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Abstract

We show the convexity properties and similarity classification with
homogeneous operators on Hilbert spaces of holomorphic mappings, curves and
functions. The sharp estimates of all homogeneous expansions for a class and
subclass of quasi-convex mappings on the unit polydisk in the unitary space and
of type B and order A with the weak version of the Bieberbach conjecture in
several complex variables are given. The centers of the quasi-homogeneous
polynomial differential equations of degree three and global behaviour of the
period of the sum of two quasi-homogeneous vector fields are determined. We
obtain the first derivative of the period function for Hamiltonian systems with
homogeneous non linearities and applications. The multiplicity-free and rigidity
of the flag structure with classification of homogeneous and quasi-homogeneous

operators and holomorphic curves in the Cowen-Douglas class are discussed.
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Introduction

Not many convex mappings on the unit ball in C" for n > 1 are known.
We introduce two families of mappings, which we believe are actually identical,
that both contain the convex mappings. These families which we have named the
“Quasi-Convex Mappings. We establish a sufficient condition for a quasi-convex
mapping (including quasiconvex mapping of type A and quasi-convex mapping
of type B) f(x) defined on the unit ball in a complex Banach space.

We show, that under certain hypotheses, the planar differential equation:
xX1(x,y) + Xo(x,y),yY1(x,y) + Y,(x,y), where (X;,Y;),i = 1,2, are quasi-
homogeneous vector fields, has at most two limit cycles. We show that such
systems have no isochronous centers, that the period annulus of any of its centres
Is either bounded or the whole plane and that the period function associated to the
origin has at most one critical point.

For H be a complex separable Hilbert space. For £ an open connected
subset of C, we shall say thata map f: 2 — Gr(n, H) is a holomorphic curve, if
there exist n holomorphic H-valued functions y4, y,, ..., ¥, on Q such that f (1) =
vil),..., (D}, VA € 0, where Gr(n, H) denotes the Grassmann manifold,
the set of all n-dimensional subspaces of H. We construct a large class of
multiplication operators on reproducing kernel Hilbert spaces which are
homogeneous with respect to the action of the Mobius group consisting of bi-
holomorphic automorphisms of the unit disc D. For every m € N we have a
family of operators depending on m + 1 positive real parameters. We construct a
large class of operators in the Cowen-Douglas class Cowen-Douglas class of the
unit disc D which are homogeneous with respect to the action of the group Mab
— the Maobius group consisting of bi-holomorphic automorphisms of the unit disc
D. The associated representation for each of these operators is multiplicity free.

The sharp estimates of all homogeneous expansions for f are established,
where f(z2) = (f1(2), f2(2),+,fn(2)) is a k-fold symmetric quasi-convex
mapping defined on the unit polydisk in C". The sharp estimates of all
homogeneous expansions for a subclass of starlike mappings on the unit ball in
complex Banach spaces are first established. Meanwhile, the sharp estimates of
all homogeneous expansions for the above generalized mappings on the unit
polydisk in C™ are also obtained. The sharp estimates of all homogeneous
expansions for a subclass of quasi-convex mappings of type B and order o on the
unit ball in complex Banach spaces are given. The sharp estimates of all
homogeneous expansions for the above generalized mappings on the unit
polydisk in C™ are also established. In particular, the sharp estimates of all



homogeneous expansions for a subclass of quasi-convex mappings (include
guasi-convex mappings of type A and quasi-convex mappings of type B) in
several complex variables are get accordingly.

Given a centre of a planar differential system, we extend the use of the Lie
bracket to the determination of the monotonicity character of the period function.
As far as we know, there are no general methods to study this function, and the
use of commutators and Lie bracket was restricted to prove isochronicity. We
characterize the centers of the quasi-homogeneous planar polynomial differential
systems of degree three. Such systems do not admit isochronous centers. We
study the global behaviour of the period function on the period annulus of
degenerate centres for two families of planar polynomial vector fields. These
families are the quasi-homogeneous vector fields and the vector fields given by
the sum of two quasi-homogeneous Hamiltonian ones. We prove that the period
function is globally decreasing, extending previous results that deal either with
the Hamiltonian quasi-homogeneous case or with the general homogeneous
situation.

An explicit construction of all the homogeneous holomorphic Hermitian
vector bundles over the unit disc D is given. It is shown that every such vector
bundle is a direct sum of irreducible ones. Among these irreducible homogeneous
holomorphic Hermitian vector bundles over D, the ones corresponding to
operators in the Cowen-Douglas class B,(D) are identified. The explicit
description of irreducible homogeneous operators in the Cowen—Douglas class
and the localization of Hilbert modules naturally leads to the definition of a
smaller class possessing a flag structure. These operators are shown to be
irreducible. We study quasi-homogeneous operators, which include the
homogeneous operators, in the Cowen-Douglas class. We give two separate
theorems describing canonical models for these operators using techniques from
complex geometry. This considerably extends the similarity and unitary
classification of homogeneous operators in the Cowen—Douglas class.
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Chapter 1
Convexity Properties and the Quasi-Convex Mappings

We show that types A and B” seem to be natural generalizations of the convex
mappings in the plane. It is much easier to check whether a function is in one of these classes
than to check for convexity. We show that the upper and lower bounds on the growth rate
of such mappings is the same as for the convex mappings. We show that sharp estimations
of all homogeneous expansions for f are given, where f(z) is a normalized quasi-convex
mapping (including quasi-convex mapping of type A and quasi-convex mapping of type B)
defined on the open unit polydisk in C™*, and D™ f,,(0)(z™).

Section (1.1): Holomorphic Mappings in C*

In the complex plane analytic functions which map the unit disk onto starlike or
convex domains have been extensively studied. These functions are easily characterized by
simple analytic or geometric conditions and there are many well known results which help
us understand their nature. In moving to higher dimensions several difficulties arise. Some
are predictable, some are somewhat surprising. Imposing the condition that a mapping be
convex turns out to be very restrictive and so we will introduce a larger class of mappings
with properties similar to the convex mappings in the plane. We actually look at two classes,
the “Quasi-Convex Mappings, Types A and B”, but we suspect that they are the same. We
will contain:
(@) A brief review of results in the plane with a discussion of some of the difficulties
encountered in extending the results to higher dimensions.
(b) Some characterizations of convex and starlike mappings in higher dimensions.
(c) The introduction of the “Quasi-Convex” families of mappings in C™ along with some
preliminary results.
(d) A discussion of open questions. Before going further let us define some terms which will
recur.
(e) Let X be a Banach space. The ball of radius r,B, ={Z € X : ||Z|| <r}. Ifr = 1, we
will simply use Band if X = C,then B = A.
(f) A setAisconvex ifzw € A = t,+ (1 —-t)we A, forall t € [0,1], and a mapping
Is said to be convex if it maps the unit ball onto a convex domain.
(g) A set A is starlike with respecttoz, € Aifz € A = (1 —-t)z + tz, € A, forallt €
[0,1]. We will use the termstarlike to mean “starlike with respect to 0”.

A mapping is said to be starlike if it maps the unit ball onto a starlike domain.
(i)S ={f : A— C: f is analytic and univalent, f(0) = 0and f(0) = 1}.
(i) S* ={f € S: f(AQ) isstarlike with respect to 0}.
(i) K ={f € S: f(4) is convex].
In trying to obtain analogous results in higher dimensions we run into several problems. For
example, in proving the result

f € K ©Re{zf"(2)/f(2) +1} >0,

we use the fact that if f is convex, then the tangent vector turns in one direction. i.e.
% (arg(izf'(z))) > 0,z = re'®. In higher dimensions this concept has no meaning.

Similarly, the characterization,

f € S*@Re{

f(2)
Is obtained from the observation that for f to be starlike % (arg f(re®)) > 0.
1

Zf’(Z)} >0



Once again this has no meaning in higher dimensions, nor does the expression zf'(z)/f (2).
The analogue of the well-known equivalence, “f € K & zf' € S§*” s false in higher
dimensions as we show in Examples (1.1.9) and (1.1.13).

Our intuition seems to let us down when we realize that even if we take a function f € K
and form a function F: B c C? - C? with F(z,w) = (f(2),f(w)), then F is not
necessarily convex. This is demonstrated in the following example.

Example (1.1.1)[1]: Let B be the Euclidean ball in C?, then the mapping

F(z,w)=(1iz,1ivw), zw €C,|z|? + |w|* <1,

IS not convex even though f(z) = z/(1 — z),z € A, is a convex function in the plane.
Note that u = f(z) maps the real line segment —1 < z < 1 onto the real halfline u >
—1/2. A necessary condition that F is convex is that every cross-section of the image of B
Is convex. Consider the cross-section of F(B), {(u,v) € F(B):u,v € R}. Thisistheimage
ofQ = {(s,t) € B: =1 <s<1,-1<t < 1}.Thiscross-section, F (), is not convex.
If it were, then the set {(w, v):u > 0,v > 0 } would be contained in F(£). In particular the
line {(u,w):u>0}c F(Q).Ifu = v,thens=tand s?> + t?2 < 1,s = t < 1/V/2, s0
thatu = v < 1/(v/2 — 1). We cannot get any further from the origin along this line and so
it is clear that this cross-section is not convex. See Figure 1. Similar arguments show that
there is no convex mapping F(z,w) = (z/(1 — z), g(w)).

In one approach to extending these results to C",n > 2, Suffridge [12] generalizes
some of Robertson’s results [10], which use the principle of subordination in the plane, to
higher dimensions.

To extend these theorems to higher dimensions we first need to adapt the Schwarz
Lemma accordingly. There are several ways of doing this (see Harris [5]) but the appropriate
one for our purposes is as follows.

Theorem (1.1.2)[1]: Let X be a Banach space and let B < X.If f: B — Y is holomorphic,

If(x)|]| <1whenx € Band f(0) = 0,then||f(x)| <||x|| forall x € B.

We next need to extend the concepts of “positive real part”, and “functions of positive
real part”. We use functionals to accomplish this. For a more complete treatment see
Gurganus [4] or Suffridge [14].

fORt X be a Banach space and x € X,x # 0, and let X* denote the space of linear
functionals from X to C. Define

T(x) = {fx € X":|l{,]l = 1,and £,(x) = ||x|}where £, = Sup, 1€ ()1
LetH, ={y € X: Re¥,(y) = ||x||}. H, is asupporting hyperplane for B, at x, because

x € Hyandify € Hy, then
Iyll = 1€, ()] = Re{€,(¥)} = llx|l,  since ||€x|l = 1.
If X has complex dimension n, then H, has real dimension 2n — 1 and it is thus a hyperplane.
In the infinite dimensional case, H; has real codimension 1.
Example  (1.1.3)[1]: Let X = C"* with a p-norm, 1 <p<oo, ie. |[[x|[, =

Oy 1x1P) % . Then ¢, € T(x) is given uniquely by

| P2
Sijxjz0) Wik ||
B/l
Example (1.1.4)[1]: In the case of p = 1, T(x) is the set of linear functionals of the form

£:(W) = L)z 20} Vlvi_jlj + X(jux,z0) YjW; Withy; € C,Jy;| < 1forall ).
2

ty (w) =



And in the case p = oo, we let | = {j: [|x|| = |x;|} and

LW;X;
£,(w) = Z W where each t; = 0 and z ti = 1.
J€J Jj€J
We now define three families of functions:
Ny ={w:B — X : wisholomorphic, w(0) = 0,and Re{#,(w(x))} =0,
forallx € B,x #0,¢, €T(x)},
N={weNO0:Re{f,(w(x))} >0, forallx € B,x#0, £, €T(x)},
M ={w € N:Dw(0) = I}.
Example (1.1.5)[1]: LetX = C,B = A, then
Ny = {w:A- C:w is analytic,w(0) = 0,Re{Zw(z)} = 0,z € A\{0}}.
However ,

i |z|?w(2)
Re{Zw(z)} =20 & Re {T} >0

w(z)

= Re{ .
Thus, if w € N, either Re {w(z)/z} = 0or Re {w(2)/z} > 0.
We also observe that M = {zf : f € P}, where P is the family of functions that are
analytic in the unit disk with £(0) = 1 and f(A), contained in the right half-space.
The following lemmas are Suffridge’s extensions of Robertson’s theorems, [14], [12].
Lemma (1.1.6)[1]: (Suffridge). Let v: B X I — B be holomorphic in B for each t €
I = [0,1] (i.e. v(-,t) is holomorphic for each fixed t € I),v(0,t) = 0 and v(x,0) = x.

If lim 29 = y(x) exists and is holomorphic in B, then w € N,

t—0t
Lemma (1.1.7)[1]: (Suffridge). Let f : B — Y be a biholomorphic mapping of B onto an
openset f(B) < Yandlet f(0) = 0. Assume F : B X I — Y is holomorphic in B for
cachfixedt € I,F(x,0) = f(x),F(0,t) = 0andsuppose F(B,t) < f(B) for each fixed
t € I. Further, suppose

} o

F(x,0) — F(x,t) — 6w
t-0* t

exists and is holomorphic. Then G(x) = DF (x)(w(x)) wherew € N,.

From these we obtain the characterization of starlike mappings in higher dimensions. Note
the similarity of this condition to that of starlike functions in the plane.
Theorem (1.1.8)[1]: The mapping f : B < C* — C" is starlike if and only if f(x) =
Df (x)(w(x)) for some w € M.
This result was obtained by Matsuno [7] for the Euclidean norm, and by Suffridge for the
sup norm [12], and for more general norms [13].
We include two examples of mappings which are starlike.
Example (1.1.9)[1]: The function f(Z) = (z + aw? w) where Z = (z,w),||Z||P =
|z|IP + |w|P <1,p >1,z,w € Cis starlike if and only if

1

2 _1\p 1
o= (P ) (55), ™)
We have that f is starlike if and only if Re {£,(Df(Z)"1(f(Z)))} > 0. Since
DI (@) ="~ ™),

w

we have



Re £, (DF@D)(F())) = Re {IZIIP — aw? 2]z|P~2} ||Z||"~".
Replacing Z by aZ, |a| < 1/]|Z]|, we apply the minimum principle for harmonic functions

to see that we may assume that ||Z|| = 1. Thus the necessary and sufficient condition for f

to be starlike is
2

Re {1l —aw? Z|z|?72} = 1 — |a||w|?|z|P7* =1 — |a|(1 —rP)PrP~Y, wherer = |z|.
2

By elementary calculus, write h(r) = 1 — |a|(1 — rP)PrP~1, h(r) has
2 1

2 \v/p—1I\/p—1\p
1-tal () () o)
p+1/ \p+1/\p+1
as its minimum value and (1) follows.
Note that this result together with Example (1.1.12) tells us that the result “Df (Z2)(Z) is
starlike implies f is convex ” does not hold for n > 1. If we use the 2-normand let f (z, w) =
(z+ %wz,w), then Df (z,w)(z,w) = (z + aw?,w) and this is starlike for |a| < 3v3/2.
However, f is only convex for |a| < 1.
Example (1.1.10)[1]: The mapping f : B < C* - C? given by f(z,w) = (z + azw,w),
with |z|? + |w|P < 1isstarlike if and only if |a] < 1 for all p-norms, 1 < p < .
Firstassume 1 < p < oo, then f is starlike if and only if

Re{t;(Df (D)™ (f(2))} > 0

Re {#Z (Df(Z)—l(f(Z)))} = Re {{)Z (ﬁw)}

If we use a p-norm and assume by the minimum principle (as before) that || Z|| = 1, we find

that Re {fz ((1+Zaw,w))} > Re {Jfl:} + |W|P}
e{lzlp + |[w|P + aw|w|P }

for¢, € T(Z).

1+ aw

{1 + aw|w|P }
= Re
1+ aw

1+ aw|w|? +aw + |a|?|w|P*?
= Re .
|1+ aw|?
Clearly |a| < 1 is necessary and we need to find a such that
Re{l + |a|*|w|P*? +aw + aw|w|P} > 0.

It 1s sufficient to have

1+ |al?wlP*? —|a||lw| = lallw[P™* = (1 = lallw[P)(1 = |allw[P**) = 0
and hence the result readily follows. The cases p = 1 and p = oo are easily handled.
The last theorem might lead us to conjecture that

Df(x) Y (D?f(x)(x,x) + Df(x)(x)) € Mif and only if f is convex.

The mapping given in Example (1.1.1) quickly dispels this thought. It turns out that this is
anecessary but not sufficient condition. We will look more extensively at this condition later
on. For necessary and sufficient conditions we have the following theorem, [12].
Theorem (1.1.11)[1]: (Suffridge). Let X and Y be Banach spaces with B < X.Letf: B —
Y be locally biholomorphic with f(x) — f(y) = Df (x)(w(x,y)) forx,y € B.
Then f is convex if and only if Re{#,(w(x,y))} > 0 whenever ||y|| < ||x|| and ¢, €
T (x).



The condition says that f(B) must be starlike with respect to each of its interior points.
However, this condition, which agrees with our intuition, is difficult to apply. For a
somewhat different approach, see [3]. The following examples make use of the above
theorem.

Example (1.1.12)[1]: The function f(Z) = (z + aw?, w) where Z = (z, w) with ||Z||* =
|z|? + |w|?* < 1andzw € C is convex if and only if |a| < 1/2.
We will need to check when Re{(Df(Z)"1(f(Z) — f(U),Z) > 0 where Z = (z,w) and
U = (u,v) with || Z]| = ||U]|.
Re(Df(Z)""(f(Z) = f(U)),Z) = Re{|z|* +|w|* —uzZ—vW — az(w — v)*}
= ||Z||* — Re(U,Z) — Re{az(w — v)?}
> ||Z|I? — Re(U,Z) — |al|z||lw — v|?
= ||1Z|I> —Re(U,Z) — |a||z|(||Z||*> — |z|* — 2Re(uz + vw) + 2Re uz
+UI1? = [ul?)
= 1ZII°(1 — |al|z]) — Re{U, Z)(1 — 2]a||z]) — |al|z|(IU|I* — |z —ul?)
= 1ZII> (1 = |allz]) = R(U, Z)(1 — 2|al|z]) — |allz|(IZ]I* =z —ul?)
= (lIZII> = Re(U,Z)(1 - 2lal|z|) + |al|z]||z — ul|?

1
> 0 when|a| < >
since |Re(U, Z)| < 1|Z||?, and|a] <2 = |al|z| <.

1 _ 1 .
If |a| > 5 We can find z such that za > S U=2ZV =-WE R and we obtain

Re(Df(Z)~'(f(Z) — f(U)), Z)
= |IZ||* — Re(U, Z) — Re{az(w — v)?}

_ _ 1
< |1Z||?> — Re{zz — ww} — 5 (2w)?
=0.
Example (1.1.13)[1]: The mapping f: B c C? — C?, with the 2-norm, given by
f(z,w) = (z+ azw,w) is convex if and only if |a| < 1//2.

It is sufficient to assume that a > 0. Using the above resultwe let Z = (z,w) and U =
(u,v). Then

1+av _
DF@ D)~ fWN.2) =2z = w) (1) + T =)
L 1 —-—aw-v)\ _
—z(z—u)< T aw >+W(W—v)
iy az
= ( _U’Z>_1+ ” (z—uw)(w— ).
So,
Re{Df(Z)"'(f(Z) — f(U)), Z}
a
e {(z-u,z>—1+aw (z—u)(w—v)}
alz|
> Re(Z —U,2) = s——— |z — ullw = vl.
alw|
By examining the functlon—subjectto the constraint x2 + y2 = k2 we see that ilzZ|Lv|

is maximized at - '1”2”2 when |z| = |IZIIV1 = a2|IZ]I2 and |w| = a||Z||%.



Similarly, by maximizing the product xy subject to the constraint x? + y2? = k? we see
that |z — u||w — v| < ~1|Z — U||? with equality when |z — u| = [w — v].
Now we have the sharp inequality

- allZll 1
Re{{DF(D)™'(f(2) = f(U)),Z)} = Re(Z —U,Z) — Sz =Ul?. (2
1-a?|z||?2
For al|Z|| = 1/+/2 this expression is positive for ||U|| < [|Z]| since
Z 1 1
Re(z —u,z)— —2_ Ly upe = ke kz-v.2)-5@-v2 -v)
1—a?||Z||? 2 2

= |1Z||I> = lUlI* = 0.

- - X - - - - -
Since the function 7—= IS increasing on [0,1) the inequality holds for a||Z|| < 1 /V2.

To show that Re{(Df (Z)~1(f (Z) — f(U)),Z)} < 0 for a||Z|| > 1/+/2 we choose
Z = (z,w) = (k\1—a%k? —ak?) and
U= ,v)=(z—(z+w)cosbe?®,w — (z+ w)cosfe™?),
where 0 < k < 1andcosfd # 0.We note th_at 1Z]| = ||U|| = k.

Re{<z —U,Z)—lfzaw (z—u)(w—v)}
2 2
_G JJFTW—) a‘;‘;; O =2z - ak)

< 0,forak > 1/\/5.
So,onB ={Z:||Z|]| < 1} we have a < 1/+/2 for convexity.

Inthe plane, f € K ifandonlyif zf' € S*. This last result shows us that this is not true
in higher dimensions. The mapping Df (Z)(Z) = (z + 2azw,w),fora = 1/4/2, is not even
univalent much less starlike. To see this we note that (z(1 + v2w),w) = (0,—1/+2) for
all Z = (z,—1/V2),Z € B.

When we couple this with Example (1.1.9) we see that the implication does not hold in
either direction.

The nature of convex mappings is strongly dependent on the norm used in the domain.

Using the sup norm in C™ so that the unit ball is a polydisk, the only normalized convex
mappings are mappings F such that Fj is a function of zj only and Fj is a convex mapping
on the unit disk. On the other hand, using the 1norm, ||Z|| = X7, |z, the convex maps of
the unit ball are the non-singular linear mappings. In the Euclidean norm (i.e. using the 2-
norm in C™) we have the following theorem. In view of the results stated above for the sup
norm and the 1-norm, such a result cannot hold for normed linear spaces in general.
Theorem (1.1.14)[1]: LetB={z € C": ||z||* = X, |z]|>* < 1}andassumef: B —» C"
is holomorphic with £(0) = 0 and Df(0) = 1. Further, assume Y5, I";—T |D*f ()] <
1. Then f(B) is convex.
Proof. Consider a function Ay : le C™ —» C™ that is linear in each variable and

symmetric. Then A,(z,z,...,z) = A,(z*) is a homogeneous polynomial of degree k and
by a result of Hormander [6], we have,

14kl sup [|4e(z®,23,..., 20| = sup ||Ak(z2,...,2)II.
|20)]|=1 lzll=1
1<j<k



Further, by Lemma (1.1.6) in H'ormander’s above, given f : B — C"™, where f is
holomorphic on the unit ball B of C"* with k" derivative at 0, D*£(0). We may identify

% D*£(0) with 4,, above. Then
f@ = £0)+ Z DXF(0)(@") = £(0) + Z A(2").
Assuming : B — C" satisfies f(O) 0,Df(0) = A; = Iand that

2 K24 < 1,
k=2

we proceed as follows.
First observe that

i kil ||<1i K2l Ak]] < =
el <3 <3
k=2 k=2

with equality in the first step_if and only if Ak = 0 when k > 2. We also note that

D kALl < T KAz wl < 2wl kA
k=2 k=2 k=2

= Nliz[lllwll

where

1
N = Z Kl <5 and llzll <1, [wll <1

k=2
Therefore, it follows that

D kAL || < NPfZ|Plw
when p is a non-negative integer.
The analytic condition for f to be convex is that
Re{Df (2)7*(f(2) — f(W)),z} > O when 1 > |z = [w]I.

We have
li (z + hu) — f(2) =
Df(z)(w) —’g‘l’ ve - W 1) Z kA (2 u
That is,
(z + hu) )~k
f z Z (l) hl_lAk(zk_l,u)
o k=2 I[=1
- Z kA, (z¥1,u) as h - 0.
Therefore, =

DF@T =[1-(-Df)]" ®3)

=1 — — kA (zk—l,-)] (4)
-2 -
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l
=1+ ) (1) (Z kAk<zk-1,->> , (5)
k=2

=1

because
> k|| < Ml <5 ©)
for each fixed z, ||z|| < 1. =
Also,
oo co k
F@=f) =) [AED = 4w =D Y aGP,wr Tz —w)
k=1 k=1 p=1
0o k
=z—w+ Ap(zF P, WP~z —w).
Therefore,
H(z,w) = Df(2)7'(f(2) — f(W))
!
=( I + (-1} kA, (z*1,")
[o's) p ‘\
X Z_W+ZZ p(ZP 4wz —w) | |
= i J
00 oo l
=z—w+ (—1)l kA (zk‘l,-)> (z—w)
oo p
+Z (—1)* (Z kA, (zk — 1, )) <— Z z Ap(zp‘q,wq'l,z—w)>
p=2 q=1
—<z—w>+2 (D' ) kA @)

k=2

(i (Zp: p(ZP7 Yz —w) — A(quwaz—w)>>
p=2 \q=1
_z—w+§: (1) (Z kA, (251 ))

q

2.

(A (z*7P,wP2,(z — w)?))

8



Now

w
Il
N
Q
Il
N
"d
N

k—1)(k
- Z (ZA lellliz = wii?

< z—w|?.
> I |

Now assume ||w]|| < ||z]|| = r < 1. Then

lz—-wl* 1 ) )
— =3 (Izll* — 2 Re{w, z) + [[w]|*)
< 1?2 —Re(w,z) >0ifw# z
Thus,
Re(H(z,w),z) = Re{{z —w,z)+ (H(z,w) — (z —w), z)}
while
-1
Iz, w) = (z = w)ll < 2 |
(1 =N)(? — Re{w, 2))) < Z (NllzID*(1 = N)(r? — Re{w, z)
1-N o
= 1_—]\,”2“(7' — e<W, Z))
Since (z —w,z) = 2 —(w, z) = 0 we have
1-—
Re(H(zw),z) = (7% — Re(w,z)) (1 N“ rlz ||)

= (r? — Re(w, z)) <—11__ ] ) >0

rllz]l
and the proof is complete.

As we have seen, the condition that a mapping be convex is somewhat restrictive and
unwieldy to verify. You will recall that even the mapping (f;(z1),..., fn(2n)) With f; : A—
C convex foreachj = 1,...,n, may not be convex in C*. This leads us to consider a set of
mappings which contains the set of convex mappings for dimension two or more and has
many of the “nice” properties that we would like a generalization of the convex functions in
the plane to have, yet has a more readily usable definition.

The characterization
zf"(z)

f € Kif and only if Re{ @ + 1} >0 (7)

is well-known and as we have mentioned comes from the fact that the curvature of the
boundary of the image of any disk |z| < r < 1 is always positive if and only if the function
Is convex. A less well-known result is that (see Suffridge, [13]),




f €Kif and only if Re {ﬂ} >0, forall z,é €A |E] <|z|. (8)
f2)=f(©)

This characterization comes from noticing that f being convex is equivalent to f being
starlike with respect to every interior point. The expression is arrived at by letting z vary on
a circle of radius r and then for any fixed & with || < r < 1, the argument of the vector
connecting f(&) with f(z) is an increasing function of arg(z).

If (] = r,& # z, then from (8) we have

2f'(2)
Re {f(z) f(f)} =0 ©)

z+¢

We further note that when |z| = |é],z # ¢, Re{ } = 0. Hence

Re{ 22f@) 2% f} > 0. (10)
f@)— @) z-¢

We observe that the singularity at z = & is removable and we are now working with the
real part of an analytic function of z and &, which is thus harmonic in both z and €.

By fixing z and varying ¢, since we know that this function cannot attain its minimum on
the interior of the disk |§] < r, the inequality is strict on the interior. Similarly, by holding
¢ fixed and varying z we get the same result for z. We conclude that

. . 2zf'(z) z +¢
f € Kif and only if Re {f(z)— O 7= 5}2 0,forall 3,¢ € A. (11)
We further note that
2zf'(8) 3+ &) _ z3f"(3)
g e {f(z)— @ 7- 5} - e { HOM 1}' (12

When trying to generallze these ideas, we have seen in Theorem (1.1.11) that (8) does extend
to higher dimensions. However, in trying to generalize the expression in (11) we find that
we cannot find an appropriate second term that removes the singularity. So we need to
modify the approach.
Definition (1.1.15)[1]: Let

={f: BcC"-> C": f(0) = 0and Df(0) = I3},
and let

sn-l=1y e C": ||U|| = 1}
represent the unit sphere in C™ .
Consider the one-dimensional subset of B,
= {aU: U € S 1 U fixed,and a € A}.

On this slice of B we can mimic the expression in (11) in the following way.
Definition (1.1.16)[1]: Let U € C", with ||U|| = 1, and let £, € T (U). For f € S,
define G, : A x A— Chy

6 (e ) = 2a a+ f

¢y (DF @) (F(aV) - f(BV))) @ — B

(13)

where C is the extended plane.
We now define a family of mappings, G, which bears some resemblance to the convex
mappings in the plane. The question is, how much? The lemmas which follow the definition
lead up to two theorems which assert that G is between the convex mappings and the starlike
mappings.
Definition (1.1.17)[1]: Let

10



G = {f € S,: Re{Gs(a, )} > O,foralla,p € Aand any U € S*"'}.
We call this family of mappings the “Quasi-Convex Mappings, Type A”.
Lemma (1.1.18)[1]: The mapping G; («, B) is analytic in o and B.
Proof. It suffices to show that there is a removable singularityat « = f.We expand f(BU)
about aU to obtain

1
f(BU) = f(aU) + Df(al)((B — a)U) +5 DEf(aU)([(B — a)UT?)
+ o((B — a)?).

DA (f(al) = FBU))
= —Df (@) (Df (@V)((B — a)U) +5 D*f(al)([(B — ®)UT?)
ol — @)
= (a = P)Df(al)™H(Df (aU)(U) + 5 (B — a)D*f (al)(U, V)
. +o((B — @)
=(a = U +5 (B — a)Df(@U)'(D*f(a)(U,U) + o(B — a)).

This gives

Therefore

Gy (@,8)
20— (@ + By [U +3 (B — @)Df @) (D[ (@U)(U, 1)) + o(B — )]
(@ = BYy(U +3 (B — Df(aU) (D (@U)(U, 1)) + o(B — a))
20— (@ + P +3 (B — )ty [Df @) (D*f (@)U, 1)) + o(B — @)))
(a = B2y (U +7 (B — a)Df(@l) (D (al)(U, ) + o(f — @)
(@ = B +7 (B + @)ty Df@U) D @)U, U)) + 0B — a)])

(a = Bty (U +%(ﬁ — a)Df (aU)~1(D*f(al)(U,U)) + o(f — a)).
Taking limits,

lim Gy (@) (14)
=1+ alyDf(aU)"1(D*f(al)(U,U))
zéfu(aU + Df(aU)"Y(D*f(aU)(aU, al)))

= |71| L,y (@U + Df(aU) Y (D?f(aU)(aU, al))) where £, € T (al)

= r:d fau (Df(aU)_l(sz(aU)(aU, al) + Df(dU)(aU))),(lS)

which is well defined. We conclude from (14) that G is indeed analytic in « and f.
The next theorem asserts a result which was really the motivation for considering the family
G.
Theorem (1.1.19)[1]: Let f € S™, and assume f is convex. Then f € G.
Proof. Given f € §", from Theorem (1.1.11) we have that if f is convex, then
Re{,(Df(Z) "X (f(Z) — f(V))) > Owhere ||V|| < ||Z|]| < 1and ¢; € T (2).
By considering the one-dimensional cross-section of , C; , we have
11



f convex = Re {£ay (Df(al)™*(f(al) = f(BU)))} > O where || < |a]

= Re{lalfey (Df ()7 (f(al) = F(BV)))} > 0

since corresponding to each £;; we have an £, (:) = % Ly () InT (al). Thus
1
f convex = Re {E £y (Df(aU)_l(f(aU) — f(,BU)))} > 0

2a
= Re
{fu (Df (@) (f(av) - F(BU))

As before, if we let || = |a| with 8 # a we have

)}> 0 for |B] < |al.

Re 2 > 0.
£y (Df (@) (f(al) = f(BU)))

If |a| = |B] = r,thena = re!?,B = re'® forsome 8,9 € R and
1
a+tp  cos 500 =)
— = —1 1 .
a—p sin > @ — @)
Hence Re {%} = 0. Thus for |a| = |B], a # B we have

>0

Re 2a >
£y (Df (@) (f(al) - f(BU)))

2a a+ f
< Re — > 0.
{fu (Df (@) *(flav) - F(BVY)) @ = /3}
Thatis Re {Gs(a, B)} = 0for|a| = |B],a # B. As we have seen in Lemma (1.1.18) G is
analytic in both o and . It follows that Re {Gf(a, £)} is harmonic on A X A. Keeping o
fixed and varying 8, we apply the minimum principle for harmonic functions to assert that
Re {Gf(a, B)} cannot attain its minimum at an interior point, i.e. when || < |a|. Similarly,
holding S fixed and varying «, with |a| < |B], we obtain the same result for a. We
conclude that on the whole polydisk A X A, Re {Gf (a,)} > 0.Hence f € G.
Theorem (1.1.20)[1]: If f € @G, then f is starlike.
Proof. If f € G, then Re {Gf (a, )} > O forall a,f € A. Consider the case when g =
0. Then

2a
Re {Gf (a,0)} = Re -1, >0
! {eu (D (@)~ (f (a0))) }

a 1
- e {eu (Df(aU)‘l(f(aU)))} 72
= Re{% 2, (Df(aU)—l(f(aU)))} > 0

1
= Re {au(Df (@) (f(al)))} > 0
12



since there is a 1-1 correspondence between T (aU) and T (U) given by
£y () == £, (). Thus

Re Gr(a,0) > 0 = Re {eau (Df(aU)—l(f(aU)))} >0
and this is the condition for starlikeness from (14).
The condition (8) led us to our definition of the family G. An obvious question is, why not
use the more common characterization of K, namely (7)? The analogous condition to this is

Re {{’Z (Df(Z)—l(DZf(Z)(Z,Z) + Df(Z)))} > 0.
This leads us to define a new family of mappings, F. Naturally we will want to examine the
relationship between F and G. F, as we will see later, is defined by a local condition, whereas
G is defined by a global condition. In the plane they are one and the same, but what about
higher dimensions?
Further motivation comes from the derivation of (7). The condition
Re{zf"(z)f'(z) +1} > 0
for convexity in the plane is equivalent to saying that the curvature of f(z) is always positive
for z = re't with r fixed and t real. When we generalize this to the image of C;, = {aU :
|U|l = 1, € A}, and use a 2-norm, we obtain an expression which is similar to that in
the plane. That is, the condition which ensures that the curvature of £ (Ze'), where Z € Cy
with Z fixed and for some U, is always positive leads us to the same condition.
Letr(t) = f(Ze™). Thenr'(t) = iDf(Ze')(Ze™) and
r'(t) = —(D*f(Ze)(Ze%, Ze't) + Df (Zet)(Ze)).
Since r''(t) = ar (t)T(t) + ay(t)N(t) where T(t) and N(t) are the unit tangential and
unit normal (inward) components to the curve r(t). Also ay () = «||r'(t)]|* where k is the
curvature and ay (t) = Re(r''(t), N(t)).

(pF(ze)™) (ze®)

N(t) = — : -
B () 7R DT

where (Df(Zeit)_l) is the adjoint of the derivative. Hence

el|of (ze™) (ze")|I

(pf(ze)™) (ze®)
|((Df (Ze')~1)*(Ze")||
Re(Df(ze®) " (D2f(ze™)(ze", Ze'®) + Df(Ze'®)(Ze')), Ze')

T IDf(Ze*)(ZeM)I*II(Df (Ze*)~1)*(Ze™)I|

Hence for any curve X(t) = Ze',
Re(Df(X)*(D*f(X)(X,X) + Df(X)(X)),X) >0

if and only if the curvature of f(X(t)) is positive.
This leads us to the following definitions.
Definition (1.1.21)[1]: Let F_f(Z) = £,(Df (Z)"Y(D*f(Z)(Z,Z) + Df(Z)(Z))) where
£, €T(Z).
Definition (1.1.22)[1]: Let F = {f € S,, : Re{F;(Z)} > 0 for all Z € B}. We call this
family of mappings the “Quasi-Convex Mappings, Type B”.
The first relationship between IF and G we prove is that G is a subset of [F.
Theorem (1.1.23)[1]: If f € G, then f € F.

= Re(D?f(Ze")(Ze", Ze") + Df(Ze')(Ze™), I )
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Proof. This follows easily from (15) in Lemma (1.1.18).

As we have seen, a mapping which has a convex function of one variable in each of its
coordinates is not necessarily convex. We prove here that for any absolute norm such
mappings are Quasi-Convex.

Theorem (1.1.24)[1]: Let f : B < C™ — C™ be defined by f(2) = (f1(31),--., [,(Z2))
where Z = (3;,...,3p)and f; € K,foreachj = 1,2,...,n. Then f € G inany absolute
norm. (That is, any norm for which |z;| < |w;| for each j implies that || Z|| < ||[W]|.)
Proof. We know that Df (Z) = diag{]j-’(zj)}?zl and since f; (z;) = 0 forall j, Df (Z) is

n

nonsingular. Thus Df(Z)~! = diag {ﬁ} :
(&),

LetU € S?™ 1, anda,p € AanddefineW : B x B —» C" by
W (aU,BU) = Df(al): <f(“U) _f(ﬁU))

a

Then

fi(aw;) — £;(B;)

W(aU,pU) = ,
(aU, pU) < af (al) )
Let|la| = r < 1landletp = yawith |y| < 1.Fort € [0,1], let
Fi(au;, t) = (1 — )f;(aw) + tf;(By)

= (1 = ofj(awy) + tfj(yau;).

By the convexity of each of the f; , F; is subordinate to f; on A for each ¢t € [0, 1].

Hence F(aU,t) is subordinate to f(aU) foraU € B andt € [0,1]. (The norm we have
chosen guarantees this). We have,

F(aU,0) = (Fj(ocuj,O)) = (fj(auj)) = f(al).

J J

n
) ,wWhere U = (uq,...,uy,).
j=1

We now take the following limits,

lim
t-o0t

(F(ocU, 0) — F(aU,t)

= lim
t—0*t

t

t
<fj(““j) - (1 = Ofj(ay) - tfj(V“uj)>
- (A ~ f ) |

= G(aU), say, which is holomorphic.
Hence by Lemma (1.1.7), G(aU) = Df(aU)(V (aU)) withV € N,

_ _1 _ ﬁ(““j)—fj(yauj)> _ (fj(“uj)— f,-(,Buj)>
V(aU) = Df(alU)™(G(al)) = < £7(al) = F7al)
= aW(aU, BU).

Hence aW (aU, BU) € N, which means that
Re {£,U (aW(aU,pU))} > 0O,

where £, € T (U).

Since for each ¢, € T (aU) there is a corresponding ¢, € T (U) related by €,,(:) =
9 ) we have Re {£,(W (aU, BUY)} > 0. Thus

a

14



Re 2a > 0,
¢y (Df (@) (f(al) — f(BV)))

and it follows by a similar argument that

2a a+ p
Re — > 0.
{fu (Df (@) (flat) = flav))) @ = ﬁ}

Hence f € G.

Theorem (1.1.25)[1]: Let B be the unit ball in C" with a p-normwith1 < p < oo. LetF
be a mapping F : B — C™ with one of its coordinate maps, f;, a function of one variable
only. It is a necessary condition for F € Fthat f;, € K.

Proof. Without loss of generality we can assume that

F(Z) = (f(2),f2(Z2),..., fn(Z)),where Z = (3,%5,...,35)-

! 0,,—
Apn-1 Bu-px@m-1)
1/f' 0,,—
DF(Z)™ = [ /Cf @ D ]
n-1 (n-1)x(n-1)

211
D2F(2)(Z,Z) = [be (Z)].
n—-1
Choose Z = (3,0,...,0) = (re'?,0,...,0). Then the functional £,(U) = e~%u, is in
T(Z)and

Re £ (DF(Z)‘l(DZF(Z) (Z,Z) + DF(Z) (Z)))
= Re {e—ig 7,.819 ] + e—i@ [1/f,(z)0n—1] [ZZI_];”(Z)]} = Re {1 + Zf (Z) }

0p_1 n-1 f'(z)
> 0 if and only if f is convex.
Corollary (1.1.26)[1]: If f: B —» C™ where B € ¥?(n),1 < p < oo is of the form
f(Z) = (fi(31),---, fn(zy)) Where for each j = 1,...,n,f; €S, then f € G (and F) if
and only if f; € K for each j.
Proof. The result follows immediately from Theorem (1.1.24) and Theorem (1.1.25).
Theorem (1.1.27)[1]: Let f : B — Cwith B < C" be holomorphic. Define F : B - C"
by F(Z) = f(Z)Z. Further, given U € S?"71 define g, : A—> Cby gy(a) = af(al).
Then:
(i)F € Gifandonlyifg, € KforeachU € §2" 1
(i) F € Fifandonlyif g, € K foreachU € §2" 1,
Proof. Since F(Z2) = f(Z)(Z) where ZT = (z; ..., 3,) We have
DF(Z) = ZVF(2)T + f(2)I

= ZVfT + f I (for simplicity). (16)
It is easy to check that
1
DF(Z) 1= + VT2 — ZVfT 17
(T) f(f+l7fTZ)[(f f7) fl (17)
_ (2L or
where = (aZ1 ""’azn) :

(i) From F(Z) = f(Z)Z, we write
_ F(aU) — F(BU) = (gu(a) — gy(B)U.
Also, since
15



gu(@) = f(al) + Vf(al)"(al), (18)

we have
DF(aU)™! = (f(aU) + Vf(aU)T(aU))I — aUVf(alU)T
f(aU)(f(aU) + Vf(al)T(al))
_gu(@I — aUVf(al)"
T @) (gy@)
So

DF (aU)~'(F(aU) — F(BU))
_ 9u(@)(gu(@) — gu(B))U — (@UVf (al)")(gu (@) — gu(B))U

flaU)gy(a)
_ gu(a) — gy(B) U
gy(a) '

It follows that
gu(a) — gu(B)

ty(DF(aU)™"(F(al) — F(BU))) = 90 (@) (19)
for £, € T(U).
Therefore
_ 2agy(a) a+p
)= @9 ® @ -
and so Re {Gr(a, )} > Oifandonlyif g, € K by (7).
(i) Let f(Z2) = f(Z) + Vf(Z)TZ. Then
DF(Z)(Z) = ZVFf(2D)TZ + f(2)Z = f(2)Z.
Differentiating again,
D*F(Z)(Z;) + DF(Z)() = ZVf ()" + f (D)
D*F(Z)(Z,Z) + DF(2)(2) = (VFTZ + f)Z.
So we have
DF(Z)"Y(D?*F(Z)(Z,Z) + DF(2)(2)) =% (F1-2VfO(VFTZ + )z
= —(VfoZer /) (f — VfT2)z = —(VfT% +/) Z.
For ¢, € T (Z) we obtain
£7(DF(Z)~'(D*F(Z)(Z,Z) + DF(Z)(2))) (20)
viTz
= ||Z||< 7 +1>. (21)

GivenU € S llet gy(a) = af(alU). Then
gi(@) = f(@U) + aVf(al)'U
= f(av),
agy(al) = Vi(aU)Tal.
Therefore

agy(@ _Vf(a) (@l)

gy (@) f(aU)
So from (21) with Z = aU we see that
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2, (DF(Z)—l(DZF(Z)(Z, 7) + DF(Z)(Z))) = |a| <a£{”(a) + 1>
gy (@)
We conclude that F € Fifandonly if g, € K foreachU € §2" 1,
The following corollary involves an interesting mapping. Let us define the mapping F :

B - C*byF(2) =f(;;—(zz)))z,wheref € Sand? € T(U), forsome U € C™with ||U]|| =

1. This mapping has the property that in the one-dimensional space {aU : a € A} it is
identical to the mapping in the plane. In any other onedimensional space described by {aV :
a € AL(V)=0}wehave F(Z) = Z. That is, the identity mapping. This follows from
f(z)/z having a removable singularity at z = 0. This is easily seen by the following
computation.

f(a)

Henceif 8 = 0,F(aU) = f(a)Uandif = 0,F(BV) = BV.
Corollary (1.1.28)[1]: Let £ € T (U') forsome U’ € S,,,_,. Define f: B — C by
f(2) = M
4(Z)
whereh € S.ThenF : B —» C*givenby F(Z) = f(Z)ZisinG (or F)ifandonlyifh €
K.
Proof. GivenU € S,,_,, We have

h(al(U
9y(@) = af (aU) = —% )
Then
9"U(a) h''(at(U)) } . .
Re {a (@) +1= Re{a{’(U))—h, (@) +1¢ >0ifandonlyifh € K.

The result follows from Theorem (1.1.27).
Example (1.1.29)[1]: The function f(Z) = (z + aw? w) where Z = (z,w),||Z||P =
|z]? + |w|P < 1,z,w € Cisin G ifand only if

a <= Pz—ll/p<p+1>
=2\ 2 p— 1)

_ 1 2aw 1 _ 1 —2aw
of@ = [, “1"|.or@=|, 5"
Using f € G ifand only if Re Gf(a, ) > 0 where

G (a, B) = 2a _a+t g
T ey (pf @)1 (faw) - Fpv))) * B

andU = (z,w),[lUll=1,|a|] < 1,|B] < 1,a,B € C. It follows that
— 2.5,2 _ 2..,2
Df@U) (f(at) — fegun = [ ~Eg [T T T
_ _ z —a(a — B)w?
= (a - p) 2PV

As before,

And
Ly(Df (@)™ (f(al) — f(BU))) = (a = BVl — ala — )£y ((W?,0)))
= (@ —B)(A - ala — B)ty((w? 0))).

17

So



Gy (e, B) = 2a _ath
JACS (@ — B) (1 — ala — [)’){?U((WZ’O))) a— B

~ 2a — (a + B) (1 — a(a — ﬁ)#U((WZ,O)))
(@ = B)(1 = ale — By ((w2,0)))
B 1+ a(a + pw??
: 1 — )a(a — ﬁ){’U((WZ,O))( )
B aty((w?,0) _aty (w?,0)
- <1 Tt apey (w2, 0) ) / <1 1+ aﬁeu((WZ,O))“>
1+ ba Lere b — aty((w?,0))
=g Whereb = — 2By (0%, D))

1+ba _ 1—|bal® | 2iIm{ba} . . ]
e~ Tiobal? T L-bap it follows that Re {G¢(a, p) = 0} if and only if |ba| <

1. Thus we need
b = ‘ afu((WZ,O))
1+ aBey (w2 0)| T

Since

Hence

lal[£y((W?, 0)| < |1+ aBey((w?,0))],
and in the worst case

lal[£y(W?,0)| < 1 —|a|[£y((w?, 0))].
Thatis, 2|a||[¢y (W2, 0))| < 1.
If we are using a p-norm, 1 <p < 0,8y ((xy,%3)) = |2|P"25x, + |w|P~2wix,. Then
£y((w?,0)) = |z|P~2zw? and [€y((W?2,0)| = |z|P~1(1 — |3|P)?/P. Hence
2|a||fy((w?,0))] < 1ifandonly if

1 (p? — 1\ 1
2 4 p — 1
We note that if f isin G, then f is starlike.

Example (1.1.30)[1]: The function f(Z) = (z + aw? w) where Z = (z,w),||Z||P =
|z|P + |w|P < 1,3,w € CisinF ifandonly if

=t (2217 (22
=2\ 4 p — 1)

We have that f € F if and only if
Re £,(Df (Z)"X(D*f(2)(Z,Z) + Df(2)(2))) > 0.

Therefore,

DD D @@2) + DFD@) = [ A [P+ [E] = [F 2.
Hence
Re{t; (DF(2)*(D*f(2)(Z 2) + Df(2)(Z)))} = Re{llZIl + 2a¢((w?,0))}
= Re{llZ|| + 2a¢,((w? 0))}
> Re{l + 2af;((w?, 0))} (minimum principle)
> Re{l — 2la||£z((w? 0))[}.
This is the same condition as for the family G and so the same bound applies.
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It should be noted that, as with G, f(z,w) = (z + aw? w) € F = f is starlike.
Example (1.1.31)[1]: The mapping f(z,w) = (3 + azw,w) with (z,w) € B c C?
with a p-norm is in G if and only if

2 P op 41
<|= .
|a] _<3(p + 1)) ( 3 )
We know that f € G if and only if Re G; (a, B) > 0.

(a — Bawz
Df(aU)™*(f(aU) — f(BU)) = (a — B) [Z_ 1+ awa ]
where U = (z,w),||U]|l = 1. v

If we use a p-norm,

fUOa—m<z—w_ﬂ”W?¢D=«a—ﬁw}—m—ﬂyﬁﬂﬁi>

1+ awa 1 + awa
Hence
~ 2a _a+ g
Gr (@.p) = fU(Df(ocU)‘l({(aU) —f(BU)) a-p
a
2Bt awe — @~ pawler)

1+ awa + (a + Blaw|z|?

1+ awa — (a — B)aw|z|?
1+ Baw|z|P + aw(1 + [z|P)a
14 Baw|z|P —aw(l — |z|P)a

awa|z|P awa|z|P

B <1 + 1 + Bfaw|z|P + awa) / (1 1+ Baw|z|?P + awa)'

The real part of this is positive if and only if
awa|z|P

1 + Baw|z|P + awa
Hence we need |al||lw]||a]|z|P < |1 + Baw||z|Pawa|. The worst case is when aaw =
Baw = —|aw]|, and we have to find a such that |a||w||z|P < 1 — |a||w]||z|? — |a||w|.
We obtain |a||w|(3 — 2|w|P) < 1 from which we find that

2 P41

|ms<gp+n> (5)
In particular we have the following values of a.
Ifp = 1]a|l < 8/9,
Ifp = 2|al < 1/V2,
Ifp = oo a|l < 1/3.
Note that forp = 2 the values obtained for a are the same for G as for the convex mappings.
Example (1.1.32)[1]: The mapping f(z,w) = (3 + azw,w)isin F if and only if

2 1/p p +1
|a| S(g(p+1)> ( 3 )

This is the same result as in Example (1.1.31). This follows directly from the observation
that the worst case in that example occurs when o« = £.

<1

19



We now turn our attention to finding information on the family G as a whole,
Theorem (1.1.35) gives us some uniform bounds, in the Euclidean norm, on G. We first
prove two lemmas.

Lemma (1.1.33)[1]: Let f : B — C" be holomorphic and univalent on B. Let U € C"
with [|[U|] =1 and let @« € A. Then necessary conditions for ||f(Z)|| to have a local

maximum or minimumon{Z : ||Z|| = r < 1}atZ = aU,|a| = rare
Im(Df (aU)(al), f(al)) = 0, (23)
And
(Df (aU)(aV ), f(al)) =0, (24)

where V. € C* ||[V|| =1and (U,V) = 0.
Proof. Let a = re® where r is fixed and 0 varies.

L QF @I = L (Flav), fav))
do dg ’

= (Df (aU)(iaU), f (aU)) + (f (aU), Df (aU)(ial))
= 2 Re(Df (aU)(ial), f(al))
= 2 Re {i{Df (aU)(aU), f(al))}
= —2Im(Df (alU)(al), f (al)).
When a maximum (or minimum) of || f (aU)||? for |a| = r occurs,
Im(Df (aU)(aU), f(al)) = 0.
That is, (Df (aU)(al), f(al)) is real.
Now fix a at a point where ||f(alU)|| has a maximum, |a| = r, and vary Z by letting
Z(0) = a(Ucos @ + AV sin @), where (U,V)=0,||V||=1,|1] = 1.

d
25 (@) f(ZENN

=(Df(Z(9))(Z'(8)),f(Z(6))) +(f(Z(8)),Df (Z(8))(Z0 (6)))
= 2 Re(Df (Z(8))(Z0 (8)),f(Z())).
We want this to have a maximumat & = 0. Hence we need
2 ReDf(Z())(2'(8)), f(Z(8))]|,_, = O.
Since Z'(0) = a(U(—sin @) + AV cos 0)|g=9,Z'(0) = AaV,Z(0) = aU, this becomes
2 Re(Df (aU)(AaV ), f(aU)) = 0.

Hence {A(Df(aU)(aV),f(aU))} =0 , for all A,|A| = 1. Thus it follows that
(Df (aU)(aV ), f(alU))| = 0. Consequently,

(Df (aU)(aV ), f (al)) = 0.
Lemma (1.1.34)[1]: Let (r,),=; be a monotone increasing sequence of positive numbers
convergingto 1. Let f € G and define £,(Z2) = (1/r,)f(1,,Z). Then
(i) f, € G,and
(i1) £, = f uniformly on compact subsets of B.
Proof. We first note that Df,,(Z) = Df(r,Z). Hence

GF.(a,B) 2a a+p

a,fp) = —

" (Dfp(a)(fu(al) — f(BV)),U) @ = B
2r,a ma + 1,0

(Df(rnaU)_l(f(TnaU) - fn(rnﬂU))» Uy ma —nmp
= Gf(rna' Tnﬂ)
and f,, € G.
That f,, = f uniformly on compact subsets of B follows by a standard argument.
Theorem (1.1.35)[1]: Let f € G, then forall Z € B, using the 2-norm,
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Al <IFD < I1ZIl

1+ |z|| ~ 1=zl

Proof. Since Re G¢(a, ) > 0and G(0,8) = 1 we can write
c 1+ aw(a,p)
@) =1 aw(a, B)

where aw(a, f) is a Schwarz function. That is, aw(a, B) is analytic for a,f € A and
law(a, B)| < |al|. Thus |w(a, B)|] < 1. We have
2a a+,8_1+aa)(a,ﬂ)

(Df (@)~ (f(al) — fFBU)U) a — B 1 - aw(@p)’

Hence
2a _1+aa)(0(,,8)+oc+ﬁ
(Df (@)™ (f(al) — F(BU)),U) 1 — aw(@p) a — B
_ Za(l — ,Bw(oc,ﬁ))
(@ = B)(1 = aw(a,B))
Thus
. 1 — aw(a,pB)
(Df @)™ (f (@) = FBUN,U) = (@ = B)y—p s
And
1 — aw(a,B)

Df@@U)™ (f(al) = F(BU)) = (@ — B)y—po ﬁ)u+]Z:2 (e, B)Y;
where d;(a, B) is analytic in a and g, (V;, U) = 0 and (V}, V}) = 0 for j # k. Thus
1—aw(a,p) .
(F (@) = f(B0)) = (@ = B) T poec = DF @) + ) dy(a ADS @U)(V)),
j=2

Further, dividing by @ — f and letting 8 — a we have

n d. ,
DF(@)(W) = Df @)(W) + ) lim ;(f ’;) Df (al)(V)).
Therefore a
lim dj(a'ﬁ) = Oforj = 2,..., n.
B-a a —

From this we conclude that d;(a, ) = (@ — B)*c;(a, B) where ¢;(a, B) is analytic in «
and . So we can write

1 - )
F@U) — F(BU) = (@ — f) 1 @B

n - ,Bw(a,ﬁ)
+ ) (@=BPga M@,
j=2

From this we get two useful representations of f(Z).
When g = 0,

f(aU) =a(1—aw(a,0))Df (aU)(U) + z azcj(a, 0)Df (aU)(V;), (26)
j=2

Df(aU)(U)  (25)

and whena = 0,
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p
Bw(0,B)

fBU) = — U-) BGO.RY. @7
j=2

Since

GBI = (U, FaUYy = —BL o 1B
' 2 T = B0 > 0 + D2
we have the lower bound.

To obtain the upper bound requires a lot more work. We note that if |w(a,B)| = 1, it
follows that w(a, B) = e'® forall @, € Aand 6 is areal constant. If 5 = |B|e~"? then

,_ 1B N L o2
IF GBI = r—5m + 18] ]ZZ 0.8
Clearly, if ¢;(0,|Ble™) % 0 for some j, then |If(BU)Il > 1|—BI|BI . Our approach will

implicitly show that this does not happen.
Let (;,)n=7 and fn be as in Lemma (1.1.34). Then from the lemma we know that f,, € G
and f,, = f uniformly on compact sets. In addition we will show that for each n, the
wy, (a, B) associated with fn as in (25) has the property |w,(a, 8)| < 1.
Once this is established it will suffice to show that the bound holds for mappings with
|w(e, B)] < 1.
To see that for any f,,, |w,(a, )| < 1 we use

Gr, (@, B) = G (1,0, 7 )
from Lemma (1.1.34) and

1+ aw(a,B)
o P) = T (e py;
From this we have |w,(a, B)| = |nw(ra,r,0)|. Therefore |w,(a, )] < 1sincer, <

1and |w(a,B)] < 1.
Now let f € G have the property |w(a, )| < 1,forall @, € A and let

I1Z]]

T = {T‘: ||f(Z)” Sl——”Z” for || Z]| <7‘}.

We will show that T is both open and closed and conclude that T = [0, 1] for every f with
the property that |w(a, )| < 1. Note that although T depends on f, for the sake of
simplicity, our notation will not explicitly reflect this.

T # ¢ since 0 € T (vacuously).

Next we show that there exists e > 0 such that [0,e] € T .

We have seen that
n

GBI = st o103 s 00"
Let us assume that |B] < % and let M = |Brn|Sal)/(2 D=2 |cj(0,,8)|2. Also let |w(0,8)| <
p < 1for|pB| s%. Hence
TR L —y Y,
(1 = plBh?
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and we need ||f(BU)||* < B”_ We will find the conditions on |B| for I —

—@a-1gn? (1 - plBD?
1IB|*M < % and the required inequality will follow.
Easily,
Sy —
(1 = plB)? — (1= (BD?
if and only if

(1 = 1BD* +181°M1 = |BD*(1 = pIBD* < (1 = pIBD*.

Thus, it is sufficient to obtain

(1—-18D*+1B1°M < (1 — plBD?.

12|81 + B> + |B1*M < 1 - 2p|B| + p*|BI%,
IBI(1 —p? + M) <2(1—p),

Hence we have

2(1 — p)
Bl < T
pc+M
Since%> 0 we canchoose e < 1/2suchthat0 < ¢ <(— Hence [0,¢]
T.

T is closed if ry is a limit point of T and ry & T , then there is a neighborhood, N, of 1, such

that [|f (Z)|| > 'Z”" _ for some Z with [1Z]| € N, |1l = r; < 7. Now choose r, such that
n<nr<n such that , € T (1, exists since ry is a limit point). Then by the definition of

T, f (DIl < T !Z””Z” for all Z such that ||Z|| < r,. This is contradiction and so r, € T. Hence
T is closed.

To establish that T is (relatively) open we will show that if ||f(2)]| =

IIZII

for some =
ol 4|

Zo, l1Zyll =71y € T, then it would mean that || f(Z)|| > 'Z”” 7 forsomeZ Z]| = r <.
This would contradict the definition of . So on B, , 1!””2” :

sufficiently small 6 > Osuch thatr + 6 € T. It would follow that T is open.

Suppose ||f (al)]|| = for some a, |a| = r,. Then since ||f(yU)| < '_y:yl for all

ly| = r < (because r e T), and since this is on the interior of B, , ||f(aU)|| must be
the maximum value of [[f(Z)|| on dB,, . From Lemma (1.1.33) we have that at this

maximum point
(Df(aU)(V), f(al)) = 0where(U,V) =0,
And
(Df (aU)(al), f(al)) >0
by a suitable choice of coordinates.
From (26) we have

f(aU) =a(l —aw(a,0)Df(alU)(U) + z azcj(a, 0)Df (aU)(V)).
It follows that -

If (@I? = {f (aV), f (aU)) = a(1 — aw(a, 0)){Df (aU)(V), f (al)).
At this point (1 — aw(a,0)) > 0.
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By a suitable relabeling we can assume « is positive. We have

d d

E(”f(tu)llz)ltnz == {f(al),f(al)) = 2 Re(Df (aU)(U), f (al))
_2lf@n))?
B a(l — aw(a, O))'

Hence
Zarenip| 2
MEGDIE a1 - aw(a,0))
Therefore o
g UIF DI = ’
at 09 ! t=a = a(l — aw(a, O))'
That is,

1
a(l — aw(a,0))

since |w(a, 0)| < 1. (28)

d
77 Log I DD le=e =

< —_—
a(l — a)
Therefore, for t in a sufficiently small neighborhood of «, inequality (28) holds. That is,
d 1
77 leg lIf el < -0
Choose 0 < &€ < a inthis neighborhood and integrate along the radial path Z(t) = tU,t €

[$, a].

fa L ||f(tU)||dt<Ja _ b = [lo ' r
g dt g g t(1—1) gl—tg'
If ()| a 1-¢
oo < (== )
If (D)l <" 1-¢
IfEDN 1 —-—a &
But ||f(al)|| = %,and so ||f(E)|| > 1i—E.This contradiction shows T is open, and we

conclude that T = [0, 1].
Thus for any f € G with |w(a, 8)| < 1 the bound holds on B.
The theorem is now proved.
These bounds are sharp as the following examples will show.
Example (1.1.36)[1]: The mapping f : B ¢ C?> — C? given by
z w
faw) = (5 )

—z'1-3

!

attains the bounds.
The function is convex and hence in G. We note that

z
£(5,0) = (1= . 0).
Since the mapping 1% attains these bounds in the plane, then f will attain the bounds given

by the theorem.
The next example shows that several mappings attain this bound.
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Example (1.1.37)[1]: Any mapping of the form (1% ,g(w)) , Where g € K isin G and
attains the bounds.

Since the family G is locally uniformly bounded, it is normal and compact. Some of the
implications of this are:

(i) In the Taylor expansion of f,f(Z2) = Z + Yy-, Pir(Z), the P,(Z)’s, which are
homogenous polynomials in z,, ..., z,, are uniformly bounded.

(if) There are uniform bounds on the volume of the image of the ball of radius R,R < 1.

(iii) There are uniform bounds on the determinant of the Jacobian of f.
lIZ]]

It is known that for convex maps, ||P,|| < 1 for each k and the upper bound T2y Can be

readily determined ([2]). However, in our families the mapping (z + aw?,w) can have
la| = 3V3/4 =~ 1.3 and so the bound ||P,|| < 1 does not hold for FF or G.
Section (1.2): The Unit Polydisk in C*

In 1999, Roper and Suffridge [1] first introduced the definitions of a quasi-convex
mapping of type A and a quasi-convex mapping of type B on the unit ball in a finite
dimensional complex Banach space. After that, Zhang and Liu introduced the definition of
another quasi-convex mapping on the unit ball in acomplex Banach space (including finite
dimensional and infinite di-mensional spaces).For brevity, say the mapping is quasi-convex.
They proved that the definitions of a quasi-convex mapping of type A and a quasi-convex
mapping on the unit ball in a complex Banach space are the same.

With respect to the criteria for a normalized biholomorphic convex mapping, Roper and
Suf-fridge [1] provided a sufficient condition for a normalized biholomorphic convex
mapping on the open Euclidean unit ball in C™. In 2003, Zhu gave a concise proof of the
above result.

On the other hand, at present, only a few works treat the estimation of homogeneous
expansions for subclasses of biholomorphic mappings in the case of several complex
variables. See [15], [18], [19]. These estimations still arouse great interest. The reason is
that the estimation of all homogeneous expansions for star like mappings on the open unit
poly disk D™ in C™ is analogous with the famous Bieberbach conjecture in the case of one
complex variable.

Conjecture (1.2.1)[14]: (See [15], [17].) If f : D™ — C™ is a normalized biholomorphic
starlike mapping, where D™ is the open unit polydisk in C", then

ID™£(0) ™)l

<ml|z||™z € D", m = 2,3,....

Until now, only the case of m = 2 (see [15]) was proved. For the estimations of all
homogeneous expansions for normalized biholomorphic convex mappings on the unit ball
in a complex Banach space, the analogous results as in the case of one complex variable are
not difficult to get. However, with respect to the estimation of homogeneous expansion for
quasi-convex mappings of type A and quasi-convex mappings of type B on the Euclidean
unit ball B™ in C*, Roper and Suffridge [1] provided a counterexample to point out that the
above similar conjecture does not hold for m=2, hence we mainly investigate the estimation
of homogeneous expansion for quasi-convex mappings (including quasi-convex mappings
of type A and quasi-convex mappings of type B) on D™ in C".

For X be a complex Banach space with norm |[.]|, X* be the dual space of X, B be
the open unit ball in X, D denote the Euclidean open unit disk in C, D™ represent the open
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unitpolydiskin C™. Let @ D™ be the boundary of D™, d,D™ be the distinguished boundary of
D™
Let the symbol ' mean transpose. For each x € X\{0} we define T (x) = {T, €

X" ||IT |l = 1, T, (x) = ||x]|]}. From the Hahn—-Banach theorem, T(x) is nonempty. Let
H(B) be the set of all holomorphic mappings from B into X. It is well known that if f €
H(B), then

o1

FO) =) = D@ -0,

n=0
for all y in some neighborhood of x € B, where D™f (x) is the nth-Fréchet derivative of f
at x, and forn > 1,

D™ f(x)((y — x)™) = D™f (x) vy —x, ny —X).

Moreover, D™ f(x) is a bounded symmetric n-linear mapping from ni_, X into X.

A holomorphic mapping f : B — X is said to be biholomorphic if the inverse f~1 exists
and is holomorphic on the open set f(B). A mapping f € H(B) is said to be locally
biholomorphic if the Fréchet derivative D f (x) has a bounded inverse foreachx € B. If f :
B — X isaholomorphic mapping, then f is said to be normalized if f(0) = 0and Df(0) =
1, where [ stands for the identity operator from X into X.

We say that a normalized biholomorphic mapping f : B — X is starlike if f(B) is a
starlike domain with respect to the origin. Also, a normalized biholomorphic mapping f :
B — X is said to be convex if f(B) is a convex domain.

Definition (1.2.2)[14]: (See [16].) Suppose f:B — X is a normalized locally
biholomorphic mapping, denote

Gf(aug) =

2 _a+t p
T, [(Df(ocu))_l(f(ocu) — f(ﬁu))] a—pf

If
Re Gr (a,p) =0, u€adB,a,p €D,
then f is said to be quasi-convex of type A.

It is known that a quasi-convex mapping of type A is biholomorphic on B.

Definition (1.2.3)[14]: (See [16].) Suppose f:B — X is a normalized locally
biholomorphic mapping. If

Re{T,[Df () 1 (D*f(x)(x?) + D (x))]} =0, x €B,
then f is said to be quasi-convex of type B.

At present, we do not still know whether a quasi-convex mapping of type B is
biholomorphic on B or not.

When X = C", Definitions (1.2.2) and (1.2.3) introduced by Roper and Suffridge [1].
Definition (1.2.4)[14]: Suppose f : B — X isanormalized locally biholomorphic mapping.
If

Re{T [DF ) (f(x) — f(§x)N]} =0, x €B,§€D,
then f is said to be quasi-convex.

It is known that a quasi-convex mapping is biholomorphic on B.

When X = C, Definitions (1.2.2)—(1.2.4) are the same, that is, a quasi-convex function is
equivalent to a normalized biholomorphic convex function in one complex variable.

Let S(B) denote the set of all normalized biholomorphic mappings on B. Let K(B) be the
set of all normalized biholomorphic convex mappings on B. Let Q4(B) (respectively
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Qg (B)) denote the set of all quasi-convex mappings of type A (respectively type B) on B
and Q(B) be the set of all quasi-convex mappings on B.

We establish a sufficient condition for quasi-convex mappings (including quasi-convex
mappings of type A and quasi-convex mappings of type B) on the unit ball B in a complex
Banach space, furthermore, we will obtain sharp estimations of all homogeneous expansions
for quasi-convex mappings (including quasi-convex mappings of type A and quasi-convex
mappings of type B) defined on the open unit poly disk D™ in C", which satisfy a certain
condition.

In order to prove the main theorem, we need to establish some lemmas.
Lemma (1.2.5)[14]: (See [16].) K(B) € Q(B) = Q4(B) < Qz(B). In some concrete
complex Banach spaces, we even have K(B) Q(B).
Lemma (1.2.6)[14]: (See [1].) Suppose B is the unit ball in C*, f € S(B). Then F(z) =
’”(TT—(())) z€ Q4(B) (or 05(B)) ifand only if f € K(D), where|ju||=1.

It is not difficult to prove the following
Lemma (1.2.7)[14]: Suppose f is a normalized locally biholomorphic mappingon D™.Then
f € Q(D™) ifand only if

sneg"(j’z) >0, z=(z,...,2,) ED",
J
where g(§,2) = (g1(§,2),...,9n(§,2)) = (Df(Z))_l(f(Z) —f(2)),ze€D™"¢ €Disa
column vector in C", j satisfies |z;| = ||z]| = max 1 < k < n{|z]}.
Theorem (1.2.8)[14]: If f € H(B),f(0) = 0,Df(0) = I, and £, "W/l <

where

ID™ £l = SUp |y0=y 1zkem IDFFO)ED, 2D, xM)]
then f € Q(B), furthermore, f € Q,(B) and f € Qgz(B).

Proof. Since f e H(B)and f(x) =x + X m—> W"C € B, then
= mD™f(0 xm-1
pren=1+ y MO ), (29)
m=2 '

m?|ID™ £ (0) ||

Also since Yo _ < 1, then from (29), we obtain

DO ™ 1 = m2IDmFO) xll Il
IDF(x) — 1|l < mz — <= mz - <o < L
According, Df(x) =1 — (I — Df(x)) exists a bounded inverse operator (Df(x))_l, and

0T = T =07l = _ g miDrfOIRr— -
On the other hand, m
O [(1— &™) —m(1 - &)]D™F(0) (x™)

IFG) =760 = (= OpFCIx = | —

3 i (1= &m) —m(1 = O|ID™F(0)(x™)||

-~ m!
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i 11— &l11—m+ &+ +E™ 1| D™F 0[] ||™

m!
11 —=¢P(A+ 2+ +m—=DID™F O x|I™

m!

) i 11— g2 =Ly om0y e

m!

<

MSN

3
n

m=2

< llxl

(31)

1-¢I? (1_ N manf(O)nuxum-l)
2 £ m! '
So, according to (30) and (31),vé € D, we obtain
Re (T |(DF ) (F@) - FE0)]}

= Re {T, |(DF () (F@) = F(Ex) — (1 = HDF()x + (1

- HDF(0)x)|}
> [lxlIRe(1 — &) — [T [(DFG)) T (FG0) = £(§0) — (1 = HDF ()|

_ |2 m m-—1

el L2 (1o g, MR FO )
= Ixlfe(t =)= o DO
1= Z m!
2
SrE '5' > 0.

By Definition (1.2.4), we obtain that f € Q(B) From Lemma (1.2.5), we deduce that f €
QA(B) and Qg (B). This completes the proof.

Theorem (1.2.8) tells us that f(x) = x + Y-

Qp(B)) iIf ——— ”Dmf(o)” (m = 2,3,...)is small enough.

When X = (C B = D, Theorem (1.2.8) is the same as the corresponding result of
normalized biholomorphic convex function.

When X = C", B = D", from Theorem (1.2.8), we immediately obtain the following
corollary.

Corollary (1.2.9)[14]: If f € H(D™),f(0) = 0,Df(0) = [,and Y _, <1,
where [[D™f£(0)|| = sup ”Z(k)”=1’1sk5m||Dmf(0)(z(1),Z(Z),...,z(m))”, then f € Q(D™),
furthermore, f € Q4(D™) and Qz(D™).

Example (1.2. 10)[14]' If Y ey |akml <

D™f(0)(x™)
|

€ Q(B) (Qa(B) and

m?| D™ £ (0)]|

,m = 2,3,... then

m(m-1) ’

f(2) = (= +Z QemZ}™ 12,1 7n) € Q(D™) (Q4(D™) and Qg(D™),m = 2,3,.

Proof. ObV|oust f iIs a normalized biholomorphic mapping on D™". Straight forward
computation shows that

(Df(2))” (f(2) - f(£2))
= 1=z +1 =" —m(1— &) Tiey Gmzl, (1 =)z, (1= )z,
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If there exists j( 2 < j < n) which satisfies |z;| = |z, then

g](f! Z)

J

where  g(2) = (9:1(5,2),...,9;(§,2),...,9n(§,2)) = (DF@) " (F@) - f(€2) € €
D;if|z;| < |z, k =2,..., n, then

Re

=Re(1—¢&) >0, (32)

anegl(j’z) = Re [(1—5)+2;‘l=2 Gim i 1-&MmM-m(1-9%))
1 1
‘Re(l—f)—<z Iakml>|1—€|1—m+€ + &% 4 FEM
k=2
- m(m—1)
Z‘Re(l—f)—< la mI) |1 —&|?

1 1
> Re(1—§) -5 [1- ¢ = Re(1 - §) -5 (1 - 2Ref + 1)

1
=5(1-K» =0 (33)

where g($,2) = (91 (£,2),...,9;(§,2),...,9n(§, 2)) = (Df (2)) = 1(f(2) — f(§2)) . ¢ €
D. Sofrom Lemma (1.2.7), (32) and (33), we conclude that f(z)=(z; +
Yh=2 AemZit  Z2) ) z,) € Q(D™),m = 2,3,.... Also from Lemma (1.2.5), we have
that f € Q4,(Dn) and Qgz(D™),m = 2,3,.... This completes the proof.
Obviously, each z; +Y}_, armzy* (m = 2,3,...) cannot be written as the form of
71 91(z), where g,(z) € H(D™), Example (1.2.10).
By Lemmas (1.2.5) and (1.2.6), we immediately deduce the following example.

Example (1.2.11)[14]: If f(2) = (fz j ..... 12 ),then f(2) € Q(D™) (Q4(D™) and
Qz(D™)).

In order to get the main theorem, it is necessary to establish the following lemma.
Lemma (1.2.12)[14]: If f(z) is a normalized locally biholomorphic mapping on D™, and
g(z) = (Df(z))_l(sz(z)(zz) + Df(2)z) € H(D™), then

D?f(0)(z?) 1 D?g(0)(z*)
2! T2 21

2 ¢ (01, 2L 9O @Y
DFO@E™) _Dng@E™ 2P O% 6 o)
!

m! 2!
(m — 1)Dm_1f(0)zm_2,ng(g!)(zz))
(m—1)!
ZEDY m=34,...
Proof. Since g(z) = (Df(z))_l(sz(z)(zz) + Df(z)z) € H(D™), then D(Df(2)z)z =
D?f(2)(z*) + Df (2)z = Df (2)9(2).

Therefore,

m(m—1)
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4 m?
7+ 5 D (0)(22) 4+ +—— D™ (0) (z") +--

(1 + 21)2f(0)(z ) o +—Dmf(0)(zm 1, + - )
z? D™ g(0)(z™
g(Z')( ) ggn?< )
Comparing with the homogeneous expanS|on of two sides of the above equality, we have
Dg(0)z =z, 2D2f(0)(z?) =229 1 2 p2£(0y(2,Dg(0)2),
b™~ 19(0)(2’“‘1)>

. (Dg(O)Z +

2 m m 2D 2£(0) |z
(m_ 1)Dm 1f(0)( m-—2 ng(gl)(zz)) m _ N
+oet =1 + 1 D0 (™),

m =34,....
This implies that

D)) 1 D*g(0)(z?)

2! 2 2! ’
D™ 1g(0)(z™ 1)
D"f(O)@™) _ Dmg@@E™) | 2D*f(0) (Z» n =1 )
m(m — 1) m! - m! 21
| ' D2g(0)(z2)
(m ~ 1)D™1£(0) ( -2, 2 800))

(m-—1)! ’
ZzED"m=34,...
This completes the proof.
Lemma (1.2.13)[14]: (See [19].) Suppose g(z) = (gl(z),gz(z),...,gn(z))' €

H(D™, g(0) = 0,Dg(0) = L.If Re L2 > 0,7 € D",
Zj
where |z;| = [|z]| = max_ {|zx|}, then

ID™g(0) (™)l
m!

< 2||z||™,z € D", m = 2,3, ....

It is easy to prove the following
Lemma (1.2.14)[14]: Suppose f is a normalized locally biholomorphic mapping on D™.
Then f € Qg (D™) if and only if

9j(z)

Re . >0, z =(24,...,2,) € D",
J
where g(2) = (g1(2),...,9gn(2)) = (Df(z))_l(sz(z)(zz) + Df(z)z) is a column
vector in C", j satisfies |z;| = ||z]| = 1m};31x{|zk|}.
SK=n

Now we can prove the following theorem.
Theorem (1.2.15)[14]: If f € Qg(D™) (Q4(D™) or Q(D™)), and D™f . (0)(z™) =
z (XY, amz™ ), ze DLk =1.2,...,n,m=23,..., where ay,, = IO Ry -

azkazlm‘l P
1,2,...,n,m=2,3,..., then
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D™f(0)(z™
” f(m?( )”SIIzllm,z ED",m=23,...

The above estimations are shar'p.
Proof. Suppose f € Qg(D™),Vz € D™ \{0}, denote z, =”z—”. According to Lemmas

(1.2.12) (the case of m=2), (1.2.13) (the case of m=2) and (1.2.14), we obtain

D?£(0)(z?)
" ~ z ” < “2”2
That is, the desired result holds.

Assume that
ID*f£(0)(z%)]|
s!

ID*£(0) (zp)Il < st (35)
Also since DSf,(0)(z%) = z, XM, apszi™), z€ DYk =1,2,...,n,s =23,...,m,
where ay;; = 0°5£4,(0)/0z,0z L k, 1 =1,2,...,n,s = 2,3,...,m, therefore, by (35), we

<z, z ED"s=23,...,m. (34)
From (34), we have

obtain
Zj (i Zl s—1 n Zl s—1 < |
(3 el ) =[5 eli) |
Iz \ & 9 Izl £ o\l |
where |zj|=||z||=1r£1’?<>% {|zr|}. Especially, when zl=e_s—_11||2||, where a; =
arg a;;, 1 = 1,2,...,n, ityields that
n
Z |ajj| < s!. (36)
=1
m-—s+2 m-—s+2 —_
Denote w = 2 9(0)(z ) §=123,....m,vA € D, we obtain
(m—-s+2)!
DSF.(0 Z+Aw z+ Aw Z+ Aw
O\ =3
S
DSf:(0)(z° sDSF:(0)(z5~ L, w DS£:(0)(w?
_DOE) | sDOG W) L DHOM

25 25 ' 25
where j  satisfies  |zj| = ||z]| = max {lzr]}- Note that D®f,(0)(z°) =
<ksn

z (X, apszi H,zeDVk=12,...,n,s =23,...,m, hence
n

s Z+Aw z+ Aw zZ+ Aw zj + Aw; s—1
D*f;(0) R R, = T s Z ajis(z; + Awy)
=1
S

n _ _
_ z | 51 (s — 1)Zj(z?=1 a;lszi ™ w;) +W]'(Z?=1 a;lsz; Y 1

=1

W'(Z?=1 aji Wls_l)
4o 25] a A5. (38)

Comparing the coefficient of the right sides of (37) and (38) with respect to A, we have
n n
1
Dsf;(0)(z5hw) = < l(s — 1)z (Z ajjszi "> wl> + w; (Z aﬂszf_1>] . (39)
=1 =1
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From Lemma (1.2.13), (36) and (39), we obtain
Dm s+2 0 m—s+2

(m—s+2)!

=—(S—1)” ” (Z aﬂ
Dm S+Zg (0)(Zm S+2)
T m-s+ 2! (Z s |z|| >

lz as ||)S s(m_(g)f;!s :

D™=5%29,(0) (25" °*?) N z; \*71
+ ajls m

s-2 pm- S+2g (0)(Zm S+2)
I_) (m—s+2)!

- |[G-1D

|

(m—s+2)! -
c |z/1\ 7% D542 g, (0) (25 5*2)|
_ (S— 1); ale <||Z||> (m—s+2)'

(m—s+2)!

=2-sh

L D@ @) z <|zl|> ] <226 - Dt +2-s

That is,

< 2-s!, z,€dD" (40)

s . Dm—s+Zg (0) (Z(r)n—s+2)
ij(0)<zo g (m—s+2)! )

Especially, when z, € d,D™, by (40), it yields that

Dm—s+2 0 (7)11—5+2
D*f,(0) <28'1, (mg_(s)_izz)! )>

. s s—1 Dm—s+2g (0)(Z(T)n—s+2) _ .
In view of D*f,(0)(z°~, ——ey )€ H(D™),k =1,2,...,n, by the maximum
modulus theorem of holomorphic functions on the unit polydisk and (41), we obtain

oo e L D)

(m—s+2)!
We conclude that

< 2-sl, k=12,...,n(41)

<2-sl,z,€dD", k=1.2,...,n

<2-sl,

Dm—S+2g (0)(Zgl—5+2)
(m—s+2)!

D*f(0) <Zé‘1.
That is,

<2-s!|z||™*,z € D", s

Dm—5+2g (0) (Z(7)71—S+2)
(m—s+2)!

D*£(0) (ZH,

=23,....m. (42)
From Lemma (1.2.13) and (42), we have
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(m + Dm|ID™ £ (0) (™ DI

(m+ 1)!
Dmg(o)(zm)
_lIpm @@y 2 o=, )
= (m + 1)! 2!
3 3 2 2
ool (o BAQEN oryy o 2ag)
+ cee .
(m—1)! m!
< 2|z|™ + 2 - 2|z 4 +(m = 1) - 2|12+ me 2|z
= (m + )m||z||™*2.
That is,
Dm+1 0 m+1
I (T];(+)S! )| 2]+, ;€ DN

Therefore, the desired result holds. By Lemma (1.2.5), the desired result for f € Q4(D™)
or Q(D™) also holds. This completes the proof.
According to Example (1.2.11), it is not difficult to verify
Z Zn n

f(2) = ( -z '1-2 ,...,1_21),2 € D™,

satisfies the condition of Theorem (1.2.15). Taking z = (r,0,...,0)" (0 < r < 1), then
D™f(0)(z™
IO _m, = 23,...
Hence the estimations of Theorem '(1.2.15) are sharp.
From Lemmas (1.2.12) and (1.2.13), it is not difficult to deduce the following
According to Theorem (1.2.15), we can prove the following corollaries.

Corollary (1.2.16)[14]: If f € Qg(D™) (Q4(D™) or Q(D™)), and D™f,(0)(z™) =

z O Gmz™™ ), z€ DNk =1,2,...,n,m = 2,3,..., Where ay, = aa ;;‘,S?)l kL=
Zk0Z;
1,2,....,n,m=2,3,...,then
|z ||
IfN < y—pp- 2 €0™
The above estimation is sharp.
Proof. From Theorem (1.2.15), we obtain
D™f(0)(z™
ID7F )] |z]|™, z ED"m=23,...
m!
Also,
NG
f@=2+ ) ——2,
m=2
hence,
- IDmFOEMI &l
< m — ]
IF@I < llzll+ ) z lel™ = =
m=

m=
That is, ||f (2)]] < 1'_'][” 7z €D

This completes the proof.
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Corollary (1.2.17)[14]: If f € QB(D“) (Qa(D™) or Q(D™)), and D™ f.(0)(z™) =

z Xy aumz™ Y, zeDVk =1,2,...,n,m=23,.., where Apim =
0™ f1(0) _
azkazlm 1 ,k [ = 1,2, Hn,m= 2,3,...,
then
l|z]|
IDf @)zl = =— =z z € D",
fe (1 —lzl)?

The above estimation is sharp.
Proof. From Theorem (1.2.15), we obtain

D™f(0)(z™
D7/ @I lz]|™, z ED"m =23, ..
m!
Also,
= mD™F(0)(z™
Df(z)z=z+z f(')( ),
hence,
IDmf(O)(Zm)II |zl
Df(z)z < + Z 2 VA m — _—
IDf @2l < Iz mllzI" = =
That is,
[zl
D < , z € D™,
| IDf (2)zll < A= T2IE
This completes the proof.
According to Example (1.2.11), it is not difficult to verify
f(z)=< -1 22 o )’ZED"
1—2z,'1—2z,"""1—-2/" ’

satisfies the condition of Corollaries (1.2.16) and (1.2.17). Taking z = (r,0,...,0)' (0 <
r < 1), then

@l =10 I0f@zl = g2

Hence the estimations of Corollaries (1.2.16) and (1.2.17) are sharp. Corollaries (1.2.16)
and (1.2.17) show that the upper bounds of growth theorem and distortion theorem for a
normalized quasi-convex mapping (including quasi-convex mapping of type A and quasi-
convex mapping of type B) f(z) hold, where f(z) satisfies

n

D™ £,(0)(z™) = zk(z Gz ), ZEDYNK =12,...,n,m=23,..,

=1
where
0" £;.(0)
Arim = azkazm N A -1 ,k = 1,2,...,n,m = 2,3,...,
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Chapter 2
Differential Equations and the Period Function

We show that the main tools used in the proof are the generalized polar coordinates,
introduced by Lyapunov to study the stability of degenerate critical points, and the analysis
of the derivatives of the Poincaré return map. The results generalize those obtained for
polynomial systems with homogeneous non-linearitie. We deal with Hamiltonian systems
with homogeneous nonlinearities.

Section (2.1): The Sum of Two Quasi-Homogeneous Vector Fields

Given p,q,s € N, we will say that a function f:R? - Ris(p,q) —quasi-
homogeneous of degree s if f(AP x, A% y) = A5 f(x,y) for A € R, (see [21]). A vector field
X = (P,0):R? - R?is called (p,q) —quasihomogeneous of degree r if P and Q are
(p, @) —quasi-homogeneousfunctions of degreesp + r — 1and g + r — 1 respectively,
see [22].

Observe that the above definition is the natural one for the following reasons:

(i) When p = g = 1, it coincides with the usual definition of homogeneous vector field of
degree r.

(if) The differential equation Z—z = %, associated with X, is invariant by the change of
variables x = AP x,y = A y.

(ili) Homogeneous vector fields can be integrated using polar coordinates whereas
(p, @) —quasi-homogeneous vector fields can be integrated using the (p,q) —polar
coordinates. These generalized polar coordinates were introduced by Lyapunov in his study
of the stability of degenerate critical points, see [34]. We consider a small modification of
these coordinates and their main properties.

The (p, q) —polar coordinates have also been applied recently to study properties of planar
differential equations, see [24], [28].

We study differential equations of type:

dx dy
(5 5) = (P, 000 y) = X(y) = Xa(m) + Xp(xy), (1)

where m > n, and X,, is a (p, q) — quasi-homogeneous vector field of degreeu —p — q +
2pq, foru € {n,mj}.

Note that when p = ¢ = 1,X = X,, + X, is the sum of two homogeneous vector fields
with n and m degrees of homogeneity respectively and includes quadratic differential
equations(p = g = n= 1,m= 2)and polynomial systems with homogeneous
nonlinearities (p = q = n = 1), see [26], [27], [29], [30], [32].

In the (p, q) —polar coordinates, (x,y) = (p? Cs(p), p? Sn(ep)), defined, and with a new

time variable s, given by % = pP*t4-2pa the differential equation (1) becomes
dp

. do
¢=—"= p—*PpxQ(x,y) — qyP(x,¥)].
Using (1) we obtain

= an(@)p™ + ayp(p)p™ (2)

= ba(@)p™ + bp(@)p™ ",
where
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(@) _ (cqu—l (9) Sn2v~1 <<p)>< P (Cs(9),Sn(p)) )

by (¢) —q Sn(p) pCs(p) ) \Qy (Cs(@),Sn(e))
u € {n,m}(and Sn(¢) and Cs(¢) are also defined.
Finally taking the new coordinates r and ¢ and a new time variable v, given by r =

pm M = go,Z—z = p"~ 1 the differential equation (2) writes as

dr

== @@ + an(p)?, 3

. _do
¢ === bul@) + bn(e)r,
where a,, (@) = a,(¢) - (m— n) foru € {n,m}.
For the values (r, ¢) for which b, (¢) + b,,(¢)r # 0, equation (3) can be transformed
into a new equation as follows
2
B _ S gy = O+ an(o)r ”
de bp(®) + by (@)
Most properties that we will prove for system (1) will be studied in coordinates r, ¢ in which
this system can be written as (3) or (4). We will define the functions:
F(p) = an(@)bm (@) — am(@)by(@),and A(p) = by ()F (). (5)
Note that the function b, (¢) controls the infinite critical points of (1) in the (p, q) Poincare”
compactification. The functions F(¢) and b, (¢) control the finite critical points of (1). On
the other hand, b,,(¢) gives information about the origin: if b,,(¢) # 0,(0,0) is a critical
point of center or focus type, while if b, (¢) vanishes, (0, 0) can be the ,aorw —limit set for
some trajectory of system (3). As the following results show, hypothesizing on A, F, or bn
we can establish the number of limit cycles in (1).
The main results are listed in the following theorems. A more detailed account of these
results and related ones, such as cases b,,(¢) = 0,F(¢p) = 0.
Note that Theorem (2.1.19) gives new information only if A(¢) changes sign. Theorems
(2.1.15), (2.1.17) and (2.1.19) generalize several results obtained for differential equations
with homogeneous non-linearities to systems of type (1) (see again [27], [29], [30], [32]).
We would like to point out that most of the proofs that we present differ from the proofs that
appear. In the main, use the transformation of equation (3) into an Abel differential equation
(see [25], [33]) whereas our different proofs are based directly on the expression (3),
although the ideas used are similar.

We contain some results on the location of the critical points and limit cycles of
system (1). We give the proofs of Theorems (2.1.15), (2.1.17) and (2.1.19) with more
detailed information about the number of limit cycles. There we also consider some
examples. Finally, there are three appendices. The first two of them have already been
mentioned. The third one discusses how to verify the existence of n and m in such a way
that a differential equation can be written in form (1).

We study the situation of the finite critical points and periodic orbits of system (1).
Here we will use the generalized tangent function Tn(¢@) = SnP (¢)Cs? (¢) and its
inverse ArcTn(x). Let T = T(p, q) be the period of the functions Sn(¢) and Cs(¢).

Let C,o be the half-curve of points of R? — {(0, 0)} that has the generalized polar angle of

its points equal to ¢, in the (r, ¢) coordinates considered. Note that

yp
C‘PO U C(PO + { (x'y) € ]RZ: ArcTn ; (F) = (po}
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yP T

{(x,y) € R?: ArcTn;(x—q> = ¢, +E}
We have the following result
Lemma (2.1.1)[20]: (a) Ifb,(¢;1) " byu(e:) = 0 and b,(¢@,) + byp(ep;) # 0 or if
F(p,) # 0 then system (3) has no critical pointson C,,_ .
(b) If b, (¢1) = by(@,) = 0then C, isan invariant curve for (3).
(c) If F(p,) = 0 and b,,(¢,)and b,,(¢,) = 0, then system (3) has exactly one finite
critical pointon C,_ .
(d) If F(¢,) = 0and b,,(¢,)and b,,(¢p,) < 0, then system (3) has no finite critical points
onC,, .
Proof. (a) In the first case, b,(¢;,) = 0 for some u € {n,m}, and then b,(¢;) +
b, (p)r # Oforall r # 0. To prove that if F(¢,) # 0, (3) has no critical points on
Cp,, note that if (11, ;) is a critical point different from the origin then a,(¢;) +
am(91)11 = bn(@1) + bin(@q)ry = 0,and F(gq) = 0.
(b) It is obvious from expression (3).

(c) Ifwetaker;, = — %, then (74, ) is a critical point of system (3).
m 1

(d) This case follows from (c) because if (74, ¢,) is a critical point, thenr;, > 0.

Let K be the subset of points of R? on which the angular component of the vector
field (3), ¢ vanishes. In the following lemma we study the geometry of K, when it has no
curves like (e) of Figure 1. We exclude this case because, as we will see in Proposition
(2.1.3)(i), the presence of such curves forces the non existence of periodic orbits. This
lemma improves Lemma 2.2 of [27].

Lemma (2.1.2)[20]: Let X be the vector field associated with system (3). Then

(@) K is the graph of the function r = ;b"—(((p"’)).

14
(b) Atpointa = (xo,y0) € K,X(a) istangent to the half-curve C,, where ¢ =ArcTn(Z—% ).
(c) If K has no curves of type (e) given in Figure 1, then K is either the finite union of curves

given by sectors of type (a), (b), (c), (d) and (f) of Figure 1, or K is one of the curves which
delimit the sets shown in Figure 2.

)z 5 ) . .
(a) (c) (d) (e) (f)

Figure (1)[20]:

The subset K can be a finite union of the curves given by these sectors. The shadowed

regions in cases (b) and (c) are either positively or negatively invariant by the flow of (3).

In cases (a) and (d) the same happens when one of the hypotheses assumed in Proposition

(2.1.3)(iii) is satisfied.
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Figure (2)[20]:

The subset K can be one of the curves which delimit the shadowed regions. These shadowed
regions are either positively or negatively invariant by the flow of (3), when one of the
hypotheses assumed in Proposition (2.1.3)(iii) is satisfied.

Proof. Parts (a) and (b) follow from direct calculations.

(c) When there are ¢, and ¢, not equal, and with b,,(@)b,,,(¢) < 0for all ¢ in (¢4, ;)
we have (a) if b,(@1) = by(@2) = 0;(0) if bp(@1) = bi(@2) = 0; (©) if by(p,) =
b,,(¢) = 0; (d) if b,,(¢;) = b,,(¢;) = 0. When there is only one ¢, such that
b,(p;)n0, b, (p,) # 0 and b, (@)b,,(¢) > 0, for all ¢ + ¢,, then we have case ().
When for all ¢ in some interval (¢4, ¢,) we have b,,(¢)b,,(¢) > 0, then K has no points
in thisregion and we are in case (f). When there exists ¢, such that b,,(¢,) = b,,(¢,) = 0,
then ¢ = ¢, is invariant by the flow of system (3), and we get case (e).

When there is only one ¢, such that b, (¢,) # 0and b,,(¢1) = 0 with b, (¢)b,,(¢) < 0
for all ¢ + ¢4, we are in case (h). When there is only one ¢, such that b,,(¢,) = 0 and
b, (p1) # 0with b, (@)b,,(¢) < 0forall ¢ # ¢4, then the form of K is that given in (i)
of Figure 2. When for all ¢ we have b,,(¢)b,,(¢) < 0, then we obtain case (j).

The following proposition gives information about the periodic orbits of system (3) that
surround the origin.

Proposition (2.1.3)[20]: (i) Assume that K has associated some sector of type (b), (c) or (e)
of Figure 1, then equation (3) has no periodic orbits surrounding the origin.

(if) Assume that y is a periodic orbit of (3) surrounding the origin,theny N K = @

(iii) Assume that one of the functions F(¢) or A(¢) or A(@)b,,(¢), associated with the
differential equation (3), does not change sign. If y is a periodic orbit of (3), then s surrounds
the origin. Furthermore, assume that K has associated no sectors of type (a) of Figure 1
orthat the curveK is not like the curves given in (i) or(j) of Figure 2, then the origin is the
only critical point surrounded by s; otherwise s can surround other critical points.

Proof. (i) Let y be a periodic orbit of system (3), then s cannot cross those sectors, given by
K, because of the sign of b,,(¢) + b,,(@)r in (3) in cases (b) and (c) (note that

the shadowed regions in those sectors are either positively or negatively invariant by the
flow of system (3)), or because ¢ = ¢, is an invariant curve of system (3) in case (e).

(i) Assumethaty N K # @ .Theny crosses K transversally because, otherwise, this contact
point will be a critical point of system (3). Hence, y must cross sectors (a) or (d) or subsets
(h) or (i) or (j) in two points, R and S, because y surrounds the origin. In essence, we will
have the situation given in Figure 3, where we mark the direction of rotation of the flow of
the vector field (3), by means of small arrows. We also take into account that K separates
the regions where the directions of rotation are opposed. So by the uniqueness of the
solutions we have a contradiction and, therefore, y cannotsurround the origin. (iii) From the
Index Theory, y has to surround a critical point. This point belongs to the set K. Note that
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on K,f'(?", W) _ F(fp)qufp)bm — bn(<p)A(<p)( ) _ A((p)r(<p)

the connected components of K. Hence y must surround the origin. If, in addition, K has
associated no sectors of type (a) or (i) or (j) of Figures 1 and 2, the origin will be the unique
critical point that y surrounds because the shadowed regions of Figures 1 and 2 are invariant
under the flow of the system (3). In the other cases y can surround critical points different
from the origin. The examples (a) r=7r(10— r)cos? @, ¢ = 5— (1+
sin? @)r; (b)r = r(10 — r)sin? @, ¢ = 5 cos? ¢ — 7, illustrate this situation, see Figure
4,

—=—=(¢) , so 7 does not change sign on

[4;1} Hb}
Figure (4)[20]: Limit cycles for system (3) surroundmg several critical points.
Corollary (2.1.4)[20]: Periodic orbits of differential equation (3) surrounding the origin can
be studied as solutions of (4) satisfying r(¢,) = r(@,; + T) forany ;.
Proof. Follows from (ii) of Proposition (2.1.3).
Given a subset Cy,, we define D, < C,, as the subset of points of C,, for which the Poincare’
return map, h, is defined, i.e., the set of points, a € C;, for which h(a): = (T, a) is defined
and belongs to C,, where ¥ (¢, a) is the solution of (4) such that 1(0,a) = a. Note that
Dy is always an open subset of C,.
Proposition (2.1.5)[20]: Assume that either the function F(¢) or A(¢) or A(p)b,(p),
associated with the equation (3) does not change sign and K is not a simple closed curve
(case j of Figure 2). Then there is a ¥, such that
(i) All the periodic orbits of (3) belong to the closest connected component to the origin of
(ii) If b, (¢) does not vanish, 0 € D,
Proof. (i) If equation (3) has no periodic orbits, there is nothing to be proved. So, from
Proposition (2.1.3)(i), cases (b), (c) and (e) will not be considered. We can assume that there
is a1 such that Cy, is a half curve without contact. Assume, now, that onC,, Dy, has, at least,
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two connected components D; and D, and equation (3) has a periodic orbit ... on D, (D, IS
closer to the origin than D,). From Proposition (2.1.3)(ii)—(iii), we have y N K = and an
orbit  through a point in D; must, always, surround sectors like (a) of Figure 1, if K has
associated some of them. Hence, if we take a point g on Cy\ Dy, between D; and D,, its -

limit or -limit set must be non-empty. This is impossible because between yand y there are
no critical points. Thus, all periodic orbits of (3) cut D,, and (i) follows (see Figure 5).

(if) The proof follows from (i) taking into account that when b,,(¢) does not vanish the
origin behaves like a periodic orbit.

LY 3

T

o

Figure (5)[20]: Cy, with two different connected components.
First, we will give some preliminary results.

Proposition (2.1.6)[20]: (See [35]). Let h(x) be the return map associatedwith the
differential equation dr/d¢e = S(r, @), then
T

as
DR =exp [ 5 0.2, 0)do,
0 T %
. 0%S as
@' = K |[ 55 ron.een] [ 5 060,9d5) do,
0

0

3 (@)Y’
(iii)h""(x) = h'(x) > (h’(x) )

@
+j oS ZJ il ds; d
o5 (1@, @ exp 12 | = (r(sx),s)ds do)

0 0
where r (¢, x) denotes the solution of the differential equation such that (0, x) = x.
Direct calculations give the following lemma,
Lemma (2.1.7)[20]: For equation (4) we have:

DS 0) _mlp) . Flo) Fo)bn()
’ by (@) bk (9) ba(@)(by(@) + by(e)r)
(ii)as ") = am(®) N F(p)b,(p)
or ' by (@) byp(@)(by (@) + by(@)r)?’
aﬁ)gig o) = 2F (9 )bn(9)
arz ' (bp(@ ) + by (@ )r)3’
6A(¢ )b, (@)

L (r.0)
Ww)——s 1, = .
0r3 T (@) + b))
When the return map is defined we obtain the next result,
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Lemma (2.1.8)[20]: The first derivative of the return map associated to a periodic orbit,
r(¢), of equation (4) is

T

. an(9) .

(i) exp do,if r = 0,
u by (¢) }

(ii) exp {—j Flo)rie) d(p}, ifr £ 0.

) (bp(9) + b ()r(9))

Proof. (i) follows from the expression obtained for the function S(r, @) = Z—; in Lemma

(2.1.7)(ii), and from Proposition (2.1.6)(i).
To prove (ii), note that from equation (4),
T

[ () _ ¢ a,(p) + a,(@)r
0= .f r(p) dp = ) b, (@) + b, (@)r
T

0
_ j (an(@) + am(@)r)( (@) + by (@)r) .
(bn(@) + by (@)T)? ‘P'

0
and, from this last expression, we have that

T T

j an (P)bn () + @y ()b (@)1 dp = j ~7(an (@) by (9) + by (@) an ()

) (bn(@) + bm(@)r)? ) (bn(@) + bm(@)r)?
Hence, using this equality, (i) of Proposition (2.1.6) and (ii) of Lemma (2.1.7), (ii) holds.
The calculations made in the following lemma are inspired by [36] and are straightforward.

Lemma (2.1.9)[20]: Let r; (@) > (@) > r3(¢) be three positive solutions of (4). If
S(ri, @) =Sz, 9)  S(r, 9) — S(r3,0) _ S(ry, @) n S(rs3, )

de.

)= S = re  n@ n@ e e ©
where S(r; , @), fori = 1, 2,3 is defined in (4), then we have
K (0) = A(@)r1 (@) (r2(9) — 13()) )

(bn (@) + bin(@I11) (b (@) + b (@)72) (bn (@) + by ()13 )
The next lemma follows from direct computations and is based on the change of variables

made in [25].
Lemma (2.1.10)[20]: If b, (¢) does not vanish, the transformation T (r,¢) = (p, ),

where
T

? " bu(@) + bu(@)r’
is a diffeomorphism between R?\ K and its image. Furthermore, the differential equation
(4) is transformed into the following Abel differential equation:

dp

a0 a(p)p® + B(p)p* + v(9)p, (8)
where
_ bm(9) ~ _F(@bu(p)  Alp)
a(p) 1— b () [an (@) bm (@) am(cp)bn(cp)]bj( )};,”(((p)) —b bfl(()pb)r, "
Blp) = b.(0) [, (@) am (@) — 2a,(@)by ()] + — $P)bm ‘an((p)n @) (@
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_ ay(9) — by(p)
y(p) = @)

Following [27], equation (8) can be written in a different way asthe next lemma

shows. Lemma (2.1.11)[20]: Equation (8) is equivalent to
2 F ,
() 40 bn(9)) _ (pb(0)) ( (p) ) _an(9) +bn(<p)> |
de bu(@)”  bn(e)  bp(e)

Lemma (2.1.12)[20]: It is not restrictive, when the function A(¢@)b,,(¢) does not change
sign, to consider A(@)b,,(¢) = 0 for every ¢.
Proof. By using the following change of variables, (r,¢) — (r,T — ¢), the lemma
follows.
Proposition (2.1.13)[20]: Assume that the function A(¢)b,,(¢) does not change sign. Then
the third derivative of the Poincare” return map, h, of (4) is positive.
Proof. Using Lemma (2.1.12), if A(¢)b,,(¢) does not change sign, one can assume that

: . a3s 6A(@)bn () .
A(p)b,(p) = 0. Since, for Lemma (2.1.7)(iv), e (r,p) = (bn((p)fbm(z)r)4 >0, it

follows from Proposition (2.1.6) that A" (x) > 0 for all x for which h is defined.
In a similar way asin equation (4), we can define a Poincare” return map h for equation (8)
between ¢ = 0and ¢ = T. For this map h we have the following result which has already
been proved, see for instance [29].
Proposition (2.1.14)[20]: Assume that the function b,,(¢) does not vanish and A(¢)b,, (@)
does not change sign, then the third derivative of the Poincare” return map, h, of (8) is
positive.

A(p)

. 93
Proof. Since oy (a(p)p® + Ble)p* +yv(p)p) = 6a(p) = 6bn((p)’

sign, the proof follows in the same way as the proof of Proposition (2.1.13).

First we will prove Theorems (2.1.15), (2.1.17) and (2.1.19) only when F(¢), A(p)
or b, (¢) are not identically zero. The case in which one of the three functions identically
vanishes is easier and is studied at the end.

Theorem (2.1.15)[20]: Given system (1), assume that the function F(¢), defined in (5),
does not change sign. Thus, this system has, at most, one limit cycle and, when it exists, it
is hyperbolic, and surrounds the origin.

Furthermore, there are examples of (1), with the above hypotheses, and with one limit cycle.
Proof. From Proposition (2.1.3)(iii), any periodic orbit of (3) surrounds the origin. As
explained, we will divide the proof into two cases:

Case I. K is not a simple closed curve.

From Proposition (2.1.5), there exists a ¥ such that all periodic orbits are in the connected
component Dy, of C,,. Take a periodic orbit y of (3). From Lemma (2.1.8), since F does not
change sign, it is a hyperbolic stable (resp. unstable) limit cycle if F(¢) is greater than or
equal to (resp. less than or equal to) zero. Hence y is unique.

CASE I1. K is a simple closed curve.

Periodic orbits of (3) can cut different connected components of C,,. Of course, the proof of
case a) shows that, in case b), our system has, at most, two limit cycles, one turning
clockwise and another one turning counterclockwise but, as we will see, they can not
coexist.

From Proposition (2.1.3), periodic orbits of (3) surround the origin, furthermore and since
b,,(¢) does not vanish, we can study the periodic orbits of (3) as T — periodic solutions of

does not change
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(9). Let r(¢) be a periodic orbit of (3). It gives a T —periodic solution of (9), p(¢). From
Lemma (2.1.11), we have that:
(¢) an(p) | bno >

d -1 _ _
ap = (p @)ZMWD‘<b<) ba(e) T b))’
and since p(¢) is T —periodic,
T

[ F(p)
0—[ s P@) dp + (10)

0
where k = — fOT a,, (@) /b, (¢) de. Observe that if r; (¢) and r, (¢) are two periodic orbits
of (3), they induce two T —periodic solutions of (9), p, (¢) and p,(¢). We can assume that
p1(@) > p, (). But smce F(¢p)/b,(¢) does not change sign,

F(g)
5 Pi(0)dg ¢_f L b9 do

0
and this contradicts (10). Hence (3) has, at most, one periodic orbit. Using Lemma (2.1.8),
it is hyperbolic.
Corollary (2.1.16)[20]: Given the differential equation (1), assume that F(¢) # 0, does

not change sign and that b,,(¢) does not vanish. Set ¢ = fOT Z”E‘pi de. Then

a) If K is not a simple closed curve, the unique limit cycle for system (1) only exists when
sign(F) - ¢ > 0.

b) If K is a simple closed curve, it divides R? in two connected components, one bounded
K, and one unbounded K,,. Thus, if the limit cycle exists in system (1), itis in K, (resp. K,)
if sign(F) - cis plus (resp. minus).

Proof. Follows easily from Lemma (2.1.8) and Theorem (2.1.15).

Theorem (2.1.17)[20]: Given system (1), assume that the function A(¢), defined in (5),
does not change sign. Thus, this system has, at most, two limit cycles and, when they exist,
they surround the origin. Furthermore, if b,, (¢) does not vanish, the sum of the multiplicities
of the limit cycles is, at most, two.

Moreover, there are examples of (1), with the above hypothesis, with two, one or no limit
cycles.

Proof. In our hypotheses and from Proposition (2.1.3), all periodic orbits of system (1)
surround the origin and do not cut K. Assume thatsystem (1) hasthree limit cycles r; (¢) >
(@) > 1r3(¢). From Corollary (2.1.4), r;(¢),i = 1,2,3, can be considered as positive
solutions of equation (4). Since from Lemma (2.1.9), A(¢) does not change sign, we have
that H (¢) does not change sign and is a continuous function. But, on the other hand, we
have that:

0= I gﬂ@—Q@»ﬂ@} frnwm@
(7’1(<P) — T3 (‘P)) 12 (@)
and this contradicts the continuity of H (¢). Hence system (1) has, at most, two limit cycles.
Now we have to prove that, when b,,(¢) does not vanish, the sum of the multiplicities of
the limit cycles is, at most, two. In this case, when K is not a simple closed curve, from
Proposition (2.1.5) and Corollary (2.1.4), all periodic orbits of (4), included the origin,
belong to the same connected component of D,,. Furthermore, the third derivative of the

Poincare” return map of (4), h, is positive. Whence we conclude, from Rolle’s Theorem, that
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h(x) = x has, at most, two simple solutions besides the origin. Therefore the theorem
follows. When K is a simple closed curve b,,(¢) does not vanish. Hence, F(p) =
A(@) /b, (@) neither changes sign. Therefore from Theorem (2.1.15), system (1) has, at
most, one hyperbolic limit cycle and again the theorem follows.

In the case where A(¢) # 0 does not change sign and b,,(¢) # 0, for all ¢ (thisis

the case where the local phase portrait of the origin of system (1) is of focus or center type),
we obtain a more precise distribution of limit cycles, as we can see in the next theorem. This
theorem is based on [29].
Theorem (2.1.18)[20]: Assume that in system(1l), A(¢) # 0 does not change sign,
b, () # 0,forall ¢, and K is not a simple closed curve. Then Table I shows the distribution
of limit cycles when A(¢)b,,(¢) = 0, according to the different values of ¢ and d. (The
case A(p)b,,(¢) < 0 has associated the table obtained reversing the inequalities for ¢ and
d, in accordance with Lemma (2.1.12)).

c<O0 c=0 c>0
d<0|d=0]d>0]| d<0 d=0 d>0
I |1 1 0 0 2 0 0
an |1 2 3 2 1 1 1
Table (1)[20]: Maximum number of limit cycles of equation (1) when A(@)b,,(¢) = O.
Here
[ an 2F(p) (s)
c=| & go) ®, d = J > L4 ) ds de.
. b, () bii () by (s)

(1) maximum number of limit cycles, takmg into account their multiplicity.

(1) multiplicity of the solution r = 0.

Proof. Using Corollary (2.1.4), to study the limit cycles of (1), it is sufficient to consider
equation (4). From the hypotheses, we have that set K is not like the curve in (j) of Figure
2. Therefore, from Proposition (2.1.5), there exists some y such that all periodic orbits of
(4) cut a connected subset of Dy, | and, furthermore, 0 € I

If we define H(x) = h(x) — x, where h(x) is the Poincare” return map associated with
(4) and with , we have the following properties for H:

(i) H" (x) > 0, for all x € I (Proposition (2.1.6)(iii) and Lemma (2.1.7)(iv))

(i) H'(0) = e —1,and H"'(0) = e“d (Proposition (2.1.6) and Lemma (2.1.8)(i))

Note that x = 0 corresponds to solution » = 0, and the fixed points of H correspond with
the periodic orbits of (4). Therefore, using (i) and (ii) and arguing as in the proof of [29], we
obtain Table I.

Theorem (2.1.19)[20]: Given system (1), assume that the function A(¢)b, (¢) does not
change sign. Thus, for this system, if there are limit cycles, they surround the origin and the
sum of their multiplicities is, at most, three.

Proof. From Proposition (2.1.3)(iii), if (1) has some limit cycle, it surrounds the origin
CASE I. K is not a simple closed curve.

From Proposition (2.1.5) we have that all periodic orbits cut the same connected component
Dy, of Cy,From Proposition (2.1.13), the third derivative of the return map, h, when it is
defined, is positive. Therefore, by Rolle’s Theorem, the sum of the multiplicities of the limit
cycles is, at most, three.

CASE I1. K is a simple closed curve.
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Since in this case b, (¢) does not vanish, the result is that A(¢) does not change sign. So,
in fact, there is, at most, one limit cycle.
Fixed ¢ set S(r) = S(r, ¢ ). Remember that given r; € R,i = 1,...,n, we can define
inductively the divided differences of S, as:

S[ri :ri+1;---;ri+j+1] _ S[rl+1,...,rl+]+1]_ S[rl ,...,nﬂ]’

Titj+1 — Ti

where S[r;] = S(r;), see [31]. It turns out that S| ] is a symmetric function of its variables.
As usual, we call it S; ;.44 for short. Then, with this notation, and using S(0) = 0,

H(p) = S12 = S13— Sz0 + 530 = (52,1,3 - 5203)(7”2 r3) = 50123(7”2 — 7T3)1.
At the same time, it is well known that So1,3 , = S(")(a , Where & € (ry,11,...,1, ).
Therefore, we have that

1
Hp) =5, r1(@ra(e) — 13(9))938(r,) 973 1 31(9,11(9), T2(9), 13(90)) -

When b,,(¢) = 0or A(p) = 0, itis possible to have more precise information about the
limit cycles. And we go on to deal with this below.

When b,,(¢) = 0and b,,(¢) # 0 (in the case b,,(¢) = b,,(¢) = 0, system (3) has the
solution ¢ = constant, for all ), or A(¢) = 0, we can integrate system (3). Hence, in these
cases, we can know exactly the trajectories of all closed solutions. Their initial conditions
are given in the following lemma.

Lemma (2.1.20)[20]: In system (3) we assume b, (@) = 0,d; = [ 222 4o and d, = -

0 bp(e)
o $52 exp(— [ 23 ds) dgp.Thus, the following hold.

(i) Ifd; = d, = 0, all trajectories of (3), in a neighbourhood of r = 0, are closed.
(i) If |d4| + |d,]| # 0, system (3) has at most two closed solutions. Furthermore, these
solutions are the ones with initial conditions

r(0)=10 r(0) =
0) = 0 ,and ]_goedl
¢(0) } o(0) =

Proof. The proof follows by direct calculations.
Proposition (2.1.21)[20]: In system (3), assuming A(p) =
(i) If F(¢) = 0 and b,,(¢) # 0, then system (3) has no limit cycles. Moreover, if ¢ =

fOT Z”T(g de = 0, then the origin is a center for system (3). (ii) If F(¢) % 0and b,,(p) =

0, then system (3) has, at most, one Ilimit cycle. Moreover, if d=

fOT % exp (fo‘p Z:—Eg ds) de, and c is the value given in (i), the following holds:

(@) Ifd = ¢ = 0, all trajectories of (3), in a neighbourhood of r = 0, are closed.
(b)If|c| +|d]| =+ 0,system (3) has, at most, two closed solutions with initial conditions

1 — e€
0= 0y ) -

_ ) d
(0 =9 9(0) = 0

(iii) Assume F(¢p) = b,,(¢) = 0.1f b, (¢) = 0, then all straight lines through the origin
are invariant and if b,,(¢) # 0and a,,(¢) = 0, then the origin is a center.

ed1
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Proof. If F(¢) = 0 and assuming b,,(¢) # 0, we have that system (3) is equivalent to

3—; = ngg r. With the condition F(¢) = 0 and integrating this equation we obtain the

solutions

®
r(g) = 7(0) - j "(S)
0

Then (i) follows.
If by, (@) =, system (3) becomes
7= ap(@)r + ap(e)r?,
® = by(9),

(@), 4 2m(® 12 and the solutions, (), of this Riccati equation

. ar
or, equivalently, 20 = b(e) o ()

are
¢ an(s)
e (17 525y )
r(p) = _f(p a,(s) ox <fs a, (1) d‘[) ds + -1 (0) .
0 Bp(s) “P Vo B,(@
From this expression, (ii) follows. The proof of (iii) is trivial.
The natural generalization of the example given in [30]
_)&‘ = apx _|_ yyp/q —_ (apzpq + yxzq_l yp/q )(px + yzp_ 1pp+q_ qu),
V= aqy — (ap™? + yx?17 yP/O)(qy — x4 1p@Tam IR,
where p = “"1/px29 + qy?» , is a system of type (1). For some values of a,y,p, and q,
this system has one or two limit cycles and it is in accordance with the hypotheses of
Theorem (2.1.15) and (2.1.17). Therefore, it shows that the results of Theorem (2.1.15) and
(2.1.17) cannot be improved. We also present some different examplesfor which the above
theorems apply. We stress that they have not homogeneous nonlinearities. Consider
) = (=y*P"" + Bu(e ), 2271 + Qn(x,y),
where P, and Q,, are (p,q) —quasihomogeneous polynomials of degrees m + 2pq —
(g + Dandm + 2pqg — (p + 1) respectively. For these systems

F(x,y) = —(x*97 P (x,¥) + y?P7100(x,¥)),

and
For instance, for system
(x,9) = (=y + ax® + bxy, x> + cx* + dx?y),
with (b + ¢)2 — 4ad < 0,wegetF(x,y) = ax® + (b + ¢)x*y + dx? y? and taking
y = Ax?, we can prove that F does not change sign. On the other hand, consider
x%,y) = (-y + ax® + bx?y,x> + cx” + dx*y + 3bxy?),

3 2 2
where b= b(a,c,d) = — 289 ;’;S?ga?d;dc G2~ For this system we have

F(x,y) = x(cx® + (d — 3a)y) (ay? + Bx3y + yx®), and A(x,y) = x° (cx3 +
(d — 3a)y)?(ay? + px3y +yx® ), where a, 8 and y are real values depending on a, ¢
and d. If we assume that A = A(a,c,d) = (d + 3bA)? — 12b(3bA2 +dA +b+¢) < 0,
where 1 = ﬁ , then it can be proved that ay? + B x3 y + yx® does not change sign.
So, Theorem (2.1.17) can be applied to the above system under condition A < 0. We
observe that this last condition is not empty because, for instance, A(a,3a — d,d) = d? —
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6ad — 3a?. Infact,whena,(¢) = 0andb,(p) = 1, Theorem (2.1.17) can be improved
by using Propositions (2.1.3) and (2.1.14), because in this case p = 0 is a periodic orbit of
multiplicity two of system (8), and then system (3) has at most one limit cycle. So the above
example has at most one limit cycle.
Before ending we give, for some family of systems of type (1), a compact expression of
functions F and A in complex coordinates (z = x + iy). Consider system
X =Ax — y + Pm(xry):
y=x+dy +9nxy),
where P, and Q,,, are real homogeneous polynomials of degree m on x and y. It also writes
asz= (i + M)z + H,(z 2), where H,,(z,Z) is a complex homogeneous polynomial of
degree m on z and Z. In this setting, the functions F and A, that appear in (5), are
F=(1- m)Re((1 + M)Hp(z,2)2)
and
A= (1— m)Re ((1 + )\i)Hm(z,E)z_) Im (H,,(z,2)z),
evaluatedat z = e'?,z = e™ ¢,
Following Lyapunov [34], we introduce the (p, q) —trigonometric functionsz(p) =
Sn(¢) andw(ep) = Cs(¢), asthe solutions of the Cauchy problem:
7 = _WZp 1
w = z2a°1, (11D

2(0) = ZQJ; w(0) = 0,

where p and g, are positive integers. Observe that we do not explicitly put the dependence
of Sn(¢) andCs(¢) with respect to p and g. Also note that for p = g = 1, Sn(g) =
sin(¢p) and Cs(¢p) = cos(¢p). Therefore, it is natural to say that the argument of the
functions Sn(¢) and Cs(¢) is an angle.

We define Tn(¢p), Ctn(p), Sec(¢), Csc(p), by

_ SnPg _Cs?(p)
1 1
Sec(p) = Cs? () ,and Csc(p) = S (@)

From these definitions, direct calculations give the following lemma.
Lemma (2.1.22)[20]: The functions defined above satisfy the following properties
()pCs?? (@) + q Sn*P (p) =1,

(iDp + q Tn? (¢) = Sec? (),
(ii)pCtn® (p) + q = Csc? (@),
(IV)dan(;P) Cs2da-1 ((,0)

WL = snv1 (o),

\dTn(go) _ snP~1lp

dCsc(qo) _ CSZq L (p)
(V“) snP+i(p) ’
dSec(<p) sn?P~1 ()
(vii)————= ST g
( )dCtn(Qo) qu_l(ﬁo)

de 5np+1(§0) '
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Lemma (2.1.23)[20]: Sn(¢p) and Cs(¢) are T —periodic functions (whose period is T) and
T is given by

1 1
goaf e e a T (g) T zg)
° G *2q)

Proof. Since f(z,w) = qw?P + pz?4,is afirst integral for system (11), there exists T >
0 such that Sn(¢) and Cs(¢) are T —periodic functions.

From Lemma (2.1.22):
Sn(p) 2 <1 — anZPgo>2q_1
d = —_— ,
de p

o)
dS;l(gqo) ; sn(p) =
=1, OT% f Zz/ 0 = axzp)iat x |=1,
2q 1—q5n2p(<p) 2q-1 qx )
=
hence

sn(g)
7"’ e
IR TR
where k = 0, because Sn(0) = 0, (from the initial conditions of the Cauchy problem (11)).
Otherwise, ¢ is the parameter of derivation in (11), so the period T is given by:

T 2pf1
Sn(z) 2q \[; 2q
_— j /qu—l 4 /p2q—1
S @ qx)2aT S A= gqxtp )yt
where we have used Lemma (2.1.22)(i). Integrating this last expression we obtain the
desired result.
More properties of Sn(¢) and Cs(¢), are listed in the next lemma.
Lemma (2.1.24)[20]: Functions Sn(¢) and Cs(¢), satisfy the following relations:
()Cs(~9) = Cs(9),
(i)Sn(—¢p) = —=Sn(y),
T
(iCs (5 =) = ~Cs(p),
(iV)sn (5= ¢) = Sn(o),
W)Cs (3 +¢) = —Cs(e),

(vi)sn (3 +¢) = —Sn(g).
Proof. The relations are obtained from the invariance of system (11) under the
transformations: (z,w,t) - (z,n—,—t),(z,w,t) - (—z,w,—t)and (z,w,t) =
(=z,—w,t).

Given a point (x,y) # (0,0) € R?, we can associate the positive real number
#px24 + qy?0 ,with it. Hence, ¢ € R/[0,T] and r give the so-called (p,q) —polar
coordinates of R? . In other words,

dx = ¢ + k,
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x=1PCs(p), y=risSn(p).
Using these coordinates and a new time variable, given by % = rP*a-2Pq the system
x= P(x,y)y=0xy),
Is transformed into
7 = rp+q+1—4pq [qu—l x + y2p—1 }’],
¢ =1r*Ppyx — qyi]. o
In order to study the behaviour of the orbits in a neighbourhood of infinity we follow
a generalization of the approach to the usual Poincare” compactification, [37], explained in
[23].
Let X = (P,Q) be a polynomial vector field of usual degree n> 1.SetM =
{(i,/)) €{0,1,...,n}*|0 < i +j < n},and

P(x,y) = z a;x'y’,Q(x,y) = z bjjx"y’.
(L,))eM (i,j))EM
Fixed p,q € +N,p = q, we define the following subset of Z,A ={ip + jg + 1—
p|(i,j) € M}u{ip + jg + 1— q| (i,j) € M}. Observe that the smallest element of
Ais1— pand the biggestoneisnp + 1 — q.Giventhat k € Z and r € {p, q}, consider
the subset of M, L}, = {(i,j) € Ml|ip + jq + 1— r = k}. Define the vector field:

X = (Pe(9), 9k (9)) = Z a;jx' y’, z bijx"t y’
(. )ELy (i )EL]
It is clear that X} is a (p, q) —homogeneous function of degree k. Thus X = Y;eq4 Xi, IS
the decomposition of X in (p, g) — quasi-homogeneous vector fields.
The expression of (x,y) = X(x,y) inthe (p, q) —polar coordinates is:

’f‘ = 'rp+q_2pq Z fk((p)rk'l'l )
keA
b S g ot

k€A
Where

fi () = Cs*17 ()P (Cs(@),Sn (@) + Sn**71Q; (Cs(@),Sn(y)) ,and
gi (@) = pCs(9)Qx (Cs(@), Sn(@)) — q Sn(@)Py (Cs(), Sn(p)) .
Putting p = r~1, and replacing the old time t by a new one t,, given by the relation % =
r(n+1-2q)p+1 , We get

p= D fil@prraE,

kEA

@ = z gr (@)p™PHi-aTk,

keA
This last expression gives the (p,q) —Poincare” compactification of the vector field X.

Observe that p = 0 (the equator) is invariant and the infinite critical points of X are the
points with p = 0 and ¢ satisfying gp,,1_q(¢) = 0. Finally, we would like to point out
that when p = g = 1, this procedure gives the usual Poincare” compactification.

We characterize vector fields defined by the sum of two quasi-homogeneous vector
fields. This method is based on the Newton diagram, see for instance [22]. Given a
polynomial vector field X = (P, Q), where
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n n
P(x,y) = Z a;jxty!,Q(x,y) = Z bijx"y’,
i+j=0 i+j=0

we define its support, Sy, as the following subset of R? :
The next lemma follows from direct computations.
Lemma (2.1.25)[20]: Let X be a polynomial vector field, and let p and g be natural numbers
with (p,q) = 1.
Then, X is given by the sum of two (p, q) —quasi-homogeneous vector fields of degrees
ki +1— (p +q) and k, + 1 — (p + q) respectively, if and only if there are two
straight lines, [; = {(x,y) € R?|px + qy = k;}fori = 1,2,suchthatSy < I; U L,.
Furthermore, Sy, < [;,fori = 1,2.
Observe that, from the above lemma, in order to know if X is given by the sum of two
(p, @) —quasi-homogeneous vector fields, for some p and g, it is sufficient to plot its support
SX in R? and to check if it is contained in the union of two parallel straight lines.
Example (2.1.26)[20]: The vector field
X=(v8 + 2395 + x69y% + 11 + 399 + x6y7 2893 4+ x1y 4 x8y6

+ 11 y4 + x14y2 + X17), (12)
can be decomposed as the sum of two (2, 3)-quasi-homogeneous vector fields of degrees 23
and 32. See Figure 6

0
Figure (6)[20]: Support of the vector field (12).

Section (2.2): Hamiltonian Systems with Homogeneous Nonlinearities
We deal with Hamiltonian systems of the form
(5 s (3)
y =H(x,),

where H(x,y) = (x> +vy?)/2+ H,,,(x,y), and H,,, is a non zero homogeneous
polynomial of degree n + 1,n > 2. The solutions of system (13) are contained in the level
curves {H(x,y) = h,h € R }. Furthermore, the origin is a centre. For any centre p of a
planar differential system, the largest neighbourhood of p which is entirely covered by
periodic orbits is called the period annulus of p. The function which associates to any closed
curve its period is called the period function. When the period function is constant, the centre
is called the isochronous centre. We are interested in obtaining the global description of the
period function T (h) defined in the origin's period annulus.
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It has been proved by several that the origin of (13) cannot be an isochronous centre: For
n = 2 and 3 this fact was observed by Loud [54] and Pleshkan [56], respectively. In the
general case, Christopher and Devlin [44] used geometrical and dynamical methods, and
Schuman [57] used Birkhoff's normal form. Another natural approach is the computation of
the period constants (see [43] for definitions). Using this last approach we obtain the same
result (see Corollary (2.2.10) of the Appendix). One advantage of this method is that it also
provides information about the behaviour in a neighbourhood of the origin of the period
function, giving lower bounds for the number of critical points of this function (critical
periods) associated with the origin's period annulus. Our estrategy for the study of T'(h)
consists of using the knowledge of the period constants, the knowledge of some properties
of the phase portrait of (13) and a criterion to decide when a function has at most one critical
point (see Theorem (2.2.3)).

To enunciate the main result we must introduce the following notation: system (13)
can be written in complex coordinates as

z =iz+ E,(z,z),withz € C,

E,(z,2) = z fi 2%z7' and Re(9E,(z,2)0z) = 0.
k+l=n

Theorem (2.2.7) (a) was obtained for n = 2 by Li Ji-Bin [53], Coppel and Gavrilov
[49].

Notice that Theorem (2.2.7) (a) cannot be applied to other centres different from the origin
because the structure of (13) is broken under translations (except for n = 2). Statement (b)
of the above theorem shows that the period function is more complicated for these centers.
A similar difference could exist with other problems. The most relevant is that of
isochronicity. From Theorem (2.2.7), it is obvious that systems of type (13) cannot have
iIsochronous centres at the origin. In fact, this result is already known; see [44] and [57]. But,
since the structure of (13) is broken under translations, what can be said about the
isochronicity of the other centres different from the origin? Are there isochronous centres
inside the family of Hamiltonian systems with homogeneous nonlinearities? As far as we
know, there was no answer to this question. We prove that:

Our proof of Theorems (2.2.7) and (2.2.8) uses some knowledge of the phase portrait of
(13). In particular, we need to study the structure of the hyperbolic sectors at infinity in
Poincare's compactification of (13). According to the definitions used in [45], given an
infinite critical point g and a hyperbolic sector H associated to q, we say that H is
degenerate if its two separatrices are contained in the equator of the Poincare's disk.
Otherwise, we say that H is non-degenerate. The control of this kind of points is important
for knowing the type of boundary of the period annulus, and for solving Conti's problem for
system (13); see [47]. We prove the following result.

We give the proof of Theorem (2.2.2) and we devoted to proving Theorems (2.2.7)
and (2.2.8).

We compute the first Lyapunov and period constants for the origin of a system with
homogeneous nonlinearities (not necessarily Hamiltonian). They play a key role in the proof
of Theorem (2.2.7), but we prefer to show the computations apart, as a technical result.
Furthermore, the way of computing these constants and their final expressions help to
improve a known result of Conti (see [48]) about the characterization of the centres at the
origin of (13) with constant angular speed, see also [55]. While Conti gave an integral
characterization of those systems, we provide an explicit expression.

o1



First of all we need a preliminary result that can be also found in [45]. We include the
proof here for the sake of completeness and because it is simpler than that of [45].
Let g be an infinite critical point of any planar polynomial Hamiltonian vector field in the
Poincare's compactification. We will say that H does not contain straight lines if given any
finite straight line [ which passes through g (in Poincare's compactification) there exists
compact set K large enough so that I N (R?\K) is not contained in the interior of 7.
Lemma (2.2.1)[39]: Let g be an infinite critical point of a Hamiltonian system with a
hyperbolic sector . Then either H is degenerate or it does not contain straight lines.
Moreover, in this case, the Hamiltonian takes the same value on both separatrices, which
are finite.

Fig. (1)[39]: Construction used in the proof of Lemma (2.2.1).

Proof. Let s; and s, be the two separatrices of H. First we will prove that if s; is not
included in the equator of the Poincaredisk, then s, is not contained either. Set x € s, and
{p,}. a sequence of points in the interior of # such that lim p,, = x. Since H is a

n—-+oo

hyperbolic sector, there exists a sequence {p,,}, in the interior of ' such that H(p,) =
H(p;,) and moreover, lim p;, = x' € s;. Thus

n—+oo
H(x)= lim H(py) = lim H(py).
n—->+0o n—>+0o
Hence, we have that lim H(z) exists for all x € s, when z is in the interior of . Since H
Z—X

is a polynomial, s, cannot lie on the equator of the Poincare disk, and we are done.

When H is non-degenerate we can assume, then, that 7 has two finite separatrices, s; and
s,. From the above equality these separatrices have the same value of the energy (h). First
we will prove that if I' € H is any path going to g, we have that (see Fig. 1)

limer H(p) = h.

p—q,p

Let {p,},, be a sequence of points in the interior of H satisfying lirp pn = q.Since H is
n—->+0oo

a hyperbolic sector, there exist sequences of points {p,il}n, fori = 1,2,suchthat lim p} =

n—-+oo
qi €s;and H(p}) = H(p,),fori =1,2. Then
lim (pn) = lm H(p,) = H(q:) = h,

n—+o
and so
limH(p) = h.
p—q
Suppose now that I' is a straight line. Without loss of generality, we can suppose that this
straight line is x = 0. From the above argument, if we set

H(x,y) = Ho(x) + yH1 (x) + y*Hy () ... + " Hp 1 (%),
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then lim H(O0,y) = h. However, this is possible if and only if Hy(0) = h, and H;(0) = 0

y—+0o
forall j=1,...,n+1; that is, H(x,y)|x — 0 = h and so x = 0 is formed by solutions,
which contradicts the fact that 1 is included in .
We will introduce polar cordinates in order to prove Theorem (2.2.2). The Hamiltonian

function is now written as
2

_r
H(r,6) = o +g(6)r™?,

where g(0) is a trigonometric polynomial of degree n + 1, and system (13) becomes
r =-g'@@)r"

{ . » (14)
6=1+(n+1gO)r™,

defined on the cylinder C = {(r,0): r € R*, 8 € [0,2m]}. Observe that the critical points of

(14) are (r,6,) such that g(6.)<Oand g'(6.)=0, and = =(-1/((n+

1g6)) """

Theorem (2.2.2)[39]: The following statements hold for systems of type (13).

(i) If g is a an infinite critical point in Poincare's compactification having a hyperbolic sector
at the infinity 7, then H is degenerate.

(if) The origin of (13) either is a global center or has a bounded period annulus. Furthermore,
the origin is a global centre of (13) if and only if g(8) = H,,,,(cos 8,sin 8) = 0, and this
can only occur when n is odd.

(iii) A centre p of (13) different from the origin has a bounded period annulus. For n = 2,
statements (ii) and (iii) of the above Theorem (2.2.2)an be deduced from [41].

Proof. (i) Suppose that g is an infinite critical point of system (13) having a nondegenerate
hyperbolic sector 4. From Lemma (2.2.1), we know that both separatrices must be finite.
Without loss of generality, we can suppose that g is determined by the direction x = 0 and
again, by Lemma (2.2.1), that the separatrices lien on right side of x = 0.

Assume that the separatrices of £ have energy level h. Then, the energy equation written in
polar coordinates is 72/2 + g(8)r™*! = h, and so we have that

2h — 12
90) = S (15)

We set F, ,, () := (2h — r?)/2r™*1. If the situation described above were possible for any
fixed 6 € (m/2 — ¢, /2), there would be two arbitrarily large

/

i g
G,
¥
|

Fig. (2)[39]: Graph of F, ,,(r) for h < 0 (left) and for A > 0 (right).
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pre-images of F, , () satisfying (15), but this contradicts the behaviour of F, ,, (), for any
value of h (see Fig. 2).
Under this assumption, there must exist a hyperbolic sector at infinity with at least one
separatrix contained in dN,. This implies the existence of a non-degenerate hyperbolic
sector at infinity, in contradiction to statement (i).
Therefore, N, either is bounded (moreover, by the analyticity of (13), dN,, cannot be a
periodic orbit and it contains at least one critical point) or is the empty set. In the latter case,
p is the unique critical point and it is a global centre (in fact, p is the origin).
To end the proof we will characterize global centers. From Eq. (14), we see that any critical
point (r,, 8,) different from the origin must satisfy g(6,) < 0 and g'(6,) = 0. Thus, it is
clear that the origin is the unique critical point if and only if g(6) = 0 for all 6 € [0,2m),
and from part (i) this implies that it is a global center. Finally, notice that if n is even, then
g(8) is a trigonometric polynomial of odd degree and so g(6) = —g(6 + m).
Consequently, the property g(8) = 0, for all 8 € [0,21), can only hold when n is odd.

In order to prove Theorems (2.2.7) and (2.2.8), we need the following preliminary
results.
Theorem (2.2.3)[39]: An analytic function f: I = (i~,i*) € R — R has at most one non-
degenerate critical point if and only if there exists an analytic function ¢: I — R such that,
forall x € I,

')+ ()f'(x) # 0. (16)

Proof. Suppose that there exists an analytic function ¢: I — R such that Eq. (16) holds. Let
Y be a primitive of ¢. Consider h: ] = (j~,j*) — I,a solution of the differential equation
h' = exp(y(h)), defined in its maximal interval of definition. Observe that since h' > 0

and it is defined in its maximal interval of definition, then lirr_1+ h(x) = i*. Sohis h a
X—]x

diffeomorphism.

Since h' # 0 and h is bijective, f has at most one non-degenerate critical point if and
only if f o h does so. In order to see this last property it suffices to see that (f o h)"" # 0.
We prove this as follows:

(f o ") = (f' (RO () = £ (hGI)(W @) + £ (RGO ()
— f"(h(x))ezw(h(x)) +f’(h(x))ezw(h(x))zp’(h(x))
= e2(M™) (f"(h(x)) + 9(h(x))f' (h(x))) # 0.

Let us now prove the converse.
Suppose that f has no critical points. Then, it suffices to choose .¢@(x) = (f'(x) —
£ )/ (x).
If f has a non-degenerate critical point, we can assume, without loss of generality, that it is
x = 0 and that f(0) = f'(0) = 0and f'(0) = A > 0. Hence

f(x) = Ax? + 0(x).

/2_2 r
o =L L

Clearly, since f is an analytic function for all x # 0, .¢@is analytic. We must prove that it is
also analytic on x = 0. An easy computation shows that lin(1) . (x) is finite. So ¢ is analytic
x—

We choose

on .
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Since x = 0 is the unique finite critical pointof f, f(x) # 0and f'(x) # 0 forall x +#
0. Hence, we have that, as we wanted to prove, (f"'+. f)(x) = (f")?/(2f) # 0, forall x #
0. On the other hand, it is easy to see that lirr(l)(f”+.<pf')(x) =24+ 0.
xX—

We will use this last result to prove that the period function associated with the origin's
period annulus has at most one critical period. Before proving this fact, we will see that in
any Hamiltonian system the set of all periodic orbits, I", can be parameterized by the energy
in any period annulus W. Consider in W the following total ordering:

Giveny,,y, € I'wesaythaty,; <y, ifandonlyifInty,; cinty, , where Int y; denotes the
bounded domain of R surrounded by y;.

Now we endow I with the order topology. Clearly, the Hamiltonian function H over
' is continuous with respect this topology and applies I' in some interval I = (0, b) of the
real line (b € R U [+0]). To see that this map is orderpreserving it suffices to show that it
IS one to one. To prove this, suppose that H(y,) = H(y,) with y; <y, and consider the
map H restricted to the compact annulus K = Int y,Int y, . This map attaches a maximum
and a minimum in K. Since 9K =y, Uy, and H|g is constant, either H| g is constant or
H| g has a local extremum in its interior. In both cases we can ensure the existence of x €
K < W with ({VH), = 0, that is, a critical point of the Hamiltonian vector field in the
interior of W, which is a contradiction. So the map H over I' is order-preserving (in fact it
Is an order-preserving homeomorphism).

Hence, it seems natural to consider the period function over I instead of the original
period function which is defined over the period annulus W, because we can use standard
techniques of differential analysis to study the properties of the period function. Therefore,
in the sequel we will talk about the period function T (h) which gives the period of the closed
orbit with energy H = h. From Eq. (14), T (h) can be computed as

21

do

= | Sernaeren= 17
0

(for short, in the following we denote r:=r(6,h)) while |y —p =1+ (n+

1)g(8)r (68, )™ 1 does not vanish. This condition is verified in a deleted neighbourhood of

the origin because lirrg 6 = 1. The following lemma asserts that this condition holds in the
Y amd

whole period annulus of the origin W. This result is well known (see [27], [20] or [46]), but
we include here, for the sake of completeness, a different proof.
Lemma (2.2.4)[39]: The period annulus associated with the origin of (13), W, has no points
(r,0) onwhichd ==1+(n+ 1)g(@)r* ! =0.
Proof. First we prove that there are no points in x € W for which 6 (x) = 8(x) = 0.
Consider 6 (x) =1+ (n+ 1)g(@)r™ . Then, 6 (x)=n>-1)g(@)r" 27+ (n+
1)g’(8)r™ 16 . Hence, 8(x) = 6 (x) = 0 implies that &§ = + = 0 and, as a consequence,
x 1s a critical point different from the origin, which contradicts the fact that x e W.
Set] = [0,a), the image of W by H (remember that H is a homeomorphism between the set
of periodic orbits I" and I). For each h € I denote by y,, the closed curve of H = h contained
in W. Define the map L: I = R by

L(h) =min |1+ (n+ 1)g(@)r",,.
This function is clearly well defined and continuous. If L~1(0) = @ there is nothing to prove.
Suppose that L=1(0) # @. Then L=1(0) is a closed set which does not contain O because
L(0) = 1. Let hy be the infimum of L~*(0). Then the orbit yj, is the first orbit (in the
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ordering of T') such that there exists x € y;,  with 6(x) = 0. Set Py (t) = (ry(t), 6,,(t)) be
the solution of (14) with initial condition y. Since 8 (x) # 0, the function 8,(t) has a local
extremum at 0. This implies that, for £ => 0 small enough, the function 8, (t) also has a

local extremum for y € y, _. =. Therefore there exists z € y, _, = with 6 (z) = 0 and
hence L(hy, — €) = 0. This last equality is in contradiction to the fact that h, =inf L71(0).

From the above result and the energy equation r2/2 + g(8)r™** = h, it follows that

% =r(1+m+ Dg@r* 1 >0 (18)

in the whole period annulus. Furthermore, any fixed periodic orbit in the origin's period
annulus has positive energy. Finally, observe that the above results imply that T (h) is an
analytic function.

Lemma (2.2.5)[39]: The period function associated to the period annulus of the origin of
(13) satisfies

21
d r?
0

Proof. Let y denote a closed orbit of energy h corresponding to a solution (6, h) of (14).

From the expression (17), using (18), we have
21

~ do
T(h) = Oj

1+ (n+1)g(@)r(6,h)n 1

21
_d J r? 6
~dh) 2 77
0
Theorem (2.2.6)[39]: The period function associated with the period annulus of the origin
of (13) has at most one critical period.

Proof. As we have seen in Lemma (2.2.5), T(h) = (d/dh) fozn (r?/2)d6. So Eq. (16)
can be written as
3 2

) , 1 a3 >
T(h)+<p(h)T(h)=§j T )+ o) 5 () d6 £ 0. (19)

0
Weset M(r,0) =1+ (n+ 1)g(8)r™ 1 (we call it M, for the sake of brevity). Taking into
account Eq. (18), we have that the middle part of expression (19) can be written as

1T —2(n = 1)(n = 3)g(0)r™SM + 6(n? — 1)2g?(0)r2n=6
Ef VE
0
~2(n” ~ g (O)r""
+o(h) e deé. (20)

We choose .¢(h) = [(n — 3)/2]1/h, definedinI = (0, a), for some aeR* U {+ o} (notice
that the fact that the energy in the period annulus takes only positive values plays an
important role here). Tedious computation transforms the expression (20) into

) TT (n+ Dn(n — 1)? n4—|1—1

hM>5

3
g(9)?ran—* (1 + (n+ 1)g(9)r”'1> + dé.

0
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Note that 0 < (n + 3)/(4n) < 1. Then, since by Lemma (2.2.4) in the whole origin's period
annulus 1 + (n + 1)g(8)r™ 1 > 0 holds, we have that

n+3 1
1+ ym (n+1)g@)r™* >0,
and then
T+ Dnn—1)? n+3
n J—
f YYE g(8)?r2n—t (1 + " (n+ 1)g(9)r"‘1> do > 0.

0
Since T'(h) is analytic, the theorem follows by applying Theorem (2.2.3). K Now we are
able to prove Theorem (2.2.7).
Theorem (2.2.7)[39]: (a) Let T (h) be the period function associated to the origin's period
annulus of system (13). T'(h) satisfies one of the following properties:
(i) It is monotonic decreasing.
(if) It is monotonic increasing and it tends to infinity when the periodic orbit tends to the
boundary of the period annulus.
(iii) It has a unique nondegenerate critical period (a minimum) and it tends to infinity when
the periodic orbit tends to the boundary of the period annulus.
Furthermore,
(i) 1t is monotonic decreasing if and only if n is odd and g(6) = H,,1(cos 8,sin 8) = 0,
(ii) It is monotonic increasing if and only if
() either n is even,
(1) or nis odd, and Im(fn+1)/2 ,(n-1)/2) < 0.
(ifi) It has a unique nondegenerate critical period if and only if n is odd,
Im(fin+1)/2,m-1)72) > 0, and there exists 8 € [0,2m)such that g(8) < 0.
(b) There are systems of type (13) having a critical point of center type (different from the
origin) for which the period function has at least two critical periods.
Proof. (a) From Eqg. (17), and taking into account (18) we have that

dT(h) _ g(@)rv=3de
dh ~(n+ D - Df (1+ (n+ Dg(@)rn-1)3 (21)

To prove statement (i), we recall that 1 + (n + 1)g(9)r" 1 % 0 in the whole origin's period
annulus. Hence, if g(0) = H,,,1(cos 8,sin 8) = 0, from (21) we directly obtain that
dT /dh(h) < 0. Conversely, suppose that T (h) is monotonic decreasing. This impliesusing
Theorem (2.2.2) (ii)that the origin is a global centre (otherwise, the boundary of the origin's
period annulus would have a critical point and T(h) would tend increasingly to infinity)
and, again by Theorem (2.2.2) (ii), if the origin is a global centre then g(8) = 0.

Suppose now that g(6) takes negative values. By Theorem (2.2.2) (ii), we also know
that the period annulus of the origin is bounded and contains some critical point. This fact
implies that the period function tends to infinity as the closed orbits tend to this boundary.
If instead of parameterizing the closed curves of the period annulus W by the Hamiltonian
energy we use the point of intersection of any closed curve of W with the 0X* —axis we
get another period function called t(r). Observe that this can be done in the whole W,
because in thisset 1 + (n + 1)g(0)r™ 1 > 0,and t(r) = T(r?/2 + g(8)r™*1). Hence

1

T'(h) = t'(r), (22)
where h = r%/2 + g(0)r™*t1.

r(1+m+1)g(0)rn-1)
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From the above expression we get that the main preliminary result we have obtained,
Theorem (2.2.6), is still valid for t(r).
To prove statements (ii) and (iii), we use the results. From Proposition (2.2.9) of the
Appendix, we know that
if nis even,

0,
bl {—27'[ Im(f(nﬂ)/z,(n_l)/z)), lf nis odd.
Moreover, in the proof of Corollary (2.2.10), we deduce that b, > 0. We distinguish then
two cases, depending on the value of the first period-Abel constant:
(ii)b; = 0.
Depending on whether b, vanishes or not, the period function in polar coordinates may be
written (see Corollary (2.2.11)) as
t(r) = 2w+ b, r*™ 2 + 0(r?" 1), with b, > 0,
or
t(r) =2m+ by r™ 1+ 0@™),with b; > 0.
In both cases, in a neighbourhood (0,48), the period function t(r) is monotonically
increasing. Thus, Theorem (2.2.2) (ii) and Theorem (2.2.6) ensure that t(r) is monotonic
increasing in its domain and tends to infinity near the boundary of the origin's period
annulus, and so does T (h).
(iii) b, < 0.
Thus, the period function in polar coordinates may be written as
t(r) =2m+ byr™ 1 + 0(r™),with b; < 0.
Therefore, in a neighbourhood (0, §), the period function T (r) is monotonicaly decreasing.
As in the statement (ii), we recall Theorem (2.2.2) (ii) and Theorem (2.2.6). In the current
case, they imply that T (h) reaches a unique minimum and then it tends to infinity as the
closed orbits tend to boundary of the period annulus.
(b) Consider the system
x = —y—ex*—2dx3y+3x%y? + y*4
AR A (23)
y =x+ 5cx* + 4ex’y + 3dx* y° — 2xy°.
It has a centre at the point (0, 1). By a translation to the origin and the linear change of time
dt/dt = —1~/3, it is transformed in the following quartic system:
( 4

X = —y — 3x% — 2y? 4 2v/3dx3 — 6x2%y — §y3
1
) +3ex* +2V3dx’y — 3x%y? — 2y, (24)
y = x — 3V3dx? + 6xy — 12ex36+/3dx?y
\+6xy? — 15V3cx?* — 12ex3y — 3v3dx2y? + 2xy>.

The first two period constants (we call them p, and p,) are known for general systems, see

for instance [52]. Straightforward computations give that

_129 135 , 9
P2 = 4 26.

4
832,883 N 945 J 25,095 72 152,685
P+=72304 ' 8 © 128 256
Since p, and p, are independent and can take any real value, standard arguments imply that
there are values of the parameters for which the period function associated with the period
annulus of (0, 1) has at least two critical points in a neighbourhood of the critical point.

Theorem (2.2.8)[39]: System (13) has no isochronous centres.
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Proof. Let p be a centre of system (13) and N, its period annulus. From Theorem (2.2.2)
(ii), we know that either N, is bounded and its boundary contains a critical pointand then it
cannot be an isochronous centreor p is a global centre. The last case is possible if and only
if n is odd and g(8) = H,,,,1(cos 0,sin 8) = 0. From Theorem (2.2.7) (i), the period
function T (h) defined in the origin's period annulus is globally monotonic decreasing, and
so it cannot be an isochronous centre.
Consider

z=1iz+ F,(z,z),with z € C, (25)
where F, (z,z ) is a homogeneous polynomial of degree n. We will usually write F,(z,Z) =
Yk+i=n Sfr1z¥Z', where f,; € C. For the sake of simplicity, we define, for a fixed n:

. {f(n+l+1)/2,(n&l&1)/2 if LeQ,,
g1 = 0 if 1 ¢ Q,,
where Q, ={l€Z:(n+ ) isoddand —(n+1) <l <n-—-1}
Our interest is mainly focused on computing the so-called Lyapunov and period constants
for system (25). To this end, we perform the following changes of variables:
If we first introduce the usual polar coordinates by setting R? = zzand 8 =arctan
(Im z/Rez), and then apply the change r = R"~1/(1 + Im(S,(6))R™1) (suggested in
[42]), system (25) may be written:
( A,(0)r? + A3(0)r3

1—Im(S,(®))r '
1

L g Im(S,(0))r’
whereS,, (8)is a trigonometric polynomial defined by S,,(8) = e~ F, (e, e~19); thus,
A,(0) = Re((n — 1)S,,(0) +iS,,(0)) and A3(0) = [(n — 1)/2] Re(iS2(H)).
By eliminating the time, we reach the Abel equation:

dr . 3
0 A,(0)re + A;(0)r>. (28)

Following [40], for this differential equation, consider the solution (6, p) that takes the
value p when 8 = 0. Therefore,

r(8,p) = p + uy(0)p? + u3(8)p3 +...,with u, (0) = 0 for k = 2.(29)
Let P(p) = r(2m, p) be the return map between R X [0] and R X {27}. We will say that
system (28) has a centre at » = 0 if and only if u,(2m) = 0, for all kK = 2. On the other
hand, it has a focus if it exists some k such that u, (2m) # 0. When, for system (25),
u;(2m) =0forj =1,...,m— 1, we will say that its LyapunovAbel constant of order m is
Ay = Uy, (21).
Substituting (29) in (28) we easily get the following relations, which suggest a recurrent
way to find the LyapunovAbel constants a;:

u, = A,,
u; = Az + 24A,u,, (18)
uy = Au3 + 2A,u3 + 343Uy, ...

Once we know that the origin of (25) is a centre, there is a simple way to give the conditions
for it to be an isochronous centre. We observe that we cannot use the Abel equation (28),
since this equation does not take into account the time variable. The idea we will use is
suggested in [50]: if we take the second equation of (27) and we integrate the time, we obtain

(26)

(27)
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2T 2T

(@)= [ 1= Im(5,@)r@.p)d0 = 2m | Im(5,(0)r(,p)d0, (31)
0 0
where (6, p) is given above.
The system (25) has an isochronous centre at the origin if it is a centre and, furthermore,

2T 2T
f Im(S,,(0))r(6, p)d6 = f Im(S,(8)) z 1w (0)p’ | de
0 0 j=1
2T
_ Z f Im(S,(0))w;(8)d6 | p/ = 0.
jz1 \o
Hence, the conditions to have an isochronous centre are
2T
b i=— j Im(S,(6))u;j(6)dd =0, for j > 1. (32)

0
The numbers b; will be called periodAbel constants.

In the main result we give some of the first LyapunovAbel and periodAbel constants for all
systems of type (25) in terms of the coefficients of the equation and valid for all n € N. The
above approach has been already used in [51] to give integral expressions for the Lyapunov
and period constants. As we will see in the applications, our result allows us to establish
general properties for systems of type (25) of any degree; see for instance Corollary (2.2.10)
and Proposition (2.2.12).

The statement basically follows by integrating the recurrences given in (30). We set
first some useful notation for the integration steps:
Given a trigonometric polynomial p(8) = ¥ pex pre'*® + po with K a finite subset of
Z\{0}, we define

0

p@=[ o=y [ ei’<9+poe]: = > D -1 +pp,
kEK

0 keEK

@)= Do 4 p
keEK '
and {p} = p,{p} = p. In general, we can write p(6 ) = p(8) — p (0).
The difference between both primitives of p(8) is that p contains an ~extra" constant term,
while p(8) is the primitive of p(8) which has no constant terms. This fact will be crucial
for the fluency of our computations.
Observe also that

p(o) = {Z ikpke”“)} = Z pr(e™ — 1) = p(6) — p(0),

k=0 k=0

p(6) = {z ikpke”‘@} = z pre™® = p(8) — p,.

k+0 k+0
The last one, then, becomes a trigonometric polynomial without constant terms.

(21)
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Proposition (2.2.9)[39]: The following assertions are true for systems of type (25), with
E,(z,Z ) homogeneous of degree n:
(@) The first three LyapunovAbel constants are

a, = 2n(n — 1)Re(go),

as=(1—mm Y Im(gug-),

_n(l—n)

919 _
a, TRe< z lfl_lkc((n—1+l+k)g_(l+k)+(n—1—l—k)g(l+k)>.

Lkl+k+0
(b) The first two periodAbel constants are

b, = —2mIm(g,),

n—-01—-1
b, =—-m ngzgz‘Fzz 919-1 |-

[+0 >0
Proof. (i) To integrate (30) we compute the expressions of S,,(8), A,(0), and A5(8) in terms

of the coefficients given in (26):
520 =) gie®,

l
A,(8) = Re (n—1-1Dge", (34)

n—1
45(0) = ———Im ) gigee
Lk
By using (30) and the above expressions we have that
u,(8) = A,(0) = Re z (n—1-10ge".
l

i(L+k)9.

This implies that

0
u(6) =A, (9)=Rez j (n—1-10g,e"do
U
6
—-1-1 .
= Re (n—l)g09+z ¥ glelw]
1+0 ' 0

Thus, a, = u,(2m) = 2n(n — 1)Reg,.

To compute the subsequent a;, we will assume that a, =0 and so Reg, = 0 (this
assumption may also be read as u,(2m) =0, A, (2m) = 0 or 4, (2m) = A,(0)). Of
course, we also must re-consider the functions AZ,KZ = u,, and 4, under this restriction.

As a consequence, 4, (8) becomes a trigonometric polynomial without constant terms.
The second equality of (30) gives that

u3(6) = {4; + 24,1} (0) = K, (0) + 2{Au,F(0) = K, (0) +{(&,") "} (®)
=K,(0)+A,°(6)—4,°(0).
Then, imposing that a, = 0,

as = uz(2m) =
A (2m)
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2T
9k ia+i)E
(Z 9198 + Z il+k) ¢ +
0

1+k=0 14k #0
=n(1—-n)Im z 91 Gk
14k=0

=m(l - n)Imz 919-1-
l
Again from (30), and using that u, = A ,, we get that

u,(8) = {A,uz + 2A,u3 + 3A5u,) (0) = {AZKZZ + 2A,u; + 3A3u2}”(9)
= 2@, + 2R, K,) T+ (K ,)
To compute a, we must assume that A, (2m) = A ,(2r) = 0. Thus,
ay = u,(2m) = {A;A, ¥ (2n).
Moreover, there exists some constant C such that [A;A, | (2n) = {4:4; } (2n) +
CA ; (2m), and so

o _ B a, = [As4; ] (2m).
This simple trick clarifies the forthcoming computations,

_ 1—n . n—j—1 .
AzA, :<—2 Im Z -glgkel(l+k)9> Re Z —'l]] gjeU@

l+k+0 Jj#0
1-n . n—-j—-1_ ..
— 7 Im z glgkel(l+k)9i—j(gjelje —-gje 119)'

A
where A= {(j, [, k):l + k # 0,j # 0}; and so,
2T

1—n . n—j—1 .. .,
a, = 919k el(l+k)9 l]] (gjelje _ g—]e—lje)da’
2T
1—n n—j—1 n—j-1 Jist
2 Im z fgzgkgjé’— Z 91919,6 + Z Pse
j+k+1=0 J j+k+1=0 Y s#0
n(1 - ) .9 :
:Tlm z l(l+k)( -+ +1+k—1)
Lk, l+k+0
( ) —Jisk(m—1—k —1))
n(l—n 919k
=R ) (gl k =1+ G- L—k = 1)),
Lk,l+k+0

as we wanted to prove.
(it) Referring to the period constants, since u,(6) =1, we immediately obtian the
expression for by :

2T
b, = j Im S§,(0)d6 = —2nlmg,.
0
On the other hand, from (32), and assuming that a; = 0 for all i and b; = 0, we see that
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2T 2T

b, = f Im S,(6)4, (6) = f Im $,(0)7; (6)
0 0

2T
. n—j—1 )
— —f (Im z gle‘le>+ Re Z + gje?
0 l+0 Jj#0
1 2T . 1
n—j-— . . .
= —Elmf Z T gjellg(glellg —g,e Ll@)
0 J,1#0
1 2T . 1
n—j-— o e
— ERej 2 ] gj(glel(]H)B —ge i(j l)G)
0 J,1#0

1
=mRe Y T ((n+1=Dgigy+(n—1-Dgg)
1+0
By usingthat (n+1—1)/l— (n—1— 1)/l = 2 and that a; = 0, we get that the real part
of the above expression can be removed and then

1
by=-n) 7 ((n+1-Dgg.+@-1-1gg)

=0

n—-1—-1
= -7 ZZ glg_l+2 7 g9+ |, (35)

S _ 1>0 1£0
which gives an expression for b,.

As a consequence of Proposition (2.2.9), we can state the following results.
Corollary (2.2.10)[39]: Suppose that system (25) is Hamiltonian. Then the origin cannot be
an isochronous centre.
Proof. We will prove that for such systems the second period—Abel constant is always
positive, and hence that the origin cannot be an isochronous centre.
In the case of Hamiltonian systems we have that Re(dF/dz) = 0 and so we get the
following characterization:

n+l+Dg+(n—-1+1)g_;,=0.
By substituting the relation given by (35), we get

_ 99 [—-m+1-1Dn+1+1)
b, = nz l ( e +(n—-1-1)| +
. g 4nl 4ng,9;
_ g9 —ant 191
= ”Z z n—l+1_”z n_i+1
1%0 1%0

Corollary (2.2.11)[39]: Assume that system (25) has a center at the origin. For r small
enough let t(r) denote the period function of the solution of (25) which starts at the point
z =r + 0i. Let b, and b, be given by Proposition (2.2.9). Then the following hold:
())if by # 0 then t(r) = 2w + byr™ 1 + 0(r™),
(ii)if b, = 0 and b, # 0 then t(r) = 2w + b,r?" 2 + O(r?" 1),
Proof. Consider b; # 0. By the definition of b,, see (32), it turns out that
t(p) = 2m + byp + 0(p?),
where t(p) is given in (31). From the change used to get (27), we have that
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_ rn—l
(=t (1 + Im(Sn(O))r"‘1> '

Hence the proof follows by direct substitution. The case b; = 0 and b, # 0 can be proved
in a similar way.
The expression of the Lyapunov—Abel constants in the way given in Proposition (2.2.9) is
also a good language in which prove and write more explicitly a result of Conti, see [48],
which gives necessary conditions for the origin of a system of type (25) satisfying

do

ar !
to be a centre. When this centre exists, it is obvious that it is an isochronous one.
In real variables, these systems admit the general form:

n

)
X =y+x z Cr kX Ry

; P (36)
y=x+y Z Cn—k,kxn_kyk-

\ k=0

The above system expressed in complex coordinates turns out to be:
7 =iz+F,4(2,2), (37)

with
n

>\ — 1 s\n—k >\k \k

Facs(#2) =55 ) Cuepe 2+ 2 (2= 2)* (<D
k=0

Expanding the binomials, we finally obtain that

Fan2)= ) fimz'2™,

l+Hm=n+1

fim =m0 G0 0 (M) ()
A

n=10l+m-—1,and
A={(k,j1,j2):0<k<n0<j;<n—-k0<j,<k,j; +j,=m}.
Proposition (2.2.12)[39]: (i) A system of type (36) (which in complex coordinates is written
as (37)) has a center at the origin if and only if its first Lyapunov—Abel constant a, is zero.

(if)

where

0 if nisodd,
— J2nn . n—k\ [k
az = nn : Z (—1)z (—i)* ( _ ) ( ) Cn-rk if niseven, (38)
2 ~ J1 J2

where
AN={(kji,j2):0<k<n0<j,<n—kO0<j,<k,j; +j,=n/2}
Conditions for several n obtained applying (38) are
n=2cy,+¢c0=0,
n=43cys+Cyy+3C0=0,
N =65Cy+ Cys+Csp+5c0=0,
n =14 429c¢y 14 + 33¢312 +9¢419 + 5Cgg + Scgg + 9C104 + 33¢12, +429¢14,0
=0,
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n = 2046,189¢q ¢ + 2,431y 15 + 429¢4 16 + 143C5 14 + 77¢cg 12 + 63¢cly10 + 77C128
+ 143c146 + 429¢16,4 + 2,431c1g, + 46,189¢50¢ = 0.
Proof. (i) The necessity is obvious. To prove the sufficiency, suppose that Re g, = 0. By

using (34) this last equality is equivalent to
21

Rej Sn+1(v)dOB = 0.

0
Then, integrating system (37) in polar coordinates, we will obtain that all the orbits are

closed, and so that the origin is a centre. This is done in the following. From r? = zz and
(37), it follows that

rr = Re(z‘Fn + 1(2,2‘)) — Re (Te_ianH(reie,re‘w)),
= Re(e "9F"*1(e',e79)) = Re(Sp41 (), and, finally,

2T

T
Fn+l

1
—‘;;;3; = Re Jﬂ .Sn441(9)(19 = 0.
0
Finally we will prove (ii). In our notation, this constant is written as a, = 2nnReg, (See

Proposition (2.2.9)), where g, are defined as in (26). As we have pointed out before, if there
IS a center in this sytem it is isochronous. So the first period—Abel constant b, is always
zero. Therefore (see Proposition (2.2.9)), Re gy = go.

From (26) we obtain that g, = 0 if nis odd, and that

1 . (MK [k
9o = fm+2)/2n/2 = z_nz (-1’2 (=) ( . )( )Cn—k,k,
7 J1 J2

where
n
N={(k juj2):0<k<n0<j1<n—k0<j, <k,ji+Jj =§} =
if n is even, as we wanted to prove.
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Chapter 3
Similarity Classification and Homogeneous Operators Multiplicity

We give a similarity classification of some holomorphic curves by using the K-group
of its commutant algebra as an invariant. We show that the kernel function is calculated
explicitly. It is proved that each of these operators is bounded, lies in the Cowen - Douglas
class of D and is irreducible. These operators are shown to be mutually pairwise unitarily
inequivalent. Here we give a different independent construction of all homogeneous
operators in the Cowen-Douglas class with multiplicity free associated representation and
verify that they are exactly the examples constructed previously.

Section (3.1): Holomorphic Curves

Let H be a complex separable Hilbert space and Gr(n, H') denote the n-dimensional
Grassmann manifold, the set of all n-dimensional subspaces of H. If dimH <
+00, Gr(n,H) is a complex manifold. For Q an open connected subset of C, we shall say
thatamap f: 2 — Gr(n, ) is a holomorphic curve, if there exist n holomorphic 7 -valued
functions y;,v5,...,¥, on Q such that f(1) = V{y;(1),...,v,,(A)} for A e n. If f:02 >
Gr(n,H) is a holomorphic curve, then a natural n-dimensional hermitian holomorphic
vector bundle Ef is induced over €, that is,

Er ={(x,) e H x 2|x € f(D)} and m: Ef - 0, where n(x,1) = A.
Given two holomorphic curves f and f: 2 — Gr(n, H), we have two vector bundles Ef and
Ef over Q. If there exists a unitary operator U on # such that f = Uf, thenfand f are said
to be congruent and E; and E are equivalent. Let 3 be a complex separable Hilbert space

and L(#) denote the collection of bounded linear operators on A, and f and f are said to
be similar equivalent if there exists an invertible operator X € L(H) such that f = Xf , and
Ef is similar equivalent to Ef [61].

In 1978, M.J. Cowen and R.G. Douglas gave the unitary classification of holomorphic
curves in [61]. They introduced a class of geometry operators which are called Cowen—
Douglas operators by using the concept of complex bundles.

Let Q be a bounded connected open set; Cowen—Douglas operator of index n denoted by
B, () is the set of operators T € L(H) satisfying:

@R cao(T)={z€C; T—zisnotinvertible};

(b)ran(T —z) := {(T —2)x; x e H} = H forzin Q;

(€) Ve ker(T — z) = H; and

(d)dim ker(T — z) = n for z in Q.
By the definition, we can easily find a holomorphic frame (el(z),ez (Z),...,en(z)) such
that

n
Ker(z —T) = \/{ek(z),z €N}, VTeBLQ).
k=1

It is obvious that each Cowen—Douglas operator induces a holomorphic curve.
When n = 1, M.J. Cowen and R.G. Douglas define a curvature function and show that the
curvature function is the unitary invariant of operators in B, (12).
A natural question is posed by M.J. Cowen and R.G. Douglas in [61]. What is the similarity
invariants of holomorphic curves? It is obvious that the curvature function defined by M.J.
Cowen and R.G. Douglas is not the similarity invariant of holomorphic curves.
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We have to find new terms to characterize the similarity invariants of holomorphic curves.
Fortunately, we notice a series of great works of G. Elliott [63], [64], [65], [66], [67], G.
Gong [68], [69], and Dadarlat [62] about classification of C*-algebra by using of K-theory.
These works stimulated us to apply the K-theory to the exploration of similarity invariants
of holomorphic curves.

We introduce the commutant of holomorphic curves first, and then we shall show that
the K,-group of the commutant of the holomorphic curve is a complete similarity invariant
of the holomorphic curve.

We will introduce some basic properties of holomorphic curves. We will prove our
main theorem using the properties of the holomorphic curves and K-theory and complete
the similarity classification of 1-dimensional curves. We complete the similarity of some n-
dimensional curves in the same way.

Let f: 02 — Gr(n,H) be a holomorphic curve. If there exists no invertible operator
X € L(H) such that Xf: 2 — Gr(n,H) can be written as the orthogonal direct sum of two
holomorphic curves, then we shall say that f is an indecomposable curve.

Example (3.1.1)[58]: Every 1-dimensional holomorphic curve is an indecomposable curve.
In fact, if f:02 - Gr(1,H) for A € 2 is a 1-dimensional indecomposable holomorphic
curve, then there exist an invertible operator X and holomorphic curves f;, f, such that
Xf(AD) =D f,(4). Since dimf; (1) > 1,dim f,(1) > 1 for A € 2, then this is a
contradiction as f is a 1-dimensional holomorphic curve.

Definition (3.1.2)[58]: For a holomorphic curve f: 2 — Gr(n,H), we use A'(f) to denote
the commutant of f which is the set {4 € L(H) |Af (1) € f(4),VA € 2}. We can see it is
a unital Banach algebra and rad A’ (f) denotes the Jocaboson radical of A'(f).

Theorem (3.1.3)[58]: A holomorphic curve f:02 — Gr(n,H) is indecomposable if and
only if there exist no nontrivial idempotents in A’ (f).

Proof. (=) If P € A'(f) is a nontrivial idempotent, then f(1) = Pf (1) + (I — P)f(4) for
A €N and there exists an invertible operator X € L(H) such that XPH = PH and
X(I—P)H = (PH)L. So we can see that Xf(1) = XPf (1) & XU —P)f (). This
contradicts the indecomposition of f.

() If Xf() =£/Q D (A1), then f(A) =X"1f,(1) + X~1f,(1). Note that X~ is
invertible and f; (1) and £, (A) are orthogonal; we can suppose that

LD =\[ex@, . en@), L) = \[lema (... ea@)
Since {(e;(4),e;(M))=0fori#j, 1<i<mm+1 <j<n,if |1 - A is near to zero
enough, we have (e; (1), e;(4,)) = 0 for i # j . By the property of the analytic function, we
have Vieo X 11 (A1) + Vien X1, (1) = H, where + denotes the algebra direct sum. For
X EH,x =x; +%3,% EViea X (1), x, €EVien X 1f,(2). Let Px =x,, then P €
A'(f) is a nontrivial idempotent.
Theorem (3.1.4)[58]: Let f: 2 — Gr(n,H) be a holomorphic curve, P € A'(f) is an
idempotent, then Pf:02 — Gr(m,PH) is still a holomorphic curve, where m =
dim P(f (1)) for 2 € 2 and P is minimal if and only if Pf is indecomposable.
Proof. Let f(1) = V{y:(L), ..., yn(D}, A € 2 and Pf(A) = V{Py;(A),..., Py, (1)}. Since
Py;(A) € f(A) fori = 1,2,...,n, then there exists 2, such that {y; (1)}, for 1 € 0, to be
the frames of Ep ¢ and satisfy Pf (1) = V{y; (1),...,ym (1)}, wherem = dim Pf (1) for 1 €
0 and 2 — 0, is a finite set. So we assume that m = dim P(f (1)) for 1 € 2 and Pf: 2 -
Gr(m, PH) is still a holomorphic curve.
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And if there existsa P’ € A'(f),P'H € P'H,then Pf(A) = PP'f(A) + P (I — P")f(A).
If Pf is decomposable, then there is an invertible operator X € L(#) such that XPf (1) =
fi(A) @ f,(A) for A € 0. Similarly to the above proof, it is easy to see that P is not a minimal
idempotent of A'(f).
Theorem (3.1.5)[58]: Let f: 2 — Gr(n, H) is a holomorphic curve, then the following are
equivalent:
(i) there exist m minimal idempotents P, Py, ..., P, € A'(f)(m < n) such that P;P; =
0 and 3%, P; = I4; (identity operator on H);
(ii)there exists an invertible operator X € L(H) such that Xf can be written as an
orthogonal direct sum of m indecomposable curves.
Proof. (i) = (ii). Since P; € A'(f),P;P; = 0,f(A) = P, f (1) + P,f (1) ++- + P, f (A1) for
A€ and H = P,H + P,H +--- +P,H, then we can find an invertible operator X €
L(H) to satisfy XP,H; = H; and H = H{ D H, @D H),. So Xf(1) = XP,f(1)
XP,f(A) - XP,f () and XP;f(A) € H/ for A € 0.
(i) = (i). If (ii) is satisfied, then by the proof of Theorem (3.1.3), there exist {f;' (A)}1%,
indecomposable which satisfy f(1) = f{ (1) +:-- + f,,(1) for A € 2 and

\/fi’(A) n \/fj'(/l) =0, i+]

AEN AEN
So there exists P;: H — Vjep f{ (1) such that P; € A'(f), P? = P;, P;P; = 0 for i # j and
i=1 P = Iy

Definition (3.1.6)[58]: If f: 2 — Gr(n, H) satisfies any condition of Theorem (3.1.5), then
we say f has a finite decomposition.
Let {P,P,,...,BP,} and {Q,,Q,,...,Q,} are arbitrary two decompositions of f and if
following are satisfied:

(i) m =n;

(if)there exists an invertible operator X € A'(f) and a permutation [T € S,, such that

XQn(i)X_l = Pi for 1 < [ < n,

then we say f has a unique decomposition up to similarity.
Proposition (3.1.7)[58]: Let 2, € 2 be a bounded connected open set of Q; if f: 02 —
Gr(n, 3{) is a holomorphic curve which satisfies Ve, f(1) = 3, then Vo, f(D) = H
Proof. We only need to prove that if each element x in 7{ satisfies (x, V;cq, f (1)) = 0, then
x =0.
Let {e;(1),e,(1),...,e, (1)} for 1 € 2 be a holomorphic frame of Ef. Note that {(e;(1), x)
fori =1,2,...,nisanalytic on Q. Hence (e;(1), x) = 0 for A € 2, implies that (e; (1), x) =
0,1 € Q. This shows that x = 0.
Proposition (3.1.8)[58]: For a holomorphic curve f:2 - Gr(n,H),f(1) =

Vie;(1),...,e, (1)} for 1 € 2. Let £KI (1) denote the set V {efk) A),...,eH (/1)} for k =

1,2,...and A € 2, where ei(k) (A4) denotes the k derivate of e;(A1) at L. If Ve f(A) = H
then Vi, F®(4,) = 3, where A, € 0.

Proof. Since f(1) = V{e;(1),...,e, (1)}, A € 2, then there exists a neighborhood 4, of 4,
such that

( )
e;(1) = Z ( 0) (A—129) € \/f“‘)(/u,) VAEAyi=1,2,...,n.
k=0
By the proof of Proposmon (3.1.7), it is not dlﬁlcult to prove that
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(00]

V5@ =\ ew. .e@y=3<\/ro0.

A€, A€, k=1
Sowe get Vi, f®(Ay) = H.

M.J. Cowen and R.G. Douglas in [61] give a character of the commutant of Cowen—Douglas
operators. In the following, we shall imitate their proof to describe the commutant of
holomorphic curve f.

Proposition (3.1.9)[58]: Let f:2 —» Gr(n,H) and Vjeo f(A) = H, then the map
I A'(f) - }[E‘(’Ef)(!)) is a contractive monomorphism, where I:(X)(4) = X|¢), X €

A'(f) and }[E‘(’Ef) (12) denotes the collection of bounded bundle endomorphisms on Ef.
Proof. If X € A'(f), then Xf (1) € f(1). If e(1) is a holomorphic cross-section of Ef or
e(1) € f(A) thensois Xe(A). Let

LX) = (X(x),0), XeA(f), x€f).
since [[(X)D|| = [|X1 | < IXI1, then IF(X) € 37, 1(£2), and I} is contractive. By
Viea f(A) = H, I is one-to-one.
Now suppose @ is an element of H L"E’Ef) (£2) for which there exists a bounded operator X €

A'(f) such that
XM =Xlray, X €A
If {e; (1), e;(4),...,e, (1)} is a holomorphic frame of Ef, then by differentiating we obtain
Xe{(1) = (2We;()) = (Ve (D) + D' (De; (W),
Xel'(D) = (2(Deyny) = 2]’ (A) + 20" (Def (1) + " (De; (A),

Xe™ ) = (@W)e; (D)™ = 2We™ (1) +- +0 M (D) (D).

n N

In other words the block matrix for X| FO) relative to the basis {ei(j) (/1)} IS
i=1j:1
(e(1) ') ") - oM (2)
0 oW 20'(1) - NoW-1D(2)
NN -1
0 0 @A) %cpﬂv-z)m :
0 0 0 ®(A)

For® € }[LOEEf) (2)(2), the following are equivalent:

(1) @ = Iz (X) for some X in A'(f);

(i)sup{||oy(DI: 1€ 2,N =0,1,2,...} = C; < oo; and

(iii) sup{||oyADI: N =0,1,2,...} = C, < oo for some A, in Q.
Moreover, if these conditions hold, then || X|| = C; = C, and we can easily get the following
lemma.
Lemma (3.1.10)[58]: Let f: 2 — Gr(n, H) be aholomorphic curve, 2, S  be abounded
connected open set of Q. If we set f': 02y = Gr(n,H) and f'(1) = f(4) for A € £, then
A'(f) = A'(f).
Proof. It is obvious that A'(f) € A'(f"). We only need to prove that A'(f') € A'(f).
Let Ay € 2, and {e; (1) };=; be the frame of E;. If X is near to 4,, we can get that
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(0]

(k)
ay =Y S5

k!
k=1

By the above proof, we can assume X(e;(1)) = @(1)e;(1), VA € 0, where X € A'(f")
and (1) e H £°‘(’Ef) (12). By the above result, we obtain

(0.0]

(k) ot
Xe,() = X (Z o) mk) - (Z PR3- Ao>k> (),

k! k!
k=1 k=1

where A, € 02, and A is contained by some neighborhood of A,. SO we can see that X €
A'(f), VX € A'(f").
In order to understand our work well, we will introduce some notations of K,-theory of a
Banach algebra.
Let A be a unital Banach algebra, and e and f be idempotents in A; we call e and f
algebraically equivalent, if there exist x,y € A with xy = e, yx = f (denoted by e ~, f).
The algebraic equivalence class containing p is denoted by [p]. We call e and f similar if
there exists an invertible operator z in A such that zez™! = f (denoted by e ~ f).
Obviously, e ~, f and e ~ f are equivalence relations.

For a holomorphic curve, f: 2 — Gr(n, %), let M, (A’ (f)) be the collection of k x
k matrices with entries from A’ (f).

Mo (A'(D) = | M (),
k=1

Let Proj(c/l’(f)) be the set of algebraic equivalence classes of idempotents in A'(f) and
V(A'(f)) = Proj (Moo(c/l’(f))). Note that V(Mn(c/l’(f))) is isomorphic to V(A'(f))
(denoted by V (Mn(c/l’(f))) = V(A'(f))). If p, q are idempotents in Proj(A'(f)), then
p ~s qifandonlyifp @ r ~, q @ r for some idempotentr in Proj(c/l’(f)). The relation
~¢ IS called stable equivalence. Ko(c/l’(f)) is the Grothendieck group of V(c/l’(f)) (cf.
[60], [71]).
A pair (G,G™") is called an ordered Abelian group, if G is an Abelian group, G™ is a subset
of G, and

(i)G*+G* c G,

(iNG" n(=G™) ={0};

(iiG* -G+ =aG.
Define a relation ‘<’ on Gby x <y, ify — x belongsto G*.
Let A and B be two Banach algebras and a be a homomorphism from A into B. Then the
map a,: M, (A) - M, (B) is given by
Aip a}n] [a(an) - alagy)

nxn

an

An1 = Qnn a(anl) a(ann) nxn
and there is a homomorphism «, induced by a from K,(A) into K, (B).
Let GLy,(A'(f)) denote the invertible elements of M, (A'(f)), and GL,(A'(f)), denote

the connected components of the identity. Since the group is locally path-connected, i.e. the
group of the path components of the identity, it is an open subgroup. We embed

GL,(A'(f)) into GLy1(A'(f)) by x-diag(x,1). Let GLy(A'(f))=
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limGL,(A'(f)) (the inductive limit). GL.(A'(f)) is a topological group with the
inductive limit topology. The embedding of GL,(A'(f)) into GLyy1(A'(f)) maps
GLp(A'(f)) N0 GLys1 (A'(f)), a0d GLe(A'(f)),, = im GLy (A (),

Let

K (A'(f) = GLoo (A'(1))/GLoo (A' () y = UM[GLy (A’ (£))/GLr (A (), ]-

The suspension of A'(f), denoted by SA'(f), is the set {f:R - A'(f) | f is

continuous and lim || f(x)|| = 0}. With pointwise operations and the sup norm, SeA'(f) is
X—00

a Banach algebra. Then Ky (A'(f)) is naturally isomorphic to K,(SA'(f)), i.e. there is an
isomorphism 6,4/(ry : K1(A'(f)) = Ko(SA'(f)) such that whenever ¢: A’ (f) - B, the
following diagram commutes:

e

Ki(A'(f) K, (B)

Oxp l o5l l

Ko(SA'(f)) —= Ko(SB).
(In the language of category theory, 6 gives an invertible natural transformation from K; to
K,S, where B is another unital Banach algebra.)
The main theorems are the following:

In order to prove the theorem, we will introduce the following notations and results.
Lemma (3.1.11)[58]: Let e, f: 2 — Gr(n,H) be two holomorphic curves and @: A'(e) =
A'(f), then {P;}I-, is a unit finite decomposition of e if and only if {&(P;)}}L, is a unit
decomposition of f. In particular, if e ~ f then A'(e) = A'(f).
Proof. Since ® is an isomorphism satisfying 0 = (P(Pl-Pj) = CD(PL-)CD(P]-) for i #j and

r,@(P;) =1, then we need only to prove that @(P;)f is indecomposable. Otherwise,
there exist two nonzero idempotents Q, and Q, in A'(f), so that Q,Q, = Q;Q, = 0 and
@(P;) = Q; + Q,. Note that ®~1(Q,), ®~1(Q,) are two nonzero idempotents in A’(e) and
P, = 7 1(Q,) + ®71(Q,). This is a contradictions as P;e is indecomposable.
If e is similar to f, then there exists an invertible operator X € L(H) satisfying Xe(4) =
f(A) for A € Q. Define a mapping @: ®(T) = XTX ! for T € A’ (e). Itis clear that @ is an
isomorphism from A'(e) to A'(f).
Lemma (3.1.12)[58]: Let e: 2 — Gr(n, H) is a holomorphic curve and P;, P, € A'(e) are
idempotent operators. If P, ~ (c/l’(e))Pz, then P,e ~ P,e.
Proof. Since P, ~ (A’(e))P,, then there exists an invertible operator X € GL(A’(e)) such
that XP, X~ = P, and XP, = P,X,XP,e(1) = P,Xe(1) = P,XX 'e(1). Note that X1 €
A'(e); we obtain P,e(1) = P,XX e(1) = XP,e(A) for 1 € 0. That is P,e ~ P,e.
Lemma (3.1.13)[58]: Let e: 2 — Gr(n,H) is a holomorphic curve and V;c,e(d) =
H,{P;} 1, {Q;} are two unit finite decompositions of e. If there exists an operator X; €
GL(L(PL,Q;#)) such that

X;Pie(A) = Q;e(A), VieNi=12..n,
then X = X, +X,+ - +X, € GL(4'(e)).
Proof. Since Xe(1) = (Xy+Xo+ - +X,)(Prey (D) +Pye,(D)+ -+ +Be, (1)), and X; €
L(P;H,Q;H), then
Xe(A) = (X Pre(D)+X,Pe(V)+ - +X,,Pe(d) = Qe(AD)+Q,e(D)+ -+ +Q,e(1)

and X;'Q;e(1) = Pe(A) for L € 2. S0 X € A'(e) and X € GL(A'(e)).
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Lemma (3.1.14)[58]: Suppose that {Pi,...., Py, Pms1,-» Pu} and
{Q4,..., Q0 Qms1,---, Qn} are two sets of idempotent operators in A'(e), where e: 2 —
Gr(n,H) is a holomorphic curve. If there exist X,Y € GL(A'(e)) and a permutation I1 €
S, satisfying

(i) XPX™'=Q,1<i<m,

(i)Y p,Y 1 = Qn(l), 1<i<n,
then for Q,,m <r’ < n, there exist P,,,m < r < n, and Z,., a finite product of Y and X,
such that Z,Q,Z;! = P,.. Moreover, {P, }T:m+1 IS exactly a rearrangement of

{P }:‘l =m+1"
Proof. Given Q,,m <r < n, it follows from (ii) that there exists P; , 1 < j; < n, such that
YQ Y™ ' =P . lfm<j, <n,thenwesetZ, =Y and P,s = P; . If1<j1<m,thenby

(ii) there eX|sts an operator Q;,j; = r, such that
XYQ. Y 'x 1 =0;.

By (ii), YQ;,Y~! = P;, for some j,. If m < j, < n, then we set

Z,=YXY, P.=P,.
If 1 < j, < m,itisobvious that j; # j,. Otherwise,

Qh = Y_lpjzy = Y_113f1y = QT’
which contradicts m < r < n. Using (ii) again, we can find P;, such that
YQ,Y™ =By,

Similarly, j3 € {j;,j2}.1f m <j; <n, then we set Z, = YXYXY,P,. = P;.. Or we can
continue the procedure above. Since n is finite, after s < m + 1 steps we WI|| force P, €
{Pms1,--- Py} Set P = P, Z, = YXY - - XY where X appears S times. Then Z,.Q,.Z;1 =
P; . We claim that if r; # r,, where ry, 7, € {m + 1,...,n}, then jo # j, . Otherwise, there
exist Z,, = YXY --- YXY (X appears s, times) and Z,, = YXY --- YXY (X appears s, times)
such that

Zrlerzr_ll = ZerrZZr_Zl-
Without loss of generality, we may assume that s; > s,.If s; > s,, then

Zr_zlzrlerZr_lerz =Qr, € {Qms1---r Qn}-
Note that Z;.;'Z,. = XY --- XY (X appears js, — js, times). Set
R =YXY --- XY,
where X appears j;, — js, — 1 times. By the procedure of the choice, we have RerR‘1 €
{P,,P,,...,P,}. Thus
XRQ- RT'X™' €{Q1,Q2 -, Qm}-

But XRQ, R™'X' =77, Qv Z;:' Z,, = Qy, € {Qm+1,-.-,Qn}. This is a contradiction.
Thus s; = s,. But |f S; =S, we can easily prove that Q. = Q,,, which is also a

contradiction. This completes the proof of our claim and the lemma.
By the similar argument of Lemma (3.1.14), we can prove the following result.
Lemma (3.1.15)[58]: Let

e:) > Gr(n, 7)), {P1,Ps...., Py Py =10+ Py » Py s+ P}
and
{Qll QZI T le; T ka_l—lr T ka' ka+1’ e QTL}
be two sets of idempotent operators of A'(e). If there exist X, X5,..., X, Y € GL(c/l’(e))
and a permutation IT € S,, satisfying
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XPX ' =0Q, m+1<j<my;,i=01,....k—1,my, =0,
and
Y7IPY = Quuy 1 <i<n,
then for each r,m; < r <n ,there exists Z,, a finite product of {Y, X;,..., X}, so that
{Z,Q:Z; "3} o, +1 is exactly a rearrangement of {P,}7'_ mk+1
Lemma (3.1.16)[58]: Suppose that{P;, ..., Py, Pys1,---, B3 and {Qq,..., Qps1, ..., Qn ) are
two unit decompositions of e. If the following properties are satisfied:
(i) for each P;, there existsan X; € GL(P;H, Q;H) satisfying X;P;e(1) = Q;e(1) for A €
0,1 i <m,

(ii)there exists Y € GL(A'(e)) and a permutation IT € S, satisfying Y "*P,Y = Qpi);
then given Q,,re{m+1,...,n}, there exist r'e{m+1,...,n} and Z, €
GL(Q,H, P, ) satisfying Z,.Q,.e(1) = P,re(4) for A € 0. Furthermore, if r; = ry, then
= T15.

Proof. Givenr € {m + 1,...,n}, by (ii) of the lemma, there exists an operator P;, € {P;}{-;
such that YQ,Y™' =P, . If m <j; <n, set Z, =Y|gy 4. Otherwise, it follows from
(YQ,Y™De(A) = P; e(A) and (i) that X;, he(/l) = Q;,e(4). Using condition (ii) again, we
canfindj, € {1,2,...,n}suchthatYQ; Y~ = Q;,. Clearly, j; # j,. Ifj, e{m +1,...,n},
set Z, = Y|Qj}f lequra{, P =P. Thus Z,.Q,e(1) = P,re(A). Otherwise, by the similar
arguments used in the proof of Lemma (3.1.14), after finite steps, we can find P,, €
{Py}r=ma+1 SUCh that Z,.Q,.e(A) = P,re(A). Similarly, we can prove that ry # ry if r; # 1.
Lemma (3.1.17)[58]: Let e: 2 — Gr(n, H) and suppose e has a unique finite decomposition
up to similarity, then for an arbitrary idempotent P in A'(e), P e has a unique finite
decomposition up to similarity.
Proof. Since e has a unique finite decomposition up to similarity, P e has a finite
decomposition and all the cardinalities must be the same.
Let {P;}%, and {Q;}i=, be two unit decompositions of P e and {P;}i-,,,,; be a unit
decomposition of (I — P)e then {{P;}i2,, {Pi e meq) @nd {{Q; 312, {P: )i, 1} @re two unit
decompositions of e. By the uniqueness, we can findaY € GL(CA (e)) such that

YY1} ={Qu-.., Qm Prms1, -, Pu}:
By Lemma (3.1.16), we can find Z; € GL(L(Qi}[,PiJ{)) and a permutation I € S,
satisfying

Z;Qie(A) = Pppe(d), 1<igm.
SetZ =Zy3Z34 - +Zn, Zy = I|pgr,m + 1 < k. By Lemma (3.1.13), Z € GL(A'(e)) and
PZ € GL(A'(Pe)). Note that (Z|PH)Q;(Z|PH) ™t = Py for 1 < i < m.
Lemma (3.1.18)[58]: Let e: 2 — Gr(n, H) is a holomorphic curve. If e has a unique finite
decomposition up to similarity, P,Q in A’ (e) are two idempotents, then the following are
equivalent:

(i) P~ (A'(e))Q;

(ii)Pe ~ Qe.

Proof. (i) = (ii). This a straightforward consequence of Lemma (3.1.13).
(i) = (i). By Lemma (3.1.17), Pe,Qe, (I — P)e,(I —Q)e all have a unique finite
decomposition up to similarity. Since Pe ~ Qe, 3X € GL(L(PH, QH)) such that

XPe(1) = Qe(A), VA € .
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If {P;}7, is a unit decomposition of P e, then {XP,X 1} is a unit decomposition of Qe.
Note that
Qe(A) = XPe(A) = X(Pe(M)+Pe(V)+ -+ +B,e(1)
= X(P,P,e(1)+P,P,e(1)+ -+ +P,,Pe(})
= XP, X" 1Q,e(V)+XP, X 1Q,e( )+ -+ +XP, X 1Q,e ().

Let {P;} .+, and {Q;},, ., be an arbitrary decomposition of (I — P)e and (I — Q)e, then
(P}, and {{XP,X 1} {Qw}i-,s1} are two unit decompositions of e. By Lemma
(3.1.16), for re{m+1,...,n}, we can find P.,r"e{m+1,...,n}, and Z, €
GL(L(Q,H, P, H)) satisfying

Z,.Q.e(A) = P,e(R), VA E Q.
ri =ryifandonly if r, = 15. Set Z = Z,+Z, +- +Z,, € GL(A'(e)), then

ZP =QZ, Z € GL(A'(e)).

Note that ZPZ~1 = Q; we can deduce that P ~ (A'(e))Q, by using Lemma (3.1.13).
Lemma (3.1.19)[58]: Lete: 2 — Gr(n, H) be a holomorphic curve and P,Q be idempotents
inA'(e). If P eisnotsimilar to Qe, then for each natural number n, P @ 0,,m is not similar
t0Q D 0y m.
Proof. If not, there existn € N and X € GL (cfl’(e("“))) satisfying

X(P ) Oj_[(n))X_l = (Q &) Oj_[(n)).
According to Lemma (3.1.12)

(P b Og_[(n))e(nﬂ) ~(Q & Oj_[(n)e(n-l-l).

Note that (P @ 0,;me™ ~ Pe and (Q D 0,,me™ ~ Qe. Thus Pe ~ Qe, that
contradicts Pe ~ Qe.
Lemma (3.1.20)[58]: Let e: 2 = Gr(n,H) is a holomorphic curve and V;c,e(1) = H,
then the following are equivalent:

(i) e ~®, (Pe) ™), 1 =@k, H™, P} - H;, P? = P, for k,n; <, Pe is
indecomposable, P;e ~ P;e for i # j, and e® have a finite unique decomposition up
to similarity for [ € N.

(ii)V(A'(e)) = N® under the isomorphism h that sends [I ] to (ny,n,,...,ny), i€,
h([I]) = n,e; + nye, +--- + nie,, Where 1 is the unit of A'(e) and 0 = n; € N for
i=1,2,...,k {e;}¥ , are the generators of N,

Proof. (i) = (ii). Let E in A’(e™) be an idempotent, then Ee™ and (I — E)e™ have
finite decompositions.

If {Q,...,Q,} is a decomposition of Ee™ and {Qg.1,...,Q5} is a decomposition of
(I —E)e™, then {0Q,,...,0,} is a decomposition of e™. Since we also have a
decomposition of e™ using nni copies of each of projections P;, the uniqueness implies that

there is X € GL (Jl’(e("))) such that XQ;X~! = P;. Since E = Q; + Q, ++ + Qg, there
are integers m;,0 < m; < nn;, XEX™' = {-‘=1Pi(mi). Define a map h: V(A'(e)) » N®

by
h([E]) = (mll my,..., mk)'
To see that h is well defined, we observe that if [E] = [F], then

k
i=1
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If F can be similar at most to one projection of the form Z{P":lPi(mi), it follows that if
h([F]) = h(|E]), then F ~ E, so h is one-to-one. For any k-tuple (m,,m,,...,my) of
nonnegative integers, we can find n so that m; < nn; for all i and then h sends Z" P(ml)
to (m4, ..., my). This shows that h is onto. Thus, V(c/l (e)) = N* and by our construction,
(1D = (g, ..., ).

(if)=>(i). Suppose V(cﬂ’(e)) = N and h is the isomorphism, then there exist a natural
number r and Qs, ..., Qx, k idempotents of A'(e™), satisfying h([Q;]) = ;1 < i < k.
Since V(cﬂ’(e("))) = V/(A'(e)), we need only to prove that e has a unique finite

decomposition up to similarity. At first, we will prove the following:

(a) For an arbitrary idempotent P € A'(e), if P e is indecomposable, then there exists i, 1 <
i < k, satisfying h([P]) = e;.

Let h([P]) = XK, Aie; = 3K 4;h([Q;]) for A; € N,w =rY¥  A;, then we can find
natural number n > w satisfying

k
P® 0,m-v ~ (c/‘l'(e(n)))z Ql-(ai) @D 04y -1

and

k
(P D Oj_[(n—l))e(n) ~ (Z Qi(/h') D Oj_[(n—l)) e,
i=1

So Pe ~ Yk | Qi(’li)e(‘”). Note that P e is indecomposable, but the right-hand side of this
similarity is indecomposable only if one A; is 1 and the rest are zeros. Thus, there exists
i,1<i<k h([P]) =e.

(b) For arbitrary idempotents P and Q in A’ (e ™), if h([ ]) = h([Q]), then Pe ~ Qe.

Let {P,,..., P,,} be aunit decomposition of e and h([P ]) = )Iljej, where 4;; € N, then

ool £

i=1 j=
Note that h([I]) = ¥, n;e;, so that ¥ =Y¥ n;,som < ¥ n;. This shows

that e has a finite decomposmon
Furthermore, let {P,, ..., P;} be a unit decomposition of e, then

h(i[ﬂ-]) =h([I]) = zk:nlel

i=1 =1
By (@), t=Y,n; and for each i,1<i <k, there exist P ,...,P; € {Py,..., P}

satisfying h([P;,]) == ([P ]) =e;. By (b), Pie ~ Py e, V1< j,k <y
k

e ~ Z Pi(ni)e.

Suppose {P;, ..., P/} is another unit decomE)osition of e, then in the same way we know r =

k mn;andforeachi,1 <i <k, thereexistn; idempotents in{Py,..., P/} and h sends each
of them to e;. By (b) agaln |f h([P]D) =h([P]). 1< i_;n;, then P,e ~ Pje. By
Lemma (3.1.13), e has a unique f|n|te decomposition up to S|m|Iar|ty
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This completes the proof of Lemma (3.1.20).
Let H =12, (ag, aq,...) € 1%, (ay, ay,...) € I2. Define T, (ay, ay,...) = (a, ay,...), and
T, is the adjoint of T,
Theorem (3.1.21)[58]: Let S € L(H) be a pure isometry operator, then S is unitary
equivalent to @%_, T,, where [ = dim ker S*.
Let H =12, f(A) = {(1,4,42,...)}, then f: D - Gr(1,H) is a holomorphic curve. By the
Theorem (3.1.21) we can get
Lemma (3.1.22)[58]: For P € A'(f™) an idempotent, if m = dim Pf™ (1) for A € D,
then there exists a unitary operator U such that

(i) U(pg.[(n)) = M fan) o(n—m);

(ii)let V = Ul psrm , then VPFM () = FM(2),vA € D.
Proof. Note that T;(1,4,4%,...) = A(1,4,12%,...),|A| < 1. So Ker(T; — 1) = f(2) and
Ker(T,™ —2) = F™ ).
Note that T,, the adjoint of T, is a pure isometry operator. Let P € A’ (TZ(")) IS an

idempotent and S = T™|, ., pr and m = dim ker S*.

At first, we shall prove that S is unitary equivalent to Tz(m). By the Theorem (3.1.21), S is
unitarily equivalent to ™. Thus there is a unitary operator V: P'H ™ — 3£ such that
Vsve =T ™. Note that if m <n,H™ @ P'#™ s infinite dimensional. Therefore,
there exists a unitary operator W: H ™ © P'H™ - =™ Let=V @ W,V = U|, 4 p’
,then U(P'H ™) = 3™ @ 0=m), y sy* = T,

Let Q = (I;;my_p, then Q € A’ (TZ(")) Is an idempotent and

(Q™Q)" = (Lo = PYTN™ (1P = P).
Thus (Tz(n)lranQ)* = (Tz*)(n)l

ran(lj_[(n)_P) )

since P € A'(T; ™), dim Ker (7" lyang) = dimKer ()™,

From the above proof, we know that there exists a unitary operator U, such that

[ (—m) (n—-m)
Ul(Q}[(n)) = =1 @ M and Ul(Q(TZ)(n)Q)Uf — |7, «| 1 (n—m

)=n—m.

o ol xm -
Thus
. _[O 0 1g(m-m) () . _[O 0 1Hmn-m
U,P U, —[* I}[(m)] 27 0m) and U\PT,*"P U = ™| g

t
Define U,: H™ = 3 0=m) @ 30m) 225 400 @ 30 -m) by g (x @ y) = (y @ x) for
x € ™™ and y € 7™ Then U, is a unitary operator. Let U = U, U, then U satisfies:

i m (m)
(i) U(Pj]—[(n)) = 1™ @ o™ e UPU* = [I%(; ) (>|; }[}fnTm);

(ii)letV = (Ulyanp), V(T3 ™ )V =T, then VPF™ (1) = F™ (1) for 1 € D.
By Lemma (3.1.20), we obtain that \V/ (c/l’(fo("))) = N, K, (c/l’(f("))) = 7.
Lemma (3.1.23)[58]: Let f is the holomorphic curve described before Lemma (3.1.20), then
A'(f™) = M, ().
Proof. It is obvious.
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Theorem (3.1.24)[58]: (See [61].) Let A be an open connected subset of C*, and fand f be
holomorphic maps from A to Gr(n, ) such that Ve, f(1) = Vjea f (1) = H. Then f and
f are congruent if and only if E; and E are locally equivalent hermitian holomorphic vector
bundles over A.

Lemma (3.1.25)[58]: Let H = [2,e:2 » Gr(1, ),V epe(d) = and P € A'(e™) is an
arbitrary idempotent. If dim Pe™ (1) = m, for 1 € 2, then P e™ ~ (M),

Proof. Without loss of generality, we can assume that D € (2. Then we can find # -valued
holomorphic functions v(4) and e(4) on D to be the frames of E, and E respectively. Set
v, (1) = (0,...,0,v(4),0,...,0),

e,(1) =(0,...,0,e(1),0,...,0), k=1,2,....nA€D.

Set P(A) = P|,myy, then P(1) = (Pij(/l)) . € M, (H ™) is an idempotent. By Lemma

nx
(3.1.23), P() € A'(f™), so there is Q € A’(f™) such that
Qlf(n)(l) = P(A).
Since dimPe™ (1) = dim Qf™ (1) = m,vA € D, by Lemma (3.1.22), there exists a
unitary operator U such that U(QH ™) = H ™ @ 0=™) and if let V = Ul,qng, then
V) = f™Q).
Since U*(H™ @ 0=m) = v*(1 ™ @ 0~™) = QH™, then U*e;(1) € Q(A)
f™),1<ig<m. So
U'e;(A) = Aj1e1(1) + Aipe(A) ++ +Aime (L), 1<ig<mi; €ecC.
Since (e;(4),e;(1)) = ;5 (e(1),e(1)),1 < i,j < nand U is unitary, we have
At DAL A) ++ + 2y (DA, (A) = 85,1 <i<m,AED.
Since UQ(M)U*e;(A) = UP (W U*e;(A) = I,;em(e;(1)) = ;(1) for 1<i<mA€D,
then
P(W)U*e;(A) =U*e;(1), 1<i<m, A€D.

That means

(Ps@) (@ 2n@) = Qs s, 2in D). ()
Let w;(1) = A;;v1(A) + Ao, (A) ++++ + A0, (A) for 1 < i < m. Since

(i(D), v;(D) = 6;{v(A), v(2))
then (w;(4), w;(1)) = §;;{v(4),v(1)) for 1 <i#j<m. From (1) we can see that
P(Dw;(1) = w;(2), then w; (1) € Pe™ (1) and (w1 (1), ..., w, (1)) forms a holomorphic
frame of E,,m. Define U(2): ™ (1) > Pe™ (1) as follows:
UMD (D) = w; (), 1<is<m,
and note that
(UDvi(D, UMD v; (D) = (v;(D), v;(D) = 6;;(v(D),v(A), 1<ij<m
Since U(A) is a holomorphic isometric bundle map and V,cp Pe™ (1) = PH ™, by the
Theorem (3.1.24), we have Pe™ ~ ¢(m),
Lemma (3.1.26)[58]: Let e: 2 — Gr(1,H) is a holomorphic curve and V,c,e(1) = H,
then V(A'(e)) = N, Ky(A'(e)) = Z.
Proof. By Lemmas (3.1.25) and (3.1.20), we can prove Lemma (3.1.26) immediately.
Theorem (3.1.27)[58]: Let A, A, and A, be Banach algebras and
A=A D A,,

then
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Vo= \/tw, K=Kk @K,
\/ (M. 0) = \ /() and Ko (M) = Ko(),

means isomorphism.

A (finite or infinite) sequence of Banach algebras and homomorphisms

Pn Pn+1
= C’qn - can+1 — an+2 =

is said to be exact if Im(¢,,) = Ker(¢g,,.,) for all n. An exact sequence of the form:
® Y
0->I->A->B-0

[P L)

where

is called short exact.
We also need to characterize the commutant of A'(f @ g), where f,g: 2 = Gr(n, H) are
holomorphic curves. In fact, let P € L(H @ H), then
Py P12] f(ﬂ)] [Pllf(l) + P1,g(1)
Py Pyllg(R) Py1f(A) + Pprg(M)]”’
Letkerzs, 2 {Q € L(F)|Qf (1) € g(4),VA € 2}. Then
, A'(f) kerts,
A D 9g) = [kerrg,f A'(g) ]

Let A be a unital Banach algebra and let (7 be its ideal, then we have the following
standard exact sequence:

VA€ Q.

05 JoASA/T -0
and the following exact cyclic sequence:
Ko(J) ——= Ko(A) —= Ko(A/T)
Ki(A/T) =— Ki(A) =—— K1(J).
Lemma (3.1.28)[58]: Let f;, f2:2 = Gr(1,H) be indecomposable holomorphic curves.
Assume that f; ~ f and F = f; @ f,. Then there exists J € M(A'(F)) and J is of the
following form:
B [ Ji1 kerts ¢
~|kert . A'(f2) |
where J3; € M(A' (f1)).
Proof. Let J;; be a maximal ideal in A'(f;), then we can prove that
B J11 ker befz]
~|kertp . A'(f2)

is a maximal ideal of A'(f; @ f,). Itis easy to see that J is a proper ideal of A'(f; D f>)
and if proper ideal J € A'(f; @ f,) satisfies J < J’, then g’ must be of the form:
I [ ‘7{1 kerTfoz]
ker sz:fl c/q,(fz)
where J;, is a proper ideal of A'(f;) and J;; < J;,. This is a contradiction, since J,; is
maximal.
Theorem (3.1.29)[58]: Let f, g: 2 = Gr(1,H) be two holomorphic curves, then f ~ g if

andonly if Ky(A'(f D g)) = Z.
Proof. By Lemma (3.1.26),

\/(dq'(f)) ~ \/(dq'(g)) =N and Ko(A'(f)) = Ko(A'(9)) = Z.
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Suppose f ~ g, then (f @ g) ~ f@. So
\V@ron) =\/(2r®)=\/(Mm(an))zNamdko o9 =2

In order to prove the “if” part, we shall introduce the following notations and results.
Proof of the “if” part. We need only to show that if f + g, then Ky,(A'(f @ g)) + Z.
Otherwise, we assume that K,(A'(f @ g) = Z. Since f + g, there exists a maximal ideal
JinA'(f @ g)suchthat A'(f @ g)/J = C, where

J’ ker 7y g
[ker Tor A'(9) ]
and J' is a maximal ideal of A’ (f). Since J+1 = A'(f @ g) is stable finite, we know that
Ko(J) #0.By A (f & g)/J = C, we also have the following separating exact sequence:

03> A DPTAF D g)/J 0.
A

By Proposition 8.3.6 in [60], we get the exact sequence:

L, T
0 = Ko(J) = Ko(A'(f D g) = Ko(A/J) - 0.
Note that Ko(cﬂ’(f ) g)) = K, (?) = 7, therefore K,(J) = 0. This contradicts K,(J) #
0.
We always assume that Ve, f(41) = H and if VP € A'(f) is an idempotent, then
o(P(2)) = o(P|s)) for A€ is connected, for each holomorphic curve f:0 -
Gr(n, H), where a(P(1)) denotes the spectrum of P(4).

Example (3.1.30)[58]: Let T € B;(£2), then for each natural number n (1 < n < ©), we
define

T I 0

|10 T . 0

A= 0 -« =~ 1
0 - 0 Tlup

Let f (1) = Ker(A—A) for A € 2, then f:02 - Gr(n,H) is a holomorphic curve and
Viea f(A) = H, and if VP € A'(f) is an idempotent, then o(P(1)) = o (P|;)) is
connected.

Without loss of generality, we assume that n = 2, then 4 = [g 71,] We can prove that

Ker(T—1) @ Ker(T —A) € {(x,y)|ly € Ker(T — 1),(T —A)x =y} = Ker(A— 1)
C Ker(T — 1)@ @ Ker(T — A). (2)
For VP € A'(f),x € Ker(A—21),(A—A)Px =P (A—A)x =0. Since Ve, Ker(A —
A) = H, then we can assume that y = ) ,¢; x, € H,x, € Ker(A— 4,) for 1, € 0. So
(A—A,)Px, = P(A—2,)x, =0, i.e., (AP—-PA)x, =0
and (AP —PA)y=(AP — P A) Y ge; X, = 0fory e H.

Let P = [p11 plz], then

P21 D22
P11 P12] T I] _ [P11T P11 +p12T]
P21 P221l0 T P21T P21+ p22T)
T I] P11 P12] _ [Tpn +p21 Tpiz + Pzz]
0 TIlp21 D22 Tpa1 Tpy, 1
S0 p11 = pyy € A'(T),p12 € A'(T),p,1 = 0. Since P is an idempotent, then p,,, p,, are
both idempotents.
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By the above proof and Lemmas 1.22 and 1.23 in [61], we know o(P (1)) is a singleton for

AE Q.

Lemma (3.1.31)[58]: Let f: 2 — Gr(n, H) is a holomorphic curve, then A'(f) /rad A’ (f)

IS commutative.

Proof. Since o (P(4)) is connected, let A and B be in A'(f), then we have
o((AB—BA)(A)) = o(AMBA) — BMAW)) ={0}, 2L€en.

Hence there is a positive integer m < n such that

(AWBW) —BWAW)™ =0, 1en.

Since Vien f(D) =H for A€, then (AB—BA)™ =0. So A'(f)/rad A'(f) is
commutative [59].

Lemma (3.1.32)[58]: Let f: 2 = Gr(n,H) and {Py, P,,..., P,,} is a unit decomposition of
f® thenm =land dimP,fP () =n,i=1,2,...,mfor 1 € 0.

Proof. At first, we show that m < [. By Lemma (3.1.31), A’ (f) /radA'(f) is commutative.
By the Gelfand Theorem, there exists a continuous natural homomorphism ¢ from A’ (f)

into C (M(Jl’(f))), where M(A'(f)) denotes the maximal ideal space of A’ (f). So ¢ can
induce a continuous homomorphism y from A’ (f (l)) into M, (M (A'(f ))) defined by

YY) = (IIJ(Sij)(J))l , V§= (Sij) € A'(fV) and J € M (A'(f)).
Set P, = (Py;),,, fork = 1,2,...,m. Then ¢(Pk)(g) = (<p(P )(J)) . Set

mmmw»}ﬁ(xm

Then tr(.) defines a continuous function on M(A'(f)). Since A'(f)/radA'(f) is
commutative and f is indecomposable, M(cﬂ (f)) is connected, by Proposition (3.1.7)7 of
[70]. Since Y (P,)(J) is an idempotent, tr(WY(P,)(J)) = n, > 1. Note that 371, P, =1
and PP, = i P; We have Y, tr(¥(P)(J)) = L. Hence

m m

Y r@E)@ = Y me=1

k=1 k=1
Som < I.

Now we show that dim P;f (1) = n. Otherwise, we may assume that
dimP,f*Y ) =k and k<n.
LetS = f @ P,f V. We can find an J; € M(A’'(S)) such that
A'(S)/J, = C,
and
, f(l+1)
A'( 7

= M;.,(C) for JEM (Jl’(f(lﬂ))).
Note that

fH) ~ fOPfD-DP,f and m<;
we can find J_2 € M (Jl’(f(l“))) such that

A'(fHY)/J, = My(C) and d<l+1.
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This contradicts A'(f ) /g = M,,,(C). Similarly, we can show that it is impossible for
k > n.So k = nand m = [. We complete the proof of Lemma (3.1.32).
Similarly to the proof of Lemma (3.1.23), we have
Lemma (3.1.33)[58]: Let {P, (1)}, be a family of holomorphic idempotent elements in
M, (#>(D)) such that ¥t Pr(A) = I, and P;()P;(1) = 6;;P;(A) for 1 < i,j < m and
A € 0. Then there exists a holomorphic invertible element X (1) € M, (H *(£2)) such that
XX DBMXA) =1 D Opy
and X(/l)|mnpj(,1) is a holomorphic isometric bundle map from ran P;(4) onto f(") (1),
where f(1) = V{(1,4,2%,...)}forj = 1,2,...,mand k; = rank P;(2).
Lemma (3.1.34)[58]: Let f: 2 = Gr(n,H),F = f™ and P is an idempotent operator in
A'(F) satisfying P F is indecomposable. Then P F is similar to f.
Proof. Without loss of generality, we may assume that H =1[2%e(1) =
V{(1,A,22,...)},2 = D. We will prove Lemma (3.1.34) only in the case n = 2. Now, F =
f @ f. Note that P is an idempotent in A’ (F); we can find an idempotent P; in A’ (F) and
B inrad A’ (F) such that P(1) = P;(1) + B(A1), where
P = [@ eI g [Bu) Ba) /)
fa1(A) foa (DI fA) B21(1) By (MIf(AY
where scalar function f;;(1) € H*(D) and B;; () Erad A'(f). Set G = —I,;» +
(2P, + B).Since B € rad A'(F), Gisan invertible operator in A'(F) and PG = GP;. This
shows G™1PG = P; € A'(F). Without loss of generality, we now assume that P = P;. That

IS
@ fo@F@
PD=1e. @ fmlray
Also set
' _ f11()t) f12(ﬂ) e(/l)
PW="0 bl

Since P F is indecomposable and by Lemma (3.1.32), we can show that dim PF(4) = n and
tr(P’(A)) = 1 for each 1 € D. By Lemma (3.1.33), we can find a holomorphic invertible
element X (1) € M,(H (D)) such that
xwPmwxtw=[¢ ]
0 0
__ p -1 _
X1 - P W)X = Ic]'
XDlranp'y and X(lygna-py @y are holomorphic isometric bundle maps from

ran P'(2) and ran(I — P'(2)) onto e(2), respectively.

Set
_ Y11 A u; (1)
XA = [u21 (D) uy (A)]’
and
~ Lt (A)If(l) Uq2 (A)If(l)]
A= [u21(/1)1f(/1) Uz, (Dlpay |
Then

LOPMR-1() = [’f(()@ 8]
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Note that X(A)f P ) =@ (). Now we claim that G(1) = X(1)| is a

ran P(4
holomorphic isometric bundle map from ran P(A1) onto f(A). ()
Note that G(4) = X(A),qn p(2y Is @ holomorphic isometric bundle map from ran P'(4)
onto e(d). Let t;(1) =e(D) D0 and t,(1) =0D e(A). Then (t,(A),t,(2)) is a
holomorphic frame of e® (). Let [(1) be a holomorphic frame of E . Then
L) = a(Dt; () + Bt (),
where a(A) and B(A) are analytic functions on D.
Since G (A) is a holomorphic isometry, we can find a holomorphic function (A1) on D such
that G(A)I1(A1) = C(1)e(A) and
ILDIZ = (aDI? + [BDIDleDII* = [CDIlleDII? = IGMIMII? 2 € D.
Let (5,(2),...,5,(2)) be a holomorphic frame of E; ), v;(1) = S;(4) @ 0 and u;(1) =
0 S;(A) for j =1,2,...,m. Then (v, (A),..., v, (1), u; (A), ..., u, (1)) is a holomorphic
frame EF.
Set fi(4A) = a(V)v;(1) + f(Du;(4) for j=1,2,...,n. Then (fl(/l),...,fn(/l)) is a
holomorphic frame of Epr and set G(A)ﬁ(l) = CD)v;(1).
Let k,(A),..., k,, (1) be analytic functions on D and
g =k DL (D) +- + kn (D (D)
i = ki (D (@Dv; (D) + BDu; (D) +- +ky (D) (@D (D) + BDuy (D).
Then
G = C)(ky (D1 (D) ++ + kD, (A) +++ +k, D1 (D) = g' (D).
Note that (v;(4), v;(1)) = (u;(1),u;(1)) = (5;(1),S5;(1)), L€ D.So

(g(D),g(D) = Zlki(/1)|2(la(/1)l2 +BDIIS: (DI

+ ) kDD DI + BDPKS S),
also v

n
(g'D,9' ) = ) IWRICDRISDIE + > kiR DICDIHS0S))
i=1 ij=1
This shows that [|G (1) g ()| = llg(A)Il, and then our claim is verified.
Similarly, we can deduce that )?|r Is @ holomorphic isometric bundle map from

an(I-P(1))
ran(l — P(A)) onto f(A). By the Theorem (3.1.24), we can find two isometric operators
U, € L(PH®, 3t @ 0) and U, € £ ((1 —PYH®,0® }[) such that X = U, + U, €

A'(F) and XPX 1 =1,; @ 0. So PF ~ (I3 @® 0)F ~ f. This completes the proof of the
lemma.
Using Lemmas (3.1.20) and (3.1.34), we can immediately obtain the following:

Lemma (3.1.35)[58]: Let e:2 —» Gr(n,7) and E =e™. Then E has a unique
decomposition up to similarity and

\/(c/l’(e)) =N, Ky(A'(e)) =2

Using Lemmas (3.1.20) and (3.1.35), we have the following result similar to the proof of
Theorem (3.1.29).
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Theorem (3.1.36)[58]: Let f; and f,: 2 — Gr(n, H) be two indecomposable holomorphic
curves satisfying Ve, f;(1) =H and for P € A'(f;) an idempotent, o(P(1)) =
o(Pls,a) is connected for A € 2,i = 1,2. Then f; ~ f, if and only if
Ko(A'(f1 D f2) = Z.

Section (3.2): Hilbert Spaces of Holomorphic Functions

A homogeneous operator on a Hilbert space H is a bounded operator T whose
spectrum is contained in the closure of the unit disc D in C and is such that g(T) is unitarily
equivalent to T for all linear fractional transformations g which map D to D. This class of
operators has been studied in [76], [78], [75], [83], [77], [82], [73], [80]. It is known that
every homogeneous operator is a block shift, that is,  is the orthogonal direct sum of
subspaces V,,, indexed by all integers, all non-negative integers or all non-positive integers,
such that T(V,,) € V,,,, for each n.
The case where dim 1}, = 1 for each n is completely known, the corresponding operators
have been classified in [77]. The classification in the case where dim V;, < 2 and T belongs
to the Cowen - Douglas class of D is complete and the operators are explicitly described in
[83]. Beyond this there are only some results of a general nature, and not too many examples
are known (cf. [76]).
We construct a large family of examples. For every natural number m we construct a family
depending on m + 1 parameters. Each one of the examples is realized as the multiplication
operator on a reproducing kernel space of vector-valued holomorphic functions. All of these
reproducing kernel Hilbert spaces admit a direct sum decomposition @,,5, V,, withdim V,, =
n+ 1if0 <n <manddimV, = m 4+ 1forn = m. The reproducing kernels are described
explicitly. All our examples are irreducible operators and their adjoints belong to the
Cowen-Douglas class.
We have chosen a presentation as elementary as possible, based on explicit computations.
This seemed to be appropriate here since our goal was a complete explicit description of the
examples. On the other hand, it does not explain the deeper background of the results. To
remedy this situation we have added a final which discusses a more conceptual approach to
the examples.
The more conceptual approach will play a leading role in the sequel, where a description of
all homogeneous Cowen-Douglas operators will be given albeit in a less explicit way than
our present examples.
The results are also the subject of a short note presented to the Comptes Rendus de
I’Acad’emie des Sciences, Paris [81].

We denote by D the open unit disc in C and by G the group of Mobius transformations
2222 lal? = |b|? = 1. Let G, be the group (1,1) = {(‘E‘ g) lal? - |b|? = 1} . So,
G = G,/{+I}. We denote by G, the universal covering group of G.

All Hilbert spaces H considered will be spaces of holomorphic functions f: D — V taking
their values in a finite dimensional Hilbert space V and possessing a reproducing kernel K.
A reproducing kernel is a function K:D X D — Hom(V,V) holomorphic in the first
variable and anti-holomorphic in the second, such that K, { defined by (K,{)(2):=

K(z,w)(isinH foreache D,{ € V , and
(f, Koo = {f(w), Oy (3)

Z —

forall f € .
As is well known, if {e, };—, is any orthonormal basis of #, then we have
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(00]

K@) = ) enDen(@) @
n=0
with the sum converging pointwise. Here we interpret a formal product én* for é,n € VV as

the transformation ¢ — (¢, n)&; when V = C¥, k € N, and its elements are written as
column vectors, én™ is just the usual matrix product.

We will be concerned with multiplier representations of G on the Hilbert space H. A
multiplier is a continuous function J: G x D — Hom(V, V), holomorphic on I, such that

3 _ J(gh,2) = J(h,2)](g, hz) (5)
forall g,h € G and z € D. For g € G, we define U(g) on on Hol(ID, V) by
U@DH @) =g hDf (971 (). (6)

It is easy to see that the multiplier identity (5) is equivalent to U(gh) = U(g)U(h).
Suppose that the action g — U(g), g € G, defined in (6) preserves H and is unitary on it,
then we say that U is a unitary multiplier representation of G.
Also, if the reproducing kernel K transforms according to the rule

J(9,2)K(g(2), g(@))] (g, w)* = K(z, w) (7)
forall g € G;z, w € D, then we say that K is quasi-invariant.
Proposition (3.2.1)[72]: Suppose H has a reproducing kernel K. Then U defined by (6) is
a unitary representation if and only if K is quasi-invariant.
Proof. Assume that K is quasi-invariant. We have to show that the linear transformation U
defined in (6) is unitary. We note, writing @ = g '(w) and @' = g7 (0"),

(U(g™ DK w)§, U@ DK, 0)n) = (J(g,)K(g(), w)§,](g,)K(g(), 0 )n)
=(K(,@)] (g, &) ', K(,@)](g, &) ")
= (K(@", @)](g, @) *,](g, @) ') = (g, &) K@, @)] (g, &) &)
= (K(w', w)¢,n)

and it follows that U(g~1) is isometric.
On the other hand, if U of (6) is unitary then the reproducing kernel K of the Hilbert space
H satisfies the transformation rule (7). A reproducing kernel K has the expansion (4). It
follows from the uniqueness of the reproducing kernel that the expansion is independent of
the choice of the orthonormal basis. Consequently, we also have K(z,w) =
Yo=0(Uy-1e0)(2) (U -1€,)(w)* which verifies the equation (7).
When we are in the situation of the Proposition and if we can prove that the operator M
defined by (Mf)(z) = zf (z) is bounded on H, then M is a homogeneous operator. This is
wellknown and trivial: Clearly, (g(M)f)(z) = g(2)f(z) and hence (MU(g~1)f)(z) =
2J(9,2)f(9(2) =J(g, 297 (9(D)f(9(2)) = (U(g (97 (M)f)(2), for all ge
G,f € H,z € D. If, in addition, dim ker(M — wl)* = n and the operator (M — wl)* is
bounded below, on the orthogonal complement of its kernel, for every w € ID then M™* is in
the Cowen-Douglas class (see [61]) B,,(ID).
In the case of reproducing kernel Hilbert spaces of scalar functions (i.e. when dimV = 1)
the unitary multiplier representations of G are well-known. We describe them here because
they will be used. They are the elements of the holomorphic discrete series depending on
one real parameter 1 > 0. They act on the Hilbert space A® (D) characterized by its
reproducing kernel B*(z,w) = (1 —z@)™?*. Here B(z,w) = (1—z@)™? is the
reproducing kernel of the Bergman space A%(ID), the Hilbert space of square integrable
(with respect to normalized area measure) holomorphic functions on the unit disc D.
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For g € G,g'(2)* is a real analytic function on the simply connected set G x D,

holomorphic in z. Also g’(z)* # 0 since g is one-one and holomorphic. Given any A € C,
taking the principal branch of the power function when g is near the identity, we can

uniquely define g'(2)* as a real analytic function on G x D which is holomorphic on I for
all fixed g € G. The multiplier j;(g,2) = g'(z2)* defines on A® (D) the unitary
representation D; by the formula (6), that is,

DY (g =@ fog), [feAN(D)geq. (8)
An orthonormal basis of the space is given by { f%z”} , where (x),, = x(x +

n=0

1)...(x + n —1) is the Pochhammer symbol. The operator M is bounded on the Hilbert
space AW (D). It is easily seen to be in the Cowen-Douglas class B; (D).

Let Hol(ID, C*) denote the vector space of all holomorphic functions on D taking
values in C¥, k € N. Let A be a real number and m be a positive integer satisfying 24 — m >
0. For brevity, we will write 24; = 24 —m + 2j.

For each j,0 < j < m, define the operator I}:A(’lf)(]D) — Hol(DD, C™*1) by the formula

N_ L e o
(5f), = <]> (za,-){,_jf fe=z]

0 if £ <j,
for f € AX)(D),0 < € < m. Here (I}f){, denotes the £th component of the function I f
and £ =) denotes the (£ — j)th derivative of the holomorphic function f.
We denote the image of I; by A("LJ')(]D) and transfer to it the inner product of A('lf)(]D)), that
is, we set (If,Lg)=(f,g), for f,g€ AG) (D). The Hilbert space AM)(D) is a
reproducing kernel space because the point evaluations f +— (1} f)(w) are continuous for
each w € D. Let B4 denote the reproducing kernel for the Hilbert space A(Af)(]D).
The algebraic sum of the linear spaces A(’lf)(]D)) 0 <j < misdirect. This is easily seen. If
YoLifj=0,f € AM)(D), then f, = (Iyfy), = O since (I"f]) = 0 forj > 0. Similarly,
fi = (I1f1)1 = 0 since (I}fJ)1 = 0 for j > 1. Continuing in thpositive numbersis fashion,

we see that f;, = 0. It follows that we can choose m positive numbers, p;,1 < j < m, set
Lo = 1, write u = (Yo, Uy,---, Wy ), and define an inner product on the direct sum of the

AG) (D) by setting
Q.56 ). 590 = ) Whg),  frg €AW®. (O
L L <

We obtain a Hilbert space in this manner which we denote by AW (D). It has the
reproducing kernel BAW = 37 ufB(lf).
The direct sum of the discrete series representations D,{r on @, A™5) can be transferred

to A(’lf)(]D)) by the map I' =)7L, u;[;. It is a unitary representation of the group G which
we call U. Its irreducible subspaces are the A("J)(]]))).
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We will show that U is a multiplier representation. For each Ay) (D) separately this is fairly
obvious by checking the effect of I;. The important point is that the multiplier is the same
on each A (D).

We need a relation between g''(z) and g'(z). The elements of G, are the matrices

(Z 2) lal?> — |b|? = 1, acting on D by fractional linear transformations. The inequalities

la—1| <1/2,|b] <1/2 (10)

determine a simply connected neighborhood U, of e in G,. Under the natural projections, it

is diffeomorphic with a neighborhood U of e in G and with a neighborhood U of e in G. So,

we may use a, b satisfying (10) to parametrize U. For g € U,z € D we have g'(z) =
(bz+a) “and g (z) = —2b(bz + @) ", which gives a relation

g"(2) = —2cg'(2)*?, (11)

3

where ¢ = ¢, depends on g real analytically and is independent of z; the meaning of g’ (z)2

is as defined earlier. Since both sides are real analytic, (11) remains true on all of G x .
Definition (3.2.2)[72]: Let J: G x D — C™*1*m+1 pe the function given by the formula

m p+f
I (g, Z)p,l’ _ {(5) (—C)P—f(gr)/l—7+T(z) ifp=? (12)
0 ifp<f¥,
for g € G. Here c is the constant depending on g as in (11)
The following Lemma is used for showing that U is a multiplier representation.
Lemma (3.2.3)[72]: For any g € G, we have the formula

k
, (k) k . L gk
((g (f °g)) = Z (l) (2€ + D) i ()N Z (FD o g).
i=0
Proof. The proof is by induction, using the formula (11). For k = 0, the formula is an

identity. Assume the formula to be valid for some k. Then
(k+1)

(@Y (Fo9)

k

=S (M) @e+ o (24530 (@) F g (10 2 g)

i=0

k+i .
+ (gr)f+T(f(l+1) ° g)gr}

k
= (e + Do +k+ D=0 T (£ 0 g)

i=0

k+i+2 ]
+(@)"T (f Vo g)}

k
= D () @+ D@t + k4 DT (10 0 g)
k+1

+z ) @O+ i = Dia (PG (£O 0 g),

Now, we observe that
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()(2{,’+z)kl(2€+k+1)+( )(2£+L Disros
=(2£’+1)k_i{()(2{’+k+L)+( )(2€+l—1)}
=(2£+i)k_i{(’l,‘)+(l )(2£+k)+l()+(l—1+k)( 1)}
= @6+ D (1),

Thus ((9)/(f o @)**D = 22 + Deaa—i (1) (0)¥¥11(g) ™% completing the
induction step.
We can now prove the main theorem.
Theorem (3.2.4)[72]: The image of @§* D{}, under I" is a multiplier representation with the
multiplier given by J(g, z) as in (12).
Proof. It will be enough to show

5 (Df g-1y7) = 18T f) ° 9)
for each j,0 < j < m. We compute the p’th component on both sides.
For p < j, both sides are zero by definition of I; and knowing that /(g, z),,, = 0 for £ > p.
For p = j, we have using the Lemma,

((I}ij(cp‘l)f))p (p)(m) (COLTEY) i

p—j
_my_ 1 p—J G (fO
_(j)(z/lj)p—jiz ( )(2’1 i), (PN (f 9)
p
p p—]J (g (D o
()(2/1) ]Z]( 1) @3+ €=1),_ (@ (£ o g)
p! 1 _ -+ e
=Y (=P (g (f¢P e g)
%]!(g_])!(p_g)!(ZAj)g_j
=10 ()2 9),
£=0

The vectors e (z): = 1}( q(n—lj)"zn) clearly form an orthonormal basis in the

Hilbert space A('lf)(]D)). We have, by definition of I,

0 t<jort>n+j
ej(z) = | (2’11') 13
(n )f’ <€> \/E. Y €2jand£’Sn+j.( )
|\ (n—{’+])!(21j){,_

We compute the reproducing kernel B@) for the Hilbert space A% (D). We have

B(’lj)(z,w)=§:((Ger{)(z))((r eD)@) = ( i ](Z)>< ie’{(w))k

n=0 3 n=0 n=0
=[Or%) B 1j (4.2)(z, ), (14)
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since the series converges uniformly on compact subsets. Explicitly,

{’) p 1 1 A=) DA . .
_ ( . 0P=DoC=-DBAi(z, w) if £,p =]
BR)(z,0),, = \J (J) 24),_, (2%),_, (15)
0 otherwise.
In particular, it follows that B(*1)(0, 0) is diagonal, and
0 ift<j
. 2 (p—i
B1)(0,0),, = () CD s (16)
J7(2%) o
Then
m
BA(0,0), = > BE)(0, 018, (17)
=0
A more general formula for B4% (z, ) can be easily obtained using (7). For z € D, we set
_ 1 1 z . : ~
Py = Ne=rD) (Z_ 1) € SU(1,1). We also write p, for the corresponding element of G

such that p, depends contnuously on z € D and p, = e. Then p,(0) = z; p,;* = p_,. By

Theorem (3.2.4), formula (7) holds for B** and gives
Jp-z(2)B*(0,0)],_,(2)" = B*(z, 2). (18)
',(2) = (1 —z|*)"1. The —c of (11) corresponding to p_,

1—|z|?

We have p’,({) = a2 P

V4

IS L So (12) gives
1 -1z 7 (B) 22t = |z P p> ¢
]p—z(Z)p,{’ = t p=
p <%,
which can be written in matrix form as
m
Jo-2(2) = (1 = |zI>) 72D (2|} exp(zSy), (19)

where D(|z]%),, = (1 — |z|*)™*6,,, is diagonal and S,,, is the forward shift on C™** with
weight sequence {1,...,m}, thatis, (5y,) ¢ = €0,414 0 < p,£ < m. Substituting (19) into
(7) and polarizing we obtain

BMW (z,w) = (1 — z&) " ?»"™D(z®) exp(@S,,,) B#M(0,0) exp(zS;,) D(z@). (20)
In general, let H be a Hilbert space consisting of holomorphic functions on the open unit
disc D with values in C™*1. Assume that 7 possesses a reproducing kernel K: D x D -
Ccm+Dxm+1) The set of vectors H, = {K,&:w € D, & € C™*1} span the Hilbert space .
On the dense set of vectors #,,, we define a map T by the formula TK ¢ = @K ¢ for w €
D. The following Lemma gives a criterion for boundedness of the operator T.
Lemma (3.2.5)[72]: The densely defined operator T is bounded if and only if for some
positive constant ¢ and forall n € N

n

Z ((c — ;@)K (w), w;)xi, %) 2 0

i,j=1
for x;,...,x,, € C™*1and w,,...,w, € D. If the map T: H, » H, S H is bounded then it
Is the adjoint of the multiplication operator on H..
The proof is well-known and easy in the scalar case. We omit the obvious modifications
required in the general case.
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It is known and easy to verify that for every e > 0, the multiplication operator M€, defined
by (M©f)(2) = zf(z), is bounded on A©. Consequently, the kernel Be satisfies the
positivity condition of the Lemma above for e > 0. Fix m € N. Consider the reproducing
kernel BAW We recall that BAW is a positive definite kernel on the unit disc D if and only
ifA>m/2.

Theorem (3.2.6)[72]: The multiplication operator M® on the Hilbert space AW js
bounded for all A > m/2.

Proof. Let e be a positive real number such that A — e > m/2. Let us find p’ with p; >

0,0 < j < m, such that

BAW(z, w) = (1 — z@) " 2¢BA-e) (7, w). (21)
Since the multiplication operator is bounded on the Hilbert space whose reproducing kernel
is (1—zw) %€ for every e >0, it follows that we can find r >0 such that
(r —zw)(1 — zw) %€ is positive definite. Assuming the existence of u’ as above, we
conclude that (r — zw)B*W (z, w) is positive definite finishing the proof. To find such a
W, it is enough to prove BAW(0,0) = BA-1)(0,0), because then (18) and (19) (or (20))
immediately imply (21).
By (17), writing L(A)g}. = B("LJ')(O, 0),,, the question becomes whether we can find positive
numbers y’ satisfying the equations

D L@l = ) LA - g’ (22)
J J

By (16) each L(A)g}. is continuous in A,; also L(A){;j =0 for £ <j,and L(A)go = 1. It

follows that for small € > 0, the system (22) has solutions satisfying u{)z =1, u}z >0(1<
j <m).

Next we compute the matrix of M with respect to the orthonormal basis {uje,{(z):n >
0; 0 <j < mj}. Let H(n) be the linear span of the vectors {e,{_j(z): 0 <j < min(m,n)}.

It is clear that M maps the space # (n) into H (n + 1). (The subspace H (n) of AXW (D) is
a “K-type” of the representation U.) We therefore have

m
Muje,{_j = z M(Tl)k,juker’fﬂ—k-
k=0
Let E(n) be the matrix, determined by (13), such that (e;l_j(z)){) =E(n),;z" " n =

7,0 < j < m. In this notation,

m
B, = ) MO EG + D
k=0
In matrix form, this means

E(Mm)D(n) = E(n + 1)D(n)M(n), which gives
Mm) =D(WEMm+ DT EMD(W),
where D () is the diagonal matrix with D(p),, = p, . (These are the blocks of M regarded
as a “block shift” with respect to the orthogonal decomposition of AMW (D) =P =_, H (n).)
To get information about M (n), we note that, as n — oo, Stirling’s formula gives, for any
fixed b € R,
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1 1 " 1
F'(n+b) ~\V2r(n+ b)) 2e-4b) « \2gn"™*P72 (1 n H) o~ (ntb) _ pbyntb—3
Applying this we immediately get, by (13),

A

_m_1
E(n)&j ~ n’?n 2 ZEg’j,

where E is the matrix with entries
2\ VT2 —m+ 2j) o
(i)I"(Z/l—m+{’+j) =J
0 ?<j
independent of n. Using the diagonal matrix d(n) with d(n),, = n®, we can write

1
E(n) ~ n’l_%_fd(n)E :

E[’j ==

It follows that
M®m) =D(WE(m+ 1)EMm)D (W)

n A_%_% -1r-1 -1
~ (n+ 1) D(WE~d(n + 1)~ *d(n)ED ().
- n 1 .. .
Since — = 1+0 (;) this implies 1
M(n) =]+ O(E),

where | is the identity matrix of order m + 1 and O (%) stands fora (m+1)x (m+1)

matrix each of whose entries is O (%)
We denote by U, the operator on A4W(D) defined by U+e7{_j =e) _(0<j<

n+1—j
min(m,n),n —j = 0).
Theorem (3.2.7)[72]: The operator M on A4W (D) is the sum of U, and of an operator in
the HilbertSchmidt class. In particular, M is bounded and its adjoint belongs to the Cowen-
Douglas class.

Let H, and H, be two reproducing kernel Hilbert spaces consisting of holomorphic
functions on D taking values in C™*1, Suppose that the multiplication operator M on these
two Hilbert spaces are bounded. Furthermore, assume that the standard set of m + 1
orthonormal vectors &, ..., &, in C™*1, thought of as constant functions on D, are in both
D; and D,. Since Q2 pi(M)e)(2) = X, pi(2)e; for polynomials p; with scalar
coefficients, it follows that the polynomials p(z) = X%, p:(2)¢; belong to these Hilbert
spaces. We assume that the polynomials p are dense in both of these Hilbert spaces. Suppose
that there is a bounded operator X: H; — H, satisfying MX = XM. Then

(Ap)(2) = (Xz pisl-) () = (XZ pi(M)£i> () = (Z P (M)Xel-) @)
= (Z pi(M)Xsl) @),

Now, if we let (X&,)(2) = ZTox/ (2)g; , then (Xp)(2) = ®x(2)p(z), where dy(z) =
((x{(z)))m . Since the polynomials p are dense, it follows that (Xf)(z) = &x(2)f(2)
ji=0

forall f € H;.
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We calculate the adjoint of the intertwining operator X. We have
(XK1 (, w)€, K w)n) = (Dx (DK (G, w)E, Ko (L u)n) = (Px (WK (u, w)€, m)

= (K1 (u, )¢, x (W)'n) = (K1 (-, w)é, K1 (L, w) Py (w)n)
forall &,n € C™*1, that is,

X Ko (wn = K (L w)@x (W), (23)
foralln € C™*1 and u € D. Hence the intertwining operator X is unitary if and only if there
exists an invertible holomorphic function @y: D, — CM+D*XM+1) for some open subset D,
of D satisfying

K>(z, w) = x(2)K, (2, 0)Px ()" (24)
Let H be a Hilbert space consisting of C"-valued holomorphic functions on . Assume that
H has a reproducing kernel, say K. Let @ be a n X n invertible matrix valued holomorphic
function on D which is invertible. For f € H, consider the map X: f +— f, where f(z) =
®(2)f(2). Let H = {f:f € H}. The requirement that the map X is unitary, prescribes a
Hilbert space structure for the function space H . The reproducing kernel for # is clearly
K(z,w) = 2(2)K(z,w)P(w)". (25)
It is easy to verify that XM X* is the multiplication operator M: f +— zf on the Hilbert space
H. Suppose we have a unitary representation U given by a multiplier J acting on #
according to (7). Transplanting this action to A under the isometry X, it becomes
(Ug-1f) @) =J(9.f (g - 2),
where the new multiplier J is given in terms of the original multiplier J by
~ J(g,2) = @(2)](g,2)®(g - 2)™". (26)
Now K transforms according to (7), with the aid of J.
Lemma (3.2.8)[72]: Suppose that the operator M acting on the Hilbert space H with
reproducing kernel K is bounded, the constant vectors &,,..., &, are in A, and that the
polynomials p are dense in . If there exists a (self adjoint) projection X commuting with
the operator M then
Dy (2)K(z, w) = K(z, )Py (@)
for some holomorphic function @y: D — CM+DXM+D) with @2 = @y,
Proof. We have already seen that any such operator X is multiplication by a holomorphic
function @,. To complete the proof, note that
Gy (VK(, w)§ = XK(, w)§ = X'K(, w)§ = K(, w)Px(w)7¢
forall £ € C™*1,
From the Lemma, putting w = 0, we see that @ (z) = K(z,0)®(0)"K (z, 0)~* for any self
adjoint intertwining operator X. Furthermore, X,: = ®4(0) is an ordinary projection on
c™+1, if K(0,0) = 1. The multiplication operator on the two Hilbert spaces # with
reproducing kernel K and H, with reproducing kernel Ky(z,w) =

1 1 1
K(0,0) 2K (z, w)K(0,0) 2 are unitarily equivalent via the unitary map f +— K(0,0) zf.
The reproducing kernel K, has the additional property that K,(0,0) = I. Therefore, we
conclude that M is reducible if and only if there exists a projection X, on C™*! satisfying
XoKo(2,0) 1Ky (z, w)Ky(0,w) ™t = Ky(2,0) 1Ky (z, w)Ky (0, w) 1 X,. (27)
This is the same as requiring the existence of a projection X, which commutes with all the
coefficients in the power series expansion of the function Ky(z, w) :=
Ko(z,0)7 1K,y (z, w)K, (0, w)~* around 0. We also point out that K, is the normalized kernel
in the sense of [79] and is characterized by the property K,(z,0) = 1.

91



We set B: = B4W(0,0) and S: = S,,,.
Lemma (3.2.9)[72]: The operator M: = MW on the Hilbert space A%W is irreducible if
and only if there is no projection X, on C™*! commuting with all the coefficients in the
power series expansion of the function

1 1
(1 —z@) ?»™B2 exp(—2zS*) B~ D (z®) exp(@S) B exp(zS*) D(z&)B~* exp(—aS) B2,
around 0.

1 1 1 1
Proof. From (20), we have Bé’l'”) (z,0) = Bz exp(zS*) B2, where Béa‘”): = B 2BAWRT3,
To complete the proof, using (20), we merely verify that
_1 —_
Boz,0) = (B 20)  BH () (BS0,0)
=(1
1 1
— z®) "2 ™BZ exp(—zS*) B~1D(z®) exp(®S) B exp(zS*) D(z®)B~ ! exp(—®S) BZ.
Let D, denote the coefficient of (—1)5z5@* in the expansion of D(zw) and Dy = B~1D;.

(The choice of D, ensures that the diagonal sequence in Dj is positive.)
Lemma (3.2.10)[72]: If (S*"ESSPBS*qﬁtSf)kn + 0 for some choice of i, j, s, t, p, q in

{0,1,...,m} then

1

0<s<m-k-—i, 0<t<m-n-—j
0<p<k+i, 0<qg<n+j
andk+i—p=n+j—q.
Proof. Recall that
S.{€g|—>(‘€+1)e{)+1 lfOSme—l

em — 0 otherwise.
So
Sp:{egr—ue“p lfOSlSTfL—ll
em — 0 t>m-—p

wheret= (£ +1)¢ --- (£ — p). Also,

~.{e€|—>ce{ f0<f<m-s
e, — 0 £>m—s+1,
where c is a non-zero constant depending on {, s. Therefore

0= S*iﬁsS”:{e{) = clepyp_;  If 0= i.Sm—p—sand£+p—i2 0
em— 0 otherwise
for some non-zero constant ¢’. Hence the full condition for Q, , # 0 is
i—p<f{<m-p—-sk={+p—1i. (28)
Let : = S*qD,S’. By what we have just proved, it follows that R, ,, # 0 if and only if
q—js<n<m-j—-tn=~4—j+q. (29)

The conditions (28) and (29) simplify as follows:
0<ft=k+i—-p=n+j—qgq=L<mk+i<m-sandn+j
<m-—t. (30)
Let a(#) denote the coefficient of z™+*1u™** in the polynomial A with
Az, w) = exp(—zS*) B"1D(zw) exp(@S) B exp(zS*) D(zw)B~* exp(—wS)

S - SP §*d - YA
_ Z(—nl A D De @B 2 (1) D @ (1) 5 @

where the sumisover 0 <1i,j,p,q,s,t <m.
Lemma (3.2.11)[72]: For0 < ¥ <m — 1,
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_ (not zero ifk=m—-¢f—1landn=m-—+*

a({))k'n_{zero ifk—m6=lork>m—£—-1"
Proof. Clearly, A(z,w) = X Ajjpqsez' ST @TP++ where the sum is over 0 <
i,j,p,q,s,t <m. Therefore, () =Y cS*D,SPBS*1D,S’ , where the sum is over all
i,j,p,q,s,t such that s+t+i+g=m+¢+1 and s+t+p+j=m+¥c=
(_1)i+j+s+t
iljiplgl
It follows from the preceding Lemma that if a(£)x, # 0, theni—j+q—p=n—k.
However, for the terms occuring in the sum, we now have i —j+gq—-p=(s+t+i+
qg)—(s+t+p+j)=1.Thusifa(f)y, # 0thenn —k = 1.
Furthermore, if a(€)y,, # 0, then we also havem +€+1=(s+t +i+q). Hence m +
£+ 1—-(s+t+1i)=q <n+jfromthe last inequality of the preceding Lemma, that is,
s+t+i+j=>2m+£+1—n. This along with s+t +i+j <2m—k —n, which is
obtained by adding the first two inequalities of the preceding Lemma, givesk <m —+¢ — 1
The proof of the second part of the Lemma is now complete.
Ifk=m—+¢—1andn =m — ¢, for the terms occuring in the sum for a(#), we have s +
t+i+j=2¢+1. It follows that a(€);,—s—1m—e IS @ sum of negative numbers. This
proves the first part of the Lemma.
Theorem (3.2.12)[72]: The multiplication operator M: = M** on the Hilbert space A®W is
irreducible.
Proof. Suppose there exists a non-trivial projection P commuting with B,(z, w) for all

1 1
z,w € D. Then by Lemma (3.2.9) such a projection must commute with BzA(z, w)B2 for
all z,w € D. However, Lemma (3.2.11) shows that there is no non-trivial projection

1
B2a(¢)B1

commuting with the set of matrices { 0<f<m-— 1}. This completes the proof.

Let pr: E; — DD be the holomorphic vector bundle corresponding to an operator T €
B, (D). The operator T is homogeneous if and only if for any g €a, there exists an

ET;ET

b L
automorphism g of the bundle E covering g, that is, the diagram ® —— D is commutative.
Theorem (3.2.13)[72]: If T is a homogeneous operator in B, (D) then the the universal
covering group G of G acts on E; by automorphisms.

Proof. Let G be the group of automorphisms of E;. This is a Lie group. Let p: G — G be the

natural homomorphism. Let N = ker p, the automorphisms fixing all the points of . Then
% =~ (, and for the corresponding Lie algebras, we have §g/n = g. Since g is semisimple,
by the Levi decomposition, there is a subalgebra g, < g such that § = g, + n, where the
sum is a vector space direct sum. Let G, be the corresponding analytic subgroup.

There is a neigbourhood U of e € G, such that py is a homeomorphism onto a
neighbourhood p(U) of e € G. Butthen p(gU) = p(§)p(U). So, p is a homeomorphism of
a neighbourhood of any point § € G, to a neighbourhood of p(g) in G. It follows that the
image of p is an open subgroup and so must equal G. Therefore, G, is a covering group of
G.

Now, G, acts on E; by automorphisms and projects to G. The universal cover G now also
acts on E see [76].
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Theorem (3.2.14)[72]: For every m > 1, the operators MW, A > %; Wi,.eesy > 0 are
mutually unitarily inequivalent.

Proof. Suppose M@® and M@+) are unitarily equivalent. Then the corresponding
Hermitian holomorphic bundles are isomorphic [61]. Hence the multipliers J and J' giving
the G action on A@® and AWM are equivalent in the sense that there exists a invertible
matrix function ¢ (z), holomorphic in z, such that
) ?(2)](9,2)P(gz)"" =]'(9,2)
on G X D which is nothing but (26). Setting here g = p_,, (19) gives
@ (z) = (1 — |z1)* ¥ D(|z|?) exp(—2Sy,) D(1z|)F(0) exp(zS,,) D(|z[*) 7.

The right hand side is real anlytic in z,z on . Since ® is holomorphic, ®(z) = ©(0)
identically. Looking at the Taylor expansion, we obtain

Sn®(0) = @(0)S,,.
This implies that @(0) = p(S,,,), a polynomial in S,,,. (Note that S,,, is conjugate to S, the
unweighted shift with entries Sy, = 6,41 ¢, Which is its Jordan canonical form. For S the
corresponding property is easy to see.) We write

m
N
D(|z|*) = - ,
0 1
\ o)
and for the Taylor coefficient of zz = |z|? we obtain
(1 —21)®(0) + DY@ (0) — @(0)D = 0.
Consider the diagonal of this matrix equality. All diagonal elements of @(0) = p(s,,,) are
the same number x # 0 (since p(Sm) is triangular and invertible). Hence A — 1" = 0. Now,

since the diagonal entries of D! are all different, @(0) must be diagonal. So, @(0) =
xln... Also, @(0) intertwines the operators M®®W and M@ ) | hence
®(0)BAW (2, w)®(0)* = BAH)(z,w) as in (24). Using this with z = w = 0 and using
(16), (17) we get |x|*p? = u}z for all j. Suince py = 1 = g , it follows that |x|?> = 1 and
W = for1 < j < msee[73], [74].
Section (3.3): Free Homogeneous Operators in the Cowen-Douglas Class

The homogeneous operators form a class of bounded operators T on a Hilbert space
H. The operator T is said to be homogeneous if its spectrum is contained in the closed unit
disc and for every Mobius transformation g the operator g(T), defined via the usual
holomorphic functional calculus, is unitarily equivalent to T. To every homogeneous
irreducible operator T there corresponds an associated unitary representation m of the
universal covering group G of the Mobius group G:

3 n(@) Tn(@) = (pB)(T), BE€G,
where p: G = G is the natural homomorphism. In [72] (see also [86]), it was shown that
each homogeneous operator T, not necessarily irreducible, in B+ (D) admits an associated
representation. The representations of G are quite well-known, but we are still far from a
complete description of the homogeneous operators. In [72], the following theorem was
proved.
Theorem (3.3.1)[84]: For any positive real number A > m/2,m € N and an (m + 1)-tuple
of positive reals p = (lg, Wy, .- ., Hy) With 1y = 1, there exists a reproducing kernel K AW
on the unit disc such that the adjoint of the multiplication operator M®*® on the
9

2
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corresponding Hilbert space A4 (D) is homogeneous. The operators (M@*M)" are in the
Cowen-Douglas class B, (D), irreducible and mutually inequivalent.

[72], presented the operators M® in as elementary a way as possible, but this
presentation hides the natural ways in which these operators can be found to begin with.
Here we will describe another independent construction of the operators MW, We will
also give an exposition of some of the fundamental background material. Finally, we will
prove that if T is an irreducible homogeneous operator in B,,.,(ID) whose associated
representation is multiplicity free then, up to equivalence, T is the adjoint of of the
multiplication operator MW for some A > m/2 and p > 0.

Although, we intend to discuss homogeneous operators in the Cowen-Douglas class B,,(ID),
the material below is presented in somewhat greater generality. Here we discuss commuting
tuples of operators in the Cowen-Douglas class B, (D) for some bounded open connected
set D < C™. The unitary equivalence class of a commuting tuple in B,,(D) is in one to one
correspondence with a certain class of holomorphic Hermitian vector bundles (hHvb) on D
[61]. These are distinguished by the property, among others, that the Hermitian structure on
the fibre at w € D is induced by a reproducing kernel K. It is shown in [61] that the
corresponding operator can be realized as the adjoint of the commuting tuple multiplication
operator M on the Hilbert space ' of holomorphic functions with reproducing kernel K.
Start with a Hilbert space H of C™- valued holomorphic functions on a bounded open
connected set D € C™. Assume that the Hilbert space H contains the set of vector valued
polynomials and that these form a dense subset in H. We also assume that there is a
reproducing kernel K for . We use the notation K,,(z): = K(z,w).
Recall that a positive definite kernel K: D x D — C™*™ on D defines an inner product on the
linear span of {K,,(-)¢é:w € D, ¢ € C*} € Hol(D, C") by the rule

(Kw()S Ky () = (K (W)$,m),  &,meC™
(On the right hand side (,) denotes the inner product of C™. We denote by ¢,,..., &, the
natural basis of C".) The completion of this subspace is then a Hilbert space H of
holomorphic functions on D (cf. [85]) in which the set of vectors {K,,: w € D} is dense. The
kernel K has the reproducing property, that is,

(f, Kwé) = (f (W), &), f € H,w € D, € C™
Now, for 1 < i < m, we have

M;K,¢ = w;K,,§,w € D,where (M;f)(z) = z;f(z),f EH

and {K,, &;}i-, is a basis for N2, ker(M; — w;)*,w € D.
The joint kernel of the commuting m - tuple M* = (M7, ..., M;,,), which we assume to be
bounded, then has dimension n. The map og;:w — Kz&,w € D,1 < i < n, provides a
trivialization of the corresponding bundle E of Cowen - Douglas (cf. [61]). Here D: =
{z € C™|Z € D}).
On the other hand, suppose we start with an abstract Hilbert space H and a m-tuple of
commuting operators T = (Ty,...,T,,) in the Cowen - Douglas class B,,(D). Then we have
a holomorphic Hermitian vector bundle E over D with the fibre E,, =n}.; ker(T; — w;) at
w € D. Following [61], one associates to this a reproducing kernel Hilbert space H
consisting of holomorphic functions on D as follows. Take a holomorphic trivialization
0:D > H with o;(w),1<i<n, spanning E,. For fe3, define fi(w):=
(f)0jw))s, W € D. Set {f, §)q: = (f, g)y. The function Kyégj:= aT(W) then serves as the
reproducing kernel for the Hilbert space A. Note that
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(Kw(2)g), 1)en = (Kw&j, K€ = (0,(W), 0,(2)) g = (0;(W), 0(2))3¢, 2, W € D.
If one applies this construction to the case where H is a Hilbert space of holomorphic
functions on D, possesses a reproducing kernel, say K, and the operator M* is in B,,(D) then
using the trivialization g;(w) = Kye¢;, w € D for the bundle E defined on D, the reproducing
kernel for 7 is
(Kw(2)gj, €)cn = (Kygj, Kz€)3 = (0;(W), 0;(2))3r = (Ky&j, K€1) 7, 2,Ww € D.
Thus H = H.
Let G be a Lie group acting transitively on the domain € €9. Let GL(n, C) denote the set of
non-singular n X n matrices over the complex field C. We start with a multiplier J, that is, a
smooth family of holomorphic maps J,: D — C™*" satisfying the cocycle relation
Jgn(2) = Jn(2)]4(h - 2), forall g,h € G,z € D, (31)
Let Hol(D, C™) be the linear space consisting of all holomorphic functions on D taking
values in C™. We then obtain a natural (left) action U of the group G on Hol(D, C™):
(Ugf)(z) =]g-1(z)f(g‘1 - Z), f € Hol(D,C"),z€D. (32)
Let IK € G be the compact subgroup which is the stabilizer of 0. For h, k in K, we have
Jin(0) = J,(0)],(0) so that k — J,(0)~1 is a representation of K on C™,
As in [72], we say that if a reproducing kernel K transforms according to the rule
J(9,2)K(9(2), g())] (g, w)* = K(z, w) (33)
forall g € G; z, w € D, then K is quasi-invariant.
Proposition (3.3.2)[84]: ([72], Proposition 2.1). Suppose H has a reproducing kernel K.
Then U defined by (32) is a unitary representation if and only if K is quasi-invariant.
Let g, be an element of G which maps 0 to z, thatis g, - 0 = z.
For quasi-invariant K we have

-1 -

K(g;-0,9,-0) = (J5,(0)) K(0,0)(Jg, (@), (3%
which shows that K (z, z) is uniquely determined by K (0, 0). For each z in D, the positive
definite matrix K (z, z) gives the Hermitian structure of our vector bundle.
Given any positive definite matrix K (0, 0) such that

J,(0)71K(0,0) = K(0,0)/,(0)* forall k € K, (35)

that is, the inner product (K (0,0) - | -) is invariant under /. (0), (34) defines a Hermitian
structure on the homogeneous vector bundle determined by /,(z). In fact, K(z, z), for any
z € D is well defined, because if g, is another element of G such that g, - 0 = z then g, =
gk for some k € K. Hence

K(g} - 0,9} 0) = K(g,k - 0,g,k - 0) = (Jg, k(@) K(0,0)(Jg,k(0)) "
= (1O, (k- ) K(0,0)(Jg, (k - 0)*Ji(@)) ™
= (I, ®) " (@)K 0,000/, @)
= (I, ®) " K©,0)(J,, @) " = K(g, - 0,9, - 0)

This gives a good overview of all the Hermitian structures of a homogeneous holomorphic
vector bundle. But not all such bundles arise from a reproducing kernel. Starting with a
positive matrix satisfying (35), (34) gives us K(z, z), but there is no guarantee (and is false
in general) that K (z, z) extends to a positive definite kernel on D X D. It is, however, true
that if there is such an extension then it is uniquely determined by K (z, z) (because K (z, w)
is holomorphic in z and antiholomorphic in w).
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This leaves us with the following possible strategy for finding the homogeneous
operators in the Cowen - Douglas class. Find all multipliers, (i.e., holomorphic
homogeneous vector bundles (hhvb)) such that there exists K(0,0) satisfying (35) and
consider all such K (0, 0). Then determine which of the K(z, z) obtained form (34) extends
to a positive definite kernel on D x D. Then check if the multiplication operator is well-
defined and bounded on the corresponding Hilbert space.

For H be a Hilbert space consisting of C™-valued holomorphic functions on some
domain D possessing a reproducing kernel K. The corresponding holomorphic Hermitian
vector bundle defined on D have many different realizations. The connection between two
of these is given by a n X n invertible matrix valued holomorphic function ¢ on D. For f €
3, consider the map I,:f — f, where f(z) = ¢(2)f(2). Let H ={f:f € H}. The
requirement that the map I, is unitary, prescribes a Hilbert space structure for the function
space H . The reproducing kernel for 7 is easily calculated

R@zw) = o@KEwew)'. (36)
It is also easy to verify that I), M I}, is the multiplication operator M: f +— zf on the Hilbert
space H . Suppose we have a unitary representation U given by a multiplier J acting on #
according to (32). Transplanting this action to " under the isometry I,, it becomes
(fjg_lf)(z) =]g(Z)f(g £ Z),
where the new multiplier J is given in terms of the original multiplier J by
Jg(@) = p(2)]4(2)p(g - 2)7".
Now K transforms according to (33), with the aid of J. If we want, we can now ensure that,
by passing from H to an appropriate #,K(z,0) = 1. We merely have to set (z) =

1
K(0,0)2K(z,0)~1. Thus the reproducing kernel K is almost unique. The only freedom left
Is to multiply ¢(2) by a constant unitary n X n matrix. Once the kernel is normalized, we
have
]k(Z)zjk(O)' ZE]D,k eD
In fact,
I=K(z0)=J (2K 20 (0) = Ji(2)],(0)~"
and the statement follows. Therefore, once the kernel K is normalized, we have
Uy-1/)(2) =, (0)f (k - 2), k € K.
Given a multiplier J, there is always the following method for constructing a Hilbert space
with a quasi-invariant Kernel K transforming according to (34). We look for a functional
Hilbert space possessing this property among the weighted L? spaces of holomorphic
functions on D. The norm on such a space is

£ = Lf(Z)*Q(Z)f(Z)dV(Z) (37)

with some positive matrix valued function Q(z). Clearly, this Hilbert space possesses a
reproducing kernel K. The condition that U ;-1 in (32) is unitary is

fo(g -2)']"g (2)Q(2)]4(2)f (g - 2)dV(2) = Lf(W)*Q(W)f(W)dV(W)

(g - 2)|*
d2(2)

dV(2),

- fD f(g-2)'Qg Df (g 2)
that is,
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-2

d(g - 2) 38)

0(2)

Qg -2) =]4(2)"Q(2)]4(2) ‘

which is equation (33) with ], (z) replaced by a;‘?;)]g(z)*‘l.

Given the multiplier Jg(z), Q(z) is again determined by Q = Q(0), and (just as in the
case of K(0,0) = A) it must be a positive matrix commuting with all J,(0),k € K. (It is
assumed that each J,, (0) is unitary).

In this way, we can construct many examples of homogeneous operators in B, (D)
but not all.

Even, not all the the homogeneous operators in B, (ID) come from this construction.
There is a homogeneous operator in the class B1 (ID) corresponding to the multiplier

J(g,2) = (g’(z))'l,/le R exactly when A > 0. The reproducing kernel is (z,w) =

(1 — zw)~?~. But such an operator arises from the construction outlined above only if 1 >
1/2.

The homogeneous operators constructed in the manner described above are of interest
since they happen to be exactly the subnormal homogeneous operators in this class (cf. [74]).

In the case of B, (D), it is shown in [72] that the bundle corresponding to a
homogeneous Cowen-Douglas operator admits an action of the covering group G of the
group G = Mob via unitary bundle maps. This suggests the strategy of first finding all the
homogeneous holomorphic Hermitian vector bundles (a problem easily solved by known
methods) and then determining which of these correspond to an operator in the Cowen-
Douglas class.
We use the method of holomorphic induction. For this, first we describe some basic facts
and fix our notation. We follow the notation of [88] which we will use as a reference.

. < . 10 1 1(i 0 10 —i
The Lie algebra g of G is spanned by X; = 5(1 0),X0 = 5(0 —i) andY = 5(1' 0 )
The subalgebra f corresponding to K is spanned by X,. In the complexified Lie algebra g€,
we mostly use the complex basis h, x, y given by

h=—iX = %((1) —01)

x=X1+iY=(8 (1))

. 0 0
y=X,—iY = (1 O)
We write G for the (simply connected group) SL(2, C). Let G, = SU(1, 1) be the subgroup

z 0
corresponding to g. The group GC has the closed subgroups K¢ = {(0 1) :z€C,z+#

V4

0 1 z 1

{((C) _OC)=C€(C},D+={(8 (C)):cEC},J;‘={((C) 8):ce«:}arespannedbyh,xand
a

y, respectively. The product K¢P~ = {(b 1) :0+a€eCbe (C} Is a closed subgroup to
a

be denoted T; its Lie algebra is t = Ch + Cy. The product set PTK P~ = P*T is dense
open in G¢, contains G, and the product decomposition of each of its elements is unique.
(G®/T is the Riemann sphere, gK — gT, (g € G) is the natural embedding of D into it.)

0};P+ = {(1 Z) 1Z € «I},P‘ = {(1 0) :Z € C}; the corresponding Lie algebras ¢ =
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According to holomorphic induction [87] the isomorphism classes of homogeneous
holomorphic vector bundles are in one to one correspondence with equivalence classes of
linear representations o of the pair (t, K). Since K is connected, here this means just the
representations of t. Such a representation is completely determined by the two linear
transformations o(h) and o(y) which satisfy the bracket relation of h and y, that is,

3 l[o(h), 0] = —o(¥). (39)
The G-invariant Hermitian structures on the homogeneous holomorphic vector bundle
(making it into a homogeneous holomorphic Hermitian vector bundle), if they exist, are
given by Q(]K)-invariant inner products on the representation space. An inner product
is o(K)- invariant if and only if o(h) is diagonal with real diagonal elements in an
appropriate basis.

We will be interested only in bundles with a Hermitian structure. So, we will assume
without restricting generality, that the representation space of o is C¢ and that o(h) is a real
diagonal matrix.

We will be interested only in irreducible homogeneous holomorphic Hermitian vector
bundles, this corresponds to @ not being the orthogonal direct sum of non-trivial
representations. Suppose we have such a g; we write V, for the eigenspace of o(h) with
eigenvalue a. Let —n be the largest eigenvalue of o(h) and m be the largest integer such
that —n,—(n + 1),...,—(n + m) are all eigenvalues. From (39) we have o(y)V, € V,_4;
this and orthogonality of the eigenspaces imply that V =@jL,V_gj) and its
orthocomplement are invariant under . So, V is the whole space, and have proved that the
eigenvalues of o(h) are —n,...,—(n + m).

From this it is clear that o can be written as the tensor product of the one dimensional
representation ¢ given by o(h) = —n,a(y) = 0, and the representation o° given by
0°(h) = o(h) + nl,0°(y) = o(y). Correspondingly, the bundle for g is the tensor product
of a line bundle L, and the bundle corresponding to °.

The representation o° has the great advantage that it lifts to a holomorphic representation of
the group T. It follows that the homogeneous holomorphic vector bundle it determines for
D, G, can be obtained as the restriction to D of the homogeneous holomorphic vector bundle
over G®/T obtained by ordinary induction in the complex analytic category. So, (as a

1 z C
0 1)ofG /T

over . In the trivialization given by s(z), the multiplier then appears for g = (Ccl Z) €
G® as

convenient choice) take the local holomorphic cross section z +— s(z): = (

8@ = (@ g sg D) = (“EY D)

= 0" (exp (— czj- 7 y)) 0%(exp(2 log(cz + d)h)) (40)

The last two equalities are simple computations.
For the line bundle L,, the multiplier is g'(z)" (we write g'(z) = ‘;—‘Z(z)) . Consequently,
the multiplier corresponding to the original g is
Jo@ = (9'@)"J5(@). (41)
We now assume that we have a homogeneous holomorphic vector bundle induced by

o and that it has a reproducing kernel. Then we derive conditions about the action of G that
follow from this hypothesis. We will show that these conditions are sufficient: they lead
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directly to the construction of all homogeneous operators the Cowen-Douglas class with
multiplicity free representations.

Under our hypothesis there is a Hilbert space structure in which the action of G given
by (34) is unitary. We will study this representation through its KK - types (i.e., its restriction
to K). We first compute the infinitesimal representat.

For X € g, and holomorphic f, we have
d
WN@:=(g5) _ (Vespion /@)

d d —tX) - n

There is a local action of G€, so this formula remains meaningful also for X € g®. There are

three factors to differentiate. For the last one, (%)I f(exp(—tX)-z) = —-(Xz)f'(2),and
t=0
t

we see that exp(tx) - z = (1 ) -z =z 4+t gives x - z = 1; by similar computations, y -

0 1
z=—z%h-z=2z For the first factor, we interchange the differentiations and get

—1 :—Z (X - 2),i.e.,0,2nz,—n, respectively for x,y and h.
To differentiate the factor in the middle, we use its expression (40). First for X = y, we have

0 -1 d -1,.0 0
G (exp(—t(tz+1)7ly) = — . (exp(—t(tz+1)7*0°(y)) = —0° (43)

dt

and

d

d
—|  0%expRlog(tz+ 1)) =—| exp(2log(tz+ 1)e°(h)) = 2z0° (44)

¢ From these, following the conventions of [88] in defining H,E,F, it follows that

d
(F N@:= Uy f)@ = G| Joxpn @ (exp(ty) -2
= (=2nzl +220°(h) = °M)f (2) = z*f" (45)

Similar, simpler computations give, for g = exp(tx) = ((1) i)

t (Ef)(2):= (Uxf)(2) = —f"(2). (46)
Finally, for = exp(th) = <e§ Ot) , we have

0 ez
t

]exp(th)(z) =0 (e ? Ot> = exp(—t) Qo(h)-
0 ez
Hence it is not hard to verify that
(Hf)(@):= (Unf)(2) = (=1l +0°(W))f (2) — zf" (2). (47)
Under our hypothesis, we have a reproducing kernel and U is unitary. From our
computations above, we can determine how U decomposes into irreducibles. The
infinitesimal representation of U acts on the vector valued polynomials; a good basis for this

space is {gz™:n = 0}; ¢ is the jth natural basis vector in C*. We have H(gz") =
—(m +j +n)(gz™), so the lowest K - types of the irreducible summands are spanned by
the ¢;. This space also, the kernel of E. So, U is direct sum of discrete series representations
(U™, in the notation of [88]), each one appearing as many times as —(n + j) appears on
the diagonal of o(h).
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In order to be able to use the computations of [72] without confusion, we introduce
the parameter = n + -
From the last remark, it is clear that if U is multiplicity-free then o(h) isan (m+ 1) X
(m + 1) matrix with eigenvalues —1 + % —A+ % —1,...,—A— % As (h)g = — (/1 —

~+ j) g, (39) shows that

m
Q(h)(Q(y)ej) = — (JL + el +j+ 1) o(y)e; ,thatis, 0(y)gj = const gj,4.

So, o(y) is a lower triangular matrix (with non-zero entries, otherwise we have a reducible
bundle). The homogeneous holomorphic vector bundle determines o(y) only up to a
conjugacy by a matrix commuting with o(h), that is, a diagonal matrix. So, we can choose
the realization of our bundle by applying an appropriate conjugation such that o(y) = S,,,,
the triangular matrix whose (j,j — 1) elementisjfor1 <j < m.
By standard representation theory of SL(2, R), the vectors (—F)™"¢; are orthogonal and the
irreducible subspaces H ) for U are span{(—F)”ej:n > 0} for 0 < j < m. There is also
precise information about the norms.
Using this, we can construct an orthonormal basis for our representation space.
Forany n > 0, we let uj,(z) = (—F)"¢;.
To proceed further, we need to find the vectors u/,(z) explicitly. This is facilitated by the
following Lemma.
Lemma (3.3.3)[84]: Let u be a vector with u,(z) = u,z"*,0 < £ < mandn > 0. We then
have

(—Fw),(2) = QA—m + £+ n)ulz™ 't + fu,_z""t,0< £ < m.
Proof. We recall (45) that —(Ff)(z) = 24zf(z) + S,,f (z) — 2zD,,f (z) + z*f'(z) for

m m

f € H(n), where D,, = —0°(h) is the diagonal operator with diagonal {— — =5t
1,.. %} and S,,, is the forward weighted shift with weights 1, 2,..., m. Therefore we have

(—Fu)?(z) = QAu, + up_q — (m = 20)u, + (n — Huy)z"1-*
completing the proof.
Lemma (3.3.4)[84]: For0 < j <mand 0 < £ < m, we have

,- 0 ifo<e<j—1
Un,(2) = {(2) G+1)l=m+2j + k) z2* ifj<e<mk=—]

where u{l’ ,(2) is the scalar valued function at the position € of the C"™**- valued function

ul(z):= (—F)"¢;. .

Proof. The proof is by induction on n. The vectors ), are in H (n) for 0 < j < m. For a

fixed but arbitrary positive integer j, 0 < j < m, we see that uj&,(z) isOifn<®—j. We

have to verify that (—F u/)(z) = u/,, (2). From the previous Lemma, we have
(—F.urjl){)(z) = A=m+L+n+juj ,zIHE 4 pu) AL

where (—F u,]l) {)(Z) is the scalar function at the position £ of the C™*1- valued function

(=F u},)(2). To complete the proof, we note (using k = £ — ) that
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(-F ), @
= () G+ De@A=m+2j + k)i (22 —m + 2 + k + 1)

* ((k f 1) G+Dp@A-m+2j+ k- 1)n_k) n+1-k

=G+ 1@A-m+2 + () @A—m+2j+k+n)

n . -
+(, ") @l=m+2j+k—1)z"17k)

=G+ Dr@A=m+2 + K)o () + (- 1) @A—m+2j+k—1)+(n+

1) (Z) )Zn+1—k
n+1

= G+ De@A—m+2j + k) (s (( . )(2/1—m+2j+k—1)

+("T1) kD) +>z"+1—k

=G+ 1A= m+2j + k)py ((";’61) (2/1—m+2j+n)> Z 1k

, +1 . _
=G+ Dy <(n I ) A-m+2j+ k)n+1_k> 2" =) (@)
for a fixed but arbitrary j, 0 <j< mand k, 0 <k <m—j. This completes the proof. On H(j) ,
we have the representation U% acting (0 < j < m), where Ai=A— ? + j. Its lowest K -

type is spanned by (= u)) and & =Ae. By [88] we have ||(—F)"g]-||2 =
o) (—F)<e||” with

ol = (24 +k—-1)k
for all k = 1. (Here we used that the constant g in [88] equals A; (1 — 4;) by [88].) We

write
n

j _ j

k=1
which can be written in a compact form

o) = ((24)), (D), (48)
where (x), = (x + 1) - - - (x + n — 1). We stipulate that the binomial co-efficient (Z) as
well as (x),,—j are both zero if n < k.

1

The positivity of the normalizing constants (01{_ ].)E(n > j) is equivalent to the existence of
an inner product for which the set of vectors e,{_j defined by the formula:
1
e, i=(0n) “uj_j(z), n=j,0<j<m
forms an orthonormal set. Of course, the positivity condition is fulfilled if and only if 24 >
m.

In this way, for fixed j, each ei_j has the same norm for all n > j. Hence the only possible
choice for an orthonormal system is {uje,{_j:n > j} for some positive (0 <j < m).
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However, we may choose the norm of the first vector, that is, the vector e({,O <jsm,
arbitrarily. Therefore, all the possible choices for an orthonormal set are

J J J
wie,_;i(z) = . U,_;(2),
T @AM+ 2 (D
n=j,0<j<m,andy;,0 <j <marem+ 1 arbitrary positive numbers.
Let us fix a positive real number A and m € N satisfying 24 > m. Let 2*¥ denote the

closed linear span of the vectors {uje,{_j: 0 <j < m,n = j}. Then the Hilbert space 3+

Is the representation space for U defined in (32). Since the vectors u{'l 1 u’; aslong asj #
k, it follows that the Hilbert space 7 ) is the orthogonal direct sum @7, 1/p; 4 Y. We

proceed to compute the reproducing kernel by using the orthonormal system {uje,’;_j: n=
j}, 0 <j < m. We point out that for 0 < £ < m, the entry eﬁ'sz"‘f at the position ¢ of the
vector e,{_j (z) is 0 for n < . Consequently, e,’;_j IS the zero vector unless n > j. The set

of vectors {;e;_:0 < j < m,n > j} is orthonormal in the Hilbert space ) . We note
that

j _((.] n-k\\"
ny@ = (7)),

(61{_]- (Z))g
0, 0<¢<j-1

- J(2/1+2j—m+k)n,-kj(n—j—k+1)k(j+1)k ok . (50)

, zZ"rj<ft<mk=4—].
(s @i+2j-m, @, =’ g
We have under the hypothesis that we have a reproducing kernel Hilbert space on which the
representation U is unitary, explicitly determined an orthonormal basis for this space. Now
we are able to answer the question of whether this space really exists. For this it is enough

to show that Y. e,, (z)e,, (w)" converges pointwise, the sum then represents the reproducing
kernel for this Hilbert space. We will sum the series explicitly, and will verify that it gives
exactly the kernels constructed in [72]. This will complete the program by proving that the
examples of [72] give all the homogeneous operators in the Cowen-Douglas class whose
associated representation is multiplicity free.

To compute the kernel function, it is convenient to set, for any n > 0,

IJ.OegIOZn 0 0
Gunz) =| Moes’z" o el 2 0
\uoe;’l,ozn—m ujeﬁgzn—m umerrlrirglzn_m/
e .. 0 - 0
- ( o ) eld . el . 0 ( e )
0 eee Zn—m : eee : . “ee : 0 cee W
e,T’O e_;’ln_’]] e:{iﬁ
=D, (z)G(n)D (W) (51)
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where D,,(z), D (1) are the two diagonal matrices and G (n) = (e,f’fj);n , with eﬁ’fj =0 if

,J]=

¢ < jorif n < £. The nonzero entries of the lower triangular matrix G (n), using (50), are

(" ;f) G+ Dr@A—m+2) + k)

VCA=m+2))pj\f (D

:\/(2/1—m+2j+k)n_j_k m—-pj—k+1),(G+1)
J@I=m+ 2 JOny M
J@A=-m+2j+ k) (= —k+ 1)+ Dy
- JQRA—m+2)), \/ (Dn-j—k (D

Giyk,j(n) =

(52)

for0<k<m-—j.

Now, we are ready to compute the reproducing kernel K; for the Hilbert space HD =
span{e,{_j:n 2]},0 <j<m. Recall that K(z,w) =Y, _pe,(2)e,(w)* for any
orthonormal basis e,,n = 0. This ensures that K is a positive definite kernel. For our
computations, we will use the particular orthonormal basis e,{_ jas described in (49). Since
there are j zeros at the top of each of these basis vectors, it follows that (£, p) will be O if
either £ < j or p < j. We will compute (Kj(z,w)), at (¢,p) forj <¥,p <m.For¥,pas
above, we have

(Kw), = > el @e = > GG,z e,
P n=max(¢,p) nzmax(¢,p)

We first simplify the coefficient G, ;(n)G, ;(n) of z"¢w""P. The values of G, j(n) are
given in (52). Therefore, we have
Go,j(M)Gp (1)

N

(@ +e-)), (-t + 1), (22 +p —f)n_p (n—2+1),;
B (Zﬂj)f_j (Dn—e (Zﬂj)p_j (Dnp
(j + 1)€—j (] + 1)p—j
(De=j D)y
B (ZA] + P —j)n_p(n -+ 1){1_]' ((2/1] + ¢ —j)p_{(n — D + 1)p_11g>
B (24)),_,(Dn-p 4 +¢-)) _,(n—p+1Dypy
(j + 1)€—j (] + 1)p—j
(De—j Dy
) 24),_ 4 +p=)), =€+ Dej(n=p+Dpj (j + 1), ; (G + 1),

N[ =

24),_,(24),  (Dap( —p + 1y (De-j (Dp-j
_ (24),_ (0 =2+ Deej(n =D+ D j + 1), G + 1),
(24),_,(24),_ (V- W Wy
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Theorem (3.3.5)[84]: Given an arbitrary set y,, ..., W, of positive numbers, and 24 > m,
we have

m
KOO (z,w) = ) 12K (z,w) = B (z,w),
=0
As a result, the two Hilbert spaces # % and AW of [72] are equal.

Proof. We now compare the co-efficients (Kj (z, W))g with that of a known Kernel. Let
P

B (z,w) = (1 — zw)~?4, where B(z,w) = (1 — zw) 2 is the Bergman kernel on the unit
disc. We let 0 and 0 denote differentiation with respect to z and w respectively. Put
B (z,w) = (04137~ (1 — zw)~?H)

We expand the entry at the position (¢, p) of B’(’lf)(z, w) to see that
(E(lj) (Z, W))

j<tpsm’

‘0

(24), . .
= E v—=~C+j+ 1D, ;(v+j—p
(),
vzmax(f—j,p—Jj)

+1),_;zV == Digv=-@=D)
(21) .
_ n-j _ _ n—f—=n-p
= m—f+ 1D, (n—p+1),_;z"*w"P,
(1)n—j
nzmax({,p)
where we have setn = m + j. Comparing these coefficients with that of G, ;(n) G, j(n), we
find that
Ki(z,w) = D]-E(’lf)(z, w)D;, (53)
1 U+1)e—j - ; e P <

G, (e at the (¢,¢) position with j < £ < m.
Hence K;(z,w) = B(’lf)(z, w) which was defined in the equation ([72]).
Clearly, we can add up the kernels K; to obtain the kernel K (AW for the Hilbert space

mii . .
F @ = 2= 4000 Hence the proof of the theorem is complete.

My
Corollary (3.3.6)[84]: The irreducible homogeneous operators in the Cowen - Douglas

class whose associated representation is multiplicity free are exactly the adjoints of M*W
constructed in [72].

Proof. In our discussion up to here we proved that the Hilbert space H M corresponding
to a homogeneous operator in the Cowen - Douglas class has a reproducing kernel given by

KW = F0 2K, 22> 1,1y,..., iy > 0. It follows from the Theorem that the kernels

obtained this way are the same as (are equivalent to) the kernels constructed in [72]. These
operators were shown to be irreducible [72].

We now consider the action of the multiplication operator M on the Hilbert space
H AW Let 7 (n) be the linear span of the vectors

{e3(@), ...el_i(2),...,eM ()},

where as before, for 0 <¢<m,e)_,(z) is zero if n—£<0. Clearly, H®W =
D2_, H(n). We have

where D; is a diagonal matrix with

105



zG(n,z) = Dyp(2)G()D (W) = Dp41(2)G()D (W)
= Dp1(2)G(n+ DWW O W™ 6(n + 1)T'G¢(M)D(W.

If we let W(n) = D(W~1G(n + 1)71G(n)D(w),then we see that
ze,’l_j(z) = G(wn+ 1,z)W;(n), where W;(n) is the jth column of the matrix W(n). It
follows that the operator MW defines a block shift W on the representation space H 4,
The block shift W is defined by the requirement that W: ' (n) — H (n + 1) and Wiz =
wtr.
Here, we have a construction of the representation space H " along with the matrix
representation of the operator M M which is independent of the corresponding results from
[72].
Example (3.3.7)[84]: Recall that G(u,n,z) = D,;,(z)G(n)D(n). Once we determine the
matrix G(n) explicitly, we can calculate both the block weighted shift and the kernel
function.
We discuss these calculations in the particular case of m = 1. First, it is easily seen that

[ ((m - 1)n>% o)

1
G(n) = | (Dn ) . (54)

\( n )% ((zm_l)f <(ZA + 1)n_1>f
24—-1 (1)71—1 (1)71—1
The block W, of the weighted shift W is

[ ey o)

W, = | 1 1 .| (55)
\i: (1) (@mmna) G
L \2i—1) \@Gi+n—DCr+n)) ™"
Finally, the reproducing kernel KW with m = 1 is easily calculated:
1
— — z(1 — wz)?*
K@ (z,w) = ((1 —wz ) \‘
’ W 1 1+ QA—-1Dwz
(1—wz)24  21—1 (1 —wz)2A+1 /
0 0
+ 1 (0 ! ) (56)
(1 _ WZ)ZA+1

One might continue the explicit calculations, as above, in the particular case of m = 2 as
well. We begin with the matrix

G(n)
(Zl_z)n 2
() ° °
_ n\z2 (22— 1,4\ (2D)n-1 )2 (58
(2,1—2) ( (1)t ) ((1)n_1> ° e

nn—-1) % (20),—, % 5 n—1\2/(Q2A+ 1),_,
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The block W, of the weighted shift W, in this case, is
1

( n+1 )2
21+n—2

N[ =

1
-1 (2& - 1)?(
u‘l ZA_Z

1
(2/1+n—1)(2/1+n—2)>

1

0

(.

2/1+n—1)

1
2

1

D)

H2

= @)

(2A+n—2); Ho

( n )% (—2)uy (2/1 +1

22

Finally, the reproducing kernel K with m = 2 has the form:
K(/LH) (Z, W) =

w

/ 1
(1 — wz)2A-2

A
(1 —wz)2A-1
1+ (21— 2)wz

WZ

(1 —wz)? 1

21— 2)(1 — wz)?
W2+ (21 — 2)wz)

244021 - Dwz + (22— 1)(21 — 2)z27°

z
(1 —wz)24

2

z2+ (21 -2)wz)

(21— 2)(1 — wz)?A*1

0

1 —
) am—sa) @

1
2

(1 —wz)24

{0
0
+uf

0

2

A—w?

(21— 2)(1 — wz)2A+1
0 0
1 A

(21— 1)(22 - 2)(1 — wz)2A+2

(1 — wz)2A+1
w 2 14 2Awz

\

(1 — WZ)ZA+1
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0 O
0 O

0 O

0

0
1

(1 - WZ)ZA+2
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Chapter 4
Sharp Estimates of all Homogeneous Expansions and a Proof of a Weak Version

We establish the sharp upper bounds of growth theorem and distortion theorem for a
k-fold symmetric quasi-convex mapping. These results show that in the case of quasi-
convex mappings, Bieberbach conjecture in several complex variables is partly proved, and
many known results are generalized. The results show that a weak version of the Bieberbach
conjecture in several complex variables is proved, and the obtained conclusions reduce to
the classical results in one complex variable. The results state that a weak version of the
Bieberbach conjecture for quasi-convex mappings of type B and order a in several complex
variables is proved, and the derived conclusions are the generalization of the classical results
in one complex variable.

Section (4.1): A Class of Quasi-convex Mappings on the Unit Polydisk in C**

In the case of one complex variable, the following Bieberbach conjecture (i.e., de
Branges theorem) is well-known.

Theorem (4.1.1)[89]: (see [15]) If f(z) = z + Y7—, a,z™ is a biholomorphic function on
the unit disk U, then
la,| < n, n=273,...

However, in the case of several complex variables, Cartan [90] pointed out that the above
theorem does not hold. So people mainly investigated the case of the subclasses of
biholomorphic mappings Bieberbach conjecture in several complex variables. In 1992,
Zhang, Dong and Wang [91] first established the sharp estimates of all homogeneous
expansions for normalized biholomorphic convex mappings on the unit ball in a complex
Banach space with a brief proof. But with respect to the estimates of all homogeneous
expansions for normalized biholomorphic starlike mappings, quasi-convex mappings of
type A and quasi-convex mappings of type B on the Euclidean unit ball B™ in C™, Roper
and Suffridge [1] stated that the corresponding Bieberbach conjecture does not hold about
the second homogeneous expansions with concrete counterexamples. Taking into account
the above reason, people chiefly show interest in studying the estimates of homogeneous
expansions for the subclasses of biholomorphic mappings on the unit polydisk U™ in C". In
1999, Gong [15] posed the following conjecture.
Conjecture (4.1.2)[89]: If f: U™ — C™ is a normalized biholomorphic starlike mapping on
the unit polydisk U™ in C™*, then

ID™ £ (0)(z™)|

m!

It is obvious that the above conjecture is quite similar to the famous Bieberbach conjecture
in one complex variable. Recently, Liu [14] investigated the estimates of all homogeneous
expansions for a class of quasi-convex mappings (including quasi-convex mappings of type
A and quasiconvex mappings of type B), Liu and Liu [92] established the estimates of all
homogeneous expansions for a class of k-fold symmetric quasi-convex mappings of type B
and order a.
On the other hand, at present, the sharp growth, covering and distortion theorem for
quasiconvex mappings of type B on U™ is not given, the sharp distortion theorem for quasi-
convex mappings (including quasi-convex mappings of type A) on U™ is not given as well
(see [93)).

<ml|lz™||, zeUun, m=2,3,.
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In view of the additional condition for the above mappings (see [14], [92]) are
somewhat special, a natural question arises to how to weaken the additional condition in
order to obtain the generalization of known results.

For X be a complex Banach space with norm ||-||, X* be the dual space of X and let
T(x) = {T, € X*:||T, || = 1, T,,(x) = x}. Let E be the unit ball in X, let dE be the boundary
of E and let E be the closure of E. Let U stand for the Euclidean unit disk in C, let U™ be the
unit polydisk in C*, and let d,U™ denote the characteristic boundary (i.e., the boundary on
which the maxium modulus of the holomorphic function can be attained) of U™. Let the
symbol " mean transpose. Let N be the set of all positive integers.

Definition (4.1.3)[89]: (see [16]) Suppose that f:E — X is a normalized locally
biholomorphic mapping. Denote

6r(a, ) = 2a a+pf

1, [(Df (@) (Flaw) - Fpw)] = F

If
Re Gf(a,,B) >0, u € 0E, a,f eU,
then f is said to be a quasi-convex mapping of type A on E.
Definition (4.1.4)[89]: (see [16]) Suppose that f:E — X is a normalized locally
biholomorphic mapping. If

Re{T,|(Df ()" (D f)@® +DF )|} >0, x€E,
then f is said to be a quasi-convex mapping of type B on E.
When X = C", Definitions (4.1.3) and (4.1.4) were originally introduced by Roper and
Suffridge [1].
Definition (4.1.5)[89]: (see [94]) Suppose that f:E — X is a normalized locally
biholomorphic mapping. If

Re {T.[(Df @) " (f) ~ f€0)|} >0, x€E el
then £ is said to be a quasi-convex mapping on E.

When X = C, Definitions (4.1.3)- (4.1.4) are the same; this implies that a quasi-
convex function is equivalent to a normalized biholomorphic convex function in one
complex variable.

Definition (4.1.6)[89]: (see [95]) Suppose f € H(E). It is said that f is k-fold symmetric if

e kf (eTx> = f(x) forall x € E, where k € Nand i = v/—1.

Definition (4.1.7)[89]: (see [96]) Suppose that Q is a domain (connected open set) in X
which contains 0. It is said that x =0 is a zero of order k of f(x) if f(0) =
0,..,D*"1£(0) = 0, but D¥£(0) # 0, where k € N.

Definition (4.1.8)[89]: (see [92]) Suppose that « € [0,1) and f: E — X is a normalized
locally biholomorphic mapping. If

Re {T[(Df () (0 ()@ + DfF @)} > allxll,  x€E,
then f is said to be quasi-convex of type B and order o on E.
Let K (E) denote the set of all normalized biholomorphic convex mappings on E. Let Q4 (E)
(resp. Qg (E)) be the set of all quasi-convex mappings of type A (resp. type B) on E and let
Q(E) be the set of all quasi-convex mappings on E.
We shall first give the following lemmas. It is easy to prove the following results.
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Lemma (4.1.9)[89]: Suppose that f is a normalized locally biholomorphic mapping on U™.
Then f € Qz(U™) if and only if
9j (z)

Re >0, z=(zy,..,2z,) €U™,

j
where g(z) = (g,1(2), ...,gn(z)), = (Df(z))_l(sz(z)(zz) + Df(z)z) is a column
vector in C", j satisfies |z;| = [|z|| = 1r<nz?<xn{|z"|}'

A LA

Lemma (4.1.10)[89]: (see [97]) Suppose g(2) = (g:1(2),92(2), ..., gn(2)) €

H(U™),g(0) =0,Dg(0) =I. If Re 9% S 0 (z € UM), where |2;| = llzll = ‘max {|z,},
Zj KN

then

D™g(0)(z™
” gsn?( )” < 2”Z”m’ zeUm m=2,3,...

Lemma (4.1.11)[89]: (seé [14]) If f(z) is a normalized locally biholomorphic mapping on
U™, and g(z) = (Df(z))_l(DZf(z)(zz) + Df(z)z) € H(U™), then
D*f(0)(z*) _ 1 D*g(0)(z*)

2! 2 2!
D™f(0)(z™)
m!

m(m — 1)

: D™ Lg(0)(z™ )
_bpmg@eEm 2P FO (== =5 —)

m! 2!

(m — Dp™1f(0) (72, 24P

2!
* (m—1)!
Lemma (4.1.12)[89]: (see [16]) K(E) c Q(E) = Q,(E) < Qgz(E). In some concrete
complex Banach spaces, we even have K(E) < Q(E).
Lemma (4.1.13)[89]: Suppose f(z) € H(U™), and

n

+--

,ZEU™, m=3,4,-.

m m
D™ (0)(Z™) .,
ml = aplllz...lmzllzlz Zlm’ p=1,4,,n,
ll,lz ..... lmzl
1 9™ f(0)
where apl1lz...lm = $m, ll, lz, e lm =1,2,...,.nm=2,3,.... Then
10z,,0z,..0Z,,
1
m m—1
— D f 0™, w)
1 n n
= z Aply by . lywy, 21y 2y T z Ap 1,1y 1 2L WL, 21, - 21,
ll,lz ..... lm=1 ll,lz ..... lm=1
n
+ -+ ap lllz___lmzllzlz "'Zlm—lwlm ,Z € Un,p = 1, 2, o, n,m
l11l2 ..... lmzl
=23 ..,

where w = (wy, Wy, ..., wy,)’ € C* which satisfies ||w|| = max {|w,|} < 2.
1<p<n

Proof: VA € C with 1] < % by a straightforward computation, it yields that
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Z+Aw z+ Aw z+/1w>

Dmfp(0)< LS

DA™ mD™, ()2, w)
B 2m * 2m
DLW

o (1)
D™ f,(0)(z™)
Note that pT =20 1l=1 Op L1y 1 21, 21, - 21, Therefore,

m Z+w z+ w zZ+ Aw
D fp(o)( 2 ) 2 )y 2 )m

A4

m!

— % z ap lllz...lm(zll + AW[l)(le + AWIZ) (Zlm + ).Wlm)
li,ls, e 0lm;m=1

m!
" 2m Ap 131y Ly 21, 21y -+ Zly,
ll;lz ..... lm:1

+5— Ap 1,1y Ly Wi, Z1, 21,

+ z ap lllz_Jlelle "'Zlm—lwlm A

11112 ..... lmzl

+ -4+ — ap 1112---lmW11W12 "'Wlm A, (2)
Ilpenlm=1
Comparing with the coefficient of the right-hand sides of (1) and (2) with respect to A, we
obtain

1
— D", (0) (", w)

n n

1

= - Z Ap 11,1y Wi, 21, - 21, T Z Ap 11,1y 2L WLL, 21, " 21,

Lyl =1 Ly olm=1
n

+--- + Ap 1,1yt 2121, " 21, Wi, |, ZEUNp=1,2,,nm
Lylyyolm=1

=23

where w = (wy, w,,, w,,)’ € C* which satisfies w = 1r£1§§n{|wp|} < 2. This completes

the proof.
Lemma (4.1.14)[89]: Let
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i0111+0112 ++91[m

|a1 Lilyly |€ m Z1, 71, 2

l1'l2 ..... lm=1
n

i9211+9212+"'+921m

m
|az 10,1, |€ nZ, I || <, lzI™,

ll,lz,...,lmzl

n

19n11+9n12+"'+9nlm
|an 1112---zm|6’ m 71,7, 2}

m

Ll lm=1

where m = 2,3,--, each a,; i, ;. (0,11, 1z, , Ly = 1,2,---,m) is a complex number which
is independent of z,(p=1,2,,n),i=v—-1, each leq €(—mml(q=1,2,,
m; p, 1y, 1, Ly = 1,2,+-,n) which is independent of z,(p =1,2,-,n),lz| =

max {|zo|}, and each C,,(m = 2,3,--) is a nonnegative real constant which is only
sPsn
dependent on m. Then

n

Am = 1121?211 z |a, lllZ"'lm| <CGupm=2,3,-
ll,lz,...,lm=1
Proof: vz € U™\{0}, according to the hypothesis of Lemma (4.1.14), we have
C ie”ll+9“2+"'+9”lm zZy, Zy, Zp, C 1,2
a e m ot < ) = ) J...I n'
2, lowti, Izl Tzl Tzl S P
ll,lz,"' ,lm:1
2]

Db

lq
In particular, taking 1, = e "m ||z|,q = 1,2, ,m, we conclude that

n
Z |ap1112...zm| < G, p=12..,n
Ll =1
That is
n
Am = max, z | 1yt ( < Cmi M =2,3,0
lll12l.” ;lm=1

This completes the proof.
Now we shall prove the following theorem.
Theorem (4.1.15)[89]: If f € Qg (U™)(Q4,(U™) or Q(U™)), and

n
Dsfp(O)(ZS) o1y +0p1, + -+ O
sl = |ap lllz“'lsle N lezlz ...le,p = 1, 2,...,n,
l11l2;'“;ls‘=1
0 +0 +.--40
Up Ll TVply Pl 5s
t _1 fp(0) . B
where |a, ;.. |e s = o= V—1,0p, € (-m,7](q = 1,2,
2 S

S, L Ly s =1,2,,n,5 =2,3,-~-,m — 1,then
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m-1
D™f(0)(z™ 2
” f(m?( L S mm -1 (1 T z SAS) Iz, zeU"m =34,
) =2

— n —
where AS = 1l'élpa<Xn{le’lz,,,, ,lszllap lllz"'lsl} S = 2, 3’ ,m — 1.

Proof: Assume f € Qz(U™),V z € U™\{0}. Denote z, = ”z—” Let g(2) = (Df(2)) —1-

m-—s+1 m-—s+1
(D?f(2)(z?) + Df (D)2),w = 7—E2E2 s = 2,3,-,m — 1,and ] satisfies |7 =

z|| = max {lz,|}. In view of the hypothesis of Theorem (4.1.15), Lemmas (4.1.9),
n

XV

(4.1.10) and (4.1.13), we conclude that
1 Dm—s+1 0 m-—s+1

(m —s+1)!
1 n | | i9j11+9j12+"'+9jls Dm_s+1gll(0)(Z6n_s+1) le
= — a; ....1€ S ) -
S Jlily-ls (m — S+ 1)' ”Z”
111121”"lS=1
. le
|z ||
n
Giti 01+ +6 1
+ |11, *
llll2l“.’lS:1
7, D O@F ) B,z
Izl (m — s+1)! z|l " |zl
N i | | i9j11+9j12+..-+9jls z, 7, Dm—s+1gls(0)(z(r)n—s+1)
a; ..1.|é '
%ttt lzIl ™ |1zl (m — s+ 1)!
0y, lg=1
1 n | | i9j11+9jlz+“'+9ﬂs Dm—s+lgll(0)(zgi—s+1) le le
< - i 1...le s '
S S Jlilpls (m — s+ 1)' ”Z” ”Z”
llvlz"”'lS=1
n
Git+0jip++0 g
+ z |@j1,1,--1,le °
lleZJ"'JlS=1
-z D" =*g, (0)(zg" ") 7, z, 4 e
izl  (m— s+  lzll "zl
r it t0j1,+ 461
+ |@t,1,1,]e *
l1’121'“llS:1
. le le—1 Dm—s+1gls(0)(z(1)n—s+1)
lzIl ™ lz|l (m — s+ 1)!
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D™t g, (0)(zg"**h) z, 2

1
S35 Z |@j1,1,-1,]

L m—s+Dl Izl Tl
1,02, s =
n — —
S IO
e sz (m — s+ 1)! lzll Izl
1,02, ts=
n —_— p—
N o, ||le| |21, | D™ g1, (0 (z5 )
N P TR P (m — s+ 1)!
ll,lz,"' 'lS=1

1
<< (24 + 245+ +245) = 245

S

Dm—S+lg(O)(Z6TL—S+1)
S f. s—1

Df](O)(ZO o (m - s+ 1) )
In particular, when z, € d,U™, by (3), we deduce that

Dm—S+lg(0)(Z6n—S+1)
S s—1
b f”(o)<zo " (m—-s+ 1! )
Taking into account

Dm—S+lg(0)(Zm—S+1)

DS£,(0) (257, gl HT), p=1,2,n,

by the maximum modulus theorem of holomorphic functions on the unit polydisk and (4),
it yields that

This implies that

1
o1 < 24, zo €0U™ (3)

1
s! <24 p=12-n (4

1 Dm—s+1g(0)(zm—s+1)
_ s—1 0 —
o Dsfp(O) <ZO , i — s+ D) ) < 245,z €0UMp=1,2,--,n.
We have
DSF(0) o1 Dm—s+1g(0)(z(r)n—s+1) s
s! / %0 (m—s+1)! S
That is,
Dm—S+1g(0) (Zm—s+1)
= [p2r@ (z R ) < 24l1zI™, z € U, s
=2,3,m— 1. (5)

By Lemma (4.1.11) and (5), we obtain
m(m — D||ID™f(0)(z™)l|

m!

_ D@1, % [p2r@ (Z'Dm_zi(g)g!m_l))||

m! 2!

(m — 1)Dm_1f(0) (Zm—z'ng(gl)(Zz)

m = 1)1 ' >< 2(1 +n§sAs> llz]|™ .

m—1
(1 + SA5> lz|I™, z € UM, m = 3,4,
S=
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This implies that
ID™f(0)(z™)l| < 2

m! “m(m - 1)




where A; = max {Zﬁ,lz,...,ls=1|ap Lty -l },S =2,3,-,m — 1. Consequently, the

1<p<n
desired result holds. By Lemma (4.1.12), the desired result for f € Q,(U™) or Q(U™) also
holds.
This completes the proof.
Corollary (4.1.16)[89]: Suppose k € N. If f € Qz(U™)(Q4(U™) or Q(U™)), and z = 0 is
a zero of order k + 1 of f(z) — z, then

||Dk+1f(0)(zk+1)|| 2
(k + 1! S (k+ Dk

The above estimate is sharp.
Proof When k = 1, in view of the hypothesis of Corollary (4.1.16) and Lemma (4.1.11) (the
case of m = 2), the result follows. When k > 2,m = k + 1, according to the hypothesis of
Corollary (4.1.16), it is known that A, = 0,s = 2,3,-:-, k. From Theorem (4.1.15), we
deduce that

lz[l***,  zeu™

||Dk+1f(0)(zk+1)||
G+ S+ Dk
This completes the proof.
It is not difficult to verify that
21 dt z, (1 dt z, (7t dt
f(z)=(f —— = — = =,z € U™
0 (1—thr Ao (1—¢k  Ado (1t
satisfies the hypothesis of Corollary (4.1.16). Taking z = (r,0,---,0)' (0 < r < 1), we have
||Dk+1f(0) (Zk+1)|| 2
(k +1)! ~(k+ Dk
Hence, the estimate of Corollary (4.1.16) is sharp.
Corollary (4.1.17)[89]: Suppose k € N. If f is a k-fold symmetric quasi-convex mapping
of type B (quasi-convex mapping of type A or quasi-convex mapping) defined on U™, and
Dtk+1fp (0) (Ztk+1) n Op1,+6p1, +"'+9pltk+1
(tk + 1)! = z |ap 1112---ltk+1|el th+1 21,21y = Zlypyq 0 P
Lilo s li+1=1

= 1) 2)“. In)

0 1 +6 1 +---+0 1
i pl1 "pl2 Pltk+1 1 atk+1fp(0)

|ap Lily - legsn |e et = (tk+1)! 0z, 0z),.
1,2, ,tk+ 1)1, L, lijgs1 = 1,2, ,n,t =1,2,---, then
[P+ @G D] s = DE+2)
(tk + 1)! S (tk+1)- tlkt ’
zEUMt=1,2,-. (6)
The above estimates are sharp.
Proof. It is known that z = 0 is a zero of order k + 1(k € N) of f(z) — z if f is a k-fold
symmetric normalized holomorphic mapping f(z) (f (z) % z) defined on U™. In view of
the hypothesis of Corollaries (4.1.17) and (4.1.16), we conclude that

||Dk+1f(0)(zk+1)”
(k + 1)! S (k+ Dk
That is, (6) holds for t = 1. Assume now that (6) holds for t = 1, 2,---,j for some integer
j = 2. This implies

lz[l**t,  zeUu™

k+1

r

where ,Op1, € (—m, ] (q =

“0Zy 04

lz|l**t,  zeUu™
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DH*HLF(0)(z™* ) [Ticy((r — Dk +2)
tk+ D! S (tk+1) 0k
In view of (7), we take

lz||***tY,ze UMt =1,2,...,j. (7)

[T7=1((r = Dk + 2) ;
R e e
Notice that A, =0,2<m=+#tk +1(t=1,2,--) from the hypothesis of Corollary
(4.1.17). Again according to Lemma (4.1.14) and Theorem (4.1.15), we deduce that
||D(j+1)k+1f(0)(Z(j+1)k+1)”

G+ Dk +1]!

2
ST+ Dk+11G + Dk

)
14 ) (¢ + Dy 12| 0+

t=1

2
STGFDE+11G + Dk

) i
t_ —Dk+2 .
T z(tk +1) [=s(C = 1 ) [|z|| U+ D+
t=1

1

(tk+1)-t!kt
j
~ 2 Mo ((r = Dk +2) -
S+ Dk+10G + Dk 1+; ke 0
_ 2 . H{;;((T’ — 1)k + 2) “ ||(j+1)k+1
~ G+ Dk +11G + Dk £kt z
(0 - Dk +2)

— r ”Z”(j+1)k+1
((G+Dk+1D) -G+ Dk '
That is, (6) holds for t = j + 1. This completes the proof.
It is easy to verify that

!

“1 dt z, [“1 dt zZ, (% dt "
fo=[ —==2 S 2 e
0

2’5 27 2
(1 - thr “170 (1 — th)x 170 (1 = th)x

satisfies the hypothesis of Corollary (4.1.17). Taking z = (r,0,---,0)'(0 < r < 1), we have
DHHLF(0) () [Toy((r — Dk +2)

(tk + 1)! S (tk+1)-tlkt
Hence, the estimate of Corollary (4.1.17) is sharp.

rtk+l ¢ =1,2,.-.

When l; = p,l, == li4; =1 (1 =1,2,,n), we notice that
0,, + tko

tk

for a,, .., # 0. It is obvious that Corollary (4.1.17) (the case of f € Q_B(U™")) is the

tk
corresponding result of [92] (the case of a@ = 0), and the methods of their proofs are
different.
Setting k = 1 in Corollary (4.1.17), we can deduce the following result.
Corollary (4.1.18)[89]: If f € Qg (U™)(Q4(U™) or Q(U™)), and
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D™f,(0)(z™) B Op 1, +0p1++0piy,

l o LN
- |ap lllz---lm|e m z,2, 2,0 =12, ,n,
ll,lz,"‘ ,lm=1
where
FoutOplpt+0piy, 1 ™ f,(0) .
|a” l |e m = — ,l=V—1,Ql
Pt1tz-tm m! 0z, 0z, .0z Pq
: Iy I, = Ln
e (_T[J T[](q = 1; 2; Im)) ll) lZJ'” ) lm = 1' 2' lnlm = 21 31'”;
then

D" f(0)(z™)
m!
The above estimates are sharp.
Proof. Take k = 1 in Corollary (4.1.17). Denote m =t + 1. It follows the result. This
completes the proof. The example which shows that the estimates of Corollary (4.1.18) are
sharp is the same as the example in [14].

< llzl™, zEU"m=2,3,-.

(@] -1)6
When ll = p’ lz — e — lm = l (l = 1, 2,.-. ’n), note that a,rg app - — pp+(m 1) Pl for

m-—1
a_(pp LJ # 0. It is clear that Corollary (4.1.18) is Theorem (4.1.19) of [14].

m—1
Corollary (4.1.19)[89]: With the same assumptions of Corollary (4.1.17), we have
llzI|
f(z)<f LZ,ZEU".
° (1 - thE
The above estimate is sharp.
Proof. By Corollary (4.1.17), applying a method similar to that in [14], Corollary (4.1.19)
can be proved.
Corollary (4.1.20)[89]: With the same assumptions of Corollary (4.1.17), then we have

|z ||
IDf(2)z]|| > ze U™

(1 —lzl[*)%

The above estimate is sharp.

Proof. According to Corollary (4.1.17), with an analogous method in [14], Corollary
(4.1.20) can be proved.

It is easy to verify that

Z1 dt z, ([~ dt zZ, [ dt
f(Z) = f -_— _—_— .. —_ 7 € U’I’l
0

k E,Z 0 k 2! ’Z 0 k 2
(1 — th)k (1 — th)x (1 — th)k
satisfies the condition of Corollaries (4.1.19) and (4.1.20).
Taking z = (r,0,---,0)'(0 < r < 1), we have

r

dt r
fo=[ —=— ad IDf@2l=——

(1 — thx (1-rk)k
Therefore the estimates of Corollaries (4.1.19) and (4.1.20) are both sharp.
Whenk =1,l; =p,l, ==1,=1({=1,2,+,n), in[14], respectively.
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Section (4.2): Bieberbach Conjecture in Several Complex Variables

In one complex variable, the following theorem is classical and well-known.
Theorem (4.2.1)[98]: (See [99]). If f(z)=z +)X%-, a,z™ is a normalized
biholomorphic function on the unit disk U in C, then

la,| <nn =2,3..,

for biholomorphic starlike mappings via their geometric properties. Naturally, people
attempt to study the estimates of all homogeneous expansions for biholomorphic starlike
mappings from their analytic properties. In 1999, Roper and Suffridge [1] pointed out that
the estimate of the second homogeneous expansion for biholomorphic starlike mappings is
invalid by providing a counterexample. Owing to this reason, subsequently Gong [15]
proposed the following conjecture.
Conjecture (4.2.2)[98]: If f : U™ — C™is anormalized biholomorphic starlike mapping,
where U™ is the open unit polydisk in C™, then

m
1P fgfl,)(z"“)” < mllzl™z €Unm=23,..

In fact, the above conjecture is the Bieberbach conjecture in several complex variables
due to the facts that the Bieberbach conjecture for biholomorphic mappings in several
complex variables does not hold and the properties of biholomorphic starlike functions are
the most similar to biholomorphic functions among the subclasses of biholomorphic
functions. Up to now, only the estimates of the second and third homogeneous expansions
for biholomorphic starlike mappings were in essence discussed. It is shown that the
difficulties of the Bieberbach conjecture in several complex variables is not less than the
Bieberbach conjecture in one complex variable. The related results may consult refs [100],
[14], [101], [103].

For X denote a complex Banach space with the norm [|-|| , X* be the dual space of X, B be
the open unit ball in X, and U be the Euclidean open unit disk in C. Also, let U™ be the open
unit polydisk in C", and let N be the set of all positive integers. We denote by dU™ the
boundary of U™, andd,U™ the distinguished boundary of U™. Let the symbol’'mean
transpose. For each x € X\{0}, we define

T(x) ={Tx €X": [Tl = 1, Tx(x) = [lx||}-
By the Hahn-Banach theorem, T'(x) is nonempty.
For H(B) be the set of all holomorphic mappings from B into X. We know that if f €
H(B), then

(ee)

1
fG) = = D@ — 0",
n=0
for all y in some neighborhood of x € B, whereD™f(x) is then-th-Fréchet derivative of f
at x,and forn > 1,

DM )y =) =D" ) —%....y —x ).

n
Furthermore, D™ f (x) is a bounded symmetric n-linear mapping from I1;_, X into X.
We say that a holomorphic mapping f: B — X is biholomorphic if the inverse f~1 exists
and is holomorphic on the open set f(B). A mapping f € H(B) is said to be locally
biholomorphic if the Fr'echet derivative Df (x) has a bounded inverse for each x € B. If
f: B = X is aholomorphic mapping, then we say that f is normalized if f(0) = 0 and
Df(0) = I, where I represents the identity operator from X into X.
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We say that a normalized biholomorphic mapping f : B — X is a starlike mapping
If £(B) is a starlike domain with respect to the origin.

Suppose that 2 € C" is a bounded circular domain. The first Fr'echet derivative and
the m (m = 2)th Fr'echet derivative of a mapping f € H() at point z € 2 are written
by Df (z), D™f (z)(a™1,"), respectively. The matrix representations are

d
Df (z) = ( ! p(Z)) D™ f(z)(a™1,)
1<pk<n,

aZk

n

= 2 amfp(Z) all - al 1
m— )

03,03l - 03l, _4

ll,lz,...,lm_:[:l 1Sp,kSn

where £ (z) = (,(8), 2(2),..., f(2)), a = (ay,ay,...,a,) € C".

We now recall some definitions as follows.
Definition (4.2.3)[98]: (See [95]). Let f € H(B). Itis said that f is k —fold symmetric if

e _i”i f(ezT”i x) = f(x)forall x € B,wherek e Nandi = v—1.

Definition (4.2.4)[98]: (See [96]). Suppose that £ is a domain (connected open set) in X
which contains 0. It is said that x =0 is a zero of orderk of f(x)if f(0) =
0,...,D*"1f(0) = 0, but D¥f(0) # 0, where k € N. The definitions both reduce to the
case X = C. According to Definitions (4.2.3) and (4.2.4), it is shown that x = 0 is a zero
of order k + 1(k € N) of f(x) — x if fis a k —fold symmetric normalized holomorphic
mapping (f(x) # x) defined on B. However, the converse is fail.

We denote by S*(B) the set of all normalized biholomorphic starlike mappings on B.
We will establish the sharp estimates of all homogeneous expansions for a subclass of
starlike mappings on the unit ball in complex Banach spaces, and the sharp estimates of all
homogeneous expansions for the above generalized mappings on the unit polydisk in C™. It
Is shown that the Bieberbach conjecture in several complex variables is proved under the
restricted conditions, and the derived conclusions reduce to the classical results in one
complex variable.

In order to obtain the desired results, we need to provide the following lemmas.
Lemma (4.2.5)[98]: Letf,g: B - C € H(B),f(0) = g(0) = 1,

Fe5 )= .9 (e x) = gk € ),

where i = V=1.Iff(x) + Df (x)x = g(x)f(x), then
kD*f(0)(x*)  D*g(0)(x*) skD**f(0)(x*")

k! k! ’ (sk)!
_D*gO@G™) | DEV kg(O(*TVY) DG
CD] ((s — Dk)! k!
DFg()(x*)  DEDEF(0)(x (7)) _
-+ el . ((s—l)k)! ,X € B,s =2,3,...

Proof. According to the hypothesis of Lemma (4.2.5), it yields that
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Lk DD*f(0)(x*) | (2k + 1D f(0)(x*¥) (sk + DD¥F0)(x*)

k! T (2k)! Tt (sk)!
_ D*g(0)(x*) D g(0)(x**) D¢ g(0)(z%%)
B (1 T Ty YT Gl )

D*f(0)(x*) D f(0)(x**) D f(0)(x*)
X <1+ o oo T T G +>
A direct computation shows that

(k + DD*F(0)(x*) (2k + DD F(0)(x*") (sk + 1)DfF(0)(x*%)
+ k! T (2k)! ot (sk)!
_ . DFF(O*)  D*g(0)(x*¥) D*f(0)(x*) D*g(0)(x")
=1+ k! T k! + (2k)! T k!
D*f(0)(x*) D*g(0)(x**) Dk f(0)(x**)  D¥kg(0)(x")
k! T aor Tt T G k!
. D(s—l)kf(o)(x(s—l)k) ey D(s—l)kg(o)(x(s—l)k) . Dkf(O)(xk)
((s = Dk)! ((s = Dk)! k!
D¢ g(0)(x**)
(sk)!

Compare the homogeneous expansions of both sides in the above equality. The result
follows, as desired. This completes the proof.
Lemma (4.2.6)[98]: Supposethatg: B - C € H(B),g(0) = 1.1f Re(g(x)) > 0,x €
B, then
D™ g(0)(x™ )|
(m —1)!

Proof. Fix x € B\{0}, and denote x0 = ﬂ We define p(§) = g(¢x0),& € U. Then

p € HU),p(0) = LRe(p()) = Re(g(§x0)) > 0,¢ € U, and
m-1 _ me 9O )
1+Z b, € 1+ZD o
Comparing the coefﬁ01ents of both sides in the above equality, we have
D™ g (0)(xg" ™) _ .
(m—1)! -oomeb
Note that |b,,—1| < 2,m = 2,3,... (see [17]). Consequently, the desired result follows .
This completes the proof.
Lemma (4.2.7)[98]: Letf,g: B - C € H(B),f(0) = g(0) = 1,andx = 0beazero
of order k + 1lof xf(x) — x (resp.xg(x) — x). If f(x) + Df (x)x = g(x)f(x), then
(m—1D™ ' f(0)(x™ ") D™ 'g(0)(x™)
(m—1)! - m-1 "
-1 Dm—l 0 m—1
= k+1,k+2,...,2k,(m ) fO& )
(m—1)!
_ D™ g (0)(x™ ™) N D¥g(0)(x*) D*f(0)(x")
B (m —1)! k! k!
Proof. In view of the hypothesis of Lemma (4.2.7), it is shown that

<2|x|™t,x €eB,m =2,3,..

m=2,3,..

m=2k +1.
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G+ DDFOGES) (k4 DO mDm )G

k! * (k + 1! Tt (m—1)! i
(142006 B0 @E | om0y )
y <1 N Dkf(l(:')(xk) N Dk+z£(3)§y)c!k+1) 4o +Dm—1f((onz+xr:;!1) _|_>
A simple calculation shows that
Ut 1)1;(’<!f(o><xk) N 2)(1;’<++1fl()c!>)(xk+1) . +mDmEZ(_01§Tm_1) ..
1 Dkf(/i)!)(Xk) N Dkg(;?(xk) N Dk+(1]{<+0)<1§'!‘+1) N Dk+(1icg(i>>%:<+1)

DZk—lf(O)(xZR—l) N D2k—1g(0)(x2k—1) N DZkf(O)(ka)
2k - 1)! 2k — 1)! (2k)!
N D*f(0)(x*) D*g(0)(x") N D?*g(0)(x**) N
k! k! (2k)! '

Comparing the homogeneous expansions of both sides in the above equality, we obtain the
desired results. This completes the proof.
We now present the main theorems
Theorem (4.2.8)[98]: Let f: B - C € H(B),F(x) =xf(x) € S*(B),and F be a
k (k € N) —fold symmetric mapping on B. Then

DSFHIE(0) (xSk*1) - Hﬁzl((r - Dk + 2)

(sk + 1)! - slks

and the above estimates are sharp.
Proof. We write W (x) = (DF(x))_lF(x). Note that f(x) # 0if F(x) = xf(x) € S*(B)
(see [17]). A simple calculation shows that

(DF(x)) F(x) =

lx||5**,x € B,s =1,2,...

xf (x)
FG) +DfGOx "

Re|T, ((DF(x))_lF(x)>] > 0 Re <1 * D]]:((;C))x

In view of F(x) = xf(x) € S*(B), then it is shown that

eI p, (1 +Df(x)x> > 0,x € B\{0} 8)
T,(W(x)) f(x) '

(see [102]). Letting g(x) = 1+ Df(x)x f(x),x € B,theng: B - C € H(B),g(0) =
f(0) = 1,Reg(x) > 0,x € B, and

f)+Df()x = g(x)f(x) (9)
from (8). Also since F(x) = xf(x) isak (k € N) —fold symmetric mapping, we know that

2mi

f(eT x) = f(x) and g(eZT”i x) = g(x), where i = +v—1. By inductive method, we
now prove that

sk sk S —
: ]Z(S?)('x | H”l((rs.kls)k "2 ot x € Bs =1.2,.. 10

When s = 1,(10) holds from (9), Lemmas (4.2.5) and (4.2.6) (the case m = k + 1).
Assume that

€ B

and

>> 0,x € B\{0}).
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[DFFO) )| _ iy (= Dk + 2)
< _ sk — . .
R < Tk |x[|**x € B,s =1,2,...,q (11)
We need only to prove that (10) holds for s = g + 1. To see this, taking into account
Lemmas (4.2.5), (4.2.6) and (11), it is shown that

(q_+ Dk[DEDEFO)(x D) _

((g + Dk)!
D+Vk g(0)(x @+ k) _I_Dqu(o)(qu) DEF0)(x) +.“+D"g(0)(x")
((g + Dk)! (gk)! k! k!
DIkf(0)(xk) [D@*Dkg(0)(x@+VK)|  |Dkg(0)(x7k)|
. (qk)! ((q + Dk)! (qk)!
|Dkf(0)(xk)| . |D*g(0)(x")| NIOIRI]
K K qh)!

2-2
< 2||x |@+D* 4 — lIx | @D 4. 42
Mé_yy (= Dk + 2)

Y lIx lI(q + )"
n‘?+1 (r—Dk + 2
- Tk ) lIx [I(q + 1.

This implies that
|D@+Dk £(0) (x(a+Dk)| Hq+11((r— Dk + 2)
(@ + DK = (q + DIk
On the other hand, we see that
Dsk+1F(0)(xsk+1) B DSkf(O)(XSk)
Gk + D Gl
if F(x) = xf(x). Hence according to (10) and (12), we derived the desired result. It is not
difficult to verify that

l|x||(@*Vk x € B,

X € Bs =1,2,... (12)

X

F(x) = X €EB

2)

(1 — (Tu(x))k)k

satisfies the condition of Theorem (4.2.8), where=1. Wesetx = ru (0 <r < 1),adirect
computation shows that

DSK+1E(0)(xSk*1) nﬁ ((r =Dk + 2)

(sk + 1)! slks
Then it is shown that the estimates of Theorem (4.2.8) are sharp. This completes the proof.
When k = 1, we immediately obtain the following corollary.
Corollary (4.2.9)[98]: Letf : B - C € H(B),F(x) = xf(x) € S*(B).Then
ID™F(0)(x™)| m 3
<m|x|™x € Bbm =2,3,..,,

m!
and the above estimates are sharp.

Theorem (4.2.10)[98]: Letf : B - C € H(B),F(x) =xf(x) € S*(B),andx =0bea
zero of order k + 1of F(x) — x. Then

rsk+l o =1.,2,...
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m-—1
2(k + 2)
(m—-1Dk
for x € B. The above estimates are sharpform = k +1landm =2k + 1.
Proof. According to the conditions of Theorem (4.2.10), Lemmas (4.2.6) and (4.2.7), we
deduce that

Dm—l 0 xm_l 2
| f( )( )l < _1||x||m—1,x EBm=k+1,k+2,..,2k,

m!

2
ID™F(0)(x™)|| (— x|\ m = k +1,k+ 2,...,2k,
i x| m=2k +1

(m—1)! m
and
(m — DD F(O)(x™ )]
(m—1)!

_ |p™ g (0)(x™ ) N D*g(0)(x*)

B (m—1)! k!

DFO(M)| <D™ g(0)(x™ DI N D¥g(0)(x*) D*f(0)(x")

k! (m—1)! k! k!
22 2(k + 2)

< 2||x||** +? l|x]|?* = llx||?*,x € Bbm =2k +1.

The result follows, as desired. The example which shows the sharpness of Theorem (4.2.10)
Is the same as Theorem (4.2.8). This completes the proof.
Theorems (4.2.8), (4.2.10) and Corollary (4.2.9) show that almost every homogeneous
expansion for F(x) lies in a ball exactly if the image set of F(x) = xf(x) is a starlike
domain with respect to the origin.
Let each m; (Il =1,2,...,n) be a non-negative integer, N = my + m, + -
+ m, €N, and m; = 0 mean the corresponding components in Z and F(Z) are omitted.
We denote by U™ (resp. UN) the unit polydisk of C"™ (resp.CM).
Theorem (4.2.11)[98]: Let fl: U™ - C € H{U™),l =1,2,...,n,
F(Z) = (Z:1f1(Z1), Z2f2(Z2), .., Znfn(Zn) € ST(UM),
and F(Z) be a k (k € N) —fold symmetric mapping on UY. Then
”Dsk+1F(0)(Zsk+1)” < Hﬁzl((r — Dk + 2) ”Z”sk+1’
(sk+1)! s'ks
Z =(Zy,2Zy...,2,) €EUN,s =1,2,..., (13)
and the above estimates are sharp.
Proof. Let F(2) = (F,(Z,),F,(Z,),...,E,(Z,))". According to the hypothesis of Theorem
(4.2.11), forany Z = (Z,,Z,,...,Z,)" € UV, ityields that

(DF(2)) " F()(DF,(2)) " Fi(Z0), (DF:(22)) " Fo(Zo),-.., (DFu(Z2))” Fa(Z))’
by a simple computation. Note that
(DF(2)) F(2) = (O,...,(DFl(ZZ))_lFl(Zl),...,O) if Z = (0,..,7,,..,0) € UN,1
=1,2,...,n.

We set
W(Z) = Wy, War..., W) = (Wansee o, Wit Wty e oo, Wamas oo s Wt oo, W)’
= (DF(2))'F(2).
Then it yields that
F €S*(UN) & F, €S*(U™),l=1,2,...,n
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from the criterion of starlike mappings on U™ (see [12]). Also it is easy to see that each
F,(l =1,2,...,n) is a k (k € N) —fold symmetric mapping on U™ if F is a k (k €
N) —fold symmetric mapping on UN. Taking into account the facts D™F(0)(Z,,) =

max {D™F,(0)(Z")} and Z = max{Zl} here ||Z;|[;n, (resp.||Z||y) is briefly written

as||Z;|| (resp.||Z]]), it is shown that (13) holds from Theorem (4.2.8) (the case of X =
C",B = U™). It is easy to verify that

!

Z1 Z, Zn
5 ) 5 e

(1 _Z )k (1 Z 1)k (1 _Zrllcl)E

satisfies the condition of Theorem (4.2.8), where Z; = (Zy4,Zy3,...,Z1m,)" € g™ =

1,2,...,n.Taking Z; = (r,0,...,0) (0 r<1),l =1,2,...,n, we easily see that
|DSK*IF(0)(ZsF Y| TS (r— Dk + 2

(sk+1)! B slks

It is shown that the estimates of Theorem (4.2.11) are sharp. This completes the proof.

Taking k = 1 in Theorem (4.2.11), we readily obtain the following corollary.

Corollary (4.2.12)[98]: Let fl: U™ - C € H{U™),l =1,2,...,n

F(Z) = (Z1£1(Z1), Z2f2(Z2), .., Znfu(Z2))" € S™(UY).

D™F(0)(Z

| gn?( m ) <mlZI™Z = (Z,,2Z,,...,Z,) € UNs,m=2,3,..,,
and the above estimates are sharp.
Theorem (4.2.13)[98]: Let fl: U™ - C € HWU™),l =1,2,...,n

F(Z) = (Z1£1(Z1), Z2f2(Z2), ..., Znfu(Z2))" € S™(UY),
and Z = Obeazerooforderk + 1(k € N)of F(Z) —Z. Then

( 2
— IIZIIm =k +1,k+2,..,2k,

ID™F(0)(Z™)| <i
m! = Z(k +2)
mllZ“ m=2k +1

forZ € UN.The above estimates are sharpform = k +landm =2k +1.

Proof. Similar to that in the proof of Theorem (4.2.11), we derive the desired result from
Theorem (4.2.10) (the case of X = C™, B = U™). The sharpness of Theorem (4.2.13) is
similar to that in Theorem (4.2.11). This completes the proof.

Theorems (4.2.11), (4.2.13) and Corollary (4.2.12) state that almost every
homogeneous expansion for F(Z) lies in a polydisk exactly if the image set of F(Z) =
(Z1f1(Z1), Z2f5(Z5), ..., Z,fn(Z,)) is a starlike domain with respect to the origin.
Theorem (4.2.14)[98]: Suppose that F(2) = (F1(3),F;(%2),...,E, (%)) € H({U™),

F(Z) = Z=(Z2y,24...,2,) EUN

rsk+l o =1.2...

Then

andF(z)is a k (k € N) —fold symmetric mapping on U™ IfRe DFJ((Z))Z > 0,z€ U™\
J
{ 03, wherej satisfies the condition |z;| = ||zl = 1rnlax{|zl|}, then
<lsn
DSk*1F(0)(z5%+1 _,((r— Dk + 2
|| ( )( )” < T—l(( ) ) ||Z||Sk+1,Z € Un,.S' =1 ’2’.”’
(sk + 1)! slks

and the above estimates are sharp.
Proof. Fix z € U™ \{0}, and denote z, = —. We define
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llzll ||
hi(§) = —Fj(§20),§ €U, (14)
Zj
where j satisfies the condition |z;| = [|z]| = max{lzll} A direct calculation shows that

W©E _ DF(E50)ize
KE T FEa)

Hence, we conclude that
()¢
Re <h(€)>> 0,¢ e U\{0}
DFj(3)z

o) > 0,z € U™ \{0}. This implies that h; € S*(U), and h; is a k —fold
]

symmetric function.
On the other hand, it is not difficult to see that

D™F;(0) (i
€+Z mo g Ilzllz (!)(Zo)E

from (14). Compare the coeﬂiments of both 51des in the above equality. We obtain
lzll D™F;(0)(=q")
3z m!
Therefore, we deduce that
|DSk*1F;(0)(z8<+ )| Hﬁzl((r — Dk + 2)

,¢ € U\{0}.

from Re

= a,m=2,3,..

(sk+1)! st ks %o € 0UT
from Theorem (4.2.8) (the case of X = C,B = U). When z, € d,U", we have
DR 0)(26 )| _[T7=y =Dk + 2
sk 1)1 < Tk ,L=1,2,...,n

Also since DS**1F,(0)(z%%*1) is a holomorphic function on U™, applying the maximum
modulus theorem of holomorphic functions on the unit polydisk, we obtain

[DH¥*R0)(z6 )| _[T7=y =Dk + 2

,Zg €E0U™ML=1,2,...,n,

(sF+1)! B s'ks
Le.,
Dsk+1F(0 Zsk+1 s= T—l)k + 2
| (;k+)1()l0 ) === (slks Izl 5 € UM 1=12,...,n
Hence,

|DSKHE(0) (25 )| TT5=y (r— Dk + 2

(sk+1)! s!ks
It is easy to check that

||Z||Sk+1,Z € Un.

31 32 4
F(z)=|& > > ,...,—nz ,Z:(Zl;ZZ;---;Zn), eU”

(1-2)f  (1-gb)F  (1-ah)F
satisfies the condition of Theorem (4.2.14). We setz = (7,0,...,0)' (0 < r < 1),asimple
calculation shows that
D F@) )| Tz (= D)k + 2
(sk + 1)! B slks
Then it is shown that the estimates of Theorem (4.2.14) are sharp. This completes the proof.

rsktl s =1,2, ...
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When k = 1, we directly have the following corollary.

Corollary (4.2.15)[98]: Suppose that F(z) = (Fl(z),FZ(z),...,Fn(z))' € HUM). If
DF (2)z

Re—Z

Fj(z)
then

> 0,z € U™\{0}, where j satisfies the condition |Zj| = ||z = 1mlax{lzll},
slsn

ID™F(0)(z™)ll

m!
and the above estimates are sharp.

Theorem (4.2.16)[98]: Suppose that F(3z) = ( F1(2),F;(3), .., F.(2)) € H(U™),

< m|z]|™z €U",m =23,..,

andz = 0is a zero of order k +1(k €N) of F(z) — z. IfReD?((;)Z > 0,3 €
]
U™ \{ 0}, wherej satisfies the condition |z;| = ||z|| = max 1 <[ < n{|z,[}, then

m—1
2(k + 2)
(m—-1k
for z € U™ The above estimates are sharpform = k +landm =2k + 1.
Proof. With the analogous arguments as in the proof of Theorem (4.2.14), it follows the
desired result from Theorem (4.2.10) (the case of X = C,B = U). The sharpness of
Theorem (4.2.16) is the same as Theorem (4.2.14). This completes the proof.

Theorems (4.2.14), (4.2.16) and Corollary (4.2.15) show that almost every
homogeneous expansion for F(z) = (F,(z), F2(3), ..., F,(2))’ lies in a polydisk exactly if
ng((j))z is the right half plane of the complex plane C .

Section (4.3): A Subclass of Quasi-Convex Mappings of Type B and Order a in Several
Complex Variables

In geometric function theorey of one complex variable, people show great interest in
the following classical theorem.

Theorem (4.3.1)[104]: (see [105]) If f(z) = z + X5, a,, IS @ normalized biholomorphic
convex function of order a on the unit disk U in C, then

n
1
la,| < ml_[(k -2a),n=2,3,..,
" k=2

and the above estimates are sharp.

We are naturally to ask whether the corresponding result in several complex variables holds
or not? We shall in part provide an affirmative answer.

Concerning the sharp estimates of all homogeneous expansions for a subclass of quasi-
convex mappings (include quasi-convex mappings of type A and quasi-convex mappings of
type B) in several complex variables, it was shown that the above result in general is invalid
(see [1]). However, on a special domain, such as the unit polydisk in C™, Liu [14], Liu and
Liu [89] obtained the sharp estimates of all homogeneous expansions for quasi-convex
mappings (include quasiconvex mappings of type A and quasi-convex mappings of type B)
under different restricted conditions respectively. On the other hand, Liu and Liu [92]
derived the sharp estimates of all homogeneous expansions for a subclass of quasi-convex
mappings of type B and order a (include quasi-convex mappings, quasi-convex mappings
of type A and quasi-convex mappings of type B). We mention that the family of quasi-
convex mappings of type B and order o is a significant family of holomorphic mappings in
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several complex variables, and the Bieberbach conjecture in several complex variables (i.e.,
the sharp estimates of all homogeneous expansions for biholomorphic starlike mappings on
the unit polydisk in C™ hold) (see [15], [17], [101]) is a very significant and extremal difficult
problem. Owing to this reason, the sharp estimates of all homogeneous expansions for quasi-
convex mappings of type B and order a seem to be a meaningful problem as well.

For X denote a complex Banach space with the norm ||. ||, let X* denote the dual space
of X, let B be the open unit ball in X, and let U be the Euclidean open unit disk in C. We
also denote by U™ the open unit polydisk in C*, Bn the Euclidean unit ball in C* and N* the
set of all positive integers. Let dU™ denote the boundary of U™, (U)™ be the distinguished
boundary of U™. Let the symbol " mean transpose. For each x € X\{0}, we define

T(x) ={Ty € X":||IT, || = 1, T, (x) = lIxl}.
By the Hahn-Banach theorem, T'(x) is nonempty.
Let H(B) be the set of all holomorphic mappings from B into X. We know that if f € H(B),
then
= 1
HOEDI=PUIGICED
n=0
for all y in some neighborhood of x € B, where D™ f (x) is the nth-Frechet derivative of f at
X, and forn > 1,
D" f()((y—x)") =D"f(x) (y — x, ...,y — x).
n
Furthermore, D™ f (x) is a bounded symmetric n-linear mapping from Hj-;l X into X.

We say that a holomorphic mapping f: B — X is biholomorphic if the inverse f~1
exists and is holomorphic on the open set f(B). A mapping f € H(B) is said to be locally
biholomorphic if the Frechet derivative Df (x) has a bounded inverse for each x € B. If
f:B — X is a holomorphic mapping, then we say that f is normalized if f(0) = 0 and
Df(0) = I, where | represents the identity operator from X into X.

We say that a normalized biholomorphic mapping f: B — X is a starlike mapping if f(B) is
a starlike domain with respect to the origin.

Suppose that Q € C™ is a bounded circular domain. The first Frechet derivative and the
m(m > 2)-th Frechet derivative of a mapping f € H(Q) at point z € Q are written by
Df(z),D™f (z), respectively.

Definition (4.3.2)[104]: (see [92]) Suppose that a € [0,1) and f: B — X is a normalized
locally biholomorphic mapping. If

Re (T, |(DF ) (D F @) + DF )M} = allxl,  x€B,
then f is said to be quasi-convex of type B and order a.
Let Qg (B) be the set of all quasi-convex mapping of type B and order o on B.
Definition (4.3.3)[104]: (see [94]) Suppose that f:B — X is a normalized locally
biholomorphic mapping, and denote

Gr(a,B) =

2a _a+p
T, [(Df (@) (flaw) - f(Bw)| «—F

If
ReGs(a, pB) > 0, u€dB,a,peU,
then f is said to be a quasi-convex mapping of type A on B.
We denote by Q4(B) the set of all quasi-convex mapping of type A on B.
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Definition (4.3.4)[104]: (see [16]) Suppose that f:B — X is a normalized locally
biholomorphic mapping. If

Re (T |(Df () (0 ()(x?) + Df )|} >0,  x€B,
then f is said to be a quasi-convex mapping of type B on B.
We refer to the set Qg (B) as the set of all quasi-convex mapping of type B on B.
When X = C", Definitions (4.3.2) and (4.3.3) are the same definitions which were
introduced by Roper and Suffridge [1].
Definition (4.3.5)[104]: (see [94]) Suppose that f:B — X is a normalized locally
biholomorphic mapping. If

Re{T, [(DF@) " (fG) - fGx)|} >0, xeBeD,
then f is said to be a quasi-convex mapping on B.
Let Q(B) be the set of all quasi-convex mapping of type B on B. Gong [16] proved the
inclusion relation

Qa(B) = Q(B) c Qp(B).

Indeed, Definitions (4.3.3), (4.3.4) and (4.3.5) reduce to the criteria of biholomorphic
convex functions in one complex variable.
Definition (4.3.6)[104]: (see [95]) Let f € H(B). It is said that f is k-fold symmetric if

21l

exp(—(2mi)/k))f(e k x) = f(x) forall x € B,

where k € N*and i = v—1.
Definition (4.3.7)[104]: (see [96]) Suppose that Q is a domain (connected open set) in X
which contains 0. It is said that x =0 is a zero of order k of f(x) if f(0) =
0,..,D*1£(0) = 0, but D¥£(0) # 0, where k € N*.
According to Definitions (4.3.5) and (4.3.6), it is easily shown that x = 0 is a zero of order
k+1(keN)of f(x)— x if fis a k-fold symmetric normalized holomorphic mapping
f(x)(f(x) £ x) defined on B. However, the converse is falil.
Let Qak+1(B) (resp. Qpr+1(B), Qr+1(B)) be the subset of Q4 (B) (resp. Qg(B), Q(B)) of
mappings f such that z = 0 is a zero of order k + 1 of f(2) — z.

In order to prove the desired results, we need to provide some lemmas as follows.

Lemma (43.8)[104]: Let @ € [0,1),f,p: B — C € H(B), f(0) = p(0) = L, f (%) =

F0.p(5ox) =pk €N, and  f(x) +3Df(0x + DAF()(?) = (F(x) +

Df (x)x)(a + (1 — a)p(x)). Then
k(k + DD*f(0)(x*) (1 —a)D*p(0)(x*)

k! k! ’
sk(sk + 1)DS%£(0)(x5%)
(sk)!
_ 1= oD (A~ a)DEDkp(0) (xS~ Dk)
B (sk)! ((s — Dk)!
(k + 1)D*f(0)(x*) (1 — a)D*p(0)(x")
' k! o k!
s—1k s—1)k
. ((S — Dkt 1)D( i f(O)(x( i ),x €EB,s=23,...
((s — 1)k)!

Proof In view of the hypothesis of Lemma (4.3.8), we have
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Ly et D2D*FO)(x)  Rk+12DHFO0)(x*) — (sk+1D2D¥f(0)(x*)

ki * 2! o !
+ ces
B (k + 1) DEF(0O)(x*)  (2k + 1) D#*f(0)(x?¥) (sk + 1) D*£(0) (x*%)
a (1 + k! T (2k)! Tt (sk)!
(1 —a) D*f(0)(x*) (1 —a) D*f(0)(x?¥) (1 — a) DS £(0)(x%)
' (1 T k! T (2k)! ot (sk)!

+>

A simple calculation shows that
L B DPDE@GS) | @+ DPDHFOG™) | (sk+ DPDHFO)E™)

ki 2! * Gh)!
+ cee
(k + DD*F(0)(x*) (1 —a)D*p(0)(x*) (2k + 1)D**f(0)(x?*)
=1+ k! T k! T (2k)!
(1 —a)D*p(0)(x*) (k+ 1)D*f(0)(x*) (1 —a)D*p(0)(x**)
* k! ' k! * (2k)! T
(sk + DD F(0)(x*) (1 — a)D*p(0)(x*)
_|_
(sk)! k!
. ((s = Dk + 1)DE~Dk£(0)(x5-DFK) (1 — @)DE~Vkp(0)(x~DK)
((s — 1)k)! ((s — 1)k)!
(k+ DD*F(0)(x*) (1 —a)D*p(0)(x"F)
' k! * (sk)! o

Compare the homogeneous expansions of the two sides in the above equality. We derived
the desired result.
Lemma (4.3.9)[104]: Let « € [0,1),f,p:B > C€H(B),f(0)=p(0)=1.Ifx=01isa
zero of order k + 1(k € N*) of xf(x) — x (resp. xp(x) — (x)), and f(x) + 3Df(x)x +
D2f(x)(x?) = (f(x) + Df (x)x)(a + (1 — @)p(x)), then for any x € B,

m(m — 1)D™ ™ f(0)(x™")

(m—1)!
(1—a)D™ 'p(0)(x™) 3
n= 1! =k+1,..., 2k
(1-a)D™ 'p(0)(x™™") (1= a)D*p(0)(x*) (k+ DD F(O)(x*)
m = 1)1 + ol . 7l ,m=2k+ 1.

Proof. According to the conditions of Lemma (4.3.9), we obtain
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L (RH 2D | 2k + DDFFOG)  mIDm )G

k! + (2k)! Tt (m—1)! e
(14 (k+ 1) D*f(0)(x*)  (2k + 1) D**f(0)(x%*)
B ( k! + (2k)! T
mD™ £ (0)(x™ 1)
(IO )
(1 —a)DFF(0)(x*) (1 — a)D**f(0)(x*")
( K + 2! *
(1 - a)D™ 1 f(0)(x™ 1)
* (m — 1)! * )

A direct computation shows that
(k +1)2D*f(0)(x*) N (2k + 1)?D?*£(0) (x*) N m?D™ 1 (0)(x™ )

k! (2k)! e (m—1)!
_ (k +1) D*f(0)(x") L a — a)D* f(0) (x?¥) N (1= a)D*p(0)(x")
k! (2k)! k!
(k+ DD*F0)(x) N (1 — a)D**p(0)(x*") - mD™ £ (0)(x™ 1)
k! (2k)! (m—1)!
(1-a)D™ 'p(0)(x™ 1)
+ -+ = D! + -

Compare the homogeneous expansions of the two sides in the above equality. It follows the

desired result.

We now begin to establish the desired results.

Theorem (4.3.10)[104]: Let a€][0,1),f:B—>C€H(B),f(x)+Df(x)x #0,x €

B,F(x) = xf(x) € Q§(B), and F is a k(k € N*)-fold symmetric mapping on B. Then
|DS¥+1F(0) (xS*+ 1) || - S(r=Dk+2-2a)

(sk + 1)! - (sk + 1)s'ks
and the above estimates are sharp.
Proof Let W(x) = (DF (x))_lD(DF(x)x)x A straightforward computation shows that

(f(x) + 3Df(x)x + D2f (x)(x?))x
(DF(x)) "D(DF(0)x)x OETIOr ,X € B.
Since F(x) = xf(x) € Qg (B), then according to Definition (4.3.2), we see that
(f (x) +3Df (x)x + D*f(x)(x*) — a(f (x) + Df (x)x)>
(1 - a)(f(x) + Df (x)x)

lIx||5%*t,x € B,s = 1,2, ...

T —
_ Re< (Vz(f);uﬁ[”x”) >0, x€B\{0) (15)
Letting
f(x) +3Df(x)x + D*f(x)(x*) — a(f(x) + Df (x)x) x € B{O);
p(x) = (1—a)(f(x) + Df(x)x) ’ ' (16)
1, x=0,

then p: B > C € H(B),p(0) = £(0) = 1,
f(x) +3Df(x)x + D*f(x)(x*) = (f(x) + Df ()x)(a + (1 — a)p(x)).
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Also since F(x) = xf(x) is a k(k € N*)-fold symmetric mapping, then f (e%x) = f(x)

271l

and p (eTx> = p(x). We now deduce that
|Dsk£(0)(x*F)| s(r—-Dk+2- Za)
< sk =
Gt (sk + Ds! kS Il x € B,s = 1,2,... (17)
hold by inductive method. When s = 1, (17) holds from Lemma (4.3.8) and [98] (the case
m = k + 1). We assume that
|Dskf£(0)(x55)| S_(r=Dk+2-2a)
< — sk —
Gl < Gk + D5k |x||**,x € B,s =1,2,..,q. (18)
It suffices to prove that (17) holds for s = g + 1. For this purpose, by applying Lemma
(4.3.8), (18) and [98], we know that
(g + Dk((g + Dk + 1)|DUtDEfF(0)(x@+Dk)|

((q + Dk)!
_ | L= oDOEpO(E) | (1~ a)DTp@GT) (k+ DDFOGH)
((q + Dk)! (qk)! k!
L A= )DP@E) (gk + DDf(O)(x™)

k! (gk)!
. A =a)[pDep0)(x @ V¥)| (1 = a)[DT*P(0)xT)]
B ((q + Dk)! (qk)!
(k+ DD O], A-0)D PG

| |
e ;

(gk)!

< 2(1 = @l @K 4 (e 4 1y - 2E =D 20— @)

||x||(q+1)k + -+ (qk

k(k+1)
— .J14 — —
‘1. 21 -a) [}, ((r = Dk + 2 - 2a) [ @Dk
(gk + 1)q! k4
q+1 _ _
_IF4(0r = Dk +2 - 2a) ]| @,
q' k4
That is
(q+Dk (g+1Dk Q+1 _ _
| D@Dk £ () (x(@+ D) B ((r =Dk +2 - 2a) 1@ x € B
((g + Dk)! ((q + Dk +1)(q + 1)!ka+!
Note that
Dsk+1F(0)(xsk+1) DSkf(O)(xSk)

Gk + 1] =X )] , x€Bs=12.., (19)
when F(x) = xf (x). Therefore in view of (17) and (19), it follows the result, as desired.
It is easy to check that

Ty (x) dt
F(x) = f —, X €EB
Tu(x) 0 (1 _ tk)%

satisfies the condition of Theorem (4.3.10), where ||u|| = 1. Taking x = ru(0 <r < 1), it
yields that
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[D 1 F )@Y _ [=a((r — Dk + 2 — 2a) sk
(sk + 1)! (sk + 1)s!ks ’
We see that the estimates of Theorem (4.3.10) are sharp.
Put @ = 0 in Theorem (4.3.10). Then we obtain the following corollary immediately.
Corollary (4.3.11)[104]: Let f:B—->Ce€H(B),f(x)+Df(x)x #0,x € B,F(x) =
xf(x) € Qg(B),and Fis a k(k € N*)-fold symmetric mapping on B. Then
kDsk + 1F(0)(x sk + Dk (sk+ 1)! < Qsr
=1((r—-Dk+2)(sk+1)s!'kskxksk+1,x€B,s=1,2,..,
and the above estimates are sharp.
Note that f(x) + Df(x)x # 0,x € B due to the growth theorem of F(x) = xf(x) €

o for BN ane il Go) F)
-1 x| f (x Df(x)x
Re [Tx ((DF(x)) F(x))] = Re <f(x) h Df(x)x> >0 & Re (1 o > >0
fromS* (B) € Q4(B) = Q(B) and Q(B) = Q4(B) < Qg(B) (see [16]). We readily get the
following corollary from Corollary (4.3.11).
Corollary (4.3.12)[104]: Let f: B - C € H(B), F(x) = xf(x) € Q4(B) (resp. Q(B)), and
Fisak(k € N*)-fold symmetric mapping on B. Then
|DSK*1E(0) (xS 1) || - S (= Dk +2-2a)
(sk+1)! - (sk + 1)s!ks
and the above estimates are sharp.
By making use of Theorem (4.3.10), the Taylor expansion of F(x) = xf (x) and the triangle
inequality of the norm in complex Banach spaces, we deduce the following two corollaries
immediately.
Corollary (4.3.13)[104]: Let a€]0,1),f:B—->C€e€H(B),f(x)+Df(x)x #0,x €
B,F(x) = xf(x) € Q§(B), and Fis a k(k € C*)-fold symmetric mapping. Then
Il dt
IFl < | 5 XEB,
0 (A1-tk)y &

s=1,2,...

lx[I****,x € B,s = 1,2, ..

and the above estimate is sharp.
The example of the sharpness of Corollary (4.3.11) is similar to that in Theorem (4.3.10),
we need only to mention that
Ty (x) dt
J 2-2a
0

Il
IFIl =
(1—-tk)y &

.fr dt

T, (O] 0 (1— )R

holds for x = ru(0 <r < 1).

Corollary (4.3.14)[104]: Let a€[0,1),f:B—>C€H(B),f(x)+Df(x)x +#0,x €
B,F(x) = xf(x) € Qg(B), and F(x) is a k(k € N*)-fold symmetric mapping, where B is
the unit ball of a complex Hilbert space X. Then

2-2a
IDFQOEI < G/ = 1Ixl)"*, x€BEEX
and the above estimate is sharp.
Proof According to Corollary (4.3.11), triangle inequalities with respect to the norm in
complex Banach spaces and the fact
IDTF(0)(x™ Il o ID™F(0) (x™)|

 lxll=lgN=1 m! llxll=1 m!
(see [6]), then it follows the result, as desired. Considering
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X (x.€) dt
F(x) = f =5 x €B,
o (

(x, e) 1 _ tk)T
where ||e|| = 1, then F satisfies the conditions of Corollary (4.3.14). It is shown that
(x.e) dt ,e)x
DF()§ = —— —_— G
(x e) 2-2a 2-2a
R0 A=t TR (x,e)(1 = ((x,e))k) K
: dt
o " (e
(1—tk) &
EB,¢eX
(x,e)?  XEBS
by a direct calculation. We set x =re,§ = Re(0 <r < 1,R = 0). Then
2—-2a

IDF(x)&ll = R/(1 = 1) & .
We see that the estimate of Corollary (4.3.14) is sharp.
Taking a = 0 in Corollaries (4.3.11) and (4.3.12), we directly obtain the corollaries as
follows.
Corollary (4.3.15)[104]: Let f:B—->CeH(B),f(x)+Df(x)x # 0,x € B,F(x) =
xf(x) € Qg(B),and Fis a k(k € N*)-fold symmetric mapping. Then

el g¢
IF@ls [ —%—, xes,
0 (1-thF
and the above estimate is sharp.
Corollary (4.3.16)[104]: Let f:B—->CeH(B),f(x)+Df(x)x # 0,x € B,F(x) =
xf(x) € Qg(B),and F(x) is a k(k € N*)-fold symmetric mapping, where B is the unit ball
of a complex Hilbert space X. Then
<l

IDF (x)¢]| < 5 x€BEeEX
(1= llx|I*)=

and the above estimate is sharp.
With the analogous explanation of Corollary (4.3.14), we get the following corollary from
Corollary (4.3.16).
Corollary (4.3.17)[104]: Let f:B — C € H(B),F(x) = xf(x) € Q(B)(or Q4(B)), and
F(x)isak(k € N*)-fold symmetric mapping, where B is the unit ball of a complex Hilbert
space X. Then

IS 1]

5

(1 — [lx||*)x
and the above estimate is sharp [1], [94].
Theorem  (4.3.18)[104]: Let €][0,1),f:B—>Ce€H(B),f(x)+Df(x)x #0,x €
B,F(x) = xf(x) € Qg x+1(B). Then

|IDF (x)¢]| < X€EBEeEX

2—-2«x
- = m — )
||DmF(O)(xm)||< m(m—l)”x” , m=k+1,k+2,...,2k;
m! — | 2-2a)(k+2-2a) .
=2 1

for x € B. The above estimates are sharp form = k + 1 and m = 2k + 1.
Proof In view of the hypothesis of Theorem (4.3.18), Lemma (4.3.9) and [98], it yields that
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DPFOYG™ DI _ 2~ 2a

lIx]™ 1, x€EBm=k+1,k+2,..,2k

(m—1)! “m(m-1)
and
m(m —1)|D™ 1 f(0)(x™ )|
(m—1)!
(1—a)D™ 'p(0)(z™ ) N (1-a)D*p(0)(z*) (k+ DD f(0)(z")
(m—1)! k! k!
- a)|D™ 1 p(0)(x™ )| N (1-a)D*p(0)(x*) (k+ DD f(0)(x")
o (m—1)! k! k!
<201~ el + T e - B EOCHZZ 20
x € B,m =2k + 1.
Noticing that
m m m-—1 m-—1
D™F(0)(x™) D™ f(0)(x™ ) xE€Bs=12 .

m! - (m—1)! ’
if F(x) = xf (x). Then we derive the desired result. The example which shows the sharpness
of Theorem (4.3.18) is similar to that in Theorem (4.3.10).

Letting a = 0, it is easy to obtain the corollary as follow.
Corollary (4.3.19)[104]: Let f:B—>Ce€eH(B),f(x)+Df(x)x # 0,x € B,F(x) =
xf (x) € Qpr+1(B). Then

[|x]|™, m=k+1,k+2,...,2k;

m! 2(k+2) m
m(m——l)k”x” , m=2k+1
for x € B.The above estimates are sharp form =k + 1 andm = 2k + 1.
Similar to that in the explanation of Corollary (4.3.14), we drive the following corollary
from Corollary (4.3.19).
Corollary (4.3.20)[104]: Let f:B->CeH(B),F(x)=xf(x)€

Qr+1(B) (07' QA\.,k+1(B))- Then

( 2
ID™F(0)(x™)|| - im(m 1)

2
m — .
m! = 2(k +2)
m ||X|| ) m=2k+1

for x € B. The above estimates are sharp form = k 4+ 1 and m = 2k + 1.

Let each m; be a non-negative integer, N = m; + m, +---+m, € N, and m; =0
implies that the corresponding components in Z and F(Z) are omitted. U™ (resp. UN) is
denoted by the unit polydisk of C™ (Il = 1, 2,...,n) (resp. CV).

It is necessary to establish the following lemmas in order to get the desired results.

Lemma (4.3.21)[104]: (see [92]) Suppose that a € [0,1), and f is a normalized locally
biholomorphic mapping on U™. Then f € QKZ(U™) if and only if

9j (2)

Zj

Re

>a,z=(2y,..,2z,) €U,
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/ -1 .
where  g(2) = (91(2), ..., gn(2)) = (Df(2)) (D*f(2)(z%) + Df(2)z),z€ U™ is a
column vector in C" and j satisfies |z;| = ||z|| = max {1z}
<K=n
Theorem (4.3.22)[104]: Leta € [0,1), f;: U™ — C € H(U™),
filZ) + Dfi(Z)Z, # 0,Z, € U™, L = 1,2, ...,n, F(2) = (F1(21), F2(Z2), ..., Fo(Zy))

= (Z1f1(Z1)»sz2(Zz)' ---anfn(Zn)) € Qg(UM),

and F is a k(k € N*)-fold symmetric mapping. Then
DSRTIE(0)(Z5k+1) - S (r—=Dk+2-2a 17+,
(sk +1)! (sk + 1)s!ks
Z=(2y,2y ..,2,) €UN, s=1,2.,

and the above estimates are sharp.

Proof In view of the condition of Theorem (4.3.22), forany Z = (Z,Z,, ..., Z,,)' € UV, it
Is shown that

(DF(2)) " D(DF(2)2)Z

= ((DR.(20) ' DOF(2,)2,)Zy, ..., (DFy(Z1)) " D(DF(24)Z4)Zy,)
by a direct calculation. We pay attention to that
(DF(2))" D(DF(Z2)2)Z = (0, ..., (DF(Z)) " D(DF(Z)Z)Z, ..., 0)
ifZ=1(0,..,Z,..,00 €UN,1=1,2,..,n Let
G(Z) = (Gy,Gpy ) Gp)' = (Ga, e, Gimy » Gots ooos Gamyy s Gty o) G, ).
= (DF(2)) 'D(DF(2)Z)Z.
Then we know that
F € QUM © F, € Q¥(U™), 1=1,2,..,n
from Lemma (4.3.21). Noticing that
ID™F(0)(Z™Il = max{ID™F,(0)(Z)},  IZll = max{llZ|1},
here [|Z,||.m, (resp. IIZ1|y) is briefly denoted by [|Z,]| (resp. [|Z]l), it follows the desired result.
Forany Z = (Z4,Z,,...,Z,)" € UN, itis not difficult to check that

Z, (% dt Z, (% dt Z, (%m dt
Fo =5~ 7| g |
17 (1—tk)y" & 72170 (1 —th) & niJo (1 —th)y &k

satisfies the condition of Theorem (4.3.22), where Z; = (le,le,...,Zlml)' EU™, | =
12,...,n.
WesetZ, = (R,0,...,0)'(0<R<1),l=1,2,...,n ltiseasy to obtain
|DSK*1F (0) (ZSk+1) || S_,(r—Dk+2-2a
(sk +1)! B (sk + 1)s'ks
Hence the estimates of Theorem (4.3.22) are sharp.

We set a = 0 in Theorem (4.3.22). Then we easily get the following corollary.
Corollary (4.3.23)[104]: Let f;: U™ - C € H(U™),

fi(Z) + DA(ZNZ, # 0,2, € U™, 1 = 1,2,...,0,F(Z) = (F(Z1), Fazyy - Fa(Z) )

= (212, 2:£(Z2), . Znfa(Z2)) € Qu(U™),
and F is a k(k € N*)-fold symmetric mapping. Then

!

RSkl ¢ =12, ..
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|DS¥+1F(0)(Zsk+1)| - S r—Dk+2-2a
(sk +1)! - (sk +1)s'ks
=12,..,
and the above estimates are sharp.
With the similar interpretation of Corollary (4.3.14), it is apparent to obtain the corollary as
follow.
Corollary (4.3.24)[104]: Let f;: U™ - C €e HU™),l =1,2,...,n,
F(2) = (Fu(Z0), F2(Z3), ... Fo(Zy)) = (21£1(20), Zaf2(Z), -, Zunfo(Z))
€ QUM (QaUM)),
and F is a k(k € N*)- fold symmetric mapping. Then
|DS¥+1F(0)(Z5*+1)| o =Dk +2 - 2a
(sk +1)! - (sk + 1)s!ks
=12,..,
and the above estimates are sharp.
Theorem (4.3.25)[104]: Leta € [0,1), f;: U™ — C € H(U™),
f(Z)+Df(Z)Z; #0,Z, € U™, 1 =1,2,...,n,F(2)

= (21120, Z2f2(Z2), -, Znfo(Z0)) € QB gera (UM).

”Z”Sk+1rZ = (erZZr"'lZn)’ € UN S

”Z”Sk+1:Z = (Z1:ZZ:---;Zn)’ € UN S

Then

(—=—=2 1z1m, - .
IDmF@ @™ _ im( T pIn me ke k22

m! 2-2a)(k+2—2a) m
m(m — Dk Z|m, m=2k+1
forZ = (Z,,Z,,...,Z,)" € UN.The above estimates are sharp form = k + 1and m = 2k +
1.
Proof. With the analogous arguments as in the proof of Theorem (4.3.18), it follows the
desired result.
Put @ = 0 in Theorem (4.3.25). Then we readily obtain the following corollary.
Corollary (4.3.26)[104]: Let f:U™ ->CeHWU™),f;(Z)+Dfi(Z))Z, #+ 0,Z, €

U™, 1 =1,2,...,n,F(Z) = (Z:/1(Z1), Zofs(Zo), .., Zufo(Z3)) € Qpes1(UN). Then
Al =k+1,k+2,..,2k
1" F@EMI _ fmem—1 1™

m! - 2(k + 2)
m(m — 1)k
for Z=(Z,,Z,,...,Z,)' € UN. The above estimates are sharp for m =k + 1 and m =
2k + 1.
Similar to that in the interpretation of Corollary (4.3.12), we easily obtain the corollary as
follow.
Corollary (4.3.27)[104]: Let frug™m->CeHU™),l=1,2,....,.n,F(Z) =

(Z1f1(Z1);Z2f2 (ZZ)I---:ann(Zn)), € Qu+1(UM) (QA,k+1(UN))- Then

Nz, m=2k+1

2
m — .

m! - 2(k + 2)
m(m — 1)k

Nz, m=2k+1
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for Z =(Z,,Z,,...,Z,)' € UN . The above estimates are sharp for m =k + 1 and m =
2k + 1.

Theorem (4.3.28)[104]: Suppose that a € [0,1),F(z) = (Fy(2), F; (z),...,Fn(z))' €

H(U™), and F(z) is a k(k € N*)-fold symmetric mapping on U™. If Re (1 + %?5“)
j Z)Z
a,z € U™\{0}, where j satisfies the condition |z;| = ||z|| = 1mlax{|zl|}, then
<lsn
k k
”Ds *1F(0)(Z5 +1)|| B S (r—1Dk+2-2a Eass
sk + 1! (sk + 1)s'ks
z=1(2y,2y,...,2,) € U™, s=1,2,...
and the above estimates are sharp.
Proof. Fix z € U™\{0}. We write z, = z/||z||.Let
I| |I
hi(§) =—F;(§z), ¢€U, (20)
where j satisfies the condition |z;| = ||z = 1mlax{lzll}. It yields that
<lsn
h!' D?F:(§z,) (82, &2
GO DEC2)Gr Sz
hi(§) DF;(§z0)$ 2o

by a simple calculation. Therefore, we have
Re(1+ hi'(§)§/hj(§) >a,  § € U\{0}

2. 2
DE@ET) o 2 € UM\{0}. That is, h; € K,(U) and h; is a k-fold symmetric

if Re(1+ DF )7

function.
It is also easy to know that

D™F;(0
£+ z b Em = ¢ ”Z”Z ( )(Z )gm

from (20). Comparing the coeff|C|ents of the two S|des in the above equality, it is shown that
lz|l D™F;(0)(zo")
Z; m!
Hence, by Theorem (4.3.10)(the case X = C, B = U), we conclude that
|DSk*1F;(0)(z3 ’<+1)| S_r—1Dk+2-2a

= b, m=23,..

e U™
sk + 1)! ST Gkt Dstks . %€dU
When z, € (U)™, it yields that
DSKT1E, (0)(z5k*! S r—=Dk+2-2
| 1 ( )(Zo )|< =1( ) a,l=1,2,...,n

(sk + 1)! - (sk +1)s'ks
Also in view of DS**1F,(0)(z5%*1) is a holomorphic function on U™, we have
|DSK*1F,(0)(z5%*))| - S_r—1Dk+2-2a
(sk + 1)! - (sk + 1)s'ks
by the maximum modulus theorem of holomorphic functions on the unit polydisk. This
implies that
|DSK*1F,(0)(z5K+1)| i =Dk +2 - 2a
(sk + 1)! - (sk + 1)s!ks
Therefore,

A EaUn,l = 1,2,...,n

|z||***Y,ze UM 1 =1,2,...,n
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|DSK*F(0) (251 || - S_r—1Dk+2-2a

(sk + 1)! - (sk + 1)s'ks
It is not difficult to verify that

/ 71 dt Z, Z, [P dt \‘
F(Z) = j 2—2a’ Zy dt ""’Z_ 2—-2a
\0 (1—-tk) Zlfo 7—2a L0 (1—th)= /
(1—th) &
satisfies the condition of Theorem (4.3.28). Put z = (r,0,...,0)'(0 < r < 1), we see that
|DS*HF(0) s+ e (r — Dk +2 - 2a
(sk +1)! B (sk + 1)s! ks
by a direct computation. Then we know that the sharpness for the estimates of Theorem
(4.3.28).
Taking @ = 0 in Theorem (4.3.28), we get the following corollary immedatel.

Corollary (4.3.29)[104]: Suppose that F(z) = (Fl(z),Fz(z),...,Fn(z))' € H({U™), and

. . . . n D?F(z)(z%)
F(z) is a k(k € N*)-fold symmetric mapping on U™. If Re (1 +T(z)z> >0,z €
]

[|z|[$¥*1, z € U™

rsktl s =1,2, ...

U™\{0}, where j satisfies the condition |z;| = ||z|| = 1mlax{lzll}, then
<lsn
|Ds**1F (0) (z5%+1) || - S_(r—1Dk+2-2a

(sk +1)! - (sk + 1)s'ks
=12,..,
and the above estimates are sharp.

Theorem (4.3.30)[104]: Suppose that a € [0,1),F(z) = (F1(2), F2(2),...,E,(2)) €

”Z”Sk+1'Z = (Zl,Zz,...,Zn), € Un;S

n : D?F;(z)(z?)
H(U™), and z=0is a zero of order k + 1 of F(z) — z. If Re(l +T(z)z) >a,z €
]
U™\{0}, where j satisfies the condition |z;| = ||z|| = max{|zl|} then
272 g k+1k+2,..,2k
Z , m = , ) wee) ;
ID™F(0)(z™)]| - m(m — 1)

m! — 1 2-2a)(k+2-2a)

m(m— 1)k
forz = (z4,2,,...,2,)" € U™ The above estimates are sharp form = k + 1 and m = 2k +
1. We set @ = 0 in Theorem (4.3.30). Then it is obvious to obtain the corollary as follow.

Corollary (4.3.31)[104]: Suppose that F(z) = (Fl(z),Fz(z),...,Fn(z))' € H(U™), and

. D?F(z)(z%)
z=0isazerooforder k +1of F(z) —z. If Re (1 + T(z)z) > 0,z € U™\{0}, where
]

lz[|™, m=2k+1

j satisfies the condition |z;| = |z|| = 1mlax{|zl|}, then
<lsn
m = 1 2,...,2k;
ID™F(0)(z™)|| 3 m(m D lz|[™, m=k+1,k+2,..,2k;
m! — | 2(k+2)
m(m — 1)k
forz = (z4,2,,...,2,)" € U™ The above estimates are sharp form = k + 1and m = 2k +
1.

lzI™,  m=2k+1
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Corollary ~ (4.3.32)[209]: Let a, €[0,1),f,p;:B » C€ H(B),f-(0) =p,(0) =
1, f- (%x) = f.(x), p, (%x) = p,(x)(k € N"), and fr(x) +3Df-(x)x +
D (0)(x?) = (f, () + Df, (%) (ar + (1 — a&,)p, (x)). Then

k(k + D £.(0)(x*) (1 - a,)D*p,(0)(x")

k! k!
sk(sk + 1)DS*£,.(0)(x5%)
(sk)!
_(1-a)D¥p (™) (- a,)DEVkp, (0)(xE~K)
- (sk)! ((s — Dk)!
(k + 1)D*£,.(0)(x") (1 - a,)D*p,(0)(x")
' k! o k!
(6 =Dk +1)DEVEL(0)(x7DK) CeBs—23
((s — Dk)! ’ ’ S

Proof In view of the hypothesis of Corollary (4.3.31), we have
L+ (k +1)?D*£.(0)(x*) | (2k + 1)?D?**£.(0)(x*) oy (sk + 1)?D**£.(0)(x**)

Kk + 2h)! Gl
+ cee
B (k + 1) D*£,.(0)(x*) =~ (2k + 1) D*£,.(0)(x2¥) (sk + 1) DS*£,.(0) (x%)
B (1 + k! + (2k)! Tt (sk)!

+>

(1-a,) D*f.(0)(x*) (1 —a,) D**£.(0)(x?*) (1 - a,) D% £,.(0)(x*)
' (1 + k! + (2k)! Tt (sk)!

+)

A simple calculation shows that

(k + D2D*£.(0)(x*)  (2k + 1)2D?* £, (0) (x2*) (sk + 1)2D*£.(0)(x*%)
1+ K + 2! ot k!
+ cee
(k+ DD*f.(0)(x*) (1 —a)D*p,(0)(x*) (2k + 1)D?*£.(0)(x**)
=1+ k! + k! + (2k)!
(1 - a,)D*p,(0)(x*) (k+ 1DD*£.(0)(x*) (1 —a,)D*p,(0)(x?*)
+ k! ' k! + (2k)!
(sk + DD¥£.(0)(x*) (1 — a,)D*p,(0)(x*)
ot Gh)! * Kl
(5= DR+ DD
((s — Dk)!
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(1 - a)DC VP, (0)(xC~V%) (k + DD*£(0)F) (1 —a)D*p,(0)(x*)
((s — Dk)! ki ¥ (sk)!

Compare the homogeneous expansions of the two sides in the above equality. We derived
the desired result.

Corollary (4.3.33)[209]: Let a,- € [0,1), f;,p: B > C€ H(B), f,,(0) = p,(0) = 1. If x =
0 is a zero of order k + 1(k € N*) of xf,.(x) —x (resp. xp,(x) — (x)), and f,.(x) +
3Df, (x)x + D?f,(x)(x?) = (f,(x) + Dfr(x)x)(ar + (1 — a,)p,(x)), then for any x €
B,

m(m — DD™£(0)(x™™Y)

(m—1)!
( (1 - a.)D™ 'p,.(0)(x™ 1) B
! D , m=k+1,..,2k,
(1= a)D™ 'p, (0)(x™ 1) (1 —a,)D*p,(0)(x*) (k+ 1)D*£.(0)(x")
L — + - : - ,m =2k + 1.

Proof According to the conditions of Corollary (4.3.33), we obtain

N 1)20:!ﬂ(0)(x’<) NdE: 1)2(1)22;)]?(0)&2") . szm(‘;ﬂ_((;))(!xm_l) 4.
_ (1 L k4D D;];(O)(xk) , @k+D) ?Zzgﬁ(o)(xz") e
(B,
| <1 - ar)D:!fr(O)(x") La- ar)lz;’if)?fo)(xz") o
La- ar)lzz‘_lfgf)(xm‘l) n >

A direct computation shows that

(k + 1)2D*£.(0)(x*)  (2k + 1)2D?*£,(0) (x?*) m?D™ . (0) (2™ 1)
1+ k! * (2k)! o (m—1)!
(k + 1) D*£.(0)(x) (1 - a,)D*f.(0)(x*¥)
=1+ Kl * k)]
N (1 - a,)D*p, (0)(x*) (kA 1)D*£.(0)(x*) N (1 — a,)D**p,.(0)(x*¥)
k! k! (2k)!
mp" LG (A= @)D"y @G

m—11 T m—1)!
Compare the homogeneous expansions of the two sides in the above equality. It follows the
desired result.
Corollary (4.3.34)[209]: Let a, €[0,1),f,:B > C€ H(B),f,(x) + Df,.(x)x # 0,x €
B,F.(x) = xf(x) € Qz"(B), and . is a k(k € N*)-fold symmetric mapping on B. Then
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|DS¥*1E.(0) (xSk+ L || - S1(r—Dk+2-2a,)
(sk +1)! - (sk + 1)s'ks
and the above estimates are sharp.

lx[I****, x € B,s = 1,2, ..

Proof Let W, (x) = (DF, (x))_lD(DF (x)x)x. A straightforward computation shows that

(fr(x) + 3Df,(x)x + D?f, (x) (x?))x .
fr(x) + Dfr(x)x

Since E.(x) = xf,.(x) € QgT(B) then according to Definition 1.1, we see that

(fr(x) + 3Df,(x)x + D* £ (x) (x?) — o, (fr(x) + Dfr(x)X)>
(1 = a)(fr (%) + Dfr- (x)x)

e (Tx(wx)) - aruxu) 0

1—ay|lx]l

(DE.(x)) 'D(DE.(x)x)x € B.

x € B\{0}. (21)
Letting
{fr(x) +3Df,(x)x + D? £ (x)(x?) — a,(f,(x) + D, (x)x) .
pr(X) = ’

A=) (L0 + D) €BOY (22
1, x =0,

then p,: B — C € H(B),p,(0) = £.(0) = 1,
f(x) + 3Df,(x)x + D2 £, (x) (x*) = (f;(x) + Df, (x)x) (- + (1 — a,)p(x)).

Also since F.(x) = xf,.(x) is a k(k € N*)-fold symmetric mapping, then f,. (e%x) =

2mi

fr(x) and p, (eTx> = p,(x). We now deduce that

|DS*£,.(0) (x5%)| - S_(r =Dk +2-2a,)
(sk)! - (sk + 1)s!ks

hold by inductive method. When s = 1, (23) holds from Corollary (4.3.32) and [98] (the
case m = k + 1). We assume that

DA @) _ [Pa(G = Dk +2 - 2a,)
(sk)! - (sk + 1)s'ks

It suffices to prove that (23) holds for s = g + 1. For this purpose, by applying Corollary
(4.3.32), (24) and [98], we know that

(q + Dk((q + Dk + 1)| Dtk g (0)(x@+Dk)|
((q + Dk)!

lx||*%,x € B,s = 1,2, ... (23)

lx||%,x € B,s =1,2,...,q. (24)

141



_ (A= a)D @V, (0)(x* V) (1 - a)D¥p,(0)(x™) (k + DD*£(0)(x")

((q + Dk)! (qk)! k!
(1 — a,)D¥p,(0)(x*) (gk + 1)D*f,.(0)(x )
k! (gk)!
_ A= a)[p D, ) (x V)| (A — @) |D¥p, (0) (x|
- ((q + Dk)! (qk)!
(k + 1)|D*£,.(0)(x")| (1 - a,)|D¥p, (0)(x")|

(gk + D|DIL(0) (™)
(qk)!

2(1 - ar) ) 2(1 - ar)

< _ (@+Dk . (@+Dk 4 ...
< 21 = a)llxl| D + (k + 1) TS LA
CA—-a) -7, (r— Dk +2-2a,)
. (q+1)k
q+1 _ _

q! k1

That is
k k q+1
|D@+Dkf (0)(x@+DK)| . [175(r— Dk + 2 - 2a,) 1@ x € B
((g + Dk)! ((g+ Dk +1)(g + 1! ka+t

Note that

Dsk+1E(0)(xsk+1) B DSkﬂ(O)(xSk)
Gk+D! T Gl
when E.(x) = xf,.(x). Therefore in view of (23) and (25), it follows the result, as desired.

x€B,s=1,2,.., (25

It is easy to check that

F(x) = — jw) at € B
xX) = , X
r T, (x) 0 (1— tk)z_iar
satisfies the condition of Corollary (4.3.34), where ||u|| = 1. Takingx = ru(0 <r < 1), it
yields that

|IDSHE(0) D) [Tiaa((r = Dk + 2 - 2a,)

(sk + 1)! B (sk +1)s'ks

We see that the estimates of Corollary (4.3.34) are sharp.
Corollary (4.3.35)[209]: Let a, €[0,1),f,:B > C€ H(B), f-(x) + Df,.(x)x # 0,x €
B,F.(x) = xf.(x) € Qz"(B), and E.(x) is a k(k € N*)-fold symmetric mapping, where B
is the unit ball of a complex Hilbert space X. Then

rSk+1 s=1,2,...

2-2a,

IDE.OSI < €N/ =1IxlF)" %, x€BE€EX
and the above estimate is sharp.
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Proof According to Corollary (4.3.11), triangle inequalities with respect to the norm in
complex Banach spaces and the fact

ID™E- )™ Ol _ sup 2T E O G

I I
llxl[=lIgI=1 m llxll=1 m:

(see [6]), then it follows the result, as desired. Considering

X (x.e) dt
FT(x) = e)J() ( 2-2a;’ X € B:

(x 1—th) &
where ||e|| = 1, then E,. satisfies the conditions of Corollary (4.3.35). It is shown that
& (o dt (¢, e)x
DE.(x)¢ = mj- 2-2a, + 2—2ay
R0 A=ty (xe)(1— ((x,e))F) &
: dt
f0<x e) - T (&, e)x
(1—-tk)
Xy , x€EBEeEX
by a direct calculation. We set x = re,§ = Re(0 <r < 1,R = 0). Then
2-2a,

IDE.(x)§ll =R/A—1*)" %
We see that the estimate of Corollary (4.3.35) is sharp.

Corollary (4.3.36)[209]: Let a, €[0,1),f.:B - C€ H(B),f.(x) + Df.(x)x # 0,x €
B,F.(x) = xf,(x) € Qg’,1(B). Then

272 m k+1k+2... 2k
— T |IX ) m = ) )y ;
ID™E.(0)(x™)]| - m(m —1)
ol S\@-20)(k+2-2a,)
m(m — Dk [l I™, m=2k+1

for x € B. The above estimates are sharp form = k + 1 and m = 2k + 1.

Proof In view of the hypothesis of Corollary (4.3.36), Corollary (4.3.33) and [98], it yields
that

D™ £, (0) (x™ 1) 2~ 2ar
(m—1)! “m(m-1)

Ix]I™ 1, XxXEBm=k+1,k+2,..,2k

and
m(m — 1D|D™ 1 £.(0)(x™ )|

(m—1)!
_|@=a)D™ p, (0)(z™ ) N (1 - a,)D*p.(0)(z")
(m—1)! k!
(k + 1)D*£,.(0)(z")
k!
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L A =a)ID™ e ()™ D) L A= a,)D*p, (0)(x*) (k + DD*£(0)(x")

- (m—1)! k! k!
4(1 — a,)? 2 -2a,)(k+2-2a,)
< 2(1 = @) llxl?* + ———= llxll** = — {1,
x €EBm=2k+1.
Noticing that
D™E.(0)(x™ D™ 1 (0)(x™ 1t
F(0)&™) (0™ ) xE€Bs=12 .

m! x (m—1)! ’

if F.(x) = xf.(x). Then we derive the desired result. The example which shows the
sharpness of Corollary (4.3.36) is similar to that in Corollary (4.3.34).

Corollary (4.3.37)[209]: Let a,€[0,1),(f,)U™ —>CeHWU™), () (Z)+
D(fy(Z))Z, # 0, Z,eU™, 1=1,2,..,n, E(2) =

(B2, (B)2(Z), - (FIn(Z) = (22(5)1(20), Z2()2(Z2), -, Zn(f)n(Z0)) €
g (UY), and E, is a k(k € N*)-fold symmetric mapping. Then

DHHEO@HHY) [ — Dk +2-2a,
(sk + 1)! - (sk + 1)s'ks
7=(21,2y, ..,2,) €UN, s=1,2,.,
and the above estimates are sharp.

Proof In view of the condition of Corollary (4.3.37), forany Z = (Z,Z,, ..., Z,)" € UV, it
Is shown that

1Z |55+,

(DFE.(2)) 'D(DE.(2)Z)Z

= ((0(F)1(20) " DOF2) 22, ., (D(E)n(Z0)) " DOFZ)Z0) 20 )
by a direct calculation. We pay attention to that
(DE(2) ' DWE@2)Z = (0, .., (DEN(Z))” DIDE(Z)Z)Z,, .., 0)'
ifZ=(0,..,Z,..,00 €UN,1=1,2,..,n Let
G(Z) = (G1,Gpy ) Gp)' = (Gu, e, Gimy » Gots oo Gamyy oor Gty o) G, ).
= (DE.(2)) D(DF.(2)2)Z.
Then we know that
FeQgUV) e (F),eQgU™), [1=12,.,n
from Lemma (4.3.21). Noticing that
ID™E. ()™ = max{ID™ (E)EMI}, 2]l = max {1z}
here ||Z, ||, (resp. || Z]| y) is briefly denoted by ||Z, || (resp. || Z]]), it follows the desired result.

Forany Z = (Z4,Z,,...,Z,)" € UV, itis not difficult to check that
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7, (A1 dt 7, (%1 dt 7. (1 dt
FT(Z): Z_f Z f 2-2a, ""’Z j 2-2ar
11 Jo ( tk) 21 ( tk) k nlJo (1 _ tk)T

satisfies the condition of Corollary (4.3.37), where Z; = (Z;4, Z,, . ..,Zlml)' eEU™,] =
1,2,...,n
Weset Z; = (R,0,...,0)'(0<R <1),l=1,2,...,n. Itiseasy to obtain
|DS*E.(0)(Z5* )| [T5=1(r — Dk + 2 - 2a,
(sk +1)! (sk + 1)s'ks
Hence the estimates of Corollary (4.3.36) are sharp.

Corollary  (4.3.38)[209]: Let «a,€[0,1),(f,);:U™ - Ce€HU™),(f,),(Z) +
D(fr)l(Zl)Zl * O,Zl € Uml [ = 1 2 , n, E (Z)

(Z1(fr)1(z1)»zz(fr)2(zz)' n(fr)n(Zn)) € Q[Bg k+1 UN)- Then

RSk+1 ¢ =12, ...

( Sz, —k+1k+2 .. 2k
ID"EOEI _ i( mm =A™ m=k k2. 2k

m! 2-2a.)(k+2-2a,)
m(m — 1k

forZ = (Z,,Z,,...,Z,)" € UN.The above estimates are sharp form = k + 1and m = 2k +
1.

Proof With the analogous arguments as in the proof of Corollary (4.3.35), it follows the
desired result.

Corollary (4.3.39)[209]: Suppose that a, €[0,1),FE.(2) =
((F)1(2), (Fr)z(Z),---,(Fr)n(Z))’ € H(U™), and E.(z) is a k(k € N*)-fold symmetric
D2(Fy)(2)(z%)

D(Fy)j(z)z
| | =|lz|| = max{|zl|} then

Z[™, m=2k+1

mapping on U™. If Re (1 + ) > a,,z € U™\{0}, where j satisfies the condition

[P+ F.(0)(Z D) _ [TPa(r = Dk +2 = 20,

< [l z]|*+,
(sk + 1)! (sk + 1)s! ks
z=1(2y,2y,...,2,) € U™, s=1,2,...
and the above estimates are sharp.
Proof Fix z € U™\{0}. We write z, = z/||z||.Let
|| [
hi(§) = (F )j(§z0), S €U, (26)
where j satisfies the condition |z;| = ||z|| = max{lzll} It yields that
h' D?(E.); ,
1+ ]’(f)f — 14 ( T)](fZO)(ézo fzo)' £ € U\{0}
hj(f) D(F);(§z0)$zo
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by a simple calculation. Therefore, we have
Re(1+ hi'()§/hi(§) > ar,  § € U\{0}

2 ; 2
PUE@E) s U™\{0}. Thatis, h; € K,_(U) and h; is a k-fold symmetric

if Re(1 + D), @2

function.
It is also easy to know that

Iz]l < D™(E);(0)(z)

Zj m!
m=2

€+ibm€m=€+ &
m=2

from (26). Comparing the coefficients of the two sides in the above equality, it is shown that

IlzIl D™ (B, (00 _

. |
Z] m.

o m=273,..

Hence, by Corollary (4.3.33)(the case X = C, B = U), we conclude that
D (E) Oz )| _ TTi—aCr — Dk +2 — 2,

(sk+1)! - (sk + 1)s'ks

When z, € (AU)™ , it yields that

D E) () (25 )| _ [ra(r — Dk +2 — 20,
(sk + 1)! - (sk + 1)s!ks ’
Also in view of DS**1(E.),(0)(z5**1) is a holomorphic function on U™, we have
D EN ()] _ [Trear = Dk + 2 — 24,

(sk +1)! - (sk +1)s'ks

by the maximum modulus theorem of holomorphic functions on the unit polydisk. This
implies that

D EN@OE D] _ sl = D +2 — 2a,
(sk + 1)! - (sk + 1)s'ks
Therefore,
[0 £ @G| _ sl = Dk +2 - 2a,
(sk + 1)! - (sk + 1)s'ks
It is not difficult to verify that

, zy € OU™.

=1,2,...,n.

,Zg €0U™1=1,2,...,n

Iz||**t,ze U™ 1 =1,2,...,n.

llz||**+%, z € U™

/ 71 dt Z, Zy, [ dt \‘
F;-(Z) = f Z—ZCZT' Z dt ;-.-;Z_ 2_2ar
O A1-th)y &z fo 220 L0 (1—-th)y ™«
(1-th) &

satisfies the condition of Corollary (4.3.38). Put z = (r,0,...,0)'(0 < r < 1), we see that
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|DSF+E(0) (x| [T (r — Dk + 2 = 2a,
(sk +1)! B (sk + 1)s! ks

by a direct computation. Then we know that the sharpness for the estimates of Corollary
(4.3.38).

rsk+l o =12, ...
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Chapter 5
First Derivative and Centers with Global Behaviour

We give several examples and a special method which simplifies the computations
when a first integral is known. At most one limit cycle can bifurcate from the periodic orbits
of a center of a cubic homogeneous polynomial system using the averaging theory of first
order. We show after adding some more additional hypotheses, we show that the period
function of the origin is either decreasing or has at most one critical period and that both
possibilities may happen. This result also extends some previous results that deal with the
situation where both vector fields are homogeneous and the origin is a non-degenerate
centre.

Section (5.1): The Period Function with Applications

In the latest years, there have been many developments concerning the problem of
centres for systems of ordinary differential equations on the plane. By one side,
Improvements have been done in the direction of solving the centre-focus problem (see
[119] or [126]); however, the problem is far to be solved. By the other side, questions about
either the kind of period annulus or the shape of the period function of a centre have also
been tackled (the period annulus, 2 from now on, is the greatest neighbourhood of the centre
filled of periodic orbits; given a transversal of the period annulus, the time function defined
on it is called the period function).

A first question is to decide whether the centre is isochronous or not. A recent survey
on this problem is given in [111]. We remark that in the works of Sabatini and Villarini (see
[129], [131]) they settled the strong relationship between Lie brackets and isochronicity.
This idea has been used fruitfully by many. In [121] we have also found a full description
of the link between commutators and isochronicity. A second question is that of controlling
the number of critical points of the period function. This question has been treated for special
families of vector fields by (Chicone—Dumortier [115], [116], for some polynomial systems;
Chow and Wang [117], and Gavrilov [122] for potential systems; Coppel and Gavrilov [49],
Collins [46], and Gasull et al. [39], for Hamiltonian centres with homogeneous non-
linearities; Rothe [128], for some Hamiltonian families; Freire et al. [120], for perturbation
of isochronous centres, etc.) They mainly focus on seeking for conditions of monotonicity
of the period function and seldom examples of more than one critical period are found.
Maybe one of the most relevant approach to give general tools for proving the monotonicity
of the period function is due to Chicone (see [113]) who gave an expression for the first
derivative of the period function as a dynamical interpretation of a result of Diliberto.

Inspired in the geometrical ideas involved in the Lie bracket, we give a method to
prove that some centres have either an increasing or a decreasing period function. This
method is based on a formula for computing the derivative of the period function, which is
obtained from the knowledge of the set of normalizers of the centre. See the definitions and
more detailed comments after the statement of the following theorem, which is the key point.

As we have already explained, the aim of Theorem (5.1.2) is to give a tool to study
the shape of the period function, that is, features like its monotonicity, its number of critical
periods or knowing when it is constant (isochronicity problem). To be useful we need to be
able to compute u, and control its integral. The existence of U and m satisfying [X U] =
uX; for sufficiently regular vector fields X with a non-degenerate centre at p is already
known, see [107]. Note also that our expression of T’ given in (2), and based on the
knowledge of U, is simpler that the one obtained in [113].
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Part 2 of Theorem (5.1.2) tries to give a procedure to compute m and U when an integrating
factor for X is known. It can be seen as a reciprocal of the following well known result of S.
Lie: Assume that a vector field U = (R, S) such that [X, U] = uX is known. If ¥ is a first
integral of X or a constant—usually v is taken to be 1—then a solution f of the system
{fo + ny = 0, (D
fxR + fyS =1,

exists and it is also a first integral of X, (see [108]). Our result is an extension of a previous
one of S. Lie, see Theorem 2.48 in [125] or Proposition 1.1 in [133], which just covers the
case @' = 0.
Observe that another interpretation of part 2 of Theorem (5.1.2) is the following: if for a
given Hamiltonian vector field VH+ > = (—H,,, H,) we are able to find an U such that
[VHL, U] = py VH?, then if we consider u = pH (VV - U)/V itis satisfied that [X, U] =
uX, where X = VVH*,
We also want to comment that it is very easy to find a formal solution U = (R, S) of RH, +
SH, = H,when div X # 0, It suffices to take U = (R, S) = (1}, V,)/div X, Nevertheless,
in most cases U is a not well defined vector field in a neighbourhood of p and it is not useful.
The freedom to choose @ is a key point of the method proposed to obtain a well-defined U
in P,
The first part is devoted to prove Theorem (5.1.2). In the second part we apply it to prove
the monotonicity of the period function for several families of planar systems. Hence, once
an U and a u are obtained we are interested to prove that integral (2) has constant sign. In
the systems that we study it sometimes happens that the u that we have makes difficult these
computations. A second step of our way of approach is try to get a more suitable u.
From a geometrical point of view, the vector field U is the infinitesimal generator of the Lie
group of symmetries of X. As usual in Lie theory, we call the set of infinitesimal generators
the normalizer of X, while the set of commuting vector fields is called the centralizer, see
[132]. Accordingly, our work can be seen as giving the same dynamical interpretation for
normalizers than Sabatini’s and Villarini’s results do for centralizers. Moreover, the set of
normalizers of a given vector field X has the nice structure that we show in the following
proposition.

Proposition (5.1.3) gives a practical tool. For proving monotonicity one has to figure
out in each case whether it is better to compute the value of [ u as Theorem (5.1.2)
suggests, or to find a new element of the normalizer whose corresponding m is more
suitable. Note that, ingeneral, [ © # [ p* onthe same periodicorbit of the period annulus
because of the different parameterization given by the first integral 1), However, the sign is
preserved and so are the deductions on the qualitative behaviour of the period function.
We can summarize our approach to study the monotonicity of the period function in a
method which, as far as we know, is a new one:
A method in three steps for proving the monotonicity of the period function:
(i) Try to compute U and u defined in all the period annulus of p and satisfying [X, U] =
uX. If X admits an integrating factor, use part 2 of Theorem (5.1.2).
(if) Try to control the sign of the integral of u which appears in (2). If you do not succeed
then pass to the next steep.
(iii) Use Proposition (5.1.3) to get a more suitable u, Go again to step (ii).
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The most interesting examples to which we have been able to apply our method. Some
of the results that we get were already known but, even in these cases, we want to stress how
our method enables to shorten the proofs.

We study Hamiltonian systems of type H(x,y) = F(x) + G(y) and give some
applications to physical problems. We go through a miscellanea of examples: Lotka—
Volterra centre, quadratic systems, Lie nard systems and polynomial Hamiltonian systems
with homogeneous nonlinearities. Maybe the clearest application of our method is given in
Proposition (5.1.16), where we prove that the period function of a family of quadratic
systems is decreasing.

We end this introduction by noticing that from part 1 of Theorem (5.1.2) it can be deduced
the following result on isochronicity:

Corollary (5.1.1)[106]: Consider a ¢* vector field X having a centre at a point p and period
annulus P c R2. Let U be a vector field U € € (P), transversal to X in P{p}, and such that

[X,U] = uX for some smooth scalar function p: P - R. Let y = {(x(¢),y(1)), t €=
[0, T, ]} be any periodic orbit of X in .

Then, if there is a neighbourhood of p such that for any g contained in it,
Ty

| wx@y@)de=o

0
the centre is isochronous.

In [121] the converse of the above corollary is also proved and some applications of it are
given.

Theorem (5.1.2)[106]: Consider a C?* vector field X having a centre at a point p with period
annulus P, The following statements hold:

(i) Let U be a vector field, U € C! 8PP; transversal to X in P\{p}, and such that [X, U] =
uX on P, for some C* function u : P € R? — R: Denote by iy = (s) a trajectory of U
such that Y (s € P, Then,

T(So)

T'(s0) = j u(x(©), y(0)dt, @

0
where (x(t)y(t)) is the orbit of X such that (x(0)y(0)) = ¥(s,) and T(s) the period of
the orbit of X passing through ¥ (s).
(ii) Assume that
(a) the vector field X = (P, Q) admits an integrating factor V(x,y)~! in P; that is, there
exist V(x,y) and H(x,y) such that X = (P,Q) = V(—H,, H,) in P;
(b) there exist scalar functions R and S such that RH, + SH,, = @(H), for some smooth
scalar function @.
Then, by taking the vector field U = (R, S), it satisfies [X, U] = uX, with

U'H 3
—— 0’ () 3)

Proof. Part 1: Let y(t) be a periodicorbit of period T of X, and p = y(0) = y(T). Take a
transversal ), given by
g: (_8' 8) — z )

being g(s) a solution of x" = U(x) such that g(0) = p; thatis, g’'(s) = U(g(s)).
Consider as well the return map of X defined on }; :
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Y Y-y

If we call ¢(t, x) the flow defined by X, then
n(g)(s)) = o(T + t(s),g(s))

Moreover, observe that in case that y(t) is a closed orbit of the interior of a period annulus,
T + 7 (s) is the period of the closed orbit passing through g(s). In this notation, it is easy
to see that the monodromy matrix of the variational equation of the return map in the basis

{X(p), U(p)}is
1 -7 (0)
o 1)

A key point of our proof is to note that the hypothesis [X, U] = wX implies that

t

Y(6) = U(y@®) - { J u(y(w) du} Xy (@),

0
Is a solution of the variational equation, since

d t
7 Y(©) = DU (X (yr (ty uy@®)x(y @) - f u(y(w))du DX(g(®)X(y(®)
0
= DtX (YO)U(y@®) + u(r®)X(y®)uly®)Xx(r@))
- | wr@)au DX(@)XG®) = PXGOY )

0
Finally, by observing that Y (0) = U(p) and Y(T) = U(p) — fOT u(y(t)) dtX(p) we get

that )
(FH0) - (,0) )

T

v 0= [ o)

0

and so,

as we wanted to prove.
Part 2: Let V™! be an integrating factor of X, thatis, X = V(—H,,, H,) for some Hamiltonian

function H. Let us take the vector field U = (R, S) satisfying H,R + H,S = @(H). Then,
straightforward computations give

(X,U] = R, R, (—VHy) _vi™ H,.H,, (R)
Sx Sy +VH, Hyx Hyy ) \S

— VeHy, V) H, (R)
VH, V,H, J\S
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—(R; + S,)VH, + (RV, + SV, )Hy + V(RyH, + RH,,, + SH,, + S,H,)
~ \(Re + S,)VH, — (RVy + SV, + H, — V(R,Hy + RHy, + SHxy + S.H,)
~div(U)VHy + (VV - U)Hy + V3% O'CH)

div(U)VH, + (VV - U)H, + V% @'(H)

vV -U

- (awu-2Y ) x.
and thus the desired result.
Proposition (5.1.3)[106]: Consider the set of normalizers of X,

N (X)) ={U:[X,U] = uX for some u},
and take U € V' (X) that satisfies [X,U] = uX. Then, if U* € IV (X), it can be written as
U = YU+ gX, where v is either a first integral of X or a non-zero constant and g is any
C1! function. Moreover, [X,U*] = u*X, with u* = (Yu + Vgt - X).
Proof. First of all, we observe that
[X,U] = [X,9U + gX] = ¢[X, U]l + (VYt X)U + g[X, X] + (Vgt X)X
= (Yu+ Vg* X)X, (4)

where in the last step we use that [X, U] = uX and that y is either a first integral of X or a
non-zero constant.
Last assertion tells us that any U™ of the prescribed type is a normalizer of X, and also gives
the formula for u, The property that any normalizer can be written in this way follows from
the fact that U and X form a basis of R? just because they are transversal. Then, there exist
fand gsuchthat U = fU + gX.Equality (4) withy = fand U* € V' (X) forces Vft X =
0, which implies that f is either a first integral of X or a non-zero constant (if it was zero,
U would not be transversal to X), as we wanted to prove.

We present some results and comments related with Theorem (5.1.2) and Proposition
(5.1.3). The first one is about a method given in [110] to compute m and U when the first
integral of X is a polynomial.

The first one dealing with the general properties (finding normalizers and adapting
part 2 of Theorem (5.1.2) to the specific family), the second one containing some examples
and applications to physical problems and the third one with the routine computations. This
family has been also studied in [118], [128], [130].

We start with some notation and the technicalities to look for normalizers of the vector field
induced by H(x,y) = F(x) + G(y).
Define the numbers x; = max{x <0: F'(x) = O}xg =min{x >0: F'(x) =}y, =
max{y <0: G'(y) = 0},yr = min{y > 0: G'(y) = 0}If some of these sets is empty,
then the corresponding number is +oo(—for L; + for R). Denote also by R the rectangle
R = (x1,xg) X (¥, ¥r) < R2.
Lemma (5.1.4)[106]: Let F and G two real analytic functions at 0, such that F(0) =
G(0) = 0 and they have a non-degenerate minimum at 0. Then,
(i) Let X be the vector field given by

x= G'(y),

G ey 5)

and U the vector field
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F(x)

X=m;
U_{. [462)
Vo

then U is well-defined in R and satisfies [X, U] = uX, where
da F(x)) ( d G(y)>
x,y)=divU—-1= -1,
K y) (F @)\
(if) The origin of (5) is a centre, which perlod annulus is contained in R, and the associated
period function T satisfies:

T(s)

reo= [ u@yo)d,
0

where s refers to the parameterization of the orbits of U.
Proof. The vector field U is well-defined in R since F and G are analytical with a non-
degenerate minimum at 0. Furthermore, the non-degeneracy of functions F and G guarantees
the presence of a centre. Notice that the orbits of the period annulus of the origin cannot
intersect the lines that form the boundary of R.
Straightforward computations from part 2 of Theorem (5.1.2) with V(x,y) = 1 and
@(x) = x lead to the desired result.

Observe that for the function m given in Lemma (5.1.4), we can equally separate the
contribution of F and G in the expression and extract some useful sufficient conditions for
monotonicity avoiding integration of m: According to this goal, given
a function F and following the previously quote, we define

v (x) = F'(x)? — 2F () F"' (x),

B F(x) B VN3
oF(x) = D B (x)/F'(x)".

This notation suggests to consider the following subclasses of C?2 real functions of one
variable:
Definition (5.1.5)[106]: Let J € C? (0, R) for some Q € R: We say that J is

(i) of class 7 if either v, = 0 or ¢; is increasing in Q (v, # 0),

(ii)of class V" if either v; = 0 or ¢, is constant in (,

(iii) of class D if either v, < 0 or ¢, is decreasing in Q (v, % 0).
We also say that a pair of functions {l;,[,} form a £L,- £, pair if [, is of class £, and L, is
of class £,, where £; stands for 7, V" or D.
Since the initial value problem v (x) = 0 with F(0) = F'(0) = 0 has the only solution
F(x) = kx? k € R;class V' becomes quite artificial. We keep it as a class only for
aestheticpurposes.
On the other hand, under the hypotheses of Lemma (5.1.4), the periodicorbits of the period
annulus of the origin are contained in R, Notice also that in R, the horizontal and vertical
isoclines are, respectively, the axesx = 0and y = 0.
Definition (5.1.6)[106]: Let y be a periodicorbit of the period annulus of the origin of
system (5). We denote by (x,, 0), (0, yy), (x,,, 0) and (0, y,,,) the intersections of y with
the axes, see Fig. 1.
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Fig. (1)[106]: Definitions of x,,,, Xy, ¥, and y,,.
Next proposition gives sense to these definitions and shows that the functions ¢ and v are
suitable to find simpler ways to prove monotonicity.
We remark that the possibilities - D and D-J are not reflected in Proposition (5.1.7).
In principle, these situations could lead either to isochronous centres, or periodincreasing,
or period-decreasing or even more complicated behaviours, see the 7-D family of systems
explored in Fig. 2 (the fact that these systems are of type 7-D is proved in Proposition
(5.1.15)). Of course, it is also possible that the functions F and G that define system (5), are
not of any of the classes considered in Definition (5.1.5).
Proposition (5.1.7)[106]: (see also [118] for the second part). Consider the Hamiltonian
system (5) generated by H(x,y) = F(x) + G(y), with F and G two real analytic functions
at 0, such that F(0) = G(0) = 0 and they have a non-degenerate minimum at 0. Then, the
following hold:
(i) The function m of Lemma (5.1.4) is defined in the rectangle R and can be written as

1 1
u(x,y) = ve (x) T +ve(y) 200 (6)
(if) By using the notation introduced in Definition (5.1.6) and in Fig. 1, the derivative of the

period function in the period annulus of the origin can be written as
T(s)

| .y

0
ym

1

> [ o () = 0 (xO)]

1
+5 f | 06 (v () — e (y(x))] dx (7)

Xm

(iii) The centre at the origin

(a) is isochronous if {F, G} form a V' - V" pair.

(b) has an increasing period function if {F,G} form one of the following pairs:
-3, N -3,3-N .

(c) has a decreasing period function if {F,G} form one of the following pairs:
D-D,N -D,D-N".
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Proof. Part 1 of the proposition follows from the equalities u(x,y) =(

G

) -1-
1

0

F(x)
F'(x)

!
-4
2

_1F@F'(x) | 16(3)6"GP) _ (01 ve()1
2 F'x)?2 2 G'(y)? Fari2 7 26" ()2
1 ! !
Note also that u(x,y) = - (¢r (COF'(x) + e ()G’ ().
8 T T T T T T
01 I:ITE EITS EIT4 0.5

Fig. (2)[106]: Numerical computations of the period function associated to H(x,,y) =
(x2/2+ x3/3) + y?/2 + y*/4, for different values of k,k = 1,1,17525,1,5,2,5,10
from above to below. While for k = 1 the period is increasing, from k =~ 1.17525 to some
value it presents a minimum (so inappreciable in the scale of the figure that the centre seems
to be isochronous) and it is decreasing for larger values of k like k = 5, 10.

To prove part 2, take a periodicorbit y of (5), for some value h of the Hamiltonian. Call
Xm, Xy, Vi @Nd vy, the intersections of y with the axes, as shown in Fig. 1. For each y; call
x_(y) and x, (y) its two pre-images and, similarly, define y_(x) and y, (x). Then, using
the hypotheses on F and G and the differential equations themselves, we obtain,
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T(s) T(s)

1
| uc@y@)ie= [ [5(0e@F 0+ 06(0)600)) at
0

5 x=x(t),y=y (t)
Ym Ym
1 1
= f > @F (x) dy — f > @F (x) dy

x=x4(y)
YMm
1
+[ (oo
y=y+(x)

m Xm

f |0r (x-)) = 5 (x_y))dy

x=x4+(¥)
x

J ( Pr (y)> dx

y=y_(x)

_|__ f [0 (v + (x)) — 96 (y(x))] dx

The statements of part 3 mainly follow from the fact that the two variables play separate
roles. Let us suppose, for instance, that F(xP is of class I; both if vy = 0 and if ¢y is

increasing, the term% fyy’” (r (x+ () — @r (x_¥))) dy will be strictly positive.

Similar reasonings apply for G (y) and for the other two different classes of functions, V'
and D.

Bearing in mind the definitions of classes 7, V- and D, in the next result we group all
the functions that we will need from now on along so that the remaining results will not need
detailed proofs. The list does not pretend to be exhaustive and tries to show the strength and
clearness of the method.

Theorem (5.1.8)[106]: The 54 parametric families of Hamiltonian systems associated either
to H(x,y) = cl;(x)+ kIj(y), fori=1,...,9,i<j<90or to H(x,y)= cl;(x)+
ky?, fori= 1,...,9and ¢ > 0,k > 0, have increasing period function in the period
annulus of the origin.

The 5 parametric families of Hamiltonian systems associated either to H(x,y) = c¢D;(x) +
kD;(y),fori = 1,...,2,i <j < 2,0rtoH(x,y) = cD;(x) + ky?® fori= 1,....,2, and
¢ > 0,k > 0, have decreasing period function in the period annulus of the origin.

Proof. The theorem follows directly from Propositions 10(iii) and 11. Only a nuance in the
case of function D; must be underlined: note that when n > 1 the centre is degenerate, which
breaks the first condition of Lemma (5.1.4). However, both the transversal vector field U,
and the function m are well-defined and the proofs and conclusions are still valid. Observe
that in this case—as in any degenerate centre— the period function tends to infinity when
the periodic orbits tend to the critical point.

The general family of Hamiltonian systems (5) treated has connections with many
physical problems and other well-known examples. Among the 59 cases presented in
Theorem (5.1.8), we would like to stress how our method works for the non-forced
pendulum, some applications to celestial mechanics and to relativistic mechanics, the
Lotka—Volterra model and a number of potential systems. First of all, using function I, we
get:

Example (5.1.9)[106]: The non-forced pendulum, the Hamiltonian system with
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2
H(x,y) =7—cosx+ 1,

has increasing period.
A less trivial potential Hamiltonian arises when using function D;:
xZ

Example (5.1.10)[106]: The potential Hamiltonian systems with H(x, y) = y; + a,, 2—7: +
2n

anxz—n,with a, = 0,a, > 0andm > n > 1 have decreasing periods.
The features of I,(z) = D,(z) = (p + qz)* — p® provide two interesting applications.
When a = %; the resulting Hamiltonian is used in relativistic mechanics, where the problem

of finding constant period oscillators (isochronous centres) has some interest, see [124] and
the references therein. The authors find numerical approximations of a function V such that
the  Hamiltonian  H(x,y) = V(x) + K(y)where K(y) = m2+ y2/c% — m,is
isochronous. We think also that a nice way to find isochronous centres would be looking for
V such that vy, compensates v, : Here we give an example of decreasance of the period
function.

Example (5.1.11)[106]: The period function associated to the centre of the Hamiltonian

system given by H(x,y) = % x?+ \/m? + y2/c? — mis decreasing.

The function I,(z) whena = % leads to a Hamiltonian used in celestial mechanics to study

the Sitnikov motion problem, see [109].
Example (5.1.12)[106]: The period function associated to the centre of the Hamiltonian

. _ 1 5 1 .. .
system given by H(x,y) = Sy \/ﬁ + 2 s increasing.
4
Remark (5.1.13)[106]: Theorem (5.1.8) covers many of the examples of Chow and Wang,
see [117], where they study, for potential Hamiltonian systems, not only the first derivative
of the period function but also give an expression for the second

-nﬁ.-h.-n
-

Fig. (3)[106]: The phase portrait of the Hamiltonian system derived from H(x,y) = % o

2 2

4 Yy
+Z
2

4
z

— 4=
2 2
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derivative. In the current context, potential Hamiltonian systems are equivalentto Go(y) =
y2/2. In particular, taking F(x) = I,(x), I,(x), I5(x), I,(x) and I5(x) we obtain the
increasing periods showed in [117] in Examples 1, 2, 3.a, 3.b and 5, respectively; and taking
F(x) = D;(x) with {a,, = O,n= 2}and {m = 4,n= 2,a,, = a, = 1} we obtain the
decreasing periods given in [117] in Examples 3.d and 3.c (b = 0), These are all the
examples where they succeed to prove monotonicity.

26 Z4- ZZ yZ .
The case when F(x) = Is(x) = —5t5 and G(y) = Y deserves some attention.

The vector field has exactly three critical points: the centre at the origin and two cusps at
(£+1,0). All the orbits of the vector field are closed, except for the two heteroclinics that
link the two cusps, see Fig. 3. We have proved that the period function of the origin’s period
annulus is increasing; moreover, it must go to infinity as it approaches to those heteroclinics.
Outside the heteroclinics, the normalizer U (see Lemma (5.1.4)) is no longer transversal to
the vector field and so, we cannot deduce that the period function is increasing. Indeed, there
are strong numerical evidences that it is decreasing as the orbits go to infinity.

The increasance of periods for the Lotka—Volterra predator—prey system is one of the
most known results related to periods in planar ODEs. It was first stated by Hsu [123], but
some gap was found in the proof. Afterwards, it has been proved [127], [130], [134].
Example (5.1.14)[106]: The centre of the classical Lotka—\Volterra predator—prey system,

x = x(a—py),
{5/ = y(gx — m), ®)
has an increasing period function.
Here, we give a short proof of such a fact. By means of a change of variables u =
log((yx)/m) v = log((By)/a), the Lotka—Volterra system can be transformed into a
Hamiltonian system of type H(u,v) = F(u) + G(v) with F(u) = a(e* —u— 1) and
G(v) = m(e¥ —v — 1), Then, Theorem (5.1.8) with function I, gives the result.

However, an advantage of our method is that we do not need to do any transformation
and we can apply it directly to the original system.

We devote the rest to prove all the cases listed in Proposition (5.1.15). The proof is quite
technical and straightforward.

Proposition (5.1.15)[106]: (i) The following functions are of class 7 in Q:
@L(Ez)=¢e“—2z— 1,0=R

(b) I,(z) = z3/3 + 2z2/2,Q = (—5/2, +).

(C)13(Z)=z( +a_+1 +§) ,With0<a<1land Q= (—a,1).
d) L,(2) = 22 ( +“—“z+ )With0<aS1andQ=(—a+00).

@ s(2) =22 +Z ,0 = R\{(-1,1}

NI,(z) = 1— cosz,Q=R:

Q) I;(2) = (p + qz)* — p® with p, q positive real numbers and a € [0,1)Q = R.
() Is(2) = =,

(i) Io(z) = zarctanz —~In(1 + z)Q =R

(if) The following functions are of class D in Q:

2

2
(a)Dl(z)—am +an ,witha, > 0,a,, 20andm>n=>1,0=R:
(b) D,(z) = (p + qz)a p W|th p, q positive real numbersand a € (0,1)Q = R:

158



Proof. To avoid cumbersome notations, in the whole proof we drop the subscripts for ¢ and
V.
1. Functions of class J.

(@) ForI,(z) = e?— z— 1—<p()— e?? —4e? + 4ze? + 2z + 5).

The function e?? —4e? + 4ze? + 2z+ 5 is always a negative function and so ¢
increasing.

(b) For I (2) = z3/3 + 22/2,~ ¢(2) = ;s

3 (z+1)%
(c) Consider I3(z) = —z? ( + T z— ) with 0 < a <1 and a < z < 1. Elementary
computations give:

(Z 1)4(

d 1 P(z, a)

5. ¢(Z) == 4 4’

dz 6 (z+ a)*(z—1)
where P(z,a) = (=10 + 4z)a®+ (11 — 42z + 16z%)a? + (2423 — 10 — 6822 +
42z)a — 4z — 24273 + 16z% + 9z*. The proof is finished in (d) together with that of 1,.
(d) For I,(2) = 22 ( +22 z+2)with0 <a < land—a <z < + oo, we obtainina
similar way:

d 1 P(—2z,—a)

- ¢(Z) == 4 4’

dz 6 (z+ a)*(z+1)

so that to prove that both I5 and 1, are of class 7, we need

P(z,a) < Oforall (z,a) € R; :=(—a,1) x (0,1),

P(z,a) = 0forall (z,a) € R, := (—,a) X (—1,0),

From standard computations it is easy to see that:

(i) The restriction of P(z a)to dR, is negative except at (z,a) = (0,0)and (z,a) =
(—1,1), where it is zero.

(if) The restriction of P(z, a) to OR, is positive except at (z,a) = (0, 0), where it is zero.

(iii) % P(0z, a) never vanishes in R; U R,.

Then, the result follows.

z6 z4 1 10z°-39z%+602%+9
(e)Forls(z) = ——=+ 7 E p(z) = -1)°
The polynomial 10w3 — 39w? + 60w + 9 has two non-real roots and one real negative,
s0 10z® — 39z* + 60z% + 9 has no real roots and ¢’ turns out to be positive everywhere
it is defined.
(f) ForIg(z) = 1 —cos z,n(z) = (1 — cos z)? = 0.
(9) Since I,(z) = (p + qz)* — p*and D,(z) are the same function we are going to give
the proof together.

For the sake of simplicity, we write M instead of I, or D,, We first compute v = vy,
v(2) = M'(2)?% — 2M(2)M" (2) = 4a§ P28 a2 h(y).

where w = (1 + pz?/q) =1 and

hw) = (a— Dw@D 4+ 2 —a)w? + (1 - 2a)w + (2a — 2).
This expression tells us that all the cases behave as p = q = 1, that is, M(z) =
(1+ z%)%— 1; because it reduces the study of the sign of v,, to that of h(w) Some
elementary calculus gives the following properties: h(1) = h'(1) =0 and h"(w) =
w® %(a(a® — 1)w+ a(a— 1)(2— a)). Then, if A’ does not change sign, the function
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h also keeps the same sign. We can easily see that: when a> 1,h"(w) >0 w >
(a—2)=(a+ 1);

when0<a<1,h"'"W)<0ew>(@a-2)/(a + 1);

whena < 0,h"(w) =20 w<(a— 2)/(a+ 1):

For the function (a — 2)/(a + 1), itis straightforward to see that the last three inequalities
onw are true and so, h(w) = 0 forall wifa ¢ (0,1) and h(w) < 0 forall wifa € (0,1),
The first and the third give the statement referred to function I, while the second one leads
to that of D,:

(h) For Ig(z) = > 0.

(1+ 2)s —

(i) For I4(z) = z arctan z — Eln(l +2z2),v(z) =
(i) Functions of class D.

(a) Consider D,(z) = amz— + an 2 ,witha,, # 0,a,,/an =>0andm >n > 1.

Denotingw = w(z) = zz(m ) jt turns out that
v(z) = z"% (Aw? + Bw + (),

with A := a,zn(1+%),B = I g — 2m2% 4+ n+4 2mn —2n?) andC := ,21(1+

v(z) = 12

2 )
arctan? (z)(1-z)%+In(1+z2?)
1+2z2

= 0.

%) For w = 0 the value of the second degree polynomial is
a?(1+ %) < 0. Now, if we prove that it does not have positive solutions, we are done. So,
we impose % > 0 and AC = 0. The last inequality always holds since AC = a2,a2(—1 +

%)(—1 + %) > 0. On the other hand,
B am
24 2n(1-m)a,
Since m-—2m?+ n+ 2mn—-2n = m(l-n)+ n(1—-m)—- 2(m—n)?><0,B/
(2A4) = 0 reduces then to a,,/a,, = 0, which is true by hypothesis. Finally, although it is
not necessary for D, being of class D, we need to assume that an is positive so that the origin
IS a centre.
(b) For D,(z) see the proof of I, (z).

We devoted to a new result about a family of quadratic systems with a decreasing
period function. A bigger family of quadratic systems including the next one was treated in
[110]. Despite they obtain a general expression for u(x,y); it is too difficult to handle for
our purposes. We have considered the following case, which is also a Loud’s system, see
[54] and also [114].

Proposition (5.1.16)[106]: The quadratic system
{x = —y + 2Dx? Dy?,
y = x+ Dxy,

(m —2m? + n+ 2mn — 2n?).

(9

has a decreasing period function.
Proof. First of all, notice that the change of variables ¥ = Dx,y = Dy eliminates the
parameter D in (9) and so we can consider only the case D = 1:

{J'C = —y+ 2x?% —y?, (10)
y=x+xy,
A first integral for (10) is
x? 1(1+ 3y)

1
H(x,y) :§(1+ y)* _5(1 + y)3
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which associated integrating factor is 1/V, where V = (1 + y)°.

It is not difficult to see that the periodic orbits y;, corresponding to the period annulus of the
origin are included in the sets {H = h,0 < h < 1/6} (they are one of the two connected
components of the level sets). When h — 1/6; the periodic orbits approach to the curve
x?=y2+ 4/3y+ 1/3.

Note that for H of the special form H(x,y) = A(y) + B(y)x? it is easy to prove that

U - (1_A(y)B’(y)>§ AY)
AW)BW) )2 "A®W)

is a normalizer of VH* see also [121]. We have that the same U is also a normalizer for any
system of the form V (x, y)VH?, By performing these computations in our case we can take
U = (R,S) where

1 1 1
R(x,y) = x<—+§ y(3+ y)) and S(x,y) =z yB+ y)A+ y).

2
Furthermore, RH, + SH,, = H. By using part 2 of Theorem (5.1.2) we have that a u
associated to system (10) is

—(1+7 2 2) > B+ ) 1=
u= 3Ytey c Y@ty =gV

and hence
T(s) . T(s)
re= [ ue@yO)e=7 [ yod
0 0

Fixed y and s, the first integral H tells us that there exists only a pair of values of
x,—x_(y) = x,(y) >0,such (x < y) €y, For a fixed s, define y,, and y,, the two
intersection of gs with the y —axis, see also Fig. 1.

At this point the integration could be cumbersome and perhaps not possible. We make use,
X

now, of Proposition (5.1.3). It turns out that taking g(x,y) = PEEERY and defining
2
X
*(x,y) = Vgt X =—
u (xy) = uly) +Vvyg 61+ y

we can compute T’ as

L) 7“ v )1 }” X ()

1
T’ =_ M oM - I ,
W) =% j A+ y)? A+ )73 a+»2?
Ym Ym Ym
because of the symmetry on x, Clearly, the argument of the last integral is always positive

and so, we can assert that the period is decreasing.
We give another proof of the monotonicity of the period function for the Lotka—
Volterra system
{x = x(a—By) = xyH,(x,y), (11)
y=y(yx—m)= xyH,(x,y)
which works directly on (11), without changing variables. Here H(x,y) = F(x) +
G (y) where

F(x)=yx—m (ln (E)+ 1)and G(y) = By — a(ln('g—y)+ 1)
U:(M q60) " ¢

,——) is.anormalizer of (11) and m i
) G,(y)) sano er of (11) and mis
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uny) = 1— yxF(x) — ByG(y) |
' (yx — m)2  (By —a)*
Now, we want to see that T'(s) > 0, where s is the parameter of some orbit of U, because
this parameter increases forward from the critical point.

We perform the integration in the following way:
T(s)

| . y@)a

0

M x4+ (¥)
[ e b o
: y(yx —m) rx—m)?/|, .,
1 1 By \P
¥ J x(a— By) (‘ (a- ﬁy)2>] "

Then, making the change of varlables u = In(yx/m),v = In(By/a) in both integrals we
obtain

T(s)
[ weo.y@)a

0
u+(v)

j [1 + 2uet 2“] p
v
— 113
T m 2(e* — 1) ()
N 1 J 14 2ve’ —e? ]v‘(u) 4
— u.
_ _7\3
a 2 2(1 —ev) pa )
If we denote
1+ 2&ef — %
2(es —1)

it turns out that

o 165( —4eb + 5+ 4feb + 2¢ ezf)

() = D

The function in parenthesis in the numerator is negative (it is the same function that the one
that appears in the proof of Proposition (5.1.15), function 11). Then, H(¢) is an increasing
function. This fact and the preceding computations clearly imply the result.

We prove that a subfamily of Lie’nard systems—which includes the quadraticone
with A(x) = x?2/2 studied in [112]—has an increasing period function in the period annulus
of the origin.

Proposition (5.1.17)[106]: The family of Lie nard equations
x= —-y+ Ax),

U520 & (12)
with A an smooth function satisfying A(0) = A'(0) = 0; has a centre at the origin.
Furthermore, if A(x) = kl;(x),forsomei = 1,....,9 and k > 0 where I; are the functions
which appear in Proposition (5.1.15) or A(x) = kx?, then the period function of (12) is
increasing in the period annulus of the origin.
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Proof. By using the change of variables (u, v) = (x,y) A(x)) we get the new system

u= —v,
{ff = AW+ v),
Applying the new change (z,w) = (u,log(1 + v)) we arrive to
z=1e"Y,
b = 4,
which is of the form of the systems for which Theorem (5.1.8) applies. By applying it with
the Hamiltonians I, (w) + kI;(z), with j = 1, ....,9; or with the Hamiltonian I, (w) + k2
the result follows.
To finish, we give an overview to one of the families where the period function is
better understood: that of Hamiltonian systems obtained from

1
HOoy) =5 (¢ + y%) + Hnya (x,)
where H, ., is a homogeneous polynomial of degree n + 1, It has been shown, see [39],
that the period function of the centre at the origin is always increasing when n is even and
has at most one critical period when n is odd. Here, we will see how formula (9) for the
derivative of the period function used in [39] can be obtained using our method.

To achieve this goal it is convenient to express the system in polar coordinates. We remark
that the Lie bracket does not depend on the chosen variables. Therefore, the vector field is
= r"g'(0),

{9 =1+ Mm+ Dr*lg(o),

while the Hamiltonian writes now as H(r,0) = % r2r"tlg(0)
Aiming to use part 2 of Theorem (5.1.2), we search for R = R(r,0) and S = S(r,68) such
that RH, + SH, = H:We observe first that R, = r/2and S; = (1-2)g(6)/g’ (6)
satisfy R;H, + S;Hg = H: Then, using that H. = H,cos6+ H,sin6 and Hg —
rH, sin8 + rH, cos 6, it turns out that
R = R;cosf — S;rsiné,
S= Rysin0 + Sircos 0,

satisfy the required relation. Hence, from our main theorem, we know that u(8) =
1 4'(0)? a-m+g"(@)gO)(n-1) _ 1—ni(g(9))
2 g'(6)? 2 do \g'(6))’
Integrating by parts it becomes (except for a positive constant) the same formula used in
[114].
Section (5.2): Quasi-Homogeneous Polynomial Differential Equations of Degree Three

Poincaré in [159] was the first to introduce the notion of a center for a vector field
defined on the real plane. So according to Poincaré a center is a singular point surrounded
by a neighborhood filled of closed orbits with the unique exception of the singular point.
Since then the center—focus problem, i.e. the problem to distinguish when a singular point
is either a focus or a center is one of the hardest problems in the qualitative theory of planar
differential systems, see [136]. We deal mainly with the characterization of the center
problem for the class of quasi-homogeneous polynomial differential systems of degree 3. In
the literature we found classifications of polynomial differential systems having a center.
For the quadratic systems see Dulac [143], Kapteyn [147], [148], Bautin [138] among
others. In [162] Schlomiuk, Guckenheimer and Rand gave a brief history of the center
problem for quadratic systems.
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There are many partial results about centers for polynomial differential systems of degree
greater than two. Some of them are for instance, the classification by Malkin [153] and
Vulpe and Sibirskii [164] about the centers for cubic polynomial differential systems of the
form linear with homogeneous nonlinearities of degree three. Note that for polynomial
differential systems of the form linear with homogeneous nonlinearities of degree k > 3
the centers are not classified. However, there are some results for k = 4,5, see for instance
the works by Chavarriga and Giné [140], [141]. It seems difficult for the moment to obtain
a complete classification of the centers for the class of all polynomial differential systems
of degree 3. Actually, there are some subclasses of cubic systems well studied like the ones
of Rousseau and Schlomiuk [160] and the ones of Zotadek [165], [166]. Some centers for
arbitrary degree polynomial differential systems have been studied in [152].
We denote by R[x, y] the ring of all polynomials in the variables x and y and coefficients
in the real numbers R. We consider polynomial differential systems of the form
x = P(x,y),y = Qx), (13)

with P,Q € R[x,y] and its corresponding vector field X = (P, Q). Here the dot denotes
derivative with respect to the time t (independent variable). The degree of the differential
polynomial system (13) is the maximum of the degrees of the polynomials P and Q.
System (13) is a quasi-homogeneous polynomial differential system if there exist natural
numbers s, s,, d such that for an arbitrary non-negative real number o it holds

P (a* x,a”y) = a**7P(x,y),Q (a* x, a2 y) = as**71Q(x,y). (14)
The natural numbers s; and s, are the weight exponents of system (13) and d is the weight
degree with respect to the weight exponents s; and s,. When s; = s, = s we obtain the
classical homogeneous polynomial differential system of degree s + d — 1.

Z2 .
—
—
"z
(a) (z1,22) = (0,0) on the (Uy, Fy.) (b) On the Poincaré disk.

Fig. (1)[135]: (a) The local phase portrait at the origin in the local chart Ul. (b) Phase
portrait of a cubic quasi-homogeneous non-homogeneous system (18) in the Poincareé disk.
This system has a global center.
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(a) cubic quasi-homogeneous (b) cubic homogeneous

Fig. (2)[135]: (@) The parameter space (a, b) and the phase portrait of cubic quasi-
homogeneous systems (18). (b) Cubic homogeneous systems (20) having a center, see also
[142].

It is well known that all quasi-homogeneous vector fields are integrable with a
Liouvillian first integral [145], [146], [150].

From Theorem (5.2.8) of [151] we have that there are only two families of cubic
polynomial differential homogeneous systems with a center.

In the next result we characterize all the centers of quasi-homogeneous polynomial
differential systems.

The proof of Theorem (5.2.7).

In addition to the classification of centers, another classical problem in the qualitative
theory of planar differential systems is the study of their limit cycles. Recall that a limit
cycle of a planar polynomial differential system is a periodic orbit of the system isolated in
the set of all periodic orbits of the system. Thus in what follows we study, using the
averaging theory of first order, the limit cycles which bifurcate from the periodic orbits of
the centers (19) and (20) of Theorem (5.2.7) when these centers are perturbed inside the
class of all cubic polynomial differential systems.

For proving Theorem (5.2.7) we should need the following result.

Proposition (5.2.1)[135]: A quasi-homogeneous non-homogeneous cubic polynomial
differential systems (13) with P and Q coprime and s; > s, after arescaling of the variables
can be written as one of the following systems.

(@x = y(ax + by?), y = x+y?, with a # b,orx = y(ax + y?),y" = x, and
both with minimal weight vector (2,1, 2).

(b)x = x%2 + y3,y = axy,witha # 0 and minimal weight vector (3, 2, 4).

(c)x = y3,y = x2, and minimal weight vector (4,3, 6).

(dx =x (x + ay?),y = y(bx + y?), with (a,b) # (1,1), and minimal weight vector
(2,1,3).

(e)x = axy?y = +x? + y? witha # 0 and minimal weight vector (3,2, 5).

H)x = axy?,y = x + y3, witha # 0and minimal weight vector (3,1, 3).

(9) x = ax+y3,y= y,orx = ax,y = y with a # 0, and minimal weight vector
(3,1,1).

Proof. See [146].

A singular point is nilpotent if both eigenvalues of its linear part are zero but its linear
part is not identically zero. Andreev [137] was the first in characterizing the local phase
portraits of the nilpotent singular points. In what follows we summarize the results of the
local phase portraits of the nilpotent singular points, for more details see Theorem 3.5 of
[144].
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Theorem (5.2.2)[135]: Let (0, 0) be an isolated singular point of the vector field X given by
X =y+ Axy),y = B(x,y),

where A and B are analytic in a neighborhood of the point (0, 0) starting with terms of

second degree.

Let y = f(x) be the solution of the equation y + A(x,y) = 0 in a neighborhood of the

point (0, 0), and consider F(x) = B(x, f(x)) and G(x) = (0A/0x + 0B/dy)(x, f (x)).

Then the origin can be a focus or a center if and only if one of the following statements

holds:

@IfG(x) = 0and F(x) = ax™ +o(x™)form e Nwithm > 1,moddanda < 0,

then the origin of X is a center or a focus.

(b) If F(x) = ax™ + o(x™) witha < O,om € Nym > 2,modd, and G(x) = Bx" +

o(x™)withf #+# 0,bn eN,n =1 and if either m < 2n + 1,orm = 2n + 1and

f? + 4a(n + 1) < 0, then the origin of X is a center or a focus.

The following result characterizes the isochronous centers.

Theorem (5.2.3)[135]: A center of an analytic system is isochronous if and only if there
exists an analytic change of coordinates of the form u = x + o(x,y) and v = y +
o(x,y) changing the system to the linear isochronous system

u = —kv,v = ku,
where k is a real constant.
For a proof of Theorem (5.2.3), see [154].
Assume that the origin is an isochronous center for system (13). Then Theorem (5.2.3)
guarantees that there exists an analytic change of coordinates u = x + o(x,y) andv =
y + o(x,y)suchthatu = —kv,v = ku.Thensinceii + u = 0,and¥ + v = 0, and
doing a rescaling we can take k = 1.

In order to plot the global phase portrait of the polynomial vector field (13) of degree
m we should be able to control the orbits that come or escape at infinity. For this reason we
consider the so called Poincaré compactification of the polynomial vector field X . Consider
R? as the plane in R3 defined by (v4, ¥, y3) = (x1, x5, 1). We also consider the Poincaré
sphere $% = {y = (¥, V2, ¥3) € R3:y;, + y, + y3 = 1} (see also [158]) and we
denote by T(0,0,1)S? the tangent space to S$? at the point (0, 0, 1). The Poincaré
compactified vector field p(X) of X is an analytic vector field induced on $? in the
following way: We consider the central projection f : T(0,0,1) : $* — $2. This map
defines two copies of X, one in the northern hemisphere {y € S$?:y; > 0} and the other
in the southern hemisphere. We denote by X the vector field Df - X defined on $? except
on its equator. We notice that the points at infinity of R? are in bijective correspondence
with the points of the equator of §%,S* = {y € S$%:y; = 0} and so we identify S* to be
the infinity of R2.

Now we would like to extend the induced vector field X from $2 \ S to S2. It is
possible that X does not stay bounded as we get close to S*. However, it turns out that if we
multiply X by the factor y*~1 , namely, if we consider the vector field yI*~1X the extension
is possible in the whole $2.

Note that on §2 \ S* there are two symmetric copies of X and knowing the behavior
of p(X) around S, we know the behavior of X at infinity. The Poincaré disk D? is the
projection of the closed northern hemisphere of S on y; = 0 under (yq,y,,y3) ——
(v1,y2). Moreover, St is invariant under the flow of p(X ).
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We also say that two polynomial vector fields X and \Y on R? are topologically equivalent
if there exists a homeomorphism on $? preserving the infinity St carrying orbits of the flow
induced by p(X ) into orbits of the flow induced by p(Y). The homeomorphism should
preserve or reverse simultaneously the sense of all orbits of the two compactified vector
fields p(X ) and p(Y).

Since $? is a differentiable manifold we can consider the six local charts U; = {y €
S%:y; > 0},and V; = {y € S$?:y; < 0} fori = 1,2,3and the diffeomorphisms Fi :
V; —— R?and G; : V; —— R? are the inverses of the central projections from the planes
tangent at the points (1, 0, 0), (-1, 0, 0), (0, 1, 0), (0, —1, 0), (0, 0, 1) and (0, 0, —1)
respectively. Now we denote by z = (z,,3,) the value of F;(y) or G;(y) for any i =
1, 2, 3. Then we obtain the following expressions of the compactified vector field p(X ) of
X (for more details we refer to Chapter V of [144] and the references therein)

1 Zl 1 Z]_ 1 Zl
ZX A(z (— ,—) —z.P (—,—),—ZP (—,—) in U,
2 ( )(Q ZZ ZZ 1 ZZ Z2 2 Zl ZZ 1

sl (1) oo (® 1)o@ 1))
% 4(2) <P (ZZ 'ZZ) %10 (Zz 'Zz) 520 (zz 'z2)> in Uy
A(Z)(Pl(zl, Z2), Q(szz)) in U3,

where A(z) = (z? + z2 + 1) 2@-1, Note that in the two sets U; and V; the expressions
of the vector field p(X ) are the same and they only differ by the multiplicative factor
(—1)™ 1. In these coordinates z, = 0 always denotes the points of S*. In what follows we
omit the factor A(z) by rescaling the vector field p(X ) and so we obtain a polynomial vector
field in each local chart.

Let p(X ) be the Poincaré compactification of $? of a polynomial vector field X in
R?. In what follows we consider the definition of parallel flows given by Markus [155] and
Neumann in [156]. Let @ be a C* local flow on the two dimensional manifold R? or R? \{0}.
The flow (M, ®) is C¥ parallel if it is C“ —equivalent to one of the following ones:
strip: (R?, @) with the flow @ definedby x = 1,y = 0;
annular: (R? \ {0}, ®) with the flow @ defined (in polar coordinates) by # = 0,0 = 1;
spiral: (R? \ {0}, @) with the flow @ defined by 7 = 0,0 = 1.

It is known that the separatrices of the vector field p(X ) in the Poincaré disk D are
(i)  all the orbits of p(X ) which are in the boundary St of the Poincaré disk (recall that
St is the infinity of R?);

(i) all the finite singular points of p(X );

(iii)  all the limit cycles of p(X ); and

(iv) all the separatrices of the hyperbolic sectors of the finite and infinite singular points
of p(X).

We denote by X the union of all separatrices of the flow (D, @) defined by the
compactified vector field p(X ) in the Poincaré disk D. Then X' is a closed invariant subset
of D. Every connected component of D \ X, with the restricted flow, is called a canonical
region of @.

For a proof of the following result see [149] and [156].

Theorem (5.2.4)[135]: Let @ be a C® flow in the Poincaré disk with finitely many
separatrices, and let X be the union of all its separatrices. Then the flow restricted to every
canonical region is C® parallel.
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The separatrix configuration X, of a flow (D, @) is the union of all the separatrices ~
of the flow together with an orbit belonging to each canonical region. The separatrix
configuration X of the flow (D, @) is said to be topologically equivalent to the separatrix
configuration £, of the flow (D, @) if there exists a homeomorphism from D to D which
transforms orbits of X into orbits of ., and orbits of X into orbits of £
Theorem (5.2.5)[135]: Let (D,®) and (D, ®) be two compactified Poincaré flows with
finitely many separatrices coming from two polynomial vector fields (13). Then they are
topologically equivalent if and only if their separatrix configurations are topologically
equivalent.

For a proof of Theorem (5.2.5) see [155], [156], [157].

From Theorem (5.2.5) it follows that in order to classify the phase portraits in the
Poincaré disk of a planar polynomial differential system having finitely many finite and
infinite separatrices, it is enough to describe their separatrix configuration.

We consider the system

x' (t) = Fy(t,x), (15)
with Fy : R X 2 - R™ a €2 function, T —periodic in the first variable and 2 is an open
subset of R™. We assume that system (15) has a submanifold of periodic solutions.

Let € be sufficiently small and we consider a perturbation of system (15) of the form

x' (t) = Fy(t,x) + eF,(t,x) + £2F,(t,x,¢€), (16)
with F;,:RX w > R* and F,: R X 2 X (—¢&5,&) » R* are C? functions,
T —periodic in the first variable and 2 is an open subset of R™. Averaging theory deals with
the problem of the bifurcation of T —periodic solutions of system (16), see also for more
information on the averaging theory [161], [163].
Let x(t,z) be the periodic solution of the unperturbed system (15) satisfying the initial
condition x(0,z) = z. Now we consider the linearization of system (15) along the solution
x(t, z), namely

y' = DyFy (£,x(t,2)) y,

and let M,(t) be a fundamental matrix of this linear system satisfying that M(0) is the
identity matrix.

For a proof of the following theorem see [139].

Theorem (5.2.6)[135]: (Perturbations of an isochronous set). We assume that there exists
an open bounded set V with CI(V ) <  suchthat foreach z € CI(V ), the solution x(t, z)
is T —periodic, then we consider the function ¥ : CI(V ) - R"

F(z) = j M;1(t,2)F, (t,x(t,z)) dt. (17)

0

If there exist a € V with F(a) =0 and det((dF/dz)(a)) # 0, then there exists a
T —periodic solution @(t, €) of system (16) such that (0,e) - aase — 0.
Theorem (5.2.7)[135]: The following two statements hold.
(@ The unique cubic quasi-homogeneous non-homogeneous polynomial differential
system (13) with P and Q coprime and s; > s, having a center after a rescaling of the
variables can be written as

x = y(ax + by?),y = x + y? (18)
with (a — 2)? + 8b < 0. For all a and b satisfying (a — 2)? + 8b < 0 the phase
portrait in the Poincaré disk of system (18) is topologically equivalent to the one given in
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Fig. 1(b). Moreover, its parameter space (a, b) is described in Fig. 2(a). Additionally, these
centers are not isochronous.

(b) The unique cubic homogeneous polynomial differential systems having a center after a
linear transformation and a rescaling of independent variable can be written in one of the
following four forms:

x = —3aux?y — ay® + P;,y = ax3 + 3auxy® + Qs, (19)
wherea = +1,u > —1/3 and,u * 1/3
x = —ax? y — ay + P,y = ax3® + axy?® + Q3, (20)

with a = +1.Here P3 = px3 + pyx?y — pyxy? and Qs = px%y + pyxy? —
p,y3. The phase portraits in the Poincaré disk of systems (19) and (20) are topologically
equivalent to the ones of Fig. 2(b). Moreover, these centers are not isochronous.

Proof. All quasi-homogeneous non-homogeneous cubic polynomial differential systems are
given by Proposition (5.2.1). Note that all those systems have the origin as the unique
singular point.

Now we consider the first system of statement (a) of Proposition (5.2.1). This system admits

the real first integral
3a+6+A

(by* + (a — 2)xy? — 2x)*(dx — 2by? — ax + 2x)4-a-2 (2by? + ax — 2x
+ Ax),

with (a — 2)®> + 8b > 0and4 = /(a — 2)? + 8b. Note that the real invariant curve
2by? + ax — 2x + Ax = 0 passes through the origin. Hence, the origin is not a center.
Now we consider the case where (a — 2)? + 8b < 0. Under the change of coordinates
x = Y,y — Xand after renaming (X,Y ) by (x, y) we obtain

c =y + x%y = x(ay + bx?). (21)
Now we apply Theorem (5.2.2) to system (21). We have A(x,y) = x? and B(x,y) =
x(ay + bx?). We have F(x) = B(x,—x?) = (b — a)x3and G(x) = (a + 2)x.Since
a # b we have that F # 0. Following the notation of Theorem (5.2.2) we have m =
3,a =b—an=1andf = a + 2.
Fora +# —2wehavethat G(x) = 0andb < —2.Soa < 0 and by Theorem (5.2.2)(a)
the origin is a focus or a center. System (21) has the real first integral

H =(y—(—1 +%\/m)x2) (y—( 1—1\/m> )

well defined at the origin and consequently the origin is a center.
Fora +# —2 we have G(x) # 0. In order that the origin of system (21) can be a focus or a
center, from Theorem (5.2.2)(b), we needthat@ = b — a < Oand (a — 2)?> + 8b <
0. We notice that system (21) under these assumptions admits the real first integral
(16y% + 16x%y — 8x%ay + 8x*c? + 4x* — 4x*a + x*a?)**
Hxy) =, N
y—2x°+x a)

x2c

Ce 2(2+a) arctan)(

with ¢ = \/—2((a — 2)%2 4+ 8b)/4. Since this first integral is defined at the origin, the
origin is a center.

The second family of systems of statement (a) of Proposition (5.2.1) admits the real invariant
curves va? + 8x + 2y? + ax = 0which pass through the origin. So these systems
have no centers.

Easy computations show that systems (b), (c), (d), (e), (f) and (g) have real invariant curves
passing through the origin. Therefore these systems have no centers.
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In short, the quasi-homogeneous non-homogeneous cubic polynomial differential systems
having a center are the system (18) satisfying either a = —2andb < —2,0ra #
—2,b — a < 0and (a — 2)? + 8b < 0. An easy computation (see Fig. 2) shows that
these conditions for existence of the center in system (18) reduce to the unique condition
(a —2)> +8b < 0.
Now we shall study the phase portrait in the Poincaré disk D and the parameter space of
system (18). So, we study the infinite singular points of system (18). On the local chart U,
we obtain

z, =22+ (1 - a)z% z, — bzt

%, = —%12, (a3, + bzi). (22)

Since 8b + (a — 2)? < 0 we have that (z;,3,) = (0,0) is the only infinite singular
point in U; and it is linearly zero. In order to classify this infinite singular point we use the
standard blow-up techniques, see for instance [144]. Then we obtain that the local phase
portrait at the origin (0, 0) of system (22) is topologically equivalent to the one described in
Fig. 1(a). Additionally, note that in the chart (U,, F,) there are no infinite singular points.
Hence, in the Poincaré disk the origin and S* are the only separatrices. If we remove the
origin and S, then we have only one canonical region homomorphic to R? \ {0} and the
flow is locally annular. According to Theorem (5.2.4) we obtain that the center is globally
defined in R? \ {0}. Hence, the phase portrait of the differential system (18) is topologically
equivalent to the one of Fig. 1(b).
The parameter space and phase portrait of system (18) is given in Fig. 2(a). Now we will
study the isochronicity of the center of system (18). System (18) written in the polar
coordinates is

¥ = P(O)r + P,(0)r? + P;(6)r3,

0 = Qo(0) + Q1(8)r + Q,(0)1?,

with
P, = cos0sinf,P, = (sin? 8 + acos?8)sin6,P; = bcosBsin30,0Q,
= c0s?2 0,0, = —(a — 1)sin? 0 cos §,Q, = —b sin* 4.
Consider the analytic function H(r,8) = »%-; H,(8)r™ where H,,(0) are trigonometric
polynomials of degree n. If the condition

H + H = 0,
is satisfied then in the new variables (H, —H ), system (18) could be transformed into the
form
u= —v,v = u.
So system (18) could have an isochronous center at the origin.
If we expand H + H = 0 in power series of r we obtain a recursive system of differential
equation. The coefficient of rn forn = 1, 2,... in this expansion is the differential equation
of the form
cos* OH",(0) + 2(n — 1) sin O cos OH ,(8) + ncos? OH,(8) (n — 1)

— (n — 2)cos? 6 + H,(0) =0,

and its general solution forn = 1is

H.(0) = o (c. s sin 6 L C sin 0
1(0) = cos 15t (cos@) 2 €05 (cos@) '

Forn = 2,3,...we have
n _ sin260 sin26
H,(8) = (cos 20 + 1)z (Cl sin (W) + C, cos (m)>
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Since these solutions H,,(8) must be polynomials of trigonometric functions we have that
H, = 0 for all n. Hence we do not have an isochronous center and the proof of Theorem
(5.2.7)(a) is completed.
Now we are going to prove Theorem (5.2.7)(b). The usual forms given in (20) for the cubic
homogeneous polynomial differential systems having a center were obtained in Proposition
1 and Theorem (5.2.8) of [151]. The phase portraits were classified in [142]. See also Fig.
2(b).
In order to study the isochronicity of systems (19) and (20) we can repeat the same
mechanism used in the proof of statement (a). In polar coordinates system (20) takes the
form
r = P3(0)rs3, 0 = ar?,
where P; = p;(cos? 8 — sin? 0) + p, sin 0 cos 6.
We can see that
H,(0) = H,(0) = H3(0) = Hu(6) =0,
and for n > 5 we have that
H,(0) = —(a* H s + 2(n — 3)aPsH'y_y + (n — 4)Hy_y (aP’s
+ (n — 2)P)).
Clearly each H,, = 0, for all n, so system of (20) is not an isochronous center. System (19)
can be written in polar coordinates as
7 = P3(0)r3,0 = aQ,(0)r?
where
P; = p;cos® O — sin?@ + p,sinf cos,
Q, = cos* O + 6ucos?Hsin? 0 + sin* 6.
Again we obtain
H,(0) = Hy(0) = H3(0) = H.(0) =0,
and forn > 5 we have
Hp(0) = —(a? Q5H s + (@®Q7?Q; + 2(n — 3)aQ,P3)H 4
+ (n — 4)Hy_4 (@P3Q, + (n — 2)P5)).
Clearly each H,, = 0, for all n and therefore system (19) is not an
iIsochronous center. This completes the proof of Theorem (5.2.7).
Theorem (5.2.8)[135]: Consider the cubic homogeneous systems (19) and (20) and their
perturbation inside the class of all cubic polynomial differential systems. Then, for |e] # 0
sufficiently small one limit cycle can bifurcate from the continuum of the periodic orbits of
the center of systems (19) and (20) using averaging theory of first order.
Proof. System (20) in polar coordinates can be written into the form
7 = r3 (pycos® 6 + p,sinfcosO — p;sin? 6,) 6 = ar?,
or equivalently
dr r 5 , .
0 (p1 cos® 6 + sinOp, cos O — p; sin” 0),
its solution satisfying the initial condition r(0) = ry is
7(0,19) = 19 exp((pz + 2p; sin(20) — p, cos(20) /(4a)) .
Now the fundamental matrix of the linearized equation evaluated on a closed orbit is
Mry (0) = M(8) = exp((p; + 2p; sin(20) — p, cos(20) /(4a)),
and satisfies the condition M(0) = 1.
Now we perturb system (20) inside the class of all cubic polynomial differential systems
and we have
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x = px® + (p, — O)x’y — pyxy? —ay® + ¢ z a;ixty’ |,

0<i+j<3

y = ax® + pix’y + (p, + @xy? — py® + ¢ z bijx'y’
0<i+j<3
The corresponding differential equation in polar coordinates becomes

dr

=5 = Fo(8,7) + €F(6,1) + 0 (€?),
with

r
Fo(0,1) = . (p; (2cos? 8 — 1)+ p,sinf cosB),
1
Fl(Q,T) =W (B4T4 + B3T'3 + BZT‘Z + BlT‘ ),

where

1
B, = - (B46 cos® 6 + Byssin cos® 6 + By, cos* 6 + B,3sinf cos3 0
+ B,, cos? 80 + B, sinfcosf + By,

1
B3 = - (B35 cos® @ + B3, sinfcos* 0 + Bi; cos® @ + Bs,sinfcos? 6
+ B30 cos6 + Bs,sinf),
1
B, = - (By4 cos* 8 + B,3sinfcos® @ + By, cos? 6 + B,;sinfcosf + B,y),
1
B, = - (By3 cos® 8 + Bj, sin 0 cos? 6 + By, sinf),
with
By = 2p1a93 + 2p1by; — 2p1ay31 — 2p1bsg + p2a1; — D2a30 + D2by1r — P2bos,
Bys = —2pja1; + 2piaszg + paaps — P2bzg — 2p1byy — peaz + p2byy
+ 2p1bys,
Byy = —5pjagsz + 3piaz; — 3p1bi; — by — apa + azea + prazg — Pabag
+ p1b3g + boza + 2pybo3 — 2p,ay,,
By3 = —pybi; + 3p1ay; — agza + ppaz; + bz — 3pibgs — prazg — bixa

+ p1by1 + azia — 2pyagz,
By, = 4piagz + p1b1n; — P2boz + byia + aj,a — 2bgza — piaz; + pragy,
By, = —piai; + paps + bipa + agza + pybgs,

Byy = boza — p1ay3,
B3s = 2p1boy; — 2p1a41 — 2p1byo + P2ag2 + P2bi1 — P2y,
B3y, = —2p1b11 — D2byo + 2p1a30 — p2ay1 — 2a9301 + P2bo2

B3z = —ag,a + p1byy + a20a + p2a20 — 2p2a02 — p2b11 — 3p1b02
+ 3plall — bllaq,

B3, = —bg,a + paay1 — P1ay0 + byo + p1byy + 3agp1 + aya@ — pybgy,
B3y = —p1aq1 + P02 + biia + aga + pibgy,

B3y = —agyp; + bpa,

Byy = —2a01p1 — 2p1b1o + D2bo1 — D240,

Bys = —2p1boy — P2bio — P2Q01 t+ 2p1a40,

By, = 3ap1p1 + a0 + aby; + paai0 + pibio — P2bor,

Byy = p1ibgr — p1@19 + byoa + agi@ + prapy,
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Byo = —ap1p1 + abgy,
—2p1bog — D200,
2a00p1 — DP2boo

Bi1 = p1boo + pP2a00 + @ago,
Big = boo — Qgops-

Note that

o &
RS
N W
il

2T

F(ry) = j M~Y(0)F,(6,7(8,7))do
0

1 2 31
= — Aolo + ) <A111 + Azlz + A313 + A4I4 + Cl + — CZ )
7o T'O 4

5

+ 2ryn(abyz — p1aos) tg Cs,

where we have
2T 2T

Iy = j Ed9,11=J E cosfsinf do,
0 0

21 21
I, = J Ecos? 6do,I; = j E cos3 0 sin 6 d#,
0 0

2T
sin@(2p, cos(0) + sin 0
I, = j E cos* 6do, E=exp< (2ps ©) + P2 )>,
0

a
and
Ay = —ag1p1 + abyy,
1
A = 5 ((aw — bo1)P1 — P2Go1 — “(%1 + b1,0)) 7o,
3 1 1
A, = (E o1 +§ b10> P1 +§ (p2 + a)(aso — bo1) | To,

1

A3 = <(a10 — bo1)p1 _E p2(ag; + b10)> To,
1

Ay = <(—a01 — bio)P1 ) p2(ao — b01)> To»

1 1 1 1
€, = ((2a03 +5 b, —3 a21) p1 + (E iz ) bos) b2

2 2
1 1 3
- (‘E a2 + bz _E b21) Of) To
3 1
C, = (E azq +§ bso — 5/2a93 — 3/2b12) P1

1 1
+ (E Az — A2 ~ 35 by, + bo3) P2

1
+§ a(bys + azg — a;; — b21)> T03,
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1
C; = 2 <(b12 + agz3 — az; — b3o)ps ) p2(bos + azg — a2 — b21)> To-

In short, the function F(r) of Theorem (5.2.6) is of the form
2
+
Fry=LF

so it has at most one real positive root given by r = ./—f/a. Moreover, we have that

F (—B/a) = 2a. So by Theorem (5.2.6) if —f/a > 0 then there is one limit cycle
bifurcating from a periodic orbit of the center of system (20). This completes the proof of
Theorem (5.2.8) for system (20).

The rest of the proof of Theorem (5.2.8) for system (19) is completely analogous to the one
done for system (20), only the computations change, and we do not repeat it here.

We give an example satisfying the result of Theorem (5.2.8) for system (20). We consider
the system

=0 £ =0.01

Fig. (3)[135]: Phase portrait of system (23) in the Poincaré disk.

L e,
P .
~ -
",
/,/ ™
Y
\
A"
hY

/
A
I

Fig. (4)[135]: Phase portrait of system (24) in the Poincare disk.
x = x3 4+ 2x%y — xy? — y3,y = x3 + x%y + 4xy? — y3,
and its perturbation
x = x3 + 2x%y — xy? — y3 +e(e4y® + 3xy? + 3x%y + 5x3 + 3y? + 3xy
+ 3x2 —y —x + 2),
y = x3 + x%y + 4xy? — y3
+ e(-3y3 + xy? + x%’y + x3 + 592 + xy + x> + y + 2x
+ 1. (23)
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Then
11.78097245r¢ — 4.108168642
F(r) = T

and F(r) = 0gives r = 0.5905185728. So according to Theorem (5.2.6) at most one
limit cycle can be bifurcated from the origin, see also Fig. 3.
Example (5.2.9)[135]: Now we give an example satisfying the result of Theorem (5.2.8)
for system (19). For ¢ = 0 the origin of the system

x = x3 — 6x%y — xy? — y3 +

e(2y® + 3xy? + 3x%y — 5x3 + 3y%? + 10xy + 3x%2 — y — x — 20),
y = x3 4+ x%y + 12xy? — y3 +
—e(3y3 + xy? — 10x%y + x3 + 5y% + xy + 1/5x* + y + 2x + 100), (24)
is a center and for € = 0.01 one limit cycle is produced, see Fig. 4.
Section (5.3): The Period Function of the Sum of Two Quasi-Homogeneous Vector
Fields

A planar polynomial vector field X(x,y) = (P(x,y), Q(x,y))is called (p, g)quasi-

homogeneous of quasidegree n if there exist p, g,n € N such that
P(APx,A%y) = AMP7IP(x,y), Q(APx, ATy) = A"T971Q(x, y),

forall A € R. It is not restrictive to take p and g coprime. The numbers p and g are usually
called weights. It is well known that its associated differential equation

{x = P(x,y),

y =0Qx,y),

can be integrated by writing it in the so called generalized polar coordinates, see [34]. Notice
that homogeneous vector fields of degree n are quasi-homogeneous of quasi-degree n and
weights (1, 1). Moreover, in this case the generalized polar coordinates are the usual polar
ones.

We are concerned with vector fields having a degenerate critical point at the origin of
centre type, and being either gquasi-homogeneous or given by the sum of two quasi-
homogeneous ones sharing the same weights (p, q). In the latter case, additionally we will
assume that the vector field is Hamiltonian. We write the vector field in both situations as
X(x,y) = X, (x,y) + X,,, (x,y), with associated differential equation

x = PB(x,y) + Bu(x,y),

b= ot onnyy, L<m<m (25)
whereeach X; = (P;,Q;),j € {n,mj},is (p, q) quasi-homogeneous of quasi-degree j. We
assume that X,,(x,y) # 0 but we admit that X,,,(x,y) = 0.
We want to know the global behaviour of the period function on the period annulus of the
origin when we assume that the differential equation associated to X has a degenerate centre
at this point. Recall that a centre is a critical point that has a punctured neighbourhood full
of periodic orbits. The largest of such neighbourhoods is called the period annulus of the
centre. When the eigenvalues of DX at the centre are not purely imaginary, then the centre
Is called degenerate. This is our situation because n > 1. The function that associates to
any closed curved of the period annulus its period is called the period function of the centre.
It is well known that the period function tends to infinity when the orbits in a period annulus
approach either to a degenerate centre or to a polycycle with some finite critical point, see
for instance [44].
In general, given a system with a centre, we will write T'(x, y) to denote the period of the
orbit passing through the point (x, y). When the system is Hamiltonian, it is sometimes more
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convenient to parameterize the periodic orbits by their energy h and write T (h) to denote
their corresponding periods. The critical periods are the zeroes of the derivative of the period
function once the continuum of periodic orbits is parameterized by a smooth one-parameter
function. This parameter can be the energy in the Hamiltonian situation, or anyone
describing a transversal to the orbits. It is not difficult to prove that the number of critical
periods does not depend neither on the transversal, nor on its parametrization. When a zero
of the derivative of the period function is simple we will say that the system has a simple
critical period.

Some motivations to know properties of the period function come from its role in the study
of several differential equations. For instance, it appears in mathematical models in physics
or ecology, see [176], [106], [181], [134]. It is important in the study of the bifurcations
from a continuum of periodic orbits giving rise to isolated ones, see [173], in the description
of the dynamics of some discrete dynamical systems, see [170], [174], [175] or for counting
the solutions of some boundary value problems, see [112], [172].

The period function for homogeneous vector fields (both Hamiltonian and non-
Hamiltonian) was characterized in [46], while the quasi-homogeneous Hamiltonian were
studied in [182]. Our main result for the quasi-homogeneous case, i.e. X,,(x,y) = 0,
completely characterizes the period function in the general case, extending their results.

Recall that a critical point is called monodromic if there are no orbits tending or
leaving the point with a given direction. For analytic vector fields, monodromic points are
either centre or focus, and the problem of distinguishing between both options is called the
centre-focus problem. The solution of the centre-focus problem for quasi-homogeneous
vector fields is relatively easy. As we will see in the proof of the previous theorem, in order
to have a centre at the origin we only need to guarantee that the origin is monodromic and
moreover that some definite integral, that can be obtained from the expression in quasi-
homogeneous polar coordinates, is zero, see (38).

In the particular case that the system considered in Theorem (5.3.8) is also
Hamiltonian the above result can be rewritten as follows, recovering the result in [182].

As we will see, the constants T;,,j = 1, 2,3 are closely related and all them can be
expressed in terms of two iterated integrals, see (39). Moreover in some cases they can be
explicitly computed. For instance, consider the (1, 2) quasi-homogeneous Hamiltonian
system, of quasi-degree 2,

{y'c = —y + bx?,
y = x3— 2bxy,
with Hamiltonian H(x,y) = y%/2 — bx%y + x*/4.When b? < 1/2, it has a centre at
the origin and its period function, for & > 0, is (see Example (5.3.11))
T, 2m3/?

1
TE0=% = == 12 (3/4)¢’

where I" is the Gamma function. Equivalently, forn > 0,

T(0,n) " nd T(h) h1
M) = —=an =—-—.
Y V2 Vn

For general systems (25) the centre-focus problem is still an open question. Moreover,
even for quadratic systems with a reversible centre, the global behaviour of the period
function is not fully understood, see for instance [180]. Therefore to ensure that the origin
Is a centre and to start with the most tractable case, we will restrict our attention to the
Hamiltonian subcase. Notice that for system (25) the condition of being a Hamiltonian
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vector field implies the existence of two (p, q) quasi-homogeneous functions H,,(x, y) and
H,,(x,y), with respective quasi-degreesn + p + ¢ — 1landm + p + g — 1,such that
Hk()lpx' Aqy) = /’lk+p+q _1Hk(xry);

0H, (x, 0H, (x,

% = Qu(x, y),%y) = —P(xy), k=nm
and the Hamiltonian is H(x,y) = H,(x,y) + H,(x,y).
We obtain the following results, where recall that a centre is called global if its associated
basin of attraction is the whole plane

We remark that previous result strongly relies on two facts. The first one is that the
associated vector field is given by the sum of two (p, q) quasi-homogeneous ones, while the
second fact is that n > 1. As an example of the necessity of both hypotheses, consider for
instance the globally linearizable isochronous system associated to the Hamiltonian
H(x,y) = x* + (y + x?)?, for which all orbits have period . The corresponding
Hamiltonian vector field can be considered as the sum of three homogeneous ones, which
violates the first required assumption. On the other hand, the same vector field can be also
considered as the sum of two (1, 2) quasi-homogeneous ones of quasi-degrees 0 and 2,
respectively. In this case the second assumption fails.

For the particular case when X, and X,, are both homogeneous vector fields
((p,q) = (1,1)), we obtain the following result:

The above corollary extends the results obtained in [46], [177], [39] for the case of
Hamiltonian vector fields of the form X,, + X,,,, withn = 1 < m, where it is also proved
that the period function on the period annulus of the origin has at most one critical period.
When n > 2 (indeed n has to be odd to have a centre at the origin) the same result holds
when m > 2n — 1. Our attempts to cover the remaining cases have not succeeded. For
instance, by applying our result we know the behaviour of the period function on the period
annulus of the origin for all Hamiltonian systems of the form X; + X,,,m = 5, and the
only open caseism = 4.

We give some preliminary results and we introduce the generalized polar coordinates;
We deal with quasi-homogeneous vector fields, not necessarily Hamiltonian, and is devoted
to prove Theorem (5.3.8). Finally, the proofs of Theorems (5.3.12) and (5.3.13) and
Corollary (5.3.14) about Hamiltonian vector fields of the form X,, + X,,, are given.

We start recalling the generalized polar coordinates and the generalized trigonometric
functions. They were introduced by Lyapunov in his study of the stability of degenerate
critical points, see [34]. These new functions are defined as the unique solution of the initial
value problem

x — _yZp—l,
{3'/ = x2%171
with the initial conditions x(0) = 3/ 1/p,y(0) — 0. We will denote them by x(8) =
Cs(0),y(0) = Sn(6). Whenp = g = 1 we recover the usual trigonometric functions.
The generalized trigonometric functions satisfy the equality p Cs?? () + q Sn??(9) =

1 and they are periodic, with period
1 1
1 1T () T(zg)

= Zpﬁ qﬁ

p.q F(%_l_%)'

(26)

N=10

(27)
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where I' is the Gamma function. Associated to them we can introduce the quasi-
homogeneous polar coordinates by the change

x = rP Cs(0), y = r?15n(6). (28)
With these coordinates, it holds that px2? + qy?? = r2P4,
In general, a system

x = P(x,y),
: 29
{y = Q(x,y), 9
by doing the change to generalized polar coordinates, is transformed into
{r' = 17?4 [x*71P(x, y) + y*PTRQ(x, y)] (30)
0 = r P pxQ(x y) — qyP(x,»)],

where x and y have to be substituted using (28). In the particular case that the vector field
X = (P,Q)is (p, q) quasi-homogeneous of quasi-degree n, we obtain
{r = r"[ Cs?171(0)P(Cs(6),5n(8)) + Sn?~1(0)Q(Cs(8),5n(0))],

. 31

6 = r"1[p Cs(0)Q(Cs(6),5n(0)) — q Sn(8)P(Cs(8),Sn(6))]. (1)
Moreover, system (26), which has quasi-degree n = 2pq — p — q + 1,is transformed
into

r = 0,
{9 =yl = r2P9P74q,
Notice that each polynomial vector field can be decomposed in different ways according to
some chosen (p, q) weights. For instance, the vector field (y, x?) decomposes as (y, 0) +
(0,x%) in its homogeneous components or as itself when one takes (2, 3) quasi-
homogeneous ones. Therefore, given X, and a couple of weights (p, g), we have a unique
decomposition

X@y) = ) X (),
j=n

where n = n(p,q) < m = m(p,q)and each X; (x,y) = X; (x,y,p,q) is (p, q) quasi-
homogeneous of quasidegree j. Observe that in general many X; are identically zero.

Associated to a given (p, q) decomposition and motivated by the expressions of 8 in (30)
and (31) we define the (p, q) characteristic quasi-directions at the origin of the vector field
X = (P,Q), as the curves 1 — (APx, A%y"), where (x,y) # (0,0)is a real zero of the
quasi-homogeneous polynomial
Fp?q (x, Y): = prn(p,q)(x: y) - qypn(p,q)(xr y)- (32)

Smilarly, we define the (p, q) characteristic quasi-directions at infinity of X as the curves
A = (APx, A7y), where (x,y) # (0,0)is a real zero of the quasi-homogeneous
polynomial

Fpo,cé[(xr y) = prm(p,q)(xi y) - qypm(p,q)(xr y)- (33)
Notice that, as a result of the quasi-homogeneity of F;, and F;%, the control of the zeroes
and signs of these functions is a one-variable problem. For instance, (u,v) gives a
characteristic quasi-direction at the origin if either £, (0,1) = 0orFE>,(1,w) = 0, where
w = vu~9? Using this fact it makes sense to talk about the multiplicity of the
characteristic quasi-directions as the multiplicity of the one-variable associated functions.
Observe that if X is a (p, q) quasi-homogeneous vector field, then any (p, q) characteristic
quasi-direction is invariant by X,
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Based on the ideas of [168], [169] it is not difficult to prove the following result,
wherein the definition for infinity to be monodromic is essentially the same as for the origin.
This result states some folklore results that appear in many places only when (p,q) =
(1,1).

Proposition (5.3.1)[167]: Consider a polynomial vector filed X. The following holds:

(i)  If the origin is a critical point and some orbit tends to it asymptotically to some
curve A = (APx, A%y), then this direction has to be a (p, q) characteristic quasi-
direction, that is a zero of F;.

(i) (i) If the origin is a monodromic critical point then given any pair of weights p, q,
either the point has not (p, q) characteristic quasi-directions at the origin or all its
(p, q) characteristic quasi-directions at the origin have even multiplicity.
Moreover when X is (p,q) quasi-homogeneous a necessary and sufficient
condition to be monodromic is that the point has not (p, q) characteristic quasi-
directions.

(iit) (i) If the infinity is monodromic, given any pair of weights p, g, then either it has
not (p, q) characteristic quasi-directions at infinity or all its (p, q) characteristic
quasi-directions at infinity have even multiplicity.

Following with the vector field X = (y, x?) considered at the beginning, we get
FP1(x,y) = y?, Fp3(x,y) = 2x° — 3y2.

On one hand, since F; has a double characteristic direction, the above proposition
taking (p,q) = (1, 1) does not allow to conclude whether there is an orbit tending to the
origin in positive or negative time. On the other hand taking (p,q) = (2,3) we can
conclude that the origin is a non-monodromic point because Fy;(1,w) has a simple root.

Next result gives a well known extension of Euler Theorem to smooth (p, g) quasi-
homogeneous functions. We will need this extension to prove Lemma (5.3.3) on non-
vanishing of quasi-characteristic polynomials of Hamiltonian systems.

Lemma (5.3.2)[167]: Let F:R? - Rbea C?,(p,q) quasi-homogeneous function of
quasi-degree K, i.e. such that forall 1 € R,

F(Ax,29y) = A*F(x,y). (34)

Then
dF (x,y) 0F (x,y)
PX—2> + qy dy
Proof. Derivating with respect to A the equality (34) we get that
0F (WPx, 1%y) b1 0F (APx, 11y) 1y ake1
I p x + 3y qgAi 'y = kAT F(x,y).

The result follows substituting A = 1 in the above expression.
Lemma (5.3.3)[167]: The quasi-characteristic polynomial at the origin or at infinity of a
Hamiltonian system can not be identically null.
Proof. Consider a Hamiltonian function written in its (p, q) quasi-homogeneous
components H(x,y) = H,(x,y) +...+ H,(x,y), with H,,H,, = 0, and its associated
system

= kF(x,y).

. OH(x,y)

{ ¥ = =T = P(y) = R y) + Pa (@)t P ),
. _OH(x,y)

Ly =T = Q(x'y) = Qn(xry) + Qn+1(xry)+"'+Qm(ny)'

Its quasi-characteristic polynomial at the origin is
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Epq (0 y) = —qyBu(x,y) + pxQu(x,y) = qy%;y) + pxw =
=M+ p+q— DH,(x,y),
where in the last equality we have used Lemma (5.3.2). Then, since H, (x,y) # 0, F,;, can
not be null.
The case of infinity is completely analogous but substituting H,, by H,,.
Next proposition can be proved as in [178]. The results at infinity can be inferred from the
ones at the origin by doing the change r = 1/p. We use the following notation:
fx) ~ gx)atx = xo ER U {00},
ifxlirg fx)/gx) =k + 0.
—Xo

Proposition (5.3.4)[167]: Given1 < n < m,consider avector fieldX = X,, + X1 +
-+ X, with X,, = 0,X,, = 0 and each X; being a (p, g) quasi-homogeneous
polynomial of quasi-degree i.

(i) If the origin is a centre and has not (p, q) characteristic quasi-directions then for & >

0,T(£0) ~ & %"atf = 0.
(ii) If the infinity has a neighbourhood full of periodic orbits and has not (p, q) characteristic
quasi-directions then T(¢,0) ~ & 1_Tm at & = oo,

The following proposition extends the results of item (ii) of [45], that deals with polynomial
Hamiltonian systems with Hamiltonian H(x,y) = (x? + y?)/2 + H,,(x,y), with
H,,, homogeneous, to Hamiltonian system of the form (25) with p = q = 1. Its proof is
similar to the one and we omit it. It will be one of the key points for proving Corollary
(5.3.14).
Proposition (5.3.5)[167]: Consider a Hamiltonian system of the form (25) withp = q =
1 and a centre at the origin. Then either it has a global centre or its period annulus is
bounded.
In order to prove that the bound for the number of critical periods is one, a way is to compute
the second derivative of the period function and verify that it does not change sign. Next
result gives an alternative for this computation that, moreover, has the freedom of choosing
a function ¢.
Theorem (5.3.6)[167]: ([39]). Let I be a real open interval. An analytic function f : I -
R has at most one simple critical point if and only if there exists an analytic function ¢ :
I - Rsuchthatforallx € I

fx) + ¢(x)f (x) = 0.

Consider a vector field X = X,, + - +X,,,n = 1, decomposed as sum of
homogeneous components X; of respective degrees j. It is well known that if the origin is
monodromic, then n must be odd. This can be seen, for instance by using item (ii) of
Proposition (5.3.1), because either it has not characteristic directions or all its characteristic
directions have to have even multiplicity. Hence, the polynomial that gives these directions
must have even degree. Thus n 4+ 1 has to be even. Next result extends this property to
(p, q) quasi-homogeneous vector fields.

Lemma (5.3.7)[167]: Consider the (p, ) quasi-homogeneous system of quasi-degree

x = B(x,y),

b= o (35)
If it has a monodromic point at the origin, thenn = 2kpg — p — q + 1forsome k €
N.
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Proof. In order to be monodromic at the origin the function P,(x,y) must satisfy that
P,(0,y) = 0andQ,(x,0) # 0.Otherwise it would have an invariant line through it. Thus,
P,(0,y) = a;y*¥,Q,(x,0) = a,x*2,witha,a, # 0,

for some natural numbers k,,k, > 1.
Moreover, since the vector field is (p, q) quasi-homogeneous of quasi-degree n, it holds
that:
P(0,47y) = a;Afrays = AMPTIP (0,y) = a AMPTlyR, @, (APx, 0)
= a,Afwxkz = M1 (x,0) = a,A"T9 1xk2
Consequentlyn + p — 1 = k;gandn + q — 1 = k,p. From these equalities (k; +
1)q = (k, + 1)p. But p and g are coprime numbers, hence k; + 1 = K,andk, +
1 = K, forsome K € N. By substituting one gets
n—-1=kq—-p=Kp—-1)qg—-p=Kpqg—p—q.
It remains to be proved that K is even. By item (ii) of Proposition (5.3.1), since the origin is
monodromic, it can not have (p,q) characteristic quasi-directions at the origin.
Consequently, if we consider
Epq(x,y) = pxQn(x,y) — qyB(x, y),
it happens that £y, (1,y) = pQ,(1,¥) — qyP,(1,y) has no real roots. The term of higher
degree of the previous expression is y*! *1 and hence, k; + 1 = Kp must be even. Doing
the same reasoning but now with
Fy,(x,1) one gets that k, + 1 = Kq must also be even. But p, g can not be both even at
the same time, as they are coprime. Consequently, K = 2k.
Theorem (5.3.8)[167]: Consider a (p, q) quasi-homogeneous vector field of quasi-degree
n, that is (25) with X,,, = 0, with a degenerate centre at the origin. Then its associated

period function is monotonic decreasing. Moreover it can be written as
1-n 1-n

T(,0) =T §P ,orT(O,m) = Tom 9,
for &,n € R*, and some non-zero constants T; and T.
Proof. By using the quasi-homogeneous polar coordinates we can write system (25) as
r = r"A(0), 36

{9 = r""1B(0), (36)

where
A(0) = Cs*171(G)P(Cs(6),5n(0)) + Sn??~1(0)Q(Cs(8),5n(0)),B(0)
= p Cs(6)Q(Cs(0),5n(0)) — qSn(8)P(Cs(6),5n(6)),

see system (31). From the above expressions it is clear that the monodromy condition in this
situation is: the function B(6) does not vanish. Then, clearly the origin has not (p, q)
characteristic quasi-directions. Under this monodromy assumption we can write the above
system as

dr _ A(6)
de B
which can be easily integrated, giving
0
A®Y)
r(0; ry) = ryexp f Tl,b) dy |, (37)

0
where 1, > 0denotes the initial condition at 8 = 0. Hence, the centre condition

({245 To) = 1o Writes as
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j AW) dyp = 0. (38)

0
Moreover, from the second equation of (36) and (37) it holds that
2pq

— do
HM—!

B(Q)rn—l(e; 7o)

Qpq

_ 1
= j B(0) exp |(1

B(y) ot

where T (r,) denotes the period of the orbit passing through the point with generalized polar
coordinatesr = ryand & = 0, that is the point (x,y) = (r{ ) 1/p,0). Hence

1-n

T(§,0) =T &P,
for some constant T; + 0, as we wanted to prove. If the initial condition of the periodic orbit

is taken to be (0,7),n > 0, then similarly we get that T(0,n) = T, n @ .

Corollary (5.3.9)[167]: Under the hypotheses of Theorem (5.3.8), if moreover the system
Is Hamiltonian, with H(0,0) = 0 and closed ovals H(x,y) = h = 0, then the period
function parameterized by the energy level h is

0
7]
- n)j Mdl/) o | — (39)
0

1-n
T(h) = T; hntp+a™" |
for some non-zero constant Ts.
Proof. If the quasi-homogeneous vector field X = (P, Q,) is Hamiltonian, then its
Hamiltonian function, satisfying H(0,0) = 0, can be obtained as
X

a, x*z +1
k, + 1
for some polynomial functions R and S, with R(0) = 0, where we keep the same notation

as in the proof of Lemma (5.3.7). Then, using that k, + 1 = 2kgq, see again Lemma
(5.3.7), the energy level of the solution passing through the point (¢, 0), called h, satisfies

h = H(,0) = zizq §2kq. Applying now Theorem (5.3.8) we get that

MM0=f%me+R@= + ySCoy),
0

1-n 1-n
T(h) = Ty h2kpd = T, hn+p+a-1,

because 2kpg = n + p + q — 1.
We end with a couple of examples.
Example (5.3.10)[167]: Consider the classical (p, ) quasi-homogeneous system:

x = _yZp—l’

{3'/ = x29°1

2

It has quasi-degree n = 2pg — p — q + 1and it is Hamiltonian, with H(x,y) = xz_qq +

2p . . . . . ;
3;—p. Recall that in the generalized polar coordinates the previous system writes as ' =
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2pq

0,6 = r"L.Since H(r? Cs(0),r9 Sn(6)) =
h > 0isr = (quh)ﬁ.
By the proof of Theorem (5.3.8), the period function of yh can be explicitly computed as

Qpq

rzpq it holds that the orbit yh with energy

1 ;—_” _ 1—n
T(h) = f T d6 = T; h?2ra,withT; = (qu)z—pq Np,q.
0
Example (5.3.11)[167]: Let us consider next (1, 2) quasi-homogeneous systems of quasi-
degree 2:

{J'c = —y + bx?,
y = x3 + axy,
with (a — 2b)? < 8. As itis proved in [135] the previous system is the only cubic quasi-
homogeneous (and non-homogeneous) system having a centre at the origin (after a rescaling
of the variables, if necessary). Notice that the condition (a — 2b)? < 8is, precisely, the
condition of non-existence of characteristic quasi-directions, because this function

pxtQ (x,y) — qyP(x,y) = x(x° + axy) — 2y(-y + bx?)

= x* + (a — 2b)x?%y + 2y?,

does not vanish at (x,y) = (0,0) if and only if (a — 2b)? — 8 < 0. Moreover, the
origin is a centre because it is invariant by the change of variables and time (x,y,t) —
(—x,y,—t), and so it is reversible.
When b = 0, system (40) is the one studied in [171], where an explicit expression for the
period function is given. When a = —2b the previous system is Hamiltonian with H(x,y) =
y?/2 — bx%y + x*/4.
We will compute the period function in the general case, getting a closed expression when
the system is Hamiltonian.

Following Theorem (5.3.8) and its proof, T(§,0) = T, ¢ 1_7" = T, /&, with

01z (_ fe Cs(p)(b Cs*(¢) + a Sn?(¢)) dqb)
B B 0 14 (a—2b)Cs?(¢p)Sn(¢)
i = Ti(ab)= j exp 1+ (a — 2b)Cs%(p) Sn(d) do.
0
When b = 0 the formula given in [171] is recovered.

In the Hamiltonian case, a = —2b, the integral in the numerator of the expression of T; can
be computed explicitly in the following way:

% Cs(¢)(b Cs*(¢) — 2b Sn?(¢p) 1
L 1 —(4b Cs2(¢) Sn(¢) ) dp = — In(1 — 4b Cs*(B)sn(B)) ,
where we have used that Cs(8) = — Sn(6),Sn(8) = Cs3(0).
Substituting now in the expression of T; one gets:
212
T, = T,(b) = f 5 -
o (1 — 4bCs2(0)Sn(6))*
Now, by using the change of variables x = Sn(8)/Cs?(8), we can write

(40)

do
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(00)

T.(b) f 2dx j‘o
1 = 3 =
4 (1 — 4bx + 2x2)z Vi-2p% )
3
_ 4 F (T[ 1) w2 2,
Vi—2pz \2°\2/ VY1- 2b2r2(3/4) T VI= 22

where F is the elliptic integral of the first kind. See [179], for instance. We observe that
F(% ,k) = K(k), where K is a complete elliptic integral of the first kind.

Theorem (5.3.12)[167]: Consider a Hamiltonian system of the form (25) with a global
centre at the origin. Then its period function is monotone decreasing to zero.
Proof. First of all, we transform system (25) into generalized polar coordinates. Using (30)
we get

r = R(,0) = a,(@)r* + a,,(6)r™, 41
{ =o(r,)=(n+p+qg-—-DH,@O)r"*+ (m+p+q— DH,(O)r™ 1, (41)
where H,(0) = Hy(Cs08,5n0),k = n,m,and a,(6)and a,,(8) are  —periodic
functions. Notice that we have used Euler Theorem for (p, q) quasi-homogeneous functions,
see Lemma (5.3.2).
From the results of [20] we know that the periodic orbits of the system (41) that surround
the origin never cut the curve @(r,0) = 0. Moreover, the sign of @(r,0) in a
neighbourhood of the origin is given by the sign of H,,(6) that we will assume without loss
of generality that is positive. Another important fact is that, as the period annulus is global
and by item (iii) of Proposition (5.3.1), the function F;7 (x, y) does not change sign. Then,
the same holds for

1+ x2)4

Hn(0) = =1 Fra(Cs 0,5n0),

where we have used Lemma (5.3.3). In fact H,,(6) has to have the same sign as H,,(9).
Otherwise, the direction of rotation will be opposite at the origin and at infinity, what would
imply that the orbits of the global centre would cut @(r,8) = 0.
Let us prove that the period function tends to zero as it approaches to infinity. If H,,,(8) >
0 this is simply a consequence of item (ii) in Proposition (5.3.4). The proof in the case
H,,(6) = 0 is more delicate. By using the second equation of (41) we get that

0 0

: do do
T(h) = J (1, 0) ‘Of (r(6,1),0) (42)
where r = r(6, h) denotes the solution of the implicit closed curve given by
h = r™Pra-lg (9) + rmtPta-ig (9). (43)
Notice also that for each fixed 8 = 6* € 1,
H,(6") = 0,H,,(8*) = 0and H3(6*) + HZ(6*) > 0. (44)

The last inequality holds because otherwise the ray 8 = 6* would be invariant and this is
not possible because the origin is a centre.
Let us prove first that there exists » > 0 such thatforh > handall 8 € [0,2],
1

& (1.1, 0) < 1. (45)
Recall that the origin is a global centre. Additionally, the fact that for each 8 = 6* €
[0, 2]fixed, equation (43) is polynomial in r with three monomials and (44) holds, implies
that for each given 6*
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lim r(8*,h) = oo. (4.6)

h—oo

Moreover, using again (44) we have that the function h — r(8*, h) is increasing and

}11_{2) & (r(6*,h),0") = oo. (47)
Therefore, given 8 = 6~ there exists h(6*) such that @ ( (6, h(6%)),6%) = 2. By
continuity, there exists an open neighbourhood of 8%, say Uy, such that

@ (r(6,h(6%)),0) = 1,foralld € Uy-.
By using the monotonicity of h — r(8,h)andof h - &(r (6, h), 0) it holds that

® (r(0,h),0) = 1,forall € Uyg-and allh = h(6").
By compactness of [0, £2] we can cover it by finitely many Ug; ,j = 1,...,k, insuch away
thatfor h > h := max ( h(6,),h(6s),..., h(6y)) it holds that
® (r(0,h),0) = 1,for6 € [0,R] and h > h.
Then (45) follows. Moreover, by (47)
1

lim - — =0
@ (r(6,h),0)

Since inequality (45) holds we can use the dominated convergence theorem to compute
lim T(h). Therefore

(48)

h—oo 0 n
lim T(h) = i = B j : v -0
n WIS ) e e T ) e (r@ e

0 0

as we wanted to prove.

Recall also that from the results of [44], as the origin is a degenerate centre, its period
function goes to infinity as it approaches to it.

We claim that the period function of the centre at the origin of system (25) has at most one
simple critical period. If the claim holds, as the behaviour of the function is the one proved
above (begins at zero being infinity and tends to zero at infinity) the period function will
have no simple critical periods and it will be monotone decreasing. Hence, Theorem (5.3.12)
will be proved.

To prove the claim, our approach is based on Theorem (5.3.6) and uses similar ideas that
the ones of [39]. We have to compute T”(h) + ¢(h)T’ (h) for a suitable ¢ and prove that
this expression does not change sign. By using (42) and

dh do
= ppta-igp — pptq-17"
I T (r,0) =r I
we get that
d rp+q d2 2 TP+CI
T(h) =— do,and T (h) = dé.
W= ) p+q@mTW=0] o+

0 0

Developing latter expression one gets:
0

g = — -1 — Drvr-a-lg (9
I =~ | iy @+ P +a— Do D 2(0)
0
++m+p+qg—1D(m-— Dr™P9-1H4 (0) do,
where @(r,8) > 0 on all the period annulus. Recall again that in all the expressions r =
r(6,h) denotes the implicit closed curve given by h = r*Pta-lg (9) +
rm+p+q—1Hm (9)
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Similarly we compute the second derivative of the period function. In order to apply
Theorem (5.3.6) we consider ¢ (h) = k/h, where k is a constant value that will be fixed
according each one of the two cases in which we split the proof of this theorem. So, after
several computations, we get that

T"(h) + ¢(h)T'ﬂ(h)

1
ZJ &5 0yrs (ol (OVHn (O™ + + cpHy (6) Hy (€)™
0 )
+ c3H3(O)r3"
+ ¢, H3,(0)r3™)de, (49)

where ¢; = ¢; (m,n,p,q,k),j = 1,2,3,4. Their expressions are large and for the sake of
shortness we omit the explicit expressions of three of them. As an example
;=0 -nnh+p+q—-D*(kn+p+qg—-—1)—-2n—p—q + 2).
The proof of the theorem will be divided into two cases: the first one when n < m <
2n — 1and the second case the opposite, m > 2n — 1. We begin with the firstone: n <
m < 2n — 1.Inthis case, in the expression (49) we choose a k such that c; = 0, that is
2Zn+p +q —2

T n4+p+qg-1°

Hence, the parenthesis of the integrand of the previous expression (49) becomes:
P(h,0) = ¢;H2(0)H,, (O)r*™™ + ¢, H, (8)HZ(0)r"*2™ + ¢, H3 (8)r3™,

with
ag=0Cn-m-1)(m-nim-n+p+qgn+p+qg-1>0,
cb =m-n(m+p+q — 1)((m -ni2m —-—n—-1+ 2n - D + q))
> 0,
. _(m—=1Dm-n)p+ m+p+q— 1)
o n+p+q-1
Consequently, T”(h) + ¢(h)T” (h) > 0 and according to Theorem (5.3.6) the period
function T has at most one critical period and, if it exists, it is simple.
Now we proceed with the second case m = 2n — 1. In this situation we choose k in such a
way that c;, = 0 in the expression (49). It can be seen that the parenthesis of the integrand
of (49) becomes:
P(h,0) = c,H,(0)HZ(O)r™t?™m + c H3(0)r3" + ¢, HE (0)r3™, (50)
where
(m—-n(m+p+q-1)

> 0.

_ 3 _ 2 —
C2 m + 2n — 3 (4(m — n)° + 2(m - n)*(@( — D+ p + q)
+3m—n)n - Dp + 9+ 30 — D@ + q)
> 0, (4.11)
_(n—l)(m—2n+1)(m—n)("+P+q_1)2(m_"+p+q)>0
¢ = (m+2n-3)(m+p+q-—1) o
(m—-1m-n)(m+p+q—1)>2
4 = n(lm+2:zn—31;(n"-l|-pz-)l-qq_1) (m-2n+1)(m —-—n)+ +2(m — )(p + q) >
0

AgainT”(h) + ¢(h)T" (h) > 0 and according to Theorem (5.3.6) the period function has
at most one critical period and, if it exists, it is simple. Then the claim is proved.

Theorem (5.3.13)[167]: Consider a Hamiltonian system of the form (25) with a centre at
the origin. For
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(m — n)(3m? + 2mn — 4n? — 8m + 6n + 1)
m-2n+ 1Dn - 1)
the period function of the origin has at most one critical period and, when it exists it is
simple.
Proof. The proof starts with the same computations and notations that the one of the second
case of previous theorem, m > 2n — 1. Hence we have to prove that the function
P(h, 8) given in (50) and with the constants ¢; > 0 given in (51) is positive, where recall
that we are assuming without loss of generality that H,,(6) > 0. The main difference is that
the period annulus is not necessarily global. Hence the function H,,(6) can change sign
along it and we do not still know if the sign of P(h, 8) is constant. For the values of 8 such
that H,,(8) = 0 there is nothing to be proved because P(h,8) is a sum of nonnegative
quantities. Consider a value of 6 such that H,,,(6) < 0. We rewrite the function P(h, 8) in
the following way:

P(h,0) = csHa(6)™" +

m=2n — landp + q <

C2
n+p+q-1

H2,()r2m*1 x

X ((n +p+qg— DH,(O)r"?

c,(n + + -1
_|_4( p q )

Hm(B)rm‘1> .

C2
We claim now thatw < m+ p + g — 1. Ifthatis true, it holds that
2
can+p+q-1)

Co

Hm(g) > (m +p+q-— 1)Hm(0)-

Thus
cn+p+qg—-1)

(n+p+q—- DH,6)r? + . H,(0)rm1
2

>n+p+q-—-DH,O)r"+m+p+qg - 1DH,O)r™?
= @(r,0) > 0.
Then P(h, 8) will be also positive on the whole period annulus. Applying Theorem (5.3.6)
to the period function with the € given, we know that it will have at most one (simple) critical
period. We prove now the claim. The previous inequality is equivalent to c :=
m+p+q—1c,—(n+p+qg—1)c, = 0. This function ¢ can be written in the
following way:
2
c=(m mim+p+q-1) ((m — n)(3m? + 2mn — 8m — —4n? + 6n
m + 2n — 3
+1D—-(m—-1Dm-2n+ D + q) .
It is a straightforward computation proving that ¢ > 0 is equivalent to

(m — n)(3m? + 2mn — 4n®> — 8m + 6n + 1)

(n—1Dm —2n + 1) ’
which is precisely one of the hypotheses of the theorem. Then the result follows.
Corollary (5.3.14)[167]: Consider a Hamiltonian system of the form (25) withp = q =
1.1fm = 2n — 1 then the period function of the origin of system (25) has at most one
critical period and, if it exists, it is simple. More specifically,
(i) if mis even, it has exactly one critical period.

p+q=s

187



(i1) if m is odd, it can have none or one critical period. Moreover both possibilities may
occur.
Proof. The homogeneous case can be recovered from the quasi-homogeneous one by setting
p = q = 1inTheorem (5.3.13). Then it is enough with proving that
<(m —n)(3m? + 2mn — 4n®> — 8m + 6n + 1)
- (n—1(m - 2n + 1)
The previous inequality is equivalent to the chain of inequalities,
(m — n)(3m? + 2mn — 4n> —-8m+6n+1)—-2(n—1)(Mm—-2+1)
> 0,3(m—n)*+8m—-n)?n—-1D+(m—-n)(n-3)(n-1)
+2(n—1)2=>0,
and this last inequality is obviously true forn > 3. ltremainsthe casen = 2, but it follows
by a straightforward computation.
We prove the second part of the corollary. We first study the case m even. As system (25)
is Hamiltonian, then the quasi-characteristic polynomial at the infinity, F;3 can not be
identically null, as it has been proved in Lemma (5.3.3). Then, as the degree of the
characteristic polynomial at infinity is odd, it must have an orbit tending to infinity in
positive or negative time. Consequently, the period annulus P of the origin can not be global.
Then, by Proposition (5.3.5) the period annulus of the origin must be bounded. Therefore,
there must exist another critical point in the exterior boundary dP of P. As a consequence,
since the period function tends to infinity when it approaches to the origin and also to dP
(see [44]), we know that the period function must have, at least, one critical period. But we
have just proved that it has at most one critical period. Hence, if m is even the period function
has exactly one simple critical period.
We study the case in which m = 2¢ — 1is odd. We have to prove that there exist
Hamiltonian systems with a centre at the origin having one simple critical period, and
systems with a centre at the origin having zero simple critical periods. Consider the
following Hamiltonian H(x,y) = (x? + y>)k + a(x? + y?)!, with 1 <k < ?f,a #
0, and the differential system associated to it:

2

£=—2yk(® + YD+ a @+ YD, o
y = 2x(k(x? + y»)* 1 + a(x? + y2)'™).
In polar coordinates it writes as
r =0,
{9 = 2(kr?*=2 + ar?*-?2), (53)

Observe that previous system has a continuum of critical points when a < 0,andthus the
period annulus is bounded, while the period annulus is global in the opposite case. Therefore
when a > 0 the period function is monotone decreasing and when a < 0 it has exactly
one (simple) critical period. Indeed, in this particular example, where the periodic orbits are
circles, the period function parameterized by the radius, T (r), can be explicitly given,
because

2T

T(r) = f do T

2 (k2k-2 + qr2t-2) ~ kr2k—2 T arct-z.

0
Hence the decreasing behaviour of T when a > 0 and the existence of exactly one critical
period whena < 0 isclear. Moreover, whena < 0, the critical period correspondstor =
1o With T(r,) = 0. Then 7, is the positive solution of k(k — 1) + af (£ — Dr2¢=0 =
0.
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Chapter 6
A Classification and Rigidity of the Flag Structure

We show that the classification of homogeneous operators in B, (D) is completed
using an explicit realization of these operators. We also show how the homogeneous
operators in B,,(ID) split into similarity classes. It is also shown that the flag structure is
rigid, that is, the unitary equivalence class of the operator and the flag structure determine
each other. A complete set of unitary invariants, which are somewhat more tractable than
those of an arbitrary operator in the Cowen—Douglas class, is obtained. In a significant
generalization of the properties of the homogeneous operators, we show that quasi-
homogeneous operators are irreducible and determine which of them are strongly
irreducible. Applications include the equality of the topological and algebraic K-group of a
guasi-homogeneous operator and an affirmative answer to a well-known question of
Halmos.

Section (6.1): Homogeneous Operators in the Cowen-Douglas Class

An operator T is said to be homogeneous if its spectrum is contained in the closed
unit disc and for every Mdobius transformation g of the unit disc D, the operator g(T ),
defined via the usual holomorphic functional calculus, is unitarily equivalentto T. To every
homogeneous irreducible operator T there corresponds (cf. [77]) an associated projective
unitary representation U of the Mdbius group G,:

UsTU; = g(T ), g € G,.
The projective unitary representations of G, lift to unitary representations of the universal
cover G, which are quite well known. We can choose (cf. [77]) Ug such that k +— Ugisa
representation of the rotation group. If
Hm) = {x € H:Upgx = e™x},

where kg (2) = ez, then T: H(n) » H(n + 1) is a block shift. A complete
classification of these for dim#'(n) < 1 was obtained in [77] using the representation
theory of G,. First examples for dim#(n) = 2 appeared in [83]. Recently [72], [84], an m-
parameter family of examples with dim# (n) = m was constructed. We will use the ideas
of [72], [84] to obtain a complete classification of the homogeneous operators in the Cowen—
Douglas class. Finally, we describe the similarity classes within the homogeneous Cowen—
Douglas operators. As a consequence, we obtain an affirmative answer to a question of
Halmos (cf. [187]) for this class of operators. We also include a somewhat new conceptual
presentation of the Cowen-Douglas theory and a brief description of the method of
holomorphic induction, which will be our main tool. The essentially self contained and can
be read without the knowledge of [72] and [84]. The results were announced in [186] except
for Theorem (6.1.10).

For M be a complex manifold and suppose  : E — M is a complex vector bundle.
We write, as usual, E, = m~!(z). For a trivialization, ¢ : E - M x C", we write
p(W) = (z,¢,(v)) forv € E, with ¢, : E, — C" linear. (All we are going to say here
would be valid using local trivializations, but in this article we will always work with global
trivializations.)

We write E; for the complex anti-linear dual of E,,z € M, and we write [u, v] for
u(v),u € E;,v € E,. We consider C" to be equipped with its natural inner product and
identify it with its own anti-linear dual (so ¢ € C" is identified with the anti-linear map
n{(&n)—> C"). Then ¢} : C* — E;is well defined. We set iy, = ¢;~! and P(u) =
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(z,Y,(u)) foru € E;. This makes E* a complex vector bundle with trivialization . We
call ¢ and 1, the associated trivializations of E and E*. If E is a holomorphic vector bundle
then E* is an anti-holomorphic vector bundle (meaning that for any two trivializations, ¥,

and 1 , the transition functions z — (1, © (IIJB): are anti-holomorphic) and vice-

versa.

If E has a Hermitian structure, we automatically equip E* with the dual structure
(giving the dual norm of E, to E forall z € M).

By an automorphism of = : E — M, we mean a diffeomorphism g : E — E such that
m o g = g ° mforsome automorphism g of M. We write g, for the restriction of g to
E,. The automorphism g also acts on f of E, by (§*f)(2) = gz* f (92 ). When G is the
group of automorphisms of E (acting on the left, as usual) we have a representation U of G
givenby Usf = (§71)'f, that s,

(Usf (@) = g.f (97'3) .

Given an automorphism g of E, there is a corresponding automorphism of E*, where the
place of g, is taken by g;~'. This also remains true in the category of Hermitian bundles.
It follows that a group G of automorphisms of E also acts as a group of automorphisms of
E*. If E is homogeneous, that is, the action of G is transitive on M, then so is E*, and vice-
versa.

We describe, essentially following [184], how the usual formalism of reproducing
kernels can be adapted to vector bundles. Suppose # is a Hilbert space whose elements of
a vector bundle E — M and suppose the maps ev, : H — E, are continuous for all z €
M. Then setting K, = ev;, we have

[wf (@] = [uwev,(f)]= (Ku fyu € Ejf €H. (1)
For all w € M,the K,u is in H and is linear in u. So, we can write K,,(z)u =
ev,(K,u) = evzev,(u). We also write K(z,w) = K,,(3) = ev,ev,, which is a linear
map E,, — E,, andis called the reproducing kernel of #, (1) is the reproducing property.
Clearly, K(w,z) = K(z,w)". We have the positivity ¥, [u, K(zx 3, )uj]= 0 for
any z,...,2p inMand uy,...,u, € E; which is nothing but the inequality

z ((evg )y, (evy; )*uj)}[ > 0.

j.k
Conversely, a K with these properties is always the reproducing kernel of a Hilbert space of
E (cf. [184]).
Suppose we have a vector bundle E and a Hilbert space H of E with reproducing kernel K;
suppose g is an automorphism of E. Then g acts of E by (g*f )(z) = g5 f (g,)- By the
density of linear combinations of the form Kw,,, the condition for this action to preserve H
and act on it isometrically is

(9" (Kw), Kyt )ge = (K1t (g7 (Kt
for all z, w; u,u . Evaluating both sides using (1), this amounts to
K(g9z,9w) = g,K(z,w)g, ,forallz,w € M.

The following remarks will be important for us. Suppose each ev, is non-singular, that is,
its range is the whole of E,. (This is so in the important case where J is dense in the space
of E in the topology of uniform convergence on compact sets.) Then K, = ev; is an
embedding of E; into #. Postulating that this embedding is an isometry we obtain a
canonical Hermitian structure on E*. Using (1) we can write for the norm on E*,
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lull?2 = |IKull? = [u,K(z,z)ul,u € E.
The vector bundle E has the dual Hermitian structure, for v € E, we have
1vli2 = [K(z2)v,v].
In fact this statement amounts to
[w,v]|? < [K(3,2) v,v][u,K(z3,2)ul.

for all u, v with equality reached for some u, v. Since K (3, ) is bijective by hypothesis,
any v € E, canbe writtenas v = K(z,z)u withu € E} and the inequality to be proved
Is equivalent to

I[u, K (z,2)0]|1* < [4,K(3,2)0] [u,K(z, 2)u].
But this is just the Cauchy—Schwarz inequality.

When E is a holomorphic vector bundle, K (z, w) depends on z holomorphically and
on w anti-holomorphically. Hence K (z, w) is completely determined by K (z, z). It follows
that K (z, w) is completely determined by the canonical Hermitian structure of E (or E™).
In the last paragraphs, we had a Hilbert space ' of E and (under the assumption that each
evz is surjective) we associated to it a family of embeddings of E; , the fibres of E*, into .
This procedure can be reversed which is of importance for what follows. Suppose now that
E is a vector bundle and the fibres E; of E* form a smooth family of subspaces of some
Hilbert space H which together span H, that is, E* is an anti-holomorphic sub-bundle of the
trivial bundle M x H. We write ¢, : E; — H for the (identity) embeddings. We define,
f(z) = fforf € Hz € M.Then f of E andevz(f) = i.f . If we denote by H the
Hilbert space of all f,f € H, withnorm ||f|| = Il fIl, each evz is continuous, so we have
a reproducing kernel Hilbert space. The reproducing kernel is K,u = w,u.

We modify the definition of the class of operators introduced in [61] in an inessential
way. A conceptual presentation in which the role of the dual of the bundle constructed in
[61] is apparent follows. Given a domain 2 < C, we say the bounded operator T on the
Hilbert space H is in B,,(£2) if 7 is an eigenvalue of T, the range of the operator T — 3 is
closed, and the corresponding eigenspaces F, are of constant dimension n for z € . Itis
proved in [61] that the spaces F, span an anti-holomorphic Hermitian vector bundle F <
N x H.(In[61] the eigenvalues are z € 2 and so F is a holomorphic vector bundle; it is
more convenient for us to change this.) We write, for z € 2,1, : F, — H for the identity
embedding. Now, E = F* is a holomorphic vector bundle, this will be the primary object
for us. The bundle F is identified with E*, in what follows we refer to it as E*. We are now
in the situation discussed.

To the elements f of H there correspond f of E (defined by f (z) = ¢.f ) and form
a Hilbert space # isomorphic with H and having a reproducing kernel K,u = i u.

Under this isomorphism, the operator on H corresponding to T is M*, where M is
the multiplication operator (Mf )(z) = zf () . In fact (cf. [61]) forany u € E,

[WT*f (@] = T fly = Teufly = 3w fly = [wzf (2]

= [uMf (2)] .

Finally, we describe how the preceding material appears when the vector bundle is
trivialized. We always use associated trivializations ¢,y of E and E*. As explained in the
beginning, this means that y, = @371, thatis, [u, v] = (Y,u, @, v)cn foru € Ejandv €
E,. We will consider here only the case where E is a holomorphic vector bundle. When g
is an automorphism of E, in the trivialization g, : E, — E,_becomes ¢z, ° g, ° ¢;',
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which we write as the matrix J,(z)~'. When g is followed by another automorphism h, the
relation (hg)z = hy_ ° g, becomes the multiplier identity

Jhg(@) = Ig(@)In(g2). 2)
For the induced automorphism of E*, the place of /() is taken by J,(z)**.

E (resp. E*) in the trivialization become the holomorphic (resp. antiholomorphic)
functions f (z3) = @,(f (3)) (resp.y,(f (2))). The action g*f of an automorphism g
becomes (g*f )(z) = ]g(z)f (g5) - If G is a group of automorphisms of E, the
representation Uof G described becomes the “multiplier representation

(UF)=) =], @f (97'%) . (3)
A Hermitian structure on E becomes a family of inner products on C", parametrized by z €
M. One can always write
1€ 13, = (H()EE Hen
with a positive definite matrix H(z),z € M. The structure is invariant under a bundle
automorphism g if and only if H(g,)],(2)7'¢,],(z) — 1§ C" = H(z)¢, & C*, that is,

H(gz) = ]4(3)"H(z)]4(2).
The dual Hermitian structure of E* is given by [|£[|2- = (H(2) 71, & )¢n .
The Hilbert space H of E becomes a space H of holomorphic functions from M to C*. The
reproducing kernel becomes K(z,w) = ¢, ° K(z,w) ° ¥,;*, a matrix valued
function,holomorphic in z and anti-holomorphic in w. The reproducing property appears as

(f @), = (f Kz,

the positivity as

Z (K(2j,2x )8 & den = 0,
j.k
and the isometry of the G —action as
Jg(@)K(gz, gw)],w)* = K(z,w).
The canonical Hermitian structure of E is then given by H(z) = K(z,3)™ L.

We briefly recall some known facts of representation theory. Let G, H be real (or,
complex) Lie groups and H < G be closed. Given a representation ¢ of H on a complex
finite dimensional vector space V , let F(G,V )¥ denote the linear space of C® (or
holomorphic) functions F : G — V satisfying

F(gh) = o(h)™'F(g),g € G,h € H.
The induced representation (cf. [87]) U := Ind§ (o) acts on the linear space F(G,V )" by
left translation: (Uy,f )(g2) = f (91" 92).
From the linear representations (o, V ) of H, one obtains all the G —homogeneous vector
bundlesover M = G/HasG Xy V,whichis (G x V )/ ~, where

(gh,v) ~(g,0(W)v) ,h,g € G,v €V,
The map (g,v) — gH is clearly constant on the equivalence class [(g,v)] and hence
definesamapm: G Xy V = M. Anaction §g,g € G, of the group G is now defined on
G Xy V bysetting g ([(g,v)]) = [(g g,v)]- This definition is independent of the choice
of the representatives chosen. Thus G X, V is a homogeneous vector bundle on M. There
is a representation U of G of G x V ,where (U(g)s)(x) = g(s(g~! - x)). Theliftto G
of the vector bundle G x, Viss: G —» V with 8(g) := gg§ 1s(gH). These again form
the space F (G, V ) which shows that U is just another realization of the representation U.
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When M is a manifold with a group G acting on it transitively, we use the usual
identification M = G/H, where H is the stabilizer in G of a chosen fixed pointo € M. The
mapqg: g - g - o isthe quotient map from G to M. Suppose that there exists a global
cross-section p: M ~ G, that is, a map with g = p = idy . Then p gives a
trivialization of the bundle E = G Xy V. The trivializing map ¢ is given for v €
E, by o(v) = (z,p(z) 1v), thatis, ¢, = p(z)~ L. (This ¢ actually mapsto M x E,, but
E, with H acting on it by the bundle action can be identified with (,).) The action of G
on E, becomes J,(z)™' = @4, ° g, ° @;' which is now the group product
p(9z)~tgp(z) (preserving the fibre E,) followed by the identification of E, withV = C",
that is,

Jg(z) =e@(@)'g7'p (9(2))),5 € M,g € G. 4)
The representation U appears now as the multiplier representation with multiplier (4).
Even though not needed, we point out that givenany J : G X M — GL,(C) satisfying the
cocycle condition (2), the map (U,f )(3) = /™' g (8)f (g~" - z) defines a multiplier
representation of the group G. Also, it defines a representation: h +— J,-1 (0) of the group
H on the vector space V . The representation induced by this is equivalent to U. In fact, the
multiplier corresponding to the cross section p and the representation gis

Q(p(z)_lg_lp(g ) Z)) = ]p(g-z)_lgp(z)(o) = ]p(z)(o)]p(g-z)_lg (p(Z) ) 0)

= ]p(z)(o)]g(z)]p(g-z)‘l (g £ z) = ]p(z)(O)Jg(z)]p(g-o)(o)_ly
which is equivalent to the multiplier J .

We remark that the inducing construction always gives a multiplier such that /,(z) €
o(H) for all g, z. Not all multipliers possess this additional property. However, given any
multiplier J, we can always find another multiplier j equivalent to J such that jg(z) €
o(H), where o(h) = J,_1 (0). This is achieved by taking any section p and setting

jg(Z) = ]p(z)(0)]g(z)]p(g-z)(0)_1-

Holomorphic induced representation is a refinement of the induced representation in the
case of real groups G, H such that G/H has a G —invariant complex structure. The complex
structure determines a subalgebra b of g©, namely the isotropy algebra in the local action of
g® on G/H. The holomorphic induced representation is the restriction of the induced
representation to a subspace of F(G,V )¥, defined by the differential equations XF =
—o(X)F for all X € b, where now is a representation of the pair (H, b). It is an important
fact that every G —homogeneous holomorphic vector bundle arises by holomorphic
induction from a simultaneous finite dimensional representation of H and b (cf. [87]). We
will use this fact to determine all the holomorphic vector bundles which are homogeneous
under the universal cover of the Mobius group.

We explicitly construct all the irreducible homogeneous holomorphic Hermitian
vector bundles over the unit disc . Every homogeneous holomorphic Hermitian vector
bundle on D is then obtained as a direct sum of the irreducible ones (Corollary (6.1.5)). We
determine which ones of these irreducible homogeneous holomorphic Hermitian vector
bundles over D correspond to operators in the Cowen—Douglas class B, (D).

Let G, be the Mobius group — the group of bi-holomorphic automorphisms of the unit
disc D,G = SU(1,1) and K € G be the rotation group. Let G be the universal covering
group of G (and also that of the group G,). The group G acts on the unit disc D according to
the rule
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— N—1 a b
g: z — (az + b)(bz + a) ,g=(5 d) € G,z € D.

Thegroup G alsoactsonD (by g - 3 = q(g) - 3,Whereq : G — G is the covering map),
we denote the stabilizer of 0 initby K.SoD = G/K = G/ K. The complexification G©
of the group G is the (simply connected) group SL(2, C).

We use the notation of [72], [84], which is the notation used in [88]. The Lie algebra g of

the group G is spanned by X; == (} o) . Xy == (£ %) and ¥ == ({2). The

subalgebra k corresponding to k is spanned by X,. In the complexified Lie algebra g¢, we
mostly use the complex basis h, x, y given by

P Y.
R (0 —1) ’
—x = (0
re AT (o 0)’
_ 0 0
y=X1—lY=<1 0).
The subgroup of G corresponding to g is G. The group G© has the closed subgroups

(o 1) zecesofr={(g ) zedr
“{(¢ 1) =<

the corresponding Lie algebras k€ = {(° °):ceChpt ={(] ¢):c€
ChLp = {(2 8 : ¢ € C}are spanned by h,x and vy, respectively. The product
KPP~ = {

<a f) : 0 # a € C, b € C}isaclosed subgroup to be also denoted B; its Lie algebra is

K® =

b _—

b = Ch + Cy.The product set P*K¢P~ = P*B isdense openin G¢, contains G, and the
product decomposition of each of its elements is unique. (G¢/B is the Riemann sphere,
gK — gB,(g € G) isthe natural embedding of D =G /K into it.) Linear representations
(o,V)ofthealgebrab < gC = sl(2,C),thatis, pairs of linear transformations o(h), o(y)
satisfying

le(W),e(¥) | = —e(y) (5)
are automatically representations of K as well. Therefore they give, by holomorphic
induction, all the homogeneous holomorphic vector bundles.

A homogeneous holomorphic vector bundle that admits a G —invariant Hermitian
structure will be called Hermitizable. Since the vector bundles corresponding to operators
in the Cowen— Douglas class are of this type, we only consider these bundles. The
G —invariant Hermitian structures on the homogeneous holomorphic vector bundle
(making it into a homogeneous holomorphic Hermitian vector bundle), if they exist, are
given by (K ) —invariant inner products on the representation space V .4 (K ) —invariant
inner product exists if and only if o(h) is diagonal with real diagonal elements in an
appropriate basis. So, we will assume without restricting generality, that the representation
space of is C* and that o(h) is a real diagonal matrix.

Furthermore, we will be interested only in irreducible homogeneous holomorphic Hermitian
vector bundles, this corresponds to not being the orthogonal direct sum of non-trivial
representations.
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Let V; be the eigenspace of o(h) with eigenvalue A. We say that a Hermitizable
homogeneous holomorphic vector bundle is elementary if the eigenvalues of o(h) form an
uninterrupted string: —n,—(n + 1),...,—(n + m). Every irreducible homogeneous
holomorphic Hermitian vector bundle is elementary. In fact, let —n be the largest eigenvalue
of o(h) and m be the largest integer such that —n,—(n + 1),...,—(n + m) are all
eigenvalues. From (5) we have o(y)V; € V;_4; this and orthogonality of the eigenspaces
imply that V- =@7L, V_(;+j) and its orthocomplement are invariant under ¢. So, V' is the

whole space C% , and we have proved that the bundle is elementary. We can write Vi+j) =
C% and hence (o, C%) is described by the two matrices:

—nly
e(h) = :
] _(77 + m)Im
where [; is the identity matrix on C% and
0
[x o)
Y, 0
Y (= Q(y) = I I

\ )
for some choice of matrices Y3, ..., Y;, that represent the lineartransformations Y; : C%H-1 -
C% . Let E@™Y) denote the holomorphic bundle induced by this representation.
It is clear that o can be written as the tensor product of the one dimensional
representation o given by a(h) = —n,0(y) = 0,and the representation 0 given by
0°(h) = o(h) + nl,0°(y) = (¥). Correspondingly, the bundle E™Y) for is the tensor

product of a line bundle L, and the bundle corresponding to ¢°, that is, E@MY) = L, ®
E©Y),

For g € G,g () (we write g (3) = Z—‘Z (z)) is a real analytic function on the simply

connected set G x I, holomorphic in z. Also g (z) # 0 since g is one-one and
holomorphic. Given any 4 € R, taking the principal branch of the power function when g
is near the identity, we can uniquely define g (z)* as a real analytic function on G x D
which is holomorphic on I for all fixed g € G .
For the line bundle L,, the multiplier is g (z)". Consequently, the multiplier corresponding
to the original is

Jo(2) = (4 @S (), (6)
where J° is the multiplier obtained from g°.
The advantage of o° is that it is also a representation of G (not only of G) and extends to a
representation of G¢. The (ordinary) induced representation (in the holomorphic category)
Indé (o)operates on functions F: G¢ - V such that F(gt) = 0°(t)"*F(9) (g €
Gt € T). The restrictions of these functions F to G then give exactly the functions @ :
G - V which satisfy ®(gk) = 0°(k)"'@(g9) (g € G5t € T) and (XP)(g) =
—0°(X)®(9) (g € G,X € b), that is, the space of the representation holomorphically
induced by o°. Taking a holomorphic local cross section p of G¢ defined on I, the functions
f () = F(p(2)) give a trivialization of E©Y),
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We use the local cross sectionp: D - Gz - p(z):= (;3) . Apply (4) to compute
the corresponding multiplier J9 (z). Forg= (¢5) € G, we have

R (G [ 1) I AR A

(cz + d)% 0 1 0 (cz + d)% 0
= ¢’ 1 ( ) 1
0 (cz+ d)z —c 17\0 (cz + d)2
= o° <exp (2 log(cz + d)% h)) 0° (exp(—cy))o® <exp (2 log(cz

1
+ d)2 h)) = Dy(2)exp(—cY)D,(2), (7)
where D, (z) is the block diagonal matrix with

_I
Dg(Z)J] = (CZ + d) Zldj,OS ]S m.
Computing the matrix entries of the exponential using (6), we obtain forg € G,z € D,
o @)pe = (9 )" 3(2)

1 PN LS A _
— ()P "G (3) 2 Y, Y ifp<?,

=4 -)!
Oifp< ?..
In this formula cg for g € G is to be understood as the (2, 1) entry of the matrix g(g) in G,
where q is the covering map. We note here, for later use, that there is also another way to
interpret ¢, for g € G . Taking a small neighborhood U of the identity in G such that the
projection is a diffeomorphism onto a neighborhood U of the identity in G, by computing in
U, we find that

(8)

g’ (3) = —2¢,4 (2)*? 9)
holds with ¢, an analytic function of g on U, independent of z. This is then true for g €
U and by analytic continuation forall g € G .So Eq. (9) can serve as a definition for Cg-
Proposition (6.1.1)[183]: All elementary Hermitizable homogeneous holomorphic vector
bundles are of the form E@Y) withn € R and Y as before. The bundles E®Y) and E®-Y)
are isomorphic ifand only if n = sandY = AYA~! with a block diagonal matrix A.
Proof. The induced bundles are isomorphic if and only if the inducing representationsg, ¢,
are linearly equivalent, that is, § = ApA~! for some A. Since we have normalized the
representations by fixing the matrix o(h), the equivalence must be given by an A which
commutes with o(h), that is, by a block diagonal A.

Thus E@YY = [, ® EWD parametrizes the equivalence classes of elementary
Hermitizable homogeneous holomorphic vector bundles. Here, we have let {Y} denote the
conjugacy class of Y under conjugation by a block diagonal matrix A.

We proceed to discuss homogeneous holomorphic Hermitian vector bundles. From
here on we will always use the trivialization we just described. We will not always make a

careful distinction between sections of E™Y) and the functions from D to C¢ on which G

acts by the multiplier ]é"'y) (z). A Hermitian structure appears in the trivialization as a
family of quadratic forms H(z)¢, &, which because of the homogeneity is determined by a
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single positive definite block-diagonal matrix H = H(0). We denote by (E@Y), H) the
bundle E@Y) equipped with the Hermitian structure determined by H.

Proposition (6.1.2)[183]: The Hermitian vector bundles (E@Y), H) and (E®Y ", H") are
isomorphic ifand only if n = 7,Y" = AYA Y and H' = A*“1HA with a block diagonal
matrix A.

Proof. The trivialization obtained by starting with o'(resp.= ApA~1) are related as
f'(z) = Af (). Now, H'(z) gives the same metric as H(z) if and only if
(H' (2)f' (3),f" (3)) = (H@)f (3), f (8)). From this, the statement follows.

For any H, clearly there is an A such that A*"*HA = I . This means that every elementary
homogeneous holomorphic Hermitian vector bundle is isomorphic to one of the form
(E™Y), 1. Two vector bundles of this form are equivalent if and only if Y' = AY A~ with
A such that A*"1 1A~ = [, that is, with a block-diagonal unitary A. We denote by [Y] the
equivalence class of Y under conjugation by block-diagonal unitaries and write E @YD for
the equivalence class of (E™Y)1), omitting the 1. We now have the first half of the
following Proposition.

Proposition (6.1.3)[183]: Forn € R, [Y] a block unitary conjugacy class of matrices Y, the
vector bundles E @YD form a parametrization of the elementary homogeneous holomorphic
Hermitian vector bundles. The Hermitian vector bundle £ D is irreducible if and only if
Y cannot be split into orthogonal direct sumY' @ Y~ with Y’ ,Y” having the same block
diagonal formasY .

Proof. The last statement follows since the irreducibility of E®LY D js the same as the
possibility of splittinge. into an orthogonal direct sum of two sub-representations.
Proposition (6.1.3), with a different proof, also appears in [86].

The following theorem is important because its hypothesis is exactly what we know
about the vector bundle corresponding to a homogeneous operator in the Cowen—Douglas
class B, (D). It was stated in [72] but proved without the uniqueness statement. Here we
give a complete proof.

Theorem (6.1.4)[183]: Let E be a Hermitian holomorphic vector bundle over D and
suppose that for all g € G, there exists an automorphism of E whose action on D coincides
with g. Then the full automorphism group of E is reductive and G acts on E by
automorphisms in a unique way.

Proof. Let G denote the connected component of the automorphism group of E. It is a Lie
group because it is the connected component of the isometry group of E under the
Riemannian metric defined for vectors tangent to the fibres by the Hermitian structure and
for vectors horizontal with respect to the Hermitian connection by the G —invariant metric
of D.

Let N S Gbe the subgroup of elements acting on D as the identity map. The subgroup N
is normal, and the projection w : G — G is a homomorphism with kernel N. Let KK be the
stabilizer of 0 in Gand let k = m~'(K). The group k contains N and is compact because it
Is the stabilizer of the origin in the fiber over 0.

Let G, g, k,n, k be the Lie algebras of the groups defined above, and let g = k + p be the
Cartan decomposition. Since K" is compact, we can choose an Ad(k) —invariant
complement p to k in §. Now,  * maps k onto k with kernel n. By counting dimension, it
follows that = * maps pto p bijectively.
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Wesetk, = [p,p]. Then + (ko) = [m.p,m.p] = k, thereforek, € nt (k) =
k. 1t follows that [k,,p] < p and by the Jacobi identity, g, = k, + p is a subalgebra.
Similarly, [n,p] S p since n S k. But n is an ideal, so [n,p] = 0, and by the Jacobi
|dent|ty [n,go] = 0. Finally, § = n @ g, and g is reductive. The analytic subgroup
G, < G corresponding to §, is a covering group of G and therefore it acts on E by
automorphisms. It is the unique subgroup of G with this property because §,, being the
maximal semisimple ideal in the reductive algebra g, is uniquely determined. The action of
G, now lifts to a unique action of G .

Theorem (6.1.4) implies that every homogeneous operator in the Cowen—Douglas
class B, (ID) has an associated representation irrespective of whether it is irreducible or not.
The following corollary has also appeared in [86].

Corollary (6.1.5)[183]: If a Hermitian holomorphic vector bundle E is homogeneous and
isreducible (E = E; @ E,) as aHermitian holomorphic vector bundle then it is reducible
as a homogeneous Hermitian holomorphic vector bundle, that is, E; and E, are also
homogeneous.
Proof. We consider the automorphisms exp th of E, where

_(tlonk,,

N {—il on E,.
Then h is in n since exp th (t € R) preserves fibres. So, h commutes with g,. E, E, are
characterized as eigensections of h corresponding to different eigenvalues. Thus G, and its
universal covering G preserve the eigensections of h.

We determine which ones of the elementary homogeneous holomorphic Hermitian
vector bundles have their Hermitian structure coming from a reproducing kernel. In other
words, which are the homogeneous holomorphic vector bundles that have a G —invariant
reproducing kernel K(z,w).When there is a reproducing kernel K, it gives a canonical

Hermitian structure by setting H = K(0,0)7!.Letp, =ﬁ zzl) € G,S0p, -
-1z

0 = z. Writing " for]g;’y) (z), we have

K(z,3) = J;"" K(0,0)""” (10)
So, the question amounts to enumeration of all the possibilities for K(0,0). 3.1. An
intertwining map
For 2 > 0,let AW be the Hilbert space of holomorphic functions on the unit disc
with reproducing kernel (1 — zw)~2%. It corresponds to the homogeneous line bundle L.
The group G acts on it unitarily with the multiplier g'(z)*. This action is the Discrete series
representation D7} .

LetC? = 696;":0 C% . We think of functions f : D — C% as having components f; : D —

CY . Let A =T, AW*D ® CY.Forn > 0,Y asbeforeand f; € A @ C¥,

define
1 1

(r@0f;), =1 =NL2n+2)),-;

0if ¢ <j.
So, I'™Y) maps Hol(D, C% ) into itself. Let N be an invertible d x d block diagonal matrix
with blocks N;,0 < j < m,d = dy +- + d,. We will assume throughout that N, =
Ig, - This is only a normalizing condition. We can normalize further by assuming that each

£— .
Vo Y f SV if €2

(11)
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block diagonal matrix with d; x d; blocks N; is positive definite but this is not important.
We can think of N as changing the natural inner product of each C% to (Nju, N;v)caj . We

let L") = r@Y) o Nand # ™" denote the image of I, in the space of holomorphic
functions Hol(D, C%).
Theorem (6.1.6)[183]: The map F(’”Y) isa G —equivariant isomorphism of A®™ onto the

Hilbert space iH”(" ) on which the G action is unitary via the multiplier J, (n.Y) (z). Ithas a
reproducing kernel K" (z, w) such that

1 1

,Z:; @ — D! 2 + 20, ¢
Proof. The injectvity of the map F,&"'Y) is clear from its definition. It is also apparent that
the image """ is the algebraic direct sum of the summands A+ ® C%4 of A, We
define a norm on }[I\(,"'Y) by stipulating that F,§"’Y) Is a Hilbert space isometry. This gives us
the Hilbert space H A(,"’Y) and the unitary action U, of G on it. We have to show that it is the
multiplier action given by J, (n.¥) (z). For this, we must verify that

0 (@ap0?) = Uy - B, (12)
Since N obviously intertwines @ d;D*/ with itself, it suffices to prove (12) for ') in
place of rN“?'Y) = r@Y) . N, Furthermore, it is enough to verify this relation for each f €
AM*+D & C¥ | that is, to show
ran (@™ ¢+ @) = Iy @)+ g).f €A @cU,0< < m

We will show that the th components on both sides are equal. First, if £ < j
then both sides are 0. Second if £ > j, on the one hand, using Lemma 3.1 of [72] which is
easily proved by induction starting from Eqg. (9) and says that

k
(@)’ =Y (§) (@ + 0o @)™ F f00g) a3
forany g € G, we have =

ran (g )y (f - g))= (

Y Y *
(KISIn )(0,0)) = +1NjN ]Yj+1 Yy

1 1 t=j

. . Y, --- Y.
&= D'@n + 2 © 7
_< 1 1 v v )

& - PDI@n + 2, © 7
t—j

X(Z (" 77) @+ 2 + Decytmor (@

-
=Y Y

) (CRLGI)

2 (F0) - g)

(o)t (g YT+t H (f“))

- 1 1
& —j— D @n + 2))

=0
On the other hand
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Z' (]g)gp((['(n,Y)f)p . g)

Z (O e @
p)' O]

y+1f(P Do g)

1 1
o (£ =P = @ + 2))p-
X 11
S L (6 - - Pty + 2)),
This completes the verification of (12). Finally, we observe that H If,"‘y) has a reproducing

kernel K" (z,w) because it is the image of A under an isomorphism given by a
holomorphic differential operator, so point evaluations remain continuous. Then
Klf,"'y) (z,w) is obtained by applying F,é"’y) to the reproducing kernel of A®™ once as a
function of z and once as a function of w. This computation is easily carried out and gives

the formula for K" (0, 0).
Writing H := H" = K™ (0,0))" , the Hilbert space 7" is a space of sections

of the homogeneous holomorphic Hermitian vector bundle (E™Y), H) in our (canonical)
trivialization.

Theorem (6.1.7)[183]: The construction with F,&”‘Y) gives all elementary homogeneous
holomorphic Hermitian vector bundles which possess a reproducing kernel, namely, those
of the form

— Y,
((277 + 2j)p-j P
£

Dt
(=) P2 Yy Y fPD e g

.. P_H’
(_C){’—]—l (gf)n+ > ,+1f(p Do g.

E®D, &y 0,007,
wheren > 0,Y are arbitrary and K If,"’y) (0, 0) is of the form given in Theorem (6.1.6). The
vector bundles (E®Y, (K" (0,0))™1) and (E@Y), K (0,0))™1) are equivalent if
and only if n = #,Y = AYA™! and N'N* = ANN*A* for some invertible block
diagonal matrix A of sized x d.
Proof. The existence of a reproducing kernel implies that the vector bundle is Hermitizable.

Such a bundle is of the form (E™Y), H) by Propositions (6.1.1) and (6.1.2). When it has a
reproducing kernel, then in our canonical trivialization this is a matrix valued function
K(z,w), and we have H = K(0,0)~1. The G action U which is now unitary, is given by
the multiplier /" (2).

Eq. (8) shows that the action of K is diagonalized by the polynomial vectors: If v € C%
and f (z) = z™v;,thenfork, suchthat kg (3) = e'® z,wehave Uyg f = @+ f

It follows that U is a direct sum of the Discrete series representations D@+),0 < j < m.
In particular, it follows thatn > 0.

The map I'™Y) (and F,&"’Y) for any block diagonal N) intertwines the representations U and
®jzo de("+j ), both of which are unitary. By Schur’s Lemma it follows that N can be
chosen such that F'™Y) - N is unitary. This proves that the bundle EY) corresponds to
the Hilbert space 0" .
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The statement about equivalence follows from the analogous statement in Proposition
(6.1.2).

One way to prove this is to use the “Inverse propagation theorem” of T. Kobayashi
[185]. If the action of G is unitary, then so is the K action on the fibres, and we are back in
the situation of Theorem (6.1.7).

Here we sketch a more direct proof which also shows what the non-Hermitizable
homogeneous holomorphic vector bundles are like.

A general E is still gotten from two matrices Z = po(h),Y = (y)suchthat[Z,Y] = =Y by
holomorphic induction. The inclusion YV, < V,_; still holds for the generalized
eigenspaces of Z. Using some easy identities for g' (z ), we can then verify that

J4(z) = exp (% log(g' (2)) Y exp(—log g’ (Z)Z)),
which, in the case where Z is diagonal, is just another way to write (11), is a multiplier.
Writing U, for the action of G on Hol(D,V ) given by J,(z), we compute
(U(exp ting)(8) = exp(itZ)f ( e !t Z) - (14)
Hence (Unf)(0) = Zf (0) and by a similar computation (U, f)(0) = Yf(0). This
shows that J,(z) gives a trivialization of our E. It also shows that U, ,k in K maps the
spaces M, of monomials of degree p to M, for all p = 0. Hence the K -finite vectors are
exactly the (V' — valued) polynomials.

Now if U is unitary with respect to some inner product, then it is a sum of irreducible
representations. The K —types of these (i.e. the eigenspaces of U,) are known to be one
dimensional and together they span the space of K —finite vectors. By (14), U, maps any
zPv € My, to zP(Zv —pv). It follows that Z must be diagonalizable, otherwise the
eigenfunctions of U}, could not span M.

The description of the homogeneous holomorphic Hermitian vector bundles given in
Theorem (6.1.7) can be made more explicit. We now proceed to determine, in terms of the

parametrization E @YD) of elementary homogeneous holomorphic Hermitian vector bundles
as in Proposition (6.1.3), exactly which ones of these have their Hermitian structure come
from a reproducing kernel.

Theorem (6.1.8)[183]: The Hermitian structure of E®@ID comes from a
(G —invariant)reproducing kernel if and only if n > 0 and

I —Y f Co™ Y Yier1Vy Y Y > 0
j - (] _ k)'(Zn +] + k — 1)j—k j—1 k+11k+1 j—1 j

forj = 1,2,...,m.

Proof. We have a description of all the vector bundles with reproducing kernel in Theorem
(6.1.7). To see how this description appears in the parametrization EY), we have to answer
the question: For what n,[Y], is it possible to find a block-diagonal N such that

Klf,"'y) (0,0) = I.Writing this more explicitly, we have the system of equations
£

1 1
I, — Y, -
! Z s (E=PI@n + j+k—1)
Jj=

¢ = 1,...,mand the question is if the solution Nij* ,j = 1,...,m consists of positive
definite matrices.
We claim that the solution of (15) is given by
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( 1)]+k
Y; o Yep1Vepq Y 16

forj = ., m
In fact, substltutlng the expression for N;N;* from (16) into (15), we have
(~D)J*
Z Z . Y(k) = 0,
== (i’ —J)'(Zn + 20 G—RM@2n+j+k =1
where Y(k) = Y, - Yii1Yis1 - Yy . The coefficient of Y (k), from the above, is seen to
be

_1 e (T K , .
(g_k)!zz(_l)] (j_k>(271+2]—1)B(2n+k+]—1,{’—k+1),

F(x)Fy
) 1
integral representatlon. B(x,y) = [, t*7'(1 — t)»" dt, it simplifies to
1

where B(x, y) Is the usual Beta function. Using the binomial formula and the

1
@ - " f {(2n + 2k — 1)e2n+2k=2(1 — )2(=h)
0

_ 2({ _ k)t2n+2k—1(1 _ t)z({’—k)—l} dt
1

:ﬁf {t2n+2k—2(1 _ t)z({’—k)—l((zn + 2k — 1)
— (2n + 2¢ ~ DO} de

1
=m (xB(x,y) — (x + y)B(x + 1,5)),
wherex = 2n + 2k — landy = 2¢ — 2k, which is zero except when k = 0 = 4.
This verifies the claim.
The right-hand side of Eq. (16) is exactly the expression given in the statement of the
theorem, so its positivity is the condition we were seeking.

When Y is given, we may ask what are the values of n for which the positivity
condition of the theorem holds. It obviously holds when 7 is large. We can also see that
there exists a number ny, > 0 such that it holds if and only if n > n, . For this we only have
to see that if EY) has a reproducing kernel for some n > 0, then so does E@+&Y) for all
g > 0.Now E®@*eY) = [ & E®Y) which shows that the product K(z,w) =
(1 — zw)"2K™ (z,w) is a reproducing kernel for E*€¥), and K(0,0) = I still
holds.

When m = 1, the condition of the Theorem (6.1.8) reduces to

1
I _ﬁylyl* > 0.

. 1 . .
In this case, we have ny = > || Y, Y7|| in terms of the usual matrix norm.

The following theorem together with Theorems (6.1.6) and (6.1.7), and Corollary
(6.1.5) gives a complete classification of homogeneous operators in the Cowen—Douglas
class.
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Theorem (6.1.9)[183]: All the homogeneous holomorphic Hermitian vector bundles with a
reproducing kernel correspond to homogeneous operators in the Cowen—Douglas class. The

irreducible ones are the adjoint of the multiplication operator M on the space 7{,(’7’” for
somen > 0and irreducible Y . The block matrix Y is determined up to conjugacy by block
diagonal unitaries.

Proof. First we note that by Theorems (6.1.7) and (6.1.8) every homogeneous holomorphic

Hermitian vector bundle can be written in the form (E™Y), 1) withn > 0. The Hilbert space
H ,("’Y) is a subspace of the (trivialized) holomorphic sections of (E®™Y),I) which is the
image under the map I™ of A®. We have to show only that the operator

M* on }[,("'Y) belongs to the Cowen—Douglas class. For this we compute the matrix of M in
an appropriate orthonormal basis. Each of the Hilbert spaces A*) (0 <j <m) has a

natural orthonormal basis
2n + 2j
el (z) := \/u z™:n =0

J n!

Hence A*/) @ C% has the basis e €c(lj) , where {sf,j) : 1< g < d;}is the natural
basis of C% . The Hilbert space A then has the orthonormal basis e* &;, with g, := & &
eéj) ,Where {¢; : 0 < j < m}is the natural basis for C™**. Each e/" &, is a function on D
taking values in C% ; its part in C% is ¢; ® Sc(,j) ,and its part in every other C%* (k # j)is
0. Defining

et = I'"M (el' ), (17)
we have an orthonormal basis for 7 Y,

We identify the “K —types” in H ("Y) that is, the subspaces on which the representation U

restricted to K acts by scalars. For kg € K givenby ko (z) = e, we have D,E;’J’j) e/ =

e~ W0+itmef oy AM+) By the intertwining property of I'™Y), the basis elements of
F @) then satisfy U, efi = e~ 0@+i+mel |t follows that the subspace

HOV () := {f € HOV: Uy f = e—i9(77+n)f}
is spanned by the basis elements {ej’;_j : 1< q<d;,0<j <min(m,n)}and H @Y
equals the direct sum @,,5o H ™ ().
Clearly, the operator M maps each H @) (n) to X (n + 1). We write M(n) for the
matrix of the restriction of M to 2 (Y) (n), that is,

MBJ-Y;_] = Z M(Tl)(gr)(jq)egr-l-l_f . (18)
r
We write e J (%) for the (s,t) —component (0 < s < min(m,n),1 < tdy) of the

function ej’;_j taking values in C% . This can be regarded as a matrix of monomials in z. The

coefficients of these monomials form a numerical matrix which we denote by E (n).
Applying the operator M, which is multiplication by z, to the monomials does not change
their coefficients. Therefore, Eq. (18) amounts to the matrix equality

E(n) = E(n + 1)M(n). (19)
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We use (17) to compute E(n) explicitly. The part in C% of the vector valued function
e/ gqise]”’ eé’) ,itspartin C* withk # jis 0.So (11) gives, for the partof e,/ (0 <
j < m)incC?,
(en—j (Z)) _ {c(n, £,j,n)z" (Y, - Yj+1)e(§]) " tif e >, (20)
74 ¢ 0if£<j
where the constant c(n, £, j, n) is the coefficient of 2™~ in
1 1 d\"7 .
_ — () 7@
(€ = D'2n + 2)),_; \dz

1 1 J(zn + 2, (d )"‘f i

T = DI@0 + 2)e; nl dz
We can regard E (n) as a block matrix with blocks E(n);, of size d; x d,. The (q,r) entry
of E(n);, being E(n)q)¢r) defined above. Then Eq. (20) says that
_ (e b)Yy =Yg if £2
Em)je _{ 0if £<j
Now, we consider the behavior of c(n, £, j,n) for large n. First, since

j(Zn + 2nsy ( d )*‘f i - VO DI+ 2y

(n — ! dz (n — £)! ’
it follows that

1 JFr(n—j+Dr@n+j+n

2n + 2))e—;(¢ = DY T @n + 2D (n — £ + 1)
From Stirling’s formula, we obtain

.1 .1

JT Cn + 2)@n + 20 ;2 = ))! o-npn—t 4 1

2
_ JIr2n + 2j) n-lee
r(¢—j+D)r2n+2+9 '
If we define the block matrix E by
_ IENEE) Ly iz,
Ejj =yr(—-j+D)r 2n+2j+4) g
0if¢<j
and the diagonal block matrix D(n) by D(n),, = n*’ld{, then we can write our result as
E(n) ~ nn_% D(n)E.
From (19), for large n, it follows that
M) = E(n + 1)"1E(n)
1

c(nt,j,n) =

c(mt,j,n) ~

~( 1 )n_E E-'D(n + 1)"'D(n)E

n+ 1
~ 1+ 0(1/n). (21)
Therefore, the operator M which is a “weighted block shift” is the direct sum of an ordinary
(unweighted) block shift and a Hilbert—Schmidt operator. Hence M is bounded and standard
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results from Fredholm theory ensure that the adjoint operator M™* is in the Cowen—Douglas
class B; (D).

The similarity classes of the homogeneous Cowen—Douglas operators are easily described
in terms of the parameter n and the multiplicities d, ..., d,,. For a somewhat smaller class
of operators, the similarity classes were described in [188].

Theorem (6.1.10)[183]: The multiplication operator M on # ™" and on # """ are

similar if and only if the blocks in Y and Y’ are of the same sizeandn = n'.
Proof. To prove the forward direction, first we show that I'™Y) maps A onto itself, that

is, AM = 3™ a5 linear spaces. The derlvatlve —: A% —» A@*D defines a surjective
bounded linear operator for any @ > 0. For anyf e A,

(rany ){) = z (rany, ){)

and (11) shows that each term of the sum is in d,A@*®. On the other hand, given g =
(g1, gm) € A, we find f € A® satisfying '™ f = g.The functions
fo, -+, fq are determined recursively. Suppose, we have already determined f; ,j < £.Then

from the definition of the map I'"Y), we see that taking
-1

fo=g0= ) (TO0f)),
j=0

we have the required f .
Clearly, M : A™ - A issimilarto M : H™" - 7™ viathe map f — £, which
Is bounded and invertible by the closed graph theorem.
For the proof in the other direction, let K(n) € A™ = @7, d;A"*)) be the linear span
of the vectors {ef; : 0 <j <m,1< q <d;}. The multiplication operator M on A
maps K (n) into K(n + 1). If M,, is the matrix representing Mk, : K(n) - K(n + 1)
then M is a block shift with blocks {M,,: n = 0}, which are diagonal matrices of size d x
d. Let M' be the multiplication operator on A®") = @7, d;AM*) with a similar block
decomposition. Assume without loss of generality that " > 7. Suppose L : A™M — A®")
is a bounded and invertible linear map consisting of d x d blocks with LM = M’ L. Then
d = dy ++ +d,, =codim(ranM) =codim(ranM')= d', +:--+ d',,,, .
It then follows that Ly, = 0 for all k > 1 and consequently L, is non-singular. We also
have L,,M,,_; = M',,_1L,_1,—, from which it follows that

Lyp = M'y_y Mg LooMg* - Mz = FpLooF;
where £, = M, --+M,,_; and F' = M',_, --- M’, are diagonal matrices. The diagonal
elements are

2 2i(k 2n' 2i' (¥
e = j( 1 AO (L pectively (7)ee = J( "EY @), |

n n

where  j(k) = jifdy +-+dj—1 < k <dy +-+djand ' (£) is defined
analogously. By Stirling’s formula, we have
Lnn)ek = (F')ee(Loo)ere (Fy D ~ ' T ORI (g0 .
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Since Ly, is non-singular, for any k with j(k) = 0, there is an £ such that (Lyg)x = O.
Now, unless n = n', we have (L,,)s — o contradicting the boundedness of L.
Therefore, we haven = n'and (L) ~ 1/ (£) 7% (Lyo) o - Take all those k for which
j(k) = 0. For each of these, we can find a different £, such that (Lyg)x k # 0. (The
columns of the non-singular matrix Ly, with these indices are linearly independent and
therefore cannot have only zeros in more than d — k slots.) Again, unless j’ (£;,) = 0, we
have (Lp,)ex k — 0. This shows that d’y = d,. Similarly, d’; = d;,1 < j < m. From
the equality ¥"., d'; = XL, d;, it follows that m" = m and d'; = d; for j =
1,...,m.
The following corollary, the proof of which is evident, implies that polynomially bounded
homogeneous operators in the Cowen—Douglas class are similar to contractions.
Corollary (6.1.11)[183]: A homogeneous operator in the Cowen—Douglas class is either
similar to a contraction or it is not power bounded.

We discuss how some formerly known examples fit into the present framework.

This case was already studied in [72]. Here each Y; is a number, non-zero in the
irreducible case. The unitaries implementing the equivalence are diagonal, and clearly the
conjugacy class [Y] under these has exactly one representative with y; > 0,1 < j <m.
The positive m + 1 — tuples satisfying the condition given in Theorem (6.1.8) give a
parametrization of homogeneous Cowen-Douglas operators. For each one, K(0,0) = I

and ];"’Y) is given by the formula (8).

Another good parametrization is possible with the aid of Theorem (6.1.6). All possible Y —
s are now conjugate under diagonal unitaries 4, so we may fix an arbitrary Y (for
example, y; = 1 forall j, or, as in [72], y; = j for all j ). Take any positive diagonal
matrix N with diagonal elements 1 = pg, iy, ..., . By Proposition (6.1.2), Y N and

Y(© N’ give isomorphic vector bundles if and only if A is diagonal and hence N = N'. It
follows that the positive numbers n, u4, ..., U, give a parametrization of the homogeneous

operators in the Cowen—Douglas class B,,,;(ID ). Here ]("'Y(O)) g depends only on n and

KIS"’Y(O)) (0,0) is given by the formula in Theorem (6.1.6). This is the parametrization used
in [72].

In the case m = 1, for any d, and d, the class [Y] always contains a member for which Y
is diagonal. So, the corresponding bundle is reducible unless d, = d; = 1. When m =
2,itiseasytoseethatd, = 2ord, = 2 gives only reducible bundles. So, the first non-
trivial case occurs (apart from the case d, = d; = d, = 1, which has been dealt with
previously) whend, = d, = 1,d; = 2.

For this case, again there are two natural parametrizations. Conjugating Y with a
blockdiagonal unitary having blocks ug, U;,u, changes Y;,Y, into U;Y ugt,u,Y,U7t.
Now, U, can be chosen so that ¥; = () . Then ug,u, and a scalar factor in front of U,
can be found witha > 0and Y, = (b c) with b,c > 0. We have irreducibility if and only
ifa,b,c # 0and no two such triples give equivalent Y — s. So, we have a parametrization
of the irreducible EY) by four arbitrary non-zero parameters. There is a reproducing kernel
(and hence an operator in B,(ID)) if and only if the right-hand side of Eq. (16) is positive;
in terms of the parameters, this is

a’? < 2,
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2n + 2

b? < =
1 —— %
220+ 1)

c? < 2n + 2.

The positive quadruple (n, a, b, ¢) subject to this condition parametrizes the homogeneous
operators in B,(ID). In each case, K(0,0) = I and J, can be expressed in terms of the
parameters using (8).

The other parametrization of the (dy, d;,d,) = (1,2,1) case is found using
Theorem (6.1.6). Simple arguments show that Y can always be conjugated by a block
diagonal AsothatY; = (10) andY, = (10)or(01).WhenY, = (0 1),thebundle will
be reducible for any choice of Hermitian structure. So, we can fix Y@ with v; = () and

Y, = (10). The block diagonal A that conjugates this Y(® to itself is a diagonal matrix
with (p,p, q,p) on the diagonal. If N is any positive diagonal diag(ny, Ny, n,) with n, =

1,N, = (gf) and n, > 0, then we can ensure n, = 1 = n,and a,B,y > 0 after

conjugating by an A. Thus the homogeneous bundles with reproducing kernel (and hence
the homogeneous operators in B, (D)) of type (1, 2, 1) are now parametrized by four positive
numbers (1, a, B,¥) subject to the condition 2 < ay.

By a different construction, a large subset of these examples already occurs in [189].
Section (6.2): A Class of Cowen—-Douglas Operators

In [61], Cowen and Douglas initiated the study of the following important class of
operators.
Definition (6.2.1)[190]: For a connected open subset 2 of C and a positive integer n, let
B.(Q) = (T € L(F)| 2 < o(T),

ran (T — w) =H forw € (),

ker(T — w) =H,
\

dimker(T — w) = nforw € 0},

where L(H) is the algebra of all bounded linear operators on a complex separable Hilbert
space H and o (T) is the spectrum of the operator T.

It is shown in [61] that if T is in B,,(£2), then it is possible to choose n eigenvectors
in ker(T — w), which are holomorphic as functions of w € 2. Thus w - ker(T —w)
defines a rank n holomorphic Hermitian vector bundle E over . It therefore follows that
the holomorphic Hermitian vector bundle E; is the sub-bundle of the trivial holomorphic
Hermitian bundle 2 x H defined by

Er={(wx) € 2 XH:x € ker(T — w)}

with the natural projection map 7 : E; = 2,m(w,x) = w (cf. [61]). Here is one of the
main results from [61].
Theorem (6.2.2)[190]: The operators T and T in B,,(2) are unitarily equivalent if and only
if the corresponding holomorphic Hermitian vector bundles E; and E 7 are equivalent.
They also find a set of complete invariants for this equivalence consisting of the curvature
of E; and its covariant derivatives. Unfortunately, these invariants are not easy to compute
except when the rank of the bundle is 1. In this case, the curvature

_ 0%logllywW)II*

Kw)dw A dw = wdw

dw A dw
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of the line bundle E , defined with respect to a non-zero holomorphic section y of E; , is a
complete unitary invariant of the operator T. The definition of the curvature, in this case, is
independent of the choice of the non-vanishing section y: If y, is another holomorphic (non-
vanishing) section of E, then y, = ¢y for some holomorphic function ¢ on an open subset
N, of 2, consequently the harmonicity of log |¢| completes the verification. However, if
the rank of the vector bundle is strictly greater than 1, then only the eigenvalues of the
curvature are independent of the choice of the holomorphic frame. This limits the use of the
curvature and its covariant derivative if the rank of the bundle is not 1. It is difficult to
determine, in general, when an operator T € B, () is irreducible, again except in the case
n = 1. In this case, the rank of the vector bundle is 1 and therefore it is irreducible and so
Is the operator T.

We ask: For what class of holomorphic Hermitian vector bundles, defined on a bounded
open connected set 2 < C, of rank n, the curvature remains a complete invariant. Refining
the proof of [61], one may infer that the curvature is a complete invariant for the class
consisting of the n-fold direct sum of line bundles. Examples were given in [198] to show
that the class of the curvature alone does not determine the class of the vector bundle except
in the case of a line bundle. The splitting of a holomorphic Hermitian vector bundle into a
direct sum is determined by the vanishing of the second fundamental form (see [196]). We
isolate those irreducible holomorphic Hermitian vector bundles, namely, the ones
possessing a flag structure, for which the curvature together with the second fundamental
form is a complete set of invariants. Among these, we study in detail the ones that
correspond to irreducible operators in the Cowen—Douglas class B,(£2). All irreducible
homogeneous operators in B, (ID) are in this class. We obtain, using the methods developed,
a description of all these operators. This classification was given earlier by D. Wilkins [83]
using a sophisticated mix of Riemannian geometry and operator theory. We also investigate
the case of n > 2, where together with the curvature and the second fundamental form, we

find a set of 222 + 1 invariants, which are easy to compute. Finally, we show that these

are a complete set of unitary invariants.
We discuss this new class of operators in B, (2) separately and then provide the details for
the case of n > 2. One important reason for separating out the case of n = 2 is that the
proofs that appear in this case are often necessary to begin an inductive proof in the case of
an arbitrary n € N.
We construct similarity invariants for the operators in this new class (See [194]).
Definition (6.2.3)[190]: If T is an operator in B, (£2), then there exists a pair of operators T,
and T; in B;(2) and a bounded operator S suchthat T = (7(1;) 7‘?) . This is Theorem 1.49
1
of [70]. We show, the other way round, that two operators T, and T; from B;(£2) combine
with the aid of an arbitrary bounded linear operator S to produce an operator in B, (£2).
. . T, S
Proposition (6.2.4)[190]: Let T be a bounded linear operator of the form (6’ T) :
1
Suppose that the two operators Ty, T, are in B{({2). Then the operator T is in B, (£2).
Proof. Suppose T, and T; are defined on the Hilbert spaces H, and #;, respectively.
Elementary considerations from index theory of Fredholm operators show that the operator
T is Fredholm and ind(T) = ind(T,) + ind(T,) (cf. [191]). Therefore, to complete the
proof that T is in B,(f2), all we have to do is prove that the vectors in the kernel
ker(T - w),w € 1, span the Hilbert space H = H, b H;.
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Let ¥, and t; be non-vanishing holomorphic sections for the two line bundles E, and E;
corresponding to the operators T, and T;, respectively. For each w € 2, the operator T, —
w is surjective. Therefore we can find a vector a(w) in H, such that (T, — w)a(w) =
—=S(t;(w)),w € 0. Setting a(w) = a(w) + t;(w), we see that

(T — wiaw) = 0= (T — w)y,(w).
Thus {y,(w),a(w)} € ker (T —w) forw in Q. If X is any vector orthogonal to ker(T —
w),w € (2, then in particular it is orthogonal to the vectors y,(w) and a(w),w € 0,
forcing it to be the zero vector.
We impose one additional condition on these operators, namely, T,S = ST, and assume
that the operator S is non-zero. With this seemingly innocuous hypothesis, we show that (i)
it is irreducible, (ii) and that any intertwining unitary operator between two of these
operators must be diagonal and (iii) the curvature of E together with the second
fundamental form of the inclusion Er, < E7 forms a complete set of unitary invariants for
the operator T. It is therefore natural to isolate this class of operators.
Definition (6.2.5)[190]: We let F B, (£2) denote the set of all bounded linear operators T of

the formT = (7(1)0 7‘?1 ) , where the two operators T, T; are assumed to be in the Cowen—
Douglas class B; (£2) and the operator S is assumed to be a non-zero intertwiner between
them, thatis, T,S = T;S.

Specifically, if the operator T;,i = 0,1, is defined on the separable complex Hilbert space
H;, then S is assumed to be a non-zero bounded linear operator from H; to H, such that
T,S = T,S. The operator T is defined on the Hilbert space H := H, & H;.

Each of the operators in FB, () is also in the Cowen—Douglas class B, (£2) by virtue of
Proposition (6.2.4). Thus FB,(2) < B,(2).

Although, in the definition of the class FB,(£2) given above, we have only assumed that S
IS non-zero, its range must be dense as is shown below.

Proposition (6.2.6)[190]: Suppose T, and T; are two operators in B, (£2), and S is a bounded
operator intertwining T, and T, that is, T,S = ST,. Then S is non-zero if and only if range
of S is dense if and only if S* is injective.

Proof. Let y be a holomorphic frame of E7, . Assume that S is a non-zero operator. The
intertwining relationship T,S = ST; implies that S - y is a section of E7 . Clearly, there
exists an open set £2, contained in 2 such that S - y is not zero on (2, otherwise S has to
be zero. Since S(y) is a holomorphic frame of Ez, on (2, it follows that the closure of the
linear span of the vectors {S(y(w)) : w € £,} must equal H,. Hence the range of the
operator S is dense.

The following Proposition provides several equivalent characterizations of operators in the
class FB, ().

Proposition (6.2.7)[190]: Suppose T is a bounded linear operator on a Hilbert space H,
which is in B, (). Then the following conditions are equivalent.

(i) There exist an orthogonal decomposition H, @ H,; of H and operators Ty : H, —

Ho, Ty Hy = Hy,and S : Hy — H, such that = (7(1)0 7“?1) , Where Ty, T; € B;(2)
and T,S = STy, thatis, T € FB,(0).

(ii) There exists a holomorphic frame {y,,y:} of E; such that % lyo W) =
(Y1 (W), ¥o(w)).
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(iii) There exists a holomorphic frame {y,,y,} of E; such that y,(w) and % Yo(w) —
v1(w) are orthogonal for all w in 0.
Proof. (i) == (ii): Pick any two non-vanishing holomorphic sections t, and t, for the line
bundles Er, and E7, respectively. Then
(T — wty(w) = (Ty —w)ty(w) + St (w))
Since ToS = STy, it induces a bundle map from E, to Er, , s0 S(t;(w)) = Yp(w)ty(w)
for some holomorphic function ¢ defined on Q2. Thus (T —w)t;(w) = Y(w)t,(w).
Setting y,(w) := y(wW)ty(w) and y;(w):= % Yo(w) — t;(w), we see that
Yow),y1(w)} c ker (T — w). Now assume that
aYo(w) + a1y, (w) = 0 (22)

for a pair of complex numbers a, and ;. Then

0 = (aoyoW) + ayyi(w), t;(W)) = ay{y1(w), t;(W)) = —ayllt; WI*.  (23)
From equations (22) and (23), it follows that «, = «@; = 0. Thus {y,, y,} is a holomorphic
frame of E; . Since (t;(w),yo,(w)) = 0, we see that

d

I lYoWIIZ = (r1 (W), yo(W)).
(if) &= (iii): This equivalence is evident from the definition.
(iii) == (i): Set t; (w): = % Yo(w) — y;(w). Let H,, and H; be the closed linear span of
fvow) : w € 2} and {t;(w) : w € 0}, respectively. Set T, = Tlg{O Ty = Py, T|}[1
and = Py, Tly, -
We see that the closed linear span of the vectors {y,(w),t;(w) : w € 0} is H: Suppose x
in H is orthogonal to this set of vectors. Then clearly, x L y,(w) and x L t;(w) for all w
in 2. Or, equivalently x L y,(w) and x L y,(w) for all w in 2. Therefore x must be the 0
vector. Next, we show that the two operators T, and T; are in B{(2).
Clearly, (T; — w) is onto. Thus index (T; — w) = dimker (T — w) and 2 =
index (T — w) = index (T, — w) + index (T; — w). It follows that dim ker (T, —
w) = 1lor?2.
Suppose dim ker (T; — w) = 2 and {s;(w), s,(w)} be a holomorphic choice of linearly
independent vectors in ker (T; — w). Then we can find holomorphic functions ¢, ¢,

defined on 2 such that S(s;(w)) = ¢, (W)yo(w) and S(s,(W)) = ¢, (w)y,(w). Setting
Yow) := yo(w),

9]
7a(w): = 5= (@1 (W)yo(w)) = s,(w) and

0
V2(w): = ow (P2 (W)yo(W)) — s,(w),
we see that (T — w)(F;(w)) = 0for0 < i < 2. If Y%, a;7;(w) = 0,a; € C, then

d
agYo(w) + w ((“1¢1(W) + a, ¢, (W))VO(W)) + a;5,(w) + azs,(w) = 0.
It follows that a;s;(w) + a,s,(w) = 0 since H, is orthogonal to H,. Hence a; =
a, = 0 implying o, = 0. Thus we have dim ker(T — w) = 3. This contradiction
proves that dim ker(T, — w) = 1and hence T, is in B, ().
To show that T, is in B;(2), pick any x € H,, and note that there exists z € H such that
(T — w)z = xsince T — w is onto. Let 35, and z;, be the projections of z to the
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subspaces H, and H;, respectively. We have [(To —w)zg, +S(2s5,)] + (Ty —
w)zg, = x. Therefore (T; — w)zy, =0 and (T, — W)z, + S(z3;,) = x. Since
dim ker (T; — w) = 1,50 23, = cit;(w), it follows that

x = (Ty — W)z, + S(33,) = (To — W)zg, + S(c1t,(W))

d
= (Ty — W)zy, + c1vow) = (To —w)zyg, + (To — W)(Clﬁ Yo(w))

d
= ((To — w)(zy, + C15. Yo(W)).
Thus T, —w is onto. We have 2 = dimker (T —w) = dimker (T, —w) +
dim ker (T, —w). Hence dim ker (T, — w) = 1 and we see that T, is in B, (2).
Finally, since S(t; (w)) = y,(w), it follows that T,S = ST;.

Anoperator T € FB,(2) isalso in B,(2), therefore as is well-known (cf. [61], [79]),
it can be realized as the adjoint of a multiplication operator on some reproducing kernel
Hilbert space of holomorphic C2-valued functions. These functions are defined on Q* :=
{fw: w € 0}. Anexplicit description for operators in F B, (£2) follows.

Let E; be the holomorphic Hermitian vector bundle over 2 corresponding to the operator
T. Since T is in FB,(2), we may find a holomorphic frame y = {y,,y1} such that y,(w)

and % Yo(w) — y1(w) are orthogonal for all w in Q. Define I' : H - 0(Q*, C?) as

follows:

I'(x)(z) = (%, 70(2), {x, v1(DMN" 3z € 2", x EXH,
where 0(2*, C?) is the space of holomorphic functions defined on 2* which take values in
C2. Here (-,)'" denotes the transpose of the vector (- ,-).
The map I is injective and therefore transplanting the inner product from A on the range of
I', we make it unitary from H onto H := ran . Define K to be the function on 2* X
0" taking values in the 2 x 2 matrices M, (C):

kraw) = (1 @n@Y),
d
[ 7o(®).10(2) = (1o (), ¥0(2)) \

—| a 92
\a_z‘ (Yo(W),v0(2)) aZWWO(W),VO(Z‘» + (t, (W), tl(z_))/

9
Ko(zw) == Ko(z,w)
0 0 0
| o 7 +(0 Kl(z,W)) 9
Ko (z,w)

o Kolaw) oo

where (W) = = yo(W) — 1 (W), Ko(3,W) = (o(@),%(2)) and K (zw) =
(t, (W), t,(3)) for z,w in 2. Set (K;),,(:) = Kr(-,w). It is then easily verified that K-
has the following properties:

(i)ZThe reproducing property: (I'(x)(-), (Kr)w (OMranr = F(xX)(W), )¢z, x €EH,n €
Cs,w € N*.

(ii) The unitary operator I intertwines the operators T defined on % and M* defined on H,
namely, I'T* = Mzl

(iii) Each w in 2 is an eigenvalue with eigenvector (K;)(-)n,n € C?, for the operator
M* = TTr".
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Once we represent an operator T from F B, () in this form, the possibilities for the
change of frame are limited. The admissible ones are described in the following lemma.
Lemma (6.2.8)[190]: Let T be an operator in FB,(2). Suppose {yo,v1}, {70, 71} are two

frames of the vector bundle E; such that y,(w) L (% Yo(w) —y;(w)) and y,(w) L

(% Fow) =7 (w)) forallw € Q. 1f ¢ = (g“ g“) is any change of frame between
21 22

{VO' yl} and {)70' )71}7 that iS;
{]70; ]71} = {VOJ yl} (¢11 ¢12)1
¢21 ¢22

then ¢, = 0,11 = ¢z and ¢y, = P15
Proof. Define the unitary map I', as above, using the holomorphic framey = {y,,y1}. The
operator T is then unitarily equivalent to the adjoint of the multiplication operator on the
Hilbert space H - possessing a reproducing kernel K. of the form (24). Let e, and e, be the
standard unit vectors in C2%. Clearly, (K;),,()e; and (K;), (1)e, are two linearly
independent eigenvectors of M* with eigenvalue w.
Similarly, corresponding to the holomorphic frame ¥ = {7,, 7.}, the operator T is unitarily
equivalent to the adjoint of multiplication operator on the Hilbert space Hr.
The reproducing kernel K3 is again of the form (24) except that K, and K; must be replaced
by K, and K, respectively.
For i = 0,1, set s;(w):= (Kr)(w)e;, and 5;(w) := (Kp)(w)e;. Let ¢p(w) :=
(¢00(W) $o1 (W)

b10(W)  d11(w)

) be the holomorphic function, taking values in 2 x 2 matrices, such that

Bow), 51 (w)) = (so(w), s;(w))p(w).
Sow) = doo(W)so(W) + ¢1o(W)s;(w) (25)
§1(w) = por(W)so(w) + ¢y (wW)s;(w). (26)

From Equation (25), equating the first and the second coordinates separately, we have

(Ko)w() = oo W) (Ko)w () + ¢1o(W) = (Ko)w (") (27)

This implies that

And

And

2

a ,
E(KO)W() ¢00(W)—(K0)W()+¢10(W) a_(Ko)w()
+10(W) (K (¢ ) (28)

2

(POO(W) (Ko)w( )+ ¢10(W) 920w (Ko)w () =

2

¢00(W) (Ko)w( )+ ¢10(W) 920w (Ko)w () + p10(w) (K w (),
which implies that ¢10 = 0. Finally, from Equation (26), we have

d . d
ﬁ (Ko)w(') = o1 (W) (Kp)w () + P11 (w) ﬁ (Ko)w (). (29)
The Equations (26) and (29) together give
$o1 = Poo and oo = P14

From these two equations, we get

completing the proof.

212



A very important consequence of this Lemma is that the decomposition of the operators in
the class FB, () is unique in the sense described in the following proposition.

Proposition (6.2.9)[190]: Let T, T € FB, () be two operators of the form (7(1)0 7‘?) and
1

<T° 75) with respect to the decomposition H = H, @ H, and H = H, D H;,
1

0
. U U
respectively. Let U = ( T
PEEIVEY Usi Uz

that
(U11 Ulz) (To 5) _(To § <U11 U12)
U1 Ux/\O0 T4 0 T,)\Uz Uz)/
then U12 - U21 - 0
Proof. Let {y,, y1} and {7,, 71} be holomorphic frames of E; and E; respectively with the
d N a . - d
property that y, L (ﬁ Yo — Y1) and 7o L (ﬁ Yo — V1)- Setty := (ﬁ Yo — Y1) and
t, := (% 7o — 71). Since U intertwines T and T, it follows that {Uy, , Uy} is a second

) : Hy @ H, —» H, @ H, be a unitary operator such

holomorphic frame of E; with the property Uy, L (% (Uyy) — Uyy) = U(ty). By
Lemma (6.2.8), we have that

U(Yo) = d¥o (30)
And
U(yy) =¢'Vo + o741 (31)
From equations (30) and (31), we get
Uty = ot,. (32)

From equations (30) and (32), it follows that U maps H,, to H,, and H; to H,. Thus U is a
block diagonal from H, @ 7, onto £, @ H;.
Corollary (6.2.10)[190]: Fori = 0,1, let T; be any two operators in B;(£2). Let S and S

be bounded linear operators such that T,S = ST, and T,S = ST,. If T = (73’ 7§1 ) and
T = (7(1;’ 7‘?;) then T is unitarily equivalent to T if and only if § = e®S for some real
number 6. 3
Proof. Suppose that UT = TU for some unitary operator U. We have just shown that such
an operator U must be diagonal, say = (Ual Uzz)' Hence we have

Ui1Ty = ToU11, Uz Ty = T1 Uz, U4 S = 5”22- (33)

Since Uy, is unitary, the first of the equations (33) implies that
Ull € {To, Tg} = {W € L(}[O) : WTO == TOW and 1/1/’1-'(;k == TSW}
Since T, is an irreducible operator, we conclude that U;; = ei‘e’ll}[0 for some 6; € R.
Similarly, U,, = e"e’ZIH1 for some 6, € R. Hence the third equation in (33) implies that
§ = el(01-02)g,
Conversely suppose that S = e‘?S for some real number 6. Then evidently the operator U :
.6
exp (15) Iy, 0 _ _ _
= o isunitaryon H =H, @ H,andUT =TU.
0 exp (—l;) Iy,
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Corollary (6.2.11)[190]: For i = 0,1, let T; be two operators in B;(£2). Let S be a non-

Ty, uS _
0 Tl) and T; =

),u,ﬁ > 0, then T}, is unitarily equivalent to T;; if and only if u = fi.

zero bounded linear operator such that T,S = ST;. If T, :(
(TO as
0 T
The following theorem lists a complete set of unitary invariants for operators in
FB,(Q).

Theorem (6.2.12)[190]: Suppose that T = (TO 5) and T = To § are any two
0 Tl 0 T1

operators in FB,(£2). Then the operators T and T are unitarily equivalent if and only if
Kr, = Kz, (or, Ky, = Kz,) and ”5”21”)2”2 = ”‘Tlglu)zuz , where t; and t; are non-vanishing
holomorphic sections for the vector bundles E7, and Ez , respectively.

Proof. On a small open subset of 12, we can assume that S(t,) and S(¢;) are holomorphic
frames of the bundle Ey, and Eg7 , respectively. First suppose that ddlog||S(t)|? =
30 log ||S(t)||* and ||S”(tt11”)2||2 = ”S|~|(ffl1||)2”2 . Then we claim that T and T are unitarily

equivalent. The equality of the curvatures, namely, 80 log ||S(t))||> = 00 log ||S~(T51)||2

implies that ||S(t)]||? = |<,i)|2||5‘(1?1)||2 for some non-vanishing holomorphic function ¢ on
£. It may be that we have to shrink, without loss of generality, to a smaller open set £2,,. The
second of our assumptions gives ||t;[|? = |@|?||E,1|%. Let yo(w) := S(t,(w)) and 7o(w): =
S(EW)); iw):=—= yow) — t;(w) and 7;(w):= = Fo(w) — E;(w). It follows
that {y,, v1} and {¥,, 7, } are holomorphic frames of E and E 7, respectively. Define the map
¢ : E; — Ej as follows:
() 2(yow)) = pW)¥o(w),
(i) 2(y1(w)) = ' W)Fo(w) + d(W)71(W).
Clearly, @ is holomorphic. Note that

(@(YoW)), 2(r:(W))) = (pW)7o(W), ¢’ W)Vo (W) + (W71 (w))

0 N
= (W7o (W), @' W)7o (W) + dW) (7= Yo(W) — T (W)
0 d
= (¢MT7o W), 5 (dWITo (W) = WL W) = == lloW) 7o W)II*

_ 9 lyo(wW)]|?
~ ow oW
and

0 d
FoW), 1 (W)) = (o), 5= Vo) — (W) = == llroWII*.
Hence we have (@(yo(w)), @(y1(W))) = (Yo(w),y1(w)). Similarly, [[@(yoW))Il =
lyvoW) |l and ||@2(y)Il = lly1ll. Thus E; and Ez are equivalent as holomorphic Hermitian
vector bundles. Hence T and T are unitarily equivalent by Theorem (6.2.2) of Cowen and
Douglas.

Conversely, suppose T and T are unitarily equivalent. Let U : % — H be the unitary map

such that = TU . By Proposition (6.2.9), U takes the form (%1 l?) for some pair of
2

unitary operators U; and U,. Hence we have U;(S(t;)) = ¢,(S(%,)) and U,t; = ¢, ;.
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The intertwining relation U;S = SU, implies that ¢, = ¢,. Thus K, = Kz, and

ISEI? _ [lua(Se)I” _ llgSEI _ IS@l’
£, 11? U2 ()17 P2, 112 IElIZ
This verification completes the proof.

We relate the invariants of Theorem (6.2.12) to the second fundamental form of the
inclusion E, € E. The computation of the second fundamental form is given below
following [80]. Here, E, is the line bundle corresponding to the operator T, and E is the
vector bundle of rank 2 corresponding to the operator T in FB,(£2). Let {y,,y1} be a
holomorphic frame for E such that y, and t; := dy, — y, are orthogonal. One obtains an
orthonormal frame, say, {e,, e;}, from the holomorphic frame {y,, y1} by the usual Gram—
Schmidt process: Set h = (y,, ¥o), and observe that

€1 = h_l/zyor
y _ Yoy, ¥o)
T Tl
2~ 2
(”V ”2 _ |<Y1:y0)|2)1/
! llvoll?

are orthogonal. The canonical hermitian connection D for the vector bundle E; is given, in
terms of e; and e, by the formula:
D 61 - D1’061 + D0’181 ES allel + a2182 + 581 - (all - 6_(109 h)) 81 + a2162
= 01161 + 0318, _ o
where a;4, @y, are (1,0) forms to be determined. Similarly, we have
D e, = D1’062 + D0’16’2 = 1261 + arr€H + 662

/ Sp— \ 6_( 2 _ 0’1,)’0))
— | _ /2 d(h™"y1, Yo)) | 1 4l Yoll2
aq; 172 e +| ar >
v, 12 - [{y1, Yol ly, 12 = (Vp)’%)
L N ol

= 01261 + 0530,
where a,,, a,, are (1, 0) forms to be determined. Since we are working with an orthonormal
frame, the compatibility of the connection with the Hermitian metric gives

(D ei,ej) + (ei,Dej) = 911 + 91]
=0forl <i,j < 2.
For1 < i,j < 2,equating (1, 0) and (0, 1) forms separately to zero in the equation 6;; +
d(h™Y(y1,¥0))

B_ji = 0, we obtain a;; = d(log h), @y, = 0,ay; = h/? o) and a,, =
(I 12— 1220))
a1l ”2_0/1,1/0)
% <|| 1"2 <y”$l(|;).Hence the second fundamental form for the inclusion E, < E is given by
[EL T
the formula:
_ 62 ~
9., = —h12 d(h™"y1, Yo)) B mloghdz
c L)\ (llul? 02 72’
<||V1||2—M) ( L=+ =——log h)
1voll? lvoll2 ~ 0202
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T, S\. : : _
00 T ) IS an operator in FB, () and t, is a non-vanishing
1

holomorphic section of the vector bundle E; corresponding to the operator T;, then we may
assume, without loss of generality, that S(t,) is a holomorphic frame of E,. The second

fundamental form 6, of the inclusion E, < E, in this case, is therefore equal to
2

d _
mlogllS(tl)llzdz

( ||t [% n 02 log ||S(t )”2)1/2

ISt ™+ 9207 09 1°th

It follows from Theorem (6.2.12) that the second fundamental form of the inclusion E, <
E and the curvature of E; form a complete set of invariants for the operator T. We restate
Theorem (6.2.12) using the second fundamental form 6,,.

Theorem (6.2.13)[190]: Suppose that T = (TO 5) and T = To § are any two
0 Tl 0 T1

wheret; = yo— v, If T = (

operators in FB,(£2). Then the operators T and T are unitarily equivalent if and only if
Kr, = Kz, (or K, = K7 ) and 01, = 6,.

We use the machinery developed here to list the unitary equivalence classes of
homogeneous operators in B,(ID),n = 2. For n = 1 this was done in [197] and in [83]
forn = 2. The classification of homogeneous operators in B, (ID) was given in [183] for
an arbitrary n. The proofs of [83] and [183] use tools from Differential geometry and the
representation theory of Lie groups respectively. While the description below is very close
to the spirit of [197].

Definition (6.2.14)[190]: An operator T is said to be homogeneous if @(T) is unitarily

equivalent to T for all ¢ in M6b which are analytic on the spectrum of T.

Proposition (6.2.15)[190]: ([197]). An operator T in B, (ID) is homogeneous if and only if

Kr W) = —A(1 — |w|*)™?

for some positive real number A.

Proposition (6.2.16)[190]: Let T be an operator in FB,(ID) and let ¢; be a non-vanishing

holomorphic section of the bundle E; corresponding to the operator T;. For any ¢ in Mab,

set ty,, = t,0@ 1. The operator T is homogeneous if and only if T,, T; are homogeneous
2

and S0l — 11y 12 B gor g1 5 in Mo,

t1,6ll ll£4112

Proof. Using the intertwining property in the class FB, (D), we see that
_ (¢(Ty) Sw’(Tl))
o = ("0 “gry)
Suppose that T is homogeneous, that is, T is unitarily equivalent to ¢ (T) for ¢ in Mdb.
From Theorem (6.2.12), it follows that T, is unitarily equivalent to ¢(T,), T; is unitarily
equivalent to ¢ (T;) and
Ise' @ (L, o) _ sl G4
2 - 2
|10 W) [t (W)

Now, we have
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Is o' (o) [lse'e ) ()|

10 W)|° 10 W)|”
1o ) 3 (6000
2 W) 2
@I s (b )| )
10 W)|°
From equations (34) and (35), it follows that
Is (o)™ L s
gl Tawl 50

Conversely suppose that T,,, T; are homogeneous operators and

2 2
Is(aom)” o ISl
7 — = 1(e™) (W) >
levo @) It W

for all ¢ in M&b. From equations (35), (36) and Theorem (6.2.12), it follows that T is a
homogeneous operator.
Corollary (6.2.17)[190]: An operator T in FB,(ID) is homogeneous if and only if
(i) T, and T, are homogeneous operators;
(i) K7, (W) = K (W) + Kp-(w),w € D, where B is the forward Bergman shift;
(iii) S(t;(w)) = ay,(w) for some positive real number a and |[t;(w)|? =

1
Wi NyoWII? = Wi
Proof. Suppose T is a homogeneous operator. Then Proposition (6.2.16) shows that T,, and
T, are homogeneous operators. We may therefore find non-vanishing holomorphic sections
Yo and t; of E, and E;, respectively, such that [ly,(wW)||1?> = (1 — |w|?)~*and ||t;(w)]|?
(1 — |w|?)~* for some positive real 2 and . For ¢ in Mob, sety, , = yo © ¢~ "andt, ,

t e @7t Clealy, [lyo,)]° = (0™ W lyoW)IZ  and [ty ()] =
(@™ 1) W) |7#|It; (W) ]|%. Let S(t;(w)) = Y(w)yo(w) for some holomorphic function
on D. We have S(t,(W))=St(e W) =9Y(e  W))yelp (W) =
(e~ (W))yo,, (W) and

Is o)l s
el e @7
Combining these we see that
5 Cso @ s Lol
(I e W 2
= [w(e™ )|’ (0" (w) [+ % (38)

From the equations (37) and (38), we get

YW1~ D)' MIH*27H = [P (e~ w)|%. (39)
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Pick ¢ = ¢,, where ¢,(w) = % and put w = 0 in the equation (39). Then
[Y(0)*(1 — [uH**27# = [p(w)|* (40)
If Y (0) = 0 then equation (40) implies that Y (u) = 0 for all u € D, which makes § =

0 leading to a contradiction. Thus 1 (0) # 0. Taking log and differentiating both sides of

the equation (40), we see that
2

A+ 2-pw auaﬂlog(l — ul® =0.
Hence we conclude that u = A+ 2. Putting u = A+ 2 in the equation (40) we find that

1 must be a constant function. Hence there is a constant a such that S(t;(w)) = ay,(w)
forallw € Q. Finally,

K, (W) = 00 logllt;(w)|I* = 90 log(1 — |w|>)™* = 30 log(1 — |w|*)~*"2
= 00log(1 — |w|®)™* + 00 log(1 — |w|?)2
= ddlog llyoW)II* + 90 log(1 — [w[*)™? = Ky (W) + Kp-(W).
Conversely, suppose that conditions (i), (ii) and (iii) are met. We need to show that T is a

homogeneous operator. Condition (ii) is equivalenttou = A1 + 2. By Proposition (6.2.16),
it is sufficient to show that

s (s )

[tz W]’

st )|

— —1y/ 2
= (™)' (W) T

However, we have

||S(t1,<p(W))|| _1al? ||(Vo,<p(W))|| = |al?|(o~1) ()| ”(YO(W))HZ
t1.o W||° £1o W)||° EACOIE
_ [[CC2)) —— Is(a )|l
— 2 1y 2 — 1ys 2

We show that an operator T in F B, (£2) is irreducible. Furthermore, if the intertwining
operator S is invertible, then T is strongly irreducible. (Recall that an operator T is said to
be strongly irreducible if the commutant {T'}’ of the operator T contains no idempotent
operator.) We also provide a more direct proof of Proposition (6.2.9), which easily
generalizes to the case of an arbitrary n.

Definition (6.2.18)[190]: Let T; and T, be any two bounded linear operators on the Hilbert
space H. Define ar, 1, : L(H) — L(F{) to be the operator
or,r,(X) = T1X — XT;, X € L(H).
Let op : L(H) — L(H) be the operator o7 7 .
An operator T defined on a Hilbert space # is said to be quasi-nilpotent if Tllggo TV =

0.
Lemma (6.2.19)[190]: Suppose T is in B, () and X is a quasi-nilpotent operator such that
TX = XT.ThenX = 0.
Proof. Let y be a non-vanishing holomorphic section for E . Since TX = XT, we see that
X(y) is also a holomorphic section of E; . Hence X(y(w)) = ¢(w)y(w) for some
holomorphic function ¢ defined on . Clearly, X*(y(w)) = ¢(w)™y(w). Now, we have
lpWW)™ ly W)l = o)™y (W)l
= [IX"Qw)i
< [IX™[[lly Wl
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Thus, forn e Nandw € 02, we have [p(w)| < [|X™||*/™ implying p(w) = O,w € 0.
Hence X = 0.

The following theorem from [195] is the key to an alternative proof of the Proposition (6.2.9)
and its generalization in the following.

Theorem (6.2.20)[190]: Let P, T be two bounded linear operators. If € ran o N ker or
, then P is a quasi-nilpotent.

A second proof of Proposition (6.2.9). Suppose T is unitarily equivalent to T via the unitary
U, namely, UT = TU. Then

U215 + U22T£= TlUZZ (4‘1)
B Uz1To = T1 Up;. (42)

Equivalently, we also have TU* = U*T, which gives an additional relationship:
T,U;, = Ui, T (43)

Using these equations, we compute
U215Uf2§ = (Tlez - Uz~2T1)Uik25~ =~ T1U23Uf2§ - L~]22T1Uik25~ . 3
= T1UzU12S — UpoUpp ToS = TiUR U, S — Upp U STy = Ufl(Uzzufzs)»
and
(U215Uf251)T1 = U13SU,ToS = Uy ST ULRS = Uy ToSULLS = Ty (Ug2SULSLS).
Thus U,,SU;,S € ran oz Nker o7 . From Lemma (6.2.19) and Theorem (6.2.20), it
follows that
U,,SU;,S = 0.
Since S has dense range, we have U,,SU;, = 0. Let us consider the two possibilities for
U{,, namely, either Uy, = 0 or Uy, # 0. If U}, # 0, then from equation (43), U;, must
have dense range. Since S also has dense range, we have U,; = 0. To complete the proof,
we consider two cases.
Case 1: Suppose U,; = 0. In this case, we have to prove that U;, = 0. From U*U = I,
we get U;,U;; = Iand U;,U;; = 0. From = TU , we get U, T, = ToU;4, SO Uy, has
dense rang. Since U, is an isometry and has dense range, it follows that U, is onto. Hence
Uy, is unitary. Since U, is unitary and U;,U;; = 0, it follows that U;, = 0.
Case 2: Suppose U;, = 0. In this case, we have to prove that U,; = 0. We have
U, Uy = 1 and U, Uf; = 0. The intertwining relation TU* = U*T gives T, U;; =
Ui1To.
So U7, has dense range. Since Uj, is an isometry and it has dense range, we must conclude
that Uy, is onto. Hence U,; is unitary and we have U,,U;; = 0 forcing U,, to be the 0
operator.
Proposition (6.2.21)[190]: Any operator T in FB, () is irreducible. Also, if = (7(;0 7{0)
, then it is strongly irreducible.
Proof. Let P = (Pij)2><2 be a projection in the commutant {T'}' of the operator T, that is,
(Pll P12> (TO S) — (TO S><P11 PlZ)
P21 P22 0 Tl 0 T1 P21 P22.
This  equality implies that P;;T, = TyPy; + SPyq, P11S + P, Ty = TyPy, +
SP,,,P,,T, = T;P,; and P,,S + P,,T; = T,P,,. Now
(P21S)Ty = Pr1(STy) = Pp1(ToS) = (P21Tp)S = Ti(P215).
Thus P,1S € ker o, . Also note that
Py1S = TPy — PpoTy = UTl(PZZ)-
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Hence P,,S € ranor, N ker or, . Thus from Lemma (6.2.19) and Theorem (6.2.20), it

follows that P,;S = 0. The operator P,; must be 0 since S has dense range.
To prove the first statement, we may assume that the operator P is self-adjoint and conclude
P;, is 0 as well. Since both the operators T,, and T; are irreducible and the projection P is
diagonal, it follows that T must be irreducible.
P4 P12>
0 P,/
both P,; and P,, must be idempotents. By our hypothesis, P;;, and P,, must also commute
with T,, which is strongly irreducible, hence P,; = 0 or I and P,, = 0 or I. By using

Theorem (6.2.20), we see that if P = (é P(l)z) orP = (8 P}Z) , then P does not

) T, 1 (1 P (0 P, .
commute with (0 To> . Thus P —(0 1) or P = (0 0) . Now, using the

equation P2 = P, we conclude that P, must be zero. ThusP = ITorP = 0.
We now give a sufficient condition for an operator T in FB, () to be strongly irreducible.

Proposition (6.2.22)[190]: LetT = (7(;0 7?) be an operator in FB,(£2). If the operator S
1

Is invertible, then the operator T is strongly irreducible.

Proof. By our hypothesis, the operator X = (é g

1 (I o(To S\/I o' _ (To I _(To 1
XTX™ = (0 5)(0 T1>(0 5) = (0 ST15—1) _<0 To)'
Thus T is similar to a strongly irreducible operator and consequently it is strongly
irreducible.
We conclude with a characterization of strong irreducibility in FB, (12).

Proposition (6.2.23)[190]: An operator T = (Té) 7‘?) in FB, () is strongly irreducible
1

For the proof of the second statement, note that if P is an idempotent of the form (

) is invertible. Now

ifand only if S € ran o7, .
Proof. Let P be an idempotent in the commutant {T'}’ of the operator T. The proof of the

. . P P. .
Proposition (6.2.21) shows that P must be upper triangular: ( (1)1 Plz) . The commutation
22
re|atI0n PT =TP giVGS us P11T0 = TOP11, P22T1 = T1P22 and
P11S — SPy; =ToPip — PpoTh. (44)

Since P 441 € {T;} for0 < i < 1,itfollows that P; can be either I or 0. If either P,; =
Iand P, = 0 or Py = 0 and P,, = I, then § is in ran o, r, contradicting our

assumption. Thus P is of the form ((I) P}Z) or (8 P(l)z) . Since P is an idempotent

operator, we must have P;, = 0. Hence T is strongly irreducible.
Assume that the operator S is in ran o7, 7, . In this case, we show that T cannot be strongly
irreducible completing the proof. Since € ran or, 1, , we can find an operator P;, such that

S = or,1, (P12) = ToP1y — Py, T (45)
The operator P = ((I) P(l)z) is an idempotent operator. We have
I P12 (TO S) _ TO S+P12T1
(0 o) 0 Tl_(o 0 ) (46)
And
TO S I P12 — TO TOP12
(0 Tl)(o 0)_(0 0 ) (47)
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From these equations, we have PT = TP proving that the operator T is not strongly
irreducible.

We begin by describing, what one may think of as, a natural generalization of the
class FB,(£2) to operators in B, (2) for an arbitrary n € N.
Definition (6.2.24)[190]: We let B, () be the set of all bounded linear operators T
defined on some complex separable Hilbert space H = H, - H,,_,, which are of

the form
To SO,l SO,Z So,n—l
0 T1 51’2 Sl,TL—l
T=1 . ) . :

\0 0 T, Sn—z,n—l/

0 cee cee O Tn_]_

where the operator T; : H; — H;, defined on the complex separable Hilbert space H;,0 <
[ < n — 1,isassumed to be in B;(2) and S; ;44 : H;41 — H;, is assumed to be a non-
zero intertwining operator, namely, T;S; ;41 = S;i+1Ti+1,0 < i < n — 2.

Even without mandating the intertwining condition, the set of operators described above
belongs to the Cowen-Douglas class B, (£2). An inductive proof presents no difficulty
starting with the base case of n = 2, which was proved. Therefore, in particular,
FB,,(2) < B,(2). We begin with a preparatory Lemma for proving the rigidity theorem.
Lemma (6.2.25)[190]: Let X be an invertible operator that intertwines two operators in

FB,(2).SetY = XL IfX = ((Xi,j)) Y = ((Yu)) are the block decompositions

TlXTl’ nxn
of the two operators X and ,thenX,,_; ;= 0,0 < j < n — 2,andY,_;;= 0,0 < j <

n — 2.
Proof. Consider the three possibilities:
() Xp-1;=00<j <n—2butl,;;+#0forsome0 <j <n — 2
(i)Y, =00<j<n-2X,,;#0forsome0 <j <n— 2
(iii) X,_1; # 0forsome 0 < j < n — 2andY,_;, #0forsome0 < k < n — 2.
In each of these cases, we arrive at a contradiction proving the Lemma.
Case 1: Choose [ to be the smallest index such that ¥,,_; ; # 0, that'is, ¥,,_;; = 0 for 0 <
i < 1—1butY,_,; # 0. For this index [, the intertwining relation TY = Y T implies
Tpn-1Yn_11 = Yu_1,T;. Since Y,_,; # 0, it follows from Proposition (6.2.6) that ¥,,_, ; has
dense range. From XY = I, weget X,,_1,-1Y,—1;, = 0and X;,_1 ,—1Yy—1n-1 = I. Since
Y,-1; has dense range and X,,_;,,—1Y,—1; = 0, we conclude that X;,_;,_; = 0. This
contradicts the identity: X, ,—1Vp_1p-1 = L.
Case 2: The contradiction in this case is arrived at exactly in the same manner as in the first
case after interchanging the roles of X and .
Case 3: Pick j, [ to be the smallest indices such that X;,_; ; # 0 and ¥,,_;; # 0. We have
that = TX . Consequently,

Xn-1;T; = Tne1Xn—1,j, Xn-1,;Sj j+1 + Xn-1,j+1Tj+1 = Tno1Xn-1,j+1.  (48)
Since TSk k+1 = Skr+1Tk+1 for k = 0,1,2,-,n — 1, multiplying the second equation
in (48) by Sji1,j42 =+ Sn—2n-1, @nd replacing Tjy1Sj41 j+2 = Sn-zn-1 With Sjyq 540 -+
Sn-2n-1Tn-1, We have

Xn—l,ij,j+1 5n—2,n—1 j': Xn—l,j+1Sj+1,j+2 Sn—z,n—lTn—l
= n—1Xn—1,j+1Sj+1,j+2 "'Sn—Z,n—l- (49)
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We also have TY = Y T, which gives us

Th-1Yn-11 = Yn—l,lTl- (50)
Now, multiply both sides of the equation (49) by Y,_,;, using the commutation
Tpn_1Yn_11 = Yn_1,T;, then again multiplying both sides of the resulting equation by S; ;,; -
- Sp_2n_1 and finally using the commutation relations T, Sy x+1 = Sk ks1Tk41,0 < k <
n — 1, we have

Xn—l,ij,j+1 Sn—z,n—lyn—l,lsl,Hl Sn—z,n—l
+ Xn—l,j+1Sj,j+1 Sn—z,n—lyn—l,lsl,l+1 Sn—z,n—lTn—l
= Tn—1Xn—1,j+1Sj+1,j+2 Snean-1Yn-1,151141 " Sn—2n-1- (51)
Therefore, we see that

Xn—l,ij,j+1Sj+1,j+2 Sn—z,n—lyn—l,lgu,Hl S~n—2,n—1
is in the range of the operator o7 . Indeed it is also in the kernel of 67 _ , as is evident
from the following string of equalities:
Xn—l,ij,j+1Sj+1,j+2 Sn—z,n—lyn—l,lgl,Hl SNn—Z,n—l’rn—l
= Xn-1;Sij+1Si+1 42 = Snezn-1Yn-1 1180141 = Snez2n-1
= Xn—1,j5j,j+15j+1,j+2 5n—2,n—1Tn—1Yn—1,l§l,l+1 "'~§n—2,n—1

= Xn-1,jT;S; j+1Sj+1,j+2 = Sn—2n-1Yn-1,150141 = Sn—2n-1

= Th-1Xn-1,;Sjj+15j+1,j+2 = Sn-2n-1Yn-11511+41 =" Sn—2n-1-

Thus

Xn-1,jSjj+1Sj+1,j+2 = Sn—2n-1Yn-1,S1141 = Sn-2n-1 € keroz _ N ranog .
Consequently, using Lemma (6.2.19) and Theorem (6.2.20), we conclude that

Xn-1,jSj j+15j+1,j+2 = Sn—2n-1Yn-1151141 = Sn—2n-1 = 0.

By hypothesis, all the operators Sy x+1, Sk k41, k = 0,1,-+,n — 2 have dense range. Since
Y,-1; # 0, then equation (50) and Proposition (6.2.6) ensure that Y,,_, ; has dense range.
Hence X,,_; ; = 0. This contradicts the assumption X,,_, ; # 0.
The following proposition is the first step in the proof of the rigidity theorem.
Proposition (6.2.26)[190]: If X is an invertible operator intertwining two operators T and
T from F B, (22), then X and X~ are upper triangular.
Proof. The proof is by induction on n. The validity of the case n = 2, is immediate from
Lemma (6.2.25). Let us write the two operators T, T in the form of 2 x 2 block matrix:

T = (Tn—lxn—l Th-1x1 ) 7 (Tn—lxn—l Th-1x1 )
0 Tn—l,n—l ' 0 Tn—l,n—l .
Using Lemma (6.2.25), the operators X, Y can be written in the form of 2 X 2 block matrix:
¥ = (Xn—lxn—l Xn-1x1 ) Y = (Yn—lxn—l Yi-1x1 )
0 Xn—l,n—l ’ 0 Yn—l,n—l

without loss of generality. Here X,_ixn-1 and Y,_,.,_; are the operators

((Xi,j))n_z

2
and ((YU)) i respectively and

n—
i,j=0 i,j=
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0 0 Tn_g Sn—3,n—2/

0 - 0 Tnos

/To So1 Soz ‘5:0 n-2 \

i 0 T, S, Sin-2 i

\0 0 Tn—3 S~n—3 n—Z/
0 0 T,

From the relations XT = TX,TY = YTandXY = Y X = I, we get

()j(n—lxn—lTn—lxn—l = Th-1xn-1Xn-1xn-1 Tn-1xn-1Yn-1xn-1 = Yn-1xn-1Tn-1xn-1
an
Xn—1xn-1Yn-1xn-1 = Yn-1xn-1Xn-1xn-1 = 1.

Now, to complete the proof by induction, we assume that any invertible operator X
intertwining two operators T, T in FB, () is upper triangular along with its inverse for all
k <n. Thus the induction hypothesis guarantees that X,,_;xn—1 and Y,,_;x,—1 Must be
upper triangular completing the proof.

Employing these techniques, we show that any operator X, not necessarily invertible,
in the commutant of T € FB,,(£2), must be upper triangular.
Proposition (6.2.27)[190]: Suppose T is in FB,(2) and X is a bounded linear operator in
the commutant of T. Then X is upper triangular.
Proof. The proof is by induction n. To begin the induction, for n = 2, following the
method of the proof in Proposition (6.2.21), we see that an operator commute with an
operator in F B, (£2) must be upper triangular. Now, assume that any operator commute with
an operator in F B, (£2) is upper triangular for all k < n.
Step 1: We claim that X,,_;; = 0for 0 < i < n — 2. Suppose on contrary this is not
true. Thenletl,0 < [ < n — 2, be the smallest index such that X,,_, ; # 0. For this index

[, the commuting relation XT = TX implies that
l
Xn-1,Ty = Tp_1Xp_1; and Xn-1kSk1+1 T Xn-1,i+1T141

k=0
= Tn-1Xn-1,1+1- (52)
From equation (52), we have
Xn-1,151141512 .Sn—2n-1 € keror _,
Xn-11511+151,2 . Sn-2n-1 = UTn_l(Xn—1,l+1Sl+1,l+2» -"Sn—z,n—l)-
Therefore  Xp,_1,S11+1S141,042 -+~ Sn—2n-1 1S in ran or _ Nkeror _ .Combining
Proposition (6.2.6) with Lemma (6.2.19) and Theorem (6.2.20), we conclude that X,,_, ; #
0. This contradicts the assumption X,,_, ; # 0.
Step 2: Write
¥ = <Xn—1><n—1 Xn-1x1 )
0 Xn—l,n—l
And
T — (Tn—lxn—l Tn—lxl)
0 Tn—l,n—l ’
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where meaning of X,,_1xn—1 and T,,_1x,—1 are same as in Proposition (6.2.26). It follows
from the commuting relation XT = TX that

Xn—1xn-1Tn-1xn-1 = Tn-1xn-1Xn-1xn-1-
Now, the induction hypothesis guarantees that X,,_;x,—; Mmust be upper triangular
completing the proof.

Finally, we prove a rigidity theorem for the operators in F B,,({2). In other words, we
show that any intertwining unitary between two operators in the class FB, () must be
diagonal. We refer to this phenomenon as “rigidity.”

Theorem (6.2.28)[190]: (Rigidity). Any two operators T and T in FB, () are unitarily
equivalent if and only if there exist unitary operators U;,0 < i < n — 1,suchthatU;T; =
Ti[i and UiSi,j = S~l,]U] < ]

Proof. Clearly, it is enough to prove the necessary part of this statement. Let U be a unitary
operator such that = TU . By Proposition (6.2.26), both U and U* = U~ must be upper
triangular, that is,

QU = ((Uij))n ,U;j = 0 whenever i > j;

(b) U* =(( )) ,Uj; = 0wheneveri > j.

It follows that the operator U must be diagonal.

We use the rigidity theorem just proved to extract a complete set of unitary invariants for
operators in the class FB,,(12).

Theorem (6.2.29)[190]: Suppose T is an operator in FB,,(£2) and t,,_, is a non-vanishing
holomorphic section of E7 . Then

(i) the curvature Kr.
(i) —= ool \yhere tiog =Si1(t),1 <i<n-1,

lle;ll
(i) —=—=— ,for0 < i <j<n-—2withj —i > 2

(Si,j () ta)
Il

are a complete set of unitary invariants for the operator T.
Proof. Suppose T, T are in FB,,(£2) and that there is a unitary U such that = TU . Such an
intertwining unitary must be diagonal, thatis, U = U, &---@ U,,_;, for some choice of n
unitary operators U, ..., U, _;.
Since UiTi = TiUi,O <i<n-— 1, and UiSi,i+1 :S~i,i+1Ui+1'0 <i<n- 2, we
have

Ui(t:(w)) = ¢W)E;(w),0 < i < n — 1, (53)
where ¢ is some non-zero holomorphic function. Thus
W —%e  and eiall _ NEll e -1
fnm1 e NE—all NENT — 7 '

For0 <i<j<n-2withj —i > 2andw € 2, we have

(Si (tj(w)),ti(w)) ~ (U; <5i,j (tj(W))>;Ui(ti(W))> ~ (Si (Uj (tj(W))): U;(t:(w)))

el ool uE))
iy (eEW), dWIEW)  (Syy (EW) ), Ew))
B 16 w)E W12 R ECE
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Conversely assume that T and T are operators in FB,,(2) for which these invariants are the
same. Equality of the two curvature ¥, = Kz together with the equality of the second
fundamental forms H=H1 < i < n — 1 implies that there exists a non-zero
i-1 i
holomorphic function ¢ defined on 2 (if necessary, one may choose a domain 2, < 2
such that ¢ is non-zero on £2,) such that
W)l = l¢WIlle;w)ll, 0 <i<n-—1
ForO0 < i < n — 1,defineU; : H; — H; by the formula
Ui(t:w)) = o), (w), w € 0,
and extend to the linear span of these vectors. For0 < i < n — 1,
U@ W)l = llgMm)e )1l = [pM)IIlE; W)l = lle; ). 3
Thus U; extend to an isometry from H; to H;. Since U; is isometric and U;T; = T,U;, it
follows, using Proposition (6.2.6), that each U; is unitary. It is easy to see that U;S; ;41 =
Siis1Upgp for0 < i <n—2also. For0 <i<j<n-2withj—i>2and
w € (2,
laI? o
(Ui (S, (W), Ui(ti(w))) = (S (tj(w)), t;(w)) = TAOIE (S;;(t;(w)), t;(w))
l
= |Q?(W)|2<Si,j(fj(w))J t(w)) = (¢(Vf)5i,j(fj(w))»¢(W)fi(W))
= (S;;(@W)t;(w)), pw)t;(w)) = (S ;(U;(t;(w))), Ui (t;(w))).
Polarizing the real analytic functions
(U;(S;,;(t;(w))), Uy (t;(w))) and (S; ; (U; (t;(w))), Ui (t;(w)))
to functions which are holomorphic in the first and anti-holomorphic in the second variable,
we obtain the equality:
(Ui (S (t(2))), Ui(ti(w))) = (8;;(U;(t;(z))), Ui (t;(w))), 3w € Q.
Hence forwin2and0 < i < j < n — 2withj — i > 2, we have
Ui(S;;(t;w))) = S ;(U; (5 (w)))
which implies that
UiSi,j - Sl’]U] . _
Now, setting U = U, &---@ U,,_,, we see that U is unitary and UT = TU completing
the proof.
Proposition (6.2.30)[190]: If an operator T is in FB, (), then it is irreducible.
Proof. Let P be a projection in the commutant {T'}' of the operator T. The operator P must
therefore be upper triangular by Proposition (6.2.27). It is also a Hermitian idempotent and
therefore must be diagonal with projections P;,0 < i < n — 1, on the diagonal. We are
assuming that PT = TP, which gives
PySiiv1 = Sii+1Pir1i40,0 S 0 = n — 2
None of the operators S;;.1,0 < i < n — 2,are zero by hypothesis. It follows that P;; =
0, if and only if P;,.,,;,, = 0. Thus, for any projections P;; € {T;} , we have only two
possibilities:
Poo=Py1 =Py ==Py 1y 1 =1L0rPyg=P1 =Py ==P_1p1=0.
Hence T is irreducible.

The localization of a module at a point of the spectrum is obtained by tensoring with
the one dimensional module of evaluation at that point. The localization technique has
played a prominent role in the structure theory of modules. More recently, they have found
their way into the study of Hilbert modules (cf. [193]). An initial attempt was made in [192]
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to see if higher order localizations would be of some use in obtaining invariants for quotient
Hilbert modules. Here we give an explicit description of the module tensor products over
the polynomial ring in one variable.

There are several different ways in which one may define the action of the polynomial ring
on C¥. The following lemma singles out the possibilities for the module action which
evaluates a function at w along with a finite number of its derivatives, say k — 1, at w.
Let f be a polynomial in one variable. Set

/ t1f (2) 0 0 \
Uo,1 0Z f(2) ta2f (2) 0
Iu((@) = E N
bt Bt 05101 (D) s amp f@) ¢ ekl (2)

where u = ((Hi,j)) is a lower triangular matrix of complex numbers with p;; = 1,1 <
i < k.

Lemma (6.2.31)[190]: The following are equivalent.

(i) 3u(f9) = Ju(NIu(9).

()@ +1-J = Dipr1ju =tpr1-jusrtirrp 1 slsp-21<j<p-I+1

—1 . .

(iii) gy pty; = (Ilj—i) ol < pli<ki<l<p.

Proof. All the implications of the Lemma are easy to verify except for one, which we verify
here. For1l < i,j < kandi < j, note that

ai—j—l al
(3N @3,)), Z Hijrikyo (a == lf(Z)) (a lg(z))

i—j

i gi-i-l
_ ( )ul,(a 5 lf(z))( lg(Z))

=0
i—j .
_ gi-i-t
. ui,j; (1) emre Ny lg(z))
§i~J
= Ui Py (f9)(2)
= (109@), -

Fori > j,
= = 0_
(1N@39@), = (9.0D@)
Hence we have
Ju(f9) = 3u(£)Iu(9)-
For x in C*, and f in the polynomial ring P[z], define the module action as follows:
fx=3J,)W)x.
Suppose Ty : M — M is an operator in B;(£2). Assume that the operator T has been
realized as the adjoint of a multiplication operator acting on a Hilbert space of functions
possessing a reproducing kernel K. Then the polynomial ring acts on the Hilbert space M
naturally by point-wise multiplication making it a module. We construct a module of k-jets
by setting
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k-1 i

JM ={Z Hh®ei+1: h EM},

=0
where €;,,,0 < i < k — 1, are the standard basis vectors in C*. There is a natural module
action on JM', namely,

(sz - ) J(f)(li h®e )

=0 =0

f € Plz],h €M,

Where
i_'l i—7 epoe .

0 otherwise.
The module tensor product JM & 4 (o) Ck is easily identified with the quotient module

N1, where ¥ € M is the sub-module spanned by the vectors

k
{Z Urh ®e—h®(3,(0) W) -&1): hy € JM, e € T, f € Pzl
=1

Following the proof of the Lemma (6.2.32) in [192], we can prove:

Lemma (6.2.32)[190]: The module tensor product /M &p[;; Ck is spanned by the vector
e,(W) INJM ® 40 Cl, where
p

epW) = Y by JKC, Wy ® €1 < p < k
=1

and for a fixed p,
Mp —j+1,l

")
j—1
The set of vectors {e,(w) : w € 2,1 < p < k} defines a natural holomorphic frame

for a vector bundle, say J;,.(E). This vector bundle also inherits a Hermitian structure from
that of JM & ) Cl, which furthermore defines a positive definite kernel on 2 x (2:

JiocK (W) = (({ep (W), q(2))))
k

b

bpp-j+1,l +j<p + L

- Z D(DJye—1+1K (3 w)D(D),

Ok—rxk—r Ok—rxr

where J.K (z,w) = ( Operer  JoK(zw)

) and D (1) is diagonal. Moreover, D(1)m =

b1, and
0 r—1
/ K(z,w) 5= K(zw) —— K(z,w) \
iy 92/0z0WK f””
J.K(z,w) = 0z (z,w) /0z20WK (z,w) ézgﬁg?:fK(Z,Mo .
ariq, - : . azr-z.n
\ 0z 1 azr_—16ﬁ;K(Z,W) WK(Z,W)/

The two Hilbert spaces M and M @ C* may be identified via the map J,_;.1, which is
given by the formula
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k-1
aP
St =) by 5= b ® pur
p=0

Since Jx_;41 is injective, we may choose an inner product on J,,_;,; M making it unitary.
Proposition (6.2.33)[190]: [192] The Hilbert module J;,.(M) admits a direct sum
decomposition of the form @%_, J,_,+, M, and the corresponding reproducing kernel is the
sum

k
> DWe1aK(w)DQ).
=1

Let y, be a non-vanishing holomorphic section for the line bundle E corresponding to the
operator Ty. Put by 1to(w) = yo(w)andforl <[ < k — 1, let

. - a'
(i) t;(w): = Zi'{:ol ! bit1+ii+1 Py K(,w) @ €414
.. al+1—i
(i) yi(w) =XiZl breri 5 ti-a(w).
Now, {yo, Y1, , Yr—1} are eigenvectors of the operator M; — w acting on the Hilbert space
~Wﬁov

Since (M; — w)y,;(w) = 0, it follows that (M; — w)t;(w) = —% to(w), which is
2,2

equivalentto (M; — w)t;(w) = —py1to(w).

Suppose (M; —w)t;(w) = —ppq t;-(w) for 1 <1 < r. Again, since (M —

w)Y,r+1 (W) = 0, it follows that
Mz — Wty (W) =

{(=(r + Dbyyz,0"te(w))

br+1r+2
r+1
—Z br+2,i(_.ui,i—1gr+2_iti—2(W) +(r+ 2 — D0 (w)))
i=2
1 T
= b {z (_(T +2 - i)br+2,i + br+2,i+1.“i+1,i)ar+1_lti—1(W) - br+2,r+1tr(W)

r+2r+2 (4

bry2r+1

= bT : tr(W) = :ur+2,r+1tr(w)-
r+2,r+2

Letl := J, @ Jx—q D...@D J;, betheunitary from M := M, @--- Mj_, to My,,, where
each of the summands M,,..., My _; is equal to M. Let K;(-,w) := J,_;t;(w) = K(-
,w),0 < | < k—1. Now, we describe the operator T := I'*M*I", where M is the
multiplication operator on My,.. For1 < I < k — 1,setT; := Py, T|jr, and note that
T(K,(,w)) = (MK (,w) = T"™Mzty(w) = "Wty (w) + piiqiti-1(W))

=wKi(,w) + tip1,K-1(,w).

Now,
T/(Ki(ow)) = Pag,Tlae,(Ki(ow)) = Pag, T(K (W)
= Py, (WK (,w) + pi41,K-1(,w)) = WK (-, w).

Let S;_q1; : M; — M;_, be the bounded linear operator defined by the rule S;_; ;(K;(-
yW)) = e K-1(bw),1 <1 < k —1. Since M; = M;_; =M, it follows that
Si—11 = My+1,1. Hence the operator T has the form:
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To Haal 0 - 0 0
0 To pzad - 0 0 \
0

= 0 TO . : |
r : : : . Hr—1k—2! o |
\0 o 0 T, Mkl /

0 0 0 0 Ty

Thus T is in FB; () and defines, up to unitary equivalence via the unitary I', the module
action in M,.. In consequence, setting CX [u] to be the Hilbert module with the module
action induced by J,(f)(w), we have the following theorem as a direct application of
Theorem (6.2.29).
Theorem (6.2.34)[190]: The Hilbert modules corresponding to the localizations
JM Qp[y CK[u;],i = 1,2, are in FB,(R) and they are isomorphic if and only if yu, =
Hz-

We attempt to relate the frame of the holomorphic vector bundle E;, T in FB, (),
to that of the direct sum of the line bundles E, @ - @D T,_;.
Let t = {to, tq,...,ty,—1} be a set of non-vanishing holomorphic sections for the line
bundles Er ,...,Er _, , respectively. Suppose that a suitable linear combination of these
non-vanishing sections t;,i = 0,...,n — 1, and their derivatives produces a holomorphic
frame y := {y,,...,¥n—1} for the vector bundle E , that is,

yi =t gt e gt g
for some choice of non-zero constants u,;,...,4;—1;,0 < i < k — 1. The existence of
such an orthogonal frame is not guaranteed except when n = 2. Assuming that it exists,
the relationship between these vector bundles can be very mysterious as shown below. This
justifies, to some extent, the choice of the smaller class of operators in the next section.
If £ is another set of non-vanishing sections for the line bundles Er, ,...,Er,__ , then the
linear combination of these with exactly the same constants y;; is a second holomorphic
frame, say 7 of the vector bundle E; . Let @, be a change of frame between the two sets of
non-vanishing orthogonal frames t and £, and ¥, be a change of frame between y and 7.
We now describe the relationship between @, and ¥, explicitly:
(1) Pr(i,)) := ¢ij = := Y(i,j) = 0,0 > j,thatis, @, and ¥ are upper-triangular.
(iFor0 <i <k — 1,wehave¢p;; = ;; = ¢pgo,andfori < k — 1, we have
Yik-1 = Choadbyo - D+ + Cii—1—j#j,k—1¢(()ﬁ_1_]_l) o Flk-1-ik-1Pok-1-is

where C! stands for the binomial coefficient (Z) :

(iii) In particular, for1 < i < k — 1, if we choose ¢ ;, theny; ,_; = Cli—1¢(()ﬁ)_1_i) In

this case, we have (a)
l/J l/Jl l/)(Z) lrb(k_Z) lp(k_l)
" 21/)(1) C}%—zw(k_3) C}%_lw(k—Z)

\ " Co2p® /
"
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(k—Dk

(k—2)(k-1
(b) and there areTequatlonsm variables, namely, u; ;,1 < i < j,j < k—

1. Thus these coefficients are determlned as soon as we make an arbitrary choice of the
coefficients py g—1,..., Ug—2 k-1
We prove the statements (i) and (ii) by induction on k. These statements are valid for k =
2 as was noted. To prove their validity for an arbitrary k € N, assume them to be valid for
k — 1. Let @ and ¥} denote the ith row of & and ¥, respectively.
SUppOSG that (EOI Ell"' ) Ek) = (tOJ by, tk)(pk and (]70' ]71»'" '?k) = (YOI Vi r)/k)lluk'
Then we have

Ej = (tOl Ly, tk—l)qbli_l + tklpk,j'j < k.
Foranyi < k,we have

Vi = o Yo Ve DWh-1 + Vi
- k k-1 Kk—i
= Yo Vi Ye-1)Wi-q + ( t% 4 U1 kt1( R ,ui,kti( Dy +tk) Yy

And

~ 1 1
Vi—té)‘Hiu(l )+ +Aulll()+tll<k'

From these equations, it follows that
i k k-1 k-i
Yoo V1 Ve-1)W—1 T (t(() )+ Hl,ké Db+ :uikt( Db+ tk) Yr,i

= D o B e b FO 4T

We note that ,ui'kl/)k'iti(k 2 appears only once in this equation to conclude ¥, ; = 0,i < k.
Comparing the coefficients of ¢; on both sides of the equation, we also conclude that i, ; =
¢, i < k completing the induction step for the first statement of our claim.

Our assumption that (Z,,t;,--,tx) = (to, ty, -, t) P, and Fo, 71 Vi) = Vo Vo

Vi)W gives
k k

] i—1 1 (k— l)
z (t(‘, + ,ul,itfl ) 4 Ui 1lt( )t )l.bi,k = Z #zk(to¢01 + e+ ¢00)
i=0 i=0
< k.

A comparison of the coefficients of t(i) leads to

k— k— .
Vi = Ck¢( Vg +Cp_ ]M1k¢( A + Ug—ikPoj-iri <k

completing the proof of the second statement. For the third statement, from the equations
k-1

1 —1 1
Z (6 + mtd™ 4 o 4oyt + ) Yipes

=3
(k—1- l)
Z Uije—1(toPoi + = + tidoo) i<k-1,

setting ¢q; = 0, and comparlng the coefficients of ¢;,i > 0, we have that ¢;,_; =

Ci - 1¢§k 1-0) for some ¢; -1 € C. Putting this back in the equation given above, we
(k—2)(k— )
2

obtain coefficients. This completes the proof of the

third statement.

2
Corollary (6.2.35)[209]: Let T2, be a bounded linear operator of the form (TSO‘1 S;j).
S

Suppose that the two operators TZ ;, T2 are in B,(£2). Then the operator T2, is in By, ().
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Proof. Suppose T2 ; and T2 are defined on the Hilbert spaces H, and #;, respectively.
Elementary considerations from index theory of Fredholm operators show that the operator
T2, is Fredholm and ind(TZ2,) = ind(TZ,) + ind(T2) (cf. [191]). Therefore, to
complete the proof that T2, is in B, (£2), all we have to do is prove that the vectors in the
kernel ker(TZ , - w2 ,), w2, € 12, span the Hilbert space X = H, D H;.
Let y,_, and t, be non-vanishing holomorphic sections for the two line bundles E, and E;
corresponding to the operators T2 ; and T2, respectively. For each w2_, € £2, the operator
T2, — wZ_, is surjective. Therefore we can find a vector a,_,(wZ_,) in H, such that
(T&y — wias ,(Wiy) = —Ss_p(ts(We_p)),wi, € Q. Setting a(wi,) =
as_,(W2_,)) + ts(w2,), we see that

(T&, — wip)a(ws,) =0 = (T&,; — wi,)yso1(Wey).
Thus {y,_;(Ww2,),a(w?_,)} € ker(TZ, —w?_,) for w2_, in 2. If x is any vector
orthogonal to ker(T2, — w?2_,),wZ , € ,thenin particular it is orthogonal to the vectors
Ys—1 (Wi ) and a(wZ,), w2, € 0, forcing it to be the zero vector.
Corollary (6.2.36)[209]: Suppose T2, and T are two operators in B;({2), and S,_, is a
bounded operator intertwining T2 ; and T2, that is, T2 ;S,_, = S,_,T2. Then S,_, is non-
zero if and only if range of S,_, is dense if and only if S;_, isinjective.
Proof. Let y;_, be a holomorphic frame of Er2 . Assume that S;_, is a non-zero operator.
The intertwining relationship T2 ,S,_, = S,_,TZ implies that S;_, o y,_, is a section of
Erz . Clearly, there exists an open set £2, contained in (2 such that Ss_, o y;_, is not zero
on £2,, otherwise S has to be zero. Since S;_, (ys-2) is @ holomorphic frame of E;z on £,

it follows that the closure of the linear span of the vectors {S,_,(ys_,(W2.,)): w2, €
0.} must equal H,,. Hence the range of the operator S,_, is dense.

Corollary (6.2.37)[209]: Suppose TZ , is a bounded linear operator on a Hilbert space H,
which is in By, ;(£2). Then the following conditions are equivalent.

(i) There exist an orthogonal decomposition H, @ #; of H and operators T2, : H, —

2
Isa 55‘22 , Where
0 Ts
T2 ,,T? € Bs()and T2 ,S,_, = S,_,TZ, thatis, T2, € FB,,1(2).
(if) There exists a holomorphic frame {y;_4, ¥s} of E72  such that —— lys—r (W2 )|I? =

d
ows_;

(Vs (We_2), Vs—1(We_2)).

(iii) There exists a holomorphic frame {ys_1,¥s} of Erz ~such that Ys—1(wZ_,) and

:]'[O,TSZ: :7'[1 - :7'[1,al’ld SS—Z: }[1 - }[0 SUCh that TSZ_Z =<

9 :
— Ys—1(WZ,) — ys(wZ_,) are orthogonal for all wZ_, in £,
Ss—2

Proof. (i) == (ii): Pick any two non-vanishing holomorphic sections t,_, and t, for the line
bundles Ez and Erz respectively. Then
(T, — wits(wisy) = (T8 —wi_)ts(We_y) + Se_p (ts(W_3))
= Ss_a(ts(Wi-y).

Since T2 .,S._, = S,_,TZ, it induces a bundle map from Erz t0 Egz , SO
Se_o(ts(W2_,))) = Pp(w,)te_; (w2 ,) for some holomorphic function vy defined on 1.
Thus (Té, —wi )t (wi,) = 1/)(W5252)ts—1(ws,2—2)- Setting Vs—1(We_p) =
YW )tso (wesy) and  ys(wi,):= w, Ys—1(We—p) — ts(wi_,), we see that

Vs—1 (W), vs(Wi,)} © ker (T&, — w_,). Now assume that
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6(5_1]/5_1(W52_2) + OCS]/S(WSZ_Z) =0 (54)
for a pair of complex numbers a,_; and a,. Then
0 = (as—1ys—1(Wsz—z) + asys(wsz_z), ts(Wsz—Z»
= as(ys(wsz—z)'ts(wsz—z)> = _as”ts(Wsz—Z)llz- (55)
From equations (54) and (55), it follows that a;_; = ag = 0. Thus {ys_1, ¥} IS @
holomorphic frame of Er2 . Since (t;(wi-,), vs—1(We_3)) = 0, we see that

d
ow 5.2 ”Vs 1(W5 2)”2 <VS(WS 2) Vs— 1(Ws 2))
Ws_»
(if) &= (iii): This equivalence is evident from the definition.
(iii) == (i): Set t,(w2 ,): = Wa » Yso1(W2,) — vs(wZ,). Let H, and H; be the closed

linear span of {y,_;(w2,): w2, € 0} and {t,(w2_,): w2, € 0}, respectively. Set
Tsz—l = T52—2|}[0 »Tsz = (PS—Z)J-[l T52_2|g_[1 and S;_, = (PS—Z)}[O Tsz—zl}[l .

We see that the closed linear span of the vectors {y,_; (WZ_,), t;(W2_,) : w2, € Q}isH:
Suppose x in H is orthogonal to this set of vectors. Then clearly, x 1 y,_;(wZ_,) and x L
ts(w2_,) forall w2, in 2. Or, equivalently x L y,_; (w2 ,)and x L y,(w2,) forall w2,
in 2. Therefore x must be the 0 vector. Next, we show that the two operators T2 ; and T2
are in B;(12).

Clearly, (T2 — wZ_,) is onto. Thus index (T2 — w2_,) = dimker (T2 — wZ_,) and
2 =index (T2, — w2,) = index (T2, — w2 ,) +index (T2 — wZ.,). It follows
that dim ker(T2 — w2,) = 1lor2.

Suppose dim ker (T2 — w2 ,) = 2and {s;(wZ_,),s,(w2_,)} be a holomorphic choice of
linearly independent vectors in ker (T2 — wZ_,). Then we can find holomorphic functions
d)S' ¢s+1 defined on (2 such that SS—Z(SS(WSZ—Z)) - ¢S(W52—2)YS—1(W52—2) and

SS—Z(SS+1(W52—2)) = P51 (WE2)ys-1(W?). Setting
]75—1(W52—2) = Vs—1(Wsz—2)»

(Wi 2)Vs—1(We_p)) — ss(wiy)

75 (Wsz—z): = 3
and

)75+1(W3—2)5 6 (¢s+1(Ws 2)Vs-— 1(Ws 2)) — Ss+1(Wsz—2)»
s 2

we see that (TS, — wi,)([Fi(wisp)) = for s—1<i<s+1 If
f+sl 1 alyl(WSZ—Z) = 0, a; € C, then

w2 . ((“sgbs(wsz—z) + “s+1¢s+1(Wsz—2))Vs—1(Wsz—z)) + asss(Wi_y)
5—2

+ @ 41S541(W5p) = 0.

It follows that ags;(W2,) + ag4qSs+1 (W2 ,) = 0 since H, is orthogonal to F;. Hence
a; = a4, = 0 implying a,_; = 0. Thus we have dim ker(T2, — w2 ,) > 3. This
contradiction proves that dim ker(TZ; — w2 ,) = 1 and hence T2 is in B;(2).

To show that T2, is in B,(R2), pick any x € H,, and note that there exists z € H such
that (T, — wé,)z = xsince TS, — wg, isonto. Let 24, and 4, be the projections
of z to the subspaces H, and H;, respectively. We have [(Tsz_l—wsz_z)z}[0 +
Ss—2(Z3 )] + (TF — wi)zy, = x. Therefore (T¢ — wl )z, =0 and (TZ; —

ag_1Ys—1(WE_,) +
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Wi 2) 3B, + Ss—2(23,) = x. Since dim ker (T — wZ_,) = 1, 50 g, = csts(Wey), it
follows that
= (T&, — Wsz—z)Z}[o +Ss—2(zﬂ-[1)
= (Tsz—l - WSZ—Z)ZJ-[O + Ss_2 (Csts(Wsz—Z))
= (Tsz—l - WSZ—Z)Z}[O + Csys—l(wsz—z)

= (T&, - Wsz—z)z}[o + (T&, — Ws_ 2)(Cs Vs—1(Ws2—2))

WL,
= ((TEy — wi)@Ba, + G55 Gz Vs- 1 (Wi-2)).
s 2

Thus T2, —w?2_, is onto. We have 2 = dimker (T2, —w?Z,) = dimker (T2, —
wZ ,) + dim ker (T2 — wZ_,). Hence dim ker (T2, — wZ,) = 1 and we see that T2 ,
Isin B;(0).

Finally, since S,_,(t;(w2,)) = y,_;(W2_,), it follows that T2 ,S,_, = S,_,TZ.
Corollary (6.2.38)[209]: Let T2, be an operator in FB,.,(£). Suppose
{Vo—1, Vs {¥s—1,7s} are two frames of the vector bundle Erz , such that ys_ w2 ) L

G Vs-1WEs) = ¥s(Wip)) and 7y (W2 ) L (g Fm1 (i) = F5(wi)) for all

owz_,
W_S? 5 € _Q If d)s , = ( ¢SS ¢SS+1
¢S+1S ¢5+1S+1

{ys—ly ys}, that |S,

) Is any change of frame between {y,_;, ¥} and

Fon T = rsumsd (0 oo ),
¢)5+1S ¢5+1 s+1

then ¢sr1s = 0,ss = Psrqs41 aNd Pg 541 = Py
Proof. Define the unitary map I", as above, using the holomorphic frame y,_, = {ys_1,¥s}

The operator T2, is then unitarily equivalent to the adjoint of the multiplication operator
on the Hilbert space H - possessing a reproducing kernel (K,_,) of the form (24). Let e,
and e,., be the standard unit vectors in C2. Clearly, ((Ks-2)r)wz_,(-)es and
((Ks—2)r)wz_,(-)esyq are two linearly independent eigenvectors of M* with eigenvalue
we ,.

Similarly, corresponding to the holomorphic frame ¥,_, = {¥s_1, 7}, the square
operator T2, is unitarily equivalent to the adjoint of multiplication operator on the Hilbert
space Hy.

The reproducing kernel (K,_,)7 is again of the form (24) except that K,_; and K, must be
replaced by K,_, and K, respectively.

For i =s-1,5, set s;wi,):= (Ks-2)r)(wWep)e;, and 3F(wi,):=

2 2
(Do Lot i = (PO Goreliod) e i

holomorphic function, taking values in 2 x 2 matrices, such that
(Bso1(Wi_2),3:(Wip)) = (Ss—1(Ws2—2)'Ss(Ws,Z—z))¢s—2 (wiy).
This implies that

§s—1(Wsz—2) = 51 5—1(W52—2)Ss—1(W52—2) + ¢SS—1(W52—2)SS(W52—2) (56)
and

_ Ss(wi—p) = _¢s—1 s(V_Vsz—z)Ss—l(Wsz—z) + ¢ss(_Ws2—2)Ss(Ws2—2)- (57)
From Equation (56), equating the first and the second coordinates separately, we have
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(Es—1)Ws2—2(')
:¢s—1s—1(W52—2)(Ks—1)ws () + dss- 1(Ws 2) _2 (Ks 1) 2 () (58)
and
0 -
&(Ks—l) 2 ()

0
= ¢s_15-1 (Wi 2) (Ks 1)Ws 2()+¢ss 1 (wi 2)6

37 Ko, 0

+¢5 5—1(W5—2)(Ks)ws_2( ) (59)

From these two equations we get

¢s 1s— 1(Ws 2) (Ks 1)wS 2()+¢ss 1(Ws 2)

2

2

0z0W2

Ps—15-1(We_ z) (Ks Dwz_, () + dss_1 (W) :
+ ¢SS—1(W5—2)(KS)WS_2( ),

which implies that ¢, ,_; = 0. Finally, from Equation (57), we have

(Ks-1wz () =

KS w
aa_szz( 1)52()

a—s Z(Ks 1) 2 ()

d
= 1 s(Wip) (Ks- 1)Ws 2() + s (Wi2) s—5— w2 (K- 1)Ws 2() (60)
s—2
The Equations (57) and (60) together give
GBs—15 = Ps—15-1 and ¢s_15_1 = P
completing the proof.
Corollary (6.2.39)[209]: Let T2, , T2, € FB,,,(£2) be two operators of the form

TZ _ T2, S,
=1 5 2 ) and (STt TS0% | with respect to the decomposition H = H, @ H; and
0 T, 0 T2
~ ~ ~ ) U U
H = H, D H,, respectively. Let U,_, = (U s$ U ss+l
. Ss+1s Ss+1s+1
be a unitary operator such that
( Uss Us s+1 ) Tsz—l 55—2 — Tsz—l SS—Z ( Uss Us s+1 )
Ust1s Ust1s+1 0 T 0 T2 ) \Ust1s Ustis+1/
then Ugsyy = Usprs = 0. _
Proof. Let {y,_1,vs} and {¥,_ 1,)75} be holomorphic frames of ETz and Ezz  respectively

): Hy ® H, - H, ®H;

with the property that y,_; L ( Ys—1 — Vs) and y¢_4 L( Veu1 — V5). Set t, :

S 2 S 2
= (aW Vs—1 = ¥s)and&s := (53— ¥s—1 — ¥s)- Since Us_, intertwines T2 , and T ,,
s—2
it follows that {US 2¥s—1,Us_2¥s} 1S a second holomorphic frame of E72  with the property
Us—2Vs-1 L ( (Us 2¥s-1) — Us—2¥s) = Us_»(ts). By Corollary (6.2.38), we have

that
Us—2(¥s=1) = ¢Ps—2Vs-1 (61)

Us—2(¥s) = Ps—2¥s-1 + Ps_2¥s. (62)
From equations (61) and (62), we get

And
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Us—2(ts) = ¢s—2£s- (63)

From equations (61) and (63), it follows that U,_, maps H, to H, and H; to H;. Thus U,_,
is a block diagonal from H, @ H; onto H, @ H;.
Corollary (6.2.40)[209]: Fori = s — 1, s, let T be any two operators in B;(£2). Let S,_,
and S,_, be bounded linear operators such that T2 ,S,_, = S,_,T2 and T2 ,S,_, =
8 T2, S
ST T2 =571 "s°2
s—2%s < 0 TZ
to T2, ifand only if S;_, = e <_ for some real number 6,._,.
Proof. Suppose that U,_,T2 , = T2 ,U,_, for some unitary operator U,_,. We have just

5 <

) and T2, = <T50‘1 S; 2) then T2 , is unitarily equivalent
S

195 2

. U
shown that such an operator U,_, must be diagonal, say U,_, = ( 55 U ) Hence
S+1s+1
we have
UssTsz—l = T52—1Uss; Usiq s+1Ts2 = Ts2 Ust1s5+1 UssSs—2 = Ss_2Usiq 541 (64)

Since U, Is unitary, the first of the equations (64) implies that
Uss € {Tsz 1 Tsz*l} = {W e L(I,) : WT52 1= T52 1W and WTsz*l = TSZ*1W}
Since T2 , is an irreducible operator, we conclude that Uy, = e‘es 513, for some 6 € R.

Similarly, Ug;q 41 = esleszﬂl}[ for some 6.,,; € R. Hence the third equation in (64)

implies that $;_, = e/ % %+)g

Conversely suppose that S;_, = eles 2S,_, for some real number 6,_,. Then evidently the
0s_
exp ( . )I}[O 0 _ _
operator U_, := , IS unitary on H =H, @ H;
0 exp (—l . )I}[1

and Us_,T¢ , = T, Us_,.
2 Tsz—l SS—Z T2 Tsz—l '§s—2
Corollary (6.2.41)[209]: Suppose that TZ, = 0 72 and ¢, = 0 72
S
are any two operators in FB,,;(22). Then the operators T2, and T2, are unitarily

2
equivalentifand only if K> = K72 (or, Kr2 = K72 ) and ”SSli(lTj)" ”SSHE(J‘;)” , Where

t, and £, are non-vanishing holomorphic sections for the vector bundles Erz and Ezz,
respectively.

Proof. On a small open subset of 2, we can assume that S,_,(t,) and S,_, (%) are
holomorphic frames of the bundle E;z and Ezz , respectively. First suppose that

— _ ~ 2 N rd 2
3010g||Ss—2(t)II? = 38 log ||Ss—(ts)||” and L= 2(c) = B2 hen \we claim that

lles 12 llEslI?
T2, and T2, are unitarily equwalent The equality of the curvatures, namely,
39 log |ISs_2 ()12 = 30 log ||Se_o &)’ implies that 1S5z (NI =

|¢>s_2|2||5~s_2(%s)||2 for some non-vanishing holomorphic function ¢,_, on Q. It may be
that we have to shrink, without loss of generality, to a smaller open set £2,. The second of
our assumptions gives [Itll* = [ps_2 I 1. Let Vs-1(Wi—2) = Ss_p(ts(Ws_)) and

Vsoa(Wi—p): = Ss z(t (we_ 2)) Ys(We_p):= Vs 1(Weop) — ts(Wiy) and

FsWe )i = ——— Vso1 (W) — Es(wéy). It fOHOWS that {ys_1,¥s} and {¥s_q,7s} are

aws_
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holomorphic frames of E2 and Ezz , respectively. Define the map @ : Erz  — Ejz
as follows:
(I) ¢(V5_1(W3_2)) - ¢s—2(W52—2)]75—1(W52—2)’

(i) D(vs(We_2)) = sy (W )Vso1(Wi—p) + Ps_a(We_2)7s(Wey).
Clearly, @ is holomorphic. Note that

(D (Ys-1(We-2)), @(rs(Wi-2)))
= (¢s—2(Wsz—2)]75—1(Wsz—z) $s—2 (Wsz—z)75—1(Wsz—2) + ¢s—2 (Wsz—z)?s(Wsz—zn

= (P52 W) Vso1 (W), s s (WE ) Ts—a(WE_p) + Ps_p (W) (—5— Ts—1(W2-3)
—t (WS—Z))>
= (Pps- Z(Ws 2)¥s— 1(Ws 2) (¢s- Z(Ws 2)¥s- 1(Ws 2)) — ¢S—Z(WSZ—Z)ES(WSZ—2))

s 2

6
- W lps—2 (W 2)7s—1 (Wi )II?

S_

a 2
= 6w52 ] ”Vs 1(Ws 2)”

2
asZ

and

(Vsm1 W), ¥s(We—3)) = (VsoaWep),m—5— Vo1 (Wesp) — ts(Wiy))

o,
I WE DI
- aV_VSZ_Z Vs—1\Ws_> '
Hence we have (P (¥s—1(Wiz)), P(rs(Wi-2))) = (¥s1(Wi—y), ¥vs(wi_p)). Similarly,
1P (s_1 Wi DIl = llyso Wi and @)l = llvsll. Thus Erz, and Ezz, are
equivalent as holomorphic Hermitian vector bundles. Hence T2 , and T2 , are unitarily
equivalent by Theorem (6 2.2) of Cowen and Douglas.

Conversely, suppose T2, and T2, are unitarily equivalent. Let U,_, : H — H be the
unitary map such that TSZ_2 = TSZ_ZUS_2 . By Corollary (6.2.39), U,_, takes the form
U, 0
(0 v,,,) for e

Us(Ss—2(ts)) = Ps(Ss—2(Es)) and Us+1ts = Pspaks
The intertwining relation UgS;_, = Ss_,Usyq implies that ¢s = ¢syq. Thus Kz =
:]CTSZ—l and

) for some pair of unitary operators U, and U,,,. Hence we have

”Ss—z(ts)llz _ ”US(SS—Z(ts))”Z _ ”qbsgs—z(fs)nz _ ”5‘5—2(%5)”2

. o . ”tsllz ||Us+1(ts)”2 ||¢s+1fs”2 “Es”2
This verification completes the proof.

Corollary (6.2.42)[209]: Let T2, be an operator in F B, (D) and let t, be a non-vanishing
holomorphic section of the bundle E; corresponding to the operator T2. For any ¢ in Mdb,
set tg, = t;o @' The operator T2, is homogeneous if and only if T2, T2 are

homogeneous and% (o™ P28 for il o in Mob.
tse

Proof. Using the intertwining property in the class FB,.,,(D), we see that
(p( 2) <(p(TSZ—1) SS—Z(p,(T52)>.
0 o(T)
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Suppose that T2, is homogeneous, that is, T2, is unitarily equivalent to ¢ (TZ2.,) for ¢ in
Mab. From Corollary (6.2.41), it follows that T2 ; is unitarily equivalent to ¢ (T2 ,), T2 is
unitarily equivalent to ¢ (T2) and

1520’ T2 (L, @WZD)”  [1Ss2(ts W2 )|’

” ts,p (Wg 2)” - lIts(we_ )12 (6)
Now, we have
2 2
Se-2 9 (T (Lo WD) [|Se20' (072 WD) (tp W2 ) |
les.p W2 [£5,6 (W 2)”2
|§0 (90 1(Ws 2))| s 2( s<p(Ws 2))”
I s<p( 2|
™Y WD |85 (650 w2 ||
= (66)
”tscp( DI
From equations (65) and (66), it follows that
2
Ss— ts 52 2 ?
G| A S C ()] (67)

It W2DI°F les(wZ )12

Conversely suppose that Tsz_l, T2 are homogeneous operators and

2
Ss-2 (tsp W) ) ) G I’
= (™))" W)l >
5.0 W2)| e w2
for all ¢ in M6b. From equations (66), (67) and Corollary (6.2.41), it follows that T2, is a
homogeneous operator. We have (see [190]).
Corollary (6.2.43)[209]: An operator T2, in FB,.,, (D) is homogeneous if and only if
(i) T2, and T2 are homogeneous operators;
(i) Kpz(wep) = Hpz (Wiy) + Kp: ,(Wiy), wi_, €D, where Bs_, is the forward
Bergman shift;
(iii) So_,(ts(W2))) = a,_,ys_1(w2,) for some positive real number a,_, and
lts W2 DI? = ———5 IV ss WEDI? = ——— .
(1 lwi- 2|2) (1 lwi- 2|2)
Proof. Suppose T2, is a homogeneous operator. Then Corollary (6.2.42) shows that T2 ;
and TZ are homogeneous operators. We may therefore find non-vanishing holomorphic
sections y,_, and t; of E, and E;, respectively, such that |ly,_,(wZ,)||? =
(1 — |wZ, 1)~ and |lt,(W2_ )| = (1 — |[w2_,|%)~** for some positive real A2 and p2.
For ¢ in Méb, sety,_y, = ys—q o9 tandts, = tso @~ . Clearly, ||ys_1,<p(w52_2)||2 =

(@™ W2 llysma WEDI? and e, (W2 )| = 16071 W2 )1 I (w2112,
Let S, (ts(W2_,)) = YW ,)y._1(wZ,) for some holomorphic function iy on D. We
have 55—2(t5,<p (We2)) = Ss_a(ts(@™ ' (Wip))) = 1/J(<P_1(Wsz—2))ys—1(‘P_l(WsZ—z)) =
1/)(<P_1(Wsz—2))]’s—1,<p (wg_) and
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Soca (1o w20) |

H&Auwﬁmz

-1 2
T R R YT )
Combining these we see that
2 2
Ss—2 (tsq)(Wsz 2))” _ |l/J((p_1(W2_2))|2 ||(Vs—1<p( szz))”
les.p 2D les.p W2
= [pp )10 )1 ”%;—gf;s-;ﬁlz” (69)
N s—2
From the equations (68) and (69), we get
Y (we_,)I? |(<P_1) (we- 2)|'1 ¥2-ut = = [P~ 'wi )| (70)
Pick ¢ = ¢, where ¢, (w2,) = Wi 2 = and put w2, = 0 in the equation (70). Then
|¢(0)| (1= YR = [yl (71)

If ¥(0) = 0 then equation (71) implies that ¥y(u) = 0 for all u € D, which makes
S._, = 0 leading to a contradiction. Thus ¥(0) # 0. Taking log and differentiating both
sides of the equation (71), we see that

2

(A2 + 2 — u? auaalog(l — ul®) = 0.
Hence we conclude that u? = A% + 2. Putting u? = A2 + 2 in the equation (71) we find

that i must be a constant function. Hence there is a constant a,_, such that
Ss—Z(ts(Ws 2)) = Os—2Vs- 1(Ws 2) for a”Ws 2 € 0. Fina”y’
Krz(We_;) = 00 logllts(wi,)II* = 90 log(l — w2, [H)7+
= 00 1log(1 — w2 |~
= 90log(1 — [w2_,|)™ + 30 log(1 — [wZ_,|*)™
= 00log llys—1 (WZ)II* + 00 log(1 — [wZ_,|?)72
= 76T2 (wi—p) + Kp:_ Z(Wsz 2)-

Conversely, suppose that conditions (|) (i1) and (iii) are met. We need to show that T2, is

a homogeneous operator. Condition (ii) is equivalent to u?> = A% + 2. By Corollary
(6.2.42), it is sufficient to show that

552 (120 ) | = oy e BB
TRk T el

However, we have
o2 (o) W (G )|
R R TR
= lag_,2I(p™) W)W [

llts (W) 2
— 2 =1\ (14,2 2 “(VS 1(W52 2))”2
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2
_ 1N (2 V|2 ”SS—Z(ts(WSZ—Z))”
= (™) (ws_,)| RV
llEs (W)l
Corollary (6.2.44)[209]: Suppose T2, is in B;(2) and X is a quasi-nilpotent operator such
that T2 ,X = XT2,.ThenX = 0.
Proof. Let y_, be a non-vanishing holomorphic section for E2 . Since T ,X = XTZ,,
we see that X(ys—») is also a holomorphic section of E;2 . Hence X(ys_,(W2_))) =
D (W2 ,)y._o(W2_,) for some holomorphic function ¢,_, defined on Q. Clearly,
X" (Vs—2(Wi—3)) = ps_a(We_2)"vs—2(Wi_;). Now, we have
|52 (WD V52 WD = lps—a W) Voo WD = [IX" Fs—2 (WD)
< IX™Hlys—2 W)
Thus, for n €N and w2, € 2, we have |p,_,(W2,)| < |IX™|*/™ implying
P, (W) = 0,w2, € 2.Hence X = 0.
Corollary (6.2.45)[209]: Any operator T2, in FB¢,,(R) is irreducible. Also, if T2, =
TZ I _ . .
s=t ], thenitis strongly irreducible.
0 T,
Proof. Let P, = (Psyi_q s+j_1)2X2 be a projection in the commutant {T2 ,}" of the
operator T2_,, that is,

< Pss Pgsi1 ><T52—1 55—2) _ (Tsz—1 55—2)( Pss Pgsi1 )
Psi1s  Psyis+1 0 T2 0 T2 Psi1s  Psyis+1/
This equality implies that PTZ, = T2 Pi + Se_3Pci1 6 PssSs_p + Psoi1TE =
Té 1Psse1 + Ss—2Pssiser PssrsTénr = TéPoprs  and  PoyqoSop + Poyq T4
T¢ Py 541- NOw

(Pss16S5-2)T¢ = Pop15(Ss-2T8) = Poyq s(Té1Ss-2) = (Pos1sTé-1)Ss—2

= T¢(Psy15S5-2)-

Thus Py, qSs_, € ker oz . Also note that

Psi1555-2 = T52P5+1s+1 - Ps+15+1T52 - UTSZ(PS+1S+1)-
Hence Psyq5Ss—, € ranaorz N Kerarz . Thus from Corollary (6.2.44) and Theorem
(6.2.20), it follows that P, ; ;S._, = 0. The operator P,,, ¢ must be 0 since S,_, has dense
range.

To prove the first statement, we may assume that the operator P_, is self-adjoint and
conclude P, .., is 0 as well. Since both the operators T2 ; and T2 are irreducible and the
projection P,_, is diagonal, it follows that T2, must be irreducible.

For the proof of the second statement, note that if P,_, is an idempotent of the form

(PSS PSS+1

0 Ps+1 s+1
P4 11 Must also commute with T2, which is strongly irreducible, hence P, = 0 or I

and Py, ;441 = 0orI. By using Theorem (6.2.20), we see that if P,_, = (I Ps 5“) or

0 0
0 P . T2, 1
P,_, = (0 5;“) , then P,_, does not commute with ( 50 2 ) . Thus P,_, =

s—1

) , both P, and P, ¢,; must be idempotents. By our hypothesis, P, and

I Pss+1 — 0 Pss+1 i i 2 —
(O ] ) or P,_, = (0 0 ) . Now, using the equation P:, = P,_,, we

conclude that P, ;,; must be zero. Thus P,_, = I orP,_, = O.
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We now give a sufficient condition for a square operator T2, in FB,,({2) to be strongly
irreducible (see [190]).

2
Corollary (6.2.46)[209]: Let T2, = (Tso‘l S;f) be an operator in FB,,,(2). If the
S
operator S,_, is invertible, then the operator T2 , is strongly irreducible.

0 ). . )
0 55—2) IS invertible. Now

I 0 \(T%, S._,\/I 0\1
2 -1 _ s—1 s—2
XX = (g Ss_2>< 0 T52><0 50)
(T, I
- 0 SS—ZTSZSS_—12

_ Tsz—l I
0 T&y)

Thus T2, is similar to a strongly irreducible operator and consequently it is strongly

irreducible.

We conclude with a characterization of strong irreducibility in B, () (see [190]).

Tsz—l SS—Z
0 T2

Proof. By our hypothesis, the operator X = (1

Corollary (6.2.47)[209]: An operator T2, = < in FBy,1(£2) is strongly

irreducible if and only if S;_, € ran o7z 2.
Proof. Let P,_, be an idempotent in the commutant {T2_,}’ of the operator T2 ,. The proof

. P, P
of the Corollary (6.2.45) shows that P,_, must be upper triangular: ( o3 s s+l ) . The
0 Poiis+1

commutation relation P,_,T2, =T2,P,_, gives us P, T2, = T2 P, Pei1s41TZ =
T¢ Psy1 541 and

PssSs—2 = Ss—2Ps41541 = T52—1PSS+1 — Py TS (72)
Since Piyq;41 € {T?}Y for s — 1 <i < s, it follows that P;; can be either I or 0. If either
Pss = T'and Psy1541 = 0 Or g = 0 and Pgyy541 = I, then S;_, is in ran o7z 12

P ; i I Ps s+1 0 Ps s+1 i
contradicting our assumption. Thus P,_, is of the form (0 ] ) or (0 0 ) . Since

P,_, is an idempotent operator, we must have P,,,; = 0. Hence TZ, is strongly
irreducible.
Assume that the operator Ss_, isinran gz 2. In this case, we show that T2, cannot be

strongly irreducible completing the proof. Since S;_, € ranorz r2 , we can find an
operator P, ¢, such that

Ss—2 = O-Tsz_l,TSZ(Pss+1) = Tsz—lpss+1 — Py TS. (73)
The operator P,_, = ((I) PSS“) IS an idempotent operator. We have
(I Posr)(Too1 Soo2) (T Sez+ Posuald) (74)
0 0 s—1 T 0 0
and
T52—1 Ss—2 I Pss+1 — (T52—1 Tsz—lpss+1)
< 0 T2 (0 0 )_ 0 0 ' (73)

From these equations, we have P,_,T2 , = T2 ,P,_, proving that the operator T2, is not
strongly irreducible.
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Corollary (6.2.48)[209]: Let X be an invertible operator that intertwines two operators in
FBoma(R). Set ¥ = X1 0f x=((x,)) v =((v;)) are the block

nxn nxn
decompositions of the two operators X and Y, then X;,_; ;= 0,s —1< j <s+n — 3,

andY,_;;=0s—-1<j <s+n -3
Proof. Consider the three possibilities:

(@ Xp-1;=0s—-1<j<s+n-3,buty,;;#0forsomes—1<j <s+n —

3.
0Y,_1; =0s—-1<j <s+n—-3,X,_,;#0forsomes—1<j <s+n-3.
() Xp—1,j #0forsomes —1< j <s+n —3andY,_,, # 0forsomes —1< k <
s+n-—3.
In each of these cases, we arrive at a contradiction proving the Lemma.
Case 1: Choose [ to be the smallest index such that Y,,_, ; # 0, thatis, ¥;,_;; = 0 for s —
1< i <s+1-2butY, ,;#0. For this index [, the intertwining relation T2,Y =
Y T2, implies T&,_2Yn_1; = Yu_q,T7. Since Y,_,; # 0, it follows from Corollary
(6.2.36) that Y,_;, has dense range. From XY = I, we get X,,_;,_1Y,—4;, = 0 and
Xn-1n-1Yn-1n-1 = I.Since Y,,_; ; has dense range and X;,_; ,—1Y,—1; = 0, we conclude
that X;,_1 ,—1 = 0. This contradicts the identity: X, _1 ,_1Y—10-1 = .
Case 2: The contradiction in this case is arrived at exactly in the same manner as in the first
case after interchanging the roles of X and Y.
Case 3: Pick j, [ to be the smallest indices such that X,,_; ; # 0 and ¥;,_,; # 0. We have
that T2, = T2 ,X . Consequently,
X1 ;T = T Xno1,jy Xno1;Sjja1 + Xncrju1 T = Te1Xno1,j+1- (76)
Since T¢Skrs1 = Skxs1Tirr for k = s,s,s +1,-,s +n — 2, multiplying the second
equation in (76) by Sj,q 42 ** Sp—2n-1, and replacing Tji15j+1,]-+2 o+ Sp_an—1 With
Si+1,j+2 =" Sn—2n-1Tn-1, We have
Xn-1;Sij+1 " Sn-zn-1+ Xn-1j+1Si+1,j+2 = Snz2n-1Tr—1

_ = Tr%—an—l,j+1Sj+1,j+2 Sn—z,n—l- (77)
We also have T2,Y = Y TZ,, which gives us
T;f—1Yn—1,l - Yn—l,lle' (78)

Now, multiply both sides of the equation (77) by Y,_,;, using the commutation
T?_ Yu_1; = Y,_q,;T7?, then again multiplying both sides of the resulting equation by
Sii+1  Sn_2n—1 and finally using the commutation relations T2S) x11 = Sk xs1Tié41, S —
1< k <s+n —2,wehave

Xn—l,ij,j+1 Sn—z,n—lyn—l,lS:l,Hl ?n—z,n—l

2
+ Xn_1,j+15j+1 " Sn—zn—1Yn-1,150141  Sn-2n-1Tn-1

2 ~
- Tn—1Xn—1,j+1Sj+1,j+2 Sn—2,n—1Yn—1,lSI,l+1 Sn—Z,n—l- (79)

~

Therefore, we see that
Xn—l,ij,j+1Sj+1,j+2 Sn—Z,n—lyn—l,lsl,Hl 5n—2,n—1
Is in the range of the operator or2 - Indeed it is also in the kernel of Grz @S Is evident
from the following string of equalities:
Xn—l,ij,j+1Sj+1,j+2 Sn—Z,n—lyn—l,lgl,Hl gn—z,n—lTrf—l
= Xn—l,ij,j+1Sj+1,j+2 5n—2,n—1Yn—1,lT12§l,l+1 gn—z,n—l
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— 2 C C
- n—1,ij,j+1Sj+1,j+2 Sn—z,n—lTn—lyn—l,lSl,Hl Sn—2,n—1
_ 2 G G
- n—1,jTj Sj,j+1Sj+1,j+2 Sn—Z,n—lyn—l,lSl,Hl Sn—2,n—1

= 2
- Tn—an—l,ij,j+1Sj+1,j+2 Sn—Z,n—lyn—l,lSl,Hl Sn—2,n—1-

Thus
Xn-1jSjj+155+1,j+2 * Sn—2n-1Yn-1151141 " Sn—2n-1 € Kerozz_ N ranogzz_ .
Consequently, using Corollary (6.2.44) and Theorem 2.19, we conclude that
Xn—l,ij,j+1Sj+1,j+2 Sn—Z,n—lyn—l,lSl,Hl Sn—2,n—1 = 0.
By hypothesis, all the operators Sy x41,Skis1,k = s—1,s,,s +n —3 have dense
range. Since Y,,_;; # 0, then equation (78) and Corollary (6.2.36) ensure that Y,,_; has
dense range. Hence X,,_; ; = 0. This contradicts the assumption X;,_, ; # 0.
The following proposition is the first step in the proof of the rigidity theorem (see [190]).
Corollary (6.2.49)[209]: If X is an invertible operator intertwining two operators T2, and
T2, from FBg,,_1(£2), then X and X~ are upper triangular.
Proof. The proof is by induction on n. The validity of the case n = s + 1, is immediate
from Corollary (6.2.48). Let us write the two operators T2 ,, T2 , in the form of 2 x 2
block matrix:
T2  — Tr%—lxn—l Tr%—lxs F2 Trf—lxn—l ~T‘r%—1><s .
572 0 Tii..) 77 0 Tiiua
Using Corollary (6.2.48), the operators X,Y can be written in the form of 2 X 2 block
matrix:
Y = (Xn—lxn—l Xn-1x1 ) Y = (Yn—lxn—l Yn-1x1 )
0 Xn—l,n—l ’ 0 Yn—l,n—l

without loss of generality. Here X,_ixn-1 and Y,_,x,—, are the operators
s+n-3 s+n-3

((Xi'f))i,,-zs_ , and ((Yi,,-))i’jzs_1 respectively and
Té1 Ss—is Ssoiser Ss—1,n-2
2 0 T‘S2 SS,S+1 h 55,7:1—2
Ti-1xn-1 = : : ’
\ 0o - 0 TZ, Su-3n— /
0o S T
Tsz—l S~S—1’s 55—1,54‘1 S{—l,n—z
712 0 7"'52 gs,s+1 Ssn-2
Tn—1><n—1 = )
0 0 Trf_g Sn—3,n—2
0 . 0 TY%_Z

From the relations XT2,=T2,X, T2, Y=YT2, and XY =YX =1, we get
Xn—ixn-1Tn—1xn-1 = Tr-1xn-1Xn-1xn-1 Tn-1xn-1Yn-1xn-1 = Yn-1xn-1Tr-1xn—1 and
Xn-1xn-1Yn-1xn-1 = Yn-1xn-1Xn-1xn-1 = [.

Now, to complete the proof by induction, we assume that any invertible operator X
intertwining two operators T2 ,, T2, in FBg,,_,(R) is upper triangular along with its
inverse for all k < n. Thus the induction hypothesis guarantees that X,,_; xn—1 and Y, _ 1 xn—1

must be upper triangular completing the proof.
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Corollary (6.2.50)[209]: Suppose T2, isin FB,,,,_; (£2) and X is a bounded linear operator
in the commutant of T2_,. Then X is upper triangular.
Proof. The proof is by induction n. To begin the induction, for n = 2, following the
method of the proof in Corollary (6.2.45), we see that an operator commute with an operator
in FBg,1(£2) must be upper triangular. Now, assume that any operator commute with an
operator in FBg,_1(£2) is upper triangular for all k < n.
Step 1: We claimthat X,,_;; = Ofors —1 < i <s+n — 3. Suppose on contrary this is
nottrue. Thenletl,s < | < s+ n — 3, be the smallest index such that X,,_, ; # 0. For this
index [, the commuting relation XT2 , = T2 ,X implies that

l

2 _ m2 2
Xn—l,lTl - n—1Xn—1,l and z Xn—l,ksk,l+1 +Xn—1,i+1Tl+1

= Trg—lxn—l,Hl- (80)
From equation (80), we have
Xn-11511+1512 .Sn-2n-1 € keropz

Xn-11511+1512 . Sn-27n-1 = O-Tr%_l(Xn—l,l+1Sl+1,l+2: Sn—Z,n—l)-
Therefore X;,_1;S11+1S1+1,042 - - - Sn—2n-118INTAN 072 N ker o2 .Combining Corollary
(6.2.36) with Corollary (6.2.44) and Theorem (6.2.20), we conclude that X;,_,; # 0. This
contradicts the assumption X;,_;; # 0.
Step 2: Write
¥ = <Xn—1><n—1 Xn-1x1 )
0 Xn—l,n—l
And
T2 — (Tr%—lxn—l Tr%—lxl )
2 0 Ti1n-1)
where meaning of X,,_;,,—; and T,2_,,.,,_, are same as in Corollary (6.2.49). It follows from
the commuting relation XT2 , = TZ,X that
Xn—lxn—lTnz—lxn—l = Tr%—lxn—lxn—lxn—l-
Now, the induction hypothesis guarantees that X,,_;xn,—; Mmust be upper triangular
completing the proof.
Corollary (6.2.51)[209]: (Rigidity). Any two operators T2 , and T2, in FBg,,_1({2) are
unitarily equivalent if and only if there exist unitary operators U;,s —1 <i<s+n — 2,
such that U;T? = T?U;and U;S;; = S;;U; i < j.
Proof. Clearly, it is enough to prove the necessary part of this statement. Let U be a unitary
operator such that T2, = T2 ,U,_, . By Corollary (6.2.49), both U,_, and U:_, = U7,
must be upper triangular that IS,

(@) Us_, = ((UU)) U;; = 0 whenever i > j;

(b) Us_, = (( )) ,Uj; = 0wheneveri > j.

It follows that the operator U,_, must be diagonal.
Corollary (6.2.52)[209]: Suppose T2, is an operator in FBq,,_,(2) and t¢,,,_, is a non-
vanishing holomorphic section of Ezz_ . Then

(i) the curvature Xrz
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.- ti_ .
(ll) ”"l—llllll where ti—1 = Si_l’i(ti),s <i<s+n-2,

(|||)(S‘|’|Eﬁz il fors—1<i<j<s+n-3withj —i >s+1

are a complete set of unitary invariants for the operator T2 ,.

Proof. Suppose T2 ,, T2 , are in FBg,,_1(£2) and that there is a unitary U,_, such that

TSZ_2 = T2 ,U,_,. Such an intertwining unitary must be diagonal, that is, U;_, = U,_; @
@ Ugy,_,, for some choice of n unitary operators U_4, ... ' Usin—a.

Smc,eUT2 = TfU;,s—1<i<s+n —2,andU;S;;41 =S;i41Uis1,s—1< i <s+

n — 3, we have

Ui(ti(Wsz—Z)) = s, (W2 )t (W2,),s—1<i<s+n —3, (81)
where ¢,_, IS some non-zero holomorphic function. Thus
lti—all — 1It]] .
Krz =Kzz and s<i<s+n —2.
nt nt Il IEI

Fors—1<i<j<s+n—-3withj —i > s+1landw?, € 2, we have

S (020). w2 _ (50 (52-0)) ) Uit

Il ez )
(Si (Uj (tj(Wsz—Z))> Ui (6 (w2sy)))
[ACIC=)] ¥
i (952 W2 DEWED), s 2 (WEEWE ) (Sy (w2 2>) E(w2-))
lps—a (WEDEWZ)I RS

Conversely assume that TZ_2 and T2_2 are operators in TB5+n_1(!2) for which these
invariants are the same. Equality of the two curvature X2 = X2 together with the

t t; : i i
Wil _ Ml '¢ < i < s+n — 2 implies that
IE—all 1l

there exists a non-zero holomorphic function ¢._, defined on 2 (if necessary, one may
choose a domain 2, < 1 such that ¢p_, is non-zero on £2,) such that
lt;(wi_)Il = |¢s—2(Wsz—2)|||fi(Wsz—2)[L; s—-1<i<s+n -2
Fors—1 < i <s+n —2,defineU; : H; — H; by the formula
Ui(ti(Wsz—z)) = s (Wi, )t (We,), wi, € 0,
and extend to the linear span of these vectors. Fors —1 < i <s+n — 2,

NU; (t; (W DN = Nps—a W) E (WDl = |ds—a W DIE W)l = llt;(w_ ).
Thus U; extend to an isometry from #; to H;. Since U; is isometric and U;,T? = T?U;, it
follows, using Corollary (6.2.36), that each U; is unitary. It is easy to see that U;S; 4, =
Sii+1Uisn fors—1<iSs+n—3aIso. Fors—1<i<j<s+n —-3withj —i >
s+1landw?, € 0,

(Ui (81,1t Wi-2))), Ui (& 2(Ws?_z))) = (S, (W), ti(wiy))
ti . . .
H (Si (& (we)), Ei(wéoy))
= |¢s—2(Wsz—2)|2<S~i,j(fj(wsz—2))'Ei(wsz—z)>
= (¢Ps—2 (Wsz—z)gi,j(fj(wsz—z))»¢s—2(Wsz—2)fi(Wsz—2))
= (Si,j(¢s—2(Ws2—2)fj(Wsz—2))'¢s—2(Ws2—2)Ei(Wsz—2)>
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= (S (U; (t; (WD), U (t:(WE_,))).
Polarizing the real analytic functions (U;(S;;(t;(wi—2))), U;(t;(wi_,))) and
(S; j(U; (t(W2_2))), Ui (t;(w2_3))) to functions which are holomorphic in the first and anti-
holomorphic in the second variable, we obtain the equality:
(Ui (S (t(2))), Ui (t;(Wwi-2))) = (S;,;(U;(t(2)), Ui (t:(w-2))), 5, wi, € Q.
Henceforwinands—-1<i < j <s+n —3withj — i > s+ 1, we have
Ui (Si,;(t;(w2_))) = Si (Ui (t(wéy)))
which implies that
UiSi,j == Sl,]U] .
Now, setting U;_, = Us_; D@D Ugyp_p, We see that Us_, is unitary and U,_,TZ, =
T2 ,U,_, completing the proof.
Corollary (6.2.53)[209]: If an operator T2, is in FB,.,_,(2), then it is irreducible.
Proof. Let P,_, be a projection in the commutant {T2_,}' of the operator T2 ,. The operator
P._, must therefore be upper triangular by Corollary (6.2.50). It is also a Hermitian
idempotent and therefore must be diagonal with projections P;,s —1 < i <s+n — 2,
on the diagonal. We are assuming that P,_,TZ , = TZ ,P,_,, which gives
PySii+1 = Sii+1Piv1ivs—1 =1 <s+n =3
None of the operators S;;,1,s —1 < i <s+n — 3, are zero by hypothesis. It follows
that P; = 0, if and only if P,.;;.; = 0. Thus, for any projections P;; € {T?} , we have
only two possibilities:
Ps_15-1 = Pss = Psy1541 = = Ppoqn1 =[0I Ps_q5 1 = Bs = Psyq 541 =
= Psyn-254n-2 = 0.
Hence T2, is irreducible.
Corollary (6.2.54)[209]: The following are equivalent.

) J.(fD) = Ju(HTu(9)-
()@ +1-J = Dipr1ju = tpr1-jusrtisrp 1 slsp-21<j<p-I+1

—1 . .

(iii) gy 1y = (?Z_l_) ol <pli<ki<l<p.

Proof. All the implications of the corollary are easy to verify except for one, which we
verify here. For1 < i,j < kandi <j note that

ai—j—l al
(Ju(f)(z)(?y(g)(z) z .ul]+l.u]+l] (a i—j— lf(Z)><a lg(Z))
i) ) ai—j—l al
z (i1 )m,(a - lf(Z))(a—Zlg(Z)>
_ b Ll l al ai—j
= Z (271 (azl_,_lf(Z)> (a—zl g(z)) = 1) 55 (D@

l=s-1

= (1.09@),

Fori > j,
(1.N@3@@), = (LF9@), = o

Hence we have

Ju(fg) =J,.(F)Iu(g).
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For x in C¥, and f in the polynomial ring P,_,[z], define the module action as follows:
fx=d.(Hwi)x

Suppose T2, : M — M is an operator in B;(£2). Assume that the operator T2, has been

realized as the adjoint of a multiplication operator acting on a Hilbert space of functions

possessing a reproducing kernel K._,. Then the polynomial ring acts on the Hilbert space

M naturally by point-wise multiplication making it a module. We construct a module of k-

jets by setting
k-1
M = { >

l=5-1
where €;,,,s —1 < i <s+ k — 2, are the standard basis vectors in C*. There is a natural
module action on JM, namely,

k-1 , k-1 ,
Gk L
(f, z azih> HJ(f)< 2 Py h ®ei+1>,f € P,_,[z],h €M,
1 l=s-1

l=s—

al

Where
i—1\ 4 ; e .
J(f)i,j={(/—1)"’ ifoifi >,

0 otherwise.
The module tensor product JM & 40 Cfvg_z is easily identified with the quotient module

N+, where N € M is the sub-module spanned by the vectors

k
{Z Ur - @ e —hy @ (Ju() WEy) - €): by €M e € T f € Poylalf.
=1
Section (6.3): Quasi-Homogeneous Holomorphic Curves and Operators in the Cowen—
Douglas Class

For a plane domain £, in [61], Cowen and Douglas introduced an important class of
operators B, (£2). It was shown by them that for operators T in B, (12), the local geometry of
the corresponding vector bundle E; of rank n (curvature tensor and its higher derivatives)
yields a complete set of unitary invariants for the operator T. But a tractable set of unitary
(or similarity) invariants has not been found yet. The analysis of holomorphic Hermitian
vector bundles in case n > 1 is much more complicated, see [198].

In [194], [190], a class FB,,(2) of operators in the Cowen—Douglas class possessing
a flag structure was isolated. A complete set of unitary invariants for this class of operators
were listed. Recently, Jiang and Ji have introduced methods from K —theory to classify flags
of holomorphic curves in the Grassmannian in order to reduce the questions involving
operators in B, (2) to the case of n = 1 (cf. [203], [58]). On the other hand, the classification
of homogeneous holomorphic Hermitian vector bundles over the unit disc has been
completed recently (cf. [183]) using tools from representation theory of semi-simple Lie
groups. Although not complete, a similar classification over an arbitrary bounded symmetric
domain is currently under way [205], [206].

The methods of K-theory developed in [203], [58] together with the methods of [190]
makes it possible to study a much larger class of “quasi-homogeneous” operators, where the
techniques from representation theory are no longer available. These methods, applied to
the class of “quasi-homogeneous” operators leads to a unitary classification. In addition the
bundle maps describing the triangular decomposition of Jiang and Ji have an explicit
realization in terms of the inherent harmonic analysis. A model for these operators is
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described explicitly, which shows, among other things, that the well-known Halmos
problem for the class of “quasi-homogeneous” operators has an affirmative answer.
Prompted by these results, one might imagine that the multi-variate case (replacing the
planar domain £ by the unit ball or a bounded symmetric domain) may also be accessible
to these new techniques.

For H be a complex separable Hilbert space and let L(H) be the algebra of bounded
linear operators on . For an open connected subset £2 of the complex plane C,andn € N,
Cowen and Douglas introduced the class of operators B,,(£2) in [61]. An operator T acting
on a Hilbert space ' belongs to this class if each « € (2, is an eigenvalue of the operator
T of constant multiplicity n, these eigenvectors span the Hilbert space H and the operator
T —w,w € [, issurjective. They showed that for an operator T in B, ({2), there exists a
holomorphic choice of n linearly independent eigenvectors, that is, the map w —
ker(T — w) is holomorphic. Thus T : E; — £, where

Er = {ker(T — w): w € Q,n(ker(T — w)) = w}

defines a Hermitian holomorphic vector bundle on 0.

The Grassmannian Gr(n, H), is the set of all n —dimensional subspaces of the Hilbert
space H. Amap t: 2 = Gr(n,H) is said to be a holomorphic curve, if there exist n
(point-wise linearly independent) holomorphic functions y,,v,,::-, Y, 0n Q taking values in
a Hilbert space H such that t(w) = V{y,(w),,yn(w)},wr € Q. Any holomorphic
curve t: 2 — Gr(n,H) gives rise to a n —dimensional Hermitian holomorphic vector
bundle E; over £, namely,

Ei = {(x,w) EHX N]|x € t(w)}andm: E; — ,wheren(x,w) = w.

Given two holomorphic curves t,t : 2 — Gr(n, ), if there exists a unitary operator U on
H such that £ = Ut, that is, the restriction U(w) := U]| E, (w) of the unitary operator U

to the fiber E.(w) of E at w maps it to the fiber of E; (w), then t and ¢ are said to be
congruent. If t and £ are congruent, then clearly the vector bundles E, and E; are equivalent
via the holomorphic bundle map induced by the unitary operator U.

Furthermore, t and t are said to be similar if there exists an invertible operator X €
L(H)suchthatt; = Xt, thatis, X(w) := X| E, (w) is an isomorphism except that X (w)

Is no longer an isometry. In this case, we say that the vector bundles E; and E; are similar.

An operator T in the class B,,(£2) determines a non-constant holomorphic curve t :
N - Gr(n,H),namely, t(w) = ker(T — w),w € (2. However, iftisaholomorphic
curve, setting Tt(w) = wt(w), defines a linear transformation on a dense subspace of
the Hilbert space H. In general, we have to impose additional conditions to ensure that the
operator T is bounded. Assuming that t defines a bounded linear operator T, unitary and
similarity invariants for the operator T are then obtained from those of the vector bundle E;.

The motivation for this work comes from three very different directions. The attempt
is to describe a canonical model and obtain invariants for operators in the Cowen— Douglas
class with respect to equivalence via conjugation under a unitary or invertible linear
transformation. These questions have been successfully addressed using ideas from
K —theory and representation theory of Lie groups. First, the detailed study of the Cowen—
Douglas class of operators, reported in [70] provides a basic structure theorem for these
operators: if T is an operator in the Cowen—Douglas class B,,(£2), then there exists operators
To, T1,..., Tp—1 In B1(2) such that
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/ Ty So,1 So,2 Son-1 \

0 T S5 Sin-1
T= | (82)
\0 0 Tn—Z Sn—Z,n—l/
0 .- 0 Tn—l

A slight paraphrasing of it clearly implies that if {y,, v1,"**, ¥n-1} 1S @ holomorphic frame
for the vector bundle E;, and H = V{y;(w),w € 2,0 < i < n — 1}, thenthere exists
non-vanishing holomorphic curves t; : 2 —» Gr(1,%;),0 < i < n — 1,such that

Vi = @0']' (to) + - +®i,j (t;) + - +®j_1'j (tj_l) + tj,O <j<n-1 (83
where @, ; are certain holomorphic bundle maps. One would expect these bundle maps to
reflect the properties of the operator T. However the tenuous relationship between the
operator T and the bundle maps @; ; becomes a little more transparent only after we impose
a natural set of constraints.

Secondly, to a large extent, these constraints were anticipated in [190]. A class of
operators FB,(2) in B, (2) possessing, what we called, a flag structure were isolated. A
operator T € B,({2) in (6.3.1) belongs to FB, (12) ifand only if T;S; ;41 = Siis1Ti41, i <
n — 1. The flag structure was shown to be rigid. It was then shown that the complex
geometric invariants like the curvature and the second fundamental form of the vector
bundle E; are unitary invariants of the operator T. Indeed, a complete set of unitary
invariants were found.

Lemma (6.3.1)[199]: ( [190]) If X is an invertible operator intertwining any two operators
T and Tin FB,,(22), then the operators X and X1 are upper triangular relative tothen x n
block decomposition of the operators T and T.

It is evident that if the intertwining operator X is assumed to be unitary, then X must
be diagonal. This observation is the key to finding a set of tractable complete unitary
invariants for the operators in the class FB,,(2), see [190].

Finally, recall that an operators T in B, (ID) is said to be homogeneous if the unitary
orbit of T under the action of the M6bius group is itself, that is, ¢ (T) is unitarily equivalent
to T for ¢ in some open neighbourhood of the identity in the Mobius group (cf. [77]). A
canonical element T*#) in each unitary equivalence class of the homogeneous operators in
B, (ID) was constructed in [183]. It was then shown that two operators T4#) and T4 #")
are similar if and only if A = A’. In particular choosing 1 = 0, one verifies that a
homogeneous operator in B, (D) is similar to the n —fold direct sum T, @---@ T, where
T; is the adjoint of the multiplication operator M4 acting on the weighted Bergman space

A (D) determined by the positive definite kernel 14,—0)}% defined the unit disc D,0 <

(1-3
i <n - 1,/11' > 0.

We study a class of operators, to be called quasi-homogeneous, for which we can
prove results very similar to those for the homogeneous operators building on the techniques
developed in [190]. This class of operators, as one may expect, contains the homogeneous
operators and is characterized by the requirement that all the bundle maps of (83) take their
values in a certain (full) jet bundle 7;(t) of the holomorphic curve t.

For a detailed account of the jet bundles, see [208].
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Definition (6.3.2)[199]: If t is a holomorphic curve in the Grassmannian of rank 1, that is,
t: 2 - Gr(1,H). Let y(w) be a non-vanishing holomorphic section for the line bundle
E;.

derivatives y9) ,j € N, taking values again in the Hilbert space A are holomorphic. (It can
be shown that they are linearly independent.) The jet bundle J,,E:(y) is defined by the
holomorphic frame {y@¢:= y),y®,---,y™ 1. The jet bundle J,E.(y) has a natural
Hermitian structure obtained by taking the inner product of y® (w) and ¥y (w) in the
Hilbert space H .

In the following definition we assume, implicitly, that the bundle map @, ; of (83) are
from the holomorphic line bundles E; to a jet bundle J; E;, where for brevity of notation and
when there is no possibility of confusion, we will let E; denote the vector bundle induced
by the holomorphic curve t;,0 < i < n — 1.

Definition (6.3.3)[199]: (J —holomorphic curve). Let t be a holomorphic curve in the
Grassmannian Gr(n, H) of a complex separable Hilbert space H and {y,, ¥1,*, ¥n-1} b€ @
holomorphic frame for t. We say that t admits an atomic decomposition if there exists
holomorphic curves t; : 2 — Gr(1,H;), to be called the atoms of ¢, corresponding to
operators T; : H; — H;in By(2) and complexnumbers u; ; € C,0 < j < i <n — 1,
suchthat X = H, H,_, and

Yo = Hoolo

1
Y1 = .Uo,1t(()) + U1t

2
V2 = #o,zt(g) + Uiati + poot,
Yi = HosJ ts + - T 1 ti(]_l) T U

-1 n—1—-i
Yn-1 = Ho,n—1t(§n ) + - +.ui,n—1ti( 2 T+t Up_in-1tn-1-

If t admits an atomic decomposition, we call it a J —holomorphic curve.

Fixiin{0,...,n — 1}. We say that the holomorphic curve ti is homogeneous if for
w € D,C[t;(w)] = ker(T; — w) for some homogeneous operator T; in B;(D). We
realize, up to unitary equivalence, such a homogeneous operator T; in B; (D) as the adjoint
of the multiplication operator M4 on the weighted Bergman spaces A2 (D). Thus for a
fixed «w € D, there exists a canonical (holomorphic) choice of eigenvectors t;(w),
namely, (1 — zi) 4.
Definition (6.3.4)[199]: (Quasi-homogeneous curve). We say that a /] —holomorphic curve
t is quasi-homogeneous if each of the atoms ti is homogeneous, 1, < 4, << 1,_; and
the difference A;,; — 4;,0 < i < n — 2, is a fixed positive real number A(t), which is
called the valency of t.
We say that the ] —holomorphic curve t defines a bounded linear operator if the linear span
of {y;(w): 0 <i <n — 1}, w € (,isdense in H and the linear map defined by the
rule T(y;(w)) = wy;(w),0 < i < n — 1, extends to a bounded operator on the
Hilbert space .

We determine conditions on the scalars y; ; and the valency A(t), which ensure that
the quasi-holomorphic curve t defines bounded operator T, see Proposition (6.3.7).

We make the standing assumption that these conditions for boundedness are fulfilled.
We shall use the terms quasi-homogeneous holomorphic curve t, quasi-homogeneous
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operator T and quasi-homogeneous holomorphic vector bundle E; (or, even E; )
interchangeably.

If T is a quasi-homogeneous operator then it belong to the class FB,, (D) introduced
in [194], [190], see Theorem (6.3.8). All quasi-homogeneous operators are therefore
irreducible. All the quasi-homogeneous operators that are strongly irreducible are identified
in Theorem (6.3.16). Theorem (6.3.19) gives a canonical model for a quasi-homogeneous
operator in the equivalence class under conjugation by an invertible transformation.

As an application of our results, in Theorem (6.3.26), we show that the (topological)
K, group and the (algebraic) K, group of a quasi-homogeneous operator are equal. In the
context of the usual K, and K, groups, this is a consequence of the well-known theorem of
R.G. Swan. As a second application, we obtain an affirmative answer for the Halmos
guestion on similarity of an operator admitting the closed unit disc as a spectral set to a
contraction.

A quasi-homogeneous vector bundle E; is indeed homogeneous if A(t) = 2 and the
constants y; ; are certain explicit functions of 4 as we point out at the end of the following.

However, a quasi-homogeneous vector bundle need not be homogeneous as the following
example shows.

Example (6.3.5)[199]: Let S be the adjoint of the multiplication operator on arbitrary
weighted Bergmann space A(4) (D) and let T be the operator

Su 10 - 0
0Sp, I ~ 0
T = ot e e YU € C,

\0-~05un1
0 - oo 0S
defined on the n + 1 fold direct sum @ A(A) (D). Then T is in FB,,,,(ID) and therefore

belongs to B,,,;(D) and the corresponding holomorphic curve t(w) = ker(T —
w),w € D, is quasi homogeneous with A(t) = 0. In fact, in this Example, if we replace
S with an arbitrary operator, say R, from B, (ID), then the resulting operator T while no
longer quasi-homogeneous, remains a member of B, .;(D). Indeed, it has already
appeared, via module tensor products, in [190].

The class of quasi-homogeneous operators, contrary to what might appear to be a
rather small class of operators, contains apart from the homogeneous operators, many other
operators. Indeed, in rank 2, for instance, it is parametrized by the multiplier algebra of two
homogeneous operators. In the definition of the quasi-homogeneous operators given above,
iIf we let the atoms occur with some multiplicity rather than being multiplicity-free, it will
make it even larger. This would cause additional complications, which we are not able to
resolve at this time. In another direction, we need not assume that the atoms themselves are
homogeneous. Most of our results would appear to go through if we merely assume that the

kernel function K® (w, w) ~m,|w| < 1. Deep results about such functions

were obtained by Hardy and Littlewood (cf. [202]) and have already appeared in the context
of similarity, see [200].

An operator T in the Cowen and Douglas class B,,(£2) is determined, modulo unitary
equivalence, by the curvature (of the vector bundle E; ) together with a finite number of its
partial derivatives. However, if the rank n of this vector bundle is > 1, then the computation
of the curvature and its derivatives is somewhat impractical. Here we show that if the
operator is quasi-homogeneous, it is enough to restrict ourselves to the computation of the
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curvature of the atoms and a n — 1 second fundamental forms of pair-wise neighbouring
vector bundles. We first recall, following [61], [79], that an operator T in B, (£2) may be
realized as the adjoint of a multiplication operator on a Hilbert space of holomorphic
functions on 2* := {wr : w € 0} possessing a reproducing kernel.

For an operator T in the Cowen—Douglas class B,,(£2), acting on a Hilbert space H,,
there is a holomorphic frame {y,, y1,::*, ¥n-1} and atoms t,, ..., t,,_4, for which we have

Vi = toits? o At e+t €C.

At this point, assuming that the operator is quasi-homogeneous makes the atoms
Ty, Ty, ..., T,,—1 homogeneous. Conjugating with a diagonal unitary, if necessary, we assume
without loss of generality that t; is the holomorphic curve defined by t;(w):=
(1 —avz)™M,4 = 2., A41),0 <i<n-12 >0,
in the weighted Bergman space A®) (D). We assume without loss of generality that Uii =
,0<i<n-1.

Let t be a quasi-homogeneous holomorphic curve in Gr(n, H). Assume that it defines
a bounded linear operator T on the Hilbert space . An appeal to the decomposition (82)
provides, what we would now call an atomic decomposition for the operator T. This
decomposition has several additional properties arising out of our assumption of quasi-
homogeneity.
Proposition (6.3.6)[199]: Let t be a J —holomorphic curve with atoms {¢,,...,t,_,} and
let {yo,...,¥Yn—1} be a holomorphic frame for the vector bundle E;. Let H be the closed
linear span of the set of vectors {y,(w),...,Yn-1(w) : w € 2} and H; be the closed
linear span of the set of vectors {t;(w),w € 2},0 < i < n — 1. We have
H =H, & Hy OO Hp-1;
(if) There exists an operator T, defined on a dense subset of vectors in H', which is upper
triangular with respect to the direct sum decomposition X = H, @D H,,_;:

To 50,1 50,2 SO,n—l
0 T1 51,2 Sl,n—l
T — N . ,

\ 0...0 Tp_p Sp—z n1 /

00 ...0 T,

where S, (tj (w)) = my; tVTY (W), Ty(t(w))) = w t;(w), w € 0,i,j =

0,1,--,n — 1, for some choice of complex constants m; ; depending on the y; ; . (iii) The

constants mi,j and ; ; determine each other.

For convenience of notation, in the proof below, we set S;; := T;,0 < i < n — 1,inthe

proof. We will adopt this practice often and call T,,Ty,...,T,—;, the atoms of T. Also,

Sii+1(tiv1) = M1t With the assumptionthat y;; = 1,0 < i < n — 2.

Proof. Note that {y,, ¥1,"**, ¥n—1} IS @ frame for E; and the atoms t;,0 < i < n — 1 are

pairwise orthogonal. From Definition (6.3.3), the first statement of the Proposition is

included in the definition of a holomorphic quasi-homogeneous curve.
For0<i<j<n-—1,lets;;:H; - 3 be the linear transformation induced by

bundle maps s; ; : Ee, = Jj-i— 1Ey, namely,

z sij (Ye(w)) = wyp(w), w € Q.
i

It follows that
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(Sk,k — ’W) (.uk,ktk (’W)) = 0, (Sk—l,k—l - ”W) (#k—1,kt;£1_)1(’w)) + Sk—1,k (.uk,ktk(w))

= 0. (84)
Thus sy, induces an operator Sy, , with ker(Sy, —w) = C[t,(w)] and s,_4  is abundle
map from E;, (w)(: = Ctx(w)]) 10 Ey,_, (w)(:= Clty—q(w)]).
Foranyi < j < n — 1,s;; isabundle map from Et; 10 Jj-i-1Ey, and there exists m; ; €
C such that Si,j (t] (’LU’)) = mi’j ti(j_i_l) (’LU’),/LU’ € (.
Since  (so0 — w)yi(w) = (S0 — W)(#o;t(gl) (w)) + so1(uati(w)) = 0, we
have

Soa(ti(w)) = mg to(w),
Ho1

where my; = — e Thus we have
1,1

2Up + UyoMg
So,z(tz (’W)) = - tél) (w) = mo,zt(gl) (w).

H2,2
Now assume that for any fixed k and some k < j < n — 1. there exits m;; € C such that
i—k— . .
sii(t(w)) = myty TV (w), i<
Then from equation (84), we have
j—k j—k—1
(Siere = ) (i 6 VW) + Sicgern(hiesnj Brr - (@) + - + 515 (w5 (w)
=0

and from the induction hypothesis, we may rewrite this as
. j—k—1 j—k—1
iy G = 16T (@) + tsr Mg td 7Y () o g sy (5 (0)
= 0.
Thus
-
st (4 () = my; 677V (),
or, equivalently
. j—k—
e G- R+ ) Hic+1,j M k+1
_ W
completing the proof of the second statement of the Proposition.
Claim: For any operator T in B, (£2) with atomic decomposition exactly as in the second
statement of the lemma, there exists y; ; satisfying the conditions in Definition (6.3.3), that
IS, there exists a holomorphic frame for E;, which is a linear combination of the non-
vanishing holomorphic sections of E;, and a certain number of jets.

Indeed, the proof of the second part of the Proposition already verifies this Claim for
n < 2.To prove the Claim by induction, let us assume that it is valid for k < n — 2. Note

that the operator ((Si,j)) is in B,,_;(2). By the induction hypothesis, we can find

i,jsn—-2

My, = (85)

m;;,i,j < n — 2 verifying Claim 2 for any operator ((Si,j)) . If we consider the

i,jsn—-2
operator
(Tn—z Sn—Z,n—l)
0Ty /'
then we havethat S,,_, 1 (th—1) = Mu_zn_1tn—2. NOW, Setting uy 2,1 = —My_25-1,
we can define all the coefficients u,,_ ,—1,2 < k < nrecursively. In fact, if we consider
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Tn—k Sn—k,n—k+1 Sn—k,n—k+2 Sn—k,n—l \
Tn—k+1 Sn—k+1,n—k+2 Sn—k+1,n—1

0
K Tn—Z Sn—Z,n—l)
Th—1
where 2 < k < n, and set
k-2
_ i=1 Mpy—kn—k +ikn—k+in-1 + Mpy—kn-1
.un—k,n—l - k — 1 )

then py,_rn—1 is defined involving only the coefficients p,_x4;,—1 Which exist by the
induction hypothesis. Thus coefficients y; ; depends only onthe m; ;,i,j < n — 1.Bya

direct computation, y;, = ,uo’kt((,k) + ul,ktl(k_l) + o + g rty, 0 < k < n — 1together
defines a frame for E . This completes the proof of the Claim and the third statement of the
lemma.

Having shown that a holomorphic quasi-homogeneous curve t defines a linear
transformation on a dense subset of #;, we determine when it extends to a bounded linear
operator on all of H;. We make the following conventions here which will be in force
throughout.

The positive definite kernel K™ (z, w) is the function (1 — 4z )~* defined on
D x D and is the reproducing kernel for the weighted Bergman space AW (D). The
coefficient a,, (1) of @w™z™ in the power series expansion for K™ (in powers of z) is of

the form a,,(1) ~ n*~! using Stirling’s formula: a(1) = % ~ n*. The set of vectors

e := Ja,(M)z"n = 0, is an orthonormal basis in A® (D). The action of the

multiplication operator on A® (D) is easily determined:
-1
@ Y2 oW
M) ~ () " e
Often, one sets ™ := /aa”( (31) and says that M is a weighted shift with weights <«
n+1

Dy _ W @ W _ an(4)
since M(e, ) = wy,” e,;/,. The other way round, [[",_, w;” = T
1-1
n+ 1)z .
The adjoint of this operator is then given by the formula:
A-1
Dy = @ ,» (=12 »
M (e, ) = n1n1~<n) €n-1-

The following Proposition shows that if the valency A(t) is less than 2, then every possible
linear combination of the atoms and their jets need not define a bounded linear
transformation. However, from the proof of this Proposition, we infer that no such
obstruction can occur if A(t) = 2.

Proposition (6.3.7)[199]: Fix a natural number n > 2.Let t be a quasi-homogeneous
holomorphic curve with atoms t;i = 0,1,....,.n — 1. For 0 < i,j < n — 1, let

sij (& (W) = my; t(’ D (w) be the bundle map from E; ;107 i1Ey and S :
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H; — H; be the densely defined linear transformation induced by the maps s; ; . The linear

transformation of the form
To So,1 So,2 *** Son-1
( 0Ty S12  Sin-1 \‘
T = o

\ 0...0 Ty Sp_znos /

0 0..0T,_,
is densely defined on the Hilbert space A% (D) @---@ A®n-1) (D). Suppose that A(t) <
2

() IFA(t) € [1 +2=,2),n = 2,then T is bounded.

(i) IfA(t) € [1 +Z:Z:z .1 +Z:::f),the operator T is bounded only if we setm; ; = 0

wheneverj —i >n—-—k —2n—1>k = 0,n = 4,thatis, T must be of the form

/ 50,0 501 ** Son-k-20 =+ 00 \
51,1 51,2 Sl,n—k—l 00

et 0
0 Sk+1,k+1 Sk+1,k+2 Sk+1,n—1

\ Sn—Z,n—Z Sn—2,n—1/
Sn—l,n—l

(iii) If A(t) € (0,1), then the densely defined linear transformation T is bounded only if

wesetm;; = 0,i <j+ 1,i =0,1,:-,n — 2,n = 3.

Proof. Fori = 0,1,~-,n — 1, the operators S;; are homogeneous by definition. Thus the

operator S; ;, as we have said before, is realized as the adjoint of the multiplication operator

on the weighted Bergman space A% (D). The reproducing kernel K (z,w) for this

. . 1
Hilbert space is of the form e Consequently,

ker (S;; —w) = C[t;(@)] = C[KX (3,w)],w €D.

Claim:IfA —4; > 2(G—-i)—2,j>i = 0,1,2,~-,n — 2, then each s; ; induces a non-
zero linear bounded operator S; ; .
Without loss of generality, we sets; ; (t;) = m;; ti(j_i'l) ,m;; €Ci,j =01,,n—-1
and

1 () = 1
(1 —zw)h "7 W= (1 — zuw)h’
Then the linear transformation S; ; : }; — J{; induced by s; ; is densely defined by the rule

Si,j (t]) = mi,j ti(j_i_l),i,j = O, 1,"‘,7’1 — 1.

t;(w) =

We have that

T ()

iz ey

06— 1) (L= (G — i) + 2)}.

11Si; 1 1= |my; |m{§x {

By a direct computation,
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\/Hfléj_i_l) wi(2;) o 1
Pl— 1) (b= ( —0) +2) ~

1. — A
\/Hfggwl(aj) f’T‘ —(—-i—-1
It follows that each S; ; is a non-zero bounded linear operator if and only if
y—p
! > "> j —i— Lthatis, ; — & = 2(j — i) — 2.

IFA(t) = 1 +°—,then

A1 — Ao = (n — DA() = 2(n — 2).
By the argument given above, we obtain S, is non-zero and bounded. If A(t) < 1 +
Z—j,then we might deduce that my,,_; = 0o0rug,—1 = 0,i.e.Sy, = 0. Thus the proof
of the first statement is complete.

For the general case, If A(t) € [1 + —— ,1 + ——),k = 0, then we have
mn—k—-DAG) < 2n —k —-1) — 2.
Ontheotherhand,ifj — i = n — k — 1,thenweobtain4; — A; < 2(j — i) — 2.By
the argument above, we have S;; = 0,j — i =2 n — k — 1, and S has the following

matrix form:

n—k—4 n—k-3

/ So0 * Som—k-20 = 0 \
S11 " S1n-k-10 0

._. .'. 0
T = 86
0 Sk+1,k+1 Sk+1,n—1 ( )

\ Sn—l,n—l /
This completes the proof of the second statement. In particular, if 0 < A(t) < landj —
i = 2,thenwe have 4; —A; < 2(j — i) — 2, which implies

So0 So010 o 0
0 S11512 -0
T=| : - LA(t) € [0,1).
0 = 0 Sn—z,n—z Sn—2,n—1
0 o .- 0 Sp_in—

This completes the proof of the third statement.
Having disposed off the question of boundedness of a quasi-homogeneous operator, we
show that all quasi-homogeneous operators are in the class FB,,(D ).

Theorem (6.3.8)[199]: Suppose T is a quasi-homogeneous operator and ((Si,j)) is its

nxn
atomic decomposition. Then we have

Sii Siiv1 = Spi+1Si+ni+vt = 0,1,,m = 2,
or equivalently, T is in FB,, (D).
Proof. We have found constants m; ; € C such that
Sij(t)=m,tI" Vi< j=01,.,n-1
in the second statement of Proposition (6.3.6). Since (S;; —w)(t;(w)) = O,w € £, it
follows that
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SiiSiiv1 (i1 (W) = Siiv1Sivyir1(Ciyr (w0)).
We have H; = Span,co{ti(w)},i = 0,1 ---,n — 1, therefore
SiiSiiv1 = Sii+1Si+ri+vt = 0,1,,m = 2,

In [80], an explicit formula for the second fundamental form of a holomorphic
Hermitian line bundle in its first order jet bundle of rank 2 was given. The second
fundamental form, in a slightly different guise, was shown to be a unitary invariant for the
class of operators B, (2) in [190]. We give the computation of the second fundamental
form here, yet again, keeping track of certain constants which appear in the description of
the quasi-homogeneous operators. We compute the second fundamental form of the
inclusion E, in E, where {y,,y;} is a frame for E with atoms ¢, and t;. The line bundle
defined by the atom ¢, is E,. By necessity, we have

Yo = to¥1 = Horto + &
with t, L t1. Asin [80], [190], setting h = (y,, ¥, ), the second fundamental form 6, , is
seen to be of the form

h 1/2 a_(h_l (]/11 ]/0>)

- |<y1,yo>|2)
(nnu Sl

It is important, for what follows, to express 6, ; in terms of the atoms ¢, and t; giving the
formula

Oo1 =

1/2"

HUo, Ko
90,1 = - (87)

2 ) 1/2"’

(||||tt:||||2 - |#0,1| :Ko)
where K, is the curvature of the line bundle E;, given by the formula —dd log
lltoll?. The following lemma shows the key role of the second fundamental form in
determining the unitary equivalence class of a quasi-homogeneous holomorphic curve.
Lemma (6.3.9)[199]: Suppose that t and ¢ are quasi-holomorphic curves with the same
atoms t,, t;. Then the following statements are equivalent.
(i) The two curves t and ¢ are unitarily equivalent;
(ii) The second fundamental forms 6, , and 8, , are equal;
(iii) The two constants u, 1 and fiy ; are equal.
Proof. The equivalence of the first two statements was proved in [190]. The equality of 8, ;
and éo,l is clearly equivalent to

It 12 2. e It 12 2 e

Ho,1 <W + |H0,1| dd log ||to||2> = HUo1 <W+ |ﬂ0,1| dd log ||to||2> :
0 0
From this equality, we infer that arg(uo1) = arg(fo1)-

Given that we have assumed, without loss of generality, ||t,|> = (1 — |w|?)~% and

It 11> = (1 — |w|?)~*1, squaring both sides and then taking the difference of the equality
displayed above, we find that

00 log lItoll> = 2,(1 — |w]*)7?,
ifandonly if A, — A, = 2. Thus except when A(t) = 2, we

It 1%
Tk _ o _
must have u¢, — fig, = 0.Clearly, fip; = —po, is not an admissible solution. So, we

musthave fip; = poq.Incase Ay — Ay = 2,ifweassume fip; # po 1, then we must have

which can be equal to

256



)

1
(1 + Ao|fio|” )2 ™

1+ /10|.Uo,1|2

- |H0,1

from which it follows that |fig 1| = |uo1]. The arguments of these complex numbers being

equal, they must be actually equal.

When we consider the inclusion of the line bundle E., in the vector bundle E{t' L G0 1))
i J

‘j—l i

of rank 2, the situation is slightly different. This is the vector bundle which corresponds to

.— (SiiSij
the 2 x 2 operator blc.)c.k T;j = (os,-,,-]) :
Clearly, {ti,— % ti(l—l) + tj} is the frame for Er ;. By the formulae above, setting

temporarily y, = t;, v, = —% ti(j_i) + t; , we have that

Wk = |voll* = Nledl’oy = 16|

(i) |In1]* = %Zaf—i 3 ied)” + |l ||| = %r 91§~ hy + by
(i) < yiyvo >= =T 0 lel|” =~ 97k

mi,j

2
(V) 1< vive > 17 = 72| 077 hdi = by,
The second fundamental form 6; ; for the inclusion E;, < E{t'ﬁt(}'-i)

}is given by the

Uj—i i +ij
formula
L9 (hit 01in)
0i; = - (88)
hy + | |2 h;0/-19J~t h; — dJ~1h;0/ 1, 2
h; j—1 hiz
Lemma (6.3.10)[199]: Let T;; := (Soi.i SS;',;) and Ty o= (S 59 with S, (¢)) =
1] 1]

g i, eI

The second fundamental forms 6, ; and 6 ; ; of the operators T; ; and T; ; are equal, that is,
Bi,j = éi,j if and Only if milj = 0.

Proof. Without loss of generality, we will give the proof only for the case i = 0,j =
k,j # 1.Inthiscase, 0y, = 8, is equivalent to the equality:

(hk N | mO0, k
h0 k

(hk +|_ k
hy |k

For simplicity, let g, denote (

1
2 hoaka—kho - akhoa_kho 2
hg

1

2 (hoaka_kho - akhoa_kho ))2 _ mo’k

2 ~

hod%0¥kh,—0%n,0%n - 0
0 ®——=2) and let i, mdenote m}‘("" , Lok
0

respectively. Then the equation given above may be rewritten as
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N| =

B 4
(7 + migo)”

h .
(7 + 1l go)
From this equality, we infer that arg(m) = arg(m ). Now, squaring both sides and then
taking the difference, we have

N =
3 |

he _ _ ~
L @i~ m?) — FEmigy(m? — ) = 0.
0

Having assumed, without loss of generality, h, = (1 — |[w|®)™% and h, = (1 —
lur|?)~*1 , we find that g, is a polynomial of degree > 1in (1 — |w|?)~%. Thus g, can
be equal to hk hy ifand only if A, — A, = 2. Therefore, except when A(t) = 2, we must
have m? — m? = 0.Clearly, m = —m

is not an admissible solution. So, we must have m = 7. Hence mg, = iy .

Recall that a positive definite kernel K : 2 x 2 — C™" is said to be normalized at
wy € N,if K(z,wy) = 1,z € 0.Anoperator T in B, (2) may be realized, up to unitary
equivalence, as the adjoint of a multiplication operator on a Hilbert space possessing a
normalized reproducing kernel (cf. [79]). Realized in this form, the operator is determined
completely modulo multiplication by a constant unitary operator acting on C™. As one might
expect, finding the normalized kernel if n > 1 is not easy. The theorem below illustrates a
rigidity phenomenon in the spirit of what was proved by Curto and Salinas for operators in
B, (D). For quasi-homogeneous operators, the atoms are homogeneous operators in B; (D).
These are assumed to be realized in normal form. Consequently, if T is a quasi-
homogeneous operator, a set of n — 1 fundamental forms determine the operator T
completely, that is, two of them are unitarily equivalent if and only if they are equal
assuming they have the same set second fundamental forms.

Theorem (6.3.11)[199]: Suppose that t and ¢ are unitarily equivalent. Then if the second
fundamental forms are the same, thatis, 8, ;41 = 0;;41,0 < i < n — 2,thent = L
Proof. If necessary, conjugating by a diagonal unitary, without loss of generality, we may
assume that the atoms of the operators T and T are the same. By Lemma (6.3.1), if there
exists a unitary operator U such that TU = UT, then U must be diagonal with unitaries
Uy, Uy,...U,_4 oOnits diagonal. Then we have
UsS;; = S;U,i,j = 0,1,...,n — 1.
In particular, U; commutes with the fixed set of atoms T;, which are irreducible, therefore
there exists 8; € [0, 2m] such that
Uy = ePly,,i =01-,n— 1

Then on the one hand, we have

UiSiiv1(tiv1) = Ui(—liie1t) = —piiaeP' e
and on the other hand, we have

SiivrUi+ 1(ti1) = Spipa (€PN ti40) = —fizi1eP 8,

Consequently,

i€t = —fj P00 < i < n - 2
The assumption that the second fundamental forms are the same for the two operators T and
T implies that p; ;1 = fi;;+1. Therefore, we have B; = Biy1:= B,i = 0,1,...,n— 2.
Since
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UL'S = S~l’]U],l,] = 0,1,...,n - 1,

Lj
we have
UiSi,j (t]) = elﬁmi’j ti(]_L_l) = elﬁfﬁi’j ti(]_l_l) = S~1JLIJ (t] )

Thenm;; = f;;,i,j = 0,1,...,n — L1 ItfollowsthatS;; = S;;andt = t.
Remark (6.3.12)[199]: It is natural to ask which of the quasi-homogeneous operators are
homogeneous. A comparison with the homogeneous operators given in [84] shows that a
quasi-homogeneous operator is homogeneous if and only if
_M p.(g)—<i>; ,1.—,1_&4_]' (89)

;g j/ (2 )i—j . 2 7
for some choice of positive constants u,(:= 1), uq,..., Upn—1. Here (a) := a(a + 1) -
(a++¢ — 1) is the Pochhammer symbol. Clearly, if two homogeneous operators with
(4, ) and (1, f&) were unitarily equivalent, then 2 must equal 1. Since it is easy to see that
Uii+1 = Hii+1 if and only if u; = fi;,4, we conclude that two of these homogeneous
operators are unitarily equivalent if and only if they are equal recovering previous results of
[84].

The main focus is on the question of reducibility and strong irreducibility of a quasi-
homogeneous operator. We recall that an operator T is said to be strongly irreducible if there
Is no idempotent in its commutant, or equivalently, there does not exist an invertible operator
L for which LTL™? is reducible. The (multiplicity-free) homogeneous operators in the
Cowen—Douglas class of rank n are irreducible (cf. [84]). However, they were shown (cf.
[183]) to be similar to the n —fold direct sum of their atoms making them strongly reducible.
It is this phenomenon that we investigate here for quasihomogeneous operators. Along the
way, we determine when two quasi-homogeneous operators are similar. Our investigations
show that there is dichotomy which depends on whether or not the valency A(t) is less than
2 or greater or equal to 2. In what follows, we will say that a holomorphic curve t : D —
Gr(n,H) is strongly irreducible if there is no invertible operator X on the Hilbert space H
for which Xt splits into orthogonal direct sum of two holomorphic curves, say t; and t,, in
Gr(nl,H) and Gr(n,, H),n; + n, = n, respectively.

Suppose t: D — Gr(n,H) is a quasi-homogeneous holomorphic curve with atoms
to,t1,...,tp—1. Then t is strongly reducible, t ~ t, & t; - D t,,_,, ifA(t) = 2 and
strongly irreducible otherwise. The dichotomy involving the valency A(t) is also clear from
the main theorem on similarity Theorem (6.3.19) of quasi-homogeneous holomorphic
curves.

The atoms of a quasi-homogeneous operator are homogeneous operators in B; (D) by
definition. Therefore, they are uniquely determined not only up to unitary equivalence but
up to similarity as well. Now, pick any two quasi-homogeneous operators. They possess an
atomic decomposition by virtue of Proposition (6.3.6). Any invertible operator intertwining
these two quasi-homogeneous operators is necessarily upper triangular:

Lemma (6.3.13)[199]: Let t and £ be two quasi-homogeneous holomorphic curves with
atomic  decomposition {t;: i = 0,1,...,n — 1} and {f;:i = 0,1,...,n — 1},
respectively. If they are quasi-similar via the intertwining operators X and , that is,

Xt = tandYt = t, thenfori < n- 1, we have

x(\/ )t @) t@w)w e) € \[Eow), b, bw):w €D},

Ui j
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v (\/ o), &) Ew)iw eDy) € \/ (tow), 6 @) i)+ w
€ D}

This is easily proved by modifying the proof [190] slightly. Hence if two quasi-
homogeneous operators are similar, then each of the atoms for one must be similar to the
other. Consequently, to determine equivalence of quasi-homogeneous operators T under an
invertible linear transformation, we may assume (as before) without loss of generality that
the atoms are fixed with the weight A, and the valency A(t). Clearly, the valency A(t) is
both an unitary as well as a similarity invariant of the quasi-homogeneous curve t.

Note that if we let RDbe the n X n diagonal matrix with

(T g toerr) (Moo ﬁHH)_l on its diagonal and set £ = RtR~', then
Siit1(tix1) = Hij41,0 < i < n — 2. Thus up to similarity, we may assume that the
constants u; ;1 and fi;;,; are the same. Or equivalently (see Lemma (6.3.9)), we may
assume that the choice of the second fundamental forms 6;;,,,0 < i < n — 2, does not
change the similarity class of a quasi-homogeneous holomorphic curve. Therefore the
condition in the second statement of the theorem given below is not a restriction on the
similarity class of the holomorphic curves t and ¢ .

The following lemma is the key to determining when a bundle map that intertwines
two quasi-homogeneous holomorphic vector bundles extends to an invertible bounded
operator. It reveals the intrinsic structure of the intertwiners between two quasi-
homogeneous bundles. Recall that if A and B are two operators in L(H;),i = 1,2
respectively, then the Rosenblum operator g, 5 is defined to be the operator g, 5(X) =
AX — XB,X € L(H,,H,).IfA = B,thenwe set g, := 0, p.

Lemma (6.3.14)[199]: Let E; be a quasi-homogeneous vector bundle and s; ;,i,j = 0,1,
-,n — 1, be the induced bundle maps and S; ; : H; — H; be the operators induced by
these bundle maps. The following conditions are equivalent:

() Srs € ranog, s ,0 S r<s<n-1

(i) A(t) = 2.

Proof. Let T, and T be the operators induced by s; ;,i = 7, s respectively as in Proposition
(6.3.6). These are then necessarily the operators M@r)" and M®s)" acting on the weighted
Bergman spaces A4 (D) and A(%) (D), respectively. Setk = s — r — 1.

The kernel of the operator (T; —w ), w €D, is spanned by the vector t;(w) :=
(1-zw)™ ,i=rs For j=rorj=s the set of vectors el =

/af(lj )z%,£ = 0 is an orthonormal basis in A(4/) (D), where a,(4; ) is the coefficient

of ! z' in the power series expansion for (1 — z4)™* . The matrix representation for
the operator S, ; : A%s) (D) —» A?) (D) with respect to this orthonormal basis is obtained
from the computation:

(’g +k)' ag+k().'l") 1)
Sr,s(e(’ls)) i 000 e, ok =s—r—1

Thus S, ¢ is a forward shift of multiplicity k. We claim that if A(t) = 2, then we can find
a forward shift X of multiplicity & + 1, namely, X(e®)) = x,e{’”, which has the
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required intertwining property. Thus evaluating the equation S, . X — XSg; = S, onthe
vectors e{SAS) ¢ = 0, we obtain

(As)
C+ Tl w™ Gy (A (As) ,(Ar)
21 k-1 l(lr) ek = (Xewyye — (Ko qwypZi e (90)
i=0 i

From this we find x recursively:
) o Y% (4r)

P o T .\/ao(ﬂs)
mz . ~ ( 2k+2—;15—/1r>’

Ja,(2s) 2
where (&), := ¢+ 1) (L +k —1) = Fp(zrkl;)

Here, using the Stirling approximation for the I function, we infer that
K@i~ AR = 2, then Ay — A = 2,050 — g = 2,00, A —
As—1 = 2.Consequently, A, — A, = 2k + 2 making the operator X bounded.

It follows that if A(t) = 2, then the shift X of multiplicity n that we have constructed is

bounded and has the desired intertwining property.

To show that there is no such intertwining operator if A(t) < 2, assume to the contrary the

existence of such an operator. To arrive at a contradiction, suppose

(00]

Ar
X (eW) = Z xiee! ™, X = ((x,0) -

i=0

and for ¢ > 1,

X =

is the Pochhammer symbol as before.

Then

0

As Ar Ag Ar
(SraX = XSs5) e = 3 et = x w3 e

€
=0

In particular, we have
) )y _ ON

(x+k+1,+1w — x+k,w;1_51)(el+k Srs€;
Repeating the proof given above we conclude that x;,j; — 00,1 — oo. This means X is

unbounded which is the desired contradiction.
Lemma (6.3.15)[199]: Let t be a quasi-homogeneous holomorphic curve with atoms

t;,0 < i <n — LlLet T:=((S;;)) be the atomic decomposition of the operator T
representing t as in Proposition (6.3.6).
() IFA() € [1 +Z—j ,1 +nT_2),thenforany1 <r<1-n-3n-1,wehave
SorSrre1 * Sn-zn—1 € TAN TSy, Sp—1,n-1 -

(i) Suppose that A(t) = 2. Then there exists a bounded linear operator X €
L(H,,_1, H,,—) such that

Sn-2n-2X — XSp-1n-1 = Sn-2n-1
and

Sn—3,n—2X € rano_sn—3,n—3r5n—1,n—1-
Proof. We only prove that So ,—2Sp—2n-1 IS in rangg, s, .., - Clearly, as can be seen
from the proof we present below, the proof in all the other cases are exactly the same.
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Let Ty, T,,—, and T,,_; be the operators induced by s o, Sp—2 -2 @and s,_; as in Proposition
(6.3.6). These are then necessarily the operators M?0)" | Mn-2)" and M 4n-1)" gcting on the
weighted Bergman spaces Ao (D), A“n-2) (D) and A®n-1) (D), respectively.

As in the proof of Lemma (6.3.14), equations (90), we have that

Gno)) _ E+n=3) fapn 3(A0) @)
SO,n—Z (e{’ ) - P! ae(/ln—z) €in-3

Iy _ Va@(n2) 4,
) = Yl of
af(/ln—l)

Ans) (E+n—=3) |apn-3(10) @,
Son_2S7_>n_ = .
on-2v°n-2n 1(31,0 ) £ a{’()ln—z) e£’+n—3

Thus Sg ,—25n—2 n—1 IS a forward shift of multiplicity n — 3. We claimthatif A(t) = 1 +

Z—j, then we can find a forward shift X of multiplicity n — 2, namely, X(ey”‘l) ) =

x{,eﬁgl)_z which has the required intertwining property. Thus evaluating the equation

S00X — XSp—1n-1 = Son-1 Onthevectorse (4,_1),¢ = 0, we obtain

vV an—B(/lo)
. / ap(An-1y)
and for £ > 1, we have that

(Ao) (An-1) _ (£ +n-3)! yapn_3(4)

Wign—3Xe = Xp1 W 7 .
J# (1)

m nz_f @, ~ ({Ao—ln_1+2n—4).

Sn-2n-1 (e{g

and

wﬁ%)xo = (n — 3)!

It follows that

Xp
1/“#(/1@—1)) i=1

Note that when A(t) > 1 + Z—:i we obtain

2

2n — 4

/111_1—/10=(n—l)/l(t)>(n—1)n_1 =2n — 4

making X bounded. This completes the proof of the first statement.
For the proof of the second statement, note that by virtue of Lemma (6.3.14), we have
Sn-2n-1 € RanaS$,,_,,_1 . S0 there exists a bounded operator X such that
Sn—2n-2X — XSn-1n-1 = Sn-2n-1-
Repeating the proof for the first part, we conclude
Sn-3n—2X € ran oSy _3u-3,5p-1n-1-

We now show that a quasi-homogeneous holomorphic curve t is strongly irreducible
or strongly reducible according as A(t) is less than 2 or greater equal to 2. We recall that
homogeneous operators (in this case, A(t) = 2) were shown to be irreducible but strongly
reducible in [183]
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Theorem (6.3.16)[199]: Fix a quasi-homogeneous holomorphic curve t with atoms ¢; and

let T = ((S;,;)) be its atomic decomposition.

(i) If A(t) = 2,then T is strongly reducible, indeed T is similar to the direct sum of its

atoms, namely, @™~ ,' T; and
(i) if A(t) < 2,then T is strongly irreducible.

Proof. If A(t) = 2, then we claim that the operator T issimilartoT, @ T, DD T,,_;.
Whenn = 2,LetT = (50'0 50'1) . By Lemma (6.3.14), there exists X, ; such that

0 51,1
S0,0X0,1 — X0151,1 = Soa-
SetY,, = (',**) ,thenwe have that
_ So0,0 0
Y0,1TY0,11 = (O 51,1>
Notice that Yy 4 is invertible, we have that T ~ Sy, @ Sy 4.

In this case, using Lemma (6.3.14), we find an invertible bounded linear operator X ,,_1

such that

SO,OXO,n—l - XO,n—lsn—l,n—l = So,n—l-
Forany i < j, applying Lemma (6.3.14) to the operators

Sii Sii+1 Sii+z Si,j
I/ 0 Sivnivr  Sitvitz Sit1,j \l
\ 0 0 Si_1;—1 S /
0 0 0 Sij
we find an invertible bounded linear operator X; ; such that S; ;X; ; — X; ;S;; = S; ;. Set
I(n 2) 0 I(n 2) 0
Yo_ono1i= (0 I Xy 2n1 ) and note that ¥, %, ,_; = (0 I =Xy on1 ).NOW, we
0 I 0 I
have
S0,0 So,1 50,2 Son-1
J(n=2) ( 0 S11 Si2 " Sin-a \ @2 o
(0 I1X,_ Zn 1 ) 0 - " : <0 I Xp_2n-1 )
0... 0 Sn—Z,n—Z Sn—z,n—l 0 I
0 0 ... O0S8S,_1n1
50,0 30,1 50,2 Son-1 = Son—2Xn-2,n-1
0o -~ . . s
/ Sn—3,n—3 Sn—3,n—2 Sn—3,n—1 - Sn—3,n—2Xn—2,n—1 \ .
0 Sn—z,n—z 0 /
0 Sn-1n-1

By Lemma (6.3.15), we have
Sn-3n-2Xn-2n-1 € TAN0S,_1n-1,Sn-3n-3 -
Therefore, there exists an invertible bounded linear operator X such that

Sn—3,n—3X - XSn—l,n—l = On-3n-1" Sn—3,n—2Xn—2,n—1-
[(71—3) 0
% 10X, _~._
Let X, 3,-1:= Xand Y, 3,4 = 0 o no 3n-2
00 I

263

. Now, we have



SO,O SO,1 SO,Z So,n—l - SO,n—ZXn—Z,n—l
Yn—3,n—1 o - "

. Sn—3,n—3 5n—3,n—2 Sn—3,n—1 Sn—3,n—2Xn—2,n—1 n-3n—1

0 ..0S,_ 300

0 o 0 Sp_17-1
/ S0,0 50,1 502 Son-1 — Son-2Xn-2n-1 — Son-3Xn-3n-1 \
0
= - : " Sp-zn-3z v 0 .
0 0 Sn—z,n—z 0
0 - e 0 Sn—tn1

Continuing in this manner, we clearly have

/50,0 50,1 50,2 SOn 1\ / So0,0 501 SO,n—Z 0 \
|E. Sn-3n-3 Sn—-3n— ZSn 3n-1 : " Sp-3n-3 Sn-3n-2 0 .
\ 0...05-2n-2 Sn-27n-1 \ 0 0572020
0 . 0Sn_1nm1 0 0 Sp_in-1
This completes the proof of the induction step. We have therefore proved the first statement.

To prove the second statement, assuming that A(t) < 2, we must show that E; is
strongly irreducible. First, we prove that E; is irreducible. By Lemma (6.3.13), any

projection P = ((Pi'j))nxn in A’ (E,) is diagonal. Thus

P} = Py € A’ (E,).
It follows zthat forany 0 < i < n — 1,P;; = 0orP;; = I.Since PT = TP, we have

PiiSiiv1 = Sii+1Pirit1-
Therefore
Pi,i = Pj,j,l.,j = O, 1, ,n — 1.
Consequently, P = 0or P = [ and E; is irreducible.
We first prove that E; is also strongly irreducible forn = 2. By Lemma (6.3.14), we have
Soq € ranog s, . .

In [190], it follows that E, is strongly irreducible.
To complete the proof of the second statement by induction, suppose that it is valid for any
n<k-—-1Forn = k,letP € A (E;) be an idempotent operator. By Lemma (6.3.13),
P has the following form:

Po,o P0,1 Po,z PO,k

0 P1,1 P1,2 Pl,k

o
Il

0 ... OPk—1p-1Pr-1k
0. ... 0 Py
and P ((Si'j))k = ((Si'j))k P Itfollows that
X X
((P:;)) ((Si,j)) = ((Si,j)) ((P;)),0 <i,j <k —1,((P;)) ((Si,j))
= ((s:))) @)1 <0 <k
k-1 k
Both ((Pij))_ i and ((Pi,j))_ _ are idempotents. Since A(t) < 2, we have
i,j= i,j=
Sr,s granog, s 7,5 < M.
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By the induction hypothesis, we have
P =0i #j<k-1,
and
Poo = Pyy == Py = 0,0rPyg = Py == Py = L.
Thus P has the following form:

100 - Py 000 - Py
/OIO--- 0\ (000---0\‘
P = e e orP =| ¢ "~ ™~ "~ i
\o---om/ \50---00/
00...01 O «oceeeene 0
Since P is an idempotent, it follows that P, = 0.
By Lemma (6.3.13), an intertwining operator between two quasi-homogeneous operators
with respect to any atomic decomposition must be upper triangular. Thus any operator X in
the commutant of such an operator, say T, must also be upper-triangular. In particular, X; ;
belongs to the commutant of S;;,0 < i < n — 1. Since S;; is a homogeneous operator in
B, (D), it follows that the commutant of S; ; is isomorphic to H (D), the space of bounded
analytic functions on the unit disc . Consequently, for any @ € H *(ID), the operator
@(S;;) is in the commutant A (S;; ). In the following lemma, we give a description of the
commutant of T. We will construct an operator X in the commutant of T, where the diagonal
elements are induced by the same holomorphic function @ € H (D), that is, @(S;;) =
Xi,i'
Lemma (6.3.17)[199]: Let t be a quasi-homogeneous holomorphic curve with atoms

t,0 <i <1 LetT = ((Si,j)) be its atomic decomposition. Suppose that X =
ij<1
((Xi,j)) isin A’ (T). Then there exists @ € 3 (D) suchthat X;; = @(S;;),i = 0,1
ijs1
and we also have that
S0,0X0,1 — X0151,1 = Xo0,0501 — So1X1,1 = 0.
In particular, X, ; can be chosen as zero.

Proof. Set X = ((Xi’j)) € A'(T), we have the following equation

i,j<1
<SO,0 50,1) <X0,0 X0,1 > — <X0,0 X0,1> (SO,O SO,l)

0 Sl,l Xl,O X1,1 Xl,O Xl,l 0 51,1
By Lemma (6.3.1), we have X; o = 0. Then

S0,0X01 t So1X1,1 = Xo,0501 + Xo0,151,1,
and

S0,0X01 — X0151,1 = Xo0,0501 — So,1X1,1-
Note that there exist holomorphic functions @, , and @, ; such that

Xo,0(to) = Dopoto, X11(t1) = D11y,
and by the definition of S, ,, there exist constant function @, ; such that
So,1(t1) = @g,1to-
Then
XO,OSO,l(tl) - SO,1X1,1(t1) = (Q)O,O@O,l - ®1,1®0,1)tOJ

and X 0So1 — So1X11 also intertwines Sy 5 and S, ;. Taking X, 0So1 — So,1X11 the place
of Sy 1 and using the proof of Lemma (6.3.14), we might deduce that
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S0,0%01 — X0,151,1 = X0,0501 — So1X11 = 0,D00 = Dy
Thus we can choose X,; = 0 and there exists a holomorphic function @ = @q, =

D11y € H (D) suchthat X = (XO'O 0) where X;; = @(S;; ) satisfies that

SO,O 50,1 XO,O 0 _ XO,O 0 SO,O 50,1

08y, J\0Xyy)  \oXxi, J\ 08y /)
Lemma (6.3.18)[199]: Let t be a quasi-homogeneous holomorphic curve with atoms ¢;, 0 <
i <n— 1 Let T =((S;;)) be its atomic decomposition. Let ¢ € H*(D) be a
holomorphic function. If A(t) < 2, then there exists a bounded linear operator X €
cﬂl (T) SUCh thatXi’i = ®(Si,i)'i = O, 1,"',Tl — 1.
Proof. Firstly, by Lemma (6.3.17), the lemma is true for the case of n = 2.Forn = 3, let

XO,O XO,l XO,Z
X = 0Xy1X12 | €A (E). Then we have
00X,,
SO,O 50,1 SO,Z XO,O XO,l XO,Z XO,O X0,1 XO,Z 50,050,150,2
0 51,1 51,2 0 X1,1 X1,2 0 X1,1 X1,2 0 Sl,l 51,2 =
00S,, 00X,, 0 0 X, 00S,,

and it follows that
(1) Soo0Xo1 + So1X1,1 = X0,0S01 + Xo151,1,thatis, So0Xo1 — X0151,1 = X0,0501 —
So01X1,15
(i) S11X12 + S12X22 = X11512 + X125z, thatis, Sy 1 Xy, — X128, = X11512 —
Sl,ZXZ,Z'
By Lemma (6.3.17), we may choose, without loss of generality, X,; = 0 and X;, = 0.
And there exists @ € H* (D) such that X;; = @(S;;),i = 0,1,2. It is therefore enough
to find an operator X, , satisfying
S0,0%02 — X02522 = Xo0,0502 — So2X22 -
Clearly, we have
(X0,050,2 = So,2X22) (L2 (w)) = Xo,o(mo,zt(gl) (w)) — So2(B(w)t,(w))
= o2 (P )to ()™ - me0(w)ts? (w)
= mo,z(Z)(l)(w)to(w).
We therefore set X, , be the operator: X, ,(t,(w)) = mg,0® (w)t{" (w).
To complete the proof by induction, we assume that we have the validity of the conclusion
forn = k — 1. Thus we assume the existence of a bounded linear operator X = ((Xi,j))

SUCh that ((Sl,])) ((Xl,])) ((Xl,])) ((Sl,])) WhereXi’i - ®(Si,i) and Xi,i+1 - 0
And there exists [7; suchthat X, ; (t; ) = 225" 17,0079t To complete the inductive

r=1
step, we only need to find the operator X, , satisfying the following equation:
k-1 k-2
So,0X0k — XoxSkk = Xo0S0k — SoxXkr + (z Xo,iSik — 2 So,iXix) (91)

i=2 =2
Note that the induction hypothesis ensures the existence of constants cg, (depending on
m, ;) such that
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k-1 k-2 k-1

k_ —_
(Xo0,050k — SoxXkr + E Xo,iSik — E SoiXik)(ty) = E Cg,k@(s)té ey
= .

i= =1 s=2
Now, suppose that X, () = St 15,09 7, where the constants L5, are to be
found. Then we must have
k-1
k_
(SooXor = XoaSed) (@) = > 5,89 (5 (w)
s=1

It follows that if we choose 5, = % then X, , with this choice of the constants validates
equation (91). This completes the induction step.

In particular, when u; ; are all chosen to be 1, then m;; = —1, that is, S;; (¢;) =
—tJ7V  In this case, Xox(to) = — XX @()tSTV . Now, if my; = —1,i,j =
0,1,---,n — 1, then by a similar argument, we have
j—i-1
X, ()= - 2 o® tU7 G j = 0,1,-,n — 1. (92)

s=1

Theorem (6.3.19)[199]: Suppose t and t are quasi-homogeneous holomorphic curves.

(i) If A(t) = 2, then tis similar to the n —fold direct sum of the atoms t, @ t; P---P
tn—1-

(i) IfA(t) = A®) < 2and 6;;41 = 0341, = 0,1,+-,n — 2,then ¢t and  are similar
if and only if they are equal.

Proof. First, if “A(t) = 2”, then the first conclusion of the theorem follows from Theorem
(6.3.16). So, it remains for us to verify the second statement of the theorem, where A(t) <
2

Let T and T be the operators representing t and £ respectively. Recall from Proposition
(6.36) that S;; (t;) = my; tV™"", 8 (t;) = my; V™" . Up to similarity, we can

i i

assume that m; ;,, = #;;41. Then T and T have the following atomic decomposition:

50,0 50,1 50,2 SO,n—l
0 S11 Si2 “ Sinaa
T =| : : and
0 w0 Sn-2n-2 Sn-2n-1
0 O 0 Sp—1n-1
So0 So1 €025,  Con—1S0n-1
) 051151, C1n-151,n-1
7= . . . .
0 0 Sn2n—2 Cn-2n-1Sn-2n-1
0 0 0 Sn-1n-1

where ¢;; = % Now it is enough to prove the Claim stated below.
LJj

Claim: If T ~ T,then¢;; = 1,i,j = 0,1, ,n.

Consider the following possibilities:

(HA(t) € [0,1)
(idn = 3,4(0) € [1,2); n > 3,A(t) € [13)
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(in = 4,4 € [2,2);n > 4,40 € [5.2)
(v)n =540 € [2,2);n> 540 € [5.2)

The method of the proof below combined with Lemma (6.3.18) and equation (92) completes
the proof in the remaining cases.

In what follows, without loss of generality, we will always choose m; ; = —1,i,j = 0,1,
-,n — 1.
Case (i): By Proposition (6.3.7), we have

SO,O 50'1 O O

S11 812 0

0 Sn—z,n—z Sn—l,n
Sn:l,n—l
In this case, we clearly have K, = K and 6;;.; = 6;;41,0 = 0,1,--,n — 1.
Case (ii): By Proposition (6.3.7), we have
S0,0 So1 Soz =+ 00
/ S11 51,2513 =+ 0 \l

T = . . . :
\ 0 Sn—Z,n—Z Sn—l,n /
Sn—l,n—l

and
50,0 50,1 €0,250,2 0 - 0
( S11 51,2 €13513 0 \
= _ . . . : |
| Sn—Z,n—Z Sn—z,n—l Cn—Z,nSn—Z,n |
\ 0 Sn—l,n—l Sn—l,n
Sn,n
In this case, by Proposition (6.3.7), we first assume that n = 3. By Lemma (6.3.1), we have
50,0 S0,1 50,2 Xo,0 Xo0,1 Xo,2 Xo,0 Xo0,1 Xo,2 50,0 S0,1 €0,250,2
0511512 0Xy1 X1 = 0Xy1 X1 051151 (93)
005,, 00X, 00X;, 005,

By Lemma (6.3.17) and Lemma (6.3.14), without loss of generality, X, and X; , may be
chosen to be zero. Therefore we have the equalities:
Sii+1Xirri+1 = XiiSiir, i = 0,1,and
SO,OXO,Z + SO,ZXZ,Z = CO,ZXO,OSO,Z + XO,ZSZ,Z'
Note that A’ (S;;) = H (D), by Lemma (6.3.17), we can find a holomorphic function
¢ € H=(D)suchthat X;; t; = @t;. Since X; ; is invertible, @(S; ;) is also invertible. Note
that

(€0,2X0,050,2 — S02X22)(t2) = Co,zxo,o(_t(()l)) — S0,2(0t;)
= (C0,2—1 )So,zm(sz,z)(tz) - C0,250,151,2¢(1) (82,2) (t2). (94)
By Lemma (6.3.15), we have c,,S,:51 .0 (S,,) € rangs, s,, - From (94), it follows
that
(Co,z - 1)50,2®(52,2) € rands,,s,, -
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By Lemma (6.3.7), So, € ran 05,0,
A’ (S, ), we have

s,, - Since B(Syz) is invertible and Pp(Sz2) €
S0,290(522) € ran 050,522

it follows from Theorem (6.3.14). This shows that ¢, = 1.

In the following, we will prove the general case. Now suppose that we have proved Claim

XO,O 0 - XO,k
1forn = k — 1.PickX = 0){};1.“".'“).(.1."‘ such that XT = TX. Then it follows that
00 - X
Xo((5iy Do) = (501 o) Yo XaCCBus )iy = (1)) %o
where
/X(()),o X(il X)l((l)::l\ Xii 0 o Xpp
Xo=| =) T e
\0 0 Xk-1k-1 () 0. Xk,];

Since X is invertible, X, and X; are both invertible. By the induction hypothesis ¢; ;., =
1,i = 0,1,--,n — 3.

Case (iii) and Case (iv): By Proposition (6.3.7), T = ((S;;)) ,S;; = 0,j — i = 4 and
T =((Si),S; =0,j —i = 5. Following the proof given above, by Proposition
(6.3.7), we only need to consider the case of n = 4 and n = 5. For case 3, we only
consider n = 4 and the other cases would follow by induction. In this case, we have

/50,0 So1 Soz 50,3\ /Xo,o 0 Xoo X0,3\
0 S11 S12 S13 0 X117 0 Xi3

\0 0 &25%2/\ 0 0 X ()/
0 0 0 Sss 0 0 0 Xss

XO,O 0 XO,Z X0,3 SO,O SO,l SO,Z CO,350,3
0 X1,1 0 X1,3 0 51,1 51,2 51,3 _
00X,, 0 00S,, Sy3
000 X33 000 S33
XO,O 0 XO,Z SO,O 50,1 SO,Z X1,1 0 X1,3
It follows that 0X,,0 commutes with | 05515, and 0X,,0
00X,, 00S,, 00 X35
Sl,l Sl,2 51,3
commutes with | 0522 S23 ). By equation (92), we see that X, , and X; ; are equal to
008,

S0.20w(S2,2) and S, 55 (S3,3)- Note that

SO,OXO,S + SO,1X1,3 + SO,3X3,3 = C0,3XO,OSO,3 + XO,ZSZ,B + XO,353,3' (95)
Then

XO,ZSZ,3 - SO,1X1,3 = SO,Z Q)(l)(SZ,Z)SZB - SO,151,3 Q(l)(SB,B)

= (50,252,3 - 50,151,3)®(1)(S3,3) =0
So we only need to consider
SO,0X0,3 - X0,353,3 = CO,BXO,OSO,B - SO,SX3,3'
Since
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(co3X00S03 — So3X33)(t3) = (1 — Co,3)®t<gz) — 2¢p3 Q(l)t(()l) — o3 9Pt,,
we obtain
€0,3X0,0503 — S0,3X33

= (C0,3 - 1)50,3 ? (53,3) + 2¢0,350,151,3 g (53,3)

+ Co,350,151,252,3®(2)(53,3)-
By Lemma (6.3.15) and equation (95), we have

2C0,350,151,3®(1)(53,3) + C0,350,151,252,3®(2)(53,3) € Ran050’0‘53’3.
Since @(S3 3) is invertible, we deduce that
(coz = 1)So3 € ranas, s, , -

Note that Sy 3 & ranog, s, ,,Wehave cys = 1.Forcase 4 withn = 5, we have

S0,0 So,1 50,2 50,3 So,4 Xoo O Xo2 Xo3Xoa
S11 S12513 514 X11 0 Xi3Xi4
S2,2 S2,3 524 | X2 0 Xy4 |

’

\ 0 S35 S3a \ 0 X35 O /
544 X4,4-

XO,O 0 XO,Z X0,3 X0,4 SO,O SO,l SO,Z 50'3 CO,4SO,4-
/ X1,1 0 X1,3 X1,4- \ / 51,1 51,2 51,3 51,4- \
= | Xz,z 0 X2,4 | 52,2 52,3 52,4 |
\ 0 X33 0 \ 0 S33 S34 /
X4-,4- 54,4

Therefore ((Xij))4x4 commutes with ((Si’j))4><4 for i,j = 0,1,2,3 and ((Xij))4x4

commutes with ((Si,j)) for i,j = 1,2,3,4. Then from Lemma (6.3.18), we find that

4X4

X, () # (0,4). We also have
S0,0X04 — Xo0,4544
= (€0,4X0,0504 — So0aXs4) + (Xo2524 + X03534) — (So0,1X14
+ S0,2X2.4)- (96)
By Lemma (6.3.18), we have
Xo02S24 = So2X24 = S020M(S22)S24 — S025240W(S44) = S0,252355,40P (Ss4).
Lemma (6.3.18) together with the equation (92) gives
X0,3 = 50,252,3®(2)(53,3) + 50,3(2)(1)(53,3):)(1,4 = 51,353,4®(2)(54,4) + 51,4@(1)(54,4)-
Note that 50’252’3 = 50’131’3 and 50’353’4 = 50’151’4, we aISO have
X03534 — S01X1,4

= (5025238@(S35) + S028M(S33)) S34 — S01(51,3593,4)8 (S44)
+ $140W(544)) = 0.
Since
(co4X00S04 — SoaXaa)(ts) = €0aX00S04(ts) — Soa(Dts)
_ (1 _ Co,4)®t(§3) _ 3c0,4®(2)t(§1) _ 3(:0,4(2)(1)t(§2) _ Co,4¢(3)to;
we also have
C0,4X0,0504 — S0,4X4,4
= (cos — 1)S04®(Ss4) +3co,450,151,3®(1)(53,3)
+ 3045015125230 (S33) + €0.450151,252390 (S33).
270



Combining Lemma (6.3.15) with the equation (96), we obtain

3C0,450,1S1,3®(1) (53,3) + 300,450,151,252,3®(2) (53,3) + C0,450,151,252,3¢(3)(53,3)

€ 1an 6Sy0,S44,5025235340P (S44) € TaNGSy, Sas -
Then it follows that
(cos = 1)SpaB(Ssa) € Tan 6o, Sas -
Note that @(S,4) is invertible, therefore
(60,4 — 1)50’4 € ran o,

Since Sy, & ran Sy, S44, it follows that ¢y, = 1.

We give two different applications of our results. First of these shows that the
topological and algebraic K —groups defined must coincide. Second, we show that the
Halmos’ question on similarity has an affirmative answer for quasi-homogeneous operators.

We begin with some preliminaries on K — groups. Let t: 2 — Gr(n,H) be a

holomorphic curve. Recall that the commutant A’ (E;) of such a holomorphic curve t is
defined to be

Sa4

A (E) = {A eL(H): At(w) S t(w),w € 0}.
Definition (6.3.20)[199]: For a holomorphic curve t: 2 — Gr(n,H), the Jocaboson
radical Rad A’ (E;) of A’ (E;) is defined to be

{S € A" (E)loq (E)(SA) = 0,4 € A" (B},

where a4, (E;)(SA) denotes the spectrum of SA in the algebra A’ (E,).
The discussion below follows closely in [58] of the first two authors.
Definition (6.3.21)[199]: A holomorphic curve t : 2 — Gr(n,H) is said to have a finite
decomposition if it meets one of the equivalent conditions given in [58].
Suppose {P;, P,,-, P, } and {Q4, Q,,":-, Q,,} are two distinct decompositions of t.
If m = n, there exists a permutation IT € S, such that XQu;X~* = P; for some
invertible operator X in A'(E;),1 < i < n, then we say that t (or E,;) has a unique
decomposition up to similarity.
For a holomorphic curve, f : 2 - Gr(n,H), let M (A’ (E.)) be the collectionof k X k
matrices with entries from A’ (E;). Let

e}

Mo E) = ] e @,

and Proj(M, (A’ (E;))) be the algebraic equivalence classes of idempotents in
My (A" (E.)). If p,q are idempotents in Proj(A’ (E;)), then say that p ~;; q if p @
r ~4 q @ r for some idempotent r in Proj (A’ (E;)). The relation ~, is known as stable
equivalence.

Let X be a compact Hausdorff space, and § = (E,m, X) be a (topological) vector bundle. A
well-known theorem due to R. G. Swan says that a vector bundle ¢ = (E,m, X) is a direct
summand of the trivial bundle, that is,

§Dn~=&xmX)

for some vector bundlen = (F, p, X).

None of what we have said so far applies to holomorphic vector bundles over an open
subset of C since they are already trivial by Graut’s theorem. However, the study of
holomorphic vector bundles over an open subset of C is central to operator theory. In the
context of operator theory, as shown in the foundational of Cowen and Douglas [61], the
vector bundles of interest are equipped with a Hermitian structure inherited from a fixed
inner product of some Hilbert space H. This makes it possible to ask questions about their
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equivalence under a unitary or an invertible linear transformation of 7. In [61], questions
regarding unitary equivalence were dealt with quite successfully while equivalence under
an invertible linear transformation remains somewhat of a mystery to date. However, we
can ask if the uniqueness of the summand, which was a consequence of Swan’s theorem,
remains valid of Cowen—Douglas operators.

We will need the following lemma.

Lemma (6.3.22)[199]: Let E, be a quasi-homogeneous bundle. Then A’ (E.)/
Rad(A' (E;)) is commutative.
Proof. Let
S={Y:0)=0Y € A (E)}
Claim 1: S is an ideal of the algebra A’ (E}).
By Lemma (6.3.13), Y is upper-triangular if Y € S. Since the spectrum o(Y ) of Y is {0},
the operator Y must be of the form
/ 0 Yo. Yoo oo Yon-1 \
0 0 Y, - Yin-1
Y = | : ,
\0 00 Ve )
0 0 0
and it follows that each quasi-nilpotent element in the commutant of the holomorphic curve
t of rank one is zero. Using Lemma (6.3.13) again, each element X € A’ (E,) is upper-
triangular. Thus o(XY ) = o(Y X) = 0. This completes the proof of Claim 1 and S =
Rad(A' (E})).
Claim 2: A" (E;)/Rad(A' (E;)) is commutative.
Note that if X € A’ (E,) is (block) nilpotent, then X € S.A simple computation shows
that A" (E;)/Rad(A" (E;)) is commutative.

For any holomorphic curve t, we let t n denote the n —fold direct sum of t. For any
two natural numbers n and m, let E,. and E be the sub-bundles of E;» and E =, respectively.
If m > n, then both E,. and E can be regarded as a sub-bundle of E;m.

Two holomorphic Hermitian vector bundles E,. and E are said to be similar if there exist an
invertible operator X € A’ (E;n) such that XE, = E,. Analogous to the definition of
Vect(X), we let Vect®(E,) be the set of equivalence classes E, of the sub-bundles E, of
Emn,n = 1,2,--.An addition on Vect®(E,) is defined as follows, namely,
E. + E_s = E. @ Ei
where E, and E; are both sub-bundles of E;. Now, the group K, (E;) is the Grothendieck
group of (Vect®(E,), +). We have the following theorem.
Lemma (6.3.23)[199]: Let E; be a quasi-homogeneous bundle. Then
Vect(A' (E;)) = Vect(A' (E;)/RadA' (E,)).
Proof. Note that M,,(A' (E;)) = A (@™ E,).Letp € M, (A (E;)) be an idempotent.
Defineamap o : Vect(A' (E;)) — Vect(A' (E;)/RadA" (E;)) as the following:
o[P] = [n(P)],
wheret : A’ (E;) - Vect(A' (E;)/RadA' (E.)).
Claim o is well defined and it is an isomorphism.

If [p] = [q], wherep € M,(A' (E;)))andq € M,,(A" (E.)) are both idempotents,

then there exists k = max{m,n} and an invertible element u € M, (A’ (E.)) such that
u(p @ ok-m Jul =q @ ok-m)
Thus we have
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rwWn(p & 0¢ ™ )rw)™? = mulp & 0%k ™ )ut) = n(qg & 0k™),
That means [ (p)] = [m(q)], and o is well defined.
Now, we would prove that ¢ is injective. In fact, ifp € M,,(A' (E;))andq € M, (A (E;))
are idempotents with

olp] = [r(@)] = [r(@)] = olql,
then we can find k > max{m,n} and an invertible element w(u) € My (A (E;))/
Rad (M (A’ (E.))) such that

() (n(p & 0%~ ))w(w)™ = m(q @ 0%-™),
Since m(u) is invertible, there exists m(s) € Rad(M,(A' (E;)))such that m(u)™! =
n(s). Then we have
us =1 — Ry,su = I — R,,
where Ry, R, € Rad(My (A" (E.))). Since a(R,) = o(R,) = {0}, then us, su are both
invertible. Therefore, u is invertible and thus

ru(p ® 06 Jut) = 7@ (n(p & 0% ))n@)™ = n(qg & 0%™).
Thus
u(p ® 0k )yt = g @ 0%™ + R
for some R € Rad(My(A' (E)))).Let W, = 2(q ® 0% ™) —1.Since o(Q D
0k-m)) < {0,1}, then W, is invertible. Since we have R € Rad(M,(A' (E;))) and
Wit € My(A' (E))), then RW; 1 € Rad(My(A' (E.))),sol + RW; lisinvertible. Set
W=2q®0*™)—T+R=W1+R=(U+RW W,
and W isinvertible. Sincep @ 0%~™ s an idempotent, it follows that u(p @ 0%~™)u1
and hence (¢ @ 0%=™)) + R is an idempotent as well. Thus
(a ® 0%™)" + (g ® 0%™)R + R(q @ 0%"™) + R
= (q @ 0™ ) + R.
Similarly, g @ 0%~™ is an idempotent, therefore
(g @ 0%™)R + R(q @ 0k"™ ) + R? = R.
So we have
W((g & 0% ™ + R)
=(q @ 0%"™) + R(qg ® 0%k™) + 2(q @ 0% ™)R — R + R?
= (q ® 0%"™) + (¢ ® 0%“™)R
= (¢ ® 0w
and
u(p D 0("‘"))u‘1 = (q D O(k‘m)) +R =W(q & O(k‘m))W‘l.
It follows that p ~, g, and ¢ is injective. Finally, we show that o is surjective. For each

A’ (Ep) . M”(CA,(Et))
[m(p)] € Vect (—Radc/l’(Et))Wlth n(p) € Raa(Mn(A' (E))’
m(p), we have

p € Mp(A'(E,))and m%(p) =

p’ — p = Ro,Ry € Rad(M,(A' (Ep))).
Note thatp = B + R,where B € M, (A’ (E,)) is a block-diagonal matrix over C and R
isin Rad(M,,(A' (E))). Then t(p) = n(B) and
Ry =p>—p=(B+R?> - (B+R)=B>*—-B+ (BR + RB + R*> — R).
Since Rad(M,,(A' (E;))) is an ideal of M, (A’ (E.)), then we have
B? — B € Rad(M, (A" (E\))).
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Since B is a block-diagonal matrix, then we have B is also an idempotent. Then we have
o([B]) = [m(p)].
That means o is also a surjective. And we also can see that o is homomorphism. Then o is
an isomorphism and
Vect(A' (E;)) ~= Vect(A' (E;)/RadA" (Ep)).

Proposition (6.3.24)[199]: Let E; and E; be two quasi-homogeneous bundles with
matchable bundles {E,, }:1:; and {Ej, }?__01 respectively. If A(t) < 2, then E; and E; are
similarity equivalent if and only if

Ko(A' (Ey © E¢)) =L
If A(t) = 2,then E; and E; are similarity equivalent if and only if

Ko(A' (E, @ E;)) = 7™
Proof. Suppose that A(t) < 2. Let

/50,0 So,1 50,2 SO,n—l\

| S1,1 51,2 Sin-1
T = i : and X
N S,
\ Sn—l,n—l g. L
nn
/Xo,o Xo,1 Xo2 XO,n—l\
X11 X1, Xin-1
y _'1
\ Xnoin-1y "

Claim 1. If XT = TX, then we have X;; = @(S;;) forany i, where @ € H*(D). In fact,
foranyi = 0,1,-,n- 1, we have
StiXii+1 T SiivrXivri+r = XiiSiivr + Xiir1Sivni+1
and
StiXii+1 — Xii+1Sivri+1 = XiiSiiv1 — Siiv1Xiv1i41 = 0.
Since X;; € A’ (E, ) and each E, induces a Hilbert functional space H; with reproducing
1 then we have A’ (E;,) = H (D). Then there exists @;; € H (D) such

kernel ———
erne (1-zw)ti’

that

Xii= 0(Si: )i = 0,1,,n — 1.
Thus we have

0:i(Sii)Siiv1 — Siiv1Pivr,iv1(Sivrivr) = 0.

Since S;;Sii+1 = Sii+1Si+1i+1, then

Sii+1(Dii — Div1i+1) Sivriv1) = 0.
Note that S; ;1 has a dense range, then we can set

@;; = 0,i =01-,n— 1

Claim 2: A’ (E;)/RadA' (E;) = H*(D).
Recall that RadA' (E;) = {S € A" (E)|0,4;,)(SS") = 0,5 €A (E)}. Any X €
A' (E;) is upper triangular by Lemma (6.3.13) and A’ (E;) /Rad A’ (E;) is commutative by
Lemma (6.3.22). Therefore if Y is in Rad A'(E;), then we have
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/0 Yo Yoz Yo,n—l\

r= Y1,2 Yl,n—l

. vy
\ 0 . 0 nol, /
Defineamap I' : A’ (E;)/RadA' (E;) — H*(D) by the rule:
r(x) = g,wherex = ((X;;)) Xy = 9(Si0).

nxn

Obviously, I' is well defined and if I'([X]) = 0, then @ = 0. Then X;; = 0, it follows
that X € RadA' (E;) and [X] = 0.So I is injective.
Forany @ € H* (D), set X;; # @(S;;),i = 0,1,2,--,n — 1. By Lemma (6.3.18), we

can construct the operators X; ; ,j # isuchthatX := ((Xl-, ])) € A’ (E,). That means

nxn

I is surjective. Then I’ is an isomorphism and
A' (E)/RadA' (E;) = H*(D).
By [58] and ([204]), we have
Vect(A' (Ep)) = N,Ky(A' (Ep)) = Z.
By [58], we have E; has a unique finite decomposition up to similarity. Similarly, E; also
has a unique finite decomposition up to similarity.
If E, ~ Ez then(t @ &) ~ t®.So we have
Vect(A' (t @ ©)) = Vect(A' (tP)) = VectM,(A' (t))) =N
And
Ko(A' (t b t)) =Z.
On the other hand, note that ¢ and ¢ are both strongly irreducible. If K,(A' (t @ t)) = Z
and Vect(A' (t @ t)) = N, then by [58], we have t ~ t, otherwise we will have
Vect(A'(t @ ) = N2
This is a contradiction.
If A(t) = 2, then by Theorem (6.3.16), we have
E, ~ E;y © E;; DD E, ,and Ez ~ Ef D E;, D Et,_,.

By [203] and [204], we have that E;, ~ E if and only if

F® E ~ ED © D @@ B
and in this case, it follows from [203] that

Ko(A'(E: @ Ez)) ~= L™
If E; is not similar to E;, then there exists {iy, iy - i,-1} = {1,2,-,n — 1}and {j,, ji, "
yn-1} = {1,2 ---,n — 1} such thatEtim ~ Eg,,,m =0, 1,--, Ll <n— 2.
Note that none of the holomorphic curves Et;, ,Et;,, B, Is similar to any of the
E¢, ,E¢, ,...,Eg . . Thus, we have
E, ® E; ~ E;, ®® EtEjZO) o) Et o, DD Etﬁi) @@ E;,_, @® Etil+1 P
® Etin—l )
By [203], we have that
Ko(A'(E @ Eg)) ~=122""""%
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Since2n — | — 1 > n, the proof is complete.
Theorem (6.3.25)[199]: For any quasi-homogeneous holomorphic curve t with atoms
t;,0 < i < n — 1,we have that
(i) E; has no non-trivial sub-bundle induced by a non-trivial idempotent of A’ (E;)
whenever A(t) < 2,and
(i) if A(t) = 2, then for any direct summand E,. of E;, there exists a unique subbundle Ej,
up to equivalence under an invertible map, such that E, @ E. is similar to E,.
Proof. When A(t) < 2, by Theorem (6.3.16), we have E; is strongly irreducible. So there
exists no non-trivial idempotent in A’ (E;), which is the same as saying that the vector
bundle E; has no non-trivial sub-bundle could be induced by a non-trivial idempotent of the
commutant of E;.
When A(t) = 2, by Theorem (6.3.16), we have
E, ~ E, ® E,, ®-® E,_, .

Since A’ (E, ) ~= H*(D), we have

A'(E) ~=H>D)™,
and by [58],

Vect(A' (E,)) =N K (A (E,)) =ZM™ ,

Then by [58], we have E; has a unique finite decomposition up to similarity. Then for any
non-trivial reducible sub-bundle of E; denoted by E,., with

Hy = SpanyeolEr(w)}.
Let P. be the projection from H to H,. Then

E. ~E & (E.© E) = RE & (I — RB)E,.
Let
Py, : H - H; := SpamyeplE;, (W)}, i = 0,1,-,n — 1

be projections in A’ (E, ). Then there exists an invertible operator X such that E, =
X(Di-o Etx, )- Suppose that

@71':01 Eti = (EB?:o Etki) D (@?;dg Etzi)'
SetE;, = X(D}, Etzi ), then we have

E, ® E, ~ E,.
If there exists another bundle E such that
E, ® E, ~ E,.

Since E, has a unique finite decomposition up to similarity, then we have
By ~®Ls By, ~ Es.
Theorem (6.3.26)[199]: K°(E,) = Ky(A' (E,)).
Proof. Let P € B,(A' (E;)) = P(A' (E)) be an idempotent. Then we have PEtn be a
sub-bundle of E» . Define map

v (A (E)) -»Vv°

(Ev)
with I'([plo) = PE .

First, we prove that I" is well defined. In fact, for any P ~ Q € [P],, there exists
positive integer n such that P,Q € A’ (E;» ).SinceQ = XPX 1, X € A' (Ex ), thenwe
have

QEtn == XPX_lEtn ~ PX_lEtn .
And note that X, X~ € A" (E ), then we have
X 1t"(w) = t"(w),foranyw € 0.
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Thus
QE;n ~ PXEn ,
and QE;n = PE: .So I is well defined.
Second, we prove that I' is surjective. Suppose that E, is a sub-bundle of E ;» with dimension
K, where n is positive integer. Suppose that

7, 1= M ¥ L (w0), v2 (), v (W)},

where K € N and B. is the projection from H to #,., then we have P. € A’ (E:» ) and
P.En ~ E,.

Then it follows that I is surjective.
Finally, we prove that I' is also injective. Let P,Q € A’ (E ). Suppose that there exists an
invertible operator X € A’ (En ) such that
XPE;n = QEn.
Let {ps, P2, Pm} be a decomposition of P. Then {X, X~', X, X~*,--,X, X'} be a
decomposition of Q. In fact, we have
X, XT'QEm + X, X'QEm + - +X, X 'QE¢n
= Xp Een + Xp Een + - +X, Exn = XPEin = QEn.
Suppose that {p,+1, Pm+2, > P } AN {Gm+1, Gm+2,* » qn } D€ the decompositions of (I —
P)En and (I — Q)En respectively. Then we have
{p1, 02 oy} and (Xps X5 Xp X 74 X0 X ™Y Gty Gmazr 5 A )
are two different decompositions of E;» . By the uniqueness of decomposition of E;» , there
exists an invertible bounded linear operator Y € A’ (E.n) such that {Y~p;Y} is a
rearrangement of
Xp XL XD X7 X0 X ™Y Gt Qa2 O 3
By [58]) (or [204]), for any v € {m + 1,m + 2,---,N}, we can find Z, in
GL(L(q,H,p,H))and p,, ,v' € {m + 1,--,N} such that
Z,q,Ein = p,Ein,and vy = vy, whenv, = v,.

m N
7= z 7, + z 7, € GLA' (Exn),
k=1

v=m+1

Note that

and
ZPZ1 = Q.
It follows that I" is injective. Since I is also a homomorphism, then we have
Vect®(E,) = Vect(A' (Exn),K°(E) = Ko(A' (Ep)).
The well-known question of Halmos asks if o : C[z] — L(H) is a continuous (for

p € C[z], the norm p = sup |p(z)|) algebra homomorphism induced by an operator S, that
z€D

IS, o(p) = p(S), then does there exist an invertible linear operator L and a contraction T
on the Hilbert space H so that S = LTL™. After the question was raised in [201], an
affirmative answer for several classes of operators were given.

A counter example was found by Pisier in 1996 (cf. [207]). It was pointed out in Koranyi
[183] that the Halmos’ question has an affirmative answer for homogeneous operators in the
Cowen-Douglas class B, (D). Thus it is natural to ask if the Halmos’ question has an
affirmative answer for quasi-homogeneous operators. If A(t) = 2, the answer is evidently

13 2.
.

yes
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In this case, the quasi-homogeneous operator T is similar to the n — fold direct sum
of the homogeneous operators T; (adjoint of the multiplication operator) acting on the
weighted Bergman spaces A4) (D),i = 0,1,...,n — 1. Now, if 1, > 1, this direct sum
Is contractive and we are done. If 4, < 1, then T, is not even power bounded and therefore
neither is the operator T. So, there is nothing to prove when 1, < 1.

If A(t) < 2, then the operator T is strongly irreducible. Therefore, we can’t answer

the Halmos’ question purely in terms of the atoms of the operator T. Never the less, the
answer is affirmative even in this case. To show this, we first prove the following useful
lemma.
For i = 1,2, let H; be a Hilbert space of holomorphic function on D possessing a
reproducing kernel, say K;, and T; be the adjoint of the multiplication operator on H;.
Assume that H, € H; and lett: H, — H; be the inclusion map. Then the adjoint * of
the inclusion map has the property * (K, (-, w)) = Ko(-,w),w € D.

Lemma (6.3.27)[199]: Assume that K;(z, w) = — =01 Suppose that S : H,, —

(1—zw) i
H; is a bounded linear operator with the intertwining property T,S = ST;. Then there
exists a holomorphic function @ such that S = @(Ty)¢".
Proof. The operators T;; = 0,1 are in By(ID). If S:H, — H; is a bounded linear
operator and T,S = ST, then there exists a holomorphic function i such that S* = M,
This is easily proved as in [72]. Let @ be the holomorphic function defined on the unit disc
by the formula @(w) = Y(w),w € D.Forany f € H,, we have that
f(@), 8(To)* (Ki(z, w)) = (f(2), 8(@)Ko(3,1)) = B(@0){f(3), Ko(z, w))
= (f (), My(Ki (3, w))) = (f(2),S(Ki(3,w))).
Consequently, S = @(Ty)t".
Lemma (6.3.28)[199]: Suppose that t is a quasi-homogeneous holomorphic curve. Assume
that A(t) < 2and A, = 1. Then the operator T is not power bounded.
Proof. The top 2 X 2 block in the atomic decomposition of the quasi-homogeneous operator

T is of the form (Tg 5791'1) . As always, we assume that the operators T, and T, are the

adjoints of the multiplication operator on the weighted Bergman spaces A“) (D) and
A (D), respectively. The operator So,1 has the intertwining property ToSo1 = So175.
Let ¢ denote the inclusion map from A“)(D) to AX(D). Then o (t,))(w) =
to(w),w € D, and the operator Sy, must be of the form @(T,)* for some holomorphic
function @ on the unit disc D, as we have shown in Lemma (6.3.27). Indeed, S 1 (t; (w)) =
D(w)t; (w) = B(To)e (¢ (w)).

Without loss of generality, we assume that @(w) = .72, @;w; and @, # 0. For j =
0, 1, the set of vectors ey") = Ja,(4) z%,¢ > 0, is an orthonormal basis in Ax(’lf)(]])) ).
Then we have that

_ A A
To ! (efg 0)) Hf —o—n+1 Wi(Ao)es—ni1(Ao), 501( ( 1)) = @

Consequently,

MiZgw;(Ay)e 5 (%0)
H{) o wi4o) “

H{) 01 M
nTg ™" Soq (ef’((’h))) - H?)_glwt'((/lo))

It is then easily deduced that |[nT§ ™ Sy || » 0asn — oo.

€r—n+1 (AO)'
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To Soa
0T

n

Let T|y « 2 denote the top 2 X 2 block ( ) In the operator T. Since T/ =

("8 e Ti”) ,and [[T? || = (|73 Soql, it follows that [|TT: || — 0 asn— oo.
Clearly, ||T™|| = ||T|"2x2|| completing the proof.

Since a quasi-homogeneous operator for which 4, < 1 can’t be power bounded, the
lemma we have just proved shows that if T is quasi-homogeneous and A(t) < 2, then the
operator T is not power bounded. Therefore we have proved the following theorem
answering the Halmos’ question in the affirmative.

Theorem (6.3.29)[199]: If a quasi-homogeneous operator T has the property ||[p(T)llo, <

K|Ipllwp p € C[z], then it must be similar to a contraction.
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List of Symbols

Symbol Page
Re : Real 1
arg : argument 1
sup : Supremum 1
diag : diagonal 2
£P : Lebesgue Space of sequences 14
Im . Imaginary 15
max : Maximum 20
inty; : bounded domain on R surrounded r; 22
min : Minimum 55
Gr : Grassmann 55
dim . dimension 66
ran . range 66
Ker . Kernel 66
&) : Direct Sum 66
proj . projection 67
£ : Hilbert Space of Sequences 70
rad - radical 76
tr . trace 80
hom : homomorphism 80
Hol : Holomorphic 83
hHrb : holomorphic Hermitian vector bundles 85
cl . closure 95
det . determinant 168
® : Tensor Product 168
loc - local 196
ind . index 228
Mob : Mdbaus 231
vect . vector 272
S) : Direct Deference 276
op . operator 279
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