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Abstract

The Hardy-Lorentz spaces for B-valued martingales space are
stablished. We study the atomic decompositions, duality of the spaces
the interpolations and John-Nirenberg inequalities of martingale
Hardy-Lorentz-Karamata spaces. The critical and the equivalence
between pointwise Hardy inequalities presented. We deal with the
characterization of the Triebel-Lizorkin spaces and weighted estimates
for Littlewood - Paley functions with radial multipliers and bounds of
singular integrals and discrete Littlewood-Palev analysis the realized
Hardy inequalities under non-convexity measures ,for functions
vanishing on boundary on the solid torus estimates for Littlewood-
Paley Stein square functions. Calderon-Zygmund operators and limited
ranges of Muckenhoupt weights are investigated.
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Introduction

We consider the Hardy-Lorentz spaces H>»?(R"),with0 < p < 1,0 < q <
oo, We present three atomic decomposition theorems of Lorentz martingale
spaces. With the help of atomic decomposition we obtain a sufficient condition
for sublinear operator defined on Lorentz martingale spaces to be bounded.

We study an equivalence result between the validity of a pointwise Hardy
inequality in a domain and uniform capacity density of the complement. This
result is new even in Euclidean spaces, but our methods apply in general metric
spaces as well. We give sharp homogeneous improvements weighted Hardy
inequalities involving distance from the boundary. In the case of a smooth
domain, we obtain lower and upper estimates for the best constant of the
remainder term.

We establish the characterization of the weighted Triebel-Lizorkin spaces for
p = oo by means of a "generalized" Littlewood-Paley function which is based
on a kernel satisfying "minimal” moment and Tauberian conditions. This
characterization completes earlier work by Bui et al. We show some weighted
estimates for certain Littlewood—Paley operators on the weighted Hardy spaces

H? (0 <p < 1) and on the weighted L spaces.

We introduce the martingale Hardy—Lorentz—Karamata spaces. The atomic
decompositions of these martingale function spaces are established. We study the
Hardy—Lorentz spaces for Banach space valued mar-tingales. The dual spaces are
characterized and several martingale inequalities are established.

Considering two different non-convexity measures, we obtain some new
Hardy-type inequalities for non-convex domains 2 < R™. We establish the
classical Hardy inequality in the solid torus and some variants of it. The general
idea is to use the fact that Sobolev embeddings can be improved in the presence
of symmetries.

We give new sufficient conditions for Littlewood-Paley-Stein square function

and necessary and sufficient conditions for a Calder”on-Zygmund operator to be
bounded on Hardy spaces HP with indices smaller than 1. New Carleson measure
type conditions are defined for Littlewood-Paley-Stein operators, and the authors
show that they are sufficient for the associated square function to be bounded
from HP into LP. We give a full necessary and sufficient set of conditions for a
Calderén-Zygmund operator to be bounded on weighted Hardy spaces HY, where
w is an Muckenhoupt weight and 0 < p < oco. In fact, this result is new even
when 1 <p < oosince it allows for H?, boundedness of an operator when 1 <

\Y



p <q<oand w € 4, where it is possible that Hj, # LV, . These singular
integral results are achieved by proving Littlewood—Paley—Stein square function
type estimates from HY into LY for 0 < p < oo and a Muckenhoupt weight
w, which are interesting results in their own right. New techniques involving Aco
weight invariant spaces are also used to prove the weighted estimates for
Calderén—Zygmund operators.
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Chapter 1
Hardy and Lorentz Martingale Spaces

We discuss the atomic decomposition of the elements in spaces, their interpolation
properties, and the behavior of singular integrals and other operators acting on them. We
investigate some inequalities on Lorentz martingale spaces. We discuss the restricted weak-
type interpolation, and show the classical Marcinkiewicz interpolation theorem in the
martingale setting.
Section (1.1): The Hardy-Lorentz Spaces

The real variable theory of the Hardy spaces represents a fruitful setting for the study
of maximal functions and singular integral operators. It is because of the failure of these
operators to preserve L' that the Hardy space H! assumes its prominent role in harmonic
analysis. Now, for many of these operators, the role of L! can just as well be played by H>*,
or Weak H. However, although these operators are amenable to H* — L and HY® — [V
estimates, interpolation between H* and H* has not been available. Similar considerations
apply to H? and Weak H? for0 < p < 1.

We provide an interpolation result for the Hardy-Lorentz spaces H?4,0 < p < 1,0 <
q < oo, including the case of Weak H? as and end point for real interpolation. The atomic
decomposition is the key ingredient in dealing with interpolation since neither truncations
are available, nor reiteration applies. The Lorentz spaces, including criteria that assure
membership in LP9,0 < p < 00,0 < g < oo, are discussed. We show that distributions in
HP1 have an atomic decomposition in terms of HP atoms with coefficients in an appropriate
mixed norm space. An interesting application of this decomposition is to HP4 — LP®
estimates for Calder' on-Zygmund singular integral operators, p < g < o. Also, by
manipulating the different levels of the atomic decomposition, we show that, for 0 < q; <
q < q, < oo, HP1 is an intermediate space between HP'9t and HP-9z, This result applies to
Calder'on-Zygmund singular integral operators, including those with variable kernels,
Marcinkiewicz integrals, and other operators. The Lorentz space LP9(R™) = LP9,0 < p <
0,0 < g < o, consists of those measurable functions f with finite quasinorm |l f Il,, 4

given by

q (1.t 1qt 1a

1 llpq= _J [tpf (t)] —] ,0<g<oo,
pJo t
1 q
Il f Il 0= sup [tpf*(t)] ,q = oo,
t>0

The Lorentz quasinorm may also be given in terms of the distribution function m(f, 1) =
|{x € R™:|f(x)| > A}|, the inverse of the non-increasing rearrangement f* of f. Indeed, we

have
oo 1/q 14 1/q
T (g fo lq‘lm(f,l)%d/1> ~<Z [zkm(f,Zk)p]> ,
k

when 0 < g < oo, and

1
I £ lly,00= sup2€m(f, 2)?, q = .
k

Note that, in particular, LPP = LP, and LP* is weak LP.
The following two results are useful in verifying that a function is in LP9.



Lemma (1.1.1)[1]: Let 0 <p < oo, and 0 < g < o. Assume that the non-negative
sequence {u,} satisfies {2*u,} € £9. Further suppose that the non-negative function ¢
verifies the following property: there exists 0 < € < 1 such that, given an arbitrary integer
ko, We have ¢ < 1y + 1y, where i, is essentially bounded and satisfies [y || < c2ko,

and

2o, 2) 5 ¢ ) (2]
ko
Then, @ € LP9, and || @ Il < C"{Zkuk}"gq-
Proof: It clearly suffices to verify that ii{2k|{<p > y2"}|1/p}ii{) < oo, where y is an
q

arbitrary positive constant. Now, given k, let i, and i, be as above, and puty = ¢ + 1,
where ¢ is the constant in the above inequalities; for this choice of y,{p > y2ke} c
{nko > Zko}.

When g = oo, we have
1/p

2k0tin (., 240) 7 < ¢ z [2-kC-a2ky, |7
ko

< 2 %A= sup [2F ]
k=kq

Thus, 2kom(ny,, 2k0)1/p < supgsk, [2%1,], and, consequently,
2*om (@, y25) VP < cll{2¥ w3l 4q, all ko.
When 0 < g < oo, let 1 — ¢ = 24§ and rewrite the right-hand side above as

1
2 oy 12400 ]’
k

0
When p < g, by Holder's inequality with exponent r = q/p and its conjugate r’, this
expression is dominated by

1

o 7/ o ir
1 r
§ § k(1-6 p
2k6prl [2 a )‘uk]
ko ko

v/q

(ee)

< ¢2-kobp Z [Zk(l—é‘)ﬂk]q ’
ko

and, when 0 < g < p,r < 1, and we get a similar bound by simply observing that it does
not exceed

r/r

Q3

(00

2=kobyp z [2K=8)y, T < 2oy z [2K-0), 1

ko kO
Whence, continuing with the estimate, we have

[00]



Q3

26020 (. 2K0) < c2 koS Z [Zk(l—S)#k]q ,

ko
which yields, since 1 — ¢ = 26,
1
o q
Zkom(QD,]/Zko)l/p < C2k05 z [Zk(l_s).uk]q
ko

Thus, raising to the g and summing, we get

[00]

z [2kom(p,y2k)/P]" < c z 2ko%a Z [2k=9 7,

ko ko k=kg
which, upon changing the order of summation in the right-hand side of the above inequality,

is bounded by
k
z [Zk(l_a)ﬂk]q Z ko Scz (2411, ]

K ko=—co K
We will have no difficulty in verifying that, for Lemma (1.1.1) to hold, it suffices that 1,
satisfies

m(Py,, 20) " < cpy . all ko,
This holds, for instance, when |1, ii: < czkom,’ioo < r < oo, In fact, the assumptions of

Lemma (1.1.1) correspond to the limiting case of this inequality as r — oo,

Another useful condition is given by our next result.

Lemma (1.1.2) [1]: Let 0 < p < oo, and let the non-negative sequence {u;} be such that
{2%u,} € £9,0 < q < 0. Further, suppose that the non-negative

function ¢ satisfies the following property: there exists 0 < € < 1 such that, given an

arbitrary integer ko, we have ¢ < i, + 1y, Where 1, and n,,  satisfy
ko

2koPmn (1, 2%0)” < CZ [2*uE]P,0 < e <min (1,q/p)

— 00
(0e]

2koe|{n,, > 20} < cz [2%€ 1P
ko

Then, ¢ € LP%, and || ¢ |, ;< c||{2k,uk}||{,q.

We will also require some basic concepts from the theory of real interpolation.

Let Ay, A,, be a compatible couple of quasinormed Banach spaces, i.e., both A, and A, are
continuously embedded in a larger topological vector space. The Peetre K functional of f €
Ay + Ay att > 0 is defined by

K(t, f;Ay A,) = inf +t ,
(6 fi A0 ) = inf Wfolly + I,

Where f = f, + f1, fo € Ap and f; € A;.

In the particular case of the L? spaces, the K functional can be computed by Holmstedt's
formula, see [13]. Specifically, for 0 < q, < q; < oo, let a be given by 1/a = 1/q, —
1/q,. Then,



ta 1/90 ta 1/q1
K(t, f; L%,L%) ~ (f f*(s)%ds) + t<f f*(s)%ds)

The intermediate space (Ao, A1)y,4,0 <71 < 1,0 < g < oo, consists of those f 'sin Ay + A4
with

o dt 1/q
I f lagany,, = (L [t_"K(t,f:Ao,Aﬂ]qT) < oo,

" f ||(A0,A1)n,oo = St1>1%)) [t_nK(t' f;AO!Al)] < 0, q = ©0.

Finally, for the L? and LP9 spaces, we have the following result. Let0 < g¢; < g < g, < oo,
and suppose that 1/q = (1—mn)/q; +n/qz. Then, L7 = (L%, L%), ., and, L1,9=
(LY, [142), o see [5].

we adopt the atomic characterization of the Hardy spaces HP,0 < p < 1. Recall that a
compactly supported function a with [n(1/p — 1)] vanishing moments is an HP atom with
defining interval I (of course, I is a cube in R™), if supp(a) S I, and |I|*/P|a(x)| < 1. The
Hardy space HP (R™) = HP consists of those distributions f that can be written as f =
XAja;, where the a; are HP atoms, Z|/1j|p < oo, and the convergence is in the sense of
distributions as well as in HP. Furthermore,

1/p
I f llyo~ inf (Z A

where the infimum is taken over all possible atomic decompositions of f.
This last expression has traditionally been called the atomic HP norm of f. C. Fefferman,
Rivi ere and Sagher identified the intermediate spaces between the Hardy space HPo,0 <
po < 1,and L™, as

(HP0,L?)pq = HP9,1/p = (1 =1) /P, 0 < q < oo,
where HP9 consists of those distributions f whose radial maximal function Mf(x) =
Supsso | f * @:)(x) | belongs to LP9. Here ¢ is a compactly supported, smooth function
with nonvanishing integral, see [11]. R. Fefferman and Soria studied in detail the space
HY* which they called Weak H1, see [12].
Just as in the case of HP, HP*9 can be characterized in a number of different ways, including
in terms of non-tangential maximal functions and Lusin functions. In what follows we will
calculate the quasinorm of f in HP4 by the means of the expression

fmcnr 27

where Mf is an appropriate maximal function of f.

Passing to the atomic decomposition of HP-4, the proof is divided in two parts. First, we
construct an essentially optimal atomic decomposition; Parilov has obtained independently
this result for H9 when 1 < q, see [15].

Also, R. Fefferman and Soria gave the atomic decomposition of Weak H?!, see [12], and
Alvarez the atomic decomposition of Weak H?,0 < p < 1, see [3].

Theorem (1.1.3) [1]: Let fEHP9,0<p<10<q <. Then f has an atomic
decomposition f = }; x 4; xa; x, Where the a; . 's are HP atoms with defining intervals ;

that have bounded overlap uniformly for each k, the sequence {1} satisfies

,0<p<1,0<qg < oo,
q



q 1/q
<2k[§jj|/1j,k|p]p> < oo, and the convergence is in the sense of distributions.

q 1/q
Furthermore, (Zk[2j|/1j,k|p]p> ~Il f gpa.

Proof: The idea of constructing an atomic decomposition using Calder'on's reproducing
formula is well understood, so we will only sketch it here, for further details, see [6] and
[19]. Let Nf(x) = sup{|(f * ¥, )(¥)|: |x — y| < t} denote the non-tangential maximal
function of f with respect to a suitable smooth function ¥ with nonvanishing integral. One
considers the open sets 0, = {Nf > 2k}, all integers k, and builds the atoms with defining
interval associated to the intervals, actually cubes, of the Whitney decomposition of 0y, and
hence satisfying all the required properties. One constructs a sequence of bounded functions
fi with norm not exceeding c2* for each k, and such that f — Yikjsnfk 2 0asn - ooin
the sense of distributions.

These functions have the further property that f; (x) = ; ; x (), where |a; , (x)| < c2¥, ¢
is a constant, each «a; ; has vanishing moments up to order [n(1/p — 1)] and is supported
in I; , — roughly one of the Whitney cubes -, where the I;; ‘s have bounded overlaps for
each k, uniformly in k. It only remains now to scale «; ,

aj,k(x) = Aj,kaj,k(x)r
and balance the contribution of each term to the sum. Let 4;, = 2"|I]-,k s
Then, aj,(x) is essentially an HP atom with defining interval I;,, and one has
1/
(1) " ~ 2%10, 1. Thus,
1
|| dl

I I 1
I Z Al” | I~ {Zkloklv} lpa~Il f llgpay< q < oo.

24

As an application of this atomic decomposition, we should have no difficulty in showing
directly the C. Fefferman, Rivi ere, Sagher characterization of H?4, see [11].

Another interesting application of this decomposition is to HP9 — LP**° estimates for
Calder'on-Zygmund singular integral operators T,p < q < oo.

This approach combines the concept of p-quasi local operator of Weisz, see [18], with the
idea of variable dilations of R. Fefferman and Soria, see [12].

Intuitively, since Hormander's condition implies that T maps H?! into L!, say, for T to be
defined in HY,1 < s < oo, some strengthening of this condition is required. This is
accomplished by the variable dilations. Moreover, since we will include p <1 in our
discussion, as p gets smaller, more regularity of the kernel of T will be required. This
justifies the following definition.

Given0<p <1, let N =[n(1/p — 1)], and, associated to the kernel k(x,y) of a Calder

onZygmund singular integral operator T, consider the modulus of continuity w,, given by
p

1
wp(8) = sup f k(x,y) — Z v —yD%(x, y)| dy| dx,
r A  geyays | i

|a|sN



where 0 < § < 1, and the sup is taken over the collection of arbitrary intervals I of R™
centered at y;. Here, for a multi-index a(ay, ..., a,),

1
ka(x,y,) D k(x y)]y _y
1

wy(8) controls the behavior of T on atoms. More precisely, if a is an HP atom with defining
interval I, and 0 < § < 1, observe that

T(a)(x) = j lk(x, y) = z v = yD)%ka(x, y1) [ a(y)dy
I |a|=N
and, consequently,

j IT(a)(x)]|Pdx < wy,(5).

R™\(2/8)1

We prove the HP9 — LP* estimate for a Calder onZygmund singular integral operator T
with kernel k(x, y).
Theorem (1.1.4) [1]; Let 0 <p <1, and p < q < . Assume that a Calder'onZygmund
singular integral operator T is of weak-type (r, ) for some 1 < r < oo, and that the modulus
of continuity w,, of the kernel k satisfies a Dini condition of order q/(q — p), namely,

1 /( ~ )d6 (q_p)/q
Apy = J w,(8)7 qp?

Then T maps HP9 continuously into LP®, and I| Tf Il < cAl/p I f llgpa.
Proof: We need to show that
2koPm(Tf,2%0) < c | f 11D , all k.
Let f = X4 ka; k. be the atomic decomposition of f given in Theorem (1.1.3), and set

fi = Ykeky2j Ak and f, = f — fi. Further, let p;, = (Z]-|/1j,k|p)1/p, and recall that
ey ~ I f Nigpa,
Since [Ifyll]. < 2k || f|[} 0, We have

2PKomn(Tf,,250) < ¢ I £ IP peo

1 ,3\P(k—ko)/n
2n (E) I; ., and let

< 00,

Next, put I,

(k—ko) (k=ko)
I Kkl = 2 (E)p “ho |I]1k| ~ Z_kop (E)p ko |Aj’k|p, w¢E get

"I

k>ko J k>kq
P

< c27KoP || £ 117 o

k>k,
Also, since 0 < p < 1, it readily follows that

TE@P < Y Z 12”

k>kq

< c27kop !sup e




and, by Tonelli and the estimate for T(a) we have

Y ek < Zlml Jo IPCas)G0N

R™\Q k>kg
p(k— ko) .
2 n
= 2 “p <§)
k>kq .

pk\ 4/(@-P) (@-p)/a
2\ n o
< [ wl(3) iz I
qa-p

< c[w @7 P—] I f W
This bound gives at once
2Pko|{x & Q: [T(f)(x)| > 2%} < cAp g I f pa,
which implies that
2Pkom(Tfy, 2%071) < 2P%[|Q] + [{x & Q:IT(f) ()| > 2*071}]
<cll fIEP 4+ cApg Il fIE
Finally,
2kPm(Tf, 2%0) < 2Pkom(Tf,, 2K0~1) + 2Pkom(TFf,, 2ko~1)
Scllf IR peotchpg Il f I D,
and, since || f llypo< c |l f llyr.a for all q, we have finished.

We pass now to the converse of Theorem (1.1.3). It is apparent that a condition that relates
the coefficients A; with the corresponding atoms a; involved in an atomic decomposition of

the form }’;4;a;(x) is relevant here. If I; denotes the supporting interval of a;, let

1
I = {j: 2k < /[P < 2k+1},
and, for 2 = {4,}, put

1

a\ q
p

I 1= Z >l

=

We then have,
Theorem (1.1.5) [1]: Let 0 <p < 1,0 < g < oo, and let f be a distribution given by f =
X iAja;(x), where the a; 's are HP atoms, and the convergence is in the sense of distributions.
Further, assume that the family {Ij} consisting of the supports of the a; 's has bounded
overlap at each level I, uniformly in k, and Il A ll,q;< 0. Then, f € HP, and || f llypa<
¢ 1l 2 llppqp
Proof: Let Mf(x) = sup;so|(f * ¥:)(x)| denote the radial maximal function of f with
respect to a suitable smooth function Y with support contained in {|x| <1} and

nonvanishing integral. We will verify that M f satisfies the conditions of Lemma (1.1.1) and
IS thus in LP9.



Fix an integer k, and let

g(x) = z z ().

k<kqy jEelj
Since | Mg ll<Il g Il it suffices to estimate |g(x)|. Let C be the bounded overlap
constant for the family of the supports of the a; 's. Then, for j € I,

1
la 60l = — 1151 lay0)] < 25,0,

5P

and, consequently,
lg()l < z 2"*2 x1;(x) < €2k,

k<k, j

Next, let
h(x) = z z Aja;(x).

k=kqy jEI
Since a; has N = [n(1/p — 1)] vanishing moments, it is not hard to see that, if I; is the

defining interval of a; and I; is centered at x;, and y = (n + N + 1) /n > 1/p, then, with ¢

independent of j, ¢;(x) = Ma;(x) satisfies
1

"

(1l + | =x[")"

_L\*P
(o)

Vep
ek, (51 + = x]")

pi(x)<c

Thus, if 1/y <ep <1,

Mh(x)®? < c

which, upon integration, yields
1\ &P 1
y-L
mrarse Y () | -
jElk>k, R (|Ij| +|x - xj| )
The integrals in the right-hand side above are of order |I]-|1_y£p and, consequently, by
Chebychev's inequality,

k| Mh> 2%} < e Y T[T e Y 2k Y )

JEI,k=2kg k=kg JEIy
Thus, Lemma (1.1.1) applies with ¢ =Mf, P, =Mg,n,, =Mh, and py =

(% er, |Ij|)1/p, and we get

Rn

1

P
I2fm(Mf, 29|, < c|{2" 2 |1 ,
1 )
which, since !
AP
i~ e,

8



is bounded by ¢ I A llp,q1, 0 < q < oo,

The next result is of interest because it applies to arbitrary decompositions in HP9. The
proof relies on Lemma (1.1.2).

Theorem (1.1.6) [1]: Let 0 <p < 1,0 < g < oo, and let f be a distribution given by f =
X iAja;(x), where the a; 's are HP atoms, and the convergence is in the sense of distributions.
Further, assume that || A lif; 4;< o for some 0 <7 < min(p, q). Then, f € H??, and ||
f lgpa< c Il A ll; q- We are now ready to identify the intermediate spaces of a couple of

Hardy-Lorentz spaces with the same first index p < 1.
Theorem (1.1.7) [1]: Let 0 <p <1.Given 0 < q, < q < g, < oo, define 0 <n <1 by
the relation 1/q = (1 —n)/q. + n/q,. Then, with equivalent quasinorms,
HP4 = (Hp,qlal.qz)n’q_

Proof: Since the non-tangential maximal function N f of a distribution f in HP-91 is in LP91,
and that of f in HP92 is in LP92, we have

K(t,Nf; LP1, [P92) < cK(t, f; HP91, HP92),
Thus,

INfllpq ~ INfll@pairaey, , < cllfll@par praz)y,

and (Hp'ql’ Hp'qZ)n’q o Hp’q
To show the other embedding, with the notation in the proof of Theorem (1.1.3), write f =

1
Y24k k., and recall that for every integer k, the level set I, = {j: |2/ Lise [P ~ 2"}
contains exclusively the sequence {2; ; }.
Let uf = Z]-E,k|/1j,k|p. By construction, ¥ ui ~Il f Ipq. Now, rearrange {u} into {u;3,

and, foreach [ = 1, let k; be such that u;, = u;. For [y = 1, let K; = {kl, ...,klo}, and put

fii, = Dkeky 2 Ak k and for, = — fi, Then, by Theorem (1.1.4), fi, € Hp"h,fz,l0 €
HP 92 and, with the usual interpretation for g, = oo,
L 1/q1

iiolpas <[ > %) Wty S| D 1%

1 lo+1

So, for t > 0 and every positive integer [,, we have
1/q1

1/q>

(00

lo 1/q2

K(t, f; HP9, HP9%2) < ¢ z w1 +t Z p,
1 lo+1
Now, by Homstedt's formula, there is a choice of [, such that the right-hand side above ~
K(t, {ux}; €11, £92), and, consequently,
Thus,

[00]

K(t, f; HP9, HP92) < cK(t, {ug }; €91, €92).
< C"{ﬂk}"gq <cllf llyva,
and HP4 & (HP41, HPA2), .
We will have no difficulty in verifying that Theorem (1.1.7) gives that if T is a continuous,
sublinear map from H* into L', and from H* into L**, then || Tf ll; ;< c Il f ll;1q for
1 < g < oo. This observation has numerous applications. Consider the Calder' on-Zygmund
singular integral operators with variable kernel defined by

9



Q(x, x —
@ = pv. [ 2EED sy

Under appropriate growth and smoothness assumptions on £, T maps H* continuously into
L, see [7], and HY* continuously into L*®, see [9]. Thus, if Q satisfies the assumptions of
both of these results, T, maps H1? continuously into L9 for 1 < g < oo. A similar result
follows by invoking the characterization of H14 given by C. Fefferman, Rivi'ere and Sagher.
However, in this case the HP — LP estimate requires additional smoothness of (, as shown,
for instance, in [7]. Similar considerations apply to the Marcinkiewicz integral, see [10], and
[8].
Finally, when p < 1, our results cover, for instance, the § — CZ operators satisfying
T*(1) = 0 discussed by Alvarez and Milman, see [4]. These operators, as well as a more
general related class introduced in [16], preserve H? and H?* forn/(n+ 6) < p < 1, and,
consequently, by Theorem (1.1.7), they also preserve HP-4 for p in that same range, and g >
pP.
Section (1.2): Atomic Decompositions and Applications
The idea of atomic decomposition in martingale theory is derived from harmonic analysis.
Just as it does in harmonic analysis, the method is key ingredient in dealing with many
problems including martingale inequalities, duality, interpolation and so on, especially for
small-index martingale and multi-parameter martingale. As well known, Weisz [27] gave
some atomic decompositions on martingale Hardy spaces and proved many important
theorems by atomic decompositions; Weisz [28] made a further study of atomic
decompositions for weak Hardy spaces consisting of Vilenkin martingale, and proved a
weak version of the Hardy-Littlewood inequality; Liu and Hou [24] investigated the atomic
decompositions for vector-valued martingale and some geometry properties of Banach
spaces were charactered; Hou and Ren [22] considered the vector-valued weak atomic
decompositions and weak martingale inequalities; [29], [30], discussed the operator
interpolation by atomic decompositions of weighted martingale Hardy spaces.
We present three atomic decomposition theorems for Lorentz martingale spaces
Hj 4, Qp.q Dpq- Applying these theorems, a sufficient condition for a sublinear operator
defined on the Lorentz martingale spaces to be bounded is given. And then we obtain some
continuous imbedding relationships among Lorentz martingale spaces. These are new
versions of the basic inequalities in the classical martingale theory. Finally we also give a
restricted weak-type interpolation theorem, and obtain the version of classical
Marcinkiewicz interpolation theorem in the martingale setting.
Let (Q, %, P) be complete probability space and f be a measurable function defined on Q.
The decreasing rearrangement of f is the function f* defined by

f*(t) =inf {s > 0:P(|f| >s) < t}.
We adopt the convention inf @ = co. The Lorentz space L, ,(Q) =L, ;0 <p <o0,0<
q < oo, consists of those measurable functions f with finite quasinorm |l f II,, , given by

1 f llp,q= (%L“’ [t;f*(t)]q%y/qﬁ < q < oo,

1
Il f "p,oo: suptPf*(t),q = .

t>0
It will be convenient for us to use an equivalent definition of || £ Il,, 5, namely

10



1

* 119 qt\4
I fllyq= q(f [tP(|f(x)| > t)P] T) ,0< g < oo,

1
I f = suptP(If ()] > t)P,q = .
To check that these two expressions are the same, simply make the substitution y =
P(|f(x)| > t) and then integrate by parts.
It is well know that if 1 <p <o and 1<g <o, or p=g =1, then L,, is a Banach
space, and || f Il,, 4 is equivalent to a norm. However, for other values of p and g, L,, ; is
only a quasi-Banach spaces. In particular, if0 <g <1 <por0<qg<p <1lthenl f I,
Is equivalent to a g-norm. Recall also that a quasi-norm -]l in X is equivalent to a p-norm,
0 <p<1,ifthereexistsc > 0suchthatforany x; e X,i=1,..,n
2y + -+ 2017 < cUlxg P + -+ + Nl I1P).
For all these properties, and more on Lorentz spaces, see for example [21], [5], [23].
Holder's inequality for Lorentz spaces is the following, which first appears in work of O'Neil
[26],
N fgllpg<cllfllp qllgly,,
forall 0 < p,q,p1,91, P2, q2 < o such that% =1/p;+1/p,and1/q =1/q, +1/q,.

Let {2, },,>0 @ nondecreasing sequence of sub- o — fields of X such that £ =v Z,,. We denote
the expectation operator and the conditional expectation operator relative to Z,, by E and
E,,, respectively. For a martingale f = (f;,)50, We define A,,f = f,, — fn_1,n = 0 (With
convention f_; = 0,2_; = {Q, ®})

M, (f) = sup |fi|, M(f) = suplfal,

0<isn n=0

sm-(Z |Alf|2> S(F) = (Z |Anf|2)

1 1

= (i Ei—llAif|2>2;S(f) = (i En—llAnf|2>2-
i=0 n=0

Denote by A, the set of all non-decreasing, non-negative and adapted r.v. sequences p =
(Pr)nso With p,, = lim,,_,, p,,. We shall say that a

martingale f = (f;)n=o has predictable control in L, , if there is a sequence p = (p)nz0 €
A such that

|fal < Pn-1,P0 € Lpq-
As usually, we define Lorentz martingale spaces(see[21]),

11



Hyq ={f = Fdnsot I f g, =1 MCF) Tl o< o0},
Hyq ={f = Fdnsot I s =N () lpq< o0},
Hyq ={F = Fdnsot I £ 15, ;=1 S() llp,g< o0},
Qpg = {f = fn20:3(Pw)nz0 € A, S.£.50(f) < Pu-1,Poo € Lpg},

| ape = irplf|poo lp.q

Dp,q = {f = (fdn=0: 3(PnInz0 € A, s.t. | fu] < pp-1,Pw € Lp,q}r
17 Loy = ]

If we change the L, ,-norms in above definitions by L,-norms, we get the usual Hardy

martingale spaces (see [25]).

Definition (1.2.1)[20]: A measurable function a is called a (1, p, )-atom (or (2, p, ©)-

atom or (3, p, oo0)-atom,respectively) if there exists a stopping time t such that

()a, =E,a=0,n<r,

(i) 11S(@) o< P(r < o0) VP (or (i) Il S(a) ll< P(t < 00)~1/P

or (i) | M(a) ll< P(t < 2)~1/? respectively).

We denote the set of integers and the set of nonnegative integers by Z and N, respectively.

We write A < B if A < cB for some positive constant ¢ independent of appropriate

quantities involved in the expressions A and B.

Now we can present the atomic decompositions for Lorenz martingale spaces.

Theorem (1.2.2)[20]: If the martingale f € H; 4,0 < p < 00,0 < g < o then there exist a

sequence a* of (1, p, o)-atoms and a positive real number sequence (u;) € l4 such that

fo = z ﬂkafun EN

kez

and
||(.uk)kez||lq <If llug, -

Conversely, if 0 < g < 1,9 < p < o, and the martingale f has the above decomposition,
then f € H, , and

I f lyg < inf ”(.uk)kEZ"lq'
where the inf is taken over all the preceding decompositions of f.
Proof: Assume that f € H; 4, q # . Now consider the following stopping time for all k €
Z

lq’

T, = inf {n € N:s,.1(f) > 2*}(i ¢ = ).
The sequence of these stopping times is obviously non-decreasing. It easy to see that

n n
z (i = fF) = z ( Ximstp}dmf — Z XimsrdBDmf )
0 m=0

kezZ ke€Z \m=

- Z (i X{Tk<mSTk+1}Amf> = fu

keZ \m=0
Let up = 2¥3P (1), < )P, and

12



T T
fnk+1 _ nk

Mk
If 1, = 0 then we assume that a¥ = 0. Then for a fixed k, (aX) is a martingale. Since

S(fr:'k) < 2kls(fr;fk+1) < 2k+1
| ) 450

9%
which implies that (ak) is a L,-bounded martingale so that there exists a* € L, such that

E,a® = ak.If n < 1), then ak = 0 and we get that a* is really a (1, p, ) atom and
n n k n

1/q 1 q\ 1 a\ 4
(2 mm) =3( ) (2kP<rk<oo)p)) =<Z (2"P(s(f)>2k)P)>

ar

<Pty <) YP,neN,

s(a

keZ keZ keZ
1/q
q-1 q
< 2 j dyP(s(f) > 2k)p
kEsz_l 2k
q 1/q
(3 [, ror )
ez J2kt

o) q 1/a
< ( [ e > y)ﬁdy) <If g,
0

For g = oo, standard rectifications can be made.
Conversely, if f has the above decomposition, then from || ;(a®)[|_ < P(ty < 00)~1/P and

P(s(a®) > y) < P(s(a®) # 0) < P(1}, < o),

n _knd
a =
s, = a j

0

we get

0

q
ya-1P(s(a*) > y)pdy
P(‘L‘k<oo)_1/p
= q j ya-1p(s(a¥) > y) /P dy
0

1
q P(‘L’k<00)_5 1
0

For0<q<1,q9<p<ox,ll,, isequivalent to a g — norm,

D ms@)] = mls@Nl, <>
q

kez kez kez

which gives the desired result.
Theorem (1.2.3) [20]: If the martingale f € @, 4,0 <p < 0,0 < g < oo, then there exist

a sequence (a*) of (2, p, ) atoms and a real number sequence (u;,) € I, such that

kez

knd
a <
laklig; <

q
p

and
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1/q
|uk|q> <l f llg,
kez

Conversely, if 0 < g < 1,q < p < o, and the martingale f has the above decomposition,

then f € Q, 4 and
1
q
1F Ngpg=i (D el )

kez
where the inf is taken over all the above decompositions.

Proof: Suppose that f € Q, 4. Let B = (B,)ns0 be the optimal control of S,,(f), i.e., B €
NS, (f) L Bn-1 Il f g, ,= ||,800||qu. The stopping times t,, are defined in this case by

T, = inf {n € N: ™ > 2*}(inf ¢ = o0).
Let a® and u, (k € Z) be defined as in the proof of Theorem (1.2.2). Then for a fixed k, (aX)
is also a martingale. Since S(f,*) = S;, (f) < Br,_, < 2K, S(f*) < 2k+1,

S(aicl) < S(fn k+1) + S(fnk)
Hi

As in Theorem (1.2.2), we can show that a* is a (2, p, )-atom. Also

(2 |uk|q>1/q =3 (Z (2P mi < oo)i)q>1/q

kezZ kez

1 q\ 4
=3 (z (zkp(ﬁoo > zk)ﬁ) )

kezZ

IIBooIIp,q =l f g, - 1
Conversely, if a® is (2, p, )-atom, one can show that iiakiizgq < - The rest can be proved

similar to Theorem (1.2.2).
Theorem (1.2.4) [20]: If the martingale f € D, 4,0 < p < 0,0 < g < oo, then there exist

a sequence (a*) of (3, p, )-atoms and a real number sequence (u) € I, such that

fo = z :ukafun EN

»

>

< P(1, < ©)~P n € N.

and

1/q
q
| e | ) <l f ||Dp,q-
k€Z

Conversely, if 0 < g < 1,9 < p < o, and the martingale f has the above decomposition,

then f € D, , and
I'f llp,,< inf (Z Iuk|q> )

kez
where the inf is taken over all the above decompositions.

The proof of Theorem (1.2.4) is similar to that of Theorem (1.2.3). We shall obtain a
sufficient condition for a sublinear operator to be bounded from Lorentz martingale spaces

Q=
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to function Lorentz spaces. Applying the conditionto Mf,Sf and sf, we deduce a series of
inequalities on Lorentz martingale spaces.
An operator T: X — Y is called a sublinear operator if it satisfies

IT(f + DI < |Tf]+Tgl,|T(@f)| < |a|ITf],
where X is a martingale space, Y is a measurable function space.
Theorem (1.2.5) [20]: Let T: H? — L, be a bounded sublinear operator for some 1 < r <
oo, If

P(|Tal > 0) < P(t < o)

for all (1, p, )-atoms a, where 7 is the stopping time associated with a, then for 0 < p <
7,0 < q < o0, we have

I Tf llyq<Il f IIH;q, f € Hy,.
Proof: Assume that f € H, ;. By Theorem (1.2.2), f can be decomposed into the sum of a

sequence of (1, p, )-atoms. For any fixed y > 0 choose
j € Zsuchthat 2/~ < y < 2/ and let

j-1 oS
f=z pua® = z ukak+z wea® =: g+ h.
k=)

kez k=—c0

1
Recall that py, = 2¥3P?(t, < o0) and s(a*) = 0 on the set {r, = o}. we have

T 1/7"
j_1 j_l 1/7-
T
I g llps< j z urs(@®) | dp < 2 U <J (s(ak)) dP>
Q k=—o0 k=—o0 Q
j-1 1/r
<> uk<j iis(ak)ii;dp>
k=—00 {Tr=s00}
j-1 1
< Z P (1) < ) PP (1) < 00)/7
k=—o0
j-1
_ z 2kP (1, < a0) /T
j-1 S
= ) 2kP(s(f) > 29
k=—0o0

It follows from the boundedness of T that
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P(ITgl >y) <y "EITgl" <y Il g s

r

j-1
1
<y Z 2kP(s(f) > 2%)F
k=—0o0
j-1 r
p p
=y Y 202 esery > 2
k=—0o0
j-1 r
p
<y z 205 | wsFR.
k=—0o0

<yl sf";oo-
On the other hand, since |Th| < Z,‘f:juk|Ta"|, we get

P(|Th| >y) < P(|Th|>0)< 2 P(|Ta*| >
k=j

=) P <o) = ) 272RP(sf > 28)
k=) =

(00
< TS 1
k=j

<Y PUSEI oo
Since T is subliear,

4 Y\ < vp _fFIIP
PATSI >y < P(ITgl > 5) + P (IThI > 5) <y PISID,,,

and thus forall 0 <p <7,T:Hy o — Ly is bounded. Now for any fixed 0 <p <r, we

can choose 0 < py,p; < 1,0 < 6 < 1 satisfying % = 1;—0 + pi.
0 1

From interpolation theorem (see Theorem 5.11 [5] ) and the boundedness of sublinear is
hereditary for the interpolation spaces, we obtain for 0 < g < o

T:Hpq = (HSO'OO’HSLOO)Q’Q - (Lpo,oo'Lpl.OO)g,q =Lpgq
Is bounded. Hence
ITf lpg=Il f llys,-
On the lines of the proof of Theorem (1.2.5), we can prove the following Theorems (1.2.6)
and (1.2.7) by using Theorems (1.2.3) and (1.2.4), respectively.
Theorem (1.2.6) [20]: Let T: Q,- = L, be a bounded sublinear operator for some 1 < r <
oo, If
P(|Ta| > 0) < P(t < o)
for all (2,p, )-atoms a, where 7 is the stopping time associated with a, then for 0 < p <
r,0 < q < oo, we have
I T Ny q=Il f IIQM, fEQpg
Theorem (1.2.7) [20]: Let T: D,. = L, be a bounded sublinear operator for some 1 <r <
o, |If
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P(|Ta| > 0) < P(t < o)
for all (3, p, )-atoms a, where 7 is the stopping time associated with a, then for 0 < p <
r,0 < g < oo, we have
N T llyq<Il f IIDM, fEDy,.
Theorem (1.2.8) [20]: For all martingale f = (f;,),,»o the following imbeddings hold:
(i) For0<p<20<gq< o,

S * N S
Hp.q - H Hp,q - H

p.q’ p.q’
forp > 2,0 < g < oo,
* S S s
Hp,q I Hp,q' Hp.q I Hp,q'

(i) For0<p<o,0<q < oo,
QP,Q I H;.Q’ QP.Q I Hgﬂ' QP,Q I ng'q

_ ) Dpq o Hpq Dpg L’ Hg,q_’ Dpq © Hpgq- _
Proof: (i) The maximal operator Tf = Mf is sublinear, and I| Mf II,<Il sf Il,. If a is any
(1,p, o0)-atom and t is the corresponding stopping time, then {|Ta| > 0} = {|Ma| > 0} C
{t < o} and hence P(|Ta| > 0) < P(t < ). It follows from Theorem (1.2.5) that

I Mf Il q<Il f IIH;q, 0<p<2).

Similarly, consider the operator Tf = Sf. We get | Sf llp q<Il f llys_.

Conversely, we use vector-valued interpolation (see [25]) to obtain the case p > 2,0 < g <
co. In fact, we can regard martingale spaces as the subspaces of sequence spaces. Consider
the operator Q: L, (ls,) = L, defined by Q(f,) = s(f) = CioEn-118,f1*)*/2. For p =
2, we know that || s(f) ll,<Il M(f) ll,= lIsupnzo |fn|||p and so Q: L, (l,) — L, is bounded

for all p = 2. For any fixed p > 2, we can choose py,p; > 2,0 < 8 < 1 satisfying % =

1p—_9_|_pi_ Consequently Q:Lp,(lo) — Ly, is bounded, i = 0,1. By interpolation, for 0 <
0 1

q < o,

Q: Lp,q(leo) = (Lpo(loo)'l'm(loo))gq - (Lpo'l'pl 0.0 Lpq

is bounded. Hence we obtain
I s(f) llp,q= = M(f) llpq
p.q

which gives H, , © H,, .. By considering Q defined on the sequence space L,(l,), we can
similarly prove H, , © H;; ,

(i) For all 0<r <ol M(f) I, I SU) N I sCH) I-<ll f llg, and I M(f) Il |l
SU) I I s(F) 1<l f lip,.. Note that a;; = 0 on the set {n < 7, }.

Thus

sup | f,|
n=0

x(n < Tk)En_1|Anak|2 |2 =0.
Hence s(a®) = 0 on the set {7}, = o}.

We say that a sublinear operator T is of Lorentz-s restricted weak-type (p,q) if T
maps Hg,1 to L, ... For convenience, we call T as restricted weak-type (p, ). Then we have
the next interpolation from one restricted weak-type estimate to another.

Theorem (1.2.9) [20]: Let T be of restricted weak-type (p;,q;) fori = 0,1,and 1 < p;, q; <

oo. Put

=Ep_1x(n < Tk)lAnak

17



1 1-6 61 1-6 6

= +—,—= +—,V0<06<1.
p Po b1 9q do q1

Then T is also of restricted weak-type (p, q).

Proof: Suppose that f € Hj ;. From Theorem (1.2.2), f = Yyezixa, a* is a (1,p, 0)-
atom with respect to the stopping time ., and Y ez luxl <Il f "Hz,l- Now we can estimate

||Ta"||q’oo < 1. In fact

1 1 1-6 1 7]

ITa |l o = SupesotP (Ta)*(t) = supsso (t%(Ta")*(t)> (tﬂTa")*(t))
1-60
"II HNTa "II

9
< |lsa* ||,, 1||sa ||,, 1

<|[Ta

< "Sa "2p 2p0||X{Tk<OO}” "2p1 Zplll)({‘fk<00}"2p m

1 Q 6\?
< P(Tk < 00) p <P(Tk < 00)21?0 P(Tk < 00)2p1>

<1,
2 2
Where | = =2 and m = —:— Consequently,
2po—1 2p;-1
1T lgooS ) IelITa gy < ) lael <I S N,
kez keZ

and the proof is complete.
Now we show how restricted weak-type estimate can be transferred to strong type. It is also
the version of the classical Marcinkiewicz interpolation theorem in the martingale setting
(see Theorem 4.13 in [21]).
Theorem (1.2.10) [20]: Let T be of restricted weak-type (p;, q;) fori =0,1,and 1 < p; <
0,1 < q; £ ©,q9 = q;. Put

1 1-6 61 1-6

0
= + — +—,0<60<1.
p Po 28 q do d1
Then T is of type (H,, L, ), for0 <r < landr < q.

Proof: For 0 <r <1 and r < q, we know that |I-|l,, is equivalent to a r-norm, so it is
enough to prove [l Ta ll; < 1, for all (1, p, )- atoms
Once it is proved then from Theorem (1.2.2),

I TF I, < z W Tall, Z W <0 f s

kezZ kezZ
1. Consider the case q;, g, < o. From the proof of Theorem

Now we shall show || Ta I, <
(1.2.9), it is easy to see that

lalPy, <P(z<ow) P =01
pil
Thus, for g, < g < q,, We get
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1 q ” r—1 r/
7 | Ta ll;= y"~'P(|Ta| > y)"4dy
0

(e @)

< (Sr_l lllalls Td+ r_llllalls d
=, y y Hyo1 y s y y Hy. . Y

Tdo

Yeo_ Tdo _ re._ rqs _
< 5q(q qO)P(T < o) d (1/po—1/p) n 5q(q ql)P(T < ) d (1/p1—-1/p)
Take § = P(t < o0)% with «a satisfying

=3/ G-a) 6.3/ G5

do™ ar
q

In fact, from 1= ﬂ+i,l =29+ 9 e find that qa = (i—i)/(i —i), and
14 Po P1 q qo q1 Po P1 q1 qo
Jea-a+a (=g = flea-a +a(5-5)] <o
—lalqg —q QGo\——)|==|2qg—q G\ ——)|=
q Ve p/lT g YO p p

Then || Ta IIf < 1.

When one of g; is oo, say g, = oo, the proof is modified. More precisely, we have

1 1
ITallo=<llalys <P < ®)P1 P,

Thus, from = = =9 i,i =10

p Po P1 q qo

1 1Tl
7 | Ta IIZ,r= J y" 1P(|Ta| > y)"/dy
0

ITalleo 1 qor/q
r—1 - s
= fo yoor (y Ia "Hpo’l) 4

rqo(l 1

<P(r<o)d (a-ao)(1/p1-1/p)

5o D) + P(1 < )4
<1
the assertion follows.
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Chapter 2
Hardy-Sobolev Inequalities and Uniform Fatness

We present a new transparent proof for the fact that uniform capacity density implies
the classical integral version of the Hardy inequality in the setting of metric spaces. In
addition, we consider the relations between the above concepts and certain Hausdorff
content conditions. We show that estimates are sharp in the sense that they coincide when
the domain is a ball or an infinite strip. In the case of a ball, we also obtain further
improvements.
Section (2.1): Critical Hardy-Sobolev Inequalities

For O c R" be a domain and K be a compact, C? manifold without boundary
embedded in R™, of co-dimension k,1 < k <n. When k =1 we assume that K = 91,
whereas for 1 < k < n we assume that K N Q # @. We set d(x) = dist(x, K).
We also recall for 1 < p and p # k the following condition that was introduced in [35],

p—k
—A,dP~1 > 00nQ\ K, (C)

where A, is the p-Laplacian, that is A,u = div(|Vu|P~?Vu). We note that for k = 1,
condition (C) becomes —Ad > 0, which is equivalent to the convexity of the domain ( for
n = 2, but it is a much weaker condition than convexity of Q forn > 3.
Under assumption (C) the following Hardy inequality holds true [35],

L|Vu|l?dx— |p_ | f PP x> 0u e ce@\ K, )

p—k|P .
Where |T| is the best constant.

We show that inequality (1) can be improved by adding a multiple of a whole range of
critical norms that at the extreme case become precisely the critical Sobolev norm.

Theorem (2.1.1)[31]: Let2<p<np#k<nandp < g < —= —. Suppose that Q < R™

is a bounded domain and K is a compact, C? manifold without boundary embedded in R",
of codimension k,1 < k < n. When k = 1 we assume that K = 0, whereas for 1 < k <
n we assume that K N Q # @.

(i) If in addition Q and K satisfy condition (C), then there exists a positive constant ¢ =
c(Q, K) such that for all u € C5°(Q \ K), there holds

p
— ki [ lulP _g4d7P q
VulPdx — 2 M s o [ a5 weax)’. @
Q p o dP Q

(i) Without assuming condition (C), there exist a positive constant ¢ = c(n, k,p, q)
independent of (), K and a constant M = M (£, K), such that for all u € C;°(Q \ K), there
holds:

|4

p q
j |Vu|Pdx — P +MJ lulPdx > O d 1 |u|qu> . 3
Q ar Q

We note that the term in the right-hand side of (2) and (3) IS optimal and in fact (2) isa scale
invariant inequality. In the extreme case where g = IS

P |

precisely the critical Sobolev term.

The only result previously known, in the spirit of estimate (2), concerns the particular case
where Q = R",p = 2 and K is affine, thatis, K ={x e R" | x; = x, = =x;, =0}, 1 <
k < n,k # 2 and has been established in [49].
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The case p # 2 was posed as an open question in [49].

On the other hand the nonnegativity of the left-hand side of (3) for p = 2 has been shown
in [36] for K = 9Q.

Other improvements of the plain Hardy inequality involving any arbitrary subcritical L9
term are presented in [42] for the case where Q is a convex domain and K = 9. For earlier
results involving improvements with some subcritical L7 terms see [39].

We emphasize that in our theorem the case k = n, which corresponds to taking distance
from an interior point, is excluded. As a matter of fact estimate (2) fails in this case. Indeed
in this case, the optimal improvement of the plain Hardy inequality involves the critical
Sobolev exponent, but contrary to (2) it also has a logarithmic correction [43].

To establish Theorem(2.1.1) a crucial step is to obtain local estimates in a neighborhood of
K, see Theorem (2.1.18).

For other directions in improving Hardy inequalities see [32], [35], [36], [37],
[38],[40],[44].,[47], [48], [49],[51], [52], [53]. We establish auxiliary weighted Sobolev type
inequalities, in the special case where distance is taken from the boundary. We then use
these inequalities derive Hardy-Sobolev inequalities when distance is taken from the
boundary. We consider more general distance functions, where distance is taken from a
surface K of co-dimension k, as well as other critical norms via interpolation.

Some preliminary results have been announced in [41].

Let O € R™ be a bounded domain with C? boundary and d(x) = dist(x, Q). We
denote by Q6 : = {x € Q : dist(x,dQ) < &} a tubular neighborhood of 9Q, for § small.
Then, for § small we have that d(x) € C2(Qs). Also, if x € Q8 approaches x, € dQ € C2
then clearly d(x) — 0, and also

Ad(x) = (N = 1)H(x,) + 0(d(x)),
where H(x,) is the mean curvature of dQ at x,; see e.g., [45]. As a consequence of this we
have that there exists a §* sufficiently small and a positive constant c, such that
|dAd| < cpd, in Qs, for 0 < 6 < 6. (R)
We say that a domain Q < R" satisfies condition (R) if there exists a ¢, and a §* such that
(R) holds. In case d(x) is not a C? function we interpret the inequality in (R) in the weak
sense, that is

f dAdpdx| < ¢ f dpdx, V¢ € CF(Q), ¢ > 0.
Q Q

S5 1)
In our proofs, instead of assuming that Q is a bounded domain of class €2 we will sometimes

assume that Q satisfies condition (R). Thus, some of our results hold true for a larger class
of domains. For instance, if € is a strip or an infinite cylinder, condition (R) is easily seen
to be satisfied even though Q is not bounded.

We first prove an L! estimate.

Lemma (2.1.2) [31]: Let Q be a bounded domain which satisfies condition (R). Forany S €

1

<0,%nrc5 [(1 + g)]7> and any a > 0, there exists 6, = &,(a/cy) such that for all § €
d*|Vv|dx +f Vv eC”(Q). (4)

(0, 6,] there holds:
fﬂg aﬂg

Proof: We will use the following inequality: If V < R" is any bounded domain and u €
C>(V), then

d%lv|dSy > Slld*vll
L

N
N=1(2s)’
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Sn llu IIL%(QS)QI Vu llry +IEVu llzayy (5)

-1/n
where S,, = nr'/? [(1 + %)] ; see [49].
ForV = Qs we apply (5) tou = d%v,v € C*(Q) to get:

Salld®vll ~ < d*|Vv|dx + a d% v|dx + d*|v|dS, - (6)
LN-1(Qs) Qs Qs 208
To estimate the middle term of the right-hand side, noting that Vd - Vd = 1 a.e. and

integrating by parts we have:

a| d*lv|dx =J vd® - Vd|v|dx
Qs Qs
- —j d“Ad|v|dx—j d“Vd-V|v|dx+f d?|v|dsS,.

Qs Qs aﬂg

Under our condition (R) for § small we have |dAd| < cyd in Qg. It follows that

(a — cyb) d“‘llvldx<j d“‘1|Vv|dx+j d%|v|dS,. (7)
Qs Qs 00s
From (6) and (7) we get:
BTC00 ¢ s <f da|w|dx+j d%|v|dS
2a—co6 " YOO o 90§ B
The result then follows by taking
a(S, — 25)

60 a CO(Sn - S) .

(8)

We similarly have
Lemma (2.1.3) [31]: Let Q be a domain which satisfies condition (R). For any S €

<0,%nv,f> and a > 0 there exists 6, = 6,(a/c,) such that for all § € (0, §,] there holds:

n
d®|Vv|dx > Slld®
o IVvldx > Slld®vll, —

The proof is quite similar to that of the previous lemma. Instead of (5) one uses the (p =
1) — Gagliardo-Nirenberg inequality valid for any V c R", and any u € C;°(V),
Spllu IIL%(V)QI Vu llawyy, (10)

(Qs), Vv € Cy° (Qs). 9)

1
where S, = nv,, and v, denotes the volume of the unit ball in R™,
We next prove
Theorem (2.1.4) [31]: Let Q be a bounded domain of class €% and 1 < p < n. Then there
exists a 6, = 6,(Q, p,n) such that for all § € (0, §,] there holds:
dp_1|Vv|pdx + f np , Vv

Lg 69% Ln—_p(ﬂé‘)

€ C*(Q), (11)
with a constant C (n, p) depending only on n and p.
Proof: We will denote by C(p), C(n, p), etc. positive constants, not necessarily the same in
each occurrence, which depend only on their arguments. As a first step we will prove the
following estimate:

p=1 P
v[PdS, > C(n,p) Hd P v
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p=t P p-1 P
C(n,p) "d Pyl wp < dP~1|vv|Pdx + ‘d P vl m-vp .(12)
L"P(Qg) Qs L n-P (995)
To this end we apply estimate (4) tow = |v|5, s = (7;_; with a % > 0. Then,

n-—1

n(p-1) np n
S(n,p) ( j d n |v|n-pdx)
[9)

S

(n-1)(p-1) n(p-1) (n-1)(p-1) (@P-Dp
<Sf d nr |yl np |Vv|dx+J d nP |yl P dS,.
Qs 005

We next estimate the middle term,

p—1 1
n-H(®P-1) npE-1) n(p-1) np P p
d n7P |yl np |Vv|dx<( d np |v|"—1’dx> < dp‘1|Vv|pdx>
Qs Qs Qs

n-1 n-—1

n(p-1) np n n-p

< e( d n-p |v|"—de> +cg< dp_1|Vv|pdx> ,

Qs Qs
whence,

-1
n(p-1) np nT
(S(n,p) — &5) (j d np |v|n-pdx)
Q

S

n—1

n-p n-HE-1) @®@=-Lp
<S¢, dP~1|Vv|Pdx + d nP |y| P dS,.
Qs 005

Raising the above estimate to the power g we easily obtain (12).
To prove (11) we need to combine (12) with the following estimate:

p=t P (n—1p
C(n,p) Hd v —(605) j dP~1|Vv|Pdx +f |lv|PdS,. (13)
L n— Qs 00§
In the rest of the proof we will show (13) We note that the norm in the left-hand side is the

p-1
critical trace norm of the function d » v. To estimate it we will use the critical trace
inequality [34],

lu Py < COD) I VU Tpg o+ M Il U g0 (14)
L =P (0Qs)
where M = M(n, p, Q) in general depends on the domain Q as well. For reasons that we will
p-1 p—1 1

explain later we will apply this estimate not directly to d » v but to the function d »
with 8 > 0 instead. More speC|f|caIIy we have:

Op b= 1+9 P
Hd P | =4 "d ey (095)
p-1 P p-1
<65 <C(n p) "V( +0v)| +M ||d » vy >
LP(Qs) LP(Qs)
Now,
p-1 -1 1 p-1
(7o), < Gt ), #1477
LP (Q5) p LP (Q5) Lp(ﬂa)
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and

[, <ol
LP(Qg) LP(Qs) .
From the above three estimates we conclude that
(n-Dp
p=1 1 n-p
|d Puv (695)
L
< C(p)S‘ij =149 |\vy|Pdx + [C(n,p,0) + M6p]6‘9pf d~1P0|p|Pdx,
Qs Qs
whence, by choosing & sufficiently small,
2=t P
a7 o, (095

< C(p)s~o% | dP~1P0|vy|Pdx
Qs

+C(n,p, 9)6‘91’J d=1P0 |y|Pdx (15)
Qs
To continue we will estimate the last term of the right-hand side of (15). Consider the
identity:
Op?~1*0P = —dOPAd + div(d®PVd). (16)
We multiply it by |v|P and integrate by parts over Q5 to get:

Op pd=1+0P |p|Pdx
Qs

=— | d?Ad|v|Pdx— | dPP|v|P~1Ad|v|? - V]|v|dx
Qs Qs

+j P |v|P-1ds,.
90k

By our assumption (R) we have that |d®PAd| < c,6d~*9P. On the other hand,

p-1 p-1
pj a?|vl  Ad|v|? - V|v|dx <pf a’?|vl |Vv|dx
Qs Qs
< pej d=1P|y|Pdx + pcgf dP~1+0P|yy|PdLx.
Qs Qs

Putting together the last estimates we get:
(Bp —cyd —pe) | d7OP|v|Pdx < pc, | dP~1HOP|Vv|Pdx + ar|v|rds,, (17)
Qs Qs aﬂg
whence, choosing §, € sufficiently small,
C(p,0) | d*P|yPdx < C(p)| dP~1+9P|Vy|Pdx + f arl|v|Pds,. (18)
Qs Qs 00§
Combining (15) and (18) we obtain:
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p=1 P
C(n,p,0) Hd P v

<67 | PP |yy|Pdx + a—epf are |
L""P(Q) Qs 905

<f dp—1|Vv|de+j lv|PdS,. (19)
008 208

By choosing a specific value of 6, e.g., 8 = 1, we get (13). We note that estimate (18) fails
if & = 0, and this is the reason for introducing this artificial parameter.
We next have:
Theorem (2.1.5) [31]: Let Q < R™ be a domain satisfying (R) and 1 < p < n. Then there
exists a 6, = &,(cy, p, ) such that for all § € (0, §,] there holds
1 P
dP1|Vu[Pdx > C(n,p,) Hdpp ol w v ECR@y) (20)
Qs Il 75 (q)

with a constant C(n, p) depending only on n and p.

Proof: One works as in the derivation of (12), using however (9) in the place of (4).

We finally establish the following:

Theorem (2.1.6) [31]: Let 1 <p <n and D = sup,eqd(x) < co. We assume that Q is a
domain satisfying both conditions (C) and (R). Then there exists a positive constant C =
C(n,p, cyD) such that for any v € C5°(Q),

j dP~1 [Vv|Pdx + (—Ad) p (21)
Qs Qs L"P(Q)

Proof: We first define suitable cutoff functions supported near the boundary. Let a(t) €
C°°([0 o)) be a nondecreasing function such that a(t) = 1 for t € [0,1/2), a(t) = 0 for

> 1land |a'(t)] < Cy. For 6 small we define ¢p5(x): = « (d(x)) € C2(£). Note that ¢p5 =
10N Qs,,,¢s = 0 0n Q5 and |[Veps| = | (d(x)) —'Vdgx)l < <2 with C, a universal constant.
Forv € C5° () we write v = ¢sv + (1 — ¢ps)v. The functlon ¢psv Is compactly supported
in Qg, and by Lemma (2.1.3), we have:

P
v|Pdx > C"d Py

SId%950l 2 oy < | dIVHp0)dx (22)
Q
On the other hand (1 — ¢s)v is compactly supported in Qg ,, and using (10), we have:
2D\
CIA =gl n oy < () [ @I9C - gavlar. @23)
Q

Combining (22) and (23) and using elementary estimates, we obtain the following L!
estimate:

)
C (a, n, 5) IIdavllL%mS) < j |d2Vv|dx +f d® 1|v|dx. (24)
Q Qg\ﬂé
2
We next derive the corresponding LP, p > 1 estimate. To this end we replace v by |v|* with
p;n in (24) to obtain:
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n—1

an_ n
5 an  [n-1
C(a,n,p,—) fdn—1||v dx
D Q
n(p-1) 14 (P—1)
<Sj d%|v| n-p |Vv|dx+J d®v| " P dx.
Q Qs\Qs/2
Using Holders inequality in both terms of the right-hand side of this we get after simplifying,
an. T
6 an - |n-1
C(a,n,p,—) fdn—1||v dx
D Q
1 1
np-1) p n(p=1) P
<s<f d n-p |Vv|p> +<f d n-p |v|P> (25)
Q Qs\ Qs
Fora = % > 0, this yields:
Y= _ _
(Cn,p,—) ld P v|| np <J dP 1|Vv|7"dx+j d~|v|Pdx(26)
D " "Ln—p(Q) Q QS\QQ

2
We note that condition (C) has not been used so far and therefore all previous estimates are
valid even for general domains.

To complete the proof we will estimate the last term in (26). For 8 > 0, we clearly have:
d~v|Pdx < J d=1P0|p|Pdx
Q5\Qs/2 (27)

8\P°
G |,
<j d=1P0 |p|Pdx.
Q

To estimate the last term we work as in (16)-(18). Thus, we start from the identity (16),
multiply by |v|P and integrate by parts in Q. Now there are no boundary terms and also the
term containing d is not a lower order term anymore and has to be kept. Notice however that
because of condition (C) we have that —dA > 0 in the distributional sense. Without
reproducing the details we write the analogue of (18) which is:

C(p, e)f d=1+P0 |y|Pdx < C(p)f dv—1+P9|w|de+j dPO (—Ad)|v|Pdx. (28)
Q Q Q

s\Qs/2

Combining (27) and (28) and recalling that d < D, we get:

con(®) |

< f d=1P0 |y |Pdx.

Q
Choosing e.g., 8 = 1 and combining (29) and (26) the result follows. The dependence of
the constant C in (21) on the domain  enters through the ratio § /D. By Lemma (2.1.3) (cf.
(8)) we obtain that the dependence of C on Q enters through c,D. We also note that
C(n,p,o) = 0. Here we will prove various Hardy Sobolev inequalities. Let d(x) =
dist(x,0Q) and V c Q. Forp > 1, and u € C;° () we set:

d~v|Pdx < f d=1P0|p|Pdx

s\Qs/2 05\ Qs/2 (29)
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u](V): _f |Vu|pdx—(p;1> J 'ZLpd (30)

For simplicity we also write I,,[u] instead of I, [u](£2). We next put:
P_—l
ulx)=d 7 (x)v(x). (31)
We first prove an auxiliary inequality:
Lemma (2.1.7) [31]: For p > 2, there exists positive constant ¢ = c(p) such that

_ p-1
L[] (V) > C(p)f dr- 1|Vv|de+<pp 1) de-V|v|de. (32)
|4

Proof: We have that
p—1 p-1 4 p-1
Vu=TdP vWd+d P Vv =:a+b.

For p > 2 we have that for a, b € R",
la+b|P —|al’ > c(p)|bIP + plalP~?a - D.
Using this we obtain:

—_1.\P1
L,[u](V) > c(p)j dpr- 1|Vv|pdx+(pp 1) jVVd-Vlvlpdx. (33)

which is the sought for estimate.

We first establish estimates in Q.

Theorem (2.1.8) [31]: Let 2 < p < n. We assume that Q is a bounded domain of class C2.
Then, there exists a §, = &y (p, n, Q) such that for 0 < § < §, and all u € C,°(Q),

n—p

p—1\P [ |ul? o NTmo
|Vul|lPdx — |—— —dx>C |lu|"—rdx , (34)
Q p Qs ar Q

1) 1)

Where C = C(n,p) > 0 depends only on n and p.
Proof: Using Lemma (2.1.7) we have that

C(P)L,[u](Qs) | dP~'|Vv|Pdx + f vd - V|v|Pdx.
Integrating by parts the last term, w%aget: "
C(p)L,[u](Qs) > j dP~1|Vv|Pdx + (=d)|v|Pdx +f . |lv|PdS, - (35)
We next estimate the middle terr?{sof the right-hand s(ilc(ise. By condition (Igiawe have:
(=Ad)

1Y 14
< Co j
Qs Qs

dx dx. (36)

Starting from the identity 1 + dAd = div(dVd), we multiply it by |v|P and integrate by
parts over Qs to get:

f |lv|Pdx +f dAd|v|Pdx = —pJ d|v|P~1vd - V|v|dx + 6] |lulPds.

Qs Qs Qs 00§
Using once more (R) and standard inequalities we get:

(1=96co—ep) | |v|Pdx < 6pC. j dP~1|Vv|Pdx + (SJ |lulPds,
Qs Qs 0§

Whence for ¢, § sufficiently small,

fﬂ vlPdx < Co6 |

Qs

v v

dP~1|Vv|Pdx + C(p)(?] |u|PdsS. (37)
P 005
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Combining (35), (36) and (37) we obtain:
OO > | arwolpdx+ [ fopds,. (38)
Qs aﬂg
To complete the proof we now use Theorem (2.1.4), that is,

dP~1|Vv|Pdx +f
005

| p=1 P
|v|PdS, > C(n,p) Hd p v“ np

Qs LnT(.Q(g)(Sg)

=C(n,p) llu ”fP—p Qs)
The result then follows from (38) and (39).
Next we prove:
Theorem (2.1.9) [31]: Let 2 < p < n. We assume that Q is a bounded domain of class C2.
Then there exist positive constants M = M(n,p,) and C = C(n,p) such that for all u €
Co’ (), there holds:

—1\P p
j|Vu|pdx— (pT) [u] dx+MJ [P dx
Q

dpr
(I 0
>cj (|u|”—de)
Q

1
We emphasize that C(n, p) is independent of .

Proof: Clearly we have:

Ip[u](Q) = I, [u](Qs) + I, [u] (). (41)
By Theorem (2.1.8), for § small, we have:
L) > Cup) Nl . (42)
L"~P(Qg

Since d(x) > 6 in Qf,
p— 1y’
L, [u](Q3) > fac |Vul|Pdx — (p—6) jﬂc |u|Pdx. (43)

Using the Sobolev embedding of Ln p(ﬂ ) into WP (QS), see [46], we get:
lulPny <Cmp)| |VulPdx+C(np, Q)| |ulPdx.

L7=5(0f) a5 0
From this and (43), we get:
BII@) > COup 1u iy  —COup,® [ lulPdr.  (44)
Lm-r(Qg) Q

The result follows from (41), (43) and (44).

We finally show:

Theorem (2.1.10) [31]: Let 2 < p <nand D = sup,eqd(x) < co. We assume that Q is a
domain satisfying both condltlons (C) and (R). Then there exists a positive constant C =
C(n,p, coD) such that for any u € Cy° () there holds:

L|Vu|1’dx— (%)p %dx (f lu|™= de>p_ (45)

Proof: Working as in the derivation of (35), we get:

C()1,[u](Q) > jﬂ dP~1|Vv|Pdx + JQ (=Vd)|v|Pdx.

The result then follows from Theorem (2.1.6).
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Here we will extend the previous inequalities in two directions. First by considering
ﬂ
different distant functions and secondly by interpolating between the Sobolev L»-» norm

and the L? norm. This way we will obtain new scale invariant inequalities.
We denote by K a surface embedded in R", of codimension k,1 < k < n. We also allow
for the extreme cases k = n or 1 , with the following convention. In case k = n,K is
identified with the origin, that is K = {0}, assumed to be in the interior of Q. In case k =
1, K is identified with 0.
From now on distance is taken from K, that is, d(x) = dist(x, K). We also set K5: = {x €
Q: dist(x, K) < 8} is a tubular neighborhood of K, for § small, and K§: = Q \ K.
We say that K satisfies condition (R) whenever there exists a 6 sufficiently small and a
positive constant c, such that

|dAd + 1 — k| < cod, in Kg, for 0 < § < 6". (R)
For k = 1 this coincides with condition (R). For k > 1, if K is a compact, C2 surface without
boundary, then condition (R) is satisfied; see, e.g., [33] or [50].
We next present an interpolation lemma:
Lemma (2.1.11) [31]: Let a, b, p and q be such that

pn q—p
1<p<n,p<q<m, and b=a—-1+ pn. (46)
Then for any n > 0, there holds:
1-1
" b " ——— T _1 .
ld°vll g <An 4 IIdavllLanp(m + (1 - A)jjd* v||Lp(m,vU(47)
€ C”(Q),
Where
n —
0<p=ta=P (48)
. qp
Proof: For p,: = inp and A as in (48) we use Holder's inequality to obtain:
f d? |v|9dx = f (d4|p|29) (d2®=aD) |p|a(-D) g
QO Q
Aq (1=M)q
Ds
< <J dapslvlpsdx) <J dp(l"l)|v|pdx>
Q Q
that is,
b A -1 1-21
"d v”LQ(Q) < "daU"L%(Q)”da v”Lp(_Q)'
Combining this with Young's inequality,
1-1
XY AL T X+ (1 —-DnY,n >0, (49)

the result follows.

We first prove inequalities in K.

Lemma (2.1.12) [31]: Let Q c R™ be a bounded domain and K a C? surface of codimension
k, satisfying condition (R). We also assume that

n
p=1<q<m,b=a—1+q n,anda # 1 — k. (50)

q
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Then there existsa §, = §, ("”Ck_ll) and C = C(a,q,n, k) > 0suchthatforall § € (0,6,],
0
there holds:
f d?|Vv|dx +f d*|v|dS, > Clldbvlqu(Ka),Vv € C’(QA\ K).(51)
Ks 0Ks
Proof: Using the interpolation inequality (47) in K5 withn = 1, we get:
n(g—-1) q—n(q—-1) .
ldPvllag,) < e 1A VIN-1 ) + . 14Vl 2
<Cn,q)(Id*vll ~_ +f d% tv|dx . (52)
LN_1(K8) Ks

ForV = Ks we apply (5) tou = d%v,v € C*(Q) to get,
SnlldavllL%(Ks) < j d*|Vv|dx + |a| | d* Y|v|dx + d%|v|dS,. (53)

Ks Ks 0Ks

Combining (52) and (53) we get the analogue of (6) which is,
C(a, q,n)lldbvlqu(Kg) < st d*|Vv|dx + st d%v|dx + LKS d%|v|dS,. (54)
It remains to estimate the middle term of the right-hand side. Noting that Vd - Vd = 1 a.e.
and integrating by parts in K5, we have:
aj d% v|dx = f vd® - Vd|v|dx

Ks Ks

= —j daAd|v|dx—f dan-V|v|dx+j d®|v|dS,,
Ks Ks 0Ks
whence,
(a+k—1)| d*lwldx— | d*i(dAd+1—k)|v|dx— | d*-Vd|v|dx
Ks Ks Ks
+ |  d*w|ds,.

0Kg
Using (R) we easily arrive at the analogue of (7), that is,

(Ja+k—1]—cy6) | d* v|dx < J d*|Vv|dx + J d*|v|dS,. (55)
Ks Ks 0K

For estimate (55) to be useful we need |a + k — 1| > 0, whence the restrictiona = 1 — k.

The result then follows from (54) and (55), taking e.g., §, = latk-1|

2¢g
We next present the analogue of Lemma (2.1.3):
Lemma (2.1.13) [31]: Let Q < R™ be a domain and K a surface of co-dimension k,
satisfying condition (R). We also assume

n q
p=1<gqgc< 1b—a—1+ n, anda # 1 — k.

la+k—1|

Then, there exists a §, = 60(
(0,6, ] there holds:

) and aC = C(a,q,n, k) > 0, such that for all § €

Co

d%|Vvldx > ClldPvll ), YV € C (). (56)

Ks
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The proof is quite similar to that of the previous lemma. The only difference is that instead
of (5) one uses (10).

We next have:

Theorem (2.1.14) [31]: Let Q c R™ be a bounded domain and K a C? surface of co-
dimension k, with 1 < k < n, satisfying condition (R). We also assume:

1<p<np<qg< q—pn, (57)
and set a = 2=X. Then there exists ad, =0,(p,q,Q,K)andC = C(p,q,n, k) > 0such that
forall § € (0 dol and all v € C5°(Q \ K), there holds:

dP~F|Vv|Pdx +f d*|v|PdS, > Clldbvllfq(KS); (58)
Ks 0Kg

in particular the constant C is independent of , K.

Proof: We will use Lemma (2.1.12). Since in this lemma the parameters a, b, p, g have a
different meaning, to avoid confusion, we will use capital letters for the parameters a, b, p, g
appearing in the statement of the present theorem.

That is, we suppose that

Pn Q—-P
1<P<np<O< ,andB=A—-1+ n, (59)
iy QP
and for A = Pp%k, we will prove that the following estimate holds true,
j dP =k |vv|Pdx +j A *|v|PdS, > C||dBv||fQ (Ks)" (60)
Ks 0Kgs

We will argue in a similar way, as in the proof of Theorem (2.1.4). We first prove the
following L? — LF estimate:

P
C(Pl anl k) "dBv"LQ(KS)

<
K

dP‘k|Vv|de+j d1*|v|Pds

5 oKs x (61)
+ ”d | @(Kd).
To this end we replace in (51) v by |v|® with
s=0Q Ple +1. (62)
Also, for A, B, P and Q as in (59), we set:
q=Qs‘1,b=Bs,a—b+1—q;N BQT1+A (63)
It is easy to check that a, b, g thus defined satisfyq(50). Then, from (51), we have:
||dBv|| 1+Pp = |d?|v|® lagk s < Csf d®|v|S~1|Vv|dx + Cf d®|v|*dx, (64)
(K ) Ks 0K s

with C = C(a,q,n, k) = C(P,Q, A, n, k). Using Holder's inequality in the middle term of
the right-hand side, we get:
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P-1 P-1
v [dP¢P | v|9P dx

f de|v|s~1|Vv
K

S

dxzf d4
K

6
P-1

< 4|Vl p e, APVl
P 1

LQ(K ) (65)

P ¢ B
+ ¢||d v|| o 1+55k0"
(Ka)
From now on we use the specific value of A = %. For this choice of A a straightforward

calculation shows that

cgudAlwluLp(K )

Q._

a—1+k—T (n—k)iO (66)

and therefore it corresponds to an acceptable value of a, see (50). Because of (66) the case
k = n is excluded.

We next estimate the last term of (64). Using Holder's inequality (similarly as in Lemma
(2.1.11)), we get:

P-1 P—-1 P—1
j d*|v|*dx :j d“|v|'1(Q_P +1)dBQT+A—M|v|(1—A)(QT+1)dx
0Ks

0Ks

A(n—P)(, P—1. 1-A7, P—1
(P-k)(n-1) P(n-1) \n-DP\C P +1) + (1)
< d n-P |v| n-P dx A *|v|Pdx )
0Kg 0Ks

where,

m-DE=-P) ,, _E-DE-PFP-K

A= =
eP—D+p H p2
Using then Young's inequality (cf. (49)) we obtain for a positive constant C = C(P, Q, n),
p
P(n—1) 05+
P~k yn-p O 1k
c| dowpdx < |d P v + ”d P v (67)
oK L LP (9K )
From (64), (65) and (67) we easily obtain (61).
complete the proof of the theorem we will show that
P—k P(n—l)
C ”d || <f dP=*|Vu|P dx +f Ak |v|Pds,, (68)
L Ks 0Ks

for a positive constant ¢ = C(P,Q,n, k). The proof of (68) parallels that of (13). In
particular, for k = 1 this is precisely estimate (13). We will sketch the proof of (68).

P-k
Applying the critical trace inequality (14) to d 7 *°y,6 > 0, in the domain Ks we obtain
for & sufficiently small the analogue of (15), that is

Pk P
|77 ]
L
<C(P,k)6‘9”] dP=k+PO|yy|Pdx
Ks

+C(n, P, k,0)5°F J d=*+PO|p|Pdx. (69)
Ks
We next estimate the last term of (69). Starting from the identity,
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(1 —k + 0P)d*+0FP = —q1=k+0PAg 4 div(d1~**9PVd), (70)
we multiply it by |v|? and integrate by parts over K to get:

(1—k+ ep)f d=*+0P || P dx

Ks
’LS

A=k *+OPAd|v|Pdx — PJ
or, equivalently,

Ks
epf d~ktOP |1y |Pdx = j d*+0P(dAd + 1 — k)|v|Pdx
K K

S

dl—k+9P|v|P—1vd . Vlvldx +] dl_k+9P|17|Pde,
0Kg

1

—P | dYkHOP |y P-lyd - V|vldx + | dYKHOP|w|PdS,.

Ks 0Ks
By our condition (R) we have that |dAd + 1 — k| < cod. On the other hand,
P-1 P-1
Pj APyl vd - Vv|dx [< PJ atkOP vyl dx
Ks Ks

< st aAtk+OP |p|Pdx + Pcsf dP=k+0P |yy|Pdx,
Ks Ks

Putting together the last estimates we obtain, for €, § small the analogue of (18) that is

C(P,0) <j A *+OP|y|Pdx < C(P) | dP~**+OP|vv|Pdx +f d=*+P |y PdS,. (71)
Ks Ks 0K

Combining (69), (71) and using the fact that d(x) < § when x € Kg, we complete the proof

of (68) as well as of the theorem.

Remark (2.1.15) [31]: The choice a = pp%k corresponds to the Hardy-Sobolev inequality as

it will become clear in the next. We note that the corresponding estimate for a € R and
b,p, q as in (57) remains true. Thus, there exists a positive constant C = C(a, n, p, q, k) such
that for all v € C3°(Q \ K) there holds:
d*|Vv|Pdx + d@ VP p|PdS, > ClldPvll g - (72)
Ks 0Kg
The proof of (72) in case a #= % Is much simpler than in the case a = %. We also note

that if a # pp%k then (72) is true even if k = n.

We will finally prove the analogue of Theorem (2.1.6).

Theorem (2.1.16) [31]: Let Q < R™ be a domain and K a surface of codimension k, 1 <
k < n, satisfying both conditions (R).

In addition we assume that D = sup,eqd(x) < oo, condition (C) is satisfied, and

n. (73)

n
1<p<n,p<q<inp, andb=a-1+

We set x € Q. Then there exists a positive constant C = C(p,n, , K) such that for all v €

Co’ (Q\ K) there holds:
p

f dP~F|Vv|Pdx + v| dx > Clldbvllfq(m.(74)
Q

f d~*(—dAd — 1 + k)
Q

Proof: As before, to avoid confusion in the proof, we will use capital letters for the
parameters a, b, p, q appearing in the statement of the Theorem. That is, we suppose that
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Pn Q—-P
1<P<n,p<Q<n—, andB=A—-1+ n,

— P QP
and for A = PTTR, we will prove that
P

j dP~F|vv|Pdx + v| dx |
Q

j d~*(—dAd — 1 + k)
)

(75)
> C"dBv"LQ(Q)_

Let a(t) € C™([0, o)) be the nondecreasing function defined at the beginning of the proof

of Theorem (2 1.5)and ¢ps(x): =« (d(x)) € CZ(Q), so that ¢p5 = 1 on Ks/2, ¢s = 0 on K§

and |Vos| < ? ¢ with C, a universal constant.

For v € C5°(Q) we write v = ¢sv + (1 — ¢ps)v. The function ¢5v is compactly supported
in Kg, and by Lemma (2.1.13), we have:

C@mId vy < | doI7vlax. (76)
Ks

On the other hand (1 — ¢5)v is compactly supported in Kg/z and using (10) we easily get
plbl

db(1- < C(Q |d® | V((1— I (77
" ( ¢5)V||Lq<K_> @7 Sl 1v(C ¢5)V)IIL1<K§C) (77)
Combining (76) and (77) we obtain the arialogue of (24) which is 2
Clldavll () < j |d“Vv|dx+J d* t|v|dx. (78)
Ks\Ks

2
We next pass to L? — L estimates. We replace in (78) v by |v|* with s as in (62). Also, for
A= Pp%k and B, P, Q as in (63), we get (cf. (64)):
P-1
CIIdBvllLQUf )Q < sj d®|v|s~1|Vv|dx +J d* 1t v|5dx. (79)
Ks Ks\Ks
2
Using Holder's inequality in both terms of the right-hand side we get

P-1 P-1
d|v|5~ 1|Vv|dx—J d4|Vv|dBe P |v|Q F dx
Ks

Q

< lld#|woll oy

LP (Q) " dBv "

and
P-1

pP-1 P-1
da‘1|v|5dx=J d4|v|dB? " |v|? F dx

s\Ks/2 K§\Ks/2

Q

)
< ||dA_1|U|||LP(K5\K5/2)| Lo’

Substituting into (79) we get after simplifying,
C|ld® vllLQ(m jd” "|Vv|de+J d~*|v|Pdx. (80)

Ké‘\Ké
2

|d"v II

Here we have also used the specific value of A = Pp%k To conclude we need to estimate the
last term in (80). For 8 > 0, we clearly have:
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d=*v|Pdx < f d=*+POp|Pdx
Ks\Ks/2 (81)

5\
G |,
<f d_k+P9|U|PdX.
Q

To estimate the last term we work as in (27)-(28) (see also (70)—(71)) to finally get
J d—k+P6 |U|de
Q

s\Ks/2

< C(p)f dP—k+P6|Vv|de (82)
Q
P

+ v| dx|.

j d=**P9(—dAd + 1 — k)
Q

We not that we also used the fact that

p+*k,and (p —k)(dAd +1—k) <0,onQ\ K, (83)
which is a direct consequence of condition (C); see [35]. Combining (81) and (82) and
recalling that d < D, we get:

c(ro )
D Ks\Ks/2

, (84)
and the result follows easily.

Remark (2.1.17) [31]: Incase a # pp%k the analogue of (74) remains true. That is, for b, p, q
asin (73),

P

d~*|v|Pdx < j dP~k|vv|Pdx + v| dx

Q

f d~*(—dAd + 1 — k)
Q

p

jdap|Vv|pdx+ v| dx |
Q

f d@-VP(—dAd — 1+ k)
Q

(85)
> Clldvllagqay,

for a constant C = C(p, q,n, k,a) > 0. The case k = n is not excluded. we will use the v-

inequalities of the previous to prove new Hardy-Sobolev inequalities. For V < R™ we set:

—k
ol ): [ Vupdx - Pk
14
Then for u(x) = dH(x)v(x) with

—dx. (86)

we have forp > 2,
Lk [u](V) > C(p)f dp_k|Vv|pdx+H|H|p_2J d=*vd - V|v|Pdx. (87)
1% 1%

The proof of (87) is quite similar to the proof of (32).
As in the previous,
q—p
n. 88
> (88)

n
,andb=a—1+

1<p<np<g
P<mp<a<i /)
p—k

We will be interested in the specific value a = — which corresponds to the critical Hardy

Sobolev inequalities.
We first present estimates in K.
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Theorem (2.1.18) [31]: Let 2 < p<n and p < g < —. We assume that Q c R" is a

bounded domain and K a C? surface of co- dlmensmn k, with 1 < k < n, satisfying
condition (R). Then, there exist positive constants C = C(n, k,p, q) and 6o = 0p(p,n, O, K)
such that for 0 < 6 < §pand u € C,°(QL\ K) we have:

(@) If p > k then
14

lul? q+q Py q
|Vu|Pdx — |H|P —d >C (d |u|qu) : (89)
Ks Ks ar
(b) If p < k, the Hardy inequality,
p
j |[Vul|Pdx — |H|PJ de (90)
Ks ar
in general fails. However, there exists a positive constant M such that
p
j |Vul|Pdx — |H|pf Ld + M |u|Pdx
Ks Ks dap Ks
» (91)

qa- P
>C (d A |u|qu)q.
We emphasize that C = C(n, k,p, q) > 0 is independent of Q, K.
(c) If in addition, u is supported in Kg, that is u € C;°(Ks \ K) then, (89) holds true even
forp < k.
Proof: Using (86) and integrating by parts once we have that
prlul(Ks) = C(p) dP~k|vv|Pdx + H|H|P~? j d~*(—dAd + k — 1)|v|Pdx

Ks Ks

(92)
+H H|p‘2f d=*|v|?PdS,.
0K

At first we estimate the middle term of the right-hand side. We have that

|dAd + 1 — k| < cyd, for x € Kg, (93)
and therefore

p 14
d7*(—dAd + k— D|v| dx|<cy | d¥7¥|v| dx. (94)
Ks Ks

At this point we will derive some general estimates that we will use in the sequel. Our goal
is to prove (96) and (97) below. For a € R we consider the identity (1 + a)d® + d*?Ad =
div(d1*t2vd). Multiply by |v|? and integrate by parts to get:

(a+1)| d%v|Pdx+ j d*1Ad|v|Pdx

Ks Ks

= —pj de*tivd - V|v||v|P~tdx +J de*t1|v|Pds,,
K

0K
(a+1) d?*|v|Pdx + f d*(dAd + 1 — k)|v|Pdx

Ks Ks
= f
Ks

We next estimate the first term of the right-hand side of (95),

)
or, equivalently,

(95)
da+1Vd-V|v||v|P-1dx+f d+1|v|Pds,.

0Kg
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p—1 1

P p
dotivd - V|v||v|P~tdx < (f da|v|pdx> (j da+p|Vv|pdx>
Ks K

<e(p—1) | dYv|Pdx+ e~ @D | de+P|Vy|Pdx.

.f
K
Ks Ks

From this, (93) and (95) we easily obtain the following two estimates:
(lJa+ k| —cyd —e(p—1)) d*|v|Pdx

Ks

1) 1)

(96)
< e‘(p‘l)f d“+p|Vv|pdx+f de*t1|v|Pds,,
Ks 0Kg
and

j d* P ds,
0Kg

< e‘(p‘l)j d**P |Vv|Pdx

Ks
+(la+k|+ced+e(p—1)) | d%v|Pdx. (97)

Ks
From (96) taking a = 1 — k we get that

A7 K |v|Pdx < C(p)® | dP~*|Vv|Pdx + C(p)° d~*|u|PdS,. (98)
Ks Ks 0Ks

At this point we distinguish two cases according to whether p > k or p < k. Assume first
that p > k, or equivalently, H > 0. Then from (92) and (98) we get that

L[l () > C() j 4P| Vo|Pdx + C(p,K) j d1*[p]Pds,. (99)

Ks 0Kgs
Using Theorem (2.1.14) as well as the fact that

14
a-p q

p —q+——n
”dbv"LCI(KS) = <f d p |U|qu> ,

Ks
we easily obtain (89).
If u€e Cy°(Ks \ K) then the boundary terms in (92) and (98) are absent and the same
argument yields (89) even if p < k.
Suppose now that p < k, that is, H < 0. Using again (92) and (98) we get that

Lx[ul(Ks) = C(p) | dP~*|Vv|Pdx — C(p, k) d~*|v|PdS,. (100)
Ks 0K
To estimate the last term of this we will use (97) with a = p — k in the following way,
f d~*|v|PdS, = 5P f APk |p|PdS,
0Kg

0Ks

<e @7 j dP~¥|Vv|Pdx (101)

Ks

+C (s, p)d‘pf dP~*|v|Pdx.
0Ks

From (100) and (101) choosing € big we get:

37



Lx[ul(Ks) > C(p) | dP7*|Vv|Pdx—M | dP~*|v|Pdx. (102)
Ks Ks

On the other hand from (101) and Theorem (2.1.14) we get that

C(p,q,n, k)iidbviifq(Ks) < C('p)f dP*|Vy|Pdx + M | dP~*|v|Pdx.(103)
Ks Ks
From (102) and (103) we easily conclude (91).
It remains to explain why when p < kand u € C,°(Q \ K) the simple Hardy (90) in general
fails. Let us consider the case where K and therefore Kg are strictly contained in Q. In this
case the function u, = d*¢, fore > 0isin WP (Kjy). On the other hand for p < k asimple
density argument shows that WP (K5 \ K) = WP (Ks). An easy calculation shows that

u.|P
j |Vu,|Pdx —|H|Pf e dx = (|H+¢lP — |H|P) | d*Pedx
K K

<0,

, dp Ks (104)
by taking € > 0 small and noting that H < 0.
Theorem (2.1.19) [31]: Let 2<p<nand p < g < n—pp. We assume that Q c R™ is a

e
bounded domain and K a C? surface of co-dimension k, with 1 < k < n, satisfying
condition (R). Then, there exist positive constants C = C(n, k, p,q) and M such that for all
u € Cy°(Q\ K), there holds:

] |Vu|Pdx —
Q

1)

p—k” [ |ul?
| | dx + Mj ([P dx
Q

Q dap
P (105)
_g4d7P q
>c(j d "|u|de> .
Q
We note that C(n, k, p, q) is independent of Q, K.
Proof: Clearly we have:
Ip i [u](Q) = L e [ul(Ks) + I i [u] (K5). (106)
By Theorem (2.1.18) for § small, we have:
P
_q+12Py q
L e[ul(Ks) > C(nk,p,q) d " P |ulTdx
ks (107)
-M |lul|Pdx.
Ks
Since d(x) > § in K,
L [u](K5) > j |VulPdx — C(p,k,6) | |u|Pdx. (108)
K5 Ks

ﬂ
From the Sobolev embedding of L»-»(K) into WP (K§) we get:
lulPe <C(pn) > j |[VulPdx + C(p,n, Q,K) > f |u|Pdx.

LA=P(K§) KS K
Using the interpolation Lemma (2.1.11) (with a = 0) we have:
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SIS

C(n,p,q) <f d " |u|qu> < Nullfnp 4+ ||d_1u||fp(1<§)
K

< Ln=p(K§) (109)

<hulPop +8Plul?

Ln—p(KC) Lp(Kc)

From (108)-(109) we get for M = M(n,p, q,Q, K),
p

_g+1=Py q
Ipx[u](K5) > C(n,p, q) d = P ulfdx) =M [u|Pdx.(110)
Ks Ks
The result follows from (106), (107) and (110).
Our final result reads:

Theorem (2.1.20) [31]: Let 2 < p<n and p < g < —. We assume that Q c R" is a

domain and K a surface of co-dimension k,1 < k < n, satlsfylng condition (R). In addition
we assume that D = sup,eqd(x) < oo and condition (C) is satisfied. Then for all u €
Co’ () there holds

p

— kP up q q
j|Vu|pdx—|pp | | ' c(j A |u|qu>  (111)
Q Q

forc =C(n,P,Q0,Q,K) > 0.
Proof: Working as in the derivation of (92) we get:

C(p, k)L [u]() > j drP=k|vv|Pdx + Hj d~*(—dAd + 1 — k)|v|Pdx. (112)
Q Q
Because of condition (C) we have that H(—dAd + 1 — k) > 0, see (83). The result then

follows from Theorem (2.1.16).
Section (2.2): The Equivalence Between Pointwise Hardy Inequalities
For Q € R™ be a domain and let u € C,°(Q2). The inequality
1

lu(x)| < €d(x,09)(Mya(x00)|VulP (x))?,x € Q, (113)
Where 1 < p < o0 and My, is the restricted Hardy-Littlewood maximal operator, can be
viewed as a point wise variant of the classical p-Hardy inequality

ealk ,
L d0x,00)7 dx<C jﬂ |Vu(x)|Pdx. (114)

We say that the domain Q admits the point wise p-Hardy inequality, if there exists a constant
C > 0 such that inequality (113) holds for all u € C5°(Q) atevery x € . As our main result,
we prove the following characterization for such domains:
Theorem (2.2.1)[54]: Let 1 < p < c0. A domain Q c R™ admits the point wise p-Hardy
inequality if and only if the complement of Q is uniformly p-fat.
Uniform p-fatness is a density condition for the (variational) p-capacity

cap,(E, Q) = inf {f |VulPdx:u € C3°(Q2),u =1 on E}, (115)
Q

Where E c R" is a compact subset of an open set Q < R™. More precisely, aclosed set E c
R™ is said to be uniformly p-fat, if there exists a constant ¢, > 0 such that
cap,(E N B(x,1),B(x,21)) = cocap,(B(x, 1), B(x, 21))
forall x € E and every r > 0.
The origins of Hardy inequalities lie in the one-dimensional considerations by Hardy, see
[69]. In R™, for n > 2, Hardytype inequalities first appeared of Necas [85] of Lipschitz
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domains. However, it has been well-known since the works of Ancona [57] (p = 2), Lewis
[83], and Wannebo [88], that the regularity of the boundary is not essential for Hardy
inequalities, as it was shown that uniform p-fatness of the complement suffices for a domain
to admit the integral p-Hardy inequality (114). Uniform n-fatness of the complement is also
necessary for the n-Hardy inequality (in R™ ), see [57], [83], but this is not true for p < n.
Point wise Hardy inequalities were introduced by Hajtasz [66] and Kinnunen and Martio
[78]. In these works it was shown that uniform p-fatness of the complement guarantees that
the domain admits even the point wise p-Hardy inequality; this is the sufficiency part of
Theorem (2.2.1).

Using the boundedness of the Hardy-Littlewood maximal operator it is easy to see that a
point wise g-Hardy inequality for some g < p implies the p-Hardy inequality (114). This
method does not work if we start with a point wise p-Hardy inequality, as only weak type
estimates are available when the exponent is not allowed to increase.

Indeed, it has been an open question since the first appearance of pointwise Hardy
inequalities whether the point wise p-Hardy inequality implies the integral p-Hardy
inequality with the same exponent.

Now, by a remarkable result of Lewis [83], uniform p-fatness has the following self-
improvement property: If 1 < p < oo and aset E ¢ R™ is uniformly p — fat, then E is also
uniformly g — fat for some 1 < g < p. Thus Theorem (2.2.1) has the striking consequence
that point wise p-Hardy inequalities, for 1 < p < oo, enjoy this same property. In particular,
we obtain a positive answer to the above question:

Corollary (2.2.2) [54]: Let 1 < p < co. If a domain Q c R™ admits the pointwise p —
Hardy inequality, then Q admits the integral p-Hardy inequality.

In fact, by using the approach of Wannebo, we obtain for Corollary (2.2.2) another proof in
which we avoid the use of the rather deep self-improvement of uniform fatness. In addition,
we establish a further equivalence between the conditions of Theorem (2.2.1) and certain
Poincaré type boundary conditions, see Theorem (2.2.4). Notice also the inclusion of the
case p = 1 in Theorem (2.2.1). On the contrary, the usual 1-Hardy inequality does not hold
even in smooth domains.

We remark that it was recently shown in [82] that a domain Q < R™ admits a point wise
q — Hardy inequality for some 1 < g < p if and only if the complement of Q is uniformly
p-fat (note here the difference between our terminology and that of [82]). This result is
nevertheless significantly weaker than Theorem (2.2.1), as the crucial end-point g = p is
not reached.

The second purpose is to generalize parts of the existing theory of Euclidean Hardy
inequalities to the setting of metric measure spaces. As a part of this scheme we also state
and prove Theorem (2.2.1) in this more general setting. The relevant parts of the analysis in
metric spaces, as well as the exact formulations of our main results, can be found we prove
that uniform p-fatness of the complement implies the point wise p-Hardy inequality also in
metric spaces. The necessity part of Theorem (2.2.1) is then obtained 5 contains a
transparent proof for the fact that uniform p-fatness of the complement (and thus also the
point wise p-Hardy inequality) is sufficient for Q) to admit the usual integral version of the
p-Hardy inequality. We give further generalizations of the results from [82] to metric spaces
by linking point wise Hardy inequalities and uniform fatness to certain Hausdorff content
density conditions. In the special case of Carnot-Carathéodory spaces similar
generalizations were recently obtained in [64].
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Different aspects of Hardy inequalities in the metric setting have also been studied in [60],
[75], [80], [81].
We recall some relevant definitions related to analysis on general metric spaces, see [56]
and the survey article [67] of Heinonen for more details.
We assume that X = (X, d, i) is a complete metric measure space equipped with a metric d
and a Borel regular outer measure u such that 0 < u(B) < oo for all balls B = B(x,r) =
{y € X:d(y,x) <r}. For 0 < t < oo, we write tB = B(x, tr), and B is the corresponding
closed ball. We assume that u is doubling, which means that there is a constant ¢, > 1,
called the doubling constant of u, such that
u(2B) < cpu(B)

for all balls B of X. Note that the doubling condition together with completeness implies
that the space is proper, that is, closed balls of X are compact.
The doubling condition gives an upper bound for the dimension of X. By this we mean that
there is a constant C = C(cp) > 0 such that, for s = log, cp,

S

“BOM) (1)
u(B(x,R)) R

Whenever 0 <r < R <diamX and y € B(x,R). Inequality (116) may hold for some
smaller exponents than log, cp, t00. In such cases we let s denote the infimum of the
exponents for which (116) holds and say that s is the doubling dimension of X.

When Q c R™, we obtain, by the density of smooth functions in the Sobolev space Wol'p (Q),

that the Hardy inequality (114) holds for all u € Wol'p (Q) if it holds for all smooth functions
@ € Cy° ().

General metric spaces lack the notion of smooth functions, but there exists a natural
counterpart of Sobolev spaces, defined by Shanmugalingam [86] and based on the use of
upper gradients. We say that a Borel function g > 0 is an upper gradient of a function u on
an open set Q0 c X, if for all curves y joining points x and y in Q we have

() — u@)| < ] gds, (117)
Y

whenever both u(x) and u(y) are finite, and [ yy gds = oo otherwise. By a curve we mean

a nonconstant, rectifiable, continuous mapping from a compact interval to X.

If g =0 is a measurable function and (117) only fails for a curve family with zero p-
modulus, then g is a p-weak upper gradient of u on €. For the p-modulus on metric measure
spaces and the properties of upper gradients, see for example [65],[70],[73],[86], [87]. We
use the notation g,, for a p-weak upper gradient of u. The Sobolev space N1?(Q) consists
of those functions u € LP (Q) that have a p-weak upper gradient g,, € L (Q) in Q. The space
NYP(Q) is a Banach space with the norm

1/p
”u”NLP(Q):(_[ [ulPdu + inf ] Iglpdu> ,
Q Q

where the infimum is taken over all p-weak upper gradients g € LP(Q) of u. In the
Euclidean space with the Lebesgue measure, N2 (Q) = W1?(Q) for all domains O c R"
and g,, = |Vu| is a minimal upper gradient of u.

For a measurable set E c X, the Sobolev space with zero boundary values is

NyP(E) = {ulg:u € N*P(X) and u = 0 in X \ E}.

(116)
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By [87], also the space Nol'p(E), equipped with the norm inherited from N?(X), is a

Banach space. Note that often the definition of Nol’p (Q) is given so that the functions are
only required to vanish in X \ E outside a set of zero p-capacity. However, our definition
gives the same space because functions in N1 (X) are p-quasicontinuous by [58].

In order to be able to develop the basic machinery of analysis in the metric space X, we need
to assume, in addition to the doubling condition, that the geometry of X is rich enough. In
practice, this means that there must exist sufficiently many rectifiable curves everywhere in
X. This requirement is in a sense quantified by assuming that the space X supports a (weak)
(1,p)-Poincaré inequality. That is, we assume that there exist constants c, > 0 and 7 > 1
such that for all balls B c X, all locally integrable functions u and for all p-weak upper

gradients g,, of u, we have
1

P
jlu—uBIduSCprO gﬁdu>.
B B

Up =f udy =M(B)‘1f udy
B B

Is the integral average of u over B.

Standard examples of doubling metric spaces supporting Poincaré inequalities include
(weighted) Euclidean spaces, compact Riemannian manifolds, metric graphs, and Carnot-
Carathéodory spaces.

See [65].

Let Q X be an open set and let E < Q. The p-capacity of E with respect to Q is

capp(E, Q) =inf f gfzd,u,
Q

where the infimum is taken over all functions u € Nol’p(Q) such that u|; = 1.

If there are no such functions u, then cap,, (E, 1) = co. Since the norm of an upper gradient
does not increase under truncation, we may assume that 0 < u < 1. Note also that because
functions in N7 (X) are p-quasicontinuous by [58], our definition of p-capacity agrees with
the classical definition where admissible functions are required to satisfy u =1 in a
neighborhood of E. Furthermore, if E c R™ is a compact set, then the above definition
agrees with the definition in (115) as well.

There exists a constant C > 0 such that the following comparison between the p-capacity
and measure holds foreach 1 < p < oo : Forall balls B = B(x,r) with0 < r < (1/6) diam
X and foreach E ¢ B

Where

H(E) Cu(B)
rp

Tr < cap,(E,2B) < (118)

The lower bound can be obtained by considering (1,p)-Poincaré inequality for all
admissible functions 0 <u <1 for the capacity cap,(E,2B) in the ball 3B. For more
details, see for example [59].
We say thataset E c X is (uniformly) p — fat, 1 < p < oo, if there exists a constant ¢, > 0
such that

cap,(E N B(x,1), B(x,2r)) = cycap,(B(x,1), B(x, 2r)) (119)
forall x € Eandall 0 < r < (1/6)diam X. Notice that by the double inequality (118), cap
p(B(x,7),B(x,2r)) is always comparable to u(B)r~P. There are many natural examples
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of uniformly p-fat sets. For instance, all nonempty subsets of X are uniformly p-fat for all
p > s, where s is the doubling dimension of X. Also complements of simply connected
subdomains of R? and sets satisfying measure density condition

u(B(x,r)yNE) = Cu(B(x,r)) forallx € E,r > 0,
are uniformly p-fat for all 1 < p < oo. The p-fatness condition is stronger than the Wiener
criterion and it is important for example in the study of boundary regularity of A-harmonic
functions, see [72].
As mentioned, uniform fatness is closely related to pointwise Hardy inequalities.
Definition (2.2.3) [54]: Let 1 < p < co. An open set Q & X admits the pointwise p-Hardy

Inequality if there exist constants c; > 0 and L > 1 such that, for all u € Nol‘p (Q),
1

[u@)| < cuda(®) (Miageogh() ) (120)
holds at almost every x € Q.
Above

Mpu(x) = sup j fuldp
B(x,1)

0<r<R
Is the restricted Hardy-Littlewood maximal function of a locally integrable function w.
By the maximal theorem [68], My, is bounded on LP(X) for each 1 < p < oo. Contrary to
the Euclidean case, here d(x) = d(x, Q°) is the distance from x € Q to the complement
Q¢ = X \ Q. We use the this distance because in metric spaces d(x, Q) may be larger than
d(x, Q°).
We are now ready to give the general formulation of our main result, which shows, even in
the metric setting, the equivalence between uniform p-fatness of the complement, validity
of the point wise p-Hardy inequality, and two Poincaré type inequalities.
Here T > 1 is the dilatation constant from the (1, p)-Poincare inequality.
Theorem (2.2.4) [54]: Let 1 < p < oo and let X be a complete, doubling metric measure
space supporting a (1, p)-Poincaré inequality. Then, for an open set Q < X, the following
assertions are quantitatively equivalent:
(@) The complement Q€ is uniformly p — fat.

(b) For all B = B(w, ), withw € Q¢ and r > 0, and every u € N7 (Q)

f lulPdu < Cr”j ghau. (121)
B 5tB
(c) For all x € Q and every u € NP ()
jus,l” < CdaGo? [ gldu (122)
20TBy

where B, = B(x,dq(x)).

(d) The open set Q admits the point wise p-Hardy inequality (120), and we may choose the
dilatation constant to be L = 20r.

Corollary (2.2.5) [54]: For 1 < p < oo each of the assertions in Theorem (2.2.4) possesses
a selfimprovement property. More precisely, if one of the assertions (a)-(d) holds for 1 <
p < oo, then there exists some 1 < g < p so that the same assertion (and thus each of them)
holds with the exponent g and constants depending only on p and the associated data.
Notice that we only assume that X supports a (1, p)-Poincaré inequality, but in the above
corollary we actually need that X supports a (1, g)-Poincaré inequality for some g < p as
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well. By a result of Keith and Zhong [64], this is in fact always true if X is complete,
doubling and supports a weak (1, p)-Poincaré inequality.
In the previous concerning point wise Hardy inequalities (see e.g.[66], [82]), a sort of a
selfimprovement has actually been an a priori assumption when the passage from pointwise
inequalities to the usual Hardy inequality was considered. Now, by Corollary (2.2.5), such
an extra assumption becomes unnecessary. Especially, using the maximal theorem for an
exponent 1 < g < p, for which Q still admits the pointwise inequality, we obtain the
following corollary just as in the Euclidean case.
Corollary (2.2.6) [54]: If an open set Q c X admits the pointwise p-Hardy inequality (120)
for some 1 < p < oo, then Q admits the p-Hardy inequality, that is, there exists C > 0 such
that

u(x)P

o da(x)P

du<C f gu(0)Pdu
Q

for every u € N, (Q).

However, the result of Corollary (2.2.6), when viewed as a consequence of Theorem (2.2.4),
depends on a heavy machinery of non-trivial results already in the Euclidean setting, let
alone in general metric spaces, as the self-improvement of uniform fatness is involved. In
particular, the theory of Cheeger derivatives is needed in the metric case. The ideas of
Wannebo [88] lead to an alternative proof for Corollary (2.2.6), which is based on
completely elementary tools and methods, and especially avoids the use of the self-
improvement. Using this approach, we give in Theorem (2.2.10) a direct proof for the fact
that uniform p-fatness of the complement of Q implies that Q admits the p-Hardy inequality.
Note that this result was first generalized to metric spaces in [60], but there the proof was
based on the selfimprovement. As the pointwise p-Hardy inequality implies the uniform
fatness of the complement by Theorem (2.2.4), Corollary (2.2.6) follows.

It would also be interesting to acquire an alternative proof for Corollary (2.2.5) by showing
the selfimprovement directly for one of the conditions (b)-(d) in Theorem (2.2.4).

Let us remark here that self-improving properties of integral Hardy inequalities were
considered in [81], but these results and methods do not seem apply for pointwise
inequalities.

deals with the proofs of the implications (a) = (b) = (¢) = (d) of Theorem (2.2.4). The
implication (a) = (d), that uniform p-fatness of the complement implies the point wise p-
Hardy inequality, is a generalization of an Euclidean result of Kinnunen and Martio [78]
and Hajtasz [66].

Our proof utilizes the following Sobolev type inequality, proved in the classical case by
Maz'ya (c.f. [84]) and in the metric setting by Bjorn [59]. We recall the main ideas of the
proof for the sake of completeness.

Lemma (2.2.7) [54]: There is a constant C > 0 such that for each u € N*?(X) and for all

balls B ¢ X we have
C

| el < — | gtau (123)
B cap, (EB N{u= 0},B) 5TB

Where t is from the (1, p) — Poincaré inequality.

Proof: Let B = B(x,r) be a ball and let ¢ be a 2 /r-Lipschitz function such that 0 < ¢ <
1, =1on (1/2)B and ¢ = 0 outside B. We may assume that u > 0 in B. The function

v=¢(1-u/u),
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Where &1 = (fBuT’du)l/p, is a test function for the capacity in (123). The claim follows by
estimating the integral of g7,

gy = |1 — %| 2r 1 + g, /1.
Here one needs a (p, p)-Poincaré inequality, which by [68] follows from the (1, p)-Poincaré
inequality with dilatation constant 57.
We also need the following pointwise inequality for N1?-functions in terms of the maximal

function of the p-weak upper gradient: There is a constant C > 0, depending only on the

doubling constant and the constants of the Poincaré inequality, such that
1

[u(x) — ug| < Cr(Mergh(x) )P (124)
Whenever B = B(x,r) isaball and x is a Lebesgue point of u. Estimate (124) follows easily
from a standard telescoping argument, see for example [67]. Note that u has Lebesgue points
almost everywhere in the p-capacity sense, see [77], [79].
Proof: (Theorem (2.2.4) (a) = (b) = (c) = (d))
(@ = (b): Letu € Nol'p(ﬂ) and let B = B(w,r), where w € Q°. Assume firstthat 0 < r <
(1/6) diam X. Since u vanishes outside (2, we have Q¢ c {u = 0}.
Using the p-fatness of Q¢, estimate (118), and the doubling property of u, we obtain

1 1
cap, (EB Nn{u= 0},B> = capy (EB N QC,B)

1
= Co cap, (EB'B) > Cu(B)rP.
This, together with Lemma (2.2.7), gives
Cu(B
IR — [ ghawser| ghan
B cap, (73 n {u = O}, B) 5TB 5TB

If (1/6)diamX <r < diamX, we take B = B(w, (1/7)diamX). From the triangle
inequality it follows that

j lulfPdu < C (j lu —uglPdu + p(B)|ug|? + u(B)luz — uBI”>-
B B

We can then use the (1,p)-Poincaré inequality, the above case for the ball B, and the
doubling property, and the claim for B follows with simple calculations.

Finally, if r > diam X, the claim is clear by the previous cases.

(b) = (c): Letu € Nol’p(ﬂ),x € Q, and let B, = B(x,dQ(x)). Choose a point w € Q¢ so
that

R =d(x,w) < 2dq(x),
and let B, = B(w, R). Now
|qu| s |qu B uBol + |u|30’
where, by the (1,p)-Poincaré inequality, the fact that B, c 4B, and B, < 2B,, and the

doubling property,
1/p
|m—%ﬁammg ﬁw).
4TB,

Using the Holder inequality, assumption (b), and the doubling property, we obtain

45



1/p 1/p
[uls, < (f Iulpdu> SCRO gZdﬂ>
BO STBO

1/p
SCdQ<x)<f gfidu> .
207B,

The claim follows by combining these two estimates.
()= (d): Letu € N;'p(ﬂ) and let x € Q be a Lebesgue point of u. Now
lu@)| < [u(x) —up, | + |us,

)

where, by (124)

1/
lu(x) — up, | < Cdg(0)(Mea, 0 90(0)) "7,
and by (c)

1
= 1

p 1
|qu| < Cdg(x) <j ggdu> < Cdg(x) (Mzomn(x)gg (x))p-
207By

The pointwise p-Hardy inequality follows from the above estimates.
By slightly modifying the proof above or the proof in [78], we obtain a p-Hardy inequality
containing a fractional maximal function of the upper gradient.
Corollary (2.2.8) [54]: Let 1 < p < oo and let Q c X be an open set whose complement is
uniformly p-fat. Then there is a constant C > 0, independent of (), such that forall 0 < a <
p and for all u € N,"? (Q),
a 1

[u@)| < Cda(9)" P (Maz0ra000 95 ) ) (125)
whenever x € ( is a Lebesgue point of u.
Here, for a > 0, the restricted fractional maximal function of a locally integrable function
uis

0<r=R
we prove the following lemma, from which the part (d) = (a) of Theorem (2.2.4) and the
previously unknown necessity part of Theorem (2.2.1) follow.
Lemma (2.2.9) [54]: Let 1 < p < oo and let Q c X be an open set. If Q admits the point
wise p-Hardy inequality (120), then Q¢ is uniformly p — fat. The constant in the uniform
fatness condition (119) depends only on p, cy, and the constants related to X.
Proof : Let B = B(w,R), wherew € Q¢ and 0 < R < (1/6) diam X. By (118), it suffices
to find a constant C > 0, independent of w and R, such that

pBR?<C | ghdu (126)

2B
whenever g, is an upper gradient of a function v € Nol'p (2B) satisfying0 <v <landv =
1in Q° n B. By the quasicontinuity of N?-functions, we may assume that v = 1 in an
open neighborhood of Q¢ N B.
Let [ =[2(L+ 1)]t, where L is from the pointwise p-Hardy inequality (120). The
doubling condition implies that u(IB) = lI*u(B)/cp. If now vy > 1°/2¢cp, we obtain from

the Poincare inequality for v € Nol'p(ZB) (see for example [59]) that

Mg, gu(x) = sup r“J |luldu.
B(x,r)
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1

P
1SCf |v|duSCR<f gEdu>,
B 2B

and (126) follows by the doubling condition.
We may hence assume that vy < I5/2cp. Lety € Nol'p (B) be a cut-off function, defined as

4 1
Y(x) = max {0,1 — Ed (x,EB)},
and take
u=min {Y,1—v}
Since 1 — v = 0 in an open set containing Q¢ N B and N7 (X) is a lattice, we have that u €
Nol'p(ﬂ). Moreover, u has an upper gradient g,, such that g,, = g, in (1/2)B.
We define C; = I°/4cp and
E = {x € IB:u(x) > C; and (120) holds for u at x},

and claim that

u(E) =2 G u(B). (127)
To see this, first noticethat u = 1 — v in [B and that u(IB) = 4C,u(B). Asvg < I°/2¢cp =
2Cy, we obtain

j udu =j (1—v)du2] (1—-v)du—u(B\ IB)
1B 1B B

= (1 —2C)u(B) — u(B) + n(lB)
> 2C,u(B).
Since the point wise p-Hardy holds for almost every x € Q, we have u < C; almost
everywhere in [B \ E. Thus a direct computation using estimate (128) yields (127):

u(E) Zf udu:f ud,u—f udu
E IB IB\E

> 268 - | G

IB

= 2C14(B) — Ciu(B) = Cyu(B).
To continue the proof, we fix for each x € E aradius 0 < r,, < Ldq(x) such that

Miaaodi) <2 [ gl

B(x,1y)
By the standard 5r-covering theorem (see e.g. [62]), there are pairwise disjoint balls B; =
B(x;,1;), where x; € E and r; = r; are as above, so that E c U;2, 5B;.
It follows immediately from (127) and the doubling condition that

u(B) < G u(E) < € ) (B, (129)

Asx; € IBandw € Q, we have dg(x;) < LR. Hence, by the choice of [, we obtain for each
y € Bi that

dw,y) <dw,x;) +d(x;,y) < IR+ Ldg(x;) <IR(1+L)=R/2,
and so B; € (1/2)B. This means, in particular, that g,, = g, in each B;. Since u(x;) > C;
for each i, the pointwise p-Hardy inequality (120) and the choice of the radii r; imply that

C; < ux) P < Cdo(x)PMpq,xpgu(x) < CRPu(BY)™ | gndu,

B;

(128)

and so
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n(By) < CRpf gy dp.
B;
Inserting this into (129) leads us to

W(B) < CR? Y f gPau<cre [ gPap,
Bj

i=1 2B
where we used the fact that the balls B; € 2B are pairwise disjoint. This proves estimate
(126), and the lemma follows.
We give a straight-forward proof for the fact that uniform p-fatness of the complement Q¢
suffices for Q to admit the p-Hardy inequality. Our proof follows the ideas of Wannebo
[88]. A similar method was also used in [61] of Orlicz-Hardy inequalities. As mentioned
earlier, the following result first appeared in the metric space setting in [60], where the proof
was based on the self-improvement of uniform p-fatness.
Theorem (2.2.10) [54]: Let 1 < p < o and let Q © X be an open set. If Q¢ is uniformly
p — fat then Q admits the p-Hardy inequality, quantitatively.
Proof: To make the proof as simple as possible, let us assume that the dilatation constant in
the righthand side of Theorem (2.2.4) (b) is 2. The general case follows by obvious
modifications. Let

a={x €2 <dg(x) <271}

(.

Let F, be a cover of Q, with balls of radlus 2 n=2 gych that their center pomts are not
included in any other ball in F,. Associate to each ball B € E, a bigger ball 3 > B, whose
radius is 272 and whose center point is on 9. Note that 2B n Q < (),,_, and that

Z xg < Cand z X5 <C,

BEF, BEF,
where the constant C > 0 only depends on the doubling constant of p.

Letu € Nol’pl(ﬂ). The condition (b) of Theorem (2.2.4) (which follows from the uniform
p-fatness of the complement) implies that for every B € E, we have

| twpan < | wpan<cze | ghan
) ] B B ] 2B
By summing up the inequalities above, we obtain

j uPdus Y j urdpsczm ' [ ghd
2B

BEF, BEF, (130)
< CZ_”I’] ghau.
Q

n-—2

Let 0 < 5 < 1 be a small constant to be fixed later. We multiply (130) by 2™®+5) and sum
the inequalities to obtain

and
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rd P-Bdy < pon(p+B) g
|| CPda 7P < 2 J. tueo) ’

<c 2 2nﬁj 9007
Qpn-

n=-—oo

=C z (2 2(k+2-n)p ; Ju (x)pdu>

n=—0oo n=—oo

2Kk
<CZ f 9u (0P du
Qp

n=—oo

C
<= | gu®)?P do(x)Fdu. (131)
B Ja,

In the calculations above, we used the fact that 27% < dg(x) < 2 - 27% for every x € Q.
Now let v € Nol'pl(ﬂ) be a function with a compact support in Q and let

u(x) = v(x)dg(x)P/?.
Then the function

Gu(x) = g,(¥)dq ()PP + 517(96)019(96)‘“”‘1
Is a p-weak upper gradient of u. Thus, by (131), we have

[0y, [ _ue guC”
o da(x)? o daCPtF = ﬁ q da(x)F
¢ p? v(x)p
_Bf gv(x)Pd,u+’B P_[ 2o ()7 du

If £ > 0 is small enough, the last term on the right-hand side can be included on the left-

hand side and we obtain
j U(x)Pd <Cf oPd
= X .

This completes the proof because functions with compact support are dense in Nol'p (), see
[87].

Notice that the requirement p > 1 is essential in Theorem (2.2.10). For instance, smooth
domains in R™ admit the pointwise 1-Hardy inequality but not the integral 1-Hardy.

It is well-known that capacities and Hausdorff contents are closely related both in Euclidean
spaces and general metric spaces, see e.g. [72], [73]. In metric spaces we follow [55], [56],
[79], and use Hausdorff contents H5, defined by applying the Carathéodory construction to
functions

h(B(x,r)) — w

where r < R. Thus the Hausdorff content of codimension t of a set E < X is given by

HLY(E) = inf {z h(B(x;,m)):E U B(x;1y),1; < }

—i€l i€l
Here we may actually assume that x; € E, as this increases H5(E) at most by a constant

factor.

)
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If the space X is Q-regular, then HE (E) is comparable with the usual Hausdorff content
Ho%_t(E), which is defined by using the gauge function h(B(x,1)) = r?-t.
Recall that Q-regularity means that there are constants c;, c, > 0 such that
;7% < u(B(x,1)) < c,r?

for all balls B(x,r) in X.
Now, by slightly modifying the argument in [73] (see also [63] and [64]), one can show that
If E c X is a closed set and there exists some 1 < g < p and a constant C > 0 so that for
allw € E and every R > 0,

HE(E nB(w,R)) = Cu(B(w,R))RY, (132)

2
Then E c X is uniformly p-fat. Conversely, by rewriting the argument of [72] (see also
[63]) for the content Hg , it is not hard to see that uniform p-fatness of E leads to (132), but

2
with g replaced by p. Using the self-improvement of uniform fatness, we then conclude that
uniform p-fatness of E implies the existence of an exponent g < p for which (132) holds.
Hence (132), with an exponent 1 < g < p, is actually equivalent with the uniform p-fatness
of E.
We investigate similar density conditions for the boundary of a domain Q < X. To this end,
we consider a version of the point wise Hardy inequality where the distance is taken to the
boundary instead of the complement. We define

Jq(x) = d(x,0Q) for x € Q.

The following lemma is a metric space generalization of a result from [64], [82].
Lemma (2.2.11) [54]: Let 1 < p < oo and let Q1 X be an open set. Assume that Q admits

the point wise p-Hardy inequality
1

[u@@)| < ciSa(x) (Misgumgh ()P (133)
forall u € Nol'p(ﬂ) Then
HE (090 B(x, 2L80(x))) = C8.(x)Pu (B(x, 80(x))). (134)
for all x € Q.
Proof: Let x € Q. We define R = §4(x), B = B(x,R), and
E =90 n 2LB.

Let {B;}_,, where B; = B(w;, ;) withw; € E and 0 < r; < R, be a covering of E’; we may
assume that the covering is finite by the compactness of E.

It is now enough to show that there exists a constant C > 0, independent of the particular
covering, such that

N
> uBI? = CuBIR. (135)

Ifr; = R/4forsome 1 <i< N,_then, by (116) and the fact that r, * = R™7, we have
_ 1 S
u(BI1 P > Cu(B) (El) R > Cu(B)R,

from which (135) readily follows.
We may hence assume that r; < R/4 forall 1 < i < N. Now, define

¢ = min {1,777 'd(y, B;)}

1<i<N
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and lety € N&’p (2LB) be a cut-off function suchthat 0 <y < 1andy(y) =1forall y €
LB. Then the function

u =min {1, p}xo
belongs to Nol"’(ﬂ). Asr; <R/4forall1 <i <N, itfollows that d(x,2B;) = R/2 for all
1<i<N,andsou(x)=1.

In addition, u has an upper gradient g,, such that
N

ROEDIERLN) (136)

i=1
for almost every y € LB. Especially, we must have r > R/2 in order to obtain something
positive when estimating M, g’ (x). As the point wise inequality (133) holds for the

continuous function u € Nol'p (Q) at every x € Q, we have

1= GO < CRPMyegl(e) < CR® sup | gl
§<r<LR B(x,r)
-1

1
<crou(38) | gl < cROu(B)" Emzmr ,
LB

Where the last inequality is a consequence of (136). Estimate (135) then easily follows with
the help of the doubling property.

Next we show that the inner boundary density condition (134) is actually almost equivalent
to the pointwise p-Hardy inequality. The proof below uses an idea from [73], but is new of
Hardy inequalities.

Theorem (2.2.12) [54]: Let 1 < p < o and let Q c X be an open set. If estimate (134)
holds with an exponent 1 < g < p for all x € Q, then Q admits the pointwise p-Hardy
inequality (133), but possibly with a different dilatation constant in the maximal function.
Proof: Let us first assume that u € Nol’p () has a compact support in Q. Let B = B(x, R),
where x € Q and R = §q(x). We are going to show that

[uplP < C8a ()P j gPdu, (137)

3TLB
where C > 0 and 7 > 1 are independent of x, whence the point wise p-Hardy inequality

follows for almost every x € Q by Theorem (2.2.4).

If ug = 0, the claim (137) is true, and so we may assume that |ug| > 0, and in fact, by
homogeneity, that |ug| =1. Let w € dQ N 2LB and let B, = B(w, 1), Where r, =
(5t2%)71R, k € N. It then follows that

1=|u(w)—ug| < |uBO| + |uB0 — uB|.
Now, if |ug, | < 1/2, we infer, using the (1, p)-Poincaré inequality, the facts B, c 3LB and
B c 3LB,, and the doubling property, that
1
1 5
2—|“B _uB|<|uBo_u3B|+|uB_u3B|<CR f gndu
37LB

As |ug| = 1, the claim follows.
Thus we may assume that 1/2 < |ug, | = |u(w) — ugp, | for every w € Q. n 2LB.

A standard chaining argument, using the (1, p)-Poincaré inequality (see for example [68])
and the assumption that the support of u is compact, leads us to estimate
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2 (LBk )5. (138)

From (138) it follows that there must be a constant C; > 0, independent of v and w, and at

least one index k,, € N such that

1/p 1-0) (TP
Tk, j ghdu > (2 Cl( RW) :
TBg,,

In particular, we obtain for each w € dQ n 2LB a radius r, < R/(57) and a ball B, =
B(w, r,,) such that

u(tB,)r, * < CRP=4 f ghau. (139)
By,
The 5r-covering lemma implies the existence of points wy, w,, ...,wy € dQ N 2LB such
that if we set r; = r,,,,, thenthe balls 7B; = B(w;, tr;) are pairwise disjoint, but still N 2LB <
UM, 57B;. Assumption (134), the doubling property, estimate (139), and the pairwise
disjointness of the balls tB; c 3tLB then yield
R™9u(B) < CH(0Q n 2LB)
N

N
< Cz u(5tB)(5try)™1 < C ; u(TBr; (140)

< Cz RP- qj ghdu < CRp‘qJ ghau.
TB; 3TLB

As we assumed |ug| =1, estlmate (137) now follows from (140) and the doubling

condition. For a general u € NOI"’(Q) estimate (137) follows by a suitable approximation
with compactly supported functions.
If there now exists a constant C > 1 such that

do(x) < 6q(x) < Cdg(x) foreachx € Q, (141)
then it is clear that point wise inequalities (120) and (133) are quantitatively equivalent.
In particular, if the inner boundary density condition (134) with codimension g holds for all
x € Q, then Theorems (2.2.12) and (2.2.4) imply that Q¢ is uniformly p — fat for all p > q.
On the other hand, easy examples show that Q¢ need not be uniformly g — fat, or
equivalently, Q need not admit the point wise g-Hardy inequality, if g > 1. Hence some
information is inevitably lost once we pass from the point wise p-Hardy inequality or
uniform p-fatness (for 1 < p < oo ) to Hausdorff contents; in the case p = 1 there is indeed
an equivalence, cf. [79]. However, by the selfimprovement of the assertions of Theorem
(2.2.4), we can still have the following equivalent characterization in terms of Hausdorff
contents (see also [64], [82]). Note that here we need to use again the fact that X supports a
(1, g)-Poincaré inequality for some g < p.
Corollary (2.2.13) [54]: Assume that Q < X is such that (141) holds. Then all of the
assertions in Theorem (2.2.4), with an exponent 1 < p < oo, are (quantitatively) equivalent
to the following density condition: There exist some 1 < g < p and constants C > 0 and
L = 1 such that

Hgﬂ(x)(aﬂ N B(x,L8o(x))) = C8a(x)u(B(x, 64(x)))
for all x € Q.
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It is worth a mention that uniform p-fatness of the boundary 0Q is of course sufficient for
the uniform p-fatness of the complement and the point wise p-Hardy inequality, but not
necessary, as cusp-type domains in R",n > 3, show (cf. [82]).

Thus it really is essential that we consider above the density of the boundary only as seen
from within the domain, in the sense of (134).

Section (2.3): L1 Hardy Inequalities

Hardy's inequality involving distance from the boundary of a convex set Q € R",n > 1,
asserts that

dp
for all u € C°(Q), where d = d(x): = dist(x, IR“ \ Q). Due to [102], [105], and [48], the
constant appearing in (142) is optimal. After the pioneering results in [84] and [36], a
sequence have improved (142) by adding extra terms on its right-hand side; see, [92], [93],
[31], [99], and primarily [35] and [41], [42] where it was also noted that (142) remains valid
with the sharp constant in more general sets than convex ones, and in particular in sets that
satisfy —Ad = 0 in the distributional sense.
In the case p = 1, (142) reduces to a trivial inequality, at least for sets having nonpositive
distributional Laplacian of the distance function. However, in the one dimensional case, the
following L! weighted Hardy inequality is well known:

“Ju' (x| °°|()I
Lx d>(—1)J x,s>1, (143)

for all absolutely continuous functions u: [0, ) — R, such that u(0) = 0. This is the
special case p = 1 of Theorem 330 in [102]. Inequality (143) is, in fact, an equality for u
increasing, and thus the constant on the right-hand side is sharp.
We are concerned with the higher-dimensional generalizations of (143). Let Q € R*(n >
2) be open and let d = d(x): = dist(x, R" \ Q). We deal with inequalities of the type
|Vu| |ul

e dx = B, Qd_d x + Bf V(d)|uldx,s = 1, (144)

Valid for all u € C.°(Q). Here V is a potential function, i.e., nonnegativeand V € L}OC (RT),

and B, = 0,B € R. Questions concerning sets for which this inequality is valid, sharp
constants, possible improvements, and optimal potentials will be studied.

Our first theorem reads as follows.

Theorem (2.3.1)[89]: Let Q be a domain in R™ with boundary of class C? satisfying a
uniform interior sphere condition, and we denote by H the infimum of the mean curvature
of the boundary. Then there exists B; = (n — 1)H such that for all u € C°(Q) and all s >
1,

p—1 |ul?
j |VulPdx = ( > ) —dx,p > 1, (142)

l > (s —1)] —d +Blf dlf_lldx. (145)

Lets > 2.1fQisa bounded domain in R™ with boundary of class C? having strictly positive
mean curvature, then the constant s — 1 in the first term, as well as the exponent s — 1 on
the distance function on the remainder term in (145), are optimal.

In addition, we have the following estimates:

(n—1)H < B, < T|lan| H()dS,, (146)

Where H(y) is the mean curvature of the boundary at y e d,Q and H is its minimum value.
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The following result, which is of independent interest, played a key role in establishing
Theorem (2.3.1).

Theorem (2.3.2) [89]: Let O c R™ be a domain with boundary of class C? satisfying a
uniform interior sphere condition. Then u: = (—Ad)dx is a signed Radon measure on Q. Let
U = Ug. + Ug be the Lebesgue decomposition of u with respect to L", i.e., u,. < L™ and
ps L L™ Then us = 0in Q, and p,e = (n — 1)Hdx a.e. in Q, where H: = infyc50 H(y).
For domains with boundary of class C? satisfying a uniform interior sphere condition, —Ad
Is a continuous function in a tubular neighborhood of the boundary and, moreover,
—Ad(y) = (n— 1)H(y) for any y € dQ. This fact together with Theorem (2.3.2) leads to
the following corollary.

Corollary(2.3.3[89]): Let Q be a domain with boundary of class C? satisfying a uniform
interior sphere condition. Then £ is mean convex, i.e., H(y) = 0 forall y € 9Q, if and only
if —Ad = 0 holds in Q, in the sense of distributions.

We note that a set Q & R™ with distance function having nonpositive distributional
Laplacian is shown in [92], [93] and [42], [31] to be the natural geometric assumption for
the validity of various Hardy inequalities.

In special geometries, we are able to compute the best constant B, in (145):

In case Q is a ball of radius R, then the upper and lower estimates (146) coincide, yielding
B; = (n—1)/R. One then may ask whether (145) can be further improved.

We provide a full answer to this question by showing that for s > 2 one can add a finite
series of [s] —1 terms on the right-hand side before adding an optimal logarithmic
correction. We prove the following.

Theorem (2.3.4) [89]: Let By be a ball of radius R. Then, (i) For all u € C°(Bg), all s >
2,y > 1, it holds that

|Vu| n—1 |u|
j —dx =(s— 1)] —d + f dx
B

ds Rk ds—k
R Br

C J |u|Xy d p

R-1), d (R) *

Where X(t):= (1 —logt)~1,t € (0,1], and C =y — 1. The exponents s and s — k, k =
1,2,...,[s] — 1, on the distance function, as well as the constants s — 1, (n — 1) /R¥, k =
1,2, ...,[s] — 1, in the first and the summation terms, respectively, are optimal.

The last term in (147) is optimal in the sense that if y = 1, there is no positive constant C
such that (147) holds.

(ii) Forall u € C°(Bg), all 1 < s < 2,y > 1, it holds that

f [Vu ld > (s—1) u ld ¢ j —lulXV(d)dx (148)
5 ds1 s ds ter) TR/
R R R

Where X(t):= (1 —logt)~1,t € (0,1],and C = y — 1. The last term in (148) is optimal in
the sense that if y = 1, there is no positive constant C such that (148) holds.

Note that this is in contrast with the results in the case p > 1, where an infinite series
involving optimal logarithmic terms can be added (see [92] and [93]).

In case Q is an infinite strip, using a more general upper bound on B, (see Theorem (2.3.26)),
we prove that B; = 0. As a matter of fact, the finite series structure of (147) disappears and
only the final logarithmic correction term survives.

(147)
+
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Theorem (2.3.5) [89]: Let Si be an infinite strip of inner radius R. For all u € CZ°(Sg), all
s =1,y > 1, it holds that

f N [ P f [l gy (d> dx, (149)

sp 4571 sp 4° RS—1 d R

Where C =y — 1. The last term in (149) is optimal in the sense that if y = 1, there is no
positive constant C such that (149) holds.
We prove weighted L' Hardy inequalities in sets without regularity assumptions on the
boundary. General open sets, sets with nonnegative distributional Laplacian of the distance
function, as well as sets with positive reach are considered. Remainders for sets having finite
inner radius are obtained in the first two cases and extremal domains are given. The results
imply in particular inequality (149). After recalling further properties of the distance
function for smooth domains, we prove Theorem (2.3.2). Theorem (2.3.1) and the optimality
in Theorem (2.3.5), where also an interesting lower bound for the Cheeger constant of
smooth, strictly mean convex domains is deduced (see Corollary (2.3.25)). Theorem (2.3.4)
Is proved, and we discuss LP analogs of our results.
Since all inequalities will follow by the integration by parts formula, we formalize it as
follows: Let Q be an open set in R™ and T be a vector field on Q.
Integrating by parts and using elementary inequalities, we get

f |T||Vu|dx2j div(T) |uldx, (150)
Q Q

for all u € C;°(Q), where we have also used the fact that |V|u|| = |Vu| a.e. in Q.

We recall some properties of the distance function to the boundary of a general open set and
then prove various weighted L! Hardy inequalities.

Let @ & R"™ be open. We set d: R™ — [0, ) by d(x): = inf{|x — y|: y € R™" \ Q}.

It is well known that d is Lipschitz continuous on R™, and in particular |Vd(x)| = 1 a.e. in
(see [98], Theorem 4.8). The next property of d can be found, for example, in [95],
Propositions 2.2.2.(i) and 1.1.3.(c), (e). We prove it for completeness.

Lemma (2.3.6) [89]: Let Q & R™ be open. It holds that

—dAd = —(n — 1) in ( in the sense of distributions. (151)
Proof: Estimate (151) rests on the fact that the function A: R™ — R defined by A(x): =
|x|? — d?(x) is convex. To see this, we take x € R™ and let y € R™ be such that d(x) =
|x — y|. Forany z € R™ we get

Alx+z)+ A(x — z) — 2A(x)
= 2|z|* = (d?*(x — 2) + d?(x + z) — 2d?*(x))
220z = (x+z—yl* +x—z—-y|* = 2|x —y|?)
= 0.

Since A(x) is also continuous, we obtain that A(x) is convex (see [95], Proposition Al.2).
It follows by [97], that the distributional Laplacian of A is a nonnegative Radon measure on
R™. Since in Q we have AA = 2(n — 1 — dAd) in the sense of distributions, the result
follows.
The weighted L' Hardy inequalities we obtain are deduced from the following basic fact.
Lemma (2.3.7) [89]: Let Q ¢ R™ be open. Forallu € C°(Q) andall s > 1,

|ul f |ul
x=(s—1) —d + | Zop (FAd)dx, (152)

st
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where —Ad is meant in the distributional sense. If Q is bounded, then equality holds for
U (%) = (d(x))S e e W' (Q;d=67V),e > 0,
Proof: Inequality (152) follows from (150) by setting T(x) = —(d(x))1~5Vd(x) for a.e.
x € Q, while the second statement is easily checked.
A covering of Q by cubes was used in [91] to prove the next theorem. We present an
elementary proof.
Theorem (2.3.8) [89]: Let O € R” be open Forall u € C.°(Q) and all s > n, it holds that
|ul

J 751 dx_(s—n) —dx (153)

Proof: Coupling (151) and (152), we get

ez -0 [ Har--n [ Ha

|ul
=(s—n) —dx

Remark (2.3.9) [89]: The constant appearing on the right-hand side of (153) is just a lower
bound for the best constant. The best constant in (153) differs from one open set to another.
However, R™ \ {0} serves as an extremal domain for Theorem (2.3.8). More precisely,
letting Q = R™ \ {0}, we have d(x) = |x|, and (153) reads as follows:
f [Vu| |ul
—dx>(s—1) dx,s >n, (154)
ge [ X571 e |X[°
forall u € C°(R™ \ {0}). To illustrate the optimality of the constant on the right-hand side
of (154), we define the following function:
us(x): = )(BH\BS(x),x € R™, (155)
where, for any r > 0, by B, we henceforth denote the open ball of radius r with center at
the origin. Here 0 < § <n and n is fixed. The distributional gradient of ugs is Vus =
VopsOaps — 7703,7503,7 where, forany r > 0, ¥, _ stands for the outward pointing unit normal

vector field along 9B, = {x € R™: |x| = r}, and by &,5_ We denote the Dirac measure on
dB,. Moreover, the total variation of Vus is |Vus| = 855, + 8o, Using the co-area
formula, we get

|Vus|
Jan xs=19% 5175198, | + 71|05, |
oo ol [ 108 lar
B 5n—s+nn—s
[ rms=119B,|dr
67’1 S _|_T’Tl S
_(S_n)é'n s_nn S

-»>s—n,asé | 0.
Although not smooth, functions like us defined in (155) belong to BV (R™) (the space of
functions of bounded variation in R™ ), and thus we can use a C.° approximation so that the
calculation above holds in the limit (see, [97]).
Theorem (2.3.10) [89]: Let Q & R™ be open and such that R: = sup,cqd(x) < co. For all
u € C°(Q),all s =n,y > 1, it holds that
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j V] dx = (s —n) de + ¢ MXV (E) dx (156)
qQ ds—1 - qQ ds RS—™M qQ dan R ’

where C >y — 1.
Proof: We set T(x) = —(d(x))}5[1 — (d(x)/R)* XY 1(d(x)/R)]Vd(x) fora.e. x € Q.
Since |1 — (d(x)/R)>™XY~1(d(x)/R)| < 1 forall x € Q, we have

|Vul
f |T||Vu|dx < 51 dx.
Q Q
Using the rule VXY~ 1(d(x)/R) = (y — 1)X?(d(x)/R) % for a.e. x € Q, we compute

div(T) = (s — 1)d" [1 _ (%)H xr-1 (%)] 4 ;S__: d="Xv~1(d/R)

s—n

= o @

Ss—n
Since 1 — (@) XY71(d(x)/R) = 0 forall x € Q, we use (151) on the last term of the
above equality, and a straightforward computation gives

div(T) > a5+ L2 gonyr (4
iv(T) = (s —n) +Rs_n X 7)

_|_

d~"X"(d/R) +d'~ [1 — (%)

This means that

jdiV(T) luldx = (s —n) |u—ldx+y_1 lile<g)dx
qQ - q ds Rs™™ ), d™ R ’

and the result follows from (150).
We assume that

—Ad = 0 in Q, in the sense of distributions. (C)
This condition was first used of Hardy inequalities in [35], [92] and has been used
intensively in [42], [31], [105]. As we will prove, domains with sufficiently smooth
boundary carrying condition (C) are characterized as domains with nonnegative mean
curvature of their boundary. However, we do not impose regularity on the boundary.
Theorem (2.3.11) [89]: Let Q < R™ be open and such that condition (C) holds. For all u €
C;°(Q) and all s > 1, it holds that
VUl s -1 [ 4 15

e x=(s— )LE X. (157)
Moreover, the constant appearing on the right-hand side of (157) is sharp.
Proof: Since (C) holds, we may cancel the last term in (152) and (157) follows.
To prove the sharpness of the constant, we pick y € dQ and define the family of
W't (Q; (d=6~D)  functions by u.(x):= ¢(x)(d(x))S 1, >0, where ¢ €
C(Bs(¥)),0 < ¢ <1,and ¢ = 1in Bs/,(y), for some small but fixed §. We have

V|

Jo g1 dx e [, IV¢|dedx
= -1+
o Bl To $0
C

<s—1 +4e+

—-1+4¢
anBS/z(J’) d~edx

<s-—1+o0.(1),
where C is some universal constant (not depending on ¢ ).
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Theorem (2.3.12) [89]: Let Q & R™ be open and such that condition (C) holds. Suppose in
addition that R: = sup,eqd(x) < co. Forallu € C°(Q), all s = 1,y > 1, it holds that

|Vl ul [ lul,,d
st_lde(s—l) — dx + —X ( )dx, (158)

o d RS-, d
Where C >y — 1.
Proof: Weset T(x) = —(d(x))*5[1 — (d(x)/R)5 XY~ 1(d(x)/R)]Vd(x) fora.e. x € Q.
Since |1 — (d(x)/R)*"1XY~1(d(x)/R)| < 1 forall x € Q, we have
\Y
f IT||Vu|dx < Cllsﬂ dx.
Q Q

Using the rule VXV_l(d(x)/R)=(y—1)XV(d(x)/R)% for ae. x€Q, by a

R

straightforward calculation we arrive at

u
f div(T)|uldx = (s — 1)j L—de+ =1 | 7 X"(d/R)dx
Q Q Q

s—1

) (B o

Since 1 — (d(x)/R)*1XY~1(d(x)/R) = 0 forall x € Q and also (C) holds, we may cancel
the last term and the result follows by (150).
We obtain an interpolation inequality between (153) and (157) via sets with positive reach.
Let @ +# K € R"™ be closed, and consider the distance function to K, i.e., dg: R™ — [0, o)
with dg (x) = inf{|x — y|: y € K}. Denote by K; the set of points in R™ which have a unique
closest point on K, namely K; = {x € R™: 3!y € K such that dx(x) = |x — y|}.
Definition (2.3.13) [89]: The reach of a point x € K is reach(K, x): = sup{r = 0: B,(x) C
K;}. The reach of the set K is reach (K): = inf,¢greach(K, x).
The above definition was introduced in [98], where it was also noted that K is convex if and
only if reach(K) = oo.
Lemma (2.3.14) [89]: Let O & R™ be open, and set h: = reach(Q)) = 0. Then

(h+ d)(—Ad) = —(n — 1) in £, in the sense of distributions, (159)
where d = d(x) = inf{|x — y|:y € R" \ Q}.
Proof: If h = 0, this is Lemma (2.3.6). For h > 0, we set Q; = {x € R™:dg(x) < h}. As
in the proof of Lemma (2.3.6), the continuous function A: R™ —» R defined by A(x) =
|x|? — déﬁ(x) is convex, and thus the distributional Laplacian of A is a nonnegative Radon

y—1/( |u]

measure on R™. The result follows, since for x € Q we have dfl%(x) = d(x) + h (see also
[98], Corollary 4.9), and thus AA = 2(n—1— (h+d)Ad) =0 in Q, in the sense of
distributions.

Theorem (2.3.15) [89]: Let O & R™ be open, and set h : = reach(Q). Suppose in addition

that R: = supeqd(x) < oo. Forallu € C() and all s > 2%, it holds that

VU] e s (5= 1) ——+ (s =)
Qd =\ TV RT Y T Y TR

Proof: Inserting (159) to (152), we obtain

—l | dx 160
ds (160)
Q
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flvuldx - [ Mooy [ MLy
a1 = PE Jdh+d

B (s—l)h+(s—n)dm

0 h+d ds
>(s—1)h+(s—n)d de
= h+d G
where the last inequality follows since R < oo and =246~ ¢ o creasing in d.

h+d
Note that this inequality interpolates between the case of a general open set R", where we

have h = 0 and the constant becomes s — n, and the case of a convex set (0, where h = o
and the constant becomes s — 1.
Before stating our result (Theorem (2.3.2)), we gather some additional properties of the
distance function to the boundary that will be in use.
From now on, Q will be a domain, i.e., an open and connected subset of R™. We will denote
by X the set of points in Q which have more than one projection on 0().
If x € Q\ Z, then &(x) will stand for its unique projection on the boundary.
The next lemma follows from Lemmas 14.16 and 14.17 in [45].
Lemma (2.3.16) [89]: Let Q c R™ be a domain (possibly unbounded) with boundary of
class C2.
(a) If in addition  satisfies a uniform interior sphere condition, then there exists § > 0 such
that Qs5:= {x € Q:d(x) <8} c Q\Zandd € C*(Q;s).
(b)d € c2(Q\ X)andforany x € Q \ £, in terms of a principal coordinate system at & (x) €
dQ, it holds that
(i) Vd(x) = —v(¢é(x)) = (0,...,0,1)
(i)1—k;(¢(x)Nd(x) >0foralli=1,..,n—1
2 o —K1(§(x)) —Kn-1(§(x))
(i) [D7d(x)] = diag [1—K1($(x))d(x) T e G () A)” o}
Where v(&(x)) is the unit outer normal at é(x) € 9Q, and x; (¢ (x)), ..., k,—1 (& (x)) are the
principal curvatures of dQ at the point £(x) € 9Q.
Lemma (2.3.17) [89]: Let Q c R™ be open. The function 4: R™ — R defined by A(x) =
C|x|?/2 — d(x), is convex in any open ball B cc Q, for any C > 1/dist(B, 9Q).
Proof First note that for all a, b € R™ with a # 0, we have
2
la + b| + |a — b| — 2]a] Sllell. (161)
We choose an open ball B < Q with r: = dist(B,dQ) > 0, and take x € B. Let y € 9 be
such that d(x) = |x — y|. For any z € R™ such that x + z,x — z € B, we get
A(x +2) + A(x — z) — 2A(x)
=C|z|* = (d(x + 2) + d(x — 2) — 2d(x))
>Clz|* = (x+z—yl+Ix—z—y|—2]x —y])
(by (161)fora =x —yand b = z)
|z|?
lx =yl
> (C—1/r)|z|%
Since A(x) is also continuous, we obtain that A(x) is convex in B for any C > 1/r.

> C|z|? —
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We denote by H(y): = ﬁz’{‘;ll k;(y) the mean curvature of 01 at the point y € 9Q.

Theorem (2.3.18) [89]: Let & c R™ be a domain with boundary of class C? satisfying a
uniform interior sphere condition. Then u: = (—Ad)dx is a signed Radon measure on (). Let
U = Uge + Ug be the Lebesgue decomposition of u with respect to £", i.e., py. < L™ and
ps L L™ Then us = 0in Q, and p,e = (n — 1)Hdx a.e. in Q, where H: = infy,c50 H(y).
Proof: Letting 6§ be as in Lemma (2.3.16)(a), we set Q5 = {x € Q:d(x) < &}. Then —Ad is
a continuous function on Qg, and so u°: = (—Ad)dx is a signed Radon measure on Qg,
absolutely continuous with respect to L.

Next, let {B;};>; be a cover of the set Q\ Q5, composed of open balls B; for which
dist(B;,0Q) > &/2 for all i > 1. According to Lemma (2.3.17), the function A(x):=
|x|?/8 — d(x) is convex in each B;. From [97], , we deduce that there exist nonnegative
Radon measures {v'} _ , respectively on {B;};»1, such that

dAdx = | ¢dv?,

B; B;
forall ¢ € CX(B;). Since AA = 2n/8 — Ad in the sense of distributions, we get
. 2n
j ¢(—Ad)dx =j ¢dv' ——f ¢dx, (162)
B; B; 6 B;

for all ¢ € CZ(B;), and thus p': = (—Ad)dx = v' — %ndx is a signed Radon measure on
B;.
Let {n;};>, be a C™ partition of unity subordinated to the open covering {B;};>; of Q \ Qs,
le.,
ni € C2(By), 0 < ny(x) < 1in B; and 2 70 = 1in O\ Q.
i=1
Further, for x € Q define ny(x) = 1 — Y72, 1;(x). We then have

sprtng © Qs, 16(x) = 1in Q) and Z n:(x) = 1in Q.
i=1
We will now show that u: = 32 ,n;u* is a well-defined signed Radon measure on €, and
u = (—Ad)dx. To this end, for any ¢ € CZ°(£) we have

jﬂ $(—Ad)dx = Z ]Q o (—Ad)dx
by(162) = jﬂ RIESY ( fﬂ pnidvt — 2 jﬂ qu-dx)
i=0

0 N ;2n N
=1 ¢nodu” + qbz ndv 5 ¢>z ndx
Q 2 3 2 3



Where the middle equality follows since v are positive Radon measures and thus Y7, ;v
IS increasing in m (see [97]).
Next, by the Lebesgue Decomposition Theorem ([97)), s U= Hac + ug where

z Thﬂs 2 Thlis z nivs =

Since u' = vt — %"dx and v* are nonnegatlve. Flnally, from Lemma (2.3.16)(b) we get

n—1
_ k(€ ()
A0 = 2 T @)@
> ) ()
i=1

= —-1HE X))
> (n—1)HVxeQ\Z

Now by Lemma (2.3.16)(b), —Ad is a continuous function on Q \ %, and so

Hae = (—Ad)dx = (n — 1)Hdx in Q \ Z.
Recalling that £*(Z) = 0 when 9Q € €2 and since Q = (Q\ £) U X, we conclude p,. >
(n—1)Hdx a.e.in Q.
Definition (2.3.19) [89]: A domain Q with boundary of class €2 is said to be mean convex
if H(y) =0 forall y € 0Q.
Theorem (2.3.18), along with Lemma (2.3.16), provides us a characterization of mean
convexity in terms of the distance function for sufficiently smooth domains. We have the
following.
Corollary (2.3.20) [89]: Let Q be a domain with boundary of class C? satisfying a uniform
interior sphere condition. Then Q is mean convex if and only if condition (C) holds, i.e.,
—Ad = 0 holds in €, in the sense of distributions.
Let Q be a domain satisfying property (C). We define the quotient

Vu u
f_Q Clis ld — (s _1)fQ ldsl

u

Qplul:= ;s> 1, (163)

and we consider the minimization problem
Bg():=1i {Qp[ul:u € C2()\{0}};0<p<s—1.

The next proposition shows that the essential range for g is smaller.

Proposition (2.3.21) [89]: Let O be a domain with boundary of class C? satisfying property
(C). Ifs=2then Bg(Q) =0forall 0 <p <1.1f1<s<2then Bz(Q) =0 forall 0 <
B <s—1.Proof: Forsmall § > 0, let Q5: = {x € Q:d(x) < §}and Q5 = Q \ Q5. We test
(163) with us(x) = xas(x)d(x), where { € CZ(B:(y,)) for a fixed y, € 0Q and
sufficiently small &, satisfying € > 3§. We may suppose in addition that 0 < ¢ <1 in
B:(y9), ¢ = 1in Be(y,), and |V¢| < 1/e. This function is not in C.°(£2), but since it is in

BV (Q) we can mollify the characteristic function so that the calculations below hold in the
limit. The distributional gradient of us is Vus = ngvcp — UV8yqs, Where ¥ is the outward

pointing, unit normal vector field along 0Qg, and ;¢ is the Dirac measure on 9Qs.
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Moreover, the total variation of Vus is [Vus| = xq¢|V@| + ¢8aq¢. Since 005 = {x €
Q:d(x) = 6}, we obtain
fﬂc |Vp|dr~Sdx + 515 f(mc ¢dS, —(s—1) fﬂc ¢pddx
— ) ) S

Qplus] = [ . pdPdx

6
Using the fact that |Vd(x)| = 1 for a.e. x € Q, we may perform an integration by parts in
the last term of the numerator as follows:
(s—1)| ¢dSdx = —f ¢Vd - Vd1Sdx
Q

05 5
= f [Vo - Vd]dSdx + dd1SAddx — 515 ¢Vd - vdS,.
o) Qs 205
Since Vd is the inner unit normal to dQ, we have Vd - v = —1, and substituting the above

equality in (164), the surface integrals will be canceled to get
Jog [IV@] = V¢ - Vd]d'~*dx + [ ¢d'~*(=Ad)dx

Qp [us] = ch ddB-sdx

By the fact that —Ad(x) < c for all x € Q% N B,, and by the properties we imposed on ¢,
we get

.(164)

2

gfngnB d'=Sdx +c |, d'~Sdx

Q5NBe

dP—-sdx

IA

Qﬁ [u8] f

QgﬂBg/z
1—

fngnt d=Sdx

&
= C(S)f AP dx

QgﬂBs/z
N(6)
= :c(e) D)
Now using the co-area formula, we compute

£
N(5) = j Tl_SJ dS,dr
) {xeQ§nB,:d(x)=7}

&
< c;(¢) j ri=sdr,
)
Where c;(¢) = max,epo ¢ [{x € Q5 N Be:d(x) = r}|. Also,

g/2
D(6) =f rﬁ‘sf ds,dr
8 {x€Q§NB/5:d (x)=r}

g/3
> f f ds,dr
) {x€Q§NBg/5:d (x)=}
&/3

< c,(¢) rf=sdr,
5
Where ¢, (&) = min, ¢/ |{x € Q§ N B /,: d(x) = r}|. A direct computation reveals that
if s =2 then Qglus] < 05(1) forall 0 <p <1, and also if 1 <s <2 then Qglus] <

os(Dforall0 < f <s—1.

2
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We obtain upper and lower estimates for B, (). In particular, we prove Theorem
(2.3.1) and the optimality in Theorem (2.3.5).
Theorem (2.3.22) [89]: (Lower Estimate) Let Q be a domain with boundary of class €2
satisfying a uniform interior sphere condition. If s > 1, then

B, () =2 (n—1)H, (165)

Where H is the infimum of the mean curvature of 9.
Proof : The estimate follows directly from (152) using Theorem (2.3.18).
Definition (2.3.23) [89]: The Cheeger constant h(Q) of a bounded domain € with piecewise

C! boundary is defined by h(Q): = inf, ' where the infimum is taken over all sub-

domains w cc Q with piecewise C* boundary

For the existence of minimizers, uniqueness, and regularity results concerning the Cheeger
constant, see [100].

Proposition (2.3.24) [89]: Let Q be a bounded domain with piecewise C! boundary such
that condition (C) holds. For all s > 1, we have B;(Q2) < h(Q).

Proof : Take w cc Q with piecewise C* boundary, and let u,, (x) = (d(x))5 1y, (x). The
distributional gradient and the total variation of this BV (Q) function are, respectively,
Vu, = (s — 1)ds 2y,Vd — ¥d*715,, and |Vu,| = (s — 1)d* %y, + d5716,,,, Where ¥
Is the outward pointing, unit normal vector field along dw, and &, is the uniform Dirac
measure on dw. We test (163) with u,, to get

dS,—(s—1) [ d7tdx |9
Q:[uy,] = (s — 1)f d~tdx + fa‘” x )f‘*’ = | wl,
® J,, dx |w|
In particular, h(Q2) = inf, Q,[u,]. By the standard C;:° approximation of the characteristic

function of the domain w, we obtain B; () < ||6w| and thus B, (Q) < h(Q).

From Theorem (2.3.22) and Proposition (2.3.24) for s = 1, we conclude the following.
Corollary (2.3.25) [89]: If Q is a strictly mean convex, bounded domain with boundary of
class C?, it holds that h(Q) = (n — 1)H.

Note that in [90] it is proved that if a bounded convex domain ( is a self-minimizer of h(Q),
then it belongs to the class €11, and also the stronger estimate h(Q) = (n — 1)H holds.
Here H is the essential supremum of the mean curvature of the boundary (the last being
defined in the almost everywhere sense, since 9Q € C11).

The following result states a more useful upper bound for B; (). It will be combined with
Theorem (2.3.22) to give the best possible constant for special geometries.

Theorem (2.3.26) [89]: Let Q be a domain with boundary of class C? satisfying a uniform
interior sphere condition. If s > 2, then for all ¢ € C1(99),

(m—1) [, [9OIIHG)AS [, [VP()|dS

Joo 10ONIdS Joo 10ONIAS”
Where H(y) is the mean curvature at the point y € 9.
Proof: Let 5§ > 0 such that for all x € Q5: = {x € Q:d(x) < &} there exists a unique point
§=¢&(x) =x—d(x)Vd(x) € 0Q (166)
with d(x) = |x — &]|. For any t € [0, §] the surface area element of 0Qf = {x € Q:d(x) =
t} is given by
dS; = (1 —ryt) - (1 — kpy_18)dS = (1 = (n — D)tH + 0(t?))dS, (167)

B,(Q) <
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where k4, ..., k,_1, are the principal curvatures of 9Q, dS is the surface area element of 01},
and H is the mean curvature of 91, (see [107], Sects. 13.5 and 13.6). Now let 0 < e < §
and chose ¢ € C1(0Q). We test (163) with u,(x) = Xag\as()P(§(x)),$(x) as in (166),
and then we will check the limit as € | 0. The distributional gradient of u,, is Vu, =
(135569% — 1785695)|¢(€)| + XaoasVx9(§), Where Us, v, are, respectively, the outward
pointing unit normal vector fields along 0Q%,00¢. Its total variation is |Vu,| =
(800 + 8aag )| + X 05 |V2d (©)]. Thus,

|V, | 1s .
gerdx =5 Lﬂclqﬁ(f)ld55+€1 [ 1w,

05
|Vx¢(f)|
" Jﬂs\nc st

The first integral on the right-hand side of (168) is a constant, since we will keep § fixed.
We perform the change of variables y = &(x) in the second integral. Using (467), we have

els f B(E)]dS, = e j BO)I(1 = (n— DeH() + 0(¢2))dS(169)
00 20

=el™M—(n—1)&?SMy + 0(e379),
Where M:= [, |$|dS and My: = [, |$|HdS. Using the co-area formula, the third term
on the righthand side of (168) is written as foIIows

V0@l .
fﬂé\ﬂc d>1 J t LQC'Vx‘i’(f)'dStdt (170)

From (166) we have &;(x) = x; — d(x);(d(x)), and thus by Lemma (2.3.16)(c) we

compute
V. $(E) (2 POk z b (O )

< A ¢§n_1(€) 0) |

(168)

1—kd 11—k, 1d’
Thus, (170) becomes
1/2

[ LTI Jtls L( (fyl.)Z) 45, dt
0505 Q

1/2

s n—l n-1 \
j ¢1-s j z by, 1_[ (1- }c]-t) dSdt,
€ 00 \i=1 j=1,j#i /

where we have changed variables by y = &(x) in the last inequality. Expanding the product

as in (167), we get
j Iqub(é’)I
oo 4T
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5 n-1 1/2
< L ti=s —]:m (; ¢p,(1—[(n— DH — ]t + clt2)2> dsdt

1) 1)
< KJ t1=Sdt + ¢, j t2-Sdt, (171)
& &

for some c¢;,c, = 0, where K: = f;n |V |dS. Next, using the co-area formula and the same
change of variables, we get

)
(s—1) jﬂ uel/dsdx = s -1 | ¢ fa |B()]dS,dt

o) Qt
>6-n ja IO~ (n~ DEHO) + eat?ldsd

5
=Ml —(s—1)(n- 1)MHf t1=5dt
&

6
+c4j t27s, (172)
&

for some c;3,c, € R, and similarly,

|u’S| 6 — 0 1 —

—dx> M| th%dt—(n—1My | t'*F-sdt
ds—F

QO £ £

5 (173)

+cs j t2+h-sdt,
&

for some cs € R. Thus inserting (169), (171), (172) into (168), and by (173) for § = 1, we

get

(n—1)M [(s —1) f6 t1=sdt — ez‘s] + Kf‘S t1=Sdt + ¢ f6 t27Sdt

H & g 6 &
M ff th=sdt — (n — 1)My ff t1+B-sdt + ¢ fj t2+h-sdt
for some ¢, € R. If s = 2, then

((n— DMy +K)log (g) +0.(1)

Qpluel = ,(174)

Ql[ue] S )
Mlog (g) + 0.(1)
While if s > 2, then
S i 5 ((n— DMy +K)e* S + ¢, fj t2=Sdt
Ql [ug] = 1 2-5s § 2-s 8 3-s ,
s M —(n— DMy [, t>Sdt + cg [, t37%dt

For some c,, cg € R. In any case, letting € | 0 we deduce B;(Q) < DMy +K

An immediate consequence is
Corollary (2.3.27) [89]: (Upper Estimate) Let Q be a bounded domain with boundary of
class C2. If s > 2, then

n—1
B,(Q S—f H(y)dsS,

where H(y) is the mean curvature at the point y € 01).
65



Proof : Since  is bounded, we can chose ¢ = 1 in the above theorem.

The proof of Theorem (2.3.1) follows from Proposition (2.3.21), Theorem (2.3.22), and
Corollary (2.3.27).

Example (2.3.28) [89]: (Ball) Let B, be a ball of radius R. By Theorem (2.3.22) we have

B,(Bg) = anl, and by Corollary (2.3.27), B;(Bg) = "Tfl.We conclude that if s > 2, then

By(Bg) = .

Example (2.3.29) [89]: (Infinite Strip: Proof of the Optimality in Theorem (2.3.5)) Let Sy =
{x=("x):x € R"1,0<x, <2R}. If s> 2, then by combining Theorems (2.3.22)
and (2.3.26), we can prove that B; (Sg) = 0. In fact, we have Bg(Sg) = 0forany 1 < f <
s — 1, and in particular, we will prove that if y = 1, there is no positive constant C such that
(158) holds for y = 1. To see this, pick any ¢ = ¢(x") € CL(R™ 1) such that sprt{¢} c
B, € R™1, where B, is the open ball in R*~* with radius 1, centered at 0’. Let n > 0 and
set ¢, = ¢, (x"): = dp(nx"). Note that sprt{(]bn} C By . Also let 0 < & < § for some fixed
d < R (so that d(x) = x,). The quotient corresponding to (158) is

|Vu| |ul
0] = fSR 51 dx—(s—1) st g5 ax

lul ., (4
oo g X7 (5) dx
As in the proof of Theorem (2.3.26), we test (175) with u, ,(x): = x5 (Xn) Py (x') to
arrive at

(175)

_ K, fj xp Sdx, + 2M, 6 °
Qyuey] = 5, )
My | x3* XY (x /R)dxy,
where we have set My:= [, |¢,(x)|dx and Ky:= [, [V,,(x")|dx. Changing
variables by y' = §x', we obtain
Ky _ Kin~2) _ K
M, Mpy~=b M
Where My = [, |¢(y)ldy" and K; = [ |V,¢(y")|dy. Thus,

%n fj xp 5dx, + 2618
1

n,

u =

Qy[uen] fj ¥=1X7 (x, /R)dxo
Now we select n = £572%€ for some fixed e > 0. We deduce
1]\2—1185_2-'_6 ff xi=Sdx, + 261

o (X (5/R)>
X(e/R)

It follows that Q4 [u, ] = 0,as e { 0. Thus, for Q = Sg, inequality (158) does not hold when
vy = 1 and the exponent 1 on the distance function in the remainder term in (158) cannot be
increased. we assume Q is a ball of radius R. Without loss of generality, we assume it is
centered at the origin, and denote it by Bk. The distance function to the boundary is then
d(x) = R — r, where r: = |x|. Moreover,

—Ad(x) = R—dx) 1)’

This is devoted to the proof of the following fact.
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Theorem (2.3.30) [89]: (a) For all u € C°(Bg),s = 2 and y > 1, it holds that

f vul ; 1)f d+zn_1 ul
X X X
Br ds—l Br ds—k

¢ |ul
- 14
+ o JB 2 dx (R) dx, (177)

where C =y — 1. The exponents s — k, k = 1,2, ..., [s] — 1, on the distance function as
well as the constants (n — 1)/R*, k = 1,2, ..., [s] — 1, in the summation terms are optimal.
If y = 1, the above inequality fails in the sense of (180).

(b) Forall u € C°°(BR) 1 <s<2andy > 1 it holds that

C |u|
— - _ 14
f 751 dx_( 1)j —dx +RS_1JR 7 dX (R)dx, (178)
where C >y — 1. If y = 1, the above mequallty fails in the sense of (180).

Remark (2.3.31) [89]: The optimality of the exponents and the constants stated in the above
theorem is meant in the following sense: For any s > 1, set

Vu
Io[u]: = f' U —(s—1) I,
B

s—1 s
Rd BRd

and also for any s > 2, set

— n—1 |u
Im[u]::lo[u]—z — des_kdx,mzl,...,[s]—l.
R

Then, for any s > 2,

/ n—1 )
f ﬂ — Rm+1 ’ lfﬂ =sS—m-— 1' (179)
UEC (BR)\{O}f lul Jax o, ifp>s—m—1,
for all m € {0, ..., [s] — 2}. Further, for any s=>1,
I
sioalel (180)

inf
UECOO(BR)\{O}J‘ |U| X(d/R)d.’X,'
Proof: Inequality (178) is evident by Theorem (2.3.12). Let s > 2 and y > 1. Since
inequality (177) is scale invariant, it suffices to prove it for R = 1. Testing (150) with
T(x) = =(d(x))'°[1 = (d(x))** X" H(d(x))]Vd(x), x € B; \ {0},
we arrive at

div(T)|uldx = (s — 1 —d —d571Xv"1(d))(—Ad)d
J, avemiar=cs )j +f N (@) (~Ad)dx

+(y—-1) FXV(d)d

By
Thus, using (176) for R = 1, we obtain
: |ul |ul 1—ds XV
j div(T)|uldx = (s — 1) —dx+( —1)] —
B, B, d d —d
+(y—-1) uX”(d)d (181)

d
By
Since s > 2, we take into account in (181) the fact that
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[s]—-1
- Z d*1,x € B, \ {0},

k=1

1—ds'X""Yd) 1-d5' 1-dbIt
> >
1-d 1-d 1-d

and finally arrive at
[s]-1

ul = (s —1)[ dx+(n—1)z dx+(y—1)J —XV(d)d

which is (177) for R = 1.
We next prove (179). Suppose first that 2 < s < 3. In this case, all we have to prove is that

Io[u] {n—l, iff=s—-1 (182)
uec(}(Bl)\{O} [ lu] 4 0, ifp>s—1

Bl d
To this end, we pick us(x) = xp,_,(x), where x € B; and 0 < § < 1. This function is in

BV (B,), and we can take a C:° approximation of it, so that the calculations below hold in
the limit. The distributional gradient of u;s is Vus = —vU55,_ 05, _, and the total variation
of Vus is |Vus| = 645, 4. Using the co-area formula, we get

Io[u] §1510By sl — (s — 1) [17° (1 —1)"*|9B, |dr
_ ol _
fy, el ax [0 (1=1)7F|9B,|dr

57 (1-6) [0 (1)) idr
f01_6 (1—7r)"Brn-1dr

fol_(S (1 —r)=srn24r

f01_6 (1-r)-Brr-idr

Thus,

Ihlu —1ifB =5 —

i 5|] N {’3 fpasi1 WOLO

1951 , 1 S —

fgl dﬁ .X'

Assume next that 3 < s < 4. This time, besides (182) we have to prove that

-, I [u] {n—l, if B=s-2

uEC°°(B \{0} |ul 0, if f>s—2

! fB 7 dx

Picking the same ug as before and performing the same integration by parts in the second
term of the numerator, we conclude

Llus] (-1 70 a=-msrmldr— -1 17 (1-rsrlar

1-6
fy, Lol g ;7% @=rFrm-idr

fl d (1 —r)2sSr"2dr
f (1—r) Brn-idy

—(n—l)

Thus,
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i [ue] _){n—l,ifﬁ=s—2 asd 1 0.

Iusl 0, ifB>s—2
fBl dﬁ dx '8

We continue in the same fashion for 4 < s < 5,then 5 < s < 6, and so on.
Next we prove (180). We pick us as before, and perform the same integration by parts to
get

Itsy—1lus] (n—1) fol_a A-rSr"2dr—-(n—-1)X,- Ls] = a f (1 — r)k=syn
fBl |u6| X(d)d fol_a (1 - r)_lrn_lX(l — T‘)dr
f (1 _ T)[S —Spn— ZdT

fol logé (1 . el_t)n_ldt

=(n-1=2

= (n—l)—.
Ds

Since [s] —s > —1, we have N5 = Os(1) as § | 0. Also, D5 > fol_logat‘ldt + 05(1) -
0,asd | 0.
we discuss how far our results can go in the LP setting. We start with the L? analog of Lemma

(2.3.7).
Lemma (2.3.32) [89]: Let Q < R™ be open. For all u € C°(Q), all s > 1,p = 1, it holds

Q dS p p Q dS p Q dS 1 ’ ( )

where —Ad is meant in the distributional sense.
Proof: We substitute u by |u|? with p > 1 in (152), to arrive at
P Vel el dx = [ul? dx + - j [ul” (—Ad)d 184
s—1), ast =) Tas P51 a5t x. (184)
The left-hand side in (184) can be written as follows:

p [Vullul® p Vul ) flulP™
dx = dx
s—1)J), dst o s —1ds/p=1) |ds—s/p
1 Vul?P —1( |ulf
< _( p ) |Vu| Vul? P |ul
p\s—1 q ds? p Jg df
by Young's inequality. Thus, (184) becomes
1, p P! IVulpd S 1 Iulpd 1 |ul|? Ad\d
5(5—1) Gdr =y as x+s—1fﬂds-1(_ dx.
Rearranging the constants, we arrive at the inequality we sought.

dx,

69



Chapter 3
Characterization and Some Weighted Estimates

We show that the definitions and spaces are extended in a natural way and it is proven that
this is the same space as which justifies the standard convention in which the spaces are
defined to be equal. As a consequence, we obtain a new characterization of the Hoélder-
Zygmund space. We also show some weighted estimates for the Bochner-Riesz operators
and the spherical means.
Section (3.1): Triebel-Lizorkin Spaces for p = «
[110], [111] We obtained characterizations of weighted Besov-Lipschitz spaces
Bpy (=0 < a < 0,0 <p,q <o) and weighted Triebel-Lizorkin spaces F,,"(—o0 <
a <0< p<o0<qg<oo) by means of "generalized" Littlewood-Paley functions,
where w € A,,. In this article, We complete the characterizations in [110], [111] by

considering the remaining case of the spaces "’

Note that F2 , = BMO (see [116]), and hence the characterization we obtain is an extension
of the known result for this most important case.

A space of particular interest is Fo‘;‘,oo. The definition of Fo‘;‘,q introduced by Frazier and
Jawerth [116] was a major step, but the extension of that definition to the case " q = oo °
remained elusive. The problem is that any such definition is expected to make that space
coincide with the Besov-Lipschitz space ng,m. The ad hoc solution has been to make the
two spaces the same by definition. As a consequence of the maximal inequalities used to
prove Theorem (3.1.2)(i) we are able to use the natural definition suggested by the work of
Frazier and

Jawerth in [116] and obtain the identification of the two spaces in Theorem (3.1.4).
Moreover, Theorem (3.1.8) shows that there is a family of "natural” norms which are
equivalent to each other and each of which characterizes ng,oo = FOZ"ZZ .

All functions and distributions are defined on R™We use S to denote the Schwartz space of
test functions and S’ its dual, the space of tempered distributions.

The known result (see [126]) for the space BMO mentioned above is:

Proposition (3.1.1)[108]:

Let d € S with

f d(x)dx = 0. (D
RTL
(i) Suppose f € BMO, and let

dt
du(x,t) = If = Py (0)[2dx—,

where ®,(x) = t™"d(x/t). Then du is a Carleson measure, and there is a positive constant
C such that

1 t
du ll,= —_— du(y,s) <C 2 0
" 2 " sup |B(x, t)l j:) L(x’t) nu(y S) " f "BMO

XERM™t>0
B(x,t)
RTL

ot
f ) NP =1 (2)

forall [¢] # 0. Let f be a measurable function such that

(ii) Suppose that there exists a¥ € S with [ Y(x)dx = 0, so that

70



f IACO L EN

n 14+ |x|n+1

Then there is a positive constant C such that

I fllEZyo<Clldul, .
The proof of (i) of the above proposition was given in [114] for the case of the Poisson
kernel, but it also works for a general @ (see [126]). The proof of (ii) for the Poisson kernel
and the Gaussian kernel was due to Fabes et al. [112], and Fabes and Neri [113],
respectively; the general case was proved in the above cited monograph [126] by the use of
the theory of tent spaces.
An important consequence of Proposition (3.1.1) is that for every (fixed) function f with

|f (x)]

Ln T+ et X <

the statement that

dt
du(x,t) = | D¢ * f(0)|*dx—

is a Carleson measure is independent of the function @ € S satisfying the assumptions, (1)
and (2), in Proposition (3.1.1). A natural question one might ask is whether or not a similar
result holds for the measure

dt
@+ f(0)7dx —,
0 < g < co. Our main result (Theorem (3.1.2)) answers this question in the affirmative and
shows that the corresponding statement characterizes a distribution in a certain Triebel-
Lizorkin space defined by Frazier and Jawerth [116], who were also motivated [114].
We state our principal results: Theorem (3.1.2), Theorem (3.1.3), and Theorem (3.1.4).

We assume that —co < a < 00,0 < g < oo, and w is a non-trivial weight function in the
Muckenhoupt class A,,. Choose ¥ € S such that

n 1 A .
suppy S {E <& < 2} and z P(277¢€) =1 for |¢] # 0.
j=—o0
For each j € Z, let ¥;(x) = 1,-j(x) = 2/™p(27/x), that is, P; (&) = P(277¢). We define
the weighted version of the Triebel-Lizorkin space Fog{q introduced by Frazier and Jawerth
[116] as follows: For f € S', we let

1
© q
1 . ‘
I f "Fo"é',‘ﬁ,’ sup W.f z (zlaw}j *f(x)|) w(x)dx (3)
¢ @ j=—iog, £(Q)
with the interpretation that when g = oo,
1 .

I £ ljew = su su —f 27% Y * f(x)|w(x)dx. 4
e Q" ja-1ogs 2@ W(Q) g ¥+ FEOIw ) )

where the supremum is taken over all dyadic cubes @, and #(Q) denotes the length of sides
of the cube Q. We then define

: S’
a,w __ .

where S’'/P denotes the space of tempered distributions modulo polynominals. As stated
above, our definition of the spaces when q = oo is different from [116] where they set
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FOCOIOO = Bgcl) o
by definition. However, we shall prove that the above identity holds for our definition (see
Theorem (3.1.4)), and we also see that the spaces defined in (4) are independent of the
weight w.
In [116] Frazier and Jawerth proved that Fog{q Is independent of the sequence {1,[)]-} by
showing that Fog{q Is isomorphic to a certain space of sequences.

We prove the following theorem:
Theorem (3.1.2) [108]:
(i) Assume that u € S satisfies a moment condition of order [a];i.e.,

J x*u(x)dx =0 (5)
RTL
for all multi-indices x with |x| < [a]. Then there is a positive constant C such that

1

d
Nig(f) = sup (™ W D IW) —dy

xern >0 |W(B(x,t)) JB(xt)0
< CIf gz (6)
forall f € S'/P, where

oy = Yy~
Kif () = sup g+ f(x = )| (1+)

YyERM
and A > 0 is sufficiently large and dependent on n, g, w.
(if) Assume that v € S satisfies the (standard) Tauberian condition; i.e.,
V¢ # 03t > 0 such that D(t€) # 0. (7)

Then there is a positive constant C such that || f |l EEW
1

<C su {; j (s~vs » FOIN W) Zd }q
= erneso (WBEO) Iy Jo 0TI
= CNgq(f) (8)

forall f € S'.
Theorem (3.1.3) [108]: Let ¢ € S satisfy the moment condition (5). Assume that there
exists n € S such that 7 is supported in an annulus about the origin and that

> $n(27) = 1vg %0 9)

j==00

Forj € Z, let ¢;(x) = ¢,-j(x) = 2/"¢(2/x). Then both
1
q

1 - q
sgp ") jQ | (27%¢; f (x)) w(x)dx

j=-log, £(Q)
and

Q|

(0]

1 . ¢
"o W@ D, (@ F@) weodx
© Q j=—iog, £(Q)
are norms equivalent to || f|| rZ forall f € S'/P, and the finiteness of either norm characterizes Fo‘;(‘;' ?
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Are norms equivalent to ||f||F°%'¥; for all f € S'/P, and the finiteness of either norm
characterizes Fioy where

¢;f(x) = ysglgllcbj “fe =1+ 21y~

and A > 0 depends on n, g, and w.
We do not give a complete proof, but a proof of the most difficult part follows from the
argument used to prove Theorem (3.1.5) and Lemma (3.1.6).
Observe that if (9) is satisfied, then ¢ satisfies the Tauberian condition (19149 Also, it is
not difficult to show that if for every || = 1 there are numbers a, b depending on & such
that 0 < 2a < b < w0 and

$(t&) # 0 foralla <t < b.
then (9) is satisfied (see [127]). Theorem (3.1.3) implies, in particular, that Fof,‘,';” does not

depend on the sequence {qu} and the characterization does not require the condition that ¢

has compact support. We note that the removal of the restriction on the support of ¢ is
important in some applications, such as the characterization of function spaces on domains
where one assumes that ¢ has compact support; this would imply that ¢ does not have
compact support unless ¢ is trivial (see [123] where the methods in [110], [111] are used to
study function spaces on domains).
In the course of the proof of the main results, we also establish the following interesting
result.
Theorem (3.1.4) [108]:
We have the identities

FE% = BS , = FS,,
(with equivalent norms).
That Fo'ty is independent of the weight function w seems a surprising fact at first. However,
this independence is consistent with the definitions of the weighted Besov-Lipschitz spaces
Fya" in [109] where one has By, = BS , to obtain a satisfactory interpolation theory. The
result of the theorem in the unweighted case might be expected from a theorem of Meyer
[119] on the minimality of the Besov-Lipschitz space BY,, which is equivalent to the
maximality of the space BY ., (see [117] for a proof of Meyer's result). We are grateful to
P. Auscher for drawing our attention to this minimality result. Theorem (3.1.4) gives a new
characterization of the Holder-Zygmund space BE ., in terms of weighted oscillations over
cubes.
The results in [110], [111] were extended recently by Rychkov [124] to other classes of
weight functions which can have exponential growth at infinity. We anticipate further
developments in this direction.
The bulk of the rest is devoted to the proof of Theorem (3.1.2). We use C to denote a positive
constant which may depend on the parameters concerned, such as, g, w, n ..... but not on the
variable quantity, usually a distribution f;C may have different values on any two
consecutive occurrences.
Assume that v satisfies the Tauberian condition (7). First consider the case g < oo. Fix a
dyadic cube Q with £(Q) = 27*. Choose r < q suchthatw w € A, /r. For x € Q and j =
£, +1,..., by (17) of [110] we have the inequality
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q
d r
[« f0)]" < C{f VZ‘f(x)TTt} : (10)

Where [; = {27774,277+4} for some A > 1, and 1 > 0 in the definition v; f(x) satisfies

Ar > 2n. By the arguments on p. 840 of [111],
Ar

vifey s c | t [ *f<z)|r(1 + 'x;Z'>T )7 smaz2

Ar
-+j | (142220 7 g
. vy * f(2)| + . t™"dz
=CJ(x,t) + CH(x,t)

(11)

Next, write
Ar

JG ) _j f|x —z|s2-t+4} Ivs = f @I (1 * o l) (t) s‘"dz%

Ar Ar

) fy e (145 T Q) s

=J1(x,t) + J2(x, 1).
By an argument similar to that on p. 840 of [111] we deduce that
- ds
S < cj M((Ivs * flre) )@ (3 )2

where M denotes the Hardy-Littlewood maximal function operator, and Q" = ¢y 4Q issuch

that {|x — z| < 274} c Q* for every x € Q. We use the convention that aQ is the dilation
of the cube Q about the center of Q by a factor of a > 0. Choose A such that A + 2a > 0.
Using the above estimate, HOlder's inequality, and Hardy's inequality, we obtain

oo arr
f“q{j S, ) } <cy | t-“wx,t)‘ =
j=¢ i

atl ‘ r Ard ar
a z)q{j M((Iv. * flxg") )(x)szf)

<cC j M((e e * flxg:) )(x)r— (12)

It follows from the weighted estimate for the Hardy-Littlewood maximal function in [120]

that
w ]
1 : dt|”
—W(Q)L; 27 qUIjh(x,t)T} w(x)dx

2—t+A

s [ [ e b G
_W(Q*) < Jo Ut f(x) W(x) t X

< CNgq(f)Y, (13)
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where we also use the doubling property of w and the simple fact that Q* is contained in a
ball of comparable to-measure and whose radius is comparable to 27¢+4,
Before proceeding to the estimate for J,(x, t), we recall few properties of weight functions.

Putp = q/r. Then, since w € A,, to satisfies the A,,-condition:
1 1

1 P
(4,) {me(x)dx} {|B|f w(x)~ p/pdx} <C

for all balls B. Since w='/? € Ay, it satisfies the Byr,- -condition:

() [ (1455

Zl) w(z)™? Pdz < CJ w(z)™? /Pdz

B(x,t)
forall x € R™ and t > 0 (see [118]).
The A,-condition then implies that
|X - Zl -’ A PP t"p
j (1 + ) w(z)7 P /Pdz <C——. (14)
RN t W(B (x, t))

Put d, = 27¢*4. Let x € Q. Using Halder's inequality and Hardy's inequality as in the

estimate for J; (x, t) we obtain
5 s s

j=t
Ar Q/T

de _ lx —z|\ 2 _ dt
< Cj f ™ *ve = f()DT (1 + ) t™dz —.
o |Jix-zl2dp) t t

Choose 4 so large that Ar > 2nmax{p, p'}. By Holder's inequality and (14),
Ar a/r

a i x—z\"Z dt
j j (o= f D (14 0—2) " erazy
o |(Jtx-zlzan t t

Ar

|x—z[\ 2 _
: ) t™™"™w(z)dz ;.

=¢ jod# '[{Ix—zlzdg} @ v @D (1 *

!

' ENY
lx —z|\""P o Y ar

j (1 + ) w(z) Pdz —
(lx-z|2dy} t t

0 B(x 2%d,)) dy
z w(B(x,d,)) .W(B(x dg))j f{zk 1d,<|x—z|<2Kd,}

F@) D@ ) T P S

scz (2 ZB) d

‘w(B(x, dee)) {lx—zIs2*a,} Jo
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for some B > 1, by the doubling condition on the weight w. If we further choose A so large

Ar
that 2~ 2 B < 1, then the last sum in the above is dominated by CN, , (f)?.
Thus, we have proved that

o q
1 . de|”
WJQ; 2J q{j}j](x, t)T} w(x)dx < CNgg (F)".

Since we have a similar estimate for H(x, t), (8) follows by appealing to (10) and (11).
The proof for the case g = oo is similar. For example, to estimate J; (x, t), choose r such
thatw € A, /. and use the weighted estimate for the Hardy-L.ittlewood maximal function for
weights in A, .. We have thus completed the proof of Theorem (3.1.2) (ii).
"How big is A ?"
(i) An examination of the proof for the case g < oo shows that we need to choose p and
r so that to weAd,p=q/r>1 and then select A such that
(@) Ar > 2nmax(p,p’)
b)A+2a>0
(c) B2=*7/2 < 1, B the doubling constant for w.
Letpy = inf{p: VS Ap}. Then

A > 2 max {npg/q, an/q,—a (Z—O) log, B}

suffices for a choice of p (and hence r ) so that the above conditions hold.
(ii) The proof for the case g = o shows that we need to choose p and r so that w € A,,p =
1/r > 1 and then select A so it satisfies the same three conditions: (a) through (c) as above.
Then

A>2m {np3,4n, —ap,log, B}
Will suffice. (See the proof of Lemma (3.1.6).)
The proof of Theorem (3.1.2) (i) is done in a similar way to the proof of [110] once we
establish the Peetre type maximal inequalities for FO‘;‘;CVI" , iIn Theorem (3.1.5), and then show
at the end that for f € Fo‘j‘;;", there is a polynomial P and there is a sequence of polynomials
{P,,} of degrees less than or equal to [a] for which

f—P=lim Z ;% f — Py (15)
m—oo .
j=—m
inS’.
Theorem (3.1.5) [108]:
Let {qu};:_oo be a sequence in S which satisfies the following properties:

supp q3j c {274 < |¢| < 2/+4} (16)
for all j and for some A > 1;

D*¢; ()| < €, 27/ (17)

for all j and all multi-indices . Then

o 1/q
1 . q

sup{ —— 277 f(x)) w(x)dx <CIf llzew (18
i) Y ) we gy (18)

j=-log, £(Q)
forall f € S', where
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#f () = sup |y + f(x = | (1+271y) "

and A is large and dependent on n, g, and w (see the remarks at the end), and
C = C' max C,

|K|<Nq1
for a sufficiently large N,. Consequently, the space F, “W defined is independent of the
sequence {y;} used in its definition.
Proof: By (16) there is N = 1 such that ¢p; = Z”N * Y, j =0,£1,%2, ..., so that
j4+N
R} N4 .
oy -l 2™ [ @l 2 el Y vire
R k=j—N
for all x,y € R™. Since, forall 1 > 0,
su_pf 16,(@)|(1+ 2/)2]) "dz < o
J R
by (17), the above implies that
J+N
BIESC D Yif ()
k=j—-N
Fix a dyadic cube Q; with £(Q,) = 2~¢. For g < oo the above inequality implies that

1 . q
E ja gy d
w(Qy) fQ = B wets

0

c 1
— w(Q)

(2" f () w(x)dx

Q1 k=2-N
< C2N*  sup W(Q)f z 2k £ (x)Tw(x)dx
Qg

1
o w(Q) Q jo
< C I f gaw

This last inequality follows by a discrete adaptation of the proof of Theorem (3.1.2) (ii) (cf.
[111]). See also (11), (12), and (13). This completes the proof for g < co.

Next we give the proof for the case g = oo separately as Lemma (3.1.6), since we also need
this result in our proof of Theorem (3.1.4).

Lemma (3.1.6)[108]:

With the notation as above:

(2 i f (x))Iw(x)dx

—log, £(Q)

sup su

jam 10g2€(Q)W(Q)f 2]“¢;f(x)W(x)dx <Clf ||F°aé,,|g;°._ (19)

Proof: We follow the arguments used in the proof of inequality (8).

Fix a dyadic cube Q with £(Q) = 27*. For j > £ and x € Q, by a discrete version of the
arguments in the proof of (8) (cf. [111]), we have the following chain of inequalities:
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Yif(x) <C Z f [ * F(2)]7(1 + 2K |x — ZD—A%ZU—k)AZ—ern

{lx—z|<2~t}

+C z f [We * F(2)|7 (1 + 2¥|x — z|)_%2(j_k)%2’mdz
k=) {lx—z|z2—%}
= J1(x,)) + J2(x, ), (20)

Where 0 <r < 1,w € Ay, and 1 > 2n/r; and

: G-k TN (LT
K ) <€) 292 M((rgr i+ F1) YO,
k=j
where Q* = ¢,Q is chosen so that {|x — z| < 27%} € Q* for all x € Q. Hence it follows
from the weighted estimate for the Hardy-Littlewood maximal function for weights in A4, /.

that

1 | _
sup ooy ) P pwed

C OG-tk ka
<L (+3) jQ 249 F () lw(x)dx
ka %
< Cswp oy | 24 rGolweods

< )

if we choose A4 > 0 such that Ar + 2a > 0.
On the other hand, by Holder's inequality applied to the summation withp = 1/r

o - /1_r _)l_r 1/r
¢ 2073 f i * F@IT A + 2K|x — 2]) "2 2%z
e {lx—z|z2~t}

and using an argument similar to the estimate for J,(x, t) in the proof of Theorem (3.1.2)
(ii), we obtain

1/r
U Wi * F(2)|"(1 + 2%|x - Zl)_/lz_rzkndz}
{lx—z|z2~t}

1

=t U Wi * F@I(1 +2¥]x - z|)—lz—r2";—”w(z)dz} { 2 tn/r }
{lx—z|z2~t} W(B(x,Z‘f))

m

<C z (BZ—AZ—T> o (k=8)(n/r=Ar/2)9—ka . 2Ky« F(2)):

7y )
— W(B (x, Zm—l’)) {lx—z|s2m—t}
<C27% | f IIF;,,‘;VO
if A > 0 is chosen so that

B27%/2 < 1, and Ar > 2n/(min {r,1—1})
It follows that
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Ar
a+T

; . i~k
2797,(x,)) < Cz 2V )( ) I f lpaw < C I f lpaw
k=)

This implies that

1 .
su 270L, 0, ) w(x)dx < C 1l f llpaw.
up ) ), ) f g

Combining this estimate with the estimate for J;(x,j) and (20) we obtain the desired
inequality (19). This completes the proof of Lemma (3.1.6) and so completes the proof of
Theorem (3.1.5).
We note that in the proof of this lemma, the compactness of the support of v is not used;
only the Tauberian condition (7) of ¥ is used.
We next turn to the proof of Theorem (3.1.4). Note that the embedding

B C Forw
is obvious. To prove the converse, let f € Fatw and let j € Z. Fix any dyadic cube Q with
£(Q) =27/, Then by Lemma (3.1.6) there is X € Q such that

27 f(xg) < C Il f llgaw . (21)
For any x € Q, there is y € R™ such that |y| < vn27/ and x = x, — y. Since
* j -2 -
Yif(xq) = [y * fxq = )|(1+271yl) " = A+ V)| = f ()],

we deduce that
Zjasupltpj *f(x)| SCIHf lgaw. (22)
XEQ ’

Since the collection of all dyadic cubes Q with £(Q) = 27/ is a covering of R™, we conclude
that

27y« fll < C I F lgee (23)
forall j € Z, so that
I f lgg = sup 2/%[[y; *flloo SCIfllgaw. (24)
; .
w

Consequently, B ., = Fo 7 With equivalent norms. It holds, in particular, when w(x) = 1
and this completes the proof of Theorem (3.1.4).
Finally we prove (15). It suffices to show that

F% c ES% = B, (25)
forall 0 < g < oo, and (15) is then just a result by Peetre [122].
For g = 1 it is routine to check that (25) is valid. For 0 < g < 1 it follows by an argument
similar to that of Theorem (3.1.4), and which, in fact, works for all finite g that FOZ‘;(‘;’ c

B& .. First we use Theorem (3.1.5) to obtain:

1 Jja,p,* q 1/a
{WfQ (2 ll’,f(x)) W(X)dx} <CIf ”Ffé’_‘g

for £(Q) = 27/. We then argue as in the proof of Theorem (3.1.4), (21), (22), (23) and (24),
and we obtain:

I/ g, = sup2€ly « fll,, < C U f Negy

and this establishes (25).
Using the continuous embedding (25) we obtain the following embedding theorem.
Corollary (3.1.7) [108]:
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We have the continuous embedding
Fa W FaW
0,1 — 0,92

forall 0 < g, < g, < oo.
Let0 < p < oo.For f €S’ let

1/p
"f"xg_w=sgp{ SUP,  w(Q) f (27 [w; + F(0)]) w(x)dx} ,

Jjz- 10g2 £(Q
and define

Xgy ={f € S'/P:1 f lixg, < oo},
Note then that X5, = Fx'o.
By mimicking the proofs given in the previous, with particular reference to the case p = 1,
we obtain the following theorem:
Theorem (3.1.8) [108]:

(i) Assume that u € S satisfies a moment condition (5) of order [«]. Then there is a positive
constant C such that

1

1 p
su sup ——— T Pw(y)d S<CIf lge
sw {WW(B(x 5., € FOwe) y} flixs,,

forall f € S'/P, where u;f is defined as in Theorem (3.1.2) (i).
(if) Assume that v € S satisfies the Tauberian condition (1) Then there is a positive constant
C such that

1/p
1
Il "a<C su sup ——— Ay« o d}
f Xp xERnI2>0 {0<sgt W(B(x’ t)) B(x,t)( | S f(y)l) (y) y
forall f € S".

(iif) We have the identities
X;()l:w = Bc%,oo = Fog,oo

(with equivalent norms).
There is another version of the weighted Triebel-Lizorkin spaces when p = co in which the
weight, w, only satisfies the doubling condition, which is weaker than being in A,,. That is,
there is a constant B such that

w(B(x,2r)) < Bw(B(x,1))
forall x € R" and 0 < r < oo; the smallest constant B for which the above inequality holds
is called the doubling constant of w.
Forf €S',—oo < a < o,and 0 < g < oo, we define

(0]

1/q

(27 [y * f(0)]) " dx

j=-log; 4(Q)

1

I gy sup o jQ

and
iy ={f €S/P:I £ Igiw< oo},
We then have versions of Theorems (3.1.2), (3.1.3), and (3.1.5) for these spaces. The proofs
are very similar to those given above for the corresponding results, except for the fact that
we only need to use the estimate for the Hardy-Littlewood maximal function instead of the
weighted version used above. This is the reason why we do not need to use the A.,-condition
to prove the corresponding theorems. However, in the new version of Theorem (3.1.2) (i)
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we shall require that the function u € S have more vanishing moments, and we shall give
the precise version of this part explicitly as:
Theorem (3.1.9) [108]: Let w be a weight function with doubling constant B. If u € S has

[a + (n —log, B)/q)] vanishing moments, then there is a positive constant C such that
1

{ - ft(-a *f())qud}a<C||fII
xei%.ltlo w(x, t) Jpxr) Jo G Foq
forall f € S'/P.
Note that when w = 1 then B = 2™ so log, B — n = 0, and we require only the same [«]
vanishing moments as in Theorem (3.1.2) (i).
The reason behind this change in the number of vanishing moments required for u lies with
the representation (15) which we shall briefly discuss below.
Suppose that f € 1750‘;‘;2’. It is well known that }':2,1; = f converges in S’ for any f € S’
(see, for example, [122]) From the "new" version of Theorem (3.1.5) for Toﬁ‘;;” and an
argument similar to the proof of Theorem (3.1.4), we obtain, for each j € Z and for every
dyadic cube Q with £(Q) = 27/

sup(Zj“|1,bj *f(x)Dq I f ”;I,a,w-

XEQ .9
Using this estimate, one can show that the series Z}:_mzpj * f. converges in S" when a <
(n —log, B)/q). In the general case, for each multi-index x with || > a — (n — log, B)/
q,D*f € To‘j,;"‘"w, so that Yi__o,9; * D*f = ¥i__,D*(; * f) converges in S’. These
facts imply that we have the representation (15) in which each P, has degree less than or
equal to [a + (n — log, B)/q)] (see [122]).
In [125] Rychkov proved a version of Theorem (3.1.3) for the unweighted, inhomogeneous

Triebel-Lizorkin space Foff,q, a € R,0 < g < oo, under a condition on ¢ that is stronger than
the Tauberian condition (9). His method, as is ours, is an adaptation of the techniques in
[110], [111].

Section (3.2): Littlewood-Paley Functions and Radial Multipliers

Letn > 2and p(x) € C*(R™ \ {0}) be positive and homogeneous of degree 1. We assume
Vp # 0 and the hypersurface

T={xeR px) =1}
has non-vanishing Gaussian curvature. We define

N| =

7 s 5-1 2 dR
%@ =([ 5P - Ol ), (26)
0
Where
SO = [ A= RIp@DF @ ag (27)

Is the Bochner-Riesz means of order § on R™ with respect to p. By Sogge [146] we are
motivated to consider S3 (f) with p(€) in place of the Euclidean norm |£|. We also define
1

? les-1 2 dR)\?
s = ([ 15Ol T (28)
With
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Se(H(x) = fRn n(p§)/R)(1 = R2p(H)DEf (e’ ™ dg, (29)

Wheren € C*(R) issuchthatn(t) =1if |t| > 1/4andn(t) = 0if |t] < 1/8.
Putd(p) =n|1/p — 1/2| + 1/2. We first study the behavior of t5,6 > §(p), 6 > &(1),0n
the weighted Hardy space H? (R™),0 < p < 1. Under these conditions of § we can write
15(f) = gy (f), where g,,(f) is the Littlewood-Paley function defined by

1

9y (NG = (f |¢t*f(x)|27t> ;
0

here . (x) = t ™Y (t"1x), and ¢ satisfies |P(x)| < c(1 + |x])™ € with e = n(1/p —
HD+6— 6(p) >0 and fan/)(x)dx = 0. So 745 is bounded on the weighted Lebesgue
spaces L7, for all r € (1,0) and all w € A, (see Sato [144] and Ding et al. [136]), where
we denote by A, the weight class of Muckenhoupt.

Theorem (3.2.1)[129]: Let t5 be as in (28).

(i) Let0 < p < 1.Suppose w € B; andw € A, Then

||T8(p)(f)|| p°° pw I f " E SO(Rn)
(i LetO<p < landd > 6(p). Suppose w € Bl+n_1p(6 s(py) ahd w € A,,. Then
lzs(Ollp < Cosw I f ||Hp,f € So(R™).
When p(&) = ||, these results also hold for o5 in place of 75.We note that when p(¢§) =
|€] and w(x) = 1, Theorem (3.2.1) (with o5 in place of 74 ) is due to Kaneko and Sunouchi
[140]. By part (i) the Littlewood-Paley operator 75, initially defined on S,, has a unique
sublinear extension which is bounded from HE to LP:*: and by part (ii) 75 extends likewise
to a bounded operator from H?, to LP . As for a recent article dealing with the boundedness
on the Hardy spaces for the Littlewood-Paley functions, see also Ding et al. [10], where they

study the Marcinkiewicz integrals.
Theorem (3.2.2) [129]: If 6 > 1/2and 0 < a < 1, then

|, Jos (GO dx < Co | 1FGOPLI

In Carbery et al. [135] this is proved for the case p(¢) = [¢]| (see also Rubio de Francia
[142] for another proof).We prove Theorem (3.2.2) for the general p(&) by applying the
method of Rubio de Francia [142]. Let S3 be as in (27) and define

S5 (x) = ;gglss (A )| (30)

Then Theorem (3.2.2) implies, as in the case p(&) = ||, the following (see [135], [142]) :
Corollary (3.2.3) [129]: Let 0 < /1 <n—-1)/2.f-21-1<a<2ni/(n—1), then

,[]Rn C/lajn |f (O] x|*dx.

As in [135], by Corollary (3.2.3) we see that limR%oS{}(f) (x) = f(x)ae.forallA > 0and
f € LP(R™) provided 2 < p < 2n/(n—1 — 22) (for the case p < 2 see Tao [152]).
We can also consider the spherical means with respect to p. For § > 0 let
ME(F)(x) = cpt™" j( ) (1=t2p)*)P ' f(x — y)dy(f €5),(31)
p(I<t
Where ¢z =T(B +n/2)/(n™?T(B)). we shall prove some weighted estimates for a

modified version of Mf ().
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We assume p(x) = |x]| in (31) for the rest of this section. By taking the Fourier transform,
we can embed these operators in an analytic family of operators in £ in such a way that

MU =c | flx-)dow),

sn-

where do denotes the Lebesgue surface measure on the unit sphere S™~1. We also define
HOIGERTAGIGH

The operator Mf was studied in Stein [147] (see also Stein and Wainger [149] and Kaneko
and Sunouchi [140]).
Now we see some applications of Theorems (3.2.1) and (3.2.2) to the spherical means.
Remark (3.2.4) [129]: Define, when 8 +n/2 -1 > 0,
2
tdt>

oo 1/2
n B -1 2dt
=2lp+5-1|(]| M@ -MT N[ )
0

If 6§ =p+n/2—-1>0, then o5(f) and vg(f)(f € S) are pointwise equivalent; that is,
there are two positive constants A and B such that

o5 (f)(x) < Avg(f)(x) < Bos(f)(x). (32)
This was proved by [140]. By (32) we immediately get the vz (f) analogue of Theorem
(3.2.1) (see the remark below Theorem (3.2.1)).
Remark (3.2.5) [129]: We write

M(f)(x) = sup flx— ty)dcf(y)|-
t> sn—1

Note that M(f)(x) = cM2(f)(x). Let n > 2,n/(n — 1) < p. Then Duoandikoetxea and
Vega [137] proved that the inequality

IM(F) )P x| %dx < Cf |f COIP x|~ dx (33)
R"? R
holds forn — p(n — 1) < a < n — 1 (this was partly proved in Rubio de Francia [141]) and
does not hold for « > n — 1. Stein [147] proved (33) whenn > 3,a = 0; the result for a =
0 and n = 2 is due to Bourgain [130] (see also [146]). (see [147] and also [149]) we can
give another proof of the inequality (33) whenn >3,0<a<n—1andn/(n—1) <p.
We shall give the proofs of the theorems and the corollary stated above. To show Theorem
(3.2.1) we prove a more general result. For a locally integrable function f, a nonnegative
integer m and o > 0, we define

Flne= _sup inf s [ 1f0) = 0)ldy,

z€R™,5€(0,1] Q€Pm B(z,5)

where P,, denotes the collection of polynomials of degree less than or equal to m. We also
write |f | e = |f:m, ol.
Let & > n and let y be a measurable function on R" satisfying the following properties:

Yl < €A+ |x)7%, (34)
Y(x)dx = 0; (35)

1/2

“10
@ = ([ |5 e

Rn
furthermore, Y can be written as
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) = ) 2700, (36)
k=0

Where {1, }x=0 is a sequence of integrable functions satisfying the following:
supp(nx) < {2572 < x| < 2%}k > 1),

supp(no) < {|x| <1}, (37)
sup|77j:[9—n],9—n+1c| < oo for some k > 0, (38)
j>1

|n0: [0 —n],0 —n| < co. (39)

Here [a] denotes the greatest integer less than or equal to a. Then we shall prove the
following:
Proposition (3.2.6) [129]: Let gy, be the Littlewood-Paley operator with 1 satisfying (34)
to (39).
(i) Let0 < p < 1. Suppose & =n/p,w € By andw € A,,. Then

"gl/)(f)”Lﬁ,w < Cp,w I f ”H‘f,, fE SO(Rn)-
(ii) Let 0 < p < 1. Suppose 8 > n/p,w € Bpg,, and w € A,,. Then

lgw Pl < Coom I f o f € So(R™).
To prove Proposition (3.2.6) we use the following result:
Proposition (3.2.7) [129]: Let ¥ € L*(R™) satisfy fRan(x)dx = 0 and let & > n. Suppose
that

( | peint ( fm« W (r(x = ) —P(y)|dy)7> < Clx|~? (40)

for |x| > 2. Then we have the following:

(i) Let 0 < p < 1. Suppose 8 = n/p and w € B;. If the operator gy is bounded on L° for
some p, € (p, ), then

||g\p(f)||LszV.°o SCGuwlf e, f € Sy(R™).
(ii) Let 0 < p < 1. Suppose 8 > n/p and w € B,g . If the operator gy is bounded on Lo
for some p, € (p, ), then

lgw(Ollp < Coow I f e, f € So(R™).
We use the atomic decomposition to prove Proposition (3.2.7). Let N be a non-negative

integer and w be a locally integrable positive function on R™. Then a measurable function
a on R" is called a (p, N,w) atom (0 < p < 1) if for some x, and s we have

supp(a) € B(xy,s), (41)
1
Il allw< w(B(xo,5)) P, (42)
And
f a(x)x%dx = 0 forall |a| < N, (43)
RTL

where @ = (ay, ..., a,) is amulti-index and x* = x;* .. x,", |a| = a; + - + a,,.
Lemma (3.2.8) [129]: Let ¥ € L*(R™) satisfy [ ¥ (x)dx = 0 and (40).
(i) Let 0 < p < 1. Suppose & = n/p and w € B,. If the operator gy is bounded on L2° for
some p, € (p, ), then for a(p, [n/p — n], w) atom a we have
w({x € R":gy(a)(x) > 1}) < CA7P,
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where C is independent of a and A.
(i) Let 0 < p < 1. Suppose 8 > n/p and w € B, . I the operator gy is bounded on L}?
for some p, € (p, ), then for a (p, [@ — n], w) atom a we have
lgw(@lp <C,
where C is independent of a.
This follows from the following result:
Lemma (3.2.9) [129]: Let ¥ € L}(R™ ) satisfy fRn‘P(x)dx = 0 and (40). Let a be a
(p, [6 — n], w) atom supported in B(x,, s) with (42). Then we have

g (@)(0) < € (1B(o, )I/w(B(,5))"" TP (s + 1x — x[)™°
for x with |x — x| > 2s.
Proof: We first give a proof for the case w(x) = 1. By (40) — (43) with N = [0 — n] we
have, If |x — x,| > 2s,

ae@@? = [ 1| ao)rmvere-

2

2

= [ Ldnt | a@)Emwee - ) - PoDdY|
o PEPe-n] B(xqo,s)
® 2 dr
2 : n — — —
<llals fo Peg[lgf_n] ( jB . [r"W(r(x —y)) P(y)ldy> "

PEP[g_n)

=l al? j-oo inf <J| | |rs)" P (rs(s™ x —s™1xg — ¥)) — P(y)|dy> g
0 y|<1

<Cllal (s7Hx —xo)72°
2n n
< Cs_7+26|x — x| 720 < CSZ(G_E)(S + |x — x|)729.
Next, let a be a (p, [6 — n], w) atom supported in B(x,,s) with (42). Then applying the
above estimate to

(w(B(xo,9))/IB(x0,9)1) ",
we get the conclusion.
Now we give the proof of Lemma (3.2.8).
Proof: We first prove part (2). Letabe a (p, [n/p — n], w) atom supported in B (x,, s) with
(42). Then

w({x € R™: gy(a)(x) > 1}) < w({x € B(x, 25): gy(a)(x) > 1})
+w({x € R"/B(xo, 25): gw(a)(x) > 4})
= [ + 1, say.
Since gy is bounded on LP°, by Chebyshev's inequality and Hélder's inequality we have
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< 2P j |90 (@ @) Pw(x)dx
B(xq,25)

/v0
< 1Pw(B(xo, 25)) PP ( j | gll,(a)(x)|pow(x)dx)p ’

/Do
< CAPw(B(x, 25)) P07 ( J |a(x)|p0W(x)dx>p ’

< CAPw(B(x0,25)) P P w (B (x,, 25)) TP
=CA7P, (44)
where to get the last inequality we have used the doubling condition.
Next, by Lemma (3.2.9) we see that

M <w ({x & R (1BGro, | /w(Bx5))) (s + [x = xo) ™7 > /1})

=w({x € R®:Cs"(s + |x — xo)™" > w(B(x0,5))*})
= III, say.
Since w € By, recalling that s™(s + |x — o)™ = M (X p(x,s)) (), We have
I < W({x € R™: M()(B(xo S))(x) > W(B(xo,s))/lp}) < CA7P,
Combining the estimates for | and 11, we conclude the proof of part (1).

Next we turn to the proof of part (b). Let a be a (p, [6 — n], w) atom supported in B(x,, s)
with (42). Then by Lemma (3.2.9) we have

_1 (2]
8w (@)() < Cw (B Cro, ) PM (e ) GO for [ = o] > 2.
Since w € Bpg/,, We find

| 8@ CPWEx < Cw(BG0.9) " < [ M(Katey)@mwCIdx < €
R™\B (x,25) R

Combining this with the estimate appearing in (44), we get the conclusion.

To prove Proposition (3.2.7)(a) we need the following result (see [148]):

Lemma (3.2.10) [129]: Let 0 < p < 1. Suppose {f; } is a sequence of measurable functions
on R" such that

supAPw({x: |fi(x)| > A}) < 1 forall k,
2>0

and suppose {c,} is a sequence of complex numbers satisfying }.|c, |P < 1. Then we have

2-p
supApW x € R™ z lckfie (0] > A}) —

>0
Now we can prove Proposition (3.2.7).

Proof: We note that f € So(R"™) can be decomposed as f = Y., A a, by (p,[6 — n],w)-
atoms ( w € Byg/, ), Where we have A, > 0,34, <C I f ||p YA.a, = f ae. and
YAila,| < Cf*, with f* denoting the grand maximal function (see [127]). Using this
decomposition, we first prove part (i). Since f* is bounded, by the dominated convergence

theorem we have W, x f = Y4, ¥; * a; a.e. and s0 gy (f)XrxArgw(ay). Thus by Lemmas
(3.2.8)(1) and (3.2.10) we see that

supPw({x € R™ gy (F)(x) > A}) < cz B<CUfID,

A>0
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This completes the proof of Proposition (3.2.7)(i). Part (b) can be proved in the same way
by using Lemma (3.2.8)(ii).

Now we turn to the proof of Proposition (3.2.6).

Proof: First we see that if y satisfies the conditions (34)-(39), then 1 satisfies the condition
(40) of Proposition (3.2.7). Let |x| > 2. Then by (34) we have

*® 2 dr
f ( f I (r(x —y)>|dy> =
1 ly[<1

@ dr @ dr
< Cj rzn(1+r|x|)‘297< C|x|‘29J rn=20 " < Clx|7%%.(45)
1 1
Let r < 1. Suppose 2™|x|™ < r < 2m+ x|~ form < m,: = [(log 2) tlog |x|]. If |y| <

1, then rlx|/2 <r|lx —y| < 3r|x|/2 Therefore, if m > 5, by (36) and (37) we have
m+5
PoG-»)= ) 274 (rx - ).
k=m-3

This expression of ¥ and (38) imply that there exists a polynomial P = P, , € Pjg_p) such
that

[ rmweee- ) - Podldy < Cree02m < clxd02m, (46)
If m < 4, then P
Y(rGe—) = Z 270, (r(x = )
Therefore, by (38) and (39) there exists a polynomlal P = B x € Pjg_p) such that
| rmwee - - podldy <cr® <clxd2m. @)
By (46) and (47) we hal\Jlltla<1

[t v -rons) &
) in lyl<lr¢(r(x y)) —P(y)ldy "

PEP[g_n)
z f inf (j Ir”t,b(r(x—y))—P(y)ldy>Zﬂ
oo Jam =1 PEP-m \Jjyjca ’
z Clx|~2022m9 z Clx| 2040 22me < C[x]=26. (48)

m<4 s5<mgmy,

Now the condition (40) of Proposition (3.2.7) follows from (45) and (48).
Also by [144] we see that the conditions (34) and (35) imply the LP -boundedness of gy for
all p € (1,) and all w € A,. So Proposition (3.2.6) follows from Proposition (3.2.7).

Now we give the proof of Theorem (3.2.1).
Proof: Let

K@ = [ n(p@)A - p©)erede,
Rn
Then
IDKS100)| < C,(1+ )P (49)
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for all a, where D% = (0/ dx,)* --- (0/ dx,,)*" (See [146]). Therefore, by [143] we see that
K%~ satisfies the conditions (34)-(39) for ¥ with 8 =5+ (n—1)/2 and 0 < k < [6 —
n+1)/2]+1—-6+ (n+1)/2 in (38). Thus Theorem (3.2.1) follows from Proposition
(3.2.6). The following result can be used to prove Theorem (3.2.2).

Proposition (3.2.11) [129]: Let 0 < § < 1 and suppose that ms(r) = x[1-s,1)(r) Or ms(r)
Is a continuously differentiable function supported in the interval [1 — §, 1] and satisfying
Ii(d/dr)m(giiLl(R) < 1. Define

(U7) @© = f©Oms(tp®):

Then for 0 < a < 1 we have

oo s 2 _ dt 2 -
(UPF | 1x]™* —dx < Co6 | |f (0)I?|x]"%dx,
R™ Y0 t R

where C, is independent of §.
This was proved in Carbery et al. [135] and Rubio de Francia [142] when p(§) = |€]. To
prove the general case we use the method of [142], which is based on an application of
Hirschman's method in [139] and the weighted estimates for the one-dimensional square
functions. To apply that method to our case we only need to observe that A(x) = (Il x Il
/p(x)), is bi-Lipschitz, with || x l= max(|x,], ..., |x,|), that is

Alx —y| < [A(x) —AY)| < Blx — y
for some constants A, B > 0; but this is an easy consequence of the fact that p(x) is positive,
homogeneous of degree one and C* in R™ \ {0}.
We decompose

p(E2(1 = p(§)HI = Z 276~k (p(©)),

where m, () € CC(R), supp(my,) < [1 — 2~ " 1] and | () my ()| < €2%, for k > 1

Put ¥ (x) = F~1(m (p(&)))(x) and g, (f) = gy, (f), where F~* denotes the inverse
Fourier transform. We can take m, (t) so that g, is bounded on L?, for any w € A,. Now by

Proposition (3.2.11) for k > 1 we have
"gk(f)lle(l |—a) Cz k/2 I f "L2(|x|_“) fOI'O <a<l.
Thusif 6 > 1/2 we have

> k
1 08¢ Nizgero< ) 27O Mg (Pllagyyay < ). €27 K272 1 £l
k=0 k=0

< C5 " f ”L2(|x|‘“)-
This completes the proof.
To apply the result to the maximal operator S¢ defined in (30) we use the following, which
can be proved as in the case p(¢) = |&| (see Stein and Weiss [150]).
Lemma (3.2.12) [129]: Let Sg be as in (27). If B > 0 and § > —1, then we have

S ) = 2ro+p+1) f 1 (1 — £2)B-1£20+158 (£)(x)dt,

r@+1re) J
for a suitable function f.
Here we give the proof of Corollary (3.2.3).
Proof: Using Lemma (3.2.12) and Theorem (3.2.2) and arguing as in the proof of [150] we
have
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S22 gy < Cra I F Nizggy (50)
forallA > 0and —1 < a < 0. Itis known thatif A > (n — 1)/2, then

IS£CO 218y < Cap I f iz (a8 (51)
for —n < B < n. We extend the estimates (50) and (51) to complex A and interpolating
between them, we get the conclusion.
For a locally integrable function f, a non-negative integer m and o > 0, we define

o= sup inf s [ If0) - 0W)ldy.

ZERM s>00EPm B(z,s)
Let y € LY(R™) and 6 > 0. We say € F(m,o,0) if i can be written as in (36) with
{Ni}r=0 satisfying (37) and the condition supyo|nklme < . This function class was
introduced by Sato [143] to make a unified approach to the studies of maximal Bochner-
Riesz means and maximal spherical means in certain problems. By the methods in the proof
of Theorem (3.2.1) we can prove the following:
Proposition (3.2.13) [129]: Let 8 >n and L € F([6 —n],0 —n, 0). Define T*(f)(x) =

SUP¢so|Le * f(x)]
(i) Let 0 < p < 1. Suppose 8 =n/p andw € B;. Then

IIT*(f)iinoo <Cwll f IIHp f € So(R™).
(if) Let 0 < p < 1. Suppose 6 > n/p and W € Bpg/n. Then

T~ (f)lle pow Il f llyp [ € So(R™).
(iii) Let 0 < p < 1. Suppose 6 > n/p,w € Bpg/n and w € A,. Then

IL¢ * f IIHW Coomw I f llyp, f € So(R™),
where the constant C,, ¢ ,, is independent of ¢t > 0.
Proof: Since L € F([8 —n],0 —n, 8), arguing as in [143] we have

B I VP (o)
(B(XO, S))) (S + |x xOl)

L 0
< CW(B(xO' S))pM(XB(xO,s))(x)n'

where a isa (p, [6 — n], w) atom supported in B (x,, s) with (42). As in the case of the proof

of Proposition (3.2.7), this implies parts (i) and (ii). Part (iii) follows from this estimate

along with the multiplier characterization of the weighted Hardy spaces (see [127]), which

requires the condition w € A.,. This completes the proof.

When w € A,, part (a) of Proposition 4 is in [143]. Also, if 0 <p <1,w € 4; and p(§) =

|€], it is known that S°® ™" extends to a bounded operator from HP, to LF;™ (see[143]). Let

0=64+ n—1)/2,6 25(),0<p<1,6>6(1). Then the estimate (49) implies that

K% 'e F([6—-n],0 —n,0) (see [143]). Thus by Proposition (3.2.13) we have the

following:

Corollary (3.2.14) [129]: Let S2(f)(x) = supgso|SE(f)(x)|, where S2(f)(x) is as in

(29).

(i) Let0O <p <landw € By. Then

SIPTH P o < Com I f Ngp, f € So(RT).

(i Let0O<p<1,8>d6()andw € B;,,,-1p(6 — &(p))- Then

T (a)(x) < C( 52)
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||§5—1(]C)||Lz7 < Cpsw 1 f llyp, f € So(R™).
(i) Let0 <p < 1,6 > 6(p),w € Byin-1p5-s5(p)) aNd W € A, Then

"55 1(f)”H‘i’/ X p,&w I f "Lg,’f € SO(Rn)a

where the constant C, 5, is independent of R > 0.

Part (iii) of Corollary (3.2.14) extends a result of Sjélin [145] to the weighted Hardy spaces.
When p(&) = |€]and w(x) = 1, part (i) (with S2 () in place of S8 = (f)) is proved in Stein
et al. [148]. The estimate for $¢ similar to [148] immediately follows from (49), as we can
see from the proof of [148]. We can also have the estimate (52) for S8~ in place of T* as
an application of that estimate. If 0 < p < 1,w € A4; and p(x) = |x|, then it is known that

MP®71/2 s pounded from HP, to LP,*, where B(p) = n(1/p — 1) + 3/2 (see [143]). For
B >0 let

P (F)(0) = cpe™ f e/ — t2p(YDP1f(x — y)dy,

p(y)<t
where cg is as in (31) and 7 is as in (29). Then n(p(y))(1 — p(y)z)f_1 EF([@ —n],0 —
n,0), where § > 1and 8 = 8 + n — 1, and hence by Proposition (3.2.13) we also have the
following:
Corollary (3.2.15) [129]: Let

w7 () = sup M () )|
and write S(p) =n(1/p—1) + 3/2.
(i) Let0O<p < landw € B;. Then
[F27P7 20 oo < Cow I f Nz, f € So(R™).
(iLet0<p < 1,B>pB()andw € By py-15-p(py)- ThEN
1M < Copo 1 f Mgz, f € So(RT).
(iiLet0<p < 1,B8>L(p)weE B1+n_1p([>’—[3(p)) and w € A,. Then

| i, 2(f)" Copon I f N2, f € So(R™),

where the constant C,, g ,, IS mdependent of t > 0.

When p(§¢) = |€] and w(x) = 1, part (i) of Corollary (3.2.15) with Mf(f) in place of

#P () is proved in Stein et al. [148]. The estimate (52) for °~*/%(f) in place of T* also
follows from an application of the argument in [148].
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Chapter 4
Atomic Decompositions with Dual and Hardy-Lorentz Spaces
Dual spaces are identified and some interpolation properties of the martingale Hardy-
LorentzKaramata spaces are obtained. The proofs mainly depend on the classical tool of
atomic decompositions. As usual, these conclusions are closely related to the geometrical
properties of the underlying Banach spaces.
Section (4.1): Dual Spaces and Interpolations of Martingale Hardy-Lorentz-Karamata
Spaces
The family of martingale Hardy spaces is one of the important martingale function spaces.
The study of the martingale Hardy spaces is extended to the martingale Hardy-Lorentz
spaces [20], [27]. This aims to provide a further extension of the martingale Hardy spaces
to the martingale Hardy-LorentzKaramata spaces. The family of martingale Hardy-Lorentz-
Karamata spaces is defined in terms of Lorentz-Karamata spaces.
The family of Lorentz-Karamata spaces is a generalization of the Lorentz spaces, the
Lorentz-Zygmund spaces and the generalized Lorentz-Zygmund spaces [159], [170]. It is
defined via the slowly varying functions. Some important theorems for Lorentz-Karamata
spaces are presented in [159].
The main theme is the generalization of those important results in martingale Hardy spaces
to the martingale Hardy-Lorentz-Karamata spaces.
We introduce five martingale Hardy-Lorentz-Karamata spaces in Definition (4.1.6).
We establish the BurkHo6lder-Davis-Gundy inequality when the filtration of the underlying
probability space is regular.
We obtain the atomic decompositions of the martingale Hardy-Lorentz-Karamata spaces.
Using the atomic decompositions, we show that the dual spaces of the martingale Hardy-
Lorentz-Karamata spaces are the space of functions of bounded mean oscillation (BMO)
and the Lipschitz spaces associated with slowly varying functions.
We establish some interpolation properties of the martingale Hardy-LorentzKaramata
spaces. We find that they are interpolation spaces of the martingale Hardy spaces under a
new interpolation functor tailor-made for the Lorentz-Karamata spaces introduced in [160].
Finally, by using these interpolation results, we prove the identification of the five
martingale Hardy-Lorentz-Karamata spaces when the filtration of the underlying probability
space is regular. we recall the definition of Lorentz-Karamata spaces and state some
properties of these function spaces. For a more detail account of Lorentz-Karamata spaces,
see [159], [170].
For (Q, Z, P) be a complete probability space. We denote the space of measurable functions
on (Q,%,P) by M.
Forany f € M and s > 0, write
dr(s) = P({x € %: |f ()] > s})
and
fr@) =i {s>0:d;(s) <t}0<e<1
We write f = g if
Bf < g < (f,
for some constants B,C > 0 independent of appropriate quantities involved in the
expressions of f and g.
We recall the definition of slowly varying function in order to define the Lorentz-Karamata
spaces.
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A function f:[1,00) — (0,0) is equivalent to a non-decreasing function (non-increasing
function) if there exists a non-decreasing function (non-increasing function) g and constants
B,C > 0suchthat f = gon[1,0).
Definition (4.1.1)[153]: A Lebesgue measurable function b: [1,0) — (0, o) is said to be a
slowly varying function if for any given € > 0, the function t€b(t) is equivalent to a non-
decreasing function and the function t~€b(t) is equivalent to a non-increasing function on
[1, 00).
Let b be a slowly varying function on [1, o), define y, on (0,1] by

Y1) =b(t™1),0<t < 1.
We restate the definition of slowly varying function from [176, Definition 3.4.32], while we
modify the definition of y;,, according to our setting for probability space.
The following presents some remarkable features of slowly varying functions. It is a
modification of [159] to slowly varying functions defined on (0,1].
Proposition (4.1.2) [153]: Let b be a slowly varying function.
(i) For any given r € R, the function b™ is slowly varying and y,- = y;.
(if) For any given € > 0, the function t€y, is equivalent to a non-decreasing function and
t~€yy Is equivalent to a non-increasing function on (0,1].
(iii) If a > 0, then forall t > 0,

t
j STy ()ds = sup 1, (6) * €y (0
0

<S<t
and

o<s<t
(iv) For any a > 0, the function b, defined on [1, o) by b, (t) = b(t?) is slowly varying.
For the proofs of the above results, see [159].
We recall the definition of the Lorentz-Karamata space from [159].
Definition (4.1.3) [153]: Let 0 <p,q <o and b be a slowly varying function. The
LorentzKaramata space Ly, ; , consists of those Lebesgue measurable functions that satisfy

Ifig,,,< oo, where

1
f =3l (s)ds ~ sup 5=y, (s) ~ £~ (2).
t

1 o dt]™*
U (tYPy(Of* () — ,0<q < oo,
1 f i, =1 s t

sup {t/Py, (0f*(©)} q = .

The Lorentz-Karamata space is a rearrangement-invariant (r.-i.) quasi-Banach function
space [164]. When 1 < p,q < o, L, ; , is a Banach space [159]. When b = 1, the Lorentz-
Karamata space becomes the Lorentz space L,,. When b(t) =1+logt, the
LorentzKaramata space reduces to the Lorentz-Zygmund space introduced and studied in
[154].
Let m € N and @ € R™. Define the family of positive functions {l;}1*, on (0, o) by

L) =t L) =1+logli_;(),1<i<m0<t<1
Moreover, define

oM (t) = ﬁ L1 (D).
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The generalized Lorentz-Zygmund space consists of all f € M such that || f L, g0 < @
where

1 . dt]™?
U (VPO (D) (D)) - ,0 < g < oo,
0

sup {tPO7 () f* (1)}, q = .

0=st=<1
Apparently, the generalized Lorentz-Zygmund space is a member of Lorentz-Karamata
spaces (see [159]).
The following gives an equivalent quasi-norm for L,, , ,. This equivalent quasi-norm is used
to establish the atomic decompositions of the martingale Hardy-Lorentz-Karamata spaces.
Lemma (4.1.4) [153]: Let 0 < p < 20,0 < g < oo and b be a slowly varying function. Then
Il p,q,» @Nd

I, =

1
T du\4

co 1
I f .= ( jo [df(u)Pyb (dr ) u] 7) (1)
are equivalent quasi-norms.
Proof : For any f € M, there exists a sequence of non-negative simple functions {f,, },en
such that f, T |f| a.e. Moreover, dr Tdr and f; T f*. Therefore, by using Lebesgue
monotone convergence theorem, it suffices to establish that the quasi-norm defined in (1) is
equivalent with -z, . for nonnegative simple functions.

Let f(x) = X-1a;xe ;(x) where {Ej}yzl is a family of finite Lebesgue measurable sets and
{aj}yzl c Rsatisfying a; = a; = 0 when i = j.
For any u > 0, we have

N
de(u) = z BiX[ajs1.a) W),
=0

where B; = ¥/_, |E;|. Furthermore, we find that
N

F1© =) aia,_a)(®,

j=1
where B, = 0. Write

u 44
M'(u) = j tr Ty, (t)dt,

we obtain
N

N B:
nFug .= Z af f | ey, (e = z af (r(8;) = 1(B-1))
1 Bj-1

j= j=1
N
= (e~ a)r(5).
j=1

q
Item (3) of Proposition (4.1.2) assures that I'(t) = try,(t). Thus,
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N N q
y q
A Z (af,, —af)BPy,(B) I F 1Y <C z (af, — a?)B"y,(B)),
j=1 j=1
for some A, C > 0 independent of f. Since

N
1A= (e = a)BH Py, (B),
j=1

wehave A Il f iy, ,~<Ifllp, ,<CIfl,,, - forsome constants 4, C > 0 independent
of f.
The above lemma is an extension of the corresponding result for Lorentz spaces, see [161].
Let 0 < r < c0.We say that a quasi-norm ||-|| is an r — norm if

g + 25 + -4 2,017 < CUIx N+ Mol + -+ llxn 1),
for some C > 0 independent of {x;}-,.
Proposition (4.1.5) [153]: Let 0 < p < 00,0 < g < oo and b be a slowly varying function.
If r = min(p, q) < 1, then -1l Isan r — norm.

Proof: In view of Items (i) and (ii) of Proposition (4.1.2), b" is a slowly varying function
and, hence, L, /» 4/ b IS @ Lorentz-Karamata space. Furthermore, we have

r — r
T e

Let {fi}i1 € Lyqp- AS 0 <7 < 1, the r-inequality asserts that
1 1
Mo+ fall, =M+ flTIE <P+ IfRI,
- - p.q.b Ly /r.q/rb ) j Ly /rq/rb
Since Ly, q/rpr IS @ Banach space, hence, |-l IS equivalent to a 1-norm [159], we

find that

p/r.q/r.b"

1/r
Iy + -+ full, < C(IAR el )

Ly/rq/rp
Therefore,

Iyt fall, < C(UAN, ekl )

p/r,a/r,b"
Proposition (4.1.5) is used to obtain the atomic decompositions of martingale Hardy-

LorentzKaramata spaces.

We introduce the martingale Hardy-Lorentz-Karamata spaces. We begin with some
fundamental notions and notation from martingale theory.

Let F = (F,) >0 be afiltration on (Q, Z, P). That is, (F,),s0 IS @ non-decreasing sequence
of subo-algebras of X with £ = d(U,,50F,). Let F_; = F,.

Let E denote the expectation operator. The conditional expectation operator related to F, is
denoted by E,,. For any martingale f = (f;,) 50 ON Q, write d;f = f; — f;_,,i = 0. For any
stopping time v, write ;7 = Y- o x(v = i)d;f.

The maximal function, the square function (quadratic variation) and the conditional square
function (conditional quadratic variation) of f are defined by
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M, (f) = sup |fil, M(f) = suplfil,

0<isn i20

n 1/2 o 1/2
sn<f)=<z |dif|2> ,S(f)=<z |dif|2> ,
i=0

Sa() = (Z Eild, fI2> S(f) = (Z Eisld, fI2>
respectively.

Let 0 <p,q < oo and b be a slowly varying function. Let A, ,, denote the class of all
nondecreasing, non-negative family of adapted random variables p = (p;,)n=0 With po, =
limy, o pn € Ly g - A martingale f = (f;)n»0 IS said to have predictable control in L,, , , if
there exists a sequence p = (p,)n»0 Such that

|fn| = Pn-1 andp € Ap,q,bfn = 1.
Definition (4.1.6) [153]: Let 0 < p,q < oo and b be a slowly varying function. We have
the following martingale Hardy-Lorentz-Karamata spaces:

H;'q,b = {f = (fnso: Il f "H;,q,b=” M(f) "Lp,q,b< 00},
sab = {F = Gduso 1 f W =S Iy, < o0},
Hegp = {f = Gduzotl f llys =1 SCF) My, < o0},

Qp,q,b = {f = (fn)nzo: dp = (Pn)nzo € Ap,q,b s.t. Sn(f) < pn—l}
with [Ifll,,,, = 0fpeo Iz,

Pp,q,b = {f = (fn)nzo: dp = (Pn)nzo € Ap,q,b s.t. |f| < pn—l}

With Il £ llg, ,,= infoll oll, .

The family of Lorentz martingale spaces Hy, ;, H, 4, Hy g = P4 and @, , introduced and
studied in [27] are special cases of the family of martingale Hardy-Lorentz-Karamata spaces
when b = 1. In particular, the martingale Hardy-Lorentz-Karamata spaces cover the Hardy
martingale spaces H,, H;, Hy = P, and Q,[25], [27]. The atomic decomposition of the
martingale Hardy-Lorentz spaces is given in [20].
Furthermore, the above definition also generalizes the study of martingale function spaces
to martingale Hardy-Lorentz-Zygmund space and martingale Hardy-type generalized-
Lorentz-Zygmund space.
For a detailed study of the martingale Hardy spaces, see [163], [168], [171], [27], [28]. The
atomic decompositions for Hj, P, and @, are presented in [27], respectively. Using the
atomic decomposition, the dual spaces of the martingale Hardy spaces are studied in [27].
A detailed account of the interpolation properties of martingale Hardy space is given in [27].
Particularly, the interpolation of function spaces show that, when F is regular, the
martingale Lorentz-Hardy spaces, H, ;, Hp 4, Hy o = By 4 @nd Q,, 4, are equivalent.
Recall that F is said to be regular if there exists a number R > 0 such that

fon < Rfp_1 VN EN,
for all non-negative martingales f = (f,))nen, See [27].
Note that the regularity of F is equivalent to the strong good stopping time property.
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Proposition (4.1.7) [153]: If F is regular, then for all non-negative adapted processes y =
(Yn)n=o and A = |y, I, there exist a constant C > 0 and a stopping time ; such that

{M(y) > 2} c {r) < 0}, (2)
P({r; < ©}) < CP{M(y) > 1}), (3)
SUpYn = M., (y) <4, (4)
Ay 2 4 2 Yol o = T3, < Ta, ()

For the proof of the preceding result, see [169].
Proposition (4.1.8) [153]: Let 0 < p < oo. We have
P, = Qp. (6)
When F is regular, we have
H, = H, = Hy = P, = Q. (7)
For the proof of (6), see [27]. For the proofs of (7), see [27].
We now extend the identification H , , = H, ,, when F is regular in the following. It is
also an extension of BurkHélder-Davis-Gundy inequality to L,, ; ,, 0 < p,q < oo.
We first recall the good A-inequality satisfied by the maximal function and the square
function [25].
Proposition (4.1.9) [153]: Let F be regular. Forany « > 1and f > 0, we have €, 5, ko g >
0 satisfying limg_,g€4 5 = 0,
PAM(f) > aA}) < €qgP{M(f) > A}) + ke gP({S(f) > pA}), 2
> 0, (8)
PAS(f) > al}) < e gP({S(f) > A}) + ko gP{M(f) > BA}), A
> 0. 9)
For the proof of the above inequalities, see [25].
The subsequent supporting lemma gives a special feature of slowly varying functions.
Lemma (4.1.10) [153]: Let 0 < p < oo and b be a slowly varying function. We have a
constant C > 0 such that forany 4,B > 0

1 1 1
Proof: Forany e > 0,t ™€y, (t) is equivalent to a non-increasing function. Thus,
1 1

AP (A + B)"¢y, (A + B) < CAPy,(4),
1 1

BP (A + B)~¢y,(A + B) < CBPy,(B),

for some C > 0. Hence, we have

1 1 1 L : :
<A5+6 + BE*E) (A+B) " P(A+B)Py,(A+B)<C (Apyb (A) + BPy, (B)>-

Furthermore, we have a constant C > 0 such that forany 4,B > 0,
C(A + B)l/p+e < Al/p+e + Bl/p+e_
Hence, our desired inequalities follow.
The subsequent proposition asserts that distributional inequality can be transformed to be
norm inequality for L, ; .
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Proposition (4.1.11) [153]: Leta >1and f > 0. Let 0 <p < 0,0 < g < oo and b be a
slowly varying function. Let F and G be locally integrable functions. If there exist
€q,pr Ko p > 0 satisfying limg_y€, 5 = 0 and

P{F > al}) < €, gP({F > A}) + ko gP({G > pA}),A > 0. (10)
Then

HFEN,, ,<ClIGIL,, ,
for some C > 0 independent of F and G.
Proof : We rewrite (10) in terms of the distribution functions, we obtain
dp(al) < €45dp(A) + ko pdg(BA).

Therefore, Lemma (4.1.10) with A = €, gdr(4) and B = k, gd;(BA) ensures that

_ 1 4 g\ "1
( j [dp(aA)PVb(dp(aA))/l] 7)
0
_ . 943 1/q
<C O [(Ea,ﬂdF(A))pyb(EaﬁdF (A))A] 7)
0

- 1 “dn)”
+C (jo [(ka,ﬁdc(ﬁﬂ))pyb(k“ﬁdc(m))ll 7> ’

for some C > 0.

By using Lemma (4.1.4), we have
1

C *® 1 Taa\a
;0 IHFEL,,,< (jo [dp(a/l)vyb(dp(ag))’l] 7) (11)
and
oo 1 an’? ¢,
( | [terrnaseay] 7) < g 1G L, (12)
0

for some Cy, C; > 0.
Furthermore, since t'/?Py, (t) is equivalent to a non-decreasing function. For any € < 1,
we have

1
(edp (’D)ﬁyb (edp(A)) < C(dp (A))l/ZpVb (dr(1)).
Therefore,

° 1 A
([ [cs@mpmteasan| F)
0 1
1 1 Tda\a
< Ce? ([dpu)pyb(dpu))ﬂ] 7) - (13)
Similarly, forany k > 1, ast 27y, (t) is equivalent to a non-increasing function, we have

» 1 A
([ [oasmrteasana| F)
a

1 1 Tda
< Ck2v<[da(z>vyb(dcu>)z] 7) (19)

Then (11)-(14) guarantee that
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1
1 ClkZp

0 2p *p
_— <
- | F ”Lp,q,b_ € | F "Lp,q,b+ 3 | G ”Lp,q,b’

for some Cy, C; > 0. As limg_,g€, 3 = 0, We obtain

HFEN,, ,<ClGIL,,,
for some C > 0 independent of F and G.
The following BurkHoélder-Davis-Gundy's inequalities for martingale Hardy-Lorentz-
Karamata spaces follow from Propositions (4.1.9), (4.1.11) and Lemma (4.1.10).
Theorem (4.1.12) [153]: Let 0 < p < 90,0 < g < oo and b be a slowly varying function.
If F is regular, then there exist constants A, B > 0 such that

B s < < A s .
1F s S0 g S AN S N,

Note that the BurkHd6lder-Davis-Gundy inequalities are not valid for LP when 0 < p < 1.
see [27] for a counterexample.
On the other hand, if the Boyd indices of a given r.-i. quasi-Banach function space X are
located strictly in between one and infinity, then the BurkHdlder-Davis-Gundy inequality is
valid on X. see [165] for a proof of this result. Even though L,, , , are r.-i. when 0 <p < 1,
the Boyd indices of L, ; , are p. Thus, the results in [165] do not apply to L, , , when 0 <
p <1.
Proposition (4.1.11) can be used to establish the Fefferman-Stein inequalities on Lorentz-
Karamata spaces Ly, ; , even on the range 0 < p < 1 [166].
We present the other main results We generalize the atomic decompositions, the duality
theory and the interpolation properties to the martingale Hardy-LorentzKaramata spaces in
the rest.
We present and prove one of the remarkable features of martingale function spaces, the
atomic decompositions of the martingale Hardy-Lorentz-Karamata spaces in this section.
The atomic decompositions of martingale function spaces have a long history. For the
atomic decompositions of P,, it was established by Herz [162]. The extension of the atomic
decompositions to P, was obtained in [155], [158]. The atomic decompositions of H,; were
given in [171], [27]. It was extended to martingale Hardy-Lorentz spaces H, , in [20].
We recall the definition of atoms from [27].
Definition (4.1.13) [153]: Let 0 < p < co. A pair (a, v) of Lebesgue measurable function
a and stopping time v is a (1, p, ) atom if

a, =E,a=0ifv =>n, (15)

1

I s(a) ll;»< P(v # o) P. (16)

Moreover, if we replace (16) by
Il s(a) ;o< P(v # )P and || M(a) llj»< P(v # )~ /P,

then we have the definitions of (2, p, o) atom and (3, p, o) atom, respectively.
We write {(a*,v;)}rez € 4;,1 = 1,2,3 if {(a*, v, )}rez are (i,p, ) atom, i =1,2,3,
respectively.
The atomic decompositions of the martingale Hardy-Lorentz-Karamata spaces consist of
two results, the decomposition theorem and the reconstruction theorem. We first present and
prove the decomposition theorem.
Theorem (4.1.14) [153]: Let 0 < p < 0,0 < g < o and b be a slowly varying function.
Forany f € H,, , ,, there exist {(a*, vi)}kez € Ay and {uy }rez C [0, o0) satisfying
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1/q
(Z ¥y (P(v # oo))u,‘i) <CUflys,, (17)

k€EZ
such that foralln € N

Z .ukIEnak = fa- (18)
k=—o0

Proof: Let f € H, , ,. Forany k € Z, define

v, = inf {n € N:s,,,,(f) > 2F}.
Apparently, vy, = vy. Therefore,

fa= i (B = ).

k=—0o0
Set Ui = 2k3IP)(Uk * Oo)l/p. When Uk F 0, define
Vk+1 _ ¢Vk

k — n n

" Mk
Obviously, (ak),s, is a martingale. Moreover, in view of the definition of v,, we have
s(fn"") < 2%, Hence, by using the definition of p

() = ()

s(ak) < . < P(v), # ©)~ /P, n € N.
k
That is, (a¥),s0 is an L? — martingale. Thus, there exists an a* € L? such that
E,a* = ak,

Is(@)ll,0 < P(vy # 00)~1/P,
Furthermore, a® = 0 when v,, > n, therefore, a” is a (1, p, o) atom.
Since P(vy, # ) = dy(s(25), we find that

z Vs (P(vy # )yl = Cz (ds(f)(zk)%yb (ds(f)(zk)) Zk)q-

) keZ k€Z

As ury, (u) is equivalent to a non-decreasing function and for any 2%~ < u < 2%, we have
ds(f) (Zk) < ds(f) (U), we find that
1

(st @) 5 (dsry (29) < (g )Py (dsiry W)

1 q
Z Vo (P(vy # o))y = Cz (ds(f)(zk)pyb (ds(f)(zk)) Zk)
k€EZ kEZ
2" 1 Tdu
s¢ z f [dS(f) ORACHS (u))u] ”
k€Z k-1 =C

< CUs() Mg
Now, we state and prove the reconstruction theorem for the atomic decompositions of H, ; ,,.
Theorem (4.1.15) [153]: Let 0 < p < 1,0 < g < o and b be a slowly varying function. Let

r = min(p,q) < 1 and
f = Z ‘leak,
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where {(a*, v;)},ez € A4 satisfying

>

keZ

I f ”H;,q,bS C (2 Vg(P(Vk + °°))|Iik|r) )

keZ

1/r
YZ(P(Vk * °°))|#k|r> < 0o,

Then, f € H, ., and

X

for some C > 0.
Proof : As [|s(a®)|l,e0 < P(vy # 00)~1/P, we have

la Nl <C<f [dsw")(“)pyb( a0 7u>
1
q

qdu

gy jOIP(vk:too) P [ds(ak)(u)%yb( S(ak)(u))

Forany u > 0,
ds(ak)(u) < P(vy # o).
The fact that t /Py, (t) is equivalent to a non-decreasing function assures that

(Vg #00)~1/P 1/q
||ak||H;’q‘b <cC (jop [ds(ak)(U)p]/b ( s(ak) (u)) q du)

1 P(vje00) /P Y
< CP(vy # ) Pyb(IP’(vk * 00)) (f uq‘ldu>
0

Finally, since -z, IS an r — norm, we have

SO W< €D Il a4 s < € a7y (P # o0)),

_ ke KELZ
for some € > 0. Thatis, f € H, , , and

I f s < C (2

1/r
Vg(P(Vk * °°))|.Uk|r> .
KEL

The combination of the preceding theorems give us the atomic characterizations of H>
when0<g<p<1
Theorem (4.1.16) [153]: Let 0 < g < p < 1 and b be a slowly varying function. For any

f € H, ,p, We have
1

q
I f Wess 0™ inf (Z ¥y (P(vy # w))uZ) f = Z wea®, {(a*, vi)kez € Ar -
keZ kEZ
The above atomic decompositions and characterizations are also valid for Q,, ,, and P, ;
with the (1,p, o) atoms being replaced by the (2, p, «) atoms and the (3,p, ©) atoms,
respectively.
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For brevity, we skip the detail and see [27].
With the assumption that F is regular, we also have atomic decompositions for H,, . ,. As

H, . » is defined via the maximal function, we need to use the atoms defined in terms of
maximal function.

That is, atoms from A;.

Theorem (4.1.17) [153]: Let 0 < p < 90,0 < g < oo and b be a slowly varying function.
Suppose that F is regular. Then, for any f € H, , ,,, there exist {(a®,v})}xez € A3 and
{ttr}rez < [0, ) satisfying

1

q
(2 Y (P(vy # oo)),uZ) <ClIf "H;,q,b'

keZ
z g Epa’ = fo:

k=—0o0
Proof : We apply Proposition (4.1.7) to the process (|f, )0 and A = 2%,k € Z. We obtain
the stopping time t, satisfying v, = v, k = [, limy_ |[{vy < o0}| = 0,lim,_,, v = o0
a.e.,

such that foralln € N

lim f¥ = f a.e. and klirp |f¥%| = 0 a.e.

k— o0

Therefore, f can be rewritten as

0

fo= ) (=),

k:—OO

Set py = 3 - 281 |{vy_; < }|Y/P. When H # O,Udefine
k _ £Vk-1
k _/n n

k=
Ak
Thus, a® = (ak),,», is a martingale. Since
fmin (nvr) _ fmin (M, vg—-1)
[En(ak) = I = O, Vk-1 > n,
k

1M (@ )le0 = lla¥ |l 0 < P(vpe_y # 20)7H7,
(a*,v,_y) isa (3,p, ) atom.
In addition, according to Proposition (4.1.7), we have P(v,_; # ) < CdM(f)(Z"‘l).
Since t/Py, (t) is equivalent to a non-decreasing function,

q

Z YI?(P(Vkﬂ + 00))#,2 < CZ (dM(f)(Zk_l)%yb (dM(f)(Zk_l)) 2k+1> _

_ kez KET
Similar to the proof of Theorem (4.1.14), we have

z Vi (P # )l < C Il f Ny,

kez
Note that for the reconstruction theorem of H,, , ,, we do not need the assumption that F is

regular. Theorem (4.1.18) [153]: Let 0 < p < 90,0 < g < oo and b be a slowly varying
function. Let » = min(p,q) < 1 and

f= z pak,
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where {(a*, v;)}ez € A3 satisfying

>

1/r
YZ(P(Vk * °°))|#k|r> < 0o,
kel

Then, f € H, , , and

I f g, < C (Z v (P(vy # oo))luk|r> ,

k€EZ
for some C > 0.

As an application of the above atomic decompositions for martingale Hardy-Lorentz-
Karamata spaces, we obtain the embedding

Py.ab © Hpqp,
provided that 0 < p < 00,0 < g < oo and b be a slowly varying function. This embedding
is valid without the assumption that F is regular.
The main result is the identification of the dual space of martingale Hardy-Lorentz-
Karamata spaces H,, , ,- We are particularly interested in the case when 0 < p < 1 as we
have the well-known theorem stated that the dual spaces of H,; are the BMO space and the
Lipschitz spaces A, (a) where a = 1/p — 1 [27].
We show that the dual spaces of H,, , ,, are generalizations of A, (a), namely, the BMO space
and the Lipschitz spaces associated with slowly varying functions. To prove that the dual
spaces of H,, , ,, are the Lipschitz spaces associated with slowly varying functions, we use
the atomic decompositions obtained in the previous.
We start with the definition of the Lipschitz spaces associated with slowly varying functions
A, p (). Let T denote the class of stopping times.
Definition (4.1.19) [153]: Let « > 0 and b be a slowly varying function. The space A, , (a)
consists of those functions f € L, such that

1
I f Wa, ()= SUpP(v # ) 2" %y, (P(v # )DIIf — fll 2 < 0.
ve

Theorem (4.1.20) [153]: Let 0 <p < 1and 0 < g < p. The dual space of H, ; ,, is A, , (@)

wherea = 1/p — 1.
Proof : According to [159], we have

Il f IIH;'q’b=II SU) ey g, <IN SO N, =N f 1L, - (19)
In addition, and (4.1.15) assure that L, is a dense subspace of H, , .
For any f € L,, provides the atoms {(a*, v;)}xez and the scalars {1 }xez such that

f= z weak.

lp() = ) E(@D).f € L.

keZ

Let ¢ € A, (). We define

We find that
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Ol =D Il B(la* 1§ = @) < > ligllla®l, g — 7%,

kez k€zZ

1,1
= Z Vo (P # )|y [P(vy # ) P 2y, (P(v # ))llp — d Il
kel

< z Vo (P # )|l 11§ lla, (0.

]  kez
Since 0 < g < 1, we obtain

LI <) 1P = Dl 1 1,

k€EZ
by using the g-inequality. Therefore, ensures that

OIS CUFllgs, 1@ lla,
for some C > 0 independent of f € L,. As L, is a dense subspace of H, ,,,ls can be
extended to be a bounded linear functional on H,, , , and, hence, the embedding A, ,(a) ©
(H3,p) " is valid. *
Next, let I € (H;,,) be abounded linear functional on Hy ;. In view of the embedding

(19), we have a ¢ € L, such that
L(f) =E(f). f € L,.

¢—¢"
I — @¥Il, P(v # 00)/P=1/2y, (P(v # o))

Forany v € T, define

g:

The function g satisfies

s(8) = S(8)Xwreo)-
The HOolder inequality assures that

P(v#0) 1 Cld
g "Z;q,f f (tpyb(t)(S(g))*(t)> Tt

P(v#00) a/2z ; p(rrw) (2-q)/2
< ( f <(s(g))*(t>)2dt> ( ] (tP 1yl () (Z_Q)dt> |
0 0

In view of the fact that t9/2Py, (t) is equivalent to a non-decreasing function, we obtain

P(v#) q 2/(2-q)
_ 2/(2-q) £
j (t9P= 11 (1)) dt =j (tZPy,j’(t))
0 P(v#00)

qP(Z—q)

t@=2pr)/p(2-a) 4t

< CP(v # ) Yy (P(v # 0))24/Z=0
P(v#00)
X f t@-2p)/rZ-a gt
0
for some C > 0.
As (@ —2p)/p(2—q)+1=q( —p)/p(2— q), we have

P(v#0c0) _
.[ t@-20)/pC-D gt = MP(U # 00)1(1-P)/P(2=q)
0 q(1—p)
Moreover, q/p(2—q) +q(1 —p)/p(2 —q) = q(2 — p)/p(2 — q), we find that
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P(v#00) 3
j (tq/p—lylg(t))z/(z Dt < CP(v # 00)1@-P/PE-Dy, (P(p £ 00))2/(2-a),
0

for some C > 0.
The above inequalities yield
1g s, < C g ll, P(v # 00)/P=12y, (P(v # »)) < C,

for some C > 0 independent of ¢.
Consequently,

1.1

111> 11(9)] = E(g(¢p — %)) = P(v # ©0) P 2y, (P(v # ) "Llip — ¢7ll, .
Therefore, ¢ € A, ,(a) and, hence, we establish the embedding (H;,q‘b)* S Ay p(a).
We show that the martingale Hardy-Lorentz-Karamata spaces are interpolation spaces of
martingale Hardy space under the action of a new interpolation functor introduced in [165],
where the role of this interpolation functor on Lorentz-Karamata spaces is the same as the
role of real interpolation functor for Lorentz spaces.
We recall the definition of K-functional from [27].
Definition (4.1.21) [153]: Let (X,, X;) be a compatible couple of quasi-normed spaces. For
any f € X, + X, the K-functional is defined as

K(f,t,Xo, X) = inf {Ifgll, +tlfill,:f = fo+ fi}
where the infimum is taking over all f = f, + f; for which f; € X;,i = 1,2.
We will write K(f, t, Xy, X;) as K(f, t) if no confusion may occur.
In [160], a new interpolation functor is introduced for the study of the Lorentz-Karamata
spaces.
Definition (4.1.22) [153]: Let 0 < 8 < 1,0 < r < oo and b be a slowly varying function.
Let (X,, X;) be acompatible couple of quasi-normed spaces. The space (X, X1)g 5 CONSists
of all fin X, + X; such that Il f ll(x, x,),,, < © Where

1/r

® e rdt
j (t Py (DK D)) — ,0<0<1,0<7 <o,
I f Nxox)0,= 0 t
iglg{t_eyb(t)K(f' t)}, 0<0<1,r=c0.

It is shown in [160] that Lorentz-Karamata spaces can be generated from Lebesgue spaces
by using the interpolation functor (~)g . ,. We have the following result which is a special
case of more general result in [160].

Lemma (4.1.23) [153]: Let 0< 8 <1,0<1r < 00,0 <py, <p; <o and b be a slowly
varying function.

Then

(Lpo'Lpl 0rb Lprb,
where 1/p = (1 — 60)/po + 6/p1, 1/a = 1/py — 1/py and b, (t) = b(tY/%).
Inspired by the above lemma, we study the interpolation properties of martingale Hardy-
LorentzKaramata spaces under the action of the interpolation functor (-, )g.,,. We
accomplish the interpolation result for martingale Hardy-Lorentz-Karamata spaces by
establishing a formula of the K-functional of the martingale Hardy spaces.
We have the following well-known Holmstedt formula for the K-functional of Lebesgue
spaces [13].
Proposition (4.1.24) [153]: Let 0 < py < p; < 0,0 < q4,q, < . We have
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1 1

K(f,t Ly Lp,) = <j (f*(s))p0d5>po + t< ) (f*(s))plds>p_1,
0 ta

where 1/a = 1/py — 1/p;.
A similar formula for martingale Hardy spaces is established as one of the first main results
of this section.

For the corresponding formula for the real Hardy spaces on Euclidean spaces, see
[156].
To obtain the above result, we need several supporting results. We first recall an estimate
for the K-functional of martingale Hardy spaces from [27].
Lemma (4.1.25) [153]: Let 0 < po, < 1. We have

tPo

1

Po
K(f,t,Hy, HS) < C (f ((S(f))*)pO(u)du> + 4t(s(f))"(tP0).(20)
0

The validity of the above estimate is guaranteed by the atomic decompositions of the
martingale Hardy spaces. Note that the atomic decompositions for P, and @, are also valid
[27]. Therefore, similar estimates for the K-functional of P, and @,, are also valid with s(f)
replaced by M (f) and S(f), respectively.

Next, we present the Hardy inequality associated with slowly varying functions.

Lemma (4.1.26) [153]: Let 1 < q < oo,v # 0 and b be a slowly varying function.

(i) If v < 0, then there exists a constant C > 0 such that
1

© (-1 t T \a oo , ‘ 1/q
(j (t Ty, (£) j g(s)ds) dt) /qSC(j (14", (D) g (©)) dt) .
0 0 0

(if) If v > 0, then there exists a constant C > 0 such that
1

00 v—l o) q E foe) . q 1/q
(j (t Ty, (8) j g(s)ds) dt) /qSC([ (419", (g (0)) dt) .

The above lemma is a special case of more general boundedness result of Hardy-type
operator on Lorentz-Karamata spaces presented in [167], for brevity, see [159], [167].

The following lemma is a supporting technical result for the establishment of the
interpolation theorem. It is an extension of the result given in [157] and it follows from the
fact that g is a non-increasing non-negative function.

Lemma (4.1.27) [153]: Letk € Rand 0 < 8§ < 1. We have a constant C > 0 such that for
any a > 0 and non-increasing non-negative function g on (0, ),

a ﬁ a
(f s"g(s)ds) <C j sWHDB-1( g(s5))Bds, (21)
0 0

o0 ﬁ o0
(J g(s)ds> <C Ja s+ DB-1( g(5))Pds, (22)
0

We recall an real interpolation result for martingale Hardy spaces from [27].
Proposition (4.1.28) [153]: Let0 <p, <1,0< 6@ < land1/p, = (1 —6)/p,. We have

(Hpo 1)y, = Hp,.
0,01 1
We need another result from the interpolation of quasi-normed spaces obtained in [13].
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Lemma (4.1.29) [153]: Let 0 < 8 < 1,0 < r < oo and A4,, A, be a couple of quasi-normed

spaces. We have
1

co rds\7
K(f' t'AOr (AOJAl)G,T) =t <j1 (S_QK(f' S'AO'Al)) ;) . (23)

to
We are now ready to prove Theorem (4.1.30).

Theorem (4.1.30) [153]: Let 0 < py < p; < . Then K(f,t,HS , H3.)
1

t% Do
- ( jo ((S(f))*(y))p‘)dy)

1

we( [ ommay)” 24)

K(f’ t, Ppo’ Ppl)

1
t« Do
~ ( j ((M(f))*(y))”"dy)
0

1
+t< ((M(f))*(y))mdy>p1, (25)

tOC

K(f’ t, on’ QP1)
1

t* Po
~ ( jo ((S(f))*(y))”f’dy>

1

% p1
+t< (s (f))*(y))pldy> : (26)
toc

where 1/a = 1/py — 1/p;.
Proof: As the proofs of (25) and (26) are similar to the proof of (24), for brevity, we only
give the proof of (24).

Withr = p,, Ay = Hp, and A; = Hg,, ensure that
P1 1/p
k(roms ms)<cel [o s ([ oyypodn | "L
(et ) < Ce| |y s | (@ @) —

1/p1
+Ct <.[t% 5(1—B)p1((5(f))*(spo))p1 %) =1+1l,

where f =1 —py/p:.
We first estimate |. Applying the change of variable y = sPo to the integral on I, we have

106



P1 1/p1
Po

o y
r=cel [ (v [ o) oy

P1 1/p1

scel [ [ oy wmmas)”ay

P1 1/p1

@ y Po
fa (y‘lfa ((S(f))*(V))p°dv> dy =Nl +1V,

since po/B =1/(1/po — 1/p1) = a.
We estimate 1. We find that

(o) 1/p1 t&
nr<ct <j y_pl/p"dY> <J ((S(f))*(v))p"dv>
t 0

a

1/po

ta 1/po
<c ( | ((S(f))*(V))p"dv) .
0
The Hardy inequality on the interval (t%, o) [159] guarantees that
1

© p1
Iv<Ct (j ((S(f))*(Y))pldv> :
0

for some C > 0 independent of f and t.

Applying the change of variable y = sPo to the integral on I, we obtain
1 1

uga( j s D) (s ()" (y))pl—)pl=6t( a ((s(f))*(y))pldy>pl,

for some C > 0.
Therefore, the estimates of I, 11, 111 and IV assure that

1/po
K(f, ¢t H, Hy, ) <(j ((s(f))” (Y))pod}’>

1

wee( [ oromra) @

for some C > 0.
Finally, we deal with the reserve inequality. The boundedness of s(f) from H; to L, yields
K(S(f) t’ Po’
for some C > 0. Proposition (4.1.24) assures that
1/p1

ta 1/po 0
([ coromma) e[ ((s(f))*(y))"’ldy> < CK(f,t, H3, H,),

for some C > 0. Therefore, the above inequality and (27) yield (24).

We now apply the functor (-, )4 ., to the K-functional for martingale Hardy space. It shows
that the martingale Hardy-Lorentz-Karamata spaces can be generated from the martingale
Hardy spaces via the interpolation functor ()4, p.

107



Theorem (4.1.31) [153]: Let 0< 8 < 1,0<7r < 0,0 < py < p; < o and b be a slowly
varying function.
We have

s s _ s
(HpO’le)g’r’b - HP,T,ba’

1_1-6 6 1_ 1 1 4 by (6) = b(£/%)
—, — — — an = .

P P P @ Do P ¢ _ _

Proof : To simplify the notation, we write (s(f))* by s*. The definition of the interpolation

functor (~, )g p and (24) yield

oo t* /Do r
I f ”(nyo,le) <C (j; t=07y, (£)" <J0 (S*(u))podu> %)

1) (o) r/q1 dt ir
+C (f t= 0Ty, (O)"t" < (s*(u))pldu> T)
0 ta

=1+1I.
We split the estimate of | into two cases, r = py and r < p,.

We first estimate | for the case r > p,. By using the change of variable v = t%, | can be
rewritten as

where

r 1/T
©Or o ANT [V Po dv
I = j voay, (va> <f (s*(u))podu> —
0 0 v
r 1/T

P _8po_p . ( L\PO [V o
= j v a Py, (va) j(s*(u))podu dv
0 0

Item (1) of Lemma (4.1.26), withq = r/py = 1 and v = —0p,/a < 0, asserts that

) 1/r
/
I1<C (j (u—epo/a+1—p0/ryb(ul/a)Po (S " (u))Po)r Podu> ,
0

for some C > 0.

As —0/a+1/p, = 1/p, we have
1

I<C (Lw (u%yb (ué> s*(u))r Cil—u)F =Clflg,,,

Next, we consider the case r < p,. In this case, as (s*)Po is a non-increasing function,
inequality (21) yields

* tr roodt\
I1<C f t=0Ty, (t)’”f sPo " (s*(w)) duT :
0 0
By using the change of variable u = vt* for the integral with respect to du, we obtain

=
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00 1 . dt 1/r
I < C(j t‘e"yb(t)"j tr#/Po=ayr/Po=1(g* (vt ¥)) t“dvT>
0 0
° 1 de\""
=C <j f t—91‘+7‘0£/190yb (t)rvr/po_l(S*(Uta))rtadvT) )
0 0
Applying the change of variable y = vt* for the integral with respect to t, we find that

o 1 1/r
I S C <f f y—9r/a+r/p0v9r/a—r/poyb (yl/av_l/a)rvr/po_l(S*(y))rdvd_y>
o Jo y

foe) 1 d 1/7"
=C (f yr/p (J vGr/a—lyb (yl/av—l/a)rdv> (s*(y)7 7}’) ’
0 0

because —60/a + 1/py = 1/p

Then, we estimate the integral with respect to dv. We find that
1

1
j v@r/a—lyb (yl/av—l/a)rdv — a,yer/aj t—Gr—lyb(t)rdt_
0 0
Where we use the change of variable v = yt™¢.

Item (4) of Proposition (4.1.2) asserts that
1

j v@r/a—lyb(yl/av—l/a)rdv ~ ayer/ay(l/a)(—er)yb(yl/a)r ~ yb(yl/a)r_
0

Therefore,

- d 1/r
I<C ( j y Py (v “)r(s*(y))r7y> < CIf My,
0

The estimate for 1l is similar to the estimate for I. Therefore, for brevity, we just outline the
major modifications.
For Il with r = g,, we find that by using the change of variable v = t¢,

1/r
(0] (1_9)7,. 1 Tr [o'e} 7«/ql dv
Il = j vVoa y, (v5> <J uCI1/P1—1(S*(u))CI1du> _
0 v v
oY) 1\q1 [ r/q1
(j <v(1_9)q1/a_q1/r'yb (Ua> j uQI/pl_l(S*(u))‘hdu) dv)
0 v

Applying Item (2) of Lemma (4.1.26) with g =1r/q; =1 and v = (1 — 8)qy/a > 0, we
have II < C Il f | Hy, ,_because (1 —6)/a+1/p, = 1/p.
For the case r < q;, inequality (22) assures that

oo oo dt 1/r

II<c <J t(1=0ry, ()" J u"/P171(s*(w)) du T) :
0 ta

By applying the same series of change of variables used for the estimate of I, we obtain

0 r [o'e) r dy 1/7"
I1<C <f yP (j p~-A-0r/a-1y, (yl/“v‘l/“) dv) s* M)’ 7) .
0 1

Consequently, the change of variable v = t* yields

1/r

Cyl/a

j v—(l—e)r/a—lyb(yl/av—l/a)rdv — ay—(l—e)r/af t(l‘e)r‘lyb(t)rdt,
1

0
for some constant ¢ > 0. Thus, Items (3) and (4) of Proposition (4.1.2) yield
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(o] _ _ _ _ r _ _ _
j v (1-6)r/a 1yb(y1/av 1/(1) dv ~ ay (1 B)r/ay(l/a)(l Q)T]/b(cyl/a) ~ yb(yl/a).
1

Hence, the above estimates conclude that Hy .., < (Hj,, H3,), .
To establish the reverse embedding, note that s* is non-increasing, therefore, we have

00 ta r/qo 1/r
£ =C j t=y, (O (f (S*(u))Podu> at
(HPO'H%l)grb 0 0 t

-~ d 1/r
> C(f t=y, (O (s* (%)) %)
0

oo - dt 1/r
>C (j. t—6r+ar/poyb (t)r(s*(ta)) T)
0
By using the change of variable s = t%, we obtain

0 Wgomg,), 2 COF s,

and, hence, the embedding (Hp,, Hy, ), ., © Hpyp, is valid.
The above results are also valid for P, , , and Q4 -
Theorem (4.1.32) [153]: Let 0< 8 <1,0<7r < 0,0 < py < p; < o and b be a slowly

varying function.
We have

(PPO’PP1)9'~,~’b = Pp,r,ba;

(on’ Qp1)9’~,~’b = QP;T:ba’

1 1—9+6 1 1 1 d b, (0 b(tl/“)
—,—=———an = :

P Po P« Py P1

The preceding interpolation properties for martingale Hardy-Lorentz-Karamata spaces

guarantee the identifications of H, ; , Ppq» and Qp 4 5-

When F is regular, H,, , , also have the atomic decompositions. Therefore, we also have
1

Po
K(f,t Hp, Ho) < C (j ((M(f))*)p"(u)du> +4t(M(f))"(tP0).

Similarly, we have the following results for H,, , ,, when F is regular.

Theorem (4.1.33) [153]: Let 0 < p, < p; < oo and b be a slowly varying function. If F is
regular, then

Where

Po
tO

1 1

t% Po o 2
K(f,t Hyy Hy, ) ~ ( ((M(f))*(y))”°dy> + t( ((M(f))*(y))pldy> :
0 ta
(H;;O’ Hgl)e,‘r',b - ;,T,ba'
The subsequent corollary is a consequence of Item (4) of Propositions (4.1.2), (4.1.8) and
Theorems (4.1.31)-(4.1.33).
Theorem (4.1.34) [153]: Let 0 < p < 00,0 < g < o0 and b is a slowly varying function.
We have
Ppgb = Dpqb- (28)
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When F is regular, we have

pab =Hpap = Hpgp = Ppgp = Qpgp 0 <p < .
Proof : In view of Item (4) of Proposition (4.1.2), the identification
Ppab = Qpqb
Is obtained by using (6) and Theorem (4.1.32).
Similarly, the assertion
Hpab = Hpqp = Ppgp = Qpqp 0 <p < o,
follows from (7) and Theorems (4.1.31)-(4.1.33). Finally,
Hyop =Hp 0p 0 <p < o0
Is guaranteed by the BurkHo6lder-Davis-Gundy inequalities given in Theorem (4.1.12).
Section (4.2): John-Nirenberg Inequalities of Martingale Hardy-Lorentz-Karamata
Spaces
Lorentz spaces play an important role in classical Harmonic analysis; see, [1], [21], [173],
[159] and so on. Lorentz-Karamata spaces, as a new generalization of Lorentz spaces and
Lorentz-Zygmund, was studied in [159], [175]. Also Neves studied Lorentz-Karamata
spaces Ly, , , (2, IP) in [170] where p, q € (0, o] and b is a slowly varying function on [1, co)
and (£, IP) is a measure space. see [174],[177], [179] for more information about Lorentz-
Karamata spaces.
The family of martingale Hardy-Lorentz spaces is one of the important martingale function
spaces.
See [27]. Some martingale inequalities and atomic decompositions on martingale Hardy-
Lorentz spaces were established in [180], [20], [181].
The family of martingale Hardy-Lorentz-Karamata spaces defined in terms of Lorentz-
Karamata spaces were studied by Ho [153]. We simply recall one of the main results.
Theorem (4.2.1)[172]: [153] Let 0 < p < 1,0 < g < p and b be a slowly varying function.
Then the dual space of H,, , ;, is BMO, ;, (a) witha = 1/p — 1.
This theorem gives the dual space of martingale Lorentz-Karamata space for0 < p < 1,0 <
q < p, which is an important result. But how to characterize the dual for 0 <p < 1,1 <
q < oo is still unknown. We prove the following two results.
Theorem (4.2.2) [172]: Let 0 <p,q <1 and b be a non-decreasing slowly varying
function. Then the dual space of H, , ;, is BMO, (@) witha = 1/p — 1.

Definition (4.2.3) [172]: Let 1 <r,q < oo,a = 0,b be a slowly varying function. The
generalized BMO martingale space BMO,. ; , () is defined by

BMO,,q5(a) = {f € Ly:Ifllamo, gy <
Where
Yrez 2P (v < o)V TVT|If — fUk||

1
(ZREZ (Zka(]P(Uk < OO))]P(Vk < °°)1+“)q) e
and the supremum is taken over all stopping time sequences {vi}xez Such that
{2k, (P(v), < 0)P(vy < )%}y € ty.
We prove that BMO,., ,(a) can be regarded as the dual space of martingale Lorentz-
Karamata space forthe case 0 <p < 1,1 < q < oo.
Theorem (4.2.4) [172]: Let 0 <p <1,1<qg <o and b be a non-decreasing slowly
varying function. Then the dual space of Hj ; ; is BMO, , , (a) witha = 1/p — 1.

[ f ”BMOr,q,b(a’)z sup
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In order to prove the theorems above, we also establish atomic decomposition of martingale
Lorentz-Karamata space. But our decomposition is less restrictive conditions, which is
mainly based on some technical estimates very differently from the method in [153], [20].
An important observation is the key to our approach.

We now turn to the second objective, that is, the John-Nirenberg inequality with respect to
generalized BMO martingale space BMO,. ,,(a). Basing mainly on the duality, John-
Nirenberg inequality and something else, the space BMO (see [176]) plays a remarkable
role in classical analysis and probability. see [185] for the function space version,
respectively, to the books [178], [183], [27] for the martingale version of this theorem.
Recall that for 1 < r < oo, the BMO,. martingale spaces are defined as follows:

BMO, = {f = (Fu)uzo € Ly I lswo, = 5up I (Elf = ful )l < o}

The John-Nirenberg theorem says that if the stochastic basis {F, },s¢ is regular, then

BMO, = BM0,,1 <71 < o0 (29)
with equivalent norms [27]. Recall that the stochastic basis {F, },,s, is said to be regular, if
there exists an absolute constant R > 0 such that

fon < Rfp_,Vn >0
holds for all non-negative martingales f = (f;,)ns0. The new John-Nirenberg theorem is
described as follows, which is proved by dualities.
Definition (4.2.5) [172]: [159] A Lebesgue measurable function b: [1,0) — (0, o) is said
to be a slowly varying function if for any given € > 0, the function t€b(t) is equivalent to
a non-decreasing function and the function t~€b(t) is equivalent to a non-increasing
function on [0, ).
Let b be a slowly varying function on [1, o), define y, on [0,1) by
vp() =b(t™1),0<t <1,

This definition is from [159] and modified in [153]. And for any given € > 0, the function
t~ €y, (t) is equivalent to a non-decreasing function, and the function t =€y, (t) is equivalent
to a non-increasing function on [0,1) (see, [153]).
We prove the generalized John-Nirenberg theorem by duality when the stochastic basis
{F™},,50 is regular. Some of the dual results are of independent interest. In order to do this,
we need the following lemma and see [182], [27] see [186] for new John-Nirenberg
inequalities for martingales.
Lemma (4.2.6) [172] If the stochastic basis {F"},,5¢ is regular, then the martingale Hardy-
Lorentz spaces bqr Hp.qr Hy g, Qp g and P, , are all equivalent for 0 < p < 0,0 < g < oo,

and H;;q, p.q»Hp,q0 Qp,q» Bp,q @nd L, , are all equivalent for 1 <p < 0,0 < q < oo.
Theorem (4.2.7) [172]: Let 0 <p < 1,1 < q,r < o and b be a non-decreasing slowly

varying function. If the stochastic basis {F™"},,5, is regular, then

* 1
(Hziq,b) = BMOr,q,b (@), a = E -1

with equivalent norms.
Proof : Denote by 7' the conjugate number of r. We first claim that L,» c H, , ;. According
to Lemmas (4.2.6), we have

£ Wi, =N SO lpqo S ST ot 1 f s

Since {F"},,50 is regular.
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For any f € L.+, provides a sequence (a*),ez of (1,p, )-atoms and a sequence of real
numbers (i) ez satisfying p, = A - 2¥P(v,, < 00)'/P (where A4 is a positive constant and
(Vi) kez 1S the corresponding stopping time sequence) such that f = ¥ .ez 1, a® and

»

keZ
For g € BMO, , ,(a) c L, we define

be(f) = ) ME(d* RVf € L.
k€eZ
Applying Holder's inequality, we find that

6N <D 1l E (0¥ (g =) < D lisellla¥l, g — g1,

keZ keZ

< Cz |t lis (@I, g — g7«

keZ

p.qb’

1/q
q
Vi (P(yy < oo))“"> <CIf llys

< CZ | [P (v < 00)1/r’—1/p"g - gvk"r
KEL

1
=C -AE 2KP(v), < 00) 7 lg — gl
k€eZ

By the definition of [I-lIgyo,. we obtain

q,b(@)!

1/q
|¢g(f)| <C-A (Z ]/lsl(IP)(Uk < oo))“k) "g"BMOr’q’b(a)

KEL
< Clifllys

S b ||g||BMor,q,b(a)-
Thus, ¢, can be extended to a continuous functional on Hy , ,,.

s * s at
Conversely, let ¢ € (H, ) - we have L, € Hy o), © Hyo v, then

(H;l;b) c (Hsqp) <Ly
Hence, there exists g € L, such that
¢(f) = ¢g(f) = E(f VS € L1,
and ¢ can be extended to a continuous functional ¢ on HZ;T'; such that I ¢ lI=Il ¢ II. Let
{v, }rez De an arbitrary stopping time sequence such that

»

1 q\ V4
(Zkyb(]P(vk < 0))P(vy < 00)5) ) < o.
kEeZ

Set
(g —g")" 'sign(g — g”)
hk = 1 1
lg — gl P (vy < 0)P 77
We show that h;, /C is a (1,p,r") — atom for some constant C. Since {F, },s0 is regular,
then

1 1
IsChi)ll,s < Clihll,, = CP(vy, < 00) .

By the definition of HZZ;,, we find that
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1 at_r
f = z Zk]P)(Uk < OO)phk € Hp,qr;b
keZ
and

q\ /4
I f IIH%I’S C (2 <2kyb([P(vk < 00))[P(vk < 00)%> > .

K€EZ
Let N be an arbitrary non-negative integer and
N

1
fN = 2 2FP (v, < 0)Phy,.
—N

Then
N N

Y 2P, <) rlg = gl = Y 2P < )P E(h(g ~ g*)
=E(f" g) =o(f")
< N ~ < atqr
< [l Hy qpat, s I I<Il Il Hab Il Il
Thus, we obtain

Yh=-n 2P(vy < 00)'"MT|lg — g¥Hl,,
=<Cll.
1,9\ /1

<ZREZ (Zka (P(Vk < m))[P(Vk < 00)5) )
r,q,b

Taking N — oo and the supremum over all of stopping time sequences, we get Il g ligyvo C |l

¢ .
Theorem (4.2.8) [172]: Let 0 < p,q < 1,a = 1/p — 1 and b be a non-decreasing slowly
varying function.

Then (P{,",q,b)1 = BMO, , («) with equivalent norms.

Proof : Let g € BMO, ,(a) < L. Define ¢,(f) = E(f g), (f € Lo,). there exist a sequence
(a®) ez Of (3,p,00)-atoms and a sequence of real numbers (u;,) ez Satisfying p, = A -
2kP(v, < )P such that f = Yiezma® and (Trezvy (Pvy < w))ﬂZ)l/q <cCl
f llp,q,p- Similarly, to the proof of Theorem (4.2.7),

1
|¢g(f)| < Z |ty (P(Uk < OO))IP(Uk < w)_ﬁyﬂl([@(vk < 00)) g — g¥I,
keZ
= Z |.uk|yb(IP(vk < oo)) Il g "BMOLb(a)'
kEZ

Since 0 < g < 1, then
1

q
|pe(N)] < (Z Vs (P(vg < ) ﬂZ) I8l ar0, () = ClIFllp, g0 1810, (0

keZ
Then ¢, can be extended to a continuous functional on P, ; ,, and @5 € (P;45)-
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To prove the converse, let ¢ € ((P;,q,b)) , then there exists g € L, such that ¢(f) =
1

1
E(f g),(f € L,). Let h =sign(g — g¥),a = %[P’(v < o) p(h— hY), where v € T is an
arbitrary stopping time. Then ais a (3, p, ©) — atom.
Let u=24-P(v <o) let hy=pua=A(h—h"). Considering the atomic
decomposition of hy, we have h, € P, ; ), and

1
lhollp = Clulyy(P(v <)) = 2CA - P(v < )Py, (P(v < «0)),
then llh — Rllp, , < 2C - P(v < )7y, (P(v < ®)). Thus, we have
1 1
P(v < o) Py, (P(v < 0))llg — g”ll, = P(v < ) Py, (P(v < ©))¢p(h — h")

1
< P(v <) Py, (P(v < o)lh—h"lp, , I ¢
=2C 1 ¢ I.
Taking the supremum over all stopping times, then we obtain Il g llgmo, ,@)< C Il ¢ II. The
proof of the theorem is complete.
Theorem (4.2.9) [172]: Let0 < p < 1,1 < q < oo,a = 1/p — 1 and b be a non-decreasing
slowly varying function. Then (P;;,q'b)1 = BMO, , » (@) with equivalent norms.
Proof : Letg € BMO, ;,(a)  L,. Define ¢ (f) = E(f,), (f € Lo,). Similarly to the proof
of Theorem (4.2.7), we obtain

6N < ) luelB(la“(g = 7)) < D lmellla“llg - g1,

keZ keZ
1
< z |t |[P(vy < ) Plig —g¥ll, < z 2kl g — g,
k€eZ keZ

By the definition of I-lBmo, 4 b(a) WO obtain

1 q\Ya
|¢g(f)| <A (z <2kyl§l(IP(Uk < OO))]P)(vk < 00)5) ) "g"BMol’b(a)

keZ

< C”f”Pp'qb||g||BM01,b(a)-
Thus, ¢, can be extended to a continuous functional on P, , ,. Moreover, ¢, € (P;'q'b)ll
Conversely, if ¢ € (P;,q,b)l’ then there exists g € L, such that ¢(f) = E(f g), (f € Ly).

Let {v, },ez De an arbitrary stopping time sequence such that

»

1/q
V2 (P(vy < oo))#g) <o
KEZ

Let
1
by = sign(g — g"), a* = 5 (e =y JP(vy < 0)'/7,
then a® is a (3, p, o0)-atom.

Let fN = YN__2¥P(v, < 20)'/Pa*, where N is an arbitrary non-negative integer. we have
fN €P,qpand
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1

N 1.4q 7
IIfNIIPplq'b < C( Z <2kyb(]P(vk < 0))P(vy, < 00)5) )

k=—N

<C (Z <2kyb(IP>(vk < 0))P(vy < 00)119)q>1/q.

k€Z

Consequently,
N

2lg — g”ll, = E(fY @) = (PN < If "M, N

k=-N

1 q\ 4
<c (Z (Zkyb([P(vk < 0))P (v, < 00)5) > I

k€EZ
Thus, we have

SNy 2Klg — g¥ell,

g = Cllol.
1,9\ /1
<ZkEZ (Zka (P(Vk < m))[P(Vk < 00)5) )

Taking N — o and the supremum over all of stopping time sequences, we get ||
9 llsmo, . (@ C Il @ Il. The proof is complete.

Proposition (4.2.10) [172]: If the stochastic basis {F, },;so is regular, for 0 <p < 1,0 <
g < oo, then (PI;‘,q'b)1 =Py b

Proof: Since 0 <p <1, L, can also be embedded continuously in P, ;. Then P; ., C
(L2)* = L,. Let ¢ be an arbitrary element of P, , ,,, then there exists g € L, < L, such that

¢ = ¢,. By the definition of (P;’q’b)f we have ¢ € (P;’q'b)l’ then
Pyab S (Ppqp),- Andthe inclusion relation (P; ), < P; 4,5 is evident. Hence, we obtain

p
(P;,q,b)l = Ppgp-

The proof of the theorem is complete.
We now are in a position to prove Theorem (4.2.11).
Theorem (4.2.11) [172]: Let b be a non-decreasing slowly varying function. Suppose that
the stochastic basis {F, },,50 is regular and 1 < g < oo. Then

BMO; 4,5 (a) = BMOy 4 ()
with equivalent norms forall 1 < r < .
Let (Q, F, P) be a complete probability space. We denote by L,(Q, F, P), or simply L,(Q),
the space of all measurable functions on (Q, F, P).
Proof: It follows from Theorems (4.2.4) and (4.2.7) that

BMO, , ,(a) = BMO,, ()1 <71 < oo,

For r = 1, combining Theorem (4.2.9), Proposition (4.2.10), we get

BMO, 4, (a) = BMO, 4 , ().
So the proof of Theorem (4.2.11) is complete.
Section (4.3): BV-alued Martingales

The study of Banach space valued (B-valued) martingales began with Pisier's

fundamental [200]. Since then, B valued martingale theory has attracted more attentions in
last decades. BurkHolder in [188] and [189] discussed martingale transforms and
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differential subordinations for B — valued martingales. Liu [194], [195]introduced the p-
variation operator and discussed various B valued martingale inequalities. Yu [206],
[205]investigated the dual spaces of Orlicz-Hardy spaces and weak Orlicz-Hardy spaces for
B valued martingales. see [201] by Pisier for more information on martingales and Fourier
analysis in Banach spaces.

It is well known that Lorentz spaces are more extensive family than Lebesgue spaces (see
e.g. [199], [173]). In [20], the Hardy martingale spaces are extended to Hardy-Lorentz
martingale spaces. Very recently, Jiao et al. [183] studied the small-index Hardy-Lorentz
martingale spaces and established the predual and John-Nirenberg inequalities for the
generalized BMO spaces. Weisz [202] characterized the dual of multi-parameter martingale
Hardy-Lorentz spaces.

We study Hardy-Lorentz spaces for B-valued martingales and extend the dual results in
[183]and martingale inequalities in [20] to the B-valued martingale setting. Our proof
mainly depends on the establishment of atomic decompositions of Hardy-Lorentz spaces for
B valued martingales. Recall that atomic decompositions were first introduced by Herz
[162], generalized by Weisz [171], [190]and developed by many other authors (see e.g.
[172], [153]) in scalarvalued martingale case. As for B-valued martingales, Liu et al. [197],
[198] investigated the atomic decompositions and characterized some geometrical
properties of Banach spaces; Yu [204] established the dual of B-valued martingale Hardy
spaces with the help of atomic decompositions.

The results above, and also many other B-valued martingale results (see e.g. [200], [191],
[192], [182], [201]), are closely related to the geometrical properties of the underlying
spaces. Our conclusions have no exception.

Some preliminary lemmas and B-valued martingale Hardy-Lorentz spaces are introduced
we present atomic decompositions for B-valued martin-gale Hardy-Lorentz spaces

Hﬁl’frz(B), forz (B) and D, ,,(B). As usual, these theorems depend on the geometrical
properties of the underlying Banach space B. Applying atomic decompositions established
We prove two duality results. In, we establish several martingale inequalities among Lorentz
spaces. These are new versions of the basic inequalities in B-valued martingale setting.
The sets of integers, nonnegative integers and complex numbers are always denoted by Z, N
and C, respectively. We use C to denote a positive constant which may vary from line to
line. The symbol c means the continuous embedding and f ~ g stands for C™1g < f <
Cg. We call f is equivalentto g if f ~ g.
Let (Q, F, P) be a complete probability space and B denote a Banach space with norm ||-|I.
For a measurable function f, we define its distribution function by

A(f) =PHw € Q1 f(w) I> s}),s = 0.
And denote by f*(t) the decreasing rearrangement of f, defined by

ff()y=1 {s=0:,(f) <t} t =0,

with the convention that inf@ = co.
Let 0 <p < 0,0 < q < . The B-valued Lorentz space L, ,(B ) (briefly denoted by L, ,
in the sequel) consists of those B-valued measurable functions f with finite quasi norm ||

f llp,q given by
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I f llpq= <%j0°° (tpf (0) dt) ,0< g < oo,

I f ”p,oo: suptﬁf*(t),q = 0.
t>0
If 1 <p<oandl<q < oo, the quasi norm |I-ll,, , is equivalent to a norm (see [161]).
Another equivalent definition of £, , is given by

[ee} 1 q 1/q
I f llyg= <qf (tIP(II £l t)5) %) ,0<q < oo,
0

&+

1\r
I f ||poo—Supt[P(|If 1> ) g = .

t>0
As another application of the atomic decomposition, we obtain a sufficient condition for a

o-sublinear operator to be bounded from B-valued martingale Hardy-Lorentz spaces to
function Lorentz spaces.

An operator T: X — Y is called a ¢ — sublinear operator if for any a € C it satisfies
T re1 fi)l < X1 IT(fi)l and |T(af)| < |a||T(f)|, where X is a martingale space and
Y is a measurable function space.

Lemma (4.3.1)[187]: Let 1 <p <2 and let T:ng(B) - L,(2) be a bounded o —
sublinear operator. If B is isomorphic to a p-uniformly smooth space and {|Ta| > 0} c
{v < oo} forall (1,7, o0; p)-atoms a (where v is the stopping time associated with a), then
for0 <r, <pand0 <r, < o, we have

0 Tf Uy < C I f s, -
Proof: Let f € H}, . (B). For k, € Z, set

ko—1
f=211ka Z U a +z uea* =g +h,
k k=—c0
Where
ko—1
g = z wea, h = z Ha®.
k=—0o0

Let € = r; /p. By Chebyshev's inequality and the sublmearlty, boundedness of T, we get
1 &
Zkorl[p)(T(g) > Zko)e < 2komy <2k - I T(g) ”P)

ko—l ko_l bE

<( D> wlr@l, z pills? @l

k=—o0 k=—o0
=C z P (v < 00)P 71

k=—0o0

ko—1 .o ko—1 e
y z (ZklP(vk < oo)rl) <c Z (2"P(vk < oo)rl)

k=—0o0 k=—0o0
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On the other hand, we have {T'(h) > 0} ¢ U, {v, < o} Thenforeach0 <& <1, we
obtain

2k P(T(R) > 2k0) < 2k P(T(h) > 0) < 2F0M Z P(v, < )

k=K,
< 2 2kt P(p, < 00) = z <2k‘9]P>(vk < OO)E>
k=kq k=kg
< Z <2kS[P(vk < OO)E> .

k=k
we get T(f) € L, ,,(B) and ’
1
1T = (2P <] | <Clf iy o)

I EZII Hyirs
Similar to the proof of Lemma (4.3.1), respectively.
Lemma (4.3.2) [187]: Let1 <p < 2andlet T: ng(B) — L, () be abounded o — {v <
oo} for all (2,14, o0; p)-atoms a(where v is the stopping time associated with a), then for 0 <
r, <pand 0 <r, < oo, we have

NTf e, <CIl f IIQT 1 (B)"
Lemma (4.3.3) [187]: Let 0 <gq <o and let T: H,(B) — L,(Q) be a bounded o —
sublinear operator. If B has the R — N property and {|ITal] > 0} c {v < oo} for all
(3,7,,0) — atoms a (where v is the stopping time associated with a), then for 0 <, < gq
and 0 < r, < oo, we have

WTf Ny, < CUTS llp, . B)-
Let ([0,1), F, u) be a probability space such that u is the Lebesgue measure and subalgebras

{F.,.}ns0 generated as follows:
j+1

) j=0,-,2"—1.

Recall that all martingales with respect to {F, },,», are called dyadic martingales.

Theorem (4.3.4) [187]: Let B be aBanachspace, 1 <p <20<nr <pand0<r, < oo,
Then the following statements are equivalent:

(i) B isisomorphic to a p-uniformly smooth space;

(ii) There exists a constant C > 0 such that for every f = (f;,)ns0 € Hﬁfrz (B),

| MF gy < C L F llye

r1,72

(iii) There exists a constant C > 0 such that for every f = (f,,)ns0 € er r,(B),
I Mf Ny, ,<CIf IIerrz(B)..
Proof:(i) = (ii). The maximal operator Tf = Mf is a-sublinear. Since B is isomorphic to a
p-uniformly smooth space and [201], we have
I Mf I, < Cllsp(f)llp =CIf IIng(B) -

This means M:H;p(B)aLp(Q) is bounded. For any (1,r;,0;p)-atom aand the
corresponding stopping time v, we have {|Ta| > 0} = {|{Ma| > 0} c {v < oo}. Hence,
P(|Ta| > 0) < P(v < o). The desired inequality immediately follows from Lemma
(4.3.1).

F, = o — algebra generated by atoms [ on
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(i) = (iii). Similar to (i) = (ii), it can be proved by Lemma(4.3.2).

(i) = (i). Let f = (f)ns0 be an arbitrary B-valued martingale with EsP(f)P =
E(Xn=1 ldfll?) < oo.

Since 0 <7y <p, we have [Is”(F)Il,. . < lIs?()Il, . So the martingale f € HE', (B).

Consider g™ = (g,(,’f)) ,  Where g,gff) = foan — fo(m =0). It is obvious that
m=0

sP(g™)’ = sP(f)P — sE(f)P - 0 as n — oo and sP(g™) < sP(f). Furthermore, by
condition (ii) we have

fmin = fall, ., < suplfmin = full,. . <UMg™Il, . < ClsPg™I, .

mz=0
Applying the controlled convergence theorem, we obtain {f,,},,-; is @ Cauchy sequence in

L, »,(B). Hence f, is convergent in probability. B is isomorphic to a p-uniformly smooth
space.
(ﬁi) = (i). Let f = (f,)ns0 be an arbitrary B-valued dyadic martingale such that
E(Tse1ldfpllP) < co. Similar to (i) = (i), we get f € H]. . (B). For n >0, let 4, =
sP .. (f). Then (4,)s0 is a nonnegative, nondecreasing and adapted sequence. Since f is a
B-valued dyadic martingale, we have S? (f) < CsP(f). Thus

Il f "Qsp B IISp(f)IIr y <

Namely, f € Qflr (B). Consider g™ = (g( )) as above. By condition (iii), we get
m=0

Wfmsn = faul,r, < IMg®I, . < Clg™llger 5y < CllsPg™,, .
Using the controlled convergence theorem, we obtain {fn}n21 is a Cauchy sequence in
L, »,(B). Hence f, is convergent in probability. B is isomorphic to a p-uniformly smooth
space. The proof of the theorem is complete.
Lemma (4.3.5) [187]: ([201])Let 2 < q < r < co. Then the following statements are
equivalent:
(i) B is isomorphic to a g-uniformly convex space;
(ii) There exists a constant C such that for every f = (f;,) >0 € H,-(B),

I f Nysagy=< C Il f llu,B) ;

(iii) There exists a constant C such that for every f = (f,,)ns0 € H,-(B),

I f ||Hrsq(B)S CIl f g, B -

Theorem (4.3.6) [187]: Let B be aBanach space,2 < g < 0,0 <1, <gand0 <r, < oo,
Then the following statements are equivalent:

(i) B is isomorphic to a g-uniformly convex space;

(if) There exists a constant C > 0 such that for every B-valued martingale f = (f;)ns0.

Il f IIqu L(B)S <Clflp,,, ®
(iii) There exists a constant C > 0 such that for every B-valued martingale f = (f;,) >0,

Il f IIHsp LB <Clflp, , 5
Proof: (i) = (ii). It is obvious that {Sq (a) > 0} c {v < o}, where ais a (3,7, ) — atom
and v is the corresponding stopping time. By Lemma (4.3.5), we know that the sublinear
operator S9(-) is bounded from H, (B) to L, (£2). Condition (i) implies that the space B has
the R — N property. Then by Lemma (4.3.3), we have

”Sq(f)"rl,rz(g) <ClI f ”Drl,rz(B):vf = (fn)nzo € Drl,rz (B)
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q
Namely, || f IIHTW(B)S CIflp,, . »-
(i) = (iii). It can be similarly proved as above.
(i) = (i). Let (f)n=o be an arbitrary B-valued martingale such that sup,olif.ll, < oo.

Then || f Ip,, ., @< . Since Il f Il ;s (B)S Clf Ip, . @), wWe have S9(f) < . B is

r1,7r2
Isomorphic to a g-convex space.
(iii) = (i). Consider a B-valued dyadic martingale (f;;)5»0 With sup,s¢llf,ll, < 0. Then
SU(f) < Csq(f) < oo. we get the desired result. The proof of the theorem is complete.
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Chapter 5

Sharp Hardy Inequalities
We develop a geometric framework for Hardy's inequality on a bounded domain when the
functions do vanish only on a closed portion of the boundary. In all cases, using techniques
that exploit the symmetry presented by the solid torus, we calculate the displayed best
constants and we prove that they are the same as the standard Hardy best constants which
appear in convex domains although the solid torus is not convex.
Section (5.1): Some Non-Convexity Measures
We study high dimension variants of the classical integral Hardy-type inequality ([214])

j; ) (%x))p dx < i JO " P, 1)

where p > 1,f(x) =0, and F(x) = foxf(t)dt with constant u. Inequality (1) with its
improvements have played a fundamental role in the development of many mathematical
branches such as spectral theory and PDE's, see [208], [209], [210], [211],[213] and [216].
We centre our attention on the multi-dimensional version of (1) for p = 2, which takes the
following form (see [212]):

y |f ()12
o d(x)?

dx < j IVf|2dx, f € C2(Q), 2)
Q

where

d(x):=min {|x —y|:y & Q}. (3)
For convex domains Q < R", the sharp constant u in (2) has been shown to equal 14 , see
[211] and [216]. However, the sharp constant for non-convex domains is unknown, although
for arbitrary planar simply-connected domains Q c R?, A. Ancona ([57]) proved, using the

Koebe one-quarter Theorem, that the constant u in (2) is greater than or equal to 1—16 Later

A. Laptev and A. Sobolev ([215]) considered, under certain geometrical conditions, classes
of domains for which there is a stronger version of the Koebe Theorem, this implied better
estimates for the constant u. Other specific examples of non-convex domains were presented
by E. B. Davies ([212]).
We obtain new Hardy-type inequalities under some non-convexity measures for domains in
R™ n > 3, focusing on obtaining upper bounds for u. We have two different conditions
"measures" introduced.
We present two 'non-convexity measures' for domains 0 € R™;n > 3. Let w be a point in
R™ and v be a unit vector. For a € (Og) define
Cov,a)={x e R™:x-v = |x| cos a},
which is a cone in the Euclidean space R™ with vertex at 0 and symmetry axis in the v
direction. Denote by C,, (v, @) = Cy(v, @) + w, the transition of Cy(v, @) by w € R", i.e.
Co(v,a) ={x e R":(x —w) v = |x —w|cosa},
which can be seen as an n-dimensional cone with vertex at w and symmetry axis parallel to
the v direction with angle 2« at the vertex.
Now for h > 0, define the half-space I, (v) by
I,(v) ={x e R":x - v = h}.
Denote by IT, ,, (v) = II,(v) + w, the transition of I, (v) by w € R", i.e.
My, (v) ={x e R": (x —w) -v = hj},
which is a half-space of 'height h ' from the point w in the v direction.
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Define the region K}, ,, (v, «) to be
Knw@, a) = Cy(v,a) Uy, (v).

We now state the conditions or 'non-convexity measures' we use throughout the rest.
Condition (5.1.1)[207]: (Exterior Cone Condition).
We say that 0 ¢ R" satisfies the Exterior Cone Condition if for each x € Q there exists an
element w € dQ such that d(x) = |w — x| and Q c CS (v, @), with (x —w) - v = —|x]|.
Condition (5.1.1) means that for every point x € Q we can always find a cone C,, (v, @) such
that x lies on its symmetry axis where € is completely outside that cone.
As a development of the above condition, we establish the following condition.
Condition (5.1.2) [207]: (Truncated Cone Region (TCR). Condition).
We say that Q c R" satisfies the TCR Condition if for each x € () there exists an element
w € 0Qsuchthatd(x) = |w —x|and Q c Ky ,(v, a), forsome h > 0, with (x —w) - v =
—|x|.
Condition (5.1.2) means that for every point x € Q we can always find a truncated conical
region K ., (v, @) such that x lies on its symmetry axis, which is the symmetry axis of
C, (v, @) where Q is completely outside that truncated conical region.
Suppose that the domain Q satisfies one of Conditions (5.1.1) and (5.1.2). For a fixed x €
Q, choose w, a mutual point of dQ and dB, to be such that d(x) = |x — w|. Denote by B
the appropriate test domain, i.e. a cone (Condition (5.1.1)) or truncated conical region
(Condition (5.1.1)). Furthermore, by d,,(x) we mean the distance from x € Q to 9Q in the
direction u, i.e.

d,(x):=min {|s|:x + su & Q}, (4)
and d,, (x) the distance from x € Q to @B, in the direction u, i.e.

d,(x):= min {|s|:x + su € dB}.

Finally, denote by 6, € (0, g) the angle at which the line segment representing d,, (x) leaves
dB to infinity.
The following two theorems are related to the Exterior Cone Condition.
Theorem (5.1.3) [207]: Suppose that the domain Q c R3 satisfies Condition (5.1.1) with

some a € (0, g) Then for any f € C:°(Q) the following Hardy-type inequality holds:

e 2
uw) | Gogrdes [ vrePdx 5)
where
_l ZE 6
w(a) = gtan? 5. (6)

Remark (5.1.4) [207]: For convex domains we have a = % In this case, the function
u(n, @), given by (23), becomes

n T

T 1 F(g) 2 1

sin®~2 0d@ = — for any 7, (7)

ﬂ(n’f)zz\/;'r(nT—l)jo 4

as expected for a convex case.
For n = 3, the function u(n, @), given by (23), becomes
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~| %

- [(2cot? a + 1(1 — cosa) — cos a]

§|~

u(s, a)—

N

1 2cos a+1—cos’a .
=3 T cosZa (1 —cosa) —cosa

_1[cosza+1—cosza—cosza] 1 1—cosa]

4 1+ cosa =Z 1+ cosa
1 a
=Ztan2§,

exactly as obtained in (6).

For the advantage of 'measuring how deep the dent' inside the domain is, let us consider
domains Q c R™ that satisfy Condition(5.1.2).

Theorem (5.1.5) [207]: Suppose that the domain Q c R3? satisfies Condition (5.1.2). Then
forany f € C°(Q) the following Hardy-type inequality holds:

|f ()12 |f ()12
jﬂ ,ul(x,a,h)mdx+jn ,uz(x,a,h)de (8)
< [ 1wreord,
Q
where
u(x; a,h) = %cos3 (tan"!(a(x) tan a)), (9)
and
o (x, a, h) = TonZa |3 — cos2(a — (tan™*(a(x)tan a)))
-1
—2cos(2a — (tan~!(a(x)tan @)))|sin? tan_ (a(x) tan @) ,(10)

2
. 1
with a(x) = W

Remark (5.1.6) ’[1207]:
(i) If Q is a convex domain then a = g Therefore, for convex domains with a(x) # 0, i.e.
h - 0, we have u, (x%h) =0 and u, (x% h) = %, thus the Hardy-type inequality (8)
reproduces the well-known bound (see for instance [211]):
LAVOR, f VF () |2dx 1)
4)q d(x)? ~Jg .
(ilAsa 7 % the domain Q approaches the convexity case, and hence it is natural to compare

Uy (x, a, h) and p,(x, a, h) given by (9) and (10) respectively, with their values for the
convex case. To this end we use the Taylor expansion to expand u, (x, a, h) and pu, (x, a, h)

in powers of (% - a). Keeping in mind that for fixed h we have 6, = tan™!(a(x)tana) =

%where a= g Consequently, for u, (x, a, h), we have

(5.2 1) = 0y (5,2, 1) = 0y (5, ) = .
However,
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03 ﬂ1( T )_ 3 __3(h+d(x))3

St (x5 h) = _2a(x)3 = T ,+++ and so on..
Thus u, (x, a, h) can be written as follows:
_(h+d(x))? m 3 T\ 4
ul(x,a,h) —4—}13(5—6() +0<(a’—§) ) (12)
Similarly, u,(x, a, h) can be written as follows:
h—1+1( 7T)+0<( ”)2) 13
pe(x,ah) =Z2+-(a—5 a—z) ) (13)

Fora = % we have u, (x,a,h) = 0and u,(x,a, h) = %, thus we obtain the same bound as

in (11). Relations (12) and (13) show that the second term in inequality (8) is the effective
term when talking about the convex case, since u, (x, a, h) decays rapidly to zero while

1, (x, @, h) tends to i, when a tends to .

Remark (5.1.7) [207]:
(i) If Q is a convex domain then a = 6, = % Consequently, the Hardy-type inequality (33)

reproduces the well-known bound (11) for any convex domain Q c R™.
(i) When a 7 % the domain Q approaches the convexity case. Therefore, it is natural to

compare u;(n, x,a, h) and u,(n, x, a, h), given by (34) and (35) respectively, with their
values for the convex case. Keeping in mind that when a = g we set 8, = 0y(x,a) =
tan"!(a(x)tana) = % and for fixed h, expressions for u, (n, x, a, h) and u,(n, x, a, h) can

be written as powers of (a — g)

We find that, the function y; (n, x, a, h) can be written as follows:
ui(n, x, a, h)

F(ﬁ) (h+d(x))? 3
zﬁr(nzg 1) 6h3 (E_a)

+0 ((a _ 2)4) . (14)

On the other hand, the function . (n, x% h) can be written as follows:

1 T T\ 2
a6, h) = 7+ —— 22 (a—i)+0<(a—i)>. (15)

var (F7)
Relations (14) and (15) show that the second term in Hardy-type inequality (33) is the

effective term when talking about the convex case, since u; (n, x, a, h) tends to zero while
1 b
U, (n, x, a, h) tends to S s tends to =

(iii) For fixed a, as h tends to oo, a(x) tends to 1 , which means implicitly that 8, tends to
«. Therefore, we obtain the following limit for u, (n, x, a, h) as h tends to oo :
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Aim U(n, x, a, h)

(2)

2 (07
— sin™3 acos(a)) = u(n, a). (16)

Since all functions (f, uy, u,) are uniformly bounded, we can pass to the limit under the
integral, thus the first term in Hardy-type inequality (33) tends to zero and we obtain the
same result as in Theorem (5.1.9). On the other hand, as h tends to 0, a(x) tends to 0, which
leads to the tendency of 6, to 0 as well. This implies that u;(n,x,a, h) —>% and
U,(n, x,a, h) = 0.

The key ingredient in proving Theorems (5.1.3), (5.1.9), (5.1.5) and (5.1.10) is the following
proposition.

Proposition (5.1.8) [207]: (E. B. Davies, [210], [213]). Let Q be a domain in R™ and let
f €C(Q). Then

a
(((Tl — Dcot?a + 1) j sin™2 6d6o
0

n(If@N°
4 Jq m(x)?

1 1 1
meO? 1S Jgnor dy(2)?

deJ |Vf(x)|?dx,
Q

where m(x) is given by

——dS(u), (17)
and
d,(x):=min {|t|:x + tu & Q},

2
for every unit vector u € S and x € Q. Here |[S"| = FZWZ) is the surface area of the

unit sphere in R™.
Our strategy to prove Theorems (5.1.3), (5.1.9), (5.1.5) and (5.1.10) is to obtain lower

bounds for the function - : given by (17), containing d(x), then apply Proposition (5.1.8).

(x)?
By (17) and the fact that d,, (x) > d,,(x), we have
1 1
= — dS(u > _.[ ~

m(x)? 4w Jsn dyy (x)? W) AT Jsn d, (x)?
Since d,,(x) is a symmetric function, with respect to the rotation about the symmetry axis
of the cone C, (v, @), then using spherical coordinates, (r,8,¢) where r > 00<6 <7
and 0 < ¢ < 2m, leadstou = u(8, ¢), and d,, (x) depends on 6 only. Thus, slightly abusing

the notation, from this point on we write d(x, 8) instead of d, (x).
Therefore, inequality (18) becomes

m(x)2 f f (.0 )Zsdequf) f X )251n9d9 (19)

However, the angle 8 can not exceed a, thus inequality (19) takes the following form:

sin 6d6 . (20)

dS(w). (18)

1 « 1
> =
m(x)* fo d(x, 6)*
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Since O c R3 satisfies Condition (5.1.1) and if we consider the two-dimensional cross that
contains the point x € Q, and the line segments representing both d(x) and d(x, ), we
conclude that
d(x)sina
sin(a — 6)

L can be written as follows:

m(x)?'
1 foa sin?(a — 0) sin 6d6
>
m(x)? d(x)?sin a
J," (sin® —sin 6 cos 2(a — 6))db

d(x)?sin? a

d(x,0) =

Thus, the lower bound (20), on the function

(21)

(A -cosa)* 1 1—cosa
"~ 3d(x)2(1 —cos?a) 3d(x)? 1+ cosa
2 &
_ tan >
3d(x)?

Apply Proposition (5.1.8) to this lower bound in (21) to obtain the Hardy-type inequality (5)
with u(a) as given in (6), this completes the proof.

Theorem (5.1.9) [207]: Suppose that the domain Q c R";n > 3, satisfies Condition
(5.1.1). Then for any function f € C.°(Q), the following Hardy-type inequality holds:

|f ()12
u(n, a) A2 dx < JQ |V (x)|%dx, (22)
where
_ L
,Ll(n, a) - 2\/E
r(2 «
: % (((n —1)cot? a + 1) J sin""2 6d#
r(*2) °
—sin® 3 a cos ). (23)
Proof: By (17) and the fact that d,, (x) > d,,(x), we have
. ! dS(u) = dS(w). (24)

m(x)? S Jgn-s dy ()2 IS™7H Jgn-1 dyy ()2
Because of the definition of d,,(x) and by using spherical coordinates, (r, 6, ¢) where r >
00< 6 <mand 0 < ¢ < 2m, we have u = (6,¢), and that d, (x) depends on 8 only.
Thus, slightly abusing the notation, from this point on we write d(x, 8) instead of d,,(x).

Therefore, inequality (24) becomes
1

- 1 f” 1
m(x)? T [S"M )y d(x,6)?
|§n—2| /2 1
=2— =
IS* 1)y d(x,6)?
However, the angle 6 can not exceed the value a < % hence

sin™®2 6do f dw

gn-2

sin™ 2 0do .
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1 >,|Sn_2| a 1
m(x)? ~IS*7 Jy d(x,6)?
Since Q satisfies Condition (5.1.1), i.e., we have symmetry with respect to the axis of
C,(v,a), we consider the two-dimensional that contains the point x € Q, and the line
segments representing both d(x) and d(x, ), so we have

sin™~2 6d# . (25)

. d(x)sina
d(x,0) = sin((x——H)'
Thus inequality (25) can be rewritten as follows:
_r > 218" Ja sin?(a — 6)sin™ 2 6d#
m(x)? — |S"1d(x)?sin? a J,
|Sn—2| a R
= ST Id00? st @ (JO sin"~“ 0d6 — Il(a)>, (26)

Where

a

L(a) = J sin™ 2 fcos 2(a — 0)d8.
0
There are many ways to evaluate I; (). Rewrite I, (@) as follows

[24 [24
L (a) = cos 2a U sin®2 6dg — Zf sin™ GdGl
0 0

2

+—sin 2asin™ a (27)
n

2n — 2

= cos 2

‘. -2 2 ‘o -2 LT
sin™ 4 6do + Esm” acosa — sin™“ 0do| + - sin™* acos a
0 0

2 —n “ s an—2 2 son—1
= cos2a sin 0do + —sin acos a.
n 0 n

1

m(x)2
a

a
nj sin® 2 0d0 + (n — 2) cos 20([ sin™2 6d6
0 0

Thus using (27), inequality (26) produces the following lower bound on
1 |Sn—2|
m(x)? ~ nd(x)?|S"* 1| sin? a

—2sin" ! a cos a

|Sn—2| a
N —2) cos 2 in"~2 6d6 — 2 sin"*
nd(x)?|S"1| sin? a (n+ (n—2)cos a)jo sin sin"" "t a cosa 28)
|§n—2| a
nd(x)2|S"1| sin? a [2((71 — 1) cos® @ + sin” @) JO sin""2 0d6 — 2 sin™! a cos a]
2|§n—2| a
~ d(x)2n|ST 1| ((n—1)cot?a +1) Jo sin" "2 6d6 sin" > acosa|.

Applying Proposition (5.1.8) to the lower bound (28) putting into account that

n
51 () 29)
|IS*1 & r.(n ; 1)’
returns the Hardy-type inequality (22) with u(n, a) as in (23), this completes the proof.
By (17) and the fact that d,, (x) = d,,(x), we have
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1 1
m@?  an ) a2 B W 2 4 Lz d, (x)?
Since the function d,, (x) is symmetric, with respect to the rotation about the symmetry axis
of the domain K}, ., (v, a), then using spherical coordinates, (7,0, ¢$) where r > 0,0 < 6 <
mand 0 < ¢ < 2m, leads to u = u(8, ¢), and that d,,(x) depends on 6 only. Thus, slightly

abusing the notation, from this point on we write d(x,8) instead of d,(x). Therefore,
inequality (30) becomes

2T
m(x)z f j d(x 5)? sin 0d0d¢p = J S 9)2 sin 6d6.

Since O c R3 satlsfles Condition (5.1.2) and if we consider the two-dimensional cross that
contains the point x € £, and the line segments representing both d(x) and d,,(x), we can
divide the above interval into two intervals considering the relation between d(x, 8) and
d(x). Thus, for 8 € (0, 8,), the function d(x, 8) can be expressed in the following form:

~ d(x)sina

d(x,0) =

ds(w). (30)

sin(a — 0)°
Besides, for 6 € (Bo,g), the function d(x, 8) can be written as follows
h+ d(x)

d(x,0) = cos 8

where 6, satisfies

tanf, = tan a. (31)

1+d()

Moreover, for a = % (for which Q attains the convex case) we have
d(x)
cos 6

d(x,0) =

Thus, the function — >
m(x

A
1 foeo sin?(a — ) sinfde [ cos® 6 sin6db
> 0

m(x)? — d(x)?sin? a * (h + d(x))?
Using the substitution u = cos 8 in the second integral produces

%foeo (sin(2a — 0) + sin(30 — 2a))d#8

m(x)? = —cos ngo a 2d(x)? sin? a
cos3 0, (32)
3(h + d(x))?
e COS(ZC; 0,) + cos(398 2a) + conga) cos® 0,
2d(x)? sin? « 3(h + d(x))?
(3 — cos 2(a — 6) — 2cos(2a — 6,))sin? % cos3 6,
3d(x)?sin? a 3(h + d(x))?

Applying Proposition (5.1.8) to this lower bound in (32) leads to
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\ If ()12 \ If (O)1?
Lul(%)mdx + jﬂ#z(Qo,Of)de < jﬂ V£ (0)|?dx,
Where
3
1i(6o) = COS4 90.
and

) (3 — cos 2(a — 6,) — 2cos(2a — 6) )sin? %
Hz (0, @) = 4sin? a '

Now using (31), the relation between 8, and «, enables us to write uj (6,) and 5 (6,, @) as
functions of x, a, and h as in (9) and (10) respectively. This completes the proof.

Theorem (5.1.10) [207]: Suppose that the domain Q < R™;n > 3, satisfies Condition
(5.1.2). Then for any function f € C:°(Q), the following Hardy-type inequality holds:

If (x)|? J If ()|
jﬂlﬁ(n,x; a, h)mdx + Q.Uz(n,x, a, h) A(x)? dx -
< [ 1wrerax
Q
Where
p(n, x, a, h)
n
F —_
— (31,)— 1 — (Sin"_l 60(:05 60
2/l (*)
+j sin®2 0d6, and (34)
6o
n
F —_
u,(n,x,a,h) = (i)_ T
2/l (*—)
6o
v ((n—1Dcot? a + 1) j sin™~2 6d0
0
—sin™ 1 0, cos(2a — 6,)), (35)

with 6, satisfies tan 6, = tan a. In particular, when a = % we have u; (n, x,a, h) =

h+d(x)
Oand u,(n,x,a, h) = %.

Proof:. As have been illustrated before, the function @ has the following lower bound

Vs
1 IS*2| 2 1
——2>2 =
m(x)? ~ |S" )y d(x,0)2
Since Q satisfies Condition (5.1.2), we consider containing the point x € Q and the line

segments representing d (x) and d(x, 8), then according to the relation between d (x, 8) and
d(x), we can rewrite inequality (36) as follows:

sin"2 0do . (36)
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sz T(3)

> 2b[I;(n, 6y) + I,(n,0p)]; b (37)

m(x)? = CIS T g (h
var ()
Where
0o
L,(n 8, = _ sin®"2 6deo,
0= ) ey
3
I,(n, 6, = _ sin®2 6deo,
2(n,0,) 0 d(x,0)2
and 0 < 6, < %satisfies
tan 90 = rd(x)tan a.

However, for all angles a < % we can easily find that: For 6 € [0, 6,), the relation between
d(x,0) and @ is

i(x,0) = d(x)sina
X sin(a — 8)’
and for 6 € [Bo,g), we have
dix 0 = h+d(x)

(x.6) = cos 0
On the other hand, for a = %the relation between d(x, 8) and 8 is

~ d(x)

d(x.6) = cos 6
Therefore, we can evaluate the first integral 1, (n, 8,) as follows:

1

IL(n, 90) =

o
s 02 _ n—2
2007 sin? ajo sin“(a — 6) sin™ = 0d0o

1 (38)

- d(x)? sin? a

)
j sin" 2 0d0 — I3(n, 8,) |,
0

where
o
I3(n,0,) = f sin™"2 @ cos?(a — 0) d6.
0
On the other hand, we can rewrite I5(n, 8,) as
6o
I3(n,8,) = cos Zaf sin™ 2 @ cos 260d0

0
8o

+sin2a j sin™2 0 sin 26d6
0

0 (39)

6o
sin™ Hdel + 2sin2a f sin® 1 0 cos 8d6
0

6o
= cos 2« [f sin™ 2 0 cos? 6dO — f
0 0

L —n (% 2
= cos 2a |—sin™"* 6, cos Oy + —— sin™®™* 8d6 | + —sin 2a sin™ 6,
n n n
0

Substituting (39) into (38) produces
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I;(n,0y) = W(% (n(1 4+ cos 2a) — 2cos 2a) fogo sin™ % 6d6 — cos 2asin™! 6, cos 6,
—sin 2a sin™ ;) (40)
1 6o
= nd(0%sinZa ((ncos 2a — cos 2a) .[; sin™ 2 0d6 — sin™ ! 8, (cos 6, + sin 2asin 90)>

% cos(2a — 6
((n—Dcot?a+1) f sin® 2 6df — sin""1 g, M)
0

- nd (x)? sin? a

Concerning I,(n, 8,), we have
T

2

1
(h+ d(x)? L

B 1 sin™ 10 cos6
~ (h+d(x))? n

I,(n,0,) = sin™ 2 0 cos? 6d6

A

2 12

+—f sin™~% 6d6 (41)
6o

n

8o

-1 -— sin™™1 6, cos O, + f% sin™ "% 6d6|.
(h + d(x))? 6o

Therefore, substituting (41) and (40) into (37) gives the following lower bound on the

. 1
function — o

1 2b| 1

—— > |—=((n - Dcot?a + 1)f90 "2 046 — sin™ 1 6 cos(2a — 90)>
- n—1l)cot” a sin — sin costza — 6o)
mx)? " n |deo? 0 0

sin? a

+ _t (f% sin™®2 6df — sin™"1 f,cos 90>] - (42)
(h+d(x))*\ J,

Apply Proposition (5.1.8) to the lower bound (42) to obtain the Hardy-type inequality (33)
where u, (n, x, a, h) and u,(n, x, @, h) as stated in (34) and (35) respectively. On the other

hand, when a = % we have 6, = % as well, this implies
ui(n,x,a, h) = 0, and
n T
G g
u,(n,x,a,h) = ] sin 6do
2 (F5=) %

1

=7 for any n.
This completes the proof.
Section (5.2): Functions Vanishing on a Part of the Boundary
Hardy's inequality is one of the classical items in analysis [240], [167]. Two milestones
among many others in the development of the theory seem to be the result of Necas [85]
that Hardy's inequality holds on strongly Lipschitz domains and the insight of Maz'ya [249],
[250] that its validity depends on measure theoretic conditions on the domain. The geometric
framework in which Hardy's inequality remains valid was that enlarged up to the frontiers
of what is possible - as long as the boundary condition is purely Dirichlet, see [54], [82],
compare also [57], [83], [88]. over the last years it became manifest Hardy's inequality plays
an eminent role in modern PDE theory, see e.g. [219], [223], [225], [229], [44], [237], [243],
[245], [252], [255].
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What has not been treated systematically is the case where only a part D of the boundary of
the underlying domain Q is involved, reflecting the Dirichlet condition of the equation on
this part while on 9 \ D other boundary conditions may be imposed, compare [219], [224],
[227], [238], [239] including references therein. The aim is to set up a geometric framework
for the domain Q and the Dirichlet boundary part D that allow to deduce the corresponding

Hardy inequality.
fﬂ distp

As in the well established case D = 9 we in essence only require that D is [-thick in the
sense of [82]. This condition can be understood as an extremely weak compatibility
condition between D and dQ \ D.

We reduce to the case D = dQ by purely topological means, provided two major tools are

applicable: An extension operator C€: WDl’p Q) - WDl’p (R%), the subscript D indicating the
subspace of those Sobolev functions which vanish on D in an appropriate sense, and a

Poincare inequality on WDl’p(Q). This abstract result is established. In a second step these
partly implicit conditions are substantiated by more geometric assumptions that can be
checked - more or less - by appearance. In particular, we prove that under the mere
assumption that D is closed, every linear continuous extension operator WD”’ Q) -
WLP(R%) that is constructed by the usual procedure of gluing together local extension
operators preserves the Dirichlet condition on D. This result even carries over to higher-
order Sobolev spaces and sheds new light on some of the deep results on Sobolev extension
operators obtained in [220].

Whether Hardy's inequality also characterizes the space WDl‘p(Q), I.e. whether the latter is
precisely the space of those functions u € WP (Q) for which u/ dist , belongs to LP ().
Under very mild geometric assumptions we answer this question to the affirmative.
Finally, we attend to the naive intuition that the part of 9 that is far away from D should
only be circumstantial for the validity of Hardy's inequality and in fact we succeed to weaken
the previously discussed geometric assumptions considerably.

We work in Euclidean space R%,d > 1. We use x,y, etc. for vectors in R? and denote the
open ball in R¢ around x with radius r by B(x,7). The letter ¢ is reserved for generic
constants that may change their value from occurrence to occurrence. Given F ¢ R% we

write dist wor the ™ function that measures the distance to F and diam(F) for the diameter
of F.
In our main results on Hardy's inequality we denote the underlying domain and its Dirichlet
part by Q and D. The various side results that are interesting in themselves and drop off on
the way are identified by the use of A and E instead.
We introduce the common first-order Sobolev spaces of functions ‘vanishing' on a part of
the closure of the underlying domain that are most essential for the formulation of Hardy's
inequality.
Definition (5.2.1)[217]: If A is an open subset of R% and E is a closed subset of A, then for
p € [1, oo the space WEl”’(A) Is defined as the completion of

C2(N):= {v|p:v € CL(RY), supp(v) N E = @}
with respect to the norm v — ([, |Vv|P + |v|pdx)1/p. More generally, for k € N we define

i : 1/
WP (A) as the closure of C$°(A) with respect to the norm v — ([, X% |D/ v|”dx) ?
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The situation we have in mind is of course when A = Q and E = D is the Dirichlet part D
of the boundary 0.

As usual, the Sobolev spaces WP (A) are defined as the space of those LP(A) functions
whose distributional derivatives up to order k are in LP (A), equipped with the natural norm.
Note that by definition W,“" (A) = W,5? (A) but in general WQ""’p(A) c WkP(p), cf. [259,
Sec. 1.1.6].

The following version of Hardy's inequality for functions vanishing on a part of the
boundary is our main result.

Theorem(5.2.2) [217]: Let Q < R? be a bounded domain, D < 99 be a closed part of the
boundary and p €]1, oo[. Suppose that the following three conditions are satisfied.

(i) The set D is I-thick for some [ €]d — p, d].

(if) The space WD”’ () can be equivalently normed by I V-ll, (q;.

(iii) There is a linear continuous extension operator €: W,"? (Q) — W’ (R%). Then there is
a constant ¢ > 0 such that Hardy's inequality

u 1P
Jﬂ dist,
holds for all u € W,"P ().
Of course the conditions (ii) and (iii) in Theorem (5.2.2) are rather abstract and should be
supported by more geometrical ones. This will be the content where we shall give an
extensive kit of such conditions. In particular, we will obtain the following version of
Hardy's inequality.
Theorem (5.2.3) [217]: (A special Hardy inequality) Let Q ¢ R® be a bounded domain and
p €] 1,00[. Let D c 9Q be I-thick for some [ €]d — p, d] and assume that for every x €
0Q \ D there is an open neighborhood U, of x such that Q n U, is a WP -extension domain.
Then there is a constant ¢ > 0 such that
u 1P
L}mﬁD(uSCLmemquWQWm.
Theorem (5.2.4) [217]: Let O c R® be a bounded domain and p €]1, oo[. Let D c 9Q be
porous and I-thick for some [ €]d — p, d]. Finally assume that for every x € dQ \ D there
is an open neighborhood U, of x such that Q N U, is a WP-extension domain. If u € WP
is such that u/dist,, € LP(Q), then already u € W, ” (Q).
For convenience we recall the notions from geometric measure theory that are used to
describe the regularity of the Dirichlet part D in Hardy's inequality. For [ €]0, o[ the (-
dimensional Hausdorff measure of F ¢ R is

dx < cj |Vu|Pdx (43)
Q

. . l :
H,(F):= llgn_}onf Z dlam(Fj) :F; c RY, dlam(Fj) <§,FcC U F;
j=1 j=1
and its centered Hausdorff content is defined by

(0] oo

H;°(F): = inf Z rjl:xj €EF,1;>0,FcC U B(xj,rj) .
j=1 j=1
Definition (5.2.5) [217]: Let [ €]0, o[ . A non-empty compact set F < R¢ is called I-thick
if there exist R > 0 and y > 0 such that
HP(FNB(x71)) = yr (44)
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holds for all x € F and all r €]0, R]. It is called [-set if there are two constants ¢y, c; > 0
such that

cor' < H(FNB(x71)) < cqrt
holds for all x € F and all » €]0,1].
Definition (5.2.6) [217]: A set F c R% is porous if for some x < 1 the following statement
is true: For every ball B(x,r) with x € R% and 0 < r < 1 there is y € B(x,r) such that
B(y,kr) N F = Q.
Lemma (5.2.7) [217]: Let [ €]0,00[ .If F ¢ R%isacompact [-set, then there are constants
Co, €1 > 0 such that

cort S HP(FNB(x71)) < c¢q1t
holds for all » €]0,1[ and all x € F. In particular, F is I-thick.
Proof: We prove H;°(A) < cH;(A) < cH;”(A) for all non-empty Borel subsets A c F.
First, fix £ > 0 and let {A]-}jEN be a covering of A by sets with diameter at most €. If A; N

A # @, then A; is contained in an open ball B; centered in A and radius such that r} =
diam(4;)" + £2/. The so-obtained countable covering {B;} of A satisfies

Z diam(Aj)l > z (rjl —e277) 2 HP(A) -«
JEN JEN
AjNA=Q AjNA=D
Taking the infimum over all such coverings {A]-}jEN and passing to the limit € —» 0 after

wards, H;° (4) < H;(A) follows. Conversely, let {Bj}jeN be a covering of A by open balls

with radii 7; centered in A. If r; < 1, then #,(F N B;) < cr} since by assumption F is an -
set, and if ; > 1, then certainly #;(F n B;) < H;(F)r{. Note carefully that 0 < H;(F) <

oo holds for F can be covered by finitely many balls with radius 1 centered
in F. Altogether,

(0.0]

z rl> cz #,(FnB)>cH,| Fn U B; | = c7,(4).

j=1 j=1 j=1

Passing to the infimum, ;*° (4) = cH;(A) follows.

Lemma (5.2.8) [217]: If F ¢ R% is I-thick, then it is m-thick for every m €]0, I[.

Proof: Inspecting the definition of thick sets, the claim turns out to be a direct consequence
of the inequality

[ee)

N m/l

N
D= )
j=1 j=1
for positive real numbers r, ..., ry.
The results rely on deep insights from potential theory and we shall recall the necessary
notions beforehand. For further background see [218].
Definition (5.2.9) [217]: Let a > 0,p €]1,o[ and let F c R%. Denote by G,:=
FL((1 + |€|?)~%/?) the Bessel kernel of order a. Then

Cop(F):=inf {f IfIP:f =0onR%and G, * f = 1 onF}
R4
Is called (a, p)-capacity of F. The corresponding Bessel potential space is
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H*P(RY): = {G, * f: f € LP(R%)} with norm ||G, * fIIHa,p(Rd) =l £ ll,.
It is well-known that for k € N the spaces H*?P(R%) and W*P(R%) coincide up to
equivalent norms [254]. The capacities C, ,, are outer measures on R% [218]. A property that
holds true for all x in some set E ¢ R¢ but those belonging to an exceptional set F c E with
Cop(F) =0 is said to be true (a,p)-quasieverywhere on E, abbreviated (a,p)-g.e. A
property that holds true (a,p)-g.e. also holds true (8,p)-q.e. if B < a. This is an easy
consequence of [218]. A more involved result in this direction is the following [218]
Lemma (5.2.10) [217]: Let a, 8 > 0 and 1 < p,q < o be such that g < ap < d. Then
each Cy ,,- nullset also is a C, ,,-nullset
There is also a close connection between capacities and Hausdorff measures, see [218] for
an exhaustive discussion. Most important for us is the following comparison theorem. In the
case p €]1,d] thisis proved in [218] and if p €]d, oo, then the result follows directly from
[218].
Theorem (5.2.11) [217]: (Comparison Theorem) Let 1 < p < oo and suppose a,l > 0 are
such that d — I < ap < oo. Then every C, ,-nullset is also a J{; - and thus a H;”-nullset.
Bessel capacities naturally occur when studying convergence of average integrals for

Sobolev functions. In fact, if «a > 0,p e]l,%] and u € H*?(R%), then (a, p)-quasievery

y € R4 is a Lebesgue point for u in the LP-sense, that is
1
lim ——— u(x)dx =:u 45
I (B0 Sy ) (45)
and
1
lim ——— lu(x) —u(y)|Pdx =0 (46)
™0 [B(Y, )| Jp(y.m )
hold [218]. The (a, p)-quasieverywhere defined function u reproduces u within its H*?
class. It gives rise to a meaningful («, p)-quasieverywhere defined restriction u|z: = u|g of
u to E whenever E has non-vanishing (a, p)-capacity. For convenience we agree upon that
u|z = 0 is true for all u € H¥P(R%) if E has zero (a,p)-capacity. Note also that these

results remain true if p €] =, [, since in this case u has a HOlder continuous representative

u which then satisfies (45) and (46) for every y € R4,
We obtain an alternate definition for Sobolev spaces with partially vanishing traces.
Definition (5.2.12) [217]: Let k € N,p €]1,[ and E € R® be closed. Define

WP (RY): = {u € WkP(R4): Dﬁu|E = 0 holds (k — |B|,p) — q.e. on E for all multiindices

<|pl<k—-1}
and equip it with the W*? (R4)-norm.
The following theorem of Hedberg and Wolff is also called (k, p)-synthesis.
Theorem (5.2.13) [217]: ([218]) The spaces W,? (R%) and W, (R%) coincide whenever
k € N,p €]1,00[ and E c R is closed.
Hedberg and Wolff's theorem manifests the use of capacities in the study of traces of
Sobolev functions. However, if one invests more on the geometry of E, e.g. if one assumes
that it is an [-set, then by the subsequent recent result of Brewster, Mitrea, Mitrea and Mitrea
capacities can be replaced by the [-dimensional Hausdorff measure at each occurrence.
Theorem (5.2.14) [217]: ([220]) Let k € N,p €]1,0[ and let E ¢ R? be closed and
additionally an I-set for some [ €]d — p, d]. Then
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k, kl
WE p(Rd) = WE p(Rd)
= {u € WkP(RY): Dﬁu|E = 0 holds H,_, — a.e. on E for all multiindices 3, 0

<|fl=k-1},
where on the right-hand side Dﬁu|E = 0 means, as before, that for #;_,-almost every y €

E the average integrals —— [ DAu(x)dx vanish in the limit r — 0.

|B(y,r)|~ BOWT)
We will deduce Theorem (5.2.2) from the following proposition that states the assertion in
the case D = 01).
Proposition (5.2.15) [217]: ([82], see also [54]) Let 2, S R< be a bounded domain and
letp €]1,00[. If 002, isl-thick forsomel € ]d — p,d], then Hardy’s inequality is satisfied
forallu € I/I/pr (12,), i.e. (43) holds with 2 replaced by 2, and D by 012, .
Below we will reduce to the case D = dQ by purely topological means, so that we can apply
Proposition (5.2.15) afterwards. We will repeatedly use the following topological fact.
(m) Let {M,}, be a family of connected subsets of a topological space. If n; M; # @, then
U, M, is again connected.
As required in Theorem (5.2.2) let now Q € R¢ be a bounded domain and let D be a closed
part of 9Q. Then choose an open ball B 2 Q that, in what follows, will be considered as the
relevant topological space. Consider

C:={M c B \ D: Mopen, connected and (. € M}
and for the rest of the proof put
0= U M.

MeC
In the subsequent lemma we collect some properties of Q4. Our proof here is not the shortest

possible, cf. [5, Lem. 6.4] but it has, however, the advantage to give a description of Q. as
the union of Q, the boundary part dQ \ D and those connected components of B \ Q whose
boundary does not consist only of points from D. This completely reflects the naive
geometric intuition.

Lemma (5.2.16) [217]: It holds Q € Q. € B. Moreover, . is open and connected and
0Qy=DinB

Proof: The first assertion is obvious. By construction Q. is open. Since all elements from C
contain Q the connectedness of Q4 follows by ( O ). It remains to show 9Q. = D.

Letx € D. Then x is an accumulation point of Q and, since Q € Q,, also of Q.. On the other
hand, x & £, by construction. This impliesx € d2,andsoD < 4d4,.

In order to show the inverse inclusion, we first show that points from 9 \ D cannot belong
to dQ. Indeed, since D is closed, for x € dQ \ D there is a ball B, € B around x that does
not intersect D. Since x is a boundary point of Q, we have B, N Q # @. Both Q and B, are
connected, so ( O) yields that Q U B, is connected. Moreover, this set is open, contains €
and avoids D, so it belongs to C and we obtain Q U B, € (. This in particular yields x €
Q) ,s0x & 00 since Q. is open.

Summing up, we already know that x € Q belongs to 0Q. if and only if x € D. So, it remains
to make sure that no point from B \ Q belongs to ().

As B\ Q is open, it splits up into its open connected components Z,, Z,, Z,, ... There are
possibly only finitely many such components but at least one. We will show in a first step
that for all these components it holds dZ; < 0Q. This allows to distinguish the two cases

137



0Z; € D and 0Z; n (02 \ D) # @. In Steps 2 and 3 we will then complete the proof by
showing that in both cases Z; does not intersect 9Q.«.

Step 1: 9Z; < 9Q for all

First note that dZ; N Q. # @ for all . Indeed, assuming this set to be non-empty and investing
that Q is open, we find that the set Z; N Q cannot be empty either and this contradicts the
definition of Z;. Now, to prove the claim of Step 1, assume by contradiction that, for some
J, there is a point x € 0Z; that does not belong to 9. By the observation above we then
have x & () and consequently there is a ball B, around x that does not intersect 0. Now, the
set By U Z; is connected thanks to (5), avoids Q and includes Z; properly. However, this
contradicts the property of Z; to be a connected component of B \ Q

Step 2:If0Z; € D, then Q. N Z; = @.

We first note that it suffices to show Q. N Z; = @. In fact, due to Q. = 00. U Q. we then get
Q. N Z; = @ since Z; is open.

So, let us assume there is some x € . N Z;. Then Q. U Z; is connected due to ( O ). By
assumption we have dZ; € D and by construction the sets Z; and Q are both disjoint to D.

So we can infer that 9Z; n (Q., U Z;) = @ and this allows us to write

0.uz =(2.uz)n(zU(B\Z))=7u(2n(B\Z)).
This is a decomposition of 1, U Z; into two open and mutually disjoint sets, so if we can
show that both are nonempty then this yields a contradiction to the connectedness of Q, U
Z; and the claim of Step 2 follows. Indeed, we even find

a.n(B\Z)=a\Z =a.\(0zZ;uz)oa\(DuZz)=0=09,

since both D and Z; do not intersect (.
Step 3: 1f 0Z; n (0Q\ D) # @, then Z; < Q..
Letx € 0Z; n (02 \ D), and let By be a ball around x that does not intersect D. The point x
is a boundary point of Z;, so B, N Z; # @ and we obtain that B, U Z; is connected by ( O ).
By the same argument, also the set B, U Q is connected and putting these two together a
third reiteration of the argument yields that (By U Q) U (B, U Z;) = QU B, U Z; is again
connected. This last set is open and does not intersect D, so it belongs to C and we end up
with QU B, U Z; € Q,. In particular we have Z; € Q,.
Remark (5.2.17) [217]: Conversely, it can be shown that the asserted properties
characterize < uniquely in the sense that if an open, connected subset £ > Q) of B
additionally satisfies = = D, then necessarily £ = Q,. In fact, since Z N D = @ one has
= c (,, due to the definition of Q.. In order to obtain the inverse inclusion we write

Q=0Q.NEAUQNIZ)U(QNB\E))=E2U(Q.n(B\E)), (47)
sinceQ, NIAE=Q, ND=0.BothZ=2nQ,and Q, N (B\ Z)areopenin ., and £ >
Q is nonempty.
Since €, is connected and E =n Q, is clearly disjoint to Q, N (B \ £), this latter set must
be empty. Thus, (47) gives = =
Corollary (5.2.18) [217]: Consider £, as a subset of R, Then €, is open and connected.
Moreover, either 0Q, = D or 0Q, = D U 0B.
Proof: It is clear that Q, remains open. Assume that €, is not connected. Then there are
disjoint open sets U,V < R% such that Q, = U U V. However, the property Q, € B then
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gives 0, =Q, NB= (UNnB)U(VNB), where UNB and V N B are open in B and
disjoint to each other. This contradicts Lemma (5.2.16).

For the last assertion consider an annulus A € B that is adjacent to dB and does not intersect
Q. Let Z; be the connected component of B\ Q that contains A. We distinguish again the
two cases of Step 2 and Step 3 in the proof of Lemma (5.2.16): If 9Z; < D, we have shown
in Step 2 that Z; is disjoint to Q, and this implies 0Q, = 0, N B = D. In the second case,
we infer from Step 3 in the above proof that A < Z; € Q, and this implies

dQ, =D U B

We conclude the proof of Theorem(5.2.2).We first observe that in both cases appearing in
Corollary (5.2.18) the set Q. is m-thick for some m €]d — p,d — 1]. In fact, D is [-thick
for some [ €]d — p, d] by assumption and using its local representation as the graph of a
Lipschitz function, it can easily be checked that dB is a (d — 1)-set, hence (d — 1)-thick
owing to Lemma (5.2.7). The claim follows from Lemma (5.2.8). Altogether, Proposition
(5.2.15)

applies to our special choice of (..

Now, let ® be the extension operator provided by Assumption (iii) of Theorem (5.2.2). In

view of Corollary (5.2.18) we can define an extension operator ®.: WD”’ Q) - Wol'p Q,) as
follows: If 0Q), = D, then we put ®, v: = (bvln and if 9Q. = D U dB, then we choose n €

C$°(B) with the property n = 1 on Q and put (v.v: = (nGv)|q.. This allows us to apply

Proposition (5.2.15) to the functions 5.u € W, (Q.), where u is taken from W, (Q).
With a final help of Assumption (ii) in Theorem (5.2.2) this gives

u P p p
j dXSf
Q Q

dp
p P
<clu IIWI;,p(mS CJQ |Vu|Pdx

daq,

d<J ®.u
X <
Qod

90,

D p
dx < ¢ JQ V(G0 Pdx < ¢ 1 6.2 11y

*

*

forall u € WDl'p(Q) and the proof is complete.

Corollary (5.2.19) [217]: The assertion of Theorem (5.2.2) remains valid if instead of its |-
thickness we require that D is an |-set.

we discuss the second condition in our main result Theorem (5.2.2), that is the extendability
for WDl'p () within the same class of Sobolev functions. We develop three abstract
principles concerning Sobolev extension.

e Dirichlet cracks can be removed:We open the possibility of passing from Q to another
domain Q, with a reduced Dirichlet boundary part, while I' = dQ \ D remains part of
dQ,. In most cases this improves the boundary geometry in the sense of Sobolev
extendability, see the example in the following Figure.

e Sobolev extendability is a local property: We show that only the local geometry of
the domain around the boundary part I' plays a role for the existence of an extension
operator.

e Preservation of traces: We prove under very general geometric assumptions that the
extended functions do have the adequate trace behavior on D for every extension
operator.

We Dbelieve that these results are of independent interest and therefore decided to directly

present them for higher-order Sobolev spaces WE""". In the end we review some feasible
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commonly used geometric conditions which together with our abstract principles really
imply the corresponding extendability.

As [vi] there may be boundary parts which carry a Dirichlet condition and belong to the
inner of the closure of the domain under consideration. Then one can extend the functions
on A by 0 to such a boundary part, thereby enlarging the domain and simplifying the
boundary geometry.

Lemma (5.2.20) [217]: Let A € R be a bounded domain and let E c dA be closed. Define
A, as the interior of the set A U E. Then the following hold true.

(i) The set A, is again a domain, Z: = dA \ E is a (relatively) open subset of and dA, = E U
(E naA,).

(ii) Let k € N and p € [1, [ . Extending functions from WEk'p(A) by 0 to A,, one obtains

an isometric extension operator Ext(A, A,) from W,P (A) onto WP (A,).
Proof: (i) Due to the connectedness of A and the set inclusion A c A, < A, the set A, is also
connected, and, hence a domain. Obviously, one has A, = A. This, together with the
inclusion A c A, leads to dA, < dA. Since Z N A, = @, one gets £ c dA,. Furthermore, =
was relatively open in dA, so it is relatively open also in dA,.
The last asserted equality follows from dA, = (E N dA,) U (E N dA,) and E c dA,
(i) Consider any ¥ € C2(R%) and its restriction |, to A. Since the support of ¥ has a
positive distance to E, one may extend |, by 0 to the whole of A, without destroying the
C “-property. Thus, this extension operator provides a linear isometry from Cg°(A) onto
C2(A,) (if both are equipped with the W*P-norm). This extends to a linear extension
operator Ext(A,A,) from WE""’(A) onto WEk'p(A*), see the two following commutative
diagrams:
Lemma (5.2.21) [217]: Let k € N and p €]1, [ . Let A ¢ R% be a bounded domain, let
E < dA be closed and as before define A, as the interior of the set AU E. Every linear,
continuous extension operator §: W% (A) - WP (R%)
factorizes as & = §.Ext(A,A,) through a linear, continuous extension operator
o Wg P (M) = WP (RY)
Proof: Let S be the restriction operator from W,“" (A,) to W,°P(A). Then we define, for
every f € WP (M), &.f: = & C f. We obtain F,Ext(A, A,) = F S Ext(A,A,) = &.
This shows that the factorization holds algebraically. However, one also has

1T Ext(A ADf "Wg:p(Rd) =l Ff ”Wg,p(Rd)S” &l L<Wg,p ( A);Wégp(]w))ll f "Wg,p(A)

=& L( ) IExt(A, A f IIWg,p(A*) :

Having extended the functions already to A, one may proceed as follows: Since E is closed,
so is E,:= E NndA,. So, one can now consider the space WE'f'p(A*) and has the task to

establish an extension operator for this space - while afterwards one has to take into account
that the original functions were 0 also on the set E n A, and have not been altered by the
extension operator thereon. However, note carefully that E,: = E n dA, may have a worse
geometry than E. For example, take Suppose that this time only X forms the whole Dirichlet
part of the boundary. Then E is a (d — 1)-set whereas even H,;_; (E,) = 0 holds.

WP MW P (RY)
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To sum up, if one aims at an extension operator €: WEk’p(A) - WEk’p(Rd), one is free to
modify the domain A to A,. In most cases this improves the local geometry concerning
Sobolev extensions and we do not have examples where the situation gets worse.
Definition (5.2.22) [217]: A domain A c R? is a W*P-extension domain for given k € N
and p € [1, oo [ if there exists a continuous extension operator € ,: W*P(A) - WP (R?).
If Ais a W*P extension domain for all k € N and all p € [1, [ in virtue of the same
extension operator, then A is a universal Sobolev extension domain.

Proposition (5.2.23) [217]: Let k € Nand p € [1, o [. Let A be a bounded domain and let
E be a closed part of its boundary. Assume that for every x € dA \ E there is an open
neighborhood U, of x such that AN U, is a W*P-extension domain. Then there is a
continuous extension operator

Cpep: WP (A) » WP (RY).
Moreover, if each local extension operator €, maps the space WE';”’ (AN Uy)into WE’}‘(”’ (R,
where E,: = E N E, < (AN U,), then also

Cpep: WP (A) > WP (RD).
Proof: For the construction of the extension operator let for every x € dA \ E denote U, the
open neighborhood of x from the assumption. Let Uy , ..., Uy be a finite subcovering of

dA\ E. Since the compact set A \ E is contained in the open set U; U, , there is an & > 0,
such that the sets Uy, ..., Uy, together with the open set U: = {y € R%:dist(y,0A\ E) >
e}, form an open covering of A. Hence, on A there is a C5°-partition of unity 1,74, ..., 75,
with the properties supp(n) < U, supp(n;) Uy,

Assume Y € Cy°(A). Thenny € Cy° (A). If one extends this function by 0 outside of A, then
one obtains a function ¢ € C53(R?) c CF(R%) c WE"'”(]Rd) with the property ||
) "Wk,p(Rd)= 7Y llyier -

Now, for every fixed j € {1,...,n}, consider the function y;:=n;y € wkp (A n ij).
Since AN Uy, is a WkP-extension domain by assumption, there is an extension of Y;jtoa

WP (R*)-function ¢; together with an estimate ||goj||Wk,p(Rd) < cllzpjllwk,p(mu ) where
Xj

c is independent from . Clearly, one has a priori no control on the behavior of ¢; on the
setA\ Uy, In particular ¢; may there be nonzero and, hence, cannot be expected to coincide
with ;1 on the whole of A. In order to correct this, let {; be a C (RM)-function which is
identically 1 on Supp(r]j) and has its support in Uy;- Then n;y equals {;¢p; on all of A.

Consequently, {;¢; really is an extension of ;1 to the whole of Rd which, additionally,
satisfies the estimate

"(j(pj”Wk,p(Rd) = C"<pj||Wk,p(Rd) = Cllnjlljllwk,p(AnU ) <cly ”Wk'p(A)’
Xj
where c is independent from . Thus, defining €, ,(y) = ¢ + X {;¢; one gets a linear,

continuous extension operator from C2(A) into W*P(R%). By density, €y, uniquely
extends to a linear, continuous operator

Crp: Wp P (A) > WP (RY).
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Finally, assume that the local extension operators map WEk’p (An ij) into WEk’p([Rd).
X X

Using the notation above, this means that ¢; can be approximated in W*?(R%) by a
sequence from ng_(Rd). Since {; is supported in Uy, multiplication by {; € Cp° (R%) maps
]

Cg (RY) into Cg*(R?*) boundedly with respect to the W*? (R?)-topology. Hence, {;¢p; €
]

WP (R?). Since in any case ¢ € WP (R?), the conclusion follows.

Proposition (5.2.23) allows to construct Sobolev extension operators from WD"""’ () into

WP (R%) and gives a sufficient condition for preservation of the Dirichlet condition. In this
we prove that in fact every such extension operator has this feature. Recall that this is the
crux of the matter in Assumption (iii) of Theorem (5.2.2). The key lemma is the following.
Lemma (5.2.24) [217]: Let k e N and p €]1,[ . Let A c R? be a domain, let E c 9A

be closed and let €, ,,: WEk'p (A) » WEP(R?) be a bounded extension operator. Any of the

following conditions guarantees that €, ,, in fact maps into WEk’p (RD).

(i) For (k,p)-quasievery y € E balls around y in A have asymptotically nonvanishing

relative volume, i.e.

B(y,r)NA
lim inf 2 1 ) oo (48)
r—0 r

(if) The set E is an [-set for some | €]d — p, d] and (48) holds for H;-almost every y € E.
(iii) There exists g > d such that €, ,, maps Cg°(A) into W*4(R?).

Proof : As Cz° (L) is dense in WEk’p (A) and since €, ,, is bounded, it suffices to prove that
given v € Cg’ the function u: = €, ,,v belongs to WEk’p(Rd). The proof of (i) is inspired by
[258]. Easy modifications of the argument will yield (ii) and (iii).

(i) Fix an arbitrary multiindex 8 with 8] < k — 1. Let DPu be the representative of the
distributional derivative Dfu of u defined (k — | 8|, p)-0.e. on R via

1
DB = lim ———— DB dx.
L) = I B gy O O

Recall from (46) that then
1

lim ——— DAu(x) — DPu(y)|dx

S

<lim|———
-0 <|B(y’ r)l B(y,r)

holds for (k — | 8], p)-0.e. y € R%. Since (48) holds for (k, p)-quasievery y € E, it a fortiori
holds for (k — ||, p)-quasievery such y. Let now N c R? be the exceptional set such that
on R4 \ N the function Dfu is defined and satisfies (49) and such that (48) holds for every
y € E\ N. Owing to Theorem (5.2.13) the claim follows once we have shown Dfu(y) for
ally e E\N.

For the rest of the proof we fix y € E \ N. For r > 0 we abbreviate B(r): = B(y,r) and
define

|D3u(x) — Dﬁu(y)|pdx> = 0. (49)

W: = {x € R\ N:|DPu(x) — DPu(y)| > ]1} (50)
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Thanks to (49) for each j € N we can choose some r; > 0 such that [B(r) n W;| <
277|B(r)| holds for all r €]0,7;]. Clearly, we can arrange that the sequence {rj}j is

decreasing. Now,

w:=| ] {(B)\ B(0)) n W) (51)
jEN
has vanishing Lebesgue density at y, i.e. 7r~¢|B(r) n W] vanishes as r tends to 0 : Indeed,
if r € Jr,q, 1], then

IBr)NW|<I| |BFr)nW)u U (B(r;) nw;) |

j=l+1

<274BM)| + z 277|B(r;)| < 27" B(r)|.
j=l+1
Now, (48) allows to conclude
| BN AN R\ W)) |

liminf 3 >0
r—0 T

Since u is an extension of v € C2(A) and y is an element of E it holds Dfu = 0 a.e. on
B(r) n A with respect to the d-dimensional Lebesgue measure if » > 0 is small enough.

The previous inequality gives | B(r) n An (R%\ W)) |> 0 if r > 0 is small enough. In
particular, there exists a sequence {Xj}j in R% \ W approximating y such that DA u(x;) = 0

for all j € N. Now, the upshot is that the restriction of Dfu to R% \ W is continuous at y
since if x € R% \ W satisfies |x — y| < r; then by construction [Dfu(x) — DPu(y)|. Hence,
DAu(y) = 0 and the proof is complete.
(if) If E is an [-set for some [ €]d — p, d], then we can appeal to Theorem (5.2.14) rather
than Theorem (5.2.13) and the same argument as in (i) applies.
(iii) By assumption u € WEk'p(]Rd), where g > d. By Sobolev embeddings each
distributional derivative DPu, || < k — 1, has a continuous representative D%u. As each
y € E c dA is an accumulation point of A\ E and since D*u = D%v holds almost
everywhere on A, the representative D*u must vanish everywhere on E and Theorem
(5.2.13) yields u € WP (R?) as required.
Proposition (5.2.25) [217]: ([232]) If a domain A c R is a W*P-extension domain for
some k € Nand p € [1, oo, then it is a d-set.
Theorem (5.2.26) [217]: Let k e Nand p € [1, 0 [. Let A be a bounded domain and let E
be a closed part of its boundary. Assume that for every x € dA \ E there is an open
neighborhood U, of x such that A n U, is a W*P-extension domain. Then there exists a
continuous extension operator

Cpep: WP (A) > WP (RD).
For the proof we recall the following result of Haitasz, Koskela and Tuominen.
Proof. According to Proposition (5.2.23) it suffices to check that each local extension
operator €, maps W, " (A N U,) into WP (R%), where Ey: = E N Uy, © (A N Uy). Owing
to Proposition (5.2.25) the W*P?-extension domain A N U, is a d-set and as such satisfies
(48) around every of its boundary points. So, Lemma (5.2.24).(i) yields the claim.
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We finally review common geometric conditions on the boundary part dA \ E such that the
local sets A n Uy really admit the Sobolev extension property required in Proposition
(5.2.23).

A first condition, completely sufficient for the treatment of most real world problems, is the
following Lipschitz condition.

Definition (5.2.27) [254]: A bounded domain A ¢ R¢ is called bounded Lipschitz domain
if for each x € dA there is an open neighborhood U, of x and a bi-Lipschitz mapping ¢,
from U, onto a cube, such that ¢, (A N U,) is the (lower) half cube and dA N Uy is mapped
onto the top surface of this half cube.

It can be proved by elementary means that bounded Lipschitz domains are W P -extension
domains forevery p € [1, oo [, cf. e.g. [231] for the case p = 2. In fact, already the following
(g, 8)-condition of Jones [235] assures the existence of a universal Sobolev extension
operator.

Definition (5.2.28) [217]: Let A ¢ R? be a domain and &,& > 0. Assume that any two
points x,y € A, with distance not larger than &, can be connected within A by a rectifiable
arc y with length L(y), such that the following two conditions are satisfied for all points z
from the curve y :

I x—zllly—zIl 1
Y 2T < Zdist(z, A%)
| x—yll €

1
l(y) < z Ix—yl, and

Then A is called (¢, §)-domain .

Theorem (5.2.29) [217]: (Rogers) Each (&, 6)-domain is a universal Sobolev extension
domain.

Theorem (5.2.30) [217]: Let A be a bounded domain and let E be a closed part of its
boundary. Assume that for every x € dA \ E there is an open neighborhood U, of x such
that A N U, is a bounded Lipschitz or, more generally, an (¢, §)-domain for some values
g,6 > 0. Then there exists a universal operator € that restricts to a bounded extension
operator W, (A) —» WP (R?) for each k € N and each p €]1, o[

we will discuss sufficient conditions for Poincare's inequality, thereby unwinding
Assumption (ii) of Theorem (5.2.2). Our aim is not greatest generality as e.g. in [250] for
functions defined on the whole of R¢, but to include the aspect that our functions are only
defined on a domain. Secondly, our interest is to give very general, but in some sense
geometric conditions, which may be checked more or less 'by appearance' - at least for
problems arising from applications.

The next proposition gives a condition that assures that a closed subspace of W1? may be
equivalently normed by the LP-norm of the gradient of the corresponding functions only.
We believe that this might also be of independent interest, compare also [258]. Throughout
1 denotes the function that is identically one.

Proposition (5.2.31) [217]: Let A c¢ R% be a bounded domain and suppose p €]1, «[.
Assume that X is a closed subspace of WP (A) that does not contain 1 and for which the
restriction of the canonical embedding W1?(A) & LP(A) to X is compact. Then X may be

equivalently normed by v - (fA|Vv|de)1/p
Proof First recall that both X and LP(A) are reflexive. In order to prove the proposition,
assume to the contrary that there exists a sequence {v;}, from X such that

P L R |
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After normalization we may assume |lvill,pay =1 for every k € N. Hence, {Vv,},
converges to 0 strongly in LP (A). On the other hand, {v, }, is a bounded sequence in X and
hence contains a subsequence {vkl}z’ that converges weakly in X to an element v € X. Since
the gradient operator V : X = LP(A) is continuous, {V”kz}l converges to Vv weakly in

LP(A). As the same sequence converges to 0 strongly in LP(A), the function Vv must be
zero and hence v is constant. But by assumption X does not contain constant functions

except for v = 0. So, {”kz}l tends to 0 weakly in X. Owing to the compactness of the
embedding X < LP(A), a subsequence of {vkl}z tends to O strongly in LP(A). This
contradicts the normalization condition ”vkl”LP(A) =

Lemma (5.2.32) [217]: Let p €]1, o], let A be a bounded domain and let E < dA be I-thick

for some [ €]d — p, d]. Both of the following conditions assure 1 ¢ WEl‘p (7).
(i) The set E admits at least one relatively inner point x. Here, ‘relatively inner" is with respect
to dA as ambient topological space.

(ii) For every x € dA \ E there is an open neighborhood U, of x such that A n U, is aW 1P-
extension domain.
Proof: We treat both cases separately.

(i) Assume the assertion was false and 1 € WEl’p (7). Let x be the inner point of E from the
hypotheses and let B: = B(x,7) be a ball that does not intersect dA \ E. Put %B: =B (x, g)

and letn € C;°(B) be such thatn = 1 on %B.We distinguish whether or not x is an interior

point of A.
First, assume it is not. For every ¥ € Cg°(A) the function ny belongs to

Wol'p(An B) and as such admits a W'P-extension n by zero to the whole of R%. In
particular,

1
- YO), if yesBNA
nm(y) = 1
0, if ye-B\A

and consequently,
— 1
19D 1 (38) =19 1,150
Since by assumption 1 is in the WP (A)-closure of C2°(A) and since the mappings
W, P(A) 3¢ o Vi € LP GB) and W, P(A) 3 ¢ = Vi € LP (A N %B) are continuous,

the previous equation extendsto y = 1:

IV, =0 VLI, 0.

p(%BnA):

On the other hand x is not an inner point of A so that in particulariB \ A is nonempty. Since

this set is open, EB \ /_\| > 0. Recall that by construction 1 € WP (B) vanishes a.e. on
%B \ A. Hence, for some ¢ > 0 the Poincare inequality

ni <cllvnl /

Il n IILP(%B) cll Vi IILP(%B)
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holds, cf. [258]. However, we already know that the right hand side is zero, whereas the left

: 1/p . : :
hand side equals EB N A| , Which is nonzero since %B N A is nonempty and open —a

contradiction. )
Now, assume x is contained in the interior of A. Upon diminishing B we may assume B c
A. For every i € C2(R%) we have myp € C2 (R%) with an estimate

1/p
I ny ||W1,p(Rd)S clly lwirgy= ¢ (J Y|P + |Vll)|de>
B
for some constant ¢ > 0 depending only on n and p. By our choice of B split

B=BnA=(BnNA)UBNIN=(BnNA)U(BNE).
Since y vanishes in a neighborhood of E,
1

p
BNA
Taking into accountn = 1 on %B, the same reasoning gives
|, wamipax= [ wyrax< [ wpirax (53)
1 1
?B fB A

By assumption there is a sequence {1,[11-}]_ c CZ(A) tending to 1 in the W1P(A)-
topology.Due to (52) and the choice of n, the sequence {mpj}j c C2(R%) then tends to
some u € CWEl’p([Rd) satisfying u = 1 a.e. on %B N A. Due to (53), Vu = 0 a.e. on %B,
meaning that u is constant on this set. Since %B N A as a non-empty open set has positive

Lebesgue measure, all this can only happen if u = 1 a.e. on %B. Hence,

1
lim —— udx =1
r—0 |B(y' T')l B(y,r)

for every y € §B N E, which by Theorem (5.2.13) is only possible if C;,, GB N E) = 0.

By Theorem (5.2.13) this in turn implies H,” GB N E) = 0 in contradiction to the I-

thickness of E.

(if) Again assume the assertion was false. Then by (i) there exists some x € E that is not an
inner point of E with respect to dA. Hence x is an accumulation point of dA \ E and by
assumption there is a neighborhood U = U, of x such that A n U is a WP extension domain.
We denote the corresponding extension operator by E. We shall localize the assumption 1 €
WEl'p (A) within U to arrive at a contradiction.

To this end, let r, > 0 be such that B(x,7,) < U and letn € C5°(U) be such that n = 1 on
B(x,1y). Then also n =nl € WE“’(A) and in particular n|,ny belongs to WFl'p(A nu),
where F: = B(x,1,/2) N E c d(A N U). Recall from That the W 1?-extension domain A N
U satisfies in particular

lim inle(y' ) QA nul >0
r—0 r
around every y € (A N U). Thus, Lemma (5.2.24)(i) yields u: = E(1|pny) € Wi? (RY).
On the other hand, similar to the proof of Lemma (5.2.24) let u be the representative of u
that is defined by limits of integral means on the complement of some exceptional set N
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with C; ,(N) = 0 and fix y € F \ N. Take W as in (50) and (51). Repeating the arguments
in the proof of Lemma (5.2.24) reveals that the restriction of u to R \ W is continuous at
y and that | B(y,r) nAnUN (RE\ W) |> 0 if r > 0 is small enough. By construction
u=1ae on B(y,r)nAnUN (RE\ W) if r <r,. Hence, there is a sequence {x]-}j

approximating y such that u(x;) = 1 for every j € N. By continuity u(y) = 1 follows. This
proves that u = 1 holds (1, p)-quasieverywhere on F.

By Theorem (5.2.13) this can only happen if C; ,(F) = 0, which as in (i) contradicts the [-
thickness of E.

Proposition (5.2.33) [217]: Let p €]1,00 [ and let A be a bounded domain. Suppose that
E c 0A is [-thick for some [ €]d — p,d] and that for each x € dA \ E there is an open

neighborhood U, of x such that A n U, is a W1P-extension domain. Then WEl‘p(A) may

equivalently be normed by v - (fA|Vv|de)1/p

Now, also Theorem (5.2.3) follows. In fact, this result is just the synthesis of the above
proposition with Theorems (5.2.2).

The strategy of proof is to write u as the sum of v € WP (Q) with v/dist,, € LP(Q) and
w € WP with support within a neighborhood of dQ \ D. Then v can be handled by the
following classical result.

Proposition (5.2.34) [217]: ([226]) Let ® € A & R be openand letp €]1,[. Thenifu €
WP (A) and u/disty, € LP(Q), it follows u € W, (A).

For w we can - since local extension operators are available - rely on the techniques

developed. A key observation is an intrinsic relation between the property di’:t € LP(Q)
D

and Sobolev regularity of the function log(  dist ;). In fact, a formal computation gives
V(ulog(distD)) = log(distp)Vu + diZt Vdist,.
Details are carried out in the following five consecutive steps?
Step 1: Splitting u and handling the easy term
As in the proof of Proposition (5.2.23) for every x € dQ\ D, let U, be the open
neighborhood of x from the assumption, let U , ..., Uy be a finite subcovering of 0Q \ D
and let £>0 be such that the sets Uy,.., Uy, together with U:= {y €
R4: dist(y,dQ \ D) > e}, form an open covering of Q. Finally, let n,7n4,..,1,, be a
subordinated C,°-partition of unity.
The described splitting is u = v + w, where v: = nquand w: = ¥7_;nju = (1 — n)u. Since
distyq(x) = min {g, disty(x)} = min {ediam(Q)7?, 1} - distp (x)
holds for every x € supp(n) N £, the function v € WP (Q) satisfies
j .v pdecj .v deSCJ _ pdx<oo
q ldistyq q ldistp q ldistp
by assumption on u. Now, Proposition (5.2.34) vyields v € Wol"’ Q) c WDl'p (). By
assumption the sets Q N Uy, 1 <j<n,are W P-extension domains. Since w = (1 — n)u,
where (1 —n) has compact support in the union of these domains, an extension w €
wtP(R4) of w € WP (Q) with compact support within Uiy Uy, can be constructed just

as in the proof of Proposition (5.2.23). Now, if we can show w € WDl"’ (Q2), then by Step 1
also u = v + w belongs to this space.
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Step 3: Estimating the trace of w
To prove w € WDl"’(]Rd) we rely once more on the techniques used in the proof of Lemma
(5.2.24). So, let & be the representative of w defined on R4 \ N via
O(y):=lim——m—— wdx,
-0 |B(yJ T')l B(y,r)
where the exceptional set N is of vanishing (1, p)-capacity. Put

n
U, = U UX]., Q.:=QnU,, and D, =D nNU, € 0Q,.
j=1

Since w has support in U, it holds @(y) = 0 for every y € D \ D,. For the rest of the step
lety € D, \ N.

By Proposition (5.2.25) each set 0 N Uy; is a d-set and it can readily be checked that this
property inherits to their union Q,. Hence, Q, satisfies the asymptotically nonvanishing
relative volume condition (48) around y with a lower bound ¢ > 0 on the limes inferior that
is independent of y and - just as in the proof of Lemma (5.2.24) - a set W < R¢ can be
constructed such that the restriction of @w to R% \ W is continuous at y and such that
|B(y, N NQ, N R\ W)| > cr?/2 if r > 0 is small enough. By these properties of W :

1
ol =

lim wdx
0 |B(y,7) N Q, N (RT\ W) B(y,r)NQ.N(RHW)

< lim sup |w|dx

d
-0 T Jgymna,

= lim sup — |w|dx.
r—0 crd B(y,r)nQ,
In order to force these mean-value integral to vanish in the limit » — 0, introduce the

function log( dist D)_l, which is bounded above in absolute value by |logr|~* on B(y,r)
if r < 1. It follows

1
|@(y)| < climsup|logr|™?! <_d_[ |wlog(distD)|dX>. (54)
" Jeyrna,

r—0
So, since |logr|™! - 0 asr — 0 the function @ vanishes at every y € D, \ N for which the
mean value integrals on the right-hand side remain bounded as r tends to zero.
Step 4: Intermezzo on wlog(distp)
In this step we prove the following result.
Lemma (5.2.35) [217]: Let p €]1,00[, let A € R be a bounded d-set, and let E c dA be
closed and porous. Suppose u € WP (A) has an extension v € WP (R%) and satisfies

“_ e LP(A). Ifre]1,p[ and s €]0,1[ , then the function |ulog(dist)| defined on A has

dist
an extension in the Bessel potential space H5P (R%) that is positive almost everywhere.
For the proof we need the following extension result of Jonsson and Wallin.

Proposition (5.2.36) [217]: ([236]) Let s €]0,1[,p €]1, o[ and let A ¢ R% be ad set. Then
there exists a linear operator € that extends every measurable function f on A that satisfies

1/p
If) = fFIP
I f llpeayt ﬂx’yeA - dxdy <

lyl<1i
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to a function €f in the Besov space BY'? (R%) of all measurable functions g on (R%) such

that
/D
19(x) — g(¥)|? !
+ dxd < 00,
19 e ey (—Ux,yERd X —y|@rsp Y

Remark (5.2.37) [217]: The Besov spaces are nested with the Bessel potential spaces in the
sense that BY? (R4) c HS"#P(R%) for each s > 0 and every £ €]0,s[ . Moreover,
wiP(R%) ¢ BPP(R%). Proofs of these results can be found e.g. in [254].

Using Remark (5.2.37) it suffices to construct an extension in BP'? (R%) with the respective
properties. Moreover, by the reverse triangle inequality it is enough to construct any
extension f € BP'P (R%) of ulog dist - then |f| can be used as the required extension of | u
log dist |. These considerations and Proposition (5.2.36) show that the claim follows
provided

| =

. lu(x) log(distg (x)) — u(y) log(distg (x))|" r
IIulog(dlstD)IILr(A) + (ﬂ E e E dxdy | (55)
X,YyEA
Is finite.
To bound the L™ norm on the left-hand side of (55) choose g €]1, o[ such that % = % +$

and apply Holder's inequality

Iiulog(distE)IiLr(A) <l ullppcay log(distp)ll qy-
For the second term on the right-hand we use that the Aikawa dimension of the porous set
E is strictly smaller than d. This entails for some a < d and some x € E the estimate

j distz (x)* %dx < j distz (x)* 4dx < ¢, (2 diam A)% < oo,
A B(x,2 diam A)

Hence, some negative power of disty is integrable on A and by subordination of logarithmic
growth log(distg) € L2 (A) follows. Altogether, ulog(distz) € L™ (A) taking care of the first
term in (55). By symmetry the domain of integration for the second term on the left-hand
side of (55) can be restricted distg(x) = distz(y). By adding and subtracting the term

u(y)log(distg(x)) it in fact suffices to prove that
1

( [ [ fogaists () |Tolxdy)F (56)
A Ja |X _ yl +sr
and
. llog(dist () — log(distsMI™  \’
| wor [, R dxdy | (57)

distg(x)=distg(y)
are finite. Fix s < t < 1, write (56) in the form

( f [u(9) — u@)I” llog(dists (NI dy)”
A

A |X — yldr/p+tr |X — yldr/q+sr—tr

and apply Holder's inequality with % = % + 5 to bound it by
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u(x) — u(y)[? Y/ llog(dist; (x))|? 1
< jf -, dxdy ff TGt dydx
Ada  Ix—ylettP Ay [x—yldFrE=Da

1 1
< [log(dist)| ue —ulP N\ 1\
= POBEE e AJa Ix—yldrte o iy|<diam(a) Y4760 Y

Now, log(disty) € L1(A) has been proved above and the third integral is absolutely
convergent since d + (s — t)q < d. Finally note that by assumption u has an extension v €
WP (R4). Since WP (R%) c BP? (R4) the middle term above is finite as well, see Remark
(5.2.37).
It remains to show that the most interesting term (57) is finite. Here, the additional
assumptions on u, s, and r enter the game. By the mean value theorem for the logarithm and
since disty is a contraction, the r-th power of this term is bounded above by
|distg (x) — distg (y)|"
dxdy

[ or .
XEA dist r — yvld+sr
A distp(osdists(y) F)"Ix =yl
T

<f u(y) Ix —y|"
= Jp Mdistg()1 Jy [x = y|atsT

u(y) |’ j 1
< , dy ———dx.
-]A distz(y) ix|<diam(a) [X]4TTED
Now, the integral with respect to x is finite since r(s — 1),0. The integral with respect to y

Is finite since by assumption d: Is p-integrable on the bounded domain A and thus r-

dxdy

tg

integrable for every r < p.

On noting that by Definition (5.2.6) a subset of a porous set is again porous, Lemma (5.2.35)
applies to the bounded d-set Q, and the porous set D, c D. Moreover, w = (1 —n)u €

WTP(Q,) has the extension W € WP (R%) and satisfies
p
u(x)
j _® dx<lIl1—-17 Ilooj
Q, Q

distp_(x)
Hence we can record:
Corollary (5.2.38) [217]: For every r €]1,p[ and every s €]0,1[ the function
|wlog(distp, )| defined on Q, has an extension f;, € HS"(R%) that is positive almost
everywhere.
Step 5: Re-inspecting the right-hand side of (54)
We return to (54). Given r €]1,p[ and s €]0,1 [ let f;, € HS"(R®) be as in Corollary

(5.2.38). By (46) we can infer

1 1
lim sup — |lwlog(distp)|dx < lim sup —dj fordx < o
r-o0 T B(y,r)nQ, r-0 T B(y,r)

for (s,r)-quasievery y € D, \ N. By the conclusion of Step 3 this implies @(y) = 0 for
(s,r) quasievery y € D, \ N. To proceed further, we distinguish two cases:

(i) It holds p < d. Since the product sr < p < d can get arbitrarily close to p, Lemma
(5.2.10) yields for every r €]1,p [ that @ = 0 holds (1,r)-quasieverywhere on D, \ N.
Moreover, since C; ,(N) = 0 by definition, @ = 0 holds even (1,r)-quasieverywhere on
D,.

p

u(x)
distp (x)
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(ii) It holds p > d. Then & is the continuous representative of @ € WP (R%) and N is
empty, see the beginning of Step 3. Moreover, we can choose s and r such that d — [ < sr
and conclude from the comparison theorem, Theorem (5.2.11), that @ vanishes H;”-a.e. on
D,. Since D is [-thick and U, is open, for each y € D n U, the set B(y,r) N D N U,
coincides with B(y,r) n D provided r > 0 is small enough and thus has strictly positive
H;° — measure. So, the continuous function @ has to vanish every where on D n U, as well
as on the closure of the latter set - which by definition is D,.

Summing up, @ = 0 has been shown to hold (1,r)-quasieverywhere on D, for every
r €]1, p[. From the beginning of Step 3 we also know that @ vanishes everywhere on D \
D, and as @ € WP (R%) has compact support, Holder's inequality yields @ € WP (R%).
Combining these two observations with Theorem (5.2.13) we are eventually led to

® € WP (R%) N ﬂ Wy (R9). (58)
1<r<p
We continue by quoting the following result of Hedberg and Kilpelainen.
Proposition (5.2.39) [217]: ([234]) Let p €]1,00[ and let A € R be a bounded domain
whose boundary is I-thick for some [ €]d — p, d]. Then

W2 (A) N ﬂ W (M) < WP (A).

1<r<p
If one asks: 'What is the most restricting condition in Theorem (5.2.2)?', the answer
doubtlessly is the assumption that a global extension operator shall exist. Certainly, this
excludes all geometries that include cracks not belonging completely to the Dirichlet
boundary part as in Fig. [2].
Since the distance function dist ,, measures only the distance to the Dirichlet boundary part
D, points in 0 that are far from D should not be of great
relevance in view of the Hardy inequality (43). In the following considerations we intend to
make this precise. Let U,V < R be two open, bounded sets with the properties

DcUVND=¢g QcUUV, (59)
We take U as a small neighborhood of D which - desirably- excludes the 'nasty parts' of
dQ \ D. More properties of U, V will be specified below.
Let ny € C°(U),ny € C(V) be two functions with n, + 1, = 1 on Q. Then one can
estimate

1/p 1/p 1/p
<j Ju|Pdist,” dx) < (] InyulPdist,? dx) + <f InyulPdist,” dx) :
Q UnQ vnQ

Since distp, is larger than some € > 0 on supp(n,) < V, the second term can be estimated

by i (fﬂ |u|de)1/p_ If one assumes, as above, Poincar'e's inequality, then this term may be

estimated as required. In order to provide an adequate estimate also for the first term, we
introduce the following assumption.

Assumption (5.2.40) [217]: The set U from above can be chosen in such a way that A: =
QN Uisagainadomainand ifoneputsI': = (dQ\ D) n U and E: = dA \ T, then there is a
linear, continuous extension operator &: WEl'p (A) - WEl'p (R%).

Clearly, this assumption is weaker than Condition (iii) in Theorem (5.2.2); in other words:
Condition (iii) in Theorem (5.2.2) requires Assumption (5.2.40) to hold for an open set U ©
Q.
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We discuss the sense of Assumption (5.2.40) in extenso. Philosophically spoken, it allows
to focus on the extension not of the functions u but the functions n,u, which live on a set
whose boundary does (possibly) not include the 'nasty parts' of dQ\ D that are an
obstruction against a global extension operator. In detail: one first observes that, for n =
ny € CF(U) and v € W,P(Q), the function nv|, even belongs to W, P (A), see [233].
Secondly, we have by the definition of E
AUNQ=0OUNQ\TcdA\T =E.

This shows that the 'new' boundary part 09U n Q of A belongs to E and is, therefore, uncritical
in view of extension. Thirdly, onehas D =D NU € dQ N U c dA, and it is clear that the
'new Dirichlet boundary part' E includes the 'old' one D. Hence, the extension operator &
may be viewed also as a continuous one between WEl’p (A) and WDl’p (R%). Thus, concerning
v: = nu = nyu one is - mutatis mutandis - again in the situation of Theorem (5.2.2): nu €
WP (A) € WP (A) admits an extension F(nu) € WP (R?) € WP (RY), which satisfies
the estimate || F(nu) ”Wg.p(Rd)S cllnu "Wg,p( A): the constant ¢ being independent from w.

This leads, as above, to a corresponding (continuous) extension operato g.:WEl‘p(A) -

I/I/01'p (A.). Here, of course, A. has again to be defined as the connected component of B \ D
that contains A. Thus onemay proceed again as in the proof of Theorem (5.2.2), and gets,

foru € WP (Q),

mul\? Il P LGOI )
L(dist,) dX_L(dist,;) dx < fA <—distaA> dx < C||V(3.(77u))||Lp(A.)

< T MO, ap gy < € N 1Dy < € (I W gy +I V2 Iy ).

since nu belongs to WEl’p (A c WDl’p (A). Exploiting a last time Poincar'e's inequality,
whose validity will be discussed in a moment, one gets the desired estimate.
When aiming at Poincare's inequality, it seems convenient to follow again the argument in

the proof of Proposition (5.2.31): as pointed out above, the property 1 ¢ WDl'p () has to do
only with the local behavior of Q around the points of D, cf. Lemma (5.2.32). Hence, this
will not be discussed further here.

Concerning the compactness of the embedding WDl'p(Q) S LP(Q), one does not need the
existence of a global extension operator €: WDl’p (Q) » WP(RD). In fact, writing for every

vV E WDl'p(Q) again v =nyv +nyv and supposing Assumption (5.2.40), one gets the
following:

If {v,}, is a bounded sequence in WDl’p(Q), then the sequence {nyvila}x is bounded in
WEl'p(A). Due to the extendability property, this sequence contains a subsequence

{nkallA}l that converges in LP(A) to an element n,. Thus, {”U”kz}, converges to the

function on Q that equals v;; on A and 0 on Q \ A. The elements n, vy, in fact live on the set
Il := QNnV and are zero on Q\ A. In particular they are zero in a neighborhood of D.
Moreover, they form a bounded subset of WP (11). Therefore it makes sense to require that
Il is again a domain, and, secondly that 11 meets one of the well-known compactness criteria
WP (1) & LP (1), cf. [250]. Keep in mind that such requirements are much weaker than
the global W P-extendability, and in particular include the example in Fig. 2, as long as the
triangle X has a positive distance to the six outer sides of the cube. Resting on these criteria,
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one obtains again the convergence of a subsequence {"V”k1|n} , that converges in LP (Il)
l

towards a function v,,. The sequence {nvvkl}l, then converges in LP(Q) to a function that
equals vy, on Il and zero on Q \ V. Altogether, we have extracted a subsequence of {v, };
that converges in LP(Q).

Theorem (5.2.41) [217]: Let Q c R¢ be a bounded domain and D < 9 be a closed part of
the boundary. Suppose that the following three conditions are satisfied:

(i) The set D is I-thick for some [ €]d — p, d].

(i1) The space WDl’p () can be equivalently normed by Il V -l q-

(iii) There are two open sets U, V < R that satisfy (59) and U satisfies Assumption (5.2.40).
Then there is a constant ¢ > 0 such that Hardy's inequality

p
f dx < CJ |Vu|Pdx
Q Q
holds for all u € W,"? ().

Section (5.3): The Solid Torus

The classical Hardy inequality was established by Hardy in 1920's and in the continuous
form it informs us that:

If 1 <p < o and f is a non-negative p-integrable function on (0, «), then f is integrable
over the interval (0, x) for each positive xand

fo ) G jo ) f(t)dt)p dx < (p%)p jo " dx (60)

4
The constant (ﬁ) in (60)is sharp, i.e. it cannot be replaced by a smaller number so that

dist,

(60)remains true for all relevant functions, respectively, and equality holds only if f = 0.

The inequality (60) was established by Hardy in [270] and was first highlighted in the

famous book [214]of Hardy, Littlewood, and Polya or in the original article of Hardy [271],

who also showed that the constant is not attained, i.e. the variational problem has no

minimizer. As known, inequality (60) is the standard form of the large family of the Hardy

and Hardy-type inequalities which constitute an essential tool in Analysis, in the study of

PDE's, and in the Calculus of variations. In addition, we can find various applications in

Geometry, in Mathematical Physics and in Astrophysics.

A proof of the above inequality was given by Landau, in a letter to Hardy, which officially

was published in [274]. For a short but very informative presentation of prehistory of

Hardy's inequality, see in [273].

Coming back to the inequality (60), if we set u(x) = foxf(t)dt, we obtain the inequality
j . (u(x))p dx < (=F )p f " (w@)dx (61)

o X x p _ 1 0 )

which is the most popular form of the classical Hardy inequality.

The following Hardy inequality is the classical generalization of Hardy inequality (60)to

higher dimensions and according to which forn > 1,1 < p < cowithp # nand forall u €

Co’ (R™ \ {0}, it holds
p
J lu(x)| dx < |L
rn |X[P

p
|[Vu(x)|Pdx, (62)
Rn
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A i |
where Vu = ( P axn) Is the gradient of u (see [214]or [167]). The constant |p_1|

sharp and is not attained in the corresponding Sobolev space, which is W2 (R™) when 1 <
p <nand W2 (R" \ {0}) whenn < p < .

Forp = 2 and n > 2, this inequality is also called the uncertainty principle. For p = 2 and
n = 2, obviously, is trivial. However, in this case, if we weaken the singularity a bit by
adding a logarithmic term or/and some extra conditions to the functions, for all u €
Cs° (R? \ {0}), we obtain the following inequalities (see [280]):

u?(x) : _
Cij FECETALD dx < fRz |Vu(x)|%dx, if J| u(x)dx = 0(63)

x|=1

and

u?(x) .
Cj = dx < J |Vu(x)|?dx, if f u(x)dx = 0 for all > 0. (64)
R2 |x| R2 |x|=7

We note here that in the one-dimensional case, it was proved by Hardy in 1925 that for all
p-integrable, p > 1 on (0,1), functions u, it holds

: |u<x)|p P\ (!

O ax < (—) f ' () Pdx, (65)
(0 1) (X) n—p 0

where d 1y(x) = min(x, 1 — x) (see in [270], [271] and [36]).

In addition, Hardy showed that the constant is not attained, i.e. the variational problem has

no minimizer. Furthermore, inequality (65) confirms that in the one-dimensional case no

geometrical assumption is required on the domain.

It is quite natural to ask: Does an inequality of the form (65) continue to exist in the case of

Q c R™ with n > 2 ? The answer to this question is positive, however, in regard to Hardy

inequalities for domains in R™, n > 2 the situation is far more complicated than in the one-

dimensional case and in general the best constant in (65) depends on the domain.

If we denote by x = (x', x,,)a pointin R", where x" = (x4, ..., x,,_1), the Hardy inequality

in the half space R? = R"*"1 x (0, ») asserts that if p > 1, then for all u € C5°(R%})

p—1 Iulp
(—) j B dx < f \VulPdx, (66)
p RY X5y R}

n

where the constant (p;) is sharp and is not attained in W,"*(R%).

As a direct generalization of inequality (66) on domains in R",n > 2 we can take the
following: Let Q be adomain in R™, n > 2 with non empty boundaryand 1 < p < co. Given
Q, let dg(x) be the distance from x to the boundary 9Q, that is

do(x) = min {|x —y|:y € Q}.
Then, the Hardy inequality in higher dimensions should be of the type

p

v ——dx < f |Vu|Pdx, (67)
Q d_Q

Which means that a positive constant u exists there so that the inequality (67) is valid for all

u belonging to some suitable space. And if that is so, it valid unconditionally on £, or some

prerequisites are necessary, but which ones?

Maz'ya showed in 1960 that the validity of the Hardy inequality depends on measuring

theoretical conditions on the domain [249], [49]. Additionally, Hardy type inequalities in

R™ n > 2, appeared by N ecas in 1962 [85] of Lipschitz domains. The result of N ecas

that Hardy inequality holds on strongly Lipschitz domains constitutes a milestone in the
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study of inequalities and it will later become quite understandable. In 1986, Ancona in [57]
proved that for a simply connected domain Q. c R? and for all u € C5°(Q), it holds

1 [ u?

16 Jo d3
which means that the Hardy constant is always at least equal to 116. It is still an open
question whether this constant is optimal or not. In 1988, Lewis proved the inequality (66)
in domains whose complements are uniformly fat [83]. Two years later, the question
discussed by Wannebo [88] is, how general Q can be in order to allow the inequality to be
the same as in the case for bounded Lipschitz domains? It has become very clear due to the
works of Ancona, Lewis and Wannebo, that the regularity of the boundary is not essential
for Hardy inequalities. In addition, as it was proved in 1995 by Davies [211], in the n-
dimensional case the best constant

dx <f |Vu|?dx, (68)
Q

_ [ |VulPdx
@ = il
u —_—

0 fﬂ |dQ| dx
called Hardy constant, varies according the domain, and the first results to this direction
certify that it strongly depends on the geometrical properties of Q. It is now well known
that if 0 is an arbitrary open convex domain in R", n > 2, with boundary 9, belonging to
C1-class of smoothness in the neighborhood of at least one point x, € 9, then for arbitrary

—1\P

1<p<oo,u,(Q)= (%) . A proof for p =n = 2 was presented in 1995 by Davies

[211]and forn = 2 and 1 < p < oo by Matskewich and Sobolevskii in 1997 [276]. A simple
proof of the result in the general case was provided in 1998 by Markus, Mizel and Pinchover
(see [48], Appendix A). It is shown that for all smooth n-dimensional domains, wu,(2) <

“1\P
(%1) . Moreover, for all those domains, it is shown that a minimizer for p,(Q) is not

possessed. Especially, for p = 2, it is proved that pu, () <% if and only if the Rayleigh
quotient possesses a minimizer. In addition, the given examples show that strict inequality

—1\P
may occur even for bounded smooth domains, but p,, () = (%) for convex domains.
It is clear that Hardy inequality holds in an open domain with the best constant p,,(Q) =

—1\P
(p71) , 1If Q0 is a convex domain. However, it is not clear if Hardy inequality with best

—1\? . . . . .
constant u, () = (pTI) is valid only for convex domains, even in the most simple case

where p = 2. We mention on here that in this direction significant progress has been made
since Barbatis, Filippas and Tertikas [92] relaxed the assumption of convexity for the
domain by introducing the global geometric condition —Adg > 0 on £ (in the distributional
sense in Q). They showed that if Q satisfies the above condition, then Hardy inequality is

valid for u, (Q) = i. We note that this condition is equivalent to the convexity of the domain

forn = 2; butforn > 3 it is a much weaker condition than the convexity. it has been proved
that it is equivalent to the fact that the mean curvature of the boundary is non-negative (see
[278], [103]). Also, we note that no smoothness assumption on the boundary is imposed.

As a first conclusion, to all dimensions for convex domains the value of w,,(Q) is the same

as in the classical one-dimensional case, but there are smooth domains so that u, () is
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—1\P
smaller than (%) (see [276], [48], [269], [261]). Davies, also, has constructed non convex

domains in R™, n > 3 with Hardy constant as small as one wishes, thereby proving that for
simply connected domains no such positive constant u exists, not depending on the
dimension [212]. Furthermore, Barbatis and Tertikas determined the Hardy constant of an
arbitrary quadrilateral in the plane [262]. In addition, in [263] the same computed the Hardy
constant for other non-convex planar domains. In both aforementioned articles it is
confirmed that the Hardy constant is related to that of a certain infinite sectorial region which
has been studied by Davies. On the other hand in 2015, Egert, Haller-Dintelmann, and
Rehberg in [217]developed a geometric framework for Hardy inequality on a bounded
domain when the functions do vanish only on a closed portion of the boundary.

For someone looking for sufficient conditions on Q in aim to find the best constant in Hardy
inequality, it is logical that they seek for some convexity on Q because of the strong
influence of the spirit of the most articles which are devoted to this problem. However, there
are the N'ecas's [85] and Maz'ya's [249] articles where the studied cases do not require some
kind of convexity. Concerning this subject, we present at this point an excerpt from the book
of Opic and Kufner (see [167]p. 235):

...The conditions derived which guarantee the validity of the N-dimensional Hardy
inequality are mostly sufficient. V.G. MAZ'JA [49] has derived necessary and sufficient
conditions under which (8)holds for every u € C,° (). His conditions are expressed in
terms of capacities and are difficult to verify... In our opinion, the advantage of MAZ'JA's
results lies in the possibility of obtaining some information about the capacity of a set, once
we have derived some information about the validity of the corresponding Hardy inequality
by another method...

In order to derive Hardy-type inequalities for non-convex domains R™,n > 2 some
geometrical conditions must be considered on the domain which act as 'non-convexity
measures'. The objective in this direction is to obtain the Hardy inequality for simply-
connected non-convex domains and to investigate how the constant ., () depends on the
non-convexity parameters. Therefore, in contrast to defining the convexity of a domain,
'measuring of non-convexity' can be done in many ways (see for example [207], [215]). In
addition, Korte, Lehrbéck, and Tuominen in [54] proved an equivalent result between the
validity of a pointwise Hardy inequality in a domain and uniform capacity density of its
complement.

According to all mentioned above in regard to Hardy inequalities for domains Q in R",n >
2, the best constant in (67) depends on the domain Q and no universal Hardy constant exists
(see [261], [262], [263], [212]).

Based on the above, although it does not seem to be possible to determine a general
criterion on the basis of which we can classify the domains on the value of their best Hardy
constant, we can extend some results that hold on convex domains and prove that they hold
in some cases of non-convex domains, too. We establish the classical Hardy inequality and
some variants of it in the solid torus, we calculate their best constants and we prove that they
are the same with the standard Hardy best constants which appear in convex domains
although the solid torus has no convex boundary but it has all kinds of curvature; i.e. there
are points where the curvature is positive, negative or zero. This result confirms that the
convexity of the boundary is a sufficient condition to obtain the optimal constants in the
Hardy inequalities but not a necessary condition.
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we make use of the fact that Sobolev embeddings can be improved in the presence of
symmetries (see Theorem 9.2 in [46]). Similar results have been obtained in specific
contexts by Strauss [281], by Lions [275] and by Cotsiolis and Iliopoulos [264].

We devoted to the study of the classical Hardy inequality and of a weighted Hardy inequality
in the solid torus in detail., some improved Hardy-type and LP,p > 1 Hardy inequalities
with weights are considered. Finally, , some results concerning the Hardy-Morrey inequality
are presented.

Let T be the solid ring torus in R3 with minor radius rand major radius R. This is the
"doughnutshaped™ domain generated by rotating a disk of radius rabout a co-planar axis at
a distance R from the center of the disk, and it is represented by

2
T = {(x,y,z) € Rg’:(w/xz + y?2 —R) +z2<r( R>r> 0}.

Let WYP(T),p = 1, be the classical Sobolev space, that is the space of all u € LP(T) with
Vu € LP(T) and WOLP(T) be the closure of C°(T) in WLP(T). Here, LP(T) is the usual
Lebesque space of order p, and V stands for the gradient operator, acting on the distribution
space D’ (T). Since the solid torus T is an open bounded domain in R3 and its boundary is
smooth, in order to study the Hardy inequality and some of its variants, it seems that the
suitable functional space to be used is WP (T). Meanwhile, by Meyers-Serrin's Theorem
[277], WP (T) = HYP(T), where H'P(T) is the completion of C*(T) with respect to the

norm
1/p 1/p
I w e ry= (j |Vu|pdx> + (j |u|pdx> .
T T

Therefore, it would be natural to work in H*?(T). However, the solid torus T = T U 0T is
invariant under the action of the subgroup G = 0(2) x I of the isometry group O (3), so we
will rely on spaces containing functions which are invariant under the action of G.
To exploit the symmetry presented by the torus we are working as follows: Consider an
arbitrary plane II containing the axis zz" which forms with the positive semi-axis Ox angle
0,0 € R, and the interval I = [0,0 + 2m) (or I = (6,60 + 2m]). We, also, denote D the unit
disk centered on the beginning of the axes, i.e.
D ={(t,s) e R*:t* + 5?2 < 1}.
Let now the transformation
ET\{TNI}—>IxD,
defined to be £(x,y,2) = (w, t, s), with w € I and such that
cosw = xx2 + y2,sinw = yx2 + y2,

( (

arctan%,x 0 arctan%,x 0

T T
w=4 =,x=0y>0,orw=% =, x=0,y>0, ,x=0,y <0,

2 2
m T
L3§,x=0,y<0 k3§,x=0,y<0
and (t,s) € D such that
x?+y?—R z
t = " ,s=;,0§t,s<1. (69)
The Euclidean metric g on (T, &) can be expressed as
(Vgeo &) (w,ts)=r%R+r0). (70)
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Under to above considerations, if for any function u defined on T we define the function
¢ =u, &1, thisfunction does not depend on the variable w, i.e. it holds that:
P(t,s) = (woé Hwt,s). (71)
Thus, we need to use functions whose the values do not depend of the orientation in the
xy — plane and therefore must be of the form
u(x,y,z) = u( x2 4+ yZ,O,Z) =u (O, x2 + yz,z).
For a better understanding, we mention that these functions play for the torus the same role
as the radial functions for the sphere (see in [265] and [46]).
We consider now the following spaces:
Co’,G(T) ={ueCy’(T):uet =u,Vt € G},

Ce(T)={ueC®(T):uect =u,Vvt € G},
And

LP(T) ={u € LP(T):uot =u,V1 € G}.
We define, also, the Sobolev space Hé’p (T) forany p = 1, as the completion of C7°(T) with
respect to the norm ||-ll;1», and the Sobolev space Hél’g (T) as the closure of Cy(T) in

1’p
H:"(T).
Due to (71), for any function u € Hé’p(T), the following equalities hold:
] |lulPdx = anzj |p|P (R + rt)dtds (72)
T D
] |VulPdx = anz‘pJ |[V@|P (R + rt)dtds. (73)
T D

The following lemma gives the relation between the distance function in the solid torus and
in the unit disk which is the key to prove the main theorem, since it allows us to transfer the
problem from the solid torus to the unit disk. This fact is essential, since it enables us to
show that the classical Hardy inequality which holds in convex domains remains true and
in non-convex domains.
Lemma (5.3.1)[259]: The distance function d in the solid torus T can be expressed via the
distance function d, in the unit disk D as

dr() = rdp(). (74)
Proof: Let P(x,y,z) € T an arbitrary point of it and Q(w, t,s) = E(P(x,y, z)) its imagine
of Pin I x D. Since T is invariant under the action of the group G = 0(2) x I, the distance
d(P,0T) of P from the boundary dT of the torus T remains invariant for any point which
belongs to the orbit of P. We consider the plane defined by the point P and the z-axis and
let C be the center of the circle which is defined as the intersection of this plane and the torus
T. Then, considering the relations between the (x, y, z) and (w, t, s) which are given above,
we obtain consecutively

d(P,dT) = r — (CP) = r—\/(,/x2 +y2 —R)2 + 72
=1 —/(rt)? + (rs)? =r(1—\/t2 +SZ)

=rd(Q,dD).
Let P;(x;,v;,z;) be a point in T and Op; its orbit under the action of the subgroup G =
0(2) x I of the group 0(3) of the type
(x,y,2) = (A(x,y),2),A € 0(2),(x,y,2z) € R3.
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Consider the open small solid torus (a tubular neighborhood of the orbit Op; )
— 2
Ty, = {(x, y,z) ET: (Jx2 + y? — Rj) +(z - Zj)2 <6%,6; = ijj},
where R; = /x]-z + y]-2 Is the horizontal distance of the orbit Op, from the axis z'z and ¢; >

0 given. Then, the following lemma is valid.
Lemma (5.3.2) [259]: Forany ¢; > 0,j = 1,2, ... N and for all p > 1, there exists §; = &;R;

so that for all u € Cy°, G (Tg}.),
|u|? 1+eg/ p P
f —5—dx < —— ( — ) J |Vu|Pdx. (75)
Ts; dT(;j 1-g\p-1 Ts,
Proof: On every Ts, we define the transformation
£:T5, \{Taj N n} S IxD,
in the same way as we defined the transformation &: 7 \ {T N I1} = I X D defined above.
Then the Euclidean metric g on (Té‘}., fj) due of (70) can be expressed as
(Vg &) (wt,s) = 87 (R; + 8jt).
For u € Cy°,G (ng) by (71) arises that ¢; =u-o fj‘l and by (72) because of Lemma
(5.3.1)we obtain

ul” 2-p |¢1’|p
dex < (1+¢)2nR;6; o dtds. (76)
T5j Té‘j D D
Because ¢; € Cy°(D) and since the space Cy°(D) is dense in Hé‘p(D) with respect to the
norm |||l ;1» in the unit disk D, according to Theorem 1 of [276], yields

P p
f @dtds < (L) j Vo, | dtds. 77
D dD p— 1 D
Moreover, from (73) arises

1
vo;|"deds < - J |Vu|Pdx. (78)
]D | Jl (1 — SJ)ZHR]6]2 P Ts.
Therefore, combining the inequalities (76), (77) and (78) we obtain the inequality (75). Our
first result concerns the classical Hardy inequality in the solid torus.
Theorem (5.3.3) [259]: Let T be the 3-dimensional solid torus. Then, for all u € Hé’p (7,
p )p |u|” f
—_— —dx < VulPdx,p > 1. 79
o) | <] wurany (79)

P . :
) Is the best constant for this inequality.

P

In addition, the constant (
Proof: We carry through the proof of the theorem in two steps.

p
Step 1.This first step is devoted to prove that (ﬁ) Is the best constant for the Hardy

inequality (79) considered for all u € Hé’p (T(gj), where Ts; is any one of the tori T(g’js
defined above.
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Let P;(x;,y;,2;) beapointinT, Op; its orbit under the action of the subgroup G = 0(2) x I
and R; = /sz + yj2 as defined above. Let, also, € > 0 given. Then, we can choose an &;

depending on ¢ and P; so that the open small solid torus Ts; having the following properties:
(i) Ts, is a submanifold of T with boundary, (ii) d? (-, 05, ), the distance to the orbit 0y, ),

Isa C™ function on 7_’] and (iii) T is covered by (T(;j) . Once more denote by (ng)

j€J j=1,...N

a finite covering of T consisting of Ts,S sets.

We denote now by P(xp, yp, zp) any point of P/'s, by Op its orbit and by Rp = /2 + ¥

its horizontal distance of the orbit O, from the axis z'z, and consider the ‘smallish' torus
Ts ={Q € T:d(Q,0p) < 8,6 = g9Rp},

where &, = minje;€;.

Forany Q € R",n > 2, we denote

[ |Vu|Pdx
Jo(u) = QT (80)
and
Q) = inf : 81
Hp () uecgf’g(lﬂ)\{o}lﬂ(u) (81)
We will prove that
p—1\¥
tp(Ts) = (T) : (82)
By (80) due to Lemma (5.3.2) arises that for all p > 1 and forall u € Cy;(Ts) \ {0}, it holds
>1—eo(p—1)p 83
Jrs@) 2 () (83)
which yields
(T)>1—80(P—1)p o
Hplle) =174 g\ p (84)

€
2—¢!

—1\P
means that perhaps u, (Ts) < (%) . We will prove that this can not be the case. Suppose,

If, for given &, we choose €, = by (84) we obtain that p1,,(Ts) = (1 — €) (ijl)p, which

by contradiction, that there exists a non-constant function v € Cy; (Ts) \ {0}, so that

@ < (=2

or, equivalently

Jp IVv|Pdx N
Ts < (p ) | (85)
Jr, lv/dr| dx p

Now, on D, the unit disk of R?, we define the function ¢ (see equality (71)), to be

p(t,s) = woé H(wt,s). (86)
Forany A4 > 0 we define the function ¢, (t, s) = ¢ (At, As) and the function v; € Cy (Ts) \

{0} to be v; = @, © &. By (72) and (73), we obtain respectively
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) )
f |lv|Pdx = 21 (Z) f lo|P (RP + Zt) dtds (87)
T D

S

and
5\*7P 5
j VulPdx = 21 (—) f V[P (RP + —t) dtds. (88)
Ts A D A
In addition, by (72) due to Lemma (5.3.1), we obtain
j VP =2 (5)2_pf lol” (R +6t)dtd (89)
—axX = 4T | = —_— - S.
rs Ts A p d2 P T2

By (85), because of (88) and (89), and a direct computation, we obtain successively

2T (%)2—10 fD [V |P (RP + %t) dtds g p — 1)19

2 (%)Z_p J,, lo/dol? (Rp + %t) dtds  ©

or

[, Vol” (Rp + %t) dtds < (p _ 1)p o)
[ lo/dplP (Rp + %t) dtds
By (90), sending A — oo, arises
fD |Vo|Pdtds - (p — 1)p
I, lo/dp|Pdtds p /)’
from which it follows that u, (D) < (ijl)p. This last inequality is a contradiction (see

[48]or [276]) and thus, we conclude

p— 1\’
tp(Ts) = (T) : (91)
To complete the proof of this part of the theorem it remains to be ruled out the case
p—1\°
tp(Ts) > (T> :
Assume, by contradiction, that there exists a small but fixed positive € so that
p—1\F
io(1) = (=) +e
Then for all u € Cy; (Ts) \ {0} we will have
p—1\°
Jrs(u) = (T> + ¢

or, equivalently

p
J,, IVulPdx G\

> (92)
7
ng ludr,| dx p
We set
[ |Vo|Pdtds
Ip(P) = 2 P ;
J, l¢/dplPdtds
and
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up(D) = inf  Jp(¢h),

$EC° (DI\{0}
where D is the unit disk of R2.
By Theorem 11 in [48], arises that

@ = (1) (93)

Consider now a minimizing sequence (¢;) € C5°(D) \ {0} of J,(¢) and for any 1 > 0 we
define the A-parametric sequence ¢;, to be ¢;, (t,s) = ¢;(4t, As). For any ¢; we define,
also, the function u; € Cy% (Ts) \ {0} to be u; = ¢; o & and the A-parametric sequence u;,
tobe u;, = ¢;, <.

By (88) and (89), we obtain respectively

5 2P 5
p p
f [Vug [ = 2 (5 j |v¢,-| (RP +>t)deds, (94)
Ts
U; 27p
j | ’;' dx j ¢ 4+ t) dtds. (95)
d
Ts Ts
By (92), because of (94) and (95), we obtaln
p— 1\
o) 2 (=) e (%)
Letting A — oo the inequality, (96) yields
p—1\°
INCOE (T) e 97)
Now by (97), since (¢;) is a minimizing sequence of J, (¢), sending j — oo, we obtain
-1 p
k02 (=) +e (98)

Because of (93), the inequality (98) is false, and this part of the theorem is proved.
Step 2. In this second step, we will prove that ., (T) = p,(Ts). For this purpose, it suffices

to find the best constant for the Hardy inequality (79)considered for all u € Hé’p (T), where
T is the solid torus T defined above. However, regardless of the radius r of the circle rotating
around the axis z'z and producing the torus, from Lemma (5.3.1) arises that, ultimately, the
problem is reduced to the unit disk of the plane. Therefore, combining the conclusion of
Lemma(5.3.2)with the equations (88)and (89)considered on the torus T and repeating the
procedure followed above, we find that the best constant for the Hardy inequality in the
smallish torus is the same for each torus.
Let Cy be the circle of range R on the xy plane, i.e.

Cr ={x=(x,90) €T:x* +y% =R?}.
Additionally, we denote

T*=T\Cgrand D* =D \ (0,0)

the punctured torus and the unit disk, respectively.
Then, the following corollary holds.
Corollary (5.3.4) [259]: u, (T™) < u,(T).
The following theorem concerns to a weighted Hardy inequality, which consists an
extension from the convex to the non-convex domains.

Theorem (5.3.5) [259]: Let T be the 3-dimensional solid torus. Then, for all u € Hé’p (7,
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ls ':C x ls‘—p :{Ip )‘S .

iy _1\P" . .
In addition, the constant (571) IS the best constant for this inequality.

Proof: The proof of this theorem is carried by following the same steps as in that of the first
theorem. However, the appropriate functional in this case is
1
Ts 'd> Pdx

Ts

Iy (u) = (100)

ulp ’
fTa |disdx
and in aim to reduce the problem from the torus to the unit disk, we need to use the two

formulas
f VUl e = 2 (5)Hf |V¢|p<R +5t>dtd (101)
——5 AX = 4T | ¢ T P - S
Ts d;(gp A D d; : A
f L (6)2_Sj |¢|p(R +6t)dtd 102
ng?,sx_n/l p dy U7 2 > (102)

arising by (72) and (73)combining to Lemma (5.3.1)after some simple calculations.
Improved Hardy inequality, in general, means having extra terms on the left hand side of
(67)that either contain integrals of |u|P with weights depending on |x| or integrals of |Vu|?
with p < g (see [35], [42], [31], [52]).

This need came from the fact that the best constant in the inequality (67) is not
obtained suggesting that perhaps a correction term to be added. Brezis and Marcus in [36]
moving in that direction and by staying in the case p = 2, improved the inequality (67) by
adding a positive term on the left-hand side. In particular, the above mentioned authors
proved the following result (see [36]):

For every smooth domain (, there exists a constant A(Q) € R so that for all u € I/I/Ol'2 (Q),

1 u? " "
ZJ d—zdx+l(ﬂ)f u“dx <f |Vul|“dx. (103)
[90Red 9] Q Q
The largest such constant is precisely 1*(Q), i.e.
1, u?
|Vul?dx — = [, —dx

A(Q) = inf :
@) uew,? (@) J, u?dx

and in view of Theorem I in [36], this infimum is not achieved.
In addition, as mentioned before, there are domains for which u(Q) < i and then 2" (Q) <

0 (see [48]and [276]). On the other hand, if Q is convex, then u(Q) = i so that 1*(Q) = 0.
Furthermore, it is proved that (see Theorem II)

A(Q2) =2 Fdiam2(Q)’ (104)

where by diam(Q) is denoted the diameter of Q, i.e. diam(Q) = sup{|x — y|: x,y € Q}.
Brezis and Marcus asked whether the diam(Q) in (104) can be replaced by an expression
depending on the volume of Q, namely, whether () = a|Q|?/™ (|Q] stands for the volume
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of Q ), for some universal constant « > 0. This question was later answered in affirmative
as the following result states (see [47]):
For every convex smooth domain £, there exists a constant A(Q) € R such that for all u €

Wy (),

1 u? N N
—j —de+A(Q)J u dx<J |Vul|“dx, (105)
4Jqdg Q Q
where
AQ) = — c(n )
IQI"

n n2|§n 1|n
c(n) = 2 ,
and, where by |$S™ 1] is denoted the volume of the standard unit sphere $S*~! of R,
We extend this last result which relates to convex domains and we prove a corresponding
theorem in the torus. In the following theorem, we prove the inequality (105)in the case of
the torus noting that the torus behaves exactly like the unit disk of R? without inheriting
anything from its dimensional texture. This result is certainly surprising considering that
neither in the Sobolev inequalities (see [265], [266], [267]), nor in the Nash inequalities
exhibit such a behavior (see [268]).

Theorem (5.3.6) [259]: Let T be the 3-dimensional solid torus. Then, for all u € H*(T),
there exists a constant A € R so that

(106)

1 [ u? , N
—J —zdx+lj u deJ |Vu|“dx, (107)
4 ) dy T T
Where
c2) 1
A=AD) 215 =

and D is the unit disk in R?,
Proof: Consider the small torus Ty (defined in Theorem(5.3.3)) and an arbitrary function

ue€ Hé’p (Ts) and ¢ = u o £~ (see (71)). Then by (73), we obtain
)
j |Vu|?dx = ZHRPJ |V |? (1 + —t) dtds
Ts D RP

o
> Zanf |V |? (1 — —) dtds
D Rp

= 2nRp(1 — eo)f |V |%dtds. (108)
D
By (108), because of Theorem Il in [36]combined with the main result in [47], yields
f |Vp|%dtds > f dtds+/1(D)f ¢2dtds, (109)
Where
A(D C(Z) T ! 110

and, where the value g for c(2) is obtained by (106) after a simple calculation.
By (110), due to (109), arises
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1 2
jD |[Vu|?dx > 2nRp(1 — &) <ZJD le)—lz)dtds + A(D)jD ¢2dtd5> .(111)

Coming back to (72) and under the considerations of the Lemma(5.3.2), we obtain

2 > 2 112
Jqu dtds>2nRP(1+go)fTu dx (112)
Again by (72), because of Lemma (5.3.1), arises
¢2
d2 —-dtds > > SR (LT So)Ld_%dx (113)
By (111), due to (112) and (113) we obtain
j |Vu|?dx > ( j —dx + A(D) x)
Ts T8 T5

Now, for given &, we can choose g, = 2— and then by the last inequality we obtain

j |Vu|?dx > (1 — &) ( f —dx + A(D) uzdx>. (114)
Ts Ts Ts

From this last inequality we conclude that the first best constant for this is maybe smaller
than %. For this aim, we need to borrow ideas from the first part of the proof of the Theorem

(5.3.3). Let us present a brief proof of this part. Suppose, by contradiction, that there exists
a non-constant function v € 55 (Ts) \ {03, such that

fT5 |Vv|?dx

1
1 115
Jr, (v/dy,) dx + A(D) f, vidx <7 (115)

On D, the unit disk of R?, we define the function ¢ to be ¢ = v o 71, as in (86). Now for
any a > 0, we define the function ¢, (t,s) = ¢ (at, as) and the function v, € Cyy(Ts) \
{0} to be v, = ¢, o &. By (89), (91) and (91), we obtain

5\2 5
j vidx = 21 (—) f @* (RP + —t) dtds, (116)
T a’ Jp a

k

f dx = 2 f(p2<R +5t)dtd 118
. d%g X T Dd% Pt S. (118)

By (116), (117) and (118) substituting in the (115) and sending a — oo, yields
I, Vol*dtds 1

<
I, (¢/dp)*dtds 4
which is a contradiction (see [48]or [276]).
Thus, we have prove that for all u € Cgy (T5) \ {0}

s

5
Vo|2dx = ZHJ Vol (RP + Et) dtds 117)
D

and

j Vul2dx > —dx + D) | w2dx (119)
T5 Tg T5

where, due to (110), A(D) = Z'

In aim to pass from the "smallish™ torus T to the torus T, so as to complete the proof, we
only have to use the same arguments as in the second step in Theorem(5.3.3).
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As mentioned, there has been much discussion in the direction of asking some 'measure’ of
convexity. We present some interesting results concerning Hardy inequalities with weights
in the solid torus, in which no assumption on the convexity is needed. Firstly, we need some
definitions from Geometry (i.e. see [261]).

Definition (5.3.7) [259]: Let Q be a domain in R™,n > 2 with a C? boundary. The mean
curvature of 0Q at y is defined to be

n—1
1
H() = mZ k)Y €00,
]:

where k;(y),j = 1,2,...,n— 1 are the principal curvatures at y € dQ with respect to the
unit inward normal (i.e. the standard unit sphere $" ! c R™ has mean curvature -
leverywhere).
Definition (5.3.8) [259]: A domain Q ¢ R™,n > 2 with C? boundary is said to be mean
convex if H(y) < 0,y € 0, and weakly mean convex if H(y) < 0,y € 0Q.
Let y = (v4,Y,,y3) € 0T have the parametric coordinates

y; = (R + 7 cos s?)cos st

y, = (R + r cos s?)sin s?

y3 = 7 sin s2

where st,s? € (—m, ).
Then, the principal curvatures at y € 01 are (i.e. see [272])

e - 1 . cos 52
™ 3"2 7 R 4 rcos s2
and therefore
R + 2r cos s? R —2r

HO) = 2r(R + rcos s2) S 2r(R—1)
Hence, the torus T is mean convex if R > 2r and weakly mean convex if R = 2r. Thus, a
first conclusion is that the torus is a classic example of a domain which in some cases can
only be mean (or weakly mean) convex, but in general is not convex. In these cases, namely
when R > 2r, the 'relaxed convexity condition'- Ad; = 0 of Barbatis, Filippas and Tertikas
[35] is true (i.e. see [260]). In addition, Balinsky, Desmond Evans and Lewis in [261](see
Corollary 3.7.6), proved that for all u € C;°(T), the following inequality holds

j Vd - VulPdx > (p— 1>p |u|Pd N (p — 1)P—1J ( 1 1 ) |ulP 4
VulPdx > |—— —dx _ — — dx,
r p / Jpdj p r\r—dr [xZ4+x2)dP"

Where x € T has coordinates (x;, x5, X3).
In our case, we have not put any constrain on R and r since we do not need any convexity
on T and we will prove a Hardy inequality with weights in an arbitrary torus. We extend a
theorem proved in convex domains, by Psaradakis (see Theorem 2.11 in [278]), to the case
of the torus.
We now need to define the function

X(t)=1-Int) 7€ (01].
Theorem (5.3.9) [259]: Let T be the 3-dimensional solid torusp > 1 and s > 1. Then, there
exists a constant B = B(p, s) = 1 so that for all u € H ;P (T),

vul® <S_1>p ul” > C(p,s) lulpxz<dT)d 120
car ST g e e | g g e (20
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p—
where C(p,s) = 2= (Spl) and C; = Bsup,erdr(x).

The weight functlon X? is optimal, in the sense that the power 2 cannot be decreased, and
the constant on the right-hand side is the best possible.

Proof: By repeating the same procedure as in the beginning of the Theorem(5.3.3), we work
in the small torus Ts (defined in Theorem(5.3.3)). Let an arbitrary function u € Hé’p(T(g)
and ¢ = u o &1 (see (71)). Then, by (101) and (102), we obtain successively

j |Vu|pd <s— 1)”} |u|pd
——5 ax — X =
T dsap p Ts drg

s Ar
p s —1\P p
2ns?-sg, [ V2 <1+—t>dtds—(—) 2m82~5R, f Lidid (1+—t>dtds>
D dD R, p p dp R,
s—1\° P
28?7 SR j | S(bp (1—so)dtds—(—> 2m6**R,, @(1—80)dtd5‘=
p p dp
p — 1\? p
(1—50)27752_5Rp( YOI deas —(S ) dill dtds),
D dD p p dp

and due to Theorem 2.11(ii) in [278], we obtain

j |Vu|pd (s— 1)”[ |u|pd
—dx — x
T ds P p Ts dr;g

§ "Ts

p
> (1 —¢&y)2n8% SR C(p,S)J 1P (C )dtds (121)
D
Where Cp = sup,epdpB(p,s) = B(p,s).
If we define Cr, = supyer,dr B(p,s), we observe that
d_D — dT5 — dTg dT5 dTg
Cp, 71B(p,s) rsupdpB(p, s) rsupdr B(p,s) CTS'
xX€D

X€T g
Combining (121) with (76), by (122), we get
j |Vu|'pd (S_1>pj |u|pd >1—£0 |u|P X2(dy /Cr.)d
Ts d;—p i p Ts di‘s e I+ €0 S) Ts ds TS/ ' i

and, if for given & we choose &, = — then

f vul® (S _ 1)pf U s a—ocms [ My <d >d .(123)

——ax — —&)C(p,s

Ts d; g p Ts di’a Ts dr CTS

We now conclude that the best constant on the right-hand side in (123) can be less or greater

than C(p, s), and these possibilities should be excluded.
Suppose, by contradiction, that the best constant in the right-hand side in this last inequality

can be less than C(p, s). Then, we can find a function u € Hé'p(T(g) such that
V[P s=I\P [ Jul [ul” ,
f 757 dx—( > ) j 75 dx < C(p,s) 75 X (dTa/CTs)dx
Ts Y6 Ts “Ts Ts T
or, equivalently,

(122)
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|Vu|P s—1 |ulP
fT dspd _( D ) ng d;, dx
u
fT8| P XZ(dTS/CTa)dx

The inequality (124) due to (101), (102) and since C— = C—, yields
D T(S

5\*7* |v¢|p 5 s—1\P . 6\ . |

2 (3) oo (Ro+7t)deds = (55) 20 (3) ),

(), G x2(do/Co) (R, +3¢) deds

< C(p,s),
and, sending A — oo, arises

V[P s—1\ . l¢l”
fD dg—_pdtds — (T) fD dtds

< C(p,s). (124)

(R + j t) dtds

dS

< C(p,s). (125)

fD lfl)l X?(dp/Cp)dtds

The inequality (125) is false due to Theorem 2.11(ii) in [278]and this part of the theorem is
proved. In aim to prove that the best constant can not be greater than C(p, s), we need to
follow an analogous procedure.

To complete the proof of this theorem, it is sufficient to observe that the best constant in the
inequality does not depend on the radius of the rotating circle (see Step 2 in Theorem(5.3.3)).
Coming back to the inequality (120), we observe that as p — 1*the right hand side of it
vanishes. Therefore, in this case we are looking for a remaining term and having regard to

Theorem A in [89], we conclude that such a term should be in the form BfT 'f'l dx,B € R.

The question is what the best constant B so that the inequality
|Vu| |ul f |ul
—(s—1 B
R T
is valid for all u € H.P(T).
Answer to this question gives the following corollary.
Corollary (5.3.10) [259]: B = 1.
Proof: Following the steps of Theorem(5.3.3), we reduce the problem to the unit disk D of
R?, namely we obtain the inequality
Vo |¢I el
les)ld (s 1)] dg‘ldx
and by Theorem A in [89], arises immediately that B =1.
The following theorem consists of a different kind of improvement than the addition of
reminders terms of integrals of u? and constitutes the natural extension of the Theorem
(5.3.9) of Brezis and Marcus in [36] from convex to non-convex domains.
Theorem (5.3.11) [259]: Let T be the 3-dimensional solid torus. Then, for any u € H;*(T),

1j Zi (1 4+ X2 (Czlr)>dx <] Vu|2dx, (125)

where r is the range of the rotating circle.
Proof: Letu € HP(T8) and ¢ = u o E~1 (see (71)). Then, by (108), arises
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b,

Applying the Theorem 5.1 of [36] in the case of the unit disk D, we obtain
P? dp
2 2
jD |[Vp|°dtds > 4f d2 (1 + X (dlam(D)) dtds

¢2 2 dD
= & (1 () aeas
Combining (127), (128)with (112)and due to (74), we have

[ wwurar 2 3222 G (e () aeas)
T6|u| " Tta\t, & 2r) ©O5 )
and if for given &, we choose ¢, = ﬁ by the Iast inequality we obtain

[ 2

Vul?dv = (1—¢) 1J “ <1+x2<dT)dtd) (129)
5'”' =V TY\el, a2 2r) 44 )

To complete the proof it is sufficient to prove that the best constant in the inequality (129)
can be neither greater nor smaller than the % and that this inequality is true in the large torus

T. For the first one we can, by contradiction, follow the same steps as in the proof of the
first part of Theorem(5.3.3). For the second, the answer lies in Step 2 of that theorem.

We recall here that we denoted by Cr = {x = (x,y,0) € T:x? + y? = R?} the circle of
range R on the xy plane, and by T*, D* the punctured torus T \ CR and the punctured unit
disk D \ {(0,0)}, respectively. Then, the following theorem holds.

Theorem (5.3.12) [259]: Let T be the 3-dimensional solid torus and p > 2. Then, there exist

constants B = B(p) = 1and C = C(p) > 0 so that for all u € H;? (T*),

u(x) —u(x’ x—x'
wp [0 =GO, (=)
x,x'eT |x—x’|1 2/p 2rB

x#x'

|Vu|?dV = 2nRp(1 — so)f |V |?dtds. (127)
D

1
p—2\" [ |uP  \P
< —C— j V[P dx — ( ) dx) . (130)
< p r |x[P
Moreover, the modulus of contlnmty 1 —2/p is optimal and the weight function X/? is
optimal, in the sense that the power 1/p cannot be decreased.
Proof: Consider an arbitrary plane IT containing the axis zz" and let the disk
D, = {(u,v) € R?: u? + v? < r?}
be its intersection with the torus T. Since the torus T is invariant under the action of the
group G = 0(2) x I (i.e. the group of the rotations around the zz" axis), we may identify
each x € T with its image on the disk D,.. So, when we refer to points of the torus T, we can
assume that they belong to the disk D,.. Then, for any x, x" € T, we have

|x| = \/(x2 + y2 — R)? + z?2 =|\/|(rt)2 + (rs)? = r\/t2 + s2 (131)
=7t

and
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|x_x'|:J((W_R)_(W_R))Z(z_zq

= \/(rt —rt')2 + (rs—rs')? = r\/(t —t')2 4+ (s—s')?
=rlt—1|, (132)
Where t = (t,s),7’ = (t',s") € D, the unit disk on R? centering in the origin of the axes.
By Theorem B in [279], for all ¢ € C5°(D*), we obtain

p(r) - ¢ﬁnX”pCr_f5

2B

17,t'eD
T=7’ |T

1
— 2\P P\p
—C (f Vo |Pdtds — (p—) j ﬂ) | (133)
D p p ITIP
Due to (71), (72), (73), (131) and (132), the inequality (133) can be written, sequentially
lu(x) —ux)| _, (lx—x'|
/|~
e { lx — x'|172/P * 2rB
xzx'

B LIORLIGI <Hr—f0
= sup —_—

tt’eD
T£1’

_ T’|1_5

(rlt =7’ g

1 6@ = S ), (=Tl
= yizp P 12 Xp 2B
Ty

/p
1 p—2\F [ ol )1
C j Vv pdtds—(—) ——dtds
ri-2/p (Dl ¢| p |T|P
B 1 c jV vy (p—Z)p 1 |u|pd p
\r1_5 (1—8)2nRr2 p | IVulPdx p / (1—gy)2nRr?? ). |x|P X
1
c 1 JV vy (p—Z)p |u|'pd P
= (1—50)271Rr2‘p VulPdx == S
p—2y" [ JulP  \"7
= j|Vu|pdx—(—) M)
4 r [x|P

where C' = C/(1 — &,), or
u(x) —u(x’ x—x'
up ([ = UG (=
xx'eT |x_x’|1 2/p 2rB

x#x'

<

| =

1
, U VulPd (p_2>p ul® )5 (134)
— ulPdx — x|,
2nR\ Jr p r |x|P
forallu € Cyy(T™).

We now need some verification concerning the optimality of the modulus of continuity 1 —
2 /p. Because of the invariance with regard to rotation around the z axis presenting the torus,
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it behaves as a two-dimensional domain and more precisely as a disk. Actually, if x,x" €
T,(x # x) and 7,7’ € D their 'images’ through the transformation &, then for any positive
parameter y holds

lu@) —ulxHl _1¢@) =)l _ 1 ]¢(0) — ¢ ()

x—x'r — @le=7Dr o jr=tr

Thus, the exponent 1 — 2/p in the optimal seminorm in the unit disk Dremains the same
and optimal in the corresponding seminorm in the torus, too.
Theorem (5.3.13) [259]: Let T be the 3-dimensional solid torus and p > 2. Then, there exist

constants b = b(p) = 1 and ¢ = c(p) > 0 so that for all u € Hé’p(T),
u(x) —ulx'’ x—x'
qup {1 —uC (x =
x,x'€T |X—X'|1 2/p 2rb

x#x'

1

< 1 jv vy (p_1>pjlu|pd P 135
ST g\ S, VT TT) L) (135)

Moreover, the modulus of continuity 1 — 2 /p is optimal.
The proof of the Theorem (5.3.13) is omitted.
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Chapter 6

Bounds of Singular Integrals and Hardy Space Estimates
We introdnce new polynomial growth BMO conditions for Calder'on-Zygmund operators.
These results are applied to prove that Bony paraproducts can be constructed such that they
are bounded on Hardy spaces with exponents ranging all the way down to zero. We show
the following BMO type weight invariance properties: for a fixed s > 0, the weighted
Sobolev- BMO spaces I;(BMO,,) coincide for all w € A, the weighted p = oo type
Triebel-Lizorkin spaces Fof);ﬁ, coincide for all w € A, and these two classes of spaces
coincide with each other as well, all of which have comparable norms up to constants
depending on an A,, character of the weight w € A,
Section (6.1): Weighted Hardy Spaces and Discrete Littlewood-Paley Analysis
Weighted Hardy spaces have been studied extensively in the last fifty years (see, for
example, GarciaGuerva [288], Stromberg-Torchinsky [310], [127]), where the weighted
Hardy space was defined by using the nontangential maximal functions and atomic
decompositions were derived. The relationship between HY and LP, for p > 1 was
considered in both one and multiparameter cases (e.g., Strémberg and Wheeden in [311]).
We consider the weighted Hardy space estimates for singular integrals using the discrete
version of Calderdn's identity and Littlewood-Paley theory developed in the work of Han
with [292]. [292], deal with the multiparameter Hardy spaces HP (0 < p < 1) associated
with the flag singular integrals. The HP to HP and HP to LP boundedness are proved for flag
singular integrals in [292] for all 0 < p < 1 which extend the LP theory for 1 <p < o
developed in NagelRicci-Stein [304]. We derive some explicit bounds, in terms of the 4,
constant [w], of theMuckenhoupt weight w € A, (see the definition of Muckenhoupt
weight below) if g > q,, = inf{s:w € A}, for the HY, to LP, mapping norms forall 0 < p <
1 and HE to HY, mapping norms for all 0 < p < oo on weighted Hardy spaces for a class of
singular integral operators.
In other words, we only assume that the weight w is in the class A..
We recall the definition of A, weight. For 1 <p < oo, a locally integrable nonnegative
function w on R™ is said to be in A,, if

1 1 1\
_ - S -1 (o'e}
Wla, = stllp <|I|j, w(x)dx) <|1|J1 w(x) P dx) < o,

where for every cube I € R", |I| denotes its Lebesgue measure, and [w] A, is called the 4,
characteristic constant of w. For the case p = 1,w is said to be in 4, if

Mw(x) < Cyw(x) for almost all x € R™
and for some constant C,. If w € A4, then the quantity

1 -1
(W], = sup (m f w(x)dx) w00

IcR"
is called the A, characteristic constant of w. Finally, we define

Ap = U A

1<p<oo
Forw € A, we denote by q,, = inf{q: w E Aq} the critical index of w.
It is well known that if w ¢ 4,, then T may not be bounded on L,. However, it does not
contradict with our results since in general HY # L},
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whenw & A, for p > 1. see Strémberg and Wheeden [311] where the relations between 44

and HY of the real line are studied in the case when p > 1 and u(x) = |Q(x)|’w(x), where
Q(x) is a polynomial and w(x) satisfies the Muckenhoupt A,, condition. It turns out that HE

and LP can be identified when all the zeros of Q are real, and that otherwise HY can be
identified with a certain proper subspace of L.
The growth of the A, constants on classical weighted estimates in LP spaces for 1 < p < oo
for the Hardy-L.ittlewood maximal function, singular integrals, and fractional integrals has
been investigated extensively. See Buckley [285], Petermichl and VVolberg [308], Petermichl
[306], [307], Lacey, Moen, Pérez, and Torres [297], Lerner [300], [301], Lerner, Ombrosi,
and Pérez [302], [303], Lacey, Petermichl, and Reguera [296] and Hytonen, Lacey, Reguera,
and Vagharshakyan [295], etc.
Buckley [285] showed that for 1 <p < oco,w € 4,, the Hardy-Littlewood maximal
operator M satisfies

I M ||LP(W)_)LP(W)S C[W] , I'M ||LP(W)_)LPY°°(W)S C[W]Z}p
and the exponent 1/(p — 1) is the best possible. A new and rather simple proof of both

Muckenhoupt's and Buckley's results were recently given by Lerner [301]. It is shown in

[300] that the LP(w)(1 < p < oo) operator norms of Littlewood-Paley operators are
bounded by a multiple of [W]ZI;, where y, = max {1,%} p—il.
For the singular integrals, Petermichl and Volberg [308] proved for the Ahlfors Beurling
transform and Petermichl [306], [307] proved for the Hilbert transform and the Riesz

transforms the following estimates:

1/(p—-1)
Ap

1
max {1,T1}
1T llp < cpnlwl, PPY 1< p<oo,

when the operator T is any one of the aforementioned operators and the exponent
max{l,i} Is the best possible. Very recently, Lacey, Petermichl, and Reguera [296] and

Hytonen, Lacey, Reguera, and VVagharshakyan [295] proved sharp bounds in terms of linear
[w]a, constant on weighted L? space and sharp bounds in terms of [w] 4, constant on
weighted LP spaces for Haar Shift Operators, respectively. As a corollary to their main result
they deduced sharp A,, inequalities for T being either the Hilbert transform in dimension
d = 1, the Beurling transform in dimension d = 2, or a Riesz transform in any dimension
d = 2. Let T, denote the maximal truncations of these operators. They proved weighted
weak and strong-type LP, inequalities:
IIT*IILgv.oo < [wla, Il f I, 1<p<2,

ax {1,%}

m
TN < wl, Ifllp, 1<p<oo.
These estimates are sharp in the power of the A, characteristic of the weight w, and are
consistent with the best possible bounds without the truncations.
In the work of Dragicevic, Grafakos, Pereyra, and Petermichl [287], sharp L?, estimates in
terms of [w] 4y in the Rubio de Francia extrapolation theorem [290] have been established.

In particular, the main result of [287] shows that if a sublinear operator T is bounded on L3,
with the linear bound for || T Il 2, in terms of [w], , then T is bounded on L2 fori<p<

and
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. . a . 1
oo,and || T 2 is at mosta multiple of [w]AZ with a, = max{l,;}. Therefore, the sharp

L2, bound for the Hilbert and Riesz transforms along with extrapolation shows that for these
operators the best possible exponent a,, can be achieved for all p > 1. For more general

singular integrals, the question about the best power of [W]Ap in the operator norm on L? is

still open.

In [302] and [303], Lerner, Ombrosi, and Pérez derived some results related to the
weak Muckenhoupt and Wheeden conjecture for the Calderon-Zygmund operator , they
proved that

I'T "Lp(w)—>Lp(w)S Cpp,[W]Al (1 <p< oo)'

1T 2 wysprow) < Clwla, (1 + log[W]Al).
Motivated by these results and recent works on discrete Littlewood-Paley theory and
Calderdn's identity in multiparameter settings [292] and [293], in the present we will
describe the explicit dependence of the corresponding HY — IP (0 <p < 1) and HY -
HP (0 < p < o) operator norms of singular integrals in terms of the A, characteristic
constant of w € A, for arbitrary q > q,, = inf{s:w € A¢} A singular integral operator is
defined as follows.
Definition (6.1.1)[282]: A one-parameter kernel on R™ is a distribution K on R™ which
coincides with a C* function away from the origin and satisfies
(i) (Differential Inequalities) For all multi-indices «, and Vx # 0,

09K (x)| < Cyle| 1, (1)
(if) (Cancellation Condition) For any normalized bump function ¢ on R" and any R > 0,
j K(x)p(Rx)dx| < C, (2)
Rn

where C is a constant independent of ¢ and R > 0. An operator with a oneparameter kernel
Is called a (one-parameter) singular integral operator.
Remark (6.1.2) [282]: There is another way to describe the cancellation condition (ii), that

IS
f K(x)dx
e<|x|<N

Under the hypothesis of condition (i), the L? boundedness of T holds if and only if any one
of the cancellation conditions (ii) or (iii) holds (see [126]).
Fefferman and Stein [114] first obtained the HP boundedness of these operators for 0 < p <
1. In the weighted case, when w € A;,n/(n+ 1) < p < 1, Lin and Lee [298] applied the
weighted molecular theory and atomic decomposition to obtain the HY, boundedness of these
operators.
We obtain H? boundedness of T by only assuming w € A, and derive the explicit operator
norm bounds of the singular integrals on weighted Hardy spaces. This is accomplished by
using discrete Littlewood-Paley theory similar to that developed earlier in [292]. Indeed,
boundedness of singular integrals on weighted multiparameter Hardy spaces HE, (R x R™)
has been established in [286] by only assuming w € A, (R™ x R™). Generalization of such
results to weighted Hardy spaces of arbitrary number of parameters has been done in [309].
However, no explicit constants for the bounds of singular integrals are given in [286], [309].
We begin by recalling some properties of weight functions.
Proposition (6.1.3) [282]: [291] Letw € A, for some 1 < p < . Then
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(i) [6*w)], = [Wla,, where §*(w)(x) = w(Axy, ..., Ax,), 1 ER.
14
(i) [‘L’Z(W)]Ap = [W]a,, where 7% (w) (x) = w(x — z),z € R".
(iii) [Aw] 4, = [W],, forall 2> 0.
(iv) When 1<p<oo,0=wY®De4, with characteristic constant [og] Ay =
1/(p-1)
[W]Ap :
(v) [W]Ap = 1 forall w € A,,. Equality holds if and only if w is a constant.
(Vi) For1 <p < g < o, we have [w],, < [w]a,.- And lim,_;+[w]s, = [W]a,.
(vii) The measure w(x)dx is doubling: precisely, for all A > 1 and all cubes Q we have

w(AQ) < A" [w],,w(Q).
Let ¢ be a Schwartz function on R™ which satisfies

Y(x)x%dx = 0, for all multi - indices (4)
Rn
and
D B =1, foralig #o0. ©)
JEZ

Strictly speaking, the classical Hardy spaces HP should be defined by using bounded
distributions or distributions modulus polynomials; see [291] and [126]. For our purpose
here, we need to introduce some new class which is similar to distributions modulus
polynomials.

Definition (6.1.4) [282]: A function f(x) defined on R™ is said to be in §,,(R™) where M
IS a positive integer, if f(x) satisfies the following conditions:

(i) For |a| <M —1,

IDEf ()| < C(l T e
(if) For |x —x'| < 2 (1 + |x]) and [v| = M,
v v ! |x_x,| .
IDYf() = D*F G < € g orseane
(i) For |a| <M -1,
f(x)x%dx =0,

RTL
If f € Sy (R™) the norm of f in S, (R™) is then defined by

Il f lls,,rmy= inf {C: (i) and (ii) hold }.
It is easy to check that S,, (R™) with this norm is a Banach space. Denote by (SM (R"))' the
dual of §,,(R™).
For f € (SM(R”))', define the Littlewood-Paley square function of f by
2
2
gN@ =1 Ol (6)
jez

where ;(x) = 277" (277).
Now we give the definition of one-parameter weighted Hardy spaces HY, on R™.
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Definition (6.1.5) [282]: Let0 < p < co,w € A,,. Let M = [(2q,,/p — 1)n] + 1, where[.]
denotes the integer function. The one-parameter weighted Hardy spaces are defined by
Hy,(R™) = {f € (Sw)": f € L},(R™)}
and the norm of £ in H? (R™) is defined by
I f "H&’,(Rn):" g(f) “Lw P(R")-

The main result is the following theorem.

[286], showed that the weighted Hardy spaces defined by discrete Littlewood-Paley
operators are the same as the classical ones defined by a smooth maximal function (see [288]
and [127]). Let ¢ € S(R™) with | ¢(x)dx = 1 and the maximal function defined as follows

f7(x) = sup|o * f (%)

t>0
where ¢.(x) = t ™™@(x/t). Then weighted Hardy space P (R™) consists of those
tempered distributions for which f* € P with || f lyep = ||f*iifw.
We end with the following remarks. First of all, a sharp contrast with the weighted LP
boundedness results (where w € A, was often required) is that we establish the weighted

boundedness of singular integrals on Hardy spaces HE (R™) by only assuming w € A.,. This
also significantly improves the earlier known results on weighted Hardy spaces (see, e.g.,
[298]). This is accomplished by employing the discrete Littlewood- Paley analysis. We
mention in passing that consideration of weighted Hardy spaces HY (R™) with w € 4, (R™)
was given earlier; see [289], [33], and also the more recent work [284], [286], [299]. Second,
we are not aware if our results of the operator norm bounds for the singular integrals are
sharp or not. In particular, unlike in the case of LP bounds (1 < p < o0) the definition of
the weighted Hardy spaces depends on the choice of the Schwartz functions we use. We are
able to determine a nice bound when the definition is given in terms of the discrete
Littlewood-Paley square functions. As a consequence, we are also deriving the bounds when
an equivalent definition is taken into account using the discrete Littlewood-Paley analysis.
We first establish the discrete Calderdn identity.

Then we prove that the weighted Hardy spaces are well defined by proving a Min-Max
comparison principle with an explicit bound. Next, we obtain the bound control of the
weighted P norms of a function in a dense class of HY, by their weighted HY norms. To do
this, we need to establish an alternative discrete Calderdn identity with Schwartz function
with compact support. Finally, we prove Theorem (6.1.14) to conclude.

We shall prove the boundedness of singular integrals on weighted Hardy Spaces HY (R™).
We introduce some new Littlewood-Paley g function. Let ¢ be a C,° function on R"
supported in the unit ball and satisfying condition (5) and

f d(x)x*dx = 0, for |a| < M,, (9)
Rn
where M, > M and M is the same as in the definition of HY.

We introduce discrete Littlewood-Paley g function and its maximal analogue by
1

8N =1 > ¢+ F(xg) Ko@)
j

and
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1

2
87N =1 ), suply = @) xo()
j o Q

respectively, where x, is any pointin Q, ¢;(x) = 2‘f”q5(2fx) and the summation of Q is
taken over all dyadic cubes Q with side length 2=/~ in R™ for each j € Z and a fixed large
integer N.

We need the following weighted Fefferman-Stein vector-valued inequality, for every 1 <
p,r < o,w € A, (see [291], and also [283] for an earlier version of such an inequality
without the explicit bounds):

r |

1/
Y M@ | <k (nrpiv,)
J

|
Ly !

for all sequence of functions {f;} in L%,, where if we set N(t) = tr1,

r—1
2N <K1(n, p,T) [W]Z;1> , ifp<r,
c(urnin)- 1
kZT(P‘l)N (Kz(n, p,7) [W]Ap) , ifp>r
and K, (n,p, 1), K,(n,p,r) are constants that depend only on n, p, .
Proposition (6.1.6) [282]: If My = M in (9), then weighted Hardy spaces can be
characterized by these discrete square functions. That is, for any 0 < p < oo,

I f gz 1ga (Pl p -
It was pointed out in [300] that if 1 < r < o and € A,., we have the following weighted
version of the Littlewood-Paley-Stein inequality:

max {171
Il g ||L§V_>LCVz ”gd"m_)m < Cn[W]Ar :
By the duality argument together with Calderon's identity, we also have

!
max{lr—

In fact, let (x) = w(x)™""/", theno € A4,.

T

I f = ||hs||lTLl’f51 j f(x)h(x)dx| = ”hizr})ﬂ J Z Y * P+ f | ()h(x)dx
< Sup f g(f)()g(h)(x)dx < Sup g g, I g(R) 1,

, max {1%,}ﬁ , max{l,%,}ﬁ
< Gulol, lg(Ollz;, = Calwl, gz,
Lemma (6.1.7) [282]: [292] If y and ¢ are in the class S, (R™), then for any given positive
integers L, K, there exists a constant C = C(L, K) depending only on L, K such that

_oft t'\"  (tvt)K
e per (0] < <FA?> (tVe + [x[)rE
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Lemma (6.1.8) [282]: Let I,I’ be dyadic cubes in R™ such that (1) = 27/7N,I(I") =
27J'=N_Then for any u, u* € I and any r satisfying —— <7 <1, wehave

z 2-li=i"lt||2-UnDK | |
— Y+ f(xp)
— (27N + |u - x,fl)n+K !

1

r T

< Cz—|J'—J"|22(%‘1)N"2(%_1)"(j,_j) +( M (2 | *f(xI’)|X1’> ],
I’

where (j' —j); = max{j’ —j, 0}, x, € I' and C is a constant depending on dimension n.
Proof: We set

.7 u— X
Ay = {1': (1 =277 —N,M < 1},

2-Jjnj’
and forl > 1,
A = {1': [(1") = 27'=N 2l-1 < M < 21}.
2-JjAj
Then

Z 2-1i=i"lL|1712-GniDK | |
— Y x f(xp)
= (277N + |u — x,rl)n+K !

< Z 2=l(+K)9—|j=j'|Lo—n('+N) 2 (jAj In z |¢j, * f (x|

10 I'eq,
1/r
< Z 2=l(+K)9—|j=j'|Lo—n('+N) 2 (jAj In z | *f(x,r)|r
10 I'eq,
_ z 2=L(n+K) 9=|j=j'|Lo=n(' +N) 9 (GAj In
1=0
1/r
i T
| [ e faanl
I 1’ea,
1 1 .
< z 2-li=1' L~ Un+ K)o (1) Nm (1 )nG "=+
120
1/r
r *
x| M Z = £ )| x| (W)
I'e4;
1/r

r
.. 1_ 1_ il—j
o-li-J |L2(r 1)Nn2(r 1)n(1 N+ M(E |1,bj’*(x1’)|)(1’> (u*)
I,

the last inequality follows from the assumption that > ——which can be done by choosing
K big enough.
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With the almost orthogonality estimate (Lemma (6.1.7)) and Lemma (6.1.8), we nowgive
the following discrete Calderdn reproducing formula.
Theorem (6.1.9) [282]: Suppose that v; is the same as in (6). Then for any M = 1, we can

choose a large N depending on M and i such that the following discrete Calderén
reproducing identity:

FOO =" > Gy £ () (11)
R

holds in §,,(R™) and in the dual space (S,,)’, where 1ﬁj(x, x;) € Sy (R™),I' s are dyadic
cubes with side-length I(I) = 277~V and x; is a fixed pointin I.
Proof : For f € Sy, we use the discrete Calderon identity f(x) = Y;¥; *; = f(x) as

follows. We rewrite
FE =30 Y | W= w( eodu
T T

59 [ [y - u)du] (i * F)x) + RO.
;T v

We shall show that R is b(_)unded on &, with a small operator norm when the 's are dyadic
cubes with side-length 277~V for a large N, and x; € I.

ROV = Y | 0= [y * £)@0) = (8 £) o)
it

=2 [we-w (] wa-wrw - [ pe-wrad )
JI

- j Z f P;(x —w) |y (u—u") — ;0 — u)|duf () |du’
it

= f R(x, v, xp) f (u)du’
where R(x, u’, x;) is the kernel of R. It is not difficult to check that

z j Y —wly;(u—u) —;(x;, —u)du
i I

satisfies all conditions of 1;(x — x;) but with the constant of Sy, (R™) norm replaced by
C27N. This follows from the smooth conditions of 1; and the fact that u,x; € I,1(I) =
277N _Then R(f)(x) € S (R™) and

I R ls,,wmy< C27V M f s, r7 - (12)

T(f)(x) =2 z U ¢(x—u)du] (W) * f)(xp),
;o1

then T~1 = (1 — R) 1 exists and

Thus if we set
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) =TTH® =) RTAHE
i=0

> D= f, ¥y —u)du] (W * £) G,
jI Li=0

Set [X2o R ;- —w)du](x) = ;(x, x;). Then it follows from (12) that 1); € Sy (R™).
Thus, the discrete Calderdn identity on S,,(R"™) is obtained. The proof of Theorem (6.1.9)
is completed from the duality argument.

We give the following Plancherel-Polya-type inequality, i.e., the Min-Max inequality.
Theorem (6.1.10) [282]: Let ¥, € Sy (R™). Suppose y; and ¢; satisfy the same
conditions as in (6). Thenfor 0 < p < co,w € Ay, f € (S))'(R™), and for any r satisfying

L <r< min{i,l},
n+K qw

Ly
where I € R™ are dyadic cubes with side-length (1) = 27/~ for a fixed large integer N,
and K, ([W]Ap/r) Is as given in (80).
Proof : The discrete Calderon reproducing formula (11) on §,,(R™) implies that
(5 )@ = D 10, = ¢) @ xi)(9y * £) G,
jIII
From the almost orthogonality estimates in Lemma (6.1.7) by choosing t = 27/,t' = 2~

and from Lemma (6.1.8), we have that for any given positive integers L, K and for any
u,u* el

[y fa] <c)

jIII

<C 2—|j—j’|L (M [(Z |(pj' * f(xl’)|X1’>

jIII
Summing over j, I yields that

I 1/2" 1/2”
| > inflo;  F@) 160 s, > suplwy  f) 200 |
ez || Z s
1/2”
< C(np 1K, ([w inf|¢; * u|2 x I
< C(np, 1)Kz ([Wla,,, e, f@| xi(x) I
i I
i

2-1i=i" It =GniNK 1)
x| |‘pj' * f(xl’)|

2—jAj'lu~-

1/r

) ().

The Hélder inequality and the L’V’V/T(lz/r) boundedness of M, i.e., the weighted Fefferman-
Stein vector-valued inequality (10), yield
180

1/2

z suII)|1/)j *f(u)|2)(, < z {M
j,I ue

jl

2
r

z |l * f Ge)|xyr

I,

Since MLK < r < min {i, 1}, it means that g,, < p/r, we have w € A

dw

p/r:



1/2 2/r 1/2

r
> sl faoln | e <cl) {M [Z supley * fF@)| 11 } Iy
! uel = — uel

N =

)

|
. 2
< Cnp, 1K (Wl ‘ > inflgy F@)] xy
TN\ l
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where we use the fact that y,- is arbitrary in I'.
From this theorem, we know that the definition of weighted Hardy spaces is independent of
the particular choice of ;. Moreover, it can be characterized by the discrete Littlewood-

Paley square function defined by
1
2

GUNE =1 I+ Fe @ | x el
I

That is, a distribution f belongs to HY (R™) if and only if G¢(f) € LF (R™), and
I f ||H£(Rn)z ”gd(f)"La(Rn)-
Proposition 3.2 in [364] tell us that when w € A, Sy, (R") is dense in HY, (R™) for 0 < p <

0,
To prove this theorem, we need a new version of Calderdn-type identity. To be more precise,
take ¢ € Cy° with
P(x)x%dx = 0, for all a satisfying 0 < |a| < M,
Rn
where M, is a large positive integer which will be determined later (indeed M, >
(2q,,/p — 1)n suffices), and

Y 179 =1, forall§ € R™\ {0}
J

Moreover, we may assume that ¢ is supported in the unit ball of R™. We need a discrete
Calderon reproducing formula in terms of ¢.
Lemma (6.1.11) [353]: There exists an operator Ty * such that

FG) =D 10 =5y (T () @) (13)
JI
where Ty! is bounded on L?(R™) and HE (R™),0 < p < oo, and the series converges in

L*(R™M).
Proof : As in the proof of Theorem (6.1.9), for f € L*(R™), the operator R is defined by the

following:
=y Y | -0 - £)adu
Tt

=Z Z U ‘/’f(x_”)d”] (¥ * )0 + R
7 1 M

We claim that for 0 < p < oo, there is a constant C > 0 such that

IR lzgm< C27Y 11 £ 112 gy,
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and
" R(f) "HVT?"/(R‘H.)S CZ_NKZ ([W]AE> " f "H%(Rn)'
Assume the claim for the moment. Set

NGIGEDY [ | ¢ u)du] (5 * ) ).
; I
The proof in Theorem (6.1.9) shovleg that if N is large enough, then both Ty and (T) 1 are
bounded on HY (R™) n L?. Thus,
FOO) = > Iy = x) (W = T () @),
il

where cﬁj € S, (R™) and the series converges in L2(R™).

Now we prove the claim. Suppose f € L?2(R™). By Theorem (6.1.9),
1/2

I
I G(R(F)) IIfWS C ii{z: |w; * R(f)|2)(1 ii
" JI ”

N[ =

2

= 3D D> ey Ry ) - (Wl f) Geo)|

j’I jII’

By the almost orthogonality estimate
|<1/Jj *R (l/;j'(';xl'))> (x)| < c2-No-li-i'|M —
(Z_JAJ + |x — xp

Then from Lemma (6.1.8), Holder's inequality, and the I2/"(1%/") boundedness of the
maximal operator (w € 4,, ), we have

I R() W

2-Unji"M

|)n+M'

rq2/7 1/2
<2V [M (Z It,b,-*f(xw)l)(ﬂ)
j' I’ 2,
1
2
B 2 _
< (27K, ([W]A£> Z W)= f G| xr < 27K, ([W]Ap/r) 7 Wi
r jIII Lev

Another inequality in the claim follows immediately by taking w =1 and p = 2 in the
above inequality. Then the proof of Lemma (6.1.11) is completed.

Using a similar argument as in the proof of Theorem (6.1.10), we can get

Corollary (6.1.12) [282]: Suppose w € A,,. If f € L> n HE (R™),0 < p < oo, then

1/2
I f Mg oy ™ {z |(¢1*T1\71(f))(x1)|2)(1} :
Jl P
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Now we prove Theorem (6.1.13).
Theorem (6.1.13) [282]: If f € L2(R™) n HY,(R™),0 < p < 1, then f € LP (R™), and there
exists a constant C (n, p, q) > 0 such that
1 q
2 +qu{1+ 2}
I f L, &< C(n,p, 0)Kq ([W]Aq) [W]Zq I f IIH‘f/(Rn),

where q is fixed such that g > q,,, K; ([W]Aq) Is given as in (70).

Proof: We may assume w € A, for some 2 < q < oo. Define a square function by
1

2

BN =1 19+ (T D)@ 16

By Corollary (6.1.12), for f € L?> n HY, we have
I g(f) lp<CIlfllyp.
Let f € L2 n HY, set
Q; ={x e R: g(f)(x) >2'}.
Denote
1 1
B; = {(j, DH:w(NnQ) > EW(I),W(I NQiq) < EW(I)}
where I are dyadic cubes with side-length (1) = 2777V,
We use ¢, to denote ¢; when [(1) = 27/=N_ By the discrete Calderon reproducing formula
(13), we can write

FOO =) Y Mgyt — 2y * T (N

i (JDEB;

where the series converges in L? norm and hence almost everywhere and also w almost
everywhere.
We claim
p
DG =1 (Tt ()G
(J.DEB; P

w

!
1+max {1,%}

2p p i
< Cnp, @)K (Wla,) W, 27w (Q,) (14)
which together with the fact that 0 < p < 1 yields

IFI5 <D D i =2y = (T ()0

i (J.DHeEB;

) 1+max {1,9'/2}p z ZplW(.Q )

1 1 2 ~
ciy (wla) " Wl 72y gpy i
( ) 1+max {1,9"/2}p I f ”pp
H,

p

p

< CK, ([
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To finish the proof, it remains to show the claim (14). Note that for (j,1) € B;, if x € I, then
M(xq,)(x) = 1/2. And note that if ¢ is supported in the unit ball, then ¢;(x —x;) is
supported in Q; ={x:M()(Qi)(x) >Flo} Thus for any fixed g > gq,,, by Holder's
inequality,

"(jrl)EBi

p
!! Z 111; (x — x) ¢y * (Tﬁl(f))(xl)!!
1P

[ p

“I z 111y (x — x) ¢y * (T * () ()

|
| (j,DHEB;
By the duality argument, for all h € Lq'(wl‘q') with || f "Lq,(wl‘q’)S 1.

]
< cw(@,)'" I

Ly

D Git = x)gs + T D@D,

(J,DEB;

_ z 11 (1% hGep) ), (¢ * (T (D) (x)

(J.DEB;

z JI (J” * h(xl)) (; * (T () () xr (x)dx

(J.DEB;

1/q

IA

q/2
f ( z |¢I * (Tﬁl(f))(xlﬂle(x)) W(X)dx
(j,DEB;

1/q'

q/2
~ 2 !
[ 1helue | weorax | =ayen,
(J.DEB;

We first estimate A,. Since w € A, implies wi=4 e A,r, by the weighted Fefferman-Stein
inequality, we have the following estimate:

A, < { Z (M(qsl *h))z)(l(x)}
(J,DEB;

1
2

Lq,(wl_q’)
max {1,q—,

< Cuk (Wha, ) 19 (B Ny ey Cols (Wa,) W1, 5 as)

As for A4, since y;(x) < 2M ()(In(ﬂi\ﬂ
inequality (10) again, we have

) (x), then using the weighted Fefferman-Stein

i+1)
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A=l e T (DGR

U.DEB;

Li(w)
1/2
= [ B @am weds
(J.DeB;
q/2
= Cj 2 |¢1 * T,;l(xI)M()(in\Qm)(x)|2 w(x)dx
(J.DEB;
< Gk, (wla, )’ fm > 16 T )P o)

U.DEB;

q 0 (&
< C,K, ([w]Aq) 210(3;).  (16)
Note that Q; < §;, and by the weak L9 (w) boundedness of the maximal operator, w(ﬁi) <
C[w] AqW(-Qi)- Combining these estimates for A; and A, proves claim (14). Thus we

complete the proof of Theorem (6.1.13).
Theorem (6.1.14) [282]: Let w € A,,. The one-parameter singular integral operator T is

bounded on H?, for 0 < p < o and bounded from H?, to LP, for 0 < p < 1. Namely, if r
satisfies HLM <r < min {qi, 1} and g > q,, (Where g,, is the critical index of the weight w

defined above), then
1TC) = C0up, s (Whay ) 1 £ 1 0<p <o

1 q’
2 5+max {17}
I TG Nyp ey < C(,p, @, 1)Ky ([Wlay) Kz ([Wlay, ) WTh I f Iypny 0 <P <1,

where M is the constant in Definition (6.1.4) and constants K, ([W]Aq) and K, ([W]Ap/r)
are defined as follows:

K, (iwla,) = Wa » Ta=2 (70)

[w] 4q ifqg > 2,
and

p-T )
K, ([W]Ap/r) = <[W]A$>L’ Es (80)
k([w]Ag)z_r, ifp > 2.

Proof: Since L2 n HY is dense in HY, by the standard density argument, we assume f €
L? n HP (R™). Using Lemma(6.1.11) and Corollary (6.1.12), we have for 0 < p < oo
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1
2

ITD g 1 16 K FOP0@
I Iy
=C| z 2 111 (b K % Gy (- —xp)) (@)

< (@ * T (D) 0@} Niep,

o~ 2/r\ 12

p
<C ||z MIZ |¢,-'*(Tﬁ1(f))(x1')|)(ﬂ] P
jl II
1/2"
< CKZ( Ap/r ” z |¢]’ * (TNl(f))(xI )| X' ii
U "Lev

< CK (Wlay, ) 1 £ 10
where in the second-to-the-last inequality, we use the following almost orthogonality

estimate:
2-(G-i"M

n+M*

|(¢j x i (- —x,/)) (x)| < c27li-i'm (2-0M" + |x — x1])

When 0 < p <1, since T is bounded on L? n HY (R™), we have T(f) € L? n H,(R™)
whenever f € L2 n HY (R™). Thus from Theorem (6.1.13),
2 1+max 1,q—,

2 l+maX 1q_’
< ¢k, (wla,) K. ([w]Ag) Wi, 0%, f g ey

By a density argument again, we complete the proof.

Section (6.2): Littlewood-Paley-Stein Square Functions and Calderon-Zygmund
Operators

We prove new Hardy space HP (R™) bounds for Littlewood-Paley- Stein square functions
and Calderon-Zygmund integral operators where the index p is allowed to be small.

We draw an explicit connection between Calder'onZygmund operators and Littlewood-
Paley-Stein square functions.

It is well known by now that one way to define the real Hardy spaces HP for 0 < p < oo is
by using certain convolution-type Littlewood-Paley-Stein square functions. This has been
explored by many mathematicians; some of the fundamental developments of this idea can
be found in the work of Stein [328], [329] and Fefferman and Stein [114]. In particular,
Fefferman and Stein proved that one can define HP = HP (R™) using square functions of
the form

186



=

Sof () = (Z IQkf(x)|2> ,

keZ
associated to integral operators Q.f =y, * f for an appropriate choice of Schwartz

function iy € S, where Y, (x) = 2k (2% x). There are also results in the direction of
determining the most general classes of such convolution operators that can be used to define
Hardy spaces, or more generally Triebel-Lizorkin spaces; see for example the work of Bui,
Paluszy'nski, and Taibelson [316], [111]. Generalized classes of non-convolution type
Littlewood-Paley-Stein square function operators were studied, for example, in [319], [320],
[327]. Although all of the bounds in these articles are relegated to Lebesgue spaces with
index p € (1, o), which for this range of indices coincide with Hardy spaces.

We consider a general class of non-convolution type Littlewood-Paley-Stein square function
operators acting on Hardy spaces with indices smaller than 1.

Before we state our Hardy space estimates for Littlewood-Paley-Stein square functions, we
define our classes of Littlewood-Paley-Stein square function operators. Given kernel
functions 2,: R?"™ — C for k € Z, define

Aef(x) = | (e y)f(y)dy
R?’L
for appropriate functions f: R?™ — C. Define the square function associated to {A;} by

1/2
Saf () = (Z |Akf<x)|2> .

keZ
We say that a collection of operators Ay for k € Z is a collection of Littlewood-Paley-Stein

operators with decay N and smoothness L + &, written {A,} € LPSO(N, L + &), for N > 0,
an integer L > 0 and 0 < § < 1, if there exists a constant C such that

1A (x, )| < COY (x — y) (17)
IDEA, (x,y)| < C219k DN (x — y) forall |a| = ay + -+ a, <L (18)
IDf A (%, y) = DA (e, ¥ < Cly — y'192%0+) (off (x — y) + @ (x — y')) for all ||

= L.(19)

Here we use the notation ¢¥ (x) = 2%¥*(1 + 2¥|x|)~" for N > 0,x € R", and k € Z. We
also use the notation D§'F (x,y) = 05F(x,y) and D{F (x,y) = 05F (x,y) for F:R*" - C
and a € Nj. It can easily be shown that LPSO(N, L + §) ¢ LPSO(N',L + §') for all 0 <
§<sf<land0<N'<N.

We study square functions of the form S, is to prove boundedness properties from H? into
LP. Note that it is not reasonable to expect S, to be bounded from HP into HP when 0 <
p < 1since S,f = 0. It is also not hard to see that the condition {Ay} € LPSO(N,L + 6)
alone, forany N > 0,L = 0, and 0 < § < 1, is not sufficient to guarantee that S, to be
bounded from HP into LP forany 0 < p < oo. In fact, this is not true even in the convolution
setting. This can be seen by taking A, (x,y) = @, (x — y) for some ¢ € S with non-zero
integral, where @, (x) = 2@ (2%x).

The square function S, associated to this convolution operator is not bounded from H? into
LP for any 0 < p < co. Hence some additional conditions are required for Ay in order to
assure HP to LP bounds. For 1 < p < oo, this problem was solved in terms of Carleson
measure conditions on Ay 1(x); see for example [317], [318], [326], [327]. We give
sufficient conditions for such bounds when the index p is allowed to range smaller than 1 .
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The additional cancellation conditions we impose on Ay involve generalized moments for
non-concolution operators Ay. Define the moment function [[Ak]]b’(x) by the following.

Given {Ax} € LPSO(N, L + §) and a € Nj with || <N —n
(18], G0 = 2490 | 2 = )y
Rn

for k € Z and x € R?". It is worth noting that [[Ak]]o(x) = A, 1(x), which is a quantity

that is closely related to L? bounds for S,, see for example [319], [320], [327]. We use these
moment functions to provide sufficient conditions of H? to LP bounds for S, in the following
theorem.

Theorem (6.2.1)[312]: Let {Ay} € LPSO(N,L + §), where N =n + 2L + 2§ for some
integer L>0and 0 <6 < 1. If

2
ditg(,t) = ) |[A]], (] 8,y (20)
keZ
is a Carleson measure for all @ € N§ with |a| < L, then A, can be extended to a bounded

operator from H? into L for all ——p < 1.
n+L+6

Here we say that a non-negative measure du(x,t) on R%**1 = R™ x (0, «) is a Carleson
measure if there exists C > 0 such that du(Q % (0,4(Q))) < C|Q] for all cubes Q < R",
where £(Q) denotes the sidelength of Q. We only prove a sufficient condition here for
boundedness of S, from HP into L?, but it is reasonable to expect that the Carleson measure
conditions in (20) are also necessary.

We also provide a quick corollary of Theorem (6.2.1) to the type of operators studied in
[319], [320], [327], among others.

Corollary (6.2.2) [312]: Let {A;} € LPSO(n + 2§,8) and 0 < § < 1. If S, is bounded on

L2, then S, extends to a bounded operator from H? into L for all n% <p<1.

Corollary (6.2.2) easily follows from Theorem (6.2.1) and the following observation. If S,
is bounded on L?, then du,(x, t), as defined in (20) for a = 0, is a Carleson measure; see
[317], [326] for proof of this observation.

We prove a characterization of Hardy space bounds for Calder'onZygmund operators. Some
of the earliest development of singular integral operators on Hardy spaces is due to Stein
and Weiss [330], Stein [329], and Feffermand and Stein [114]. It was proved by Fefferman
and Stein [114] that if T is a convolution-type singular integral operator that is bounded on
L?, then T is bounded on H? for p, < p < o where 0 < p, < 1 depends on the regularity
of the kernel of T. This situation is considerably more complicated in the non-convolution
setting, which can be observed in the T1 type theorems in [319], [331], [322], [321], [313].
In the 1980's David and Journ'e proved the celebrated T'1 theorem that provided necessary
and sufficient conditions for Lebesgue space LP bounds for non-convolution Calder'on-
Zygmund operators when 1 < p < oo, which coincides with the Hardy space bounds for this
range of indices. [331], [322], [321], give sufficient T1 type conditions for a Calder' on-
Zygmund operator to be bounded on HP for 0 < p < 1. The conditions in [331], [322],
[321] are too strong though, in the sense that they are not necessary for Hardy space bounds.
The fact that the conditions in [331], [322], [321] are not necessary can be seen by the full

necessary and sufficient conditions provided in [313] when p, < p < 1, where p, = %

and y is a regularity parameter for the kernel of T. This can also be seen by considering the
Bony paraproduct, which we prove is bounded on H? for p, < p < 1 and p, can be taken
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arbitrarily close to zero. One We prove at full necessary and sufficient T1 type theorem for
Calder'on-Zygmund operators on Hardy spaces, thereby generalizing results pertaining to
HP bounds from [313], [114], [331]. [321], [322].

We say that a continuous linear operator T from S into S’ is a Calderon-Zygmund operator
with smoothness M + y, for any integer M > 0 and 0 < y < 1, if T has function kernel K :
R2™\ {(x,x) : x € R"} - C such that

11.9) = | | Ken)f0)g@dydx

whenever f, g € C;° = C5° (R™) have disjoint support, and there is a constant C > 0 such
that the kernel function K satisfies

DEDYK (x,y)| <

forall ||, |B] £ M,

= Tx =y IA]

anb anbB ’ Clx —x'|" '

DoDlK(x,y)—DoDlK(x,y)|s| — g o 181 < lal = M = x'| < [ = y1/2,
Cly—y'l"

DEDP K (x,y) - DngK(x,y')| < Ty for la| < |B] =M, |y —y'| < |x —y|/2.

We will also define moment distributions for an operator T € CZO(M + y), but we require
some notation first. For an integer M > 0, define the collections of smooth functions of
polynomial growth 0,, = 0,,(R™) and of smooth compactly supported function with
vanishing moments D,, = D,,(R") by

0y = {f € C2(R™): sup |[F(O)] - (1 + |x)™ < oo} and
XERM

Dy = {f ECo’(R™): [ f(x)x%dx =0 forall || < M}.
RTL

Let h € C5° (R™) be supported in B(0,2),n(x) = 1 for x € B(0,1), and 0 < n < 1. Define
for R > 0,1z (x) = n(x/R). We reserve this notation for n and n throughout. [331], [322],
[321], define Tf for f € O, where T is a linear singular integral operator. We give an
equivalent definition to the ones in [331], [322], [321]. Let T be a CZO(M + y) and f € Oy,
for some integer M > 0and 0 <y < 1. For p € C5°(R™), choose R, = 1 minimal so that

supp(¥) € B(0,R,/4), and define

af. ) = Jm TN - |

|BIsM
This limit exists based on the kernel representation and kernel properties for T € CZO(M +
y) and is independent of the choice of n, see [331], [322], [321] for proof of this fact. The
choice of R, here is not of consequence as long as R, is large enough so that supp(y)) c
B(0,R,/4); we choose it minimal to make this definition precise. The definition of (Tf, y)
depends on y here through the support properties of i € C;°, but for ¢ € D, it follows
that (Tf,y) = limg_, (T (g f), ) since the integral term above vanishes for such 1. Now
we define the moment distribution [[T]], € Dy for T € CZO(M + y) and a € Ni with
la| < M by

DPK (o,
Jxﬁ(me(y) N, O))F () dydx

([Ter) = lim | K(u,y)pne(v)(u - y)*dydu
Rzn
fory € Dy, Where K € S'(R?™) is the distribution kernel of T. We abuse notation here in

that the integral in this definition is not necessarily a measure theoretic integral; rather, it is
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the dual pairing between elements of S(R?"*) and S’'(R?"). We will use K to denote
distributional kernels and K to denote function kernels for Calderon-Zygmund operators.
When we write K in an integral over R, the integral is understood to be a the pairing of
K € S’(R?™) with an element of S(R?™). It is not hard to show that this definition is well-
defined by techniques from [331], [322], [321]. This distributional moment associated to T
generalizes the notion of T1 as used in [319] in the sense that ([[T]],, ¥) = (T1,y) for all
Y € D, and hence [[T]], = T1. We will also use a generalized notion of BMO here to
extend the cancellation conditions T1,T*1 € BMO, which were used in the T1 theorem
from [319]. Let M > 0 be an integer and F € D,, /P, that is D,, modulo polynomials. We
say that F € BMO,, if

2 22MK|Q, F (x) 2 dx8,_ -

keZ
is a Carleson measure for any y € D,,, where Y, f = P, * f and P, (x) = 2¥p(2%x).
This definition agrees with the classical definition of BMO. That is, for F € BMO,,

Z 22MK| 0 F (x) 2 dxS,_,-k
. keZ . ] .
Is a Carleson measure, and hence F € BMO by the BMO characterization in terms of

Carleson measures in [317], [326]. A similar polynomial growth BMO,, was defined by
Youssfi [332]. We use this polynomial growth BMO,, to quantify our cancellation
conditions for operators T € CZO(M + y) in the following result.

Theorem (6.2.3) [312]: Let T € CZO(M + y) be bounded on L? and define L = [M /2] and
§=M—-2L+y)/2. 1f T*(x*) =0 in Dy, for all |a| <L and [[T]], € BMO,, for all

|| < L, then T extends to a bounded operator on H? for n+:+5 <p<l1.

Recall here that the operator T* is defined from S into S’ via(T*f, g) =(T* g, f), and the
definition of T™ is extended to an operator from 0,, to D;, by the methods discussed above.
Note also that this is not a full necessary and sufficient theorem for Hardy space bounds as
described above. This theorem will be used to prove the boundedness of certain paraproduct
operators, which in turn allow us to prove the full necessary and sufficient theorem, which
Is stated in Theorem (6.2.7).

The choice of L and § here are such that L > 0 is an integer, 0 < 6 < 1, and 2(L + §) =
M + . Itis also not hard to see that T*(x%) = 0 for all |a| < L if and only if [[T*]]a =0

for all |a| < L. We prove Theorem (6.2.7) by decomposing an operator T € CZO(M + y)
into a collection of operators {A,} € LPSO(n + 2L + 26,L + ") for 0 <6’ <6 and
applying Theorem (6.2.1). This decomposition of T into a collection of Littlewood-Paley-
Stein operators is stated precisely in the next theorem.

Theorem (6.2.4) [312]: Let T € CZO(M + y) for some integer M > 1and 0 <y < 1 be
bounded on L?, and fixy € Dy,. AlsoletL = [M/2]and § = (M — 2L +y)/2. f T*(x%) =
0inD,, forall |a| < L,then {A,} € LPSO(n + 2L + 26,L + &") forall 0 < §" < &, where
A = QT and Qi f (x) = Wy * f(x)

Furthermore, for n+:+6 < p < 1,T extends to a bounded operator on H? if and only if S,

extends to a bounded operator from HP into LP.
Throughout, we write LP = LP(R™) and HP = HP(R™) for 0 < p < . We will also apply
Theorem (6.2.7) to Bony paraproducts operator, which were originally defined in [315] and
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famously applied in the T1 theorem [319] (see also [314]). Let y € D, ,, for some L = 0
and ¢ € Cy°. Define Q. f =y * f and P, f = @, = f. For § € BMO, define

Mf) = ) 0,0 Bif)(). (21)

jez
It easily follows that Tl € CZOO(M +y) forall M = 0 and 0 <y < 1. It is well known
that Hz; (1) =0, and if one selects 1 and ¢ appropriately, it also follows that Tz (1) = g in
BMO as well. We are not interested in an exact identification of Iz (1) in this work, so we
don't worry about the extra conditions that should be imposed on ¥ and ¢ to assure that
Theorem (6.2.5) [312]: Let Il; be as in (21) for § € BMO,y € D, 4, and ¢ € Cy°. Then

Iz is bounded on HP forall —— < p < 1.
n+L+1

By Theorem (6.2.5) it is possible to construct Ilz so that it is bounded on H? for p > 0
arbitrarily small by choosing y € D, for L sufficiently large. It should be noted that some
Hardy space estimates for a variant of the Bony paraproduct in (21) were proved in [324].
Although we use a different construction of the paproduct, so we will prove Theorem
(6.2.5)here as well. Finally, we state the first necessary and sufficient boundedness theorem
for Calder' on-Zygmund operators on Hardy spaces.

We dedicated to Littlewood-Paley-Stein square functions and proving Theorem (6.2.1). we
prove the singular integral operator results in Theorems (6.2.3) and (6.2.4).

We apply Theorem (6.2.7) to the Bony paraproducts to prove Theorem (6.2.5). we use
Theorem (6.2.5) and a result from [321], [322], [331] to prove Theorem (6.2.7).

Applying the first estimate above, we finish the proof.

p/2 p/2
| (Z |Pkf(x>|2uk(x>) dr < | splpef GoICPPr? (z |Pkf(x>|puk<x>>
R™ \kez R™ KeZ

<| 1> |
LT

kel
p(2-p) p/2
= IV?Fll 2 (fRn z |Pkf(x)|p,uk(x)dx>

KEL
p(2-p) p?

SIFlLpE 0 F 2= F I
we prove Theorem (6.2.1). To do this, we first prove a reduced version of the theorem.
We apply Theorem (6.2.7) to show that the Bony paraproduct operators from [315] are
bounded on HP, which was stated in Theorem (6.2.5). Let ¥ € D, ,, for some L > 0 and
@ € C°. Note that [W(&)| S min(|¢],[€]™) as well, and since Ty, € BMO with

1Ty Bl SI B lisuo. it also follows that

IQlf Z ZZIaIk“Hﬁ] ¢k> 2|C‘”‘“”|f Z (Wi (TygoB) O

2~ k=£(Q) u<a Q ,-k=t(@

LT

p/2
| Py f (O IP e (X))

~ "TV(M)ﬂllBMO s B "BMO'
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Therefore [[Hﬁ]] € BMOy, for |a| < L, and by Theorem (6.2.7) it follows that Tl is
a

bounded on HP forall —— < p < 1, where L = |[M/2]and § = (M — 2L + 1)/2.

Finally, we return to the proof of Theorem (6.2.7). We have waited to this point to do so
since we will need both Theorem (6.2.3) and the Bony paraproduct construction in Theorem
(6.2.5).

We need one other result from [396]; we state Theorem 3.13 from [321], [322], [331]
adapted to our notation and restricted to the Hardy space setting.

Theorem(6.2.6) [312]: ([322]). Let T € CZO(M + y) be bounded on L? and define L =
IM/2]and § = (M — 2L +y)/2. f T*(x*) = 0in Dy, for all || < L and T; = 0 in Dy,

then T is bounded on HP for all — < p < 1.
n+L+6

In the notation of [322], this theorem is stated with g =2,0<p <1, =n/p,L=U —
n| =|n/p —n),a = 0, and H? = Fy*.

Theorem (6.2.7) [312]: Let T € CZO(M + y) be bounded on L? and define L = [M /2] and
§=(M—-2L+y)/2. ThenT*(x*) = 0inD,, forall |a| < L if and only if T extends to a
bounded operator on H? for n+:+5 <p<l1.

Proof: Let T € CZO(M + y) be bounded on L? and define L = |[M/2]and § = (M — 2L +
¥)/2. Assume that T*(x%*) = 0 in D, for all |¢| < L. Then T1 € BMO, and by Theorem
(6.2.5) there exists [T € CZO(M + 1) such that I1(1) = T(1),[1*(y%) = 0 for |a| < M, and
[T is bounded on H? for all n+:+6 <p<1.ThenT =S + 11, where S = T — II. Noting that
S*(y*) =0forall |a| <L and S1 = 0, by Theorem (6.2.8) it follows that S is bounded on

HP for all ——. Therefore T is bounded on H? for all —— < p < 1.
n+L+6 n+L+6

Now assume that T is bounded on H? for all n+:+6 <p < 1. Fory € D, it follows that
T, € HP n L2 for all —— < p < 1. Itis not hard to show that

n+L+6
j Ty (x)x*dx
R

is an absolutely convergent integral for any |a| < sup{n/p —n:
By Theorem 7 in [323], it follows that

f TY(x)x*dx =0
R

forall « € N§ with || < L + 6. Since § > 0, this verifies that T*(y%) = 0 for all |a| < L.
Corollary (6.2.8) [356]: Let f.: R™ — Ca non-negative continuous function, € > 0, and

= < &<1.Then
n+v

D QIO (x = c)fi(cq) = 2m iR N agizes (o)
1q(Q)=2—(j+(1+£))0
for all x € R™, where M;'** is defined and the summation indexed by £(Q) = 2~U*(+£)o)
is the sum over all dyadic cubes with side length 2=U*+(1*€)0)) and c,, denotes the center of

cube Q.
Proof Define

Ay = {Q dyadlc f(Q) — 2-(+@+8)o) and |X — CQl < 2—(j+(1+£)0)}

n
n+L+6

<p<1}=L+86.
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Ap = {Q dyadic : #(Q) = 27U*(+8)0) gng 26-1-U+(1+&0) < |x — ¢, | < 267U+ for
£ > 1. Now for each Q € A4,
Zmin (U, k)n
(Dn-i_-1+§ X —cC — < 2min (J,k)n < Zjn
min (],k)( Q) (1 4 omin (f’k)|x . CQDn+1+s
and foreach Q € A, when?¢ > 1

Zmin (J,k)n zmin (J,k)n
(D&-{i_r}-tfk)(x - CQ) = y T iie = min (j,k)9f—1-(j)\n+1+e
’ (1_|_2m1n (],k)|x_CQ|) 1+2 JR)2 1))
< Zmin (j,k)nz—(n+1+s) min (j,k)2—(n+1+s){’+n+1+s+(n+1+s)(j—(1+s)0)
< pmax (0,j—k)(1+£)2—(n+1+s)£’2jn
Since U,A4, makes up the collection of all dyadic cubes with side length 2~0U+(1+&)o) jt
follows that

Z Q1P G iy (x — o) fi(cq)
g(Q):z—(H(HS)o) £=0

= ) D, UL, (x — co)fi(co)
?

Q€4,
(o'e]

< z z (CQ)Zmax (0,j—k)1+£z 2€(n+1+£) z 2 (CQ)
1

QEAy T =1 Q€ed, r

0,.—k g 142¢
< zmax( j )1+ez 2 (n+1+¢) 2 2 (CQ)
£=0

QEA, r

1+2¢

For Q € A, and x + € € Q it follows that
|x —x +&| < |x — co| + |x + £ = ¢p| £ 27UA*0) 4 2E=(+(A+E)0) < 2E+1=(+(1+€)0)

Hence Ugea, Q © B(x, 2¢+1-U+(4£)0)) We also have that |4,| = 2"*~2); so

U 0l = 2-(+(1+e)o)ngn(f-2) — 9-2n9(L-(+(1+&)))n

Q€Ay
> |B(0,1)|7*272*|B(0,2¢-U+(+8)0))).
Now we estimate the sum in Q above:
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D A T S [ g Y Y ) G+ e

& Ugea, Q| Jugea,o &,
1 _ 1+42¢

< U— A 2 Z fr(CQ) Xo)d(x + ¢€)

| QEAEQ| UQEA{Q Q€EA,
< 2™ z z fi(co)  xo(x + £)d(x + )
1B (x, 20U+ HO0) | Jy(, o -Girarern) r\Ce)  Xa

’ Q€A
142¢
21‘,’n

= . c x+e€ d(x + ¢

|B(x, 2¢-U+(1+8)0))| B(x,2¢-U+(1+£)0)) z z fr( Q)XQ( ) ( )

’ Q€Ay
1+2¢
s 2 Z Z fr(cQ))(Q (x).
Q€A
Then we have that
D QUKo (x = o) ) filco)
{J(Q)=2—(f+(1+€)0)
1
o 1+2¢ 1+2¢
< pmax (0,j—k)1+£z 2—€(n+1+s—n/r) M 2 2 fr(CQ)XQ (x)
£=0 Q€A
1
1+2¢ 1+2¢

< pmax (0,j—k)1+¢ M Z z ﬁ*(CQ)XQ (x)
£(Q)=2-U+M
Corollary (6.2.9) [356]: Suppose

du(x, t) = z U ()5, _,-kdx
. ) kezZ . .
is a Carleson measure, where u;, is a non-negative, locally integrable function for all k € Z.

Also let ¢, € Y, and define P, 3 1) = Y (@) * fr, Where (@) (x) = 25 @ (2%x) fork €

Z. Then
1

1+¢
(Z z |Pkfr|1+sﬂk(x)> < z Il 1ve forall 0 < & < oo
KeZ eyt
and
1
2
(Z Z |Pkfr|2Hk(x)> < Z I£ll, vse forall 0 < & < 2
kEZ L1+€

Proof : Let f. € H1*¢, and we begin the proof of the the first estimate above by looking at
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-[Rn z Z |Prcfe COIT < e () dx

k€Z

f Z t T (t7H(x —x + &) fi(x + &)d(x + €)
Rn

= Pjooo du ({(x, t):

Define E; = {x: [N ?rf.(x)| > A}, and it follows that
{(x, 0): j z t (1 (x — x + €)f(x + )d(x + )
where £ = {(x, t):]};n(x, t) c E}. Therefore
[ 35 o =p [ au@aSsp [ g
R" 0 0

kEZ
i i1+e
= 2 ||N(prﬁ~”(1+s)1+e

= > WAl
Here we use that du(E}) < |E| for any open set E c R™, which is a well known estimate

for Carleson measures. In the case € = 2, the second estimate coincides with the first and
hence there is no more to prove.When 0 < &€ < 2, we set 1 + 2¢ = ﬁ > 1 and then the

dA
14+¢
> APATE—.

>/1}CEZ

Holder conjugate of 1 + eis 1 + 2¢e = Now applying the first estimate above, we

2—(1+¢)’
finish the proof.

(1+€)/2
| (ZZ |Pkfr(x>|2uk(x>) dx
o Nz (1+€)/2
< | SR IPfEo|errars (Z > |Pkfr<x)|1+fuk<x)>

k€eZ
(2-(1+8))(1+¢)
<> H(N‘Pfr) 2

1+&
2

D P @

2—(1+¢) kKEZ

2
2—(1+¢)

(1+&)(2—(1+¢)) (1+e)/2
=) INORll e (j > IPkﬁ(x)K“E)uk(x)dx)
R™ ez
(1+&)(2—(1+¢)) (1+¢)?

1+
SO Ml 7 ) WALE =) A

Corollary (6.2.10) [356]: Assume {A;} € LPSO(n+2(1+¢&)+26,(1+¢)+6) for
some integer e >0 and 0 <6 < 1. If A,(y*) =0 for all k e Z and |a| <1 + ¢, then

SISafill gy gyive S Zlfillyase forall £ € H** 0 (1 + €)? and T __<l1+e<1.

n+1+e+48
We call this a reduced version because we have strengthened the assumptions of from the

Carleson measure estimates to the vanishingmoment type assumption above; A, (y%) = 0
for|a| <1+c¢.
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Proof: Fix1+ ¢ € (n/(1+¢) —n,1+ €+ §), which is possible since our assumption on
1+ ¢ implies that ———n < 1+ &+ 8. Also fix 0 < & < 1 )such that —— < 1+ 2¢ <

1+e Letf. € H'*é n (1 + £)2, and we decompose

8D £) =D ) 1016, fileo) M) ()
Q

ez
=D 2 D NG|+ Y o) | Aaex + )@ ) o)
JEZ Q j

The summation in Q is over all dyadic cubes with side lengths £(Q) = 2~U+No) Then we
have the following almost orthogonality estimates

j z Ap(x, x + e)(tpr);Q (x+e)d(x+¢)
Rn

. D () (x)
= fan MCex+e)| % (x + ) — Z a!] (x+e—x)% |d(x +¢)

|la|s1+e€

. 1+e+8
< j ¢Z+2(1+£)+25(x —x+ s)(21 |lx — x + s|) e (CD}‘+1+£+5(x +e&— CQ)
Rn

n+l+e

+d>jj+1+g+6(x — CQ)) d(x + ¢)

< 2(1+e+8)(j—k)f ¢Z+2(1+8)+25(x — x4+ 8)(q)]n+1+s+6(x +e— CQ)
]Rn

OIS (x — o)) d(x + &) 5 20 OUTOPIEE (x — )

Also, using the vanishing moment properties of ¢;, we have the following estimate,

L6, x + )¢ (x + £)d(x + ¢)
Rn

De(y,) °
= j Z A(x,x + &) — z W )] 2 (x—x+ &) ¢;Q(x+£)d(x+£)
Rn

al

|x|<L

p f PIHIFERO(x — x + &) (2K|x + & — CQ|)1+S+6®}+2(1+£)+25(x +&—cq)d(x
Rn

+e?2

+j CD}”’””‘S(x — CQ)(2k|x +e— CQ|)1+E+6®}+2(1+8)+25(x +e—co)d(x +¢)
Rn

< 2(1+e+8)(k—)) f PRAIERO (x — x + )PP (x L g — ¢y )d(x + €)
R

+2(1+s+5)(k—j)f CDZ+1+£+6(JC _ CQ)CD}1+1+€+8(JC +e— cQ)d(x +¢)
Rn
—; 5
. S 20D ORI 1 (x — ¢o)
Therefore
C — j—
jRn A(x, x + s)q,’)jQ(x +e)d(x + &)| s 27(HDUKIQRei+e,  (x — cp)
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|z Akﬁ,(x)| < z Z |Q|(l~)] * ﬁ,(cQ)Z_(1+S+5)|j—k|Q)?n'ii'r}'liik)(x — CQ)

JEZ Q
—(1+&+8)|j—k|
- z z 21+¢ max (O,k_f)ﬂ/[j“zs(qu * fr)(x)
jez

< z 2—8|j—k|%1+28($j *fr)(x)
JEZ
wheree =1+ ¢+ § — 1+ € > 0; recall that these parameter are chosen such that 1 + ¢ <
14 &+ 68.t0 M*?*(@;  f, )(recall that 1 + £ was chosen such that T _<142e<1+4

. . ) n+1+e&
¢ ) yields the appropriate estimate below,

D USafilly ey

1
2\ 2
(3 [5% oo
keZ |jez
(1+&)1*e
1
2
—eli- 7 2
S (DI IRl LA D) S 0. Wl
j,kEZ
(1+¢)1te

Next we construct paraproducts to decompose A, . Fix an approximation to identity operator

P. X f)=3 ¢ * f,where ¢, (x) = 2¥¢(2%x) and ¢, € Y with integral 1. Define
fora,a + ¢ € Nj
a+ !

Myp = {(_1)|0K+£|—|0¢| (a+e—a)!

j px+e)(x+ ) % d(x+€)e=0
[Rn

0
Herewesay e < 0fora = (aq,..,ap),a+e=(a;+¢,...,a, +e) ENjifa; < a; + ¢

forall i = 1,...,n. Itis clear that |(1 + &) g 44| < o for all @, a + € € N§ since ¢, € S.
Also note that when |a| = |a + €|
_ (a+ €l e=0
(1+8)“'“+£_{ 0 a#+a+cand |a| = |a+ g
We consider the operators P,,D* defined on Y’, where D® is taken to be the distributional
derivative acting on Y'. Hence P, D*f.(x) is well defined for f,. € Y’ since YX.P,D*f.(x) =

Sk, Defy = (—DIE(D((9,)F), f.) and D*((¢)%) € Y. In fact, this gives a kernel
representation for P, D%; estimates for this kernel are addressed in the proof of We also have

(12D, ) = 2% [ 5" (e = x4 ) 0510 ((x = 3 + )V +)
Rn

= Zklal(a + <g)a,a+‘s-
For k € Z, define

MY FD =My =Y (], Pefio)
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AP f)
[[A2]] e

=ATY £ Y Y (D 2 AP DY. ().

al
la|=m

fore > 0.
Corollary (6.2.11) [356]: Let {A,} € LPSO(N,L + &), where 1+ e =n+2(1+¢)+ 26
for some integer L > 0 and 0 < § < 1, and assume that

dug,(x, t) = Z |[[A§<m)”a (x)|2 8, p-kdx.

keZ
is a Carleson measure for all « € Nj such that [a] < 1 + €. Also let A;m) beasinasfore >

—1. Then Agj’” € LPSO(1 + ¢,1+ €+ ) forthesame 1 + ¢,1 + 2¢, and §, and satisfy the
following:

(i) [[A;m>]] — oforall @ € NP with [a] <1+¢& <1+ 2e.
a
(i) duy, (x, t) is a Carleson measure forall 0 < 1 4+ ¢ < 1 + 2¢, where du,, is defined

du,,(x,t) = Z z |[[A$‘m)”a (x) i 8,_,-kdx.

k€EZ |a|s1l+e

Proof : Since {A,} € LPSO(n + 2(1 + €) + 26,1 + € + &), we know that |[[Ak]]a(x)| <

1 for all |¢| <1+ €. Then to verify that {A;m} € LPSOn+2(1+ &)+ 28,1+ e+ 6)

for 0 <14 & < 1+g¢, it is sufficient to showthat {27*1%Ip, D%} € LPSO(n + 2(1 + &) +
28,1+ ¢+ 9) forall @ € N§. For f, € Y, we have the following integral representation for
27 klaelp, D2 f. which was alluded to above,

z—klalz P.DYf.(x) = (—1)'“'2""“'2 (D*((Prdi) fr)
= (-1 Y D% * £1(0)
Y

Since ¢, € Y, it easily follows that D%, € Y for all a € N} and that {27%l¢/p, D%} €
LPSO(n+2(1+¢€)+ 26,1+ ¢+ 6). Now we prove (1) by induction: the m = 0 case for
(1) is not hard to verify

[[A]] = At =[], - Pt = (18], = (18], = 0

Now assume that (1) holds for m — 1, that is, assume [[Ag”—”]] =0 forall |a] <m—1.
a

Thenfor|ja+el<m-—-1

1], =1 2

|ax|=m
The first term here vanished by the inductive hypothesis. The second term is zero since
|B] <m = |a| and hence (a + €)4 g+ = 0. FOr |a + &| = m,

(A7 ]] e
o = (_l)lalM(x,a+£ =0
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(m-1)
el ey -y a.”a““%-nwﬂaa,ﬁg
a+e are !

) [[Agcm_l)” al=m

[ A(m 1)”
a+&E a+e&

where the sum collapses. By induction, this verifies (1) for all m < L. Given the Carleson

measure assumption for du, (x, t) one can easily prove (2) if the following statement holds:
forall0 <e<1

z |[[A(m)]] (x)|<(1+c)m+1 Z [[A]], ()| where €,

la|<L la|s1+e

= E |Me ]
|a|,|a+e|s1+€

We verify by induction. Form = 0, let |a + €] < 1 + ¢, and it follows that

[A0T], =[], = (i8], [T, = [T, = (0], -+ ©osee
Then
). ”A(O)” < Ol )+ D ([l @+ e
latel=l+e THEL  a+el=1+e |B|=1+e
< (1+Gp) Z i),
|a+els1+e

Now assume holds for m — 1, and consider

2, s,

|a+e|s1+¢

DI [l

|a+e|s1+e|al=m

<|1+ z |(1+ &)gqvel Z [[Agcm_l)”

(1 + 8)a,a+£

< 2l

|a+eg|s1+e

a+e a

|a|sm,|a+e|s1+e |a+els1+e ate
<(1+Cy) z [[Aggn-ﬂ]] < (1+Ccymt? z |[[Ak]]a+£ :
la+e|s1+e ate la+e|s1+e

We use the inductive hypothesis in the last inequality here to bound the [[Ag”‘”]] . Then
ate

by induction, the estimate holds for all 0 < m < L, and completes the proof.

Corollary (6.2.12) [356]: Let T € CZO(1 + £ +¥) be bounded on (1 + £)? and satisfy
T*(x*)=0forall || <1+ e&=][1+¢/2]. Fory, € D,,,, define

dity (x,t) = z Z| [04T] | 8, _,-kdx

|x|s1+e k€eZ
where Qi fr = W)k * fr and (Y,) (x) = 25", (2%x). If [[T]], € BMO)y for all |a| <
1 + &, then duy is a Carleson measure for any ¥, € Dy 41 4¢-
Proof : Assume that [[T]], € BMO|«| for all || <1 + ¢. Let € D, ., and it follows that
{Q,T} € LPSO(L, ") forall §' < &8, where Qf, is defined asaboveand 1 + € = [1 + &/2
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and 6§ =(1+e— 2(1+¢)+y)/2. We also define QF*ef, = (Y, )T ¢« f,., where
W) (x) = (=DIe* el (x)x*+e. It follows that ()*** € Dyyerise—jare. NOW let

a € N7 such that |a| < 1 + ¢. Note that for @ + € < a, it follows that (y,)? € D, and
hence {QF*¢T} € LPSO(n + 2(1 4+ €) + 26,1+ e+ 6") forall 0 < 6’ < § aswell. Then it
follows that

[[0xT1]_ ()
= f Z T*"Wr)r(x+e)(x —x+&)%d(x + ¢)
Rn

= lim 2kI¢l Ku,x+ &)W )imng(x +&)(x —x + &)%dud(x + ¢)

= lim Cq p2K1%! f z K(u,x + ) W)E(w)(x —u)* ¥(x — x + €)°dud(x
RZn

R—>o0
a+tesa

+¢)
=lim Y g palala jRZ K x + ) ((WEE) Wng (x

R—o0o0
at+esa

+&)(x — x + &) edud(x + €)

= D Caqre20EIDE N ([T (@),
Rn

atesa

Let Q < R™ be a cube with side length £(Q). It follows that

2
Z;@ J lioern,["ax
2
Z jz( Ca,a+52(|a|_|a+£|)k([[T]]gl((l/)r)%-l_g)x)) dx

27k=<£(Q)

<>y jQ D Jtlerei| 7 Nare (@0E))2dx < Q|

atesa 2-k<p(Q)

The last inequality holds since [[T]]g+e € BMO|q|—jg+e; aNd (P)5 75 € 14+ € C Dy 14|
forall a + € < a.
Section (6.3): Limited Ranges of Muckenhoupt Weights

We are concerned with boundedness properties of Calderon-Zygmund singular
integral operators and Littlewood-Paley-Stein square function operators on weighted Hardy
spaces. The primary issue for singular integral operators for us is the continuity of a
Calderén-Zygmund operator T from HE into HE, for 0 < p < o and w € A, for which we
give necessary and sufficient conditions; see Theorem (6.3.10). We also prove new results
for square function operators from H? into LY for w € A, where p < q; see Theorems
(6.3.7) and (6.3.8). Our approach to these problems uses Muckenhoupt weight invariance
properties of BMO and Sobolev-BMO spaces; see Theorem (6.3.11). In fact, the use of BMO
weight invariant properties in this way provides a new way to prove LP type estimates for
operators.
There is a lot known about Hardy space HP estimates for Calderon-Zygmund operators,
going back to the groundbreaking work of Stein and Weiss [330], Stein [329], and Fefferman
and Stein [114], among others. When T is a convolution type operator, things are simplified
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considerably. It was shown in [114] that if T is a convolution type Calderon- Zygmund
operator and is bounded on L2, then T is also bounded on H? for p, < p < 1 where p, < 1
depends on the regularity of the kernel of T. In particular, if the convolution kernel of T is
smooth away from the origin, then T is bounded on H? for all 0 < p < 1. There are also a
number of situations where the boundedness properties of a singular integral operator T on
weighted Hardy spaces are already known. Still working in the convolution setting, some
weighted Hardy space estimates were proved by Lu and Zhu [282]. In that work, they prove
that if a convolution operator T has a smooth convolution kernel away from the origin and
is bounded on L?, then T is also bounded on HY, forall 0 < p < coand w € A,,. One should
note here that when 1 < p < oo this result does not collapse to the well-known Lebesgue
space theory for singular integral operators. Since the result in [282] allows w to be in any
A, class regardless of the p, it does not follow that LY = HP: in particular, when 1 < p <

q <o andw € A4, \ 4, the spaces [P and H? do not coincide. Hence one can conclude
from the work in [282] the initially surprising fact that there are convolution operators that
are bounded on HY, but not bounded on LP, for appropriate selections of 1 < p < o and
wE Ay.

In the non-convolution setting, Hardy space estimates are considerably more difficult to
prove. Sufficiency results for a non-convolution operator T to be bounded on H? for 0 <
p < 1 were given by Torres [331], Frazier, Torres, and Weiss [339], and Frazier, Han,
Jawerth, and Weiss [338]. Full necessary and sufficient theorems for the HP? boundedness
of non-convolution Calderon-Zygmund operators were achieved by Alvarez and Milman
[334] and the first and Lu [343]. In [334], the authors give necessary and sufficient

conditions for T to be bounded on HP when p is close to 1 (more precisely when nnTy <p<

1 where 0 < y < 1 is the Holder regularity parameter for the kernel of T ), and the full
characterization for any 0 < p < 1 was established in [343].

In the current work, We show a full necessary and sufficient theorem for non convolution
type singular integral operator bounds on weighted Hardy spaces HY . The conditions of our
theorem are the same as the necessary and sufficient conditions for unweighted HP bounds
found in [343], but as may be expected from the discussion, some intriguing properties are
exhibited of weighted Hardy spaces. In the ideal situation of [282]- where T is a convolution
operator with smooth kernel away from the origin - one can conclude boundedness on HY
for the full range 0 < p < oo and w € A.,. This cannot be expected in the non-convolution
setting. Indeed, it has already been shown that even in the un weighted situation for non-
convolution operators, a Calderon-Zygmund operator T is bounded on H? for only a limited
range of exponents p depending on the kernel regularity and cancellation of T. We find that
one must limit the range of q for w € A, as well. This is a new result, and an interesting

one. It seems that increased kernel regularity and cancellation properties for T allow for HE
boundedness where w can "move up the scale” of A, classes where g > p, but cannot be
taken to be just any weight in A, as in [282]. In particular, given a Calderén-Zygmund

operator T we prove that it is bounded on H? for ranges of p and w of the form T <

n+L+6
p <oandw € A, where g = p"+i+6; here L € Ny and 0 < § < 1 are determined by the

kernel regularity and cancellation properties of T
It should be noted that the complications of working in the non-convolution setting can be
directly observed in terms of cancellation conditions for T. If T is a convolution operator
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that is bounded on L2, then T(x%) = T*(x%) = 0 for any a € N} such that T(x%*) and
T*(x*) can be defined (the multi-indices a for which these are defined depend on the kernel
regularity of T ). This collapses all of the cancellation conditions used to trivial ones when
T is a convolution operator. So studying convolution operators reduces immediately to the
situation where T(x%) =T*(x%) =0 are satisfied for all a, which simplify things
considerably. In the non-convolution setting, the conditions T(x%) = 0 are not necessary
for HP or H?, boundedness. This in large part, is why it is more difficult to work in the non-
convolution setting than the convolution setting.

We prove weighted Hardy space estimates for Littlewood-PaleyStein square function
operators. These operators have been studied intensely over the past halfcentury, but the
majority of the attention to these operators has been along two lines of research (at least
pertaining to boundedness on P and HE spaces): (i) Proving estimates for convolution type
square function operators mapping LP - LP, [P — [P HP — LP, and HE — IP  and (ii)
proving estimates for non-convolution type square function operators mapping L? — LP and
[P — IP . The unweighted estimates along the lines of (i) have been studied extensively,
and by now are often considered classical. The subject of weighted estimates for square
functions is also a well-studied problem, being attacked since the seminal works of Wilson
[353]-[355]. Other weighted estimates for convolution-type square functions can be found
in the work of Sato [144], [129], Lanzhe [345], Duoandikoetxea [337], and Ding, Fan, and
Pan [136], to name a few. For results in the direction of (2) in the unweighted setting, see
for example the work of David and Journé [319], David, Journé, and Semmes [335], and
Semmes [327]. However, there has been relatively little work done to prove HP to LP
estimates for square functions defined in terms of non-convolution operators. One place
where such estimates are proved is in [343], show that a class of nonconvolution type square
function operators are bounded from HP? into LP where p is allowed to range all the way
down to 0 . We prove that a similar class of square function operators are bounded from HY
into LY forp, <p < wandw € Ag, Where in some situations g > p (specifically, we take
q =p/poWhere0 < p0 <1).

We devoted to developing weight invariant properties of BMO and related spaces. The
origins of the notion of weight invariance can be traced back to an article by Muckenhoupt
and Wheeden [346] about weighted bounded mean oscillation (although they did not use the
term weight invariant). In short, they prove that if one defines BMO,, analogous to BMO
with the Lebesgue measure dx replaced by w(x)dx where w € A, then BMO,, = BMO
with comparable norms. This property BMO,, = BMO is what is meant by weight
invariance of BMO. There has been limited investigation of this property of BMO since the
work of Muckenhoupt and Wheeden; we have found a few related results by Harboure,
Salinas, and Viviani [342], Hyténen and Pérez [344], and Tsutsui [352] (although they do
not use the term weight invariance either). We further develop these weight invariant ideas
in the setting of Carleson measure conditions, p = o type Triebel-Lizorkin spaces, and
Sobolev-BMO spaces, which are a crucial component in the proofs of our singular integral
operator results. We prove that weighted Sobolev-BMO spaces and weighted p = oo type
Triebel-Lizorkin spaces coincide with each other and coincide for all w € A, all having
comparable norms. For more information on p = oo type Triebel-Lizorkin spaces see for
example the work of Frazier and Jawerth [116] and Bui and Taibleson [108], and for more
on Sobolev-BMO spaces see for example the work of Neri [347], Strichartz [350], [351],
and Garnett, Jones, Le, and Vese [340].

202



The role that the weight invariant properties of Sobolev-BMO spaces play highlights a new
method for proving L?, type estimates by "passing through" weight invariant spaces. Very
briefly, we use conditions of the form T1 € BMO to conclude that T1 € BMO,, and ||
T1llgmo~ I T1 lgye,,. Since BMO,, = BMO with comparable norms. Then, after
reproducing some Carleson measure theory with a weight w € A, attached, we prove that
T1 € BMO,, implies that the Bony paraproduct operator I1; associated to 71 is bounded
on L2, for all w € A4,. By the weight extrapolation theory of Rubio de Francia [348], [349]
(we use the version proved by Duoandikoetxea [336]), it follows that T is bounded on L,
forall 1 <p < o and w € A,. The argument described here is not exactly the one we use

since we must adapt it to the HY, setting for 0 < p < oo in place of L2, but in principle it is
the approach that we take. In the proofs below, we modify this approach to work with higher
order moments of T in addition to T1 and with Sobolev-BMO conditions in addition to
traditional BM O conditions. In the end, we find that this new technique of "passing through"
a weight invariant space to prove LP type estimates is very effective here, and has potential
to be useful in many applications to weighted estimates. The topic is the Carleson measure
and BMO type spaces in the weighted setting, and we prove weight invariant properties of
Sobolev-BMO. are used to prove estimates for square functions and singular integral,
respectively.

Definition (6.3.1)[333]: Let w € Lj,.(R™) be a non-negative function. We say w is a
Muckenhoupt A, weight, written w € A,(R"), for 1 <p < oo if

[W]a, = sup <if w(x)dx)< . f w(x) ildx>p_1 < o
7 gern \1Q| Q]

where the supremum is taken over all cubes Q ]R”

Let S = S(R™) be the Schwartz class of smooth, rapidly decreasing functions with the
typical Schwartz semi-norm topology. Define the Fourier transform ¢ of a function ¢: R" —
C by

() = j p(0)e 4 dx.

Rn

Let So, = S, (R™) be the subspace of Schwartz functions ¥ such that | (&)| < |€|M for all
M € N,, i.e. the subspace of Schwartz functions with vanishing moments of all orders. Let
S' = S'(R™) be the dual space of S(R™), which as usual we call the class of tempered
distributions. We will also work with the class of tempered distributions modulo
polynomials S’ /P, which we interpret as equivalence classes of S’ of the form f(x) + p(x)
where f € S" and p is a polynomial. Let D,,(IR™) be the subspace of C;°(R™) made up of
functions f € C5° (R™) such that

f()x%dx =0
RTL
forall |a| < M. Define the Riesz potential I, fors € Rand f € S., by [,(&) = |&| 5P (§)
for &£ € R™. It follows that I,y € S, (R™) for all Y € S,(R™). For f € S'/P, we define
IL,f €S'/Pby(I;f, ) = (f, ;) foryp € S, (R™). This is well-defined since given f € S’,
if (f,1) =0 for all Y € S,,(R™), then supp(f) c {0} (the support of f as a tempered
distribution) and hence f is a polynomial. So I, is well-defined on tempered distributions
modulo polynomials.
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Definition (6.3.2)[333]: Let w € A, (R"). Define BMO,, to be the collection of all f €
Liocw(R™) such that

I f lsmo,,= Sup (Q)f | () = fwo|w(x)dx < o,

where f,, o =

) j FEOw)dx.

It follows from Theorem 5 in [346] that BMO,, = BMO with comparable norms for every
w € A,. Despite the fact that these are, for all intents and purposes, the same space, we keep
the notation BMO,, in addition to BMO to help clarify what properties of BMO,, and BMO
we are using at any particular point.
Definition (6.3.3) [333]: Let w € A, (R™)b and s = 0. Define I;(BMO,,) to be the
collection of f € S’ /P such that I_,f € BMO,, equipped with the norm

I f Nisemo,y= M-sfllgyp,
Note that I_. f is well defined as an element of S’ /P for f € S’ /P by the discussion above.
It also follows that I;(BMO,,) is a Banach space for w € A,, since BMO,, = BMO with
comparable norms, and it was established in [350] that I(BMO) is a Banach space.
Definition (6.3.4)[333]: Let w € A, (R™). A collection of non-negative locally integrable
functions Fy (x) for k € Z is a w-Carleson collection if

1
I{F 3> = sup — F. (x)w(x)dx < oo,
{Fic} Cw QC]II&)n w(Q) Q 12 F=0(0) c(xwix)

We say that the collection F, (x) for k € Z is an A,-Carleson collection if there exists an
increasing function N:[1,0) — [0, o) such that II{Fk}llcw <N ([W]Ap) forany 1 <p <
o and w € 4, (R™).

Now we formulate the construction of the weighted p = oo type Triebel-Lizorkin spaces
Eg?% fors > 0and w € A, (R™) from [108] (see [116]).

Definition (6.3.5)[333]: Let w € A, (R") and ¥ € S(R™) such that 1)(¢) is supported in

the annulus 1/2 < || < 2 and such that ¥z (27%¢) = 1 for & = 0. Define Fg, to be
the collection of all f € S'/P such that

1
= [ 22ks " 2 d 0.
Feow QcR™ W(Q) JQ iz 2k<{;: © |ltbk f(x)l W(,X') x <

It was shown in [108] that this is a norm, that £52, is a Banach space, and the norm is

independent of the choice of y satisfying the propertles above.
Definition (6.3.6) [333]: Define the non-tangential maximal function
N?f(x) =sup sup

[ oo o= w) < ravdul

t>0 [x—y|st | /rn

where ¢ € S with non-zero integral. For a weight w, define H?, to be the collection of f €
S'" such that || f Iyp=IN?fII, p < 0. It follows that this space is a (quasi-)Banach space

(for 0 <p < 1) where [[N?(: )"Lp &) for different elements ¢ € S(R™) with non-zero

integral define comparable (quasi-)norms. When ¢ € S has nonzero integral, we will use
the notation N = N for convenience. Given kernel functions 1,:R?" - C for k € Z,
define
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MG = [ 20y
RTL
for appropriate functions f: R2" — C. Define the square function associated to {A;} by
1

2
SAf() = (Z |Akf<x)|2) .

k€eZ
We say that a collection of operators A, for k € Z is a collection of Littlewood-Paley- Stein

operators with decay N and smoothness L + &, written {A,} € LPSO(N, L + &), for N > 0,
aninteger L > 0and 0 < § < 1, if there exists a constant C such that

|2 (x, )| < COY (x — y) (22)
|IDEA, (x,y)| < C?19k DN (x — y) forall |a| = a; + -+ a, <L (23)

D4 (x,¥) = DA, ¥ < Cly — y' 19250+ (0 (x — y) + O (x — y"))
for all |a| = L. (24)

Here we use the notation ®¥ (x) = 2*¥*(1 + 2*|x|)™™ for N > 0,x € R", and k € Z. We
also use the notation D§'F (x,y) = 05F(x,y) and D§F (x,y) = 05F (x,y) for F:R*" - C
and a € Nj. It should be noted that we only need to impose regularity in the second variable

of /’lk (X, y)
We will impose additional cancellation conditions on A, that involve a generalized notion

of moments for non-convolution operators Aj. Define the @ moment function [[Ak]]a(x)
by the following. Given {A;} € LPSO(N, L + §) and a € Nj with [a| < N —n,

[I0cT], @) =29 | o3 =)y

for k € Z and x € R™. It is worth noting that [[A.]] (x) = A, 1(x). Further discussion of
the class LPSO(N, L + §) and [[Ak]]a can be found in [343]. Our main results for square
function operators are the next two theorems.

Theorem (6.3.7) [333]: Let {A;} € LPSO(N,L + &), where N =n + 2L + 26 for some
integer L > 0and 0 <6 < 1. Letn+2+6 <p<Zandw € A4, nHLto (R™). If |[ Agl] (x)l

iIs a w-Carleson collection for all « € N} with |a| < L, then SA extends to a bounded
operator from HY (R™) into LP (R™). Furthermore, the operator norm of S, depends on
[W]a RS, not on w itself.

Theorem (6.3.8) [333]: Let {A;} € LPSO(N,L + 6), where N =n + 2L + 2§ for some

2
integer L>0and 0 <& < 1.If |[[Ak]]a(x)| is an A.,-Carleson collection for all @ € N%
With |a| < L, then S, extends to a bounded operator from HY (R™) into LY (R™) for all
n+L+6
<p<owandw € 4,
n+L+6

The main difference between the conclusions of these two theorems is that Theorem (6.3.8)
allows for p to exceed 2, whereas Theorem (6.3.7) imposes p < 2. There are some technical
Issues that arise in working with these square functions when p > 2 that are rooted in the
Carleson measure estimates we use. In principle, it seems reasonable to expect that Theorem
(6.3.7) holds for p > 2 as well, but we cannot conclude these estimates here. The extension
from Theorem (6.3.7) to Theorem (6.3.8) is an application of weight extrapolation, for
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which we must have a uniform estimate over all Muckenhoupt weights given in the A-
Carleson condition.

We say that a continuous linear operator T from S into S’ is a Calderén-Zygmund operator
with smoothness M + y, for an integer M >0 and 0 <y < 1, if T has function kernel
K:R?™\ {(x,x) : x € R"} - C such that

T.9)= [ Kanfmgedyx
]RZn
whenever f, g € C;° = C,°(R™) have disjoint support, and there is a constant C > 0 such

that the kernel function K satisfies

RG]

forall x # y and |a|, |B| < M,

S|

[DEDEKCr,y) — DEDIK (e + hy)| € I for ] < |a| = M
0~1 x’y 01 (x ’y) —_ |x_y|n+M+|B|+y or |ﬁ| — |a| - Y

pepFK —DeDPK(x v +h |< Clh|" f <Bl=M
01 (x’ y) (Vi | (xly ) — |x _ y|n+|a|+M+V or |a| —_ |B| -

whenever |h| < |x — y|/2. We will also define moment distributions for an operator T €
CZO(M + y), but we require some notation first. Let n € C3°(R™) be supported in B(0,2)
and n(x) = 1 for x € B(0,1). Define for R > 0,nz(x) = n(x/R). Let f € C*(R™) with
If ()| < C(1+ |xPM, ¢ € € (R™), and choose R, =1 minimal so that supp(y) c
B(0,R,/4). Define

| DEK(0,)
Tf) = I (TaHY) — Y |

o F e P!
This limit exists based on the kernel representation and kernel properties for T € CZO0(M +
v). Furthermore, using different functions n, constructed as above, in this definition causes
Tf to differ only by a polynomial. Hence the definition of Tf is independent of the particular
selection of n; as long as we work modulo polynomials. Now we define the moment
distribution [[T]], € S'(R™) for T € CZO(M + y) and @ € Nj with 0 < || < M by

([T1e ¥) = lim o K y)@ng(y)(u — y)“dydu

xB () — nr, ) f Y (x)dydx.

pPk (o,
-y [ P k) - o o
Blslal "R '
fory € S, where K € S'(R?") is the distributional kernel of T and K, (x, y) = K(x, y)(x —
y)“. We abuse notation here in that the integral in this definition is not necessarily a measure
theoretic integral; rather, it is the dual pairing between elements of S(R?™) and S'(R?™).
Throughout this work, we will use K to denote distributional kernels and K to denote
function kernels for Calderén-Zygmund operators. When we write K in an integral over
R2", the integral is understood to be the pairing of K € S’ (R?™) with an element of S(R?™).
Itis not hard to show that this definition is well-defined by slightly modifying the techniques
from [331], [339], [338], [343]. These details are provided later (in the proof of Proposition
(6.3.9)), in which we prove that [[T]], can actually be realized as an element of S’ when
a + 0, even though it is initially defined by pairing with elements of C;°.
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Proposition (6. 3. 9) [333]: Let T € CZO(M + y) be bounded on L?. Then [[T]], € S’ for
a € Ni with 0 < |a| < M. Furthermore, [[T]], € S'/P coincides (modulo polynomials)
with the function

(TGO = [ Koo yym)dy

R
B
D; K, (O,
0 a( Y)xﬁ

B!
|Bl=]al
where K, (x,v) = K(x,y)(x — y)* and |[[T]],(x)| S 1+ |x|!*l aslong as 0 < |a| < M.
Proposition (6.3.9) is very useful since it gives an actual function representation for [[T]],
rather than just a distribution. Also note that we require a # 0 in Proposition (6.3.9). We

only consider [[T]], =T1 as an element of (C§°(R”))', not necessarily S’'(R™) here.

Formally, it is reasonable to expect [[T]], = T1 € S'(R™) using the definition of [[T]],
when a = 0, but as will be seen in the proof of Proposition (6.3.9), there is a technical issue

that arises in the « = 0 case. So we leave [[T]], to be T1 as a distribution in (C@"(Rn))'
modulo polynomials.

This work is the following T1 type theorem for Calderon-Zygmund operators, which
extends results from [114], [334], [331], [339], [338], [282], [343].

Theorem (6.3.10) [333]: Let T € CZO(M + y) be bounded on L?, and define L = M /2 and
S=M+y)/2—-L.IfT*(y*) = 0 for all @ € N, such that |a| < L, then T extends to a

bounded operator on H? (R™) for any n+:+ 5 <p < andw € Apn+L+5(Rn). Furthermore,

+ j K,(x,y) — (1 —n(y)dy,
RTL

the HY (R™) operator norm of T depends on [w], LS, not on w itself.

Here x| denotes the greatest integer not exceeding x. The choice of L and § here depend
on M and y; it is the choice of L and 6 such that L > O isan integerand 2(L+6) =M +y
where 0 < § < 1. Above we claimed that our main theorem is necessary and sufficient for
H? bounds, but its statement only includes one direction of that equivalence. The other
direction follows essentially for free. By Theorem 7 in [341], it follows that the condition

T*(y*) = 0 for |a| < L is necessary for T to be bounded on HP for n+z+6 < p < 1. Hence

the cancellation conditions in Theorem (6.3.10) are necessary and sufficient for HZ bounds.
We consider the weight invariance of a number of different spaces. For s > 0, we show that
the spaces I, (BMO,,) forw € A, (R™) all coincide with I;(BMO). Furthermore all of these
spaces also coincide with the p = oo type Triebel- Lizorkin space Foij,. In our next theorem,
we extend the results in Theorem 5 of [346] and Proposition 4 of [342].
Theorem (6.3.11) [333]: Let s > 0 and w € A, (R™). Then F2%, = ES% = [(BMO,,) =
Is(BMO). Moreover, for f € S’ /P

Il f Ilpgéfwzll fllgse= III_stIBMOW ~ U _sfllgp0
where the implicit constants depend on [w],, for some 1 < p < oo, but not on w itself.
We will use the following Frazier and Jawerth type discrete Calderon reproducing formula
[115](see also [293] for a multi parameter formulation of this reproducing formula): there
exist ¢;, ¢; € S, for j € Z such that

fE=) > 10— fe@inlF  (25)
J€Zy £(Q)=2-(j+Np)
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for f € L2. The summation in Q here is over all dyadic cubes with side length £(Q) =
2-U+No) 'where N, is some large constant, and cQ denotes the center of cube Q. Throughout
we reserve the notation ¢; and J)j for the operators constructed in this discrete Calderon
decomposition.

We will also use a more traditional formulation of Calderdn's reproducing formula: fix ¢ €
Co’ (B(0,1)) with integral 1 such that

D Quf=finl? (26)
K€EZ
for f € L?, where (x) = 2"p(2x) — (x), P, (x) = 2"P(2¥x), and Qif =i = f.
Furthermore, we can assume that ¥ has an arbitrarily large, but fixed, number of vanishing
moments. There are many equivalent definitions of the real Hardy spaces HY = H? (R™)
for 0 <p <o and w € A,,. We use the one given on in terms of the non-tangential
maximal function Nf. It follows that
[suptoe = 1| =0 1.
k€EZ Lev
Let ¢ € D,, for some integer M > n(1/p — 1), and let i, and Q, be as above, satisfying
(26). For f € S'/P, f € HY, if and only if

and this quantity is comparable to || f I uP; See Theorem 1.4 in [109]. The space HE can

also be characterized by the operators ¢; and cf)i from the discrete Littlewood-Paley-Stein

decomposition in (25). This characterization is given by the following, which can be found
in Proposition 2.1 of [282]. Given 0 < p < oo
2
~ 2
Y gl || =il @)
JEZ ¢(Q)=2~U+No)
Ly

where yz(x) = 1 for x € E and yz(x) = 0 for x ¢ E for asubset E c R™. The summation
again is indexed by all dyadic cubes Q with side length

£(Q) = 2-U*+No)_For a continuous function f: R™ - Cand 0 < r < oo, define
oy
M@ =Ml > fr | |y (28)
£(Q)=2-U+No)
where M is the Hardy-Littlewood maximal operator. The following estimate was proved for
the unweighted situation in [293]; we give a quick proof of it here for the weighted situation.

Proposition (6.3.12) [333]: For any v > 0,% < r < min(2,p) < co,w € Ag, and f €
H,,
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1
2

. 2
Z (M7 (8;+ 1)) <If gy,
I
where M; is defined as in (28).
Proof: Let v>0,—— <1 <min(2,p) <p < c,w € Ap, and f € H,. Then using the

definition of M} in (28) and applying the Fefferman-Stein vector-valued maximal inequality
from [283] with p/r > 1 and 2/r > 1 gives

1
112
I Ly ( r %\‘2
H Z(MJT(‘/)J*f)) = Z M 2 |§) = f(c@|xq
|\7= I, & Q) /
I8 3
LT
| V]
SID D 18 Fe@lxe | | =1 F g
e 0
Ly,

The next result was proved in [293] in a slightly different form and in [343] as it is stated
here.

Proposition (6.3.13)[333]: Let f: R™ — C a non-negative continuous function, v > 0, and
% <r < 1.Then

|QIPREY (10 (X = cQ)f (cQ) S 2max IR MT f(x)
£(Q)=2-U*No)
forall x € R™, where M is defined in (28) and the summation indexed by £(Q) = 2~ (+No)
is the sum over all dyadic cubes with side length 2-U*No) and cQ denotes the center of cube

Q.
Corollary(6.3.14)[356]: . For any € > 0,

&+1
fmo € HWn

n
n+l+¢

<r <min(2,e 4+ 1) < oo,w,, € As+1, and

1
2

z z (M7 (4; *fmo))2 = 2 ol

JEZ m, e

where M; is defined as . ’

Proof. Let ¢ > 0,# <r<min(Z,e+1)<e+1<oo,w, €Aesx1, and f, € vajll.
Then using the definition of M; in (3.4) and applying the Fefferma%-Stein vector-valued
maximal inequality from Type equation here.with e + 1/r > 1 and 2/r > 1 gives
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1
2

> 2 (4@ )

jEZ my
LGt
1
Tz
2\ 2
( W
=MD il D 165 fulc@lg
JEL my £(Q)=2-U*M
£+1
Lwrn
1
!! .V
s | z z z |8) * fno €@ X0 | | S fing g2
JEZ Q my
LGt

Corollary(6.3.15)[356]: If w;,, € A, (R™),b € BMO,, , and ¥, € S(R™) with mean zero,
then |Q,b(x)|? is a w,-Carleson collection where Q,b = (zpmo)k + b and (wmo)k(x) =

2knp, (2%x). In particular, BMO,,  © vy, with | fnoll 02

oo,Wn

Proof. Let w, € A,, and b € BMO,, . Then for any cube Q < R"
2
j Qb () |Pwy (x)dx < 2 j D 10e([b = bouw, Jx20) 0 wa ()dx
Q2—k<¢(Q)

Q~k<t(Q) <%

[} 1]
S ol gygo,, -
n

12] [~ bow s 0O Wi

2~k<(Q) 7

=1+1I.
=1+11
Since w,, € A, it follows that w,, € A.,; for some 0 < & < co. Since the square function

associated to the collection Q; is bounded on L} ' (R™), it follows that

-1
1= 2w Q)&% ISy, ([b — bow, |x20)

S w,(Q)e+1 (j |b(x) - bQ’Wn| Wn(x)dx> <Ib IIBMOVZVn w,(Q).
2Q

Before we estimate /1, we first note that for any £ € N we have

2
Lt

&+1
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1

1 e+
<Wn(2{)+1Q) .fzt’+1Q |b(x te) - bown wy (x)d(x + 5))
1

1 e+1 e+l
= w, (2¢71Q) .L{’+1Q |b(x + &) = byrerg,, | wa(x)d(x + ) + 2 |bymsg , = Damg |

m=0

|£+1

’

1
<l bl s+z f b(x + &) — bym+1y,, [Wo(x +e)d(x+ ¢
BMOW.?T m=0 Wn(ZmQ) Zle ( ) e nl n( ) ( )

?

1
<llb S+Z—f b(x+¢&)— b,m w,(x +&)d(x + ¢
[ "BMOW‘;1 pan w, (2Mm+1Q) 2m+1Q| ( ) 2 +1Q,wn| n( )d( )

< (15 gmogzs +1 b llawo,, )-
Now to bound 11, we consider for x € Q

SN 11 1, 1,
<2 ZZW(QHZ{)“QIL#HQ |b(x+e)—bQ,Wn|Wn(x+e)s wp(x+¢e) e d(x+e¢)

1

wp(x + &)d(x + e)>€+1

|€+1

|b(x + €) — bgw,

Z fo(Q) <|2£’+1Q| 2641

1

1 Cer1 e+1
X WJH wy(x + ¢€) d(x +¢)
2¢+1Q
1

w 2£’+1Q £+1 2£’+1Q e+1
< 27%2(Q) " (b Uguoges +11 b lguro,, Z ¢-27 ”({) = <W| (2£+1|Q)>
j2er1gpeFT \Wn

27k0(Q)” = I b zmo,, -
Here we have used that || b ||BMO‘§V-I7-112” b Izmo,, forw,, € A, (R™), where the implicit con-
stants depend on [wy, 1,4, ,, forsome 1 < & < oo. It easily follows that IT <|I b ||§MO _(Q).
For appropriate choices of ¥, it easily follows from this estimate that [|f, 0. <

OOWn

Virollpo,

Corollary(6.3.16)[356]: . Let w,, € A,. If f,,,, € S'/P, then
1 2 ,
su E E (|S . |Q—1/2X x)wxdxs .
pdyagic Wn(P)_[PQCP £ ( <pm0fm )Q |Q] Q( ) (%) "fm‘)"(fo% )mo

Proof. Let w,, € A, and ¢, € S be as above. Following the work in [108], define
(o) fing@) = 5D | (9m,), * fing (| (1 + 2P + )72
x+e€ERM
for A fixed sufficiently Iarge we have

* 2
@l 2 D )i S Ul
k:2—k=t(Q) m,

for all f,,,, € S'. Also for any dyadic cube Q such that £(Q) = 27* and 27*ni is the lower
left hand corner of Q, it follows that for x € Q

sup
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Q|72 (s¢m0fm0)o| = |(@mo),, * fing D] S (@), * fing (D] (1 + 2% — i) 2

< (Pmp) fimo (-
Then for any dyadic cube P, it follows that

fz 2 <Pmofmo) ||Q|_1/2XQ(X))2Wn(x)dx

QCP my,
> D )@Y xe(Iwa(x)dx
P k2 kzepy mo Q:£(Q)=2"k

< f D D O P (P g,
k:2~k<p(P) mg ”
The first inequality in the last line holds since the dyadic cubes Q@ with i’(Q) =27% are
disjoint, and so we have Y, y)=2-kXo(x) < 1. Dividing by w,(P) and taking the
supremum over P completes the proof.
Corollary(6.3.17)[356]: If w,, € A, (R"), then "fmo”poz < ||fm0||(f0,2) for all f,, €
[ee] [ee] mg

Fos, . Hence For, < F?. More precisely, if w, € A.,,(R™) for some 0 < & < oo, then
||fm0|| 02 S [Wn Vs lfing Iz forall f € 57/P

OOWn

Proof. Let w,, € A, for some 0 < & < 0 and f;,, € s, . To complete the proof, it is

L. I 112 12
sufficient to show that ||S,,, fm, I o < Wala,, |l fm0|| .02
2
1/e+1

2 1 _
IS0y firoll 202 = sup ?j z Z 1Q|7*/2

Joo P dyadic | | P QcP ‘mg

y 2

o [ (3 S (v o))
P dyadic |P| ¢ Ome)Q Q(
< s | [ Z Z Spn) | 101720 a2
deadlc | |

1/e+1

1
—J w, (x) tdx
P

1/e+1
wy, (P) 2
< Ul sup ™ < s Wnals

Corollary(6.3. 18)[356] Let w,, € A,. If a non-negative measure dy,, on R}*" satisfies
duy, (Q % (0,£(Q))) < Aw,(Q) for all cubes Q c R™, then dp,, (E) S Aw,(E) for any
open set E ¢ R™ where £ = {(x,t): B(x,t) c E}. Here the suppressed constant does not
depend on the constant A or the set E.

This proof is a standard argument that can be found in many articles and books on harmonic
analysis, only modified by replacing the Lebesgue measure dx with the weighted Lebesgue
measure w,, (x)dx. We include the proof for the sake of completeness.

1
[ﬁj w,, (x) Ve dy
P
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Proof. Let w,, € A, and assume that dpu,, satisfies du,, (Q X (0,€(Q))) < Aw,(Q) for

all cubes Q c R™. Let E c R" be an open set. Define E, = E N Q, Where Qy is the cube
centered at the origin with side length N., there exist a constant b depending on the doubling

constant of w,, and a collection of disjoint dyadic sub-cubes {Qj} of Q, such that
1 1

—_ < —_—

2 Wn(Qj) Qj
and xg, (x) < % almost everywhere on Qy \ U;Q;. Since yg, =1 on Ey, it follows that
Ey € U;Q;. Then it also follows that £y < U;Q; X (0,2\/53((2]-)). Therefore

du, (Ey) < z ditw,, (Q,- X (O,ZVﬁf(Qj))) < AZ wy(2VnQ;) s AZ wa(Q))

1
Xy COWp(x)dx < Eb

En

j
S A gy (Owp(x)dx < A n()dx = Awy, (Ey).
ZLjX X)W, (x)dx w, (x)dx w.

Note that since w,, € A, it follows that w,, is a doubling measure with doubling constant
depending on A, character of w,, for some 0 < & < oo, which we used in the previous

estimate. Therefore du,, (EN) < w,, (Ey) for all N > 1 where the constant is independent
of N,E, and Ey. Since Ey and Ey are increasing exhaustions of £ and E respectively, it
follows that

ditw, (E) = lim dp,,, (Ey) S Alim wy(Ey) = Awn (),
Corollary(6.3.19)[356]: Let w, € A,(R"). Also let ¢, €S, and define Pf, =
((pmo)k % fing, Where (gomo)k(x) =2k, (2Kx) for k € Z. If p,(x) is a w,-Carleson
collection, then

I 1y

I 5 2|
> (X 1l o)
mo KEZ

< W, 2 ongll s forall 0 < & < 1.
mo

e+1
Ly,

Proof. Let f,, € Hﬁ,f(]R”), and we begin the proof by looking at

fRn z Z |Pkfmo(x)|€+1.Uk(x)Wn(x)dx

keZ my

4 1) [ di, [ J@O [ D 60 € oy (x4 x4 0

dA
£+1
> A |4 T

where dy,, is a non-negative measure on R}** defined by
ity (6,6) = ) ()8 ,ogmiw ().

kEZ
Define Ej = {x: [N®mof,, (x)| > A}, and it follows that
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(x, t): fRn Z t " Pm, T (E)) fin, (X + E)d(x + )| > A} CEy,

where £ = {(x,t): B(x,t) c E}. Note that It follows that duy, (x,t) satisfies the estimate
duy, (£) s ||{;1k}||2 _wy(E). Therefore

j}Ran Z |Pkfm°(x)| 'uk(x)wn(x)dx <&+ 1J dity, (E ),1£+1 dA

keZ my

dA

< (e + DI f W (DA
né+1

= I, IN®™ fon, iiml S Wle, g ||Hg+1
In the case ¢ = 3, this completes the proof. When 0 < € < 1, we set ; > 1 and then the

Holder conjugate is % Now applying the estimate above, we obtain

jan (Z |Picfmo ()] uk(x)> Wy (x)dx

my keZ
e+l
2
(e—1e+1/2 e+1
<[ 5w [Pef, @) (2 Pefing ()] uk(x>> () dx
R ko kez
H o
I (e-1)(e+1)/2y £+1
sz |(N®mofr,) L (Z |Picfon | uk> ||
mq | \kez Iz

£+1

(s+1)(e 1) 2

=2 Worefilig, (LE IPkfmo<x>|£“uk<x>wn<x>d">

1)/2 1)</2 1
n{uk}umz oo ool = WS > Wil

mo
Corollary(6.3.20)[356]. Let ¢, €S, and define Pyf, = (‘pmo)k * fm,, Where
((pmo)k(x) = 2k, (2¥x) for k € Z. If u(x) is an A,,-Carleson collection, then

1

2
mo

Z z |Pkfm0|2 * Ui (x) " L5 S” {uie

kEeZ my

fmo "vav;l forall0 < ¢

< oo and wy,
€ Ao, (R™).
Let Y, , €S such that i, has mean zero, and define Qf,, = (‘l’mo)k * fm,» Where
(z/)mo)k(x) = 2k, (2%x) for k € Z. If b € BMO, then |Q,b(x)|* is an A-Carleson
collection and
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i S| b fino lygrr forall 0 < e

BMO E

mo

D Pl 100 | {|

kEZ my "

< oo and wy,
€ A (R™).
Proof. Fix 1 < & < oo to be specified later and w,, € A, ;. Now we consider the collection

1/e+1
Coss = [meo]z”,(Z |Pkfm0|2-uk(x)) fong €S (-

keZ
With & = 1, for any (gmg, hm, ) € Ce41, We have

I I
I I
i Z Z |Pkfm0|2'#k i

||hm0 ||L(‘€4;I'1

Therefore by extrapolation (see the version) ||hm0||L1+2£ S | gm, |l e forall 1<e<

00, Wy, € Ay 12¢ aNA (gnyr im, ) € Ceyq. Thatis, forany 1 < r < coand CT defined as above,

" n n 2&
we have Mol s 1ize S N9moll, forall 1 < e < oo,w,, € Ay45¢, and (Gmy, him, ) € Cr-

Fix1<e<oandw, € A,. Then there is a € > 0 large enough so that w,, € A; .. Let

2(1+ 2¢)/e + 1, which is larger than 1, and it follows that
1/2

2 || nr/2
z Z |Pkfm0| " Uk = ” m0||L1+Zs ||gm0||L1+2£ Z ||me0||Ls+1

k€EZ mg [E+1 mg
forall f,,, € S, where we use the identification for (gmo, hmo) given by C,,. It was shown
in Theorem 2.4 of [109] that S is dense in H"! for 1 < & < coand w,, € A,,. So by density,

this completes the proof.
It is easy now to note that if b € BMO, then p, (x) = |Q,b(x)|? is a A, -Carleson collection

satisfying II{u}l, < N([Wnla,,,) Il b lizuoe for some increasing function N and for all
0 < e <oandw, € A,,;. Hence the second inequality follows as well.
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List of Symbols

Symbol Page
Lt Lebesgue space on the real line 1
H: Hardy space 1

HV>: Hardy space 1
LV Lebesgue space 1
HP: Hardy space 1
HP1: Hardy — Lorentz space 1
LPa. Lorentz space 1
sup: supremum 1
£4: Dual of Lebesgue space 2
LY: Dual of Lebesgue space 3
min: minimum 3
inf: infimum 3
supp: support 4
L>: essential Lebesgue space 4
B>,Q,4 Dpq:  LOrentz martingale space 12
£ Essential Hilbert space of sequences 17
£, Hilbert space of sequences 17
dist: distance 20
wie. Sobolev space 40
copy: p-capacity 42
NP: Sobolev space 44
diam: diameter 45
max: maximum 49
loc: local 56
BV: Bounded variation 60
Fp‘f;’ Weighted Triebel — Lizorkin space 75
BMO: Bounded mean oscillation 75
BZ : Besov — Lipschitz space 75
HY: Weighted Hardy space 88
Lyab Lorentz — Karamata 99
b Hardy space 119
Ppab Lorentz space 119
Qpq.b Karamata space 119
Hg: Dual Hardy space 128
TCR: Truncated cone Region 132
ext: extension 153
a.e: almost every where 157
H5P (RY): Bessel potential space 164
BP(R%): Besove space 164
E32,: Triebel — Lizorkin space 180
LPSO: Littlewood — Paley 187
CZ0: Calderon — Zygmund Operator 186
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