

𝑝′
 

for 0 < θ < 1 and 1 ≤ p′ < ∞. Then 

[𝒜𝛼
𝑝′(B𝑛, ℍ), ℬ(B𝑛, ℍ)]

𝜃
= 𝒜𝛼

𝑝(B𝑛, ℍ) 

with equivalent norms. 

Finally, we collect some elementary facts on the Bergman metric and holomorphic functions 

in the unit ball of ℂ𝑛 as follows. 

Lemma (2.1.10)[24]. For each γ > 0, 

1 − |𝑎|2 ≈ 1 − |𝑧|2 ≈ |1 − 〈𝑎, 𝑧〉| 

for all a and z in Bn with β(a, z) < γ. 

Lemma (2.1.11)[24]. Suppose γ > 0, p > 0, and α > −1. Then there exists a constant C >
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0 such that for any f ∈ ℋ(Bn) , 

|𝑓(𝑧)|𝑝 ≤
𝐶

(1 − |𝑧|2)𝑛+1+𝛼
∫ |
 

𝐷(𝑧,𝛾)

𝑓(𝑤)|𝑝𝑑𝑣𝛼(𝑤), ∀𝑧 ∈ B𝑛. 

Lemma (2.1.12)[24]. For each γ > 0, 

|1 − 〈𝑧, 𝑢〉| ≈ |1 − 〈𝑧, 𝑣〉| 

for all z in Bn and u, v in Bn with β(u, v) < γ. 

We first prove Theorem (2.1.1). The sufficiency is clear. It remains to prove that if 𝑓 ∈ 𝒜𝛼
𝑝

 

then M𝛾𝑓 ∈ 𝐿𝑝(B𝑛, 𝑑𝑣𝛼) .  

Lemma (2.1.13)[24]. For fixed γ > 0, there exist a positive integer N and a sequence {ak} 

in Bn such that 

(i) B𝑛 = ⋃ 𝐷 𝑘 (𝑎𝑘, 𝛾) , and 

(ii) each 𝑧 ∈ B𝑛 belongs to at most 𝑁 of the sets 𝐷(𝑎𝑘, 3𝛾) . 

The following is the proof of Theorem (2.1.1): 

Proof. Let 𝑝 > 0. By Lemmas (2.1.13), (2.1.11), and (2.1.10), we have 

∫ |
 

B𝑛

𝑀(𝑓)(𝑧)|𝑝𝑑𝑣𝛼(𝑧) ≤∑∫ |
 

𝐷(𝑎𝑘,𝛾)

 

𝑘

𝑀(𝑓)(𝑧)|𝑝𝑑𝑣𝛼(𝑧)

=∑∫ sup|𝑓(𝑤)|𝑝𝑑𝑣∝(𝑧)
 

𝐷(𝑎𝑘,𝛾)𝑤∈𝐷(𝑧,𝛾)

 

𝑘

≤ 𝐶∑∫  sup 
 

𝐷(𝑎𝑘,𝛾)

 

𝑘

1

(1 − |𝑤|2)𝑛+1+𝛼
∫ |
 

𝐷(𝑤,𝛾)

𝑓(𝑢)|𝑝𝑑𝑣𝛼(𝑢)𝑑𝑣𝛼(𝑧)

≤ 𝐶∑∫ (
1

(1 − |𝑎𝑘|
2)𝑛+1+𝛼

∫ |
 

𝐷(𝑎𝑘,3𝛾)

𝑓(𝑢)|𝑝𝑑𝑣𝛼(𝑢))
 

𝐷(𝑎𝑘,𝛾)

 

𝑘

𝑑𝑣𝛼(𝑧)

≤ 𝐶∑∫ |
 

𝐷(𝑎𝑘,3𝛾)

 

𝑘

𝑓(𝑢)|𝑝𝑑𝑣𝛼(𝑢) ≤ 𝐶𝑁∫ |
 

B𝑛

𝑓(𝑢)|𝑝𝑑𝑣𝛼(𝑢) 

where 𝑁 is the constant in Lemma (2.1.13) depending only on 𝛾 and 𝑛. 

   Now we turn to the real‐variable atomic decomposition of 𝒜𝛼
1 (𝛼 > −1) with respect to 

the Carleson tubes. We reproduce this atomic decomposition for the Bergman spaces and 

then proceed with the proof. 

Theorem (2.1.14)[24]. Let 1 < q < ∞ and α > −1. For every f ∈ 𝒜α
1  there exist a 

sequence {ai} of (1, q)α‐atoms and a sequence {λi} of complex numbers such that 

𝑓 =∑𝜆𝑖

 

𝑖

𝑃𝛼𝑎𝑖  𝑎𝑛𝑑 ∑|

 

𝑖

𝜆𝑖|≤ 𝐶𝑞‖𝑓‖1,𝛼 .                                (8) 
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Moreover, 

‖𝑓‖1,𝛼 ≈  inf ∑|

 

𝑖

𝜆𝑖|             

where the infimum is taken over all decompositions of f described above and ≈ “ depends 

only on α and q. We will prove Theorem (2.1.14) via duality. We first prove the following 

duality theorem. 

Proof. By Lemma (2.1.6) we know that 𝒜𝛼
1,𝑞
⊂ 𝒜𝛼

1 . On the other hand, by Proposition 

(2.1.15) we have (𝒜𝛼
1 )∗ = (𝒜𝛼

1,𝑞
)
∗
 Hence, by duality we have ‖𝑓‖1,𝑞 ≈ ‖𝑓‖𝒜𝛼

1,𝑞 . 

   The goal prove Theorem (2.1.2) in the case of 𝑝 ≥ 1. Note that for any ∈ ℋ(B𝑛) , 

(1 − |𝑧|2)|ℛ𝑓(𝑧)| ≤ (1 − |𝑧|2)|𝛻𝑓(𝑧)| ≤ |�̃�𝑓(𝑧)|, ∀𝑧 ∈ B𝑛. 
(e.g., Lemma 2.14 in [17].) We have that (d) implies (c), and (c) implies (b) in Theorem 

(2.1.2). Then, we need to prove that (b) implies (a), and (a) implies (d). 

Proof of (b) ⇒ (a) . Since ℛ𝑓(𝑧) is holomorphic, by Lemma (2.1.11) we have 

|ℛ𝑓(𝑧)|2 ≤
𝐶

(1 − |𝑧|2)𝑛+1
∫ |
 

𝐷(𝑧,𝛾)

ℛ𝑓(𝑤)|2𝑑𝑣(𝑤) 

≤ 𝐶𝛾∫ (1 − |𝑤|2)−𝑛−1
 

𝐷(𝑧,𝛾)

|ℛ𝑓(𝑤)|2𝑑𝑣(𝑤) . 

Then, 

(1 − |𝑧|2)|ℛ𝑓(𝑧)| ≤ 𝐶(1 − |𝑧|2) (∫ (1 − |𝑤|2)−𝑛−1
 

𝐷(𝑧,𝛾)

|ℛ𝑓(𝑤)|2𝑑𝑣(𝑤))

1
2

 

≤ 𝐶𝛾 (∫ (1 − |𝑤|2)−𝑛+1
 

𝐷(𝑧,𝛾)

|ℛ𝑓(𝑤)|2𝑑𝑣(𝑤))

1
2

 

= 𝐶𝛾𝐴𝛾(ℛ𝑓)(𝑧) . 

Hence, for any 𝑝 > 0, if 𝐴𝛾(ℛ𝑓) ∈ 𝐿
𝑝(B𝑛, 𝑑𝑣𝛼) then (1 − |𝑧|2)|ℛ𝑓(𝑧)| is in 𝐿𝑝(B𝑛, 𝑑𝑣𝛼) , 

which implies that 𝑓 ∈ 𝒜𝛼
𝑝

 (e.g., Theorem 2.16 in [17]). 

   The proof of (a) ⇒ (d) is divided into two steps. At first we prove the case of 𝑝 = 1 using 

the atomic decomposition, then we prove the generic case via complex interpolation. 

Proof of (a) ⇒ (d) in the case of 𝑝 = 1. By Theorem (2.1.14), it suffices to show that for 

𝛾 > 0 and 𝛼 > −1 there exists 𝐶 > 0 such that 

‖𝐴𝛾(�̃�𝑃𝛼𝑎)‖1,𝛼 ≤ 𝐶 
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for all (1, 2)𝛼‐atoms 𝑎. Given an (1, 2)𝛼‐atom 𝑎 supported in = 𝑄𝑟(𝜁) . By Lemma (2.1.8) 

we have 

        ∫ 𝐴𝛾

 

2𝑄

(�̃�𝑃𝛼𝑎)𝑑𝑣𝛼 ≤ 𝑣𝛼(2𝑄)
1/2 (∫ [𝐴𝛾(�̃�𝑃𝛼𝑎)]

2
 

2𝑄

𝑑𝑣𝛼)

1/2

 

≤ 𝐶𝑣𝛼(𝑄)
1/2 (∫ |

 

B𝑛

𝑃𝛼𝑎(𝑧) − 𝑃𝛼𝑎(0)|
2𝑑𝑣𝛼)

1/2

 

≤ 𝐶𝑣𝛼(𝑄)
1/2‖𝑎‖2,𝛼 ≤ 𝐶, 

16 Z. Chen and W. Ouyang 

where 2𝑄 = 𝑄2𝑟(𝜁) . On the other hand, 

∫ 𝐴𝛾

 

(2𝑄)𝑐
(�̃�𝑃𝛼𝑎)𝑑𝑣𝛼 = ∫ (∫ (1 − |𝑤|2)−𝑛−1

 

𝐷(𝑧,𝛾)

|�̃�𝑃𝛼𝑎(𝑤)|
2𝑑𝑣(𝑤))

1/2
 

(2𝑄)𝑐
𝑑𝑣𝛼(𝑧)

= ∫ (∫ |
 

𝐷(𝑧,𝛾)

∫�̃�𝑤

 

𝑄

[𝐾𝛼(𝑤, 𝑢)
 

(2𝑄)𝑐

− 𝐾𝛼(𝑤, 𝜁)]𝑎(𝑢)𝑑𝑣𝛼(𝑢)|
2

𝑑𝑣(𝑤)

(1 − |𝑤|2)𝑛+1
)

1
2

𝑑𝑣𝛼(𝑧)

≤ ‖𝑎‖2,𝛼∫ (∫ ∫|
 

𝑄

 

𝐷(𝑧,𝛾)

�̃�𝑤[𝐾
𝛼(𝑤, 𝑢)

 

(2𝑄)𝑐

− 𝐾𝛼(𝑤, 𝜁)]|2𝑑𝑣𝛼(𝑢)
𝑑𝑣(𝑤)

(1 − |𝑤|2)𝑛+1
)

1
2

𝑑𝑣𝛼(𝑧)

≤ ∫ (∫  sup 
 

𝐷(𝑧,𝛾)

|�̃�𝑤[𝐾
𝛼(𝑤, 𝑢) − 𝐾𝛼(𝑤, 𝜁)]|2

𝑑𝑣(𝑤)

(1 − |𝑤|2)𝑛+1
)

1
2 

(2𝑄)𝑐
𝑑𝑣𝛼(𝑧) , 

where (2𝑄)𝑐 = B𝑛\2𝑄. 

An immediate computation yields that 

𝛻𝑤[𝐾
𝛼(𝑤, 𝑢) − 𝐾𝛼(𝑤, 𝜁)] 

= (𝑛 + 1 + 𝛼) [
𝑢

(1 − 〈𝑤, 𝑢〉)𝑛+2+𝛼
−

𝜁

(1 − 〈𝑤, 𝜁〉)𝑛+2+𝛼
] 

= (𝑛 + 1 + 𝛼)
𝑢(1 − 〈𝑤, 𝜁〉)𝑛+2+𝛼 − 𝜁(1 − 〈𝑤, 𝑢〉)𝑛+2+𝛼

(1 − 〈𝑤, 𝑢〉)𝑛+2+𝛼(1 − 〈𝑤, 𝜁〉)𝑛+2+𝛼
 

and 

ℛ𝑤[𝐾
𝛼(𝑤, 𝑢) − 𝐾𝛼(𝑤, 𝜁)] 
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= (𝑛 + 1 + 𝛼) [
〈𝑤, 𝑢〉

(1 − 〈𝑤, 𝑢〉)𝑛+2+𝛼
−

〈𝑤, 𝜁〉

(1 − 〈𝑤, 𝜁〉)𝑛+2+𝛼
] 

= (𝑛 + 1 + 𝛼)
〈𝑤, 𝑢〉(1 − 〈𝑤, 𝜁〉)𝑛+2+𝛼 − 〈𝑤, 𝜁〉(1 − 〈𝑤, 𝑢〉)𝑛+2+𝛼

(1 − 〈𝑤, 𝑢〉)𝑛+2+𝛼(1 − 〈𝑤, 𝜁〉)𝑛+2+𝛼
. 

Moreover, 

|𝛻𝑤[𝐾
𝛼(𝑤, 𝑢) − 𝐾𝛼(𝑤, 𝜁)]|2 

= (𝑛 + 1 + 𝛼)2{
|𝑢|2|1 − 〈𝑤, 𝜁〉|2(𝑛+2+𝛼) + |1 − 〈𝑤, 𝑢〉|2(𝑛+2+𝛼)

|1 − 〈𝑤, 𝑢〉|2(𝑛+2+𝛼)|1 − 〈𝑤, 𝜁〉|2(𝑛+2+𝛼)
 

−
(1 − 〈𝑤, 𝜁〉)𝑛+2+𝛼(1 − 〈𝑢,𝑤〉)𝑛+2+𝛼〈𝜁, 𝑢〉

|1 − 〈𝑤, 𝑢〉|2(𝑛+2+𝛼)|1 − 〈𝑤, 𝜁〉|2(𝑛+2+𝛼)
 

−
(1 − 〈𝑤, 𝑢〉)𝑛+2+𝛼(1 − 〈𝜁, 𝑤〉)𝑛+2+𝛼〈𝑢, 𝜁〉

|1 − 〈𝑤, 𝑢〉|2(𝑛+2+𝛼)|1 − 〈𝑤, 𝜁〉|2(𝑛+2+𝛼)
}, 

and 

|ℛ𝑤[𝐾
𝛼(𝑤, 𝑢) − 𝐾𝛼(𝑤, 𝜁)]|2 

= (𝑛 + 1 + 𝛼)2{
|〈𝑤, 𝑢〉|2|1 − 〈𝑤, 𝜁〉|2(𝑛+2+𝛼) + |〈𝑤, 𝜁〉|2|1 − 〈𝑤, 𝑢〉|2(𝑛+2+𝛼)

|1 − 〈𝑤, 𝑢〉|2(𝑛+2+𝛼)|1 − 〈𝑤, 𝜁〉|2(𝑛+2+𝛼)

−
〈𝑤, 𝑢〉〈𝜁, 𝑤〉(1 − 〈𝑤, 𝜁〉)𝑛+2+𝛼(1 − 〈𝑢, 𝑤〉)𝑛+2+𝛼

|1 − 〈𝑤, 𝑢〉|2(𝑛+2+𝛼)|1 − 〈𝑤, 𝜁〉|2(𝑛+2+𝛼)
 

−
〈𝑤, 𝜁〉〈𝑢, 𝑤〉(1 − 〈𝑤, 𝑢〉)𝑛+2+𝛼(1 − 〈𝜁, 𝑤〉)𝑛+2+𝛼

|1 − 〈𝑤, 𝑢〉|2(𝑛+2+𝛼)|1 − 〈𝑤, 𝜁〉|2(𝑛+2+𝛼)
}. 

Then, we have 

|𝛻𝑤[𝐾
𝛼(𝑤, 𝑢) − 𝐾𝛼(𝑤, 𝜁)]|2 − |ℛ𝑤[𝐾

𝛼(𝑤, 𝑢) − 𝐾𝛼(𝑤, 𝜁)]|2 

=
(𝑛 + 1 + 𝛼)2

|1 − 〈𝑤, 𝑢〉|2(𝑛+2+𝛼)|1 − 〈𝑤, 𝜁〉|2(𝑛+2+𝛼)
 

× {(|𝑢|2 − |〈𝑤, 𝑢〉|2)|1 − 〈𝑤, 𝜁〉|2(𝑛+2+𝛼) 

+(1 − |〈𝑤, 𝜁〉|2)|1 − 〈𝑤, 𝑢〉|2(𝑛+2+𝛼) 
+(〈𝑤, 𝑢〉〈𝜁, 𝑤〉 − 〈𝜁, 𝑢〉)(1 − 〈𝑤, 𝜁〉)𝑛+2+𝛼(1 − 〈𝑢,𝑤〉)𝑛+2+𝛼 

+(〈𝑤, 𝜁〉〈𝑢, 𝑤〉 − 〈𝑢, 𝜁〉)(1 − 〈𝑤, 𝑢〉)𝑛+2+𝛼(1 − 〈𝜁, 𝑤〉)𝑛+2+𝛼}. 

Note that for any ∈ ℋ(B𝑛) , 

|�̃�𝑓(𝑧)|2 = (1 − |𝑧|2)(|𝛻𝑓(𝑧)|2 − |ℛ𝑓(𝑧)|2) , 𝑧 ∈ B𝑛. 
It is concluded that 

|�̃�𝑤[𝐾
𝛼(𝑤, 𝑢) − 𝐾𝛼(𝑤, 𝜁)]|2 
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≤
(𝑛 + 1 + 𝛼)2(1 − |𝑤|2)

|1 − 〈𝑤, 𝑢〉|2(𝑛+2+𝛼)|1 − 〈𝑤, 𝜁〉|2(𝑛+2+𝛼)
 

× {(1 − |〈𝑤, 𝑢〉|2)|1 − 〈𝑤, 𝜁〉|2(𝑛+2+𝛼) 

+(1 − |〈𝑤, 𝜁〉|2)|1 − 〈𝑤, 𝑢〉|2(𝑛+2+𝛼) 
+[(〈𝑤, 𝑢 − 𝜁〉〈𝜁, 𝑤〉 + (|〈𝑤, 𝜁〉|2 − 1) + (1 − 〈𝜁, 𝑢〉)] 

× (1 − 〈𝑤, 𝜁〉)𝑛+2+𝛼(1 − 〈𝑢,𝑤〉)𝑛+2+𝛼 

+[(〈𝑤, 𝜁 − 𝑢〉〈𝑢, 𝑤〉 + (|〈𝑤, 𝑢〉|2 − 1) + (1 − 〈𝑢, 𝜁〉)] 

× (1 − 〈𝑤, 𝑢〉)𝑛+2+𝛼(1 − 〈𝜁, 𝑤〉)𝑛+2+𝛼} 

≤
(𝑛 + 1 + 𝛼)2(1 − |𝑤|2)(𝑀1 +𝑀2 +𝑀3 +𝑀4)

|1 − 〈𝑤, 𝑢〉|2(𝑛+2+𝛼)|1 − 〈𝑤, 𝜁〉|2(𝑛+2+𝛼)
, 

where 

𝑀1 = |1 − 〈𝑤, 𝜁〉|
𝑛+2+𝛼|1 − 〈𝑢,𝑤〉|𝑛+2+𝛼 

× |〈𝑤, 𝑢 − 𝜁〉〈𝜁, 𝑤〉 + (1 − 〈𝜁, 𝑢〉)|, 

𝑀2 = |1 − 〈𝑤, 𝑢〉|
𝑛+2+𝛼|1 − 〈𝜁, 𝑤〉|𝑛+2+𝛼 

× |〈𝑤, 𝜁 − 𝑢〉〈𝑢,𝑤〉 + (1 − 〈𝑢, 𝜁〉)|, 

𝑀3 = (1 − |〈𝑤, 𝑢〉|
2)|1 − 〈𝜁, 𝑤〉|𝑛+2+𝛼 

× |(1 − 〈𝑤, 𝜁〉)𝑛+2+𝛼 − (1 − 〈𝑤, 𝑢〉)𝑛+2+𝛼|, 

𝑀4 = (1 − |〈𝑤, 𝜁〉|
2)|1 − 〈𝑢, 𝑤〉|𝑛+2+𝛼 

× |(1 − 〈𝑤, 𝑢〉)𝑛+2+𝛼 − (1 − 〈𝑤, 𝜁〉)𝑛+2+𝛼|, 

for 𝑤 ∈ 𝐷(𝑧, 𝛾), 𝑢 ∈ 𝑄𝑟(𝜁) and 𝑧 ∈ B𝑛, 𝜁 ∈ S𝑛. 

Hence, 

∫ 𝐴𝛾

 

(2𝑄)𝑐
(�̃�𝑃𝛼𝑎)𝑑𝑣𝛼

≤ ∫ (∫  sup 
 

𝐷(𝑧,𝛾)

|�̃�𝑤[𝐾
𝛼(𝑤, 𝑢) − 𝐾𝛼(𝑤, 𝜁)]|2

𝑑𝑣(𝑤)

(1 − |𝑤|2)𝑛+1
)

1
2 

(2𝑄)𝑐
𝑑𝑣𝛼(𝑧)

≤ (𝑛 + 1 + 𝛼)∫ (𝐼1 + 𝐼2 + 𝐼3 + 𝐼4)
 

(2𝑄)𝑐
𝑑𝑣𝛼(𝑧) , 

where 

𝐼1 = (∫  sup 
 

𝐷(𝑧,𝛾)

(1 − |𝑤|2)−𝑛𝑀1

|1 − 〈𝑤, 𝑢〉|2(𝑛+2+𝛼)|1 − 〈𝑤, 𝜁〉|2(𝑛+2+𝛼)
𝑑𝑣(𝑤))

1
2

 

𝐼2 = (∫  sup 
 

𝐷(𝑧,𝛾)

(1 − |𝑤|2)−𝑛𝑀2

|1 − 〈𝑤, 𝑢〉|2(𝑛+2+𝛼)|1 − 〈𝑤, 𝜁〉|2(𝑛+2+𝛼)
𝑑𝑣(𝑤))

1
2
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𝐼3 = (∫  sup 
 

𝐷(𝑧,𝛾)

(1 − |𝑤|2)−𝑛𝑀3

|1 − 〈𝑤, 𝑢〉|2(𝑛+2+𝛼)|1 − 〈𝑤, 𝜁〉|2(𝑛+2+𝛼)
𝑑𝑣(𝑤))

1
2

 

𝐼4 = (∫  sup 
 

𝐷(𝑧,𝛾)

(1 − |𝑤|2)−𝑛𝑀4

|1 − 〈𝑤, 𝑢〉|2(𝑛+2+𝛼)|1 − 〈𝑤, 𝜁〉|2(𝑛+2+𝛼)
𝑑𝑣(𝑤))

1
2

 

   We first estimate 𝐼1. Note that 

𝑀1 ≤ (|〈𝑤, 𝑢 − 𝜁〉| + |1 − 〈𝜁, 𝑢〉|)|1 − 〈𝑤, 𝜁〉|
𝑛+2+𝛼|1 − 〈𝑤, 𝑢〉|𝑛+2+𝛼 

≤ (2|1 − 〈𝑢, 𝜁〉|
1
2 (|1 − 〈𝑤, 𝜁〉|

1
2 + |1 − 〈𝑢, 𝜁〉|

1
2) + |1 − 〈𝜁, 𝑢〉|) 

× |1 − 〈𝑤, 𝜁〉|𝑛+2+𝛼|1 − 〈𝑤, 𝑢〉|𝑛+2+𝛼 

≤ (2|1 − 〈𝑢, 𝜁〉|
1
2 (𝐶𝛾|1 − 〈𝑧, 𝜁〉|

1
2 +

1

2
|1 − 〈𝑧, 𝜁〉|

1
2) + |1 − 〈𝜁, 𝑢〉|) 

× |1 − 〈𝑤, 𝜁〉|𝑛+2+𝛼|1 − 〈𝑤, 𝑢〉|𝑛+2+𝛼 

≤ (𝐶𝛾𝑟|1 − 〈𝑧, 𝜁〉|
1

2 + 𝑟2) |1 − 〈𝑤, 𝜁〉|𝑛+2+𝛼|1 − 〈𝑤, 𝑢〉|𝑛+2+𝛼 , 

where the second inequality is the consequence of the following fact which has appeared in 

the proof of Lemma (2.1.5) 

|〈𝑤, 𝑢 − 𝜁〉| ≤ 2|1 − 〈𝑢, 𝜁〉|
1

2 (|1 − 〈𝑤, 𝜁〉|
1

2 + |1 − 〈𝑢, 𝜁〉|
1

2) ; 

the third inequality is obtained by Lemma (2.1.12) and the fact 

|1 − 〈𝑢, 𝜁〉|
1
2 < 𝑟 <

1

2
|1 − 〈𝑧, 𝜁〉|

1
2 

for 𝑢 ∈ 𝑄 and 𝑧 ∈ (2𝑄)𝑐. Since 

|1 − 〈𝑧, 𝑢〉|
1
2 ≥ |1 − 〈𝑧, 𝜁〉|

1
2 − |1 − 〈𝑢, 𝜁〉|

1
2 

≥ |1 − 〈𝑧, 𝜁〉|
1
2 −

1

2
|1 − 〈𝑧, 𝜁〉|

1
2 

≥
1

2
|1 − 〈𝑧, 𝜁〉|

1
2, 

by Lemmas (2.1.10) and (2.1.12) we have 
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𝐼1 ≤

(

 
 
∫  sup 
 

𝐷(𝑧,𝛾)

(1 − |𝑤|2)−𝑛 [𝐶𝑟|1 − 〈𝑧, 𝜁〉|
1
2 + 𝑟2]

|1 − 〈𝑤, 𝑢〉|𝑛+2+𝛼|1 − 〈𝑤, 𝜁〉|𝑛+2+𝛼
𝑑𝑣(𝑤)

)

 
 

1
2

≤ 𝐶𝛾

(

 
 
∫  sup 
 

𝐷(𝑧,𝛾)

(1 − |𝑧|2)−𝑛 [𝐶𝑟|1 − 〈𝑧, 𝜁〉|
1
2 + 𝑟2]

|1 − 〈𝑧, 𝑢〉|𝑛+2+𝛼|1 − 〈𝑧, 𝜁〉|𝑛+2+𝛼
𝑑𝑣(𝑤)

)

 
 

1
2

≤ 𝐶𝛾 (
(1 − |𝑧|2) [𝑟|1 − 〈𝑧, 𝜁〉|

1
2 + 𝑟2]

|1 − 〈𝑧, 𝜁〉|2(𝑛+2+𝛼)
)

1
2

≤ 𝐶𝛾

[𝑟|1 − 〈𝑧, 𝜁〉|
1
2 + 𝑟2]

1/2

|1 − 〈𝑧, 𝜁〉|𝑛+3/2+𝛼
 

                             ≤ 𝐶𝛾 (
𝑟
1
2

𝑑(𝑧,𝜁)2(𝑛+1+𝛼)+1/2
+

𝑟

𝑑(𝑧,𝜁)2(𝑛+1+𝛼)+1
) . 

Hence, 

∫ 𝐼1

 

(2𝑄)𝑐
𝑑𝑣𝛼(𝑧) ≤ 𝐶𝛾(∫

𝑟
1
2

𝑑(𝑧, 𝜁)2
(𝑛+1+𝛼)+

1
2

 

(2𝑄)𝑐
𝑑𝑣𝛼(𝑧) 

+∫
𝑟

𝑑(𝑧, 𝜁)2(𝑛+1+𝛼)+1

 

(2𝑄)𝑐
𝑑𝑣𝛼(𝑧)) ≤ 𝐶𝛾, 

because 

∫
𝑟1/2

𝑑(𝑧, 𝜁)2(𝑛+1+𝛼)+1/2

 

𝑑(𝑧,𝜁)>2𝑟

𝑑𝑣𝛼(𝑧) 

= 𝑟1/2∑∫
1

𝑑(𝑧, 𝜁)2(𝑛+1+𝛼)+1/2

 

2𝑘𝑟<𝑑(𝑧,𝜁)≤2𝑘+1𝑟

 

𝑘≥0

𝑑𝑣𝛼(𝑧) 

≤ 𝑟1/2∑
𝑣𝛼(𝑄2𝑘+1𝑟)

(2𝑘𝑟)2(𝑛+1+𝛼)+1/2

 

𝑘≥0

 

≤ 𝐶𝑟1/2∑
(2𝑘+1𝑟)2(𝑛+1+𝛼)

(2𝑘𝑟)2(𝑛+1+𝛼)+1/2

∞

𝑘=0

≤ 𝐶, 

where we have used the fact that 𝑣𝛼(𝑄𝑟) ≈ 𝑟
2(𝑛+1+𝛼) in the third inequality in [41] and the 

second term has been estimated in the proof of Lemma (2.1.6). 

By the same argument we can estimate 𝐼2 and omit the details. Next, we estimate 𝐼3. 

Note that 
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𝑀3 ≤ (1 − |〈𝑤, 𝑢〉|
2)|1 − 〈𝑤, 𝜁〉|𝑛+2+𝛼 

× |(1 − 〈𝑤, 𝜁〉)𝑛+2+𝛼 − (1 − 〈𝑤, 𝑢〉)𝑛+2+𝛼| 

≤ 2|1 − 〈𝑤, 𝑢〉||1 − 〈𝑤, 𝜁〉|𝑛+2+𝛼 

× |∫
𝑑

𝑑𝑡

1

0

(1 − 〈𝑤, 𝑡𝜁 + (1 − 𝑡)𝑢〉)𝑛+2+𝛼𝑑𝑡| 

= 2(𝑛 + 2 + 𝛼)|1 − 〈𝑤, 𝑢〉||1 − 〈𝑤, 𝜁〉|𝑛+2+𝛼 

× |〈𝑤, 𝜁 − 𝑢〉∫ (1 − 〈𝑤, 𝑡𝜁 + (1 − 𝑡)𝑢〉)𝑛+1+𝛼
1

0

𝑑𝑡| 

≤ 𝐶𝛾|1 − 〈𝑤, 𝑢〉||1 − 〈𝑤, 𝜁〉|
𝑛+2+𝛼𝑟|1 − 〈𝑧, 𝜁〉|𝑛+3/2+𝛼 , 

where the last inequality is achieved by the following estimates 

|1 − 〈𝑤, 𝑡𝜁 + (1 − 𝑡)𝑢〉| ≤ 𝐶𝛾|1 − 〈𝑧, 𝑡𝜁 + (1 − 𝑡)𝑢〉| 

≤ 𝐶𝛾|1 − 〈𝑧, 𝑢〉| + |〈𝑧, 𝜁 − 𝑢〉| 

≤ 𝐶𝛾|1 − 〈𝑧, 𝜁〉| 

and 

|〈𝑤, 𝜁 − 𝑢〉| ≤ 𝐶𝛾𝑟|1 − 〈𝑧, 𝜁〉|
1
2, 

for any 𝑤 ∈ 𝐷(𝑧, 𝛾) and 𝑢 ∈ 𝑄𝑟(𝜁) . Thus, by Lemmas (2.1.10) and (2.1.12) 

𝐼3 ≤ 𝐶𝛾 (∫  sup 
 

𝐷(𝑧,𝛾)

(1 − |𝑤|2)−𝑛𝑟|1 − 〈𝑧, 𝜁〉|𝑛+3/2+𝛼

|1 − 〈𝑤, 𝑢〉|2(𝑛+1+𝛼)+1|1 − 〈𝑤, 𝜁〉|𝑛+2+𝛼
𝑑𝑣(𝑤))

1
2

≤ 𝐶𝛾 (∫  sup 
 

𝐷(𝑧,𝛾)

(1 − |𝑧|2)−𝑛𝑟|1 − 〈𝑧, 𝜁〉|𝑛+3/2+𝛼

|1 − 〈𝑧, 𝑢〉|2(𝑛+1+𝛼)+1|1 − 〈𝑧, 𝜁〉|𝑛+2+𝛼
𝑑𝑣(𝑤))

1
2

≤ 𝐶𝛾 (
(1 − |𝑧|2)𝑟

|1 − 〈𝑧, 𝜁〉|2(𝑛+1+𝛼)+3/2
)

1/2

≤ 𝐶𝛾
𝑟
1
2

𝑑(𝑧, 𝜁)2(𝑛+1+𝛼)+1/2
. 

Hence, 

∫ 𝐼3

 

(2𝑄)𝑐
𝑑𝑣𝛼(𝑧) ≤ 𝐶𝛾∫

𝑟
1
2

𝑑(𝑧, 𝜁)2(𝑛+1+𝛼)+1/2

 

(2𝑄)𝑐
𝑑𝑣𝛼(𝑧) ≤ 𝐶𝛾, 

as shown above. 

Similarly, we can estimate 𝐼4 and omit the details. Therefore, combining above estimates we 

conclude that 



43 

∫ 𝐴𝛾

 

(2𝑄)𝑐
(�̃�𝑃𝛼𝑎)𝑑𝑣𝛼 ≤ 𝐶, 

where 𝐶 depends only on 𝛾, 𝑛, and 𝛼.  

   Proof of (a) ⇒ (d) for 𝑝 > 1. Set ℍ = 𝐿2(B𝑛, 𝜒𝐷(0,𝛾)𝑑𝑣−𝑛−1;ℂ𝑛) with 𝑑𝑣−𝑛−1(𝑤) =

𝑑𝑣(𝑤)

(1−|𝑤|2)𝑛+1
. Consider the operator 

𝑇(𝑓)(𝑧, 𝑤) = (�̃�𝑓)(𝜙𝑧(𝑤)) , 𝑓 ∈ ℋ(B𝑛). 

Note that 𝜙𝑧(𝐷(0, 𝛾)) = 𝐷(𝑧, 𝛾) and the measure 𝑑𝑣−𝑛−1 is invariant under any 

automorphism of B𝑛 we have 

‖𝑇(𝑓)(𝑧)‖ℍ = (∫ |
 

B𝑛

(�̃�𝑓)(𝜙𝑧(𝑊))|
2𝜒𝐷(0,𝛾)(𝑤)𝑑𝑣−𝑛−1(𝑤))

1
2

= (∫ |
 

B𝑛

�̃�𝑓(𝑊)|2𝜒𝐷(𝑧,𝛾)(𝑤)𝑑𝑣−𝑛−1(𝑤))

1
2

= 𝐴𝛾(�̃�𝑓)(𝑧). 

On the other hand, 

𝐴𝛾(�̃�𝑓)(𝑧) ≤ [𝐶𝛾(1 − |𝑧|
2)−𝑛−1𝑣(𝐷(𝑧, 𝛾))]

1
2‖𝑓‖𝐵 ≤ 𝐶‖𝑓‖𝐵 . 

Then, we conclude that 𝑇 is bounded from ℬ into ℬ(B𝑛, ℍ) . Thus, applying 

Lemma (2.1.9) to this fact with the case of 𝑝 = 1 proved above yields that 𝑇 is bounded 

from 𝒜𝛼
𝑝

 into 𝒜𝛼
𝑝(B𝑛, ℍ) for any 1 < 𝑝 < ∞, that is, 

‖𝐴𝛾(�̃�𝑓)‖𝑝,𝛼 ≤ 𝐶‖𝑓‖𝑝,𝛼 , ∀𝑓 ∈ 𝒜𝛼
𝑝
, 

where 𝐶 depends only on 𝛾, 𝑛, 𝑝, and 𝛼. The proof is complete. 

Proposition(2.1.15)[24]. For any 1 < q < ∞ and α > −1, we have (𝒜α
1,q
)
∗
= ℬ 

isometrically. More precisely, 

(i) Every g ∈ ℬ defines a continuous linear functional ϕg on 𝒜α
1,q

 by 

𝜙𝑔(𝑓) = lim
𝑟→1−

∫ 𝑓
B𝑛

(𝑟𝑧)𝑔(𝑧)𝑑𝑣𝛼(𝑧) , ∀𝑓 ∈ 𝒜𝛼
1,𝑞
.      (9) 

(ii) Conversely, each 𝜙 ∈ (𝒜𝛼
1,𝑞
)
∗
 is given as (9) by some 𝑔 ∈ ℬ. 

Moreover, we have 
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‖𝜙𝑞‖ ≈ |𝑔(0)| + ‖𝑔‖𝛽 ,    ∀𝑔 ∈ 𝛽.                         (10) 

Proof. Let 𝑝 be the conjugate index of 𝑞, i.e., 1/𝑝 + 1/𝑞 = 1. We first show ℬ ⊂ (𝒜𝛼
1,𝑞
)
∗
 

Let 𝑔 ∈ ℬ. For any (1, 𝑞)𝛼‐atom 𝑎, by Lemma (2.1.7) we have 

|∫ 𝑃𝛼

 

B𝑛

𝑎(𝑧)𝑔(𝑧)𝑑𝑣𝛼(𝑧)| = |〈𝑃𝛼(𝑎𝑗), 𝑔〉𝛼| = |∫ 𝑎
 

B𝑛

𝑔𝑑𝑣𝛼| = |∫ 𝑎
 

B𝑛

(𝑔 − 𝑔𝑄)𝑑𝑣𝛼|

≤ (∫ |
 

𝑄

𝑎|𝑞𝑑𝑣𝛼)

1/𝑞

(∫|
 

𝑄

𝑔 − 𝑔𝑄|
𝑝𝑑𝑣𝛼)

1/𝑝

≤ (
1

𝑣𝛼(𝑄)
∫ |
 

𝑄

𝑔 − 𝑔𝑄|
𝑝𝑑𝑣𝛼)

1/𝑝

≤ 𝐶‖𝑔‖𝐵. 

On the other hand, for the constant function 1 we have 𝑃𝛼1 = 1 and so 

|∫ 𝑃𝛼

 

B𝑛

1(𝑧)𝑔(𝑧)𝑑𝑣𝛼(𝑧)| = |∫ 𝑔
 

B𝑛

(𝑧)𝑑𝑣𝛼(𝑧)| = |𝑔(0)|. 

Thus, we deduce that 

|∫ 𝑓
 

B𝑛

𝑔𝑑𝑣𝛼| ≤ 𝐶‖𝑓‖𝒜𝛼
1,𝑞(|𝑔(0)| + ‖𝑔‖𝐵) 

for any finite linear combination 𝑓 of (1, 𝑞)𝛼‐atoms. Hence, 𝑔 defines a continuous linear 

functional 𝜙𝑔 on a dense subspace of 𝒜𝛼
1,𝑞

 and 𝜙𝑔 extends to a continuous linear functional 

on 𝒜𝛼
1,𝑞

 such that 

|𝜙𝑔(𝑓)| ≤ 𝐶(|𝑔(0)| + ‖𝑔‖𝐵)‖𝑓‖𝒜𝛼
1,𝑞 

for all 𝑓 ∈ 𝒜𝛼
1,𝑞
. 

   Next let 𝜙 be a bounded linear functional on 𝒜𝛼
1,𝑞

. Note that 

ℋ𝑞(B𝑛, 𝑑𝑣𝛼) = ℋ(B𝑛) ∩ 𝐿
𝑞(B𝑛, 𝑑𝑣𝛼) ⊂ 𝒜𝛼

1,𝑞
. 

Then, 𝜙 is a bounded linear functional on ℋ𝑞(B𝑛, 𝑑𝑣𝛼) . By duality there exists 𝑔 ∈

ℋ𝑝(B𝑛, 𝑑𝑣𝛼) such that 

𝜙(𝑓) = ∫ 𝑓
 

B𝑛

𝑔𝑑𝑣𝛼 , ∀𝑓 ∈ ℋ
𝑞(B𝑛, 𝑑𝑣𝛼). 

Let 𝑄 = 𝑄𝑟(𝜁) be a Carleson tube. For any 𝑓 ∈ 𝐿𝑞(B𝑛, 𝑑𝑣𝛼) supported in 𝑄, it is easy to 

check that 

𝑎𝑓 = (𝑓 − 𝑓𝑄)𝜒𝑄/[‖𝑓‖𝐿𝑞𝑣𝛼(𝑄)
1/𝑝] 
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is a(1, 𝑞)‐atom. Then, |𝜙(𝑃𝛼𝑎𝑓)| ≤ ‖𝜙‖ and so 

|𝜙(𝑃𝛼[(𝑓 − 𝑓𝑄)𝜒𝑄])| ≤ ‖𝜙‖‖𝑓‖𝐿𝑞𝑣𝛼(𝑄)
1/𝑝. 

Hence, for any 𝑓 ∈ 𝐿𝑞(B𝑛, 𝑑𝑣𝛼) we have 

| ∫𝑓
 

𝑄

(𝑔 − 𝑔𝑄)𝑑𝑣𝛼| = |∫(𝑓 − 𝑓𝑄)
 

𝑄

𝑔𝑑𝑣𝛼| = |∫ (𝑓 − 𝑓𝑄)
 

B𝑛

𝜒𝑄𝑔𝑑𝑣𝛼|

= |∫ 𝑃𝛼

 

B𝑛

[(𝑓 − 𝑓𝑄)𝜒𝑄]𝑔𝑑𝑣𝛼| = |𝜙(𝑃𝛼[(𝑓 − 𝑓𝑄)𝜒𝑄])|

≤ ‖𝜙‖‖(𝑓 − 𝑓𝑄)𝜒𝑄‖𝐿𝑞(B𝑛,𝑑𝑣𝛼)𝑣𝛼(𝑄)
1/𝑝 ≤ 2‖𝜙‖‖𝑓‖𝐿𝑞(𝑄,𝑑𝑣𝛼)𝑣𝛼(𝑄)

1/𝑝. 

This concludes that 

(
1

𝑣𝛼(𝑄)
∫ |
 

𝑄

𝑔 − 𝑔𝑄|
𝑝𝑑𝑣𝛼)

1/𝑝

≤ 2‖𝜙‖. 

By Lemma (2.1.7) we have that 𝑔 ∈ ℬ and ‖𝑔‖𝐵 ≤ 𝐶‖𝜙‖. Therefore, 𝜙 is given as (9) by 

𝑔 with |𝑔(0)| + ‖𝑔‖𝐵 ≤ 𝐶‖𝜙‖.  

We prove Theorem (2.1.14). 

Remark (2.1.16)[24]. From the proofs of that (b) ⇒ (a) and that (a) ⇒ (d) for p > 1 we 

find that Theorem (2.1.2) still holds true for the Bloch space of the endpoint case when p =

∞. That is, for any f ∈ ℋ(Bn), f ∈ ℬ if and only if one (or equivalent, all) of Aγ(ℛf), 

Aγ(∇f) , and Aγ(∇̃f) is in L∞(Bn) . Moreover, 

‖𝑓‖𝐵 ≈ ‖𝐴𝛾(ℛ𝑓)‖𝐿∞(B𝑛) ≈ ‖𝐴𝛾(𝛻𝑓)‖𝐿∞(B𝑛) ≈ ‖𝐴𝛾(�̃�𝑓)‖𝐿∞(B𝑛),         (11) 

where (𝜁 ≈ depends only on 𝛾 and 𝑛. 

We prove Theorem (2.1.2) for the case 0 < 𝑝 < 1, through using atom decomposition for 

Bergman spaces due to Coifman and Rochberg [32],[41],as follows. 

Proposition (2.1.17)[24]. Suppose > 0, α > −1, and b > n max {1,1/p} + (α + 1)/p. 

Then there exists a sequence {ak} in Bn such that 𝒜α
p
 consists exactly of functions of the 

form 

𝑓(𝑧) = ∑𝑐𝑘

∞

𝑘=1

(1 − |𝑎𝑘|
2)(𝑝𝑏−𝑛−1−𝛼)/𝑝

(1 − 〈𝑧, 𝑎𝑘〉)
𝑏

, 𝑧 ∈ B𝑛, 

where {ck} belongs to the sequence space ℓp and the series converges in the norm topology 

of 𝒜α
p
. Moreover, 

∫ |
 

B𝑛

𝑓(𝑧)|𝑝𝑑𝑣𝛼(𝑧) ≈  inf {∑|

 

𝑘

𝑐𝑘|
𝑝}, 
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where the infimum runs over all the above decompositions. 

   Also, we need a characterization of Carleson type measures for Bergman spaces as 

follows, which can be found in [16]. 

Proposition (2.1.18)[24]. Suppose n + 1 + α > 0 and μ is a positive Borel measure on Bn. 

Then, there exists a constant C > 0 such that 

                  𝜇(𝑄𝑟(𝜁)) ≤ 𝐶𝑟
2(𝑛+1+𝛼), ∀𝜁 ∈ S𝑛 and 𝑟 > 0, 

if and only if for each s > 0 there exists a constant C > 0 such that 

∫
(1 − |𝑧|2)𝑠

|1 − 〈𝑧, 𝑤〉|𝑛+1+𝛼+𝑠B𝑛

𝑑𝜇(𝑤) ≤ 𝐶 

for all z ∈ Bn. 

We prove Theorem (2.1.2) in the case of 0 < 𝑝 < 1. 

Proof. Since the proof of (𝑑) ⇒ (𝑎) valid for 0 < 𝑝 < 1, as noted in the first paragraph of 

it suffices to prove that (𝑎) ⇒ (𝑑) , i.e., if 𝑓 ∈ 𝒜𝛼
𝑝

 then 𝐴𝛾(�̃�𝑓)(𝑧) ∈ 𝒜𝛼
𝑝

 for 0 < 𝑝 < 1. 

To this end, we write 

𝑓𝑘(𝑧) =
(1 − |𝑎𝑘|

2)(𝑝𝑏−𝑛−1−𝛼)/𝑝

(1 − 〈𝑧, 𝑎𝑘〉)
𝑏

. 

An immediate computation yields that 

𝐴𝛾(�̃�𝑓𝑘)(𝑧) 

= (∫ |
 

𝐷(𝑧,𝛾)

�̃�𝑓𝑘(𝑤)|
2

𝑑𝑣(𝑤)

(1 − |𝑤|2)𝑛+1
)

1
2

 

= (∫ [|𝛻𝑓𝑘(𝑤)|
2 − |ℛ𝑓𝑘(𝑤)|

2]
 

𝐷(𝑧,𝛾)

𝑑𝑣(𝑤)

(1 − |𝑤|2)𝑛
)

1
2

 

= (∫ 𝑏2
 

𝐷(𝑧,𝛾)

(1 − |𝑎𝑘|
2)2(𝑝𝑏−𝑛−1−𝛼)/𝑝||𝑎𝑘|

2−|〈𝑤,𝑎𝑘〉|
2
1 − 〈𝑤, 𝑎𝑘〉|

2(𝑏+1)
𝑑𝑣(𝑤)

(1 − |𝑤|2)𝑛
)

1
2

 

≤ 𝑏(1 − |𝑎𝑘|
2)(𝑝𝑏−𝑛−1−𝛼)/𝑝 (∫

1 − |〈𝑤, 𝑎𝑘〉|
2

|1 − 〈𝑤, 𝑎𝑘〉|
2(𝑏+1)

 

𝐷(𝑧,𝛾)

𝑑𝑣(𝑤)

(1 − |𝑤|2)𝑛
)

1
2

 

≤ 𝑏(1 − |𝑎𝑘|
2)(𝑝𝑏−𝑛−1−𝛼)/𝑝 (∫

2|1 − 〈𝑤, 𝑎𝑘〉|

|1 − 〈𝑤, 𝑎𝑘〉|
2(𝑏+1)

 

𝐷(𝑧,𝛾)

𝑑𝑣(𝑤)

(1 − |𝑤|2)𝑛
)

1
2

 

≤ 𝑏(1 − |𝑎𝑘|
2)(𝑝𝑏−𝑛−1−𝛼)/𝑝 (∫

4(1 − |𝑤|2)−𝑛−1

|1 − 〈𝑤, 𝑎𝑘〉|
2𝑏

 

𝐷(𝑧,𝛾)

𝑑𝑣(𝑤))

1
2

 



47 

≤
𝐶𝛾𝑏(1 − |𝑎𝑘|

2)(𝑝𝑏−𝑛−1−𝛼)/𝑝

|1 − 〈𝑧, 𝑎𝑘〉|
𝑏

((1 − |𝑧|2)−𝑛−1∫ 𝑑
 

𝐷(𝑧,𝛾)

𝑣(𝑤))

1
2

 

≤
𝐶𝛾𝑏(1 − |𝑎𝑘|

2)(𝑝𝑏−𝑛−1−𝛼)/𝑝

|1 − 〈𝑧, 𝑎𝑘〉|
𝑏

, 

where the last two inequalities are achieved by using Lemmas (2.1.10) and (2.1.12) and the 

fact 𝑣(𝐷(𝑧, 𝛾)) ≈ (1 − |𝑧|2)𝑛+1. Note that 𝑣𝛼(𝑄𝑟) ≈ 𝑟
2(𝑛+1+𝛼)  

[41]), by Proposition (2.1.18) we have 

∫ |
 

B𝑛

𝐴𝛾(�̃�𝑓𝑘)(𝑧)|
𝑝𝑑𝑣𝛼 ≤ 𝐶𝒰

3∫
(1 − |𝑎𝑘|

2)(𝑝𝑏−𝑛−1−𝛼)

|1 − 〈𝑧, 𝑎𝑘〉|𝑝𝑏

 

B𝑛

𝑑𝑣𝛼(𝑧) ≤ 𝐶𝑝,𝛼 . 

Hence, for 0 < 𝑝 < 1 we have for 𝑓 = ∑ 𝑐𝑘
∞
𝑘=1 𝑓𝑘 with ∑ | 𝑘 𝑐𝑘|

𝑝 < ∞, 

∫ |
 

B𝑛

𝐴𝛾(�̃�𝑓)(𝑧)|
𝑝𝑑𝑣𝛼 ≤ ∫ |

 

B𝑛

∑𝑐𝑘

∞

𝑘=1

𝐴𝛾(�̃�𝑓𝑘)(𝑧)|
𝑝𝑑𝑣𝛼(𝑧) 

≤∑|

∞

𝑘=1

𝑐𝑘|
𝑝∫ |

 

B𝑛

𝐴𝛾(�̃�𝑓𝑘)(𝑧)|
𝑝𝑑𝑣𝛼 

≤ 𝐶𝑝,𝛼∑|

∞

𝑘=1

𝑐𝑘|
𝑝. 

This concludes that 

∫ |
 

B𝑛

𝐴𝛾(�̃�𝑓)(𝑧)|
𝑝𝑑𝑣𝛼 ≤ 𝐶𝑝,𝛼 inf {∑ |

∞

𝑘=1

𝑐𝑘|
𝑝} ≤ 𝐶𝑝,𝛼∫ |

 

B𝑛

𝑓(𝑧)|𝑝𝑑𝑣𝛼(𝑧) 

The proof is complete.  

Remark (2.1.19)[24]. We note that Theorem (2.1.2) is valid for so‐called q‐square area 

functions. For simplicity, we only consider the case of radical derivatives: For 1 < q < ∞, 

define 

𝐴𝛾
(𝑞)(ℛ𝑓)(𝑧) = (∫ |

 

𝐷(𝑧,𝛾)

(1 − |𝑤|2)ℛ𝑓(𝑤)|𝑞
𝑑𝑣(𝑤)

(1 − |𝑤|2)𝑛+1
)

1
𝑞

 

It is easy to check that the proofs of both the case 0 < p ≤ 1 above and that (a) ⇒ (d) in 

the case 1 < p < ∞ can apply to Aγ
(q)

 Thus, we have that 

               ‖𝑓‖𝑝,𝛼 ≈ |𝑓(0)| + ‖𝐴𝛾
(𝑞)(ℛ𝑓)‖𝑝,𝛼 , ∀𝑓 ∈ 𝒜𝛼

𝑝
,                                       (12) 

for 0 < p < ∞, α > −1 and 1 < q < ∞, where “ ≈ “ depends only on γ, α, p, n, and q. 
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Section (2.2): Several Complex Variables 

We study Cauchy‐type integrals in several complex variables and to announce new results 

concetning these operators. While this is a broad field with a very wide literature, our 

exposition will be focused more narrowly on achieving the following goal: the construction 

of such operators and the establishment of their 𝐿𝑝 mapping properties under “minimal” 

conditions of smoothness of the boundary of the domain 𝐷 in question. 

The operators we study are of three interrelated kinds: Cauchy‐Fantappié integrals with 

holomorphic kernels, Cauchy‐Szegö projections and Bergman projections. In the case of 

one complex variable, what happens is by now well‐understood. Here the minimal 

smoothness that can be achieved is “near” 𝐶1 (e.g., the case of a Lipschitz domain). However 

when the complex dimension is greater than 1 the nature of the Cauchy‐Fantappié kernels 

brings in considerations of pseudo‐convexity (in fact strong pseudo‐convexity) and these in 

turn imply that the limit of smoothness should be “near” 𝐶2. We establish 𝐿𝑝‐regularity for 

one or more of these operators in the following contexts: 

When 𝐷 is strongly pseudo‐convex and of class 𝐶2; 

When 𝐷 is strongly ℂ‐linearly convex and of class 𝐶1,1 

with 𝑝 in the range 1 < 𝑝 < ∞. for the precise statements. 

we briefly review the situation of one complex variable. We devoted to a few generalities 

about Cauchy‐type integrals when 𝑛, the complex dimension of the ambient space, is greater 

than. The Cauchy‐Fantappié forms are taken up and the corresponding CauchyFantappié 

integral operators are set out. Here we adapt the standard treatment in [34], We show that 

these methods apply when the so‐called generating form is merely of class 𝐶1 or even 

Lipschitz, as is needed in what follows. The Cauchy‐Fantappié integrals constructed up to 

that point may however lack the basic requirement of producing holomorphic functions, 

whatever the given data is. The kernel of the operator may fail to be holomorphic in the free 

variable 𝑧 ∈ 𝐷. To achieve the desired holomorphicity requires that the domain 𝐷 be pseudo‐

convex, and two specific forms of this property, strong pseudo‐convexity and strong ℂ ‐

linear convexity are discussed. 

There are several approaches to obtain the required holomorphicity when the domain is 

sufficiently smooth and strongly pseudo‐convex. The initial methods are due to Henkin [59], 

[60] and Ramirez [75]; a later approach is in Kerzman‐Stein [63], which is the one we adopt 

here. It requires to start with a “locally” holomorphic kernel, and then to add a correction 

term obtained by solving a 𝜕‐problem. These matters are discussed. Note that in the case of 

strongly ℂ‐linearly convex domains, the Cauchy‐Leray integral given here requires no 

correction. So among all the integrals of Cauchy‐Fantappié type associated to such domains, 

the Cauchy‐Leray integral is the unique and natural operator that most closely resembles the 

classical Cauchy integral from one complex variable. 

The main 𝐿𝑝 estimates for the Cauchy‐Leray integral and the Szegö and Bergman 

projections (for 𝐶2 boundaries). We limit ourselves to highlighting the main points of 

interest in the proofs. For the last two operators, the 𝐿𝑝 results are consequences of estimates 

that hold for the corrected Cauchy‐Fantappié kernels, denoted 𝐶𝜀 and 𝐵𝜀 , that involve also 
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their respective adjoints. Highlights a further result concerning the Cauchy‐Leray integral, 

also to appear in a separate: the corresponding 𝐿𝑝 theorem under the weaker assumption that 

the boundary is merely of class 𝐶1,1. 

Among matters not covered here are 𝐿𝑝 results for the Szegö and Bergman projection and 

for the Cauchy‐Leray integral for other special domains (in particular, with more regularity). 

For these, see e.g. [44]−[46], [48]−[50], [54], [55],  [57], [65], [71], [72], [74], [79]. It is to 

be noted that several among these works depend in the main on good estimates or explicit 

formulas for the Szegö or Bergman kernels. we have to proceed via the Cauchy‐Fantappié 

framework. 

Euclidean volume measure for ℂ𝑛 ≡ ℝ2𝑛(𝑛 ≥ 1) will be denoted 𝑑𝑉. The notation b𝐷 will 

indicate the boundary of a domain 𝐷 ⊂ ℂ𝑛(𝑛 ≥ 1) and, for 𝐷 sufficiently smooth, 𝑑𝜎 will 

denote arc‐length (𝑛 = 1) or Euclidean surface measure (𝑛 ≥ 2) . 

In the case of one complex dimension the problem of 𝐿𝑝 estimates has a long and 

illustrious history. Let us review it briefly. (see [52], [58], [66], which contain further 

citations.) 

Suppose 𝐷 is a bounded domain in ℂ whose boundary b𝐷 is a rectifiable curve. Then the 

Cauchy integral is given by 

C(𝑓)(𝑧) = ∫ 𝑓
b𝐷

(𝑤)𝐶(𝑤, 𝑧) , 𝑓𝑜𝑟 𝑧 ∈ 𝐷 

where 𝐶 (𝑤, 𝑧) is the Cauchy kernel 

𝐶(𝑤, 𝑧) =
1

2𝜋𝑖

𝑑𝑤

𝑤 − 𝑧
 

When 𝐷 is the unit disc, then a classical theorem of M. Riesz says that the mapping ↦

C(𝑓)|b𝐷 , defined initially for 𝑓 that are (say) smooth, is extendable to abounded operator 

on 𝐿𝑝(b𝐷) , for 1 < 𝑝 < ∞. Very much the same result holds when the boundary of 𝐷 is of 

class 𝐶1+𝜀 , with 𝜀 > 0, (proved either by approximating to the result when 𝐷 is the unit 

disc, or adapting one of the several methods of proof used in the classical case). However 

in the limiting case when 𝜀 = 0, these ideas break down and new methods are needed. The 

theorems proved by Calderón, Coifman, McIntosh, Meyers and David (between 

1977−1984) showed that the corresponding 𝐿𝑝 result held in the following list of increasing 

generality: the boundary is of class 𝐶1; it is Lipschitz (the first derivatives are merely 

bounded and not necessarily continuous); it is an “Ahlfors‐regular” curve. 

We pass next to the Cauchy‐Szegö projection S, the corresponding orthogonal projection 

with respect to the Hilbert space structure of 𝐿2(b𝐷) . In fact when 𝐷 is the unit disc, the 

two operators C and S are identical. We restrict our attention to the case when 𝐷 is simply 

connected and when its boundary is Lipschitz. Here a key tool is the conformal map  : 𝔻 →

𝐷, where 𝔻 is the unit disc. We consider the induced correspondence 𝜏 given by 

𝜏(𝑓)(𝑒𝑖𝜃) = (𝛷′(𝑒𝑖𝜃))

1

2
𝑓 (𝛷(𝑒𝑖𝜃)) , and the fact that 𝑆 = 𝜏−1𝑆0𝜏, where 𝑆0 is the 

Cauchy‐Szegö projection for the disc D. Using ideas of Calderón, Kenig, Pommerenke and 
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others, one can show that |𝛷′|𝑟 belongs to the Muckenhaupt class 𝐴𝑝, with 𝑟 = 1 − 𝑝/2, 

from which one gets the following. As a consequence, if we suppose that b𝐷 has a Lipschitz 

bound 𝑀, then S is bounded on 𝐿𝑝, whenever 

∙ 1 < 𝑝 < ∞, if b𝐷 is in fact of class 𝐶1. 

∙ 𝑝𝑀
′ < 𝑝 < 𝑝𝑀. Here 𝑝𝑀 depends on 𝑀, but 𝑝𝑀 > 4, and 𝑝𝑀

′  is the exponent dual to 𝑝𝑀 . 

There is an alternative approach to the second result that relates the Cauchy‐Szegö 

projection S to the Cauchy integral C. It is based on the following identity, used in [21] 

S(𝐼 − 𝔸) = C,𝑤ℎ𝑒𝑟𝑒 𝔸 = C∗ − C.                                                    (13) 

There are somewhat analogous results for the Bergman projection in the case of one complex 

dimension. We shall not discuss this further, We shall see that a very different situation 

occurs when trying to extend to higher dimensions. Here are some new issues that arise 

when 𝑛 > 1. There is no “universal” holomorphic Cauchy kernel associated to a domain 𝐷. 

(i) Pseudo‐convexity of 𝐷, must, in one form or another, play a role. 

(ii) Since this condition involves (implicitly) two derivatives, the best” results are to be 

expected “near” 𝐶2, (as opposed to near 𝐶1 when 𝑛 = 1). 

In view of the non‐uniqueness of the Cauchy integral(and its problematic existence), it might 

be worthwhile to set down the minimum conditions that would be required of candidates for 

the Cauchy integral. We would want such an operator C given in the form 

C(𝑓)(𝑧) = ∫ 𝑓
b𝐷

(𝑤)𝐶(𝑤, 𝑧) , 𝑧 ∈ 𝐷, 

to satisfy the following conditions: 

(a) The kernel 𝐶(𝑤, 𝑧) should be given by a “natural” or explicit formula (at least up to first 

approximation) that involves 𝐷. 

(b) The mapping 𝑓 ↦ C(𝑓) should reproduce holomorphic functions. In particular if 𝑓 is 

continuous in 𝐷 and holomorphic in 𝐷 then C(𝑓)(𝑧) = 𝑓(𝑧) , for 𝑧 ∈ 𝐷. 

(c) C(𝑓)(𝑧) should be holomorphic in 𝑧 ∈ 𝐷, for any given 𝑓 that is continuous on b𝐷. 

Now there is a formalism (the Cauchy‐Fantappié formalism of Fantappié (1943), Leray, and 

Koppleman (1967)), which provides Cauchy integrals satisfying the requirements (a) and 

(b) in a general setting. Condition (c) however, is more problematic, even when the domain 

is smooth. Constructing such Cauchy integrals has been carried out only in particular 

situations. 

The Cauchy‐Fantappié formalism that realizes the kernel 𝐶(𝑤, 𝑧) revolves around the 

notion of generating form: these are a class of differential forms of type (1, 0) in the variable 

of integration whose coefficients may depend on two sets of variables (𝑤 and ) , and we 

will accordingly write 

𝜂(𝑤, 𝑧) =∑𝜂𝑗

𝑛

𝑗=1

(𝑤, 𝑧)𝑑𝑤𝑗  𝑤𝑖𝑡ℎ (𝑤, 𝑧) ∈ 𝑈 × 𝑉 

to designate such a form. The precise definition is given below, where the notation 
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〈𝜂(𝑤, 𝑧), 𝜉〉 =∑𝜂𝑗

𝑛

𝑗=1

(𝑤, 𝑧)𝜉𝑗 . 

is used to indicate the action of 𝜂 on the vector 𝜉 ∈ ℂ𝑛. 

Definition (2.2.1)[42]. The form 𝜂 (𝑤, 𝑧) is generating at 𝑧 relative to 𝑉 if there is an open 

set 

𝑈𝑧 ⊆ ℂ
𝑛\{𝑧} 

such that 

b𝑉 ⊂ 𝑈𝑧                                                          (14) 

and, furthermore 

〈𝜂(𝑤, 𝑧) , 𝑤 − 𝑧) =∑𝜂𝑗

𝑛

𝑗=1

(𝑤, 𝑧)(𝑤𝑗 − 𝑍𝑗) ≡ 1 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑤 ∈ 𝑈𝑧.    (15) 

We say that 𝜂 is a generating form for V (alternatively, that V supports a generating form η) 

if for any z ∈ V we have that η is generating at z relative to V. 

Example (2.2.2)[42]. Set 

𝛽(𝑤, 𝑧) = |𝑤 − 𝑧|2 

We define the Bochner‐Martinelli generating formto be 

𝜂(𝑤, 𝑧) =
𝜕𝑤𝛽

𝛽
(𝑤, 𝑧) =∑

𝑤𝑗−𝑍𝑗
|𝑤 − 𝑧|2

𝑛

𝑗=1

𝑑𝑤𝑗                   (16) 

It is clear that 𝜂 satisfies conditions (14) and (15) for any domain 𝑉 and for any 𝑧 ∈ 𝑉, with 

𝑈𝑧 : = ℂ
𝑛\{𝑧}. 

The Bochner‐Martinelli generating form has several remarkable features. First, it is 

“universal” in the sense that it is given by a formula (16) that does not depend on the choice 

of domain 𝑉; secondly, in complex dimension 𝑛 = 1 it agrees (up to a scalar multiple) with 

the classical Cauchy kernel 

1

2𝜋𝑖

𝑑𝑤

𝑤 − 𝑧
,𝑤 ∈ 𝑈𝑧: = ℂ\{𝑧} 

and in particular its coefficient (𝑤 − 𝑧)−1 is holomorphic as a function of 𝑧 ∈ 𝑉 for any 

fixed 𝑤 ∈ b𝑉. On the other hand, it is clear from (16) that for 𝑛 ≥ 2 the coefficients of this 

form are nowhere holomorphic: this failure at holomorphicity is an instance of a crucial, 

dimension‐induced phenomenon which was alluded to in conditions ii. and (c) and will be 

further discussed in Example (2.2.3). 

Suppose now that for each fixed 𝑧𝜂(𝑤, 𝑧) is a form oftype (1, 0) in 𝑤 with 

coefficients of class 𝐶1 in each variable. (We are not assuming that 𝜂 is a generating form). 

Set 

𝛺0(𝜂)(𝑤, 𝑧) =
1

(2𝜋𝑖)𝑛
𝜂 ∧ (𝜕𝑤𝜂)

𝑛−1
(𝑤, 𝑧)                              (17) 

where (𝜕𝑤𝜂)
𝑛−1

 stands for the wedge product: 𝜕𝑤𝜂 ∧ ⋯∧ 𝜕𝑤𝜂 performed (𝑛 − 1)‐times. 

We call 𝛺0(𝜂) the Cauchy‐Fantappiè form for 𝜂. Note that 𝛺0(𝜂)(𝑤, 𝑧) is of type (𝑛, 𝑛 − 1) 
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in the variable 𝑤 ∈ 𝑈 while in the variable 𝑧 ∈ 𝑉 it is just a function. 

Example (2.2.3)[42]. The Cauchy‐Fantappié form for the Bochner‐Martinelli generating 

form or, for short, Bochner‐Martinelli CF form is 

𝛺0 (
𝜕𝑤𝛽

𝛽
) (𝑤, 𝑧) =

(𝑛 − 1)!

(2𝜋𝑖|𝑤 − 𝑧|2)𝑛
∑(𝑤 − 𝑧)

𝑛

𝑗=1

𝑑𝑤𝑗 ∧ (⋀𝑑

𝑣≠𝑗

𝑤𝑣 ∧ 𝑑𝑤𝑣) . 

Now the Bochner‐Martinelli integral is the operator 

CBM𝑓(𝑧) = ∫ 𝑓
𝑤∈b𝐷

(𝑤)𝐶𝐵𝑀(𝑊, 𝑧) , 𝑧 ∈ 𝐷, 𝑓 ∈ 𝐶(b𝐷) 

where the kernel 𝐶𝐵𝑀 (𝑤, 𝑧) is the Bochner‐Martinelli C𝛤 form restricted to the boundary; 

more precisely 

𝐶𝐵𝑀(𝑊, 𝑧) = 𝑗
∗𝛺0 (

𝜕𝑤𝛽

𝛽
) (𝑤, 𝑧) , 𝑤 ∈ b𝐷, 𝑧 ∈ 𝐷 

where 𝑗∗ denotes the pullback of forms under the inclusion 

𝑗: b𝐷 ↪ ℂ𝑛 

It is clear that such operator is “natural” in the sense discussed in condition (a) in and we 

will see that this operator also satisfies condition (b), see Proposition (2.2.9). On the other 

hand, the kernel 𝐶𝐵𝑀(𝑤, 𝑧) is nowhere holomorphic in 𝑧: as a result, when 𝑛 > 1 the 

Bochner‐Martinelli integral does not satisfy condition (c). 

We will now review the properties of Cauchy‐Fantappiè forms that are most relevant to us. 

Property (2.2.4)[42]. For any function g ∈ C1(U) we have 

𝛺0(𝑔(𝑤)𝜂(𝑤, 𝑧)) = 𝑔
𝑛(𝑤)𝛺0(𝜂)(𝑤, 𝑧) 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑤 ∈ 𝑈. 

Proof. The proof is a computation: by the definition (17), we have 

𝛺0(𝑔𝜂) = 𝑔𝜂 ∧ (𝜕(𝑔𝜂))
𝑛−1

 

On the other hand, computing C𝜕−(𝑔𝜂))𝑛−1 produces two kinds of terms: 

(a. ) Terms that contain 𝜕𝑔 ∧ 𝜂: but these do not contribute to 𝛺0(𝑔𝜂) because 𝑔𝜂 ∧ 𝜕𝑔 ∧

𝜂 = 0 (which follows from 𝜂 ∧ 𝜂 = 0 since 𝜂 has degree 1); 

(b. ) The term 𝑔𝑛−1𝜕𝜂, which gives the desired conclusion. 

Suppose, further, that 𝜂 (𝑤, 𝑧) is generating at 𝑧 relative to 𝑉. Then the following two 

properties also hold. 

Property (2.2.5)[42]. We have that 

(𝜕𝑤𝜂)
𝑛
(𝑤, 𝑧) = 0 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑤 ∈ 𝑈𝑧.                                     (18) 

Note that if the coefficients of 𝜂 (., z) are in 𝐶2(𝑈𝑧) , then as a consequence of the fact that 

𝜕0𝜕 = 0, we have that (𝜕𝑤𝜂)
𝑛
(𝑤, 𝑧) = 𝑑𝑤𝛺0(𝜂)(𝑤, 𝑧) and (18) can be formulated 



53 

equivalently as 

𝑑𝑤𝛺0(𝜂)(𝑤, 𝑧) = 0,𝑤 ∈ 𝑈𝑧. 

Proof. We prove (18) in the case: 𝑛 = 2 and leave the proof for general 𝑛 as an exercise for 

the reader. Thus, writing 

𝜂 = 𝜂1𝑑𝑤1 + 𝜂2𝑑𝑤2 

we obtain 

(𝜕𝑤𝜂)
2
= −2𝜕𝑤𝜂1 ∧ 𝜕𝑤𝜂2 ∧ 𝑑𝑤1 ∧ 𝑑𝑤2                                    (19) 

Now 

𝜂1(𝑤, 𝑧)(𝑤1 − 𝑧1) + 𝜂2(𝑤, 𝑧)(w2 − 𝑧2) = 1 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑤 ∈ 𝑈𝑧 

because 𝜂 is generating at 𝑧, and applying 𝜕𝑤 to each side of this identity we obtain 

(𝑤1 − 𝑧1)𝜕𝑤𝜂1(𝑤, 𝑧) + (𝑤2 − 𝑧2)𝜕𝑤𝜂2(𝑤, 𝑧) = 0 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑤 ∈ 𝑈𝑧        (20) 

Recall that 𝑈𝑧 ⊂ ℂ
2\{𝑧}, see Definition (2.2.1), and so 

𝑈𝑧 ∩ 𝑈 = 𝑈𝑧
1 ∪ 𝑈𝑧

2 

where 

𝑈𝑧
1 = {𝑤 = (𝑤,𝑤) ∈ 𝑈𝑧 ∩ 𝑈,𝑤1 ≠ 𝑧1}                                        (21) 

𝑈𝑧
2 = {𝑤 = (𝑤1, 𝑤2) ∈ 𝑈𝑧 ∩ 𝑈,𝑤2 ≠ 𝑧2}                                     (22) 

But for any two sets 𝐴 and 𝐵 one has 𝐴 ∪ 𝐵 = (𝐴\𝐵) ∪ (𝐵\𝐴) ∪ (𝐴 ∩ 𝐵) where U̇ denotes 

disjoint union. Now, if 𝑤 ∈ 𝑈𝑧
1\𝑈𝑧

2 then (20) reads 

(𝑤1−𝑧1)𝜕𝑤𝜂1(𝑤, 𝑧) = 0,𝑤1 ≠ 𝑧1 

but this implies 

𝜕𝑤𝜂1(𝑤, 𝑧) = 0 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑤 ∈ 𝑈𝑧
1\𝑈𝑧

2. 

One similarly obtains 

𝜕𝑤𝜂2(𝑤, 𝑧) = 0 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑤 ∈ 𝑈𝑧
2\𝑈𝑧

1). 

We are left to consider the case when 𝑤 ∈ 𝑈𝑧
1 ∩ 𝑈𝑧

2; note that since 

(𝑤1 − 𝑧1)(𝑤2 − 𝑧2) ≠ 0 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑤 ∈ 𝑈𝑧
1 ∩ 𝑈𝑧

2 

showing that (𝜕𝑤𝜂)
2
(𝑤, 𝑧) = 0 for any 𝑤 ∈ 𝑈𝑧

1 ∩ 𝑈𝑧
2 is now equivalent to showing that 

(𝑤1 − 𝑧1)(𝑤2 − 𝑧2)(𝜕𝑤𝜂)
2
(𝑤, 𝑧) = 0 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑤 ∈ 𝑈𝑧

1 ∩ 𝑈𝑧
2 

To this end, combining (19) with (20) we find 

(𝑤1−𝑧1)(𝑤2−𝑧2)(𝜕𝑤𝜂)
2
(𝑤, 𝑧) 

= 2(𝑤1 − 𝑧1)
2𝜕𝑤𝜂1(𝑤, 𝑧) ∧ 𝜕𝑤𝜂1(𝑤, 𝑧) ∧ 𝑑𝑤1 ∧ 𝑑𝑤2 

and indeed 
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𝜕𝑤𝜂1 ∧ 𝜕𝑤𝜂1 = 0 

because 𝜕𝑤𝜂1 is a form of degree 1. 

Let 𝜂 (𝑤, 𝑧) be a form of type (1, 0) in the variable 𝑤 (not necessarily generating for 𝑉) 

and with coefficients in 𝐶1(𝑈 × 𝑉) ; set 

𝛺1(𝜂)(𝑤, 𝑧) =
(𝑛 − 1)

(2𝜋𝑖)𝑛
(𝜂 ∧ (𝜕𝑤𝜂)

𝑛−2
∧ 𝜕𝑧𝜂) (𝑤, 𝑧)            (23) 

Note that 𝛺1(𝜂)(𝑤, 𝑧) is of type (𝑛, 𝑛 − 2) in the variable 𝑤 and of type (0,1) in the variable 

𝑧. We call 𝛺1(𝜂) the Cauchy‐Fantappie ’ form of order 1 for 𝜂, and the previous one, 𝛺0(𝜂) , 

will now be called Cauchy‐Fantappie ’ form of order 0. 

In the previous properties 𝑧 was fixed; here it is allowed to vary. 

Property (2.2.6)[42]. We have (again for η generating at z) 

(2𝜋𝑖)𝑛𝜕𝑧𝛺0(𝜂)(𝑤, 𝑧) = −(𝜕𝑤𝜂)
𝑛−1

∧ 𝜕𝑧𝜂 + 𝜂 ∧ (𝜕𝑤𝜂)
𝑛−2

∧ 𝜕𝑧𝜕𝑤𝜂,   (24) 

For any w ∈ Uz ∩ U, where Uz is as in (15). Note that if the coefficients are in fact of class 

C2 in each variable, then (24) has the equivalentformulation 

𝜕𝑧𝛺0(𝜂)(𝑤, 𝑧) = −𝑑𝑤𝛺1(𝜂)(𝑤, 𝑧) .                                           (25) 

Proof. As before, we specialize to the case: 𝑛 = 2 and leave the proof of the general case as 

an exercise for the reader. For 𝑛 = 2 identity (24) reads 

𝜕𝑧(𝜂 ∧ 𝜕𝑤𝜂) = −𝜕𝑤𝜂 ∧ 𝜕𝑧𝜂 + 𝜂 ∧ 𝜕𝑧𝜕𝑤𝜂                                 (26) 

By the Leibniz rule we have 

𝜕𝑧(𝜂 ∧ 𝜕𝑤𝜂) = 𝜕𝑧𝜂 ∧ 𝜕𝑤𝜂 + 𝜂 ∧ 𝜕𝑧𝜕𝑤𝜂 

and so it is clear that (26) will follow if we can show that 

𝜕𝑤𝜂 ∧ 𝜕𝑧𝜂 = 0, 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑤 ∈ 𝑈𝑧 

for any generating form 𝜂 with coefficients of class 𝐶1. Proceeding as in the proof of Basic 

Property (2.2.5), we decompose 

𝑈𝑧 ∩ 𝑈 = 𝑈𝑧
1 ∪ 𝑈𝑧

2 

where 𝑈𝑧
1 and 𝑈𝑧

2 are as in (21) and (22), respectively. Again, we have 

𝜂1(𝑤, 𝑧)(𝑤1 − 𝑧1) + 𝜂2(𝑤, 𝑧)(w2 − 𝑧2) = 1 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑤 ∈ 𝑈𝑧 

because 𝜂 is generating, and applying 𝜕𝑤 to each side of this identity we find 

0 = {

C𝜕𝑤
−𝜂1) . (𝑤1 − 𝑧1) + (𝜕𝑤𝜂2) . (𝑤2 − 𝑧2) , if 𝑤 ∈ 𝑈𝑧

1 ∩ 𝑈𝑧
2

(𝜕𝑤𝜂1) ⋅ (𝑤1 − 𝑧1) , if 𝑤 ∈ 𝑈𝑧
1\𝑈𝑧

2

(𝜕𝑤𝜂2) . (𝑤2−𝑧2) , if 𝑤 ∈ 𝑈𝑧
2\𝑈𝑧

1

           (27) 

Similarly, applying 𝜕𝑧, we have 
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0 = {

(𝜕𝑧𝜂1) . (𝑤1−𝑧1) + (𝜕𝑧𝜂2) . (𝑤2−𝑧2) , if 𝑤 ∈ 𝑈𝑧
1 ∩ 𝑈𝑧

2

(𝜕𝑧𝜂1) . (𝑤1−z1) , if 𝑤 ∈ 𝑈𝑧
1\𝑈𝑧

2

(𝜕𝑧𝜂2) . (𝑤2 − 𝑧2) , if 𝑤 ∈ 𝑈𝑧
2\𝑈𝑧

1

                   (28) 

Now 

𝜕𝑤𝜂 ∧ 𝜕𝑧𝜂 = (𝜕𝑤𝜂1 ∧ 𝜕𝑧𝜂2 − 𝜕𝑤𝜂2 ∧ 𝜕𝑧𝜂1) ∧ 𝑑𝑤1 ∧ 𝑑𝑤2                  (29) 

Note that if 𝑤 ∈ 𝑈𝑧
1\𝑈𝑧

2 then 1 ≠ 𝑍1 , and so showing that 

𝜕𝑤𝜂 ∧ 𝜕𝑧𝜂 = 0 𝑓𝑜𝑟 𝑤 ∈ 𝑈𝑧
1\𝑈𝑧

2 

is equivalent to showing that 

(𝜕𝑤𝜂 ∧ 𝜕𝑧𝜂) . (𝑤1−𝑧1) = 0 

that is (using (29)) 

(𝜕𝑤𝜂1 (𝑤1 − 𝑧1) ∧ 𝜕𝑧𝜂2 − 𝜕𝑤𝜂2 ∧ 𝜕𝑧𝜂1 (𝑤1 − 𝑧1)) ∧ 𝑑𝑤1 ∧ 𝑑𝑤2 = 0 

but this is indeed true by the generating form hypothesis on 𝜂 as expressed in (27) and (28). 

This shows that the desired conclusion is true when 𝑤 ∈ 𝑈𝑧
1\𝑈𝑧

2; the case: 𝑤 ∈ 𝑈𝑧
2\𝑈𝑧

1 is 

dealt with in a similar fashion. Finally, if 𝑤 ∈ 𝑈𝑧
1 ∩ 𝑈𝑧

2, then (𝑤1 − 𝑧1)(𝑤2 − 𝑧2) ≠ 0 𝑎𝑛𝑑 

(𝜕𝑤𝜂 ∧ 𝜕𝑧𝜂) . (𝑤1−𝑧1)(𝑤2 − 𝑧2)

= ((𝜕𝑤𝜂1) (𝑤1 − 𝑧1) ∧ (𝜕𝑧𝜂2) (𝑤2 − 𝑧2) + −(𝜕𝑤𝜂2) (𝑤 − 𝑧)

∧ (𝜕𝑧𝜂1) (𝑤1 − 𝑧1)) ∧ 𝑑𝑤1 ∧ 𝑑𝑤2 

but the two terms in the righthand side of this identity cancel out on account of (27) and 

(28). We highlight the theory of reproducing formulas for holomorphic functions by means 

of integral operators that arise from the Cauchy‐Fantappié formalism. We show that the 

usual reproducing properties of such operators extend to the situation where the data and the 

generating form have lower regularity. We begin with a rather specific example: the 

reproducing formula for the Bochner-Martinelli integral, see Proposition(2.2.9). The proof 

of this result is a consequence of a recasting of the classical mean value property for 

harmonic functions in terms of an identity (30) that links the Bochner‐artinelli C𝛤 form on 

a sphere with the sphere’s Euclidean surface measure. 

Because the Bochner‐Martinelli integral of a continuous function is, in general, not 

holomorphic in 𝑧, in fact we need a more general version of Proposition (2.2.9) that applies 

to integral operators whose kernel is allowed to be any Cauchy‐Fantappié form: this is done 

in Proposition (2.2.10). While the operators defined so far are given by surface integrals 

over the boundary of the ambient domain, following an idea of Ligocka [68] another family 

of integral operators can be defined (essentially by ifferentiating the kernels of the operators 

in the statement of Proposition (2.2.10)) which are realized as solid” integrals over the 

ambient domain, and we show in Proposition (2.2.11) that such operators, too, have the 



56 

reproducing property. 

Lemma (2.2.7)[42]. Let z ∈ ℂn be given and consider a ball centered at such z, Br(z) =

{w ∈ ℂn, |w − z| < r}. 

Then, at the center z andfor any w ∈ bBr(z) we have that the Bochner‐Martinelli 𝐶𝐹 form 

for the ball Br(z) has the following representation 

𝐶𝐵𝑀(𝑤, 𝑧) =
𝑑𝜎(𝑤)

𝜎(b𝔹𝑟(𝑧))
                                          (30) 

where dσ(w) is the element of Euclidean surface measure for bBr(z) , and 

𝜎(b𝔹𝑟(𝑧)) =
2𝜋𝑛𝑟2𝑛−1

(𝑛 − 1)!
 

denotes suiface measure of the sphere b𝔹r(z) . 

Proof. We claim that the desired conclusion is a consequence of the following identity 

𝛺0(𝜕𝑤𝛽)(𝑤, 𝑧) =
(𝑛 − 1)!

2𝜋𝑛
∗ 𝜕𝑤𝛽(𝑤, 𝑧)                                  (31) 

where, as usual, we have set 𝛽 (𝑤, 𝑧) = |𝑤 − 𝑧|2, and ∗ denotes the Hodge‐star operator 

mapping forms of type (𝑝, 𝑞) to forms of type (𝑛 − 𝑞, 𝑛 − 𝑝) . Let us first prove (30) 

assuming the truth of (31). To this end, we first note that from (31) and Basic Property (2.2.4) 

we have 

𝛺0 (
𝜕𝑤𝛽

𝛽
) (𝑤, 𝑧) =

(𝑛 − 1)!

2𝜋𝑛𝛽𝑛
∗ 𝜕𝑤𝛽(𝑤, 𝑧) , 𝑤 ∈ ℂ

𝑛 

But 𝜕𝑤𝛽 (𝑤, 𝑧) = 𝜕𝜌(𝑤) , 𝑤 ∈ ℂ𝑛 with (𝑤) : = 𝛽(𝑤, 𝑧) − 𝑟2, a defining function for 

B𝑟(𝑧) . Now recall that 𝐶𝐵𝑀(𝑤, 𝑧) = 𝑗
∗𝛺0(𝜕𝑤𝛽/𝛽) where 𝑗 is the inclusion: bB𝑟(𝑧) → ℂ𝑛 , 

see Example (2.2.3), so that 𝑗∗𝛽𝑛 = 𝑟2𝑛. Combining these facts we conclude that, for 𝜌 as 

above 

𝐶𝐵𝑀(𝑤, 𝑧) =
(𝑛 − 1)!

2𝜋𝑛𝑟2𝑛
𝑗∗(∗ 𝜕𝜌)(𝑤) , 𝑤 ∈ b𝔹𝑟(𝑧) 

and since ‖𝑑𝜌(𝑤)‖ = 2𝑟 whenever 𝑤 ∈ bB𝑟(𝑧) , we obtain 

𝐶𝐵𝑀(𝑤, 𝑧) =
(𝑛 − 1)!

2𝜋𝑛𝑟2𝑛−1
2𝑗∗(∗ 𝜕𝜌)

||𝑑𝜌‖
(𝑤) , 𝑤 ∈ b𝔹𝑟(𝑧) ; 

but 

𝑑𝜎(𝑤) =
2𝑗∗(∗ 𝜕𝜌)

‖𝑑𝜌‖
(𝑤) , 𝑤 ∈ b𝔹𝑟(𝑧)                              (32) 

see [76], and this gives (30). 

We are left to prove (31): to this end, we assume 𝑛 = 2 and leave the case of arbitrary 

complex dimension as an exercise to for the reader. Since 

∗ 𝑑𝑤𝑗 =
1

2𝑖2
𝑑𝑤𝑗 ∧ 𝑑𝑤𝑗′ ∧ 𝑑𝑤𝑗′  , 𝑤ℎ𝑒𝑟𝑒 𝑗

′ = {1, 2}\{𝑗} 

and 

𝜕𝑤𝛽 = (𝑤1−𝑧1)𝑑𝑤1 + (𝑤2−�̅�2)𝑑𝑤2 

then 
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∗ 𝜕𝑤𝛽 =
1

2𝑖2
(𝑤1 − 𝑧1)𝑑𝑤1 ∧ 𝑑𝑤2 ∧ 𝑑𝑤2 + (𝑤2 − 𝑧2)𝑑𝑤2 ∧ 𝑑𝑤1 ∧ 𝑑𝑤1 

On the other hand 

𝜕𝑤𝜕𝑤𝛽 = 𝑑𝑤1 ∧ 𝑑𝑤1 + 𝑑𝑤2 ∧ 𝑑𝑤2 

and so 

𝛺0(𝜕𝑤𝛽) =
1

(2𝜋𝑖)2
𝜕𝑤𝛽 ∧ 𝜕𝑤𝜕𝑤𝛽 

=
1

(2𝜋𝑖)2
((𝑤1−𝑧1)𝑑𝑤1 ∧ 𝑑𝑤2 ∧ 𝑑𝑤2 + (𝑤2−𝑧2)𝑑𝑤2 ∧ 𝑑𝑤1 ∧ 𝑑𝑤1) 

=
1

2𝜋2
∗ 𝜕𝑤𝛽. 

This shows (31) and concludes the proof of the lemma. 

(We remark in passing that identity (30), while valid for the Bochner‐Martinelli generating 

form, is not true for general 𝜂.) 

Definition (2.2.8)[42]. Given an integer 1 ≤ 𝑘 ≤ ∞ and a bounded domain 𝐷 ⊂ ℂ𝑛, we say 

that 𝐷 is of class 𝐶𝑘 (alternatively, 𝐷 is 𝐶𝑘 −smooth) if there is an open neighborhood 𝑈 of 

the boundary of 𝐷, and a real‐valued function 𝜌 ∈ 𝐶𝑘(𝑈) such that 

𝑈 ∩ 𝐷 = {𝑤 ∈ 𝑈|𝜌(𝑤) < 0} 

and 

𝛻𝜌(𝑤) ≠ 0 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑤 ∈ 𝑈. 

Any such function is called a defining function for 𝐷. 

From this definition it follows that 

b𝐷 = {𝑤 ∈ 𝑈|𝜌(𝑤) = 0} 𝑎𝑛𝑑 𝑈\𝐷 = {𝑤 ∈ 𝑈|𝜌(𝑤) > 0}. 

Proposition (2.2.9)[42]. For any bounded domain V ⊂ ℂn with boundary of class C1 and 

for any ∈ ϑ(V) ∩ C(V) , we have 

𝑓(𝑧) = C𝐵𝑀𝑓(𝑧) , 𝑧 ∈ 𝑉. 

Proof. Given 𝑧 ∈ 𝑉, let 𝑟 > 0 be such that 

𝔹𝑟(𝑧) ⊂ 𝑉. 

Note that the mean value property for harmonic functions: 

𝑓(𝑧) =
1

𝜎(b𝔹𝑟(𝑧))
∫ 𝑓
b𝔹𝑟(𝑧)

(𝑤)𝑑𝜎(𝑤) , 𝑓 ∈ Harm(𝔹𝑟(𝑧)) ∩ 𝐶 (𝔹𝑟(𝑧)) 

and identity (30) give 

𝑓(𝑧) = ∫ 𝑓
𝑤∈b𝔹𝑟(𝑧)

(𝑤)𝐶𝐵𝑀(𝑤, 𝑧)                                            (33) 

To prove the conclusion, we apply Stokes’ theorem on the set 
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𝑉𝑟(𝑧):= 𝑉\𝔹𝑟(𝑧) 

and we obtain 

∫ 𝑑𝑤
𝑤∈𝑉𝑟(𝑧)

(𝑓(𝑤)𝛺0 (
𝜕𝑤𝛽

𝛽
(𝑤, 𝑧))) = ∫ 𝑓

𝑤∈𝑏𝑉𝑟(𝑧)

(𝑤)𝐶𝐵𝑀(𝑤, 𝑧) 

But by Basic Property (2.2.5), and since 𝑓 is holomorphic, we have 

𝑑𝑤 (𝑓(𝑤)𝛺0 (
𝜕𝑤𝛽

𝛽
(𝑤, 𝑧))) = 𝑓(𝑤)𝜕𝑤𝛺0 (

𝜕𝑤𝛽

𝛽
(𝑤, 𝑧)) = 0 

and so the previous identity becomes 

∫ 𝑓
𝑤∈𝑏𝑉

(𝑤)𝐶𝐵𝑀(𝑤, 𝑧) = ∫ 𝑓
𝑤∈𝑏𝔹𝑟(𝑧)

(𝑤)𝐶𝐵𝑀(𝑤, 𝑧) 

but the lefthand side is C𝐵𝑀𝑓(𝑧) , while (33) says that the righthand side equals 𝑓(𝑧) . 

Proposition (2.2.10)[42]. Let D ⊂ ℂn be a bounded domain of class C1 and let z ∈ D be 

given. Suppose that η (., z) is a generatingform at z relative to D. Suppose, furthermore, that 

the coefficients of η (., z) are in C1(Uz) , where Uz is as in Definition (2.2.1). Then, we have 

𝑓(𝑧) = ∫ 𝑓
𝑤∈b𝐷

(𝑤)𝑗∗𝛺0(𝜂)(𝑤, 𝑧) 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑓 ∈ 𝜗(𝐷) ∩ 𝐶(𝐷) .          (34) 

Proof. Consider a smooth open neighborhood of b𝐷, which we denote 𝑈𝑧(b𝐷) , such that 

𝑈𝑧(b𝐷) ⊂ 𝑈𝑧                                                                (35) 

where 𝑈𝑧 is as in (14) and (2). Now fix two neighborhoods 𝑈′ and 𝑈′′ ofthe boundary of 𝐷 

such that 

𝑈′′ ⋐ 𝑈′ ⊂ 𝑈𝑧(b𝐷) 

and let 𝜒0 (𝑤, 𝑧) be a smooth cutoff function such that 

𝜒0(𝑤, 𝑧) = {
1      if  𝑤 ∈ 𝑈𝑛

0      if   𝑤 ∈ ℂn\𝑈′̅̅ ̅
                           (36) 

Define 

𝜂∘(𝑤, 𝑧) = 𝜒0(𝑤, 𝑧)𝜂(𝑤, 𝑧) + (1 − 𝜒0(𝑤, 𝑧))
𝜕𝑤𝛽

𝛽
(𝑤, 𝑧) 

and 

𝐷∘ = 𝐷 ∩ 𝑈𝑧(b𝐷). 

Then 𝜂∘ is generating at 𝑧 relative to 𝐷∘ (and the open set 𝑈𝑧 of Definition (2.2.1) is the 

same for 𝜂 and for 𝜂∘); furthermore, it follows from (35) that 

𝐷∘ ⊂ 𝑈𝑧. 

Now let {𝜂ℓ}ℓ∈ℕ be a sequence of (1, 0)‐forms with coefficients in 𝐶2(𝐷∘) with the property 
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that 

‖𝜂ℓ
∘ − 𝜂 

∘(⋅, 𝑧)‖𝐶1(𝐷∘) → 0 𝑎𝑠 ℓ → ∞. 

Suppose first that ∈ 𝜗 (𝑈(𝐷)) . Then by type considerations (and since 𝑓 is holomorphic in 

a neighborhood of 𝐷) for any 𝑤 ∈ 𝐷∘ and for any 𝑃 we have 

𝑑𝑤(𝑓(𝑤)𝛺0(𝜂ℓ
o)(𝑤, 𝑧)) = 𝜕𝑤(𝑓(𝑤)𝛺0(𝜂 )(𝑤, 𝑧)) 

= 𝑓(𝑤)𝜕𝑤𝛺0(𝜂ℓ
∘)(𝑤, 𝑧) = 𝑓(𝑤)(𝜕𝑤𝜂ℓ

∘)
𝑛
(𝑤, 𝑧) 

Thus, applying Stokes’ theorem on 𝐷∘ we find 

∫  
𝑤∈𝐷∘

𝑓(𝑤)(𝜕𝑤𝜂ℓ
o)
𝑛
(𝑤, 𝑧) + ∫  

𝑤∈𝑏𝐷

𝑓(𝑤)𝑗∗𝛺0(𝜂ℓ
∘)(𝑊, 𝑧) 

= ∫ 𝑓
𝑤∈𝐷∩b(𝑈𝑧(b𝐷))

(𝑤)𝑗∗𝛺0(𝜂ℓ
∘)(𝑤, 𝑧) 

Letting 𝑃 → ∞ in the identity above we obtain 

∫ 𝑓
𝑤∈𝐷∘

(𝑤)(𝜕𝑤𝜂
o)
𝑛
(𝑤, 𝑧) + ∫ 𝑓

𝑤∈b𝐷

(𝑤)𝑗∗𝛺0(𝜂
∘)(𝑤, 𝑧) 

= ∫ 𝑓
𝑤∈𝐷∩b(𝑈𝑧(b𝐷))

(𝑤)𝑗∗𝛺0(𝜂
∘)(𝑤, 𝑧) 

Since 𝜂∘ is generating at 𝑧, by Basic Property (2.2.5) this expression is reduced to 

∫ 𝑓
𝑤∈b𝐷

(𝑤)𝑗∗𝛺0(𝜂
∘)(𝑤, 𝑧) = ∫ 𝑓

𝑤∈𝐷∩b(𝑈𝑧(b𝐷))

(𝑤)𝑗∗𝛺0(𝜂
∘)(𝑤, 𝑧)        (37) 

But 

𝜂∘(𝑤, 𝑧) = {

𝜂 (𝑤, 𝑧) , for 𝑤 in an open neighborhood of b𝐷
𝜕𝑤𝛽

𝛽
 (𝑤, 𝑧) , for 𝑤 in an open neighborhood of b(𝑈𝑧(b𝐷))

 

as a result, (37) reads 

∫ 𝑓
𝑤∈b𝐷

(𝑤)𝑗∗𝛺0(𝜂)(𝑤, 𝑧)  = ∫ 𝑓
𝑤∈𝐷∩b(𝑈𝑧(b𝐷))

(𝑤)𝐶𝐵𝑀(𝑤, 𝑧) 

On the other hand, 𝐷 ∩ b(𝑈𝑧(b𝐷)) = b𝑉 for a(smooth) open set 𝑉 ⊂ 𝐷, and using 

Proposition (2.2.9) we conclude that (34) holds in the case when ∈ 𝜗 (𝑈(𝐷)) . To prove the 

conclusion in the general case: ∈ 𝜗(𝐷) ∩ 𝐶(𝐷) , we write 𝐷 = {𝜌(𝑤) < 0}, so that 𝜌(𝑧) <

0 (since 𝑧 ∈ 𝐷) and furthermore 
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𝑧 ∈ 𝐷𝑘: = {𝑤 𝜌(𝑤) < −
1

𝑘
} 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑘 ≥ 𝑘(𝑧) .               (38) 

But 𝐷𝑘 ⊂ 𝐷 and so ∈ 𝜗 (𝑈(𝐷𝑘)) ; moreover 

b𝐷𝑘 ⊂ 𝑈𝑧 𝑓𝑜𝑟 𝑘 = 𝑘(𝑧) 𝑠𝑢𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑙𝑦 𝑙𝑎𝑟𝑔𝑒. 

Thus, (34) grants 

∫ 𝑓
𝑤∈b𝐷𝑘

(𝑤)𝑗𝑘
∗𝛺0(𝜂)(𝑤, 𝑧) = 𝑓(𝑧) 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑘 ≥ 𝑘(𝑧) 

where 𝑗𝑘
∗ denotes the pullback under the inclusion 𝑗𝑘 : b𝐷𝑘 ↪ ℂ

𝑛. 

The conclusion now follows by letting 𝑘 → ∞. 

We remark that in the case when 𝜂 is the Bochner‐Martinelli generating form  : = 𝜕𝑤𝛽/𝛽, 

Proposition (2.2.10) is simply a restatement of Proposition (2.2.9). However, since the 

coefficients of the Bochner‐Martinelli C𝛤 form are nowhere holomorphic in the variable 𝑧, 

Proposition (2.2.9) is of limited use in the investigation of the Cauchy‐Szegö and Bergman 

projections, and Proposition (2.2.10) will afford the use of more specialized choices of 𝜂. 

The following reproducing formula is inspired by an idea of Ligocka [68]. 

Proposition (2.2.11)[42]. With same hypotheses as in Proposition (2.2.10), we have 

𝑓(𝑧) =
1

(2𝜋𝑖)𝑛
∫ 𝑓
𝑤∈𝐷

(𝑤)(𝜕𝑤𝜂)
𝑛
(𝑤, 𝑧) , 𝑓 ∈ 𝜗(𝐷) ∩ 𝐿1(𝐷) 

for any (1, 0)‐form η(., z) with coefficients in C1(D) such that 

𝑗∗𝛺0(�̃�)(⋅, 𝑧) = 𝑗
∗𝛺0(𝜂)(⋅, 𝑧)                                   (39) 

where j∗ denotes the pullback under the inclusion j : bD ↪ ℂn. 

Note that if one further assumes that the coefficients of 𝜂 (., z) are in 𝐶2(𝐷) ∩ 𝐶1(𝐷) then, 

as a consequence of the fact that 𝜕0𝜕 = 0, we have 

1

(2𝜋𝑖)𝑛
(𝜕𝑤𝜂)

𝑛
= 𝜕𝑤𝛺0(𝜂𝛾. 

Proof. Fix 𝑧 ∈ 𝐷 arbitrarily and let {𝜂
ℓ
}
ℓ∈ℕ

⊂ 𝐶1,0
2 (𝐷) be such that 

‖�̃�ℓ − �̃�(⋅, 𝑧)‖𝐶1(𝐷) → 0 𝑎𝑠 ℓ → ∞.                               (40) 

Suppose first that ∈ 𝜗 (𝑈(𝐷)) . Applying Stokes’ theorem to the (𝑛, 𝑛 − 1)‐form with 

coefficients in 𝐶1(𝐷) 

𝑓 ⋅ 𝛺0(�̃�ℓ) 

we find 
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∫ 𝑓
𝑤∈𝐷

(𝑤)𝜕𝛺0(�̃�ℓ)(𝑤) = ∫ 𝑓
𝑤∈b𝐷

(𝑤)𝑗∗𝛺0(�̃�ℓ)(𝑤) 𝑓𝑜𝑟 𝑎𝑛𝑦 ℓ. 

On the other hand, since the coefficients of 𝜂ℓ are in 𝐶2(𝐷) , we have 

𝜕𝛺0(𝜂ℓ) =
1

(2𝜋𝑖)𝑛
(𝜕𝜂𝑝)

𝑛
 𝑓𝑜𝑟 𝑎𝑛𝑦 ℓ 

and so the previous identity can be written as 

1

(2𝜋𝑖)𝑛
∫ 𝑓
𝑤∈𝐷

(𝑤)(𝜕𝜂ℓ)
𝑛
(𝑤) = ∫ 𝑓

𝑤∈b𝐷

(𝑤)𝑗∗𝛺0(𝜂𝑝)(𝑤) 𝑓𝑜𝑟 𝑎𝑛𝑦 ℓ. 

Letting ℓ → ∞ in the identity above and using (40) we obtain 

1

(2𝜋𝑖)𝑛
∫ 𝑓
𝑤∈𝐷

(𝑤)(𝜕𝜂)
𝑛
(𝑤, 𝑧) = ∫ 𝑓

𝑤∈b𝐷

(𝑤)𝑗∗𝛺0(𝜂)(𝑤, 𝑧) . 

Combining the latter with the hypothesis (39) we obtain 

1

(2𝜋𝑖)𝑛
 ∫ 𝑓
𝑤∈𝐷

(𝑤)(𝜕𝑤𝜂)
𝑛
(𝑤, 𝑧) =  ∫  

𝑤∈𝑏𝐷

𝑓(𝑤)𝑗∗𝛺0(𝜂)(𝑤, 𝑧) = 𝑓(𝑧) 

where the last identity is due to Proposition (2.2.10). 

If 𝑓 ∈ 𝜗(𝐷) ∩ 𝐿1(𝐷) then ∈ 𝜗 (𝑈(𝐷𝑘)) , where 𝐷𝑘 is as in (38); moreover, b𝐷𝑘 ⊂ 𝑈𝑧 for 

any 𝑘 ≥ 𝑘(𝑧) , so by the previous case we have 

𝑓(𝑧) = ∫ 𝑓
𝑤∈𝐷𝑘

(𝑤)(𝜕𝑤𝜂)
𝑛
(𝑤, 𝑧) 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑘 ≥ 𝑘(𝑧) . 

The conclusion now follows by observing that 

∫ 𝑓
𝑤∈𝐷𝑘

(𝑤)(𝜕𝑤𝜂)
𝑛
(𝑤, 𝑧) → ∫ 𝑓

𝑤∈𝐷

(𝑤)(𝜕𝑤𝜂)
𝑛
(𝑤, 𝑧) 

as 𝑘 → ∞, by the Lebesgue dominated convergence theorem. 

Note that the extension 𝜂 (𝑤, 𝑧) : = 𝜒0(𝑤, 𝑧)𝜂(𝑤, 𝑧) , with 𝜒0 as in (36), satisfies a stronger 

condition than (39), namely the identity 

𝜂(⋅, 𝑧) = 𝜂(⋅, 𝑧) 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑤 ∈ 𝑈𝑧
′(b𝐷) .                                    (41) 

On the other hand, it will become clear in the sequel that this simple‐minded extension is 

not an adequate tool for the investigation of the Bergman projection, and more ad‐hoc 

constructions are presented. In order to obtain operators that satisfy the crucial condition (c) 

one would need generating forms whose coefficients are holomorphic. However, in contrast 

with the situation for the planar case (where the Cauchy ketnel plays the role of a universal 

generating form with holomorphic coefficient) in higher dimension there is a large class of 

domains 𝑉 ⊂ ℂ𝑛 that cannot support generating forms with holomorphic coefficients. This 

dichotomy is related to the notion of domain of holomorphy, that is, the property that for 

any boundary point 𝑤 ∈ b𝑉 there is a holomorphic function 𝑓𝑤 ∈ 𝜗(𝐷) that cannot be 
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continued holomorphically in a neighborhood of 𝑤. It is clear that every planar domain 𝑉 ⊂

ℂ is a domain of holomorphy, because in this case one may take 𝑓𝑤(𝑧) : = (𝑤 − 𝑧)
−1 where 

𝑤 ∈ b𝑉 has been fixed. On the other hand the following 

𝑉 = {𝑧 ∈ ℂ2|1/2 < |𝑧| < 1} 

is a simple example of a smooth domain in ℂ2 that is not a domain of holomorphy; other 

classical examples are discussed e.g., in [76]. A necessary condition for the existence of a 

generating form 𝜂 whose coefficients are holomorphic in the sense described above is then 

that 𝑉 be a domain of holomorphy. To prove the necessity of such condition, it suffices to 

observe that as a consequence of (15) and (14) one has 

∑𝜂𝑗

𝑛

𝑗=1

(𝑤, 𝑧)(𝑤𝑗 − 𝑧𝑗) = 1 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑤 ∈ b𝑉, 𝑧 ∈ 𝑉.              (42) 

It is now clear that for each fixed 𝑤 ∈ b𝑉, at least one of the 𝜂𝑗 (𝑤, 𝑧)’s blows up as 𝑧 → 𝑤 

(and it is well known that this is strong enough to ensure that 𝑉 be a domain of holomorphy). 

In its current stage of development, the Cauchy‐Fantappié framework is most effective in 

the analysis of two particular categories of pseudo‐convex domains: these are the strongly 

pseudo‐convex domains and the related category of strongly ℂ‐linearly convex domains. 

Definition (2.2.12)[42]. We say that a domain 𝐷 ⊂ ℂ𝑛 is strongly pseudo‐convex if 𝐷 is of 

class 𝐶2 and if any defining function 𝜌 for 𝐷 satisfies the following inequality 

𝐿𝑤(𝜌)(𝜉):= ∑
𝜕2𝜌(𝑤)

𝜕𝜁𝑗𝜕𝜁𝑘

𝑛

𝑗,𝑘=1

𝜉𝑗𝜉𝑘 > 0 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑤 ∈ b𝐷, 𝜉 ∈ 𝑇𝑤
ℂ(b𝐷) (43) 

where 𝑇𝑤
ℂ denotes the complex tangent space to b𝐷 at 𝑤, namely 

𝑇𝑤
ℂ(b𝐷) = {𝜉 ∈ ℂ𝑛|〈𝜕𝜌(𝑤), 𝜉〉 = 0}, 

see [76]. 

If 𝐷 is of class 𝐶𝑘 with 𝑘 ≥ 1, and if 𝜌1 and 𝜌2 are two distinct defining functions for 𝐷, it 

can be shown that there is a positive function ℎ of class 𝐶𝑘−1 in a neighborhood 𝑈 of the 

boundary of 𝐷, such that 

𝜌1(𝑤) = ℎ(𝑤)𝜌2(𝑤),𝑤 ∈ 𝑈, 

and 

𝛻𝜌1(𝑤) = ℎ(𝑤)𝛻𝜌2(𝑤) 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑤 ∈ 𝑈 ∩ b𝐷,                          (44) 

see [76]. As a consequence of (44), if condition (43) is satisfied by one defining function 

then it will be satisfied by every defining function. The hermitian form 𝐿𝑤(𝜌) defined by 

(43) is called the Levi form, or complex Hessian, of 𝜌 at 𝑤. We remark that in fact there is a 

“special” defining function 𝜌 for 𝐷 that is strictly plurisubharmonic on a neighborhood 𝑈 

of 𝐷, that is 

𝐿𝑤(𝜌)(𝜉) > 0 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑤 ∈ 𝑈 𝑎𝑛𝑑 𝑎𝑛𝑦 𝜉 ∈ ℂ
𝑛\{0},             (45) 

see [76], and we will assume that 𝜌 satisfies this stronger condition. 

We should point out that there is another notion of strong pseudo‐convexity that includes 

the domains of Definition (2.2.12) as a subclass (this notion does not require the gradient of 
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𝜌 to be non‐vanishing on b𝐷); the domains of Definition (2.2.12) are sometimes referred to 

as “strongly Levi‐pseudo‐convex see [76]. 

Definition (2.2.13)[42]. We say that 𝐷 ⊂ ℂ𝑛 is strongly ℂ‐linearly convex if 𝐷 is of class 

𝐶1 and if any defining function for 𝐷 satisfies this inequality: 

|〈𝜕𝜌(𝑤),𝑤 − 𝑧〉| ≥ 𝐶|𝑤 − 𝑧|2 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑤 ∈ b𝐷, 𝑧 ∈ 𝐷.              (46) 

We call those domains that satisfy the following, weaker condition 

|(𝜕𝜌(𝑤) , 𝑤 − 𝑧〉| > 0 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑤 ∈ b𝐷 𝑎𝑛𝑑 𝑎𝑛𝑦 𝑧 ∈ 𝐷\{𝑤}       (47) 

strictly ℂ‐linearly convex. This condition is related to certain separation properties of the 

domain from its complement by (real or complex) hyperplanes, see [43], [62]: that this must 

be so is a consequence of the assertion that, for 𝑤 and 𝑧 as in (46), the quantity |〈𝜕𝜌(𝑤) , 

𝑤 − 𝑧〉| is comparable to the Euclidean distance of 𝑧 to the complex tangent space 𝑇𝑤
ℂ(b𝐷) ;  

It is not difficult to check that 

𝐷:= {𝑧 ∈ ℂ𝑛| Im 𝑧𝑛 > (|𝑍1|
2 + +|𝑧𝑛−1|

2)2} 

is strictly, but not strongly, ℂ‐linearly convex. 

Lemma (2.2.14)[42]: If D is strictly ℂ‐linearly convex then for any z ∈ D there is an open 

set Uz ⊂ ℂ
n\{z} such that bD ⊂ Uz and inequality (47) holds for any w in Uz. Furthermore, 

if D is strongly ℂ‐linearly convex then the improved inequality (46) will hold for any w ∈

Uz. 

Proof. Suppose that 𝐷 is strictly ℂ‐linearly convex and fix 𝑧 ∈ 𝐷. By the continuity of the 

function ℎ(𝜁) : = |〈𝜕𝜌(𝜁) , 𝜁 − 𝑧) | , if (47) holds at 𝑤 ∈ b𝐷 then there is an open 

neighborhood 𝑈𝑧(𝑤) such that ℎ(𝜁) > 0 for any 𝜁 ∈ 𝑈𝑧(𝑤) and so we have that ℎ(𝜁) > 0 

whenever 

𝜁 ∈ 𝑈𝑧: = ⋃ 𝑈𝑧
𝑤∈b𝐷

(𝑤) . 

It is clear that b𝐷 ⊂ 𝑈𝑧; furthermore, since ℎ(𝑧) = 0 then 𝑈𝑧(𝑤) ⊂ ℂ
𝑛\{𝑧} for any 𝑤 ∈ b𝐷 

and so 𝑈𝑧 ⊂ ℂ
𝑛\{𝑧}. 

If 𝐷 is strongly ℂ‐linearly convex then the conclusion will follow by considering the 

function ℎ(𝜁) : = |〈𝜕𝜌(𝜁) , 𝜁 − 𝑧〉| − 𝐶|𝜁 − 𝑧|2. 

Lemma (2.2.15)[42]: Any strongly ℂ‐linearly convex domain of class C2 is strongly 

pseudoconvex. 

The key point in the proof of this lemma is the observation that, as a consequence of (46), 

the real tangential Hessian of any defining function for a domain as in Lemma (2.2.15) is 

positive definite when restricted to the complex tangent space 𝑇𝑤
ℂ(b𝐷) (viewed as a vector 

space over the real numbers). The converse of Lemma (2.2.15) is not true: we have the 

following (smooth) domain 

𝐷:= {𝑧 = (𝑧1, 𝑧2) ∈ ℂ
2|Im z2  > 2( Re 𝑧1)

2 − ( Im 𝑧1)
2} 

is strongly pseudo‐convex but not strongly ℂ‐linearly convex. 

We remark that while the designations “strongly” and “strictly” indicate distinct families of 

ℂ‐linearly convex domains (and of convex domains), for pseudo‐convex domains there is 
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no such distinction, and in fact in the literature the terms “strictly pseudo‐convex” and 

“strongly pseudo‐convex” are often interchanged: this is because the positivity condition 

(45) implies the seemingly stronger inequality 

𝐿𝑤(𝜌, 𝜉) ≥ 𝑐0|𝜉|
2 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑤 ∈ 𝑈′ 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑎𝑛𝑦 𝜉 ∈ ℂ𝑛                     (48) 

Indeed, if (45) holds then the function 𝛾(𝑤) : =  min {𝐿𝑤(𝜌, 𝜉)||𝜉| = 1} is positive, and by 

bilinearity it follows that 𝐿𝑤 (𝜌, 𝜉) ≥ 𝛾(𝑤)|𝜉|2 for any 𝜉 ∈ ℂ𝑛; since 𝜌 is of class 𝐶2 (and 

𝐷 is bounded) we may further take the minimum of 𝛾(𝑤) over, say, 𝑤 ∈ 𝑈′ ⊂ 𝑈 and thus 

obtain (48), see [76] 

A first step in the study of the Bergman and Cauchy‐Szegö projections is the 

construction of integral operators with kernels given by Cauchy‐Fantappié forms that are (at 

least) locally holomorphic in 𝑧, that is for 𝑧 in a neighborhood of each (fixed) 𝑤: it is at this 

juncture that the notion of strong pseudo‐convexity takes center stage. We show how to 

construct such operators in the case when 𝐷 is a bounded, strongly pseudo‐convex domain, 

and we then proceed to prove the reproducing property. 

we fix a strictly plurisubharmonic defining function for 𝐷; that is, we fix 

𝜌: ℂ𝑛 → ℝ, 𝜌 ∈ 𝐶2(ℂ𝑛) 

such that 𝐷 = {𝜌 < 0}; 𝛻𝜌(𝑤) ≠ 0 for any 𝑤 ∈ b𝐷 and 

𝐿𝑤(𝜌, 𝑤 − 𝑧) ≥ 2𝑐0|𝑤 − 𝑧|
2, 𝑤, 𝑧 ∈ ℂ𝑛 

where 𝐿𝑤 denotes the Levi form for 𝜌, see (43) and (48). Consider the Levi polynomial of 𝜌 

at 𝑤: 

△ (𝑤, 𝑧):= 〈𝜕𝜌(𝑤),𝑤 − 𝑧〉 −
1

2
∑

𝜕2𝜌(𝑤)

𝜕𝜁𝑗𝜕𝜁𝑘

𝑛

𝑗,𝑘=1

(𝑤𝑗 − 𝑧𝑗)(𝑤𝑘 − 𝑧𝑘) 

Lemma (2.2.16)[42]. Suppose D = {ρ(w) < 0} is bounded and strongly pseudo‐convex. 

Then, there is ε0 = ε0(c0) > 0 such that 

2 Re △ (𝑤, 𝑧) ≥ 𝜌(𝑤) − 𝜌(𝑧) + 𝑐|𝑤 − 𝑧|2 

whenever w ∈ Dc0 = {w|ρ(w) < c0}, and z ∈ Bε0(w). 

Here 𝑐0 is as in (49). We leave the proof of this lemma, along with the corollary below, as 

an exercise for the reader. Now let 𝜒1 (𝑤, 𝑧) be a smooth cutoff function such that 

𝜒1(𝑤, 𝑧) = {
1, if |𝑤 − 𝑧| < 𝜀0/2

0, if |𝑤 − 𝑧| > 𝜀0
                                  (49) 

where 𝜀0 is as in Lemma (2.2.16) and set 

𝑔(𝑤, 𝑧) = 𝜒1(𝑤, 𝑧) △ (𝑤, 𝑧) + (1 − 𝜒1(𝑤, 𝑧))|𝑤 − 𝑧|
2, 𝑤, 𝑧 ∈ ℂ𝑛   (50) 

Lemma (2.2.17)[42]. Sup‐pose D = {ρ(w) < 0} is strongly pseudo‐convex and of class C2. 

Then, there is δ0 = δ0(ε0, c0) > 0 such that 

2 Re 𝑔(𝑤, 𝑧) ≥ {

𝜌(𝑤) − 𝜌(𝑧) + 𝑐|𝑤 − 𝑧|2, if |𝑤 − 𝑧| ≤ 𝜀0/2

𝜌(𝑤) + 2𝛿0, if 𝜀0/2 ≤ |𝑤 − 𝑧| < 𝜀0

𝜀0
2
, if |𝑤 − 𝑧| > 𝜀0
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whenever 

𝑤 ∈ 𝐷𝑐0 = {𝑤|𝜌(𝑤) < 𝑐0}                                      (51) 

and 

𝑧 ∈ 𝐷
2𝛿0

= {𝑤|𝜌(𝑤) < 2𝛿0}. 

Proof. It suffices to choose 0 < 𝛿0 < 𝑐0𝜀0
2
/16: the desired inequalities then follow from 

Lemma (2.2.16). 

Corollary (2.2.18)[42]. Let D = {ρ(w) < 0} be a bounded, strongly pseudo‐convex 

domain. Let 

△𝑗 (𝑤, 𝑧):=
𝜕𝜌

𝜕𝜁𝑗
(𝑤) −

1

2
∑

𝜕2𝜌(𝑤)

𝜕𝜁𝑗𝜕𝜁𝑘

𝑛

𝑘=1

(𝑤𝑘−𝑧𝑘) , 𝑗 = 1, . . . 𝑛, 

Define 

𝜂𝑗(𝑤, 𝑧):=
1

𝑔(𝑤, 𝑧)
(𝜒1(𝑤, 𝑧) △𝑗 (𝑤, 𝑧) + (1 − 𝜒1(𝑤, 𝑧))(𝑤 − 𝑧)) 

where χ1 and g are as in (49) and (50), and set 

𝜂(𝑤, 𝑧):=∑𝜂𝑗

𝑛

𝑗=1

(𝑤, 𝑧)𝑑𝑤𝑗  𝑓𝑜𝑟 (𝑤, 𝑧) ∈ 𝐷𝑐0 × 𝐷 

with Dc0 as in (51). Then we have that η(w, z) is a generating form for D, and one may take 

for Uz in Definition (2.2.1) the set 

𝑈𝑧 ∶= {𝑤| max {𝜌(𝑧),−𝛿0} < 𝜌(𝑤) <  min {|𝜌(𝑧)|, 𝑐0}}.                     (52) 

Note, however, that the coefficients of 𝜂 in this construction are only continuous in the 

variable 𝑤 and so the Cauchy‐Fantappié form 𝛺0(𝜂) cannot be defined for such 𝜂 because 

doing so would require differentiating the coefficients of 𝜂 with respect to 𝑤, see (17). For 

this reason, proceeding as in [34], we refine the previous construction as follows. For 𝜀0 as 

in Lemma (2.2.16) and for any 0 < 𝜀 < 𝜀0, we let 𝜏𝑗,𝑘
𝜀 ∈ 𝐶∞(ℂ𝑛) be such that 

max
𝑤∈�̅�

|
𝜕2𝜌(𝑤)

𝜕𝜁𝑗𝜕𝜁𝑘
− 𝜏𝑗,𝑘

𝜀 (𝑤)| < 𝜀, 𝑗, 𝑘 = 1, . . . , 𝑛 

We now define the following quantities: 

△𝑗
𝜀 (𝑤, 𝑧):=

𝜕𝜌

𝜕𝜁𝑗
(𝑤) −

1

2
∑𝜏𝑗,𝑘

𝜀

𝑛

𝑘=1

(𝑤)(𝑤𝑘 − 𝑧𝑘) , 𝑗 = 1, . . . , 𝑛;   (53) 

△𝜀 (𝑤, 𝑧):=∑△𝑗
𝜀

𝑛

𝑗=1

(𝑤, 𝑧)(𝑤𝑗 − 𝑧𝑗) ; 

and, for 𝜒1 as in (49): 



66 

𝑔𝜀(𝑤, 𝑧):= 𝜒1(𝑤, 𝑧) △
𝜀 (𝑤, 𝑧) + (1 − 𝜒1(𝑤, 𝑧))|𝑤 − 𝑧|

2;          (54) 

𝜂𝑗
𝜀(𝑤, 𝑧):=

1

𝑔𝜀(𝑤, 𝑧)
(𝜒1(𝑤, 𝑧) △𝑗

𝜀 (𝑤, 𝑧) + (1 − 𝜒1(𝑤, 𝑧))(𝑤𝑗 − 𝑧𝑗)) 

and finally 

𝜂𝜀(𝑤, 𝑧):=∑𝜂𝑗
𝜀

𝑛

𝑗=1

(𝑤, 𝑧)𝑑𝑤𝑗 . 

Lemma (2.2.19)[42]. Let D = {ρ(w) < 0} be a bounded strongly pseudo‐convex domain. 

Then, there is ε0 = ε0(c0) > 0 such that for any 0 < ε < ε0 and for any z ∈ D, we have that 

ηε(w, z) defined as above is generating at z relative to D with an open set Uz (see Definition 

(2.2.1)) that does not depend on ε. Furthermore, we have that for each (fixed) z ∈ D the 

coefficients of ηε (., z) are in C1(Uz) . 

Proof. We first observe that △𝜀 can be expressed in terms of the Levi polynomial △, as 

follows 

△𝜀 (𝑤, 𝑧):=△ (𝑤, 𝑧) +
1

2
∑ (

𝜕2𝜌(𝑤)

𝜕𝜁𝑗𝜕𝜁𝑘
− 𝜏𝑗,𝑘

𝜀 (𝑤))

𝑛

𝑗,𝑘=1

(𝑤 − 𝑧)(𝑤𝑘 − 𝑧𝑘) 

and so by Lemma (2.2.16) we have 

2 Re △𝜀 (𝑤, 𝑧) ≥ 𝜌(𝑤) − 𝜌(𝑧) + 𝑐0|𝑤 − 𝑧|
2 

for any 

0 < 𝜀 < 𝜀0 ∶=  min {𝜀0, 2𝐶0/𝑛
2} 

whenever 𝑤 ∈ 𝐷𝑐0 = {𝜌(𝑤) < 𝑐0} and 𝑧 ∈ B𝜀0(𝑤). Proceeding as in the proof of Lemma 

(2.2.17) we then find that 

2 Re 𝑔𝜀(𝑤, 𝑧) ≥ {

𝜌(𝑤) − 𝜌(𝑧) + 𝑐0|𝑤 − 𝑧|
2, if |𝑤 − 𝑧| ≤ 𝜀0/2

𝜌(𝑤) + 𝜇0, if 𝜀0/2 ≤ |𝑤 − 𝑧| < 𝜀0

𝜀0
2
, if |𝑤 − 𝑧| ≥ 𝜀0

 

for any 0 < 𝜀 < 𝜀0 whenever 

𝑤 ∈ 𝐷𝑐0 = {𝑤|𝜌(𝑤) < 𝑐0} 

and 

𝑧 ∈ 𝐷𝜇0 = {𝑤|𝜌(𝑤) < 𝜇0} 

as soon as we choose 

0 < 𝜇0 < 𝑐0𝜀0
2/8.                                                 (55) 

We then define the open set 𝑈𝑧 ⊂ ℂ
𝑛\{𝑧} as in (52) but now with 𝛿0 in place of 𝛿0 (note 

that 𝑈𝑧 does not depend on 𝜀). Then, proceeding as in the proof of Corollary (2.2.18) we 

find that 
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inf
𝑤∈𝑈𝑧

   Re 𝑔𝜀(𝑤, 𝑧) > 0 𝑓𝑜𝑟 𝑎𝑛𝑦 0 < 𝜀 < 𝜀0. 

From this it follows that 𝜂𝜀 is a generating form for 𝐷; it is clear from (53) that the 

coefficients of 𝜂𝜀 are in 𝐶1(𝑈𝑧) . 

Lemma (2.2.19) shows that 𝜂𝜀 satisfies the hypotheses of Proposition (2.2.10); as a 

consequence we obtain the following results: 

Proposition (2.2.20)[42]. Let D be a bounded strongly pseudo‐convex domain. Then, for 

any 0 < ε < ε0 we have 

𝑓(𝑧) = ∫ 𝑓
𝑤∈b𝐷

(𝑤)𝑗∗𝛺0(𝜂
𝜀)(𝑤, 𝑧) 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑓 ∈ 𝜗(𝐷) ∩ 𝐶(𝐷) , 𝑧 ∈ 𝐷 

where ε0 and ηε are as in Lemma (2.2.19). 

Proposition (2.2.21)[42]. Let D = {ρ(w) < 0} be a bounded strongly pseudo‐convex 

domain. Let 

�̃�𝜀(𝑤, 𝑧):=
𝑔𝜀(𝑤, 𝑧)

𝑔𝜀(𝑤, 𝑧) − 𝜌(𝑤)
𝜂𝜀(𝑤, 𝑧) , 𝑤 ∈ 𝐷, 𝑧 ∈ 𝐷. 

where ηε is as in Lemma (2.2.19). Then, for any 0 < ε < ε0 we have 

𝑓(𝑧) =
1

(2𝜋𝑖)𝑛
∫ 𝑓
𝑤∈𝐷

(𝑤)(𝜕𝑤𝜂
𝜀
)
𝑛
(𝑤, 𝑧) 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑓 ∈ 𝜗(𝐷) ∩ 𝐿1(𝐷) , 𝑧 ∈ 𝐷. 

Proof. We claim that 𝜂
𝜀
 satisfies the hypotheses of Proposition (2.2.11) for any 0 < 𝜀 < 𝜀0. 

Indeed, proceeding as in the proof of Lemma (2.2.19) we find that 

 Re (𝑔𝜀(𝑤, 𝑧) − 𝜌(𝑤)) > 0 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑤 ∈ 𝐷, 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑧 ∈ 𝐷 

and for any 0 < 𝜀 < 𝜀0; from this it follows that 

�̃�𝜀(. , 𝑧) ∈ 𝐶1,0
1 (𝐷) 𝑓𝑜𝑟 𝑎𝑛𝑦 0 < 𝜀 < 𝜀0. 

Moreover, as a consequence of Basic Property (2.2.4) we have 

𝛺0(�̃�
𝜀)(⋅, 𝑧) = (

𝑔𝜀(⋅, 𝑧)

𝑔𝜀(⋅, 𝑧) − 𝜌(⋅)
)

𝑛

𝛺0(𝜂
𝜀)(⋅, 𝑧) 𝑓𝑜𝑟 𝑎𝑛𝑦 0 < 𝜀 < 𝜀0, 

but this grants 

𝑗∗𝛺0(�̃�
𝜀)(. , 𝑧) = 𝑗∗𝛺0(𝜂

𝜀) (. , 𝑧) 𝑓𝑜𝑟 𝑎𝑛𝑦 0 < 𝜀 < 𝜀0. 

The conclusion now follows from Proposition (2.2.11).  

Fundamental limitation: it is that these propositions employ kernels, namely 

𝑗∗𝛺0(𝜂
𝜀)(𝑤, 𝑧) and (𝜕𝑤�̃�

𝜀)
𝑛
(𝑤, 𝑧) , that are only locally holomorphic as functions of 𝑧, 

that is, they are holomorphic only for 𝑧 ∈ B𝜀0/2(𝑤) . We address this issue by constructing 

for each of these kernels a “correction” term obtained by solving an ad‐hoc 𝜕‐problem in 

the 𝑧‐variable. 
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We shift our focus from the 𝑤‐variable to 𝑧, that is: we fix 𝑤 ∈ 𝐷, we regard 𝑧 as a variable 

and we define the “parabolic” region 

𝒫𝑤: = {𝑧|𝜌(𝑧) + 𝜌(𝑤) < 𝑐0|𝑤 − 𝑧|
2}. 

The region 𝒫𝑤 has the following properties: 

𝑤 ∈ 𝐷 ⇒ 𝐷 ⊂ 𝒫𝑤; 

𝑤 ∈ b𝐷 ⇒ 𝑧:= 𝑤 ∈ b𝒫𝑤. 

As a consequence of these properties we have that 

𝒫𝑤 ∩ B𝜀0/2(𝑤) ≠ ∅ 

Lemma (2.2.22)[42]. Let D = {z|ρ(z) < 0} be a bounded strongly pseudo‐convex domain. 

Then, there is μ0 = μ0(c0) > 0 such that 

𝐷𝜇0 = {𝑧|𝜌(𝑧) < 𝜇0} ⊂ 𝒫𝑤 ∪ B𝜀0/2(𝑤)                  (55) 

for any (fixed) w ∈ D. Furthermore, there is a bounded strongly pseudo‐convex Ω of class 

C∞ such that 

𝐷𝜇0/2 = {𝑧|𝜌(𝑧) < 𝜇0/2} ⊂ 𝛺 ⊂ 𝐷𝜇0 = {𝑧|𝜌(𝑧) < 𝜇0} 

where 𝜇0 > 0 is as in (55). 

Proof. For the first conclusion, we claim that it suffices to choose 𝜇0 = 𝜇0(𝑐0) as in (55). 

Indeed, given ∈ 𝐷𝜇0 , if |𝑤 − 𝑧| ≥ 𝜀0/2 then 𝜌(𝑧) ≤ 𝑐0|𝑤 − 𝑧|
2/2 and since 𝜌(𝑤) ≤ 0 (as 

𝑤 ∈ 𝐷) it follows that 𝑧 ∈ 𝒫𝑤. On the other hand, if |𝑤 − 𝑧| < 𝜀0/2 then of course ∈

B𝜀0/2(𝑤) . 
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Fig. 1 [42] The region 𝓅𝑤 in the case when 𝑤 ∈ b𝐷 

To prove the second conclusion note that, since 𝜌 (the defining function of 𝐷) is of class 𝐶2 

and is strictly plurisubharmonic in a neighborhood of 𝐷, there is 𝜌 ∈ 𝐶∞ (𝑈(𝐷)) such that 

‖𝜌 − 𝜌‖
𝐶2(𝑈(𝐷))

≤ 𝜇0/8 

and 

𝐿𝑧(𝜌, 𝜉) > 0 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑧 ∈ 𝑈
′(𝐷) 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑎𝑛𝑦 𝜉 ∈ ℂ𝑛, 

see (43) and (45). Define 

𝛺:= {𝑧 𝜌(𝑧) −
3𝜇0
4
< 0} 

Then 𝛺 is smooth and strongly pseudo‐convex; we leave it that 𝛺 satisfies the desired 

inclusions: 𝐷𝜇0/2 ⊂ 𝛺 ⊂ 𝐷𝜇0 . 

Lemma (2.2.22) shows that (the smooth and strongly pseudo‐convex domain) 𝛺 has the 

following properties, see Fig. 1: 

𝐷 ⊂ 𝛺 , 𝑎𝑛𝑑 𝛺 ⊂ 𝒫𝑤 ∪ B𝜀0/2(𝑤) , 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑤 ∈ 𝐷. 

We now set up two 𝜕‐problems on 𝛺. For the first 𝜕‐problem, we begin by observing that if 

𝑤 is in b𝐷 and 𝑧 is in 𝒫𝑤 then  Re 𝑔𝜀 (𝑤, 𝑧) > 0 (that this must be so can be seen from the 

inequalities for  Re 𝑔𝜀 (𝑤, 𝑧) that were obtained in the proof of Lemma (2.2.19)), and so the 

coefficients of 𝜂𝜀(𝑤, ) are in 𝐶∞(𝒫𝑤) whenever 𝑤 ∈ b𝐷. Now fix 𝑤 ∈ b𝐷 arbitrarily and 

denote by 𝐻(𝑤, 𝑧) = 𝐻𝜀(𝑤, 𝑧) the following double form, which is of type (0,1) in 𝑧, and 

of type (𝑛, 𝑛 − 1) in 𝑤 

𝐻(𝑤, 𝑧) = {
−𝜕𝑧𝛺0(𝜂

𝜀)(𝑤, 𝑧) , if 𝑧 ∈ 𝒫𝑤
0, if 𝑧 ∈ B𝜀0/2(𝑤)

            (56) 

Now for each fixed 𝑤 ∈ b 𝐷, the coefficients of 𝛺0(𝑤, 𝑧) are holomorphic in 𝑧 for 𝑧 ∈

B𝜀0/2(𝑤) and so 𝐻(𝑤, 𝑧) is defined consistently in 𝒫𝑤 ∪ B𝜀0/2(𝑤) . It is also clear that 𝐻 

(𝑤, 𝑧) is 𝐶∞ for ∈ 𝒫𝑤 ∪ B𝜀0/2(𝑤) , and as such it depends continuously on 𝑤 ∈ b𝐷. 

Moreover we have that 𝜕𝑧𝐻(𝑤, 𝑧) = 0, for 𝑧 ∈ 𝒫𝑤 ∪ B𝜀0/2(𝑤) , 𝑤 ∈ b𝐷. For the second 𝜕‐

problem, we begin by observing that if 𝑤 is in 𝐷 and 𝑧 is in 𝒫𝑤 then 

 Re (𝑔𝜀(𝑤, 𝑧) − 𝜌(𝑤)) > 0 (that this must be so can again be seen from the inequalities for 

 Re 𝑔𝜀 (𝑤, 𝑧) in the proof of Lemma (2.2.19)), and so the coefficients of 𝜂
𝜀
(𝑤,⋅) are in 
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𝐶∞(𝒫𝑤) whenever 𝑤 ∈ 𝐷. Fixing 𝑤 ∈ 𝐷 arbitrarily, we denote by 𝐹 (𝑤, 𝑧) = 𝐹𝜀(𝑤, 𝑧) the 

following double form, which is of type (0,1) in 𝑧, and of type (𝑛, 𝑛) in 𝑤 

𝐹(𝑤, 𝑧) = {
−𝜕𝑧(𝜕𝑤�̃�

𝜀)
𝑛
(𝑤, 𝑧) , if 𝑧 ∈ 𝒫𝑤

0, if 𝑧 ∈ B𝜀0/2(𝑤)
 

Now for each fixed 𝑤 ∈ 𝐷, the coefficients of 𝜂
𝜀
 (𝑤, 𝑧) are holomorphic in 𝑧 for 𝑧 ∈

B𝜀0/2(𝑤) and so 𝐹(𝑤, 𝑧) is defined consistently in 𝒫𝑤 ∪ B𝜀0/2(𝑤) . It is also clear that 

𝐹(𝑤, 𝑧) is 𝐶∞ for ∈ 𝒫𝑤 ∪ B𝜀0/2(𝑤) , and as such it depends continuously on 𝑤 ∈ 𝐷. 

Moreover we have that 𝜕𝑧𝐹 (𝑤, 𝑧) = 0, for 𝑧 ∈ 𝒫𝑤 ∪ B𝜀/20(𝑤) , 𝑤 ∈ 𝐷. 

Now let 𝑆 = 𝑆𝑧 be the solution operator, giving the normal solution of the problem 𝜕𝑢 = 𝛼 

in 𝛺, via the 𝜕‐Neumann problem, so that 𝑢 = 𝒮(𝛼) satisfies the above whenever 𝛼 is 

a(0,1)‐form with 𝜕𝛼 = 0. We set 

𝐶𝜀
2(𝑤, 𝑧) = 𝑆𝑧(𝐻 (𝑤, )) , 𝑤 ∈ b𝐷                              (57) 

and 

𝐵𝜀
2(𝑤, 𝑧) = 𝑆𝑧(𝐹(𝑤,⋅)) , 𝑤 ∈ 𝐷. 

Then by the regularity properties of 𝑆, for which see e.g., [51], or [56], we have that 𝐶𝜀
2 

(𝑤, 𝑧) is in 𝐶∞(𝛺) , as a function of 𝑧, and is continuous for 𝑤 ∈ b𝐷. Moreover 𝜕𝑧 

(𝐶𝜀
2 (𝑤, 𝑧)) = −𝜕𝑧𝛺0(𝜂

𝜀)(𝑤, 𝑧) = 0, for 𝑧 ∈ 𝐷 (recall that 𝐷 ⊂ 𝒫𝑤) so 

𝜕𝑧(𝛺0(𝜂
𝜀) + 𝐶𝜀

2))(𝑤, 𝑧) = 0 for 𝑧 ∈ 𝐷 and 𝑤 ∈ b𝐷. We similarly have that 𝐵𝜀
2(𝑤, 𝑧) is in 

𝐶∞(𝛺) , as a function of 𝑧, and is continuous for 𝑤 ∈ 𝐷 and, furthermore 

𝜕𝑧 ((𝜕𝑤�̃�
𝜀)
𝑛
+ 𝐵𝜀

2))(𝑤, 𝑧) = 0 𝑓𝑜𝑟 𝑧 ∈ 𝐷 𝑎𝑛𝑑 𝑤 ∈ 𝐷. 

We complete the construction of a number of integral operators that satisfy all three of the 

fundamental conditions (a) − (c) that were presented. The crucial step in all these 

constructions is to produce integral kernels that are globally holomorphic in 𝐷 as functions 

of 𝑧. For strongly pseudo‐convex domains, this goal is achieved by adding to each of the 

(locally holomorphic) Cauchy‐Fantappié forms that were produced the ad‐hoc “correction” 

term that was constructed in the resulting two families of operators are denoted {C𝜀}𝜀 (acting 
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on 𝐶(b𝐷)) and {B𝜀}𝜀 (acting on 𝐿1(𝐷)). In the case of strongly ℂ‐linearly convex domains 

of class 𝐶2, there is no need for “correction”: a natural, globally holomorphic 

CauchyFantappié form is readily available that gives rise to an operator acting on 𝐶(b𝐷) 

(even on 𝐿1(b𝐷)) , called the Cauchy‐Leray Integral C𝐿 and, in the more restrictive setting 

of strongly convex domains, also to an operator B𝐿 that acts on 𝐿1(𝐷) . In the special case 

when the domain is the unit ball, the Cauchy‐Leray integral C𝐿 agrees with the Cauchy‐

Szegö projection S, while the operator B𝐿 agrees with the Bergman projection B.) All the 

operators that are produced satisfy, by their very construction, conditions (a) and (c) and we 

show that they also satisfy condition (b) (the reproducing property for holomorphic 

functions). 

For 𝜂𝜀 is as in Proposition (2.2.20) we now write 

𝐶𝜀
1(𝑤, 𝑧) = 𝛺0(𝜂

𝜀)(𝑤, 𝑧) 

and let 

𝐶𝜀(𝑤, 𝑧) = 𝑗
∗(𝐶𝜀

1(𝑤, 𝑧) + 𝐶𝜀
2(𝑤, 𝑧)) 

and we define the operator 

C𝜀𝑓(𝑧) = ∫ 𝑓
𝑤∈b𝐷

(𝑤)𝐶𝜀(𝑤, 𝑧) , 𝑧 ∈ 𝐷, 𝑓 ∈ 𝐶(b𝐷) .              (58) 

Proposition (2.2.23)[42]. Let D be a bounded strongly pseudo‐convex domain. Then, for 

any 0 < ε < ε0 we have 

𝑓(𝑧) = C𝜀𝑓(𝑧) , 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑓 ∈ 𝜗(𝐷) ∩ 𝐶(𝐷) , 𝑧 ∈ 𝐷. 

Proof. By Proposition (2.2.20), for any 𝑓 ∈ 𝜗(𝐷) ∩ 𝐶(𝐷) we have 

∫ 𝑓
𝑤∈b𝐷

(𝑤)𝐶𝜀(𝑤, 𝑧) = 𝑓(𝑧) + ∫ 𝑓
𝑤∈b𝐷

(𝑤)𝑗∗𝐶𝜀
2(𝑤, 𝑧) 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑧 ∈ 𝐷, 

and so it suffices to show that 

∫ 𝑓
𝑤∈b𝐷

(𝑤)𝑗∗𝐶𝜀
2(𝑤, 𝑧) = 0 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑧 ∈ 𝐷. 

By Fubini’s theorem and the definition of 𝐶𝜀
2, see (57), we have 

∫ 𝑓
𝑤∈b𝐷

(𝑤)𝑗∗𝐶𝜀
2(𝑤, 𝑧) = 𝑆𝑧 (∫ 𝑓

𝑤∈b𝐷

(𝑤)𝑗∗𝐻(𝑤,⋅)) 

where 𝐻(𝑤,⋅) is as in (56). Since the solution operator 𝑆𝑧 is realized as a combinations of 

integrals over 𝛺 and b𝛺, the desired conclusion will be a consequence of the following 

claim: 
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∫ 𝑓
𝑤∈b𝐷

(𝑤)𝑗∗𝐻(𝑤, 𝜁) = 0 𝑓𝑜𝑟 𝑎𝑛𝑦 𝜁 ∈ 𝛺, 

and since 𝛺 ⊂ 𝒫𝑤 for any 𝑤 ∈ b𝐷, proving the latter amounts to showing that 

∫ 𝑓
𝑤∈𝑀𝜁

(𝑤)𝑗∗𝜕𝜁𝛺0(𝜂
𝜀)(𝑤, 𝜁) = 0 𝑓𝑜𝑟 𝑎𝑛𝑦 𝜁 ∈ 𝛺,                (59) 

where we have set 

𝑀𝜁 = {𝑤 ∈ b𝐷||𝑤 − 𝜁| ≥ 𝜀0/2},                                      (60) 

see (56) and Fig. 2 below. To this end, we fix 𝜁 ∈ 𝛺 arbitrarily; we claim that there is a 

sequence of forms (𝜂ℓ
𝜀  (. , 𝜁))

ℓ
 with the following properties: 

a. 𝜂ℓ
𝜀 (. , 𝜁) is generating at 𝜁 relative to 𝐷; 

b. 𝜂ℓ
𝜀 (. , 𝜁) has coefficients in 𝐶2(𝑈𝜁) with 𝑈𝜁 as in Definition (2.2.1); c. as 𝑃 → ∞, we have 

that 

𝑗∗𝛺0(𝜂ℓ
𝜀)(⋅, 𝜁) → 𝑗∗𝛺0(𝜂

𝜀)(⋅, 𝜁) 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦 𝑜𝑛 b𝐷; 

d. the coefficients of 𝜂ℓ
𝜀 (𝑤, 𝜁) are holomorphic in 𝜁 ∈ B𝜀0/2(𝑤) for any 𝑤 ∈ b𝐷. 

 

Fig. 2  [42]The manifold 𝑀𝜁 in the proof of Proposition (2.2.23) 

Note that (59) will follow from item 𝑐. above if we can prove that 

∫ 𝑓
𝑤∈𝑀𝜁

(𝑤)𝑗∗𝜕𝜁𝛺0(𝜂ℓ
𝜀)(𝑤, 𝜁) = 0 𝑓𝑜𝑟 𝑎𝑛𝑦 ℓ.                             (61) 



73 

We postpone the construction of 𝜂ℓ
𝜀 (. , 𝜁) to later below, and instead proceed to proving (61) 

assuming the existence of the {𝜂𝑝
𝜀(. , 𝜁)}

ℓ
. On account of items 𝑎. and 𝑏. above along with 

Basic Property (2.2.6) as stated in (25), proving (61) is equivalent to showing that 

∫ 𝑓
𝑤∈𝑀𝜁

(𝑤)𝑗∗𝜕𝑤𝛺1(𝜂ℓ
𝜀)(𝑤, 𝜁) = 0 𝑓𝑜𝑟 𝑎𝑛𝑦 ℓ. 

To this end, we first consider the case when ∈ 𝜗(𝐷) ∩ 𝐶1(𝐷) , as in this case we have that 

𝑓(𝑤)𝑗∗𝜕𝑤𝛺1(𝜂ℓ
𝜀)(𝑤, 𝜁) = 𝑗∗𝜕𝑤(𝑓𝛺1(𝜂ℓ

𝜀))(𝑤, 𝜁) = 𝑗∗𝑑𝑤(𝑓𝛺1(𝜂ℓ
𝜀))(𝑤, 𝜁) 

(where in the last identity we have used the fact that 𝜕𝑤𝛺1 = 𝑑𝑤𝛺1 because 𝛺1(𝜂ℓ
𝜀) is of 

type (𝑛, 𝑛 − 2) in 𝑤). But the latter equals 

d𝑤𝑗
∗(𝑓𝛺1(𝜂ℓ

𝜀))(𝑤, 𝜁) 

where d𝑤 denotes the exterior derivative operator for 𝑀𝜁 viewed as a real manifold of 

dimension 2𝑛 − 1. Applying Stokes’ theorem on 𝑀𝜁 to the form 𝛼(𝑤) : =

𝑗∗(𝑓𝛺1(𝜂ℓ
𝜀))(𝑤, 𝜁) ∈ 𝐶𝑛,𝑛−2

1 (𝑀𝜁) we obtain 

∫ 𝑓
𝑤∈𝑀𝜁

(𝑤)𝑗∗𝜕𝑤𝛺1(𝜂ℓ
𝜀)(𝑤, 𝜁) = ∫ 𝑓

𝑤∈b𝑀𝜁

(𝑤)𝑗∗𝛺1(𝜂ℓ
𝜀)(𝑤, 𝜁) 

but 

𝑗∗𝛺1(𝜂ℓ
𝜀)(𝑤, 𝜁) = 0 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑤 ∈ b𝑀𝜁 = b𝐷 ∩ {|𝑤 − 𝜁| = 𝜀0/2} 

because the coefficients of 𝜂ℓ
𝜀(𝑤, 𝜁) are holomorphic in 𝜁 ∈ B𝜀/2(𝑤) for any b𝐷, see (23) 

and item 𝑑. above. This concludes the proof of Proposition (2.2.23) in the case when ∈

𝜗(𝐷) ∩ 𝐶1(𝐷) . To prove the proposition in the case when ∈ 𝜗(𝐷) ∩ 𝐶0(𝐷) , we fix 𝑧 ∈ 𝐷 

and choose 𝛿 = 𝛿(𝑧) > 0 such that 

𝑧 ∈ 𝐷−𝛿 = {𝜌 < −𝛿} 𝑓𝑜𝑟 𝑎𝑛𝑦 𝛿 ≤ 𝛿(𝑧) . 

Then we have that 

𝑓 ∈ 𝜗(𝐷−𝛿) ∩ 𝐶
1(𝐷−𝛿) 𝑓𝑜𝑟 𝑎𝑛𝑦 𝛿 ≤ 𝛿(𝑧) 

and so by the previous argument we have 

∫ 𝑓
𝑤∈b𝐷−𝛿

(𝑤)𝑗−𝛿
∗ 𝐶𝜀

2(𝑤, 𝑧) = 0 𝑓𝑜𝑟 𝑎𝑛𝑦 𝛿 ≤ 𝛿(𝑧) ,                  (62) 
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where 𝑗−𝛿
∗  denotes the pullback under the inclusion: b𝐷−𝛿 ↪ ℂ𝑛. For 𝛿 sufficiently small 

there is a natural one‐to‐one and onto projection along the inner normal direction: 

𝛬𝛿: b𝐷 → b𝐷−𝛿 , 

and because 𝐷 is of class 𝐶2 one can show that this projection tends in the 𝐶1‐norm to the 

identity 1b𝐷, that is we have that 

‖1b𝐷 − 𝛬𝛿‖𝐶1(b𝐷) → 0 𝑎𝑠 𝛿 → 0. 

Using this projection one may then express the integral on b𝐷−𝛿 in identity (62) as an 

integral on b𝐷 for an integrand that now also depends on 𝛬𝛿 and its Jacobian, and it follows 

from the above considerations that 

∫ 𝑓
𝑤∈b𝐷−𝛿

(𝑤)𝑗−𝛿
∗ 𝐶𝜀

2(𝑤, 𝑧) → ∫ 𝑓
𝑤∈b𝐷

(𝑤)𝑗∗𝐶𝜀
2(𝑤, 𝑧) 𝑎𝑠 𝛿 → 0. 

We are left to construct, for each fixed 𝜁 ∈ 𝛺, the sequence {𝜂ℓ
𝜀  (. , 𝜁)}ℓ that was invoked 

earlier on. To this end, set 

𝑈:= 𝐷 ∪⋃𝑈𝑧
𝑧∈𝐷

 

where 𝑈𝑧 is the open neighborhood of b𝐷 that was determined in Lemma (2.2.19). Consider 

a sequence of real‐valued functions {𝜌ℓ}𝑝 ⊂ 𝐶
3(ℂ𝑛) such that 

‖𝜌ℓ − 𝜌‖𝐶1(𝑈) → 0 𝑎𝑠 ℓ → ∞, 

and, for 𝜁 ∈ 𝛺 fixed arbitrarily, set 

△𝑗,ℓ
𝜀 (𝑤, 𝜁):=

𝜕𝜌ℓ
𝜕𝜁𝑗

(𝑤) −
1

2
∑𝜏𝑗,𝑘

𝜀

𝑛

𝑘=1

(𝑤)(𝑤𝑘 − 𝜁𝑘) , 𝑗 = 1, . . . , 𝑛; 

△ℓ
𝜀 (𝑤, 𝜁):=∑△𝑗𝑝

𝜀

𝑛

𝑗=1

, (𝑤, 𝜁)(𝑤𝑗 − 𝜁𝑗) ; 

and, for 𝜒1 as in (49): 

𝑔ℓ
𝜀(𝑤, 𝜁):= 𝜒1(𝑤, 𝜁) △ℓ

𝜀 (𝑤, 𝜁) + (1 − 𝜒1(𝑤, 𝜁))|𝑤 − 𝜁|
2; 

𝜂𝑗𝑝
𝜀 , (𝑤, 𝜁):=

1

𝑔ℓ
𝜀(𝑤, 𝜁)

(𝜒1(𝑤, 𝜁) △𝑗,ℓ
𝜀 (𝑤, 𝜁) + (1 − 𝜒1(𝑤, 𝜁)) (𝑤𝑗 − 𝜁𝑗)) 

and, finally 

𝜂ℓ
𝜀(𝑤, 𝜁):=∑𝜂𝑗,ℓ

𝜀

𝑛

𝑗=1

(𝑤, 𝜁)𝑑𝑤𝑗 , 

We leave it that {𝜂ℓ
𝜀  (⋅, 𝜁)}ℓ has the desired properties. 

Next, for �̃�𝜀 is as in Proposition (2.2.21), we write 
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𝐵𝜀
1(𝑤, 𝑧) =

1

(2𝜋𝑖)𝑛
(𝜕𝑤�̃�

𝜀)
𝑛

 

and 

𝐵𝜀(𝑤, 𝑧):= (𝐵𝜀
1 + 𝐵𝜀

2)(𝑤, 𝑧) , 𝑤 ∈ 𝐷, 𝑧 ∈ 𝛺, 

and we define the operator 

B𝜀𝑓(𝑧) = ∫ 𝑓
𝑤∈𝐷

(𝑤)𝐵𝜀(𝑤, 𝑧) , 𝑧 ∈ 𝐷, 𝑓 ∈ 𝐿
1(𝐷) .               (63) 

Proposition (2.2.24)[42]. Let D be a bounded strongly pseudo‐convex domain. Then, for 

any 0 < ε < ε0 we have 

𝑓(𝑧) = B𝜀𝑓(𝑧) , 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑓 ∈ 𝜗(𝐷) ∩ 𝐿
1(𝐷) , 𝑧 ∈ 𝐷. 

Proof. By Proposition (2.2.21), for any 𝑓 ∈ 𝜗(𝐷) ∩ 𝐿1(𝐷) we have 

∫ 𝑓
𝑤∈𝐷

(𝑤)𝐵𝜀(𝑤, 𝑧) = 𝑓(𝑧) + ∫ 𝑓
𝑤∈𝐷

(𝑤)𝐵𝜀
2(𝑤, 𝑧) 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑧 ∈ 𝐷, 

and so it suffices to show that 

∫ 𝑓
𝑤∈𝐷

(𝑤)𝐵𝜀
2(𝑤, 𝑧) = 0 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑧 ∈ 𝐷. 

For the proof of this assertion we refer to [67].  

Let 𝐷 be a bounded, strictly ℂ‐linearly convex domain. We claim that if 𝜌 is (any) 

defining function for such a domain, and if 𝑈 is an open neighborhood of b𝐷 such that 

𝛻𝜌(𝑤) ≠ 0 for any 𝑤 ∈ 𝑈, then 

𝜂(𝑤, 𝑧): =
𝜕𝜌(𝑤)

〈𝜕𝜌(𝑤),𝑤 − 𝑧〉
                                     (64) 

is a generating form for 𝐷; indeed, by Lemma (2.2.14) for any 𝑧 ∈ 𝐷 there is an open set 

𝑈𝑧 ⊂ ℂ
𝑛\{𝑧} such that 〈𝜕𝜌(𝑤) , 𝑤 − 𝑧〉 ≠ 0 for any 𝑤 ∈ 𝑈𝑧 and b𝐷 ⊂ 𝑈𝑧; thus the 

coefficients of 𝜂 (., z) are in 𝐶(𝑈𝑧) and (14) holds. It is clear from (64) that 〈𝜂 (𝑤, 𝑧) , 𝑤 −

𝑧) = 1 for any 𝑤 ∈ 𝑈𝑧, so (15) holds for any 𝑧 ∈ 𝐷, as well. It follows that Proposition 

(2.2.10) applies to any strictly ℂ‐linearly convex domain 𝐷 with 𝜂 chosen as above under 

the further assumption that 𝐷 be of class 𝐶2 (which is required to ensure that the coefficients 

of 𝜂 (., z) are in 𝐶1(𝑈𝑧)). The form 

𝐶𝐿(𝑤, 𝑧) = 𝑗
∗𝛺0 (

𝜕𝜌(𝑤)

〈𝜕𝜌(𝑤),𝑤 − 𝑧〉
) = 𝑗∗(

𝜕𝜌(𝑤) ∧ (𝜕𝜕𝜌)
𝑛−1
(𝑤)

(2𝜋𝑖〈𝜕𝜌(𝑤),𝑤 − 𝑧〉)𝑛
)     (65) 

is called the Cauchy‐Leray kernel for 𝐷. It is clear that the coefficients of the CauchyLeray 

kemel are globally holomorphic with respect to 𝑧 ∈ 𝐷: indeed the denominator 𝑗∗〈𝜕𝜌(𝑤) , 

𝑤 − 𝑧〉𝑛 is polynomial in the variable 𝑧, and by the strict ℂ‐linear convexity of 𝐷 we have 

that 𝑗∗〈𝜕𝜌(𝑤) , 𝑤 − 𝑧〉𝑛 ≠ 0 for any 𝑧 ∈ 𝐷 and for any 𝑤 ∈ b𝐷, see (47). The resulting 

integral operator: 
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C𝐿𝑓(𝑧) = ∫ 𝑓
𝑤∈b𝐷

(𝑤)𝐶𝐿(𝑤, 𝑧)𝑧 ∈ 𝐷,                       (66) 

is called the Cauchy‐Leray Integral. Under the further assumption that 𝐷 be strictly convex 

(as opposed to strictly ℂ‐linearly convex), for each fixed 𝑧 ∈ 𝐷 one may extend 𝜂 (., z) 

holomorphically to the interior of 𝐷 as follows 

�̃�(⋅, 𝑧):= (
〈𝜕𝜌(⋅),⋅ −𝑧〉

〈𝜕𝜌(⋅),⋅ −𝑧〉 − 𝜌(⋅)
) 𝜂(⋅, 𝑧) =

𝜕𝜌(⋅)

〈𝜕𝜌(⋅),⋅ −𝑧〉 − 𝜌(⋅)
        (67) 

The following lemma shows that if 𝐷 is sufficiently smooth (again of class 𝐶2) then 𝜂 

satisfies the hypotheses of Proposition (2.2.11), and so in particular the operator 

B𝐿𝑓(𝑧) = ∫ 𝑓
𝑤∈𝐷

(𝑤)𝐵𝐿(𝑤, 𝑧) 

with 

𝐵𝐿(𝑤, 𝑧) =
1

(2𝜋𝑖)𝑛
(𝜕𝑤�̃�)

𝑛
(𝑤, 𝑧)                           (68) 

and 𝜂 given by (67), reproduces holomorphic functions. 

Lemma (2.2.25)[42]. If D = {ρ < 0} ⊂ ℂn is strictly convex and of class C2, then for each 

fixed z ∈ D we have that η (., z) given by (67) has coefficients in C1(D) and satisfies the 

hypotheses of Proposition (2.2.11). 

Proof. In order to prove the first assertion it suffices to show that 

 Re ((𝜕𝜌(𝑤),𝑤 − 𝑧〉) − 𝜌(𝑤) > 0𝑓𝑜𝑟 𝑎𝑛𝑦 𝑤 ∈ 𝐷, 𝑧 ∈ 𝐷.                 (69) 

Indeed, one first observes that if 𝐷 is strictly convex and sufficiently smooth then 

 Re 〈𝜕𝜌(𝑤) , 𝑤 − 𝑧〉 > 0 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑤 ∈ 𝐷\{𝑧} 

(see [62] for the proof of this fact) so that  Re 〈𝜕𝜌(𝑤) , 𝑤 − 𝑧〉 is non‐negative in 𝐷 and it 

vanishes only at 𝑤 = 𝑧. On the other other hand the term −𝜌(𝑤) is non‐negative for any 

𝑤 ∈ 𝐷, and if 𝑤 = 𝑧 ∈ 𝐷 then −𝜌(𝑤) = −𝜌(𝑧) > 0. This proves (69) and it follows that 

the coefficients of 𝜂 (., z) are in 𝐶1(𝐷) . By Basic Property (2.2.4) we have 

𝛺0(�̃�)(⋅, 𝑧) = (
〈𝜕𝜌(⋅),⋅ −𝑧〉

〈𝜕𝜌(⋅),⋅ −𝑧) − 𝜌(⋅)
)

𝑛

𝛺0(𝜂)(⋅, 𝑧) ; 

it is now immediate to verify that 𝑗∗𝛺0(�̃�) (. , 𝑧) = 𝑗
∗𝛺0(𝜂) (., z), so that 𝜂 satisfies (39), as 

desired. We summarize these results in the following two propositions: 

Proposition (2.2.26)[42]. Suppose that D is a bounded, strictly ℂ‐linearly convex domain 

of class C2. Then, with same notations as above we have 
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𝑓(𝑧) = C𝐿𝑓(𝑧) , 𝑧 ∈ 𝐷, 𝑓 ∈ 𝜗(𝐷) ∩ 𝐶(𝐷) . 

Proposition (2.2.27)[42]. Suppose that D is a bounded, strictly convex domain of class C2. 

Then, with same notations as above we have that 

𝑓(𝑧) = B𝐿𝑓(𝑧) , 𝑧 ∈ 𝐷, 𝑓 ∈ 𝜗(𝐷) ∩ 𝐿
1(𝐷) . 

we discuss 𝐿𝑝‐regularity of the Cauchy‐Leray integral and of the Cauchy‐Szegö and 

Bergman projections for the domains under consideration. Detailed proofs of the results 

concerning the Bergman projection, Theorem (2.2.32) and Corollary (2.2.34) below, can be 

found in [67]. The statements concerning the Cauchy‐Leray integral and the Cauchy‐Szegö 

projection Theorem (2.2.37) is the subject of a senes of forthcoming here we will limit 

ourselves to presenting an outline of the main points of interest in their proofs. 

We begin by recalling the defining properties of the Bergman and Cauchy‐Szegö projections 

and of their corresponding function spaces. 

Let 𝐷 ⊂ ℂ𝑛 be a bounded connected open set. 

Definition (2.2.28)[42]. For any 1 ≤ 𝑞 < ∞ the Bergman space 𝜗𝐿𝑞(𝐷) is 

𝜗𝐿𝑞(𝐷) = 𝜗(𝐷) ∩ 𝐿𝑞(𝐷, 𝑑𝑉) . 

The following inequality 

sup
𝑧∈𝒦

  |𝐹(𝑧)| ≤ 𝐶(𝒦)‖𝐹‖𝐿𝑝(𝐷,𝑑𝑉) 

which is valid for any compact subset 𝒦 ⊂ 𝐷 and for any holomorphic function 𝐹 ∈ 𝜗(𝐷) , 

shows that the Bergman space is a closed subspace of 𝐿𝑞(𝐷, 𝑑𝑉) . This inequality also shows 

that the point evaluation: 

𝑒𝑣𝑧(𝑓):= 𝑓(𝑧) , 𝑧 ∈ 𝐷 

is a bounded linear functional on the Bergman space (take 𝒦 : = {𝑧}). In the special case 

𝑞 = 2, classical arguments from the theory of Hilbert spaces grant the existence of an 

orthogonal projection, called the Bergman projection for 𝐷 

B: 𝐿2(𝐷) → 𝜗𝐿2(𝐷) 

that enjoys the following properties 

B𝑓(𝑧) = 𝑓(𝑧) , 𝑓 ∈ 𝜗𝐿2(𝐷), 𝑧 ∈ 𝐷 

B∗ = B 

‖B𝑓‖𝐿2(𝐷,𝑑𝑉) ≤ ‖𝑓‖𝐿2(𝐷,𝑑𝑣), 𝑓 ∈ 𝐿
2(𝐷, 𝑑𝑉) 

B𝑓(𝑧) = ∫ 𝑓
𝑤∈𝐷

(𝑤)ℬ(𝑤, 𝑧)𝑑𝑉(𝑤) , 𝑧 ∈ 𝐷, 𝑓 ∈ 𝐿2(𝐷, 𝑑𝑉) 

where 𝑑𝑉 denotes Lebesgue measure for ℂ𝑛. The function ℬ (𝑤, 𝑧) is holomorphic with 

respect to 𝑧 ∈ 𝐷; it is called the Bergman kernel function. The Bergman kernel function 

depends on the domain and is known explicitly only for very special domains, such as the 

unit ball, see e.g. [77]: 

ℬ(𝑤, 𝑧) =
𝑛!

𝜋𝑛(1 − [𝑧, 𝑤])𝑛+1
 , (𝑤, 𝑧) ∈ 𝔹1(0) × 𝔹1(0)             (70) 



78 

here [𝑧, 𝑤] : = ∑ 𝑧𝑗 ⋅
𝑛
𝑗=1 𝑤𝑗 is the hermitian product for ℂ𝑛. 

Let 𝐷 ⊂ ℂ𝑛 be a bounded connected open set with sufficiently smooth boundary. For 

such a domain, various notions of Hardy spaces of holomorphic functions can be obtained 

by considering (suitably interpreted) boundary values of functions that are holomorphic in 

𝐷 and whose restriction to the boundary of 𝐷 has some integrability, see [78]. While a 

number of such definitions can be given, here we adopt the following 

Definition (2.2.29)[42]. For any 1 ≤ 𝑞 < ∞ the Hardy Space 𝐻𝑞(b𝐷, 𝑑𝜎) is the closure in 

𝐿𝑞(b𝐷, 𝑑𝜎) of the restriction to the boundary of the functions holomorphic in a 

neighborhood of 𝐷. In the special case when 𝑞 = 2 the orthogonal projection 

S ∶  𝐿2(b𝐷, 𝑑𝜎) → 𝐻2(b𝐷, 𝑑𝜎) 

is called the The Cauchy‐Szegö Projection for 𝐷. 

The Cauchy‐Szegö projection has the following basic properties: 

S∗ = S 

‖S𝑓‖𝐿2(b𝐷,𝑑𝜎) ≤ ‖𝑓‖𝐿2(b𝐷,𝑑𝜎), 𝑓 ∈ 𝐿
2(b𝐷, 𝑑𝜎) 

S𝑓(𝑧) = ∫ 𝑆
𝑤∈b𝐷

(𝑤, 𝑧)𝑓(𝑤)𝑑𝜎(𝑤) , 𝑧 ∈ b𝐷. 

The function (𝑤, 𝑧) , initially defined for 𝑧 ∈ b𝐷, extends holomorphically to 𝑧 ∈ 𝐷; it is 

called the Cauchy‐Szegö kernel function. Like the Bergman ketnel function, the Cauchy‐

Szegö kernel function depends on the domain 𝐷; for the unit ball we have [77] 

𝑆 (𝑤, 𝑧) =
(𝑛 − 1)!

2𝜋𝑛(1 − [𝑧, 𝑤])𝑛
 , (𝑤, 𝑧) ∈ b𝔹1(0) × b𝔹1(0) .     (71) 

We may now state the main results. 

Theorem (2.2.30)[42]. Suppose D is a bounded domain of class C2 which is strongly ℂ‐

linearly convex. Then the Cauchy‐Leray integral (2.67), initially defined for ∈ C1(bD) , 

extends to a bounded operator on Lp(bD, dσ), 1 < p < ∞. 

It is only the weaker notion of strict ℂ‐linear convexity that is needed to define the Cauchy‐

Leray integral, but to prove the 𝐿𝑝 results one needs to assume strong ℂ‐linear convexity. 

Theorem (2.2.31)[42]. Under the assumption that the bounded domain D has a C2 boundary 

and is strongly pseudo‐convex, one can assert that S extends to a bounded mapping on 

Lp(bD, dσ) , when 1 < p < ∞. 

Theorem (2.2.32)[42]. Under the same assumptions on D itfollows that the operator B 

extends to a bounded operator on Lp(D, dV) for 1 < p < ∞. 

The following additional results also hold. 

Corollary (2.2.33)[42]. The result of Theorem (2.2.31) extends to the case when the 

projection S is replaced by the corresponding orthogonal projection Sω, with respect to the 

Hilbert space L2(bD,ωdσ) where ω is any continuous strictly positive function on bD. 

A similar variant of Theorem (2.2.32) holds for B𝜔, the orthogonal projection on the sub‐
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space of 𝐿2(𝐷,𝜔𝑑𝑉) . Here 𝜔 is any strictly positive continuous function on 𝐷. 

Corollary (2.2.34)[42]. One also has the Lp boundedness of the operator |B|, whose kernel 

is |B(z,w)|dV(w) , where B(z,w) is the Bergman kernel function. 

Cauchy‐type integrals 

We begin by making the following remarks to clarify the background of these results. 

(i) The proofs make use of the whole family of operators {C𝜀}𝜀 , 0 < 𝜀 < 𝜀0: in order to obtain 

𝐿𝑝 estimates for 𝑝 in the full range (1, ∞) one needs the flexbility to choose 𝜀 = 𝜀(𝑝) 

sufficiently small. (A single choice, as in [76], of C𝜀 for a fixed 𝜀, will not do.) 

(ii) There is no simple and direct relation between S and S𝜔, nor between B and B𝜔. Thus 

the results for general 𝜔 are not immediate consequences of the results for 𝜔 ≡ 1. 

(iii) When b𝐷 and 𝜔 are smooth (i.e. 𝐶𝑘 for sufficiently high 𝑘), the above results have been 

known for a long time (see e.g., the remarks that were made concerning the case when 𝐷 is 

the unit ball). Moreover when b𝐷 and 𝜔 are smooth (and b𝐷 is strongly pseudo‐convex), 

there are analogous asymptotic formulas for the ketnels in question due to [55],[74]. 

(4) Another approach to Theorem (2.2.32) in the case of smooth strongly pseudo‐convex 

domains is via the 𝜕‐Neumann problem [51] and [56], but we shall not say anything more 

about this here. 

A further point of interest is to work with the “Levi‐Leray” measure 𝑑𝜇𝜌 for the boundary 

of 𝐷, which we define as follows. We take the linear functional 

ℓ(𝑓) =
1

(2𝜋𝑖)𝑛
∫ 𝑓
b𝐷

(𝑤)𝑗∗ (𝜕𝜌 ∧ (𝜕𝜕𝜌)
𝑛−1
)                  (72) 

and write ℓ𝑓 = ∫ 𝑓
b𝐷

𝑑𝜇𝜌. We then have that 𝑑𝜇𝜌(𝑤) = 𝒟(𝑤)𝑑𝜎(𝑤) where 𝒟(𝑤) =

𝑐|𝛻𝜌(𝑤)| det 𝐿𝑤(𝜌) via the calculation in [76] in the case 𝜌 is of class 𝐶2, and we observe 

that 𝒟(𝑤) ≈ 1 , via (48). 

With this we have that the Cauchy‐Leray integral becomes 

C𝐿(𝑓)(𝑧) = ∫
𝑓(𝑤)𝑑𝜇𝜌(𝑤)

{𝜕𝜌(𝑤),𝑤 − 𝑧〉𝑛b𝐷

                                    (73) 

Thus the reason for isolating the measure 𝑑𝜇𝜌 is that the coefficients of the kernel of each 

of C𝐿 and its adjoint (computed with respect to 𝐿2(b𝐷, 𝑑𝜇𝜌)), are 𝐶1 functions in both 

variables. This would not be the case if we replaced 𝑑𝜇𝜌 by the induced Lebesgue measure 

𝑑𝜎 (and had taken the adjoint of C𝐿 with respect to 𝐿2(b𝐷, 𝑑𝜎)). In studying (73) we apply 

the T(1)‐theorem”technique [53], where the underlying geometry is determined by the 

quasi‐metric 
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|〈𝜕𝜌(𝑤),𝑤 − 𝑧〉|
1
2 

(It is at this juncture that the notion of strong ℂ‐linear convexity, as opposed to strict ℂ‐

linear convexity, is required.) In this metric, the ball centered at 𝑤 and reaching to 𝑧 has 

𝑑𝜇𝜌 −measure ≈ |{𝜕𝜌(𝑤) , 𝑤 − 𝑧〉|𝑛. 

The study of (73) also requires that we verify cancellation properties in terms of its action 

on “bump functions These matters again differ from the case 𝑛 = 1 , and in fact there is an 

unexpected favorable twist: the kernel in (73) is an appropriate derivative, as can be 

surmised by the observation that on the Heisenberg group one has (|𝑧|2 + 𝑖𝑡)−𝑛 =

𝑐′
𝑑

𝑑𝑡
(|𝑧|2 + 𝑖𝑡)−𝑛+1 , if 𝑛 > 1. (However for = 1 , the corresponding identity involves the 

logarithm!). Indeed by an integration‐by‐parts argument that is presented in (77) below, we 

see that when 𝑛 > 1 and 𝑓 is of class 𝐶1, 

C𝐿(𝑓)(𝑧) = 𝑐∫
𝑑𝑓(𝑤) ∧ 𝑗∗(𝜕𝜕𝜌)

𝑛−1

〈𝜕𝜌(𝑤),𝑤 − 𝑧)𝑛−1b𝐷

+ E(f)(z) , 

where 

E(f)(z) = ∫ ℰ
b𝐷

(𝑧, 𝑤)𝑓(𝑤)𝑑𝜎(𝑤) 

with 

ℰ(𝑧,𝑤) = 𝑂(|𝑧 − 𝑤||〈𝜕𝜌(𝑤),𝑤 − 𝑧〉|−𝑛) 

so that the operator E is a negligible term. 

A final point is that the hypotheses of Theorem (2.2.30) are in the nature of best possible. In 

fact, [46] gives examples of Reinhardt domains where the 𝐿2 result for the CauchyLeray 

integral fails when a condition near 𝐶2 is replaced by 𝐶2−𝜀 , or “strong” pseudoconvexity is 

replaced by its “weak” analogue. 

One more observation concerning the Cauchy‐Leray integral is in order. In the special case 

when 𝐷 is the unitball B(0) , we claim that the operators C𝐿 and B𝐿 agree, respectively, with 

the Cauchy‐Szegö and Bergman projections for B1(0) . Indeed, for such domain the 

calculations apply with 𝑈𝑧 = ℂ
𝑛\{𝑧} and 

𝜌(𝑤) ∶= |𝑤|2 − 1                                                (74) 

and by the Cauchy‐Schwarz inequality we have  Re  (〈𝜕𝜌(𝑤),𝑤 − 𝑧〉) ≥ |𝑤|(|𝑤| − |𝑧|) for 

any 𝑤 , 𝑧 ∈ ℂ𝑛. Using (74) and (32) we find that 

𝐶𝐿(𝑤, 𝑧) =
(𝑛 − 1)!

2𝜋𝑛
𝑑𝜎(𝑤)

(1 − [𝑧,𝑤])𝑛
= 𝑆(𝑤, 𝑧)𝑑𝜎 

which is the Cauchy‐Szegö kemel for the ball, see (71) Next, we observe that, again for 𝐷 =

B1(0) and with 𝜌 as in (74), we have that 

〈𝜕𝜌(𝑤),𝑤 − 𝑧〉 − 𝜌(𝑤) = 1 − [𝑧, 𝑤] 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑤, 𝑧 ∈ ℂ𝑛 

and from this it follows that (68) now reads 
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𝐵𝐿(𝑤, 𝑧) =
𝑛! 𝑑𝑉(𝑤)

𝜋𝑛(1 − [𝑧, 𝑤])𝑛+1
= ℬ(𝑤, 𝑧)𝑑𝑉(𝑤) 

which is the Bergman kernel of the ball, see (70). 

There are three main steps in the proof of Theorem (2.2.31). 

(i) Construction of a family of bounded Cauchy Fantappié‐type integrals C𝜀 (ii) Estimates 

for C𝜀 − C𝜀
∗ 

(iii) Application of a variant of identity (13) 

Step (i): The construction of C𝜀 was given see (58). One notes that the kernel 𝐶𝜀
2(𝑤, 𝑧) of 

the correction term that was produced is “harmless” since it is bounded as (𝑤, 𝑧) ranges over 

b𝐷 × 𝐷. Using a methodology similar to the proof of Theorem (2.2.30) one then shows 

‖C𝜀(𝑓)‖𝐿𝑝 ≤ 𝑐𝜀,𝑝‖𝑓‖𝐿𝑝 , 1 < 𝑝 < ∞. 

However it is important to point out, that in general the bound 𝑐𝜀,𝑝 grows to infinity as 𝜀 →

0, so that the C𝜀 can not be genuine approximations of S. Nevertheless we shall see below 

that in a sense the C𝜀 gives us critical information about S. 

Step (ii): Here the goal is the following splitting: 

Proposition (2.2.35)[42]. Given 0 < ε < ε0, we can write 

C𝜀 − C𝜀
∗ = A𝜀 + R𝜀 

where 

‖A𝜀‖𝐿p→𝐿𝑝 ≤ 𝜀𝑐𝑝 , 1 < 𝑝 < ∞                                 (75) 

and the operator Rε has a bounded kernel, hence Rε maps L1(bD) to L∞(bD) . 

We note that in fact the bound of the kernel of R𝜀 may grow to infinity as 𝜀 → 0. To prove 

Proposition (2.2.35) we first verify an important “symmetry” condition: for each 𝜀, there is 

a 𝛿𝜀 , so that 

|𝑔𝜀(𝑤, 𝑧) − 𝑔𝜀(𝑧, 𝑤)| ≤ 𝜀𝑐|𝑤 − 𝑧|2, 𝑖𝑓 |𝑤 − 𝑧| < 𝛿𝜀 .               (76) 

Here 𝑔𝜀(𝑤, 𝑧) is as in (54). With this one proceeds as follows. Suppose 𝐻𝜀(𝑧, 𝑤) is the 

kernel of the operator C𝜀 − C𝜀
∗. Then we take A𝜀 and R𝜀 to be the operators with kernels 

respectively 𝜒𝛿(𝑤 − 𝑧)𝐻𝜀(𝑤, 𝑧) and (1 − 𝜒𝛿(𝑤 − 𝑧))𝐻𝜀(𝑤, 𝑧) , where 𝜒𝛿(𝑤 − 𝑧) is as in 

(54) and 𝛿 = 𝛿𝜀 , chosen acccording to (76). 

Step (iii): We conclude the proof of Theorem (2.2.31) by using an identity similar to (13): 

S(I − (C𝜀
∗ − C𝜀)) = C𝜀 

Hence 

S(I − A𝜀) = C𝜀 + SR𝜀 

Now for each 𝑝, take 𝜀 > 0 so that for the bound 𝑐𝑝 as in (2.76) 
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𝜀𝑐𝑝 ≤
1

2
. 

Then I − A𝜀 is invertible and we have 

S = (C𝜀 + SR𝜀)(I − A𝜀)
−1 

Since (I − A𝜀)
−1 is bounded on 𝐿𝑝, and also C𝜀 , it sufficies to see that SR𝜀 is also bounded 

on 𝐿𝑝. Assume for the moment that 𝑝 ≤ 2. Then since R𝜀 maps 𝐿1 to 𝐿∞, it also maps 𝐿𝑝 to 

𝐿2 (this follows from the inclusions of Lebesgue spaces, which hold in this setting because 

𝐷 is bounded), while S maps 𝐿2 to itself, yielding the fact that SR𝜀 is bounded on 𝐿𝑝. The 

case 2 ≤ 𝑝 is obtained by dualizing this argument. 

The proof of Theorem (2.2.32) can be found in [67]: it has an outline similar to the proof of 

Theorem (2.2.31) with the operators B𝜀, see (63), now in place of the C𝜀 , but the details are 

simpler since we are dealing with operators that converge absolutely (as suggested by 

Corollary (2.2.34)). Thus one can avoid the delicate 𝑇(1)‐theorem machinery and make 

instead absolutely convergent integral estimates. 

For domains with boundary regularity below the 𝐶2 category there is no canonical 

notion of strong pseudo‐convexity‐ much less a working analog of the Cauchy‐type 

operators C𝜀 and B𝜀 that were introduced. By contrast, the Cauchy‐Leray integral can be 

defined for less regular domains, but the definitions and the proofs are substantially more 

delicate than the 𝐶2 framework of Theorem (2.2.30). 

Definition (2.2.36)[42]. Given a bounded domain 𝐷 ⊂ ℂ𝑛 , we say that 𝐷 is of class 𝐶1,1 if 

𝐷 has a defining function (in the sense of Definition (2.2.8)) that is of class 𝐶1,1 in a 

neighborhood 𝑈 of b𝐷; that is, 𝜌 is of class 𝐶1 and its (real) partial derivatives 𝜕𝜌/𝜕𝑥𝑗 are 

Lipschitz functions with respect to the Euclidean distance in ℂ𝑛 ≡ ℝ2𝑛: 

|
𝜕𝜌

𝜕𝑥𝑗
(𝑤) −

𝜕𝜌

𝜕𝑥𝑗
(𝜁)| ≤ 𝐶|𝑤 − 𝜁|𝑤, 𝜁 ∈ 𝑈, 𝑗 = 1, . . . , 2𝑛. 

Theorem (2.2.37)[42]. Suppose D is a bounded domain ofclass C1,1 which is strongly ℂ‐

linearly convex. Then there is a natural definition of the Cauchy‐Leray integral (66), so that 

the mapping f ↦ CL(f) initially defined for ∈ C1(bD) , extends to a bounded operator on 

Lp(bD, dσ) for 1 < p < ∞. 

Here our hypotheses about the nature of convexity are stronger, but the regularity of the 

boundary is weaker. 

First, we explain the main difficulty in defining the Cauchy‐Leray integral in the case of 

𝐶1,1 domains. It arises from the fact that the definitions (65) and (72) involve second 

derivatives of the defining function 𝜌. However 𝜌 is only assumed to be of class 𝐶1,1 , so 

that these derivatives are 𝐿∞ functions on ℂ𝑛 , and as such not defined on b𝐷 which has 2𝑛‐

dimensional Lebesgue measure zero. What gets us out of this quandary is that here in effect 

not all second derivatives are involved but only those that are “tangential” to b𝐷. Matters 

are made precise by the following “restriction” principle and its variants. 

Suppose 𝐹 ∈ 𝐶1,1(ℂ𝑛) and we want to define 𝜕𝜕𝐹|
𝑏𝐷

 . We note that if 𝐹 were of class 𝐶2 
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we would have 

∫ 𝑗∗

b𝐷

(𝜕𝜕𝐹) ∧ 𝛹 = −∫ 𝑗∗

b𝐷

(𝜕𝐹) ∧ 𝑑𝛹,                   (77) 

where 𝛹 is any 2𝑛 − 3 form of class 𝐶1 , and here 𝑗∗ is the induced mapping to forms on 

b𝐷. 

Proposition (2.2.38)[42]. For ∈ C1,1(ℂn) , there exists a unique 2‐form j∗(∂∂F) in bD with 

L∞(dσ) coefficients so that (77) holds. 

This is a consequence of an approximation lemma: There is a sequence {𝐹𝑛} of 𝐶∞ functions 

on ℂ𝑛 , that are uniformly bounded in the 𝐶1,1(ℂ𝑛) norm, so that 𝐹𝑘 → 𝐹 and 𝛻𝐹𝑘 → 𝛻𝐹 

uniformly on b𝐷, and moreover 𝛻𝑇
2𝐹𝑛 converges (𝑑𝜎) a.e. on b𝐷. Here 𝛻𝑇

2𝐹 is the 

“tangential” restriction of the Hessian 𝛻2𝐹 of 𝐹. Moreover the indicated limit, which we 

may designate as 𝛻𝑇
2𝐹, is independent of the approximating sequence {𝐹𝑛}. 
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Chapter 3 

A Mass-Transportation Approach and Best Constant in Sobolev Trace Inequalities 

The Euclidean structure of ℝ𝑛 plays no role in our approach: we establish the inequalities, 

together with cases of equality, for an arbitrary norm. We show a conjecture made by J.F. 

Escobar in 1988 about the minimizers. 

Section (3.1): Sharp Sobolev and Gagliardo–Nirenberg Inequalities 
We discuss a new approach for the study of certain geometric functional inequalities, namely 

Sobolev and Gagliardo‐ Nirenberg inequalities with sharp constants. We wish to 

(a) give a unified and elementary treatment of sharp Sobolev and GagliardoNirenberg 

inequalities (within a certain range of exponents); 

(b) illustrate the efficiency of mass transportation techniques for the study of such 

inequalities, and by this method reveal in a more explicit manner their geometrical nature; 

(c) show that the treatment of these sharp Sobolev‐type inequalities does not even require 

the Euclidean structure of ℝ𝑛, but can be performed for arbitrary norms on ℝ𝑛; 

(d) exhibit a new duality for these problems; 

(e) as a by‐product of our method, determine all cases of equality in the sharp Sobolev 

inequalities. 

Whenever 𝑛 ≥ 1 is an integer and 𝑝 ≥ 1 is a real number, define the Sobolev space 

𝑊1,𝑝(ℝ𝑛) = {𝑓 ∈ 𝐿𝑝(ℝ𝑛); 𝛻𝑓 ∈ 𝐿𝑝(ℝ𝑛)}. 

Here 𝐿𝑝(ℝ𝑛) is the usual Lebesgue space of order 𝑝, and 𝛻 stands for the gradient operator, 

acting on the distribution space 𝒟′(ℝ𝑛) . When 𝑝 ∈ [1, 𝑛), define 

𝑝⋆ =
𝑛𝑝

𝑛 − 𝑝
.                                                                         (1) 

Then the (critical) Sobolev embedding 𝑊1,𝑝(ℝ𝑛) ⊂ 𝐿𝑝
⋆
(ℝ𝑛) asserts the existence of a 

positive constant 𝑆𝑛(𝑝) such that for every 𝑓 ∈ 𝑊1,𝑝(ℝ𝑛) 

||𝑓||𝑖𝑖⋆ ≤ 𝑆𝑛(𝑝) (∫ |
ℝ𝑛

𝛻𝑓|𝑝)

1/𝑝

                                          (2) 

where | ⋅ | denotes the standard Euclidean norm on ℝ𝑛. For the great majority of 

applications, it is not necessary to know more about the Sobolev embedding, apart maybe 

from explicit bounds on 𝑆𝑛(𝑝) . However, in some circumstances one is interested in the 

exact value of the smallest admissible constant 𝑆𝑛(𝑝) in (2). There are usually two possible 

motivations for this: either because it provides some geometrical insights (as we recall 

below, a sharp version of (2) when 𝑝 = 1 is equivalent to the Euclidean isoperimetric 

inequality), or for the computation of the ground‐state energy in a physical model. Most 

often, the determination of 𝑆𝑛(𝑝) is in fact not as important as the identification of extremal 

functions in (2). 

Similar problems have been studied at length for very many variants of (2): one example 

discussed by Del Pino and Dolbeault, which we also consider here, is the Gagliardo‐

Nirenberg inequality: 
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||𝑓||𝐿𝑟 ≤ 𝐺𝑛(𝑝, 𝑟, 𝑠)||𝛻𝑓||𝐼𝐼
𝜃 ||𝑓||𝐿𝑠

1−𝜃 ,                                           (3) 

where 𝑛 ≥ 2, 𝑝 ∈ (1, 𝑛), 𝑠 < 𝑟 ≤ 𝑝⋆, and 𝜃 = 𝜃(𝑛, 𝑝, 𝑟, 𝑠) ∈ (0,1) is determined by scaling 

invariance. Note that inequality (3) can be deduced from (2) with the help of Hölder’s 

inequality. 

The identification of the best constant 𝑆𝑛(𝑝) in (2) for 𝑝 > 1 goes back to Aubin [82] and 

Talenti [110]. The proofs by Aubin and Talenti rely on rather standard techniques 

(symmetrization, solution of a particular one‐dimensional problem). For 𝑝 = 1, it has been 

known for a very long time that (2) is equivalent to the classical Euclidean isoperimetric 

inequality which asserts that, among Borel sets in ℝ𝑛 with given volume, Euclidean balls 

have minimal surface area (see [108], [109]). Also the case 𝑝 = 2 is particular, due to its 

conformal invariance, as exploited in Beckner [85]. In Lieb [101], this case was derived by 

(rather technical) rearrangement arguments. Carlen and Loss have pointed out the crucial 

role of “competing symmetries” in this problem and used it to give a simpler proof [91], 

reproduced in [102]. Recently, Lutwak et al. [103] and Zhang [112] combined the co‐area 

formula and a generalized version of the Petty projection inequality (related to the new 

concept of affine 𝐿𝑝 surface area) to obtain an affine version of the Sobolev inequalities, 

which implies the Euclidean version (2). 

Considerable effort has been spent recently on the problem of optimal Sobolev inequalities 

on Riemannian manifolds, see the survey [97]. We shall concentrate on the situation where 

the problem is set on ℝ𝑛. We do not know whether our methods would still be as efficient 

in a Riemannian setting. Note however that nonsharp Sobolev Riemannian inequalities can 

easily be derived by mass transportation techniques, as shown in [92]. 

For inequality (3), the computation of sharp constants 𝐺𝑛(𝑝, 𝑟, 𝑠) is still an open problem in 

general. Del Pino and Dolbeault [95], [96] made the following breakthrough: they obtained 

sharp forms of (3) in the case of the oneparameter family of exponents: 

{
𝑝(𝑠 − 1) = 𝑟(𝑝 − 1) when 𝑟, 𝑠 > 𝑝,

𝑝(𝑟 − 1) = 𝑠(𝑝 − 1) when 𝑟, 𝑠 < 𝑝.
                                                  (4) 

Inequality (2) is actually a limit case of (3) when 𝑟 = 𝑝⋆ (in which case 𝜃 = 1). Note that 

an 𝐿𝑝 version of the usual logarithmic Sobolev inequality also arises as a limit case of (3) 

when 𝑟 = 𝑠 = 𝑝 (see [96]; the usual inequality would be 𝑝 = 2). 

The proofs by Del Pino and Dolbeault for (3) rely on quite sophisticated results from 

calculus of variations, including uniqueness results for nonnegative radially symmetric 

solutions of certain nonlinear elliptic or 𝑝‐Laplace equations. This work by Del Pino and 

Dolbeault has been the starting point of our investigation. We shall show how their results 

can be recovered (also in sharp form) by completely different methods. 

Unlike the above‐mentioned approaches, our arguments do not rely on conformal invariance 

or symmetrization, nor on Euler‐Lagrange partial differential equations for related 

variational problems. Instead, we shall use the tools of mass transportation, which combine 

analysis and geometry in a very elegant way. We recall some relevant facts from the theory 

of mass transportation. If 𝜇 and 𝑣 are two nonnegative Borel measures on ℝ𝑛 with same 

total mass (say 1), then a Borel map 𝑇:ℝ𝑛 → ℝ𝑛 is said to push‐forward(or transport) 𝜇 
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onto 𝑣 if, whenever 𝐵 is a Borel subset of ℝ𝑛, one has 

𝑣[𝐵] = 𝜇[𝑇−1(𝐵)],                                                                   (5) 

or equivalently, for every nonnegative Borel function 𝑏:ℝ𝑛 → ℝ+, 

∫ 𝑏 (𝑦)𝑑𝑣(𝑦) = ∫ 𝑏 (𝑇(𝑥))𝑑𝜇(𝑥) .                                           (6) 

The central ingredient in our proofs is the following result of Brenier [6], refined by McCann 

[105]: 

Theorem (3.1.1)[80]. If μ and v are two probability measures on ℝn and μ is absolutely 

continuous with respect to Lebesgue measure, then there exists a convex function ϕ such 

that ∇ϕ transports μ onto v. Furthermore, ∇ϕ is uniquely determined dμ almost everywhere. 

Observe that 𝜙 is differentiable almost everywhere on its domain since it is convex; in 

particular, it is differentiable 𝑑𝜇 almost everywhere. The (monotone) map 𝑇 = 𝛻𝜙 will be 

referred to as the Brenier map. By construction, it is known to solve the Monge‐Kantorovich 

minimization problem with quadratic cost between 𝜇 and v, but here we shall not need this 

optimality property explicitly. See [111] for a review, and discussion of existing proofs. 

From now on, we assume that 𝜇 and 𝑣 are absolutely continuous, with respective densities 

𝐹 and 𝐺. Then (6) takes the form 

∫ 𝑏 (𝑦)𝐺(𝑦)𝑑𝑦 = ∫ 𝑏 (𝛻𝜙(𝑥))𝐹(𝑥)𝑑𝑥,                                    (7) 

for every nonnegative Borel function 𝑏:ℝ𝑛 → ℝ+⋅ If 𝜙 is of class 𝐶2, the change of 

variables 𝑦 = 𝛻𝜙(𝑥) in (7) shows that 𝜙 solves the Monge‐Ampère equation 

𝐹(𝑥) = 𝐺(𝛻𝜙(𝑥)) det 𝐷2𝜙(𝑥) .                                                   (8) 

Here 𝐷2𝜙(𝑥) stands for the Hessian matrix of 𝜙 at point 𝑥. Caffarelli’s deep regularity 

theory [88]−[90] asserts the validity of (8) in classical sense when 𝐹 and 𝐺 are Hölder‐

continuous and strictly positive on their respective supports and 𝐺 has convex supportwe 

shall use a much simpler measure theoretical observation, due to McCann [106] which 

asserts the validity of (8) in the 𝐹(𝑥)𝑑𝑥 almost everywhere sense, without further 

assumptions on 𝐹 and 𝐺 beyond integrability. In Eq. (8), 𝐷2𝜙 should then be interpreted in 

Aleksandrov sense, i.e. as the absolutely continuous part of the distributional Hessian of the 

convex function 𝜙. Of course, 𝐷2𝜙 is only defined almost everywhere. An alternative, 

equivalent way of defining 𝐷2𝜙 is to note (see [98]) that a convex function 𝜙 admits almost 

everywhere a second‐order Taylor expansion 

𝜙(𝑥 + ℎ) = 𝜙(𝑥) + 𝛻𝜙(𝑥) ⋅ ℎ +
1

2
𝐷2𝜙(𝑥)(ℎ) ⋅ ℎ + 𝑜(|ℎ|2) . 

Where defined, the matrix 𝐷2𝜙 is symmetric and nonnegative, since 𝜙 is convex. 

Mass transportation (or parameterization) techniques have been used in geometric analysis 

for quite a time. They somehow appear in all known proofs of the Brunn-Minkowski 

inequality, 

|𝐴 + 𝐵|1/𝑛 ≥ |𝐴|1/𝑛 + |𝐵|1/𝑛,                                               (9) 
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where 𝐴, 𝐵 ⊂ ℝ𝑛 and | ⋅ | denotes the Lebesgue measure on ℝ𝑛 (see [99], [109]). The 

isoperimetric inequality easily follows from (9). An important source of inspiration for us 

has been the direct mass transportation proof by Gromov [107] of the (functional) 

isoperimetric inequality, namely inequality (2) in the case 𝑝 = 1; we shall recall his 

argument below. Closely related to our work is also the mass transportation proof by 

McCann [106] of functional versions of (9) known as Prékopa‐Leindler and 

Borell−Brascamp−Lieb inequalities (see [99]). Barthe has exploited all the power of 

Brenier’s theorem to prove deep Gaussian inequalities (see [4] or the reviews [99], [111]). 

Our proof has many common points with Barthe’s work, which is surprising since the 

inequalities under study here and there look quite different. As far as tools and methods are 

concerned, be seen as the continuation at [93], [94]. Until recently, it was believed that those 

techniques could not be adapted to general Sobolev‐type inequalities besides the 𝑝 = 1 case. 

Here we shall demonstrate that this guess was wrong. 

Among the main advantages of our proof, we note that it is extremely simple (apart from 

nonessential technical subtleties linked to the lack of smoothness of the Brenier map). In 

addition to the existence of the Brenier map, our proof makes use of just two ingredients: 

the arithmetic−geometric inequality on one hand (domination of the geometric mean by the 

arithmetic mean), and on the other hand the standard Young inequality for convex conjugate 

functions, in the very particular case of Eq. (10) below, or equivalently Hl�̈�der’s inequality 

(11). 

The proof avoids any compactness argument, and has the great merit to allow room for 

quantitative versions, which are often important in problems coming from physics: for 

instance, if a function is far enough from the optimizers in (2), how to give a lower bound 

on how far the ratio ||𝛻𝑓||𝐼𝐼/||𝑓||𝐼𝑦⋆ departs from the optimal value 𝑆𝑛(𝑝) ? Here we will 

not investigate such questions (to do so, it would be desirable to have a more precise 

formulation of the problem), but it will be clear from our arguments that their constructive 

nature makes them a plausible starting point for such an investigation, at least when 𝑓 is 

strictly positive on ℝ𝑛. 

Finally, our proof will cover non‐Euclidean norms. It clearly shows that the treatment of 

optimal Sobolev inequalities, and the resulting extremal functions, do not depend on the 

Euclidean structure of ℝ𝑛. As far as Sobolev inequalities are concerned, such versions for 

arbitrary norms are not new. The 𝑝 = 1 case was contained in Gromov’s treatment. For 𝑝 >

1, the inequalities can be obtained by using a symmetrization procedure and Aubin and 

Talenti’s argument; this was done recently by Alvino et al. [81]. As mentioned, our approach 

is completely different since we will not solve any variational problem and since our proof 

will be carried on ℝ𝑛 till the end. 

As we just discussed, the only two ingredients which lie behind our proof of Sobolev 

inequalities are the arithmetic‐geometric inequality, and Hölder’s inequality. By tracing 

carefully cases of equality in these two inequalities, we shall manage to identify all cases of 

equality in the Sobolev inequalities. Though this problem has been solved in the case of the 

Euclidean norm, the result seems to be new in the case of arbitrary norms; in [81] this 
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problem was left open. And even in the Euclidean case, we believe that our approach is 

simpler than the classical one based on sharp rearrangement inequalities. 

We give a proof of optimal Sobolev inequalities. We shall give the adaptations which enable 

to turn this proof into a proof of optimal Gagliardo‐Nirenberg inequalities. Even though we 

could have treated directly the general case of Gagliardo‐Nirenberg inequalities with general 

norms, we have chosen to present Sobolev inequalities separately because they are popular 

and of independent interest. 

We consider general norms from the beginmng. Let (𝐸, || ⋅ ||) be an 𝑛‐dimensional normed 

space, with dual space (𝐸∗, || ⋅ ||∗) . Let 𝜆 be an invariant Haar measure on 𝐸 (unique up to 

a multiplicative constant). We shall prove a sharp version of the Sobolev inequality 

(∫ |
𝐸

𝑓|𝑝
⋆
𝑑𝜆)

1/𝑝⋆

≤ 𝑆𝐸,𝜆(𝑝) (∫ |
𝐸

|𝑑𝑓||∗
𝑝
𝑑𝜆)

1/𝑝

 

Here  : 𝐸 → 𝐸∗ denotes the differential map of 𝑓 : 𝐸 → ℝ. 

We assume that 𝐸 = (ℝ𝑛, || ⋅ ||) where || ⋅ || is an arbitrary norm on ℝ𝑛. Then the dual space 

is 𝐸∗ = (ℝ𝑛, || ⋅ ||∗) where, for 𝑋 ∈ 𝐸∗, 

||𝑋||∗: =  sup 𝑋 ⋅ Y 

and 𝑋 ⋅ Y:= ∑ 𝑋𝑖 Y𝑖. The duality can also be expressed through Young’s inequality 

𝑋 ⋅ Y ≤
𝜆−𝑝

𝑝
||𝑋||∗

𝑝
+
𝜆𝑞

𝑞
||Y||𝑞                                 (10) 

for 𝜆 > 0. 𝑞 = 𝑝/(𝑝 − 1) denotes the dual exponent of 𝑝 > 1 (we hope this notation will 

avoid confusions with 𝑝⋆ defined in (3.1)). For 𝑋:ℝ𝑛 → 𝐸∗ in 𝐿𝑝 and Y:ℝ𝑛 → 𝐸 in 𝐿𝑞, 

integration of (10) and optimization in 𝜆 gives H�̈�lder’s inequality in the form 

∫ 𝑋 ⋅ Y ≤ (∫ | |𝑋||∗
𝑝
)

1
𝑝

(∫ | |Y||𝑞)

1
𝑞

                   (11) 

This inequality expresses the well‐known fact that the dual space of 𝐿𝑝(ℝ𝑛, 𝐸) coincides 

with 𝐿𝑞(ℝ𝑛, 𝐸∗) . 

The norm || ⋅ || is Lipschitz and therefore differentiable almost everywhere. Whenever 𝑥 ∈

ℝ𝑛\{0} is a point of differentiability, the gradient of the norm at 𝑥 is the unique vector 𝑥∗ =

𝛻(|| ⋅ ||)(𝑥) such that 

||𝑥∗||∗ = 1, 𝑥 ⋅ 𝑥
∗ = ||𝑥|| =  sup 𝑥 ⋅ 𝑦.                      (12) 

In the usual case of the Euclidean norm | ⋅ |, 𝑥∗ = 𝑥/|𝑥|. 

For 1 ≤ 𝑝 < 𝑛, we define the function ℎ𝑝 as follows: 

(ℎ1(𝑥):=ℎ𝑝(𝑥):=
1

(𝜎𝑝 + ||𝑥||
𝑞)
𝑛−𝑝
𝑝 , |𝐵|

𝑛−1
𝑛 1𝐵(𝑥)

 (𝑝 > 1) ,        (13) 

where 𝜎𝑝 > 0 is determined by the condition 
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||ℎ𝑝||𝐿𝑝 ⋆= 1,                                            (14) 

and 𝐵 stands for the unit ball of (ℝ𝑛, || ⋅ ||) , 

𝐵:= {𝑥 ∈ ℝ𝑛; ||𝑥|| ≤ 1}. 

These functions will turn out to be extremal in the Sobolev inequalities. This property is 

well‐known in the Euclidean case (|| ⋅ || = | ⋅ |) : for 𝑝 > 1 it is due to Aubin and Talenti 

and for 𝑝 = 1 it is the classical isoperimetric inequality. As mentioned, the case of arbitrary 

norms was considered in [81]. 

The natural space to look for extremal functions in the Sobolev inequality is the 

homogeneous Sobolev space 

�̇�1𝑝(ℝ𝑛):= {𝑓 ∈ 𝐿𝑝
⋆
(ℝ𝑛); 𝛻𝑓 ∈ 𝐿𝑝(ℝ𝑛)}. 

This space coincides with the space of functions 𝑓 whose distributional gradient lies in 𝐿𝑝 

and verifying that |{|𝑓| ≥ 𝑎}| is finite for every 𝑎 > 0. It is homogeneous in the same sense 

inequality (2) is homogeneous under the rescaling ↦ 𝑓𝜆 ≡ 𝑓(⋅/𝜆) . This space is better 

adapted to the study of inequality (2) than 𝑊1𝑝; indeed, for 𝑝 > 1, extremal functions will 

always exist in �̇�1𝑝(ℝ𝑛) but will not belong to 𝑊1𝑝(ℝ𝑛) when 𝑝 ≥ √𝑛. 

If ∈ �̇�1𝑝(ℝ𝑛) , it is natural to consider the dual norm of the 𝛻𝑓. Thus, we define 

||𝛻𝑓||𝑖𝐼: = (∫ |
`

 

|𝛻𝑓||∗
𝑝
)

1/𝑝

                                (15) 

For notational reasons, we will separate the case 𝑝 = 1 from the rest. Let us start with 𝑝 >

1. 

Theorem (3.1.2)[80]. Let 𝑝 ∈ (1, 𝑛) and = 𝑝/(𝑝 − 1) . Whenever 𝑓 ∈ �̇�1𝑝(ℝ𝑛) and 𝑔 ∈

𝐿𝑝
∗
(ℝ𝑛) are two functions with ||𝑓||𝐼𝑦⋆ = ||𝑔||𝐼𝐼⋆ , then 

∫ |
  

 
𝑔|𝑝

⋆(1−1/𝑛)

(∫ |
 

 
|𝑦||𝑞|𝑔(𝑦)|𝑝

⋆
𝑑𝑦)

1/𝑞
≤
𝑝(𝑛 − 1)

𝑛(𝑛 − 𝑝)
||𝛻𝑓||𝐿𝑝              (16) 

with equality if 𝑓 = 𝑔 = ℎ𝑝. 

As immediate consequences we have 

(i) The duality principle 

 sup 
∫ |
 

 
𝑔|𝑝

⋆(1−1/𝑛)

(∫ |
 

 
|𝑦||𝑞|𝑔(𝑦)|𝑝

⋆
𝑑𝑦)

1/𝑞
=
𝑝(𝑛 − 1)

𝑛(𝑛 − 𝑝)
 inf ||𝛻𝑓||𝐿𝑝                   (17) 

with ℎ𝑝 extremal in both variational problems; 

(ii) The sharp Sobolev inequality: if 𝑓 ≠ 0 lies in �̇�1,𝑝(ℝ𝑛) , then 

(18) 
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||𝛻𝑓||𝐿1

||𝑓||𝐿 𝑓∗
≥ ‖∇ℎ𝑔‖𝐿𝑝

 

The variant for 𝑝 = 1 of (18), for general norms, can be found in Gromov [107]. Below we 

shall shortly reproduce his argument, with minor modifications which will make it look just 

like the proof of Theorem (3.1.2) above. Extremal functions for 𝑝 = 1 do not exist in 

𝑊1,1(ℝ𝑛) , and should rather be searched for in the space of functions with bounded 

variation. 

Proof. First of all, it is well‐known that whenever ∈ �̇�
1
𝐽𝐽(ℝ𝑛) , then 𝛻|𝑓| = ±𝛻𝑓 almost 

everywhere, so 𝑓 and |𝑓| have equal Sobolev norms. Thus, without loss of generality, we 

may assume that 𝑓 and 𝑔 are nonnegative and, by homogeneity, satisfy ||𝑓||𝐼𝐼⋆ = ||𝑔||𝐼𝑦⋆ =

1. Moreover, we shall prove (16) only in the special case when 𝑓 and 𝑔 are smooth functions 

with compact support; the general case will follow by density. 

Introduce the two probability densities 

𝐹(𝑥) = 𝑓𝑝
⋆
(𝑥) , 𝐺(𝑦) = 𝑔𝑝

⋆
(𝑦) 

on ℝ𝑛; let 𝛻𝜙 the Brenier map which transports 𝐹(𝑥)𝑑𝑥 onto 𝐺(𝑦)𝑑𝑦. In a first step, we 

shall establish that 

∫ 𝐺1−
1
𝑛

 

 

≤
1

𝑛
∫ 𝐹1−

1
𝑛

 

 

𝛥𝜙,                               (18) 

where 𝛥𝜙(𝑥):= tr𝐷2𝜙(𝑥) appears as the absolutely continuous part of the distributional 

Laplacian. 

As explained in the introduction (8), we have, for 𝐹(𝑥)𝑑𝑥 almost every 𝑥 ∈ ℝ𝑛, 

𝐹(𝑥) = 𝐺(𝛻𝜙(𝑥)) det 𝐷2𝜙(𝑥) .                         (19) 

Therefore, for 𝐹(𝑥)𝑑𝑥 almost every 𝑥, 

𝐺−1/𝑛(𝛻𝜙(𝑥)) = 𝐹−1/𝑛(𝑥)( det 𝐷2𝜙(𝑥))
1/𝑛

 

≤ 𝐹−
1
𝑛(𝑥)

𝛥𝜙(𝑥)

𝑛
,                                  (20) 

where we used the arithmetic‐geometric inequality. By integrating inequality (23) with 

respect to 𝐹(𝑥)𝑑𝑥, we find 

∫𝐺−1/𝑛
 

 

(𝛻𝜙(𝑥))𝐹(𝑥)𝑑𝑥 ≤
1

𝑛
∫𝐹
 

 

(𝑥)1−
1
𝑛(𝑥)𝛥𝜙(𝑥)𝑑𝑥. 

The proof of (21) is completed by using the definition of mass transport (7). 

Here we shall go a little bit into nonessential technical subtleties. In the inequality (21), 

𝛥𝜙 = tr𝐷2𝜙 is to be understood in the almost everywhere sense. It is wellknown that 𝛥𝜙 

can be bounded above by 𝛥𝒟′𝜙, which denotes the distributional Laplacian of 𝜙, viewed as 

a nonnegative measure on the set where 𝜙 is finite (see [98] or [93]). On the other hand, 

since 𝑓 and 𝑔 are compactly supported, we know that 𝛻𝜙 is bounded on supp(𝑓) , the 
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support of 𝑓, since 𝛻𝜙(supp(𝑓)) ⊂ supp(𝑔) (see [111]). Extending 𝜙 if necessary outside 

of the support off, we can assume that the support off lies within an open set where 𝜙 is 

finite, and then we can apply the integration by parts formula 
1

𝑛
∫ 𝐹1−

1
𝑛

 

 

𝛥𝜙 ≤
1

𝑛
∫ 𝐹1−

1
𝑛

 

 

𝛥𝒟, 𝜙 = −
1

𝑛
∫𝛻
 

 

(𝐹1−
1
𝑛) ⋅ 𝛻𝜙.   (21) 

Back to our original notations 𝐹 = 𝑓𝑝
⋆
 and 𝐺 = 𝑔𝑝

⋆
, we have just shown, combining (21) 

and (24), that 

∫ 𝑔
𝑝⋆(1−

1
𝑛
)

 

 

≤ −
𝑝(𝑛 − 1)

𝑛(𝑛 − 𝑝)
∫ 𝑓

𝑛(𝑝−1)
𝑛−𝑝

 

 

𝛻𝑓 ⋅ 𝛻𝜙 

=
𝑝(𝑛 − 1)

𝑛(𝑛 − 𝑝)
∫𝑓𝑝

⋆/𝑞
 

 

𝛻𝑓 ⋅ 𝛻𝜙.                              (22) 

We now apply our second crucial tool: Hölder’s inequality (11) with the choice 𝑋 = −𝛻𝑓 

and 𝑌 = 𝑓𝑝
⋆/𝑞𝛻𝜙. This gives 

−∫𝑓𝑝
⋆𝑙𝑞

 

 

𝛻𝑓 ⋅ 𝛻𝜙 ≤ ||𝛻𝑓||𝑖𝐼 (∫𝑓
𝑝⋆

 

 

||𝛻𝜙||𝑞)

1/𝑞

   (23) 

But, by definition of mass transport (7), ∫ 𝑓𝑝
⋆ 

 
||𝛻𝜙||𝑞 = ∫ |

 

 
|𝑦||𝑞𝑔𝑝

⋆
(𝑦)𝑑𝑦. Therefore, the 

combination of (25) and (26) concludes the proof of inequality (16). 

We now choose 𝑓 = 𝑔 = ℎ𝑝, and check that equality holds at all the steps of the proof, and 

therefore in (16). This function is not compactly supported, but in this particular case the 

Brenier map reduces to the identity map 𝛻𝜙(𝑥) = 𝑥, and all the steps can be checked 

explicitly. Indeed 𝛻𝜙(𝑥) = 𝑥 leads to an equality in (21) and in (24) (via integration by 

parts). Then Eq. (20) ensures the equality in (26). This ends the proof of Theorem (3.1.2). 

Theorem (3.1.3)[80]. If 𝑓 ≠ 0 is a smooth compactly supported function, then 

||𝛻𝑓||𝐿1

||𝑓||𝐿𝑛/(𝑛−1)
≥ 𝑛|𝐵|

1
𝑛. 

This inequality extends to functions with bounded variation, with equality if 𝑓 = ℎ1. 

Proof. Gromov’s original proof [107] relied on the Knothe map [100], but the proof also 

works with the Brenier map as it was pointed out to us some time ago by Michael 

Schmuckenschläger. 

We prove the theorem only when 𝑓 is a nonnegative function, such that ||𝑓||𝐿𝑛/(𝑛−1) = 1. 

We introduce the Brenier map 𝛻𝜙 which pushes forward 𝐹(𝑥)𝑑𝑥 = 𝑓𝑛/(𝑛−1)(𝑥)𝑑𝑥 onto 

𝐺(𝑦)𝑑𝑦 = ℎ1
𝑛/(𝑛−1)(𝑦)𝑑𝑦. Reasoning as in the proof of Theorem (3.1.2), we write, after 

(21), 
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|𝐵|1/𝑛 ≤
1

𝑛
∫𝑓
 

 

𝛥𝜙 ≤ −
1

𝑛
∫𝛻
 

 

𝑓 ⋅ 𝛻𝜙. 

The justification of the integration by parts goes as in (24). By definition of ℎ1, for almost 

every 𝑥 in the support of 𝑓, 𝛻𝜙(𝑥) ∈ 𝐵. In particular −𝛻𝑓 ⋅ 𝛻𝜙 ≤ ||𝛻𝑓||∗, and thus 

𝑛|𝐵|
1
𝑛 ≤ ∫|

 

 

|𝛻𝑓||∗ = ||𝛻𝑓||𝐿1 .                         (24) 

By a standard approximation argument, one can express this inequality in terms of an 

isoperimetric inequality: whenever 𝐴 is some closed (say) subset of ℝ𝑛, we have 

𝑚+(𝜕𝐴) ≥ 𝑛|𝐵|
1
𝑛|𝐴|

𝑛−1
𝑛 ,                              (25) 

where 𝑚+ stands for the surface measure with respect to the metric || ⋅ || (not necessarily 

Euclidean), 

𝑚+(𝜕𝐴):= lim
𝜀→0

 inf 
|𝐴 + 𝜀𝐵| − |𝐴|

𝜀
. 

Note that 𝐴 + 𝜀𝐵 is the 𝜀‐neighborhood of 𝐴 with respect to the metric || ⋅ ||. Now, there is 

equality in (28) when 𝐴 is an affine image of 𝐵. So this inequality has to be sharp, and so 

has to be (27).  

Remark (3.1.4)[80]. (i) Inequality (16) is interesting only when ∫ |
 

 
|𝑦||𝑞|𝑔(𝑦)|𝑝

⋆
𝑑𝑦 <

+∞, in which case (16) forces 𝑔 to belong to 𝐿𝑝
⋆(1−1/𝑛)(ℝ𝑛) . 

 (ii) The crucial property of ℎ𝑝 here is that, for almost every 𝑥, there is equality in Young’s 

inequality (10) when 𝑋 = −𝛻ℎ𝑝(𝑥), Y = 𝜇𝑝
𝐽/𝑞(𝑥)𝑥 ⋆ and 

𝜆 = 𝜆𝑝: = (
𝑛 − 𝑝

𝑝 − 1
)
1/𝑞

                                         (         26) 

Indeed, after a few computations and using (12), we are led to the straightforward equality 

(
𝑛 − 𝑝

𝑝 − 1
)

||𝑥||𝑞

(𝜎𝑝 + ||𝑥||
𝑞)
𝑛 =

1

𝑝𝜆𝑝
𝑝 (
𝑛 − 𝑝

𝑝 − 1
)
𝑝 ||𝑥||𝑞

(𝜎𝑝 + ||𝑥||
𝑞)
𝑛 +

𝜆𝑝
𝑞

𝑞

||𝑥||𝑞

(𝜎𝑝 + ||𝑥||
𝑞)
𝑛. 

As a consequence (or by a direct computation), the same choice of 𝑋 and Y gives an equality 

in Hölder’s inequality (11): 

−∫ 𝛻
  

 

ℎ𝑝(𝑥) ⋅ [𝑀𝑝
𝐽/𝑞(𝑥)𝑥]𝑑𝑥 ⋆= ||𝛻ℎ𝑝||𝐼𝑓 (∫ | |𝑥||𝑞ℎ𝑝

𝑝⋆(𝑥)𝑑𝑥)

1/𝑞

   (27) 

Let us now give the proof of Theorem (3.1.2). 

Remark (3.1.4). Following the terminology of McCann [106], inequality (21) can be 

rephrased by saying that the functional 

𝜌 ↦ −∫𝜌
 

 

(𝑥)1−
1
𝑛𝑑𝑥 
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is displacement convex. This fact is well‐known to specialists, and rests on the concavity of 

the map 𝑀 ↦ ( det 𝑀)1/𝑛, defined on the set of nonnegative symmetric matrices; see in 

particular [111]. 

We conclude with a few remarks about the way we have proven and stated our results. 

Remark (3.1.5)[80]. (i) A classical way to attack the problem of optimal constants for 

Sobolev inequalities is to look at the Euler‐Lagrange equation and to identify its solutions. 

Here, on the contrary, we have established that ℎ𝑝 is an optimizer without establishing any 

Euler‐Lagrange equation. Neither did we use the co‐area formula or a rearrangement 

procedure. 

(ii) The best constant �̃�𝑛(𝑝):= ||𝛻ℎ𝑝||𝐿𝑝
−1 in the sharp Sobolev inequality (18) can easily be 

expressed as a function of |𝐵| since ℎ𝑝 is radially symmetric with respect to the norm || ⋅ ||. 

In particular, we have 

�̃�𝑛(𝑝) = (
|𝐵2
𝑛|

|𝐵|
)

1/𝑛

𝑆𝑛(𝑝) , 

where 𝐵2
𝑛 is the standard Euclidean ball and 𝑆𝑛(𝑝) is the best constant in the Euclidean 

Sobolev inequality (2). We stress however that the extremal function ℎ𝑝 depends on || ⋅ || 

and not just on |𝐵|. 

(iii) If we exploit the left‐hand side maximization in (17), we immediately obtain, after 

setting ℎ = 𝑔𝑝
⋆
, the following sharp inequality: there exists a constant 𝐶𝑛(𝑝) > 0 such that 

for every ℎ ∈ 𝐿1, 

∫ |ℎ|1−1/𝑛 ≤ 𝐶𝑛(𝑝) (∫ | |𝑦||𝑞|ℎ(𝑦)|𝑑𝑦)

1/𝑞

(∫ | ℎ|)

1/𝑝⋆

 

with equality if ℎ(𝑦) = ℎ𝑝
𝑝⋆(𝑦) = (𝜎𝑝 + ||𝑦||

𝑞)
−𝑛

. It would be interesting to understand 

why this inequality appears as a dual of the Sobolev inequality. 

The right‐hand side of (16) is invariant under dilations and translations (for fixed 𝐿𝑝
⋆
 norm), 

whereas the left‐hand side is only invariant under dilations. If we define Var𝑞(𝐺):=

inf𝑦0 ∫ | |𝑦 − 𝑦0||
𝑞𝐺(𝑦)𝑑𝑦, then inequality (16) can obviously be replaced by the 

following dilation‐translation invariant version: for ||𝑓||𝐼𝐼⋆ = ||𝑔||𝑖𝑖⋆ = 1, 

∫ |
 

 
𝑔|𝑝

⋆(1−1/𝑛)

Var𝑞(|𝑔|
𝑝⋆)1/𝑞

≤
𝑝(𝑛 − 1)

𝑛(𝑛 − 𝑝)
||𝛻𝑓||𝑖𝑖                   (28) 
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with equality if 𝑓 = 𝑔 = ℎ𝑝. 

What happens if in the proof of Theorem (3.1.2), in Eq. (26), we use, instead of Hölder’s 

inequality (11), the simpler Young inequality (10)? In view of the Remark (3.1.5) before 

(19), we obtain the following (equivalent) form of the theorem: whenever 𝑓 ∈ �̇�11𝑝(ℝ𝑛) 

and 𝑔 ∈ 𝐿𝑝(ℝ𝑛) are two functions with ||𝑓||𝐼𝐼⋆ = ||𝑔||𝐼𝐼⋆ = 1, then, for all 𝜆 > 0, 
𝑛(𝑛 − 𝑝)

𝑝(𝑛 − 1)
∫ | 𝑔|𝑝

⋆(1−1/𝑛) −
𝜆𝑞

𝑞
∫ | |𝑦||𝑞|𝑔(𝑦)|𝑝

⋆
𝑑𝑦 ≤

1

𝑝𝜆𝑝
∫| |𝛻𝑓||∗

𝑝
   (29) 

with equality if 𝑓 = 𝑔 = ℎ𝑝 and 𝜆 = 𝜆𝑝(19) . As a consequence we have the duality 

principle 

 sup [
𝑛(𝑛 − 𝑝)

𝑝(𝑛 − 1)
∫ |
 

 

𝑔|𝑝
⋆(1−1/𝑛) −

𝜆𝑝
𝑞

𝑞
∫ |
 

 

|𝑦||𝑞|𝑔(𝑦)|𝑝
⋆
𝑑𝑦] =

1

𝑝𝜆𝑝
𝑝  inf ∫ |

 

 

|𝛻𝑓||∗
𝑝
, 

with ℎ𝑝 extremal in both variational problems. 

This formulation was our original one. Clearly, the duality seems to be expressed in a much 

more satisfactory way in (16) than in (30). Furthermore, the extremal function ℎ𝑝 appears 

more naturally via (16), and one need not choose 𝜆 = 𝜆𝑝 in a seemingly arbitrary manner. 

On the other hand, (30) has the advantage to separate the integrals in an additive way, and 

this form will appear more convenient to deal with more sophisticated integral expressions. 

We give a treatment of some Gagliardo‐Nirenberg inequalities in sharp form. As we 

explained, the results in the Euclidean case were recently obtained, with a different method, 

by Del Pino and Dolbeault (the case 𝑝 = 2 is treated in [95] and the general case in [96]). 

Here again, we shall consider an arbitrary norm || ⋅ || on ℝ𝑛. 

We introduce a new family of functions, which will turn out to be optimal in a more general 

family of inequalities: for 𝛼 ≥ 0, we define 

ℎ𝛼,𝑝(𝑥):= (σ𝛼,𝑝 + (𝛼 − 1)||𝑥||
𝑞)
+

1
1−𝛼 . 

As before we write = 𝑝/(𝑝 − 1) , and 𝜎𝛼,𝑝 > 0 is chosen in such a way as to turn ℎ𝛼,𝑝
𝛼𝑝

 into 

a probability density. Note that for 𝛼 < 1, ℎ𝛼,𝑝 has compact support, while for 𝛼 > 1 it is 

positive everywhere, decaying polynomially at infinity. The 𝐿𝑝 norm of the gradient is again 

considered in the sense of (15). We stress that the statement will include 𝐿𝑟(ℝ𝑛)‐spaces with 

∈ (0,1) , for which || ⋅ ||𝐿𝑟 is no longer a norm. We shall prove 

Theorem (3.1.6)[80]. Let 𝑛 ≥ 2, 𝑝 ∈ (1, 𝑛) and 𝛼 ∈ (0,
𝑛

𝑛−𝑝
], 𝛼 ≠ 1. Let 𝑓 and 𝑔 be such 

that ||𝑓||𝐿𝛼𝑝 = ||𝑔||𝐿𝛼𝑝 = 1. Then, for all 𝜇 > 0, 



95 

𝛼𝑝

(𝛼 − 1)(𝛼𝑝 − (𝛼 − 1))
∫ |𝑔|𝛼(𝑝−1)+1 −

𝜇𝑞

𝑞
∫ | |𝑦||𝑞|𝑔(𝑦)|𝛼𝑝𝑑𝑦 

≤
1

𝑝𝜇𝑝
∫ | |∇𝑓||∗

𝑝
+

𝛼𝑝 − 𝑛(𝛼 − 1)

(𝛼 − 1)(𝛼𝑝 − (𝛼 − 1))
∫ | 𝑓|𝛼(𝑝−1)+1   (30) 

Moreover, when 

𝜇 = 𝜇𝑝: = 𝑞
1/𝑞 ,                                 (31) 

then 

(i) equality holds in (31) when 𝑓 = 𝑔 = ℎ𝛼𝑝; in particular, one has the duality principle 

sup
||𝑔||

𝐿𝛼𝑝=1

  [
𝛼𝑝

(𝛼 − 1)(𝛼𝑝 − (𝛼 − 1))
∫ | 𝑔|𝛼(𝑝−1)+1 −

𝜇𝑝
𝑞

𝑞
∫ | |𝑦||𝑞|𝑔(𝑦)|𝛼𝑝𝑑𝑦] 

= inf
||𝑓||

𝐿𝛼𝑝=1

  [
1

𝑝𝜇𝑝
𝑝∫| |∇𝑓||∗

𝑝
+

𝛼𝑝 − 𝑛(𝛼 − 1)

(𝛼 − 1)(𝛼𝑝 − (𝛼 − 1))
∫ | 𝑓|𝛼(𝑝−1)+1]  (32) 

and ℎ𝛼𝑝 is extremal in both variational problems; 

(ii) as a corollary, whenever 𝑓 ≠ 0 lies in �̇�1,𝑝(ℝ𝑛) , then 

for 𝛼 > 1, 

||∇𝑓||𝐿𝑝
𝜃 ||𝑓||

𝐿𝛼(𝑝,−1)+1
1−𝜃

||𝑓||𝐿𝛼𝑝
≥ ||∇ℎ𝛼,𝑝||𝐿𝑝

𝜃 ||ℎ𝛼,𝑝||𝐿𝛼(𝑝−1)+1
1−𝜃 ,   (33) 

where 

𝜃 =
𝑛(𝛼 − 1)

𝛼(𝑛𝑝 − (𝛼𝑝 + 1 − 𝛼)(𝑛 − 𝑝))
=

𝑝⋆(𝛼 − 1)

𝛼𝑝(𝑝⋆ − 𝛼𝑝 + 𝛼 − 1)
; 

for 𝛼 < 1, 

||∇𝑓||𝐿𝑝
𝜃 ||𝑓||𝐿𝛼𝑝

1−𝜃

||𝑓||𝐿𝛼(𝑝−1)+1
≥

||∇ℎ𝛼,𝑝||𝐿𝑝
𝜃

||ℎ𝛼𝑝||𝐿𝛼(𝑝−1)+1
,                    (34) 

where 

𝜃 =
𝑛(1 − 𝛼)

(𝛼𝑝 + 1 − 𝛼)(𝑛 − 𝛼(𝑛 − 𝑝))
=

𝑝⋆(1 − 𝛼)

(𝑝⋆ − 𝛼𝑝)(𝛼𝑝 + 1 − 𝛼)
. 

Proof. The proof will follow the same scheme as in the the basic inequality replacing (21) 

will be the following: whenever  𝛾 ≽ 1 − 1/𝑛, 𝛾 ≠ 1, 
1

1 − 𝛾
∫𝑔𝜂 ≼

1 − 𝑁(1 − 𝛾)

1 − 𝛾
∫𝑓𝜂 +∫𝑓𝜂∆𝜑.                   (35) 
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Inequality (21) corresponds to the case 𝛾 =  1 − 1/𝑛. Here and as in the proof of Theorem 

(3.1.2), 𝐹 and 𝐺 denote two probability densities, and ∇𝜑 is the Brenier map pushing 

𝐹(𝑥)𝑑𝑥 forward to 𝐺(𝑦)𝑑𝑦. In [111], inequality (36) is shown to be an immediate 

consequence of the displacement convexity (in the terminology of McCann [106]) of the 

functional 

𝜌 ↦
1

1 − 𝛾
∫𝜌𝛾(𝑥)𝑑𝑥.                                 (36) 

Again, for the sake of completeness we shall give a short proof which does not rely explicitly 

on this concept. It proceeds exactly in the same way that we followed to prove (21). From 

the Monge–Ampe`re equation (8) we deduce that for 𝐹(𝑥)𝑑𝑥 almost every 𝑥 ∈ ℝ𝑛 we have 

𝐺𝜂−1(∇𝜑(𝑥)) = 𝐹𝜂−1(𝑥)(det𝐷2 𝜑(𝑥))
1−𝛾
.              (37) 

The function 𝑀 ↦ (det𝑀)𝑘 is concave (resp. convex) on the set of nonnegative symmetric 

𝑛 ×  𝑛 matrices when 𝑘 ∈ [0, 1/𝑛] (resp. 𝑘 < 0). In other words, the function 

𝑀 ↦
1

1 − 𝛾
(det𝑀)1−𝛾 

is concave on the set of nonnegative symmetric 𝑛 ×  𝑛 matrices whenever 𝛾 ≽ 1 − 1/𝑛. 

(The case 𝛾 = 1, not needed here, is defined in the limit as the log-concavity of the 

determinant and can be used for provinglog arithmic Sobolev inequalities [93]). 

Thus, for a nonnegative symmetric matrix 𝑀, we have 

(1 − 𝛾)−1(det𝑀)1−𝛾 = (1 − 𝛾)−1(det(𝐼 + (𝑀 − 𝐼)))1−𝛾 

≼ (1 − 𝛾)−1 + 𝑡𝑟(𝑀 − 𝐼) 

= (1 − 𝛾)−1(10𝑛(1 − 𝛾)) + 𝑡𝑟(𝑀). 

We then deduce from (38) that 

1

1−𝛾
𝐺𝛾−1(𝛻𝜙(𝑥)) ≤

1−𝑛(1−𝛾)

1−𝛾
𝐹𝛾−1(𝑥) + 𝐹𝛾−1(𝑥)𝛥𝜙(𝑥) . 

Integrating this inequality with respect to 𝐹(𝑥)𝑑𝑥 and using the definition of mass transport 

(7), we conclude to (36). 

We go on with the proof of (31). Define 

𝛾:=
𝛼(𝑝 − 1) + 1

𝛼𝑝
= 1 −

𝛼 − 1

𝛼𝑝
 

and note that 𝛾 ≥ 1 − 1/𝑛 precisely when 𝛼 ∈ (0, 𝑛/(𝑛 − 𝑝)]. Reasoning exactly as in 

Theorem (3.1.2), we deduce from (36) that whenever 𝐹 and 𝐺 are two smooth, compactly 

supported probability densities and 𝛻𝜙 is the corresponding Brenier map, then 

𝛼𝑝

𝛼 − 1
∫𝐺𝛾 ≤

𝛼𝑝 − 𝑛(𝛼 − 1)

𝛼 − 1
∫𝐹𝛾 −∫𝛻𝐹𝛾 ⋅ 𝛻𝜙.   (38) 

Choosing 𝐹 = 𝑓𝛼𝑝 and 𝐺 = 𝑔𝛼𝑝 in this inequality, we obtain 
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𝛼𝑝

𝛼 − 1
∫ 𝑔𝛼(𝑝−1)+1

≤
𝛼𝑝 − 𝑛(𝛼 − 1)

𝛼 − 1
∫ 𝑓𝛼(𝑝−1)+1 − (𝛼(𝑝 − 1) + 1)∫ 𝑓𝛼(𝑝−1) 𝛻𝑓 ⋅ 𝛻𝜙. 

Next we apply Young’s inequality (10) with 𝑋 = −𝛻𝑓(𝑥) and = 𝑓𝛼(𝑝−1)(𝑥)𝛻𝜙(𝑥) , to find 

𝛼𝑝

(𝛼 − 1)(𝛼𝑝 − (𝛼 − 1))
∫𝑔𝛼(𝑝−1)+1
 

 

≤
𝛼𝑝 − 𝑛(𝛼 − 1)

(𝛼 − 1)(𝛼𝑝 − (𝛼 − 1))
∫𝑓𝛼(𝑝−1)+1
 

 

 

+
1

𝑝𝜇𝑝
∫ | |𝛻𝑓||∗

𝑝
+
𝜇𝑞

𝑞
∫ 𝑓𝛼𝑝 ||𝛻𝜙||𝑞 . 

To conclude the proof of (31), it suffices to apply the identity (7) to the last integral. 

We now turn to the proof of part (i) of Theorem (3.1.6). Just as in Theorem (3.1.2), it is a 

direct consequence of the observation that if we set 𝑓 = 𝑔 = ℎ𝛼,𝑝, and thus 𝛻𝜙(𝑥) = 𝑥, in 

the previous proof, then all the steps can be computed explicitly and lead to equalities. The 

crucial point here, which ensures a pointwise equality in Young’s inequality (10) is that, for 

almost all 𝑥 ∈ ℝ𝑛, 

−𝛻ℎ𝛼1𝑝(𝑥) ⋅ [ℎ𝛼
𝛼(𝑑𝐽−1)

𝐽𝐽(𝑥)𝑥] =
1

𝑝𝑓𝑝
||𝛻ℎ𝛼,𝑝(𝑥)||∗

𝑝
+
𝜇𝑝
𝑞

𝑞
||ℎ𝛼

𝛼(𝑝−1)
𝐽𝐽(𝑥)𝑥||𝑞 . 

Indeed, after a little bit of computation, this identity reduces to the straightforward equality 

𝑞
||𝑥||𝑞

(𝜎𝛼,𝑝 + (𝛼 − 1)||𝑥||
𝑞)

𝛼𝑝
𝛼−1

=
𝑞𝑝

𝑝𝑓𝑝

||𝑥||𝑞

(𝜎𝛼𝐽
𝐽 + (𝛼 − 1)||𝑥||𝑞)

𝛼𝑝
𝛼−1

 

+
𝜇𝑝
𝑞

𝑞

||𝑥||𝑞

(𝜎𝛼𝐽
𝐽 + (𝛼 − 1)||𝑥||𝑞)

𝛼𝑝
𝛼−1

. 

Finally, let us prove part (ii) of Theorem (3.1.6). To show that part (i) of the theorem implies 

part (ii), we use a scaling argument, more or less standard in problems of this kind. Assume 

for instance 𝛼 > 1, and let us see how to establish (34). From part (i) we have the inequality, 

when ||𝑓||𝐿𝛼𝑝 = 1, 

1

𝑝𝜇𝑝
𝑝∫ | |𝛻𝑓||∗

𝑝
+

𝛼𝑝 − 𝑛(𝛼 − 1)

(𝛼 − 1)(𝛼𝑝 − (𝛼 − 1))
∫ | 𝑓|𝛼(𝑝−1)+1 

≥ 𝐶:= [
𝛼𝑝

(𝛼 − 1)(𝛼𝑝 − (𝛼 − 1))
∫ | ℎ𝛼𝐽

𝐽|𝛼(𝑝−1)+1 −
𝜇𝑝
𝑞

𝑞
∫ | |𝑦||𝑞|ℎ𝛼𝑝(𝑦)|

𝛼𝑝𝑑𝑦],   (39) 

with equality when 𝑓 = ℎ𝛼𝐽
𝑗. Thus, for every ∈ �̇�11𝑝(ℝ𝑛) , 
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||𝑓||
𝐿𝛼(𝑝−1)+1
𝛼(𝑝−1)+1

||𝑓||𝐿𝛼𝑝
𝛼(𝑝−1)+1

+ 𝐶1
||𝛻𝑓||𝐼𝐼

||𝑓||𝐿𝛼𝑝
𝑝 ≥ 𝐶2,                       (40) 

where 𝐶1 and 𝐶2 are positive constants. Here we do not write down the precise values of 𝐶1 

and 𝐶2; anyway this is not necessary, to carry on the argument till the end it will be sufficient 

to know that ℎ𝛼:𝑝 is optimal in this inequality. 

Next, we apply (41) with 𝑓 replaced by 𝑓𝜆 = 𝑓(⋅/𝜆)(𝜆 > 0) . We find 

𝜆
𝑛(𝛼−1)
𝛼𝑝

||𝑓||
𝐿𝛼(𝑝−1)+1
𝛼(𝑝−1)+1

||𝑓||𝐿𝛼𝑝
𝛼(𝑝−1)+1

+ 𝐶1𝜆
𝛼(𝑛−𝑝)−𝑛

𝛼
||𝛻𝑓||𝐼𝑦

||𝑓||𝐿𝛼𝑝
𝑝 ≥ 𝐶2,               (41) 

and we can now optimize with respect to 𝜆 > 0, to recover 

||𝑓||𝐿𝛼𝑝 ≤ 𝐶||𝛻𝑓||𝐿𝑝
𝜃 ||𝑓||

𝐿𝛼(𝑝−1)+1
1−𝜃 , 

with equality when 𝑓 = (ℎ𝛼𝐽
𝐽)𝜆, with the optimal choice of 𝜆. As expected, 𝜃 is determined 

by scaling invariance. The same scaling invariance guarantees that there is also equality 

when 𝑓 = ℎ𝛼𝐽
2, which is the content of (34). 

The case 𝛼 < 1 is obtained exactly in the same way. This concludes the proof of 

Theorem (3.1.6).  

The mass transportation method appears to be extremely efficient in the treatment of 

sharp Gagliardo‐Nirenberg inequalities, as illustrated by the short length and simplicity of 

the proofs above. Among the other advantages of our method, we note that it provides a 

common framework to all the family of Sobolev inequalities, making the link with 

isoperimetric estimates clearer. It also emphasizes a strong connection between the Brunn‐

Minkowski inequality (9) (and more generally convex geometry) and sharp Sobolev 

inequalities. Finally, we should mention that the use of the Brenier map is not compulsory: 

we could as well have worked with the Knothe map [100]. 

Certainly, one of the most irritating open problems remaining in the field, is the fact 

that we do not understand how to get sharp inequalities and extremal functions in the 

rest of the range of the Gagliardo‐Nirenberg family (3).  

Another natural problem is that of the identification of all cases of equality in Sobolev or 

Gagliard +Nirenberg inequalities. In the case of a Euclidean norm, it is known that the 

functions ℎ𝑝 are the only minimizers, up to translation, dilation and multiplication by a 

constant. But even in this case, the known proofs of this result are far from being 

straightforward; they first use the Brothers‐Ziemer theorem [87] to reduce to the one‐

dimensional case, after which a somewhat tedious analysis is performed. From our proof, it 

is possible to determine all cases of equality, even when dealing with arbitrary norms. We 

restrict the discussion to the sharp Sobolev inequalities. A similar proof would solve the 

problem for the Gagliardo‐Nirenberg inequalities, at least in the case 𝛼 > 1. 

Theorem (3.1.7)[80]. A function 𝑓 ∈ �̇�1:𝑝(ℝ𝑛) is optimal in the Sobolev inequality (18) if 

and only if there exist 𝐶 ∈ ℝ, 𝜆 ≠ 0 and 𝑥0 ∈ ℝ
𝑛 such that 
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𝑓(𝑥) = 𝐶ℎ𝑝(𝜆(𝑥 − 𝑥0)) .                                                       (42) 

It is enough to prove Theorem (3.1.7) for nonnegative functions 𝑓. Indeed, for an arbitrary 

optimal function 𝑓, |𝑓| will also be optimal and then the conclusion of the theorem will force 

𝑓 to have constant sign on ℝ𝑛. 

Let 𝑓 and 𝑔 be two nonnegative measurable functions; we say that 𝑓 is a dilationtranslation 

image of 𝑔 if there exists 𝐶 > 0, 𝜆 ≠ 0 and 𝑥0 ∈ ℝ
𝑛 such that (𝑥) = 𝐶𝑔(𝜆(𝑥 − 𝑥0)) . If 

∫ 𝑓𝑘 = ∫ 𝑔𝑘 for some 𝑘 > 0, then necessarily 𝑓(𝑥) = |𝜆|𝑛/𝑘𝑔(𝜆(𝑥 − 𝑥0)) . This is 

equivalent to saying that the Brenier map 𝛻𝜙 pushing 𝑓𝑘(𝑥)𝑑𝑥 forward to 𝑔𝑘(𝑦)𝑑𝑦 is a 

dilation‐translation map, in the sense that = 𝜆(Id − 𝑥0) . Note that 𝑓 is a dilation‐translation 

image of 𝑔 if and only if 𝑔 is a dilation‐translation image of 𝑓. 

The Sobolev inequality is invariant under dilation ⊣ranslation maps. Thus, it suffices to 

prove Theorem (3.1.7) when 𝑓𝑝
⋆
 is a probability density. In view of Theorem(3.1.2), we just 

have to set 𝑔 = ℎ𝑝, and prove that all 𝑓’s which achieve equality in (16) are dilation‐

translation images of ℎ𝑝. Then, Theorem (3.1.7) is an immediate consequence of 

Proposition (3.1.8)[80]. Let Ω ∈ (1, n) , and letf and g be two nonnegative functions 

satisfying the assumptions of Theorem (3.1.2). If equality holds in (16), then f is a dilation‐

translation image of g. 

proof. will not rely on any sharp rearrangement inequality, but on rather standard tools from 

distribution theory, combined with careful approximation procedures. Let us start with an 

informal discussion. Our derivation of the optimal Sobolev inequality only relied on (i) 

Theorem (3.1.1), together with the Monge‐Ampère equation (22) and the definition of mass 

transport; 

(ii) the arithmetic‐geometric inequality (23), ( det 𝐷2𝜙)1/𝑛 ≤ 𝛥𝜙/𝑛, integrated with 

respect to 𝑓𝑝
⋆(1−1/𝑛)(𝑥)𝑑𝑥; 

(iii) the integration by parts formula (24); 

(iv) Hölder’s inequality (11), in the form of Eq. (26). 

If 𝜙 was smooth and 𝑓 positive everywhere, equality in the arithmetic‐ geometric inequality 

(ii) would imply that 𝐷2𝜙 is a pointwise multiple of the identity, from which it could be 

shown that it is in fact a constant multiple of the identity, so that 𝛻𝜙 is a dilation‐translation 

map. However, we do not know a priori that 𝜙 is smooth, neither that 𝑓 is positive almost 

everywhere. Moreover, it is definitely not clear that the integration by parts formula (24) 

applies to the minimizer: we proved it only in the case when 𝑓 and 𝑔 are compactly 

supported! This restriction on 𝑓 and 𝑔 had no consequence on the generality of the final 

inequality, since a density argument could be applied; but it prevents us to go anywhere as 

far as equality cases are concerned. Therefore, our proof will be performed in two steps: (i) 
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generalize the proof of (16) in order to directly obtain the inequality for all admissible 𝑓’s 

and 𝑔’s, not necessarily smooth and compactly supported; (ii) trace back cases of equality 

in the proof of this inequality, without assuming extra smoothness on 𝑓, 𝑔 or 𝜙. 

To carry out step 1, it is sufficient to generalize the proof of the integration by parts (24) to 

more general functions 𝑓 and 𝑔. 

With the notations of Theorem (3.1.2), let us fix nonnegative functions 𝑓 and 𝑔 for which 

there is equality in (3.16). We will trace back the equality cases in the proof of (16). Recall 

that 𝛻𝜙 denotes the Brenier map pushing 𝑓𝑝
⋆
(𝑥)𝑑𝑥 forward to 𝑔𝑝

⋆
(𝑦)𝑑𝑦. Our goal is to 

prove that 𝛻𝜙 is a dilation ⊣ranslation map. As before, we denote by 𝛺 the interior of the 

convex set where 𝜙 < +∞; we recall that 𝛺 contains supp(𝑓) , and that 𝜕𝛺 is of zero 

measure. 

The proof will be done in three steps: 

Step i: The function 𝑓 is positive on 𝛺; Step ii: 𝐷𝒟
2 , 𝜙 has no singular part on 𝛺; Step iii: 𝛻𝜙 

is a dilation‐translation map. 

Let us first show that 𝑓 is positive everywhere, or more rigorously that for every compact 

subset 𝐾 of 𝛺, there exists a positive constant 𝛼𝐾 such that 

∀𝑥 ∈ 𝐾, 𝑓(𝑥) ≥ 𝛼𝐾 > 0.                                 (43) 

Here, of course ∀𝑥” should be understood as “for almost all 𝑥” A proof was suggested to us 

by Almut Burchard; we reproduce her argument almost verbatim below. 

For equality to hold in Hölder’s inequality (11) it is necessary that, for some positive 

constant 𝑘 > 0, 

||𝑋||∗
𝑝
= 𝑘||Y||𝑞  𝑎𝑙𝑚𝑜𝑠𝑡 𝑒𝑣𝑒𝑟𝑦𝑤ℎ𝑒𝑟𝑒                    (44) 

Therefore, equality in (26) implies 

||𝛻𝑓(𝑥)||∗
𝑝
= 𝑘𝑓𝑝

⋆
(𝑥)||𝛻𝜙(𝑥)||𝑞                      (45) 

for almost every 𝑥 ∈ 𝛺. 

Let us introduce 𝑓𝑚(𝑥) =  max (𝑓(𝑥), 1/𝑚) . We know that 𝛻𝑓𝑚 ∈ 𝐿
𝑝 and that in fact 

𝛻𝑓𝑚 = 𝛻𝑓1𝑓>1/𝑚. It follows that 

||𝛻𝑓𝑚(𝑥)||∗
𝑝
≤ ||𝛻𝑓(𝑥)||∗

𝑝
= 𝑘𝑓𝑝

⋆
(𝑥)||𝛻𝜙〈𝑥)||𝑞 ≤ 𝑘𝑓𝑚

𝑝⋆(𝑥)||𝛻𝜙(𝑥)||𝑞 . 

As a consequence, 

||𝛻 (𝑓𝑚
−𝑝/(𝑛−𝑝)

) ||∗ ≤ 𝑘
1/𝑝 (

𝑝

𝑛 − 𝑝
) ||𝛻𝜙||1/(𝑝−1).           (46) 

Since ||𝛻𝜙|| is locally bounded on 𝛺, it follows from (51) that the functions 𝑓𝑚
−𝑝/(𝑛−𝑝)

 are 

uniformly (in 𝑚) locally Lipschitz on 𝛺. Taking 𝑚 to infinity shows that 𝑓−𝑝/(𝑛−𝑝) is locally 

Lipschitz, and therefore locally bounded, on 𝛺. From this we deduce that 𝑓 is positive, 

locally bounded away from 0 on 𝛺, in the sense of (48). This implies in particular that the 
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support of 𝑓 is 𝛺. 

We now prove that 𝐷𝒟
2 , 𝜙 has no singular part. Since this is a nonnegative matrixvalued 

measure, it is enough to prove that its trace 𝛥𝒟′𝜙 is itself absolutely continuous in 𝛺. Let 

𝛥𝑠𝜙 be the singular part of 𝛥𝒟𝜙; recall that 𝛥𝑠𝜙 is a nonnegative measure and that 𝛥𝒟′𝜙 =

𝛥𝜙 + 𝛥𝑠𝜙. Since there should be equality in (44), we deduce from the proof of Lemma 

(3.1.9) that 

lim
𝜀→0

lim
𝛿→0

 inf 〈(𝑓𝜀
𝛿)
𝑝(𝑛−1)
𝑛−𝑝 , 𝛥𝑠𝜙〉𝒟′ = 0.                   (47) 

Without loss of generality, we assume that 0 ∈ 𝛺. Let 𝐾 be an arbitrary convex compact 

subset of 𝛺 containing 0 in its interior. For 𝑑𝐾: = 𝑑(𝐾, 𝛺
𝑐) , let 𝐾′ = {𝑥 ∈ 𝛺; 𝑑(𝑥, 𝐾) ≤

𝑑𝐾/2}. From its definition 𝐾′ is a convex compact subset of 𝛺 whose interior is a 

neighborhood of 𝐾. By (48) we know that there exists 𝛼 = 𝛼𝐾′ > 0 such that 𝑓 ≥ 𝛼1𝐾′, 

where 1𝐾′ stands for the indicator function of 𝐾′. If 𝜀 is small enough, we can make sure 

that 𝐾/(1 − 𝜀)2 ⊂ 𝐾′; then, with the notation of Lemma (3.1.9) we have 𝑓𝜀(𝑥) ≥

𝛼1𝐾/(1−𝜀)(𝑥) . If 𝛿 is small enough, this implies 

𝑓𝜀
𝛿 ≥ 𝛼1𝐾 . 

As a consequence, when both 𝜀 and 𝛿 are small enough we see that 

〈(𝑓𝜀
𝛿)
𝑝⋆(1−

1
𝑛
)
, 𝛥𝑠𝜙〉𝒟′ ≥ 𝛼

𝑝⋆(1−
1
𝑛
)
𝛥𝑠𝜙[𝐾].                (48) 

Combining this with (52) and the positivity of 𝛼, we find that 𝛥𝑠𝜙[𝐾] = 0. Since 𝐾 is 

arbitrary, we conclude that 𝛥𝑠𝜙 vanishes. As announced above, this means that 𝐷𝒟
2 , 𝜙 is 

absolutely continuous. Since we have equality in the arithmetic‐geometric inequality (23) 

for 𝑓𝑝
⋆(1−1/𝑛)(𝑥)𝑑𝑥 almost every 𝑥 ∈ 𝛺, and therefore for almost every 𝑥 ∈ 𝛺, we conclude 

that 𝐷2𝜙, which can be identified with 𝐷𝒟
2 , 𝜙, is proportional to the identity matrix at almost 

every 𝑥 ∈ 𝛺. Let 𝜅 be a smooth regularizing kernel with support included in a small ball of 

radius 𝜀. Since 𝐷2(𝜙 ∗ 𝜅) = 𝐷2𝜙 ∗ 𝜅, we deduce that the smooth function 𝜙 ∗ 𝜅 is such that 

its Hessian is also pointwise proportional to the identity matrix on 𝛺𝜀: = {𝑥 ∈ 𝛺; 𝑑(𝑥, 𝜕𝛺) >

𝜀}. From this one easily shows that 𝐷2(𝜙 ∗ 𝜅) is a constant multiple of the identity. By 

making 𝜅 tend to a Dirac mass, we see that 𝐷𝒟
2 , 𝜙 is also a constant multiple of the identity 

on the whole of 𝛺, and therefore 𝛻𝜙 is a dilationtranslation map on 𝛺. This concludes the 

proof of Proposition (3.1.8).  

This is the content of the following: 

Lemma (3.1.9)[80]. Let 𝑓 ∈ �̇�1𝑝(ℝ𝑛) and 𝑔 ∈ 𝐿𝑝
⋆
(ℝ𝑛) be two nonnegative functions such 

that ||𝑓||𝐼𝐼⋆ = ||𝑔||𝐼𝐼⋆ = 1 and ∫ 𝑔𝑝
⋆
(𝑦)||𝑦||𝑞𝑑𝑦 < +∞. Let 𝛻𝜙 denote the Brenier map 

pushing 𝑓𝑝
⋆
(𝑥)𝑑𝑥 forward to 𝑔𝑝

⋆
(𝑦)𝑑𝑦. Then, 𝑓𝑝

⋆/𝑞𝛻𝜙 ∈ 𝐿𝑞(ℝ𝑛) and 



102 

∫ 𝑓
𝑝⋆(1−

1
𝑛
)
𝛥𝜙 ≤ −∫ 𝛻 [𝑓

𝑝⋆(1−
1
𝑛
)
] . 𝛻𝜙 =

𝑝(𝑛 − 1)

(𝑛 − 𝑝)
∫ 𝑓𝑝

⋆/𝑞 𝛻𝑓 . 𝛻𝜙,   (49) 

where 𝛥𝜙 = tr𝐷2𝜙 ≥ 0 denotes the absolutely continuous part of the distributional 

Laplacian. 

To achieve step 2, and eventually prove Proposition (3.1.8), we shall have to overcome a 

few more technical difficulties. We establish that 𝑓 is positive; the proof of this fact was 

given to us by Almut Burchard, As we shall see, the argument eventually relies on the fact 

that there should be equality in Hölder’s inequality (iv) above. From this strict positivity we 

shall deduce that the distributional Hessian 𝐷𝒟
2 , 𝜙 is absolutely continuous, and therefore 

coincides with 𝐷2𝜙, defined almost everywhere. Once we have introduced the distributional 

Hessian in our problem, we will use a standard regularization argument to conclude the 

proof. 

A subtle point in the argument is the following: for our proof to work out, it is not sufficient 

to prove that 𝑓 is positive almost everywhere. Indeed, if 𝑓 would vanish at some place, then 

we could not exclude the possibility that 𝐷2𝜙 has some singular part, living precisely on the 

set where 𝑓 vanishes. On the other hand, 𝑓 is not a priori continuous, so discussing the 

positivity off everywhere does not seem to make much sense. To avoid this contradiction, 

we shall show that 𝑓 is positive everywhere in the sense that it is, locally, bounded from 

below almost everywhere by a positive constant. 

After these explanations, we can go on with the proofs of Lemma (3.1.9) and of 

Proposition (3.1.8). 

Proof.  By definition of mass transport (7), we know that ∫ 𝑓𝑝
⋆
||𝛻𝜙||𝑞 = ∫ 𝑔𝑝

⋆
||𝑦||𝑞𝑑𝑦 

and so 𝑓𝑝
⋆/𝑞𝛻𝜙 ∈ 𝐿𝑞(ℝ𝑛) . The proof of (44) will be done by approximation and 

regularization; there is no fundamental difficulty, but one has to be careful enough. 

Let 𝛺 be the interior of the convex set where 𝜙 < +∞. Note that 𝛺 contains the support of 

𝑓, and that 𝜕𝛺 is of zero measure. Without loss of generality we assume that 0 ∈ 𝛺. 

Whenever 𝜀 > 0 is a (small) positive number, we define 

𝑓𝜀(𝑥) =  min [𝑓 (
𝑥

1 − 𝜀
) , 𝑓(𝑥)𝜒(𝜀𝑥)],                         (50) 

where 𝜒 is a 𝐶∞ cut‐off function with 0 ≤ 𝜒 ≤ 1, 𝜒(𝑥) ≡ 1 for |𝑥| ≤ 1/2, 𝜒(𝑥) ≡ 0 for 

|𝑥| ≥ 1. Note that the support of 𝑓𝜀 is compact and contained within 𝛺 (here we use the fact 

that 𝛺 is starshaped with respect to 0). 

Both functions in the right‐hand side of (45) are bounded in �̇�11𝑝(ℝ𝑛) , uniformly in 𝜀. 
This is clear for the first one; for the second one this is a consequence of 

∫ 𝑓𝑝

ℝ𝑛
(𝑥)|𝛻[𝜒(𝜀𝑥)]|𝑝𝑑𝑥 = 𝜀𝑝∫ 𝑓𝑝

ℝ𝑛
|𝛻𝜒(𝜀𝑥)|𝑝𝑑𝑥 
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≤ (∫ 𝑓𝑝
⋆

ℝ𝑛
)

1−
𝑝
𝑛

(∫ 𝜀𝑛

ℝ𝑛
|𝛻𝜒(𝜀𝑥)|𝑛𝑑𝑥)

𝑝
𝑛

 

= (∫ 𝑓𝑝
⋆

ℝ𝑛
)

1−
𝑝
𝑛

(∫ |
ℝ𝑛

𝛻𝜒(𝑥)|𝑛𝑑𝑥)

𝑝
𝑛

, 

where we used Hölder’s inequality and the change of variables 𝑥 → 𝜀𝑥. Thus (by the formula 

 min (𝑓, 𝑔) = (𝑓 + 𝑔)/2 − |𝑓 − 𝑔|/2), 𝑓𝜀 lies in �̇�1,𝑝, and in fact 𝛻𝑓𝜀 is bounded in 𝐿𝑝 as 

𝜀 → 0. 

We now fix 𝜀 > 0, and let 𝛺𝜀 be a bounded open set whose closure is contained within 𝛺, 

and which contains the support of 𝑓𝜀. It is standard that 𝑓𝜀 can be approximated in �̇�1)𝑝(ℝ𝑛) 

by a sequence 𝑓𝜀
𝛿 → 𝑓𝜀 of smooth nonnegative functions compactly supported inside 𝛺𝜀; for 

this one just has to regularize 𝑓𝜀 by convolution with a kernel whose support is contained 

within a ball of radius 𝛿, 𝛿 small enough and going to 0. Then we can use the fact that 𝛥𝜙 

(in the sense of Aleksandrov) is bounded above by the distributional Laplacian of 𝜙 in 𝛺 

(see [98] or [92]), and write 

∫ (𝑓𝜀
𝛿)
𝑝⋆(1−

1
𝑛
)
𝛥𝜙 ≤ −∫ 𝛻 [(𝑓𝜀

𝛿)
𝑝⋆(1−

1
𝑛
)
] . 𝛻𝜙 = −𝑐𝑛𝑝∫ (𝑓𝜀

𝛿)
𝑝⋆/𝑞

𝛻𝑓𝜀
𝛿 ⋅ 𝛻𝜙   (51) 

where 𝑐𝑛𝑝: = 𝑝(𝑛 − 1)/(𝑛 − 𝑝) > 0. We know that 𝑓𝜀
𝛿 converges to 𝑓𝜀 in 𝐿𝑝

⋆
 (by 

convergence in �̇�11𝑝(ℝ𝑛)) and since 𝛻𝜙 remains essentially bounded within 𝛺𝜀, we 

conclude that (𝑓𝜀
𝛿)
𝑝⋆/𝑞

𝛻𝜙 converges to (𝑓𝜀)
𝑝⋆/𝑞𝛻𝜙 in 𝐿𝑞. On the other hand we know that 

𝛻𝑓𝜀
𝛿 converges to 𝛻𝑓𝜀 in 𝐿𝑝. We then deduce from (46) by Fatou’s lemma that 

∫(𝑓𝜀)
𝑝⋆(1−1/𝑛) 𝛥𝜙 ≤ −𝑐𝑛:𝑝∫(𝑓𝜀)

𝑝⋆/𝑞 𝛻𝑓𝜀 ⋅ 𝛻𝜙.                           (52) 

It now remains to pass to the limit in (47) as 𝜀 → 0. For this we argue as follows. First of all 

we note that, up to possible extraction of a subsequence 𝜀 = (𝜀𝑘)𝑘∈ℕ, 𝑓𝜀 converges almost 

everywhere to 𝑓 as 𝜀 → 0. To prove this, it is sufficient to show that 𝑔𝜀(𝑥):= 𝑓(𝑥/(1 − 𝜀)) 

converges almost everywhere to 𝑓(𝑥) as 𝜀 → 0. Clearly, 𝑔𝜀 is bounded in �̇�11𝑝(ℝ𝑛) as 𝜀 →

0, and it also converges to 𝑓 in the sense of distributions, since for all compactly supported 

test‐functions 𝜙 one can write 

∫ 𝑔𝜀 𝜙 = (1 − 𝜀)
𝑛∫ 𝑓 (𝑥)𝜙((1 − 𝜀)𝑥)𝑑𝑥 → ∫ 𝑓𝜙. 

So 𝑔𝜀 converges weakly to 𝑓 in �̇�
1
𝐽𝑗 , and therefore locally strongly in 𝐿𝑟 for any 𝑟 ∈

(1, 𝑝⋆) . It follows that (up to extraction of a subsequence) 𝑔𝜀 → 𝑓 almost everywhere. As a 

consequence, 𝑓𝜀 converges to 𝑓 almost everywhere. Since 𝑓𝜀 ≤ 𝑓 ∈ 𝐿
𝑝⋆, by dominated 
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convergence theorem 𝑓𝜀 → 𝑓 in 𝐿𝑝
⋆
 Similarly (or as a consequence of the 𝐿𝑝 convergence 

of 𝑓𝜀 to 𝑓) 𝛻𝑓𝜀 converges to 𝛻𝑓 in distributional sense on ℝ𝑛, and is also bounded in 𝐿𝑝, so 

𝛻𝑓𝜀 converges weakly in 𝐿𝑝 to 𝛻𝑓. On the other hand, again because 𝑓𝜀 ≤ 𝑓, we know that 

(𝑓𝜀)
𝑝⋆/𝑞||𝛻𝜙|| ∈ 𝐿𝑞. So, by dominated convergence, (𝑓𝜀)

𝑝⋆/𝑞𝛻𝜙 converges (strongly) in 𝐿𝑞 

to 𝑓𝑝
⋆/𝑞𝛻𝜙. Thus we can pass to the limit as 𝜀 → 0 in the right‐hand side of (47), and by 

Fatou’s lemma we obtain 

∫ 𝑓𝑝
⋆(1−1/𝑛) 𝛥𝜙 ≤ −𝑐𝑛,𝑝 lim

𝜀→0
∫ (𝑓𝜀)

𝑝⋆/𝑞 𝛻𝑓𝜀  . 𝛻𝜙 = −𝑐𝑛,𝑝∫ 𝑓𝑝
⋆/𝑞 𝛻𝑓 ⋅ 𝛻𝜙. 

This concludes the proof of (44).  

Remark (3.1.10)[80]. No strict convexity of the norm is required for (49), as shown by the 

following short argument. Let 𝜆 > 0 satisfy 

(∫ | |𝑋||∗
𝑝
)

1/𝑝

(∫ | |Y||𝑞)

1/𝑞

=
𝜆−𝑝

𝑝
(∫ | |𝑋||∗

𝑝
) +

𝜆𝑞

𝑞
(∫ | |Y||𝑞) . 

Then, equality in Hölder’s inequality (11) implies a pointwise (almost everywhere) equality 

in Young’s inequality (10). When there is equality in Young’s inequality, the function 

𝛼(𝑡):= (𝑋 ⋅ 𝑌)𝑡 − (𝜆−𝑝||𝑋||∗
𝑝
/𝑝)𝑡𝑝 achieves its maximum at 𝑡 = 1, and therefore 

𝜆−𝑝||𝑋||∗
𝑝
= 𝜆𝑞||Y||𝑞. This implies (49) with 𝑘 = 𝜆𝑝+𝑞 . 

In the case 𝑔 = ℎ𝑝 > 0, once the strict positivity of 𝑓 has been proven, it is possible to 

appeal to Caffarelli’s interior regularity results [90] for solutions of the Monge‐Ampère 

equation, in order to conclude directly that 𝜙 ∈ 𝑊1oc
2,𝛼(𝛼 > 1) . This argument also implies 

that 𝐷𝒟
2 , 𝜙 has no singular part; it has however the drawback to rely on very sophisticated 

results. 

If we look for extremal 𝑔’s in (17), we can set 𝑓 = ℎ𝑝 in (16) and check for equality cases 

there. From Proposition (3.1.8) we know that 𝑔 has to be a dilationtranslation image of ℎ𝑝, 

and that 𝛻𝜙 is a dilation ⊣ranslation map. But, as in the proof of Proposition (3.1.8), 

equality in Hölder’s inequality with 𝑓 = ℎ𝑝 implies ||𝛻𝜙(𝑥)|| = 𝜆||𝑥|| almost everywhere, 

for some 𝜆 > 0 (see (50)). Therefore 𝛻𝜙(𝑥) = ±𝜆𝑥, and the only cases of equality are 

dilations of h. In (29) with 𝑓 = ℎ𝑝, the only equality cases will again be the 

dilation ⊣ranslation images of ℎ𝑝, as in Theorem (3.1.7). 
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Replacing Hölder’s inequality by Young’s inequality—in fact, we eventually used the cases 

of equality in Young’s inequality! − in the proof of Proposition (3.1.8), we can conclude 

that for equality to hold in (30), it is necessary that 𝑓 be a translationdilation image of 𝑔. 

It was pointed out to us by Maggi [104] that the technicalities encountered above can be 

greatly simplified if one restricts to radially symmetric functions. Indeed, in this case we 

have to deal with a one‐dimensional transportation problem, which is completely 

elementary. The interest of this Remark (3.1.10) lies in the fact that it is often possible, for 

many variational problems, to show a priori that optimal functions have to be radially 

symmetric around some point, by sharp rearrangement inequalities (in this case, the 

Brothers‐Ziemer theorem). Once this reduction has been performed, the classical procedure 

for the identification of extremals is still somewhat subtle, and even in this context the mass 

transportation argument leads to substantial simplifications. On the other hand, these sharp 

rearrangement inequalities are in general nontrivial. A proof of the Brothers‐Ziemer theorem 

for general norms has been recently announced by Ferone and Volpicelli (after a similar 

result for strictly convex norms, by Esposito and Trombetti); by combining this with 

Maggi’s Remark (3.1.10), one can devise an alternative proof of Theorem (3.1.7). 

Section (3.2): On the Half-Space 

For 𝑛 ≥ 3 be an integer and 𝑝 a real in (1,n) . The classical Sobolev inequality in ℝ𝑛 asserts 

the existence of an universal positive constant 𝐾𝑛(𝑝) , such that, for all function 𝑓 in the 

Sobolev space W1,𝑝(ℝ𝑛) , 

‖𝑓‖
𝐿𝑝
∗
(ℝ𝑛)

≤ 𝐾𝑛(𝑝)‖𝛻𝑓‖𝐿𝑝(ℝ𝑛),                                         (53) 

with 𝑝∗ =
𝑛𝑝

𝑛−𝑝
. 

In fact, the space W1,𝑝 is not well adapted to study Sobolev inequalities on ℝ𝑛, and should 

be replaced by the homogeneous Sobolev space 

Ẇ1,𝑝(ℝ𝑛) = {𝑓 ∈ 𝐿𝑝
∗
(ℝ𝑛), s. t. 𝛻𝑓 ∈ 𝐿𝑝(ℝ𝑛)}, 

or equivalently (see [23]), the space of functions vanishing at infinity with their gradient in 

𝐿𝑝(ℝ𝑛) . We will say that a measurable function: ℝ𝑛 → ℝ vanishes at infinity if 

∀𝑎 > 0,𝑚𝑒𝑠 ({𝑥 ∈ ℝ𝑛; |𝑓(𝑥)| ≥ 𝑎}) < +∞.                                 (54) 

The best constant in (53), together with extremal functions, was found in 1974 

independently by Aubin [82] and Talenti [126] by classical variational methods. By a 

symmetrization argument, the problem is reduced to the dimension one, and then solved by 

ODE techniques. The extremal functions, up to dilations and translations, take then the 

following form, 

𝑓(𝑦) = (𝜀𝑞 + |𝑦|𝑞)
1−
𝑛
𝑝 , 𝜀 > 0,

1

𝑝
+
1

𝑞
= 1.                                         (55) 

Consider now a smooth bounded domain 𝛺 ⊂ ℝ𝑛. The inequality (53) does not hold 

anymore, because of the constant functions. Then, a natural strategy is to replace the 

condition (54) on the functions by a vanishing condition on the boundary, that is to work on 
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the space W0
1,𝑝(𝛺) . In that setting, Guedda and Veron proved in [122] that, for a bounded 

and starpshaped domain 𝛺, the corresponding inequality does not admit extremal function. 

In [118], F. Demengel and E. Hebey studied a modified version: 

𝐼𝑝(𝛺) = inf
𝑢∈W0

1,𝑝
(ℝ𝑛),∫ 𝑓

𝛺
(𝑥)|𝑢(𝑥)|𝑑𝑥=1

  (∫ (|𝛻𝑢(𝑥)|𝑝 + 𝑎(𝑥)|𝑢(𝑥)|𝑝)
𝛺

𝑑𝑥) .   (55) 

They proved that the existence of extremal functions to (55) is related to the following 

condition 

𝐼𝑝(𝛺)𝐾𝑛(𝑝)
𝑝 (max

𝑥∈Ω
  𝑓(𝑥))

1−
𝑛
𝑝

< 1.                               (56) 

The value of 𝐼𝑝(𝛺) being unknown, they use the extremals in (53) in order to get explicit 

conditions on the domain and the data , 𝑓, by localization around a point of maximum of 𝑓. 

A generalization of (55) by Demengel leads to the subject of the present Replacing the 

constraint in (55) by 

𝑢 ∈ W1,𝑝(𝛺) ; ∫ 𝑓
𝜕𝛺

(𝑥)|𝑢(𝑥)|�̃�𝑑𝑥 = 1, 

where �̃� =
(𝑛−1)𝑝

𝑛−𝑝
 is the critical exponent for Sobolev imbeddings into trace spaces, an 

existence condition similar to (56) is found, the reference constant 𝐾𝑛(𝑝) being replaced by 

the best constant in the following Sobolev inequality on ℝ+
𝑛 = ℝ+ × ℝ

𝑛−1, 

‖𝑓‖
𝐿𝑝(𝜕ℝ+

𝑛) ≤ 𝑄𝑛(𝑝)‖𝛻𝑓‖𝐿𝑝(ℝ+𝑛).                                            (57) 

If we know the extremals in (57), the work done in [118] can be adapted to get explicit 

existence conditions of minimizers. Notice that the existence of extremals for (57) has been 

established by Lions in [124] using the concentration‐compactness principle. In the case 

where 𝑝 = 2, these extremals (and then the best constant) have been computed by Escobar 

in [120], and further by Beckner in [85]. Unfortunately, their proofs both deeply used the 

conformal invariance of the associated variational problem, then cannot be generalized to 

other values of 𝑝 and the problem was still open. Escobar conjectured that the functions 

∀(𝑡, 𝑥) ∈ ℝ+
𝑛 , 𝑓𝜆(𝑡, 𝑥) =

1

((𝑡 + 𝜆)2 + |𝑥|2)
𝑛−𝑝
2(𝑝−1)

, 𝜆 > 0                          (58) 

are optimal in (57). This is natural since they solve the PDE 

{

−div(|𝛻𝑓|𝑝−2𝛻𝑓) = 0 i𝑛 ℝ+
𝑛

|𝛻𝑓|𝑝−2𝛻𝑓 ⋅ n = −𝑄𝑛
′ (𝑝)𝑓

𝑛(𝑝 − 1)

𝑛 − 𝑝
𝑜𝑛 𝜕ℝ+

𝑛 .
 

The difficulty is to prove that 𝑄𝑛
′ (𝑝) = 𝑄𝑛(𝑝)

−𝑝. It is impossible to reduce the problem to 
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the dimension 1, since symmetrization arguments only apply with respect to the 𝑥 variable, 

and don’t really simplify it (see [123] for such a construction). Using the particular form of 

the expected extremals, the proof of this result uses a mass transportation method, and is 

deeply inspired by [80] and more recently [125]. In [125], Maggi and Villani proved an 

optimal inequality valid on all locally Lipschitz domains 𝛺: 

‖𝑓‖
𝐿𝑝
∗
(𝛺)
≤ 𝐾𝑛(𝑝)‖𝛻𝑓‖𝐿𝑝(𝛺) + 𝑇𝑛(𝑝)

−1‖𝑓‖
𝐿𝑝(𝜕𝛺)

,               (59) 

where �̃� =
(𝑛−1)𝑝

𝑛−𝑝
 (this exponent is the critical ones for the Sobolev embedding into 𝐿𝑞 space 

on the boundary), and 𝑇𝑛(𝑝)
−𝑝 is the isoperimetric constant. In addition, they showed that 

(59) is sharp on balls. This generalizes in particular a result of Brezis and Lieb in [116], 

correponding to 𝑝 = 2. 

The results of [125] stand in the continuation of the considerable efforts which have been 

spent in the last years to get a better understanding of Sobolev type inequalities, with the 

introduction of mass transportation concepts in the field. These methods are not new and, 

for example, are somehow used in all known proofs of the Brünn‐Minkowski inequality: 

|𝐴 + 𝐵|
1
𝑛 ≥ |𝐴|

1
𝑛 + |𝐵|

1
𝑛,                                                    (60) 

for all measurable sets 𝐴 and 𝐵 in ℝ𝑛. [125], Gromov gave a proof of the isoperimetric 

inequality based on the Knothe transport map between two probability densities. After the 

work of Brenier on the polar factorization [115] and more especially of McCann on the 

Monge‐Kantorovitch optimal transportation problem [125], Otto and Villani found deep 

links between  log ‐Sobolev inequality and the asymptotic profiles in the FokkerPlanck 

equation. In [95], Dolbeault and Del Pino used the entropy‐entropy production method to 

prove that asymptotics in nonlinear diffusion equations were exactly the extremals of a one‐

parameter family of Gagliardo‐Nirenberg inequalities, with (53) as a limit case, and obtained 

these extremals by similar methods as Aubin and Talenti. Inspired on the one hand by this 

work, and on the other hand by the direct proof using a mass transportation method of 

Gaussian inequalities obtained by Barthe in [84], Cordero‐Erausquin, Villani exhibited in 

[80] a completely new proof of (53) in its optimal form (together with the whole family of 

Gagliardo‐Nirenberg inequalities of [95]). This result is derived from a new duality principle 

generalized later by Agueh, Ghoussoub and Kang in [114]. The proof of this duality 

principle is direct, by writing a sequence of elementary inequalities, each of them being 

optimal. The extremals are then recovered by tracing back the cases of equality at each step. 

In addition, except from the Brenier map, it only involves arithmetic‐geometric and Hölder 

inequalities. For that reason, the result is obtained for an arbitrary norm on ℝ𝑛, and it is 

possible to prove that, up to translations and dilations, the functions given by (55) are the 

only minimizers in (53), avoiding the use of the moving plane method [121], or competting 

symmetries of Carlen and Loss [117]. Contrary to the inequalities covered by [80], which 

have already been proved by variational approach, the inequalities studied in [20] and this 

work have no other proof. This shows that mass transportation techniques are particularly 
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adapted to inequalities involving trace terms. Actually, since the proof applies for any norm 

on ℝ+
𝑛 , it generalizes in the case 𝑝 = 2 the result of [120] and [85], showing that neither 

conformal invariance nor the Euclidean structure of ℝ𝑛 play any role in the problem of sharp 

Sobolev inequalities with trace terms. 

We devoted to the proof of Theorem (3.2.1), after a summary of the mass transportation 

ingredients and some basic considerations about norms on Euclidean spaces we shall give 

some comments about uniqueness and results which can be derived from the proof, 

especially when interesting to arbitrary domains. 

Theorem (3.2.1)[113]. Let 𝑛 ≥ 3 and 𝑝 a real in (1, 𝑛) . Let ‖ . ‖ be a norm on ℝ𝑛, its dual 

norm being denoted by ‖ ⋅ ‖∗. Then, for all 𝑓 in W1,𝑝(ℝ+
𝑛) , 

‖𝑓‖
𝐿
(𝑛−1)𝑝
𝑛−𝑝 (𝜕ℝ+

𝑛)
≤ 𝑄𝑛(𝑝) (∫ ‖

ℝ+
𝑛
𝛻𝑓(𝑦)‖∗

𝑝
𝑑𝑦)

1
𝑝

                (61) 

with equality in (61) as soon as, for some 𝜆 > 0 and 𝑥0 ∈ ℝ
𝑛−1, 

∀(𝑡, 𝑥) ∈ ℝ+
𝑛 , 𝑓(𝑡, 𝑥) = (

𝜆
1
𝑝

‖(𝑡 + 𝜆, 𝑥 − 𝑥0)‖
)

𝑛−𝑝
(𝑝−1)

                        (62) 

It contains the conjecture of [120], in the particular case of the Euclidean norm. 

Proof. First, we give a brief presentation of the key ingredients of the analysis, and recall 

the main properties of the Brenier map. Let 𝐹 and 𝐺 some probability densities on ℝ+
𝑛 . By 

a result of Brenier [5], further refined by McCann [21], there exists a function = 𝛻𝜙 : ℝ+
𝑛 →

ℝ+
𝑛 , with 𝜙 convex, such that 𝑇 maps the measure 𝐹(𝑦)𝑑𝑦 onto 𝐺(𝑦)𝑑𝑦, which means by 

definition that, for all measurable set 𝐵, 

∫ 𝐺
𝐵

(𝑦)𝑑𝑦 = ∫ 𝐹
𝑇−1(𝐵)

(𝑦)𝑑𝑦,                                      (63) 

or, equivalently, for all measurable function 𝜓 : ℝ+
𝑛 → ℝ, 

∫ 𝜓
ℝ+
𝑛
(𝑦)𝐺(𝑦)𝑑𝑦 = ∫ 𝜓

ℝ+
𝑛
(𝑇(𝑦))𝐹(𝑦)𝑑𝑦.                                (64) 

With this properties, 𝑇 is uniquely determined F‐a.e. Note, even if it is not crucial in this 

work, that 𝑇 realizes the optimal transportation in the Monge‐Kantorovich problem with 

quadratic cost (see [126]) from 𝐹(𝑦)𝑑𝑦 to 𝐺(𝑦)𝑑𝑦. Assuming that the function 𝑇 is 𝐶1 and 

realizes a diffeomorphism, which is in general completely unrealistic, a change of variables 

in (64) leads to the following Monge‐Ampère equation: 

𝐹(𝑦) = 𝐺(𝛻𝜙(𝑦))Det𝐷2𝜙(𝑦) .                                        (65) 

In the general setting of probability densities, McCann proved in [124] that (65) remains 

valid at least 𝐹 almost everywhere, 𝐷2𝜙 being undestood as the absolutely continuous part 

of the of the distributional Hessian matrix of 𝜙 (or in the Alexandrov sense, that is, the 

quadratic part obtained in a second order Taylor expansion). The only more general 
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regularity result known is due to Caffarelli [88], [89], [90] for 𝐶0,𝛼 densities with compact 

convex support, in which case the potential 𝜙 becomes of classe 𝐶2,𝛼 and then equation (65) 

holds in the classical sense. Note, as done in [125], that if the arrival density 𝐺 is compactly 

supported in ℝ+
𝑛 , then the potential 𝜙 can be assumed to have its domain the whole ℝ𝑛, 

since it is possible to extend it as a convex function outside ℝ+
𝑛 . The main consequence of 

this fact is that we can assume that 𝛻𝜙 has bounded variations up to the boundary. 

Now, we introduce the underlying structure. Consider the vector space ℝ𝑛 endowed with 

some arbitrary norm denoted by ‖ ⋅ ‖. Then, the dual norm on (ℝ𝑛)∗ = ℝ𝑛 is defined for all 

𝑋 ∈ ℝ𝑛 by 

‖𝑋‖∗ = sup
||𝑌||=1

  𝑋 ⋅ 𝑌. 

It means that ‖ ⋅ ‖∗ is the conjugate function of the convex function ‖ ⋅ ‖. With this setting, 

the Hölder inequality holds: ∀𝑓 : (ℝ𝑛)∗ → ℝ in 𝐿𝑝, and ∀𝑔:ℝ𝑛 → ℝ in 𝐿𝑞, with 
1

𝑝
+
1

𝑞
= 1, 

∫ 𝑓
ℝ𝑛

⋅ 𝑔 ≤ (∫ ‖
ℝ𝑛

𝑓‖∗
𝑝
)

1
𝑝

(∫ ‖
ℝ𝑛

𝑔‖𝑞)

1
𝑞

                                   (66) 

which expresses the fact that 𝐿𝑝((ℝ𝑛)∗, ‖ ⋅ ‖∗) is the dual space of 𝐿𝑞(ℝ𝑛, ‖ ⋅ ‖) . In 

addition, the norm function is differentiable at all 𝑋 ∈ ℝ𝑛, 𝑥 ≠ 0, and for all such 𝑥, 

𝛻(‖ ⋅ ‖)(𝑥) is the unique vector 𝑥∗ such that 

𝑥∗ ⋅ 𝑥 = ‖𝑥‖. 

More generally, for a given differentiable function  𝑓: ℝ𝑛 → ℝ, its gradient with respect to 

the norm ‖ ⋅ ‖ lives in (ℝ𝑛)∗ and its ‖ ⋅ ‖∗ norm corresponds to the norm of the derivative 

of 𝑓 as a linear map. 

We set, for 𝑝 ∈ (1, 𝑛) , and for 𝑦 = (𝑡, 𝑥) ∈ ℝ+
𝑛 = ℝ+×ℝ𝑛−1, 

𝑓(𝑦) = 𝐶𝑛(𝑝)‖𝑦 − 𝑒‖
𝑝−𝑛
𝑝−1 ,                                             (67) 

where 𝑒 = (−1,0) and 

𝐶𝑛(𝑝) = (
𝑛

(𝑝 − 1)𝐼𝑛(𝑝)
)

1
𝑝
−
1
𝑛
 𝐼𝑛(𝑝) = ∫ ‖

ℝ𝑛−1
(1, 𝑥)‖−𝑛𝑞𝑑𝑥.               (68) 

This normalization makes the function 𝑓
𝑛𝑝

𝑛−𝑝 to be a probability density. Let us remark that 

it is sufficient to prove that 𝑓 is extremal in (59), in order to get that all the functions given 

by (62) are also extremals by the scaling invariance. The key point will be that 𝑓 realizes 

the equality in (66) with 

𝑓(𝑦) = 𝑓(𝑦)
𝑛(𝑝−1)
𝑛−𝑝 (𝑦 − 𝑒) 𝑎𝑛𝑑 𝑔(𝑦) = −𝛻𝑓(𝑦) .                    (69) 

Note that it is sufficient to prove (59) for non negative functions by taking |𝑓| in the 

inequality. We begin by establishing with the techniques of [80], [125] an inequality valid 



110 

on two arbitrary smooth and compactly supported probability densities 𝐹 and 𝐺. Then, in a 

second part, we apply the inequality to 𝐹 = 𝑓
𝑛𝑝

𝑛−𝑝
 and 𝐺 = 𝑔

𝑛𝑝

𝑛−𝑝, where 𝑓 and 𝑔 are still 

supposed to be non negative, smooth and compactly supported in ℝ+
𝑛 . At this stage, we shall 

remove the assumptions by a density argument and the final step will then lead to the 

conclusion. 

Consider 𝐹 and 𝐺 two smooth and compactly supported probability densities on ℝ+
𝑛 , and let 

𝛻𝜙 the Brenier transportation map between 𝐹(𝑦)𝑑𝑦 and 𝐺(𝑦)𝑑𝑦. What follows is deeply 

inspired from [80], [125], and only differs by the treatment of the trace term. Then, we write 

∫ 𝐺
ℝ+
𝑛
(𝑦)1−

1
𝑛𝑑𝑦 = ∫ 𝐺

ℝ+
𝑛
(𝛻𝜙(𝑦))

−
1
𝑛𝐹(𝑦)𝑑𝑦, 

by the definition of the Brenier map. Then, using the Monge‐Ampère equation (65), we have 

∫ 𝐺
ℝ+
𝑛
(𝑦)1−

1
𝑛𝑑𝑦 =  ∫ (Det𝐷2𝜙(𝑦))

1
𝑛

ℝ+
𝑛

𝐹(𝑦)1−
1
𝑛𝑑𝑦, 

≤ 
1

𝑛
∫ △
ℝ+
𝑛

𝜙(𝑦)𝐹(𝑦)1−
1
𝑛𝑑𝑦, 

thanks to the arithmetic‐geometric inequality. In the previous inequality, the Laplacian is 

understood as the absolutely continuous part of the distributional Laplacian. But, since 𝜙 is 

convex, its distributional Hessian is a measure with values in the set of the semi‐definite 

positive matrix. Then, it follows that 

∫ 𝐺
ℝ+
𝑛
(𝑦)1−

1
𝑛𝑑𝑦 ≤

1

𝑛
∫ △𝐷′

ℝ+
𝑛

𝜙(𝑦)𝐹(𝑦)1−
1
𝑛𝑑𝑦. 

We introduce 𝜓(𝑦) = 𝜙(𝑦) − 𝑒 ⋅ 𝑦. Then, 𝜙 and 𝜓 share the same Laplacian. We have that 

∈ B𝑉1𝑜𝑐(ℝ+
𝑛) , and since 𝐹 is smooth, we can use an integration by parts formula for BV 

functions. This leads to 

𝑛∫ 𝐺
ℝ+
𝑛
(𝑦)1−

1
𝑛𝑑𝑦 ≤ −∫ 𝛻

ℝ+
𝑛
𝜓 ⋅ 𝛻 (𝐹1−

1
𝑛) (𝑦)𝑑𝑦 + ∫ 𝐹

𝜕ℝ+
𝑛
(𝑦)1−

1
𝑛𝛻𝜓 ⋅ n,   (70) 

where n denotes the exterior normal vector, and in this case we have n = 𝑒 at each point of 

the boundary. In addition, by the definition of the mass transportation, 𝛻𝜙(𝑦) ∈ ℝ+
𝑛 , for all 

𝑦, which exactly means that 𝛻𝜙 satisfies 𝛻𝜙(𝑦) ⋅ n ≤ 0. Since, 𝑒 ⋅ 𝑒 = 1, we get 

∫ 𝐹
𝜕ℝ+

𝑛
(𝑦)1−

1
𝑛𝑑𝑦 + 𝑛∫ 𝐺

ℝ+
𝑛
(𝑦)1−

1
𝑛𝑑𝑦 ≤ −∫ (𝛻𝜙(𝑦) − 𝑒)

ℝ+
𝑛

⋅ 𝛻 (𝐹1−
1
𝑛) (𝑦)𝑑𝑦. (71) 

The next step consists in considering two non negative, smooth and still compactly 

supported functions 𝑓 and 𝑔 such that 
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∫ 𝑓
ℝ+
𝑛
(𝑦)

𝑛𝑝
𝑛−𝑝

𝑑𝑦=
∫ 𝑔
ℝ+
𝑛
(𝑦)

𝑛𝑝
𝑛−𝑝

𝑑𝑦=1
, 

and setting 𝐹 = 𝑓
𝑛𝑝

𝑛−𝑝
 and 𝐺 = 𝑔

𝑛𝑝

𝑛−𝑝. Then, (3.72) becomes 

∫ 𝑓
𝜕ℝ+

𝑛
(𝑦)

(𝑛−1)𝑝
𝑛−𝑝 𝑑𝑦

≤ −
(𝑛 − 1)𝑝

𝑛 − 𝑝
∫ 𝑓
ℝ+
𝑛
(𝑦)

𝑛(𝑝−1)
𝑛−𝑝 (𝛻𝜙(𝑦) − 𝑒) ⋅ 𝛻𝑓(𝑦)𝑑𝑦 − 𝑛∫ 𝑔

ℝ+
𝑛
(𝑦)

(𝑛−1)𝑝
𝑛−𝑝 𝑑𝑦. 

Using the definition of the dual norm and then applying Hölder inequality, it follows that 

∫ 𝑓
𝜕ℝ+

𝑛
(𝑦)

(𝑛−1)𝑝
𝑛−𝑝 𝑑𝑦 ≤

(𝑛 − 1)𝑝

𝑛 − 𝑝
(∫ ‖
ℝ+
𝑛
𝛻𝜙(𝑦) − 𝑒‖𝑞𝑓(𝑦)

𝑛𝑝
𝑛−𝑝𝑑𝑦)

1/𝑞

(∫ ‖
ℝ+
𝑛
𝛻𝑓(𝑦)‖∗

𝑝
𝑑𝑦)

1
𝑝

 

−𝑛∫ 𝑔
ℝ+
𝑛
(𝑦)

(𝑛−1)𝑝
𝑛−𝑝 𝑑𝑦, 

and actually, by the definition of the transport map, 

∫ 𝑓
𝜕ℝ+

𝑛
(𝑦)

(𝑛−1)𝑝
𝑛−𝑝 𝑑𝑦 ≤

(𝑛 − 1)𝑝

𝑛 − 𝑝
(∫ ‖
ℝ+
𝑛
𝑦 − 𝑒‖𝑞𝑔(𝑦)

𝑛𝑝
𝑛−𝑝𝑑𝑦)

1
𝑞

(∫ ‖
ℝ+
𝑛
𝛻𝑓(𝑦)‖∗

𝑝
𝑑𝑦)

1
𝑝

 

−𝑛∫ 𝑔
ℝ+
𝑛
(𝑦)

(𝑛−1)𝑝
𝑛−𝑝 𝑑𝑦.                                                      (72) 

At this stage, it is necessary to remove the compactness and smoothness hypothesis. Let us 

make two remarks. First, (72) has been established only for compactly supported functions, 

but since the transport map 𝛻𝜙 does not appear anymore, by density arguments, it remains 

valid as soon as each term is defined, typically for 𝑓 ∈ Ẇ1,𝑝(ℝ+
𝑛) and 𝑔 ∈ 𝐿𝑝

∗
(ℝ+

𝑛) (Indeed, 

the compactness hypothesis on 𝑔 was necessary to get sufficient regularity on 𝛻𝜙 for the 

integration by parts). On the other hand, this beeing done, if we set 𝑓 = 𝑔 = 𝑓, then, the 

transport map becomes the identity, so each step can be performed and provides an equality. 

As a conclusion for this step, (72) holds for any functions 𝑓 ∈ Ẇ1,𝑝(ℝ+
𝑛) and ∈ 𝐿𝑝

∗
(ℝ+

𝑛) , 

and is an equality for 𝑓 = 𝑔 = 𝑓. 

Now, we can finish the proof. Let us set 𝑔 = 𝑓 in (3.73). This leads to, for all non negative 

𝑓 in Ẇ1,𝑝(ℝ+
𝑛) such that ‖𝑓‖

𝐿𝑝
∗
(ℝ+
𝑛) = 1, 
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∫ 𝑓
ℝ+
𝑛
(𝑦)

(𝑛−1)𝑝
𝑛−𝑝 𝑑𝑦 ≤ 𝐴𝑛(𝑝)‖𝛻𝑓‖𝐿𝑝(ℝ+𝑛) − 𝐵𝑛(𝑝),                                      (73) 

with 

𝐴𝑛(𝑝) =
(𝑛 − 1)𝑝

𝑛 − 𝑝
(∫ ‖
ℝ+
𝑛
𝑦 − 𝑒‖𝑞𝑓(𝑦)

𝑛𝑝
𝑛−𝑝dy)

1
𝑞

=
(𝑛 − 1)𝑝

𝑛 − 𝑝
(
𝑝 − 1

𝑛 − 𝑝
)

1
𝑞
𝐶𝑛(𝑝)

𝑛(𝑝−1)
𝑛−𝑝 𝐽𝑛(𝑝)

1
𝑞 

and 

𝐵𝑛(𝑝) = 𝑛∫ 𝑓
ℝ+
𝑛
(𝑦)

(𝑛−1)𝑝
𝑛−𝑝 𝑑𝑦 =

𝑛(𝑝 − 1)

𝑛 − 𝑝
𝐶𝑛(𝑝)

(𝑛−1)𝑝
𝑛−𝑝 𝐽𝑛(𝑃), 

where 

𝐽𝑛(𝑝) = ∫ ‖
ℝ𝑛−1

(1, 𝑥)‖−𝑞(𝑛−1)𝑑𝑥. 

Here, we remove the normalization. For all 𝑓 ∈ Ẇ1,𝑝(ℝ+
𝑛) , the inequality (73) reads 

𝐾(𝑓)
(𝑛−1)𝑝
𝑛−𝑝 𝑄(𝑓) ≤ 𝐴𝑛(𝑝)𝐾(𝑓) − 𝐵𝑛(𝑝) , 

where we set 

𝐾(𝑓) =
‖𝛻𝑓‖𝐿𝑝(ℝ+𝑛)

‖𝑓‖𝐿𝑝∗(ℝ+𝑛)
, 𝑎𝑛𝑑 𝑄(𝑓) =

||𝑓‖
𝐿𝑝(𝜕ℝ+

𝑛)

𝑝

||𝛻𝑓‖
𝐿𝑝(ℝ+

𝑛)

�̃�
, 

hence 

𝑄(𝑓) ≤ 𝐾(𝑓)
−
(𝑛−1)𝑝
𝑛−𝑝 (𝐴𝑛(𝑝)𝐾(𝑓) − 𝐵𝑛(𝑝)) . 

The function 𝐻: 𝑘 ↦ 𝑘
−
(𝑛−1)𝑝

𝑛−𝑝 (𝐴𝑛(𝑝)𝑘 − 𝐵𝑛(𝑝)) achieves its maximum on ℝ+ at the point 

𝑘0 =
𝑝(𝑛 − 1)

𝑛(𝑝 − 1)
 
𝐵𝑛(𝑝)

𝐴𝑛(𝑝)
 

= (
𝑛 − 𝑝

𝑝 − 1
)

1
𝑞
𝐶𝑛(𝑃)𝐽𝑛(𝑃)

1
𝑝 

= (∫ ‖
ℝ+
𝑛
𝛻𝑓‖∗

𝑝
)

1
𝑝

= 𝐾(𝑓) , 

by a simple computation. As a conclusion, for all 𝑓 ∈ Ẇ1,𝑝(ℝ+
𝑛) , 

𝑄(𝑓) ≤ 𝐻(𝑘0) , 

with equality for 𝑓 = 𝑓, which ends the proof. A natural question arising here concerns the 

identification of all the minimizers in (60). Following [80], the guess would be that, up to 

dilations and multiplication by constants, the function given by (62) are the unique 
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minimizers in (59). Unfortunately, it supposes that we are able to perform the integration by 

parts (70), only assuming that 𝑓 ∈ W1,𝑝(ℝ+
𝑛) , which is not really a problem, but also 𝑔 ∈

𝐿𝑝
∗
(ℝ+

𝑛) not necessarily compactly supported. In that case, the normal derivative of 𝜙 has 

no reason even to exist on the boundary. 

If we don’t introduce the vector 𝑒 in (70), then the trace term does not appear anymore, and, 

replacing 𝑓 by the minimizers in the corresponding sharp Sobolev inequality in ℝ𝑛, we can 

end the proof in the same way as in [80] and get the Sobolev inequality (53) for ℝ+
𝑛 , which 

means that ℝ+
𝑛  is a gradient domain in the sense of [125] (This was already proved in [124]). 

It is not the only one, and a natural criterion can be directly derived from the proof. Indeed, 

it is easy to see that, if 𝛺 ⊂ ℝ𝑛 satisfies that there exists some 𝑦0 ∈ 𝛺 such that, ∀𝑦 ∈ 𝛺 and 

𝑥 ∈ 𝜕𝛺, 
(𝑦 − 𝑦0) ⋅ n𝑥 ≤ 0, 𝑎𝑛𝑑 (𝑥 − 𝑦0) ⋅ n𝑥 = 0, 

where n stands for the exterior normal of the boundary at the point 𝑥, then 𝛺 is a gradient 

domain, and the minimizers takes the form 

𝑓(𝑦) = (‖𝑦 − 𝑦0‖
𝑞 + 𝜎𝑞)1−

𝑝
𝑛, 𝜎 > 0. 

In particular, this is the case for the following conical subsets of ℝ+
𝑛 , 

𝛺 = {(𝑡, 𝑥) ∈ ℝ+
𝑛 ; 𝐹 (

𝑥

𝑡
) ≤ 0}, 

for any convex function 𝐹:ℝ𝑛−1 → ℝ. 
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Chapter 4 

Generalised Gagliardo–Nirenberg Inequalities  

 

We provide a brief primer of some basic concepts in harmonic analysis, including weak 

spaces, the Fourier transform, the Lebesgue Differentiation Theorem, and Calderon–

Zygmund decompositions. We obtained by using interpolation spaces, the precise form of 

the inequalities stated here appears to be novel and, moreover, the proofs given in the present 

are self-contained (save for the use of the John–Nirenberg inequality for the BMO result) in 

contrast to the other mentioned approach. The use of �̇�𝜂 Hölder spaces in such Gagliardo–

Nirenberg inequalities seems to be new. 

Section (4.1): Weak Lebesgue Spaces and BMO 
The Gagliardo‐Nirenberg interpolation inequality (Nirenberg [23]) 

‖𝑓‖𝐿𝑝 ≤ 𝑐‖𝑓‖𝐿𝑞
𝜃 ‖𝑓‖�̇�𝑠

1−𝜃 , 1 ≤ 𝑞 < 𝑝 < ∞,
1

𝑝
=
𝜃

𝑞
+ (1 − 𝜃) (

1

2
−
𝑠

𝑛
)         (1) 

is an extremely useful tool in the analysis of many partial differential equations. In particular, 

in the mathematical theory of the two‐dimensional Navier‐Stokes 

equations it is frequently encountered in the form of Ladyzhenskaya’s inequality 

(Ladyzhenskaya [141]) 

‖𝑓‖𝐿4 ≤ 𝑐‖𝑓‖𝐿2
1/2
‖𝛻𝑓‖

𝐿2
1/2
                                                   (2) 

provides an introduction to some of the basic ideas of harmonic analysis, as a means of 

generalising the Gagliardo‐Nirenberg inequality in two directions. 

First, using only simple properties of the weak 𝐿𝑝 spaces and the Fourier transform we show 

that one can replace the 𝐿𝑞 norm on the right‐hand side of (1) by the norm in the weak 𝐿𝑞 

space: 

‖𝑓‖𝐿𝑝 ≤ 𝑐‖𝑓‖𝐿𝑞,∞
𝜃 ‖𝑓‖�̇�𝑠

1−𝜃                                                    (3) 

Along the way we also provide a proof of various forms of Young’s inequality for 

convolutions and the endpoint Sobolev embedding �̇�𝑠(ℝ𝑛) ⊂ 𝐿𝑝(ℝ𝑛) for 𝑠 = 𝑛(1/2 −

1/𝑝), 2 < 𝑝 < ∞. 

We note that, in particular, (3) provides the following generalisation of the 2D 

Ladyzhenskaya inequality: 

        ‖𝑓‖𝐿4 ≤ 𝑐‖𝑓‖𝐿2
1/2∞‖𝛻𝑓‖

𝐿2
1/2
                                            (4) 

How this inequality is relevant for an analysis of the coupled system 

−△ 𝑢 + 𝛻𝑝 = (𝐵 ⋅ 𝛻)𝐵, 𝛻 ⋅ 𝑢 = 0, 

d𝐵

d𝑡
+ 𝜂 △ 𝐵 + (𝑢 ⋅ 𝛻)𝐵 = (𝐵 ⋅ 𝛻)𝑢, 𝛻 ⋅ 𝐵 = 0, 

on a two‐dimensional domain (for full details see McCormick et al. [143]). This system 

arises from the theory of magnetic relaxation for the generation of stationary Euler flows 

(see Moffatt [144]), and was our original motivation for pursuing generalisations of (2) and 
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then of (1). 

   Related to the case 𝑠 = 𝑛/2 in (1), Chen & Zhu [11] (see also Azzam & Bedrossian [11]; 

Dong & Xiao [132]; Kozono & Wadade [5]) obtain the inequality 

‖𝑓‖𝐿𝑝 ≤ 𝑐‖𝑓‖𝐿𝑞
𝑞/𝑝
‖𝑓‖BMO

1−𝑞/𝑝
,                                                  (5) 

where BMO is the space of functions with bounded mean oscillation. This inequality 

Grafakos [136]) is stronger than (1) since ‖𝑓‖BMO ≤ 𝑐‖𝑓‖�̇�𝑛/2 . In fact for 𝑞 > 1 one can 

obtain a stronger inequality still, weakening the 𝐿𝑞 norm on the right‐hand side as we did in 

our transition from (1) to (3): 

‖𝑓‖𝐿𝑝 ≤ 𝑐‖𝑓‖𝐿𝑞,∞
𝑞/𝑝

‖𝑓‖BMO
1−𝑞/𝑝

.                                                    (6) 

We adapt the proof used in [11] for (5) to prove (6); their argument makes use of the John‐

Nirenberg inequality for functions in BMO, which is proved via a Calderon‐Zygmund type 

decomposition This decomposition in turn makes use of the Lebesgue Differentiation 

Theorem. 

One can prove (6), and a slightly stronger inequality involving Lorentz spaces, 

‖𝑓‖𝐿𝑝,1 ≤ 𝑐‖𝑓‖𝐿𝑞,∞
𝑞/𝑝

‖𝑓‖BMO
1−𝑞/𝑝

, 1 < 𝑞 < 𝑝 < ∞, 

using the theory of interpolation spaces (as in McCormick et al. [143]); see Corollary 

(4.1.17) (and also Kozono et al. [140]). We briefly recall the theory of interpolation spaces 

and give a proof of this inequality. 

   Since it provides one of the main applications of weak 𝐿𝑝 spaces, we include a final that 

contains a statement of the Marcinkiewicz interpolation theorem and some of its 

consequences, including a strengthened form of Young’s inequality. A very readable account 

of all the harmonic analysis included here can be found in the two books by Grafakos [135], 

[136]. 

   We attempt to find the optimal constants for our inequalities, and throughout we treat 

functions defined on the whole of ℝ𝑛. Similar results for functions on bounded domains are 

more involved, since one requires carefully tailored extension theorems (see Azzam & 

Bedrossian [128]). 

We begin with the definition of the weak 𝐿𝑝 spaces and quick proofs of some of their 

properties. For more details see Chapter 1 of Grafakos [135]. 

   For a measurable function 𝑓:ℝ𝑛 → ℝ define the distribution function of 𝑓 by 

𝑑𝑓(𝛼) = 𝜇({𝑥: |𝑓(𝑥)| > 𝛼}) , 

where 𝜇(𝐴) (or later |𝐴|) denotes the Lebesgue measure of a set 𝐴. It follows using Fubini’s 

Theorem that 

‖𝑓‖𝐿𝑝
𝑝
= ∫ |

 

ℝ𝑛
𝑓(𝑥)|𝑝d𝑥 = 𝑝∫ ∫ 𝛼𝑝−1

|𝑓(𝑥)|

0

 

ℝ𝑛
d𝛼d𝑥 = 𝑝∫ 𝛼𝑝−1

∞

0

𝑑𝑓(𝛼)d𝛼.   (7) 

For 1 ≤ 𝑝 < ∞ set 
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‖𝑓‖𝐿𝑝,∞= inf {𝐶: 𝑑𝑓(𝛼) ≤
𝐶𝑝

𝛼𝑝
} 

=  sup {𝛾𝑑𝑓(𝛾)
1/𝑝: 𝛾 > 0}. 

The space 𝐿𝑝,∞(ℝ𝑛) consists of all those 𝑓 such that ‖𝑓‖𝐿𝑝,∞ < ∞. It follows immediately 

from the definition that 

𝑓 ∈ 𝐿𝑝,∞(ℝ𝑛)  ⇒  𝑑𝑓(𝛼) ≤ ‖𝑓‖𝐿𝑝,∞
𝑝

𝛼−𝑝                        (8) 

and that for any 𝑓 and 𝑔 

𝑑𝑓+𝑔(𝛼) ≤ 𝑑𝑓(𝛼/2) + 𝑑𝑔(𝛼/2),                             (9) 

which implies that 

‖𝑓 + 𝑔‖𝐿𝑝,∞ ≤ 2(‖𝑓‖𝐿𝑝,∞ + ‖𝑔‖𝐿𝑝,∞).                       (10) 

   The following simple lemma (the proof is essentially that of Chebyshev’s inequality) is 

fundamental and shows that any function in 𝐿𝑝 is also in 𝐿𝑝,∞ 

Lemma (4.1.1)[127]. If ∈ 𝐿𝑝(ℝ𝑛) , then 𝑓 ∈ 𝐿𝑝,∞(ℝ𝑛) and ‖𝑓‖𝐿𝑝 , ∞ ≤ ‖𝑓‖𝐿𝑝 . 

Proof. This follows since 

𝑑𝑓(𝛼) = ∫ |
 

{𝑥:

𝑓(𝑥)| > 𝛼}1d𝑥≤∫ |
 

{𝑥:

𝑓(𝑥)| > 𝛼}
|𝑓(𝑥)|𝑝

𝛼𝑝
d𝑥 ≤ ‖𝑓‖𝐿𝑝

𝑝
𝛼−𝑝. 

   While 𝐿𝑝 ⊂ 𝐿𝑝,∞, clearly 𝐿𝑝,∞ is a larger space than 𝐿𝑝: for example, 

|𝑥|−𝑛/𝑝 ∈ 𝐿𝑝,∞(ℝ𝑛)                                                 (11) 
but this function is not an element of 𝐿𝑝(ℝ𝑛) . 

   An immediate indication of why these spaces are useful is given in the following simple 

result, which shows that in the 𝐿𝑝 interpolation inequality 

‖𝑓‖𝐿𝑟 ≤ ‖𝑓‖𝐿𝑝
𝜃 ‖𝑓‖𝐿𝑞

1−𝜃 ,
1

𝑟
=
𝜃

𝑝
+
1 − 𝜃

𝑞
, 

one can replace the Lebesgue spaces on the right‐hand side by their weak counterparts. 

Lemma (4.1.2)[127]. Take 1 ≤ 𝑝 < 𝑟 < 𝑞 ≤ ∞. If 𝑓 ∈ 𝐿𝑝,∞ ∩ 𝐿𝑞,∞, then 𝑓 ∈ 𝐿𝑟 and 

‖𝑓‖𝐿𝑟 ≤ 𝑐𝑝,𝑟,𝑞‖𝑓‖𝐿𝑝,∞
𝜃 ‖𝑓‖𝐿𝑞,∞

1−𝜃 , 

where 

1

𝑟
=
𝜃

𝑝
+
1 − 𝜃

𝑞
. 

If 𝑞 = ∞, we interpret 𝐿∞,∞ as 𝐿∞ 

Proof. We give the proof when 𝑞 < ∞; the proof when 𝑞 = ∞ is slightly simpler. If 𝑓 ∈

𝐿𝑝,∞, then 𝑑𝑓(𝛼) ≤ ‖𝑓‖𝐿𝑝,∞
𝑝

𝛼−𝑝, so for any 𝑥 we have 

‖𝑓‖𝐿𝑟
𝑟 = 𝑟∫ 𝛼𝑟−1

∞

0

𝑑𝑓(𝛼)d𝛼 
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≤ 𝑟∫ 𝛼𝑟−1
𝑥

0

‖𝑓‖𝐿𝑝,∞
𝑝

𝛼−𝑝d𝛼 + 𝑟∫ 𝛼𝑟−1
∞

𝑥

‖𝑓‖𝐿𝑞,∞
𝑞

𝛼−𝑞d𝛼 

≤
𝑟

𝑟 − 𝑝
‖𝑓‖𝐿𝑝,∞

𝑝
𝑥𝑟−𝑝 +

𝑟

𝑟 − 𝑞
‖𝑓‖𝐿𝑞,∞

𝑞
𝑥𝑞−𝑟 

Now choose 

𝑥𝑝−𝑞 =
||𝑓||𝐿𝑝,∞

𝑝

||𝑓||𝐿𝑞,∞
𝑞  

to equalise the dependence of the two terms on the right‐hand side on the weak norms.               

The Schwartz space 𝒮 of rapidly decreasing test functions consists of all 𝜑 ∈

𝐶∞(ℝ𝑛) such that 

                           sup |𝑥𝛽𝜕𝛼𝜑| ≤ 𝑀𝛼,𝛽 for all 𝛼, 𝛽 ≥ 0, 

where 𝛼, 𝛽 are multi‐indices. 

For any 𝑓 ∈ 𝒮 one can define the Fourier transform1 

ℱ[𝑓](𝜉) = 𝑓(𝜉) = ∫ e−2𝜋i𝜉⋅𝑥
 

ℝ𝑛
𝑓(𝑥)d𝑥                                            (12) 

It is straightforward to check that 

  ℱ[𝜕𝛼𝑓](𝜉) = (2𝜋i)|𝛼|𝜉𝛼𝑓(𝜉)    and    ℱ[𝑥𝛽𝑓](𝜉) = (−2𝜋i)|𝛽|[𝜕𝛽𝑓](𝜉) , 

from which it follows that ℱ maps 𝒮 into itself. 

   Given the Fourier transform of 𝑓, one can reconstruct 𝑓 by essentially applying the Fourier 

transform operator once more: 

𝑓(𝑥) = ∫ e2𝜋i𝜉⋅𝑥
 

ℝ𝑛
𝑓(𝜉)d𝜉.                    (13) 

If we define 𝜎(𝑓) by (𝑓)(𝑥) = 𝑓(−𝑥) , then we can write the inversion formula more 

compactly as 𝑓 = 𝜎 ∘ ℱ(𝑓) . We define ℱ−1 = 𝜎 ∘ ℱ, the point being that when we can 

meaningfully extend the definition of ℱ and 𝜎 we will retain this inversion formula. 

   An obvious extension of the Fourier transform is to any function ∈ 𝐿1(ℝ𝑛) , using the 

integral definition in (12) directly. Since 

|𝑓(𝜉)| ≤ ∫ |
 

ℝ𝑛
𝑓(𝑥)|d𝑥 = ‖𝑓‖𝐿1 

it follows that ℱ maps 𝐿1 into 𝐿∞. Furthermore, there is a natural definition of the Fourier 

transform for ∈ 𝐿2(ℝ𝑛) . Given 𝑓 ∈ 𝒮, 

‖𝑓‖𝐿2 = ∫ 𝑓(𝑥)
 

ℝ𝑛
(∫ e−2𝜋i𝜉⋅𝑥

 

ℝ𝑛
𝑓(𝜉)d𝜉)d𝑥 

= ∫ 𝑓
 

ℝ𝑛
(𝜉) (∫ 𝑓(𝑥)e2𝜋i𝜉⋅𝑥

 

ℝ𝑛
d𝑥)d𝜉 
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= ∫ 𝑓(𝜉)
 

ℝ𝑛
𝑓(𝜉)d𝜉 = ‖𝑓‖𝐿2

2 . 

Now given any 𝑓 ∈ 𝐿2, one can write 𝑓 = lim
𝑛→∞

𝑓𝑛, where 𝑓𝑛 ∈ 𝒮 and the limit is taken in 𝐿2. 

It follows that 𝑓𝑛 is Cauchy in 𝐿2, and we identify its limit as 𝑓. So we can define ℱ: 𝐿2 →

𝐿2, with ‖𝑓‖𝐿2 = ‖𝑓‖𝐿2 . 
The Fourier transform can therefore be defined (by linearity) for any 𝑓 ∈ 𝐿1 + 𝐿2; 𝑓 can be 

recovered from 𝑓 using ℱ−1 if 𝑓 ∈ 𝐿1 + 𝐿2, and if 𝑓 ∈ 𝐿1 (in particular if 𝑓 ∈ 𝒮) , then we 

can use the integral form of the Fourier inversion formula (13) to give 𝑓 pointwise as an 

integral involving 𝑓. 
   Given this, we can in fact define the Fourier transform if 𝑓 ∈ 𝐿𝑟,∞ for some 1 < 𝑟 < 2 

(and in particular if 𝑓 ∈ 𝐿𝑟), by splitting 𝑓 into two parts, one in 𝐿1 and one in 𝐿2. The 

following lemma gives a more general version of this, which will be useful later. We use 𝜒𝑃 

to denote the characteristic function of the set {𝑥 : 𝑃 holds}. 

Lemma (4.1.3)[127]. Take 1 ≤ 𝑡 < 𝑟 < 𝑠 ≤ ∞, and suppose that 𝑔 ∈ 𝐿𝑟,∞ For any 𝑀 > 0 

set 

and 

𝑔𝑀− = 𝑔𝜒|𝑔|≤𝑀  𝑔𝑀+ = 𝑔𝜒|𝑔|>𝑀. 

Then 𝑔 = 𝑔𝑀− + 9𝑀 +, where 𝑔𝑀− ∈ 𝐿
𝑠 with 

‖𝑔𝑀−‖𝐿𝑠
𝑠 ≤

𝑠

𝑠 − 𝑟
𝑀𝑠−𝑟‖𝑔‖𝐿𝑟,∞

𝑟 −𝑀𝑠𝑑𝑔(𝑀)                       (14) 

if 𝑠 < ∞ and ‖𝑔𝑀−‖𝐿∞ ≤ 𝑀, and 𝑔𝑀+ ∈ 𝐿
𝑡 with 

‖𝑔𝑀+‖𝐿𝑡
𝑡 ≤

𝑟

𝑟 − 𝑡
𝑀𝑡−𝑟‖𝑔‖𝐿𝑟,∞

𝑟 .                               (15) 

Proof. Simply note that 

𝑑𝑔𝑀−(𝛼) = {
0 𝛼 ≥ 𝑀
𝑑𝑔(𝛼) − 𝑑𝑔(𝑀) 𝛼 < 𝑀                        (16) 

and 

𝑑9𝑀+(𝛼) = {
𝑑𝑔(𝛼) 𝛼 > 𝑀

𝑑𝑔(𝑀) 𝛼 ≤ 𝑀.
                          (17) 

Then using (7), (16), and (8) it is simple to show (14), and (15) follows similarly, using (17) 

in place of (16). 

   It is natural to ask what one can say about 𝑓 when 𝑓 ∈ 𝐿𝑝. We will that 𝑓 ∈ 𝐿𝑞 with (𝑝, 𝑞) 
conjugate, provided that 1 ≤ 𝑝 ≤ 2. Note, however, that for any 𝑝 > 2 one can find a 

function in 𝐿𝑝 whose Fourier transform is not even a locally integrable function in Grafakos 

[128]). 

   One can extend the definition of the Fourier transform further to the space of tempered 

distributions 𝒮′. We say that a sequence {𝜑𝑛} ∈ 𝒮 converges to 𝜑 ∈ 𝒮 if 

                sup |𝑥𝛼𝜕𝛽(𝜑𝑛 − 𝜑)| → 0   for all    𝛼, 𝛽 ≥ 0, 
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and a linear functional 𝐹 on 𝒮 is an element of 𝒮′ if 〈𝐹, 𝜑𝑛〉 → 〈𝐹, 𝜑〉 whenever 𝜑𝑛 → 𝜑 in 

𝒮. It is easy to show that for any 𝜑, 𝜓 ∈ 𝒮 

〈𝜑, �̂�〉 = 〈�̂�, 𝜓〉, 
and this allows us to define the Fourier transform for 𝐹 ∈ 𝒮′ by setting 

                          〈�̂�, 𝜓〉 = 〈𝐹, �̂�〉 for every 𝜓 ∈ 𝒮. 
Since one can also extend the definition of 𝜎 to 𝒮′ via the definition 〈𝜎(𝐹), 𝜓〉 = 〈𝐹, 𝜎(𝜓)〉, 

the identity 𝐹 = ℱ−1�̂� still holds in this generality. 

Expressions given by convolutions, i.e., 

[𝑓 ⋆ 𝑔](𝑥) = ∫ 𝑓
 

ℝ𝑛
(𝑦)𝑔(𝑥 − 𝑦)d𝑦, 

occur frequently. It is a fundamental result that [𝑓 ⋆ 𝑔]∧(𝜉) = 𝑓(𝜉)�̂�(𝜉) ; for 𝑓, 𝑔 ∈ 𝒮 this 

is the result of simple calculation, which can be extended to 𝑓 ∈ 𝒮, 𝑔 ∈ 𝒮′ via the definition 

〈𝑓 ⋆ 𝑔, 𝜑〉 = 〈𝑔, 𝜎(𝑓) ⋆ 𝜑〉. 

   One of the primary results for convolutions is Young’s inequality. Following Grafakos 

(Theorem 1.2.12 in [11]) we give an elementary proof that uses only Hölder’s inequality. 

Lemma (4.1.4)[127]. Let 1 ≤ p, q, r ≤ ∞ satisfy 

1

𝑝
+ 1 =

1

𝑞
+
1

𝑟
. 

Then for all ∈ Lq, g ∈ Lr, we have f ⋆ g ∈ Lp with 

‖𝑓 ⋆ 𝑔‖𝐿𝑝 ≤ ‖𝑓‖𝐿𝑞‖𝑔‖𝐿𝑟 .                                           (18) 

Proof. We use 𝑝′ to denote the conjugate of 𝑝. Then we have 

                     
1

𝑟
+
1

𝑝
+
1

𝑞
= 1,  

𝑞

𝑝
+
𝑞

𝑟
= 1,  and  

𝑟

𝑝
+
𝑟

𝑞
= 1. 

First use Hölder’s inequality with exponents 𝑟′, 𝑝, and 𝑞′: 

|(𝑓 ⋆ 𝑔)(𝑥)| ≤ ∫|
 

 

𝑓(𝑦)||𝑔(𝑥 − 𝑦)|d𝑦 

= ∫|
 

 

𝑓(𝑦)|𝑞/𝑟
′
(|𝑓(𝑦)|𝑞/𝑝|𝑔(𝑥 − 𝑦)|𝑟/𝑝)|𝑔(𝑥 − 𝑦)|𝑟/𝑞

′
d𝑦 

≤ ‖𝑓‖𝐿𝑞
𝑞/𝑟′

(∫ |
 

 

𝑓(𝑦)|𝑞|𝑔(𝑥 − 𝑦)|𝑟d𝑦)

1/𝑝

(∫|
 

 

𝑔(𝑥 − 𝑦)|𝑟d𝑦)

1/𝑞′

 

= ‖𝑓‖𝐿𝑞
𝑞/𝑟′

(∫|
 

 

𝑓(𝑦)|𝑞|𝑔(𝑥 − 𝑦)|𝑟d𝑦)

1/𝑝

‖𝑔‖𝐿𝑟
𝑟/𝑞′

 

Now take the 𝐿𝑝 norm (with respect to 𝑥): 

‖𝑓 ⋆ 𝑔‖𝐿p ≤ ‖𝑓‖𝐿𝑞

𝑞
𝑟′ ‖𝑔‖

𝐿𝑟

𝑟
𝑞′
(∫ ∫ |

 

 

  

 

𝑓(𝑦)|𝑞|𝑔(𝑥 − 𝑦)|𝑟d𝑦d𝑥)

1/𝑝

 

= ‖𝑓‖𝐿𝑞
𝑞/𝑟′

‖𝑔‖𝐿𝑟
𝑟/𝑞′

‖𝑓‖𝐿𝑞
𝑞/𝑝
‖𝑔‖𝐿𝑟

𝑟/𝑝
 

= ‖𝑓‖𝐿𝑞‖𝑔‖𝐿𝑟 . 

   We will need a version of this inequality that allows 𝐿𝑞 on the right‐hand side to be 
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replaced by 𝐿𝑞,∞. The price we have to pay for this (at least initially) is that we also weaken 

the left‐hand side; and note that we have also lost the possibility of some endpoint values 

(𝑟 = ∞ and 𝑝, 𝑞 = 1, ∞) that are allowed in (18). In fact one can keep the full 𝐿𝑝 norm on 

the left, provided that 𝑟 > 1; but this requires Proposition (4.1.5) as an intermediate step 

and the Marcinkiewicz Interpolation Theorem. 

Proposition (4.1.5)[127]: Suppose that 1 ≤ r < ∞ and 1 < p, q < ∞. If f ∈ Lq,∞ and g ∈

Lr with 

1

𝑝
+ 1 =

1

𝑞
+
1

𝑟
, 

then 𝑓 ⋆ 𝑔 ∈ 𝐿𝑝,∞ with 

‖𝑓 ⋆ 𝑔‖𝐿𝑝,∞ ≤ 𝑐𝑝,𝑞,𝑟‖𝑓‖𝐿𝑞 , ∞‖𝑔‖𝐿𝑟 .                            (19) 

Proof. We follow the proof in Grafakos [135], skipping some of the algebra. We have 

already introduced the main step, the splitting of 𝑓 in Lemma (4.1.3). For a fixed 𝑀 > 0 we 

set 𝑓 = 𝑓𝑀− + 𝑓𝑀+. Using (14) and Hölder’s inequality we obtain 

|(𝑓𝑀− ⋆ 𝑔)(𝑥)| ≤ ‖𝑓𝑀−‖𝐿𝑟′‖𝑔‖𝐿
𝑟 ≤ (

𝑟′

𝑟′ − 𝑞
𝑀𝑟′−𝑞‖𝑓‖𝐿𝑞,∞

𝑞
)

1/𝑟′

‖𝑔‖𝐿𝑟 , 

where (𝑟, 𝑟′) are conjugate; the right‐hand side reduces to 𝑀‖𝑔‖𝐿1  if 𝑟 = 1. Note in 

particular that if 

𝑀 = (𝛼𝑟
′
2−𝑟

′
𝑞𝑝−1‖𝑓‖𝐿𝑞

−𝑞∞ , ‖𝑔‖𝐿𝑟
−𝑟′)

1/(𝑟′−𝑞)

 

(or 𝛼/2‖𝑔‖𝐿1 if 𝑟 = 1), then 𝑑𝑓𝑀−⋆𝑔(𝛼/2) = 0. 

For 𝑓𝑀+ we can use (15) and apply Young’s inequality to yield 

‖𝑓𝑀+ ⋆ 𝑔‖𝐿𝑟 ≤ ‖𝑓𝑀+‖𝐿1‖𝑔‖𝐿𝑟 ≤
𝑞

𝑞 − 1
𝑀1−𝑞‖𝑓‖𝐿𝑞,∞

𝑞
‖𝑔‖𝐿𝑟 . 

Choosing 𝑀 as above and using (9) it follows that 

𝑑𝑓⋆𝑔(𝛼) ≤ 𝑑𝑓𝑀+⋆𝑔(𝛼/2) 

≤ (2‖𝑓𝑀+ ⋆ 𝑔‖𝐿𝑟𝛼
−1)𝑟 

≤ (2𝑞𝑀1−𝑞‖𝑓‖𝐿𝑞,∞
𝑞

‖𝑔‖𝐿𝑟(𝑞 − 1)
−1𝛼−1)

𝑟
 

= 𝐶‖𝑓‖𝐿𝑞,∞
𝑝

‖𝑔‖𝐿𝑟
𝑝
𝛼−𝑝, 

which yields (19). 

This result has implications, among other things, for the regularity of solutions of elliptic 

equations. It was mentioned that our study of generalised Gagliardo‐Nirenberg inequalities 

was motivated by the study of a particular coupled system in two dimensions, namely 

−△ 𝑢 + 𝛻𝑝 = (𝐵 ⋅ 𝛻)𝐵, 𝛻 ⋅ 𝑢 = 0, 

d𝐵

d𝑡
+ 𝜂 △ 𝐵 + (𝑢 ⋅ 𝛻)𝐵 = (𝐵 ⋅ 𝛻)𝑢, 𝛻 ⋅ 𝐵 = 0. 
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Formal energy estimates (which can be made rigorous via a suitable regularisation) yield 

1

2
‖𝐵(𝑡)‖𝐿2

2 + 𝜂∫ ‖
𝑡

0

𝛻𝐵‖𝐿2
2 +∫ ‖

𝑡

0

𝛻𝑢‖𝐿2
2 ≤

1

2
‖𝐵(0)‖𝐿2

2 , 

showing in particular that 𝐵 ∈ 𝐿∞(0, 𝑇; 𝐿2) when 𝐵(0) ∈ 𝐿2. To obtain a similar uniform 

estimate on 𝑢 we need to understand the regularity of solutions of the Stokes problem 

−△ 𝑢 + 𝛻𝑝 = (𝐵 ⋅ 𝛻)𝐵 𝛻 ⋅ 𝑢 = 0 

when 𝐵 ∈ 𝐿2. A slightly simpler problem with the same features is 

−△𝜑 = 𝜕𝑖𝑓, (3) with 𝑓 ∈ 𝐿1. It is well known that the solution of −△ 𝜑 = 𝑔 in ℝ2 is 

given by 𝐸 ⋆ 𝑔, where 

𝐸(𝑥) = −
1

2𝜋
 log |𝑥|. 

Noting (after an integration by parts) that the solution of (3) is given by 𝜕𝑖𝐸 ⋆ 𝑓, and that 

𝜕𝑖𝐸 ∈ 𝐿
2,∞, it follows from Proposition (4.1.5) that 𝑓 ∈ 𝐿1 implies that 𝜑 ∈ 𝐿2,∞. The 

stronger version of Young’s inequality given in Theorem (4.1.20) does not apply when 𝑓 ∈

𝐿1, so would not improve the regularity here. Thus to obtain further estimates (in particular 

on the time derivative of 𝐵) we required a version of the Ladyzhenskaya inequality that 

replaced the 𝐿2 norm of 𝑢 with the norm of 𝑢 in 𝐿2,∞. Further details can be found in 

McCormick et al. [143]. 

In our proof of the inequality 

‖𝑓‖𝐿𝑝 ≤ 𝑐‖𝑓‖𝐿𝑞,∞
𝛼 ‖𝑓‖�̇�𝑠

1−𝛼 

we will use the endpoint Sobolev embedding �̇�𝑠(ℝ𝑛) ⊂ 𝐿𝑝(ℝ𝑛) for 𝑠 = 𝑛(1/2 − 1/𝑝) 

when 2 < 𝑝 < ∞. We prove this here, in Chemin et al. [131]. Since the Fourier transform 

maps 𝐿2 isometrically into itself, and 

ℱ[𝜕𝛼𝑓](𝜉) = (2𝜋i)|𝛼|𝜉𝛼𝑓(𝜉) , 
it is relatively straightforward to show that when 𝑠 is a non‐negative integer 

∑ ‖

 

|𝛼|=𝑠

𝜕𝛼𝑓‖𝐿2
2 ≃ ∫ |

 

ℝ𝑛
𝜉|2𝑠|𝑓(𝜉)|2d𝜉,                  (20) 

where we write 𝑎 ≃ 𝑏 if there are constants 0 < 𝑐 ≤ 𝐶 such that 𝑐𝑎 ≤ 𝑏 ≤ 𝐶𝑎. 

   For any 𝑠 ≥ 0, even if 𝑠 is not an integer, we can 𝑑𝑒𝑓𝑖𝑛𝑒3 the homogeneous Sobolev 

space �̇�𝑠(ℝ𝑛) using (20): 

        �̇�𝑠(ℝ𝑛) ={𝑓 ∈ 𝒮’ : 𝑓 ∈ 𝐿1oc
1 (ℝ𝑛) and ∫ |

 

ℝ𝑛
𝜉|2𝑠|𝑓(𝜉)|2d𝜉 < ∞}. 

For 𝑠 < 𝑛/2 this is a Hilbert space with the natural norm 

‖𝑓‖�̇�𝑠 = (∫ |
 

ℝ𝑛
𝜉|2𝑠|𝑓(𝜉)|2d𝜉)

1/2

 

and one can therefore also define �̇�𝑠(ℝ𝑛) in this case as the completion of 𝒮 with respect 

to the �̇�𝑠 norm (that �̇�𝑠(ℝ𝑛) is complete iff 𝑠 < 𝑛/2 is shown in Bahouri et al. [2]; the 

simple example showing that �̇�𝑠(ℝ𝑛) is not complete when 𝑠 ≥ 𝑛/2 can also be found in 
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Chemin et al. [5]). 

Theorem (4.1.6)[127]. For 2 < 𝑝 < ∞ there exists a constant 𝑐 = 𝑐𝑛,𝑝 such that if 𝑓 ∈

�̇�𝑠(ℝ𝑛) with = 𝑛(1/2 − 𝑙/𝑝) , then 𝑓 ∈ 𝐿𝑝(ℝ𝑛) and 

‖𝑓‖𝐿𝑝 ≤ 𝑐‖𝑓‖�̇�𝑠 .                                           (21) 

Proof. First we prove the result when ‖𝑓‖�̇�𝑠 = 1. For such an 𝑓, write 𝑓 = 𝑓<𝑅 + 𝑓>𝑅 , 

where 

𝑓<𝑅 = ℱ
−1(𝑓𝜒{|𝜉|≤𝑅}) and 𝑓>𝑅 = ℱ

−1(𝑓𝜒{|𝜉|>𝑅}).              (22) 

In both expressions the Fourier inversion formula makes sense: for 𝑓>𝑅 we know that 𝑓𝜒 >

𝑅 ∈ 𝐿2(ℝ𝑛) , and ℱ (and likewise ℱ−1) is defined on 𝐿2; while for 𝑓<𝑅 we know that 𝑓 ∈

𝐿1oc
1 (ℝ𝑛) , and so 𝑓𝜒 ≤ 𝑅 ∈ 𝐿1(ℝ𝑛) which means that we can write 𝑓<𝑅 using the integral 

form of the inversion formula (13): 

𝑓<𝑅(𝑥) = ∫ e2𝜋i𝜉⋅𝑥
 

|𝜉|≤𝑅

𝑓(𝜉)d𝜉. 

Thus 

‖𝑓<𝑅‖𝐿∞ ≤ ∫ |
 

|𝜉|≤𝑅

𝜉|−𝑠|𝜉|𝑠|𝑓(𝜉)|d𝜉 

≤ (∫ |
 

|𝜉|≤𝑅

𝜉|−2𝑠d𝜉)

1/2

‖𝑓‖�̇�𝑠 = 𝐶𝑠𝑅
𝑛/2−𝑠 = 𝐶𝑠𝑅

𝑛/𝑝, 

since we took ‖𝑓‖�̇�𝑠 = 1 and 𝑠 = 𝑛 (
1

2
−
1

𝑝
) . Now, since for any choice of 𝑅 

𝑑𝑓(𝛼) ≤ 𝑑𝑓<𝑅(𝛼/2) + 𝑑𝑓>𝑅(𝛼/2) 

(using (9)), we can choose 𝑅 to depend on 𝛼, 𝑅 = 𝑅𝛼 : = (𝛼/2𝐶𝑠)
𝑝/𝑛, and then we have 

𝑑𝑓<𝑅𝛼(𝛼/2) = 0, 

it follows that 𝑑𝑓(𝛼) ≤ 𝑑𝑓>𝑅𝛼(𝛼/2) . Thus, using the fact that the Fourier transform is an 

isometry from 𝐿2 into itself, 

‖𝑓‖𝐿𝑝
𝑝
≤ 𝑝∫ 𝛼𝑝−1

∞

0

𝑑𝑓>𝑅𝛼(𝛼/2)d𝛼 

≤ 𝑝∫ 𝛼𝑝−1
∞

0

4

𝛼2
‖𝑓>𝑅𝛼‖𝐿2

2 d𝛼 

= 𝐶∫ 𝛼𝑝−3
∞

0

‖ℱ(𝑓>𝑅𝛼)‖𝐿2
2 d𝛼 
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= 𝐶∫ 𝛼𝑝−3
∞

0

∫ |
 

|𝜉|≥𝑅𝛼

𝑓(𝜉)|2d𝜉d𝛼 

= 𝐶∫ (∫ 𝛼𝑝−3
2𝐶𝑠|𝜉|

𝑛/𝑝

0

d𝛼)
 

ℝ𝑛
|𝑓(𝜉)|2d𝜉 

≤ 𝐶∫ |
 

ℝ𝑛
𝜉|𝑛(𝑝−2)/𝑝|𝑓(𝜉)|2d𝜉 

= 𝐶, 

since 𝑛(𝑝 − 2)/𝑝 = 2𝑠 and we took ‖𝑓‖�̇�𝑠 = 1. 

   Thus for 𝑓 ∈ �̇�𝑠 with ‖𝑓‖�̇�𝑠 = 1 we have ‖𝑓‖𝐿𝑝 ≤ 𝐶, and (21) follows for  

general 𝑓 ∈ �̇�𝑠 on applying this result to    

𝑔𝑓‖𝑓‖�̇�𝑠 

We will require a result, known as Bernstein’s inequality, that provides integrability of 𝑓 

assuming localisation of its Fourier transform: if 𝑓 is supported in 𝐵(0, 𝑅) (the ball of radius 

𝑅), then for any 1 ≤ 𝑝 ≤ 𝑞 ≤ ∞ if 𝑓 ∈ 𝐿𝑞(ℝ𝑛) , then 

‖𝑓‖𝐿𝑝 ≤ 𝑐𝑝,𝑞𝑅
𝑛(1/𝑞−1/𝑝)‖𝑓‖𝐿𝑞 .                                (23) 

For our purposes we will require a version of this inequality that replaces 𝐿𝑞 by 𝐿𝑞,∞ on the 

right‐hand side. 

   As in the standard proof of (23), we make use of the following simple result. We use the 

notation 𝔇ℎ𝑓(𝑥) = ℎ
−𝑛𝑓(𝑥/ℎ) ; note that 𝔇ℎ̂(𝑥) = 𝑓(ℎ𝑥) . The support of 𝑔 ∈ 𝒮′ is the 

of all closed sets 𝐾 such that 〈𝑔, 𝜑〉 = 0 whenever the support of 𝜑 ∈ 𝒮 is disjoint from 𝐾. 

Lemma (4.1.7)[127]. There is a fixed 𝜑 ∈ 𝒮 such that if 𝑓 is supported in (0, 𝑅) , then 𝑓 =

(𝔇1/𝑅𝜑) ⋆ 𝑓. 

Proof. Take 𝜑 ∈ 𝒮 so that �̂� = 1 on (0,1) . Then 

𝔇1/𝑅𝜑(𝜉) = �̂�(𝜉/𝑅) 

which is equal to 1 on 𝐵(0, 𝑅) . Thus (𝔇1/𝑅𝜑) ⋆ 𝑓 − 𝑓 has Fourier transform zero, and the 

lemma follows. 

For use in the proof of our next lemma, note that 

‖𝔇1/𝑅𝜑‖𝐿𝑟 = 𝑅
𝑛(1−1/𝑟)‖𝜑‖𝐿𝑟 .                                 (24) 

Lemma (4.1.8) [127]. Let 1 ≤ q < ∞ and suppose that f ∈ Lq,∞(ℝn) and that f̂ is supported 

in (0, R) . Then for each p with q < p < ∞ there exists a constant cp,q such that 

‖𝑓‖𝐿𝑝 ≤ 𝑐𝑅
𝑛(1/𝑞−1/𝑝)‖𝑓‖𝐿𝑞 , ∞.                                (25) 

Proof. We follow the standard proof, replacing Young’s inequality by its weak form, and 

making use of the interpolation result of Lemma (4.1.2). First we prove the weak weak 

version 
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‖𝑓‖𝐿𝑝,∞ ≤ 𝑐𝑅
𝑛(1/𝑞−1/𝑝)‖𝑓‖𝐿𝑞,∞ 

valid for all 1 ≤ 𝑞 ≤ 𝑝 < ∞. To do this we simply apply the weak form of Young’s 

inequality (Proposition (4.1.5)) to 𝑓 = (𝔇1/𝑅𝜑) ⋆ 𝑓: 

‖𝑓‖𝐿𝑝,∞=‖(𝔇1/𝑅𝜑) ⋆ 𝑓‖𝐿𝑝,∞ 

≤ 𝑐‖𝔇1/𝑅𝜑‖𝐿𝑟‖𝑓‖𝐿𝑞,∞ , 

where 

1 +
1

𝑝
=
1

𝑟
+
1

𝑞
 

with 1 ≤ 𝑞 < ∞ and 1 < 𝑝, 𝑟 < ∞. It follows using (24) that 

        ‖𝑓‖𝐿1,∞ ≤ 𝑐𝑅
𝑛(1/𝑞−1)‖𝑓‖𝐿𝑞 , ∞ 𝑎𝑛𝑑 ‖𝑓‖𝐿2𝑝,∞ ≤ 𝑐𝑅

𝑛(1/𝑞−1/2𝑝)‖𝑓‖𝐿𝑞 , ∞, 
and we then obtain (25) by interpolation of 𝐿𝑝 between 𝐿1,∞ and 𝐿2𝑝,∞ (Lemma (4.1.2)), 

‖𝑓‖𝐿𝑝 ≤ 𝑐‖𝑓‖𝐿1,∞
1/(2𝑝−1)

‖𝑓‖
𝐿2𝑝,∞
(2𝑝−2)/(2𝑝−1)

 

≤ 𝑐𝑅
𝑛(
1
𝑞
−
1
𝑝
)
‖𝑓‖𝐿𝑞,∞  .       

We now prove our first generalisation of the Gagliardo‐Nirenberg inequality, replacing the 

𝐿𝑞 norm on the right‐hand side of (1) by the norm in 𝐿𝑞,∞. The new part of the following 

result is when 𝑠 ≥ 𝑛/2, with the case 𝑠 = 𝑛/2 particularly interesting: in the range 

𝑛(1/2 − 𝑙/𝑝) < 𝑠 < 𝑛/2 the inequality follows using weak‐Lp interpolation from Lemma 

(4.1.2) coupled with the Sobolev embedding �̇�𝑛(1/2−1/𝑝) ⊂ 𝐿𝑝 from Theorem (4.1.6). 

Theorem (4.1.9)[127]. Take 1 ≤ 𝑞 < 𝑝 and 𝑠 ≥ 0 with > 𝑛(1/2 − 𝑙/𝑝) . There exists a 

constant 𝑐𝑝,𝑞,𝑠 such that if ∈ 𝐿𝑞,∞(ℝ𝑛) ∩ �̇�𝑠(ℝ𝑛) , then 𝑓 ∈ 𝐿𝑝(ℝ𝑛) and 

       ‖𝑓‖𝐿𝑝 ≤ 𝑐𝑝,𝑞,𝑠‖𝑓‖𝐿𝑞,∞
𝜃 ‖𝑓‖�̇�𝑠

1−𝜃 for every 𝑓 ∈ 𝐿𝑞,∞ ∩ �̇�𝑠,               (26) 

where 

1

𝑝
=
𝜃

𝑞
+ (1 − 𝜃) (

1

2
−
𝑠

𝑛
)                                                      (27) 

Proof. First we prove the theorem in the case 𝑝 ≥ 2. As in the proof of Theorem (4.1.6) we 

write 

𝑓 = 𝑓<𝑅 + 𝑓>𝑅 , 

where 𝑓<𝑅 and 𝑓>𝑅 are defined in (22). 

Using the endpoint Sobolev embedding �̇�𝑛(1/2−1/𝑝)(ℝ𝑛) ⊂ 𝐿𝑝(ℝ𝑛) from Theorem(4.1.6) 

(taking �̇�0 = 𝐿2 when 𝑝 = 2) we can estimate 

‖𝑓>𝑅‖𝐿𝑝 ≤ 𝑐‖𝑓>𝑅‖�̇�𝑛(1/2−1/𝑝) 

= 𝑐 (∫ |
 

|𝜉|≥𝑅

𝜉|2𝑛(1/2−1/𝑝)|𝑓(𝜉)|2d𝜉)

1/2
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≤
𝑐

𝑅𝑠−𝑛(1/2−1/𝑝)
(∫ |

 

|𝜉|≥𝑅

𝜉|2𝑠|𝑓(𝜉)|2d𝜉)

1/2

 

≤
𝑐

𝑅𝑠−𝑛(1/2−1/𝑝)
‖𝑓‖�̇�𝑠 , 

while 

‖𝑓<𝑅‖𝐿𝑝 ≤ 𝑐𝑅
𝑛(1/𝑞−1/𝑝)‖𝑓<𝑅‖𝐿𝑞,∞ ≤ 𝑐𝑅

𝑛(1/𝑞−1/𝑝)‖𝑓‖𝐿𝑞,∞ 

using the weak‐strong Bernstein inequality from Lemma (4.1.8) and (10).  

   Thus 

‖𝑓‖𝐿𝑝 ≤ 𝑐(𝑅
𝑛(1/𝑞−1/𝑝)‖𝑓‖𝐿𝑞 , ∞ + 𝑅

−𝑠+𝑛(1/2−1/𝑝)‖𝑓‖�̇�𝑠) . 

Choosing 

𝑅𝑠+𝑛(1/𝑞−1/2) =
||𝑓||�̇�𝑠

‖𝑓‖𝐿𝑞,∞
 

we obtain 

‖𝑓‖𝐿𝑝 ≤ 𝑐‖𝑓‖𝐿𝑞,∞
𝜃 ‖𝑓‖�̇�𝑠

1−𝜃 ,                                         (28) 

where 

𝜃 = 1 − 𝑛
1/𝑞 − 1/𝑝

𝑠 + 𝑛(1/𝑞 − 1/2)
, 

which on rearrangement yields the condition (27). 

   If 1 ≤ 𝑞 < 𝑝 < 2, then we first interpolate 𝐿𝑝 between 𝐿𝑞,∞ and 𝐿2, and then use the above 

result with 𝑝 = 2. Setting 
1

2
=
𝜃′

𝑞
+ (1 − 𝜃′) (

1

2
−
𝑠

𝑛
) we have 

‖𝑓‖𝐿𝑝 ≤ 𝑐‖𝑓‖𝐿𝑞,∞
𝑞(2−𝑝)/𝑝(2−𝑞)

‖𝑓‖
𝐿2
2(𝑝−𝑞)/𝑝(2−𝑞)

 

≤ 𝑐‖𝑓‖𝐿𝑞,∞
𝑞(2−𝑝)/𝑝(2−𝑞)

(𝑐‖𝑓‖𝐿𝑞,∞
𝜃′ ‖𝑓‖�̇�𝑠

1−𝜃′)
2(𝑝−𝑞)/𝑝(2−𝑞)

 

= 𝑐‖𝑓‖𝐿𝑞,∞
𝜃 ‖𝑓‖�̇�𝑠

1−𝜃 , 

with 𝜃 given by (27), as required. 

For any set 𝐴 ⊂ ℝ𝑛 we write 

𝑓𝐴 =
1

|𝐴|
∫𝑓
 

𝐴

d𝑥 

for the average of 𝑓 over the set 𝐴. The space of functions with bounded mean oscillation, 

BMO(ℝ𝑛) , consists of those functions 𝑓 for which 

‖𝑓‖BMO: = 𝑄 ⊂ ℝ
𝑛 sup 

1

|𝑄|
∫ |
 

𝑄

𝑓 − 𝑓𝑄|d𝑥 

is finite, where the supremum is taken over all cubes 𝑄 ⊂ ℝ𝑛. Note that this is a not a norm 

(any constant function has ‖𝑐‖BMO = 0), but BMO is a linear space, i.e., if 𝑓, 𝑔 ∈ BMO, 

then 𝑓 + 𝑔 ∈ BMO and 
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‖𝑓 + 𝑔‖BMO ≤ ‖𝑓‖BMO + ‖𝑔‖BMO. 

This space was introduced by John & Nirenberg [1]; more details can be found in BMO is 

a space with the same scaling as 𝐿∞, but is a larger space. Indeed, if ∈ 𝐿∞(ℝ𝑛) , then clearly 

for any cube 𝑄 

∫|
 

𝑄

𝑓 − 𝑓𝑄|d𝑥 ≤ 2∫|
 

𝑄

𝑓| ≤ 2|𝑄|‖𝑓‖𝐿∞,                                  (29) 

and so 

‖𝑓‖BMO ≤ 2‖𝑓‖𝐿∞ .                                                               (30) 

However, the function  log |𝑥| ∈ BMO(ℝ𝑛) but is not bounded on ℝ𝑛 (Example (4.1.9), in 

Grafakos [136]). 

The endpoint Sobolev embedding from Theorem (4.1.6) fails when 𝑠 = 𝑛/2, but at this 

endpoint we still have �̇�𝑛/2(ℝ𝑛) ⊂ BMO(ℝ𝑛) . This is simple to show, if we note that for 

any 𝑥 ∈ 𝑄 

|𝑓(𝑥) − 𝑓𝑄| = |
1

|𝑄|
∫(𝑓(𝑥) − 𝑓(𝑦))
 

𝑄

d𝑦| ≤ √𝑛|𝑄|1/𝑛‖𝛻𝑓‖𝐿∞(𝑄). 

Lemma (4.1.10)[127]. If 𝑓 ∈ 𝐿1oc
1 (ℝ𝑛) ∩ �̇�𝑛/2(ℝ𝑛) , then 𝑓 ∈ BMO(ℝ𝑛) and there exists 

a constant 𝐶 = 𝐶(𝑛) such that 

‖𝑓‖BMO ≤ 𝐶‖𝑓‖�̇�𝑛/2 for all 𝑓 ∈ 𝐿1oc
1 (ℝ𝑛) ∩ �̇�𝑛/2(ℝ𝑛) . 

Proof. We write 𝑓 = 𝑓<𝑅 + 𝑓>𝑅 as in the proof of Theorem (4.1.6) and then, recalling (29), 

1

|𝑄|
∫ |
 

𝑄

𝑓 − 𝑓𝑄| ≤ √𝑛|𝑄|
1/𝑛‖𝛻𝑓<𝑅‖𝐿∞(𝑄) +

1

|𝑄|
∫ |
 

𝑄

𝑓>𝑅 − (𝑓>𝑅)𝑄| 

≤ 𝑐𝑛|𝑄|
1/𝑛∫ |

 

|𝜉|≤𝑅

𝜉||𝑓(𝜉)|d𝜉 +
2

|𝑄|1/2
(∫ |

 

𝑄

𝑓>𝑅|
2)

1/2

 

≤ 𝑐𝑛|𝑄|
1/𝑛𝑅 (∫ |

 

ℝ𝑛
𝜉|𝑛|𝑓(𝜉)|2d𝜉)

1/2

+
2

|𝑄|1/2
(∫ |

 

|𝜉|≥𝑅

𝑓(𝜉)|2d𝜉)

1/2

 

≤ 𝑐𝑛[|𝑄|
1/𝑛𝑅 + |𝑄|−1/2𝑅−𝑛/2]‖𝑓‖�̇�𝑛/2. 

Choosing 𝑅 = |𝑄|−1/𝑛 yields 

1

|𝑄|
∫ |
 

𝑄

𝑓 − 𝑓𝑄| ≤ 𝐶‖𝑓‖�̇�𝑛/2; 

taking the supremum over all cubes 𝑄 ⊂ ℝ𝑛 yields ‖𝑓‖BMO ≤ 𝐶‖𝑓‖�̇�𝑛/2 . We now want to 

prove a result, due to John & Nirenberg [16], that gives an important property of functions 

in BMO which will be crucial in the proof of the inequality 

‖𝑓‖𝐿𝑝 ≤ 𝐶‖𝑓‖𝐿𝑞,∞
𝑞/𝑝

‖𝑓‖BMO
1−𝑞/𝑝

, 𝑞 < 𝑝 < ∞, 
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To prove the John‐Nirenberg inequality we will need a Calderon‐Zygmund type 

decomposition of ℝ𝑛 into a family of cubes with certain useful properties. The proof that 

such a decomposition is possible uses the Lebesgue Differentiation Theorem, which we now 

state (without proof). We define the uncentred cubic maximal function by 

𝔐𝑓(𝑥) =  sup 
1

|𝑄|
∫ |
 

𝑄

𝑓(𝑦)|d𝑦, 

where the supremum is taken over all cubes 𝑄 ⊂ ℝ𝑛 that contain 𝑥. The proof of the 

Lebesgue Differentiation Theorem uses the fact that 𝔐 maps 𝐿1 into 𝐿1,∞; see in Grafakos 

[11]. 

Theorem (4.1.11)[127]. If ∈ L1oc
1 (ℝn) , then 

lim
|𝑄|→0

1

|𝑄|
∫𝑓
 

𝑄

(𝑦)d𝑦 = 𝑓(𝑥)                                          (31) 

for almost every x ∈ ℝn, where Q is a cube containing x. As a consequence, |f(x)| ≤ 𝔐f(x) 

almost everywhere. 

Proposition (4.1.12)[127]. Let Q be any cube in ℝn. Given f ∈ L1(Q) and M > 0 there exists 

a countable collection {Qj} of disjoint open cubes such that |f(x)| ≤ M for almost every x ∈

Q ∖ ⋃ Qj
 
j  and 

𝑀 <
1

|𝑄𝑗|
∫ |
 

𝑄𝑗

𝑓(𝑥)|d𝑥 ≤ 2𝑛𝑀                                   (32) 

for every 𝑄𝑗 . 

Note that it follows from (32) that 

∑|

 

𝑗

𝑄𝑗| ≤
1

𝑀
∫|
 

𝑄

𝑓|.                                                          (33) 

Proof. Decompose 𝑄, by halving each side, into a collection 𝒬0 of 2𝑛 equal cubes. Select 

one of these cubes �̂� if 

1

|�̂�|
∫ |
 

�̂�

𝑓(𝑥)|d𝑥 > 𝑀.                                    (34) 

Call the selected cubes 𝒞1 and let 𝒬1 = 𝒬0 ∖ 𝒞1. Repeat this process inductively, to produce 

a set 𝒞 = ⋃ 𝒞𝑗
 
𝑗  of selected cubes, on which (34) holds. Note that if �̂� was selected at step 

𝑘, then it is contained in a cube 𝑄′ ∈ 𝒬𝑘−1, and so 

𝑀 <
1

|�̂�|
∫ |
 

�̂�

𝑓(𝑥)|d𝑥 ≤ 2𝑛
1

|𝑄|
∫ |
 

𝑄′
𝑓(𝑥)|d𝑥 ≤ 2𝑛𝑀. 
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Enumerate the countable set 𝒞 of cubes as {𝑄𝑗}𝑗=1
∞
. 

Finally, if 𝑥 ∈ 𝑄 ∖ ⋃ 𝑄𝑗𝑗 , then there exists a sequence of cubes 𝑄𝑘 containing 𝑥 with sides 

shrinking to zero and such that 

1

|𝑄𝑘|
∫ |
 

𝑄𝑘

𝑓(𝑥)|d𝑥 ≤ 𝑀. 

It follows from the Lebesgue Differentiation Theorem that |𝑓(𝑥)| ≤ 𝑀 for almost every 𝑥 ∈

𝑄 ∖ ⋃ 𝑄𝑗
 
𝑗 . 

Lemma (4.1.13)[127]. There exist constants c and C (depending only on n) such that if ∈

BMO(ℝn) , then for any cube Q ⊂ ℝn 

       |{𝑥 ∈ 𝑄: |𝑓 − 𝑓𝑄| > 𝛼}| ≤
𝐶

‖𝑓||BMO
e−𝑐𝛼/‖𝑓‖BMO∫|

 

𝑄

𝑓 − 𝑓𝑄|           (35) 

for all 𝛼 ≥ ‖𝑓‖BMO. 

Proof. We prove the result assuming that ‖𝑓‖BMO = 1; we then obtain (35) by applying the 

resulting inequality to 𝑓/‖𝑓‖BMO. Let 𝐹(𝛼) be the infimum of all numbers such that the 

inequality 

|{𝑥 ∈ 𝑄 ∶  |𝑓(𝑥)| > 𝛼}| ≤ 𝐹(𝛼)∫ |
 

𝑄

𝑓|                   (36) 

holds for all 𝑓 ∈ 𝐿1(𝑄) and all cubes 𝑄; note (cf. Lemma (4.1.1)) that 𝐹(𝛼) ≤ 1/𝛼. 

Following the original proof of John & Nirenberg [16] we show that for all 𝛼 ≥ 2𝑛, 

𝐹(𝛼) ≤
1

𝑀
𝐹(𝛼 − 2𝑛𝑀) for all 1 ≤ 𝑀 ≤ 2−𝑛𝛼.               (37) 

Given 𝑀 in this range we decompose 𝑓 using Proposition (4.1.12). Now, if |𝑓(𝑥)| > 𝛼 ≥

2𝑛, then 𝑥 ∈ 𝑄𝑘 for some 𝑘, and we know that |𝑓𝑄𝑘| ≤ 2
𝑛𝑀 from (32). So then 

|{𝑥 ∈ 𝑄: |𝑓(𝑥)| > 𝛼}| ≤∑|

 

𝑘

{𝑥 ∈ 𝑄𝑘: |𝑓(𝑥) − 𝑓𝑄𝑘| > 𝛼 − 2
𝑛𝑀}|. 

We can now use (36) on the cube 𝑄𝑘 for the function 𝑓 − 𝑓𝑄𝑘, so that 

|{𝑥 ∈ 𝑄𝑘: |𝑓(𝑥) − 𝑓𝑄𝑘| > 𝛼 − 2
𝑛𝑀}| ≤ 𝐹(𝛼 − 2𝑛𝑀)∫ |

 

𝑄𝑘

𝑓 − 𝑓𝑄𝑘|d𝑥 

≤ 𝐹(𝛼 − 2𝑛𝑀)|𝑄𝑘| 

(recall that we took ‖𝑓‖BMO = 1). It follows using (33) that 

|{𝑥 ∈ 𝑄 ∶  |𝑓(𝑥)| > 𝛼}| ≤ (∑ | 𝑘 𝑄𝑘|)𝐹((𝑦 − 2
𝑛𝑀) ≤

1

𝑀
𝐹(𝛼 − 2𝑛𝑀)∫ |

 

𝑄
𝑓|d𝑥,  
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which is (37). 

   To finish the proof we iterate (37) in a suitable way. We remarked above that 𝐹(𝛼) ≤ 1/𝛼; 

now observe that 

             
1

𝛼
≤ 𝐶e−𝛼/2

𝑛e    for all     1 ≤ 𝛼 ≤ 1 + 2𝑛e, 

𝐹(𝛼 + 2𝑛e) ≤
≤1

e
𝐹(𝛼),weobtainfor C= max1𝛼≤1+2𝑛e𝛼

−1e𝛼/2
𝑛e. Iterating (37) with 𝑀 =

e, which implies that 𝐹(𝛼) ≤ 𝐶e−𝑐𝛼 for all 𝛼 ≥ 1, 

where 𝑐 = 1/2𝑛e, which gives (35). 

 The more usually quoted form of this inequality, 

|{𝑥 ∈ 𝑄: |𝑓 − 𝑓𝑄| > 𝛼}| ≤ 𝐶|𝑄|e
−𝑐𝛼/‖𝑓‖BMO , 

follows immediately from the definition of ‖𝑓‖BMO. 

We now adapt the very elegant argument of Chen & Zhu [11] to prove the following 

stronger version of the inequality in (26) in the case 𝑠 = 𝑛/2; they proved the inequality for 

𝑓 ∈ 𝐿𝑞 ∩ BMO, but the changes required to take 𝑓 ∈ 𝐿𝑞,∞ ∩ BMO are in fact 

straightforward. Another proof for 𝑓 ∈ 𝐿𝑞 ∩ BMO, which still relies on the John‐Nirenberg 

inequality (but less explicitly), is given by Azzam & Bedrossian [1], and a sketch of an 

alternative proof of the result for 𝑓 ∈ 𝐿𝑞,∞ ∩ BMO can be found by Kozono et al. [140]. 

Theorem (4.1.14)[127]. For any 1 < 𝑞 < 𝑝 < ∞, if 𝑓 ∈ 𝐿𝑞,∞(ℝ𝑛)nBMO(ℝ𝑛) , then 𝑓 ∈

𝐿𝑝(ℝ𝑛) and there exists a constant 𝐶 = 𝐶(𝑞, 𝑝, 𝑛) such that 

‖𝑓‖𝐿𝑝 ≤ 𝐶‖𝑓‖𝐿𝑞,∞
𝑞/𝑝

‖𝑓‖BMO
1−𝑞/𝑝

.                                        (38) 

Proof. First we note that it is a consequence of the John‐Nirenberg inequality from 

Lemma (4.1.13) that if 𝑓 ∈ BMO ∩ 𝐿1, then 

𝑑𝑓(𝛼) ≤ 𝐶e
−𝐶𝛼/‖𝑓‖BMO‖𝑓‖𝐿1                                       (39) 

for all 𝛼 > ‖𝑓‖BM0; this follows by taking |𝑄| → ∞ in (35), since when 𝑓 ∈ 𝐿1, 

|𝑓𝑄| ≤
1

|𝑄|
∫ |
 

 
𝑓| → 0 as |𝑄| → ∞, 

and ∫ |
 

𝑄
𝑓 − 𝑓𝑄|d𝑥 ≤ 2∫ |

 

𝑄
𝑓|d𝑥. 

   Now take 𝑓 ∈ BMO with ‖𝑓‖BMO = 1. Split 𝑓 = 𝑓1− + 𝑓1+ as in Lemma (4.1.3). Since 

𝑓1− ∈ 𝐿
∞, ‖𝑓1−‖BMO ≤ 2‖𝑓1−‖𝐿∞ ≤ 2 (using (30)); thus 𝑓1+ = 𝑓 − 𝑓1− ∈ BMO and 

‖𝑓𝑖 + ‖BMO ≤ ‖𝑓‖BMO + ‖𝑓𝑖 − ‖BMO ≤ 3. 

Using Lemma (4.1.3) we know that 

‖𝑓1−‖𝐿𝑝
𝑝
≤ 𝐶‖𝑓1−‖𝐿𝑞,∞

𝑞
.                                              (40) 

Also, for (𝑞, 𝑞′) conjugate, 

‖𝑓1+‖𝐿1 = ∫|
 

 

𝑓1+| ≤ ∫ |
 

 

𝑓1+|
1+1/𝑞′ = ‖𝑓1+‖

𝐿1+1/𝑞
′

1+1/𝑞′
≤ 𝑐‖𝑓1+‖𝐿1

1/𝑞′
‖𝑓1+‖𝐿𝑞,∞ 

(since 1 < 1 + 1/𝑞′ < 𝑞 we can use weak‐olation), which yields 
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‖𝑓1+‖𝐿1 ≤ 𝑐‖𝑓1+‖𝐿𝑞,∞
𝑞

. 

Now we calculate 

‖𝑓1+‖𝐿𝑝
𝑝
= 𝑝∫ 𝛼𝑝−1

∞

0

𝑑𝑓1+(𝛼)d𝛼 

= 𝑝∫ 𝛼𝑝−1
1

0

𝑑𝑓(1)d𝛼 + 𝑝∫ 𝛼𝑝−1
∞

1

𝑑𝑓1+(𝛼)d𝛼 

≤ 𝑑𝑓(1) + 𝑝 (∫ 𝛼𝑝−1
∞

1

𝐶e−𝐶𝛼/3d𝛼)‖𝑓1+‖𝐿1 , 

where we have used (17), (39), and the fact that ‖𝑓1+‖BMO ≤ 3. Thus 

‖𝑓1+‖𝐿𝑝
𝑝
≤ ‖𝑓‖𝐿𝑞,∞

𝑞
+ 𝐶‖𝑓1+‖𝐿𝑞,∞

𝑞
≤ 𝐶‖𝑓‖𝐿𝑞,∞

𝑞
.                   (41) 

Adding (40) and (41) we obtain 

‖𝑓‖𝐿𝑝 ≤ 𝐶‖𝑓‖𝐿𝑞,∞
𝑞/𝑝

; 

(38) follows. 

So far we have avoided defining the two‐parameter Lorentz spaces 𝐿𝑝,𝑟, which 

involve decreasing rearrangements. We will obtain an inequality involving such spaces 

‖𝑢‖𝐿𝑝,1 ≤ 𝐶𝑛,𝑝,𝑞‖𝑢‖𝐿𝑞,∞
𝑞/𝑝

‖𝑢‖BMO
1−𝑞/𝑝

,                                  (42) 

from which (at least for 𝑞 > 1) our two previous inequalities follow (we require 1 < 𝑞 <

𝑝 < ∞ in (42), see Theorem (4.1.17)). We will do this via the theory of interpolation spaces. 

Here we will not provide detailed proofs of any of the results, for the most part merely 

providing statements of the relevant general theory. 

Given a measurable function 𝑓:ℝ𝑛 → ℝ, we have already defined and made much 

use of its distribution function 𝑑𝑓. We now define its decreasing rearrangement 𝑓∗: [0,∞) →

[0,∞] as 

𝑓∗(𝑡) =  inf {𝛼 ∶  𝑑𝑓(𝛼) ≤ 𝑡}, 

with the convention that inf∅ = ∞. The point of this definition is that 𝑓 and 𝑓∗ have the 

same distribution function, 

𝑑𝑓∗(𝛼) = 𝑑𝑓(𝛼) , 

but 𝑓∗ is a positive non‐increasing scalar function. Since their distribution functions agree, 

we can use the identity in (7) to show that the 𝐿𝑝 norm of 𝑓 is equal to the 𝐿𝑝 norm of 𝑓∗: 

∫ |
 

ℝ𝑛
𝑓(𝑥)|𝑝d𝑥 = 𝑝∫ 𝛼𝑝−1

∞

0

𝑑𝑓(𝛼)d𝛼 
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= 𝑝∫ 𝛼𝑝−1
∞

0

𝑑𝑓∗(𝛼)d𝛼 = ∫ 𝑓∗
∞

0

(𝑡)𝑝d𝑡. 

Given 1 ≤ 𝑝, 𝑞 ≤ ∞, the Lorentz space 𝐿𝑝,𝑞(ℝ𝑛) consists of all measurable functions 𝑓 for 

which the quantity 

‖𝑓‖𝐿𝑝,𝑞: = (∫ [𝑡1/𝑝𝑓∗(𝑡)]
𝑞

∞

0

d𝑡

𝑡
)

1/𝑞

 

(for 𝑞 < ∞) or 

‖𝑓‖𝐿𝑝 , ∞:=  sup 𝑡
1/𝑝𝑓∗(𝑡) 

(for 𝑞 = ∞) is finite. It is simple to show  in Grafakos [135]) that this definition agrees with 

our previous definition of 𝐿𝑝,∞, that 𝐿∞,∞ = 𝐿∞, and that 𝐿𝑝,𝑝 = 𝐿𝑝 (the last of these, at 

least, is immediate). 

   If 𝑟 < 𝑠, then 𝐿𝑝,𝑟 ⊂ 𝐿𝑝,𝑠; so the largest space in this family for fixed 𝑝 is the weak space 

𝐿𝑝,∞, and the smallest is 𝐿𝑝,1 To see that 𝐿𝑝,𝑟 ⊂ 𝐿𝑝,∞ for every 𝑟, 

simply observe that 

𝑡1/𝑝𝑓∗(𝑡) = {
𝑟

𝑝
∫ [𝑠1/𝑝𝑓∗(𝑡)]

𝑟
𝑡

0

d𝑠

𝑠
}

1/𝑟

 

≤ {
𝑟

𝑝
∫ [𝑠1/𝑝𝑓∗(𝑠)]

𝑟
∞

0

d𝑠

𝑠
}

1/𝑟

 

≤ (𝑟/𝑝)1/𝑟‖𝑓‖𝐿𝑝,𝑟 , 

which yields ‖𝑓‖𝐿𝑝 , ∞ ≤ (𝑟/𝑝)1/𝑟‖𝑓‖𝐿𝑝,𝑟 on taking the supremum over 𝑡 > 0. Given this, 

if 𝑟 < 𝑞 < ∞, then, using Hölder’s inequality, 

‖𝑓‖𝐿𝑝,𝑞= {∫ [𝑡1/𝑝𝑓∗(𝑡)]
𝑞−𝑟+𝑟

𝑡

0

d𝑡

𝑡
}

1/𝑟

≤ ‖𝑓‖𝐿𝑝,∞
(𝑞−𝑟)/𝑞

‖𝑓‖𝐿𝑝,𝑟
𝑟/𝑞

≤ 𝐶𝑝,𝑞,𝑟‖𝑓‖𝐿𝑝,𝑟 . 

We now very briefly outline the theory of interpolation spaces; the general theory is 

modelled on the definition of the Lorentz spaces given above. For sustained expositions of 

the theory see Bennett & Sharpley [9], Bergh & Löfström [130], or Lundari [142]. 

   Given two Banach spaces 𝑋0 and 𝑋1 that embed continuously into some parent Hausdorff 

topological vector space, which we term “a compatible pair we define the 𝐾‐functional for 

each 𝑥 ∈ 𝑋0 + 𝑋1 and 𝑡 > 0 by 

𝐾(𝑥, 𝑡) =  inf {‖𝑥0‖𝑋0 + 𝑡‖𝑥1‖𝑋1 ∶  𝑥0 + 𝑥1 = 𝑥, 𝑥0 ∈ 𝑋0, 𝑥1 ∈ 𝑋1}. 

Then for 0 < 𝜃 < 1 and 1 ≤ 𝑞 < ∞ we define the interpolation space (𝑋0, 𝑋1)𝜃,𝑞 as the 

space of all 𝑥 ∈ 𝑋0 + 𝑋1 for which 

‖𝑥‖𝜃,𝑞: = (∫ [𝑡−𝜃𝐾(𝑓, 𝑡)]
𝑞

∞

0

d𝑡

𝑡
)

1/𝑞
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is finite. Similarly, for 0 ≤ 𝜃 ≤ 1 and 𝑞 = ∞, the space (𝑋0, 𝑋1)𝜃,∞ is the space of all 𝑥 ∈

𝑋0 + 𝑋1 such that 

‖𝑥‖𝜃,∞ =  sup 𝑡
−𝜃𝐾(𝑓, 𝑡) 

is finite. For all these spaces (1 ≤ 𝑞 ≤ ∞) we have the interpolation inequality 

‖𝑓‖𝜃,𝑞 ≤ 𝐶𝜃,𝑞‖𝑓‖𝑋0
1−𝜃‖𝑓‖𝑋1

𝜃                                      (43) 

Löfström [130]. 

Given the definitions of Lorentz spaces and of the interpolation spaces, it is not surprising 

that 

(𝐿1, 𝐿∞)1−1/𝑝,𝑟 = 𝐿
𝑝,𝑟 

for 1 < 𝑝 < ∞, 1 ≤ 𝑟 ≤ ∞. That one can replace 𝐿∞ here by BMO is much less obvious, 

but key to the ‘quick’ proof of (42). 

Theorem (4.1.15)[127]. For 1 < p < ∞ and 1 ≤ r ≤ ∞, 

𝐿𝑝,𝑟 = (𝐿1, BMO)1−1/𝑝,𝑟 . 

Proof. One can also find a proof of this result by Hanks [137], and of a similar but slightly 

weaker result (with 𝐿𝑝 on the left‐hand side) using complex interpolation spaces by Janson& 

Jones [139]. 

   We note here that the key step in the proof of this result given in Bennett & Sharpley [9] 

(and in Hanks [137]) is a relationship between the sharp function of 𝑓, 

                    𝑓𝑄
#(𝑥):= 𝑄′ ⊂ 𝑄, 𝑄′ ∋xsup 

1

|𝑄|
∫ |
 

𝑄′
𝑓 − 𝑓𝑄′|, 

its decreasing rearrangement 𝑓∗, and the function 𝑓∗∗(𝑡) : =
1

𝑡
∫ 𝑓∗
𝑡

0
(𝑠)d𝑠: 

𝑓∗∗(𝑡) − 𝑓∗(𝑡) ≤ 𝐶(𝑓𝑄
#)
∗
(𝑡) 0 < 𝑡 < |𝑄| 

This also forms the main ingredient in the proof of (38) in Kozono & Wadade [5] (and the 

proof of (44) in Kozono et al. [140]). 

   The inequality (38) in fact follows simply from Theorem (4.1.15) using the following 

‘Reiteration Theorem’, which allows one to identify interpolants between two interpolation 

spaces in terms of the original ‘endpoints’. 

Theorem (4.1.16)[127]. Let (𝑋0, 𝑋1) be a compatible pair of Banach spaces, and let 0 ≤

𝜃0 < 𝜃1 ≤ 1 and 1 ≤ 𝑞0, 𝑞1 ≤ ∞. Set 

                𝑌0 = (𝑋0, 𝑋1)𝜃0,𝑞0    and    𝑌1 = (𝑋0, 𝑋1)𝜃1,𝑞1 . 

If 0 < 𝜃 < 1 and 1 ≤ 𝑞 ≤ ∞, then 

(𝑌0, 𝑌1)𝜃,𝑞 = (𝑋0, 𝑋1)(1−𝜃)𝜃0+𝜃𝜃1,𝑞 . 

Corollary (4.1.17)[127]. If u ∈ Lq,∞ ∩ BMO for some q > 1 and q < p < ∞, then u ∈ Lp,1 
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and there exists a constant Cn,p,q such that 

‖𝑢‖𝐿𝑝,1 ≤ 𝐶𝑛,𝑝,𝑞‖𝑢‖𝐿𝑞,∞
𝑞/𝑝

‖𝑢‖BMO
1−𝑞/𝑝

.                               (44) 

   Note that given the ordering of Lorentz spaces, 𝐿𝑝,1 ⊂ 𝐿𝑝,𝑝 = 𝐿𝑝 and so this result implies 

Theorem (4.1.14) in the case 𝑞 > 1. 

Proof. Using Theorem (4.1.15), since 𝑞 > 1 we have 

𝐿𝑞,𝑠 = (𝐿1, BMO)1−1/𝑞,𝑠; 

set B = (𝐿1, BMO)1,∞. Note that from (43) ‖𝑓‖B ≤ 𝐶‖𝑓‖BMO. Now simply use the 

Reiteration Theorem to obtain 

𝐿𝑝,𝑟 = (𝐿𝑞,𝑠, B)1−𝑞/𝑝,𝑟 , 

from which the inequality (44) follows immediately using (43).                               

(One can use interpolation spaces to provide a proof of Theorem (4.1.14) that does not 

involve Lorentz spaces by using interpolation only with 𝑞 = ∞ and then interpolation 

between weak 𝐿𝑝 spaces, see McCormick et al. [143].) 

Although we have not needed it here, one of the main uses of weak spaces arises due 

to the powerful Marcinkiewicz interpolation theorem, in which bounds in weak spaces at 

the endpoints lead to bounds in strong spaces in between. We include here a statement of 

the 𝑡ℎ𝑒𝑜𝑟𝑒𝑚4 and some straightforward consequences. 

   We say 𝑇 is sublinear if 

                 |𝑇(𝑓 + 𝑔)| ≤ |𝑇𝑓| + |𝑇𝑔| and |𝑇(𝜆𝑓)| ≤ |𝜆||𝑇𝑓| 

almost everywhere. 

Theorem (4.1.18)[127]. Suppose that 𝑞0 < 𝑞1 and that 𝑇 is a sublinear map defined on 

𝐿𝑞0 + 𝐿𝑞’ such that for some 𝑝0, 𝑝1 

                ‖𝑇𝑓‖𝐿𝑝0 ,∞ ≤ 𝐴0‖𝑓‖𝐿𝑞0  and ‖𝑇𝑓‖𝐿𝑝1 ,∞ ≤ 𝐴1‖𝑓‖𝐿𝑞1 . 

If 0 < 𝑡 < 1, 
1

𝑞
=
1−𝑡

𝑞0
+

𝑡

𝑞1
 and 

1

𝑝
=
1−𝑡

𝑝0
+

𝑡

𝑝1
                           (45) 

and 𝑝 ≥ 𝑞, then 𝑇: 𝐿𝑞 → 𝐿𝑝 and there exists a constant 𝐴𝑡 such that 

‖𝑇𝑓‖𝐿𝑝 ≤ 𝐴𝑡‖𝑓‖𝐿𝑞 .                                     (46) 

   With the restriction that 𝑝0 ≥ 𝑞0 and 𝑝1 ≥ 𝑞1 one can find an elementary proof of this 

theorem in Folland[134] 

   We now give some interesting consequences of this theorem that ℱ maps 𝐿1 into 𝐿∞ and 

𝐿2 into 𝐿2, so the following result is immediate. 

Corollary (4.1.19)[127]. For 1 ≤ p ≤ 2 the Fourier transform is a bounded linear map from 

Lp into Lq, where (p, q) are conjugate. 

Another application is the improved version of Young’s inequality that was promised. 

Theorem (4.1.20)[127]. Suppose that 1 < 𝑝, 𝑞, 𝑟 < ∞. If 𝑓 ∈ 𝐿𝑞,∞ and 𝑔 ∈ 𝐿𝑟 with 

1

𝑝
+ 1 =

1

𝑞
+
1

𝑟
, 
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then 𝑓 ⋆ 𝑔 ∈ 𝐿𝑝 with 

‖𝑓 ⋆ 𝑔‖𝐿𝑝 ≤ 𝑐𝑝,𝑞,𝑟‖𝑓‖𝐿𝑞,∞‖𝑔‖𝐿𝑟 .                               (47) 

Proof. Note that it follows from the conditions on 𝑝, 𝑞, 𝑟 that 𝑝 > 𝑟. Fix 𝑓 ∈ 𝐿𝑞,∞ with 

‖𝑓‖𝐿𝑞 , ∞ = 1, and consider the linear operator 𝑇(𝑔) = 𝑓 ⋆ 𝑔. Since 1 < 𝑝, 𝑟 < ∞ we can 

find 𝑝0 < 𝑝 < 𝑝1, 𝑟0 < 𝑟 < 𝑟1, and 0 < 𝑡 < 1 such 𝑝0 ≥ 𝑟0, 𝑝1 ≥ 𝑟1, and (45) holds. Now 

using the weak form of Young’s inequality from Proposition (4.1.5),  

         ‖𝑓 ⋆ 𝑔‖𝐿𝑝0 , ∞ ≤ 𝐶‖𝑔‖𝐿𝑟0     and    ‖𝑓 ⋆ 𝑔‖𝐿𝑝1 , ∞ ≤ 𝐶‖𝑔‖𝐿𝑟1 . 

We can now use the Marcinkiewicz interpolation theorem to guarantee that 

‖𝑓 ⋆ 𝑔‖𝐿p ≤ 𝐶‖𝑔‖𝐿𝑟 . 

Since 𝑓 ⋆ 𝑔 is also linear in 𝑓, we obtain (47).                                               

Using Theorem (4.1.20) and the fact that if 𝑃𝛼(𝑥) = |𝑥|
−𝛼, then [�̂�𝛼](𝜉) =

𝑐𝑛, 𝑃𝑛−𝛼𝛼
 (𝜉) (this can be checked by simple calculation) we can give a very quick 

alternative proof of the endpoint Sobolev embedding, after in Bahouri et al. [129]. 

Theorem (4.1.21)[127]. For 2 < p < ∞ there exists a constant c = cn,p such that if f ∈

Ḣs(ℝn) with = n(1/2 − 1/p) , then f ∈ Lp(ℝn) and ‖f‖Lp ≤ c‖f‖Ḣs . 

Proof. We make the pointwise definition (𝜉) = |𝜉|𝑠𝑓(𝜉) ; since 𝑓 ∈ �̇�𝑠(ℝ𝑛), 𝛾 ∈ 𝐿2(ℝ𝑛) . 
If we set 𝑔 = ℱ−1𝛾, then 𝑔 ∈ 𝐿2(ℝ𝑛) and ‖𝑔‖𝐿2 = ‖𝛾‖𝐿2 = ‖𝑓‖�̇�𝑠. Now, 

𝑓(𝜉) =
|𝜉|𝑠𝑓(𝜉)

|𝜉|𝑠
= �̂�(𝜉)|𝜉|−𝑠, 

and so 𝑓 = 𝑔 ⋆ 𝑐𝑛
−1 𝑃𝑛−𝑠𝑛−𝑠

 . Since 𝑃𝑛−𝑠 ∈ 𝐿
𝑛/(𝑛−𝑠),∞ and 𝑔 ∈ 𝐿2 it follows from Theorem 

(4.1.20) that ∈ 𝐿𝑝(ℝ𝑛). 

Corollary (4.1.22)[222]: If 𝑓𝑗 ∈ 𝐿
1+𝜖(ℝ𝑛) , then 𝑓𝑗 ∈ 𝐿

1+𝜖,∞(ℝ𝑛) and ‖∑  𝑗 𝑓𝑗‖𝐿1+𝜖,∞ ≤

∑  𝑗 ‖𝑓𝑗‖𝐿1+𝜖 . 

Proof. This follows since 

∑ 

𝑗

𝑑𝑓𝑗(𝛼) = ∫ 1
 

{𝑥:∑  𝑗 |𝑓𝑗(𝑥)|>𝛼}

d𝑥 ≤ ∫ ∑ 

𝑗

 

{𝑥:|𝑓𝑗(𝑥)|>𝛼}

|𝑓𝑗(𝑥)|
1+𝜖

𝛼1+𝜖
d𝑥

≤∑ 

𝑗

‖𝑓𝑗‖𝐿1+𝜖
1+𝜖 𝛼−(1+𝜖).  

   While 𝐿1+𝜖 ⊂ 𝐿1+𝜖,∞, clearly 𝐿1+𝜖,∞ is a larger space than 𝐿1+𝜖: for example, 

|𝑥|−
1

4 ∈ 𝐿1+𝜖,∞(ℝ𝑛)                                            (48) 

but this function is not an element of 𝐿1+𝜖(ℝ𝑛). 

   An immediate indication of why these spaces are useful is given in the following simple 

result, which shows that in the 𝐿1+𝜖 interpolation inequality 
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‖∑ 

𝑗

𝑓𝑗‖𝐿1+2𝜖 ≤∑ 

𝑗

‖𝑓𝑗‖𝐿1+𝜖
𝜃 ‖𝑓𝑗‖𝐿1+𝜖

1−𝜃 , 𝜖 = 0, 

one can replace the Lebesgue spaces on the right‐hand side by their weak counterparts. 

Corollary (4.1.23)[222]: [127] Take 0 ≤ 𝜖 ≤ ∞. If 𝑓𝑗 ∈ 𝐿
1+𝜖,∞ ∩ 𝐿1+3𝜖,∞, then 𝑓𝑗 ∈ 𝐿

1+2𝜖 

and 

‖∑ 

𝑗

𝑓𝑗‖𝐿1+2𝜖 ≤ 𝑐1+𝜖,1+2𝜖,1+3𝜖∑ 

𝑗

‖𝑓𝑗‖𝐿1+𝜖,∞
𝜃 ‖𝑓𝑗‖𝐿1+3𝜖,∞

1−𝜃 , 

where 

1

1 + 2𝜖
=

𝜃

1 + 𝜖
+
1 − 𝜃

1 + 3𝜖
. 

If 𝜖 = ∞, we interpret 𝐿∞,∞ as 𝐿∞ 

Proof. We give the proof when 𝜖 < ∞; the proof when 𝜖 = ∞ is slightly simpler. If 𝑓𝑗 ∈

𝐿1+𝜖,∞, then ∑  𝑗 𝑑𝑓𝑗(𝛼) ≤ ∑  𝑗 ‖𝑓𝑗‖𝐿1+𝜖,∞
1+𝜖 𝛼−(1+𝜖), so for any 𝑥 we have 

‖∑ 

𝑗

𝑓𝑗‖𝐿1+2𝜖
1+2𝜖 = (1 + 2𝜖)∫ ∑ 

𝑗

𝛼2𝜖
∞

0

𝑑𝑓𝑗(𝛼)d𝛼 

≤ (1 + 2𝜖)∫ ∑ 

𝑗

𝛼2𝜖
𝑥

0

‖𝑓𝑗‖𝐿1+𝜖,∞
1+𝜖 𝛼−(1+𝜖)d𝛼 + (1

+ 2𝜖)∫ ∑ 

𝑗

𝛼2𝜖
∞

𝑥

‖𝑓𝑗‖𝐿1+3𝜖,∞
1+3𝜖 𝛼−(1+3𝜖)d𝛼 

≤
1 + 2𝜖

𝜖
∑ 

𝑗

‖𝑓𝑗‖𝐿1+𝜖,∞
1+𝜖 𝑥𝜖 −

1 + 2𝜖

𝜖
∑ 

𝑗

‖𝑓𝑗‖𝐿1+3𝜖,∞
1+3𝜖 𝑥𝜖 

Now choose 

𝑥2𝜖 =∑ 

𝑗

||𝑓𝑗||𝐿1+𝜖,∞
1+𝜖

||𝑓𝑗||𝐿1+3𝜖,∞
1+3𝜖  

to equalise the dependence of the two terms on the right‐hand side on the weak norms. 

Corollary (4.1.24)[222]: Take 0 ≤ 𝜖 ≤ ∞, and suppose that 𝑔𝑗 ∈ 𝐿
1+2𝜖,∞. For any 𝑀 > 0 

set 

∑ 

𝑗

(𝑔𝑗)𝑀− =∑ 

𝑗

𝑔𝑗𝜒|𝑔𝑗|≤𝑀   and  ∑  

𝑗

(𝑔𝑗)𝑀+ =∑ 

𝑗

𝑔𝑗𝜒|𝑔𝑗|>𝑀. 
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Then 𝑔𝑗 = (𝑔𝑗)𝑀− + (𝑔𝑗)𝑀+, where (𝑔𝑗)𝑀− ∈ 𝐿
1+3𝜖 with 

‖∑ 

𝑗

(𝑔𝑗)𝑀−‖𝐿1+3𝜖
1+3𝜖

≤
1 + 3𝜖

𝜖
𝑀𝜖∑ 

𝑗

‖𝑔𝑗‖𝐿1+2𝜖,∞
1+2𝜖 −𝑀1+3𝜖∑ 

𝑗

𝑑𝑔𝑗(𝑀)                                   (49) 

if 𝜖 < ∞ and ‖(𝑔𝑗)𝑀−‖𝐿∞ ≤ 𝑀, and (𝑔𝑗)𝑀+ ∈ 𝐿
1+𝜖 with 

‖∑ 

𝑗

(𝑔𝑗)𝑀+‖𝐿1+𝜖
1+𝜖 ≤

1 + 2𝜖

𝜖
𝑀−𝜖∑ 

𝑗

‖𝑔𝑗‖𝐿1+2𝜖,∞
1+2𝜖 .                               (50) 

Proof. Simply note that 

𝑑(𝑔𝑗)𝑀−(𝛼) = {
0 𝛼 ≥ 𝑀
𝑑𝑔𝑗(𝛼) − 𝑑𝑔𝑗(𝑀) 𝛼 < 𝑀                        (51) 

and 

𝑑(𝑔𝑗)𝑀+
(𝛼) = {

𝑑𝑔𝑗(𝛼) 𝛼 > 𝑀

𝑑𝑔𝑗(𝑀) 𝛼 ≤ 𝑀.
                          (52) 

Then using (7), (51), and (8) it is simple to show (49), and (50) follows similarly, using (52) 

in place of (51). 

   It is natural to ask what one can say about 𝑓𝑗 when 𝑓𝑗 ∈ 𝐿
1+𝜖. We will show that 𝑓𝑗 ∈ 𝐿

1+3𝜖 

with (1 + 𝜖, 1 + 3𝜖) conjugate, provided that 0 ≤ 𝜖 ≤ 1 (Corollary (4.1.19)). Note, 

however, that for any 𝜖 > 0 one can find a function in 𝐿2+𝜖 whose Fourier transform is not 

even a locally integrable function (see Exercise 2.3.13 in Grafakos [128]). 

   One can extend the definition of the Fourier transform further to the space of tempered 

distributions 𝒮′. We say that a sequence {𝜑1+𝜖
2

} ∈ 𝒮 converges to 𝜑 ∈ 𝒮 if 

sup |𝑥𝛼𝜕𝛽 (𝜑1+𝜖
2

− 𝜑)| → 0   for all    𝛼, 𝛽 ≥ 0, 

and a linear functional 𝐹 on 𝒮 is an element of 𝒮′ if 〈𝐹, 𝜑1+𝜖
2

〉 → 〈𝐹, 𝜑〉 whenever 𝜑1+𝜖
2

→ 𝜑 

in 𝒮. It is easy to show that for any 𝜑, 𝜓 ∈ 𝒮 

〈𝜑, �̂�〉 = 〈�̂�, 𝜓〉, 
and this allows us to define the Fourier transform for 𝐹 ∈ 𝒮′ by setting 

                          〈�̂�, 𝜓〉 = 〈𝐹, �̂�〉 for every 𝜓 ∈ 𝒮. 
Since one can also extend the definition of 𝜎 to 𝒮′ via the definition 〈𝜎(𝐹), 𝜓〉 = 〈𝐹, 𝜎(𝜓)〉, 

the identity 𝐹 = ℱ−1�̂� still holds in this generality. 

 

Corollary (4.1.25)[222]: (Young’s inequality). Let 0 ≤ 𝜖 ≤ ∞ satisfy ϵ = 0. 
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Then for all 𝑓𝑗 ∈ 𝐿
1+2𝜖 , 𝑔𝑗 ∈ 𝐿

1+3𝜖, we have 𝑓𝑗 ⋆ 𝑔𝑗 ∈ 𝐿
1+𝜖 with 

‖∑ 

𝑗

(𝑓𝑗 ⋆ 𝑔𝑗)‖𝐿1+𝜖 ≤∑ 

𝑗

‖𝑓𝑗‖𝐿1+2𝜖‖𝑔𝑗‖𝐿1+3𝜖 .                            (53) 

Proof. We use 
1+𝜖

𝜖
  to denote the conjugate of 1 + 𝜖. Then we have 

                     
1

1+3𝜖
+

1

1+𝜖
+

1

1+2𝜖
= 1,  

1+2𝜖

1+𝜖
+
1+2𝜖

1+3𝜖
= 1,  and  

1+3𝜖

1+𝜖
+
1+3𝜖

1+2𝜖
= 1. 

First use Hölder’s inequality with exponents 
1+3𝜖

3𝜖
, 1 + 𝜖, and 

1+2𝜖

2𝜖
: 

|∑  

𝑗

(𝑓𝑗 ⋆ 𝑔𝑗)(𝑥)| ≤ ∫ ∑ 

𝑗

|
 

 

𝑓𝑗(𝑦)||𝑔𝑗(𝑥 − 𝑦)|d𝑦 

= ∫ ∑ 

𝑗

|
 

 

𝑓𝑗(𝑦)|
3𝜖(1+2𝜖)
1+3𝜖 (|𝑓𝑗(𝑦)|

1+2𝜖
1+𝜖 |𝑔𝑗(𝑥 − 𝑦)|

1+3𝜖
1+𝜖 ) |𝑔𝑗(𝑥 − 𝑦)|

2𝜖(1+3𝜖)
1+2𝜖 d𝑦 

≤∑ 

𝑗

‖𝑓𝑗‖𝐿1+2𝜖

3𝜖(1+2𝜖)
1+3𝜖 (∫ |

 

 

𝑓𝑗(𝑦)|
1+2𝜖|𝑔𝑗(𝑥 − 𝑦)|

1+3𝜖d𝑦)

1
1+𝜖

(∫|
 

 

𝑔𝑗(𝑥 − 𝑦)|
1+3𝜖d𝑦)

2𝜖
1+2𝜖

 

=∑ 

𝑗

‖𝑓𝑗‖𝐿1+2𝜖

3𝜖(1+2𝜖)
1+3𝜖 (∫|

 

 

𝑓𝑗(𝑦)|
1+2𝜖|𝑔𝑗(𝑥 − 𝑦)|

1+3𝜖d𝑦)

1
1+𝜖

‖𝑔𝑗‖𝐿1+3𝜖

2𝜖(1+3𝜖)
1+2𝜖  

Now take the 𝐿1+𝜖 norm (with respect to 𝑥): 

‖∑ 

𝑗

(𝑓𝑗 ⋆ 𝑔𝑗)‖𝐿1+𝜖

≤∑ 

𝑗

‖𝑓𝑗‖𝐿1+2𝜖

3𝜖(1+2𝜖)
1+3𝜖 ‖𝑔𝑗‖𝐿1+3𝜖

2𝜖(1+3𝜖)
1+2𝜖 (∫ ∫|

 

 

  

 

𝑓𝑗(𝑦)|
1+2𝜖|𝑔𝑗(𝑥

− 𝑦)|1+3𝜖d𝑦d𝑥)

1
1+𝜖

=∑ 

𝑗

‖𝑓𝑗‖𝐿1+2𝜖

3𝜖(1+2𝜖)
1+3𝜖 ‖𝑔𝑗‖𝐿1+3𝜖

2𝜖(1+3𝜖)
1+2ϵ ‖𝑓𝑗‖𝐿1+2𝜖

1+2𝜖
1+𝜖 ‖𝑔𝑗‖𝐿1+3𝜖

1+3𝜖
1+𝜖

=∑ 

𝑗

‖𝑓𝑗‖𝐿1+2𝜖‖𝑔𝑗‖𝐿1+3𝜖 . 

   We will need a version of this inequality that allows 𝐿1+2𝜖 on the right‐hand side to be 

replaced by 𝐿1+2𝜖,∞. The price we have to pay for this (at least initially) is that we also 

weaken the left‐hand side; and note that we have also lost the possibility of some endpoint 

values (𝜖 = ∞ and 1 + 𝜖, 𝜖 = 0, ∞) that are allowed in (53). In fact one can keep the full 

𝐿1+𝜖 norm on the left, provided that 𝜖 > 0; but this requires Proposition (4.1.26) as an 

intermediate step and the Marcinkiewicz Interpolation Theorem. 
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Corollary(4.1.26)[222]: Suppose that 0 ≤ 𝜖 < ∞. If 𝑓𝑗 ∈ 𝐿
1+2𝜖,∞ and 𝑔𝑗 ∈ 𝐿

1+𝜖 with 

2 + 𝜖

1 + 𝜖
=

1

1 + 2𝜖
+

1

1 + 𝜖
, 

then 𝑓𝑗 ⋆ 𝑔𝑗 ∈ 𝐿
1+𝜖,∞ with 

‖∑ 

𝑗

(𝑓𝑗 ⋆ 𝑔𝑗)‖𝐿1+𝜖,∞ ≤ 𝑐1+𝜖,1+2𝜖,1+𝜖∑ 

𝑗

‖𝑓𝑗‖𝐿1+2𝜖,∞‖𝑔𝑗‖𝐿1+𝜖 .       (54) 

Proof. We follow the proof in Grafakos [135], skipping some of the algebra. We have 

already introduced the main step, the splitting of 𝑓𝑗 in Lemma (4.1.24). For a fixed 𝑀 > 0 

we set 𝑓𝑗 = (𝑓𝑗)𝑀− + (𝑓𝑗)𝑀+. Using (49) and Hölder’s inequality we obtain 

|∑  

𝑗

((𝑓𝑗)𝑀− ⋆ 𝑔𝑗)(𝑥)| ≤∑ 

𝑗

‖(𝑓𝑗)𝑀−‖
𝐿
1+3𝜖
3𝜖
‖𝑔𝑗‖𝐿1+𝜖

≤∑ 

𝑗

(
1 + 3𝜖

1 + 6𝜖2
𝑀
1+6𝜖2

3𝜖 ‖𝑓𝑗‖𝐿1+2𝜖,∞
1+2𝜖 )

3𝜖
1+3𝜖

‖𝑔𝑗‖𝐿1+𝜖 , 

where (1 + 𝜖,
1+3𝜖

3𝜖
) are conjugate; the right‐hand side reduces to 𝑀‖𝑔𝑗‖𝐿1 if 𝜖 = 0. Note 

in particular that if 

𝑀 =∑ 

𝑗

(𝛼
1+3𝜖
3𝜖 2−

1+3𝜖
3𝜖 (1 + 2𝜖)(1 + 𝜖)−1‖𝑓𝑗‖𝐿1+2𝜖,∞

−(1+2𝜖)
‖𝑔𝑗‖𝐿1+𝜖

−
1+3𝜖
3𝜖 )

3𝜖
1+6𝜖2

 

(or 𝛼/2‖𝑔𝑗‖𝐿1 if 𝜖 = 0), then 𝑑(𝑓𝑗)𝑀−⋆𝑔𝑗(𝛼/2) = 0. 

For (𝑓𝑗)𝑀+ we can use (50) and apply Young’s inequality to yield 

‖∑ 

𝑗

((𝑓𝑗)𝑀+ ⋆ 𝑔𝑗) ‖𝐿
1+𝜖 ≤∑ 

𝑗

‖(𝑓𝑗)𝑀+‖𝐿1‖𝑔𝑗‖𝐿1+𝜖

≤
1 + 2𝜖

2𝜖
𝑀−2𝜖∑ 

𝑗

‖𝑓𝑗‖𝐿1+2𝜖,∞
1+2𝜖 ‖𝑔𝑗‖𝐿1+𝜖 . 

Choosing 𝑀 as above and using (9) it follows that 
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𝑑∑  𝑗 (𝑓𝑗⋆𝑔𝑗)
(𝛼) ≤∑ 

𝑗

𝑑(𝑓𝑗)𝑀+⋆𝑔𝑗
(𝛼/2) ≤ (2∑ 

𝑗

‖(𝑓𝑗)𝑀+ ⋆ 𝑔𝑗‖𝐿1+𝜖𝛼
−1)

1+𝜖

≤ (2(1 + 2𝜖)𝑀−𝜖∑ 

𝑗

‖𝑓𝑗‖𝐿1+2𝜖,∞
1+2𝜖 ‖𝑔𝑗‖𝐿1+𝜖(2𝜖)

−1𝛼−1)

1+𝜖

= 𝐶∑ 

𝑗

‖𝑓𝑗‖𝐿1+2𝜖,∞
1+𝜖 ‖𝑔𝑗‖𝐿1+𝜖

1+𝜖 𝛼−(1+𝜖), 

which yields (54). 

Corollary (4.1.27)[222]: [127] For 0 < 𝜖 < ∞ there exists a constant 𝑐 = 𝑐𝑛,2+𝜖 such that 

if 𝑓𝑗 ∈ �̇�
1+𝜖(ℝ𝑛) with 𝑠 = 𝑛 (

𝜖

2+𝜖
) , then 𝑓𝑗 ∈ 𝐿

2+𝜖(ℝ𝑛) and 

‖∑ 

𝑗

𝑓𝑗‖

𝐿2+𝜖

≤ 𝑐∑ 

𝑗

‖𝑓𝑗‖�̇�1+𝜖 .                                                  (55) 

Proof. First we prove the result when ‖𝑓𝑗‖�̇�1+𝜖 = 1. For such an 𝑓𝑗, write 𝑓𝑗 = (𝑓𝑗)<𝑅 +

(𝑓𝑗)>𝑅 , where 

(𝑓𝑗)<𝑅 = ℱ
−1(𝑓𝑗𝜒{|𝜉|≤𝑅}) and (𝑓𝑗)>𝑅 = ℱ

−1(𝑓𝑗𝜒{|𝜉|>𝑅}).                              (56) 

In both expressions the Fourier inversion formula makes sense: for (𝑓𝑗)>𝑅 we know that 

𝑓𝑗𝜒 > 𝑅 ∈ 𝐿
2(ℝ𝑛) , and ℱ (and likewise ℱ−1) is defined on 𝐿2; while for (𝑓𝑗)<𝑅 we know 

that 𝑓𝑗 ∈ 𝐿1oc
1 (ℝ𝑛) , and so 𝑓𝑗𝜒 ≤ 𝑅 ∈ 𝐿

1(ℝ𝑛) which means that we can write (𝑓𝑗)<𝑅 using 

the integral form of the inversion formula (13): 

∑ 

𝑗

(𝑓𝑗)<𝑅(𝑥) = ∫ ∑ 

𝑗

e2𝜋i𝜉⋅𝑥
 

|𝜉|≤𝑅

𝑓𝑗(𝜉)d𝜉. 

Thus 

‖∑ 

𝑗

(𝑓𝑗)<𝑅‖𝐿
∞ ≤ ∫ ∑ 

𝑗

|
 

|𝜉|≤𝑅

𝜉|−(1+𝜖)|𝜉|1+𝜖|𝑓𝑗(𝜉)|d𝜉 

≤ (∫ |
 

|𝜉|≤𝑅

𝜉|−2(1+𝜖)d𝜉)

1
2

∑ 

𝑗

‖𝑓𝑗‖�̇�1+𝜖 = 𝐶1+𝜖𝑅
𝑛
2
−(1+𝜖) = 𝐶1+𝜖𝑅

𝑛
2+𝜖 , 
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since we took ‖𝑓𝑗‖�̇�1+𝜖 = 1 and 1 + 𝜖 = 𝑛 (
ϵ

2+𝜖
) . Now, since for any choice of 𝑅 

𝑑𝑓𝑗(𝛼) ≤ 𝑑𝑓𝑗<𝑅(𝛼/2) + 𝑑𝑓𝑗>𝑅(𝛼/2) 

(using (9)), we can choose 𝑅 to depend on 𝛼, 𝑅 = 𝑅𝛼 : = (𝛼/2𝐶1+𝜖)
2+𝜖

𝑛 , and then we have 

𝑑𝑓𝑗<𝑅𝛼(𝛼/2) = 0, 

it follows that 𝑑𝑓𝑗(𝛼) ≤ 𝑑𝑓𝑗>𝑅𝛼(𝛼/2) . Thus, using the fact that the Fourier transform is an 

isometry from 𝐿2 into itself, 

‖𝑓𝑗‖𝐿2+𝜖
2+𝜖 ≤ (2 + 𝜖)∫ ∑ 

𝑗

𝛼1+𝜖
∞

0

𝑑𝑓𝑗>𝑅𝛼 (
𝛼

2
)d𝛼

≤ (2 + 𝜖)∫ ∑ 

𝑗

𝛼1+𝜖
∞

0

4

𝛼2
‖(𝑓𝑗)>𝑅𝛼

‖𝐿2
2 d𝛼

= 𝐶∫ ∑ 

𝑗

𝛼𝜖−1
∞

0

‖ℱ ((𝑓𝑗)>𝑅𝛼
) ‖𝐿2

2 d𝛼

= 𝐶∫ 𝛼𝜖−1
∞

0

∫ ∑ 

𝑗

|
 

|𝜉|≥𝑅𝛼

𝑓𝑗(𝜉)|
2d𝜉d𝛼

= 𝐶∫ ∑ 

𝑗

(∫ 𝛼𝜖−1
2𝐶1+𝜖|𝜉|

𝑛
2+𝜖

0

d𝛼)
 

ℝ𝑛
|𝑓𝑗(𝜉)|

2d𝜉

≤ 𝐶∫ ∑ 

𝑗

|
 

ℝ𝑛
𝜉|
𝑛(𝜖)
2+𝜖 |𝑓𝑗(𝜉)|

2d𝜉 = 𝐶, 

since 
𝑛(𝜖)

2+𝜖
= 2(1 + 𝜖) and we took ‖𝑓𝑗‖�̇�1+𝜖 = 1. 

   Thus for 𝑓𝑗 ∈ �̇�
1+𝜖 with ‖𝑓𝑗‖�̇�1+𝜖 = 1 we have ‖𝑓𝑗‖𝐿2+𝜖 ≤ 𝐶, and (55) follows for general 

𝑓𝑗 ∈ �̇�
1+𝜖 on applying this result to 𝑔𝑗 = 𝑓𝑗/‖𝑓𝑗‖�̇�1+𝜖 

Corollary (4.1.28)[222]: [127] There is a fixed 𝜑 ∈ 𝒮 such that if 𝑓𝑗 is supported in (0, 𝑅) , 

then 𝑓𝑗 = (𝔇1/𝑅𝜑) ⋆ 𝑓𝑗 . 

Proof. Take 𝜑 ∈ 𝒮 so that �̂� = 1 on (0,1) . Then 
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𝔇1/𝑅𝜑(𝜉) = �̂�(𝜉/𝑅) 

which is equal to 1 on 𝐵(0, 𝑅) . Thus (𝔇1/𝑅𝜑) ⋆ 𝑓𝑗 − 𝑓𝑗 has Fourier transform zero, and the 

Corollary follows. (57) 

Corollary (4.1.29)[222]: (Weak‐strong Bernstein inequality). Let 0 ≤ 𝜖 < ∞ and suppose 

that 𝑓𝑗 ∈ 𝐿
1+𝜖,∞(ℝ𝑛) and that 𝑓𝑗 is supported in (0, 𝑅) . Then for each 1 + 2𝜖 with 𝜖 < ∞ 

there exists a constant 𝑐1+2𝜖,1+𝜖 such that 

‖∑ 

𝑗

𝑓𝑗‖𝐿1+2𝜖 ≤ 𝑐𝑅
𝑛(

𝜖
(1+2𝜖)(1+𝜖)

)
∑ 

𝑗

‖𝑓𝑗‖𝐿1+𝜖,∞ .                                               (58) 

Proof. We follow the standard proof, replacing Young’s inequality by its weak form, and 

making use of the interpolation result of Lemma (4.1.23). First we prove the weak version 

‖∑ 

𝑗

𝑓𝑗‖𝐿1+2𝜖,∞ ≤ 𝑐𝑅
𝑛(

𝜖
(1+2𝜖)(1+𝜖)

)
∑ 

𝑗

‖𝑓𝑗‖𝐿1+𝜖,∞ 

valid for all 0 ≤ 𝜖 < ∞. To do this we simply apply the weak form of Young’s inequality 

(Proposition (4.1.26)) to 𝑓𝑗 = (𝔇1/𝑅𝜑) ⋆ 𝑓𝑗: 

‖∑ 

𝑗

𝑓𝑗‖𝐿1+2𝜖,∞ =∑ 

𝑗

‖(𝔇1/𝑅𝜑) ⋆ 𝑓𝑗‖𝐿1+2𝜖,∞ ≤ 𝑐∑ 

𝑗

‖𝔇1/𝑅𝜑‖𝐿1+𝜖‖𝑓𝑗‖𝐿1+𝜖,∞ , 

where 

2 + 𝜖

1 + 𝜖
=

2

1 + 𝜖
+

1

1 + 2𝜖
 

with 0 < 𝜖 < ∞. It follows using (57) that 

‖∑ 

𝑗

𝑓𝑗‖𝐿1,∞ ≤ 𝑐𝑅
𝑛(−

ϵ
1+𝜖

)
∑ 

𝑗

‖𝑓𝑗‖𝐿1+𝜖,∞  𝑎𝑛𝑑 ‖∑ 

𝑗

𝑓𝑗‖𝐿2(1+𝜖),∞

≤ 𝑐𝑅
𝑛(
1
2
)
∑ 

𝑗

‖𝑓𝑗‖𝐿1+𝜖,∞ , 

and we then obtain (58) by interpolation of 𝐿1+𝜖 between 𝐿1,∞ and 𝐿2(1+𝜖),∞ (Lemma 

(4.1.23)), 

‖∑ 

𝑗

𝑓𝑗‖𝐿1+𝜖 ≤ 𝑐∑ 

𝑗

‖𝑓𝑗‖𝐿1,∞

1
1+2𝜖‖𝑓𝑗‖𝐿2(1+𝜖),∞

1+𝜖
1+2𝜖 ≤ 𝑐∑ 

𝑗

‖𝑓𝑗‖𝐿1+𝜖,∞  .       

Corollary (4.1.30)[222]: Take ϵ > 0 and 𝜖 ≥ −1 with 𝑛 <
(1+𝜖)(2𝜖−1)

1+2𝜖
 . There exists a 

constant 𝑐1+2𝜖,1+𝜖,1+𝜖  such that if 𝑓𝑗 ∈ 𝐿
1+𝜖,∞(ℝ𝑛) ∩ �̇�1+𝜖(ℝ𝑛) , then 𝑓𝑗 ∈ 𝐿

1+2𝜖(ℝ𝑛) and 
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‖∑ 

𝑗

𝑓𝑗‖𝐿1+2𝜖 ≤ 𝑐1+2𝜖,1+𝜖,1+𝜖∑ 

𝑗

‖𝑓𝑗‖𝐿1+𝜖,∞
𝜃 ‖𝑓𝑗‖�̇�1+𝜖

1−𝜃  for every 𝑓𝑗 ∈ 𝐿
1+𝜖,∞ ∩ �̇�1+𝜖 , (59) 

where 

1

1 + 2𝜖
=

𝜃

1 + 𝜖
+ (1 − 𝜃) (

1

2
−
1 + 𝜖

𝑛
)                                                                (60) 

Proof. First we prove the theorem in the case 𝜖 ≥ 0. As in the proof of Theorem (4.1.27) 

we write 

𝑓𝑗 = (𝑓𝑗)<𝑅 + (𝑓𝑗)>𝑅 , 

where (𝑓𝑗)<𝑅 and (𝑓𝑗)>𝑅 are defined in (56). 

    Using the endpoint Sobolev embedding �̇�
𝑛(

ϵ

2(2+𝜖)
)
(ℝ𝑛) ⊂ 𝐿2+𝜖(ℝ𝑛) from Theorem 

(4.1.27) (taking �̇�0 = 𝐿2 when 𝜖 = 0) we can estimate 

‖∑ 

𝑗

(𝑓𝑗)>𝑅‖𝐿
2+𝜖 ≤ 𝑐∑ 

𝑗

‖(𝑓𝑗)>𝑅‖
�̇�
𝑛(

ϵ
2(2+𝜖)

)
= 𝑐 (∫ ∑ 

𝑗

|
 

|𝜉|≥𝑅

𝜉|
2𝑛(

ϵ
2(2+𝜖)

)
|𝑓𝑗(𝜉)|

2d𝜉)

1
2

≤
𝑐

𝑅
1+𝜖−𝑛(

ϵ
2(2+𝜖)

)
(∫ ∑ 

𝑗

|
 

|𝜉|≥𝑅

𝜉|2(1+𝜖)|𝑓𝑗(𝜉)|
2d𝜉)

1
2

≤
𝑐

𝑅
1+𝜖−𝑛(

ϵ
2(2+𝜖)

)
∑ 

𝑗

‖𝑓𝑗‖�̇�1+𝜖 , 

while 

‖∑ 

𝑗

(𝑓𝑗)<𝑅‖𝐿2+𝜖 ≤ 𝑐𝑅
𝑛(

1
(2+𝜖)(1+𝜖)

)
∑ 

𝑗

‖(𝑓𝑗)<𝑅‖𝐿1+𝜖,∞ ≤ 𝑐𝑅
𝑛(

1
(2+𝜖)(1+𝜖)

)
∑ 

𝑗

‖𝑓𝑗‖𝐿1+𝜖,∞ 

using the weak‐strong Bernstein inequality from Lemma (4.1.29) and (10).  

   Thus 

‖∑ 

𝑗

𝑓𝑗‖𝐿2+𝜖 ≤ 𝑐∑ 

𝑗

(𝑅
𝑛(

1
(2+𝜖)(1+𝜖)

)
‖𝑓𝑗‖𝐿1+𝜖,∞ + 𝑅

−(1+𝜖)+𝑛(
ϵ

2(2+𝜖)
)
‖𝑓𝑗‖�̇�1+𝜖) . 

Choosing 

𝑅
1+𝜖+𝑛(

1−ϵ
1+𝜖

)
=∑ 

𝑗

||𝑓𝑗||�̇�1+𝜖

‖𝑓𝑗‖𝐿1+𝜖,∞
 

we obtain 
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‖∑ 

𝑗

𝑓𝑗‖𝐿2+𝜖 ≤ 𝑐∑ 

𝑗

‖𝑓𝑗‖𝐿1+𝜖,∞
𝜃 ‖𝑓𝑗‖�̇�1+𝜖

1−𝜃 ,                                                           (61) 

where 

𝜃 = 1 − 𝑛

1
(2 + 𝜖)(1 + 𝜖)

1 + 𝜖 + 𝑛 (
1 − 𝜖
1 + 𝜖)

, 

which on rearrangement yields the condition (60). 

   If 0 ≤ 𝜖 < 1, then we first interpolate 𝐿1+2𝜖  between 𝐿1+𝜖,∞ and 𝐿2, and then use the above 

result with 𝜖 =
1

2
. Setting 

1

2
=

𝜃′

1+𝜖
+ (1 − 𝜃′) (

1

2
−
1+𝜖

𝑛
) we have 

‖∑ 

𝑗

𝑓𝑗‖𝐿1+2𝜖 ≤ 𝑐∑ 

𝑗

‖𝑓𝑗‖𝐿1+𝜖,∞

(1+𝜖)(1−2𝜖)
(1+2𝜖)(1−𝜖)

‖𝑓𝑗‖𝐿2

2(𝜖)
(1+2𝜖)(1−𝜖)

≤ 𝑐∑ 

𝑗

‖𝑓𝑗‖𝐿1+𝜖,∞

(1+𝜖)(1−2𝜖)
(1+2𝜖)(1−𝜖)

(𝑐‖𝑓𝑗‖𝐿1+𝜖,∞
𝜃′ ‖𝑓𝑗‖�̇�1+𝜖

1−𝜃′)

2(𝜖)
(1+2𝜖)(1−𝜖)

= 𝑐∑ 

𝑗

‖𝑓𝑗‖𝐿1+𝜖,∞
𝜃 ‖𝑓𝑗‖�̇�1+𝜖

1−𝜃 , 

with 𝜃 given by (60), as required. 

Corollary (4.1.31)[222]: [127] If 𝑓𝑗 ∈ 𝐿1oc
1 (ℝ𝑛) ∩ �̇�𝑛/2(ℝ𝑛) , then 𝑓𝑗 ∈ BMO(ℝ

𝑛) and 

there exists a constant 𝐶 = 𝐶(𝑛) such that 

‖∑ 

𝑗

𝑓𝑗‖BMO ≤ 𝐶∑ 

𝑗

‖𝑓𝑗‖�̇�𝑛/2 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓𝑗 ∈ 𝐿1oc
1 (ℝ𝑛) ∩ �̇�𝑛/2(ℝ𝑛) . 

Proof. We write 𝑓𝑗 = (𝑓𝑗)<𝑅 + (𝑓𝑗)>𝑅 as in the proof of Theorem (4.1.27) and then, 

recalling (29), 

1

|𝑄|
∫ ∑ 

𝑗

|
 

𝑄

𝑓𝑗 − (𝑓𝑗)𝑄|

≤ √𝑛|𝑄|1/𝑛∑ 

𝑗

‖𝛻(𝑓𝑗)<𝑅‖𝐿∞(𝑄) +
1

|𝑄|
∫ ∑ 

𝑗

|
 

𝑄

(𝑓𝑗)>𝑅 − ((𝑓𝑗)>𝑅)𝑄| 

≤ 𝑐𝑛|𝑄|
1
𝑛∫ ∑ 

𝑗

|
 

|𝜉|≤𝑅

𝜉||𝑓𝑗(𝜉)|d𝜉 +
2

|𝑄|1/2
(∫ ∑ 

𝑗

|
 

𝑄

(𝑓𝑗)>𝑅|
2)

1/2
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≤ 𝑐𝑛|𝑄|
1/𝑛𝑅(∫ ∑ 

𝑗

|
 

ℝ𝑛
𝜉|𝑛|𝑓𝑗(𝜉)|

2d𝜉)

1/2

+
2

|𝑄|1/2
(∫ ∑ 

𝑗

|
 

|𝜉|≥𝑅

𝑓𝑗(𝜉)|
2d𝜉)

1/2

 

≤ 𝑐𝑛 [|𝑄|
1
𝑛𝑅 + |𝑄|−

1
2𝑅−

𝑛
2]∑  

𝑗

‖𝑓𝑗‖�̇�𝑛/2. 

Choosing 𝑅 = |𝑄|−1/𝑛 yields 

1

|𝑄|
∫ ∑ 

𝑗

|
 

𝑄

𝑓𝑗 − (𝑓𝑗)𝑄| ≤ 𝐶∑ 

𝑗

‖𝑓𝑗‖�̇�𝑛/2; 

taking the supremum over all cubes 𝑄 ⊂ ℝ𝑛 yields ‖∑  𝑗 𝑓𝑗‖BMO ≤ 𝐶 ∑  𝑗 ‖𝑓𝑗‖�̇�𝑛/2 . □  

Corollary(4.1.32)[222]: [127] Let 𝑄 be any cube in ℝ𝑛. Given 𝑓𝑗 ∈ 𝐿
1(𝑄) and 𝑀 > 0 there 

exists a countable collection {𝑄𝑗0} of disjoint open cubes such that | ∑  𝑗 𝑓𝑗(𝑥)| ≤ 𝑀 for 

almost every 𝑥 ∈ 𝑄 ∖ ⋃ 𝑄𝑗0
 
𝑗0

 and 

𝑀 <
1

|𝑄𝑗0|
∫ ∑ 

𝑗

|
 

𝑄𝑗0

𝑓𝑗(𝑥)|d𝑥 ≤ 2
𝑛𝑀                      (62) 

for every 𝑄𝑗0 . 

   Note that it follows from (62) that 

∑|

 

𝑗0

𝑄𝑗0| ≤
1

𝑀
∫ ∑ 

𝑗

|
 

𝑄

𝑓𝑗|.                                                    (63) 

Proof. Decompose 𝑄, by halving each side, into a collection 𝒬0 of 2𝑛 equal cubes. Select 

one of these cubes �̂� if 

1

|�̂�|
∫ ∑ 

𝑗

|
 

�̂�

𝑓𝑗(𝑥)|d𝑥 > 𝑀.                                       (64) 

Call the selected cubes 𝒞1 and let 𝒬1 = 𝒬0 ∖ 𝒞1. 

   Repeat this process inductively, to produce a set 𝒞 = ⋃ 𝒞𝑗
 
𝑗  of selected cubes, on which 

(64) holds. Note that if �̂� was selected at step 𝑘, then it is contained in a cube 𝑄′ ∈ 𝒬𝑘−1, 

and so 

𝑀 <
1

|�̂�|
∫ ∑ 

𝑗

|
 

�̂�

𝑓𝑗(𝑥)|d𝑥 ≤ 2
𝑛
1

|𝑄|
∫ ∑ 

𝑗

|
 

𝑄′
𝑓𝑗(𝑥)|d𝑥 ≤ 2

𝑛𝑀. 
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Enumerate the countable set 𝒞 of cubes as {𝑄𝑗}𝑗=1
∞
. 

Finally, if 𝑥 ∈ 𝑄 ∖ ⋃ 𝑄𝑗𝑗 , then there exists a sequence of cubes 𝑄𝑘 containing 𝑥 with sides 

shrinking to zero and such that 

1

|𝑄𝑘|
∫ ∑ 

𝑗

|
 

𝑄𝑘

𝑓𝑗(𝑥)|d𝑥 ≤ 𝑀. 

It follows from the Lebesgue Differentiation Theorem that |𝑓𝑗(𝑥)| ≤ 𝑀 for almost every 

𝑥 ∈ 𝑄 ∖ ⋃ 𝑄𝑗
 
𝑗 . 

Corollary (4.1.33)[222]: (See [127]) (John‐Nirenberg inequality). There exist constants 

𝑐 and 𝐶 (depending only on n) such that if 𝑓𝑗 ∈ BMO(ℝ
𝑛) , then for any cube 𝑄 ⊂ ℝ𝑛 

|{𝑥 ∈ 𝑄:∑ 

𝑗

|𝑓𝑗 − (𝑓𝑗)𝑄| > 𝛼}| ≤∑ 

𝑗

𝐶

‖𝑓𝑗||BMO
e−𝑐𝛼/‖𝑓𝑗‖BMO∫ ∑ 

𝑗

|
 

𝑄

𝑓𝑗 − (𝑓𝑗)𝑄|   (65) 

for all 𝛼 ≥ ‖𝑓𝑗‖BMO. 

Proof. We prove the result assuming that ‖𝑓𝑗‖BMO = 1; we then obtain (65) by applying the 

resulting inequality to 𝑓𝑗/‖𝑓𝑗‖BMO. Let 𝐹(𝛼) be the infimum of all numbers such that the 

inequality 

|{𝑥 ∈ 𝑄 ∶  ∑  

𝑗

|𝑓𝑗(𝑥)| > 𝛼}| ≤ 𝐹(𝛼)∫ ∑ 

𝑗

|
 

𝑄

𝑓𝑗|                                            (66) 

holds for all 𝑓𝑗 ∈ 𝐿
1(𝑄) and all cubes 𝑄; note (cf. Lemma (4.1.22)) that 𝐹(𝛼) ≤ 1/𝛼. 

Following the original proof of John & Nirenberg [1] we show that for all 𝛼 ≥ 2𝑛, 

𝐹(𝛼) ≤
1

𝑀
𝐹(𝛼 − 2𝑛𝑀) for all 1 ≤ 𝑀 ≤ 2−𝑛𝛼.                                        (67) 

Given 𝑀 in this range we decompose 𝑓𝑗 using Proposition (4.1.32). Now, if |𝑓𝑗(𝑥)| > 𝛼 ≥

2𝑛, then 𝑥 ∈ 𝑄𝑘 for some 𝑘, and we know that |(𝑓𝑗)𝑄𝑘| ≤ 2
𝑛𝑀 from (62). So then 

|{𝑥 ∈ 𝑄:∑ 

𝑗

|𝑓𝑗(𝑥)| > 𝛼}| ≤∑|

 

𝑘

{𝑥 ∈ 𝑄𝑘:∑  

𝑗

|𝑓𝑗(𝑥) − (𝑓𝑗)𝑄𝑘| > 𝛼 − 2
𝑛𝑀}|. 

We can now use (66) on the cube 𝑄𝑘 for the function 𝑓𝑗 − (𝑓𝑗)𝑄𝑘, so that 
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|{𝑥 ∈ 𝑄𝑘:∑  

𝑗

|𝑓𝑗(𝑥) − (𝑓𝑗)𝑄𝑘| > 𝛼 − 2
𝑛𝑀}| ≤ 𝐹(𝛼 − 2𝑛𝑀)∫ ∑ 

𝑗

|
 

𝑄𝑘

𝑓𝑗 − (𝑓𝑗)𝑄𝑘|d𝑥 

≤ 𝐹(𝛼 − 2𝑛𝑀)|𝑄𝑘| 

(recall that we took ‖𝑓𝑗‖BMO = 1). It follows using (63) that 

|{𝑥 ∈ 𝑄 ∶  ∑  

𝑗

|𝑓𝑗(𝑥)| > 𝛼}| ≤ (∑|

 

𝑘

𝑄𝑘|)𝐹((𝑦 − 2
𝑛𝑀)

≤
1

𝑀
𝐹(𝛼 − 2𝑛𝑀)∫ ∑ 

𝑗

|
 

𝑄

𝑓𝑗|d𝑥, 

which is (67). 

   To finish the proof we iterate (67) in a suitable way. We remarked above that 𝐹(𝛼) ≤ 1/𝛼; 

now observe that 

             
1

𝛼
≤ 𝐶e−𝛼/2

𝑛e    for all     1 ≤ 𝛼 ≤ 1 + 2𝑛e, 

𝐹(𝛼 + 2𝑛e) ≤
≤1

e
𝐹(𝛼), we obtain for C= max1𝛼≤1+2𝑛e𝛼

−1e𝛼/2
𝑛e. Iterating (67) with 𝑀 =

e, which implies that 𝐹(𝛼) ≤ 𝐶e−𝑐𝛼 for all 𝛼 ≥ 1, 

where 𝑐 = 1/2𝑛e, which gives (65). 

 The more usually quoted form of this inequality, 

|{𝑥 ∈ 𝑄:∑ 

𝑗

|𝑓𝑗 − (𝑓𝑗)𝑄| > 𝛼}| ≤ 𝐶∑ 

𝑗

|𝑄|e−𝑐𝛼/‖𝑓𝑗‖BMO , 

follows immediately from the definition of ‖𝑓𝑗‖BMO. 

Corollary (4.1.34)[222]: (See [127])For any 0 < 𝜖 < ∞, if 𝑓𝑗 ∈ 𝐿
1+𝜖,∞(ℝ𝑛) ∩ BMO(ℝ𝑛) , 

then 𝑓𝑗 ∈ 𝐿
1+2𝜖(ℝ𝑛) and there exists a constant 𝐶 = 𝐶(1 + 𝜖, 1 + 2𝜖, 𝑛) such that 

‖∑ 

𝑗

𝑓𝑗‖𝐿1+2𝜖 ≤ 𝐶∑ 

𝑗

‖𝑓𝑗‖𝐿1+𝜖,∞

1+𝜖
1+2𝜖 ‖𝑓𝑗‖BMO

𝜖
1+2𝜖 .                                             (68) 

Proof. First we note that it is a consequence of the John‐Nirenberg inequality from 

Lemma (4.1.33) that if 𝑓𝑗 ∈ BMO ∩ 𝐿
1, then 

𝑑𝑓𝑗(𝛼) ≤ 𝐶e
−𝐶𝛼/‖𝑓𝑗‖BMO‖𝑓𝑗‖𝐿1                                 (69) 

for all 𝛼 > ‖𝑓𝑗‖BMO; this follows by taking |𝑄| → ∞ in (65), since when 𝑓𝑗 ∈ 𝐿
1, 
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|∑  

𝑗

(𝑓𝑗)𝑄| ≤
1

|𝑄|
∫ ∑ 

𝑗

|
 

 

𝑓𝑗| → 0 as |𝑄| → ∞, 

and ∫ |
 

𝑄
𝑓𝑗 − (𝑓𝑗)𝑄|d𝑥 ≤ 2∫ |

 

𝑄
𝑓𝑗|d𝑥. 

   Now take 𝑓𝑗 ∈ BMO with ‖𝑓𝑗‖BMO = 1. Split 𝑓𝑗 = (𝑓𝑗)1− + (𝑓𝑗)1+ as in Lemma (4.1.24). 

Since (𝑓𝑗)1− ∈ 𝐿
∞, ‖∑  𝑗 (𝑓𝑗)1−‖BMO ≤ 2∑  𝑗 ‖(𝑓𝑗)1−‖𝐿∞ ≤ 2 (using (8.2)); thus (𝑓𝑗)1+ =

𝑓𝑗 − (𝑓𝑗)1− ∈ BMO and 

‖∑ 

𝑗

(𝑓𝑗)𝑖+‖BMO ≤∑ 

𝑗

(‖𝑓𝑗‖BMO + ‖𝑓𝑗𝑖−‖BMO) ≤ 3. 

Using Lemma (4.1.24) we know that 

∑ 

𝑗

‖(𝑓𝑗)1−‖𝐿1+2𝜖
1+2𝜖 ≤ 𝐶∑ 

𝑗

‖(𝑓𝑗)1−‖𝐿1+𝜖,∞
1+𝜖 .                                                      (70) 

Also, for (1 + 𝜖,
1+2𝜖

2𝜖
) conjugate, 

‖∑ 

𝑗

(𝑓𝑗)1+‖𝐿1 = ∫ ∑ 

𝑗

|
 

 

(𝑓𝑗)1+| ≤ ∫ ∑ 

𝑗

|
 

 

(𝑓𝑗)1+|
1+4ϵ
1+2ϵ =∑ 

𝑗

‖(𝑓𝑗)1+‖
𝐿
1+4ϵ
1+2ϵ

1+4ϵ
1+2ϵ

≤ 𝑐∑ 

𝑗

‖(𝑓𝑗)1+‖𝐿1

2ϵ 
1+2𝜖‖(𝑓𝑗)1+‖𝐿1+𝜖,∞ 

(since 0 <
2ϵ 

1+2𝜖
< 1 we can use weak‐𝐿1+2𝜖 interpolation), which yields 

‖∑ 

𝑗

(𝑓𝑗)1+‖𝐿1 ≤ 𝑐∑ 

𝑗

‖(𝑓𝑗)1+‖𝐿1+𝜖,∞
1+𝜖 . 

Now we calculate 

‖∑ 

𝑗

(𝑓𝑗)1+‖𝐿1+2𝜖
1+2𝜖 = (1 + 2𝜖)∫ ∑ 

𝑗

𝛼2𝜖
∞

0

𝑑(𝑓𝑗)1+
(𝛼)d𝛼

= (1 + 2𝜖)∫ ∑ 

𝑗

𝛼2𝜖
1

0

𝑑𝑓𝑗(1)d𝛼 + (1 + 2𝜖)∫ ∑ 

𝑗

𝛼2𝜖
∞

1

𝑑(𝑓𝑗)1+
(𝛼)d𝛼

≤∑ 

𝑗

𝑑𝑓𝑗(1) + (1 + 2𝜖) (∫ 𝛼2𝜖
∞

1

𝐶e−𝐶𝛼/3d𝛼)∑ 

𝑗

‖(𝑓𝑗)1+‖𝐿1 , 
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where we have used (52), (69), and the fact that ‖(𝑓𝑗)1+‖BMO ≤ 3. Thus 

‖∑ 

𝑗

(𝑓𝑗)1+‖𝐿1+2𝜖
1+2𝜖 ≤∑ 

𝑗

‖𝑓𝑗‖𝐿1+𝜖,∞
1+𝜖 + 𝐶∑ 

𝑗

‖(𝑓𝑗)1+‖𝐿1+𝜖,∞
1+𝜖 ≤ 𝐶∑ 

𝑗

‖𝑓𝑗‖𝐿1+𝜖,∞
1+𝜖 .      (71) 

Adding (70) and (69) we obtain 

‖∑ 

𝑗

𝑓𝑗‖𝐿1+2𝜖 ≤ 𝐶∑ 

𝑗

‖𝑓𝑗‖𝐿1+𝜖,∞

1+𝜖
1+2𝜖 ; 

(68) follows. 

Corollary (4.1.35)[222]: (Bennett & Sharpley). For 0 ≤ 𝜖 ≤ ∞, 

𝐿1+𝜖,1+𝜖 = (𝐿1, BMO) ϵ
1+𝜖

,1+𝜖
. 

Proof. See Chapter 5, Theorem (4.1.31)1, in Bennett & Sharpley [9]. One can also find a 

proof of this result in the paper by Hanks [137], and of a similar but slightly weaker result 

(with 𝐿1+𝜖 on the left‐hand side) using complex interpolation spaces in the paper by Janson& 

Jones [139]. 

   We note here that the key step in the proof of this result given in Bennett & Sharpley [9] 

(and in Hanks [137]) is a relationship between the sharp function of 𝑓𝑗 , 

(𝑓𝑗)𝑄
#(𝑥):= 𝑄′ ⊂ 𝑄,𝑄′ ∋ 𝑥𝑠𝑢𝑝 

1

|𝑄|
∫ ∑ 

𝑗

|
 

𝑄′
𝑓𝑗 − (𝑓𝑗)𝑄′|, 

its decreasing rearrangement 𝑓𝑗
∗, and the function 𝑓𝑗

∗∗(1 + 𝜖) : =
1

1+𝜖
∫ ∑  𝑗 𝑓𝑗

∗1+𝜖

0
(1 +

3𝜖)d(1 + 3𝜖): 

∑ 

𝑗

𝑓𝑗
∗∗(1 + 𝜖) −∑ 

𝑗

𝑓𝑗
∗(1 + 𝜖) ≤ 𝐶∑ 

𝑗

((𝑓𝑗)𝑄
#)
∗
(1 + 𝜖) 0 < 1 + 𝜖 < |𝑄| 

Corollary (4.1.36)[222]: (Reiteration Corollary). Let (𝑋0, 𝑋1) be a compatible pair of 

Banach spaces, and let 0 ≤ 𝜃0 < 𝜃1 ≤ 1 and 0 ≤ ϵ ≤ ∞. Set 

                𝑌0 = (𝑋0, 𝑋1)𝜃0,1+𝜖     and    𝑌1 = (𝑋0, 𝑋1)𝜃1,1+2𝜖 . 

If 0 < 𝜃 < 1 and 0 ≤ 𝜖 ≤ ∞, then 

(𝑌0, 𝑌1)𝜃,1+𝜖 = (𝑋0, 𝑋1)(1−𝜃)𝜃0+𝜃𝜃1,1+𝜖 . 

Proof. See Theorem 2.4 of Chapter 5 in Bennett & Sharpley [9], or Theorem 3.5.3 in Bergh 

& Löfström [130]. 

Corollary (4.1.37)[222]: (Generalised Gagliardo‐Nirenberg with Lorentz spaces). 

If 𝑢 ∈ 𝐿1+𝜖,∞ ∩ BMO for some 0 < 𝜖 < ∞, then 𝑢 ∈ 𝐿1+2𝜖,1 and there exists a constant 

𝐶𝑛,1+2𝜖,1+𝜖 such that 
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‖𝑢‖𝐿1+2𝜖,1 ≤ 𝐶𝑛,1+2𝜖,1+𝜖‖𝑢‖𝐿1+𝜖,∞

1+𝜖
1+2𝜖 ‖𝑢‖

BMO

𝜖
1+2𝜖 .                                                 (72) 

   Note that given the ordering of Lorentz spaces, 𝐿1+2𝜖,1 ⊂ 𝐿1+2𝜖,1+2𝜖 = 𝐿1+2𝜖 and so this 

result implies Theorem (4.1.34) in the case 𝜖 > 0. 

Proof. Using Theorem (4.1.35), since 𝜖 > 0 we have 

𝐿1+𝜖,1+3𝜖 = (𝐿1, BMO) 𝜖
1+𝜖

,1+3𝜖
; 

set B = (𝐿1, BMO)1,∞. Note that from (43) ‖∑  𝑗 𝑓𝑗‖B ≤ 𝐶∑  𝑗 ‖𝑓𝑗‖BMO. Now simply use 

the Reiteration Theorem to obtain 

𝐿1+2𝜖,1+𝜖 = (𝐿1+𝜖,1+3𝜖 , B) 𝜖
1+2𝜖

,1+𝜖
, 

from which the inequality (72) follows immediately using (43).                               

(One can use interpolation spaces to provide a proof of Theorem (4.1.34) that does not 

involve Lorentz spaces by using interpolation only with 𝜖 = ∞ and then interpolation 

between weak 𝐿1+2𝜖 spaces, see McCormick et al. [143].) 

Corollary (4.1.38)[222]: [127] Suppose that 0 < 𝜖 < ∞. If 𝑓𝑗 ∈ 𝐿
1+2𝜖,∞ and 𝑔𝑗 ∈ 𝐿

1+3𝜖 

with 

2 + 𝜖

1 + 𝜖
=

1

1 + 2𝜖
+

1

1 + 3𝜖
, 

then 𝑓𝑗 ⋆ 𝑔𝑗 ∈ 𝐿
1+𝜖 with 

‖∑ 

𝑗

𝑓𝑗 ⋆ 𝑔𝑗‖𝐿1+𝜖 ≤ 𝑐1+𝜖,1+2𝜖,1+3𝜖∑ 

𝑗

‖𝑓𝑗‖𝐿1+2𝜖,∞‖𝑔𝑗‖𝐿1+3𝜖 .           (73) 

Proof. Note that it follows from the conditions on 1 + 𝜖, 1 + 2𝜖, 1 + 3𝜖 that 𝜖 > 0. Fix 𝑓𝑗 ∈

𝐿1+2𝜖,∞ with ‖𝑓𝑗‖𝐿1+2𝜖,∞ = 1, and consider the linear operator 𝑇(𝑔𝑗) = 𝑓𝑗 ⋆ 𝑔𝑗. Since 0 <

𝜖 < ∞ we can find ϵ ≥ 0, and (11.1) holds. Now using the weak form of Young’s inequality 

from Proposition (4.1.26),  

‖∑ 

𝑗

(𝑓𝑗 ⋆ 𝑔𝑗)‖𝐿1+2𝜖,∞ ≤ 𝐶∑ 

𝑗

‖𝑔𝑗‖𝐿1+𝜖    𝑎𝑛𝑑    ‖∑  

𝑗

(𝑓𝑗 ⋆ 𝑔𝑗)‖𝐿1+3𝜖,∞

≤ 𝐶∑ 

𝑗

‖𝑔𝑗‖𝐿1+2𝜖 . 

We can now use the Marcinkiewicz interpolation theorem to guarantee that 

‖∑ 

𝑗

(𝑓𝑗 ⋆ 𝑔𝑗)‖𝐿1+𝜖 ≤ 𝐶∑ 

𝑗

‖𝑔𝑗‖𝐿1+𝜖 . 
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Since 𝑓𝑗 ⋆ 𝑔𝑗 is also linear in 𝑓𝑗, we obtain (73). 

Corollary (4.1.39)[222]: For 0 < 𝜖 < ∞ there exists a constant 𝑐 = 𝑐𝑛,2+𝜖 such that if 𝑓𝑗 ∈

�̇�1+3𝜖(ℝ𝑛) with 𝑠 = 𝑛 (
𝜖

2(2+𝜖)
) , then 𝑓𝑗 ∈ 𝐿

2+𝜖(ℝ𝑛) and ‖∑  𝑗 𝑓𝑗‖𝐿2+𝜖 ≤ 𝑐∑  𝑗 ‖𝑓𝑗‖�̇�1+3𝜖 . 

Proof. We make the pointwise definition ∑  𝑗 𝑓𝑗(𝜉) = |𝜉|
1+3𝜖 ∑  𝑗 𝑓𝑗(𝜉) ; since 𝑓𝑗 ∈

�̇�1+3𝜖(ℝ𝑛), 𝛾 ∈ 𝐿2(ℝ𝑛) . If we set 𝑔𝑗 = ℱ
−1𝛾, then 𝑔𝑗 ∈ 𝐿

2(ℝ𝑛) and ‖𝑔𝑗‖𝐿2 = ‖𝛾‖𝐿2 =

‖𝑓𝑗‖�̇�1+3𝜖. Now, 

∑ 

𝑗

𝑓𝑗(𝜉) =∑ 

𝑗

|𝜉|1+3𝜖𝑓𝑗(𝜉)

|𝜉|1+3𝜖
=∑ 

𝑗

�̂�𝑗(𝜉)|𝜉|
−(1+3𝜖), 

and so 𝑓𝑗 = 𝑔𝑗 ⋆ 𝑐𝑛
−1 𝑃𝑛−(1+3𝜖)𝑛−(1+3𝜖)

 . Since 𝑃𝑛−(1+3𝜖) ∈ 𝐿
𝑛

𝑛−(1+3𝜖)
,∞

 and 𝑔𝑗 ∈ 𝐿
2 it follows 

from Theorem (4.1.38) that 𝑓𝑗 ∈ 𝐿
2+𝜖(ℝ𝑛) . 

Section (4.2): Lorentz Spaces and BMO with H�̈�lder Spaces and Fractional Sobolev 

Spaces 

We  prove some generalized Gagliardo‐Nirenberg interpolation inequalities involving 

the Lorentz spaces 𝐿𝑝,𝛼 , BMO, and the fractional Sobolev spaces 𝑊𝑠,𝑝, including also �̇�𝜂 

Hölder spaces. 

It is well known that the Gagliardo‐Nirenberg inequality plays an important role in the 

analysis of PDEs, and the references therein. Thus, any possible improvement of this one 

could be relevant for many purposes. We recall some previous results involving the 

Gagliardo‐Nirenberg inequalities that we shall improve later: 

For any 1 ≤ 𝑞 < 𝑝 < ∞, the following interpolation inequality holds (see Nirenberg [134]) 

‖𝑓‖𝐿(ℝ𝑛)𝑝 ≤ 𝑐‖𝑓‖𝐿(ℝ𝑛)
𝜃𝑞 ‖𝑓‖�̇�𝑠(ℝ𝑛)

1−𝜃 ,
1

𝑝
=
𝜃

𝑞
+ (1 − 𝜃) (

1

2
−
𝑠

𝑛
) .            (74) 

In [133], McCormick et al. proved a stronger version of (74) involving the weak 𝐿𝑞 space 

(denoted as 𝐿𝑞,∞) as follows: 

‖𝑓‖𝐿(ℝ𝑛)𝑝 ≤ 𝑐‖𝑓‖𝐿(ℝ𝑛)
𝜃𝑞,∞ ‖𝑓‖�̇�𝑠(ℝ𝑛)

1−𝜃 .                         (75) 

Concerning the critical case 𝑠 = 𝑛/2, McCormick et al. [133] obtained 

‖𝑓‖𝐿(ℝ𝑛)𝑝 ≤ 𝐶‖𝑓‖𝐿,(ℝ𝑛)
𝑞/𝑞𝑝 ∞‖𝑓‖𝐵𝑀𝑂(ℝ𝑛)

1−𝑞/𝑝
.                       (76) 

Note that (76) is better than (75) since ‖𝑓‖𝐵𝑀𝑂(ℝ𝑛) ≤ 𝑐‖𝑓‖
�̇�
𝑛
2(ℝ𝑛)

. Furthermore, they also 

showed a stronger version of inequality (76) for the norm ‖𝑓‖𝐿𝑝,1(ℝ
𝑛) instead of ‖𝑓‖𝐿(ℝ𝑛)𝑝 

when 𝑞 > 1. 
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Another version of (74), in the critical case, was proved by Kozono and Wadade [98] (see 

also [128]): 

‖𝑓‖𝐿𝑝(ℝ𝑛) ≤ 𝑐‖𝑓‖𝐿(ℝ𝑛)

𝑞
𝑝

‖𝑓‖
�̇�
𝑛
𝑟
,𝑟(ℝ𝑛)

1−
𝑞
𝑝

,                      (77) 

for any 1 ≤ 𝑞 < 𝑝 < ∞, and for 1 < 𝑟 < ∞. 

we enhance the results of McCormick et al., [9]. We shall prove a stronger version of (75) 

‖𝑓‖𝐿p,𝛼(ℝ
𝑛) ≤ 𝑐‖𝑓‖

𝐿(ℝ𝑛)

𝜃𝑞,∞ ‖𝑓‖�̇�𝑠(ℝ𝑛)
1−𝜃 .                           (78) 

In fact, we shall prove an interpolation inequality which implies (78) After that, we shall 

prove that (76) holds for ‖𝑓‖𝐿p,𝛼 instead of ‖𝑓‖𝐿𝑝, for any 𝛼 > 0. Finally, we shall study 

the Gagliardo‐Nirenberg type inequality for the case 𝑠𝑝 > 𝑛 of the fractional Sobolev space 

𝑊𝑠,𝑝 , and also the Lipschitz and Hölder continuous space. We point out that although some 

of the results can be alternatively obtained by using interpolation spaces (specifically, the 

reiteration theorem), the precise forms of the inequalities stated here appear to be novel and, 

moreover, the proofs given in the present are self‐contained (save for the use of the John‐

Nirenberg inequality for the BMO result, which will be recalled later) in contrast to the other 

mentioned approach. 

For the reader convenience, We recall here the definition of the functional spaces that we 

use throughout We define 

‖𝑔‖𝐿𝑞,𝛼(ℝ
𝑛):= {

(𝑞∫ (
∞

0

𝜆𝑞|{𝑥 ∈ ℝ𝑛: |𝑔(𝑥)| > 𝜆}|)
𝛼
𝑞
𝑑𝜆

𝜆
)1/𝛼 if 𝛼 < ∞,

sup
𝜆>0

  𝜆(|{𝑥 ∈ ℝ𝑛: |𝑔(𝑥)| > 𝜆}|)1/𝑞 if 𝛼 = ∞.
 

The Lorentz spaces 𝐿𝑞,𝛼(ℝ𝑛) includes all measurable functions 𝑔:ℝ𝑛 → ℝ such that 

‖𝑔‖𝐿𝑞,𝛼(ℝ
𝑛) < ∞. For a definition of Lorentz spaces using rearrangement techniques see 

[150]. 

On the other hand, we recall that the space �̇�𝑠,𝑟(ℝ𝑛) , the homogeneous Sobolev space, is 

defined by 

�̇�𝑠,𝑟(ℝ𝑛) = {𝑓 ∈ 𝑆′(ℝ𝑛): ‖(−𝛥)
𝑠
2𝑓‖𝐿𝑟 < ∞}. 

In particular, we shall denote �̇�𝑠(ℝ𝑛) = �̇�𝑠,2(ℝ𝑛) (see, [136]). 

We denote the space of Lipschitz (or Hölder) continuous functions of order 𝜂 ∈ (0,1] on ℝ𝑛 

by �̇�𝜂(ℝ𝑛) : i.e. functions 𝑓 such that 

sup
𝑥≠𝑦

  
|𝑓(𝑥) − 𝑓(𝑦)|

|𝑥 − 𝑦|𝜂
< ∞. 

It is useful to introduce the notation 

‖𝑓‖�̇�(ℝ𝑛)𝜂 = sup
𝑥≠𝑦

  
|𝑓(𝑥) − 𝑓(𝑦)|

|𝑥 − 𝑦|𝜂
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On the other hand, if 𝑠 ∈ (0,1) , then we recall 𝑊𝑠,𝑝(ℝ𝑛) the fractional Sobolev space, 

endowed with the norm: 

‖𝑓‖𝑊𝑠,𝑝(ℝ𝑛) = (‖𝑓‖𝐿(ℝ𝑛)
𝑝

𝑝 +∫ ∫
|𝑓(𝑥) − 𝑓(𝑦)|𝑝

|𝑥 − 𝑦|𝑛+𝑠𝑝ℝ𝑛ℝ𝑛
𝑑𝑥𝑑𝑦)

1
𝑝

 

When 𝑠 > 1, and 𝑠 is not an integer, we write 𝑠 = 𝑚 + 𝜎, with 𝑚 is an integer and 𝜎 ∈
(0,1) . Then, 𝑊𝑠,𝑝(ℝ𝑛) is endowed with the norm (see, e.g. [147]): 

‖𝑓‖𝑊𝑠,𝑝(ℝ𝑛) = (‖𝑓‖𝑊𝑚,𝑝(ℝ𝑛)
𝑝

+ ∑ ‖

|𝛼|=𝑚

𝐷𝛼𝑓‖𝑊𝜎,𝑝(ℝ𝑛)
𝑝

)

𝑝

 

Note that if 𝑠 ≥ 0 is an integer, then 𝑊𝑠,𝑝(ℝ𝑛) is the usual Sobolev space. 

Finally, concerning the space of functions with bounded mean oscillation (denoted as 𝐵𝑀𝑂) 

see [4]. 

First of all, we show an interpolation inequality which is regarded as a generalized version 

of (75). 

Theorem (4.2.1)[146]. Let 0 < 𝑞 < 𝑝 < 𝑟 ≤ ∞ and 𝛼 > 0. If ∈ 𝐿𝑞,∞(ℝ𝑛) ∩ 𝐿𝑟,∞(ℝ𝑛) , 

then 𝑓 ∈ 𝐿𝑝,𝛼(ℝ𝑛) and 

‖𝑓‖𝐿𝑝,𝛼(ℝ
𝑛) ≤ 𝐶‖𝑓‖𝐿(ℝ𝑛)

𝜃 𝑞,∞‖𝑓‖𝐿𝑟,∞(ℝ𝑛)
1−𝜃 ,                  (79) 

where 𝐶 = 𝐶(𝑞, 𝑟, 𝑝, 𝛼) > 0, and 

1

𝑝
=
𝜃

𝑞
+
1 − 𝜃

𝑟
. 

Proof. Let us write 

‖𝑓‖𝐿𝑝,𝛼
𝛼 (ℝ𝑛) = 𝑝∫ 𝜆𝛼

𝜆0

0

|{|𝑓| > 𝜆}|𝛼/𝑝
𝑑𝜆

𝜆
+ 𝑝∫ 𝜆𝛼

∞

𝜆0

|{|𝑓| > 𝜆}|𝛼/𝑝
𝑑𝜆

𝜆
.        (80) 

Since ∈ 𝐿𝑞,∞(ℝ𝑛) ∩ 𝐿𝑟,∞(ℝ𝑛) , we have 

∫ 𝜆𝛼
𝜆0

0

|{|𝑓| > 𝜆}|𝛼/𝑝
𝑑𝜆

𝜆
≤ ∫ 𝜆𝛼

𝜆0

0

(
‖𝑓‖𝐿(ℝ𝑛)

𝑞
𝑞,∞

𝜆𝑞
)

𝛼/𝑝
𝑑𝜆

𝜆
=
‖𝑓||𝐿(ℝ𝑛)

𝛼𝑞/𝑝
𝑞,∞

𝛼(1 − 𝑞/𝑝)
𝜆0
𝛼(1−𝑞/𝑝)

,  

and 

∫ 𝜆𝛼
∞

𝜆0

|{|𝑓| > 𝜆}|𝛼/𝑝
𝑑𝜆

𝜆
≤ ∫ 𝜆𝛼

∞

𝜆0

(
‖𝑓‖𝐿𝑟,∞(ℝ𝑛)

𝑟

𝜆𝑟
)

𝛼/𝑝
𝑑𝜆

𝜆
=
||𝑓||𝐿𝑟,∞(ℝ𝑛)

𝛼𝑟/𝑝

𝛼(𝑟/𝑝 − 1)
𝜆0
𝛼(1−𝑟/𝑝)

.   

‖𝑓‖𝐿𝑝,𝛼
𝛼 (ℝ𝑛) ≤ 𝑝 (

‖𝑓||𝐿(ℝ𝑛)
𝛼𝑞/𝑝

𝑞,∞

𝛼(1 − 𝑞/𝑝)
𝜆0
𝛼(1−𝑞/𝑝)

+
‖𝑓||𝐿𝑟,∞(ℝ𝑛)

𝛼𝑟/𝑝

𝛼(𝑟/𝑝 − 1)
𝜆0
𝛼(1−𝑟/𝑝)

) 

Now, we equalize the right hand side of the above inequality by choosing 

𝜆0
𝑟−𝑞

=
||𝑓||𝐿𝑟,∞(ℝ𝑛)

𝑟

||𝑓||
𝐿(ℝ𝑛)

𝑞𝑞,∞
. 
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As a consequence of Theorem (4.2.1), we have 

Corollary (4.2.2)[146]. Let 1 ≤ q < p, and s ≥ 0 with s > n(1/2 − 1/p) . For any α > 0, 

there is a constant C = C(n, p, q, s, α) such that if f ∈ Lq,∞(ℝn) ∩ Ḣs(ℝn) then f ∈ Lp,α(ℝn) 
and 

‖𝑓‖𝐿𝑝,𝛼(ℝ
𝑛) ≤ 𝐶‖𝑓‖

𝐿(ℝ𝑛)

𝜃𝑞,∞ ‖𝑓‖�̇�𝑠(ℝ𝑛)
1−𝜃 ,                           (81) 

with 

1

𝑝
=
𝜃

𝑞
+ (1 − 𝜃) (

1

2
−
𝑠

𝑛
) . 

Concerning the critical case 𝑠 = 𝑛/2, we have the following result. 

Proof. For any 𝑟 > 2, it follows from the Sobolev embedding theorem 

‖𝑓‖𝐿𝑟(ℝ𝑛) ≤ 𝐶(𝑛, 𝑟)‖𝑓‖�̇�𝑠(ℝ𝑛), 𝑤𝑖𝑡ℎ 𝑠 = 𝑛 (
1

2
−
1

𝑟
) . 

Take 𝑟 > 𝑝, we have 𝑠 > 𝑛 (
1

2
−
1

𝑝
) . By noting that ‖𝑓‖𝐿𝑟,∞(ℝ𝑛) ≤ ‖𝑓‖𝐿𝑟(ℝ𝑛), and inserting 

the last inequality into the right hand side of (79) yield the result.  

Theorem (4.2.3)[146]. Let 1 < 𝑞 < 𝑝 < ∞ and 𝛼 > 0. If ∈ 𝐿𝑞,∞(ℝ𝑛) ∩ 𝐵𝑀𝑂(ℝ𝑛) , then 

𝑓 ∈ 𝐿𝑝,𝛼(ℝ𝑛) , and there is a constant 𝐶 = 𝐶(𝑞, 𝑝, 𝑛, 𝛼) > 0 such that 

‖𝑓‖𝐿𝑝,𝛼(ℝ
𝑛) ≤ 𝐶‖𝑓‖

𝐿(ℝ𝑛)

𝑞
𝑝

𝑞,∞‖𝑓‖
𝐵𝑀𝑂(ℝ𝑛)

1−
𝑞
𝑝

.                 (82) 

Finally, we obtain the Gagliardo‐Nirenberg inequality for the 𝜂‐Hölder space, and the 

fractional Sobolev space 𝑊𝑠,𝑝(ℝ𝑛) with 𝑠 ∈ (0,1) such that 𝑠𝑝 > 𝑛. 
Proof. It suffices to prove that holds for ‖𝑓‖𝐵𝑀𝑂(ℝ𝑛) = 1, then we obtain (82) by applying 

the resulting inequality to 𝑓/‖𝑓‖𝐵𝑀𝑂(ℝ𝑛). Let us split 𝑓 = 𝑓1− + 𝑓1+, with 𝑓1− = 𝑓𝜒{|𝑓|≤1}, 

and 𝑓1+ = 𝑓𝜒{|𝑓|>1}, with 𝜒𝐴(𝑥) = {0’
1 , if x∉ 𝐴if𝑥 ∈ 𝐴. 

Then, 

‖𝑓1−‖𝐿𝑝,𝛼
𝛼 (ℝ𝑛) = 𝑝∫ 𝜆𝛼

∞

0

|{|𝑓1−| > 𝜆}|
𝛼/𝑝

𝑑𝜆

𝜆
= 𝑝∫ 𝜆𝛼

1

0

|{|𝑓1−| > 𝜆}|
𝛼/𝑝

𝑑𝜆

𝜆
. (83) 

On the other hand, we have from 𝑓 ∈ 𝐿𝑞,∞(ℝ𝑛) 

|{|𝑓1−| > 𝜆}| ≤ |{|𝑓| > 𝜆}| ≤
‖𝑓‖𝐿(ℝ𝑛)

𝑞
𝑞,∞

𝜆𝑞
.                      (84) 

Combining (83) and (84) yields 

‖𝑓1−‖𝐿𝑝,𝛼
𝛼 (ℝ𝑛) ≤ 𝑝∫ 𝜆𝛼

1

0

(
‖𝑓‖𝐿(ℝ𝑛)

𝑞
𝑞,∞

𝜆𝑞
)

𝛼/𝑝
𝑑𝜆

𝜆
=

𝑝

𝛼(1 − 𝑞/𝑝)
‖𝑓‖𝐿𝑞,∞

𝛼𝑞/𝑝(ℝ𝑛)
. 

Or 

‖𝑓1−‖𝐿𝑝,𝛼(ℝ
𝑛) ≤ 𝐶1(𝑝, 𝑞, 𝛼)‖𝑓‖𝐿,(ℝ𝑛)

𝑞/𝑞𝑝 ∞.                    (85) 
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Next, we estimate 

‖𝑓1+‖𝐿𝑝,𝛼
𝛼 (ℝ𝑛) = 𝑝∫ 𝜆𝛼

∞

0

| {|𝑓1+| > 𝜆}|
𝛼
𝑝
𝑑𝜆

𝜆
 

= 𝑝∫ 𝜆𝛼
∞

1

|{|𝑓1+| > 𝜆}|
𝛼/𝑝

𝑑𝜆

𝜆
.                      (86) 

To estimate the level set {|𝑓1+| > 𝜆} involving ‖𝑓‖𝐵𝑀𝑂, we recall the following result, 

which is a consequence of John‐Nirenberg inequality, [6] (see also Corollary 2.2, [8]): 

Theorem (4.2.4)[146]. Let 0 < 𝑞 < 𝑝 < ∞, 𝛼 > 0, and 𝜂 ∈ (0,1) . If ∈ 𝐿𝑞,∞(ℝ𝑛) ∩

�̇�𝜂(ℝ𝑛) , then 𝑓 ∈ 𝐿𝑝,𝛼(ℝ𝑛) and 

‖𝑓‖𝐿𝑝,𝛼(ℝ
𝑛) ≤ 𝐶‖𝑓‖

𝜂+
𝑛
𝑝

𝐿𝑞𝜂+
𝑛
∞𝑞‖𝑓‖

𝑛
𝑞
−
𝑛
𝑝

�̇�(ℝ𝑛
𝑛
𝑞𝜂
+𝜂
.                    (87) 

We point out that the use of Hölder spaces in such Gagliardo‐Nirenberg’s inequalities seems 

to be new in the literature. As a consequence of Theorem (4.2.4) and the embedding 

𝑊𝑠,𝑟(ℝ𝑛) ⊂ �̇�𝜂(ℝ𝑛) , with 𝜂 =
𝑠𝑟−𝑛

𝑟
 (see [129]), we get the following result. 

Proof. For any 𝜀 > 0, let us put 

𝜌𝜉𝑗(𝑥):=
𝜒{|𝑥|≤𝜀}(𝑥)

|𝐵∈(0)|
. 

Step 1: If 𝑞 > 1, by [133], we have 

‖𝑓 ∗ 𝜌𝜀‖𝐿𝑝,∞(ℝ𝑛) ≤ 𝐶‖𝑓‖𝐿𝑞,∞(ℝ𝑛)‖𝜌𝜀‖𝐿𝑝0(ℝ𝑛), 

where 

1

𝑝
+ 1 =

1

𝑞
+
1

𝑝0
. 

Note that ‖𝜌𝜀‖𝐿𝑝0(ℝ𝑛) = 𝐶(𝑛, 𝑝0)𝜀
−𝑛(

1

𝑞
−
1

p
)
. Thus, 

‖𝑓 ∗ 𝜌𝜀‖𝐿𝑝,∞(ℝ𝑛) ≤ 𝐶𝜀
−𝑛(

1
𝑞
−
1
𝑝
)
‖𝑓‖𝐿𝑞,∞(ℝ𝑛).               (88) 

Similarly, we also have 

‖𝑓 ∗ 𝜌𝜉𝑗‖𝐿𝑞,∞(ℝ𝑛) ≤ 𝐶‖𝑓‖𝐿𝑞,∞(ℝ𝑛).                     (89) 

Applying (79) to the function (𝑓 − 𝑓 ∗ 𝜌𝜀) in Theorem 2.1 yields 

‖𝑓 − 𝑓 ∗ 𝜌∈i‖𝐿(ℝ𝑛)𝑝 ≤ 𝐶‖𝑓 − 𝑓 ∗ 𝜌∈‖𝐿𝑞,∞

𝑞
𝑝

‖𝑓 − 𝑓 ∗ 𝜌𝜀‖𝐿∞
1−
𝑞
𝑝
 

≤ 𝐶1(‖𝑓‖𝐿𝑞,∞(ℝ𝑛) + ‖𝑓 ∗ 𝜌𝜀‖𝐿𝑞,∞(ℝ𝑛))
𝑞
𝑝‖𝑓 − 𝑓 ∗ 𝜌𝜀;‖𝐿∞(ℝ𝑛)

1−
𝑞
𝑝

. 

It follows from the last inequality and (89) that there exists a constant, still denoted by 𝐶 

such that 
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‖𝑓 − 𝑓 ∗ 𝜌𝜀‖𝐿𝑝(ℝ𝑛)𝑝 ≤ 𝐶‖𝑓‖𝐿𝑞,∞(ℝ𝑛)

𝑞
𝑝

‖𝑓 − 𝑓 ∗ 𝜌𝜀‖𝐿∞(ℝ𝑛)
1−
𝑞
𝑝

.         (90) 

Since for all 𝑥 ∈ ℝ𝑛, 

|𝑓(𝑥) − 𝑓 ∗ 𝜌𝜀(𝑥)| ≤ ∮ |

𝐵𝜀(0)

𝑓(𝑥 − 𝑦) − 𝑓(𝑥)|𝑑𝑦 

≤ ∮ |

𝐵𝜀(0)

𝑦|𝜂‖𝑓‖�̇�(ℝ𝑛)𝜂𝑑𝑦 

≤ 𝐶𝜀𝜂‖𝑓‖�̇�(ℝ𝑛)𝜂. 

Or 

‖𝑓 − 𝑓 ∗ 𝜌𝜀‖𝐿∞(ℝ𝑛) ≤ 𝐶𝜀
𝜂‖𝑓‖�̇�(ℝ𝑛)𝜂. 

By inserting the last inequality into (90), we obtain 

‖𝑓 − 𝑓 ∗ 𝜌𝜉𝑗‖𝐿𝑝(ℝ𝑛)𝑝 ≤ 𝐶𝜀
𝜂(1−

𝑞
𝑝
)
‖𝑓‖

𝐿𝑞,∞(ℝ𝑛)

𝑞
𝑝

‖𝑓‖
�̇�(ℝ𝑛)

1−
𝑞
𝑝
𝜂.                (91) 

Combining (91) with (88) yields 

‖𝑓‖𝐿𝑝,∞(ℝ𝑛) ≤ 𝐶 (∈
−𝑛(

1
𝑞
−
1
𝑝
)
‖𝑓‖𝐿𝑞,∞(ℝ𝑛) + 𝜀

𝜂(1−
𝑞
𝑝
)
‖𝑓‖

𝐿𝑞,∞(ℝ𝑛)

𝑞
𝑝

‖𝑓‖
�̇�(ℝ𝑛)

1−
𝑞
𝑝
𝜂) .    (92) 

By choosing 𝜀 = (
‖𝑓‖𝐿𝑞,∞(ℝ𝑛)

‖𝑓‖𝐶𝜂(ℝ𝑛)
)

1
𝑛
𝑞
+𝜂

 in (92), we obtain with 𝛼 = ∞ and 𝑞 > 1. 

Step 2: If 0 < 𝑞 ≤ 1, we set for any 𝛿 ∈ (0, 𝑞) : 

𝑔 = |𝑓|𝑞−1−𝛿𝑓, 𝑝1 =
𝑝

𝑞 − 𝛿
, 𝑞1 =

𝑞

𝑞 − 𝛿
, 𝜂1 = 𝜂(𝑞 − 𝛿) . 

Thanks to Step 1, we obtain 

‖𝑔‖𝐿𝑝1,∞(ℝ𝑛) ≤ 𝐶‖𝑔‖(ℝ𝑛)

𝜂1+
𝑛
𝑝1

𝐿𝑞1𝜂1+
𝑛
∞𝑞1‖𝑔‖

𝑛
𝑞1
−
𝑛
𝑝1

�̇�(ℝ𝑛
𝑛

𝑞1𝜂1
+𝜂1) .              (93) 

Next, we have the following inequality 

||𝑎|𝑠−1𝑎 − |𝑏|𝑠−1𝑏| ≤ 𝐶𝑠|𝑎 − 𝑏|
𝑠, ∀𝑎, 𝑏 ∈ ℝ𝑛, 𝑠 ∈ (0,1) . 

By applying this inequality with 𝑎 = 𝑓(𝑥), 𝑏 = 𝑓(𝑦) , and 𝑠 = 𝑞 − 𝛿, we obtain 

||𝑓(𝑥)|𝑞−1−𝛿𝑓(𝑥) − |𝑓(𝑦)|𝑞−1−𝛿𝑓(𝑦)| ≤ |𝑓(𝑥) − 𝑓(𝑦)|𝑞−𝛿 , 
which implies 

‖𝑔‖𝐶𝜂1(ℝ𝑛) = ‖|𝑓|
𝑞−1−𝛿𝑓‖𝐶𝜂1(ℝ𝑛) ≤ ‖𝑓‖�̇�(ℝ𝑛)

𝑞−𝛿
𝜂.             (94) 

Note that 

‖𝑓‖𝐿𝑚,∞(ℝ𝑛) = ‖|𝑓|
𝑠−1𝑓‖

𝐿
𝑚𝑠
𝑠
,∞(ℝ𝑛)

1/
, ∀𝑚, 𝑠 > 0.                    (95) 

Then, a combination of (93), (94), and (95) yields 
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‖𝑓‖𝐿𝑝,∞(ℝ𝑛)
𝑞−𝛿

≤ 𝐶‖𝑓‖𝑞,∞‖𝑓‖�̇�(ℝ𝑛(𝑞 − 𝛿)
𝜂 +

𝑛
𝑝

𝜂 +
𝑛
)𝑞
,ℝ𝑛

(𝑞 − 𝛿)

𝑛
𝑞
−
𝑛
𝑝

)
𝑛
𝑞
+ 𝜂

 

Or holds for 𝛼 = ∞, and 0 < 𝑞 ≤ 1. 

Step 3: Finally, holds for any 𝛼 > 0 and 𝑞 > 0. 

In fact, let 𝑞 < 𝑝2 < 𝑝 < 𝑝3 < ∞ be such that 

1

𝑝
=
𝜃

𝑝2
+
1 − 𝜃

𝑝3
. 

We have 

‖𝑓‖𝐿𝑝,𝛼(ℝ
𝑛) ≤ 𝐶‖𝑓‖𝐿𝑝2,∞(ℝ𝑛)

𝜃 ‖𝑓‖𝐿𝑝3,(ℝ𝑛)
1−𝜃∞ .                (96) 

By Step 1 and Step 2, we proved that (87) is true with = ∞ , so 

‖𝑓‖𝐿𝑝𝑖,𝛼(ℝ𝑛) ≤ 𝐶‖𝑓‖

𝜂+
𝑛
𝑝𝑖

𝐿𝑞𝜂+
𝑛
∞𝑞‖𝑓‖

𝑛
𝑞
−
𝑛
𝑝𝑖

�̇�(ℝ𝑛
𝑛
𝜂𝑞
+𝜂
, 𝑖 = 2,3. 

From the last inequality and (96), we deduce 

‖𝑓‖𝐿𝑝,𝛼(ℝ
𝑛)

≤ 𝐶 (‖𝑓‖𝐿𝑞,𝛼 

𝜂 +
𝑛
𝑝2

𝜂 +
𝑛
𝑞

‖𝑓‖

𝑛
𝑞
−
𝑛
𝑝2

�̇�(ℝ𝑛)
𝑛
𝑞
+ 𝜂

)

𝜃

(‖𝑓‖𝐿𝑞,𝛼(ℝ𝑛)

𝜂 +
𝑛
𝑝3

𝜂 +
𝑛
𝑞

‖𝑓‖�̇�(ℝ𝑛)

𝑛
𝑞
−
𝑛
𝑝3

𝑛
𝑞
+ 𝜂

)

1−𝜃

 

= 𝐶‖𝑓‖𝐿𝑞,𝛼 

𝜂+
𝑛
𝑝

𝜂+
𝑛
𝑞‖𝑓‖�̇�(ℝ𝑛) 

𝑛
𝑞
−
𝑛
𝑝

𝑛
𝑞
+𝜂
, 

which implies (87).  

Finally, follows immediately from Theorem(4.2.4) using the embedding 𝑊𝑠,𝑟 ⊂ �̇�𝜂, with 

𝜂 =
𝑠𝑟−𝑛

𝑟
. Then we leave it to the reader. 

Corollary (4.2.5)[146]. Let 0 < 𝑞 < 𝑝 < ∞, and 𝛼 > 0. Let 𝑠, 𝑟 > 0 be such that 𝑠𝑟 > 𝑛, 

and 𝜂 =
𝑠𝑟−𝑛

𝑟
. If ∈ 𝐿𝑞,∞(ℝ𝑛) ∩𝑊𝑠,𝑟(ℝ𝑛) , then 𝑓 ∈ 𝐿𝑝,𝛼(ℝ𝑛) and 

‖𝑓‖𝐿𝑝,𝛼(ℝ
𝑛) ≤ 𝐶‖𝑓‖

(ℝ𝑛)

𝜂+
𝑛
𝑝

𝐿𝑞𝜂+
𝑛
∞𝑞
‖𝑓‖

(ℝ𝑛)

𝑛
𝑞
−
𝑛
𝑝

𝑊𝑠,𝑟𝑛
𝑞
+𝜂
.                       (97) 

We also note that there is an alternative approach using interpolation spaces (specifically, 

the reiteration theorem). We emphasize that in contrast to that approach, the proofs given in 

are self‐contained. 

Lemma (4.2.6)[146]. If ∈ 𝐵𝑀𝑂(ℝ𝑛) ∩ 𝐿1(ℝ𝑛) , then there exists a constant 𝐶 = 𝐶(𝑛) > 0 

such that 

|{|𝑔| > 𝜆}| ≤ 𝐶𝑒
−𝐶𝜆/‖𝑔‖𝐵𝑀𝑂(R𝑛)‖𝑔‖𝐿1(ℝ𝑛), 
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for all 𝜆 > ‖𝑔‖𝐵𝑀𝑂(ℝ𝑛). 

We refer the reader in[8] (see also in [9]). 

Now, we apply to 𝑓1+ to get 

|{|𝑓1+| > 𝜆}| ≤ 𝐶𝑒
−𝐶𝜆/‖‖𝐵𝑀𝑂𝑓1 + ‖𝑓1+‖𝐿1(ℝ𝑛). 

Note that ‖𝑓1−‖𝐵𝑀𝑂 ≤ 2‖𝑓1−‖𝐿∞(ℝ𝑛) ≤ 2, so 

‖𝑓1+‖𝐵𝑀𝑂(ℝ𝑛) ≤ ‖𝑓1‖𝐵𝑀𝑂(ℝ𝑛) + ‖𝑓1−‖𝐵𝑀𝑂(ℝ𝑛) ≤ 3. 

This leads to 

|{|𝑓1+| > 𝜆}| ≤ 𝐶𝑒
−𝐶𝜆/3‖𝑓1+‖𝐿1(ℝ𝑛).                     (98) 

Moreover, we have from Chapter 1 in Grafakos, [136] 

‖𝑓1+‖𝐿1(ℝ𝑛) ≤
𝑞

𝑞 − 1
11−𝑞‖𝑓‖𝐿𝑞,∞(ℝ𝑛)

𝑞
.                          (99) 

By (86), (98) and (99), there is a constant 𝐶2 = 𝐶2(𝑝, 𝑞, 𝑟, 𝑛) > 0 such that 

‖𝑓1+‖𝐿(ℝ𝑛)
𝛼 𝑝, 𝛼 ≤ 𝐶2∫ 𝜆𝛼

∞

1

𝑒−𝐶𝜆𝛼/3𝑝‖𝑓‖𝐿(ℝ𝑛)
𝛼𝑞/𝑝

𝑞,∞
𝑑𝜆

𝜆
≤ 𝐶3‖𝑓‖𝐿𝑞,∞

𝑐𝑥𝑞/𝑝(ℝ𝑛) . 

Thus, 

‖𝑓1+‖𝐿𝑝,𝛼(ℝ
𝑛) ≤ 𝐶4‖𝑓‖𝐿,(ℝ𝑛)

𝑞/𝑞𝑝∞ .                                              (100) 

It follows from (85) and (100) that 

‖𝑓‖𝐿𝑝,𝛼(ℝ
𝑛) ≤ 𝐶(𝑝, 𝑞, 𝛼, 𝑛)‖𝑓‖

𝐿,(ℝ𝑛)

𝑞/𝑞𝑝∞ , 

which completes the proof of Theorem (4.2.3).  
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Chapter 5 

Constructive Description of Hardy-Sobolev Spaces 

 

We study the polynomial approximations in Hardy-Sobolev spaces on for convex domains. 

We use the method of pseudoanalytical continuation to obtain the characterization of these 

spaces in terms of polynomial approximations. 

Section (5.1): Hardy-Sobolev Spaces in 𝑪𝒏 

We  give an alternative characterizations of Hardy-Sobolev (see. [25]) spaces 

𝐻𝑝
𝑙 (𝛺) = {𝑓 ∈ 𝐻(𝛺): ‖𝑓‖𝐻𝑝(𝛺) + ∑ ‖

|𝛼|<𝑙

𝜕𝛼𝑓‖𝐻𝑝(𝛺) < ∞}        (1) 

on strongly convex domain 𝛺 ⊂ ℂ𝑛. We continue the research started in [163] and devoted 

to description of basic spaces of holomorphic functions of several variables in terms of 

polynomial approximations and pseudoanalytical continuation. In particular, we show that 

for 1 < 𝑝 < ∞ and 𝑙 ≥ 1 a holomorphic on a strongly convex domain 𝛺 function 𝑓 is in the 

Hardy‐Sobolev space 𝐻𝑝
𝑙 (𝛺) if and only if there exist a sequence of 2𝑘‐degree polynomials 

𝑃2𝑘 such that 

∫ 𝑑
𝜕𝛺

𝜎(𝑧)(∑ |

∞

𝑘=1

𝑓(𝑧) − 𝑃2𝑘(𝑧)|
222𝑙𝑘)

𝑝/2

< ∞.                (2) 

In the one variable case this condition follows from the characterization obtained by E.M. 

Dynkin [155] for Radon domains. 

We devoted to the Cauchy‐Leray‐Fantappiè integral formula, the polynomial 

approximations and estimates of its kernel. We also define internal and external Korányi 

regions, the multidimensional analog of Lusin regions. we introduce the method of 

pseudoanalytical continuation and three constructions of the continuation with different 

estimates. We use these constructions to obtain the characterization of Hardy‐Sobolev 

spaces in terms of estimates of the pseudoanalytical continuation. To prove this result we 

use the special analog of the Krantz‐Li area‐integral inequality [158] contains the proof of 

characteristics (2). 

For ℂ𝑛 be the space of 𝑛 complex variables, 𝑛 ≥ 2, 𝑧 = (𝑧1, … , 𝑧𝑛), 𝑧𝑗 = 𝑥𝑗 + 𝑖𝑦𝑗; 

𝜕𝑗𝑓 =
𝜕𝑓

𝜕𝑧𝑗
=
1

2
(
𝜕𝑓

𝜕𝑥𝑗
− 𝑖

𝜕𝑓

𝜕𝑦𝑗
) , 𝜕𝑗𝑓 =

𝜕𝑓

𝜕𝑧𝑗
=
1

2
(
𝜕𝑓

𝜕𝑥𝑗
+ 𝑖

𝜕𝑓

𝜕𝑦𝑗
) , 

𝜕𝑓 = ∑
𝜕𝑓

𝜕𝑧𝑘

𝑛

𝑘=1

𝑑𝑧𝑘, 𝜕𝑓 = ∑
𝜕𝑓

𝜕𝑧𝑘

𝑛

𝑘=1

𝑑𝑧𝑘, 𝑑𝑓 = 𝜕𝑓 + 𝜕𝑓. 

The notation 
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〈𝜕𝑓(𝑧), 𝑤〉 = ∑
𝜕𝑓(𝑧)

𝜕𝑧𝑘

𝑛

𝑘=1

𝑤𝑘 . 

is used to indicate the action of 𝜕𝑓 on the vector 𝑤 ∈ ℂ𝑛, and 

|𝜕𝑓| = |
𝜕𝑓

𝜕𝑧1
| + +|

𝜕𝑓

𝜕𝑧𝑛
|. 

The euclidean distance form the point 𝑧 ∈ ℂ𝑛 to the set 𝐷 ⊂ ℂ𝑛 we denote as dist (𝑧, 𝐷) =

 inf {|𝑧 − 𝑤| ∶  𝑤 ∈ 𝐷}. Lebesgue measure in ℂ𝑛 we denote as 𝑑𝜇. For a multiindex 𝛼 =
(𝛼1, … , 𝛼𝑛) ∈ IN

𝑛 we set |𝛼| = 𝛼1 + +𝛼𝑛 and ! = 𝛼1! …𝛼2 !, also  

𝑧𝛼 = 𝑧1
𝛼1 …𝑧𝑛

𝛼𝑛 and 𝜕𝛼𝑓 =
𝜕|.𝛼.|𝑓

𝜕𝑧1
𝛼1 .𝜕𝑧𝑛

𝛼𝑛. 

Let 𝛺 = {𝑧 ∈ ℂ𝑛 ∶  𝜌(𝑧) < 0} be a strongly convex domain with a 𝐶3‐smooth defining 

function. We need to consider a family of domains 

𝛺𝑡 = {𝑧 ∈ ℂ
𝑛: 𝜌(𝑧) < 𝑡} 

that are also strongly convex for each |𝑡| < 𝜀𝑗, where 𝜀𝑗 > 0 is small enough, that is 𝑑2𝜌(𝑧) 

is positive definite when |𝜌(𝑧)| ≤ 𝜀𝑗. For 𝑧 ∈ 𝛺𝜀\𝛺−𝜀 we denote the nearest point on 𝜕𝛺 as 

pr𝜕𝛺(𝑧) . Then the mapping 

pr𝜕𝛺: 𝛺𝜀\𝛺−𝜀 → 𝜕𝛺 

is well defined, 𝐶2‐smooth on 𝛺𝜀\𝛺 and |𝑧 − pr𝜕𝛺(𝑧)| = dist(𝑧, 𝜕𝛺) . 

For 𝜉 ∈ 𝜕𝛺𝑡 we define the complex tangent space 

𝑇𝜉 = {𝑧 ∈ ℂ
𝑛: 〈𝜕𝜌(𝜉), 𝜉 − 𝑧〉 = 0}. 

The space of holomorphic functions we denote as 𝐻(𝛺) and consider the Hardy space (see 

[166], [156]) 

𝐻𝑝(𝛺):= {𝑓 ∈ 𝐻(𝛺): ‖𝑓‖𝐻𝑝(𝛺)
𝑝

= sup
−𝜀<𝑡<0

  ∫ |
𝛺𝑡

𝑓(𝑧)|𝑝𝑑𝜎𝑡(𝑧) < ∞}, 

where 𝑑𝜎𝑡 is induced Lebesgue measure on the boundary of 𝛺𝑡. We also denote 𝑑𝜎 = 𝑑𝜎0. 

Hardy‐Sobolev spaces 𝐻𝑝
𝑙 (𝛺) are defined by (1). 

We use notations ≾,≍. We let 𝑓 ≾ 𝑔 if 𝑓 ≤ 𝑐𝑔 for some constant 𝑐 > 0, that doesn’t depend 

on main arguments of functions 𝑓 and 𝑔 and usually depend only on dimension 𝑛 and 

domain 𝛺. Also 𝑓 ≍ 𝑔 if 𝑐−1𝑔 ≤ 𝑓 ≤ 𝑐𝑔 for some 𝑐 > 1. 

In the context of theory of several complex variables there is no unique reproducing 

formula formula, however we could use the Leray theorem, that allows us to construct 

holomorphic reproducing kernels ([152], [161], [76]). For convex domain 𝛺 = {𝑧 ∈ ℂ𝑛 ∶

 𝜌(𝑧) < 0} this theorem brings us Cauchy‐LerayFantappiè formula, and for 𝑓 ∈ 𝐻1(𝛺) and 

𝑧 ∈ 𝛺 we have 
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𝑓(𝑧) = 𝐾𝛺𝑓(𝑧) =
1

(2𝜋𝑖)𝑛
∫

𝑓(𝜉)𝜕𝜌(𝜉) ∧ (𝜕𝜕𝜌(𝜉))
𝑛−1

〈𝜕𝜌(𝜉), 𝜉 − 𝑧〉𝑛𝜕𝛺

= ∫ 𝑓
𝜕𝛺

(𝜉)𝐾(𝜉, 𝑧)𝜔(𝜉) , (3) 

where 𝜔(𝜉) =
1

(2𝜋𝑖)𝑛
𝜕𝜌(𝜉) ∧ (𝜕𝜕𝜌(𝜉))

𝑛−1
, and 𝐾(𝜉, 𝑧) = 〈𝜕𝜌(𝜉), 𝜉 − 𝑧〉−𝑛 

The (2𝑛 − 1)‐form 𝜔 defines on 𝜕𝛺𝑡 Leray‐Levy measure 𝑑𝑆, that is equivalent to 

Lebesgue surface measure 𝑑𝜎𝑡 (see [152], [42], [160]). This allows us to identify Lebesgue, 

Hardy and Hardy‐Sobolev spaces defined with respect to measures 𝑑𝜎𝑡 and 𝑑𝑆. Also note, 

that measure 𝑑𝑉 defined by the 2𝑛‐form 𝑑𝜔 = (𝜕𝜕𝜌)
𝑛

 is equivalent to Lebesgue measure 

𝑑𝜇 in ℂ𝑛. 

By [162] the integral operator 𝐾𝛺 defines a bounded mapping on 𝐿𝑝(𝜕𝛺) to 𝐻𝑝(𝛺) for 1 <

𝑝 < ∞. 

The function 𝑑(𝑤, 𝑧) = |〈𝜕𝜌(𝑤), 𝑤 − 𝑧〉| defines on 𝜕𝛺 quasimetric, and if 𝐵(𝑧, 𝛿) = {𝑤 ∈

𝜕𝛺 ∶  𝑑(𝑤, 𝑧) < 𝛿} is a quasiball with respect to 𝑑 then 𝜎(𝐵(𝑧, 𝛿)) −∧ 𝛿𝑛, see for example 

[162]. Therefore {𝜕𝛺, 𝑑, 𝜎} is a space of homogeneous type. 

Note also the crucial role in the forthcoming considerations of the following estimate that is 

proved in [163]. 

Lemma (5.1.1)[151]. Let 𝛺 be strongly convex, then 

𝑑(𝑤, 𝑧) −∧ 𝜌(𝑤) + 𝑑(pr𝜕𝛺(𝑤), 𝑧),𝑤 ∈ ℂ
𝑛\𝛺, 𝑧 ∈ 𝜕𝛺. 

In lemma (5.1.3) here we construct a polynomial approximations of Cauchy-Leray‐

Fantappié kernel based on theorem by V.K. Dzyadyk about estimates of Cauchy kernel on 

domains on complex plane. The approximation is choosed similarly to [16]. This 

construction allows us in Theorem (5.1.9) to get polynomials that approximate holomorphic 

function with desired speed. 

Lemma (5.1.2)[151]: Let 𝛺 be a strongly convex domain with 0 ∈ 𝛺, then for every 𝜉 ∈

𝛺𝜀\𝛺 the value of 𝜆 =
〈𝜕𝜌(𝜉),𝑧〉

〈𝜕𝜌(𝜉),𝜉〉
 for 𝑧 ∈ 𝛺 lies in domain 𝐿(𝑡) , bounded by the bigger arc of 

the circle |𝜆| = 𝑅 = 𝑅(𝛺) and the chord {𝜆 ∈ ℂ : 𝜆 = 1 + 𝑒𝑖𝑡𝑠, 𝑠 ∈ ℝ, |𝜆| ≤ 𝑅}, where 𝑡 =
𝜋

2
−  arg (〈𝜕𝜌(𝜉), 𝜉〉) . 

Proof. For 𝜉 ∈ 𝜕𝛺 define 

𝛬(𝜉) = {𝜆 ∈ ℂ: 𝜆 =
〈𝜕𝜌(𝜉), 𝑧〉

〈𝜕𝜌(𝜉), 𝜉〉
, 𝑧 ∈ 𝛺}. 

The convexity of 𝛺 with 0 ∈ 𝛺 implies that 

|〈𝜕𝜌(𝜉), 𝜉〉| ≿ |𝜕𝜌(𝜉)||𝜉| ≿ 1,                                             (4) 

 Re 〈𝜕𝜌(𝜉), 𝑧 − 𝜉〉 ≤ 0, 𝑧 ∈ 𝛺, 𝜉 ∈ 𝛺𝜀\𝛺.                         (5) 

The domain 𝛬(𝜉) ⊂ ℂ is also convex and contains 0, thus the equality 
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〈𝜕𝜌(𝜉), 𝑧〉

〈𝜕𝜌(𝜉), 𝜉〉
= 1 +

〈𝜕𝜌(𝜉), 𝑧 − 𝜉〉

〈𝜕𝜌(𝜉), 𝜉〉
 

with estimates (4), (5) completes the proof of the lemma. 

Lemma (5.1.3)[151]. Let 𝛺 be a strongly convex domain and 𝑟 > 0. Then for every 𝑘 ∈ IN 

there exist function 𝐾𝑘
𝑔𝑙𝑜𝑏(𝜉, 𝑧) defined for 𝜉 ∈ 𝛺𝜀\𝛺 and polynomial in 𝑧 ∈ 𝛺 with 

 deg 𝐾𝑘(𝜉,⋅) ≤ 𝑘 and following properties: 

|𝐾(𝜉, 𝑧) − 𝐾𝑘
𝑔𝑙𝑜𝑏(𝜉, 𝑧)| ≾

1

𝑘𝑟
1

𝑑(𝜉, 𝑧)𝑛+𝑟
, 𝑑(𝜉, 𝑧) ≥

1

𝑘
;                 (6) 

|𝐾𝑘
𝑔
𝜄𝑜𝑏(𝜉, 𝑧)| ≾ 𝑘

𝑛, 𝑑(𝜉, 𝑧) ≤
1

𝑘
.                                  (7) 

Proof. Due to [153] and [165] for any 𝑗 ∈ IN there exists a function 𝑇𝑗(𝑡, 𝜆) polynomial in 

𝜆 with  deg 𝑇𝑗(𝑡,⋅) ≤ 𝑗 such that 

|
1

1 − 𝜆
− 𝑇𝑗(𝑡, 𝜆)| ≾

1

𝑗𝑟
1

|1 − 𝜆|1+𝑟
                                 (8) 

for 𝜆 ∈ 𝐿(𝑡)\{𝜆 ∶  |1 − 𝜆| <
1

𝑗
} and coefficients of polynomials 𝑇𝑗(𝑡, 𝜆) continuously 

depend on 𝑡. Note also that by maximum principle 

𝑇𝑗(𝑡, 𝜆) ≾ 𝑗, 𝜆 ∈ 𝐿(𝑡) ∩ {𝜆: |1 − 𝜆| <
1

𝑗
}.                             (9) 

Let 𝑡(𝜉) =
𝜋

2
−  arg (〈𝜕𝜌(𝜉), 𝜉〉 and for 𝑗 ∈ IN and (𝑗 − 1) < 𝑘 ≤ 𝑗𝑛 define 

𝐾𝑘
𝑔𝑙𝑜𝑏(𝜉, 𝑧) = 𝐾𝑗𝑛

𝑔𝑙𝑜𝑏(𝜉, 𝑧) =
1

〈𝜕𝜌(𝜉), 𝜉〉𝑛
𝑇𝑗
𝑛 (𝑡(𝜉),

〈𝜕𝜌(𝜉), 𝑧〉

〈𝜕𝜌(𝜉), 𝜉〉
) . 

Due to definition of 𝑇𝑗 polynomials 𝐾𝑘
𝑔
𝜄𝑜𝑏(𝜉,⋅) satisfy relations (6), (7).  

For 𝜉 ∈ 𝜕𝛺 and 𝜀𝑗 > 0 we define the inner Korányi region as 

𝐷𝑖(𝜉, 𝜂, 𝜀𝑗) = {𝜏 ∈ 𝛺: pr𝜕𝛺(𝜏) ∈ 𝐵(𝜉,−𝜂𝜌(𝜏)), 𝜌(𝜏) > −𝜀𝑗}. 

The strong convexity of 𝛺 implies that area‐integral inequality by S. Krantz and S.Y. Li 

[158] for ∈ 𝐻𝑝(𝛺), 0 < 𝑝 < ∞, could be expressed as 

∫ 𝑑
𝜕𝛺

𝜎(𝑧) (∫  
𝐷𝑖(𝑧,𝜂𝜀)

|𝜕𝑓(𝜏)|2
𝑑𝜇(𝜏)

(−𝜌(𝜏))
𝑛−1)

𝑝/2

≤ 𝑐(𝛺, 𝑝)∫ |
𝜕𝛺

𝑓|𝑝𝑑𝜎.    (10) 

Consider the decomposition of vector 𝜏 ∈ ℂ𝑛 as = 𝑤 + 𝑡𝑛(𝜉) , where 𝑤 ∈ 𝑇𝜉 , 𝑡 ∈ ℂ, and 

𝑛(𝜉) =
𝜕𝜌(𝜉)

|𝜕𝜌(𝜉)|
 is a complex normal vector at 𝜉. We define the external Korányi region as 

𝐷𝑒(𝜉, 𝜂, 𝜀𝑗) = {𝜏 ∈ ℂ𝑛\𝛺: 𝜏 = 𝑤 + 𝑡𝑛(𝜉) , 
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𝑤 ∈ 𝑇𝜉 , 𝑡 ∈ 𝐶, |𝑤| < √𝜂𝜌(𝜏), | Im (𝑡)| < 𝜂𝜌(𝜏), 𝜌(𝜏) < 𝜀}.   (11) 

We will proof the area‐integral inequality similar to (10) for external regions 𝐷𝑒(𝜉, 𝜂, 𝜀𝑗) . 

We point out two rules for integration over regions 𝐷𝑒(𝜉, 𝜂, 𝜀𝑗) . First, for every function 𝐹 

we have 

∫ |
𝛺𝛯\𝛺

𝐹(𝑧)|𝑑𝜇(𝑧) ≍ ∫ 𝑑
𝜕𝛺

𝜎(𝜉)∫ |
𝐷𝑒(𝜉,𝜂,𝜀)

𝐹(𝜏)|
𝑑𝜇(𝜏)

𝜌(𝜏)𝑛
. 

Second, if 𝐹(𝑤) = �̃�(𝜌(𝑤)) then 

∫ |
𝐷𝑒(𝜉,𝜂,𝜀)

𝐹(𝜏)|𝑑𝜇(𝜏) ≍ ∫ |
𝜀

0

�̃�(𝑡)|𝑡𝑛𝑑𝑡. 

Similar rules are valid for regions 𝐷𝑖(𝜉, 𝜂, 𝜀𝑗) . 

We could clarify the estimate of 𝑑(𝜏, 𝑤) in lemma (5.1.1) for ∈ 𝐷𝑒(𝑧, 𝜂, 𝜀𝑗) . 

Lemma (5.1.4)[151]. Let 𝛺 be a strongly convex domain and 𝑗, 𝜂 > 0, then 

𝑑(𝜏, 𝑤) ≍ 𝜌(𝜏) + 𝑑(𝑧,𝑤) , 𝑧, 𝑤 ∈ 𝜕𝛺, 𝜏 ∈ 𝐷𝑒(𝑧, 𝜂, 𝜀𝑗) .                   (12) 

Proof. For 𝜏 ∈ 𝐷𝑒(𝑧, 𝜂, 𝜀𝑗) we denote �̂� = pr𝜕𝛺(𝜏) , then 𝑑(�̂�, 𝑧) ∼< 𝜂𝜌(𝜏). 

𝑑(𝜏, 𝑤) ≾ 𝜌(𝜏) + 𝑑(�̂� ≾ 𝜌(𝜏) + 𝑑(�̂�, 𝑧) + 𝑑(𝑧,𝑤) ≾ 𝜌(𝜏) + 𝑑(𝑧,𝑤) . 

On the other hand, 

𝜌(𝜏) + 𝑑(𝑧,𝑤) ≾ 𝜌(𝜏) + (𝑑(𝑧, �̂�) + 𝑑(�̂�, 𝑤)) ≾ (1 + 𝜂)𝜌(𝜏) + 𝑑(�̂�, 𝑤) 

≾ 𝜌(𝜏) + 𝑑(�̂�, 𝑤) ≾ 𝑑(𝜏, 𝑤) . 

We  the method of continuation of function 𝑓 ∈ 𝐻(𝛺) outside the domain 𝛺. Let 𝑓 ∈ 𝐻1(𝛺) 

and let the boundary values of 𝑓 almost everywhere coincide with the boundary values of 

some function f ∈ 𝐶𝑙𝑜𝑐
1 (ℂ𝑛\𝛺) such that |𝜕f| ∈ 𝐿1(ℂ𝑛\𝛺) . Then by Stokes formula for 𝑧 ∈

𝛺 we have 

𝑓(𝑧) = lim
𝑟→0+

1

(2𝜋𝑖)𝑛
∫

f(𝜉)𝜕𝜌(𝜉) ∧ (𝜕𝜕𝜌(𝜉))
𝑛−1

〈𝜕𝜌(𝜉), 𝜉 − 𝑧〉𝑛𝜕𝛺𝑟

= 

lim
𝑟→0+

1

(2𝜋𝑖)𝑛
∫

𝜕f(𝜉) ∧ 𝜕𝜌(𝜉) ∧ (𝜕𝜕𝜌(𝜉))
𝑛−1

〈𝜕𝜌(𝜉), 𝜉 − 𝑧〉𝑛ℂ𝑛\𝑛𝑟

 

=
1

(2𝜋𝑖)𝑛
∫

𝜕f(𝜉) ∧ 𝜕𝜌(𝜉) ∧ (𝜕𝜕𝜌(𝜉))
𝑛−1

〈𝜕𝜌(𝜉), 𝜉 − 𝑧〉𝑛ℂ𝑛\𝛺

, 

since (for details see [13]) 

𝑑𝜉 (
𝜕𝜌(𝜉) ∧ (𝜕𝜕𝜌(𝜉))

𝑛−1

〈𝜕𝜌(𝜉), 𝜉 − 𝑧〉𝑛
) = 0, 𝑧 ∈ 𝛺, 𝜉 ∈ ℂ𝑛\𝛺. 
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This formula allows us to study properties of function 𝑓 ∈ 𝐻(𝛺) relying on estimates of its 

continuation. 

Definition (5.1.5)[151]. We call the function f ∈ 𝐶𝑙𝑜𝑐
1 (ℂ𝑛\𝛺) the pseudoanalytic 

continuation of the function 𝑓 ∈ 𝐻(𝛺) if 

𝑓(𝑧) =
1

(2𝜋𝑖)𝑛
∫

𝜕f(𝜉) ∧ 𝜕𝜌(𝜉) ∧ (𝜕𝜕𝜌(𝜉))
𝑛−1

〈𝜕𝜌(𝜉), 𝜉 − 𝑧〉𝑛ℂ𝑛\𝛺

, 𝑧 ∈ 𝛺.                  (13) 

Note that it is not necessary for the function f to be a continuation in terms of coincidence 

of boundary values. 

For 𝑧 ∈ 𝛺𝜀\𝛺 we define the symmetric along 𝜕𝛺 point 𝑧∗ ∈ 𝛺 by 

𝑧∗ − 𝑧 = 2(pr𝜕𝛺(𝑧) − 𝑧) . 

Theorem(5.1.6)[151]. Let 𝑓 ∈ 𝐻𝑝
1(𝛺) and 1 < 𝑝 < ∞, 𝑚 ∈ ℕ. There exist a 

pseudoanalytical continuation f ∈ 𝐶𝑙𝑜𝑐
1 (ℂ𝑛\𝛺) of function 𝑓 such that supp f⊂ 𝛺𝜀 , |𝜕f(𝑧)| ∈

𝐿𝑝(𝛺𝜀\𝛺) and 

|𝜕f(𝑧)| ≾ max
|𝛼|=𝑚

  |𝜕𝛼𝑓(𝑧∗)|𝜌(𝑧)𝑚−1, 𝑧 ∈ 𝛺𝜀\𝛺.              (14) 

Proof. Define 

f0(𝑧) = ∑ 𝜕𝛼

|𝛼|≤𝑚−1

𝑓(𝑧∗)
(𝑧 − 𝑧∗)𝛼

𝛼!
, 𝑧 ∈ 𝛺𝜀\𝛺.                 (15) 

Let 𝛼 ± 𝑒𝑘 = (𝛼1, … , 𝛼𝑘 ± 1, 𝛼𝑛) and define (𝑧 − 𝑧∗)𝛼−𝑒𝑘 = 0 if 𝛼𝑘 = 0. In these notations 

we have 

𝜕𝑗f0 =∑ ∑ (𝜕𝛼+𝑒𝑘𝑓(𝑧∗)
(𝑧 − 𝑧∗)𝛼

𝛼!
− 𝜕𝛼𝑓(𝑧∗)

(𝑧 − 𝑧∗)𝛼−𝑒𝑘

(𝛼 − 𝑒𝑘)!
)

|𝛼|≤𝑚−1

∞

𝑘=1

𝜕𝑗𝑧𝑘
∗ 

=∑ ∑ 𝜕𝛼+𝑒𝑘

|𝛼|=𝑚−1

∞

𝑘=1

𝑓(𝑧∗)
(𝑧 − 𝑧∗)𝛼

𝛼!
𝜕𝑗𝑧𝑘

∗ ,             (16) 

hence, 

|𝜕f0(𝑧)| ≾  max |𝜕
𝛼𝑓(𝑧∗)|𝜌(𝑧)𝑚−1, 𝑧 ∈ ℂ𝑛\𝛺. 

Consider function 𝜒 ∈ 𝐶∞(0,∞) such that 𝜒(𝑡) = 1 for 𝑡 ≤ 𝜀/2 and 𝜒(𝑡) = 0 for 𝑡 ≥ 𝜀𝑗. 

The function f(𝑧) = f0(𝑧)𝜒(𝜌(𝑧)) satisfies the condition (15) and supp f⊂ 𝛺𝜀 . 

Let 𝑑 = dist(𝑧∗, 𝜕𝛺)/10, then for every mutiindex 𝛼 such that |𝛼| = 𝑚 by Cauchy maximal 

inequality we have 

|𝜕𝛼𝑓(𝑧∗)| ≾ 𝑑−𝑚+1 sup
|𝜏−𝑧∗|<𝑑

  |𝜕𝑓(𝜏)| ≾ 𝜌(𝑧)−𝑚+1 sup
𝜏∈𝐷𝑖(𝑝𝑟∂Ω(𝑧),𝑐0𝑑,𝜀)

  |𝜕𝑓(𝜏)|, 
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for some 𝑐0 > 0. Finally, from [8] we get 

∫  
𝛺𝜀\𝛺

(|�̅�𝑓(𝑧)|)
𝑝
𝑑𝜇(𝑧) ≾ ∫ 𝑝

𝑝

∫  
𝛺 \𝛺−𝜀 

𝑑𝜇(𝑧)( sup
𝜏∈𝐷𝑖(𝑝𝑟𝜕Ω(𝑧),𝑐0𝑑,𝜀)

 |𝜕𝑓(𝜏)|)

  

≾ ‖𝜕𝑓‖𝐻𝑝(𝛺)
𝑝

< ∞. 

Let 𝑓 ∈ 𝐻1(𝛺) and consider a polynomial sequence 𝑃1, 𝑃2, converging to 𝑓 in 𝐿1(𝜕𝛺) . 

Define 

𝜆(𝑧) = 𝜌(𝑧)−1|𝑃2𝑘+1(𝑧) − 𝑃2𝑘(𝑧)|, 2
−𝑘 < 𝜌(𝑧) ≤ 2−𝑘+1 

Theorem (5.1.7)[151]. Assume that λ ∈ Lp(ℂn\Ω) for some p ≥ 1. Then there exist a 

pseudoanalytical continuation f of function f such that 

|𝜕f(𝑧)| ≾ 𝜆(𝑧) , 𝑧 ∈ ℂ𝑛\𝛺.                                   (17) 

Proof. Consider function 𝜒 ∈ 𝐶∞(0,∞) such that 𝜒(𝑡) = 1 for 𝑡 ≤
5

4
 and 𝜒(𝑡) = 0 for 𝑡 ≥

7

4
. We let 

f0(𝑧) = 𝑃2𝑘(𝑧) + 𝜒 (2
𝑘𝜌(𝑧)) (𝑃2𝑘+1(𝑧) − 𝑃2𝑘(𝑧)) , 2

−𝑘 < 𝜌(𝑧) < 2−𝑘+1, 𝑘 ∈ ℕ, 

and define the continuation of a function 𝑓 by formula f = 𝜒(2𝜌(𝑧))f0(𝑧) . 

Now f is 𝐶1‐function on ℂ𝑛\𝛺 and |𝜕f(𝑧)| ∼< 𝜆(𝑧) . We define a function 𝐹𝑘(𝑧) as 𝐹𝑘(𝑧) =

f(𝑧) for 𝜌(𝑧) > 2−𝑘 and as 𝐹𝑘(𝑧) = 𝑃2𝑘+1(𝑧) for 𝜌(𝑧) < 2−𝑘. The the function 𝐹𝑘 is smooth 

and holomorphic in 𝛺2−𝑘, and |𝜕𝐹𝑘(𝑧)| ∼< 𝜆(𝑧) for 𝑧 ∈ ℂ𝑛\𝛺2−𝑘. Thus similarly we get 

𝑃2𝑘+1(𝑧) = 𝐹𝑘(𝑧) =
1

(2𝜋𝑖)𝑛
∫

𝜕𝐹𝑘(𝜉) ∧ 𝜕𝜌(𝜉) ∧ (𝜕𝜕𝜌(𝜉))
𝑛−1

〈𝜕𝜌(𝜉), 𝜉 − 𝑧〉𝑛ℂ𝑛\𝛺

, 𝑧 ∈ 𝛺, 

We can pass to the limit in this formula by the dominated convergence theorem; hence, 

function f satisfies the formula (13) and is a pseudoanalytical continuation of function 𝑓. 

Theorem (5.1.8)[151]. Let Ω be a strongly convex domain, 1 < p < ∞, l ∈ IN and ∈

Hp(Ω) . Then f ∈ Hp
l (Ω) if and only if there exists such pseudoanalytical continuation f that 

for some η > 0 

∫ 𝑑
𝜕𝛺

𝜎(𝑧)(∫ |
𝐷𝑒(𝑧,𝜂,𝜀)

𝜕f(𝜏)𝜌(𝜏)−𝑙|2𝑑𝜄/(𝜏))

𝑝/2

< ∞,           (18) 

where 𝑑𝑣(𝜏) =
𝑑𝜇(𝜏)

𝜌(𝜏)𝑛−1
. 
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Proof. Let ∈ 𝐻𝑝
𝑙 (𝛺) . By Theorem (5.1.5) we could construct pseudoanalytical continuation 

f such that 

|𝜕f(𝑧)| ≾ max
|𝛼|=𝑙+1

  |𝜕𝛼𝑓(𝑧∗)|𝜌(𝑧)𝑙 , 𝑧 ∈ ℂ𝑛\𝛺. 

Note that the symmetry (𝑧 ↦ 𝑧∗) with respect to 𝜕𝛺 maps the external sector 𝐷𝑒(𝑧, 𝜂, 𝜀𝑗) 

into some internal Korányi sector. Indeed, for every 𝜂 > 0 there exists 𝜂1, 𝜀1 > 0 such that 

{𝜏∗: 𝜏 ∈ 𝐷𝑒(𝑧, 𝜂, 𝜀𝑗)} ⊆ 𝐷𝑖(𝑧, 𝜂1, 𝜀1) . 
Applying area‐integral inequality (10) we obtain 

∫ 𝑑
𝜕𝛺

𝜎(𝑧)(∫ |
𝐷𝑒(𝑧,𝜂,𝜀)

𝜕f(𝜏)𝜌(𝜏)−𝑙|2𝑑𝜈(𝜏))

𝑝/2

 

≾ max
|𝛼|=𝑙+1

  ∫ 𝑑
𝜕𝛺

𝜎(𝑧)(∫ |
𝐷𝑒(𝑧,𝜂,𝜀)

𝜕𝛼𝑓(𝜏∗)|2𝑑𝜄/(𝜏))

𝑝/2

 

≾ max
|𝛼|=𝑙+1

  ∫ 𝑑
𝜕𝛺

𝜎(𝑧)(∫ ,
𝐷𝑖(𝑧,𝜂1𝜀1)

|𝜕𝛼𝑓(𝜏)|2
𝑑𝜇(𝜏)

(−𝜌(𝜏))
𝑛−1)

𝑝/2

< ∞ 

To prove the sufficiency, assume that function 𝑓 ∈ 𝐻1(𝛺) admits the pseudoanalytical 

continuation f with the estimate (18) We will prove that for every function ∈ 𝐿𝑝′(𝜕𝛺), 
1

𝑝
+

1

𝑝
= 1, and every multiindex 𝛼, |𝛼| ≤ 𝑙, 

| ∫ 𝑔
𝛺

(𝑧)𝜕𝛼𝑓(𝑧)𝑑𝑆(𝑧)| ≤ 𝑐(𝑓)‖𝑔‖
𝐿𝑝
′
(𝜕𝛺)

. 

Assume, without loss of generality, that = (𝑙, 0, … , 0) . By representation (13) we have 

𝑓(𝑧) = ∫
𝜕f(𝜉) ∧ 𝜔(𝜉)

〈𝜕𝜌(𝜉), 𝜉 − 𝑧〉𝑛ℂ𝑛\𝛺

 

and with 𝐶𝑛𝑙 =
(𝑛+𝑙−1)!

(𝑛−1)!
 

∫ 𝑔
𝜕𝛺

(𝑧)𝜕𝛼𝑓(𝑧)𝑑𝑆(𝑧) 

= 𝐶𝑛𝑙∫ 𝑔
𝜕𝛺

(𝑧) (∫ (
𝜕𝜌(𝜉)

𝜕𝜉1
)

𝑙

ℂ𝑛\𝛺

𝜕f(𝜉) ∧ 𝜔(𝜉)

〈𝜕𝜌(𝜉), 𝜉 − 𝑧〉𝑛+𝑙
)𝑑𝑆(𝑧) 

= 𝐶𝑛𝑙∫ (
𝜕𝜌(𝜉)

𝜕𝜉1
)

𝑙

ℂ𝑛\𝛺

𝜕f(𝜉) ∧ 𝜔(𝜉)∫
𝑔(𝑧)𝑑𝑆(𝑧)

〈𝜕𝜌(𝜉), 𝜉 − 𝑧〉𝑛+𝑙𝜕𝛺

. 
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Define 𝛷𝑙(𝜉) = ∫
𝑔(𝑧)𝑑𝑆(𝑧)

〈𝜕𝜌(𝜉),𝜉−𝑧〉𝑛+𝑙𝜕𝛺
. Applying Hölder inequality twice we have 

|∫𝑔
𝛺

(𝑧)𝜕𝛼𝑓(𝑧)𝑑𝑆(𝑧)| ≾ ∫ |
ℂ𝑛\𝛺

𝜕f(𝜉)||𝛷𝑙(𝜉)|𝑑𝜇(𝜉) 

≾ ∫ 𝑑
𝜕𝛺

𝑆(𝜉)∫ |
𝐷𝑒(𝜉,𝜂,𝜀)

𝜕f(𝜏)||𝛷𝑙(𝜏)|
𝑑𝜇(𝜏)

𝜌(𝜏)𝑛
 

≾ ∫ 𝑑
𝜕𝛺

𝜎(𝜉) (∫ |
𝐷𝑒(𝜉,𝜂,𝜀)

𝜕f(𝜏)|2𝜌(𝜏)−2𝑙
𝑑𝜇(𝜏)

𝜌(𝜏)𝑛−1
)

1/2

× 

× (∫ ,
𝐷𝑒(𝜉,𝜂𝜀)

|𝛷𝑙(𝜏)|
2𝜌(𝜏)2𝑙−2

𝑑𝜇(𝜏)

𝜌(𝜏)𝑛−1
)

1/2

 

≾ (∫ 𝑑
𝜕𝛺

𝑆(𝜉)(∫ |
𝐷𝑒(𝜉,𝜂,𝜀)

𝜕f(𝜏)|2𝜌(𝜏)−2𝜄𝑑𝜄/(𝜏))

𝑝/2

)

1/𝑝

× 

× (∫ 𝑑
𝜕𝛺

𝑆(𝜉)(∫ |
𝐷𝑒(𝜉,𝜂,𝜀)

𝛷𝑙(𝜏)|
2𝜌(𝜏)2𝑙−2𝑑𝜈(𝜏))

𝑝′/2

)

1/𝑝′

 

The first product term is bounded by (18), and the second one by the areaintegral inequality 

(28), that we will prove in Theorem (5.1.12). 

Theorem (5.1.9)[151]. Let 𝑓 ∈ 𝐻1(𝛺) and 1 < 𝑝 < ∞, 𝑙 ∈ IN. Then 𝑓 ∈ 𝐻𝑝
𝑙 (𝛺) iff there 

exists sequence of 2𝑘‐degree polynomials 𝑃2𝑘 such that 

∫ 𝑑
𝜕𝛺

𝜎(𝑧)(∑ |

∞

𝑘=1

𝑓(𝑧) − 𝑃2𝑘(𝑧)|
222𝜄𝑘)

𝑝/2

< ∞.                    (19) 

Proof. Assume that condition (19) holds, then polynomials 𝑃2𝑘 converge to function 𝑓 in 

𝐿𝑝(𝜕𝛺) and by the theorem (5.1.7) we could construct pseudoanalytical continuation 𝑓 such 

that 

|𝜕f(𝑧)| ≾ |𝑃2𝑘+1(𝑧) − 𝑃2𝑘(𝑧)|𝜌(𝑧)
−1, 𝑧 ∈ ℂ𝑛\𝛺, 2−𝑘 ≤ 𝜌(𝑧) < 2−𝑘+1 

Consider the decomposition of region 𝐷𝑒(𝑧, 𝜂, 𝜀𝑗) to sets 𝐷𝑘(𝑧) = {𝜏 ∈ 𝐷
𝑒(𝑧, 𝜂, 𝜀𝑗) : 2−𝑘 ≤

𝜌(𝜏) < 2−𝑘+1}, and define functions 

𝑎𝑘(𝑧) = |𝑃2𝑘+1(𝑧) − 𝑃2𝑘(𝑧)|2
−𝑘𝑙 , 

𝑏𝑘(𝑧) = (∫ |
𝐷𝑘(𝑧)

𝜕f(𝜏)𝜌(𝜏)−𝑙|2𝑑𝜄/(𝜏))

1/2

, 𝑧 ∈ 𝜕𝛺. 
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Prove the necessity. Now 𝑓 ∈ 𝐻𝑝
𝑙 (𝛺) with 1 < 𝑝 < oo and 𝑙 ∈ ℕ. By Theorem (5.1.8) we 

could construct continuation f of function 𝑓 with estimate (18). Applying the approximation 

of Cauchy‐Leray‐Fantappiè kernel from Lemma (5.1.3) to function f we define polynomials 

𝑃2𝑘(𝑧) = ∫ 𝜕
ℂ𝑛\𝛺

f(𝜉) ∧ 𝜔(𝜉)𝐾
2𝑘
𝑔
𝜄𝑜𝑏(𝜉, 𝑧) . 

We will prove that these polynomials satisfy the condition (19). From Lemma (5.1.3) we 

obtain 

|𝑓(𝑧) − 𝑃2𝑘(𝑧)| ≾ ∫ |
ℂ𝑛\𝛺

𝜕f(𝜉)||
1

〈𝜕𝜌(𝜉), 𝜉 − 𝑧〉𝑑
− 𝐾

2𝑘
𝑔
𝜄𝑜𝑏(𝜉, 𝑧)|𝑑𝜇(𝜉) 

≾ 𝑈(𝑧) + 𝑉(𝑧) +𝑊1(𝑧) +𝑊2(𝑧) , 

where 

𝑈(𝑧) = ∫
|𝜕f(𝜏)|

|〈𝜕𝜌(𝜏), 𝜏 − 𝑧〉|𝑛𝑑(𝜏,𝑧)<2−𝑘

𝑑𝜇(𝜏) , 

𝑉(𝑧) = 2𝑘𝑛∫ |
𝑑(𝜏,𝑧)<2−𝑘

𝜕f(𝜏)|𝑑𝜇(𝜏) , 

𝑊1(𝑧) = 2
−𝑘𝑟∫

|𝜕f(𝜏)|

|〈𝜕𝜌(𝜏), 𝜏 − 𝑧〉|𝑛+𝑟𝑑(𝜏,𝑧)>2−𝑘

𝜌(𝜏)<2−𝑘

𝑑𝜇(𝜏) , 

𝑊2(𝑧) = 2
−𝑘𝑟  ∫  

𝜌(𝜏)>2−𝑘

|𝜕f(𝜏)|

|〈𝜕𝜌(𝜏), 𝜏 − 𝑧〉|𝑛+𝑟
𝑑𝜇(𝜏) . 

The parameter 𝑟 > 0 will be chosen later. 

Note that 𝑉(𝑧) ≾ 𝑐𝑈(𝑧) and estimate the contribution of 𝑈(𝑧) to the sum. For some 𝑐1, 𝑐2 >

0 we have 

𝑈(𝑧) ≤ ∫ 𝑑
𝑤∈𝜕𝛺

(𝑤, 𝑧) < 𝑐12
−𝑘𝑑𝜎(𝑤) ∑ ∫

|𝜕f(𝜏)|

|〈𝜕𝜌(𝜏), 𝜏 − 𝑧〉|𝑛𝑗(𝑤)𝑗>𝑐2𝑘𝐷

𝑑𝜄/(𝜏)

𝜌(𝜏)
 

≤ ∫ 𝑑
𝑤∈𝜕𝛺

(𝑤, 𝑧) < 𝑐12
−𝑘𝑑𝜎(𝑤) ∑ (∫ |

𝐷𝑗(𝑤)

𝜕f(𝜏)𝜌(𝜏)−𝑙|2𝑑𝜄/(𝜏))

1/2

𝑗>𝑐2𝑘

× 

× (∫
𝜌(𝜏)2(𝑙−1)𝑑𝜈(𝜏)

|〈𝜕𝜌(𝜏), 𝜏 − 𝑧〉|𝑛𝐷𝑗(𝑤)

)

1/2

= ∑ ∫ 𝑏𝑗
<𝑐12−𝑗𝑗>𝑐2𝑘𝑑(𝑤,𝑧)

(𝑤)𝑚𝑗(𝑤)𝑑𝜎(𝑤) 

Consider the integral 𝑚𝑗(𝑤) . Since 𝜏 ∈ 𝐷𝑗(𝑤) then by estimates from lemma (5.1.4) 

𝑑(𝜏, 𝑧) −∧ 𝜌(𝜏) + 𝑑(𝑤, 𝑧) > 2−𝑗 and 



168 

𝑚𝑗(𝑤) = (∫
𝜌(𝜏)2(𝑙−1)𝑑𝜄/(𝜏)

|〈𝜕𝜌(𝜏), 𝜏 − 𝑧〉|𝑛𝐷𝑗(𝑤)

)

1/2

≾
2−𝑗(𝑙−1)

2−𝑗𝑛
2−𝑗 = 2𝑗𝑛−𝑗𝑙      (20) 

Thus 

2𝑘𝑙𝑈(𝑧) ≾ ∑ 2−(𝑗−𝑘)𝑙

𝑗>𝑐1𝑘

2𝑗𝑛∫ 𝑏𝑗
𝑑(𝑤,𝑧)<𝑐22

𝑗

(𝑤)𝑛𝜎(𝑤) 

≾ ∑ 2−(𝑗−𝑘)𝑙

𝑗>𝑐1𝑘

𝑀𝑏𝑗(𝑧) .                  (21) 

Now estimate the value 𝑊1(𝑧) . Similarly to the previous we have 

𝑊1(𝑧) ≤ 2
−𝑘𝑟∑

𝑗>𝑘

∫ 𝑏𝑗
𝑑(𝑤,𝑧)≥𝑐12−𝑘

(𝑤)𝑚𝑗
𝑟(𝑤)𝑑𝜎(𝑤) 

≤ 2−𝑘𝑟∑ ∑ ∫ 𝑏𝑗
𝑧𝑐1,,)≤𝑐12−𝑡+1

𝑘

𝑡=𝑐22
−𝑡≤𝑑(𝑤𝑗>𝑘

(𝑤)𝑚𝑗
𝑟(𝑤)𝑑𝜎(𝑤) , 

where 

𝑚𝑗
𝑟(𝑤) = (∫

𝜌(𝜏)2(𝑙−1)𝑑𝜄/(𝜏)

|〈𝜕𝜌(𝜏), 𝜏 − 𝑧〉|2(𝑛+𝑟)𝐷𝑗(𝑤)

)

1/2

 

Applying the estimate 𝑑(𝜏, 𝑧) ∧ −𝜌(𝜏) + 𝑑(𝑤, 𝑧) ∼> 2−𝑡, we obtain 

𝑚𝑗
𝑟(𝑤) ≾ 2−𝑗𝑙+𝑡(𝑛+𝑟). 

Finally 

𝑡 = 𝑐2 ∑ ∫ 𝑏𝑗
≤𝑐12−𝑡+1

𝑘

𝑑(𝑤,𝑧)

(𝑤)𝑚𝑗
𝑟(𝑤)𝑑𝜎(𝑤) ≾ ∑ 2−𝑗𝑙+𝑡𝑟

𝑘

𝑡=𝑐2

𝑀𝑏𝑗(𝑧) ≾ 2
−𝑗𝑙+𝑘𝑟𝑀𝑏𝑗(𝑧) 

and 

2𝑘𝑙𝑊1(𝑧) ≾∑2−𝑙(𝑗−𝑘)

𝑗>𝑘

𝑀𝑏𝑗(𝑧) .                              (22) 

Similarly, estimating the contribution of 𝑊2(𝑧) , we obtain 

2𝑘𝜄𝑊2(𝑧) ≾ 2
−𝑘(𝑟−𝑙) ∑ ∫ 𝑏𝑗

𝛺

𝑘

𝑗=0𝜕

(𝑤)𝑚𝑗
𝑟(𝑤)𝑑𝜎(𝑤) .          (23) 

Since 𝑑(𝜏, 𝑧) ∼> 2−𝑗 + 𝑑(𝑤, 𝑧) for 𝜏 ∈ 𝜕𝛺, 𝑛 ∈ 𝐷𝑗(𝑧) then 

𝑚𝑗
𝑟(𝑤) ≾

2−𝑗𝑙

(2−𝑗 + 𝑑(𝑤, 𝑧))
𝑛+𝑟 ≤  min (2

𝑗(𝑛+𝑟−𝑙), 2 − 𝑗𝜄𝑑(𝑤,𝑧)−𝑛−𝑟). 

Thus 
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∫ 𝑏𝑗
𝜕𝛺

(𝑤)𝑚𝑗
𝑟(𝑤)𝑑𝜎(𝑤) ≾ ∫

2−𝑗𝜄

2−𝑗(𝑛+𝑟)𝑑(𝑤,𝑧)<2−𝑗

𝑏𝑗(𝑤)𝑑𝜎(𝑤) 

+∑∫ 𝑡
(𝑤,𝑧)≤2−𝑡

𝑗−1

≤𝑑

= 12−𝑡−1
2−𝑗𝜄

2−𝑡(𝑛+𝑟)
𝑏𝑗(𝑤)𝑑𝜎(𝑤) 

≾∑2−𝑗𝑙
𝑗

𝑡=1

2𝑡𝑟𝑀𝑏𝑗(𝑧) ≾ 2
−𝑗𝑙2𝑗𝑟𝑀𝑏𝑗(𝑧) . 

Choosing 𝑟 = 2𝑙, we have 

𝑊2(𝑧)2
𝑘𝑙 ≾∑2−(𝑘−𝑗)(𝑟−𝑙)

𝑘

𝑗=1

𝑀𝑏𝑗(𝑧) ≤∑2−(𝑘−𝑗)𝑙
𝑘

𝑗=1

𝑀𝑏𝑗(𝑧) .        (24) 

Combining the estimates (21, 22, 24) we finally obtain 

|𝑓(𝑧) − 𝑃2𝑘(𝑧)|2
𝑘𝑙 ≾∑2−(𝑘−𝑗)𝑙

𝑘

𝑗=1

𝑀𝑏𝑗(𝑧) +∑2−(𝑗−𝑘)𝑙

𝑗>𝑘

𝑀𝑏𝑗(𝑧) , 

which similarly to [5] implies 

∑|

∞

𝑘=1

𝑓(𝑧) − 𝑃2𝑘(𝑧)|
222𝑘𝑙 ≾∑(𝑀𝑏𝑘(𝑧))

2
∞

𝑘=1

 

Then, by Fefferman‐Stein theorem 

∫ 𝑑
𝜕𝛺

𝜎(𝑧)(∑ |

∞

𝑘=1

𝑓(𝑧) − 𝑃2𝑘(𝑧)|
222𝜄𝑘)

𝑝/2

≤ ∫ (∑𝑏𝑘
2

∞

𝑘=1

(𝑧))

𝑝/2

𝜕𝛺

𝑑𝜎(𝑧) 

≤ ∫ 𝑑
𝜕𝛺

𝜎(𝑧)(∫ |
𝐷𝑒(𝑧,𝜂,𝜀)

𝜕f(𝜉)𝜌(𝜉)−𝑙|2𝑑𝜈(𝜉))

𝑝/2

< ∞. 

This completes the proof of the theorem and it remains to prove Lemma (5.1.10).  

Lemma (5.1.10)[151]. bk(z) ∼< Mak(z) , where Mak is the maximal function with respect 

to centred quasiballs on ∂Ω 

𝑀𝑎𝑘(𝑧) = sup
𝑟>0

  
1

𝜎(𝐵(𝑧, 𝑟))
∫ |
𝐵(𝑧,𝑟)

𝑎𝑘(𝜉)|𝑑𝜎(𝜉) . 

Assume, that this lemma holds, then by Fefferman‐Stein maximal theorem (see [157], [156]) 

we have 

∫ (∑𝑏𝑘

∞

𝑘=1

(𝑧)2)

𝑝/2

𝜕𝛺

𝑑𝜎(𝑧) ≾ ∫ (∑𝑎𝑘

∞

𝑘=1

(𝑧)2)

𝑝/2

𝜕𝛺

𝑑𝜎(𝑧) . 

The right‐hand side of this inequality is finite by the condition (19), also we have 
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∑𝑏𝑘

∞

𝑘=1

(𝑧)2 = ∫ |
𝐷𝑒(𝑧,𝜂,𝜀)

𝜕f(𝜉)𝜌(𝜉)−𝑙|2𝑑𝜈(𝜉) , 

which completes the proof of the sufficiency in the theorem. 

Proof. Define 𝑔𝑘(𝑧) : = 2
−𝑘𝑙 (𝑃2𝑘+1(𝑧) − 𝑃2𝑘(𝑧)) . 

Let 𝑧 ∈ 𝜕𝛺 and ∈ 𝑆𝑘(𝑧) . Consider complex normal vector 𝑛(𝑧) =
𝜕𝜌(𝑧)

|𝜕𝜌(𝑧)|
 at 𝑧, complex 

tangent hyperplane 𝑇𝑧 = {𝑤 ∈ ℂ
𝑛 ∶  〈𝜕𝜌(𝑧),𝑤 − 𝑧〉 = 0} and complex plane 𝑇𝑧,𝜏

⊥ , 

orthogonal to 𝑇𝑧 and containing the point 𝜏 
𝑇𝑧,𝜏
⊥ : = {𝜏 + 𝑠𝑛(𝑧): 𝑠 ∈ ℂ}. 

Projection of vector 𝜏 ∈ ℂ to 𝜕𝛺 ∩ 𝑇𝑧,𝜏
⊥  we will denote as 𝜋𝑧(𝜏) . 

Define 𝛺𝑧,𝜏 = 𝛺 ∩ 𝑇𝑧,𝜏
⊥  and 𝛾𝑧,𝜏 = 𝜕𝛺𝑧,𝜏. There exist a conformal map 

𝜙𝑧,𝜏 : 𝑇𝑧,𝜏
⊥ \𝛺𝑧,𝜏 → ℂ\{𝑤 ∈ ℂ ∶  |𝑤| = 1} such that 𝜙𝑧,𝜏(oo) = ∞, 𝜙𝑧,𝜏

′ (oo) > 0, and we could 

consider analytical in 𝑇𝑧,𝜏
⊥ \𝛺𝑧,𝜏 function 𝐺𝑘(𝑠) : =

𝑔𝑘(𝑠)

𝜙𝑧,𝜏
2𝑘+1(𝑠)

. 

Applying to function 𝐺𝑘 Dyn’kin maximal estimate from [4] for domain 𝑇𝑧,𝜏
⊥ \𝛺(𝑧, 𝜏) we 

obtain the estimate 

|𝐺𝑘(𝜏)| ≾
1

𝜌(𝜏)
∫ |
𝑠∈𝐼𝑧,𝜏

𝐺𝑘(𝑠)||𝑑𝑠| + ∫ |
𝜕𝛺𝑧,𝜏\𝐼𝑧,𝜏

𝐺𝑘(𝑠)|
𝜌(𝜏)𝑚

|𝑠 − 𝜋𝑧(𝜏)|
𝑚+1

|𝑑𝑠|, 

where 𝐼𝑧,𝜏 = {𝑠 ∈ 𝛾𝑧,𝜏 ∶  |𝑠 − 𝜋𝑧(𝜏)| < dist(𝜏, 𝜕𝛺𝑧,𝜏)/2}, and 𝑚 > 0 could be chosen 

arbitrary large. 

Note that |𝜙𝑧,𝜏(𝑠)| − 1 ∧ −dist(𝑠, 𝜕𝛺𝑧,𝜏) ∧ −2
−𝑘, thus |𝑔𝑘(𝑠)| ∧ −|𝐺𝑘(𝑠)| for 𝑠 ∈

𝐷𝑘(𝑧) ∩ 𝑇𝑧,𝜏
⊥ . Hence, 

|𝑔𝑘(𝜏)| ≾∑2−𝑗𝑚
∞

𝑗=1

1

2𝑗𝜌(𝜏)
 ∫  

𝑠∈𝜕𝛺𝑧,𝜏

|𝑠−𝜋𝑧(𝜏)|<2
𝑗𝜌(𝜏)

|𝑔𝑘(𝑠)||𝑑𝑠|.             (25) 

Since the boundary of the domain 𝛺 is 𝐶3‐smooth, we can assume that the constant in this 

inequality (25) does not depend on 𝑧 ∈ 𝜕𝛺 and 𝜏 ∈ 𝛺𝜀\𝛺. 

Note that function 𝑔𝑘(𝜏 + 𝑧 − 𝑤) is holomorphic in 𝑤 ∈ 𝑇𝑧, then estimating the mean we 

obtain 

|𝑔𝑘(𝜏)| ≤
1

𝜌(𝜏)𝑛−1
∫ |
|𝑤−𝑧|<√𝜌(𝜏)

𝑔𝑘(𝜏 + 𝑧 − 𝑤)|𝑑𝜇2𝑛−2(𝑤) 

≾ ∑ 2−𝑗𝑚∞
𝑗=1

1

𝜌(𝜏)𝑛−1
∫

𝑑𝜇2𝑛−2(𝑤)

2𝑗𝜌(𝜏)|𝑤−𝑧|<√𝜌(𝜏)
∫ 𝑠∈𝜕𝛺𝑧,𝜏

|𝑠−𝜋𝑧(𝜏+𝑧−𝑤)|<2
𝑗𝜌(𝜏)

 |𝑔𝑘(𝑠)||𝑑𝑠| 
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≾∑2−𝑗(𝑚−𝑛+1)
∞

𝑗=1

∫ |
𝐵(𝑧,2j𝜌(𝜏))

𝑔𝑘(𝑤)|𝑑𝜎(𝑤) ,           (26) 

where 𝑑𝜇2𝑛−2 is Lebesgue measure in 𝑇𝑧 

Assume that 𝑚 > 𝑛 − 1, then |𝑔𝑘(𝜏)| ∼< 𝑀𝑔𝑘(𝑧), 𝑧 ∈ 𝜕𝛺, 𝜏 ∈ 𝐷𝑘(𝑧) . Finally, 

𝑏𝑘(𝑧) = ∫ |
𝐷𝑘(𝑧)

𝜕f(𝜏)𝜌(𝜏)−𝑙|2𝑑𝜄/(𝜏) ≾ ∫ |
𝐷𝑘(𝑧)

𝑔𝑘(𝜏)𝜌(𝜏)
−𝑙−1|2𝑑𝜄/(𝜏) 

≾ (𝑀𝑎𝑘(𝑧))
2
∫

𝑑𝑙𝐽(𝜏)

𝜌(𝜏)2𝐷𝑘(𝑧)

≾ (𝑀𝑎𝑘(𝑧))
2
 

and the lemma is proved. 

Let 𝛺 ⊂ ℂ𝑛 be a strongly convex domain and , 𝜀𝑗 > 0. For function 𝑔 ∈ 𝐿1(𝜕𝛺) and 

𝑙 ∈ IN we define a function 

𝐼𝑙(𝑔, 𝑧) = (∫  
𝐷𝑒(𝑧,𝜂𝜀)

| ∫
𝑔(𝑤)𝑑𝑆(𝑤)

〈𝜕𝜌(𝜏), 𝜏 − 𝑤〉𝑛+𝑙𝜕𝛺

|2𝑑𝜈𝑙(𝜏))

1/2

       (27) 

where 𝑑𝑆(𝑤) =
1

(2𝜋𝑖)𝑛
𝜕𝜌(𝑤) ∧ (𝜕𝜕𝜌(𝑤))

𝑛−1
 (see (3)) and 𝑑𝜄/𝑙(𝜏) =

𝑑𝜇2𝑛(𝜏)

𝜌(𝜏)𝑛−2𝑙−1
. 

Theorem (5.1.11)[151]: Let 𝛺 be strongly convex domain and 𝑔 ∈ 𝐿𝑝(𝜕𝛺), 1 < 𝑝 < ∞, 

Then 

∫  
𝜕𝛺

𝐼𝑙(𝑔, 𝑧)
𝑝𝑑𝜎(𝑧) ≾ ∫ |

𝑛𝛺

𝑔(𝑧)|𝑝𝑑𝜎(𝑧) .                                      (28) 

Note that in the one‐variable case the integral (27) gives the holomorphic function and the 

result of the theorem follows from [155]. 

Definition (5.1.12)[151]: Assume, that defining function ρ for strongly convex domain Ω 

has the following form near 0 ∈ ∂Ω 

𝜌(𝑧) = 2 Re (𝑧𝑛) + ∑ 𝐴𝑗𝑘

𝑛

𝑗,𝑘=1

𝑧𝑗𝑧𝑘 + 𝑂(|𝑧|
3)                  (29) 

with positive definite form Ajkzjzk. We define a set 

𝐷0(𝜂, 𝜀) = {𝜏 ∈ ℂ
𝑛\𝛺: |𝜏1|

2 +⋯+ |𝜏𝑛−1|
2 < 𝜂 Re (𝜏𝑛) , 

| Im (𝜏𝑛)| < 𝜂 Re (𝜏𝑛), | Re (𝜏𝑛)| < 𝜀}.              (30) 

Proof. Since operators 𝑇𝑗 with kernels 𝐾𝑗 verify the conditions of 𝑇1-theorem, we have 𝑇𝑗 ∈

ℒ(𝐿𝑝(𝜕𝛺), 𝐿𝑝(𝜕𝛺, 𝐿2(𝐷0𝑙))𝑑𝜄/ and 
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∑ ∫ ‖
𝛺

𝑁

𝑗=1𝜕

𝑇𝑗𝑔(𝑧)‖
𝑝𝑑𝑆(𝑧) 

= ∑ ∫ 𝑑
𝛺

𝑁

𝑗=1𝜕

𝑆(𝑧)(∫ |
𝐷0

∫
𝑔(𝑤)𝜒𝑗

1/2(𝑧)𝐽𝑗(𝑧, 𝜏)𝑑𝑆(𝑤)

〈𝜕𝜌 (𝜓𝑗(𝑧, 𝜏)) , 𝜓𝑗(𝑧, 𝜏) − 𝑤〉
𝑛+1𝜕𝛺

|2
𝑑𝜇(𝜏)

 Re (𝜏𝑛)
𝑛−1
)

𝑝

 

≾ ‖𝑔‖𝐿𝑝(𝜕𝛺)
𝑝

. 

Thus by decomposition (35) ∫ 𝐼𝑙𝜕𝛺
(𝑔, 𝑧)𝑝𝑑𝜎(𝑧) ≾ ∫ |

𝜕𝛺
𝑔(𝑧)|𝑝𝑑𝜎(𝑧) , which proves the 

theorem. 

Lemma (5.1.13)[151]: Suppose, that ρ has the form (29). There exist constants c, ε0 > 0 

such that 

𝐷𝑒(0, 𝜂, 𝜀) ⊂ 𝐷0(𝑐𝜂, 𝑐𝜀𝑗), 𝐷0(𝜂, 𝜀) ⊂ 𝐷
𝑒(0, 𝑐𝜂, 𝑐𝜀𝑗) 𝑓𝑜𝑟 0 < 𝜂, 𝜀 < 𝜀0. 

Proof. For the function 𝜌 of the form (29) the Korányi sector (11) could be expressed as 

follows 

𝐷𝑒(0, 𝜂, 𝜀) = {𝜏 ∈ ℂ𝑛\𝛺: |𝜏1|
2 +⋯+ |𝜏𝑛−1|

2 ≤ 𝜂𝜌(𝜏) , 

| Im (𝜏𝑛)| ≤ 𝜂𝜌(𝜏), 𝜌(𝜏) < 𝜀} 

and 

𝜌(𝜏) ≤ 2 Re (𝜏𝑛) + 𝑐0(|𝜏1|
2 + +|𝜏𝑛−1|

2 +  Im (𝜏𝑛)
2 +  Re (𝜏𝑛)

2) 

≤ (2 + 𝑐0 Re (𝜏𝑛)) Re (𝜏𝑛) + 𝑐0(1 + 𝜂𝜌(𝜏))𝜂𝜌(𝜏), 𝜏 ∈ 𝐷
𝑒(0, 𝜂, 𝜀) . 

Thus for 𝜂 < 𝜂0 =
1

8𝑐0
 we have (𝜏) ≤ 𝑐 Re (𝜏𝑛) . 

It is easy to see, that |𝜏| → 0 when 𝜌(𝜏) → 0, 𝜏 ∈ 𝐷𝑒(0, 𝜂, 𝜀) . Then by convexity of 𝛺 

2 Re (𝜏𝑛) = 𝜌(𝜏) − ∑ 𝐴𝑗𝑘

𝑛

𝑗,𝑘=1

𝜏𝑗𝜏𝑘 + 𝑂(|𝜏|
3) ≤ 𝜌(𝜏), 𝜏 ∈ 𝐷𝑒(0, 𝜂, 𝜀0) 

for some 𝜀0 ∈ (0, 𝜂0) . 

Finally 𝐷𝑒(0, 𝜂, 𝜀) ⊂ 𝐷0(𝑐𝜂, 𝜀𝑗) and analogously 𝐷0(𝜂, 𝜀) ⊂ 𝐷
𝑒(0, 𝜂, 𝜀) for 0 < 𝜂, 𝜀 < 𝜀0.  

Theorem (5.1.14)[151]: There exists such covering of the set Ωε\Ω−ε by open sets Γj such 

that for every ξ ∈ Γj we can find a holomorphic change of coordinates ϕj(ξ,⋅) : ℂ
n → ℂn 

such that 

i. The mapping ϕj(ξ,⋅) transforms function ρ to the type (29) and could be 

expressed as follows 

𝜙𝑗(𝜉, 𝑧) = 𝛷𝑗(𝜉)(𝑧 − 𝜉) + (𝑧 − 𝜉)
⊥𝐵𝑗(𝜉)(𝑧 − 𝜉)𝑒𝑛,                 (31) 
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where matrices Φj(ξ), Bj(ξ) are C1‐smooth on Γj, and en = (0,… , 0,1) . 

ii. Let ψj(ξ,⋅) be an inverse map of ϕj(ξ,⋅) , and let Jj(ξ,⋅) be a complex Jacobian of 

ψj. Then 

sup
𝜏∈Ω𝜀\Ω̅𝜀

  |𝐽𝑗(𝜉,⋅) − 𝐽𝑗(𝜉
′,⋅)| ≾ |𝜉 − 𝜉’|,                                        (32) 

sup
𝜏∈Ω𝜀\Ω̅𝜀

  |𝜓𝑗(𝜉,⋅) − 𝜓𝑗(𝜉
′,⋅)| ≾ |𝜉 − 𝜉’|.                                      (33) 

Note that real Jacobian is then equal to |Jj(ξ,⋅)|
2 = Jj(ξ,⋅)Jj(ξ,⋅). 

iii. There exist constants 𝑐, 𝜀0 > 0 such that for 0 < 𝜂, 𝜀 < 𝜀0 

𝜙𝑗(𝜉, 𝐷
𝑒(𝜉, 𝜂, 𝜀)) ⊆ 𝐷0(𝑐𝜂, 𝑐𝜀) , 𝜓𝑗(𝜉, 𝐷0(𝜂, 𝜀) ⊆ 𝐷

𝑒(𝜉, 𝑐𝜂, 𝑐𝜀) .     (34) 

Proof. Let 𝜉 ∈ 𝜕𝛺, by linear change of coordinates 𝑧′ = (𝑧 − 𝜉)𝛷(𝜉) we could obtain the 

following form for function 𝜌 

𝜌(𝑧) = 𝜌(𝜉 + 𝛷−1(𝜉)𝑧′) 

= 2 Re (𝑧𝑛
′ ) + ∑ 𝐴𝑗𝑘

1

𝑛

𝑗,𝑘=1

(𝜉)𝑧𝑗𝑧𝑘
′
+  Re ∑ 𝐴𝑗𝑘

2

𝑛

𝑗,𝑘=1

(𝜉)𝑧𝑗𝑧𝑘
′ + 𝑂(|𝑧′|3) . 

Setting 𝑧𝑛
′′ = 𝑧𝑛

′ + 𝐴𝑗𝑘
2 𝑧𝑗

′𝑧𝑘
′  and 𝑧𝑗

′′ = 𝑧𝑗
′, 1 ≤ 𝑗 ≤ 𝑛 − 1, we have (see [13]) 

𝜌(𝑧′′) = 2 Re (𝑧𝑛
′ ) + ∑ 𝐴𝑗𝑘

1

𝑛

𝑗,𝑘=1

(𝜉)𝑧𝑗
′′𝑧𝑘

′′
+ 𝑂(|𝑧” |3) . 

Denote (𝜉) = 𝛷(𝜉)⊥𝐴2(𝜉)𝛷(𝜉) , then 

𝜙(𝜉, 𝑧) = 𝛷(𝜉)(𝑧 − 𝜉) + (𝑧 − 𝜉)⊥𝐵(𝜉)(𝑧 − 𝜉)𝑒𝑛. 

We choose 𝛤𝑗 such that the matrix 𝛷(𝜉) could be defined on 𝛤𝑗 smoothly, this choice we 

denote as 𝛷𝑗, and the change corresponding to this matrix as 𝜙𝑗 

𝜙𝑗(𝜉, 𝑧) = 𝛷𝑛(𝜉)(𝑧 − 𝜉) + (𝑧 − 𝜉)
⊥𝐵𝑗(𝜉)(𝑧 − 𝜉)𝑒𝑛. 

Thus mappings 𝜙𝑗 satisfy the first condition. Easily, the second condition also holds. 

The last condition (34) follows immediately from Lemma (5.1.15). This ends the proof of 

the theorem.  

Further we will assume, that the covering 𝛺𝜀\𝛺−𝜀 ⊂ ⋃ 𝛤𝑗
𝑁
𝑗=1  and maps 𝜙𝑗 , 𝜓𝑗. For covering 
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{𝛤𝑗} we consider a smooth decomposition of identity on  : 

𝜒𝑗 ∈ 𝐶
∞(𝛤𝑗), 0 ≤ 𝜒𝑗 ≤ 1, 𝑠𝑢𝑝𝑝 𝜒𝑗 ⊂ T𝑗 ,∑𝜒𝑗

𝑁

𝑗=1

(𝑧) = 1, 𝑧 ∈ 𝜕𝛺. 

Fix parameters 0 < 𝜀, 𝜂 < 𝜀0, denote 𝐷0 = 𝐷0(𝜂, 𝜀) . Then by (34) 

𝐷𝑒(𝑧) = 𝜙𝑗(𝑧, 𝐷
𝑒(𝑧, 𝜂/𝑐, 𝜀𝑗/𝑐)) ⊂ 𝐷0 

and 

𝐼𝑙(𝑔, 𝑧)
2 

=∑𝜒𝑗

𝑁

𝑗=1

(𝑧)∫ |
𝐷𝑒(𝑧)

∫
𝑔(𝑤)𝐽𝑗(𝑧, 𝜏)𝑑𝑆(𝑤)

〈𝜕𝜌 (𝜓𝑗(𝑧, 𝜏)) , 𝜓𝑗(𝑧, 𝜏) − 𝑤〉
𝑛+𝑙𝜕𝛺

|2
𝑑𝜇(𝜏)

 Re (𝜏𝑛)
𝑛−2𝑙+1

 

≾ ∑ ∫ |
0

𝑁

𝑗=1𝐷

∫
𝑔(𝑤)𝜒𝑗

1/2(𝑧)𝐽𝑗(𝑧, 𝜏)𝑑𝑆(𝑤)

〈𝜕𝜌 (𝜓𝑗(𝑧, 𝜏)) , 𝜓𝑗(𝑧, 𝜏) − 𝑤〉
𝑛+𝑙𝜕𝛺

|2
𝑑𝜇(𝜏)

 Re (𝜏𝑛)
𝑛−2𝑙+1

. (35) 

We will consider the function 

𝐾𝑗(𝑧, 𝑤)(𝜏) =
𝜒𝑗
1/2(𝑧)𝐽𝑗(𝑧, 𝜏)

〈𝜕𝜌 (𝜓𝑗(𝑧, 𝜏)) , 𝜓𝑗(𝑧, 𝜏) − 𝑤〉
𝑛+1

       (36) 

as a map 𝜕𝛺 × 𝜕𝛺 → ℒ(ℂ, 𝐿2(𝐷0𝑙))𝑑𝜄/, such that its values are operator of multiplication 

from ℂ to 𝐿2(𝐷, 𝑑𝜄/) , where 𝑑𝜄/𝑙(𝜏) =
𝑑𝜇(𝜏)

 Im (𝜏𝑛)
𝑛−2𝑙+1

 is a measure on the region 𝐷0. 

Throughout the proof of the Theorem (5.1.11) 𝑗, 𝑙 will be fixed integers and the norm of 

function 𝐹 in the space 𝐿2(𝐷0𝑙)𝑑𝜄/ will be denoted as ‖𝐹‖. 

We will show that integral operator defined by kernel 𝐾𝑗 is bounded on 𝐿𝑝. To prove this we 

apply 𝑇1‐theorem for transformations with operator‐valued kernels formulated by Hytönen 

and Weis in [159], taking in account that in our case concerned spaces are Hilbert. Some 

details of the proof are similar to the proof of the boundedness of operator Cauchy‐Leray‐

Fantappiè 𝐾𝛺 for lineally convex domains introduced in [14]. Below we formulate the 𝑇1‐

theorem. 

Definition (5.1.15)[151]. We say that the function f ∈ C0
∞(∂Ω) is a normalized 

bumpfunction, associated with the quasiball B(w0, r) if supp f⊂ B(z, r), |f| ≤ 1, and 

|𝑓(𝜉) − 𝑓(𝑧)| ≤
𝑑(𝜉, 𝑧)𝛾

𝑟𝛾
. 

The set of bump‐functions associated with B(w0, r) is denoted as (γ,w0, r) . 

Theorem (5.1.16)[151]. Let K: ∂Ω × ∂Ω → ℒ(ℂ, L2(Ddι/)) verify the estimates 
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‖𝐾(𝑧,𝑤)‖ ≾
1

𝑑(𝑧,𝑤)𝑛
;                                                                      (37) 

‖𝐾(𝑧,𝑤) − 𝐾(𝜉, 𝑤)‖ ≾
𝑑(𝑧, 𝜉)𝛾

𝑑(𝑧,𝑤)𝑛+𝛾
, 𝑑(𝑧, 𝑤) > 𝐶𝑑(𝑧, 𝜉) ;      (38) 

‖𝐾(𝑧,𝑤) − 𝐾(𝑧,𝑤′)‖ ≾
𝑑(𝑤,𝑤′)𝛾

𝑑(𝑧, 𝑤)𝑛+𝛾
, 𝑑(𝑧, 𝑤) > 𝐶𝑑(𝑤,𝑤′) .   (39) 

Assume that operator T: 𝒮(∂Ω) → 𝒮′ (∂Ω, ℒ(ℂ, L2(D, dι/))) with kernel K verify the 

following conditions. ∙ 𝑇1, 𝑇′1 ∈ BMO(𝜕𝛺, 𝐿2(𝐷0𝑙))𝑑𝜄/, 

where T′ is formally adjoint operator. ∙ Operator T satisfies the weak boundedness property, 

that is for every pair of normalized bump‐functions f, g ∈ A(γ,w0, r) we have 

‖〈𝑔, 𝑇𝑓〉‖ ≤ 𝐶𝑟−𝑛 

Then 𝑇 ∈ ℒ(𝐿𝑝(𝜕𝛺), 𝐿𝑝(𝜕𝛺, 𝐿2(𝐷0, 𝑑𝜈𝑙)) for every ∈ (1,∞) . 

In the following three lemmas we will prove that kernels 𝐾𝑗 and corresponding operators 𝑇𝑗 

satisfy the conditions of the 𝑇1‐theorem. 

Lemma (5.1.17)[151]. The kernel Kj verify estimates 

Proof. By lemma (5.1.4) we have |〈𝜕𝜌(𝜏), 𝜏 − 𝑤〉| ∧ −𝜌(𝜏) + |〈𝜕𝜌(𝑧), 𝑧 − 𝑤〉|, 

𝑧, 𝑤 ∈ 𝜕𝛺, 𝜏 ∈ 𝐷𝑒(𝑧, 𝑐𝜂, 𝑐𝜀𝑗) . Thus 

‖𝐾𝑗(𝑧, 𝑤)‖
2 = ∫ |

𝐷0

𝐾𝑗(𝑧, 𝑤)(𝜏)|
2𝑑𝑣𝑙(𝜏) ≾ ∫

dvl(𝜏)

|〈𝜕𝜌(𝜏), 𝜏 − 𝑤〉|2𝑛+2𝑙𝐷𝑛(𝑧,𝑐𝜂,𝑐𝜀)

 

≾ ∫
1

(𝜌(𝜏) + |〈𝜕𝜌(𝑧), 𝑧 − 𝑤〉|)2𝑛+2𝑙𝐷𝑒(𝑧,𝑐𝜂,𝑐𝜀)

𝑑𝜇(𝜏)

𝜌(𝜏)𝑛−2𝑙+1
 

≾ ∫
𝑡2𝑙−1𝑑𝑡

(𝑡 + |〈𝜕𝜌(𝑧), 𝑧 − 𝑤〉|)2𝑛+2𝑙

∞

0

∼<
1

|〈𝜕𝜌(𝑧), 𝑧 − 𝑤〉|2𝑛
∼<

1

𝑑(𝑧,𝑤)2𝑛
. 

Similarly, 

‖𝐾𝑗(𝑧, 𝑤) − 𝐾𝑗(𝑧, 𝑤
′)‖2 

≾ ∫ |
𝐷𝑒(𝑧,𝑐𝜂,𝑐𝜀)

1

〈𝜕𝜌(𝜏), 𝜏 − 𝑤〉𝑛+𝑙
−

1

〈𝜕𝜌(𝜏), 𝜏 − 𝑤′〉𝑛+𝑙
|2𝑑𝜈𝑙(𝜏) 

Denote �̂� = pr𝜕𝛺(𝜏) , then 

|〈𝜕𝜌(𝜏), 𝜏 − 𝑤〉| ≾ 𝜌(𝜏) + |〈𝜕𝜌(�̂�), �̂� − 𝑤〉| 

≾ 𝜌(𝜏) + |〈𝜕𝜌(𝑧), 𝑧 − 𝑤〉| + |〈𝜕𝜌(�̂�), �̂� − 𝑧〉| ≾ 𝜌(𝜏) + |〈𝜕𝜌(𝑧), 𝑧 − 𝑤〉|, 

which combined with Lemma (5.1.4) and condition 

𝑑(𝑤,𝑤′) = |〈𝜕𝜌(𝑤),𝑤 − 𝑤′〉| < 𝐶|〈𝜕𝜌(𝑧), 𝑧 − 𝑤〉| = 𝐶𝑑(𝑧,𝑤) 
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implies 

|〈𝜕𝜌(𝜏), 𝜏 − 𝑤〉| ∧ −𝜌(𝜏) + |〈𝜕𝜌(𝑧), 𝑧 − 𝑤〉| ∧ −𝜌(𝜏) + |〈𝜕𝜌(𝑧), 𝑧 − 𝑤′〉| 

∧ −|〈𝜕𝜌(𝜏), 𝜏 − 𝑤′〉|. 

Next, we have 

|〈𝜕𝜌(𝜏), 𝜏 − 𝑤′〉 − 〈𝜕𝜌(𝜏), 𝜏 − 𝑤〉| = |〈𝜕𝜌(𝜏), �̂� − 𝑤〉 − 〈𝜕𝜌(𝜏), �̂� − 𝑤′〉| 

≤ |〈𝜕𝜌(𝜏) − 𝜕𝜌(�̂�),𝑤 − 𝑤′〉| + |〈𝜕𝜌(�̂�), �̂� − 𝑤〉 − 〈𝜕𝜌(�̂�), �̂� − 𝑤′〉| 

≾ 𝜌(𝜏)|〈𝜕𝜌(𝑤),𝑤 − 𝑤′〉|1/2 + |〈𝜕𝜌(�̂�), �̂� − 𝑤〉|1/2|〈𝜕𝜌(𝑤), 𝑤 − 𝑤′〉|1/2 

≾ |〈𝜕𝜌(𝜏), 𝜏 − 𝑤〉|1/2|〈𝜕𝜌(𝑤),𝑤 − 𝑤′〉|1/2 

Hence, 

‖𝐾𝑗(𝑧, 𝑤) − 𝐾𝑗(𝑧, 𝑤
′)‖2 ≾ ∫

|〈𝜕𝜌(𝑤),𝑤 − 𝑤′〉|

|〈𝜕𝜌(𝜏), 𝜏 − 𝑤〉|2𝑛+2𝑙+1𝐷𝑒(𝑧,𝑐𝜂,𝑐𝜀)

𝑑𝐿/𝑙(𝜏) 

≾ ∫
|〈𝜕𝜌(𝑤),𝑤 − 𝑤′〉|𝑡2𝑙−1𝑑𝑡

(𝑡 + |〈𝜕𝜌(𝑧), 𝑧 − 𝑤〉|)2𝑛+2𝑙+1

∞

0

≾
|〈𝜕𝜌(𝑤),𝑤 − 𝑤′〉|

|〈𝜕𝜌(𝑧), 𝑧 − 𝑤〉|2𝑛+1
=
𝑑(𝑤,𝑤′)

𝑑(𝑧, 𝑤)𝑛+1
. 

The last inequality (39) is a bit harder to prove. 

Let 𝑧, 𝜉, 𝑤 ∈ 𝜕𝛺, 𝐶(𝑧, 𝜉) < 𝑑(𝑧,𝑤) , and estimate the value 

𝐴 = |〈𝜕𝜌 (𝜓𝑗(𝑧, 𝜏)) , 𝜓𝑗(𝑧, 𝜏) − 𝑤〉 − 〈𝜕𝜌 (𝜓𝑗(𝜉, 𝜏)) , 𝜓𝑗(𝜉, 𝜏) − 𝑤〉|. 

Denote 𝜏𝑧 = 𝜓𝑗(𝑧, 𝜏), 𝜏𝜉 = 𝜓𝑗(𝜉, 𝜏) , then by (31) 

𝜏 = 𝛷(𝑧)(𝜏𝑧 − 𝑧) + 𝑖(𝜏𝑧 − 𝑧)
𝑇𝐵(𝑧)(𝜏𝑧 − 𝑧)𝑒𝑛 

= 𝛷(𝜉)(𝜏𝜉 − 𝜉) + 𝑖(𝜏𝜉 − 𝜉)
𝑇
𝐵(𝜉)(𝜏𝜉 − 𝜉)𝑒𝑛, 

whence denoting 𝛹(𝑧) = 𝛷(𝑧)−1 and introducing 𝐿(𝑧, 𝜉, 𝜏) we obtain 

𝜏𝑧 = 𝑧 + 𝛹(𝑧)𝜏 − (𝜏𝑧 − 𝑧)
𝑇𝐵(𝑧)(𝜏𝑧 − 𝑧)𝛹(𝑧)𝑒𝑛, 

𝜏𝜉 = 𝜉 + 𝛹(𝜉)𝜏 − (𝜏𝜉 − 𝜉)
𝑇
𝐵(𝜉)(𝜏𝜉 − 𝜉)𝛹(𝜉)𝑒𝑛, 

𝜏𝑧 − 𝜏𝜉 = 𝑧 − 𝜉 + (𝛹(𝑧) − 𝛹(𝜉))𝜏 + 𝐿(𝑧, 𝜉, 𝜏)𝑒𝑛. 

Note, that norms of matrices ‖𝛹(𝜉)‖ are bounded, thus 

|𝐿(𝑧, 𝜉, 𝜏)| ≤ |(𝜏𝑧 − 𝑧)
𝑇𝐵(𝑧)(𝜏𝑧 − 𝑧)(𝛹(𝑧) − 𝛹(𝜉))| 

+|(𝜏𝑧 − 𝑧)
𝑇𝐵(𝑧)(𝜏𝑧 − 𝑧) − (𝜏𝜉 − 𝜉)

𝑇
𝐵(𝜉)(𝜏𝜉 − 𝜉)|‖𝛹(𝜉)‖ 

≾ |𝑧 − 𝜉||𝜏𝑧 − 𝑧|
2 + |(𝜏𝑧 − 𝑧 − 𝜏𝜉 + 𝜉)

𝑇
𝐵(𝑧)(𝜏𝑧 − 𝑧)| 

+|(𝜏𝜉 − 𝜉)
𝑇
𝐵(𝑧)(𝜏𝑧 − 𝑧) − (𝜏𝜉 − 𝜉)

𝑇
𝐵(𝜉)(𝜏𝜉 − 𝜉)| 

≾ |𝑧 − 𝜉||𝜏𝑧 − 𝑧|
2 + |𝑧 − 𝜉||𝜏| + | (((𝑧) − 𝛹(𝜉))𝜏 + 𝐿(𝑧, 𝜉, 𝜏)𝑒𝑛)

𝑇
𝐵(𝑧)(𝜏𝑧 − 𝑧)| 
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+|(𝜏𝜉 − 𝜉)
𝑇
(𝐵(𝑧) − 𝐵(𝜉))(𝜏𝑧 − 𝑧)| + |(𝜏𝜉 − 𝜉)

𝑇
𝐵(𝜉)(𝜏𝑧 − 𝑧 − 𝜏𝜉 − 𝜉)| 

≾ |𝑧 − 𝜉||𝜏𝑧 − 𝑧|
2 + |𝑧 − 𝜉||𝜏| + |𝜏||𝐿(𝑧, 𝜉, 𝜏)| + |𝑧 − 𝜉||𝜏|2 + |𝜏|𝐿(𝑧, 𝜉, 𝜏) . 

Choosing 𝜀𝑗 > 0 small enough we get |𝜏| ≤ 𝜂| Im (𝜏𝑛)| + (1 + 𝜂)| Im (𝜏𝑛)| ≤ 3𝜀 and 

|𝐿(𝑧, 𝜉, 𝜏)| ≾ 𝑑(𝑧, 𝜉)1/2|𝜏|, for 𝜏 ∈ 𝐷0 = 𝐷0(𝜂, 𝜀) . Hence, 

𝐴 ≤ |〈𝜕𝜌(𝜏𝑧) − 𝜕𝜌(𝜏𝜉), 𝜏𝑧 −𝑤〉| + |〈𝜕𝜌(𝜏𝜉), 𝜏𝑧 −𝑤〉| 

≾ |𝜏𝑧 − 𝜏𝜉|(𝜌(𝜏𝑧) + 𝑑(𝑧, 𝑤)
1/2) + |〈𝜕𝜌(𝜏𝑧) − 𝜕𝜌(𝜏𝜉), 𝑧 − 𝜉〉| + |〈𝜕𝜌(𝑧), 𝑧 − 𝜉〉|

+ |〈𝜕𝜌(𝜏𝜉), 

(𝛹(𝑧) − 𝛹(𝜉))𝜏〉| + |〈𝜕𝜌(𝜏𝜉), 

𝐿(𝑧, 𝜉, 𝜏)〉| ≾ 𝑑(𝑧, 𝜉)1/2𝑑(𝜏𝑧, 𝑤) + |𝜏𝑧 − 𝜉||𝑧 − 𝜉| + 𝑑(𝑧, 𝜉) + |𝑧 − 𝜉||𝜏| + |𝐿(𝑧, 𝜉, 𝜏)|

≾ 𝑑(z, 𝜉) + 𝑑(𝑧, 𝜉)1/2𝑑(𝑧, 𝑤)1/2 

≾ 𝑑(𝑧, 𝜉)1/2𝑑(𝑧,𝑤)1/2 

Combining this estimate with inequality |〈𝜕𝜌(𝜏𝑧), 𝜏𝑧 −𝑤〉| ∧ −|〈𝜕𝜌(𝜏𝜉), 𝜏𝜉 −𝑤〉| we 

obtain 

‖𝐾𝑗(𝑧, 𝑤) − 𝐾𝑗(𝜉, 𝑤)‖
2 ≾ ∫

|𝜒𝑗(𝑧)
1/2 − 𝜒𝑗(𝜉)

1/2|2

|〈𝜕𝜌(𝜏), 𝜏 − 𝑤〉|2𝑛+2𝑙𝐷𝑒(𝑧,𝑐𝜂,𝑐𝜀)

𝑑𝜇(𝜏)

𝜌(𝜏)𝑛−2𝑙+1
 

+𝜒𝑗(𝜉)∫
|〈𝜕𝜌(𝑧), 𝑧 − 𝜉〉||〈𝜕𝜌(𝑧), 𝑧 − 𝑤〉|

|〈𝜕𝜌(𝜏𝑧), 𝜏𝑧 −𝑤〉|
2𝑛+4

𝐷0

𝑑𝜇(𝜏)

 Re (𝜏𝑛)
𝑛−2𝑙+1

 

≾
|〈𝜕𝜌(𝑧), 𝑧 − 𝜉〉|

|〈𝜕𝜌(𝑧), 𝑧 − 𝑤〉|2𝑛
+

|〈𝜕𝜌(𝑧), 𝑧 − 𝜉〉|

|〈𝜕𝜌(𝑧), 𝑧 − 𝑤〉|2𝑛+1
≾

|〈𝜕𝜌(𝑧), 𝑧 − 𝜉〉|

|〈𝜕𝜌(𝑧), 𝑧 − 𝑤〉|2𝑛+1
 

≾
𝑑(𝑧, 𝜉)

𝑑(𝑧, 𝑤)2𝑛+1
. 

Lemma (5.1.18)[151]: 𝑇𝑗(1) = 0 and ‖𝑇𝑗(1)‖ ∼< 1. 

Proof. Introduce the notation 𝜏𝑧 = 𝜓𝑗(𝑧, 𝜏) . The function 〈𝜕𝜌(𝜏𝑧), 𝜏𝑧 −𝑤〉 is holomorphic 

in 𝛺 with respect to 𝑤, then the form 〈𝜕𝜌(𝜏𝑧), 𝜏𝑧 −𝑤〉
−𝑛−𝜄𝑑𝑆(𝑤) is closed in 𝛺 and 

𝑇𝑗(1)(𝜏) = 𝜒𝑗(𝑧)
1/2𝐽𝑗(𝑧, 𝜏)∫

𝑑𝑆(𝑤)

〈𝜕𝜌(𝜏𝑧), 𝜏𝑧 −𝑤〉
𝑛+𝑙

𝜕𝛺

= 0. 

It remains to estimate the value of formally‐adjoint operator 𝑇′ on 𝑓 ≡ 1. 

𝑇𝑗
′(1)(𝑤)(𝜏) = ∫

𝜒𝑗(𝑧)
1/2𝐽𝑗(𝑧, 𝜏)𝑑𝑆(𝑧)

〈𝜕𝜌(𝜏𝑧), 𝜏𝑧 −𝑤〉
𝑛+𝑙

𝜕𝛺
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= ∫
𝜒𝑗(𝑧)

1/2𝐽𝑗(𝑧, 𝜏)(𝑑𝑆(𝑧) − 𝑑𝑆(𝜏𝑧))

〈𝜕𝜌(𝜏𝑧), 𝜏𝑧 −𝑤〉
𝑛+𝑙

𝜕𝛺

+∫
𝜒𝑗(𝑧)

1/2𝐽𝑗(𝑧, 𝜏)𝑑𝑆(𝜏𝑧)

〈𝜕𝜌(𝜏𝑧), 𝜏𝑧 −𝑤〉
𝑛+𝜄

𝜕𝛺

= 𝐿1 + 𝐿2. 

Note that |𝑧 − 𝜏𝑧| ≾  Re (𝜏𝑛) , therefore |𝑑𝑆(𝑧) − 𝑑𝑆(𝜓(𝑧, 𝜏))| ≾ Re (𝜏𝑛)𝑑𝜎(𝑧) and 

|𝐿1| ≾ ∫
 Re (𝜏𝑛)𝑑𝜎(𝑧)

|〈𝜕𝜌(𝜏𝑧), 𝜏𝑧 −𝑤〉|
𝑛+𝑙

𝜕𝛺

≾
 Re (𝜏𝑛)𝑑𝜎(𝑧)

( Re (𝜏𝑛) + |〈𝜕𝜌(𝑧), 𝑧 − 𝑤〉|)
𝑛+𝑙

 

≾ ∫
 Re (𝜏𝑛)𝑣

𝑛−1𝑑𝑣

( Re (𝜏𝑛) + 𝑣)
𝑛+𝑙

∞

0

≾
1

 Re (𝜏𝑛)
𝑙−1
. 

Thus we get 

∫ |
𝐷0

𝐿1|
2𝑑𝜄/𝑙(𝜏) ≾ ∫

1

 Re (𝜏𝑛)
2𝑙−2

𝐷0

𝑑𝜇(𝜏)

 Re (𝜏𝑛)
𝑛−2𝑙+1

≾ ∫
𝑡𝑛𝑑𝑡

𝑡𝑛−1

𝜀

0

∼< 1 (40) 

To estimate 𝐿2 we recall that 𝑑𝜉
𝑑𝑆(𝜉)

〈𝜕𝜌(𝜉),𝜉−𝑧〉𝑛
= 0, 𝑧 ∈ 𝜕𝛺, 𝜉 ∈ ℂ𝑛\𝛺, and 

consequently 

𝑑
𝑑𝑆(𝜉)

〈𝜕𝜌(𝜉), 𝜉 − 𝑧〉𝑛+𝑙
=

(𝜕𝜕𝜌(𝜉))
𝑛

〈𝜕𝜌(𝜉), 𝜉 − 𝑧〉𝑛+𝑙
 

−(𝑛 + 𝑙)
(𝜕𝜉(〈𝜕𝜌(𝜉), 𝜉 − 𝑧〉) ∧ 𝜕𝜕𝜌(𝜉))

𝑛−1

〈𝜕𝜌(𝜉), 𝜉 − 𝑧〉𝑛+𝑙
= −

𝑙

𝑛

𝑑𝑉(𝜉)

〈𝜕𝜌(𝜉), 𝜉 − 𝑧〉𝑛+𝑙
. 

By Stokes’ theorem we obtain 

𝐿2 = ∫
𝜒𝑗(𝑧)

1/2𝐽𝑗(𝑧, 𝜏)𝑑𝑆(𝜏𝑧)

〈𝜕𝜌(𝜏𝑧), 𝜏𝑧 −𝑤〉
𝑛+𝑙

𝜕𝛺

 

= ∫
𝜕𝑧 (𝜒𝑗(𝑧)

1/2𝐽𝑗(𝑧, 𝜏)) ∧ 𝑑𝑆(𝜏𝑧)

〈𝜕𝜌(𝜏𝑧), 𝜏𝑧 −𝑤〉
𝑛+𝑙

𝛺𝜀1\𝛺

−
𝑙

𝑛
∫

𝜒𝑗(𝑧)
1/2𝐽𝑗(𝑧, 𝜏)𝑑𝑉(𝜏𝑧)

〈𝜕𝜌(𝑛𝑧), 𝜏𝑧 − 𝑧〉
𝑛+𝑙

𝛺𝜀1\𝛺

 

Analogously to Lemma (5.1.4) we have |〈𝜕𝜌(𝜏𝑧), 𝜏𝑧 −𝑤〉| −∧  Im (𝜏𝑛) + 𝜌(𝑧) +

|〈𝜕𝜌(�̂�), �̂� − 𝑤〉|, where �̂� = pr𝜕𝛺(𝑧) . Hence, 

|𝐿2| ≾ ∫  
𝛺𝜀1 \𝛺

𝑑𝜇(𝑧)

|〈𝜕𝜌(𝜏𝑧), 𝜏𝑧 −𝑤〉|
𝑛+𝑙

 

≾ ∫ 𝑛
𝜀

0

𝑡 ∫
𝑑𝜎𝑡

(𝑡 +  Im (𝜏𝑛) + |〈𝜕𝜌(�̂�), �̂� − 𝑤〉|)
𝑛+𝑙

𝜕𝛺𝑡

 

≾ ∫ 𝑑
𝜀

0

𝑡 ∫
𝑣𝑛−1𝑑𝑣

(𝑡 +  Re (𝜏𝑛) + 𝑣)
𝑛+𝑙

∞

0

∼< ∫
𝑑𝑡

(𝑡 +  Re (𝜏𝑛))
𝑙

𝜀

0
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≾ ( Re (𝜏𝑛))
1−𝜄
 ln (1 +

1

 Re (𝜏𝑛)
) , 

and 

∫ |
𝐷0

𝐿2|
2𝑑𝜄/𝑙(𝜏) ≾ ∫ ( Re (𝜏𝑛))

2−2𝜄

𝐷0

ln2 (1 +
1

 Re (𝜏𝑛)
) 𝑑𝜈𝑙(𝜏) 

≾ ∫ ln2
𝜀

0

(1 +
1

𝑠
) 𝑠𝑑𝑠∼ < 1, 

which with the estimate (40) completes the proof of the lemma. 

Lemma (5.1.19)[151]: Operator 𝑇𝑗 is weakly bounded. 

Proof. Let 𝑓, 𝑔 ∈ 𝐴 (
1

2
, 𝑤0, 𝑟) , denote again 𝜏𝑧 = 𝜓𝑗(𝑧, 𝜏) , then 

‖〈𝑔, 𝑇𝑓〉‖2 ≾ ∫ dvl
𝐷0

(𝜏) (∫ |
𝐵(𝑤0,𝑟)

𝑔(𝑧)|𝑑𝑆(𝑧)|∫
𝑓(𝑤)𝑑𝑆(𝑤)

〈𝜕𝜌(𝜏𝑧), 𝜏𝑧 −𝑤〉
𝑛+1

𝐵(𝑤0,𝑟)

|)

2

 

Denote 𝑡 : =  inf |〈𝜕𝜌(𝜏𝑧), 𝜏𝑧 −𝑤〉| and introduce the set 

𝑊(𝑧, 𝜏, 𝑟):= {𝑤 ∈ 𝜕𝛺: |〈𝜕𝜌(𝜏𝑧), 𝜏𝑧 −𝑤〉| < 𝑡 + 𝑟}. 

Note that 𝐵(𝑤0, 𝑟) ⊂ 𝑊(𝑧, 𝜏, 𝑐𝑟) ⊂ 𝐵(𝑧, 𝑐
2𝑟) for some 𝑐 > 0, therefore, 

| ∫
𝑓(𝑤)𝑑𝑆(𝑤)

〈𝜕𝜌(𝜏𝑧), 𝜏𝑧 −𝑤〉
𝑛+𝑙

𝐵(𝑤0,𝑟)

| 

= |∫
𝑓(𝑤)𝑑𝑆(𝑤)

〈𝜕𝜌(𝜏𝑧), 𝜏𝑧 −𝑤〉
𝑛+𝑙

𝑊(𝑧,𝜏,𝑐𝑟)

| ≾ ∫
𝑊(𝑧,𝜏,𝑐𝑟)

|𝑓(𝑧) − 𝑓(𝑤)|𝑑𝑆(𝑤)

|〈𝜕𝜌(𝜏𝑧), 𝜏𝑧 −𝑤〉|
𝑛+𝑙

 

+|𝑓(𝑧)||∫  
𝜕𝛺\𝑊(𝑧𝜏,𝑐𝑟)

𝑑𝑆(𝑤)

〈𝜕𝜌(𝜏𝑧), 𝜏𝑧 −𝑤〉
𝑛+𝑙

| = 𝐿1(𝑧, 𝜏) + |𝑓(𝑧)|𝐿2(𝑧, 𝜏) . 

It follows from the estimate |𝑓(𝑧) − 𝑓(𝑤)| ≤ √𝑣(𝑤, 𝑧)/𝑟 that 

𝐿1(𝑧, 𝜏) ≾
1

√𝑟
∫

𝑣(𝑤, 𝑧)1/2

( Re (𝜏𝑛) + 𝑣(𝑤, 𝑧))
𝑛+𝑙

𝐵(𝑧,𝑐2𝑟)

≾
1

√𝑟
∫

𝑡𝑛−1/2𝑑𝑡

( Re (𝜏𝑛) + 𝑡)
𝑛+𝑙

𝑐2𝑟

0

 

≾
1

√𝑟
∫

𝑑𝑡

( Re (𝜏𝑛) + 𝑡)
𝑙+1/2

𝑐2𝑟

0

≾
1

√𝑟
(

1

 Re (𝜏𝑛)
𝑙−1/2

−
1

( Re (𝜏𝑛) + 𝑟)
𝑙−1/2

) 

=
1

√𝑟

( Re (𝜏𝑛) + 𝑟)
𝜄−1/2 − 𝑟𝑙−1/2

 Re (𝜏𝑛)
𝜄−1/2( Re (𝜏𝑛) + 𝑟)

𝑙−1/2
≾
1

√𝑟

( Re (𝜏𝑛) + 𝑟)
2𝑙−1 − 𝑟2𝑙−1

 Im (𝜏𝑛)
𝜄−1/2( Re (𝜏𝑛) + 𝑟)

2𝑙−1
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≾
1

√𝑟

𝑟Re (𝜏𝑛)
2𝑙−2 + 𝑟2𝑙−1

Re (𝜏𝑛)
𝑙−1/2( Re (𝜏𝑛) + 𝑟)

2𝑙−1
 

Estimating the 𝐿2(𝐷, 𝑑𝑣𝑙)‐norm of the function 𝐿1(𝑧, 𝜏) , we obtain 

∫ 𝐿1
𝐷0(𝜏)

(𝑧, 𝜏)2dv𝑙(𝜏) 

≾ ∫
𝐷0(𝜏)

(
𝑟 Re (𝜏𝑛)

2𝑙−3

( Re (𝜏𝑛) + 𝑟)
4𝑙−2

+
𝑟4𝑙−3

 Re (𝜏𝑛)
2𝑙−1( Re (𝜏𝑛) + 𝑟)

4𝑙−2
)

𝑑𝜇(𝜏)

 Re (𝜏𝑛)
𝑛−2𝑙+1

 

≾ 𝑟∫
𝑠4𝑙−4

(𝑠 + 𝑟)4𝑙−2

∞

0

𝑑𝑠 + 𝑟4𝑙−3∫
𝑑𝑠

(𝑠 +𝑛)4𝑙−2

∞

0

≾ 1        (41) 

To estimate the second summand 𝐿2 we apply the Stokes theorem to the domain 

{𝑤 ∈ 𝛺: |〈𝜕𝜌(𝜏𝑧), 𝜏𝑧 −𝑤〉| > 𝑡 + 𝑐𝑟} 

and to the closed in this domain form 
𝑑𝑆(𝑤)

〈𝜕𝜌(𝜏𝑧),𝜏𝑧−𝑤〉
𝑛+𝑙

 

∫  
𝜕𝛺\𝑊(𝑧,𝜏,𝑐𝑟)

𝑑𝑆(𝑤)

〈𝜕𝜌(𝜏𝑧), 𝜏𝑧 − 𝑤〉
𝑛+𝑙

= −∫
𝑑𝑆(𝑤)

〈𝜕𝜌(𝜏𝑧), 𝜏𝑧 −𝑤〉
𝑛+𝑙𝑤∈𝛺

|𝑣(𝜏𝑧,𝑤)|=𝑡+𝑐𝑟

 

= −
1

(𝑡 + 𝑐𝑟)2𝑛+𝑙
∫ 〈𝜕𝜌(𝜏𝑧), 𝜏𝑧 −𝑤〉

𝑛+𝑙−

𝑤∈𝛺
|𝑣(𝜏𝑧,𝑤)|=𝑡+𝑐𝑟

𝑑𝑆(𝑤). 

Applying Stokes’ theorem again, now to the domain 

{𝑤 ∈ 𝛺: |〈𝜕𝜌(𝜏𝑧), 𝜏𝑧 −𝑤〉| < 𝑡 + 𝑐𝑟}, 

we obtain 

𝐿3: = ∫ 〈𝜕𝜌(𝜏𝑧), 𝜏𝑧 −𝑤〉
𝑛+𝑙

𝑤∈𝛺
|𝑣(𝜏𝑧,𝑤)|=𝑡+𝑐𝑟

𝑑𝑆(𝑤)

= − ∫ 〈𝜕𝜌(𝜏𝑧), 𝜏𝑧 −𝑤〉
𝑛+𝑙

𝑤∈𝛺
|𝑣(𝜏𝑧,𝑤)|=𝑡+𝑐𝑟

𝑑𝑆(𝑤)

+ ∫ 𝜕𝑤𝑤∈𝛺
|𝑣(𝜏𝑧,𝑤)|=𝑡+𝑐𝑟

(〈𝜕𝜌(𝜏𝑧), 𝜏𝑧 −𝑤〉
𝑛+𝑙
) ∧ 𝑑𝑆(𝑤)

+ ∫ 〈𝜕𝜌(𝜏𝑧), 𝜏𝑧 − 𝑤〉
𝑛+𝑙

𝑤∈𝛺
|𝑣(𝜏𝑧,𝑤)|=𝑡+𝑐𝑟

𝑑𝑉(𝑤) . 

Since |𝜕𝑤 (〈𝜕𝜌(𝜏𝑧), 𝜏𝑧 −𝑤〉
𝑛+𝑙
) ∧ 𝑑𝑆(𝑤)| ≾ |〈𝜕𝜌(𝜏𝑧), 𝜏𝑧 −𝑤〉|

𝑛+𝑙−1 we get 
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|𝐿3| ≾ ∫ (𝑠𝑛+𝑙𝑠𝑛−1 + 𝑠𝑛+𝑙 + 𝑠𝑛+𝑙−1𝑠𝑛)𝑑𝑠
𝑡+𝑐𝑟

𝑡

≾ ∫  
𝑡+𝑐𝑟

𝑡

𝑠2𝑛+𝑙−1𝑑𝑠 ≾ 𝑟(𝑡 + 𝑟)2𝑛+𝑙−1. 

Note that 𝑡 −∧ 𝜌(𝜏𝑧) −∧  Im (𝜏𝑛) and consequently 

∫  
𝐷0

𝐿2(𝑧, 𝜏)
2𝑑𝑣𝑙(𝜏) ≾ ∫ (

𝑟( Re (𝜏𝑛) + 𝑟)
2𝑛+𝑙−1

( Re (𝜏𝑛) + 𝑟)
2𝑛+2𝑙

)

2

𝐷0

𝑑𝜈𝑙(𝜏) 

≾ ∫
𝑟2

(𝑡 + 𝑟)2𝑙+2

∞

0

𝑡𝑛𝑑𝑡

𝑡𝑛−2𝑙+1
= 𝑟2∫

∞

0

𝑡2𝑙−1

(𝑡 + 𝑟)2𝑙+2𝑡𝑛−2𝑙+1
≾ 𝑟2∫

𝑑𝑡

(𝑟 + 𝑡)3

∞

0

≾ 1. 

(16) Summarizing estimates (15) and condition |𝑓(𝑧)| ≤ 1, 𝑧 ∈ 𝜕𝛺, we obtain 

‖〈𝑔, 𝑇𝑓〉‖2 ≤ ∫ dvl
𝐷0

(𝜏)(∫ |
𝐵(𝑤0,𝑟)

𝑔(𝑧)|(𝐿1(𝑧, 𝜏) + 𝐿2(𝑧, 𝜏)|𝑓(𝑧)|)𝑑𝑆(𝑧))

2

 

≾ ‖𝑔‖𝐿1(𝜕𝛺)
2 sup

𝑧∈𝜕Ω
  ∫ (𝐿1(𝑧, 𝜏)

2 + 𝐿2(𝑧, 𝜏)
2)

𝐷0

𝑑𝜈𝑙(𝜏) 

≾ ‖𝑔‖𝐿1(𝜕𝛺) 
2 ≾ |𝐵(𝑤0, 𝑟)|

2 

The last estimate implies weak boundedness of operator 𝑇 and completes the proof of the 

lemma.  

Section (5.2): Strongly Convex Domains in 𝑪𝒏 

We continue the research started in [164] and devoted to the description of some 

fundamental spaces of holomorphic functions of several complex variables in terms of 

polynomial approximations and the pseudoanalytic continuation. We give alternative 

characterizations of Hardy‐Sobolev spaces (see [25], [158]) 

𝐻𝑝
𝑙 (𝛺) = {𝑓 ∈ 𝐻(𝛺): ‖𝑓‖𝐻𝑝(𝛺) + ∑ ‖

|𝛼|<𝑙

𝜕𝛼𝑓‖𝐻𝑝(𝛺) < ∞}                  (42) 

on the strongly convex domain 𝛺 ⊂ ℂ𝑛. 

We show that for 1 < 𝑝 < oo and 𝑙 ≥ 1 a holomorphic on a strongly convex domain 𝛺 

function 𝑓 is in the Hardy‐Sobolev space 𝐻𝑝
𝑙 (𝛺) if 

and only if there exists a sequence of 2𝑘‐degree polynomials 𝑃2𝑘 such that 

∫ 𝑑
𝜕𝛺

𝜎(𝑧)(∑ |

∞

𝑘=1

𝑓(𝑧) − 𝑃2𝑘(𝑧)|
222𝜄𝑘)

𝑝/2

< ∞.                           (43) 

𝐼n the one variable case this characterization was obtained by E.M. Dynkin [155] for Radon 

domains. 

We devoted to the Cauchy-Leray‐Fantappiè integral formula, polynomial approximations 

and estimates of its kernel. We also define internal and external Korányi regions, the 
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multidimensional analog of Lusin regions. we introduce the method of pseudoanalytic 

continuation and two constructions of the continuation with different estimates. We use these 

constructions to obtain the characterization of Hardy‐Sobolev spaces in terms of estimates 

of the pseudoanalytic continuation. To prove this result we use the special analog of the 

Krantz‐Li area‐integral inequality [158] for external Korányi regions established in [169]. 

Finally, contains the proof of characterization (43). 

For ℂ𝑛 be the space of 𝑛 complex variables, 𝑛 ≥ 2, 𝑧 = (𝑧1, … , 𝑧𝑛), 𝑧𝑗 = 𝑥𝑗 + 𝑖𝑦𝑗; 

𝜕𝑗𝑓 =
𝜕𝑓

𝜕𝑧𝑗
=
1

2
(
𝜕𝑓

𝜕𝑥𝑗
− 𝑖

𝜕𝑓

𝜕𝑦𝑗
) , 𝜕𝑗𝑓 =

𝜕𝑓

𝜕𝑧𝑗
=
1

2
(
𝜕𝑓

𝜕𝑥𝑗
+ 𝑖

𝜕𝑓

𝜕𝑦𝑗
) , 

𝜕𝑓 = ∑
𝜕𝑓

𝜕𝑧𝑘

𝑛

𝑘=1

𝑑𝑧𝑘, 𝜕𝑓 = ∑
𝜕𝑓

𝜕𝑧𝑘

𝑛

𝑘=1

𝑑𝑧𝑘, 𝑑𝑓 = 𝜕𝑓 + 𝜕𝑓. 

We use the notation 

〈𝜕𝑓(𝑧), 𝑤〉 = ∑
𝜕𝑓(𝑧)

𝜕𝑧𝑘

𝑛

𝑘=1

𝑤𝑘 . 

to indicate the action of 𝜕𝑓 on the vector 𝑤 ∈ ℂ𝑛 and define 

|𝜕𝑓| = |
𝜕𝑓

𝜕𝑧1
| + +|

𝜕𝑓

𝜕𝑧𝑛
|. 

For a multiindex 𝛼 = (𝛼1, … , 𝛼𝑛) ∈ IN
𝑛 we set |𝛼| = 𝛼1 + +𝛼𝑛 and ! = 𝛼1! …𝛼2 !, also 

𝑧𝛼 = 𝑧1
𝛼1 …𝑧𝑛

𝛼𝑛 and 𝜕𝛼𝑓 =
𝜕|.𝛼.|𝑓

𝜕𝑧1
𝛼1 .𝜕𝑧𝑛

𝛼𝑛. 

We denote the euclidean distance from the point 𝑧 ∈ ℂ𝑛 to the set 𝐷 ⊂ ℂ𝑛 as dist (𝑧, 𝐷) =

 inf {|𝑧 − 𝑤| ∶  𝑤 ∈ 𝐷} and the Lebesgue measure in ℂ𝑛 as 𝑑𝜇. Let 𝛺 = {𝑧 ∈ ℂ𝑛 ∶  𝜌(𝑧) <

0} be a strongly convex domain with a 𝐶3‐smooth defining function. We will also consider 

the family of domains 

𝛺𝑡 = {𝑧 ∈ ℂ
𝑛: 𝜌(𝑧) < 𝑡} 

and assume that they are strongly convex for each |𝑡| < 𝜉𝑗, where 𝜀𝑖 > 0 is small enough. 

This is equivalent to the assumption that 𝑑2𝜌(𝑧) is positive definite when |𝜌(𝑧)| ≤ 𝜀. For 

𝑧 ∈ 𝛺𝜀\𝛺−𝜀: we denote the nearest point on 𝜕𝛺 as pr𝜕𝛺(𝑧) . Then the mapping 

pr𝜕𝛺: 𝛺𝜀\𝛺−∈ → 𝜕𝛺 

is well defined, 𝐶2‐smooth on 𝛺𝜀\𝛺 and |𝑧 − pr𝜕𝛺(𝑧)| = dist(𝑧, 𝜕𝛺) . 

For 𝜉 ∈ 𝜕𝛺𝑡 we define the complex tangent space 

𝑇𝜉 = {𝑧 ∈ ℂ
𝑛: 〈𝜕𝜌(𝜉), 𝜉 − 𝑧〉 = 0} 

and complex normal vector 

𝑛(𝜉) =
1

|𝜕𝜌(𝜉)|
(𝜕1𝜌(𝜉),… , 𝜕𝑛𝜌(𝜉)) .                        (44) 

We denote the space of holomorphic functions as 𝐻(𝛺) and consider the Hardy space (see 
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[167], [156]) 

𝐻𝑝(𝛺):= {𝑓 ∈ 𝐻(𝛺): ‖𝑓‖𝐻𝑝(𝛺)
𝑝

=  sup ∫ |
𝛺𝑡

𝑓(𝑧)|𝑝𝑑𝜎𝑡(𝑧) < ∞}, 

where 𝑑𝜎𝑡 is induced Lebesgue measure on the boundary of 𝛺𝑡. We also denote 𝑑𝜎 = 𝑑𝜎0. 

We are interested in Hardy‐Sobolev spaces 𝐻𝑝
𝑙 (𝛺) defined by (42). 

we use notations ≲,≍.We write 𝑓 <∼ 𝑔 if 𝑓 ≤ 𝑐𝑔 for some constant 𝑐 > 0, that doesn’t 

depend on main arguments of functions 𝑓 and 𝑔 and usually depend only on the dimension 

𝑛 and the domain 𝛺. Also 𝑓∧
∨𝑔 if 𝑐−1𝑔 ≤ 𝑓 ≤ 𝑐𝑔 for some 𝑐 > 1. 

In the theory of several complex variables there is no canonical reproducing formula, 

however we could use the Leray theorem that allows us to construct holomorphic 

reproducing kernels ([152], [76], [162]). For convex domain 𝛺 = {𝑧 ∈ ℂ𝑛 ∶  𝜌(𝑧) < 0} this 

theorem gives us the Cauchy‐Leray‐Fantappiè formula, and for 𝑓 ∈ 𝐻1(𝛺) and 𝑧 ∈ 𝛺 we 

have 

𝑓(𝑧) = 𝐾𝛺𝑓(𝑧) =
1

(2𝜋𝑖)𝑛
∫

𝑓(𝜉)𝜕𝜌(𝜉) ∧ (𝜕𝜕𝜌(𝜉))
𝑛−1

〈𝜕𝜌(𝜉), 𝜉 − 𝑧〉𝑛𝜕𝛺

 

= ∫ 𝑓
𝜕𝛺

(𝜉)𝐾(𝜉, 𝑧)𝜔(𝜉) ,                                                (45) 

𝑤ℎ𝑒𝑟𝑒 𝜔(𝜉) =
1

(2𝜋𝑖)𝑛
𝜕𝜌(𝜉) ∧ (𝜕𝜕𝜌(𝜉))

𝑛−1
, 𝑎𝑛𝑑 𝐾(𝜉, 𝑧) = 〈𝜕𝜌(𝜉), 𝜉 − 𝑧〉−𝑛 

The (2𝑛 − 1)‐form 𝜔 defines the Leray‐Levy measure on 𝜕𝛺𝑡 which is equivalent to the 

induced Lebesgue surface measure 𝑑𝜎𝑡 (see [152], [160], [161]). This allows us to identify 

Lebesgue, Hardy and Hardy‐Sobolev spaces defined with respect to these measures. Also 

note, that the measure defined by the 2nform 𝑑𝜔 = (𝜕𝜕𝜌)
𝑛

 is equivalent to the Lebesgue 

measure 𝑑𝜇 in ℂ𝑛 in 𝛺𝜀:\𝛺−𝜀:. By [163] the integral operator 𝐾𝛺 defines a bounded mapping 

from 𝐿𝑝(𝜕𝛺) to 𝐻𝑝(𝛺) for 1 < 𝑝 < ∞. 

The function 𝑑(𝑤, 𝑧) = |〈𝜕𝜌(𝑤), 𝑤 − 𝑧〉| defines on 𝜕𝛺 a quasimetric, and if 𝐵(𝑧, 𝛿) =

{𝑤 ∈ 𝜕𝛺 ∶  𝑑(𝑤, 𝑧) < 𝛿} is a quasiball with respect to 𝑑 then 𝜎(𝐵(𝑧, 𝛿)) ∨∧ 𝛿𝑛, see for 

example [163]. 

In Lemma (5.2.2) here we construct polynomial approximations of CauchyLeray‐

Fantappié kernel based on the theorem by V.K. Dzyadyk [153] about estimates of the 

Cauchy kernel on domains in the complex plane. We choose approximations similarly to 

[165]. This construction allows us in Theorem (5.2.9) to get polynomials that approximate 

the holomorphic function with the desired speed. 

Lemma (5.2.1)[167]: Let 𝛺 be a strongly convex domain with 0 ∈ 𝛺, then for every 𝜉 ∈

𝛺𝜉𝑗\𝛺 the value of 𝜆 =
〈𝜕𝜌(𝜉),𝑧〉

〈𝜕𝜌(𝜉),𝜉〉
 for 𝑧 ∈ 𝛺 lies in the domain 𝐿(𝑡) bounded 
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by the bigger arc of some circle |𝑤| = 𝑅 = 𝑅(𝛺) and the chord {𝑤 ∈ ℂ : 𝑤 = 1 + 𝑒𝑖𝑡𝑠, 𝑠 ∈

ℝ, |𝑤| ≤ 𝑅}, where 𝑡 =
𝜋

2
−  arg (〈𝜕𝜌(𝜉), 𝜉〉) . 

Proof. For 𝜉 ∈ 𝜕𝛺 define 

𝛬(𝜉) = {𝜆 ∈ ℂ: 𝜆 =
〈𝜕𝜌(𝜉), 𝑧〉

〈𝜕𝜌(𝜉), 𝜉〉
, 𝑧 ∈ 𝛺}. 

The convexity of 𝛺 with 0 ∈ 𝛺 implies that |〈𝜕𝜌(𝜉), 𝜉〉|∼ > |𝜕𝜌(𝜉)||𝜉|∼ > 1, thus for some 

𝑅 = 𝑅(𝛺) > 0 

|〈𝜕𝜌(𝜉), 𝑧〉|

|〈𝜕𝜌(𝜉), 𝜉〉|
< 𝑅,                                                          (46) 

 Re 〈𝜕𝜌(𝜉), 𝑧 − 𝜉〉 ≤ 0, 𝑧 ∈ 𝛺, 𝜉 ∈ 𝛺𝜀\𝛺.                                   (47) 

The domain 𝛬(𝜉) ⊂ ℂ is also convex and contains 0, thus the equality 

〈𝜕𝜌(𝜉), 𝑧〉

〈𝜕𝜌(𝜉), 𝜉〉
= 1 +

〈𝜕𝜌(𝜉), 𝑧 − 𝜉〉

〈𝜕𝜌(𝜉), 𝜉〉
 

with estimates (46), (47) completes the proof of the lemma.  

Lemma (5.2.2)[167]: Let 𝛺 be a strongly convex domain and 𝑟 > 0. Then for every 𝑘 ∈ IN 

there exists a function 𝐾𝑘
𝑔
𝜄𝑜𝑏(𝜉, 𝑧) which is defined for 𝜉 ∈ 𝛺𝜉𝑗\𝛺, is polynomial in 𝑧 ∈ 𝛺 

with  deg 𝐾𝑘
𝑔𝑙𝑜𝑏(𝜉,⋅) ≤ 𝑘 and satisfies the following properties: 

|𝐾(𝜉, 𝑧) − 𝐾𝑘
𝑔𝑙𝑜𝑏(𝜉, 𝑧)| ≲

1

𝑘𝑟
1

𝑑(𝜉, 𝑧)𝑛+𝑟
, 𝑑(𝜉, 𝑧) ≥

1

𝑘
;          (48) 

|𝐾𝑘
𝑔𝑙𝑜𝑏(𝜉, 𝑧)| ≲ 𝑘𝑛, 𝑑(𝜉, 𝑧) ≤

1

𝑘
.                                    (49) 

Proof. Due to [153] and [166] for any 𝑗 ∈ IN there exists a function 𝑇𝑗(𝑡, 𝜆) polynomial in 

𝜆 with  deg 𝑇𝑗(𝑡,⋅) ≤ 𝑗 such that 

|
1

1 − 𝜆
− 𝑇𝑗(𝑡, 𝜆)| ≲

1

𝑗𝑟
1

|1 − 𝜆|1+𝑟
                                                 (50) 

for 𝜆 ∈ 𝐿(𝑡)\{𝜆 ∶  |1 − 𝜆| <
1

𝑗
} and coefficients of polynomials 𝑇𝑗(𝑡, 𝜆) depend 

continuously on 𝑡. Note also that by the maximum principle 

𝑇𝑗(𝑡, 𝜆) ≲ 𝑗, 𝜆 ∈ 𝐿(𝑡) ∩ {𝜆 ∶  |1 − 𝜆| <
1

𝑗
}.                            (51) 

Let 𝑡(𝜉) =
𝜋

2
−  arg (〈𝜕𝜌(𝜉), 𝜉〉 and for 𝑗 ∈ IN and (𝑗 − 1)𝑛 < 𝑘 ≤ 𝑗𝑛 define 

𝐾𝑘
𝑔𝑙𝑜𝑏(𝜉, 𝑧) = 𝐾𝑗𝑛

𝑔𝑙𝑜𝑏(𝜉, 𝑧) =
1

〈𝜕𝜌(𝜉),𝜉〉𝑛
𝑇𝑗
𝑛 (𝑡(𝜉),

〈𝜕𝜌(𝜉),𝑧〉

〈𝜕𝜌(𝜉),𝜉〉
) . 
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Due to the definition of 𝑇𝑗 polynomials 𝐾𝑘
𝑔
𝜄𝑜𝑏(𝜉,⋅) satisfy relations (48), (49). 

Following [158] for 𝜉 ∈ 𝜕𝛺 and 𝜀 > 0 we define the inner Korányi region as 

𝐷𝑖(𝜉, 𝜂, 𝜀) = {𝜏 ∈ 𝛺: pr𝜕𝛺(𝜏) ∈ 𝐵(𝜉,−𝜂𝜌(𝜏)), 𝜌(𝜏) > −𝜀}. 

The strong convexity of 𝛺 and the area‐integral inequality by S. Krantz and S.Y. Li [158] 

imply that for 𝑓 ∈ 𝐻𝑝(𝛺), 0 < 𝑝 < ∞, 

∫ 𝑑
𝜕𝛺

𝜎(𝑧)(∫ ,
𝐷𝑖(𝑧,𝜂𝜀)

|𝜕𝑓(𝜏)|2
𝑑𝜇(𝜏)

(−𝜌(𝜏))
𝑛−1)

𝑝/2

≤ 𝑐(𝛺, 𝑝)∫ |
𝜕𝛺

𝑓|𝑝𝑑𝜎.          (52) 

Consider the decomposition of a vector 𝜏 ∈ ℂ𝑛 as = 𝑤 + 𝑡𝑛(𝜉) , where 𝑤 ∈ 𝑇𝜉 , 𝑡 ∈ ℂ, and 

𝑛(𝜉) is a complex normal vector (44). We define the external Korányi region as 

𝐷𝑒(𝜉, 𝜂, 𝜀) = {𝜏 ∈ ℂ𝑛\𝛺: 𝜏 = 𝑤 + 𝑡𝑛(𝜉) , 

𝑤 ∈ 𝑇𝜉 , 𝑡 ∈ ℂ, |𝑤| < √𝜂𝜌(𝜏), | Im (𝑡)| < 𝜂𝜌(𝜏), 𝜌(𝜏) < 𝜀}.              (53) 

For function 𝑔 ∈ 𝐿1(𝜕𝛺) and 𝑙 ∈ IN we define the area integral function (compare to (44)) 

𝐼𝑙(𝑔, 𝑧) = (∫ |
𝐷𝑒(𝑧,𝜂,𝜀:)

∫
𝑔(𝑤)𝜔(𝑤)

〈𝜕𝜌(𝜏), 𝜏 − 𝑤〉𝑛+𝑙𝜕𝛺

|2𝑑𝜈𝑙(𝜏))

1/2

, 𝑧 ∈ 𝜕𝛺,       (54) 

where 𝑑𝜈𝑙(𝜏) =
𝑑𝜇(𝜏)

𝜌(𝜏)𝑛−2𝑙−1
. It is proven in [169 that 

Theorem (5.2.3)[167]: Let 𝛺 be a strongly convex domain and 𝑔 ∈ 𝐿𝑝(𝜕𝛺), 1 < 𝑝 < ∞. 

Then 

∫ 𝐼𝑙
𝜕𝛺

(𝑔, 𝑧)𝑝𝑑𝜎(𝑧) ≲ ∫ |
𝜕𝛺

𝑔(𝑧)|𝑝𝑑𝜎(𝑧) .               (55) 

We point out two estimates for integration over regions 𝐷𝑒(𝜉, 𝜂, 𝜀) . First, for every function 

𝐹 we have 

∫ |
𝛺𝜀\𝛺

𝐹(𝑧)|𝑑𝜇(𝑧) − ∫ 𝑑
𝜕𝛺

𝜎(𝜉)∫ |
𝐷𝑒(𝜉,𝜂,𝜀)

𝐹(𝜏)|
𝑑𝜇(𝜏)

𝜌(𝜏)𝑛
. 

Second, if 𝐹(𝑤) = �̃�(𝜌(𝑤)) then 

∫ |
𝐷e(𝜉,𝜂,𝜀)

𝐹(𝜏)|𝑑𝜇(𝜏)∧ ∨ ∫ |
𝜀

0

�̃�(𝑡)|𝑡𝑛𝑑𝑡. 

Analogous estimates are valid for regions 𝐷𝑖(𝜉, 𝜂, 𝜀) . 
Recall the following lemma (see [165]). 

Lemma (5.2.4)[167]: Let 𝛺 be a strongly convex domain and , 𝜂 > 0, then 

𝑑(𝜏, 𝑤) = 𝜌(𝜏) + 𝑑(𝑧,𝑤) , 𝑧, 𝑤 ∈ 𝜕𝛺, 𝜏 ∈ 𝐷𝑒(𝑧, 𝜂, 𝜀) .                (55) 
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We give the definition and exhibit two constructions of pseudoanalytic continuation. These 

constructions allow us to relate different properties of a holomorphic function. We use the 

continuation by symmetry (Theorem (5.2.6)) to obtain the description of Hardy‐Sobolev 

spaces by pseudoanalytic continuation (Theorem (5.2.8)) and the continuation by global 

polynomial approximations (Theorem (5.2.8)) to prove characterization (43) in Theorem 

(5.2.9). 

Let 𝑓 ∈ 𝐻1(𝛺) and let boundary values of 𝑓 coincide almost everywhere with 

boundary values of some function f ∈ 𝐶1(ℂ𝑛\𝛺) such that |𝜕f| ∈ 𝐿1(ℂ𝑛\𝛺) and supp f⊂

𝛺𝜀\𝛺 for some 𝜀 > 0. Then by Stokes formula for 𝑧 ∈ 𝛺 we have 𝑓(𝑧) =

lim
𝑟→0+

1

(2𝜋𝑖)𝑛
∫

f(𝜉)𝜕𝜌(𝜉)∧(𝜕𝜕𝜌(𝜉))
𝑛−1

〈𝜕𝜌(𝜉),𝜉−𝑧〉𝑛𝜕𝛺𝑟
= 

lim
𝑟→0+

1

(2𝜋𝑖)𝑛
∫

𝜕f(𝜉) ∧ 𝜕𝜌(𝜉) ∧ (𝜕𝜕𝜌(𝜉))
𝑛−1

〈𝜕𝜌(𝜉), 𝜉 − 𝑧〉𝑛ℂ𝑛\𝛺𝑟

 

=
1

(2𝜋𝑖)𝑛
∫

𝜕f(𝜉) ∧ 𝜕𝜌(𝜉) ∧ (𝜕𝜕𝜌(𝜉))
𝑛−1

〈𝜕𝜌(𝜉), 𝜉 − 𝑧〉𝑛ℂ𝑛\𝛺

,                  (56) 

since (for details see [162]) 

𝑑𝜉 (
𝜕𝜌(𝜉) ∧ (𝜕𝜕𝜌(𝜉))

𝑛−1

〈𝜕𝜌(𝜉), 𝜉 − 𝑧〉𝑛
) = 0, 𝑧 ∈ 𝛺, 𝜉 ∈ ℂ𝑛\𝛺. 

Definition (5.2.5)[167]: We call the function f ∈ 𝐶1(ℂ𝑛\𝛺) the pseudoanalytic continuation 

of the function 𝑓 ∈ 𝐻(𝛺) if 

𝑓(𝑧) =
1

(2𝜋𝑖)𝑛
∫

𝜕f(𝜉) ∧ 𝜕𝜌(𝜉) ∧ (𝜕𝜕𝜌(𝜉))
𝑛−1

〈𝜕𝜌(𝜉), 𝜉 − 𝑧〉𝑛ℂ𝑛\𝛺

, 𝑧 ∈ 𝛺.           (57) 

Note that in this definition we do not assume that boundary values of functions f and 𝑓 

coincide. This definition allows us to study properties of a holomorphic function using 

estimates of its continuation. 

For 𝑧 ∈ 𝛺𝜀:\𝛺 we define the point 𝑧∗ symmetric to 𝑧 with respect to 𝜕𝛺 by 

𝑧∗ − 𝑧 = 2(pr𝜕𝛺(𝑧) − 𝑧) .                                            (58) 

Theorem (5.2.6)[167]. Let 𝑓 ∈ 𝐻𝑝
1(𝛺) and 1 < 𝑝 < ∞, 𝑚 ∈ IN. Then there exist a 

pseudoanalytic continuation f ∈ 𝐶1(ℂ𝑛\𝛺) of the function 𝑓 such that supp f⊂ 𝛺𝜀 , 

|𝜕f(𝑧)| ∈ 𝐿𝑝(𝛺𝜀\𝛺) and 

|𝜕f(𝑧)|∼ <  max |𝜕
𝛼𝑓(𝑧∗)|𝜌(𝑧)𝑚−1, 𝑧 ∈ 𝛺𝜀\𝛺.              (59) 
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Proof. Define 

f0(𝑧) = ∑ 𝜕𝛼

|𝛼|≤7𝑛−1

𝑓(𝑧∗)
(𝑧 − 𝑧∗)𝛼

𝛼!
, 𝑧 ∈ 𝛺𝜉𝑗\𝛺.                       (60) 

Let 𝛼 ± 𝑒𝑘 = (𝛼1, … , 𝛼𝑘 ± 1, 𝛼𝑛) if 𝛼𝑘 ≠ 0 and (𝑧 − 𝑧∗)𝛼−𝑒𝑘 = 0 if 𝛼𝑘 = 0. With these 

notations we have 

𝜕𝑗f0 =∑ ∑ (𝜕𝛼+𝑒𝑘𝑓(𝑧∗)
(𝑧 − 𝑧∗)𝛼

𝛼!
− 𝜕𝛼𝑓(𝑧∗)

(𝑧 − 𝑧∗)𝛼−𝑒𝑘

(𝛼 − 𝑒𝑘)!
)

|𝛼|≤𝑟𝑛−1

∞

𝑘=1

𝜕𝑗𝑧𝑘
∗ 

=∑ ∑ 𝜕𝛼+𝑒𝑘

|𝛼|=𝑚−1

∞

𝑘=1

𝑓(𝑧∗)
(𝑧 − 𝑧∗)𝛼

𝛼!
𝜕𝑗𝑧𝑘

∗ ,                 (61) 

hence, 

|𝜕f0(𝑧)| ∼<  max |𝜕
𝛼𝑓(𝑧∗)|𝜌(𝑧)7𝑛−1, 𝑧 ∈ ℂ𝑛\𝛺. 

Consider a function 𝜒 ∈ 𝐶∞(0,∞) such that 𝜒(𝑡) = 1 for 𝑡 ≤ 𝜀/2 and 𝜒(𝑡) = 0 for 𝑡 ≥ 𝜀. 

The function f(𝑧) = f0(𝑧)𝜒(𝜌(𝑧)) satisfies condition (59) and supp f⊂ 𝛺𝜀 . 

Let 𝑑 = dist(𝑧∗, 𝜕𝛺)/10. Then by the Cauchy maximal inequality for every multiindex 𝛼 

such that |𝛼| = 𝑚 we have 

|𝜕𝛼𝑓(𝑧∗)| ≲ 𝑑
−𝑚+1 sup |𝜕𝑓(𝜏)| ≲ 𝜌(𝑧)

−𝑚+1 sup |𝜕𝑓(𝜏)|, 

for some 𝑐0 > 0. Finally, by [158] we get 

∫ |
𝛺∈\𝛺

𝜕f(𝑧)|𝑝𝑑𝜇(𝑧) ≲ ∫ 𝑑
𝛺\𝛺−𝜀

𝜇(𝑧)( sup |𝜕𝑓(𝜏)|)𝑝 

≲ ‖𝜕𝑓‖𝐻𝑝(𝛺)
𝑝

< ∞. 

Thus |𝜕f(𝑧)| ∈ 𝐿𝑝(𝛺𝜉𝑗\𝛺) and this finishes the proof of the theorem. 

By [20] strict convexity of domain 𝛺 implies that functions holomorphic in 

neighbourhood of 𝛺 are dense in 𝐻1(𝛺) . Also every holomorphic in neighbourhood of 𝛺 

function can be approximated on 𝛺 by polynomials since 𝛺 is Runge ([159]). Thus there 

exists a polynomial sequence 𝑃1, 𝑃2, converging to 𝑓 in 𝐿1(𝜕𝛺) . Define 

𝜆(𝑧) = 𝜌(𝑧)−1|𝑃2𝑘+1(𝑧) − 𝑃2𝑘(𝑧)|, 2
−𝑘 < 𝜌(𝑧) ≤ 2−𝑘+1 

Theorem (5.2.7)[167]: Assume that λ ∈ Lp(ℂn\Ω) for some p ≥ 1. Then there exist a 

pseudoanalytic continuation f of the function f such that 

|𝜕f(𝑧)| ≲ 𝜆(𝑧) , 𝑧 ∈ ℂ𝑛\𝛺.                                              (62) 

Proof. Consider a function 𝜒 ∈ 𝐶∞(0,∞) such that 𝜒(𝑡) = 1 for 𝑡 ≤
5

4
 and 𝜒(𝑡) = 0 for 
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𝑡 ≥
7

4
. We let 

f0(𝑧) = 𝑃2𝑘(𝑧) + 𝜒 (2
𝑘𝜌(𝑧)) (𝑃2𝑘+1(𝑧) − 𝑃2𝑘(𝑧)) , 2

−𝑘 < 𝜌(𝑧) < 2−𝑘+1, 𝑘 ∈ ℕ, and 

define the continuation of the function 𝑓 by formula f = 𝜒(2𝜌(𝑧))f0(𝑧) . 

Now f is 𝐶1‐function on ℂ𝑛\𝛺 and |𝜕f(𝑧)| ≲ 𝜆(𝑧) . We define a function 𝐹𝑘(𝑧) as 𝐹𝑘(𝑧) =

f(𝑧) for 𝜌(𝑧) > 2−𝑘 and as 𝐹𝑘(𝑧) = 𝑃2𝑘+1(𝑧) for 𝜌(𝑧) < 2−𝑘. The function 𝐹𝑘 is smooth 

and holomorphic in 𝛺2−𝑘, and |𝜕𝐹𝑘(𝑧)| ≤ 𝜆(𝑧) for 𝑧 ∈ ℂ𝑛\𝛺2−𝑘. Thus similarly to (56) we 

get 

𝑃2𝑘+1(𝑧) = 𝐹𝑘(𝑧) =
1

(2𝜋𝑖)𝑛
∫

𝜕𝐹𝑘(𝜉) ∧ 𝜕𝜌(𝜉) ∧ (𝜕𝜕𝜌(𝜉))
𝑛−1

〈𝜕𝜌(𝜉), 𝜉 − 𝑧〉𝑛ℂ𝑛\𝛺

, 𝑧 ∈ 𝛺, 

We can pass to the limit in this formula by the dominated convergence theorem; hence, the 

function f satisfies identity (57) and is a pseudoanalytic continuation of the function 𝑓. 

Theorem (5.2.8)[167]. Let 𝛺 be a strongly convex domain, 1 < 𝑝 < ∞, 𝑙 ∈ IN and ∈ 𝐻(𝛺) . 

Then 𝑓 ∈ 𝐻𝑝
𝑙 (𝛺) if and only if there exists such pseudoanalytic continuation f that for some 

𝜀𝑗, 𝜂 > 0 

∫ 𝑑
𝜕𝛺

𝜎(𝑧)(∫ |
𝐷𝑒(𝑧,𝜂,𝜀)

𝜕f(𝜏)𝜌(𝜏)−𝑙|2𝑑𝜈(𝜏))

𝑝/2

< ∞,         (63) 

where 𝐷𝑒(𝑧) = 𝐷𝑒(𝑧, 𝜂, 𝜀𝑗) and 𝑑𝜈(𝜏) =
𝑑𝜇(𝜏)

𝜌(𝜏)𝑛−1
. 

Proof. Let 𝑓 ∈ 𝐻𝑝
𝑙 (𝛺) . By Theorem (5.2.6) we can construct a pseudoanalytic continuation 

f such that 

|𝜕f(𝑧)|∼ <  max |𝜕
𝛼𝑓(𝑧∗)|𝜌(𝑧)𝑙 , 𝑧 ∈ ℂ𝑛\𝛺. 

Note that the symmetry with respect to 𝜕𝛺 (𝑧 ↦ 𝑧∗ defined by (58)) maps the external sector 

𝐷𝑒(𝑧) = 𝐷𝑒(𝑧, 𝜂, 𝜀) into some internal Korányi sector. Indeed, for every sufficiently small 

𝜀, 𝜂 > 0 there exist 𝜂1, 𝜀1 > 0 such that 

{𝜏∗: 𝜏 ∈ 𝐷e(𝑧, 𝜂, 𝜀𝑗)}𝑠𝑢𝑏𝑠𝑒𝑡𝑒𝑞𝐷𝑖(𝑧, 𝜂11𝜉𝑗) = 𝐷
𝑖(𝑧) . 

Applying the area‐integral inequality (52) we obtain 
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∫ 𝑑
𝜕𝛺

𝜎(𝑧)(∫ |
𝐷e(𝑧)

𝜕f(𝜏)𝜌(𝜏)−𝑙|2𝑑𝜈(𝜏))

𝑝/2

≲  max ∫ 𝑑
𝜕𝛺

𝜎(𝑧)(∫ |
𝐷𝑒(𝑧)

𝜕𝛼𝑓(𝜏∗)|2𝑑𝑖/(𝜏))

𝑝/2

≲  max ∫ 𝑑
𝜕𝛺

𝜎(𝑧)(∫ |
𝐷𝑖(𝑧)

𝜕𝛼𝑓(𝜏)|2
𝑑𝜇(𝜏)

(−𝜌(𝜏))
𝑛−1)

𝑝/2

< ∞ 

To prove the sufficiency, assume that the function 𝑓 ∈ 𝐻1(𝛺) admits the pseudoanalytic 

continuation f with estimate (63). We will prove that for every function ∈ 𝐿𝑝′(𝜕𝛺), 
1

𝑝
+

1

𝑝′
=

1, and every multiindex 𝛼, |𝛼| ≤ 𝑙, 

|∫ 𝑔
𝜕𝛺

(𝑧)𝜕𝛼𝑓(𝑧)𝜔(𝑧)| ≤ 𝑐(𝑓)‖𝑔‖
𝐿𝑝
′
(𝜕𝛺)

. 

Assume, without loss of generality, that 𝑎 = (𝑙, 0, … , 0) . By representation (57) we have 

𝑓(𝑧) = ∫
𝜕f(𝜉)∧𝜔(𝜉)

〈𝜕𝜌(𝜉),𝜉−𝑧〉𝑛ℂ𝑛\𝛺
 and with 𝐶𝑛𝑙 =

(𝑛+𝑙−1)!

(𝑛−1)!
 

∫ 𝑔
𝜕𝛺

(𝑧)𝜕𝛼𝑓(𝑧)𝜔(𝑧) = 𝐶𝑛𝑙∫ 𝑔
𝜕𝛺

(𝑧) (∫ (
𝜕𝜌(𝜉)

𝜕𝜉1
)

𝑙

ℂ𝑛\𝛺

𝜕f(𝜉) ∧ 𝜔(𝜉)

〈𝜕𝜌(𝜉), 𝜉 − 𝑧〉𝑛+𝑙
)𝜔(𝑧) 

= 𝐶𝑛𝑙∫ (
𝜕𝜌(𝜉)

𝜕𝜉1
)

𝑙

ℂ𝑛\𝛺

𝜕f(𝜉) ∧ 𝜔(𝜉)∫
𝑔(𝑧)𝜔(𝑧)

〈𝜕𝜌(𝜉), 𝜉 − 𝑧〉𝑛+𝑙𝜕𝛺

. 

Define 𝛷𝑙(𝜉) = ∫
𝑔(𝑧)𝜔(𝑧)

〈𝜕𝜌(𝜉),𝜉−𝑧〉𝑛+𝑙𝜕𝛺
, 𝜉 ∈ ℂ𝑛\𝛺. Applying Hölder inequality twice 

we have 

|∫ 𝑔
𝜕𝛺

(𝑧)𝜕𝛼𝑓(𝑧)𝜔(𝑧)| ≲ ∫ |
ℂ𝑛\𝛺

𝜕f(𝜉)||𝛷𝑙(𝜉)|𝑑𝜇(𝜉) 

≲ ∫ 𝜔
𝜕𝛺

(𝜉)∫ |
𝐷e(𝜉)

𝜕f(𝜏)||𝛷𝑙(𝜏)|
𝑑𝜇(𝜏)

𝜌(𝜏)𝑛
 

≲ ∫ 𝑑
𝜕𝛺

𝜎(𝜉) (∫ |
𝐷𝑒(𝜉)

𝜕f(𝜏)|2
𝜌(𝜏)−2𝜄𝑑𝜇(𝜏)

𝜌(𝜏)𝑛−1
)

1
2

(∫ |
𝐷e(𝜉)

𝛷𝑙(𝜏)|
2
𝜌(𝜏)2𝑙−2𝑑𝜇(𝜏)

𝜌(𝜏)𝑛−1
)

1
2
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≤ (∫ 𝜔
𝜕𝛺

(𝜉)(∫ |
𝐷e(𝜉)

𝜕f(𝜏)|2𝜌(𝜏)−2𝑙𝑑𝑙/(𝜏))

𝑝/2

)

1/𝑝

× 

× (∫ 𝜔
𝜕𝛺

(𝜉)(∫ |
𝐷e(𝜉)

𝛷𝑙(𝜏)|
2𝜌(𝜏)2𝑙−2𝑑𝑙/(𝜏))

𝑝′/2

)

1/𝑝′

 

The first product term is finite by (63) and the second one is estimated by ‖𝑔‖
𝐿𝑝
′
(𝜕𝛺)

 in the 

view of area‐integral inequality (55) in Theorem (5.2.3). 

Theorem (5.2.9)[167]: Lest 𝑓 ∈ 𝐻(𝛺) and 1 < 𝑝 < ∞, 𝑙 ∈ IN. Then 𝑓 ∈ 𝐻𝑝
𝑙 (𝛺) if and only 

if there exists a sequence of 2𝑘‐degree polynomials 𝑃2𝑘 such that 

∫ 𝑑
𝜕𝛺

𝜎(𝑧)(∑ |

∞

𝑘=1

𝑓(𝑧) − 𝑃2𝑘(𝑧)|
222𝜄𝑘)

𝑝/2

< ∞.                (64) 

Proof. Assume that condition (64) holds, then polynomials 𝑃2𝑘 converge to the function 𝑓 

in 𝐿𝑝(𝜕𝛺) and by Theorem (5.2.7) we can construct pseudoanalytic continuation f such that 

|𝜕f(𝑧)| ≲ |𝑃2𝑘+1(𝑧) − 𝑃2𝑘(𝑧)|𝜌(𝑧)
−1, 𝑧 ∈ ℂ𝑛\𝛺, 2^(−𝑘) ≤ 𝜌(𝑧) < 2−𝑘+1 

Consider the decomposition of the region 𝐷𝑒(𝑧, 𝜂, 𝜀) into sets 

𝐷𝑘(𝑧) = {𝜏 ∈ 𝐷
𝑒(𝑧, 𝜂, 𝜀): 2−𝑘 ≤ 𝜌(𝜏) < 2−𝑘+1}, 

and define functions 

𝑎𝑘(𝑧) = |𝑃2𝑘+1(𝑧) − 𝑃2𝑘(𝑧)|2
−𝑘𝑙 , 

𝑏𝑘(𝑧) = (∫ |
𝐷𝑘(𝑧)

𝜕f(𝜏)𝜌(𝜏)−𝑙|2𝑑𝜈(𝜏))

1/2

, 𝑧 ∈ 𝜕𝛺. 

Lemma (5.2.10)[167]: 𝑏𝑘(𝑧)∼ < 𝑀𝑎𝑘(𝑧) , where 𝑀𝑎𝑘 is the maximal function with respect 

to centred quasiballs on 𝜕𝛺 

𝑀𝑎𝑘(𝑧) =  sup 
1

𝜎(𝐵(𝑧,𝑟))
∫ |
𝐵(𝑧,𝑟)

𝑎𝑘(𝜉)|𝑑𝜎(𝜉) . 

Assume, that this lemma holds, then by the Fefferman‐Stein maximal theorem (see [157], 

[156]) we have 

∫ (∑𝑏𝑘

∞

𝑘=1

(𝑧)2)

𝑝/2

𝜕𝛺

𝑑𝜎(𝑧) ≲ ∫ (∑𝑎𝑘

∞

𝑘=1

(𝑧)2)

𝑝/2

𝜕𝛺

𝑑𝜎(𝑧). 

The right‐hand side of this inequality is finite by condition (64), also we have 

∑𝑏𝑘

∞

𝑘=1

(𝑧)2 = ∫ |
𝐷e(𝑧,𝜂,𝜀)

𝜕f(𝜉)𝜌(𝜉)−𝑙|2𝑑𝜈(𝜉) , 
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which completes the proof of the sufficiency in the theorem. 

Let us prove the necessity. Now 𝑓 ∈ 𝐻𝑝
𝑙 (𝛺) with 1 < 𝑝 < ∞ and 𝑙 ∈ IN. By Theorem (5.2.8) 

we could construct a continuation f of the function 𝑓 with estimate (63). Applying the 

approximation of the Cauchy‐Leray‐Fantappiè kernel from Lemma (5.2.2) to the function f 

we define polynomials 

𝑃2𝑘(𝑧) = ∫ 𝜕
ℂ𝑛\𝛺

f(𝜉) ∧ 𝜔(𝜉)𝐾
2𝑘
𝑔
𝜄𝑜𝑏(𝜉, 𝑧) . 

We will prove that these polynomials satisfy condition (64). 

From Lemma (5.2.2) we obtain 

|𝑓(𝑧) − 𝑃2𝑘(𝑧)| ≲ ∫ |
ℂ𝑛\𝛺

𝜕f(𝜉)||
1

〈𝜕𝜌(𝜉), 𝜉 − 𝑧〉𝑑
− 𝐾

2𝑘
𝑔
𝜄𝑜𝑏(𝜉, 𝑧)|𝑑𝜇(𝜉) 

≲ 𝑈(𝑧) + 𝑉(𝑧) +𝑊1(𝑧) +𝑊2(𝑧) , 

where 

𝑈(𝑧) = ∫
|𝜕f(𝜏)|

|〈𝜕𝜌(𝜏),𝜏−𝑧〉|𝑛𝑑(𝜏,𝑧)<2−𝑘
𝑑𝜇(𝜏) , 

𝑉(𝑧) = 2𝑘𝑛 ∫ |
𝑑(𝜏,𝑧)<2−𝑘

𝜕f(𝜏)|𝑑𝜇(𝜏) , 

𝑊1(𝑧) = 2
−𝑘𝑟 ∫ 𝑑

𝜌(𝜏)<2−𝑘
(𝜏, 𝑧) > 2−𝑘

|𝜕f(𝜏)|

|〈𝜕𝜌(𝜏),𝜏−𝑧〉|𝑛+𝑟
𝑑𝜇(𝜏) , 

𝑊2(𝑧) = 2
−𝑘𝑟 ∫

|𝜕f(𝜏)|

|〈𝜕𝜌(𝜏),𝜏−𝑧〉|𝑛+𝑟𝜌(𝜏)>2−𝑘
𝑑𝜇(𝜏) . 

The parameter 𝑟 > 0 will be chosen later. 

Note that 𝑉(𝑧) ≤ 𝑐𝑈(𝑧) and estimate the contribution of 𝑈(𝑧) to the sum. For some 𝑐1, 𝑐2 >

0 we have 

𝑈(𝑧) ≤ ∫ 𝑑
𝑤∈𝜕𝛺

(𝑤, 𝑧) < 𝑐12
−𝑘𝑑𝜎(𝑤) ∑ ∫

|𝜕f(𝜏)|

|〈𝜕𝜌(𝜏), 𝜏 − 𝑧〉|𝑛𝑗(𝑤)𝑗>𝑐2𝑘𝐷

𝑑𝜈(𝜏)

𝜌(𝜏)
 

≤ ∫ 𝑑
𝑤∈𝜕𝛺

(𝑤, 𝑧) < 𝑐12
−𝑘𝑑𝜎(𝑤) ∑ (∫ |

𝐷𝑗(𝑤)

𝜕f(𝜏)𝜌(𝜏)−𝑙|2𝑑𝑖/(𝜏))

1/2

𝑗>𝑐2𝑘

× 

× (∫
𝜌(𝜏)2(𝑙−1)𝑑𝐼𝐽(𝜏)

|〈𝜕𝜌(𝜏), 𝜏 − 𝑧〉|𝑛𝐷𝑗(𝑤)

)

1/2

= ∑ ∫ 𝑏𝑗
<𝑐12−𝑗𝑗>𝑐2𝑘𝑑(𝑤,𝑧)

(𝑤)𝑚𝑗(𝑤)𝑑𝜎(𝑤) 

By Lemma (5.2.4) we have 𝑑(𝜏, 𝑧)∧
∨𝜌(𝜏) + 𝑑(𝑤, 𝑧) > 2−𝑗 and 𝜈 (𝐷𝑗(𝑤))

∧

∨
2−2𝑗 for ∈

𝐷𝑗(𝑤) . Hence, 
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𝑚𝑗(𝑤) = (∫
𝜌(𝜏)2(𝑙−1)𝑑𝜈(𝜏)

|〈𝜕𝜌(𝜏), 𝜏 − 𝑧〉|𝑛𝐷𝑗(𝑤)

)

1/2

≲
2−𝑗(𝑙−1)

2−𝑗𝑛
2−𝑗 = 2𝑗𝑛−𝑗𝑙 

and 

2𝑘𝜄𝑈(𝑧) ≤ ∑ 2−(𝑗−𝑘)𝑙

𝑗>𝑐1𝑘

2𝑗𝑛∫ 𝑏𝑗
𝑑(𝑤,𝑧)<𝑐22−𝑗

(𝑤)𝑑𝜎(𝑤) 

≤ ∑ 2−(𝑗−𝑘)𝜄

𝑗>𝑐1𝑘

𝑀𝑏𝑗(𝑧) .                                                         (65) 

Now we estimate the value 𝑊1(𝑧) . Similarly to the previous we have 

𝑊1(𝑧) ≤ 2
−𝑘𝑟∑  

𝑗 > 𝑘∫ 𝑏𝑗
𝑑(𝑤,𝑧)≥𝑐12−𝑘

(𝑤)𝑚𝑗
𝑟(𝑤)𝑑𝜎(𝑤) 

≤ 2−𝑘𝑟 ∑ ∑ ∫ 𝑏𝑗𝑧𝑐1,,)≤𝑐12−𝑡+1
𝑘
𝑡=𝑐22

−𝑡≤𝑑(𝑤𝑗>𝑘 (𝑤)𝑚𝑗
𝑟(𝑤)𝑑𝜎(𝑤) , 

where 

𝑚𝑗
𝑟(𝑤) = (∫

𝜌(𝜏)2(𝑙−1)𝑑𝜈(𝜏)

|〈𝜕𝜌(𝜏), 𝜏 − 𝑧〉|2(𝑛+𝑟)𝐷𝑗(𝑤)

)

1/2

 

Applying the estimate 𝑑(𝜏, 𝑧) = 𝜌(𝜏) + 𝑑(𝑤, 𝑧) ∼> 2−𝑡, we obtain 

𝑚𝑗
𝑟(𝑤) ≲ 2−𝑗𝑙+𝑡(𝑛+𝑟). 

Finally 

∑ ∫ 𝑏𝑗(𝑤)𝑚𝑗
𝑟(𝑤)𝑑𝜎(𝑤) 

≤𝑐12−𝑡+1

𝑘

𝑡=𝑐2 𝑑(𝑤,𝑧)

≲ ∑ 2−jl+trM bj (z) ≲  2
−jl+krM bj (z) 

𝑘

𝑡=𝑐2

 

and 

2𝑘𝑊1(𝑧) ≲∑2−𝑙(𝑗−𝑘)

𝑗>𝑘

𝑀𝑏𝑗(𝑧) .                                    (66) 

Similarly, estimating the contribution of 𝑊2(𝑧) , we obtain 

2𝑘𝑙𝑊2(𝑧) ≲ 2
−𝑘(𝑟−𝑙)∑∫ 𝑏𝑗

𝜕𝛺

𝑘

𝑗=0 

(𝑤)𝑚𝑗
𝑟(𝑤)𝑑𝜎(𝑤) .                  (67) 

Since 𝑑(𝜏, 𝑧) ≳ 2−𝑗 + 𝑑(𝑤, 𝑧) for 𝜏 ∈ 𝜕𝛺, 𝜏 ∈ 𝐷𝑗(𝑧) then 

𝑚𝑗
𝑟(𝑤) ≲

2−𝑗𝑙

(2−𝑗+𝑑(𝑤,𝑧))
𝑛+𝑟 ≤  min (2

𝑗(𝑛+𝑟−𝑙), 2−𝑗𝑙𝑑(𝑤, 𝑧)−𝑛−𝑟) . 
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Thus 

∫ 𝑏𝑗
𝜕𝛺

(𝑤)𝑚𝑗
𝑟(𝑤)𝑑𝜎(𝑤) ≲ ∫

2−𝑗𝑙

2−𝑗(𝑛+𝑟)𝑑(𝑤,𝑧)<2−𝑗

𝑏𝑗(𝑤)𝑑𝜎(𝑤) 

+ ∑ ∫ ,
(𝑤𝑧)≤2−𝑡

𝑗−1

𝑡=12−𝑡−1≤𝑑

2−𝑗𝑙

2−𝑡(𝑛+𝑟)
𝑏𝑗(𝑤)𝑑𝜎(𝑤) 

≲∑(𝑍)∼

𝑗

𝑡=1

. 

Choosing 𝑟 = 2𝑙 and applying estimate (67) 

𝑊2(𝑧)2
𝑘𝑙 ≲∑2−(𝑘−𝑗)(𝑟−𝑙)

𝑘

𝑗=1

𝑀𝑏𝑗(𝑧) ≤∑2−(𝑘−𝑗)𝑙
𝑘

𝑗=1

𝑀𝑏𝑗(𝑧) .                (68) 

Combining estimates (25, 26, 28) we finally obtain 

|𝑓(𝑧) − 𝑃2𝑘(𝑧)|2
𝑘𝑙 ≲ ∑ 2−(𝑘−𝑗)𝜄𝑘

𝑗=1 𝑀𝑏𝑗(𝑧) + ∑ 2−(𝑗−𝑘)𝜄𝑗>𝑘 𝑀𝑏𝑗(𝑧) , 

which similarly to [155] implies 

∑|

∞

𝑘=1

𝑓(𝑧) − 𝑃2𝑘(𝑧)|
22𝑘𝑙 2 ≲ ∑(𝑀𝑏𝑘(𝑧))

2
∞

𝑘=1

 

Then, by the Fefferman‐Stein theorem ([156], [157]) 

∫ 𝑑
𝜕𝛺

𝜎(𝑧)(∑ |

∞

𝑘=1

𝑓(𝑧) − 𝑃2𝑘(𝑧)|
222𝑙𝑘)

𝑝/2

≤ ∫ (∑𝑏𝑘
2

∞

𝑘=1

(𝑧))

𝑝/2

𝜕𝛺

𝑑𝜎(𝑧) 

≤ ∫ 𝑑
𝜕𝛺

𝜎(𝑧)(∫ |
𝐷𝑒(𝑧,𝜂,𝜀)

𝜕f(𝜉)𝜌(𝜉)−𝑙|2𝑑𝜈(𝜉))

𝑝/2

< ∞. 

This completes the proof of the theorem and it remains to prove Lemma (5.2.10). 

Define 𝑔𝑘(𝑧) : = 𝑃2𝑘+1(𝑧) − 𝑃2𝑘(𝑧) . Let 𝑧 ∈ 𝜕𝛺 and 𝜏 ∈ 𝐷𝑘(𝑧) . Consider the complex 

normal vector 𝑛(𝑧) defined by (44), the complex tangent hyperplane 𝑇𝑧 and the complex 

plane 𝑇𝑧,𝜏
⊥ , orthogonal to 𝑇𝑧 and containing the point 𝜏 𝑇𝑧,𝜏

⊥ : = {𝜏 + 𝑠𝑛(𝑧): 𝑠 ∈ ℂ}. Projection 

of the vector 𝜏 ∈ ℂ to 𝜕𝛺 ∩ 𝑇𝑧,𝜏
⊥  we will denote as 𝜋𝑧(𝜏) . 

Define 𝛺𝑧,𝜏 = 𝛺 ∩ 𝑇𝑧,𝜏
⊥  and 𝛾𝑧,𝜏 = 𝜕𝛺𝑧,𝜏. There exist a conformal map 𝜙𝑧,𝜏: 𝑇𝑧,𝜏

⊥ \𝛺𝑧,𝜏 →

ℂ\{𝑤 ∈ ℂ: |𝑤| < 1} such that 𝜙𝑧,𝜏(∞) = ∞, 𝜙𝑧,𝜏
′ (∞) > 0. We consider an auxiliary 

function 𝐺𝑘(𝑠) : =
𝑔𝑘(𝑠)

𝜙𝑧,𝜏
2𝑘+1(𝑠)

 that is holomorphic in 𝑇𝑧,𝜏
⊥ \𝛺𝑧,𝜏. Applying the maximal estimate 

from [4] to this function we have 

 |𝐺𝑘(𝜏)| <∼
1

𝜌(𝜏)
∫ |
𝑠∈𝐼𝑧,𝜏

𝐺𝑘(𝑠)||𝑑𝑠| + ∫ |
𝜕𝛺𝑧,𝜏\𝐼𝑧,𝜏

𝐺𝑘(𝑠)|
𝜌(𝜏)𝑚

|𝑠−𝜋𝑧(𝜏)|
7𝑟𝑡+1

|𝑑𝑠|, where 𝐼𝑧,𝜏 =



194 

{𝑠 ∈ 𝛾𝑧,𝜏 ∶  |𝑠 − 𝜋𝑧(𝜏)| < dist(𝜏, 𝜕𝛺𝑧,𝜏)/2}, and 𝑚 > 0 could be chosen arbitrary large. 

Note that |𝜙𝑧,𝜏(𝑠)| − 1 ∨∧ dist(𝑠, 𝜕𝛺𝑧,𝜏) ∨∧ 2
−𝑘, thus |𝑔𝑘(𝑠)| ∨∧ |𝐺𝑘(𝑠)| for 𝑠 ∈ 𝐷𝑘(𝑧) ∩

𝑇𝑧,𝜏
⊥ . Hence, 

|𝑔𝑘(𝜏)| ≲∑2−𝑗𝑚
∞

𝑗=1

1

2𝑗𝜌(𝜏)
 ∫ |
𝑠∈𝜕𝛺𝑧,𝜏,|𝑠−𝜋𝑧(𝜏)|<2

𝑗𝜌(𝜏)

𝑔𝑘(𝑠)||𝑑𝑠|.             (69) 

Since the boundary of the domain 𝛺 is 𝐶3‐smooth, we can assume that the constant in this 

inequality (69) does not depend on 𝑧 ∈ 𝜕𝛺 and 𝜏 ∈ 𝛺𝜀\𝛺. 

Note that the function 𝑔𝑘(𝜏 + 𝑧 − 𝑤) is holomorphic in 𝑤 ∈ 𝑇𝑧, then estimating the mean 

we obtain 

|𝑔𝑘(𝜏)| ≤
1

𝜌(𝜏)𝑛−1
∫ |
|𝑤−𝑧|<√𝜌(𝜏)

𝑔𝑘(𝜏 + 𝑧 − 𝑤)|𝑑𝜇2𝑛−2(𝑤) 

≲∑2−𝑗7𝑛
∞

𝑗=1

1

𝜌(𝜏)𝑛−1
∫

𝑑𝜇2𝑛−2(𝑤)

2𝑗𝜌(𝜏)|𝑤−𝑧|<√𝜌(𝜏)

 ∫  
𝑠∈𝜕𝛺𝑧,𝜏

 |𝑔𝑘(𝑠)||𝑑𝑠||𝑠 − 𝜋𝑧(𝜏 + 𝑧 − 𝑤)|

< 2𝑗𝜌(𝜏) ≲∑2−𝑗(𝑚−𝑛+1)
∞

𝑗=1

∫ |
𝐵(𝑧,2𝑗𝜌(𝜏))

𝑔𝑘(𝑤)|𝑑𝜎(𝑤) ,                        (70) 

where 𝑑𝜇2𝑛−2 is the Lebesgue measure in 𝑇𝑧 

Assume that 𝑚 > 𝑛 − 1, then |𝑔𝑘(𝜏)| ≲ 𝑀𝑔𝑘(𝑧), 𝑧 ∈ 𝜕𝛺, 𝜏 ∈ 𝐷𝑘(𝑧) . Finally,  

𝑏𝑘(𝑧)
2 = ∫ |

𝐷𝑘(𝑧)

𝜕f(𝜏)𝜌(𝜏)−𝑙|2𝑑𝜈(𝜏)∼ < ∫ |
𝐷𝑘(𝑧)

𝑔𝑘(𝜏)𝜌(𝜏)
−𝑙−1|2𝑑𝜄/(𝜏)

≲ (2−𝑘𝑙𝑀𝑔𝑘(𝑧))
2
∫

𝑑𝜈(𝜏)

𝜌(𝜏)2𝐷𝑘(𝑧)

≲ (𝑀𝑎𝑘(𝑧))
2
 

and the lemma is proved.  
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Chapter 6 

Brunn–Minkowski and Sharp Gagliardo–Nirenberg–Sobolev Inequalities 

 

           We give a new bridge between the geometric point of view of the Brunn– Minkowski 

inequality and the functional point of view of the Sobolev-type inequalities. We find a new 

sharp trace Gagliardo-Nirenberg-Sobolev inequality on convex cones, as well as a sharp 

weighted trace Sobolev inequality on epigraphs of convex functions. By using a generalized 

Borell-Brascamp-Lieb inequality, coming from the Brunn-Minkowski theory. 

Section (6.1): Sharp Sobolev Inequalities 

The classical Sobolev inequality in ℝ𝑛, 𝑛 ≥ 3, indicates that there is a constant 𝐶𝑛 >

0 such that for all smooth enough (locally Lipschitz) functions 𝑓 : ℝ𝑛 → ℝ vanishing at 

infinity, 

‖𝑓‖𝑞 ≤ 𝐶𝑛‖𝛻𝑓‖2                                                         (1) 

where 
1

𝑞
=
1

2
−
1

𝑛
. Here ‖𝑓‖𝑞 denotes the usual L𝑞‐norm of 𝑓 with respect to Lebesgue 

measure on ℝ𝑛, and, for 𝑝 ≥ 1, 

‖𝛻𝑓‖𝑝 = (∫ |
 

ℝ𝑛
𝛻𝑓|𝑝d𝑥)

1/𝑝

 

where |𝛻𝑓| is the Euclidean norm of the gradient 𝛻𝑓 of 𝑓. 

Inequality (1) goes back to Sobolev [199], as a consequence of a Riesz type rearrangement 

inequality and the Hardy-Littlewood-Sobolev fractional‐integral convolution inequality. 

Other approaches, including the elementary Gagliardo‐Nirenberg argument [105], [145], are 

discussed in (cf. e.g. [82], [194], [102] …). The best possible constant in the Sobolev 

inequality (1) was established independently by Aubin [82] and Talenti [110] in 1976 using 

symmetrization methods of isoperimetric flavor, together with the study of the one‐

dimensional extremal problem. Rearrangements arguments have been developed 

extensively in (cf. [87], [102] …). The optimal constant 𝐶𝑛 is achieved on the extremal 

functions (𝑥) = (𝜎 + |𝑥|2)(2−𝑛)/2, 𝑥 ∈ ℝ𝑛, 𝜎 > 0. Building on early ideas by Rosen [197], 

Lieb [196] determined the best constant and the extremal functions in dimension 3. 

According to [198], the result seems to have been known before, at least back to the early 

sixties, in unpublished notes by Rodemich. 

The geometric Brunn‐Minkowski inequality, and its isoperimetric consequence, is a well‐

known argument to reach Sobolev type inequalities. It states that for every non‐empty Borel 

measurable bounded sets 𝐴, 𝐵 in ℝ𝑛, 

vo1𝑛(𝐴 + 𝐵)
1/𝑛 ≥ vo1𝑛(𝐴)

1/𝑛 + vo1𝑛(𝐵)
1/𝑛              (2) 

where vo1𝑛(⋅) denotes Euclidean volume. The Brunn‐Minkowski inequality classically 

implies the isoperimetric inequality in ℝ𝑛. Choose namely for 𝐵 a ball with radius 𝜀 > 0 

and let then 𝜀 → 0 to get that for any bounded measurable set 𝐴 in ℝ𝑛 , 

vo1𝑛−1(𝜕𝐴) ≥ 𝑛𝜔𝑛
1/𝑛
vo1𝑛(𝐴)

(𝑛−1)/𝑛 
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where vo1𝑛−1(𝜕𝐴) is understood as the outer‐Minkowski content of the boundary of 𝐴 and 

𝜔𝑛 is the volume of the Euclidean unit ball in ℝ𝑛. By means of the co‐area formula [182], 

[194], the isoperimetric inequality may then be stated equivalently on functions as the L1‐

Sobolev inequality 

‖𝑓‖𝑞 ≤
1

𝑛𝜔𝑛
1/𝑛
‖𝛻𝑓‖1                                            (3) 

where 
1

𝑞
= 1 −

1

𝑛
. Changing 𝑓 ≥ 0 into 𝑓𝑟 for some suitable 𝑟 and applying Hölder’s 

inequality yields the L2− Sobolev inequality (1), however not with its best constant. In the 

same way, the argument describes the full scale of Sobolev inequalities 

‖𝑓‖𝑞 ≤ 𝐶𝑛(𝑝)‖𝛻𝑓‖𝑝,                                     (4) 

1 ≤ 𝑝 < 𝑛, 
1

𝑞
=

1

𝑝
−
1

𝑛
 ,  : ℝ𝑛 → ℝ smooth and vanishing at infinity. According to Gromov 

[107], the L1‐case of the Sobolev inequality appears in Brunn’s work from 1887. 

We show that the Brunn‐Minkowski inequality may actually be used to also reach the 

optimal constants in the Sobolev inequalities (1) and (4). This new approach thus completely 

bridges the geometric Brunn‐Minkowski inequalities and the functional Sobolev 

inequalities. 

Inequality (2) was first proved by Brunn in 1887 for convex sets in dimension 3, then 

extended by Minkowski (cf. [109]). Lusternik [191] generalized the result in 1935 to 

arbitrary measurable sets. Lusternik’s proof was further analyzed and extended in the works 

of Hadwiger and Ohmann [186] and Henstock and Macbeath [187] in the fifties. 

Note in particular that the one‐dimensional case is immediate: assume that 𝐴 and 𝐵𝔅 

Springer are non‐empty compact sets in ℝ, and after a suitable shift, that  sup 𝐴 = 0 =

 inf 𝐵. Then 𝐴 ∩ 𝐵 = {0} and 𝐴 + 𝐵 ⊃ 𝐴 ∪ 𝐵. 

Starting with the contribution [187], integral inequalities have been developed throughout 

the last century in the investigation of the geometric Brunn‐MinkowskiLusternik theorem. 

The idea of the following elementary, but fundamental, Lemma (6.1.1) goes back to 

Bonnesen’s proof of the Brunn‐Minkowski inequality (cf. [176]) and may be found already 

by Henstock and Macbeath [187]. The result appears in this form independently in the works 

of Dancs and Uhrin [178] and Das Gupta [179]. We enclose a proof for completeness. As a 

result, the proof below only relies on the one‐dimensional Brunn-Minkowski-Lusternik 

inequality, which is the only basic ingredient in the argument. All the further developments 

and applications to Sobolev inequalities are consequences of this elementary Lemma (6.1.1). 

Lemma (6.1.1)[18]. Let 𝜃 ∈ [0,1] and 𝑢, 𝑣, 𝑤 be non‐negative measurable functions on ℝ 

such that for all 𝑥, 𝑦 ∈ ℝ, 

𝑤(𝜃𝑥 + (1 − 𝜃)𝑦) ≥  min (𝑢(𝑥), 𝑣(𝑦)) . 

Then, if sup𝑥∈ℝ𝑢(𝑥) = sup𝑥∈ℝ𝑣(𝑥) = 1, 
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∫𝑤
 

 

d𝑥 ≥ 𝜃∫𝑢
 

 

d𝑥 + (1 − 𝜃)∫𝑣
 

 

d𝑥. 

Proof. Define, for 𝑡 > 0, 𝐸𝑢(𝑡) = {𝑥 ∈ ℝ; 𝑢(𝑥) > 𝑡} and similarly 𝐸𝑣(𝑡), 𝐸𝑤(𝑡) . Since 

sup𝑥∈ℝ𝑢(𝑥) = sup𝑥∈ℝ𝑣(𝑥) = 1, for 0 < 𝑡 < 1, both 𝐸𝑢(𝑡) and 𝐸𝑣(𝑡) are non‐empty, and 

𝐸𝑤(𝑡) ⊃ 𝜃𝐸𝑢(𝑡) + (1 − 𝜃)𝐸𝑣(𝑡) . By the one‐dimensional Brunn-Minkowski-Lusternik 

inequality (2), for every 0 < 𝑡 < 1, 

𝜆(𝐸𝑤(𝑡)) ≥ 𝜃𝜆(𝐸𝑢(𝑡)) + (1 − 𝜃)𝜆(𝐸𝑣(𝑡)) 

where 𝜆 denotes Lebesgue measure on ℝ. Hence, 

∫𝑤
 

 

d𝑥 ≥ ∫ 𝜆
1

0

(𝐸𝑤(𝑡))d𝑡 

≥ 𝜃∫ 𝜆
1

0

(𝐸𝑢(𝑡))d𝑡 + (1 − 𝜃)∫ 𝜆
1

0

(𝐸𝑣(𝑡))d𝑡 

= 𝜃∫𝑢
 

 

d𝑥 + (1 − 𝜃)∫𝑣
 

 

d𝑥 

which is the conclusion. 

As discussed in [178], the preceding Lemma (6.1.1) may be extended to more general means 

by elementary changes of variables. For 𝛼 ∈ [−∞,+∞], denote by 𝑀𝛼
(𝜃)(𝑎, 𝑏) the 𝛼‐mean 

of the non‐negative numbers 𝑎, 𝑏 with weights 𝜃, 1 − 𝜃 ∈ [0,1] defined as 

𝑀𝛼
(𝜃)(𝑎, 𝑏) = (𝜃𝑎𝛼 + (1 − 𝜃)𝑏𝛼)1/𝛼 

(with the convention that 𝑀𝛼
(𝜃)(𝑎, 𝑏) =  max (𝑎, 𝑏) if 𝛼 = +∞, 𝑀𝛼

(𝜃)(𝑎, 𝑏) =  min (𝑎, 𝑏) if 

𝛼 = −∞ and 𝑀𝛼
(𝜃)(𝑎, 𝑏) = 𝑎𝜃𝑏1−𝜃 if 𝛼 = 0) if 𝑎𝑏 > 0, and 𝑀𝛼

(𝜃)(𝑎, 𝑏) = 0 if 𝑎𝑏 = 0. 

Note the extension of the usual arithmetic‐geometric mean inequality as 

𝑀𝛼1𝛼
(𝜃) (𝑎1, 𝑏1)𝑀2

(𝜃)(𝑎2, 𝑏2) ≥ 𝑀𝛼
(𝜃)(𝑎1𝑎2, 𝑏1𝑏2)                   (5) 

if 
1

𝛼
=

1

𝛼1
+

1

𝛼2
, 𝛼1 + 𝛼2 > 0. 

Corollary (6.1.2)[18]. 𝐿𝑒𝑡 − ∞ ≤ 𝛼 ≤ +∞, 𝜃 ∈ [0,1] and 𝑢, 𝑣, 𝑤 be non‐negative 

measurable functions on ℝ such that for all 𝑥, 𝑦 ∈ ℝ, 

𝑤(𝜃𝑥 + (1 − 𝜃)𝑦) ≥ 𝑀𝛼
(𝜃)
(𝑢(𝑥), 𝑣(𝑦)) . 

Then, if 𝑎 = sup𝑥∈ℝ𝑢(𝑥) < ∞, 𝑏 = sup𝑥∈ℝ𝑣(𝑥) < ∞, 

∫ 𝑤
  

 

d𝑥 ≥ 𝑀𝛼
(𝜃)(𝑎, 𝑏)𝑀1

(𝜃)
(
1

𝑎
∫𝑢
 

 

d𝑥,
1

𝑏
∫𝑣
 

 

d𝑥) . 

The statement still holds if 𝑎 or 𝑏 = +∞ with the convention that 0 × ∞ = 0. 
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Proof. Assume first that −∞ < 𝛼 < +∞. For 𝜌 = 𝑀𝛼
(𝜃)(𝑎, 𝑏) > 0, set 

𝑈(𝑥) =
1

𝑎
𝑢 (
𝑎𝛼𝑋

𝜌𝛼
)  𝑎𝑛𝑑 (𝑦) =

1

𝑏
𝑣 (
𝑏𝛼𝑦

𝜌𝛼
) . 

Then, if 𝜂 = 𝜃𝑎𝛼/𝜌𝛼(∈ [0,1]) , 

𝑤(𝜂𝑥 + (1 − 𝜂)𝑦) ≥ 𝑀𝛼
(𝜃)(𝑎, 𝑏) min (𝑈(𝑥), 𝑉(𝑦)) 

for all 𝑥, 𝑦 ∈ ℝ. Since sup𝑥∈ℝ𝑈(𝑥) = sup𝑥∈ℝ𝑉(𝑥) = 1, by the Lemma (6.1.1), 

∫𝑤
 

 

d𝑥 ≥ 𝑀𝛼
(𝜃)(𝑎, 𝑏) (𝜂∫𝑈

 

 

d𝑥 + (1 − 𝜂)∫𝑉
 

 

d𝑥) 

= 𝑀𝛼
(𝜃)(𝑎, 𝑏) (

𝜃

𝑎
∫𝑢
 

 

d𝑥 +
1 − 𝜃

𝑏
∫𝑣
 

 

d𝑥) 

by definition of 𝜂. The cases 𝛼 = −∞ and 𝛼 = +∞ may be proved by standard limit 

considerations. The corollary is thus established. 

By the Hölder inequality (5), the preceding corollary implies the more classical Prékopa‐

Leindler theorem [189], [186], [196], as well as its generalized form put forward by Borell 

[174] and Brascamp and Lieb [175], in which the supremum norms of 𝑢 and 𝑣 do not appear. 

Namely, under the assumption of Corollary (6.1.2) and provided that −1 ≤ 𝛼 ≤ +∞, 

∫𝑤
 

 

d𝑥 ≥ 𝑀𝛼
(𝜃)(𝑎, 𝑏)𝑀1

(𝜃)
(
1

𝑎
∫𝑢
 

 

d𝑥,
1

𝑏
∫𝑣
 

 

d𝑥) 

≥ 𝑀𝛽
(𝜃)
(∫𝑢

 

 

d𝑥,∫𝑣
 

 

d𝑥) 

where β = 𝛼/(1 + 𝛼) . 

The preceding generalized Prékopa‐Leindler theorem is easily tensorisable in ℝ𝑛 by 

induction on the dimension to yield that whenever - 
1

𝑛
≤ 𝛼 ≤ +∞, 𝜃 ∈ [0,1] and 𝑢, 𝑣, 𝑤 : 

ℝ𝑛 → ℝ+ are measurable such that 

𝑤(𝜃𝑥 + (1 − 𝜃)𝑦) ≥ 𝑀𝛼
(𝜃)
(𝑢(𝑥), 𝑣(𝑦)) 

for all 𝑥, 𝑦 ∈ ℝ𝑛, then 

∫𝑤
 

 

d𝑥 ≥ 𝑀𝛽
(𝜃)
(∫𝑢

 

 

d𝑥,∫𝑣
 

 

d𝑥) 

where β = 𝛼/(1 + 𝛼𝑛) . Namely, assuming the result in dimension 𝑛 − 1, for 𝑥1 , 𝑦1 , 𝑧1 =

𝜃𝑥1 + (1 − 𝜃)𝑦1 ∈ ℝ fixed, 

∫ 𝑤
 

ℝ𝑛−1
(𝑧1, 𝑡)𝑑𝑟 ≥ 𝑀𝛼/(1+𝛼(𝑛−1))

(∅)
(∫ 𝑢(𝑥1, 𝑡)𝑑𝑡,∫  

 

ℝ𝑛−1
𝑣

 

ℝ𝑛−1
(𝑦1, 𝑡)d𝑡) . 
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Since 𝛼 ≥ −
1

𝑛
 implies that 𝛼 = 𝛼/(1 + 𝛼(𝑛 − 1)) ≥ −1, the one‐dimensional result 

applied to ∫ 𝑢
ℝ𝑛−1

 (𝑥1, 𝑡)d𝑡, ∫ 𝑣
ℝ𝑛−1

(𝑦1, 𝑡)d𝑡, ∫ 𝑤
ℝ𝑛−1

(𝑧1, 𝑡)d𝑡 yields the conclusion since 

𝛼/(1 + 𝛼) = 𝛽. The case 𝛼 = 0 corresponds to the Prékopa‐Leindler theorem. When 

applied to the characteristic functions 𝑢 = 𝜒𝐴, 𝑣 = 𝜒𝐵 of the bounded non‐empty sets 𝐴, 𝐵 

in ℝ𝑛 with 𝛼 = +∞, we immediately recover the Brunn-Minkowski-Lusternik inequality 

(2). 

Most of the proofs of the preceding integral inequalities rely in one way or another on 

integral parametrizations. They may be proved either first in dimension one together with 

induction on the dimension as above, or by suitable versions of the parametrizations by 

multidimensional measure transportation. see [172], [179], [99], [193] for complete 

accounts on these various approaches. 

As presented in [178], Corollary (6.1.2) may also be turned in dimension 𝑛, as a 

consequence of the generalized Prékopa‐Leindler theorem.  Re resulting statement will be 

the essential step in the proof of the sharp Sobolev inequalities. In particular, the possibility 

to use 𝛼 up to‐ 
1

𝑛−1
 will turn out to be crucial. 

For a non‐negative function 𝑓 ∶ ℝ𝑛 → ℝ, and 𝑖 = 1, , 𝑛, set 

𝑚𝑖(𝑓) = sup
𝑥𝑖∈ℝ

  ∫ 𝑓
 

𝑛−1

(𝑥)d𝑥1⋯d𝑥𝑖−1d𝑥𝑖+1⋯d𝑥𝑛. 

Corollary (6.1.3)[18]. Let ‐ 
1

𝑛−1
≤ 𝛼 ≤ +∞, 𝜃 ∈ [0,1] and 𝑢, 𝑣, 𝑤 be non‐negative 

measurable functions on ℝ𝑛 such that for all 𝑥, 𝑦 ∈ ℝ𝑛, 

𝑤(𝜃𝑥 + (1 − 𝜃)𝑦) ≥ 𝑀𝛼
(𝜃)
(𝑢(𝑥), 𝑣(𝑦)) . 

If, for some 𝑖 = 1, , 𝑛, 𝑚𝑖(𝑢) = 𝑚𝑖(𝑣) < ∞, then 

∫𝑤
 

 

d𝑥 ≥ 𝜃∫𝑢
 

 

d𝑥 + (1 − 𝜃)∫𝑣
 

 

d𝑥. 

Proof. Apply the generalized Prékopa‐Leindler theorem in ℝ𝑛−1 (thus with- 
1

𝑛−1
≤ 𝛼 ≤

+∞) to the functions 𝑢(𝑥), 𝑣(𝑦), 𝑤(𝑧) with 𝑥𝑖 , 𝑦𝑖,𝑍𝑖 = 𝜃𝑥𝑖 + (1 − 𝜃)𝑦𝑖 fixed, and conclude 

with the Lemma (6.1.1) applied to ũ(𝑥𝑖) = ∫ 𝑢
ℝ𝑛−1

(𝑥)d𝑥1⋯d𝑥𝑖−1d𝑥𝑖+1⋯d𝑥𝑛, �̃�(𝑦𝑖) and 

�̃�(𝑍𝑖) being defined similarly. 

Under the assumption 𝑚𝑖(𝑢) = 𝑚𝑖(𝑣) , the conclusion of Corollary (6.1.3) does not depend 

on 𝛼 and is thus sharpest for 𝛼 = −
1

𝑛−1
 (the statement for ‐ 

1

𝑛−1
< 𝛼 ≤ +∞ being actually 

a consequence of this case). Following the proof of Corollary (6.1.2), the complete form of 

Corollary (6.1.3) actually states that (cf. [178]), for every 𝑖 = 1, . 𝑛, 
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∫𝑤
 

 

d𝑥 ≥ 𝑀𝛽
(𝜃)
(𝑚𝑖(𝑢),𝑚𝑖(𝑣))𝑀1

(𝜃)
(

1

𝑚𝑖(𝑢)
∫𝑢
 

 

d𝑥,
1

𝑚𝑖(𝑣)
∫𝑣
 

 

d𝑥) 

with β = 𝛼/(1 + 𝛼(𝑛 − 1)) . 

Recently, mass transportation arguments have been developed to simultaneously reach the 

Brunn-Minkowski-Lusternik inequality and the sharp Sobolev inequalities (cfi [99] [172], 

[193], [201], [202] …). In particular, Cordero‐Erausquin et al. [80] provide a complete 

treatment of the classical Sobolev inequalities with their best constants by this tool (see also 

[114]). Their approach covers in the same way the family of GagliardoNirenberg inequalities 

put forward by Del Pino and Dolbeault [180] of non‐linear diffusion equations (see also 

[201]). By means of Hölder’s inequality, the Sobolev inequality (1) implies the family of 

so‐called GagliardoNirenberg inequalities [183], [145], 

‖𝑓‖𝑟 ≤ 𝐶‖𝛻𝑓‖2
𝜆‖𝑓‖𝑠

1−𝜆                                                            (6) 

For r,some constant > 0 and 
1

𝑟
=
𝐶𝜆

𝑞
+
1−𝜆0

𝑠
, 𝜆 >and all smooth enough functions f∈

[0, l]. Re optimal constants 𝑓:ℝ𝑛 → ℝwhereare notpreserved through Hölder’s inequality. 

However, it was shown by Del Pino and Dolbeault [180] that optimal constants and extremal 

functions may be described for a sub‐family of Gagliardo‐Nirenberg inequalities, namely 

the one for which 𝑟 = 2(𝑠 − 1) when 𝑟, 𝑠 > 2 and 𝑠 = 2(𝑟 − 1) when 𝑟, 𝑠 < 2. The 

extremal functions turn out to be of the form 𝑓(𝑥) = (𝜎 + |𝑥|2)2/(2−𝑟) in the first case, 

whereas in the second case they are given by 𝑓(𝑥) = ([𝜎 − |𝑥|2]+)
1/(2−𝑟) (being thus 

compactly supported). The limiting case 𝑟, 𝑠 → 2 gives rise to the logarithmic Sobolev 

inequality (in its Euclidean formulation) with the Gaussian kernels as extremals. 

While mass transport arguments may be offered to directly reach the 𝑛‐dimensional 

Prékopa‐Leindler theorem (cfi [172], [201] …), we do not know if Corollary (6.1.3) admits 

an 𝑛‐dimensional optimal transportation proof. 

On the other hand, the Prékopa‐Leindler theorem was shown in [173], following the early 

ideas by Maurey [192] (cL [188]) , to imply the logarithmic Sobolev inequality for Gaussian 

measures [185] which, in its Euclidean version [177], corresponds to the limiting case 𝑟, 𝑠 →

2 in the scale of Gagliardo‐Nirenberg inequalities. We demonstrate that the extended 

Prékopa‐Leindler theorem in the form of Corollary (6.1.3) above may be used to prove in a 

simple direct way the classical Sobolev inequality (1) with sharp constant. The argument 

only relies on a suitable choice of functions 𝑢, 𝑣, 𝑤. The varying parameter 𝛼 in Corollary 

(6.1.3) allows us to cover in the same way precisely the preceding sub‐family of Gagliardo‐

Nirenberg inequalities with optimal constants, justifying thus this particular subset of 

functional inequalities. As in [80], we may deal as simply with the L𝑝‐versions of the 

Sobolev and Gagliardo‐Nirenberg inequalities (cf. (4)), and even replace the Euclidean norm 

on ℝ𝑛 by some arbitrary norm. The extension of the Sobolev inequalities to arbitrary norms 

on ℝ𝑛 was known previously [81] by symmetrization methods. With respect to earlier 

developments (notably the recent [80], which provides a new and complete treatment in this 

respect), the approach presented here does not provide any type of characterization of 
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extremal functions and their uniqueness, which have to be hinted in the choice of the 

functions 𝑢, 𝑣, 𝑤. 

We  presents an outline of the direct proof of the sharp Sobolev inequality (1) from Corollary 

(6.1.3). We then discuss variations on the basic principle which lead to the sharp Sobolev 

and Gagliardo‐Nirenberg inequalities (4) and (6). 

The last describes, with standard technical arguments, the rigorous and detailed proof of the 

Sobolev inequality. 

We follow the strategy put forward in [173] (see also [184]) on the basis of Corollary (6.1.3) 

rather than the more classical Prékopa‐Leindler theorem. For 𝑔:ℝ𝑛 → ℝ and 𝑡 > 0, recall 

the infimum‐convolution of 𝑔 with the quadratic cost defined by 

𝑄𝑡𝑔(𝑥) =  inf {𝑔(𝑦) +
1

2𝑡
|𝑥 − 𝑦|2} , 𝑥 ∈ ℝ𝑛 

(with 𝑄0𝑔 = 𝑔). It is a standard fact (cL e.g. [5], [181] …) that, for suitable 𝐶1 functions 𝑔, 

𝜕𝑡𝑄𝑡𝑔|𝑡=0 = −
1

2
|𝛻𝑔|2.                                 (7) 

Actually, if 𝑔 is Lipschitz continuous, the family 𝜌 = 𝜌(𝑥, 𝑡) = 𝑄𝑡𝑔(𝑥), 𝑡 > 0, 𝑥 ∈ ℝ
𝑛, 

represents the solution of the Hamilton‐Jacobi initial value problem 𝜕𝑡𝜌 +
1

2
|𝛻𝜌|2 = 0 in 

ℝ𝑛 × (0,∞), 𝜌 = 𝑔 on ℝ𝑛 × {𝑡 = 0}. 

For 𝜎 > 0, set 

𝑣𝜎(𝑥) = 𝜎 +
|𝑥|2

2
, 𝑥 ∈ ℝ𝑛. 

Let 𝜎 > 0 to be determined and let  𝑔: ℝ𝑛 → ℝ+ be smooth and such that 𝑚1(𝑔
1−𝑛) < ∞. 

In order not to obscure the main idea, we refer for a precise description of the class of 

functions 𝑔 that should be considered in order to justify the technical differential arguments 

freely used below. 

By definition of the infimum‐convolution operator, we may apply Corollary (6.1.3) with 

𝛼 = −
1

𝑛−1
 to the set of (positive) functions 

𝑢(𝑥) = 𝑔(𝜃𝑥)1−𝑛, 

𝑣(𝑦) = 𝑣𝜎(√𝜃𝑦)
1−𝑛

 

𝑤(𝑧) = [(1 − 𝜃)𝜎 + 𝜃𝑄1−𝜃𝑔(𝑧)]
1−𝑛 

Note that 𝑚1(𝑢) = 𝜃
1−𝑛𝑚1(𝑔

1−𝑛) and 𝑚1(𝑣) = (𝜎𝜃)
(1−𝑛)/2𝑚1(𝑣1

1−𝑛) < ∞. Choose thus 

𝜎 = 𝜅𝜃 > 0 such that 𝑚1(𝑢) = 𝑚1(𝑣) where 𝜅 = 𝜅(𝑛, 𝑔) = (𝑚1(𝑣1
1−𝑛)/

𝑚1(𝑔
1−𝑛))

2/(𝑛−1)
. Set = 1 − 𝜃 ∈ (0,1) . Hence, by Corollary (6.1.3), for every ∈ (0,1) , 

∫(𝜅𝑠 + 𝑄𝑠𝑔)
1−𝑛

 

 

d𝑥 ≥ ∫𝑔1−𝑛
 

 

d𝑥 + 𝑠𝜅(2−𝑛)/2∫𝑣1
1−𝑛

 

 

d𝑥. 

Taking the derivative at 𝑠 = 0 yields, by (7), 
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(1 − 𝑛)∫𝑔−𝑛
 

 

(𝜅 −
1

2
|𝛻𝑔|2) d𝑥 ≥ 𝜅(2−𝑛)/2∫𝑣1

1−𝑛
 

 

d𝑥.               (8) 

Set 𝑔 = 𝑓2/(2−𝑛) so that 
2

(𝑛 − 2)2
∫|
 

 

𝛻𝑓|2d𝑥 ≥ 𝜅∫𝑓𝑞
 

 

d𝑥 +
1

(𝑛 − 1)𝜅(𝑛−2)/2
∫𝑣1

1−𝑛
 

 

d𝑥 

where we recall that 𝑞 = 2𝑛/(𝑛 − 2) . In particular, 

∫|
 

 

𝛻𝑓|2d𝑥 ≥ inf
𝜅>0

  
(𝑛 − 2)2

2
(𝜅∫𝑓𝑞

 

 

d𝑥 +
1

(𝑛 − 1)𝜅(𝑛−2)/2
∫𝑣1

1−𝑛
 

 

d𝑥) .   (9) 

This infimum is precisely 𝐶𝑛
−2‖𝑓‖𝑞

2  where 𝐶𝑛 is the optimal constant in the Sobolev 

inequality (1). Actually, if (𝑥) = 𝑣1(𝑥) = 1 +
|𝑥|2

2
 , the preceding argument develops with 

equalities at each step with 𝜅 = 𝜅(𝑛, 𝑔) = 1. Moreover, the infimum on the right‐hand side 

of (9) is attained at 𝜅 = 1 if and only if 

∫𝑓𝑞
 

 

d𝑥 = ∫𝑣1
−𝑛

 

 

d𝑥 =
𝑛 − 2

2(𝑛 − 1)
∫𝑣1

1−𝑛
 

 

d𝑥 

which is easily checked by elementary calculus. Thus (9) is an equality in this case and the 

conclusion follows. 

As emphasized, the same proof, with the varying parameter 𝛼 in Corollary (6.1.3), 

yields the sub‐family of Gagliardo‐Nirenberg inequalities recently put forward in [180]. We 

briefly emphasize the modifications in the argument. (It is somewhat surprising that these 

optimal Gagliardo‐Nirenberg inequalities follow from Corollary (6.1.3) with−
1

𝑛−1
< 𝛼 ≤

+∞ which is a consequence of the 𝛼 = −
1

𝑛−1
 case, whereas they are not direct consequences 

of the sharp Sobolev inequality.) 

For‐ 
1

𝑛−1
≤ 𝛼 < 0, apply Corollary (6.1.3) to 

𝑢(𝑥) = 𝑔(𝜃𝑥)1/𝛼 , 

𝑣(𝑦) = 𝑣𝜎(√𝜃𝑦)
1/𝛼

 

𝑤(𝑧) = [(1 − 𝜃)𝜎 + 𝜃𝑄1−𝜃𝑔(𝑧)]
1/𝛼 

to get that for all 𝑠 ∈ (0,1) , 

∫[𝜅𝑠(1 − 𝑠)𝑎 + (1 − 𝑠)𝑄𝑠𝑔]
1/𝛼

 

 

d𝑥 

≥ (1 − 𝑠)1−𝑛∫𝑔1/𝛼
 

 

d𝑥 + 𝜅𝑐𝑠(1 − 𝑠)𝑏∫𝑣1
1/𝛼

 

 

𝑑𝑥. 

Here 𝑎 > 0, 𝑏, 𝑐 < 0, 𝜅 > 0 depending on 𝑛 and 𝛼 (and 𝑔), are such that 𝑚1(𝑢) = 𝑚1(𝑣) 

for some suitable choice of 𝜎. Taking the derivative at 𝑠 = 0, 
1

𝛼
∫𝑔(1/𝛼)−1
 

 

(𝜅 − 𝑔 −
1

2
|𝛻𝑔|2) d𝑥 ≥ (𝑛 − 1)∫𝑔1/𝛼

 

 

d𝑥 + 𝜅𝑐∫𝑣1
1/𝛼

 

 

 𝑑𝑥. 
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Set 𝑓 = 𝑔𝑝, 2𝑝 − 2 =
1

𝛼
− 1, so that 

‐
1

2𝛼𝑝2
∫|
 

 

𝛻𝑓|2d𝑥 − [(𝑛 − 1) +
1

𝛼
]∫𝑓𝑟

 

 

d𝑥 ≥ −
𝜅

𝛼
∫𝑓𝑠
 

 

d𝑥 + 𝜅𝑐∫𝑣1
1/𝛼

 

 

d𝑥 

where 𝑟 = 2(1 − 𝛼)/(1 + 𝛼) and 𝑠 = 2/(1 + 𝛼) . Note that 𝑟, 𝑠 > 2, 𝑟 = 2(𝑠 − 1) . Take 

the infimum over 𝜅 > 0 on the right‐hand side, and rewrite then the inequality by 

homogeneity to get the Gagliardo‐Nirenberg inequality 

‖𝑓‖𝑟 ≤ 𝐶‖𝛻𝑓‖2
𝜆‖𝑓‖𝑠

1−𝜆, 
1

𝔅𝑟
=

𝜆

ri𝑞
+
1−𝜆

𝑠
Spnger , with optimal constant 𝐶. 

To reach the sub‐family 𝑟, 𝑠 < 2, 𝑠 = 2(𝑟 − 1) , work now with 0 < 𝛼 < +∞ and replace 

𝑣𝜎 by the compactly supported function [𝜎 −
|𝑥|2

2
]
+
, |𝑥| < √2𝜎. Actually, only the values 

0 < 𝛼 < 1 are concerned in the argument. We do not know what type of functional 

information is contained in the interval 𝛼 ≥ 1. The case 𝛼 = 0 leading to the logarithmic 

Sobolev inequality has been studied in [173], [184] and follows here as a limiting case. 

We can work more generally with the L𝑝‐Sobolev inequalities (4), 1 < 𝑝 < 𝑛, and similarly 

with the corresponding sub‐family of Gagliardo‐Nirenberg inequalities. It is also possible to 

equip ℝ𝑛 with an arbitrary norm ‖ ⋅ ‖ instead of the Euclidean one | ⋅ | , and to consider 

‖𝛻𝑓‖𝑝
𝑝
= ∫ ‖

 

ℝ𝑛
𝛻𝑓(𝑥)‖∗

𝑝
d𝑥 

where ‖ ⋅ ‖∗ is the dual norm to ‖ ⋅ ‖. To these tasks, consider as in [184], 

𝑄𝑡𝑔(𝑥) =  inf {𝑔(𝑦) + 𝑡𝑉
∗ (
𝑥 − 𝑦

𝑡
)} , 𝑡 > 0, 𝑥 ∈ ℝ𝑛, 

where 𝑉∗(𝑥) =
1

𝑝∗
‖𝑥‖𝑝

∗
 with 𝑝∗ is the Hölder conjugate of 𝑝, i.e. (1/𝑝) + (1/𝑝∗) = 1. 

Then 𝜌 = 𝜌(𝑥, 𝑡) = 𝑄𝑡𝑔(𝑥) is the solution of the Hamilton‐Jacobi equation 𝜕𝑡𝜌 + 𝑉(𝛻𝜌) =

0 with initial condition 𝑔, where 𝑉(𝑥) =
1

𝑝
‖𝑥‖∗

𝑝
 is the Legendre transform of 𝑉∗ (cf. [181]). 

The proof then follows along the same lines as before. The general statement obtained in 

this way is the following (cf. [80], [96]). For 1 < 𝑝 < 𝑛, 
1

𝑞
=

1

𝑝
−
1

𝑛
 , 𝑠 < 𝑟 ≤ 𝑞, 𝜆 ∈ [0,1], 

‖𝑓‖𝑟 ≤ 𝐶𝑛(𝑝, 𝑟)‖𝛻𝑓‖𝑝
𝜆‖𝑓‖𝑠

1−𝜆 

with 
1

𝑟
=
𝜆

𝑞
+
1−𝜆

𝑠
 , 𝑝(𝑠 − 1) = 𝑟(𝑝 − 1) if 𝑟, 𝑠 > 𝑝, 𝑝(𝑟 − 1) = 𝑠(𝑝 − 1) if 𝑟, 𝑠 < 𝑝, and 

the optimal constant 𝐶𝑛(𝑟, 𝑝) is achieved on the extremal functions (𝜎 + ‖𝑥‖𝑝
∗
)
𝑝/(𝑝−𝑟)

, 𝑥 ∈

ℝ𝑛, 𝜎 > 0, in the first case and ([𝜎 − ‖𝑥‖𝑝
∗
]
+
)
(𝑝−1)/(𝑝−𝑟)

 , 𝑥 ∈ ℝ𝑛, 𝜎 > 0, in the second 

case. The optimal Sobolev inequality (4) corresponds to the limiting case 𝜆 → 1, 𝑟 → 𝑞, 𝑠 →

𝑟. We collect the technical details necessary to fully justify the proof of the Sobolev 
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inequality outlined . Although the case 𝑝 = 2 is a bit more simple, we can actually easily 

handle in the same way the more general case of 1 < 𝑝 < 𝑛 and of an arbitrary norm ‖ . ‖ 

on ℝ𝑛. The arguments are easily modified so to deal similarly with the Gagliardo‐Nirenberg 

inequalities discussed.  

Consider thus on ℝ𝑛 the Sobolev inequality 

‖𝑓‖𝑞 ≤ 𝐶𝑛(𝑝)‖𝛻𝑓‖𝑝                               (10) 

in the class of all locally Lipschitz functions 𝑓 vanishing at infinity, with parameters 𝑝, 𝑞 

satisfying 1 < 𝑝 < 𝑛, 
1

𝑞
=

1

𝑝
−
1

𝑛
. The right‐hand side in (10) is understood with respect to 

the given norm ‖ ⋅ ‖ on ℝ𝑛. More precisely, 

‖𝛻𝑓‖𝑝
𝑝
= ∫ ‖

 

ℝ𝑛
𝛻𝑓(𝑥)‖∗

𝑝
d𝑥 

where ‖ ⋅ ‖∗ is the dual norm of ‖ ⋅ ‖. We show that the best constant 𝑐𝑛C𝑝) in (10) 

corresponds to the family of extremal functions 

𝑓(𝑥) = (𝜎 + ‖𝑥‖𝑝
∗
)
C𝑝−𝑛)/𝑝

, 𝑥 ∈ ℝ𝑛, 𝜎 > 0, 

where 𝑝∗ is the conjugate of 𝑝. We may assume that the norm 𝑥 ↦ ‖𝑥‖ is continuously 

differentiable in the region 𝑥 ≠ 0. In this case, ‖𝛻‖𝑥‖‖∗ = 1 for all 𝑥 ≠ 0, and all the 

extremal functions belong to the class 𝐶1(ℝ𝑛). 

The associated infimum‐convolution operator is constructed for the cost function 𝑉∗(𝑥) =
1

𝑝∗
‖𝑥‖𝑝

∗
, that is, 

𝑄𝑡𝑔(𝑥) = inf
𝑦∈ℝ𝑛

  {𝑔(𝑦) + 𝑡𝑉∗ (
𝑥 − 𝑦

𝑡
)} , 𝑡 > 0, 𝑥 ∈ ℝ𝑛. 

The dual (Legendre transform) of 𝑉∗ is 𝑉(𝑥) = sup𝑦∈ℝ𝑛[{𝑥, 𝑦〉 − 𝑉
∗(𝑦)] =

1

𝑝
‖𝑥‖∗

𝑝
 (and 

conversely). 

See (such as [171], [181] . . .) for general facts about infimum‐convolution operators and 

solutions to Hamilton‐Jacobi equations, and only concentrate below on the aspects relevant 

to the proof of the Sobolev inequality. What follows is certainly classical, but we could not 

find appropriate references. 

Lemma (6.1.4)[18]. If a function 𝑔 on ℝ𝑛 is bounded from below and is differentiable at 

the point 𝑥 ∈ ℝ𝑛, then 

lim
𝑡→0

1

𝑡
[𝑄𝑡𝑔(𝑥) − 𝑔(𝑥)] = −𝑉(𝛻𝑔(𝑥)) = −

1

𝑝
‖𝛻𝑔(𝑥)‖∗

𝑝
. 

Proof. Fix 𝑥 ∈ ℝ𝑛. By Taylor’s expansion, 𝑔(𝑥 − ℎ) = 𝑔(𝑥) − 〈𝛻𝑔(𝑥), ℎ) +|ℎ|𝜀(ℎ) with 

𝜀(ℎ) = 𝜀𝑥(ℎ) → 0 as |ℎ| → 0. Hence, for vectors ℎ𝑡 = 𝑡ℎ with fixed ℎ ∈ ℝ𝑛, 

lim
𝑡→0

1

𝑡
[𝑔(𝑥 − ℎ𝑡) − 𝑔(𝑥)] = −{𝛻𝑔(𝑥), ℎ) . 

Since we always have 𝑄𝑡𝑔(𝑥) ≤ 𝑔(𝑥 − ℎ𝑡) + 𝑡𝑉
∗(ℎ) , 
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lim
𝑡→0

 sup 
1

𝑡
[𝑄𝑡𝑔(𝑥) − 𝑔(𝑥)] ≤ lim

𝑡→0

1

𝑡
[𝑔(𝑥 − ℎ𝑡) − 𝑔(𝑥)] + 𝑉

∗(ℎ) 

= −{𝛻𝑔(𝑥), ℎ〉 + 𝑉∗(ℎ) . 

The left‐hand side of the preceding does not depend on ℎ. Hence, taking the infimum on the 

right‐hand side over all ℎ ∈ ℝ𝑛, we get 

lim
𝑡→0

 sup 
1

𝑡
[𝑄𝑡𝑔(𝑥) − 𝑔(𝑥)] ≤ −𝑉(𝛻𝑔(𝑥)) . 

Now, we need an opposite inequality for the lim  inf . Assume without loss of generality that 

𝑔 ≥ 0. Since 𝑄𝑡𝑔(𝑥) ≤ 𝑔(𝑥) , it is easy to see that for any 𝑡 > 0, 

𝑄𝑡𝑔(𝑥) = inf
𝑡𝑉∗(ℎ)≤𝑔(𝑥)

  {𝑔(𝑥 − ℎ𝑡) + 𝑡𝑉
∗(ℎ)}. 

Hence, recalling Taylor’s expansion, 

1

𝑡
[𝑄𝑡𝑔(𝑥) − 𝑔(𝑥)] = inf

𝑡𝑉∗(ℎ)≤𝑔(𝑥)
  {−〈𝛻𝑔(𝑥), ℎ〉 + |ℎ|𝜀(𝑡ℎ) + 𝑉∗(ℎ)}.        (11) 

Note first that the argument in 𝜀(⋅) = 𝜀𝑥(⋅) is small uniformly over all admissible ℎ since, 

as is immediate, 

sup
 
  {𝑡|ℎ|; 𝑡𝑉∗(ℎ) ≤ 𝑔(𝑥)} → 0 𝑎𝑠 𝑡 → 0. 

Thus removing the condition 𝑡𝑉∗(ℎ) ≤ 𝑔(𝑥) in (11), we get that, given 𝜂 > 0, for all 𝑡 small 

enough, 

1

𝑡
[𝑄𝑡𝑔(𝑥) − 𝑔(𝑥)] ≥ inf

h
  {−{𝛻𝑔(𝑥), ℎ〉 − |ℎ|𝜂 + 𝑉∗(ℎ)}.       (12) 

Now, to get rid of 𝜂 on the right‐hand side for 𝑡 approaching zero, note that the infimum in 

(12) may be restricted to the ball |ℎ| ≤ 𝑟 for some large 𝑟. Indeed, the left‐hand side in (12) 

is non‐positive. But if |ℎ| is large enough and 0 < 𝜂 < 1, the quantity for which we take the 

infimum will be positive for 𝑉∗(ℎ) ≥ 𝐶|ℎ| > {𝛻𝑔(𝑥), ℎ〉 + |ℎ|𝜂 with 𝐶 taken in advance to 

be as large as we want. Finally, restricting the infimum to |ℎ| ≤ 𝑟, we get that 

1

𝑡
[𝑄𝑡𝑔(𝑥) − 𝑔(𝑥)] ≥ inf

|ℎ|≤𝑟
  {−(𝛻𝑔(𝑥), ℎ〉 + 𝑉∗(ℎ)} − 𝑟𝜂 = −𝑉(𝛻𝑔(𝑥)) − 𝑟𝜂. 

It remains to take the lim  inf  on the left for 𝑡 → 0, and then to send 𝜂 to 0. The proof of 

Lemma (6.1.4) is complete. 

Our next step is to complement the above convergence with a bound on |𝑄𝑡𝑔(𝑥) − 𝑔(𝑥)|/𝑡 

in terms of ‖𝛻𝑔(𝑦)‖∗ with vectors 𝑦 that are not far from 𝑥. So, given a 𝐶1 function 𝑔 on 

ℝ𝑛, for every point 𝑥 ∈ ℝ𝑛 and 𝑟 > 0, define 𝐷𝑔(𝑥, 𝑟) = sup‖𝑥−𝑦‖≤𝑟‖𝛻𝑔(𝑦)‖∗. Note that 

𝐷𝑔(𝑥, 𝑟) → ‖𝛻𝑔(𝑥)‖∗ as 𝑟 → 0. Assume 𝑔 ≥ 0 and write once more 

𝑄𝑡𝑔(𝑥) = inf
ℎ∈ℝ𝑛

  {𝑔(𝑥 − ℎ) +
||ℎ‖𝑝

∗

𝑝∗𝑡𝑝
∗−1
} , 𝑡 > 0. 
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Again, since 𝑄𝑡𝑔(𝑥) ≤ 𝑔(𝑥) , the infimum may be restricted to the ball (‖ℎ‖𝑝
∗
/𝑝∗𝑡𝑝

∗−1) ≤

𝑔(𝑥) . Hence, replacing ℎ with 𝑡ℎ and applying the Taylor formula in integral form, we get 

that with 𝑟 = (𝑝∗𝑔(𝑥))
1/𝑝∗

, for any 𝑡 > 0, 

1

𝑡
[𝑔(𝑥) − 𝑄𝑡𝑔(𝑥)] ≤ sup

𝑡‖ℎ‖≤𝑟
  {
1

𝑡
[𝑔(𝑥) − 𝑔(𝑥 − 𝑡ℎ)] − (‖ℎ‖𝑝

∗
/𝑝∗)} 

≤ sup
𝑡‖ℎ‖≤𝑟

 {𝐷𝑔(𝑥, 𝑡‖ℎ‖)‖ℎ‖ − (‖ℎ‖𝑝
∗
/𝑝∗)} 

≤  suph {𝐷𝑔(𝑥, 𝑟)‖ℎ‖ − (‖ℎ‖
𝑝∗/𝑝∗)} 

=
1

𝑝
𝐷𝑔(𝑥, 𝑟)𝑝.                                          (13) 

In applications, we need to work with functions 𝑔(𝑥) = 𝑂(|𝑥|𝑝
∗
) as |𝑥| → ∞. So, let us 

define the class ℱ𝑝 ∗, 𝑝
∗ > 1, of all 𝐶1 functions 𝑔 on ℝ𝑛 such that 

lim
|𝑥|→∞

 sup 
|𝛻𝑔(𝑥)|

|𝑥|𝑝
∗−1

< ∞. 

If 𝑓 ∈ ℱ𝑝 ∗, then, for some 𝐶, |𝛻𝑔(𝑥)| ≤ 𝐶|𝑥|𝑝
∗−1 as long as |𝑥| is large enough, and hence 

|𝑔(𝑥)|1/𝑝
∗
≤ 𝐶′|𝑥| for |𝑥| large. It easily follows that 𝐷𝑔 (𝑥, (𝑝∗𝑔(𝑥))

1/𝑝∗

) ≤ 𝐶′′(1 +

|𝑥|𝑝
∗−1) for all 𝑥. As a consequence of (13), we may conclude that for any 𝑔 ≥ 0 in ℱ𝑝 ∗, 

𝑝∗ > 1, there is a constant 𝐶 > 0 such that 

sup
𝑡>0

  
1

𝑡
[𝑔(𝑥) − 𝑄𝑡𝑔(𝑥)] ≤ 𝐶(1 + |𝑥|

𝑝∗) , 𝑥 ∈ ℝ𝑛.          (14) 

We may now start the proof of the Sobolev inequality according to the scheme outlined 

Given a parameter 𝜎 > 0, define 

𝑣𝜎(𝑥) = 𝜎 +
‖𝑥‖𝑝

∗

𝑝∗
, 𝑥 ∈ ℝ𝑛. 

For a positive 𝐶1 function 𝑔 on ℝ𝑛, and 𝜃 ∈ (0,1) , define the three (positive, continuous) 

functions 

𝑢(𝑥) = 𝑔(𝜃𝑥)1−𝑛 

𝑣(𝑦) = 𝑣𝜎(𝜃
1/𝑝∗𝑗)1−𝑛 , 

𝑤(𝑧) = [(1 − 𝜃)𝜎 + 𝜃𝑄1−𝜃𝑔(𝑧)]
1−𝑛 

The function 𝑤 is chosen as the optimal one satisfying 

𝑤(𝜃𝑥 + (1 − 𝜃)𝑦)𝛼 ≤ 𝜃𝑢(𝑥)𝛼 + (1 − 𝜃)𝑣(𝑦)𝛼 
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for 𝛼 = −
1

𝑛−1
 and all 𝑥, 𝑦 ∈ ℝ𝑛. Assume that 

𝑚1(𝑔
i−𝑛) = sup

𝑥1∈ℝ
 ∫ 𝑔

 

𝑛−1

(𝑥𝑥,⋯ , 𝑥𝑛)
1−𝑛d𝑋2…d𝑥𝑛 < ∞. 

By homogeneity, 𝑚1(𝑢) = 𝜃
1−𝑛𝑚1(𝑔

1−𝑛) and  

𝑚1(𝑣) = 𝜃
(1−𝑛)/𝑝∗𝜎(1−𝑛)/𝑝𝑚1(𝑣1

1−𝑛) . 
Note that 𝑚1(𝑣1

1−𝑛) < ∞. Hence, we may choose 𝜎 such that 𝑚1(𝑢) = 𝑚1(𝑣) , that is, 

𝜎 = 𝜅𝜃, 𝑤ℎ𝑒𝑟𝑒 𝜅 = 𝜅(𝑛, 𝑔) = (
𝑚1(𝑣1

1−𝑛)

𝑚1(𝑔
1−𝑛)

)

𝑝/(𝑛−1)

 

By Corollary (6.1.3) (with 𝛼 = −
1

𝑛−1
), we have 

∫𝑤
 

 

d𝑥 ≥ 𝜃∫𝑢
 

 

d𝑥 + (1 − 𝜃)∫𝑣
 

 

d𝑥, 

that is, 

∫[(1 − 𝜃)𝜎 + 𝜃𝑄1−𝜃𝑔(𝑥)]
1−𝑛

 

 

d𝑥 ≥ 𝜃∫𝑔
 

 

(𝜃𝑥)1−𝑛d𝑥 + (1 − 𝜃)∫𝑣𝜎

 

 

(𝜃1/𝑝
∗
𝑥)
1−𝑛
d𝑥. 

After a change of variable in the last two integrals, and since 𝜎 = 𝜅𝜃, we get, setting 𝑠 =

1 − 𝜃, 

∫(𝜅𝑠 + 𝑄𝑠𝑔)
1−𝑛

 

 

d𝑥 ≥ ∫𝑔1−𝑛
 

 

d𝑥 + 𝑠𝜅(𝑝−𝑛)/𝑝∫𝑣1
1−𝑛

 

 

d𝑥.       (15) 

Inequality (15) holds true for all 0 < 𝑠 < 1, and formally there is equality at 𝑠 = 0. Re  next 

step is to compare the derivatives of both sides at this point. To do this, assume 𝑔 ∈ ℱ𝑝 ∗

and 

𝑔(𝑥) ≥ 𝑐(1 + ‖𝑥‖𝑝
∗
)                            (16) 

for some constant 𝑐 > 0. (Recall that the functions in ℱ𝑝 ∗ satisfy an opposite bound 𝑔(𝑥) ≤

𝐶(1 + ‖𝑥‖𝑝
∗
) which will not be used.) Due to (16), 𝑄𝑠𝑔(𝑥) ≥ 𝑐

′(1 + ‖𝑥‖𝑝
∗
) 

 (where 𝑐′ > 0 is independent of 𝑠). In particular, 𝑚1(𝑔
1−𝑛) < ∞, and the first and second 

integrals in (15) are finite and uniformly bounded over all 𝑠 ∈ (0,1) . Rewrite (15) as 

𝜅(𝑝−𝑛)/𝑝∫𝑣1
1−𝑛

 

 

d𝑥 ≤ ∫
1

𝑠

 

 

[(𝜅𝑠 + 𝑄𝑠𝑔)
1−𝑛 − 𝑔1−𝑛]𝑑𝑥.       (17) 

Now we can use a general inequality 

|𝑎1−𝑛 − 𝑏1−𝑛| ≤ (𝑛 − 1)|𝑎 − 𝑏|(𝑎−𝑛 + 𝑏−𝑛) , 𝑎, 𝑏 > 0, 

to see that, uniformly in 𝑠, 
1

𝑠
[(𝜅𝑠 + 𝑄𝑠𝑔)

1−𝑛 − 𝑔1−𝑛] ≤ 2(𝑛 − 1) (𝜅 +
1

𝑠
[𝑔 − 𝑄𝑠𝑔]) (𝑄𝑠𝑔)

−𝑛 

≤ 𝐶′(1 + ‖𝑥‖𝑝
∗
)
1−𝑛
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for some constant 𝐶′ > 0. On the last step, we used that 𝑄𝑠𝑔(𝑥) ≥ 𝑐
′(1 + ‖𝑥‖𝑝

∗
) together 

with the bound (14) for functions from the class ℱ𝑝 ∗. Since the function (1 + ‖𝑥‖𝑝
∗
)
1−𝑛

 is 

integrable (for 𝑝 < 𝑛), we can apply the Lebesgue dominated convergence theorem in order 

to insert the limit lim  inside the integral in (17), and to thus get together with Lemma 

(6.1.4), 

𝜅(𝑝−𝑛)/𝑝∫𝑣1
1−𝑛

 

 

d𝑥 ≤ (1 − 𝑛)∫𝑔−𝑛
 

 

(𝜅 −
‖𝛻𝑔‖∗

𝑝

𝑝
)d𝑥, 

or equivalently, 
1

𝑝
∫𝑔−𝑛
 

 

‖𝛻𝑔‖∗
𝑝
d𝑥 ≥ 𝜅∫𝑔−𝑛

 

 

d𝑥 +
1

(𝑛 − 1)𝜅(𝑛−𝑝)/𝑝
∫𝑣1

1−𝑛
 

 

d𝑥.   (18) 

Now, let us take a non‐negative, compactly supported 𝐶1 function 𝑓 on ℝ𝑛, and for 𝜀 > 0, 

define 𝐶1 functions 

𝑔𝜀(𝑥) = (𝑓(𝑥) + 𝜀𝜙(𝑥))
𝑝/(𝑝−𝑛)

+ 𝜀(1 + ‖𝑥‖𝑝
∗
) 

where 𝜙(𝑥) = (1 + ‖𝑥‖𝑝
∗
)
C𝑝−𝑛)/𝑝

. Clearly, all 𝑔𝜀 satisfy (16). The first partial derivatives 

of 𝑓 are continuous and vanishing for large values of |𝑥|. 𝑔𝜀(𝑥) = 𝑐𝜀(1 + ‖𝑥‖
𝑝∗) for |𝑥| 

large enough, so all 𝑔𝜀 belong to the class ℱ𝑝 ∗. Thus, we can apply (18) to get 

1

𝑝
∫𝑔𝜀

−𝑛
 

 

‖𝛻𝑔𝜀‖∗
𝑝
d𝑥 ≥ 𝜅∫𝑔𝜀

−𝑛
 

 

d𝑥 +
1

(𝑛 − 1)𝜅(𝑛−𝑝)/𝑝
∫𝑣1

1−𝑛
 

 

d𝑥.   (19) 

Note that 𝑔𝜀
−𝑛 ≤ (𝑓 + 𝜀𝜙)𝑞 and ∫ 𝜙𝑞

 

 
d𝑥 < ∞ (where we recall that 𝑞 = 𝑝𝑛/(𝑛 − 𝑝)). 

Hence, by the Lebesgue dominated convergence theorem again, ∫ 𝑔𝜀
−𝑛 

 
d𝑥 is convergent, as 

𝜀 → 0, to ∫ 𝑓𝑞
 

 
d𝑥. By a similar argument, recalling that ‖𝛻‖𝑥‖𝑝

∗
‖∗ = 𝑝

∗‖𝑥‖𝑝
∗−1, 𝑥 ∈ ℝ𝑛, 

we see that there is a finite limit for the left integral in (19). As a result, we arrive at 

𝑝𝑝−1

(𝑛 − 𝑝)𝑝
∫‖
 

 

𝛻𝑓‖∗
𝑝
d𝑥 ≥ 𝜅∫𝑓𝑞

 

 

d𝑥 +
1

(𝑛 − 1)𝜅(𝑛−𝑝)/𝑝
∫𝑣1

1−𝑛
 

 

d𝑥,   (20) 

which implies 

𝑝𝑝−1

(𝑛 − 𝑝)𝑝
∫‖
 

 

𝛻𝑓‖∗
𝑝
d𝑥 ≥  inf (𝜅∫𝑓𝑞

 

 

d𝑥 +
1

(𝑛 − 1)𝜅
(𝑛−𝑝)
𝑝

∫𝑣1
1−𝑛

 

 

d𝑥)

𝔅s
Pringer

          (21) 

As we will see with the case of equality below, this is precisely the desired Sobolev 
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inequality (10) with optimal constant. It is now easy to remove the assumption on the 

compact support of 𝑓 and thus to extend (21) to all 𝐶1 and furthermore locally Lipschitz 

functions 𝑓(≥ 0) on ℝ𝒏 vanishing at infinity. 

To conclude the argument, we investigate the case of equality. To this task, let us return to 

the beginning of the argument and check the steps where equality holds true. Take 𝑔 = 𝑣1 

so that 𝜅 = 𝜅(𝑛, 𝑔) = 1 and 𝜎 = 𝜃. In addition, the right‐hand side of (15) automatically 

turns into (1 + 𝑠) ∫ 𝑣1
1−𝑛 

 
d𝑥. By direct computation, 

𝑄𝑠𝑣1(𝑥) = 1 +
‖𝑥‖𝑝

∗

𝑝∗(1 + 𝑠)𝑝
∗−1
, 

so the left‐hand side of (15) is 

∫(𝜅𝑠 + 𝑄𝑠𝑔)
1−𝑛

 

 

d𝑥 = ∫ ((1 + 𝑠) +
‖𝑥‖𝑝

∗

𝑝∗(1 + 𝑠)𝑝
∗−1
)

1−𝑛
 

 

d𝑥

= (1 + 𝑠)∫ (1 +
‖𝑦||𝑝

∗

𝑝
∗)

1−𝑛 

 

d𝑦 = (1 + 𝑠)∫𝑣1
1−𝑛

 

 

d𝑦 

where we used the change of the variable 𝑥 = (1 + 𝑠)𝑦. Thus, for 𝑔 = 𝑣1 there is equality 

in (15), and hence in (18) and (20) as well. 

As for (21), first note that, given parameters 𝐴, 𝐵 > 0, the function 𝐴𝜅 + 𝐵𝜅(𝑝−𝑛)/𝑝, 𝜅 > 0, 

attains its minimum on the positive half‐axis at 𝜅 = 1 if and only if 𝐴 = 𝐵(𝑛 − 𝑝)/𝑝. In the 

situation of the particular functions = 𝑣1 , 𝑓𝑞 = 𝑔−𝑛 = 𝑣1
−𝑛, we have 

𝐴 = ∫𝑣1
−𝑛

 

 

d𝑥, 𝐵 =
1

𝑛 − 1
∫𝑣1

1−𝑛
 

 

d𝑥. 

Hence, the infimum in (20) is attained at 𝜅 = 1 if and only if 

∫𝑣1
−𝑛

 

 

d𝑥 =
𝑛 − 𝑝

𝑝(𝑛 − 1)
∫𝑣1

1−𝑛
 

 

d𝑥. 

But this equality is easily checked by elementary calculus. 

We may thus summarize our conclusions. In the class of all locally Lipschitz functions 𝑓 on 

ℝ𝑛, vanishing at infinity and such that 0 < ‖𝑓‖𝑞 < ∞, the quantity 

‖𝛻𝑓||𝑝
||𝑓‖𝑞

, 

1 < 𝑝 < 𝑛, 
1

𝑞
=

1

𝑝
−
1

𝑛
 , is minimized for the functions 

𝑓(𝑥) = (𝜎 + ‖𝑥‖𝑝
∗
)
(𝑝−𝑛)/𝑝

, 𝑥 ∈ ℝ𝑛, 𝜎 > 0. 

Here 
1

𝑝
+

1

𝑝∗
= 1 and ‖ ⋅ ‖ is a given norm on ℝ𝑛, and 
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‖𝛻𝑓‖𝑝
𝑝
= ∫ ‖

 

ℝ𝑛
𝛻𝑓(𝑥)‖∗

𝑝
d𝑥 

where ‖ ⋅ ‖∗ is the dual norm to ‖ ⋅ ‖. 

From Brunn‐Minkowski to sharp Sobolev inequalities. 

 

Section (6.2): An Improved Borell–Brascamp–Lieb Inequality 

Sharp inequalities are interesting not only because they correspond to exact solutions 

of variational problems but also because they encode, in general, deep geometric 

information on the underneath space. We are interested in new functional inequalities of 

Sobolev type, and their links with the Brunn‐Minkowski inequality 

vo1𝑛(𝐴 + 𝐵)
1/𝑛 ≥ vo1𝑛(𝐴)

1
𝑛 + vo1𝑛(𝐵)

1
𝑛                       (22) 

for nonempty Borel sets 𝐴, 𝐵 in ℝ𝑛; here vo1𝑛(⋅) denotes the 𝑛‐dimensional Lebesgue 

measure. It is known since [171] that sharp Sobolev and Gagliardo‐Nirenberg inequalities 

in ℝ𝑛 may be derived using Brunn −Minkovvski type inequalities, we will see that a new 

functional version of (22) provides a more direct and simple answer, that allows to tackle 

both the cases of ℝ𝑛 and the half‐space ℝ+
𝑛 . 

Before presenting this new functional inequality, We discuss new sharp Sobolev type 

inequalities in ℝ𝑛. 

Let ‖𝑓‖𝑝 = ‖𝑓‖𝐿(ℝ𝑛)𝑝 denote the 𝐿𝑝‐norm with respect to Lebesgue measure. The sharp 

classical Sobolev inequalities state that for 𝑛 ≥ 2, 𝑝 ∈ [1, 𝑛), 𝑝∗ =
𝑛𝑝

𝑛−𝑝
, and any smooth 

enough function 𝑓 on ℝ𝑛 (i.e., for 𝑓 belonging to the correct Sobolev space ensuring that 

both integrals are finite), 

‖𝑓‖𝑝∗ ≤
‖ℎ𝑝||𝑝∗

(∫ |
ℝ𝑛

𝛻ℎ𝑝|
𝑝)
1/𝑝
(∫ |
ℝ𝑛

𝛻𝑓|𝑝)

1/𝑝

;                                   (23) 

here 

ℎ𝑝(𝑥):= (1 + |𝑥|
𝑝
𝑝−1)

𝑝−𝑛
𝑝

 

The optimal constants in the Sobolev inequalities have been first exhibited in [82], [215]. 

Quite naturally, these inequalities admit a generalization when the Euclidean norm | ⋅ | on 

ℝ𝑛 is replaced by any norm or quasi‐norm ‖ ⋅ ‖ on ℝ𝑛. Indeed, if we use a norm ‖ ⋅ ‖ to 

compute the size of the differential in (2), then the result remains true, namely 

‖𝑓‖𝑝∗ ≤
‖ℎ𝑝||𝑝∗

(∫ |
ℝ𝑛

|𝛻ℎ𝑝||∗
𝑝
)
1/𝑝
(∫ |
ℝ𝑛

|𝛻𝑓||∗
𝑝
)

1/𝑝

                          (24) 
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where ‖y‖∗: = sup‖𝑥‖≤1𝑥 ⋅ y. In this case, ℎ𝑝(𝑥) : = (1 + ||𝑥||
𝑝

𝑝−1)

𝑝−𝑛

𝑝

 

In turn, a natural extension of this problem may then be the minimization, under integrability 

constraints on a function 𝑔, of more general quantities like 

∫ 𝐹
ℝ𝑛

(𝛻𝑔)𝑔𝛼 , 

where  : ℝ𝑛 → ℝ is a convex function (𝐹 = 𝑊∗ below). We have to allow a 𝑔𝛼 term, 𝛼 ∈ ℝ 

since it can no longer be absorbed in the gradient term when 𝐹 is not homogeneous. 

We have the following optimal Sobolev type inequality. 

Theorem (6.2.1)[203]. Let 𝑛 ≥ 2 and  : ℝ𝑛 → (0,+∞) such that lim inf+∞
𝑊(𝑥)

|𝑥|𝛾
> 0 for 

some 𝛾 >
𝑛

𝑛−1
. For any 𝑔:ℝ𝑛 → (0,+∞) with 𝑔−𝑛|𝛻𝑔|𝑉/(𝑦−1) ∈ 𝐿1 and 

∫ 𝑔−𝑛 = ∫ 𝑊−𝑛 = 1, 

one has 

∫ 𝑊∗ (𝛻𝑔)𝑔−𝑛 ≥
1

𝑛 − 1
∫ 𝑊1−𝑛 .                                 (25) 

Moreover, equality holds in (25) when 𝑔 is equal to 𝑊 and is convex. 

Here 𝑊∗ is the Legendre transform of the function 𝑊, explained below. This result admits 

auconcave” analog, as we shall see. 

We shall see that the sharp Sobolev inequalities (24), for 𝑝 ∈ (1, 𝑛) , easily follow from this 

theorem when applied to 𝑊(𝑥) = 𝐶(1 + ‖𝑥‖𝑞/𝑞), 𝑞 = 𝑝/(𝑝 − 1) > 𝑛/(𝑛 − 1)(𝛾 = 𝑞 in 

the assumptions), and to 𝑔 = 𝑓𝑝/(𝑝−𝑛). Let us mention that the coefficients 𝑛 and 𝑛 − 1 in 

this theorem are not arbitrary at all; in some aspects, they are the ugood” ones to reach the 

Sobolev inequality, as we shall see. This may be compared to of [171] that was derived via 

a more involved formulation of the Prékopa‐Leindler inequality, leading to a less direct 

proof of the Sobolev inequalities. 

As mentioned above, our work is inspired by the Brunn−Minkowski‐Borell theory. We will 

propose a new functional viewpoint on this theory. As already said, it has been observed by 

S. Bobkov and M. Ledoux in [174], [171] that Sobolev inequalities can be reached through 

a functional version of the Brunn−Minkowski inequality, the so‐called Borell −

Brascamp −Lieb [BBL) inequality, due to C. Borell and H. J. Brascamp‐E. H. Lieb [207], 

[176]. 

The standard BBL inequality states that, for 𝑛 ≥ 1 , given 𝑠 ∈ [0,1], 𝑡 = 1 − 𝑠, and three 

nonnegative functions 𝑢, 𝑣, 𝑤:ℝ𝑛 → [0,+∞] such that ∫ 𝑢 = ∫ 𝑣 = 1 and 
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∀𝑥, y ∈ ℝ𝑛, 𝑤(𝑠𝑥 + 𝑡y) ≥ (𝑠𝑢−1/𝑛(𝑥) + 𝑡𝑣−1/𝑛(y))
−𝑛
, 

then 

∫ 𝑤 ≥ 1. 

This is the ustrongest” version of BBL inequality, see for example, [99]. By a simple change 

of functions, the result can be restated as follows: let three nonnegative functions 𝑔, 

𝑊,𝐻:ℝ𝑛 → [0,+∞] be such that 

∀𝑥, y ∈ ℝ𝑛, 𝐻(𝑠𝑥 + 𝑡y) ≤ 𝑠𝑔(𝑥) + 𝑡𝑊(y) 

and ∫ 𝑊−𝑛 = ∫ 𝑔−𝑛 = 1. Then 

∫ 𝐻−𝑛 ≥ 1.                                                        (26) 

One observes that (26) is not well adapted to the Sobolev inequality, but that a version with 

𝑛 − 1 instead of 𝑛 would do the job. To solve this issue, in [171] S. Bobkov and M. Ledoux 

cleverly used a classical geometric strengthening of the Brunn−Minkowski inequality, for 

sets having an hyperplane of same volume. 

A natural question raised by S. Bobkov and M. Ledoux is whether the Sobolev inequality 

can be proved directly from a new BBL inequality, which moreover would be well adapted 

to a monotone mass transport argument. We propose an answer in the following form. 

Theorem (6.2.2)[203]: Let 𝑛 ≥ 2. Let 𝑔, 𝑊,𝐻 : ℝ𝑛 → [0,+∞] be Borel functions and 𝑠 ∈
[0,1], 𝑡 = 1 − 𝑠 be such that 

∀𝑥, y ∈ ℝ𝑛, 𝐻(𝑠𝑥 + 𝑡y) ≤ 𝑠𝑔(𝑥) + 𝑡𝑊(y) 

and ∫ 𝑊−𝑛 = ∫ 𝑔−𝑛 = 1. Then 

∫ 𝐻1−𝑛 ≥ 𝑠∫ 𝑔1−𝑛 + 𝑡∫ 𝑊1−𝑛 .                            (27) 

We shall that, for small 𝑡, the optimal 𝐻 satisfies 𝐻 = 𝑔 − 𝑡𝑊∗(𝛻𝑔) + 𝑜(𝑡) , so that (6) 

gives the above (4) in Theorem (6.2.1) and therefore the Sobolev inequalities (24) at the 1st 

order for 𝑡 → 0; as mentioned the Sobolev inequalities correspond to the case 𝑊(𝑥) =

𝐶(1 + ‖𝑥‖𝑞/𝑞), 𝑞 = 𝑝/(𝑝 − 1), 𝑔 = 𝑓𝑝/(𝑝−𝑛). We shall see that sharp (classical and trace) 

Sobolev inequalities and new (trace) Gagliardo‐Nirenberg inequalities follow from it. 

Moreover, it can be easily proved using a mass transport argument, and we believe that this 

is a way of closing the circle of ideas relating BrunnMinkowski and Sobolev inequalities. 

The Sobolev inequalities in ℝ𝑛 belong to the larger family of Gagliardo‐Nirenberg 

inequalities 

‖𝑓‖𝛼 ≤ 𝐶‖𝛻𝑓‖𝑝
𝜃‖𝑓‖𝛽

1−𝜃 

Here the coefficients 𝛼, 𝛽, 𝑝 belong to an adequate range and 𝜃 ∈ [0,1] is fixed by scaling 
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invariance. These inequalities have attracted much attention these past years. Sharp 

inequalities are known for a certain family of parameters since the pioneering work of M. 

del Pino and J. Dolbeault [181]; namely, for 𝑝 > 1 , 𝛼 = 𝑎𝑝/(𝑎 − 𝑝) , and 𝛽 =

𝑝(𝑎 − 1)/(𝑎 − 𝑝) , where 𝑎 > 𝑝 is a free parameter. 

This family can be recovered from Theorem (6.2.1), or rather an extension of it (see 

Theorem (6.2.3) and its uconcave” counterpart Theorem (6.2.4)). In fact this extension turns 

out not only to be a natural way of recovering this family, but also allows to extend the 

family to parameters 𝑎 < 𝑝 leading to new sharp Gagliardo‐Nirenberg inequalities with 

negative powers 

‖𝑓‖
𝑝
𝑎−1
𝑎−𝑝

≤ 𝐶‖𝛻𝑓‖𝑝
𝜃‖𝑓‖1𝑎𝑝−𝜃

𝑎−𝑝

 

Here 𝑝 > 𝑎 if ≥ 𝑛 + 1 , or 𝑝 ∈ (𝑎,
𝑛

𝑛+1−𝑎
) if 𝑎 ∈ [𝑛, 𝑛 + 1), and 𝜃 is fixed by a scaling 

condition. We note that partial results for a narrower range of such 𝑎 < 𝑝 have been proved 

by V.‐H. Nguyen [212], by another approach. 

It can be applied to reach a new family of sharp trace Gagliardo‐Nirenberg inequalities that 

extend the trace Sobolev inequality proved by B. Nazaret [113]. Indeed, letting ℝ+
𝑛 =

{(𝑢, 𝑥) , 𝑢 ≥ 0, 𝑥 ∈ ℝ𝑛−1} we obtain the sharp family of inequalities 

‖𝑓‖𝐿𝛼(𝜕ℝ+𝑛) ≤ 𝐶‖𝛻𝑓‖𝐿(ℝ+𝑛)
𝜃𝑝 ‖𝑓‖

𝐿𝛽(ℝ+
𝑛)

1−𝜃 . 

Here 𝑝 > 1 , 𝛼 = 𝑝(𝑎 − 1)/(𝑎 − 𝑝) , and 𝛽 = 𝑝(𝑎 − 1)/(𝑎 − 𝑝) , where 𝑎 > 𝑝 is a free 

parameter and again 𝜃 ∈ [0,1] is fixed by a scaling argument. This is thus the analog of the 

del Pino‐Dolbeaut family in the trace case. 

We state and prove the main results, namely generalizations we show how these results lead 

to Gagliardo‐Nirenberg inequalities in ℝ𝑛, including and extending the del Pino‐Dolbeault 

family, whereas in  we follow the same procedure to reach trace Gagliardo‐Nirenberg 

inequalities. We devoted to limit forms of the BBL and Gagliardo‐Nirenberg inequalities, 

namely the classical Prékopa‐Leindler inequality and classical or new trace logarithmic 

Sobolev inequalities. Finally, deals with a general result on the infimum convolution, which 

is a crucial tool for our proofs. 

When the measure is not mentioned, an integral is understood with respect to Lebesgue 

measure. For 𝑥, y ∈ ℝ𝑛, |𝑥| denotes the Euclidean norm of 𝑥 and 𝑥 ⋅ y the Euclidean scalar 

product. As already used, ‖𝑓‖𝑝 stands for the 𝐼𝑃(ℝ𝑛) norm of a function 𝑓. 

Our results have two formulations, as a convex (or concave) Sobolev‐type inequality 

illustrated by Theorem (6.2.1), and as a Borell−Brscamp−Lieb type inequality like Theorem 

(6.2.2). 

Our setting splits in two separate cases, the origin of which will be explained below. 

We shall measure the gradient using a function 𝑊 on ℝ𝑛 in one of the following two 

categories: 

i. Either 𝑊:ℝ𝑛 → ℝ∪ {+∞} is a convex fonction, with Legendre transform 𝑊∗ defined by 

𝑊∗(y) =  sup {𝑥 ⋅ y −𝑊(𝑥)}. 
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The function 𝑊 is differentiable at almost every 𝑥 in its domain, with 

𝑊∗(𝛻𝑊(𝑥)) +𝑊(𝑥) = 𝑥 ⋅ 𝛻𝑊(𝑥) .                                   (28) 

ii. Either 𝑊 is a nonnegative function that is concave on its support 𝛺𝑊 = {𝑊 > 0}. More 

precisely, 𝑊 is a nonnegative function such that the function �̃� defined on ℝ𝑛 by �̃�(𝑥) =

𝑊(𝑥) if 𝑥 ∈ 𝛺𝑊 and −∞ otherwise, is concave. In particular 𝛺𝑊 is a convex set. The 

corresponding Legendre transform is defined by 

𝑊∗(y) =  inf {𝑥 . y −𝑊(𝑥))} =  inf {𝑥 . y − �̃�(𝑥)}.                   (29) 

Likewise, 𝑊 is differentiable at almost every 𝑥 ∈ 𝛺𝑊, with 

𝑊∗(𝛻𝑊(𝑥)) +𝑊(𝑥) = 𝑥 ⋅ 𝛻𝑊(𝑥).                                 (30) 

We will later assume that 𝑊 is continuous on ℝ𝑛 to avoidjumps on 𝜕𝛺𝑊. 

See [214] for instance for these classical definitions and properties. 

One rather naturally comes to such a setting if one has in mind the Brunn−Minkowski theory 

of convex measures on ℝ𝑛 as put forward by C. Borell. We briefly recall it to put our results 

in perspective, although we will not explicitly use it. A nonnegative function 𝐺 on ℝ𝑛 is said 

to be 𝜅‐concave with 𝜅 ∈ ℝ if 𝜅𝐺𝜅 is concave on its support. In other words, 

i. If 𝜅 < 0, then 𝐺 = 𝑊1/𝜅 with 𝑊 convex on ℝ𝑛. The Brunn−Minkowski−Borell theory 

shows that one should consider the range 𝜅 ∈  [‐ 
1

𝑛
, 0). Below we shall let 𝜅 = −1/𝑎 for 

𝑎 ≥ 𝑛 with the typical examples 𝑊(𝑥) = 1 + |𝑥|𝑞 , 𝑞 ≥ 1 and then 𝐺(𝑥) = (1 + |𝑥|𝑞)−𝑎. 

The results above correspond to the extremal case 𝑎 = 𝑛. 

ii. If 𝜅 > 0, 𝐺 = 𝑊1/𝜅 with 𝑊 concave on its support. Below we shall let 𝜅 = 1/𝑎 for 𝑎 >

0 with the typical examples 𝑊(𝑥) = (1 − |𝑥|𝑞)+, 𝑞 ≥ 1 and 𝐺(𝑥) = 

(1 − |𝑥|𝑞)+
𝑎 . 

The limit case 𝜅 = 0 is defined as the  log ‐concavity of 𝐺. 

A central tool in our work will be monotone transportation, which by now has become a 

cornerstone of many proofs of functional inequalities. So let us briefly describe the 

mathematical setting and notation on this topic we shall use below, see [202], [216] for 

instance. 

Given 𝜇 and 𝑣 two (Borel) probability measure on ℝ𝑛 with 𝜇 absolutely continuous with 

respect to Lebesgue measure, a result of Brenier [86], in a form improved by McCann [105], 

states that there exists a convex function 𝜙 {the so‐called Brenier map) on ℝ𝑛 such that 𝑣 

is the image measure 𝛻𝜙#𝜇 of 𝜇 by 𝛻𝜙, that is, for any positive or bounded Borel function 

𝐻 on ℝ𝑛, 

∫ 𝐻d𝑣 = ∫ 𝐻 (𝛻𝜙)d𝜇. 

Assuming that d𝜇 = 𝑓d𝑥 and d𝑣 = 𝑔d𝑥 then [211] ensures that the Monge‐Ampère 

equation 
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𝑓(𝑥) = 𝑔(𝛻𝜙(𝑥)) det (𝛻2𝜙(𝑥))                                   (31) 

holds 𝑓d𝑥‐almost surely. Here 𝛻2𝜙 is the Alexandrov Hessian of 𝜙 that is the absolutely 

continuous part of the distributional Hessian of the convex function 𝜙 (but below 𝜙 will 

belong to 𝑊𝑙𝑜𝑐
2,1

 so there will be no singular part). 

and classical and elementary tool will be the convexity of the determinant of nonnegative 

symmetric matrices, such as 𝛻2𝜙(𝑥) . This splits in two cases, in accordance to the cases 

discussed above. 

For every 𝑘 ∈ (0,1/𝑛], the map 𝐻 → det𝑘𝐻 is concave over the set of positive symmetric 

matrices. Concavity inequality around the identity implies 

det𝑘𝐻 ≤ 1 − 𝑛𝑘 + 𝑘 tr 𝐻                                            (32) 

for all positive symmetric matrix 𝐻. 

For every 𝑘 < 0, the map 𝐻 → det𝑘𝐻 is convex over the set of positive symmetric matrices. 

Convexity inequality around the identity implies 

det𝑘𝐻 ≥ 1 − 𝑛𝑘 + 𝑘 tr 𝐻                                             (33) 

for all positive symmetric matrix 𝐻. 

We start with a generalization of Theorem (6.2.1) and we will next establish its 

uconcave” counterp art. 

The result involves a umeasurement” function: ℝ𝑛 → ℝ+ that will be convex in 

applications, and actually of the form 

𝑊(𝑥) = 1 + ‖𝑥‖𝑞/𝑞                                                (34) 

for a norm ‖ ⋅ ‖ on ℝ𝑛 and 𝑞 > 1; its Legendre transform is 𝑊∗(y) = ‖y‖∗
𝑝
/𝑝 − 1 with 𝑝 =

𝑞/(𝑞 − 1) and ‖ ⋅ ‖∗ the dual norm. We assume that negative povvers of 𝑊 are integrable, 

so when 𝑊 is convex this implies already that 𝑊 is greater than |𝑥| at infinity. We actually 

require a slightly stronger super‐linearity, which is trivially fulfilled in the applications 

of type (34). 

Theorem (6.2.3) [203]: Let 𝑛 ≥ 1. Let 𝑎 ≥ 𝑛 {and 𝑎 > 1 if 𝑛 = 1) and let 𝑊:ℝ𝑛 →
(0,+∞) such that 

∫ 𝑊−𝑎 = 1 

and 

∃𝛾 >  max {
𝑛

𝑎 − 1
′1} , lim

𝑋→+
 inf 

𝑊(𝑥)

|𝑥|𝛾
> 0.                                            (35) 

For any positive function 𝑔 ∈ 𝑊𝜄𝑜𝑐
1,1

 such that 𝑔−𝑎|𝛻𝑔|𝑦/(𝛾−1) is integrable and 

∫ 𝑔−𝑎 = 1, 

one has 
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(𝑎 − 1)∫ 𝑊∗ (𝛻𝑔)𝑔−𝑎 + (𝑎 − 𝑛)∫ 𝑔1−𝑎 ≥ ∫ 𝑊1−𝑎 .               (36) 

Moreover, there is equality in (36) if 𝑔 = 𝑊 and is convex. 

Theorem (6.2.1) and the classical Sobolev inequalities correspond to the extremal case 𝑎 =

𝑛. Much could be said regarding the assumptions on 𝑊 and 𝑔 in the theorem. 

First, the condition {14) and ∫ 𝑊−𝑎 < +∞ ensure that ∫ 𝑊1−𝑎 < +∞. Actually, 𝑊 > 0 

continuous (for instance convex) and (35) ensure that ∫ 𝑊1−𝑎 and ∫ 𝑊−𝑎 are finite. 

Next, the integrability assumption 𝑔−𝑎|𝛻𝑔|𝑉/(𝛾−1) ∈ 𝐿1(ℝ𝑛) is here for technical reasons, 

in order to justify an integration by parts; we believe that the correct assumption should 

simply be that ∫ 𝑊∗ (𝛻𝑔)𝑔−𝑎 < +∞. Note that a convex 𝑊 itself has no reason to match 

this integrability assumption (although it is 𝑊𝑙𝑜𝑐
1,1

). When we write that there is equality in 

(36) for 𝑔 = 𝑊, it is by direct computation and integration by parts, as we shall see; then 

the assumption (35) appears as the natural requirement to justify the computation. 

Note that the condition 𝛾 > 1 in (35), already needed for the condition on 𝑔 to make sense, 

ensures that 𝑊∗ is well defined (i.e., finite) on ℝ𝑛. 

Analogously, we assume that 𝑊 is finite (i.e., the convex function 𝑊 has a domain equal to 

ℝ𝑛) ; this prevents us from reaching the 1‐homogeneous case 𝑊∗(𝑥) = 𝐶 + ‖𝑥‖∗, which 

corresponds to the 𝐿1 Sobolev inequality. In this case, extremal functions are given by 

indicators of sets (given by the domain of 𝑊), and it requires to work with functions of 

bounded variation and related notions of capacity. Therefore, it is to be expected that this 

degenerate case should be treated separately when it comes to identifying the extremal 

functions. 

Proof. Let 𝜙 be Brenier’s map such that 𝛻𝜙#𝑔−𝑎 = 𝑊−𝑎. Then, from (10), almost 

everywhere 

𝑊(𝛻𝜙) = 𝑔( det 𝛻2𝜙)1/𝑎 

Moreover, since 𝑎 ≥ 𝑛, from {11) with 𝑘 = 1/𝑎 we have almost everywhere 

( det 𝛻2𝜙)1/𝑎 ≤ 1 −
𝑛

𝑎
+
1

𝑎
△ 𝜙, 

where here and below △𝜙 = tr (𝛻2𝜙) . Integrating with respect to the measure 𝑔−𝑎d𝑥 we 

get 

∫ 𝑊 (𝛻𝜙)𝑔−𝑎 ≤ (1 −
𝑛

𝑎
)∫ 𝑔1−𝑎 +

1

𝑎
∫ △𝜙𝑔1−𝑎. 

Let us assume we can integrate by parts the and term; this only requires to put some suitable 

condition on 𝑔1−𝑎 (in our situation 𝜙 is at least 𝑊𝑙𝑜𝑐
2,1

 , see e.g., [208]). Actually, we can for 

instance establish, when 𝑎 > 𝛾/(𝛾 − 1) , the following sufficient inequality: 
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∫ △𝜙𝑔i−𝑎 ≤ (𝑎 − 1)∫ 𝛻 𝜙 ⋅ 𝛻𝑔𝑔−𝑎.                           (37) 

Assuming (16) we have 

𝑎∫ 𝑊 (𝛻𝜙)𝑔−𝑎 ≤ (𝑎 − 𝑛)∫ 𝑔1−𝑎 + (𝑎 − 1)∫ 𝛻 𝑔 ⋅ 𝛻𝜙𝑔−𝑎. 

But by definition of Legendre’s transform 

𝛻𝑔 ⋅ 𝛻𝜙 ≤ 𝑊(𝛻𝜙) +𝑊∗(𝛻𝑔) 

so collecting terms we have 

∫ 𝑊 (𝛻𝜙)𝑔−𝑎 ≤ (𝑎 − 1)∫ 𝑊∗ (𝛻𝑔)𝑔−𝑎 + (𝑎 − 𝑛)∫ 𝑔1−𝑎. 

Finally, ∫ 𝑊 (𝛻𝜙)𝑔−𝑎 = ∫ 𝑊1−𝑎 since 𝛻𝜙#𝑔−𝑎 = 𝑊−𝑎, so we have 

(𝑎 − 1)∫ 𝑊∗ (𝛻𝑔)𝑔−𝑎 + (𝑎 − 𝑛)∫ 𝑔1−𝑎 ≥ ∫ 𝑊1−𝑎                (38) 

as claimed. 

This ends the proof of the inequality in the Theorem when 𝛾′: = 𝛾/(𝛾 − 1) < 𝑎, provided 

we justify the integration by parts (16). For this, we extend the argument in [80] that is given 

for 𝑊(𝑥) = 1 + ‖𝑥‖𝑉 and 𝑎 = 𝑛. We introduce the function 

𝑔𝜀
1−

𝑎

𝛾(𝑥) : =  min {𝑔
1−

𝑎

𝛾(𝑥/(1 − 𝜀)), 𝑔1−
𝑎

𝑉(𝑥)𝜒(𝜀𝑥)} for a cutoff function 𝜒 , for instance 

such that 0 ≤ 𝜒 ≤ 1 , 𝜒(𝑥) = 1 if |𝑥| ≤ 1/2 and 𝜒(𝑥) = 0 is |𝑥| ≥ 1. The argument is then 

identical to the one in [80]; we firstjustify (37) for the function 𝑔𝜀 instead of 𝑔, then we let 

𝜀 tend to 0. For this, a key fact is that the sequence 𝛻𝑔𝜀
1−

𝑎

𝛾
 is bounded in 𝐿𝛾

′
. To see this fact 

we observe that the sequence 𝛻 (𝑔
1−

𝑎

𝛾(𝑥/(1 − 𝜀))) is bounded in 𝐿𝑦
′
 by change of variable 

y = 𝑥/(1 − 𝜀) . So is the sequence 𝛻 (𝑔
1−

𝑎

𝛾(𝑥)𝜒(𝜀𝑥)) since 

21−𝑦′∫ |𝛻 (𝑔
i−
𝑎
𝛾(𝑥)𝜒(𝜀𝑥)) |𝛾

′
d𝑥

≤ ∫ |𝛻𝑔
1−
𝑎
𝛾(𝑥)|𝛾′|𝜒(𝜀𝑥)|𝑦′d𝑥 + 𝜀𝛾

′
∫ 𝑔𝑦

′−𝑎 (𝑥)|𝛻𝜒|𝛾
′
(𝜀𝑥)d𝑥. 

There, for the 1st term, |𝜒| ≤ 1 and 𝛻𝑔
1−

𝑎

𝛾 ∈ 𝐿𝛾
′
 since 𝑔−𝑎|𝛻𝑔|𝑦′ ∈ 𝐿1 by assumption. 
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Moreover, by Hölder’s inequality for the power 𝑎/(𝑎 − 𝛾′) with 𝑎 > 𝛾′ and then change of 

variable y = 𝜀𝑥 the 2nd term is bounded by 

𝜀
𝛾′(1−

𝑛
𝑎
)
(∫ 𝑔−𝑎)

1−
𝛾′

𝑎

(∫ |𝛻𝜒|𝑎)

𝛾′

𝑎

 

and hence uniformly bounded in 𝜀 for 𝑎 ≥ 𝑛. 

Next, we extend the result to the case 𝛾′ ≥ 𝑎 by reducing to the previous case as follows. 

Fix any 𝑠 > 𝑎/(𝑎 − 1) , that is, 1 < 𝑠′ : = 𝑠/(𝑠 − 1) < 𝑎. Define 𝑊𝜀(𝑥) : =

𝑍𝜀(𝑊(𝑥) + 𝜀|𝑥|
𝑆) with 𝑍𝜀 such that ∫ 𝑊𝜀

−𝑎 = 1. Since 𝑠′ ≤ 𝛾′, Hölder’s inequality and 

the integrability of 𝑔−𝑎 ensure that 𝑔−𝑎|𝛻𝑔|𝑠’ is integrable. Therefore, 𝑔 and 𝑊𝜀 match the 

hypotheses of the previous case, so (38) gives 

(𝑎 − 1)∫ (𝑊𝜀)
∗ (𝛻𝑔)𝑔−𝑎 + (𝑎 − 𝑛)∫ 𝑔1−𝑎 ≥ ∫ 𝑊𝜀

1−𝑎. 

Note that 𝑍𝜀 → 1 and 𝑊𝜀 → 𝑊. The right‐hand side converges to ∫ 𝑊1−𝑎 by dominated or 

monotone convergence. For the left‐hand side, since 𝑊𝜀 ≥ 𝑍𝜀𝑊, we have 

∫ (𝑊𝜀)
∗ (𝛻𝑔)𝑔−𝑎 ≤ 𝑍𝜀 ∫ 𝑊∗ (

𝛻𝑔

𝑍𝜀
) 𝑔−𝑎 that converges to ∫ 𝑊∗ (𝛻𝑔)𝑔−𝑎 by dominated 

convergence. This gives the desired inequality (38) for 𝑊 and 𝑔. 

Finally, it is easily proved that equality holds in (38) when 𝑔 = 𝑊 with 𝑊 convex. In this 

case 𝛻𝜙(𝑥) = 𝑥 in the argument above. The growth condition {14) allows to perform the 

integration by parts (𝑎 − 1)∫ (𝑥 ⋅ 𝛻𝑊)𝑊−𝑎 = 𝑛∫ 𝑊1−𝑎, which means equality in (37); 

together with the crucial relation 6.7), this ensures equality in the argument above and in 

(15). The companion uconcave” case is as follows. The notation are those given.For any 

nonnegative 𝑊 we let 𝑊∗(𝑦) = inf𝑊(𝑥)>0{𝑥 ⋅ y −𝑊(𝑥)}. Note that 𝑊∗ is a negative 

function in our case of interest when 𝑊 is a nonnegative continuous function concave on its 

support. 

Theorem (6.2.4)[203]: Let 𝑛 ≥ 1 , 𝑎 > 0, and 𝑊:ℝ𝑛 → [0,+∞). Then for any compactly 

supported function 𝑔:ℝ𝑛 → [0,+∞) with 𝑔𝑎+1 ∈ 𝑊1,1 such that 

∫ 𝑔𝑎 = ∫ 𝑊𝑎 = 1 

we have 

(𝑎 + 1)∫ (−𝑊∗) (𝛻𝑔)𝑔
𝑎 − (𝑎 + 𝑛)∫ 𝑔1+𝑎 ≥ ∫ 𝑊1+𝑎 .            (39) 

Moreover, there is equality if 𝑔 = 𝑊, with 𝑊 continuous on ℝ𝑛 and concave on its support. 

Proof. The proof follows the previous one. Let 𝜙 be Brenier’s map such that 𝛻𝜙#𝑔𝑎 = 𝑊𝑎. 

Then, from {12), 𝑔𝑎‐almost everywhere 
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𝑊(𝛻𝜙) = 𝑔( det 𝛻2𝜙)−1/𝑎 ≥ (1 +
𝑛

𝑎
)𝑔 −

1

𝑎
𝑔 △ 𝜙. 

Integrating with respect to the measure 𝑔𝑎d𝑥 and then by parts, we find 

∫ 𝑊 (𝛻𝜙)𝑔𝑎 ≥ (1 +
𝑛

𝑎
)∫ 𝑔𝑎+1 +

𝑎 + 1

𝑎
∫ 𝑔𝑎 𝛻𝑔 ⋅ 𝛻𝜙. 

We obtain inequality {18) using the 𝑔𝑎‐ 𝑎. 𝑒. inequality 

𝛻𝑔 ⋅ 𝛻𝜙 ≥ 𝑊(𝛻𝜙) +𝑊∗(𝛻𝑔) , 

which is valid since 𝑊(𝛻𝜙(𝑥))
𝑎
> 0 for 𝑔𝑎‐almost all 𝑥, and the fact that 𝛻𝜙#𝑔𝑎 = 𝑊𝑎. 

When 𝑔 = 𝑊 and is continuous and concave on its support, the proof above with 𝛻𝜙(𝑥) =

𝑥 gives equality at all steps. Note that integration by parts is valid because 𝑊 is continuous 

and therefore equal to zero on 𝜕{𝑊 > 0} and that we can invoke (30) in the last step. 

We  convex or concave generalizations of Theorem (6.2.1) (which is Theorem (6.2.3) 

for 𝑎 = 𝑛), we now present two generalizations of Theorem (6.2.2). 

The 1st one concerns the convex case. 

Theorem (6.2.5)[203]: Let 𝑎 ≥ 𝑛 ≥ 1 (and 𝑎 > 1 if 𝑛 = 1) and let 𝛷 : ℝ+ → ℝ+ be a 

concave function. 

Let also 𝑔, 𝑊,𝐻:ℝ𝑛 → [0,+∞] be Borel functions and 𝑠 ∈ [0,1], 𝑡 = 1 − 𝑠, be such that 

∀𝑥, y ∈ ℝ𝑛, 𝐻(𝑠𝑥 + 𝑡y) ≤ 𝑠𝑔(𝑥) + 𝑡𝑊(y)                       (40) 

and ∫ 𝑊−𝑎 = ∫ 𝑔−𝑎 = 1. Then 

∫ 𝛷 (𝐻)𝐻−𝑎 ≥ 𝑠∫ 𝛷 (𝑔)𝑔−𝑎 + 𝑡∫ 𝛷 (𝑊)𝑊−𝑎.                      (41) 

Observe that Theorem (6.2.2) is Theorem (6.2.5) in the case when 𝛷(𝑥) = 𝑥 and 𝑎 = 𝑛, 

while the classical BBL inequality (26) is recovered for 𝛷(𝑥) ≡ 1 and 𝑎 = 𝑛. There is a 

hierarchy between all the inequalities (41), and inequality (27) (when 𝑎 = 𝑛) appears as the 

strongest one. 

Proof. The theorem can be proved in two ways, following the ideas from R. J. McCann’s or 

𝛤. Barthe’s PhDs [81], [210]. 

Let 𝜙 be Brenier’s map such that 𝛻𝜙#𝑔−𝑎 = 𝑊−𝑎. Then from the Monge‐Ampère equation 

{10), we have that almost everywhere 

𝑊(𝛻𝜙) = 𝑔 det (𝛻2𝜙)1/𝑎. 

Moreover, it follows from the assumptions that 𝛷 is non‐decreasing and 𝑥 ↦
𝛷(x)−𝛷(0)

𝑋
 is 

non‐increasing, so that 𝑥 ↦ 𝛷(𝑥)𝑥−𝑎 is non‐increasing. 

This proof is a little bit formal since we use a change of variables formula without proof. 

However, it is useful to fix the ideas and helpful to follow the rigorous proof below. So, by 

the change of variable 𝑧 = 𝑠𝑥 + 𝑡𝛻𝜙(𝑥) , and using both assumptions on 𝛷 we have 
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∫ 𝛷 (𝐻)𝐻−𝑎 = ∫ 𝛷 (𝐻(𝑠𝑥 + 𝑡𝛻𝜙(𝑥)))𝐻−𝑎(𝑠𝑥 + 𝑡𝛻𝜙(𝑥)) det (𝑠Id + 𝑡𝛻2𝜙(𝑥))d𝑥 

≥ ∫ 𝛷 (𝑠𝑔 + 𝑡𝑊(𝛻𝜙))(𝑠𝑔 + 𝑡𝑊(𝛻𝜙))
−𝑎
 det (𝑠Id + 𝑡𝛻2𝜙) . 

≥ ∫ [𝑠𝛷(𝑔) + 𝑡𝛷(𝑊(𝛻𝜙))] (𝑠 + 𝑡 det (𝛻2𝜙)1/𝑎)
−𝑎
 det (𝑠Id + 𝑡𝛻2𝜙)𝑔−𝑎. 

Since 𝑎 ≥ 𝑛, the concavity of det𝑘 with 𝑘 = 1/𝑎, recalled before {11), yields 

 det (𝑠Id + 𝑡𝛻2𝜙) ≥ (𝑠 + 𝑡 det (𝛻2𝜙)1/𝑎)
𝑎
                        (42) 

Finally, ∫ 𝛷 (𝑊(𝛻𝜙))𝑔−𝑎 = ∫ 𝛷 (𝑊)𝑊−𝑎 by image measure property since 

𝛻𝜙#𝑔−𝑎 = 𝑊−𝑎. This concludes the argument, as 

∫ 𝛷 (𝐻)𝐻−𝑎 ≥ ∫ [𝑠𝛷(𝑔) + 𝑡𝛷(𝑊(𝛻𝜙))] 𝑔−𝑎 = 𝑠∫ 𝛷 (𝑔)𝑔−𝑎 + 𝑡∫ 𝛷 (𝑊)𝑊−𝑎. 

We use the idea of R. J. McCann. From [210], let (𝜌𝑡)𝑡∈[0,1] be the density of the path 

between 𝑔−𝑎 and 𝑊−𝑎 defined as follows: for each 𝑡, 𝜌𝑡 is the density of the image measure 

of 𝜌0 under 𝑠Id + 𝑡𝑇 = 𝛻𝜙𝑡, where 𝜙𝑡(𝑥) = 𝑠
|𝑥|2

2
+ 𝑡𝜙(𝑥), 𝑥 ∈ ℝ𝑛. Then, using twice the 

associated Monge‐Ampère equations (31) for 𝜌1 = 𝛻𝜙#𝜌0 and 𝜌𝑡 = 𝛻𝜙𝑡#𝜌0, together with 

the determinant inequality {21), we find that 𝜌0‐almost everywhere 

𝜌𝑡(𝛻𝜙𝑡) ≤ (𝑠𝑔 + 𝑡𝑊(𝛻𝜙))
−𝑎
. 

Multiplying the inequality by (𝑠𝑔 + 𝑡𝑊(𝛻𝜙)) , then 𝜌0 − a. e. 

𝛷(𝑠𝑔 + 𝑡𝑊(𝛻𝜙))𝜌𝑡(𝛻𝜙𝑡) ≤ 𝛷(𝑠𝑔 + 𝑡𝑊(𝛻𝜙))(𝑠𝑔 + 𝑡𝑊(𝛻𝜙))
−𝑎
. 

Hence, using that 𝛷 is concave and 𝑥 ↦ 𝛷(𝑥)𝑥−𝑎 nonincreasing, we get that 𝜌0 − a. e. 

[𝑠𝛷(𝑔) + 𝑡𝛷(𝑊(𝛻𝜙))]𝜌𝑡(𝛻𝜙𝑡) ≤ 𝛷(𝐻(𝑠𝑥 + 𝛻𝜙))𝐻(𝑠𝑥 + 𝛻𝜙)
−𝑎

= 𝛷(𝐻(𝛻𝜙𝑡(𝑥))𝐻(𝛻𝜙𝑡(𝑥))
−𝑎
. 

Since 𝜌𝑡(𝛻𝜙𝑡(𝑥)) > 0 for 𝜌0‐almost every 𝑥, we can rewrite the previous inequality as 

𝑠𝛷(𝑔(𝑥)) + 𝑡𝛷 (𝑊(𝛻𝜙(𝑥))) ≤
𝛷(𝐻(𝛻𝜙𝑡(𝑥))𝐻(𝛻𝜙𝑡(𝑥))

−𝑎

𝜌𝑡(𝛻𝜙𝑡(𝑥))
1𝜌𝑡(𝛻𝜙𝑡(𝑥))>0′𝜌0(𝑥) − 𝑎. 𝑒. 

Integrating with respect to 𝜌0 = 𝑔
−𝑎 we find, using 𝛻𝜙#𝑔−𝑎 = 𝑊−𝑎, for the left‐hand side 
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∫ [𝑠𝛷(𝑔(𝑥)) + 𝑡𝛷 (𝑊(𝛻𝜙(𝑥)))] 𝜌0(𝑥)d𝑥 = 𝑠∫ 𝛷 (𝑔)𝑔−𝑎 + 𝑡∫ 𝛷 (𝑊)𝑊−𝑎 

and, using 𝛻𝜙𝑡#𝜌0 = 𝜌𝑡, for the right‐hand side 

∫ [
𝛷(𝐻(𝛻𝜙𝑡(x))𝐻(𝛻𝜙𝑡(𝑥))

−𝑎

𝜌𝑡(𝛻𝜙𝑡(𝑥))
1𝜌𝑡(𝛻𝜙𝑡(𝑥))>0] 𝜌0(𝑥)d𝑥 = ∫ 𝛷

{𝜌𝑡>0}

(𝐻)𝐻−𝑎dy

≤ ∫ 𝛷 (𝐻)𝐻−𝑎. 

This concludes the argument. 𝑏𝑙𝑎𝑐𝑘𝑠𝑞𝑢𝑎𝑟𝑒 

The concave inequality in Theorem (6.2.4) also has a BBL formulation. We only state it for 

power functions 𝛷 since the general case seems less appealing. 

Theorem (6.2.6)[203]. Let 𝑛 ≥ 1 and 𝑎 > 0. Let also 𝑔, 𝑊,𝐻 : ℝ𝑛 → [0,+∞] be Borel 

functions and 𝑡 ∈ [0,1] and 𝑠 = 1 − 𝑡 be such that 

∀𝑥, y ∈ ℝ𝑛, 𝐻(𝑠𝑥 + 𝑡y) ≥ 𝑠𝑔(𝑥) + 𝑡𝑊(y)                        (43) 

and ∫ 𝑊𝑎 = ∫ 𝑔𝑎 = 1. Then 

∫ 𝐻1+𝑎 ≥ 𝑠𝑛+𝑎+1∫ 𝑔1+𝑎 + 𝑠𝑛+𝑎𝑡 ∫ 𝑊1+𝑎 + (𝑛 + 𝑎)𝑠𝑛+𝑎𝑡 ∫ 𝑔1+𝑎 .      (44) 

Inequality (41) is optimal in the sense that if 𝑔 = 𝑊 and is convex, then one can exhibit a 

map 𝐻 that depends on 𝑠 such that inequality (41) is an equality. This is not the case for 

inequality (44) that is less powerful than (20). The linearization of (23), for 𝑡 going to 0, 

becomes optimal and gives optimal Gagliardo‐Nirenberg inequalities in the concave case. 

Proof. We start as in the proof of Theorem (6.2.5), sticking to the 1st formal argument for 

size limitation. As above, the argument can be made rigorous following McCann’s 

argument. 

Let 𝜙 be Brenier’s map such that 𝛻𝜙#𝑔𝑎 = 𝑊𝑎. Then almost surely, 

𝑔𝑎 = 𝑊(𝛻𝜙)𝑎 det (𝛻2𝜙) . 

By assumption on 𝜙 and the concavity inequality (42) we have 

∫ 𝐻1+𝑎  = ∫ 𝐻1+𝑎 (𝑠𝑥 + 𝑡𝛻𝜙(𝑥)) det (𝑠Id + 𝑡𝛻2𝜙(𝑥))d𝑥 

≥ ∫ (𝑠𝑔 + 𝑡𝑊(𝛻𝜙))
1+𝑎

 det (𝑠Id + 𝑡𝛻2𝜙) 

≥ ∫ (𝑠𝑔 + 𝑡𝑊(𝛻𝜙))
1+𝑎

(𝑠 + 𝑡( det 𝛻2𝜙)1/𝑛)
𝑛

 

Now we keep only the order zero and one terms in the Taylor expansion in 𝑡 of both 

terms above; 
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(𝑠𝑔 + 𝑡𝑊(𝛻𝜙)1+𝑎 = (𝑠𝑔)𝑙 + 𝑎 (1 +
𝑡

𝑠

𝑊(𝛻𝜙)

𝑔
)

1+𝑎

≥ 𝑠1+𝑎𝑔i+𝑎 + (𝑎 + 1)𝑠𝑎𝑡𝑔𝑎𝑊(𝛻𝜙) ; 

(𝑠 + 𝑡( det 𝛻2𝜙)1/𝑛)
𝑛
= 𝑠𝑛 (1 +

𝑡

𝑠
(

𝑔

𝑊(𝛻𝜙)
)
𝑎/𝑛

)

𝑛

≥ 𝑠𝑛 + 𝑛𝑠𝑛−1𝑡 (
𝑔

𝑊(𝛻𝜙)
)
𝑎/𝑛

 

Hence, 

∫ 𝐻1+𝑎 ≥ 𝑠𝑛+𝑎+1∫ 𝑔1+𝑎 + (1 + 𝑎)𝑠𝑛+𝑎𝑡 ∫ 𝑔𝑎𝑊(𝛻𝜙)

+ 𝑛𝑠𝑛+𝑎𝑡 ∫ 𝑔𝑎𝑊(𝛻𝜙) (
𝑔

𝑊(𝛻𝜙)
)

𝑛+𝑎
𝑛

 

Then in the last term we apply the inequality 

𝑛𝑋
𝑛+𝑎
𝑛 ≥ (𝑛 + 𝑎)𝑋 − 𝑎, 𝑋 ≥ 0 

with 𝑋 = 𝑔/𝑊(𝛻𝜙) . We obtain the desired inequality. 

BBL inequalities admit an equivalent dynamical formulation given by the largest possible 

function 𝐻 given 𝑔 and W. For that, consider the following inf‐convolution, defined for 

functions 𝑊,𝑔:ℝ𝑛 → (0,+∞], ℎ ≥ 0, and 𝑥 ∈ ℝ𝑛 by 

𝑂ℎ
𝑊(𝑔)(𝑥) = {

 inf {𝑔(y) + ℎ𝑊 (
𝑥 − y

ℎ
)} if ℎ > 0,

𝑔(𝑥) if ℎ = 0
                             (45) 

or equivalently 

𝑂ℎ
𝑊(𝑔)(𝑥) =  inf {𝑔(𝑥 −  ℎ𝑧) + ℎ𝑊(𝑧)}. 

Then the constraint (40) implies that the inf‐convolution 

𝐻(𝑥) = 𝑠𝑂r/𝑠
𝑊 (𝑔)(𝑥/𝑠) , 𝑥 ∈ ℝ𝑛 

if the largest function 𝐻 satisfying (40). From this observation, the 𝛷‐BBL inequality (41) 

can be rewritten as follows. 

Theorem (6.2.7) [203]: Let 𝑎 ≥ 𝑛 ≥ 1 (and 𝑎 > 1 if 𝑛 = 1) and let Φ ∶  ℝ+ → ℝ+ be a 

concave function. Let also 𝑔, 𝑊:ℝ𝑛 → [0,+∞] be Borel functions such that ∫ 𝑊−𝑎 =

∫ 𝑔−𝑎 = 1. 

Then for any ℎ ≥ 0 the 𝛷‐BBL inequality (41) is equivalent to 

(1 + ℎ)𝑎−𝑛∫ 𝛷(
1

1 + ℎ
𝑂ℎ
𝑊(𝑔))𝑜ℎ

𝑊(𝑔)−𝑎 
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≥
1

1 + ℎ
∫ 𝛷 (𝑔)𝑔−𝑎 +

ℎ

1 + ℎ
∫ 𝛷 (𝑊)𝑊−𝑎.                 (46) 

In particular, when 𝑎 = 𝑛 and 𝛷(𝑥) = 𝑥, the extended BBL inequality (27) is equivalent to 

∀ℎ ≥ 0,∫ 𝑜ℎ
𝑊 (𝑔)1−𝑛 ≥ ∫ 𝑔1−𝑛 + ℎ∫ 𝑊1−𝑛 .                   (47) 

Moreover, equality holds in inequalities (46) and (47) when 𝑔 = 𝑊 and is convex. 

For the equality case, note from (45) that 

𝑂ℎ
𝑊(𝑔)(𝑥) = (1 + ℎ)𝑊 (

𝑋

ℎ + 1
) , x ∈ ℝ𝑛 

when 𝑔 = 𝑊 and is convex. Hence, equality holds in (46) and (47) in this case, as claimed. 

Inequalities (25) and (47) are equalities when ℎ = 0. Moreover, for ℎ → 0 we have in 

general that 

𝑂ℎ
𝑊𝑔 = 𝑔 − ℎ𝑊∗(𝛻𝑔) + 𝑜(ℎ) 

so that Theorem (6.2.7) admits a linearization as a convex inequality. With the same 

conditions on the function 𝛷 as in Theorem (6.2.7), from inequality (25) we obtain 

∫ 𝑊∗ (𝛻𝑔)(𝑎
𝛷(𝑔)

𝑔
− 𝛷′(𝑔))𝑔−𝑎 +∫ ((𝑎 − 𝑛 + 1)𝛷(𝑔) − 𝑔𝛷′(𝑔))𝑔−𝑎

≥ ∫ 𝛷 (𝑊)𝑊−𝑎                                                                                     (48) 

for a class of functions 𝑔 and 𝑊 (which we do not try to carefully describe for a general 

𝛷) . Of course again inequality (48) is optimal; equality holds when 𝑔 = 𝑊 and is convex. 

In the case 𝛷(𝑥) = 𝑥, it is shown how to deduce the inequality (15) of Theorem (6.2.3) (and 

therefore Theorem (6.2.1)) from (25) for a restricted class ℱ𝑎 of functions (𝑔,𝑊) , inspired 

by [171] and given and Definition (6.2.22). In the case of interest of the Sobolev inequality 

(44) for 𝑊(𝑥) = 𝐶(1 + ‖𝑥‖𝑞/𝑞), 𝑞 = 𝑝/(𝑝 − 1) , it is shown in [171] how to recover the 

Sobolev inequality from this restricted class. For, it is classical to be sufficient to prove (44) 

for 𝐶1 , nonnegative and compactly functions 𝑓, and this case can be recovered by using 

𝑔𝜀(𝑥) = (𝑓(𝑥) + 𝜀(1 + ‖𝑥‖
𝑞)(𝑝−𝑛)/𝑝)

𝑝/(𝑝−𝑛)
+ 𝜀(1 + ‖𝑥‖𝑞) 

that is in the restricted class. 

Remark (6.2.8)[203]. Likewise, the classical BBL inequality (6.5) admits the following 

dynamical formulation: if 𝑊,𝑔:ℝ𝑛 → (0,+∞) are such that ∫ 𝑊−𝑛 = ∫ 𝑔−𝑛 = 1 , then 

∫ 𝑜ℎ
𝑊 (𝑔)−𝑛 ≥ 1, ℎ ≥ 0. 

For ℎ tending to 0 we recover the convexity inequality (36) with 𝑎 = 𝑛 + 1 , namely 



224 

∫
𝑊∗(𝛻𝑔)

𝑔𝑛+1ℝ𝑛
≥ 0,                                                  (49) 

which had been derived in [206]. As can be seen from, this inequality implies the Gagliardo‐

Nirenberg inequalities only for the parameters 𝑎 ≥ 𝑛 + 1. In particular, it does not imply 

the Sobolev inequality, as pointed out in [171]. 

It has recently been proved in [217] that the two formulations(5) and (49) are in fact 

equivalent. The concave BBL inequality (44) also admits a dynamical formulation with the 

supconvolution instead of the inf‐convolution. For 𝑊,𝑔 : ℝ𝑛 → [0,+∞) and ℎ ≥ 0 we let 

𝑅ℎ
𝑊(𝑔)(𝑥) = {

sup
𝑥∈ℝ𝑛

  {𝑔(y) + ℎ𝑊 (
𝑥 − y

ℎ
)} if ℎ > 0,

𝑔(𝑥) if ℎ = 0,
 

Then the constraint (22) implies that the best function 𝐻 if given by the  sup ‐convolution, 

𝐻(𝑥) = 𝑠𝑅𝑡/𝑠
𝑊 (𝑔)(𝑥/𝑠) , 𝑥 ∈ ℝ𝑛. 

From this observation, the uconcave” BBL inequality (23) admits the equivalent following 

dynamical formulation: if ∫ 𝑊𝑎 d𝑥 = ∫ 𝑔𝑎 d𝑥 = 1 then for all ℎ ≥ 0, 

∫ 𝑅ℎ
𝑊 (𝑔)1+𝑎 ≥ ∫ 𝑔1+𝑎 + ℎ∫ 𝑊1+𝑎 + (𝑛 + 𝑎)ℎ∫ 𝑔1+𝑎 .   (50) 

Similarly to the convex case, inequality (39) can be recovered from (50) by taking the 

derivative in ℎ, at ℎ = 0.  

A family of sharp Gagliardo‐Nirenberg inequalities in ℝ𝑛 was first obtained by M. 

del Pino and J. Dolbeault in [181]. The family was generalized to an arbitrary norm in [80] 

by using the mass transport method proposed in [93].  

The del Pino‐Dolbeault Gagliardo‐Nirenberg family of inequalities, which includes the 

Sobolev inequality, is a consequence. We prove in a rather direct and easy way that our 

extended BBL inequality (48) implies the del PinoDolbeault Gagliardo‐Nirenberg family of 

inequalities, but also a new family. As recalled, S. Bobkov and M. Ledoux [171] have also 

derived the Sobolev inequality from the Brunn−Minkowski inequality, but we believe that 

our method is more intuitive than theirs. 

Below, || ⋅ || denotes an arbitrary norm in ℝ𝑛 and for y ∈ ℝ𝑛 we let ||y||∗ = sup||x||≤1𝑥 ⋅ y 

its dual norm. Recall that the Legendre transform of 𝑥 ↦ ||𝑥||𝑞/𝑞 (with 𝑞 > 1) is the 

function y ↦ ||y||∗
𝑝
/𝑝 for 1/𝑝 + 1/𝑞 = 1. 

Let 𝑛 ≥ 1, 𝑎 ≥ 𝑛 (𝑎 > 1 if 𝑛 = 1), and 𝑞 > 1. Let 𝑊 be defined by 

𝑊(𝑥) =
||𝑥||𝑞

𝑞
+ 𝐶, 𝑥 ∈ ℝ𝑛, 

where the constant 𝐶 > 0 is such that ∫ 𝑊−𝑎 = 1. Then 
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𝑊∗(y) =
||y||∗

𝑝

𝑝
− 𝐶, y ∈ ℝ𝑛, 

𝑎 ↦ 𝑛/(𝑛 + 1 − 𝑎) 

 
Fig. 1.[203] Ranges of admissible parameters (𝑎, 𝑝) with 𝑛 = 4. 

where 1/𝑝 + 1/𝑞 = 1. 

We apply Theorem (6.2.3) with this fixed function 𝑊. First, let us notice that 𝐶 is well 

defined and ∫ 𝑊1−𝑎 is finite whenever 

{
If 𝑎 ≥ 𝑛 + 1 then 𝑝 > 1

If 𝑎 ∈ [𝑛, 𝑛 + 1) then 1 < 𝑝 <
𝑛

𝑛 + 1 − 𝑎
= 𝑝(𝑝 = 𝑛 when 𝑎 = 𝑛).

          (51) 

These constraints are illustrated in Figure 1 in the case 𝑛 = 4; Equation (51) is satisfied 

whenever the couple (𝑎, 𝑝) is in the gray or black area. 

Let us note that, under (30), the condition (14) on 𝑊 in Theorem (6.2.3) is satisfied with 

𝛾 = 𝑞. Assuming that the parameters 𝑎 and 𝑝 are in this admissible set, then for any function  

𝑔: ℝ𝑛 →]0, +∞[ such that ∫ 𝑔−𝑎 = 1 and 𝛻𝑔
1−

𝑎

𝑝 ∈ 𝐼𝑃, inequality (36) in Theorem (6.2.3) 

becomes 

𝐷 ≤
𝑎 − 1

𝑝
∫

||𝛻𝑔||∗
𝑝

𝑔𝑎
+ (𝑎 − 𝑛)∫ 𝑔1−𝑎 .                         (52) 

Here 𝐷 = (𝑎 − 1)𝐶 + ∫ 𝑊1−𝑎 is well defined, 𝑊 and 𝑎 > 1 being fixed. This inequality 

is the cornerstone. 

Sobolev inequalities: As a warm up, let us consider the case 𝑎 = 𝑛, 𝑛 ≥ 2, and 𝑝 ∈ (1, 𝑛) . 

Then inequality (31) becomes 

𝐷𝑝

𝑛 − 1
≤ ∫

||𝛻𝑔||∗
𝑝

𝑔𝑛
 

for any positive function 𝑔 such that ∫ 𝑔−𝑛 = 1 and 𝛻𝑔
1−

𝑛

𝑝 ∈ 𝐼𝑃. Letting 𝑓 = 𝑔
𝑝−𝑛

𝑝  , this 

gives 
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𝐷𝑝

𝑛 − 1
|
𝑛 − 𝑝

𝑝
|𝑝 ≤ ∫ | |𝛻𝑓||∗

𝑝
 

for any positive function 𝑓 such that ∫ 𝑓
𝑛𝑝

𝑛−𝑝 = 1 and 𝛻𝑓 ∈ 𝐿𝑝. Removing the normalization 

we get 

𝐷𝑝

𝑛 − 1
|
𝑛 − 𝑝

𝑝
|𝑝 (∫ 𝑓

𝑛𝑝
𝑛−𝑝)

𝑛−𝑝
𝑛

≤ ∫ | |𝛻𝑓||∗
𝑝
. 

The inequality is of course optimal since equality holds when 𝑔 = 𝑊 or equivalently when 

𝑓(𝑥) = (𝐶 +
||𝑥||𝑞

𝑞
)

𝑝−𝑛

𝑝
. Classically removing the sign condition we recover 

Theorem (6.2.9)[203]. Let 𝑛 ≥ 2, 𝑝 ∈ (1, ) , and 𝑝∗ = 𝑛𝑝/(𝑛 − 𝑝). The inequality 

(∫ | 𝑓|𝑝
∗
)

1
𝑝∗

≤ 𝐶𝑛,𝑝 (∫ | |𝛻𝑓||∗
𝑝
)

1
𝑝

 

holds for any function 𝑓 ∈ 𝐿𝑝
∗
 with 𝛻𝑓 ∈ 𝐼𝑃; here 𝐶𝑛,𝑝 is the optimal constant reached by 

the function 𝑥 ↦ (1 + ||𝑥||𝑞)
𝑝−𝑛

𝑝  

Gagliardo‐Nirenberg inequalities: Consider now the case 𝑎 > 𝑛 and 𝑝 ≠ 𝑎 satisfying 

conditions (51). Letting ℎ = 𝑔
1−

𝑎

𝑝 = 𝑔
𝑝−𝑎

𝑝  , inequality (52) becomes 

1 ≤ 𝐷2∫ | |𝛻ℎ||∗
𝑝
+ (𝑎 − 𝑛)∫ ℎ

𝑝
𝑎−1
𝑎−𝑝 

for any positive function ℎ such that ∫ ℎ
𝑎𝑝

𝑎−𝑝 = 1 and 𝛻ℎ ∈ 𝐼𝑃, where 𝐷2 is an explicit 

positive constant. Removing the normalization, the inequality becomes 

(∫ ℎ
𝑎𝑝

𝑎 − 𝑝
)

𝑎−𝑝
𝑎

≤ 𝐷2∫ | |𝛻ℎ||∗
𝑝
+ (𝑎 − 𝑛)∫ ℎ

𝑝
𝑎−1
𝑎−𝑝 (∫ ℎ

𝑎𝑝

𝑎 − 𝑝
)

1−𝑝
𝑎

 

for any positive ℎ for which the integrals are finite. 

To obtain a compact form of this inequality, we replace ℎ(𝑥) = 𝑓(𝜆𝑥) and optimize over 

𝜆 > 0. For another explicit constant 𝐷3 we get 

(∫ 𝑓
𝑎𝑝
𝑎−𝑝)

𝑎−𝑝
𝑎𝑝

(1−
1−𝑝
𝑎−𝑝

𝜔)

≤ 𝐷3 (∫ | |𝛻𝑓||∗
𝑝
)

1−𝜔
𝑝

(∫ 𝑓
𝑝
𝑎−1
𝑎−𝑝)

𝑎−𝑝
𝑝(𝑎−1)

𝑎−1
𝑎−𝑝

𝜔

 

where = (1 −
1−𝑝𝜔

𝑎−𝑝
𝜔) =

+𝑛∈(0,1(𝑎−𝑛−1)𝑝+𝑛)

𝑝(𝑎−𝑛)+𝑛
and

𝑎−1re

𝑎−𝑝
𝜔.If 𝑝 < 𝑎 the n both coefficients 

arepositive
𝑝(𝑎−𝑛

𝑝(𝑎
−𝑛)𝑎

𝑎−𝑝

). Thearenowtwocases,depending onthesignof as one can check by 
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considering the cases 𝑎 < 𝑛 + 1 and 𝑎 ≥ 𝑛 + 1; this leads to the 1st 

case in Theorem (6.2.10) below. If 𝑝 > 𝑎, then under the constraints (30) both coefficients 

are negative; this leads to the 2nd case below. 

Removing the sign condition we have obtained the following: 

Theorem (6.2.10)[203]. Let 𝑛 ≥ 1 and 𝑎 > 𝑛. 

For any 1 < 𝑝 < 𝑎, the inequality 

(∫ | 𝑓|
𝑎𝑝
𝑎−𝑝)

𝑎−𝑝
𝑎𝑝

≤ 𝐷𝑛,𝑝,𝑎
+ (∫ | |𝛻𝑓||∗

𝑝
)

𝜃
𝑝

(∫ | 𝑓|
𝑝
𝑎−1
𝑎−𝑝)

𝑎−𝑝
𝑝(𝑎−1)

(1−𝜃)

          (53) 

holds for any function 𝑓 for which the integrals are finite. Here 𝜃 ∈] 0,1[ is given by 

𝑎 − 𝑝

𝑎
= 𝜃

𝑛 − 𝑝

𝑛
+ (1 − 𝜃)

𝑎 − 𝑝

𝑎 − 1
                                 (54) 

and 𝐷𝑛,𝑝,𝑎
+  is the optimal constant given by the extremal function 𝑥 ↦ (1 + ||𝑥||𝑞)

𝑝−𝑎

𝑝  

∙ If 𝑝 > 𝑎 when 𝑎 ≥ 𝑛 + 1 , or if 𝑝 ∈ (𝑎,
𝑛

𝑛+1−𝑎
) when 𝑎 ∈ [𝑛, 𝑛 + 1), then the inequality 

(∫ [ 𝑓|
𝑝
𝑎−1
𝑎−𝑝)

𝑎−𝑝
𝑝(𝑎−1) ≤ 𝐷𝑛,𝑝,𝑎 (∫ | |𝛻𝑓||∗

𝑝
)

𝜃′

𝑝

(∫ | 𝑓|
𝑎𝑝
𝑎−𝑝)

𝑎−𝑝
𝑎𝑝

(1−𝜃′)

           (55) 

holds for any function 𝑓 for which the integrals are finite. Here 𝜃′ ∈] 0,1[is given by 

𝑝 − 𝑎

𝑎 − 1
= 𝜃′

𝑝 − 𝑛

𝑛
+ (1 − 𝜃′)

𝑝 −

𝑎
𝑎 

and 𝐷𝑛,𝑝,𝑎 is the optimal constant given by the extremal function 𝑥 ↦ (1 + ||𝑥||𝑞)
𝑝−𝑎

𝑝  

Let 𝑛 ≥ 1. Let 𝑎 > 0 and > 1 , and define 

𝑊(𝑥) =
𝐶

𝑞
(1 − ||𝑥||𝑞)+, 𝑥 ∈ ℝ

𝑛, 

where 𝐶 is such that ∫ 𝑊𝑎 = 1. From definition {8), we have 

𝑊∗(y) = {
−
𝑐1−𝑝

𝑝
||y||∗

𝑝
−
𝑐

𝑞
if ||y||∗ ≤ 𝐶

−||y||∗ if ||y||∗ ≥ 𝐶,

     y ∈ ℝ𝑛, 

where 1/𝑝 + 1/𝑞 = 1. In particular from the Young inequality 

𝑊∗(y) ≥ −
𝐶1−𝑝

𝑝
||y||∗′

𝑝
−
𝐶
𝑞  y ∈ ℝ𝑛.                                    (55) 

Then the inequality (39) with this function 𝑊 gives 

(𝑎 + 𝑛)∫ 𝑔1+𝑎 ≤ (𝑎 + 1)
𝐶1−𝑝

𝑝
∫ | |𝛻𝑔||∗

𝑝
𝑔𝑎 +

𝐶

𝑞
(𝑎 + 1) − ∫ 𝑊𝑎+1 

for any nonnegative and compactly supported function 𝑔 such that ∫ 𝑔𝑎 = 1 and 𝑔1+𝑎 ∈
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𝑊1,1. Let us notice that 
𝐶

𝑞
(𝑎 + 1) − ∫ 𝑊𝑎+1 d𝑥 > 0. Letting now 𝑓 = 𝑔

𝑎+𝑝

𝑝  we obtain 

∫ 𝑓
𝑝
1+𝑎
𝑎+𝑝 ≤ 𝐷1∫ | |𝛻𝑓||∗

𝑝
+ 𝐷2, 

for any nonnegative and compactly supported function 𝑓 such that ∫ 𝑓
𝑎𝑝

𝑎+𝑝 = 1 and 𝑓
𝑝
1+𝑎

𝑎+𝑝 ∈

𝑊1,1; here 𝐷1 and 𝐷2 are explicit constants. Removing the normalization, this gives 

∫ 𝑓
𝑝
1+𝑎
𝑎+𝑝 ≤ 𝐷1∫ | |𝛻𝑓||∗

𝑝
(∫ 𝑓

𝑎𝑝
𝑎+𝑝)

1−𝑝
𝑎

+ 𝐷2 (∫ ℎ
𝑎𝑝
𝑎+𝑝)

1+𝑎
𝑎

 

We can now remove the sign condition and optimize by scaling to recover the following 

result of [181] (and [80] for an arbitrary norm). 

Theorem (6.2.11)[203]. Let 𝑛 ≥ 1. For any 𝑝 > 1 and 𝑎 > 0 the inequality 

(∫ [ 𝑓|
𝑝
𝑎+1
𝑎+𝑝)

𝑎+𝑝
𝑝(𝑎+1) ≤ 𝐷𝑛,𝑝,𝑎 (∫ | |𝛻𝑓||∗

𝑝
)

𝜃
𝑝

(∫ | 𝑓|
𝑎𝑝
𝑎+𝑝)

𝑎+𝑝
𝑎𝑝

(1−𝜃)

 

holds for any compactly supported function 𝑓 with 𝛻𝑓 ∈ 𝐿𝑝. Here 𝜃 ∈] 0,1[is given by 

𝑎 + 𝑝

𝑎 + 1
= 𝜃

𝑛 − 𝑝

𝑛
+ (1 − 𝜃)

𝑎 + 𝑝

𝑎
 

and 𝐷𝑛,𝑝,𝑎 is the optimal constant given by the extremal function 𝑥 ↦ (1 − ||𝑥||𝑞)
𝑎+𝑝

+𝑝  

The obtained inequality is optimal since (39) is an equality when 𝑔 = 𝑊. When 𝑔 = 𝑊, 

then almost surely ||𝛻𝑔||∗ ≤ 𝐶, so that (55) is an equality. We explain how our framework 

allows to recover known and obtain new trace Sobolev and Gagliardo‐Nirenberg inequalities 

on ℝ+
𝑛  , in sharp form. In the above denomination we shall restrict to the convex case. As 

before, we have two possible, equivalent, routes. One is to establish an abstract convex 

Sobolev type inequality using mass transport, and the other one is to establish a new 

functional Brunn‐Minkowski type inequality on ℝ+
𝑛  , and derive Sobolev inequalities from 

it, by linearization. Since the and one is formally more general although it requires technical, 

non‐essential, assumptions on the functions), we will favor it. 

Let us fix some notation. For any 𝑛 ≥ 2, we let 

ℝ+
𝑛 = {𝑧 = (𝑢, 𝑥), 𝑢 ≥ 0, 𝑥 ∈ ℝ𝑛−1}. 

Then 𝜕ℝ+
𝑛 = {(0, 𝑥), 𝑥 ∈ ℝ𝑛−1} = ℝ𝑛−1. For 𝑒 = (1, 0) ∈ ℝxℝ𝑛−1 and ℎ ∈ ℝ we let 

ℝ+ℎ𝑒
𝑛 = ℝ+

𝑛 + ℎ𝑒 = {(𝑢, 𝑥), 𝑢 ≥ ℎ, 𝑥 ∈ ℝ𝑛−1}. 

The BBL inequality (41) with 𝛷(𝑥) = 𝑥 takes the following form in ℝ+
𝑛 . 

Theorem (6.2.12)[203]. Let 𝑎 ≥ 𝑛, 𝑔 : ℝ+
𝑛 → (0,+∞) and  : ℝ+𝑒

𝑛 → (0,+∞) such that 

∫ 𝑔−𝑎
ℝ+
𝑛 = ∫ 𝑊−𝑎

ℝ+𝑒
𝑛 = 1. Then, for all ℎ > 0, 

(1 + ℎ)𝑎−𝑛∫ 𝑜ℎ
𝑊

ℝ+ℎ𝑒
𝑛

(𝑔)1−𝑎 ≥ ∫ 𝑔1−𝑎

ℝ+
𝑛

+ ℎ∫ 𝑊1−𝑎

ℝ+𝑒
𝑛

,             (56) 
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where, for (𝑢, 𝑥) ∈ ℝ+ℎ𝑒
𝑛 , 

𝑂ℎ
𝑊(𝑔)(𝑢, 𝑥) = inf

(𝑣,𝑦)∈ℝ+
𝑛 ,0≤𝑣≤𝑢−ℎ

  {𝑔(𝑣, y) + ℎ𝑊 (
𝑢 − 𝑣

ℎ
,
𝑥 − 𝑦

ℎ
)} . 

Moreover, (36) is an equality when 𝑔(𝑧) = 𝑊(𝑧 + 𝑒) for any 𝑧 ∈ ℝ+
𝑛  and is convex. 

Proof. Let �̃� : ℝ𝑛 → (0,+∞] and �̃� : ℝ𝑛 → (0,+∞] be defined by 

�̃�(x) = {
𝑔(𝑥) if 𝑥 ∈ ℝ+

𝑛

+∞ if 𝑥 ∉ ℝ+
𝑛 𝑎𝑛𝑑 �̃�(𝑥) = {

𝑊(𝑥) if 𝑥 ∈ ℝ+𝑒
𝑛

+∞ if 𝑥 ∉ ℝ+𝑒
𝑛 .

                               (57) 

Then ∫ �̃�−𝑎
ℝ𝑛

= ∫ �̃�−𝑎
ℝ𝑛

= 1. Hence, we can apply the dynamical formulation (25) of 

Theorem (6.2.5) with 𝛷(𝑥) = 𝑥 and the functions �̃� , �̃�. For any ℎ ≥ 0 we obtain 

(1 + ℎ)𝑎−𝑛∫ 𝑜ℎ
�̃�

ℝ𝑛
(�̃�)1−𝑎 ≥ ∫ 𝑔1−𝑎

ℝ+
𝑛

+ ℎ∫ 𝑊1−𝑎

ℝ+𝑒
𝑛

, 

where 

𝑂ℎ
�̃�(�̃�)(𝑢, 𝑥) =  inf {�̃�(𝑉, 𝑦) + ℎ�̃� (

𝑢 − 𝑣

ℎ
,
𝑥 − y

ℎ
)} , (𝑢, 𝑥) ∈ ℝ𝑛. 

From the definition of �̃� and �̃� , the infimum can be restricted to 0 ≤ 𝑣 ≤ 𝑢 − ℎ, so that 

𝑂ℎ
�̃�(�̃�)(𝑢, 𝑥) is equal to +∞ when 𝑢 < ℎ, and to 𝑜ℎ

𝑊(𝑔)(𝑥) otherwise. It implies 

∫ 𝑜ℎ
𝑊

ℝ𝑛
(𝑔)1−𝑎 = ∫ 𝑜ℎ

𝑊

ℝ+ℎ𝑒
𝑛

(�̃�)1−𝑎 = ∫ 𝑜ℎ
𝑊

ℝ+ℎ𝑒
𝑛

(𝑔)1−𝑎, 

which gives inequality (56). 

When 𝑔(𝑧) = 𝑊(𝑧 + 𝑒) and 𝑊 is convex, then by convexity 

𝑂ℎ
𝑊(𝑔)(𝑢, 𝑥) = (ℎ + 1)𝑊 (

𝑢 + 1

ℎ + 1
′
𝑋

ℎ + 1
) 

for any (𝑢, 𝑥) ∈ ℝ+ℎ𝑒
𝑛 . Then inequality (36) is an equality. 𝑏𝑙𝑎𝑐𝑘𝑠𝑞𝑢𝑎𝑟𝑒 BBL type 

inequality on ℝ𝑛 implies a convex inequality. It is also the case on ℝ+
𝑛  , by computing the 

derivative of (56) at ℎ = 0 and using the identity 

∫ 𝑜ℎ
𝑊

ℝ+ℎ𝑒
𝑛

(𝑔)1−𝑎 = ∫ ∫ 𝑜ℎ
𝑊

ℝ𝑛−1

∞

ℎ

(𝑔)1−𝑎(𝑢, 𝑥)d𝑢d𝑥. 

Assume now that (𝑔,𝑊) is in ℱ+
𝑎 as in Definition (6.2.18). Then by Theorem (6.2.21), 

𝑑

𝑑ℎ
|ℎ=0∫ ∫ 𝑜ℎ

𝑊

ℝ𝑛−1

∞

ℎ

(𝑔)1−𝑎(𝑢, 𝑥)d𝑢d𝑥 = −∫ 𝑔i−𝑎

𝜕ℝ+
𝑛

d𝑥 + (𝑎 − 1)∫
𝑊∗(𝛻𝑔)

𝑔𝑎ℝ+
𝑛

d𝑧, 

where we recall the definition of the Legendre transform 

𝑊∗(y) = inf
𝑥∈ℝ+𝑒

𝑛
  {𝑥 ⋅ y −𝑊(𝑥)}, y ∈ ℝ𝑛.                                (58) 

So we have obtained the following: 

Proposition (6.2.13)[203]. Let 𝑎 ≥ 𝑛. Let  : ℝ+
𝑛 → (0,+∞) and 𝑊 : ℝ+𝑒

𝑛 → (0,+∞) belong 
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to ℱ+
𝑎 (see Definition (6.2.18)) with 𝑊 convex and ∫ 𝑔−𝑎

ℝ+
𝑛 = ∫ 𝑊−𝑎

ℝ+𝑒
𝑛 = 1. Then 

(𝑎 − 1)∫
𝑊∗(𝛻𝑔)

𝑔𝑎ℝ+
𝑛

+ (𝑎 − 𝑛)∫ 𝑔i−𝑎

ℝ+
𝑛

≥ ∫ 𝑊1−𝑎

ℝ+𝑒
𝑛

d𝑧 + ∫ 𝑔1−𝑎

𝜕ℝ+
𝑛

.           (59) 

Moreover, (39) is an equality when 𝑔(𝑧) = 𝑊(𝑧 + 𝑒) for 𝑧 ∈ ℝ+
𝑛  and is convex. 

Remark (6.2.14)[203]: Inequality (39) can also be directly proved by mass transport and 

integration by parts. 

We follow to get trace Gagliardo‐Nirenberg inequalities from Proposition (6.2.13). Let 𝑎 ≥

𝑛, 𝑝 ∈  (1, n) , and 𝑞 = 𝑝/(𝑝 − 1) . Let also 𝑊(𝑧) = 𝐶
||𝑧||𝑞

𝑞
 for 𝑧 ∈ ℝ+𝑒

𝑛 , where the constant 

𝐶 > 0 is such that ∫ 𝑊−𝑎
ℝ+𝑒
𝑛 = 1. We first observe that Conditions (Cl) and (C2) of 

Definition (6.2.18) hold with 𝛾 = 𝑞 since 𝑞 > 𝑛/(𝑎 − 1) for 𝑎 ≥ 𝑛. Moreover, for y ∈ ℝ𝑛, 

𝑊∗(y) = sup
𝑥∈ℝ+𝑒

𝑛
  {𝑥 ⋅ y − 𝐶

||𝑥||𝑞

𝑞
} ≤ sup

𝑥∈ℝ+𝑒
𝑛
  {𝑥 ⋅ y − 𝐶

||𝑥||𝑞

𝑞
} = 𝐶1−𝑝

||y||∗
𝑝

𝑝
. (60) 

Hence, Proposition (6.2.13) implies 

𝐶1−𝑝
𝑎 − 1

𝑝
∫

||𝛻𝑔||∗
𝑝

𝑔𝑎ℝ+
𝑛

+ (𝑎 − 𝑛)∫ 𝑔i−𝑎

ℝ+
𝑛

≥ ∫ 𝑊1−𝑎

ℝ+𝑒
𝑛

+∫ 𝑔i−𝑎

𝜕ℝ+
𝑛

          (61) 

for any function 𝑔 satisfying ∫ 𝑔−𝑎
ℝ+
𝑛 = 1 and (C3) and (C4) with 𝛾 = 𝑞, so that (𝑔,𝑊) 

belongs to ℱ+
𝑎. 

It has to be mentioned that inequality (61) is still optimal, despite inequality {40). For, when 

𝑔(𝑥) = 𝑊(𝑥 + 𝑒) for ∈ ℝ+
𝑛  , then the minimum in (6.59) at the point 𝛻𝑔(𝑥) is reached in 

ℝ+𝑒
𝑛  and then (40) is an equality. 

Inequality (61) is again the cornerstone. 

Trace Sobolev inequalities: Again, as a warm up, let us assume that 𝑎 = 𝑛. Then (61) gives 

∫ 𝑔1−𝑛

𝜕ℝ+
𝑛

≤ 𝐶1−𝑝
𝑛 − 1

𝑝
∫

||𝛻𝑔||∗
𝑝

𝑔𝑛ℝ+
𝑛

−∫ 𝑊1−𝑛

ℝ+𝑒
𝑛

 

for any function 𝑔 satisfying ∫ 𝑔−𝑛
ℝ+
𝑛 = 1 and (C3) and (C4) for 𝛾 = 𝑞. For 𝑓 = 𝑔

𝑝−𝑛

𝑝 , so 

that ∫ 𝑓
𝑝𝑛

𝑛−𝑝
ℝ+
𝑛 = 1 , this inequality becomes 

∫ 𝑓
𝜕ℝ+

𝑛

𝑝(𝑛 − 1)

𝑛 − 𝑝
≤ 𝐶1−𝑝

𝑛 − 1

𝑝
(
𝑝

𝑛 − 𝑝
)
𝑝

∫ |
ℝ+
𝑛
|𝛻𝑓||∗

𝑝
−∫ 𝑊1−𝑛

ℝ+𝑒
𝑛

.             (62) 

We now need to extend this inequality to all 𝐶1 and compactly supported functions 𝑓 in ℝ+
𝑛  

(it does not mean that 𝑓 vanishes in 𝜕ℝ+
𝑛 ) . For this, consider a 𝐶1 and compactly supported 

function 𝑓 in ℝ+
𝑛  and let 
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𝑓𝜀(𝑥) = 𝜀|𝑥 + 𝑒|
−
𝑛−𝑝
𝑝−1 + 𝑐𝜀𝑓(𝑥) , 

where 𝑐𝜀 is such that ∫ 𝑓𝜀

𝑝𝑛

𝑛−𝑝

ℝ+
𝑛 = 1. Then 𝑔𝜀 = 𝑓𝜀

−
𝑝

𝑛−𝑝
 satisfies (C3) and (C4). Moreover, 

𝑐𝜀 → 1 when 𝜀 goes to 0 and then inequality (62) holds for the function 𝑓. Removing the 

normalization in (62) we have, for any 𝑓, 

∫ 𝑓�̃�

𝜕ℝ+
𝑛

d𝑥 ≤ 𝐴∫ |
ℝ+
𝑛
|𝛻𝑓||∗

𝑝
d𝑧𝛽𝑝−𝑝 − 𝐵𝛽𝑝, 

where 

�̃� =
𝑝(𝑛−1)

𝑛−𝑝
 , 𝛽 = (∫ 𝑓

𝑝𝑛

𝑛−𝑝
ℝ+
𝑛 d𝑧)

𝑛−𝑝

𝑛𝑝

 𝐴 = 𝐶1−𝑝
𝑛−1

𝑝
(
𝑝

𝑛−𝑝
)
𝑝

 and 𝐵 = ∫ 𝑊1−𝑛
ℝ+𝑒
𝑛 d𝑧. 

Equivalently, with 𝑢 =
�̃�

𝑝
=

𝑛−1

𝑛−𝑝
 and 𝑣 =

�̃�

�̃�−𝑝
 (which satisfy 𝑢, 𝑣 > 1 , and 1/𝑢 + 1/𝑣 = 1), 

∫ 𝑓�̃�

𝜕ℝ+
𝑛

≤ 𝐵𝑉 [
𝐴

𝐵𝑉
∫ |
ℝ+
𝑛
|𝛻𝑓||∗

𝑝
𝛽�̃�−𝑝 −

1

𝑉
𝛽�̃�]. 

Now the Young inequality 𝑥y ≤ 𝑥𝑢/𝑢 + y𝑉/𝑣 with 

𝑥 =
𝐴

𝐵𝑉
∫ |
ℝ+
𝑛
|𝛻𝑓||∗

𝑝
 𝑎𝑛𝑑 y = 𝛽𝑝−𝑝 

yields 

(∫ 𝑓�̃�

𝜕ℝ+
𝑛

)

1/�̃�

≤
𝐴1/𝑝

(𝐵𝑉)
𝑝−1

𝑝(𝑛−1)

(
𝑛 − 𝑝

𝑛 − 1
)

𝑛−𝑝
𝑝(𝑛−1)

(∫ |
ℝ+
𝑛
|𝛻𝑓||∗

𝑝
)

1/𝑝

 

The proof of optimality it is a little bit technical and will be given below in the more general 

case of Theorem (6.2.16). It is also given in [113]. Equality holds when 𝑔(𝑧) = 𝑊(𝑧 + 𝑒) 

or equivalently when 𝑓(𝑧) = (𝐶
||𝑧+𝑒||𝑞

𝑞
)
−
𝑛−𝑝

𝑝
= 𝐶′||𝑧 + 𝑒||

−
𝑛−𝑝

𝑝−1 for 𝑧 ∈ ℝ+
𝑛 . Removing the 

sign condition we have thus obtained the following result by B. Nazaret [113], who 

promoted the idea of adding a vector 𝑒 to the map 𝑊. We proved the main inequality for 𝐶1 

and compactly supported functions, but by approximation it is possible to extend it to the 

appreciate space. 

Theorem (6.2.15)[203]: For any 1 < 𝑝 < 𝑛 and for �̃� = 𝑝(𝑛 − 1)/(𝑛 − 𝑝) the Sobolev 

inequality 

(∫ |
𝜕ℝ+

𝑛
𝑓|�̃�d𝑥)

1/�̃�

≤ 𝐷𝑛,𝑝 (∫ |
ℝ+
𝑛
|𝛻𝑓||∗

𝑝
d𝑧)

1/𝑝

 

holds for any 𝐶1 and compactly supported function 𝑓 on ℝ+
𝑛 . Here 𝐷𝑛,𝑝 is the optimal 

constant given by the extremal function 
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ℎ𝑝(𝑧) = ||𝑧 + 𝑒||
−
𝑛−𝑝
𝑝−1 , 𝑧 ∈ ℝ+

𝑛 . 

Trace Gagliardo‐Nirenberg inequalities: Assume now that 𝑎 ≥ 𝑛 > 𝑝 > 1 and let ℎ = 𝑔
𝑝−𝑎

𝑝 . 

Then the inequality (41) can be written as 

∫ ℎ
𝑝
𝑎−1
𝑎−𝑝

𝜕ℝ+
𝑛

d𝑥

≤ 𝐶1−𝑝
𝑎 − 1

𝑝
(
𝑝

𝑎 − 𝑝
)
𝑝

∫ |
ℝ+
𝑛
|𝛻ℎ||∗

𝑝
d𝑧 + (𝑎 − 𝑛)∫ ℎ

𝑝
𝑎−1
𝑎−𝑝

ℝ+
𝑛

d𝑧

− ∫ 𝑊1−𝑎

ℝ+𝑒
𝑛

d𝑧 

for any 𝐶1 and compactly supported function ℎ in ℝ+
𝑛  such that ∫ ℎ

𝑎𝑝

𝑎−𝑝
ℝ+
𝑛 = 1. In this case 

we use the same argument as for the Sobolev inequality above to replace the Conditions 

(C3) and (C4) of Definition (6.2.18). 

Removing the normalization, we get 

∫ ℎ
𝑝
𝑎−1
𝑎−𝑝

𝜕ℝ+
𝑛

≤ 𝐶1−𝑝
𝑎 − 1

𝑝
(
𝑝

𝑎 − 𝑝
)
𝑝

∫ |
ℝ+
𝑛
|𝛻ℎ||∗

𝑝
𝛽
𝑝
𝑝−1
𝑎−𝑝 

−∫ 𝑊1−𝑎

ℝ+𝑒
𝑛

𝛽
𝑝
𝑎−1
𝑎−𝑝 + (𝑎 − 𝑛)∫ ℎ

𝑝
𝑎−1
𝑎−𝑝

ℝ+
𝑛

                                  (63) 

with now 

𝛽 = (∫ ℎ
𝑝𝑎
𝑎−𝑝

ℝ+
𝑛

d𝑧)

𝑎−𝑝
𝑎𝑝

 

Let 𝑢 =
𝑎−1

𝑎−𝑝
 and 𝑣 =

𝑎−1

𝑝−1
 that satisfy 𝑢, 𝑣 > 1 and 1/𝑢 + 1/𝑣 = 1. As for the Sobolev 

inequality we rewrite the right‐hand side of (63) as 

𝐶1−𝑝
𝑎 − 1

𝑝
(
𝑝

𝑎 − 𝑝
)
𝑝

∫ |
ℝ+
𝑛
|𝛻ℎ||∗

𝑝
𝛽
𝑝
𝑝−1
𝑎−𝑝 −∫ 𝑊1−𝑎

ℝ+𝑒
𝑛

𝛽
𝑝
𝑎−1
𝑎−𝑝 

= 𝐵𝑉 [
𝐴

𝐵𝑉
∫ |
ℝ+
𝑛
|𝛻ℎ||∗

𝑝
𝛽
𝑝
𝑝−1
𝑎−𝑝 −

1

𝑉
𝛽
𝑝
𝑎−1
𝑎−𝑝], 

with 

𝐴 = 𝐶1−𝑝
𝑎 − 1

𝑝
(
𝑝

𝑎 − 𝑝
)
𝑝

 𝑎𝑛𝑑 𝐵 = ∫ 𝑊1−𝑎

ℝ+𝑒
𝑛

. 
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From the Young inequality applied to the parameters 𝑢, 𝑣 and 

𝑥 =
𝐴

𝐵𝑉
∫ |
ℝ+
𝑛
|𝛻ℎ||∗

𝑝
 𝑎𝑛𝑑 y = 𝛽

𝑝
𝑝−1
𝑎−𝑝                                     (64) 

we get 

𝐶1−𝑝
𝑎 − 1

𝑝
(
𝑝

𝑎 − 𝑝
)
𝑝

∫ |
ℝ+
𝑛
|𝛻ℎ||∗

𝑝
𝛽
𝑝
𝑝−1
𝑎−𝑝 −∫ 𝑊1−𝑎

ℝ+𝑒
𝑛

𝛽
𝑝
𝑎−1
𝑎−𝑝 

≤
𝐴
𝑎−1
𝑎−𝑝

(𝐵𝑉)
𝑝−1
𝑎−𝑝

𝑎 − 𝑝

𝑎 − 1
(∫ |
ℝ+
𝑛
|𝛻ℎ||∗

𝑝
)

𝑎−1
𝑎−𝑝

                 (65) 

and then 

∫ ℎ
𝑝
𝑎−1
𝑎−𝑝

𝜕ℝ+
𝑛

d𝑥 ≤
𝐴
𝑎−1
𝑎−𝑝

(𝐵𝑉)
𝑝−1
𝑎−𝑝

𝑎 − 𝑝

𝑎 − 1
(∫ |
ℝ+
𝑛
|𝛻ℎ||∗

𝑝
d𝑧)

𝑎−1
𝑎−𝑝

+ (𝑎 − 𝑛)∫ ℎ
𝑝
𝑎−1
𝑎−𝑝

ℝ+
𝑛

d𝑧 (66) 

from (43). For any 𝜆 > 0, we replace ℎ(𝑧) = 𝑓(𝜆𝑧) for 𝑧 ∈ ℝ+
𝑛 . We obtain 

∫ 𝑓
𝑝
𝑎−1
𝑎−𝑝

𝜕ℝ+
𝑛

d𝑥

≤ 𝜆
(𝑎−𝑛)(𝑝−1)

𝑎−𝑝
𝐴
𝑎−1
𝑎−𝑝

(𝐵𝑉)
𝑝−1
𝑎−𝑝

𝑎 − 𝑝

𝑎 − 1
(∫ |
ℝ+
𝑛
|𝛻𝑓||∗

𝑝
d𝒵)

𝑎−1
𝑎−𝑝

+ 𝜆−1(𝑎 − 𝑛)∫ 𝑓
𝑝
𝑎−1
𝑎−𝑝

ℝ+
𝑛

d𝑧. 

Taking the infimum over 𝜆 > 0 gives 

(∫ 𝑓
𝑝
𝑎−1
𝑎−𝑝

𝜕ℝ+
𝑛

d𝑥)

𝑎−𝑝
𝑝(𝑎−1)

≤ 𝐷 (∫ |
ℝ+
𝑛
|𝛻𝑓||∗

𝑝
d𝒵)

𝜃
𝑝

(∫ 𝑓
𝑝
𝑎−1
𝑎−𝑝

ℝ+
𝑛

d𝑧)

(1−𝜃)
𝑎−𝑝
𝑝(𝑎−1)

 

for an explicit constant 𝐷 and 𝜃 ∈] 0,1] being the unique parameter satisfying 

𝑛 − 1

𝑛

𝑎 − 𝑝

𝑎 − 1
= 𝜃

𝑛 − 𝑝

𝑛
+ (1 − 𝜃)

𝑎 − 𝑝

𝑎 − 1
.                                     (67) 

Removing the sign condition, we have obtained the following: 

Theorem (6.2.16)[203]: For any 𝑎 ≥ 𝑛 > 𝑝 > 1 , the Gagliardo‐Nirenberg inequality 

(∫ |
𝜕ℝ+

𝑛
𝑓|
𝑝
𝑎−1
𝑎−𝑝d𝑥)

𝑎−𝑝
𝑝(𝑎−1)
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≤ 𝐷𝑛,𝑝,𝑎 (∫ |
ℝ+
𝑛
|𝛻𝑓||∗

𝑝
d𝑧)

𝜃
𝑝

(∫ 𝑓
𝑝
𝑎−1
𝑎−𝑝

ℝ+
𝑛

d𝑧)

(1−𝜃)
𝑎−𝑝
𝑝(𝑎−1)

       (68) 

holds for any 𝐶1 and compactly supported function 𝑓 on ℝ+
𝑛 . Here 𝜃 is defined in (67) and 

𝐷𝑛,𝑝,𝑎 is the optimal constant, reached when 

𝑓(𝑧) = ℎ𝑝(𝑧) = ||𝑧 + 𝑒||
−
𝑎−𝑝
𝑝−1 , 𝑧 ∈ ℝ+

𝑛 . 

When 𝑎 = 𝑛, then 𝜃 = 1 and we recover the trace Sobolev inequality of Theorem (6.2.15). 

Proof. From the above computation we only have to prove that the inequality (48) is 

optimal. 

First, it follows from Proposition (6.2.13) that inequality {43) is an equality when 

∀𝑧 ∈ ℝ+
𝑛 , ℎ(𝑧) = ℎ𝑝(𝑧) = ||𝑧 + 𝑒||

−
𝑎−𝑝
𝑝−1 , 

the function ℎ𝑝 not needing to be normalized. Moreover, if inequality (65) is an equality, 

then it is also the case for (66) and then (68). So, we only have to prove that (65) is an 

equality when ℎ = ℎ𝑝 that sums up to the fact that the Young inequality is an equality. This 

is the case when 𝑥 = y𝑉−1 in (44), that is, 

𝐴

𝐵𝑉
∫ |
ℝ+
𝑛
|𝛻ℎ||∗

𝑝
d𝑧 = (𝛽

𝑝
𝑝−1
𝑎−𝑝)

𝑉−1

 

or equivalently 

𝐴

𝐵𝑉
∫ |
ℝ+
𝑛
|𝛻ℎ||∗

𝑝
d𝑧 = (∫ |

ℝ+
𝑛
|𝑧 + 𝑒||

−
𝑎𝑝
𝑝−1)

𝑎−𝑝
𝑎

 

Let now ℐ𝛼 = ∫ |
ℝ+
𝑛 |𝑧 + 𝑒||−𝛼d𝑧 for 𝛼 > 0. Then 

𝐶 =
𝑝

𝑝 − 1
ℐ1/𝑎𝑎𝑝
𝑝−1

 , 𝐵 = ℐ

1−𝑎
𝑝−1𝑎𝑝𝑎

ℐ
𝑝
𝑎−1
𝑝−1
, 𝑎𝑛𝑑 ∫ |

ℝ+
𝑛
|𝛻ℎ||∗

𝑝
d𝑧 = (

𝑎 − 𝑝

𝑝 − 1
)
𝑝

ℐ
𝑝
𝑎−1
𝑝−1

 

from their respective definition. Then, from the definition of 𝐴, equality in the Young 

inequality indeed holds. This finally gives equality for the map ℎ. It has to be mentioned 

that the case 𝑎 = 𝑛 gives the optimality of the trace Sobolev inequality of Theorem (6.2.15). 

In their work [96] on Gagliardo‐Nirenberg inequalities where only the Euclidean 

norm is considered), M. del Pino and J. Dolbeault observed that when the parameter 𝑎 goes 

to infinity, the sharp Gagliardo‐Nirenberg inequality (32) in ℝ𝑛 yields the 𝐼𝑃‐Euclidean 

logarithmic Sobolev inequality 



235 

Ent𝑑𝑥(𝑓
𝑝) ≤

𝑛

𝑝
∫ 𝑓𝑝

ℝ𝑛
d𝑥 log (ℒ𝑝

∫ | |𝛻𝑓||∗
𝑝
d𝑥

∫ 𝑓𝑝 d𝑥
)                  (69) 

for any positive function 𝑓. Here 1/𝑝 + 1/𝑞 = 1 , ℒ𝑝 is the optimal constant attained for 

𝑓(𝑥) = 𝑒−‖𝑥‖
𝑞
 and 

Ent𝑑x(𝑓
𝑝): = ∫ 𝑓𝑝

ℝ𝑛
 log 

𝑓𝑝

∫ 𝑓𝑝
d𝑥. 

This bound is an instance, when 𝑉(𝑥) = ||𝑥||𝑞 + 𝐶, of the following general inequality of 

[185], [209]; for any 𝑉, 𝑓 : ℝ𝑛 → (0,+∞) such that ∫ 𝑒−𝑓 = ∫ 𝑒−𝑉 = 1 , there holds 

∫ (𝑓 + 𝑉∗(𝛻𝑓))
ℝ𝑛

𝑒−𝑓 ≥ 𝑛,                                (70) 

with equality when 𝑓 = 𝑉 and is convex. Inequality (70) has been derived in [185], [209] 

from the Prékopa‐Leindler inequality, which is a consequence of the classical BBL 

inequality (5). It says that for 𝐹, 𝑉, 𝑓: ℝ𝑛 → ℝ and 𝑢 ∈ [0,1] such that ∫𝑒−𝑓 = ∫𝑒−𝑉 = 1 

and 

∀𝑥, y ∈ ℝ𝑛, 𝐹((1 − 𝑢)𝑥 + 𝑢𝑦) ≤ (1 − 𝑢)𝑓(𝑥) + 𝑢𝑉(y) ,            (71) 

then 

∫ 𝑒−𝐹

ℝ𝑛
≥ 1.                                                                   (72) 

As above for the BBL inequalities, (72) can be rewritten in a dynamical form; 

∫ 𝑒−
1
1+ℎ

Oℎ
𝑉([)

ℝ𝑛
≥ (1 + ℎ)𝑛, ℎ ≥ 0.                           (73) 

Then, as for above inequalities, this formulation can be linearized as ℎ → 0, 

recovering (70). 

Our new BBL inequality (20) also yields the Prékopa‐Leindler inequality (71) and (72) for 

𝛷 = 1 and 𝑎 going to infinity. For that, it suffices to apply (61) with 𝑔 = 𝑍𝑔
−1/𝑎

(1 + 𝑓/𝑎), 

𝑊 = 𝑍𝑉
−1/𝑎(1 + 𝑉/𝑎) for 𝑍𝑔 = ∫ (1 + 𝑔/𝑎)−𝑎 and 𝑍𝑉 = ∫ (1 + 𝑉/𝑎)−𝑎, 𝑠 = 𝑢𝑍𝑔

1/𝑎
/

(𝑢𝑍𝑔
1/𝑎

+ (1 − 𝑢)𝑍𝑉
1/𝑎
) and = (1 + 𝐹/𝑎)/(𝑢𝑍𝑔

1/𝑎
+ (1 − 𝑢)𝑍𝑉

1/𝑎
) , and then to leta go to 

infinity. 

In the derivation of (49) from the sharp Gagliardo‐Nirenberg inequality, the argument in 
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[96] is based on the key fact that the exponent 𝜃 in Equation (54) goes to 0 when 𝑎 → +∞. 

In the case of the half‐space ℝ+
𝑛 , the exponent 𝜃 in Equation(47) goes to 1/𝑝 when 𝑎 →

+∞; hence, this method does not seem to adapt easily to the ℝ+
𝑛  case. Hence, to get a trace 

logarithmic Sobolev inequality in ℝ+
𝑛  we rather resort to the argument, as follows. 

Let then  𝑊: ℝ+𝑒
𝑛 → ℝ and 𝑔 : ℝ+

𝑛 → ℝ such that ∫ 𝑒−𝑊
ℝ+𝑒
𝑛 = ∫ 𝑒−𝑔

ℝ+
𝑛 = 1 , and define �̃� 

and �̃� as in (57). Then by (73) 

∫ 𝑒−
1
1+ℎ

Oℎ
�̃�(�̃�)

ℝ𝑛
(𝑧)d𝑧 = ∫ ∫ 𝑒−

1
1+ℎ

𝑜ℎ
𝑊(𝑔)(𝑢,𝑥)

ℝ𝑛−1

∞

ℎ

d𝑢d𝑥 ≥ (1 + ℎ)𝑛. 

In the limit ℎ → 0 we get the bound corresponding to (70) in the trace case, namely 

∫ (𝑔 +𝑊∗(𝛻𝑔))
ℝ+
𝑛

𝑒−𝑔 ≥ 𝑛 + ∫ 𝑒−𝑔

𝜕ℝ+
𝑛

                          (74) 

whenever the function 𝑔 is in an appropriate set of functions. We will not give here more 

details. As in again, let now > 1 , || ⋅ || be a norm in ℝ𝑛, and let 𝑊(𝑧) = 𝐶||𝑧||𝑞/𝑞 for 𝑧 ∈

ℝ+𝑒
𝑛 , where 𝐶 = (∫ 𝑒

−
||𝑥||𝑞

𝑞
ℝ+
𝑛 d𝑥)

𝑞/𝑛

 is such that ∫ 𝑒−𝑊
ℝ+𝑒
𝑛 = 1. Then 𝑊∗(y) ≤

𝐶1−𝑝||y||∗
𝑝
/𝑝 for y ∈ ℝ+

𝑛  , with 1/𝑝 + 1/𝑞 = 1. Let then 𝑓 be a positive function on ℝ+
𝑛  

such that ∫ 𝑓𝑝
ℝ+
𝑛 = 1 , and apply inequality {54) to 𝑔 = −𝑝 log 𝑓. After removing the 

normalization we obtain 

Ent𝑑𝑥(𝑓
𝑝) ≤ (

𝐶

𝑝
)
1−𝑝

∫ |
ℝ+
𝑛
|𝛻𝑓||∗

𝑝
d𝑥 − 𝑛∫ 𝑓𝑝

ℝ+
𝑛

d𝑥 − ∫ 𝑓𝑝

𝜕ℝ+
𝑛

d𝑥.            (75) 

Inequality (75) is a trace logarithmic Sobolev inequality. It does not have a compact 

expression as does inequality (69) in the case of ℝ𝑛, where the scaling optimization can be 

performed. In ℝ+
𝑛 , it improves upon the usual (69) if we consider functions on ℝ+

𝑛 . 

The time derivative of the Hopf‐Lax formula (65) has been treated in different 

contexts, namely for Lipschitz (as in [182]) or bounded as in [216]) initial data. In our case 

the function 𝑔 grows as |𝑥|𝑝 with 𝑝 > 1 at infinity and thus these classical results cannot be 

applied. We will thus follow the method proposed by S. Bobkov and M. Ledoux [171], 

extending it to more general functions 𝑊 and also to the half‐space ℝ+
𝑛 . 

We give all the details for the half‐space ℝ+
𝑛  that are more intricate. 

Let 𝑎 ≥ 𝑛 and let 𝑔:ℝ+
𝑛 → (0,+∞), 𝑊:ℝ+𝑒

𝑛 → (0,+∞) such that ∫ 𝑔−𝑎
ℝ+
𝑛  and 

∫ 𝑊−𝑎
ℝ+𝑒
𝑛  are finite. The functions 𝑔 and 𝑊 are assumed to be 𝐶1 in the interior of their 

respective domain of definition. Moreover, we assume that 𝑊 goes to infinity faster that 

linearly 
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lim
𝑥∈ℝ+𝑒

𝑛 ,|𝑥|→∞

𝑊(𝑥)

|𝑥|
= +∞.                                                                     (76) 

Our objective is to give sufficient conditions such that the derivative at ℎ = 0 of the function 

ℝ+ ∋ ℎ ↦ ∫ ∫ 𝑜ℎ
𝑊

ℝ𝑛−1

∞

ℎ

(𝑔)1−𝑎(𝑢, 𝑥)d𝑢d𝑥 

is equal to 

−∫ 𝑔i−𝑎

𝜕ℝ+
𝑛

d𝑧 + (𝑎 − 1)∫
𝑊∗(𝛻𝑔)

𝑔𝑎ℝ+
𝑛

d𝑧, 

where 

𝑊∗(y) = sup
𝑥∈ℝ+𝑒

𝑛
  {𝑥 ⋅ y −𝑊(𝑥)}, y ∈ ℝ𝑛.                       (77) 

For this, let us first recall the definition of 𝑂ℎ
𝑊𝑔; for 𝑥 ∈ ℝ+ℎ𝑒

𝑛 , 

𝑂ℎ
𝑊𝑔(𝑥) = {

inf
𝑦∈ℝ+

𝑛 ,𝑥−𝑦∈ℝ+ℎ𝑒
𝑛
  [𝑔(y) + ℎ𝑊 (

𝑥 − y

ℎ
)] if ℎ > 0,

𝑔(𝑥) if ℎ = 0
 

or equivalently, for ℎ > 0 and 𝑥 ∈ ℝ+ℎ𝑒
𝑛 , 

𝑂ℎ
𝑊𝑔(𝑥) =  inf

𝑦∈ℝ+𝑒
𝑛 ,𝑥−ℎ𝑧∈ℝ+

𝑛
  {𝑔(𝑥 − ℎ𝑧) + ℎ𝑊(𝑧)}

= inf
𝑦∈ℝ+ℎ𝑒

𝑛 ,𝑥−𝑧∈ℝ+
𝑛
 {𝑔(𝑥 − 𝑧) + ℎ𝑊 (

𝑍

ℎ
)} 

First, we have the following: 

Lemma (6.2.17)[203]: In the above notation and assumptions, for all 𝑥 ∈ ℝ+
𝑛 ∘ 

𝜕

𝜕ℎ
|ℎ=0𝑜ℎ

𝑊𝑔(𝑥) = −𝑊∗(𝛻𝑔(𝑥)) .                      (78) 

Proof. We follow and adapt the proof proposed in [171]. Let 𝑥 ∈ ℝ+
𝑛  be∘ fixed. 

By definition of 𝑂ℎ
𝑊𝑔, for any 𝑧 ∈ ℝ+𝑒

𝑛  and ℎ > 0 small enough so that 𝑥 − ℎ𝑧 ∈ ℝ+
𝑛 , one 

has 

𝑂ℎ
𝑊𝑔(𝑥) − 𝑔(𝑥)

ℎ
≤
𝑔(𝑥 − ℎ𝑧) − 𝑔(𝑥)

ℎ
+𝑊(𝑧) . 

Since 𝑔 is 𝐶1 , then for all 𝑧 ∈ ℝ+𝑒
𝑛  

lim
ℎ→0

 sup 
𝑂ℎ
𝑊𝑔(𝑥) − 𝑔(𝑥)

ℎ
≤ −𝛻𝑔(𝑥) . 𝑧 +𝑊(𝑧) . 

Then, from the definition (77) of 𝑊∗, 

lim
ℎ→0

 sup 
𝑂ℎ
𝑊𝑔(𝑥) − 𝑔(𝑥)

ℎ
≤ −𝑊∗(𝛻𝑔(𝑥)) . 

We now prove the converse inequality. Let 

𝐴𝑥,ℎ = {𝑧 ∈ ℝ+𝑒
𝑛 , ℎ𝑊(𝑧) ≤ 𝑔(𝑥 − ℎ𝑒) + ℎ𝑊(𝑒)}. 

For a small enough ℎ > 0 such that 𝑥 − ℎ𝑒 ∈ ℝ+
𝑛  we have 𝑂ℎ

𝑊𝑔(𝑥) ≤ 𝑔(𝑥 − ℎ𝑒) +

ℎ𝑊(𝑒) , so 
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𝑂ℎ
𝑊𝑔(𝑥) =  inf

𝑧∈𝐴𝑥,𝑥−ℎ𝑧∈ℝ+
𝑛
  {𝑔(𝑥 − ℎ𝑧) + ℎ𝑊(𝑧)}. 

Hence, 

𝑂ℎ
𝑊𝑔(𝑥) − 𝑔(𝑥)

ℎ
 =   inf

𝑧∈𝐴𝑥,𝑥−ℎ𝑧∈ℝ+
𝑛
 {
𝑔(𝑥 − ℎ𝑧) − 𝑔(𝑥)

ℎ
+𝑊(𝑧)} 

= inf
𝑧∈𝐴𝑥,𝑥−ℎ𝑧∈ℝ+

𝑛
{−𝛻𝑔(𝑥) . 𝑧 + 𝑧𝜀𝑋(ℎ𝑧)  +𝑊(𝑧)}, 

where 𝜀𝑋(ℎ𝑧) → 0 when ℎ𝑧 → 0. It implies 

𝑂ℎ
𝑊𝑔(𝑥) − 𝑔(𝑥)

ℎ
≥ inf
𝑧∈𝐴𝑥,ℎ

  {−𝛻𝑔(𝑥) ⋅ 𝑧 + 𝑧𝜀𝑋(ℎ𝑧) +𝑊(𝑧)}. 

By the coercivity condition {A1) on 𝑊 and since 𝑔 is locally bounded, the set 𝐴x,ℎ is 

bounded by a constant 𝐶, uniformly in ℎ ∈ (0,1) . In particular for every 𝜂 > 0, there 

New Borell‐Brascamp‐Lieb inequalities and applications exists ℎ𝜂 > 0 such that for all ℎ ≤

ℎ𝜂 and ∈ 𝐴𝑥,ℎ , |𝜀𝑋(ℎ𝑧)| ≤ 𝜂. Moreover, for all ℎ ≤ ℎ𝜂 , 

𝑂ℎ
𝑊𝑔(𝑥) − 𝑔(𝑥)

ℎ
≥ inf
𝑧∈𝐴𝑥,ℎ

  {−𝛻𝑔(𝑥) . 𝑧 +𝑊(𝑧)} − 𝐶𝜂

≥ inf
𝑧∈ℝ+𝑒

𝑛
  {−𝛻𝑔(𝑥) . 𝑧 +𝑊(𝑧)} − 𝐶𝜂 

= −𝑊∗(𝛻𝑔(𝑥)) − 𝐶𝜂. 

Let us take the limit when ℎ goes to 0, 

lim
ℎ→0

 inf 
𝑂ℎ
𝑊𝑔(𝑥) − 𝑔(𝑥)

ℎ
≥ −𝑊∗(𝛻𝑔(𝑥)) − 𝐶𝜂. 

As 𝜂 is arbitrary, we finally get equality (78). 𝑏𝑙𝑎𝑐𝑘𝑠𝑞𝑢𝑎𝑟𝑒 

Our assumptions on the couple (𝑔,𝑊) are summarized in the following definition. 

Definition (6.2.18)[203]: Let 𝑛 ≥ 2, 𝑔 : ℝ+
𝑛 → (0,+∞) , and 𝑊 : ℝ+𝑒

𝑛 → (0,+∞) . We say 

that the couple (𝑔,𝑊) belongs to ℱ+
𝑎 with 𝑎 ≥ 𝑛 if the following four conditions are 

satisfied for some 𝑦: 

(C1) >  max {
𝑛

𝑎−1
 , 1}. 

(C2) There exists a constant 𝐴 > 0 such that 𝑊(𝑥) ≥ 𝐴|𝑥|𝛾 for all 𝑥 ∈ ℝ+𝑒
𝑛 . 

(C3) There exists a constant 𝐵 > 0 such that |𝛻𝑔(𝑥)| ≤ 𝐵(|𝑥|𝛾−1 + 1) for all 𝑥 ∈ ℝ+
𝑛 . (C4) 

There exists a constant 𝐶 such that 𝐶(|𝑥|𝑉 + 1) ≤ 𝑔(𝑥) for all 𝑥 ∈ ℝ+
𝑛 . 

In the following, we let 𝐶𝑗 denote several constants that are independent of ℎ > 0 and 𝑥 ∈

ℝ+ℎ𝑒
𝑛 , but may depend on 𝛾 , 𝐴, 𝐵. 

Lemma (6.2.19)[203]: Assume (𝐶𝑙) ∼ (𝐶4) . Then, we find a constant ℎ1 > 0 such that, 
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for all ℎ ∈ (0, ℎ1) and 𝑥 ∈ ℝ+ℎ𝑒
𝑛  

−𝐶1ℎ(1 + |𝑥|
𝛾) ≤ 𝑂ℎ

𝑊𝑔(𝑥) − 𝑔(𝑥) ≤ 𝐶2ℎ(|𝑥|
𝑦−1 + 1) . 

Proof. i. Let us first consider the easier upper bound. For any ℎ > 0 and 𝑥 ∈ ℝ+ℎ𝑒
𝑛  then 

−ℎ𝑒 ∈ ℝ+
𝑛  , so that 

𝑂ℎ
𝑊𝑔(𝑥) − 𝑔(𝑥) ≤ 𝑔(𝑥 − ℎ𝑒) − 𝑔(𝑥) + ℎ𝑊(𝑒) . 

On the other hand, for any 𝑥 ∈ ℝ+
𝑛  and y ∈ ℝ𝑛 such that 𝑥 + y ∈ ℝ+

𝑛  we have from (C3), 

|𝑔(𝑥 + y) − 𝑔(𝑥)| 

= |∫ 𝛻
1

0

𝑔(𝑥 + 𝜃y). yd𝜃| ≤ |y|∫ |
1

0

𝛻𝑔(𝑥 + 𝜃y)|d𝜃 

≤ 𝐶3|y|(|𝑥|
𝑉−1 + |y|𝛾−1 + 1)                                    (79) 

From this remark applied to y = −ℎ𝑒 with ℎ ∈ (0,1) , one gets for any 𝑥 ∈ ℝ+ℎ𝑒
𝑛  

𝑂ℎ
𝑊𝑔(𝑥) − 𝑔(𝑥) ≤ 𝐶4ℎ(|𝑥|

𝛾−1 + 1) + ℎ𝑊(𝑒) ≤ 𝐶5ℎ(|𝑥|
𝑉−1 + 1) . (80) 

 ii. For the lower bound, we first need some preparation. Thus, fix ℎ ∈ (0,1) and 𝑥 ∈ ℝ+ℎ𝑒
𝑛  

arbitrarily. Let ŷ ∈ ℝ+ℎ𝑒
𝑛  be a minimizer of the infimum convolution 

𝑂ℎ
𝑊𝑔(𝑥) =  inf [𝑔(𝑥 − y) + ℎ𝑊 (

y

ℎ
)] = 𝑔(𝑥 − ŷ) + ℎ𝑊 (

ŷ

ℎ
) . 

Such a �̂� surely exists by (C2) and (C4). From (80) and (C2) we have (recall that ℎ < 1), 

𝐴

ℎ𝑉 − 1
|�̂�|𝑉 ≤ ℎ𝑊 (

ŷ

ℎ
) ≤ 𝑔(𝑥) − 𝑔(𝑥 − ŷ) + 𝐶5(|𝑥|

𝛾−1 + 1) .          (81) 

From inequality {A4), 

|𝑔(𝑥) − 𝑔(𝑥 − ŷ)| ≤ 𝐶6|ŷ|[|𝑥|
𝛾−1 + |ŷ|𝑉−1 + 1].                 (82) 

From (82) and (81), 

𝐴

ℎ𝑦 − 1
|ŷ|𝛾 ≤ 𝐶6|ŷ|(|𝑥|

𝑦−1 + |ŷ|𝛾−1 + 1) + 𝐶5(|𝑥|
𝑉−1 + 1) . 

Choose a small constant 0 < ℎ1 ≤ 1 so that 

1 <
𝐴

ℎ1
𝛾−1 − 𝐶6. 

When 0 < ℎ < ℎ1 , we have 

|ŷ|𝑦

|ŷ| + 1
≤ 𝐶7[1 + |𝑥|

𝛾−1] 

so that 

|ŷ| ≤ 𝐶8(1 + |𝑥|) . 

iii. Then, fix ℎ ∈ (0, ℎ1) and 𝑥 ∈ ℝ+ℎ𝑒
𝑛  arbitrarily, where ℎ1 is the constant defined in Step 

By the arguments in Step 2, we see that 

𝑂ℎ
𝑊𝑔(𝑥) − 𝑔(𝑥) = inf

y∈ℝ+ℎ𝑒
𝑛 ,𝑥−y∈ℝ+

𝑛|y|≤𝐶8(1+|𝑥|)
  [𝑔(𝑥 − y) − 𝑔(𝑥) + ℎ𝑊 (

y

ℎ
)] . (83)                                            

we have 

𝑔(𝑥) − 𝑔(𝑥 − y) ≤ |y|∫ |
1

0

𝛻𝑔(𝑥 − 𝜃y)|d𝜃.                  (84) 
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When |y| ≤ 𝐶8(1 + |𝑥|) and 0 < 𝜃 < 1 , we have |𝑥 − 𝜃y| ≤ (1 + 𝐶8)(1 + |𝑥|) , so that 

|𝛻𝑔(𝑥 − 𝜃y)| ≤ 𝐶9(1 + |𝑥|
𝑉−1) by (C3), uniformly in 0 < 𝜃 < 1. Thus, when |y| ≤

𝐶8(1 + |𝑥|) , 

we have, by (A9), 

𝑔(𝑥) − 𝑔(𝑥 − y) ≤ 𝐶9(1 + |𝑥|
𝑉−1)|y|. 

Hence, by (83) and (Cl), we obtain 

𝑂ℎ
𝑊𝑔(𝑥) − 𝑔(𝑥)  ≥ inf

y∈ℝ+ℎ𝑒
𝑛 ,|y|≤𝐶8(1+|𝑥|)

  [−𝐶9(1 + |𝑥|
𝛾−1)|y| + ℎ𝑊 (

y

ℎ
)] 

≥ inf
y∈ℝ+ℎ𝑒

𝑛 ,|y|≤𝐶8(1+|𝑥|)
  [−𝐶9(1 + |𝑥|

𝑦−1)|y| +
𝐴

ℎ𝛾 − 1
|y|𝑉] 

≥ inf
𝑦∈ℝ𝑛

  [−𝐶9(1 + |𝑥|
𝑉−1)|y| +

𝐴

ℎ𝑉 − 1
|y|𝛾] 

= −𝐶10ℎ(1 + |𝑥|
𝑉−1)

𝛾
𝛾−1. 

The last equality is a direct computation. Therefore, we conclude that 

𝑂ℎ
𝑊𝑔(𝑥) − 𝑔(𝑥) ≥ −𝐶11ℎ(1 + |𝑥|

𝑉) . 

The proof is complete. 

Lemma (6.2.20)[203]: Assume (C1) ∼ (C4) . Then, we find constants 𝐶0, ℎ2 > 0 such that 

for all ℎ ∈ (0, ℎ2) and 𝑥 ∈ ℝ+ℎ𝑒
𝑛  

|
𝑂ℎ
𝑊𝑔(𝑥)1−𝑎 − 𝑔(𝑥)1−𝑎

ℎ
| ≤

𝐶0

1 + |𝑥|𝛾(𝑎−1)
. 

Proof. First, for any 𝛼, 𝛽 > 0 and > 1 , then 

|𝛼1−𝑎 − 𝛽1−𝑎| ≤ (𝑎 − 1)|𝛼 − 𝛽|(𝛼−𝑎 + 𝛽−𝑎) .                (85) 

Indeed, if for instance 𝛽 > 𝛼 > 0, then for some 𝜃 ∈ (𝛼, 𝛽) we have 

𝛼1−𝑎 − 𝛽1−𝑎 = (𝑎 − 1)(𝛽 − 𝛼)𝜃−𝑎 ≤ (𝑎 − 1)(𝛽 − 𝛼)𝛼−𝑎. 

By inequality (85) and Lemma (6.2.19), we have 

|
𝑂ℎ
𝑊𝑔(𝑥)1−𝑎 − 𝑔(𝑥)1−𝑎

ℎ
|  ≤  (𝑎 − 1)|

𝑂ℎ
𝑊𝑔(𝑥) − 𝑔(𝑥)

ℎ
|[𝑂ℎ

𝑊𝑔(𝑥)−𝑎 + 𝑔(𝑥)−𝑎] 

≤ 𝐾1(1 + |𝑥|
𝛾)[𝑂ℎ

𝑊𝑔(𝑥)−𝑎 + 𝑔(𝑥)−𝑎] 

for all ℎ ∈ (0, ℎ1) and 𝑥 ∈ ℝ+ℎ𝑒
𝑛 . 

On the other hand, by (C4) and Lemma (6.2.19), we have for all ℎ ∈ (0, ℎ1) and 𝑥 ∈ ℝ+ℎ𝑒
𝑛  

𝑂ℎ
𝑊𝑔(𝑥) ≥ 𝑔(𝑥) − 𝐶1ℎ(1 + |𝑥|

𝛾) ≥ (𝐶 − 𝐶1ℎ)(|𝑥|
𝑉 + 1) . 

Choose a small constant ℎ3 so that 

𝐶

2
≤ 𝐶 − 𝐶1ℎ3 

and let ℎ2 min {ℎ1, ℎ3}. Then, for all 

𝑂ℎ
𝑊𝑔(𝑥) ≥

𝐶

2
(|𝑥|𝑉 + 1) 

whence, again using (C4), 
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|
𝑂ℎ
𝑊𝑔(𝑥)1−𝑎 − (𝑔(𝑥))

1−𝑎

ℎ
| ≤ 𝐶2(1 + |𝑥|

𝛾)1−𝑎 

for all ℎ ∈ (0, ℎ2) and 𝑥 ∈ ℝ+ℎ𝑒
𝑛 .  

We can now state and prove the main result. 

Theorem (6.2.21)[203]: In the above notation, assume that the couple (𝑔,𝑊) is in ℱ+
𝑎. Then 

𝑑

𝑑ℎ
|ℎ=0∫ ∫ 𝑜ℎ

𝑊

ℝ𝑛−1

∞

ℎ

(𝑔)1−𝑎(𝑢, x)d𝑢dx = −∫ 𝑔i−𝑎

𝜕ℝ+
𝑛

d𝑥 + (𝑎 − 1)∫
𝑊∗(𝛻𝑔)

𝑔𝑎ℝ+
𝑛

d𝑧. 

Proof. One can write the ℎ‐derivative as follows: 

1

ℎ
(∫ ∫ 𝑜ℎ

𝑊

ℝ𝑛−1

∞

ℎ

(𝑔)1−𝑎(𝑢, 𝑥)d𝑢d𝑥 − ∫ 𝑔1−𝑎

ℝ+
𝑛

(𝑢, 𝑥)d𝑢d𝑥) 

=
1

ℎ
(∫ ∫ 𝑔1−𝑎

ℝ𝑛−1

∞

ℎ

(𝑢, 𝑥)d𝑢d𝑥 − ∫ 𝑔1−𝑎

ℝ+
𝑛

(𝑢, 𝑥)d𝑢d𝑥) 

+
1

ℎ
(∫ ∫ 𝑜ℎ

𝑊
ℝ𝑛−1

∞

ℎ
(𝑔)1−𝑎(𝑢, 𝑥)d𝑢d𝑥 − ∫ ∫ 𝑔1−𝑎

ℝ𝑛−1
∞

ℎ
(𝑢, 𝑥)d𝑢d𝑥) . 

First 

1

ℎ
(∫ ∫ 𝑔1−𝑎

ℝ𝑛−1

∞

ℎ

(𝑢, 𝑥)d𝑢d𝑥 − ∫ 𝑔1−𝑎

ℝ+
𝑛

(𝑢, 𝑥)d𝑢d𝑥) = −
1

ℎ
∫ ∫ 𝑔1−𝑎

ℝ𝑛−1

ℎ

0

(𝑢, 𝑥)d𝑢d𝑥, 

which goes to − ∫ 𝑔1−𝑎
ℝ𝑛−1

(0, 𝑥)d𝑥 = −∫ 𝑔1−𝑎
𝜕ℝ+

𝑛  when ℎ goes to 0. Secondly, 

1

ℎ
(∫ ∫ 𝑜ℎ

𝑊

ℝ𝑛−1

∞

ℎ

(𝑔)1−𝑎(𝑢, 𝑥)d𝑢d𝑥 − ∫ ∫ 𝑔1−𝑎

ℝ𝑛−1

∞

ℎ

(𝑢, 𝑥)d𝑢d𝑥) 

= ∫ [
𝑂ℎ
𝑊(𝑔)1−𝑎(𝑢, 𝑥) − 𝑔1−𝑎(𝑢, 𝑥)

ℎ
]

ℝ+
𝑛

1𝑢≥ℎd𝑢d𝑥.    (86) 

By Lemma (6.2.17) the function in the right‐hand side of (All) converges pointwisely to 

𝑊∗(𝛻𝑔)𝑔−𝑎 as ℎ → 0. Moreover, since 𝛾(𝑎 − 1) > 𝑛, by Lemma (6.2.20) it is bounded 

uniformly in ℎ by an integrable function. Hence, by the Lebesgue‐dominated convergence 

Theorem the left‐hand side of (All) converges (when ℎ → 0) to 

(𝑎 − 1)∫ 𝑊∗

ℝ+
𝑛

(𝛻𝑔)𝑔−𝑎. 

The proof is complete. 

We only give the result and conditions for the ℝ𝑛 case. 

We let 𝑔, 𝑊 : ℝ𝑛 → (0,+∞) such that 𝑔 is 𝐶1 and ∫ 𝑔−𝑛 = ∫ 𝑊−𝑛 = 1. 

Definition (6.2.22)[203]. Let  𝑛: ℝ𝑛 → (0,+∞) and 𝑊 : ℝ𝑛 → (0,+∞) . We say that the 
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couple (𝑔,𝑊) belongs to ℱ𝑛 with 𝑎 ≥ 𝑛(𝑎 > 1 if 𝑛 = 1) if the following four conditions 

are satisfied for some 𝑦: 

(C1) 𝛾 >  max {
𝑛

𝑎−1
, 1}. 

(C2) There exists a constant 𝐴 > 0 such that 𝑊(𝑥) ≥ 𝐴|𝑥|𝛾 for all 𝑥 ∈ ℝ𝑛. 

(C3) There exists a constant 𝐵 > 0 such that |𝛻𝑔(𝑥)| ≤ 𝐵(|𝑥|𝛾−1 + 1) for all 𝑥 ∈ ℝ𝑛. (C4) 

There exists a constant 𝐶 such that 𝐶(|𝑥|𝛾 + 1) ≤ 𝑔(𝑥) for all 𝑥 ∈ ℝ𝑛. 

Theorem (6.2.23)[203]. Assume that the couple (𝑔,𝑊) is in ℱ𝑎. Then, the derivative at 

ℎ = 0 of the map 

(0,+∞) ∋ ℎ ↦ ∫ 𝑜ℎ
𝑊 (𝑔)1−𝑎 

is equal to 

(1 − 𝑎)∫
𝑊∗(𝛻𝑔)

𝑔𝑎
. 

Section (6.3): Convex Cones and Convex Domains 

The classical Sobolev inequality states that, for any function 𝑓 sufficiently smooth 

and decaying fast enough at infinity, defined on the Euclidean space ℝ𝑛 with 𝑛 ≥ 2 (for 

instance, 𝑓 ∈ 𝐶𝑐
∞(ℝ𝑛)), and for any 𝑝 ∈ [1, 𝑛), 

‖𝑓‖
𝐿𝑝
∗
(R𝑛)

≤ 𝐶‖𝛻𝑓‖𝐿𝑝(R𝑛), 𝑝
∗ =

𝑝𝑛

𝑛 − 𝑝
,                       (88) 

Furthermore, equality is reached in inequality (87) if 𝑓 can be written 

𝑓(𝑥) = (1 + ‖𝑥‖𝑝/(𝑝−1))
𝑝−𝑛
𝑝  

up to a translation, a rescaling, and multiplication by a constant, where ‖. ‖ is the Euclidean 

norm. This was proved by Talenti [178] and Aubin [170] independently for 𝑝 = 2. The 

Sobolev inequality can be seen as a corollary of a more general inequality, the Gagliardo‐

Nirenberg inequality, which states that 

‖𝑓‖𝐿𝑞(R𝑛) ≤ 𝐶‖𝛻𝑓‖𝐿𝑝(R𝑛)
𝜃 ‖𝑓‖𝐿𝑟(R𝑛)

1−𝜃 ,                       (88) 

for any 𝑝 ∈ [1, 𝑛), 𝑞, 𝑟 ∈ [1,+∞], 𝜃 ∈ [0,1] such that 

1

𝑞
= (

1 1
− − −
𝑝 𝑛

)  𝜃 +
1−𝜃

𝑟
; 

whence the case 𝜃 = 1 is exactly the Sobolev inequality. This family of inequalities has 

been notably investigated by del Pino and Dolbeault [8], who, studying the 1‐parameter sub‐

family given by 𝑝 = 2 and 𝑟 = 𝑞/2 + 1, have not only found an explicit sharp constant, but 

also proved that there is equality if, and only if, 𝑓 has the form 

𝑓(𝑥) = (1 + ‖𝑥‖2)
2
2−𝑞 

up to, once again, a translation, a rescaling, and multiplication by a constant. 
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   As Bobkov and Ledoux [114] showed, these sharp inequalities can be reached within the 

framework of the Brunn‐Minkovski theory [177]. With this approach, the sharp inequality 

follows in the more general case where the Euclidean norm is replaced by a generic norm 

on ℝ𝑛, which is a result already proved by Cordero‐Erausquin, Nazaret, and Villani using 

optimal transport [173]. This makes sense, since the Brunn‐Minkovski inequality directly 

implies the isoperimetric inequality, which is famously equivalent to the sharp Sobolev 

inequality with 𝑝 = 1 (for a nice overview on this subject, see Osserman’s article on the 

isoperimetric inequality [87]). 

   The key tool Bobkov and Ledoux use is an extended Borell‐Brascamp‐Lieb inequality, a 

quick proof of which using optimal transport is given by Bolley, Cordero‐Erausquin, Fujita, 

Gentil and Guillin [81]. Let us state the Brunn‐Minkoski inequality: for any compact 

nonempty subsets 𝐴 and 𝐵 in ℝ𝑛, and any 𝑡 ∈ [0,1] 

|𝑡𝐴 + (1 − 𝑡)𝐵|1/𝑛 ≥ 𝑡|𝐴|1/𝑛 + (1 − 𝑡)|𝐵|1/𝑛, 
where |. | denotes the Lebesgue measure on ℝ𝑛. This is to say that the volume, to the power 

1/𝑛, is concave with respect to the Minkowski sum, defined by 𝐴 + 𝐵 = {𝑎 + 𝑏, (𝑎, 𝑏) ∈

𝐴 × 𝐵}. The classical Borell‐Brascamp‐Lieb inequality [4], [5], just like the isoperimetric 

inequality, follows from the Brunn‐Minkowski inequality. It is, in some sense, its functional 

counterpart: let 𝑡 ∈ [0,1] and 𝑢, 𝑣, 𝑤:ℝ𝑛 → (0;+∞] such that for all 𝑥, 𝑦 ∈ ℝ𝑛, 

𝑤((1 − 𝑡)𝑥 + 𝑡𝑦) ≤ ((1 − 𝑡)(𝑢(𝑥))
−1/𝑛

+ 𝑡(𝑣(𝑦))
−1/𝑛

)
−𝑛

 

then 

∫𝑤
 

 

≥  min (∫𝑢
 

 

, ∫𝑣
 

 

). 

Playing with the exponents and normalizing this inequality gives the following 

reformulation of the Borell‐Brascamp‐Lieb inequality: let , 𝑊, and 𝐻 : ℝ𝑛 → (0,+∞], and 

𝑡 ∈ [0,1], such that ∫ 𝑔−𝑛
 

 
= ∫ 𝑊−𝑛 

 
= 1 and 

∀𝑥, 𝑦 ∈ ℝ𝑛, 𝐻((1 − 𝑡)𝑥 + 𝑡𝑦) ≤ (1 − 𝑡)𝑔(𝑥) + 𝑡𝑊(𝑦) 

then 

∫𝐻−𝑛
 

 

≥ 1.                                                            (89) 

Applying this inequality to the greatest function 𝐻 meeting these criteria allows us to prove 

that 

∫𝑊∗
 

 

(𝛻𝑔)𝑔−𝑛−1 ≥ 0,                                                (90) 

where 𝑊∗ is the Legendre transform of 𝑊. This inequality, turns out to be equivalent to the 

Borell-Brascamp-Lieb inequality we use here. This might look like it is to be expected, 

because of the semigroup structure that underlies the theorem, but is actually a little bit 

surprising, because said semigroup is not quite linear. 

   Inequality (90) can, in turn, be used to prove sharp Sobolev‐type inequalities, but in the 
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end proves to be limited as it does not allow to reach the full range of Gagliardo‐Nirenberg 

inequalities showcased by del Pino and Dolbeault [174]. Thus, a better inequality to work 

with is the following extension of the Borell‐Brascamp‐Lieb inequality, which was proved 

by Bolley et al. [81]. 

Theorem (6.3.1)[218]: Let 𝑛 ≥ 2, and 𝑡 ∈ [0,1]. Let , 𝑊, and 𝐻 : ℝ𝑛 → (0,+∞] be 

measurable functions such that ∫ 𝑔−𝑛
 

 
= ∫ 𝑊−𝑛 

 
= 1 and 

∀𝑥, 𝑦 ∈ ℝ𝑛, 𝐻((1 − 𝑡)𝑥 + 𝑡𝑦) ≤ (1 − 𝑡)𝑔(𝑥) + 𝑡𝑊(𝑦)                      (91) 

then 

∫𝐻1−𝑛
 

 

≥ (1 − 𝑡)∫𝑔1−𝑛
 

 

+ 𝑡∫𝑊1−𝑛
 

 

. 

   With this theorem, we are able to prove sharp trace‐Sobolev inequalities on convex 

domains. We prove sharp trace Sobolev in some convex domains, and sharp trace Gagliardo‐

Nirenberg inequalities in convex cones. In what follows, ‖. ‖ is a norm on ℝ𝑛, and ‖. ‖∗ is 

the dual norm, defined by ‖𝑥‖∗ = sup‖𝑦‖=1𝑥 ⋅ 𝑦. In 𝐿𝑞 norms of vector functions, the dual 

norm ‖. ‖∗ will be used. Let  𝜑: ℝ𝑛−1 → ℝ be a convex function such that 𝜙(0) = 0. We 

consider functions defined on 𝜙’s epigraph, that is 𝛺 = {(𝑥1, 𝑥2) ∈ ℝ
𝑛−1 × ℝ, 𝑥2 ≥

𝜙(𝑥1)}. We say that 𝛺 is a convex cone whenever 𝜙 is positive homogeneous of degree 1: 

for all 𝑡 > 0 and 𝑥1 ∈ ℝ
𝑛−1, 𝜙(𝑡𝑥1) = 𝑡𝜙(𝑥1) . 

Theorem (6.3.2))[218]: Let 𝑎 ≥ 𝑛 > 𝑝 > 1, and 𝛺 = {(𝑥1, 𝑥2) ∈ ℝ
𝑛−1 ×ℝ, 𝑥2 ≥ 𝜙(𝑥1)} 

be a convex cone. There exists a positive constant 𝐷𝑛,𝑝,𝑎(𝛺) such that for any non‐negative 

function 𝑓 ∈ 𝐶𝑐
∞(𝛺) , 

(∫ 𝑓𝑞
 

R𝑛−1
(𝑥, 𝜙(𝑥))d𝑥)

1/𝑞

≤ 𝐷𝑛,𝑝,𝑎(𝛺)‖𝛻𝑓‖𝐿𝑝(𝛺)
𝜃 ‖𝑓‖𝐿q(𝛺)

1−𝜃 ,             (92) 

where 

𝜃 =
𝑎 − 𝑝

𝑝(𝑎 − 𝑛 − 1) + 𝑛
, 𝑞 = 𝑝

𝑎 − 1

𝑎 − 𝑝
. 

Furthermore, when 𝑓(𝑥) = ‖(𝑥1, 𝑥2 + 1)‖
−
𝑎−p

𝑝−1, then (92) is an equality. 

The fact that there exists a function for which the equality is reached means that the constant 

𝐷𝑛,𝑝,𝑎(𝛺) may be computed explicitly. Choosing 𝑎 = 𝑛, Theorem (6.3.2) immediately 

yields the sharp trace Sobolev inequality as a corollary: 

Corollary (6.3.3))[218]: Let 𝑛 > 𝑝 > 1, and 𝛺 = {(𝑥1, 𝑥2) ∈ ℝ
𝑛−1 × ℝ, 𝑥2 ≥ 𝜙(𝑥1)} be a 

convex cone. There exists a positive constant 𝐷𝑛,𝑝(𝛺) = 𝐷𝑛,𝑝,𝑛(𝛺) such that for any non‐

negative function 𝑓 ∈ 𝐶𝑐
∞(𝛺) , 
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(∫ 𝑓
𝑝
𝑛−1
𝑛−𝑝

 

R𝑛−1
(𝑥, 𝜙(𝑥))d𝑥)

𝑛−p
p(𝑛−1)

≤ 𝐷𝑛,𝑝(𝛺)‖𝛻𝑓‖𝐿𝑝(𝛺),            (93) 

Furthermore, when 𝑓(𝑥) = ‖(𝑥1, 𝑥2 + 1)‖
−
𝑛−p

p−1, then (93) is an equality. 

The case 𝛺 = ℝ+
𝑛  has already been studied by Nazaret [10]. 

If we only assume 𝛺 to be convex, we prove, under some growth criteria on 𝛺, the following 

sharp weighted trace Sobolev inequality: 

Theorem (6.3.4)[218]: Let 𝑛 > 𝑝 > 1, and 𝛺 = {(𝑥1, 𝑥2) ∈ ℝ
𝑛−1 × ℝ, 𝑥2 ≥ 𝜙(𝑥1)} be a 

convex set. There exists a positive constant 𝐷𝑛,𝑝
′ (𝛺) such that for any nonnegative function 

𝑓 ∈ 𝐶𝑐
∞(𝛺) , 

∫ 𝑓
𝑝
𝑛−1
𝑛−𝑝

 

R𝑛−1
(𝑥1, 𝜙(𝑥1))𝑃(𝑥1)d𝑥1 ≤ 𝐷𝑛,𝑝

′ (𝛺) (∫‖
 

𝛺

𝛻𝑓‖∗
𝑝
)

𝑛−1
𝑛−𝑝

       (94) 

where (𝑥1) = 1 + 𝜙(𝑥1) − 𝑥1 ⋅ 𝛻𝜙(𝑥1) . Furthermore, when 𝑓(𝑥) = ‖(𝑥1, 𝑥2 + 1)‖
−
𝑛−p

𝑝−1, 

then (94) is an equality. 

   Once again, 𝐷𝑛,𝑝
′ (𝛺) can be computed explicitly. This inequality may be surprising, since 

the weight 𝑃 can (and usually is, whenever 𝛺 is not a cone) negative outside a compact 

neighbourhood of 0, but it is still sharp. For instance, with the set defined by 𝜙(𝑥) = ‖𝑥‖2, 

the weight becomes 𝑃(𝑥) = 1 − ‖𝑥‖2, which happens to be negative outside the unit ball. 

One may define 𝜕𝛺+ ⊂ 𝜕𝛺 such that 𝜕𝛺+ = {(𝑥1, 𝜙(𝑥1)), 𝑃(𝑥1) > 0}. In that case, 

inequality (94) restricted to functions 𝑓 ∈ 𝐶𝑐
∞(∪ 𝜕𝛺+) becomes a regular weighted 

inequality, with a positive weight. We first study the infimal convolution, which is the key 

tool in the proof of Theorems (6.3.2) and (6.3.4). Once some crucial properties are 

established, we prove the Claim (6.3.19)ed equivalence between the classical Borell‐

Brascamp‐Lieb inequality (89) and its differentiated formulation (90), within some 

limitations. we move on to prove the main Theorems (6.3.2) and (6.3.4), starting from an 

improved version of the Borell‐Brascamp‐Lieb inequality. The technical details, which will 

be glided, can be found in the comprehensive 

Let 𝑡 ∈ [0,1) . To use Theorem (6.3.1), instead of considering any 𝐻 such that 

∀𝑥, 𝑦 ∈ ℝ𝑛, 𝐻((1 − 𝑡)𝑥 + 𝑡𝑦) ≤ (1 − 𝑡)𝑔(𝑥) + 𝑡𝑊(𝑦) , 

we may well choose the greatest such function. That is, 

𝐻(𝑧) =   inf  {(1 − 𝑡)𝑔(𝑥) + 𝑡𝑊(𝑦)}, 
(1 − 𝑖)𝑥 + 𝑡𝑦 = 𝑧𝑥𝑦 ∈ R𝑛 

or, writing ℎ = 𝑡/(1 − 𝑡) , 

𝐻(𝑧)

1 − 𝑡
=  inf {𝑔 (

𝑧

1 − 𝑡
− ℎ𝑦) + ℎ𝑊(𝑦)}. 



246 

This formula, being explicit, allows for some properties to be brought to light. It motivates 

the definition, and the study, of the so‐called infimal convolution: 

Definition (6.3.5)[218]: Let , 𝑔:ℝ𝑛 → ℝ∪ {+∞}. Their infimal convolute 𝑓□𝑔:ℝ𝑛 → ℝ∪
{+∞} is defined by 

(𝑓𝑔)(𝑥) =  inf {𝑓(𝑦) + 𝑔(𝑧), 𝑦 + 𝑧 = 𝑥} =  inf {𝑓(𝑦) + 𝑔(𝑥 − 𝑦)}. 

The infimal convolution of 𝑓 with 𝑔 is said to be exact at 𝑥 if the infimum is achieved, and 

exact if it is exact everywhere. 

   With this definition, and whenever ℎ = 𝑡/(1 − 𝑡) > 0, the greatest function 𝐻 in Theorem 

(6.3.1) is given by 

𝐻(𝑧) = (1 − 𝑡) inf {𝑔 (
𝑧

1−𝑡
− 𝑦) + ℎ𝑊(𝑦/ℎ)} = (1 − 𝑡)(𝑔□ℎ𝑊(./ℎ))(𝑧/(1 − 𝑡)) , 

we thus define 

𝑄ℎ
𝑊(𝑔) = 𝑔□ℎ𝑊(./ℎ) = 𝑥 ↦  inf {𝑔(𝑥 − 𝑦) + ℎ𝑊(𝑦/ℎ)}. 

Using 𝑄ℎ
𝑊 in Theorem (6.3.1), inequality (91) becomes 

∫𝑄ℎ
𝑊

 

 

(𝑔)1−𝑛 ≥ ∫𝑔1−𝑛
 

 

+ ℎ∫𝑊1−𝑛
 

 

                  (95) 

but there exists a slightly more general version of this inequality, namely Theorem (6.3.16). 

To begin with, let us first showcase some properties of the infimal convolution. Here to build 

some intuition about infimal convolution, before proving specific results useful for the study 

of 𝑄ℎ
𝑊 . 

Definition (6.3.6)[218]: With any function 𝑓:ℝ𝑛 → ℝ∪ {+∞}, we associate its 

   ∙ essential domain (usually shortened to domain), dom 𝑓 = {𝑥 ∈ ℝ𝑛 , 𝑓(𝑥) < +∞}; 

   ∙ epigraph, epi 𝑓 = {(𝑥, 𝛼) ∈ ℝ𝑛 ×ℝ, 𝑓(𝑥) ≤ 𝛼}; 

   ∙ strict epigraph, epi𝑠𝑓 = {(𝑥, 𝛼) ∈ ℝ
𝑛 ×ℝ, 𝑓(𝑥) < 𝛼}. 

Furthermore, the function 𝑓 is said to be proper if it is not equal to the constant +∞. 

   With these definitions, we highlight in the next proposition the link between infimal 

convolution of functions and Minkowski sum of sets, classically defined for two sets 𝐴, 𝐵 

by 𝐴 + 𝐵 = {𝑎 + 𝑏, (𝑎, 𝑏) ∈ 𝐴 × 𝐵}. 

Proposition (6.3.7)[218]: Let , 𝑔:ℝ𝑛 → ℝ∪ {+∞}. Then 

   ∙ dom 𝑓□𝑔 = dom 𝑓 + dom 𝑔; 

   ∙ epi𝑠𝑓□𝑔 = epi𝑠𝑓 + epi𝑠𝑔; 

   ∙ epi 𝑓□𝑔 ⊃ epi 𝑓 + epi 𝑔, and equality holds if, and only if, the infimal convolution is 

exact at each 𝑥 ∈ dom 𝑓□𝑔. 

Proof of this proposition and more in‐depth details on infimal convolutions can be found in 

Thomas Strömberg’s thesis [13]. The more delicate question of regularity of the infimal 

convolution is only addressed  in the particular study of 𝑄ℎ
𝑊(𝑔) . That is because there is 

not one natural set of assumptions ensuring regularity, so it really depends on the goal, 

which, here, is that 𝑄ℎ
𝑊(𝑔) should be smooth enough to prove Sobolev inequalities. We only 

prove the following lemma in the most general case, since it is very useful. 

Lemma (6.3.8)[218]: Let 𝑓, 𝑔:ℝ𝑛 → ℝ∪ {+∞} be lower semicontinuous functions. If 𝑓 is 

nonnegative and 𝑔 is coercive, that is, 
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lim
‖𝑥‖→+∞

 𝑔(𝑥) = +∞, 

then 𝑓□𝑔 is exact. 

Proof. Fix 𝑥 ∈ ℝ𝑛. Consider 𝜓 ∶  ℝ𝑛 → ℝ∪ {+∞}, 𝑦 ↦ 𝑓(𝑥 − 𝑦) + 𝑔(𝑦) and assume that 

there exists 𝑦0 such that 𝜓(𝑦0) < +∞:𝜓 is lower semicontinuous, and greater than 𝑔, thus 

tends to +∞ as ‖𝑦‖ goes to +∞. As such, {𝑦 ∈ ℝ𝑛, 𝜓(𝑦) ≤ 𝜓(𝑦0)} is closed and bounded, 

thus compact. Now, let (𝑦𝑛) ⊂ {𝜓 ≤ 𝜓(𝑦0)} be a minimizing sequence, lim
𝑛→+∞

𝜓 (𝑦𝑛) =

inf𝑦∈R𝑛{𝜓(𝑦)}. By compactness, we can assume that the sequence (𝑦𝑛) converges towards 

𝑧 ∈ ℝ𝑛, and by lower semicontinuity, −∞ < 𝜓(𝑧) ≤ lim
𝑛→+∞

𝜓 (𝑦𝑛) = inf𝑦∈R𝑛{𝜓(𝑦)}, thus 

the infimum is finite and is actually a minimum. If such a 𝑦0 does not exist, then 𝑓□𝑔(𝑥) =

+∞, and the infimum is also reached.  

We begin here the specific study of 𝑄ℎ
𝑊(𝑔) = 𝑔□ℎ𝑊(./ℎ) . The study of the 

regularity of 𝑄ℎ
𝑊(𝑔) with respect to ℎ > 0 is crucial, because we would like to differentiate 

inequality (95) with respect to ℎ. Let us first state some classical results about the Legendre 

transform. The proofs can be found in Evans’ book, [9], and Brézis’ book, [6]. 

Definition (6.3.9)[218]: The Legendre transform of 𝑊 is defined by 

𝑊∗(𝑦) =  sup {𝑥 ⋅ 𝑦 −𝑊(𝑥)} ∈ ℝ. 

   By definition, 𝑊∗ is a lower semicontinuous convex function, but it is not always proper. 

For 𝑊∗ to be well behaved, we have to assume a little bit more about 𝑊. In fact, it is enough 

to assume 𝑊 to be lower semicontinuous: indeed, if  𝑊: ℝ𝑛 → ℝ∪ {+∞} is a lower 

semicontinuous proper convex function, then 𝑊∗ is also a lower semicontinuous proper 

convex function, and (𝑊∗)∗ = 𝑊. The infimal convolution is not only closely related to 

Minkovski sums, but also to Legendre transforms, as the next lemma shows. 

Lemma (6.3.10)[218]: Let 𝑔,𝑊:ℝ𝑛 → (−∞,+∞] be two measurable functions. If 𝑔 is 

nonnegative and almost everywhere differentiable on its domain dom 𝑔 = 𝛺0 (with 

nonempty interior), and 𝑊 grows superlinearly, 

lim
|𝑥|→+∞

𝑊(𝑥)

|𝑥|
= +∞, 

then for almost every 𝑥 ∈ 𝛺0
o, ℎ ↦ 𝑄ℎ

𝑊(𝑔)(𝑥) is differentiable at ℎ = 0, and 

𝜕

𝜕ℎ
|ℎ=0𝑄ℎ

𝑊(𝑔)(𝑥) = −𝑊∗(𝛻𝑔(𝑥)) , 

where 𝑊∗ is the Legendre transform of 𝑊. 

Proof. Let 𝛺1 = dom 𝑊, and fix 𝑥 ∈ 𝛺0
o such that the differential of 𝑔 at 𝑥 exists. Let 𝑦 ∈

𝛺1. For ℎ > 0 sufficiently small, 𝑥 − ℎ𝑦 ∈ 𝛺0, and we get, by definition of 𝑄ℎ
𝑊(𝑔) , 

𝑄ℎ
𝑊(𝑔)(𝑥) − 𝑔(𝑥)

ℎ
≤
𝑔(𝑥 − ℎ𝑦) − 𝑔(𝑥)

ℎ
+𝑊(𝑦) . 

Taking the superior limit when ℎ → 0 yields 
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lim
ℎ→
 sup 

𝑄ℎ
𝑊(𝑔)(𝑥) − 𝑔(𝑥)

ℎ
≤ −𝛻𝑔(𝑥) ⋅ 𝑦 +𝑊(𝑦) . 

This being true for any 𝑦 ∈ 𝛺1, we may take the infimum to find that 

lim
ℎ→
 sup 

𝑄ℎ
𝑊(𝑔)(𝑥) − 𝑔(𝑥)

ℎ
≤ −𝑊∗(𝛻𝑔(𝑥)) . 

Conversely, fix 𝑒 ∈ 𝛺1, and ℎ0 > 0 such that 𝐵(𝑥, ℎ0‖𝑒‖) ∈. For ℎ ∈ (0, ℎ0) , define 

𝛺𝑥,ℎ = {𝑦 ∈ 𝛺1, ℎ𝑊(𝑦) ≤ 𝑔(𝑥 − ℎ𝑒) + ℎ𝑊(𝑒)}; 

note that 𝑒 ∈ 𝛺𝑥,ℎ. We Claim (6.3.19) that lim
ℎ→∞

supℎ→0 {ℎ‖𝑦‖, 𝑦 ∈ 𝛺𝑥,ℎ} = 0. Indeed, if 𝑦 ∈

𝛺𝑥,ℎ, then 

ℎ‖𝑦‖
𝑊(𝑦)

‖𝑦‖
≤ 𝑔(𝑥 − ℎ𝑒) + ℎ𝑊(𝑒) ≤

𝑧∈
 sup 

𝐵(𝑥,ℎ0‖𝑒‖)
𝑔(𝑧) + ℎ0𝑊(𝑒) . 

Now, when ℎ goes to 0, either lim
 
 sup ‖𝑦‖ < +∞, or lim

 
 sup ‖𝑦‖ = +∞; in both cases, 

since lim
|𝑦|→+∞

𝑊(𝑦)

‖𝑦‖
= +∞, the Claim (6.3.19) is proved. Notice now that for all ℎ ∈ (0, ℎ0), 

𝑄ℎ
𝑊(𝑔)(𝑥) ≤ 𝑔(𝑥 − ℎ𝑒) + ℎ𝑊(𝑒) , hence 𝑄ℎ

𝑊(𝑔)(𝑥) = inf𝑦∈𝛺𝑥,ℎ{. . . }. Thus, 

𝑄ℎ
𝑊(𝑔)(𝑥) − 𝑔(𝑥)

ℎ
= inf
𝑦∈Ω𝑥,𝑘

 {
𝑔(𝑥 − ℎ𝑦) − 𝑔(𝑥)

ℎ
+𝑊(𝑦)} 

= inf
𝑦∈Ω𝑥,𝑘

{−𝛻𝑔(𝑥) ⋅ 𝑦 + 𝑦 ⋅ 𝜀𝑥(ℎ𝑦) +𝑊(𝑦)} 

where 𝜀𝑥(𝑧) → 0 when ‖𝑧‖ → 0. Let 1 ≥ 𝜂 > 0; the Claim (6.3.19) proves that there exists 

ℎ𝜂 ∈ (0, ℎ0) such that for all 0 < ℎ < ℎ𝜂 , ∀𝑦 ∈ 𝛺𝑥,ℎ , ‖𝜀𝑥(ℎ𝑦)‖ ≤ 𝜂. Thus, 

𝑄ℎ
𝑊(𝑔)(𝑥) − 𝑔(𝑥)

ℎ
≥  inf

𝑦∈Ω𝑥,𝑘
{−𝛻𝑔(𝑥) ⋅ 𝑦 − 𝜂‖𝑦‖ +𝑊(𝑦)} 

= inf
𝑦∈Ω𝑥,𝑘
𝑦∈𝐵(0,𝑅)

{. . . } 

≥ inf
𝑦∈Ω𝑥,𝑘

{−𝛻𝑔(𝑥) ⋅ 𝑦 +𝑊(𝑦)} − 𝑅𝜂 

≥ −𝑊∗(𝛻𝑔(𝑥)) − 𝑅𝜂, 

where 𝑅 was chosen such that ‖𝑦‖ ≥ 𝑅 ⇒ 𝑊(𝑦) ≥ (‖𝛻𝑔(𝑥)‖ + 1)‖𝑦‖ +𝑊(𝑒) − 𝛻𝑔(𝑥) ⋅

𝑒. Finally, taking the inferior limit of this inequality, and noticing that the result stays true 

for any 0 < 𝜂 ≤ 1, we may conclude (since 𝑅 is independent from 𝜂) that 

lim
ℎ→0

𝑄ℎ
𝑊(𝑔)(𝑥)−𝑔(𝑥)

ℎ
= −𝑊∗(𝛻𝑔(𝑥)) . 
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   This differentiation result is enough to prove the main theorems contained but we can go 

a little bit further with more assumptions on 𝑔 and 𝑊. Assuming 𝑊 to be convex bestows 

upon 𝑄ℎ
𝑊 a semigroup structure: 

Lemma (6.3.11)[218]: Assume that  𝑔: ℝ𝑛 → [0,+∞] is lower semicontinuous, and that 𝑊 

is a lower semicontinuous proper convex function such that lim𝑊 (𝑥) = +∞. Then, for all 

𝑥 ∈ ℝ𝑛 and 0 < 𝑠 < ℎ, 

𝑄ℎ
𝑊(𝑔)(𝑥) = min

𝑦∈ℝ𝑛
  {𝑔(𝑥 − ℎ𝑦) + ℎ𝑊(𝑦)} 

= 𝑄ℎ−𝑠
𝑊 (𝑄𝑠

𝑊(𝑔))(𝑥) . 

Proof. Exactness was already proved in Lemma (6.3.8). Notice that 

𝑄ℎ−𝑠
𝑊 (𝑄𝑠

𝑊(𝑔))(𝑥) =  inf
𝑦∈ℝ

inf
𝑧∈ℝ
 {𝑔(𝑥 − (ℎ − 𝑠)𝑦 − 𝑠𝑧) + (ℎ − 𝑠)𝑊(𝑦) + 𝑠𝑊(𝑧)} 

≤ inf
𝑦∈ℝ
 {𝑔(𝑥 − ℎ𝑦) + ℎ𝑊(𝑦)} = 𝑄ℎ

𝑊(𝑔)(𝑥) . 

Conversely, let 𝑦 ∈ ℝ𝑛, and choose 𝑧 ∈ ℝ𝑛 such that 

𝑄𝑠
𝑊(𝑔)(𝑥 − (𝑡 − 𝑠)𝑦) = 𝑔(𝑥 − 𝑠𝑧) + 𝑠𝑊(𝑧) . 

Then, by convexity, 

𝑄𝑡
𝑊(𝑔)(𝑥) ≤ 𝑔(𝑥 − (𝑡 − 𝑠)𝑦 − 𝑠𝑧) + 𝑡𝑊 (

𝑡 − 𝑠

𝑡
𝑦 +

𝑠

𝑡
𝑧) 

≤ 𝑔(𝑥 − (𝑡 − 𝑠)𝑦 − 𝑠𝑧) + (𝑡 − 𝑠)𝑊(𝑦) + 𝑠𝑊(𝑧) 

= (𝑡 − 𝑠)𝑊(𝑦) + 𝑄𝑠
𝑊(𝑔)(𝑥 − (𝑡 − 𝑠)𝑦) . 

Taking the infimum over 𝑦 ∈ ℝ𝑛 proves that 𝑄𝑡
𝑊(𝑔)(𝑥) ≤ 𝑄ℎ−𝑠

𝑊 (𝑄𝑠
𝑊(𝑔))(𝑥) , and thus 

there is equality.  

   We want to investigate if some kind of regularity is preserved under the operation of 

infimal convolution. The answer is yes, under certain specific conditions. We will also 

provide an example showcasing regularity loss, emphasizing the delicate nature of this 

question. Work on this subject already exists, notably in Evans’ book [175], where there is 

a global Lipschitz assumption, or in Villani’s book [179], where functions are bounded. 

However, such assumptions are at odds with the goals we aim for here, as ultimately, we 

want 𝑔−𝛼 to be integrable for some exponant 𝛼 > 0. 

 We study the case where 𝑔 and 𝑊 are finite everywhere. 

Lemma (6.3.12)[218]: Let 𝑔, 𝑊 : ℝ𝑛 → ℝ. If 𝑔 is nonnegative, locally Lipschitz continuous, 

and 𝑊 is convex and coercive, then (ℎ, 𝑥) ↦ 𝑄ℎ
𝑊(𝑔) is locally Lipschitz continuous. 

Proof. In order to prove the full local Lipschitz continuity, we must first localize the arginf 

of the infimal convolution. Fix 𝑝 > 0, 𝜂 > 0, and let 𝑥, 𝑥′ ∈ 𝐵(0, 𝜌) and 0 < ℎ < 𝜂. 

Consider the set 

𝛺𝑥,ℎ: = {𝑦 ∈ ℝ
𝑛, 𝑔(𝑥 − 𝑦) + ℎ𝑊(𝑦/ℎ) ≤ 𝑔(𝑥) + ℎ𝑊(0)}. 

We Claim (6.3.19) that, by positivity of 𝑔, and convexity of 𝑊, the set is bounded. Indeed, 

since 𝑊 is convex and coercive, there exists 𝑅 > 0 and 𝑚 > 0 such that 
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‖𝑦‖ > 𝑅 ⇒ 𝑊(𝑦) ≥ 𝑚‖𝑦‖. 
If 𝑦 ∈ 𝛺𝑥,ℎ, then either ‖𝑦‖ ≤ ℎ𝑅 ≤ 𝜂𝑅, or ‖𝑦‖ > ℎ𝑅 and then 𝑔(𝑥) + ℎ𝑊(0) ≥

ℎ𝑊(𝑦/ℎ) ≥ 𝑚‖𝑦‖. Invoking continuity of 𝑔, we may prove the Claim (6.3.19), and 

conclude that there exists 𝑅𝜌,𝜂 , independent from 𝑥 and ℎ, such that 𝛺𝑥,ℎ ⊂ 𝐵(0, 𝑅𝜌,𝜂) . 

 We prove the local Lipschitz continuity with respect to 𝑥. The functions 𝑔 and 𝑊 are 

assumed continuous, and so the infimal convolution is exact, and there exists 𝑦 ∈ ℝ𝑛 such 

that 𝑄ℎ
𝑊(𝑔)(𝑥) = 𝑔(𝑥 − 𝑦) + ℎ𝑊(𝑦/ℎ) . Necessarily, ‖𝑦‖ ≤ 𝑅𝜌,𝜂, so 

𝑄ℎ
𝑊(𝑔)(𝑥′) − 𝑄ℎ

𝑊(𝑔)(𝑥) =  inf {𝑔(𝑥’ − 𝑦′) + ℎ𝑊(𝑦′/ℎ)} − 𝑔(𝑥 − 𝑦) − ℎ𝑊(𝑦/ℎ) 

≤ 𝑔(𝑥’ − 𝑦) − 𝑔(𝑥 − 𝑦) 

≤ (Lip𝐵(0,𝜌+𝑅𝜌,𝜂)𝑔)‖𝑥 − 𝑥’‖, 

where Lip𝐴𝑓:= sup𝑥≠𝑥∈𝐴{|𝑓(𝑥) − 𝑓(𝑥
′)|/‖𝑥 − 𝑥′‖}. By symmetry, we conclude that 

|𝑄ℎ
𝑊(𝑔)(𝑥′) − 𝑄ℎ

𝑊(𝑔)(𝑥)| ≤ (Lip𝐵(0,𝜌+𝑅𝜌,𝜂)𝑔)‖𝑥 − 𝑥’‖, 

hence the local Lipschitz continuity with respect to 𝑥. 

Now, 

𝑄ℎ
𝑊(𝑔)(𝑥) − 𝑔(𝑥) =   inf

𝑦∈𝐵(0,𝑅𝜌,𝑛)
{𝑔(𝑥 − 𝑦) − 𝑔(𝑥) + ℎ𝑊(𝑦/ℎ)} 

≥ inf
𝑦∈𝐵(0,𝑅𝜌,𝑛)

 {− (Lip𝐵(0,𝜌+𝑅𝜌,𝜂)𝑔)‖𝑦‖ + ℎ𝑊(𝑦/ℎ)} 

= ℎ inf
𝑧∈𝐵(0,𝑅𝜌,𝑛/ℎ)

  {−𝜆‖𝑧‖ +𝑊(𝑧)} 

≥ −ℎ sup
𝑡∈(𝐵(0,𝜆)

  {𝜆‖𝑧‖ −𝑊(𝑧)} 

≥ −ℎ  sup  𝑊∗(𝑡) , 

where 𝜆 = Lip𝐵(0,𝜌+𝑅𝜌,𝜂)𝑔. Conversely, by definition, 

𝑄ℎ
𝑊(𝑔)(𝑥) − 𝑔(𝑥) ≤ ℎ𝑊(0) , 

and thus |𝑄ℎ
𝑊(𝑔)(𝑥) − 𝑔(𝑥)| ≤ 𝐶ℎ, where 𝐶 =  max {𝑊(0), sup𝑡∈𝐵(0,𝜆)𝑊

∗(𝑡)}. Note that 

𝐶 is finite because 𝑊∗ is, by definition, convex and finite on ℝ𝑛, thus continuous. Finally, 

using the semigroup property 𝑄ℎ+𝑠
𝑊 (𝑔) = 𝑄ℎ

𝑊(𝑄𝑠
𝑊(𝑔)) and the fact that the Lipschitz 

constant with respect to 𝑥 is uniformly bounded by Lip𝐵(0,𝜌+𝑅𝜌,𝜂) for 0 < ℎ < 𝜂, we may 

conclude for the full local Lipschitz continuity.  

   The above lemma is a slight generalization of the following proposition: 

Proposition (6.3.13)[218]: Let 𝑓, 𝑔 : ℝ𝑛 → ℝ be lower semicontinuous functions. If 𝑓 is 

nonnegative, locally Lipschitz continuous, and 𝑔 is coercive, then 𝑓□𝑔 is locally Lipschitz 

continuous. Here, we do not need any convexity assumption, which was only used to prove 
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Lipschitz continuity with respect to the (𝑛 + 1)th variable, ℎ. Also, note here that it is 

important for 𝑓 and 𝑔 to be finite everywhere, which will not. In order for 𝑓□𝑔 to be locally 

Lipschitz continuous, further assumptions are needed on 𝑓 and 𝑔, in particular on their 

domain. For example, if dom 𝑓 = {𝑥0}, then 𝑓□𝑔 = 𝑓(𝑥0) + 𝑔(. −𝑥0) , so it already seems 

necessary that both 𝑓 and 𝑔 be at least locally Lipschitz continuous. However, this is not 

sufficient. Consider for example the following functions 𝑓 and 𝑔, defined on ℝ2 by 

𝑓(𝑥1, 𝑥2) = {
1 if 𝑥1 ∈ [0,1], 𝑥2 = 0,

1 − 𝑥2 if 𝑥1 = 0, 𝑥2 ∈ [0,1],
+oo otherwise,

 

And 

𝑔(𝑥1, 𝑥2) = {
0 if 𝑥1 ∈ [0,1], 𝑥2 = 0,
+∞ otherwise,

 

then 

(𝑓□𝑔)(𝑥1, 𝑥2) = {

1 if 𝑥1 ∈ (0,1], 𝑥2 ∈ [0,1],
1 − 𝑥2 𝑖𝑓 𝑥1 =  𝑥2  ∈ [0,1]
0 𝑖𝑓 𝑥1 =  𝑥2  ∈ [1,2]

+∞ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

is not a continuous function. This example can easily be adapted to obtain a discontinuous 

infimal convolution for smooth functions 𝑓 and 𝑔. We conjecture that if the domain is 

assumed convex, and if both functions are Lipschitz continuous, and their domain is of non‐

empty interior, then their infimal convolution is Lipschitz continuous. 

   Lemma (6.3.12), together with Lemma (6.3.10) and Rademacher’s theorem, prove the 

following proposition: 

Proposition (6.3.14))[218]: Let 𝑔,𝑊:ℝ𝑛 → ℝ. If 𝑔 is nonnegative, locally Lipschitz 

continuous, and 𝑊 is convex and grows superlinearly, 

lim
|𝑥|→+∞

𝑊(𝑥)

|𝑥|
= +∞, 

then, for almost every ℎ ≥ 0 and 𝑥 ∈ ℝ𝑛, 

𝜕

𝜕ℎ
𝑄ℎ
𝑊(𝑔)(𝑥) = −𝑊∗ (𝛻𝑄ℎ

𝑊𝑔(𝑥)) . 

We prove an interesting equivalence between the classical Borell‐BrascampLieb inequality 

and its differentiated expression, as announced in the introduction. It is also a good 

presentation of what is to come. 

Proposition (6.3.15)[218]: Let 𝑔, 𝑊 : ℝ𝑛 → ℝ. If 𝑔 is nonnegative, locally Lipschitz 

continuous, and 𝑊 is convex and grows superlinearly, 

lim
|𝑥|→+∞

𝑊(𝑥)

|𝑥|
= +∞, 

and are such that ∫ 𝑔−𝑛
 

 
= ∫ 𝑊−𝑛 

 
= 1, and if (𝑔,𝑊) is admissible in the sense of 

Definition (6.3.21), then the following statements are equivalent: 

𝑎. The Borell‐Brascamp‐Lieb inequality holds: for every 𝑡 ∈ [0,1] and  𝐻: ℝ𝑛 → ℝ such 

that 
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∀𝑥, 𝑦 ∈ ℝ𝑛, 𝐻((1 − 𝑡)𝑥 + 𝑡𝑦) ≤ (1 − 𝑡)𝑔(𝑥) + 𝑡𝑊(𝑦) , 

there holds 

∫𝐻−𝑛
 

 

≥ 1. 

𝑏. The following inequality stands: 

∫
𝑊∗(𝛻𝑔)

𝑔𝑛+1

 

 

≥ 0. 

Proof. By definition of the infimal convolution 𝑄ℎ
𝑊(𝑔) , it is actually sufficient to only 

consider the function 𝐻 = (1 − 𝑡)𝑄ℎ
𝑊(𝑔)(. /(1 − 𝑡)) , where ℎ = 𝑡/(1 − 𝑡) , in statement 

𝑎. In fact, this leads to the statement 𝑎 

∫𝑄ℎ
𝑊

 

 

(𝑔)−𝑛 ≥ 1, 

which we prove is equivalent to 𝑏. Let us consider the function 𝜑: ℎ ↦ ∫ 𝑄ℎ
𝑊 

 
(𝑔)−𝑛, which 

is continuous and almost everywhere differentiable in light of Lemma (6.3.12) and Theorem 

(6.3.22). Its derivative is given by 

𝜑′(ℎ) = 𝑛∫
𝑊∗(𝛻𝑔)

𝑔𝑛+1

 

 

. 

The implication 𝑎′. ⇒ 𝑏. follows from the fact that 𝜑(0) = 1, and 𝜑(ℎ) ≥ 1 for ℎ ≥ 0. 

Then, necessarily, 𝜑′(0) ≥ 0. Conversely, assume that 𝑏. holds. Then, whenever ℎ > 0 is 

such that 𝜑(ℎ) = ∫ 𝑄ℎ
𝑊 

 
(𝑔)−𝑛 = 1, statement 𝑏. applied to the function �̃� = 𝑄ℎ

𝑊(𝑔) and 

the corresponding function �̃� implies that �̃�′(0) = 𝜑′(ℎ) ≥ 0 thanks to the semigroup 

property proved in Lemma (6.3.11). This, together with the fact that 𝜑(0) = 1, proves that 

𝜑 stays above 1, which is exactly statement 𝑎.  Once again, we insist on the fact that the 

semigroup 𝑄ℎ
𝑊 is not linear, and not Markov, which means, in particular, that there is no 

mass conservation. As such, this result stands as a bit unusual among similar results. Bolley 

et al. [3], the dynamical formulation of Borell‐Brascamp‐Lieb inequality. 

Theorem (6.3.16)[218]: Let 𝑎 > 1 and 𝑛 ∈ ℕ∗ such that 𝑎 ≥ 𝑛, and 𝑔, 𝑊 : ℝ𝑛 → (0,+∞] 

be measurable functions such that ∫ 𝑔−𝑎
 

 
= ∫ 𝑊−𝑎 

 
= 1. Then, for any ℎ ≥ 0, 

(1 + ℎ)𝑎−𝑛∫ 𝑄ℎ
𝑊

 

Rn
(𝑔)1−𝑎 ≥ ∫ 𝑔1−𝑎

 

R𝑛
+ ℎ∫ 𝑊1−𝑎

 

R𝑛
, (96) 

where 

𝑄ℎ
𝑊(𝑔)(𝑥) =  inf {𝑔(𝑥 − ℎ𝑦) + ℎ𝑊(𝑦)} ∈ (0,+∞]. 

Furthermore, when 𝑔 is equal to 𝑊 and is convex, there is equality. 

To see that there is equality whenever 𝑔 = 𝑊 is convex, fix 𝑥 ∈ ℝ𝑛. For any 𝑦 ∈ ℝ𝑛, since 

𝑥

1+ℎ
=

1

1+ℎ
(𝑥 − ℎ𝑦) +

ℎ

1+ℎ
𝑦, 
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(1 + ℎ)(
𝑊(𝑥 − ℎ𝑦)

1 + ℎ
+

ℎ

1 + ℎ
𝑊(𝑦)) ≥ (1 + ℎ)𝑊 (

𝑥

1 + ℎ
) . 

Conversely, 𝑄ℎ
𝑊(𝑔)(𝑥) is achieved at = 𝑥/(1 + ℎ) . In particular, for all 𝑥 ∈ ℝ𝑛, ℎ ≥ 0, 

𝑄ℎ
𝑊(𝑊)(𝑥) = (1 + ℎ)𝑊 (

𝑥

1+ℎ
) , 

and equality in (96) is a straightforward computation. In [81], Bolley, Cordero‐Erausquin, 

Fujita, Gentil, and Guillin use Theorem (6.3.16) to prove optimal Sobolev and Gagliardo‐

Nirenberg‐Sobolev type inequalities in the half‐space ℝ𝑛
+ = ℝ𝑛−1 ×ℝ+. We want to extend 

these results to more general domains 𝛺 in ℝ𝑛, where 𝑛 ≥ 2. Let us assume that 𝛺 is the 

epigraph of a continuous function  𝜑: ℝ𝑛−1 → ℝ such that 𝜙(0) = 0. In other words, 

𝛺 = {(𝑥1, 𝑥2) ∈ ℝ
𝑛−1 ×ℝ, 𝑥2 ≥ 𝜙(𝑥1)}. 

Let 𝑒 = (0,1) ∈ ℝ𝑛−1 × ℝ, and for ℎ ≥ 0, define 

𝛺ℎ = 𝛺 + {ℎ𝑒} = { (𝑥1, 𝑥2) ∈ ℝ
𝑛−1 ×ℝ, 𝑥2 ≥ 𝜙(𝑥1) + ℎ}. 

Let 𝑎 ≥ 𝑛, and consider 𝑔: 𝛺 → (0,+∞) and 𝑊 : 𝛺1 → (0,+∞) , two measurable functions 

such that ∫ 𝑔−𝑎
 

𝛺
= ∫ 𝑊−𝑎 

𝛺1
= 1. After extending these functions by +∞ outside of their 

respective domain, inequality (97) yields 

(1 + ℎ)𝑎−𝑛∫ 𝑄ℎ
𝑊

 

𝐵ℎ

(𝑔)1−𝑎 ≥ ∫𝑔1−𝑎
 

𝛺

+ ℎ∫ 𝑊1−𝑎
 

𝛺1

                   (97) 

where 

𝐵ℎ = dom(𝑄ℎ
𝑊(𝑔)) . 

When 𝑔(𝑥) = 𝑊(𝑥 + 𝑒) and 𝑊 is convex, then 

𝑄ℎ
𝑊(𝑔)(𝑥) = (1 + ℎ)𝑊 (

𝑥 + 𝑒

1 + ℎ
) 

and equality is reached in the inequality above.  To get a sense of what is to follow, notice 

that there is equality in inequality (97) when ℎ = 0. Now, when 𝛺 = ℝ+
𝑛 , the interesting fact 

that 𝛺ℎ = 𝐵ℎ allows us, under certain admissibility criteria for 𝑊 and 𝑔, to compute the 

derivative of inequality (97) with respect to ℎ, at ℎ = 0. By doing so, the term 

∫ 𝑄0
𝑊 

𝜕R+
𝑛 (𝑔)1−𝑎 = ∫ 𝑔1−𝑎

 

𝜕R+
𝑛  appears in the left hand side, thus leading to trace inequalities. 

Before going any further, let us investigate under which condition the two sets 𝛺ℎ and 𝐵ℎ 

coincide. We have the following lemma: 

Lemma (6.3.17)[218]: There exists ℎ0 > 0 such that for all ℎ ∈ (0, ℎ0), 𝐵ℎ = 𝛺ℎ if, and 

only if, 𝛺 is a convex cone. In that case, 𝐵ℎ and 𝛺ℎ coincide for all ℎ ≥ 0. 

Proof. First, note that 𝑄ℎ
𝑊(𝑔)(𝑥) < +∞ if, and only if, there exists 𝑦 ∈ 𝛺1 such that 𝑥 −

ℎ𝑦 ∈ 𝛺. By definition of 𝛺, this is equivalent to 

∃(𝑦1, 𝑦2) ∈ ℝ
𝑛−1 ×ℝs. t. {

𝑦2 ≥ 𝜙(𝑦1) + 1

𝑥2 − ℎ𝑦2 ≥ 𝜙(𝑥1 − ℎ𝑦1)
 

⇔ (∃𝑦1 ∈ ℝ
𝑛−1s. t. 𝑥2 ≥ 𝜙(𝑥1 − ℎ𝑦1) + ℎ𝜙(𝑦1) + ℎ)) . 
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If 𝑥 ∈ 𝛺ℎ, then choosing 𝑦1 = 0 proves that 𝑥 ∈ 𝐵ℎ, so 𝛺ℎ ⊂ 𝐵ℎ. If ℎ > 0, 𝛺ℎ = 𝐵ℎ if, and 

only if, for all 𝑥1, 𝑦1 ∈ ℝ
𝑛−1, 

𝜙 (
𝑥1 − 𝑦1
ℎ

) ≥
𝜙(𝑥1) − 𝜙(𝑦1)

ℎ
.                                           (98) 

Indeed, if 𝛺ℎ ⊃ 𝐵ℎ, then, for any 𝑥1, 𝑦1 ∈ ℝ
𝑛−1, 

𝑥2: = 𝜙(𝑥1 − ℎ𝑦1) + ℎ𝜙(𝑦1) + ℎ ≥ 𝜙(𝑥1) + ℎ 

and thus, replacing 𝑦1 by (𝑥1 − 𝑦1)/ℎ, we get the stated inequality. The reciprocal is 

immediate. Now, let 𝑧 ∈ ℝ𝑛−1, |𝑧| = 1. Inequality (98), for 𝑦1 = 0, becomes 

𝜙(𝑧) ≥
1

ℎ
𝜙(ℎ𝑧) 

for any ℎ smaller than ℎ0. Let 𝛼 = lim supℎ→0 𝜙(ℎ𝑧)/ℎ. Using inequality (98) once again, 

we get, for any 𝑠 ≥ 0, 

𝜙(𝑠𝑧) ≥
𝑠

𝑠ℎ
𝜙(𝑠ℎ𝑧) , 

for any sufficiently small ℎ > 0. Taking the inferior limit when ℎ → 0 proves that for any 

𝑠 ≥ 0 

𝜙(𝑠𝑧) ≥ 𝑠𝛼.                                                        (99) 

The set {𝑠 ≥ 0, 𝜙(𝑠𝑧) = 𝑠𝛼} is non‐empty because it contains 0, and it is closed by 

continuity. Let 𝑠 ≥ 0 be such that 𝜙(𝑠𝑧) = 𝑠𝛼. Then, invoking inequality (98), and then 

inequality (99), we get 

𝜙 (
(1 + ℎ)𝑠𝑧 − 𝑠𝑧

ℎ
) = 𝜙(𝑠𝑧) = 𝑠𝛼 ≥

𝜙((1 + ℎ)𝑠𝑧) − 𝜙(𝑠𝑧)

ℎ
 

=
𝜙((1 + ℎ)𝑠𝑧) − 𝑠𝛼

ℎ
 

≥
(1 + ℎ)𝑠𝛼 − 𝑠𝛼

ℎ
= 𝑠𝛼 

so there is actually equality, and 𝜙((1 + ℎ)𝑠𝑧) = (1 + ℎ)𝑠𝛼 for any sufficiently small ℎ >

0. This shows that the connected component of {𝑠 ≥ 0, 𝜙(𝑠𝑧) = 𝑠𝛼} containing 0 is open 

in ℝ+. Since it is also closed, it is the half real line ℝ+. Thus, 𝜙 is linear over half‐lines with 

initial point 0. Inequality (98) then becomes 

𝜙(𝑥1 − 𝑦1) ≥ 𝜙(𝑥1) − 𝜙(𝑦1) 

for any 𝑥1, 𝑦1 ∈ ℝ
𝑛−1. Let 𝑡 ∈ [0,1]; replacing 𝑥1 by (1 − 𝑡)𝑥1 + 𝑡𝑦1 and 𝑦1 by 𝑡𝑦1, and 

using linearity, the inequality becomes exactly the convexity inequality, that is 

𝜙((1 − 𝑡)𝑥1 + 𝑡𝑦1) ≤ (1 − 𝑡)𝜙(𝑥1) + 𝑡𝜙(𝑦1) . 

The reciprocal is trivial. It is also clear that in this case, 𝐵ℎ = 𝛺ℎ for any ℎ ≥ 0.  

   This lemma will be used to prove the trace Sobolev and the trace Gagliardo Nirenberg‐

Sobolev inequalities in convex cones. We can go a bit further, and impose only 𝜙 to be 

convex. 
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Lemma (6.3.18)[218]: If 𝜙 is convex, then 

𝐵ℎ = { (𝑥1, 𝑥2) ∈ ℝ
𝑛, 𝑥2 ≥ ℎ + (1 + ℎ)𝜙 (

𝑥1
1 + ℎ

)}. 

Proof. One may notice that setting 𝜔(𝑥) = 0 if 𝑥 ∈ 𝛺 and +∞ if 𝑥 ∈ 𝛺𝑐, and 𝑊(𝑥) =

𝜔(𝑥 − 𝑒) , then 𝜔 is convex, thus 

         𝐵ℎ = dom(𝑄ℎ
𝑊(𝜔)) = dom (𝑥 ↦ (1 + ℎ)𝑊 (

𝑥+𝑒

1+ℎ
)) , 

and 

𝑊(
𝑥 + 𝑒

1 + ℎ
) < +∞⇔

𝑥 + 𝑒

1 + ℎ
− 𝑒 ∈ 𝛺 

⇔ 𝑥2 ≥ ℎ + (1 + ℎ)𝜙 (
𝑥1
1 + ℎ

) . 

We assume that 𝛺 is a convex cone. In that case, invoking Lemma (6.3.17), inequality (96) 

becomes 

(1 + ℎ)𝑎−𝑛∫ 𝑄ℎ
𝑊

 

𝛺ℎ

(𝑔)1−𝑎 ≥ ∫𝑔1−𝑎
 

𝛺

+ ℎ∫ 𝑊1−𝑎
 

𝛺1

,                    (100) 

for any ℎ > 0, and there is equality when ℎ = 0. Taking the derivative of this inequality 

with respect to ℎ, under the admissibility conditions for 𝑔 and 𝑊 exposed in full details, and 

evaluating at ℎ = 0, we prove that 

(𝑎 − 𝑛)∫𝑔1−𝑎
 

𝛺

+ (𝑎 − 1)∫
𝑊∗(𝛻𝑔)

𝑔𝑎

 

𝛺

 

−∫ 𝑔1−𝑎
 

R𝑛−1
(𝑥1, 𝜙(𝑥1))d𝑥1 ≥ ∫ 𝑊1−𝑎

 

𝛺1

.                         (102) 

There, we used Lemma (6.3.10), and the fact that 

   
1

ℎ
(∫ 𝑄ℎ

𝑊 

𝛺ℎ
(𝑔)1−𝑎 − ∫ 𝑔i−𝑎

 

𝛺
) = ∫

𝑄ℎ
𝑊(𝑔)1−𝑎−𝑔1−𝑎

ℎ

 

𝛺ℎ
+
1

ℎ
(∫ 𝑔i−𝑎

 

𝛺ℎ
− ∫ 𝑔i−𝑎

 

𝛺
) 

= ∫
𝑄ℎ
𝑊(𝑔)1−𝑎 − 𝑔1−𝑎

ℎ

 

𝛺ℎ

−
1

ℎ
(∫ ∫ 𝑔1−𝑎

ℎ+𝜙(𝑥1)

𝜙(𝑥1)

 

R𝑛−1
(𝑥1, 𝑥2)d𝑥2d𝑥1) 

ℎ → 0⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(1 − 𝑎)∫
𝑊∗(𝛻𝑔)

𝑔𝑎

 

𝛺

−∫ 𝑔1−𝑎
 

R𝑛−1
(𝑥1, 𝜙(𝑥1))d𝑥1, 

see Theorem (6.3.22). Let 𝑝 ∈ (1, 𝑛) , and 𝑞 its conjugate exponent, 1/𝑝 + 1/𝑞 = 1. 

Applying inequality (102) to the function 𝑊 defined by 𝑊(𝑥) = 𝐶‖𝑥‖𝑞/𝑞, where 𝐶 > 0 is 

such that ∫ 𝑊−𝑎 

 
= 1, which happens to be admissible for this choice of 𝑞, in the sense of 

Definition (6.3.21) We find 
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(𝑎 − 𝑛)∫𝑔1−𝑎
 

𝛺

+ 𝐶1−𝑝
𝑎 − 1

𝑝
∫
‖𝛻𝑔‖∗

𝑝

𝑔𝑎

 

𝛺

−∫ 𝑔i−𝑎
  

R𝑛−1
(𝑥1, 𝜙(𝑥1))d𝑥1 ≥ ∫ 𝑊1−𝑎

 

𝛺1

 

for any admissible 𝑔, where ‖𝑥‖∗ = sup‖𝑦‖=1𝑥 ⋅ 𝑦 is the dual norm of 𝑥. Next, we extend 

the above inequality to all functions 𝑔 such that 𝑓 = 𝑔(𝑝−𝑎)/𝑝 ∈ 𝐶𝑐
∞(𝛺) . This can be done 

by approximation by admissible functions, Rewriting the quantities in terms of 𝑓 =

𝑔−(𝑎−𝑝)/𝑝 yields 

     ∫ 𝑓
𝑝
𝑎−1
𝑎−𝑝

 

R𝑛−1
(𝑥, 𝜙(𝑥))d𝑥

≤ 𝐶1−𝑝
𝑎 − 1

𝑝
(
𝑝

𝑎 − 𝑝
)
𝑝

∫‖
 

𝛺

𝛻𝑓‖∗
𝑝
−∫ 𝑊1−𝑎

 

𝛺1

+ (𝑎 − 𝑛)∫ 𝑓
𝑝
𝑎−1
𝑎−𝑝

 

𝛺

. 

We may then remove the normalization to find that inequality (102) becomes 

    ∫ 𝑓
𝑝
𝑎−1
𝑎−𝑝

 

R𝑛−1
(𝑥, 𝜙(𝑥))d𝑥

≤ 𝐶1−𝑝
𝑎 − 1

𝑝
(
𝑝

𝑎 − 𝑝
)
𝑝

(∫‖
 

𝛺

𝛻𝑓‖∗
𝑝
)𝛽

𝑝
𝑝−1
𝑎−𝑝 − (∫ 𝑊1−𝑎

 

𝛺1

)𝛽
𝑝
𝑎−1
𝑎−𝑝 

+(𝑎 − 𝑛)∫ 𝑓
𝑝
𝑎−1
𝑎−𝑝

 

𝛺

                                                (103) 

where 

𝛽 = (∫𝑓
 

𝛺

𝑝𝑎

𝑎 − 𝑝
)

𝑎−𝑝
𝑎𝑝

 

Now, define 𝑢 =
𝑎−1

𝑎−𝑝
 and 𝑣 = 𝑢′ =

𝑎−1

𝑝−1
, so that 𝑢, 𝑣 > 1 and 1/𝑢 + 1/𝑣 = 1. By Young’s 

inequality, we find 

𝐴∫‖
 

𝛺

𝛻𝑓‖∗
𝑝
𝛽
𝑝
𝑝−1
𝑎−𝑝 − (∫ 𝑊1−𝑎

 

𝛺1

)𝛽
𝑝
𝑎−1
𝑎−p 

= 𝐵𝑣 (
𝐴

𝐵𝑣
∫‖
 

𝛺

𝛻𝑓‖∗
𝑝
𝛽
𝑝
𝑝−1
𝑎−𝑝 −

1

𝑣
𝛽𝑝
𝑎 − 1

𝑎 − 𝑝
)                              (104) 

≤ 𝐷 (∫‖
 

𝛺

𝛻𝑓‖∗
𝑝
)

𝑢

 

where 
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             𝐴 = 𝐶1−𝑝
𝑎−1

𝑝
(
𝑝

𝑎−𝑝
)
𝑝
 𝐵 = ∫ 𝑊1−𝑎 

𝛺1
 and 𝐷 =

𝐴𝑢

(𝐵𝑣)u−1
1

𝑢
. 

   In order to find a more compact inequality, we consider, for 𝜆 > 0, 𝑓𝜆 : ↦ 𝑓(𝜆𝑥) . By 

linearity of 𝜙, applying (104) to 𝑓𝜆 leads to 

∫ 𝑓
𝑝
𝑎−1
𝑎−𝑝

 

R𝑛−1
(𝑥, 𝜙(𝑥))d𝑥 ≤ 𝜆

(𝑎−𝑛)
𝑝−1
𝑎−𝑝

𝐴𝑢

(𝐵𝑣)u−1
1

𝑢
(∫‖

 

𝛺

𝛻𝑓‖∗
𝑝
)

𝑢

+
𝑎 − 𝑛

𝜆
∫ 𝑓

𝑝
𝑎−1
𝑎−p

 

𝛺

. 

optimizing this inequality with respect to 𝜆 > 0 finally yields inequality (92) of Theorem 

(6.3.2). It remains to show that inequality (92) is optimal. The function for which equality 

is reached does not have compact support, but this technicality does not bear much 

relevance. To prove optimality, note that there is equality in (102) when 𝑔(𝑥) = 𝑊(𝑥 + 𝑒) , 

which implies equality in (103) when 𝑓(𝑥) = ‖𝑥 + 𝑒‖
−
𝑎−𝑝

𝑝−1. If Young’s inequality (104) is 

an equality, then the optimization with respect to parameter 𝜆 necessarily preserves the 

equality. Thus, it is enough to show that for 𝑓(𝑥) = ‖𝑥 + 𝑒‖
−
𝑎−𝑝

𝑝−1, there is equality in (104). 

This is the case if, and only if, 

𝐴

𝐵𝑣
∫‖
 

𝛺

𝛻𝑓‖∗
𝑝
= (𝛽

𝑝
𝑝−1
𝑎−𝑝)

𝑣−1

 

Let us now write, for 𝛼 > 0 

𝐼𝛼: = ∫‖
 

𝛺

𝑥 + 𝑒‖−𝛼 

Then, 

𝐶 = 𝑞 (∫‖
 

𝛺

𝑥 + 𝑒‖−𝑞𝑎)

1
𝑎

=
𝑝

𝑝 − 1
𝐼𝑎𝑝/(𝑝−1)
1/𝑎

 

hence 

𝐴 =
(𝑎−1)(𝑝−1)𝑝−1

(𝑎−𝑝)𝑝
𝐼𝑎𝑝/(𝑝−1)
(1−𝑝)/𝑎

, 𝐵 = 𝐼𝑎𝑝/(𝑝−1)
(1−𝑎)/𝑎

𝐼𝑝(𝑎−1)/(𝑝−1), 

and (𝛽
𝑝
𝑝−1

𝑎−𝑝)
𝑣−1

= 𝐼𝑎𝑝/(𝑝−1)
(𝑎−𝑝)/𝑎

. 

Claim (6.3.19)[218]: For 𝛾 ∈ ℝ, let 𝛿 : ℝ𝑛 ∖ {0} →] 0, +∞[, 𝑥 ↦ ‖𝑥‖𝛾. Then, almost 

everywhere, 𝛿 is differentiable, and ‖𝛻𝛿(𝑥)‖∗
𝑝
= |𝛾|‖𝑥‖𝛾−1 

Using this, we conclude that there is indeed equality in (104), since then 

∫‖
 

𝛺

𝛻𝑓‖∗
𝑝
= (

𝑎 − 𝑝

𝑝 − 1
)
𝑝

𝐼𝑝(𝑎−1)/(𝑝−1). 

Proof. Consider 𝜑: 𝑥 ↦ ‖𝑥‖ and 𝜓 : 𝜌 ↦ 𝜌𝛾 . 𝜑 is convex, hence almost everywhere 

differentiable by Rademacher’s theorem, and 𝜓 smooth on ] 0, +∞[, hence the Claim 

(6.3.19) regularity of 𝛿 = 𝜓 ∘ 𝜑. For almost every , 𝛻𝛿(𝑥) = 𝛾𝛻𝜑(𝑥)‖𝑥‖𝛾−1, so 

‖𝛻𝛿(𝑥)‖∗ = |𝛾|‖𝑥‖
𝛾−1‖𝛻𝜑(𝑥)‖∗ 

If 𝑥 ≠ 0 is a point of differentiability of 𝜑, and 𝑡 > 0, then 
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1 =
‖𝑥 + 𝑡𝑥/‖𝑥‖‖ − ‖𝑥‖

𝑡
𝑡 → 0⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗𝛻𝜑(𝑥) ⋅

𝑥

‖𝑥‖
, 

so ‖𝛻𝜑(𝑥)‖∗ ≥ 1. Conversely, if ‖𝑣‖ = 1, then 

𝛻𝜑(𝑥) ⋅ 𝑣 = lim
𝑡→0+

‖𝑥 + 𝑡𝑣‖ − ‖𝑥‖

𝑡
≤ lim
𝑡→0+

‖ 𝑣‖ = 1, 

so ‖𝛻𝜑(𝑥)‖∗ = 1 and the Claim (6.3.19) is proved.  

We assume that 𝛺 is the epigraph of a convex function 𝜙, with 𝜙(0) = 0. Then, according 

to Lemma (6.3.18), for ℎ ≥ 0, 

𝐵ℎ = dom(𝑄ℎ
𝑊(𝑔)) = {(𝑥1, 𝑥2) ∈ ℝ

𝑛, 𝑥2 ≥ ℎ + (1 + ℎ)𝜙 (
𝑥1
1 + ℎ

)}. 

Inequality (96) becomes 

(1 + ℎ)𝑎−𝑛∫ 𝑄ℎ
𝑊

 

𝐵ℎ

(𝑔)1−𝑎 ≥ ∫𝑔1−𝑎
 

𝛺

+ ℎ∫ 𝑊1−𝑎
 

𝛺1

,                   (105) 

and there still is equality for all ℎ > 0 whenever 𝑔(𝑥) = 𝑊(𝑥 + 𝑒) and is convex. However, 

it is slightly trickier to compute the derivative at ℎ = 0, since 𝐵ℎ ≠ 𝛺ℎ, and their symmetric 

difference depends heavily on 𝜙. Effectively, a third term appears when trying to 

differentiate ∫ 𝑄𝑊
ℎ 

𝐵ℎ
(𝑔)1−𝑎: 

1

ℎ
(∫ 𝑄ℎ

𝑊
 

𝐵ℎ

(𝑔)1−𝑎 −∫𝑔i−𝑎
 

𝛺

)

= ∫
𝑄ℎ
𝑊(𝑔)1−𝑎 − 𝑔1−𝑎

ℎ

 

𝛺ℎ

−
1

ℎ
∫ 𝑔i−𝑎
 

𝛺\𝛺ℎ

+
1

ℎ
∫ 𝑄ℎ

𝑊
 

𝐵ℎ\𝛺ℎ

(𝑔)1−𝑎. 

Taking the derivative at ℎ = 0, when possible, yields 

(𝑎 − 𝑛)∫𝑔1−𝑎
 

𝛺

+ (𝑎 − 1)∫
𝑊∗(𝛻𝑔)

𝑔𝑎

 

𝛺

 

−∫ 𝑔1−𝑎
 

R𝑛−1
(𝑥1, 𝜙(𝑥1))𝑃(𝑥1)d𝑥1 ≥ ∫ 𝑊1−𝑎

 

𝛺1

,                    (106) 

where 

𝑃(𝑥1) = 1 + 𝜙(𝑥1) − 𝑥1 ⋅ 𝛻𝜙(𝑥1) . 

Using inequality (106) with 𝑊 = 𝐶‖. ‖𝑞/𝑞, and extending it for all 𝑓 = 𝑔−(𝑎−𝑝)/𝑝 ∈
𝐶𝑐
∞(𝛺) just like we did for convex cones, and finally invoking Young’s inequality, we get 

the theorem 

Theorem (6.3.20)[218]: Let 𝑎 ≥ 𝑛 > 𝑝 > 1, and 𝛺 = {(𝑥1, 𝑥2) ∈ ℝ
𝑛−1 ×ℝ, 𝑥2 ≥ 𝜙(𝑥1)} 

be a convex set. There exists a positive constant 𝐷𝑛,𝑝,𝑎
′ (𝛺) such that for any positive function 

𝑓 ∈ 𝐶𝑐
∞(𝛺) , 
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∫ 𝑓
𝑝
𝑎−1
𝑎−𝑝

 

R𝑛−1
(𝑥1, 𝜙(𝑥1))𝑃(𝑥1)d𝑥1

≤ 𝐷𝑛,𝑝,𝑎
′ (𝛺) (∫‖

 

𝛺

𝛻𝑓‖∗
𝑝
)

𝑎−1
𝑎−𝑝

+ (𝑎 − 𝑛)∫ 𝑓
𝑝
𝑎−1
𝑎−𝑝

 

𝛺

,          (107) 

where 𝑃(𝑥1) = 1 + 𝜙(𝑥1) − 𝑥1 . 𝛻𝜙(𝑥1) . Furthermore, when 𝑓(𝑥) = ‖𝑥 + 𝑒‖
−
𝑎−p

𝑝−1, then 

(107) is an equality. Applying this theorem for 𝑎 = 𝑛, we find a new version of the trace 

Sobolev inequality, Theorem (6.3.4), with 𝐷𝑛,𝑝
′ (𝛺) = 𝐷𝑛,𝑝,𝑛

′ (𝛺) . It is important to note that 

in Theorem (6.3.4), as well as in Theorem (6.3.20), the left‐hand side can be negative. The 

weight 𝑃 itself generally 𝑖𝑠 negative outside of a compact neighbourhood of the origin, but 

the inequality is still optimal. We prove that the results are true for a class of admissible 

functions, and we extend these results to the appropriate, more general setting, by 

approximation by admissible functions. The difficulty here lies in that 𝑔 must not be 

bounded or even Lipschitz, since 𝑔−𝑎 has to be integrable. The case of the half‐plane has 

already been investigated (in [3]), and easily extends to convex cones. Here, we will only 

tackle convex sets, which, although more technical, follows the same general idea. 

Throughout, 𝜙 : ℝ𝑛−1 → [0,+∞) is a convex function such that 𝜙(0) = 0, 𝑔: 𝛺 → (0,+∞) 

is assumed to be locally Lipschitz continuous, and  𝑊: 𝛺1 → (0,+∞) is convex. Inequality 

(105), 

(1 + ℎ)𝑎−𝑛∫ 𝑄ℎ
𝑊

 

𝐵ℎ

(𝑔)1−𝑎 ≥ ∫𝑔1−𝑎
 

𝛺

+ ℎ∫ 𝑊1−𝑎
 

𝛺1

, 

is trivially an equality for ℎ = 0, we thus ask compute its derivative. Let us first give a 

nonrigorous proof for clarity. The most difficult part is computing the derivative of 

∫ 𝑄ℎ
𝑊 

𝐵ℎ
(𝑔)1−𝑎, so let us start with that. Notice that 𝛺ℎ ⊂ 𝐵ℎ ∩ 𝛺, thus 

1

ℎ
(∫ 𝑄ℎ

𝑊
 

𝐵ℎ

(𝑔)1−𝑎 −∫𝑔i−𝑎
 

𝛺

)

= ∫
𝑄ℎ
𝑊(𝑔)1−𝑎 − 𝑔1−𝑎

ℎ

 

𝛺ℎ⏟              
(𝑖)

−
1

ℎ
∫ 𝑔i−𝑎
 

𝛺\𝛺ℎ⏟      
(𝑖𝑖)

+
1

ℎ
∫ 𝑄ℎ

𝑊
 

𝐵ℎ\𝛺ℎ

(𝑔)1−𝑎

⏟            
(𝑖𝑖𝑖)

   

Recalling Lemma (6.3.10), almost everyhere, 

lim
ℎ→0

𝑄ℎ
𝑊(𝑔)(𝑥)−𝑔(𝑥)

ℎ
= −𝑊∗(𝛻𝑔(𝑥)) , 

thus (i) should converge towards 
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(𝑎 − 1)∫
𝑊∗(𝛻𝑔)

𝑔𝑎

 

𝛺

. 

Next, (ii) can be rewritten in a way such that the convergence is quite clear: 

(𝑖𝑖) = ∫ (
1

ℎ
∫ 𝑔1−𝑎
𝜙(𝑥1)+ℎ

𝜙(𝑥1)

(𝑥1, 𝑥2)d𝑥2)
 

R𝑛−1
d𝑥1ℎ → 0⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∫ 𝑔1−𝑎

 

R𝑛−1
(𝑥1, 𝜙(𝑥1))d𝑥1 

as ℎ → 0. Finally, giving (iii) the same treatment, 

    (iii) = ∫ (
1

ℎ
∫ 𝑄ℎ

𝑊ℎ+𝜙(𝑥1)

ℎ+(1+ℎ)𝜙(𝑥1/(1+ℎ))
(𝑔)1−𝑎(𝑥1, 𝑥2)d𝑥2)

 

R𝑛−1
d𝑥1 

ℎ → 0⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∫ 𝑔1−𝑎
 

R𝑛−1
(𝑥1, 𝜙(𝑥1))(𝑥1 ⋅ 𝛻𝜙(𝑥1) − 𝜙(𝑥1))d𝑥1, 

since 𝑄0
𝑊(𝑔) = 𝑔 and 

lim
ℎ→0

1

ℎ
(𝜙(𝑥1) − (1 + ℎ)𝜙 (

𝑥1
1 + ℎ

)) = 𝑥1 ⋅ 𝛻𝜙(𝑥1) − 𝜙(𝑥1) . 

Summing these results up, we find the Claim (6.3.19) derivative at ℎ = 0. Whenever 𝛺 is a 

convex cone, 𝐵ℎ ∖ 𝛺ℎ = ∅, and thus (iii) = 0. In that case, the argument is much more 

succinct, but since it is also a corollary of the more general case, we will not address it. The 

conditions for the convergence to play out nicely are summed up in the following definition. 

They are mostly growth conditions on 𝑔 and 𝑊, and will come into play later on. 

Definition (6.3.21)[218]. The couple of functions (𝑔,𝑊) is said to be admissible if the 

following conditions are satisfied for some constant 𝛾: 

(CO) >  max (
𝑎

𝑛−1
, 1) ; 

(C1) there exists 𝐴1 > 0 such that 𝑊(𝑥) ≥ 𝐴1‖𝑥‖
𝛾 for all 𝑥 ∈ 𝛺1; 

(C2) there exists 𝐴2 > 0 such that 𝑊(𝑥) ≤ 𝐴2(1 + ‖𝑥‖
𝛾) for all 𝑥 ∈ 𝛺1; 

(C3) there exists 𝐴3 > 0 such that 𝑔(𝑥) ≥ 𝐴3(1 + ‖𝑥‖
𝛾) for all 𝑥 ∈ 𝛺; 

(C4) there exists 𝐴4 > 0 such that ‖𝛻𝑔(𝑥)‖ ≤ 𝐴4(1 + ‖𝑥‖
𝛾−1) for all 𝑥 ∈ 𝛺. 

   The challenge is to prove that under these conditions, 𝑄ℎ
𝑊(𝑔) converges towards 𝑔 in a 

controlled manner as ℎ → 0. The main result the following: 

Theorem (6.3.22)[218]: Assume that the couple (𝑔,𝑊) is admissible, and that there exist 

some constants 𝐶 > 0 and 𝑅 > 0 such that 

∀‖𝑥1‖ > 𝑅, |𝑥1 ⋅ 𝛻𝜙(𝑥1)| ≤ 𝐶‖(𝑥1, 𝜙(𝑥1))‖.                       (108) 

Then 

lim
ℎ→0

1

ℎ
(∫ 𝑄ℎ

𝑊
 

𝐵ℎ

(𝑔)1−𝑎(𝑔) − ∫𝑔1−𝑎
 

𝛺

) 

= (𝑎 − 1)∫
𝑊∗(𝛻𝑔)

𝑔𝑎

 

𝛺

−∫ 𝑔1−𝑎
 

R𝑛−1
(𝑥1, 𝜙(𝑥1))𝑃(𝑥1)d𝑥1,       (109) 
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where 𝑃(𝑥1) = 1 + 𝜙(𝑥1) − 𝑥1 ⋅ 𝛻𝜙(𝑥1) . In what follows, we will use a good number of 

different positive constants, which will all be written 𝐶 for convenience. They will not 

depend on 𝑥 ∈ ℝ𝑛, or ℎ > 0, but might depend on 𝐴𝑖 , 𝑖 ∈ {1,2,3,4}, 𝛾. 

Lemma (6.3.23)[218]: If (𝑔,𝑊) is admissible, there exist constants 𝐶 > 0 and ℎ0 > 0, such 

that for all 0 < ℎ < ℎ0, and 𝑥 ∈ 𝛺ℎ , 

|𝑄ℎ
𝑊(𝑔)(𝑥) − 𝑔(𝑥)| ≤ 𝐶ℎ(1 + ‖𝑥‖𝛾) . 

Proof. First, let 𝑥′, 𝑥 ∈ 𝛺. Then, we may estimate |𝑔(𝑥′) − 𝑔(𝑥)| using hypothesis (C4): 

|𝑔(𝑥′) − 𝑔(𝑥)| ≤ ∫ ‖
1

0

𝜕

𝜕𝜃
𝑔(𝑥 + 𝜃(𝑥’ − 𝑥))‖d𝜃 

≤ ‖𝑥′ − 𝑥‖∫ 𝐴4

1

0

(1 + ‖𝑥 + 𝜃(𝑥′ − 𝑥)‖𝛾−1)d𝜃 

≤ 𝐶‖𝑥’ − 𝑥‖(1 + ‖𝑥‖𝛾−1 + ‖𝑥′ − 𝑥‖𝛾−1).                         (110) 

Now, let 0 < ℎ ≤ 1 and 𝑥 ∈ 𝛺ℎ. Then, 𝑥 − ℎ𝑒 ∈ 𝛺, so 

𝑄ℎ
𝑊(𝑔)(𝑥) − 𝑔(𝑥) ≤ 𝑔(𝑥 − ℎ𝑒) + ℎ𝑊(𝑒) − 𝑔(𝑥) 

≤ 𝐶ℎ(1 + ‖𝑥‖𝛾−1 + ℎ𝛾−1) + ℎ𝑊(𝑒) 

≤ 𝐶ℎ(1 + ‖𝑥‖𝛾−1) . 

For the converse inequality, we will of course use hypotheses (C1) and (C3), but we first 

have to localize the point where the infimum 𝑄ℎ
𝑊(𝑔)(𝑥) is reached. Let 𝑦 ∈ 𝛺1 be such that 

𝑄ℎ
𝑊(𝑔)(𝑥) = 𝑔(𝑥 − ℎ𝑦) + ℎ𝑊(𝑦) . Then, invoking hypothesis (C1) and inequality (110), 

ℎ𝐴1‖𝑦‖
𝛾 ≤ ℎ𝑊(𝑦) = 𝑄ℎ

𝑊(𝑔)(𝑥) − 𝑔(𝑥 − ℎ𝑦) 

= 𝑄ℎ
𝑊(𝑔)(𝑥) − 𝑔(𝑥) + 𝑔(𝑥) − 𝑔(𝑥 − ℎ𝑦) 

≤ 𝐶ℎ(1 + ‖𝑥‖𝛾−1) + 𝐶ℎ‖𝑦‖(1 + ‖𝑥‖𝛾−1 + (ℎ‖𝑦‖)𝛾−1) . 

We thus choose ℎ0 ∈ (0,1) such that for any ℎ ∈ (0, ℎ0), 𝐴1 − 𝐶ℎ
𝛾−1 > ℎ𝛾−1. Then, for 

any ℎ ∈ (0, ℎ0) , 

ℎ𝛾−1‖𝑦‖𝛾 < (𝐴1 − 𝐶ℎ
𝛾−1)‖𝑦‖𝛾 

≤ 𝐶(1 + ‖𝑦‖)(1 + ‖𝑥‖𝛾−1) , 

which implies that 

ℎ𝛾−1‖𝑦‖𝛾−1 ≤ 𝐶(1 + ‖𝑥‖𝛾−1) , 

since ‖𝑦‖𝛾−1 ≤  max (1,2
||𝑦||𝛾

1+||𝑦‖
) . Now, using inequality (110) once again, 

|𝑔(𝑥 − ℎ𝑦) − 𝑔(𝑥)| ≤ 𝐶ℎ‖𝑦‖(1 + ‖𝑥‖𝛾−1 + ℎ𝛾−1‖𝑦‖𝛾−1) 

≤ 𝐶ℎ‖𝑦‖(1 + ‖𝑥‖𝛾−1) . 

Plugging this in the definition of 𝑄ℎ
𝑊(𝑔)(𝑥) , we find 

𝑄ℎ
𝑊(𝑔)(𝑥) − 𝑔(𝑥) ≥  inf

𝑦∈Ω1
{−𝐶ℎ‖𝑦‖(1 + ‖𝑥‖𝛾−1) + ℎ𝐴1‖𝑦‖

𝛾} 

≥ inf
𝑦∈ℝ𝑛

 {… } = −𝐶ℎ(1 + ‖𝑥‖𝛾) . 

To conclude, it is enough to notice that 1 + ‖𝑥‖𝛾−1 ≤ 2 + ‖𝑥‖𝛾 since 𝛾 > 1.                           

   Now that we have this estimation, we may estimate the speed of convergence of 

𝑄ℎ
𝑊(𝑔)1−𝑎 towards 𝑔1−𝑎. 
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Proposition (6.3.24)[218]: If (𝑔,𝑊) is admissible, there exist constants 𝐶 > 0 and ℎ0 > 0, 

such that for all 0 < ℎ < ℎ0, and 𝑥 ∈ 𝛺ℎ , 

|𝑄ℎ
𝑊(𝑔)1−𝑎(𝑥) − 𝑔1−𝑎(𝑥)|

ℎ
≤

𝐶

1 + ‖𝑥‖𝛾(𝑎−1)
. 

Proof. First, let , 𝛽 > 0. Then, 

|∫ 𝑡−𝑎
𝛽

𝛼

d𝑡| = |
1

1 − 𝑎
(𝛽1−𝑎 − 𝛼1−𝑎)| ≤  max (𝛼−𝑎, 𝛽−𝑎)|𝛼 − 𝛽|, 

implying that 

|𝛼1−𝑎 − 𝛽1−𝑎| ≤ (𝑎 − 1)|𝛼 − 𝛽|(𝛼−𝑎 + 𝛽−𝑎).                         (111) 

Then, according to Lemma (6.3.23), there exists ℎ0 > 0 such that for any ℎ ∈ (0, ℎ0) , and 

any 𝑥 ∈ 𝛺ℎ , 

|𝑄ℎ
𝑊(𝑔)1−𝑎(𝑥) − 𝑔1−𝑎(𝑥)|

ℎ
≤ 𝐶

|𝑄ℎ
𝑊(𝑔)(𝑥) − 𝑔(𝑥)|

ℎ
(𝑄ℎ

𝑊(𝑔)−𝑎(𝑥) + 𝑔−𝑎(𝑥)) 

≤ 𝐶(1 + ‖𝑥‖𝛾) (𝑄ℎ
𝑊(𝑔)−𝑎(𝑥) + 𝑔−𝑎(𝑥)).           (112) 

Now, hypotheses (C1) and (C3) and a straightforward computation yield 

𝑄ℎ
𝑊(𝑔)(𝑥) ≥  inf {𝐴3(1 + ‖𝑥 − ℎ𝑦‖

𝛾) + ℎ𝐴1‖𝑦‖
𝛾} 

≥  inf {𝐴3(1 + |‖𝑥‖ − ℎ‖𝑦‖|
𝛾) + ℎ𝐴1‖𝑦‖

𝛾} 

≥ 𝐶(1 + ‖𝑥‖𝛾) . 

Using (C3) once again, we know that 

𝑔−𝑎(𝑥) ≤ (𝐴3(1 + ‖𝑥‖
𝛾))

−𝑎
; 

putting these two inequalities together with inequality (112), we finally obtain 

|𝑄ℎ
𝑊(𝑔)1−𝑎(𝑥) − 𝑔1−𝑎(𝑥)|

ℎ
≤ 𝐶

1 + ||𝑥||𝛾

(1 + ‖𝑥‖𝛾)𝑎
 

≤
𝐶

1 + ‖𝑥‖𝛾(𝑎−1)
. 

   Proposition (6.3.24), together with Lemma (6.3.10), proves the dominated convergence, 

and 

lim
ℎ→0

(𝑖) = (𝑎 − 1)∫
𝑊∗(𝛻𝑔)

𝑔𝑎𝛺

, 

as Claim (6.3.19)ed. The convergence of (ii) is straightforward, as it is a direct implication 

of the local Lipschitz continuity of 𝑔 and hypothesis (C3). 

This term is a bit trickier, because comparing 𝑄ℎ
𝑊(𝑔) to 𝑔 is not possible on the 

entirety of 𝐵ℎ , 𝑔 being defined only on 𝛺. For many functions 𝜙, 𝐵ℎ ⊄ 𝛺 as is showcased 

on figure 1 below. Thus, we prove the following result: 



263 

 

Figure 1[218]: Graph of , 𝛺ℎ, and 𝐵ℎ for 𝜙(𝑥1) = ‖𝑥1‖
2 and ℎ = 0.5 

Lemma (6.3.25)[218]: If (𝑔,𝑊) is admissible, there exist constants 𝐶 > 0 and ℎ1 > 0, such 

that for atl 0 < ℎ < ℎ1, and (𝑥1, 𝑥2) ∈ 𝐵ℎ ∖ 𝛺ℎ , 

|𝑄ℎ
𝑊(𝑔)(𝑥1, 𝑥2) − 𝑔(𝑥1, 𝜙(𝑥1))| 

≤ ℎ𝐶(1 + ‖(𝑥1, 𝜙(𝑥1))‖
𝛾 + |𝑥1 ⋅ 𝛻𝜙(𝑥1)|

𝛾) .                (113) 

The proof follows the same logic as the proof of Lemma (6.3.23). 

   Proof. Recall that, according to Lemma (6.3.18) 

   𝛺ℎ = { (𝑥1, 𝑥2) ∈ ℝ
𝑛, 𝑥2 ≥ ℎ + 𝜙(𝑥1)} , 𝐵ℎ

= {(𝑥1, 𝑥2) ∈ ℝ
𝑛, 𝑥2 ≥ ℎ + (1 + ℎ)𝜙 (

𝑥1
1 + ℎ

)}, 

and that 

   |𝑔(𝑥′) − 𝑔(𝑥)| ≤ 𝐶‖𝑥’ − 𝑥‖(1 + ‖𝑥‖𝛾−1 + ‖𝑥′ − 𝑥‖𝛾−1)        (23 revisited) for any 𝑥′, 

𝑥 ∈ 𝛺. 

Fix ℎ ∈ (0,1), 𝑥 = (𝑥1, 𝑥2) ∈ 𝐵ℎ\𝛺ℎ, and define 𝑝(𝑥1, 𝑥2) = (𝑥1, 𝜙(𝑥1)) , its projection 

onto 𝜕𝛺. Letting = (
𝑥1

1+ℎ
, 1 + 𝜙 (

𝑥1

1+ℎ
)) , we find that 𝑦 ∈ 𝛺1, and also that 𝑥 − ℎ𝑦 ∈ 𝛺, 

thus, with hypothesis (C2) and inequality (110), 

𝑄ℎ
𝑊(𝑥) − 𝑔(𝑝(𝑥)) ≤ 𝑔(𝑥 − ℎ𝑦) − 𝑔(𝑝(𝑥)) + ℎ𝑊(𝑦) 

≤ 𝐶‖𝑥 − ℎ𝑦 − 𝑝(𝑥)‖(1 + ‖𝑝(𝑥)‖𝛾−1 + ‖𝑥 − ℎ𝑦 − 𝑝(𝑥)‖𝛾−1) + ℎ𝐴2(1 + ‖𝑦‖
𝛾) . 

For brevity, let us write 𝑢 = ‖𝑝(𝑥)‖ = ‖(𝑥1, 𝜙(𝑥1)‖, and 𝑣 = 𝑥1 . 𝜙(𝑥1) = |𝑥1 ⋅ 𝜙(𝑥1)|. 

Now, notice that 

‖𝑥 − ℎ𝑦 − 𝑝(𝑥)‖ = ℎ‖(
𝑥1
1 + ℎ

,
𝑥2 − ℎ − 𝜙(𝑥1)

ℎ
− 𝜙 (

𝑥1
1 + ℎ

)) ‖. 

From the definition of 𝛺ℎ and 𝐵ℎ, we find out that 

0 ≤
ℎ + 𝜙(𝑥1) − 𝑥2

ℎ
≤
𝜙(𝑥1) − (1 + ℎ)𝜙(𝑥1/(1 + ℎ))

ℎ
 

≤ 𝑥1 ⋅ 𝛻𝜙(𝑥1) = 𝑣, 

since 𝜙 is convex and nonnegative. Thus, 



264 

‖𝑥 − ℎ𝑦 − 𝑝(𝑥)‖ ≤ ℎ‖(
𝑥1
1 + ℎ

,𝜙 (
𝑥1
1 + ℎ

))‖ + ℎ|𝑥1 ⋅ 𝛻𝜙(𝑥1)| 

≤ ℎ(‖𝑝(𝑥)‖ + |𝑥1 ⋅ 𝛻𝜙(𝑥1)|) = ℎ(𝑢 + 𝑣) , 

so, since ℎ < 1, 

1 + ‖𝑝(𝑥)‖𝛾−1 + ‖𝑥 − ℎ𝑦 − 𝑝(𝑥)‖𝛾−1 ≤ 1 + 𝑢𝛾−1 + (ℎ(𝑢 + 𝑣))
𝛾−1

 

≤ 𝐶(1 + 𝑢𝛾−1 + 𝑣𝛾−1) . 

Finally, 

𝐴2(1 + ‖𝑦‖
𝛾) = 𝐴2 (1 + ‖

𝑥1

1+ℎ
, 1 + 𝜙 (

𝑥1

1+ℎ
) ‖𝛾) ≤ 𝐶(1 + 𝑢𝛾) . 

Putting all these inequalities together, we find 

𝑄ℎ
𝑊(𝑥) − 𝑔(𝑝(𝑥)) ≤ ℎ𝐶(𝑢 + 𝑣)(1 + 𝑢𝛾−1 + 𝑣𝛾−1) + ℎ𝐶(1 + 𝑢𝛾) 

≤ ℎ𝐶(1 + 𝑢𝛾 + 𝑣𝛾) .                                                       (114) 

Conversely, let 𝑦 ∈ 𝛺1 be such that 𝑄ℎ
𝑊(𝑔)(𝑥) = 𝑔(𝑥 − ℎ𝑦) + ℎ𝑊(𝑦) . As before, we 

localize 𝑦. Using hypothesis 𝐴1 and inequalities (110) and (114), 

ℎ𝐴1‖𝑦‖
𝛾 ≤ ℎ𝑊(𝑦) = 𝑄ℎ

𝑊(𝑔)(𝑥) − 𝑔(𝑝(𝑥)) + 𝑔(𝑝(𝑥)) − 𝑔(𝑥 − ℎ𝑦) 

≤ ℎ𝐶(1 + 𝑢𝛾 + 𝑣𝛾) + 𝐶‖𝑥 − ℎ𝑦 − 𝑝(𝑥)‖(1 + 𝑢𝛾−1 + ‖𝑥 − ℎ𝑦 − 𝑝(𝑥)‖𝛾−1) 

≤ ℎ𝐶(1 + 𝑢𝛾 + 𝑣𝛾) + ℎ𝐶(‖𝑦‖ + 𝑣)(1 + 𝑢𝛾−1 + ℎ𝛾−1(‖𝑦‖ + 𝑣)𝛾−1) 

≤ ℎ𝐶(1 + 𝑢𝛾 + 𝑣𝛾) + ℎ𝐶(‖𝑦‖ + 𝑣)(1 + 𝑢𝛾−1 + ℎ𝛾−1‖𝑦‖𝛾−1 + 𝑣𝛾−1) . 

Rearranging the terms and dividing by ℎ yields 

𝐴1‖𝑦‖
𝛾 − 𝐶ℎ𝛾−1‖𝑦‖𝛾−1(‖𝑦‖ + 𝑣) ≤ 𝐶(1 + 𝑢𝛾 + 𝑣𝛾) + 𝐶(‖𝑦‖ + 𝑣)(1 + 𝑢𝛾−1 + 𝑣𝛾−1) 

≤ 𝐶(1 + 𝑢 + 𝑣 + ‖𝑦‖)(1 + 𝑢𝛾−1 + 𝑣𝛾−1) . 

We must now split the reasoning in two cases: either ‖𝑦‖ ≤ 𝑣, in which case the conclusion 

follows, or ‖𝑦‖ ≥ 𝑣, and then 𝐴1‖𝑦‖
𝛾 − 𝐶ℎ𝛾−1‖𝑦‖𝛾−1(‖𝑦‖ + 𝑣) ≥ 𝐴1‖𝑦‖

𝛾 −

2𝐶ℎ𝛾−1‖𝑦‖𝛾. We thus choose 0 < ℎ1 < 1 such that for all ℎ ∈ (0, ℎ1), 𝐴2 − 2𝐶ℎ
𝛾−1 ≥

ℎ𝛾−1. Then, we have, for any ℎ ∈ (0, ℎ1) , 

ℎ𝛾−1‖𝑦‖𝛾

1+𝑢+𝑣+‖𝑦‖
≤ 𝐶(1 + 𝑢𝛾−1 + 𝑣𝛾−1) . 

Once again, either ‖𝑦‖ ≤ 1 + 𝑢 + 𝑣, or 

ℎ𝛾−1‖𝑦‖𝛾−1 ≤
2ℎ𝛾−1‖𝑦‖𝛾

1 + 𝑢 + 𝑣 + ‖𝑦‖
. 

Taking the greatest of the constants in those two cases, we may conclude that 

ℎ𝛾−1‖𝑦‖𝛾−1 ≤ 𝐶(1 + 𝑢𝛾−1 + 𝑣𝛾−1) .                         (115) 

We may now proceed with the converse inequality. Invoking once again inequality (110), 

and then inequality (115), 

|𝑔(𝑥 − ℎ𝑦) − 𝑔(𝑝(𝑥))| ≤ ℎ𝐶(‖𝑦‖ + 𝑣)(1 + 𝑢𝛾−1 + ℎ𝛾−1‖𝑦‖𝛾−1 + 𝑣𝛾−1) 

≤ ℎ𝐶(‖𝑦‖ + 𝑣)(1 + 𝑢𝛾−1 + 𝑣𝛾−1) . 
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Finally, 

𝑄ℎ
𝑊(𝑔)(𝑥) − 𝑔(𝑝(𝑥)) = 𝑔(𝑥 − ℎ𝑦) − 𝑔(𝑝(𝑥)) + ℎ𝑊(𝑦) 

≥ −ℎ𝐶(‖𝑦‖ + 𝑣)(1 + 𝑢𝛾−1 + 𝑣𝛾−1) + ℎ𝐴2‖𝑦‖
𝛾 

≥ ℎ inf {−𝐶(‖𝑦‖ + 𝑣)(1 + 𝑢𝛾−1 + 𝑣𝛾−1) + 𝐴2‖𝑦‖
𝛾} 

≥ −ℎ𝐶(1 + 𝑢𝛾−1 + 𝑣𝛾−1)𝛾/(𝛾−1) 
and we may conclude.  We may now prove Theorem (6.3.22): using the same notations as 

in the proof above, that is 𝑢 = ‖𝑝(𝑥)‖ = ‖(𝑥1, 𝜙(𝑥1)‖, and 𝑣 = 𝑥1 ⋅ 𝜙(𝑥1) = |𝑥1 ⋅ 𝜙(𝑥1)|, 

hypothesis (C2) immediately yields, for all ℎ > 0 and all 𝑥 ∈ 𝐵ℎ\𝛺ℎ , 

𝑔−𝑎(𝑝(𝑥)) ≤
𝐶

(1 + 𝑢𝛾)𝑎
. 

Furthermore, inequality (113) and hypothesis (C2) yield 

𝑄ℎ
𝑊(𝑔)(𝑥) ≥ −ℎ𝐶(1 + 𝑢𝛾 + 𝑣𝛾) + 𝐶(1 + 𝑢𝛾) 

for all 𝑥 ∈ 𝐵ℎ\𝛺ℎ and 0 < ℎ < ℎ1. Now, assumption (108) reads: for all 𝑥1 ∈ ℝ
𝑛−1 such 

that ‖𝑥1‖ > 𝑅, 

𝑣 ≤ 𝐶𝑢. 

Since both 𝑢 and 𝑣 are bounded functions of 𝑥 on the set {(𝑥1, 𝑥2) ∈ 𝐵ℎ\𝛺ℎ , ‖𝑥1‖ ≤ 𝑅}, 

there exists ℎ2 > 0 such that, for all 0 < ℎ < ℎ2, 

             𝑄ℎ
𝑊(𝑔)(𝑥) ≥ {

𝐶 > 0 whenever ‖𝑥1‖ ≤ 𝑅

𝐶(1 + 𝑢𝛾) whenever ‖𝑥1‖ > 𝑅
 

Thus, for all 0 < ℎ < ℎ2 and all 𝑥 ∈ 𝐵ℎ ∖ 𝛺ℎ , 

𝑄ℎ
𝑊(𝑔)−𝑎(𝑥) ≤

𝐶

(1 + 𝑢𝛾)𝑎
. 

   Finally, invoking inequality (111) together with assumption (108) yields, for any 0 < ℎ <

ℎ2 and 𝑥 = (𝑥1, 𝑥2) ∈ 𝐵ℎ\𝛺ℎ , 

|𝑄ℎ
𝑊(𝑔)1−𝑎(𝑥) − 𝑔i−𝑎(𝑝(𝑥))|

ℎ
≤ 𝐶

|𝑄ℎ
𝑊(𝑔)(𝑥) − 𝑔(𝑝(𝑥))|

ℎ
(𝑄ℎ

𝑊(𝑔)−𝑎(𝑥) + 𝑔−𝑎(𝑝(𝑥))) 

≤ 𝐶(1 + 𝑢𝛾 + 𝑣𝛾)
1

(1 + 𝑢𝛾)𝑎
 

≤ 𝐶
1

1 + 𝑢(𝑎−1)𝛾
. 

   Note that 𝑢 ≥ ‖𝑥1‖, and we chose 𝑎 such that (𝑎 − 1)𝛾 > 𝑛, hence 𝑞(𝑎 − 1)𝛾 − 𝑞 >

𝑞(𝑛 − 1) , thus the dominated convergence theorem applies, and we may conclude that 

lim
ℎ→0

∫
1

ℎ

 

𝐵ℎ\𝛺ℎ

𝑄ℎ
𝑊(𝑔)1−𝑎 = lim

ℎ→0
∫ (

1

ℎ
∫ 𝑔i−𝑎
ℎ+𝜙(𝑥1)

ℎ+(1+ℎ)𝜙(𝑥1/(1+ℎ))

(𝑥1, 𝜙(𝑥1))d𝑥2)
 

R𝑛−1
d𝑥1 

= ∫ (𝑥1 ⋅ 𝛻𝜙(𝑥1) − 𝜙(𝑥1))
 

R𝑛−1
𝑔1−𝑎(𝑥1, 𝜙(𝑥1))d𝑥1, 

this last equality also being a dominated convergence result, using the hypotheses on 𝑔. 

We just proved that whenever (𝑔,𝑊) is admissible, with ∫ 𝑔−𝑎
 

𝛺
= ∫ 𝑊−𝑎 

𝛺1
= 1, 

and 𝜙 satisfies the asymptotic growth condition (108), then 



266 

(𝑎 − 𝑛)∫𝑔1−𝑎
 

𝛺

+ (𝑎 − 1)∫
𝑊∗(𝛻𝑔)

𝑔𝑎

 

𝛺

 

−∫ 𝑔1−𝑎
 

R𝑛−1
(𝑥1, 𝜙(𝑥1))𝑃(𝑥1)d𝑥1 ≥ ∫ 𝑊1−𝑎

 

𝛺1

.          (116) 

Let 𝑞 > 1. We want to use this inequality with 𝑊(𝑥) = 𝐶‖𝑥‖𝑞/𝑞, where 𝐶 > 0 is such that 

∫ 𝑊−𝑎 

𝛺1
= 1. The goal being to prove Sobolev‐type inequalities, we may consider only the 

real 𝑞 such that their conjugate exponent 𝑝 = 𝑞/(𝑞 − 1) , which will appear in 𝑊∗, is 

strictly less than 𝑛. Thus, we assume that 𝑞 > 𝑛/(𝑛 − 1) , and conditions (CO), (C1) and 

(C2) are automatically satisfied with 𝛾 = 𝑞. 

   We now compute 𝑊∗: 

𝑊∗(𝑦) = sup
𝑥∈Ω1

  {𝑥 ⋅ 𝑦 − 𝐶‖𝑥‖𝑞/𝑞} ≤ sup
𝑥∈ℝ𝑛

  {𝑥 ⋅ 𝑦 − 𝐶‖𝑥‖𝑞/𝑞}        (117) 

= sup
𝑅≥0

 sup
‖𝑥‖=𝑅

  {𝑥 ⋅ 𝑦 − 𝐶‖𝑥‖𝑞/𝑞} 

= sup
𝑅≥0

  {𝑅‖𝑦‖∗ − 𝐶𝑅
𝑞/𝑞} 

= 𝐶1−𝑝‖𝑦‖∗
𝑝
/𝑝. 

It is important to note that (117) becomes an equality for 𝑦 = 𝛻𝑔(𝑧) whenever 𝑔(. ) = 𝑊(. 

+𝑒) , since in that case, 

𝑊∗(𝛻𝑔(𝑧)) =  sup
𝑥∈Ω1

 {𝑥 ⋅ 𝛻𝑔(𝑧) −𝑊(𝑥)} =  sup
𝑥∈Ω 

 {(𝑥 + 𝑒) ⋅ 𝛻𝑔(𝑧) − 𝑔(𝑥)}

= 𝑒 ⋅ 𝛻𝑔(𝑧) + 𝑔∗(𝛻𝑔(𝑧)) 

and the supremum is indeed reached inside the right set. Optimality is not lost, and inequality 

(116) then becomes 

(𝑎 − 𝑛)∫𝑔1−𝑎
 

𝛺

+ 𝐶1−𝑝 (
𝑎 − 1

𝑝
)∫

‖𝛻𝑔‖𝑝

𝑔𝑎

 

𝛺

−∫ 𝑔1−𝑎
 

R𝑛−1
(𝑥1, 𝜙(𝑥1))𝑃(𝑥1)d𝑥1 ≥ ∫ 𝑊1−𝑎

 

𝛺1

. (118) 

   The next step is to lift the restrictions on the function 𝑔, extending the results to more 

general functions. Our tool here will be approximation by admissible functions. Let 𝑓 ∈

𝐶𝑐
∞(𝛺) be a nonnegative function such that ∫ 𝑓𝑎𝑝/(𝑎−𝑝)

 

𝛺
= 1. Let us fix some 𝛾 >

 max {1, 𝑎/(𝑛 − 1)} and consider, for 𝜀 > 0, 

𝑓𝜀(𝑥) = (𝜀‖𝑥 + 𝑒‖
−𝛾(𝑎−𝑝)/𝑝 + 𝐶𝜀𝑓) , 

where 𝐶𝜀 is such that ∫ 𝑓𝜀
𝑎𝑝/(𝑎−𝑝) 

𝛺
= 1, whenever 𝜀 is small enough for 𝐶𝜉𝑗 to exist. It is not 

difficult to see that the corresponding functions 𝑔∈ = 𝑓𝜀
𝑝/(𝑝−𝑎)

 satisfy conditions (C3) and 
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(C4), and that ∫ 𝑔𝜀
−𝑎 

𝛺
= 1. Furthermore, 𝐶𝜀 increases strictly as 𝜀 decreases towards 0, and 

an argument of continuity shows that lim
𝜀→0

𝐶𝜀 = 1, meaning that, pointwise, lim
𝜀→0

𝑔𝜀 =

𝑓(𝑝−𝑎)/𝑝 =: 𝑔. Finally, the dominated convergence theorem, applied to 𝑔𝜉𝑗
1−𝑎 =

𝑓𝜀
(𝑎−1)𝑝/(𝑎−𝑝)

, proves that inequality (118) is indeed valid for 𝑔. Rewriting it with 𝑓 yields 

(𝑎 − 𝑛)∫ 𝑓
𝑝
𝑎−1
𝑎−𝑝

 

𝛺

+ 𝐶1−𝑝 (
𝑎 − 1

𝑝
) (

𝑝

𝑎 − 𝑝
)
𝑝

∫‖
 

𝛺

𝛻𝑓‖𝑝

−∫ 𝑓
𝑝
𝑎−1
𝑎−𝑝

 

R𝑛−1
(𝑥1, 𝜙(𝑥1))𝑃(𝑥1)d𝑥1 

≥ ∫ 𝑊1−𝑎
 

𝛺1

.                                                  (119) 

Finally, we may lift the growth condition on 𝜙(21) and prove Theorem (6.3.4) in its full 

generality. Let 𝜙 be a convex function with 𝜙(0) = 0, and let 𝛺 be its epigraph. The 

subdifferential of 𝜙 at point 𝑥 ∈ ℝ𝑛−1 is the convex set 

𝜕𝜙(𝑥) = {𝑣 ∈ ℝ𝑛−1|∀𝑥′ ∈ ℝ𝑛−1, 𝜙(𝑥) − 𝜙(𝑥′) ≥ 𝑣 ⋅ (𝑥 − 𝑥′)}. 

Whenever 𝜙 is differentiable, the subdifferential coincides with the gradient. Next, given 

𝑥 ∈ ℝ𝑛−1 and ∈ 𝜕𝜙(𝑥) , we consider the tangent half‐space 

𝐻𝑥,𝑣 = {(𝑦1, 𝑦2) ∈ ℝ
𝑛−1 ×ℝ, 𝑦2 − 𝜙(𝑥) ≥ 𝑣 ⋅ (𝑦1 − 𝑥)}. 

For 𝑅 > 0, define 

𝛺𝑅 = ∩𝑥∈𝐵(0,𝑅)
𝑣∈𝜕𝜙(𝑥)

 𝐻𝑥,𝑣. 

𝛺𝑅 is the epigraph of a convex function 𝜙𝑅 that coincides with the function 𝜙 on the ball 

𝐵(0, 𝑅) ∈ ℝ𝑛−1, and its gradient is uniformly bounded by sup𝑥∈𝐵(0,𝑅)|𝛻𝜙(𝑥)| < +∞, so 

that it verifies the condition (108). Now, fix a function ∈ 𝐶𝑐
∞(𝛺) . The support of 𝑓 is inside 

a ball of radius 𝑅0, so for any 𝑅 ≥ 𝑅0, we may apply inequality (119) to the function 𝑓: 

(𝑎 − 𝑛)∫ 𝑓𝑝
 

𝛺𝑅

𝑎 − 1

𝑎 − 𝑝
+ 𝐴𝑅∫ ‖

 

𝛺𝑅

𝛻𝑓‖𝑝 −∫ 𝑓𝑝
 

R𝑛−1

𝑎 − 1

𝑎 − 𝑝
(𝑥1, 𝜙𝑅(𝑥1))𝑃𝑅(𝑥1)d𝑥1 

= (𝑎 − 𝑛)∫𝑓𝑝
 

𝛺

𝑎 − 1

𝑎 − 𝑝
+ 𝐴𝑅∫‖

 

𝛺

𝛻𝑓‖𝑝 −∫ 𝑓
𝑝
𝑎−1
𝑎−p

 

R𝑛−1
(𝑥1, 𝜙(𝑥1))𝑃(𝑥1)d𝑥1 ≥ ∫ 𝑊𝑅

1−𝑎
 

𝛺𝑅,1

. 

where 𝑃𝑅 , 𝛺𝑅,1, and 𝑊𝑅 are the usual definition of 𝑃, 𝛺, and 𝑊 respectively, with function 

𝜙𝑅 instead of 𝜙. The constants are given by 𝐴𝑅 = 𝐶𝑅
1−𝑝 𝑎−1

𝑝
(
𝑝

𝑎−𝑝
)
𝑝
 and 𝐶𝑅 > 0 is such that 
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∫ 𝑊𝑅
−𝑎 

𝛺𝑅,1
= 1, i.e. 

𝐶𝑅 = 𝑞
𝑎∫ ‖

 

𝛺𝑅,1

𝑥‖−𝑞𝑎d𝑥. 

It is now easy to verify that lim
𝑅→+∞

𝐶𝑅 = 𝑞
𝑎 ∫ ‖

 

𝛺1
𝑥‖−𝑞𝑎d𝑥 = 𝐶; 𝐴𝑅, and ∫ 𝑊𝑅

1−𝑎 

𝛺1,𝑅
 also 

converge towards the right constants, so that equation (119) is still valid for the function 𝜙, 

without any growth condition. Optimality remains to be shown. Let 𝑓 be the optimal 

function (which does not have compact support) given in Theorem (6.3.20). First, note that 

lim
𝑅→+∞

∫ 𝑓
𝑝
𝑎−1
𝑎−p

 

𝛺𝑅

= ∫ 𝑓
𝑝
𝑎−1
𝑎−𝑝

 

𝛺

, lim
𝑅→+∞

∫ ‖
 

𝛺𝑅

𝛻𝑓‖𝑝 = ∫‖
 

𝛺

𝛻𝑓‖𝑝, 

and also that for all 𝑅, 𝑓 is an optimal function for inequality (119) on domain 𝛺𝑅. Then, by 

approximation by smooth functions with compact support, inequality (119) is true for 𝑓, so 

that, writing 𝐴 = lim
𝑅→+∞

𝐴𝑅, and putting these facts together, 

        ∫ 𝑓
𝑝
𝑎−1
𝑎−𝑝

 

R𝑛−1
(𝑥1, 𝜙(𝑥1))𝑃(𝑥1)d𝑥1 ≤ (𝑎 − 𝑛)∫𝑓

𝑝
 

𝛺

𝑎 − 1

𝑎 − 𝑝
+ 𝐴∫‖

 

𝛺

𝛻𝑓‖𝑝 −∫ 𝑊1−𝑎
 

𝛺𝑅

= lim
𝑅→+∞

((𝑎 − 𝑛)∫ 𝑓
𝑝
𝑎−1
𝑎−𝑝

 

𝛺𝑅

+ 𝐴𝑅∫ ‖
 

𝛺𝑅

𝛻𝑓‖𝑝 −∫ 𝑊𝑅
1−𝑎

 

𝛺𝑅,1

)

= lim
𝑅→+∞

 (∫ 𝑓
𝑝
𝑎−1
𝑎−𝑝

 

R𝑛−1
 (𝑥1, 𝜙𝑅(𝑥1))𝑃𝑅(𝑥1)d𝑥1) . 

We can decompose that last integral as a sum of the two following integrals 

∫ 𝑓𝑝
 

R𝑛−1

𝑎 − 1

𝑎 − 𝑝
(𝑥1, 𝜙𝑅(𝑥1))d𝑥1

−∫ 𝑓𝑝
 

R𝑛−1

𝑎 − 1

𝑎 − 𝑝
(𝑥1, 𝜙𝑅(𝑥1))(𝑥1 ⋅ 𝛻𝜙𝑅(𝑥1) − 𝜙𝑅(𝑥1))d𝑥1. 

By monotone convergence, the first term converges to the integral of the pointwise limit of 

its integrand. Furthermore, by convexity, for all 𝑥1 ∈ ℝ
𝑛−1, 𝑥1 ⋅ 𝛻𝜙𝑅(𝑥1) − 𝜙𝑅(𝑥1) ≥ 0, so 

Fatou’s lemma applied to the second term yields 

lim
𝑅→+∞

(∫ 𝑓
𝑝
𝑎−1
𝑎−p

 

R𝑛−1
(𝑥1, 𝜙𝑅(𝑥1))𝑃𝑅(𝑥1)d𝑥1) ≤ ∫ 𝑓

𝑝
𝑎−1
𝑎−p

 

R𝑛−1
(𝑥1, 𝜙(𝑥1))𝑃(𝑥1)d𝑥1, 

which finishes to prove equality in the previous inequalities, whence optimality. 

Corollary (6.3.26)[222]; Let 𝑓𝑗 , 𝑔𝑗: ℝ
1+2𝜖 → ℝ∪ {+∞} be lower semicontinuous 
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functions. If 𝑓𝑗 is nonnegative and 𝑔𝑗 is coercive, that is, 

lim
‖𝑥‖→+∞

 𝑔𝑗(𝑥) = +∞, 

then 𝑓𝑗□𝑔𝑗 is exact. 

Proof. Fix 𝑥 ∈ ℝ1+2𝜖. Consider 𝜓: ℝ1+2𝜖 → ℝ∪ {+∞}, 𝑦 ↦ 𝑓𝑗(𝑥 − 𝑦) + 𝑔𝑗(𝑦) and 

assume that there exists 𝑦0 such that 𝜓(𝑦0) < +∞:𝜓 is lower semicontinuous, and greater 

than 𝑔𝑗, thus tends to +∞ as ‖𝑦‖ goes to +∞. As such, {𝑦 ∈ ℝ1+2𝜖 , 𝜓(𝑦) ≤ 𝜓(𝑦0)} is 

closed and bounded, thus compact. Now, let (𝑦1+2𝜖) ⊂ {𝜓 ≤ 𝜓(𝑦0)} be a minimizing 

sequence, lim
1+2𝜖→+∞

𝜓 (𝑦1+2𝜖) = inf𝑦∈R1+2𝜖{𝜓(𝑦)}. By compactness, we can assume that the 

sequence (𝑦1+2𝜖) converges towards 𝑧 ∈ ℝ1+2𝜖, and by lower semicontinuity, −∞ <

𝜓(𝑧) ≤ lim
1+2𝜖→+∞

𝜓 (𝑦1+2𝜖) = inf𝑦∈R1+2𝜖{𝜓(𝑦)}, thus the infimum is finite and is actually a 

minimum. If such a 𝑦0 does not exist, then 𝑓𝑗□𝑔𝑗(𝑥) = +∞, and the infimum is also 

reached.  

Corollary (6.3.27)[222]; Let 𝑔𝑗 , 𝑊:ℝ
1+2𝜖 → (−∞,+∞] be two measurable functions. If 

𝑔𝑗 is nonnegative and almost everywhere differentiable on its domain dom 𝑔𝑗 = 𝛺0 (with 

nonempty interior), and 𝑊 grows superlinearly, 

lim
|𝑥|→+∞

𝑊(𝑥)

|𝑥|
= +∞, 

then for almost every 𝑥 ∈ 𝛺0
o, ℎ ↦ 𝑄ℎ

𝑊(𝑔𝑗)(𝑥) is differentiable at ℎ = 0, and 

𝜕

𝜕ℎ
|ℎ=0𝑄ℎ

𝑊(𝑔𝑗)(𝑥) = −𝑊
∗ (𝛻𝑔𝑗(𝑥)), 

where 𝑊∗ is the Legendre transform of 𝑊. 

Proof. Let 𝛺1 = dom 𝑊, and fix 𝑥 ∈ 𝛺0
o such that the differential of 𝑔𝑗 at 𝑥 exists. Let 𝑦 ∈

𝛺1. For ℎ > 0 sufficiently small, 𝑥 − ℎ𝑦 ∈ 𝛺0, and we get, by definition of 𝑄ℎ
𝑊(𝑔𝑗) , 

𝑄ℎ
𝑊(𝑔𝑗)(𝑥) − 𝑔𝑗(𝑥)

ℎ
≤
𝑔𝑗(𝑥 − ℎ𝑦) − 𝑔𝑗(𝑥)

ℎ
+𝑊(𝑦) . 

Taking the superior limit when ℎ → 0 yields 

lim
ℎ→
 sup 

𝑄ℎ
𝑊(𝑔𝑗)(𝑥) − 𝑔𝑗(𝑥)

ℎ
≤ −𝛻𝑔𝑗(𝑥) ⋅ 𝑦 +𝑊(𝑦) . 

This being true for any 𝑦 ∈ 𝛺1, we may take the infimum to find that 
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lim
ℎ→
 sup 

𝑄ℎ
𝑊(𝑔𝑗)(𝑥) − 𝑔𝑗(𝑥)

ℎ
≤ −𝑊∗ (𝛻𝑔𝑗(𝑥)) . 

Conversely, fix 𝑒 ∈ 𝛺1, and ℎ0 > 0 such that 𝐵(𝑥, ℎ0‖𝑒‖) ∈. For ℎ ∈ (0, ℎ0) , define 

𝛺𝑥,ℎ = {𝑦 ∈ 𝛺1, ℎ𝑊(𝑦) ≤ 𝑔𝑗(𝑥 − ℎ𝑒) + ℎ𝑊(𝑒)}; 

note that 𝑒 ∈ 𝛺𝑥,ℎ. We claim that lim
ℎ→∞

supℎ→0 {ℎ‖𝑦‖, 𝑦 ∈ 𝛺𝑥,ℎ} = 0. Indeed, if 𝑦 ∈ 𝛺𝑥,ℎ, 

then 

ℎ‖𝑦‖
𝑊(𝑦)

‖𝑦‖
≤ 𝑔𝑗(𝑥 − ℎ𝑒) + ℎ𝑊(𝑒) ≤

𝑧∈
 sup 

𝐵(𝑥,ℎ0‖𝑒‖)
𝑔𝑗(𝑧) + ℎ0𝑊(𝑒) . 

Now, when ℎ goes to 0, either lim
 
 sup ‖𝑦‖ < +∞, or lim

 
 sup ‖𝑦‖ = +∞; in both cases, 

since lim
|𝑦|→+∞

𝑊(𝑦)

‖𝑦‖
= +∞, the claim is proved. Notice now that for all ℎ ∈ (0, ℎ0), 

𝑄ℎ
𝑊(𝑔𝑗)(𝑥) ≤ 𝑔𝑗(𝑥 − ℎ𝑒) + ℎ𝑊(𝑒) , hence 𝑄ℎ

𝑊(𝑔𝑗)(𝑥) = inf𝑦∈𝛺𝑥,ℎ{. . . }. Thus, 

𝑄ℎ
𝑊(𝑔𝑗)(𝑥) − 𝑔𝑗(𝑥)

ℎ
= inf
𝑦∈Ω𝑥,𝑘

 {
𝑔𝑗(𝑥 − ℎ𝑦) − 𝑔𝑗(𝑥)

ℎ
+𝑊(𝑦)} 

= inf
𝑦∈Ω𝑥,𝑘

{−𝛻𝑔𝑗(𝑥) ⋅ 𝑦 + 𝑦 ⋅ 𝜀𝑥(ℎ𝑦) +𝑊(𝑦)} 

where 𝜀𝑥(𝑧) → 0 when ‖𝑧‖ → 0. Let 1 ≥ 𝜂 > 0; the claim proves that there exists ℎ𝜂 ∈

(0, ℎ0) such that for all 0 < ℎ < ℎ𝜂 , ∀𝑦 ∈ 𝛺𝑥,ℎ , ‖𝜀𝑥(ℎ𝑦)‖ ≤ 𝜂. Thus, 

𝑄ℎ
𝑊(𝑔𝑗)(𝑥) − 𝑔𝑗(𝑥)

ℎ
≥  inf

𝑦∈Ω𝑥,𝑘
{−𝛻𝑔𝑗(𝑥) ⋅ 𝑦 − 𝜂‖𝑦‖ +𝑊(𝑦)} 

= inf
𝑦∈Ω𝑥,𝑘
𝑦∈𝐵(0,𝑅)

{. . . } 

≥ inf
𝑦∈Ω𝑥,𝑘

{−𝛻𝑔𝑗(𝑥) ⋅ 𝑦 +𝑊(𝑦)} − 𝑅𝜂 

≥ −𝑊∗ (𝛻𝑔𝑗(𝑥)) − 𝑅𝜂, 

where 𝑅 was chosen such that ‖𝑦‖ ≥ 𝑅 ⇒ 𝑊(𝑦) ≥ (‖𝛻𝑔𝑗(𝑥)‖ + 1)‖𝑦‖ +𝑊(𝑒) −

𝛻𝑔𝑗(𝑥) ⋅ 𝑒. Finally, taking the inferior limit of this inequality, and noticing that the result 

stays true for any 0 < 𝜂 ≤ 1, we may conclude (since 𝑅 is independent from 𝜂) that 
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lim
ℎ→0

𝑄ℎ
𝑊(𝑔𝑗)(𝑥)−𝑔𝑗(𝑥)

ℎ
= −𝑊∗ (𝛻𝑔𝑗(𝑥)) . 

   This differentiation result is enough to prove the main theorems contained in section 3, 

but we can go a little bit further with more assumptions on 𝑔𝑗 and 𝑊. Assuming 𝑊 to be 

convex bestows upon 𝑄ℎ
𝑊 a semigroup structure: 

Corollary (6.3.28)[222]; Assume that 𝑔𝑗: ℝ
1+2𝜖 → [0,+∞] is lower semicontinuous, and 

that 𝑊 is a lower semicontinuous proper convex function such that lim𝑊 (𝑥) = +∞. Then, 

for all 𝑥 ∈ ℝ1+2𝜖 and 0 < 𝑠 < ℎ, 

𝑄ℎ
𝑊(𝑔𝑗)(𝑥) = min

𝑦∈ℝ1+2𝜖
  {𝑔𝑗(𝑥 − ℎ𝑦) + ℎ𝑊(𝑦)} 

= 𝑄ℎ−𝑠
𝑊 (𝑄𝑠

𝑊(𝑔𝑗)) (𝑥) . 

Proof. Exactness was already proved in Lemma (6.3.26). Notice that 

𝑄ℎ−𝑠
𝑊 (𝑄𝑠

𝑊(𝑔𝑗)) (𝑥) =  inf
𝑦∈ℝ

inf
𝑧∈ℝ
 {𝑔𝑗(𝑥 − (ℎ − 𝑠)𝑦 − 𝑠𝑧) + (ℎ − 𝑠)𝑊(𝑦) + 𝑠𝑊(𝑧)} 

≤ inf
𝑦∈ℝ
 {𝑔𝑗(𝑥 − ℎ𝑦) + ℎ𝑊(𝑦)} = 𝑄ℎ

𝑊(𝑔𝑗)(𝑥) . 

Conversely, let 𝑦 ∈ ℝ1+2𝜖, and choose 𝑧 ∈ ℝ1+2𝜖 such that 

𝑄𝑠
𝑊(𝑔𝑗)(𝑥 − (𝑡 − 𝑠)𝑦) = 𝑔𝑗(𝑥 − 𝑠𝑧) + 𝑠𝑊(𝑧) . 

Then, by convexity, 

𝑄𝑡
𝑊(𝑔𝑗)(𝑥) ≤ 𝑔𝑗(𝑥 − (𝑡 − 𝑠)𝑦 − 𝑠𝑧) + 𝑡𝑊 (

𝑡 − 𝑠

𝑡
𝑦 +

𝑠

𝑡
𝑧) 

≤ 𝑔𝑗(𝑥 − (𝑡 − 𝑠)𝑦 − 𝑠𝑧) + (𝑡 − 𝑠)𝑊(𝑦) + 𝑠𝑊(𝑧) 

= (𝑡 − 𝑠)𝑊(𝑦) + 𝑄𝑠
𝑊(𝑔𝑗)(𝑥 − (𝑡 − 𝑠)𝑦) . 

Taking the infimum over 𝑦 ∈ ℝ1+2𝜖 proves that 𝑄𝑡
𝑊(𝑔𝑗)(𝑥) ≤ 𝑄ℎ−𝑠

𝑊 (𝑄𝑠
𝑊(𝑔𝑗)) (𝑥) , and 

thus there is equality.  

Corollary (6.3.29)[222]; Let 𝑔𝑗 , 𝑊 : ℝ1+2𝜖 → ℝ. If 𝑔𝑗 is nonnegative, locally Lipschitz 

continuous, and 𝑊 is convex and coercive, then (ℎ, 𝑥) ↦ 𝑄ℎ
𝑊(𝑔𝑗) is locally Lipschitz 

continuous. 

Proof. In order to prove the full local Lipschitz continuity, we must first localize the arginf 

of the infimal convolution. Fix 𝜌 > 0, 𝜂 > 0, and let 𝑥, 𝑥′ ∈ 𝐵(0, 𝜌) and 0 < ℎ < 𝜂. 

Consider the set 
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𝛺𝑥,ℎ: = {𝑦 ∈ ℝ
1+2𝜖 , 𝑔𝑗(𝑥 − 𝑦) + ℎ𝑊(𝑦/ℎ) ≤ 𝑔𝑗(𝑥) + ℎ𝑊(0)}. 

We claim that, by positivity of 𝑔𝑗, and convexity of 𝑊, the set is bounded. Indeed, since 𝑊 

is convex and coercive, there exists 𝑅 > 0 and 𝑚 > 0 such that 

‖𝑦‖ > 𝑅 ⇒ 𝑊(𝑦) ≥ 𝑚‖𝑦‖. 

If 𝑦 ∈ 𝛺𝑥,ℎ, then either ‖𝑦‖ ≤ ℎ𝑅 ≤ 𝜂𝑅, or ‖𝑦‖ > ℎ𝑅 and then 𝑔𝑗(𝑥) + ℎ𝑊(0) ≥

ℎ𝑊(𝑦/ℎ) ≥ 𝑚‖𝑦‖. Invoking continuity of 𝑔𝑗, we may prove the claim, and conclude that 

there exists 𝑅𝜌,𝜂 , independent from 𝑥 and ℎ, such that 𝛺𝑥,ℎ ⊂ 𝐵(0, 𝑅𝜌,𝜂) . 

   Let us now prove the local Lipschitz continuity with respect to 𝑥. The functions 𝑔𝑗 and 𝑊 

are assumed continuous, and so the infimal convolution is exact, and there exists 𝑦 ∈ ℝ1+2𝜖 

such that 𝑄ℎ
𝑊(𝑔𝑗)(𝑥) = 𝑔𝑗(𝑥 − 𝑦) + ℎ𝑊(𝑦/ℎ) . Necessarily, ‖𝑦‖ ≤ 𝑅𝜌,𝜂, so 

∑ 

𝑗

(𝑄ℎ
𝑊(𝑔𝑗)(𝑥

′) − 𝑄ℎ
𝑊(𝑔𝑗)(𝑥))

=  inf ∑  

𝑗

{𝑔𝑗(𝑥’ − 𝑦
′) + ℎ𝑊(𝑦′/ℎ)} − 𝑔𝑗(𝑥 − 𝑦) − ℎ𝑊(𝑦/ℎ) 

≤∑ 

𝑗

𝑔𝑗(𝑥’ − 𝑦) − 𝑔𝑗(𝑥 − 𝑦) 

≤∑ 

𝑗

(Lip𝐵(0,𝜌+𝑅𝜌,𝜂)𝑔𝑗) ‖𝑥 − 𝑥’‖, 

where Lip𝐴𝑓𝑗: = sup𝑥≠𝑥∈𝐴{|𝑓𝑗(𝑥) − 𝑓𝑗(𝑥
′)|/‖𝑥 − 𝑥′‖}. By symmetry, we conclude that 

∑ 

𝑗

|𝑄ℎ
𝑊(𝑔𝑗)(𝑥

′) − 𝑄ℎ
𝑊(𝑔𝑗)(𝑥)| ≤∑ 

𝑗

(Lip𝐵(0,𝜌+𝑅𝜌,𝜂)𝑔𝑗) ‖𝑥 − 𝑥’‖, 

hence the local Lipschitz continuity with respect to 𝑥. 

Now, 

∑ 

𝑗

(𝑄ℎ
𝑊(𝑔𝑗)(𝑥) − 𝑔𝑗(𝑥)) =   inf

𝑦∈𝐵(0,𝑅𝜌,1+2𝜖)
∑ 

𝑗

{𝑔𝑗(𝑥 − 𝑦) − 𝑔𝑗(𝑥) + ℎ𝑊(𝑦/ℎ)}

≥  inf
𝑦∈𝐵(0,𝑅𝜌,1+2𝜖)

 ∑  

𝑗

{−(Lip𝐵(0,𝜌+𝑅𝜌,𝜂)𝑔𝑗) ‖𝑦‖ + ℎ𝑊(𝑦/ℎ)} 
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= ℎ inf
𝑧∈𝐵(0,𝑅𝜌,1+2𝜖/ℎ)

  {−𝜆‖𝑧‖ +𝑊(𝑧)} ≥ −ℎ sup
𝑡∈(𝐵(0,𝜆)

  {𝜆‖𝑧‖ −𝑊(𝑧)} ≥ −ℎ  sup  𝑊∗(𝑡) , 

where 𝜆 = Lip𝐵(0,𝜌+𝑅𝜌,𝜂)𝑔𝑗. Conversely, by definition, 

𝑄ℎ
𝑊(𝑔𝑗)(𝑥) − 𝑔𝑗(𝑥) ≤ ℎ𝑊(0) , 

and thus |𝑄ℎ
𝑊(𝑔𝑗)(𝑥) − 𝑔𝑗(𝑥)| ≤ 𝐶ℎ, where 𝐶 =  max {𝑊(0), sup𝑡∈𝐵(0,𝜆)𝑊

∗(𝑡)}. Note 

that 𝐶 is finite because 𝑊∗ is, by definition, convex and finite on ℝ1+2𝜖, thus continuous. 

Finally, using the semigroup property 𝑄ℎ+𝑠
𝑊 (𝑔𝑗) = 𝑄ℎ

𝑊 (𝑄𝑠
𝑊(𝑔𝑗)) and the fact that the 

Lipschitz constant with respect to 𝑥 is uniformly bounded by Lip𝐵(0,𝜌+𝑅𝜌,𝜂) for 0 < ℎ < 𝜂, 

we may conclude for the full local Lipschitz continuity.  

Corollary (6.3.30)[222]; Let 𝑔𝑗 , 𝑊 : ℝ1+2𝜖 → ℝ. If 𝑔𝑗 is nonnegative, locally Lipschitz 

continuous, and 𝑊 is convex and grows superlinearly, 

lim
|𝑥|→+∞

𝑊(𝑥)

|𝑥|
= +∞, 

and are such that ∫ 𝑔𝑗
−(1+2𝜖) 

 
= ∫ 𝑊−(1+2𝜖) 

 
= 1, and if (𝑔𝑗 ,𝑊) is admissible in the sense 

of Definition (6.3.21), then the following statements are equivalent: 

𝑎. The Borell‐Brascamp‐Lieb inequality holds: for every 𝑡 ∈ [0,1] and 𝐻: ℝ1+2𝜖 → ℝ such 

that 

∀𝑥, 𝑦 ∈ ℝ1+2𝜖 , 𝐻((1 − 𝑡)𝑥 + 𝑡𝑦) ≤ (1 − 𝑡)𝑔𝑗(𝑥) + 𝑡𝑊(𝑦) , 

there holds 

∫𝐻−(1+2𝜖)
 

 

≥ 1. 

b. The following inequality stands: 

∫
𝑊∗(𝛻𝑔𝑗)

𝑔𝑗
2+2𝜖

 

 

≥ 0. 

Proof. By definition of the infimal convolution 𝑄ℎ
𝑊(𝑔𝑗) , it is actually sufficient to only 

consider the function 𝐻 = (1 − 𝑡)𝑄ℎ
𝑊(𝑔𝑗)(. /(1 − 𝑡)) , where ℎ = 𝑡/(1 − 𝑡) , in statement 

𝑎. In fact, this leads to the statement 𝑎 

∫𝑄ℎ
𝑊

 

 

(𝑔𝑗)
−(1+2𝜖)

≥ 1, 

which we prove is equivalent to b. 
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   Let us consider the function 𝜑: ℎ ↦ ∫ 𝑄ℎ
𝑊 

 
(𝑔𝑗)

−(1+2𝜖)
, which is continuous and almost 

everywhere differentiable in light of Lemma (6.3.29) and Theorem (6.3.22). Its derivative 

is given by 

𝜑′(ℎ) = (1 + 2𝜖)∫
𝑊∗(𝛻𝑔𝑗)

𝑔𝑗
2(1+𝜖)

 

 

. 

The implication 𝑎′. ⇒b. follows from the fact that 𝜑(0) = 1, and 𝜑(ℎ) ≥ 1 for ℎ ≥ 0. Then, 

necessarily, 𝜑′(0) ≥ 0. 

   Conversely, assume that b. holds. Then, whenever ℎ > 0 is such that 𝜑(ℎ) =

∫ 𝑄ℎ
𝑊 

 
(𝑔𝑗)

−(1+2𝜖)
= 1, statement b. applied to the function �̃�j = 𝑄ℎ

𝑊(𝑔𝑗) and the 

corresponding function �̃� implies that �̃�′(0) = 𝜑′(ℎ) ≥ 0 thanks to the semigroup property 

proved in Lemma (6.3.28). This, together with the fact that 𝜑(0) = 1, proves that 𝜑 stays 

above 1, which is exactly statement 𝑎.  

   Once again, we insist on the fact that the semigroup 𝑄ℎ
𝑊 is not linear, and not Markov, 

which means, in particular, that there is no mass conservation. As such, this result stands as 

a bit unusual among similar results. 

Corollary (6.3.31)[222]; There exists ℎ0 > 0 such that for all ℎ ∈ (0, ℎ0), 𝐵ℎ = 𝛺ℎ if, and 

only if, 𝛺 is a convex cone. In that case, 𝐵ℎ and 𝛺ℎ coincide for all ℎ ≥ 0. 

Proof. First, note that 𝑄ℎ
𝑊(𝑔𝑗)(𝑥) < +∞ if, and only if, there exists 𝑦 ∈ 𝛺1 such that 𝑥 −

ℎ𝑦 ∈ 𝛺. By definition of 𝛺, this is equivalent to 

∃(𝑦1, 𝑦2) ∈ ℝ
𝜖 ×ℝs. t. {

𝑦2 ≥ 𝜙(𝑦1) + 1

𝑥2 − ℎ𝑦2 ≥ 𝜙(𝑥1 − ℎ𝑦1)
 

⇔ (∃𝑦1 ∈ ℝ
𝜖s. t. 𝑥2 ≥ 𝜙(𝑥1 − ℎ𝑦1) + ℎ𝜙(𝑦1) + ℎ)) . 

If 𝑥 ∈ 𝛺ℎ, then choosing 𝑦1 = 0 proves that 𝑥 ∈ 𝐵ℎ, so 𝛺ℎ ⊂ 𝐵ℎ. If ℎ > 0, 𝛺ℎ = 𝐵ℎ if, and 

only if, for all 𝑥1, 𝑦1 ∈ ℝ
𝜖 , 

𝜙 (
𝑥1 − 𝑦1
ℎ

) ≥
𝜙(𝑥1) − 𝜙(𝑦1)

ℎ
.                             (120) 

Indeed, if 𝛺ℎ ⊃ 𝐵ℎ, then, for any 𝑥1, 𝑦1 ∈ ℝ
𝜖 , 

𝑥2: = 𝜙(𝑥1 − ℎ𝑦1) + ℎ𝜙(𝑦1) + ℎ ≥ 𝜙(𝑥1) + ℎ 

and thus, replacing 𝑦1 by (𝑥1 − 𝑦1)/ℎ, we get the stated inequality. The reciprocal is 

immediate. Now, let ∈ ℝ𝜖 , |𝑧| = 1. Inequality (120), for 𝑦1 = 0, becomes 

𝜙(𝑧) ≥
1

ℎ
𝜙(ℎ𝑧) 

for any ℎ smaller than ℎ0. Let 𝛼 = lim supℎ→0 𝜙(ℎ𝑧)/ℎ. Using inequality (120) once again, 

we get, for any 𝑠 ≥ 0, 

𝜙(𝑠𝑧) ≥
𝑠

𝑠ℎ
𝜙(𝑠ℎ𝑧) , 

for any sufficiently small ℎ > 0. Taking the inferior limit when ℎ → 0 proves that for any 
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𝑠 ≥ 0 

𝜙(𝑠𝑧) ≥ 𝑠𝛼.                                    (121) 

The set {𝑠 ≥ 0, 𝜙(𝑠𝑧) = 𝑠𝛼} is non‐empty because it contains 0, and it is closed by 

continuity. Let 𝑠 ≥ 0 be such that 𝜙(𝑠𝑧) = 𝑠𝛼. Then, invoking inequality (120), and then 

inequality (121), we get 

𝜙(
(1 + ℎ)𝑠𝑧 − 𝑠𝑧

ℎ
) = 𝜙(𝑠𝑧) = 𝑠𝛼 ≥

𝜙((1 + ℎ)𝑠𝑧) − 𝜙(𝑠𝑧)

ℎ
=
𝜙((1 + ℎ)𝑠𝑧) − 𝑠𝛼

ℎ

≥
(1 + ℎ)𝑠𝛼 − 𝑠𝛼

ℎ
= 𝑠𝛼 

so there is actually equality, and 𝜙((1 + ℎ)𝑠𝑧) = (1 + ℎ)𝑠𝛼 for any sufficiently small ℎ >

0. This shows that the connected component of {𝑠 ≥ 0, 𝜙(𝑠𝑧) = 𝑠𝛼} containing 0 is open 

in ℝ+. Since it is also closed, it is the half real line ℝ+. Thus, 𝜙 is linear over half‐lines with 

initial point 0. Inequality (120) then becomes 

𝜙(𝑥1 − 𝑦1) ≥ 𝜙(𝑥1) − 𝜙(𝑦1) 

for any 𝑥1, 𝑦1 ∈ ℝ
𝜖. Let 𝑡 ∈ [0,1]; replacing 𝑥1 by (1 − 𝑡)𝑥1 + 𝑡𝑦1 and 𝑦1 by 𝑡𝑦1, and using 

linearity, the inequality becomes exactly the convexity inequality, that is 

𝜙((1 − 𝑡)𝑥1 + 𝑡𝑦1) ≤ (1 − 𝑡)𝜙(𝑥1) + 𝑡𝜙(𝑦1) . 

The reciprocal is trivial. It is also clear that in this case, 𝐵ℎ = 𝛺ℎ for any ℎ ≥ 0.  

   This lemma will be used to prove the trace Sobolev and the trace Gagliardo-Nirenberg‐

Sobolev inequalities in convex cones. We can go a bit further, and impose only 𝜙 to be 

convex. 

Corollary (6.3.32)[222]; If 𝜙 is convex, then 

𝐵ℎ = { (𝑥1, 𝑥2) ∈ ℝ
1+𝜖 , 𝑥2 ≥ ℎ + (1 + ℎ)𝜙 (

𝑥1
1 + ℎ

)}. 

Proof. One may notice that setting 𝜔(𝑥) = 0 if 𝑥 ∈ 𝛺 and +∞ if 𝑥 ∈ 𝛺𝑐, and 𝑊(𝑥) =

𝜔(𝑥 − 𝑒) , then 𝜔 is convex, thus 

         𝐵ℎ = dom(𝑄ℎ
𝑊(𝜔)) = dom (𝑥 ↦ (1 + ℎ)𝑊 (

𝑥+𝑒

1+ℎ
)) , 

and 

𝑊(
𝑥 + 𝑒

1 + ℎ
) < +∞⇔

𝑥 + 𝑒

1 + ℎ
− 𝑒 ∈ 𝛺 

⇔ 𝑥2 ≥ ℎ + (1 + ℎ)𝜙 (
𝑥1
1 + ℎ

) . 

Corollary (6.3.33)[222]; If (𝑔𝑗 ,𝑊) is admissible, there exist constants 𝐶 > 0 and ℎ0 > 0, 

such that for all 0 < ℎ < ℎ0, and 𝑥 ∈ 𝛺ℎ , 

|𝑄ℎ
𝑊(𝑔𝑗)(𝑥) − 𝑔𝑗(𝑥)| ≤ 𝐶ℎ(1 + ‖𝑥‖

𝛾) . 
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Proof. First, let 𝑥′, 𝑥 ∈ 𝛺. Then, we may estimate |𝑔𝑗(𝑥
′) − 𝑔𝑗(𝑥)| using hypothesis (C4): 

∑ 

𝑗

|𝑔𝑗(𝑥
′) − 𝑔𝑗(𝑥)| ≤ ∫ ∑ 

𝑗

‖
1

0

𝜕

𝜕𝜃
𝑔𝑗(𝑥 + 𝜃(𝑥’ − 𝑥))‖d𝜃 

≤ ‖𝑥′ − 𝑥‖∫ 𝐴4

1

0

(1 + ‖𝑥 + 𝜃(𝑥′ − 𝑥)‖𝛾−1)d𝜃 

≤ 𝐶‖𝑥’ − 𝑥‖(1 + ‖𝑥‖𝛾−1 + ‖𝑥′ − 𝑥‖𝛾−1) .                         (122) 

Now, let 0 < ℎ ≤ 1 and 𝑥 ∈ 𝛺ℎ. Then, 𝑥 − ℎ𝑒 ∈ 𝛺, so 

𝑄ℎ
𝑊(𝑔𝑗)(𝑥) − 𝑔𝑗(𝑥) ≤ 𝑔𝑗(𝑥 − ℎ𝑒) + ℎ𝑊(𝑒) − 𝑔𝑗(𝑥) 

≤ 𝐶ℎ(1 + ‖𝑥‖𝛾−1 + ℎ𝛾−1) + ℎ𝑊(𝑒) 

≤ 𝐶ℎ(1 + ‖𝑥‖𝛾−1) . 

For the converse inequality, we will of course use hypotheses (C1) and (C3), but we first 

have to localize the point where the infimum 𝑄ℎ
𝑊(𝑔𝑗)(𝑥) is reached. Let 𝑦 ∈ 𝛺1 be such 

that 𝑄ℎ
𝑊(𝑔𝑗)(𝑥) = 𝑔𝑗(𝑥 − ℎ𝑦) + ℎ𝑊(𝑦) . Then, invoking hypothesis (C1) and inequality 

(122), 

ℎ𝐴1‖𝑦‖
𝛾 ≤ ℎ𝑊(𝑦) = 𝑄ℎ

𝑊(𝑔𝑗)(𝑥) − 𝑔𝑗(𝑥 − ℎ𝑦)

= 𝑄ℎ
𝑊(𝑔𝑗)(𝑥) − 𝑔𝑗(𝑥) + 𝑔𝑗(𝑥) − 𝑔𝑗(𝑥 − ℎ𝑦)

≤ 𝐶ℎ(1 + ‖𝑥‖𝛾−1) + 𝐶ℎ‖𝑦‖(1 + ‖𝑥‖𝛾−1 + (ℎ‖𝑦‖)𝛾−1) . 

We thus choose ℎ0 ∈ (0,1) such that for any ℎ ∈ (0, ℎ0), 𝐴1 − 𝐶ℎ
𝛾−1 > ℎ𝛾−1. Then, for 

any ℎ ∈ (0, ℎ0) , 

ℎ𝛾−1‖𝑦‖𝛾 < (𝐴1 − 𝐶ℎ
𝛾−1)‖𝑦‖𝛾 

≤ 𝐶(1 + ‖𝑦‖)(1 + ‖𝑥‖𝛾−1) , 

which implies that 

ℎ𝛾−1‖𝑦‖𝛾−1 ≤ 𝐶(1 + ‖𝑥‖𝛾−1) , 

since ‖𝑦‖𝛾−1 ≤  max (1,2
||𝑦||𝛾

1+||𝑦‖
) . Now, using inequality (122) once again, 

|𝑔𝑗(𝑥 − ℎ𝑦) − 𝑔𝑗(𝑥)| ≤ 𝐶ℎ‖𝑦‖(1 + ‖𝑥‖
𝛾−1 + ℎ𝛾−1‖𝑦‖𝛾−1) 

≤ 𝐶ℎ‖𝑦‖(1 + ‖𝑥‖𝛾−1) . 

Plugging this in the definition of 𝑄ℎ
𝑊(𝑔𝑗)(𝑥) , we find 

𝑄ℎ
𝑊(𝑔𝑗)(𝑥) − 𝑔𝑗(𝑥) ≥  inf

𝑦∈Ω1
{−𝐶ℎ‖𝑦‖(1 + ‖𝑥‖𝛾−1) + ℎ𝐴1‖𝑦‖

𝛾} 

≥ inf
𝑦∈ℝ1+2𝜖

 {… } = −𝐶ℎ(1 + ‖𝑥‖𝛾) . 
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To conclude, it is enough to notice that 1 + ‖𝑥‖𝛾−1 ≤ 2 + ‖𝑥‖𝛾 since 𝛾 > 1.                           

   Now that we have this estimation, we may estimate the speed of convergence of 

𝑄ℎ
𝑊(𝑔𝑗)

−3𝜖
 towards 𝑔𝑗

−3𝜖 . 

Corollary (6.3.34)[222]; If (𝑔𝑗 ,𝑊) is admissible, there exist constants 𝐶 > 0 and ℎ0 > 0, 

such that for all 0 < ℎ < ℎ0, and 𝑥 ∈ 𝛺ℎ , 

∑ 
 

|𝑄ℎ
𝑊(𝑔𝑗)

−3𝜖
(𝑥) − 𝑔𝑗

−3𝜖(𝑥)|

ℎ
≤

𝐶

1 + ‖𝑥‖𝛾(3𝜖)
. 

Proof. First, let , 𝛽 > 0. Then, 

|∫ 𝑡−(1+3𝜖)
𝛽

𝛼

d𝑡| = |
1

−3𝜖
(𝛽−3𝜖 − 𝛼−3𝜖)| ≤  max (𝛼−(1+3𝜖), 𝛽−(1+3𝜖))|𝛼 − 𝛽|, 

implying that 

|𝛼−3𝜖 − 𝛽−3𝜖| ≤ (3𝜖)|𝛼 − 𝛽|(𝛼−(1+3𝜖) + 𝛽−(1+3𝜖)) .                         (123) 

Then, according to Corollary (6.3.33), there exists ℎ0 > 0 such that for any ℎ ∈ (0, ℎ0) , 

and any 𝑥 ∈ 𝛺ℎ , 

∑ 

𝑗

|𝑄ℎ
𝑊(𝑔𝑗)

−3𝜖
(𝑥) − 𝑔𝑗

−3𝜖(𝑥)|

ℎ

≤ 𝐶∑ 

𝑗

|𝑄ℎ
𝑊(𝑔𝑗)(𝑥) − 𝑔𝑗(𝑥)|

ℎ
(𝑄ℎ

𝑊(𝑔𝑗)
−(1+3𝜖)

(𝑥) + 𝑔𝑗
−(1+3𝜖)(𝑥)) 

≤ 𝐶(1 + ‖𝑥‖𝛾)∑ 

𝑗

(𝑄ℎ
𝑊(𝑔𝑗)

−(1+3𝜖)
(𝑥) + 𝑔𝑗

−(1+3𝜖)(𝑥)) .           (124) 

Now, hypotheses (C1) and (C3) and a straightforward computation yield 

𝑄ℎ
𝑊(𝑔 )(𝑥) ≥ inf 𝑦 ∈ Ω1  {𝐴3(1 + ‖𝑥 − ℎ𝑦‖

𝛾) + ℎ𝐴1‖𝑦‖
𝛾} 

≥  inf {𝐴3(1 + |‖𝑥‖ − ℎ‖𝑦‖|
𝛾) + ℎ𝐴1‖𝑦‖

𝛾} 

≥ 𝐶(1 + ‖𝑥‖𝛾) . 

Using (C3) once again, we know that 

𝑔𝑗
−(1+3𝜖)(𝑥) ≤ (𝐴3(1 + ‖𝑥‖

𝛾))
−(1+3𝜖)

; 

putting these two inequalities together with inequality (124), we finally obtain 

∑ 
 

|𝑄ℎ
𝑊(𝑔𝑗)

−3𝜖
(𝑥) − 𝑔𝑗

−3𝜖(𝑥)|

ℎ
≤ 𝐶

1 + ||𝑥||𝛾

(1 + ‖𝑥‖𝛾)1+3𝜖
 

≤
𝐶

1 + ‖𝑥‖𝛾(3𝜖)
. 

 Corollary (6.3.34), together with Corollary (6.3.27), proves the dominated convergence, 
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and 

lim
ℎ→0

(𝑖) = (3𝜖)∫ ∑ 
 

𝑊∗(𝛻𝑔𝑗)

𝑔𝑗
1+3𝜖

𝛺

, 

as claimed. The convergence of (ii) is straightforward, as it is a direct implication of the 

local Lipschitz continuity of 𝑔𝑗 and hypothesis (C3). 

Corollary (6.3.35)[222]; If (𝑔𝑗 ,𝑊) is admissible, there exist constants 𝐶 > 0 and ℎ1 > 0, 

such that for at 0 < ℎ < ℎ1, and (𝑥1, 𝑥2) ∈ 𝐵ℎ ∖ 𝛺ℎ , 

|𝑄ℎ
𝑊(𝑔𝑗)(𝑥1, 𝑥2) − 𝑔𝑗(𝑥1, 𝜙(𝑥1))| ≤ ℎ𝐶(1 + ‖(𝑥1, 𝜙(𝑥1))‖

𝛾 + |𝑥1 ⋅ 𝛻𝜙(𝑥1)|
𝛾) .    (125) 

The proof follows the same logic as the proof of Corollary (6.3.33). 

   Proof. Recall that, according to Corollary (6.3.32) 

   𝛺ℎ = { (𝑥1, 𝑥2) ∈ ℝ
𝑛, 𝑥2 ≥ ℎ + 𝜙(𝑥1)} , 𝐵ℎ

= {(𝑥1, 𝑥2) ∈ ℝ
𝑛, 𝑥2 ≥ ℎ + (1 + ℎ)𝜙 (

𝑥1
1 + ℎ

)}, 

and that 

|𝑔𝑗(𝑥
′) − 𝑔𝑗(𝑥)| ≤ 𝐶‖𝑥’ − 𝑥‖(1 + ‖𝑥‖

𝛾−1 + ‖𝑥′ − 𝑥‖𝛾−1)        (23 revisited) 

for any 𝑥′, 𝑥 ∈ 𝛺. 

Fix ℎ ∈ (0,1), 𝑥 = (𝑥1, 𝑥2) ∈ 𝐵ℎ/𝛺ℎ, and define 𝑝(𝑥1, 𝑥2) = (𝑥1, 𝜙(𝑥1)) , its projection 

onto 𝜕𝛺. Letting 𝑦 = (
𝑥1

1+ℎ
, 1 + 𝜙 (

𝑥1

1+ℎ
)) , we find that 𝑦 ∈ 𝛺1, and also that 𝑥 − ℎ𝑦 ∈ 𝛺, 

thus, with hypothesis (C2) and inequality (122), 

𝑄ℎ
𝑊(𝑥) − 𝑔𝑗(𝑝(𝑥)) ≤ 𝑔𝑗(𝑥 − ℎ𝑦) − 𝑔𝑗(𝑝(𝑥)) + ℎ𝑊(𝑦)

≤ 𝐶‖𝑥 − ℎ𝑦 − 𝑝(𝑥)‖(1 + ‖𝑝(𝑥)‖𝛾−1 + ‖𝑥 − ℎ𝑦 − 𝑝(𝑥)‖𝛾−1)

+ ℎ𝐴2(1 + ‖𝑦‖
𝛾) . 

For brevity, let us write 𝑢 = ‖𝑝(𝑥)‖ = ‖(𝑥1, 𝜙(𝑥1)‖, and 𝑣 = 𝑥1 . 𝜙(𝑥1) = |𝑥1 ⋅ 𝜙(𝑥1)|. 

Now, notice that 

‖𝑥 − ℎ𝑦 − 𝑝(𝑥)‖ = ℎ‖(
𝑥1
1 + ℎ

,
𝑥2 − ℎ − 𝜙(𝑥1)

ℎ
− 𝜙 (

𝑥1
1 + ℎ

)) ‖. 

From the definition of 𝛺ℎ and 𝐵ℎ, we find out that 

0 ≤
ℎ + 𝜙(𝑥1) − 𝑥2

ℎ
≤
𝜙(𝑥1) − (1 + ℎ)𝜙(𝑥1/(1 + ℎ))

ℎ
 

≤ 𝑥1 ⋅ 𝛻𝜙(𝑥1) = 𝑣, 

since 𝜙 is convex and nonnegative. Thus, 
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‖𝑥 − ℎ𝑦 − 𝑝(𝑥)‖ ≤ ℎ‖(
𝑥1
1 + ℎ

,𝜙 (
𝑥1
1 + ℎ

))‖ + ℎ|𝑥1 ⋅ 𝛻𝜙(𝑥1)| 

≤ ℎ(‖𝑝(𝑥)‖ + |𝑥1 ⋅ 𝛻𝜙(𝑥1)|) = ℎ(𝑢 + 𝑣) , 

so, since ℎ < 1, 

1 + ‖𝑝(𝑥)‖𝛾−1 + ‖𝑥 − ℎ𝑦 − 𝑝(𝑥)‖𝛾−1 ≤ 1 + 𝑢𝛾−1 + (ℎ(𝑢 + 𝑣))
𝛾−1

 

≤ 𝐶(1 + 𝑢𝛾−1 + 𝑣𝛾−1) . 

Finally, 

𝐴2(1 + ‖𝑦‖
𝛾) = 𝐴2 (1 + ‖

𝑥1

1+ℎ
, 1 + 𝜙 (

𝑥1

1+ℎ
) ‖𝛾) ≤ 𝐶(1 + 𝑢𝛾) . 

Putting all these inequalities together, we find 

𝑄ℎ
𝑊(𝑥) − 𝑔𝑗(𝑝(𝑥)) ≤ ℎ𝐶(𝑢 + 𝑣)(1 + 𝑢

𝛾−1 + 𝑣𝛾−1) + ℎ𝐶(1 + 𝑢𝛾) 

≤ ℎ𝐶(1 + 𝑢𝛾 + 𝑣𝛾) .                            (126) 

Conversely, let 𝑦 ∈ 𝛺1 be such that 𝑄ℎ
𝑊(𝑔𝑗)(𝑥) = 𝑔𝑗(𝑥 − ℎ𝑦) + ℎ𝑊(𝑦) . As before, we 

localize 𝑦. Using hypothesis 𝐴1 and inequalities (122) and (126), 

ℎ𝐴1‖𝑦‖
𝛾 ≤ ℎ𝑊(𝑦) = 𝑄ℎ

𝑊(𝑔𝑗)(𝑥) − 𝑔𝑗(𝑝(𝑥)) + 𝑔𝑗(𝑝(𝑥)) − 𝑔𝑗(𝑥 − ℎ𝑦) 

≤ ℎ𝐶(1 + 𝑢𝛾 + 𝑣𝛾) + 𝐶‖𝑥 − ℎ𝑦 − 𝑝(𝑥)‖(1 + 𝑢𝛾−1 + ‖𝑥 − ℎ𝑦 − 𝑝(𝑥)‖𝛾−1) 

≤ ℎ𝐶(1 + 𝑢𝛾 + 𝑣𝛾) + ℎ𝐶(‖𝑦‖ + 𝑣)(1 + 𝑢𝛾−1 + ℎ𝛾−1(‖𝑦‖ + 𝑣)𝛾−1) 

≤ ℎ𝐶(1 + 𝑢𝛾 + 𝑣𝛾) + ℎ𝐶(‖𝑦‖ + 𝑣)(1 + 𝑢𝛾−1 + ℎ𝛾−1‖𝑦‖𝛾−1 + 𝑣𝛾−1) . 

Rearranging the terms and dividing by ℎ yields 

𝐴1‖𝑦‖
𝛾 − 𝐶ℎ𝛾−1‖𝑦‖𝛾−1(‖𝑦‖ + 𝑣) ≤ 𝐶(1 + 𝑢𝛾 + 𝑣𝛾) + 𝐶(‖𝑦‖ + 𝑣)(1 + 𝑢𝛾−1 + 𝑣𝛾−1) 

≤ 𝐶(1 + 𝑢 + 𝑣 + ‖𝑦‖)(1 + 𝑢𝛾−1 + 𝑣𝛾−1) . 

We must now split the reasoning in two cases: either ‖𝑦‖ ≤ 𝑣, in which case the conclusion 

follows, or ‖𝑦‖ ≥ 𝑣, and then 𝐴1‖𝑦‖
𝛾 − 𝐶ℎ𝛾−1‖𝑦‖𝛾−1(‖𝑦‖ + 𝑣) ≥ 𝐴1‖𝑦‖

𝛾 −

2𝐶ℎ𝛾−1‖𝑦‖𝛾. We thus choose 0 < ℎ1 < 1 such that for all ℎ ∈ (0, ℎ1), 𝐴2 − 2𝐶ℎ
𝛾−1 ≥

ℎ𝛾−1. Then, we have, for any ℎ ∈ (0, ℎ1) , 

ℎ𝛾−1‖𝑦‖𝛾

1+𝑢+𝑣+‖𝑦‖
≤ 𝐶(1 + 𝑢𝛾−1 + 𝑣𝛾−1) . 

Once again, either ‖𝑦‖ ≤ 1 + 𝑢 + 𝑣, or 

ℎ𝛾−1‖𝑦‖𝛾−1 ≤
2ℎ𝛾−1‖𝑦‖𝛾

1 + 𝑢 + 𝑣 + ‖𝑦‖
. 

Taking the greatest of the constants in those two cases, we may conclude that 

ℎ𝛾−1‖𝑦‖𝛾−1 ≤ 𝐶(1 + 𝑢𝛾−1 + 𝑣𝛾−1) .                         (127) 

We may now proceed with the converse inequality. Invoking once again inequality (122), 

and then inequality (127), 

|𝑔𝑗(𝑥 − ℎ𝑦) − 𝑔𝑗(𝑝(𝑥))| ≤ ℎ𝐶(‖𝑦‖ + 𝑣)(1 + 𝑢
𝛾−1 + ℎ𝛾−1‖𝑦‖𝛾−1 + 𝑣𝛾−1) 
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≤ ℎ𝐶(‖𝑦‖ + 𝑣)(1 + 𝑢𝛾−1 + 𝑣𝛾−1) . 

Finally, 

𝑄ℎ
𝑊(𝑔𝑗)(𝑥) − 𝑔𝑗(𝑝(𝑥)) = 𝑔𝑗(𝑥 − ℎ𝑦) − 𝑔𝑗(𝑝(𝑥)) + ℎ𝑊(𝑦) 

≥ −ℎ𝐶(‖𝑦‖ + 𝑣)(1 + 𝑢𝛾−1 + 𝑣𝛾−1) + ℎ𝐴2‖𝑦‖
𝛾 

≥ ℎ inf {−𝐶(‖𝑦‖ + 𝑣)(1 + 𝑢𝛾−1 + 𝑣𝛾−1) + 𝐴2‖𝑦‖
𝛾} 

≥ −ℎ𝐶(1 + 𝑢𝛾−1 + 𝑣𝛾−1)𝛾/(𝛾−1) 
and we may conclude.  

   We may now prove Theorem (6.3.22): using the same notations as in the proof above, that 

is 𝑢 = ‖𝑝(𝑥)‖ = ‖(𝑥1, 𝜙(𝑥1)‖, and 𝑣 = 𝑥1 ⋅ 𝜙(𝑥1) = |𝑥1 ⋅ 𝜙(𝑥1)|, hypothesis (C2) 

immediately yields, for all ℎ > 0 and all 𝑥 ∈ 𝐵ℎ\𝛺ℎ , 

𝑔𝑗
−(1+3𝜖)

(𝑝(𝑥)) ≤
𝐶

(1 + 𝑢𝛾)1+3𝜖
. 

Furthermore, inequality (125) and hypothesis (C2) yield 

𝑄ℎ
𝑊(𝑔𝑗)(𝑥) ≥ −ℎ𝐶(1 + 𝑢

𝛾 + 𝑣𝛾) + 𝐶(1 + 𝑢𝛾) 

for all 𝑥 ∈ 𝐵ℎ\𝛺ℎ and 0 < ℎ < ℎ1. Now, assumption (21) reads: for all 𝑥1 ∈ ℝ
2𝜖 such that 

‖𝑥1‖ > 𝑅, 

𝑣 ≤ 𝐶𝑢. 

Since both 𝑢 and 𝑣 are bounded functions of 𝑥 on the set {(𝑥1, 𝑥2) ∈ 𝐵ℎ\𝛺ℎ , ‖𝑥1‖ ≤ 𝑅}, 

there exists ℎ2 > 0 such that, for all 0 < ℎ < ℎ2, 

             𝑄ℎ
𝑊(𝑔𝑗)(𝑥) ≥ {

𝐶 > 0 whenever ‖𝑥1‖ ≤ 𝑅

𝐶(1 + 𝑢𝛾) whenever ‖𝑥1‖ > 𝑅
 

Thus, for all 0 < ℎ < ℎ2 and all 𝑥 ∈ 𝐵ℎ ∖ 𝛺ℎ , 

𝑄ℎ
𝑊(𝑔𝑗)

−(1+3𝜖)
(𝑥) ≤

𝐶

(1 + 𝑢𝛾)1+3𝜖
. 

   Finally, invoking inequality (123) together with assumption (21) yields, for any 0 < ℎ <

ℎ2 and 𝑥 = (𝑥1, 𝑥2) ∈ 𝐵ℎ\𝛺ℎ , 

∑ 

𝑗

|𝑄ℎ
𝑊(𝑔𝑗)

−3𝜖
(𝑥) − 𝑔𝑗

i−(1+3𝜖)
(𝑝(𝑥))|

ℎ

≤ 𝐶∑ 

𝑗

|𝑄ℎ
𝑊(𝑔𝑗)(𝑥) − 𝑔𝑗(𝑝(𝑥))|

ℎ
(𝑄ℎ

𝑊(𝑔𝑗)
−(1+3𝜖)

(𝑥) + 𝑔𝑗
−(1+3𝜖)

(𝑝(𝑥))) 

≤ 𝐶(1 + 𝑢𝛾 + 𝑣𝛾)
1

(1 + 𝑢𝛾)1+3𝜖
 

≤ 𝐶
1

1 + 𝑢(3𝜖)𝛾
. 

   Note that 𝑢 ≥ ‖𝑥1‖, and we chose 1 + 3𝜖 such that (3𝜖)𝛾 > 1 + 2𝜖, hence 

(1 + 𝜖)(3𝜖)𝛾 − (1 + 𝜖) > 2ϵ(1 + 𝜖), thus the dominated convergence theorem applies, 

and we may conclude that 
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lim
ℎ→0

∫ ∑ 
 

1

ℎ

 

𝐵ℎ\𝛺ℎ

𝑄ℎ
𝑊(𝑔𝑗)

−3𝜖

= lim
ℎ→0

∫ (
1

ℎ
∫ ∑ 

 
𝑔𝑗
i−(1+3𝜖)

ℎ+𝜙(𝑥1)

ℎ+(1+ℎ)𝜙(𝑥1/(1+ℎ))

(𝑥1, 𝜙(𝑥1))d𝑥2)
 

R2𝜖
d𝑥1 

= ∫ ∑ 
 
(𝑥1 ⋅ 𝛻𝜙(𝑥1) − 𝜙(𝑥1))

 

R2𝜖
𝑔𝑗
−3𝜖(𝑥1, 𝜙(𝑥1))d𝑥1, 

this last equality also being a dominated convergence result, using the hypotheses on 𝑔𝑗 .  
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