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Abstract 

We show the convexity properties and similarity classification with 

homogeneous operators on Hilbert spaces of holomorphic mappings, curves and 

functions. The sharp estimates of all homogeneous expansions for a class and 

subclass of quasi-convex mappings on the unit polydisk in the unitary space and 

of type B and order Α with the weak version of the Bieberbach conjecture in 

several complex variables are given. The centers of the quasi-homogeneous 

polynomial differential equations of degree three and global behaviour of the 

period of the sum of two quasi-homogeneous vector fields are determined. We 

obtain the first derivative of the period function for Hamiltonian systems with 

homogeneous non linearities and applications. The multiplicity-free and rigidity 

of the flag structure with classification of homogeneous and quasi-homogeneous 

operators and holomorphic curves in the Cowen-Douglas class are discussed. 
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 الخلاصة
قمنا بتوضيح الخصائص التحدبية وتصنيف التشابه مع مؤثرات التجانس على فضاءات  

مورفيك و المنحنيات والدوال. قمنا باعطاء التقديرات القاطعة لكل هلبرت للرواسم الهولو

قرا  المحدبة على متعدد الأ-المفكوكات المتجانسة لأجل العائلة والعائلة الجزئية للرواسم شبه

مع النسخة الضعيفة لتخمين بيبرباخ في  𝐴و الرتبة  𝐵في الفضاء الواحدي ومن النوع 

 –المتغيرات المركبة المتعددة. تم تحديد المراكز للمعادلات التفاضلية كثيرة الحدود شبه 

المتجانسة من الدرجة الثالثة و السلوك العالمي لفترة مجموع حقلين متجهين شبه متجانسين. 

ة هاميلتونيان مع عدم الخطية تم الحصول على المشتقة الأولى لدالة الفترة لأجل أنظم

المتجانسة والتطبيقات. قمنا بمناقشة المضاعفة الحرة والصلابة للبناء العلم مع تصنيف 

 س.دوغلا –المتجانسة والدوال الهولومورفيك في عائلة كوين  –المؤثرات المتجانسة وشبه 
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Introduction 

Not many convex mappings on the unit ball in ℂ𝑛 for 𝑛 >  1 are known. 

We introduce two families of mappings, which we believe are actually identical, 

that both contain the convex mappings. These families which we have named the 

“Quasi-Convex Mappings. We establish a sufficient condition for a quasi-convex 

mapping (including quasiconvex mapping of type A and quasi-convex mapping 

of type B) 𝑓(𝑥) defined on the unit ball in a complex Banach space.  

We show, that under certain hypotheses, the planar differential equation: 

𝑥̇𝑋1(𝑥, 𝑦)  + 𝑋2(𝑥, 𝑦), 𝑦̇𝑌1(𝑥, 𝑦)  + 𝑌2(𝑥, 𝑦), where (𝑋𝑖 , 𝑌𝑖), 𝑖 = 1, 2, are quasi-

homogeneous vector fields, has at most two limit cycles. We show that such 

systems have no isochronous centers, that the period annulus of any of its centres 

is either bounded or the whole plane and that the period function associated to the 

origin has at most one critical point. 

For 𝐻 be a complex separable Hilbert space. For 𝛺 an open connected 

subset of 𝐶, we shall say that a map 𝑓: 𝛺 →  𝐺𝑟(𝑛,𝐻) is a holomorphic curve, if 

there exist 𝑛 holomorphic 𝐻-valued functions 𝛾1, 𝛾2, . . . , 𝛾𝑛 on Ω such that 𝑓(𝜆) =

{𝛾1(𝜆), . . . , 𝛾𝑛(𝜆)}, ∀𝜆 ∈  𝛺, where 𝐺𝑟(𝑛,𝐻) denotes the Grassmann manifold, 

the set of all n-dimensional subspaces of 𝐻. We construct a large class of 

multiplication operators on reproducing kernel Hilbert spaces which are 

homogeneous with respect to the action of the Möbius group consisting of bi-

holomorphic automorphisms of the unit disc 𝔻. For every 𝑚 ∈ ℕ we have a 

family of operators depending on 𝑚 + 1 positive real parameters. We construct a 

large class of operators in the Cowen-Douglas class Cowen-Douglas class of the 

unit disc D which are homogeneous with respect to the action of the group Möb 

– the Möbius group consisting of bi-holomorphic automorphisms of the unit disc 

D. The associated representation for each of these operators is multiplicity free.  

The sharp estimates of all homogeneous expansions for 𝑓 are established, 

where 𝑓(𝑧) = (𝑓1(𝑧), 𝑓2(𝑧),··· , 𝑓𝑛(𝑧)) is a 𝑘-fold symmetric quasi-convex 

mapping defined on the unit polydisk in ℂ𝑛. The sharp estimates of all 

homogeneous expansions for a subclass of starlike mappings on the unit ball in 

complex Banach spaces are first established. Meanwhile, the sharp estimates of 

all homogeneous expansions for the above generalized mappings on the unit 

polydisk in ℂ𝑛 are also obtained. The sharp estimates of all homogeneous 

expansions for a subclass of quasi-convex mappings of type B and order α on the 

unit ball in complex Banach spaces are given. The sharp estimates of all 

homogeneous expansions for the above generalized mappings on the unit 

polydisk in ℂ𝑛 are also established. In particular, the sharp estimates of all 
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homogeneous expansions for a subclass of quasi-convex mappings (include 

quasi-convex mappings of type A and quasi-convex mappings of type B) in 

several complex variables are get accordingly.  

Given a centre of a planar differential system, we extend the use of the Lie 

bracket to the determination of the monotonicity character of the period function. 

As far as we know, there are no general methods to study this function, and the 

use of commutators and Lie bracket was restricted to prove isochronicity. We 

characterize the centers of the quasi-homogeneous planar polynomial differential 

systems of degree three. Such systems do not admit isochronous centers. We 

study the global behaviour of the period function on the period annulus of 

degenerate centres for two families of planar polynomial vector fields. These 

families are the quasi-homogeneous vector fields and the vector fields given by 

the sum of two quasi-homogeneous Hamiltonian ones. We prove that the period 

function is globally decreasing, extending previous results that deal either with 

the Hamiltonian quasi-homogeneous case or with the general homogeneous 

situation.  

An explicit construction of all the homogeneous holomorphic Hermitian 

vector bundles over the unit disc 𝔻 is given. It is shown that every such vector 

bundle is a direct sum of irreducible ones. Among these irreducible homogeneous 

holomorphic Hermitian vector bundles over 𝔻, the ones corresponding to 

operators in the Cowen–Douglas class 𝐵𝑛(𝔻) are identified. The explicit 

description of irreducible homogeneous operators in the Cowen–Douglas class 

and the localization of Hilbert modules naturally leads to the definition of a 

smaller class possessing a flag structure. These operators are shown to be 

irreducible. We study quasi-homogeneous operators, which include the 

homogeneous operators, in the Cowen–Douglas class. We give two separate 

theorems describing canonical models for these operators using techniques from 

complex geometry. This considerably extends the similarity and unitary 

classification of homogeneous operators in the Cowen–Douglas class.  
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Chapter 1  

Convexity Properties and the Quasi-Convex Mappings 

 

We show that types A and B” seem to be natural generalizations of the convex 

mappings in the plane. It is much easier to check whether a function is in one of these classes 

than to check for convexity. We show that the upper and lower bounds on the growth rate 

of such mappings is the same as for the convex mappings. We show that sharp estimations 

of all homogeneous expansions for 𝑓 are given, where 𝑓(𝑧) is a normalized quasi-convex 

mapping (including quasi-convex mapping of type A and quasi-convex mapping of type B) 

defined on the open unit polydisk in ℂ𝑛, and 𝐷𝑚𝑓𝑘(0)(𝑧
𝑚). 

Section (1.1): Holomorphic Mappings in ℂ𝒏 

In the complex plane analytic functions which map the unit disk onto starlike or 

convex domains have been extensively studied. These functions are easily characterized by 

simple analytic or geometric conditions and there are many well known results which help 

us understand their nature. In moving to higher dimensions several difficulties arise. Some 

are predictable, some are somewhat surprising. Imposing the condition that a mapping be 

convex turns out to be very restrictive and so we will introduce a larger class of mappings 

with properties similar to the convex mappings in the plane. We actually look at two classes, 

the “Quasi-Convex Mappings, Types 𝐴 and  𝐵”, but we suspect that they are the same. We 

will contain:  

(a) A brief review of results in the plane with a discussion of some of the difficulties 

encountered in extending the results to higher dimensions.  

(b) Some characterizations of convex and starlike mappings in higher dimensions.  

(c) The introduction of the “Quasi-Convex” families of mappings in ℂ𝑛 along with some 

preliminary results.  

(d) A discussion of open questions. Before going further let us define some terms which will 

recur. 

(e) Let 𝑋 be a Banach space. The ball of radius 𝑟, 𝐵𝑟  = {𝑍 ∈  𝑋 ∶  ‖𝑍‖ < 𝑟}. If 𝑟 =  1, we 

will simply use 𝐵 and if 𝑋 =  𝐶, then 𝐵 =  ∆.  
(f) A setAis convex if 𝑧, 𝑤 ∈  𝐴 ⇒  𝑡𝑧 + (1 − 𝑡) 𝑤 ∈ 𝐴, for all 𝑡 ∈  [0,1], and a mapping 

is said to be convex if it maps the unit ball onto a convex domain.  

(g) A set 𝐴 is starlike with respect to 𝑧0  ∈  𝐴 if 𝑧 ∈  𝐴 ⇒ (1 − 𝑡)𝑧 +  𝑡𝑧0  ∈  𝐴, for all 𝑡 ∈
[0,1]. We will use the termstarlike to mean “starlike with respect to 0”. 

A mapping is said to be starlike if it maps the unit ball onto a starlike domain.  

(i) 𝑆 = {𝑓 ∶ ∆→ ℂ: 𝑓 is analytic and univalent, 𝑓(0)  =  0 and 𝑓(0)  =  1}.  
(ii) 𝑆∗  = {𝑓 ∈  𝑆 ∶  𝑓(∆) is starlike with respect to 0}.  
(iii) 𝐾 = {𝑓 ∈  𝑆 ∶  𝑓(∆) is convex}.  
In trying to obtain analogous results in higher dimensions we run into several problems. For 

example, in proving the result 

𝑓 ∈  𝐾 ⇔ 𝑅𝑒{ 𝑧𝑓"(𝑧)/𝑓(𝑧) + 1} > 0, 
 we use the fact that if 𝑓 is convex, then the tangent vector turns in one direction. i.e. 
𝑑

𝑑𝜃
(𝑎𝑟𝑔(𝑖𝑧𝑓′(𝑧)))  >  0, 𝑧 = 𝑟𝑒𝑖𝜃 . In higher dimensions this concept has no meaning. 

 Similarly, the characterization, 

𝑓 ∈  𝑆∗ ⇔ 𝑅𝑒 {
𝑧𝑓′(𝑧)

𝑓(𝑧)
} >  0 

is obtained from the observation that for 𝑓 to be starlike 
𝑑

𝑑𝜃
(arg  𝑓(𝑟𝑒𝑖𝜃))  >  0. 
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 Once again this has no meaning in higher dimensions, nor does the expression 𝑧𝑓′(𝑧)/𝑓(𝑧).  
The analogue of the well-known equivalence, “𝑓 ∈  𝐾 ⇔  𝑧𝑓′ ∈  𝑆∗”  is false in higher 

dimensions as we show in Examples (1.1.9) and (1.1.13).  

Our intuition seems to let us down when we realize that even if we take a function 𝑓 ∈  𝐾 

and form a function 𝐹 ∶  𝐵 ⊂ ℂ2  → ℂ2 with 𝐹(𝑧, 𝑤) = (𝑓(𝑧), 𝑓(𝑤)), then 𝐹 is not 

necessarily convex. This is demonstrated in the following example. 

Example (1.1.1)[1]: Let 𝐵 be the Euclidean ball in ℂ2, then the mapping  

𝐹(𝑧, 𝑤) = (
𝑧

1 − 𝑧
 ,
𝑤

1 − 𝑤
) , 𝑧, 𝑤 ∈ ℂ , | 𝑧 |2    +  |𝑤|2   <  1 ,  

is not convex even though 𝑓(𝑧) = 𝑧/(1 −  𝑧), 𝑧 ∈ ∆, is a convex function in the plane.  

Note that 𝑢 =  𝑓(𝑧) maps the real line segment −1 < 𝑧 < 1 onto the real halfline 𝑢 >
−1/2. 𝐴 necessary condition that 𝐹 is convex is that every cross-section of the image of 𝐵 

is convex. Consider the cross-section of 𝐹(𝐵), {(𝑢, 𝑣) ∈  𝐹(𝐵): 𝑢, 𝑣 ∈  𝑅}. This is the image 

of Ω =  {(𝑠, 𝑡)  ∈  𝐵 ∶  −1 < 𝑠 < 1 , −1 < 𝑡 < 1}. This cross-section, 𝐹(Ω), is not convex. 

If it were, then the set {(𝑢, 𝑣): 𝑢 > 0, 𝑣 > 0 } would be contained in 𝐹(Ω). In particular the 

line {(𝑢, 𝑢): 𝑢 > 0} ⊂ 𝐹(Ω). If 𝑢 =  𝑣, then 𝑠 = 𝑡 and 𝑠2  +  𝑡2  <  1, 𝑠 =  𝑡 < 1/√2, so 

that 𝑢 =  𝑣 < 1/(√2 − 1). We cannot get any further from the origin along this line and so 

it is clear that this cross-section is not convex. See Figure 1. Similar arguments show that 

there is no convex mapping 𝐹(𝑧, 𝑤) = (𝑧/(1 − 𝑧), 𝑔(𝑤)). 
            In one approach to extending these results to ℂ𝑛, 𝑛 ≥ 2, Suffridge [12] generalizes 

some of Robertson’s results [10], which use the principle of subordination in the plane, to 

higher dimensions.   

      To extend these theorems to higher dimensions we first need to adapt the Schwarz 

Lemma accordingly. There are several ways of doing this (see Harris [5]) but the appropriate 

one for our purposes is as follows. 

Theorem (1.1.2)[1]: Let 𝑋 be 𝑎 Banach space and let 𝐵 ⊂  𝑋. If 𝑓: 𝐵 → 𝑌 is holomorphic, 
‖𝑓(𝑥)‖ ≤ 1 when 𝑥 ∈  𝐵 and 𝑓(0)  =  0, then ‖𝑓(𝑥 )‖ ≤ ‖𝑥‖ for all 𝑥 ∈  𝐵.  
       We next need to extend the concepts of “positive real part”, and “functions of positive 

real part”. We use functionals to accomplish this. For a more complete treatment see 

Gurganus [4] or Suffridge [14].  

    fORt 𝑋 be a Banach space and 𝑥 ∈  𝑋, 𝑥 ≠  0, and let 𝑋∗ denote the space of linear 

functionals from 𝑋 to ℂ. Define  

   𝑇(𝑥) = {ℓ𝑥 ∈ 𝑋
∗: ‖ℓ𝑥‖ = 1, 𝑎𝑛𝑑 ℓ𝑥(𝑥) = ‖𝑥‖}𝑤ℎ𝑒𝑟𝑒 ℓ𝑥 = sup

‖𝑦‖=1
 |ℓ𝑥(𝑦)|.  

Let 𝐻1  = {𝑦 ∈  𝑋 ∶  𝑅𝑒 ℓ𝑥(𝑦) = ‖𝑥‖}.𝐻1 is a supporting hyperplane for 𝐵‖𝑥‖ at 𝑥, because 

𝑥 ∈  𝐻1 and if 𝑦 ∈ 𝐻1, then 

 ‖𝑦‖ ≥ |ℓ𝑥(𝑦)| ≥ 𝑅𝑒{ℓ𝑥(𝑦)} = ‖𝑥‖, 𝑠𝑖𝑛𝑐𝑒 ‖ℓ𝑥‖ = 1.  
If 𝑋 has complex dimension n, then 𝐻1 has real dimension 2𝑛 − 1 and it is thus a hyperplane. 

In the infinite dimensional case, 𝐻1 has real codimension 1.  

Example  (1.1.3)[1]: Let 𝑋 =  ℂ𝑛 with a p-norm, 1 < 𝑝 < ∞, i.e. ‖𝑥‖𝑝   =

(∑  𝑛
𝑖=1 |𝑥𝑖|

𝑝) 
1

𝑝
    . Then ℓ𝑥  ∈ 𝑇(𝑥) is given uniquely by  

ℓ𝑥(𝑤) =
∑  {𝑗:𝑥𝑗≠0} 𝑤𝑗𝑥̅𝑗|𝑥𝑗|

𝑝−2

‖𝑥‖𝑝
𝑝−1  . 

Example  (1.1.4)[1]: In the case of 𝑝 = 1, 𝑇(𝑥) is the set of linear functionals of the form 

    ℓ𝑥(𝑤) = ∑  {𝑗:𝑥𝑗≠0}

𝑤𝑗𝑥̅𝑗

|𝑥𝑗|
 + ∑  {𝑗:𝑥𝑗=0}

𝛾𝑗𝑤𝑗 with 𝛾𝑗  ∈ ℂ, |𝛾𝑗| ≤ 1 for all 𝑗. 
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 And in the case 𝑝 = ∞, we let 𝐽 = {𝑗: ‖𝑥‖ = |𝑥𝑗|} and 

 ℓ𝑥(𝑤) =∑ 

𝑗∈𝐽

𝑡𝑗𝑤𝑗𝑥̅𝑗
‖𝑥‖

 𝑤ℎ𝑒𝑟𝑒 𝑒𝑎𝑐ℎ 𝑡𝑗  ≥ 0 𝑎𝑛𝑑 ∑ 

𝑗∈𝐽

 𝑡𝑗 = 1.  

We now define three families of functions:  

  𝑁0  = {𝑤 ∶ 𝐵 →  𝑋 ∶  𝑤 is holomorphic, 𝑤(0)  =  0, and 𝑅𝑒{ℓ𝑥(𝑤(𝑥))} ≥ 0 ,  

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈  𝐵, 𝑥 ≠ 0, ℓ𝑥 ∈ 𝑇(𝑥 ) } ,  
𝑁 = {𝑤 ∈ 𝑁 0: 𝑅𝑒{ℓ𝑥(𝑤(𝑥))}  >  0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈  𝐵, 𝑥 ≠ 0,   ℓ𝑥 ∈ 𝑇(𝑥 ) } ,  
𝑀 = {𝑤 ∈ 𝑁:𝐷𝑤(0)  =  𝐼}.  
Example  (1.1.5)[1]: Let 𝑋 = ℂ,𝐵 =  ∆, then  

𝑁0 = {𝑤: ∆→ ℂ:𝑤 𝑖𝑠 𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐, 𝑤(0)  =  0, 𝑅𝑒{𝑧̃𝑤(𝑧)} ≥ 0, 𝑧 ∈ ∆\{0}}. 
 However ,  

𝑅𝑒{𝑧̃𝑤(𝑧)} ≥ 0 ⇔  𝑅𝑒 {
|𝑧|2𝑤(𝑧)

𝑧
 } ≥ 0  

                                                                                        ⇔  𝑅𝑒 {
𝑤(𝑧)

𝑧
}  ≥ 0.  

Thus, if 𝑤 ∈ 𝑁0 either 𝑅𝑒 {𝑤(𝑧)/𝑧} ≡ 0 or Re {𝑤(𝑧)/𝑧} >  0.  
We also observe that 𝑀 =  {𝑧𝑓 ∶  𝑓 ∈  ℙ},  where ℙ  is the family of functions that are 

analytic in the unit disk with 𝑓(0)  =  1 and 𝑓(∆), contained in the right half-space.  

   The following lemmas are Suffridge’s extensions of Robertson’s theorems, [14], [12].  

Lemma (1.1.6)[1]: (Suffridge). Let 𝑣 ∶  𝐵 ×  𝐼 →  𝐵 be holomorphic in 𝐵 for each 𝑡 ∈
 𝐼 =  [0,1] (i.e. v(·,t) is holomorphic for each fixed 𝑡 ∈  𝐼), 𝑣(0, 𝑡) = 0 and 𝑣(𝑥, 0)  =  𝑥.  

If lim
𝑡→0+

 
𝑥−𝑣(𝑥,𝑡)

𝑡
  =  𝑤(𝑥) exists and is holomorphic in 𝐵, then 𝑤 ∈ 𝑁0.  

Lemma (1.1.7)[1]: (Suffridge). Let 𝑓 ∶  𝐵 →  𝑌 be a biholomorphic mapping of 𝐵 onto an 

open set 𝑓(𝐵)  ⊂  𝑌 and let 𝑓(0)  =  0. Assume 𝐹 ∶  𝐵 × 𝐼 →  𝑌 is holomorphic in 𝐵 for 

each fixed 𝑡 ∈  𝐼, 𝐹(𝑥, 0)  =  𝑓(𝑥), 𝐹(0, 𝑡) = 0 and suppose 𝐹(𝐵, 𝑡)  ⊂  𝑓(𝐵) for each fixed 

𝑡 ∈  𝐼. Further, suppose  

lim
𝑡→0+

 
𝐹(𝑥, 0) − 𝐹(𝑥, 𝑡)

𝑡
  =  𝐺(𝑥)  

exists and is holomorphic. Then 𝐺(𝑥) = 𝐷𝐹(𝑥)(𝑤(𝑥)) where 𝑤 ∈  𝑁0.  
   From these we obtain the characterization of starlike mappings in higher dimensions. Note 

the similarity of this condition to that of starlike functions in the plane.  

Theorem (1.1.8)[1]: The mapping 𝑓 ∶  𝐵 ⊂  ℂ𝑛  →  ℂ𝑛 is starlike if  and only if 𝑓(𝑥) =
 𝐷𝑓(𝑥)(𝜔(𝑥)) for some 𝜔 ∈ 𝑀. 
This result was obtained by Matsuno [7] for the Euclidean norm, and by Suffridge for the 

sup norm [12], and for more general norms [13].  

We include two examples of mappings which are starlike.  

Example (1.1.9)[1]: The function 𝑓(𝑍) = (𝑧 + 𝑎𝑤2, 𝑤) where 𝑍 = (𝑧, 𝑤), ‖𝑍‖𝑝  =
|𝑧|𝑝  +  |𝑤|𝑝  < 1, 𝑝 > 1, 𝑧, 𝑤 ∈ ℂ is starlike if and only if  

|𝑎| ≤ (
𝑝2 − 1

4
)

1
𝑝

(
𝑝 + 1

𝑝 − 1
).                                                         (1)  

   We have that 𝑓 is starlike if and only if 𝑅𝑒 {ℓ𝑍(𝐷𝑓(𝑍)
−1(𝑓(𝑍)))} >  0. Since  

𝐷𝑓(𝑍)−1(𝑓(𝑍))  = [𝑧 − 𝑎𝑤
2

𝑤
],  

we have 
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 𝑅𝑒 ℓ𝑍 (𝐷𝑓(𝑍)
−1(𝑓(𝑍))) =  𝑅𝑒 {‖𝑍‖𝑝  − 𝑎𝑤2 𝑧̃|𝑧|𝑝−2} ‖𝑍‖𝑝−1. 

Replacing 𝑍 by 𝛼𝑍, |𝛼| < 1/‖𝑍‖, we apply the minimum principle for harmonic functions 

to see that we may assume that ‖𝑍‖ =  1. Thus the necessary and sufficient condition for f 

to be starlike is 

 𝑅𝑒 {1 − 𝑎𝑤2 𝑧̃|𝑧|𝑝−2} ≥  1 − |𝑎||𝑤|2|𝑧|𝑝−1  = 1 − |𝑎|(1 − 𝑟𝑝)
2
𝑝𝑟𝑝−1, 𝑤ℎ𝑒𝑟𝑒 𝑟 = |𝑧|. 

By elementary calculus, write ℎ(𝑟) = 1 − |𝑎|(1 − 𝑟𝑝)
2

𝑝𝑟𝑝−1, ℎ(𝑟) has  

1 − |𝑎| (
2

𝑝 + 1
)

2
𝑝
(
𝑝 − 1

𝑝 + 1
)(
𝑝 − 1

𝑝 + 1
)
−
1
𝑝
  

as its minimum value and (1) follows.  

Note that this result together with Example (1.1.12) tells us that the result “𝐷𝑓(𝑍)(𝑍) is 

starlike implies 𝑓 is convex ” does not hold for 𝑛 > 1. If we use the 2-norm and let 𝑓(𝑧, 𝑤) =

(𝑧 +
𝑎

2
𝑤2, 𝑤), then 𝐷𝑓(𝑧, 𝑤)(𝑧, 𝑤) = (𝑧 + 𝑎𝑤2, 𝑤) and this is starlike for  |𝑎| ≤ 3√3/2. 

However, 𝑓 is only convex for |𝑎| ≤ 1.  

Example (1.1.10)[1]: The mapping 𝑓 ∶  𝐵 ⊂ ℂ2  → ℂ2 given by 𝑓(𝑧, 𝑤) = (𝑧 + 𝑎𝑧𝑤,𝑤), 
with |𝑧|𝑝  + |𝑤|𝑝  <  1 is starlike if and only if |𝑎| ≤ 1 for all p-norms, 1 ≤ 𝑝 ≤ ∞ .  

First assume 1 < 𝑝 < ∞, then 𝑓 is starlike if and only if  

𝑅𝑒{ℓ𝑍(𝐷𝑓(𝑍)
−1(𝑓(𝑍)))} >  0 

for ℓ𝑍  ∈  𝑇(𝑍). 

 𝑅𝑒 {ℓ𝑍 (𝐷𝑓(𝑍)
−1(𝑓(𝑍)))} = 𝑅𝑒 {ℓ𝑍  (

𝑧

1 + 𝑎𝑤
,𝑤)}. 

If we use a p-norm and assume by the minimum principle (as before) that ‖𝑍‖ =  1, we find 

that 𝑅𝑒 {ℓ𝑍  ((
𝑧

1+𝑎𝑤
, 𝑤))}  ≥  𝑅𝑒 {

|𝑧|𝑝

1+𝑎𝑤
 + |𝑤|𝑝}  

=  𝑅𝑒 {
|𝑧|𝑝 + |𝑤|𝑝 +  𝑎𝑤|𝑤|𝑝

1 + 𝑎𝑤
 }  

=  𝑅𝑒 {
1 +  𝑎𝑤|𝑤|𝑝

1 + 𝑎𝑤
 } 

=  𝑅𝑒 {
1 + 𝑎𝑤|𝑤|𝑝  + 𝑎𝑤̅̅ ̅̅ + |𝑎|2|𝑤|𝑝+2

|1 + 𝑎𝑤|2
} . 

Clearly |𝑎| ≤ 1 is necessary and we need to find a such that 

 𝑅𝑒{1 + |𝑎|2|𝑤|𝑝+2  + 𝑎𝑤̅̅ ̅̅  + 𝑎𝑤|𝑤|𝑝} ≥ 0.  
It is sufficient to have 

1 + |𝑎|2|𝑤|𝑝+2  − |𝑎||𝑤| − |𝑎||𝑤|𝑝+1  = (1 − |𝑎||𝑤|𝑝)(1 − |𝑎||𝑤|𝑝+1) ≥ 0  
and hence the result readily follows. The cases 𝑝 =  1 and 𝑝 = ∞ are easily handled.  

The last theorem might lead us to conjecture that 

𝐷𝑓(𝑥)−1(𝐷2𝑓(𝑥)(𝑥, 𝑥) + 𝐷𝑓(𝑥)(𝑥))  ∈  𝑀 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑓 𝑖𝑠 𝑐𝑜𝑛𝑣𝑒𝑥. 
The mapping given in Example (1.1.1) quickly dispels this thought. It turns out that this is 

a necessary but not sufficient condition. We will look more extensively at this condition later 

on. For necessary and sufficient conditions we have the following theorem, [12]. 

Theorem (1.1.11)[1]: (Suffridge). Let 𝑋 and 𝑌 be Banach spaces with 𝐵 ⊂  𝑋. Let 𝑓: 𝐵 →
𝑌 be locally biholomorphic with 𝑓(𝑥) − 𝑓(𝑦) = 𝐷𝑓(𝑥)(𝜔(𝑥, 𝑦)) for 𝑥, 𝑦 ∈  𝐵.  

Then f is convex if and only if 𝑅𝑒{ℓ𝑥(𝜔(𝑥, 𝑦))}  >  0 whenever ‖𝑦‖  < ‖𝑥‖ and ℓ𝑥  ∈
 𝑇(𝑥).  



5 

    The condition says that 𝑓(𝐵) must be starlike with respect to each of its interior points. 

However, this condition, which agrees with our intuition, is difficult to apply. For a 

somewhat different approach, see [3]. The following examples make use of the above 

theorem. 

Example (1.1.12)[1]: The function 𝑓(𝑍) = (𝑧 + 𝑎𝑤2, 𝑤) where 𝑍 = (𝑧,𝑤) with ‖𝑍‖2  = 
|𝑧|2  + |𝑤|2  <  1 and 𝑧, 𝑤 ∈ 𝐶 is convex if and only if |𝑎| ≤ 1/2. 
   We will need to check when 𝑅𝑒〈𝐷𝑓(𝑍)−1(𝑓(𝑍) − 𝑓(𝑈), 𝑍〉 > 0 where 𝑍 = (𝑧,𝑤) and 

𝑈 = (𝑢, 𝑣) with ‖𝑍‖ ≥ ‖𝑈‖. 
 𝑅𝑒〈𝐷𝑓(𝑍)−1(𝑓(𝑍) − 𝑓(𝑈)), 𝑍〉  =  𝑅𝑒 {|𝑧|2  + |𝑤|2  − 𝑢𝑧̅ − 𝑣𝑤̅ − 𝑎𝑧̅(𝑤 − 𝑣)2}  

=  ‖𝑍‖2  − 𝑅𝑒〈𝑈, 𝑍〉 − 𝑅𝑒{𝑎𝑧̃(𝑤 − 𝑣)2}  
≥ ‖𝑍‖2 −  𝑅𝑒〈𝑈, 𝑍〉 − |𝑎||𝑧||𝑤 − 𝑣|2  
=  ‖𝑍‖2  − 𝑅𝑒〈𝑈, 𝑍〉  − |𝑎||𝑧|(‖𝑍‖2  − |𝑧|2 − 2𝑅𝑒(𝑢𝑧̅ + 𝑣𝑤̅) + 2𝑅𝑒 𝑢𝑧̅
+ ‖𝑈‖2 − |𝑢|2)  
=  ‖𝑍‖2(1 − |𝑎||𝑧|) − 𝑅𝑒〈𝑈, 𝑍〉(1 − 2|𝑎||𝑧|) − |𝑎||𝑧|(‖𝑈‖2  − |𝑧 − 𝑢|2) 

≥ ‖𝑍‖2 (1 − |𝑎||𝑧|) − 𝑅〈𝑈, 𝑍〉(1 − 2|𝑎||𝑧|) − |𝑎||𝑧|(‖𝑍‖2  − |𝑧 − 𝑢|2)  
= ( ‖𝑍‖2 −  𝑅𝑒〈𝑈, 𝑍〉)(1 − 2|𝑎||𝑧|) + |𝑎||𝑧||𝑧 − 𝑢|2  

≥  0 𝑤ℎ𝑒𝑛|𝑎| ≤
1

2
, 

since |𝑅𝑒〈𝑈, 𝑍〉| ≤ ‖𝑍‖2, and|𝑎| ≤
1

2
⇒ |𝑎||𝑧| ≤

1

2
.  

   If |𝑎| >
1

2
 we can find 𝑧 such that 𝑧̅𝑎 >

1

2
, 𝑢 = 𝑧, 𝑣 = −𝑤 ∈ 𝑅 and we obtain  

𝑅𝑒〈𝐷𝑓(𝑍)−1(𝑓(𝑍) − 𝑓(𝑈)), 𝑍〉 
 =  ‖𝑍‖2 − 𝑅𝑒〈𝑈, 𝑍〉 − 𝑅𝑒{𝑎𝑧̅(𝑤 − 𝑣)2}  

<  ‖𝑍‖2  − 𝑅𝑒{𝑧𝑧̅ − 𝑤𝑤̅} −
1

2
 (2𝑤)2  

= 0 . 
Example (1.1.13)[1]: The mapping 𝑓 ∶  𝐵 ⊂ ℂ2  → ℂ2, with the 2-norm, given by 

𝑓(𝑧, 𝑤) =  (𝑧 + 𝑎𝑧𝑤,𝑤) is convex if and only if |𝑎| ≤ 1/√2.  
   It is sufficient to assume that 𝑎 > 0. Using the above result we let 𝑍 = (𝑧,𝑤) and 𝑈 =
(𝑢, 𝑣). Then 

〈𝐷𝑓(𝑍)−1(𝑓(𝑍) − 𝑓(𝑈)), 𝑍〉 = 𝑧̅( 𝑧 −  𝑢 ) (
1 + 𝑎𝑣

1 + 𝑎𝑤
) + 𝑤̅(𝑤 − 𝑣)

= 𝑧̅( 𝑧 − 𝑢 ) (
1 −  𝑎(𝑤 −  𝑣)

1 + 𝑎𝑤
) + 𝑤̅(𝑤 − 𝑣)  

=  〈𝑍 − 𝑈, 𝑍〉 −
𝑎𝑧̅

1 + 𝑎𝑤
 (𝑧 − 𝑢)(𝑤 − 𝑣). 

So,  

𝑅𝑒{𝐷𝑓(𝑍)−1(𝑓(𝑍) − 𝑓(𝑈)), 𝑍} 

=  𝑅𝑒 { 〈𝑍 − 𝑈, 𝑍〉 −
𝑎𝑧̅

1 + 𝑎𝑤
 (𝑧 − 𝑢)(𝑤 − 𝑣)}  

≥  𝑅𝑒〈𝑍 − 𝑈, 𝑍〉 −
𝑎|𝑧|

1 − 𝑎|𝑤|
|𝑧 − 𝑢||𝑤 − 𝑣|. 

By examining the function 
𝑎𝑥

1−𝑎𝑦
 subject to the constraint 𝑥2  +  𝑦2  =  𝑘2 we see that 

𝑎|𝑧|

1−𝑎|𝑤|
 

is maximized at 
𝑎‖𝑍‖

1−𝑎2‖𝑍‖2
 when |𝑧| = ‖𝑍‖√1 − 𝑎2‖𝑍‖2 and |𝑤| =  𝑎‖𝑍‖2. 
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   Similarly, by maximizing the product 𝑥𝑦 subject to the constraint 𝑥2  + 𝑦2  =  𝑘2 we see 

that |𝑧 − 𝑢||𝑤 − 𝑣| ≤
1

2
‖𝑍 − 𝑈‖2 with equality when |𝑧 − 𝑢| = |𝑤 − 𝑣|. 

   Now we have the sharp inequality  

𝑅𝑒{〈𝐷𝑓(𝑍)−1(𝑓(𝑍) − 𝑓(𝑈)), 𝑍〉}  ≥ 𝑅𝑒〈𝑍 − 𝑈, 𝑍〉 −
𝑎‖𝑍‖

√1 − 𝑎2‖𝑍‖2

1

2
‖𝑍 − 𝑈‖2.   (2) 

For 𝑎‖𝑍‖ = 1/√2 this expression is positive for ‖𝑈‖ ≤ ‖𝑍‖ since  

𝑅𝑒〈𝑍 − 𝑈, 𝑍〉 − 
𝑎‖𝑍‖

√1 − 𝑎2‖𝑍‖2

1

2
‖𝑍 − 𝑈‖2  =  𝑅𝑒 {〈𝑍 − 𝑈, 𝑍〉 −

1

2
〈𝑍 − 𝑈, 𝑍 − 𝑈〉}  

= ‖𝑍‖2  − ‖𝑈‖2 ≥ 0. 

Since the function 
𝑥

√1−𝑥2
 is increasing on [0,1) the inequality holds for 𝑎‖𝑍‖ ≤ 1 /√2.  

   To show that 𝑅𝑒{〈𝐷𝑓(𝑍)−1(𝑓(𝑍) − 𝑓(𝑈)), 𝑍〉} < 0 for 𝑎‖𝑍‖ > 1/√2 we choose 

𝑍 = (𝑧, 𝑤) = (𝑘√1 − 𝑎2𝑘2, −𝑎𝑘2) 𝑎𝑛𝑑  
𝑈 = (𝑢, 𝑣) = (𝑧 − (𝑧 + 𝑤)𝑐𝑜𝑠𝜃𝑒𝑖𝜃 , 𝑤 − ( 𝑧 + 𝑤)𝑐𝑜𝑠𝜃𝑒−𝑖𝜃), 

where 0 ≤  𝑘 ≤ 1 and 𝑐𝑜𝑠𝜃 ≠  0. We note that ‖𝑍‖ = ‖𝑈‖ = 𝑘.  

𝑅𝑒 {〈𝑍 − 𝑈, 𝑍〉 −
𝑎𝑧̅

1 + 𝑎𝑤
 (𝑧 − 𝑢)(𝑤 − 𝑣)}  

=
(𝑧 +  𝑤)2 cos2  𝜃

√1 − 𝑎2𝑘2
 (√1 − 𝑎2𝑘2  − 𝑎𝑘)  

<  0, 𝑓𝑜𝑟 𝑎𝑘 >  1/√2. 

So, on 𝐵 = {𝑍 ∶ ‖𝑍‖ <  1} we have 𝑎 ≤  1/√2 for convexity.  

   In the plane, 𝑓 ∈  𝐾 if and only 𝑖𝑓 𝑧𝑓′ ∈  𝑆∗. This last result shows us that this is not true 

in higher dimensions. The mapping 𝐷𝑓(𝑍)(𝑍) = (𝑧 + 2𝑎𝑧𝑤,𝑤), for 𝑎 = 1/√2, is not even 

univalent much less starlike. To see this we note that (𝑧(1 + √2𝑤),𝑤)  =  (0 , −1/√2) for 

all 𝑍 = (𝑧,−1/√2), 𝑍 ∈ 𝐵.  

      When we couple this with Example (1.1.9) we see that the implication does not hold in 

either direction. 

The nature of convex mappings is strongly dependent on the norm used in the domain. 

Using the sup norm in ℂ𝑛 so that the unit ball is a polydisk, the only normalized convex 

mappings are mappings F such that Fj is a function of zj only and Fj is a convex mapping 

on the unit disk. On the other hand, using the 1norm, ‖𝑍‖ = ∑  𝑛
𝑗=1 |𝑧𝑗|, the convex maps of 

the unit ball are the non-singular linear mappings. In the Euclidean norm (i.e. using the 2-

norm in ℂ𝑛) we have the following theorem. In view of the results stated above for the sup 

norm and the 1-norm, such a result cannot hold for normed linear spaces in general.  

Theorem (1.1.14)[1]: Let 𝐵 = {𝑧 ∈ ℂ𝑛 ∶ ‖𝑧‖2 = ∑  𝑛
𝑖=1 |𝑧𝑖|

2 < 1} and assume 𝑓 ∶  𝐵 → ℂ𝑛 

is holomorphic with 𝑓(0)  =  0 and 𝐷𝑓(0)  =  1. Further, assume ∑  ∞
𝑘=2

 𝑘2

𝑘!
 ‖𝐷𝑘𝑓(0)‖ ≤

1. Then 𝑓(𝐵) is convex. 

Proof. Consider a function 𝐴𝑘 ∶ ∏ ℂ𝑛  → ℂ𝑛𝑘
𝑗=1   that is linear in each variable and 

symmetric. Then 𝐴𝑘(𝑧, 𝑧, . . . , 𝑧) ≡ 𝐴𝑘(𝑧
𝑘) is a homogeneous polynomial of degree 𝑘 and 

by a result of Hormander [6], we have, 

 ‖𝐴𝑘‖ sup
‖𝑧( 𝑗 )‖=1

1≤𝑗≤𝑘

‖𝐴𝑘(𝑧
(1), 𝑧(2), . . . , 𝑧(𝑘))‖ = sup

‖𝑧‖=1
 ‖𝐴𝑘(𝑧, 𝑧, . . . , 𝑧)‖. 



7 

Further, by Lemma (1.1.6) in H¨ormander’s above, given 𝑓 ∶  𝐵 → ℂ𝑛, where 𝑓 is 

holomorphic on the unit ball 𝐵 of ℂ𝑛 with 𝑘𝑡ℎ derivative at 0, 𝐷𝑘𝑓(0). We may identify 
1

𝑘!
 𝐷𝑘𝑓(0) with 𝐴𝑘 above. Then 

𝑓(𝑧) = 𝑓(0) +∑  

∞

𝑘=1

1

𝑘!
 𝐷𝑘𝑓(0)(𝑧𝑘) = 𝑓(0) +∑  

∞

𝑘=1

𝐴𝑘(𝑧
𝑘). 

Assuming  : 𝐵 → ℂ𝑛 satisfies 𝑓(0)  =  0, 𝐷𝑓(0)  =  𝐴1  =  𝐼 and that 

 ∑  

∞

𝑘=2

 𝑘2‖𝐴𝑘‖ ≤ 1,  

we proceed as follows.  

   First observe that  

∑ 

∞

𝑘=2

 𝑘‖𝐴𝑘‖ ≤
1

2
 ∑  

∞

𝑘=2

 𝑘2‖𝐴𝑘‖ ≤
1

2
  

with equality in the first step if and only if 𝐴𝑘 ≡ 0 when 𝑘 > 2. We also note that 

‖∑  

∞

𝑘=2

 𝑘𝐴𝑘(𝑧
𝑘−1, 𝑤)‖ ≤  ∑  

∞

𝑘=2

 𝑘‖𝐴𝑘‖‖𝑧‖
𝑘−1‖𝑤‖  ≤ ‖𝑧‖ ‖𝑤‖∑  

∞

𝑘=2

 𝑘‖𝐴𝑘‖  

=  𝑁‖𝑧‖‖𝑤‖  
where 

𝑁 = ∑  

∞

𝑘=2

𝑘‖𝐴𝑘‖ ≤
1

2
 𝑎𝑛𝑑 ‖𝑧‖ ≤ 1, ‖𝑤‖ ≤ 1. 

Therefore, it follows that 

‖∑  

∞

𝑘=2

𝑘𝐴𝑘(𝑧
𝑘−1,·)𝑝(𝑤)‖ ≤ 𝑁𝑝‖𝑧‖𝑝‖𝑤‖ 

when 𝑝 is a non-negative integer.  

   The analytic condition for f to be convex is that  

𝑅𝑒{𝐷𝑓(𝑧)−1(𝑓(𝑧) − 𝑓(𝑤)), 𝑧} > 0 𝑤ℎ𝑒𝑛 1 > ‖𝑧‖ ≥ ‖𝑤‖. 
We have 

𝐷𝑓(𝑧)(𝑢) =
lim
ℎ→0

 (𝑓(𝑧 +  ℎ𝑢) − 𝑓(𝑧))

ℎ
= ∑  

∞

𝑘=1

𝑘𝐴𝑘(𝑧
𝑘−1, 𝑢). 

That is, 

𝑓(𝑧 +  ℎ𝑢) − 𝑓(𝑧)

ℎ
= ∑  

∞

𝑘=2

∑ 

𝑘

𝑙=1

(
𝑘
𝑙
) ℎ𝑙−1𝐴𝑘(𝑧

𝑘−1, 𝑢) 

→∑  

∞

𝑘=1

𝑘𝐴𝑘(𝑧
𝑘−1, 𝑢) 𝑎𝑠 ℎ → 0. 

Therefore,  

𝐷𝑓(𝑧)−1 = [𝐼 − (𝐼 − 𝐷𝑓(𝑧))]
−1
                                                   (3) 

 = [𝐼 − ∑  

∞

𝑘=2

− 𝑘𝐴𝑘(𝑧
𝑘−1,·)]

−1

                                    (4) 
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 =  𝐼 + ∑  

∞

𝑙=1

 (−1)𝑙  (∑  

∞

𝑘=2

𝑘𝐴𝑘(𝑧
𝑘−1,·))

𝑙

 ,               (5)  

because 

‖∑  

∞

𝑘=2

 𝑘𝐴𝑘(𝑧
𝑘−1,·)‖ ≤ 𝑁‖𝑧‖ ≤

1

2
                                              (6) 

 for each fixed 𝑧, ‖𝑧‖ <  1. 
 Also, 

𝑓(𝑧) − 𝑓(𝑤) = ∑  

∞

𝑘=1

 [𝐴𝑘(𝑧
𝑘) − 𝐴𝑘(𝑤

𝑘)] = ∑  

∞

𝑘=1

∑ 

𝑘

𝑝=1

𝐴𝑘(𝑧
𝑘−𝑝, 𝑤𝑝−1, 𝑧 − 𝑤)

= 𝑧 − 𝑤 +∑  

∞

𝑘=2

∑ 

𝑘

𝑝=1

𝐴𝑘(𝑧
𝑘−𝑝, 𝑤𝑝−1, 𝑧 − 𝑤). 

Therefore,  

𝐻(𝑧,𝑤)  ≡  𝐷𝑓(𝑧)−1(𝑓(𝑧) − 𝑓(𝑤))  

=

(

 
 
(𝐼 +∑ 

∞

𝑙=1

 (−1)𝑙  (∑  

∞

𝑘=2

𝑘𝐴𝑘(𝑧
𝑘−1,·))

𝑙

)

 

 

×  (𝑧 − 𝑤 + ∑  

∞

𝑝=2

∑ 

𝑝

𝑞=1

𝐴𝑝(𝑧
𝑝−𝑞 , 𝑤𝑞−1, 𝑧 − 𝑤))

)

 
 
! 

=  𝑧 − 𝑤 +∑ 

∞

𝑙=1

(−1)𝑙  (∑  

∞

𝑘=2

𝑘𝐴𝑘(𝑧
𝑘−1,·) )

𝑙

(𝑧 − 𝑤) 

+∑ 

∞

𝑙=1

(−1)𝑙  (∑  

∞

𝑘=2

𝑘𝐴𝑘(𝑧𝑘 − 1,·))

𝑙−1

(− ∑  

∞

𝑝=2

∑ 

𝑝

𝑞=1

𝐴𝑝(𝑧
𝑝−𝑞 , 𝑤𝑞−1, 𝑧 − 𝑤)) 

= ( 𝑧 − 𝑤 ) +∑ 

∞

𝑙=1

(−1)𝑙  ∑  

∞

𝑘=2

𝑘𝐴𝑘(𝑧
𝑘−1,·)𝑙−1 

 (∑  

∞

𝑝=2

(∑  

𝑝

𝑞=1

𝐴𝑝(𝑧
𝑝−1, 𝑧 − 𝑤) − 𝐴𝑝(𝑧

𝑝−𝑞 , 𝑤𝑞−1, 𝑧 − 𝑤))) 

=  𝑧 − 𝑤 +∑ 

∞

𝑙=1

 (−1)𝑙  (∑ 

∞

𝑙=1

𝑘𝐴𝑘(𝑧
𝑘−1,·))

𝑙−1

 

×∑  

∞

𝑘=2

∑ 

𝑘

𝑞=2

∑ 

𝑞

𝑝=2

(𝐴𝑘(𝑧
𝑘−𝑝, 𝑤𝑝−2, (𝑧 − 𝑤)2)) 
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Now 

‖∑  

∞

𝑘=2

∑ 

𝑘

𝑞=2

∑ 

𝑞

𝑝=2

𝐴𝑘(𝑧
𝑘−𝑝, 𝑤𝑝−2, (𝑧 − 𝑤)2)‖ 

≤ ∑  

∞

𝑘=2

∑ 

𝑘

𝑞=2

∑ 

𝑞

𝑝=2

‖𝐴𝑘‖‖𝑧 − 𝑤‖
2 =∑  

∞

𝑘=2

∑ 

𝑘

𝑞=2

(𝑞 − 1)‖𝐴𝑘‖‖𝑧 − 𝑤‖
2 

= ∑  

∞

𝑘=2

(𝑘 − 1)(𝑘)

2
 ‖𝐴𝑘‖‖𝑧 − 𝑤‖

2 

≤
1 − 𝑁

2
‖𝑧 − 𝑤‖2 . 

Now assume  ‖𝑤‖ ≤ ‖𝑧‖ = 𝑟 < 1. Then  

‖𝑧 − 𝑤‖2

2
=
1

2
 (‖𝑧‖2  − 2 𝑅𝑒〈𝑤, 𝑧〉 + ‖𝑤‖2)  

≤  𝑟2  − 𝑅𝑒〈𝑤, 𝑧〉 > 0 𝑖𝑓 𝑤 ≠ 𝑧. 
Thus, 

𝑅𝑒〈𝐻(𝑧,𝑤), 𝑧〉 =  𝑅𝑒{〈𝑧 − 𝑤, 𝑧〉 + 〈𝐻(𝑧,𝑤) − (𝑧 − 𝑤), 𝑧〉} 
while 

‖𝐻(𝑧,𝑤) − (𝑧 − 𝑤)‖ ≤∑ 

∞

𝑙=1

 ‖∑  

∞

𝑘=2

𝑘𝐴𝑘(𝑧
𝑘−1,·)‖

𝑙−1

 

((1 − 𝑁)(𝑟2  − 𝑅𝑒〈𝑤, 𝑧〉)) ≤∑ 

∞

𝑙=1

(𝑁‖𝑧‖)𝑙−1(1 − 𝑁)(𝑟2  − 𝑅𝑒〈𝑤, 𝑧〉 

=
1 − 𝑁

1 − 𝑁‖𝑧‖
(𝑟2  − 𝑅𝑒〈𝑤, 𝑧〉) 

Since 〈𝑧 − 𝑤, 𝑧〉 =  𝑟2  − 〈𝑤, 𝑧〉 ≥ 0 we have  

𝑅𝑒〈𝐻(𝑧,𝑤), 𝑧〉 ≥ ( 𝑟2 −  𝑅𝑒〈𝑤, 𝑧〉) (1 −
1 − 𝑁

1 − 𝑁‖𝑧‖
‖𝑧‖)  

= (𝑟2 −  𝑅𝑒〈𝑤, 𝑧〉) (
1 − ‖𝑧‖

1 − 𝑟‖𝑧‖
) ≥ 0  

and the proof is complete. 

As we have seen, the condition that a mapping be convex is somewhat restrictive and 

unwieldy to verify. You will recall that even the mapping (𝑓1(𝑧1), . . . , 𝑓𝑛(𝑧𝑛)) with 𝑓𝑗 ∶ ∆→

ℂ convex for each 𝑗 = 1, . . . , 𝑛, may not be convex in ℂ𝑛. This leads us to consider a set of 

mappings which contains the set of convex mappings for dimension two or more and has 

many of the “nice” properties that we would like a generalization of the convex functions in 

the plane to have, yet has a more readily usable definition. 

 The characterization 

 𝑓 ∈ 𝐾 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑅𝑒 {
𝑧𝑓′′(𝑧)

𝑓′(𝑧)
 + 1} > 0                                 (7)  

is well-known and as we have mentioned comes from the fact that the curvature of the 

boundary of the image of any disk |𝑧|  < 𝑟 < 1 is always positive if and only if the function 

is convex. A less well-known result is that (see Suffridge, [13]),  
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𝑓 ∈ 𝐾 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑅𝑒 {
𝑧𝑓′(𝑧)

𝑓(𝑧) − 𝑓(𝜉)
} > 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑧, 𝜉 ∈ ∆, |𝜉| < |𝑧|.         (8) 

This characterization comes from noticing that f being convex is equivalent to 𝑓 being 

starlike with respect to every interior point. The expression is arrived at by letting 𝑧 vary on 

a circle of radius r and then for any fixed 𝜉 with |𝜉|  < 𝑟 < 1, the argument of the vector 

connecting 𝑓(𝜉) with 𝑓(𝑧) is an increasing function of arg(𝑧).  
If |𝜉| =  𝑟, 𝜉 ≠  𝑧, then from (8) we have 

 𝑅𝑒 {
𝑧𝑓′(𝑧)

𝑓(𝑧) − 𝑓(𝜉)
} ≥ 0,                                             (9) 

We further note that when |𝓏| =  |𝜉|, 𝓏 ≠ 𝜉, 𝑅𝑒 {
𝑧 + 𝜉

𝑧− 𝜉
} =  0. Hence 

𝑅𝑒 {
2𝑧𝑓′(𝑧)

𝑓(𝑧) −  𝑓(𝜉)
 −
𝑧 +  𝜉

𝑧 −  𝜉
} ≥  0.                                   (10) 

We observe that the singularity at 𝓏 =  𝜉 is removable and we are now working with the 

real part of an analytic function of 𝓏 and 𝜉, which is thus harmonic in both 𝓏 and 𝜉. 

By fixing 𝓏 and varying 𝜉, since we know that this function cannot attain its minimum on 

the interior of the disk |𝜉|  <  𝑟, the inequality is strict on the interior. Similarly, by holding 

ξ fixed and varying 𝓏 we get the same result for 𝓏. We conclude that 

𝑓 ∈  𝐾 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑅𝑒 {
2𝑧𝑓′(𝓏)

𝑓(𝓏) −  𝑓(𝜉)
 −
𝓏 +  𝜉

𝓏 −  𝜉
} ≥  0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝓏, 𝜉 ∈  ∆.     (11) 

We further note that 

lim
𝜉→𝓏

  𝑅𝑒 {
2𝓏𝑓′(𝓏)

𝑓(𝓏) −  𝑓(𝜉)
 −
𝓏 +  𝜉

𝓏 −  𝜉
} =  𝑅𝑒 {

𝓏𝑓′′(𝓏)

𝑓′(𝓏)
 +  1}.                   (12) 

When trying to generalize these ideas, we have seen in Theorem (1.1.11) that (8) does extend 

to higher dimensions. However, in trying to generalize the expression in (11) we find that 

we cannot find an appropriate second term that removes the singularity. So we need to 

modify the approach. 

Definition (1.1.15)[1]: Let 

𝕊𝑛  =  {𝑓 ∶  𝐵 ⊂  ℂ
𝑛  →  ℂ𝑛 ∶  𝑓(0)  =  0 and 𝐷𝑓(0)  =  𝐼}, 

and let 

𝑆2𝑛−1 = {𝑈 ∈  ℂ𝑛 ∶  ‖𝑈‖ =  1}. 
represent the unit sphere in ℂ𝑛 . 
Consider the one-dimensional subset of B, 

𝐶𝑈  =  {𝛼𝑈 ∶  𝑈 ∈  𝑆
2𝑛−1, 𝑈 𝑓𝑖𝑥𝑒𝑑, 𝑎𝑛𝑑 𝛼 ∈  ∆}. 

On this slice of B we can mimic the expression in (11) in the following way.  

Definition (1.1.16)[1]: Let 𝑈 ∈  ℂ𝑛, with ‖𝑈‖ =  1, and let ℓ𝑈  ∈  𝑇 (𝑈). For 𝑓 ∈  𝕊𝑛 

define 𝐺𝑓 ∶  ∆  × ∆ → ℂ̂ by 

𝐺𝑓(𝛼, 𝛽) =
2𝛼

ℓ𝑈 (𝐷𝑓(𝛼𝑈)
−1(𝑓(𝛼𝑈) −  𝑓(𝛽𝑈)))

 −
𝛼 +  𝛽

𝛼 −  𝛽
,       (13) 

where ℂ̂ is the extended plane. 

We now define a family of mappings, 𝔾, which bears some resemblance to the convex 

mappings in the plane. The question is, how much? The lemmas which follow the definition 

lead up to two theorems which assert that 𝔾 is between the convex mappings and the starlike 

mappings. 

Definition (1.1.17)[1]: Let 
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𝔾 =  {𝑓 ∈  𝕊𝑛 ∶  𝑅𝑒 {𝐺𝑓(𝛼, 𝛽)}  >  0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝛼, 𝛽 ∈  ∆ 𝑎𝑛𝑑 𝑎𝑛𝑦 𝑈 ∈  𝑆
2𝑛−1}. 

We call this family of mappings the “Quasi-Convex Mappings, Type A”.  

Lemma (1.1.18)[1]: The mapping 𝐺𝑓 (𝛼, 𝛽) is analytic in α and β. 

Proof. It suffices to show that there is a removable singularity at 𝛼 =  𝛽. We expand 𝑓(𝛽𝑈) 
about 𝛼𝑈 to obtain 

𝑓(𝛽𝑈) =  𝑓(𝛼𝑈) +  𝐷𝑓(𝛼𝑈)((𝛽 −  𝛼)𝑈) +
1

2
 𝐷2𝑓(𝛼𝑈)([(𝛽 −  𝛼)𝑈]2)  

+  𝑜((𝛽 −  𝛼)2). 
Therefore 

𝐷𝑓(𝛼𝑈)−1(𝑓(𝛼𝑈) −  𝑓(𝛽𝑈)) 

= −𝐷𝑓(𝛼𝑈)−1(𝐷𝑓(𝛼𝑈)((𝛽 −  𝛼)𝑈) +
1

2
 𝐷2𝑓(𝛼𝑈)([(𝛽 −  𝛼)𝑈]2) 

+ 𝑜((𝛽 −  𝛼)2))) 

= (𝛼 −  𝛽)𝐷𝑓(𝛼𝑈)−1(𝐷𝑓(𝛼𝑈)(𝑈) +
1

2
 (𝛽 −  𝛼)𝐷2𝑓(𝛼𝑈)(𝑈, 𝑈) 

+ 𝑜((𝛽 −  𝛼)))  

= (𝛼 −  𝛽)(𝑈 +
1

2
 (𝛽 −  𝛼)𝐷𝑓(𝛼𝑈)−1(𝐷2𝑓(𝛼𝑈)(𝑈, 𝑈)  +  𝑜(𝛽 −  𝛼)). 

This gives 

𝐺𝑓 (𝛼, 𝛽) 

=
2𝛼 − (𝛼 +  𝛽)ℓ𝑈 [𝑈 +

1
2
 (𝛽 −  𝛼)𝐷𝑓(𝛼𝑈)−1(𝐷2𝑓(𝛼𝑈)(𝑈, 𝑈)) +  𝑜(𝛽 −  𝛼)] 

(𝛼 −  𝛽)ℓ𝑈(𝑈 +
1
2
 (𝛽 −  𝛼)𝐷𝑓(𝛼𝑈)−1(𝐷2𝑓(𝛼𝑈)(𝑈, 𝑈))  +  𝑜(𝛽 −  𝛼))

 

=
2𝛼 − (𝛼 +  𝛽)(1 +

1
2
 (𝛽 −  𝛼)ℓ𝑈 [𝐷𝑓(𝛼𝑈)

−1(𝐷2𝑓(𝛼𝑈)(𝑈, 𝑈)) +  𝑜(𝛽 −  𝛼)])

(𝛼 −  𝛽)ℓ𝑈 (𝑈 +
1
2
 (𝛽 −  𝛼)𝐷𝑓(𝛼𝑈)−1(𝐷2𝑓(𝛼𝑈)(𝑈, 𝑈))  +  𝑜(𝛽 −  𝛼))

  

=
(𝛼 −  𝛽)(1 +

1
2
(𝛽 +  𝛼)ℓ𝑈 [𝐷𝑓(𝛼𝑈)

−1(𝐷2𝑓(𝛼𝑈)(𝑈, 𝑈))  +  𝑜(𝛽 −  𝛼)])

 (𝛼 −  𝛽)ℓ𝑈 (𝑈 +
1
2
(𝛽 −  𝛼)𝐷𝑓(𝛼𝑈)−1(𝐷2𝑓(𝛼𝑈)(𝑈, 𝑈))  +  𝑜(𝛽 −  𝛼)) .

 

Taking limits, 

lim
𝛽→𝛼

 𝐺𝑓 (𝛼, 𝛽)                                                                                                (14) 

= 1 +  𝛼ℓ𝑈𝐷𝑓(𝛼𝑈)
−1(𝐷2𝑓(𝛼𝑈)(𝑈, 𝑈)) 

=
1

𝛼
ℓ𝑈(𝛼𝑈 +  𝐷𝑓(𝛼𝑈)

−1(𝐷2𝑓(𝛼𝑈)(𝛼𝑈, 𝛼𝑈))) 

=
1

|𝛼|
 ℓ𝛼𝑈(𝛼𝑈 +  𝐷𝑓(𝛼𝑈)

−1(𝐷2𝑓(𝛼𝑈)(𝛼𝑈, 𝛼𝑈))) where ℓ𝛼𝑈 ∈  𝑇 (𝛼𝑈) 

=
1

|𝛼|
 ℓ𝛼𝑈 (𝐷𝑓(𝛼𝑈)

−1(𝐷2𝑓(𝛼𝑈)(𝛼𝑈, 𝛼𝑈) +  𝐷𝑓(𝛼𝑈)(𝛼𝑈))) , (15) 

which is well defined. We conclude from (14) that 𝐺𝑓 is indeed analytic in 𝛼 and 𝛽. 

The next theorem asserts a result which was really the motivation for considering the family 

𝔾. 

Theorem (1.1.19)[1]: Let 𝑓 ∈  𝕊𝑛, and assume 𝑓 is convex. Then 𝑓 ∈ 𝔾. 

Proof. Given 𝑓 ∈  𝕊𝑛, from Theorem (1.1.11) we have that if 𝑓 is convex, then 

𝑅𝑒{ℓ𝑍(𝐷𝑓(𝑍)
−1(𝑓(𝑍) −  𝑓(𝑉 )))  >  0 where ‖𝑉‖ < ‖𝑍‖ <  1 and ℓ𝑍  ∈  𝑇 (𝑍). 

By considering the one-dimensional cross-section of , 𝐶𝑈 , we have 
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𝑓 𝑐𝑜𝑛𝑣𝑒𝑥 ⇒  𝑅𝑒 {ℓ𝛼𝑈  (𝐷𝑓(𝛼𝑈)
−1(𝑓(𝛼𝑈) −  𝑓(𝛽𝑈)))}  >  0 where |𝛽|  <  |𝛼| 

⇒  𝑅𝑒{|𝛼|ℓ𝛼𝑈 (𝐷𝑓(𝛼𝑈)
−1(𝑓(𝛼𝑈) −  𝑓(𝛽𝑈)))}  >  0 

since corresponding to each ℓ𝑈 we have an ℓ𝛼𝑈(·) =
|𝛼|

𝛼
 ℓ𝑈 (·) in 𝑇 (𝛼𝑈). Thus  

𝑓 𝑐𝑜𝑛𝑣𝑒𝑥 ⇒  𝑅𝑒 {
1

𝛼
 ℓ𝑈 (𝐷𝑓(𝛼𝑈)

−1(𝑓(𝛼𝑈) −  𝑓(𝛽𝑈)))} >  0 

⇒  𝑅𝑒 {
2𝛼

ℓ𝑈 (𝐷𝑓(𝛼𝑈)
−1(𝑓(𝛼𝑈) −  𝑓(𝛽𝑈)))

} >  0 for |𝛽|  <  |𝛼|. 

As before, if we let |𝛽|  =  |𝛼| with 𝛽 ≠ 𝛼 we have 

𝑅𝑒 {
2𝛼

ℓ𝑈 (𝐷𝑓(𝛼𝑈)
−1(𝑓(𝛼𝑈) −  𝑓(𝛽𝑈)))

} ≥ 0. 

If |𝛼|  =  |𝛽|  =  𝑟, then 𝛼 =  𝑟𝑒𝑖𝜃 , 𝛽 =  𝑟𝑒𝑖𝜑 for some 𝜃, 𝜑 ∈  𝑅 and 

𝛼 +  𝛽

𝛼 −  𝛽
=  −𝑖

cos  
1
2
(𝜃 −  𝜑)

sin  
1
2
 (𝜃 −  𝜑)

 . 

Hence 𝑅𝑒 {
𝛼 + 𝛽

𝛼 − 𝛽
}  =  0. Thus for |𝛼| =  |𝛽|, 𝛼 ≠ 𝛽 we have 

𝑅𝑒 {
2𝛼

ℓ𝑈 (𝐷𝑓(𝛼𝑈)
−1(𝑓(𝛼𝑈) −  𝑓(𝛽𝑈)))

}  ≥  0 

⇔  𝑅𝑒 {
2𝛼

ℓ𝑈 (𝐷𝑓(𝛼𝑈)
−1(𝑓(𝛼𝑈) −  𝑓(𝛽𝑈)))

−
𝛼 +  𝛽

𝛼 −  𝛽
} ≥  0. 

That is 𝑅𝑒 {𝐺𝑓(𝛼, 𝛽)}  ≥  0 for |𝛼| =  |𝛽|, 𝛼 ≠ 𝛽. As we have seen in Lemma (1.1.18) 𝐺𝑓 is 

analytic in both α and 𝛽. It follows that 𝑅𝑒 {𝐺𝑓(𝛼, 𝛽)} is harmonic on ∆ × ∆. Keeping α 

fixed and varying 𝛽, we apply the minimum principle for harmonic functions to assert that 

𝑅𝑒 {𝐺𝑓(𝛼, 𝛽)} cannot attain its minimum at an interior point, i.e. when |𝛽|  <  |𝛼|. Similarly, 

holding 𝛽 fixed and varying 𝛼, with |𝛼|  <  |𝛽|, we obtain the same result for 𝛼. We 

conclude that on the whole polydisk ∆ × ∆, 𝑅𝑒 {𝐺𝑓 (𝛼, 𝛽)}  >  0. Hence 𝑓 ∈ 𝔾. 

Theorem (1.1.20)[1]: If 𝑓 ∈ 𝔾, then 𝑓 is starlike. 

Proof. If 𝑓 ∈ 𝔾, then 𝑅𝑒 {𝐺𝑓 (𝛼, 𝛽)}  >  0 for all 𝛼, 𝛽 ∈  ∆. Consider the case when 𝛽 =

 0. Then 

𝑅𝑒 {𝐺𝑓 (𝛼, 0)}  =  𝑅𝑒 {
2𝛼

ℓ𝑈 (𝐷𝑓(𝛼𝑈)
−1(𝑓(𝛼𝑈)))

−  1}  >  0 

⇒  𝑅𝑒 {
𝛼

ℓ𝑈 (𝐷𝑓(𝛼𝑈)
−1(𝑓(𝛼𝑈)))

} >
1

2
 

⇒  𝑅𝑒 {
1

𝛼
 ℓ𝑈 (𝐷𝑓(𝛼𝑈)

−1(𝑓(𝛼𝑈)))} >  0 

⇒  𝑅𝑒 
1

|𝛼|
 {ℓ𝛼𝑈(𝐷𝑓(𝛼𝑈)

−1(𝑓(𝛼𝑈)))}  >  0 
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since there is a 1-1 correspondence between 𝑇 (𝛼𝑈) and 𝑇 (𝑈) given by 

ℓ𝛼𝑈(·) =
|𝛼|

𝛼
 ℓ𝑈(·). Thus 

𝑅𝑒 𝐺𝑓(𝛼, 0) >  0 ⇒  𝑅𝑒 {ℓ𝛼𝑈 (𝐷𝑓(𝛼𝑈)
−1(𝑓(𝛼𝑈)))} > 0 

and this is the condition for starlikeness from (14). 

The condition (8) led us to our definition of the family 𝔾. An obvious question is, why not 

use the more common characterization of 𝐾, namely (7)? The analogous condition to this is 

𝑅𝑒 {ℓ𝑍 (𝐷𝑓(𝑍)
−1(𝐷2𝑓(𝑍)(𝑍, 𝑍) +  𝐷𝑓(𝑍)))} > 0. 

This leads us to define a new family of mappings, 𝐹. Naturally we will want to examine the 

relationship between 𝐹 and 𝔾. 𝐹, as we will see later, is defined by a local condition, whereas 

𝔾 is defined by a global condition. In the plane they are one and the same, but what about 

higher dimensions? 

Further motivation comes from the derivation of (7). The condition  

𝑅𝑒{𝓏𝑓′′(𝓏)𝑓′(𝓏) + 1}  >  0 

for convexity in the plane is equivalent to saying that the curvature of 𝑓(𝓏) is always positive 

for 𝓏 = 𝑟𝑒𝑖𝑡 with r fixed and t real. When we generalize this to the image of 𝐶𝑈  =  {𝛼𝑈 ∶
 ‖𝑈‖  =  1, 𝛼 ∈  ∆}, and use a 2-norm, we obtain an expression which is similar to that in 

the plane. That is, the condition which ensures that the curvature of 𝑓(𝑍𝑒𝑖𝑡), where 𝑍 ∈  𝐶𝑈 

with 𝑍 fixed and for some 𝑈, is always positive leads us to the same condition. 

Let 𝑟(𝑡)  =  𝑓(𝑍𝑒𝑖𝑡). Then 𝑟′(𝑡) = 𝑖𝐷𝑓(𝑍𝑒𝑖𝑡)(𝑍𝑒𝑖𝑡) and 

𝑟′′(𝑡) = −(𝐷2𝑓(𝑍𝑒𝑖𝑡)(𝑍𝑒𝑖𝑡 , 𝑍𝑒𝑖𝑡) + 𝐷𝑓(𝑍𝑒𝑖𝑡)(𝑍𝑒𝑖𝑡)). 
Since 𝑟′′(𝑡) = 𝑎𝑇(𝑡)𝑇(𝑡) + 𝑎𝑁(𝑡)𝑁(𝑡) where 𝑇(𝑡) and 𝑁(𝑡) are the unit tangential and 

unit normal (inward) components to the curve 𝑟(𝑡). Also 𝑎𝑁(𝑡) = 𝜅‖𝑟
′(𝑡)‖2 where 𝜅 is the 

curvature and 𝑎𝑁(𝑡) = 𝑅𝑒〈𝑟
′′(𝑡), 𝑁(𝑡)〉. 

𝑁(𝑡) = − 
(𝐷𝑓(𝑍𝑒𝑖𝑡)

−1
)
∗

(𝑍𝑒𝑖𝑡)

‖(𝐷𝑓(𝑍𝑒𝑖𝑡)−1)∗(𝑍𝑒𝑖𝑡)‖
 , 

where (𝐷𝑓(𝑍𝑒𝑖𝑡)
−1
)
∗
 is the adjoint of the derivative. Hence 

𝜅‖𝐷𝑓(𝑍𝑒𝑖𝑡)(𝑍𝑒𝑖𝑡)‖
2
 

= 𝑅𝑒 〈𝐷2𝑓(𝑍𝑒𝑖𝑡)(𝑍𝑒𝑖𝑡 , 𝑍𝑒𝑖𝑡) + 𝐷𝑓(𝑍𝑒𝑖𝑡)(𝑍𝑒𝑖𝑡),
(𝐷𝑓(𝑍𝑒𝑖𝑡)

−1
)
∗

(𝑍𝑒𝑖𝑡)

‖(𝐷𝑓(𝑍𝑒𝑖𝑡)−1)∗(𝑍𝑒𝑖𝑡)‖
〉, 

𝜅 =
𝑅𝑒 〈𝐷𝑓(𝑍𝑒𝑖𝑡)

−1
(𝐷2𝑓(𝑍𝑒𝑖𝑡)(𝑍𝑒𝑖𝑡 , 𝑍𝑒𝑖𝑡) + 𝐷𝑓(𝑍𝑒𝑖𝑡)(𝑍𝑒𝑖𝑡)) , 𝑍𝑒𝑖𝑡〉

‖𝐷𝑓(𝑍𝑒𝑖𝑡)(𝑍𝑒𝑖𝑡)‖2‖(𝐷𝑓(𝑍𝑒𝑖𝑡)−1)∗(𝑍𝑒𝑖𝑡)‖
 

Hence for any curve 𝑋(𝑡)  =  𝑍𝑒𝑖𝑡, 
𝑅𝑒〈𝐷𝑓(𝑋)−1(𝐷2𝑓(𝑋)(𝑋, 𝑋)  +  𝐷𝑓(𝑋)(𝑋)), 𝑋〉 > 0 

if and only if the curvature of 𝑓(𝑋(𝑡)) is positive. 

This leads us to the following definitions. 

Definition (1.1.21)[1]: Let 𝐹_𝑓(𝑍)  = ℓ𝑍(𝐷𝑓(𝑍)
−1(𝐷2𝑓(𝑍)(𝑍, 𝑍)  +  𝐷𝑓(𝑍)(𝑍))) where 

ℓ𝑍 ∈ 𝑇(𝑍). 
Definition (1.1.22)[1]: Let 𝔽 = {𝑓 ∈ 𝕊𝑛 ∶  𝑅𝑒{𝐹𝑓(𝑍)} > 0 for all 𝑍 ∈  𝐵}. We call this 

family of mappings the “Quasi-Convex Mappings, Type B”. 

The first relationship between 𝔽 and 𝔾 we prove is that 𝔾 is a subset of 𝔽.  

Theorem (1.1.23)[1]: If 𝑓 ∈ 𝔾 , then 𝑓 ∈ 𝔽. 
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Proof. This follows easily from (15) in Lemma (1.1.18). 

As we have seen, a mapping which has a convex function of one variable in each of its 

coordinates is not necessarily convex. We prove here that for any absolute norm such 

mappings are Quasi-Convex. 

Theorem (1.1.24)[1]: Let 𝑓 ∶  𝐵 ⊂  ℂ𝑛  →  ℂ𝑛 be defined by 𝑓(𝑍) = (𝑓1(𝓏1), . . . , 𝑓𝑛(𝓏𝑛)) 
where 𝑍 =  (𝓏1, . . . , 𝓏𝑛) and 𝑓𝑗  ∈  𝐾, for each 𝑗 =  1, 2, . . . , 𝑛. Then 𝑓 ∈ 𝔾 in any absolute 

norm. (That is, any norm for which |𝓏𝑗| ≤ |𝑤𝑗| for each 𝑗 implies that ‖𝑍‖ ≤ ‖𝑊‖.) 

Proof. We know that 𝐷𝑓(𝑍)  =  𝑑𝑖𝑎𝑔{𝑓𝑗
′(𝓏𝑗)}𝑗=1

𝑛
 and since 𝑓𝑗

′(𝓏𝑗) ≠ 0 for all 𝑗, 𝐷𝑓(𝑍) is 

nonsingular. Thus 𝐷𝑓(𝑍)−1 =  𝑑𝑖𝑎𝑔 {
1

𝑓𝑗
′(𝓏𝑗)

}
𝑗=1

𝑛

.  

Let 𝑈 ∈  𝑆2𝑛−1, and 𝛼, 𝛽 ∈  ∆ and define 𝑊 ∶  𝐵 ×  𝐵 →  ℂ𝑛 by 

𝑊(𝛼𝑈, 𝛽𝑈)  =  𝐷𝑓(𝛼𝑈)−1  (
𝑓(𝛼𝑈) − 𝑓(𝛽𝑈)

𝛼
). 

Then 

𝑊(𝛼𝑈, 𝛽𝑈)  = (
𝑓𝑗(𝛼𝑢𝑗) − 𝑓𝑗(𝛽𝑢𝑗)

𝛼𝑓𝑗
′(𝛼𝑈)

)
𝑗=1

𝑛

 , where 𝑈 =  (𝑢1, . . . , 𝑢𝑛). 

Let |𝛼|  =  𝑟 <  1 and let 𝛽 =  𝛾𝛼 with |𝛾|  <  1. For 𝑡 ∈  [0, 1], let 

𝐹𝑗(𝛼𝑢𝑗 , 𝑡) = (1 −  𝑡)𝑓𝑗(𝛼𝑢𝑗) + 𝑡𝑓𝑗(𝛽𝑢𝑗) 

= (1 −  𝑡)𝑓𝑗(𝛼𝑢𝑗) + 𝑡𝑓𝑗(𝛾𝛼𝑢𝑗). 

By the convexity of each of the 𝑓𝑗  , 𝐹𝑗 is subordinate to 𝑓𝑗 on ∆ for each 𝑡 ∈  [0, 1].  

Hence 𝐹(𝛼𝑈, 𝑡) is subordinate to 𝑓(𝛼𝑈) for 𝛼𝑈 ∈  𝐵 and 𝑡 ∈  [0, 1]. (The norm we have 

chosen guarantees this). We have, 

𝐹(𝛼𝑈, 0)  =  (𝐹𝑗(𝛼𝑢𝑗 , 0))
𝑗
= (𝑓𝑗(𝛼𝑢𝑗))

𝑗
= 𝑓(𝛼𝑈). 

We now take the following limits, 

lim
𝑡→0+

  (
𝐹(𝛼𝑈, 0) −  𝐹(𝛼𝑈, 𝑡)

𝑡
) 

= lim
𝑡→0+

  (
𝑓𝑗(𝛼𝑢𝑗) − (1 −  𝑡)𝑓𝑗(𝛼𝑢𝑗) −  𝑡𝑓𝑗(𝛾𝛼𝑢𝑗)

𝑡
)
𝑗

 

= (𝑓𝑗(𝛼𝑢𝑗) − 𝑓𝑗(𝛾𝛼𝑢𝑗))
𝑗
 

=  𝐺(𝛼𝑈), say,which is holomorphic. 
Hence by Lemma (1.1.7), 𝐺(𝛼𝑈)  =  𝐷𝑓(𝛼𝑈)(𝑉 (𝛼𝑈)) with 𝑉 ∈  𝑁0 

𝑉(𝛼𝑈)  =  𝐷𝑓(𝛼𝑈)−1(𝐺(𝛼𝑈)) = (
𝑓𝑗(𝛼𝑢𝑗) − 𝑓𝑗(𝛾𝛼𝑢𝑗)

𝑓𝑗
′(𝛼𝑈)

)
𝑗

= (
𝑓𝑗(𝛼𝑢𝑗) − 𝑓𝑗(𝛽𝑢𝑗)

𝑓𝑗
′(𝛼𝑈)

)
𝑗

=  𝛼𝑊(𝛼𝑈, 𝛽𝑈). 
Hence 𝛼𝑊(𝛼𝑈, 𝛽𝑈)  ∈  𝑁0 which means that 

𝑅𝑒 {ℓ𝛼𝑈 (𝛼𝑊(𝛼𝑈, 𝛽𝑈))}  >  0, 
where ℓ𝛼𝑈 ∈ 𝑇 (𝑈). 
Since for each ℓ𝛼𝑈 ∈  𝑇 (𝛼𝑈) there is a corresponding ℓ𝑈  ∈  𝑇 (𝑈) related by ℓ𝛼𝑈(·) =
|𝛼|

𝛼
(·), we have 𝑅𝑒 {ℓ𝑈(𝑊(𝛼𝑈, 𝛽𝑈))}  >  0. Thus 
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𝑅𝑒 {
2𝛼

ℓ𝑈 (𝐷𝑓(𝛼𝑈)
−1(𝑓(𝛼𝑈) −  𝑓(𝛽𝑈)))

} >  0, 

and it follows by a similar argument that 

𝑅𝑒 {
2𝛼

ℓ𝑈 (𝐷𝑓(𝛼𝑈)
−1(𝑓(𝛼𝑈) −  𝑓(𝛼𝑈)))

−
𝛼 +  𝛽

𝛼 −  𝛽
} > 0. 

Hence 𝑓 ∈ 𝔾. 

Theorem (1.1.25)[1]: Let 𝐵 be the unit ball in ℂ𝑛 with a p-norm with 1 ≤  𝑝 ≤  ∞. Let 𝐹 

be a mapping 𝐹 ∶  𝐵 →  ℂ𝑛 with one of its coordinate maps, 𝑓𝑘, a function of one variable 

only. It is a necessary condition for 𝐹 ∈ 𝔽 that 𝑓𝑘  ∈  𝐾. 

Proof. Without loss of generality we can assume that 

𝐹(𝑍) = (𝑓(𝓏), 𝑓2(𝑍), . . . , 𝑓𝑛(𝑍)),where 𝑍 =  (𝓏, 𝓏2, . . . , 𝓏𝑛). 

𝐷𝐹(𝑍)  =  [
𝑓′(𝓏) 0𝑛−1
𝐴𝑛−1 𝐵(𝑛−1)×(𝑛−1)

], 

𝐷𝐹(𝑍)−1 = [
1/𝑓′(𝓏) 0𝑛−1
𝐶𝑛−1 𝐷(𝑛−1)×(𝑛−1)

], 

𝐷2𝐹(𝑍)(𝑍, 𝑍) =  [
𝓏2𝑓′′(𝓏)
𝐸𝑛−1

] . 

Choose 𝑍 =  (𝓏, 0, . . . , 0)  =  (𝑟𝑒𝑖𝜃 , 0, . . . , 0). Then the functional ℓ𝑍(𝑈) = 𝑒
−𝑖𝜃𝑢1 is in 

𝑇(𝑍) and 

𝑅𝑒 ℓ𝑍 (𝐷𝐹(𝑍)
−1(𝐷2𝐹(𝑍)(𝑍, 𝑍) +  𝐷𝐹(𝑍)(𝑍)))

= 𝑅𝑒 {𝑒−𝑖𝜃  [
𝑟𝑒𝑖𝜃

0𝑛−1 
] + 𝑒−𝑖𝜃[1/𝑓′(𝓏)0𝑛−1]  [

𝓏2𝑓′′(𝓏)
𝐻𝑛−1

]} = 𝑅𝑒 {1 +
𝓏𝑓′′(𝓏)

𝑓′(𝓏)
 }

> 0 if and only if 𝑓 is convex. 
Corollary (1.1.26)[1]: If 𝑓 ∶  𝐵 →  ℂ𝑛 where 𝐵 ∈ ℓ𝑝(𝑛), 1 ≤  𝑝 ≤  ∞ is of the form 

𝑓(𝑍)  =  (𝑓1(𝓏1), . . . , 𝑓𝑛(𝓏𝑛)) where for each 𝑗 =  1, . . . , 𝑛, 𝑓𝑗 ∈ 𝑆, then 𝑓 ∈ 𝔾 (and 𝔽) if 

and only if 𝑓𝑗 ∈ 𝐾 for each 𝑗. 

Proof. The result follows immediately from Theorem (1.1.24) and Theorem (1.1.25).  

Theorem (1.1.27)[1]: Let 𝑓 ∶  𝐵 → ℂ with 𝐵 ⊂  ℂ𝑛 be holomorphic. Define 𝐹 ∶  𝐵 →  ℂ𝑛 

by 𝐹(𝑍)  =  𝑓(𝑍)𝑍. Further, given 𝑈 ∈  𝑆2𝑛−1, define 𝑔𝑈 ∶  ∆ → ℂ by 𝑔𝑈(𝛼)  =  𝛼𝑓(𝛼𝑈). 
Then: 

(i) 𝐹 ∈  𝐺 if and only if 𝑔𝑈  ∈  𝐾 for each 𝑈 ∈  𝑆2𝑛−1. 

(ii) 𝐹 ∈  𝐹 if and only if 𝑔𝑈  ∈  𝐾 for each 𝑈 ∈  𝑆2𝑛−1. 
Proof. Since 𝐹(𝑍)  =  𝑓(𝑍)(𝑍) where 𝑍𝑇 = (𝓏1 . . . , 𝓏𝑛) we have 

𝐷𝐹(𝑍)  =  𝑍𝛻𝑓(𝑍)𝑇 + 𝑓(𝑍)𝐼 
=  𝑍𝛻𝑓𝑇 + 𝑓 𝐼 (for simplicity).                             (16) 

It is easy to check that 

𝐷𝐹(𝑍)−1 =
1

𝑓(𝑓 +  𝛻𝑓𝑇𝑍)
 [(𝑓 + 𝛻𝑓𝑇𝑍)𝐼 − 𝑍𝛻𝑓𝑇]                        (17) 

where  = (
𝜕𝑓

𝜕𝓏1
 , . . . ,

𝜕𝑓

𝜕𝓏𝑛
)
𝑇
 . 

(i) From 𝐹(𝑍)  =  𝑓(𝑍)𝑍, we write 

𝐹(𝛼𝑈) −  𝐹(𝛽𝑈) = (𝑔𝑈(𝛼)  − 𝑔𝑈(𝛽))𝑈. 
Also, since 
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𝑔𝑈
′ (𝛼) = 𝑓(𝛼𝑈) +  𝛻𝑓(𝛼𝑈)𝑇(𝛼𝑈),                             (18) 

we have 

𝐷𝐹(𝛼𝑈)−1 =
(𝑓(𝛼𝑈) +  𝛻𝑓(𝛼𝑈)𝑇(𝛼𝑈))𝐼 −  𝛼𝑈𝛻𝑓(𝛼𝑈)𝑇

𝑓(𝛼𝑈)(𝑓(𝛼𝑈) +  𝛻𝑓(𝛼𝑈)𝑇(𝛼𝑈))
 

=
𝑔𝑈
′ (𝛼)𝐼 −  𝛼𝑈𝛻𝑓(𝛼𝑈)𝑇

𝑓(𝛼𝑈)(𝑔𝑈
′ (𝛼))

. 

So 

𝐷𝐹(𝛼𝑈)−1(𝐹(𝛼𝑈) −  𝐹(𝛽𝑈)) 

=
𝑔𝑈
′ (𝛼)(𝑔𝑈(𝛼) − 𝑔𝑈(𝛽))𝑈 − (𝛼𝑈𝛻𝑓(𝛼𝑈)

𝑇)(𝑔𝑈(𝛼) − 𝑔𝑈(𝛽))𝑈

𝑓(𝛼𝑈)𝑔𝑈
′ (𝛼)

 

=
𝑔𝑈(𝛼) − 𝑔𝑈(𝛽)

𝑔𝑈
′ (𝛼)

 𝑈. 

It follows that 

ℓ𝑈(𝐷𝐹(𝛼𝑈)
−1(𝐹(𝛼𝑈) − 𝐹(𝛽𝑈))) =

𝑔𝑈(𝛼) − 𝑔𝑈(𝛽)

𝑔𝑈
′ (𝛼)

                (19) 

for ℓ𝑈 ∈ 𝑇(𝑈). 
Therefore 

𝐺𝐹(𝛼, 𝛽) =
2𝛼𝑔𝑈

′ (𝛼)

𝑔𝑈(𝛼) − 𝑔𝑈(𝛽)
−
𝛼 +  𝛽

𝛼 −  𝛽
 , 

and so 𝑅𝑒 {𝐺𝐹(𝛼, 𝛽)}  >  0 if and only if 𝑔𝑈  ∈  𝐾 by (7). 

(ii) Let 𝑓(𝑍)  =  𝑓(𝑍)  +  𝛻𝑓(𝑍)𝑇𝑍. Then 

𝐷𝐹(𝑍)(𝑍)  =  𝑍𝛻𝑓(𝑍)𝑇𝑍 +  𝑓(𝑍)𝑍 =  𝑓(𝑍)𝑍. 
Differentiating again, 

𝐷2𝐹(𝑍)(𝑍,·)  +  𝐷𝐹(𝑍)(·) = (𝑍𝛻𝑓 ̂(𝑍)𝑇 + 𝑓 ̂(𝑍)𝐼)(·) 

𝐷2𝐹(𝑍)(𝑍, 𝑍)  +  𝐷𝐹(𝑍)(𝑍) = (𝛻𝑓 ̂𝑇𝑍 + 𝑓 ̂)𝑍. 
So we have 

𝐷𝐹(𝑍)−1(𝐷2𝐹(𝑍)(𝑍, 𝑍)  +  𝐷𝐹(𝑍)(𝑍))  =
1

𝑓𝑓
 (𝑓 𝐼 − 𝑍𝛻𝑓𝑇)(𝛻𝑓𝑇𝑍 + 𝑓)𝑍

=
(𝛻𝑓𝑇𝑍 + 𝑓)

𝑓𝑓
 (𝑓 −  𝛻𝑓𝑇𝑍)𝑍 =

(𝛻𝑓𝑇𝑍 + 𝑓)

𝑓
 𝑍. 

For ℓ𝑍  ∈  𝑇 (𝑍) we obtain 

ℓ𝑍(𝐷𝐹(𝑍)
−1(𝐷2𝐹(𝑍)(𝑍, 𝑍) + 𝐷𝐹(𝑍)(𝑍)))                        (20) 

= ‖𝑍‖ (
𝛻𝑓𝑇𝑍

𝑓
+ 1).                             (21) 

Given 𝑈 ∈  𝑆2𝑛−1 let 𝑔𝑈(𝛼)  =  𝛼𝑓(𝛼𝑈). Then 

𝑔𝑈
′ (𝛼) = 𝑓(𝛼𝑈) +  𝛼𝛻𝑓(𝛼𝑈)𝑇𝑈 

= 𝑓(𝛼𝑈),  

𝛼𝑔𝑈
′′(𝛼𝑈)  =  𝛻𝑓(𝛼𝑈)𝑇𝛼𝑈. 

Therefore 

𝛼𝑔𝑈
′′(𝛼)

𝑔𝑈
′ (𝛼)

+ 1 =
𝛻𝑓(𝛼𝑈)𝑇(𝛼𝑈)

𝑓(𝛼𝑈)
 +  1. 

So from (21) with 𝑍 =  𝛼𝑈 we see that 
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ℓ𝑍 (𝐷𝐹(𝑍)
−1(𝐷2𝐹(𝑍)(𝑍, 𝑍) +  𝐷𝐹(𝑍)(𝑍))) = |𝛼| (

𝛼𝑔𝑈
′′(𝛼)

𝑔𝑈
′ (𝛼)

+ 1) 

We conclude that 𝐹 ∈ 𝔽 if and only if 𝑔𝑈  ∈  𝐾 for each 𝑈 ∈  𝑆2𝑛−1. 

The following corollary involves an interesting mapping. Let us define the mapping 𝐹 ∶

 𝐵 →  ℂ𝑛 by 𝐹(𝑍) =
𝑓(ℓ(𝑍))

ℓ(𝑍)
 𝑍, where 𝑓 ∈  𝑆 and ℓ ∈ 𝑇(𝑈), for some 𝑈 ∈  ℂ𝑛 with ‖𝑈‖ =

1. This mapping has the property that in the one-dimensional space {𝛼𝑈 ∶  𝛼 ∈  ∆} it is 

identical to the mapping in the plane. In any other onedimensional space described by {𝛼𝑉 ∶
 𝛼 ∈  ∆, ℓ(𝑉 ) = 0} we have 𝐹(𝑍)  =  𝑍. That is, the identity mapping. This follows from 

𝑓(𝓏)/𝓏 having a removable singularity at 𝓏 =  0. This is easily seen by the following 

computation. 

𝐹(𝛼𝑈 +  𝛽𝑉 ) =
𝑓(𝛼)

𝛼
(𝛼𝑈 +  𝛽𝑉 ).                      (22) 

Hence if 𝛽 =  0, 𝐹(𝛼𝑈)  =  𝑓(𝛼)𝑈 and if  =  0, 𝐹(𝛽𝑉 )  =  𝛽𝑉 . 

Corollary (1.1.28)[1]: Let ℓ ∈  𝑇 (𝑈′) for some 𝑈′ ∈  𝑆2𝑛−1. Define 𝑓 ∶  𝐵 → ℂ by 

𝑓(𝑍) =
ℎ(ℓ(𝑍))

ℓ(𝑍)
 

where ℎ ∈  𝑆. Then 𝐹 ∶  𝐵 →  ℂ𝑛 given by 𝐹(𝑍)  =  𝑓(𝑍)𝑍 is in 𝔾 (or 𝔽) if and only if ℎ ∈
 𝐾. 

Proof. Given 𝑈 ∈  𝑆2𝑛−1, we have 

𝑔𝑈(𝛼) = 𝛼𝑓(𝛼𝑈) =
ℎ(𝛼ℓ(𝑈))

ℓ(𝑈)
. 

Then 

𝑅𝑒 {𝛼
𝑔′′𝑈(𝛼)

𝑔𝑈
′ (𝛼)

+ 1 = 𝑅𝑒{𝛼ℓ(𝑈))
ℎ′′(𝛼ℓ(𝑈))

ℎ′(𝛼ℓ(𝑈))
+ 1}  > 0 if and only if ℎ ∈  𝐾. 

The result follows from Theorem (1.1.27). 

Example (1.1.29)[1]: The function 𝑓(𝑍) = (𝓏 +  𝑎𝑤2, 𝑤) where 𝑍 =  (𝓏, 𝑤), ‖𝑍‖𝑝 =
|𝓏|𝑝 + |𝑤|𝑝 < 1, 𝓏,𝑤 ∈  𝐶 is in 𝔾 if and only if 

|𝑎| ≤
1

2
 (
𝑝2  −  1

4
)

1/𝑝

 (
𝑝 +  1

𝑝 −  1
) . 

As before, 

𝐷𝑓(𝑍)  =  [
1 2𝑎𝑤
0 1

] , 𝐷𝑓(𝑍)−1 = [
1 −2𝑎𝑤
0 1

]. 

Using 𝑓 ∈  𝐺 if and only if 𝑅𝑒 𝐺𝑓(𝛼, 𝛽)  >  0 where 

𝐺𝑓(𝛼, 𝛽) =
2𝛼

ℓ𝑈 (𝐷𝑓(𝛼𝑈)
−1(𝑓(𝛼𝑈) −  𝑓(𝛽𝑈)))

−
𝛼 +  𝛽

𝛼 −  𝛽
 

and 𝑈 =  (𝓏,𝑤), ‖𝑈‖ = 1, |𝛼|  <  1, |𝛽|  <  1, 𝛼, 𝛽 ∈  𝐶. It follows that 

𝐷𝑓(𝛼𝑈)−1(𝑓(𝛼𝑈) −  𝑓(𝛽𝑈)) = [
1 −2𝑎𝛼𝑤
0 1

] [
𝛼𝓏 + 𝑎𝛼2𝑤2 − 𝛽𝓏 − 𝑎𝛽2𝑤2

𝛼𝑤 − 𝛽𝑤
]

=  (𝛼 −  𝛽) [𝓏 − 𝑎(𝛼 − 𝛽)𝑤
2

𝑤
] 

And 

ℓ𝑈(𝐷𝑓(𝛼𝑈)
−1(𝑓(𝛼𝑈)  −  𝑓(𝛽𝑈))) = (𝛼 − 𝛽)(‖𝑈‖ − 𝑎(𝛼 − 𝛽)ℓ𝑈((𝑤

2, 0)))
= (𝛼 − 𝛽)(1 − 𝑎(𝛼 − 𝛽)ℓ𝑈((𝑤

2, 0))). 
So 
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𝐺𝑓(𝛼, 𝛽) =
2𝛼

(𝛼 −  𝛽) (1 −  𝑎(𝛼 −  𝛽)ℓ𝑈((𝑤
2, 0)))

 −
𝛼 +  𝛽

𝛼 −  𝛽

=
2𝛼 − (𝛼 +  𝛽) (1 −  𝑎(𝛼 −  𝛽)ℓ𝑈((𝑤

2, 0)))

(𝛼 −  𝛽) (1 −  𝑎(𝛼 −  𝛽)ℓ𝑈((𝑤
2, 0)))

  

=
1 + 𝑎(𝛼 +  𝛽)𝑤2𝓏̅

1 −  𝑎(𝛼 −  𝛽)ℓ𝑈((𝑤
2, 0))

 

= (1 +
𝑎ℓ𝑈((𝑤

2, 0))

1 + 𝑎𝛽ℓ𝑈((𝑤
2, 0))

𝛼) / (1 −
𝑎ℓ𝑈((𝑤

2, 0))

1 +  𝑎𝛽ℓ𝑈((𝑤
2, 0))

𝛼) 

 =
1 +  𝑏𝛼

1 −  𝑏𝛼
,where 𝑏 =

𝑎ℓ𝑈((𝑤
2, 0))

1 +  𝑎𝛽ℓ𝑈((𝑤
2, 0))

. 

Since 
1 + 𝑏𝛼

1 − 𝑏𝛼
=
1 − |𝑏𝛼|2

|1 − 𝑏𝛼|2
+
2𝑖 𝐼𝑚 {𝑏𝛼}

|1 − 𝑏𝛼|2
 it follows that 𝑅𝑒 {𝐺𝑓(𝛼, 𝛽)  ≥  0} if and only if |𝑏𝛼|  ≤

 1. Thus we need 

|𝑏| = |
𝑎ℓ𝑈((𝑤

2, 0))

1 + 𝑎𝛽ℓ𝑈((𝑤
2, 0))

| ≤ 1. 

Hence 

|𝑎||ℓ𝑈((𝑤
2, 0))| ≤ |1 + 𝑎𝛽ℓ𝑈((𝑤

2, 0))|, 
and in the worst case 

|𝑎||ℓ𝑈((𝑤
2, 0))| ≤ 1 − |𝑎||ℓ𝑈((𝑤

2, 0))|. 
That is, 2|𝑎||ℓ𝑈((𝑤

2, 0))|  ≤  1. 

If we are using a p-norm, 1 < 𝑝 <  ∞, ℓ𝑈 ((𝑥1, 𝑥2)) = |𝓏|
𝑝−2𝓏̅𝑥1 + |𝑤|

𝑝−2𝑤𝑥̅2. Then 

ℓ𝑈((𝑤
2, 0)) = |𝓏|𝑝−2𝓏̅𝑤2 and |ℓ𝑈((𝑤

2, 0))| = |𝓏|𝑝−1(1 − |𝓏|𝑝)2/𝑝. Hence 

2|𝑎||ℓ𝑈((𝑤
2, 0))|  ≤  1 if and only if 

|𝑎| ≤
1

2
 (
𝑝2  −  1

4
)

1/𝑝

 (
𝑝 +  1

𝑝 −  1
) . 

We note that if 𝑓 is in 𝔾, then 𝑓 is starlike. 

Example (1.1.30)[1]: The function 𝑓(𝑍) = (𝓏 +  𝑎𝑤2, 𝑤) where 𝑍 =  (𝓏, 𝑤), ‖𝑍‖𝑝 =
|𝓏|𝑝 + |𝑤|𝑝 <  1, 𝓏, 𝑤 ∈  𝐶 is in 𝔽 if and only if 

|𝑎| ≤
1

2
 (
𝑝2 − 1

4
)

1/𝑝

 (
𝑝 + 1

𝑝 −  1
) . 

We have that 𝑓 ∈ 𝔽 if and only if 

𝑅𝑒 ℓ𝑍(𝐷𝑓(𝑍)
−1(𝐷2𝑓(𝑍)(𝑍, 𝑍)  +  𝐷𝑓(𝑍)(𝑍)))  >  0. 

Therefore, 

𝐷𝑓(𝑍)−1(𝐷2𝑓(𝑍)(𝑍, 𝑍)  +  𝐷𝑓(𝑍)(𝑍)) = [
1 −2𝑎𝑤
0 1

] [2𝑎𝑤
2

0
] + [

𝓏
𝑤
] =  [𝓏 + 2𝑎𝑤

2

𝑤
] .  

Hence 

𝑅𝑒 {ℓ𝑍 (𝐷𝑓(𝑍)
−1(𝐷2𝑓(𝑍)(𝑍, 𝑍) +  𝐷𝑓(𝑍)(𝑍)))} =  𝑅𝑒{‖𝑍‖ + 2𝑎ℓ𝑍((𝑤

2, 0))}

=  𝑅𝑒{‖𝑍‖ + 2𝑎ℓ𝑍((𝑤
2, 0))}

≥  𝑅𝑒{1 + 2𝑎ℓ𝑍((𝑤
2, 0))} (minimum principle)

≥  𝑅𝑒{1 −  2|𝑎||ℓ𝑍((𝑤
2, 0))|}. 

This is the same condition as for the family 𝔾 and so the same bound applies. 
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It should be noted that, as with 𝔾, 𝑓(𝓏,𝑤) = (𝓏 +  𝑎𝑤2, 𝑤) ∈ 𝔽 ⇒ 𝑓 is starlike.  

Example (1.1.31)[1]: The mapping 𝑓(𝓏,𝑤) = (𝓏 +  𝑎𝓏𝑤,𝑤) with (𝓏, 𝑤)  ∈  𝐵 ⊂  ℂ2 
with a p-norm is in 𝔾 if and only if 

|𝑎| ≤ (
2

3
(𝑝 +  1))

1/𝑝

 (
𝑝 +  1

3𝑝
) . 

We know that 𝑓 ∈ 𝔾 if and only if 𝑅𝑒 𝐺𝑓 (𝛼, 𝛽)  >  0. 

𝐷𝑓(𝛼𝑈)−1(𝑓(𝛼𝑈) − 𝑓(𝛽𝑈)) = (𝛼 − 𝛽) [𝓏 −
(𝛼 − 𝛽)𝑎𝑤𝓏

1 + 𝑎𝑤𝛼
𝑤

] 

where 𝑈 =  (𝓏, 𝑤), ‖𝑈‖ = 1. 

If we use a 𝑝-norm, 

ℓ𝑈 ((𝛼 − 𝛽)(𝓏 −
(𝛼 − 𝛽)𝑎𝑤𝓏

1 + 𝑎𝑤𝛼
,𝑤)) = (𝛼 −  𝛽) (1 − (𝛼 − 𝛽) 

𝑎𝑤|𝓏|𝑝

1 +  𝑎𝑤𝛼
). 

Hence 

𝐺𝑓 (𝛼, 𝛽) =
2𝛼

ℓ𝑈(𝐷𝑓(𝛼𝑈)
−1(𝑓(𝛼𝑈) − 𝑓(𝛽𝑈))

−
𝛼 +  𝛽

𝛼 –  𝛽
 

=
2𝛼

𝛼 − 𝛽
1 + 𝑎𝑤𝛼

(1 +  𝑎𝑤𝛼 − (𝛼 −  𝛽)𝑎𝑤|𝓏|𝑝)
 

=
1 +  𝑎𝑤𝛼 + (𝛼 +  𝛽)𝑎𝑤|𝓏|𝑝

1 +  𝑎𝑤𝛼 − (𝛼 −  𝛽)𝑎𝑤|𝓏|𝑝
 

=
1 +  𝛽𝑎𝑤|𝓏|𝑝 + 𝑎𝑤(1 + |𝓏|𝑝)𝛼

1 +  𝛽𝑎𝑤|𝓏|𝑝 − 𝑎𝑤(1 − |𝓏|𝑝)𝛼
 

= (1 +
𝑎𝑤𝛼|𝓏|𝑝

1 +  𝛽𝑎𝑤|𝓏|𝑝 + 𝑎𝑤𝛼
)/(1 −

𝑎𝑤𝛼|𝓏|𝑝

1 + 𝛽𝑎𝑤|𝓏|𝑝 +  𝑎𝑤𝛼
). 

The real part of this is positive if and only if 

|
𝑎𝑤𝛼|𝓏|𝑝

1 +  𝛽𝑎𝑤|𝓏|𝑝  +  𝑎𝑤𝛼
| ≤ 1. 

Hence we need |𝑎||𝑤||𝛼||𝓏|𝑝 ≤ |1 + 𝛽𝑎𝑤||𝓏|𝑝𝑎𝑤𝛼|. The worst case is when 𝛼𝑎𝑤 =
 𝛽𝑎𝑤 =  −|𝑎𝑤|, and we have to find 𝑎 such that |𝑎||𝑤||𝓏|𝑝 ≤ 1 − |𝑎||𝑤||𝓏|𝑝 − |𝑎||𝑤|. 
We obtain |𝑎||𝑤|(3 −  2|𝑤|𝑝)  ≤  1 from which we find that 

|𝑎|  ≤ (
2

3
(𝑝 +  1))

1/𝑝

(
𝑝 +  1

3𝑝
). 

In particular we have the following values of a. 

If 𝑝 =  1 |𝑎|  ≤  8/9, 

If 𝑝 =  2 |𝑎|  ≤  1/√2 ,  
If 𝑝 =  ∞ |𝑎|  ≤  1/3. 

Note that for 𝑝 =  2 the values obtained for a are the same for 𝔾 as for the convex mappings. 

Example (1.1.32)[1]: The mapping 𝑓(𝓏,𝑤) = (𝓏 +  𝑎𝓏𝑤,𝑤) is in 𝔽 if and only if 

|𝑎|  ≤ (
2

3
(𝑝 + 1))

1/𝑝

(
𝑝 +  1

3𝑝
)  . 

This is the same result as in Example (1.1.31). This follows directly from the observation 

that the worst case in that example occurs when 𝛼 =  𝛽. 
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We now turn our attention to finding information on the family 𝔾 as a whole, 

Theorem (1.1.35) gives us some uniform bounds, in the Euclidean norm, on 𝔾. We first 

prove two lemmas. 

Lemma (1.1.33)[1]: Let 𝑓 ∶  𝐵 →  ℂ𝑛 be holomorphic and univalent on 𝐵. Let 𝑈 ∈  ℂ𝑛 

with ‖𝑈‖ = 1 and let 𝛼 ∈  ∆. Then necessary conditions for ‖𝑓(𝑍)‖ to have a local 

maximum or minimum on {𝑍 ∶  ‖𝑍‖  =  𝑟 <  1} at 𝑍 =  𝛼𝑈, |𝛼|  =  𝑟 are  

Im〈𝐷𝑓(𝛼𝑈)(𝛼𝑈), 𝑓(𝛼𝑈)〉  =  0,                              (23) 
And 

〈𝐷𝑓(𝛼𝑈)(𝛼𝑉 ), 𝑓(𝛼𝑈)〉 = 0,                               (24) 
where 𝑉 ∈  ℂ𝑛, ‖𝑉‖ = 1 and 〈𝑈, 𝑉〉 = 0. 

Proof. Let 𝛼 =  𝑟𝑒𝑖𝜃 where 𝑟 is fixed and 𝜃 varies. 
𝑑

𝑑𝜃
 (‖𝑓(𝛼𝑈)‖2) =

𝑑

𝑑𝜃
 〈𝑓(𝛼𝑈), 𝑓(𝛼𝑈)〉 

= 〈𝐷𝑓(𝛼𝑈)(𝑖𝛼𝑈), 𝑓(𝛼𝑈)〉 + 〈𝑓(𝛼𝑈), 𝐷𝑓(𝛼𝑈)(𝑖𝛼𝑈)〉 
=  2 𝑅𝑒〈𝐷𝑓(𝛼𝑈)(𝑖𝛼𝑈), 𝑓(𝛼𝑈)〉 
=  2 𝑅𝑒 {𝑖〈𝐷𝑓(𝛼𝑈)(𝛼𝑈), 𝑓(𝛼𝑈)〉} 
= −2 Im〈𝐷𝑓(𝛼𝑈)(𝛼𝑈), 𝑓(𝛼𝑈)〉. 

When a maximum (or minimum) of ‖𝑓(𝛼𝑈)‖2 for |𝛼|  =  𝑟 occurs,  

Im〈𝐷𝑓(𝛼𝑈)(𝛼𝑈), 𝑓(𝛼𝑈)〉 = 0. 
That is, 〈𝐷𝑓(𝛼𝑈)(𝛼𝑈), 𝑓(𝛼𝑈)〉 is real. 

Now fix 𝛼 at a point where ‖𝑓(𝛼𝑈)‖ has a maximum, |𝛼|  =  𝑟, and vary 𝑍 by letting 

𝑍(𝜃)  =  𝛼(𝑈 𝑐𝑜𝑠 𝜃 +  𝜆𝑉 𝑠𝑖𝑛 𝜃), where 〈𝑈, 𝑉〉 = 0, ‖𝑉‖ = 1, |𝜆| = 1. 
𝑑

𝑑𝜃
 (〈𝑓(𝑍(𝜃)), 𝑓(𝑍(𝜃))〉) 

= 〈𝐷𝑓(𝑍(𝜃))(𝑍′(𝜃)), 𝑓(𝑍(𝜃))〉 + 〈𝑓(𝑍(𝜃)), 𝐷𝑓(𝑍(𝜃))(𝑍0 (𝜃))〉 
=  2 𝑅𝑒〈𝐷𝑓(𝑍(𝜃))(𝑍0 (𝜃)), 𝑓(𝑍(𝜃))〉. 

We want this to have a maximum at 𝜃 =  0. Hence we need 

2 𝑅𝑒𝐷𝑓(𝑍(𝜃))(𝑍′(𝜃)), 𝑓(𝑍(𝜃))|
𝜃=0

= 0. 

Since 𝑍′(0) = 𝛼(𝑈(−sin 𝜃) + 𝜆𝑉 cos 𝜃)|𝜃=0, 𝑍
′(0) = 𝜆𝛼𝑉, 𝑍(0)  =  𝛼𝑈, this becomes 

2 𝑅𝑒〈𝐷𝑓(𝛼𝑈)(𝜆𝛼𝑉 ), 𝑓(𝛼𝑈)〉 = 0. 
Hence  {𝜆〈𝐷𝑓(𝛼𝑈)(𝛼𝑉 ), 𝑓(𝛼𝑈)〉} = 0 , for all 𝜆, |𝜆|  =  1. Thus it follows that 

|〈𝐷𝑓(𝛼𝑈)(𝛼𝑉 ), 𝑓(𝛼𝑈)〉| = 0. Consequently, 

〈𝐷𝑓(𝛼𝑈)(𝛼𝑉 ), 𝑓(𝛼𝑈)〉 = 0. 
Lemma (1.1.34)[1]: Let (𝑟𝑛)𝑛=1

∞  be a monotone increasing sequence of positive numbers 

converging to 1. Let 𝑓 ∈  𝐺 and define 𝑓𝑛(𝑍)  =  (1/𝑟𝑛)𝑓(𝑟𝑛𝑍). Then 

(i) 𝑓𝑛  ∈  𝐺, and 

(ii) 𝑓𝑛  →  𝑓 uniformly on compact subsets of 𝐵. 

Proof. We first note that 𝐷𝑓𝑛(𝑍)  =  𝐷𝑓(𝑟𝑛𝑍). Hence 

𝐺𝑓𝑛(𝛼, 𝛽) =
2𝛼

〈𝐷𝑓𝑛(𝛼𝑈)
−1(𝑓𝑛(𝛼𝑈) − 𝑓𝑛(𝛽𝑈)),𝑈〉

−
𝛼 + 𝛽

𝛼 −  𝛽
 

=
2𝑟𝑛𝛼

〈𝐷𝑓(𝑟𝑛𝛼𝑈)
−1(𝑓(𝑟𝑛𝛼𝑈) − 𝑓𝑛(𝑟𝑛𝛽𝑈)),𝑈〉

−
𝑟𝑛𝛼 + 𝑟𝑛𝛽

𝑟𝑛𝛼 − 𝑟𝑛𝛽
 

= 𝐺𝑓(𝑟𝑛𝛼, 𝑟𝑛𝛽) 

and  𝑓𝑛  ∈  𝐺. 

That 𝑓𝑛 → 𝑓 uniformly on compact subsets of 𝐵 follows by a standard argument.  

Theorem (1.1.35)[1]: Let 𝑓 ∈  𝐺, then for all 𝑍 ∈  𝐵, using the 2-norm, 
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‖𝑍‖

1 + ‖𝑍‖
≤ ‖𝑓(𝑍)‖ ≤

‖𝑍‖

1 − ‖𝑍‖
 . 

Proof. Since 𝑅𝑒 𝐺𝑓(𝛼, 𝛽)  >  0 and 𝐺𝑓(0, 𝛽)  =  1 we can write 

𝐺𝑓(𝛼, 𝛽) =
1 +  𝛼𝜔(𝛼, 𝛽)

1 −  𝛼𝜔(𝛼, 𝛽)
, 

where 𝛼𝜔(𝛼, 𝛽) is a Schwarz function. That is, 𝛼𝜔(𝛼, 𝛽) is analytic for 𝛼, 𝛽 ∈  ∆ and 

|𝛼𝜔(𝛼, 𝛽)| ≤ |𝛼|. Thus |𝜔(𝛼, 𝛽)|  ≤  1. We have 
2𝛼

〈𝐷𝑓(𝛼𝑈)−1(𝑓(𝛼𝑈) −  𝑓(𝛽𝑈)),𝑈〉
−
𝛼 +  𝛽

𝛼 −  𝛽
=
1 +  𝛼𝜔(𝛼, 𝛽)

1 −  𝛼𝜔(𝛼, 𝛽)
 . 

Hence 
2𝛼

〈𝐷𝑓(𝛼𝑈)−1(𝑓(𝛼𝑈) −  𝑓(𝛽𝑈)), 𝑈〉
=
1 +  𝛼𝜔(𝛼, 𝛽)

1 −  𝛼𝜔(𝛼, 𝛽)
+
𝛼 +  𝛽

𝛼 −  𝛽

=
2𝛼(1 −  𝛽𝜔(𝛼, 𝛽))

(𝛼 −  𝛽)(1 −  𝛼𝜔(𝛼, 𝛽))
. 

Thus 

〈𝐷𝑓(𝛼𝑈)−1(𝑓(𝛼𝑈) − 𝑓(𝛽𝑈)), 𝑈〉 = (𝛼 −  𝛽)
1 −  𝛼𝜔(𝛼, 𝛽)

1 −  𝛽𝜔(𝛼, 𝛽)
 

And 

𝐷𝑓(𝛼𝑈)−1(𝑓(𝛼𝑈) −  𝑓(𝛽𝑈)) =  (𝛼 −  𝛽)
1 −  𝛼𝜔(𝛼, 𝛽)

1 −  𝛽𝜔(𝛼, 𝛽)
𝑈 +∑ 

𝑛

𝑗=2

𝑑𝑗(𝛼, 𝛽)𝑉𝑗 

where 𝑑𝑗(𝛼, 𝛽) is analytic in 𝛼 and 𝛽, 〈𝑉𝑗 , 𝑈〉 = 0 and 〈𝑉𝑗 , 𝑉𝑘〉 = 0 for 𝑗 ≠ 𝑘. Thus  

(𝑓(𝛼𝑈) − 𝑓(𝛽𝑈)) = (𝛼 −  𝛽)
1 − 𝛼𝜔(𝛼, 𝛽)

1 − 𝛽𝜔(𝛼, 𝛽)
𝐷𝑓(𝛼𝑈)(𝑈) +∑ 

𝑛

𝑗=2

𝑑𝑗(𝛼, 𝛽)𝐷𝑓(𝛼𝑈)(𝑉𝑗). 

Further, dividing by 𝛼 −  𝛽 and letting 𝛽 →  𝛼 we have 

𝐷𝑓(𝛼𝑈)(𝑈) = 𝐷𝑓(𝛼𝑈)(𝑈) +∑ 

𝑛

𝑗=2

lim
𝛽→𝛼

 
𝑑𝑗(𝛼, 𝛽)

𝛼 −  𝛽
 𝐷𝑓(𝛼𝑈)(𝑉𝑗). 

Therefore 

lim
𝛽→𝛼

 
𝑑𝑗(𝛼, 𝛽)

𝛼 −  𝛽
=  0 for 𝑗 =  2, . . . , 𝑛. 

From this we conclude that 𝑑𝑗(𝛼, 𝛽) = (𝛼 −  𝛽)
2𝑐𝑗(𝛼, 𝛽) where 𝑐𝑗(𝛼, 𝛽) is analytic in 𝛼 

and 𝛽. So we can write 

𝑓(𝛼𝑈) −  𝑓(𝛽𝑈) = (𝛼 −  𝛽)
1 −  𝛼𝜔(𝛼, 𝛽)

1 −  𝛽𝜔(𝛼, 𝛽)
𝐷𝑓(𝛼𝑈)(𝑈)        (25) 

+∑ 

𝑛

𝑗=2

(𝛼 − 𝛽)2𝑐𝑗(𝛼, 𝛽)𝐷𝑓(𝛼𝑈)(𝑉𝑗). 

From this we get two useful representations of 𝑓(𝑍). 
When 𝛽 =  0, 

𝑓(𝛼𝑈)  = 𝛼(1 − 𝛼𝜔(𝛼, 0))𝐷𝑓(𝛼𝑈)(𝑈) +∑ 

𝑛

𝑗=2

𝛼2𝑐𝑗(𝛼, 0)𝐷𝑓(𝛼𝑈)(𝑉𝑗), (26) 

and when 𝛼 =  0, 
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𝑓(𝛽𝑈) =
𝛽

1 −  𝛽𝜔(0, 𝛽)
𝑈 −∑ 

𝑛

𝑗=2

𝛽2𝑐𝑗(0, 𝛽)𝑉𝑗 .                (27) 

Since 

‖𝑓(𝛽𝑈)‖2 = 〈𝑓(𝛽𝑈), 𝑓(𝛽𝑈)〉 ≥
|𝛽|2

|1 −  𝛽𝜔(0, 𝛽)|2
≥

|𝛽|2

(1 +  |𝛽|)2
 , 

we have the lower bound. 

To obtain the upper bound requires a lot more work. We note that if |𝜔(𝛼, 𝛽)|  =  1, it 

follows that 𝜔(𝛼, 𝛽)  =  𝑒𝑖𝜃 for all 𝛼, 𝛽 ∈  ∆ and 𝜃 is a real constant. If 𝛽 =  |𝛽|𝑒−𝑖𝜃 then 

‖𝑓(𝛽𝑈)‖2 =
|𝛽|2

(1 − |𝛽|)2
+ |𝛽|4∑ 

𝑛

𝑗=2

|𝑐𝑗(0, 𝛽)|
2
. 

Clearly, if 𝑐𝑗(0, |𝛽|𝑒
−𝑖𝜃) ≠ 0 for some 𝑗, then ‖𝑓(𝛽𝑈)‖ >

|𝛽|

1 − |𝛽|
 . Our approach will 

implicitly show that this does not happen. 

Let (𝑟𝑛)𝑛=1
∞  and fn be as in Lemma (1.1.34). Then from the lemma we know that 𝑓𝑛  ∈ 𝔾 

and 𝑓𝑛  →  𝑓 uniformly on compact sets. In addition we will show that for each 𝑛, the 

𝜔𝑛(𝛼, 𝛽) associated with fn as in (25) has the property |𝜔𝑛(𝛼, 𝛽)|  <  1.  

Once this is established it will suffice to show that the bound holds for mappings with 

|𝜔(𝛼, 𝛽)|  <  1. 

To see that for any 𝑓𝑛, |𝜔𝑛(𝛼, 𝛽)|  <  1 we use 

𝐺𝑓𝑛(𝛼, 𝛽) = 𝐺𝑓(𝑟𝑛𝛼, 𝑟𝑛𝛽) 

from Lemma (1.1.34) and 

𝐺𝑓(𝛼, 𝛽) =
1 +  𝛼𝜔(𝛼, 𝛽)

1 −  𝛼𝜔(𝛼, 𝛽)
 . 

From this we have |𝜔𝑛(𝛼, 𝛽)|  =  |𝑟𝑛𝜔(𝑟𝑛𝛼, 𝑟𝑛𝛽)|. Therefore |𝜔𝑛(𝛼, 𝛽)|  <  1 since 𝑟𝑛  <
 1 and |𝜔(𝛼, 𝛽)|  ≤  1. 

Now let 𝑓 ∈ 𝔾 have the property |𝜔(𝛼, 𝛽)|  <  1, for all 𝛼, 𝛽 ∈  ∆ and let 

𝑇 = {𝑟 ∶  ‖𝑓(𝑍)‖ ≤
‖𝑍‖

1 − ‖𝑍‖
 for ‖𝑍‖ < 𝑟}. 

We will show that 𝑇 is both open and closed and conclude that 𝑇 =  [0, 1] for every 𝑓 with 

the property that |𝜔(𝛼, 𝛽)|  <  1. Note that although 𝑇 depends on 𝑓, for the sake of 

simplicity, our notation will not explicitly reflect this. 

𝑇 ≠ 𝜙 since 0 ∈  𝑇 (vacuously). 

Next we show that there exists 𝜀 >  0 such that [0, 𝜀]  ∈  𝑇 . 

We have seen that 

‖𝑓(𝛽𝑈)‖2 =
|𝛽|2

|1 − 𝛽𝜔(0, 𝛽)|2
+ |𝛽|4∑ 

𝑛

𝑗=2

|𝑐𝑗  (0, 𝛽)|
2
. 

Let us assume that |𝛽| ≤
1

2
 and let 𝑀 = max

|𝛽|≤1/2
 ∑  𝑛
𝑗=2 |𝑐𝑗(0, 𝛽)|

2
. Also let |𝜔(0, 𝛽)|  ≤

 𝜌 <  1 for |𝛽| ≤
1

2
 . Hence 

‖𝑓(𝛽𝑈)‖2 ≤
|𝛽|2

(1 −  𝜌|𝛽|)2
+ |𝛽|4𝑀, 
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and we need ‖𝑓(𝛽𝑈)‖2 ≤
|𝛽|2

(1 − |𝛽|)2
 . We will find the conditions on |𝛽| for 

|𝛽|2

(1 − 𝜌|𝛽|)2
+

|𝛽|4𝑀 ≤
|𝛽|2

(1 − |𝛽|)2
 and the required inequality will follow. 

Easily, 
1

(1 −  𝜌|𝛽|)2
+ |𝛽|2𝑀 ≤

1

(1 − |𝛽|)2
 

if and only if 

(1 −  |𝛽|)2 + |𝛽|2𝑀(1 − |𝛽|)2(1 − 𝜌|𝛽|)2 ≤ (1 − 𝜌|𝛽|)2. 
Thus, it is sufficient to obtain 

(1 − |𝛽|)2 + |𝛽|2𝑀 ≤ (1 − 𝜌|𝛽|)2. 
Hence we have 

1 − 2|𝛽| + |𝛽|2 + |𝛽|2𝑀 ≤ 1 − 2𝜌|𝛽| + 𝜌2|𝛽|2, 
|𝛽|(1 − 𝜌2 +𝑀) ≤ 2(1 − 𝜌), 

|𝛽| ≤
2(1 −  𝜌)

1 − 𝜌2 +𝑀
. 

Since 
2(1 − 𝜌)

1 − 𝜌2 + 𝑀
>  0 we can choose 𝜀 ≤  1/2 such that 0 < 𝜀 <

2(1 − 𝜌)

1 − 𝜌2 + 𝑀
 . Hence [0, 𝜀]  ⊂

 𝑇 . 

𝑇 is closed if 𝑟0 is a limit point of 𝑇 and 𝑟0 ∉ 𝑇 , then there is a neighborhood, 𝑁, of 𝑟0 such 

that ‖𝑓(𝑍)‖ >
‖𝑍‖

1 − ‖𝑍‖
 for some 𝑍 with ‖𝑍‖ ∈ 𝑁, ‖𝑍‖ = 𝑟1 < 𝑟0. Now choose 𝑟2 such that 

𝑟1 < 𝑟2 < 𝑟0 such that 𝑟2  ∈  𝑇 (𝑟2 exists since 𝑟0 is a limit point). Then by the definition of 

𝑇, ‖𝑓(𝑍)‖ ≤
‖𝑍‖

1 − ‖𝑍‖
 for all 𝑍 such that ‖𝑍‖ < 𝑟2. This is contradiction and so 𝑟0 ∈ 𝑇. Hence 

𝑇 is closed. 

To establish that 𝑇 is (relatively) open we will show that if ‖𝑓(𝑍)‖ =
‖𝑍‖

1 − ‖𝑍‖
 for some  =

 𝑍0, ‖𝑍0‖ = 𝑟0  ∈  𝑇 , then it would mean that ‖𝑓(𝑍)‖ >
‖𝑍‖

1 − ‖𝑍‖
 for some 𝑍, ‖𝑍‖ =  𝑟 < 𝑟0. 

This would contradict the definition of  . So on 𝐵𝑟0 , ‖𝑓(𝑍)‖ <
‖𝑍‖

1 − ‖𝑍‖
 . Hence there is a 

sufficiently small 𝛿 >  0 such that 𝑟 +  𝛿 ∈  𝑇 . It would follow that 𝑇 is open. 

Suppose ‖𝑓(𝛼𝑈)‖ =
|𝛼|

1 − |𝛼|
 for some 𝛼, |𝛼|  =  𝑟0. Then since ‖𝑓(𝛾𝑈)‖ ≤

|𝛾|

1 − |𝛾|
 for all 

|𝛾| =  𝑟 < 𝑟0 (because 𝑟 ∈  𝑇), and since this is on the interior of 𝐵𝑟0 , ‖𝑓(𝛼𝑈)‖ must be 

the maximum value of ‖𝑓(𝑍)‖ on 𝜕𝐵𝑟0 . From Lemma (1.1.33) we have that at this 

maximum point 

〈𝐷𝑓(𝛼𝑈)(𝑉 ), 𝑓(𝛼𝑈)〉 =  0 where 〈𝑈, 𝑉〉 = 0, 
And 

〈𝐷𝑓(𝛼𝑈)(𝛼𝑈), 𝑓(𝛼𝑈)〉 > 0 

by a suitable choice of coordinates. 

From (26) we have 

𝑓(𝛼𝑈) = 𝛼(1 − 𝛼𝜔(𝛼, 0))𝐷𝑓(𝛼𝑈)(𝑈) +∑ 

𝑛

𝑗=2

𝛼2𝑐𝑗(𝛼, 0)𝐷𝑓(𝛼𝑈)(𝑉𝑗). 

It follows that 

‖𝑓(𝛼𝑈)‖2 = 〈𝑓(𝛼𝑈), 𝑓(𝛼𝑈)〉 = 𝛼(1 − 𝛼𝜔(𝛼, 0))〈𝐷𝑓(𝛼𝑈)(𝑈), 𝑓(𝛼𝑈)〉. 
At this point (1 −  𝛼𝜔(𝛼, 0))  >  0. 
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By a suitable relabeling we can assume 𝛼 is positive. We have 
𝑑

𝑑𝑡
(‖𝑓(𝑡𝑈)‖2)|𝑡=𝛼 =

𝑑

𝑑𝛼
〈𝑓(𝛼𝑈), 𝑓(𝛼𝑈)〉 =  2 𝑅𝑒〈𝐷𝑓(𝛼𝑈)(𝑈), 𝑓(𝛼𝑈)〉

=
2‖𝑓(𝛼𝑈)‖2

𝛼(1 −  𝛼𝜔(𝛼, 0))
. 

Hence 
𝑑
𝑑𝑡
(‖𝑓(𝑡𝑈)‖2)

‖𝑓(𝑡𝑈)‖2
|

𝑡=𝛼

=
2

𝛼(1 −  𝛼𝜔(𝛼, 0))
, 

Therefore 
𝑑

𝑑𝑡
 𝑙𝑜𝑔(‖𝑓(𝑡𝑈)‖2)|𝑡=𝛼 =

2

𝛼(1 −  𝛼𝜔(𝛼, 0))
. 

That is, 
𝑑

𝑑𝑡
 𝑙𝑜𝑔(‖𝑓(𝑡𝑈)‖)|𝑡=𝛼 =

1

𝛼(1 −  𝛼𝜔(𝛼, 0))
  

<
1

𝛼(1 −  𝛼)
  since |𝜔(𝛼, 0)| <  1.                        (28) 

Therefore, for 𝑡 in a sufficiently small neighborhood of 𝛼, inequality (28) holds. That is, 
𝑑

𝑑𝑡
 𝑙𝑜𝑔 ‖𝑓(𝑡𝑈)‖ <

1

𝑡(1 −  𝑡)
 . 

Choose 0 < 𝜉 < 𝛼 in this neighborhood and integrate along the radial path 𝑍(𝑡)  =  𝑡𝑈, 𝑡 ∈
 [𝜉, 𝛼]. 

∫  
𝛼

𝜉

 
𝑑

𝑑𝑡
 𝑙𝑜𝑔 ‖𝑓(𝑡𝑈)‖𝑑𝑡 < ∫  

𝛼

𝜉

 
1

𝑡(1 −  𝑡)
 𝑑𝑡 = [𝑙𝑜𝑔 

𝑡

1 −  𝑡
]
𝜉

𝛼

, 

𝑙𝑜𝑔
‖𝑓(𝛼𝑈)‖

‖𝑓(𝜉𝑈)‖
< 𝑙𝑜𝑔 (

𝛼

1 −  𝛼
 ·
1 −  𝜉

𝜉
) , 

‖𝑓(𝛼𝑈)‖

‖𝑓(𝜉𝑈)‖
<

𝛼

1 −  𝛼
 ·
1 −  𝜉

𝜉
 . 

But ‖𝑓(𝛼𝑈)‖ =
𝛼

1 − 𝛼
 , and so ‖𝑓(𝜉𝑈)‖ >

𝜉

1 − 𝜉
 . This contradiction shows 𝑇 is open, and we 

conclude that 𝑇 =  [0, 1]. 
Thus for any 𝑓 ∈ 𝔾 with |𝜔(𝛼, 𝛽)|  <  1 the bound holds on 𝐵. 

The theorem is now proved. 

These bounds are sharp as the following examples will show. 

Example (1.1.36)[1]: The mapping 𝑓 ∶  𝐵 ⊂  ℂ2  →  ℂ2 given by 

𝑓(𝓏,𝑤)  = (
𝓏

1 − 𝓏
,
𝑤

1 − 𝓏
) 

attains the bounds. 

The function is convex and hence in 𝔾. We note that 

𝑓(𝓏, 0)  = (
𝓏

1 −  𝓏
 , 0). 

Since the mapping 
𝓏

1 − 𝓏
 attains these bounds in the plane, then 𝑓 will attain the bounds given 

by the theorem. 

The next example shows that several mappings attain this bound. 



25 

Example (1.1.37)[1]: Any mapping of the form (
𝓏

1 −𝓏
 , 𝑔(𝑤)) , where 𝑔 ∈  𝐾 is in 𝔾 and 

attains the bounds. 

Since the family 𝔾 is locally uniformly bounded, it is normal and compact. Some of the 

implications of this are: 

(i) In the Taylor expansion of 𝑓, 𝑓(𝑍)  =  𝑍 + ∑  ∞
𝑘=2 𝑃𝑘(𝑍), the 𝑃𝑘(𝑍)’s, which are 

homogenous polynomials in 𝓏1, . . . , 𝓏𝑛, are uniformly bounded. 

(ii) There are uniform bounds on the volume of the image of the ball of radius 𝑅, 𝑅 <  1. 

(iii) There are uniform bounds on the determinant of the Jacobian of 𝑓. 

It is known that for convex maps, ‖𝑃𝑘‖ ≤ 1 for each 𝑘 and the upper bound 
‖𝑍‖

1−‖𝑍‖
 can be 

readily determined ([2]). However, in our families the mapping (𝓏 +  𝑎𝑤2, 𝑤) can have 

|𝑎|  =  3√3/4 ≈  1.3 and so the bound ‖𝑃𝑘‖ ≤  1 does not hold for 𝔽 or 𝔾. 

Section (1.2): The Unit Polydisk in ℂ𝒏 

In 1999, Roper and Suffridge [1] first introduced the definitions of a quasi-convex 

mapping of type A and a quasi-convex mapping of type B on the unit ball in a finite 

dimensional complex Banach space. After that, Zhang and Liu introduced the definition of 

another quasi-convex mapping on the unit ball in acomplex Banach space (including finite 

dimensional and infinite di-mensional spaces).For brevity, say the mapping is quasi-convex. 

They proved that the definitions of a quasi-convex mapping of type A and a quasi-convex 

mapping on the unit ball in a complex Banach space are the same.  

   With respect to the criteria for a normalized biholomorphic convex mapping, Roper and 

Suf-fridge [1] provided a sufficient condition for a normalized biholomorphic convex 

mapping on the open Euclidean unit ball in ℂ𝑛. In 2003, Zhu  gave a concise proof of the 

above result.  

   On the other hand, at present, only a few works treat the estimation of homogeneous 

expansions for subclasses of biholomorphic mappings in the case of several complex 

variables. See [15], [18], [19]. These estimations still arouse great interest. The reason is 

that the estimation of all homogeneous expansions for star like mappings on the open unit 

poly disk 𝐷𝑛 in 𝐶𝑛 is analogous with the famous Bieberbach conjecture in the case of one 

complex variable.  

Conjecture (1.2.1)[14]: (See [15], [17].) If 𝑓 ∶ 𝐷𝑛   → ℂ𝑛 is a normalized biholomorphic 

starlike mapping, where 𝐷𝑛 is the open unit polydisk in ℂ𝑛, then  
‖𝐷𝑚𝑓(0)(𝑧𝑚)‖

𝑚
 ≤ 𝑚‖𝑧‖𝑚, 𝑧 ∈ 𝐷𝑛, 𝑚 = 2,3, . . ..  

Until now, only the case of 𝑚 = 2 (see [15]) was proved. For the estimations of all 

homogeneous expansions for normalized biholomorphic convex mappings on the unit ball 

in a complex Banach space, the analogous results as in the case of one complex variable are 

not difficult to get. However, with respect to the estimation of homogeneous expansion for 

quasi-convex mappings of type A and quasi-convex mappings of type B on the Euclidean 

unit ball 𝐵𝑛 in ℂ𝑛, Roper and Suffridge [1] provided a counterexample to point out that the 

above similar conjecture does not hold for m=2, hence we mainly investigate the estimation 

of homogeneous expansion for quasi-convex mappings (including quasi-convex mappings 

of type A and quasi-convex mappings of type B) on 𝐷𝑛 in ℂ𝑛.  

For X be a complex Banach space with norm ‖. ‖, 𝑋∗  be the dual space of 𝑋, 𝐵 be 

the open unit ball in 𝑋, 𝐷 denote the Euclidean open unit disk in ℂ, 𝐷𝑛 represent the open 
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unitpolydiskin 𝐶𝑛. Let 𝜕 𝐷𝑛 be the boundary of 𝐷𝑛, 𝜕0𝐷
𝑛 be the distinguished boundary of 

𝐷𝑛.  

Let the symbol ′ mean transpose. For each 𝑥 ∈ 𝑋\{0} we define 𝑇 (𝑥) = {𝑇𝑥  ∈
𝑋∗: ‖𝑇𝑥‖ = 1, 𝑇𝑥(𝑥) = ‖𝑥‖}. From the Hahn–Banach theorem, 𝑇(𝑥) is nonempty. Let 

𝐻(𝐵) be the set of all holomorphic mappings from 𝐵 into 𝑋. It is well known that if 𝑓 ∈
𝐻(𝐵), then  

𝑓(𝑦) = ∑  

∞

𝑛=0

1

𝑛!
  𝐷𝑛𝑓(𝑥)((𝑦 − 𝑥)𝑛),  

for all y in some neighborhood of 𝑥 ∈ 𝐵, where 𝐷𝑛𝑓(𝑥) is the nth-Fréchet derivative of 𝑓 

at 𝑥, and for 𝑛 ≥ 1,  

𝐷𝑛𝑓(𝑥)((𝑦 − 𝑥)𝑛) = 𝐷𝑛𝑓(𝑥)
  (𝑦 − 𝑥,… , 𝑦 − 𝑥)⏟          .

𝑛
  

Moreover, 𝐷𝑛𝑓(𝑥) is a bounded symmetric n-linear mapping from ⊓𝑗=1
𝑛  𝑋 into X.  

   A holomorphic mapping 𝑓 ∶ 𝐵 → 𝑋 is said to be biholomorphic if the inverse 𝑓−1 exists 

and is holomorphic on the open set 𝑓(𝐵). A mapping 𝑓 ∈ 𝐻(𝐵) is said to be locally 

biholomorphic if the Fréchet derivative 𝐷𝑓(𝑥) has a bounded inverse for each 𝑥 ∈ 𝐵. If 𝑓 ∶
𝐵 → 𝑋 is a holomorphic mapping, then 𝑓 is said to be normalized if 𝑓(0) = 0 and 𝐷𝑓(0) =
𝐼, where 𝐼 stands for the identity operator from 𝑋 into 𝑋. 

We say that a normalized biholomorphic mapping 𝑓 ∶ 𝐵 → 𝑋 is starlike if 𝑓(𝐵) is a 

starlike domain with respect to the origin. Also, a normalized biholomorphic mapping 𝑓 ∶
𝐵 → 𝑋 is said to be convex if 𝑓(𝐵) is a convex domain.  

Definition (1.2.2)[14]: (See [16].) Suppose 𝑓 ∶ 𝐵 → 𝑋 is a normalized locally 

biholomorphic mapping, denote  

𝐺𝑓(𝛼, 𝛽) =
2𝛼

𝑇𝑢 [(𝐷𝑓(𝛼𝑢))
−1
(𝑓(𝛼𝑢) − 𝑓(𝛽𝑢))]

−
𝛼 + 𝛽

𝛼 − 𝛽
.  

If 

 ℜ𝑒 𝐺𝑓 (𝛼, 𝛽) ≥ 0, 𝑢 ∈ 𝜕𝐵, 𝛼, 𝛽 ∈ 𝐷,  

then 𝑓 is said to be quasi-convex of type A. 

   It is known that a quasi-convex mapping of type 𝐴 is biholomorphic on 𝐵. 

Definition (1.2.3)[14]: (See [16].) Suppose 𝑓 ∶ 𝐵 → 𝑋 is a normalized locally 

biholomorphic mapping. If  

ℜ𝑒{𝑇𝑥[𝐷𝑓(𝑥)
−1(𝐷2𝑓(𝑥)(𝑥2) + 𝐷𝑓(𝑥)𝑥)]} ≥ 0, 𝑥 ∈ 𝐵,  

then 𝑓 is said to be quasi-convex of type 𝐵. 

   At present, we do not still know whether a quasi-convex mapping of type 𝐵 is 

biholomorphic on 𝐵 or not.  

   When 𝑋 = ℂ𝑛, Definitions (1.2.2) and (1.2.3) introduced by Roper and Suffridge [1]. 

Definition (1.2.4)[14]: Suppose 𝑓 ∶ 𝐵 → 𝑋 is a normalized locally biholomorphic mapping. 

If  

ℜ𝑒{𝑇𝑥[𝐷𝑓(𝑥)
−1(𝑓(𝑥) − 𝑓(𝜉𝑥))]} ≥ 0, 𝑥 ∈ 𝐵, 𝜉 ∈ 𝐷̅,  

then 𝑓 is said to be quasi-convex. 

   It is known that a quasi-convex mapping is biholomorphic on 𝐵.  

When 𝑋 = ℂ, Definitions (1.2.2)–(1.2.4) are the same, that is, a quasi-convex function is 

equivalent to a normalized biholomorphic convex function in one complex variable.  

   Let 𝑆(𝐵) denote the set of all normalized biholomorphic mappings on 𝐵. Let 𝐾(𝐵) be the 

set of all normalized biholomorphic convex mappings on 𝐵. Let 𝑄𝐴(𝐵) (respectively 
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𝑄𝐵(𝐵)) denote the set of all quasi-convex mappings of type A (respectively type B) on 𝐵 

and 𝑄(𝐵) be the set of all quasi-convex mappings on 𝐵.  

   We establish a sufficient condition for quasi-convex mappings (including quasi-convex 

mappings of type A and quasi-convex mappings of type B) on the unit ball 𝐵 in a complex 

Banach space, furthermore, we will obtain sharp estimations of all homogeneous expansions 

for quasi-convex mappings (including quasi-convex mappings of type A and quasi-convex 

mappings of type B) defined on the open unit poly disk 𝐷𝑛 in ℂ𝑛, which satisfy a certain 

condition. 

In order to prove the main theorem, we need to establish some lemmas. 

Lemma (1.2.5)[14]: (See [16].) 𝐾(𝐵) ⊂ 𝑄(𝐵) = 𝑄𝐴(𝐵) ⊂ 𝑄𝐵(𝐵). In some concrete 

complex Banach spaces, we even have 𝐾(𝐵) 𝑄(𝐵).  
Lemma (1.2.6)[14]: (See [1].) Suppose 𝐵 is the unit ball in ℂ𝑛, 𝑓 ∈ 𝑆(𝐵). Then 𝐹(𝑧) =
𝑓(𝑇𝑢(𝑧))

𝑇𝑢(𝑧)
 𝑧 ∈  𝑄𝐴(𝐵) (𝑜𝑟 𝑄𝐵(𝐵)) if and only if 𝑓 ∈ 𝐾(𝐷), where‖𝑢‖=1.  

   It is not difficult to prove the following  

Lemma (1.2.7)[14]: Suppose 𝑓 is a normalized locally biholomorphic mappingon 𝐷𝑛.Then 

𝑓 ∈ 𝑄(𝐷𝑛) if and only if  

ℜ𝑒
ℊ𝑗(𝜉, 𝑧)

𝑧𝑗
 ≥ 0, 𝑧 = (𝑧1, . . . , 𝑧𝑛) ∈ 𝐷

𝑛,  

where 𝑔(𝜉, 𝑧) = (𝑔1(𝜉, 𝑧), . . . , 𝑔𝑛(𝜉, 𝑧)) = (𝐷𝑓(𝑧))
−1
(𝑓(𝑧) − 𝑓(𝜉𝑧)) , 𝑧 ∈ 𝐷𝑛, 𝜉 ∈ 𝐷̅ is a 

column vector in ℂ𝑛 , 𝑗 satisfies |𝑧𝑗| = ‖𝑧‖ = max
 
 1 ≤ 𝑘 ≤ 𝑛{|𝑧𝑘|}.  

Theorem (1.2.8)[14]: If 𝑓 ∈  𝐻(𝐵), 𝑓(0)  =  0, 𝐷𝑓(0)  =  𝐼, and ∑  ∞
𝑚=2  

𝑚2‖𝐷𝑚𝑓(0)‖ 

𝑚!
≤ 1, 

where 

‖𝐷𝑚𝑓(0)‖ = sup  ‖𝑥(𝑘)‖=1,1≤𝑘≤𝑚  ‖𝐷
𝑘𝑓(0)(𝑥(1), 𝑥(2), . . . , 𝑥(𝑚))‖, 

then 𝑓 ∈ 𝑄(𝐵), furthermore, 𝑓 ∈ 𝑄𝐴(𝐵) and 𝑓 ∈ 𝑄𝐵(𝐵).  

Proof. Since 𝑓 ∈ 𝐻(𝐵) and 𝑓(𝑥) = 𝑥 + ∑  ∞
𝑚=2

𝐷𝑚𝑓(0)(𝑥𝑚)

𝑚!
, 𝑥 ∈ 𝐵, then  

𝐷𝑓(𝑥) = 𝐼 +  ∑  

∞

𝑚=2

𝑚𝐷𝑚𝑓(0)(𝑥𝑚−1, . )

𝑚!
,.                             (29) 

Also since ∑  ∞
𝑚=2  

𝑚2‖𝐷𝑚𝑓(0)‖ 

𝑚!
≤ 1, then from (29), we obtain  

‖𝐷𝑓(𝑥) − 𝐼‖ ≤ ∑  

∞

𝑚=2

𝑚‖𝐷𝑚𝑓(0)‖ ‖𝑥‖𝑚−1

𝑚!
 ≤
1

2
 ∑  

∞

𝑚=2

 
𝑚2‖𝐷𝑚𝑓(0)‖ ‖𝑥‖ 

𝑚!
≤
‖𝑥‖

‖2‖
 <  1. 

According, 𝐷𝑓(𝑥)  = 𝐼 − (𝐼 − 𝐷𝑓(𝑥)) exists a bounded inverse operator (𝐷𝑓(𝑥))
−1
, and   

‖𝐷𝑓(𝑥)−1‖ ≤
1

1 − ‖𝐼 − 𝐷𝑓(𝑥)‖
 ≤

1

1 − ∑  ∞
𝑚=2

𝑚‖𝐷𝑚𝑓(0)‖‖𝑥‖𝑚−1

𝑚!

 .     (30) 

On the other hand,   

‖𝑓(𝑥) − 𝑓(𝜉𝑥) − (1 − 𝜉)𝐷𝑓(𝑥)𝑥 ‖ = ‖∑  

∞

𝑚=2

[(1 − 𝜉𝑚) − 𝑚(1 − 𝜉)]𝐷𝑚𝑓(0)(𝑥𝑚)

𝑚!
‖     

≤   ∑  

∞

𝑚=2

|(1 − 𝜉𝑚) −𝑚(1 − 𝜉)|‖𝐷𝑚𝑓(0)(𝑥𝑚)‖

𝑚!
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≤ ∑  

∞

𝑚=2

|1 − 𝜉||1 − 𝑚 + 𝜉 +··· +𝜉𝑚−1|‖𝐷𝑚𝑓(0)‖‖𝑥‖𝑚

𝑚!
  

≤ ∑  

∞

𝑚=2

|1 − 𝜉|2(1 + 2 +··· +𝑚 − 1)‖𝐷𝑚𝑓(0)‖‖𝑥‖𝑚

𝑚!
  

= ∑  

∞

𝑚=2

|1 − 𝜉|2
𝑚(𝑚 − 1)

2
 ‖𝐷𝑚𝑓(0)‖‖𝑥‖𝑚

𝑚!
   

≤ ‖𝑥‖
|1 − 𝜉|2

2
 (1 − ∑  

∞

𝑚=2

𝑚‖𝐷𝑚𝑓(0)‖‖𝑥‖𝑚−1

𝑚!
 ).               (31) 

So, according to (30) and (31),∀𝜉 ∈ 𝐷̅, we obtain 

ℜ𝑒 {𝑇𝑥 [(𝐷𝑓(𝑥))
−1
(𝑓(𝑥) − 𝑓(𝜉𝑥))]}

= ℜ𝑒 {𝑇𝑥 [(𝐷𝑓(𝑥))
−1
(𝑓(𝑥) − 𝑓(𝜉𝑥) − (1 − 𝜉)𝐷𝑓(𝑥)𝑥 + (1

− 𝜉)𝐷𝑓(𝑥)𝑥)]}  

≥ ‖𝑥‖ℜ𝑒(1 − 𝜉) − |𝑇𝑥 [(𝐷𝑓(𝑥))
−1
(𝑓(𝑥) − 𝑓(𝜉𝑥) − (1 − 𝜉)𝐷𝑓(𝑥)𝑥)]| 

≥ ‖𝑥‖ℜ𝑒(1 − 𝜉) −
‖𝑥‖

|1 − 𝜉|2

2
 (1 − ∑  ∞

𝑚=2
𝑚‖𝐷𝑚𝑓(0)‖‖𝑥‖𝑚−1

𝑚!
 )

1 − ∑  ∞
𝑚=2

𝑚‖𝐷𝑚𝑓(0)‖‖𝑥‖𝑚−1

𝑚!

 

= ‖𝑥‖
1 − |𝜉|2

2
 ≥ 0.  

By Definition (1.2.4), we obtain that 𝑓 ∈ 𝑄(𝐵). From Lemma (1.2.5), we deduce that 𝑓 ∈
𝑄𝐴(𝐵) and 𝑄𝐵(𝐵). This completes the proof.   

   Theorem (1.2.8) tells us that 𝑓(𝑥) =  𝑥 + ∑  ∞
𝑚=2

𝐷𝑚𝑓(0)(𝑥𝑚)

𝑚!
 ∈  𝑄(𝐵) (𝑄𝐴(𝐵) and 

𝑄𝐵(𝐵)) if 
‖𝐷𝑚𝑓(0)‖

𝑚!
 (𝑚 = 2,3, . . . )is small enough.  

When 𝑋 = ℂ, 𝐵 = 𝐷, Theorem (1.2.8) is the same as the corresponding result of 

normalized biholomorphic convex function.  

When 𝑋 = ℂ𝑛, 𝐵 = 𝐷𝑛, from Theorem (1.2.8), we immediately obtain the following 

corollary.  

Corollary (1.2.9)[14]: If 𝑓 ∈  𝐻(𝐷𝑛), 𝑓(0)  =  0,𝐷𝑓(0)  =  𝐼, and ∑  ∞
𝑚=2

𝑚2‖𝐷𝑚𝑓(0)‖

𝑚!
≤ 1, 

where ‖𝐷𝑚𝑓(0)‖ = sup   ‖𝑧(𝑘)‖=1,1≤𝑘≤𝑚‖𝐷
𝑚𝑓(0)(𝑧(1), 𝑧(2), . . . , 𝑧(𝑚))‖, then 𝑓 ∈ 𝑄(𝐷𝑛), 

furthermore, 𝑓 ∈ 𝑄𝐴(𝐷
𝑛) and 𝑄𝐵(𝐷

𝑛).  

Example (1.2.10)[14]: If ∑  𝑛
𝑘=2 |𝑎𝑘𝑚|  ≤

1

𝑚(𝑚−1)
 , 𝑚 =  2,3, . . ., then 

𝑓(𝑧) =  (𝑧1  +∑  

𝑛

𝑘=2

𝑎𝑘𝑚𝑧𝑘
𝑚 , 𝑧2, . . . , 𝑧𝑛)′ ∈ 𝑄(𝐷

𝑛) (𝑄𝐴(𝐷
𝑛) 𝑎𝑛𝑑 𝑄𝐵(𝐷

𝑛)),𝑚 = 2,3, . . ..  

Proof. Obviously, 𝑓 is a normalized biholomorphic mapping on 𝐷𝑛. Straight forward 

computation shows that  

(𝐷𝑓(𝑧))
−1
(𝑓(𝑧) − 𝑓(𝜉𝑧))  

= ((1 − 𝜉)𝑧1 + 1 − 𝜉
𝑚 −𝑚(1 − 𝜉) ∑  𝑛

𝑘=2  𝑎𝑘𝑚𝑧𝑘
𝑚 , (1 − 𝜉)𝑧2, . . . , (1 − 𝜉)𝑧𝑛)′. 
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If there exists 𝑗( 2 ≤ 𝑗 ≤ 𝑛) which satisfies |𝑧𝑗| ≥ |𝑧1|, then  

ℜ𝑒
𝑔𝑗(𝜉, 𝑧)

𝑧𝑗
 = ℜ𝑒(1 − 𝜉) ≥ 0,                                                    (32)  

where 𝑔(𝑧)  =  (𝑔1(𝜉, 𝑧), . . . , 𝑔𝑗(𝜉, 𝑧), . . . , 𝑔𝑛(𝜉, 𝑧)) =  (𝐷𝑓(𝑧))
−1
(𝑓(𝑧) −  𝑓(𝜉𝑧)) , 𝜉 ∈

 𝐷̅; if |𝑧𝑘| < |𝑧1|, 𝑘 = 2, . . . , 𝑛, then 

 ℜ𝑒
𝑔1(𝜉, 𝑧)

𝑧1
 = ℜ𝑒 [(1 − 𝜉) +

∑  𝑛
𝑘=2 𝑎𝑘𝑚𝑧𝑘

𝑚

𝑧1
 (1 − 𝜉𝑚 −𝑚(1 − 𝜉))] 

ℜ𝑒(1 − 𝜉) − (∑  

𝑛

𝑘=2

 |𝑎𝑘𝑚|) |1 − 𝜉|1 − 𝑚 + 𝜉 + 𝜉
2 +··· +𝜉𝑚−1 

≥ ℜ𝑒(1 − 𝜉) − (∑  

𝑛

𝑘=2

 |𝑎𝑘𝑚|)
𝑚(𝑚 − 1)

2
 |1 − 𝜉|2  

≥ ℜ𝑒(1 − 𝜉) −
1

2
|1 − 𝜉|2 = ℜ𝑒(1 − 𝜉) −

1

2
(1 − 2ℜ𝑒𝜉 + |𝜉|2)  

=
1

2
(1 − |𝜉|2) ≥ 0,                                                                                                 (33)  

where 𝑔(𝜉, 𝑧) = (𝑔1 (𝜉, 𝑧), . . . , 𝑔𝑗(𝜉, 𝑧), . . . , 𝑔𝑛(𝜉, 𝑧)) = (𝐷𝑓(𝑧)) − 1(𝑓(𝑧) − 𝑓(𝜉𝑧)) , 𝜉 ∈

𝐷. Sofrom Lemma (1.2.7), (32) and (33), we conclude that 𝑓(𝑧) = (𝑧1  +
∑  𝑛
𝑘=2  𝑎𝑘𝑚𝑧𝑘

𝑚 , 𝑧2, . . . , 𝑧𝑛)′ ∈  𝑄(𝐷
𝑛),𝑚 =  2,3, . . .. Also from Lemma (1.2.5), we have 

that 𝑓 ∈  𝑄𝐴(𝐷𝑛) and 𝑄𝐵(𝐷
𝑛),𝑚 = 2,3, . . .. This completes the proof.   

   Obviously, each 𝑧1  + ∑  𝑛
𝑘=2 𝑎𝑘𝑚𝑧𝑘

𝑚 (𝑚 = 2,3, . . . ) cannot be written as the form of 

𝑧1𝑔1(𝑧), where 𝑔1(𝑧) ∈ 𝐻(𝐷
𝑛), Example (1.2.10).  

By Lemmas (1.2.5) and (1.2.6), we immediately deduce the following example. 

Example (1.2.11)[14]: If 𝑓(𝑧) = (
𝑧1

1−𝑧1
 ,

𝑧2

1−𝑧1
 , . . . ,

𝑧𝑛

1−𝑧1
 ) ,then 𝑓(𝑧) ∈ 𝑄(𝐷𝑛) (𝑄𝐴(𝐷

𝑛) and 

𝑄𝐵(𝐷
𝑛)). 
In order to get the main theorem, it is necessary to establish the following lemma. 

Lemma (1.2.12)[14]: If 𝑓(𝑧) is a normalized locally biholomorphic mapping on 𝐷𝑛, and 

𝑔(𝑧)  =  (𝐷𝑓(𝑧))
−1
(𝐷2𝑓(𝑧)(𝑧2) + 𝐷𝑓(𝑧)𝑧) ∈ 𝐻(𝐷𝑛), then  

𝐷2𝑓(0)(𝑧2)

2!
 =
1

2
 ·
𝐷2ℊ(0)(𝑧2)

2!
, 

𝑚(𝑚 − 1)
𝐷𝑚𝑓(0)(𝑧𝑚)

𝑚!
  =

𝐷𝑚𝑔(0)(𝑧𝑚)

𝑚!
 +
2𝐷2𝑓(0)𝑧,

𝐷𝑚−1 𝑔(0)(𝑧𝑚−1)
(𝑚 − 1)!

2!
  

+ ··· +
 (𝑚 − 1)𝐷𝑚−1𝑓(0)𝑧𝑚−2,

𝐷2𝑔(0)(𝑧2)
2!

)

(𝑚 − 1)!
, 

𝑧 ∈ 𝐷𝑛, 𝑚 = 3,4, . . ..  

Proof. Since 𝑔(𝑧) = (𝐷𝑓(𝑧))
−1
(𝐷2𝑓(𝑧)(𝑧2) + 𝐷𝑓(𝑧)𝑧) ∈ 𝐻(𝐷𝑛), then 𝐷(𝐷𝑓(𝑧)𝑧)𝑧 =

𝐷2𝑓(𝑧)(𝑧2) + 𝐷𝑓(𝑧)𝑧 = 𝐷𝑓(𝑧)𝑔(𝑧). 
Therefore, 
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𝑧 +
4

2!
𝐷2𝑓(0)(𝑧2) +··· +

𝑚2

𝑚!
𝐷𝑚𝑓(0)(𝑧𝑚) +···

= (𝐼 +
2

2!
𝐷2𝑓(0)(𝑧, . ) +··· +

𝑚

𝑚!
𝐷𝑚𝑓(0)(𝑧𝑚−1), . + ···)

· (𝐷𝑔(0)𝑧 +
𝐷2𝑔(0)(𝑧2)

2!
 +··· +

𝐷𝑚𝑔(0)(𝑧𝑚)

𝑚!
 +···). 

 Comparing with the homogeneous expansion of two sides of the above equality, we have 

𝐷𝑔(0)𝑧 = 𝑧,   
4

2!
𝐷2𝑓(0)(𝑧2) =

𝐷2𝑔(0)(𝑧2)

2!
 +

2

2!
𝐷2𝑓(0)(𝑧, 𝐷𝑔(0)𝑧), 

𝑚2

𝑚!
𝐷𝑚𝑓(0)(𝑧𝑚) =

𝐷𝑚𝑔(0)(𝑧𝑚)

𝑚!
 +
2𝐷2𝑓(0) (𝑧,

𝐷𝑚−1𝑔(0)(𝑧𝑚−1)
(𝑚 − 1)!

)

2!
 

+ ··· +
(𝑚 − 1)𝐷𝑚−1𝑓(0) (𝑧𝑚−2,

𝐷2𝑔(0)(𝑧2)
2! )

(𝑚 − 1)!
 +
𝑚

𝑚!
 𝐷𝑚𝑓(0)(𝑧𝑚), 

𝑚 = 3,4, . . ..  
This implies that  

𝐷2𝑓(0)(𝑧2)

2!
 =
1

2
·
𝐷2𝑔(0)(𝑧2)

2!
,  

𝑚(𝑚 − 1)
𝐷𝑚𝑓(0)(𝑧𝑚)

𝑚!
 =
𝐷𝑚𝑔(0)(𝑧𝑚)

𝑚!
 +
2𝐷2𝑓(0) (𝑧,

𝐷𝑚−1𝑔(0)(𝑧𝑚−1)
(𝑚 − 1)!

 )

2!
 

 + ··· + 
(𝑚 − 1)𝐷𝑚−1𝑓(0) (𝑧𝑚−2,

𝐷2𝑔(0)(𝑧2)
2! )

(𝑚 − 1)!
,  

𝑧 ∈ 𝐷𝑛, 𝑚 = 3,4, . . ..  
This completes the proof.   

Lemma (1.2.13)[14]: (See [19].) Suppose 𝑔(𝑧) =  (𝑔1(𝑧), 𝑔2(𝑧), . . . , 𝑔𝑛(𝑧))
′
∈

 𝐻(𝐷𝑛), 𝑔(0) =  0,𝐷𝑔(0) = 𝐼. 𝐼𝑓 ℜ𝑒
𝑔𝑗(𝑧)

𝑧𝑗
 ≥ 0, 𝑧 ∈ 𝐷𝑛,  

where |𝑧𝑗| = ‖𝑧‖ = max
   1≤𝑘≤𝑛

{|𝑧𝑘|}, then 

‖𝐷𝑚𝑔(0)(𝑧𝑚)‖

𝑚!
 ≤ 2‖𝑧‖𝑚, 𝑧 ∈ 𝐷𝑛, 𝑚 = 2,3,…. 

It is easy to prove the following  

Lemma (1.2.14)[14]: Suppose f is a normalized locally biholomorphic mapping on 𝐷𝑛. 

Then 𝑓 ∈  𝑄𝐵(𝐷
𝑛) if and only if 

 ℜ𝑒
𝑔𝑗(𝑧)

𝑧𝑗
≥ 0, 𝑧 = (𝑧1, . . . , 𝑧𝑛)′ ∈ 𝐷

𝑛,  

where 𝑔(𝑧) = (𝑔1(𝑧), . . . , 𝑔𝑛(𝑧))′ = (𝐷𝑓(𝑧))
−1
(𝐷2𝑓(𝑧)(𝑧2) + 𝐷𝑓(𝑧)𝑧) is a column 

vector in ℂ𝑛, 𝑗 satisfies |𝑧𝑗| = ‖𝑧‖ = max
1≤𝑘≤𝑛

{|𝑧𝑘|}.  

  Now we can prove the following theorem.  

Theorem (1.2.15)[14]: If 𝑓 ∈ 𝑄𝐵(𝐷
𝑛) (𝑄𝐴(𝐷

𝑛) or 𝑄(𝐷𝑛)), and 𝐷𝑚𝑓𝑘(0)(𝑧
𝑚) =

𝑧𝑘(∑  𝑛
𝑙=1 𝑎𝑘𝑙𝑚𝑧𝑙

𝑚−1), 𝑧 ∈ 𝐷𝑛, 𝑘 = 1,2, . . . , 𝑛 ,𝑚 = 2,3, . . ., where 𝑎𝑘𝑙𝑚 =
𝜕𝑚𝑓𝑘(0)

𝜕𝑧𝑘𝜕𝑧𝑙
𝑚−1  , 𝑘, 𝑙 =

1,2, . . . , 𝑛 ,𝑚 = 2,3, . . ., then 
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‖𝐷𝑚𝑓(0)(𝑧𝑚)‖

𝑚!
≤ ‖𝑧‖𝑚 , 𝑧 ∈ 𝐷𝑛, 𝑚 = 2,3, . . .. 

The above estimations are sharp.  

Proof. Suppose 𝑓 ∈ 𝑄𝐵(𝐷
𝑛), ∀𝑧 ∈ 𝐷𝑛 \{0}, denote  𝑧0  =

𝑧

‖𝑧‖
 . According to Lemmas 

(1.2.12) (the case of m=2), (1.2.13) (the case of m=2) and (1.2.14), we obtain 

     
‖𝐷2𝑓(0)(𝑧2)‖

2!
≤ ‖𝑧‖2 

That is, the desired result holds.  

Assume that 

 
‖𝐷𝑠𝑓(0)(𝑧𝑠)‖

𝑠!
≤ ‖𝑧‖𝑠 , 𝑧 ∈ 𝐷𝑛, 𝑠 = 2,3, . . . , 𝑚.                 (34)  

From (34), we have 

 ‖𝐷𝑠𝑓(0) (𝑧0
𝑠)‖ ≤ 𝑠!.                                                           (35) 

Also since 𝐷𝑠𝑓𝑘(0)(𝑧
𝑠) = 𝑧𝑘(∑  𝑛

𝑙=1 𝑎𝑘𝑙𝑠𝑧𝑙
𝑠−1), 𝑧 ∈ 𝐷𝑛, 𝑘 = 1,2, . . . , 𝑛 , 𝑠 = 2,3, . . . , 𝑚, 

where 𝑎𝑘𝑙𝑠 = 𝜕
𝑠𝑓𝑘(0)/𝜕𝑧𝑘𝜕𝑧𝑙

𝑠−1, 𝑘, 𝑙 = 1,2, . . . , 𝑛 , 𝑠 = 2,3, . . . , 𝑚, therefore, by (35), we 

obtain  

|
𝑧𝑗
‖𝑧‖

 (∑ 

𝑛

𝑙=1

 𝑎𝑗𝑙𝑠 (
𝑧𝑙
‖𝑧‖

)
𝑠−1

)| = |∑ 

𝑛

𝑙=1

𝑎𝑗𝑙𝑠 (
𝑧𝑙
‖𝑧‖

)
𝑠−1

| ≤ 𝑠!, 

where |𝑧𝑗| = ‖𝑧‖ = max
1≤𝑘≤𝑛

 {|𝑧𝑘|}. Especially, when 𝑧𝑙 = 𝑒
−
𝑖𝛼𝑙
𝑠−1‖𝑧‖, where 𝑎𝑙  =

arg  𝑎𝑗𝑙𝑠 , 𝑙 = 1,2, . . . , 𝑛, it yields that 

 ∑  

𝑛

𝑙=1

|𝑎𝑗𝑙𝑠| ≤ 𝑠!.                                                               (36) 

Denote 𝑤 =
𝐷𝑚−𝑠+2𝑔(0)(𝑧𝑚−𝑠+2)

(𝑚−𝑠+2)!
 , 𝑠 = 2,3, . . . , 𝑚 , ∀𝜆 ∈ 𝐷̅, we obtain 

𝐷𝑠𝑓𝑗(0)(
𝑧 + 𝜆𝑤

2
 ,
𝑧 + 𝜆𝑤

2
, . . . ,

𝑧 + 𝜆𝑤

2⏟                  
𝑠

) 

=
𝐷𝑠𝑓𝑗(0)(𝑧

𝑠)

2𝑠
 +
𝑠𝐷𝑠𝑓𝑗(0)(𝑧

𝑠−1, 𝑤)

2𝑠
 𝜆 +··· +

𝐷𝑠𝑓𝑗(0)(𝑤
𝑠)

2𝑠
𝜆𝑠, (37) 

where 𝑗 satisfies |𝑧𝑗| = ‖𝑧‖ = max
1≤𝑘≤𝑛

 {|𝑧𝑘|}. Note that 𝐷𝑠𝑓𝑘(0)(𝑧
𝑠) =

𝑧𝑘(∑  𝑛
𝑙=1  𝑎𝑘𝑙𝑠𝑧𝑙

𝑠−1), 𝑧 ∈ 𝐷𝑛, 𝑘 = 1,2, . . . , 𝑛 , 𝑠 = 2,3, . . . , 𝑚, hence  

𝐷𝑠𝑓𝑗(0)(
𝑧 + 𝜆𝑤

2
 ,
𝑧 + 𝜆𝑤

2
,… ,

𝑧 + 𝜆𝑤

2⏟                  
𝑠

) =  
𝑧𝑗 + 𝜆𝑤𝑗
2𝑠

 ∑  

𝑛

𝑙=1

 𝑎𝑗𝑙𝑠(𝑧𝑙  + 𝜆𝑤𝑙)
𝑠−1  

=
𝑧𝑗
2𝑠
(∑ 

𝑛

𝑙=1

𝑎𝑗𝑙𝑠𝑧𝑙
𝑠−1) +

(𝑠 − 1)𝑧𝑗(∑  𝑛
𝑙=1 𝑎𝑗𝑙𝑠𝑧𝑙

𝑠−2 𝑤𝑙) + 𝑤𝑗(∑  𝑛
𝑙=1 𝑎𝑗𝑙𝑠𝑧𝑙

𝑠−1)

2𝑠
 𝜆 

+ ··· +
𝑤𝑗(∑  𝑛

𝑙=1  𝑎𝑗𝑙𝑠𝑤𝑙
𝑠−1)

2𝑠
𝜆𝑠.                                                                                          (38) 

Comparing the coefficient of the right sides of (37) and (38) with respect to 𝜆, we have  

𝐷𝑠𝑓𝑗(0)(𝑧
𝑠−1, 𝑤) =

1

𝑠
[(𝑠 − 1)𝑧𝑗  (∑ 

𝑛

𝑙=1

 𝑎𝑗𝑙𝑠𝑧𝑙
𝑠−2 𝑤𝑙) + 𝑤𝑗  (∑ 

𝑛

𝑙=1

 𝑎𝑗𝑙𝑠𝑧𝑙
𝑠−1)] .   (39) 
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From Lemma (1.2.13), (36) and (39), we obtain      

|𝐷𝑠𝑓𝑗(0) (𝑧0
𝑠−1 ,

𝐷𝑚−𝑠+2𝑔(0)(𝑧0
𝑚−𝑠+2 )

(𝑚 − 𝑠 + 2)!
 ) |  

=
1

𝑠
 (𝑠 − 1)

𝑧𝑗
‖𝑧‖

 (∑  

𝑛

𝑙=1

 𝑎𝑗𝑙𝑠 (
𝑧𝑙
‖𝑧‖
)
𝑠−2 𝐷𝑚−𝑠+2𝑔𝑙(0)(𝑧0

𝑚−𝑠+2)

(𝑚 − 𝑠 + 2)!
)  

+ 
𝐷𝑚−𝑠+2𝑔𝑙(0)(𝑧0

𝑚−𝑠+2)

(𝑚 − 𝑠 + 2)!
  (∑ 

𝑛

𝑙=1

 𝑎𝑗𝑙𝑠 (
𝑧𝑙
‖𝑧‖
)
𝑠−1

)    

≤
1

𝑠
 [(𝑠 − 1) |∑ 

𝑛

𝑙=1

 𝑎𝑗𝑙𝑠 (
𝑧𝑙
‖𝑧‖

)
𝑠−2 𝐷𝑚−𝑠+2𝑔𝑙(0)(𝑧0

𝑚−𝑠+2)

(𝑚 − 𝑠 + 2)!
 |

+
𝐷𝑚−𝑠+2𝑔𝑙(0)(𝑧0

𝑚−𝑠+2)

(𝑚 − 𝑠 + 2)!
|∑ 

𝑛

𝑙=1

 𝑎𝑗𝑙𝑠 (
𝑧𝑙
‖𝑧‖
)
𝑠−1

|] 

 

≤
1

𝑠
[(𝑠 − 1)∑ 

𝑛

𝑙=1

 𝑎𝑗𝑙𝑠 (
|𝑧𝑙|

‖𝑧‖
)

𝑠−2
|𝐷𝑚−𝑠+2𝑔𝑙(0)(𝑧0

𝑚−𝑠+2)|

(𝑚 − 𝑠 + 2)!
 

+
|𝐷𝑚−𝑠+2𝑔𝑙(0)(𝑧0

𝑚−𝑠+2)|

(𝑚 − 𝑠 + 2)!
 ∑  

𝑛

𝑙=1

 𝑎𝑗𝑙𝑠 (
|𝑧𝑙|

‖𝑧‖
)

𝑠−1

]  ≤
1

𝑠
[2(𝑠 − 1)𝑠! + 2 · 𝑠!]

= 2 · 𝑠!. 
That is,  

|𝐷𝑠𝑓𝑗(0) (𝑧0
𝑠−1,

𝐷𝑚−𝑠+2𝑔 (0)(𝑧0
𝑚−𝑠+2)

(𝑚 − 𝑠 + 2)!
)| ≤  2 · 𝑠!,    𝑧0 ∈ 𝜕𝐷

𝑛.                 (40) 

 Especially, when 𝑧0 ∈ 𝜕0𝐷
𝑛, by (40), it yields that 

|𝐷𝑠𝑓𝑘(0) (𝑧0
𝑠−1,

𝐷𝑚−𝑠+2𝑔 (0)(𝑧0
𝑚−𝑠+2)

(𝑚 − 𝑠 + 2)!
)| ≤  2 · 𝑠! ,    𝑘 = 1,2, . . . , 𝑛. (41) 

In view of 𝐷𝑠𝑓𝑘(0)(𝑧 
𝑠−1,

𝐷𝑚−𝑠+2𝑔 (0)(𝑧0
𝑚−𝑠+2)

(𝑚−𝑠+2)!
) ∈ 𝐻(𝐷𝑛̅̅ ̅̅ ), 𝑘 = 1,2, . . . , 𝑛, by the maximum 

modulus theorem of holomorphic functions on the unit polydisk and (41), we obtain  

|𝐷𝑠𝑓𝑘(0) (𝑧0
𝑠−1,

𝐷𝑚−𝑠+2𝑔 (0)(𝑧0
𝑚−𝑠+2)

(𝑚 − 𝑠 + 2)!
)| ≤ 2 · 𝑠!, 𝑧0 ∈ 𝜕𝐷

𝑛,   𝑘 = 1,2, . . . , 𝑛. 

We conclude that 

|𝐷𝑠𝑓 (0)(𝑧0
𝑠−1,

𝐷𝑚−𝑠+2𝑔 (0)(𝑧0
𝑚−𝑠+2)

(𝑚 − 𝑠 + 2)!
)| ≤ 2 · 𝑠!, 

That is,   

 ‖𝐷𝑠𝑓 (0) (𝑧 
𝑠−1,

𝐷𝑚−𝑠+2𝑔 (0)(𝑧0
𝑚−𝑠+2)

(𝑚 − 𝑠 + 2)!
)‖ ≤ 2 · 𝑠! ‖𝑧‖𝑚+1, 𝑧 ∈ 𝐷𝑛, 𝑠

= 2,3, . . . , 𝑚.     (42)  
From Lemma (1.2.13) and (42), we have  
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(𝑚 + 1)𝑚‖𝐷𝑚+1𝑓(0)(𝑧𝑚+1)‖

(𝑚 + 1)!

≤
‖𝐷𝑚+1𝑔(0)(𝑧𝑚+1)‖

(𝑚 + 1)!
 + 
2 ‖𝐷2𝑓(0) (𝑧  ,

𝐷𝑚𝑔(0)(𝑧𝑚)
𝑚! )‖

2!
 

+ ··· +
(𝑚 − 1) ‖𝐷𝑚−1𝑓(0) (𝑧𝑚−2,

𝐷3𝑔(0)(𝑧3)
3! )‖

(𝑚 − 1)!
 +
𝑚‖𝐷𝑚𝑓(0) (𝑧𝑚−1,

𝐷2𝑔(0)(𝑧2)
2! )‖

𝑚!
 

≤ 2‖𝑧‖𝑚+1 + 2 · 2‖𝑧‖𝑚+1 +··· +(𝑚 − 1) · 2‖𝑧‖𝑚+1 +𝑚 · 2‖𝑧‖𝑚+1  
= (𝑚 + 1)𝑚‖𝑧‖𝑚+1.  

That is,  

‖𝐷𝑚+1𝑓(0)(𝑧𝑚+1)‖

(𝑚 + 1)!
 ‖𝑧‖𝑚+1, 𝑧 ∈ 𝐷𝑛.  

Therefore, the desired result holds. By Lemma (1.2.5), the desired result for 𝑓 ∈ 𝑄𝐴(𝐷
𝑛) 

or 𝑄(𝐷𝑛) also holds. This completes the proof.   

According to Example (1.2.11), it is not difficult to verify  

𝑓(𝑧) =  (
𝑧1

1 − 𝑧1
 ,
𝑧2

1 − 𝑧1
 , … ,

𝑧𝑛
1 − 𝑧1

) , 𝑧 ∈ 𝐷𝑛 , 

satisfies the condition of Theorem (1.2.15). Taking 𝑧 = (𝑟, 0, . . . ,0)′ (0 ≤ 𝑟 < 1), then  
‖𝐷𝑚𝑓(0)(𝑧𝑚)‖

𝑚!
 = 𝑟𝑚,    𝑚 = 2,3, . . ..  

Hence the estimations of Theorem (1.2.15) are sharp.  

     From Lemmas (1.2.12) and (1.2.13), it is not difficult to deduce the following  

 According to Theorem (1.2.15), we can prove the following corollaries.  

Corollary (1.2.16)[14]: If 𝑓 ∈ 𝑄𝐵(𝐷
𝑛) (𝑄𝐴(𝐷

𝑛) or 𝑄(𝐷𝑛)), and 𝐷𝑚𝑓𝑘(0)(𝑧
𝑚) =

𝑧𝑘(∑ 𝑎𝑘𝑙𝑚𝑧𝑙
𝑚−1𝑛

𝑙=1 ), 𝑧 ∈ 𝐷𝑛, 𝑘 = 1,2, . . . , 𝑛 ,𝑚 = 2,3, . . ., where 𝑎𝑘𝑙𝑚 =
𝜕𝑚𝑓𝑘(0)

𝜕𝑧𝑘𝜕𝑧𝑙
𝑚−1  , 𝑘, 𝑙 =

1,2, . . . , 𝑛 ,𝑚 = 2,3, . . ., then  

‖𝑓(𝑧)‖ ≤
‖𝑧‖

1 − ‖𝑧‖
 , 𝑧 ∈ 𝐷𝑛.  

The above estimation is sharp.  

Proof. From Theorem (1.2.15), we obtain 

 
‖𝐷𝑚𝑓(0)(𝑧𝑚)‖

𝑚!
‖𝑧‖𝑚, 𝑧 ∈ 𝐷𝑛, 𝑚 = 2,3, . . ..  

Also,  

𝑓(𝑧) = 𝑧 + ∑  

∞

𝑚=2

𝐷𝑚𝑓(0)(𝑧𝑚)

𝑚!
 , 

 hence,  

‖𝑓(𝑧)‖ ≤  ‖𝑧‖ + ∑  

∞

𝑚=2

‖𝐷𝑚𝑓(0)(𝑧𝑚)‖

𝑚!
 ∑  

∞

𝑚=1

‖𝑧‖𝑚  =
‖𝑧‖

1 − ‖𝑧‖
 . 

 That is, ‖𝑓(𝑧)‖ ≤
‖𝑧‖

1−‖𝑧‖
 , 𝑧 ∈ 𝐷𝑛.  

This completes the proof.   
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Corollary (1.2.17)[14]: If 𝑓 ∈ 𝑄𝐵(𝐷
𝑛) (𝑄𝐴(𝐷

𝑛) 𝑜𝑟 𝑄(𝐷𝑛)), and 𝐷𝑚 𝑓𝑘(0)(𝑧
𝑚) =

𝑧𝑘(∑  𝑛
𝑙=1  𝑎𝑘𝑙𝑚𝑧𝑙

𝑚−1),   𝑧 ∈ 𝐷𝑛, 𝑘 = 1,2, . . . , 𝑛 ,𝑚 = 2,3, . . ., where 𝑎𝑘𝑙𝑚 =
𝜕𝑚𝑓𝑘(0)

𝜕𝑧𝑘𝜕𝑧𝑙
𝑚−1  , 𝑘, 𝑙 = 1,2, . . . , 𝑛 ,𝑚 = 2,3, . . ., 

then 

 ‖𝐷𝑓(𝑧)𝑧‖ ≤
‖𝑧‖

(1 − ‖𝑧‖)2
, 𝑧 ∈ 𝐷𝑛.  

The above estimation is sharp. 

Proof. From Theorem (1.2.15), we obtain  
‖𝐷𝑚𝑓(0)(𝑧𝑚)‖

𝑚!
‖𝑧‖𝑚, 𝑧 ∈ 𝐷𝑛, 𝑚 = 2,3,….  

Also, 

𝐷𝑓(𝑧)𝑧 = 𝑧 + ∑  

∞

𝑚=2

𝑚𝐷𝑚𝑓(0)(𝑧𝑚)

𝑚!
, 

hence,  

‖𝐷𝑓(𝑧)𝑧‖ ≤ ‖𝑧‖ + ∑  

∞

𝑚=2

‖𝐷𝑚𝑓(0)(𝑧𝑚)‖

𝑚!
 ∑  

∞

𝑚=1

𝑚‖𝑧‖𝑚 =
‖𝑧‖

(1 − ‖𝑧‖)2
. 

That is, 

 ‖𝐷𝑓(𝑧)𝑧‖ ≤
‖𝑧‖

(1 − ‖𝑧‖)2
, 𝑧 ∈ 𝐷𝑛. 

This completes the proof.   

   According to Example (1.2.11), it is not difficult to verify   

𝑓(𝑧) =  (
𝑧1

1 − 𝑧1
 ,
𝑧2

1 − 𝑧1
 , … ,

𝑧𝑛
1 − 𝑧1

) ′, 𝑧 ∈ 𝐷𝑛 , 

satisfies the condition of Corollaries (1.2.16) and (1.2.17). Taking 𝑧 = (𝑟, 0, . . . ,0)′ (0 ≤
𝑟 < 1), then 

 ‖𝑓(𝑧)‖ =
𝑟

1 − 𝑟
, ‖𝐷𝑓(𝑧)𝑧‖ =

𝑟

(1 − 𝑟)2
.  

Hence the estimations of Corollaries (1.2.16) and (1.2.17) are sharp. Corollaries (1.2.16) 

and (1.2.17) show that the upper bounds of growth theorem and distortion theorem for a 

normalized quasi-convex mapping (including quasi-convex mapping of type 𝐴 and quasi-

convex mapping of type 𝐵) 𝑓(𝑧) hold, where 𝑓(𝑧) satisfies  

𝐷𝑚 𝑓𝑘(0)(𝑧
𝑚) = 𝑧𝑘(∑ 

𝑛

𝑙=1

 𝑎𝑘𝑙𝑚𝑧𝑙
𝑚−1),   𝑧 ∈ 𝐷𝑛, 𝑘 = 1,2, . . . , 𝑛 ,𝑚 = 2,3, . . ., 

where 

𝑎𝑘𝑙𝑚 =
𝜕𝑚𝑓𝑘(0)

𝜕𝑧𝑘𝜕𝑧𝑙
𝑚−1  , 𝑘, 𝑙 = 1,2, . . . , 𝑛 ,𝑚 = 2,3, . . ., 
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Chapter 2 

Differential Equations and the Period Function 

 

We show that the main tools used in the proof are the generalized polar coordinates, 

introduced by Lyapunov to study the stability of degenerate critical points, and the analysis 

of the derivatives of the Poincaré return map. The results generalize those obtained for 

polynomial systems with homogeneous non-linearitie. We deal with Hamiltonian systems 

with homogeneous nonlinearities. 

Section (2.1): The Sum of Two Quasi-Homogeneous Vector Fields 

Given 𝑝, 𝑞, 𝑠 ∈ ℕ , we will say that a function 𝑓 ∶ ℝ2 → ℝ is (𝑝, 𝑞) −quasi-

homogeneous of degree s if 𝑓(𝜆𝑝 𝑥, 𝜆𝑞  𝑦) = 𝜆𝑠 𝑓(𝑥, 𝑦) for 𝜆 ∈ ℝ, (see [21]). A vector field 

𝑋 = (𝑃, 𝒬): ℝ2  → ℝ2 is called (𝑝, 𝑞) −quasihomogeneous of degree r if 𝑃 and 𝒬 are 

(𝑝, 𝑞) −quasi-homogeneousfunctions of degrees 𝑝 +  𝑟 −  1 and 𝑞 +  𝑟 −  1 respectively, 

see [22].  

Observe that the above definition is the natural one for the following reasons:  

(i) When 𝑝 =  𝑞 =  1, it coincides with the usual definition of homogeneous vector field of 

degree 𝑟.  

(ii) The differential equation 
𝑑𝑦

𝑑𝑥
=
𝒬

𝑃
 , associated with 𝑋, is invariant by the change of 

variables 𝑥̅ =  𝜆𝑝 𝑥, 𝑦̅ = 𝜆𝑞  𝑦.  
(iii) Homogeneous vector fields can be integrated using polar coordinates whereas 

(𝑝, 𝑞) −quasi-homogeneous vector fields can be integrated using the (𝑝, 𝑞) −polar 

coordinates. These generalized polar coordinates were introduced by Lyapunov in his study 

of the stability of degenerate critical points, see [34]. We consider a small modification of 

these coordinates and their main properties.  

The (𝑝, 𝑞) −polar coordinates have also been applied recently to study properties of planar 

differential equations, see [24], [28].  

We study differential equations of type:  

 (
𝑑𝑥

𝑑𝑡
  ,
𝑑𝑦

𝑑𝑡
) = (𝑃(𝑥, 𝑦), 𝒬(𝑥, 𝑦)) = 𝑋(𝑥, 𝑦) =  𝑋𝑛(𝑥, 𝑦) + 𝑋𝑚(𝑥, 𝑦),        (1)  

where 𝑚 >  𝑛, and 𝑋𝑢 is a (𝑝, 𝑞) − 𝑞uasi-homogeneous vector field of degree 𝑢 − 𝑝 − 𝑞 +
2𝑝𝑞, for 𝑢 ∈ {𝑛,𝑚}.  
Note that when 𝑝 =  𝑞 =  1, 𝑋 =  𝑋𝑛  + 𝑋𝑚 is the sum of two homogeneous vector fields 

with 𝑛 and 𝑚 degrees of homogeneity respectively and includes quadratic differential 

equations(𝑝 =  𝑞 =  𝑛 =  1,𝑚 =  2) and polynomial systems with homogeneous 

nonlinearities (𝑝 =  𝑞 =  𝑛 =  1), see [26], [27], [29], [30], [32].  

In the (𝑝, 𝑞) −polar coordinates, (𝑥, 𝑦) = (𝜌𝑝 𝐶𝑠(𝜑), 𝜌𝑞  𝑆𝑛(𝜑)) , defined, and with a new 

time variable s, given by 
𝑑𝑡

𝑑𝑠
= 𝜌𝑝+𝑞−2𝑝𝑞  , the differential equation (1) becomes  

𝜌̇ =
𝑑𝜌

𝑑𝑠
= 𝜌𝑝+𝑞+1−4𝑝𝑞[𝑥2𝑞−1𝑃(𝑥, 𝑦) + 𝑦2𝑝−1𝒬(𝑥, 𝑦)],  

𝜑̇ =
𝑑𝜑

𝑑𝑠
= 𝜌−2𝑝𝑞[𝑝𝑥𝒬(𝑥, 𝑦) −  𝑞𝑦𝑃(𝑥, 𝑦)]. 

Using (1) we obtain  

 𝜌̇ = 𝑎̅𝑛(𝜑)𝜌
𝑛   +  𝑎̅𝑚(𝜑)𝜌

𝑚 ,                                                     (2)  
𝜑̇ =  𝑏𝑛(𝜑)𝜌

𝑛−1  +  𝑏𝑚(𝜑)𝜌
𝑚−1 , 

where  
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(
𝑎̅𝑢(𝜑) 

𝑏𝑢(𝜑) 
) = (

𝐶𝑠2𝑞−1 (𝜑)  𝑆𝑛2𝑝−1 (𝜑)

−𝑞 𝑆𝑛(𝜑)     𝑝𝐶𝑠(𝜑)
)(

𝑃𝑢 (𝐶𝑠(𝜑), 𝑆𝑛(𝜑))

𝒬𝑢 (𝐶𝑠(𝜑), 𝑆𝑛(𝜑))  
)  ,  

𝑢 ∈ {𝑛,𝑚}( and Sn(𝜑) and Cs(𝜑) are also defined.  

Finally taking the new coordinates 𝑟 and 𝜑 and a new time variable 𝑣, given by 𝑟 =

𝜌𝑚−𝑛, 𝜑 = 𝜑,
𝑑𝑣

𝑑𝑠
= 𝜌n−1 , the differential equation (2) writes as  

  𝑟̇ =
𝑑𝑟

𝑑𝑣
=  𝑎𝑛(𝜑)𝑟 +  𝑎𝑚(𝜑)𝑟

2 ,                                                    (3) 

𝜑̇ =
𝑑𝜑

𝑑𝑣
=  𝑏𝑛(𝜑)  + 𝑏𝑚(𝜑)𝑟,  

where 𝑎𝑢(𝜑) =  𝑎̇u(𝜑)  ∙  (𝑚 −  𝑛) for u ∈ {𝑛,𝑚}.  
For the values (𝑟, 𝜑) for which 𝑏𝑛(𝜑)  + 𝑏𝑚(𝜑)𝑟 ≠  0, equation (3) can be transformed 

into a new equation as follows  

   
𝑑𝑟

𝑑𝜑
 =  S(𝑟, 𝜑) =  

𝑎𝑛(𝜑)𝑟 + 𝑎𝑚(𝜑)𝑟
2

𝑏𝑛(𝜑) + 𝑏𝑚(𝜑)𝑟
 .                          (4) 

Most properties that we will prove for system (1) will be studied in coordinates 𝑟, 𝜑 in which 

this system can be written as (3) or (4). We will define the functions:  

  𝐹(𝜑) =  𝑎𝑛(𝜑)𝑏𝑚(𝜑) − 𝑎𝑚(𝜑)𝑏𝑛(𝜑), and 𝐴(𝜑) =  𝑏𝑚(𝜑)𝐹(𝜑).                 (5) 
Note that the function bm(𝜑) controls the infinite critical points of (1) in the (p, q) Poincare´ 

compactification. The functions F(𝜑) and bm(𝜑) control the finite critical points of (1). On 

the other hand, 𝑏𝑛(𝜑) gives information about the origin: if 𝑏𝑛(𝜑)  ≠  0, (0, 0) is a critical 

point of center or focus type, while if bn(𝜑) vanishes, (0, 0) can be the ,𝛼or𝜔 −limit set for 

some trajectory of system (3). As the following results show, hypothesizing on 𝐴, 𝐹, or bn 

we can establish the number of limit cycles in (1).  

The main results are listed in the following theorems. A more detailed account of these 

results and related ones, such as cases 𝑏𝑚(𝜑)  ≡  0, 𝐹(𝜑)  ≡  0.  

Note that Theorem (2.1.19) gives new information only if 𝐴(𝜑) changes sign. Theorems 

(2.1.15), (2.1.17) and (2.1.19) generalize several results obtained for differential equations 

with homogeneous non-linearities to systems of type (1) (see again [27], [29], [30], [32]). 

We would like to point out that most of the proofs that we present differ from the proofs that 

appear. In the main, use the transformation of equation (3) into an Abel differential equation 

(see [25], [33]) whereas our different proofs are based directly on the expression (3), 

although the ideas used are similar.  

We contain some results on the location of the critical points and limit cycles of 

system (1). We give the proofs of Theorems (2.1.15), (2.1.17) and (2.1.19) with more 

detailed information about the number of limit cycles. There we also consider some 

examples. Finally, there are three appendices. The first two of them have already been 

mentioned. The third one discusses how to verify the existence of 𝑛 and m in such a way 

that a differential equation can be written in form (1).  

We study the situation of the finite critical points and periodic orbits of system (1).  

Here we will use the generalized tangent function 𝑇𝑛(𝜑) =  𝑆𝑛𝑝 (𝜑)𝐶𝑠𝑞  (𝜑) and its 

inverse Arc𝑇𝑛(𝑥). Let 𝑇 =  𝑇(𝑝, 𝑞) be the period of the functions 𝑆𝑛(𝜑) and 𝐶𝑠(𝜑).  
Let 𝐶𝜑0 be the half-curve of points of ℝ2 − {(0, 0)} that has the generalized polar angle of 

its points equal to 𝜑0 in the (𝑟, 𝜑) coordinates considered. Note that  

𝐶𝜑0  ∪  𝐶𝜑0 + { (𝑥, 𝑦) ∈ ℝ
2: 𝐴𝑟𝑐𝑇𝑛 ; (

𝑦𝑝

𝑥𝑞
) =  𝜑0} 
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{ (𝑥, 𝑦) ∈ ℝ2 ∶  𝐴𝑟𝑐𝑇𝑛 ; (
𝑦𝑝

𝑥𝑞
) =  𝜑0 +

𝑇

2
} .  

We have the following result  

Lemma (2.1.1)[20]: (a) If 𝑏𝑛(𝜑1) ∙  𝑏𝑚(𝜑1) =  0 and 𝑏𝑛(𝜑1)  + 𝑏𝑚(𝜑1)  ≠  0 or if 

𝐹(𝜑1)  ≠  0 then system (3) has no critical points on 𝐶𝜑1  .  

(b) If 𝑏𝑛(𝜑1) =  𝑏𝑚(𝜑1) =  0 then 𝐶𝜑1    is an invariant curve for (3).  

(c) If 𝐹(𝜑1) =  0 and 𝑏𝑛(𝜑1)𝑎𝑛𝑑 𝑏𝑚(𝜑1) =  0, then system (3) has exactly one finite 

critical point on 𝐶𝜑1  .  

(d) If 𝐹(𝜑1) =  0 and 𝑏𝑛(𝜑1)𝑎𝑛𝑑 𝑏𝑚(𝜑1) <  0, then system (3) has no finite critical points 

on 𝐶𝜑1  .  

Proof. (a) In the first case, 𝑏𝑢(𝜑11) =  0 for some 𝑢 ∈ {𝑛,𝑚}, and then 𝑏𝑛(𝜑1)  +

 𝑏𝑚(𝜑1)𝑟 ≠  0 for all 𝑟 ≠  0. To prove that if 𝐹(𝜑1)  ≠  0, (3) has no critical points on 

𝐶𝜑1 , note that if (𝑟1, 𝜑1) is a critical point different from the origin then 𝑎𝑛(𝜑1) +
 𝑎𝑚(𝜑1)𝑟1 = 𝑏𝑛(𝜑1) + 𝑏𝑚(𝜑1)𝑟1 =  0, and 𝐹(𝜑1) =  0.  
(b) It is obvious from expression (3).  

(c) If we take 𝑟1 = −
𝑏𝑛(𝜑1)

𝑏𝑚(𝜑1)
, then (𝑟1, 𝜑1) is a critical point of system (3).  

(d) This case follows from (c) because if (𝑟1, 𝜑1) is a critical point, then 𝑟1  ≥  0.  

Let 𝐾 be the subset of points of ℝ2 on which the angular component of the vector 

field (3), 𝜑̇ vanishes. In the following lemma we study the geometry of 𝐾, when it has no 

curves like (e) of Figure 1. We exclude this case because, as we will see in Proposition 

(2.1.3)(i), the presence of such curves forces the non existence of periodic orbits. This 

lemma improves Lemma 2.2 of [27].  

Lemma (2.1.2)[20]: Let 𝑋 be the vector field associated with system (3). Then  

(a) 𝐾 is the graph of the function 𝑟 =
−𝑏𝑛(𝜑)

𝑏𝑚(𝜑)
 .  

(b) At point 𝑎 =  (𝑥0, 𝑦0)  ∈  𝐾, 𝑋(𝑎) is tangent to the half-curve 𝐶𝜑 where 𝜑 =ArcTn(
𝑦0
𝑝

𝑥0
𝑞 ).  

(c) If 𝐾 has no curves of type (e) given in Figure 1, then 𝐾 is either the finite union of curves 

given by sectors of type (a), (b), (c), (d) and (f) of Figure 1, or 𝐾 is one of the curves which 

delimit the sets shown in Figure 2.  

 
Figure (1)[20]:  

The subset 𝐾 can be a finite union of the curves given by these sectors. The shadowed 

regions in cases (b) and (c) are either positively or negatively invariant by the flow of (3). 

In cases (a) and (d) the same happens when one of the hypotheses assumed in Proposition 

(2.1.3)(iii) is satisfied.  
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Figure (2)[20]:  

The subset 𝐾 can be one of the curves which delimit the shadowed regions. These shadowed 

regions are either positively or negatively invariant by the flow of (3), when one of the 

hypotheses assumed in Proposition (2.1.3)(iii) is satisfied.  

Proof. Parts (a) and (b) follow from direct calculations.  

(c) When there are 𝜑1 and 𝜑2, not equal, and with 𝑏𝑛(𝜑)𝑏𝑚(𝜑) <  0 for all 𝜑 in (𝜑1, 𝜑2) 
we have (a) if 𝑏𝑛(𝜑1) =  𝑏𝑛(𝜑2) =  0; (b) if 𝑏𝑛(𝜑1) =  𝑏𝑚(𝜑2) =  0; (𝑐) if 𝑏𝑛(𝜑2) =
 𝑏𝑚(𝜑1) =  0; (d) if 𝑏𝑚(𝜑1) =  𝑏𝑚(𝜑2) =  0. When there is only one 𝜑1 such that 

𝑏𝑛(𝜑1) 𝑛 0, 𝑏𝑚(𝜑1)  ≠  0 and 𝑏𝑛(𝜑)𝑏𝑚(𝜑) >  0, for all 𝜑 ≠ 𝜑1, then we have case (f). 

When for all 𝜑 in some interval (𝜑1, 𝜑2) we have 𝑏𝑛(𝜑)𝑏𝑚(𝜑) >  0, then 𝐾 has no points 

in thisregion and we are in case (f). When there exists 𝜑1 such that 𝑏𝑛(𝜑1) =  𝑏𝑚(𝜑1) =  0, 
then 𝜑 = 𝜑1 is invariant by the flow of system (3), and we get case (e).  

When there is only one 𝜑1 such that 𝑏𝑛(𝜑1) ≠  0 and 𝑏𝑚(𝜑1) =  0 with 𝑏𝑛(𝜑)𝑏𝑚(𝜑) <  0 

for all 𝜑 ≠ 𝜑1, we are in case (h). When there is only one 𝜑1 such that 𝑏𝑛(𝜑1) =  0 and 

𝑏𝑚(𝜑1)  ≠  0 with 𝑏𝑛(𝜑)𝑏𝑚(𝜑) <  0 for all 𝜑 ≠ 𝜑1, then the form of 𝐾 is that given in (i) 

of Figure 2. When for all 𝜑 we have 𝑏𝑛(𝜑)𝑏𝑚(𝜑) <  0, then we obtain case (j).  

The following proposition gives information about the periodic orbits of system (3) that 

surround the origin.  

Proposition (2.1.3)[20]: (i) Assume that K has associated some sector of type (b), (c) or (e) 

of Figure 1, then equation (3) has no periodic orbits surrounding the origin.  

(ii) Assume that 𝛾 is a periodic orbit of (3) surrounding the origin, then 𝛾 ∩ 𝐾 = ∅  

(iii) Assume that one of the functions 𝐹(𝜑) or 𝐴(𝜑) or 𝐴(𝜑)𝑏𝑛(𝜑), associated with the 

differential equation (3), does not change sign. If 𝛾 is a periodic orbit of (3), then s surrounds 

the origin. Furthermore, assume that 𝐾 has associated no sectors of type (a) of Figure 1 

orthat the curve𝐾 is not like the curves given in (i) or(𝑗) of Figure 2, then the origin is the 

only critical point surrounded by s; otherwise s can surround other critical points.  

Proof. (i) Let 𝛾 be a periodic orbit of system (3), then s cannot cross those sectors, given by 

𝐾, because of the sign of 𝑏𝑛(𝜑)  + 𝑏𝑚(𝜑)𝑟 in (3) in cases (b) and (c) (note that  

the shadowed regions in those sectors are either positively or negatively invariant by the 

flow of system (3)), or because 𝜑 = 𝜑1 is an invariant curve of system (3) in case (e).  

(ii) Assume that 𝛾 ∩ 𝐾 ≠ ∅ . Then y crosses 𝐾 transversally because, otherwise, this contact 

point will be a critical point of system (3). Hence, 𝛾 must cross sectors (a) or (d) or subsets 

(h) or (i) or (j) in two points, 𝑅 and 𝑆, because 𝛾 surrounds the origin. In essence, we will 

have the situation given in Figure 3, where we mark the direction of rotation of the flow of 

the vector field (3), by means of small arrows. We also take into account that 𝐾 separates 

the regions where the directions of rotation are opposed. So by the uniqueness of the 

solutions we have a contradiction and, therefore, y cannotsurround the origin. (iii) From the 

Index Theory, y has to surround a critical point. This point belongs to the set 𝐾. Note that 
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on 𝐾, 𝑟̇(𝑟, 𝑤) =
𝐹(𝜑)𝑟(𝜑)𝑏𝑚

𝜑
= −

𝑏𝑛(𝜑)𝐴(𝜑)

𝑏𝑚
3 (𝜑) =

𝐴(𝜑)𝑟(𝜑)

𝑏𝑚
2 (𝜑) , so 𝑟̇ does not change sign on 

the connected components of 𝐾. Hence 𝛾 must surround the origin. If, in addition, 𝐾 has 

associated no sectors of type (a) or (i) or (j) of Figures 1 and 2, the origin will be the unique 

critical point that 𝛾 surrounds because the shadowed regions of Figures 1 and 2 are invariant 

under the flow of the system (3). In the other cases 𝛾 can surround critical points different 

from the origin. The examples:(𝑎) 𝑟̇ = 𝑟(10 −  𝑟) cos2  𝜑, 𝜑̇ =  5 − (1 +
sin2  𝜑)𝑟; (𝑏)𝑟̇ =  𝑟(10 −  𝑟)sin2 𝜑, 𝜑̇ = 5 cos2 𝜑 − 𝑟, illustrate this situation, see Figure 

4.  

 
Figure (3)[20]: Standard situation that occurs when 𝛾 ∩ 𝐾 ≠ ∅ , and y surrounds the origin.  

 
Figure (4)[20]: Limit cycles for system (3) surrounding several critical points.  

Corollary (2.1.4)[20]: Periodic orbits of differential equation (3) surrounding the origin can 

be studied as solutions of (4) satisfying 𝑟(𝜑1) =  𝑟(𝜑1  +  𝑇) for any 𝜑1.  
Proof. Follows from (ii) of Proposition (2.1.3).  

Given a subset 𝐶𝜓, we define 𝐷𝜓  ⊂ 𝐶𝜓 as the subset of points of 𝐶𝜓 for which the Poincare´ 

return map, ℎ, is defined, i.e., the set of points, 𝛼 ∈ 𝐶𝜓 for which ℎ(𝑎):= (𝑇, 𝑎) is defined 

and belongs to 𝐶𝜓, where 𝜓 (𝜑, 𝑎) is the solution of (4) such that 𝜓(0, 𝑎) =  𝑎. Note that 

𝐷𝜓 is always an open subset of 𝐶𝜓.  

Proposition (2.1.5)[20]: Assume that either the function 𝐹(𝜑) or 𝐴(𝜑) or 𝐴(𝜑)𝑏𝑛(𝜑), 
associated with the equation (3) does not change sign and K is not a simple closed curve 

(case j of Figure 2). Then there is a 𝜓 , such that  

(i) All the periodic orbits of (3) belong to the closest connected component to the origin of 

𝐷𝜓.  

(ii) If 𝑏𝑛(𝜑) does not vanish, 0 ∈  𝐷𝜓̅̅ ̅̅ .  

Proof. (i) If equation (3) has no periodic orbits, there is nothing to be proved. So, from 

Proposition (2.1.3)(i), cases (b), (c) and (e) will not be considered. We can assume that there 

is a 𝜓 such that 𝐶𝜓 is a half curve without contact. Assume, now, that on𝐶𝜓, 𝐷𝜓 has, at least, 
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two connected components 𝐷1 and 𝐷2 and equation (3) has a periodic orbit … on 𝐷2 (𝐷1 is 

closer to the origin than 𝐷2). From Proposition (2.1.3)(ii)–(iii), we have 𝛾 ∩  𝐾 = and an 

orbit 𝛾̃ through a point in 𝐷1 must, always, surround sectors like (a) of Figure 1, if 𝐾 has 

associated some of them. Hence, if we take a point q on 𝐶𝜓\ 𝐷𝜓 between 𝐷1 and 𝐷2, its -

limit or -limit set must be non-empty. This is impossible because between 𝛾̃and 𝛾 there are 

no critical points. Thus, all periodic orbits of (3) cut 𝐷1, and (i) follows (see Figure 5).  

(ii) The proof follows from (i) taking into account that when 𝑏𝑛(𝜑) does not vanish the 

origin behaves like a periodic orbit.  

 
Figure (5)[20]: 𝐶𝜓 with two different connected components. 

First, we will give some preliminary results.  

Proposition (2.1.6)[20]: (See [35]). Let ℎ(𝑥) be the return map associatedwith the 

differential equation 𝑑𝑟/𝑑𝜑 = 𝑆(𝑟, 𝜑), then  

(𝑖)ℎ′(𝑥) = exp∫  

𝑇

0

𝜕𝑆

𝜕𝑟
 (𝑟(𝜑, 𝑥), 𝜑)𝑑𝜑,  

(𝑖𝑖)ℎ′′(𝑥) =  ℎ′(𝑥) [∫  

𝑇

0

𝜕2𝑆

𝜕𝑟2
  ( 𝑟(𝜑, 𝑥), 𝜑) exp{∫  

𝜑

0

𝜕𝑆

𝜕𝑟
 (𝑟(𝑠, 𝑥), 𝑠)𝑑𝑠 )}𝑑𝜑 , ]  

(𝑖𝑖𝑖)ℎ′′′(𝑥) =  ℎ′(𝑥) [
3

2
 (
ℎ′′(𝑥)

ℎ′(𝑥)
 )

2

 

+ ∫  

𝑇

0

𝜕3𝑆

𝜕𝑟3
 ( 𝑟(𝜑, 𝑥), 𝜑) 𝑒𝑥𝑝  {2 ∫  

𝜑

0

𝜕𝑆

𝜕𝑟
 (𝑟(𝑠, 𝑥), 𝑠 ) 𝑑𝑠}   𝑑𝜑]   ,  

where 𝑟(𝜑, 𝑥) denotes the solution of the differential equation such that 𝑟(0, 𝑥) =  𝑥.  
Direct calculations give the following lemma,  

Lemma (2.1.7)[20]: For equation (4) we have:  

(𝑖)𝑆(𝑟, 𝜑) =
𝑎𝑚(𝜑 )

𝑏𝑚(𝜑 )
𝑟  +

𝐹(𝜑 )

𝑏𝑚
2 (𝜑 )

−
𝐹(𝜑 )𝑏𝑛(𝜑 )

𝑏𝑚
2 (𝜑 )(𝑏𝑛(𝜑 ) + 𝑏𝑚(𝜑 )𝑟)

,  

(𝑖𝑖)𝜕𝑆

𝜕𝑟
 (𝑟, 𝜑) =

𝑎𝑚(𝜑 )

𝑏𝑚(𝜑 )
+

𝐹(𝜑 )𝑏𝑛(𝜑 )

𝑏𝑚(𝜑 )(𝑏𝑛 (𝜑 ) + 𝑏𝑚(𝜑 )𝑟)
2
 ,  

(𝑖𝑖𝑖)
 𝜕2𝑆

𝜕𝑟2
   (𝑟, 𝜑) = −

2𝐹(𝜑 )𝑏𝑛(𝜑 )

(𝑏𝑛(𝜑 ) + 𝑏𝑚(𝜑 )𝑟)
3
 ,  

(𝑖𝑣)
𝜕3𝑆

𝜕𝑟3
  (𝑟, 𝜑) =

6𝐴(𝜑 )𝑏𝑛(𝜑 )

(𝑏𝑛(𝜑 ) + 𝑏𝑚(𝜑 )𝑟)
4
 .  

When the return map is defined we obtain the next result,  
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Lemma (2.1.8)[20]: The first derivative of the return map associated to a periodic orbit, 

𝑟(𝜑), of equation (4) is  

(𝑖) exp{∫  

𝑇

0

 
𝑎𝑛(𝜑 )

𝑏𝑛(𝜑 )
 𝑑𝜑} , 𝑖𝑓 𝑟 ≡  0,  

(𝑖𝑖) exp{−∫  

𝑇

0

𝐹(𝜑 )𝑟(𝜑 )

(𝑏𝑛(𝜑 ) + 𝑏𝑚(𝜑 )𝑟(𝜑 ))
2  𝑑𝜑} , 𝑖𝑓 𝑟 ≢  0.  

Proof. (i) follows from the expression obtained for the function 𝑆(𝑟, 𝜑) =
𝑑𝑟

𝑑𝜑
 in Lemma 

(2.1.7)(ii), and from Proposition (2.1.6)(i).  

To prove (ii), note that from equation (4),  

0 = ∫  

𝑇

0

𝑟′(𝜑)

𝑟(𝜑)
 𝑑𝜑 = ∫  

𝑇

0

 𝑎𝑛(𝜑) + 𝑎𝑚(𝜑)𝑟

𝑏𝑛(𝜑) + 𝑏𝑚(𝜑)𝑟 
𝑑𝜑 

= ∫  

𝑇

0

 
(𝑎𝑛(𝜑) + 𝑎𝑚(𝜑)𝑟)( 𝑏𝑛(𝜑) + 𝑏𝑚(𝜑)𝑟 )

( 𝑏𝑛(𝜑) + 𝑏𝑚(𝜑)𝑟)
2

 𝑑𝜑,  

and, from this last expression, we have that  

∫  

𝑇

0

𝑎𝑛(𝜑)𝑏𝑛(𝜑) + 𝑎𝑚(𝜑)𝑏𝑚(𝜑)𝑟
2

( 𝑏𝑛(𝜑) + 𝑏𝑚(𝜑)𝑟
 )2

  𝑑𝜑 =  ∫  

𝑇

0

−𝑟(𝑎𝑛(𝜑)𝑏𝑚(𝜑) + 𝑏𝑛(𝜑)𝑎𝑚(𝜑))

( 𝑏𝑛(𝜑) + 𝑏𝑚(𝜑)𝑟
 )2

 𝑑𝜑.  

Hence, using this equality, (i) of Proposition (2.1.6) and (ii) of Lemma (2.1.7), (ii) holds. 

The calculations made in the following lemma are inspired by [36] and are straightforward. 

Lemma (2.1.9)[20]: Let 𝑟1(𝜑) >  𝑟2(𝜑) > 𝑟3(𝜑) be three positive solutions of (4). If  

ℋ (𝜑):=  
𝑆(𝑟1, 𝜑) − 𝑆(𝑟2, 𝜑)

𝑟1(𝜑) − 𝑟2(𝜑)
−
𝑆(𝑟1, 𝜑) − 𝑆(𝑟3, 𝜑)

𝑟1(𝜑) ·  𝑟3(𝜑)
−
𝑆(𝑟2, 𝜑)

𝑟2(𝜑)
 +
𝑆(𝑟3, 𝜑)

𝑟3(𝜑)
 , (6) 

where 𝑆(𝑟𝑖  , 𝜑), for 𝑖 =  1, 2, 3 is defined in (4), then we have  

  ℋ (𝜑) =
𝐴(𝜑)𝑟1(𝜑)(𝑟2(𝜑) − 𝑟3(𝜑))

(𝑏𝑛(𝜑) + 𝑏𝑚(𝜑)𝑟1)(𝑏𝑛(𝜑) + 𝑏𝑚(𝜑)𝑟2)(𝑏𝑛(𝜑) + 𝑏𝑚(𝜑)𝑟3 ) 
 . (7) 

The next lemma follows from direct computations and is based on the change of variables 

made in [25].  

Lemma (2.1.10)[20]: If 𝑏𝑛(𝜑) does not vanish, the transformation 𝒯 (𝑟, 𝜑) =  (𝜌, 𝜑), 
where  

𝜌 =
𝑟

𝑏𝑛(𝜑)  + 𝑏𝑚(𝜑)𝑟 
,  

is a diffeomorphism between ℝ2\ 𝐾 and its image. Furthermore, the differential equation 

(4) is transformed into the following Abel differential equation:  
𝑑𝜌

𝑑𝜑
 𝛼(𝜑)𝜌3  +  𝛽(𝜑)𝜌2  +  𝛾(𝜑)𝜌,                                           (8) 

where  

𝛼(𝜑) =
𝑏𝑚(𝜑)

𝑏𝑛(𝜑)
 [𝑎𝑛(𝜑)𝑏𝑚(𝜑) − 𝑎𝑚(𝜑)𝑏𝑛(𝜑)] =

𝐹(𝜑)𝑏𝑚(𝜑)

𝑏𝑛(𝜑)
=
𝐴(𝜑)

𝑏𝑛(𝜑)
 ,  

𝛽(𝜑) =
1

𝑏𝑛(𝜑)
 [𝑏𝑛(𝜑)𝑎𝑚(𝜑) −  2𝑎𝑛(𝜑)𝑏𝑚(𝜑)] + 

𝑏𝑛
′  (𝜑)𝑏𝑚(𝜑) − 𝑏𝑛(𝜑)𝑏

′
𝑚(𝜑)

𝑏𝑛(𝜑)
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𝛾(𝜑) =  
𝑎𝑛(𝜑) − 𝑏𝑛

′ (𝜑)

𝑏𝑛(𝜑)
 ,  

Following [27], equation (8) can be written in a different way asthe next lemma 

shows. Lemma (2.1.11)[20]: Equation (8) is equivalent to 

(9) 
𝑑(𝜌−1 − 𝑏𝑚(𝜑))

𝑑𝜑
= (𝜌−1𝑏𝑚(𝜑)) (

𝐹(𝜑)

𝑏𝑛(𝜑)
𝜌 −

𝑎𝑛(𝜑)

𝑏𝑛(𝜑)
 +
𝑏𝑛
′ (𝜑)

𝑏𝑛(𝜑)
)   .  

Lemma (2.1.12)[20]: It is not restrictive, when the function 𝐴(𝜑)𝑏𝑛(𝜑) does not change 

sign, to consider 𝐴(𝜑)𝑏𝑛(𝜑)  ≥  0 for every 𝜑.  

Proof. By using the following change of variables, (𝑟, 𝜑)  →  (𝑟, 𝑇 − 𝜑), the lemma 

follows.  

Proposition (2.1.13)[20]: Assume that the function 𝐴(𝜑)𝑏𝑛(𝜑) does not change sign. Then 

the third derivative of the Poincare´ return map, ℎ, of (4) is positive.  

Proof. Using Lemma (2.1.12), if 𝐴(𝜑)𝑏𝑛(𝜑) does not change sign, one can assume that 

𝐴(𝜑)𝑏𝑛(𝜑)  ≥  0. Since, for Lemma (2.1.7)(iv), 
𝜕3𝑆

𝜕𝑟3
 (𝑟, 𝜑) =

6𝐴(𝜑)𝑏𝑛(𝜑)

(𝑏𝑛(𝜑)+𝑏𝑚(𝜑)𝑟)
4 
≥  0, it 

follows from Proposition (2.1.6) that ℎ′′′(𝑥) >  0 for all 𝑥 for which h is defined.  

In a similar way asin equation (4), we can define a Poincare´ return map ℎ̃ for equation (8) 

between 𝜑 =  0 and 𝜑 =  𝑇. For this map ℎ̃ we have the following result which has already 

been proved, see for instance [29].  

Proposition (2.1.14)[20]: Assume that the function 𝑏𝑛(𝜑) does not vanish and 𝐴(𝜑)𝑏𝑛(𝜑) 

does not change sign, then the third derivative of the Poincare´ return map, ℎ̃, of (8) is 

positive.  

Proof. Since 
𝜕3

𝜕𝜌3
 (𝛼(𝜑)𝜌3  +  𝛽(𝜑)𝜌2 + 𝛾(𝜑)𝜌) = 6𝛼(𝜑) = 6

𝐴(𝜑)

𝑏𝑛(𝜑)
 , does not change 

sign, the proof follows in the same way as the proof of Proposition (2.1.13).  

First we will prove Theorems (2.1.15), (2.1.17) and (2.1.19) only when 𝐹(𝜑), 𝐴(𝜑) 
or 𝑏𝑛(𝜑) are not identically zero. The case in which one of the three functions identically 

vanishes is easier and is studied at the end.  

Theorem (2.1.15)[20]: Given system (1), assume that the function 𝐹(𝜑), defined in (5), 

does not change sign. Thus, this system has, at most, one limit cycle and, when it exists, it 

is hyperbolic, and surrounds the origin.  

Furthermore, there are examples of (1), with the above hypotheses, and with one limit cycle.  

Proof. From Proposition (2.1.3)(iii), any periodic orbit of (3) surrounds the origin. As 

explained, we will divide the proof into two cases:  

Case I. 𝐾 is not a simple closed curve.  

From Proposition (2.1.5), there exists a 𝜓 such that all periodic orbits are in the connected 

component 𝐷𝜓 of 𝐶𝜓. Take a periodic orbit 𝛾 of (3). From Lemma (2.1.8), since F does not 

change sign, it is a hyperbolic stable (resp. unstable) limit cycle if 𝐹(𝜑) is greater than or 

equal to (resp. less than or equal to) zero. Hence 𝛾 is unique.  

CASE II. 𝐾 is a simple closed curve.  

Periodic orbits of (3) can cut different connected components of 𝐶𝜓. Of course, the proof of 

case a) shows that, in case b), our system has, at most, two limit cycles, one turning 

clockwise and another one turning counterclockwise but, as we will see, they can not 

coexist.  

From Proposition (2.1.3), periodic orbits of (3) surround the origin, furthermore and since 

𝑏𝑛(𝜑) does not vanish, we can study the periodic orbits of (3) as 𝑇 − periodic solutions of 
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(9). Let 𝑟(𝜑) be a periodic orbit of (3). It gives a 𝑇 −periodic solution of (9), 𝜌(𝜑). From 

Lemma (2.1.11), we have that:  

𝑑

𝑑𝜑
= ln  (𝜌−1 (𝜑) − 𝑏𝑚(𝜑))  = (

𝐹(𝜑)

𝑏𝑛(𝜑)
𝜌(𝜑) −

𝑎𝑛(𝜑)

𝑏𝑛(𝜑)
 + 

𝑏𝑛
′𝜑

𝑏𝑛(𝜑)
) ,  

and since 𝜌(𝜑) is 𝑇 −periodic,  

0 = ∫  

𝑇

0

 
𝐹(𝜑)

𝑏𝑛(𝜑)
 𝜌(𝜑) 𝑑𝜑 +  𝑘,                                                     (10) 

where 𝑘 = −∫  
𝑇

0
 𝑎𝑛(𝜑)/𝑏𝑛(𝜑) d𝜑. Observe that if 𝑟1(𝜑) and 𝑟2(𝜑) are two periodic orbits 

of (3), they induce two 𝑇 −periodic solutions of (9), 𝜌1(𝜑) and 𝜌2(𝜑). We can assume that 

𝜌1(𝜑) > 𝜌2(𝜑). But since 𝐹(𝜑)/𝑏𝑛(𝜑) does not change sign,  

 ∫  

𝑇

0

𝐹(𝜑)

𝑏𝑛(𝜑)
 𝜌1(𝜑)𝑑𝜑 ≠ ∫  

𝑇

0

𝐹(𝜑)

𝑏𝑛(𝜑)
 𝜌2(𝜑) 𝑑𝜑,  

and this contradicts (10). Hence (3) has, at most, one periodic orbit. Using Lemma (2.1.8), 

it is hyperbolic.  

Corollary (2.1.16)[20]: Given the differential equation (1), assume that 𝐹(𝜑)  ≢  0, does 

not change sign and that 𝑏𝑛(𝜑) does not vanish. Set 𝑐 =  ∫  
𝑇

0

𝑎𝑛(𝜑)

𝑏𝑛(𝜑)
 𝑑𝜑. Then  

a) If 𝐾 is not a simple closed curve, the unique limit cycle for system (1) only exists when 

sign(𝐹)  ∙  𝑐 >  0.  
b) If 𝐾 is a simple closed curve, it divides ℝ2 in two connected components, one bounded 

𝐾𝑏 and one unbounded 𝐾𝑢. Thus, if the limit cycle exists in system (𝐼), it is in 𝐾𝑏 (resp. 𝐾𝑢) 

if sign(𝐹)  ∙  𝑐 is plus (resp. minus).  

Proof. Follows easily from Lemma (2.1.8) and Theorem (2.1.15).  

Theorem (2.1.17)[20]: Given system (1), assume that the function 𝐴(𝜑), defined in (5), 

does not change sign. Thus, this system has, at most, two limit cycles and, when they exist, 

they surround the origin. Furthermore, if 𝑏𝑛(𝜑) does not vanish, the sum of the multiplicities 

of the limit cycles is, at most, two.  

Moreover, there are examples of (1), with the above hypothesis, with two, one or no limit 

cycles.  

Proof. In our hypotheses and from Proposition (2.1.3), all periodic orbits of system (1) 

surround the origin and do not cut 𝐾. Assume thatsystem (1) hasthree limit cycles 𝑟1(𝜑) >
𝑟2(𝜑) >  𝑟3(𝜑). From Corollary (2.1.4), 𝑟𝑖(𝜑), 𝑖 =  1, 2, 3, can be considered as positive 

solutions of equation (4). Since from Lemma (2.1.9), 𝐴(𝜑) does not change sign, we have 

that ℋ (𝜑) does not change sign and is a continuous function. But, on the other hand, we 

have that: 

0 =  𝑙𝑜𝑔 {
(𝑟1(𝜑) − 𝑟2(𝜑))𝑟3(𝜑)

(𝑟1(𝜑) − 𝑟3(𝜑)) 𝑟2 (𝜑)
} |
𝑇
0
=  ∫  

𝑇

0

  ℋ (𝜑) 𝑑𝜑, 

and this contradicts the continuity of ℋ (𝜑). Hence system (1) has, at most, two limit cycles. 

Now we have to prove that, when 𝑏𝑛(𝜑) does not vanish, the sum of the multiplicities of 

the limit cycles is, at most, two. In this case, when 𝐾 is not a simple closed curve, from 

Proposition (2.1.5) and Corollary (2.1.4), all periodic orbits of (4), included the origin,  

belong to the same connected component of 𝐷𝜓. Furthermore, the third derivative of the 

Poincare´ return map of (4), ℎ, is positive. Whence we conclude, from Rolle’s Theorem, that 
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ℎ(𝑥) =  𝑥 has, at most, two simple solutions besides the origin. Therefore the theorem 

follows. When 𝐾 is a simple closed curve 𝑏𝑚(𝜑) does not vanish. Hence, 𝐹(𝜑) =
 𝐴(𝜑)/𝑏𝑚(𝜑) neither changes sign. Therefore from Theorem (2.1.15), system (1) has, at 

most, one hyperbolic limit cycle and again the theorem follows.  

In the case where 𝐴(𝜑)  ≢  0 does not change sign and 𝑏𝑛(𝜑)  ≠  0, for all 𝜑 (this is 

the case where the local phase portrait of the origin of system (1) is of focus or center type), 

we obtain a more precise distribution of limit cycles, as we can see in the next theorem. This 

theorem is based on [29].  

Theorem (2.1.18)[20]: Assume that in system(1), 𝐴(𝜑)  ≢  0 does not change sign, 

𝑏𝑛(𝜑) ≠  0, for all 𝜑, and 𝐾 is not a simple closed curve. Then Table I shows the distribution 

of limit cycles when 𝐴(𝜑)𝑏𝑛(𝜑)  ≥  0, according to the different values of 𝑐 and 𝑑. (The 

case 𝐴(𝜑)𝑏𝑛(𝜑) ≤  0 has associated the table obtained reversing the inequalities for 𝑐 and 

𝑑, in accordance with Lemma (2.1.12)).  

 𝑐 < 0 𝑐 = 0 𝑐 > 0 

𝑑 < 0 𝑑 = 0 𝑑 > 0 𝑑 < 0 𝑑 = 0 𝑑 > 0 

(I) 1 1 0 0 2 0 0 

(II) 1 2 3 2 1 1 1 

 

Table (I)[20]: Maximum number of limit cycles of equation (1) when 𝐴(𝜑)𝑏𝑛(𝜑)  ≥  0. 
Here  

𝑐 = ∫  

𝑇

0

 
𝑎𝑛(𝜑)

𝑏𝑛(𝜑)
 𝑑𝜑, 𝑑 = ∫  

𝑇

0

 
−2𝐹(𝜑)

𝑏𝑛
2(𝜑) 

𝑒𝑥𝑝 ( ∫  

𝜑

0

𝑎𝑛(𝑠)

𝑏𝑛(𝑠)
 𝑑𝑠)𝑑𝜑. 

(I) maximum number of limit cycles, taking into account their multiplicity. 

(II) multiplicity of the solution 𝑟 ≡  0.  
Proof. Using Corollary (2.1.4), to study the limit cycles of (1), it is sufficient to consider 

equation (4). From the hypotheses, we have that set 𝐾 is not like the curve in (𝑗) of Figure 

2. Therefore, from Proposition (2.1.5), there exists some 𝜓 such that all periodic orbits of 

(4) cut a connected subset of 𝐷𝜓, I and, furthermore, 0 ∈ 𝐼.̅  

If we define 𝐻(𝑥) =  ℎ(𝑥) −  𝑥, where ℎ(𝑥) is the Poincare´ return map associated with  

(4) and with , we have the following properties for 𝐻:  
(i) 𝐻′′′(𝑥) >  0, for all 𝑥 ∈  𝐼 (Proposition (2.1.6)(iii) and Lemma (2.1.7)(iv))  

(ii) 𝐻′(0) =  𝑒𝑐 − 1, and 𝐻′′(0) =  𝑒𝑐𝑑 (Proposition (2.1.6) and Lemma (2.1.8)(i))  

Note that 𝑥 =  0 corresponds to solution 𝑟 ≡  0, and the fixed points of 𝐻 correspond with 

the periodic orbits of (4). Therefore, using (i) and (ii) and arguing as in the proof of [29], we 

obtain Table I.  

Theorem (2.1.19)[20]: Given system (1), assume that the function 𝐴(𝜑)𝑏𝑛(𝜑) does not 

change sign. Thus, for this system, if there are limit cycles, they surround the origin and the 

sum of their multiplicities is, at most, three.  

Proof. From Proposition (2.1.3)(iii), if (1) has some limit cycle, it surrounds the origin  

CASE I. 𝐾 is not a simple closed curve.  

From Proposition (2.1.5) we have that all periodic orbits cut the same connected component 

𝐷𝜓 of 𝐶𝜓From Proposition (2.1.13), the third derivative of the return map, h, when it is 

defined, is positive. Therefore, by Rolle’s Theorem, the sum of the multiplicities of the limit 

cycles is, at most, three.  

CASE II. 𝐾 is a simple closed curve.  
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Since in this case 𝑏𝑛(𝜑) does not vanish, the result is that 𝐴(𝜑) does not change sign. So, 

in fact, there is, at most, one limit cycle.  

Fixed 𝜑 set 𝑆(𝑟) = 𝑆(𝑟, 𝜑 ). Remember that given 𝑟𝑖  ∈ ℝ, 𝑖 =  1, . . . , 𝑛, we can define 

inductively the divided differences of S, as:  

𝑆[𝑟𝑖  , 𝑟𝑖+1, . . . , 𝑟𝑖+𝑗+1] =
 𝑆[𝑟𝑖+1, . . . , 𝑟𝑖+𝑗+1] − 𝑆[𝑟𝑖  , . . . , 𝑟𝑖+𝑗]

𝑟𝑖+𝑗+1 − 𝑟𝑖
 ,  

where 𝑆[𝑟𝑖] = 𝑆(𝑟𝑖), see [31]. It turns out that S[ ] is a symmetric function of its variables. 

As usual, we call it Si ,...,i+j+1 for short. Then, with this notation, and using 𝑆(0) = 0,  

ℋ (𝜑) =  𝑆1,2 − 𝑆1,3 − 𝑆2,0  +  𝑆3,0 = (𝑆2,1,3 − 𝑆2,0,3)(𝑟2 − 𝑟3) =  𝑆0,1,2,3(𝑟2 − 𝑟3)𝑟1.  

At the same time, it is well known that 𝑆0,1,2,3,...,𝑛 =
𝑆(𝑛)(𝜉)

𝑛!
 , where 𝜉 ∈  〈𝑟0, 𝑟1, . . . , 𝑟𝑛 〉 . 

Therefore, we have that  

ℋ(𝜑) =
1

3!
 r1(𝜑)r2(𝜑) − r3(𝜑))𝜕3 S(r, ) ∂^3   r   3 r(𝜑, r1(𝜑), r2(𝜑), r3(𝜑)) . 

When 𝑏𝑛(𝜑)  ≡  0 or 𝐴(𝜑)  ≡  0, it is possible to have more precise information about the 

limit cycles. And we go on to deal with this below.  

When 𝑏𝑛(𝜑) ≡  0 and 𝑏𝑚(𝜑)  ≢  0 (in the case 𝑏𝑛(𝜑)  ≡  𝑏𝑚(𝜑)  ≡  0, system (3) has the 

solution 𝜑 = constant, for all ), or 𝐴(𝜑)  ≡  0, we can integrate system (3). Hence, in these 

cases, we can know exactly the trajectories of all closed solutions. Their initial conditions 

are given in the following lemma.  

Lemma (2.1.20)[20]: In system (3) we assume 𝑏𝑛(𝜑) ≡  0, 𝑑1 = ∫  
𝑇

0

𝑎𝑚(𝜑)

𝑏𝑚(𝜑)
 𝑑𝜑, 𝑎𝑛𝑑 𝑑2 = -

∫  
𝑇

0

𝑎𝑛(𝜑)

𝑏𝑚(𝜑)
 exp (−∫  

𝜑

0

𝑎𝑚(𝑠)

𝑏𝑚(𝑠)
 𝑑𝑠) 𝑑𝜑.Thus, the following hold.  

(i) If 𝑑1 = 𝑑2 =  0, all trajectories of (3), in a neighbourhood of 𝑟 ≡  0, are closed.  

(ii) If |𝑑1|  + |𝑑2| ≠ 0, system (3) has at most two closed solutions. Furthermore, these 

solutions are the ones with initial conditions  

 
𝑟(0) =  0
 𝜑(0) = 0

} , 𝑎𝑛𝑑 
𝑟(0) =

𝑑2𝑒
𝑑1

1𝜑𝑒𝑑1
 

𝜑(0) =  0 

} .  

Proof. The proof follows by direct calculations.  

Proposition (2.1.21)[20]: In system (3), assuming 𝐴(𝜑)  ≡  0,  
(i) If 𝐹(𝜑)  ≡  0 and 𝑏𝑚(𝜑)  ≢  0, then system (3) has no limit cycles. Moreover, if 𝑐 =

∫  
𝑇

0

𝑎𝑛(𝜑)

𝑏𝑛(𝜑)
 𝑑𝜑 =  0, then the origin is a center for system (3). (ii) If 𝐹(𝜑)  ≢ 0 and 𝑏𝑚(𝜑)  ≡

0, then system (3) has, at most, one limit cycle. Moreover, if 𝑑 =

∫  
𝑇

0

−𝐹(𝜑)

𝑏𝑛
2(𝜑)

 𝑒𝑥𝑝 (∫  
𝜑

0

𝑎𝑛(𝑠)

𝑏𝑛(𝑠)
  𝑑𝑠) 𝑑𝜑, and 𝑐 is the value given in (i), the following holds:  

(a) If 𝑑 =  𝑐 =  0, all trajectories of (3), in a neighbourhood of 𝑟 ≡  0, are closed.  

(b) If | 𝑐 |  + | 𝑑 | ≠  0, system (3) has, at most, two closed solutions with initial conditions  

  
𝑟(0) =  0
𝜑(0) = 0

} , 𝑎𝑛𝑑  
𝑟(0) =

(1 − 𝑒𝑐) 

𝑑
 

𝜑(0) =  0
} .  

(iii) Assume 𝐹(𝜑)  ≡  𝑏𝑚(𝜑)  ≡  0. If 𝑏𝑛(𝜑)  ≡  0, then all straight lines through the origin 

are invariant and if 𝑏𝑛(𝜑)  ≢  0 and 𝑎𝑚(𝜑)  ≡  0, then the origin is a center.  
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Proof. If 𝐹(𝜑)  ≡  0 and assuming 𝑏𝑚(𝜑)  ≢  0, we have that system (3) is equivalent to 
𝑑𝑟

𝑑𝜑
=
𝑎𝑚(𝜑)

𝑏𝑚(𝜑)
𝑟. With the condition 𝐹(𝜑)  ≡  0 and integrating this equation we obtain the 

solutions  

𝑟(𝜑) =  𝑟(0) ∙  𝑒𝑥𝑝 ( ∫  

𝜑

0

𝑎𝑛(𝑠)

𝑏𝑛(𝑠)
 𝑑𝑠) .  

Then (i) follows.  

If bm(𝜑) ≡, system (3) becomes  

𝑟̇ =  𝑎𝑛(𝜑)𝑟 + 𝑎𝑚(𝜑)𝑟
2 ,  

𝜑̇ =  𝑏𝑛(𝜑), 

or, equivalently, 
𝑑𝑟

𝑑𝜑
=
𝑎𝑛(𝜑)

𝑏𝑛(𝜑)
𝑟 +

𝑎𝑚(𝜑)

𝑏𝑛(𝜑)
 𝑟2 , and the solutions, 𝑟(𝜑), of this Riccati equation 

are  

𝑟(𝜑) =  
𝑒𝑥𝑝 (∫  

𝜑 
0

𝑎𝑛(𝑠)
𝑏𝑛(𝑠)

 𝑑𝑠)

−∫  
𝜑 
0

𝑎𝑚(𝑠)
𝑏𝑛(𝑠)

   𝑒𝑥𝑝 (∫  
𝑠

0
 
𝑎𝑛(𝜏)
𝑏𝑛(𝜏)

 𝑑𝜏)𝑑𝑠 + 𝑟−1
 
  (0)

  .  

From this expression, (ii) follows. The proof of (iii) is  trivial.  

The natural generalization of the example given in [30]  

𝑥̇ =  𝑎𝑝𝑥 +  𝛾𝑦𝑝/𝑞 − (𝑎𝜌2𝑝𝑞  +  𝛾𝑥2𝑞−1 𝑦𝑝/𝑞   )(𝑝𝑥 + 𝑦2𝑝− 1𝜌𝑝+𝑞− 2𝑝𝑞),  

𝑦̇ =  𝑎𝑞𝑦 − (𝑎𝜌2𝑝𝑞  +  𝛾𝑥2𝑞−1 𝑦𝑝/𝑞)(𝑞𝑦 − 𝑥2𝑞− 1𝜌(𝑝+𝑞− 2𝑝𝑞)),  

where 𝜌 = √𝑝𝑥2𝑞  +  𝑞𝑦2𝑝
2𝑝𝑞

  , is a system of type (1). For some values of 𝑎, 𝛾, 𝑝, and 𝑞, 
this system has one or two limit cycles and it is in accordance with the hypotheses of 

Theorem (2.1.15) and (2.1.17). Therefore, it shows that the results of Theorem (2.1.15) and 

(2.1.17) cannot be improved. We also present some different examplesfor which the above 

theorems apply. We stress that they have not homogeneous nonlinearities. Consider  

(𝑥̇, 𝑦̇) = (−𝑦2𝑝− 1  +  𝑃𝑚(𝑥, 𝑦), 𝑥
2𝑞− 1  +  𝒬𝑚(𝑥, 𝑦)) ,  

where 𝑃𝑚 and 𝒬m are (𝑝, 𝑞) −quasihomogeneous polynomials of degrees 𝑚 +  2𝑝𝑞 −
 (𝑞 +  1) and 𝑚 +  2𝑝𝑞 − (𝑝 +  1) respectively. For these systems 

𝐹(𝑥, 𝑦) =  −(𝑥2𝑞−1𝑃𝑚(𝑥, 𝑦) + 𝑦
2𝑝−1𝒬𝑚(𝑥, 𝑦)) , 

and 

𝐴(𝑥, 𝑦) =  𝐹(𝑥, 𝑦)(𝑝𝑥𝒬𝑚(𝑥, 𝑦) −  𝑞𝑦𝑃𝑚(𝑥, 𝑦)). 
For instance, for system  

(𝑥̇, 𝑦̇) =  (−𝑦 +  𝑎𝑥3  +  𝑏𝑥𝑦, 𝑥3  +  𝑐𝑥4  +  𝑑𝑥2 𝑦),  
with (𝑏 +  𝑐)2 −  4𝑎𝑑 <  0, we get 𝐹(𝑥, 𝑦) =  𝑎𝑥6  +  (𝑏 +  𝑐)𝑥4 𝑦 +  𝑑𝑥2 𝑦2 and taking 

𝑦 = 𝜆𝑥2 , we can prove that 𝐹 does not change sign. On the other hand, consider  

(𝑥̇, 𝑦̇) =  (−𝑦 +  𝑎𝑥5  +  𝑏𝑥2 𝑦, 𝑥5  +  𝑐𝑥7  +  𝑑𝑥4 𝑦 +  3𝑏𝑥𝑦2 ),  

where 𝑏 =  𝑏(𝑎, 𝑐, 𝑑) = −
 𝑎(3𝑎−𝑑)3+𝑐2 (3𝑎−𝑑)2+𝑑𝑐2(3𝑎−𝑑)

3𝑐3+𝑐(3𝑎𝐹𝑑)2 
. For this system we have 

𝐹(𝑥, 𝑦) =  𝑥 (𝑐𝑥3  +  (𝑑 −  3𝑎)𝑦) (𝑎𝑦2  + 𝛽𝑥3 𝑦 +  𝛾𝑥6 ), and 𝐴(𝑥, 𝑦) =  𝑥6 (𝑐𝑥3  +
 (𝑑 −  3𝑎)𝑦)2(𝑎𝑦2  + 𝛽𝑥3 𝑦 + 𝛾𝑥6  ), where α, 𝛽 and 𝛾 are real values depending on 𝑎, 𝑐 
and d. If we assume that ∆ =  ∆(𝑎, 𝑐, 𝑑) =  (𝑑 + 3𝑏𝜆)2 −  12𝑏(3𝑏𝜆2 + 𝑑𝜆 + 𝑏 + 𝑐) <  0, 

where 𝜆 =
𝑐

3𝑎−𝑑
  , then it can be proved that 𝛼𝑦2  +  𝛽 𝑥3 𝑦 +  𝛾𝑥6 does not change sign. 

So, Theorem (2.1.17) can be applied to the above system under condition ∆ <  0. We 

observe that this last condition is not empty because, for instance, ∆(𝑎, 3𝑎 −  𝑑, 𝑑) =  𝑑2 −
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 6𝑎𝑑 −  3𝑎2. In fact, when 𝑎𝑛(𝜑)  ≡  0 and 𝑏𝑛(𝜑)  ≡  1, Theorem (2.1.17) can be improved 

by using Propositions (2.1.3) and (2.1.14), because in this case 𝜌 =  0 is a periodic orbit of 

multiplicity two of system (8), and then system (3) has at most one limit cycle. So the above 

example has at most one limit cycle.  

Before ending we give, for some family of systems of type (1), a compact expression of 

functions 𝐹 and 𝐴 in complex coordinates (𝑧 =  𝑥 +  𝑖𝑦). Consider system  

𝑥̇ = λ𝑥 −  𝑦 + 𝑃𝑚(𝑥, 𝑦), 
 𝑦̇ =  𝑥 +  λ𝑦 + 𝒬𝑚(𝑥, 𝑦), 

where 𝑃𝑚 and 𝒬𝑚 are real homogeneous polynomials of degree 𝑚 on 𝑥 and 𝑦. It also writes 

as 𝑧̇ =  (𝑖 +  λ)𝑧 + 𝐻𝑚(𝑧, 𝑧̅), where 𝐻𝑚(𝑧, 𝑧̅) is a complex homogeneous polynomial of 

degree 𝑚 on 𝑧 and 𝑧̅. In this setting, the functions 𝐹 and 𝐴, that appear in (5), are 

𝐹 =  (1 −  𝑚)𝑅𝑒((1 +  λ𝑖)𝐻𝑚(𝑧, 𝑧̅)𝑧̅) 
and 

𝐴 =  (1 −  𝑚)𝑅𝑒 ((1 +  λ𝑖)𝐻𝑚(𝑧, 𝑧)𝑧̅) 𝐼𝑚 (𝐻𝑚(𝑧, 𝑧̅)𝑧̅) , 

evaluated at 𝑧 =  𝑒𝑖𝜑 , 𝑧 =  𝑒−𝑖𝜑 .  
Following Lyapunov [34], we introduce the (𝑝, 𝑞) −trigonometric functions𝑧(𝜑) =

 𝑆𝑛(𝜑) and𝑤(𝜑) =  𝐶𝑠(𝜑), asthe solutions of the Cauchy problem:  

𝑧̇ = −𝑤2𝑝−1 ,  
𝑤̇ =  𝑧2𝑞−1 ,                                                                  (11) 

𝑧(0) = √
1

𝑝
,

2𝑞

   𝑤(0) = 0,  

where 𝑝 and 𝑞, are positive integers. Observe that we do not explicitly put the dependence 

of 𝑆𝑛(𝜑) andCs(𝜑) with respect to 𝑝 and 𝑞. Also note that for 𝑝 =  𝑞 =  1, Sn(𝜑) =
 sin(𝜑) and 𝐶𝑠(𝜑) =  𝑐𝑜𝑠(𝜑). Therefore, it is natural to say that the argument of the 

functions 𝑆𝑛(𝜑) and 𝐶𝑠(𝜑) is an angle.  

We define 𝑇𝑛(𝜑), 𝐶𝑡𝑛(𝜑), 𝑆𝑒𝑐(𝜑), 𝐶𝑠𝑐(𝜑), by  

𝑇𝑛(𝜑) =  
𝑆𝑛𝑝𝜑

𝐶𝑠𝑞(𝜑)
 , 𝐶𝑡𝑛(𝜑) =

𝐶𝑠𝑞  (𝜑)

𝑆𝑛𝑝 (𝜑)
 ,  

𝑆𝑒𝑐(𝜑) =
1

𝐶𝑠𝑞  (𝜑)
 , and 𝐶𝑠𝑐(𝜑) =

1

𝑆𝑛𝑝 (𝜑)
 .  

From these definitions, direct calculations give the following lemma.  

Lemma (2.1.22)[20]: The functions defined above satisfy the following properties  

(i)𝑝𝐶𝑠2𝑞  (𝜑) +  𝑞 𝑆𝑛2𝑝 (𝜑) = 1,  
(ii)𝑝 +  𝑞 𝑇𝑛2 (𝜑) =  𝑆𝑒𝑐2 (𝜑),  
(iii)𝑝𝐶𝑡𝑛2 (𝜑) +  𝑞 =  𝐶𝑠𝑐2 (𝜑),  

(iv)
𝑑𝑆𝑛(𝜑)

𝑑𝜑
=  𝐶𝑠2𝑞−1 (𝜑),  

(v)
𝑑𝐶𝑠(𝜑)

𝑑𝜑
=  𝑆𝑛2𝑝−1 (𝜑),  

(vi)
𝑑𝑇𝑛(𝜑)

𝑑𝜑
 =  

𝑆𝑛𝑝−1𝜑

𝐶𝑠𝑞+1
(𝜑),  

(vii)
𝑑𝐶𝑠𝑐(𝜑)

𝑑𝜑
= −𝑝 

𝐶𝑠2𝑞−1 (𝜑)

𝑆𝑛𝑝+1(𝜑)
  ,  

(viii)
𝑑𝑆𝑒𝑐(𝜑)

𝑑𝜑
=  𝑞

 𝑆𝑛2𝑝−1 (𝜑)

𝐶𝑠𝑞+1(𝜑)
 ,  

(ix)
𝑑𝐶𝑡𝑛(𝜑)

𝑑𝜑
 = −

𝐶𝑠𝑞−1(𝜑)

𝑆𝑛𝑝+1(𝜑)
 .  
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Lemma (2.1.23)[20]: 𝑆𝑛(𝜑) and 𝐶𝑠(𝜑) are 𝑇 −periodic functions (whose period is 𝑇) and 

𝑇 is given by  

𝑇 =  2𝑝
−1
2𝑞  𝑞

−1
2𝑝  ∫  

1

0

 (1 − 𝑡)
(1−2𝑝)
2𝑝   𝑡

(1−2𝑝)
2𝑝 𝑑𝑡 =  2𝑝

−1
2𝑞  𝑞

−1
2𝑞  
𝛤 (

1
2𝑝
 ) ∙ 𝛤 (

1
2𝑞
 )

𝛤(
1
2𝑝
 +

1
2𝑞
 ) 
.  

Proof. Since 𝑓(𝑧, 𝑤) =  𝑞𝑤2𝑝  +  𝑝𝑧2𝑞 , is a first integral for system (11), there exists 𝑇 >
0 such that 𝑆𝑛(𝜑) and 𝐶𝑠(𝜑) are 𝑇 −periodic functions.  

From Lemma (2.1.22):  

𝑑
𝑆𝑛(𝜑)

𝑑𝜑
= √(

1 − 𝑞𝑆𝑛2𝑝𝜑

𝑝
)

2𝑞−12𝑞

 ,  

so   
𝑑𝑆𝑛(𝜑)
𝑑𝜑

√(
1 − 𝑞𝑆𝑛2𝑝(𝜑)

𝑝 )
2𝑞−12𝑞

= 1, 𝑜𝑟
𝑑

𝑑𝜑
 ( ∫  

𝑆𝑛(𝜑)

0

   
√𝑝2𝑞−1 
2𝑞

√ (1 − 𝑞𝑥2𝑝)2𝑞−1
2𝑞 𝑑𝑥) = 1,  

hence  

∫  

𝑆𝑛(𝜑)

0

   
√𝑝2𝑞−1 
2𝑞

√ (1 − 𝑞𝑥2𝑝)2𝑞−1
2𝑞 𝑑𝑥 = 𝜑 +  𝑘,  

where 𝑘 =  0, because 𝑆𝑛(0) =  0, (from the initial conditions of the Cauchy problem (11)). 

Otherwise, 𝜑 is the parameter of derivation in (11), so the period 𝑇 is given by:  

𝑇 =  4 ∫  

𝑆𝑛(
𝑇
4
 )

 0 

√ 𝑝2𝑞−1
2𝑞

√(1 −  𝑞𝑥2𝑝 )2𝑞−1
2𝑞   𝑑𝑥 = 4 ∫  

√ 
1
𝑞

2𝑝

0

 
√ 𝑝2𝑞−1
2𝑞

√(1 −  𝑞𝑥2𝑝 )2𝑞−1
2𝑞 𝑑𝑥,  

where we have used Lemma (2.1.22)(i). Integrating this last expression we obtain the 

desired result.  

More properties of 𝑆𝑛(𝜑) and 𝐶𝑠(𝜑), are listed in the next lemma.  

Lemma (2.1.24)[20]: Functions 𝑆𝑛(𝜑) and 𝐶𝑠(𝜑), satisfy the following relations:  

(i)𝐶𝑠(−𝜑) =  𝐶𝑠(𝜑),  
(ii)𝑆𝑛(−𝜑) = −𝑆𝑛(𝜑),  

(iii)𝐶𝑠 (
𝑇

2
 − 𝜑) = −𝐶𝑠(𝜑),  

(iv)𝑆𝑛 (
𝑇

2
− 𝜑) = 𝑆𝑛(𝜑),  

(v)𝐶𝑠 (
𝑇

2
+ 𝜑) = −𝐶𝑠(𝜑),  

(vi)𝑆𝑛 (
𝑇

2
+ 𝜑) = −𝑆𝑛(𝜑).  

Proof. The relations are obtained from the invariance of system (11) under the 

transformations: (𝑧, 𝑤, 𝑡)  →  (𝑧, 𝑛−,−𝑡), (𝑧, 𝑤, 𝑡)  →  (−𝑧,𝑤,−𝑡) and (𝑧, 𝑤, 𝑡)  →
 (−𝑧,−𝑤, 𝑡).  

Given a point (𝑥, 𝑦)  ≠  (0, 0)  ∈ ℝ2 , we can associate the positive real number 

√𝑝𝑥2𝑞  +  𝑞𝑦2𝑝
2𝑝𝑞

  , with it. Hence, 𝜑 ∈ ℝ/[0, 𝑇] and 𝑟 give the so-called (𝑝, 𝑞) −polar 

coordinates of ℝ2 . In other words,  
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𝑥 = 𝑟𝑝 𝐶𝑠(𝜑), 𝑦 =  𝑟𝑞  𝑆𝑛(𝜑).  

Using these coordinates and a new time variable, given by 
𝑑𝑡

𝑑𝑠
= 𝑟𝑝+𝑞−2𝑝𝑞  , the system  

𝑥̇ =  𝑃(𝑥, 𝑦), 𝑦̇ = 𝒬(𝑥, 𝑦),  
is transformed into  

𝑟̇ =  𝑟𝑝+𝑞+1−4𝑝𝑞  [𝑥2𝑞−1 𝑥̇  +  𝑦2𝑝−1 𝑦̇],  
𝜑̇ = 𝑟−2𝑝𝑞[𝑝𝑦̇𝑥 − 𝑞𝑦𝑥̇].  

In order to study the behaviour of the orbits in a neighbourhood of infinity we follow 

a generalization of the approach to the usual Poincare´ compactification, [37], explained in 

[23].  

Let 𝑋 = (𝑃, 𝒬) be a polynomial vector field of usual degree 𝑛 ≥  1. Set 𝑀 =
{(𝑖, 𝑗)  ∈ {0, 1, . . . , 𝑛}2 |0 ≤  𝑖 +  𝑗 ≤  𝑛}, and  

𝑃(𝑥, 𝑦) =  ∑  

(𝑖,𝑗)∈𝑀

 𝑎𝑖𝑗𝑥
𝑖  𝑦𝑗  , 𝒬(𝑥, 𝑦) = ∑  

(𝑖,𝑗)∈𝑀

𝑏𝑖𝑗𝑥
𝑖  𝑦𝑗  .  

Fixed 𝑝, 𝑞 ∈ +ℕ , 𝑝 ≥  𝑞, we define the following subset of 𝑍, 𝐴 = {𝑖𝑝 +  𝑗𝑞 +  1 −
 𝑝 | (𝑖, 𝑗)  ∈  𝑀} ∪ {𝑖𝑝 +  𝑗𝑞 +  1 −  𝑞 | (𝑖, 𝑗)  ∈  𝑀}. Observe that the smallest element of 

𝐴 is 1 −  𝑝 and the biggest one is 𝑛𝑝 +  1 −  𝑞. Given that 𝑘 ∈ 𝑍 and 𝑟 ∈ {𝑝, 𝑞}, consider 

the subset of 𝑀, 𝐿𝑘
𝑟 = {(𝑖, 𝑗) ∈  𝑀|𝑖𝑝 +  𝑗𝑞 +  1 −  𝑟 =  𝑘}. Define the vector field:  

𝑋𝑘 = (𝑃𝑘(𝜑), 𝒬𝑘  (𝜑)) = ( ∑  

(𝑖,𝑗)∈𝐿𝑘
𝑝

 𝑎𝑖𝑗𝑥
𝑖  𝑦𝑗  , ∑  

(𝑖,𝑗)∈𝐿𝑘
𝑞

 𝑏𝑖𝑗𝑥
𝑖  𝑦𝑗) .  

It is clear that 𝑋𝑘 is a (𝑝, 𝑞) −homogeneous function of degree 𝑘. Thus 𝑋 = ∑  𝑘∈𝐴  𝑋𝑘  , is 

the decomposition of 𝑋 in (𝑝, 𝑞) − 𝑞uasi-homogeneous vector fields.  

The expression of (𝑥̇, 𝑦̇) =  𝑋(𝑥, 𝑦) in the (𝑝, 𝑞) −polar coordinates is:  

𝑟̇ =  𝑟𝑝+𝑞−2𝑝𝑞  ∑  

𝑘∈𝐴

 𝑓𝑘(𝜑)𝑟
𝑘+1 ,  

𝜑̇ = 𝑟𝑝+𝑞−2𝑝𝑞  ∑  

𝑘∈𝐴

𝑔𝑘 (𝜑)𝑟
𝑘 , 

 Where 

𝑓𝑘  (𝜑) =  𝐶𝑠
2𝑞−1 (𝜑)𝑃𝑘 (𝐶𝑠(𝜑), 𝑆𝑛 (𝜑)) +  𝑆𝑛

2𝑝−1𝒬𝑘  (𝐶𝑠(𝜑), 𝑆𝑛(𝜑)) , 𝑎𝑛𝑑  

𝑔𝑘 (𝜑) =  𝑝𝐶𝑠(𝜑)𝒬𝑘 (𝐶𝑠(𝜑), 𝑆𝑛(𝜑)) −  𝑞 𝑆𝑛(𝜑)𝑃𝑘 (𝐶𝑠(𝜑), 𝑆𝑛(𝜑))  .  

Putting 𝜌 = 𝑟−1 , and replacing the old time 𝑡 by a new one 𝑡1, given by the relation 
𝑑𝑡1

𝑑𝑡
=

 𝑟(𝑛+1−2𝑞)𝑝+1 , we get  

𝜌̇ =  ∑  

𝑘∈𝐴

 𝑓𝑘  (𝜑)𝜌
𝑛𝑝+2−𝑞−𝑘 ,  

𝜑̇ = ∑  

𝑘∈𝐴

 𝑔𝑘 (𝜑)𝜌
𝑛𝑝+1−𝑞−𝑘 .  

This last expression gives the (𝑝, 𝑞) −Poincare´ compactification of the vector field 𝑋. 
Observe that 𝜌 =  0 (the equator) is invariant and the infinite critical points of 𝑋 are the 

points with 𝜌 =  0 and 𝜑 satisfying gnp+1−q(𝜑) =  0. Finally, we would like to point out 

that when 𝑝 =  𝑞 =  1, this procedure gives the usual Poincare´ compactification.  

We characterize vector fields defined by the sum of two quasi-homogeneous vector 

fields. This method is based on the Newton diagram, see for instance [22]. Given a 

polynomial vector field 𝑋 = (𝑃, 𝑄), where  
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𝑃(𝑥, 𝑦) = ∑  

 𝑛 

𝑖+𝑗=0

 𝑎𝑖𝑗𝑥
𝑖  𝑦𝑗  , 𝒬(𝑥, 𝑦) =  ∑  

 𝑛 

𝑖+𝑗=0

 𝑏𝑖𝑗𝑥
𝑖  𝑦𝑗  ,  

we define its support, 𝑆𝑋, as the following subset of ℝ2 ∶  
𝑆𝑋 = {(𝑖 +  1, 𝑗)|𝑏𝑖𝑗  ≠  0} ∪ {(𝑖, 𝑗 +  1)|𝑎𝑖𝑗 ≠  0}.  

The next lemma follows from direct computations.  

Lemma (2.1.25)[20]: Let 𝑋 be a polynomial vector field, and let 𝑝 and 𝑞 be natural numbers 

with (𝑝, 𝑞) =  1.  
Then, 𝑋 is given by the sum of two (𝑝, 𝑞) −quasi-homogeneous vector fields of degrees 

𝑘1  +  1 − (𝑝 +  𝑞) and 𝑘2  +  1 − (𝑝 +  𝑞) respectively, if and only if there are two 

straight lines, 𝑙𝑖 = {(𝑥, 𝑦)  ∈ ℝ
2|𝑝𝑥 +  𝑞𝑦 =  𝑘𝑖} for 𝑖 =  1, 2, such that 𝑆𝑋  ⊂  𝑙1  ∪  𝑙2.  

Furthermore, 𝑆𝑋𝑖  ⊂  𝑙𝑖  , for 𝑖 =  1, 2.  

Observe that, from the above lemma, in order to know if 𝑋 is given by the sum of two 

(𝑝, 𝑞) −quasi-homogeneous vector fields, for some 𝑝 and 𝑞, it is sufficient to plot its support 

𝑆𝑋 in ℝ2 and to check if it is contained in the union of two parallel straight lines.  

Example (2.1.26)[20]: The vector field  

𝑋 = (𝑦8  +  𝑥3 𝑦6  +  𝑥6 𝑦4  +  𝑦11  +  𝑥3 𝑦9  +  𝑥6 𝑦7 , 𝑥8 𝑦3  +  𝑥11 𝑦 + 𝑥8 𝑦6  
+  𝑥11 𝑦4  +  𝑥14𝑦2  +  𝑥17),                                                                                (12) 

can be decomposed as the sum of two (2, 3)-quasi-homogeneous vector fields of degrees 23 

and 32. See Figure 6 

 
Figure (6)[20]: Support of the vector field (12). 

Section (2.2): Hamiltonian Systems with Homogeneous Nonlinearities 

We deal with Hamiltonian systems of the form  

{
𝑥̇  = −𝐻𝑦(𝑥, 𝑦),

𝑦̇  = 𝐻𝑥(𝑥, 𝑦),
                                                                        (13) 

where 𝐻(𝑥, 𝑦) = (𝑥2 + 𝑦2)/2 + 𝐻𝑛+1(𝑥, 𝑦), and 𝐻𝑛+1 is a non zero homogeneous 

polynomial of degree 𝑛 + 1, 𝑛 ≥ 2. The solutions of system (13) are contained in the level 

curves {𝐻(𝑥, 𝑦) = ℎ, ℎ ∈ ℝ }. Furthermore, the origin is a centre. For any centre 𝑝 of a 

planar differential system, the largest neighbourhood of 𝑝 which is entirely covered by 

periodic orbits is called the period annulus of 𝑝. The function which associates to any closed 

curve its period is called the period function. When the period function is constant, the centre 

is called the isochronous centre. We are interested in obtaining the global description of the 

period function 𝑇(ℎ) defined in the origin's period annulus.  
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It has been proved by several that the origin of (13) cannot be an isochronous centre: For 

𝑛 = 2 and 3 this fact was observed by Loud [54] and Pleshkan [56], respectively. In the 

general case, Christopher and Devlin [44] used geometrical and dynamical methods, and 

Schuman [57] used Birkhoff's normal form. Another natural approach is the computation of 

the period constants (see [43] for definitions). Using this last approach we obtain the same 

result (see Corollary (2.2.10) of the Appendix). One advantage of this method is that it also 

provides information about the behaviour in a neighbourhood of the origin of the period 

function, giving lower bounds for the number of critical points of this function (critical 

periods) associated with the origin's period annulus. Our estrategy for the study of 𝑇(ℎ) 
consists of using the knowledge of the period constants, the knowledge of some properties 

of the phase portrait of (13) and a criterion to decide when a function has at most one critical 

point (see Theorem (2.2.3)).  

To enunciate the main result we must introduce the following notation: system (13) 

can be written in complex coordinates as 

𝑧̇  = 𝑖𝑧 + 𝐹𝑛(𝑧, 𝑧̅ ),with 𝑧 ∈ ℂ, 

𝐹𝑛(𝑧, 𝑧̅) = ∑  

𝑘+𝑙=𝑛

 𝑓𝑘𝑙 𝑧
𝑘𝑧−𝑙 , and 𝑅𝑒(𝜕𝐹𝑛(𝑧, 𝑧̅)𝜕𝑧 )  ≡  0. 

Theorem (2.2.7) (a) was obtained for 𝑛 = 2 by Li Ji-Bin [53], Coppel and Gavrilov 

[49].  

Notice that Theorem (2.2.7) (a) cannot be applied to other centres different from the origin 

because the structure of (13) is broken under translations (except for 𝑛 = 2). Statement (b) 

of the above theorem shows that the period function is more complicated for these centers.  

A similar difference could exist with other problems. The most relevant is that of 

isochronicity. From Theorem (2.2.7), it is obvious that systems of type (13) cannot have 

isochronous centres at the origin. In fact, this result is already known; see [44] and [57]. But, 

since the structure of (13) is broken under translations, what can be said about the 

isochronicity of the other centres different from the origin? Are there isochronous centres 

inside the family of Hamiltonian systems with homogeneous nonlinearities? As far as we 

know, there was no answer to this question. We prove that: 

Our proof of Theorems (2.2.7) and (2.2.8) uses some knowledge of the phase portrait of 

(13). In particular, we need to study the structure of the hyperbolic sectors at infinity in 

Poincare's compactification of (13). According to the definitions used in [45], given an 

infinite critical point 𝑞 and a hyperbolic sector ℋ associated to q, we say that ℋ is 

degenerate if its two separatrices are contained in the equator of the Poincare's disk. 

Otherwise, we say that ℋ is non-degenerate. The control of this kind of points is important 

for knowing the type of boundary of the period annulus, and for solving Conti's problem for 

system (13); see [47]. We prove the following result. 

We give the proof of Theorem (2.2.2) and we devoted to proving Theorems (2.2.7) 

and (2.2.8).  

We compute the first Lyapunov and period constants for the origin of a system with 

homogeneous nonlinearities (not necessarily Hamiltonian). They play a key role in the proof 

of Theorem (2.2.7), but we prefer to show the computations apart, as a technical result. 

Furthermore, the way of computing these constants and their final expressions help to 

improve a known result of Conti (see [48]) about the characterization of the centres at the 

origin of (13) with constant angular speed, see also [55]. While Conti gave an integral 

characterization of those systems, we provide an explicit expression. 
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First of all we need a preliminary result that can be also found in [45]. We include the 

proof here for the sake of completeness and because it is simpler than that of [45].  

Let 𝑞 be an infinite critical point of any planar polynomial Hamiltonian vector field in the 

Poincare's compactification. We will say that ℋ does not contain straight lines if given any 

finite straight line 𝑙 which passes through 𝑞 (in Poincare's compactification) there exists 

compact set 𝐾 large enough so that 𝑙 ∩ (ℝ2\𝐾) is not contained in the interior of ℋ. 

Lemma (2.2.1)[39]: Let 𝑞 be an infinite critical point of a Hamiltonian system with a 

hyperbolic sector ℋ. Then either ℋ is degenerate or it does not contain straight lines. 

Moreover, in this case, the Hamiltonian takes the same value on both separatrices, which 

are finite. 

 
Fig. (1)[39]: Construction used in the proof of Lemma (2.2.1). 

Proof. Let 𝑠1 and 𝑠2 be the two separatrices of ℋ. First we will prove that if 𝑠1 is not 

included in the equator of the Poincaredisk, then 𝑠2 is not contained either. Set 𝑥 ∈ 𝑠2 and 

{𝑝𝑛}𝑛 a sequence of points in the interior of ℋ such that lim
𝑛→+∞

𝑝𝑛 = 𝑥. Since ℋ is a 

hyperbolic sector, there exists a sequence {𝑝𝑛
′ }𝑛 in the interior of ℋ such that 𝐻(𝑝𝑛) =

𝐻(𝑝𝑛
′ ) and moreover, lim

𝑛→+∞
𝑝𝑛
′ = 𝑥′ ∈ 𝑠1. Thus 

𝐻(𝑥′) =  lim
𝑛→+∞

𝐻(𝑝𝑛
′ ) =  lim

𝑛→+∞
𝐻(𝑝𝑛). 

Hence, we have that lim
𝑧→𝑥
 𝐻(𝑧) exists for all 𝑥 ∈ 𝑠2 when 𝑧 is in the interior of ℋ. Since ℋ 

is a polynomial, 𝑠2 cannot lie on the equator of the Poincare disk, and we are done.  

When ℋ is non-degenerate we can assume, then, that ℋ has two finite separatrices, 𝑠1 and 

𝑠2. From the above equality these separatrices have the same value of the energy (ℎ). First 

we will prove that if 𝛤 ⊂ ℋ is any path going to 𝑞, we have that (see Fig. 1) 

𝑙𝑖𝑚
𝑝→𝑞,𝑝∈𝛤

 𝐻(𝑝) = ℎ. 

Let {𝑝𝑛}𝑛 be a sequence of points in the interior of ℋ satisfying lim
𝑛→+∞

 𝑝𝑛 = 𝑞. Since ℋ is 

a hyperbolic sector, there exist sequences of points {𝑝𝑛
𝑖 }
𝑛
, for 𝑖 = 1, 2, such that lim

𝑛→+∞
 𝑝𝑛
𝑖 =

𝑞𝑖 ∈ 𝑠𝑖 and 𝐻(𝑝𝑛
𝑖 ) =  𝐻(𝑝𝑛), for 𝑖 = 1, 2. Then 

lim
𝑛→+∞

(𝑝𝑛
𝑖 ) =  lim

𝑛→+∞
𝐻(𝑝𝑛) = 𝐻(𝑞𝑖) = ℎ, 

and so 

𝑙𝑖𝑚
𝑝→𝑞
𝐻(𝑝) = ℎ. 

Suppose now that 𝛤 is a straight line. Without loss of generality, we can suppose that this 

straight line is 𝑥 = 0. From the above argument, if we set  

𝐻(𝑥, 𝑦) = 𝐻0(𝑥) + 𝑦𝐻1(𝑥) + 𝑦
2𝐻2(𝑥)…+ 𝑦

𝑛+1𝐻𝑛+1(𝑥),  
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then lim
𝑦→+∞

 𝐻(0, 𝑦) = ℎ. However, this is possible if and only if 𝐻0(0) = ℎ, and 𝐻𝑗(0) = 0 

for all 𝑗 = 1, . . . , 𝑛 + 1; that is, 𝐻(𝑥, 𝑦)|
 

𝑥 = 0 ≡ ℎ and so 𝑥 = 0 is formed by solutions, 

which contradicts the fact that 1 is included in ℋ.  

We will introduce polar cordinates in order to prove Theorem (2.2.2). The Hamiltonian 

function is now written as 

𝐻(𝑟, 𝜃) =
𝑟2

2
 + 𝑔(𝜃)𝑟𝑛+1, 

where 𝑔(𝜃) is a trigonometric polynomial of degree 𝑛 + 1, and system (13) becomes  

{
𝑟̇  = −𝑔′(𝜃)𝑟𝑛,

𝜃̇ = 1 + (𝑛 + 1)𝑔(𝜃)𝑟𝑛−1,
                                                     (14)  

defined on the cylinder 𝐶 = {(𝑟, 𝜃): 𝑟 ∈ ℝ+, 𝜃 ∈ [0,2𝜋]}. Observe that the critical points of 

(14) are (𝑟∗, 𝜃∗) such that 𝑔(𝜃∗) < 0 and 𝑔′(𝜃∗) = 0, and 𝑟∗ = (−1/((𝑛 +

1)𝑔(𝜃∗)))
 1/(𝑛−1)

.  

Theorem (2.2.2)[39]: The following statements hold for systems of type (13).  

(i) If 𝑞 is a an infinite critical point in Poincare's compactification having a hyperbolic sector 

at the infinity ℋ, then ℋ is degenerate.  

(ii) The origin of (13) either is a global center or has a bounded period annulus. Furthermore, 

the origin is a global centre of (13) if and only if 𝑔(𝜃) = 𝐻𝑛+1(𝑐𝑜𝑠 𝜃, 𝑠𝑖𝑛 𝜃) ≥ 0, and this 

can only occur when n is odd.  

(iii) A centre 𝑝 of (13) different from the origin has a bounded period annulus. For 𝑛 = 2, 
statements (ii) and (iii) of the above Theorem (2.2.2)an be deduced from [41].  

Proof. (i) Suppose that 𝑞 is an infinite critical point of system (13) having a nondegenerate 

hyperbolic sector 𝒽. From Lemma (2.2.1), we know that both separatrices must be finite. 

Without loss of generality, we can suppose that 𝑞 is determined by the direction 𝑥 = 0 and 

again, by Lemma (2.2.1), that the separatrices lien on right side of 𝑥 = 0.  
Assume that the separatrices of 𝒽 have energy level ℎ. Then, the energy equation written in 

polar coordinates is 𝑟2/2 + 𝑔(𝜃)𝑟𝑛+1 = ℎ, and so we have that 

𝑔(𝜃) =  
2ℎ − 𝑟2

2𝑟𝑛+1
.                                                                (15) 

We set 𝐹ℎ,𝑛(𝑟) ∶= (2ℎ − 𝑟
2)/2𝑟𝑛+1. If the situation described above were possible for any 

fixed 𝜃 ∈ (𝜋/2 − 𝜀, 𝜋/2), there would be two arbitrarily large 

 
Fig. (2)[39]: Graph of 𝐹ℎ,𝑛(𝑟) for ℎ ≤ 0 (left) and for ℎ > 0 (right). 
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pre-images of 𝐹ℎ,𝑛 (𝑟) satisfying (15), but this contradicts the behaviour of 𝐹ℎ,𝑛(𝑟), for any 

value of ℎ (see Fig. 2).  

(ii-iii) Suppose that 𝑝 is a centre whose period annulus, 𝑁𝑝, is unbounded but not global. 

Under this assumption, there must exist a hyperbolic sector at infinity with at least one 

separatrix contained in 𝜕𝑁𝑝. This implies the existence of a non-degenerate hyperbolic 

sector at infinity, in contradiction to statement (i).  

Therefore, 𝜕𝑁𝑝 either is bounded (moreover, by the analyticity of (13), 𝜕𝑁𝑝 cannot be a 

periodic orbit and it contains at least one critical point) or is the empty set. In the latter case, 

𝑝 is the unique critical point and it is a global centre (in fact, 𝑝 is the origin).  

To end the proof we will characterize global centers. From Eq. (14), we see that any critical 

point (𝑟∗, 𝜃∗) different from the origin must satisfy 𝑔(𝜃∗) < 0 and 𝑔′(𝜃∗) = 0. Thus, it is 

clear that the origin is the unique critical point if and only if 𝑔(𝜃) ≥ 0 for all 𝜃 ∈ [0,2𝜋), 
and from part (i) this implies that it is a global center. Finally, notice that if n is even, then 

𝑔(𝜃) is a trigonometric polynomial of odd degree and so 𝑔(𝜃) = −𝑔(𝜃 + 𝜋). 
Consequently, the property 𝑔(𝜃) ≥ 0, for all 𝜃 ∈ [0,2𝜋), can only hold when n is odd.  

In order to prove Theorems (2.2.7) and (2.2.8), we need the following preliminary 

results. 

Theorem (2.2.3)[39]: An analytic function 𝑓: 𝐼 = (𝑖−, 𝑖+) ⊂ ℝ → ℝ has at most one non-

degenerate critical point if and only if there exists an analytic function 𝜑: 𝐼 → ℝ such that, 

for all 𝑥 ∈ 𝐼,  
𝑓′′(𝑥)+. (𝑥)𝑓′(𝑥) ≠ 0.                                                  (16)  

Proof. Suppose that there exists an analytic function 𝜑: 𝐼 → ℝ such that Eq. (16) holds. Let 

𝜓 be a primitive of 𝜑. Consider ℎ: 𝐽 = (𝑗−, 𝑗+) → 𝐼,a solution of the differential equation 

ℎ′ = 𝑒𝑥𝑝(𝜓(ℎ)), defined in its maximal interval of definition. Observe that since ℎ′ > 0 

and it is defined in its maximal interval of definition, then lim
𝑥→𝑗±

 ℎ(𝑥) = 𝑖±. Sohis ℎ a 

diffeomorphism.  

Since ℎ′ ≠ 0 and h is bijective, f has at most one non-degenerate critical point if and 

only if 𝑓 ∘ ℎ does so. In order to see this last property it suffices to see that (𝑓 ∘ ℎ)′′ ≠ 0. 
We prove this as follows:  

(𝑓 ∘ ℎ)′′(𝑥) = (𝑓′(ℎ(𝑥))ℎ′(𝑥))
′
= 𝑓′′(ℎ(𝑥))(ℎ′(𝑥))

2
+ 𝑓′(ℎ(𝑥))ℎ′′(𝑥)

= 𝑓′′(ℎ(𝑥))𝑒2𝜓(ℎ(𝑥)) + 𝑓′(ℎ(𝑥))𝑒2𝜓(ℎ(𝑥))𝜓′(ℎ(𝑥))  

= 𝑒2𝜓(ℎ(𝑥)) (𝑓′′(ℎ(𝑥)) + 𝜑(ℎ(𝑥))𝑓′(ℎ(𝑥))) ≠ 0. 
Let us now prove the converse.  

Suppose that f has no critical points. Then, it suffices to choose . 𝜑(𝑥) = (𝑓′(𝑥) −
𝑓′′(𝑥)/𝑓′(𝑥).  
If f has a non-degenerate critical point, we can assume, without loss of generality, that it is 

𝑥 = 0 and that 𝑓(0) = 𝑓′(0) = 0 and 𝑓′′(0) = 𝐴 > 0. Hence 

𝑓(𝑥) = 𝐴𝑥2 + 𝑂(𝑥3). 
We choose 

𝜑(𝑥) =
 (𝑓′)2 − 2𝑓′′𝑓

2𝑓𝑓′
(𝑥). 

Clearly, since 𝑓 is an analytic function for all 𝑥 ≠ 0, .𝜑is analytic. We must prove that it is 

also analytic on 𝑥 = 0. An easy computation shows that lim
𝑥→0
 . 𝜑(𝑥) is finite. So 𝜑 is analytic 

on 𝐼.  
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Since 𝑥 = 0 is the unique finite critical point of 𝑓, 𝑓(𝑥) ≠ 0 and 𝑓′(𝑥) ≠ 0 for all 𝑥 ≠
0. Hence, we have that, as we wanted to prove, (𝑓′′+. 𝑓′)(𝑥) =  (𝑓′)2/(2𝑓) ≠ 0, for all 𝑥 ≠
0. On the other hand, it is easy to see that lim

𝑥→0
(𝑓′′+. 𝜑𝑓′)(𝑥) = 2𝐴 ≠ 0.  

We will use this last result to prove that the period function associated with the origin's 

period annulus has at most one critical period. Before proving this fact, we will see that in 

any Hamiltonian system the set of all periodic orbits, 𝛤, can be parameterized by the energy 

in any period annulus 𝑊. Consider in 𝑊 the following total ordering:  

Given 𝛾1, 𝛾2  ∈ 𝛤 we say that 𝛾1 < 𝛾2 if and only if Int 𝛾1 ⊂Int 𝛾2 , where Int 𝛾𝑖 denotes the 

bounded domain of ℝ surrounded by 𝛾𝑖 .  
Now we endow 𝛤 with the order topology. Clearly, the Hamiltonian function 𝐻 over 

𝛤 is continuous with respect this topology and applies 𝛤 in some interval 𝐼 = (0, 𝑏) of the 

real line (𝑏 ∈ ℝ ∪ [+∞]). To see that this map is orderpreserving it suffices to show that it 

is one to one. To prove this, suppose that 𝐻(𝛾1) = 𝐻(𝛾2) with 𝛾1 < 𝛾2 and consider the 

map 𝐻 restricted to the compact annulus 𝐾 = 𝐼𝑛𝑡 𝛾2𝐼𝑛𝑡 𝛾1 .̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ This map attaches a maximum 

and a minimum in 𝐾. Since 𝜕𝐾 = 𝛾1 ∪ 𝛾2 and 𝐻|
 
𝜕𝐾   is constant, either 𝐻|

 
 𝐾 is constant or 

𝐻|
 
 𝐾 has a local extremum in its interior. In both cases we can ensure the existence of 𝑥 ∈

𝐾 ⊂ 𝑊 with ({∇𝐻)𝑥 = 0, that is, a critical point of the Hamiltonian vector field in the 

interior of 𝑊, which is a contradiction. So the map 𝐻 over 𝛤 is order-preserving (in fact it 

is an order-preserving homeomorphism).  

Hence, it seems natural to consider the period function over 𝐼 instead of the original 

period function which is defined over the period annulus 𝑊, because we can use standard 

techniques of differential analysis to study the properties of the period function. Therefore, 

in the sequel we will talk about the period function 𝑇(ℎ) which gives the period of the closed 

orbit with energy 𝐻 = ℎ. From Eq. (14), 𝑇(ℎ) can be computed as  

𝑇(ℎ) = ∫  

2𝜋

0

𝑑𝜃

1 + (𝑛 + 1)𝑔(𝜃)𝑟(𝜃, ℎ)𝑛−1
                           (17)  

(for short, in the following we denote 𝑟 ∶= 𝑟(𝜃, ℎ)) while 𝜃̇ |
 

 𝐻 = ℎ  = 1 + (𝑛 +

1)𝑔(𝜃)𝑟(𝜃, ℎ)𝑛−1 does not vanish. This condition is verified in a deleted neighbourhood of 

the origin because lim
𝑟→0
  𝜃̇  = 1. The following lemma asserts that this condition holds in the 

whole period annulus of the origin 𝑊. This result is well known (see [27], [20] or [46]), but 

we include here, for the sake of completeness, a different proof. 

Lemma (2.2.4)[39]: The period annulus associated with the origin of (13), 𝑊, has no points 

(𝑟, 𝜃) on which 𝜃 = = 1 + (𝑛 + 1)𝑔(𝜃)𝑟𝑛−1  = 0.  
Proof. First we prove that there are no points in 𝑥 ∈ 𝑊 for which 𝜃̇ (𝑥) = 𝜃̈(𝑥) = 0. 

Consider 𝜃̇ (𝑥) = 1 + (𝑛 + 1)𝑔(𝜃)𝑟𝑛−1. Then, 𝜃̈ (𝑥) = (𝑛2 − 1)𝑔(𝜃)𝑟𝑛−2 𝑟̇ + (𝑛 +

1)𝑔′(𝜃)𝑟𝑛−1𝜃̇ . Hence, 𝜃̇(𝑥) = 𝜃̈ (𝑥) = 0 implies that 𝜃̇  =  𝑟̇  = 0 and, as a consequence, 

𝑥 is a critical point different from the origin, which contradicts the fact that 𝑥 𝜖 𝑊. 
Set 𝐼 = [0, 𝑎), the image of 𝑊 by 𝐻 (remember that 𝐻 is a homeomorphism between the set 

of periodic orbits 𝛤 and 𝐼). For each ℎ ∈ 𝐼 denote by 𝛾ℎ the closed curve of 𝐻 = ℎ contained 

in 𝑊. Define the map 𝐿: 𝐼 → ℝ by 

𝐿(ℎ) = 𝑚𝑖𝑛 |1 + (𝑛 + 1)𝑔(𝜃)𝑟𝑛−1|𝛾ℎ . 

This function is clearly well defined and continuous. If 𝐿−1(0) = ∅ there is nothing to prove. 

Suppose that 𝐿−1(0) ≠ ∅. Then 𝐿−1(0) is a closed set which does not contain 0 because 

𝐿(0) = 1. Let ℎ0 be the infimum of 𝐿−1(0). Then the orbit 𝑦ℎ0 is the first orbit (in the 



56 

ordering of 𝑇) such that there exists 𝑥 ∈ 𝑦ℎ0 with 𝜃̇(𝑥) = 0. Set .𝜑𝑦(𝑡) = (𝑟𝑦(𝑡), 𝜃𝑦(𝑡)) be 

the solution of (14) with initial condition y. Since 𝜃̈ (𝑥) ≠ 0, the function 𝜃𝑥(𝑡) has a local 

extremum at 0. This implies that, for 𝜀 => 0 small enough, the function 𝜃𝑦(𝑡) also has a 

local extremum for 𝑦 ∈ 𝑦ℎ0−𝜀 =. Therefore there exists 𝑧 ∈ 𝑦ℎ0−𝜀 = with 𝜃̇ (𝑧) = 0 and 

hence 𝐿(ℎ0 − 𝜀) = 0. This last equality is in contradiction to the fact that ℎ0 =inf 𝐿−1(0).  
From the above result and the energy equation 𝑟2/2 + 𝑔(𝜃)𝑟𝑛+1 = ℎ, it follows that 

𝑑ℎ

𝑑𝑟
= 𝑟(1 + (𝑛 + 1)𝑔(𝜃)𝑟𝑛−1) > 0                                     (18) 

in the whole period annulus. Furthermore, any fixed periodic orbit in the origin's period 

annulus has positive energy. Finally, observe that the above results imply that 𝑇(ℎ) is an 

analytic function. 

Lemma (2.2.5)[39]: The period function associated to the period annulus of the origin of 

(13) satisfies 

𝑇(ℎ) =
𝑑

𝑑ℎ
∫  

2𝜋

0

𝑟2

2
 𝑑𝜃. 

Proof. Let 𝛾 denote a closed orbit of energy ℎ corresponding to a solution 𝑟(𝜃, ℎ) of (14). 

From the expression (17), using (18), we have  

𝑇(ℎ) = ∫  

2𝜋

0

𝑑𝜃

1 + (𝑛 + 1)𝑔(𝜃)𝑟(𝜃, ℎ)𝑛−1
 

=
𝑑

𝑑ℎ
∫  

2𝜋

0

𝑟2

2
 𝑑𝜃. 

Theorem (2.2.6)[39]: The period function associated with the period annulus of the origin 

of (13) has at most one critical period.  

Proof. As we have seen in Lemma (2.2.5), 𝑇(ℎ) = (𝑑/𝑑ℎ) ∫  
2𝜋

0
 (𝑟2/2)𝑑𝜃. So Eq. (16) 

can be written as  

𝑇"(ℎ) + 𝜑(ℎ)𝑇′(ℎ) =  
1

2
  ∫  

2𝜋

0

𝑑3

𝑑ℎ3
(𝑟2) + 𝜑(ℎ)

𝑑2

𝑑ℎ2
(𝑟2) 𝑑𝜃 ≠ 0.       (19) 

We set 𝑀(𝑟, 𝜃) = 1 + (𝑛 + 1)𝑔(𝜃)𝑟𝑛−1 (we call it 𝑀, for the sake of brevity). Taking into 

account Eq. (18), we have that the middle part of expression (19) can be written as 

1

2
∫  

2𝜋

0

−2(𝑛2 − 1)(𝑛 − 3)𝑔(𝜃)𝑟𝑛−5𝑀 + 6(𝑛2 − 1)2𝑔2(𝜃)𝑟2𝑛−6

𝑀5
  

+𝜑(ℎ)
−2(𝑛2 − 1)𝑔(𝜃)𝑟𝑛−3

𝑀3
𝑑𝜃.                                   (20) 

We choose .𝜑(ℎ) = [(𝑛 − 3)/2]1/ℎ,  defined in 𝐼 = (0, 𝑎), for some 𝑎𝜖ℝ+ ∪ {+∞} (notice 

that the fact that the energy in the period annulus takes only positive values plays an 

important role here). Tedious computation transforms the expression (20) into  

2∫  

2𝜋

0

(𝑛 + 1)𝑛(𝑛 − 1)2

ℎ𝑀5
 𝑔(𝜃)2𝑟2𝑛−4 (1 +

𝑛 + 3

4𝑛
 (𝑛 + 1)𝑔(𝜃)𝑟𝑛−1) + 𝑑𝜃. 
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Note that 0 < (𝑛 + 3)/(4𝑛) < 1. Then, since by Lemma (2.2.4) in the whole origin's period 

annulus 1 + (𝑛 + 1)𝑔(𝜃)𝑟𝑛−1 > 0 holds, we have that 

1 +
𝑛 + 3

4𝑛
(𝑛 + 1)𝑔(𝜃)𝑟𝑛−1 > 0, 

and then  

∫  

2𝜋

0

(𝑛 + 1)𝑛(𝑛 − 1)2

ℎ𝑀5
𝑔(𝜃)2𝑟2𝑛−4 (1 +

𝑛 + 3

4𝑛
(𝑛 + 1)𝑔(𝜃)𝑟𝑛−1) 𝑑𝜃 > 0. 

Since 𝑇(ℎ) is analytic, the theorem follows by applying Theorem (2.2.3). K Now we are 

able to prove Theorem (2.2.7). 

Theorem (2.2.7)[39]: (a) Let 𝑇(ℎ) be the period function associated to the origin's period 

annulus of system (13). 𝑇(ℎ) satisfies one of the following properties:  

(i) It is monotonic decreasing.  

(ii) It is monotonic increasing and it tends to infinity when the periodic orbit tends to the 

boundary of the period annulus.  

(iii) It has a unique nondegenerate critical period (a minimum) and it tends to infinity when 

the periodic orbit tends to the boundary of the period annulus. 

Furthermore,  

(i) It is monotonic decreasing if and only if n is odd and 𝑔(𝜃) = 𝐻𝑛+1(𝑐𝑜𝑠 𝜃, 𝑠𝑖𝑛 𝜃) ≥ 0,  
(ii) It is monotonic increasing if and only if  

(I) either n is even,  

(II) or n is odd, and 𝐼𝑚(𝑓(𝑛+1)/2 ,(𝑛−1)/2) ≤ 0. 

(iii) It has a unique nondegenerate critical period if and only if n is odd, 

𝐼𝑚(𝑓(𝑛+1)/2,(𝑛−1)/2 ) > 0, and there exists 𝜃 ∈ [0,2𝜋)such that 𝑔(𝜃) < 0.  

(b) There are systems of type (13) having a critical point of center type (different from the 

origin) for which the period function has at least two critical periods. 

Proof. (a) From Eq. (17), and taking into account (18), we have that 

𝑑𝑇(ℎ)

𝑑ℎ
= −(𝑛 + 1)(𝑛 − 1)∫  

2𝜋

0

 
𝑔(𝜃)𝑟𝑛−3𝑑𝜃

(1 + (𝑛 + 1)𝑔(𝜃)𝑟𝑛−1)3
.
 
            (21) 

To prove statement (i), we recall that 1 + (𝑛 + 1)𝑔(𝜃)𝑟𝑛−1 ≠ 0 in the whole origin's period 

annulus. Hence, if 𝑔(𝜃) = 𝐻𝑛+1(𝑐𝑜𝑠 𝜃, 𝑠𝑖𝑛 𝜃) ≥ 0, from (21) we directly obtain that 

𝑑𝑇/𝑑ℎ(ℎ) < 0. Conversely, suppose that 𝑇(ℎ) is monotonic decreasing. This impliesusing 

Theorem (2.2.2) (ii)that the origin is a global centre (otherwise, the boundary of the origin's 

period annulus would have a critical point and 𝑇(ℎ) would tend increasingly to infinity) 

and, again by Theorem (2.2.2) (ii), if the origin is a global centre then 𝑔(𝜃) ≥ 0.  
Suppose now that 𝑔(𝜃) takes negative values. By Theorem (2.2.2) (ii), we also know 

that the period annulus of the origin is bounded and contains some critical point. This fact 

implies that the period function tends to infinity as the closed orbits tend to this boundary.  

If instead of parameterizing the closed curves of the period annulus 𝑊 by the Hamiltonian 

energy we use the point of intersection of any closed curve of 𝑊 with the 𝑂𝑋+ −axis we 

get another period function called 𝑡(𝑟). Observe that this can be done in the whole 𝑊, 
because in this set 1 + (𝑛 + 1)𝑔(0)𝑟𝑛−1 > 0, and 𝑡(𝑟) = 𝑇(𝑟2/2 + 𝑔(𝜃)𝑟𝑛+1). Hence 

𝑇′(ℎ) =
1

𝑟(1 + (𝑛 + 1)𝑔(0)𝑟𝑛−1)
𝑡′(𝑟),                                      (22) 

where ℎ = 𝑟2/2 + 𝑔(0)𝑟𝑛+1.  
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From the above expression we get that the main preliminary result we have obtained, 

Theorem (2.2.6), is still valid for 𝑡(𝑟).  
To prove statements (ii) and (iii), we use the results. From Proposition (2.2.9) of the 

Appendix, we know that  

𝑏1 = {
0,                                         𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛,

−2𝜋 𝐼𝑚(𝑓(𝑛+1)/2,(𝑛−1)/2)), 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑.
  

Moreover, in the proof of Corollary (2.2.10), we deduce that 𝑏2 > 0. We distinguish then 

two cases, depending on the value of the first period-Abel constant:  

     (ii)𝑏1 ≥ 0.  
Depending on whether 𝑏1 vanishes or not, the period function in polar coordinates may be 

written (see Corollary (2.2.11)) as 

𝑡(𝑟) = 2𝜋 + 𝑏2 𝑟
2𝑛−2 + 𝑂(𝑟2𝑛−1),with 𝑏2 > 0, 

or 

𝑡(𝑟) = 2𝜋 + 𝑏1 𝑟
𝑛−1 + 𝑂(𝑟𝑛),with 𝑏1 > 0. 

In both cases, in a neighbourhood (0, 𝛿), the period function 𝑡(𝑟) is monotonically 

increasing. Thus, Theorem (2.2.2) (ii) and Theorem (2.2.6) ensure that 𝑡(𝑟) is monotonic 

increasing in its domain and tends to infinity near the boundary of the origin's period 

annulus, and so does 𝑇(ℎ).  
(iii) 𝑏1 < 0.  

Thus, the period function in polar coordinates may be written as 

𝑡(𝑟) = 2𝜋 + 𝑏1𝑟
𝑛−1 + 𝑂(𝑟𝑛),with 𝑏1 < 0. 

Therefore, in a neighbourhood (0, 𝛿), the period function 𝑇(𝑟) is monotonicaly decreasing. 

As in the statement (ii), we recall Theorem (2.2.2) (ii) and Theorem (2.2.6). In the current 

case, they imply that 𝑇(ℎ) reaches a unique minimum and then it tends to infinity as the 

closed orbits tend to boundary of the period annulus.  

(b) Consider the system  

{
𝑥̇  = −𝑦 − 𝑒𝑥4 − 2𝑑𝑥3 𝑦 + 3𝑥2𝑦2 + 𝑦4,

𝑦̇ = 𝑥 + 5𝑐𝑥4 + 4𝑒𝑥3𝑦 + 3𝑑𝑥2 𝑦2 − 2𝑥𝑦3.
                (23)  

It has a centre at the point (0, 1). By a translation to the origin and the linear change of time 

𝑑𝑡/𝑑𝜏 = −1√3, it is transformed in the following quartic system:  

{
  
 

  
 ẋ  = −y − 3x2 − 2y2 + 2√3dx3 − 6x2y −

4

3
y3 

+3ex4 + 2√3dx3 y − 3x2y2 −
1

3
 y4,

ẏ  =  x − 3√3dx2 + 6xy − 12ex36√3dx2y 

+6xy2 − 15√3cx4 − 12ex3y − 3√3dx2y2 + 2xy3.

    (24)  

The first two period constants (we call them 𝑝2 and 𝑝4) are known for general systems, see 

for instance [52]. Straightforward computations give that 

𝑝2 =
129

4
+
135

4
𝑑2 +

9

2
𝑒. 

𝑝4 =
832,883

2,304
+
945

8
𝑐𝑑 −

25,095

128
𝑑2 −

152,685

256
𝑑4. 

Since 𝑝2 and 𝑝4 are independent and can take any real value, standard arguments imply that 

there are values of the parameters for which the period function associated with the period 

annulus of (0, 1) has at least two critical points in a neighbourhood of the critical point.  

Theorem (2.2.8)[39]: System (13) has no isochronous centres.  



59 

Proof. Let 𝑝 be a centre of system (13) and 𝑁𝑝 its period annulus. From Theorem (2.2.2) 

(ii), we know that either 𝑁𝑝 is bounded and its boundary contains a critical pointand then it 

cannot be an isochronous centreor 𝑝 is a global centre. The last case is possible if and only 

if 𝑛 is odd and 𝑔(𝜃) = 𝐻𝑛+1(𝑐𝑜𝑠 𝜃, 𝑠𝑖𝑛 𝜃) ≥ 0. From Theorem (2.2.7) (i), the period 

function 𝑇(ℎ) defined in the origin's period annulus is globally monotonic decreasing, and 

so it cannot be an isochronous centre.  

Consider 

𝑧̇ = 𝑖𝑧 + 𝐹𝑛(𝑧, 𝑧̅ ), with 𝑧 ∈ ℂ,                                        (25) 
where 𝐹𝑛(𝑧, 𝑧̅ ) is a homogeneous polynomial of degree 𝑛. We will usually write 𝐹𝑛(𝑧, 𝑧̅) =
∑  𝑘+𝑙=𝑛 𝑓𝑘,𝑙𝑧

𝑘𝑧̅𝑙 , where 𝑓𝑘,𝑙  ∈ ℂ. For the sake of simplicity, we define, for a fixed 𝑛:  

𝑔𝑙 = {
𝑓(𝑛+𝑙+1)/2,(𝑛&𝑙&1)/2  𝑖𝑓 𝑙 ∈ Ω𝑛,

0                𝑖𝑓 𝑙 ∉ Ω𝑛,
                          (26) 

where Ω𝑛 = {𝑙 ∈ ℤ: (𝑛 + 𝑙) is odd and −(𝑛 + 1) ≤ 𝑙 ≤ 𝑛 − 1}.  
Our interest is mainly focused on computing the so-called Lyapunov and period constants 

for system (25). To this end, we perform the following changes of variables:  

If we first introduce the usual polar coordinates by setting 𝑅2 = 𝑧𝑧̅and 𝜃 =arctan 

(𝐼𝑚 𝑧/𝑅𝑒𝑧), and then apply the change 𝑟 = 𝑅𝑛−1/(1 + 𝐼𝑚(𝑆𝑛(𝜃))𝑅
𝑛−1) (suggested in 

[42]), system (25) may be written:  

{
 
 

 
 𝑟̇  =  

𝐴2(𝜃)𝑟
2 + 𝐴3(𝜃)𝑟

3

1 − 𝐼𝑚(𝑆𝑛(𝜃))𝑟
 ,

𝜃̇ =
1

1 − 𝐼𝑚(𝑆𝑛(𝜃))𝑟
,

                                                    (27)  

where𝑆𝑛(𝜃)is a trigonometric polynomial defined by 𝑆𝑛(𝜃) = 𝑒
−𝑖𝜃𝐹𝑛(𝑒

𝑖𝜃 , 𝑒−𝑖𝜃); thus, 

𝐴2(𝜃) = 𝑅𝑒((𝑛 − 1)𝑆𝑛(𝜃) + 𝑖𝑆𝑛
′ (𝜃)) and 𝐴3(𝜃) = [(𝑛 − 1)/2] 𝑅𝑒(𝑖𝑆𝑛

2(𝜃)). 
By eliminating the time, we reach the Abel equation: 

𝑑𝑟

𝑑𝜃
= 𝐴2(𝜃)𝑟

2 + 𝐴3(𝜃)𝑟
3.                                            (28) 

Following [40], for this differential equation, consider the solution 𝑟(𝜃, 𝜌) that takes the 

value  𝜌 when 𝜃 = 0. Therefore, 

𝑟(𝜃, 𝜌) = 𝜌 + 𝑢2(𝜃)𝜌
2 + 𝑢3(𝜃)𝜌

3 +. . . , with 𝑢𝑘(0) = 0 𝑓𝑜𝑟 𝑘 ≥ 2. (29) 
Let 𝑃(𝜌) = 𝑟(2𝜋, 𝜌) be the return map between ℝ × [0] and ℝ× {2𝜋}. We will say that 

system (28) has a centre at 𝑟 = 0 if and only if 𝑢𝑘(2𝜋) = 0, for all 𝑘 ≥ 2. On the other 

hand, it has a focus if it exists some 𝑘 such that 𝑢𝑘(2𝜋) ≠ 0. When, for system (25), 

𝑢𝑗(2𝜋) = 0 for 𝑗 = 1, . . . , 𝑚 − 1, we will say that its LyapunovAbel constant of order m is 

𝑎𝑚 = 𝑢𝑚(2𝜋).  
Substituting (29) in (28) we easily get the following relations, which suggest a recurrent 

way to find the LyapunovAbel constants 𝑎𝑗: 

𝑢2
′ = 𝐴2,  
𝑢3
′ = 𝐴3 + 2𝐴2𝑢2,                                              (18) 

𝑢4
′ = 𝐴2𝑢2

2 + 2𝐴2𝑢3 + 3𝐴3𝑢2, . . .. 
Once we know that the origin of (25) is a centre, there is a simple way to give the conditions 

for it to be an isochronous centre. We observe that we cannot use the Abel equation (28), 

since this equation does not take into account the time variable. The idea we will use is 

suggested in [50]: if we take the second equation of (27) and we integrate the time, we obtain  
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𝑡̅(𝜌) = ∫  

2𝜋

0

1 − 𝐼𝑚(𝑆𝑛(𝜃))𝑟(𝜃, 𝜌)𝑑𝜃 = 2𝜋 −∫  

2𝜋

0

 𝐼𝑚(𝑆𝑛(𝜃))𝑟(𝜃, 𝜌)𝑑𝜃, (31) 

where 𝑟(𝜃, 𝜌) is given above.  

The system (25) has an isochronous centre at the origin if it is a centre and, furthermore,  

∫  

2𝜋

0

  𝐼𝑚(𝑆𝑛(𝜃))𝑟(𝜃, 𝜌)𝑑𝜃 = ∫  

2𝜋

0

 𝐼𝑚(𝑆𝑛(𝜃))(∑  

 𝑗≥1

 𝑢𝑗(𝜃)𝜌
𝑗)𝑑𝜃

=∑  

 𝑗≥1

(∫  

2𝜋

0

𝐼𝑚(𝑆𝑛(𝜃))𝑢𝑗(𝜃)𝑑𝜃)𝜌
𝑗 = 0. 

Hence, the conditions to have an isochronous centre are  

𝑏𝑗 ∶= −∫  

2𝜋

0

 𝐼𝑚(𝑆𝑛(𝜃))𝑢𝑗(𝜃)𝑑𝜃 = 0, 𝑓𝑜𝑟 𝑗 ≥ 1.                               (32) 

The numbers 𝑏𝑗 will be called periodAbel constants. 

In the main result we give some of the first LyapunovAbel and periodAbel constants for all 

systems of type (25) in terms of the coefficients of the equation and valid for all 𝑛 ∈ ℕ. The 

above approach has been already used in [51] to give integral expressions for the Lyapunov 

and period constants. As we will see in the applications, our result allows us to establish 

general properties for systems of type (25) of any degree; see for instance Corollary (2.2.10) 

and Proposition (2.2.12). 

The statement basically follows by integrating the recurrences given in (30). We set 

first some useful notation for the integration steps:  

Given a trigonometric polynomial 𝑝(𝜃) = ∑   𝑘∈𝐾  𝑝𝑘𝑒
𝑖𝑘𝜃 + 𝑝0 with 𝐾 a finite subset of 

ℤ\{0}, we define  

𝑝̃ (𝜃) = ∫  

𝜃

0

  𝑝(𝜉)𝑑𝜉 = ∑  

 𝑘∈𝐾

[
𝑝𝑘
𝑖𝑘
 𝑒𝑖𝑘𝜃 + 𝑝0𝜃]

0

𝜃

 = ∑  

 𝑘∈𝐾

𝑝𝑘
𝑖𝑘
 (𝑒𝑖𝑘𝜃 − 1) + 𝑝0𝜃, 

𝑝̂ (𝜃) = ∑  

 𝑘∈𝐾

𝑝𝑘

𝑖𝑘
 𝑒𝑖𝑘𝜃 + 𝑝0𝜃, 

and {𝑝} ̃ = 𝑝̃ , {𝑝} ̂ = 𝑝̂. In general, we can write 𝑝̃(𝜃 ) = 𝑝̂(𝜃) − 𝑝̂ (0).  
The difference between both primitives of 𝑝(𝜃) is that 𝑝̃ contains an ``extra'' constant term, 

while 𝑝̂(𝜃) is the primitive of 𝑝(𝜃) which has no constant terms. This fact will be crucial 

for the fluency of our computations. 

Observe also that  

𝑝̃(𝜃) = {∑  

 𝑘≠0

𝑖𝑘𝑝𝑘𝑒
𝑖𝑘𝜃}

 ̃

= ∑  

 𝑘≠0

𝑝𝑘(𝑒
𝑖𝑘𝜃 − 1) = 𝑝(𝜃) − 𝑝(0), 

(21) 

𝑝̃(𝜃) = {∑  

 𝑘≠0

𝑖𝑘𝑝𝑘𝑒
𝑖𝑘𝜃}

 ̂

= ∑  

 𝑘≠0

𝑝𝑘𝑒
𝑖𝑘𝜃 = 𝑝(𝜃) − 𝑝0. 

The last one, then, becomes a trigonometric polynomial without constant terms. 
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Proposition (2.2.9)[39]: The following assertions are true for systems of type (25), with 

𝐹𝑛(𝑧, 𝑧̅ ) homogeneous of degree 𝑛:  
(a) The first three LyapunovAbel constants are 

𝑎2 = 2𝜋(𝑛 − 1)𝑅𝑒(𝑔0),  

𝑎3 = (1 − 𝑛)𝜋∑ 𝐼𝑚(𝑔𝑙𝑔−𝑙), 

𝑎4 =
𝜋(1 − 𝑛)

2
𝑅𝑒 ( ∑  

𝑙,𝑘,𝑙+𝑘≠0

𝑔𝑙𝑔𝑘
𝑙 + 𝑘

((𝑛 − 1 + 𝑙 + 𝑘)𝑔−(𝑙+𝑘) + (𝑛 − 1 − 𝑙 − 𝑘)𝑔̅(𝑙 + 𝑘 )).  

(b) The first two periodAbel constants are 

𝑏1 = −2𝜋𝐼𝑚(𝑔0),  

𝑏2 = −𝜋(∑  

 𝑙≠0

𝑛 − 𝑙 − 1

𝑙
 𝑔𝑙𝑔̅𝑙  + 2 ∑  

 𝑙>0

𝑔𝑙𝑔−𝑙) . 

Proof. (i) To integrate (30) we compute the expressions of 𝑆𝑛(𝜃), 𝐴2(𝜃), and 𝐴3(𝜃) in terms 

of the coefficients given in (26): 

𝑆𝑛(𝜃) =∑ 

𝑙

𝑔𝑙𝑒
𝑖𝑙𝜃 , 

𝐴2(𝜃) = 𝑅𝑒∑ 

𝑙

(𝑛 − 1 − 𝑙)𝑔𝑙𝑒
𝑖𝑙𝜃 ,                              (34) 

𝐴3(𝜃) = −
𝑛 − 1

2
𝐼𝑚 ∑ 

𝑙,𝑘

 𝑔𝑙𝑔𝑘𝑒
𝑖(𝑙+𝑘)𝜃 . 

By using (30) and the above expressions we have that 

𝑢2
′ (𝜃) = 𝐴2(𝜃) = 𝑅𝑒 ∑  

𝑙

(𝑛 − 1 − 𝑙)𝑔𝑙𝑒
𝑖𝑙𝜃 . 

This implies that 

𝑢2(𝜃) = A ̃2 (𝜃) = 𝑅𝑒∑ 

𝑙

 ∫  

𝜃

0

(𝑛 − 1 − 𝑙)𝑔𝑙𝑒
𝑖𝑙𝜃𝑑𝜃 

= 𝑅𝑒 [(𝑛 − 1)𝑔0𝜃 +∑ 

𝑙≠0

(𝑛 − 1 − 𝑙)

𝑖𝑙
  𝑔𝑙𝑒

𝑖𝑙𝜃]

0

𝜃

 

. 
Thus, 𝑎2 = 𝑢2(2𝜋) = 2𝜋(𝑛 − 1)𝑅𝑒𝑔0.  
To compute the subsequent 𝑎𝑖 , we will assume that 𝑎2 = 0 and so 𝑅𝑒𝑔0 = 0 (this 

assumption may also be read as 𝑢2(2𝜋) = 0, A ̃2 (2𝜋) = 0 or 𝐴2̂  
(2𝜋) = 𝐴2̂(0)). Of 

course, we also must re-consider the functions 𝐴2, A ̃2  = 𝑢2, and 𝐴2̂ under this restriction. 

As a consequence, 𝐴2̂(𝜃) becomes a trigonometric polynomial without constant terms. 

The second equality of (30) gives that  

𝑢3(𝜃) = {𝐴3 + 2𝐴2𝑢2}  ̃ (𝜃) = A ̃3  (𝜃) + 2{𝐴2𝑢2} (̃𝜃) = A ̃3 (𝜃) + {(A ̃2
2
) ′}   ̃(𝜃)

= A ̃3 (𝜃) + A ̃2
2
(𝜃) − A ̃2

2
(0). 

Then, imposing that 𝑎2 = 0, 
𝑎3 = 𝑢3(2𝜋) = 

𝐴̃3 (2𝜋) 
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=
1 − 𝑛

2
𝐼𝑚( ∑  

𝑙+𝑘=0

𝑔𝑙𝑔𝑘𝜉 + ∑  

𝑙+𝑘≠0

𝑔𝑙𝑔𝑘
𝑖(𝑙 + 𝑘)

 𝑒𝑖(𝑙+𝑘)𝜉 +)

0

2𝜋

 

= 𝜋(1 − 𝑛)𝐼𝑚 ∑  

𝑙+𝑘=0

𝑔𝑙 𝑔𝑘 

= 𝜋(1 − 𝑛)𝐼𝑚∑ 

𝑙

  𝑔𝑙𝑔−𝑙 . 

Again from (30), and using that u2 = A ̃2, we get that 

u4(𝜃) = {A2u2
2 + 2A2u3 + 3A3u2}  ̃ (𝜃) = {A2A ̃2

2
+ 2A2u3 + 3A3u2}  (̃𝜃)

=
1

3
 {(A ̃2

3
)′ + 2[(A ̃2  A ̃3 )

′
} ̃ + {A3A ̃2} .̃ 

To compute 𝑎4 we must assume that A ̃2 (2𝜋) = A ̃3(2𝜋) = 0. Thus, 

𝑎4 = 𝑢4(2𝜋) = {𝐴3A ̃2} (̃2𝜋). 

Moreover, there exists some constant 𝐶 such that [𝐴3A ̃2]  ̃(2𝜋) = {𝐴3𝐴2̂ }  ̃(2𝜋) +

𝐶A ̃3 (2𝜋), and so 

𝑎4 = [𝐴3𝐴2̂ ]  ̃(2𝜋). 
This simple trick clarifies the forthcoming computations, 

𝐴3𝐴2̂  = (
1 − 𝑛

2
𝐼𝑚 ∑  

𝑙+𝑘≠0

𝑔𝑙𝑔𝑘𝑒
𝑖(𝑙+𝑘)𝜃)  (𝑅𝑒 ∑  

 𝑗≠0

𝑛 − 𝑗 − 1

𝑖𝑗
𝑔𝑗𝑒

𝑖𝑗𝜃)

=
1 − 𝑛

4
 𝐼𝑚 ∑ 

∆

 𝑔𝑙𝑔𝑘𝑒
𝑖(𝑙+𝑘)𝜃

𝑛 − 𝑗 − 1

𝑖𝑗
(𝑔𝑗𝑒

𝑖𝑗𝜃 − 𝑔𝑗̅̅̅𝑒
−𝑖𝑗𝜃), 

where ∆= {(𝑗, 𝑙, 𝑘): 𝑙 + 𝑘 ≠ 0, 𝑗 ≠ 0}; and so, 

𝑎4 =
1 − 𝑛

4
𝐼𝑚 ∑  

∆

 ∫  

2𝜋

 0

𝑔𝑙𝑔𝑘 𝑒
𝑖(𝑙+𝑘)𝜃

𝑛 − 𝑗 − 1

𝑖𝑗
(𝑔𝑗𝑒

𝑖𝑗𝜃 − 𝑔𝑗̅̅̅ 𝑒
−𝑖𝑗𝜃)𝑑𝜃, 

1 − 𝑛

4
 𝐼𝑚 [ ∑  

𝑗+𝑘+𝑙=0

𝑛 − 𝑗 − 1

𝑖𝑗
𝑔𝑙𝑔𝑘𝑔𝑗 𝜃 − ∑  

𝑗+𝑘+𝑙=0

𝑛 − 𝑗 − 1

𝑖𝑗
 𝑔𝑙𝑔𝑘𝑔𝑗̅̅̅𝜃 + ∑ 

𝑠≠0

𝜓𝑠𝑒
𝑖𝑠𝜃]

0

2𝜋

 

=
𝜋(1 − 𝑛)

2
𝐼𝑚 ∑  

𝑙,𝑘,𝑙+𝑘≠0

𝑔𝑙𝑔𝑘
𝑖(𝑙 + 𝑘)

 (−𝑔−(𝑙+𝑘)(𝑛 + 𝑙 + 𝑘 − 1) 

−𝑔𝑙+𝑘̅̅ ̅̅ ̅̅ (𝑛 − 𝑙 − 𝑘 − 1)) 

=
𝜋(1 − 𝑛)

2
𝑅𝑒 ∑  

𝑙,𝑘,𝑙+𝑘≠0

𝑔𝑙𝑔𝑘
𝑙 + 𝑘

(𝑔−(𝑙+𝑘)(𝑛 + 𝑙 + 𝑘 − 1) + 𝑔𝑙+𝑘̅̅ ̅̅ ̅̅ (𝑛 − 𝑙 − 𝑘 − 1)), 

as we wanted to prove.  

(ii) Referring to the period constants, since 𝑢1(𝜃) ≡ 1, we immediately obtian the 

expression for 𝑏1:  

𝑏1 = ∫  

2𝜋

 0

 𝐼𝑚 𝑆𝑛(𝜃)𝑑𝜃 = −2𝜋𝐼𝑚𝑔0. 

On the other hand, from (32), and assuming that 𝑎𝑖 = 0 for all 𝑖 and 𝑏1 = 0, we see that  
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𝑏2 = ∫  

2𝜋

 0

 𝐼𝑚 𝑆𝑛(𝜃)𝐴̃2 (𝜃) = ∫  

2𝜋

 0

 𝐼𝑚 𝑆𝑛(𝜃)𝐴2̂ (𝜃) 

= − ∫  

2𝜋

 0

(𝐼𝑚 ∑ 

𝑙≠0

  𝑔𝑙𝑒
𝑖𝑙𝜃) + (𝑅𝑒 ∑  

 𝑗≠0

 𝑛 − 𝑗 − 1

𝑖𝑗
  𝑔𝑗𝑒

𝑖𝑗𝜃) 

= −
1

2
𝐼𝑚 ∫  

2𝜋

 0

∑  

 𝑗,𝑙≠0

𝑛 − 𝑗 − 1

𝑖𝑗
 𝑔𝑗𝑒

𝑖𝑙𝜃(𝑔𝑙𝑒
𝑖𝑙𝜃 − 𝑔𝑙̅ 𝑒

−𝑖𝑙𝜃 ) 

=
1

2
𝑅𝑒 ∫  

2𝜋

 0

∑  

 𝑗,𝑙≠0

𝑛 − 𝑗 − 1

𝑗
𝑔𝑗(𝑔𝑙𝑒

𝑖(𝑗+𝑙)𝜃 − 𝑔𝑙̅ 𝑒
−𝑖(𝑗−𝑙)𝜃) 

= 𝜋𝑅𝑒 ∑ 

𝑙≠0

1

𝑙
 ((𝑛 + 𝑙 − 1)𝑔𝑙𝑔−𝑙 + (𝑛 − 𝑙 − 1)𝑔𝑙𝑔𝑙̅). 

By using that (𝑛 + 𝑙 − 1)/𝑙 − (𝑛 − 𝑙 − 1)/𝑙 = 2 and that 𝑎3 = 0, we get that the real part 

of the above expression can be removed and then 

𝑏2 = −𝜋∑ 

𝑙≠0

1

𝑙
 ((𝑛 + 𝑙 − 1)𝑔𝑙𝑔−𝑙 + (𝑛 − 𝑙 − 1)𝑔𝑙𝑔𝑙̅) 

= −𝜋(2∑ 

𝑙>0

 𝑔𝑙𝑔−𝑙 +∑ 

𝑙≠0

𝑛 − 𝑙 − 1

𝑙
 𝑔𝑙𝑔𝑙̅ +),                   (35) 

which gives an expression for 𝑏2.  
As a consequence of Proposition (2.2.9), we can state the following results. 

Corollary (2.2.10)[39]: Suppose that system (25) is Hamiltonian. Then the origin cannot be 

an isochronous centre.  

Proof. We will prove that for such systems the second period−Abel constant is always 

positive, and hence that the origin cannot be an isochronous centre.  

In the case of Hamiltonian systems we have that 𝑅𝑒(𝜕𝐹/𝜕𝑧) ≡ 0 and so we get the 

following characterization: 

(𝑛 + 𝑙 + 1)𝑔𝑙̅ + (𝑛 − 𝑙 + 1 )𝑔−𝑙 = 0. 
By substituting the relation given by (35), we get 

𝑏2 = −𝜋∑ 

𝑙≠0

𝑔𝑙𝑔𝑙̅
𝑙
 (
−(𝑛 + 𝑙 − 1)(𝑛 + 𝑙 + 1)

𝑛 − 𝑙 + 1
 + (𝑛 − 𝑙 − 1)) +

= −𝜋∑ 

𝑙≠0

𝑔𝑙𝑔𝑙̅
𝑙

−4𝑛𝑙

𝑛 − 𝑙 + 1
 = 𝜋∑ 

𝑙≠0

4𝑛𝑔𝑙𝑔𝑙̅
𝑛 − 𝑙 + 1

  > 0. 

Corollary (2.2.11)[39]: Assume that system (25) has a center at the origin. For r small 

enough let 𝑡(𝑟) denote the period function of the solution of (25) which starts at the point 

𝑧 = 𝑟 + 0𝑖. Let 𝑏1 and 𝑏2 be given by Proposition (2.2.9). Then the following hold:  

(𝑖)𝑖𝑓 𝑏1 ≠ 0 𝑡ℎ𝑒𝑛 𝑡(𝑟) = 2𝜋 + 𝑏1𝑟
𝑛−1 + 𝑂(𝑟𝑛),  

(𝑖𝑖)𝑖𝑓 𝑏1 = 0 𝑎𝑛𝑑 𝑏2 ≠ 0 𝑡ℎ𝑒𝑛 𝑡(𝑟) = 2𝜋 + 𝑏2𝑟
2𝑛−2 + 𝑂(𝑟2𝑛−1).  

Proof. Consider 𝑏1 ≠ 0. By the definition of 𝑏1, see (32), it turns out that 

𝑡̅(𝜌) = 2𝜋 + 𝑏1𝜌 + 𝑂(𝜌
2), 

where 𝑡̅(𝑝) is given in (31). From the change used to get (27), we have that 
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𝑡(𝑟) = 𝑡̅ (
𝑟𝑛−1

1 + 𝐼𝑚(𝑆𝑛(0))𝑟
𝑛−1
) .  

Hence the proof follows by direct substitution. The case 𝑏1 = 0 and 𝑏2 ≠ 0 can be proved 

in a similar way.  

The expression of the Lyapunov−Abel constants in the way given in Proposition (2.2.9) is 

also a good language in which prove and write more explicitly a result of Conti, see [48], 

which gives necessary conditions for the origin of a system of type (25) satisfying 
𝑑𝜃

𝑑𝑡
= 1 

to be a centre. When this centre exists, it is obvious that it is an isochronous one.  

In real variables, these systems admit the general form:  

{
 
 

 
 𝑥̇  = 𝑦 + 𝑥 ∑  

𝑛

𝑘=0

 𝑐𝑛−𝑘,𝑘𝑥
𝑛−𝑘𝑦𝑘

𝑦̇ = 𝑥 + 𝑦 ∑  

𝑛

𝑘=0

𝑐𝑛−𝑘,𝑘𝑥
𝑛−𝑘𝑦𝑘 .

                                             (36)  

The above system expressed in complex coordinates turns out to be: 

𝑧̇  = 𝑖𝑧 + 𝐹𝑛+1(𝑧, 𝑧̅ ),                                                   (37) 
with 

𝐹𝑛+1(𝑧, 𝑧̅ ) =
1

2𝑛
∑ 

𝑛

𝑘=0

𝑐𝑛−𝑘,𝑘  𝑧(𝑧 + 𝑧̅ )
𝑛− 𝑘  ( 𝑧 − 𝑧̅ )𝑘 (−𝑖)𝑘. 

Expanding the binomials, we finally obtain that 

𝐹𝑛+1(𝑧, 𝑧̅ ) = ∑  

 𝑙+𝑚=𝑛+1

𝑓𝑙,𝑚𝑧
𝑙𝑧̅𝑚, 

where 

𝑓𝑙,𝑚 =
1

2𝑛
∑ 

∆ 

(−1)𝑗2  (−𝑖)𝑘  (
𝑛 − 𝑘

𝑗1
) (
𝑘

𝑗2
) 𝑐𝑛−𝑘,𝑘,  

𝑛 = 𝑙 + 𝑚 − 1, 𝑎𝑛𝑑  
∆ = {(𝑘, 𝑗1, 𝑗2): 0 ≤ 𝑘 ≤ 𝑛, 0 ≤ 𝑗1 ≤ 𝑛 − 𝑘, 0 ≤ 𝑗2 ≤ 𝑘 , 𝑗1 + 𝑗2 = 𝑚}. 

Proposition (2.2.12)[39]: (i) 𝐴 system of type (36) (which in complex coordinates is written 

as (37)) has 𝑎 center at the origin if and only if its first Lyapunov−Abel constant 𝑎2 is zero.  

(ii)  

𝑎2 = {

0                                                                                     𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑,
2𝜋𝑛

2𝑛
∶  ∑  

∆′

 (−1)𝑗2 (−𝑖)𝑘  (
𝑛 − 𝑘

𝑗1
)  (

𝑘

𝑗2
) 𝑐𝑛−𝑘,𝑘  𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛,

       (38) 

where  

∆′= {(𝑘, 𝑗1, 𝑗2): 0 ≤ 𝑘 ≤ 𝑛, 0 ≤ 𝑗1 ≤ 𝑛 − 𝑘, 0 ≤ 𝑗2 ≤ 𝑘 , 𝑗1 + 𝑗2 = 𝑛/2}.  
Conditions for several n obtained applying (38) are  

𝑛 = 2 𝑐0 ,2 + 𝑐2,0 = 0,  
𝑛 = 4 3𝑐0,4 + 𝑐2,2 + 3𝑐4,0 = 0,  
𝑛 = 6 5𝑐0,6 + 𝑐2,4 + 𝑐4,2 + 5𝑐6,0 = 0,  
𝑛 = 14 429𝑐0,14 + 33𝑐2,12 + 9𝑐4,10 + 5𝑐6,8 + 5𝑐8,6 + 9𝑐10,4 + 33𝑐12,2  + 429𝑐14, 0

= 0,  
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𝑛 = 20 46,189𝑐0,20 + 2,431𝑐2,18 + 429𝑐4,16 + 143𝑐6,14 + 77𝑐8,12 + 63𝑐10,10  + 77𝑐12,8
+ 143𝑐14,6 + 429𝑐16,4 + 2,431𝑐18,2 + 46,189𝑐20,0 = 0.  

Proof. (i) The necessity is obvious. To prove the sufficiency, suppose that Re 𝑔0 = 0. By 

using (34) this last equality is equivalent to  

𝑅𝑒 ∫  

2𝜋

 0

 𝑆𝑛+1(𝑣)𝑑𝜃 = 0. 

Then, integrating system (37) in polar coordinates, we will obtain that all the orbits are 

closed, and so that the origin is a centre. This is done in the following. From 𝑟2 = 𝑧𝑧̅ and 

(37), it follows that  

𝑟𝑟̇  = 𝑅𝑒(𝑧̅𝐹𝑛   + 1(𝑧, 𝑧̅ )) = 𝑅𝑒 (𝑟𝑒
−𝑖𝜃𝐹𝑛+1(𝑟𝑒

𝑖𝜃 , 𝑟𝑒−𝑖𝜃)),  
𝑟̇

𝑟𝑛+1
 = 𝑅𝑒(𝑒−𝑖𝜃𝐹𝑛+1(𝑒𝑖𝜃 , 𝑒−𝑖𝜃)) = 𝑅𝑒(𝑆𝑛+1 (𝜃)), and, finally, 

−
1

𝑛𝑟𝑛
 = 𝑅𝑒 ∫  

2𝜋

 0

𝑆𝑛+1(𝜃)𝑑𝜃 = 0. 

Finally we will prove (ii). In our notation, this constant is written as 𝑎2 = 2𝜋𝑛𝑅𝑒𝑔0 (see 

Proposition (2.2.9)), where 𝑔𝑙 are defined as in (26). As we have pointed out before, if there 

is a center in this sytem it is isochronous. So the first period−Abel constant 𝑏1 is always 

zero. Therefore (see Proposition (2.2.9)), Re 𝑔0 = 𝑔0.  
From (26) we obtain that 𝑔0 = 0 if n is odd, and that 

𝑔0 = 𝑓(𝑛+2)/2,𝑛/2 =
1

2𝑛
∑ 

 

∆′

(−1)𝑗2   (−𝑖)𝑘 (
𝑛 − 𝑘 

𝑗1
) (
𝑘 

𝑗2
) 𝑐𝑛−𝑘,𝑘, 

where 

∆′= {(𝑘, 𝑗1, 𝑗2): 0 ≤ 𝑘 ≤ 𝑛, 0 ≤ 𝑗1 ≤ 𝑛 − 𝑘, 0 ≤ 𝑗2 ≤ 𝑘 , 𝑗1 + 𝑗2 =
𝑛

2
} = ,  

if 𝑛 is even, as we wanted to prove.   
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Chapter 3 

Similarity Classification and Homogeneous Operators Multiplicity 

 

We give a similarity classification of some holomorphic curves by using the K-group 

of its commutant algebra as an invariant. We show that the kernel function is calculated 

explicitly. It is proved that each of these operators is bounded, lies in the Cowen - Douglas 

class of 𝔻 and is irreducible. These operators are shown to be mutually pairwise unitarily 

inequivalent. Here we give a different independent construction of all homogeneous 

operators in the Cowen-Douglas class with multiplicity free associated representation and 

verify that they are exactly the examples constructed previously. 

Section (3.1): Holomorphic Curves 

Let ℋ be a complex separable Hilbert space and 𝐺𝑟(𝑛,ℋ) denote the n-dimensional 

Grassmann manifold, the set of all n-dimensional subspaces of ℋ. If dimℋ <
+∞,𝐺𝑟(𝑛,ℋ) is a complex manifold. For Ω an open connected subset of C, we shall say 

that a map 𝑓: 𝛺 → 𝐺𝑟(𝑛,ℋ) is a holomorphic curve, if there exist n holomorphic ℋ-valued 

functions 𝛾1, 𝛾2, . . . , 𝛾𝑛 on Ω such that 𝑓(𝜆) = ⋁{𝛾1(𝜆), . . . , 𝛾𝑛(𝜆)} for 𝜆 ∈ 𝛺. If 𝑓: 𝛺 →
𝐺𝑟(𝑛,ℋ) is a holomorphic curve, then a natural n-dimensional hermitian holomorphic 

vector bundle 𝐸𝑓 is induced over Ω, that is,  

𝐸𝑓 = {(𝑥, 𝜆) ∈ ℋ × 𝛺|𝑥 ∈ 𝑓(𝜆)}  and  𝜋: 𝐸𝑓 → 𝛺,𝑤ℎ𝑒𝑟𝑒 𝜋(𝑥, 𝜆) = 𝜆. 

Given two holomorphic curves 𝑓 and 𝑓: 𝛺 → 𝐺𝑟(𝑛,ℋ), we have two vector bundles 𝐸𝑓 and 

𝐸𝑓 over Ω. If there exists a unitary operator U on ℋ such that 𝑓 = 𝑈𝑓, then f and 𝑓 are said 

to be congruent and 𝐸𝑓 and 𝐸𝑓 are equivalent. Let ℋ be a complex separable Hilbert space 

and 𝐿(ℋ) denote the collection of bounded linear operators on ℋ, and 𝑓 and 𝑓 are said to 

be similar equivalent if there exists an invertible operator 𝑋 ∈ 𝐿(ℋ) such that 𝑓 = 𝑋𝑓 , and 

𝐸𝑓 is similar equivalent to 𝐸𝑓 [61].  

In 1978, M.J. Cowen and R.G. Douglas gave the unitary classification of holomorphic 

curves in [61]. They introduced a class of geometry operators which are called Cowen– 

Douglas operators by using the concept of complex bundles. 

Let Ω be a bounded connected open set; Cowen–Douglas operator of index n denoted by 

𝐵𝑛(𝛺) is the set of operators 𝑇 ∈ ℒ(ℋ) satisfying:  

(a) 𝛺 ⊂ 𝜎 (𝑇) = {𝑧 ∈ 𝐶;  𝑇 − 𝑧 is not invertible}; 

(b) 𝑟𝑎𝑛(𝑇 − 𝑧) ∶=  {(𝑇 − 𝑧)𝑥;  𝑥 ∈ ℋ} = ℋ for z in Ω; 

(c) ⋁ ker(𝑇 − 𝑧)𝑧∈𝛺 = ℋ; and 

(d) 𝑑𝑖𝑚 𝑘𝑒𝑟(𝑇 − 𝑧) = 𝑛 for z in Ω. 

By the definition, we can easily find a holomorphic frame (𝑒1(𝑧), 𝑒2(𝑧), . . . , 𝑒𝑛(𝑧)) such 

that  

𝐾𝑒𝑟(𝑧 − 𝑇) =⋁{𝑒𝑘(𝑧), 𝑧 ∈ 𝛺}

𝑛

𝑘=1

, ∀𝑇 ∈ 𝐵𝑛(𝛺). 

It is obvious that each Cowen–Douglas operator induces a holomorphic curve.  

When 𝑛 = 1, M.J. Cowen and R.G. Douglas define a curvature function and show that the 

curvature function is the unitary invariant of operators in 𝐵1(𝛺). 
A natural question is posed by M.J. Cowen and R.G. Douglas in [61]. What is the similarity 

invariants of holomorphic curves? It is obvious that the curvature function defined by M.J. 

Cowen and R.G. Douglas is not the similarity invariant of holomorphic curves.  
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We have to find new terms to characterize the similarity invariants of holomorphic curves. 

Fortunately, we notice a series of great works of G. Elliott [63], [64], [65], [66], [67], G. 

Gong [68], [69], and Dadarlat [62] about classification of C*-algebra by using of K-theory. 

These works stimulated us to apply the K-theory to the exploration of similarity invariants 

of holomorphic curves.  

We introduce the commutant of holomorphic curves first, and then we shall show that 

the 𝐾0-group of the commutant of the holomorphic curve is a complete similarity invariant 

of the holomorphic curve.  

We will introduce some basic properties of holomorphic curves. We will prove our 

main theorem using the properties of the holomorphic curves and K-theory and complete 

the similarity classification of 1-dimensional curves. We complete the similarity of some n-

dimensional curves in the same way. 

Let 𝑓: 𝛺 → 𝐺𝑟(𝑛,ℋ) be a holomorphic curve. If there exists no invertible operator 

𝑋 ∈ 𝐿(ℋ) such that 𝑋𝑓: 𝛺 → 𝐺𝑟(𝑛,ℋ) can be written as the orthogonal direct sum of two 

holomorphic curves, then we shall say that f is an indecomposable curve.  

Example (3.1.1)[58]: Every 1-dimensional holomorphic curve is an indecomposable curve.  

In fact, if 𝑓: 𝛺 → 𝐺𝑟(1,ℋ) for 𝜆 ∈ 𝛺 is a 1-dimensional indecomposable holomorphic 

curve, then there exist an invertible operator X and holomorphic curves 𝑓1, 𝑓2 such that 

𝑋𝑓(𝜆) = 𝑓1(𝜆) ⊕ 𝑓2(𝜆). Since dim𝑓1(𝜆) ⩾ 1, dim𝑓2(𝜆) ⩾ 1 for 𝜆 ∈ 𝛺, then this is a 

contradiction as f is a 1-dimensional holomorphic curve.  

Definition (3.1.2)[58]: For a holomorphic curve 𝑓: 𝛺 → 𝐺𝑟(𝑛,ℋ), we use 𝒜′(𝑓) to denote 

the commutant of f which is the set {𝐴 ∈ ℒ(ℋ) |𝐴𝑓 (𝜆) ⊆ 𝑓(𝜆), ∀𝜆 ∈ 𝛺}. We can see it is 

a unital Banach algebra and 𝑟𝑎𝑑 𝒜′(𝑓) denotes the Jocaboson radical of 𝒜′(𝑓).  
Theorem (3.1.3)[58]: A holomorphic curve 𝑓: 𝛺 → 𝐺𝑟(𝑛,ℋ) is indecomposable if and 

only if there exist no nontrivial idempotents in 𝒜′(𝑓). 
Proof. (⇒) If 𝑃 ∈ 𝒜′(𝑓) is a nontrivial idempotent, then 𝑓(𝜆) = 𝑃𝑓(𝜆) + (𝐼 − 𝑃)𝑓(𝜆) for 

𝜆 ∈ 𝛺 and there exists an invertible operator 𝑋 ∈ ℒ(ℋ) such that 𝑋𝑃ℋ = 𝑃ℋ and 

𝑋(𝐼 − 𝑃)ℋ = (𝑃ℋ)⊥. So we can see that 𝑋𝑓(𝜆) = 𝑋𝑃𝑓 (𝜆)⊕ 𝑋(𝐼 − 𝑃)𝑓 (𝜆). This 

contradicts the indecomposition of f. 

(⇐) If 𝑋𝑓(𝜆) = 𝑓1(𝜆) ⊕ 𝑓2(𝜆), then 𝑓(𝜆) = 𝑋−1𝑓1(𝜆) + 𝑋
−1𝑓2(𝜆). Note that 𝑋−1 is 

invertible and 𝑓1(𝜆) and 𝑓2(𝜆) are orthogonal; we can suppose that  

𝑓1(𝜆) =⋁{𝑒1(𝜆), . . . , 𝑒𝑚(𝜆)} , 𝑓2(𝜆) =⋁{𝑒𝑚+1(𝜆), . . . , 𝑒𝑛(𝜆)}.  

Since 〈𝑒𝑖(𝜆), 𝑒𝑗(𝜆)〉 = 0 for 𝑖 ≠ 𝑗, 1 ⩽ 𝑖 ⩽ 𝑚,𝑚 + 1 ⩽ 𝑗 ⩽ 𝑛, if |𝜆 − 𝜆0| is near to zero 

enough, we have 〈𝑒𝑖(𝜆), 𝑒𝑗(𝜆0)〉 = 0 for 𝑖 ≠ 𝑗 . By the property of the analytic function, we 

have ⋁ 𝑋−1𝑓1(𝜆)𝜆∈𝛺 + ⋁ 𝑋−1𝑓2(𝜆)𝜆∈𝛺 = ℋ, where +̇ denotes the algebra direct sum. For 

𝑥 ∈ ℋ, 𝑥 = 𝑥1 + 𝑥2, 𝑥1 ∈ ⋁ 𝑋−1𝑓1(𝜆)𝜆∈𝛺 , 𝑥2 ∈ ⋁ 𝑋−1𝑓2(𝜆)𝜆∈𝛺 . Let 𝑃 𝑥 = 𝑥1, then 𝑃 ∈
𝒜′(𝑓) is a nontrivial idempotent. 

Theorem (3.1.4)[58]: Let 𝑓: 𝛺 → 𝐺𝑟(𝑛,ℋ) be a holomorphic curve, 𝑃 ∈ 𝒜′(𝑓) is an 

idempotent, then 𝑃𝑓:𝛺 → 𝐺𝑟(𝑚, 𝑃ℋ) is still a holomorphic curve, where 𝑚 =

dim𝑃(𝑓(𝜆)) for 𝜆 ∈ 𝛺 and P is minimal if and only if Pf is indecomposable.  

Proof. Let 𝑓(𝜆) = ⋁{𝛾1(𝜆),… , 𝛾𝑛(𝜆)}, 𝜆 ∈ 𝛺 and 𝑃𝑓(𝜆) = ⋁{𝑃𝛾1(𝜆), . . . , 𝑃𝛾𝑛(𝜆)}. Since 

𝑃𝛾𝑖(𝜆) ⊆ 𝑓(𝜆) for 𝑖 = 1, 2, . . . , 𝑛, then there exists 𝛺0 such that {𝛾𝑖
′(𝜆)}𝑖=1

𝑚  for 𝜆 ∈ 𝛺0 to be 

the frames of 𝐸𝑃𝑓 and satisfy 𝑃𝑓(𝜆) = ⋁{𝛾1
′  (𝜆), . . . , 𝛾𝑚

′ (𝜆)}, where 𝑚 = dim𝑃𝑓(𝜆) for 𝜆 ∈

𝛺 and 𝛺 − 𝛺0 is a finite set. So we assume that 𝑚 = dim𝑃(𝑓(𝜆)) for 𝜆 ∈ 𝛺 and 𝑃𝑓:𝛺 →
𝐺𝑟(𝑚, 𝑃ℋ) is still a holomorphic curve.  
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And if there exists a 𝑃′ ∈ 𝒜′(𝑓), 𝑃′ℋ ⊆ 𝑃′ℋ, then 𝑃𝑓(𝜆) = 𝑃𝑃′𝑓(𝜆) + 𝑃 (𝐼 − 𝑃′)𝑓(𝜆).  
If Pf is decomposable, then there is an invertible operator 𝑋 ∈ ℒ(ℋ) such that 𝑋𝑃𝑓(𝜆) =
𝑓1(𝜆) ⊕ 𝑓2(𝜆) for 𝜆 ∈ 𝛺. Similarly to the above proof, it is easy to see that P is not a minimal 

idempotent of 𝒜′(𝑓). 
Theorem (3.1.5)[58]: Let 𝑓: 𝛺 → 𝐺𝑟(𝑛,ℋ) is a holomorphic curve, then the following are 

equivalent:  

(i) there exist m minimal idempotents 𝑃1, 𝑃2, . . . , 𝑃𝑚 ∈ 𝒜
′(𝑓)(𝑚 ⩽ 𝑛) such that 𝑃𝑖𝑃𝑗 =

0 and ∑ 𝑃𝑖
𝑚
𝑖=1 = 𝐼ℋ (identity operator on ℋ);  

(ii) there exists an invertible operator 𝑋 ∈ ℒ(ℋ) such that Xf can be written as an 

orthogonal direct sum of m indecomposable curves.  

Proof. (i) ⇒ (ii). Since 𝑃𝑖 ∈ 𝒜
′(𝑓), 𝑃𝑖𝑃𝑗 = 0, 𝑓(𝜆) = 𝑃1𝑓(𝜆) + 𝑃2𝑓(𝜆) +··· + 𝑃𝑚𝑓(𝜆) for 

𝜆 ∈ 𝛺 and ℋ = 𝑃1ℋ + 𝑃2ℋ +··· +𝑃𝑚ℋ, then we can find an invertible operator 𝑋 ∈
ℒ(ℋ) to satisfy 𝑋𝑃𝑖ℋ𝑖 = ℋ𝑖

′ and ℋ = ℋ1
′⊕ℋ2

′⊕···⊕ 𝐻𝑚
′ . So 𝑋𝑓(𝜆) = 𝑋𝑃1𝑓(𝜆)⊕

𝑋𝑃2𝑓(𝜆) ··· 𝑋𝑃𝑚𝑓 (𝜆) and 𝑋𝑃𝑖𝑓(𝜆) ∈ ℋ𝑖
′ for 𝜆 ∈ 𝛺. 

(ii) ⇒ (i). If (ii) is satisfied, then by the proof of Theorem (3.1.3), there exist {𝑓𝑖
′(𝜆)}𝑖=1

𝑚  

indecomposable which satisfy 𝑓(𝜆) = 𝑓1
′(𝜆) +··· + 𝑓𝑚

′ (𝜆) for 𝜆 ∈ 𝛺 and   

⋁𝑓𝑖
′(𝜆)

𝜆∈𝛺

∩⋁𝑓𝑗
′(𝜆)

𝜆∈𝛺

= ∅, 𝑖 ≠ 𝑗. 

So there exists 𝑃𝑖:ℋ → ⋁ 𝑓𝑖
′(𝜆)𝜆∈𝛺   such that 𝑃𝑖 ∈ 𝒜

′(𝑓), 𝑃𝑖
2 = 𝑃𝑖 , 𝑃𝑖𝑃𝑗 = 0 for 𝑖 ≠ 𝑗 and 

∑ 𝑃𝑖
𝑚
𝑖=1 = 𝐼ℋ. 

Definition (3.1.6)[58]: If 𝑓: 𝛺 → 𝐺𝑟(𝑛,ℋ) satisfies any condition of Theorem (3.1.5), then 

we say f has a finite decomposition.  

Let {𝑃1, 𝑃2, . . . , 𝑃𝑚} and {𝑄1, 𝑄2, . . . , 𝑄𝑛} are arbitrary two decompositions of f and if 

following are satisfied:  

(i) 𝑚 = 𝑛; 

(ii) there exists an invertible operator 𝑋 ∈ 𝒜′(𝑓) and a permutation 𝛱 ∈ 𝑆𝑛 such that 

𝑋𝑄𝛱(𝑖)𝑋
−1 = 𝑃𝑖 for 1 ⩽ 𝑖 ⩽ 𝑛,  

then we say f has a unique decomposition up to similarity.  

Proposition (3.1.7)[58]: Let 𝛺0 ⊆ 𝛺 be a bounded connected open set of Ω; if 𝑓: 𝛺 →
𝐺𝑟(𝑛,ℋ) is a holomorphic curve which satisfies ⋁ 𝑓(𝜆)𝜆∈𝛺 = ℋ, then ⋁ 𝑓(𝜆)𝜆∈𝛺0 = ℋ.  

Proof. We only need to prove that if each element x in ℋ satisfies 〈𝑥, ⋁ 𝑓(𝜆)𝜆∈𝛺0
〉 = 0, then 

𝑥 = 0. 

Let {𝑒1(𝜆), 𝑒2(𝜆), . . . , 𝑒𝑛(𝜆)} for 𝜆 ∈ 𝛺 be a holomorphic frame of 𝐸𝑓. Note that 〈𝑒𝑖(𝜆), 𝑥〉 
for 𝑖 = 1, 2, . . . , 𝑛 is analytic on Ω. Hence 〈𝑒𝑖(𝜆), 𝑥〉 = 0 for 𝜆 ∈ 𝛺0 implies that 〈𝑒𝑖(𝜆), 𝑥〉 =
0, 𝜆 ∈ 𝛺. This shows that 𝑥 = 0.  

Proposition (3.1.8)[58]: For a holomorphic curve 𝑓: 𝛺 → 𝐺𝑟(𝑛,ℋ), 𝑓(𝜆) =

⋁{𝑒1
 (𝜆), . . . , 𝑒𝑛

 (𝜆)} for 𝜆 ∈ 𝛺. Let 𝑓(𝑘)(𝜆) denote the set ⋁ {𝑒1
(𝑘)(𝜆), . . . , 𝑒𝑛

(𝑘)(𝜆)} for 𝑘 =

1, 2,… and 𝜆 ∈ 𝛺, where 𝑒𝑖
(𝑘)(𝜆) denotes the k derivate of 𝑒𝑖(𝜆) at λ. If ⋁ 𝑓(𝜆)𝜆∈𝛺 = ℋ, 

then ⋁ 𝑓(𝑘)(𝜆0)
∞
𝑘=1 = ℋ, where 𝜆0 ∈ 𝛺. 

Proof. Since 𝑓(𝜆) = ⋁{𝑒1(𝜆), . . . , 𝑒𝑛(𝜆)}, 𝜆 ∈ 𝛺, then there exists a neighborhood 𝛥0 of 𝜆0 
such that  

𝑒𝑖(𝜆) = ∑
𝑒𝑖
(𝑘)(𝜆0)

𝑘!
(𝜆 − 𝜆0)

∞

𝑘=0

∈⋁𝑓(𝑘)(𝜆0)

∞

𝑘=1

, ∀𝜆 ∈ 𝛥0, 𝑖 = 1, 2, . . . , 𝑛. 

By the proof of Proposition (3.1.7), it is not difficult to prove that   
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⋁𝑓(𝜆)

𝜆∈𝛥0

= ⋁{𝑒1(𝜆), . . . , 𝑒𝑛(𝜆)}

𝜆∈𝛥0

= ℋ ⊆⋁𝑓(𝑘)(𝜆0)

∞

𝑘=1

. 

So we get ⋁ 𝑓(𝑘)(𝜆0)
∞
𝑘=1 = ℋ. 

M.J. Cowen and R.G. Douglas in [61] give a character of the commutant of Cowen–Douglas 

operators. In the following, we shall imitate their proof to describe the commutant of 

holomorphic curve f.  

Proposition (3.1.9)[58]: Let 𝑓: 𝛺 → 𝐺𝑟(𝑛,ℋ) and ⋁ 𝑓(𝜆)𝜆∈𝛺 = ℋ, then the map 

𝛤𝑓:𝒜
′(𝑓) → ℋℒ(𝐸𝑓)

∞ (𝛺) is a contractive monomorphism, where 𝛤𝑓(𝑋)(𝜆) = 𝑋|𝑓(𝜆), 𝑋 ∈

𝒜′(𝑓) and ℋℒ(𝐸𝑓)
∞ (𝛺) denotes the collection of bounded bundle endomorphisms on 𝐸𝑓. 

Proof. If 𝑋 ∈ 𝒜′(𝑓), then 𝑋𝑓(𝜆) ⊆ 𝑓(𝜆). If 𝑒(𝜆) is a holomorphic cross-section of 𝐸𝑓 or 

𝑒(𝜆) ∈ 𝑓(𝜆) then so is 𝑋𝑒(𝜆). Let 

𝛤𝑓𝑋(𝑥, 𝜆) = (𝑋(𝑥), 𝜆), 𝑋 ∈ 𝒜′(𝑓), 𝑥 ∈ 𝑓(𝜆). 

Since ‖(𝛤𝑓𝑋)(𝜆)‖ = ‖𝑋|𝑓(𝜆)‖ ⩽ ‖𝑋‖, then 𝛤𝑓(𝑋) ∈ ℋℒ(𝐸𝑓)
∞ (𝛺), and 𝛤𝑓 is contractive. By 

⋁ 𝑓(𝜆)𝜆∈𝛺 = ℋ, 𝛤𝑓 is one-to-one.  

Now suppose Φ is an element of ℋℒ(𝐸𝑓)
∞ (𝛺) for which there exists a bounded operator 𝑋 ∈

𝒜′(𝑓) such that  

𝛤𝑓(𝑋)(𝜆) = 𝑋|𝑓(𝜆), 𝑋 ∈ 𝒜′(𝑓). 

If {𝑒1(𝜆), 𝑒2(𝜆), . . . , 𝑒𝑛(𝜆)} is a holomorphic frame of 𝐸𝑓, then by differentiating we obtain  

𝑋𝑒𝑖
′(𝜆) = (𝛷(𝜆)𝑒𝑖(𝜆))

′
= 𝛷(𝜆)𝑒𝑖

′(𝜆) + 𝛷′(𝜆)𝑒𝑖(𝜆), 

𝑋𝑒𝑖
′′(𝜆) = (𝛷(𝜆)𝑒𝑖(𝜆))

′′
= 𝛷(𝜆)𝑒𝑖

′′(𝜆) + 2𝛷′(𝜆)𝑒𝑖
′(𝜆) + 𝛷′′(𝜆)𝑒𝑖(𝜆), 

  ⋮ 

𝑋𝑒𝑖
(𝑁)(𝜆) = (𝛷(𝜆)𝑒𝑖(𝜆))

(𝑁)
= 𝛷(𝜆)𝑒𝑖

(𝑁)
(𝜆) +··· +𝛷(𝑁)(𝜆)𝑒𝑖(𝜆). 

In other words the block matrix for 𝑋|𝑓(𝑘)(𝜆) relative to the basis {𝑒𝑖
(𝑗)(𝜆)}

𝑖=1

𝑛

𝑗=1

𝑁

 is  

[
 
 
 
 
 
 
𝛷(𝜆) 𝛷′(𝜆) 𝛷′′(𝜆) ··· 𝛷(𝑁)(𝜆)

0 𝛷(𝜆) 2𝛷′(𝜆) ··· 𝑁𝛷(𝑁−1)(𝜆)

0 0 𝛷(𝜆) ···
𝑁(𝑁 − 1)

2
𝛷(𝑁−2)(𝜆)

⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ··· 𝛷(𝜆) ]

 
 
 
 
 
 

. 

For 𝛷 ∈ ℋℒ(𝐸𝑓)
∞ (𝛺)(𝛺), the following are equivalent:  

(i) 𝛷 = 𝛤𝑓(𝑋) for some X in 𝒜′(𝑓); 

(ii) sup{‖𝛷𝑁(𝜆)‖: 𝜆 ∈ 𝛺, 𝑁 = 0, 1, 2, . . . } = 𝐶1 < ∞; and 

(iii) sup{‖𝛷𝑁(𝜆0)‖: 𝑁 = 0, 1, 2, . . . } = 𝐶2 < ∞ for some 𝜆0 in Ω.  

Moreover, if these conditions hold, then ‖𝑋‖ = 𝐶1 = 𝐶2 and we can easily get the following 

lemma.  

Lemma (3.1.10)[58]: Let 𝑓: 𝛺 → 𝐺𝑟(𝑛,ℋ) be a holomorphic curve, 𝛺0  ⊆  𝛺 be a bounded 

connected open set of Ω. If we set 𝑓′: 𝛺0 → 𝐺𝑟(𝑛,ℋ) and 𝑓′(𝜆) = 𝑓(𝜆) for 𝜆 ∈ 𝛺0, then 

𝒜′(𝑓) = 𝒜′(𝑓′). 
Proof. It is obvious that 𝒜′(𝑓) ⊆ 𝒜′(𝑓′). We only need to prove that 𝒜′(𝑓′) ⊆ 𝒜′(𝑓). 
Let 𝜆0 ∈ 𝛺0 and {𝑒𝑖(𝜆)}𝑖=1

𝑛  be the frame of 𝐸𝑓. If λ is near to 𝜆0, we can get that  
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𝑒𝑖(𝜆) = ∑
𝑒𝑖
(𝑘)(𝜆0)

𝑘!
(𝜆 − 𝜆0)

∞

𝑘=1

. 

By the above proof, we can assume 𝑋(𝑒𝑖(𝜆)) = 𝛷(𝜆)𝑒𝑖(𝜆), ∀𝜆 ∈ 𝛺0̅̅̅̅ , where 𝑋 ∈ 𝒜′(𝑓′) 

and 𝛷(𝜆) ∈ ℋℒ(𝐸𝑓)
∞ (𝛺). By the above result, we obtain  

𝑋𝑒𝑖(𝜆) = 𝑋 (∑
𝑒𝑖
(𝑘)(𝜆0)

𝑘!
(𝜆 − 𝜆0)

𝑘

∞

𝑘=1

) = (∑
𝛷(𝑘)(𝜆0)

𝑘!
(𝜆 − 𝜆0)

𝑘

∞

𝑘=1

)𝑒𝑖(𝜆), 

where 𝜆0 ∈ 𝜕𝛺0 and λ is contained by some neighborhood of 𝜆0. So we can see that 𝑋 ∈
𝒜′(𝑓), ∀𝑋 ∈ 𝒜′(𝑓′). 
In order to understand our work well, we will introduce some notations of 𝐾0-theory of a 

Banach algebra.  

Let 𝒜 be a unital Banach algebra, and e and f be idempotents in 𝒜; we call e and f 

algebraically equivalent, if there exist 𝑥, 𝑦 ∈ 𝒜 with 𝑥𝑦 = 𝑒, 𝑦𝑥 = 𝑓 (denoted by 𝑒 ∼𝑎 𝑓). 

The algebraic equivalence class containing p is denoted by [p]. We call e and f similar if 

there exists an invertible operator z in A such that 𝑧𝑒𝑧−1 = 𝑓 (denoted by 𝑒 ∼ 𝑓). 

Obviously, 𝑒 ∼𝑎 𝑓 and 𝑒 ∼ 𝑓 are equivalence relations.  

For a holomorphic curve, 𝑓: 𝛺 → 𝐺𝑟(𝑛,ℋ), let 𝑀𝑘(𝒜
′(𝑓)) be the collection of 𝑘 ×

𝑘 matrices with entries from 𝒜′(𝑓).  

𝑀∞(𝒜
′(𝑓)) =⋃𝑀𝑘(𝒜

′(𝑓))

∞

𝑘=1

. 

Let 𝑃𝑟𝑜𝑗(𝒜′(𝑓)) be the set of algebraic equivalence classes of idempotents in 𝒜′(𝑓) and 

⋁(𝒜′(𝑓)) = 𝑃𝑟𝑜𝑗 (𝑀∞(𝒜
′(𝑓))). Note that ⋁(𝑀𝑛(𝒜

′(𝑓))) is isomorphic to ⋁(𝒜′(𝑓)) 

(denoted by ⋁(𝑀𝑛(𝒜
′(𝑓))) ≅ ⋁(𝒜′(𝑓))). If p, q are idempotents in 𝑃𝑟𝑜𝑗(𝒜′(𝑓)), then 

𝑝 ∼𝑠𝑡 𝑞 if and only if 𝑝 ⊕ 𝑟 ∼𝑎 𝑞 ⊕ 𝑟 for some idempotent r in 𝑃𝑟𝑜𝑗(𝒜′(𝑓)). The relation 

∼𝑠𝑡 is called stable equivalence. 𝐾0(𝒜
′(𝑓)) is the Grothendieck group of ⋁(𝒜′(𝑓)) (cf. 

[60], [71]).  

A pair (𝐺, 𝐺+) is called an ordered Abelian group, if G is an Abelian group, 𝐺+ is a subset 

of G, and  

(i) 𝐺+ + 𝐺+  ⊆  𝐺+; 

(ii) 𝐺+ ∩ (−𝐺+) = {0};  
(iii) 𝐺+ − 𝐺+ = 𝐺. 

Define a relation ‘⩽’ on G by 𝑥 ⩽ 𝑦, if 𝑦 − 𝑥 belongs to 𝐺+. 

Let 𝒜  and ℬ be two Banach algebras and α be a homomorphism from 𝒜 into ℬ. Then the 

map 𝛼𝑛: 𝑀𝑛(𝒜) → 𝑀𝑛(ℬ) is given by  

𝛼𝑛 [

𝑎11 ··· 𝑎1𝑛
⋮ ⋰ ⋮
𝑎𝑛1 ··· 𝑎𝑛𝑛

]

𝑛×𝑛

= [
𝛼(𝑎11) ··· 𝛼(𝑎1𝑛)
⋮ ⋰ ⋮

𝛼(𝑎𝑛1) ··· 𝛼(𝑎𝑛𝑛)
]

𝑛×𝑛

 

and there is a homomorphism 𝛼∗ induced by α from 𝐾0(𝒜) into 𝐾0(ℬ). 

Let 𝐺𝐿𝑛(𝒜
′(𝑓)) denote the invertible elements of 𝑀𝑛(𝒜

′(𝑓)), and 𝐺𝐿𝑛(𝒜
′(𝑓))

0
 denote 

the connected components of the identity. Since the group is locally path-connected, i.e. the 

group of the path components of the identity, it is an open subgroup. We embed 

𝐺𝐿𝑛(𝒜
′(𝑓)) into 𝐺𝐿𝑛+1(𝒜

′(𝑓)) by 𝑥 → 𝑑𝑖𝑎𝑔(𝑥, 1). Let 𝐺𝐿∞(𝒜
′(𝑓)) =
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lim
→
𝐺𝐿𝑛(𝒜

′(𝑓)) (the inductive limit). 𝐺𝐿∞(𝒜
′(𝑓)) is a topological group with the 

inductive limit topology. The embedding of 𝐺𝐿𝑛(𝒜
′(𝑓)) into 𝐺𝐿𝑛+1(𝒜

′(𝑓)) maps 

𝐺𝐿𝑛(𝒜
′(𝑓))

0
 into 𝐺𝐿𝑛+1(𝒜

′(𝑓))
0
 and 𝐺𝐿∞(𝒜

′(𝑓))
0
= lim

→
𝐺𝐿𝑛(𝒜

′(𝑓))
0
.  

Let 

𝐾1(𝒜
′(𝑓)) = 𝐺𝐿∞(𝒜

′(𝑓))/𝐺𝐿∞(𝒜
′(𝑓))

0
= lim

→
[𝐺𝐿𝑛(𝒜

′(𝑓))/𝐺𝐿𝑛(𝒜
′(𝑓))

0
]. 

The suspension of 𝒜′(𝑓), denoted by 𝑆𝒜′(𝑓), is the set {𝑓: 𝑅 → 𝒜′(𝑓) | 𝑓 is 

continuous and lim
𝑥→∞

‖𝑓(𝑥)‖ = 0}. With pointwise operations and the sup norm, 𝑆𝒜′(𝑓) is 

a Banach algebra. Then 𝐾1(𝒜
′(𝑓)) is naturally isomorphic to 𝐾0(𝑆𝒜

′(𝑓)), i.e. there is an 

isomorphism 𝜃𝒜′(𝑓) ∶ 𝐾1(𝒜
′(𝑓)) → 𝐾0(𝑆𝒜

′(𝑓)) such that whenever 𝜙:𝒜′(𝑓) → ℬ, the 

following diagram commutes:  

 
(In the language of category theory, θ gives an invertible natural transformation from 𝐾1 to 

𝐾0𝑆, where ℬ is another unital Banach algebra.)  

The main theorems are the following:  

In order to prove the theorem, we will introduce the following notations and results.  

Lemma (3.1.11)[58]: Let 𝑒, 𝑓: 𝛺 → 𝐺𝑟(𝑛,ℋ) be two holomorphic curves and 𝛷:𝒜′(𝑒) ≅
𝒜′(𝑓), then {𝑃𝑖}𝑖=1

𝑛  is a unit finite decomposition of e if and only if {𝛷(𝑃𝑖)}𝑖=1
𝑛  is a unit 

decomposition of f. In particular, if 𝑒 ∼ 𝑓 then 𝒜′(𝑒) ≅ 𝒜′(𝑓). 

Proof.  Since Φ is an isomorphism satisfying 0 = 𝛷(𝑃𝑖𝑃𝑗) = 𝛷(𝑃𝑖)𝛷(𝑃𝑗) for 𝑖 ≠ 𝑗 and 

∑ 𝛷(𝑃𝑖)
𝑛
𝑖=1 = 𝐼 , then we need only to prove that 𝛷(𝑃𝑖)𝑓 is indecomposable. Otherwise, 

there exist two nonzero idempotents 𝑄1 and 𝑄2 in 𝒜′(𝑓), so that 𝑄2𝑄1 = 𝑄1𝑄2 = 0 and 

𝛷(𝑃𝑖) = 𝑄1 + 𝑄2. Note that 𝛷−1(𝑄1), 𝛷
−1(𝑄2) are two nonzero idempotents in 𝒜′(𝑒) and 

𝑃𝑖 = 𝛷
−1(𝑄1) + 𝛷

−1(𝑄2). This is a contradictions as 𝑃𝑖𝑒 is indecomposable.  

If e is similar to f, then there exists an invertible operator 𝑋 ∈ ℒ(ℋ) satisfying 𝑋𝑒(𝜆) =
𝑓(𝜆) for 𝜆 ∈ 𝛺. Define a mapping 𝛷: 𝛷(𝑇) = 𝑋𝑇𝑋−1 for 𝑇 ∈ 𝒜′(𝑒). It is clear that Φ is an 

isomorphism from 𝒜′(𝑒) to 𝒜′(𝑓). 
Lemma (3.1.12)[58]: Let 𝑒: 𝛺 → 𝐺𝑟(𝑛,ℋ) is a holomorphic curve and 𝑃1, 𝑃2 ∈ 𝒜

′(𝑒) are 

idempotent operators. If 𝑃1 ∼ (𝒜
′(𝑒))𝑃2, then 𝑃1𝑒 ∼ 𝑃2𝑒. 

Proof. Since 𝑃1 ∼ (𝒜
′(𝑒))𝑃2, then there exists an invertible operator 𝑋 ∈ 𝐺𝐿(𝒜′(𝑒)) such 

that 𝑋𝑃1𝑋
−1 = 𝑃2 and 𝑋𝑃1 = 𝑃2𝑋, 𝑋𝑃1𝑒(𝜆) = 𝑃2𝑋𝑒(𝜆) = 𝑃2𝑋𝑋

−1𝑒(𝜆). Note that 𝑋−1 ∈
𝒜′(𝑒); we obtain 𝑃2𝑒(𝜆) = 𝑃2𝑋𝑋

−1𝑒(𝜆) = 𝑋𝑃1𝑒(𝜆) for 𝜆 ∈ 𝛺. That is 𝑃1𝑒 ∼ 𝑃2𝑒. 

Lemma (3.1.13)[58]: Let 𝑒: 𝛺 → 𝐺𝑟(𝑛,ℋ) is a holomorphic curve and ⋁ 𝑒(𝜆)𝜆∈𝛺 =
ℋ, {𝑃𝑖}𝑖=1

𝑛 , {𝑄𝑖}𝑖=1
𝑛  are two unit finite decompositions of e. If there exists an operator 𝑋𝑖 ∈

𝐺𝐿(ℒ(𝑃𝑖ℋ,𝑄𝑖ℋ)) such that 

𝑋𝑖𝑃𝑖𝑒(𝜆) = 𝑄𝑖𝑒(𝜆), ∀𝜆 ∈ 𝛺, 𝑖 = 1, 2, . . . , 𝑛, 

then 𝑋 = 𝑋1+̇𝑋2+̇ ··· +̇𝑋𝑛 ∈ 𝐺𝐿(𝐴
′(𝑒)). 

Proof. Since 𝑋𝑒(𝜆) = (𝑋1+̇𝑋2+̇ ··· +̇𝑋𝑛)(𝑃1𝑒1(𝜆)+̇𝑃2𝑒2(𝜆)+̇ ··· +̇𝑃𝑛𝑒𝑛(𝜆)), and 𝑋𝑖 ∈
𝐿(𝑃𝑖ℋ,𝑄𝑖ℋ), then 

𝑋𝑒(𝜆) = (𝑋1𝑃1𝑒(𝜆)+̇𝑋2𝑃2𝑒(𝜆)+̇ ··· +̇𝑋𝑛𝑃𝑛𝑒(𝜆) = 𝑄1𝑒(𝜆)+̇𝑄2𝑒(𝜆)+̇ ··· +̇𝑄𝑛𝑒(𝜆) 
and 𝑋𝑖

−1𝑄𝑖𝑒(𝜆) = 𝑃𝑖𝑒(𝜆) for 𝜆 ∈ 𝛺. So 𝑋 ∈ 𝒜′(𝑒) and 𝑋 ∈ 𝐺𝐿(𝒜′(𝑒)). 
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Lemma (3.1.14)[58]: Suppose that {𝑃1, . . . , 𝑃𝑚, 𝑃𝑚+1, . . . , 𝑃𝑛} and 

{𝑄1, . . . , 𝑄𝑚, 𝑄𝑚+1, . . . , 𝑄𝑛} are two sets of idempotent operators in 𝒜′(𝑒), where 𝑒: 𝛺 →
𝐺𝑟(𝑛,ℋ) is a holomorphic curve. If there exist 𝑋, 𝑌 ∈ 𝐺𝐿(𝒜′(𝑒)) and a permutation 𝛱 ∈
𝑆𝑛 satisfying  

(i) 𝑋𝑃𝑖𝑋
−1 = 𝑄𝑖 , 1 ⩽ 𝑖 ⩽ 𝑚;  

(ii) 𝑌 𝑃𝑖𝑌
−1 = 𝑄𝛱(𝑖), 1 ⩽ 𝑖 ⩽ 𝑛, 

then for 𝑄𝑟 , 𝑚 < 𝑟
′ ⩽ 𝑛, there exist 𝑃𝑟′ , 𝑚 < 𝑟 ⩽ 𝑛, and 𝑍𝑟, a finite product of Y and X, 

such that 𝑍𝑟𝑄𝑟𝑍𝑟
−1 = 𝑃𝑟′. Moreover, {𝑃𝑟′}𝑟=𝑚+1

𝑛  is exactly a rearrangement of 

{𝑃𝑟′}𝑟′=𝑚+1
𝑛 . 

Proof. Given 𝑄𝑟 , 𝑚 < 𝑟 ⩽ 𝑛, it follows from (ii) that there exists 𝑃𝑗1 , 1 ⩽ 𝑗1 ⩽ 𝑛, such that 

𝑌𝑄𝑟𝑌
−1 = 𝑃𝑗1. If 𝑚 < 𝑗1 ⩽ 𝑛, then we set 𝑍𝑟 = 𝑌 and 𝑃𝑟′ = 𝑃𝑗1. If 1 ⩽ 𝑗1 ⩽ 𝑚, then by 

(ii) there exists an operator 𝑄𝑗1 , 𝑗1 = 𝑟, such that  

𝑋𝑌𝑄𝑟𝑌
−1𝑋−1 = 𝑄𝑗1 . 

By (ii), 𝑌𝑄𝑗1𝑌
−1 = 𝑃𝑗2 for some 𝑗2. If 𝑚 < 𝑗2 ⩽ 𝑛, then we set  

𝑍𝑟 = 𝑌𝑋𝑌, 𝑃𝑟′ = 𝑃𝑗2 . 

If 1 ⩽ 𝑗2 ⩽ 𝑚, it is obvious that 𝑗1 ≠ 𝑗2. Otherwise, 

𝑄𝑗1 = 𝑌
−1𝑃𝑗2𝑌 = 𝑌

−1𝑃𝑗1𝑌 = 𝑄𝑟 , 

which contradicts 𝑚 < 𝑟 ⩽ 𝑛. Using (ii) again, we can find 𝑃𝑗3 such that  

𝑌𝑄𝑗2𝑌
−1 = 𝑃𝑗3 . 

Similarly, 𝑗3 ∉ {𝑗1, 𝑗2}.If 𝑚 < 𝑗3 ⩽ 𝑛, then we set 𝑍𝑟 = 𝑌𝑋𝑌𝑋𝑌, 𝑃𝑟′ = 𝑃𝑗3 . Or we can 

continue the procedure above. Since n is finite, after 𝑠 ⩽ 𝑚 + 1 steps we will force 𝑃𝑠 ∈
{𝑃𝑚+1, . . . , 𝑃𝑛}. Set 𝑃𝑟′ = 𝑃𝑗𝑠 , 𝑍𝑟 = 𝑌𝑋𝑌 ··· 𝑋𝑌,where X appears S times. Then 𝑍𝑟𝑄𝑟𝑍𝑟

−1  =

𝑃𝑗𝑠. We claim that if 𝑟1 ≠ 𝑟2, where 𝑟1, 𝑟2 ∈ {𝑚 + 1, . . . , 𝑛}, then 𝑗𝑠1 ≠ 𝑗𝑠2 . Otherwise, there 

exist 𝑍𝑟1 = 𝑌𝑋𝑌 ··· 𝑌𝑋𝑌 (X appears 𝑠1 times) and 𝑍𝑟2 = 𝑌𝑋𝑌 ··· 𝑌𝑋𝑌 (X appears 𝑠2 times) 

such that 

𝑍𝑟1𝑄𝑟1𝑍𝑟1
−1 = 𝑍𝑟2𝑄𝑟2𝑍𝑟2

−1. 

Without loss of generality, we may assume that 𝑠1 ⩾ 𝑠2.If 𝑠1 > 𝑠2, then 

𝑍𝑟2
−1𝑍𝑟1𝑄𝑟1𝑍𝑟1

−1𝑍𝑟2 = 𝑄𝑟2 ∈ {𝑄𝑚+1, . . . , 𝑄𝑛}. 

Note that 𝑍𝑟2
−1𝑍𝑟1 = 𝑋𝑌 ··· 𝑋𝑌 (X appears 𝑗𝑠1 − 𝑗𝑠2  times). Set  

𝑅 = 𝑌𝑋𝑌 ··· 𝑋𝑌, 
where X appears 𝑗𝑠1 − 𝑗𝑠2 − 1 times. By the procedure of the choice, we have 𝑅𝑄𝑟1𝑅

−1 ∈
{𝑃1, 𝑃2, . . . , 𝑃𝑚}. Thus  

𝑋𝑅𝑄𝑟1𝑅
−1𝑋−1 ∈ {𝑄1, 𝑄2, . . . , 𝑄𝑚}. 

But 𝑋𝑅𝑄𝑟1𝑅
−1𝑋−1 = 𝑍𝑟2

−1𝑍𝑟1𝑄𝑟1𝑍𝑟1
−1𝑍𝑟2 = 𝑄𝑟2 ∈ {𝑄𝑚+1, . . . , 𝑄𝑛}. This is a contradiction. 

Thus 𝑠1 = 𝑠2. But if 𝑠1 = 𝑠2, we can easily prove that 𝑄𝑟1 = 𝑄𝑟2, which is also a 

contradiction. This completes the proof of our claim and the lemma. 

By the similar argument of Lemma (3.1.14), we can prove the following result.  

Lemma (3.1.15)[58]: Let 

𝑒: 𝛺 → 𝐺𝑟(𝑛,ℋ), {𝑃1, 𝑃2, . . . , 𝑃𝑚1 , . . . , 𝑃𝑚𝑘−1−1, . . . , 𝑃𝑚𝑘  , 𝑃𝑚𝑘+1 , . . . , 𝑃𝑛} 

and 

{𝑄1, 𝑄2, . . . , 𝑄𝑚1 , . . . , 𝑄𝑚𝑘−1−1, . . . , 𝑄𝑚𝑘 , 𝑄𝑚𝑘+1 , . . . , 𝑄𝑛} 

be two sets of idempotent operators of 𝒜′(𝑒). If there exist 𝑋1, 𝑋2, . . . , 𝑋𝑘, 𝑌 ∈ 𝐺𝐿(𝒜
′(𝑒)) 

and a permutation 𝛱 ∈ 𝑆𝑛 satisfying  
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𝑋𝑖𝑃𝑗𝑋𝑖
−1 = 𝑄𝑗 , 𝑚𝑖 + 1 ⩽ 𝑗 ⩽ 𝑚𝑖+1, 𝑖 = 0, 1, . . . , 𝑘 − 1,𝑚0 = 0, 

and  

𝑌−1𝑃𝑗𝑌 = 𝑄𝛱(𝑖), 1 ⩽ 𝑖 ⩽ 𝑛, 

then for each 𝑟,𝑚𝑘 < 𝑟 < 𝑛 ,there exists 𝑍𝑟, a finite product of {𝑌, 𝑋1, . . . , 𝑋𝑘}, so that 

{𝑍𝑟𝑄𝑟𝑍𝑟
−1}𝑟=𝑚𝑘+1

𝑛  is exactly a rearrangement of {𝑃𝑟}𝑟=𝑚𝑘+1
𝑛 .  

Lemma (3.1.16)[58]: Suppose that {𝑃1, . . . , 𝑃𝑚, 𝑃𝑚+1, . . . , 𝑃𝑛} and {𝑄1, . . . , 𝑄𝑚+1, . . . , 𝑄𝑛} are 

two unit decompositions of e. If the following properties are satisfied:  

(i) for each 𝑃𝑖, there exists an 𝑋𝑖 ∈ 𝐺𝐿(𝑃𝑖ℋ,𝑄𝑖ℋ) satisfying 𝑋𝑖𝑃𝑖𝑒(𝜆) = 𝑄𝑖𝑒(𝜆) for 𝜆 ∈
𝛺, 1 ⩽ 𝑖 ⩽ 𝑚;  

(ii) there exists 𝑌 ∈ 𝐺𝐿(𝒜′(𝑒)) and a permutation 𝛱 ∈ 𝑆𝑛 satisfying 𝑌−1𝑃𝑖𝑌 = 𝑄𝛱(𝑖); 

then given 𝑄𝑟 , 𝑟 ∈ {𝑚 + 1, . . . , 𝑛}, there exist 𝑟′ ∈ {𝑚 + 1, . . . , 𝑛} and 𝑍𝑟 ∈
𝐺𝐿(𝑄𝑟ℋ,𝑃𝑟′ℋ) satisfying 𝑍𝑟𝑄𝑟𝑒(𝜆) = 𝑃𝑟′𝑒(𝜆) for 𝜆 ∈ 𝛺. Furthermore, if 𝑟1 = 𝑟2, then 

𝑟1 = 𝑟2. 

Proof. Given 𝑟 ∈ {𝑚 + 1, . . . , 𝑛}, by (ii) of the lemma, there exists an operator 𝑃𝑗1 ∈ {𝑃𝑖}𝑖=1
𝑛  

such that 𝑌𝑄𝑟𝑌
−1 = 𝑃𝑗1. If 𝑚 < 𝑗1 ⩽ 𝑛, set 𝑍𝑟 = 𝑌|𝑄𝑟ℋ. Otherwise, it follows from 

(𝑌𝑄𝑟𝑌
−1)𝑒(𝜆) = 𝑃𝑗1𝑒(𝜆) and (i) that 𝑋𝑗1𝑃𝑗1𝑒(𝜆) = 𝑄𝑗1𝑒(𝜆). Using condition (ii) again, we 

can find 𝑗2 ∈ {1, 2, . . . , 𝑛} such that 𝑌𝑄𝑗1𝑌
−1 = 𝑄𝑗2. Clearly, 𝑗1 ≠ 𝑗2. If 𝑗2 ∈ {𝑚 + 1, . . . , 𝑛}, 

set 𝑍𝑟 = 𝑌|𝑄𝑗ℋ  𝑋𝑗1𝑌|𝑄𝑟ℋ , 𝑃𝑟′ = 𝑃𝑗2. Thus 𝑍𝑟𝑄𝑟𝑒(𝜆) = 𝑃𝑟′𝑒(𝜆). Otherwise, by the similar 

arguments used in the proof of Lemma (3.1.14), after finite steps, we can find 𝑃𝑟′ ∈
{𝑃𝑘}𝑘=𝑚+1

𝑛  such that 𝑍𝑟𝑄𝑟𝑒(𝜆) = 𝑃𝑟′𝑒(𝜆). Similarly, we can prove that 𝑟1
′ ≠ 𝑟2

′ if 𝑟1 ≠ 𝑟2. 

Lemma (3.1.17)[58]: Let 𝑒: 𝛺 → 𝐺𝑟(𝑛,ℋ) and suppose e has a unique finite decomposition 

up to similarity, then for an arbitrary idempotent P in 𝒜′(𝑒), P e has a unique finite 

decomposition up to similarity.  

Proof. Since e has a unique finite decomposition up to similarity, P e has a finite 

decomposition and all the cardinalities must be the same. 

Let {𝑃𝑖}𝑖=1
𝑚  and {𝑄𝑖}𝑖=1

𝑚  be two unit decompositions of P e and {𝑃𝑖}𝑖=𝑚+1
𝑛  be a unit 

decomposition of (𝐼 − 𝑃)𝑒, then {{𝑃𝑖}𝑖=1
𝑚 , {𝑃𝑖}𝑖=𝑚+1

𝑛 } and {{𝑄𝑖}𝑖=1
𝑚 , {𝑃𝑖}𝑖=𝑚+1

𝑛 } are two unit 

decompositions of e. By the uniqueness, we can find a 𝑌 ∈ 𝐺𝐿(𝒜′(𝑒)) such that  

{𝑌𝑃𝑖𝑌
−1} = {𝑄1, . . . , 𝑄𝑚, 𝑃𝑚+1, . . . , 𝑃𝑛}. 

By Lemma (3.1.16), we can find 𝑍𝑖 ∈ 𝐺𝐿(ℒ(𝑄𝑖ℋ,𝑃𝑖ℋ)) and a permutation 𝛱 ∈ 𝑆𝑛 

satisfying  

𝑍𝑖𝑄𝑖𝑒(𝜆) = 𝑃𝛱(𝑖)𝑒(𝜆), 1 ⩽ 𝑖 ⩽ 𝑚. 

Set 𝑍 = 𝑍1+̇𝑍2+̇ ··· +̇𝑍𝑛, 𝑍𝑘 = 𝐼|𝑃𝑘ℋ , 𝑚 + 1 ⩽ 𝑘. By Lemma (3.1.13), 𝑍 ∈ 𝐺𝐿(𝒜′(𝑒)) and 

𝑃𝑍 ∈ 𝐺𝐿(𝒜′(𝑃𝑒)). Note that (𝑍|𝑃ℋ)𝑄𝑖(𝑍|𝑃ℋ)
−1 = 𝑃𝛱(𝑖) for 1 ⩽ 𝑖 ⩽ 𝑚. 

Lemma (3.1.18)[58]: Let 𝑒: 𝛺 → 𝐺𝑟(𝑛,ℋ) is a holomorphic curve. If e has a unique finite 

decomposition up to similarity, P,Q in 𝒜′(𝑒) are two idempotents, then the following are 

equivalent:  

(i) 𝑃 ∼ (𝒜′(𝑒))𝑄; 

(ii) 𝑃𝑒 ∼ 𝑄𝑒. 

Proof. (i) ⇒ (ii). This a straightforward consequence of Lemma (3.1.13).  

(ii) ⇒ (i). By Lemma (3.1.17), 𝑃𝑒, 𝑄𝑒, (𝐼 − 𝑃)𝑒, (𝐼 − 𝑄)𝑒 all have a unique finite 

decomposition up to similarity. Since 𝑃𝑒 ∼ 𝑄𝑒, ∃𝑋 ∈ 𝐺𝐿(ℒ(𝑃ℋ,𝑄ℋ)) such that  

𝑋𝑃𝑒(𝜆) = 𝑄𝑒(𝜆), ∀𝜆 ∈ 𝛺. 
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If {𝑃𝑖}𝑖=1
𝑚  is a unit decomposition of P e, then {𝑋𝑃𝑖𝑋

−1}𝑖=1
𝑚  is a unit decomposition of Qe. 

Note that  

𝑄𝑒(𝜆) = 𝑋𝑃𝑒(𝜆) = 𝑋(𝑃1𝑒(𝜆)+̇𝑃2𝑒(𝜆)+̇ ··· +̇𝑃𝑚𝑒(𝜆)
= 𝑋(𝑃1𝑃1𝑒(𝜆)+̇𝑃2𝑃2𝑒(𝜆)+̇ ··· +̇𝑃𝑚𝑃𝑚𝑒(𝜆)
= 𝑋𝑃1𝑋

−1𝑄1𝑒(𝜆)+̇𝑋𝑃2𝑋
−1𝑄2𝑒(𝜆)+̇ ··· +̇𝑋𝑃𝑚𝑋

−1𝑄𝑚𝑒(𝜆). 
Let {𝑃𝑖}𝑖=𝑚+1

𝑛  and {𝑄𝑖}𝑖=𝑚+1
𝑛  be an arbitrary decomposition of (𝐼 − 𝑃)𝑒 and (𝐼 − 𝑄)𝑒, then 

{𝑃𝑖}𝑖=1
𝑛  and {{𝑋𝑃𝑖𝑋

−1}𝑖=1
𝑚 , {𝑄𝑘}𝑘=𝑚+1

𝑛 } are two unit decompositions of e. By Lemma 

(3.1.16), for 𝑟 ∈ {𝑚 + 1, . . . , 𝑛}, we can find 𝑃𝑟′ , 𝑟
′ ∈ {𝑚 + 1, . . . , 𝑛}, and 𝑍𝑟 ∈

𝐺𝐿(ℒ(𝑄𝑟ℋ,𝑃𝑟′ℋ)) satisfying  

𝑍𝑟𝑄𝑟𝑒(𝜆) = 𝑃𝑟′𝑒(𝜆), ∀𝜆 ∈ 𝛺.  

𝑟1
′ = 𝑟2

′ if and only if 𝑟1 = 𝑟2. Set 𝑍 = 𝑍1+̇𝑍2 +··· +̇𝑍𝑛 ∈ 𝐺𝐿(𝒜
′(𝑒)), then  

𝑍𝑃 = 𝑄𝑍, 𝑍 ∈ 𝐺𝐿(𝒜′(𝑒)). 

Note that 𝑍𝑃𝑍−1 = 𝑄; we can deduce that 𝑃 ∼ (𝒜′(𝑒))𝑄, by using Lemma (3.1.13).  

Lemma (3.1.19)[58]: Let 𝑒: 𝛺 → 𝐺𝑟(𝑛,ℋ) be a holomorphic curve and P,Q be idempotents 

in 𝒜′(𝑒). If P e is not similar to 𝑄𝑒, then for each natural number 𝑛, 𝑃 ⊕ 0ℋ(𝑛) is not similar 

to 𝑄⊕ 0ℋ(𝑛). 

Proof. If not, there exist 𝑛 ∈ 𝑁 and 𝑋 ∈ 𝐺𝐿 (𝒜′(𝑒(𝑛+1))) satisfying 

𝑋(𝑃⊕ 0ℋ(𝑛))𝑋−1 = (𝑄⊕ 0ℋ(𝑛)). 
According to Lemma (3.1.12)  

(𝑃 ⊕ 0ℋ(𝑛))𝑒(𝑛+1) ∼ (𝑄⊕ 0ℋ(𝑛)𝑒(𝑛+1). 

Note that (𝑃 ⊕ 0ℋ(𝑛)𝑒(𝑛+1) ∼ 𝑃𝑒 and (𝑄 ⊕ 0ℋ(𝑛)𝑒(𝑛+1) ∼ 𝑄𝑒. Thus 𝑃𝑒 ∼ 𝑄𝑒, that 

contradicts 𝑃𝑒 ∼ 𝑄𝑒. 

Lemma (3.1.20)[58]: Let 𝑒: 𝛺 → 𝐺𝑟(𝑛,ℋ) is a holomorphic curve and ⋁ 𝑒(𝜆)𝜆∈𝛺 = ℋ, 

then the following are equivalent: 

(i) 𝑒 ∼⊕𝑖=1
𝑘 (𝑃𝑖𝑒)

(𝑛𝑖),ℋ =⊕𝑖=1
𝑘 ℋ𝑖

(𝑚𝑖), 𝑃𝑖:ℋ → ℋ𝑖 , 𝑃𝑖
2 = 𝑃𝑖 for 𝑘, 𝑛𝑖 < ∞, 𝑃𝑖𝑒 is 

indecomposable, 𝑃𝑖𝑒 ∼ 𝑃𝑗𝑒 for 𝑖 ≠ 𝑗, and 𝑒(𝑙) have a finite unique decomposition up 

to similarity for 𝑙 ∈ 𝑁. 

(ii) ⋁(𝒜′(𝑒)) ≅ 𝑁(𝑘) under the isomorphism h that sends [I ] to (𝑛1, 𝑛2, . . . , 𝑛𝑘), i.e., 

ℎ([𝐼]) = 𝑛1𝑒1 + 𝑛2𝑒2 +··· + 𝑛𝑘𝑒𝑘, where I is the unit of 𝒜′(𝑒) and 0 ≠ 𝑛𝑖 ∈ 𝑁 for 

𝑖 = 1, 2, . . . , 𝑘, {𝑒𝑖}𝑖=1
𝑘  are the generators of 𝑁(𝑘). 

Proof. (i) ⇒ (ii). Let E in 𝒜′(𝑒(𝑛)) be an idempotent, then 𝐸𝑒(𝑛) and (𝐼 − 𝐸)𝑒(𝑛) have 

finite decompositions.  

If {𝑄1, . . . , 𝑄𝑎} is a decomposition of 𝐸𝑒(𝑛) and {𝑄𝑎+1, . . . , 𝑄𝑏} is a decomposition of 

(𝐼 − 𝐸)𝑒(𝑛), then {𝑄1, . . . , 𝑄𝑏} is a decomposition of 𝑒(𝑛). Since we also have a 

decomposition of 𝑒(𝑛) using nni copies of each of projections 𝑃𝑖, the uniqueness implies that 

there is 𝑋 ∈ 𝐺𝐿 (𝒜′(𝑒(𝑛))) such that 𝑋𝑄𝑗𝑋
−1 = 𝑃𝑖. Since 𝐸 = 𝑄1 + 𝑄2 +··· + 𝑄𝑎, there 

are integers 𝑚𝑖 , 0 ⩽ 𝑚𝑖 ⩽ 𝑛𝑛𝑖 , 𝑋𝐸𝑋
−1 = ∑ 𝑃𝑖

(𝑚𝑖)𝑘
𝑖=1 . Define a map ℎ: ⋁(𝒜′(𝑒)) → 𝑁(𝑘) 

by  

ℎ([𝐸]) = (𝑚1, 𝑚2, . . . , 𝑚𝑘). 
To see that h is well defined, we observe that if [𝐸] = [𝐹], then  

𝐹 ∼ 𝐸 ∼∑𝑃𝑖
(𝑚𝑖)

𝑘

𝑖=1

. 
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If F can be similar at most to one projection of the form ∑ 𝑃𝑖
(𝑚𝑖)𝑘

𝑖=1 , it follows that if 

ℎ([𝐹]) = ℎ([𝐸]), then 𝐹 ∼ 𝐸, so h is one-to-one. For any k-tuple (𝑚1, 𝑚2, . . . , 𝑚𝑘) of 

nonnegative integers, we can find n so that 𝑚𝑖 ⩽ 𝑛𝑛𝑖 for all i and then h sends ∑ 𝑃𝑖
(𝑚𝑖)𝑘

𝑖=1  

to (𝑚1, . . . , 𝑚𝑘). This shows that h is onto. Thus, ⋁(𝒜′(𝑒)) ≅ 𝑁𝑘 and by our construction, 

ℎ([𝐼]) = (𝑛1, . . . , 𝑛𝑘). 

(ii)⇒(i). Suppose ⋁(𝒜′(𝑒)) ≅ 𝑁(𝑘) and h is the isomorphism, then there exist a natural 

number 𝑟 and 𝑄1, . . . , 𝑄𝑘 , 𝑘 idempotents of 𝒜′(𝑒(𝑟)), satisfying ℎ([𝑄𝑖]) = 𝑒𝑖 , 1 ⩽ 𝑖 ⩽ 𝑘. 

Since ⋁(𝒜′(𝑒(𝑛))) ≅ ⋁(𝒜′(𝑒)), we need only to prove that e has a unique finite 

decomposition up to similarity. At first, we will prove the following: 

(a) For an arbitrary idempotent 𝑃 ∈ 𝒜′(𝑒), if P e is indecomposable, then there exists i, 1 ⩽
𝑖 ⩽ 𝑘, satisfying ℎ([𝑃]) = 𝑒𝑖. 

Let ℎ([𝑃]) = ∑ 𝜆𝑖𝑒𝑖
𝑘
𝑖=1 = ∑ 𝜆𝑖ℎ([𝑄𝑖])

𝑘
𝑖=1  for 𝜆𝑖 ∈ 𝑁,𝜔 = 𝑟∑ 𝜆𝑖

𝑘
𝑖=1 , then we can find 

natural number 𝑛 > 𝜔 satisfying  

𝑃 ⊕ 0ℋ(𝑛−1) ∼ (𝒜′(𝑒(𝑛)))∑𝑄𝑖
(𝜆𝑖)

𝑘

𝑖=1

⊕0ℋ(𝑛−1) 

and  

(𝑃 ⊕ 0ℋ(𝑛−1))𝑒(𝑛) ∼ (∑𝑄𝑖
(𝜆𝑖)

𝑘

𝑖=1

⊕0ℋ(𝑛−1))𝑒(𝑛). 

So 𝑃𝑒 ∼ ∑ 𝑄𝑖
(𝜆𝑖)𝑒(𝜔)𝑘

𝑖=1 . Note that P e is indecomposable, but the right-hand side of this 

similarity is indecomposable only if one 𝜆𝑖 is 1 and the rest are zeros. Thus, there exists 

𝑖, 1 ⩽ 𝑖 ⩽ 𝑘, ℎ([𝑃]) = 𝑒𝑖.  

(b) For arbitrary idempotents P and Q in 𝒜′(𝑒(𝑛)), if ℎ([𝑃]) = ℎ([𝑄]), then 𝑃𝑒 ∼ 𝑄𝑒.  

Let {𝑃1, . . . , 𝑃𝑚} be a unit decomposition of e and ℎ([𝑃𝑖]) = ∑ 𝜆𝑖𝑗𝑒𝑗
𝑘
𝑖=1 , where 𝜆𝑖𝑗 ∈ 𝑁, then  

ℎ([𝐼 ]) = ℎ ([∑𝑃𝑖

𝑚

𝑖=1

]) =∑∑𝜆𝑖𝑗𝑒𝑗

𝑘

𝑗=1

𝑚

𝑖=1

. 

Note that ℎ([𝐼]) = ∑ 𝑛𝑖𝑒𝑖
𝑘
𝑖=1 , so that ∑ ∑ 𝜆𝑖𝑗

𝑘
𝑗=1

𝑚
𝑖=1 = ∑ 𝑛𝑖

𝑘
𝑖=1 , so 𝑚 ⩽ ∑ 𝑛𝑖

𝑘
𝑖=1 . This shows 

that e has a finite decomposition.  

Furthermore, let {𝑃1, . . . , 𝑃𝑡} be a unit decomposition of e, then  

ℎ (∑[𝑃𝑖]

𝑡

𝑖=1

) = ℎ([𝐼 ]) =∑𝑛𝑖𝑒𝑖

𝑘

𝑖=1

. 

By (a), 𝑡 = ∑ 𝑛𝑖
𝑘
𝑖=1  and for each 𝑖, 1 ⩽ 𝑖 ⩽ 𝑘, there exist 𝑃𝑖1 , . . . , 𝑃𝑖𝑛𝑖

∈ {𝑃1, . . . , 𝑃𝑡} 

satisfying ℎ([𝑃𝑖1]) =···= ℎ ([𝑃𝑖𝑛𝑖
]) = 𝑒𝑖. By (b), 𝑃𝑖𝑗𝑒 ∼ 𝑃𝑖𝑘𝑒, ∀1 ⩽ 𝑗, 𝑘 ⩽ 𝑛𝑖.  

𝑒 ∼∑𝑃𝑖
(𝑛𝑖)𝑒

𝑘

𝑖=1

. 

Suppose {𝑃1
′, . . . , 𝑃𝑠

′} is another unit decomposition of e, then in the same way we know 𝑟 =
∑ 𝑛𝑖
𝑘
𝑖=1  and for each 𝑖, 1 ⩽ 𝑖 ⩽ 𝑘, there exist 𝑛𝑖 idempotents in {𝑃1

′, . . . , 𝑃𝑠
′} and h sends each 

of them to 𝑒𝑖. By (b) again, if ℎ([𝑃𝑖]) = ℎ([𝑃𝑗]), 1 ⩽ 𝑖, 𝑗 ⩽ ∑ 𝑛𝑖
𝑘
𝑖=𝑗 , then 𝑃𝑖𝑒 ∼ 𝑃𝑗𝑒. By 

Lemma (3.1.13), e has a unique finite decomposition up to similarity.  
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This completes the proof of Lemma (3.1.20). 

Let ℋ = 𝑙2, (𝛼0, 𝛼1, . . . ) ∈ 𝑙
2, (𝛼0, 𝛼1, . . . ) ∈ 𝑙

2. Define 𝑇𝑧
∗(𝛼0, 𝛼1, . . . ) = (𝛼1, 𝛼2, . . . ), and 

𝑇𝑧 is the adjoint of 𝑇𝑧
∗.  

Theorem (3.1.21)[58]: Let 𝑆 ∈ ℒ(ℋ) be a pure isometry operator, then S is unitary 

equivalent to ⊕𝑘=1
𝑙 𝑇𝑧, where 𝑙 = dim𝑘𝑒𝑟 𝑆∗. 

Let ℋ = 𝑙2, 𝑓(𝜆) = {(1, 𝜆, 𝜆2, . . . )}, then 𝑓:𝐷 → 𝐺𝑟(1,ℋ) is a holomorphic curve. By the 

Theorem (3.1.21) we can get  

Lemma (3.1.22)[58]: For 𝑃 ∈ 𝒜′(𝑓(𝑛)) an idempotent, if 𝑚 = dim𝑃𝑓(𝑛)(𝜆) for 𝜆 ∈ 𝐷, 

then there exists a unitary operator U such that  

(i) 𝑈(𝑃ℋ(𝑛)) = ℋ(𝑚)⊕0(𝑛−𝑚); 

(ii) let 𝑉 = 𝑈|𝑃ℋ(𝑛)  , then 𝑉𝑃𝑓(𝑛)(𝜆) = 𝑓(𝑚)(𝜆), ∀𝜆 ∈ 𝐷. 

Proof. Note that 𝑇𝑧
∗(1, 𝜆, 𝜆2, . . . ) = 𝜆(1, 𝜆, 𝜆2, . . . ), |𝜆| < 1. So 𝐾𝑒𝑟(𝑇𝑧

∗ − 𝜆) = 𝑓(𝜆) and 

𝐾𝑒𝑟(𝑇𝑧
∗(𝑛)

− 𝜆) = 𝑓(𝑛)(𝜆). 

Note that 𝑇𝑧, the adjoint of 𝑇𝑧
∗, is a pure isometry operator. Let 𝑃 ∈ 𝒜′ (𝑇𝑧

(𝑛)
) is an 

idempotent and 𝑆 = 𝑇𝑧
(𝑛)
|𝑟𝑎𝑛 𝑃′ and 𝑚 = dim𝑘𝑒𝑟 𝑆∗. 

At first, we shall prove that S is unitary equivalent to 𝑇𝑧
(𝑚)

. By the Theorem (3.1.21), S is 

unitarily equivalent to 𝑇𝑧
(𝑚)

. Thus there is a unitary operator 𝑉: 𝑃′ℋ(𝑛) → ℋ(𝑛) such that 

𝑉 𝑆𝑉∗ = 𝑇𝑧
(𝑚)

. Note that if 𝑚 < 𝑛,ℋ(𝑛)⊕𝑃′ℋ(𝑚) is infinite dimensional. Therefore, 

there exists a unitary operator 𝑊:ℋ(𝑛)⊖𝑃′ℋ(𝑛) → ℋ(𝑛−𝑚). Let = 𝑉 ⊕𝑊,𝑉 = 𝑈|𝑟𝑎𝑛 𝑃′ 

, then 𝑈(𝑃′ℋ(𝑛)) = ℋ(𝑚)⊕0(𝑛−𝑚), 𝑉 𝑆𝑉∗ = 𝑇𝑧
(𝑚)

. 

Let 𝑄 = (𝐼
ℋ(𝑛)−𝑃
∗ , then 𝑄 ∈ 𝒜′ (𝑇𝑧

(𝑛)
) is an idempotent and  

(𝑄(𝑇𝑧)
(𝑛)𝑄)

∗
 =  (𝐼ℋ(𝑛) − 𝑃)(𝑇𝑧

∗)(𝑛) (𝐼ℋ
(𝑛)
− 𝑃). 

Thus (𝑇𝑧
(𝑛)
|𝑟𝑎𝑛𝑄)

∗
= (𝑇𝑧

∗)(𝑛)|
𝑟𝑎𝑛(𝐼

ℋ(𝑛)−𝑃
)
.  

Since 𝑃 ∈ 𝒜′(𝑇𝑧
∗(𝑛)), dim𝐾𝑒𝑟 (𝑇𝑧

(𝑛)
|𝑟𝑎𝑛𝑄)

∗
= dim 𝐾𝑒𝑟((𝑇𝑧

∗)(𝑛)|
𝑟𝑎𝑛(𝐼

ℋ(𝑛)−𝑃
)
= 𝑛 −𝑚.  

From the above proof, we know that there exists a unitary operator 𝑈1 such that  

𝑈1(𝑄ℋ
(𝑛)) = ℋ(𝑛−𝑚)⊕ℋ(𝑚) and   𝑈1(𝑄(𝑇𝑧)

(𝑛)𝑄)𝑈1
∗ = [𝑇𝑧

(𝑛−𝑚)
∗

0 0
]ℋ

(𝑛−𝑚)

ℋ(𝑚)
. 

Thus  

𝑈1𝑃 𝑈1
  ∗  = [

0 0
∗ 𝐼ℋ(𝑚)

]ℋ
(𝑛−𝑚)

ℋ(𝑚)
   𝑎𝑛𝑑  𝑈1𝑃 𝑇𝑧

∗(𝑛)𝑃 𝑈1
  ∗  = [

0 0

∗ 𝑇𝑧
∗(𝑚)]

ℋ(𝑛−𝑚)

ℋ(𝑚)
. 

Define 𝑈2:ℋ
(𝑛) = ℋ(𝑛−𝑚)⊕ℋ(𝑚)

𝑜𝑛𝑡𝑜
→  ℋ(𝑚)⊕ℋ(𝑛−𝑚) by 𝑈2(𝑥 ⊕ 𝑦) = (𝑦 ⊕ 𝑥) for 

𝑥 ∈ ℋ(𝑛−𝑚) and 𝑦 ∈ ℋ(𝑚). Then 𝑈2 is a unitary operator. Let 𝑈 = 𝑈2𝑈1, then U satisfies:  

(i) 𝑈(𝑃ℋ(𝑛)) = ℋ(𝑚)⊕0(𝑛−𝑚), 𝑖. 𝑒. , 𝑈𝑃𝑈∗ = [
𝐼ℋ(𝑚) ∗

0 0
] ℋ

(𝑚)

ℋ(𝑛−𝑚)
; 

(ii) let 𝑉 = (𝑈|𝑟𝑎𝑛𝑃), 𝑉(𝑇𝑧
∗(𝑛)

𝑟𝑎𝑛𝑃)𝑉
∗  = 𝑇𝑧

∗(𝑚), then 𝑉𝑃𝑓(𝑛)(𝜆) = 𝑓(𝑚)(𝜆) for 𝜆 ∈ 𝐷. 

By Lemma (3.1.20), we obtain that ⋁(𝒜′(𝑓0(𝑛))) ≅ 𝑁,𝐾0 (𝒜
′(𝑓(𝑛))) ≅ 𝑍.  

Lemma (3.1.23)[58]: Let f is the holomorphic curve described before Lemma (3.1.20), then 

𝒜′(𝑓(𝑛)) ≅ 𝑀𝑛(ℋ
∞). 

Proof. It is obvious.  
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Theorem (3.1.24)[58]: (See [61].) Let Λ be an open connected subset of 𝐶𝑘, and f and 𝑓 be 

holomorphic maps from Λ to 𝐺𝑟(𝑛,ℋ) such that ⋁ 𝑓(𝜆)𝜆∈𝛬 = ⋁ 𝑓(𝜆)𝜆∈𝛬 = ℋ. Then f and 

𝑓 are congruent if and only if 𝐸𝑓 and 𝐸𝑓 are locally equivalent hermitian holomorphic vector 

bundles over Λ.  

Lemma (3.1.25)[58]: Let ℋ = 𝑙2, 𝑒: 𝛺 → 𝐺𝑟(1,ℋ),⋁ 𝑒(𝜆)𝜆∈𝛺 = and 𝑃 ∈ 𝒜′(𝑒(𝑛)) is an 

arbitrary idempotent. If dim𝑃𝑒(𝑛)(𝜆) = 𝑚, for 𝜆 ∈ 𝛺, then 𝑃 𝑒(𝑛) ∼ 𝑒(𝑚).  
Proof. Without loss of generality, we can assume that 𝐷 ⊆ 𝛺. Then we can find ℋ-valued 

holomorphic functions 𝑣(𝜆) and 𝑒(𝜆) on D to be the frames of 𝐸𝑒 and 𝐸𝑓 respectively. Set  

𝑣𝑘(𝜆) = (0, . . . , 0, 𝑣(𝜆), 0, . . . , 0), 
𝑒𝑘(𝜆) = (0, . . . , 0, 𝑒(𝜆), 0, . . . , 0), 𝑘 = 1, 2, . . . , 𝑛, 𝜆 ∈ 𝐷. 

Set 𝑃(𝜆) = 𝑃|𝑒(𝑛)(𝜆), then 𝑃(𝜆) = (𝑃𝑖𝑗(𝜆))
𝑛×𝑛

∈ 𝑀𝑛(ℋ
∞) is an idempotent. By Lemma 

(3.1.23), 𝑃(𝜆) ∈ 𝒜′(𝑓(𝑛)), so there is 𝑄 ∈ 𝒜′(𝑓(𝑛)) such that  

𝑄|𝑓(𝑛)(𝜆) = 𝑃(𝜆). 

Since dim𝑃𝑒(𝑛)(𝜆) = dim𝑄𝑓(𝑛)(𝜆) = 𝑚,∀𝜆 ∈ 𝐷, by Lemma (3.1.22), there exists a 

unitary operator U such that 𝑈(𝑄ℋ(𝑛)) = ℋ(𝑚)⊕0(𝑛−𝑚) and if let 𝑉 = 𝑈|𝑟𝑎𝑛𝑄, then 

𝑉𝑄(𝜆) = 𝑓(𝑚)(𝜆).  

Since 𝑈∗(ℋ(𝑚)⊕0(𝑛−𝑚)) = 𝑉∗(ℋ(𝑚)⊕0(𝑛−𝑚)) = 𝑄ℋ(𝑛), then 𝑈∗𝑒𝑖(𝜆) ∈ 𝑄(𝜆) ⊆

𝑓(𝑛)(𝜆), 1 ⩽ 𝑖 ⩽ 𝑚. So  

𝑈∗𝑒𝑖(𝜆) = 𝜆𝑖1𝑒1(𝜆) + 𝜆𝑖2𝑒2(𝜆) +··· +𝜆𝑖𝑛𝑒𝑛(𝜆), 1 ⩽ 𝑖 ⩽ 𝑚, 𝜆𝑖𝑗 ∈ 𝐶. 

Since 〈𝑒𝑖(𝜆), 𝑒𝑗(𝜆)〉 = 𝛿𝑖𝑗  〈𝑒(𝜆), 𝑒(𝜆)〉, 1 ⩽ 𝑖, 𝑗 ⩽ 𝑛 and 𝑈∗ is unitary, we have  

𝜆𝑖1(𝜆)𝜆𝑗1(𝜆)̅̅ ̅̅ ̅̅ ̅̅ +··· + 𝜆𝑖𝑛(𝜆)𝜆𝑗𝑛(𝜆)̅̅ ̅̅ ̅̅ ̅̅ = 𝛿𝑖𝑗 , 1 ⩽ 𝑖 ⩽ 𝑚, 𝜆 ∈ 𝐷.  

Since 𝑈𝑄(𝜆)𝑈∗𝑒𝑖(𝜆) = 𝑈𝑃 (𝜆)𝑈
∗𝑒𝑖(𝜆) = 𝐼ℋ(𝑚)(𝑒𝑖(𝜆)) = 𝑒𝑖(𝜆) for 1 ⩽ 𝑖 ⩽ 𝑚, 𝜆 ∈ 𝐷, 

then  

𝑃(𝜆)𝑈∗𝑒𝑖(𝜆) = 𝑈
∗𝑒𝑖(𝜆), 1 ⩽ 𝑖 ⩽ 𝑚, 𝜆 ∈ 𝐷. 

That means  

(𝑃𝑖𝑗(𝜆))
𝑛×𝑛

(𝜆𝑖1(𝜆), . . . , 𝜆𝑖𝑛(𝜆)) = (𝜆𝑖1(𝜆), . . . , 𝜆𝑖𝑛(𝜆)).                    (1) 

Let 𝜔𝑖(𝜆) = 𝜆𝑖1𝑣1(𝜆) + 𝜆𝑖2𝑣2(𝜆) +··· +𝜆𝑖𝑛𝑣𝑛(𝜆) for 1 ⩽ 𝑖 ⩽ 𝑚. Since   

〈𝑣𝑖(𝜆), 𝑣𝑗(𝜆)〉 = 𝛿𝑖𝑗〈𝑣(𝜆), 𝑣(𝜆)〉 

then 〈𝜔𝑖(𝜆), 𝜔𝑗(𝜆)〉 = 𝛿𝑖𝑗〈𝑣(𝜆), 𝑣(𝜆)〉 for 1 ⩽ 𝑖 ≠ 𝑗 ⩽ 𝑚. From (1) we can see that 

𝑃(𝜆)𝜔𝑖(𝜆) = 𝜔𝑖(𝜆), then 𝜔𝑖(𝜆) ∈ 𝑃𝑒
(𝑛)(𝜆) and (𝜔1(𝜆), . . . , 𝜔𝑛(𝜆)) forms a holomorphic 

frame of 𝐸𝑃𝑒(𝑛). Define 𝑈(𝜆): 𝑒(𝑚)(𝜆) → 𝑃𝑒(𝑛)(𝜆) as follows:  

𝑈(𝜆)𝑣𝑖(𝜆) = 𝜔𝑖(𝜆), 1 ⩽ 𝑖 ⩽ 𝑚, 
and note that  

〈𝑈(𝜆)𝑣𝑖(𝜆), 𝑈(𝜆)𝑣𝑗(𝜆)〉 = 〈𝑣𝑖(𝜆), 𝑣𝑗(𝜆)〉 = 𝛿𝑖𝑗〈𝑣(𝜆), 𝑣(𝜆)〉, 1 ⩽ 𝑖, 𝑗 ⩽ 𝑚. 

Since 𝑈(𝜆) is a holomorphic isometric bundle map and ⋁ 𝑃𝑒(𝑛)(𝜆)𝜆∈𝐷 = 𝑃ℋ(𝑛), by the 

Theorem (3.1.24), we have 𝑃𝑒(𝑛) ∼ 𝑒(𝑚). 
Lemma (3.1.26)[58]: Let 𝑒: 𝛺 → 𝐺𝑟(1,ℋ) is a holomorphic curve and ⋁ 𝑒(𝜆)𝜆∈𝛺 = ℋ, 

then ⋁(𝒜′(𝑒)) ≅ 𝑁,𝐾0(𝒜
′(𝑒)) ≅ 𝑍. 

Proof. By Lemmas (3.1.25) and (3.1.20), we can prove Lemma (3.1.26) immediately. 

Theorem (3.1.27)[58]: Let 𝒜,𝒜1 and 𝒜2 be Banach algebras and  

𝒜 = 𝒜1⊕𝒜2, 
then  
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⋁(𝒜) ≃⋁(𝒜1) ⊕⋁(𝒜2) , 𝐾0(𝒜) ≃ 𝐾0(𝒜1) ⊕ 𝐾0(𝒜2), 

⋁(𝑀𝑛(𝒜)) ≃⋁(𝒜)     and    𝐾0(𝑀𝑛(𝒜)) ≃ 𝐾0(𝒜), 

where “≃” means isomorphism.  

A (finite or infinite) sequence of Banach algebras and homomorphisms  

···→ 𝒜𝑛

𝜑𝑛
→ 𝒜𝑛+1

𝜑𝑛+1
→   𝒜𝑛+2 →··· 

is said to be exact if 𝐼𝑚(𝜑𝑛) = 𝐾𝑒𝑟(𝜑𝑛+1) for all n. An exact sequence of the form:  

0 → 𝐼
𝜑
→𝒜

𝜓
→ℬ → 0 

is called short exact.  

We also need to characterize the commutant of 𝒜′(𝑓 ⊕ 𝑔), where 𝑓, 𝑔: 𝛺 → 𝐺𝑟(𝑛,ℋ) are 

holomorphic curves. In fact, let 𝑃 ∈ ℒ(ℋ⊕ℋ), then   

[
𝑃11 𝑃12
𝑃21 𝑃22

] [
𝑓(𝜆)

𝑔(𝜆)
] = [

𝑃11𝑓(𝜆) + 𝑃12𝑔(𝜆)

𝑃21𝑓(𝜆) + 𝑃22𝑔(𝜆)
] , ∀𝜆 ∈ 𝛺. 

Let ker 𝜏𝑓,𝑔 ≜ {𝑄 ∈ ℒ(ℋ)|𝑄𝑓(𝜆) ⊆ 𝑔(𝜆), ∀𝜆 ∈ 𝛺}. Then  

𝒜′(𝑓 ⊕ 𝑔) = [
𝒜′(𝑓) ker 𝜏𝑓,𝑔
ker 𝜏𝑔,𝑓 𝒜′(𝑔)

]. 

Let 𝒜 be a unital Banach algebra and let 𝒥 be its ideal, then we have the following 

standard exact sequence:  

0 → 𝒥
𝑖
→𝒜

𝜋
→𝒜/𝒥 → 0 

and the following exact cyclic sequence:  

 
Lemma (3.1.28)[58]: Let 𝑓1, 𝑓2: 𝛺 → 𝐺𝑟(1,ℋ) be indecomposable holomorphic curves. 

Assume that 𝑓1 ∼ 𝑓2 and 𝐹 = 𝑓1⊕𝑓2. Then there exists 𝒥 ∈ M(𝒜′(𝐹)) and 𝒥 is of the 

following form:  

𝒥 = [
𝒥11 ker 𝜏𝑓1,𝑓2

ker 𝜏𝑓2,𝑓1 𝒜′(𝑓2)
], 

where 𝒥11 ∈ M(𝒜′ (𝑓1)). 
Proof. Let 𝒥11 be a maximal ideal in 𝒜′(𝑓1), then we can prove that  

𝒥 = [
𝐽11 ker 𝜏𝑓1,𝑓2

ker 𝜏𝑓2,𝑓1 𝒜′(𝑓2)
]  

is a maximal ideal of 𝒜′(𝑓1⊕𝑓2). It is easy to see that 𝒥 is a proper ideal of 𝒜′(𝑓1⊕𝑓2) 
and if proper ideal 𝒥 ∈ 𝒜′(𝑓1⊕𝑓2) satisfies 𝒥 ⊂ 𝒥′, then 𝒥′ must be of the form:  

𝒥′ = [
𝒥11
′ ker 𝜏𝑓1,𝑓2

ker 𝜏𝑓2,𝑓1 𝒜′(𝑓2)
] 

where 𝒥11
′  is a proper ideal of 𝒜′(𝑓1) and 𝒥11 ⊂ 𝒥11

′ . This is a contradiction, since 𝒥11 is 

maximal. 

Theorem (3.1.29)[58]: Let f, 𝑔:𝛺 → 𝐺𝑟(1,ℋ) be two holomorphic curves, then 𝑓 ∼ 𝑔 if 

and only if 𝐾0(𝒜
′(𝑓 ⊕ 𝑔)) ≅ 𝑍.  

Proof. By Lemma (3.1.26),   

⋁(𝒜′(𝑓)) ≅⋁(𝒜′(𝑔)) ≅ 𝑁    and   𝐾0(𝒜
′(𝑓)) ≅ 𝐾0(𝒜

′(𝑔)) ≅ 𝑍. 
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Suppose 𝑓 ∼ 𝑔, then (𝑓 ⊕ 𝑔) ∼ 𝑓(2). So   

⋁(𝒜′(𝑓 ⊕ 𝑔)) ≅⋁(𝒜′(𝑓(2))) ≅⋁(𝑀2(𝒜
′(𝑓))) ≅ 𝑁 𝑎𝑛𝑑 𝐾0(𝒜

′(𝑓 ⊕ 𝑔) ≅ 𝑍. 

In order to prove the “if” part, we shall introduce the following notations and results. 

Proof of the “if” part. We need only to show that if 𝑓 ≁ 𝑔, then 𝐾0(𝒜
′(𝑓 ⊕ 𝑔)) ≠ 𝑍. 

Otherwise, we assume that 𝐾0(𝒜
′(𝑓 ⊕ 𝑔) ≅ 𝑍. Since 𝑓 ≁ 𝑔, there exists a maximal ideal 

𝒥 in 𝒜′(𝑓 ⊕ 𝑔) such that 𝒜′(𝑓 ⊕ 𝑔)/𝒥 ≅ 𝐶, where  

𝒥 = [
𝒥′ ker 𝜏𝑓,𝑔

ker 𝜏𝑔,𝑓 𝒜′(𝑔)
] 

and 𝒥′ is a maximal ideal of 𝒜′(𝑓). Since 𝒥+̇1 ≅ 𝒜′(𝑓 ⊕ 𝑔) is stable finite, we know that 

𝐾0(𝒥) ≠ 0. By 𝒜′(𝑓 ⊕ 𝑔)/𝒥 ≅ 𝐶, we also have the following separating exact sequence:  

0 → 𝒥
𝑙
→𝒜′(𝑓 ⊕ 𝑔)𝜋

⇋
𝜆

 𝒜′(𝑓 ⊕ 𝑔)/𝒥 → 0. 

By Proposition 8.3.6 in [60], we get the exact sequence:  

0 → 𝐾0(𝒥)
𝑙∗
→𝐾0(𝒜

′(𝑓 ⊕ 𝑔)
𝜋∗
→𝐾0(𝒜/𝒥) → 0. 

Note that 𝐾0(𝒜
′(𝑓 ⊕ 𝑔)) ≅ 𝐾0 (

𝒜

𝐽
) ≅ 𝑍, therefore 𝐾0(𝒥) = 0. This contradicts 𝐾0(𝒥) ≠

0. 

We always assume that ⋁ 𝑓(𝜆)𝜆∈𝛺 = ℋ and if ∀𝑃 ∈ 𝒜′(𝑓) is an idempotent, then 

𝜎(𝑃(𝜆)) = 𝜎(𝑃|𝑓(𝜆)) for 𝜆 ∈ 𝛺 is connected, for each holomorphic curve 𝑓: 𝛺 →

𝐺𝑟(𝑛,ℋ), where 𝜎(𝑃(𝜆)) denotes the spectrum of 𝑃(𝜆). 
Example (3.1.30)[58]: Let 𝑇 ∈ 𝐵1(𝛺), then for each natural number n (1 ⩽ 𝑛 ⩽ ∞), we 

define  

𝐴 = [

𝑇 𝐼 ··· 0
0 𝑇 ⋱ 0
0 ··· ⋱ 𝐼
0 ··· 0 𝑇

]

𝑛×𝑛

. 

Let 𝑓 (𝜆) = 𝐾𝑒𝑟(𝐴 − 𝜆) for 𝜆 ∈ 𝛺, then 𝑓: 𝛺 → 𝐺𝑟(𝑛,ℋ) is a holomorphic curve and 

⋁ 𝑓(𝜆)𝜆∈𝛺 = ℋ, and if ∀𝑃 ∈ 𝒜′(𝑓) is an idempotent, then 𝜎(𝑃(𝜆)) = 𝜎 (𝑃|𝑓(𝜆)) is 

connected.  

Without loss of generality, we assume that 𝑛 = 2, then 𝐴 = [
𝑇 𝐼
0 𝑇

]. We can prove that 

𝐾𝑒𝑟(𝑇 − 𝜆)⊕ 𝐾𝑒𝑟(𝑇 − 𝜆) ⊆ {(𝑥, 𝑦)|𝑦 ∈ 𝐾𝑒𝑟(𝑇 − 𝜆), (𝑇 − 𝜆)𝑥 = 𝑦} = 𝐾𝑒𝑟(𝐴 − 𝜆)  

⊆  𝐾𝑒𝑟(𝑇 − 𝜆)(2)⊕  𝐾𝑒𝑟(𝑇 − 𝜆).                                                                        (2) 
For ∀𝑃 ∈ 𝒜′(𝑓), 𝑥 ∈ 𝐾𝑒𝑟(𝐴 − 𝜆), (𝐴 − 𝜆)𝑃 𝑥 = 𝑃 (𝐴 − 𝜆)𝑥 = 0. Since ⋁ 𝐾𝑒𝑟(𝐴 −𝜆∈𝛺

𝜆) = ℋ, then we can assume that 𝑦 = ∑ 𝑥𝛼𝛼∈𝐼 ∈ ℋ, 𝑥𝛼 ∈ 𝐾𝑒𝑟(𝐴 − 𝜆𝛼) for 𝜆𝛼 ∈ 𝛺. So  

(𝐴 − 𝜆𝛼)𝑃𝑥𝛼 = 𝑃(𝐴 − 𝜆𝛼)𝑥𝛼 = 0, 𝑖. 𝑒., (𝐴𝑃 − 𝑃 𝐴)𝑥𝛼 = 0 

and (𝐴𝑃 − 𝑃 𝐴)𝑦 = (𝐴𝑃 − 𝑃 𝐴)∑ 𝑥𝛼𝛼∈𝐼 = 0 for 𝑦 ∈ ℋ.  

Let 𝑃 = [
𝑝11 𝑝12
𝑝21 𝑝22

], then   

[
𝑝11 𝑝12
𝑝21 𝑝22

] [
𝑇 𝐼
0 𝑇

] = [
𝑝11𝑇 𝑝11 + 𝑝12𝑇
𝑝21𝑇 𝑝21 + 𝑝22𝑇

], 

[
𝑇 𝐼
0 𝑇

] [
𝑝11 𝑝12
𝑝21 𝑝22

] = [
𝑇𝑝11 + 𝑝21 𝑇𝑝12 + 𝑝22
𝑇𝑝21 𝑇𝑝22

]. 

So 𝑝11 = 𝑝22 ∈ 𝒜
′(𝑇), 𝑝12 ∈ 𝒜

′(𝑇), 𝑝21 = 0. Since P is an idempotent, then 𝑝11, 𝑝22 are 

both idempotents.  
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By the above proof and Lemmas 1.22 and 1.23 in [61], we know 𝜎(𝑃(𝜆)) is a singleton for 

𝜆 ∈ 𝛺. 

Lemma (3.1.31)[58]: Let 𝑓: 𝛺 → 𝐺𝑟(𝑛,ℋ) is a holomorphic curve, then 𝒜′(𝑓)/𝑟𝑎𝑑𝒜′(𝑓) 
is commutative.  

Proof. Since 𝜎 (𝑃(𝜆)) is connected, let A and B be in 𝒜′(𝑓), then we have  

𝜎((𝐴𝐵 − 𝐵𝐴)(𝜆)) = 𝜎(𝐴(𝜆)𝐵(𝜆) − 𝐵(𝜆)𝐴(𝜆)) = {0}, 𝜆 ∈ 𝛺. 
Hence there is a positive integer 𝑚 ⩽ 𝑛 such that  

(𝐴(𝜆)𝐵(𝜆) − 𝐵(𝜆)𝐴(𝜆))
(𝑚)

= 0, 𝜆 ∈ 𝛺. 

Since ⋁ 𝑓(𝜆)𝜆∈𝛺 = ℋ for 𝜆 ∈ 𝛺, then (𝐴𝐵 − 𝐵𝐴)(𝑚) = 0. So 𝒜′(𝑓)/𝑟𝑎𝑑 𝒜′(𝑓) is 

commutative [59]. 

Lemma (3.1.32)[58]: Let 𝑓: 𝛺 → 𝐺𝑟(𝑛,ℋ) and {𝑃1, 𝑃2, . . . , 𝑃𝑚} is a unit decomposition of 

𝑓(𝑙), then 𝑚 = 𝑙 and dim𝑃𝑖𝑓
(𝑙)(𝜆) = 𝑛, 𝑖 = 1, 2, . . . , 𝑚 for 𝜆 ∈ 𝛺. 

Proof. At first, we show that 𝑚 ⩽ 𝑙. By Lemma (3.1.31), 𝒜′(𝑓)/𝑟𝑎𝑑𝒜′(𝑓) is commutative. 

By the Gelfand Theorem, there exists a continuous natural homomorphism 𝜑 from 𝒜′(𝑓) 

into 𝐶 (𝑀(𝒜′(𝑓))), where 𝑀(𝒜′(𝑓)) denotes the maximal ideal space of 𝒜′(𝑓). So 𝜑 can 

induce a continuous homomorphism ψ from 𝒜′(𝑓(𝑙)) into 𝑀𝑙 (𝑀(𝒜
′(𝑓))) defined by  

𝜓(𝑆)(𝐽) = (𝜓(𝑆𝑖𝑗)(𝒥))
𝑙×𝑙
, ∀𝑆 = (𝑆𝑖𝑗)𝑙×𝑙 ∈ 𝒜

′(𝑓(𝑙)) 𝑎𝑛𝑑 𝒥 ∈ M (𝒜′(𝑓)). 

Set 𝑃𝑘 = (𝑃𝑖𝑗)𝑙×𝑙 for 𝑘 = 1, 2, . . . , 𝑚. Then 𝜓(𝑃𝑘)(𝒥) = (𝜑(𝑃𝑖𝑗
𝑘)(𝒥))

𝑙×𝑙
. Set  

𝑡𝑟(𝜓(𝑃𝑘)(𝒥) =∑𝜓(𝑃𝑖𝑖
𝑘)(𝒥)

𝑙

𝑖=1

. 

Then 𝑡𝑟(. ) defines a continuous function on M(𝒜′(𝑓)). Since 𝐴′(𝑓)/𝑟𝑎𝑑𝒜′(𝑓) is 

commutative and f is indecomposable, M(𝒜′(𝑓)) is connected, by Proposition (3.1.7)7 of 

[70]. Since 𝜓(𝑃𝑘)(𝒥) is an idempotent, 𝑡𝑟(𝜓(𝑃𝑘)(𝒥)) ≡ 𝑛𝑘 ⩾ 1. Note that ∑ 𝑃𝑘
𝑚
𝑘=1 = 𝐼 

and 𝑃𝑘𝑃𝑘′ = 𝛿𝑘𝑘′𝑃𝑘; we have ∑ 𝑡𝑟(𝜓(𝑃𝑘)(𝒥))
𝑚
𝑘=1 = 𝑙. Hence  

∑𝑡𝑟(𝜓(𝑃𝑘))(𝒥)

𝑚

𝑘=1

=∑𝑛𝑘

𝑚

𝑘=1

= 𝑙. 

So 𝑚 ⩽ 𝑙.  

Now we show that dim𝑃𝑖𝑓
(𝑙)(𝜆) = 𝑛. Otherwise, we may assume that  

dim𝑃𝑖𝑓
(𝑙+1)(𝜆) = 𝑘      𝑎𝑛𝑑   𝑘 < 𝑛. 

Let 𝑆 = 𝑓 ⊕ 𝑃𝑖𝑓
(𝑙+1). We can find an 𝒥1 ∈ M(𝒜′(𝑆)) such that  

𝒜′(𝑆)/𝒥1 ≅ 𝐶, 
and  

𝒜′(
𝑓(𝑙+1)

𝒥
≅ 𝑀𝑙+1(𝐶)   for   𝒥 ∈ M (𝒜′(𝑓(𝑙+1))). 

Note that  

𝑓(𝑙+1) ∼ 𝑓 ⊕ 𝑃1𝑓 ⊕···⊕ 𝑃𝑚𝑓    and    𝑚 ⩽ 𝑙; 

we can find 𝒥_2 ∈ M (𝒜′(𝑓(𝑙+1))) such that  

𝒜′(𝑓(𝑙+1))/𝒥2 ≅ 𝑀𝑑(𝐶)    and    𝑑 < 𝑙 + 1. 
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This contradicts 𝒜′(𝑓(𝑙+1))/𝒥 ≅ 𝑀𝑙+1(𝐶). Similarly, we can show that it is impossible for 

𝑘 ⩾ 𝑛. So 𝑘 = 𝑛 and 𝑚 = 𝑙. We complete the proof of Lemma (3.1.32). 

Similarly to the proof of Lemma (3.1.23), we have  

Lemma (3.1.33)[58]: Let {𝑃𝑘(𝜆)}𝑘=1
𝑚  be a family of holomorphic idempotent elements in 

𝑀𝑛(ℋ
∞(𝐷)) such that ∑ 𝑃𝑘(𝜆)

𝑚
𝑘=1 = 𝐼𝑛, and 𝑃𝑖(𝜆)𝑃𝑗(𝜆) = 𝛿𝑖𝑗𝑃𝑗(𝜆) for 1 ⩽ 𝑖, 𝑗 ⩽ 𝑚 and 

𝜆 ∈ 𝛺. Then there exists a holomorphic invertible element 𝑋(𝜆) ∈ 𝑀𝑛(ℋ
∞(𝛺)) such that  

𝑋−1(𝜆)𝑃𝑗(𝜆)𝑋(𝜆) = 𝐼𝐶𝑘𝑗 ⊕0𝑛−𝑘 

and 𝑋(𝜆)|𝑟𝑎𝑛𝑃𝑗(𝜆) is a holomorphic isometric bundle map from 𝑟𝑎𝑛 𝑃𝑗(𝜆) onto 𝑓(𝑘)(𝜆), 

where 𝑓(𝜆) = ⋁{(1, 𝜆, 𝜆2, . . . )} for 𝑗 = 1, 2, . . . , 𝑚 and 𝑘𝑗 = 𝑟𝑎𝑛𝑘 𝑃𝑗(𝜆). 

Lemma (3.1.34)[58]: Let 𝑓: 𝛺 → 𝐺𝑟(𝑛,ℋ), 𝐹 = 𝑓(𝑛) and P is an idempotent operator in 

𝒜′(𝐹) satisfying P F is indecomposable. Then P F is similar to f.  

Proof. Without loss of generality, we may assume that ℋ = 𝑙2, 𝑒(𝜆) =
⋁{(1, 𝜆, 𝜆2, . . . )}, 𝛺 = 𝐷. We will prove Lemma (3.1.34) only in the case 𝑛 = 2. Now, 𝐹 =
𝑓 ⊕ 𝑓. Note that P is an idempotent in 𝒜′(𝐹); we can find an idempotent 𝑃1 in 𝒜′(𝐹) and 

B in 𝑟𝑎𝑑 𝐴′(𝐹) such that 𝑃(𝜆) = 𝑃1(𝜆) + 𝐵(𝜆), where  

𝑃1(𝜆) = [
𝑓11(𝜆) 𝑓12(𝜆)

𝑓21(𝜆) 𝑓22(𝜆)
]
𝑓(𝜆)

𝑓(𝜆)
, 𝐵(𝜆) = [

𝐵11(𝜆) 𝐵12(𝜆)

𝐵21(𝜆) 𝐵22(𝜆)
]
𝑓(𝜆)

𝑓(𝜆)
, 

where scalar function 𝑓𝑖𝑗(𝜆) ∈ ℋ
∞(𝐷) and 𝐵𝑖𝑗  (𝜆) ∈ 𝑟𝑎𝑑 𝒜

′(𝑓). Set 𝐺 = −𝐼ℋ(2) +
(2𝑃1 + 𝐵). Since 𝐵 ∈ 𝑟𝑎𝑑 𝒜′(𝐹), G is an invertible operator in 𝒜′(𝐹) and 𝑃𝐺 = 𝐺𝑃1. This 

shows 𝐺−1𝑃𝐺 = 𝑃1 ∈ 𝒜
′(𝐹). Without loss of generality, we now assume that 𝑃 = 𝑃1. That 

is  

𝑃(𝜆) = [
𝑓11(𝜆) 𝑓12(𝜆)

𝑓21(𝜆) 𝑓22(𝜆)
]
𝑓(𝜆)

𝑓(𝜆)
. 

Also set  

𝑃′(𝜆) = [
𝑓11(𝜆) 𝑓12(𝜆)

𝑓21(𝜆) 𝑓22(𝜆)
]
𝑒(𝜆)

𝑒(𝜆)
. 

Since P F is indecomposable and by Lemma (3.1.32), we can show that dim𝑃𝐹(𝜆) = 𝑛 and 

𝑡𝑟(𝑃′(𝜆)) = 1 for each 𝜆 ∈ 𝐷. By Lemma (3.1.33), we can find a holomorphic invertible 

element 𝑋(𝜆) ∈ 𝑀2(ℋ
∞(𝐷)) such that  

𝑋(𝜆)𝑃′(𝜆)𝑋−1(𝜆) = [
𝐼𝐶 0
0 0

], 

𝑋(𝜆)(𝐼 − 𝑃′(𝜆))𝑋−1(𝜆) = [
0 0
0 𝐼𝐶

]. 

𝑋(𝜆)|𝑟𝑎𝑛 𝑃′(𝜆) and 𝑋(𝜆)|𝑟𝑎𝑛(𝐼−𝑃)′(𝜆) are holomorphic isometric bundle maps from 

𝑟𝑎𝑛 𝑃′(𝜆) and 𝑟𝑎𝑛(𝐼 − 𝑃′(𝜆)) onto 𝑒(𝜆), respectively.  

Set  

𝑋(𝜆) = [
𝑢11(𝜆) 𝑢12(𝜆)

𝑢21(𝜆) 𝑢22(𝜆)
], 

and  

𝑋̂(𝜆) = [
𝑢11(𝜆)𝐼𝑓(𝜆) 𝑢12(𝜆)𝐼𝑓(𝜆)
𝑢21(𝜆)𝐼𝑓(𝜆) 𝑢22(𝜆)𝐼𝑓(𝜆)

]. 

Then  

𝑋̂(𝜆)𝑃(𝜆)𝑋̂−1(𝜆) = [
𝐼𝑓(𝜆) 0

0 0
]. 



82 

Note that 𝑋̂(𝜆)𝑓(2)(𝜆) = 𝑓(2)(𝜆). Now we claim that 𝐺̂(𝜆) = 𝑋̂(𝜆)|
𝑟𝑎𝑛 𝑃(𝜆)

 is a 

holomorphic isometric bundle map from 𝑟𝑎𝑛 𝑃(𝜆) onto 𝑓(𝜆). 
Note that 𝐺(𝜆) = 𝑋(𝜆)|𝑟𝑎𝑛 𝑃′(𝜆) is a holomorphic isometric bundle map from 𝑟𝑎𝑛 𝑃′(𝜆) 

onto 𝑒(𝜆). Let 𝑡1(𝜆) = 𝑒(𝜆)⊕ 0 and 𝑡2(𝜆) = 0⊕ 𝑒(𝜆). Then (𝑡1(𝜆), 𝑡2(𝜆)) is a 

holomorphic frame of 𝑒(2)(𝜆). Let 𝑙(𝜆) be a holomorphic frame of 𝐸𝑃′𝑒(2). Then  

𝑙(𝜆) = 𝛼(𝜆)𝑡1(𝜆) + 𝛽(𝜆)𝑡2(𝜆), 
where 𝛼(𝜆) and 𝛽(𝜆) are analytic functions on D.  

Since 𝐺(𝜆) is a holomorphic isometry, we can find a holomorphic function 𝐶(𝜆) on D such 

that 𝐺(𝜆)𝑙(𝜆) = 𝐶(𝜆)𝑒(𝜆) and  

‖𝑙(𝜆)‖2 = (|𝛼(𝜆)|2 + |𝛽(𝜆)|2)‖𝑒(𝜆)‖2 = |𝐶(𝜆)|2‖𝑒(𝜆)‖2 = ‖𝐺(𝜆)𝑙(𝜆)‖2, 𝜆 ∈ 𝐷. 
Let (𝑆1(𝜆), . . . , 𝑆𝑛(𝜆)) be a holomorphic frame of 𝐸𝑓(𝜆), 𝑣𝑗(𝜆) = 𝑆𝑗(𝜆) ⊕ 0 and 𝑢𝑗(𝜆) =

0⊕ 𝑆𝑗(𝜆) for 𝑗 = 1, 2, . . . , 𝑚. Then (𝑣1(𝜆), . . . , 𝑣𝑛(𝜆), 𝑢1(𝜆), . . . , 𝑢𝑛(𝜆)) is a holomorphic 

frame 𝐸𝐹.  

Set 𝑓𝑗(𝜆) = 𝛼(𝜆)𝑣𝑗(𝜆) + 𝛽(𝜆)𝑢𝑗(𝜆) for 𝑗 = 1, 2, . . . , 𝑛. Then (𝑓1(𝜆), . . . , 𝑓𝑛(𝜆)) is a 

holomorphic frame of 𝐸𝑃𝐹 and set 𝐺̂(𝜆)𝑓𝑗(𝜆) = 𝐶(𝜆)𝑣𝑗(𝜆).  

Let 𝑘1(𝜆), . . . , 𝑘𝑛(𝜆) be analytic functions on D and  

𝑔(𝜆) = 𝑘1(𝜆)𝑓1(𝜆) +··· + 𝑘𝑛(𝜆)𝑓𝑛(𝜆)

= 𝑘1(𝜆)(𝛼(𝜆)𝑣1(𝜆) + 𝛽(𝜆)𝑢1(𝜆)) +··· +𝑘𝑛(𝜆)(𝛼(𝜆)𝑣𝑛(𝜆) + 𝛽(𝜆)𝑢𝑛(𝜆)). 
Then  

𝐺̂(𝜆)𝑔(𝜆) = 𝐶(𝜆)(𝑘1(𝜆)𝑣1(𝜆) +··· + 𝑘2(𝜆)𝑣2(𝜆) +··· +𝑘𝑛(𝜆)𝑣𝑛(𝜆)) = 𝑔
′(𝜆). 

Note that 〈𝑣𝑖(𝜆), 𝑣𝑗(𝜆)〉 = 〈𝑢𝑖(𝜆), 𝑢𝑗(𝜆)〉 = 〈𝑆𝑖(𝜆), 𝑆𝑗(𝜆)〉, 𝜆 ∈ 𝐷. So  

〈𝑔(𝜆), 𝑔(𝜆)〉 =∑|𝑘𝑖(𝜆)|
2(|𝛼(𝜆)|2 + |𝛽(𝜆)|2)‖𝑆𝑖(𝜆)‖

2

𝑛

𝑖=1

+ ∑ 𝑘𝑖(𝜆)𝑘𝑗(𝜆)̅̅ ̅̅ ̅̅ ̅(|𝛼(𝜆)|2 + |𝛽(𝜆)|2)〈𝑆𝑖 , 𝑆𝑗〉

𝑛

𝑖,𝑗=1

, 

also  

〈𝑔′(𝜆), 𝑔′(𝜆)〉 =∑|𝑘𝑖(𝜆)|
2|𝐶(𝜆)|2‖𝑆𝑖(𝜆)‖

2

𝑛

𝑖=1

+ ∑ 𝑘𝑖(𝜆)𝑘𝑗(𝜆)̅̅ ̅̅ ̅̅ ̅|𝐶(𝜆)|2〈𝑆𝑖 , 𝑆𝑗〉

𝑛

𝑖,𝑗=1

. 

This shows that ‖𝐺̂(𝜆)𝑔(𝜆)‖ = ‖𝑔(𝜆)‖, and then our claim is verified.  

Similarly, we can deduce that 𝑋̂|
𝑟𝑎𝑛(𝐼−𝑃(𝜆))

 is a holomorphic isometric bundle map from 

𝑟𝑎𝑛(𝐼 − 𝑃(𝜆)) onto 𝑓(𝜆). By the Theorem (3.1.24), we can find two isometric operators 

𝑈1 ∈ ℒ(𝑃ℋ
(2),ℋ ⊕ 0) and 𝑈2 ∈ ℒ ((𝐼 − 𝑃)ℋ

(2), 0 ⊕ℋ) such that 𝑋 = 𝑈1 + 𝑈2 ∈

𝒜′(𝐹) and 𝑋𝑃𝑋−1 = 𝐼ℋ⊕0. So 𝑃𝐹 ∼ (𝐼ℋ⊕0)𝐹 ∼ 𝑓. This completes the proof of the 

lemma. 

Using Lemmas (3.1.20) and (3.1.34), we can immediately obtain the following:  

Lemma (3.1.35)[58]: Let 𝑒: 𝛺 → 𝐺𝑟(𝑛,ℋ) and 𝐸 = 𝑒(𝑛). Then E has a unique 

decomposition up to similarity and   

⋁(𝒜′(𝑒)) ≅ 𝑁, 𝐾0(𝒜
′(𝑒)) ≅ 𝑍. 

Using Lemmas (3.1.20) and (3.1.35), we have the following result similar to the proof of 

Theorem (3.1.29).  
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Theorem (3.1.36)[58]: Let 𝑓1 and 𝑓2: 𝛺 → 𝐺𝑟(𝑛,ℋ) be two indecomposable holomorphic 

curves satisfying ⋁ 𝑓𝑖(𝜆)𝜆∈𝛺 = ℋ and for 𝑃 ∈ 𝒜′(𝑓𝑖) an idempotent, 𝜎(𝑃(𝜆)) =

𝜎(𝑃|𝑓𝑖(𝜆)) is connected for 𝜆 ∈ 𝛺, 𝑖 = 1, 2. Then 𝑓1 ∼ 𝑓2 if and only if  

𝐾0(𝒜
′(𝑓1⊕𝑓2) ≅ 𝑍. 

Section (3.2): Hilbert Spaces of Holomorphic Functions 

A homogeneous operator on a Hilbert space ℋ is a bounded operator T whose 

spectrum is contained in the closure of the unit disc 𝔻 in ℂ and is such that 𝑔(𝑇) is unitarily 

equivalent to T for all linear fractional transformations g which map 𝔻 to 𝔻. This class of 

operators has been studied in [76], [78], [75], [83], [77], [82], [73], [80]. It is known that 

every homogeneous operator is a block shift, that is, ℋ is the orthogonal direct sum of 

subspaces 𝑉𝑛, indexed by all integers, all non-negative integers or all non-positive integers, 

such that 𝑇(𝑉𝑛) ⊆ 𝑉𝑛+1 for each n.  

The case where dim 𝑉𝑛 = 1 for each n is completely known, the corresponding operators 

have been classified in [77]. The classification in the case where dim𝑉𝑛 ≤ 2 and T belongs 

to the Cowen - Douglas class of 𝔻 is complete and the operators are explicitly described in 

[83]. Beyond this there are only some results of a general nature, and not too many examples 

are known (cf. [76]).  

We construct a large family of examples. For every natural number m we construct a family 

depending on 𝑚 + 1 parameters. Each one of the examples is realized as the multiplication 

operator on a reproducing kernel space of vector-valued holomorphic functions. All of these 

reproducing kernel Hilbert spaces admit a direct sum decomposition ⊕𝑛≥0 𝑉𝑛 with dim 𝑉𝑛 =
𝑛 +  1 if 0 ≤ 𝑛 < 𝑚 and dim𝑉𝑛 = 𝑚 + 1 for 𝑛 ≥ 𝑚. The reproducing kernels are described 

explicitly. All our examples are irreducible operators and their adjoints belong to the 

Cowen-Douglas class.  

We have chosen a presentation as elementary as possible, based on explicit computations. 

This seemed to be appropriate here since our goal was a complete explicit description of the 

examples. On the other hand, it does not explain the deeper background of the results. To 

remedy this situation we have added a final which discusses a more conceptual approach to 

the examples.  

The more conceptual approach will play a leading role in the sequel, where a description of 

all homogeneous Cowen-Douglas operators will be given albeit in a less explicit way than 

our present examples. 

The results are also the subject of a short note presented to the Comptes Rendus de 

l’Acad´emie des Sciences, Paris [81].  

We denote by 𝔻 the open unit disc in C and by G the group of Mobius transformations 

𝑧 ⟼
𝑎𝑧+𝑏

𝑏̅𝑧+𝑎̅
, |𝑎|2 − |𝑏|2 = 1. Let 𝐺0 be the group (1, 1) = {(

𝑎 𝑏
𝑏̅ 𝑎̅

): |𝑎|2 − |𝑏|2 = 1} . So, 

𝐺 = 𝐺0/{±𝐼}. We denote by 𝐺̃, the universal covering group of G.  

All Hilbert spaces ℋ considered will be spaces of holomorphic functions 𝑓:𝔻 → 𝑉 taking 

their values in a finite dimensional Hilbert space V and possessing a reproducing kernel K. 

A reproducing kernel is a function 𝐾:𝔻 × 𝔻 →  𝐻𝑜𝑚(𝑉, 𝑉) holomorphic in the first 

variable and anti-holomorphic in the second, such that 𝐾𝜔𝜁 defined by (𝐾𝜔𝜁)(𝑧):=
𝐾(𝑧, 𝜔)𝜁 is in ℋ for each ∈ 𝔻, 𝜁 ∈ 𝑉 , and  

〈𝑓, 𝐾𝜔𝜁〉ℋ = 〈𝑓(𝜔), 𝜁〉𝑉                                         (3) 
for all 𝑓 ∈ ℋ.  

As is well known, if {𝑒𝑛}𝑛=0
∞  is any orthonormal basis of ℋ, then we have  
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𝐾(𝑧,𝜔) = ∑𝑒𝑛(𝑧)𝑒𝑛(𝜔)
∗

∞

𝑛=0

                                   (4) 

with the sum converging pointwise. Here we interpret a formal product 𝜉𝜂∗ for 𝜉, 𝜂 ∈ 𝑉 as 

the transformation 𝜁 ⟼ 〈𝜁, 𝜂〉𝜉; when 𝑉 = ℂ𝑘, 𝑘 ∈ ℕ, and its elements are written as 

column vectors, 𝜉𝜂∗ is just the usual matrix product.  

We will be concerned with multiplier representations of 𝐺̃ on the Hilbert space ℋ. A 

multiplier is a continuous function 𝐽: 𝐺̃ × 𝔻 → 𝐻𝑜𝑚(𝑉, 𝑉), holomorphic on 𝔻, such that  

𝐽(𝑔ℎ, 𝑧) = 𝐽(ℎ, 𝑧)𝐽(𝑔, ℎ𝑧)                                     (5) 
for all 𝑔, ℎ ∈ 𝐺̃ and 𝑧 ∈ 𝔻. For 𝑔 ∈ 𝐺̃, we define 𝑈(𝑔) on on 𝐻𝑜𝑙(𝔻,𝑉) by  

 (𝑈(𝑔)𝑓)(𝑧) = 𝐽(𝑔−1, 𝑧)𝑓(𝑔−1(𝑧)).                                 (6) 
It is easy to see that the multiplier identity (5) is equivalent to 𝑈(𝑔ℎ) = 𝑈(𝑔)𝑈(ℎ).  
Suppose that the action 𝑔 ⟼ 𝑈(𝑔), 𝑔 ∈ 𝐺̃, defined in (6) preserves ℋ and is unitary on it, 

then we say that U is a unitary multiplier representation of 𝐺̃.  

Also, if the reproducing kernel K transforms according to the rule  

𝐽(𝑔, 𝑧)𝐾(𝑔(𝑧), 𝑔(𝜔))𝐽(𝑔,𝜔)∗ = 𝐾(𝑧,𝜔)                          (7) 

for all 𝑔 ∈ 𝐺̃; 𝑧, 𝜔 ∈ 𝔻, then we say that K is quasi-invariant.  

Proposition (3.2.1)[72]: Suppose ℋ has a reproducing kernel K. Then U defined by (6) is 

a unitary representation if and only if K is quasi-invariant. 

Proof. Assume that K is quasi-invariant. We have to show that the linear transformation U 

defined in (6) is unitary. We note, writing 𝜔̃ = 𝑔−1(𝜔′) and 𝜔̃′  = 𝑔−1 (𝜔′), 
〈𝑈(𝑔−1)𝐾(·, 𝜔)𝜉, 𝑈(𝑔−1)𝐾(·, 𝜔′)𝜂〉 = 〈𝐽(𝑔,·)𝐾(𝑔(·),𝜔)𝜉, 𝐽(𝑔,·)𝐾(𝑔(·), 𝜔′)𝜂〉

= 〈𝐾(·, 𝜔̃)𝐽(𝑔, 𝜔̃)∗−1𝜉, 𝐾(·, 𝜔̃′)𝐽(𝑔, 𝜔̃′)∗−1𝜂〉 
= 〈𝐾(𝜔̃′, 𝜔̃)𝐽(𝑔, 𝜔̃)∗−1𝜉, 𝐽(𝑔, 𝜔̃′)∗−1𝜂〉 = 〈𝐽(𝑔, 𝜔̃′)−1𝐾(𝜔̃′, 𝜔̃)𝐽(𝑔, 𝜔̃)∗−1𝜉, 𝜂〉

= 〈𝐾(𝜔′, 𝜔)𝜉, 𝜂〉 
and it follows that 𝑈(𝑔−1) is isometric.  

On the other hand, if U of (6) is unitary then the reproducing kernel K of the Hilbert space 

ℋ satisfies the transformation rule (7). A reproducing kernel K has the expansion (4). It 

follows from the uniqueness of the reproducing kernel that the expansion is independent of 

the choice of the orthonormal basis. Consequently, we also have 𝐾(𝑧, 𝜔) =
∑ (𝑈𝑔−1𝑒ℓ)(𝑧)(𝑈𝑔−1𝑒ℓ)(𝜔)

∗
ℓ=0  which verifies the equation (7).  

When we are in the situation of the Proposition and if we can prove that the operator M 

defined by (𝑀𝑓)(𝑧) = 𝑧𝑓(𝑧) is bounded on ℋ, then M is a homogeneous operator. This is 

wellknown and trivial: Clearly, (𝑔(𝑀)𝑓)(𝑧) = 𝑔(𝑧)𝑓(𝑧) and hence (𝑀𝑈(𝑔−1)𝑓)(𝑧) =

𝑧𝐽(𝑔, 𝑧)𝑓(𝑔(𝑧)) = 𝐽(𝑔, 𝑧)𝑔−1(𝑔(𝑧))𝑓(𝑔(𝑧)) = (𝑈(𝑔−1)(𝑔−1(𝑀))𝑓)(𝑧), for all 𝑔 ∈

𝐺̃, 𝑓 ∈ ℋ, 𝑧 ∈ 𝔻. If, in addition, dim𝑘𝑒𝑟(𝑀 − 𝜔𝐼)∗ = 𝑛 and the operator (𝑀 − 𝜔𝐼)∗ is 

bounded below, on the orthogonal complement of its kernel, for every 𝜔 ∈ 𝔻 then 𝑀∗ is in 

the Cowen-Douglas class (see [61]) 𝐵𝑛(𝔻).  
In the case of reproducing kernel Hilbert spaces of scalar functions (i.e. when dim𝑉 = 1) 

the unitary multiplier representations of 𝐺̃ are well-known. We describe them here because 

they will be used. They are the elements of the holomorphic discrete series depending on 

one real parameter 𝜆 > 0. They act on the Hilbert space 𝐴(𝜆)(𝔻) characterized by its 

reproducing kernel 𝐵𝜆(𝑧, 𝜔) = (1 − 𝑧𝜔̅)−2𝜆. Here 𝐵(𝑧, 𝜔) = (1 − 𝑧𝜔̅)−2 is the 

reproducing kernel of the Bergman space 𝐴2(𝔻), the Hilbert space of square integrable 

(with respect to normalized area measure) holomorphic functions on the unit disc 𝔻.  



85 

For 𝑔 ∈ 𝐺̃, 𝑔′(𝑧)𝜆 is a real analytic function on the simply connected set 𝐺̃ × 𝔻, 

holomorphic in z. Also 𝑔′(𝑧)𝜆 ≠ 0 since g is one-one and holomorphic. Given any 𝜆 ∈ ℂ, 

taking the principal branch of the power function when g is near the identity, we can 

uniquely define 𝑔′(𝑧)𝜆 as a real analytic function on 𝐺̃ × 𝔻 which is holomorphic on 𝔻 for 

all fixed 𝑔 ∈ 𝐺̃. The multiplier 𝑗𝜆(𝑔, 𝑧) = 𝑔
′(𝑧)𝜆 defines on 𝐴(𝜆)(𝔻) the unitary 

representation 𝐷𝜆
+ by the formula (6), that is,  

𝐷𝜆
+(𝑔−1)(𝑓) = (𝑔′)2𝜆(𝑓 ∘ 𝑔), 𝑓 ∈ 𝐴(𝜆)(𝔻), 𝑔 ∈ 𝐺̃.             (8) 

An orthonormal basis of the space is given by {√
(2𝜆)𝑛

𝑛!
𝑧𝑛}

𝑛≥0

, where (𝑥)𝑛 = 𝑥(𝑥 +

 1). . . (𝑥 + 𝑛 − 1) is the Pochhammer symbol. The operator M is bounded on the Hilbert 

space 𝐴(𝜆)(𝔻). It is easily seen to be in the Cowen-Douglas class 𝐵1(𝔻). 
Let 𝐻𝑜𝑙(𝔻, ℂ𝑘) denote the vector space of all holomorphic functions on 𝔻 taking 

values in 𝐶𝑘, 𝑘 ∈ ℕ. Let λ be a real number and m be a positive integer satisfying 2𝜆 −𝑚 >
0. For brevity, we will write 2𝜆𝑗 = 2𝜆 −𝑚 + 2𝑗. 

For each 𝑗, 0 ≤ 𝑗 ≤ 𝑚, define the operator 𝛤𝑗: 𝐴
(𝜆𝑗)(𝔻) → 𝐻𝑜𝑙(𝔻, ℂ𝑚+1) by the formula  

(𝛤𝑗𝑓)ℓ = {
(
ℓ
𝑗
)

1

(2𝜆𝑗)ℓ−𝑗

𝑓(ℓ−𝑗)        𝑖𝑓 ℓ ≥ 𝑗 

0                                        𝑖𝑓 ℓ < 𝑗,

 

for 𝑓 ∈ 𝐴(𝜆𝑗)(𝔻), 0 ≤ ℓ ≤ 𝑚. Here (𝛤𝑗𝑓)ℓ denotes the ℓth component of the function 𝛤𝑗𝑓 

and 𝑓(ℓ−𝑗) denotes the (ℓ − 𝑗)th derivative of the holomorphic function f.  

We denote the image of 𝛤𝑗 by 𝐴(𝜆𝑗)(𝔻) and transfer to it the inner product of 𝐴(𝜆𝑗)(𝔻), that 

is, we set 〈𝛤𝑗𝑓, 𝛤𝑗𝑔〉 = 〈𝑓, 𝑔〉, for 𝑓, 𝑔 ∈ 𝐴(𝜆𝑗)(𝔻). The Hilbert space 𝐴(𝜆𝑗)(𝔻) is a 

reproducing kernel space because the point evaluations 𝑓 ⟼ (𝛤𝑗𝑓)(𝜔) are continuous for 

each 𝜔 ∈ 𝔻. Let 𝐵(𝜆𝑗) denote the reproducing kernel for the Hilbert space 𝐴(𝜆𝑗)(𝔻). 

The algebraic sum of the linear spaces 𝐴(𝜆𝑗)(𝔻), 0 ≤ 𝑗 ≤ 𝑚 is direct. This is easily seen. If 

∑ 𝛤𝑗𝑓𝑗
𝑚
𝑗=0 = 0, 𝑓𝑗 ∈ 𝐴

(𝜆𝑗)(𝔻), then 𝑓0 = (𝛤0𝑓0)0 = 0 since (𝛤𝑗𝑓𝑗)0 = 0 for 𝑗 > 0. Similarly, 

𝑓1 = (𝛤1𝑓1)1 = 0 since (𝛤𝑗𝑓𝑗)1 = 0 for 𝑗 > 1. Continuing in thpositive numbersis fashion, 

we see that 𝑓𝑚 = 0. It follows that we can choose m positive numbers, µ𝑗  , 1 ≤ 𝑗 ≤ 𝑚, set 

µ0 = 1, write µ = (µ0, µ1, . . . , µ𝑚), and define an inner product on the direct sum of the 

𝐴(𝜆𝑗)(𝔻) by setting  

〈∑𝛤𝑗𝑓𝑗

𝑚

𝑗=𝑜

,∑𝛤𝑗𝑔𝑗

𝑚

𝑗=𝑜

〉 =∑µ𝑗
2〈𝑓𝑗 , 𝑔𝑗〉

𝑚

𝑗=0

, 𝑓𝑗 , 𝑔𝑗 ∈ 𝐴
(𝜆𝑗)(𝔻).            (9) 

We obtain a Hilbert space in this manner which we denote by 𝐴(𝜆,µ)(𝔻). It has the 

reproducing kernel 𝐵(𝜆,µ) = ∑ µ𝑗
2𝐵(𝜆𝑗)𝑚

𝑗=0 .  

The direct sum of the discrete series representations 𝐷𝜆𝑗
+  on ⊕𝑗=0

𝑚 𝐴(𝜆𝑗) can be transferred 

to 𝐴(𝜆𝑗)(𝔻) by the map 𝛤 =⊕𝑗=0
𝑚 µ𝑗𝛤𝑗. It is a unitary representation of the group 𝐺̃ which 

we call U. Its irreducible subspaces are the 𝐴(𝜆𝑗)(𝔻).  
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We will show that U is a multiplier representation. For each 𝐴(𝜆𝑗)(𝔻) separately this is fairly 

obvious by checking the effect of 𝛤𝑗. The important point is that the multiplier is the same 

on each 𝐴(𝜆𝑗)(𝔻). 
We need a relation between 𝑔′′(𝑧) and 𝑔′(𝑧). The elements of 𝐺0 are the matrices 

(
𝑎 𝑏
𝑏̅ 𝑎̅

) , |𝑎|2 − |𝑏|2 = 1, acting on 𝔻 by fractional linear transformations. The inequalities  

|𝑎 − 1| < 1/2, |𝑏| < 1/2                                          (10) 
determine a simply connected neighborhood 𝑈0 of e in 𝐺0. Under the natural projections, it 

is diffeomorphic with a neighborhood U of e in G and with a neighborhood 𝑈̃ of e in 𝐺̃. So, 

we may use a, b satisfying (10) to parametrize 𝑈̃. For 𝑔 ∈ 𝑈̃, 𝑧 ∈ 𝔻 we have 𝑔′(𝑧) =

(𝑏̅𝑧 + 𝑎̅)
−2

 and 𝑔′′(𝑧) = −2𝑏̅(𝑏̅𝑧 + 𝑎̅)
−3

, which gives a relation  

𝑔′′(𝑧) = −2𝑐𝑔′(𝑧)3/2,                                               (11) 

where 𝑐 = 𝑐𝑔 depends on g real analytically and is independent of z; the meaning of 𝑔′(𝑧)
3

2 

is as defined earlier. Since both sides are real analytic, (11) remains true on all of 𝐺̃ × 𝔻. 

Definition (3.2.2)[72]: Let 𝐽: 𝐺̃ × 𝔻 → ℂ𝑚+1×𝑚+1 be the function given by the formula  

𝐽(𝑔, 𝑧)𝑝,ℓ = {
(
𝑝
ℓ
) (−𝑐)𝑝−ℓ(𝑔′)𝜆−

𝑚
2
+
𝑝+ℓ
2 (𝑧)     𝑖𝑓 𝑝 ≥ ℓ 

0                                                       𝑖𝑓 𝑝 < ℓ,
          (12) 

for 𝑔 ∈ 𝐺̃. Here c is the constant depending on g as in (11) 

The following Lemma is used for showing that U is a multiplier representation.  

Lemma (3.2.3)[72]: For any 𝑔 ∈ 𝐺̃, we have the formula  

((𝑔′)ℓ(𝑓 ∘ 𝑔))
(𝑘)

=∑(
𝑘
𝑖
) (2ℓ + 𝑖)𝑘−𝑖(−𝑐)

𝑘−𝑖(𝑔′)ℓ+
𝑘+𝑖
2 (𝑓(𝑖) ∘ 𝑔)

𝑘

𝑖=0

. 

Proof. The proof is by induction, using the formula (11). For 𝑘 = 0, the formula is an 

identity. Assume the formula to be valid for some k. Then  

((𝑔′)ℓ (𝑓 ∘ 𝑔))
(𝑘+1)

=∑(
𝑘
𝑖
) (2ℓ + 𝑖)𝑘−𝑖(−𝑐)

𝑘−𝑖 {(ℓ +
𝑘 + 𝑖

2
) (𝑔′)ℓ+

𝑘+𝑖
2
−1𝑔′′(𝑓(𝑖) ∘ 𝑔)

𝑘

𝑖=0

+ (𝑔′)ℓ+
𝑘+𝑖
2 (𝑓(𝑖+1) ∘ 𝑔)𝑔′} 

=∑(
𝑘
𝑖
) (2ℓ + 𝑖)𝑘−𝑖(−𝑐)

𝑘−𝑖 {(2ℓ + 𝑘 + 𝑖)(−𝑐)(𝑔′)ℓ+
𝑘+𝑖+1
2 (𝑓(𝑖) ∘ 𝑔)

𝑘

𝑖=0

+ (𝑔′)ℓ+
𝑘+𝑖+2
2 (𝑓(𝑖+1) ∘ 𝑔)} 

=∑(
𝑘
𝑖
) (2ℓ + 𝑖)𝑘−𝑖(2ℓ + 𝑘 + 𝑖)(−𝑐)

𝑘+1−𝑖(𝑔′)ℓ+
𝑘+𝑖+1
2 (𝑓(𝑖) ∘ 𝑔)

𝑘

𝑖=0

+∑(
𝑘
𝑖 − 1

) (2ℓ + 𝑖 − 1)𝑘+1−𝑖(−𝑐)
𝑘+1−𝑖(𝑔′)ℓ+

𝑘+𝑖+1
2 (𝑓(𝑖) ∘ 𝑔)

𝑘+1

𝑖=1

. 

Now, we observe that  
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(
𝑘
𝑖
) (2ℓ + 𝑖)𝑘−𝑖(2ℓ + 𝑘 + 𝑖) + (

𝑘
𝑖 − 1

) (2ℓ + 𝑖 − 1)𝑘+1−𝑖

= (2ℓ + 𝑖)𝑘−𝑖 {(
𝑘
𝑖
) (2ℓ + 𝑘 + 𝑖) + (

𝑘
𝑖 − 1

) (2ℓ + 𝑖 − 1)}

= (2ℓ + 𝑖)𝑘−𝑖 {(
𝑘
𝑖
) + (

𝑘
𝑖 − 1

) (2ℓ + 𝑘) + 𝑖 (
𝑘
𝑖
) + (𝑖 − 1 + 𝑘) (

𝑘
𝑖 − 1

)}

= (2ℓ + 𝑖)𝑘+1−𝑖 (
𝑘 + 1
𝑖
). 

Thus ((𝑔′)ℓ(𝑓 ∘ 𝑔)(𝑘+1) = (2ℓ + 𝑖)𝑘+1−𝑖 (
𝑘 + 1
𝑖
) (−𝑐)𝑘+1−𝑖(𝑔′)ℓ+

𝑘+𝑖+1

2  completing the 

induction step. 

We can now prove the main theorem.  

Theorem (3.2.4)[72]: The image of ⊕0
𝑚 𝐷𝜆𝑗

+  under Γ is a multiplier representation with the 

multiplier given by 𝐽(𝑔, 𝑧) as in (12).  

Proof. It will be enough to show  

𝛤𝑗 (𝐷𝜆𝑗(𝑔−1)𝑓
+ ) = 𝐽(𝑔,·)(𝛤𝑗𝑓) ∘ 𝑔) 

for each 𝑗, 0 ≤ 𝑗 ≤ 𝑚. We compute the p’th component on both sides. 

For 𝑝 < 𝑗, both sides are zero by definition of 𝛤𝑗 and knowing that 𝐽(𝑔, 𝑧)𝑝,ℓ = 0 for ℓ > 𝑝. 

For 𝑝 ≥ 𝑗, we have using the Lemma,  

((𝛤𝑗𝐷𝜆𝑗
+(𝜑−1)𝑓))

𝑝
= (
𝑝
𝑗)

1

(2𝜆𝑗)𝑝−𝑗

((𝑔′)𝜆𝑗𝑓 ∘ 𝑔)
𝑝−𝑗

= (
𝑝
𝑗)

1

(2𝜆𝑗)𝑝−𝑗

∑(
𝑝 − 𝑗
𝑖
) (2𝜆𝑗 + 𝑖)𝑝−𝑗−𝑖

(−𝑐)𝑝−𝑗−𝑖(𝑔′)𝜆𝑗+
𝑝−𝑗+𝑖
2 (𝑓(𝑖) ∘ 𝑔)

𝑝−𝑗

𝑖=0

 

= (
𝑝
𝑗)

1

(2𝜆𝑗)𝑝−𝑗

∑(
𝑝 − 𝑗
ℓ − 𝑗

) (2𝜆𝑗 + ℓ − 𝑗)𝑝−ℓ
(−𝑐)𝑝−ℓ(𝑔′)𝜆𝑗−𝑗+

𝑝+ℓ
2 (𝑓(ℓ−𝑗) ∘ 𝑔)

𝑝

ℓ=𝑗

=∑
𝑝!

𝑗! (ℓ − 𝑗)! (𝑝 − ℓ)!

1

(2𝜆𝑗)ℓ−𝑗

(−𝑐)𝑝−ℓ(𝑔′)𝜆𝑗−𝑗+
𝑝+ℓ
2 (𝑓(ℓ−𝑗) ∘ 𝑔)

𝑚

ℓ=𝑗

=∑𝐽(𝜑,·)𝑝,ℓ ((𝛤𝑗𝑓) ∘ 𝑔)
ℓ

𝑚

ℓ=0

. 

The vectors 𝑒𝑛
𝑗(𝑧):= 𝛤𝑗 (√

𝑞(2𝜆𝑗)𝑛

𝑛!
𝑧𝑛) clearly form an orthonormal basis in the 

Hilbert space 𝐴(𝜆𝑗)(𝔻). We have, by definition of 𝛤𝑗, 

 (𝑒𝑛
𝑗(𝑧))

ℓ
=

{
 
 

 
 
0                                                               ℓ < 𝑗 𝑜𝑟 ℓ > 𝑛 + 𝑗

(
ℓ
𝑗
)

√𝑛!

(𝑛 − ℓ + 𝑗)!

√(2𝜆𝑗)𝑛

(2𝜆𝑗)ℓ−𝑗

𝑧𝑛−ℓ+𝑗       ℓ ≥ 𝑗 𝑎𝑛𝑑 ℓ ≤ 𝑛 + 𝑗.
  (13) 

We compute the reproducing kernel 𝐵(𝜆𝑗) for the Hilbert space 𝐴(𝜆𝑗)(𝔻). We have  

𝐵(𝜆𝑗)(𝑧, 𝜔) = ∑((𝛤𝑗𝑒𝑛
𝑗
)(𝑧)) ((𝛤𝑗𝑒𝑛

𝑗
)(𝜔))

∗
∞

𝑛=0

= (𝛤𝑗∑𝑒𝑛
𝑗(𝑧)

∞

𝑛=0

)(𝛤𝑗  ∑ 𝑒𝑛
𝑗(𝜔)

∞

𝑛=0

)

∗

= 𝛤𝑗
(𝑧)
𝛤𝜔̅𝑗 𝐵 𝜆𝑗 (4.2)(𝑧, 𝜔),                                                                              (14) 
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since the series converges uniformly on compact subsets. Explicitly,  

𝐵(𝜆𝑗)(𝑧, 𝜔)𝑝,ℓ = {
(
ℓ
𝑗
) (
𝑝
𝑗)

1

(2𝜆𝑗)ℓ−𝑗

1

(2𝜆𝑗)𝑝−𝑗

 𝜕(𝑝−𝑗)𝜕̅(ℓ−𝑗)𝐵𝜆𝑗(𝑧, 𝜔) 𝑖𝑓 ℓ, 𝑝 ≥ 𝑗

0                                                                                        otherwise.

  (15) 

In particular, it follows that 𝐵(𝜆𝑗)(0, 0) is diagonal, and  

𝐵(𝜆𝑗)(0, 0)ℓ,ℓ = {

0                          𝑖𝑓 ℓ < 𝑗

(
ℓ
𝑗
)
2 (ℓ − 𝑗)!

(2𝜆𝑗)ℓ−𝑗

   𝑖𝑓 ℓ ≥ 𝑗.                         (16) 

Then  

𝐵(𝜆,µ)(0, 0)ℓ,ℓ =∑𝐵(𝜆𝑗)(0, 0)µ𝑗
2

𝑚

𝑗=0

.                                         (17) 

A more general formula for 𝐵(𝜆,µ)(𝑧, 𝜔) can be easily obtained using (7). For 𝑧 ∈ 𝔻, we set 

𝑝𝑧 =
1

√(1−|𝑧|2)
 (
1 𝑧
𝑧̅ 1

) ∈ 𝑆𝑈(1, 1). We also write 𝑝𝑧 for the corresponding element of 𝐺̃ 

such that 𝑝𝑧 depends contnuously on 𝑧 ∈ 𝔻 and 𝑝0 = 𝑒. Then 𝑝𝑧(0) = 𝑧; 𝑝𝑧
−1 = 𝑝−𝑧. By 

Theorem (3.2.4), formula (7) holds for 𝐵𝜆,µ and gives  

𝐽𝑝−𝑧(𝑧)𝐵
𝜆,µ(0, 0)𝐽𝑝−𝑧(𝑧)

∗ = 𝐵𝜆,µ(𝑧, 𝑧).                      (18) 

We have 𝑝−𝑧
′ (𝜁) =

1−|𝑧|2

(1−𝑧̅𝜁)2
;  𝑝−𝑧

′ (𝑧) = (1 − |𝑧|2)−1. The −𝑐 of (11) corresponding to 𝑝−𝑧 

is 
𝑧̅

1−|𝑧|2
. So (12) gives  

𝐽𝑝−𝑧(𝑧)𝑝,ℓ = {
(1 − |𝑧|2)−𝜆−

𝑚
2 (
𝑝
ℓ
) 𝑧̅𝑝−ℓ(1 − |𝑧|2)𝑚−𝑝    𝑝 ≥ ℓ 

0                                                                          𝑝 < ℓ,
 

which can be written in matrix form as  

𝐽𝑝−𝑧(𝑧) = (1 − |𝑧|
2)−𝜆−

𝑚
2𝐷(|𝑧|2)𝑒𝑥𝑝(𝑧̅𝑆𝑚),                       (19) 

where 𝐷(|𝑧|2)𝑝,ℓ = (1 − |𝑧|
2)𝑚−ℓ𝛿𝑝,ℓ is diagonal and 𝑆𝑚 is the forward shift on ℂ𝑚+1 with 

weight sequence {1, . . . , 𝑚}, that is, (𝑆𝑚)ℓ,𝑝 = ℓ𝛿𝑝+1,ℓ, 0 ≤ 𝑝, ℓ ≤ 𝑚. Substituting (19) into 

(7) and polarizing we obtain  

𝐵(𝜆,µ)(𝑧, 𝜔) = (1 − 𝑧𝜔̅)−2𝜆−𝑚𝐷(𝑧𝜔̅) exp(𝜔̅𝑆𝑚)𝐵
(𝜆,µ)(0, 0) exp(𝑧𝑆𝑚

∗ )𝐷(𝑧𝜔̅). (20) 
In general, let ℋ be a Hilbert space consisting of holomorphic functions on the open unit 

disc 𝔻 with values in ℂ𝑚+1. Assume that ℋ possesses a reproducing kernel 𝐾:𝔻 ×𝔻 →

ℂ(𝑚+1)×(𝑚+1). The set of vectors ℋ0 = {𝐾𝜔𝜉:𝜔 ∈ 𝔻, 𝜉 ∈ ℂ
𝑚+1} span the Hilbert space ℋ. 

On the dense set of vectors ℋ0, we define a map T by the formula 𝑇𝐾𝜔𝜉 = 𝜔̅𝐾𝜔𝜉 for 𝜔 ∈
𝔻. The following Lemma gives a criterion for boundedness of the operator T.  

Lemma (3.2.5)[72]: The densely defined operator T is bounded if and only if for some 

positive constant c and for all 𝑛 ∈ ℕ 

∑〈(𝑐 − 𝜔𝑗𝜔̅𝑖)𝐾(𝜔𝑗 , 𝜔𝑖)𝑥𝑖  , 𝑥𝑗〉

𝑛

𝑖,𝑗=1

≥ 0 

for 𝑥1, . . . , 𝑥𝑛 ∈ ℂ
𝑚+1 and 𝜔1, . . . , 𝜔𝑛 ∈ 𝔻. If the map 𝑇:ℋ0 → ℋ0 ⊆ ℋ is bounded then it 

is the adjoint of the multiplication operator on ℋ. 

The proof is well-known and easy in the scalar case. We omit the obvious modifications 

required in the general case.  
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It is known and easy to verify that for every 𝜖 > 0, the multiplication operator 𝑀(𝜖), defined 

by (𝑀(𝜖)𝑓)(𝑧) = 𝑧𝑓(𝑧), is bounded on 𝐴(𝜖). Consequently, the kernel B𝜖 satisfies the 

positivity condition of the Lemma above for 𝜖 > 0. Fix 𝑚 ∈ ℕ. Consider the reproducing 

kernel 𝐵(𝜆,µ). We recall that 𝐵(𝜆,µ) is a positive definite kernel on the unit disc 𝔻 if and only 

if 𝜆 > 𝑚/2. 

Theorem (3.2.6)[72]: The multiplication operator 𝑀(𝜆,µ) on the Hilbert space 𝐴(𝜆,µ) is 

bounded for all 𝜆 > 𝑚/2. 

Proof. Let 𝜖 be a positive real number such that 𝜆 − 𝜖 > 𝑚/2. Let us find µ′ with µ𝑗
′ >

0, 0 ≤ 𝑗 ≤ 𝑚, such that  

𝐵(𝜆,µ)(𝑧, 𝜔) = (1 − 𝑧𝜔̅)−2𝜖𝐵(𝜆−𝜖,µ
′)(𝑧, 𝜔).                         (21) 

Since the multiplication operator is bounded on the Hilbert space whose reproducing kernel 

is (1 − 𝑧𝜔̅)−2𝜖 for every 𝜖 > 0, it follows that we can find 𝑟 > 0 such that 

(𝑟 − 𝑧𝜔̅)(1 − 𝑧𝜔̅)−2𝜖 is positive definite. Assuming the existence of µ′ as above, we 

conclude that (𝑟 − 𝑧𝜔̅)𝐵(𝜆,µ)(𝑧, 𝜔) is positive definite finishing the proof. To find such a 

µ′, it is enough to prove 𝐵(𝜆,µ)(0, 0) = 𝐵(𝜆−𝜖,µ
′)(0, 0), because then (18) and (19) (or (20)) 

immediately imply (21).  

By (17), writing 𝐿(𝜆)ℓ𝑗 = 𝐵
(𝜆𝑗)(0, 0)ℓℓ, the question becomes whether we can find positive 

numbers µ𝑗
′  satisfying the equations  

∑𝐿(𝜆)ℓ𝑗µ𝑗
2

𝑗

=∑𝐿(𝜆 − 𝜖)ℓ𝑗µ𝑗
′ 2

𝑗

.                                 (22) 

By (16) each 𝐿(𝜆)ℓ𝑗 is continuous in λ,; also 𝐿(𝜆)ℓ𝑗 = 0 for ℓ < 𝑗, and 𝐿(𝜆)00 = 1. It 

follows that for small 𝜖 > 0, the system (22) has solutions satisfying µ0
′ 2 = 1, µ𝑗

′ 2 > 0 (1 ≤

𝑗 ≤ 𝑚). 

Next we compute the matrix of M with respect to the orthonormal basis {µ𝑗𝑒𝑛
𝑗
(𝑧): 𝑛 ≥

0;  0 ≤ 𝑗 ≤ 𝑚}. Let ℋ(𝑛) be the linear span of the vectors {𝑒𝑛−𝑗
𝑗 (𝑧): 0 ≤ 𝑗 ≤ min(𝑚, 𝑛)}. 

It is clear that M maps the space ℋ(𝑛) into ℋ(𝑛 + 1). (The subspace ℋ(𝑛) of 𝐴(𝜆,µ)(𝔻) is 

a “K-type” of the representation U.) We therefore have  

𝑀µ𝑗𝑒𝑛−𝑗
𝑗
=∑𝑀(𝑛)𝑘,𝑗µ𝑘𝑒𝑛+1−𝑘

𝑘

𝑚

𝑘=0

. 

Let 𝐸(𝑛) be the matrix, determined by (13), such that (𝑒𝑛−𝑗
𝑗 (𝑧))

ℓ
= 𝐸(𝑛)ℓ,𝑗𝑧

𝑛−ℓ, 𝑛 ≥

𝑗, 0 ≤ 𝑗 ≤ 𝑚. In this notation,  

𝐸(𝑛)ℓ,𝑗µ𝑗 =∑𝑀(𝑛)𝑘,𝑗𝐸(𝑛 + 1)ℓ,𝑘µ𝑘

𝑚

𝑘=0

. 

In matrix form, this means  

𝐸(𝑛)𝐷(µ) = 𝐸(𝑛 + 1)𝐷(µ)𝑀(𝑛),which gives 
𝑀(𝑛) = 𝐷(µ)−1𝐸(𝑛 + 1)−1𝐸(𝑛)𝐷(µ), 

where 𝐷(µ) is the diagonal matrix with 𝐷(µ)ℓ,ℓ = µℓ . (These are the blocks of M regarded 

as a “block shift” with respect to the orthogonal decomposition of 𝐴(𝜆,µ)(𝔻) =⊕𝑛=0
∞ ℋ(𝑛).)  

To get information about 𝑀(𝑛), we note that, as 𝑛 →  ∞, Stirling’s formula gives, for any 

fixed 𝑏 ∈ ℝ, 
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𝛤(𝑛 + 𝑏) ∼ √2𝜋(𝑛 + 𝑏)𝑛+𝑏−
1
2𝑒−(𝑛+𝑏) ∼ √2𝜋𝑛𝑛+𝑏−

1
2 (1 +

𝑏

𝑛
)
𝑛

 𝑒−(𝑛+𝑏) ∼ 𝑒𝑏𝑛𝑛+𝑏−
1
2. 

Applying this we immediately get, by (13),  

𝐸(𝑛)ℓ,𝑗 ∼ 𝑛
ℓ𝑛𝜆−

𝑚
2
−
1
2𝐸ℓ,𝑗 , 

where E is the matrix with entries  

𝐸ℓ,𝑗 = {
(
ℓ
𝑗
)
√𝛤(2𝜆 −𝑚 + 2𝑗)

𝛤(2𝜆 −𝑚 + ℓ + 𝑗)
       ℓ ≥ 𝑗 

0                                                 ℓ < 𝑗

 

independent of n. Using the diagonal matrix 𝑑(𝑛) with 𝑑(𝑛)ℓ,ℓ = 𝑛
ℓ, we can write  

𝐸(𝑛) ∼ 𝑛𝜆−
𝑚
2
−
1
2𝑑(𝑛)𝐸. 

It follows that  

𝑀(𝑛) = 𝐷(µ)−1𝐸(𝑛 + 1)−1𝐸(𝑛)𝐷(µ)

∼ (
𝑛

𝑛 + 1
)
𝜆−
𝑚
2
−
1
2
𝐷(µ)−1𝐸−1𝑑(𝑛 + 1)−1𝑑(𝑛)𝐸𝐷(µ). 

Since 
𝑛

𝑛+1
= 1 + 𝑂 (

1

𝑛
), this implies  

𝑀(𝑛) = 𝐼 + 𝑂 (
1

𝑛
), 

where I is the identity matrix of order 𝑚 + 1 and 𝑂 (
1

𝑛
) stands for a (𝑚 + 1) × (𝑚 + 1) 

matrix each of whose entries is 𝑂 (
1

𝑛
). 

We denote by 𝑈+ the operator on 𝐴(𝜆,µ)(𝔻) defined by 𝑈+𝑒𝑛−𝑗
𝑗
= 𝑒𝑛+1−𝑗

𝑗 (0 ≤ 𝑗 ≤

min(𝑚, 𝑛) , 𝑛 − 𝑗 ≥ 0).  

Theorem (3.2.7)[72]: The operator M on 𝐴(𝜆,µ)(𝔻) is the sum of 𝑈+ and of an operator in 

the HilbertSchmidt class. In particular, M is bounded and its adjoint belongs to the Cowen-

Douglas class.  

Let ℋ1 and ℋ2 be two reproducing kernel Hilbert spaces consisting of holomorphic 

functions on 𝔻 taking values in ℂ𝑚+1. Suppose that the multiplication operator M on these 

two Hilbert spaces are bounded. Furthermore, assume that the standard set of 𝑚+ 1 

orthonormal vectors 𝜀0, . . . , 𝜀𝑚 in ℂ𝑚+1, thought of as constant functions on 𝔻, are in both 

𝔻1 and 𝔻2. Since (∑ 𝑝𝑖(𝑀)𝜀𝑖
𝑚
𝑖=0 )(𝑧) = ∑ 𝑝𝑖(𝑧)𝜀𝑖

𝑚
𝑖=0  for polynomials 𝑝𝑖 with scalar 

coefficients, it follows that the polynomials 𝑝(𝑧) = ∑ 𝑝𝑖(𝑧)𝜀𝑖
𝑚
𝑖=0  belong to these Hilbert 

spaces. We assume that the polynomials p are dense in both of these Hilbert spaces. Suppose 

that there is a bounded operator 𝑋:ℋ1 → ℋ2 satisfying 𝑀𝑋 = 𝑋𝑀. Then  

(𝑋𝑝)(𝑧) = (𝑋∑𝑝𝑖𝜀𝑖

𝑚

𝑖=0

) (𝑧) = (𝑋∑𝑝𝑖(𝑀)𝜀𝑖

𝑚

𝑖=0

) (𝑧) = (∑𝑝𝑖(𝑀)𝑋𝜀𝑖

𝑚

𝑖=0

) (𝑧)

= (∑𝑝𝑖(𝑀)𝑋𝜀𝑖

𝑚

𝑖=0

) (𝑧). 

Now, if we let (𝑋𝜀𝑖)(𝑧) = ∑ 𝑥𝑖
𝑗(𝑧)𝜀𝑗

𝑚
𝑗=0  , then (𝑋𝑝)(𝑧) = 𝛷𝑋(𝑧)𝑝(𝑧), where 𝛷𝑋(𝑧) =

((𝑥𝑖
𝑗(𝑧)))

𝑗,𝑖=0

𝑚

. Since the polynomials p are dense, it follows that (𝑋𝑓)(𝑧) = 𝛷𝑋(𝑧)𝑓(𝑧) 

for all 𝑓 ∈ ℋ1. 
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We calculate the adjoint of the intertwining operator X. We have  

〈𝑋𝐾1(·, 𝜔)𝜉, 𝐾2(·, 𝑢)𝜂〉 = 〈𝛷𝑋(·)𝐾1(·, 𝜔)𝜉, 𝐾2(·, 𝑢)𝜂〉 = 〈𝛷𝑋(𝑢)𝐾1(𝑢, 𝜔)𝜉, 𝜂〉

= 〈𝐾1(𝑢, 𝜔)𝜉, 𝛷𝑋(𝑢)̅̅ ̅̅ ̅̅ ̅̅ 𝑡𝑟𝜂〉 = 〈𝐾1(·, 𝜔)𝜉, 𝐾1(·, 𝑢)𝛷𝑋(𝑢)̅̅ ̅̅ ̅̅ ̅̅ 𝑡𝑟𝜂〉 
for all 𝜉, 𝜂 ∈ ℂ𝑚+1, that is,  

𝑋∗𝐾2(·, 𝑢)𝜂 = 𝐾1(·, 𝑢)𝛷𝑋(𝑢)̅̅ ̅̅ ̅̅ ̅̅ 𝑡𝑟𝜂,                                  (23) 
for all 𝜂 ∈ ℂ𝑚+1 and 𝑢 ∈ 𝔻. Hence the intertwining operator X is unitary if and only if there 

exists an invertible holomorphic function 𝛷𝑋:𝔻0 → ℂ
(𝑚+1)×(𝑚+1) for some open subset 𝔻0 

of 𝔻 satisfying  

𝐾2(𝑧, 𝜔) = 𝛷𝑋(𝑧)𝐾1(𝑧, 𝜔)𝛷𝑋(𝜔)̅̅ ̅̅ ̅̅ ̅̅ ̅𝑡𝑟.                                 (24) 
Let ℋ be a Hilbert space consisting of ℂ𝑛-valued holomorphic functions on 𝔻. Assume that 

ℋ has a reproducing kernel, say K. Let Φ be a 𝑛 × 𝑛 invertible matrix valued holomorphic 

function on 𝔻 which is invertible. For 𝑓 ∈ ℋ, consider the map 𝑋: 𝑓 ⟼ 𝑓, where 𝑓(𝑧) =

𝛷(𝑧)𝑓(𝑧). Let 𝐻̃ = {𝑓: 𝑓 ∈ ℋ}. The requirement that the map X is unitary, prescribes a 

Hilbert space structure for the function space ℋ̃. The reproducing kernel for ℋ̃ is clearly 

𝐾̃(𝑧, 𝜔) = 𝛷(𝑧)𝐾(𝑧,𝑤)𝛷(𝜔)∗.                                   (25) 
It is easy to verify that 𝑋𝑀𝑋∗ is the multiplication operator 𝑀: 𝑓 ⟼ 𝑧𝑓 on the Hilbert space 

ℋ̃. Suppose we have a unitary representation U given by a multiplier J acting on ℋ 

according to (7). Transplanting this action to ℋ̃ under the isometry X, it becomes  

(𝑈̃𝑔−1𝑓)(𝑧) = 𝐽(𝑔, 𝑧)𝑓(𝑔 · 𝑧), 

where the new multiplier 𝐽 is given in terms of the original multiplier J by  

𝐽(𝑔, 𝑧) = 𝛷(𝑧)𝐽(𝑔, 𝑧)𝛷(𝑔 ·  𝑧)−1.                       (26) 
Now 𝐾̃ transforms according to (7), with the aid of 𝐽.  
Lemma (3.2.8)[72]: Suppose that the operator M acting on the Hilbert space ℋ with 

reproducing kernel K is bounded, the constant vectors 𝜀0, . . . , 𝜀𝑚 are in ℋ, and that the 

polynomials p are dense in ℋ. If there exists a (self adjoint) projection X commuting with 

the operator M then  

𝛷𝑋(𝑧)𝐾(𝑧, 𝜔) = 𝐾(𝑧, 𝜔)𝛷𝑋(𝜔)̅̅ ̅̅ ̅̅ ̅̅ ̅𝑡𝑟 

for some holomorphic function 𝛷𝑋: 𝔻 → ℂ
(𝑚+1)×(𝑚+1) with 𝛷𝑋

2 = 𝛷𝑋. 

Proof. We have already seen that any such operator X is multiplication by a holomorphic 

function 𝛷𝑋. To complete the proof, note that  

𝛷𝑋(·)𝐾(·, 𝜔)𝜉 = 𝑋𝐾(·, 𝜔)𝜉 = 𝑋
∗𝐾(·, 𝜔)𝜉 = 𝐾(·, 𝜔)𝛷𝑋(𝜔)̅̅ ̅̅ ̅̅ ̅̅ ̅𝑡𝑟𝜉 

for all 𝜉 ∈ ℂ𝑚+1. 

From the Lemma, putting 𝜔 = 0, we see that 𝛷𝑋(𝑧) = 𝐾(𝑧, 0)𝛷(0)̅̅ ̅̅ ̅̅ ̅𝑡𝑟𝐾(𝑧, 0)−1 for any self 

adjoint intertwining operator X. Furthermore, 𝑋0: =  𝛷𝑋(0) is an ordinary projection on 

ℂ𝑚+1, if 𝐾(0, 0) = 𝐼. The multiplication operator on the two Hilbert spaces ℋ with 

reproducing kernel K and ℋ0 with reproducing kernel 𝐾0(𝑧, 𝜔) =

𝐾(0, 0)−
1

2𝐾(𝑧, 𝜔)𝐾(0, 0)−
1

2 are unitarily equivalent via the unitary map 𝑓 ⟼ 𝐾(0, 0)−
1

2𝑓. 

The reproducing kernel 𝐾0 has the additional property that 𝐾0(0, 0) = 𝐼. Therefore, we 

conclude that M is reducible if and only if there exists a projection 𝑋0 on ℂ𝑚+1 satisfying  

𝑋0𝐾0(𝑧, 0)
−1𝐾0(𝑧, 𝜔)𝐾0(0, 𝜔)

−1 = 𝐾0(𝑧, 0)
−1𝐾0(𝑧, 𝜔)𝐾0(0, 𝜔)

−1𝑋0.   (27) 
This is the same as requiring the existence of a projection 𝑋0 which commutes with all the 

coefficients in the power series expansion of the function 𝐾0̂(𝑧, 𝜔) ∶=
𝐾0(𝑧, 0)

−1𝐾0(𝑧, 𝜔)𝐾0(0, 𝜔)
−1 around 0. We also point out that 𝐾0̂ is the normalized kernel 

in the sense of [79] and is characterized by the property 𝐾0̂(𝑧, 0) ≡ 1. 
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We set 𝐵:= 𝐵(𝜆,µ)(0, 0) and 𝑆:= 𝑆𝑚.  

Lemma (3.2.9)[72]: The operator 𝑀:= 𝑀(𝜆,µ) on the Hilbert space 𝐴(𝜆,µ) is irreducible if 

and only if there is no projection 𝑋0 on ℂ𝑚+1 commuting with all the coefficients in the 

power series expansion of the function  

(1 − 𝑧𝜔̅)−2𝜆−𝑚𝐵
1
2 exp(−𝑧𝑆∗) 𝐵−1𝐷(𝑧𝜔̅) exp(𝜔̅𝑆)𝐵 exp(𝑧𝑆∗) 𝐷(𝑧𝜔̅)𝐵−1 exp(−𝜔̅𝑆)𝐵

1
2, 

around 0. 

Proof. From (20), we have 𝐵0
(𝜆,µ)

(𝑧, 0) = 𝐵
1

2 exp(𝑧𝑆∗) 𝐵−
1

2, where 𝐵0
(𝜆,µ)

: =  𝐵−
1

2𝐵(𝜆,µ)𝐵−
1

2. 

To complete the proof, using (20), we merely verify that  

𝐵0̂(𝑧, 𝜔) = (𝐵0
(𝜆,µ)(𝑧, 0))

−1

𝐵0
(𝜆,µ)(𝑧, 𝜔) (𝐵0

(𝜆,µ)(0,𝜔))
−1

= (1

− 𝑧𝜔̂)−2𝜆−𝑚𝐵
1
2 exp(−𝑧𝑆∗)𝐵−1𝐷(𝑧𝜔̂) exp(𝜔̂𝑆) 𝐵 exp(𝑧𝑆∗)𝐷(𝑧𝜔̂)𝐵−1 exp(−𝜔̂𝑆)𝐵

1
2. 

Let 𝐷𝑠 denote the coefficient of (−1)𝑠𝑧𝑠𝜔̅𝑠 in the expansion of 𝐷(𝑧𝜔̅) and 𝐷̃𝑠 = 𝐵
−1𝐷𝑠. 

(The choice of 𝐷𝑠 ensures that the diagonal sequence in 𝐷̃𝑠 is positive.)  

Lemma (3.2.10)[72]: If (𝑆∗𝑖𝐷̃𝑠𝑆
𝑝𝐵𝑆∗𝑞𝐷̃𝑡𝑆

𝑗)
𝑘,𝑛
≠ 0 for some choice of i, j, s, t, p, q in 

{0, 1, . . . , 𝑚} then  

0 ≤ 𝑠 ≤ 𝑚 − 𝑘 − 𝑖, 0 ≤ 𝑡 ≤ 𝑚 − 𝑛 − 𝑗; 
0 ≤ 𝑝 ≤ 𝑘 + 𝑖, 0 ≤ 𝑞 ≤ 𝑛 + 𝑗; 

and 𝑘 + 𝑖 − 𝑝 = 𝑛 + 𝑗 − 𝑞. 

Proof. Recall that  

𝑆: {
𝑒ℓ⟼ (ℓ + 1)𝑒ℓ+1       𝑖𝑓 0 ≤ ℓ ≤ 𝑚 − 1 
𝑒𝑚⟼ 0                        otherwise.           

 

So  

𝑆𝑝: {
𝑒ℓ⟼ 𝜄𝑒ℓ+𝑝           𝑖𝑓 0 ≤ 𝑖 ≤ 𝑚 − 1 

𝑒𝑚⟼ 0                          ℓ > 𝑚 − 𝑝
, 

where 𝜄 = (ℓ + 1)ℓ · · · (ℓ − 𝑝). Also,  

𝐷̃𝑠: {
𝑒ℓ⟼ 𝑐𝑒ℓ        𝑖𝑓 0 ≤ ℓ ≤ 𝑚 − 𝑠 

𝑒𝑚⟼ 0             ℓ ≥ 𝑚 − 𝑠 + 1,
 

where c is a non-zero constant depending on ℓ, s. Therefore  

𝑄 ∶=  𝑆∗𝑖𝐷̃𝑠𝑆
𝑝: {
𝑒ℓ⟼ 𝑐′𝑒ℓ+𝑝−𝑖        𝑖𝑓 0 ≤ 𝑖 ≤ 𝑚 − 𝑝 − 𝑠 𝑎𝑛𝑑 ℓ + 𝑝 − 𝑖 ≥ 0 

𝑒𝑚⟼ 0                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                       
 

for some non-zero constant 𝑐′. Hence the full condition for 𝑄𝑘,ℓ ≠ 0 is  

𝑖 − 𝑝 ≤ ℓ ≤ 𝑚 − 𝑝 − 𝑠, 𝑘 = ℓ + 𝑝 − 𝑖.                                (28) 
Let : = 𝑆∗𝑞𝐷̃𝑡𝑆

𝑗. By what we have just proved, it follows that 𝑅ℓ,𝑛 ≠ 0 if and only if  

𝑞 − 𝑗 ≤ 𝑛 ≤ 𝑚 − 𝑗 − 𝑡, 𝑛 = ℓ − 𝑗 + 𝑞.                                 (29) 
The conditions (28) and (29) simplify as follows:  

0 ≤ ℓ = 𝑘 + 𝑖 − 𝑝 = 𝑛 + 𝑗 − 𝑞 = ℓ ≤ 𝑚, 𝑘 + 𝑖 ≤ 𝑚 − 𝑠 𝑎𝑛𝑑 𝑛 + 𝑗
≤ 𝑚 − 𝑡.                                                                                                       (30) 

Let 𝑎(ℓ) denote the coefficient of 𝑧𝑚+ℓ+1𝜔̅𝑚+ℓ in the polynomial A with  

𝐴(𝑧, 𝜔) = exp(−𝑧𝑆∗) 𝐵−1𝐷(𝑧𝜔̅) exp(𝜔̅𝑆)𝐵 exp(𝑧𝑆∗) 𝐷(𝑧𝜔̅)𝐵−1 exp(−𝜔̅𝑆)

=∑(−1)𝑖
𝑆∗𝑖

𝑖!
𝑧𝑖(−1)𝑠𝐷̃𝑠𝑧

𝑠𝜔̅𝑠  
𝑆𝑝

𝑝!
𝜔̅𝑝𝐵

𝑆∗𝑞

𝑞!
𝑧𝑞(−1)𝑡𝐷̃𝑡𝑧

𝑡𝜔̅𝑡(−1)𝑗
𝑆𝑗

𝑗!
𝜔̅𝑗 , 

where the sum is over 0 ≤ 𝑖, 𝑗, 𝑝, 𝑞, 𝑠, 𝑡 ≤ 𝑚. 

Lemma (3.2.11)[72]: For 0 ≤ ℓ ≤ 𝑚 − 1, 
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𝑎(ℓ)𝑘,𝑛 = {
𝑛𝑜𝑡 𝑧𝑒𝑟𝑜        𝑖𝑓 𝑘 = 𝑚 − ℓ − 1 𝑎𝑛𝑑 𝑛 = 𝑚 − ℓ 
𝑧𝑒𝑟𝑜               𝑖𝑓 𝑘 − 𝑛 6 =  1 𝑜𝑟 𝑘 > 𝑚 − ℓ − 1

. 

Proof. Clearly, 𝐴(𝑧, 𝑤) = ∑𝐴𝑖𝑗𝑝𝑞𝑠𝑡𝑧
𝑖+𝑠+𝑞+𝑡𝜔̅𝑠+𝑝+𝑡+𝑗, where the sum is over 0 ≤

𝑖, 𝑗, 𝑝, 𝑞, 𝑠, 𝑡 ≤ 𝑚. Therefore, (ℓ) = ∑𝑐𝑆∗𝑖𝐷̃𝑠𝑆
𝑝𝐵𝑆∗𝑞𝐷̃𝑡𝑆

𝑗 , where the sum is over all 

𝑖, 𝑗, 𝑝, 𝑞, 𝑠, 𝑡 such that 𝑠 + 𝑡 + 𝑖 + 𝑞 = 𝑚 + ℓ + 1 and 𝑠 + 𝑡 + 𝑝 + 𝑗 = 𝑚 + ℓ;  𝑐 =
(−1)𝑖+𝑗+𝑠+𝑡

𝑖!𝑗!𝑝!𝑞!
.  

It follows from the preceding Lemma that if 𝑎(ℓ)𝑘,𝑛 ≠ 0, then 𝑖 − 𝑗 + 𝑞 − 𝑝 = 𝑛 − 𝑘. 

However, for the terms occuring in the sum, we now have 𝑖 − 𝑗 + 𝑞 − 𝑝 = (𝑠 + 𝑡 + 𝑖 +
𝑞) − (𝑠 + 𝑡 + 𝑝 + 𝑗) = 1. Thus if 𝑎(ℓ)𝑘,𝑛 ≠ 0 then 𝑛 − 𝑘 = 1.  

Furthermore, if 𝑎(ℓ)𝑘,𝑛 ≠ 0, then we also have 𝑚 + ℓ + 1 = (𝑠 + 𝑡 + 𝑖 + 𝑞). Hence 𝑚 +
ℓ + 1 − (𝑠 + 𝑡 + 𝑖) = 𝑞 ≤ 𝑛 + 𝑗 from the last inequality of the preceding Lemma, that is, 

𝑠 + 𝑡 + 𝑖 + 𝑗 ≥ 𝑚 + ℓ + 1 − 𝑛. This along with 𝑠 + 𝑡 + 𝑖 + 𝑗 ≤ 2𝑚 − 𝑘 − 𝑛, which is 

obtained by adding the first two inequalities of the preceding Lemma, gives 𝑘 ≤ 𝑚 − ℓ − 1  

The proof of the second part of the Lemma is now complete.  

If 𝑘 = 𝑚 − ℓ − 1 and 𝑛 = 𝑚 − ℓ, for the terms occuring in the sum for 𝑎(ℓ), we have 𝑠 +
𝑡 + 𝑖 + 𝑗 = 2ℓ + 1. It follows that 𝑎(ℓ)𝑚−ℓ−1,𝑚−ℓ is a sum of negative numbers. This 

proves the first part of the Lemma. 

Theorem (3.2.12)[72]: The multiplication operator 𝑀:= 𝑀𝜆,µ on the Hilbert space 𝐴(𝜆,µ) is 

irreducible.  

Proof. Suppose there exists a non-trivial projection P commuting with 𝐵0̂(𝑧, 𝜔) for all 

𝑧, 𝜔 ∈ 𝔻. Then by Lemma (3.2.9) such a projection must commute with 𝐵
1

2𝐴(𝑧, 𝜔)𝐵
1

2 for 

all 𝑧, 𝜔 ∈ 𝔻. However, Lemma (3.2.11) shows that there is no non-trivial projection 

commuting with the set of matrices {
𝐵
1
2𝑎(ℓ)𝐵1

2
: 0 ≤ ℓ ≤ 𝑚 − 1}. This completes the proof. 

Let 𝑝𝑟: 𝐸𝑇 → 𝔻 be the holomorphic vector bundle corresponding to an operator 𝑇 ∈
𝐵𝑘(𝔻). The operator T is homogeneous if and only if for any 𝑔 ∈ 𝐺, there exists an 

automorphism 𝑔̂ of the bundle 𝐸𝑇 covering g, that is, the diagram  is commutative.  

Theorem (3.2.13)[72]: If T is a homogeneous operator in 𝐵𝑘(𝔻) then the the universal 

covering group 𝐺̃ of G acts on 𝐸𝑇 by automorphisms.  

Proof. Let 𝐺̂ be the group of automorphisms of 𝐸𝑇. This is a Lie group. Let 𝑝: 𝐺̂ → 𝐺 be the 

natural homomorphism. Let 𝑁 = 𝑘𝑒𝑟 𝑝, the automorphisms fixing all the points of 𝔻. Then 
𝐺̂

𝑁
≃ 𝐺, and for the corresponding Lie algebras, we have 𝑔̂/𝑛 ≃ 𝑔. Since g is semisimple, 

by the Levi decomposition, there is a subalgebra 𝑔̂0 ⊆ 𝑔̂ such that 𝑔 = 𝑔̂0 + 𝑛, where the 

sum is a vector space direct sum. Let 𝐺̂0 be the corresponding analytic subgroup.  

There is a neigbourhood U of 𝑒 ∈ 𝐺̂0 such that 𝑝|𝑈 is a homeomorphism onto a 

neighbourhood 𝑝(𝑈) of 𝑒 ∈ 𝐺. But then 𝑝(𝑔̂𝑈) = 𝑝(𝑔̂)𝑝(𝑈). So, p is a homeomorphism of 

a neighbourhood of any point 𝑔̂ ∈ 𝐺̂0 to a neighbourhood of 𝑝(𝑔̂) in G. It follows that the 

image of p is an open subgroup and so must equal G. Therefore, 𝐺̂0 is a covering group of 

G. 

Now, 𝐺̂0 acts on 𝐸𝑇  by automorphisms and projects to G. The universal cover 𝐺̂ now also 

acts on 𝐸𝑇 see [76]. 
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Theorem (3.2.14)[72]: For every 𝑚 ≥ 1, the operators 𝑀(𝜆,µ), 𝜆 >
𝑚

2
;  µ1, . . . , µ𝑚 > 0 are 

mutually unitarily inequivalent.  

Proof. Suppose 𝑀(𝜆,µ) and 𝑀(𝜆
′,µ′) are unitarily equivalent. Then the corresponding 

Hermitian holomorphic bundles are isomorphic [61]. Hence the multipliers J and 𝐽′ giving 

the 𝐺̃ action on 𝔸(𝜆,µ) and 𝔸(𝜆
′,µ′) are equivalent in the sense that there exists a invertible 

matrix function 𝜙(𝑧), holomorphic in z, such that  

𝛷(𝑧)𝐽(𝑔, 𝑧)𝛷(𝑔𝑧)−1 = 𝐽′(𝑔, 𝑧) 
 on 𝐺̃ × 𝔻 which is nothing but (26). Setting here 𝑔 = 𝑝−𝑧, (19) gives  

𝛷(𝑧) = (1 − |𝑧|2)𝜆−𝜆
′
𝐷(|𝑧|2) exp(−𝑧̅𝑆𝑚)𝐷(|𝑧|

2)𝐹(0) exp(𝑧̅𝑆𝑚)𝐷(|𝑧|
2)−1. 

The right hand side is real anlytic in 𝑧, 𝑧̅ on 𝔻. Since Φ is holomorphic, 𝛷(𝑧) = 𝛷(0) 
identically. Looking at the Taylor expansion, we obtain  

𝑆𝑚𝛷(0) = 𝛷(0)𝑆𝑚. 
This implies that 𝛷(0) = 𝑝(𝑆𝑚), a polynomial in 𝑆𝑚. (Note that 𝑆𝑚 is conjugate to S, the 

unweighted shift with entries 𝑆ℓ𝑝 = 𝛿𝑝+1 ℓ, which is its Jordan canonical form. For S the 

corresponding property is easy to see.) We write  

𝐷1,1 =
𝜕2

𝜕𝑧𝜕𝑧
|
0

 𝐷(|𝑧|2) = −

(

 
 

𝑚     
 𝑚 − 1    
  ⋱   
   1  
    0)

 
 
, 

and for the Taylor coefficient of 𝑧𝑧̅ = |𝑧|2 we obtain  

(𝜆 − 𝜆′)𝛷(0) + 𝐷1,1𝛷(0) − 𝛷(0)𝐷1,1 = 0. 
Consider the diagonal of this matrix equality. All diagonal elements of 𝛷(0) = 𝑝(𝑠𝑚) are 

the same number 𝑥 ≠ 0 (since p(Sm) is triangular and invertible). Hence 𝜆 − 𝜆′ = 0. Now, 

since the diagonal entries of 𝐷1,1 are all different, 𝛷(0) must be diagonal. So, 𝛷(0) =

𝑥𝐼𝑚+1. Also, 𝛷(0) intertwines the operators 𝑀(𝜆,µ) and 𝑀(𝜆
′,µ′) , hence 

𝛷(0)𝐵(𝜆,µ)(𝑧, 𝜔)𝛷(0)∗ = 𝐵(𝜆
′,µ′)(𝑧, 𝜔) as in (24). Using this with 𝑧 = 𝜔 = 0 and using 

(16), (17) we get |𝑥|2µ𝑗
2 = µ𝑗

′ 2 for all j. Suince µ0 = 1 = µ0
′  , it follows that |𝑥|2 = 1 and 

µ𝑗 = µ𝑗
′  for 1 ≤ 𝑗 ≤ 𝑚 see [73], [74]. 

Section (3.3): Free Homogeneous Operators in the Cowen-Douglas Class 

The homogeneous operators form a class of bounded operators T on a Hilbert space 

H. The operator T is said to be homogeneous if its spectrum is contained in the closed unit 

disc and for every Mobius transformation g the operator 𝑔(𝑇), defined via the usual 

holomorphic functional calculus, is unitarily equivalent to T. To every homogeneous 

irreducible operator T there corresponds an associated unitary representation π of the 

universal covering group 𝐺̃ of the Mobius group G: 

π(g)∗Tπ(ĝ) = (pĝ)(T), ĝ ∈ Ĝ,  
where 𝑝: 𝐺̃ → 𝐺 is the natural homomorphism. In [72] (see also [86]), it was shown that 

each homogeneous operator T, not necessarily irreducible, in 𝐵𝑚+1(𝔻) admits an associated 

representation. The representations of 𝐺̃ are quite well-known, but we are still far from a 

complete description of the homogeneous operators. In [72], the following theorem was 

proved.  

Theorem (3.3.1)[84]: For any positive real number 𝜆 > 𝑚/2,𝑚 ∈ ℕ and an (𝑚 + 1)-tuple 

of positive reals µ = (µ0, µ1, . . . , µ𝑚) with µ0 = 1, there exists a reproducing kernel 𝐾(𝜆,µ) 

on the unit disc such that the adjoint of the multiplication operator 𝑀(𝜆,µ) on the 
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corresponding Hilbert space 𝐴(𝜆,µ)(𝔻) is homogeneous. The operators (𝑀(𝜆,µ))
∗
 are in the 

Cowen-Douglas class 𝐵𝑚+1(𝔻), irreducible and mutually inequivalent.  

 [72], presented the operators 𝑀(𝜆,µ) in as elementary a way as possible, but this 

presentation hides the natural ways in which these operators can be found to begin with. 

Here we will describe another independent construction of the operators 𝑀(𝜆,µ). We will 

also give an exposition of some of the fundamental background material. Finally, we will 

prove that if T is an irreducible homogeneous operator in 𝐵𝑚+1(𝔻) whose associated 

representation is multiplicity free then, up to equivalence, T is the adjoint of of the 

multiplication operator 𝑀(𝜆,µ) for some 𝜆 > 𝑚/2 and µ ≥ 0. 

Although, we intend to discuss homogeneous operators in the Cowen-Douglas class 𝐵𝑛(𝔻), 
the material below is presented in somewhat greater generality. Here we discuss commuting 

tuples of operators in the Cowen-Douglas class 𝐵𝑛(𝒟) for some bounded open connected 

set 𝒟 ⊆ 𝐶𝑚. The unitary equivalence class of a commuting tuple in 𝐵𝑛(𝒟) is in one to one 

correspondence with a certain class of holomorphic Hermitian vector bundles (ℎ𝐻𝑣𝑏) on 𝒟 

[61]. These are distinguished by the property, among others, that the Hermitian structure on 

the fibre at 𝑤 ∈ 𝒟 is induced by a reproducing kernel K. It is shown in [61] that the 

corresponding operator can be realized as the adjoint of the commuting tuple multiplication 

operator M on the Hilbert space ℋ of holomorphic functions with reproducing kernel K.  

Start with a Hilbert space ℋ of ℂ𝑛- valued holomorphic functions on a bounded open 

connected set 𝒟 ⊆ 𝐶𝑚. Assume that the Hilbert space ℋ contains the set of vector valued 

polynomials and that these form a dense subset in ℋ. We also assume that there is a 

reproducing kernel K for ℋ. We use the notation 𝐾𝑤(𝑧):= 𝐾(𝑧,𝑤). 
Recall that a positive definite kernel 𝐾:𝐷 × 𝐷 → ℂ𝑛×𝑛 on 𝒟 defines an inner product on the 

linear span of {𝐾𝑤(·)𝜉: 𝑤 ∈ 𝒟, 𝜉 ∈ ℂ
𝑛} ⊆ 𝐻𝑜𝑙(𝒟, ℂ𝑛) by the rule  

〈𝐾𝑤(·)𝜉, 𝐾𝑢(·)𝜂〉 = 〈𝐾𝑤(𝑢)𝜉, 𝜂〉, 𝜉, 𝜂 ∈ ℂ𝑛. 
(On the right hand side 〈, 〉 denotes the inner product of ℂ𝑛. We denote by 𝜀1, . . . , 𝜀𝑛 the 

natural basis of ℂ𝑛.) The completion of this subspace is then a Hilbert space ℋ of 

holomorphic functions on 𝒟 (cf. [85]) in which the set of vectors {𝐾𝑤: 𝑤 ∈ 𝒟} is dense. The 

kernel K has the reproducing property, that is,  

〈𝑓, 𝐾𝑤𝜉〉 = 〈𝑓(𝑤), 𝜉〉, 𝑓 ∈ ℋ,𝑤 ∈ 𝒟, 𝜉 ∈ ℂ
𝑚. 

Now, for 1 ≤ 𝑖 ≤ 𝑚, we have  

𝑀𝑖
∗𝐾𝑤𝜉 = 𝑤̅𝑖𝐾𝑤𝜉, 𝑤 ∈ 𝒟,where (𝑀𝑖𝑓)(𝑧) = 𝑧𝑖𝑓(𝑧), 𝑓 ∈ ℋ 

and {𝐾𝑤𝜀𝑖}𝑖=1
𝑛  is a basis for ∩𝑖=1

𝑚 𝑘𝑒𝑟(𝑀𝑖 − 𝑤𝑖)
∗, 𝑤 ∈ 𝒟. 

The joint kernel of the commuting m - tuple 𝑀∗ = (𝑀1
∗ , . . . , 𝑀𝑚

∗ ), which we assume to be 

bounded, then has dimension n. The map 𝜎𝑖: 𝑤 ⟼ 𝐾𝑤̅𝜀𝑖̅ , 𝑤 ∈ 𝒟̅, 1 ≤ 𝑖 ≤ 𝑛, provides a 

trivialization of the corresponding bundle E of Cowen - Douglas (cf. [61]). Here 𝒟̅: =
{𝑧 ∈ ℂ𝑚|𝑧̅ ∈ 𝐷}). 
On the other hand, suppose we start with an abstract Hilbert space ℋ and a m-tuple of 

commuting operators 𝑇 = (𝑇1, . . . , 𝑇𝑚) in the Cowen - Douglas class 𝐵𝑛(𝒟). Then we have 

a holomorphic Hermitian vector bundle E over 𝒟 with the fibre 𝐸𝑤 =∩𝑖=1
𝑛 𝑘𝑒𝑟(𝑇𝑖 −𝑤𝑖) at 

𝑤 ∈ 𝒟. Following [61], one associates to this a reproducing kernel Hilbert space 𝐻̂ 

consisting of holomorphic functions on 𝐷̅ as follows. Take a holomorphic trivialization 

𝜎𝑖: 𝒟 → ℋ with 𝜎𝑖(𝑤), 1 ≤ 𝑖 ≤ 𝑛, spanning 𝐸𝑤. For 𝑓 ∈ ℋ, define 𝑓𝑗(𝑤):=

〈𝑓, 𝜎𝑗(𝑤̅)〉ℋ , 𝑤 ∈ 𝒟̅. Set 〈𝑓, 𝑔̂〉𝐻̂: = 〈𝑓, 𝑔〉𝐻. The function 𝐾𝑤𝜀𝑗: = 𝜎𝑗(𝑤̅)̂ then serves as the 

reproducing kernel for the Hilbert space 𝐻̂. Note that  
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〈𝐾𝑤(𝑧)𝜀𝑗 , 𝜀𝑖〉ℂ𝑛 = 〈𝐾𝑤𝜀𝑗 , 𝐾𝑧𝜀𝑖〉ℋ̂ = 〈𝜎𝑗(𝑤̅)̂, 𝜎𝑖(𝑧̅)̂〉ℋ̂ = 〈𝜎𝑗(𝑤̅), 𝜎𝑖(𝑧̅)〉ℋ , 𝑧, 𝑤 ∈ 𝒟̅. 

If one applies this construction to the case where ℋ is a Hilbert space of holomorphic 

functions on 𝒟, possesses a reproducing kernel, say K, and the operator 𝑀∗ is in 𝐵𝑛(𝒟̅) then 

using the trivialization 𝜎𝑖(𝑤) = 𝐾𝑤̅𝜀𝑖 , 𝑤 ∈ 𝒟̅ for the bundle E defined on 𝒟̅, the reproducing 

kernel for ℋ̂ is 

〈𝐾𝑤(𝑧)𝜀𝑗, 𝜀𝑖〉ℂ𝑛 = 〈𝐾𝑤𝜀𝑗 , 𝐾𝑧𝜀𝑗〉ℋ = 〈𝜎𝑗(𝑤̅), 𝜎𝑖(𝑧̅)〉ℋ = 〈𝐾𝑤𝜀𝑗 , 𝐾𝑧𝜀𝑖〉ℋ̂ , 𝑧, 𝑤 ∈ 𝒟. 

Thus ℋ = ℋ̂. 

Let G be a Lie group acting transitively on the domain ⊆ ℂd. Let 𝐺𝐿(𝑛, ℂ) denote the set of 

non-singular 𝑛 × 𝑛 matrices over the complex field ℂ. We start with a multiplier J, that is, a 

smooth family of holomorphic maps 𝐽𝑔: 𝒟 → ℂ
𝑛×𝑛 satisfying the cocycle relation  

𝐽𝑔ℎ(𝑧) = 𝐽ℎ(𝑧)𝐽𝑔(ℎ · 𝑧), for all 𝑔, ℎ ∈ 𝐺, 𝑧 ∈ 𝒟,         (31) 

Let 𝐻𝑜𝑙(𝒟, ℂ𝑛) be the linear space consisting of all holomorphic functions on 𝒟 taking 

values in ℂ𝑛. We then obtain a natural (left) action U of the group G on 𝐻𝑜𝑙(𝒟, ℂ𝑛): 

(𝑈𝑔𝑓)(𝑧) = 𝐽𝑔−1(𝑧)𝑓(𝑔
−1 · 𝑧), 𝑓 ∈ 𝐻𝑜𝑙(𝒟, ℂ𝑛), 𝑧 ∈ 𝒟.       (32) 

Let 𝕂 ⊆ 𝐺 be the compact subgroup which is the stabilizer of 0. For h, k in 𝕂, we have 

𝐽𝑘ℎ(0) = 𝐽ℎ(0)𝐽𝑘(0) so that 𝑘 ⟼ 𝐽𝑘(0)
−1 is a representation of 𝕂 on ℂ𝑛. 

As in [72], we say that if a reproducing kernel K transforms according to the rule  

𝐽(𝑔, 𝑧)𝐾(𝑔(𝑧), 𝑔(𝜔))𝐽(𝑔, 𝜔)∗ = 𝐾(𝑧, 𝜔)                           (33) 

for all 𝑔 ∈ 𝐺̃; 𝑧, 𝜔 ∈ 𝔻, then K is quasi-invariant.  

Proposition (3.3.2)[84]: ([72], Proposition 2.1). Suppose ℋ has a reproducing kernel K. 

Then U defined by (32) is a unitary representation if and only if K is quasi-invariant.  

Let 𝑔𝑧 be an element of G which maps 0 to z, that is 𝑔𝑧 · 0 = 𝑧.  
For quasi-invariant K we have  

𝐾(𝑔𝑧 · 0, 𝑔𝑧 · 0) = (𝐽𝑔𝑧(0))
−1
𝐾(0, 0)(𝐽𝑔𝑧(0)

∗)
−1
,         (34) 

which shows that 𝐾(𝑧, 𝑧) is uniquely determined by 𝐾(0, 0). For each z in 𝒟, the positive 

definite matrix 𝐾(𝑧, 𝑧) gives the Hermitian structure of our vector bundle.  

Given any positive definite matrix 𝐾(0, 0) such that  

𝐽𝑘(0)
−1𝐾(0, 0) = 𝐾(0, 0)𝐽𝑘(0)

∗  for all   𝑘 ∈ 𝕂,           (35) 
that is, the inner product 〈𝐾(0, 0) · | ·〉 is invariant under 𝐽𝑘(0), (34) defines a Hermitian 

structure on the homogeneous vector bundle determined by 𝐽𝑔(𝑧). In fact, 𝐾(𝑧, 𝑧), for any 

𝑧 ∈ 𝒟 is well defined, because if 𝑔𝑧
′  is another element of G such that 𝑔𝑧

′ · 0 = 𝑧 then 𝑔𝑧
′ =

𝑔𝑧𝑘 for some 𝑘 ∈ 𝕂. Hence  

𝐾(𝑔𝑧
′ · 0, 𝑔𝑧

′ · 0) = 𝐾(𝑔𝑧𝑘 · 0, 𝑔𝑧𝑘 · 0) = (𝐽𝑔𝑧𝑘(0))
−1
𝐾(0, 0)(𝐽𝑔𝑧𝑘(0)

∗)
−1

= (𝐽𝑘(0)𝐽𝑔𝑧(𝑘 · 0))
−1
𝐾(0, 0)(𝐽𝑔𝑧(𝑘 · 0)

∗𝐽𝑘(0)
∗)
−1

= (𝐽𝑔𝑧(0))
−1

(𝐽𝑘(0))
−1
𝐾(0, 0)(𝐽𝑘(0)

∗)−1(𝐽𝑔𝑧(0)
∗)
−1

= (𝐽𝑔𝑧(0))
−1
𝐾(0, 0)(𝐽𝑔𝑧(0)

∗)
−1
= 𝐾(𝑔𝑧 · 0, 𝑔𝑧 · 0) 

This gives a good overview of all the Hermitian structures of a homogeneous holomorphic 

vector bundle. But not all such bundles arise from a reproducing kernel. Starting with a 

positive matrix satisfying (35), (34) gives us 𝐾(𝑧, 𝑧), but there is no guarantee (and is false 

in general) that 𝐾(𝑧, 𝑧) extends to a positive definite kernel on 𝒟 × 𝒟. It is, however, true 

that if there is such an extension then it is uniquely determined by 𝐾(𝑧, 𝑧) (because 𝐾(𝑧,𝑤) 
is holomorphic in z and antiholomorphic in w).  
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This leaves us with the following possible strategy for finding the homogeneous 

operators in the Cowen - Douglas class. Find all multipliers, (i.e., holomorphic 

homogeneous vector bundles (hhvb)) such that there exists 𝐾(0, 0) satisfying (35) and 

consider all such 𝐾(0, 0). Then determine which of the 𝐾(𝑧, 𝑧) obtained form (34) extends 

to a positive definite kernel on 𝒟 × 𝒟. Then check if the multiplication operator is well-

defined and bounded on the corresponding Hilbert space.  

For ℋ be a Hilbert space consisting of ℂ𝑛-valued holomorphic functions on some 

domain 𝒟 possessing a reproducing kernel K. The corresponding holomorphic Hermitian 

vector bundle defined on 𝒟 have many different realizations. The connection between two 

of these is given by a 𝑛 × 𝑛 invertible matrix valued holomorphic function 𝜑 on 𝒟. For 𝑓 ∈

ℋ, consider the map 𝛤𝜑: 𝑓 ⟼ 𝑓, where 𝑓(𝑧) = 𝜑(𝑧)𝑓(𝑧). Let ℋ̃ = {𝑓: 𝑓 ∈ ℋ}. The 

requirement that the map 𝛤𝜑 is unitary, prescribes a Hilbert space structure for the function 

space ℋ̃. The reproducing kernel for ℋ̃ is easily calculated  

𝐾̃(𝑧, 𝑤) = 𝜑(𝑧)𝐾(𝑧,𝑤)𝜑(𝑤)∗.                              (36) 
It is also easy to verify that 𝛤𝜑𝑀𝛤𝜑

∗ is the multiplication operator 𝑀:𝑓 ⟼ 𝑧𝑓 on the Hilbert 

space ℋ̃. Suppose we have a unitary representation U given by a multiplier J acting on ℋ 

according to (32). Transplanting this action to ℋ̃ under the isometry 𝛤𝜑, it becomes  

(𝑈̃𝑔−1𝑓)(𝑧) = 𝐽𝑔(𝑧)𝑓(𝑔 · 𝑧), 

where the new multiplier 𝐽 is given in terms of the original multiplier J by  

𝐽𝑔(𝑧) = 𝜑(𝑧)𝐽𝑔(𝑧)𝜑(𝑔 · 𝑧)
−1. 

Now 𝐾̃ transforms according to (33), with the aid of 𝐽. If we want, we can now ensure that, 

by passing from ℋ to an appropriate ℋ̃, 𝐾̃(𝑧, 0) ≡ 1. We merely have to set (𝑧) =

𝐾(0, 0)
1

2𝐾(𝑧, 0)−1. Thus the reproducing kernel 𝐾̃ is almost unique. The only freedom left 

is to multiply 𝜑(𝑧) by a constant unitary 𝑛 × 𝑛 matrix. Once the kernel is normalized, we 

have  

𝐽𝑘(𝑧) = 𝐽𝑘(0), 𝑧 ∈ 𝔻, 𝑘 ∈ 𝔻 

In fact,  

𝐼 = 𝐾(𝑧, 0) = 𝐽𝑘(𝑧)𝐾(𝑘 · 𝑧, 0)𝐽𝑘(0)
∗ = 𝐽𝑘(𝑧)𝐽𝑘(0)

−1 
and the statement follows. Therefore, once the kernel K is normalized, we have  

(𝑈𝑘−1𝑓)(𝑧) = 𝐽𝑘(0)𝑓(𝑘 · 𝑧), 𝑘 ∈ 𝕂. 
Given a multiplier J, there is always the following method for constructing a Hilbert space 

with a quasi-invariant Kernel K transforming according to (34). We look for a functional 

Hilbert space possessing this property among the weighted 𝐿2 spaces of holomorphic 

functions on 𝒟. The norm on such a space is  

‖𝑓‖2 = ∫𝑓(𝑧)∗𝑄(𝑧)𝑓(𝑧)𝑑𝑉(𝑧)
𝒟

                                 (37) 

with some positive matrix valued function 𝑄(𝑧). Clearly, this Hilbert space possesses a 

reproducing kernel K. The condition that 𝑈𝑔−1 in (32) is unitary is  

∫𝑓(𝑔 · 𝑧)∗𝐽∗𝑔 (𝑧)𝑄(𝑧)𝐽𝑔(𝑧)𝑓(𝑔 · 𝑧)𝑑𝑉(𝑧)
𝒟

= ∫𝑓(𝑤)∗𝑄(𝑤)𝑓(𝑤)𝑑𝑉(𝑤)
𝒟

= ∫ 𝑓(𝑔 · 𝑧)∗𝑄(𝑔 · 𝑧)𝑓(𝑔 · 𝑧) |
𝜕(𝑔 · 𝑧)

𝜕(𝑧)
|

2

𝑑𝑉(𝑧)
𝒟

, 

that is,  
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𝑄(𝑔 · 𝑧) = 𝐽𝑔(𝑧)
∗𝑄(𝑧)𝐽𝑔(𝑧) |

𝜕(𝑔 · 𝑧)

𝜕(𝑧)
|

−2

,                      (38) 

which is equation (33) with 𝐽𝑔(𝑧) replaced by 
𝜕(𝑔·𝑧)

𝜕(𝑧)
𝐽𝑔(𝑧)∗−1. 

Given the multiplier 𝐽𝑔(𝑧), 𝑄(𝑧) is again determined by 𝑄 = 𝑄(0), and (just as in the 

case of 𝐾(0, 0) = 𝐴) it must be a positive matrix commuting with all 𝐽𝑘(0), 𝑘 ∈ 𝕂. (It is 

assumed that each 𝐽𝑘(0) is unitary).  

In this way, we can construct many examples of homogeneous operators in 𝐵𝑛(𝒟) 
but not all.  

Even, not all the the homogeneous operators in 𝐵1(𝔻) come from this construction. 

There is a homogeneous operator in the class 𝐵1 (𝔻) corresponding to the multiplier 

𝐽(𝑔, 𝑧) = (𝑔′(𝑧))
𝜆
, 𝜆 ∈ ℝ exactly when 𝜆 > 0. The reproducing kernel is (𝑧, 𝑤) =

(1 − 𝑧𝑤̅)−2𝜆. But such an operator arises from the construction outlined above only if 𝜆 ≥
1/2.  

The homogeneous operators constructed in the manner described above are of interest 

since they happen to be exactly the subnormal homogeneous operators in this class (cf. [74]).  

In the case of 𝐵𝑛(𝔻), it is shown in [72] that the bundle corresponding to a 

homogeneous Cowen-Douglas operator admits an action of the covering group 𝐺̃ of the 

group 𝐺 = 𝑀𝑜𝑏 via unitary bundle maps. This suggests the strategy of first finding all the 

homogeneous holomorphic Hermitian vector bundles (a problem easily solved by known 

methods) and then determining which of these correspond to an operator in the Cowen-

Douglas class. 

We use the method of holomorphic induction. For this, first we describe some basic facts 

and fix our notation. We follow the notation of [88] which we will use as a reference.  

The Lie algebra 𝔤 of 𝐺̃ is spanned by 𝑋1 =
1

2
(
0 1
1 0

) , 𝑋0 =
1

2
(
𝑖 0
0 −𝑖

) and 𝑌 =
1

2
(
0 −𝑖
𝑖 0

). 

The subalgebra 𝔨 corresponding to 𝕂̃ is spanned by 𝑋0. In the complexified Lie algebra 𝔤ℂ, 

we mostly use the complex basis h, x, y given by  

ℎ = −𝑖𝑋0 =
1

2
(
1 0
0 −1

) 

𝑥 = 𝑋1 + 𝑖𝑌 = (
0 1
0 0

) 

𝑦 = 𝑋1 − 𝑖𝑌 = (
0 0
1 0

) 

We write 𝐺ℂ for the (simply connected group) 𝑆𝐿(2, ℂ). Let 𝐺0 = 𝑆𝑈(1, 1) be the subgroup 

corresponding to 𝔤. The group GC has the closed subgroups 𝕂ℂ = {(
𝑧 0

0
1

𝑧

) : 𝑧 ∈ ℂ, 𝑧 ≠

0} , 𝑃+  = {(
1 𝑧
0 1

) : 𝑧 ∈ ℂ} , 𝑃− = {(
1 0
𝑧 1

) : 𝑧 ∈ ℂ}; the corresponding Lie algebras 𝔨ℂ =

{(
𝑐 0
0 −𝑐

) : 𝑐 ∈ ℂ} , 𝔭+ = {(
0 𝑐
0 0

) : 𝑐 ∈ ℂ} , 𝔭− = {(
0 0
𝑐 0

) : 𝑐 ∈ ℂ} are spanned by h, x and 

y, respectively. The product 𝕂ℂ𝑃− = {(
𝑎 0

𝑏
1

𝑎

) : 0 ≠ 𝑎 ∈ ℂ, 𝑏 ∈ ℂ} is a closed subgroup to 

be denoted T; its Lie algebra is 𝑡 = ℂℎ + ℂ𝑦. The product set 𝑃+𝕂ℂ𝑃− = 𝑃+𝑇 is dense 

open in 𝐺ℂ, contains G, and the product decomposition of each of its elements is unique. 

(𝐺ℂ/𝑇 is the Riemann sphere, 𝑔𝕂̃ → 𝑔𝑇, (𝑔 ∈ 𝐺) is the natural embedding of 𝔻 into it.)  
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According to holomorphic induction [87] the isomorphism classes of homogeneous 

holomorphic vector bundles are in one to one correspondence with equivalence classes of 

linear representations ϱ of the pair (𝔱, 𝕂̃). Since 𝕂̃ is connected, here this means just the 

representations of 𝔱. Such a representation is completely determined by the two linear 

transformations 𝜚(ℎ) and 𝜚(𝑦) which satisfy the bracket relation of h and y, that is,  

[𝜚(ℎ), 𝜚(𝑦)] = −𝜚(𝑦).                                         (39) 
The 𝐺̃-invariant Hermitian structures on the homogeneous holomorphic vector bundle 

(making it into a homogeneous holomorphic Hermitian vector bundle), if they exist, are 

given by 𝜚(𝕂̃)-invariant inner products on the representation space. An inner product 

is 𝜚(𝕂̃)- invariant if and only if 𝜚(ℎ) is diagonal with real diagonal elements in an 

appropriate basis.  

We will be interested only in bundles with a Hermitian structure. So, we will assume 

without restricting generality, that the representation space of 𝜚 is ℂ𝑑 and that 𝜚(ℎ) is a real 

diagonal matrix. 

We will be interested only in irreducible homogeneous holomorphic Hermitian vector 

bundles, this corresponds to ϱ not being the orthogonal direct sum of non-trivial 

representations. Suppose we have such a 𝜚; we write 𝑉𝛼 for the eigenspace of 𝜚(ℎ) with 

eigenvalue α. Let −𝜂 be the largest eigenvalue of 𝜚(ℎ) and m be the largest integer such 

that −𝜂,−(𝜂 +  1), . . . , −(𝜂 + 𝑚) are all eigenvalues. From (39) we have 𝜚(𝑦)𝑉𝛼 ⊆ 𝑉𝛼−1; 

this and orthogonality of the eigenspaces imply that 𝑉 =⊕𝑗=0
𝑚 𝑉−(𝜂+𝑗) and its 

orthocomplement are invariant under ϱ. So, V is the whole space, and have proved that the 

eigenvalues of 𝜚(ℎ) are −𝜂, . . . , −(𝜂 + 𝑚).  
From this it is clear that ϱ can be written as the tensor product of the one dimensional 

representation σ given by 𝜎(ℎ) = −𝜂, 𝜎(𝑦) = 0, and the representation 𝜚0 given by 

𝜚0(ℎ) = 𝜚(ℎ) + 𝜂𝐼, 𝜚0(𝑦) = 𝜚(𝑦). Correspondingly, the bundle for ϱ is the tensor product 

of a line bundle 𝐿𝜂 and the bundle corresponding to 𝜚0.  

The representation 𝜚0 has the great advantage that it lifts to a holomorphic representation of 

the group T. It follows that the homogeneous holomorphic vector bundle it determines for 

𝔻, 𝐺̃, can be obtained as the restriction to 𝔻 of the homogeneous holomorphic vector bundle 

over 𝐺ℂ/𝑇 obtained by ordinary induction in the complex analytic category. So, (as a 

convenient choice) take the local holomorphic cross section 𝑧 ⟼ 𝑠(𝑧):= (
1 𝑧
0 1

) of 𝐺ℂ/𝑇 

over 𝔻. In the trivialization given by 𝑠(𝑧), the multiplier then appears for 𝑔 = (
𝑎 𝑏
𝑐 𝑑

) ∈

𝐺ℂ as  

𝐽𝑔
0(𝑧) = 𝜚0(𝑠(𝑧)−1𝑔−1𝑠(𝑔 · 𝑧)) = 𝜚0 (

𝑐𝑧 + 𝑑 0
−𝑐 (𝑐𝑧 + 𝑑)−1

)

= 𝜚0 (exp (−
𝑐

𝑐𝑧 + 𝑑
𝑦)) 𝜚0(exp(2 𝑙𝑜𝑔(𝑐𝑧 + 𝑑)ℎ))                 (40) 

The last two equalities are simple computations.  

For the line bundle 𝐿𝜂, the multiplier is 𝑔′(𝑧)𝜂 (we write 𝑔′(𝑧) =
𝜕𝑔

𝜕𝑧
(𝑧)) . Consequently, 

the multiplier corresponding to the original ϱ is  

𝐽𝑔(𝑧) = (𝑔
′(𝑧))

𝜂
𝐽𝑔
0(𝑧).                                               (41) 

We now assume that we have a homogeneous holomorphic vector bundle induced by 

ϱ and that it has a reproducing kernel. Then we derive conditions about the action of 𝐺̃ that 

follow from this hypothesis. We will show that these conditions are sufficient: they lead 
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directly to the construction of all homogeneous operators the Cowen-Douglas class with 

multiplicity free representations.  

Under our hypothesis there is a Hilbert space structure in which the action of 𝐺̃ given 

by (34) is unitary. We will study this representation through its 𝕂 - types (i.e., its restriction 

to 𝕂̃). We first compute the infinitesimal representat. 

For 𝑋 ∈ 𝔤, and holomorphic f, we have  

(𝑈𝑋𝑓)(𝑧):= (
𝑑

𝑑𝑡
)
|𝑡=0

(𝑈exp(𝑡𝑋)𝑓(𝑧))

= (
𝑑

𝑑𝑡
)
|𝑡=0

{(
𝜕(exp(−𝑡𝑋) · 𝑧)

𝜕𝑧
)

𝜂

𝐽exp(−𝑡𝑋)
0 (𝑧)𝑓(𝑒𝑥𝑝(−𝑡𝑋) · 𝑧)}.         (42) 

There is a local action of 𝐺ℂ, so this formula remains meaningful also for 𝑋 ∈ 𝔤ℂ. There are 

three factors to differentiate. For the last one, (
𝑑

𝑑𝑡
)
|𝑡=0

𝑓(exp(−𝑡𝑋) · 𝑧) = −(𝑋𝑧)𝑓′(𝑧), and 

we see that exp(𝑡𝑥) · 𝑧 = (
1 𝑡
0 1

) · 𝑧 = 𝑧 + 𝑡 gives 𝑥 · 𝑧 = 1; by similar computations, 𝑦 ·

𝑧 = −𝑧2, ℎ · 𝑧 = 𝑧. For the first factor, we interchange the differentiations and get 

−𝜂
𝜕

𝜕𝑧
(𝑋 · 𝑧), i.e., 0, 2𝜂𝑧,−𝜂, respectively for 𝑥, 𝑦 and h.  

To differentiate the factor in the middle, we use its expression (40). First for 𝑋 = 𝑦, we have  
𝑑

𝑑𝑡
|
𝑡=0
𝜚0(𝑒𝑥𝑝(−𝑡(𝑡𝑧 + 1)−1𝑦) =

𝑑

𝑑𝑡
|
𝑡=0
(exp(−𝑡(𝑡𝑧 + 1)−1𝜚0(𝑦)) = −𝜚0  (43) 

and  
𝑑

𝑑𝑡
|
𝑡=0
𝜚0(exp(2 log(𝑡𝑧 + 1) ℎ)) =

𝑑

𝑑𝑡
|
𝑡=0
𝑒𝑥𝑝(2 𝑙𝑜𝑔(𝑡𝑧 + 1)𝜚0(ℎ)) = 2𝑧𝜚0   (44) 

¿From these, following the conventions of [88] in defining H,E,F, it follows that  

(𝐹 𝑓)(𝑧):= (𝑈−𝑦𝑓)(𝑧) =
𝑑

𝑑𝑡
|
𝑡=0
𝐽exp(𝑡𝑦)(𝑧)𝑓(exp(𝑡𝑦) · 𝑧)

= (−2𝜂𝑧𝐼 + 2𝑧𝜚0(ℎ) − 𝜚0(𝑦))𝑓(𝑧) − 𝑧2𝑓′.                                   (45) 

Similar, simpler computations give, for 𝑔 = exp(𝑡𝑥) = (
1 𝑡
0 1

) 

 (𝐸𝑓)(𝑧):= (𝑈𝑥𝑓)(𝑧) = −𝑓
′(𝑧).                               (46) 

Finally, for = exp(𝑡ℎ) = (𝑒
𝑡

2 0

0 𝑒−
𝑡

2

) , we have  

𝐽exp(𝑡ℎ)(𝑧) = 𝜚 (
𝑒−
𝑡
2 0

0 𝑒
𝑡
2

) = exp(−𝑡) 𝜚0(ℎ). 

Hence it is not hard to verify that  

(𝐻𝑓)(𝑧):= (𝑈ℎ𝑓)(𝑧) = (− 𝜂𝐼 + 𝜚
0(ℎ))𝑓(𝑧) − 𝑧𝑓′(𝑧).              (47) 

Under our hypothesis, we have a reproducing kernel and U is unitary. From our 

computations above, we can determine how U decomposes into irreducibles. The 

infinitesimal representation of U acts on the vector valued polynomials; a good basis for this 

space is {𝜀𝑗𝑧
𝑛: 𝑛 ≥ 0}; 𝜀𝑗 is the jth natural basis vector in ℂ𝑑. We have 𝐻(𝜀𝑗𝑧

𝑛) =

−(𝜂 + 𝑗 + 𝑛)(𝜀𝑗𝑧
𝑛), so the lowest 𝕂 - types of the irreducible summands are spanned by 

the 𝜀𝑗. This space also, the kernel of E. So, U is direct sum of discrete series representations 

(𝑈𝜂+𝑗, in the notation of [88]), each one appearing as many times as −(𝜂 + 𝑗) appears on 

the diagonal of 𝜚(ℎ). 
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In order to be able to use the computations of [72] without confusion, we introduce 

the parameter = 𝜂 +
𝑚

2
.  

From the last remark, it is clear that if U is multiplicity-free then 𝜚(ℎ) is an (𝑚 +  1) ×

(𝑚 +  1) matrix with eigenvalues −𝜆 +
𝑚

2
, −𝜆 +

𝑚

2
− 1, . . . , −𝜆 −

𝑚

2
. As (ℎ)𝜀𝑗 = −(𝜆 −

𝑚

2
+ 𝑗) 𝜀𝑗, (39) shows that  

𝜚(ℎ)(𝜚(𝑦)𝜀𝑗) = −(𝜆 +
𝑚

2
+ 𝑗 + 1)𝜚(𝑦)𝜀𝑗  , that is, 𝜚(𝑦)𝜀𝑗 = 𝑐𝑜𝑛𝑠𝑡 𝜀𝑗+1. 

So, 𝜚(𝑦) is a lower triangular matrix (with non-zero entries, otherwise we have a reducible 

bundle). The homogeneous holomorphic vector bundle determines 𝜚(𝑦) only up to a 

conjugacy by a matrix commuting with 𝜚(ℎ), that is, a diagonal matrix. So, we can choose 

the realization of our bundle by applying an appropriate conjugation such that 𝜚(𝑦) = 𝑆𝑚, 

the triangular matrix whose (𝑗, 𝑗 − 1) element is j for 1 ≤ 𝑗 ≤ 𝑚. 

By standard representation theory of 𝑆𝐿(2,ℝ), the vectors (−𝐹)𝑛𝜀𝑗 are orthogonal and the 

irreducible subspaces ℋ(𝑗) for U are span{(−𝐹)𝑛𝜀𝑗: 𝑛 ≥ 0} for 0 ≤ 𝑗 ≤ 𝑚. There is also 

precise information about the norms.  

Using this, we can construct an orthonormal basis for our representation space.  

For any 𝑛 ≥ 0, we let 𝑢𝑛
𝑗 (𝑧) = (−𝐹)𝑛𝜀𝑗.  

To proceed further, we need to find the vectors 𝑢𝑛
𝑗 (𝑧) explicitly. This is facilitated by the 

following Lemma.  

Lemma (3.3.3)[84]: Let u be a vector with 𝑢ℓ(𝑧) = 𝑢ℓ𝑧
𝑛−ℓ, 0 ≤ ℓ ≤ 𝑚 and 𝑛 ≥ 0. We then 

have  

(−𝐹𝑢)ℓ(𝑧) = (2𝜆 −𝑚 + ℓ + 𝑛)𝑢ℓ𝑧
𝑛+1−ℓ + ℓ𝑢ℓ−1𝑧

𝑛+1−ℓ, 0 ≤ ℓ ≤ 𝑚. 
Proof. We recall (45) that −(𝐹𝑓)(𝑧) = 2𝜆𝑧𝑓(𝑧) + 𝑆𝑚𝑓(𝑧) − 2𝑧𝐷𝑚𝑓(𝑧) + 𝑧

2𝑓′(𝑧) for 

𝑓 ∈ ℋ(𝑛), where 𝐷𝑚 = −𝜚
0(ℎ) is the diagonal operator with diagonal {−

𝑚

2
, −

𝑚

2
+

1, . . . ,
𝑚

2
} and 𝑆𝑚 is the forward weighted shift with weights 1, 2, . . . , 𝑚. Therefore we have  

(−𝐹𝑢)ℓ(𝑧) = (2𝜆𝑢ℓ + ℓ𝑢ℓ−1 − (𝑚 − 2ℓ)𝑢ℓ + (𝑛 − ℓ)𝑢ℓ)𝑧
𝑛+1−ℓ 

completing the proof.  

Lemma (3.3.4)[84]: For 0 ≤ 𝑗 ≤ 𝑚 and 0 ≤ ℓ ≤ 𝑚, we have  

𝑢𝑛,ℓ
𝑗 (𝑧) = {

0                                                                                           𝑖𝑓 0 ≤ ℓ ≤ 𝑗 − 1

(
𝑛
𝑘
) (𝑗 + 1)𝑘(2𝜆 −𝑚 + 2𝑗 + 𝑘)𝑛−𝑘𝑧

𝑛−𝑘     𝑖𝑓 𝑗 ≤ ℓ ≤ 𝑚, 𝑘 = ℓ − 𝑗,
 

where 𝑢𝑛,ℓ
𝑗 (𝑧) is the scalar valued function at the position ℓ of the ℂ𝑚+1- valued function 

𝑢𝑛
𝑗 (𝑧):= (−𝐹)𝑛𝜀𝑗. 

Proof. The proof is by induction on n. The vectors 𝑢𝑛
𝑗
 are in ℋ(𝑛) for 0 ≤ 𝑗 ≤ 𝑚. For a 

fixed but arbitrary positive integer 𝑗, 0 ≤ 𝑗 ≤ 𝑚, we see that 𝑢𝑛,ℓ
𝑗0 (𝑧) is 0 if 𝑛 < ℓ − 𝑗. We 

have to verify that (−𝐹 𝑢𝑛
𝑗
)(𝑧) = 𝑢𝑛+1

𝑗 (𝑧). From the previous Lemma, we have  

(−𝐹 𝑢𝑛
𝑗
)
ℓ
(𝑧) = (2𝜆 − 𝑚 + ℓ + 𝑛 + 𝑗)𝑢𝑛,ℓ

𝑗
𝑧𝑛+𝑗+1−ℓ + ℓ𝑢𝑛,ℓ−1

𝑗
𝑧𝑛+𝑗+1−ℓ 

where (−𝐹 𝑢𝑛
𝑗
)
ℓ
(𝑧) is the scalar function at the position ℓ of the ℂ𝑚+1- valued function 

(−𝐹 𝑢𝑛
𝑗
)(𝑧). To complete the proof, we note (using 𝑘 = ℓ − 𝑗) that  
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(−𝐹 𝑢𝑛
𝑗
)
𝑗+𝑘
(𝑧)

= ((
𝑛
𝑘
) (𝑗 + 1)𝑘(2𝜆 −𝑚 + 2𝑗 + 𝑘)𝑛−𝑘(2𝜆 −𝑚 + 2𝑗 + 𝑘 + 𝑛)

+ ((
𝑛

𝑘 − 1
) (𝑗 + 1)𝑘(2𝜆 − 𝑚 + 2𝑗 + 𝑘 − 1)𝑛−𝑘) 𝑧

𝑛+1−𝑘   

= (𝑗 + 1)𝑘(2𝜆 −𝑚 + 2𝑗 + 𝑘)𝑛−𝑘((
 𝑛 
𝑘
)  (2𝜆 − 𝑚 + 2𝑗 + 𝑘 + 𝑛)

+ (
𝑛 
𝑘 − 1

)  (2𝜆 − 𝑚 + 2𝑗 + 𝑘 − 1)𝑧  𝑛+1−𝑘) 

=(𝑗 + 1)𝑘(2𝜆 −𝑚 + 2𝑗 + 𝑘)(𝑛−𝑘) (((
 𝑛 
𝑘
)  + (

𝑛 
𝑘 − 1

) (2𝜆 −𝑚 + 2𝑗 + 𝑘 − 1) + (𝑛 +

1) (
𝑛 
𝑘
) )𝑧𝑛+1−𝑘  

= (𝑗 + 1)𝑘(2𝜆 −𝑚 + 2𝑗 + 𝑘)(𝑛−𝑘)  ((
𝑛 + 1 
𝑘

)  (2𝜆 − 𝑚 + 2𝑗 + 𝑘 − 1)

+ (
𝑛 + 1 
𝑘

)  (𝑛 − 𝑘 + 1) +)𝑧𝑛+1−𝑘 

 = (𝑗 + 1)𝑘(2𝜆 − 𝑚 + 2𝑗 + 𝑘)𝑛−𝑘  ((
𝑛 + 1 
𝑘

)  (2𝜆 − 𝑚 + 2𝑗 + 𝑛)) 𝑧  𝑛+1−𝑘 

= (𝑗 + 1)𝑘  ((
𝑛 + 1  
𝑘

)  (2𝜆 − 𝑚 + 2𝑗 + 𝑘)𝑛+1−𝑘) 𝑧
𝑛+1−𝑘 = 𝑢𝑛+1,𝑗+𝑘

𝑗 (𝑧) 

 for a fixed but arbitrary j, 0 ≤ j≤ m and k, 0 ≤ k ≤ m−j. This completes the proof. On H(j) , 

we have the representation 𝑈𝜆𝑗 acting (0 ≤ 𝑗 ≤ 𝑚), where 𝜆𝑗 = 𝜆 −
𝑚

2
+ 𝑗. Its lowest 𝕂 - 

type is spanned by 𝜀𝑗(=  𝑢0
𝑗
) and 𝜀𝑗 = 𝜆𝑗𝜀𝑗. By [88] we have ‖(−𝐹)𝑘𝜀𝑗‖

2
=

‖𝜎𝑘
𝑗(−𝐹)𝑘−1𝜀𝑗‖

2
 with 

 𝜎𝑘
𝑗
= (2𝜆𝑗 + 𝑘 − 1)𝑘 

 for all 𝑘 ≥ 1. (Here we used that the constant q in [88] equals 𝜆𝑗  (1 − 𝜆𝑗) by [88].) We 

write  

𝜎𝑛
𝑗
=∏𝜎𝑘

𝑗
 

𝑛

𝑘=1

 

which can be written in a compact form  

𝜎𝑛
𝑗
= ((2𝜆𝑗)𝑛

(1)𝑛),                                                 (48) 

where (𝑥)𝑛 = (𝑥 + 1) · · · (𝑥 + 𝑛 − 1). We stipulate that the binomial co-efficient (
𝑛
𝑘
)  as 

well as (𝑥)𝑛−𝑘 are both zero if 𝑛 < 𝑘.  

The positivity of the normalizing constants (𝜎𝑛−𝑗
𝑗
)
1

2(𝑛 ≥ 𝑗) is equivalent to the existence of 

an inner product for which the set of vectors 𝑒𝑛−𝑗
𝑗

 defined by the formula:  

𝑒𝑛−𝑗
𝑗
= (𝜎𝑛

𝑗
)
−
1
2𝑢𝑛−𝑗
𝑗
(𝑧), 𝑛 ≥ 𝑗, 0 ≤ 𝑗 ≤ 𝑚 

forms an orthonormal set. Of course, the positivity condition is fulfilled if and only if 2𝜆 >
𝑚.  

In this way, for fixed j, each 𝑒𝑛−𝑗
𝑗

 has the same norm for all 𝑛 ≥ 𝑗. Hence the only possible 

choice for an orthonormal system is {µ𝑗𝑒𝑛−𝑗
𝑗
: 𝑛 ≥ 𝑗} for some positive (0 ≤ 𝑗 ≤ 𝑚). 
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However, we may choose the norm of the first vector, that is, the vector 𝑒0
𝑗
, 0 ≤ 𝑗 ≤ 𝑚, 

arbitrarily. Therefore, all the possible choices for an orthonormal set are  

µ𝑗𝑒𝑛−𝑗
𝑗 (𝑧) =

µ𝑗

√(2𝜆 −𝑚 + 2𝑗)𝑛−𝑗√(1)𝑛−𝑗
𝑢𝑛−𝑗
𝑗
(𝑧), 

𝑛 ≥ 𝑗, 0 ≤ 𝑗 ≤ 𝑚, and µ𝑗 , 0 ≤ 𝑗 ≤ 𝑚 are 𝑚 + 1 arbitrary positive numbers.  

Let us fix a positive real number λ and 𝑚 ∈ ℕ satisfying 2𝜆 > 𝑚. Let ℋ(𝜆,µ) denote the 

closed linear span of the vectors {µ𝑗𝑒𝑛−𝑗
𝑗
: 0 ≤ 𝑗 ≤ 𝑚, 𝑛 ≥ 𝑗}. Then the Hilbert space ℋ(𝜆,µ) 

is the representation space for U defined in (32). Since the vectors 𝑢𝑛
𝑗
⊥ 𝑢𝑝

𝑘 as long as 𝑗 ≠

𝑘, it follows that the Hilbert space ℋ(𝜆,µ) is the orthogonal direct sum ⊕𝑗=0
𝑚 1/µ𝑗ℋ

(𝑗). We 

proceed to compute the reproducing kernel by using the orthonormal system {µ𝑗𝑒𝑛−𝑗
𝑗
: 𝑛 ≥

𝑗}, 0 ≤ 𝑗 ≤ 𝑚. We point out that for 0 ≤ ℓ ≤ 𝑚, the entry 𝑒𝑛−𝑗
ℓ,𝑗
𝑧𝑛−𝑗 at the position ℓ of the 

vector 𝑒𝑛−𝑗
𝑗
 (𝑧) is 0 for 𝑛 < ℓ. Consequently, 𝑒𝑛−𝑗

𝑗
 is the zero vector unless 𝑛 ≥ 𝑗. The set 

of vectors {µ𝑗𝑒𝑛−𝑗
𝑗
: 0 ≤ 𝑗 ≤ 𝑚, 𝑛 ≥ 𝑗} is orthonormal in the Hilbert space ℋ(𝜆,µ) . We note 

that  

𝑒𝑛−𝑗
𝑗
(𝑧) = ((𝑒𝑛−𝑗

ℓ,𝑗
𝑧𝑛−𝑘))

ℓ=0

𝑚
, 

(𝑒𝑛−𝑗
𝑗 (𝑧))

ℓ

= {

0,                                                                                                                        0 ≤ ℓ ≤ 𝑗 − 1 

√
(2𝜆 + 2𝑗 − 𝑚 + 𝑘)𝑛−𝑗−𝑘

(1)𝑛−𝑗−𝑘
√
(𝑛 − 𝑗 − 𝑘 + 1)𝑘
(2𝜆 + 2𝑗 − 𝑚)𝑘

(𝑗 + 1)𝑘
(1)𝑘

𝑧𝑛−𝑘, 𝑗 ≤ ℓ ≤ 𝑚, 𝑘 = ℓ − 𝑗.
 (50) 

We have under the hypothesis that we have a reproducing kernel Hilbert space on which the 

representation U is unitary, explicitly determined an orthonormal basis for this space. Now 

we are able to answer the question of whether this space really exists. For this it is enough 

to show that ∑𝑒𝑛(𝑧)𝑒𝑛(𝑤)̅̅ ̅̅ ̅̅ ̅̅ 𝑡𝑟 converges pointwise, the sum then represents the reproducing 

kernel for this Hilbert space. We will sum the series explicitly, and will verify that it gives 

exactly the kernels constructed in [72]. This will complete the program by proving that the 

examples of [72] give all the homogeneous operators in the Cowen-Douglas class whose 

associated representation is multiplicity free.  

To compute the kernel function, it is convenient to set, for any 𝑛 ≥ 0, 

𝐺(µ, 𝑛, 𝑧) =

(

 
 
 

µ0𝑒𝑛
0,0𝑧𝑛 ⋯ 0 ⋯ 0
⋮ ⋯ ⋮ ⋯ ⋮

µ0𝑒𝑛
𝑗,0
𝑧𝑛−𝑗 ⋯ µ𝑗𝑒𝑛−𝑗

𝑗,𝑗
𝑧𝑛−𝑗 ⋯ 0

⋮ ⋯ ⋮ ⋯ ⋮

µ0𝑒𝑛
𝑚,0𝑧𝑛−𝑚 ⋯ µ𝑗𝑒𝑛−𝑗

𝑚,𝑗
𝑧𝑛−𝑚 ⋯ µ𝑚𝑒𝑛−𝑚

𝑚,𝑚𝑧𝑛−𝑚)

 
 
 

 

= (
𝑧𝑛 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑧𝑛−𝑚

)

(

 
 
 

𝑒𝑛
0,0 ⋯ 0 ⋯ 0
⋮ ⋯ ⋮ ⋯ ⋮

𝑒𝑛
𝑗,0

⋯ 𝑒𝑛−𝑗
𝑗,𝑗

⋯ 0

⋮ ⋯ ⋮ ⋯ ⋮

𝑒𝑛
𝑚,0 ⋯ 𝑒𝑛−𝑗

𝑚,𝑗
⋯ 𝑒𝑛−𝑚

𝑚,𝑚
)

 
 
 
(
µ0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ µ𝑚

) 

= 𝐷𝑛(𝑧)𝐺(𝑛)𝐷(µ)                                                   (51) 
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where 𝐷𝑛(𝑧), 𝐷(µ) are the two diagonal matrices and 𝐺(𝑛) = (𝑒𝑛−𝑗
ℓ,𝑗
)
ℓ,𝑗=0

𝑚
 with 𝑒𝑛−𝑗

ℓ,𝑗
= 0 if 

ℓ < 𝑗 or if 𝑛 < ℓ. The nonzero entries of the lower triangular matrix 𝐺(𝑛), using (50), are  

𝐺𝑗+𝑘,𝑗(𝑛) =
(
𝑛 − 𝑗
 𝑘
) (𝑗 + 1)𝑘(2𝜆 −𝑚 + 2𝑗 + 𝑘)𝑛−𝑗−𝑘

√(2𝜆 −𝑚 + 2𝑗)𝑛−𝑗√(1)𝑛−𝑗
 

=
√(2𝜆 −𝑚 + 2𝑗 + 𝑘)𝑛−𝑗−𝑘

√(2𝜆 −𝑚 + 2𝑗)𝑘
 
(𝑛 − 𝑝 𝑗 − 𝑘 + 1)𝑘

√(1)𝑛−𝑗

(𝑗 + 1)𝑘
(1)𝑘

 

=
√(2𝜆 −𝑚 + 2𝑗 + 𝑘)𝑛−𝑗−𝑘

√(2𝜆 −𝑚 + 2𝑗)𝑘
 √
(𝑛 − 𝑗 − 𝑘 + 1)𝑘

(1)𝑛−𝑗−𝑘

(𝑗 + 1)𝑘
(1)𝑘

       (52) 

for 0 ≤ 𝑘 ≤ 𝑚 − 𝑗. 

Now, we are ready to compute the reproducing kernel 𝐾𝑗 for the Hilbert space ℋ(𝑗) =

𝑠𝑝𝑎𝑛{𝑒𝑛−𝑗
𝑗
: 𝑛 ≥ 𝑗}, 0 ≤ 𝑗 ≤ 𝑚. Recall that 𝐾(𝑧, 𝑤) = ∑ 𝑒𝑛(𝑧)𝑒𝑛(𝑤)

∗∞
𝑛=0  for any 

orthonormal basis 𝑒𝑛, 𝑛 ≥ 0. This ensures that K is a positive definite kernel. For our 

computations, we will use the particular orthonormal basis 𝑒𝑛−𝑗
𝑗

 as described in (49). Since 

there are j zeros at the top of each of these basis vectors, it follows that (ℓ, 𝑝) will be 0 if 

either ℓ < 𝑗 or 𝑝 < 𝑗. We will compute (𝐾𝑗(𝑧, 𝑤)), at (ℓ, 𝑝) for 𝑗 ≤ ℓ, 𝑝 ≤ 𝑚. For ℓ, 𝑝 as 

above, we have  

(𝐾𝑗(𝑧, 𝑤))
ℓ,𝑝
= ∑ 𝑒𝑛−𝑗,ℓ

𝑗 (𝑧)𝑒𝑛−𝑗,𝑝
𝑗 (𝑤)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

∞

𝑛≥max(ℓ,𝑝)

= ∑ 𝐺ℓ,𝑗(𝑛)𝐺𝑝,𝑗(𝑛)𝑧
𝑛−ℓ𝑤̅𝑛−𝑝

∞

𝑛≥max(ℓ,𝑝)

. 

We first simplify the coefficient 𝐺ℓ,𝑗(𝑛)𝐺𝑝,𝑗(𝑛) of 𝑧𝑛−ℓ𝑤̅𝑛−𝑝. The values of 𝐺ℓ,𝑗(𝑛) are 

given in (52). Therefore, we have  

𝐺ℓ,𝑗(𝑛)𝐺𝑝,𝑗(𝑛)

= (
(2𝜆𝑗 + ℓ − 𝑗)𝑛−ℓ

(2𝜆𝑗)ℓ−𝑗

(𝑛 − ℓ + 1)ℓ−𝑗
(1)𝑛−ℓ

(2𝜆𝑗 + 𝑝 − 𝑗)𝑛−𝑝

(2𝜆𝑗)𝑝−𝑗

(𝑛 − ℓ + 1)ℓ−𝑗
(1)𝑛−𝑝

)

1
2

×
(𝑗 + 1)ℓ−𝑗
(1)ℓ−𝑗

(𝑗 + 1)𝑝−𝑗
(1)𝑝−𝑗

=
(2𝜆𝑗 + 𝑝 − 𝑗)𝑛−𝑝

(𝑛 − ℓ + 1)ℓ−𝑗

(2𝜆𝑗)ℓ−𝑗
(1)𝑛−𝑝

 (
(2𝜆𝑗 + ℓ − 𝑗)𝑝−ℓ

(𝑛 − 𝑝 + 1)𝑝−ℓ

(2𝜆𝑗 + ℓ − 𝑗)𝑝−ℓ
(𝑛 − 𝑝 + 1)𝑝−ℓ

)

1
2

×
(𝑗 + 1)ℓ−𝑗
(1)ℓ−𝑗

(𝑗 + 1)𝑝−𝑗
(1)𝑝−𝑗

 

=
(2𝜆𝑗)𝑝−𝑗(2𝜆𝑗 + 𝑝 − 𝑗)𝑛−𝑝

(𝑛 − ℓ + 1)ℓ−𝑗(𝑛 − 𝑝 + 1)𝑝−𝑗

(2𝜆𝑗)𝑝−𝑗(2𝜆𝑗)ℓ−𝑗
(1)𝑛−𝑝(𝑛 − 𝑝 + 1)𝑝−𝑗

(𝑗 + 1)ℓ−𝑗
(1)ℓ−𝑗

(𝑗 + 1)𝑝−𝑗
(1)𝑝−𝑗

=
(2𝜆𝑗)𝑛−𝑗

(𝑛 − ℓ + 1)ℓ−𝑗(𝑛 − 𝑝 + 1)𝑝−𝑗

(2𝜆𝑗)𝑝−𝑗(2𝜆𝑗)ℓ−𝑗
(1)𝑛−𝑗

(𝑗 + 1)ℓ−𝑗
(1)ℓ−𝑗

(𝑗 + 1)𝑝−𝑗
(1)𝑝−𝑗

. 
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Theorem (3.3.5)[84]: Given an arbitrary set µ0, . . . , µ𝑚 of positive numbers, and 2𝜆 > 𝑚, 

we have  

𝐾(𝜆,µ)(𝑧, 𝑤) =∑µ𝑗
2𝐾𝑗(𝑧, 𝑤)

𝑚

𝑗=0

= 𝐵(𝜆,µ)(𝑧, 𝑤). 

As a result, the two Hilbert spaces ℋ(𝜆,µ) and 𝐴(𝜆,µ) of [72] are equal. 

Proof. We now compare the co-efficients (𝐾𝑗(𝑧, 𝑤))
ℓ,𝑝

 with that of a known Kernel. Let 

𝐵𝜆𝑗(𝑧, 𝑤) = (1 − 𝑧𝑤̅)−2𝜆𝑗 , where 𝐵(𝑧,𝑤) = (1 − 𝑧𝑤̅)−2 is the Bergman kernel on the unit 

disc. We let ∂ and 𝜕̅ denote differentiation with respect to z and 𝑤̅ respectively. Put  

𝐵̃(𝜆𝑗)(𝑧, 𝑤) = (𝜕ℓ−𝑗𝜕̅𝑝−𝑗(1 − 𝑧𝑤̅)−2𝜆𝑗)
𝑗≤ℓ,𝑝≤𝑚

. 

We expand the entry at the position (ℓ, 𝑝) of 𝐵̃(𝜆𝑗)(𝑧, 𝑤) to see that  

(𝐵̃(𝜆𝑗)(𝑧, 𝑤))
ℓ,𝑝

= ∑
(2𝜆𝑗)𝜈
(1)𝜈

(𝜈 − ℓ + 𝑗 + 1)ℓ−𝑗(𝜈 + 𝑗 − 𝑝

𝜈≥𝑚𝑎𝑥(ℓ−𝑗,𝑝−𝑗)

+ 1)𝑝−𝑗𝑧
𝜈−(ℓ−𝑗)𝑤̅𝜈−(𝑝−𝑗) 

= ∑
(2𝜆𝑗)𝑛−𝑗
(1)𝑛−𝑗

(𝑛 − ℓ + 1)ℓ−𝑗(𝑛 − 𝑝 + 1)𝑝−𝑗𝑧
𝑛−ℓ𝑤̅𝑛−𝑝

𝑛≥𝑚𝑎𝑥(ℓ,𝑝)

, 

where we have set 𝑛 = 𝑚 + 𝑗. Comparing these coefficients with that of 𝐺ℓ,𝑗(𝑛)𝐺𝑝,𝑗(𝑛), we 

find that  

𝐾𝑗(𝑧, 𝑤) = 𝐷𝑗𝐵̃
(𝜆𝑗)(𝑧, 𝑤)𝐷𝑗 ,                                      (53) 

where 𝐷𝑗 is a diagonal matrix with 
1

(2𝜆𝑗)ℓ−𝑗

(𝑗+1)ℓ−𝑗

(1)ℓ−𝑗
 at the (ℓ, ℓ) position with 𝑗 ≤ ℓ ≤ 𝑚. 

Hence 𝐾𝑗(𝑧, 𝑤) = 𝐵
(𝜆𝑗)(𝑧, 𝑤) which was defined in the equation ([72]).  

Clearly, we can add up the kernels 𝐾𝑗 to obtain the kernel 𝐾(𝜆,µ) for the Hilbert space 

ℋ(𝜆,µ) =
⊕𝑗=0
𝑚 1

µ𝑗
ℋ(𝑗). Hence the proof of the theorem is complete.  

Corollary (3.3.6)[84]: The irreducible homogeneous operators in the Cowen - Douglas 

class whose associated representation is multiplicity free are exactly the adjoints of 𝑀(𝜆,µ) 
constructed in [72].  

Proof. In our discussion up to here we proved that the Hilbert space ℋ(𝜆,µ) corresponding 

to a homogeneous operator in the Cowen - Douglas class has a reproducing kernel given by 

𝐾(𝜆,µ) = ∑ µ𝑗
2𝐾𝑗

𝑚
0  , 2𝜆 > 1, µ1, . . . , µ𝑚 > 0. It follows from the Theorem that the kernels 

obtained this way are the same as (are equivalent to) the kernels constructed in [72]. These 

operators were shown to be irreducible [72].  

We now consider the action of the multiplication operator 𝑀(𝜆,µ) on the Hilbert space 

ℋ(𝜆,µ). Let ℋ(𝑛) be the linear span of the vectors  

{𝑒𝑛
0(𝑧),… , 𝑒𝑛−𝑗

𝑗 (𝑧), . . . , 𝑒𝑛−𝑚
𝑚 (𝑧)}, 

where as before, for 0 ≤ ℓ ≤ 𝑚, 𝑒𝑛−ℓ
𝑗 (𝑧) is zero if 𝑛 − ℓ < 0. Clearly, ℋ(𝜆,µ) =

⊕𝑛=0
∞ ℋ(𝑛). We have  



106 

𝑧𝐺(𝑛, 𝑧) = 𝐷𝑛(𝑧)𝐺(𝑛)𝐷(µ) = 𝐷𝑛+1(𝑧)𝐺(𝑛)𝐷(µ)
= 𝐷𝑛+1(𝑧)𝐺(𝑛 + 1)𝐷(µ)(𝐷(µ)

−1𝐺(𝑛 + 1)−1𝐺(𝑛)𝐷(µ). 
 If we let 𝑊(𝑛) = 𝐷(µ)−1𝐺(𝑛 + 1)−1𝐺(𝑛)𝐷(µ),then we see that  

𝑧𝑒𝑛−𝑗
𝑗
(𝑧) = 𝐺(µ, 𝑛 + 1, 𝑧)𝑊𝑗(𝑛), where 𝑊𝑗(𝑛) is the jth column of the matrix 𝑊(𝑛). It 

follows that the operator 𝑀(𝜆,µ) defines a block shift W on the representation space ℋ(𝜆,µ). 

The block shift W is defined by the requirement that 𝑊:ℋ(𝑛) → ℋ(𝑛 + 1) and 𝑊|ℋ(𝑛) =

𝑊𝑛
𝑡𝑟. 

Here, we have a construction of the representation space ℋ(𝜆,µ) along with the matrix 

representation of the operator 𝑀(𝜆,µ) which is independent of the corresponding results from 

[72].  

Example (3.3.7)[84]: Recall that 𝐺(µ, 𝑛, 𝑧) = 𝐷𝑛(𝑧)𝐺(𝑛)𝐷(µ). Once we determine the 

matrix 𝐺(𝑛) explicitly, we can calculate both the block weighted shift and the kernel 

function.  

We discuss these calculations in the particular case of 𝑚 = 1. First, it is easily seen that  

𝐺(𝑛) =

(

 
 
 (

(2𝜆 − 1)𝑛
(1)𝑛

)

1
2

0

(
𝑛

2𝜆 − 1
)

1
2
 (
(2𝜆)𝑛−1
(1)𝑛−1

)

1
2

(
(2𝜆 + 1)𝑛−1
(1)𝑛−1

)

1
2

)

 
 
 
.             (54) 

The block 𝑊𝑛 of the weighted shift W is  

𝑊𝑛 =

(

  
 (

𝑛 + 1

2𝜆 + 𝑛 − 1
)

1
2

0

−
1

µ1
(
2𝜆

2𝜆 − 1
)

1
2

(
1

(2𝜆 + 𝑛 − 1)(2𝜆 + 𝑛)
)

1
2
(
𝑛

2𝜆
+ 𝑛)

1
2

)

  
 
.   (55) 

Finally, the reproducing kernel 𝐾(𝜆,µ) with 𝑚 = 1 is easily calculated:  

𝐾(𝜆,µ)(𝑧, 𝑤) =

(

 
 

1

(1 − 𝑤̅𝑧 )2𝜆−1
𝑧(1 − 𝑤̅𝑧)2𝜆

𝑤̅

(1 − 𝑤̅𝑧)2𝜆
1

2𝜆 − 1

1 + (2𝜆 − 1)𝑤̅𝑧

(1 − 𝑤̅𝑧)2𝜆+1 )

 
 

+ µ1
2 (

0 0

0
1

(1 − 𝑤̅𝑧)2𝜆+1
).                                                                    (56) 

One might continue the explicit calculations, as above, in the particular case of 𝑚 = 2 as 

well. We begin with the matrix  
𝐺(𝑛)

=

(

 
 
 
 
 
 (

(2𝜆 − 2)𝑛
(1)𝑛

)

1
2

0 0

(
𝑛

2𝜆 − 2
)

1
2
(
(2𝜆 − 1)𝑛−1
(1)𝑛−1

)

1
2

(
(2𝜆)𝑛−1
(1)𝑛−1

)

1
2

0

(
𝑛(𝑛 − 1)

(2𝜆 − 2)(2𝜆 − 1)
)

1
2

 (
(2𝜆)𝑛−2
(1)𝑛−2

)

1
2

2 (
𝑛 − 1

2𝜆
)

1
2
(
(2𝜆 + 1)𝑛−2
(1)𝑛−2

)

1
2

(
(2𝜆 + 2)𝑛−2
(1)𝑛−2

)

1
2

)

 
 
 
 
 
 

. (58) 
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The block 𝑊𝑛 of the weighted shift W, in this case, is  

(

 
 
 
 
 
 (

𝑛 + 1

2𝜆 + 𝑛 − 2
)

1
2

0 0

−1

µ1
(
2𝜆 − 1

2𝜆 − 2
)

1
2
(

1

(2𝜆 + 𝑛 − 1)(2𝜆 + 𝑛 − 2)
)

1
2

(
𝑛

2𝜆 + 𝑛 − 1
)

1
2

0

−2

µ2
(
2𝜆 + 1

(2𝜆 − 2)3
)

1
2
(

𝑛

(2𝜆 + 𝑛 − 2)3
)

1
2 (−2)µ1

µ2
 (
2𝜆 + 1

2𝜆
)

1
2
(

1

(2𝜆 + 𝑛 − 1)(2𝜆 + 𝑛)
)

1))
2

(
𝑛 − 1

2𝜆 + 𝑛
)

1
2

)

 
 
 
 
 
 

 . 

Finally, the reproducing kernel 𝐾(𝜆,µ) with 𝑚 = 2 has the form:  

𝐾(𝜆,µ)(𝑧, 𝑤) = 

(

 
 
 
 

1

(1 − 𝑤̅𝑧)2𝜆−2
𝑧

(1 − 𝑤̅𝑧)2𝜆−1
𝑧2

(1 − 𝑤̅𝑧)2𝜆

𝑤̅

(1 − 𝑤̅𝑧)2𝜆−1
1 + (2𝜆 − 2)𝑤̅𝑧

(2𝜆 − 2)(1 − 𝑤̅𝑧)2𝜆
𝑧(2 + (2𝜆 − 2)𝑤̅𝑧)

(2𝜆 − 2)(1 − 𝑤̅𝑧)2𝜆+1

𝑤̅2

(1 − 𝑤̅𝑧)2𝜆
𝑤̅(2 + (2𝜆 − 2)𝑤̅𝑧)

(2𝜆 − 2)(1 − 𝑤̅𝑧)2𝜆+1
2 + 4(2𝜆 − 1)𝑤̅𝑧 + (2𝜆 − 1)(2𝜆 − 2)𝑧2𝑤̅

2

(2𝜆 − 1)(2𝜆 − 2)(1 − 𝑤̅𝑧)2𝜆+2 )

 
 
 
 

 

+µ1
2

(

 
 

0 0 0

0
1

(1 − 𝑤̅𝑧)2𝜆
2

𝑧

(1 − 𝑤̅𝑧)2𝜆+1

0 2
𝑤̅

(1 − 𝑤̅𝑧)2𝜆+1
2
2

2𝜆

1 + 2𝜆𝑤̅𝑧

(1 − 𝑤̅𝑧)2𝜆+2)

 
 
+ µ2

2(

0 0 0
0 0 0

0 0
1

(1 − 𝑤̅𝑧)2𝜆+2

).  (59) 
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Chapter 4 

Sharp Estimates of all Homogeneous Expansions and a Proof of a Weak Version 

 

We establish the sharp upper bounds of growth theorem and distortion theorem for a 

k-fold symmetric quasi-convex mapping. These results show that in the case of quasi-

convex mappings, Bieberbach conjecture in several complex variables is partly proved, and 

many known results are generalized. The results show that a weak version of the Bieberbach 

conjecture in several complex variables is proved, and the obtained conclusions reduce to 

the classical results in one complex variable. The results state that a weak version of the 

Bieberbach conjecture for quasi-convex mappings of type B and order α in several complex 

variables is proved, and the derived conclusions are the generalization of the classical results 

in one complex variable. 

Section (4.1): A Class of Quasi-convex Mappings on the Unit Polydisk in ℂ𝒏∗ 
In the case of one complex variable, the following Bieberbach conjecture (i.e., de 

Branges theorem) is well-known.  

Theorem (4.1.1)[89]: (see [15]) If 𝑓(𝑧) = 𝑧 + ∑ 𝑎𝑛𝑧
𝑛∞

𝑛=2  is a biholomorphic function on 

the unit disk U, then  

|𝑎𝑛| ⩽ 𝑛, 𝑛 = 2, 3,… . 
However, in the case of several complex variables, Cartan [90] pointed out that the above 

theorem does not hold. So people mainly investigated the case of the subclasses of 

biholomorphic mappings Bieberbach conjecture in several complex variables. In 1992, 

Zhang, Dong and Wang [91] first established the sharp estimates of all homogeneous 

expansions for normalized biholomorphic convex mappings on the unit ball in a complex 

Banach space with a brief proof. But with respect to the estimates of all homogeneous 

expansions for normalized biholomorphic starlike mappings, quasi-convex mappings of 

type A and quasi-convex mappings of type B on the Euclidean unit ball 𝐵𝑛 in ℂ𝑛, Roper 

and Suffridge [1] stated that the corresponding Bieberbach conjecture does not hold about 

the second homogeneous expansions with concrete counterexamples. Taking into account 

the above reason, people chiefly show interest in studying the estimates of homogeneous 

expansions for the subclasses of biholomorphic mappings on the unit polydisk 𝑈𝑛 in ℂ𝑛. In 

1999, Gong [15] posed the following conjecture.  

Conjecture (4.1.2)[89]: If 𝑓:𝑈𝑛 → ℂ𝑛 is a normalized biholomorphic starlike mapping on 

the unit polydisk 𝑈𝑛 in ℂ𝑛, then 
‖𝐷𝑚𝑓(0)(𝑧𝑚)‖

𝑚!
⩽ 𝑚‖𝑧𝑚‖, 𝑧 ∈ 𝑈𝑛, 𝑚 = 2, 3,··· . 

It is obvious that the above conjecture is quite similar to the famous Bieberbach conjecture 

in one complex variable. Recently, Liu [14] investigated the estimates of all homogeneous 

expansions for a class of quasi-convex mappings (including quasi-convex mappings of type 

A and quasiconvex mappings of type B), Liu and Liu [92] established the estimates of all 

homogeneous expansions for a class of k-fold symmetric quasi-convex mappings of type B 

and order α. 

On the other hand, at present, the sharp growth, covering and distortion theorem for 

quasiconvex mappings of type B on 𝑈𝑛 is not given, the sharp distortion theorem for quasi-

convex mappings (including quasi-convex mappings of type A) on 𝑈𝑛 is not given as well 

(see [93]). 
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In view of the additional condition for the above mappings (see [14], [92]) are 

somewhat special, a natural question arises to how to weaken the additional condition in 

order to obtain the generalization of known results.  

For 𝑋 be a complex Banach space with norm ‖·‖, 𝑋∗ be the dual space of X and let 

𝑇(𝑥) = {𝑇𝑥 ∈ 𝑋
∗: ‖𝑇𝑥‖ = 1, 𝑇𝑥(𝑥) = 𝑥}. Let E be the unit ball in X, let 𝜕𝐸 be the boundary 

of E and let 𝐸̅ be the closure of E. Let U stand for the Euclidean unit disk in ℂ, let 𝑈𝑛 be the 

unit polydisk in ℂ𝑛, and let 𝜕0𝑈
𝑛 denote the characteristic boundary (i.e., the boundary on 

which the maxium modulus of the holomorphic function can be attained) of 𝑈𝑛. Let the 

symbol ′ mean transpose. Let ℕ be the set of all positive integers.  

Definition (4.1.3)[89]: (see [16]) Suppose that 𝑓: 𝐸 → 𝑋 is a normalized locally 

biholomorphic mapping. Denote  

𝐺𝑓(𝛼, 𝛽) =
2𝛼

𝑇𝑢 [(𝐷𝑓(𝛼𝑢))
−1
(𝑓(𝛼𝑢) − 𝑓(𝛽𝑢))]

−
𝛼 + 𝛽

𝛼 − 𝛽
. 

If 

𝑅𝑒 𝐺𝑓(𝛼, 𝛽) ⩾ 0, 𝑢 ∈ 𝜕𝐸, 𝛼, 𝛽 ∈ 𝑈, 

then f is said to be a quasi-convex mapping of type A on E. 

Definition (4.1.4)[89]: (see [16]) Suppose that 𝑓: 𝐸 → 𝑋 is a normalized locally 

biholomorphic mapping. If  

𝑅𝑒 {𝑇𝑥 [(𝐷𝑓(𝑥))
−1
(𝐷2𝑓(𝑥)(𝑥2) + 𝐷𝑓(𝑥)𝑥)]} ⩾ 0, 𝑥 ∈ 𝐸, 

then f is said to be a quasi-convex mapping of type B on E.  

When 𝑋 = ℂ𝑛, Definitions (4.1.3) and (4.1.4) were originally introduced by Roper and 

Suffridge [1].  

Definition (4.1.5)[89]: (see [94]) Suppose that 𝑓: 𝐸 → 𝑋 is a normalized locally 

biholomorphic mapping. If  

𝑅𝑒 {𝑇𝑥 [(𝐷𝑓(𝑥))
−1
(𝑓(𝑥) − 𝑓(𝜉𝑥))]} ⩾ 0, 𝑥 ∈ 𝐸, 𝜉 ∈ 𝑈̅, 

then 𝑓 is said to be a quasi-convex mapping on E.  

When 𝑋 = ℂ, Definitions (4.1.3)– (4.1.4) are the same; this implies that a quasi-

convex function is equivalent to a normalized biholomorphic convex function in one 

complex variable.  

Definition (4.1.6)[89]: (see [95]) Suppose 𝑓 ∈ 𝐻(𝐸). It is said that f is k-fold symmetric if 

𝑒−
2𝜋𝑖

𝑘 𝑓 (𝑒
2𝜋𝑖

𝑘 𝑥) = 𝑓(𝑥) for all 𝑥 ∈ 𝐸, where 𝑘 ∈ ℕ and 𝑖 = √−1. 

Definition (4.1.7)[89]: (see [96]) Suppose that Ω is a domain (connected open set) in X 

which contains 0. It is said that 𝑥 = 0 is a zero of order k of 𝑓(𝑥) if 𝑓(0) =
0,… , 𝐷𝑘−1𝑓(0) = 0, but 𝐷𝑘𝑓(0) ≠ 0, where 𝑘 ∈ ℕ. 

Definition (4.1.8)[89]: (see [92]) Suppose that 𝛼 ∈ [0, 1) and 𝑓: 𝐸 → 𝑋 is a normalized 

locally biholomorphic mapping. If  

𝑅𝑒 {𝑇𝑥 [(𝐷𝑓(𝑥))
−1
(𝐷2𝑓(𝑥)(𝑥2) + 𝐷𝑓(𝑥)𝑥)]} ⩾ 𝛼‖𝑥‖, 𝑥 ∈ 𝐸, 

then f is said to be quasi-convex of type B and order α on E.  

Let 𝐾(𝐸) denote the set of all normalized biholomorphic convex mappings on E. Let 𝑄𝐴(𝐸) 
(resp. 𝑄𝐵(𝐸)) be the set of all quasi-convex mappings of type A (resp. type B) on E and let 

𝑄(𝐸) be the set of all quasi-convex mappings on E.  

We shall first give the following lemmas. It is easy to prove the following results.  
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Lemma (4.1.9)[89]: Suppose that 𝑓 is a normalized locally biholomorphic mapping on 𝑈𝑛. 

Then 𝑓 ∈ 𝑄𝐵(𝑈
𝑛) if and only if  

𝑅𝑒
𝑔𝑗(𝑧)

𝑧𝑗
⩾ 0, 𝑧 = (𝑧1, … , 𝑧𝑛)

′ ∈ 𝑈𝑛, 

where 𝑔(𝑧) = (𝑔1(𝑧), … , 𝑔𝑛(𝑧))
′
= (𝐷𝑓(𝑧))

−1
(𝐷2𝑓(𝑧)(𝑧2) + 𝐷𝑓(𝑧)𝑧) is a column 

vector in ℂ𝑛, j satisfies |𝑧𝑗| = ‖𝑧‖ = max
1⩽𝑘⩽𝑛

{|𝑧𝑘|}. 

Lemma (4.1.10)[89]: (see [97]) Suppose 𝑔(𝑧) = (𝑔1(𝑧), 𝑔2(𝑧), … , 𝑔𝑛(𝑧))
′
∈

𝐻(𝑈𝑛), 𝑔(0) = 0, 𝐷𝑔(0) = 𝐼. If 𝑅𝑒
𝑔𝑗(𝑧)

𝑧𝑗
⩾ 0 (𝑧 ∈ 𝑈𝑛), where |𝑧𝑗| = ‖𝑧‖ = max

1⩽𝑘⩽𝑛
{|𝑧𝑘|}, 

then  
‖𝐷𝑚𝑔(0)(𝑧𝑚)‖

𝑚!
⩽ 2‖𝑧‖𝑚, 𝑧 ∈ 𝑈𝑛, 𝑚 = 2, 3,… . 

Lemma (4.1.11)[89]: (see [14]) If 𝑓(𝑧) is a normalized locally biholomorphic mapping on 

𝑈𝑛, and 𝑔(𝑧) = (𝐷𝑓(𝑧))
−1
(𝐷2𝑓(𝑧)(𝑧2) + 𝐷𝑓(𝑧)𝑧) ∈ 𝐻(𝑈𝑛), then 

𝐷2𝑓(0)(𝑧2)

2!
=
1

2
·
𝐷2𝑔(0)(𝑧2)

2!
,  

𝑚(𝑚 −  1)
𝐷𝑚𝑓(0)(𝑧𝑚)

𝑚!

=
𝐷𝑚𝑔(0)(𝑧𝑚)

𝑚!
+
2𝐷2𝑓(0) (𝑧,

𝐷𝑚−1𝑔(0)(𝑧𝑚−1)
(𝑚 − 1)!

)

2!
+··

· +
(𝑚 −  1)𝐷𝑚−1𝑓(0) (𝑧𝑚−2,

𝐷2𝑔(0)(𝑧2)
2! )

(𝑚 − 1)!
, 𝑧 ∈ 𝑈𝑛, 𝑚 = 3, 4,··· . 

Lemma (4.1.12)[89]: (see [16]) 𝐾(𝐸) ⊂ 𝑄(𝐸) = 𝑄𝐴(𝐸) ⊂ 𝑄𝐵(𝐸). In some concrete 

complex Banach spaces, we even have 𝐾(𝐸) ⩽ 𝑄(𝐸). 
Lemma (4.1.13)[89]: Suppose 𝑓(𝑧) ∈ 𝐻(𝑈𝑛), and 

𝐷𝑚𝑓𝑝(0)(𝑧
𝑚)

𝑚!
= ∑ 𝑎𝑝𝑙1𝑙2···𝑙𝑚𝑧𝑙1𝑧𝑙2 ··· 𝑧𝑙𝑚

𝑛

𝑙1,𝑙2,…,𝑙𝑚=1

, 𝑝 = 1, 2,··· , 𝑛, 

where 𝑎𝑝𝑙1𝑙2…𝑙𝑚 =
1

𝑚!

𝜕𝑚𝑓𝑝(0)

𝜕𝑧𝑙1𝜕𝑧𝑙2…𝜕𝑧𝑙𝑚
, 𝑙1, 𝑙2, … , 𝑙𝑚 = 1, 2,… , 𝑛,𝑚 = 2, 3,… . Then  

1

𝑚!
 𝐷𝑚𝑓𝑝(0)(𝑧

𝑚−1, 𝑤)

=
1

𝑚
( ∑ 𝑎𝑝𝑙1𝑙2…𝑙𝑚𝑤𝑙1𝑧𝑙2 …𝑧𝑙𝑚

𝑛

𝑙1,𝑙2,…,𝑙𝑚=1

+ ∑ 𝑎𝑝 𝑙1𝑙2…𝑙𝑚𝑧𝑙1𝑤𝑙2𝑧𝑙3 …𝑧𝑙𝑚

𝑛

𝑙1,𝑙2,…,𝑙𝑚=1

+⋯+ ∑ 𝑎𝑝 𝑙1𝑙2…𝑙𝑚𝑧𝑙1𝑧𝑙2 …𝑧𝑙𝑚−1𝑤𝑙𝑚

𝑛

𝑙1,𝑙2,…,𝑙𝑚=1

) , 𝑧 ∈ 𝑈𝑛, 𝑝 = 1, 2,… , 𝑛,𝑚

= 2, 3,…, 

where 𝑤 = (𝑤1, 𝑤2, … , 𝑤𝑛)
′ ∈ ℂ𝑛 which satisfies ‖𝑤‖ = max

1 ⩽𝑝⩽𝑛
{|𝑤𝑝|} < 2.  

Proof: ∀𝜆 ∈ ℂ with |𝜆| ⩽
1

2
, by a straightforward computation, it yields that  
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𝐷𝑚𝑓𝑝(0) (
𝑧 + 𝜆𝑤

2
,
𝑧 + 𝜆𝑤

2
,… ,

𝑧 + 𝜆𝑤

2
)

⏟                  
𝑚

=
𝐷𝑚𝑓𝑝(0)(𝑧

𝑚)

2𝑚
+
𝑚𝐷𝑚𝑓𝑝(0)(𝑧

𝑚−1, 𝑤)

2𝑚
𝜆 +⋯

+
𝐷𝑚𝑓𝑝(0)(𝑤

𝑚)

2𝑚
𝜆𝑚.                                                                          (1) 

Note that 
𝐷𝑚𝑓𝑝(0)(𝑧

𝑚)

𝑚!
= ∑ 𝑎𝑝 𝑙1𝑙2…𝑙𝑚𝑧𝑙1𝑧𝑙2 …𝑧𝑙𝑚

𝑛
𝑙1,𝑙2,…,𝑙𝑚=1

. Therefore,  

𝐷𝑚𝑓𝑝(0) (
𝑧 + 𝜆𝑤

2
,
𝑧 + 𝜆𝑤

2
,… ,

𝑧 + 𝜆𝑤

2
)

⏟                  
𝑚

 𝑚 

=
𝑚!

2𝑚
( ∑ 𝑎𝑝 𝑙1𝑙2…𝑙𝑚(𝑧𝑙1 + 𝜆𝑤𝑙1)(𝑧𝑙2 + 𝜆𝑤𝑙2)… (𝑧𝑙𝑚 + 𝜆𝑤𝑙𝑚)

𝑛

𝑙1,𝑙2,…,𝑙𝑚=1

) 

=
𝑚!

2𝑚
( ∑ 𝑎𝑝 𝑙1𝑙2…𝑙𝑚𝑧𝑙1𝑧𝑙2 …𝑧𝑙𝑚

𝑛

𝑙1,𝑙2,…,𝑙𝑚=1

)

+
𝑚!

2𝑚
( ∑ 𝑎𝑝 𝑙1𝑙2…𝑙𝑚𝑤𝑙1𝑧𝑙2 …𝑧𝑙𝑚

𝑛

𝑙1,𝑙2,…,𝑙𝑚=1

+ ∑ 𝑎𝑝 𝑙1𝑙2…𝑙𝑚𝑧𝑙1𝑤𝑙2𝑧𝑙3 …𝑧𝑙𝑚

𝑛

𝑙1,𝑙2,…,𝑙𝑚=1

+⋯

+ ∑ 𝑎𝑝 𝑙1𝑙2…𝑙𝑚𝑧𝑙1𝑧𝑙2 …𝑧𝑙𝑚−1𝑤𝑙𝑚

𝑛

𝑙1,𝑙2,…,𝑙𝑚=1

)𝜆 

+⋯+
𝑚!

2𝑚
( ∑ 𝑎𝑝 𝑙1𝑙2…𝑙𝑚𝑤𝑙1𝑤𝑙2 …𝑤𝑙𝑚

𝑛

𝑙1,𝑙2,…,𝑙𝑚=1

)𝜆𝑚.                 (2) 

Comparing with the coefficient of the right-hand sides of (1) and (2) with respect to λ, we 

obtain  
1

𝑚!
𝐷𝑚𝑓𝑝(0)(𝑧

𝑚−1, 𝑤)

=
1

𝑚
( ∑ 𝑎𝑝 𝑙1𝑙2···𝑙𝑚𝑤𝑙1𝑧𝑙2 …𝑧𝑙𝑚

𝑛

𝑙1,𝑙2,…,𝑙𝑚=1

+ ∑ 𝑎𝑝 𝑙1𝑙2···𝑙𝑚𝑧𝑙1𝑤𝑙2𝑧𝑙3 ··· 𝑧𝑙𝑚

𝑛

𝑙1,𝑙2,…,𝑙𝑚=1

+··· + ∑ 𝑎𝑝 𝑙1𝑙2···𝑙𝑚𝑧𝑙1𝑧𝑙2 ··· 𝑧𝑙𝑚−1𝑤𝑙𝑚

𝑛

𝑙1,𝑙2,…,𝑙𝑚=1

) , 𝑧 ∈ 𝑈𝑛, 𝑝 = 1, 2,··· , 𝑛,𝑚

= 2, 3,··· , 
where 𝑤 = (𝑤1, 𝑤2,···, 𝑤𝑛)

′ ∈ ℂ𝑛 which satisfies 𝑤 = max
1 ⩽𝑝⩽𝑛

{|𝑤𝑝|} < 2. This completes 

the proof.  

Lemma (4.1.14)[89]: Let 
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‖

‖

‖
∑ |𝑎1 𝑙1𝑙2···𝑙𝑚|𝑒

𝑖
𝜃1𝑙1+𝜃1𝑙2+···+𝜃1𝑙𝑚

𝑚 𝑧𝑙1𝑧𝑙2 …𝑧𝑙𝑚

𝑛

𝑙1,𝑙2,…,𝑙𝑚=1

∑ |𝑎2 𝑙1𝑙2···𝑙𝑚|𝑒
𝑖
𝜃2𝑙1+𝜃2𝑙2+···+𝜃2𝑙𝑚

𝑚 𝑧𝑙1𝑧𝑙2 …𝑧𝑙𝑚

𝑛

𝑙1,𝑙2,…,𝑙𝑚=1

⋮

∑ |𝑎𝑛 𝑙1𝑙2···𝑙𝑚|𝑒
𝑖
𝜃𝑛𝑙1+𝜃𝑛𝑙2+···+𝜃𝑛𝑙𝑚

𝑚 𝑧𝑙1𝑧𝑙2…𝑧𝑙𝑚

𝑛

𝑙1,𝑙2,…,𝑙𝑚=1

‖

‖

‖

⩽ 𝐶𝑚‖𝑧‖
𝑚,   

𝑧 = (

𝑧1
𝑧2
⋮
 𝑧𝑛

) ∈ 𝑈𝑛, 

where 𝑚 = 2, 3,···, each 𝑎𝑝𝑙1𝑙2…𝑙𝑚(𝑝, 𝑙1, 𝑙2,··· , 𝑙𝑚 = 1, 2,··· , 𝑛) is a complex number which 

is independent of 𝑧𝑝(𝑝 = 1, 2,··· , 𝑛), 𝑖 = √−1, each 𝜃𝑝𝑙𝑞 ∈ (−𝜋, 𝜋](𝑞 = 1, 2,···,

𝑚;  𝑝, 𝑙1, 𝑙2,···, 𝑙𝑚 = 1, 2,··· , 𝑛) which is independent of 𝑧𝑝(𝑝 = 1, 2,··· , 𝑛), ‖𝑧‖ =

max
1 ⩽𝑝⩽𝑛

{|𝑧𝑝|}, and each 𝐶𝑚(𝑚 = 2, 3,···) is a nonnegative real constant which is only 

dependent on m. Then  

𝐴𝑚 = max
1 ⩽𝑝⩽𝑛

{ ∑ |𝑎𝑝 𝑙1𝑙2···𝑙𝑚|

𝑛

𝑙1,𝑙2,…,𝑙𝑚=1

} ⩽ 𝐶𝑚, 𝑚 = 2, 3,···. 

Proof: ∀z ∈ Un\{0}, according to the hypothesis of Lemma (4.1.14), we have     

| ∑ |𝑎𝑝 𝑙1𝑙2···𝑙𝑚|𝑒
𝑖
𝜃𝑝 𝑙1+𝜃𝑝𝑙2+···+𝜃𝑝𝑙𝑚

𝑚
𝑧𝑙1
‖𝑧‖

𝑧𝑙2
‖𝑧‖

···
𝑧𝑙𝑚
‖𝑧‖

𝑛

𝑙1,𝑙2,··· ,𝑙𝑚=1

| ⩽ 𝐶𝑚, 𝑝 = 1, 2,···, 𝑛. 

In particular, taking 𝑧𝑙𝑞 = 𝑒
−𝑖
𝜃𝑝𝑙𝑞

𝑚 ‖𝑧‖, 𝑞 = 1, 2,··· ,𝑚, we conclude that  

∑ |𝑎𝑝𝑙1𝑙2…𝑙𝑚|

𝑛

𝑙1,𝑙2,··· ,𝑙𝑚=1

⩽ 𝐶𝑚, 𝑝 = 1, 2,… , 𝑛. 

That is  

𝐴𝑚 = max
1⩽𝑝⩽𝑛

{ ∑ |𝑎𝑝 𝑙1𝑙2···𝑙𝑚|

𝑛

𝑙1,𝑙2,··· ,𝑙𝑚=1

} ⩽ 𝐶𝑚, 𝑚 = 2, 3,··· . 

This completes the proof.  

Now we shall prove the following theorem.  

Theorem (4.1.15)[89]: If 𝑓 ∈ 𝑄𝐵(𝑈
𝑛)(𝑄𝐴(𝑈

𝑛) or 𝑄(𝑈𝑛)) , and  

𝐷𝑠𝑓𝑝(0)(𝑧
𝑠)

𝑠!
= ∑ |𝑎𝑝 𝑙1𝑙2···𝑙𝑠|𝑒

𝑖
𝜃𝑝 𝑙1+𝜃𝑝𝑙2+···+𝜃𝑝𝑙𝑠

𝑠 𝑧𝑙1𝑧𝑙2 …𝑧𝑙𝑠

𝑛

𝑙1,𝑙2,··· ,𝑙𝑠=1

, 𝑝 = 1, 2,··· , 𝑛, 

where |𝑎𝑝 𝑙1𝑙2…𝑙𝑠|𝑒
𝑖
𝜃𝑝 𝑙1

+𝜃𝑝𝑙2
+···+𝜃𝑝𝑙𝑠

𝑠 =
1

𝑠!

𝜕𝑠𝑓𝑝(0)

𝜕𝑧𝑙1𝜕𝑧𝑙2
···𝜕𝑧𝑙𝑠

, 𝑖 = √−1, 𝜃𝑝𝑙𝑞 ∈ (−𝜋, 𝜋](𝑞 = 1, 2,···

 , 𝑠), 𝑙1, 𝑙2,···, 𝑙𝑠 = 1, 2,··· , 𝑛, 𝑠 = 2, 3,··· , 𝑚 −  1,then  
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‖𝐷𝑚𝑓(0)(𝑧𝑚)‖

𝑚!
⩽

2

𝑚(𝑚 − 1)
(1 + ∑ 𝑠𝐴𝑠

𝑚−1

𝑠=2

)‖𝑧‖𝑚, 𝑧 ∈ 𝑈𝑛, 𝑚 = 3, 4,···, 

where 𝐴𝑠 = max
1⩽𝑝⩽𝑛

{∑ |𝑎𝑝 𝑙1𝑙2···𝑙𝑠|
𝑛
𝑙1,𝑙2,··· ,𝑙𝑠=1

} , 𝑠 = 2, 3,··· ,𝑚 − 1. 

Proof: Assume 𝑓 ∈ 𝑄𝐵(𝑈
𝑛), ∀ 𝑧 ∈ 𝑈𝑛\{0}. Denote 𝑧0 =

𝑧

‖𝑧‖
. Let 𝑔(𝑧) = (𝐷𝑓(𝑧)) − 1 ·

(𝐷2𝑓(𝑧)(𝑧2) + 𝐷𝑓(𝑧)𝑧),𝑤 =
𝐷𝑚−𝑠+1𝑔(0)(𝑧𝑚−𝑠+1)

(𝑚−𝑠+1)!
, 𝑠 = 2, 3,···,𝑚 −  1, and j satisfies |𝑧𝑗| =

‖𝑧‖ = max
1⩽𝑘⩽𝑛

{|𝑧𝑘|} . In view of the hypothesis of Theorem (4.1.15), Lemmas (4.1.9), 

(4.1.10) and (4.1.13), we conclude that 

|
1

𝑠!
𝐷𝑠𝑓𝑗(0) (𝑧0

𝑠−1,
𝐷𝑚−𝑠+1𝑔(0)(𝑧0

𝑚−𝑠+1)

(𝑚 −  𝑠 + 1)!
)|

=
1

𝑠
| ∑ |𝑎𝑗𝑙1𝑙2···𝑙𝑠|𝑒

𝑖
𝜃𝑗𝑙1+𝜃𝑗𝑙2+···+𝜃𝑗𝑙𝑠

𝑠 ·
𝐷𝑚−𝑠+1𝑔𝑙1(0)(𝑧0

𝑚−𝑠+1)

(𝑚 −  𝑠 + 1)!

𝑧𝑙2
‖𝑧‖

··

𝑛

𝑙1,𝑙2,··· ,𝑙𝑠=1

·
𝑧𝑙𝑠
‖𝑧‖

+ ∑ |𝑎𝑗𝑙1𝑙2···𝑙𝑠|𝑒
𝑖
𝜃𝑗𝑙1+𝜃𝑗𝑙2+···+𝜃𝑗𝑙𝑠

𝑠

𝑛

𝑙1,𝑙2,··· ,𝑙𝑠=1

·
𝑧𝑙1
‖𝑧‖

𝐷𝑚−𝑠+1𝑔𝑙1(0)(𝑧0
𝑚−𝑠+1)

(𝑚 −  𝑠 + 1)!

𝑧𝑙3
‖𝑧‖

…
𝑧𝑙𝑠
‖𝑧‖

+⋯

+ ∑ |𝑎𝑗𝑙1𝑙2···𝑙𝑠|𝑒
𝑖
𝜃𝑗𝑙1+𝜃𝑗𝑙2+···+𝜃𝑗𝑙𝑠

𝑠 ·
𝑧𝑙1
‖𝑧‖

…
𝑧𝑙𝑠−1
‖𝑧‖

𝐷𝑚−𝑠+1𝑔𝑙𝑠(0)(𝑧0
𝑚−𝑠+1)

(𝑚 −  𝑠 + 1)!

𝑛

𝑙1,𝑙2,··· ,𝑙𝑠=1

| 

⩽
1

𝑠
(| ∑ |𝑎𝑗𝑙1𝑙2···𝑙𝑠|𝑒

𝑖
𝜃𝑗𝑙1+𝜃𝑗𝑙2+···+𝜃𝑗𝑙𝑠

𝑠 ·
𝐷𝑚−𝑠+1𝑔𝑙1(0)(𝑧0

𝑚−𝑠+1)

(𝑚 −  𝑠 + 1)!

𝑧𝑙2
‖𝑧‖

···
𝑧𝑙𝑠
‖𝑧‖

𝑛

𝑙1,𝑙2,··· ,𝑙𝑠=1

|

+ | ∑ |𝑎𝑗𝑙1𝑙2···𝑙𝑠|𝑒
𝑖
𝜃𝑗𝑙1+𝜃𝑗𝑙2+···+𝜃𝑗𝑙𝑠

𝑠

𝑛

𝑙1,𝑙2,··· ,𝑙𝑠=1

·
𝑧𝑙1
‖𝑧‖

𝐷𝑚−𝑠+1𝑔𝑙2(0)(𝑧0
𝑚−𝑠+1)

(𝑚 −  𝑠 + 1)!

𝑧𝑙3
‖𝑧‖

…
𝑧𝑙𝑠
‖𝑧‖

| + ⋯

+ | ∑ |𝑎𝑗𝑙1𝑙2···𝑙𝑠|𝑒
𝑖
𝜃𝑗𝑙1+𝜃𝑗𝑙2+···+𝜃𝑗𝑙𝑠

𝑠

𝑛

𝑙1,𝑙2,··· ,𝑙𝑠=1

·
𝑧𝑙1
‖𝑧‖

…
𝑧𝑙𝑠−1
‖𝑧‖

𝐷𝑚−𝑠+1𝑔𝑙𝑠(0)(𝑧0
𝑚−𝑠+1)

(𝑚 −  𝑠 + 1)!
|) 
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⩽
1

𝑠
( ∑ |𝑎𝑗𝑙1𝑙2···𝑙𝑠|

𝐷𝑚−𝑠+1𝑔𝑙1(0)(𝑧0
𝑚−𝑠+1)

(𝑚 −  𝑠 + 1)!

𝑧𝑙2
‖𝑧‖

···
𝑧𝑙𝑠
‖𝑧‖

𝑛

𝑙1,𝑙2,··· ,𝑙𝑠=1

+ ∑ |𝑎𝑗𝑙1𝑙2···𝑙𝑠|
|𝑧𝑙1|

‖𝑧‖

𝐷𝑚−𝑠+1𝑔𝑙2(0)(𝑧0
𝑚−𝑠+1)

(𝑚 −  𝑠 + 1)!

|𝑧𝑙3|

‖𝑧‖
···
𝑧𝑙𝑠
‖𝑧‖

+⋯

𝑛

𝑙1,𝑙2,··· ,𝑙𝑠=1

+ ∑ |𝑎𝑗𝑙1𝑙2···𝑙𝑠|
|𝑧𝑙1|

‖𝑧‖
…
|𝑧𝑙𝑠−1|

‖𝑧‖

𝐷𝑚−𝑠+1𝑔𝑙𝑠(0)(𝑧0
𝑚−𝑠+1)

(𝑚 −  𝑠 + 1)!

𝑛

𝑙1,𝑙2,··· ,𝑙𝑠=1

) 

⩽
1

𝑠
 (2𝐴𝑠 + 2𝐴𝑠 +··· +2𝐴𝑠)⏟              

𝑠

= 2𝐴𝑠. 

This implies that  

1

𝑠!
|𝐷𝑠𝑓𝑗(0) (𝑧0

𝑠−1,
𝐷𝑚−𝑠+1𝑔(0)(𝑧0

𝑚−𝑠+1)

(𝑚 −  𝑠 + 1)!
)| ⩽ 2𝐴𝑠, 𝑧0 ∈ 𝜕𝑈

𝑛.      (3) 

In particular, when 𝑧0 ∈ 𝜕0𝑈
𝑛, by (3), we deduce that  

1

𝑠!
|𝐷𝑠𝑓𝑝(0)(𝑧0

𝑠−1,
𝐷𝑚−𝑠+1𝑔(0)(𝑧0

𝑚−𝑠+1)

(𝑚 − 𝑠 + 1)!
)| ⩽ 2𝐴𝑠, 𝑝 = 1, 2,··· , 𝑛.        (4) 

Taking into account  

𝐷𝑠𝑓𝑝(0)(𝑧
𝑠−1,

𝐷𝑚−𝑠+1𝑔(0)(𝑧𝑚−𝑠+1)

(𝑚 −  𝑠 + 1)!
∈ 𝐻(𝑈𝑛̅̅ ̅̅ ), 𝑝 = 1, 2,··· , 𝑛, 

by the maximum modulus theorem of holomorphic functions on the unit polydisk and (4), 

it yields that  

1

𝑠!
|𝐷𝑠𝑓𝑝(0) (𝑧0

𝑠−1,
𝐷𝑚−𝑠+1𝑔(0)(𝑧0

𝑚−𝑠+1)

(𝑚 −  𝑠 + 1)!
)| ⩽ 2𝐴𝑠, 𝑧0 ∈ 𝜕𝑈

𝑛, 𝑝 = 1, 2,··· , 𝑛. 

We have  

1

𝑠!
‖𝐷𝑠𝑓(0) (𝑧0

𝑠−1,
𝐷𝑚−𝑠+1𝑔(0)(𝑧0

𝑚−𝑠+1)

(𝑚 − 𝑠 + 1)!
)‖ ⩽ 2𝐴𝑠. 

That is,  

1

𝑠!
‖𝐷𝑠𝑓(0) (𝑧𝑠−1,

𝐷𝑚−𝑠+1𝑔(0)(𝑧𝑚−𝑠+1)

(𝑚 −  𝑠 + 1)!
)‖ ⩽ 2𝐴𝑠‖𝑧‖

𝑚, 𝑧 ∈ 𝑈𝑛, 𝑠

= 2, 3,··· , 𝑚 −  1.                                                                                          (5) 
By Lemma (4.1.11) and (5), we obtain  
𝑚(𝑚 −  1)‖𝐷𝑚𝑓(0)(𝑧𝑚)‖

𝑚!

⩽
‖𝐷𝑚𝑔(0)(𝑧𝑚)‖

𝑚!
+
2‖𝐷2𝑓(0) (𝑧,

𝐷𝑚−1𝑔(0)(𝑧𝑚−1)
(𝑚 − 1)!

)‖

2!
+ ⋯

+
(𝑚 −  1)𝐷𝑚−1𝑓(0) (𝑧𝑚−2,

𝐷2𝑔(0)(𝑧2)
2! )

(𝑚 −  1)!
⩽ 2(1 + ∑ 𝑠𝐴𝑠

𝑚−1

𝑠=2

)‖𝑧‖𝑚 .  

This implies that  

‖𝐷𝑚𝑓(0)(𝑧𝑚)‖

𝑚!
⩽

2

𝑚(𝑚 −  1)
(1 + ∑ 𝑠𝐴𝑠

𝑚−1

𝑠=2

)‖𝑧‖𝑚, 𝑧 ∈ 𝑈𝑛, 𝑚 = 3, 4,··· , 
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where 𝐴𝑠 = max
1⩽𝑝⩽𝑛

{∑ |𝑎𝑝 𝑙1𝑙2…𝑙𝑠|
𝑛
𝑙1,𝑙2,··· ,𝑙𝑠=1

} , 𝑠 = 2, 3,··· , 𝑚 −  1. Consequently, the 

desired result holds. By Lemma (4.1.12), the desired result for 𝑓 ∈ 𝑄𝐴(𝑈
𝑛) or 𝑄(𝑈𝑛) also 

holds.  

This completes the proof. 

Corollary (4.1.16)[89]: Suppose 𝑘 ∈ ℕ. If 𝑓 ∈ 𝑄𝐵(𝑈
𝑛)(𝑄𝐴(𝑈

𝑛) 𝑜𝑟 𝑄(𝑈𝑛)), and 𝑧 = 0 is 

a zero of order 𝑘 + 1 of 𝑓(𝑧) − 𝑧, then  

‖𝐷𝑘+1𝑓(0)(𝑧𝑘+1)‖

(𝑘 + 1)!
⩽

2

(𝑘 + 1)𝑘
‖𝑧‖𝑘+1, 𝑧 ∈ 𝑈𝑛. 

The above estimate is sharp.  

Proof When 𝑘 = 1, in view of the hypothesis of Corollary (4.1.16) and Lemma (4.1.11) (the 

case of 𝑚 = 2), the result follows. When 𝑘 ⩾ 2,𝑚 = 𝑘 + 1, according to the hypothesis of 

Corollary (4.1.16), it is known that 𝐴𝑠 = 0, 𝑠 = 2, 3,··· , 𝑘. From Theorem (4.1.15), we 

deduce that  

‖𝐷𝑘+1𝑓(0)(𝑧𝑘+1)‖

(𝑘 + 1)!
⩽

2

(𝑘 + 1)𝑘
‖𝑧‖𝑘+1, 𝑧 ∈ 𝑈𝑛. 

This completes the proof.  

It is not difficult to verify that  

𝑓(𝑧) = (∫
𝑑𝑡

(1 − 𝑡𝑘)
2
𝑘

𝑧1

0

,
𝑧2
𝑧1
∫

𝑑𝑡

(1 − 𝑡𝑘)
2
𝑘

𝑧1

0

, … ,
𝑧𝑛
𝑧1
∫

𝑑𝑡

(1 − 𝑡𝑘)
2
𝑘

𝑧1

0

, 𝑧 ∈ 𝑈𝑛  

satisfies the hypothesis of Corollary (4.1.16). Taking 𝑧 = (𝑟, 0,··· , 0)′(0 ⩽ 𝑟 < 1), we have  

‖𝐷𝑘+1𝑓(0)(𝑧𝑘+1)‖

(𝑘 + 1)!
=

2

(𝑘 + 1)𝑘
𝑟𝑘+1. 

Hence, the estimate of Corollary (4.1.16) is sharp. 

Corollary (4.1.17)[89]: Suppose 𝑘 ∈ ℕ. If f is a k-fold symmetric quasi-convex mapping 

of type B (quasi-convex mapping of type A or quasi-convex mapping) defined on 𝑈𝑛, and  

𝐷𝑡𝑘+1𝑓𝑝(0)(𝑧
𝑡𝑘+1)

(𝑡𝑘 + 1)!
= ∑ |𝑎𝑝 𝑙1𝑙2…𝑙𝑡𝑘+1|𝑒

𝑖
𝜃𝑝 𝑙1+𝜃𝑝𝑙2+···+𝜃𝑝𝑙𝑡𝑘+1

𝑡𝑘+1 𝑧𝑙1𝑧𝑙2 …𝑧𝑙𝑡𝑘+1

𝑛

𝑙1,𝑙2,··· ,𝑙𝑡𝑘+1=1

, 𝑝

= 1, 2,··· , 𝑛, 

where |𝑎𝑝 𝑙1𝑙2···𝑙𝑡𝑘+1|𝑒
𝑖
𝜃𝑝 𝑙1

+𝜃𝑝𝑙2
+···+𝜃𝑝𝑙𝑡𝑘+1

𝑡𝑘+1 =
1

(𝑡𝑘+1)!

𝜕𝑡𝑘+1𝑓𝑝(0)

𝜕𝑧𝑙1𝜕𝑧𝑙2…𝜕𝑧𝑙𝑡𝑘+1
, 𝜃𝑝𝑙𝑞 ∈ (−𝜋, 𝜋] (𝑞 =

1, 2,··· , 𝑡𝑘 + 1), 𝑙1, 𝑙2,··· , 𝑙𝑡𝑘+1 = 1, 2,··· , 𝑛, 𝑡 = 1, 2,···, then  

‖𝐷𝑡𝑘+1𝑓(0)(𝑧𝑡𝑘+1)‖

(𝑡𝑘 + 1)!
⩽
∏ ((𝑟 − 1)𝑘 + 2)𝑡
𝑟=1

(𝑡𝑘 + 1) ·  𝑡! 𝑘𝑡
‖𝑧‖𝑡𝑘+1,

𝑧 ∈ 𝑈𝑛, 𝑡 = 1, 2,···  .                                                                                              (6) 
The above estimates are sharp.  

Proof. It is known that 𝑧 = 0 is a zero of order 𝑘 + 1(𝑘 ∈ ℕ) of 𝑓(𝑧) − 𝑧 if f is a k-fold 

symmetric normalized holomorphic mapping 𝑓(𝑧) (𝑓(𝑧) ≢ 𝑧) defined on 𝑈𝑛. In view of 

the hypothesis of Corollaries (4.1.17) and (4.1.16), we conclude that  

‖𝐷𝑘+1𝑓(0)(𝑧𝑘+1)‖

(𝑘 + 1)!
⩽

2

(𝑘 + 1)𝑘
‖𝑧‖𝑘+1, 𝑧 ∈ 𝑈𝑛. 

That is, (6) holds for 𝑡 = 1. Assume now that (6) holds for 𝑡 = 1, 2,··· , 𝑗 for some integer 

𝑗 ⩾ 2. This implies  
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𝐷𝑡𝑘+1𝑓(0)(𝑧𝑡𝑘+1)

(𝑡𝑘 + 1)!
⩽
∏ ((𝑟 − 1)𝑘 + 2)𝑡
𝑟=1

(𝑡𝑘 + 1) · 𝑡! 𝑘𝑡
‖𝑧‖𝑡𝑘+1, 𝑧 ∈ 𝑈𝑛, 𝑡 = 1, 2,… , 𝑗.      (7) 

In view of (7), we take  

𝐶𝑡𝑘+1 =
∏ ((𝑟 − 1)𝑘 + 2)𝑡
𝑟=1

(𝑡𝑘 + 1) · 𝑡! 𝑘𝑡
, 𝑡 = 1, 2,··· , 𝑗. 

Notice that 𝐴𝑚 = 0, 2 ⩽ 𝑚 ≠ 𝑡𝑘 + 1 (𝑡 = 1, 2,···) from the hypothesis of Corollary 

(4.1.17). Again according to Lemma (4.1.14) and Theorem (4.1.15), we deduce that  

‖𝐷(𝑗+1)𝑘+1𝑓(0)(𝑧(𝑗+1)𝑘+1)‖

[(𝑗 + 1)𝑘 + 1]!

⩽
2

[(𝑗 + 1)𝑘 + 1](𝑗 + 1)𝑘
[1 +∑(𝑡𝑘 + 1)𝐴𝑡𝑘+1

𝑗

𝑡=1

] ‖𝑧‖(𝑗+1)𝑘+1

⩽
2

[(𝑗 + 1)𝑘 + 1](𝑗 + 1)𝑘
[1

+∑(𝑡𝑘 + 1)
∏ ((𝑟 − 1)𝑘 + 2)𝑡
𝑟=1

(𝑡𝑘 + 1) · 𝑡! 𝑘𝑡

𝑗

𝑡=1

] ‖𝑧‖(𝑗+1)𝑘+1 

=
2

[(𝑗 + 1)𝑘 + 1](𝑗 + 1)𝑘
[1 +∑

∏ ((𝑟 − 1)𝑘 + 2)𝑡
𝑟=1

𝑡! 𝑘𝑡

𝑗

𝑡=1

] ‖𝑧‖(𝑗+1)𝑘+1

=
2

[(𝑗 + 1)𝑘 + 1](𝑗 + 1)𝑘
·
∏ ((𝑟 − 1)𝑘 + 2)
𝑗+1
𝑟=2

𝑡! 𝑘𝑡
‖𝑧‖(𝑗+1)𝑘+1

=
∏ ((𝑟 − 1)𝑘 + 2)
𝑗+1
𝑟=1

((𝑗 + 1)𝑘 + 1) · (𝑗 + 1)! 𝑘𝑗+1
‖𝑧‖(𝑗+1)𝑘+1. 

That is, (6) holds for 𝑡 = 𝑗 + 1. This completes the proof.  

It is easy to verify that  

𝑓(𝑧) = (∫
𝑑𝑡

(1 − 𝑡𝑘)
2
𝑘

𝑧1

0

,
𝑧2
𝑧1
∫

𝑑𝑡

(1 − 𝑡𝑘)
2
𝑘

𝑧1

0

,··· ,
𝑧𝑛
𝑧1
∫

𝑑𝑡

(1 − 𝑡𝑘)
2
𝑘

𝑧1

0

)

′

, 𝑧 ∈ 𝑈𝑛 

satisfies the hypothesis of Corollary (4.1.17). Taking 𝑧 = (𝑟, 0,···, 0)′(0 ⩽ 𝑟 < 1), we have  

𝐷𝑡𝑘+1𝑓(0)(𝑧𝑡𝑘+1)

(𝑡𝑘 + 1)!
⩽
∏ ((𝑟 − 1)𝑘 + 2)𝑡
𝑟=1

(𝑡𝑘 + 1) · 𝑡! 𝑘𝑡
𝑟𝑡𝑘+1, 𝑡 = 1, 2,··· . 

Hence, the estimate of Corollary (4.1.17) is sharp.  

When 𝑙1 = 𝑝, 𝑙2 =···= 𝑙𝑡𝑘+1 = 𝑙 (𝑙 = 1, 2,··· , 𝑛), we notice that  

𝑎𝑟𝑔 𝑎𝑝𝑝 𝑙···𝑙⏟
𝑡𝑘

=
𝜃𝑝𝑝 + 𝑡𝑘𝜃𝑝𝑙
𝑡𝑘 + 1

 

for 𝑎𝑝𝑝 𝑙···𝑙⏟
𝑡𝑘

≠ 0. It is obvious that Corollary (4.1.17) (the case of 𝑓 ∈ 𝑄_𝐵(𝑈𝑛)) is the 

corresponding result of [92] (the case of 𝛼 = 0), and the methods of their proofs are 

different.  

Setting 𝑘 = 1 in Corollary (4.1.17), we can deduce the following result. 

Corollary (4.1.18)[89]: If 𝑓 ∈ 𝑄𝐵(𝑈
𝑛)(𝑄𝐴(𝑈

𝑛) or 𝑄(𝑈𝑛)), and  
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𝐷𝑚𝑓𝑝(0)(𝑧
𝑚)

𝑚!
= ∑ |𝑎𝑝 𝑙1𝑙2…𝑙𝑚|𝑒

𝑖
𝜃𝑝 𝑙1+𝜃𝑝𝑙2+⋯+𝜃𝑝𝑙𝑚

𝑚 𝑧𝑙1𝑧𝑙2 …𝑧𝑙𝑚

𝑛

𝑙1,𝑙2,··· ,𝑙𝑚=1

, 𝑝 = 1, 2,··· , 𝑛, 

where 

|𝑎𝑝 𝑙1𝑙2…𝑙𝑚|𝑒
𝑖
𝜃𝑝 𝑙1+𝜃𝑝𝑙2+⋯+𝜃𝑝𝑙𝑚

𝑚 =
1

𝑚!

𝜕𝑚𝑓𝑝(0)

𝜕𝑧𝑙1𝜕𝑧𝑙2 …𝜕𝑧𝑙𝑚
, 𝑖 = √−1, 𝜃𝑝𝑙𝑞

∈ (−𝜋, 𝜋](𝑞 = 1, 2,··· ,𝑚), 𝑙1, 𝑙2,··· , 𝑙𝑚 = 1, 2,··· , 𝑛,𝑚 = 2, 3,···, 
then  

𝐷𝑚𝑓(0)(𝑧𝑚)

𝑚!
⩽ ‖𝑧‖𝑚, 𝑧 ∈ 𝑈𝑛, 𝑚 = 2, 3,··· . 

The above estimates are sharp.  

Proof. Take 𝑘 = 1 in Corollary (4.1.17). Denote 𝑚 = 𝑡 +  1. It follows the result. This 

completes the proof. The example which shows that the estimates of Corollary (4.1.18) are 

sharp is the same as the example in [14]. 

When 𝑙1 = 𝑝, 𝑙2 =···= 𝑙𝑚 = 𝑙 (𝑙 = 1, 2,··· , 𝑛), note that 𝑎𝑟𝑔 𝑎𝑝𝑝 𝑙···𝑙⏟
𝑚−1

=
𝜃𝑝𝑝+(𝑚−1)𝜃𝑝𝑙

𝑚
 for 

𝑎_(𝑝𝑝 𝑙 ··· 𝑙⏟
𝑚−1

≠ 0. It is clear that Corollary (4.1.18) is Theorem (4.1.19) of [14]. 

Corollary (4.1.19)[89]: With the same assumptions of Corollary (4.1.17), we have  

𝑓(𝑧) ⩽ ∫
𝑑𝑡

(1 − 𝑡𝑘)
2
𝑘

‖𝑧‖

0

, 𝑧 ∈ 𝑈𝑛. 

The above estimate is sharp.  

Proof. By Corollary (4.1.17), applying a method similar to that in [14], Corollary (4.1.19) 

can be proved.  

Corollary (4.1.20)[89]: With the same assumptions of Corollary (4.1.17), then we have  

‖𝐷𝑓(𝑧)𝑧‖ ⩽
‖𝑧‖

(1 − ‖𝑧‖𝑘)
2
𝑘

, 𝑧 ∈ 𝑈𝑛. 

The above estimate is sharp.  

Proof. According to Corollary (4.1.17), with an analogous method in [14], Corollary 

(4.1.20) can be proved.  

It is easy to verify that  

𝑓(𝑧) = (∫
𝑑𝑡

(1 − 𝑡𝑘)
2
𝑘

𝑧1

0

,
𝑧2
𝑧1
∫

𝑑𝑡

(1 − 𝑡𝑘)
2
𝑘

𝑧1

0

,··· ,
𝑧𝑛
𝑧1
∫

𝑑𝑡

(1 − 𝑡𝑘)
2
𝑘

𝑧1

0

)

′

, 𝑧 ∈ 𝑈𝑛 

satisfies the condition of Corollaries (4.1.19) and (4.1.20).  

Taking 𝑧 = (𝑟, 0,··· , 0)′(0 ⩽ 𝑟 < 1), we have  

𝑓(𝑧) = ∫
𝑑𝑡

(1 − 𝑡𝑘)
2
𝑘

𝑟

0

       and    ‖𝐷𝑓(𝑧)𝑧‖ =
𝑟

(1 − 𝑟𝑘)
2
𝑘

. 

Therefore the estimates of Corollaries (4.1.19) and (4.1.20) are both sharp.  

When 𝑘 = 1, 𝑙1 = 𝑝, 𝑙2 =···= 𝑙𝑚 = 𝑙 (𝑙 = 1, 2,··· , 𝑛), in [14], respectively. 
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Section (4.2): Bieberbach Conjecture in Several Complex Variables 

In one complex variable, the following theorem is classical and well-known. 

Theorem (4.2.1)[98]: (See [99]). If 𝑓(𝑧) = 𝑧 + ∑  ∞
 𝑛=2  𝑎𝑛𝑧

𝑛 is a normalized 

biholomorphic function on the unit disk 𝑈 in ℂ, then  

|𝑎𝑛| ≤ 𝑛, 𝑛 = 2 ,3, . . ., 
for biholomorphic starlike mappings via their geometric properties. Naturally, people 

attempt to study the estimates of all homogeneous expansions for biholomorphic starlike 

mappings from their analytic properties. In 1999, Roper and Suffridge [1] pointed out that 

the estimate of the second homogeneous expansion for biholomorphic starlike mappings is 

invalid by providing a counterexample. Owing to this reason, subsequently Gong [15] 

proposed the following conjecture.  

Conjecture (4.2.2)[98]: If 𝑓 ∶  𝑈𝑛  →  ℂ𝑛 is a normalized biholomorphic starlike mapping, 

where 𝑈𝑛 is the open unit polydisk in ℂ𝑛, then  
‖𝐷𝑚𝑓(0)(𝑧𝑚)‖

𝑚!
 ≤  𝑚 ‖𝓏‖𝑚, 𝓏 ∈ 𝑈𝑛, 𝑚 = 2 ,3, . ..  

In fact, the above conjecture is the Bieberbach conjecture in several complex variables 

due to the facts that the Bieberbach conjecture for biholomorphic mappings in several 

complex variables does not hold and the properties of biholomorphic starlike functions are 

the most similar to biholomorphic functions among the subclasses of biholomorphic 

functions. Up to now, only the estimates of the second and third homogeneous expansions 

for biholomorphic starlike mappings were in essence discussed. It is shown that the 

difficulties of the Bieberbach conjecture in several complex variables is not less than the 

Bieberbach conjecture in one complex variable. The related results may consult refs [100], 

[14], [101], [103].  

For 𝑋 denote a complex Banach space with the norm ‖∙‖ , 𝑋∗ be the dual space of 𝑋, 𝐵 be 

the open unit ball in 𝑋, and 𝑈 be the Euclidean open unit disk in ℂ. Also, let 𝑈𝑛 be the open 

unit polydisk in ℂ𝑛, and let ℕ be the set of all positive integers. We denote by 𝜕𝑈𝑛 the 

boundary of 𝑈𝑛, and𝜕0𝑈
𝑛 the distinguished boundary of 𝑈𝑛. Let the symbol′mean 

transpose. For each 𝓍 ∈ 𝑋\{0}, we define  

𝑇(𝑥) = {𝑇𝑥 ∈ 𝑋∗ ∶  ‖𝑇𝑥‖ = 1, 𝑇𝑥(𝑥) =  ‖𝑥‖}.  
By the Hahn-Banach theorem, 𝑇(𝓍) is nonempty.  

For 𝐻(𝐵) be the set of all holomorphic mappings from 𝐵 into 𝑋. We know that if 𝑓 ∈
 𝐻(𝐵), then 

𝑓(𝑦) = ∑  

∞

 𝑛=0

1

𝑛!
 𝐷𝑛𝑓(𝓍)((𝑦 − 𝓍)𝑛),  

for all 𝑦 in some neighborhood of 𝓍 ∈  𝐵, where𝐷𝑛𝑓(𝓍) is then-th-Fréchet derivative of 𝑓 

at 𝓍, and for 𝑛 ≥   1,  
𝐷𝑛𝑓(𝑥)((𝑦 − 𝑥)𝑛) = 𝐷𝑛𝑓(𝑥) (𝑦 − 𝑥, . . . , 𝑦 − 𝑥     )⏟            

𝑛

.  

Furthermore, 𝐷𝑛𝑓(𝑥) is a bounded symmetric n-linear mapping from Π𝑗=1
𝑛  𝑋 into 𝑋.  

We say that a holomorphic mapping 𝑓: 𝐵 →  𝑋 is biholomorphic if the inverse 𝑓−1 exists 

and is holomorphic on the open set 𝑓(𝐵). A mapping 𝑓 ∈ 𝐻(𝐵) is said to be locally 

biholomorphic if the Fr´echet derivative 𝐷𝑓(𝑥) has a bounded inverse for each 𝑥 ∈  𝐵. If 

𝑓 ∶  𝐵 →  𝑋 is a holomorphic mapping, then we say that f is normalized if 𝑓(0)  =  0 and 

𝐷𝑓(0) = 𝐼, where 𝐼 represents the identity operator from 𝑋 into 𝑋.  
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We say that a normalized biholomorphic mapping 𝑓 ∶  𝐵 →  𝑋 is a starlike mapping 

if 𝑓(𝐵) is a starlike domain with respect to the origin.  

Suppose that 𝛺 ∈  ℂ𝑛 is a bounded circular domain. The first Fr´echet derivative and 

the 𝑚 (𝑚 ≥  2)th Fr´echet derivative of a mapping 𝑓 ∈  𝐻(𝛺) at point 𝓏 ∈  𝛺 are written 

by 𝐷𝑓(𝓏), 𝐷𝑚𝑓(𝓏)(𝑎𝑚−1,·), respectively. The matrix representations are  

𝐷𝑓(𝓏) = (
𝜕𝑓𝑝(𝓏)

𝜕𝓏𝑘
)
1≤𝑝,𝑘≤𝑛,

 𝐷𝑚𝑓(𝓏)(𝑎𝑚−1,·)

= ( ∑  

𝑛

𝑙1,𝑙2,...,𝑙𝑚−1=1

 
𝜕𝑚𝑓𝑝(𝓏)

𝜕𝓏𝑘𝜕𝓏𝑙1 ··· 𝜕𝓏𝑙𝑚 −1
  𝑎𝑙1  ··· 𝑎𝑙𝑚−1)

1≤𝑝,𝑘≤𝑛

, 

where 𝑓(𝓏) = ( 𝑓1(𝓏), 𝑓2(𝓏), . . . , 𝑓𝑛(𝓏))
′
, 𝑎 = ( 𝑎1, 𝑎2, . . . , 𝑎𝑛)

′ ∈ ℂ𝑛. 
We now recall some definitions as follows.  

Definition (4.2.3)[98]: (See [95]). Let 𝑓 ∈  𝐻(𝐵). It is said that 𝑓 is 𝑘 −fold symmetric if 

𝑒 
−2𝜋𝑖

𝑘
 𝑓(𝑒

2𝜋𝑖

𝑘
 𝑥) = 𝑓(𝑥)for all 𝑥 ∈ 𝐵, where 𝑘 ∈ ℕ and 𝑖 =  √−1. 

Definition (4.2.4)[98]: (See [96]). Suppose that 𝛺 is a domain (connected open set) in 𝑋 

which contains 0. It is said that 𝑥 = 0 is a zero of orderk of 𝑓(𝑥) if 𝑓(0)  =
 0, . . . , 𝐷𝑘−1𝑓(0)  =  0, but 𝐷𝑘𝑓(0)  ≠ 0, where 𝑘 ∈ ℕ. The definitions both reduce to the 

case 𝑋 =  𝐶. According to Definitions (4.2.3) and (4.2.4), it is shown that 𝑥 =  0 is a zero 

of order 𝑘 + 1( 𝑘 ∈ ℕ) of 𝑓(𝑥) − 𝑥 if f is a 𝑘 −fold symmetric normalized holomorphic 

mapping (𝑓(𝑥)  ≢  𝑥) defined on B. However, the converse is fail.  

We denote by 𝑆∗(𝐵) the set of all normalized biholomorphic starlike mappings on 𝐵. 
We will establish the sharp estimates of all homogeneous expansions for a subclass of 

starlike mappings on the unit ball in complex Banach spaces, and the sharp estimates of all 

homogeneous expansions for the above generalized mappings on the unit polydisk in ℂ𝑛. It 
is shown that the Bieberbach conjecture in several complex variables is proved under the 

restricted conditions, and the derived conclusions reduce to the classical results in one 

complex variable. 

In order to obtain the desired results, we need to provide the following lemmas.  

Lemma (4.2.5)[98]: Let 𝑓, 𝑔 ∶  𝐵 → ℂ ∈  𝐻(𝐵), 𝑓(0) =  𝑔(0) =  1, 

𝑓 (𝑒
2𝜋𝑖

𝑘
  𝑥) = 𝑓(𝑥), 𝑔 (𝑒

2𝜋𝑖

𝑘
 𝑥) = 𝑔(𝑥)( 𝑘 ∈ ℕ), 

where 𝑖 = √−1. 𝐼𝑓𝑓(𝑥) + 𝐷𝑓(𝑥)𝑥 =  𝑔(𝑥)𝑓(𝑥), then 

 
𝑘𝐷𝑘𝑓(0)(𝑥𝑘)

𝑘!
 =
𝐷𝑘𝑔(0)(𝑥𝑘)

𝑘!
 ,
𝑠𝑘𝐷𝑠𝑘𝑓(0)(𝑥𝑠𝑘)

(𝑠𝑘)!
 

=
𝐷𝑠𝑘𝑔(0)(𝑥𝑠𝑘)

(𝑠𝑘)!
 + 
𝐷(𝑠−1) 𝑘𝑔(0)(𝑥(𝑠−1)𝑘)

((𝑠 − 1)𝑘)!
 ·
𝐷𝑘𝑓(0)(𝑥𝑘)

𝑘!
 +··

· +
𝐷𝑘𝑔(0)(𝑥𝑘)

𝑘!
 ·
𝐷(𝑠−1)𝑘𝑓(0)(𝑥((𝑠−1))𝑘)

((𝑠 − 1)𝑘)!
 , 𝑥 ∈  𝐵, 𝑠 = 2 ,3, . ..  

Proof. According to the hypothesis of Lemma (4.2.5), it yields that 
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1 +
(𝑘 +  1)𝐷𝑘𝑓(0)(𝑥𝑘)

𝑘!
+
(2𝑘 +  1)𝐷2𝑘𝑓(0)(𝑥2𝑘)

(2𝑘 )!
+··· +

(𝑠𝑘 +  1)𝐷𝑠𝑘𝑓(0)(𝑥𝑠𝑘)

(𝑠𝑘)!
+···

= (1 +
𝐷𝑘𝑔(0)(𝑥𝑘)

𝑘!
+
𝐷2𝑘𝑔(0)(𝑥2𝑘)

(2𝑘)!
+··· +

𝐷𝑠𝑘𝑔(0)(𝓏𝑠𝑘)

(𝑠𝑘)!
+···)

× (1 +
𝐷𝑘𝑓(0)(𝑥𝑘)

𝑘!
+
𝐷2𝑘𝑓(0)(𝑥2𝑘)

(2𝑘)!
+··· +

𝐷𝑠𝑘𝑓(0)(𝑥𝑠𝑘)

(𝑠𝑘)!
+···) . 

A direct computation shows that 

1 +
(𝑘 +  1)𝐷𝑘𝑓(0)(𝑥𝑘)

𝑘!
+
(2𝑘 +  1)𝐷2𝑘𝑓(0)(𝑥2𝑘)

(2𝑘)!
+··· +

(𝑠𝑘 +  1)𝐷𝑠𝑘𝑓(0)(𝑥𝑠𝑘)

(𝑠𝑘)!
+···

= 1 +
𝐷𝑘𝑓(0)(𝑥𝑘)

𝑘!
+
𝐷𝑘𝑔(0)(𝑥𝑘)

𝑘!
+
𝐷2𝑘𝑓(0)(𝑥2𝑘)

(2𝑘)!
+
𝐷𝑘𝑔(0)(𝑥𝑘)

𝑘!
 

·
𝐷𝑘𝑓(0)(𝑥𝑘)

𝑘!
+
𝐷2𝑘𝑔(0)(𝑥2𝑘)

(2𝑘)!
+··· +

𝐷𝑠𝑘𝑓(0)(𝑥𝑠𝑘)

(𝑠𝑘)!
+
𝐷𝑘𝑔(0)(𝑥𝑘)

𝑘!
 

·
𝐷(𝑠−1)𝑘𝑓(0)(𝑥(𝑠−1)𝑘)

((𝑠 − 1)𝑘)!
+··· +

𝐷(𝑠−1)𝑘𝑔(0)(𝑥(𝑠−1)𝑘)

((𝑠 − 1)𝑘)!
 ·
𝐷𝑘𝑓(0)(𝑥𝑘)

𝑘!

+
𝐷𝑠𝑘𝑔(0)(𝑥𝑠𝑘)

(𝑠𝑘)!
+···. 

Compare the homogeneous expansions of both sides in the above equality. The result 

follows, as desired. This completes the proof. 

Lemma (4.2.6)[98]: Suppose that 𝑔 ∶  𝐵 → ℂ ∈ 𝐻(𝐵), 𝑔(0)  =  1. If 𝑅𝑒(𝑔(𝑥))  >  0, 𝑥 ∈
 𝐵, then  

|𝐷𝑚−1𝑔(0)(𝑥𝑚−1)| 

(𝑚 − 1)!
 ≤ 2‖𝑥‖𝑚−1, 𝑥 ∈ 𝐵,𝑚 = 2 ,3, . ..  

Proof. Fix 𝑥 ∈  𝐵 \{ 0}, and denote 𝑥 0 =
𝑥

‖𝑥‖
 . We define 𝑝(𝜉) = 𝑔(𝜉𝑥0), 𝜉 ∈  𝑈. Then 

𝑝 ∈  𝐻(𝑈), 𝑝(0)  =  1, 𝑅𝑒(𝑝(𝜉))  =  𝑅𝑒(𝑔(𝜉𝑥0))  >  0, 𝜉 ∈ 𝑈, and 

1 + ∑  

∞

 𝑚=2

𝑏𝑚−1𝜉
𝑚−1  = 1 + ∑  

∞

 𝑚=2

𝐷𝑚−1
𝑔(0)(𝑥0

𝑚−1 )

(𝑚 − 1)!
𝜉𝑚−1 . 

Comparing the coefficients of both sides in the above equality, we have 

𝐷𝑚−1𝑔(0)(𝑥0
𝑚−1 )

(𝑚 − 1)!
=  𝑏𝑚−1, 𝑚 = 2 ,3, . .. 

Note that |𝑏𝑚−1| ≤  2,𝑚 = 2 ,3, . .. (see [17]). Consequently, the desired result follows . 

This completes the proof. 

Lemma (4.2.7)[98]: Let 𝑓, 𝑔 ∶  𝐵 → ℂ ∈  𝐻(𝐵), 𝑓(0)  =  𝑔(0)  =  1, and 𝑥 = 0 be a zero 

of order 𝑘 + 1𝑜𝑓 𝑥𝑓(𝑥) − 𝑥 (𝑟𝑒𝑠𝑝. 𝑥𝑔(𝑥) − 𝑥). If 𝑓(𝑥) + 𝐷𝑓(𝑥)𝑥 =  𝑔(𝑥)𝑓(𝑥), then  

(𝑚 − 1)𝐷𝑚−1𝑓(0)(𝑥𝑚−1)

(𝑚 − 1)!
 =
𝐷𝑚−1𝑔(0)(𝑥𝑚−1)

(𝑚 − 1)!
 , 𝑚 

=  𝑘 + 1, 𝑘 + 2, . . . ,2𝑘,
(𝑚 − 1)𝐷𝑚−1𝑓(0)(𝑥𝑚−1)

(𝑚 − 1)!
 

=
𝐷𝑚−1𝑔(0)(𝑥𝑚−1)

(𝑚 − 1)!
 +
𝐷𝑘𝑔(0)(𝑥𝑘)

𝑘!
 ·
𝐷𝑘𝑓(0)(𝑥𝑘)

𝑘!
 ,𝑚 = 2 𝑘 + 1 .  

Proof. In view of the hypothesis of Lemma (4.2.7), it is shown that 
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1 +
(𝑘 +  1)𝐷𝑘𝑓(0)(𝑥𝑘)

𝑘!
+
(𝑘 +  2)𝐷𝑘+1𝑓(0)(𝑥𝑘+1)

(𝑘 +  1)!
+··· +

𝑚𝐷𝑚−1𝑓(0)(𝑥𝑚−1)

(𝑚 − 1)!
+···

= (1 +
𝐷𝑘𝑔(0)(𝑥𝑘)

𝑘!
+
𝐷𝑘 +1𝑔(0)(𝑥𝑘+1)

(𝑘 +  1)!
+··· +

𝐷𝑚−1𝑔(0)(𝑥𝑚−1)

(𝑚 − 1)!
+···)  

× (1 +
𝐷𝑘𝑓(0)(𝑥𝑘)

𝑘!
+
𝐷𝑘+1𝑓(0)(𝑥𝑘+1)

(𝑘 + 1)!
+··· +𝐷𝑚−1

𝑓(0)(𝑥𝑚−1)

(𝑚 − 1)!
+···) . 

A simple calculation shows that 

1 +
(𝑘 +  1)𝐷𝑘𝑓(0)(𝑥𝑘)

𝑘!
+
(𝑘 +  2)𝐷𝑘+1𝑓(0)(𝑥𝑘+1)

(𝑘 +  1)!
+··· +

𝑚𝐷𝑚−1𝑓(0)(𝑥𝑚−1)

(𝑚 − 1)!
+···

= 1 +
𝐷𝑘𝑓(0)(𝑥𝑘)

𝑘!
+
𝐷𝑘𝑔(0)(𝑥𝑘)

𝑘!
+
𝐷𝑘+1𝑓(0)(𝑥𝑘+1)

(𝑘 +  1)!
+
𝐷𝑘+1𝑔(0)(𝑥𝑘+1)

(𝑘 +  1)!

+··· +
𝐷2𝑘−1𝑓(0)(𝑥2𝑘−1)

(2𝑘 − 1)!
+
𝐷2𝑘−1𝑔(0)(𝑥2𝑘−1)

(2𝑘 − 1)!
+
𝐷2𝑘𝑓(0)(𝑥2𝑘)

(2𝑘)!

+
𝐷𝑘𝑓(0)(𝑥𝑘)

𝑘!
 ·
𝐷𝑘𝑔(0)(𝑥𝑘)

𝑘!
+
𝐷2𝑘𝑔(0)(𝑥2𝑘)

(2𝑘)!
+···. 

Comparing the homogeneous expansions of both sides in the above equality, we obtain the 

desired results. This completes the proof. 

We now present the main theorems 

Theorem (4.2.8)[98]: Let 𝑓 ∶  𝐵 → ℂ ∈  𝐻(𝐵), 𝐹(𝑥) = 𝑥𝑓(𝑥)  ∈ 𝑆∗(𝐵), and 𝐹 be a 

𝑘 (𝑘 ∈ ℕ) −fold symmetric mapping on 𝐵. Then  

𝐷𝑠𝑘+1𝐹(0)(𝑥𝑠𝑘+1)

(𝑠𝑘 +  1)!
 ≤
Π𝑟=1
𝑠 ((𝑟 − 1)𝑘 +  2)

𝑠! 𝑘𝑠
 ‖𝑥‖𝑠𝑘+1, 𝑥 ∈ 𝐵, 𝑠 = 1 ,2, . . ., 

and the above estimates are sharp.  

Proof. We write 𝑊(𝑥) = (𝐷𝐹(𝑥))
−1
𝐹(𝑥). Note that 𝑓(𝑥)  ≠ 0 if 𝐹(𝑥) = 𝑥𝑓(𝑥)  ∈  𝑆∗(𝐵) 

(see [17]). A simple calculation shows that  

(𝐷𝐹(𝑥))
−1
𝐹(𝑥) =

𝑥𝑓(𝑥)

𝑓(𝑥) + 𝐷𝑓(𝑥)𝑥
 , 𝑥 ∈  𝐵 

and 

𝑅𝑒 [𝑇𝑥 ((𝐷𝐹(𝑥))
−1
𝐹(𝑥))] >  0 ⇔  𝑅𝑒 (1 +

𝐷𝑓(𝑥)𝑥

𝑓(𝑥)
) >  0, 𝑥 ∈  𝐵\{0}. 

In view of 𝐹(𝑥) = 𝑥𝑓(𝑥)  ∈  𝑆∗(𝐵), then it is shown that  

𝑅𝑒
‖𝑥‖

𝑇𝑥(𝑊(𝑥))
 =  𝑅𝑒 (1 +

𝐷𝑓(𝑥)𝑥

𝑓(𝑥)
) >  0, 𝑥 ∈  𝐵\{0}                     (8) 

(see [102]). Letting 𝑔(𝑥)  =  1 + 𝐷𝑓(𝑥)𝑥 𝑓(𝑥) , 𝑥 ∈ 𝐵, then 𝑔 ∶  𝐵 → ℂ ∈ 𝐻(𝐵), 𝑔(0)  =
 𝑓(0)  =  1, 𝑅𝑒𝑔(𝑥)  >  0, 𝑥 ∈ 𝐵, and  

𝑓(𝑥) + 𝐷𝑓(𝑥)𝑥 =  𝑔(𝑥)𝑓(𝑥)                                                       (9)  
from (8). Also since 𝐹(𝑥) = 𝑥𝑓(𝑥) is a k (𝑘 ∈ ℕ) −fold symmetric mapping, we know that 

𝑓(𝑒
2𝜋𝑖

𝑘
  𝑥)  =  𝑓(𝑥) and 𝑔(𝑒

2𝜋𝑖

𝑘
 𝑥) = 𝑔(𝑥), where 𝑖 =  √−1. By inductive method, we 

now prove that  

|𝐷𝑠𝑘𝑓(0)(𝑥𝑠𝑘)|

(𝑠𝑘)!
 ≤
Π𝑟=1
𝑠 ((𝑟 − 1)𝑘 +  2)

𝑠! 𝑘𝑠
‖𝑥‖𝑠𝑘, 𝑥 ∈ 𝐵, 𝑠 = 1 ,2, . . .                (10) 

When 𝑠 =  1, (10) holds from (9), Lemmas (4.2.5) and (4.2.6) (the case 𝑚 =  𝑘 +  1). 

Assume that 
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|𝐷𝑠𝑘𝑓(0)(𝑥𝑠𝑘)|

(𝑠𝑘)!
≤
Π𝑟=1
𝑠 ((𝑟 − 1)𝑘 +  2)

𝑠! 𝑘𝑠
‖𝑥‖𝑠𝑘 𝑥 ∈ 𝐵, 𝑠 = 1 ,2, . . . , 𝑞.                 (11) 

We need only to prove that (10) holds for 𝑠 =  𝑞 +  1. To see this, taking into account 

Lemmas (4.2.5), (4.2.6) and (11), it is shown that  

(𝑞 +  1)𝑘|𝐷(𝑞+1)𝑘𝑓(0)(𝑥(𝑞+1)𝑘)|

((𝑞 +  1)𝑘)!
 = 

𝐷(𝑞+1)𝑘𝑔(0)(𝑥(𝑞+1)𝑘)

((𝑞 +  1)𝑘)!
 +
𝐷𝑞𝑘𝑔(0)(𝑥𝑞𝑘)

(𝑞𝑘)!
 ·
𝐷𝑘𝑓(0)(𝑥𝑘)

𝑘!
 +··· +

𝐷𝑘𝑔(0)(𝑥𝑘)

𝑘!
 

·
𝐷𝑞𝑘𝑓(0)(𝑥𝑞𝑘)

(𝑞𝑘)!

|𝐷(𝑞+1)𝑘𝑔(0)(𝑥(𝑞+1)𝑘)|

((𝑞 +  1)𝑘)!
 +
|𝐷𝑞𝑘𝑔(0)(𝑥𝑞𝑘)|

(𝑞𝑘)!
 

·
|𝐷𝑘𝑓(0)(𝑥𝑘)|

𝑘!
 +··· +

|𝐷𝑘𝑔(0)(𝑥𝑘)|

𝑘!
 ·
|𝐷𝑞𝑘𝑓(0)(𝑞𝑘)|

(𝑞𝑘)!
  

≤ 2‖𝑥 ‖(𝑞+1)
𝑘
 +  
2 · 2

𝑘
 ‖𝑥 ‖(𝑞+1)

𝑘
 +··· + 2

·
Π(𝑟=1)
𝑞

((𝑟 − 1)𝑘 +  2)

𝑞! 𝑘𝑞
 ‖𝑥 ‖(𝑞 + 1)𝑘  

=  
Π𝑟=1
𝑞+1
((𝑟 − 1)𝑘 +  2)

𝑞! 𝑘𝑞
 ‖𝑥 ‖(𝑞 + 1)𝑘 . 

This implies that 

|𝐷(𝑞+1)𝑘𝑓(0)(𝑥(𝑞+1)𝑘)|

((𝑞 +  1)𝑘)!
 ≤
Π𝑟=1
𝑞+1
((𝑟 − 1)𝑘 +  2)

(𝑞 +  1)! 𝑘𝑞+1 
 ‖𝑥‖(𝑞+1)𝑘 , 𝑥 ∈ 𝐵. 

On the other hand, we see that 

𝐷𝑠𝑘+1𝐹(0)(𝑥𝑠𝑘+1)

(𝑠𝑘 +  1)!
=  𝑥

𝐷𝑠𝑘𝑓(0)(𝑥𝑠𝑘)

(𝑠𝑘)!
, 𝑥 ∈  𝐵, 𝑠 = 1 ,2, . . .               (12) 

𝑖f 𝐹(𝑥) = 𝑥𝑓(𝑥). Hence according to (10) and (12), we derived the desired result. It is not 

difficult to verify that 

𝐹(𝑥) =
𝑥

(1 − (𝑇𝑢(𝑥))
𝑘
)

2
𝑘

, 𝑥 ∈ 𝐵  

satisfies the condition of Theorem (4.2.8), where= 1. We set 𝑥 =  𝑟𝑢 (0  ≤ 𝑟 < 1), a direct 

computation shows that  

𝐷𝑠𝑘+1𝐹(0)(𝑥𝑠𝑘+1)

(𝑠𝑘 +  1)!
 =
Π𝑟=1
𝑠 ((𝑟 − 1)𝑘 +  2)

𝑠! 𝑘𝑠
 𝑟𝑠𝑘+1, 𝑠 = 1 ,2, . ..  

Then it is shown that the estimates of Theorem (4.2.8) are sharp. This completes the proof. 

When 𝑘 =  1, we immediately obtain the following corollary.  

Corollary (4.2.9)[98]: Let 𝑓 ∶  𝐵 → ℂ ∈ 𝐻(𝐵), 𝐹(𝑥) = 𝑥𝑓(𝑥)  ∈  𝑆∗(𝐵). Then  
‖𝐷𝑚𝐹(0)(𝑥𝑚)‖

𝑚!
 ≤ 𝑚‖𝑥‖𝑚, 𝑥 ∈  𝐵,𝑚 = 2 ,3, . . ., 

and the above estimates are sharp.  

Theorem (4.2.10)[98]: Let 𝑓 ∶  𝐵 → ℂ ∈  𝐻(𝐵), 𝐹(𝑥) = 𝑥𝑓(𝑥)  ∈  𝑆∗(𝐵), and 𝑥 = 0 be a 

zero of order 𝑘 + 1𝑜𝑓 𝐹(𝑥) − 𝑥. Then 
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‖𝐷𝑚𝐹(0)(𝑥𝑚)‖

𝑚!
≤

{
 

 
2

𝑚 − 1
 ‖𝑥‖𝑚, 𝑚 =  𝑘 + 1, 𝑘 + 2, . . . ,2𝑘,

2(𝑘 +  2)

(𝑚 − 1)𝑘
‖𝑥‖𝑚,𝑚 = 2 𝑘 + 1 

  

for 𝑥 ∈  𝐵. The above estimates are sharp for 𝑚 =  𝑘 + 1and 𝑚 = 2 𝑘 + 1 .  

Proof. According to the conditions of Theorem (4.2.10), Lemmas (4.2.6) and (4.2.7), we 

deduce that  

|𝐷𝑚−1𝑓(0)(𝑥𝑚−1)|

(𝑚 − 1)!
 ≤

2

𝑚 − 1
‖𝑥‖𝑚−1, 𝑥 ∈ 𝐵,𝑚 = 𝑘 + 1, 𝑘 + 2,… ,2𝑘,  

and 

(𝑚 − 1)|𝐷𝑚−1𝑓(0)(𝑥𝑚−1)|

(𝑚 − 1)!
 

= |
𝐷𝑚−1𝑔(0)(𝑥𝑚−1)

(𝑚 − 1)!
 +
𝐷𝑘𝑔(0)(𝑥𝑘)

𝑘!
 

·
𝐷𝑘𝑓(0)(𝑥𝑘)

𝑘!
|  
≤ |𝐷𝑚−1𝑔(0)(𝑥𝑚−1)|

(𝑚 − 1)!
 + |

𝐷𝑘𝑔(0)(𝑥𝑘)

𝑘!
 ·
𝐷𝑘𝑓(0)(𝑥𝑘)

𝑘!
 |

≤ 2‖𝑥‖2𝑘  +
22

𝑘
 ‖𝑥‖2𝑘 =

2(𝑘 +  2)

𝑘
 ‖𝑥‖2𝑘, 𝑥 ∈  𝐵,𝑚 = 2 𝑘 + 1 .  

The result follows, as desired. The example which shows the sharpness of Theorem (4.2.10) 

is the same as Theorem (4.2.8). This completes the proof. 

Theorems (4.2.8), (4.2.10) and Corollary (4.2.9) show that almost every homogeneous 

expansion for 𝐹(𝑥) lies in a ball exactly if the image set of 𝐹(𝑥) = 𝑥𝑓(𝑥) is a starlike 

domain with respect to the origin. 

Let each 𝑚𝑙 (𝑙 = 1 ,2, . . . , 𝑛) be a non-negative integer, 𝑁 =  𝑚1  +  𝑚2  + ···
+ 𝑚𝑛  ∈ ℕ, and 𝑚𝑙  = 0 mean the corresponding components in 𝑍 and 𝐹(𝑍) are omitted. 

We denote by 𝑈𝑚𝑙 (𝑟𝑒𝑠𝑝. 𝑈𝑁) the unit polydisk of 𝐶𝑚𝑙 (𝑟𝑒𝑠𝑝. ℂ𝑁).  
Theorem (4.2.11)[98]: Let 𝑓𝑙 ∶  𝑈𝑚𝑙  → ℂ ∈  𝐻(𝑈𝑚𝑙), 𝑙 = 1 ,2, . . . , 𝑛, 

𝐹(𝑍) = ( 𝑍1𝑓1(𝑍1), 𝑍2𝑓2(𝑍2), . . . , 𝑍𝑛𝑓𝑛(𝑍𝑛)′ ∈  𝑆
∗(𝑈𝑁), 

and 𝐹(𝑍) be 𝑎 𝑘 (𝑘 ∈ ℕ) −fold symmetric mapping on 𝑈𝑁 . Then  

‖𝐷𝑠𝑘+1𝐹(0)(𝑍𝑠𝑘+1)‖

(𝑠𝑘 + 1)!
 ≤
Π𝑟=1
𝑠 ((𝑟 − 1)𝑘 +  2)

𝑠! 𝑘𝑠
 ‖𝑍‖𝑠𝑘+1,  

𝑍 = (𝑍1, 𝑍2, . . . , 𝑍𝑛)  ∈ 𝑈
𝑁 , 𝑠 = 1 ,2, . . . ,                      (13) 

and the above estimates are sharp. 

Proof. Let 𝐹(𝑍) = ( 𝐹1(𝑍1), 𝐹2(𝑍2), . . . , 𝐹𝑛(𝑍𝑛))′. According to the hypothesis of Theorem 

(4.2.11), for any 𝑍 = (𝑍1, 𝑍2, . . . , 𝑍𝑛)′ ∈  𝑈
𝑁 , it yields that 

(𝐷𝐹(𝑍))
−1
𝐹(𝑍)((𝐷𝐹1(𝑍1))

−1
𝐹1(𝑍1), (𝐷𝐹2(𝑍2))

−1
𝐹2(𝑍2), . . . , (𝐷𝐹𝑛(𝑍𝑛))

−1
𝐹𝑛(𝑍𝑛))’ 

by a simple computation. Note that 

(𝐷𝐹(𝑍))
−1
𝐹(𝑍) =  (0,… , (𝐷𝐹𝑙(𝑍𝑙))

−1
𝐹𝑙(𝑍𝑙), … ,0) 𝑖𝑓 𝑍 =  (0,… , 𝑍𝑙 , … ,0)

′ ∈ 𝑈𝑁 , 𝑙 

= 1 ,2, . . . , 𝑛. 
We set 

𝑊(𝑍) = (𝑊1,𝑊2, . . . ,𝑊𝑛)′ = (𝑊11, . . . ,𝑊1𝑚1,𝑊21, . . . ,𝑊2𝑚2, . . . ,𝑊𝑛1, . . . ,𝑊𝑛𝑚𝑛)′ 

= (𝐷𝐹(𝑍))
−1
𝐹(𝑍). 

Then it yields that 

𝐹 ∈ 𝑆∗(𝑈𝑁)  ⇔  𝐹𝑙  ∈ 𝑆
∗(𝑈𝑚𝑙), 𝑙 = 1 ,2, . . . , 𝑛  



124 

from the criterion of starlike mappings on 𝑈𝑛 (see [12]). Also it is easy to see that each 

𝐹𝑙  (𝑙 = 1 ,2, . . . , 𝑛) is a 𝑘 (𝑘 ∈ ℕ) −fold symmetric mapping on 𝑈𝑚𝑙 if 𝐹 is a 𝑘 (𝑘 ∈
ℕ) −fold symmetric mapping on 𝑈𝑁 . Taking into account the facts 𝐷𝑚𝐹(0)(𝑍𝑚)  =
max
1≤𝑙≤𝑛

 {𝐷𝑚𝐹𝑙(0)(𝑍𝑙
𝑚 ) } and 𝑍 = max

1≤𝑙≤𝑛
{𝑍𝑙}, here ‖𝑍𝑙‖𝑚𝑙 (𝑟𝑒𝑠𝑝. ‖𝑍‖𝑁) is briefly written 

as‖𝑍𝑙‖ (𝑟𝑒𝑠𝑝. ‖𝑍‖), it is shown that (13) holds from Theorem (4.2.8) (the case of 𝑋 =
 ℂ𝑛, 𝐵 =  𝑈𝑛). It is easy to verify that  

𝐹(𝑍) = (
𝑍1

(1 − 𝑍11
𝑘 )

2
𝑘

  ,
𝑍2

(1 − 𝑍21
𝑘 )

2
𝑘

  , . . . ,
𝑍𝑛

(1 − 𝑍𝑛1
𝑘 )

2
𝑘

)

′

 , 𝑍 = (𝑍1, 𝑍2, . . . , 𝑍𝑛)  ∈ 𝑈
𝑁  

satisfies the condition of Theorem (4.2.8), where 𝑍𝑙  = ( 𝑍𝑙1, 𝑍𝑙2, . . . , 𝑍𝑙𝑚𝑙)′ ∈  𝑈
𝑚𝑙 , 𝑙 =

1 ,2, . . . , 𝑛. Taking 𝑍𝑙  = (𝑟, 0, . . . ,0) (0  𝑟 < 1), 𝑙 = 1 ,2, . . . , 𝑛, we easily see that  

‖𝐷𝑠𝑘+1𝐹(0)(𝑍𝑠𝑘+1)‖

(𝑠𝑘 + 1)!
 =  

Π𝑟=1
𝑠 (𝑟 − 1)𝑘 +  2

𝑠! 𝑘𝑠
 𝑟𝑠𝑘+1, 𝑠 = 1 ,2, . .. 

It is shown that the estimates of Theorem (4.2.11) are sharp. This completes the proof. 

Taking 𝑘 =  1 in Theorem (4.2.11), we readily obtain the following corollary.  

Corollary (4.2.12)[98]: Let 𝑓𝑙 ∶  𝑈𝑚𝑙  → ℂ ∈  𝐻(𝑈𝑚𝑙), 𝑙 = 1 ,2, . . . , 𝑛, 

𝐹(𝑍) = ( 𝑍1𝑓1(𝑍1), 𝑍2𝑓2(𝑍2), . . . , 𝑍𝑛𝑓𝑛(𝑍𝑛))′ ∈  𝑆
∗(𝑈𝑁). 

Then  
‖𝐷𝑚𝐹(0)(𝑍𝑚)‖

𝑚!
 ≤  𝑚 ‖𝑍‖𝑚, 𝑍 = (𝑍1, 𝑍2, . . . , 𝑍𝑛)′ ∈  𝑈

𝑁𝑠,𝑚 = 2 ,3, . . ., 

and the above estimates are sharp.  

Theorem (4.2.13)[98]: Let 𝑓𝑙 ∶  𝑈𝑚𝑙  → ℂ  ∈  𝐻(𝑈𝑚𝑙), 𝑙 = 1 ,2, . . . , 𝑛, 

𝐹(𝑍) = ( 𝑍1𝑓1(𝑍1), 𝑍2𝑓2(𝑍2), . . . , 𝑍𝑛𝑓𝑛(𝑍𝑛))′ ∈  𝑆
∗(𝑈𝑁), 

and 𝑍 = 0be a zero of order 𝑘 + 1(𝑘 ∈ ℕ) of 𝐹(𝑍) − 𝑍. Then 

‖𝐷𝑚𝐹(0)(𝑍𝑚)‖

𝑚!
 ≤

{
 

 
2

𝑚 − 1
 ‖𝑍‖𝑚, 𝑚 =  𝑘 + 1, 𝑘 + 2,… ,2𝑘,

2(𝑘 +  2)

(𝑚 − 1)𝑘
‖𝑍‖𝑚, 𝑚 = 2 𝑘 + 1

   

for 𝑍 ∈  𝑈𝑁 . The above estimates are sharp for 𝑚 =  𝑘 + 1𝑎𝑛𝑑 𝑚 = 2 𝑘 + 1 .  
Proof. Similar to that in the proof of Theorem (4.2.11), we derive the desired result from 

Theorem (4.2.10) (the case of 𝑋 =  ℂ𝑛, 𝐵 =  𝑈𝑛). The sharpness of Theorem (4.2.13) is 

similar to that in Theorem (4.2.11). This completes the proof. 

Theorems (4.2.11), (4.2.13) and Corollary (4.2.12) state that almost every 

homogeneous expansion for 𝐹(𝑍) lies in a polydisk exactly if the image set of 𝐹(𝑍) =
(𝑍1𝑓1(𝑍1), 𝑍2𝑓2(𝑍2), . . . , 𝑍𝑛𝑓𝑛(𝑍𝑛)) is a starlike domain with respect to the origin.  

Theorem (4.2.14)[98]: Suppose that 𝐹(𝓏) = (𝐹1(𝓏), 𝐹2(𝓏), . . . , 𝐹𝑛(𝓏))′ ∈ 𝐻(𝑈
𝑛), 

and𝐹(𝓏) is a 𝑘 (𝑘 ∈ ℕ) −fold symmetric mapping on 𝑈𝑛. 𝐼𝑓𝑅𝑒
𝐷𝐹𝑗(𝓏)𝓏

𝐹𝑗(𝓏)
 >  0, 𝓏 ∈  𝑈𝑛 \

{ 0}, wherej satisfies the condition |𝓏𝑗| =  ‖𝓏‖  = max
1≤𝑙≤𝑛

{|𝓏𝑙|}, then  

‖𝐷𝑠𝑘+1𝐹(0)(𝑧𝑠𝑘+1)‖

(𝑠𝑘 +  1)!
 ≤
Π𝑟=1
𝑠 ((𝑟 − 1)𝑘 +  2)

𝑠! 𝑘𝑠
 ‖𝓏‖𝑠𝑘+1, 𝓏 ∈ 𝑈𝑛, 𝑠 = 1 ,2, . . ., 

and the above estimates are sharp.  

Proof. Fix 𝓏 ∈  𝑈𝑛 \{0}, and denote 𝑧0  =
𝓏

‖𝓏‖
. We define 
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ℎ𝑗(𝜉) =
‖𝓏‖

𝑧𝑗
𝐹𝑗(𝜉𝑧0), 𝜉 ∈ 𝑈,                                 (14) 

where 𝑗 satisfies the condition |𝓏𝑗|  = ‖𝓏‖ =  max
1≤𝑙≤𝑛

{|𝓏𝑙|}. A direct calculation shows that  

ℎ𝑗(𝜉)𝜉

ℎ𝑗(𝜉)
   =

𝐷𝐹𝑗(𝜉𝓏0)𝜉𝓏0
𝐹𝑗(𝜉𝓏0)

 , 𝜉 ∈  𝑈 \{0}. 

Hence, we conclude that 

𝑅𝑒 (
ℎ𝑗
′(𝜉)𝜉

ℎ𝑗(𝜉)
) >  0, 𝜉 ∈ 𝑈 \{0} 

from 𝑅𝑒
𝐷𝐹𝑗(𝓏)𝓏

𝐹𝑗(𝓏)
  >  0, 𝓏 ∈ 𝑈𝑛 \{0}. This implies that ℎ𝑗  ∈  𝑆

∗(𝑈), and ℎ𝑗 is a 𝑘 −fold 

symmetric function.  

On the other hand, it is not difficult to see that 

𝜉 + ∑  

∞

 𝑚=2

𝑎𝑚𝜉
𝑚  =  𝜉 +

‖𝓏‖

𝓏𝑗
∑  

∞

 𝑚=2

 
 𝐷𝑚𝐹𝑗(0)(𝓏0

𝑚 )

𝑚!
 𝜉𝑚 

from (14). Compare the coefficients of both sides in the above equality. We obtain  
‖𝓏‖

𝓏𝑗
 
 𝐷𝑚𝐹𝑗(0)(𝓏0

𝑚 )

𝑚!
 =  𝑎𝑚, 𝑚 = 2 ,3, . .. 

Therefore, we deduce that  

|𝐷𝑠𝑘+1𝐹𝑗(0)(𝓏0
𝑠𝑘+1 )|

(𝑠𝑘 + 1)!
 ≤
Π𝑟=1
𝑠 ((𝑟 − 1)𝑘 +  2)

𝑠! 𝑘𝑠
, 𝓏0  ∈ 𝜕𝑈

𝑛 

from Theorem (4.2.8) (the case of 𝑋 = ℂ, 𝐵 =  𝑈). When 𝓏0  ∈ 𝜕0𝑈
𝑛, we have  

|𝐷𝑠𝑘+1𝐹𝑙(0)(𝓏0
𝑠𝑘+1 )|

(𝑠𝑘 + 1)!
 ≤
∏  𝑠
𝑟=1 (𝑟 − 1)𝑘 +  2

𝑠! 𝑘𝑠
 , 𝑙 = 1 ,2, . . . , 𝑛. 

Also since 𝐷𝑠𝑘+1𝐹𝑙(0)(𝓏
𝑠𝑘+1) is a holomorphic function on 𝑈𝑛̅̅ ̅̅ , applying the maximum 

modulus theorem of holomorphic functions on the unit polydisk, we obtain  

|𝐷𝑠𝑘+1𝐹𝑙(0)(𝓏0
𝑠𝑘+1 )|

(𝑠𝑘 + 1)!
 ≤
∏  𝑠
𝑟=1 (𝑟 − 1)𝑘 +  2

𝑠! 𝑘𝑠
  , 𝑧0  ∈ 𝜕𝑈

𝑛, 𝑙 = 1 ,2, . . . , 𝑛, 

i.e., 

|𝐷𝑠𝑘+1𝐹𝑙(0)(𝓏0
𝑠𝑘+1 )|

(𝑠𝑘 + 1)!
 ≤
∏  𝑠
𝑟=1 (𝑟 − 1)𝑘 +  2

𝑠! 𝑘𝑠
  ‖𝓏‖𝑠𝑘+1, 𝓏 ∈  𝑈𝑛, 𝑙 = 1 ,2, . . . , 𝑛. 

Hence, 

|𝐷𝑠𝑘+1𝐹𝑙(0)(𝓏0
𝑠𝑘+1 )|

(𝑠𝑘 + 1)!
 
∏  𝑠
𝑟=1 (𝑟 − 1)𝑘 +  2

𝑠! 𝑘𝑠
   ‖𝓏‖𝑠𝑘+1, 𝓏 ∈  𝑈𝑛.  

It is easy to check that  

𝐹(𝓏) = (&
𝓏1

(1 − 𝓏1
𝑘)
2
𝑘

     ,
𝓏2

(1 − 𝓏2
𝑘)
2
𝑘

 , . . . ,
𝓏𝑛

(1 − 𝓏𝑛
𝑘)
2
𝑘

) , 𝓏 = ( 𝓏1, 𝓏2, … , 𝓏𝑛)′ ∈ 𝑈
𝑛  

satisfies the condition of Theorem (4.2.14). We set 𝓏 = (𝑟, 0, . . . ,0)′ (0 ≤  𝑟 < 1), a simple 

calculation shows that  

‖𝐷𝑠𝑘+1𝐹(0)(𝑥𝑠𝑘+1)‖

(𝑠𝑘 +  1)!
 =  

∏  𝑠
𝑟=1 ((𝑟 − 1))𝑘 +  2

𝑠! 𝑘𝑠
  𝑟𝑠𝑘+1, 𝑠 = 1 ,2, …  

Then it is shown that the estimates of Theorem (4.2.14) are sharp. This completes the proof. 
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When 𝑘 =  1, we directly have the following corollary.  

Corollary (4.2.15)[98]: Suppose that 𝐹(𝓏) = ( 𝐹1(𝓏), 𝐹2(𝓏), . . . , 𝐹𝑛(𝓏))
′
∈  𝐻(𝑈𝑛). If 

𝑅𝑒
𝐷𝐹𝑗(𝓏)𝓏

𝐹𝑗(𝓏)
  >  0, 𝓏 ∈  𝑈𝑛 \{0}, where 𝑗 satisfies the condition |𝓏𝑗| =  ‖𝓏‖ = max

1≤𝑙≤𝑛
{|𝓏𝑙|}, 

then  
‖𝐷𝑚𝐹(0)(𝑧𝑚)‖

𝑚!
 ≤  𝑚‖𝓏‖𝑚, 𝓏 ∈ 𝑈𝑛, 𝑚 = 2 ,3, . . .,  

and the above estimates are sharp.  

Theorem (4.2.16)[98]: Suppose that 𝐹(𝓏) = ( 𝐹1(𝓏), 𝐹2(𝓏),… , 𝐹𝑛(𝓏))′ ∈  𝐻(𝑈
𝑛), 

and𝓏 = 0is a zero of order 𝑘 + 1( 𝑘 ∈ ℕ) of 𝐹(𝓏)  −  𝓏. I𝑓𝑅𝑒
𝐷𝐹𝑗(𝓏)𝓏

𝐹𝑗(𝓏)
 >  0, 𝓏 ∈

 𝑈𝑛 \{ 0}, wherej satisfies the condition |𝓏𝑗|  = ‖𝓏‖ =  𝑚𝑎𝑥 1 ≤ 𝑙 ≤ 𝑛{|𝓏𝑙|}, then 

‖𝐷𝑚𝐹(0)(𝓏𝑚)‖

𝑚!
 ≤

{
 

 
2

𝑚 − 1
‖𝓏‖𝑚,𝑚 =  𝑘 + 1, 𝑘 + 2,… ,2𝑘,

2(𝑘 +  2)

(𝑚 − 1)𝑘
‖𝓏‖𝑚,𝑚 = 2 𝑘 + 1 

  

for 𝓏 ∈ 𝑈𝑛. The above estimates are sharp for 𝑚 =  𝑘 + 1𝑎𝑛𝑑 𝑚 = 2 𝑘 + 1 . 
Proof. With the analogous arguments as in the proof of Theorem (4.2.14), it follows the 

desired result from Theorem (4.2.10) (the case of 𝑋 = ℂ , 𝐵 =  𝑈 ). The sharpness of 

Theorem (4.2.16) is the same as Theorem (4.2.14). This completes the proof. 

Theorems (4.2.14), (4.2.16) and Corollary (4.2.15) show that almost every 

homogeneous expansion for 𝐹(𝓏) =  (𝐹1(𝓏), 𝐹2(𝓏), . . . , 𝐹𝑛(𝓏))′ lies in a polydisk exactly if 

the image set of 
𝐷𝐹𝑗(𝓏)𝓏

𝐹𝑗(𝓏)
 is the right half plane of the complex plane ℂ . 

Section (4.3): A Subclass of Quasi-Convex Mappings of Type 𝔹 and Order 𝜶 in Several 

Complex Variables 

In geometric function theorey of one complex variable, people show great interest in 

the following classical theorem.  

Theorem (4.3.1)[104]: (see [105]) If 𝑓(𝑧) = 𝑧 + ∑ 𝑎𝑛
∞
𝑛=2  is a normalized biholomorphic 

convex function of order α on the unit disk U in ℂ, then  

|𝑎𝑛| ≤
1

𝑛!
∏(𝑘 − 2𝛼)

𝑛

𝑘=2

, 𝑛 = 2, 3,…, 

and the above estimates are sharp.  

We are naturally to ask whether the corresponding result in several complex variables holds 

or not? We shall in part provide an affirmative answer.  

Concerning the sharp estimates of all homogeneous expansions for a subclass of quasi-

convex mappings (include quasi-convex mappings of type 𝔸 and quasi-convex mappings of 

type 𝔹) in several complex variables, it was shown that the above result in general is invalid 

(see [1]). However, on a special domain, such as the unit polydisk in ℂ𝑛, Liu [14], Liu and 

Liu [89] obtained the sharp estimates of all homogeneous expansions for quasi-convex 

mappings (include quasiconvex mappings of type 𝔸 and quasi-convex mappings of type 𝔹) 

under different restricted conditions respectively. On the other hand, Liu and Liu [92] 

derived the sharp estimates of all homogeneous expansions for a subclass of quasi-convex 

mappings of type 𝔹 and order α (include quasi-convex mappings, quasi-convex mappings 

of type 𝔸 and quasi-convex mappings of type 𝔹). We mention that the family of quasi-

convex mappings of type 𝔹 and order α is a significant family of holomorphic mappings in 
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several complex variables, and the Bieberbach conjecture in several complex variables (i.e., 

the sharp estimates of all homogeneous expansions for biholomorphic starlike mappings on 

the unit polydisk in ℂ𝑛 hold) (see [15], [17], [101]) is a very significant and extremal difficult 

problem. Owing to this reason, the sharp estimates of all homogeneous expansions for quasi-

convex mappings of type 𝔹 and order α seem to be a meaningful problem as well.  

For X denote a complex Banach space with the norm ‖. ‖, let 𝑋∗ denote the dual space 

of X, let B be the open unit ball in X, and let U be the Euclidean open unit disk in ℂ. We 

also denote by 𝑈𝑛 the open unit polydisk in ℂ𝑛, Bn the Euclidean unit ball in ℂ𝑛 and ℕ∗ the 

set of all positive integers. Let 𝜕𝑈𝑛 denote the boundary of 𝑈𝑛, (𝜕𝑈)𝑛 be the distinguished 

boundary of 𝑈𝑛. Let the symbol ′ mean transpose. For each 𝑥 ∈ 𝑋\{0}, we define  

𝑇(𝑥) = {𝑇𝑥 ∈ 𝑋
∗: ‖𝑇𝑥‖ = 1, 𝑇𝑥(𝑥) = ‖𝑥‖}. 

By the Hahn-Banach theorem, 𝑇(𝑥) is nonempty.  

Let 𝐻(𝐵) be the set of all holomorphic mappings from B into X. We know that if 𝑓 ∈ 𝐻(𝐵), 
then  

𝑓(𝑦) = ∑
1

𝑛!
𝐷𝑛𝑓(𝑥)((𝑦 − 𝑥)𝑛)

∞

𝑛=0

 

for all y in some neighborhood of 𝑥 ∈ 𝐵, where 𝐷𝑛𝑓(𝑥) is the nth-Frechet derivative of f at 

x, and for 𝑛 ≥ 1, 

𝐷𝑛𝑓(𝑥)((𝑦 − 𝑥)𝑛) = 𝐷𝑛𝑓(𝑥) (𝑦 − 𝑥,… , 𝑦 − 𝑥)⏟          
𝑛

. 

Furthermore, 𝐷𝑛𝑓(𝑥) is a bounded symmetric n-linear mapping from ∏ 𝑋𝑛
𝑗=1  into X.  

We say that a holomorphic mapping 𝑓: 𝐵 → 𝑋 is biholomorphic if the inverse 𝑓−1 

exists and is holomorphic on the open set 𝑓(𝐵). A mapping 𝑓 ∈ 𝐻(𝐵) is said to be locally 

biholomorphic if the Frechet derivative 𝐷𝑓(𝑥) has a bounded inverse for each 𝑥 ∈ 𝐵. If 

𝑓: 𝐵 → 𝑋 is a holomorphic mapping, then we say that f is normalized if 𝑓(0) = 0 and 

𝐷𝑓(0) = 𝐼, where I represents the identity operator from X into X.  

We say that a normalized biholomorphic mapping 𝑓: 𝐵 → 𝑋 is a starlike mapping if 𝑓(𝐵) is 

a starlike domain with respect to the origin. 

Suppose that Ω ∈ ℂ𝑛 is a bounded circular domain. The first Frechet derivative and the 

𝑚(𝑚 ⩾ 2)-th Frechet derivative of a mapping 𝑓 ∈ 𝐻(Ω) at point 𝑧 ∈ Ω are written by 

𝐷𝑓(𝑧), 𝐷𝑚𝑓(𝑧), respectively.  

Definition (4.3.2)[104]: (see [92]) Suppose that 𝛼 ∈ [0, 1) and 𝑓: 𝐵 → 𝑋 is a normalized 

locally biholomorphic mapping. If  

ℜ𝑒 {𝑇𝑥 [(𝐷𝑓(𝑥))
−1
(𝐷2𝑓(𝑥)(𝑥2) + 𝐷𝑓(𝑥)𝑥)]} ≥ 𝛼‖𝑥‖, 𝑥 ∈ 𝐵, 

then f is said to be quasi-convex of type 𝔹 and order α. 

Let 𝑄𝐵
𝛼(𝐵) be the set of all quasi-convex mapping of type 𝔹 and order α on B.  

Definition (4.3.3)[104]: (see [94]) Suppose that 𝑓: 𝐵 → 𝑋 is a normalized locally 

biholomorphic mapping, and denote  

𝐺𝑓(𝛼, 𝛽) =
2𝛼

𝑇𝑢 [(𝐷𝑓(𝛼𝑢))
−1
(𝑓(𝛼𝑢) − 𝑓(𝛽𝑢))]

−
𝛼 + 𝛽

𝛼 − 𝛽
. 

If  

𝑅𝑒𝐺𝑓(𝛼, 𝛽) ⩾ 0, 𝑢 ∈ 𝜕𝐵, 𝛼, 𝛽 ∈ 𝑈, 

then f is said to be a quasi-convex mapping of type 𝔸 on B.   

We denote by 𝑄𝐴(𝐵) the set of all quasi-convex mapping of type 𝔸 on B.  
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Definition (4.3.4)[104]: (see [16]) Suppose that 𝑓: 𝐵 → 𝑋 is a normalized locally 

biholomorphic mapping. If  

𝑅𝑒 {𝑇𝑥 [(𝐷𝑓(𝑥))
−1
(𝐷2𝑓(𝑥)(𝑥2) + 𝐷𝑓(𝑥)𝑥)]} ⩾ 0, 𝑥 ∈ 𝐵, 

then f is said to be a quasi-convex mapping of type 𝔹 on B. 

We refer to the set 𝑄𝔹(𝐵) as the set of all quasi-convex mapping of type 𝔹 on B.  

When 𝑋 = ℂ𝑛, Definitions (4.3.2) and (4.3.3) are the same definitions which were 

introduced by Roper and Suffridge [1].  

Definition (4.3.5)[104]: (see [94]) Suppose that 𝑓: 𝐵 → 𝑋 is a normalized locally 

biholomorphic mapping. If  

𝑅𝑒 {𝑇𝑥 [(𝐷𝑓(𝑥))
−1
(𝑓(𝑥) − 𝑓(𝜉𝑥))]} ⩾ 0, 𝑥 ∈ 𝐵, 𝜉 ∈ 𝑈̅, 

then f is said to be a quasi-convex mapping on B.  

Let 𝑄(𝐵) be the set of all quasi-convex mapping of type 𝔹 on B. Gong [16] proved the 

inclusion relation  

𝑄𝐴(𝐵) = 𝑄(𝐵) ⊂ 𝑄𝔹(𝐵). 
Indeed, Definitions (4.3.3), (4.3.4) and (4.3.5) reduce to the criteria of biholomorphic 

convex functions in one complex variable.  

Definition (4.3.6)[104]: (see [95]) Let 𝑓 ∈ 𝐻(𝐵). It is said that f is k-fold symmetric if  

exp (−(2𝜋𝑖)/𝑘))𝑓(𝑒
2𝜋𝑖
𝑘 𝑥)  = 𝑓(𝑥)    for all   𝑥 ∈ 𝐵, 

where 𝑘 ∈ ℕ∗ and 𝑖 = √−1. 

Definition (4.3.7)[104]: (see [96]) Suppose that Ω is a domain (connected open set) in X 

which contains 0. It is said that 𝑥 = 0 is a zero of order k of 𝑓(𝑥) if 𝑓(0) =
0,… , 𝐷𝑘−1𝑓(0) = 0, but 𝐷𝑘𝑓(0) ≠ 0, where 𝑘 ∈ ℕ∗. 
According to Definitions (4.3.5) and (4.3.6), it is easily shown that 𝑥 = 0 is a zero of order 

𝑘 + 1 (𝑘 ∈ ℕ) of 𝑓(𝑥) −  𝑥 if f is a k-fold symmetric normalized holomorphic mapping 

𝑓(𝑥)(𝑓(𝑥) ≢ 𝑥) defined on B. However, the converse is fail.  

Let 𝑄𝔸,𝑘+1(𝐵) (resp. 𝑄𝔹,𝑘+1(𝐵), 𝑄𝑘+1(𝐵)) be the subset of 𝑄𝔸(𝐵) (resp. 𝑄𝔹(𝐵), 𝑄(𝐵)) of 

mappings f such that 𝑧 = 0 is a zero of order 𝑘 + 1 of 𝑓(𝑧) − 𝑧.  
In order to prove the desired results, we need to provide some lemmas as follows.  

Lemma (4.3.8)[104]: Let 𝛼 ∈ [0, 1), 𝑓, 𝑝: 𝐵 → ℂ ∈ 𝐻(𝐵), 𝑓(0) = 𝑝(0) = 1, 𝑓 (
𝑒2𝜋𝑖

𝑘
𝑥) =

𝑓(𝑥), 𝑝 (
𝑒2𝜋𝑖

𝑘
𝑥) = 𝑝(𝑥)(𝑘 ∈ ℕ∗), and 𝑓(𝑥) + 3𝐷𝑓(𝑥)𝑥 + 𝐷2𝑓(𝑥)(𝑥2) = (𝑓(𝑥) +

𝐷𝑓(𝑥)𝑥)(𝛼 + (1 − 𝛼)𝑝(𝑥)). Then  

𝑘(𝑘 + 1)𝐷𝑘𝑓(0)(𝑥𝑘)

𝑘!
=
(1 − 𝛼)𝐷𝑘𝑝(0)(𝑥𝑘)

𝑘!
, 

𝑠𝑘(𝑠𝑘 + 1)𝐷𝑠𝑘𝑓(0)(𝑥𝑠𝑘)

(𝑠𝑘)!

=
(1 − 𝛼)𝐷𝑠𝑘𝑝(0)(𝑥𝑠𝑘)

(𝑠𝑘)!
+
(1 − 𝛼)𝐷(𝑠−1)𝑘𝑝(0)(𝑥(𝑠−1)𝑘)

((𝑠 − 1)𝑘)!

·
(𝑘 + 1)𝐷𝑘𝑓(0)(𝑥𝑘)

𝑘!
+ ⋯+

(1 − 𝛼)𝐷𝑘𝑝(0)(𝑥𝑘)

𝑘!

·
((𝑠 − 1)𝑘 + 1)𝐷(𝑠−1)𝑘𝑓(0)(𝑥(𝑠−1)𝑘)

((𝑠 − 1)𝑘)!
, 𝑥 ∈ 𝐵, 𝑠 = 2, 3,…. 

Proof In view of the hypothesis of Lemma (4.3.8), we have  
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1 +
(𝑘 + 1)2𝐷𝑘𝑓(0)(𝑥𝑘)

𝑘!
+
(2𝑘 + 1)2𝐷2𝑘𝑓(0)(𝑥2𝑘)

(2𝑘)!
+ ⋯+

(𝑠𝑘 + 1)2𝐷𝑠𝑘𝑓(0)(𝑥𝑠𝑘)

(𝑠𝑘)!
+ ⋯ 

= (1 +
(𝑘 + 1) 𝐷𝑘𝑓(0)(𝑥𝑘)

𝑘!
+
(2𝑘 + 1) 𝐷2𝑘𝑓(0)(𝑥2𝑘)

(2𝑘)!
+ ⋯+

(𝑠𝑘 + 1) 𝐷𝑠𝑘𝑓(0)(𝑥𝑠𝑘)

(𝑠𝑘)!

+ ⋯) 

· (1 +
(1 − 𝛼) 𝐷𝑘𝑓(0)(𝑥𝑘)

𝑘!
+
(1 − 𝛼) 𝐷2𝑘𝑓(0)(𝑥2𝑘)

(2𝑘)!
+ ⋯+

(1 − 𝛼) 𝐷𝑠𝑘𝑓(0)(𝑥𝑠𝑘)

(𝑠𝑘)!

+ ⋯) 

 

A simple calculation shows that  

1 +
(𝑘 + 1)2𝐷𝑘𝑓(0)(𝑥𝑘)

𝑘!
+
(2𝑘 + 1)2𝐷2𝑘𝑓(0)(𝑥2𝑘)

(2𝑘)!
+ ⋯+

(𝑠𝑘 + 1)2𝐷𝑠𝑘𝑓(0)(𝑥𝑠𝑘)

(𝑠𝑘)!
+ ⋯ 

= 1 +
(𝑘 + 1)𝐷𝑘𝑓(0)(𝑥𝑘)

𝑘!
+
(1 − 𝛼)𝐷𝑘𝑝(0)(𝑥𝑘)

𝑘!
+
(2𝑘 + 1)𝐷2𝑘𝑓(0)(𝑥2𝑘)

(2𝑘)!

+
(1 − 𝛼)𝐷𝑘𝑝(0)(𝑥𝑘)

𝑘!
·
(𝑘 + 1)𝐷𝑘𝑓(0)(𝑥𝑘)

𝑘!
+
(1 − 𝛼)𝐷2𝑘𝑝(0)(𝑥2𝑘)

(2𝑘)!
+ ⋯

+
(𝑠𝑘 + 1)𝐷𝑠𝑘𝑓(0)(𝑥𝑠𝑘)

(𝑠𝑘)!
+
(1 − 𝛼)𝐷𝑘𝑝(0)(𝑥𝑘)

𝑘!

·
((𝑠 − 1)𝑘 + 1)𝐷(𝑠−1)𝑘𝑓(0)(𝑥(𝑠−1)𝑘)

((𝑠 − 1)𝑘)!
+ ⋯+

(1 − 𝛼)𝐷(𝑠−1)𝑘𝑝(0)(𝑥(𝑠−1)𝑘)

((𝑠 − 1)𝑘)!

·
(𝑘 + 1)𝐷𝑘𝑓(0)(𝑥𝑘)

𝑘!
+
(1 − 𝛼)𝐷𝑠𝑘𝑝(0)(𝑥𝑠𝑘)

(𝑠𝑘)!
+ ⋯. 

Compare the homogeneous expansions of the two sides in the above equality. We derived 

the desired result. 

Lemma (4.3.9)[104]: Let 𝛼 ∈ [0, 1), 𝑓, 𝑝: 𝐵 → ℂ ∈ 𝐻(𝐵), 𝑓(0) = 𝑝(0) = 1. If 𝑥 = 0 is a 

zero of order 𝑘 + 1(𝑘 ∈ ℕ∗) of 𝑥𝑓(𝑥) − 𝑥 (resp. 𝑥𝑝(𝑥) − (𝑥)), and 𝑓(𝑥) + 3𝐷𝑓(𝑥)𝑥 +

𝐷2𝑓(𝑥)(𝑥2) = (𝑓(𝑥) + 𝐷𝑓(𝑥)𝑥)(𝛼 + (1 − 𝛼)𝑝(𝑥)), then for any 𝑥 ∈ 𝐵,  

𝑚(𝑚 − 1)𝐷𝑚−1𝑓(0)(𝑥𝑚−1)

(𝑚 − 1)!
= 

{
 
 

 
 (1 − 𝛼)𝐷𝑚−1𝑝(0)(𝑥𝑚−1)

(𝑚 − 1)!
, 𝑚 = 𝑘 + 1, . . . , 2𝑘,

(1 − 𝛼)𝐷𝑚−1𝑝(0)(𝑥𝑚−1)

(𝑚 − 1)!
+
(1 − 𝛼)𝐷𝑘𝑝(0)(𝑥𝑘)

𝑘!
·
(𝑘 + 1)𝐷𝑘𝑓(0)(𝑥𝑘)

𝑘!
, 𝑚 = 2𝑘 + 1.

 

Proof. According to the conditions of Lemma (4.3.9), we obtain  
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1 +
(𝑘 + 1)2𝐷𝑘𝑓(0)(𝑥𝑘)

𝑘!
+
(2𝑘 + 1)2𝐷2𝑘𝑓(0)(𝑥2𝑘)

(2𝑘)!
+ ⋯+

𝑚2𝐷𝑚−1𝑓(0)(𝑥𝑚−1)

(𝑚 − 1)!
+ ⋯

= (1 +
(𝑘 + 1) 𝐷𝑘𝑓(0)(𝑥𝑘)

𝑘!
+
(2𝑘 + 1) 𝐷2𝑘𝑓(0)(𝑥2𝑘)

(2𝑘)!
+ ⋯

+
𝑚𝐷𝑚−1𝑓(0)(𝑥𝑚−1)

(𝑚 − 1)!
+ ⋯)

· (1 +
(1 − 𝛼)𝐷𝑘𝑓(0)(𝑥𝑘)

𝑘!
+
(1 − 𝛼)𝐷2𝑘𝑓(0)(𝑥2𝑘)

(2𝑘)!
+ ⋯

+
(1 − 𝛼)𝐷𝑚−1𝑓(0)(𝑥𝑚−1)

(𝑚 − 1)!
+ ⋯) 

A direct computation shows that  

1 +
(𝑘 + 1)2𝐷𝑘𝑓(0)(𝑥𝑘)

𝑘!
+
(2𝑘 + 1)2𝐷2𝑘𝑓(0)(𝑥2𝑘)

(2𝑘)!
+ ⋯+

𝑚2𝐷𝑚−1𝑓(0)(𝑥𝑚−1)

(𝑚 − 1)!
+ ⋯

= 1 +
(𝑘 + 1) 𝐷𝑘𝑓(0)(𝑥𝑘)

𝑘!
+
(1 − 𝛼)𝐷𝑘𝑓(0)(𝑥2𝑘)

(2𝑘)!
+
(1 − 𝛼)𝐷𝑘𝑝(0)(𝑥𝑘)

𝑘!

·
(𝑘 + 1)𝐷𝑘𝑓(0)(𝑥𝑘)

𝑘!
+
(1 − 𝛼)𝐷2𝑘𝑝(0)(𝑥2𝑘)

(2𝑘)!
+ ⋯+

𝑚𝐷𝑚−1𝑓(0)(𝑥𝑚−1)

(𝑚 − 1)!

+ ⋯+
(1 − 𝛼)𝐷𝑚−1𝑝(0)(𝑥𝑚−1)

(𝑚 − 1)!
+ ⋯. 

Compare the homogeneous expansions of the two sides in the above equality. It follows the 

desired result.  

We now begin to establish the desired results.  

Theorem (4.3.10)[104]: Let 𝛼 ∈ [0, 1), 𝑓: 𝐵 → ℂ ∈ 𝐻(𝐵), 𝑓(𝑥) + 𝐷𝑓(𝑥)𝑥 ≠ 0, 𝑥 ∈
𝐵, 𝐹(𝑥) = 𝑥𝑓(𝑥) ∈ 𝑄𝐵

𝛼(𝐵), and F is a 𝑘(𝑘 ∈ ℕ∗)-fold symmetric mapping on B. Then  

‖𝐷𝑠𝑘+1𝐹(0)(𝑥𝑠𝑘+1)‖

(𝑠𝑘 + 1)!
≤
∏ ((𝑟 − 1)𝑘 + 2 − 2𝛼)𝑠
𝑟=1

(𝑠𝑘 + 1)𝑠! 𝑘𝑠
‖𝑥‖𝑠𝑘+1, 𝑥 ∈ 𝐵, 𝑠 = 1, 2,… 

and the above estimates are sharp.  

Proof Let 𝑊(𝑥) = (𝐷𝐹(𝑥))
−1
𝐷(𝐷𝐹(𝑥)𝑥)𝑥. A straightforward computation shows that  

(𝐷𝐹(𝑥))
−1
𝐷(𝐷𝐹(𝑥)𝑥)𝑥 =

(𝑓(𝑥) + 3𝐷𝑓(𝑥)𝑥 + 𝐷2𝑓(𝑥)(𝑥2))𝑥

𝑓(𝑥) + 𝐷𝑓(𝑥)𝑥
, 𝑥 ∈ 𝐵. 

Since 𝐹(𝑥) = 𝑥𝑓(𝑥) ∈ 𝑄𝔹
𝛼(𝐵), then according to Definition (4.3.2), we see that  

𝑅𝑒 (
𝑓(𝑥) + 3𝐷𝑓(𝑥)𝑥 + 𝐷2𝑓(𝑥)(𝑥2) − 𝛼(𝑓(𝑥) + 𝐷𝑓(𝑥)𝑥)

(1 − 𝛼)(𝑓(𝑥) + 𝐷𝑓(𝑥)𝑥)
) 

= 𝑅𝑒 (
𝑇𝑥(𝑊(𝑥)) − 𝛼‖𝑥‖

1 − 𝛼‖𝑥‖
) > 0, 𝑥 ∈ 𝐵\{0}.                        (15) 

Letting  

𝑝(𝑥) = {

𝑓(𝑥) + 3𝐷𝑓(𝑥)𝑥 + 𝐷2𝑓(𝑥)(𝑥2) − 𝛼(𝑓(𝑥) + 𝐷𝑓(𝑥)𝑥)

(1 − 𝛼)(𝑓(𝑥) + 𝐷𝑓(𝑥)𝑥)
, 𝑥 ∈ 𝐵{0}; 

1,                                                                                                 𝑥 = 0,       

 (16) 

then 𝑝: 𝐵 → ℂ ∈ 𝐻(𝐵), 𝑝(0) = 𝑓(0) = 1, 

𝑓(𝑥) + 3𝐷𝑓(𝑥)𝑥 + 𝐷2𝑓(𝑥)(𝑥2) = (𝑓(𝑥) + 𝐷𝑓(𝑥)𝑥)(𝛼 + (1 − 𝛼)𝑝(𝑥)). 
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Also since 𝐹(𝑥) = 𝑥𝑓(𝑥) is a 𝑘(𝑘 ∈ ℕ∗)-fold symmetric mapping, then 𝑓 (𝑒
2𝜋𝑖

𝑘 𝑥) = 𝑓(𝑥) 

and 𝑝 (𝑒
2𝜋𝑖

𝑘 𝑥) = 𝑝(𝑥). We now deduce that  

|𝐷𝑠𝑘𝑓(0)(𝑥𝑠𝑘)|

(𝑠𝑘)!
≤
∏ ((𝑟 − 1)𝑘 + 2 − 2𝛼)𝑠
𝑟=1

(𝑠𝑘 + 1)𝑠! 𝑘𝑠
‖𝑥‖𝑠𝑘, 𝑥 ∈ 𝐵, 𝑠 = 1, 2,… (17) 

hold by inductive method. When 𝑠 = 1, (17) holds from Lemma (4.3.8) and [98] (the case 

𝑚 = 𝑘 + 1). We assume that  

|𝐷𝑠𝑘𝑓(0)(𝑥𝑠𝑘)|

(𝑠𝑘)!
≤
∏ ((𝑟 − 1)𝑘 + 2 − 2𝛼)𝑠
𝑟=1

(𝑠𝑘 + 1)𝑠! 𝑘𝑠
‖𝑥‖𝑠𝑘, 𝑥 ∈ 𝐵, 𝑠 = 1, 2,… , 𝑞.    (18) 

It suffices to prove that (17) holds for 𝑠 = 𝑞 + 1. For this purpose, by applying Lemma 

(4.3.8), (18) and [98], we know that  

(𝑞 + 1)𝑘((𝑞 + 1)𝑘 + 1)|𝐷(𝑞+1)𝑘𝑓(0)(𝑥(𝑞+1)𝑘)|

((𝑞 + 1)𝑘)!
 

= |
(1 − 𝛼)𝐷(𝑞+1)𝑘𝑝(0)(𝑥(𝑞+1)𝑘)

((𝑞 + 1)𝑘)!
+
(1 − 𝛼)𝐷𝑞𝑘𝑝(0)(𝑥𝑞𝑘)

(𝑞𝑘)!
·
(𝑘 + 1)𝐷𝑘𝑓(0)(𝑥𝑘)

𝑘!
+ ⋯

+
(1 − 𝛼)𝐷𝑘𝑝(0)(𝑥𝑘)

𝑘!
·
(𝑞𝑘 + 1)𝐷𝑞𝑘𝑓(0)(𝑥𝑞𝑘)

(𝑞𝑘)!

≤
(1 − 𝛼)|𝐷(𝑞+1)𝑘𝑝(0)(𝑥(𝑞+1)𝑘)|

((𝑞 + 1)𝑘)!
+
(1 − 𝛼)|𝐷𝑞𝑘𝑝(0)(𝑥𝑞𝑘)|

(𝑞𝑘)!

·
(𝑘 + 1)|𝐷𝑘𝑓(0)(𝑥𝑘)|

𝑘!
+ ⋯+

(1 − 𝛼)|𝐷𝑘𝑝(0)(𝑥𝑘)|

𝑘!

·
(𝑞𝑘 + 1)|𝐷𝑞𝑘𝑓(0)(𝑥𝑞𝑘)|

(𝑞𝑘)!

≤ 2(1 − 𝛼)‖𝑥‖(𝑞+1)𝑘 + (𝑘 + 1) ·
2(1 − 𝛼) · 2(1 − 𝛼)

𝑘(𝑘 + 1)
‖𝑥‖(𝑞+1)𝑘 +⋯+ (𝑞𝑘

+ 1) ·
(2(1 − 𝛼) · ∏ ((𝑟 − 1)𝑘 + 2 − 2𝛼)

𝑞
𝑟=1

(𝑞𝑘 + 1)𝑞! 𝑘𝑞
‖𝑥‖(𝑞+1)𝑘  

=
∏ ((𝑟 − 1)𝑘 + 2 − 2𝛼)
𝑞+1
𝑟=1

𝑞! 𝑘𝑞
‖𝑥‖(𝑞+1)𝑘 . 

That is  

|𝐷(𝑞+1)𝑘𝑓(0)(𝑥(𝑞+1)𝑘)|

((𝑞 + 1)𝑘)!
≤

∏ ((𝑟 − 1)𝑘 + 2 − 2𝛼)
𝑞+1
𝑟=1

((𝑞 + 1)𝑘 + 1)(𝑞 + 1)! 𝑘𝑞+1
‖𝑥‖(𝑞+1)𝑘 , 𝑥 ∈ 𝐵. 

Note that  

𝐷𝑠𝑘+1𝐹(0)(𝑥𝑠𝑘+1)

(𝑠𝑘 + 1)!
= 𝑥

𝐷𝑠𝑘𝑓(0)(𝑥𝑠𝑘)

(𝑠𝑘)!
, 𝑥 ∈ 𝐵, 𝑠 = 1, 2,…,    (19) 

when 𝐹(𝑥) = 𝑥𝑓(𝑥). Therefore in view of (17) and (19), it follows the result, as desired.  

It is easy to check that  

𝐹(𝑥) =
𝑥

𝑇𝑢(𝑥)
∫

𝑑𝑡

(1 − 𝑡𝑘)
2−2𝛼
𝑘

𝑇𝑢(𝑥)

0

, 𝑥 ∈ 𝐵 

satisfies the condition of Theorem (4.3.10), where ‖𝑢‖ = 1. Taking 𝑥 = 𝑟𝑢(0 ≤ 𝑟 < 1), it 
yields that  
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‖𝐷𝑠𝑘+1𝐹(0)(𝑧𝑠𝑘+1)‖

(𝑠𝑘 + 1)!
=
∏ ((𝑟 − 1)𝑘 + 2 − 2𝛼)𝑠
𝑟=1

(𝑠𝑘 + 1)𝑠! 𝑘𝑠
𝑟𝑠𝑘+1, 𝑠 = 1, 2,… . 

We see that the estimates of Theorem (4.3.10) are sharp.  

Put 𝛼 = 0 in Theorem (4.3.10). Then we obtain the following corollary immediately.  

Corollary (4.3.11)[104]: Let 𝑓: 𝐵 → ℂ ∈ 𝐻(𝐵), 𝑓(𝑥) + 𝐷𝑓(𝑥)𝑥 ≠ 0, 𝑥 ∈ 𝐵, 𝐹(𝑥) =
𝑥𝑓(𝑥) ∈ 𝑄𝔹(𝐵), and F is a 𝑘(𝑘 ∈ ℕ∗)-fold symmetric mapping on B. Then  

𝑘𝐷𝑠𝑘 + 1𝐹(0)(𝑥 𝑠𝑘 + 1)𝑘 (𝑠𝑘 + 1)! ≤ 𝑄𝑠 𝑟
= 1 ((𝑟 − 1)𝑘 + 2) (𝑠𝑘 + 1)𝑠! 𝑘 𝑠 𝑘𝑥𝑘 𝑠𝑘 + 1, 𝑥 ∈ 𝐵, 𝑠 = 1, 2, . . ., 

and the above estimates are sharp. 

Note that 𝑓(𝑥) + 𝐷𝑓(𝑥)𝑥 ≠ 0, 𝑥 ∈ 𝐵 due to the growth theorem of 𝐹(𝑥) = 𝑥𝑓(𝑥) ∈
𝑄𝔸(𝐵) (or 𝑄(𝐵)) and  

𝑅𝑒 [𝑇𝑥 ((𝐷𝐹(𝑥))
−1
𝐹(𝑥))] = 𝑅𝑒 (

‖𝑥‖𝑓(𝑥)

𝑓(𝑥) + 𝐷𝑓(𝑥)𝑥
) > 0 ⇔ 𝑅𝑒 (1 +

𝐷𝑓(𝑥)𝑥

𝑓(𝑥)
) > 0 

from 𝑆∗ (𝐵) ⊂ 𝑄𝔸(𝐵) = 𝑄(𝐵) and 𝑄(𝐵) = 𝑄𝔸(𝐵) ⊂ 𝑄𝔹(𝐵) (see [16]). We readily get the 

following corollary from Corollary (4.3.11).  

Corollary (4.3.12)[104]: Let 𝑓: 𝐵 → ℂ ∈ 𝐻(𝐵), 𝐹(𝑥) = 𝑥𝑓(𝑥) ∈ 𝑄𝔸(𝐵) (resp. 𝑄(𝐵)), and 

F is a 𝑘(𝑘 ∈ ℕ∗)-fold symmetric mapping on B. Then  

‖𝐷𝑠𝑘+1𝐹(0)(𝑥𝑠𝑘+1)‖

(𝑠𝑘 + 1)!
≤
∏ ((𝑟 − 1)𝑘 + 2 − 2𝛼)𝑠
𝑟=1

(𝑠𝑘 + 1)𝑠! 𝑘𝑠
‖𝑥‖𝑠𝑘+1, 𝑥 ∈ 𝐵, 𝑠 = 1, 2,… 

and the above estimates are sharp.  

By making use of Theorem (4.3.10), the Taylor expansion of 𝐹(𝑥) = 𝑥𝑓(𝑥) and the triangle 

inequality of the norm in complex Banach spaces, we deduce the following two corollaries 

immediately.  

Corollary (4.3.13)[104]: Let 𝛼 ∈ [0, 1), 𝑓: 𝐵 → ℂ ∈ 𝐻(𝐵), 𝑓(𝑥) + 𝐷𝑓(𝑥)𝑥 ≠ 0, 𝑥 ∈
𝐵, 𝐹(𝑥) = 𝑥𝑓(𝑥) ∈ 𝑄𝐵

𝛼(𝐵), and F is a 𝑘(𝑘 ∈ ℂ∗)-fold symmetric mapping. Then  

‖𝐹(𝑥)‖ ≤ ∫
𝑑𝑡

(1 − 𝑡𝑘)
2−2𝛼
𝑘

‖𝑥‖

0

, 𝑥 ∈ 𝐵, 

and the above estimate is sharp. 

The example of the sharpness of Corollary (4.3.11) is similar to that in Theorem (4.3.10), 

we need only to mention that  

‖𝐹(𝑥)‖ =
‖𝑥‖

|𝑇𝑢(𝑥)|
|∫

𝑑𝑡

(1 − 𝑡𝑘)
2−2𝛼
𝑘

𝑇𝑢(𝑥)

0

|  = ∫
𝑑𝑡

(1 − 𝑡𝑘)
2−2𝛼
𝑘

𝑟

0

 

holds for 𝑥 = 𝑟𝑢(0 ≤ 𝑟 < 1).  
Corollary (4.3.14)[104]: Let 𝛼 ∈ [0, 1), 𝑓: 𝐵 → ℂ ∈ 𝐻(𝐵), 𝑓(𝑥) + 𝐷𝑓(𝑥)𝑥 ≠ 0, 𝑥 ∈
𝐵, 𝐹(𝑥) = 𝑥𝑓(𝑥) ∈ 𝑄𝐵

𝛼(𝐵), and 𝐹(𝑥) is a 𝑘(𝑘 ∈ ℕ∗)-fold symmetric mapping, where B is 

the unit ball of a complex Hilbert space X. Then  

‖𝐷𝐹(𝑥)𝜉‖ ≤ ‖𝜉‖/(1 − ‖𝑥‖𝑘)
2−2𝛼
𝑘 , 𝑥 ∈ 𝐵, 𝜉 ∈ 𝑋 

and the above estimate is sharp.  

Proof According to Corollary (4.3.11), triangle inequalities with respect to the norm in 

complex Banach spaces and the fact  

sup
‖𝑥‖=‖𝜉‖=1

‖𝐷𝑚𝐹(0)(𝑥𝑚−1, 𝜉)‖

𝑚!
= sup
‖𝑥‖=1

‖𝐷𝑚𝐹(0)(𝑥𝑚)‖

𝑚!
 

(see [6]), then it follows the result, as desired. Considering  
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𝐹(𝑥) =
𝑥

〈𝑥, 𝑒〉
∫

𝑑𝑡

(1 − 𝑡𝑘)
2−2𝛼
𝑘

〈𝑥,𝑒〉

0

, 𝑥 ∈ 𝐵, 

where ‖𝑒‖ = 1 , then F satisfies the conditions of Corollary (4.3.14). It is shown that  

𝐷𝐹(𝑥)𝜉 =
𝜉

〈𝑥, 𝑒〉
∫

𝑑𝑡

(1 − 𝑡𝑘)
2−2𝛼
𝑘

〈𝑥,𝑒〉

0

+
〈𝜉, 𝑒〉𝑥

〈𝑥, 𝑒〉(1 − (〈𝑥, 𝑒〉)𝑘)
2−2𝛼
𝑘

−

∫
𝑑𝑡

(1 − 𝑡𝑘)
2−2𝛼
𝑘

〈𝑥,𝑒〉

0
〈𝜉, 𝑒〉𝑥

〈𝑥, 𝑒〉2
, 𝑥 ∈ 𝐵, 𝜉 ∈ 𝑋 

by a direct calculation. We set 𝑥 = 𝑟𝑒, 𝜉 = 𝑅𝑒(0 ≤ 𝑟 < 1, 𝑅 ≥ 0). Then  

‖𝐷𝐹(𝑥)𝜉‖ = 𝑅/(1 − 𝑟𝑘)
2−2𝛼
𝑘 . 

We see that the estimate of Corollary (4.3.14) is sharp.  

Taking 𝛼 = 0 in Corollaries (4.3.11) and (4.3.12), we directly obtain the corollaries as 

follows.  

Corollary (4.3.15)[104]: Let 𝑓: 𝐵 → ℂ ∈ 𝐻(𝐵), 𝑓(𝑥) + 𝐷𝑓(𝑥)𝑥 ≠ 0, 𝑥 ∈ 𝐵, 𝐹(𝑥) =
𝑥𝑓(𝑥) ∈ 𝑄𝔹(𝐵), and F is a 𝑘(𝑘 ∈ ℕ∗)-fold symmetric mapping. Then  

‖𝐹(𝑥)‖ ≤ ∫
𝑑𝑡

(1 − 𝑡𝑘)
2
𝑘

‖𝑥‖

0

, 𝑥 ∈ 𝐵, 

and the above estimate is sharp.  

Corollary (4.3.16)[104]: Let 𝑓: 𝐵 → ℂ ∈ 𝐻(𝐵), 𝑓(𝑥) + 𝐷𝑓(𝑥)𝑥 ≠ 0, 𝑥 ∈ 𝐵, 𝐹(𝑥) =
𝑥𝑓(𝑥) ∈ 𝑄𝔹(𝐵), and 𝐹(𝑥) is a 𝑘(𝑘 ∈ ℕ∗)-fold symmetric mapping, where B is the unit ball 

of a complex Hilbert space X. Then  

‖𝐷𝐹(𝑥)𝜉‖ ≤
‖𝜉‖

(1 − ‖𝑥‖𝑘)
2
𝑘

, 𝑥 ∈ 𝐵, 𝜉 ∈ 𝑋 

and the above estimate is sharp. 

With the analogous explanation of Corollary (4.3.14), we get the following corollary from 

Corollary (4.3.16).  

Corollary (4.3.17)[104]: Let 𝑓: 𝐵 → ℂ ∈ 𝐻(𝐵), 𝐹(𝑥) = 𝑥𝑓(𝑥) ∈ 𝑄(𝐵)(𝑜𝑟 𝑄𝔸(𝐵)), and 

𝐹(𝑥) is a 𝑘(𝑘 ∈ ℕ∗)-fold symmetric mapping, where B is the unit ball of a complex Hilbert 

space X. Then  

‖𝐷𝐹(𝑥)𝜉‖ ≤
‖𝜉‖

(1 − ‖𝑥‖𝑘)
2
𝑘

, 𝑥 ∈ 𝐵, 𝜉 ∈ 𝑋 

and the above estimate is sharp [1], [94].  

Theorem (4.3.18)[104]: Let ∈ [0, 1), 𝑓: 𝐵 → ℂ ∈ 𝐻(𝐵), 𝑓(𝑥) + 𝐷𝑓(𝑥)𝑥 ≠ 0, 𝑥 ∈
𝐵, 𝐹(𝑥) = 𝑥𝑓(𝑥) ∈ 𝑄𝐵,𝑘+1

𝛼 (𝐵). Then  

‖𝐷𝑚𝐹(0)(𝑥𝑚)‖

𝑚!
≤

{
 

 
2 − 2𝛼

𝑚(𝑚 − 1)
‖𝑥‖𝑚, 𝑚 = 𝑘 + 1, 𝑘 + 2, . . . , 2𝑘;

(2 − 2𝛼)(𝑘 + 2 − 2𝛼)

𝑚(𝑚 − 1)𝑘
‖𝑥‖𝑚, 𝑚 = 2𝑘 + 1

 

for 𝑥 ∈ 𝐵. The above estimates are sharp for 𝑚 = 𝑘 + 1 and 𝑚 = 2𝑘 + 1.  

Proof In view of the hypothesis of Theorem (4.3.18), Lemma (4.3.9) and [98], it yields that  
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|𝐷𝑚𝑓(0)(𝑥𝑚−1)|

(𝑚 − 1)!
≤

2 − 2𝛼

𝑚(𝑚 − 1)
‖𝑥‖𝑚−1, 𝑥 ∈ 𝐵,𝑚 = 𝑘 + 1, 𝑘 + 2,… , 2𝑘 

and  

𝑚(𝑚 − 1)|𝐷𝑚−1𝑓(0)(𝑥𝑚−1)|

(𝑚 − 1)!

= |
(1 − 𝛼)𝐷𝑚−1𝑝(0)(𝑧𝑚−1)

(𝑚 − 1)!
+
(1 − 𝛼)𝐷𝑘𝑝(0)(𝑧𝑘)

𝑘!
·
(𝑘 + 1)𝐷𝑘𝑓(0)(𝑧𝑘)

𝑘!
| 

 ≤
(1 − 𝛼)|𝐷𝑚−1𝑝(0)(𝑥𝑚−1)|

(𝑚 − 1)!
+ |
(1 − 𝛼)𝐷𝑘𝑝(0)(𝑥𝑘)

𝑘!
·
(𝑘 + 1)𝐷𝑘𝑓(0)(𝑥𝑘)

𝑘!
|

≤ 2(1 − 𝛼)‖𝑥‖2𝑘 +
4(1 − 𝛼)2

𝑘
‖𝑥‖2𝑘 =

(2 − 2𝛼)(𝑘 + 2 − 2𝛼)

𝑘
‖𝑥‖2𝑘,

𝑥 ∈ 𝐵,𝑚 = 2𝑘 + 1. 
Noticing that  

𝐷𝑚𝐹(0)(𝑥𝑚)

𝑚!
= 𝑥

𝐷𝑚−1𝑓(0)(𝑥𝑚−1)

(𝑚 − 1)!
, 𝑥 ∈ 𝐵, 𝑠 = 1, 2,… 

if 𝐹(𝑥) = 𝑥𝑓(𝑥). Then we derive the desired result. The example which shows the sharpness 

of Theorem (4.3.18) is similar to that in Theorem (4.3.10).  

Letting 𝛼 = 0, it is easy to obtain the corollary as follow. 

Corollary (4.3.19)[104]: Let 𝑓: 𝐵 → ℂ ∈ 𝐻(𝐵), 𝑓(𝑥) + 𝐷𝑓(𝑥)𝑥 ≠ 0, 𝑥 ∈ 𝐵, 𝐹(𝑥) =
𝑥𝑓(𝑥) ∈ 𝑄𝔹,𝑘+1(𝐵). Then  

‖𝐷𝑚𝐹(0)(𝑥𝑚)‖

𝑚!
≤

{
 

 
2

𝑚(𝑚 − 1)
‖𝑥‖𝑚, 𝑚 = 𝑘 + 1, 𝑘 + 2, . . . , 2𝑘; 

2(𝑘 + 2)

𝑚(𝑚 − 1)𝑘
‖𝑥‖𝑚, 𝑚 = 2𝑘 + 1                        

 

for 𝑥 ∈ 𝐵.The above estimates are sharp for 𝑚 = 𝑘 + 1 and 𝑚 = 2𝑘 + 1.  

Similar to that in the explanation of Corollary (4.3.14), we drive the following corollary 

from Corollary (4.3.19).  

Corollary (4.3.20)[104]: Let 𝑓: 𝐵 → ℂ ∈ 𝐻(𝐵), 𝐹(𝑥) = 𝑥𝑓(𝑥) ∈

𝑄𝑘+1(𝐵) (𝑜𝑟 𝑄𝔸,𝑘+1(𝐵)). Then  

‖𝐷𝑚𝐹(0)(𝑥𝑚)‖

𝑚!
≤

{
 

 
2

𝑚(𝑚 − 1)
‖𝑥‖𝑚, 𝑚 = 𝑘 + 1, 𝑘 + 2,… ,2𝑘;

2(𝑘 + 2)

𝑚(𝑚 − 1)𝑘
‖𝑥‖𝑚, 𝑚 = 2𝑘 + 1                    

 

for 𝑥 ∈ 𝐵. The above estimates are sharp for 𝑚 = 𝑘 + 1 and 𝑚 = 2𝑘 + 1.  

Let each 𝑚𝑗 be a non-negative integer, 𝑁 = 𝑚1 +𝑚2 +⋯+𝑚𝑛 ∈ ℕ
∗, and 𝑚𝑗 = 0 

implies that the corresponding components in Z and 𝐹(𝑍) are omitted. 𝑈𝑚𝑙 (resp. 𝑈𝑁) is 

denoted by the unit polydisk of ℂ𝑚𝑙(𝑙 = 1, 2, . . . , 𝑛) (resp. ℂ𝑁).  

It is necessary to establish the following lemmas in order to get the desired results.  

Lemma (4.3.21)[104]: (see [92]) Suppose that 𝛼 ∈ [0, 1), and f is a normalized locally 

biholomorphic mapping on 𝑈𝑛. Then 𝑓 ∈ 𝑄𝐾𝐵
𝛼(𝑈𝑛) if and only if  

𝑅𝑒
𝑔𝑗(𝑧)

𝑧𝑗
≥ 𝛼, 𝑧 = (𝑧1, … , 𝑧𝑛)

′ ∈ 𝑈𝑛, 
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where 𝑔(𝑧) = (𝑔1(𝑧), … , 𝑔𝑛(𝑧))
′
= (𝐷𝑓(𝑧))

−1
(𝐷2𝑓(𝑧)(𝑧2) + 𝐷𝑓(𝑧)𝑧), 𝑧 ∈ 𝑈𝑛 is a 

column vector in ℂ𝑛 and j satisfies |𝑧𝑗| = ‖𝑧‖ = max
1≤𝑘≤𝑛

{|𝑧𝑘|}. 

Theorem (4.3.22)[104]: Let 𝛼 ∈ [0, 1), 𝑓𝑙: 𝑈
𝑚𝑙 → ℂ ∈ 𝐻(𝑈𝑚𝑙), 

𝑓𝑙(𝑍𝑙) + 𝐷𝑓𝑙(𝑍𝑙)𝑍𝑙 ≠ 0, 𝑍𝑙 ∈ 𝑈
𝑚𝑙 , 𝑙 = 1, 2, … , 𝑛, 𝐹(𝑍) = (𝐹1(𝑍1), 𝐹2(𝑍2),… , 𝐹𝑛(𝑍𝑛))

′

= (𝑍1𝑓1(𝑍1), 𝑍2𝑓2(𝑍2),… , 𝑍𝑛𝑓𝑛(𝑍𝑛))
′
∈ 𝑄𝔹

𝛼(𝑈𝑁), 

and F is a 𝑘(𝑘 ∈ ℕ∗)-fold symmetric mapping. Then  

𝐷𝑠𝑘+1𝐹(0)(𝑍𝑠𝑘+1)

(𝑠𝑘 + 1)!
≤
∏ (𝑟 − 1)𝑘 + 2 − 2𝛼𝑠
𝑟=1

(𝑠𝑘 + 1)𝑠! 𝑘𝑠
‖𝑍‖𝑠𝑘+1,  

𝑍 = (𝑍1, 𝑍2, … , 𝑍𝑛)
′ ∈ 𝑈𝑁 , 𝑠 = 1, 2,…, 

and the above estimates are sharp.  

Proof In view of the condition of Theorem (4.3.22), for any 𝑍 = (𝑍1, 𝑍2, … , 𝑍𝑛)
′ ∈ 𝑈𝑁, it 

is shown that  

(𝐷𝐹(𝑍))
−1
𝐷(𝐷𝐹(𝑍)𝑍)𝑍

= ((𝐷𝐹1(𝑍1))
−1
𝐷(𝐷𝐹(𝑍1)𝑍1)𝑍1, … , (𝐷𝐹𝑛(𝑍𝑛))

−1
𝐷(𝐷𝐹(𝑍𝑛)𝑍𝑛)𝑍𝑛)

′
 

by a direct calculation. We pay attention to that  

(𝐷𝐹(𝑍))
−1
𝐷(𝐷𝐹(𝑍)𝑍)𝑍 = (0,… , (𝐷𝐹𝑙(𝑍𝑙))

−1
𝐷(𝐷𝐹(𝑍𝑙)𝑍𝑙)𝑍𝑙 , … , 0)

′
 

if 𝑍 = (0,… , 𝑍𝑙 , … , 0)
′ ∈ 𝑈𝑁 , 𝑙 = 1, 2,… , 𝑛. Let  

𝐺(𝑍) = (𝐺1, 𝐺2, … , 𝐺𝑛)
′ = (𝐺11, … , 𝐺1𝑚1  , 𝐺21, … , 𝐺2𝑚2 , … , 𝐺𝑛1, … , 𝐺𝑛𝑚𝑛)

′

= (𝐷𝐹(𝑍))
−1
𝐷(𝐷𝐹(𝑍)𝑍)𝑍. 

Then we know that  

𝐹 ∈ 𝑄𝔹
𝛼(𝑈𝑁) ⇔ 𝐹𝑙 ∈ 𝑄𝔹

𝛼(𝑈𝑚𝑙), 𝑙 = 1, 2,… , 𝑛 

from Lemma (4.3.21). Noticing that  

‖𝐷𝑚𝐹(0)(𝑍𝑚)‖ = max
1≤𝑙≤𝑛

{‖𝐷𝑚𝐹𝑙(0)(𝑍𝑙
𝑚)‖} , ‖𝑍‖ = max

1≤𝑙≤𝑛
{‖𝑍𝑙‖}, 

here ‖𝑍𝑙‖𝑚𝑙 (resp. ‖𝑍‖𝑁) is briefly denoted by ‖𝑍𝑙‖ (resp. ‖𝑍‖), it follows the desired result.  

For any 𝑍 = (𝑍1, 𝑍2, . . . , 𝑍𝑛)
′ ∈ 𝑈𝑁, it is not difficult to check that  

𝐹(𝑍) = (
𝑍1
𝑍11

∫
𝑑𝑡

(1 − 𝑡𝑘)
2−2𝛼
𝑘

𝑍11

0

,
𝑍2
𝑍21

∫
𝑑𝑡

(1 − 𝑡𝑘)
2−2𝛼
𝑘

𝑍21

0

, . . . ,
𝑍𝑛
𝑍𝑛1

∫
𝑑𝑡

(1 − 𝑡𝑘)
2−2𝛼
𝑘

𝑍𝑛1

0

)

′

 

satisfies the condition of Theorem (4.3.22), where 𝑍𝑙 = (𝑍𝑙1, 𝑍𝑙2, . . . , 𝑍𝑙𝑚𝑙)
′
∈ 𝑈𝑚𝑙 , 𝑙 =

1, 2, . . . , 𝑛.  

We set 𝑍𝑙 = (𝑅, 0, . . . , 0)
′(0 ≤ 𝑅 < 1), 𝑙 = 1, 2, . . . , 𝑛. It is easy to obtain  

‖𝐷𝑠𝑘+1𝐹(0)(𝑍𝑠𝑘+1)‖

(𝑠𝑘 + 1)!
=
∏ (𝑟 − 1)𝑘 + 2 − 2𝛼𝑠
𝑟=1

(𝑠𝑘 + 1)𝑠! 𝑘𝑠
𝑅𝑠𝑘+1, 𝑠 = 1, 2,… 

Hence the estimates of Theorem (4.3.22) are sharp.  

We set α = 0 in Theorem (4.3.22). Then we easily get the following corollary.  

Corollary (4.3.23)[104]: Let 𝑓𝑙: 𝑈
𝑚𝑙 → ℂ ∈ 𝐻(𝑈𝑚𝑙), 

𝑓𝑙(𝑍𝑙) + 𝐷𝑓𝑙(𝑍𝑙)𝑍𝑙  ≠ 0, 𝑍𝑙 ∈ 𝑈
𝑚𝑙 , 𝑙 = 1, 2, . . . , 𝑛, 𝐹(𝑍) = (𝐹1(𝑍1), 𝐹2(𝑍2), . . . , 𝐹𝑛(𝑍𝑛))

′

= (𝑍1𝑓1(𝑍1), 𝑍2𝑓2(𝑍2), . . . , 𝑍𝑛𝑓𝑛(𝑍𝑛))
′
∈ 𝑄𝔹(𝑈

𝑁), 

and F is a 𝑘(𝑘 ∈ ℕ∗)-fold symmetric mapping. Then  



136 

‖𝐷𝑠𝑘+1𝐹(0)(𝑍𝑠𝑘+1)‖

(𝑠𝑘 + 1)!
≤
∏ (𝑟 − 1)𝑘 + 2 − 2𝛼𝑠
𝑟=1

(𝑠𝑘 + 1)𝑠! 𝑘𝑠
‖𝑍‖𝑠𝑘+1, 𝑍 = (𝑍1, 𝑍2, . . . , 𝑍𝑛)

′ ∈ 𝑈𝑁 , 𝑠

= 1, 2, . . ., 
and the above estimates are sharp.  

With the similar interpretation of Corollary (4.3.14), it is apparent to obtain the corollary as 

follow.  

Corollary (4.3.24)[104]: Let 𝑓𝑙: 𝑈
𝑚𝑙 → 𝐶 ∈ 𝐻(𝑈𝑚𝑙), 𝑙 = 1, 2, . . . , 𝑛, 

𝐹(𝑍) = (𝐹1(𝑍1), 𝐹2(𝑍2), . . . , 𝐹𝑛(𝑍𝑛))
′
= (𝑍1𝑓1(𝑍1), 𝑍2𝑓2(𝑍2), . . . , 𝑍𝑛𝑓𝑛(𝑍𝑛))

′

∈ 𝑄(𝑈𝑁)(𝑄𝔸(𝑈
𝑁)), 

and F is a 𝑘(𝑘 ∈ ℕ∗)- fold symmetric mapping. Then  

‖𝐷𝑠𝑘+1𝐹(0)(𝑍𝑠𝑘+1)‖

(𝑠𝑘 + 1)!
≤
∏ (𝑟 − 1)𝑘 + 2 − 2𝛼𝑠
𝑟=1

(𝑠𝑘 + 1)𝑠! 𝑘𝑠
‖𝑍‖𝑠𝑘+1, 𝑍 = (𝑍1, 𝑍2, . . . , 𝑍𝑛)

′ ∈ 𝑈𝑁 , 𝑠

= 1, 2, . . ., 
and the above estimates are sharp. 

Theorem (4.3.25)[104]: Let 𝛼 ∈ [0, 1), 𝑓𝑙: 𝑈
𝑚𝑙 → ℂ ∈ 𝐻(𝑈𝑚𝑙), 

𝑓𝑙(𝑍𝑙) + 𝐷𝑓𝑙(𝑍𝑙)𝑍𝑙 ≠ 0, 𝑍𝑙 ∈ 𝑈
𝑚𝑙 , 𝑙 = 1, 2, . . . , 𝑛, 𝐹(𝑍)

= (𝑍1𝑓1(𝑍1), 𝑍2𝑓2(𝑍2), . . . , 𝑍𝑛𝑓𝑛(𝑍𝑛))
′
∈ 𝑄𝔹,𝑘+1

𝛼 (𝑈𝑁). 
Then  

‖𝐷𝑚𝐹(0)(𝑍𝑚)‖

𝑚!
≤

{
 

 
2 − 2𝛼

𝑚(𝑚 − 1)
‖𝑍‖𝑚, 𝑚 = 𝑘 + 1, 𝑘 + 2,… , 2𝑘; 

(2 − 2𝛼)(𝑘 + 2 − 2𝛼)

𝑚(𝑚 − 1)𝑘
‖𝑍‖𝑚, 𝑚 = 2𝑘 + 1

  

for 𝑍 = (𝑍1, 𝑍2, . . . , 𝑍𝑛)
′ ∈ 𝑈𝑁 .The above estimates are sharp for 𝑚 = 𝑘 + 1 and 𝑚 = 2𝑘 +

1. 

Proof. With the analogous arguments as in the proof of Theorem (4.3.18), it follows the 

desired result.  

Put 𝛼 = 0 in Theorem (4.3.25). Then we readily obtain the following corollary.  

Corollary (4.3.26)[104]: Let 𝑓𝑙: 𝑈
𝑚𝑙 → ℂ ∈ 𝐻(𝑈𝑚𝑙), 𝑓𝑙(𝑍𝑙) + 𝐷𝑓𝑙(𝑍𝑙)𝑍𝑙 ≠  0, 𝑍𝑙 ∈

𝑈𝑚𝑙 , 𝑙 = 1, 2, . . . , 𝑛, 𝐹(𝑍) = (𝑍1𝑓1(𝑍1), 𝑍2𝑓2(𝑍2), . . . , 𝑍𝑛𝑓𝑛(𝑍𝑛))
′
∈ 𝑄𝔹,𝑘+1(𝑈

𝑁). Then  

‖𝐷𝑚𝐹(0)(𝑍𝑚)‖

𝑚!
≤

{
 

 
2

𝑚(𝑚 − 1)
‖𝑍‖𝑚, 𝑚 = 𝑘 + 1, 𝑘 + 2,… , 2𝑘; 

2(𝑘 + 2)

𝑚(𝑚 − 1)𝑘
‖𝑍‖𝑚, 𝑚 = 2𝑘 + 1

 

for 𝑍 = (𝑍1, 𝑍2, . . . , 𝑍𝑛)
′ ∈ 𝑈𝑁. The above estimates are sharp for 𝑚 = 𝑘 + 1 and 𝑚 =

2𝑘 + 1.  

Similar to that in the interpretation of Corollary (4.3.12), we easily obtain the corollary as 

follow.  

Corollary (4.3.27)[104]: Let 𝑓𝑙: 𝑈
𝑚𝑙 → ℂ ∈ 𝐻(𝑈𝑚𝑙), 𝑙 = 1, 2, . . . , 𝑛, 𝐹(𝑍) =

(𝑍1𝑓1(𝑍1), 𝑍2𝑓2(𝑍2), . . . , 𝑍𝑛𝑓𝑛(𝑍𝑛))
′
∈ 𝑄𝑘+1(𝑈

𝑁) (𝑄𝔸,𝑘+1(𝑈
𝑁)). Then  

‖𝐷𝑚𝐹(0)(𝑍𝑚)‖

𝑚!
≤

{
 

 
2

𝑚(𝑚 − 1)
‖𝑍‖𝑚, 𝑚 = 𝑘 + 1, 𝑘 + 2,… , 2𝑘; 

2(𝑘 + 2)

𝑚(𝑚 − 1)𝑘
‖𝑍‖𝑚, 𝑚 = 2𝑘 + 1
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for 𝑍 = (𝑍1, 𝑍2, . . . , 𝑍𝑛)
′ ∈ 𝑈𝑁 . The above estimates are sharp for 𝑚 = 𝑘 + 1 and 𝑚 =

2𝑘 + 1.  

Theorem (4.3.28)[104]: Suppose that 𝛼 ∈ [0, 1), 𝐹(𝑧) = (𝐹1(𝑧), 𝐹2(𝑧), . . . , 𝐹𝑛(𝑧))
′
∈

𝐻(𝑈𝑛), and 𝐹(𝑧) is a 𝑘(𝑘 ∈ ℕ∗)-fold symmetric mapping on 𝑈𝑛. If 𝑅𝑒 (1 +
𝐷2𝐹𝑗(𝑧)(𝑧

2)

𝐷𝐹𝑗(𝑧)𝑧
) >

𝛼, 𝑧 ∈ 𝑈𝑛\{0}, where j satisfies the condition |𝑧𝑗| = ‖𝑧‖ = max
1≤𝑙≤𝑛

{|𝑧𝑙|}, then  

‖𝐷𝑠𝑘+1𝐹(0)(𝑍𝑠𝑘+1)‖

𝑠𝑘 + 1!
≤
∏ (𝑟 − 1)𝑘 + 2 − 2𝛼𝑠
𝑟=1

(𝑠𝑘 + 1)𝑠! 𝑘𝑠
‖𝑧‖𝑠𝑘+1, 

𝑧 = (𝑧1, 𝑧2, . . . , 𝑧𝑛)
′ ∈ 𝑈𝑛, 𝑠 = 1, 2, . . ., 

and the above estimates are sharp.  

Proof. Fix 𝑧 ∈ 𝑈𝑛\{0}. We write 𝑧0 = 𝑧/‖𝑧‖.Let 

ℎ𝑗(𝜉) =
‖𝑧‖

𝑧𝑗
𝐹𝑗(𝜉𝑧0), 𝜉 ∈ 𝑈,                                  (20) 

where j satisfies the condition |𝑧𝑗| = ‖𝑧‖ = max
1≤𝑙≤𝑛

{|𝑧𝑙|}. It yields that  

1 +
ℎ𝑗
′′(𝜉)𝜉

ℎ𝑗
′(𝜉)

= 1 +
𝐷2𝐹𝑗(𝜉𝑧0)(𝜉𝑧0, 𝜉𝑧0)

𝐷𝐹𝑗(𝜉𝑧0)𝜉𝑧0
, 𝜉 ∈ 𝑈\{0} 

by a simple calculation. Therefore, we have  

𝑅𝑒(1 + ℎ𝑗
′′(𝜉)𝜉/ℎ𝑗

′(𝜉) > 𝛼, 𝜉 ∈ 𝑈\{0} 

if 𝑅𝑒(1 +
𝐷2𝐹𝑗(𝑧)(𝑧

2)

𝐷𝐹𝑗(𝑧)𝑧
> 𝛼, 𝑧 ∈ 𝑈𝑛\{0}. That is, ℎ𝑗 ∈ 𝐾𝛼(𝑈) and ℎ𝑗 is a k-fold symmetric 

function.  

It is also easy to know that  

𝜉 + ∑ 𝑏𝑚𝜉
𝑚

∞

𝑚=2

= 𝜉 +
‖𝑧‖

𝑧𝑗
∑

𝐷𝑚𝐹𝑗(0)(𝑧0
𝑚)

𝑚!
𝜉𝑚

∞

𝑚=2

 

from (20). Comparing the coefficients of the two sides in the above equality, it is shown that  
‖𝑧‖

𝑧𝑗

𝐷𝑚𝐹𝑗(0)(𝑧0
𝑚)

𝑚!
= 𝑏𝑚, 𝑚 = 2, 3,…. 

Hence, by Theorem (4.3.10)(the case 𝑋 = ℂ,𝐵 = 𝑈), we conclude that  

|𝐷𝑠𝑘+1𝐹𝑗(0)(𝑧0
𝑠𝑘+1)|

(𝑠𝑘 + 1)!
≤
∏ (𝑟 − 1)𝑘 + 2 − 2𝛼𝑠
𝑟=1

(𝑠𝑘 + 1)𝑠! 𝑘𝑠
, 𝑧0 ∈ 𝜕𝑈

𝑛. 

When 𝑧0 ∈ (𝜕𝑈)
𝑛 , it yields that  

|𝐷𝑠𝑘+1𝐹𝑙(0)(𝑧0
𝑠𝑘+1)|

(𝑠𝑘 + 1)!
≤
∏ (𝑟 − 1)𝑘 + 2 − 2𝛼𝑠
𝑟=1

(𝑠𝑘 + 1)𝑠! 𝑘𝑠
, 𝑙 = 1, 2, . . . , 𝑛 . 

Also in view of 𝐷𝑠𝑘+1𝐹𝑙(0)(𝑧
𝑠𝑘+1) is a holomorphic function on 𝑈𝑛̅̅ ̅̅ , we have  

|𝐷𝑠𝑘+1𝐹𝑙(0)(𝑧0
𝑠𝑘+1)|

(𝑠𝑘 + 1)!
≤
∏ (𝑟 − 1)𝑘 + 2 − 2𝛼𝑠
𝑟=1

(𝑠𝑘 + 1)𝑠! 𝑘𝑠
, 𝑧0 ∈ 𝜕𝑈

𝑛, 𝑙 = 1, 2, . . . , 𝑛 

by the maximum modulus theorem of holomorphic functions on the unit polydisk. This 

implies that  

|𝐷𝑠𝑘+1𝐹𝑙(0)(𝑧
𝑠𝑘+1)|

(𝑠𝑘 + 1)!
≤
∏ (𝑟 − 1)𝑘 + 2 − 2𝛼𝑠
𝑟=1

(𝑠𝑘 + 1)𝑠! 𝑘𝑠
‖𝑧‖𝑠𝑘+1, 𝑧 ∈ 𝑈𝑛, 𝑙 = 1, 2, . . . , 𝑛 . 

Therefore,  
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‖𝐷𝑠𝑘+1𝐹(0)(𝑧𝑠𝑘+1)‖

(𝑠𝑘 + 1)!
≤
∏ (𝑟 − 1)𝑘 + 2 − 2𝛼𝑠
𝑟=1

(𝑠𝑘 + 1)𝑠! 𝑘𝑠
‖𝑧‖𝑠𝑘+1, 𝑧 ∈ 𝑈𝑛. 

It is not difficult to verify that  

𝐹(𝑧) =

(

 
 
∫

𝑑𝑡

(1 − 𝑡𝑘)
2−2𝛼
𝑘

𝑧1

0

,
𝑧2

𝑧1 ∫
𝑑𝑡

(1 − 𝑡𝑘)
2−2𝛼
𝑘

𝑧2
0

, . . . ,
𝑧𝑛
𝑧1
∫

𝑑𝑡

(1 − 𝑡𝑘)
2−2𝛼
𝑘

𝑧𝑛

0

)

 
 

′

 

satisfies the condition of Theorem (4.3.28). Put 𝑧 = (𝑟, 0, . . . , 0)′(0 ≤ 𝑟 < 1), we see that  

‖𝐷𝑠𝑘+1𝐹(0)(𝑥𝑠𝑘+1)‖

(𝑠𝑘 + 1)!
=
∏ (𝑟 − 1)𝑘 + 2 − 2𝛼𝑠
𝑟=1

(𝑠𝑘 + 1)𝑠! 𝑘𝑠
𝑟𝑠𝑘+1, 𝑠 = 1, 2,… 

by a direct computation. Then we know that the sharpness for the estimates of Theorem 

(4.3.28).  

Taking 𝛼 = 0 in Theorem (4.3.28), we get the following corollary immedatel. 

Corollary (4.3.29)[104]: Suppose that 𝐹(𝑧) = (𝐹1(𝑧), 𝐹2(𝑧), . . . , 𝐹𝑛(𝑧))
′
∈ 𝐻(𝑈𝑛), and 

𝐹(𝑧) is a 𝑘(𝑘 ∈ 𝑁∗)-fold symmetric mapping on 𝑈𝑛. If 𝑅𝑒 (1 +
𝐷2𝐹𝑗(𝑧)(𝑧

2)

𝐷𝐹𝑗(𝑧)𝑧
) > 0, 𝑧 ∈

𝑈𝑛\{0}, where j satisfies the condition |𝑧𝑗| = ‖𝑧‖ = max
1≤𝑙≤𝑛

{|𝑧𝑙|}, then  

‖𝐷𝑠𝑘+1𝐹(0)(𝑧𝑠𝑘+1)‖

(𝑠𝑘 + 1)!
≤
∏ (𝑟 − 1)𝑘 + 2 − 2𝛼𝑠
𝑟=1

(𝑠𝑘 + 1)𝑠! 𝑘𝑠
‖𝑧‖𝑠𝑘+1, 𝑧 = (𝑧1, 𝑧2, . . . , 𝑧𝑛)

′ ∈ 𝑈𝑛, 𝑠

= 1, 2, . . ., 
and the above estimates are sharp.  

Theorem (4.3.30)[104]: Suppose that 𝛼 ∈ [0, 1), 𝐹(𝑧) = (𝐹1(𝑧), 𝐹2(𝑧), . . . , 𝐹𝑛(𝑧))
′
∈

𝐻(𝑈𝑛), and 𝑧 = 0 is a zero of order 𝑘 + 1 of 𝐹(𝑧) − 𝑧. If 𝑅𝑒 (1 +
𝐷2𝐹𝑗(𝑧)(𝑧

2)

𝐷𝐹𝑗(𝑧)𝑧
) > 𝛼, 𝑧 ∈

𝑈𝑛\{0}, where j satisfies the condition |𝑧𝑗| = ‖𝑧‖ = max
1≤𝑙≤𝑛

{|𝑧𝑙|}, then  

‖𝐷𝑚𝐹(0)(𝑧𝑚)‖

𝑚!
≤

{
 

 
2 − 2𝛼

𝑚(𝑚 − 1)
‖𝑧‖𝑚, 𝑚 = 𝑘 + 1, 𝑘 + 2,… , 2𝑘;

(2 − 2𝛼)(𝑘 + 2 − 2𝛼)

𝑚(𝑚 − 1)𝑘
‖𝑧‖𝑚, 𝑚 = 2𝑘 + 1

 

for 𝑧 = (𝑧1, 𝑧2, . . . , 𝑧𝑛)
′ ∈ 𝑈𝑛. The above estimates are sharp for 𝑚 = 𝑘 + 1 and 𝑚 = 2𝑘 +

1. We set 𝛼 = 0 in Theorem (4.3.30). Then it is obvious to obtain the corollary as follow.  

Corollary (4.3.31)[104]: Suppose that 𝐹(𝑧) = (𝐹1(𝑧), 𝐹2(𝑧), . . . , 𝐹𝑛(𝑧))
′
∈ 𝐻(𝑈𝑛), and 

𝑧 = 0 is a zero of order 𝑘 + 1 of 𝐹(𝑧) − 𝑧. If 𝑅𝑒 (1 +
𝐷2𝐹𝑗(𝑧)(𝑧

2)

𝐷𝐹𝑗(𝑧)𝑧
) > 0, 𝑧 ∈ 𝑈𝑛\{0}, where 

j satisfies the condition |𝑧𝑗| = ‖𝑧‖ = max
1≤𝑙≤𝑛

{|𝑧𝑙|}, then  

‖𝐷𝑚𝐹(0)(𝑧𝑚)‖

𝑚!
≤

{
 

 
2

𝑚(𝑚 − 1)
‖𝑧‖𝑚, 𝑚 = 𝑘 + 1, 𝑘 + 2,… , 2𝑘; 

2(𝑘 + 2)

𝑚(𝑚 − 1)𝑘
‖𝑧‖𝑚, 𝑚 = 2𝑘 + 1                      

 

for 𝑧 = (𝑧1, 𝑧2, . . . , 𝑧𝑛)
′ ∈ 𝑈𝑛. The above estimates are sharp for 𝑚 = 𝑘 + 1 and 𝑚 = 2𝑘 +

1. 
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Corollary (4.3.32)[209]: Let 𝛼𝑟 ∈ [0, 1), 𝑓𝑟 , 𝑝𝑟: 𝐵 → ℂ ∈ 𝐻(𝐵), 𝑓𝑟(0) = 𝑝𝑟(0) =

1, 𝑓𝑟 (
𝑒2𝜋𝑖

𝑘
𝑥) = 𝑓𝑟(𝑥), 𝑝𝑟 (

𝑒2𝜋𝑖

𝑘
𝑥) = 𝑝𝑟(𝑥)(𝑘 ∈ ℕ

∗), and 𝑓𝑟(𝑥) + 3𝐷𝑓𝑟(𝑥)𝑥 +

𝐷2𝑓𝑟(𝑥)(𝑥
2) = (𝑓𝑟(𝑥) + 𝐷𝑓𝑟(𝑥)𝑥)(𝛼𝑟 + (1 − 𝛼𝑟)𝑝𝑟(𝑥)). Then  

𝑘(𝑘 + 1)𝐷𝑘𝑓𝑟(0)(𝑥
𝑘)

𝑘!
=
(1 − 𝛼𝑟)𝐷

𝑘𝑝𝑟(0)(𝑥
𝑘)

𝑘!
, 

𝑠𝑘(𝑠𝑘 + 1)𝐷𝑠𝑘𝑓𝑟(0)(𝑥
𝑠𝑘)

(𝑠𝑘)!

=
(1 − 𝛼𝑟)𝐷

𝑠𝑘𝑝𝑟(0)(𝑥
𝑠𝑘)

(𝑠𝑘)!
+
(1 − 𝛼𝑟)𝐷

(𝑠−1)𝑘𝑝𝑟(0)(𝑥
(𝑠−1)𝑘)

((𝑠 − 1)𝑘)!

·
(𝑘 + 1)𝐷𝑘𝑓𝑟(0)(𝑥

𝑘)

𝑘!
+ ⋯+

(1 − 𝛼𝑟)𝐷
𝑘𝑝𝑟(0)(𝑥

𝑘)

𝑘!

·
((𝑠 − 1)𝑘 + 1)𝐷(𝑠−1)𝑘𝑓𝑟(0)(𝑥

(𝑠−1)𝑘)

((𝑠 − 1)𝑘)!
, 𝑥 ∈ 𝐵, 𝑠 = 2, 3,…. 

Proof In view of the hypothesis of Corollary (4.3.31), we have  

1 +
(𝑘 + 1)2𝐷𝑘𝑓𝑟(0)(𝑥

𝑘)

𝑘!
+
(2𝑘 + 1)2𝐷2𝑘𝑓𝑟(0)(𝑥

2𝑘)

(2𝑘)!
+ ⋯+

(𝑠𝑘 + 1)2𝐷𝑠𝑘𝑓𝑟(0)(𝑥
𝑠𝑘)

(𝑠𝑘)!
+ ⋯ 

= (1 +
(𝑘 + 1) 𝐷𝑘𝑓𝑟(0)(𝑥

𝑘)

𝑘!
+
(2𝑘 + 1) 𝐷2𝑘𝑓𝑟(0)(𝑥

2𝑘)

(2𝑘)!
+ ⋯+

(𝑠𝑘 + 1) 𝐷𝑠𝑘𝑓𝑟(0)(𝑥
𝑠𝑘)

(𝑠𝑘)!

+ ⋯) 

· (1 +
(1 − 𝛼𝑟)

 𝐷𝑘𝑓𝑟(0)(𝑥
𝑘)

𝑘!
+
(1 − 𝛼𝑟)

 𝐷2𝑘𝑓𝑟(0)(𝑥
2𝑘)

(2𝑘)!
+ ⋯+

(1 − 𝛼𝑟)
 𝐷𝑠𝑘𝑓𝑟(0)(𝑥

𝑠𝑘)

(𝑠𝑘)!

+ ⋯) 

A simple calculation shows that  

1 +
(𝑘 + 1)2𝐷𝑘𝑓𝑟(0)(𝑥

𝑘)

𝑘!
+
(2𝑘 + 1)2𝐷2𝑘𝑓𝑟(0)(𝑥

2𝑘)

(2𝑘)!
+ ⋯+

(𝑠𝑘 + 1)2𝐷𝑠𝑘𝑓𝑟(0)(𝑥
𝑠𝑘)

(𝑠𝑘)!
+ ⋯ 

= 1 +
(𝑘 + 1)𝐷𝑘𝑓𝑟(0)(𝑥

𝑘)

𝑘!
+
(1 − 𝛼𝑟)𝐷

𝑘𝑝𝑟(0)(𝑥
𝑘)

𝑘!
+
(2𝑘 + 1)𝐷2𝑘𝑓𝑟(0)(𝑥

2𝑘)

(2𝑘)!

+
(1 − 𝛼𝑟)𝐷

𝑘𝑝𝑟(0)(𝑥
𝑘)

𝑘!
·
(𝑘 + 1)𝐷𝑘𝑓𝑟(0)(𝑥

𝑘)

𝑘!
+
(1 − 𝛼𝑟)𝐷

2𝑘𝑝𝑟(0)(𝑥
2𝑘)

(2𝑘)!

+ ⋯+
(𝑠𝑘 + 1)𝐷𝑠𝑘𝑓𝑟(0)(𝑥

𝑠𝑘)

(𝑠𝑘)!
+
(1 − 𝛼𝑟)𝐷

𝑘𝑝𝑟(0)(𝑥
𝑘)

𝑘!

·
((𝑠 − 1)𝑘 + 1)𝐷(𝑠−1)𝑘𝑓𝑟(0)(𝑥

(𝑠−1)𝑘)

((𝑠 − 1)𝑘)!
+ ⋯ 
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+
(1 − 𝛼𝑟)𝐷

(𝑠−1)𝑘𝑝𝑟(0)(𝑥
(𝑠−1)𝑘)

((𝑠 − 1)𝑘)!
·
(𝑘 + 1)𝐷𝑘𝑓𝑟(0)(𝑥

𝑘)

𝑘!
+
(1 − 𝛼𝑟)𝐷

𝑠𝑘𝑝𝑟(0)(𝑥
𝑠𝑘)

(𝑠𝑘)!
+ ⋯. 

Compare the homogeneous expansions of the two sides in the above equality. We derived 

the desired result. 

Corollary (4.3.33)[209]: Let 𝛼𝑟 ∈ [0, 1), 𝑓𝑟 , 𝑝𝑟: 𝐵 → ℂ ∈ 𝐻(𝐵), 𝑓𝑟(0) = 𝑝𝑟(0) = 1. If 𝑥 =
0 is a zero of order 𝑘 + 1(𝑘 ∈ ℕ∗) of 𝑥𝑓𝑟(𝑥) − 𝑥 (resp. 𝑥𝑝𝑟(𝑥) − (𝑥)), and 𝑓𝑟(𝑥) +

3𝐷𝑓𝑟(𝑥)𝑥 + 𝐷
2𝑓𝑟(𝑥)(𝑥

2) = (𝑓𝑟(𝑥) + 𝐷𝑓𝑟(𝑥)𝑥)(𝛼𝑟 + (1 − 𝛼𝑟)𝑝𝑟(𝑥)), then for any 𝑥 ∈
𝐵,  

𝑚(𝑚 − 1)𝐷𝑚−1𝑓𝑟(0)(𝑥
𝑚−1)

(𝑚 − 1)!
= 

{
 
 

 
 (1 − 𝛼𝑟)𝐷

𝑚−1𝑝𝑟(0)(𝑥
𝑚−1)

(𝑚 − 1)!
, 𝑚 = 𝑘 + 1, . . . , 2𝑘,

(1 − 𝛼𝑟)𝐷
𝑚−1𝑝𝑟(0)(𝑥

𝑚−1)

(𝑚 − 1)!
+
(1 − 𝛼𝑟)𝐷

𝑘𝑝𝑟(0)(𝑥
𝑘)

𝑘!
·
(𝑘 + 1)𝐷𝑘𝑓𝑟(0)(𝑥

𝑘)

𝑘!
, 𝑚 = 2𝑘 + 1.

 

Proof According to the conditions of Corollary (4.3.33), we obtain  

1 +
(𝑘 + 1)2𝐷𝑘𝑓𝑟(0)(𝑥

𝑘)

𝑘!
+
(2𝑘 + 1)2𝐷2𝑘𝑓𝑟(0)(𝑥

2𝑘)

(2𝑘)!
+ ⋯+

𝑚2𝐷𝑚−1𝑓𝑟(0)(𝑥
𝑚−1)

(𝑚 − 1)!
+ ⋯

= (1 +
(𝑘 + 1) 𝐷𝑘𝑓𝑟(0)(𝑥

𝑘)

𝑘!
+
(2𝑘 + 1) 𝐷2𝑘𝑓𝑟(0)(𝑥

2𝑘)

(2𝑘)!
+ ⋯

+
𝑚𝐷𝑚−1𝑓𝑟(0)(𝑥

𝑚−1)

(𝑚 − 1)!
+ ⋯)

· (1 +
(1 − 𝛼𝑟)𝐷

𝑘𝑓𝑟(0)(𝑥
𝑘)

𝑘!
+
(1 − 𝛼𝑟)𝐷

2𝑘𝑓𝑟(0)(𝑥
2𝑘)

(2𝑘)!
+ ⋯

+
(1 − 𝛼𝑟)𝐷

𝑚−1𝑓𝑟(0)(𝑥
𝑚−1)

(𝑚 − 1)!
+ ⋯) 

A direct computation shows that  

1 +
(𝑘 + 1)2𝐷𝑘𝑓𝑟(0)(𝑥

𝑘)

𝑘!
+
(2𝑘 + 1)2𝐷2𝑘𝑓𝑟(0)(𝑥

2𝑘)

(2𝑘)!
+ ⋯+

𝑚2𝐷𝑚−1𝑓𝑟(0)(𝑥
𝑚−1)

(𝑚 − 1)!
+ ⋯

= 1 +
(𝑘 + 1) 𝐷𝑘𝑓𝑟(0)(𝑥

𝑘)

𝑘!
+
(1 − 𝛼𝑟)𝐷

𝑘𝑓𝑟(0)(𝑥
2𝑘)

(2𝑘)!

+
(1 − 𝛼𝑟)𝐷

𝑘𝑝𝑟(0)(𝑥
𝑘)

𝑘!
·
(𝑘 + 1)𝐷𝑘𝑓𝑟(0)(𝑥

𝑘)

𝑘!
+
(1 − 𝛼𝑟)𝐷

2𝑘𝑝𝑟(0)(𝑥
2𝑘)

(2𝑘)!

+ ⋯+
𝑚𝐷𝑚−1𝑓𝑟(0)(𝑥

𝑚−1)

(𝑚 − 1)!
+ ⋯+

(1 − 𝛼𝑟)𝐷
𝑚−1𝑝𝑟(0)(𝑥

𝑚−1)

(𝑚 − 1)!
+ ⋯. 

Compare the homogeneous expansions of the two sides in the above equality. It follows the 

desired result.  

Corollary (4.3.34)[209]: Let 𝛼𝑟 ∈ [0, 1), 𝑓𝑟: 𝐵 → ℂ ∈ 𝐻(𝐵), 𝑓𝑟(𝑥) + 𝐷𝑓𝑟(𝑥)𝑥 ≠ 0, 𝑥 ∈

𝐵, 𝐹𝑟(𝑥) = 𝑥𝑓𝑟(𝑥) ∈ 𝑄𝐵
𝛼𝑟(𝐵), and 𝑓𝑟 is a 𝑘(𝑘 ∈ ℕ∗)-fold symmetric mapping on B. Then  
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‖𝐷𝑠𝑘+1𝐹𝑟(0)(𝑥
𝑠𝑘+1)‖

(𝑠𝑘 + 1)!
≤
∏ ((𝑟 − 1)𝑘 + 2 − 2𝛼𝑟)
𝑠
𝑟=1

(𝑠𝑘 + 1)𝑠! 𝑘𝑠
‖𝑥‖𝑠𝑘+1, 𝑥 ∈ 𝐵, 𝑠 = 1, 2,… 

and the above estimates are sharp.  

Proof Let 𝑊𝑟(𝑥) = (𝐷𝐹𝑟(𝑥))
−1
𝐷(𝐷𝐹𝑟(𝑥)𝑥)𝑥. A straightforward computation shows that  

(𝐷𝐹𝑟(𝑥))
−1
𝐷(𝐷𝐹𝑟(𝑥)𝑥)𝑥 =

(𝑓𝑟(𝑥) + 3𝐷𝑓𝑟(𝑥)𝑥 + 𝐷
2𝑓𝑟(𝑥)(𝑥

2))𝑥

𝑓𝑟(𝑥) + 𝐷𝑓𝑟(𝑥)𝑥
, 𝑥 ∈ 𝐵. 

Since 𝐹𝑟(𝑥) = 𝑥𝑓𝑟(𝑥) ∈ 𝑄𝔹
𝛼𝑟(𝐵), then according to Definition 1.1, we see that  

𝑅𝑒 (
𝑓𝑟(𝑥) + 3𝐷𝑓𝑟(𝑥)𝑥 + 𝐷

2𝑓𝑟(𝑥)(𝑥
2) − 𝛼𝑟(𝑓𝑟(𝑥) + 𝐷𝑓𝑟(𝑥)𝑥)

(1 − 𝛼𝑟)(𝑓𝑟(𝑥) + 𝐷𝑓𝑟(𝑥)𝑥)
) 

= 𝑅𝑒 (
𝑇𝑥(𝑊𝑟(𝑥)) − 𝛼𝑟‖𝑥‖

1 − 𝛼𝑟‖𝑥‖
) > 0, 𝑥 ∈ 𝐵\{0}.                        (21) 

Letting  

𝑝𝑟(𝑥) = {

𝑓𝑟(𝑥) + 3𝐷𝑓𝑟(𝑥)𝑥 + 𝐷
2𝑓𝑟(𝑥)(𝑥

2) − 𝛼𝑟(𝑓𝑟(𝑥) + 𝐷𝑓𝑟(𝑥)𝑥)

(1 − 𝛼𝑟)(𝑓𝑟(𝑥) + 𝐷𝑓𝑟(𝑥)𝑥)
, 𝑥 ∈ 𝐵{0}; 

1,                                                                                                 𝑥 = 0,       

 (22) 

then 𝑝𝑟: 𝐵 → ℂ ∈ 𝐻(𝐵), 𝑝𝑟(0) = 𝑓𝑟(0) = 1, 

𝑓𝑟(𝑥) + 3𝐷𝑓𝑟(𝑥)𝑥 + 𝐷
2𝑓𝑟(𝑥)(𝑥

2) = (𝑓𝑟(𝑥) + 𝐷𝑓𝑟(𝑥)𝑥)(𝛼𝑟 + (1 − 𝛼𝑟)𝑝𝑟(𝑥)). 

Also since 𝐹𝑟(𝑥) = 𝑥𝑓𝑟(𝑥) is a 𝑘(𝑘 ∈ ℕ∗)-fold symmetric mapping, then 𝑓𝑟 (𝑒
2𝜋𝑖

𝑘 𝑥) =

𝑓𝑟(𝑥) and 𝑝𝑟 (𝑒
2𝜋𝑖

𝑘 𝑥) = 𝑝𝑟(𝑥). We now deduce that  

|𝐷𝑠𝑘𝑓𝑟(0)(𝑥
𝑠𝑘)|

(𝑠𝑘)!
≤
∏ ((𝑟 − 1)𝑘 + 2 − 2𝛼𝑟)
𝑠
𝑟=1

(𝑠𝑘 + 1)𝑠! 𝑘𝑠
‖𝑥‖𝑠𝑘, 𝑥 ∈ 𝐵, 𝑠 = 1, 2,… (23) 

hold by inductive method. When 𝑠 = 1, (23) holds from Corollary (4.3.32) and [98] (the 

case 𝑚 = 𝑘 + 1). We assume that  

|𝐷𝑠𝑘𝑓𝑟(0)(𝑥
𝑠𝑘)|

(𝑠𝑘)!
≤
∏ ((𝑟 − 1)𝑘 + 2 − 2𝛼𝑟)
𝑠
𝑟=1

(𝑠𝑘 + 1)𝑠! 𝑘𝑠
‖𝑥‖𝑠𝑘, 𝑥 ∈ 𝐵, 𝑠 = 1, 2,… , 𝑞.       (24) 

It suffices to prove that (23) holds for 𝑠 = 𝑞 + 1. For this purpose, by applying Corollary 

(4.3.32), (24) and [98], we know that  

(𝑞 + 1)𝑘((𝑞 + 1)𝑘 + 1)|𝐷(𝑞+1)𝑘𝑓𝑟(0)(𝑥
(𝑞+1)𝑘)|

((𝑞 + 1)𝑘)!
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= |
(1 − 𝛼𝑟)𝐷

(𝑞+1)𝑘𝑝𝑟(0)(𝑥
(𝑞+1)𝑘)

((𝑞 + 1)𝑘)!
+
(1 − 𝛼𝑟)𝐷

𝑞𝑘𝑝𝑟(0)(𝑥
𝑞𝑘)

(𝑞𝑘)!
·
(𝑘 + 1)𝐷𝑘𝑓𝑟(0)(𝑥

𝑘)

𝑘!

+ ⋯+
(1 − 𝛼𝑟)𝐷

𝑘𝑝𝑟(0)(𝑥
𝑘)

𝑘!
·
(𝑞𝑘 + 1)𝐷𝑞𝑘𝑓𝑟(0)(𝑥

𝑞𝑘)

(𝑞𝑘)!

≤
(1 − 𝛼𝑟)|𝐷

(𝑞+1)𝑘𝑝𝑟(0)(𝑥
(𝑞+1)𝑘)|

((𝑞 + 1)𝑘)!
+
(1 − 𝛼𝑟)|𝐷

𝑞𝑘𝑝𝑟(0)(𝑥
𝑞𝑘)|

(𝑞𝑘)!

·
(𝑘 + 1)|𝐷𝑘𝑓𝑟(0)(𝑥

𝑘)|

𝑘!
+ ⋯+

(1 − 𝛼𝑟)|𝐷
𝑘𝑝𝑟(0)(𝑥

𝑘)|

𝑘!

·
(𝑞𝑘 + 1)|𝐷𝑞𝑘𝑓𝑟(0)(𝑥

𝑞𝑘)|

(𝑞𝑘)!

≤ 2(1 − 𝛼𝑟)‖𝑥‖
(𝑞+1)𝑘 + (𝑘 + 1) ·

2(1 − 𝛼𝑟) · 2(1 − 𝛼𝑟)

𝑘(𝑘 + 1)
‖𝑥‖(𝑞+1)𝑘 +⋯

+ (𝑞𝑘 + 1) ·
(2(1 − 𝛼𝑟) · ∏ ((𝑟 − 1)𝑘 + 2 − 2𝛼𝑟)

𝑞
𝑟=1

(𝑞𝑘 + 1)𝑞! 𝑘𝑞
‖𝑥‖(𝑞+1)𝑘  

=
∏ ((𝑟 − 1)𝑘 + 2 − 2𝛼𝑟)
𝑞+1
𝑟=1

𝑞! 𝑘𝑞
‖𝑥‖(𝑞+1)𝑘 . 

That is  

|𝐷(𝑞+1)𝑘𝑓𝑟(0)(𝑥
(𝑞+1)𝑘)|

((𝑞 + 1)𝑘)!
≤
∏ ((𝑟 − 1)𝑘 + 2 − 2𝛼𝑟)
𝑞+1
𝑟=1

((𝑞 + 1)𝑘 + 1)(𝑞 + 1)! 𝑘𝑞+1
‖𝑥‖(𝑞+1)𝑘 , 𝑥 ∈ 𝐵. 

Note that  

𝐷𝑠𝑘+1𝐹𝑟(0)(𝑥
𝑠𝑘+1)

(𝑠𝑘 + 1)!
= 𝑥

𝐷𝑠𝑘𝑓𝑟(0)(𝑥
𝑠𝑘)

(𝑠𝑘)!
, 𝑥 ∈ 𝐵, 𝑠 = 1, 2,…,    (25) 

when 𝐹𝑟(𝑥) = 𝑥𝑓𝑟(𝑥). Therefore in view of (23) and (25), it follows the result, as desired.  

It is easy to check that  

𝐹𝑟(𝑥) =
𝑥

𝑇𝑢(𝑥)
∫

𝑑𝑡

(1 − 𝑡𝑘)
2−2𝛼𝑟
𝑘

𝑇𝑢(𝑥)

0

, 𝑥 ∈ 𝐵 

satisfies the condition of Corollary (4.3.34), where ‖𝑢‖ = 1. Taking 𝑥 = 𝑟𝑢(0 ≤ 𝑟 < 1), it 
yields that  

‖𝐷𝑠𝑘+1𝐹𝑟(0)(𝑧
𝑠𝑘+1)‖

(𝑠𝑘 + 1)!
=
∏ ((𝑟 − 1)𝑘 + 2 − 2𝛼𝑟)
𝑠
𝑟=1

(𝑠𝑘 + 1)𝑠! 𝑘𝑠
𝑟𝑠𝑘+1, 𝑠 = 1, 2,… . 

We see that the estimates of Corollary (4.3.34) are sharp.  

Corollary (4.3.35)[209]: Let 𝛼𝑟 ∈ [0, 1), 𝑓𝑟: 𝐵 → ℂ ∈ 𝐻(𝐵), 𝑓𝑟(𝑥) + 𝐷𝑓𝑟(𝑥)𝑥 ≠ 0, 𝑥 ∈

𝐵, 𝐹𝑟(𝑥) = 𝑥𝑓𝑟(𝑥) ∈ 𝑄𝐵
𝛼𝑟(𝐵), and 𝐹𝑟(𝑥) is a 𝑘(𝑘 ∈ ℕ∗)-fold symmetric mapping, where B 

is the unit ball of a complex Hilbert space X. Then  

‖𝐷𝐹𝑟(𝑥)𝜉‖ ≤ ‖𝜉‖/(1 − ‖𝑥‖
𝑘)
2−2𝛼𝑟
𝑘 , 𝑥 ∈ 𝐵, 𝜉 ∈ 𝑋 

and the above estimate is sharp.  



143 

Proof According to Corollary (4.3.11), triangle inequalities with respect to the norm in 

complex Banach spaces and the fact  

sup
‖𝑥‖=‖𝜉‖=1

‖𝐷𝑚𝐹𝑟(0)(𝑥
𝑚−1, 𝜉)‖

𝑚!
= sup
‖𝑥‖=1

‖𝐷𝑚𝐹𝑟(0)(𝑥
𝑚)‖

𝑚!
 

(see [6]), then it follows the result, as desired. Considering  

𝐹𝑟(𝑥) =
𝑥

〈𝑥, 𝑒〉
∫

𝑑𝑡

(1 − 𝑡𝑘)
2−2𝛼𝑟
𝑘

〈𝑥,𝑒〉

0

, 𝑥 ∈ 𝐵, 

where ‖𝑒‖ = 1 , then 𝐹𝑟  satisfies the conditions of Corollary (4.3.35). It is shown that  

𝐷𝐹𝑟(𝑥)𝜉 =
𝜉

〈𝑥, 𝑒〉
∫

𝑑𝑡

(1 − 𝑡𝑘)
2−2𝛼𝑟
𝑘

〈𝑥,𝑒〉

0

+
〈𝜉, 𝑒〉𝑥

〈𝑥, 𝑒〉(1 − (〈𝑥, 𝑒〉)𝑘)
2−2𝛼𝑟
𝑘

−

∫
𝑑𝑡

(1 − 𝑡𝑘)
2−2𝛼𝑟
𝑘

〈𝑥,𝑒〉

0
〈𝜉, 𝑒〉𝑥

〈𝑥, 𝑒〉2
, 𝑥 ∈ 𝐵, 𝜉 ∈ 𝑋 

by a direct calculation. We set 𝑥 = 𝑟𝑒, 𝜉 = 𝑅𝑒(0 ≤ 𝑟 < 1, 𝑅 ≥ 0). Then  

‖𝐷𝐹𝑟(𝑥)𝜉‖ = 𝑅/(1 − 𝑟
𝑘)
2−2𝛼𝑟
𝑘 . 

We see that the estimate of Corollary (4.3.35) is sharp.  

Corollary (4.3.36)[209]: Let 𝛼𝑟 ∈ [0, 1), 𝑓𝑟: 𝐵 → ℂ ∈ 𝐻(𝐵), 𝑓𝑟(𝑥) + 𝐷𝑓𝑟(𝑥)𝑥 ≠ 0, 𝑥 ∈

𝐵, 𝐹𝑟(𝑥) = 𝑥𝑓𝑟(𝑥) ∈ 𝑄𝐵,𝑘+1
𝛼𝑟 (𝐵). Then  

‖𝐷𝑚𝐹𝑟(0)(𝑥
𝑚)‖

𝑚!
≤

{
 

 
2 − 2𝛼𝑟
𝑚(𝑚 − 1)

‖𝑥‖𝑚, 𝑚 = 𝑘 + 1, 𝑘 + 2, . . . , 2𝑘;

(2 − 2𝛼𝑟)(𝑘 + 2 − 2𝛼𝑟)

𝑚(𝑚 − 1)𝑘
‖𝑥‖𝑚, 𝑚 = 2𝑘 + 1

 

for 𝑥 ∈ 𝐵. The above estimates are sharp for 𝑚 = 𝑘 + 1 and 𝑚 = 2𝑘 + 1.  

Proof In view of the hypothesis of Corollary (4.3.36), Corollary (4.3.33) and [98], it yields 

that  

|𝐷𝑚𝑓𝑟(0)(𝑥
𝑚−1)|

(𝑚 − 1)!
≤
2 − 2𝛼𝑟
𝑚(𝑚 − 1)

‖𝑥‖𝑚−1, 𝑥 ∈ 𝐵,𝑚 = 𝑘 + 1, 𝑘 + 2,… , 2𝑘 

and  

𝑚(𝑚 − 1)|𝐷𝑚−1𝑓𝑟(0)(𝑥
𝑚−1)|

(𝑚 − 1)!

= |
(1 − 𝛼𝑟)𝐷

𝑚−1𝑝𝑟(0)(𝑧
𝑚−1)

(𝑚 − 1)!
+
(1 − 𝛼𝑟)𝐷

𝑘𝑝𝑟(0)(𝑧
𝑘)

𝑘!

·
(𝑘 + 1)𝐷𝑘𝑓𝑟(0)(𝑧

𝑘)

𝑘!
| 
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 ≤
(1 − 𝛼𝑟)|𝐷

𝑚−1𝑝𝑟(0)(𝑥
𝑚−1)|

(𝑚 − 1)!
+ |
(1 − 𝛼𝑟)𝐷

𝑘𝑝𝑟(0)(𝑥
𝑘)

𝑘!
·
(𝑘 + 1)𝐷𝑘𝑓𝑟(0)(𝑥

𝑘)

𝑘!
|

≤ 2(1 − 𝛼𝑟)‖𝑥‖
2𝑘 +

4(1 − 𝛼𝑟)
2

𝑘
‖𝑥‖2𝑘 =

(2 − 2𝛼𝑟)(𝑘 + 2 − 2𝛼𝑟)

𝑘
‖𝑥‖2𝑘,

𝑥 ∈ 𝐵,𝑚 = 2𝑘 + 1. 

Noticing that  

𝐷𝑚𝐹𝑟(0)(𝑥
𝑚)

𝑚!
= 𝑥

𝐷𝑚−1𝑓𝑟(0)(𝑥
𝑚−1)

(𝑚 − 1)!
, 𝑥 ∈ 𝐵, 𝑠 = 1, 2,… 

if 𝐹𝑟(𝑥) = 𝑥𝑓𝑟(𝑥). Then we derive the desired result. The example which shows the 

sharpness of Corollary (4.3.36) is similar to that in Corollary (4.3.34).  

Corollary (4.3.37)[209]: Let 𝛼𝑟 ∈ [0, 1), (𝑓𝑟)𝑙: 𝑈
𝑚𝑙 → ℂ ∈ 𝐻(𝑈𝑚𝑙), (𝑓𝑟)𝑙(𝑍𝑙) +

𝐷(𝑓𝑟)𝑙(𝑍𝑙)𝑍𝑙 ≠ 0, 𝑍𝑙 ∈ 𝑈
𝑚𝑙, 𝑙 = 1, 2,… , 𝑛, 𝐹𝑟(𝑍) =

((𝐹𝑟)1(𝑍1), (𝐹𝑟)2(𝑍2),… , (𝐹𝑟)𝑛(𝑍𝑛))
′
= (𝑍1(𝑓𝑟)1(𝑍1), 𝑍2(𝑓𝑟)2(𝑍2),… , 𝑍𝑛(𝑓𝑟)𝑛(𝑍𝑛))

′
 ∈ 

𝑄𝔹
𝛼𝑟(𝑈𝑁), and 𝐹𝑟  is a 𝑘(𝑘 ∈ ℕ∗)-fold symmetric mapping. Then  

𝐷𝑠𝑘+1𝐹𝑟(0)(𝑍
𝑠𝑘+1)

(𝑠𝑘 + 1)!
≤
∏ (𝑟 − 1)𝑘 + 2 − 2𝛼𝑟
𝑠
𝑟=1

(𝑠𝑘 + 1)𝑠! 𝑘𝑠
‖𝑍‖𝑠𝑘+1,  

𝑍 = (𝑍1, 𝑍2, … , 𝑍𝑛)
′ ∈ 𝑈𝑁 , 𝑠 = 1, 2,…, 

and the above estimates are sharp.  

Proof In view of the condition of Corollary (4.3.37), for any 𝑍 = (𝑍1, 𝑍2, … , 𝑍𝑛)
′ ∈ 𝑈𝑁, it 

is shown that  

(𝐷𝐹𝑟(𝑍))
−1
𝐷(𝐷𝐹𝑟(𝑍)𝑍)𝑍 

= ((𝐷(𝐹𝑟)1(𝑍1))
−1
𝐷(𝐷𝐹𝑟(𝑍1)𝑍1)𝑍1, … , (𝐷(𝐹𝑟)𝑛(𝑍𝑛))

−1
𝐷(𝐷𝐹𝑟(𝑍𝑛)𝑍𝑛)𝑍𝑛)

′
 

by a direct calculation. We pay attention to that  

(𝐷𝐹𝑟(𝑍))
−1
𝐷(𝐷𝐹𝑟(𝑍)𝑍)𝑍 = (0, … , (𝐷(𝐹𝑟)𝑙(𝑍𝑙))

−1
𝐷(𝐷𝐹𝑟(𝑍𝑙)𝑍𝑙)𝑍𝑙 , … , 0)

′
 

if 𝑍 = (0,… , 𝑍𝑙 , … , 0)
′ ∈ 𝑈𝑁 , 𝑙 = 1, 2,… , 𝑛. Let  

𝐺(𝑍) = (𝐺1, 𝐺2, … , 𝐺𝑛)
′ = (𝐺11, … , 𝐺1𝑚1  , 𝐺21, … , 𝐺2𝑚2 , … , 𝐺𝑛1, … , 𝐺𝑛𝑚𝑛)

′

= (𝐷𝐹𝑟(𝑍))
−1
𝐷(𝐷𝐹𝑟(𝑍)𝑍)𝑍. 

Then we know that  

𝐹𝑟 ∈ 𝑄𝔹
𝛼𝑟(𝑈𝑁) ⇔ (𝐹𝑟)𝑙 ∈ 𝑄𝔹

𝛼𝑟(𝑈𝑚𝑙), 𝑙 = 1, 2, … , 𝑛 

from Lemma (4.3.21). Noticing that  

‖𝐷𝑚𝐹𝑟(0)(𝑍
𝑚)‖ = max

1≤𝑙≤𝑛
{‖𝐷𝑚(𝐹𝑟)𝑙(0)(𝑍𝑙

𝑚)‖} , ‖𝑍‖ = max
1≤𝑙≤𝑛

{‖𝑍𝑙‖}, 

here ‖𝑍𝑙‖𝑚𝑙 (resp. ‖𝑍‖𝑁) is briefly denoted by ‖𝑍𝑙‖ (resp. ‖𝑍‖), it follows the desired result.  

For any 𝑍 = (𝑍1, 𝑍2, . . . , 𝑍𝑛)
′ ∈ 𝑈𝑁, it is not difficult to check that  
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𝐹𝑟(𝑍) = (
𝑍1
𝑍11

∫
𝑑𝑡

(1 − 𝑡𝑘)
2−2𝛼𝑟
𝑘

𝑍11

0

,
𝑍2
𝑍21

∫
𝑑𝑡

(1 − 𝑡𝑘)
2−2𝛼𝑟
𝑘

𝑍21

0

, . . . ,
𝑍𝑛
𝑍𝑛1

∫
𝑑𝑡

(1 − 𝑡𝑘)
2−2𝛼𝑟
𝑘

𝑍𝑛1

0

)

′

 

satisfies the condition of Corollary (4.3.37), where 𝑍𝑙 = (𝑍𝑙1, 𝑍𝑙2, . . . , 𝑍𝑙𝑚𝑙)
′
∈ 𝑈𝑚𝑙 , 𝑙 =

1, 2, . . . , 𝑛.  

We set 𝑍𝑙 = (𝑅, 0, . . . , 0)
′(0 ≤ 𝑅 < 1), 𝑙 = 1, 2, . . . , 𝑛. It is easy to obtain  

‖𝐷𝑠𝑘+1𝐹𝑟(0)(𝑍
𝑠𝑘+1)‖

(𝑠𝑘 + 1)!
=
∏ (𝑟 − 1)𝑘 + 2 − 2𝛼𝑟
𝑠
𝑟=1

(𝑠𝑘 + 1)𝑠! 𝑘𝑠
𝑅𝑠𝑘+1, 𝑠 = 1, 2,… 

Hence the estimates of Corollary (4.3.36) are sharp.  

Corollary (4.3.38)[209]: Let 𝛼𝑟 ∈ [0, 1), (𝑓𝑟)𝑙: 𝑈
𝑚𝑙 → ℂ ∈ 𝐻(𝑈𝑚𝑙), (𝑓𝑟)𝑙(𝑍𝑙) +

𝐷(𝑓𝑟)𝑙(𝑍𝑙)𝑍𝑙 ≠ 0, 𝑍𝑙 ∈ 𝑈
𝑚𝑙 , 𝑙 = 1, 2, . . . , 𝑛, 𝐹𝑟(𝑍) =

(𝑍1(𝑓𝑟)1(𝑍1), 𝑍2(𝑓𝑟)2(𝑍2), . . . , 𝑍𝑛(𝑓𝑟)𝑛(𝑍𝑛))
′
∈ 𝑄𝔹,𝑘+1

𝛼𝑟 (𝑈𝑁). Then  

‖𝐷𝑚𝐹𝑟(0)(𝑍
𝑚)‖

𝑚!
≤

{
 

 
2 − 2𝛼𝑟
𝑚(𝑚 − 1)

‖𝑍‖𝑚, 𝑚 = 𝑘 + 1, 𝑘 + 2,… , 2𝑘; 

(2 − 2𝛼𝑟)(𝑘 + 2 − 2𝛼𝑟)

𝑚(𝑚 − 1)𝑘
‖𝑍‖𝑚, 𝑚 = 2𝑘 + 1

  

for 𝑍 = (𝑍1, 𝑍2, . . . , 𝑍𝑛)
′ ∈ 𝑈𝑁 .The above estimates are sharp for 𝑚 = 𝑘 + 1 and 𝑚 = 2𝑘 +

1. 

Proof With the analogous arguments as in the proof of Corollary (4.3.35), it follows the 

desired result.  

Corollary (4.3.39)[209]: Suppose that 𝛼𝑟 ∈ [0, 1), 𝐹𝑟(𝑧) =

((𝐹𝑟)1(𝑧), (𝐹𝑟)2(𝑧), . . . , (𝐹𝑟)𝑛(𝑧))
′
∈ 𝐻(𝑈𝑛), and 𝐹𝑟(𝑧) is a 𝑘(𝑘 ∈ ℕ∗)-fold symmetric 

mapping on 𝑈𝑛. If 𝑅𝑒 (1 +
𝐷2(𝐹𝑟)𝑗(𝑧)(𝑧

2)

𝐷(𝐹𝑟)𝑗(𝑧)𝑧
) > 𝛼𝑟 , 𝑧 ∈ 𝑈

𝑛\{0}, where j satisfies the condition 

|𝑧𝑗| = ‖𝑧‖ = max
1≤𝑙≤𝑛

{|𝑧𝑙|}, then  

‖𝐷𝑠𝑘+1𝐹𝑟(0)(𝑍
𝑠𝑘+1)‖

(𝑠𝑘 + 1)!
≤
∏ (𝑟 − 1)𝑘 + 2 − 2𝛼𝑟
𝑠
𝑟=1

(𝑠𝑘 + 1)𝑠! 𝑘𝑠
‖𝑧‖𝑠𝑘+1, 

𝑧 = (𝑧1, 𝑧2, . . . , 𝑧𝑛)
′ ∈ 𝑈𝑛, 𝑠 = 1, 2, . . ., 

and the above estimates are sharp.  

Proof Fix 𝑧 ∈ 𝑈𝑛\{0}. We write 𝑧0 = 𝑧/‖𝑧‖.Let 

ℎ𝑗(𝜉) =
‖𝑧‖

𝑧𝑗
(𝐹𝑟)𝑗(𝜉𝑧0), 𝜉 ∈ 𝑈,                                  (26) 

where j satisfies the condition |𝑧𝑗| = ‖𝑧‖ = max
1≤𝑙≤𝑛

{|𝑧𝑙|}. It yields that  

1 +
ℎ𝑗
′′(𝜉)𝜉

ℎ𝑗
′(𝜉)

= 1 +
𝐷2(𝐹𝑟)𝑗(𝜉𝑧0)(𝜉𝑧0, 𝜉𝑧0)

𝐷(𝐹𝑟)𝑗(𝜉𝑧0)𝜉𝑧0
, 𝜉 ∈ 𝑈\{0} 
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by a simple calculation. Therefore, we have  

𝑅𝑒(1 + ℎ𝑗
′′(𝜉)𝜉/ℎ𝑗

′(𝜉) > 𝛼𝑟 , 𝜉 ∈ 𝑈\{0} 

if 𝑅𝑒(1 +
𝐷2(𝐹𝑟)𝑗(𝑧)(𝑧

2)

𝐷(𝐹𝑟)𝑗(𝑧)𝑧
> 𝛼𝑟 , 𝑧 ∈ 𝑈

𝑛\{0}. That is, ℎ𝑗 ∈ 𝐾𝛼𝑟(𝑈) and ℎ𝑗 is a k-fold symmetric 

function.  

It is also easy to know that  

𝜉 + ∑ 𝑏𝑚𝜉
𝑚

∞

𝑚=2

= 𝜉 +
‖𝑧‖

𝑧𝑗
∑

𝐷𝑚(𝐹𝑟)𝑗(0)(𝑧0
𝑚)

𝑚!
𝜉𝑚

∞

𝑚=2

 

from (26). Comparing the coefficients of the two sides in the above equality, it is shown that  

‖𝑧‖

𝑧𝑗

𝐷𝑚(𝐹𝑟)𝑗(0)(𝑧0
𝑚)

𝑚!
= 𝑏𝑚, 𝑚 = 2, 3,…. 

Hence, by Corollary (4.3.33)(the case 𝑋 = ℂ,𝐵 = 𝑈), we conclude that  

|𝐷𝑠𝑘+1(𝐹𝑟)𝑗(0)(𝑧0
𝑠𝑘+1)|

(𝑠𝑘 + 1)!
≤
∏ (𝑟 − 1)𝑘 + 2 − 2𝛼𝑟
𝑠
𝑟=1

(𝑠𝑘 + 1)𝑠! 𝑘𝑠
, 𝑧0 ∈ 𝜕𝑈

𝑛. 

When 𝑧0 ∈ (𝜕𝑈)
𝑛 , it yields that  

|𝐷𝑠𝑘+1(𝐹𝑟)𝑙(0)(𝑧0
𝑠𝑘+1)|

(𝑠𝑘 + 1)!
≤
∏ (𝑟 − 1)𝑘 + 2 − 2𝛼𝑟
𝑠
𝑟=1

(𝑠𝑘 + 1)𝑠! 𝑘𝑠
, 𝑙 = 1, 2, . . . , 𝑛 . 

Also in view of 𝐷𝑠𝑘+1(𝐹𝑟)𝑙(0)(𝑧
𝑠𝑘+1) is a holomorphic function on 𝑈𝑛̅̅ ̅̅ , we have  

|𝐷𝑠𝑘+1(𝐹𝑟)𝑙(0)(𝑧0
𝑠𝑘+1)|

(𝑠𝑘 + 1)!
≤
∏ (𝑟 − 1)𝑘 + 2 − 2𝛼𝑟
𝑠
𝑟=1

(𝑠𝑘 + 1)𝑠! 𝑘𝑠
, 𝑧0 ∈ 𝜕𝑈

𝑛, 𝑙 = 1, 2, . . . , 𝑛 

by the maximum modulus theorem of holomorphic functions on the unit polydisk. This 

implies that  

|𝐷𝑠𝑘+1(𝐹𝑟)𝑙(0)(𝑧
𝑠𝑘+1)|

(𝑠𝑘 + 1)!
≤
∏ (𝑟 − 1)𝑘 + 2 − 2𝛼𝑟
𝑠
𝑟=1

(𝑠𝑘 + 1)𝑠! 𝑘𝑠
‖𝑧‖𝑠𝑘+1, 𝑧 ∈ 𝑈𝑛, 𝑙 = 1, 2, . . . , 𝑛 . 

Therefore,  

‖𝐷𝑠𝑘+1𝐹𝑟(0)(𝑧
𝑠𝑘+1)‖

(𝑠𝑘 + 1)!
≤
∏ (𝑟 − 1)𝑘 + 2 − 2𝛼𝑟
𝑠
𝑟=1

(𝑠𝑘 + 1)𝑠! 𝑘𝑠
‖𝑧‖𝑠𝑘+1, 𝑧 ∈ 𝑈𝑛. 

It is not difficult to verify that  

𝐹𝑟(𝑧) =

(

 
 
∫

𝑑𝑡

(1 − 𝑡𝑘)
2−2𝛼𝑟
𝑘

𝑧1

0

,
𝑧2

𝑧1 ∫
𝑑𝑡

(1 − 𝑡𝑘)
2−2𝛼𝑟
𝑘

𝑧2
0

, . . . ,
𝑧𝑛
𝑧1
∫

𝑑𝑡

(1 − 𝑡𝑘)
2−2𝛼𝑟
𝑘

𝑧𝑛

0

)

 
 

′

 

satisfies the condition of Corollary (4.3.38). Put 𝑧 = (𝑟, 0, . . . , 0)′(0 ≤ 𝑟 < 1), we see that  
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‖𝐷𝑠𝑘+1𝐹𝑟(0)(𝑥
𝑠𝑘+1)‖

(𝑠𝑘 + 1)!
=
∏ (𝑟 − 1)𝑘 + 2 − 2𝛼𝑟
𝑠
𝑟=1

(𝑠𝑘 + 1)𝑠! 𝑘𝑠
𝑟𝑠𝑘+1, 𝑠 = 1, 2,… 

by a direct computation. Then we know that the sharpness for the estimates of Corollary 

(4.3.38).  

  



148 

Chapter 5 

First Derivative and Centers with Global Behaviour 

 

We give several examples and a special method which simplifies the computations 

when a first integral is known. At most one limit cycle can bifurcate from the periodic orbits 

of a center of a cubic homogeneous polynomial system using the averaging theory of first 

order. We show after adding some more additional hypotheses, we show that the period 

function of the origin is either decreasing or has at most one critical period and that both 

possibilities may happen. This result also extends some previous results that deal with the 

situation where both vector fields are homogeneous and the origin is a non-degenerate 

centre. 

Section (5.1): The Period Function with Applications 

In the latest years, there have been many developments concerning the problem of 

centres for systems of ordinary differential equations on the plane. By one side, 

improvements have been done in the direction of solving the centre-focus problem (see 

[119] or [126]); however, the problem is far to be solved. By the other side, questions about 

either the kind of period annulus or the shape of the period function of a centre have also 

been tackled (the period annulus, 𝒫 from now on, is the greatest neighbourhood of the centre 

filled of periodic orbits; given a transversal of the period annulus, the time function defined 

on it is called the period function).  

A first question is to decide whether the centre is isochronous or not. A recent survey 

on this problem is given in [111]. We remark that in the works of Sabatini and Villarini (see 

[129], [131]) they settled the strong relationship between Lie brackets and isochronicity. 

This idea has been used fruitfully by many. In [121] we have also found a full description 

of the link between commutators and isochronicity. A second question is that of controlling 

the number of critical points of the period function. This question has been treated for special 

families of vector fields by (Chicone–Dumortier [115], [116], for some polynomial systems; 

Chow and Wang [117], and Gavrilov [122] for potential systems; Coppel and Gavrilov [49], 

Collins [46], and Gasull et al. [39], for Hamiltonian centres with homogeneous non-

linearities; Rothe [128], for some Hamiltonian families; Freire et al. [120], for perturbation 

of isochronous centres, etc.) They mainly focus on seeking for conditions of monotonicity 

of the period function and seldom examples of more than one critical period are found. 

Maybe one of the most relevant approach to give general tools for proving the monotonicity 

of the period function is due to Chicone (see [113]) who gave an expression for the first 

derivative of the period function as a dynamical interpretation of a result of Diliberto.  

Inspired in the geometrical ideas involved in the Lie bracket, we give a method to 

prove that some centres have either an increasing or a decreasing period function. This 

method is based on a formula for computing the derivative of the period function, which is 

obtained from the knowledge of the set of normalizers of the centre. See the definitions and 

more detailed comments after the statement of the following theorem, which is the key point.  

As we have already explained, the aim of Theorem (5.1.2) is to give a tool to study 

the shape of the period function, that is, features like its monotonicity, its number of critical 

periods or knowing when it is constant (isochronicity problem). To be useful we need to be 

able to compute 𝜇, and control its integral. The existence of 𝑈 and m satisfying [𝑋 𝑈] =
 𝜇𝑋; for sufficiently regular vector fields 𝑋 with a non-degenerate centre at 𝑝 is already 

known, see [107]. Note also that our expression of 𝑇′ given in (2), and based on the 

knowledge of 𝑈, is simpler that the one obtained in [113].  
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Part 2 of Theorem (5.1.2) tries to give a procedure to compute m and 𝑈 when an integrating 

factor for 𝑋 is known. It can be seen as a reciprocal of the following well known result of 𝑆. 
Lie: Assume that a vector field 𝑈 = (𝑅, 𝑆) such that [𝑋, 𝑈] =  𝜇𝑋 is known. If 𝜓 is a first 

integral of 𝑋 or a constant—usually 𝜓 is taken to be 1—then a solution 𝑓 of the system  

{
𝑓𝑥𝑃 + 𝑓𝑦𝒬 =  0,

𝑓𝑥𝑅 + 𝑓𝑦𝑆 =  𝜓,
                                                   (1)  

exists and it is also a first integral of 𝑋, (see [108]). Our result is an extension of a previous 

one of 𝑆. Lie, see Theorem 2.48 in [125] or Proposition 1.1 in [133], which just covers the 

case ∅′ =  0.  
Observe that another interpretation of part 2 of Theorem (5.1.2) is the following: if for a 

given Hamiltonian vector field ∇𝐻⊥ > = (−𝐻𝑦 , 𝐻𝑥) we are able to find an 𝑈 such that 

[∇𝐻⊥, 𝑈] =  𝜇𝐻 ∇𝐻
⊥, then if we consider 𝜇 =  𝜇𝐻 (∇𝑉 ∙  𝑈)/𝑉 it is satisfied that [𝑋, 𝑈] =

 𝜇𝑋, where 𝑋 =  𝑉∇𝐻⊥.  

We also want to comment that it is very easy to find a formal solution 𝑈 = (𝑅, 𝑆) of 𝑅𝐻𝑥 +
 𝑆𝐻𝑦 =  𝐻, when 𝑑𝑖𝑣 𝑋 ≠ 0, It suffices to take 𝑈 = (𝑅, 𝑆) = (𝑉𝑦 , 𝑉𝑥)/𝑑𝑖𝑣 𝑋, Nevertheless, 

in most cases 𝑈 is a not well defined vector field in a neighbourhood of 𝑝 and it is not useful. 

The freedom to choose ∅ is a key point of the method proposed to obtain a well-defined 𝑈 

in 𝒫, 
The first part is devoted to prove Theorem (5.1.2). In the second part we apply it to prove 

the monotonicity of the period function for several families of planar systems. Hence, once 

an 𝑈 and a 𝜇 are obtained we are interested to prove that integral (2) has constant sign. In 

the systems that we study it sometimes happens that the 𝜇 that we have makes difficult these 

computations. A second step of our way of approach is try to get a more suitable 𝜇.  
From a geometrical point of view, the vector field 𝑈 is the infinitesimal generator of the Lie 

group of symmetries of 𝑋. As usual in Lie theory, we call the set of infinitesimal generators 

the normalizer of 𝑋, while the set of commuting vector fields is called the centralizer, see 

[132]. Accordingly, our work can be seen as giving the same dynamical interpretation for 

normalizers than Sabatini’s and Villarini’s results do for centralizers. Moreover, the set of 

normalizers of a given vector field 𝑋 has the nice structure that we show in the following 

proposition.  

Proposition (5.1.3) gives a practical tool. For proving monotonicity one has to figure 

out in each case whether it is better to compute the value of ∫   𝜇 as Theorem (5.1.2) 

suggests, or to find a new element of the normalizer whose corresponding m is more 

suitable. Note that, in general, ∫   𝜇 ≠  ∫  𝜇∗  on the same periodicorbit of the period annulus 

because of the different parameterization given by the first integral 𝜓, However, the sign is 

preserved and so are the deductions on the qualitative behaviour of the period function.  

We can summarize our approach to study the monotonicity of the period function in a 

method which, as far as we know, is a new one:  

A method in three steps for proving the monotonicity of the period function:  

(i) Try to compute 𝑈 and 𝜇 defined in all the period annulus of 𝑝 and satisfying [𝑋, 𝑈] =
 𝜇𝑋. If 𝑋 admits an integrating factor, use part 2 of Theorem (5.1.2).  

(ii) Try to control the sign of the integral of 𝜇 which appears in (2). If you do not succeed 

then pass to the next steep.  

(iii) Use Proposition (5.1.3) to get a more suitable 𝜇, Go again to step (ii).  
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The most interesting examples to which we have been able to apply our method. Some 

of the results that we get were already known but, even in these cases, we want to stress how 

our method enables to shorten the proofs.  

We study Hamiltonian systems of type 𝐻(𝑥, 𝑦) =  𝐹(𝑥) +  𝐺(𝑦) and give some 

applications to physical problems. We go through a miscellanea of examples: Lotka–

Volterra centre, quadratic systems, Lie´nard systems and polynomial Hamiltonian systems 

with homogeneous nonlinearities. Maybe the clearest application of our method is given in 

Proposition (5.1.16), where we prove that the period function of a family of quadratic 

systems is decreasing.  

We end this introduction by noticing that from part 1 of Theorem (5.1.2) it can be deduced 

the following result on isochronicity:  

Corollary (5.1.1)[106]: Consider a 𝒞1 vector field 𝑋 having a centre at a point 𝑝 and period 

annulus 𝑃 ⊂ ℝ2. Let 𝑈 be a vector field 𝑈 ∈ 𝒞1 (𝒫), transversal to 𝑋 in 𝒫{𝑝}, and such that 

[𝑋, 𝑈] =  𝜇𝑋 for some smooth scalar function 𝜇 ∶  𝒫 → ℝ. Let 𝛾 = {(𝑥(𝑡), 𝑦(𝑡)), 𝑡 ∈=

[0, 𝑇𝛾]} be any periodic orbit of 𝑋 in 𝒫.  

Then, if there is a neighbourhood of 𝑝 such that for any g contained in it,  

∫  

𝑇𝛾

0

  𝜇(𝑥(𝑡), 𝑦(𝑡)) 𝑑𝑡 =  0,  

the centre is isochronous.  

In [121] the converse of the above corollary is also proved and some applications of it are 

given.  

Theorem (5.1.2)[106]: Consider a 𝒞1 vector field 𝑋 having a centre at a point 𝑝 with period 

annulus 𝒫, The following statements hold:  

(i) Let 𝑈 be a vector field, 𝑈 ∈ 𝒞1 ð𝑃Þ; transversal to 𝑋 in 𝑃\{𝑝}, and such that [𝑋, 𝑈] =
 𝜇𝑋 on 𝒫, for some 𝒞1 function 𝜇 ∶  𝒫 ⊂ ℝ2  → ℝ: Denote by 𝜓 =  𝜓(𝑠) a trajectory of 𝑈 

such that 𝜓(𝑠0𝜓 ∈ 𝒫, Then,  

𝑇′(𝑠0) =  ∫  

𝑇(𝑠0)

0

  𝜇(𝑥(𝑡), 𝑦(𝑡))𝑑𝑡,                                    (2)  

where (𝑥(𝑡)𝑦(𝑡)) is the orbit of 𝑋 such that (𝑥(0)𝑦(0)) =  𝜓(𝑠0) and 𝑇(𝑠) the period of 

the orbit of 𝑋 passing through 𝜓(𝑠).  
(ii) Assume that  

(a) the vector field 𝑋 = (𝑃, 𝒬) admits an integrating factor 𝑉(𝑥, 𝑦)−1 in 𝒫; that is, there 

exist 𝑉(𝑥, 𝑦) and 𝐻(𝑥, 𝑦) such that 𝑋 = (𝑃, 𝒬) =  𝑉(−𝐻𝑦 , 𝐻𝑥) in 𝒫;  

(b) there exist scalar functions 𝑅 and 𝑆 such that 𝑅𝐻𝑥 +  𝑆𝐻𝑦 =  ∅(𝐻), for some smooth 

scalar function ∅.  
Then, by taking the vector field 𝑈 = (𝑅, 𝑆), it satisfies [𝑋, 𝑈] =  𝜇𝑋, with  

𝜇(𝑥, 𝑦) =  𝑑𝑖𝑣 𝑈 −
∇𝑉 ∙  𝑈

𝑉
 ∅′ (𝐻)                                     (3)  

Proof. Part 1: Let 𝛾(𝑡) be a periodicorbit of period 𝑇 of 𝑋, and 𝑝 =  𝛾(0) =  𝛾(𝑇). Take a 

transversal ∑   given by  

𝑔 ∶ (−𝜀, 𝜀) →∑  , 

being 𝑔(𝑠) a solution of 𝑥′ =  𝑈(𝑥) such that 𝑔(0) =  𝑝; that is, 𝑔′(𝑠) =  𝑈(𝑔(𝑠)).  
Consider as well the return map of 𝑋 defined on ∑  :  
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𝜋 ∶  ∑  
0
⊂∑ →∑ .  

If we call 𝜑(𝑡, 𝑥) the flow defined by 𝑋, then  

𝜋(𝑔)(𝑠)) =  𝜑(𝑇 +  𝑡(𝑠), 𝑔(𝑠))   
Moreover, observe that in case that 𝛾(𝑡) is a closed orbit of the interior of a period annulus, 

𝑇 +  𝜏 (𝑠) is the period of the closed orbit passing through 𝑔(𝑠). In this notation, it is easy 

to see that the monodromy matrix of the variational equation of the return map in the basis 
{𝑋(𝑝), 𝑈(𝑝)} is  

(
1       − 𝜏′ (0)

0             1
) .  

A key point of our proof is to note that the hypothesis [𝑋, 𝑈] =  𝜇𝑋 implies that 

𝑌(𝑡) ≔  𝑈(𝛾(𝑡)) − { ∫  

𝑡

0

   𝜇(𝛾(𝑢)) 𝑑𝑢 }  𝑋(𝛾(𝑡)), 

is a solution of the variational equation, since  

𝑑

𝑑𝑡
 𝑌(𝑡) =  𝐷𝑈(𝛾(𝑡))𝑋(𝛾(𝑡𝛾 𝜇(𝛾(𝑡))𝑋(𝛾(𝑡)) − ∫  

𝑡

0

 𝜇(𝛾(𝑢))𝑑𝑢 𝐷𝑋(𝑔(𝑡))𝑋(𝛾(𝑡))

=  𝐷𝑋(𝛾(𝑡))𝑈(𝛾(𝑡)) +  𝜇(𝛾(𝑡))𝑋(𝛾(𝑡))𝑢(𝛾(𝑡))𝑋(𝛾(𝑡))

− ∫  

𝑡

0

𝜇(𝛾(𝑢))𝑑𝑢 𝐷𝑋(𝛾(𝑡))𝑋(𝛾(𝑡)) =  𝐷𝑋(𝛾(𝑡))𝑌(𝑡) 

Finally, by observing that 𝑌(0) =  𝑈(𝑝) and 𝑌(𝑇) =  𝑈(𝑝) − ∫  
𝑇

0
 𝜇(𝛾(𝑡)) 𝑑𝑡𝑋(𝑝) we get 

that  

(
∫  
𝑇

0
𝜇(𝛾(𝑡))𝑑𝑡

1
)   =   (

1    − 𝜏′ (0)

0             1
)    (

0

1
)  

and so,  

𝜏′ (0) = ∫  

𝑇

0

 𝜇(𝛾(𝑡))𝑑𝑡,  

as we wanted to prove.  

Part 2: Let 𝑉−1 be an integrating factor of 𝑋, that is, 𝑋 =  𝑉(−𝐻𝑦 , 𝐻𝑥) for some Hamiltonian 

function 𝐻. Let us take the vector field 𝑈 = (𝑅, 𝑆) satisfying 𝐻𝑥𝑅 + 𝐻𝑦𝑆 =  ∅(𝐻). Then, 

straightforward computations give  

[𝑋, 𝑈 ] =  (
𝑅𝑥 𝑅𝑦
𝑆𝑥 𝑆𝑦

)  (
−𝑉𝐻𝑦
+𝑉𝐻𝑥 

) − 𝑉 (
− 𝐻𝑦𝑥𝐻𝑦𝑦
𝐻𝑥𝑥  𝐻𝑥𝑦 

) (
𝑅

𝑆
) 

−(
− 𝑉𝑥𝐻𝑦 𝑉𝑦𝐻𝑦
𝑉𝑥𝐻𝑥  𝑉𝑦𝐻𝑥

)(
𝑅

𝑆
) 
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= (
−(𝑅𝑥 + 𝑆𝑦)𝑉𝐻𝑦 + (𝑅𝑉𝑥 +  𝑆𝑉𝑦)𝐻𝑦 +  𝑉(𝑅𝑦𝐻𝑥 + 𝑅𝐻𝑦𝑥 +  𝑆𝐻𝑦𝑦 + 𝑆𝑦𝐻𝑦)

(𝑅𝑥 + 𝑆𝑦)𝑉𝐻𝑥 − (𝑅𝑉𝑥 +  𝑆𝑉𝑦 +𝐻𝑥 −  𝑉(𝑅𝑥𝐻𝑥 +  𝑅𝐻𝑥𝑥 +  𝑆𝐻𝑥𝑦 + 𝑆𝑥𝐻𝑦)
)  

= (
  −𝑑𝑖𝑣(𝑈)𝑉𝐻𝑦 + (∇𝑉 ∙  𝑈)𝐻𝑦 +  𝑉

ð
ð𝑦
 ∅′(𝐻)

𝑑𝑖𝑣(𝑈)𝑉𝐻𝑥 + (∇𝑉 ∙  𝑈)𝐻𝑥 +  𝑉
ð
ð𝑦
 ∅′(𝐻)

)

=  (𝑑𝑖𝑣 𝑈 −
∇𝑉 ∙ 𝑈

𝑉
  ∅′(𝐻))   𝑋,  

and thus the desired result.  

Proposition (5.1.3)[106]: Consider the set of normalizers of 𝑋,  
𝒩 (𝑋) = {𝑈: [𝑋, 𝑈] =  𝜇𝑋 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝜇},  

and take 𝑈 ∈ 𝒩 (𝑋) that satisfies [𝑋, 𝑈] =  𝜇𝑋. Then, if 𝑈∗ ∈ 𝒩 (𝑋), it can be written as 

𝑈 =  𝜓𝑈 +  𝑔𝑋, where 𝜓 is either a first integral of 𝑋 or a non-zero constant and g is any 

𝐶1 function. Moreover, [𝑋, 𝑈∗] =  𝜇∗𝑋, with 𝜇∗ = (𝜓𝜇 + ∇𝑔𝑡 ∙  𝑋).  
Proof. First of all, we observe that  

[𝑋, 𝑈] = [𝑋,𝜓𝑈 +  𝑔𝑋] =  𝜓[𝑋, 𝑈] + (∇𝜓𝑡 𝑋)𝑈 +  𝑔[𝑋, 𝑋] + (∇𝑔𝑡 𝑋)𝑋
= (𝜓𝜇 + ∇𝑔𝑡 𝑋)𝑋,                                                                                       (4)  

where in the last step we use that [𝑋, 𝑈] =  𝜇𝑋 and that 𝜓 is either a first integral of 𝑋 or a 

non-zero constant.  

Last assertion tells us that any 𝑈∗ of the prescribed type is a normalizer of 𝑋, and also gives 

the formula for 𝜇, The property that any normalizer can be written in this way follows from 

the fact that 𝑈 and 𝑋 form a basis of ℝ2 just because they are transversal. Then, there exist 

f and g such that 𝑈 =  𝑓𝑈 +  𝑔𝑋. Equality (4) with 𝜓 = 𝑓 and 𝑈∗ ∈ 𝒩 (𝑋) forces ∇𝑓𝑡 𝑋 =
 0, which implies that 𝑓 is either a first integral of 𝑋 or a non-zero constant (if it was zero, 

𝑈 would not be transversal to 𝑋), as we wanted to prove.  

We present some results and comments related with Theorem (5.1.2) and Proposition 

(5.1.3). The first one is about a method given in [110] to compute m and 𝑈 when the first 

integral of 𝑋 is a polynomial.  

The first one dealing with the general properties (finding normalizers and adapting 

part 2 of Theorem (5.1.2) to the specific family), the second one containing some examples 

and applications to physical problems and the third one with the routine computations. This 

family has been also studied in [118], [128], [130].  

We start with some notation and the technicalities to look for normalizers of the vector field 

induced by 𝐻(𝑥, 𝑦) =  𝐹(𝑥) +  𝐺(𝑦).  
Define the numbers 𝑥𝐿 = max{𝑥 < 0 ∶  𝐹

′(𝑥) =  0} 𝑥𝑅 = min{𝑥 > 0 ∶  𝐹
′(𝑥) = } 𝑦𝐿  =

max{𝑦 < 0 ∶  𝐺′(𝑦) =  0} , 𝑦𝑅 =  min {𝑦 > 0 ∶  𝐺
′(𝑦) =  0}If some of these sets is empty, 

then the corresponding number is ±∞(−𝑓𝑜𝑟 𝐿; + 𝑓𝑜𝑟 𝑅). Denote also by ℛ the rectangle 

ℛ = (𝑥𝐿, 𝑥𝑅) × (𝑦𝐿 , 𝑦𝑅) ⊂ ℝ
2.  

Lemma (5.1.4)[106]: Let 𝐹 and 𝐺 two real analytic functions at 0, such that 𝐹(0) =
 𝐺(0) =  0 and they have a non-degenerate minimum at 0. Then,  

(i) Let X be the vector field given by  

{
𝑥̇ =  𝐺′(𝑦),

𝑦̇ =  𝐹′(𝑥),
                                                             (5)  

and 𝑈 the vector field  



153 

𝑈 =

{
 
 

 
 𝑥̇ =

𝐹(𝑥)

𝐹′(𝑥)
,

𝑦̇ =
𝐺(𝑦)

𝐺′(𝑦)
,

  

then 𝑈 is well-defined in ℛ and satisfies [𝑋, 𝑈] = 𝜇𝑋, where  

𝜇(𝑥, 𝑦) =  𝑑𝑖𝑣 𝑈 − 1 =
𝑑

𝑑𝑥
 (
𝐹(𝑥)

𝐹′(𝑥)
) + (

𝑑

𝑑𝑦

𝐺(𝑦)

𝐺′(𝑦)
) −  1,  

(ii) The origin of (5) is a centre, which period annulus is contained in ℛ, and the associated 

period function 𝑇 satisfies:  

𝑇′(𝑠) =  ∫  

𝑇(𝑠)

0

   𝜇(𝑥 (𝑡), 𝑦(𝑡)) 𝑑𝑡,  

where s refers to the parameterization of the orbits of 𝑈.  
Proof. The vector field 𝑈 is well-defined in ℛ since 𝐹 and 𝐺 are analytical with a non-

degenerate minimum at 0. Furthermore, the non-degeneracy of functions 𝐹 and 𝐺 guarantees 

the presence of a centre. Notice that the orbits of the period annulus of the origin cannot 

intersect the lines that form the boundary of ℛ.  
Straightforward computations from part 2 of Theorem (5.1.2) with 𝑉(𝑥, 𝑦) ≡   1 and 

∅(𝑥) =  𝑥 lead to the desired result.  

Observe that for the function m given in Lemma (5.1.4), we can equally separate the 

contribution of 𝐹 and 𝐺 in the expression and extract some useful sufficient conditions for 

monotonicity avoiding integration of m: According to this goal, given  

a function 𝐹 and following the previously quote, we define  

𝜈𝐹  (𝑥) =  𝐹
′(𝑥)2 − 2𝐹(𝑥)𝐹′′(𝑥),  

𝜑𝐹(𝑥) = (
𝐹(𝑥)

𝐹′(𝑥)2
) =  𝜈𝐹  (𝑥)/𝐹

′(𝑥)3.  

This notation suggests to consider the following subclasses of 𝒞2 real functions of one 

variable:  

Definition (5.1.5)[106]: Let 𝐽 ∈ 𝒞2 (𝑂, ℝ) for some Ω ⊆ ℝ: We say that 𝐽 is  

(i) of class ℐ if either 𝜈𝐽 ≥ 0 or 𝜑𝐽 is increasing in Ω (𝜈𝐽 ≢ 0),  

(ii) of class 𝒩 if either 𝜈𝐽  ≡  0 or 𝜑𝐽 is constant in Ω,  

(iii) of class 𝒟 if either 𝜈𝐽  ≤ 0 or 𝜑𝐽 is decreasing in Ω (𝜈𝐽 ≢ 0).  

We also say that a pair of functions {𝑙1, 𝑙2} form a ℒ1– ℒ2 pair if 𝑙1 is of class ℒ1 and ℒ2 is 

of class ℒ2, where ℒ𝑗 stands for ℐ,𝒩 or 𝒟.  

Since the initial value problem 𝜈𝐹  (𝑥) =  0 with 𝐹(0) = 𝐹′(0 ) =  0 has the only solution 

𝐹(𝑥) =  𝑘𝑥2, 𝑘 ∈ ℝ; class 𝒩 becomes quite artificial. We keep it as a class only for 

aestheticpurposes.  

On the other hand, under the hypotheses of Lemma (5.1.4), the periodicorbits of the period 

annulus of the origin are contained in ℛ, Notice also that in ℛ, the horizontal and vertical 

isoclines are, respectively, the axes 𝑥 =  0 and 𝑦 =  0.  
Definition (5.1.6)[106]: Let 𝛾 be a periodicorbit of the period annulus of the origin of 

system (5). We denote by (𝑥𝑀, 0), (0, 𝑦𝑀), (𝑥𝑚, 0) and (0, 𝑦𝑚) the intersections of 𝛾 with 

the axes, see Fig. 1.  
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Fig. (1)[106]: Definitions of 𝑥𝑚, 𝑥𝑀, 𝑦𝑚 and 𝑦𝑀 . 

Next proposition gives sense to these definitions and shows that the functions 𝜑 and 𝜈 are 

suitable to find simpler ways to prove monotonicity.  

We remark that the possibilities ℐ–𝒟 and 𝒟– ℐ are not reflected in Proposition (5.1.7).  

In principle, these situations could lead either to isochronous centres, or periodincreasing, 

or period-decreasing or even more complicated behaviours, see the ℐ–𝒟 family of systems 

explored in Fig. 2 (the fact that these systems are of type ℐ–𝒟 is proved in Proposition 

(5.1.15)). Of course, it is also possible that the functions 𝐹 and 𝐺 that define system (5), are 

not of any of the classes considered in Definition (5.1.5).  

Proposition (5.1.7)[106]: (see also [118] for the second part). Consider the Hamiltonian 

system (5) generated by 𝐻(𝑥, 𝑦) =  𝐹(𝑥) +  𝐺(𝑦), with 𝐹 and 𝐺 two real analytic functions 

at 0, such that 𝐹(0) =  𝐺(0) =  0 and they have a non-degenerate minimum at 0. Then, the 

following hold:  

(i) The function m of Lemma (5.1.4) is defined in the rectangle ℛ and can be written as 

 𝜇(𝑥, 𝑦) =  𝜈𝐹  (𝑥)
1

2𝐹′(𝑥)2 
+ 𝜈𝐺(𝑦)

1

2𝐺′(𝑦)2
.                    (6) 

(ii) By using the notation introduced in Definition (5.1.6) and in Fig. 1, the derivative of the 

period function in the period annulus of the origin can be written as  

∫  

𝑇(𝑠)

0

   𝜇(𝑥(𝑡), 𝑦(𝑡))𝑑𝑡

=
1

2
 ∫  

𝑦𝑀

𝑦𝑚

   [𝜑𝐹  (𝑥+(𝑦)) − 𝜑𝐹  (𝑥(𝑦))] 𝑑𝑦

+
1

2
 ∫  

𝑥𝑀

𝑥𝑚

  [ 𝜑𝐺(𝑦+(𝑥)) − 𝜑𝐺(𝑦(𝑥))] 𝑑𝑥                                (7)  

(iii) The centre at the origin  

(a) is isochronous if {𝐹, 𝐺} form 𝑎 𝒩 –𝒩 pair.  

(b) has an increasing period function if {𝐹, 𝐺} form one of the following pairs: 

ℐ– ℐ,𝒩 – ℐ, ℐ–𝒩 .  
(c) has a decreasing period function if {𝐹, 𝐺} form one of the following pairs: 

𝒟–𝒟,𝒩 –𝒟, 𝒟–𝒩 .  
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Proof. Part 1 of the proposition follows from the equalities 𝜇(𝑥, 𝑦) = (
𝐹(𝑥)

𝐹′(𝑥)
)
′

−
1

2
+

(
𝐺(𝑦)

𝐺′(𝑦) 
)
′

−
1

2
= −

1

2

𝐹(𝑥)𝐹′′(𝑥)

𝐹′(𝑥)2
+
1

2

𝐺(𝑦)𝐺′′(𝑦Þ)

𝐺′(𝑦)2
= 𝜈𝐹

(𝑥)1

2𝐹′(𝑥)2
+
𝜈𝐺(𝑦)1

2𝐺′(𝑦)2
 

Note also that 𝜇(𝑥, 𝑦) =
1

2
(𝜑𝐹  (𝑥)𝐹

′(𝑥) + 𝜑𝐺(𝑦)𝐺
′(𝑦)). 

 
Fig. (2)[106]: Numerical computations of the period function associated to 𝐻(𝑥, , 𝑦) =
(𝑥2/2 + 𝑥3/3) + 𝑦2/2 + 𝑦4/4, for different values of 𝑘, 𝑘 =  1, 1,17525, 1,5, 2, 5, 10 

from above to below. While for 𝑘 =  1 the period is increasing, from 𝑘 ≈ 1.17525 to some 

value it presents a minimum (so inappreciable in the scale of the figure that the centre seems 

to be isochronous) and it is decreasing for larger values of k like 𝑘 =  5, 10. 
 

To prove part 2, take a periodicorbit 𝛾 of (5), for some value ℎ of the Hamiltonian. Call 

𝑥𝑚, 𝑥𝑀, 𝑦𝑚 and 𝑦𝑀 the intersections of 𝛾 with the axes, as shown in Fig. 1. For each y; call 

𝑥−(𝑦) and 𝑥+(𝑦) its two pre-images and, similarly, define 𝑦−(𝑥) and 𝑦+(𝑥). Then, using 

the hypotheses on 𝐹 and 𝐺 and the differential equations themselves, we obtain,  
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∫  

𝑇(𝑠)

0

   𝜇(𝑥(𝑡), 𝑦(𝑡))𝑑𝑡 =  ∫  

𝑇(𝑠)

0

  [
1

2
( 𝜑𝐺(𝑥)𝐹

′(𝑥) + 𝜑𝐺(𝑦)𝐺′(𝑥))]
𝑥=𝑥(𝑡),𝑦=𝑦 (𝑡)

 𝑑𝑡

= ∫  

𝑦𝑀

𝑦𝑚

  (
1

2
 𝜑𝐹  (𝑥))

𝑥=𝑥+(𝑦)

 𝑑𝑦 − ∫  

𝑦𝑀

𝑦𝑚

  (
1

2
 𝜑𝐹  (𝑥))

𝑥=𝑥+(𝑦)

 𝑑𝑦

+ ∫  

𝑦𝑀

𝑦𝑚

  (
1

2
 𝜑𝐹  (𝑦))

𝑦=𝑦+(𝑥)

 𝑑𝑥 − ∫  

𝑥𝑀

𝑥𝑚

  (
1

2
 𝜑𝐹  (𝑦))

𝑦=𝑦−(𝑥)

 𝑑𝑥

=
1

2
  ∫  

𝑦𝑀

𝑦𝑚

 [𝜑𝐹  (𝑥−(𝑦)) − 𝜑𝐹  (𝑥−𝑦))𝑑𝑦

+
1

2
 ∫  

𝑥𝑀

𝑥𝑚

[𝜑𝐺(𝑦 + (𝑥)) − 𝜑𝐺(𝑦(𝑥))] 𝑑𝑥. 

The statements of part 3 mainly follow from the fact that the two variables play separate 

roles. Let us suppose, for instance, that 𝐹(𝑥Þ is of class I; both if 𝜈𝐹 ≥ 0 and if 𝜑𝐹 is 

increasing, the term 
1

2
 ∫  
𝑦𝑀
𝑦𝑚

(𝜑𝐹  (𝑥+(𝑦)) − 𝜑𝐹  (𝑥−𝑦))) 𝑑𝑦 will be strictly positive.  

Similar reasonings apply for 𝐺(𝑦) and for the other two different classes of functions, 𝒩 

and 𝒟.  
Bearing in mind the definitions of classes ℐ,𝒩 and 𝒟, in the next result we group all 

the functions that we will need from now on along so that the remaining results will not need 

detailed proofs. The list does not pretend to be exhaustive and tries to show the strength and 

clearness of the method.  

Theorem (5.1.8)[106]: The 54 parametric families of Hamiltonian systems associated either 

to 𝐻(𝑥, 𝑦) =  𝑐𝐼𝑖(𝑥) +  𝑘𝐼𝑗(𝑦), for 𝑖 =  1,… . ,9, 𝑖 ≤ 𝑗 ≤ 9; or to 𝐻(𝑥, 𝑦) =  𝑐𝐼𝑖(𝑥) +

 𝑘𝑦2, 𝑓𝑜𝑟 𝑖 =  1,… . , 9 and 𝑐 > 0, 𝑘 > 0, have increasing period function in the period 

annulus of the origin.  

The 5 parametric families of Hamiltonian systems associated either to 𝐻(𝑥, 𝑦) =  𝑐𝐷𝑖(𝑥) +
 𝑘𝐷𝑗(𝑦), for 𝑖 =  1,… . ,2, 𝑖 ≤ 𝑗 ≤ 2, or to 𝐻(𝑥, 𝑦) =  𝑐𝐷𝑖(𝑥) +  𝑘𝑦

2, for 𝑖 =  1,… . . , 2, and 

𝑐 > 0, 𝑘 > 0, have decreasing period function in the period annulus of the origin.  

Proof. The theorem follows directly from Propositions 10(iii) and 11. Only a nuance in the 

case of function 𝐷1 must be underlined: note that when 𝑛 > 1 the centre is degenerate, which 

breaks the first condition of Lemma (5.1.4). However, both the transversal vector field 𝑈, 
and the function m are well-defined and the proofs and conclusions are still valid. Observe 

that in this case—as in any degenerate centre— the period function tends to infinity when 

the periodic orbits tend to the critical point.  

The general family of Hamiltonian systems (5) treated has connections with many 

physical problems and other well-known examples. Among the 59 cases presented in 

Theorem (5.1.8), we would like to stress how our method works for the non-forced 

pendulum, some applications to celestial mechanics and to relativistic mechanics, the 

Lotka–Volterra model and a number of potential systems. First of all, using function 𝐼6, we 

get:  

Example (5.1.9)[106]: The non-forced pendulum, the Hamiltonian system with  
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𝐻(𝑥, 𝑦) =
𝑦2

2
− 𝑐𝑜𝑠 𝑥 +  1,  

has increasing period.  

A less trivial potential Hamiltonian arises when using function 𝐷1:  

Example (5.1.10)[106]: The potential Hamiltonian systems with 𝐻(𝑥, 𝑦) =
𝑦2

2
+ 𝑎𝑚

𝑥2𝑚

2𝑚
+

 𝑎𝑛
𝑥2𝑛

2𝑛
 , with 𝑎𝑚 ≥ 0, 𝑎𝑛 > 0 and 𝑚 > 𝑛 ≥ 1 have decreasing periods.  

The features of 𝐼7(𝑧) =  𝐷2(𝑧) = (𝑝 +  𝑞𝑧)
𝑎 − 𝑝𝑎 provide two interesting applications.  

When 𝑎 =
1

2
; the resulting Hamiltonian is used in relativistic mechanics, where the problem 

of finding constant period oscillators (isochronous centres) has some interest, see [124] and 

the references therein. The authors find numerical approximations of a function 𝑉 such that 

the Hamiltonian 𝐻(𝑥, 𝑦) = 𝑉(𝑥) +  𝐾(𝑦) where 𝐾(𝑦) =  √𝑚2 + 𝑦2/𝑐2 −  𝑚, is 

isochronous. We think also that a nice way to find isochronous centres would be looking for 

𝑉 such that 𝜈𝑉 compensates 𝜈𝐾 : Here we give an example of decreasance of the period 

function.  

Example (5.1.11)[106]: The period function associated to the centre of the Hamiltonian 

system given by 𝐻(𝑥, 𝑦) =
1

2
 𝑥2 + √𝑚2 + 𝑦2/𝑐2 −𝑚 is decreasing.  

The function 𝐼7(𝑧) when 𝑎 =
1

2
 leads to a Hamiltonian used in celestial mechanics to study 

the Sitnikov motion problem, see [109].  

Example (5.1.12)[106]: The period function associated to the centre of the Hamiltonian 

system given by 𝐻(𝑥, 𝑦) =
1

2
𝑦2 −

1

√𝑥2+
1

4

 +  2 is increasing.  

Remark (5.1.13)[106]: Theorem (5.1.8) covers many of the examples of Chow and Wang, 

see [117], where they study, for potential Hamiltonian systems, not only the first derivative 

of the period function but also give an expression for the second 

 

Fig. (3)[106]: The phase portrait of the Hamiltonian system derived from 𝐻(𝑥, 𝑦) =
𝑧6

6
−

𝑧4

2
+
𝑧2

2
+
𝑦2

2
. 
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derivative. In the current context, potential Hamiltonian systems are equivalent to 𝐺ð(𝑦) =
 𝑦2/2. In particular, taking 𝐹(𝑥) =  𝐼1(𝑥), 𝐼2(𝑥), 𝐼3(𝑥), 𝐼4(𝑥) and 𝐼5(𝑥) we obtain the 

increasing periods showed in [117] in Examples 1, 2, 3.a, 3.b and 5, respectively; and taking 

𝐹(𝑥) =  𝐷1(𝑥) with {𝑎𝑚 =  0, 𝑛 =  2} and {𝑚 =  4, 𝑛 =  2, 𝑎𝑚 = 𝑎𝑛 =  1} we obtain the 

decreasing periods given in [117] in Examples 3.d and 3.c (𝑏 =  0), These are all the 

examples where they succeed to prove monotonicity.  

The case when 𝐹(𝑥) =  𝐼5(𝑥) =
𝑧6

6

𝑧4

2
+
𝑧2

2
  and 𝐺(𝑦) =

𝑦2

2
  deserves some attention. 

The vector field has exactly three critical points: the centre at the origin and two cusps at 
(±1, 0). All the orbits of the vector field are closed, except for the two heteroclinics that 

link the two cusps, see Fig. 3. We have proved that the period function of the origin’s period 

annulus is increasing; moreover, it must go to infinity as it approaches to those heteroclinics. 

Outside the heteroclinics, the normalizer U (see Lemma (5.1.4)) is no longer transversal to 

the vector field and so, we cannot deduce that the period function is increasing. Indeed, there 

are strong numerical evidences that it is decreasing as the orbits go to infinity.  

The increasance of periods for the Lotka–Volterra predator–prey system is one of the 

most known results related to periods in planar ODEs. It was first stated by Hsu [123], but 

some gap was found in the proof. Afterwards, it has been proved [127], [130], [134].  

Example (5.1.14)[106]: The centre of the classical Lotka–Volterra predator–prey system, 

{
𝑥̇ =  𝑥(𝑎 − 𝛽𝑦),

𝑦̇ =  𝑦(𝑔𝑥 −  𝑚),
                                                  (8) 

has an increasing period function.  

Here, we give a short proof of such a fact. By means of a change of variables 𝑢 =
 log ((𝛾𝑥)/𝑚) 𝑣 =  𝑙𝑜𝑔((𝛽𝑦)/𝑎), the Lotka–Volterra system can be transformed into a 

Hamiltonian system of type 𝐻(𝑢, 𝑣) =  𝐹(𝑢) +  𝐺(𝑣) with 𝐹(𝑢) =  𝑎(𝑒𝑢 − 𝑢 −  1) and 

𝐺(𝑣) =  𝑚(𝑒𝑣 − 𝑣 −  1), Then, Theorem (5.1.8) with function 𝐼1 gives the result.  

However, an advantage of our method is that we do not need to do any transformation 

and we can apply it directly to the original system.  

We devote the rest to prove all the cases listed in Proposition (5.1.15). The proof is quite 

technical and straightforward.  

Proposition (5.1.15)[106]: (i) The following functions are of class ℐ in Ω:  
(a) 𝐼1(𝑧) =  𝑒

𝑧 −  𝑧 −  1, Ω = ℝ.  
(b) 𝐼2(𝑧) =  𝑧

3/3 + 𝑧2/2,Ω = (−5/2,+∞).  

(c) 𝐼3(𝑧) = 𝑧
2 (
𝑧2

4
+
𝑎+1

3
 𝑧 +

𝑎

2
)  , 𝑤𝑖𝑡ℎ 0 < 𝑎 < 1 𝑎𝑛𝑑 Ω = (−𝑎, 1).  

(d) 𝐼4(𝑧) =  𝑧
2  (

𝑧2

4
+
𝑎+1

3
 𝑧 +

𝑎

2
)  𝑤𝑖𝑡ℎ 0 < 𝑎 ≤ 1 𝑎𝑛𝑑 Ω = (−𝑎 +  ∞).  

(e) 𝐼5(𝑧) =
𝑧6

6

𝑧4

2
+
𝑧2

2
 , Ω = ℝ\{−1, 1}.  

(f) 𝐼6(𝑧) =  1 −  𝑐𝑜𝑠 𝑧, Ω = ℝ:  
(g) 𝐼7(𝑧) = (𝑝 +  𝑞𝑧)

𝑎 − 𝑝𝑎 with 𝑝, 𝑞 positive real numbers and 𝑎 ∉ [0, 1)Ω = ℝ.  

(h) 𝐼8(𝑧) =
𝑧2

1+𝑧2
, +𝑧2 = ℝ,  

(i) 𝐼9(𝑧) =  𝑧 arctan 𝑧 −
1

2
 ln(1 + 𝑧2)Ω = ℝ.  

(ii) The following functions are of class 𝒟 in Ω:  

(a) 𝐷1(𝑧) =  𝑎𝑚
𝑧2𝑚

2𝑚
+ 𝑎𝑛

𝑧2𝑛

2𝑛
 , 𝑤𝑖𝑡ℎ 𝑎𝑛 > 0, 𝑎𝑚 ≥ 0 𝑎𝑛𝑑 𝑚 > 𝑛 ≥ 1,Ω = ℝ:  

(b) 𝐷2(𝑧) = (𝑝 +  𝑞𝑧)
𝑎 − 𝑝𝑎 with 𝑝, 𝑞 positive real numbers and 𝑎 ∈ (0, 1)Ω = ℝ:  
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Proof. To avoid cumbersome notations, in the whole proof we drop the subscripts for 𝜑 and 

𝜈.  
1. Functions of class ℐ.  

(a) For 𝐼1(𝑧) =  𝑒
𝑧 −  𝑧 −  1,

𝑑

𝑑𝑧
𝜑(𝑧) =

𝑒𝑧

(𝑒𝑧−1)4 
(𝑒2𝑧 − 4𝑒𝑧 +  4𝑧𝑒𝑧 +  2𝑧 +  5). 

The function 𝑒2𝑧 − 4𝑒𝑧 +  4𝑧𝑒𝑧 +  2𝑧 +  5 is always a negative function and so 𝜑 

increasing.  

(b) For 𝐼2(𝑧) =  𝑧
3/3 + 𝑧2/2,

𝑑

𝑑𝑧
 𝜑(𝑧) =

1

3

2𝑧+5

(𝑧+1)4
.  

(c) Consider 𝐼3(𝑧) = −𝑧
2  (

𝑧2

4
+
𝑎−1

3
 𝑧 −

𝑎

2
  ), with 0 < 𝑎 < 1 and 𝑎 < 𝑧 < 1. Elementary 

computations give:  
𝑑

𝑑𝑧
 𝜑(𝑧) =

1

6
 

𝑃(𝑧, 𝑎)

(𝑧 +  𝑎)4(𝑧 − 1)4
,  

where 𝑃(𝑧, 𝑎) = (−10 +  4𝑧)𝑎3 + (11 −  42𝑧 +  16𝑧2)𝑎2 + (24𝑧3 − 10 − 68𝑧2 +
 42𝑧)𝑎 −  4𝑧 −  24𝑧3 +  16𝑧2 +  9𝑧4. The proof is finished in (d) together with that of 𝐼4.  

(d) For 𝐼4(𝑧) =  𝑧
2  (

𝑧2

4
+
𝑎+1

3
 𝑧 +

𝑎

2
 ), with 0 < 𝑎 ≤ 1 and −𝑎 < 𝑧 < + ∞, we obtain in a 

similar way:  
𝑑

𝑑𝑧
 𝜑(𝑧) =

1

6
 

𝑃(−𝑧, −𝑎)

(𝑧 +  𝑎)4(𝑧 + 1)4
,  

so that to prove that both 𝐼3 and 𝐼4 are of class ℐ, we need   

𝑃(𝑧, 𝑎) ≤ 0for all (𝑧, 𝑎) ∈ 𝑅1 ∶= (−𝑎, 1) × (0, 1),   
𝑃(𝑧, 𝑎) ≥ 0 for all (𝑧, 𝑎) ∈ 𝑅2 ∶= (−∞, 𝑎) × (−1, 0),  
From standard computations it is easy to see that:  

(i) The restriction of 𝑃(𝑧, 𝑎) to ð𝑅1 is negative except at (𝑧, 𝑎) = (0, 0) and (𝑧, 𝑎) =
(−1, 1), where it is zero.  

(ii) The restriction of 𝑃(𝑧, 𝑎) to ð𝑅2 is positive except at (𝑧, 𝑎) = (0, 0), where it is zero.  

(iii) 
ð

ð𝑎
 𝑃(ð𝑧, 𝑎) never vanishes in 𝑅1 ∪ 𝑅2.  

Then, the result follows.  

(e)For𝐼5(𝑧) =
𝑧6

6
−
𝑧4

2
+
𝑧 
2

2
,
𝑑

𝑑𝑧
 𝜑(𝑧) =

1

3
 
10𝑧6−39𝑧4+60𝑧2+9

(𝑧2−1)6
 .  

The polynomial 10𝑤3 − 39𝑤2 +  60𝑤 +  9 has two non-real roots and one real negative, 

so 10𝑧6 −  39𝑧4 +  60𝑧2 +  9 has no real roots and 𝜑′ turns out to be positive everywhere 

it is defined.  

(f) For 𝐼6(𝑧) =  1 − 𝑐𝑜𝑠 𝑧, 𝑛(𝑧) = (1 − 𝑐𝑜𝑠 𝑧)
2  ≥ 0.  

(g) Since 𝐼7(𝑧) = (𝑝 +  𝑞𝑧)
𝑎 − 𝑝𝑎  and 𝐷2(𝑧) are the same function we are going to give 

the proof together.  

For the sake of simplicity, we write 𝑀 instead of 𝐼7 or 𝐷2, We first compute 𝜈 =  𝜈𝑀 

𝜈(𝑧) =  𝑀′(𝑧)2 −  2𝑀(𝑧)𝑀′′(𝑧) =  4𝑎
𝑝

𝑞
 𝑝2𝑎  𝑤𝑎−2 ℎ(𝑤).  

where 𝑤 = (1 +  𝑝𝑧2/𝑞) ≥ 1 and  

ℎ(𝑤) = (𝑎 −  1)𝑤(𝑎+1) + (2 − 𝑎)𝑤𝑎 + (1 − 2𝑎)𝑤 + (2𝑎 −  2).  
This expression tells us that all the cases behave as 𝑝 =  𝑞 =  1, that is, 𝑀(𝑧) =
(1 + 𝑧2)𝑎 −  1; because it reduces the study of the sign of 𝜈𝑀 to that of ℎ(𝑤) Some 

elementary calculus gives the following properties: ℎ(1) =  ℎ′(1) = 0 and ℎ′′(𝑤) =

 𝑤𝑎
 −2(𝑎(𝑎2 − 1)𝑤 +  𝑎(𝑎 −  1)(2 −  𝑎)). Then, if ℎ′′ does not change sign, the function 
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h also keeps the same sign. We can easily see that:  when 𝑎 > 1, ℎ′′(𝑤) ≥ 0 ⇔ 𝑤 >
(𝑎 −  2) = (𝑎 +  1);   
when 0 < 𝑎 < 1, ℎ′′(𝑤) ≤ 0 ⇔ 𝑤 > (𝑎 − 2)/(𝑎 +  1);   
when 𝑎 < 0, ℎ′′(𝑤) ≥ 0 ⇔ 𝑤 < (𝑎 −  2)/(𝑎 +  1):  
For the function (𝑎 − 2)/(𝑎 +  1), it is straightforward to see that the last three inequalities 

on w are true and so, ℎ(𝑤) ≥ 0 for all 𝑤 if 𝑎 ∉ (0, 1) and ℎ(𝑤) ≤ 0 for all 𝑤 if 𝑎 ∈ (0, 1), 
The first and the third give the statement referred to function 𝐼7 while the second one leads 

to that of 𝐷2:  

(h) For 𝐼8(𝑧) =
𝑧2

1+𝑧2
, 𝜈(𝑧) =  12

𝑧4

(1+𝑧2)4
≥ 0.  

(i) For 𝐼9(𝑧) =  𝑧 arctan 𝑧 −
1

2
ln(1 + 𝑧2) , 𝜈(𝑧) =

arctan2  (𝑧)(1−𝑧)2+ln(1+𝑧2)

1+𝑧2
 ≥ 0.  

(ii) Functions of class 𝒟.  

(a) Consider 𝐷1(𝑧) =  𝑎𝑚
𝑧2𝑚

2𝑚
+ 𝑎𝑛

𝑧2𝑛

2𝑛
 , with 𝑎𝑛 ≠ 0, 𝑎𝑚/𝑎𝑛 ≥ 0 and 𝑚 > 𝑛 ≥ 1.  

Denoting 𝑤 =  𝑤(𝑧) =  𝑧2(𝑚−𝑛) it turns out that  

𝜈(𝑧) =  𝑧4𝑛−2 (𝐴𝑤2 +  𝐵𝑤 +  𝐶),  

with 𝐴 ∶=  𝑎𝑚
2 (1 +

1

𝑚
) , 𝐵 ∶=  

𝑎𝑚𝑎𝑛

𝑚𝑛
 (𝑚 − 2𝑚2 +  𝑛 +  2𝑚𝑛 − 2𝑛2) and 𝐶 ∶=  𝑎𝑛

2 (1 +

1

𝑛
). For 𝑤 =  0 the value of the second degree polynomial is  

𝑎𝑛
2(1 +

1

𝑛
) ≤ 0. Now, if we prove that it does not have positive solutions, we are done. So, 

we impose 
𝐵

2𝐴
≥ 0 and 𝐴𝐶 ≥ 0. The last inequality always holds since 𝐴𝐶 =  𝑎𝑚

2 𝑎𝑛
2(−1 +

1

𝑚
)(−1 +

1

𝑛
) ≥ 0. On the other hand,  

𝐵

2𝐴
=

𝑎𝑚
2𝑛(1 −𝑚)𝑎𝑛

 (𝑚 − 2𝑚2 +  𝑛 +  2𝑚𝑛 − 2𝑛2).  

Since 𝑚 −  2𝑚2 +  𝑛 +  2𝑚𝑛 − 2𝑛2 =  𝑚(1 − 𝑛) +  𝑛(1 −𝑚) −  2(𝑚 − 𝑛)2 < 0,𝐵/
(2𝐴) ≥ 0 reduces then to 𝑎𝑚/𝑎𝑛 ≥ 0, which is true by hypothesis. Finally, although it is 

not necessary for 𝐷1 being of class 𝒟, we need to assume that an is positive so that the origin 

is a centre.  

(b) For 𝐷2(𝑧) see the proof of 𝐼7(𝑧).   
We devoted to a new result about a family of quadratic systems with a decreasing 

period function. A bigger family of quadratic systems including the next one was treated in 

[110]. Despite they obtain a general expression for 𝜇(𝑥, 𝑦); it is too difficult to handle for 

our purposes. We have considered the following case, which is also a Loud’s system, see 

[54] and also [114].  

Proposition (5.1.16)[106]: The quadratic system  

{
𝑥̇ =  −𝑦 +  2𝐷𝑥2 𝐷𝑦2,

𝑦̇ =  𝑥 +  𝐷𝑥𝑦,
                                                  (9)  

has a decreasing period function.  

Proof. First of all, notice that the change of variables 𝑥̃ =  𝐷𝑥, 𝑦̃ =  𝐷𝑦 eliminates the 

parameter 𝐷 in (9) and so we can consider only the case 𝐷 =  1:  

{
𝑥̇ =  −𝑦 +  2𝑥2 − 𝑦2,

𝑦̇ =  𝑥 +  𝑥𝑦,
                                              (10)  

A first integral for (10) is  

𝐻(𝑥, 𝑦) =
1

2

𝑥2

(1 +  𝑦)4
−
1

6

(1 +  3𝑦)

(1 +  𝑦)3
+
1

6
 ,  
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which associated integrating factor is 1/𝑉, where 𝑉 = (1 +  𝑦)5 .  
It is not difficult to see that the periodic orbits 𝛾ℎ corresponding to the period annulus of the 

origin are included in the sets {𝐻 =  ℎ, 0 < ℎ < 1/6} (they are one of the two connected 

components of the level sets). When ℎ → 1/6; the periodic orbits approach to the curve 

𝑥2 = 𝑦2 +  4/3𝑦 +  1/3.  
Note that for 𝐻 of the special form 𝐻(𝑥, 𝑦) =  𝐴(𝑦) +  𝐵(𝑦)𝑥2 it is easy to prove that  

𝑈 = ((1 −
𝐴(𝑦)

𝐴′(𝑦)

𝐵′(𝑦)

𝐵(𝑦)
 ) 
𝑥

2
   ,
𝐴(𝑦)

𝐴′(𝑦)
)    

is a normalizer of ∇𝐻⊥ see also [121]. We have that the same 𝑈 is also a normalizer for any 

system of the form 𝑉(𝑥, 𝑦)∇𝐻⊥, By performing these computations in our case we can take 

𝑈 = (𝑅, 𝑆) where  

𝑅(𝑥, 𝑦) =  𝑥 (
1

2
+
1

3
 𝑦(3 +  𝑦))  𝑎𝑛𝑑 𝑆(𝑥, 𝑦) =

1

6
 𝑦(3 +  𝑦)(1 +  𝑦). 

Furthermore, 𝑅𝐻𝑥 +  𝑆𝐻𝑦 =  𝐻. By using part 2 of Theorem (5.1.2) we have that 𝑎 𝜇 

associated to system (10) is  

𝜇 = (1 +
7

3
 𝑦 +

5

6
 𝑦2 ) − (

5

6
 𝑦(3 +  𝑦)) −  1 =

1

6
 𝑦  

and hence  

𝑇′(𝑠) =  ∫  

𝑇(𝑠)

0

   𝜇(𝑥(𝑡), 𝑦(𝑡))𝑑𝑡 =
1

6
 ∫  

𝑇(𝑠)

0

 𝑦(𝑡)𝑑𝑡.  

Fixed y and 𝑠, the first integral 𝐻 tells us that there exists only a pair of values of 

𝑥,− 𝑥−(𝑦) =  𝑥+(𝑦) > 0, such (𝑥 <  𝑦) ∈ 𝛾𝑠 For a fixed 𝑠, define 𝑦𝑚 and 𝑦𝑀 the two 

intersection of gs with the 𝑦 −axis, see also Fig. 1.  

At this point the integration could be cumbersome and perhaps not possible. We make use, 

now, of Proposition (5.1.3). It turns out that taking 𝑔(𝑥, 𝑦) =
𝑥

6(1+𝑦)
, and defining  

𝜇∗ (𝑥, 𝑦) =  𝜇(𝑦) + ∇𝑔𝑡 ∙   𝑋 =
1

6

𝑥2

1 +  𝑦
   

we can compute 𝑇′ as  

𝑇′(𝑤) =
1

6
( ∫    

𝑦𝑀

𝑦𝑚

  
𝑥+(𝑦)

(1 +  𝑦)2
   𝑑𝑦 − ∫    

𝑦𝑀

𝑦𝑚

 
𝑥−(𝑦)

(1 +  𝑦)2
𝑑𝑦) =

1

3
 ( ∫    

𝑦𝑀

𝑦𝑚

  
𝑥+(𝑦)

(1 +  𝑦)2
𝑑𝑦 ),  

because of the symmetry on 𝑥, Clearly, the argument of the last integral is always positive 

and so, we can assert that the period is decreasing.  

We give another proof of the monotonicity of the period function for the Lotka– 

Volterra system  

{
𝑥̇ =  𝑥(𝑎 − 𝛽𝑦) = 𝑥𝑦𝐻𝑦(𝑥, 𝑦),

𝑦̇ =  𝑦(𝛾𝑥 −  𝑚) =  𝑥𝑦𝐻𝑥(𝑥, 𝑦)
                                              (11)  

which works directly on (11), without changing variables. Here 𝐻(𝑥, 𝑦) =  𝐹(𝑥) +
 𝐺(𝑦) where  

𝐹(𝑥) =  𝛾𝑥 −  𝑚 (𝑙𝑛 (
𝛾𝑥

𝑚
) +   1) and 𝐺(𝑦) =  𝛽𝑦 −  𝑎 (ln (

𝛽𝑦

𝑎
) +  1)  

𝑈 = (
𝐹(𝑥)

𝐹′(𝑥)
,
𝐺(𝑦)

𝐺′(𝑦)
)   is a normalizer of (11) and m is  
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𝜇(𝑥, 𝑦) =  1 −
𝛾𝑥𝐹(𝑥)

(𝛾𝑥 −  𝑚)2
−
𝛽𝑦𝐺(𝑦)

(𝛽𝑦 − 𝑎)2
:  

Now, we want to see that 𝑇′(𝑠) > 0, where s is the parameter of some orbit of 𝑈, because 

this parameter increases forward from the critical point.  

We perform the integration in the following way:  

∫  

𝑇(𝑠)

0

   𝜇(𝑥(𝑡), 𝑦(𝑡))𝑑𝑡

=  ∫  

𝑦𝑀

 𝑦𝑚

  [
1

𝑦(𝛾𝑥 −𝑚)
 (
1

2
−

𝛾𝑥𝐹(𝑥)

(𝛾𝑥 −𝑚)2
)]
𝑥−(𝑦)

𝑥+(𝑦)

   𝑑𝑦

+ ∫  

𝑥𝑀

 𝑥𝑚 

 [
1

𝑥(𝑎 − 𝛽𝑦)
 (
1

2
−
𝛽𝑦𝐺(𝑦)

(𝑎 − 𝛽𝑦)2
)]
𝑦+(𝑥)

𝑦−(𝑥)

 𝑑𝑥. 

Then, making the change of variables 𝑢 = ln(𝑦𝑥/𝑚) , 𝑣 =  ln (𝛽𝑦/𝑎) in both integrals we 

obtain  

∫  

𝑇(𝑠)

0

𝜇(𝑥(𝑡), 𝑦(𝑡))𝑑𝑡

=
1

𝑚
 ∫  

𝑣𝑀

𝑣𝑚

   [
1 +  2𝑢𝑒𝑢 − 𝑒2𝑢

2(𝑒𝑢 −  1)3
]
𝑢−(𝑣)

𝑢+(𝑣)

 𝑑𝑣

+
1

𝑎
 ∫  

𝑣𝑀

𝑣𝑚

 [
1 +  2𝑣𝑒𝑣 − 𝑒2𝑣

2(1 − 𝑒𝑣)3
 ]
𝑣+(𝑢)

𝑣−(𝑢)

  𝑑𝑢.  

If we denote  

𝐻(𝜉) =
1 +  2𝜉𝑒𝜉 − 𝑒2𝜉

2(𝑒𝜉 − 1)3
  

it turns out that  

𝐻′(𝜉) =
1

2

𝑒𝜉(−4𝑒𝜉 +  5 +  4𝜉𝑒𝜉 +  2𝜉 𝑒2𝜉)

(𝑒𝜉 − 1)4
.  

The function in parenthesis in the numerator is negative (it is the same function that the one 

that appears in the proof of Proposition (5.1.15), function I1). Then, 𝐻(𝜉) is an increasing 

function. This fact and the preceding computations clearly imply the result.  

We prove that a subfamily of Lie´nard systems—which includes the quadraticone 

with 𝐴(𝑥) =  𝑥2/2 studied in [112]—has an increasing period function in the period annulus 

of the origin.  

Proposition (5.1.17)[106]: The family of Lie´nard equations  

{
𝑥̇ =  −𝑦 +  𝐴(𝑥),

𝑦̇ =  𝐴′ (𝑥)
                                                                     (12)  

with 𝐴 an smooth function satisfying 𝐴(0) =  𝐴′(0) =  0; has a centre at the origin. 

Furthermore, if 𝐴(𝑥) =  𝑘𝐼𝑖(𝑥), for some 𝑖 =  1,… . , 9 and 𝑘 > 0 where 𝐼𝑖 are the functions 

which appear in Proposition (5.1.15) or 𝐴(𝑥) =  𝑘𝑥2, then the period function of (12) is 

increasing in the period annulus of the origin.  
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Proof. By using the change of variables (𝑢, 𝑣) = (𝑥, 𝑦) 𝐴(𝑥)) we get the new system  

{
𝑢̇ =  −𝑣,

 𝑣̇ =  𝐴′(𝑢)(1 +  𝑣),
  

Applying the new change (𝓏,𝑤) = (𝑢, log(1 +  𝑣)) we arrive to  

{
𝓏̇ =  1 𝑒𝑤,
𝑤̇ =  𝐴′(𝑧),

  

which is of the form of the systems for which Theorem (5.1.8) applies. By applying it with 

the Hamiltonians 𝐼1(𝑤) +  𝑘𝐼𝑗(𝑧), with 𝑗 =  1,… . ,9; or with the Hamiltonian 𝐼1(𝑤) + 𝑘𝑧
2 

the result follows.  

To finish, we give an overview to one of the families where the period function is 

better understood: that of Hamiltonian systems obtained from  

𝐻(𝑥, 𝑦) =
1

2
 (𝑥2 + 𝑦2) + 𝐻𝑛+1(𝑥, 𝑦)  

where 𝐻𝑛+1 is a homogeneous polynomial of degree 𝑛 +  1, It has been shown, see [39], 

that the period function of the centre at the origin is always increasing when n is even and 

has at most one critical period when n is odd. Here, we will see how formula (9) for the 

derivative of the period function used in [39] can be obtained using our method.  

To achieve this goal it is convenient to express the system in polar coordinates. We remark 

that the Lie bracket does not depend on the chosen variables. Therefore, the vector field is  

{
𝑟̇ =  𝑟𝑛𝑔′(𝜃),

𝜃̇ =  1 + (𝑛 +  1)𝑟𝑛−1𝑔(𝜃),
   

while the Hamiltonian writes now as 𝐻(𝑟, 𝜃) =
1

2
 𝑟2 𝑟𝑛+1𝑔(𝜃)  

Aiming to use part 2 of Theorem (5.1.2), we search for 𝑅 =  𝑅(𝑟, 𝜃) and 𝑆 =  𝑆(𝑟, 𝜃)  such 

that 𝑅𝐻𝑥 +  𝑆𝐻𝑦 =  𝐻: We observe first that 𝑅1 =  𝑟/2 and 𝑆1 = (1 −
𝑛

2
)𝑔(𝜃)/𝑔′ (𝜃) 

satisfy 𝑅1𝐻𝑟 + 𝑆1𝐻𝜃 =  𝐻: Then, using that 𝐻𝑟 = 𝐻𝑥 𝑐𝑜𝑠 𝜃 + 𝐻𝑦 𝑠𝑖𝑛 𝜃 and 𝐻𝜃 −

 𝑟𝐻𝑥 𝑠𝑖𝑛 𝜃 +  𝑟𝐻𝑦 𝑐𝑜𝑠 𝜃, it turns out that  

𝑅 = 𝑅1 cos 𝜃 − 𝑆1𝑟 sin 𝜃, 
𝑆 =  𝑅1 𝑠𝑖𝑛 𝜃 + 𝑆1𝑟 𝑐𝑜𝑠 𝜃,  

satisfy the required relation. Hence, from our main theorem, we know that 𝜇(𝜃) =

 
1

2
 
𝑔′(𝜃)2 (1−𝑛)+𝑔′′(𝜃)𝑔(𝜃)(𝑛−1)

𝑔′(𝜃)2
=
1−𝑛

2

𝑑

𝑑𝜃
(
𝑔(𝜃)

𝑔′(𝜃)
).  

Integrating by parts it becomes (except for a positive constant) the same formula used in 

[114]. 

Section (5.2): Quasi-Homogeneous Polynomial Differential Equations of Degree Three 

Poincaré in [159] was the first to introduce the notion of a center for a vector field 

defined on the real plane. So according to Poincaré a center is a singular point surrounded 

by a neighborhood filled of closed orbits with the unique exception of the singular point. 

Since then the center–focus problem, i.e. the problem to distinguish when a singular point 

is either a focus or a center is one of the hardest problems in the qualitative theory of planar 

differential systems, see [136]. We deal mainly with the characterization of the center 

problem for the class of quasi-homogeneous polynomial differential systems of degree 3. In 

the literature we found classifications of polynomial differential systems having a center. 

For the quadratic systems see Dulac [143], Kapteyn [147], [148], Bautin [138] among 

others. In [162] Schlomiuk, Guckenheimer and Rand gave a brief history of the center 

problem for quadratic systems.  
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There are many partial results about centers for polynomial differential systems of degree 

greater than two. Some of them are for instance, the classification by Malkin [153] and 

Vulpe and Sibirskii [164] about the centers for cubic polynomial differential systems of the 

form linear with homogeneous nonlinearities of degree three. Note that for polynomial 

differential systems of the form linear with homogeneous nonlinearities of degree 𝑘 >  3 

the centers are not classified. However, there are some results for 𝑘 =  4, 5, see for instance 

the works by Chavarriga and Giné [140], [141]. It seems difficult for the moment to obtain 

a complete classification of the centers for the class of all polynomial differential systems 

of degree 3. Actually, there are some subclasses of cubic systems well studied like the ones 

of Rousseau and Schlomiuk [160] and the ones of Żoładek [165], [166]. Some centers for 

arbitrary degree polynomial differential systems have been studied in [152].  

We denote by ℝ[𝑥, 𝑦] the ring of all polynomials in the variables 𝑥 and y and coefficients 

in the real numbers ℝ. We consider polynomial differential systems of the form  

𝑥̇  =  𝑃(𝑥, 𝑦), 𝑦̇  =  𝑄(𝑥, 𝑦),                                              (13)  
with 𝑃,𝑄 ∈ ℝ[𝑥, 𝑦] and its corresponding vector field 𝑋 =  (𝑃, 𝑄). Here the dot denotes 

derivative with respect to the time 𝑡 (independent variable). The degree of the differential 

polynomial system (13) is the maximum of the degrees of the polynomials 𝑃 and 𝑄.  
System (13) is a quasi-homogeneous polynomial differential system if there exist natural 

numbers 𝑠1, 𝑠2, d such that for an arbitrary non-negative real number α it holds  

𝑃 (𝛼𝑠1  𝑥, 𝛼𝑠2  𝑦)  =  𝛼𝑠1+𝑑−1𝑃(𝑥, 𝑦), 𝑄 (𝛼𝑠1  𝑥, 𝛼𝑠2  𝑦)  =  𝛼𝑠2+𝑑−1𝑄(𝑥, 𝑦).             (14) 
The natural numbers 𝑠1 and 𝑠2 are the weight exponents of system (13) and 𝑑 is the weight 

degree with respect to the weight exponents 𝑠1 and 𝑠2. When 𝑠1  =  𝑠2  =  𝑠 we obtain the 

classical homogeneous polynomial differential system of degree 𝑠 +  𝑑 −  1. 

 
Fig. (1)[135]: (a) The local phase portrait at the origin in the local chart U1. (b) Phase 

portrait of a cubic quasi-homogeneous non-homogeneous system (18) in the Poincaré disk. 

This system has a global center. 
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Fig. (2)[135]: (a) The parameter space (a, b) and the phase portrait of cubic quasi-

homogeneous systems (18). (b) Cubic homogeneous systems (20) having a center, see also 

[142]. 

It is well known that all quasi-homogeneous vector fields are integrable with a 

Liouvillian first integral [145], [146], [150]. 

From Theorem (5.2.8) of [151] we have that there are only two families of cubic 

polynomial differential homogeneous systems with a center. 

In the next result we characterize all the centers of quasi-homogeneous polynomial 

differential systems.  

The proof of Theorem (5.2.7).  

In addition to the classification of centers, another classical problem in the qualitative 

theory of planar differential systems is the study of their limit cycles. Recall that a limit 

cycle of a planar polynomial differential system is a periodic orbit of the system isolated in 

the set of all periodic orbits of the system. Thus in what follows we study, using the 

averaging theory of first order, the limit cycles which bifurcate from the periodic orbits of 

the centers (19) and (20) of Theorem (5.2.7) when these centers are perturbed inside the 

class of all cubic polynomial differential systems.  

For proving Theorem (5.2.7) we should need the following result.  

Proposition (5.2.1)[135]: A quasi-homogeneous non-homogeneous cubic polynomial 

differential systems (13) with P and 𝑄 coprime and 𝑠1  >  𝑠2 after a rescaling of the variables 

can be written as one of the following systems.  

(a)𝑥̇  =  𝑦 (𝑎𝑥 +  𝑏𝑦2), 𝑦̇  =  𝑥 + 𝑦2, with 𝑎 ≠  𝑏, 𝑜𝑟 𝑥̇  =  𝑦 (𝑎𝑥 ± 𝑦2) , 𝑦′ =  𝑥, and 

both with minimal weight vector (2, 1, 2).  
(b)𝑥̇  =  𝑥2  +  𝑦3, 𝑦̇  =  𝑎𝑥𝑦, with 𝑎 ≠  0 and minimal weight vector (3, 2, 4).  
(c) 𝑥̇  =  𝑦3, 𝑦̇  =  𝑥2, and minimal weight vector (4, 3, 6).  
(d)𝑥̇ = 𝑥 (𝑥 +  𝑎𝑦2), 𝑦̇ = 𝑦(𝑏𝑥 + 𝑦2), with (𝑎, 𝑏) ≠  (1, 1), and minimal weight vector 

(2, 1, 3).  
(e)𝑥̇  =  𝑎𝑥𝑦2, 𝑦̇  =  ±𝑥2  +  𝑦2, with 𝑎 ≠  0 and minimal weight vector (3, 2, 5).  
(f)𝑥̇  =  𝑎𝑥𝑦2, 𝑦̇  =  𝑥 +  𝑦3, with 𝑎 ≠  0 and minimal weight vector (3, 1, 3).  
(g) 𝑥̇  =  𝑎𝑥 + 𝑦3, 𝑦̇ =  𝑦, 𝑜𝑟 𝑥̇  =  𝑎𝑥, 𝑦̇ =  𝑦 with 𝑎 ≠  0, and minimal weight vector 

(3, 1, 1).  
Proof. See [146].  

A singular point is nilpotent if both eigenvalues of its linear part are zero but its linear 

part is not identically zero. Andreev [137] was the first in characterizing the local phase 

portraits of the nilpotent singular points. In what follows we summarize the results of the 

local phase portraits of the nilpotent singular points, for more details see Theorem 3.5 of 

[144].  
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Theorem (5.2.2)[135]: Let (0, 0) be an isolated singular point of the vector field 𝑋 given by  

𝑥̇  =  𝑦 +  𝐴(𝑥, 𝑦), 𝑦̇  =  𝐵(𝑥, 𝑦), 
where 𝐴 and 𝐵 are analytic in a neighborhood of the point (0, 0) starting with terms of 

second degree.  

Let 𝑦 =  𝑓(𝑥) be the solution of the equation 𝑦 +  𝐴(𝑥, 𝑦) = 0 in a neighborhood of the 

point (0, 0), and consider 𝐹(𝑥)  =  𝐵(𝑥, 𝑓(𝑥)) and 𝐺(𝑥) = (𝜕𝐴/𝜕𝑥 +  𝜕𝐵/𝜕𝑦)(𝑥, 𝑓(𝑥)).  
Then the origin can be a focus or a center if and only if one of the following statements 

holds:  

(a) If 𝐺(𝑥)  ≡  0 and 𝐹(𝑥)  =  𝑎𝑥𝑚  + 𝑜(𝑥𝑚) for 𝑚 ∈ ℕ with 𝑚 ≥  1,𝑚 odd and 𝑎 <  0, 
then the origin of 𝑋 is a center or a focus.  

(b) If 𝐹(𝑥)  =  𝛼𝑥𝑚  +  𝑜(𝑥𝑚) with 𝛼 <  0,𝑚 ∈ ℕ,𝑚 ≥  2,𝑚 odd, and 𝐺(𝑥)  =  𝛽𝑥𝑛  +
 𝑜(𝑥𝑛) with 𝛽 ≠  0, 𝑛 ∈ ℕ, 𝑛 ≥ 1 and if either 𝑚 <  2𝑛 +  1, or 𝑚 =  2𝑛 +  1 and 

𝛽2  +  4𝛼(𝑛 +  1)  <  0, then the origin of 𝑋 is a center or a focus.  

The following result characterizes the isochronous centers.  

Theorem (5.2.3)[135]: A center of an analytic system is isochronous if and only if there 

exists an analytic change of coordinates of the form 𝑢 =  𝑥 +  𝑜(𝑥, 𝑦) and 𝑣 =  𝑦 +
 𝑜(𝑥, 𝑦) changing the system to the linear isochronous system 

𝑢̇  =  −𝑘𝑣, 𝑣̇  =  𝑘𝑢, 
where 𝑘 is a real constant. 

For a proof of Theorem (5.2.3), see [154].  

Assume that the origin is an isochronous center for system (13). Then Theorem (5.2.3) 

guarantees that there exists an analytic change of coordinates 𝑢 =  𝑥 +  𝑜(𝑥, 𝑦) and 𝑣 =
 𝑦 +  𝑜(𝑥, 𝑦) such that 𝑢̇  =  −𝑘𝑣, 𝑣̇  =  𝑘𝑢. Then since 𝑢̈  +  𝑢 =  0, and 𝑣̈  +  𝑣 =  0, and 

doing a rescaling we can take 𝑘 =  1. 
In order to plot the global phase portrait of the polynomial vector field (13) of degree 

m we should be able to control the orbits that come or escape at infinity. For this reason we 

consider the so called Poincaré compactification of the polynomial vector field 𝑋 . Consider 

ℝ2 as the plane in ℝ3 defined by (𝑦1, 𝑦2, 𝑦3) = (𝑥1, 𝑥2, 1). We also consider the Poincaré 

sphere 𝕊2  =  {𝑦 =  (𝑦1, 𝑦2, 𝑦3)  ∈  ℝ
3: 𝑦1  +  𝑦2  +  𝑦3  =  1} (see also [158]) and we 

denote by 𝑇(0,0,1)𝕊2 the tangent space to 𝕊2 at the point (0, 0, 1). The Poincaré 

compactified vector field 𝑝(𝑋 ) of 𝑋 is an analytic vector field induced on 𝕊2 in the 

following way: We consider the central projection 𝑓 ∶  𝑇(0,0,1) ∶  𝕊2  →  𝕊2. This map 

defines two copies of 𝑋 , one in the northern hemisphere {𝑦 ∈  𝕊2: 𝑦3  >  0} and the other 

in the southern hemisphere. We denote by 𝑋̃ the vector field 𝐷𝑓 ◦  𝑋 defined on 𝕊2 except 

on its equator. We notice that the points at infinity of ℝ2 are in bijective correspondence 

with the points of the equator of 𝕊2, 𝕊1  =  {𝑦 ∈  𝕊2: 𝑦3  =  0} and so we identify 𝕊1 to be 

the infinity of ℝ2.  
Now we would like to extend the induced vector field 𝑋̃ from 𝕊2 \ 𝕊1 to 𝕊2. It is 

possible that 𝑋̃ does not stay bounded as we get close to 𝕊1. However, it turns out that if we 

multiply 𝑋̃ by the factor 𝑦3
𝑚−1 , namely, if we consider the vector field 𝑦3

𝑚−1𝑋̃ the extension 

is possible in the whole 𝕊2.  
Note that on 𝕊2 \ 𝕊1 there are two symmetric copies of 𝑋 and knowing the behavior 

of 𝑝(𝑋 ) around 𝕊1, we know the behavior of 𝑋 at infinity. The Poincaré disk 𝐷2 is the 

projection of the closed northern hemisphere of 𝕊2 on 𝑦3  =  0 under (𝑦1, 𝑦2, 𝑦3) −→
 (𝑦1, 𝑦2). Moreover, 𝕊1 is invariant under the flow of 𝑝(𝑋 ).  
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We also say that two polynomial vector fields 𝑋 and \𝑌 on ℝ2 are topologically equivalent 

if there exists a homeomorphism on 𝕊2 preserving the infinity 𝕊1 carrying orbits of the flow 

induced by 𝑝(𝑋 ) into orbits of the flow induced by 𝑝(𝑌). The homeomorphism should 

preserve or reverse simultaneously the sense of all orbits of the two compactified vector 

fields 𝑝(𝑋 ) and 𝑝(𝒴).  
Since 𝕊2 is a differentiable manifold we can consider the six local charts 𝑈𝑖  =  {𝑦 ∈

 𝕊2: 𝑦𝑖  >  0}, and 𝑉𝑖  =  {𝑦 ∈  𝕊
2: 𝑦𝑖  <  0} for 𝑖 =  1, 2, 3 and the diffeomorphisms 𝐹𝑖 ∶

 𝑉𝑖  −→  ℝ
2 and 𝐺𝑖 ∶  𝑉𝑖  −→  ℝ

2 are the inverses of the central projections from the planes 

tangent at the points (1, 0, 0), (−1, 0, 0), (0, 1, 0), (0, −1, 0), (0, 0, 1) and (0, 0, −1) 

respectively. Now we denote by 𝓏 =  (𝓏1, 𝓏2) the value of 𝐹𝑖(𝑦) or 𝐺𝑖(𝑦) for any 𝑖 =
 1, 2, 3. Then we obtain the following expressions of the compactified vector field 𝑝(𝑋 ) of 

𝑋 (for more details we refer to Chapter 𝑉 of [144] and the references therein)  

𝓏2
𝑛 𝛥(𝓏)(𝑄 (

1

𝓏2
  ,
𝓏1
𝓏2
)  − 𝓏1𝑃  (

1

𝓏2
 ,
𝓏1
𝓏2
 )  , −𝓏2𝑃  (

1

𝓏1
 ,
𝓏1
𝓏2
))   𝑖𝑛 𝑈1,  

𝓏2
𝑛 𝛥(𝓏) (𝑃 (

𝓏1

𝓏2
 ,
1

𝓏2
)   − 𝓏1𝑄 (

𝓏1
𝓏2
 ,
1

𝓏2
)  , −𝓏2𝑄 (

𝓏1
𝓏2
 ,
1

𝓏2
))   𝑖𝑛 𝑈2,  

𝛥(𝓏)(𝑃(𝓏1, 𝓏2), 𝑄(𝓏1, 𝓏2))  𝑖𝑛 𝑈3, 

where 𝛥(𝓏) = (𝓏1
2  +  𝓏2

2  +  1)
−

1

2(𝑛−1) . Note that in the two sets 𝑈𝑖 and 𝑉𝑖 the expressions 

of the vector field 𝑝(𝑋 ) are the same and they only differ by the multiplicative factor 

(−1)𝑛−1. In these coordinates 𝓏2  =  0 always denotes the points of 𝕊1. In what follows we 

omit the factor 𝛥(𝓏) by rescaling the vector field 𝑝(𝑋 ) and so we obtain a polynomial vector 

field in each local chart.  

Let 𝑝(𝑋 ) be the Poincaré compactification of 𝕊2 of a polynomial vector field 𝑋 in 

ℝ2. In what follows we consider the definition of parallel flows given by Markus [155] and 

Neumann in [156]. Let ∅ be a 𝐶𝜔 local flow on the two dimensional manifold ℝ2 or ℝ2 \{0}. 
The flow (𝑀, ∅) is 𝐶𝑘 parallel if it is 𝐶𝜔 −equivalent to one of the following ones:  

𝑠𝑡𝑟𝑖𝑝: (ℝ2, ∅) with the flow ∅ defined by 𝑥̇  =  1, 𝑦̇  =  0;  
𝑎𝑛𝑛𝑢𝑙𝑎𝑟: (ℝ2 \ {0}, ∅) with the flow ∅ defined (in polar coordinates) by 𝑟̇  =  0, 𝜃̇  =  1;  

𝑠𝑝𝑖𝑟𝑎𝑙: (ℝ2 \ {0}, ∅) with the flow ∅ defined by 𝑟̇ =  0, 𝜃̇  =  1.  
It is known that the separatrices of the vector field 𝑝(𝑋 ) in the Poincaré disk 𝐷 are 

(i) all the orbits of 𝑝(𝑋 ) which are in the boundary 𝕊1 of the Poincaré disk (recall that 

𝕊1 is the infinity of ℝ2);  

(ii) all the finite singular points of 𝑝(𝑋 );  
(iii) all the limit cycles of 𝑝(𝑋 ); and  

(iv) all the separatrices of the hyperbolic sectors of the finite and infinite singular points 

of 𝑝(𝑋 ).  
We denote by 𝛴 the union of all separatrices of the flow (𝐷, ∅) defined by the 

compactified vector field 𝑝(𝑋 ) in the Poincaré disk 𝐷. Then 𝛴 is a closed invariant subset 

of 𝐷. Every connected component of 𝐷 \𝛴, with the restricted flow, is called a canonical 

region of ∅.  
For a proof of the following result see [149] and [156].  

Theorem (5.2.4)[135]: Let ∅ be a 𝐶𝜔 flow in the Poincaré disk with finitely many 

separatrices, and let 𝛴 be the union of all its separatrices. Then the flow restricted to every 

canonical region is 𝐶𝜔 parallel. 
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The separatrix configuration 𝛴𝑐 of a flow (𝐷, ∅) is the union of all the separatrices 𝛴 

of the flow together with an orbit belonging to each canonical region. The separatrix 

configuration 𝛴𝑐 of the flow (𝐷, ∅) is said to be topologically equivalent to the separatrix 

configuration 𝛴̃𝑐 of the flow (𝐷, ∅̃) if there exists a homeomorphism from 𝐷 to 𝐷 which 

transforms orbits of 𝛴𝑐 into orbits of 𝛴̃𝑐 , and orbits of 𝛴 into orbits of 𝛴̃.  

Theorem (5.2.5)[135]: Let (𝐷, ∅) and (𝐷, ∅̃) be two compactified Poincaré flows with 

finitely many separatrices coming from two polynomial vector fields (13). Then they are 

topologically equivalent if and only if their separatrix configurations are topologically 

equivalent.  

For a proof of Theorem (5.2.5) see [155], [156], [157].  

From Theorem (5.2.5) it follows that in order to classify the phase portraits in the 

Poincaré disk of a planar polynomial differential system having finitely many finite and 

infinite separatrices, it is enough to describe their separatrix configuration.  

We consider the system  

𝑥′ (𝑡)  =  𝐹0(𝑡, 𝑥),                                                    (15)  
with 𝐹0 ∶  ℝ ×  𝛺 →  ℝ

𝑛 a 𝐶2 function, 𝑇 −periodic in the first variable and 𝛺 is an open 

subset of ℝ𝑛. We assume that system (15) has a submanifold of periodic solutions.  

Let 𝜀 be sufficiently small and we consider a perturbation of system (15) of the form  

𝑥′ (𝑡)  =  𝐹0(𝑡, 𝑥)  +  𝜀𝐹1(𝑡, 𝑥)  + 𝜀
2𝐹2(𝑡, 𝑥, 𝜀),                  (16)  

with 𝐹1 ∶ ℝ ×  𝜔 →  ℝ
𝑛 and 𝐹2 ∶  ℝ ×  𝛺 × (−𝜀0, 𝜀0)  →  ℝ

𝑛 are 𝐶2 functions, 

𝑇 −periodic in the first variable and 𝛺 is an open subset of ℝ𝑛. Averaging theory deals with 

the problem of the bifurcation of 𝑇 −periodic solutions of system (16), see also for more 

information on the averaging theory [161], [163].  

Let 𝑥(𝑡, 𝑧) be the periodic solution of the unperturbed system (15) satisfying the initial 

condition 𝑥(0, 𝑧)  =  𝑧. Now we consider the linearization of system (15) along the solution 

𝑥(𝑡, 𝑧), namely  

𝑦′ =  𝐷𝑥𝐹0 (𝑡, 𝑥(𝑡, 𝑧)) 𝑦,  
and let 𝑀𝑧(𝑡) be a fundamental matrix of this linear system satisfying that 𝑀(0) is the 

identity matrix.  

For a proof of the following theorem see [139].  

Theorem (5.2.6)[135]: (Perturbations of an isochronous set). We assume that there exists 

an open bounded set 𝑉 with 𝐶𝑙(𝑉 )  ⊂  𝛺 such that for each 𝑧 ∈  𝐶𝑙(𝑉 ), the solution 𝑥(𝑡, 𝑧) 
is 𝑇 −periodic, then we consider the function ℱ ∶  𝐶𝑙(𝑉 )  → ℝ𝑛  

ℱ(𝑧)  =   ∫  

𝑇

0

  ℳ𝑧
−1 (𝑡, 𝑧)𝐹1 (𝑡, 𝑥(𝑡, 𝑧)) 𝑑𝑡.                                   (17)  

If there exist 𝑎 ∈  𝑉 with ℱ(𝑎) = 0 and det((𝑑ℱ/𝑑𝑧)(𝑎)) ≠  0, then there exists a 

𝑇 −periodic solution ∅(𝑡, 𝜀) of system (16) such that ∅(0, 𝜀) →  𝑎 as 𝜀 →  0.  
Theorem (5.2.7)[135]: The following two statements hold.  

(a) The unique cubic quasi-homogeneous non-homogeneous polynomial differential 

system (13) with 𝑃 and 𝑄 coprime and 𝑠1  >  𝑠2 having a center after a rescaling of the 

variables can be written as  

𝑥̇  =  𝑦 (𝑎𝑥 +  𝑏𝑦2) , 𝑦̇  =  𝑥 + 𝑦2,                               (18)  
with (𝑎 −  2)2  +  8𝑏 <  0. For all a and b satisfying (𝑎 −  2)2   +  8𝑏 <  0 the phase 

portrait in the Poincaré disk of system (18) is topologically equivalent to the one given in 
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Fig. 1(b). Moreover, its parameter space (a, b) is described in Fig. 2(a). Additionally, these 

centers are not isochronous.  

(b) The unique cubic homogeneous polynomial differential systems having a center after a 

linear transformation and a rescaling of independent variable can be written in one of the 

following four forms: 

𝑥̇  =  −3𝛼𝜇𝑥2𝑦 −  𝛼𝑦3  +  𝑃3, 𝑦̇  =  𝛼𝑥
3  +  3𝛼𝜇𝑥𝑦2  +  𝑄3,           (19) 

 𝑤ℎ𝑒𝑟𝑒 𝛼 =  ±1, 𝜇 >  −1/3 and 𝜇 ≠  1/3;  
𝑥̇  =  −𝛼𝑥2𝑦 −  𝛼𝑦3  +  𝑃3, 𝑦̇  =  𝛼𝑥

3  +  𝛼𝑥𝑦2  +  𝑄3,             (20)  
𝑤𝑖𝑡ℎ 𝛼 =  ±1. Here 𝑃3  =  𝑝1𝑥

3  +  𝑝2𝑥
2𝑦 − 𝑝1𝑥𝑦

2 and 𝑄3  =  𝑝1𝑥
2𝑦 + 𝑝2𝑥𝑦

2  −
 𝑝1𝑦

3. The phase portraits in the Poincaré disk of systems (19) and (20) are topologically 

equivalent to the ones of Fig. 2(b). Moreover, these centers are not isochronous.  

Proof. All quasi-homogeneous non-homogeneous cubic polynomial differential systems are 

given by Proposition (5.2.1). Note that all those systems have the origin as the unique 

singular point.  

Now we consider the first system of statement (a) of Proposition (5.2.1). This system admits 

the real first integral  

(𝑏𝑦4  +  (𝑎 −  2)𝑥𝑦2  −  2𝑥)2(𝛥𝑥 −  2𝑏𝑦2  −  𝑎𝑥 +  2𝑥)
3𝑎+6+𝛥
𝛥−𝑎−2  (2𝑏𝑦2  +  𝑎𝑥 −  2𝑥 

+  𝛥𝑥) ,  

with (𝑎 −  2)2  +  8𝑏 ≥  0 and 𝛥 =  √(𝑎 −  2)2  +  8𝑏. Note that the real invariant curve 

2𝑏𝑦2  +  𝑎𝑥 −  2𝑥 +  𝛥𝑥 =  0 passes through the origin. Hence, the origin is not a center. 

Now we consider the case where (𝑎 −  2)2  +  8𝑏 <  0. Under the change of coordinates 

𝑥 →  𝑌 , 𝑦 →  𝑋 and after renaming (𝑋, 𝑌 ) by (𝑥, 𝑦) we obtain  

𝑥̇  =  𝑦 + 𝑥2, 𝑦˙ =  𝑥 (𝑎𝑦 +  𝑏𝑥2).                          (21) 
Now we apply Theorem (5.2.2) to system (21). We have 𝐴(𝑥, 𝑦)  =  𝑥2 and 𝐵(𝑥, 𝑦)  =
 𝑥(𝑎𝑦 +  𝑏𝑥2). We have 𝐹(𝑥)  =  𝐵(𝑥,−𝑥2) = (𝑏 −  𝑎)𝑥3 and 𝐺(𝑥) = (𝑎 +  2)𝑥. Since 

𝑎 ≠  𝑏 we have that 𝐹 ≢  0. Following the notation of Theorem (5.2.2) we have 𝑚 =
 3, 𝛼 =  𝑏 −  𝑎, 𝑛 =  1 and 𝛽 =  𝑎 +  2.  
For 𝑎 ≠  −2 we have that 𝐺(𝑥)  ≡  0 and 𝑏 <  −2. So 𝛼 <  0 and by Theorem (5.2.2)(a) 

the origin is a focus or a center. System (21) has the real first integral  

𝐻 = ( 𝑦 − ( −1 +
1

2
 √2(2 +  𝑏) ) 𝑥2)  (𝑦 − ( −1 −

1

2
 √2(2 +  𝑏) ) 𝑥2 ) , 

well defined at the origin and consequently the origin is a center.  

For 𝑎 ≠  −2 we have 𝐺(𝑥)  ≢  0. In order that the origin of system (21) can be a focus or a 

center, from Theorem (5.2.2)(b), we need that 𝛼 =  𝑏 −  𝑎 <  0 and (𝑎 −  2)2  +  8𝑏 <
 0. We notice that system (21) under these assumptions admits the real first integral  

𝐻(𝑥, 𝑦)  =  ,
(16𝑦2  +  16𝑥2𝑦 −  8𝑥2𝑎𝑦 +  8𝑥4𝑐2  +  4𝑥4  −  4𝑥4𝑎 + 𝑥4𝑎2)2𝑐

( 𝑒
(√2(2+𝑎) arctan) (

√2
4
−
4𝑦−2𝑥2+𝑥2𝑎

𝑥2𝑐
 ) 

  

with 𝑐 =  √−2((𝑎 −  2)2  +  8𝑏)/4. Since this first integral is defined at the origin, the 

origin is a center.  

The second family of systems of statement (a) of Proposition (5.2.1) admits the real invariant 

curves √𝑎2  +  8𝑥  ±  2𝑦2  ±  𝑎𝑥 =  0 which pass through the origin. So these systems 

have no centers.  

Easy computations show that systems (b), (c), (d), (e), (f) and (g) have real invariant curves 

passing through the origin. Therefore these systems have no centers.  
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In short, the quasi-homogeneous non-homogeneous cubic polynomial differential systems 

having a center are the system (18) satisfying either 𝑎 =  −2 and 𝑏 <  −2, or 𝑎 ≠
 −2, 𝑏 −  𝑎 <  0 and (𝑎 −  2)2  +  8𝑏 <  0. An easy computation (see Fig. 2) shows that 

these conditions for existence of the center in system (18) reduce to the unique condition 

(𝑎 −  2)2  +  8𝑏 <  0.  
Now we shall study the phase portrait in the Poincaré disk 𝐷 and the parameter space of 

system (18). So, we study the infinite singular points of system (18). On the local chart 𝑈1 

we obtain  

𝓏̇1   =  𝓏2
2  +  (1 −  𝑎)𝓏 1

2   𝓏2  −  𝑏𝓏1
4,  

𝓏̇2  =  −𝓏1𝓏2 (𝑎𝓏2  +  𝑏𝓏1
2 ) .                                      (22)  

Since 8𝑏 + (𝑎 −  2)2  <  0 we have that (𝓏1, 𝓏2)  =  (0, 0) is the only infinite singular 

point in 𝑈1 and it is linearly zero. In order to classify this infinite singular point we use the 

standard blow-up techniques, see for instance [144]. Then we obtain that the local phase 

portrait at the origin (0, 0) of system (22) is topologically equivalent to the one described in 

Fig. 1(a). Additionally, note that in the chart (𝑈2, 𝐹2) there are no infinite singular points. 

Hence, in the Poincaré disk the origin and 𝕊1 are the only separatrices. If we remove the 

origin and 𝕊1, then we have only one canonical region homomorphic to ℝ2 \ {0} and the 

flow is locally annular. According to Theorem (5.2.4) we obtain that the center is globally 

defined in ℝ2 \ {0}. Hence, the phase portrait of the differential system (18) is topologically 

equivalent to the one of Fig. 1(b).  

The parameter space and phase portrait of system (18) is given in Fig. 2(a). Now we will 

study the isochronicity of the center of system (18). System (18) written in the polar 

coordinates is  

𝑟̇  =  𝑃1(𝜃)𝑟 + 𝑃2(𝜃)𝑟
2  +  𝑃3(𝜃)𝑟

3,  

𝜃̇  =  𝑄0(𝜃) + 𝑄1(𝜃)𝑟 + 𝑄2(𝜃)𝑟
2,  

with  

𝑃1  =  𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃, 𝑃2  = (sin
2  𝜃 +  𝑎 cos2 𝜃) 𝑠𝑖𝑛 𝜃, 𝑃3  =  𝑏 𝑐𝑜𝑠 𝜃 sin

3 𝜃, 𝑄0  
=  cos2 𝜃, 𝑄1  =  −(𝑎 −  1)sin

2 𝜃 𝑐𝑜𝑠 𝜃, 𝑄2  =  −𝑏 sin
4 𝜃.  

Consider the analytic function 𝐻(𝑟, 𝜃)  =  ∑  ∞
 𝑛=1  𝐻𝑛(𝜃)𝑟

𝑛 where 𝐻𝑛(𝜃) are trigonometric 

polynomials of degree n. If the condition  

𝐻̈  +  𝐻 =  0,  
is satisfied then in the new variables (𝐻, −𝐻̇ ), system (18) could be transformed into the 

form  

𝑢̇ =  −𝑣, 𝑣̇  =  𝑢.  
So system (18) could have an isochronous center at the origin.  

If we expand 𝐻̈  + 𝐻 =  0 in power series of 𝑟 we obtain a recursive system of differential 

equation. The coefficient of rn for 𝑛 =  1, 2, . .. in this expansion is the differential equation 

of the form  

cos4 𝜃𝐻  ́𝑛́(𝜃)  +  2(𝑛 −  1) 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃𝐻 𝑛́(𝜃)  +  𝑛 cos
2 𝜃𝐻𝑛(𝜃) (𝑛 −  1)  

− (𝑛 −  2)cos2 𝜃 + 𝐻𝑛(𝜃) = 0,  
and its general solution for 𝑛 =  1 is  

𝐻1(𝜃)  =  𝑐𝑜𝑠 𝜃  (𝐶1 𝑠𝑖𝑛 (
𝑠𝑖𝑛 𝜃

𝑐𝑜𝑠𝜃
)    +  𝐶2 𝑐𝑜𝑠 (

𝑠𝑖𝑛 𝜃

𝑐𝑜𝑠𝜃
)) .  

For 𝑛 =  2, 3, . .. we have  

𝐻𝑛(𝜃) =  (𝑐𝑜𝑠 2𝜃 +  1)
𝑛
2    (𝐶1 𝑠𝑖𝑛 (

𝑠𝑖𝑛2𝜃

𝑐𝑜𝑠 2𝜃 +  1
) + 𝐶2 𝑐𝑜𝑠 (

𝑠𝑖𝑛2𝜃

𝑐𝑜𝑠 2𝜃 +  1
)).  
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Since these solutions 𝐻𝑛(𝜃) must be polynomials of trigonometric functions we have that 

𝐻𝑛  ≡  0 for all 𝑛. Hence we do not have an isochronous center and the proof of Theorem 

(5.2.7)(a) is completed.  

Now we are going to prove Theorem (5.2.7)(b). The usual forms given in (20) for the cubic 

homogeneous polynomial differential systems having a center were obtained in Proposition 

1 and Theorem (5.2.8) of [151]. The phase portraits were classified in [142]. See also Fig. 

2(b).  

In order to study the isochronicity of systems (19) and (20) we can repeat the same 

mechanism used in the proof of statement (a). In polar coordinates system (20) takes the 

form  

𝑟̇  =  𝑃3(𝜃)𝑟
3, 𝜃̇  =  𝛼𝑟2,  

where 𝑃3  =  𝑝1(cos
2 𝜃 − sin2 𝜃)  +  𝑝2 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃.  

We can see that  

𝐻1(𝜃)  =  𝐻2(𝜃)  =  𝐻3(𝜃)  =  𝐻4(𝜃) = 0,  
and for 𝑛 ≥  5 we have that   

𝐻𝑛(𝜃) =  −(𝛼
2 𝐻  ́𝑛́−4  +  2(𝑛 −  3)𝛼𝑃3𝐻 𝑛́−4  +  (𝑛 −  4)𝐻𝑛−4 (𝛼𝑃 3́  

+  (𝑛 −  2)𝑃3
2)) .  

Clearly each 𝐻𝑛  ≡  0, for all 𝑛, so system of (20) is not an isochronous center. System (19) 

can be written in polar coordinates as  

𝑟̇   =  𝑃3(𝜃)𝑟
3 , 𝜃̇  =  𝛼𝑄2(𝜃)𝑟

2, 
where  

𝑃3  =  𝑝1 cos
2   𝜃 − sin2 𝜃 + 𝑝2 sin 𝜃 cos 𝜃,  

𝑄2  =  cos
4 𝜃 +  6𝜇 cos2 𝜃 sin2 𝜃 + sin4 𝜃.  

Again we obtain  

𝐻1(𝜃)  =  𝐻2(𝜃)  =  𝐻3(𝜃)  =  𝐻4(𝜃) = 0,  
and for 𝑛 ≥  5 we have  

𝐻𝑛(𝜃)  =  −(𝛼
2 𝑄2

2𝐻  ́𝑛́−4  + (𝛼
2𝑄 ́2𝑄2  +  2(𝑛 −  3)𝛼𝑄2𝑃3)𝐻 𝑛́−4  

+  (𝑛 −  4)𝐻𝑛−4 (𝛼𝑃 3́𝑄2  +  (𝑛 −  2)𝑃3
2)) .  

Clearly each 𝐻𝑛  ≡  0, for all n and therefore system (19) is not an 

isochronous center. This completes the proof of Theorem (5.2.7).  

Theorem (5.2.8)[135]: Consider the cubic homogeneous systems (19) and (20) and their 

perturbation inside the class of all cubic polynomial differential systems. Then, for |𝜀|  ≠  0 

sufficiently small one limit cycle can bifurcate from the continuum of the periodic orbits of 

the center of systems (19) and (20) using averaging theory of first order.  

Proof. System (20) in polar coordinates can be written into the form  

𝑟̇  =  𝑟3 (𝑝1 cos
2   𝜃 + 𝑝2 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 − 𝑝1 sin

2  𝜃 , )  𝜃̇  =  𝛼𝑟2,  
or equivalently  

𝑑𝑟

𝑑𝜃
 =
𝑟

𝛼
 (𝑝1 cos

2   𝜃 +  𝑠𝑖𝑛 𝜃𝑝2 𝑐𝑜𝑠 𝜃 − 𝑝1 sin
2 𝜃) ,  

its solution satisfying the initial condition 𝑟(0)  =  𝑟0 is  

𝑟̃(𝜃, 𝑟0)  =  𝑟0 exp ((𝑝2  +  2𝑝1 𝑠𝑖𝑛(2𝜃)  − 𝑝2 𝑐𝑜𝑠(2𝜃) /(4𝛼)) .  
Now the fundamental matrix of the linearized equation evaluated on a closed orbit is  

𝑀𝑟0 (𝜃)  =  𝑀(𝜃)  =  exp ((𝑝2  +  2𝑝1 𝑠𝑖𝑛(2𝜃)  − 𝑝2 𝑐𝑜𝑠(2𝜃) /(4𝛼)) ,  
and satisfies the condition 𝑀(0)  =  1.  
Now we perturb system (20) inside the class of all cubic polynomial differential systems 

and we have  
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𝑥̇  =  𝑝1𝑥
3  +  (𝑝2  −  𝛼)𝑥

2𝑦 − 𝑝1𝑥𝑦
2  −  𝛼𝑦3  +  𝜀 ( ∑  

 

 0≤𝑖+𝑗≤3

 𝑎𝑖𝑗𝑥
𝑖  𝑦𝑗  ) ,  

𝑦̇  =  𝛼𝑥3  +  𝑝1𝑥
2𝑦 + (𝑝2  +  𝛼)𝑥𝑦

2  −  𝑝1𝑦
3  +  𝜀 ( ∑  

 

 0≤𝑖+𝑗≤3

𝑏𝑖𝑗𝑥
𝑖  𝑦𝑗  ) .  

The corresponding differential equation in polar coordinates becomes 
𝑑𝑟

𝑑𝜃
 =  𝐹0(𝜃, 𝑟) +  𝜀𝐹1(𝜃, 𝑟) +  𝑂 (𝜖

2) , 

with  

𝐹0(𝜃, 𝑟) =
𝑟

𝛼
 (𝑝1 (2 cos

2   𝜃 −  1) + 𝑝2 sin 𝜃 cos 𝜃),  

𝐹1(𝜃, 𝑟) =
1

𝛼𝑟3
 (𝐵4𝑟

4  +  𝐵3𝑟
3  +  𝐵2𝑟

2  +  𝐵1𝑟 ),  

where  

𝐵4  =
1

𝛼
 (𝐵46 cos6  𝜃 + 𝐵45 sin 𝜃 cos

5 𝜃 + 𝐵44 cos
4 𝜃 + 𝐵43 sin 𝜃 cos

3 𝜃 

+ 𝐵42 cos
2 𝜃 + 𝐵41 sin 𝜃 cos 𝜃 + 𝐵40) ,  

𝐵3 =  −
1

𝛼
 (𝐵35 cos

5 𝜃 + 𝐵34 sin 𝜃 cos
4 𝜃 + 𝐵33 cos

3 𝜃 +  𝐵32 sin 𝜃 cos
2 𝜃 

+  𝐵31𝜃 cos 𝜃 + 𝐵30 sin 𝜃),  

𝐵2  =  −
1

𝛼
 (𝐵24 cos

4 𝜃 + 𝐵23 sin 𝜃 cos
3 𝜃 + 𝐵22 cos

2 𝜃 + 𝐵21 sin 𝜃 cos 𝜃 + 𝐵20),  

𝐵1  =  −
1

𝛼
 (𝐵13 cos

3 𝜃 + 𝐵12 𝑠𝑖𝑛 𝜃 cos
2 𝜃 + 𝐵10 𝑠𝑖𝑛 𝜃) ,  

with  

𝐵46  =  2𝑝1𝑎03  +  2𝑝1𝑏12  −  2𝑝1𝑎21  −  2𝑝1𝑏30  +  𝑝2𝑎12  −  𝑝2𝑎30  +  𝑝2𝑏21  −  𝑝2𝑏03,  
𝐵45  =  −2𝑝1𝑎12  +  2𝑝1𝑎30  +  𝑝2𝑎03  −  𝑝2𝑏30  −  2𝑝1𝑏21  −  𝑝2𝑎21  +  𝑝2𝑏12  

+  2𝑝1𝑏03,  
𝐵44  =  −5𝑝1𝑎03  +  3𝑝1𝑎21  −  3𝑝1𝑏12  −  𝑏21𝛼 − 𝑎12𝛼 + 𝑎30𝛼 + 𝑝2𝑎30  −  𝑝2𝑏21  

+  𝑝1𝑏30  +  𝑏03𝛼 +  2𝑝2𝑏03  −  2𝑝2𝑎12,  
𝐵43  =  −𝑝2𝑏12  +  3𝑝1𝑎12  −  𝑎03𝛼 + 𝑝2𝑎21  +  𝑏30𝛼 −  3𝑝1𝑏03  −  𝑝1𝑎30  −  𝑏12𝛼 

+ 𝑝1𝑏21  +  𝑎21𝛼 −  2𝑝2𝑎03,  
𝐵42  =  4𝑝1𝑎03  +  𝑝1𝑏12  −  𝑝2𝑏03  +  𝑏21𝛼 + 𝑎12𝛼 −  2𝑏03𝛼 − 𝑝1𝑎21  +  𝑝2𝑎12, 

𝐵41  =  −𝑝1𝑎12  +  𝑝2𝑎03  +  𝑏12𝛼 + 𝑎03𝛼 + 𝑝1𝑏03,  
𝐵40  =  𝑏03𝛼 − 𝑝1𝑎03,  
𝐵35  =  2𝑝1𝑏02  −  2𝑝1𝑎11  −  2𝑝1𝑏20  +  𝑝2𝑎02  +  𝑝2𝑏11  −  𝑝2𝑎20,  
𝐵34  =  −2𝑝1𝑏11  −  𝑝2𝑏20  +  2𝑝1𝑎20  −  𝑝2𝑎11  −  2𝑎02𝑝1  +  𝑝2𝑏02,  
𝐵33  =  −𝑎02𝛼 + 𝑝1𝑏20  +  𝑎20𝛼 +  𝑝2𝑎20 −  2𝑝2𝑎02 −  𝑝2𝑏11 −  3𝑝1𝑏02 

+  3𝑝1𝑎11 −  𝑏11𝛼,  
𝐵32  =  −𝑏02𝛼 + 𝑝2𝑎11  −  𝑝1𝑎20  +  𝑏20𝛼 + 𝑝1𝑏11  +  3𝑎02𝑝1  +  𝑎11𝛼 − 𝑝2𝑏02,  
𝐵31  =  −𝑝1𝑎11  +  𝑝2𝑎02  +  𝑏11𝛼 + 𝑎02𝛼 + 𝑝1𝑏02,  
𝐵30  =  −𝑎02𝑝1  +  𝑏02𝛼,  
𝐵24  =  −2𝑎01𝑝1  −  2𝑝1𝑏10  +  𝑝2𝑏01  −  𝑝2𝑎10,  
𝐵23  =  −2𝑝1𝑏01  −  𝑝2𝑏10  −  𝑝2𝑎01  +  2𝑝1𝑎10,  
𝐵22  =  3𝑎01𝑝1  +  𝑎10𝛼 +  𝛼𝑏01  +  𝑝2𝑎10  +  𝑝1𝑏10  −  𝑝2𝑏01,  
𝐵21  =  𝑝1𝑏01  −  𝑝1𝑎10  +  𝑏10𝛼 + 𝑎01𝛼 + 𝑝2𝑎01,  
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𝐵20  =  −𝑎01𝑝1  +  𝛼𝑏01,  
𝐵13  =  −2𝑝1𝑏00  −  𝑝2𝑎00,  
𝐵12  =  2𝑎00𝑝1  −  𝑝2𝑏00,  
𝐵11  =  𝑝1𝑏00  +  𝑝2𝑎00  +  𝛼𝑎00,  
𝐵10  =  𝑏00𝛼 − 𝑎00𝑝1.  
Note that  

ℱ(𝑟0) =   ∫  

2𝜋

 0

 𝑀−1(𝜃)𝐹1( 𝜃, 𝑟̃(𝜃, 𝑟0))𝑑𝜃 

=
1

𝑟0
 𝐴0𝐼0  +

2

𝑟0
2    (𝐴1𝐼1  +  𝐴2𝐼2  +  𝐴3𝐼3  +  𝐴4𝐼4  +  𝜋 𝐶1  +

3𝜋

4
 𝐶2 )  

+  2𝑟0𝜋(𝛼𝑏03  −  𝑝1𝑎03) +
5𝜋

8
 𝐶3,  

where we have  

𝐼0  =   ∫  

2𝜋

 0

𝐸 𝑑𝜃, 𝐼1  =   ∫  

2𝜋

 0

 𝐸 cos 𝜃 sin 𝜃 𝑑𝜃,  

𝐼2  =   ∫  

2𝜋

 0

 𝐸 cos2   𝜃 𝑑𝜃, 𝐼3  =  ∫  

2𝜋

 0

 𝐸 cos3 𝜃 𝑠𝑖𝑛 𝜃 𝑑𝜃,  

𝐼4  =   ∫  

2𝜋

 0

 𝐸 cos4   𝜃 𝑑𝜃,    𝐸 =  𝑒𝑥𝑝 (
𝑠𝑖𝑛𝜃(2𝑝1 𝑐𝑜𝑠(𝜃) + 𝑝2 𝑠𝑖𝑛 𝜃)

𝛼
 )  ,  

and  

𝐴0  =  −𝑎01𝑝1  +  𝛼𝑏01,  

𝐴1  =  −
1

2
 ((𝑎10  −  𝑏01)𝑝1  −  𝑝2𝑎01  −  𝛼(𝑎01  +  𝑏1,0)) 𝑟0,  

𝐴2  = ((
3

2
 𝑎01  +

1

2
 𝑏10) 𝑝1  +

1

2
 (𝑝2  +  𝛼)(𝑎10  −  𝑏01))  𝑟0,  

𝐴3 =   ((𝑎10  −  𝑏01)𝑝1  −
1

2
 𝑝2(𝑎01  +  𝑏10)) 𝑟0,  

𝐴4  =   ((−𝑎01  −  𝑏10)𝑝1  −
1

2
 𝑝2(𝑎10  −  𝑏01)) 𝑟0,  

𝐶1  = ((2𝑎03  +
1

2
 𝑏12  −

1

2
 𝑎21) 𝑝1  + (

1

2
 𝑎12  −

1

2
 𝑏03) 𝑝2  

−   (−
1

2
 𝑎12  +  𝑏03  −

1

2
 𝑏21)  𝛼)  𝑟0

3,  

𝐶2  = ((
3

2
 𝑎21  +

1

2 
𝑏30 −  5/2𝑎03 − 3/2𝑏12)

 

𝑝1    

+ (
1

2
 𝑎30  −  𝑎1,2  −

1

2
 𝑏21  +  𝑏03)

 
𝑝2  

+
1

2
 𝛼(𝑏03  +  𝑎30  −  𝑎12  −  𝑏21) )  𝑟0

3,  
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𝐶3  =  2 ((𝑏12  +  𝑎03  −  𝑎21  −  𝑏30)𝑝1  −
1

2
 𝑝2(𝑏03  +  𝑎30  −  𝑎12  −  𝑏21))  𝑟0.  

In short, the function F(r) of Theorem (5.2.6) is of the form  

ℱ(𝑟) =
 𝛼𝑟2  + 𝛽

𝑟
 ,  

so it has at most one real positive root given by 𝑟 = √−𝛽/𝛼. Moreover, we have that 

ℱ (√−𝛽/𝛼 ) = 2𝛼. So by Theorem (5.2.6) if −𝛽/𝛼 >  0 then there is one limit cycle 

bifurcating from a periodic orbit of the center of system (20). This completes the proof of 

Theorem (5.2.8) for system (20).  

The rest of the proof of Theorem (5.2.8) for system (19) is completely analogous to the one 

done for system (20), only the computations change, and we do not repeat it here.  

We give an example satisfying the result of Theorem (5.2.8) for system (20). We consider 

the system  

 
Fig. (3)[135]: Phase portrait of system (23) in the Poincaré disk. 

 
Fig. (4)[135]: Phase portrait of system (24) in the Poincaré disk. 

𝑥̇  =  𝑥3  +  2𝑥2𝑦 −  𝑥𝑦2  −  𝑦3, 𝑦̇  =  𝑥3  +  𝑥2𝑦 +  4𝑥𝑦2  −  𝑦3,  
and its perturbation  

𝑥̇  =  𝑥3  +  2𝑥2𝑦 −  𝑥𝑦2  −  𝑦3  + 𝜖( 𝜀 4𝑦3  +  3𝑥𝑦2  +  3𝑥2𝑦 +  5𝑥3  +  3𝑦2  +  3𝑥𝑦 
+  3𝑥2  −  𝑦 −  𝑥 +  2 ),  

𝑦̇  =  𝑥3  +  𝑥2𝑦 +  4𝑥𝑦2  −  𝑦3  
+  𝜀 (−3𝑦3  +  𝑥𝑦2  +  𝑥2𝑦 + 𝑥3  +  5𝑦2  +  𝑥𝑦 + 𝑥2  +  𝑦 +  2𝑥 
+  1).                                                                                                             (23)  
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Then  

ℱ(𝑟0) =
 11.78097245𝑟0

2  − 4.108168642

𝑟0
 

and ℱ(𝑟)  =  0 gives 𝑟 =  0.5905185728. So according to Theorem (5.2.6) at most one 

limit cycle can be bifurcated from the origin, see also Fig. 3.  

Example (5.2.9)[135]: Now we give an example satisfying the result of Theorem (5.2.8) 

for system (19). For 𝜀 =  0 the origin of the system  

𝑥̇  =  𝑥3  −  6𝑥2𝑦 −  𝑥𝑦2  −  𝑦3  +  
𝜖( 2𝑦3  +  3𝑥𝑦2  +  3𝑥2𝑦 −  5𝑥3  +  3𝑦2  +  10𝑥𝑦 +  3𝑥2  −  𝑦 −  𝑥 −  20) ,  

𝑦̇  =  𝑥3   +  𝑥2𝑦 +  12𝑥𝑦2  −  𝑦3  +  
 −𝜖(3𝑦3  +  𝑥𝑦2  −  10𝑥2𝑦 + 𝑥3  +  5𝑦2  +  𝑥𝑦 +  1/5𝑥2  +  𝑦 +  2𝑥 +  100) ,     (24) 
is a center and for ε = 0.01 one limit cycle is produced, see Fig. 4. 

Section (5.3): The Period Function of the Sum of Two Quasi-Homogeneous Vector 

Fields 

A planar polynomial vector field 𝑋(𝑥, 𝑦) =  (𝑃(𝑥, 𝑦), 𝑄(𝑥, 𝑦))is called (𝑝, 𝑞)quasi-

homogeneous of quasidegree 𝑛 if there exist 𝑝, 𝑞, 𝑛 ∈ ℕ such that  

𝑃(𝜆𝑝𝑥 , 𝜆𝑞𝑦 ) =  𝜆𝑛+𝑝−1𝑃(𝑥, 𝑦), 𝑄(𝜆𝑝𝑥, 𝜆𝑞𝑦) =  𝜆𝑛+𝑞−1𝑄(𝑥, 𝑦), 
 for all 𝜆 ∈ ℝ. It is not restrictive to take 𝑝 and 𝑞 coprime. The numbers 𝑝 and 𝑞 are usually 

called weights. It is well known that its associated differential equation  

{
𝑥̇  =  𝑃(𝑥, 𝑦),
𝑦̇  = 𝑄(𝑥, 𝑦),

 

can be integrated by writing it in the so called generalized polar coordinates, see [34]. Notice 

that homogeneous vector fields of degree n are quasi-homogeneous of quasi-degree n and 

weights (1, 1). Moreover, in this case the generalized polar coordinates are the usual polar 

ones.  

We are concerned with vector fields having a degenerate critical point at the origin of 

centre type, and being either quasi-homogeneous or given by the sum of two quasi-

homogeneous ones sharing the same weights (𝑝, 𝑞). In the latter case, additionally we will 

assume that the vector field is Hamiltonian. We write the vector field in both situations as 

𝑋(𝑥, 𝑦)  =  𝑋𝑛 (𝑥, 𝑦)  + 𝑋𝑚 (𝑥, 𝑦), with associated differential equation  

{
𝑥̇ =  𝑃𝑛(𝑥, 𝑦) + 𝑃𝑚(𝑥, 𝑦),

𝑦̇ =  𝑄𝑛(𝑥, 𝑦) + 𝑄𝑚(𝑥, 𝑦),    
   1 <  𝑛 <  𝑚,                           (25) 

where each 𝑋𝑗  =  (𝑃𝑗  , 𝑄𝑗  ), 𝑗 ∈  {𝑛,𝑚}, is (𝑝, 𝑞) quasi-homogeneous of quasi-degree 𝑗. We 

assume that 𝑋𝑛(𝑥, 𝑦)  ≢  0 but we admit that 𝑋𝑚(𝑥, 𝑦)  ≡  0.  
We want to know the global behaviour of the period function on the period annulus of the 

origin when we assume that the differential equation associated to 𝑋 has a degenerate centre 

at this point. Recall that a centre is a critical point that has a punctured neighbourhood full 

of periodic orbits. The largest of such neighbourhoods is called the period annulus of the 

centre. When the eigenvalues of 𝐷𝑋 at the centre are not purely imaginary, then the centre 

is called degenerate. This is our situation because 𝑛 >  1. The function that associates to 

any closed curved of the period annulus its period is called the period function of the centre. 

It is well known that the period function tends to infinity when the orbits in a period annulus 

approach either to a degenerate centre or to a polycycle with some finite critical point, see 

for instance [44].  

In general, given a system with a centre, we will write 𝑇(𝑥, 𝑦) to denote the period of the 

orbit passing through the point (𝑥, 𝑦). When the system is Hamiltonian, it is sometimes more 
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convenient to parameterize the periodic orbits by their energy ℎ and write 𝑇(ℎ) to denote 

their corresponding periods. The critical periods are the zeroes of the derivative of the period 

function once the continuum of periodic orbits is parameterized by a smooth one-parameter 

function. This parameter can be the energy in the Hamiltonian situation, or anyone 

describing a transversal to the orbits. It is not difficult to prove that the number of critical 

periods does not depend neither on the transversal, nor on its parametrization. When a zero 

of the derivative of the period function is simple we will say that the system has a simple 

critical period.  

Some motivations to know properties of the period function come from its role in the study 

of several differential equations. For instance, it appears in mathematical models in physics 

or ecology, see [176], [106], [181], [134]. It is important in the study of the bifurcations 

from a continuum of periodic orbits giving rise to isolated ones, see [173], in the description 

of the dynamics of some discrete dynamical systems, see [170], [174], [175] or for counting 

the solutions of some boundary value problems, see [112], [172].  

The period function for homogeneous vector fields (both Hamiltonian and non-

Hamiltonian) was characterized in [46], while the quasi-homogeneous Hamiltonian were 

studied in [182]. Our main result for the quasi-homogeneous case, i.e. 𝑋𝑚(𝑥, 𝑦)  ≡  0, 
completely characterizes the period function in the general case, extending their results.  

Recall that a critical point is called monodromic if there are no orbits tending or 

leaving the point with a given direction. For analytic vector fields, monodromic points are 

either centre or focus, and the problem of distinguishing between both options is called the 

centre-focus problem. The solution of the centre-focus problem for quasi-homogeneous 

vector fields is relatively easy. As we will see in the proof of the previous theorem, in order 

to have a centre at the origin we only need to guarantee that the origin is monodromic and 

moreover that some definite integral, that can be obtained from the expression in quasi-

homogeneous polar coordinates, is zero, see (38). 

In the particular case that the system considered in Theorem (5.3.8) is also 

Hamiltonian the above result can be rewritten as follows, recovering the result in [182].  

As we will see, the constants 𝑇𝑗  , 𝑗 =  1, 2, 3 are closely related and all them can be 

expressed in terms of two iterated integrals, see (39). Moreover in some cases they can be 

explicitly computed. For instance, consider the (1, 2) quasi-homogeneous Hamiltonian 

system, of quasi-degree 2,  

{
𝑥̇  =  −𝑦 +  𝑏𝑥2,

𝑦̇  =  𝑥3 −  2𝑏𝑥𝑦,
  

with Hamiltonian 𝐻(𝑥, 𝑦)  =  𝑦2/2 −  𝑏𝑥2𝑦 + 𝑥4/4. When 𝑏2  <  1/2, it has a centre at 

the origin and its period function, for 𝜉 >  0, is (see Example (5.3.11))  

𝑇(𝜉, 0) =
𝑇1
𝜉
 =  

2𝜋3/2

 √1 −  2𝑏2
4

  𝛤2 (3/4)

1

𝜉
 ,  

where 𝛤 is the Gamma function. Equivalently, for 𝜂 >  0,  

𝑇(0, 𝜂) =  
𝑇1

 √𝜂
 𝑎𝑛𝑑 𝑇(ℎ) =

𝑇1

√2 

1

√ℎ
4  .  

For general systems (25) the centre-focus problem is still an open question. Moreover, 

even for quadratic systems with a reversible centre, the global behaviour of the period 

function is not fully understood, see for instance [180]. Therefore to ensure that the origin 

is a centre and to start with the most tractable case, we will restrict our attention to the 

Hamiltonian subcase. Notice that for system (25) the condition of being a Hamiltonian 
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vector field implies the existence of two (𝑝, 𝑞) quasi-homogeneous functions 𝐻𝑛(𝑥, 𝑦) and 

𝐻𝑚(𝑥, 𝑦), with respective quasi-degrees 𝑛 +  𝑝 +  𝑞 −  1 and 𝑚 +  𝑝 +  𝑞 −  1, such that  

𝐻𝑘(𝜆
𝑝𝑥, 𝜆𝑞𝑦) =  𝜆𝑘+𝑝+𝑞

 −1𝐻𝑘(𝑥, 𝑦),  
𝜕𝐻𝑘(𝑥, 𝑦)

𝜕𝑥
 =  𝑄𝑘(𝑥, 𝑦),

𝜕𝐻𝑘(𝑥, 𝑦)

𝜕𝑦
 =  −𝑃𝑘(𝑥, 𝑦), 𝑘 =  𝑛,𝑚,  

and the Hamiltonian is 𝐻(𝑥, 𝑦)  =  𝐻𝑛(𝑥, 𝑦)  + 𝐻𝑚(𝑥, 𝑦).  
We obtain the following results, where recall that a centre is called global if its associated 

basin of attraction is the whole plane 

We remark that previous result strongly relies on two facts. The first one is that the 

associated vector field is given by the sum of two (𝑝, 𝑞) quasi-homogeneous ones, while the 

second fact is that 𝑛 >  1. As an example of the necessity of both hypotheses, consider for 

instance the globally linearizable isochronous system associated to the Hamiltonian 

𝐻(𝑥, 𝑦)  =  𝑥2  +  (𝑦 + 𝑥2)2, for which all orbits have period 𝜋. The corresponding 

Hamiltonian vector field can be considered as the sum of three homogeneous ones, which 

violates the first required assumption. On the other hand, the same vector field can be also 

considered as the sum of two (1, 2) quasi-homogeneous ones of quasi-degrees 0 and 2, 

respectively. In this case the second assumption fails.  

For the particular case when 𝑋𝑛 and 𝑋𝑚 are both homogeneous vector fields 

((𝑝, 𝑞)  =  (1, 1)), we obtain the following result:  

The above corollary extends the results obtained in [46], [177], [39] for the case of 

Hamiltonian vector fields of the form 𝑋𝑛  +  𝑋𝑚 , with 𝑛 =  1 <  𝑚, where it is also proved 

that the period function on the period annulus of the origin has at most one critical period. 

When 𝑛 ≥  2 (indeed n has to be odd to have a centre at the origin) the same result holds 

when 𝑚 ≥  2𝑛 −  1. Our attempts to cover the remaining cases have not succeeded. For 

instance, by applying our result we know the behaviour of the period function on the period 

annulus of the origin for all Hamiltonian systems of the form 𝑋3  +  𝑋𝑚, 𝑚 ≥  5, and the 

only open case is 𝑚 =  4.  
We give some preliminary results and we introduce the generalized polar coordinates; 

We deal with quasi-homogeneous vector fields, not necessarily Hamiltonian, and is devoted 

to prove Theorem (5.3.8). Finally, the proofs of Theorems (5.3.12) and (5.3.13) and 

Corollary (5.3.14) about Hamiltonian vector fields of the form 𝑋𝑛  +  𝑋𝑚 are given.  

We start recalling the generalized polar coordinates and the generalized trigonometric 

functions. They were introduced by Lyapunov in his study of the stability of degenerate 

critical points, see [34]. These new functions are defined as the unique solution of the initial 

value problem  

{
𝑥̇ =  −𝑦2𝑝−1,

𝑦̇  =  𝑥2𝑞−1,
                                                                                  (26) 

with the initial conditions 𝑥(0)  =   √ 1/𝑝
2 , 𝑦(0) −  0. We will denote them by 𝑥(𝜃)  =

 𝐶𝑠(𝜃), 𝑦(𝜃)  =  𝑆𝑛(𝜃). When 𝑝 =  𝑞 =  1 we recover the usual trigonometric functions. 

The generalized trigonometric functions satisfy the equality 𝑝 𝐶𝑠 
2𝑞  (𝜃)  +  𝑞 𝑆𝑛2𝑝(𝜃)  =

 1 and they are periodic, with period  

𝛺 = 𝛺𝑝,𝑞  =  2𝑝
 
−1
2𝑞  𝑞

−1
2𝑝  
𝛤 (

1
2𝑝)

  𝛤 (
1
2𝑞)

  𝛤 (
1
2𝑝
 +

1
2𝑞)

 
,                                            (27) 
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where 𝛤 is the Gamma function. Associated to them we can introduce the quasi-

homogeneous polar coordinates by the change  

𝑥 =  𝑟𝑝 𝐶𝑠(𝜃),             𝑦 =  𝑟𝑞 𝑆𝑛(𝜃).                                               (28) 
With these coordinates, it holds that 𝑝𝑥2𝑞  +  𝑞𝑦2𝑝  =  𝑟2𝑝𝑞 .  
In general, a system  

{
𝑥̇  =  𝑃(𝑥, 𝑦),
𝑦̇ =  𝑄(𝑥, 𝑦),

                                                                                      (29) 

by doing the change to generalized polar coordinates, is transformed into  

{
𝑟̇ =  𝑟1−2𝑝𝑞  [𝑥2𝑞−1𝑃(𝑥, 𝑦) + 𝑦2𝑝−1𝑄(𝑥, 𝑦)] ,

𝜃̇  =  𝑟−𝑝−𝑞[𝑝𝑥𝑄(𝑥 𝑦) − 𝑞𝑦𝑃(𝑥, 𝑦)] ,
                               (30) 

where 𝑥 and y have to be substituted using (28). In the particular case that the vector field 

𝑋 =  (𝑃, 𝑄) is (𝑝, 𝑞) quasi-homogeneous of quasi-degree n, we obtain 

{
𝑟̇  =  𝑟𝑛[ 𝐶𝑠2𝑞−1(𝜃)𝑃(𝐶𝑠(𝜃), 𝑆𝑛(𝜃)) +  𝑆𝑛2𝑝−1(𝜃)𝑄(𝐶𝑠(𝜃), 𝑆𝑛(𝜃))] ,

𝜃̇  =  𝑟𝑛−1 [𝑝 𝐶𝑠(𝜃)𝑄(𝐶𝑠(𝜃), 𝑆𝑛(𝜃)) −  𝑞 𝑆𝑛(𝜃)𝑃(𝐶𝑠(𝜃), 𝑆𝑛(𝜃))] .
      (31) 

Moreover, system (26), which has quasi-degree 𝑛 =  2𝑝𝑞 −  𝑝 −  𝑞 +  1, is transformed 

into  

{
𝑟̇  =  0,

𝜃̇  =  𝑟𝑛−1  =  𝑟2𝑝𝑞−𝑝−𝑞 .
   

Notice that each polynomial vector field can be decomposed in different ways according to 

some chosen (𝑝, 𝑞) weights. For instance, the vector field (𝑦, 𝑥2) decomposes as (𝑦, 0) +
(0, 𝑥2) in its homogeneous components or as itself when one takes (2, 3) quasi-

homogeneous ones. Therefore, given 𝑋, and a couple of weights (𝑝, 𝑞), we have a unique 

decomposition  

𝑋(𝑥, 𝑦)  =  ∑  

𝑚

 𝑗=𝑛 

𝑋𝑗  (𝑥, 𝑦),  

where 𝑛 =  𝑛(𝑝, 𝑞)  ≤  𝑚 =  𝑚(𝑝, 𝑞) and each 𝑋𝑗  (𝑥, 𝑦)  =  𝑋𝑗  (𝑥, 𝑦, 𝑝, 𝑞) is (𝑝, 𝑞) quasi-

homogeneous of quasidegree j. Observe that in general many 𝑋𝑗 are identically zero.  

Associated to a given (𝑝, 𝑞) decomposition and motivated by the expressions of 𝜃̇  in (30) 

and (31) we define the (𝑝, 𝑞) characteristic quasi-directions at the origin of the vector field 

𝑋 =  (𝑃, 𝑄), as the curves 𝜆 →  (𝜆𝑝𝑥, 𝜆𝑞𝑦¯), where (𝑥, 𝑦)  ≠ (0, 0) is a real zero of the 

quasi-homogeneous polynomial 

𝐹𝑝,𝑞
0 (𝑥, 𝑦):=  𝑝𝑥𝑄𝑛(𝑝,𝑞)(𝑥, 𝑦) −  𝑞𝑦𝑃𝑛(𝑝,𝑞)(𝑥, 𝑦).                                     (32) 

Smilarly, we define the (𝑝, 𝑞) characteristic quasi-directions at infinity of 𝑋 as the curves 

𝜆 →  (𝜆𝑝𝑥̅, 𝜆𝑞𝑦̅), where (𝑥̅, 𝑦̅)   ≠  (0, 0) is a real zero of the quasi-homogeneous 

polynomial  

𝐹𝑝,𝑞
∞ (𝑥, 𝑦) ∶=  𝑝𝑥𝑄𝑚(𝑝,𝑞)(𝑥, 𝑦) −  𝑞𝑦𝑃𝑚(𝑝,𝑞)(𝑥, 𝑦).                                           (33) 

Notice that, as a result of the quasi-homogeneity of 𝐹𝑝,𝑞
0  and 𝐹𝑝,𝑞

∞ , the control of the zeroes 

and signs of these functions is a one-variable problem. For instance, (𝑢, 𝑣) gives a 

characteristic quasi-direction at the origin if either 𝐹𝑝,𝑞
0 (0, 1)  =  0 or 𝐹𝑝,𝑞

0 (1,𝑤)  =  0, where 

𝑤 =  𝑣 𝑢−𝑞/𝑝. Using this fact it makes sense to talk about the multiplicity of the 

characteristic quasi-directions as the multiplicity of the one-variable associated functions.  

Observe that if 𝑋 is a (𝑝, 𝑞) quasi-homogeneous vector field, then any (𝑝, 𝑞) characteristic 

quasi-direction is invariant by 𝑋.  
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Based on the ideas of [168], [169] it is not difficult to prove the following result, 

wherein the definition for infinity to be monodromic is essentially the same as for the origin. 

This result states some folklore results that appear in many places only when (𝑝, 𝑞)  =
 (1, 1). 
 Proposition (5.3.1)[167]: Consider a polynomial vector filed 𝑋. The following holds:  

(i) If the origin is a critical point and some orbit tends to it asymptotically to some 

curve 𝜆 →  (𝜆𝑝𝑥̅, 𝜆𝑞𝑦̅), then this direction has to be a (𝑝, 𝑞) characteristic quasi-

direction, that is a zero of 𝐹𝑝,𝑞
0 .  

(ii) (ii) If the origin is a monodromic critical point then given any pair of weights 𝑝, 𝑞, 
either the point has not (𝑝, 𝑞) characteristic quasi-directions at the origin or all its 

(𝑝, 𝑞) characteristic quasi-directions at the origin have even multiplicity. 

Moreover when 𝑋 is (𝑝, 𝑞) quasi-homogeneous a necessary and sufficient 

condition to be monodromic is that the point has not (𝑝, 𝑞) characteristic quasi-

directions.  

(iii) (iii) If the infinity is monodromic, given any pair of weights 𝑝, 𝑞, then either it has 

not (𝑝, 𝑞) characteristic quasi-directions at infinity or all its (𝑝, 𝑞) characteristic 

quasi-directions at infinity have even multiplicity. 

 Following with the vector field 𝑋 =  (𝑦, 𝑥2) considered at the beginning, we get  

𝐹1,1
0 (𝑥, 𝑦) =  𝑦2, 𝐹2,3

0 (𝑥, 𝑦) = 2𝑥3  −  3𝑦2. 

 On one hand, since 𝐹1,1
0  has a double characteristic direction, the above proposition 

taking (𝑝, 𝑞)  =  (1, 1) does not allow to conclude whether there is an orbit tending to the 

origin in positive or negative time. On the other hand taking (𝑝, 𝑞)  =  (2, 3) we can 

conclude that the origin is a non-monodromic point because 𝐹2,3
0 (1,𝑤) has a simple root.  

Next result gives a well known extension of Euler Theorem to smooth (𝑝, 𝑞) quasi-

homogeneous functions. We will need this extension to prove Lemma (5.3.3) on non-

vanishing of quasi-characteristic polynomials of Hamiltonian systems.  

Lemma (5.3.2)[167]: Let 𝐹 ∶ ℝ2  → ℝ be 𝑎 𝐶1, (𝑝, 𝑞) quasi-homogeneous function of 

quasi-degree k, i.e. such that for all 𝜆 ∈ ℝ,  
𝐹(𝜆𝑝𝑥, 𝜆𝑞𝑦)  =  𝜆𝑘𝐹(𝑥, 𝑦).                                                        (34) 

Then 

𝑝𝑥
𝜕𝐹(𝑥, 𝑦)

𝜕𝑥
 +  𝑞𝑦

𝜕𝐹(𝑥, 𝑦)

𝜕𝑦
 =  𝑘 𝐹(𝑥, 𝑦).  

Proof. Derivating with respect to 𝜆 the equality (34) we get that  
𝜕𝐹(𝜆𝑝𝑥, 𝜆𝑞𝑦)

𝜕𝑥
 𝑝𝜆𝑝−1𝑥 +

𝜕𝐹(𝜆𝑝𝑥, 𝜆𝑞𝑦)

𝜕𝑦
 𝑞𝜆𝑞−1𝑦 =  𝑘𝜆𝑘−1𝐹(𝑥, 𝑦).  

The result follows substituting 𝜆 =  1 in the above expression. 

Lemma (5.3.3)[167]: The quasi-characteristic polynomial at the origin or at infinity of a 

Hamiltonian system can not be identically null.  

Proof. Consider a Hamiltonian function written in its (𝑝, 𝑞) quasi-homogeneous 

components 𝐻(𝑥, 𝑦)  =  𝐻𝑛(𝑥, 𝑦) + . . . + 𝐻𝑚(𝑥, 𝑦), with 𝐻𝑛, 𝐻𝑚  ≡  0, and its associated 

system  

{
 

 𝑥˙ =  −
𝜕𝐻(𝑥, 𝑦)

𝜕𝑦
 =  𝑃(𝑥, 𝑦) =  𝑃𝑛(𝑥, 𝑦) + 𝑃𝑛+1(𝑥, 𝑦)+ . . . + 𝑃𝑚(𝑥, 𝑦),

𝑦˙ =
𝜕𝐻(𝑥, 𝑦)

𝜕𝑥
 =  𝑄(𝑥, 𝑦)  =  𝑄𝑛(𝑥, 𝑦)  +  𝑄𝑛+1(𝑥, 𝑦) + . . . + 𝑄𝑚(𝑥, 𝑦).

  

Its quasi-characteristic polynomial at the origin is  
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𝐹𝑝,𝑞
0  (𝑥, 𝑦) =  −𝑞𝑦𝑃𝑛(𝑥, 𝑦) +  𝑝𝑥𝑄𝑛(𝑥, 𝑦) =  𝑞𝑦

𝜕𝐻𝑛(𝑥, 𝑦)

𝜕𝑦
 +  𝑝𝑥

𝜕𝐻𝑛(𝑥, 𝑦)

𝜕𝑥
 = 

=  (𝑛 +  𝑝 +  𝑞 −  1)𝐻𝑛(𝑥, 𝑦),  
where in the last equality we have used Lemma (5.3.2). Then, since 𝐻𝑛(𝑥, 𝑦)  ≢  0, 𝐹𝑝,𝑞

0  can 

not be null.  

The case of infinity is completely analogous but substituting 𝐻𝑛 by 𝐻𝑚. 
Next proposition can be proved as in [178]. The results at infinity can be inferred from the 

ones at the origin by doing the change 𝑟 =  1/𝜌. We use the following notation:  

𝑓(𝑥)  ∼  𝑔(𝑥) 𝑎𝑡 𝑥 =  𝑥0  ∈ ℝ ∪ {∞},  
if 𝑙𝑖𝑚
𝑥→𝑥0

   𝑓(𝑥)/𝑔(𝑥)  =  𝑘  ≠   0.  

Proposition (5.3.4)[167]: Given 1 ≤  𝑛 <  𝑚, consider a vector field 𝑋 =  𝑋𝑛  +  𝑋𝑛+1  +
 ···  + 𝑋𝑚, with 𝑋𝑛  ≡  0, 𝑋𝑚  ≡  0 and each 𝑋𝑖 being a (p, q) quasi-homogeneous 

polynomial of quasi-degree i.  

(i) If the origin is a centre and has not (p, q) characteristic quasi-directions then for 𝜉 >

 0, 𝑇(𝜉, 0)  ∼  𝜉 
1−𝑛

𝑝
 at 𝜉 =  0.  

(ii) If the infinity has a neighbourhood full of periodic orbits and has not (𝑝, 𝑞) characteristic 

quasi-directions then 𝑇(𝜉, 0)  ∼  𝜉 
1−𝑚

𝑝
 𝑎𝑡 𝜉 =  ∞.  

The following proposition extends the results of item (ii) of [45], that deals with polynomial 

Hamiltonian systems with Hamiltonian 𝐻(𝑥, 𝑦)  =  (𝑥2  +  𝑦2)/2 + 𝐻𝑚(𝑥, 𝑦), with 

𝐻𝑚 homogeneous, to Hamiltonian system of the form (25) with 𝑝 =  𝑞 =  1. Its proof is 

similar to the one and we omit it. It will be one of the key points for proving Corollary 

(5.3.14).  

Proposition (5.3.5)[167]: Consider a Hamiltonian system of the form (25) with 𝑝 =  𝑞 =
 1 and a centre at the origin. Then either it has a global centre or its period annulus is 

bounded. 

In order to prove that the bound for the number of critical periods is one, a way is to compute 

the second derivative of the period function and verify that it does not change sign. Next 

result gives an alternative for this computation that, moreover, has the freedom of choosing 

a function 𝜙.  

Theorem (5.3.6)[167]: ([39]). Let I be a real open interval. An analytic function 𝑓 ∶  𝐼 →
ℝ has at most one simple critical point if and only if there exists an analytic function 𝜙 ∶
 𝐼 → ℝ such that for all 𝑥 ∈  𝐼 

𝑓  ́𝑥́)  +  𝜙(𝑥)𝑓  ́(𝑥)  =  0. 
Consider a vector field 𝑋 =  𝑋𝑛  + ···  + 𝑋𝑚, 𝑛 ≥  1, decomposed as sum of 

homogeneous components 𝑋𝑗 of respective degrees j. It is well known that if the origin is 

monodromic, then n must be odd. This can be seen, for instance by using item (ii) of 

Proposition (5.3.1), because either it has not characteristic directions or all its characteristic 

directions have to have even multiplicity. Hence, the polynomial that gives these directions 

must have even degree. Thus 𝑛 +  1 has to be even. Next result extends this property to 

(𝑝, 𝑞) quasi-homogeneous vector fields.  

Lemma (5.3.7)[167]: Consider the (𝑝, 𝑞) quasi-homogeneous system of quasi-degree  

 {
𝑥̇  =  𝑃𝑛(𝑥, 𝑦),
𝑦̇  =  𝑄𝑛(𝑥, 𝑦).

                                           (35)  

If it has a monodromic point at the origin, then 𝑛 =  2𝑘𝑝𝑞 −  𝑝 −  𝑞 +  1 for some 𝑘 ∈
ℕ. 
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Proof. In order to be monodromic at the origin the function 𝑃𝑛(𝑥, 𝑦) must satisfy that 

𝑃𝑛(0, 𝑦)  =  0 and 𝑄𝑛(𝑥, 0) ≠ 0. Otherwise it would have an invariant line through it. Thus,  

𝑃𝑛(0, 𝑦)  =  𝑎1𝑦
𝑘1  , 𝑄𝑛(𝑥, 0)  =  𝑎2𝑥

𝑘2  , 𝑤𝑖𝑡ℎ 𝑎1𝑎2 ≠ 0, 
for some natural numbers 𝑘1, 𝑘2  ≥  1.  
Moreover, since the vector field is (𝑝, 𝑞) quasi-homogeneous of quasi-degree 𝑛, it holds 

that:  

𝑃𝑛(0, 𝜆
𝑞𝑦)  =  𝑎1𝜆

𝑘1𝑞𝑦𝑘1   =  𝜆𝑛+𝑝−1𝑃𝑛(0, 𝑦)  =  𝑎1𝜆
𝑛+𝑝−1𝑦𝑘1  , 𝑄𝑛(𝜆

𝑝𝑥, 0)  
=  𝑎2𝜆

𝑘2𝑝𝑥𝑘2  =  𝜆𝑛+𝑞−1𝑄𝑛(𝑥, 0)  =  𝑎2𝜆
𝑛+𝑞−1𝑥𝑘2  .  

Consequently 𝑛 +  𝑝 −  1 =  𝑘1𝑞 and 𝑛 +  𝑞 −  1 =  𝑘2𝑝. From these equalities (𝑘1  +
 1)𝑞 =  (𝑘2  +  1)𝑝. But p and q are coprime numbers, hence 𝑘1  +  1 =  𝐾𝑝 and 𝑘2  +

 1 =  𝐾𝑞 for some 𝐾 ∈ ℕ. By substituting one gets  

𝑛 −  1 =  𝑘1𝑞 −  𝑝 =  (𝐾𝑝 −  1)𝑞 −  𝑝 =  𝐾𝑝𝑞 −  𝑝 −  𝑞.  
It remains to be proved that 𝐾 is even. By item (ii) of Proposition (5.3.1), since the origin is 

monodromic, it can not have (𝑝, 𝑞) characteristic quasi-directions at the origin. 

Consequently, if we consider  

𝐹𝑝,𝑞
0 (𝑥, 𝑦) =  𝑝𝑥𝑄𝑛(𝑥, 𝑦) −  𝑞𝑦𝑃𝑛(𝑥, 𝑦), 

it happens that 𝐹𝑝,𝑞
0 (1, 𝑦)  =  𝑝𝑄𝑛(1, 𝑦)  −  𝑞𝑦𝑃𝑛(1, 𝑦) has no real roots. The term of higher 

degree of the previous expression is 𝑦𝑘1 +1 and hence, 𝑘1 +  1 =  𝐾𝑝 must be even. Doing 

the same reasoning but now with 

𝐹𝑝,𝑞
0 (𝑥, 1) one gets that 𝑘2  +  1 =  𝐾𝑞 must also be even. But 𝑝, 𝑞 can not be both even at 

the same time, as they are coprime. Consequently, 𝐾 =  2𝑘.  
Theorem (5.3.8)[167]: Consider 𝑎 (𝑝, 𝑞) quasi-homogeneous vector field of quasi-degree 

n, that is (25) with 𝑋𝑚  =  0, with a degenerate centre at the origin. Then its associated 

period function is monotonic decreasing. Moreover it can be written as  

𝑇(𝜉, 0)  =  𝑇1 𝜉
1−𝑛
𝑝
 
 , 𝑜𝑟 𝑇(0, 𝜂)  =  𝑇2 𝜂

1−𝑛
𝑞  ,  

for 𝜉, 𝜂 ∈ ℝ+, and some non-zero constants 𝑇1 and 𝑇2. 
Proof. By using the quasi-homogeneous polar coordinates we can write system (25) as  

{
𝑟̇  =  𝑟𝑛𝐴(𝜃),

𝜃̇   =  𝑟𝑛−1𝐵(𝜃),
                                                         (36) 

where  

𝐴(𝜃)  =  𝐶𝑠2𝑞−1(𝜃)𝑃(𝐶𝑠(𝜃), 𝑆𝑛(𝜃))  +  𝑆𝑛2𝑝−1(𝜃)𝑄(𝐶𝑠(𝜃), 𝑆𝑛(𝜃)), 𝐵(𝜃)  
=  𝑝 𝐶𝑠(𝜃)𝑄(𝐶𝑠(𝜃), 𝑆𝑛(𝜃))  −  𝑞𝑆𝑛(𝜃)𝑃(𝐶𝑠(𝜃), 𝑆𝑛(𝜃)),  

see system (31). From the above expressions it is clear that the monodromy condition in this 

situation is: the function 𝐵(𝜃) does not vanish. Then, clearly the origin has not (𝑝, 𝑞) 
characteristic quasi-directions. Under this monodromy assumption we can write the above 

system as  
𝑑𝑟

𝑑𝜃
 =
𝐴(𝜃)

𝐵(𝜃)
𝑟, 

which can be easily integrated, giving  

𝑟(𝜃; 𝑟0)  =  𝑟0 𝑒𝑥𝑝  (∫  

𝜃

0

𝐴(𝜓)

𝐵(𝜓)
  𝑑𝜓) ,                            (37) 

where 𝑟0  >  0 denotes the initial condition at 𝜃 =  0. Hence, the centre condition 

𝑟(𝛺𝑝,𝑞;  𝑟0)  =  𝑟0 writes as  
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∫  

𝛺𝑝,𝑞 

0

𝐴(𝜓)

𝐵(𝜓)
 𝑑𝜓 =  0.                                                    (38)  

Moreover, from the second equation of (36) and (37) it holds that  

𝑇̃ (𝑟0) =  ∫  

𝛺𝑝,𝑞 

0

𝑑𝜃

𝐵(𝜃)𝑟𝑛−1(𝜃; 𝑟0)

=  (∫  

𝛺𝑝,𝑞 

0

1

𝐵(𝜃)
 exp  [(1 

−  𝑛) ∫  

𝜃

 0 

𝐴(𝜓)

𝐵(𝜓)
𝑑𝜓]𝑑𝜃 )

1

𝑟0
𝑛−1  ,                  (39) 

where 𝑇̃(𝑟0) denotes the period of the orbit passing through the point with generalized polar 

coordinates 𝑟 =  𝑟0 and 𝜃 =  0, that is the point (𝑥, 𝑦)  =  (𝑟0
𝑝
 √ 1/𝑝, 0
2𝑞

 ). Hence  

𝑇(𝜉, 0)  =  𝑇1 𝜉
1−𝑛
𝑝  ,  

for some constant 𝑇1 ≠ 0, as we wanted to prove. If the initial condition of the periodic orbit 

is taken to be (0, 𝜂), 𝜂 >  0, then similarly we get that 𝑇(0, 𝜂)  =  𝑇2 𝜂
1−𝑛

𝑞  .  
Corollary (5.3.9)[167]: Under the hypotheses of Theorem (5.3.8), if moreover the system 

is Hamiltonian, with 𝐻(0, 0)  =  0 and closed ovals 𝐻(𝑥, 𝑦)  =  ℎ ≥  0, then the period 

function parameterized by the energy level ℎ is  

𝑇(ℎ)  =  𝑇3 ℎ
1−𝑛

𝑛+𝑝+𝑞−1   ,  
for some non-zero constant 𝑇3.  
Proof. If the quasi-homogeneous vector field 𝑋 =  (𝑃𝑛, 𝑄𝑛) is Hamiltonian, then its 

Hamiltonian function, satisfying 𝐻(0, 0)  =  0, can be obtained as  

𝐻(𝑥, 𝑦)  =  ∫  

𝑥

0

 𝑄𝑛(𝑢, 𝑦) 𝑑𝑢 +  𝑅(𝑦)  =
 𝑎2 𝑥

𝑘2 + 1

𝑘2  +  1 
 +  𝑦𝑆(𝑥, 𝑦),  

for some polynomial functions 𝑅 and 𝑆, with 𝑅(0)  =  0, where we keep the same notation 

as in the proof of Lemma (5.3.7). Then, using that 𝑘2  +  1 =  2𝑘𝑞, see again Lemma 

(5.3.7), the energy level of the solution passing through the point (𝜉, 0), called h, satisfies 

ℎ =  𝐻(𝜉, 0) =
𝑎2

 2𝑘𝑞 
𝜉2𝑘𝑞. Applying now Theorem (5.3.8) we get that  

𝑇(ℎ)  =  𝑇3 ℎ
 
1−𝑛
2𝑘𝑝𝑞  =  𝑇3 ℎ

 1−𝑛
 𝑛+𝑝+𝑞−1 ,   

because 2𝑘𝑝𝑞 =  𝑛 +  𝑝 +  𝑞 −  1.  
We end with a couple of examples.  

Example (5.3.10)[167]: Consider the classical (𝑝, 𝑞) quasi-homogeneous system:  

{
𝑥̇  =  −𝑦2𝑝−1,

 𝑦̇  =  𝑥2𝑞−1 
 

It has quasi-degree 𝑛 =  2𝑝𝑞 −  𝑝 −  𝑞 +  1 and it is Hamiltonian, with 𝐻(𝑥, 𝑦) =
𝑥2𝑞

 2𝑞 
+

𝑦2𝑝

2𝑝
 . Recall that in the generalized polar coordinates the previous system writes as 𝑟˙ =
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 0, 𝜃˙  =  𝑟𝑛−1. Since 𝐻(𝑟𝑝 𝐶𝑠(𝜃), 𝑟𝑞  𝑆𝑛(𝜃)) =
𝑟2𝑝𝑞

2𝑝𝑞
 it holds that the orbit γh with energy 

ℎ >  0 𝑖𝑠 𝑟 =  (2𝑝𝑞ℎ)
1

 2𝑝𝑞
 .  

By the proof of Theorem (5.3.8), the period function of 𝛾ℎ can be explicitly computed as  

𝑇(ℎ) = ∫  

 𝛺𝑝,𝑞

0

  
1

   𝑟𝑛−1
 𝑑𝜃 =  𝑇3 ℎ

1−𝑛
 2𝑝𝑞 , 𝑤𝑖𝑡ℎ 𝑇3  =  (2𝑝𝑞)

 1 − 𝑛

 2𝑝𝑞
 𝛺𝑝, 𝑞.  

Example (5.3.11)[167]: Let us consider next (1, 2) quasi-homogeneous systems of quasi-

degree 2:  

{
𝑥̇  =  −𝑦 +  𝑏𝑥2,

𝑦̇  =  𝑥3  +  𝑎𝑥𝑦,
                                                                                 (40)  

with (𝑎 −  2𝑏)2  <  8. As it is proved in [135] the previous system is the only cubic quasi-

homogeneous (and non-homogeneous) system having a centre at the origin (after a rescaling 

of the variables, if necessary). Notice that the condition (𝑎 − 2𝑏)2  <  8 is, precisely, the 

condition of non-existence of characteristic quasi-directions, because this function  

𝑝𝑥𝑡𝑄 (𝑥, 𝑦)  −  𝑞𝑦𝑃(𝑥, 𝑦)  =  𝑥(𝑥3  +  𝑎𝑥𝑦)  −  2𝑦(−𝑦 +  𝑏𝑥2)  
=  𝑥4  +  (𝑎 −  2𝑏)𝑥2𝑦 +  2𝑦2,  

does not vanish at (𝑥, 𝑦)  =  (0, 0) if and only if (𝑎 −  2𝑏)2  −  8 <  0. Moreover, the 

origin is a centre because it is invariant by the change of variables and time (𝑥, 𝑦, 𝑡)  →
 (−𝑥, 𝑦,−𝑡), and so it is reversible.  

When 𝑏 =  0, system (40) is the one studied in [171], where an explicit expression for the 

period function is given. When a = −2b the previous system is Hamiltonian with 𝐻(𝑥, 𝑦)  =
 𝑦2/2 −  𝑏𝑥2𝑦 + 𝑥4/4.  
We will compute the period function in the general case, getting a closed expression when 

the system is Hamiltonian. 

Following Theorem (5.3.8) and its proof, 𝑇(𝜉, 0)  =  𝑇1𝜉 
1−𝑛

𝑝
 =  𝑇1/𝜉, with  

𝑇1  =  𝑇1(𝑎, 𝑏) =  ∫  

𝛺 1,2 

0

 𝑒𝑥𝑝

(−∫  
𝜃

0

𝐶𝑠(𝜙)(𝑏 𝐶𝑠4(𝜙) + 𝑎 𝑆𝑛2(𝜙))

1 + (𝑎 − 2𝑏)𝐶𝑠2(𝜙)𝑆𝑛(𝜙)
𝑑𝜙)

1 + (𝑎 −  2𝑏)𝐶𝑠2(𝜙) 𝑆𝑛(𝜙)
 𝑑𝜃.  

When 𝑏 =  0 the formula given in [171] is recovered.  

In the Hamiltonian case, 𝑎 =  −2𝑏, the integral in the numerator of the expression of 𝑇1 can 

be computed explicitly in the following way:  

∫  
𝜃

0
𝐶𝑠(𝜙)(𝑏 𝐶𝑠4(𝜙) −  2𝑏 𝑆𝑛2(𝜙))

1 −  4𝑏 𝐶𝑠2(𝜙) 𝑆𝑛(𝜙) 
 𝑑𝜙 =  

−1

4
 𝑙𝑛 ( 1 −  4𝑏 𝐶𝑠2(𝜃)𝑆𝑛(𝜃))  ,  

where we have used that 𝐶̇𝑠(𝜃)  =  − 𝑆̇𝑛(𝜃), 𝑆𝑛(𝜃)  =  𝐶𝑠3(𝜃).  
Substituting now in the expression of 𝑇1 one gets:  

𝑇1  =  𝑇1(𝑏) =  ∫  

𝛺!,2

 0

 𝑑𝜃

(1 −  4𝑏 𝐶𝑠2(𝜃)𝑆𝑛(𝜃))
3
4

  .  

Now, by using the change of variables 𝑥 =  𝑆𝑛(𝜃)/𝐶𝑠2(𝜃), we can write 
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𝑇1(𝑏) =  ∫  

∞

−∞ 

 
2 𝑑𝑥

(1 −  4𝑏𝑥 +  2𝑥2)
3
4

  =
 2 √2

√ √ 1 −  2𝑏2 
4  ∫  

∞

0

 𝑑𝑥

(1 + 𝑥2)
3
4

 

=
4

√ 1 −  2𝑏2 
4  𝐹 (

𝜋

2
 ,
1

√2
)  =

2𝜋
3
2

√ 1 −  2𝑏2 
4

𝛤2(3/4) 
 =

𝛺1,2

√ 1 −  2𝑏2 
4 ,  

where 𝐹 is the elliptic integral of the first kind. See [179], for instance. We observe that 

𝐹( 
𝜋

2
 , 𝑘)  =  𝐾(𝑘), where 𝐾 is a complete elliptic integral of the first kind.  

Theorem (5.3.12)[167]: Consider a Hamiltonian system of the form (25) with a global 

centre at the origin. Then its period function is monotone decreasing to zero.  

Proof. First of all, we transform system (25) into generalized polar coordinates. Using (30) 

we get  

{
𝑟̇  =  𝑅(𝑟, 𝜃)  =  𝑎𝑛(𝜃)𝑟

𝑛  +  𝑎𝑚(𝜃)𝑟
𝑚,

𝜃́  =  𝛷(𝑟, 𝜃) = (𝑛 +  𝑝 +  𝑞 −  1)𝐻𝑛(𝜃)𝑟
𝑛−1 + (𝑚 +  𝑝 +  𝑞 −  1)𝐻𝑚(𝜃)𝑟

𝑚−1,
   (41)  

where 𝐻𝑘(𝜃)  =  𝐻𝑘(𝐶𝑠 𝜃, 𝑆𝑛 𝜃), 𝑘 =  𝑛,𝑚, and 𝑎𝑛(𝜃) and 𝑎𝑚(𝜃) are 𝛺 −periodic 

functions. Notice that we have used Euler Theorem for (𝑝, 𝑞) quasi-homogeneous functions, 

see Lemma (5.3.2).  

From the results of [20] we know that the periodic orbits of the system (41) that surround 

the origin never cut the curve 𝛷(𝑟, 𝜃)  =  0. Moreover, the sign of 𝛷(𝑟, 𝜃) in a 

neighbourhood of the origin is given by the sign of 𝐻𝑛(𝜃) that we will assume without loss 

of generality that is positive. Another important fact is that, as the period annulus is global 

and by item (iii) of Proposition (5.3.1), the function 𝐹𝑝,𝑞
∞ (𝑥, 𝑦) does not change sign. Then, 

the same holds for  

𝐻𝑚(𝜃) =
1

𝑚 +  𝑝 +  𝑞 −  1
 𝐹𝑝,𝑞
∞ (𝐶𝑠 𝜃, 𝑆𝑛 𝜃), 

where we have used Lemma (5.3.3). In fact 𝐻𝑚(𝜃) has to have the same sign as 𝐻𝑛(𝜃). 
Otherwise, the direction of rotation will be opposite at the origin and at infinity, what would 

imply that the orbits of the global centre would cut 𝛷(𝑟, 𝜃)  =  0.  
Let us prove that the period function tends to zero as it approaches to infinity. If 𝐻𝑚(𝜃)  >
 0 this is simply a consequence of item (ii) in Proposition (5.3.4). The proof in the case 

𝐻𝑚(𝜃)  ≥  0 is more delicate. By using the second equation of (41) we get that  

𝑇(ℎ) =  ∫  

𝛺

0

 
𝑑𝜃

  𝛷 (𝑟, 𝜃) 
 = ∫  

𝛺

0

𝑑𝜃

𝛷( 𝑟(𝜃, ℎ), 𝜃)
 ,                             (42)  

where 𝑟 =  𝑟(𝜃, ℎ) denotes the solution of the implicit closed curve given by  

ℎ =  𝑟𝑛+𝑝+𝑞−1𝐻𝑛(𝜃)  + 𝑟
𝑚+𝑝+𝑞−1𝐻𝑚(𝜃).                                      (43)  

Notice also that for each fixed 𝜃 =  𝜃∗  ∈  𝛺,  

𝐻𝑛(𝜃
∗)  ≥  0, 𝐻𝑚(𝜃

∗)  ≥  0 and 𝐻𝑛
2(𝜃∗)  + 𝐻𝑚

2 (𝜃∗) > 0.               (44)  
The last inequality holds because otherwise the ray 𝜃 =  𝜃∗ would be invariant and this is 

not possible because the origin is a centre.  

Let us prove first that there exists ℎ̃  >  0 such that for ℎ ≥  ℎ̃ and all 𝜃 ∈  [0, 𝛺],  
1

𝛷 ( 𝑟(𝜃, ℎ), 𝜃)
 ≤  1.                                                  (45) 

Recall that the origin is a global centre. Additionally, the fact that for each 𝜃 =  𝜃∗  ∈
 [0, 𝛺]fixed, equation (43) is polynomial in r with three monomials and (44) holds, implies 

that for each given 𝜃∗ 
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lim
ℎ→∞

 𝑟(𝜃∗, ℎ) =  ∞.                                                                            (4.6) 

Moreover, using again (44) we have that the function ℎ →  𝑟(𝜃∗, ℎ) is increasing and  

lim
ℎ→∞

 𝛷 ( 𝑟(𝜃∗, ℎ), 𝜃∗)  =  ∞.                                                             (47)  

Therefore, given 𝜃 =  𝜃∗ there exists ℎ(𝜃∗) such that 𝛷 ( 𝑟(𝜃∗, ℎ(𝜃∗)), 𝜃∗) ≥  2. By 

continuity, there exists an open neighbourhood of 𝜃∗, say 𝑈𝜃∗ , such that  

𝛷 ( 𝑟(𝜃, ℎ(𝜃∗)), 𝜃)  ≥  1, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜃 ∈  𝒰𝜃∗ .  
By using the monotonicity of ℎ →  𝑟(𝜃, ℎ) and of ℎ →  𝛷(𝑟(𝜃, ℎ), 𝜃) it holds that  

𝛷 ( 𝑟(𝜃, ℎ), 𝜃)  ≥  1, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜃 ∈  𝒰𝜃∗ 𝑎𝑛𝑑 𝑎𝑙𝑙 ℎ ≥  ℎ(𝜃
∗).  

By compactness of [0, 𝛺] we can cover it by finitely many 𝑈𝜃𝑗   , 𝑗 =  1, . . . , 𝑘, in such a way 

that for ℎ ≥  ℎ̃ ∶=  𝑚𝑎𝑥 ( ℎ(𝜃1), ℎ(𝜃2), . . . , ℎ(𝜃𝑘)) it holds that  

𝛷 ( 𝑟(𝜃, ℎ), 𝜃)  ≥  1, 𝑓𝑜𝑟 𝜃 ∈  [0, 𝛺] 𝑎𝑛𝑑 ℎ ≥  ℎ̃.  
Then (45) follows. Moreover, by (47) 

lim
ℎ→∞

1

𝛷 ( 𝑟(𝜃̇, ℎ), 𝜃̇) 
 =  0.                                                                (48)  

Since inequality (45) holds we can use the dominated convergence theorem to compute 

lim
ℎ→∞ 

 𝑇(ℎ). Therefore  

lim
ℎ→∞

 𝑇(ℎ) = lim
ℎ→∞

∫  

𝛺

 0

𝑑𝜃

 𝛷 ( 𝑟(𝜃, ℎ), 𝜃)
 =  ∫  

𝛺

 0

lim
ℎ→∞

𝑑𝜃

𝛷 ( 𝑟(𝜃, ℎ), 𝜃)
 =  0,  

as we wanted to prove.  

Recall also that from the results of [44], as the origin is a degenerate centre, its period 

function goes to infinity as it approaches to it.  

We claim that the period function of the centre at the origin of system (25) has at most one 

simple critical period. If the claim holds, as the behaviour of the function is the one proved 

above (begins at zero being infinity and tends to zero at infinity) the period function will 

have no simple critical periods and it will be monotone decreasing. Hence, Theorem (5.3.12) 

will be proved.  

To prove the claim, our approach is based on Theorem (5.3.6) and uses similar ideas that 

the ones of [39]. We have to compute 𝑇  ́(́ℎ)  +  𝜙(ℎ)𝑇  ́(ℎ) for a suitable ϕ and prove that 

this expression does not change sign. By using (42) and  
𝑑ℎ

𝑑𝑟
 =  𝑟𝑝+𝑞−1𝛷(𝑟, 𝜃) =  𝑟𝑝+𝑞−1

𝑑𝜃

𝑑𝑡
 ,  

we get that  

𝑇(ℎ) =
𝑑

𝑑ℎ
 ∫  

𝛺

 0

𝑟𝑝+𝑞

𝑝 +  𝑞
 𝑑𝜃, 𝑎𝑛𝑑 𝑇  ́(ℎ) =

𝑑2

𝑑ℎ2
∫  

𝛺

 0

𝑟𝑝+𝑞

(𝑝 +  𝑞) 
 𝑑𝜃.  

Developing latter expression one gets:  

𝑇  ́(ℎ) =  − ∫  

𝛺

 0

1

𝛷3(𝑟, 𝜃)
  (𝑛 +  𝑝 +  𝑞 −  1)(𝑛 −  1)𝑟𝑛−𝑝−𝑞−1𝐻𝑛(𝜃)

+ + (𝑚 +  𝑝 +  𝑞 −  1)(𝑚 −  1)𝑟𝑚−𝑝−𝑞−1𝐻𝑚(𝜃)  𝑑𝜃,  
where 𝛷(𝑟, 𝜃)  >  0 on all the period annulus. Recall again that in all the expressions 𝑟 =
 𝑟(𝜃, ℎ) denotes the implicit closed curve given by ℎ =  𝑟𝑛+𝑝+𝑞−1𝐻𝑛(𝜃)  +
 𝑟𝑚+𝑝+𝑞−1𝐻𝑚(𝜃).  
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Similarly we compute the second derivative of the period function. In order to apply 

Theorem (5.3.6) we consider 𝜙(ℎ)  =  𝑘/ℎ, where 𝑘 is a constant value that will be fixed 

according each one of the two cases in which we split the proof of this theorem. So, after 

several computations, we get that  

𝑇  ́(́ℎ) + 𝜙(ℎ)𝑇  ́(ℎ)

= ∫  

𝛺

 0

1

𝛷5(𝑟, 𝜃)ℎ𝑟5
 (𝑐1𝐻𝑛

2(𝜃)𝐻𝑚(𝜃)𝑟
2𝑛+𝑚 + + 𝑐2𝐻𝑛(𝜃)𝐻𝑚

2 (𝜃)𝑟𝑛+2𝑚  

+  𝑐3𝐻𝑛
3(𝜃)𝑟3𝑛  

+  𝑐4𝐻𝑚
3 (𝜃)𝑟3𝑚)𝑑𝜃,                                                                   (49)  

where 𝑐𝑗  =  𝑐𝑗  (𝑚, 𝑛, 𝑝, 𝑞, 𝑘), 𝑗 =  1, 2, 3, 4. Their expressions are large and for the sake of 

shortness we omit the explicit expressions of three of them. As an example 

𝑐3  =  (1 −  𝑛)(𝑛 +  𝑝 +  𝑞 −  1)
2( 𝑘(𝑛 +  𝑝 +  𝑞 −  1) −  2𝑛 −  𝑝 −  𝑞 +  2) .  

The proof of the theorem will be divided into two cases: the first one when 𝑛 <  𝑚 <
 2𝑛 −  1 and the second case the opposite, 𝑚 ≥  2𝑛 −  1. We begin with the first one: 𝑛 <
 𝑚 <  2𝑛 −  1. In this case, in the expression (49) we choose a k such that 𝑐3  =  0, that is  

𝑘 =
 2𝑛 +  𝑝 +  𝑞 − 2

𝑛 +  𝑝 +  𝑞 −  1 
.  

Hence, the parenthesis of the integrand of the previous expression (49) becomes:  

𝑃(ℎ, 𝜃) =  𝑐1𝐻𝑛
2(𝜃)𝐻𝑚 (𝜃)𝑟

2𝑛+𝑚  +  𝑐2𝐻𝑛(𝜃)𝐻𝑚
2 (𝜃)𝑟𝑛+2𝑚  +  𝑐4𝐻𝑚

3 (𝜃)𝑟3𝑚, 
with  

𝑐1  =  (2𝑛 −  𝑚 −  1)(𝑚 −  𝑛)(𝑚 −  𝑛 +  𝑝 +  𝑞)(𝑛 +  𝑝 +  𝑞 −  1) >  0,  

𝑐2  =  (𝑚 −  𝑛)(𝑚 +  𝑝 +  𝑞 −  1)( (𝑚 −  𝑛)(2𝑚 −  𝑛 −  1) +  2(𝑛 −  1)(𝑝 +  𝑞))   

>  0,  

𝑐4  =
(𝑚 −  1)(𝑚 −  𝑛)(𝑝 +  𝑞)(𝑚 +  𝑝 +  𝑞 −  1)2

 𝑛 +  𝑝 +  𝑞 −  1
 >  0.  

Consequently, 𝑇  ́(́ℎ)  +  𝜙(ℎ)𝑇  ́ ́(ℎ)  >  0 and according to Theorem (5.3.6) the period 

function 𝑇 has at most one critical period and, if it exists, it is simple.  

Now we proceed with the second case 𝑚 ≥  2𝑛 − 1. In this situation we choose k in such a 

way that 𝑐1  =  0 in the expression (49). It can be seen that the parenthesis of the integrand 

of (49) becomes: 

𝑃(ℎ, 𝜃)  =  𝑐2𝐻𝑛(𝜃)𝐻𝑚
2 (𝜃)𝑟𝑛+2𝑚  +  𝑐3𝐻𝑛

3(𝜃)𝑟3𝑛  +  𝑐4𝐻𝑚
3 (𝜃)𝑟3𝑚,                    (50) 

 where  

𝑐2  =
(𝑚 −  𝑛)(𝑚 +  𝑝 +  𝑞 −  1)

𝑚 +  2𝑛 −  3  
(4(𝑚 −  𝑛)3  +  2(𝑚 −  𝑛)2(4(𝑛 −  1) +  𝑝 +  𝑞)

+  3(𝑚 −  𝑛)(𝑛 −  1)(𝑝 +  𝑞) +  3(𝑛 −  1)2(𝑝 +  𝑞)  
>  0,                    (4.11) 

𝑐3  =
(𝑛 −  1)(𝑚 −  2𝑛 +  1)(𝑚 −  𝑛)(𝑛 +  𝑝 +  𝑞 −  1)2(𝑚 −  𝑛 +  𝑝 +  𝑞)

(𝑚 +  2𝑛 −  3)(𝑚 +  𝑝 +  𝑞 −  1)
≥  0, 

𝑐4  =
(𝑚 − 1)(𝑚 − 𝑛)(𝑚 + 𝑝 + 𝑞 − 1)2

(𝑚 + 2𝑛 − 3)(𝑛 + 𝑝 + 𝑞 − 1)  
(𝑚 −  2𝑛 +  1)(𝑚 −  𝑛) + + 2(𝑚 −  1)(𝑝 +  𝑞)   >

 0.  
Again 𝑇  ́(́ℎ)  +  𝜙(ℎ)𝑇  ́(ℎ)  >  0 and according to Theorem (5.3.6) the period function has 

at most one critical period and, if it exists, it is simple. Then the claim is proved.  

Theorem (5.3.13)[167]: Consider a Hamiltonian system of the form (25) with a centre at 

the origin. For  
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𝑚 ≥  2𝑛 −  1 𝑎𝑛𝑑 𝑝 +  𝑞 ≤
(𝑚 −  𝑛)(3𝑚2  +  2𝑚𝑛 −  4𝑛2  −  8𝑚 +  6𝑛 +  1)

(𝑚 −  2𝑛 +  1)(𝑛 −  1)
 

the period function of the origin has at most one critical period and, when it exists it is 

simple.  

Proof. The proof starts with the same computations and notations that the one of the second 

case of previous theorem, 𝑚 ≥  2𝑛 −  1. Hence we have to prove that the function 

𝑃(ℎ, 𝜃) given in (50) and with the constants 𝑐𝑗  >  0 given in (51) is positive, where recall 

that we are assuming without loss of generality that 𝐻𝑛(𝜃)  >  0. The main difference is that 

the period annulus is not necessarily global. Hence the function 𝐻𝑚(𝜃) can change sign 

along it and we do not still know if the sign of 𝑃(ℎ, 𝜃) is constant. For the values of 𝜃 such 

that 𝐻𝑚(𝜃)  ≥  0 there is nothing to be proved because 𝑃(ℎ, 𝜃) is a sum of nonnegative 

quantities. Consider a value of 𝜃 such that 𝐻𝑚(𝜃)  <  0. We rewrite the function 𝑃(ℎ, 𝜃) in 

the following way:  

𝑃(ℎ, 𝜃) =  𝑐3𝐻𝑛
3(𝜃)𝑟3𝑛  +

𝑐2
𝑛 +  𝑝 +  𝑞 −  1

 𝐻𝑚
2 (𝜃)𝑟2𝑚+1  × 

×   ((𝑛 +  𝑝 +  𝑞 −  1)𝐻𝑛(𝜃)𝑟
𝑛−1  

+
𝑐4(𝑛 +  𝑝 +  𝑞 −  1)

𝑐2
 𝐻𝑚(𝜃)𝑟

𝑚−1)  . 

We claim now that 
𝑐4(𝑛+𝑝+𝑞−1)

𝑐2
 ≤  𝑚 +  𝑝 +  𝑞 −  1. If that is true, it holds that  

𝑐4(𝑛 +  𝑝 +  𝑞 −  1)

𝑐2
 𝐻𝑚(𝜃)  ≥  (𝑚 +  𝑝 +  𝑞 −  1)𝐻𝑚(𝜃).  

Thus 

(𝑛 +  𝑝 +  𝑞 −  1)𝐻𝑛(𝜃)𝑟
𝑛−1  +

𝑐4(𝑛 +  𝑝 +  𝑞 −  1)

𝑐2
 𝐻𝑚(𝜃)𝑟

𝑚−1  

≥  (𝑛 +  𝑝 +  𝑞 −  1)𝐻𝑛(𝜃)𝑟
𝑛−1  +  (𝑚 +  𝑝 +  𝑞 −  1)𝐻𝑚(𝜃)𝑟

𝑚−1  
=  𝛷(𝑟, 𝜃)  >  0.  

Then 𝑃(ℎ, 𝜃) will be also positive on the whole period annulus. Applying Theorem (5.3.6) 

to the period function with the ℓ given, we know that it will have at most one (simple) critical 

period. We prove now the claim. The previous inequality is equivalent to 𝑐 ∶=
 (𝑚 + 𝑝 + 𝑞 − 1)𝑐2 − (𝑛 + 𝑝 + 𝑞 − 1)𝑐4  ≥  0. This function 𝑐 can be written in the 

following way:  

𝑐 =
(𝑚 −  𝑛)(𝑚 +  𝑝 +  𝑞 −  1)2

𝑚 +  2𝑛 −  3
  ((𝑚 −  𝑛)(3𝑚2  +  2𝑚𝑛 −  8𝑚 − − 4𝑛2  +  6𝑛 

+  1) − (𝑛 −  1)(𝑚 −  2𝑛 +  1)(𝑝 +  𝑞))  .  
It is a straightforward computation proving that 𝑐 ≥  0 is equivalent to  

𝑝 +  𝑞 ≤
(𝑚 −  𝑛)( 3𝑚2  +  2𝑚𝑛 −  4𝑛2  −  8𝑚 +  6𝑛 +  1)

(𝑛 −  1)(𝑚 −  2𝑛 +  1)
 ,  

which is precisely one of the hypotheses of the theorem. Then the result follows. 

Corollary (5.3.14)[167]: Consider a Hamiltonian system of the form (25) with 𝑝 =  𝑞 =
 1. If 𝑚 ≥  2𝑛 −  1 then the period function of the origin of system (25) has at most one 

critical period and, if it exists, it is simple. More specifically,  

(i) if m is even, it has exactly one critical period.  
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(ii) if m is odd, it can have none or one critical period. Moreover both possibilities may 

occur.  

Proof. The homogeneous case can be recovered from the quasi-homogeneous one by setting 

𝑝 =  𝑞 =  1 in Theorem (5.3.13). Then it is enough with proving that  

2 ≤
(𝑚 −  𝑛)( 3𝑚2  +  2𝑚𝑛 −  4𝑛2  −  8𝑚 +  6𝑛 +  1)

(𝑛 −  1)(𝑚 −  2𝑛 +  1)
 

The previous inequality is equivalent to the chain of inequalities,  

(𝑚 −  𝑛) ( 3𝑚2  +  2𝑚𝑛 −  4𝑛2 − 8𝑚 + 6𝑛 + 1) − 2(𝑛 − 1)(𝑚 − 2 + 1)  
≥  0, 3(𝑚 −  𝑛)3 + 8(𝑚 − 𝑛)2(𝑛 − 1) + (𝑚 − 𝑛)(𝑛 − 3)(𝑛 − 1)
+ 2(𝑛 − 1)2 ≥ 0, 

and this last inequality is obviously true for 𝑛 ≥  3. It remains the case 𝑛 =  2, but it follows 

by a straightforward computation.  

We prove the second part of the corollary. We first study the case m even. As system (25) 

is Hamiltonian, then the quasi-characteristic polynomial at the infinity, 𝐹1,1,
∞  can not be 

identically null, as it has been proved in Lemma (5.3.3). Then, as the degree of the 

characteristic polynomial at infinity is odd, it must have an orbit tending to infinity in 

positive or negative time. Consequently, the period annulus P of the origin can not be global. 

Then, by Proposition (5.3.5) the period annulus of the origin must be bounded. Therefore, 

there must exist another critical point in the exterior boundary 𝜕𝑃 of 𝑃. As a consequence, 

since the period function tends to infinity when it approaches to the origin and also to 𝜕𝑃 

(see [44]), we know that the period function must have, at least, one critical period. But we 

have just proved that it has at most one critical period. Hence, if m is even the period function 

has exactly one simple critical period.  

We study the case in which 𝑚 =  2ℓ  −  1 is odd. We have to prove that there exist 

Hamiltonian systems with a centre at the origin having one simple critical period, and 

systems with a centre at the origin having zero simple critical periods. Consider the 

following Hamiltonian 𝐻(𝑥, 𝑦)  =  (𝑥2  +  𝑦2)𝑘 +  𝑎(𝑥2  +  𝑦2)ℓ, with 1 < 𝑘 < ℓ, 𝑎 ≠
 0, and the differential system associated to it: 

{
𝑥̇  =  −2𝑦(𝑘(𝑥2  +  𝑦2)𝑘−1  +  𝑎 (𝑥2  +  𝑦2)ℓ−1),

𝑦̇  =  2𝑥(𝑘(𝑥2  +  𝑦2)𝑘−1  +  𝑎 (𝑥2  +  𝑦2)ℓ−1).
           (52)  

In polar coordinates it writes as  

{
𝑟̇  =  0,

𝜃̇  =  2(𝑘𝑟2𝑘−2  +  𝑎 𝑟2ℓ−2).
                              (53)  

Observe that previous system has a continuum of critical points when 𝑎 <  0,andthus the 

period annulus is bounded, while the period annulus is global in the opposite case. Therefore 

when 𝑎 >  0 the period function is monotone decreasing and when 𝑎 <  0 it has exactly 

one (simple) critical period. Indeed, in this particular example, where the periodic orbits are 

circles, the period function parameterized by the radius, 𝑇̃ (𝑟), can be explicitly given, 

because  

𝑇̃(𝑟) =  ∫  

2𝜋

 0

𝑑𝜃

2 ( 𝑘2𝑘−2 +  𝑎 𝑟2ℓ−2) 
 =

𝜋

𝑘𝑟2𝑘−2  +  𝑎 𝑟2ℓ−2 .
  

Hence the decreasing behaviour of T when 𝑎 >  0 and the existence of exactly one critical 

period when 𝑎 <  0 is clear. Moreover, when 𝑎 <  0, the critical period corresponds to 𝑟 =
 𝑟0 with 𝑇̃(𝑟0)  =  0. Then 𝑟0 is the positive solution of 𝑘(𝑘 −  1) +  𝑎ℓ (ℓ −  1)𝑟2(ℓ−𝑘) =
 0.   
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Chapter 6 

A Classification and Rigidity of the Flag Structure 

 

We show that the classification of homogeneous operators in 𝐵𝑛(𝔻) is completed 

using an explicit realization of these operators. We also show how the homogeneous 

operators in 𝐵𝑛(𝔻) split into similarity classes. It is also shown that the flag structure is 

rigid, that is, the unitary equivalence class of the operator and the flag structure determine 

each other. A complete set of unitary invariants, which are somewhat more tractable than 

those of an arbitrary operator in the Cowen–Douglas class, is obtained. In a significant 

generalization of the properties of the homogeneous operators, we show that quasi-

homogeneous operators are irreducible and determine which of them are strongly 

irreducible. Applications include the equality of the topological and algebraic 𝐾-group of a 

quasi-homogeneous operator and an affirmative answer to a well-known question of 

Halmos. 

Section (6.1): Homogeneous Operators in the Cowen–Douglas Class 

An operator 𝑇 is said to be homogeneous if its spectrum is contained in the closed 

unit disc and for every Möbius transformation 𝑔 of the unit disc 𝔻, the operator 𝑔(𝑇 ), 
defined via the usual holomorphic functional calculus, is unitarily equivalent to 𝑇. To every 

homogeneous irreducible operator 𝑇 there corresponds (cf. [77]) an associated projective 

unitary representation 𝑈 of the Möbius group 𝐺0:  
𝑈𝑔
∗ 𝑇 𝑈𝑔  =  𝑔(𝑇 ), 𝑔 ∈  𝐺0.  

The projective unitary representations of 𝐺0 lift to unitary representations of the universal 

cover 𝐺̃0 which are quite well known. We can choose (cf. [77]) 𝑈𝑔 such that 𝑘 ⟼ 𝑈𝑘 is a 

representation of the rotation group. If  

ℋ(𝑛)  =  {𝑥 ∈  ℋ: 𝑈𝑘𝜃 𝑥 =  𝑒
𝑖𝑛𝜃0 𝑥 }, 

where 𝑘𝜃 (𝓏)  =  𝑒
𝑖𝜃𝓏 , then 𝑇 ∶  ℋ(𝑛)  →  ℋ(𝑛 +  1) is a block shift. A complete 

classification of these for dimℋ(𝑛) ≤  1 was obtained in [77] using the representation 

theory of 𝐺̃0. First examples for dimℋ(𝑛)  =  2 appeared in [83]. Recently [72], [84], an m-

parameter family of examples with dimℋ(𝑛)  =  𝑚 was constructed. We will use the ideas 

of [72], [84] to obtain a complete classification of the homogeneous operators in the Cowen–

Douglas class. Finally, we describe the similarity classes within the homogeneous Cowen–

Douglas operators. As a consequence, we obtain an affirmative answer to a question of 

Halmos (cf. [187]) for this class of operators. We also include a somewhat new conceptual 

presentation of the Cowen–Douglas theory and a brief description of the method of 

holomorphic induction, which will be our main tool. The essentially self contained and can 

be read without the knowledge of [72] and [84]. The results were announced in [186] except 

for Theorem (6.1.10).  

For 𝑀 be a complex manifold and suppose 𝜋 ∶  𝐸 →  𝑀 is a complex vector bundle. 

We write, as usual, 𝐸𝓏  =  𝜋
−1(𝓏). For a trivialization, 𝜑 ∶  𝐸 →  𝑀 × ℂ𝑛, we write 

𝜑(𝑣)  =  (𝓏, 𝜑𝓏(𝑣)) for 𝑣 ∈  𝐸𝓏 with 𝜑𝓏 ∶  𝐸𝓏  → ℂ
𝑛 𝑙inear. (All we are going to say here 

would be valid using local trivializations, but in this article we will always work with global 

trivializations.)  

We write 𝐸𝓏
∗ for the complex anti-linear dual of 𝐸𝓏 , 𝓏 ∈  𝑀, and we write [𝑢, 𝑣] for 

𝑢(𝑣), 𝑢 ∈  𝐸𝓏
∗ , 𝑣 ∈  𝐸𝓏 . We consider ℂ𝑛 to be equipped with its natural inner product and 

identify it with its own anti-linear dual (𝑠𝑜 𝜉 ∈  ℂ𝑛 is identified with the anti-linear map 

𝜂 〈𝜉, 𝜂〉 →  ℂ𝑛). Then 𝜑𝓏
∗ ∶  ℂ𝑛  →  𝐸𝓏

∗ is well defined. We set 𝜓𝓏  =  𝜑𝓏
∗−1  and 𝜓(𝑢)  =
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 (𝓏, 𝜓𝓏(𝑢)) for 𝑢 ∈  𝐸𝓏
∗. This makes 𝐸∗ a complex vector bundle with trivialization 𝜓. We 

call 𝜑 and 𝜓, the associated trivializations of E and 𝐸∗. If 𝐸 is a holomorphic vector bundle 

then 𝐸∗ is an anti-holomorphic vector bundle (meaning that for any two trivializations, 𝜓𝛼 

and 𝜓𝛽  , the transition functions 𝓏 ⟼ (𝜓𝛼)𝓏 ∘  (𝜓𝛽)𝓏
−1

 are anti-holomorphic) and vice-

versa.  

If 𝐸 has a Hermitian structure, we automatically equip 𝐸∗  with the dual structure 

(giving the dual norm of 𝐸𝓏 to 𝐸𝓏
∗  for all 𝓏 ∈  𝑀).  

By an automorphism of 𝜋 ∶  𝐸 →  𝑀, we mean a diffeomorphism 𝑔̂ ∶  𝐸 →  𝐸 such that 

𝜋 ◦ 𝑔̂  =  𝑔 ◦  𝜋 for some automorphism 𝑔 of 𝑀. We write 𝑔𝓏 for the restriction of 𝑔̂ to 

𝐸𝓏 . The automorphism 𝑔̂ also acts on 𝑓 of 𝐸, by (𝑔̂∗𝑓 )(𝓏)  =  𝑔𝓏
−1 𝑓 (𝑔𝓏 ). When 𝐺 is the 

group of automorphisms of 𝐸 (acting on the left, as usual) we have a representation 𝑈 of 𝐺 

given by 𝑈𝑔̂𝑓 =  (𝑔̂
−1)∗𝑓 , that is,  

(𝑈𝑔̂𝑓 )(𝓏)  =  𝑔𝓏𝑓  (𝑔
−1𝓏)  .  

Given an automorphism 𝑔 of 𝐸, there is a corresponding automorphism of 𝐸∗, where the 

place of 𝑔𝓏 is taken by 𝑔𝓏
∗−1 . This also remains true in the category of Hermitian bundles. 

It follows that a group 𝐺 of automorphisms of 𝐸 also acts as a group of automorphisms of 

𝐸∗. If 𝐸 is homogeneous, that is, the action of 𝐺 is transitive on 𝑀, then so is 𝐸∗, and vice-

versa.  

We describe, essentially following [184], how the usual formalism of reproducing 

kernels can be adapted to vector bundles. Suppose ℋ is a Hilbert space whose elements of 

a vector bundle 𝐸 →  𝑀 and suppose the maps 𝑒𝑣𝓏 ∶ ℋ →  𝐸𝓏 are continuous for all 𝓏 ∈
 𝑀. Then setting 𝐾𝓏  =  𝑒𝑣𝓏

∗ , we have   

[𝑢, 𝑓 (𝓏)]  =  [ 𝑢, 𝑒𝑣𝓏(𝑓 ) ] =  〈𝐾𝓏𝑢, 𝑓 〉ℋ , 𝑢 ∈  𝐸𝓏
∗ , 𝑓 ∈ ℋ.          (1)  

For all 𝑤 ∈  𝑀, the 𝐾𝑤𝑢 is in ℋ and is linear in u. So, we can write 𝐾𝑤(𝓏)𝑢 =
 𝑒𝑣𝓏(𝐾𝑤𝑢)  =  𝑒𝑣𝓏𝑒𝑣𝑤

∗ (𝑢). We also write 𝐾(𝓏,𝑤)  =  𝐾𝑤(𝓏)  =  𝑒𝑣𝓏𝑒𝑣𝑤
∗  which is a linear 

map 𝐸𝑤
∗  →  𝐸𝓏 , and is called the reproducing kernel of ℋ, (1) is the reproducing property.  

Clearly, 𝐾(𝑤, 𝓏)  =  𝐾(𝓏, 𝑤)∗. We have the positivity ∑   
𝑗,𝑘  [𝑢𝑘, 𝐾(𝓏𝑘, 𝓏𝑗  )𝑢𝑗  ] ≥  0 for 

any 𝓏1, . . . , 𝓏𝑝 in 𝑀 and 𝑢1, . . . , 𝑢𝑝  ∈  𝐸𝓏
∗ which is nothing but the inequality  

∑ 

 

𝑗,𝑘

((𝑒𝑣𝓏𝑘 )
∗𝑢𝑘, (𝑒𝑣𝓏𝑗  )

∗
𝑢𝑗)ℋ ≥  0.  

Conversely, a 𝐾 with these properties is always the reproducing kernel of a Hilbert space of 

𝐸 (cf. [184]).  

Suppose we have a vector bundle 𝐸 and a Hilbert space ℋ of 𝐸 with reproducing kernel 𝐾; 
suppose 𝑔̂ is an automorphism of 𝐸. Then 𝑔̂ acts of 𝐸 by (𝑔∗𝑓 )(𝓏)  =  𝑔𝓏

−1 𝑓 (𝑔𝓏). By the 

density of linear combinations of the form 𝐾𝑤𝑢, the condition for this action to preserve ℋ 

and act on it isometrically is  

 〈𝑔∗(𝐾𝑤𝑢),𝐾𝓏𝑢́ 〉ℋ = 〈𝐾𝑤𝑢, ( 𝑔
−1)∗( 𝐾𝓏𝑢́ )〉ℋ   

for all 𝓏,𝑤;  𝑢, 𝑢 . Evaluating both sides using (1), this amounts to 

𝐾(𝑔𝓏 , 𝑔𝑤)  =  𝑔𝓏𝐾(𝓏, 𝑤)𝑔𝑤
∗  , for all 𝓏, 𝑤 ∈  𝑀. 

The following remarks will be important for us. Suppose each 𝑒𝑣𝓏 is non-singular, that is, 

its range is the whole of 𝐸𝓏 . (This is so in the important case where ℋ is dense in the space 

of 𝐸 in the topology of uniform convergence on compact sets.) Then 𝐾𝓏  =  𝑒𝑣𝓏
∗ is an 

embedding of 𝐸𝓏
∗  into ℋ. Postulating that this embedding is an isometry we obtain a 

canonical Hermitian structure on 𝐸∗. Using (1) we can write for the norm on 𝐸∗,  
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 ‖𝑢‖𝓏
2  =  ‖𝐾𝓏𝑢‖ℋ

2  =  [𝑢, 𝐾(𝓏, 𝓏)𝑢 ] , 𝑢 ∈  𝐸𝓏
∗ .  

The vector bundle 𝐸 has the dual Hermitian structure, for 𝑣 ∈  𝐸𝓏 we have  

 ‖𝑣‖𝓏
2  =  [ 𝐾(𝑧, 𝑧)−1𝑣, 𝑣] . 

In fact this statement amounts to   

|[𝑢, 𝑣]|2  ≤ [ 𝐾(𝓏, 𝓏)−1𝑣, 𝑣][𝑢, 𝐾(𝓏, 𝓏)𝑢 ]. 
for all 𝑢, 𝑣 with equality reached for some 𝑢, 𝑣. Since 𝐾(𝓏,𝓌) is bijective by hypothesis, 

any 𝑣 ∈  𝐸𝓏 can be written as 𝑣 =  𝐾(𝓏, 𝓏)𝑢 with 𝑢́  ∈  𝐸𝓏
∗ and the inequality to be proved 

is equivalent to     

|[𝑢, 𝐾(𝓏, 𝓏)𝑢́]|2  ≤  [𝑢́ , 𝐾(𝓏, 𝓏)𝑢́] [𝑢, 𝐾(𝓏, 𝓏)𝑢] .  
But this is just the Cauchy–Schwarz inequality.  

When 𝐸 is a holomorphic vector bundle, 𝐾(𝓏,𝑤) depends on 𝓏 holomorphically and 

on w anti-holomorphically. Hence 𝐾(𝓏,𝑤) is completely determined by 𝐾(𝓏, 𝓏). It follows 

that 𝐾(𝓏,𝑤) is completely determined by the canonical Hermitian structure of 𝐸 (or 𝐸∗).  
In the last paragraphs, we had a Hilbert space ℋ of 𝐸 and (under the assumption that each 

evz is surjective) we associated to it a family of embeddings of 𝐸𝓏
∗ , the fibres of 𝐸∗, into ℋ. 

This procedure can be reversed which is of importance for what follows. Suppose now that 

𝐸 is a vector bundle and the fibres 𝐸𝓏
∗ of 𝐸∗ form a smooth family of subspaces of some 

Hilbert space 𝐻 which together span 𝐻, that is, 𝐸∗ is an anti-holomorphic sub-bundle of the 

trivial bundle 𝑀 ×  𝐻. We write 𝜄𝓏 ∶  𝐸𝓏
∗  →  𝐻 for the (identity) embeddings. We define, 

𝑓 (𝓏)   =  𝜄𝓏
∗   𝑓 for 𝑓 ∈  𝐻, 𝓏 ∈  𝑀. Then 𝑓 of 𝐸 and evz(𝑓 )  =  𝜄𝓏

∗𝑓 . If we denote by ℋ the 

Hilbert space of all 𝑓, 𝑓 ∈  𝐻, with norm ‖𝑓‖  = ‖ 𝑓‖ , each evz is continuous, so we have 

a reproducing kernel Hilbert space. The reproducing kernel is 𝐾𝓏𝑢 =  𝜄𝓏𝑢.  
We modify the definition of the class of operators introduced in [61] in an inessential 

way. A conceptual presentation in which the role of the dual of the bundle constructed in 

[61] is apparent follows. Given a domain 𝛺 ⊆  ℂ, we say the bounded operator 𝑇 on the 

Hilbert space 𝐻 is in 𝐵𝑛(𝛺) if 𝓏̅ is an eigenvalue of 𝑇 , the range of the operator 𝑇 − 𝓏̅ is 

closed, and the corresponding eigenspaces 𝐹𝓏 are of constant dimension n for 𝓏 ∈  𝛺. It is 

proved in [61] that the spaces 𝐹𝓏 span an anti-holomorphic Hermitian vector bundle 𝐹 ⊆
 𝛺 ×  𝐻. (In [61] the eigenvalues are 𝓏 ∈  𝛺 and so 𝐹 is a holomorphic vector bundle; it is 

more convenient for us to change this.) We write, for 𝓏 ∈  𝛺, 𝜄𝓏 ∶  𝐹𝓏  →  𝐻 for the identity 

embedding. Now, 𝐸 =  𝐹∗ is a holomorphic vector bundle, this will be the primary object 

for us. The bundle 𝐹 is identified with 𝐸∗, in what follows we refer to it as 𝐸∗. We are now 

in the situation discussed.  

To the elements 𝑓 of 𝐻 there correspond 𝑓 of 𝐸 (defined by 𝑓 (𝓏)   =  𝜄𝓏
∗𝑓 ) and form 

a Hilbert space ℋ isomorphic with 𝐻 and having a reproducing kernel 𝐾𝓏𝑢 =  𝜄𝓏𝑢̃.  
Under this isomorphism, the operator on ℋ  corresponding to T is 𝑀∗, where 𝑀 is 

the multiplication operator (𝑀𝑓 )(𝓏)   =  𝓏𝑓 (𝓏)  . In fact (cf. [61]) for any 𝑢 ∈  𝐸𝓏
∗ ,   

[𝑢, 𝑇 ∗̂𝑓 (𝓏)]  =  〈𝜄𝓏𝑢, 𝑇
∗ 𝑓 〉𝐻  =  〈𝑇 𝜄𝓏𝑢, 𝑓 〉𝐻  =  𝓏̅〈𝜄𝓏𝑢, 𝑓 〉𝐻  =   [𝑢, 𝓏𝑓 (𝓏)]   

=   [𝑢,𝑀𝑓 (𝓏)]  .  
Finally, we describe how the preceding material appears when the vector bundle is 

trivialized. We always use associated trivializations 𝜑,𝜓 of E and 𝐸∗. As explained in the 

beginning, this means that 𝜓𝓏  =  𝜑𝓏
∗−1 , that is, [𝑢, 𝑣] = 〈𝜓𝓏𝑢, 𝜑𝓏𝑣〉ℂ𝑛  for 𝑢 ∈  𝐸𝓏

∗ and 𝑣 ∈
 𝐸𝓏 . We will consider here only the case where 𝐸 is a holomorphic vector bundle. When g 

is an automorphism of 𝐸, in the trivialization 𝑔𝓏 ∶  𝐸𝓏  →  𝐸𝑔𝓏  becomes 𝜑𝑔𝓏  ◦  𝑔𝓏  ◦  𝜑𝓏
−1 , 
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which we write as the matrix 𝐽𝑔(𝓏)
−1. When 𝑔 is followed by another automorphism h, the 

relation (ℎ𝑔)𝓏
 =  ℎ𝑔𝓏  ◦  𝑔𝓏 becomes the multiplier identity  

𝐽ℎ𝑔(𝓏)  =  𝐽𝑔(𝓏)𝐽ℎ(𝑔𝓏).                               (2)  

For the induced automorphism of 𝐸∗, the place of 𝐽𝑔(𝓏) is taken by 𝐽𝑔(𝓏)
∗−1. 

𝐸 (resp. 𝐸∗) in the trivialization become the holomorphic (resp. antiholomorphic) 

functions 𝑓 (𝓏)  =  𝜑𝓏(𝑓 (𝓏)) (𝑟𝑒𝑠𝑝. 𝜓𝓏(𝑓 (𝓏))). The action 𝑔∗f of an automorphism g 

becomes (𝑔∗𝑓  )(𝓏)   =  𝐽𝑔(𝓏)𝑓  (𝑔𝓏  )  . If 𝐺 is a group of automorphisms of 𝐸, the 

representation 𝑈of 𝐺 described becomes the “multiplier representation 

(𝑈̂ 𝑓 )(𝓏)  =  𝐽𝑔−1  (𝓏)𝑓  (𝑔
−1𝓏)  .                         (3)  

A Hermitian structure on 𝐸 becomes a family of inner products on ℂ𝑛, parametrized by 𝓏 ∈
 𝑀. One can always write  

‖𝜉 ‖𝐸𝓏
2  =  〈𝐻(𝓏)𝜉, 𝜉  〉ℂ𝑛 

with a positive definite matrix 𝐻(𝓏), 𝓏 ∈  𝑀. The structure is invariant under a bundle 

automorphism 𝑔̂ if and only if 𝐻(𝑔𝓏)𝐽𝑔(𝓏)
−1𝜉, 𝐽𝑔(𝓏) − 1𝜉 ℂ

𝑛  =  𝐻(𝓏)𝜉, 𝜉 ℂ𝑛 , that is,  

𝐻(𝑔 𝓏)  =  𝐽𝑔(𝓏)
∗𝐻(𝓏)𝐽𝑔(𝓏).  

The dual Hermitian structure of 𝐸∗ is given by ‖𝜉‖𝐸∗
2 = 〈𝐻(𝓏)−1𝜉, 𝜉 〉ℂ𝑛  .  

The Hilbert space ℋ of 𝐸 becomes a space ℋ̂ of holomorphic functions from 𝑀 to ℂ𝑛. The 

reproducing kernel becomes 𝐾̂(𝓏, 𝑤)   =  𝜑𝓏  ◦ 𝐾̂(𝓏, 𝑤)  ◦ 𝜓𝑤
−1 , a matrix valued 

function,holomorphic in 𝓏 and anti-holomorphic in 𝑤. The reproducing property appears as  

〈𝑓 (𝓏), 𝜉〉ℂ𝑛  =   〈𝑓 , 𝐾̂𝓏𝜉〉ℋ̂ ,  
the positivity as 

∑ 

 

 𝑗,𝑘

 〈𝐾̂(𝓏𝑗  , 𝓏𝑘)𝜉𝑘, 𝜉𝑗  〉ℂ𝑛 ≥  0,  

and the isometry of the 𝐺 −action as  

𝐽𝑔(𝓏)𝐾̂(𝑔𝓏, 𝑔𝑤)𝐽𝑔(𝑤)
∗  =  𝐾̂(𝓏, 𝑤).   

The canonical Hermitian structure of E is then given by 𝐻(𝓏)  =  𝐾(𝓏, 𝓏)−1.  
We briefly recall some known facts of representation theory. Let 𝐺,𝐻 be real (or, 

complex) Lie groups and 𝐻 ⊆  𝐺 be closed. Given a representation 𝜚 of 𝐻 on a complex 

finite dimensional vector space 𝑉 , let ℱ(𝐺, 𝑉 )𝐻 denote the linear space of 𝐶∞ (or 

holomorphic) functions 𝐹 ∶  𝐺 →  𝑉 satisfying  

𝐹(𝑔ℎ)  =  𝜚(ℎ)−1𝐹(𝑔), 𝑔 ∈  𝐺, ℎ ∈  𝐻.  
The induced representation (cf. [87]) 𝑈 ∶=  𝐼𝑛𝑑𝐻

𝐺  (𝜚) acts on the linear space ℱ(𝐺, 𝑉 )𝐻 by 

left translation: (𝕌𝑔1𝑓 )(𝑔2)  =  𝑓 (𝑔1
−1  𝑔2).  

From the linear representations (𝜚, 𝑉 ) of 𝐻, one obtains all the 𝐺 −homogeneous vector 

bundles over 𝑀 =  𝐺/𝐻 as 𝐺 ×𝐻  𝑉 , which is (𝐺 ×  𝑉 )/ ∼, where  

(𝑔ℎ, 𝑣)  ∼ ( 𝑔, 𝜚(ℎ)𝑣) , ℎ, 𝑔 ∈  𝐺, 𝑣 ∈  𝑉.  
The map (𝑔, 𝑣)  ⟼  𝑔𝐻 is clearly constant on the equivalence class [(𝑔, 𝑣)] and hence 

defines a map 𝜋 ∶  𝐺 ×𝐻  𝑉 →  𝑀. An action 𝑔̂, 𝑔 ∈  𝐺, of the group 𝐺 is now defined on 

𝐺 ×𝐻  𝑉 by setting 𝑔̂ ([(𝑔, 𝑣)])  =  [(𝑔 𝑔, 𝑣)]. This definition is independent of the choice 

of the representatives chosen. Thus 𝐺 ×𝐻  𝑉 is a homogeneous vector bundle on 𝑀. There 

is a representation 𝑈 of 𝐺 of 𝐺 ×𝐻  𝑉 , where (𝑈(𝑔)𝑠)(𝑥)  =  𝑔̂(𝑠(𝑔−1  ·  𝑥)). The lift to 𝐺 

of the vector bundle 𝐺 ×𝐻  𝑉 is 𝑠̃ ∶  𝐺 →  𝑉 with 𝑠̂(𝑔)  ∶=  𝑔𝑔̂−1𝑠(𝑔𝐻). These again form 

the space ℱ(𝐺, 𝑉 )𝐻 which shows that 𝑈 is just another realization of the representation 𝕌.  
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When 𝑀 is a manifold with a group 𝐺 acting on it transitively, we use the usual 

identification 𝑀 =  𝐺/𝐻, where 𝐻 is the stabilizer in 𝐺 of a chosen fixed point 𝑜 ∈  𝑀. The 

map 𝑞 ∶  𝑔 ↦  𝑔 ·  𝑜 is the quotient map from 𝐺 to 𝑀. Suppose that there exists a global 

cross-section 𝑝 ∶  𝑀 ↦  𝐺, that is, a map with 𝑞 ◦  𝑝 =  𝑖𝑑|𝑀  . Then 𝑝 gives a 

trivialization of the bundle 𝐸 =  𝐺 ×𝐻  𝑉 . The trivializing map 𝜑 is given for 𝑣 ∈
 𝐸𝓏  by 𝜑(𝑣)  =  (𝓏, 𝑝(𝓏)−1𝑣), that is, 𝜑𝓏  =  𝑝(𝓏)

−1. (This 𝜑 actually maps to 𝑀 × 𝐸0, but 

𝐸0 with H acting on it by the bundle action can be identified with (, 𝑉 ). ) The action of 𝐺 

on 𝐸𝓏 becomes 𝐽𝑔(𝓏)
−1  =  𝜑𝑔𝓏  ◦ 𝑔𝓏  ◦ 𝜑𝓏

−1 which is now the group product 

𝑝(𝑔𝓏)−1𝑔𝑝(𝓏) (preserving the fibre 𝐸0) followed by the identification of 𝐸0 with 𝑉 =  ℂ𝑛, 
that is,  

𝐽𝑔(𝓏)  = 𝜚(𝑝(𝓏)
−1𝑔−1𝑝  (𝑔(𝓏))) , 𝓏 ∈  𝑀, 𝑔 ∈  𝐺.                    (4)  

The representation 𝑈 appears now as the multiplier representation with multiplier (4).  

Even though not needed, we point out that given any 𝐽 ∶  𝐺 ×  𝑀 →  𝐺𝐿𝑛(ℂ) satisfying the 

cocycle condition (2), the map (𝑈𝑔𝑓 )(𝓏)  =  𝐽
−1   𝑔 (𝓏)𝑓 (𝑔−1  ·  𝓏) defines a multiplier 

representation of the group 𝐺. Also, it defines a representation : ℎ ⟼ 𝐽ℎ−1   (0) of the group 

𝐻 on the vector space 𝑉 . The representation induced by this is equivalent to 𝑈. In fact, the 

multiplier corresponding to the cross section 𝑝 and the representation 𝜚is 

𝜚(𝑝(𝓏)−1𝑔−1𝑝(𝑔 ·  𝓏))  =  𝐽𝑝(𝑔·𝓏)−1𝑔𝑝(𝓏)(0)  =  𝐽𝑝(𝓏)(0)𝐽𝑝(𝑔·𝓏)−1𝑔 ( 𝑝(𝓏) ·  0)

=  𝐽𝑝(𝓏)(0)𝐽𝑔(𝓏)𝐽𝑝(𝑔·𝓏)−1  (𝑔 ·  𝓏) =  𝐽𝑝(𝓏)(0)𝐽𝑔(𝓏)𝐽𝑝(𝑔·0)(0)
−1,  

which is equivalent to the multiplier 𝐽 .  
We remark that the inducing construction always gives a multiplier such that 𝐽𝑔(𝓏)  ∈

 𝜚(𝐻) for all 𝑔, 𝓏. Not all multipliers possess this additional property. However, given any 

multiplier 𝐽 , we can always find another multiplier 𝐽 equivalent to 𝐽 such that 𝐽𝑔(𝓏)  ∈

 𝜚(𝐻), where 𝜚(ℎ)  =  𝐽ℎ−1 (0). This is achieved by taking any section 𝑝 and setting  

𝐽𝑔(𝓏)  =  𝐽𝑝(𝓏)(0)𝐽𝑔(𝓏)𝐽𝑝(𝑔·𝓏)(0)
−1.  

Holomorphic induced representation is a refinement of the induced representation in the 

case of real groups 𝐺,𝐻 such that 𝐺/𝐻 has a 𝐺 −invariant complex structure. The complex 

structure determines a subalgebra b of 𝑔ℂ, namely the isotropy algebra in the local action of 

𝑔ℂ on 𝐺/𝐻. The holomorphic induced representation is the restriction of the induced 

representation to a subspace of ℱ(𝐺, 𝑉 )𝐻 , defined by the differential equations 𝑋𝐹 =
 −𝜚(𝑋)𝐹 for all 𝑋 ∈  𝑏, where now is a representation of the pair (𝐻, 𝑏). It is an important 

fact that every 𝐺 −homogeneous holomorphic vector bundle arises by holomorphic 

induction from a simultaneous finite dimensional representation of 𝐻 and 𝑏 (cf. [87]). We 

will use this fact to determine all the holomorphic vector bundles which are homogeneous 

under the universal cover of the Möbius group.  

We explicitly construct all the irreducible homogeneous holomorphic Hermitian 

vector bundles over the unit disc 𝔻. Every homogeneous holomorphic Hermitian vector 

bundle on 𝔻 is then obtained as a direct sum of the irreducible ones (Corollary (6.1.5)). We 

determine which ones of these irreducible homogeneous holomorphic Hermitian vector 

bundles over 𝔻 correspond to operators in the Cowen–Douglas class 𝐵𝑛(𝔻).  
Let 𝐺0 be the Möbius group – the group of bi-holomorphic automorphisms of the unit 

disc 𝔻,𝐺 =  𝑆𝑈(1, 1) and 𝕂 ⊆  𝐺 be the rotation group. Let 𝐺̃ be the universal covering 

group of 𝐺 (and also that of the group 𝐺0). The group 𝐺 acts on the unit disc 𝔻 according to 

the rule  
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𝑔 ∶  𝓏 ⟼ (𝑎𝓏 +  𝑏)(𝑏̅𝓏 + 𝑎̅)
−1
, 𝑔 =  (

𝑎    𝑏

𝑏̅     𝑎̅
)    ∈  𝐺, 𝓏 ∈  𝔻. 

The group 𝐺̃ also acts on 𝔻 (by 𝑔 ·  𝓏 =  𝑞(𝑔) ·  𝓏, where 𝑞 ∶  𝐺̃  →  𝐺 is the covering map), 

we denote the stabilizer of 0 in it by 𝕂̃ . So 𝔻 =̃  𝐺/𝕂 =̃  𝐺̃/ 𝕂̃ . The complexification 𝐺ℂ  
of the group 𝐺 is the (simply connected) group 𝑆𝐿(2, ℂ).  
We use the notation of [72], [84], which is the notation used in [88]. The Lie algebra g of 

the group 𝐺 is spanned by 𝑋1  =
1

2
  (0   1
1   0 
)  , 𝑋0  =

1

2
  ( 𝑖    0 
0   −𝑖

)  and 𝑌 =
1

2
 ( 0   1 
1   0 
) . The 

subalgebra 𝕜 corresponding to 𝕜 is spanned by 𝑋0. In the complexified Lie algebra 𝑔ℂ, we 

mostly use the complex basis ℎ, 𝑥, 𝑦 given by  

ℎ =  −𝑖𝑋0  =
1

2
 (
1      0

0    − 1
)   ,  

𝑥 =  𝑋1 +  𝑖𝑌 =  (
0     1 

0    0
) ,  

𝑦 =  𝑋1 −  𝑖𝑌 = (
0     0

  1       0
).  

The subgroup of 𝐺ℂ corresponding to g is 𝐺. The group 𝐺ℂ has the closed subgroups 

𝕂ℂ  =  { (
𝓏     0 

0     
1
𝓏

)  ∶  𝓏 ∈  𝐶, 𝓏 ≠ 0} , 𝑃+  =  { (
1    𝓏

 0     1 
) ∶  𝓏 ∈ ℂ} , 𝑃−  

=  { (
1     0

𝓏      1 
)  ∶  𝓏 ∈ ℂ} ;  

the corresponding Lie algebras 𝕜ℂ  =  { ( 𝑐     0
0     −𝑐 

)  ∶  𝑐 ∈ ℂ}, 𝑝+  =  { (0      𝑐
0      0 

)  ∶  𝑐 ∈

 ℂ}, 𝑝−  =  { (0    0
𝑐    0 

)  ∶  𝑐 ∈  ℂ} are spanned by ℎ, 𝑥 and y, respectively. The product 

𝕂ℂ𝑃−   =  { 

 (
𝑎    0

𝑏   
1

  𝑎

)   ∶  0 ≠  𝑎 ∈  ℂ, 𝑏 ∈ ℂ} is a closed subgroup to be also denoted 𝐵; its Lie algebra is 

𝑏 =  ℂℎ +  ℂ𝑦. The product set 𝑃+𝕂ℂ𝑃−  =  𝑃+𝐵 is dense open in 𝐺ℂ, contains 𝐺, and the 

product decomposition of each of its elements is unique. (𝐺ℂ/𝐵 is the Riemann sphere, 

𝑔𝕂 →  𝑔𝐵, (𝑔 ∈  𝐺) is the natural embedding of 𝔻 = ̃𝐺/𝕂 into it.) Linear representations 

(𝜚, 𝑉 ) of the algebra 𝑏 ⊆  𝑔ℂ =  𝑠𝑙(2, ℂ), that is, pairs of linear transformations 𝜚(ℎ), 𝜚(𝑦) 
satisfying   

[𝜚(ℎ), 𝜚(𝑦) ] =  −𝜚(𝑦)                                      (5)  
are automatically representations of 𝕂 as well. Therefore they give, by holomorphic 

induction, all the homogeneous holomorphic vector bundles.  

A homogeneous holomorphic vector bundle that admits a 𝐺̃  −invariant Hermitian 

structure will be called Hermitizable. Since the vector bundles corresponding to operators 

in the Cowen– Douglas class are of this type, we only consider these bundles. The 

𝐺̃  −invariant Hermitian structures on the homogeneous holomorphic vector bundle 

(making it into a homogeneous holomorphic Hermitian vector bundle), if they exist, are 

given by (𝐾̃ ) −invariant inner products on the representation space 𝑉 . 𝐴 (𝐾̃ ) −invariant 

inner product exists if and only if 𝜚(ℎ) is diagonal with real diagonal elements in an 

appropriate basis. So, we will assume without restricting generality, that the representation 

space of is ℂ𝑑 and that 𝜚(ℎ) is a real diagonal matrix.  

Furthermore, we will be interested only in irreducible homogeneous holomorphic Hermitian 

vector bundles, this corresponds to not being the orthogonal direct sum of non-trivial 

representations.  
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Let 𝑉𝜆 be the eigenspace of 𝜚(ℎ) with eigenvalue 𝜆. We say that a Hermitizable 

homogeneous holomorphic vector bundle is elementary if the eigenvalues of 𝜚(ℎ) form an 

uninterrupted string: −𝜂,−(𝜂 +  1), . . . , −(𝜂 +  𝑚). Every irreducible homogeneous 

holomorphic Hermitian vector bundle is elementary. In fact, let −𝜂 be the largest eigenvalue 

of 𝜚(ℎ) and 𝑚 be the largest integer such that −𝜂,−(𝜂 +  1), . . . , −(𝜂 +  𝑚) are all 

eigenvalues. From (5) we have 𝜚(𝑦)𝑉𝜆  ⊆  𝑉𝜆−1; this and orthogonality of the eigenspaces 

imply that 𝑉 =⊕𝑗=0
𝑚  𝑉−(𝜂+𝑗) and its orthocomplement are invariant under 𝜚. So, 𝑉 is the 

whole space ℂ𝑑 , and we have proved that the bundle is elementary. We can write 𝑉(𝜂+𝑗)  =

ℂ𝑑𝑗 and hence (𝜚, ℂ𝑑  ) is described by the two matrices:  

𝜚(ℎ) = (
−𝜂𝐼0   
 ⋱  
   −(𝜂 +  𝑚)𝐼𝑚

)  , 

where 𝐼𝑗 is the identity matrix on ℂ𝑑𝑗 and  

𝑌 ∶= 𝜚(𝑦)  =  

(

 
 
 

0
 𝑌1              0
𝑌2               0 
⋱     ⋱
𝑌𝑚  0

)

 
 
 

    

for some choice of matrices 𝑌1, . . . , 𝑌𝑚 that represent the lineartransformations 𝑌𝑗 ∶ ℂ
𝑑𝑗 −1  →

ℂ𝑑𝑗   . Let 𝐸(𝜂,𝑌) denote the holomorphic bundle induced by this representation.  

It is clear that 𝜚 can be written as the tensor product of the one dimensional 

representation 𝜎 given by 𝜎(ℎ)  =  −𝜂, 𝜎(𝑦)  =  0, and the representation 0 given by 

𝜚0(ℎ)  =  𝜚(ℎ)  +  𝜂𝐼 , 𝜚0(𝑦)  =  (𝑦). Correspondingly, the bundle 𝐸(𝜂,𝑌) for is the tensor 

product of a line bundle 𝐿𝜂 and the bundle corresponding to 𝜚0, that is, 𝐸(𝜂,𝑌)  =  𝐿𝜂  ⊗

 𝐸(0,𝑌).  

For 𝑔 ∈  𝐺̃ , 𝑔́ (𝓏) (we write 𝑔́ (𝓏) =
𝜕𝑔

𝜕𝓏
 (𝓏)) is a real analytic function on the simply 

connected set 𝐺̃  × 𝔻, holomorphic in z. Also 𝑔́ (𝓏) ≠  0 since 𝑔 is one-one and 

holomorphic. Given any 𝜆 ∈  ℝ, taking the principal branch of the power function when 𝑔 

is near the identity, we can uniquely define 𝑔́ (𝓏)𝜆 as a real analytic function on 𝐺̃  ×  𝐷 

which is holomorphic on 𝔻 for all fixed 𝑔 ∈  𝐺̃ .  
For the line bundle 𝐿𝜂 , the multiplier is 𝑔́ (𝓏)𝜂 . Consequently, the multiplier corresponding 

to the original is  

𝐽𝑔(𝓏)  =   (𝑔́ (𝓏)
𝜂 𝐽𝑔
0 (𝓏),                                      (6)  

where 𝐽0  is the multiplier obtained from 𝜚0.  
The advantage of 𝜚0 is that it is also a representation of 𝐺 (not only of 𝐺̃) and extends to a 

representation of 𝐺ℂ. The (ordinary) induced representation (in the holomorphic category) 

𝐼𝑛𝑑𝑇
𝐺  (𝜚)operates on functions 𝐹 ∶  𝐺ℂ  →  𝑉 such that 𝐹(𝑔𝑡)  =  𝜚0(𝑡)−1𝐹(𝑔) (𝑔 ∈

 𝐺ℂ, 𝑡 ∈  𝑇 ). The restrictions of these functions 𝐹 to 𝐺 then give exactly the functions 𝛷 ∶
 𝐺 →  𝑉 which satisfy 𝛷(𝑔𝑘)  =  𝜚0(𝑘)−1𝛷(𝑔) (𝑔 ∈  𝐺ℂ, 𝑡 ∈  𝑇 ) and (𝑋𝛷)(𝑔)  =
 −𝜚0(𝑋)𝛷(𝑔) (𝑔 ∈  𝐺, 𝑋 ∈  𝑏), that is, the space of the representation holomorphically 

induced by 𝜚0. Taking a holomorphic local cross section 𝑝 of 𝐺ℂ defined on 𝔻, the functions 

𝑓 (𝓏)  =  𝐹(𝑝(𝓏)) give a trivialization of 𝐸(0,𝑌).  
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We use the local cross section 𝑝 ∶  𝔻 →  𝐺ℂ, 𝓏 →  𝑝(𝓏):=  (1 𝓏
 0 1
)  . Apply (4) to compute 

the corresponding multiplier 𝐽𝑔
0 (𝓏). For g =  (𝑎 𝑏

𝑐 𝑑
)    ∈  𝐺, we have 

𝐽𝑔
0 (𝓏) =  𝜚0  ((

 1 − 𝑔 ·  𝓏

 0 1 
) (
𝑎 𝑏 

𝑐 𝑑 
) (
1 𝓏

0 1
))

−1

  =  𝜚0  (
 𝑐𝓏 +  𝑑   0 

−𝑐      (𝑐𝓏 +  𝑑)−1 
)  

=  𝜚0  (
(𝑐𝓏 +  𝑑)

1
2           0

0       (𝑐𝓏 +  𝑑)−
1
2   
)  (

1     0 

−𝑐     1 
) (

(𝑐𝓏 +  𝑑)
1
2       0

0     (𝑐𝓏 +  𝑑)−
1
2
)  

=  𝜚0   (𝑒𝑥𝑝 (2 𝑙𝑜𝑔(𝑐𝓏 +  𝑑)
1
2  ℎ)) 𝜚0 (𝑒𝑥𝑝(−𝑐𝑦))𝜚0  (𝑒𝑥𝑝 (2 𝑙𝑜𝑔(𝑐𝓏 

+  𝑑)
1
2 ℎ))   =  𝐷𝑔(𝓏)𝑒𝑥𝑝(−𝑐𝑌)𝐷𝑔(𝓏),                                                          (7)  

where 𝐷𝑔(𝓏) is the block diagonal matrix with  

𝐷𝑔(𝓏)𝑗𝑗  =  (𝑐𝓏 +  𝑑)
−
𝑗
2 𝐼𝑑𝑗  , 0 ≤  𝑗 ≤  𝑚.  

Computing the matrix entries of the exponential using (6), we obtain for 𝑔 ∈  𝐺̃ , 𝓏 ∈ 𝔻, 

(𝐽𝑔
(𝜂,𝑌)

 (𝓏))𝑝ℓ ∶= (𝑔́ (𝓏))
𝜂  𝐽𝑔

0(𝓏)

= {

1

(𝑝 −)!
 (−𝑐𝑔)𝑝−ℓ𝑔́ (𝓏)

𝜂+ 𝑝+
2  𝑌𝑝  ··· 𝑌ℓ+1 𝑖𝑓 𝑝 ≤ ℓ ,

0 𝑖𝑓 𝑝 <  ℓ. .

                    (8)  

In this formula cg for 𝑔 ∈  𝐺̃ is to be understood as the (2, 1) entry of the matrix 𝑞(𝑔) in 𝐺, 
where 𝑞 is the covering map. We note here, for later use, that there is also another way to 

interpret 𝑐𝑔 for 𝑔 ∈  𝐺̃ . Taking a small neighborhood 𝑈̃ of the identity in 𝐺̃ such that the 

projection is a diffeomorphism onto a neighborhood U of the identity in 𝐺, by computing in 

𝑈, we find that 

𝑔  ́ ́(𝓏)  =  −2𝑐𝑔𝑔́ (𝓏)
3/2                           (9) 

holds with 𝑐𝑔 an analytic function of 𝑔 on U, independent of 𝓏. This is then true for 𝑔 ∈

 𝑈̃ and by analytic continuation for all 𝑔 ∈  𝐺̃ . 𝑆𝑜 𝐸𝑞. (9) can serve as a definition for 𝑐𝑔.  

Proposition (6.1.1)[183]: All elementary Hermitizable homogeneous holomorphic vector 

bundles are of the form 𝐸(𝜂,𝑌) with 𝜂 ∈  ℝ and 𝑌 as before. The bundles 𝐸(𝜂,𝑌) and 𝐸(𝜂 ,𝑌 ) 
are isomorphic if and only if  𝜂 =  𝜂́ and 𝑌́  =  𝐴𝑌𝐴−1 with a block diagonal matrix A.  

Proof. The induced bundles are isomorphic if and only if the inducing representations𝜚, 𝜚́, 

are linearly equivalent, that is, 𝜚́ =  𝐴𝜚𝐴−1 for some 𝐴. Since we have normalized the 

representations by fixing the matrix 𝜚(ℎ), the equivalence must be given by an 𝐴 which 

commutes with 𝜚(ℎ), that is, by a block diagonal 𝐴. 

Thus 𝐸(𝜂,{𝑌 })  =  𝐿𝜂  ⊗ 𝐸
({𝑌 }) parametrizes the equivalence classes of elementary 

Hermitizable homogeneous holomorphic vector bundles. Here, we have let {𝑌} denote the 

conjugacy class of 𝑌 under conjugation by a block diagonal matrix 𝐴.  
We proceed to discuss homogeneous holomorphic Hermitian vector bundles. From 

here on we will always use the trivialization we just described. We will not always make a 

careful distinction between sections of 𝐸(𝜂,𝑌) and the functions from 𝔻 to ℂ𝑑 on which 𝐺 

acts by the multiplier 𝐽𝑔
(𝜂,𝑌)

 (𝓏). A Hermitian structure appears in the trivialization as a 

family of quadratic forms 𝐻(𝓏)𝜉, 𝜉 , which because of the homogeneity is determined by a 
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single positive definite block-diagonal matrix 𝐻 =  𝐻(0). We denote by (𝐸(𝜂,𝑌), 𝐻) the 

bundle 𝐸(𝜂,𝑌) equipped with the Hermitian structure determined by 𝐻.  

Proposition (6.1.2)[183]: The Hermitian vector bundles (𝐸(𝜂,𝑌), 𝐻) and (𝐸(𝜂́ ,𝑌 ,), 𝐻′ ) are 

isomorphic if and only if 𝜂 =  𝜂́ , 𝑌′ =  𝐴𝑌𝐴−1 and 𝐻′ =  𝐴∗−1𝐻𝐴 with a block diagonal 

matrix 𝐴.  
Proof. The trivialization obtained by starting with 𝜚′(𝑟𝑒𝑠𝑝.=  𝐴𝜚𝐴−1) are related as 

𝑓′ (𝓏)  =  𝐴𝑓 (𝓏). Now, 𝐻′ (𝓏) gives the same metric as 𝐻(𝓏) if and only if 
〈𝐻′ (𝓏)𝑓′ (𝓏), 𝑓′ (𝓏)〉 = 〈𝐻(𝓏)𝑓 (𝓏), 𝑓 (𝓏)〉. From this, the statement follows.  

For any 𝐻, clearly there is an 𝐴 such that 𝐴∗−1𝐻𝐴 =  𝐼 . This means that every elementary 

homogeneous holomorphic Hermitian vector bundle is isomorphic to one of the form 

(𝐸(𝜂,𝑌), 𝐼). Two vector bundles of this form are equivalent if and only if 𝑌′ =  𝐴𝑌𝐴−1 with 

A such that 𝐴∗−1 𝐼𝐴−1  =  𝐼 , that is, with a block-diagonal unitary 𝐴. We denote by [𝑌] the 

equivalence class of 𝑌 under conjugation by block-diagonal unitaries and write 𝐸(𝜂,[𝑌 ]) for 

the equivalence class of (𝐸(𝜂,𝑌),𝐼), omitting the 𝐼 . We now have the first half of the 

following Proposition.  

Proposition (6.1.3)[183]: For 𝜂 ∈ ℝ, [𝑌] a block unitary conjugacy class of matrices 𝑌 , the 

vector bundles 𝐸(𝜂,[𝑌 ]) form a parametrization of the elementary homogeneous holomorphic 

Hermitian vector bundles. The Hermitian vector bundle 𝐸(𝜂,[𝑌 ]) is irreducible if and only if 

𝑌 cannot be split into orthogonal direct 𝑠𝑢𝑚 𝑌′ ⊕  𝑌  ́ ́𝑤𝑖𝑡ℎ 𝑌′ , 𝑌  ́ ́having the same block 

diagonal form as 𝑌 . 

Proof. The last statement follows since the irreducibility of 𝐸(𝜂,[𝑌 ]) is the same as the 

possibility of splitting𝜚. into an orthogonal direct sum of two sub-representations. 

Proposition (6.1.3), with a different proof, also appears in [86].  

The following theorem is important because its hypothesis is exactly what we know 

about the vector bundle corresponding to a homogeneous operator in the Cowen–Douglas 

class 𝐵𝑛(𝔻). It was stated in [72] but proved without the uniqueness statement. Here we 

give a complete proof.  

Theorem (6.1.4)[183]: Let 𝐸 be a Hermitian holomorphic vector bundle over 𝔻 and 

suppose that for all 𝑔 ∈  𝐺, there exists an automorphism of 𝐸 whose action on 𝔻 coincides 

with 𝑔. Then the full automorphism group of E is reductive and 𝐺̂ acts on E by 

automorphisms in a unique way.  

Proof. Let 𝐺̂ denote the connected component of the automorphism group of 𝐸. It is a Lie 

group because it is the connected component of the isometry group of 𝐸 under the 

Riemannian metric defined for vectors tangent to the fibres by the Hermitian structure and 

for vectors horizontal with respect to the Hermitian connection by the 𝐺 −invariant metric 

of 𝔻.  
Let 𝑁 ⊆  𝐺̂be the subgroup of elements acting on 𝔻 as the identity map. The subgroup 𝑁 

is normal, and the projection 𝜋 ∶  𝐺̂  →  𝐺 is a homomorphism with kernel 𝑁. Let 𝕂 be the 

stabilizer of 0 in G and let 𝑘̂  =  𝜋−1(𝐾). The group 𝑘̂ contains 𝑁 and is compact because it 

is the stabilizer of the origin in the fiber over 0.  

Let 𝑔̂, 𝑔, 𝑘, 𝑛, 𝑘̂ be the Lie algebras of the groups defined above, and let 𝑔 =  𝑘 + 𝑝 be the 

Cartan decomposition. Since Kˆ is compact, we can choose an 𝐴𝑑(𝕜̂ ) −invariant 

complement 𝑝̂ to  𝑘̂ in 𝑔̂. Now, 𝜋 ∗ maps 𝑘̂  onto 𝑘 with kernel 𝑛. By counting dimension, it 

follows that 𝜋 ∗ maps 𝑝̂to p bijectively.  
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We set 𝑘̂0  =  [𝑝̂, 𝑝̂]. Then 𝜋 ∗ (𝑘̂0)  =  [𝜋∗𝑝̂, 𝜋∗𝑝̂]  =  𝑘, therefore 𝑘̂0  ⊆  𝜋∗
−1  (𝑘)  =

 𝑘̂. It follows that [𝑘̂0, 𝑝̂]  ⊆  𝑝̂ and by the Jacobi identity, 𝑔̂0  =  𝑘̂0  +  𝑝̂ is a subalgebra. 

Similarly, [𝑛, 𝑝̂]  ⊆  𝑝̂ since 𝑛 ⊆  𝑘̂. But n is an ideal, so [𝑛, 𝑝]  =  0, and by the Jacobi 

identity [𝑛, 𝑔̂0]  =  0. Finally, 𝑔̂  =  𝑛 ⊕ 𝑔̂0  and g is reductive. The analytic subgroup 

𝐺̂0  ⊆  𝐺̂ corresponding to 𝑔̂0 is a covering group of 𝐺 and therefore it acts on 𝐸 by 

automorphisms. It is the unique subgroup of 𝐺̂ with this property because 𝑔̂0, being the 

maximal semisimple ideal in the reductive algebra 𝑔̂, is uniquely determined. The action of 

𝐺̂0 now lifts to a unique action of 𝐺̃ .  
Theorem (6.1.4) implies that every homogeneous operator in the Cowen–Douglas 

class 𝐵𝑛(𝔻) has an associated representation irrespective of whether it is irreducible or not. 

The following corollary has also appeared in [86].  

Corollary (6.1.5)[183]: If a Hermitian holomorphic vector bundle 𝐸 is homogeneous and 

is reducible (𝐸 =  𝐸1  ⊕ 𝐸2) as a Hermitian holomorphic vector bundle then it is reducible 

as a homogeneous Hermitian holomorphic vector bundle, that is, 𝐸1 and 𝐸2 are also 

homogeneous.  

Proof. We consider the automorphisms exp th of 𝐸, where 

 ℎ = {
𝑖𝐼 𝑜𝑛 𝐸1,
−𝑖𝐼 𝑜𝑛 𝐸2.

    

Then ℎ is in n since exp 𝑡ℎ (𝑡 ∈ ℝ) preserves fibres. So, ℎ commutes with 𝑔̂0. 𝐸1, 𝐸2 are 

characterized as eigensections of ℎ corresponding to different eigenvalues. Thus 𝐺̂0, and its 

universal covering 𝐺̃ preserve the eigensections of ℎ.  
We determine which ones of the elementary homogeneous holomorphic Hermitian 

vector bundles have their Hermitian structure coming from a reproducing kernel. In other 

words, which are the homogeneous holomorphic vector bundles that have a 𝐺̃ −invariant 

reproducing kernel 𝐾(𝓏, 𝑤). When there is a reproducing kernel 𝐾, it gives a canonical 

Hermitian structure by setting 𝐻 =  𝐾(0, 0)−1. Let 𝑝𝓏  =
1

√1−|𝓏|2 
 (1 𝓏 
𝓏̅ 1
)   ∈  𝐺, so 𝑝𝓏   ·

 0 =  𝓏. Writing 𝐽𝓏
(𝜂,𝑌)

 for 𝐽𝑝𝓏
(𝜂,𝑌)

 (𝓏), we have 

𝐾(𝓏, 𝓏)  =  𝐽𝓏
(𝜂,𝑌)

 𝐾(0, 0)𝐽𝓏
(𝜂,𝑌)∗ 

 .                              (10)  
So, the question amounts to enumeration of all the possibilities for 𝐾(0, 0). 3.1. An 

intertwining map  

For 𝜆 >  0, let 𝔸(𝜆) be the Hilbert space of holomorphic functions on the unit disc 

with reproducing kernel (1 − 𝓏𝑤̅)−2𝜆. It corresponds to the homogeneous line bundle 𝐿𝜆. 
The group 𝐺̃ acts on it unitarily with the multiplier 𝑔′(𝓏)𝜆. This action is the Discrete series 

representation 𝐷𝑔
𝜆 .  

Let ℂ𝑑  = ⊕
 𝑗=0

𝑑𝑗  ℂ𝑑𝑗  . We think of functions 𝑓 ∶ 𝔻 → ℂ𝑑 as having components 𝑓𝑗 ∶ 𝔻 →

ℂ𝑑𝑗  . Let 𝐴(𝜂)  =⊗𝑗=0
𝑚  𝐴(𝜂+𝑗)  ⊗ ℂ𝑑𝑗  . For 𝜂 >  0, Y as before and 𝑓𝑗  ∈ 𝔸

(𝜂+𝑗)  ⊗ ℂ𝑑𝑗  , 

define 

(𝛤(𝜂,𝑌)𝑓𝑗  )ℓ  = {

1

(ℓ − 𝑗)!

1

(2𝜂 + 2𝑗)ℓ−𝑗
 𝑌ℓ  ··· 𝑌𝑗+1𝑓𝑗

(ℓ−𝑗)
 𝑖𝑓 ℓ ≥  𝑗,

0 𝑖𝑓 ℓ < 𝑗.                                                     

         (11) 

So, 𝛤(𝜂,𝑌) maps Hol(𝔻, ℂ𝑑  ) into itself. Let 𝑁 be an invertible 𝑑 ×  𝑑 block diagonal matrix 

with blocks 𝑁𝑗  , 0 ≤  𝑗 ≤  𝑚, 𝑑 =  𝑑0  +··· + 𝑑𝑚. We will assume throughout that 𝑁0  =

 𝐼𝑑0  . This is only a normalizing condition. We can normalize further by assuming that each 
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block diagonal matrix with 𝑑𝑗  ×  𝑑𝑗  blocks 𝑁𝑗 is positive definite but this is not important. 

We can think of 𝑁 as changing the natural inner product of each ℂ𝑑𝑗 to 〈𝑁𝑗𝑢, 𝑁𝑗𝑣〉ℂ𝑑𝑗 . We 

let 𝛤𝑁
(𝜂,𝑌)

 =  𝛤(𝜂,𝑌)  ◦  𝑁 and ℋ𝑁
(𝜂,𝑌)

 denote the image of 𝛤𝑁
(𝜂,𝑌)

 in the space of holomorphic 

functions Hol(𝔻, ℂ𝑑  ).  

Theorem (6.1.6)[183]: The map 𝛤𝑁
(𝜂,𝑌)

 is a 𝐺̃  −equivariant isomorphism of 𝐴(𝜂) onto the 

Hilbert space ℋ𝑁
(𝜂,𝑌)

 on which the 𝐺̃  action is unitary via the multiplier 𝐽𝑔
(𝜂,𝑌)

 (𝓏). It has a 

reproducing kernel 𝐾𝑁
(𝜂,𝑌)

 (𝓏, 𝑤) such that   

(𝐾𝑁
(𝜂,𝑌)

 (0, 0)) ℓℓ  = ∑  

ℓ

  𝑗=0 

 
1

(ℓ −  𝑗)!
 

1

(2𝜂 +  2𝑗)ℓ−𝑗
 𝑌ℓ  ··· 𝑌𝑗+1𝑁𝑗𝑁

∗ 𝑗 𝑌𝑗+1
∗  ··· 𝑌ℓ

∗  .  

Proof. The injectvity of the map 𝛤𝑁
(𝜂,𝑌)

 is clear from its definition. It is also apparent that 

the image ℋ𝑁
(𝜂,𝑌)

 is the algebraic direct sum of the summands 𝔸(𝜂+𝑗)  ⊗ ℂ𝑑𝑗  of 𝐴(𝜂). We 

define a norm on ℋ𝑁
(𝜂,𝑌)

 by stipulating that 𝛤𝑁
(𝜂,𝑌)

 is a Hilbert space isometry. This gives us 

the Hilbert space ℋ𝑁
(𝜂,𝑌)

 and the unitary action 𝑈𝑔 of 𝐺̃ on it. We have to show that it is the 

multiplier action given by 𝐽𝑔
(𝜂,𝑌)

 (𝓏). For this, we must verify that  

𝛤𝑁
(𝜂,𝑌)

 ◦ ( ⊕ 𝑑𝑗𝐷𝑔−1
(𝜂+𝑗)

)   =  𝑈𝑔−1  ◦ 𝛤𝑁
(𝜂,𝑌)

 .                       (12)  

Since 𝑁 obviously intertwines ⊕𝑑𝑗𝐷
(𝜂+𝑗) with itself, it suffices to prove (12) for 𝛤(𝜂,𝑌) in 

place of 𝛤𝑁
(𝜂,𝑌)

 =  𝛤(𝜂,𝑌)  ◦  𝑁. Furthermore, it is enough to verify this relation for each 𝑓 ∈

𝔸(𝜂+𝑗)  ⊗ ℂ𝑑𝑗  , that is, to show  

𝛤(𝜂,𝑌)  (((𝑔′))
𝜂+𝑗
 (𝑓 ◦  𝑔))  =  𝐽𝑔 ((𝛤

(𝜂,𝑌)𝑓)   ◦  𝑔)  , 𝑓 ∈ 𝔸(𝜂+𝑗)  ⊗ ℂ𝑑𝑗  , 0 ≤  𝑗 ≤  𝑚.  

We will show that the th components on both sides are equal. First, if ℓ < 𝑗  
then both sides are 0. Second if ℓ ≥  𝑗 , on the one hand, using Lemma 3.1 of [72] which is 

easily proved by induction starting from Eq. (9) and says that 

((𝑔′)ℓ (𝑓 ∘ 𝑔))
(𝑘)

 =  ∑  

𝑘

 𝑖=0

 (
 𝑘

𝑖
) ( (2ℓ +  𝑖)𝑘−𝑖  (−𝑐)

𝑘−𝑖   (𝑔′)ℓ+
 𝑘+𝑖
2   𝑓(𝑖) ∘ 𝑔)    (13) 

for any 𝑔 ∈  𝐺̃ , we have  

𝛤(𝜂,𝑌) ((𝑔′ )𝜂+𝑗  (𝑓 ◦  𝑔)) = (
1

(ℓ −  𝑗)!

1

(2𝜂 +  2𝑗)ℓ−𝑗
   𝑌ℓ  ··· 𝑌𝑗+1) ((𝑔′ )

𝜂+𝑗  (𝑓 ◦  𝑔))
ℓ−𝑗

 

= (
1

(ℓ −  𝑗)!

1

(2𝜂 +  2𝑗)ℓ−𝑗
 𝑌ℓ  ··· 𝑌𝑗+1 )  

× (∑ 

ℓ−𝑗

𝑖=0 

(
ℓ −  𝑗

 𝑖
)  (2𝜂 +  2𝑗 +  𝑖)ℓ−𝑗−𝑖(−𝑐)

ℓ−𝑗−𝑖   (𝑔′ )𝜂+𝑗+ 
ℓ−𝑗+𝑖
2  ( 𝑓(𝑖)) ◦  𝑔 )  

= 𝑌ℓ  ··· 𝑌𝑗+1  ∑  

ℓ−𝑗

𝑖=0 

 
1

(ℓ −  𝑗 −  𝑖)! 𝑖!
 

1

(2𝜂 +  2𝑗)𝑖
 (−𝑐)ℓ−𝑗−𝑖   (𝑔′ )𝜂+𝑗+ 

ℓ−𝑗+𝑖
2  ( 𝑓(𝑖)) ◦  𝑔. 

On the other hand,  
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∑  

𝑚

 𝑝=𝑗 

(𝐽𝑔)ℓ 𝑝
((𝛤(𝜂,𝑌)𝑓)

𝑝
 ◦  𝑔)  

= (∑  

ℓ

𝑝=𝑗 

 (−𝑐)ℓ−𝑝
1

(ℓ −  𝑝)!
  (𝑔′)𝜂+

 𝑝+ℓ
2  𝑌ℓ  ···  𝑌𝑝+1

1

(𝑝 −  𝑗)!
 ) 

× (
1

(2𝜂 +  2𝑗)𝑝−𝑗
 𝑌𝑝  ···  𝑌𝑗+1𝑓

(𝑝−𝑗)  ◦  𝑔)  

=  ∑  

ℓ

𝑝=𝑗 

 
1

(ℓ −  𝑝)!
 

1

(ℓ −  𝑝)!

1

(2𝜂 +  2𝑗)𝑝−𝑗
 (−𝑐)ℓ−𝑝(𝑔′)𝜂+

 𝑝+ℓ
2 𝑌ℓ  ··· 𝑌𝑗+1𝑓

(𝑝−𝑗)  ◦  𝑔 

= ∑ 

ℓ−𝑗

𝑖=0

 
1

(ℓ −  𝑖 −  𝑗)!

1

𝑖!

1

(2𝜂 +  2𝑗)𝑖
 (−𝑐)ℓ−𝑗−𝑖  (𝑔′)𝜂+

 𝑝+ℓ
2 𝑌ℓ  ··· 𝑌𝑗+1𝑓

(𝑝−𝑗)  ◦  𝑔. 

This completes the verification of (12). Finally, we observe that ℋ𝑁
(𝜂,𝑌)

 has a reproducing 

kernel 𝐾𝑁
(𝜂,𝑌)

 (𝓏, 𝑤) because it is the image of 𝐴(𝜂) under an isomorphism given by a 

holomorphic differential operator, so point evaluations remain continuous. Then 

𝐾𝑁
(𝜂,𝑌)

 (𝓏, 𝑤) is obtained by applying 𝛤𝑁
(𝜂,𝑌)

 to the reproducing kernel of 𝐴(𝜂) once as a 

function of 𝓏 and once as a function of 𝑤. This computation is easily carried out and gives 

the formula for 𝐾𝑁
(𝜂,𝑌)

  (0, 0).  

Writing 𝐻 ∶=  𝐻𝑁
(𝜂,𝑌)

 =  𝐾𝑁
(𝜂,𝑌)

  (0, 0))−1    , the Hilbert space ℋ𝑁
(𝜂,𝑌)

 is a space of sections 

of the homogeneous holomorphic Hermitian vector bundle (𝐸(𝜂,𝑌), 𝐻) in our (canonical) 

trivialization.  

Theorem (6.1.7)[183]: The construction with 𝛤𝑁
(𝜂,𝑌)

 gives all elementary homogeneous 

holomorphic Hermitian vector bundles which possess a reproducing kernel, namely, those 

of the form   

(𝐸(𝜂,𝑌), (𝐾𝑁
(𝜂,𝑌)

  (0, 0))−1) , 

where 𝜂 >  0, 𝑌 are arbitrary and 𝐾𝑁
(𝜂,𝑌)

 (0, 0) is of the form given in Theorem (6.1.6). The 

vector bundles (𝐸(𝜂,𝑌), (𝐾𝑁
(𝜂,𝑌)

  (0, 0))−1) and (𝐸(𝜂,𝑌) , 𝐾𝑁
(𝜂,𝑌)

  (0, 0))−1) are equivalent if 

and only if 𝜂 =  𝜂́ , 𝑌′ =  𝐴𝑌𝐴−1 and 𝑁′ 𝑁∗  =  𝐴𝑁𝑁∗𝐴∗ for some invertible block 

diagonal matrix A of size 𝑑 ×  𝑑.  
Proof. The existence of a reproducing kernel implies that the vector bundle is Hermitizable. 

Such a bundle is of the form (𝐸(𝜂,𝑌), 𝐻) by Propositions (6.1.1) and (6.1.2). When it has a 

reproducing kernel, then in our canonical trivialization this is a matrix valued function 

𝐾(𝓏,𝑤), and we have 𝐻 =  𝐾(0, 0)−1. The 𝐺̃ action 𝑈 which is now unitary, is given by 

the multiplier 𝐽𝑔
(𝜂,𝑌)

 (𝓏). 

𝐸𝑞. (8) shows that the action of 𝕂̃ is diagonalized by the polynomial vectors: If 𝑣𝑗  ∈  ℂ
𝑑𝑗 

and 𝑓 (𝓏)  =  𝓏𝑛𝑣𝑗  , then for 𝑘𝜃 such that 𝑘𝜃 (𝓏)  =  𝑒
𝑖𝜃 𝓏, we have 𝑈𝑘𝜃 𝑓 =  𝑒

𝑖𝜃(𝜂+𝑗+𝑘)𝑓 . 

It follows that 𝑈 is a direct sum of the Discrete series representations 𝐷(𝜂+𝑗), 0 ≤ 𝑗 ≤  𝑚. 
In particular, it follows that 𝜂 >  0.  

The map 𝛤(𝜂,𝑌) (and 𝛤𝑁
(𝜂,𝑌)

 for any block diagonal 𝑁) intertwines the representations 𝑈 and 

⨁  𝑚
𝑗=0  𝑑𝑗𝐷

(𝜂+𝑗), both of which are unitary. By Schur’s Lemma it follows that 𝑁 can be 

chosen such that 𝛤(𝜂,𝑌)  ◦  𝑁 is unitary. This proves that the bundle 𝐸(𝜂,𝑌) corresponds to 

the Hilbert space ℋ𝑁
(𝜂,𝑌)

 .  
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The statement about equivalence follows from the analogous statement in Proposition 

(6.1.2). 

 One way to prove this is to use the “Inverse propagation theorem” of 𝑇. Kobayashi 

[185]. If the action of 𝐺̃ is unitary, then so is the 𝐾̃ action on the fibres, and we are back in 

the situation of Theorem (6.1.7).  

Here we sketch a more direct proof which also shows what the non-Hermitizable 

homogeneous holomorphic vector bundles are like.  

A general 𝐸 is still gotten from two matrices 𝑍 =  𝜚(ℎ), 𝑌 =  (𝑦) such that [𝑍, 𝑌] = −𝑌 by 

holomorphic induction. The inclusion 𝑌𝑉𝜆  ⊆  𝑉𝜆−1 still holds for the generalized 

eigenspaces of 𝑍. Using some easy identities for 𝑔′ (𝓏 ), we can then verify that  

𝐽𝑔(𝓏) = exp (
1

2
 𝑙𝑜𝑔( 𝑔′ (𝓏))

′
 𝑌 𝑒𝑥𝑝( −𝑙𝑜𝑔 𝑔′ (𝓏)𝑍)) ,  

which, in the case where 𝑍 is diagonal, is just another way to write (11), is a multiplier. 

Writing 𝑈𝑔 for the action of 𝐺̃ on 𝐻𝑜𝑙(𝐷, 𝑉 ) given by 𝐽𝑔(𝓏), we compute  

(𝑈(𝑒𝑥𝑝 𝑡𝑖ℎ𝑓 )(𝓏)  =  𝑒𝑥𝑝(𝑖𝑡𝑍)𝑓 ( 𝑒
−𝑖𝑡 𝓏)     .                           (14)  

Hence (𝑈ℎ𝑓 )(0)  =  𝑍𝑓 (0) and by a similar computation (𝑈𝑦𝑓 )(0)  =  𝑌𝑓(0). This 

shows that 𝐽𝑔(𝓏) gives a trivialization of our 𝐸. It also shows that 𝑈𝑘 , 𝑘 in 𝐾̃ maps the 

spaces ℳ𝑝 of monomials of degree 𝑝 to ℳ𝑝 for all 𝑝 ≥ 0. Hence the 𝐾̃ -finite vectors are 

exactly the (𝑉 − valued) polynomials.  

Now if 𝑈 is unitary with respect to some inner product, then it is a sum of irreducible 

representations. The 𝐾̃  −types of these (i.e. the eigenspaces of 𝑈ℎ) are known to be one 

dimensional and together they span the space of 𝐾̃ −finite vectors. By (14), 𝑈ℎ maps any 

𝓏𝑝𝑣 ∈  ℳ𝑝 to 𝓏𝑝(𝑍𝑣 − 𝑝𝑣). It follows that 𝑍 must be diagonalizable, otherwise the 

eigenfunctions of 𝑈ℎ could not span ℳ𝑝.  
The description of the homogeneous holomorphic Hermitian vector bundles given in 

Theorem (6.1.7) can be made more explicit. We now proceed to determine, in terms of the 

parametrization 𝐸(𝜂,[𝑌 ]) of elementary homogeneous holomorphic Hermitian vector bundles 

as in Proposition (6.1.3), exactly which ones of these have their Hermitian structure come 

from a reproducing kernel.  

Theorem (6.1.8)[183]: The Hermitian structure of 𝐸(𝜂,[𝑌 ]) comes from a 

(𝐺̃  −invariant)reproducing kernel if and only if 𝜂 >  0 and  

𝐼 − 𝑌𝑗  (∑  

 𝑗−1

𝑘=0

 
(−1)𝑗+𝑘

(𝑗 −  𝑘)! (2𝜂 +  𝑗 +  𝑘 −  1)𝑗−𝑘  
 𝑌𝑗−1  ··· 𝑌𝑘+1𝑌𝑘+1

∗  ··· 𝑌𝑗−1
∗  -) 𝑌𝑗

∗  >  0 

for 𝑗 =  1, 2, . . . , 𝑚.  
Proof. We have a description of all the vector bundles with reproducing kernel in Theorem 

(6.1.7). To see how this description appears in the parametrization 𝐸(𝜂,𝑌), we have to answer 

the question: For what 𝜂, [𝑌], is it possible to find a block-diagonal 𝑁 such that 

𝐾𝑁
(𝜂,𝑌)

 (0, 0)  =  𝐼 . Writing this more explicitly, we have the system of equations  

𝐼ℓ  − ∑  

ℓ

 𝑗=0 

1

(ℓ − 𝑗)!

1

(2𝜂 +  𝑗 + 𝑘 − 1)𝑗−𝑘
𝑌ℓ ···     𝑌𝑗+1𝑁𝑗𝑁𝑗

∗ 𝑌𝑗+1
∗  ··· 𝑌ℓ

∗ =  0,            (15) 

ℓ =  1, . . . , 𝑚 and the question is if the solution 𝑁𝑗𝑁𝑗
∗ , 𝑗 =  1, . . . , 𝑚 consists of positive 

definite matrices.  

We claim that the solution of (15) is given by  
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𝑁𝑗𝑁𝑗
∗  = ∑  

𝑗

 𝑘=0 

(−1)𝑗+𝑘

(𝑗 −  𝑘)! (2𝜂 +  𝑗 +  𝑘 −  1)𝑗−𝑘
 𝑌𝑗  ···  𝑌𝑘+1𝑌𝑘+1

∗  ··· 𝑌𝑗
∗,             (16) 

for 𝑗 =  1, . . . , 𝑚. 
In fact, substituting the expression for 𝑁𝑗𝑁𝑗

∗ from (16) into (15), we have 

𝐼ℓ  −  ∑  

ℓ

 𝑗=0 

∑  

𝑗

 𝑘=0 

1

(ℓ −  𝑗)! (2𝜂 +  2𝑗)ℓ−𝑗   

(−1)𝑗+𝑘

(𝑗 −  𝑘)! (2𝜂 +  𝑗 +  𝑘 −  1)𝑗−𝑘
 𝑌(𝑘)  =  0,  

where 𝑌(𝑘)  =  𝑌ℓ  ··· 𝑌𝑘+1𝑌𝑘+1
∗  ··· 𝑌ℓ

∗ . The coefficient of 𝑌(𝑘), from the above, is seen to 

be  

1

(ℓ −  𝑘)!2
 ∑  

ℓ

 𝑗=𝑘 

(−1)𝑗+𝑘  (
ℓ −  𝑘

𝑗 −  𝑘 
) (2𝜂 +  2𝑗 −  1)𝐵(2𝜂 +  𝑘 +  𝑗 −  1, ℓ −  𝑘 +  1),  

where 𝐵(𝑥, 𝑦) =  
𝛤 (𝑥)𝛤𝑦

𝛤 (𝑥+𝑦)
 is the usual Beta function. Using the binomial formula and the 

integral representation: 𝐵(𝑥, 𝑦)  =   ∫  
1

0
 𝑡𝑥−1(1 −  𝑡)𝑦−1  𝑑𝑡, it simplifies to  

1

(ℓ −  𝑘)!2
 ∫  

1

0

{ (2𝜂 +  2𝑘 −  1)𝑡2𝜂+2𝑘−2(1 −  𝑡)2(ℓ−𝑘)

−  2(ℓ −  𝑘)𝑡2𝜂+2𝑘−1(1 −  𝑡)2(ℓ−𝑘)−1} 𝑑𝑡 

=
1

(ℓ −  𝑘)!2
 ∫  

1

0

{ 𝑡2𝜂+2𝑘−2(1 −  𝑡)2(ℓ−𝑘)−1( (2𝜂 +  2𝑘 −  1)

− (2𝜂 +  2ℓ −  1)𝑡)} 𝑑𝑡 

=
1

(ℓ −  𝑘)!2
  ( 𝑥𝐵(𝑥, 𝑦) − (𝑥 +  𝑦)𝐵(𝑥 +  1, 𝑦)), 

where 𝑥 =  2𝜂 +  2𝑘 −  1 and 𝑦 =  2ℓ −  2𝑘, which is zero except when 𝑘 =  0 =  ℓ. 
This verifies the claim.  

The right-hand side of Eq. (16) is exactly the expression given in the statement of the 

theorem, so its positivity is the condition we were seeking.  

When 𝑌 is given, we may ask what are the values of 𝜂 for which the positivity 

condition of the theorem holds. It obviously holds when 𝜂 is large. We can also see that 

there exists a number 𝜂𝑌  >  0 such that it holds if and only if 𝜂 > 𝜂𝑌 . For this we only have 

to see that if 𝐸(𝜂,𝑌) has a reproducing kernel for some 𝜂 >  0, then so does 𝐸(𝜂+𝜀,𝑌) for all 

𝜀 >  0. Now 𝐸(𝜂+𝜀,𝑌)  =  𝐿𝜀  ⊗ 𝐸
(𝜂,𝑌) which shows that the product 𝐾(𝓏,𝑤)  =

 (1 −  𝓏𝑤̅)−2𝜀𝐾𝐼
(𝜂,𝑌)

 (𝓏, 𝑤) is a reproducing kernel for 𝐸(𝜂+𝜀,𝑌), and 𝐾(0, 0)  =  𝐼 still 

holds.  

When 𝑚 =  1, the condition of the Theorem (6.1.8) reduces to  

𝐼 −
1

𝜂
 𝑌1𝑌1

∗  >  0.  

In this case, we have 𝜂𝑌  =
1

2
‖ 𝑌1𝑌1

∗‖ in terms of the usual matrix norm.  

The following theorem together with Theorems (6.1.6) and (6.1.7), and Corollary 

(6.1.5) gives a complete classification of homogeneous operators in the Cowen–Douglas 

class.  
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Theorem (6.1.9)[183]: All the homogeneous holomorphic Hermitian vector bundles with a 

reproducing kernel correspond to homogeneous operators in the Cowen–Douglas class. The 

irreducible ones are the adjoint of the multiplication operator 𝑀 on the space ℋ𝐼
(𝜂,𝑌)

 for 

some 𝜂 >  0 and irreducible 𝑌 . The block matrix 𝑌 is determined up to conjugacy by block 

diagonal unitaries.  

Proof. First we note that by Theorems (6.1.7) and (6.1.8) every homogeneous holomorphic 

Hermitian vector bundle can be written in the form (𝐸(𝜂,𝑌), 𝐼) with 𝜂 >  0. The Hilbert space 

ℋ𝐼
(𝜂,𝑌)

 is a subspace of the (trivialized) holomorphic sections of (𝐸(𝜂,𝑌), 𝐼) which is the 

image under the map 𝛤𝑁
(𝜂,𝑌)

 of 𝐴(𝜂). We have to show only that the operator 

𝑀∗ on ℋ𝐼
(𝜂,𝑌)

 belongs to the Cowen–Douglas class. For this we compute the matrix of 𝑀 in 

an appropriate orthonormal basis. Each of the Hilbert spaces 𝔸(𝜂+𝑗) (0 ≤ 𝑗 ≤ 𝑚) has a 

natural orthonormal basis  

{ 𝑒𝑗
𝑛 (𝓏) ∶=  √

(2𝜂 +  2𝑗)𝑛
𝑛!

 𝓏𝑛: 𝑛 ≥ 0 } .  

Hence 𝔸(𝜂+𝑗)  ⊗ ℂ𝑑𝑗   has the basis 𝑒𝑗
𝑛 𝜀𝑞

(𝑗)
  , where {𝜀𝑞

(𝑗)
∶  1 ≤  𝑞 ≤  𝑑𝑗  } is the natural 

basis of ℂ𝑑𝑗  . The Hilbert space 𝐴(𝜂) then has the orthonormal basis 𝑒𝑗
𝑛 𝜀𝑗𝑞 with 𝜀𝑗𝑞 ∶=  𝜀𝑗  ⊗

 𝜀𝑞
(𝑗)
 , where {𝜀𝑗 ∶  0 ≤  𝑗 ≤  𝑚} is the natural basis for ℂ𝑚+1. Each 𝑒𝑗

𝑛 𝜀𝑗𝑞 is a function on 𝔻 

taking values in ℂ𝑑  ; its part in ℂ𝑑𝑗  is 𝜀𝑗  ⊗ 𝜀𝑞
(𝑗)
 , and its part in every other ℂ𝑑𝑘 (𝑘 ≠  𝑗) is 

0. Defining 

𝑒𝑗𝑞
𝑛 ∶=  𝛤(𝜂,𝑌) (𝑒𝑗

𝑛 𝜀𝑗𝑞) ,                                        (17)  

we have an orthonormal basis for ℋ(𝜂,𝑌). 

We identify the “𝐾 −types” in ℋ(𝜂,𝑌), that is, the subspaces on which the representation 𝑈 

restricted to 𝐾̃ acts by scalars. For 𝑘𝜃  ∈  𝐾̃ given by 𝑘𝜃  (𝓏)  =  𝑒𝓏
𝑖𝜃 , we have 𝐷𝑘𝜃

(𝜂+𝑗)
 𝑒𝑗
𝑛  =

 𝑒−𝑖𝜃(𝜂+𝑗+𝑛)𝑒𝑗
𝑛

 on 𝔸(𝜂+𝑗). By the intertwining property of 𝛤(𝜂,𝑌), the basis elements of 

ℋ(𝜂,𝑌) then satisfy 𝑈𝑘𝜃  𝑒𝑗𝑞
𝑛  =  𝑒−𝑖𝜃(𝜂+𝑗+𝑛)𝑒𝑗𝑞

𝑛  . It follows that the subspace  

ℋ(𝜂,𝑌)(𝑛) ∶= { 𝑓 ∈  ℋ(𝜂,𝑌): 𝑈𝑘𝜃 𝑓 =  𝑒
−𝑖𝜃(𝜂+𝑛)𝑓}  

is spanned by the basis elements {𝑒𝑗𝑞
𝑛−𝑗

∶  1 ≤  𝑞 ≤  𝑑𝑗  , 0 ≤  𝑗 ≤ 𝑚𝑖𝑛(𝑚, 𝑛)} and ℋ(𝜂,𝑌) 

equals the direct sum ⊕𝑛≥0  ℋ
(𝜂,𝑌)(𝑛).  

Clearly, the operator 𝑀 maps each ℋ(𝜂,𝑌) (𝑛) to ℋ(𝜂,𝑌)(𝑛 +  1). We write 𝑀(𝑛) for the 

matrix of the restriction of 𝑀 to ℋ(𝜂,𝑌) (𝑛), that is,  

𝑀𝑒𝑗𝑞
𝑛−𝑗
 = ∑  

 

ℓ,𝑟

 𝑀(𝑛)(ℓ𝑟)(𝑗𝑞)𝑒ℓ𝑟
𝑛+1−ℓ .                        (18)  

We write 𝑒(𝑗𝑞),(𝑠𝑡)
𝑛−𝑗

(𝓏) for the (𝑠, 𝑡) −component (0 ≤  𝑠 ≤  𝑚𝑖𝑛(𝑚, 𝑛), 1 ≤   𝑡 𝑑𝑠) of the 

function 𝑒𝑗𝑞
𝑛−𝑗

 taking values in ℂ𝑑  . This can be regarded as a matrix of monomials in 𝓏. The 

coefficients of these monomials form a numerical matrix which we denote by 𝐸(𝑛).  
Applying the operator 𝑀, which is multiplication by 𝓏, to the monomials does not change 

their coefficients. Therefore, Eq. (18) amounts to the matrix equality  

𝐸(𝑛)  =  𝐸(𝑛 +  1)𝑀(𝑛).                                (19)  
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We use (17) to compute 𝐸(𝑛) explicitly. The part in ℂ𝑑𝑗 of the vector valued function 

𝑒𝑗
𝑛−𝑗
 𝜀𝑗𝑞  is 𝑒𝑗

𝑛−𝑗
 𝜀𝑞
(𝑗)
 , its part in ℂ𝑑𝑘 with 𝑘 ≠  𝑗 is 0. So (11) gives, for the part of 𝑒𝑗𝑞

𝑛−𝑗
 (0 ≤

 𝑗 ≤  𝑚) in ℂ𝑑  ,   

(𝑒𝑗𝑞
𝑛−𝑗
 (𝓏))

ℓ
= {
𝑐(𝜂, ℓ, 𝑗, 𝑛)𝓏𝑛−ℓ(𝑌ℓ  ···  𝑌𝑗+1)𝜀𝑞

(𝑗)
 𝓏𝑛−ℓ 𝑖𝑓 ℓ ≥ 𝑗,

 0 𝑖𝑓 ℓ < 𝑗                                                         
                 (20) 

where the constant 𝑐(𝜂, ℓ, 𝑗, 𝑛) is the coefficient of 𝓏𝑛−ℓ in  

1

(ℓ −  𝑗)!

1

(2𝜂 +  2𝑗)ℓ−𝑗
  (
𝑑

𝑑𝓏
)
ℓ−𝑗

 𝑒𝑗
𝑛−𝑗
 (𝓏)

=
1

(ℓ −  𝑗)!

1

(2𝜂 +  2𝑗)ℓ−𝑗
   √
(2𝜂 +  2𝑗)𝑛

𝑛!
   (

𝑑

𝑑𝓏
)
ℓ−𝑗

 𝓏𝑛−𝑗  . 

We can regard 𝐸(𝑛) as a block matrix with blocks 𝐸(𝑛)𝑗ℓ of size 𝑑𝑗  ×  𝑑ℓ. The (𝑞, 𝑟) entry 

of 𝐸(𝑛)𝑗ℓ being 𝐸(𝑛)(𝑗𝑞)(ℓ𝑟) defined above. Then Eq. (20) says that  

𝐸(𝑛)𝑗ℓ  = {
𝑐(𝜂, ℓ, 𝑗, 𝑛)𝑌ℓ  ··· 𝑌𝑗+1 𝑖𝑓 ℓ ≥  𝑗,

0 𝑖𝑓 ℓ < 𝑗
 

Now, we consider the behavior of 𝑐(𝜂, ℓ, 𝑗, 𝑛) for large n. First, since  

√
(2𝜂 +  2𝑗)𝑛−𝑗
(𝑛 −  𝑗)!

 (
𝑑

𝑑𝓏
)
ℓ−𝑗

  𝓏𝑛−𝑗  =   
√(𝑛 −  𝑗)! (2𝜂 +  2𝑗)𝑛−𝑗

(𝑛 −  ℓ)!
 𝓏𝑛−ℓ ,  

it follows that  

𝑐(𝜂, ℓ, 𝑗, 𝑛) =
1

(2𝜂 +  2𝑗)ℓ−𝑗(ℓ −  𝑗)!
  
√𝛤 (𝑛 −  𝑗 +  1)𝛤 (2𝜂 +  𝑗 +  𝑛)

√𝛤 (2𝜂 +  2𝑗)𝛤 (𝑛 −  ℓ +  1)
 . 

From Stirling’s formula, we obtain  

𝑐(𝜂, ℓ, 𝑗, 𝑛) ∼
1

√𝛤 (2𝜂 +  2𝑗)(2𝜂 +  2𝑗)ℓ−𝑗(ℓ −  𝑗)!
  
√(𝑒−𝑛𝑛𝑛−𝑗+

1
2 ) (𝑒−𝑛𝑛𝑛+2𝜂+𝑗−

1
2
 )

𝑒−𝑛𝑛𝑛−ℓ +
1
2

 

∼  
√𝛤(2𝜂 +  2𝑗)

𝛤((ℓ −  𝑗 +  1))𝛤 (2𝜂 +  2𝑗 +  ℓ)
𝑛𝜂−

1
2
 +ℓ .  

If we define the block matrix 𝐸 by  

𝐸ℓ𝑗  = {
 

√𝛤 (2𝜂 + 2𝑗)

𝛤 ((ℓ − 𝑗 + 1))𝛤 (2𝜂 + 2𝑗 + ℓ)
𝑌ℓ  ··· 𝑌𝑗+1 𝑖𝑓 ℓ ≥  𝑗,

0 𝑖𝑓 ℓ < 𝑗

 

and the diagonal block matrix 𝐷(𝑛) by 𝐷(𝑛)ℓℓ  =  𝑛
ℓ𝐼𝑑ℓ  then we can write our result as  

𝐸(𝑛)  ∼  𝑛𝜂−
1
2  𝐷(𝑛)𝐸.  

From (19), for large n, it follows that  

𝑀(𝑛) =  𝐸(𝑛 +  1)−1𝐸(𝑛) 

∼ (
𝑛

𝑛 +  1
)
𝜂−
1
2
 𝐸−1𝐷(𝑛 +  1)−1𝐷(𝑛)𝐸  

∼  𝐼 +  𝑂(1/𝑛).                                                  (21)  
Therefore, the operator 𝑀 which is a “weighted block shift” is the direct sum of an ordinary 

(unweighted) block shift and a Hilbert–Schmidt operator. Hence 𝑀 is bounded and standard 
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results from Fredholm theory ensure that the adjoint operator 𝑀∗ is in the Cowen–Douglas 

class 𝐵𝑑  (𝔻). 
The similarity classes of the homogeneous Cowen–Douglas operators are easily described 

in terms of the parameter 𝜂 and the multiplicities 𝑑0, . . . , 𝑑𝑚. For a somewhat smaller class 

of operators, the similarity classes were described in [188].  

Theorem (6.1.10)[183]: The multiplication operator 𝑀 on ℋ𝐼
(𝜂,𝑌)

 and on ℋ𝐼
(𝜂′,𝑌′)

 are 

similar if and only if the blocks in 𝑌 and 𝑌′ are of the same size and 𝜂 =  𝜂′ .  

Proof. To prove the forward direction, first we show that 𝛤(𝜂,𝑌) maps 𝐴(𝜂) onto itself, that 

is, 𝐴(𝜂)  = ℋ𝐼
(𝜂,𝑌)

 as linear spaces. The derivative 
𝑑

𝑑𝓏
∶ 𝔸𝛼  →  𝔸(𝛼+1) defines a surjective 

bounded linear operator for any 𝛼 >  0. For any 𝑓 ∈  𝐴(𝜂),   

(𝛤(𝜂,𝑌)𝑓 )
ℓ
 =  ∑  

ℓ

𝑗=0 

  (𝛤(𝜂,𝑌)𝑓𝑗  )ℓ  

and (11) shows that each term of the sum is in 𝑑ℓ𝔸
(𝜂+ℓ). On the other hand, given 𝑔 =

 (𝑔1, . . . , 𝑔𝑚)  ∈  𝐴
(𝜂), we find 𝑓 ∈  𝐴(𝜂) satisfying 𝛤(𝜂,𝑌)𝑓 =  𝑔. The functions 

𝑓0, . . . , 𝑓𝑑  are determined recursively. Suppose, we have already determined 𝑓𝑗   , 𝑗 < ℓ . Then 

from the definition of the map 𝛤(𝜂,𝑌), we see that taking  

𝑓ℓ  =  𝑔ℓ  −  ∑  

ℓ−1

𝑗=0 

 (𝛤(𝜂,𝑌)𝑓𝑗 )
ℓ
 

we have the required 𝑓 .  

Clearly, 𝑀 ∶  𝐴(𝜂)  →  𝐴(𝜂) is similar to 𝑀 ∶  𝐻𝐼
(𝜂,𝑌)

 →  ℋ𝐼
(𝜂,𝑌)

 via the map 𝑓 ⟼ 𝑓 , which 

is bounded and invertible by the closed graph theorem.  

For the proof in the other direction, let 𝐾(𝑛) ⊆  𝐴(𝜂)  = ⊕𝑗=0
𝑚  𝑑𝑗𝔸

(𝜂+𝑗) be the linear span 

of the vectors {𝑒𝑗𝑞
𝑛 ∶  0 ≤ 𝑗 ≤ 𝑚, 1 ≤  𝑞 ≤ 𝑑𝑗  }. The multiplication operator 𝑀 on 𝐴(𝜂)  

maps 𝐾(𝑛) into 𝐾(𝑛 +  1). If 𝑀𝑛 is the matrix representing 𝑀|𝐾(𝑛)  ∶  𝐾(𝑛)  →  𝐾(𝑛 +  1) 

then 𝑀 is a block shift with blocks {𝑀𝑛: 𝑛 ≥  0}, which are diagonal matrices of size 𝑑 ×

 𝑑. Let 𝑀′ be the multiplication operator on 𝐴(𝜂′ )  = ⊕𝑗=0
𝑚  𝑑𝑗𝔸

(𝜂+𝑗) with a similar block 

decomposition. Assume without loss of generality that 𝜂′ >  𝜂. Suppose 𝐿 ∶  𝐴(𝜂)  →  𝐴(𝜂′) 
is a bounded and invertible linear map consisting of 𝑑 × 𝑑 blocks with 𝐿𝑀 =  𝑀′ 𝐿. Then 

𝑑 =  𝑑0  +··· +𝑑𝑚  = codim(ran𝑀) = codim(ran𝑀′ ) =  𝑑′0  +··· +  𝑑′𝑚′ . 
It then follows that 𝐿0𝑘  =  0 for all 𝑘 ≥  1 and consequently 𝐿00 is non-singular. We also 

have 𝐿𝑛𝑛𝑀𝑛−1  =  𝑀′𝑛−1𝐿𝑛−1𝑛−1 from which it follows that  

𝐿𝑛𝑛  =  𝑀′𝑛−1 ··· 𝑀′0 𝐿00𝑀0
−1  ··· 𝑀𝑛−1

−1  =  𝐹′𝑛𝐿00𝐹𝑛
−1 ,  

where 𝐹𝑛  =  𝑀0  ··· 𝑀𝑛−1 and 𝐹′ =  𝑀′𝑛−1  ··· 𝑀′0 are diagonal matrices. The diagonal 

elements are  

(𝐹𝑛)𝑘𝑘  =  
√
(2𝜂 +  2𝑗(𝑘))

𝑛

𝑛
 

 

  (𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦  (𝐹′𝑛)ℓℓ  =  
√
(2𝜂′ +  2𝑗′ (ℓ))

𝑛

𝑛
 ),  

where 𝑗(𝑘)  =  𝑗 if 𝑑0  +··· + 𝑑𝑗 − 1 <  𝑘 ≤ 𝑑0  +··· + 𝑑𝑗  and 𝑗′ (ℓ) is defined 

analogously. By Stirling’s formula, we have  

(𝐿𝑛𝑛)ℓ𝑘  = ( 𝐹′𝑛)ℓℓ(𝐿00)ℓ𝑘 (𝐹𝑛
−1)𝑘𝑘  ∼  𝑛

𝜂′ −𝜂+𝑗́ (ℓ)−𝑗(𝑘)(𝐿00)ℓ𝑘. 
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Since 𝐿00 is non-singular, for any 𝑘 with 𝑗(𝑘)  =  0, there is an ℓ such that (𝐿00)ℓ𝑘  =  0. 
Now, unless 𝜂 =  𝜂′ , we have (𝐿𝑛𝑛)ℓ𝑘  →  ∞ contradicting the boundedness of 𝐿. 

Therefore, we have 𝜂 =  𝜂′ and (𝐿𝑛𝑛)ℓ𝑘  ∼  𝑛
𝑗́ (ℓ)−𝑗(𝑘)(𝐿00)ℓ𝑘 . Take all those k for which 

𝑗(𝑘)  =  0. For each of these, we can find a different ℓ𝑘 such that (𝐿00)ℓ𝑘 𝑘 ≠  0. (The 

columns of the non-singular matrix 𝐿00 with these indices are linearly independent and 

therefore cannot have only zeros in more than 𝑑 −  𝑘 slots.) Again, unless 𝑗′ (ℓ𝑘)  =  0, we 

have (𝐿𝑛𝑛)ℓ𝑘  𝑘 →  ∞. This shows that 𝑑′0  ≥ 𝑑0. Similarly, 𝑑′𝑗 ≥ 𝑑𝑗  , 1 ≤  𝑗 ≤  𝑚. From 

the equality ∑  𝑚′
 𝑗=0  𝑑′𝑗  =  ∑  𝑚′

 𝑗=0  𝑑𝑗  , it follows that 𝑚′ =  𝑚 and 𝑑′𝑗 = 𝑑𝑗 for 𝑗 =

 1, . . . , 𝑚.  
The following corollary, the proof of which is evident, implies that polynomially bounded 

homogeneous operators in the Cowen–Douglas class are similar to contractions.  

Corollary (6.1.11)[183]: A homogeneous operator in the Cowen–Douglas class is either 

similar to a contraction or it is not power bounded.  

We discuss how some formerly known examples fit into the present framework.  

This case was already studied in [72]. Here each 𝑌𝑗 is a number, non-zero in the 

irreducible case. The unitaries implementing the equivalence are diagonal, and clearly the 

conjugacy class [𝑌] under these has exactly one representative with 𝑦𝑗  >  0, 1 ≤  𝑗 ≤ 𝑚. 

The positive 𝑚 +  1 − tuples satisfying the condition given in Theorem (6.1.8) give a 

parametrization of homogeneous Cowen–Douglas operators. For each one, 𝐾(0, 0)  =  𝐼 

and 𝐽𝑔
(𝜂,𝑌)

  is given by the formula (8).  

Another good parametrization is possible with the aid of Theorem (6.1.6). All possible 𝑌 −

𝑠 are now conjugate under diagonal unitaries 𝐴, so we may fix an arbitrary 𝑌(0) (for 

example, 𝑦𝑗  =  1 for all 𝑗 , or, as in [72], 𝑦𝑗  =  𝑗 for all 𝑗 ). Take any positive diagonal 

matrix 𝑁 with diagonal elements 1 =  𝜇0, 𝜇1, . . . , 𝜇𝑚. By Proposition (6.1.2), 𝑌(0) , 𝑁 and 

𝑌(0) , 𝑁′ give isomorphic vector bundles if and only if 𝐴 is diagonal and hence 𝑁 =  𝑁′ . It 
follows that the positive numbers 𝜂, 𝜇1, . . . , 𝜇𝑚 give a parametrization of the homogeneous 

operators in the Cowen–Douglas class 𝐵𝑚+1(𝔻 ). Here 𝐽(𝜂,𝑌
(0)) 𝑔 depends only on 𝜂 and 

𝐾𝑁
(𝜂,𝑌(0)) 

(0, 0) is given by the formula in Theorem (6.1.6). This is the parametrization used 

in [72].  

In the case 𝑚 =  1, for any 𝑑0 and 𝑑1, the class [𝑌] always contains a member for which 𝑌 

is diagonal. So, the corresponding bundle is reducible unless 𝑑0  =  𝑑1  =  1. When 𝑚 =
 2, it is easy to see that 𝑑0  =  2 or 𝑑2  =  2 gives only reducible bundles. So, the first non-

trivial case occurs (apart from the case 𝑑0  =  𝑑1  =  𝑑2  =  1, which has been dealt with 

previously) when 𝑑0  =  𝑑2  =  1, 𝑑1  =  2.  
For this case, again there are two natural parametrizations. Conjugating 𝑌 with a 

blockdiagonal unitary having blocks 𝑢0, 𝑈1, 𝑢2 changes 𝑌1, 𝑌2 into 𝑈1𝑌1𝑢0
−1 , 𝑢2𝑌2𝑈1

−1 . 

Now, 𝑈1 can be chosen so that 𝑌1  =  (
 𝑎 
0
)  . Then 𝑢0, 𝑢2 and a scalar factor in front of 𝑈1 

can be found with 𝑎 ≥ 0 and 𝑌2  =  (𝑏 𝑐) with 𝑏, 𝑐 ≥ 0. We have irreducibility if and only 

if 𝑎, 𝑏, 𝑐 ≠  0 and no two such triples give equivalent 𝑌 − 𝑠. So, we have a parametrization 

of the irreducible 𝐸(𝜂,𝑌) by four arbitrary non-zero parameters. There is a reproducing kernel 

(and hence an operator in 𝐵4(𝔻)) if and only if the right-hand side of Eq. (16) is positive; 

in terms of the parameters, this is  

𝑎2  <  2𝜂,  
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𝑏2  <  
2𝜂 +  2

1 −
𝑎2

2(2𝜂 + 1)
 
,  

𝑐2  <  2𝜂 +  2.  
The positive quadruple (𝜂, 𝑎, 𝑏, 𝑐) subject to this condition parametrizes the homogeneous 

operators in 𝐵4(𝔻). In each case, 𝐾(0, 0)  =  𝐼 and 𝐽𝑔 can be expressed in terms of the 

parameters using (8).  

The other parametrization of the (𝑑0, 𝑑1, 𝑑2)  =  (1, 2, 1) case is found using 

Theorem (6.1.6). Simple arguments show that 𝑌 can always be conjugated by a block 

diagonal A so that 𝑌1  = ( 1 0)  and 𝑌2  =  (1 0) or (0 1). When 𝑌2  =  (0 1), the bundle will 

be reducible for any choice of Hermitian structure. So, we can fix 𝑌(0) with 𝑌1  =  (
 1 
0
)  and 

𝑌2  =  (1 0). The block diagonal A that conjugates this 𝑌(0) to itself is a diagonal matrix 

with (𝑝, 𝑝, 𝑞, 𝑝) on the diagonal. If 𝑁 is any positive diagonal diag(𝑛0, 𝑁1, 𝑛2) with 𝑛0  =

 1, 𝑁1  =  (
 𝛼 𝛽

𝛽̅ 𝛾
)    and 𝑛2 ≥ 0 , then we can ensure 𝑛1  =  1 =  𝑛2 and 𝛼, 𝛽, 𝛾 >  0 after 

conjugating by an A. Thus the homogeneous bundles with reproducing kernel (and hence 

the homogeneous operators in 𝐵4(𝔻)) of type (1, 2, 1) are now parametrized by four positive 

numbers (𝜂, 𝛼, 𝛽, 𝛾) subject to the condition 𝛽2  <  𝛼𝛾 .  
By a different construction, a large subset of these examples already occurs in [189]. 

Section (6.2): A Class of Cowen–Douglas Operators 

In [61], Cowen and Douglas initiated the study of the following important class of 

operators. 

Definition (6.2.1)[190]: For a connected open subset 𝛺 of ℂ and a positive integer 𝑛, let 

𝐵𝑛(𝛺) = {𝑇 ∈ ℒ(ℋ)| 𝛺 ⊂  𝜎(𝑇), 
𝑟𝑎𝑛 (𝑇 −  𝑤)  = ℋ 𝑓𝑜𝑟 𝑤 ∈  𝛺, 

⋁ 

𝑤∈𝛺

 𝑘𝑒𝑟(𝑇 −  𝑤)  = ℋ, 

𝑑𝑖𝑚 𝑘𝑒𝑟(𝑇 −  𝑤)  =  𝑛 𝑓𝑜𝑟 𝑤 ∈  𝛺} , 
where ℒ(ℋ) is the algebra of all bounded linear operators on a complex separable Hilbert 

space ℋ and 𝜎(𝑇) is the spectrum of the operator 𝑇. 

It is shown in [61] that if 𝑇 is in 𝐵𝑛(𝛺), then it is possible to choose n eigenvectors 

in 𝑘𝑒𝑟(𝑇 −  𝑤), which are holomorphic as functions of 𝑤 ∈  𝛺. Thus 𝑤 ↦ 𝑘𝑒𝑟(𝑇 − 𝑤) 
defines a rank n holomorphic Hermitian vector bundle 𝐸𝑇 over 𝛺. It therefore follows that 

the holomorphic Hermitian vector bundle 𝐸𝑇 is the sub-bundle of the trivial holomorphic 

Hermitian bundle 𝛺 ×ℋ defined by 

𝐸𝑇 = {(𝑤, 𝑥)  ∈  𝛺 × ℋ ∶  𝑥 ∈  𝑘𝑒𝑟(𝑇 −  𝑤)} 
with the natural projection map 𝜋 ∶  𝐸𝑇  →  𝛺, 𝜋(𝑤, 𝑥)  =  𝑤 (cf. [61]). Here is one of the 

main results from [61]. 

Theorem (6.2.2)[190]: The operators 𝑇 and 𝑇̃ in 𝐵𝑛(𝛺) are unitarily equivalent if and only 

if the corresponding holomorphic Hermitian vector bundles 𝐸𝑇 and 𝐸𝑇̃ are equivalent. 

They also find a set of complete invariants for this equivalence consisting of the curvature 

of 𝐸𝑇 and its covariant derivatives. Unfortunately, these invariants are not easy to compute 

except when the rank of the bundle is 1. In this case, the curvature 

𝒦(𝑤)𝑑𝑤 ∧  𝑑𝑤̅ = −
𝜕2𝑙𝑜𝑔‖𝛾(𝑤)‖2

𝜕𝑤𝜕𝑤̅
 𝑑𝑤 ∧  𝑑𝑤̅ 
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of the line bundle 𝐸𝑇 , defined with respect to a non-zero holomorphic section 𝛾 of 𝐸𝑇 , is a 

complete unitary invariant of the operator 𝑇. The definition of the curvature, in this case, is 

independent of the choice of the non-vanishing section 𝛾: If 𝛾0 is another holomorphic (non-

vanishing) section of 𝐸, then 𝛾0  =  𝜙𝛾 for some holomorphic function 𝜙 on an open subset 

𝛺0 of 𝛺, consequently the harmonicity of 𝑙𝑜𝑔 |𝜙| completes the verification. However, if 

the rank of the vector bundle is strictly greater than 1, then only the eigenvalues of the 

curvature are independent of the choice of the holomorphic frame. This limits the use of the 

curvature and its covariant derivative if the rank of the bundle is not 1. It is difficult to 

determine, in general, when an operator 𝑇 ∈  𝐵𝑛(𝛺) is irreducible, again except in the case 

𝑛 =  1. In this case, the rank of the vector bundle is 1 and therefore it is irreducible and so 

is the operator 𝑇. 

We ask: For what class of holomorphic Hermitian vector bundles, defined on a bounded 

open connected set 𝛺 ⊆ ℂ, of rank 𝑛, the curvature remains a complete invariant. Refining 

the proof of [61], one may infer that the curvature is a complete invariant for the class 

consisting of the n-fold direct sum of line bundles. Examples were given in [198] to show 

that the class of the curvature alone does not determine the class of the vector bundle except 

in the case of a line bundle. The splitting of a holomorphic Hermitian vector bundle into a 

direct sum is determined by the vanishing of the second fundamental form (see [196]). We 

isolate those irreducible holomorphic Hermitian vector bundles, namely, the ones 

possessing a flag structure, for which the curvature together with the second fundamental 

form is a complete set of invariants. Among these, we study in detail the ones that 

correspond to irreducible operators in the Cowen–Douglas class 𝐵2(𝛺). All irreducible 

homogeneous operators in 𝐵2(𝔻) are in this class. We obtain, using the methods developed, 

a description of all these operators. This classification was given earlier by 𝐷. Wilkins [83] 

using a sophisticated mix of Riemannian geometry and operator theory. We also investigate 

the case of 𝑛 >  2, where together with the curvature and the second fundamental form, we 

find a set of 
𝑛(𝑛−1)

2
 +  1 invariants, which are easy to compute. Finally, we show that these 

are a complete set of unitary invariants. 

We discuss this new class of operators in 𝐵2(𝛺) separately and then provide the details for 

the case of 𝑛 >  2. One important reason for separating out the case of 𝑛 =  2 is that the 

proofs that appear in this case are often necessary to begin an inductive proof in the case of 

an arbitrary 𝑛 ∈ ℕ. 

We construct similarity invariants for the operators in this new class (See [194]).  

Definition (6.2.3)[190]: If 𝑇 is an operator in 𝐵2(𝛺), then there exists a pair of operators 𝑇0 

and 𝑇1 in 𝐵1(𝛺) and a bounded operator 𝑆 such that 𝑇 =  (
𝑇0 𝑆
0 𝑇1

)  . This is Theorem 1.49 

of [70]. We show, the other way round, that two operators 𝑇0 and 𝑇1 from 𝐵1(𝛺) combine 

with the aid of an arbitrary bounded linear operator 𝑆 to produce an operator in 𝐵2(𝛺). 

Proposition (6.2.4)[190]: Let 𝑇 be a bounded linear operator of the form (
𝑇0 𝑆
0 𝑇1

) . 

Suppose that the two operators 𝑇0, 𝑇1 are in 𝐵1(𝛺). Then the operator 𝑇 is in 𝐵2(𝛺). 
Proof. Suppose 𝑇0 and 𝑇1 are defined on the Hilbert spaces ℋ0 and ℋ1, respectively. 

Elementary considerations from index theory of Fredholm operators show that the operator 

𝑇 is Fredholm and 𝑖𝑛𝑑(𝑇) =  𝑖𝑛𝑑(𝑇0) +  𝑖𝑛𝑑(𝑇1) (cf. [191]). Therefore, to complete the 

proof that 𝑇 is in 𝐵2(𝛺), all we have to do is prove that the vectors in the kernel 

ker(𝑇 –  𝑤) , 𝑤 ∈  𝛺, span the Hilbert space ℋ =  ℋ0  ⊕ ℋ1. 
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Let 𝛾0 and 𝑡1 be non-vanishing holomorphic sections for the two line bundles 𝐸0 and 𝐸1 

corresponding to the operators 𝑇0 and 𝑇1, respectively. For each 𝑤 ∈  𝛺, the operator 𝑇0  −
 𝑤 is surjective. Therefore we can find a vector 𝛼(𝑤) in ℋ0 such that (𝑇0  −  𝑤)𝛼(𝑤)  =
 −𝑆(𝑡1(𝑤)),𝑤 ∈  𝛺. Setting 𝑎(𝑤)  =  𝛼(𝑤)  + 𝑡1(𝑤), we see that 

(𝑇 −  𝑤)𝑎(𝑤) = 0 = (𝑇 −  𝑤)𝛾0(𝑤). 
Thus {𝛾0(𝑤), 𝑎(𝑤)}  ⊆  𝑘𝑒𝑟 (𝑇 − 𝑤) for 𝑤 in 𝛺. If x is any vector orthogonal to 𝑘𝑒𝑟(𝑇 −
𝑤),𝑤 ∈  𝛺, then in particular it is orthogonal to the vectors 𝛾0(𝑤) and 𝑎(𝑤),𝑤 ∈  𝛺, 

forcing it to be the zero vector. 

We impose one additional condition on these operators, namely, 𝑇0𝑆 =  𝑆𝑇1 and assume 

that the operator 𝑆 is non-zero. With this seemingly innocuous hypothesis, we show that (i) 

it is irreducible, (ii) and that any intertwining unitary operator between two of these 

operators must be diagonal and (iii) the curvature of 𝐸𝑇0 together with the second 

fundamental form of the inclusion 𝐸𝑇0 ⊆ 𝐸𝑇 forms a complete set of unitary invariants for 

the operator 𝑇. It is therefore natural to isolate this class of operators. 

Definition (6.2.5)[190]: We let ℱ𝐵2(𝛺) denote the set of all bounded linear operators 𝑇 of 

the form 𝑇 =  (
𝑇0 𝑆
0 𝑇1

)  , where the two operators 𝑇0, 𝑇1 are assumed to be in the Cowen–

Douglas class 𝐵1(𝛺) and the operator 𝑆 is assumed to be a non-zero intertwiner between 

them, that is, 𝑇0𝑆 =  𝑇1𝑆. 

Specifically, if the operator 𝑇𝑖 , 𝑖 =  0, 1, is defined on the separable complex Hilbert space 

ℋ𝑖, then 𝑆 is assumed to be a non-zero bounded linear operator from ℋ1 to ℋ0 such that 

𝑇0𝑆 =  𝑇1𝑆. The operator 𝑇 is defined on the Hilbert space ℋ ∶= ℋ0  ⊕ ℋ1. 

Each of the operators in ℱ𝐵2(𝛺) is also in the Cowen–Douglas class 𝐵2(𝛺) by virtue of 

Proposition (6.2.4). Thus ℱ𝐵2(𝛺)  ⊆  𝐵2(𝛺). 
Although, in the definition of the class ℱ𝐵2(𝛺) given above, we have only assumed that 𝑆 

is non-zero, its range must be dense as is shown below. 

Proposition (6.2.6)[190]: Suppose 𝑇0 and 𝑇1 are two operators in 𝐵1(𝛺), and 𝑆 is a bounded 

operator intertwining 𝑇0 and 𝑇1, that is, 𝑇0𝑆 =  𝑆𝑇1. Then 𝑆 is non-zero if and only if range 

of 𝑆 is dense if and only if 𝑆∗ is injective. 

Proof. Let 𝛾 be a holomorphic frame of 𝐸𝑇1 . Assume that 𝑆 is a non-zero operator. The 

intertwining relationship 𝑇0𝑆 =  𝑆𝑇1 implies that 𝑆 ◦  𝛾 is a section of 𝐸𝑇0 . Clearly, there 

exists an open set 𝛺0 contained in 𝛺 such that 𝑆 ◦  𝛾 is not zero on 𝛺0, otherwise S has to 

be zero. Since 𝑆(𝛾) is a holomorphic frame of 𝐸𝑇0 on 𝛺0, it follows that the closure of the 

linear span of the vectors {𝑆(𝛾(𝑤)) ∶  𝑤 ∈  𝛺0} must equal ℋ0. Hence the range of the 

operator 𝑆 is dense. 

The following Proposition provides several equivalent characterizations of operators in the 

class ℱ𝐵2(𝛺). 
Proposition (6.2.7)[190]: Suppose 𝑇 is a bounded linear operator on a Hilbert space ℋ, 

which is in 𝐵2(𝛺). Then the following conditions are equivalent. 

(i) There exist an orthogonal decomposition ℋ0⊕ℋ1 of ℋ and operators 𝑇0 ∶  ℋ0  →

 ℋ0, 𝑇1 ∶  ℋ1  →  ℋ1, and 𝑆 ∶  ℋ1  →  ℋ0 such that  = (
𝑇0 𝑆
0 𝑇1

) , where 𝑇0, 𝑇1  ∈  𝐵1(𝛺) 

and 𝑇0𝑆 =  𝑆𝑇1, that is, 𝑇 ∈ ℱ𝐵2(𝛺). 

(ii) There exists a holomorphic frame {𝛾0, 𝛾1} of 𝐸𝑇 such that 
𝜕

𝜕𝑤
 ‖𝛾0(𝑤)‖

2 =

〈𝛾1(𝑤), 𝛾0(𝑤)〉. 
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(iii) There exists a holomorphic frame {𝛾0, 𝛾1} of 𝐸𝑇 such that 𝛾0(𝑤) and 
𝜕

𝜕𝑤
 𝛾0(𝑤) −

 𝛾1(𝑤) are orthogonal for all 𝑤 in 𝛺. 

Proof. (i) =⇒ (ii): Pick any two non-vanishing holomorphic sections 𝑡0 and 𝑡1 for the line 

bundles 𝐸𝑇0 and 𝐸𝑇1 respectively. Then 

(𝑇 −  𝑤)𝑡1(𝑤) = (𝑇1 −𝑤)𝑡1(𝑤) + 𝑆(𝑡1(𝑤)) 
=  𝑆(𝑡1(𝑤). 

Since 𝑇0𝑆 =  𝑆𝑇1, it induces a bundle map from 𝐸𝑇1 to 𝐸𝑇0 , so 𝑆(𝑡1(𝑤))  =  𝜓(𝑤)𝑡0(𝑤) 

for some holomorphic function 𝜓 defined on 𝛺. Thus (𝑇 − 𝑤)𝑡1(𝑤)  =  𝜓(𝑤)𝑡0(𝑤). 

Setting 𝛾0(𝑤) ∶=  𝜓(𝑤)𝑡0(𝑤) and 𝛾1(𝑤):=
𝜕

𝜕𝑤
 𝛾0(𝑤)  − 𝑡1(𝑤), we see that 

{𝛾0(𝑤), 𝛾1(𝑤)}  ⊂  𝑘𝑒𝑟 (𝑇 −  𝑤). Now assume that 

𝛼0𝛾0(𝑤) + 𝛼1𝛾1(𝑤)  =  0                                     (22) 
for a pair of complex numbers 𝛼0 and 𝛼1. Then 

0 =  〈𝛼0𝛾0(𝑤)  + 𝛼1𝛾1(𝑤), 𝑡1(𝑤)〉 =  𝛼1〈𝛾1(𝑤), 𝑡1(𝑤)〉 =  −𝛼1‖𝑡1(𝑤)‖
2.     (23) 

From equations (22) and (23), it follows that 𝛼0  =  𝛼1  =  0. Thus {𝛾0, 𝛾1} is a holomorphic 

frame of 𝐸𝑇 . Since 〈𝑡1(𝑤), 𝛾0(𝑤)〉  =  0, we see that 
𝜕

𝜕𝑤
‖𝛾0(𝑤)‖

2 = 〈𝛾1(𝑤), 𝛾0(𝑤)〉. 

(ii) ⇐⇒ (iii): This equivalence is evident from the definition. 

(iii) =⇒ (i): Set 𝑡1(𝑤):=
𝜕

𝜕𝑤
 𝛾0(𝑤)  −  𝛾1(𝑤). Let ℋ0 and ℋ1 be the closed linear span of 

{𝛾0(𝑤) ∶  𝑤 ∈  𝛺} and {𝑡1(𝑤) ∶  𝑤 ∈  𝛺}, respectively. Set 𝑇0  =  𝑇|ℋ0  , 𝑇1  =  𝑃ℋ1  𝑇|ℋ1 

and  =  𝑃ℋ0  𝑇|ℋ1  . 

We see that the closed linear span of the vectors {𝛾0(𝑤), 𝑡1(𝑤) ∶  𝑤 ∈  𝛺} is ℋ: Suppose 𝑥 

in ℋ is orthogonal to this set of vectors. Then clearly, 𝑥 ⊥ 𝛾0(𝑤) and 𝑥 ⊥ 𝑡1(𝑤) for all 𝑤 

in 𝛺. Or, equivalently 𝑥 ⊥ 𝛾0(𝑤) and 𝑥 ⊥ 𝛾1(𝑤) for all 𝑤 in 𝛺. Therefore 𝑥 must be the 0 

vector. Next, we show that the two operators 𝑇0 and 𝑇1 are in 𝐵1(𝛺). 
Clearly, (𝑇1  −  𝑤) is onto. Thus index (𝑇1  −  𝑤)  =  𝑑𝑖𝑚 𝑘𝑒𝑟 (𝑇1  −  𝑤) and 2 =
 𝑖𝑛𝑑𝑒𝑥 (𝑇 −  𝑤)  =  𝑖𝑛𝑑𝑒𝑥 (𝑇0  −  𝑤)  +  𝑖𝑛𝑑𝑒𝑥 (𝑇1  −  𝑤). It follows that 𝑑𝑖𝑚 𝑘𝑒𝑟(𝑇1  −
 𝑤)  =  1 or 2. 

Suppose 𝑑𝑖𝑚 𝑘𝑒𝑟 (𝑇1  −  𝑤)  =  2 and {𝑠1(𝑤), 𝑠2(𝑤)} be a holomorphic choice of linearly 

independent vectors in 𝑘𝑒𝑟 (𝑇1  −  𝑤). Then we can find holomorphic functions 𝜙1, 𝜙2 

defined on 𝛺 such that 𝑆(𝑠1(𝑤))  =  𝜙1(𝑤)𝛾0(𝑤) and 𝑆(𝑠2(𝑤)) =  𝜙2(𝑤)𝛾0(𝑤). Setting 

𝛾̃0(𝑤) ∶=  𝛾0(𝑤), 

𝛾̃1(𝑤):=
𝜕

𝜕𝑤
 (𝜙1(𝑤)𝛾0(𝑤))  − 𝑠1(𝑤) and 

𝛾̃2(𝑤):=
𝜕

𝜕𝑤
 (𝜙2(𝑤)𝛾0(𝑤)) − 𝑠2(𝑤), 

we see that (𝑇 −  𝑤)(𝛾̃𝑖(𝑤))  =  0 for 0 ≤  𝑖 ≤  2. If ∑  2
𝑖=0 𝛼𝑖𝛾̃𝑖(𝑤)  =  0, 𝛼𝑖  ∈ ℂ, then 

𝛼0𝛾0(𝑤) +
𝜕

𝜕𝑤
((𝛼1𝜙1(𝑤) + 𝛼2𝜙2(𝑤))𝛾0(𝑤)) + 𝛼1𝑠1(𝑤) + 𝛼2𝑠2(𝑤) = 0. 

It follows that 𝛼1𝑠1(𝑤) + 𝛼2𝑠2(𝑤)  =  0 since ℋ0 is orthogonal to ℋ1. Hence 𝛼1  =
 𝛼2  =  0 implying 𝛼0  =  0. Thus we have 𝑑𝑖𝑚 𝑘𝑒𝑟(𝑇 −  𝑤)  ≥  3. This contradiction 

proves that 𝑑𝑖𝑚 𝑘𝑒𝑟(𝑇0  −  𝑤)  =  1 and hence 𝑇1 is in 𝐵1(𝛺). 
To show that 𝑇0 is in 𝐵1(𝛺), pick any 𝑥 ∈  ℋ0, and note that there exists 𝓏 ∈ ℋ such that 

(𝑇 −  𝑤)𝓏 =  𝑥 since 𝑇 −  𝑤 is onto. Let 𝓏ℋ1  and 𝓏ℋ0  be the projections of 𝓏  to the 
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subspaces ℋ0 and ℋ1, respectively. We have [(𝑇0 −𝑤)𝓏ℋ0 + 𝑆(𝓏ℋ1)]  + (𝑇1  −

 𝑤)𝓏ℋ1 = 𝑥. Therefore (𝑇1  −  𝑤)𝓏ℋ1 = 0 and (𝑇0  −  𝑤)𝓏ℋ0 + 𝑆(𝓏ℋ1) = 𝑥. Since 

𝑑𝑖𝑚 𝑘𝑒𝑟 (𝑇1  −  𝑤)  =  1, so 𝓏ℋ1 = 𝑐1𝑡1(𝑤), it follows that 

𝑥 =  (𝑇0  −  𝑤)𝓏ℋ0 + 𝑆(𝓏ℋ1) = (𝑇0 −𝑤)𝓏ℋ0 + 𝑆(𝑐1𝑡1(𝑤))

=  (𝑇0  −  𝑤)𝓏ℋ0 + 𝑐1𝛾0(𝑤) =  (𝑇0 −𝑤)𝓏ℋ0 + (𝑇0 − 𝑤)(𝑐1
𝜕

𝜕𝑤
 𝛾0(𝑤))

=  ((𝑇0  −  𝑤)(𝓏ℋ0 + 𝑐1
𝜕

𝜕𝑤
 𝛾0(𝑤)). 

Thus 𝑇0 −𝑤 is onto. We have 2 =  𝑑𝑖𝑚 𝑘𝑒𝑟 (𝑇 − 𝑤)  =  𝑑𝑖𝑚 𝑘𝑒𝑟 (𝑇0 −𝑤) +
𝑑𝑖𝑚 𝑘𝑒𝑟 (𝑇1 −𝑤). Hence 𝑑𝑖𝑚 𝑘𝑒𝑟 (𝑇0  −  𝑤)  =  1 and we see that 𝑇0 is in 𝐵1(𝛺). 
Finally, since 𝑆(𝑡1(𝑤))  =  𝛾0(𝑤), it follows that 𝑇0𝑆 =  𝑆𝑇1. 

An operator 𝑇 ∈ ℱ𝐵2(𝛺) is also in 𝐵2(𝛺), therefore as is well-known (cf. [61], [79]), 

it can be realized as the adjoint of a multiplication operator on some reproducing kernel 

Hilbert space of holomorphic ℂ2-valued functions. These functions are defined on 𝛺∗ ∶=
 {𝑤 ∶  𝑤̅  ∈  𝛺}. An explicit description for operators in ℱ𝐵2(𝛺) follows. 

Let 𝐸𝑇 be the holomorphic Hermitian vector bundle over 𝛺 corresponding to the operator 

𝑇. Since 𝑇 is in ℱ𝐵2(𝛺), we may find a holomorphic frame 𝛾 =  {𝛾0, 𝛾1} such that 𝛾0(𝑤) 

and 
𝜕

𝜕𝑤
 𝛾0(𝑤) − 𝛾1(𝑤) are orthogonal for all 𝑤 in 𝛺. Define 𝛤 ∶ ℋ → 𝒪(𝛺∗, ℂ2) as 

follows: 

𝛤(𝑥)(𝓏) = (〈𝑥, 𝛾0(𝓏̅), 〈𝑥, 𝛾1(𝓏̅)〉〉)
𝑡𝑟        𝓏 ∈  𝛺∗, 𝑥 ∈ ℋ, 

where 𝒪(𝛺∗, ℂ2) is the space of holomorphic functions defined on 𝛺∗ which take values in 

ℂ2. Here (· ,·)𝑡𝑟 denotes the transpose of the vector (· ,·). 
The map 𝛤 is injective and therefore transplanting the inner product from ℋ on the range of 

𝛤, we make it unitary from ℋ onto ℋ𝛤 ∶=  𝑟𝑎𝑛 𝛤. Define 𝐾𝛤 to be the function on 𝛺∗  ×
 𝛺∗ taking values in the 2 × 2 matrices ℳ2(ℂ): 

𝐾𝛤(𝓏, 𝑤) = ((〈𝛾𝑗(𝑤̅), 𝛾𝑖(𝓏̅)〉))
𝑖,𝑗=0

1
 

=

(

 
𝛾0( 𝑤̅), 𝛾0(𝓏̅)

𝜕

𝜕𝑤̅
 〈𝛾0(𝑤̅), 𝛾0(𝓏̅)〉

𝜕

𝜕𝓏̅
〈𝛾0(𝑤̅), 𝛾0(𝓏̅)〉

𝜕2

𝜕𝓏𝜕𝑤̅
〈𝛾0(𝑤̅), 𝛾0(𝓏̅)〉 + 〈𝑡1(𝑤̅), 𝑡1(𝓏̅)〉)

   

=

(

 
𝐾0(𝓏, 𝑤)

𝜕

𝜕𝑤̅
 𝐾0(𝓏, 𝑤)

𝜕

𝜕𝑤̅
 𝐾0(𝓏,𝑤)

𝜕2

𝜕𝓏𝜕𝑤̅
 𝐾0(𝓏, 𝑤))

  + (
0 0
0 𝐾1(𝓏, 𝑤)

)         (24) 

where 𝑡1(𝑤̅) =
𝜕

𝜕𝑤̅
𝛾0(𝑤̅) − 𝛾1(𝑤̅), 𝐾0(𝓏, 𝑤) =  〈𝛾0(𝑤̅), 𝛾0(𝓏̅)〉 and 𝐾1(𝓏,𝑤)  =

 〈𝑡1(𝑤̅), 𝑡1(𝓏̅)〉 for 𝓏,𝑤 in 𝛺∗. Set (𝐾𝛤)𝑤(·)  =  𝐾𝛤(·, 𝑤). It is then easily verified that 𝐾𝛤 

has the following properties: 

(i) The reproducing property: 〈𝛤(𝑥)(·), (𝐾𝛤)𝑤(·)𝜂〉𝑟𝑎𝑛 𝛤  = 〈𝛤(𝑥)(𝑤), 𝜂〉ℂ2  , 𝑥 ∈ ℋ, 𝜂 ∈
 ℂ2, 𝑤 ∈  𝛺∗. 
(ii) The unitary operator 𝛤 intertwines the operators 𝑇 defined on ℋ and 𝑀∗ defined on ℋ𝛤, 

namely, 𝛤𝑇∗  =  𝑀𝓏𝛤. 

(iii) Each 𝑤 in 𝛺 is an eigenvalue with eigenvector (𝐾𝛤)𝑤̅(·)𝜂, 𝜂 ∈ ℂ
2, for the operator 

𝑀∗  =  𝛤𝑇𝛤∗. 
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Once we represent an operator 𝑇 from ℱ𝐵2(𝛺) in this form, the possibilities for the 

change of frame are limited. The admissible ones are described in the following lemma. 

Lemma (6.2.8)[190]: Let 𝑇 be an operator in ℱ𝐵2(𝛺). Suppose {𝛾0, 𝛾1}, {𝛾̃0, 𝛾̃1} are two 

frames of the vector bundle 𝐸𝑇 such that 𝛾0(𝑤) ⊥ (
𝜕

𝜕𝑤
 𝛾0(𝑤) − 𝛾1(𝑤)) and 𝛾̃0(𝑤) ⊥

(
𝜕

𝜕𝑤
 𝛾̃0(𝑤) − 𝛾̃1(𝑤)) for all 𝑤 ∈  𝛺. If 𝜙 =  (

𝜙11 𝜙12
𝜙21 𝜙22

) is any change of frame between 

{𝛾0, 𝛾1} and {𝛾̃0, 𝛾̃1}, that is, 

{𝛾̃0, 𝛾̃1} = {𝛾0, 𝛾1} (
𝜙11 𝜙12
𝜙21 𝜙22

), 

then 𝜙21  =  0, 𝜙11  =  𝜙22 and 𝜙12 = 𝜙11
′ . 

Proof. Define the unitary map 𝛤, as above, using the holomorphic frame 𝛾 =  {𝛾0, 𝛾1}. The 

operator 𝑇 is then unitarily equivalent to the adjoint of the multiplication operator on the 

Hilbert space ℋ𝛤 possessing a reproducing kernel 𝐾𝛤 of the form (24). Let 𝑒1 and 𝑒2 be the 

standard unit vectors in ℂ2. Clearly, (𝐾𝛤)𝑤(·)𝑒1 and (𝐾𝛤)𝑤(·)𝑒2 are two linearly 

independent eigenvectors of 𝑀∗ with eigenvalue 𝑤̅. 

Similarly, corresponding to the holomorphic frame 𝛾̃ = {𝛾̃0, 𝛾̃1}, the operator 𝑇 is unitarily 

equivalent to the adjoint of multiplication operator on the Hilbert space ℋ𝛤̃. 

The reproducing kernel 𝐾𝛤̃ is again of the form (24) except that 𝐾0 and 𝐾1 must be replaced 

by 𝐾̃0 and 𝐾̃1, respectively. 

For 𝑖 =  0, 1, set 𝑠𝑖(𝑤) ∶=  (𝐾𝛤)(𝑤)𝑒𝑖, and 𝑠̃𝑖(𝑤) ∶=  (𝐾𝛤̃)(𝑤)𝑒𝑖. Let 𝜙(𝑤) ∶=

 (
𝜙00(𝑤) 𝜙01(𝑤)
𝜙10(𝑤) 𝜙11(𝑤)

) be the holomorphic function, taking values in 2 × 2 matrices, such that 

(𝑠̃0(𝑤), 𝑠̃1(𝑤))  =  (𝑠0(𝑤), 𝑠1(𝑤))𝜙(𝑤). 
This implies that 

𝑠̃0(𝑤) = 𝜙00(𝑤)𝑠0(𝑤) + 𝜙10(𝑤)𝑠1(𝑤)                        (25) 
And 

𝑠̃1(𝑤)  =  𝜙01(𝑤)𝑠0(𝑤)  + 𝜙11(𝑤)𝑠1(𝑤).                  (26) 
From Equation (25), equating the first and the second coordinates separately, we have 

(𝐾̃0)𝑤(·) = 𝜙00(𝑤)(𝐾0)𝑤(·) + 𝜙10(𝑤)
𝜕

𝜕𝑤̅
(𝐾0)𝑤(·)           (27) 

And 

𝜕

𝜕𝓏
(𝐾̃0)𝑤

(·) = 𝜙00(𝑤)
𝜕

𝜕𝓏
(𝐾0)𝑤(·) + 𝜙10(𝑤)

𝜕2

𝜕𝓏𝜕𝑤̅
(𝐾0)𝑤(·) 

+𝜙10(𝑤)(𝐾1)𝑤(·).                                             (28) 
From these two equations, we get 

𝜙00(𝑤) 
𝜕

𝜕𝓏
(𝐾0)𝑤(·) + 𝜙10(𝑤)

𝜕2

𝜕𝓏𝜕𝑤̅
(𝐾0)𝑤(·)  = 

𝜙00(𝑤)
𝜕

𝜕𝓏
 (𝐾0)𝑤(·) + 𝜙10(𝑤)

𝜕2

𝜕𝓏𝜕𝑤̅
(𝐾0)𝑤(·) + 𝜙10(𝑤)(𝐾1)𝑤(·), 

which implies that 𝜙10  =  0. Finally, from Equation (26), we have 
𝜕

𝜕𝑤̅
(𝐾̃0)𝑤

(·) = 𝜙01(𝑤)(𝐾0)𝑤(·) + 𝜙11(𝑤)
𝜕

𝜕𝑤̅
(𝐾0)𝑤(·).         (29) 

The Equations (26) and (29) together give 

𝜙01 = 𝜙00
′    and   𝜙00 = 𝜙11 

completing the proof. 
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A very important consequence of this Lemma is that the decomposition of the operators in 

the class ℱ𝐵2(𝛺) is unique in the sense described in the following proposition. 

Proposition (6.2.9)[190]: Let 𝑇, 𝑇̃ ∈ ℱ𝐵2(𝛺) be two operators of the form (
𝑇0 𝑆
0 𝑇1

)  and 

(
𝑇̃0 𝑆̃

0 𝑇̃1
)  with respect to the decomposition ℋ =  ℋ0⊕ ℋ1 and ℋ̃ = ℋ̃0⊕ℋ̃1, 

respectively. Let 𝑈 =  (
𝑈11 𝑈12
𝑈21 𝑈22

) ∶  ℋ0  ⊕ ℋ1  → ℋ̃0  ⊕ ℋ̃1 be a unitary operator such 

that 

(
𝑈11 𝑈12
𝑈21 𝑈22

) (
𝑇0 𝑆
0 𝑇1

) = (
𝑇̃0 𝑆̃

0 𝑇̃1
) (
𝑈11 𝑈12
𝑈21 𝑈22

), 

then 𝑈12  =  𝑈21  =  0. 

Proof. Let {𝛾0, 𝛾1} and {𝛾̃0, 𝛾̃1} be holomorphic frames of 𝐸𝑇 and 𝐸𝑇̃ respectively with the 

property that 𝛾0  ⊥  (
𝜕

𝜕𝑤
 𝛾0  −  𝛾1) and 𝛾̃0 ⊥ (

𝜕

𝜕𝑤
 𝛾̃0  −  𝛾̃1). Set 𝑡1 ∶=  (

𝜕

𝜕𝑤
 𝛾0  −  𝛾1) and 

𝑡̃1 ∶=  (
𝜕

𝜕𝑤
 𝛾̃0  −  𝛾̃1). Since 𝑈 intertwines 𝑇 and 𝑇̃, it follows that {𝑈𝛾0 , 𝑈𝛾1} is a second 

holomorphic frame of 𝐸𝑇̃ with the property 𝑈𝛾0  ⊥  (
𝜕

𝜕𝑤
 (𝑈𝛾0)  −  𝑈𝛾1)  =  𝑈(𝑡1). By 

Lemma (6.2.8), we have that 

𝑈(𝛾0)  = 𝜙𝛾̃0                                                  (30) 
And 

𝑈(𝛾1)  = 𝜙
′𝛾̃0  + 𝜙𝛾̃1.                                      (31) 

From equations (30) and (31), we get 

𝑈(𝑡1)  = 𝜙𝑡̃1.                                          (32) 
From equations (30) and (32), it follows that 𝑈 maps ℋ0 to ℋ0 and ℋ1 to ℋ1. Thus 𝑈 is a 

block diagonal from ℋ0  ⊕ ℋ1 onto ℋ̃0  ⊕ ℋ̃1. 

Corollary (6.2.10)[190]: For 𝑖 =  0, 1, let 𝑇𝑖 be any two operators in 𝐵1(𝛺). Let 𝑆 and 𝑆̃ 

be bounded linear operators such that 𝑇0𝑆 =  𝑆𝑇1 and 𝑇0𝑆̃ = 𝑆̃𝑇1. If 𝑇 = (
𝑇0 𝑆
0 𝑇1

)  and 

𝑇̃ = (
𝑇0 𝑆̃
0 𝑇1

), then 𝑇 is unitarily equivalent to 𝑇̃ if and only if 𝑆̃ = 𝑒𝑖𝜃𝑆 for some real 

number 𝜃. 

Proof. Suppose that 𝑈𝑇 =  𝑇̃𝑈 for some unitary operator 𝑈. We have just shown that such 

an operator 𝑈 must be diagonal, say = (
𝑈11 0
0 𝑈22

). Hence we have  

𝑈11𝑇0 = 𝑇0𝑈11, 𝑈22𝑇1 = 𝑇1𝑈22, 𝑈11𝑆 = 𝑆̃𝑈22.                         (33) 
Since 𝑈11 is unitary, the first of the equations (33) implies that 

𝑈11 ∈ {𝑇0, 𝑇0
∗} ∶=  {𝑊 ∈ ℒ(ℋ0) ∶  𝑊𝑇0 = 𝑇0𝑊 and 𝑊𝑇0

∗ = 𝑇0
∗𝑊}. 

Since 𝑇0 is an irreducible operator, we conclude that 𝑈11 = 𝑒
𝑖𝜃1𝐼ℋ0  for some 𝜃1  ∈ ℝ. 

Similarly, 𝑈22 = 𝑒
𝑖𝜃2𝐼ℋ1  for some 𝜃2  ∈ ℝ. Hence the third equation in (33) implies that 

𝑆̃ = 𝑒𝑖(𝜃1−𝜃2)𝑆. 

Conversely suppose that 𝑆̃ = 𝑒𝑖𝜃𝑆 for some real number 𝜃. Then evidently the operator 𝑈 ∶

= (
exp  (𝑖

𝜃

2
) 𝐼ℋ0 0

0 exp  (−𝑖
𝜃

2
) 𝐼ℋ1

) is unitary on ℋ = ℋ0  ⊕ ℋ1 and 𝑈𝑇 = 𝑇̃𝑈. 
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Corollary (6.2.11)[190]: For 𝑖 =  0, 1, let 𝑇𝑖 be two operators in 𝐵1(𝛺). Let 𝑆 be a non-

zero bounded linear operator such that 𝑇0𝑆 =  𝑆𝑇1. If 𝑇𝜇 = (
𝑇0 𝜇𝑆
0 𝑇1

)  and 𝑇𝜇̃ =

(
𝑇0 𝜇̃𝑆
0 𝑇1

) , 𝜇, 𝜇̃  > 0, then 𝑇𝜇 is unitarily equivalent to 𝑇𝜇̃ if and only if 𝜇 =  𝜇̃.  

The following theorem lists a complete set of unitary invariants for operators in 

ℱ𝐵2(𝛺). 

Theorem (6.2.12)[190]: Suppose that 𝑇 =  (
𝑇0 𝑆
0 𝑇1

)  and 𝑇̃ =  (
𝑇̃0 𝑆̃

0 𝑇̃1
)  are any two 

operators in ℱ𝐵2(𝛺). Then the operators 𝑇 and 𝑇̃ are unitarily equivalent if and only if 

𝒦𝑇1 = 𝒦𝑇̃1
 (or, 𝒦𝑇0 = 𝒦𝑇̃0

) and 
‖𝑆(𝑡1)‖

2

‖𝑡1‖
2
=
‖𝑆̃(𝑡̃1)‖

2

‖𝑡̃1‖
2

 , where 𝑡1 and 𝑡̃1 are non-vanishing 

holomorphic sections for the vector bundles 𝐸𝑇1 and 𝐸𝑇̃1, respectively. 

Proof. On a small open subset of 𝛺, we can assume that 𝑆(𝑡1) and 𝑆̃(𝑡̃1) are holomorphic 

frames of the bundle 𝐸𝑇0 and 𝐸𝑇̃0 , respectively. First suppose that 𝜕̅𝜕𝑙𝑜𝑔‖𝑆(𝑡1)‖
2 =

𝜕̅𝜕 𝑙𝑜𝑔 ‖𝑆̃(𝑡1)‖
2
 and 

‖𝑆(𝑡1)‖
2

‖𝑡1‖
2
=
‖𝑆̃(𝑡̃1)‖

2

‖𝑡̃1‖
2

 . Then we claim that 𝑇 and 𝑇̃ are unitarily 

equivalent. The equality of the curvatures, namely, 𝜕̅𝜕 𝑙𝑜𝑔 ‖𝑆(𝑡1)‖
2  =  𝜕̅𝜕 𝑙𝑜𝑔 ‖𝑆̃(𝑡̃1)‖

2
 

implies that ‖𝑆(𝑡1)‖
2 = |𝜙|2‖𝑆̃(𝑡̃1)‖

2
 for some non-vanishing holomorphic function 𝜙 on 

𝛺. It may be that we have to shrink, without loss of generality, to a smaller open set 𝛺0. The 

second of our assumptions gives ‖𝑡1‖
2 = |𝜑|2‖𝑡̃1‖

2. Let 𝛾0(𝑤) ∶=  𝑆(𝑡1(𝑤)) and 𝛾̃0(𝑤):=

 𝑆̃(𝑡̃1(𝑤)); 𝛾1(𝑤):=
𝜕

𝜕𝑤
 𝛾0(𝑤)  − 𝑡1(𝑤) and 𝛾̃1(𝑤):=

𝜕

𝜕𝑤
 𝛾̃0(𝑤)  − 𝑡̃1(𝑤). It follows 

that {𝛾0, 𝛾1} and {𝛾̃0, 𝛾̃1} are holomorphic frames of 𝐸𝑇 and 𝐸𝑇̃, respectively. Define the map 

𝛷 ∶  𝐸𝑇  →  𝐸𝑇̃ as follows: 

(i) 𝛷(𝛾0(𝑤))  = 𝜙(𝑤)𝛾̃0(𝑤), 
(ii) 𝛷(𝛾1(𝑤))  =  𝜙

′(𝑤)𝛾̃0(𝑤) + 𝜙(𝑤)𝛾̃1(𝑤). 
Clearly, 𝛷 is holomorphic. Note that  

〈𝛷(𝛾0(𝑤)), 𝛷(𝛾1(𝑤))〉  = 〈𝜙(𝑤)𝛾̃0(𝑤), 𝜙
′(𝑤)𝛾̃0(𝑤)  + 𝜙(𝑤)𝛾̃1(𝑤)〉

= 〈𝜙(𝑤)𝛾̃0(𝑤),𝜙
′(𝑤)𝛾̃0(𝑤) + 𝜙(𝑤)(

𝜕

𝜕𝑤
 𝛾̃0(𝑤) − 𝑡̃1(𝑤))〉

= 〈𝜙(𝑤)𝛾̃0(𝑤),
𝜕

𝜕𝑤
(𝜙(𝑤)𝛾̃0(𝑤)) − 𝜙(𝑤)𝑡̃1(𝑤)〉 =

𝜕

𝜕𝑤̅
‖𝜙(𝑤)𝛾̃0(𝑤)‖

2

=
𝜕

𝜕𝑤̅
 ‖𝛾0(𝑤)‖

2 

and  

〈𝛾0(𝑤), 𝛾1(𝑤)〉  =  〈𝛾0(𝑤),
𝜕

𝜕𝑤
 𝛾0(𝑤)  − 𝑡1(𝑤)〉 =

𝜕

𝜕𝑤̅
 ‖𝛾0(𝑤)‖

2. 

Hence we have 〈𝛷(𝛾0(𝑤)), 𝛷(𝛾1(𝑤))〉  =  〈𝛾0(𝑤), 𝛾1(𝑤)〉. Similarly, ‖𝛷(𝛾0(𝑤))‖ =
‖𝛾0(𝑤)‖ and ‖𝛷(𝛾1)‖ =  ‖𝛾1‖. Thus 𝐸𝑇 and 𝐸𝑇̃ are equivalent as holomorphic Hermitian 

vector bundles. Hence 𝑇 and 𝑇̃ are unitarily equivalent by Theorem (6.2.2) of Cowen and 

Douglas. 

Conversely, suppose 𝑇 and 𝑇̃ are unitarily equivalent. Let 𝑈 ∶ ℋ → ℋ̃ be the unitary map 

such that  =  𝑇̃𝑈 . By Proposition (6.2.9), 𝑈 takes the form (
𝑈1 0
0 𝑈2

)  for some pair of 

unitary operators 𝑈1 and 𝑈2. Hence we have 𝑈1(𝑆(𝑡1))  =  𝜙1(𝑆̃(𝑡̃1)) and 𝑈2𝑡1 = 𝜙2𝑡̃1. 
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The intertwining relation 𝑈1𝑆 =  𝑆̃𝑈2 implies that 𝜙1 = 𝜙2. Thus 𝒦𝑇0 = 𝒦𝑇̃0
 and 

‖𝑆(𝑡1)‖
2

‖𝑡1‖
2
=
‖𝑈1(𝑆(𝑡1))‖

2

‖𝑈2(𝑡1)‖
2
=
‖𝜙1𝑆̃(𝑡̃1)‖

2

‖𝜙2𝑡̃1‖
2
=
‖𝑆̃(𝑡̃1)‖

2

‖𝑡̃1‖
2
 . 

This verification completes the proof. 

We relate the invariants of Theorem (6.2.12) to the second fundamental form of the 

inclusion 𝐸0  ⊆  𝐸. The computation of the second fundamental form is given below 

following [80]. Here, 𝐸0 is the line bundle corresponding to the operator 𝑇0 and 𝐸 is the 

vector bundle of rank 2 corresponding to the operator 𝑇 in ℱ𝐵2(𝛺). Let {𝛾0, 𝛾1} be a 

holomorphic frame for 𝐸 such that 𝛾0 and 𝑡1 ∶=  𝜕𝛾0 − 𝛾1 are orthogonal. One obtains an 

orthonormal frame, say, {𝑒0, 𝑒1}, from the holomorphic frame {𝛾0, 𝛾1} by the usual Gram–

Schmidt process: Set ℎ =  〈𝛾0, 𝛾0〉, and observe that 

𝑒1 = ℎ
−1/2𝛾0,  

𝑒2 =
𝛾1  −

𝛾0〈𝛾1, 𝛾0〉
‖𝛾0‖

2

(‖𝛾1‖
2 −

|〈𝛾1, 𝛾0〉|
2

‖𝛾0‖
2 )

1/2
 

are orthogonal. The canonical hermitian connection 𝐷 for the vector bundle 𝐸𝑇 is given, in 

terms of 𝑒1 and 𝑒2 by the formula: 

𝐷 𝑒1 = 𝐷
1,0𝑒1 + 𝐷

0,1𝑒1 = 𝛼11𝑒1  +  𝛼21𝑒2  +  𝜕̅𝑒1 = (𝛼11 − 𝜕̅(𝑙𝑜𝑔 ℎ)) 𝑒1 + 𝛼21𝑒2

= 𝜃11𝑒1 + 𝜃21𝑒2, 
where 𝛼11, 𝛼21 are (1, 0) forms to be determined. Similarly, we have 

𝐷 𝑒2  =  𝐷
1,0𝑒2 + 𝐷

0,1𝑒2 = 𝛼12𝑒1 + 𝛼22𝑒2 + 𝜕̅𝑒2 

=

(

 
 
𝛼12 − ℎ

1/2  
𝜕̅(ℎ−1〈𝛾1, 𝛾0〉)

(‖𝛾1‖
2 −

|〈𝛾1, 𝛾0〉|
2

‖𝛾0‖
2 )

1/2

)

 
 
𝑒1 +(𝛼22 −

1

2
 
𝜕̅ (‖𝛾1‖

2 −
〈𝛾1, 𝛾0〉
‖𝛾0‖

2 )

‖𝛾1‖
2 −

〈𝛾1, 𝛾0〉
‖𝛾0‖

2

)𝑒2 

= 𝜃12𝑒1 + 𝜃22𝑒2, 
where 𝛼12, 𝛼22 are (1, 0) forms to be determined. Since we are working with an orthonormal 

frame, the compatibility of the connection with the Hermitian metric gives 

〈𝐷 𝑒𝑖 , 𝑒𝑗〉   + 〈𝑒𝑖 , 𝐷𝑒𝑗〉   =  𝜃𝑗𝑖 + 𝜃̅𝑖𝑗 

=  0 𝑓𝑜𝑟 1 ≤  𝑖, 𝑗 ≤  2.  
𝐹𝑜𝑟 1 ≤  𝑖, 𝑗 ≤  2,equating (1, 0) and (0, 1) forms separately to zero in the equation 𝜃𝑖𝑗  +

 𝜃̅𝑗𝑖  =  0, we obtain 𝛼11  =  𝜕(𝑙𝑜𝑔 ℎ), 𝛼12  =  0, 𝛼21  =  ℎ
1/2  

𝜕̅(ℎ−1〈𝛾1,𝛾0〉)

(‖𝛾1‖
2−
|〈𝛾1,𝛾0〉|

2

‖𝛾0‖
2 )

1/2 and 𝛼22 =

1

2
 
𝜕̅(‖𝛾1‖

2−
〈𝛾1,𝛾0〉

‖𝛾0‖
2 )

‖𝛾1‖
2−
〈𝛾1,𝛾0〉

‖𝛾0‖
2

 . Hence the second fundamental form for the inclusion 𝐸0  ⊂  𝐸 is given by 

the formula: 

𝜃12 = −ℎ
12   

𝜕̅(ℎ−1〈𝛾1, 𝛾0〉)

(‖𝛾1‖
2 −

|〈𝛾1, 𝛾0〉|
2

‖𝛾0‖
2 )

1/2
 =  −

𝜕2

𝜕𝓏𝜕𝓏̅
𝑙𝑜𝑔ℎ𝑑𝓏̅

(
‖𝑡1‖

2

‖𝛾0‖
2 +

𝜕2

𝜕𝓏𝜕𝓏̅
𝑙𝑜𝑔 ℎ)

1/2
 , 
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where 𝑡1  =  𝛾0
′ − 𝛾1. If 𝑇 =  (

𝑇0 𝑆
0 𝑇1

) is an operator in ℱ𝐵2(𝛺) and 𝑡1 is a non-vanishing 

holomorphic section of the vector bundle 𝐸1 corresponding to the operator 𝑇1, then we may 

assume, without loss of generality, that 𝑆(𝑡1) is a holomorphic frame of 𝐸0. The second 

fundamental form 𝜃12 of the inclusion 𝐸0  ⊆  𝐸, in this case, is therefore equal to 

−

𝜕2

𝜕𝓏𝜕𝓏̅
𝑙𝑜𝑔‖𝑆(𝑡1)‖

2𝑑𝓏̅

(
‖𝑡1‖

2

‖𝑆(𝑡1)‖
2 +

𝜕2

𝜕𝓏𝜕𝓏̅
 𝑙𝑜𝑔 ‖𝑆(𝑡1)‖

2)
1/2
  . 

It follows from Theorem (6.2.12) that the second fundamental form of the inclusion 𝐸0  ⊆
 𝐸 and the curvature of 𝐸1 form a complete set of invariants for the operator 𝑇. We restate 

Theorem (6.2.12) using the second fundamental form 𝜃12. 

Theorem (6.2.13)[190]: Suppose that 𝑇 =  (
𝑇0 𝑆
0 𝑇1

)  and 𝑇̃ =  (
𝑇̃0 𝑆̃

0 𝑇̃1
)  are any two 

operators in ℱ𝐵2(𝛺). Then the operators 𝑇 and 𝑇̃ are unitarily equivalent if and only if 

𝒦𝑇1 = 𝒦𝑇̃1
(𝑜𝑟 𝒦𝑇0 = 𝒦𝑇̃0

) and 𝜃12 = 𝜃̃12. 

We use the machinery developed here to list the unitary equivalence classes of 

homogeneous operators in 𝐵𝑛(𝔻), 𝑛 =  2. For 𝑛 =  1 this was done in [197] and in [83] 

for 𝑛 =  2. The classification of homogeneous operators in 𝐵𝑛(𝔻) was given in [183] for 

an arbitrary 𝑛. The proofs of [83] and [183] use tools from Differential geometry and the 

representation theory of Lie groups respectively. While the description below is very close 

to the spirit of [197]. 

Definition (6.2.14)[190]: An operator 𝑇 is said to be homogeneous if 𝜑(𝑇) is unitarily 

equivalent to 𝑇 for all 𝜑 in Möb which are analytic on the spectrum of 𝑇. 

Proposition (6.2.15)[190]: ([197]). An operator 𝑇 in ℬ1(𝔻) is homogeneous if and only if  

𝒦𝑇  (𝑤)  =  −𝜆(1 − |𝑤|
2)−2 

for some positive real number 𝜆. 

Proposition (6.2.16)[190]: Let 𝑇 be an operator in ℱ𝐵2(𝔻) and let 𝑡1 be a non-vanishing 

holomorphic section of the bundle 𝐸1 corresponding to the operator 𝑇1. For any 𝜑 in Möb, 

set 𝑡1,𝜑 = 𝑡1𝑜𝜑
−1. The operator 𝑇 is homogeneous if and only if 𝑇0, 𝑇1 are homogeneous 

and 
‖𝑆(𝑡1,𝜑)‖

2

‖𝑡1,𝜑‖
2  = |(𝜑

−1)′|2
‖𝑆(𝑡1)‖

2

‖𝑡1‖
2

 for all 𝜑 in Möb. 

Proof. Using the intertwining property in the class ℱ𝐵2(𝐷), we see that 

𝜑(𝑇)  =  (
𝜑(𝑇0) 𝑆𝜑′(𝑇1)
0 𝜑(𝑇1)

). 

Suppose that 𝑇 is homogeneous, that is, 𝑇 is unitarily equivalent to 𝜑(𝑇) for 𝜑 in Möb. 

From Theorem (6.2.12), it follows that 𝑇0 is unitarily equivalent to 𝜑(𝑇0), 𝑇1 is unitarily 

equivalent to 𝜑(𝑇1) and 

‖𝑆𝜑′(𝑇1)(𝑡1, 𝜑(𝑤))‖
2

‖𝑡1,𝜑(𝑤)‖
2 =

‖𝑆(𝑡1(𝑤))‖
2

‖𝑡1(𝑤)‖
2
 .                              (34) 

Now, we have 
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‖𝑆 𝜑′(𝑇1) (𝑡1,𝜑(𝑤))‖
2

‖𝑡1,𝜑(𝑤)‖
2 =

‖𝑆𝜑′(𝜑−1(𝑤)) (𝑡1,𝜑(𝑤))‖
2

‖𝑡1,𝜑(𝑤)‖
2

=
|𝜑′(𝜑−1(𝑤))|

2
‖𝑆 (𝑡1,𝜑(𝑤))‖

2

‖𝑡1,𝜑(𝑤)‖
2  

=
|(𝜑−1)′(𝑤)|−2 ‖𝑆 (𝑡1,𝜑(𝑤))‖

2

‖𝑡1,𝜑(𝑤)‖
2  .                                  (35) 

From equations (34) and (35), it follows that 

‖𝑆 (𝑡1,𝜑(𝑤))‖
2

‖𝑡1,𝜑(𝑤)‖
2 = |(𝜑−1)′(𝑤)|2  

‖𝑆(𝑡1(𝑤))‖
2

‖𝑡1(𝑤)‖
2
 .                         (36) 

Conversely suppose that 𝑇0, 𝑇1 are homogeneous operators and 

‖𝑆 (𝑡1,𝜑(𝑤))‖
2

‖𝑡1,𝜑(𝑤)‖
2 = |(𝜑−1)′ (𝑤)|2  

‖𝑆(𝑡1(𝑤))‖
2

‖𝑡1(𝑤)‖
2

 

for all 𝜑 in Möb. From equations (35), (36) and Theorem (6.2.12), it follows that 𝑇 is a 

homogeneous operator. 

Corollary (6.2.17)[190]: An operator 𝑇 in ℱ𝐵2(𝔻) is homogeneous if and only if 

(i) 𝑇0 and 𝑇1 are homogeneous operators; 

(ii) 𝒦𝑇1(𝑤) = 𝒦𝑇0(𝑤) +𝒦𝐵∗(𝑤),𝑤 ∈ 𝔻, where 𝐵 is the forward Bergman shift; 

(iii) 𝑆(𝑡1(𝑤))  =  𝛼𝛾0(𝑤) for some positive real number 𝛼 and ‖𝑡1(𝑤)‖
2 =

1

(1−|𝑤|2)𝜆+2
 , ‖𝛾0(𝑤)‖

2 =
1

(1−|𝑤|2)𝜆
 . 

Proof. Suppose 𝑇 is a homogeneous operator. Then Proposition (6.2.16) shows that 𝑇0 and 

𝑇1 are homogeneous operators. We may therefore find non-vanishing holomorphic sections 

𝛾0 and 𝑡1 of 𝐸0 and 𝐸1, respectively, such that ‖𝛾0(𝑤)‖
2 = (1 − |𝑤|2)−𝜆 and ‖𝑡1(𝑤)‖

2 =
(1 − |𝑤|2)−𝜇 for some positive real 𝜆 and 𝜇. For 𝜑 in Möb, set 𝛾0,𝜑  =  𝛾0 ◦𝜑

−1 and 𝑡1,𝜑 =

 𝑡1  ◦ 𝜑
−1. Clearly, ‖𝛾0,𝜑(𝑤)‖

2
= |(𝜑−1)′(𝑤)|−𝜆‖𝛾0(𝑤)‖

2 and ‖𝑡1,𝜑(𝑤)‖
2
=

|(𝜑−1)′(𝑤)|−𝜇‖𝑡1(𝑤)‖
2. Let 𝑆(𝑡1(𝑤))  =  𝜓(𝑤)𝛾0(𝑤) for some holomorphic function 𝜓 

on 𝔻. We have 𝑆(𝑡1,𝜑(𝑤)) = 𝑆(𝑡1(𝜑
−1(𝑤))) = 𝜓(𝜑−1(𝑤))𝛾0(𝜑

−1(𝑤)) =

𝜓(𝜑−1(𝑤))𝛾0,𝜑(𝑤) and 

‖𝑆 (𝑡1,𝜑(𝑤))‖
2

‖𝑡1,𝜑(𝑤)‖
2 = |(𝜑−1)′(𝑤)|2  

‖𝑆(𝑡1(𝑤))‖
2

‖𝑡1(𝑤)‖
2
 .                 (37) 

Combining these we see that 

‖𝑆 (𝑡1,𝜑(𝑤))‖
2

‖𝑡1,𝜑(𝑤)‖
2 = |𝜓(𝜑−1(𝑤))|

2
 
‖(𝛾0,𝜑(𝑤))‖

2

‖𝑡1,𝜑(𝑤)‖
2  

= |𝜓(𝜑−1(𝑤))|
2
|(𝜑−1)′(𝑤)|𝜇−𝜆    

‖(𝛾0(𝑤))‖
2

‖𝑡1(𝑤)‖
2
 .                 (38) 

From the equations (37) and (38), we get 

|𝜓(𝑤)|2|(𝜑−1)′(𝑤)|𝜆+2−𝜇 = |𝜓(𝜑−1𝑤)|2.                    (39) 
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Pick 𝜑 =  𝜑𝑢, where 𝜑𝑢(𝑤)  =
𝑤−𝑢

1−𝑢𝑤
 and put 𝑤 =  0 in the equation (39). Then 

|𝜓(0)|2(1 − |𝑢|2)𝜆+2−𝜇 = |𝜓(𝑢)|2.                               (40) 
If 𝜓(0)  =  0 then equation (40) implies that 𝜓(𝑢)  =  0 for all 𝑢 ∈ 𝔻, which makes 𝑆 =
 0 leading to a contradiction. Thus 𝜓(0) ≠ 0. Taking log and differentiating both sides of 

the equation (40), we see that 

(𝜆 +  2 −  𝜇) 
𝜕2

𝜕𝑢𝜕𝑢̅
𝑙𝑜𝑔(1 − |𝑢|2) = 0. 

Hence we conclude that 𝜇 =  𝜆 +  2. Putting 𝜇 =  𝜆 +  2 in the equation (40) we find that 

𝜓 must be a constant function. Hence there is a constant 𝛼 such that 𝑆(𝑡1(𝑤))  =  𝛼𝛾0(𝑤) 
for all 𝑤 ∈  𝛺. Finally, 

𝒦𝑇1(𝑤) = 𝜕̅𝜕 𝑙𝑜𝑔‖𝑡1(𝑤)‖
2 = 𝜕̅𝜕 𝑙𝑜𝑔(1 − |𝑤|2)−𝜇 = 𝜕̅𝜕 𝑙𝑜𝑔(1 − |𝑤|2)−𝜆−2

= 𝜕̅𝜕𝑙𝑜𝑔(1 − |𝑤|2)−𝜆 + 𝜕̅𝜕 𝑙𝑜𝑔(1 − |𝑤|2)−2

= 𝜕̅𝜕𝑙𝑜𝑔 ‖𝛾0(𝑤)‖
2 + 𝜕̅𝜕 𝑙𝑜𝑔(1 − |𝑤|2)−2  =  𝒦𝑇0(𝑤) + 𝒦𝐵∗(𝑤). 

Conversely, suppose that conditions (i), (ii) and (iii) are met. We need to show that 𝑇 is a 

homogeneous operator. Condition (ii) is equivalent to 𝜇 =  𝜆 +  2. By Proposition (6.2.16), 

it is sufficient to show that 

‖𝑆 (𝑡1,𝜑(𝑤))‖
2

‖𝑡1,𝜑(𝑤)‖
2 = |(𝜑−1)′(𝑤)|2  

‖𝑆(𝑡1(𝑤))‖
2

‖𝑡1(𝑤)‖
2
. 

However, we have 

‖𝑆 (𝑡1,𝜑(𝑤))‖
2

‖𝑡1,𝜑(𝑤)‖
2 = |𝛼|2  

‖(𝛾0,𝜑(𝑤))‖
2

‖𝑡1,𝜑(𝑤)‖
2 = |𝛼|2|(𝜑−1)′(𝑤)|𝜇−𝜆   

‖(𝛾0(𝑤))‖
2

‖𝑡1(𝑤)‖
2

= |𝛼|2|(𝜑−1)′(𝑤)|2  
‖(𝛾0(𝑤))‖

2

‖𝑡1(𝑤)‖
2
= |(𝜑−1)′(𝑤)|2  

‖𝑆(𝑡1(𝑤))‖
2

‖𝑡1(𝑤)‖
2
. 

We show that an operator 𝑇 in ℱ𝐵2(𝛺) is irreducible. Furthermore, if the intertwining 

operator 𝑆 is invertible, then 𝑇 is strongly irreducible. (Recall that an operator 𝑇 is said to 

be strongly irreducible if the commutant {𝑇}′ of the operator 𝑇 contains no idempotent 

operator.) We also provide a more direct proof of Proposition (6.2.9), which easily 

generalizes to the case of an arbitrary 𝑛. 

Definition (6.2.18)[190]: Let 𝑇1 and 𝑇2 be any two bounded linear operators on the Hilbert 

space ℋ. Define 𝜎𝑇1,𝑇2 ∶ ℒ(ℋ)  → ℒ(ℋ) to be the operator 

𝜎𝑇1,𝑇2(𝑋)  =  𝑇1𝑋 −  𝑋𝑇2,    𝑋 ∈ ℒ(ℋ). 

Let 𝜎𝑇 ∶ ℒ(ℋ)  → ℒ(ℋ) be the operator 𝜎𝑇,𝑇 . 

An operator 𝑇 defined on a Hilbert space ℋ is said to be quasi-nilpotent if lim
𝑛→∞

 ‖𝑇𝑛‖1/𝑛  =

 0. 

Lemma (6.2.19)[190]: Suppose 𝑇 is in 𝐵1(𝛺) and 𝑋 is a quasi-nilpotent operator such that 

𝑇𝑋 =  𝑋𝑇. Then 𝑋 =  0. 

Proof. Let 𝛾 be a non-vanishing holomorphic section for 𝐸𝑇 . Since 𝑇𝑋 =  𝑋𝑇, we see that 

𝑋(𝛾) is also a holomorphic section of 𝐸𝑇 . Hence 𝑋(𝛾(𝑤))  = 𝜙(𝑤)𝛾(𝑤) for some 

holomorphic function 𝜙 defined on 𝛺. Clearly, 𝑋𝑛(𝛾(𝑤))  =  𝜙(𝑤)𝑛𝛾(𝑤). Now, we have 

|𝜙(𝑤)|𝑛‖𝛾(𝑤)‖ = ‖𝜙(𝑤)𝑛𝛾(𝑤)‖ 

= ‖𝑋𝑛(𝛾(𝑤))‖ 

≤ ‖𝑋𝑛‖‖𝛾(𝑤)‖. 
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Thus, for 𝑛 ∈ ℕ and 𝑤 ∈  𝛺, we have |𝜙(𝑤)|  ≤  ‖𝑋𝑛‖1/𝑛 implying 𝜙(𝑤)  =  0, 𝑤 ∈  𝛺. 

Hence 𝑋 =  0. 

The following theorem from [195] is the key to an alternative proof of the Proposition (6.2.9) 

and its generalization in the following. 

Theorem (6.2.20)[190]: Let 𝑃, 𝑇 be two bounded linear operators. If  ∈  𝑟𝑎𝑛 𝜎𝑇  ∩  𝑘𝑒𝑟 𝜎𝑇 

, then 𝑃 is a quasi-nilpotent. 

A second proof of Proposition (6.2.9). Suppose 𝑇 is unitarily equivalent to 𝑇̃ via the unitary 

𝑈, namely, 𝑈𝑇 =  𝑇𝑈. Then 

𝑈21𝑆 + 𝑈22𝑇1 = 𝑇̃1𝑈22                                   (41) 
𝑈21𝑇0 = 𝑇̃1𝑈21.                                          (42) 

Equivalently, we also have 𝑇𝑈∗ = 𝑈∗𝑇̃, which gives an additional relationship:  

𝑇1𝑈12
∗ = 𝑈12

∗ 𝑇̃0.                                             (43) 
Using these equations, we compute 

𝑈21𝑆𝑈12
∗ 𝑆̃ = (𝑇̃1𝑈22 − 𝑈22𝑇1)𝑈12

∗ 𝑆̃ =  𝑇̃1𝑈22𝑈12
∗ 𝑆̃ − 𝑈22𝑇1𝑈12

∗ 𝑆̃

= 𝑇̃1𝑈22𝑈12
∗ 𝑆̃ − 𝑈22𝑈12

∗ 𝑇̃0𝑆̃ = 𝑇̃1𝑈22𝑈12
∗ 𝑆̃ − 𝑈22𝑈12

∗ 𝑆̃𝑇̃1 = 𝜎𝑇̃1(𝑈22𝑈12
∗ 𝑆̃), 

and 

(𝑈21𝑆𝑈12
∗ 𝑆̃)𝑇̃1 = 𝑈12𝑆𝑈12

∗ 𝑇̃0𝑆̃ =  𝑈21𝑆𝑇1𝑈12
∗ 𝑆̃ =  𝑈21𝑇0𝑆𝑈12

∗ 𝑆̃ =  𝑇̃1(𝑈12𝑆𝑈̃12
∗ 𝑆̃). 

Thus 𝑈21𝑆𝑈12
∗ 𝑆̃ ∈  𝑟𝑎𝑛 𝜎𝑇̃1 ∩ 𝑘𝑒𝑟 𝜎𝑇̃1  . From Lemma (6.2.19) and Theorem (6.2.20), it 

follows that 

𝑈21𝑆𝑈12
∗ 𝑆̃ =  0. 

Since 𝑆̃ has dense range, we have 𝑈21𝑆𝑈12
∗ = 0. Let us consider the two possibilities for 

𝑈12
∗ , namely, either 𝑈12

∗  =  0 or 𝑈12
∗ ≠ 0. If 𝑈12

∗ ≠  0, then from equation (43), 𝑈12
∗  must 

have dense range. Since S also has dense range, we have 𝑈21  =  0. To complete the proof, 

we consider two cases. 

Case 1: Suppose 𝑈21  =  0. In this case, we have to prove that 𝑈12  =  0. From 𝑈∗𝑈 =  𝐼, 
we get 𝑈11

∗ 𝑈11  =  𝐼 and 𝑈12
∗ 𝑈11  =  0. From  =  𝑇̃𝑈 , we get 𝑈11𝑇0  =  𝑇̃0𝑈11, so 𝑈11 has 

dense rang. Since 𝑈11 is an isometry and has dense range, it follows that 𝑈11 is onto. Hence 

𝑈11 is unitary. Since 𝑈11 is unitary and 𝑈12
∗ 𝑈11  =  0, it follows that 𝑈12  =  0. 

Case 2: Suppose 𝑈12  =  0. In this case, we have to prove that 𝑈21  =  0. We have 

𝑈11𝑈11
∗  =  𝐼 and 𝑈21𝑈11

∗  =  0. The intertwining relation 𝑇𝑈∗ = 𝑈∗𝑇̃ gives 𝑇0𝑈11
∗ =

 𝑈11
∗ 𝑇̃0. 

So 𝑈11
∗  has dense range. Since 𝑈11

∗  is an isometry and it has dense range, we must conclude 

that 𝑈11
∗  is onto. Hence 𝑈11 is unitary and we have 𝑈21𝑈11

∗  =  0 forcing 𝑈21 to be the 0 

operator. 

Proposition (6.2.21)[190]: Any operator 𝑇 in ℱ𝐵2(𝛺) is irreducible. Also, if  =  (
𝑇0 𝐼
0 𝑇0

) 

, then it is strongly irreducible. 

Proof. Let 𝑃 =  (𝑃𝑖𝑗)2×2 be a projection in the commutant {𝑇}′ of the operator 𝑇, that is,  

(
𝑃11 𝑃12
𝑃21 𝑃22

) (
𝑇0 𝑆
0 𝑇1

) = (
𝑇0 𝑆
0 𝑇1

) (
𝑃11 𝑃12
𝑃21 𝑃22

). 

This equality implies that 𝑃11𝑇0  =  𝑇0𝑃11 + 𝑆𝑃21, 𝑃11𝑆 + 𝑃12𝑇1  =  𝑇0𝑃12 +
𝑆𝑃22, 𝑃21𝑇0  =  𝑇1𝑃21 and 𝑃21𝑆 + 𝑃22𝑇1  =  𝑇1𝑃22. Now 

(𝑃21𝑆)𝑇1  =  𝑃21(𝑆𝑇1)  =  𝑃21(𝑇0𝑆) = (𝑃21𝑇0)𝑆 =  𝑇1(𝑃21𝑆). 
Thus 𝑃21𝑆 ∈  𝑘𝑒𝑟 𝜎𝑇1  . Also note that 

𝑃21𝑆 =  𝑇1𝑃22  −  𝑃22𝑇1  =  𝜎𝑇1(𝑃22). 
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Hence 𝑃21𝑆 ∈  𝑟𝑎𝑛 𝜎𝑇1  ∩  𝑘𝑒𝑟 𝜎𝑇1 . Thus from Lemma (6.2.19) and Theorem (6.2.20), it 

follows that 𝑃21𝑆 =  0. The operator 𝑃21 must be 0 since 𝑆 has dense range.  

To prove the first statement, we may assume that the operator 𝑃 is self-adjoint and conclude 

𝑃12 is 0 as well. Since both the operators 𝑇0 and 𝑇1 are irreducible and the projection 𝑃 is 

diagonal, it follows that 𝑇 must be irreducible. 

For the proof of the second statement, note that if 𝑃 is an idempotent of the form (
𝑃11 𝑃12
0 𝑃22

), 

both 𝑃11 and 𝑃22 must be idempotents. By our hypothesis, 𝑃11 and 𝑃22  must also commute 

with 𝑇0, which is strongly irreducible, hence 𝑃11  =  0 or 𝐼 and 𝑃22  =  0 or 𝐼. By using 

Theorem (6.2.20), we see that if 𝑃 = (
𝐼 𝑃12
0 0

)  or 𝑃 =  (
0 𝑃12
0 𝐼

)  , then 𝑃 does not 

commute with  (
𝑇0 𝐼
0 𝑇0

)  . Thus 𝑃 = (
 𝐼 𝑃12
0 𝐼

)  or 𝑃 =   (
0 𝑃12
0 0

)  . Now, using the 

equation 𝑃2  =  𝑃, we conclude that 𝑃12 must be zero. Thus 𝑃 =  𝐼 or 𝑃 =  0. 

We now give a sufficient condition for an operator 𝑇 in ℱ𝐵2(𝛺) to be strongly irreducible. 

Proposition (6.2.22)[190]: Let 𝑇 =  (
𝑇0 𝑆
0 𝑇1

) be an operator in ℱ𝐵2(𝛺). If the operator 𝑆 

is invertible, then the operator 𝑇 is strongly irreducible. 

Proof. By our hypothesis, the operator 𝑋 =  (
 𝐼 0
0 𝑆

) is invertible. Now 

𝑋𝑇𝑋−1  = (
𝐼 0
0 𝑆

) (
𝑇0 𝑆
0 𝑇1

) (
𝐼 0
0 𝑆

)
−1

= (
𝑇0 𝐼

0 𝑆𝑇1𝑆
−1) = (

𝑇0 𝐼
0 𝑇0

) . 

Thus 𝑇 is similar to a strongly irreducible operator and consequently it is strongly 

irreducible. 

We conclude with a characterization of strong irreducibility in ℱ𝐵2(𝛺). 

Proposition (6.2.23)[190]: An operator 𝑇 =  (
𝑇0 𝑆
0 𝑇1

) in ℱ𝐵2(𝛺) is strongly irreducible 

if and only if 𝑆 ∉ 𝑟𝑎𝑛 𝜎𝑇0,𝑇1. 

Proof. Let 𝑃 be an idempotent in the commutant {𝑇}′ of the operator 𝑇. The proof of the 

Proposition (6.2.21) shows that 𝑃 must be upper triangular:  (
𝑃11 𝑃12
0 𝑃22

) . The commutation 

relation 𝑃𝑇 =  𝑇𝑃 gives us 𝑃11𝑇0  =  𝑇0𝑃11, 𝑃22𝑇1  =  𝑇1𝑃22 and  

𝑃11𝑆 −  𝑆𝑃22 = 𝑇0𝑃12  −  𝑃12𝑇1.                            (44) 
Since 𝑃𝑖+1𝑖+1 ∈  {𝑇𝑖}

′ for 0 ≤  𝑖 ≤  1, it follows that 𝑃𝑖𝑖 can be either 𝐼 or 0. If either 𝑃11  =
 𝐼 and 𝑃22  =  0 or 𝑃11  =  0 and 𝑃22  =  𝐼, then 𝑆 is in ran 𝜎𝑇0,𝑇1 contradicting our 

assumption. Thus 𝑃 is of the form  (
𝐼 𝑃12
0 𝐼

) or  (
0 𝑃12
0 0

) . Since 𝑃 is an idempotent 

operator, we must have 𝑃12  =  0. Hence 𝑇 is strongly irreducible. 

Assume that the operator 𝑆 is in ran 𝜎𝑇0,𝑇1  . In this case, we show that 𝑇 cannot be strongly 

irreducible completing the proof. Since  ∈  𝑟𝑎𝑛 𝜎𝑇0,𝑇1  , we can find an operator 𝑃12 such that 

𝑆 =  𝜎𝑇0,𝑇1(𝑃12) = 𝑇0𝑃12 − 𝑃12𝑇1.                                     (45) 

The operator 𝑃 =  (
𝐼 𝑃12
0 0

) is an idempotent operator. We have 

(
𝐼 𝑃12
0 0

) (
𝑇0 𝑆
0 𝑇1

) = (
𝑇0 𝑆 + 𝑃12𝑇1
0 0

)                         (46) 

And 

(
𝑇0 𝑆
0 𝑇1

) (
𝐼 𝑃12
0 0

) = (
𝑇0 𝑇0𝑃12
0 0

) .                      (47) 
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From these equations, we have 𝑃𝑇 =  𝑇𝑃 proving that the operator 𝑇 is not strongly 

irreducible. 

We begin by describing, what one may think of as, a natural generalization of the 

class ℱ𝐵2(𝛺) to operators in 𝐵𝑛(𝛺) for an arbitrary 𝑛 ∈ ℕ. 

Definition (6.2.24)[190]: We let ℱ𝐵𝑛(𝛺) be the set of all bounded linear operators 𝑇 

defined on some complex separable Hilbert space ℋ =  ℋ0  ⊕···⊕ ℋ𝑛−1, which are of 

the form 

𝑇 =

(

 
 

𝑇0 𝑆0,1 𝑆0,2
0 𝑇1 𝑆1,2
⋮
0
0

⋱
···
···

⋱
0
···

   

··· 𝑆0,𝑛−1
··· 𝑆1,𝑛−1
⋱
𝑇𝑛−2
0

⋮
𝑆𝑛−2,𝑛−1
𝑇𝑛−1 )

 
 

 

where the operator 𝑇𝑖 ∶  ℋ𝑖  →  ℋ𝑖, defined on the complex separable Hilbert space ℋ𝑖 , 0 ≤
 𝑖 ≤  𝑛 −  1, is assumed to be in 𝐵1(𝛺) and 𝑆𝑖,𝑖+1 ∶  ℋ𝑖+1 → ℋ𝑖, is assumed to be a non-

zero intertwining operator, namely, 𝑇𝑖𝑆𝑖,𝑖+1 = 𝑆𝑖,𝑖+1𝑇𝑖+1, 0 ≤  𝑖 ≤  𝑛 −  2. 

Even without mandating the intertwining condition, the set of operators described above 

belongs to the Cowen–Douglas class 𝐵𝑛(𝛺). An inductive proof presents no difficulty 

starting with the base case of 𝑛 =  2, which was proved. Therefore, in particular, 

ℱ𝐵𝑛(𝛺)  ⊆  𝐵𝑛(𝛺). We begin with a preparatory Lemma for proving the rigidity theorem. 

Lemma (6.2.25)[190]: Let 𝑋 be an invertible operator that intertwines two operators in 

ℱ𝐵𝑛(𝛺). Set 𝑌 =  𝑋−1. If 𝑋 = ((𝑋𝑖,𝑗))
𝑛×𝑛

, 𝑌 = ((𝑌𝑖,𝑗))
𝑛×𝑛

 are the block decompositions 

of the two operators 𝑋 and  , then 𝑋𝑛−1,𝑗 =  0, 0 ≤  𝑗 ≤  𝑛 −  2, and 𝑌𝑛−1,𝑗 =  0, 0 ≤  𝑗 ≤

 𝑛 −  2. 

Proof. Consider the three possibilities: 

(i) 𝑋𝑛−1,𝑗 =  0, 0 ≤  𝑗 ≤  𝑛 −  2, but 𝑌𝑛−1,𝑗 ≠ 0 for some 0 ≤  𝑗 ≤  𝑛 −  2.  

(ii) 𝑌𝑛−1,𝑗  =  0, 0 ≤  𝑗 ≤  𝑛 −  2, 𝑋𝑛−1,𝑗 ≠ 0 for some 0 ≤  𝑗 ≤  𝑛 −  2. 

(iii) 𝑋𝑛−1,𝑗 ≠ 0 for some 0 ≤  𝑗 ≤  𝑛 −  2 and 𝑌𝑛−1,𝑘 ≠ 0 for some 0 ≤  𝑘 ≤  𝑛 −  2. 

In each of these cases, we arrive at a contradiction proving the Lemma. 

Case 1: Choose 𝑙 to be the smallest index such that 𝑌𝑛−1,𝑙 ≠ 0, that is, 𝑌𝑛−1,𝑖 = 0 for 0 ≤

 𝑖 ≤  𝑙 − 1 but 𝑌𝑛−1,𝑙 ≠ 0. For this index 𝑙, the intertwining relation 𝑇𝑌 =  𝑌 𝑇̃ implies 

𝑇𝑛−1𝑌𝑛−1,𝑙  =  𝑌𝑛−1,𝑙𝑇̃𝑙. Since 𝑌𝑛−1,𝑙 ≠ 0, it follows from Proposition (6.2.6) that 𝑌𝑛−1,𝑙 has 

dense range. From 𝑋𝑌 =  𝐼, we get 𝑋𝑛−1,𝑛−1𝑌𝑛−1,𝑙 =  0 and 𝑋𝑛−1,𝑛−1𝑌𝑛−1,𝑛−1 =  𝐼. Since 

𝑌𝑛−1,𝑙 has dense range and 𝑋𝑛−1,𝑛−1𝑌𝑛−1,𝑙 =  0, we conclude that 𝑋𝑛−1,𝑛−1 =  0. This 

contradicts the identity: 𝑋𝑛−1,𝑛−1𝑌𝑛−1,𝑛−1 =  𝐼. 
Case 2: The contradiction in this case is arrived at exactly in the same manner as in the first 

case after interchanging the roles of 𝑋 and  . 

Case 3: Pick 𝑗, 𝑙 to be the smallest indices such that 𝑋𝑛−1,𝑗 ≠ 0 and 𝑌𝑛−1,𝑙 ≠  0. We have 

that  =  𝑇̃𝑋 . Consequently, 

𝑋𝑛−1,𝑗𝑇𝑗 = 𝑇̃𝑛−1𝑋𝑛−1,𝑗 , 𝑋𝑛−1,𝑗𝑆𝑗,𝑗+1 + 𝑋𝑛−1,𝑗+1𝑇𝑗+1 = 𝑇̃𝑛−1𝑋𝑛−1,𝑗+1.     (48) 

Since 𝑇𝑘𝑆𝑘,𝑘+1 = 𝑆𝑘,𝑘+1𝑇𝑘+1 for 𝑘 =  0, 1, 2,··· , 𝑛 −  1, multiplying the second equation 

in (48) by 𝑆𝑗+1,𝑗+2  ···  𝑆𝑛−2,𝑛−1, and replacing 𝑇𝑗+1𝑆𝑗+1,𝑗+2 ···  𝑆𝑛−2,𝑛−1 with 𝑆𝑗+1,𝑗+2 ···

 𝑆𝑛−2,𝑛−1𝑇𝑛−1, we have 

𝑋𝑛−1,𝑗𝑆𝑗,𝑗+1 ··· 𝑆𝑛−2,𝑛−1 + 𝑋𝑛−1,𝑗+1𝑆𝑗+1,𝑗+2 ··· 𝑆𝑛−2,𝑛−1𝑇𝑛−1 

= 𝑇̃𝑛−1𝑋𝑛−1,𝑗+1𝑆𝑗+1,𝑗+2 ··· 𝑆𝑛−2,𝑛−1.                       (49) 
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We also have 𝑇𝑌 =  𝑌 𝑇̃, which gives us 

𝑇𝑛−1𝑌𝑛−1,𝑙 = 𝑌𝑛−1,𝑙𝑇̃𝑙 .                                      (50) 
Now, multiply both sides of the equation (49) by 𝑌𝑛−1,𝑙, using the commutation 

𝑇𝑛−1𝑌𝑛−1,𝑙 = 𝑌𝑛−1,𝑙𝑇̃𝑙, then again multiplying both sides of the resulting equation by 𝑆𝑙,𝑙+1 ·

··  𝑆𝑛−2,𝑛−1 and finally using the commutation relations 𝑇̃𝑘𝑆̃𝑘,𝑘+1 = 𝑆̃𝑘,𝑘+1𝑇̃𝑘+1, 0 ≤  𝑘 ≤
 𝑛 −  1, we have 

𝑋𝑛−1,𝑗𝑆𝑗,𝑗+1 ···  𝑆𝑛−2,𝑛−1𝑌𝑛−1,𝑙𝑆̃𝑙,𝑙+1 ···  𝑆̃𝑛−2,𝑛−1 

+ 𝑋𝑛−1,𝑗+1𝑆𝑗,𝑗+1 ··· 𝑆𝑛−2,𝑛−1𝑌𝑛−1,𝑙𝑆̃𝑙,𝑙+1 ··· 𝑆̃𝑛−2,𝑛−1𝑇̃𝑛−1 

= 𝑇̃𝑛−1𝑋𝑛−1,𝑗+1𝑆𝑗+1,𝑗+2 ··· 𝑆𝑛−2,𝑛−1𝑌𝑛−1,𝑙𝑆̃𝑙,𝑙+1 ··· 𝑆̃𝑛−2,𝑛−1.       (51) 

Therefore, we see that 

𝑋𝑛−1,𝑗𝑆𝑗,𝑗+1𝑆𝑗+1,𝑗+2 ···  𝑆𝑛−2,𝑛−1𝑌𝑛−1,𝑙𝑆̃𝑙,𝑙+1  ···  𝑆̃𝑛−2,𝑛−1 

is in the range of the operator 𝜎𝑇̃𝑛−1 . Indeed it is also in the kernel of 𝜎̃𝑇̃𝑛−1 , as is evident 

from the following string of equalities: 

𝑋𝑛−1,𝑗𝑆𝑗,𝑗+1𝑆𝑗+1,𝑗+2  ···  𝑆𝑛−2,𝑛−1𝑌𝑛−1,𝑙𝑆̃𝑙,𝑙+1 ···  𝑆̃𝑛−2,𝑛−1𝑇̃𝑛−1 

= 𝑋𝑛−1,𝑗𝑆𝑗,𝑗+1𝑆𝑗+1,𝑗+2  ···  𝑆𝑛−2,𝑛−1𝑌𝑛−1,𝑙𝑇̃𝑙𝑆̃𝑙,𝑙+1 ···  𝑆̃𝑛−2,𝑛−1 

= 𝑋𝑛−1,𝑗𝑆𝑗,𝑗+1𝑆𝑗+1,𝑗+2 ···  𝑆𝑛−2,𝑛−1𝑇𝑛−1𝑌𝑛−1,𝑙𝑆̃𝑙,𝑙+1  ···  𝑆̃𝑛−2,𝑛−1 

= 𝑋𝑛−1,𝑗𝑇𝑗𝑆𝑗,𝑗+1𝑆𝑗+1,𝑗+2  ···  𝑆𝑛−2,𝑛−1𝑌𝑛−1,𝑙𝑆̃𝑙,𝑙+1  ···  𝑆̃𝑛−2,𝑛−1 

= 𝑇̃𝑛−1𝑋𝑛−1,𝑗𝑆𝑗,𝑗+1𝑆𝑗+1,𝑗+2  ···  𝑆𝑛−2,𝑛−1𝑌𝑛−1,𝑙𝑆̃𝑙,𝑙+1 ···  𝑆̃𝑛−2,𝑛−1. 

Thus 

𝑋𝑛−1,𝑗𝑆𝑗,𝑗+1𝑆𝑗+1,𝑗+2  ···  𝑆𝑛−2,𝑛−1𝑌𝑛−1,𝑙𝑆̃𝑙,𝑙+1  ···  𝑆̃𝑛−2,𝑛−1 ∈  𝑘𝑒𝑟 𝜎𝑇̃𝑛−1 ∩  𝑟𝑎𝑛 𝜎𝑇̃𝑛−1  . 

Consequently, using Lemma (6.2.19) and Theorem (6.2.20), we conclude that  

𝑋𝑛−1,𝑗𝑆𝑗,𝑗+1𝑆𝑗+1,𝑗+2  ···  𝑆𝑛−2,𝑛−1𝑌𝑛−1,𝑙𝑆̃𝑙,𝑙+1 ···  𝑆̃𝑛−2,𝑛−1 =  0. 

By hypothesis, all the operators 𝑆𝑘,𝑘+1, 𝑆̃𝑘,𝑘+1, 𝑘 =  0, 1,··· , 𝑛 −  2 have dense range. Since 

𝑌𝑛−1,𝑙 ≠ 0, then equation (50) and Proposition (6.2.6) ensure that 𝑌𝑛−1,𝑙 has dense range. 

Hence 𝑋𝑛−1,𝑗 =  0. This contradicts the assumption 𝑋𝑛−1,𝑗 ≠ 0.  

The following proposition is the first step in the proof of the rigidity theorem.  

Proposition (6.2.26)[190]: If 𝑋 is an invertible operator intertwining two operators 𝑇 and 

𝑇̃ from ℱ𝐵𝑛(𝛺), then 𝑋 and 𝑋−1 are upper triangular. 

Proof. The proof is by induction on n. The validity of the case 𝑛 =  2, is immediate from 

Lemma (6.2.25). Let us write the two operators 𝑇, 𝑇̃ in the form of 2 ×  2 block matrix: 

𝑇 =  (
𝑇𝑛−1×𝑛−1 𝑇𝑛−1×1

0 𝑇𝑛−1,𝑛−1
) , 𝑇̃ = (

𝑇̃𝑛−1×𝑛−1 𝑇̃𝑛−1×1
0 𝑇̃𝑛−1,𝑛−1

). 

Using Lemma (6.2.25), the operators 𝑋, 𝑌 can be written in the form of 2 ×  2 block matrix: 

𝑋 =  (
𝑋𝑛−1×𝑛−1 𝑋𝑛−1×1

0 𝑋𝑛−1,𝑛−1
) , 𝑌 = (

𝑌𝑛−1×𝑛−1 𝑌𝑛−1×1
0 𝑌𝑛−1,𝑛−1

) 

without loss of generality. Here 𝑋𝑛−1×𝑛−1 and 𝑌𝑛−1×𝑛−1 are the operators  

((𝑋𝑖,𝑗))
𝑖,𝑗=0

𝑛−2
 and ((𝑌𝑖,𝑗))

𝑖,𝑗=0

𝑛−2
 respectively and 
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𝑇𝑛−1×𝑛−1 =

(

 
 

𝑇0 𝑆0,1 𝑆0,2
0 𝑇1 𝑆1,2
⋮
0
0

⋱
···
···

⋱
0
···

   

··· 𝑆0,𝑛−2
··· 𝑆1,𝑛−2
⋱
𝑇𝑛−3
0

⋮
𝑆𝑛−3,𝑛−2
𝑇𝑛−2 )

 
 
, 𝑇̃𝑛−1×𝑛−1

=

(

  
 

𝑇̃0 𝑆̃0,1 𝑆̃0,2

0 𝑇̃1 𝑆̃1,2
⋮
0
0

⋱
···
···

⋱
0
···

   

··· 𝑆̃0,𝑛−2

··· 𝑆̃1,𝑛−2

⋱
𝑇̃𝑛−3
0

⋮
𝑆̃𝑛−3,𝑛−2

𝑇̃𝑛−2 )

  
 
. 

From the relations 𝑋𝑇 =  𝑇̃𝑋 , 𝑇𝑌 =  𝑌 𝑇̃ and 𝑋𝑌 =  𝑌 𝑋 =  𝐼, we get  

𝑋𝑛−1×𝑛−1𝑇𝑛−1×𝑛−1 = 𝑇̃𝑛−1×𝑛−1𝑋𝑛−1×𝑛−1, 𝑇𝑛−1×𝑛−1𝑌𝑛−1×𝑛−1 = 𝑌𝑛−1×𝑛−1𝑇̃𝑛−1×𝑛−1 

and 

𝑋𝑛−1×𝑛−1𝑌𝑛−1×𝑛−1 = 𝑌𝑛−1×𝑛−1𝑋𝑛−1×𝑛−1 =  𝐼. 
Now, to complete the proof by induction, we assume that any invertible operator 𝑋 

intertwining two operators 𝑇, 𝑇̃ in ℱ𝐵𝑘(𝛺) is upper triangular along with its inverse for all 

𝑘 < 𝑛. Thus the induction hypothesis guarantees that 𝑋𝑛−1×𝑛−1 and 𝑌𝑛−1×𝑛−1 must be 

upper triangular completing the proof. 

Employing these techniques, we show that any operator 𝑋, not necessarily invertible, 

in the commutant of 𝑇 ∈ ℱ𝐵𝑛(𝛺), must be upper triangular. 

Proposition (6.2.27)[190]: Suppose 𝑇 is in ℱ𝐵𝑛(𝛺) and 𝑋 is a bounded linear operator in 

the commutant of 𝑇. Then 𝑋 is upper triangular. 

Proof. The proof is by induction 𝑛. To begin the induction, for 𝑛 =  2, following the 

method of the proof in Proposition (6.2.21), we see that an operator commute with an 

operator in ℱ𝐵2(𝛺) must be upper triangular. Now, assume that any operator commute with 

an operator in ℱ𝐵𝑘(𝛺) is upper triangular for all 𝑘 < 𝑛. 

Step 1: We claim that 𝑋𝑛−1,𝑖 =  0 for 0 ≤  𝑖 ≤  𝑛 −  2. Suppose on contrary this is not 

true. Then let 𝑙, 0 ≤  𝑙 ≤  𝑛 −  2, be the smallest index such that 𝑋𝑛−1,𝑙 ≠ 0. For this index 

𝑙, the commuting relation 𝑋𝑇 =  𝑇𝑋 implies that 

𝑋𝑛−1,𝑙𝑇𝑙 = 𝑇𝑛−1𝑋𝑛−1,𝑙 and ∑  

𝑙

𝑘=0

𝑋𝑛−1,𝑘𝑆𝑘,𝑙+1 + 𝑋𝑛−1,𝑖+1𝑇𝑙+1 

= 𝑇𝑛−1𝑋𝑛−1,𝑙+1.                                       (52) 
From equation (52), we have 

𝑋𝑛−1,𝑙𝑆𝑙,𝑙+1𝑆1,2 ...𝑆𝑛−2,𝑛−1  ∈  𝑘𝑒𝑟 𝜎𝑇𝑛−1  , 

𝑋𝑛−1,𝑙𝑆𝑙,𝑙+1𝑆1,2 ...𝑆𝑛−2,𝑛−1 = 𝜎𝑇𝑛−1(𝑋𝑛−1,𝑙+1𝑆𝑙+1,𝑙+2, … 𝑆𝑛−2,𝑛−1). 

Therefore 𝑋𝑛−1,𝑙𝑆𝑙,𝑙+1𝑆𝑙+1,𝑙+2 . . . 𝑆𝑛−2,𝑛−1 is in ran 𝜎𝑇𝑛−1 ∩ 𝑘𝑒𝑟 𝜎𝑇𝑛−1 .Combining 

Proposition (6.2.6) with Lemma (6.2.19) and Theorem (6.2.20), we conclude that 𝑋𝑛−1,𝑙 ≠
0. This contradicts the assumption 𝑋𝑛−1,𝑙 ≠ 0. 

Step 2: Write 

𝑋 = (
𝑋𝑛−1×𝑛−1 𝑋𝑛−1×1

0 𝑋𝑛−1,𝑛−1
) 

And 

𝑇 =  (
𝑇𝑛−1×𝑛−1 𝑇𝑛−1×1

0 𝑇𝑛−1,𝑛−1
), 
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where meaning of 𝑋𝑛−1×𝑛−1 and 𝑇𝑛−1×𝑛−1 are same as in Proposition (6.2.26). It follows 

from the commuting relation 𝑋𝑇 =  𝑇𝑋 that 

𝑋𝑛−1×𝑛−1𝑇𝑛−1×𝑛−1 = 𝑇𝑛−1×𝑛−1𝑋𝑛−1×𝑛−1. 
Now, the induction hypothesis guarantees that 𝑋𝑛−1×𝑛−1 must be upper triangular 

completing the proof. 

Finally, we prove a rigidity theorem for the operators in ℱ𝐵𝑛(𝛺). In other words, we 

show that any intertwining unitary between two operators in the class ℱ𝐵𝑛(𝛺) must be 

diagonal. We refer to this phenomenon as “rigidity.” 

Theorem (6.2.28)[190]: (Rigidity). Any two operators 𝑇 and 𝑇̃ in ℱ𝐵𝑛(𝛺) are unitarily 

equivalent if and only if there exist unitary operators 𝑈𝑖 , 0 ≤  𝑖 ≤  𝑛 −  1, such that 𝑈𝑖𝑇𝑖  =
 𝑇̃𝑖𝑙𝑖 and 𝑈𝑖𝑆𝑖,𝑗 = 𝑆̃𝑖,𝑗𝑈𝑗  , 𝑖 <  𝑗. 

Proof. Clearly, it is enough to prove the necessary part of this statement. Let 𝑈 be a unitary 

operator such that  =  𝑇̃𝑈 . By Proposition (6.2.26), both 𝑈 and 𝑈∗ = 𝑈−1 must be upper 

triangular, that is, 

(a) 𝑈 = ((𝑈𝑖𝑗))
𝑖,𝑗=1

𝑛
, 𝑈𝑖𝑗 = 0 whenever 𝑖 >  𝑗; 

(b) 𝑈∗  = ((𝑈𝑗𝑖
∗))

𝑖,𝑗=1

𝑛
, 𝑈𝑗,𝑖
∗ =  0 whenever 𝑖 >  𝑗. 

It follows that the operator 𝑈 must be diagonal. 

We use the rigidity theorem just proved to extract a complete set of unitary invariants for 

operators in the class ℱ𝐵𝑛(𝛺). 
Theorem (6.2.29)[190]: Suppose 𝑇 is an operator in ℱ𝐵𝑛(𝛺) and 𝑡𝑛−1 is a non-vanishing 

holomorphic section of 𝐸𝑇𝑛−1 . Then 

(i) the curvature 𝒦𝑇𝑛−1 , 

(ii) 
‖𝑡𝑖−1‖

‖𝑡𝑖‖
 , where 𝑡𝑖−1 = 𝑆𝑖−1,𝑖(𝑡𝑖), 1 ≤  𝑖 ≤  𝑛 −  1, 

(iii) 
〈𝑆𝑖,𝑗(𝑡𝑗),𝑡𝑖〉

‖𝑡𝑖‖
2

 , for 0 ≤  𝑖 <  𝑗 ≤  𝑛 −  2 with 𝑗 −  𝑖 ≥  2 

are a complete set of unitary invariants for the operator 𝑇. 

Proof. Suppose 𝑇, 𝑇̃ are in ℱ𝐵𝑛(𝛺) and that there is a unitary 𝑈 such that  =  𝑇𝑈̃ . Such an 

intertwining unitary must be diagonal, that is, 𝑈 =  𝑈0  ⊕···⊕ 𝑈𝑛−1, for some choice of 𝑛 

unitary operators 𝑈0, . . . , 𝑈𝑛−1. 

Since 𝑈𝑖𝑇𝑖  =  𝑇̃𝑖𝑈𝑖 , 0 ≤  𝑖 ≤  𝑛 −  1, and 𝑈𝑖𝑆𝑖,𝑖+1 = 𝑆̃𝑖,𝑖+1𝑈𝑖+1, 0 ≤  𝑖 ≤  𝑛 −  2, we 

have 

𝑈𝑖(𝑡𝑖(𝑤)) = 𝜙(𝑤)𝑡̃𝑖(𝑤), 0 ≤  𝑖 ≤  𝑛 −  1,              (53) 
where 𝜙 is some non-zero holomorphic function. Thus 

𝒦𝑇𝑛−1 = 𝒦𝑇̃𝑛−1
   and  

‖𝑡𝑖−1‖

‖𝑡̃𝑖−1‖
 =
‖𝑡𝑖‖

‖𝑡̃𝑖‖
, 1 ≤  𝑖 ≤  𝑛 −  1. 

For 0 ≤  𝑖 <  𝑗 ≤  𝑛 −  2 with 𝑗 −  𝑖 ≥  2 and 𝑤 ∈  𝛺, we have  

〈𝑆𝑖,𝑗 (𝑡𝑗(𝑤)) , 𝑡𝑖(𝑤)〉

‖𝑡𝑖(𝑤)‖
2

=
〈𝑈𝑖 (𝑆𝑖,𝑗 (𝑡𝑗(𝑤))) , 𝑈𝑖(𝑡𝑖(𝑤))〉

‖𝑈𝑖(𝑡𝑖(𝑤))‖
2 =

〈𝑆̃𝑖,𝑗 (𝑈𝑗 (𝑡𝑗(𝑤))) , 𝑈𝑖(𝑡𝑖(𝑤))〉

‖𝑈𝑖(𝑡𝑖(𝑤))‖
2

=
〈𝑆̃𝑖,𝑗 (𝜙(𝑤)𝑡̃𝑗(𝑤)) , 𝜙(𝑤)𝑡̃𝑖(𝑤)〉

‖𝜙(𝑤)𝑡̃𝑖(𝑤)‖
2

=
〈𝑆̃𝑖,𝑗 (𝑡̃𝑗(𝑤)) , 𝑡̃𝑖(𝑤)〉

‖𝑡̃𝑖(𝑤)‖
2

 . 
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Conversely assume that 𝑇 and 𝑇̃ are operators in ℱ𝐵𝑛(𝛺) for which these invariants are the 

same. Equality of the two curvature 𝒦𝑇𝑛−1 = 𝒦𝑇̃𝑛−1
 together with the equality of the second 

fundamental forms 
‖𝑡𝑖−1‖

‖𝑡̃𝑖−1‖
=
‖𝑡𝑖‖

‖𝑡̃𝑖‖
, 1 ≤  𝑖 ≤  𝑛 −  1 implies that there exists a non-zero 

holomorphic function 𝜙 defined on 𝛺 (if necessary, one may choose a domain 𝛺0  ⊆  𝛺 

such that 𝜙 is non-zero on 𝛺0) such that 

‖𝑡𝑖(𝑤)‖ = |𝜙(𝑤)|‖𝑡̃𝑖(𝑤)‖,     0 ≤  𝑖 ≤  𝑛 −  1. 
For 0 ≤  𝑖 ≤  𝑛 −  1, define 𝑈𝑖 ∶  ℋ𝑖  → ℋ̃𝑖 by the formula 

𝑈𝑖(𝑡𝑖(𝑤)) = 𝜙(𝑤)𝑡̃𝑖(𝑤),    𝑤 ∈  𝛺, 
and extend to the linear span of these vectors. For 0 ≤  𝑖 ≤  𝑛 −  1,  

‖𝑈𝑖(𝑡𝑖(𝑤))‖  =  ‖𝜙(𝑤)𝑡̃𝑖(𝑤)‖ =  |𝜙(𝑤)|‖𝑡̃𝑖(𝑤)‖ =  ‖𝑡𝑖(𝑤)‖. 
Thus 𝑈𝑖 extend to an isometry from ℋ𝑖 to ℋ̃𝑖. Since 𝑈𝑖 is isometric and 𝑈𝑖𝑇𝑖  =  𝑇̃𝑖𝑈𝑖, it 
follows, using Proposition (6.2.6), that each 𝑈𝑖 is unitary. It is easy to see that 𝑈𝑖𝑆𝑖,𝑖+1 =

 𝑆̃𝑖,𝑖+1𝑈𝑖+1 for 0 ≤  𝑖 ≤  𝑛 −  2 also. For 0 ≤  𝑖 <  𝑗 ≤  𝑛 −  2 with 𝑗 −  𝑖 ≥  2 and 

𝑤 ∈  𝛺, 

〈𝑈𝑖(𝑆𝑖,𝑗(𝑡𝑗(𝑤))), 𝑈𝑖(𝑡𝑖(𝑤))〉  =  〈𝑆𝑖,𝑗(𝑡𝑗(𝑤)), 𝑡𝑖(𝑤)〉 =
‖𝑡𝑖(𝑤)‖

2

‖𝑡̃𝑖(𝑤)‖
2
 〈𝑆̃𝑖,𝑗(𝑡̃𝑗(𝑤)), 𝑡̃𝑖(𝑤)〉

=  |𝜙(𝑤)|2〈𝑆̃𝑖,𝑗(𝑡̃𝑗(𝑤)), 𝑡̃𝑖(𝑤)〉 = 〈𝜙(𝑤)𝑆̃𝑖,𝑗(𝑡̃𝑗(𝑤)), 𝜙(𝑤)𝑡̃𝑖(𝑤)〉

=  〈𝑆̃𝑖,𝑗(𝜙(𝑤)𝑡̃𝑗(𝑤)), 𝜙(𝑤)𝑡̃𝑖(𝑤)〉 = 〈𝑆̃𝑖,𝑗(𝑈𝑗(𝑡𝑗(𝑤))), 𝑈𝑖(𝑡𝑖(𝑤))〉. 

Polarizing the real analytic functions 

〈𝑈𝑖(𝑆𝑖,𝑗(𝑡𝑗(𝑤))), 𝑈𝑖(𝑡𝑖(𝑤))〉 and 〈𝑆̃𝑖,𝑗(𝑈𝑗(𝑡𝑗(𝑤))), 𝑈𝑖(𝑡𝑖(𝑤))〉 

to functions which are holomorphic in the first and anti-holomorphic in the second variable, 

we obtain the equality: 

〈𝑈𝑖(𝑆𝑖,𝑗(𝑡𝑗(𝓏))), 𝑈𝑖(𝑡𝑖(𝑤))〉  =  〈𝑆̃𝑖,𝑗(𝑈𝑗(𝑡𝑗(𝓏))), 𝑈𝑖(𝑡𝑖(𝑤))〉, 𝓏, 𝑤 ∈  𝛺. 

Hence for w in 𝛺 and 0 ≤  𝑖 <  𝑗 ≤  𝑛 −  2 with 𝑗 −  𝑖 ≥  2, we have 

𝑈𝑖(𝑆𝑖,𝑗(𝑡𝑗(𝑤)))  =  𝑆̃𝑖,𝑗(𝑈𝑗(𝑡𝑗(𝑤))) 

which implies that 

𝑈𝑖𝑆𝑖,𝑗 = 𝑆̃𝑖,𝑗𝑈𝑗  . 

Now, setting 𝑈 =  𝑈0  ⊕···⊕ 𝑈𝑛−1, we see that 𝑈 is unitary and 𝑈𝑇 =  𝑇̃𝑈 completing 

the proof. 

Proposition (6.2.30)[190]: If an operator 𝑇 is in ℱ𝐵𝑛(𝛺), then it is irreducible. 

Proof. Let 𝑃 be a projection in the commutant {𝑇}′ of the operator 𝑇. The operator 𝑃 must 

therefore be upper triangular by Proposition (6.2.27). It is also a Hermitian idempotent and 

therefore must be diagonal with projections 𝑃𝑖𝑖 , 0 ≤  𝑖 ≤  𝑛 −  1, on the diagonal. We are 

assuming that 𝑃𝑇 =  𝑇𝑃, which gives 

𝑃𝑖𝑖𝑆𝑖,𝑖+1 = 𝑆𝑖,𝑖+1𝑃𝑖+1𝑖+1, 0 ≤  𝑖 ≤  𝑛 −  2. 
None of the operators 𝑆𝑖,𝑖+1, 0 ≤  𝑖 ≤  𝑛 −  2, are zero by hypothesis. It follows that 𝑃𝑖𝑖  =
 0, if and only if 𝑃𝑖+1 𝑖+1 =  0. Thus, for any projections 𝑃𝑖𝑖  ∈  {𝑇𝑖}

′ , we have only two 

possibilities: 

𝑃00 = 𝑃11 = 𝑃22 = ··· = 𝑃𝑛−1𝑛−1 = 𝐼, or 𝑃00 = 𝑃11 = 𝑃22 = ··· = 𝑃𝑛−1𝑛−1 =  0. 
Hence 𝑇 is irreducible. 

The localization of a module at a point of the spectrum is obtained by tensoring with 

the one dimensional module of evaluation at that point. The localization technique has 

played a prominent role in the structure theory of modules. More recently, they have found 

their way into the study of Hilbert modules (cf. [193]). An initial attempt was made in [192] 
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to see if higher order localizations would be of some use in obtaining invariants for quotient 

Hilbert modules. Here we give an explicit description of the module tensor products over 

the polynomial ring in one variable. 

There are several different ways in which one may define the action of the polynomial ring 

on ℂ𝑘. The following lemma singles out the possibilities for the module action which 

evaluates a function at 𝑤 along with a finite number of its derivatives, say 𝑘 −  1, at 𝑤. 

Let 𝑓 be a polynomial in one variable. Set 

𝒥𝜇(𝑓)(𝓏) =

(

 
 

𝜇1,1𝑓(𝑧) 0 ⋯

𝜇2,1 𝜕𝑧 𝑓(𝑧) 𝜇2,2𝑓(𝑧) ⋯

⋮
𝜇𝑘,1 𝜕𝑘−1 𝜕𝑧𝑘−1 𝑓(𝑧)

⋮

𝜇𝑘−1,1  
𝜕𝑘−2

𝜕𝓏𝑘−2
𝑓(𝓏)

⋱
⋮

   

0
0
⋮

𝜇𝑘,𝑘𝑓(𝓏)
)

 
 

 

where 𝜇 = ((𝜇𝑖,𝑗))  is a lower triangular matrix of complex numbers with 𝜇𝑖,𝑖 =  1, 1 ≤

 𝑖 ≤  𝑘. 

Lemma (6.2.31)[190]: The following are equivalent. 

(i) 𝒥𝜇(𝑓𝑔)  =  𝒥𝜇(𝑓)𝒥𝜇(𝑔). 

(ii) (𝑝 +  1 −  𝑗 −  𝑙)𝜇𝑝+1−𝑗,𝑙 = 𝜇𝑝+1−𝑗,𝑙+1𝜇𝑙+1,𝑙 , 1 ≤ 𝑙 ≤ 𝑝 − 2, 1 ≤ 𝑗 < 𝑝 − 𝑙 + 1. 

(iii) 𝜇𝑝,𝑙𝜇𝑙,𝑖 = (
𝑝 − 𝑖
𝑙 − 𝑖

) 𝜇𝑝,𝑖 , 1 ≤  𝑝, 𝑙, 𝑖 ≤  𝑘, 𝑖 ≤  𝑙 ≤  𝑝. 

Proof. All the implications of the Lemma are easy to verify except for one, which we verify 

here. For 1 ≤  𝑖, 𝑗 ≤  𝑘 and 𝑖 ≤  𝑗, note that 

(𝒥𝜇(𝑓)(𝓏)𝒥𝜇(𝑔)(𝓏))
𝑖,𝑗
=∑ 

𝑖−𝑗

𝑙=0

𝜇𝑖,𝑗+𝑙𝜇𝑗+𝑙,𝑗  (
𝜕𝑖−𝑗−𝑙

𝜕𝓏𝑖−𝑗−𝑙
𝑓(𝓏))(

𝜕𝑙

𝜕𝓏𝑙
 𝑔(𝓏)) 

=∑ 

𝑖−𝑗

𝑙=0

 (
𝑖 − 𝑗
𝑖 − 𝑗 − 𝑙

) 𝜇𝑖,𝑗(
𝜕𝑖−𝑗−𝑙

𝜕𝓏𝑖−𝑗−𝑙
𝑓(𝓏))(

𝜕𝑙

𝜕𝓏𝑙
𝑔(𝓏)) 

= 𝜇𝑖,𝑗  ∑  

𝑖−𝑗

𝑙=0

(
𝑖 − 𝑗
𝑖 − 𝑗 − 𝑙

) (
𝜕𝑖−𝑗−𝑙

𝜕𝓏𝑖−𝑗−𝑙
𝑓(𝓏))(

𝜕𝑙

𝜕𝓏𝑙
 𝑔(𝓏)) 

= 𝜇𝑖,𝑗  
𝜕𝑖−𝑗

𝜕𝓏𝑖−𝑗
(𝑓𝑔)(𝓏) 

= (𝒥𝜇(𝑓𝑔)(𝓏))
𝑖,𝑗
 . 

For 𝑖 >  𝑗, 

(𝒥𝜇(𝑓)(𝓏)𝒥𝜇(𝑔)(𝓏))
𝑖,𝑗
= (𝒥𝜇(𝑓𝑔)(𝓏))

𝑖,𝑗
=  0. 

Hence we have 

𝒥𝜇(𝑓𝑔)  = 𝒥𝜇(𝑓)𝒥𝜇(𝑔). 

For 𝑥 in ℂ𝑘, and f in the polynomial ring 𝑃[𝓏], define the module action as follows: 

𝑓 ·  𝑥 =  𝒥𝜇(𝑓)(𝑤)𝑥. 

Suppose 𝑇0 ∶ ℳ → ℳ is an operator in 𝐵1(𝛺). Assume that the operator 𝑇 has been 

realized as the adjoint of a multiplication operator acting on a Hilbert space of functions 

possessing a reproducing kernel 𝐾. Then the polynomial ring acts on the Hilbert space ℳ 

naturally by point-wise multiplication making it a module. We construct a module of 𝑘-jets 

by setting 
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𝐽ℳ = {∑  

𝑘−1

𝑙=0

𝜕𝑖

𝜕𝑙𝑖
 ℎ ⊗ 𝜖𝑖+1 ∶  ℎ ∈ ℳ}, 

where 𝜖𝑖+1, 0 ≤  𝑖 ≤  𝑘 − 1, are the standard basis vectors in ℂ𝑘. There is a natural module 

action on 𝐽ℳ, namely,  

(𝑓,∑  

𝑘−1

𝑙=0

𝜕𝑖

𝜕𝓏𝑖
ℎ) ↦ 𝒥(𝑓) (∑  

𝑘−1

𝑙=0

𝜕𝑖

𝜕𝓏𝑖
 ℎ ⊗ 𝜖𝑖+1) , 𝑓 ∈  𝑃[𝓏], ℎ ∈ ℳ, 

Where 

𝒥(𝑓)𝑖,𝑗 = {
(
𝑖 − 1
𝑗 − 1

) 𝜕𝑖−𝑗𝑓     if 𝑖 ≥  𝑗,

0                  otherwise.
 

The module tensor product 𝐽ℳ ⊗𝒜(𝛺)  ℂ𝑤
𝑘   is easily identified with the quotient module 

𝒩⊥, where 𝒩 ⊆ ℳ is the sub-module spanned by the vectors 

{∑ 

𝑘

𝑙=1

(𝐽𝑓 · ℎ𝑙  ⊗ 𝜖𝑙 − ℎ𝑙⊗(𝒥𝜇(𝑓)) (𝑤) · 𝜖𝑙): ℎ𝑙 ∈ 𝐽ℳ, 𝜖𝑙 ∈ ℂ
𝑘, 𝑓 ∈  𝑃[𝓏]} . 

Following the proof of the Lemma (6.2.32) in [192], we can prove: 

Lemma (6.2.32)[190]: The module tensor product 𝐽ℳ⊗𝑃[𝓏] ℂ𝑤
𝑘  is spanned by the vector 

𝑒𝑝(𝑤) in 𝐽ℳ ⊗𝒜(𝛺)  ℂ𝑤
𝑘 , where 

𝑒𝑝(𝑤)  =∑ 

𝑝

𝑙=1

𝑏𝑝,𝑙𝐽𝐾(·, 𝑤)𝜖𝑝−𝑙+1⊗𝜖𝑙 , 1 ≤  𝑝 ≤  𝑘 

and for a fixed 𝑝, 

𝑏𝑝,𝑙 =
𝜇𝑝−𝑗+1,𝑙

(
𝑝 − 𝑙
𝑗 − 1

)
𝑏𝑝,𝑝−𝑗+1, 𝑙 +  𝑗 < 𝑝 +  1. 

The set of vectors {𝑒𝑝(𝑤) ∶  𝑤 ∈  𝛺
∗, 1 ≤  𝑝 ≤  𝑘} defines a natural holomorphic frame 

for a vector bundle, say 𝐽𝑙𝑜𝑐(ℰ). This vector bundle also inherits a Hermitian structure from 

that of 𝐽ℳ⊗𝒜(𝛺) ℂ𝑤
𝑘 , which furthermore defines a positive definite kernel on 𝛺 × 𝛺: 

𝐽𝑙𝑜𝑐𝐾(𝓏,𝑤)  = ((〈𝑒𝑝(𝑤), 𝑒𝑞(𝓏)〉)) 

 =∑ 

𝑘

𝑙=1

𝐷(𝑙)𝐽𝑘−𝑙+1𝐾(𝓏, 𝑤)𝐷(𝑙), 

where 𝐽𝑟𝐾(𝓏, 𝑤)  =  (
0𝑘−𝑟×𝑘−𝑟 0𝑘−𝑟×𝑟
0𝑟×𝑘−𝑟 𝐽𝑟𝐾(𝓏, 𝑤)

) and 𝐷(𝑙) is diagonal. Moreover, 𝐷(𝑙)𝑚,𝑚 =

𝑏𝑚+𝑙−1,𝑙 and 

𝐽𝑟𝐾(𝓏,𝑤) =

(

 
 
 
 
𝐾(𝓏,𝑤)

𝜕

𝜕𝑤̃
𝐾(𝓏, 𝑤) ⋯

𝜕

𝜕𝓏
 𝐾(𝓏, 𝑤) 𝜕2/𝜕𝓏𝜕𝑤̃𝐾(𝓏,𝑤) ⋯

⋮
𝜕𝑟−1

𝜕𝓏𝑟−1

⋮
𝜕𝑟

𝜕𝓏𝑟−1𝜕𝑤̃
𝐾(𝓏,𝑤)

⋱
⋯

   

𝜕𝑟−1

𝜕𝑤̃𝑟−1
𝐾(𝓏,𝑤)

𝜕𝑟

𝜕𝓏𝜕𝑤̃𝑟−1
𝐾(𝓏,𝑤)

⋯
𝜕2𝑟−2

𝜕𝓏𝜕𝑤̃𝑟−1
𝐾(𝓏,𝑤)

)

 
 
 
 

. 

The two Hilbert spaces ℳ and ℳ ⊗ ℂ𝑘 may be identified via the map 𝐽𝑘−𝑙+1, which is 

given by the formula 
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𝐽𝑘−𝑙+1(ℎ)  = ∑  

𝑘−𝑙

𝑝=0

𝑏𝑝+𝑙−1,𝑙  
𝜕𝑝

𝜕𝓏𝑝
 ℎ ⊗ 𝜖𝑝+𝑙 . 

Since 𝐽𝑘−𝑙+1 is injective, we may choose an inner product on 𝐽𝑝−𝑙+1ℳ making it unitary. 

Proposition (6.2.33)[190]: [192] The Hilbert module 𝐽𝑙𝑜𝑐(ℳ) admits a direct sum 

decomposition of the form ⊕𝑙=1
𝑘 𝐽𝑘−𝑙+1ℳ, and the corresponding reproducing kernel is the 

sum 

∑ 

𝑘

𝑙=1

𝐷(𝑙)𝐽𝑘−𝑙+1𝐾(𝓏,𝑤)𝐷(𝑙). 

Let 𝛾0 be a non-vanishing holomorphic section for the line bundle 𝐸 corresponding to the 

operator 𝑇0. Put 𝑏1,1𝑡0(𝑤)  =  𝛾0(𝑤) and for 1 ≤  𝑙 ≤  𝑘 −  1, let 

(i) 𝑡𝑙(𝑤):= ∑  𝑘−𝑙−1
𝑖=0 𝑏𝑙+1+𝑖,𝑙+1  

𝜕𝑖

𝜕𝓏𝑖
 𝐾(·, 𝑤)  ⊗ 𝜖𝑙+1+𝑖, 

(ii) 𝛾𝑙(𝑤)  = ∑  𝑙+1
𝑖=1 𝑏𝑙+1,𝑖  

𝜕𝑙+1−𝑖

𝜕𝑤̅𝑙+1−𝑖
𝑡𝑖−1(𝑤). 

Now, {𝛾0, 𝛾1,··· , 𝛾𝑘−1} are eigenvectors of the operator 𝑀𝓏
∗  −  𝑤̅ acting on the Hilbert space 

ℳ𝑙𝑜𝑐. 

Since (𝑀𝓏
∗  −  𝑤̅)𝛾1(𝑤)  =  0, it follows that (𝑀𝓏

∗  −  𝑤̅)𝑡1(𝑤)  =  −
𝑏2,1

𝑏2,2
 𝑡0(𝑤), which is 

equivalent to (𝑀𝓏
∗  −  𝑤̅)𝑡1(𝑤)  =  −𝜇2,1𝑡0(𝑤). 

Suppose (𝑀𝓏
∗ − 𝑤̅)𝑡𝑙(𝑤)  =  −𝜇𝑙+1,𝑙𝑡𝑙−1(𝑤) for 1 ≤  𝑙 ≤  𝑟. Again, since (𝑀𝓏

∗  −
 𝑤̅)𝛾𝑟+1(𝑤)  =  0, it follows that 

(𝑀𝓏
∗  −  𝑤̅)𝑡𝑟+1(𝑤) =

1

𝑏𝑟+2,𝑟+2
 {(−(𝑟 +  1)𝑏𝑟+2,1𝜕̅

𝑟𝑡0(𝑤)) 

−∑ 

𝑟+1

𝑖=2

 𝑏𝑟+2,𝑖(−𝜇𝑖,𝑖−1𝜕̅
𝑟+2−𝑖𝑡𝑖−2(𝑤) + (𝑟 +  2 −  𝑖)𝜕̅

𝑟+1−𝑖𝑡𝑖−1(𝑤))} 

=
1

𝑏𝑟+2,𝑟+2
{∑ 

𝑟

𝑖=1

(−(𝑟 + 2 − 𝑖)𝑏𝑟+2,𝑖 + 𝑏𝑟+2,𝑖+1𝜇𝑖+1,𝑖)𝜕̅
𝑟+1−𝑖𝑡𝑖−1(𝑤) − 𝑏𝑟+2,𝑟+1𝑡𝑟(𝑤)} 

=
𝑏𝑟+2,𝑟+1
𝑏𝑟+2,𝑟+2

𝑡𝑟(𝑤) =  𝜇𝑟+2,𝑟+1𝑡𝑟(𝑤). 

Let 𝛤 ∶=  𝐽𝑘  ⊕ 𝐽𝑘−1  ⊕. . .⊕ 𝐽1, be the unitary from ℳ̃ ∶=  ℳ0  ⊕···  ℳ𝑘−1 to ℳ𝑙𝑜𝑐, where 

each of the summands ℳ0, . . . ,ℳ𝑘−1 is equal to ℳ. Let 𝐾𝑙(·, 𝑤) ∶=  𝐽𝑘−𝑙
∗ 𝑡𝑙(𝑤)  =  𝐾(·

, 𝑤), 0 ≤  𝑙 ≤  𝑘 − 1. Now, we describe the operator 𝑇 ∶=  𝛤∗𝑀∗𝛤, where M is the 

multiplication operator on ℳ𝑙𝑜𝑐. For 1 ≤  𝑙 ≤  𝑘 −  1, set 𝑇𝑙 ∶=  𝑃ℳ𝑙
𝑇|ℳ𝑙

 and note that 

𝑇(𝐾𝑙(·, 𝑤))  =  (𝛤
∗𝑀∗𝛤)𝐾𝑙(·, 𝑤) =  𝛤

∗𝑀𝓏
∗𝑡𝑙(𝑤) = 𝛤

∗(𝑤̅𝑡𝑙(𝑤)  + 𝜇𝑙+1,𝑙𝑡𝑙−1(𝑤))
= 𝑤̅𝐾𝑙(·, 𝑤)  + 𝜇𝑙+1,𝑙𝐾𝑙−1(·, 𝑤). 

Now, 

𝑇𝑙(𝐾𝑙(·, 𝑤)) =  𝑃ℳ𝑙
𝑇|ℳ𝑙

(𝐾𝑙(·, 𝑤)) =  𝑃ℳ𝑙
𝑇(𝐾𝑙(·, 𝑤))

=  𝑃ℳ𝑙
(𝑤̅𝐾𝑙(·, 𝑤)  + 𝜇𝑙+1,𝑙𝐾𝑙−1(·, 𝑤)) = 𝑤̅𝐾𝑙(·, 𝑤). 

Let 𝑆𝑙−1,𝑙 ∶  ℳ𝑙  →  ℳ𝑙−1 be the bounded linear operator defined by the rule 𝑆𝑙−1,𝑙(𝐾𝑙(·
, 𝑤)) ∶=  𝜇𝑙+1,𝑙𝐾𝑙−1(·, 𝑤), 1 ≤  𝑙 ≤  𝑘 − 1. Since ℳ𝑙  =  ℳ𝑙−1 = ℳ, it follows that 

𝑆𝑙−1,𝑙 = 𝜇𝑙+1,𝑙𝐼. Hence the operator 𝑇 has the form: 
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𝑇 =

(

 
 
 

𝑇0 𝜇2,1𝐼 0

0 𝑇0 𝜇3,2𝐼

0
⋮
0
0

0
⋮
0
0

𝑇0
⋮
0
0

    

⋯ 0 0
⋯ 0 0

⋱
⋱
⋯
⋯

⋮
𝜇𝑘−1,𝑘−2𝐼

𝑇0
0

⋮
0

𝜇𝑘,𝑘−1𝐼

𝑇0 )

 
 
 
. 

Thus 𝑇 is in ℱ𝐵𝑘(𝛺) and defines, up to unitary equivalence via the unitary 𝛤, the module 

action in ℳ𝑙𝑜𝑐. In consequence, setting ℂ𝑤
𝑘 [𝜇] to be the Hilbert module with the module 

action induced by 𝒥𝜇(𝑓)(𝑤), we have the following theorem as a direct application of 

Theorem (6.2.29). 

Theorem (6.2.34)[190]: The Hilbert modules corresponding to the localizations 

𝐽ℳ⊗𝑃[𝓏] ℂ𝑤
𝑘 [𝜇𝑖], 𝑖 =  1, 2, are in ℱ𝐵𝑘(𝛺) and they are isomorphic if and only if 𝜇1  =

 𝜇2. 

We attempt to relate the frame of the holomorphic vector bundle 𝐸𝑇  , 𝑇 in ℱ𝐵𝑛(𝛺), 
to that of the direct sum of the line bundles 𝐸𝑇0  ⊕ ··· ⊕ 𝑇𝑛−1. 

Let 𝑡 =  {𝑡0, 𝑡1, . . . , 𝑡𝑛−1} be a set of non-vanishing holomorphic sections for the line 

bundles 𝐸𝑇0  , . . . , 𝐸𝑇𝑛−1 , respectively. Suppose that a suitable linear combination of these 

non-vanishing sections 𝑡𝑖 , 𝑖 =  0, . . . , 𝑛 −  1, and their derivatives produces a holomorphic 

frame 𝛾 ∶=  {𝛾0, . . . , 𝛾𝑛−1} for the vector bundle 𝐸𝑇 , that is, 

𝛾𝑖 = 𝑡0
(𝑖)
+ 𝜇1,𝑖𝑡1

(𝑖−1)
+ ···  +𝜇𝑖−1,𝑖𝑡𝑖−1

(1)
+ 𝑡𝑖  

for some choice of non-zero constants 𝜇1,𝑖 , . . . , 𝜇𝑖−1,𝑖 , 0 ≤  𝑖 ≤  𝑘 − 1. The existence of 

such an orthogonal frame is not guaranteed except when 𝑛 =  2. Assuming that it exists, 

the relationship between these vector bundles can be very mysterious as shown below. This 

justifies, to some extent, the choice of the smaller class of operators in the next section. 

If 𝑡̃ is another set of non-vanishing sections for the line bundles 𝐸𝑇1  , . . . , 𝐸𝑇𝑛−1 , then the 

linear combination of these with exactly the same constants 𝜇𝑖𝑗 is a second holomorphic 

frame, say 𝛾̃ of the vector bundle 𝐸𝑇 . Let 𝛷𝑘 be a change of frame between the two sets of 

non-vanishing orthogonal frames 𝑡 and 𝑡̃, and 𝛹𝑘 be a change of frame between 𝛾 and 𝛾̃. 

We now describe the relationship between 𝛷𝑘 and 𝛹𝑘 explicitly: 

(i) 𝛷𝑘(𝑖, 𝑗) ∶=  𝜙𝑖,𝑗 = 𝜓𝑖,𝑗 ∶=  𝛹𝑘(𝑖, 𝑗)  =  0, 𝑖 >  𝑗, that is, 𝛷𝑘 and 𝛹𝑘 are upper-triangular. 

(ii) For 0 ≤  𝑖 ≤  𝑘 −  1, we have 𝜙𝑖,𝑖 = 𝜓𝑖,𝑖 = 𝜙0,0, and for 𝑖 <  𝑘 −  1, we have 

𝜓𝑖,𝑘−1 = 𝐶𝑘−1
𝑖 𝜙0,0

(𝑘−1−𝑖)
+ ···  + 𝐶𝑘−1−𝑗

𝑖 𝜇𝑗,𝑘−1𝜙0,𝑗
(𝑘−1−𝑗−𝑖)

+··· +𝜇𝑘−1−𝑖,𝑘−1𝜙0,𝑘−1−𝑖 , 

where 𝐶𝑟
𝑛 stands for the binomial coefficient (

𝑛
𝑟
) . 

(iii) In particular, for 1 ≤  𝑖 ≤  𝑘 −  1, if we choose 𝜙0,𝑖, then 𝜓𝑖,𝑘−1 = 𝐶𝑘−1
𝑖 𝜙0,0

(𝑘−1−𝑖)
 . In 

this case, we have (a) 

Ψ𝑘 =

(

 
 
 
 
𝜓 𝜓1 𝜓(2)

 𝜓 2𝜓(1)

  

𝜓
  
 

   

⋯ 𝜓(𝑘−2) 𝜓(𝑘−1)

⋯ 𝐶𝑘−2
1 𝜓(𝑘−3) 𝐶𝑘−1

1 𝜓(𝑘−2)

⋱
⋱
 
 

⋮
⋱
𝜓
 

⋮
⋮

𝐶𝑘−1
𝑙−2𝜓(1)

𝜓 )

 
 
 
 

; 
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(b) and there are 
(𝑘−2)(𝑘−1)

2
 equations in 

(𝑘−1)𝑘

2
 variables, namely, 𝜇𝑖 𝑗 , 1 ≤  𝑖 <  𝑗, 𝑗 ≤  𝑘 −

1. Thus these coefficients are determined as soon as we make an arbitrary choice of the 

coefficients 𝜇1,𝑘−1, . . . , 𝜇𝑘−2,𝑘−1. 
We prove the statements (i) and (ii) by induction on 𝑘. These statements are valid for 𝑘 =
 2 as was noted. To prove their validity for an arbitrary 𝑘 ∈ ℕ, assume them to be valid for 

𝑘 −  1. Let 𝛷𝑘
𝑖  and 𝛹𝑘

𝑖  denote the ith row of 𝛷 and 𝛹, respectively. 

Suppose that (𝑡̃0, 𝑡̃1,··· , 𝑡̃𝑘)  =  (𝑡0, 𝑡1,··· , 𝑡𝑘)𝛷𝑘 and (𝛾̃0, 𝛾̃1,··· , 𝛾̃𝑘)  =  (𝛾0, 𝛾1,··· , 𝛾𝑘)𝛹𝑘. 

Then we have 

𝑡̃𝑗  =  (𝑡0, 𝑡1,··· , 𝑡𝑘−1)𝛷𝑘−1
𝑗
+ 𝑡𝑘𝜓𝑘,𝑗 , 𝑗 <  𝑘. 

For any 𝑖 <  𝑘, we have 

𝛾̃𝑖 = (𝛾0, 𝛾1,··· , 𝛾𝑘−1)𝛹𝑘−1
𝑖 + 𝛾𝑘𝜓𝑘,𝑖   

= (𝛾0, 𝛾1,··· , 𝛾𝑘−1)𝛹𝑘−1
𝑖 + (𝑡0

(𝑘)
+ 𝜇1,𝑘𝑡1

(𝑘−1)
+ ···  + 𝜇𝑖,𝑘𝑡𝑖

(𝑘−𝑖)
+ ··· +𝑡𝑘)𝜓𝑘,𝑖 

And 

𝛾̃𝑖  = 𝑡̃0
(𝑖)
+ 𝜇1,𝑖 𝑡̃1

(𝑖−1)
+ ···  + 𝜇𝑖−1,𝑖 𝑡̃𝑖−1

(1)
+ 𝑡̃𝑖,𝑖 <  𝑘. 

From these equations, it follows that 

(𝛾0, 𝛾1,··· , 𝛾𝑘−1)𝛹𝑘−1
𝑖 + (𝑡0

(𝑘)
+ 𝜇1,𝑘𝑡1

(𝑘−1)
+ ···  + 𝜇𝑖,𝑘𝑡𝑖

(𝑘−𝑖)
+ ···  + 𝑡𝑘)𝜓𝑘,𝑖 

= 𝑡̃0
(𝑖)
+ 𝜇1,𝑖 𝑡̃1

(𝑖−1)
+ ···  + 𝜇𝑖−1,𝑖 𝑡̃𝑖−1

(1)
+ 𝑡̃𝑖 . 

We note that 𝜇𝑖,𝑘𝜓𝑘,𝑖𝑡𝑖
(𝑘−𝑖)

 appears only once in this equation to conclude 𝜓𝑘,𝑖 =  0, 𝑖 <  𝑘. 

Comparing the coefficients of 𝑡𝑖 on both sides of the equation, we also conclude that 𝜓𝑘,𝑖 =
𝜙𝑘,𝑖 , 𝑖 <  𝑘 completing the induction step for the first statement of our claim. 

Our assumption that (𝑡̃0, 𝑡̃1,··· , 𝑡̃𝑘)  =  (𝑡0, 𝑡1,··· , 𝑡𝑘)𝛷𝑘 and (𝛾̃0, 𝛾̃1,··· , 𝛾̃𝑘)  =  (𝛾0, 𝛾1,···
 , 𝛾𝑘)𝛹𝑘 gives 

∑ 

𝑘

𝑖=0

(𝑡0
𝑖 + 𝜇1,𝑖𝑡1

(𝑖−1)
+ ···  + 𝜇𝑖−1,𝑖𝑡𝑖−1

(1)
+ 𝑡𝑖)𝜓𝑖,𝑘 =∑ 

𝑘

𝑖=0

𝜇𝑖,𝑘(𝑡0𝜙0,𝑖 + ··· +𝑡𝑖𝜙0,0)
(𝑘−𝑖)

, 𝑖 

<  𝑘. 

A comparison of the coefficients of 𝑡0
(𝑖)

 leads to 

𝜓𝑖,𝑘 = 𝐶𝑘
𝑖𝜙0,0
(𝑘−𝑖)

+ ···  + 𝐶𝑘−𝑗
𝑖 𝜇𝑗,𝑘𝜙0,𝑗

(𝑘−𝑗−𝑖)
+ ···  + 𝜇𝑘−𝑖,𝑘𝜙0,𝑘−𝑖 , 𝑖 < 𝑘 

completing the proof of the second statement. For the third statement, from the equations 

∑ 

𝑘−1

𝑖=0

(𝑡0
𝑖 + 𝜇1,𝑖𝑡1

(𝑖−1)
+ ···  +𝜇𝑖−1,𝑖𝑡𝑖−1

(1)
+ 𝑡𝑖)𝜓𝑖,𝑘−1 

=∑  

𝑘−1

𝑖=0

𝜇𝑖,𝑘−1(𝑡0𝜙0,𝑖 + ···  + 𝑡𝑖𝜙0,0)
(𝑘−1−𝑖)

, 𝑖 < 𝑘 − 1, 

setting 𝜙0,𝑖 = 0, and comparing the coefficients of 𝑡𝑖 , 𝑖 >  0, we have that 𝜙𝑖,𝑘−1 =

 𝑐𝑖,𝑘−1𝜙0,0
(𝑘−1−𝑖)

 for some 𝑐𝑖,𝑘−1 ∈ ℂ. Putting this back in the equation given above, we  

obtain 
(𝑘−2)(𝑘−1)

2
 equations involving 

(𝑘−1)𝑘

2
 coefficients. This completes the proof of the 

third statement. 

Corollary (6.2.35)[209]: Let 𝑇𝑠−2
2  be a bounded linear operator of the form (

𝑇𝑠−1
2 𝑆𝑠−2
0 𝑇𝑠

2 ). 

Suppose that the two operators 𝑇𝑠−1
2 , 𝑇𝑠

2 are in 𝐵𝑠(𝛺). Then the operator 𝑇𝑠−2
2  is in 𝐵𝑠+1(𝛺). 
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Proof. Suppose 𝑇𝑠−1
2  and 𝑇𝑠

2 are defined on the Hilbert spaces ℋ0 and ℋ1, respectively. 

Elementary considerations from index theory of Fredholm operators show that the operator 

𝑇𝑠−2
2  is Fredholm and 𝑖𝑛𝑑(𝑇𝑠−2

2 ) =  𝑖𝑛𝑑(𝑇𝑠−1
2 ) +  𝑖𝑛𝑑(𝑇𝑠

2) (cf. [191]). Therefore, to 

complete the proof that 𝑇𝑠−2
2  is in 𝐵𝑠+1(𝛺), all we have to do is prove that the vectors in the 

kernel ker(𝑇𝑠−2
2  – 𝑤𝑠−2

2 ) , 𝑤𝑠−2
2  ∈  𝛺, span the Hilbert space ℋ =  ℋ0  ⊕ ℋ1. 

Let 𝛾𝑠−1 and 𝑡𝑠 be non-vanishing holomorphic sections for the two line bundles 𝐸0 and 𝐸1 

corresponding to the operators 𝑇𝑠−1
2  and 𝑇𝑠

2, respectively. For each 𝑤𝑠−2
2 ∈ 𝛺, the operator 

𝑇𝑠−1
2  −  𝑤𝑠−2

2  is surjective. Therefore we can find a vector 𝛼𝑠−2(𝑤𝑠−2
2 ) in ℋ0 such that 

(𝑇𝑠−1
2  −  𝑤𝑠−2

2 )𝛼𝑠−2(𝑤𝑠−2
2 )  =  −𝑆𝑠−2(𝑡𝑠(𝑤𝑠−2

2 )), 𝑤𝑠−2
2  ∈  𝛺. Setting 𝑎(𝑤𝑠−2

2 )  =
 𝛼𝑠−2(𝑤𝑠−2

2 )  + 𝑡𝑠(𝑤𝑠−2
2 ), we see that 

(𝑇𝑠−2
2  −  𝑤𝑠−2

2 )𝑎(𝑤𝑠−2
2 ) = 0 = (𝑇𝑠−2

2  −  𝑤𝑠−2
2 )𝛾𝑠−1(𝑤𝑠−2

2 ). 
Thus {𝛾𝑠−1(𝑤𝑠−2

2 ), 𝑎(𝑤𝑠−2
2 )}  ⊆  ker(𝑇𝑠−2

2  − 𝑤𝑠−2
2 ) for 𝑤𝑠−2

2  in 𝛺. If x is any vector 

orthogonal to ker(𝑇𝑠−2
2 −𝑤𝑠−2

2 ), 𝑤𝑠−2
2  ∈  𝛺, then in particular it is orthogonal to the vectors 

𝛾𝑠−1(𝑤𝑠−2
2 ) and 𝑎(𝑤𝑠−2

2 ), 𝑤𝑠−2
2  ∈  𝛺, forcing it to be the zero vector. 

Corollary (6.2.36)[209]: Suppose 𝑇𝑠−1
2  and 𝑇𝑠

2 are two operators in 𝐵𝑠(𝛺), and 𝑆𝑠−2 is a 

bounded operator intertwining 𝑇𝑠−1
2  and 𝑇𝑠

2, that is, 𝑇𝑠−1
2 𝑆𝑠−2  =  𝑆𝑠−2𝑇𝑠

2. Then 𝑆𝑠−2 is non-

zero if and only if range of 𝑆𝑠−2 is dense if and only if 𝑆𝑠−2
∗  isinjective. 

Proof. Let 𝛾𝑠−2 be a holomorphic frame of 𝐸𝑇𝑠2 . Assume that 𝑆𝑠−2 is a non-zero operator. 

The intertwining relationship 𝑇𝑠−1
2 𝑆𝑠−2  =  𝑆𝑠−2𝑇𝑠

2 implies that 𝑆𝑠−2 ∘ 𝛾𝑠−2 is a section of 

𝐸𝑇𝑠−12  . Clearly, there exists an open set 𝛺0 contained in 𝛺 such that 𝑆𝑠−2 ∘ 𝛾𝑠−2 is not zero 

on 𝛺0, otherwise S has to be zero. Since 𝑆𝑠−2(𝛾𝑠−2) is a holomorphic frame of 𝐸𝑇𝑠−12  on 𝛺0, 

it follows that the closure of the linear span of the vectors {𝑆𝑠−2(𝛾𝑠−2(𝑤𝑠−2
2 )) ∶  𝑤𝑠−2

2  ∈
 𝛺0} must equal ℋ0. Hence the range of the operator 𝑆𝑠−2 is dense. 

Corollary (6.2.37)[209]: Suppose 𝑇𝑠−2
2  is a bounded linear operator on a Hilbert space ℋ, 

which is in 𝐵𝑠+1(𝛺). Then the following conditions are equivalent. 

(i) There exist an orthogonal decomposition ℋ0⊕ℋ1 of ℋ and operators 𝑇𝑠−1
2 ∶  ℋ0  →

 ℋ0, 𝑇𝑠
2 ∶  ℋ1  →  ℋ1, and 𝑆𝑠−2 ∶  ℋ1  →  ℋ0 such that 𝑇𝑠−2

2 = (
𝑇𝑠−1
2 𝑆𝑠−2
0 𝑇𝑠

2 ) , where 

𝑇𝑠−1
2 , 𝑇𝑠

2  ∈  𝐵𝑠(𝛺) and 𝑇𝑠−1
2 𝑆𝑠−2  =  𝑆𝑠−2𝑇𝑠

2, that is, 𝑇𝑠−2
2 ∈ ℱ𝐵𝑠+1(𝛺). 

(ii) There exists a holomorphic frame {𝛾𝑠−1, 𝛾𝑠} of 𝐸𝑇𝑠−22  such that 
𝜕

𝜕𝑤𝑠−2
2  ‖𝛾𝑠−1(𝑤𝑠−2

2 )‖2 =

〈𝛾𝑠(𝑤𝑠−2
2 ), 𝛾𝑠−1(𝑤𝑠−2

2 )〉. 
(iii) There exists a holomorphic frame {𝛾𝑠−1, 𝛾𝑠} of 𝐸𝑇𝑠−22  such that 𝛾𝑠−1(𝑤𝑠−2

2 ) and 
𝜕

𝜕𝑤𝑠−2
2  𝛾𝑠−1(𝑤𝑠−2

2 )  − 𝛾𝑠(𝑤𝑠−2
2 ) are orthogonal for all 𝑤𝑠−2

2  in 𝛺. 

Proof. (i) =⇒ (ii): Pick any two non-vanishing holomorphic sections 𝑡𝑠−1 and 𝑡𝑠 for the line 

bundles 𝐸𝑇𝑠−12  and 𝐸𝑇𝑠2 respectively. Then 

(𝑇𝑠−2
2  −  𝑤𝑠−2

2 )𝑡𝑠(𝑤𝑠−2
2 ) = (𝑇𝑠

2 −𝑤𝑠−2
2 )𝑡𝑠(𝑤𝑠−2

2 ) + 𝑆𝑠−2(𝑡𝑠(𝑤𝑠−2
2 )) 

= 𝑆𝑠−2(𝑡𝑠(𝑤𝑠−2
2 ). 

Since 𝑇𝑠−1
2 𝑆𝑠−2  =  𝑆𝑠−2𝑇𝑠

2, it induces a bundle map from 𝐸𝑇𝑠2 to 𝐸𝑇𝑠−12  , so 

𝑆𝑠−2(𝑡𝑠(𝑤𝑠−2
2 ))  =  𝜓(𝑤𝑠−2

2 )𝑡𝑠−1(𝑤𝑠−2
2 ) for some holomorphic function 𝜓 defined on 𝛺. 

Thus (𝑇𝑠−2
2  − 𝑤𝑠−2

2 )𝑡𝑠(𝑤𝑠−2
2 )  =  𝜓(𝑤𝑠−2

2 )𝑡𝑠−1(𝑤𝑠−2
2 ). Setting 𝛾𝑠−1(𝑤𝑠−2

2 ) ∶=

 𝜓(𝑤𝑠−2
2 )𝑡𝑠−1(𝑤𝑠−2

2 ) and 𝛾𝑠(𝑤𝑠−2
2 ):=

𝜕

𝜕𝑤𝑠−2
2  𝛾𝑠−1(𝑤𝑠−2

2 )  −  𝑡𝑠(𝑤𝑠−2
2 ), we see that 

{𝛾𝑠−1(𝑤𝑠−2
2 ), 𝛾𝑠(𝑤𝑠−2

2 )}  ⊂  ker (𝑇𝑠−2
2  −  𝑤𝑠−2

2 ). Now assume that 
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𝛼𝑠−1𝛾𝑠−1(𝑤𝑠−2
2 )  + 𝛼𝑠𝛾𝑠(𝑤𝑠−2

2 )  =  0                                     (54) 
for a pair of complex numbers 𝛼𝑠−1 and 𝛼𝑠. Then 

0 =  〈𝛼𝑠−1𝛾𝑠−1(𝑤𝑠−2
2 )  + 𝛼𝑠𝛾𝑠(𝑤𝑠−2

2 ), 𝑡𝑠(𝑤𝑠−2
2 )〉 

= 𝛼𝑠〈𝛾𝑠(𝑤𝑠−2
2 ), 𝑡𝑠(𝑤𝑠−2

2 )〉 =  −𝛼𝑠‖𝑡𝑠(𝑤𝑠−2
2 )‖2.                                                  (55) 

From equations (54) and (55), it follows that 𝛼𝑠−1  =  𝛼𝑠  =  0. Thus {𝛾𝑠−1, 𝛾𝑠} is a 

holomorphic frame of 𝐸𝑇𝑠−22 . Since 〈𝑡𝑠(𝑤𝑠−2
2 ), 𝛾𝑠−1(𝑤𝑠−2

2 )〉  =  0, we see that 

𝜕

𝜕𝑤𝑠−2
2
‖𝛾𝑠−1(𝑤𝑠−2

2 )‖2 = 〈𝛾𝑠(𝑤𝑠−2
2 ), 𝛾𝑠−1(𝑤𝑠−2

2 )〉. 

(ii) ⇐⇒ (iii): This equivalence is evident from the definition. 

(iii) =⇒ (i): Set 𝑡𝑠(𝑤𝑠−2
2 ):=

𝜕

𝜕𝑤𝑠−2
2  𝛾𝑠−1(𝑤𝑠−2

2 ) − 𝛾𝑠(𝑤𝑠−2
2 ). Let ℋ0 and ℋ1 be the closed 

linear span of {𝛾𝑠−1(𝑤𝑠−2
2 ) ∶  𝑤𝑠−2

2  ∈  𝛺} and {𝑡𝑠(𝑤𝑠−2
2 ) ∶  𝑤𝑠−2

2  ∈  𝛺}, respectively. Set 

𝑇𝑠−1
2  =  𝑇𝑠−2

2 |ℋ0  , 𝑇𝑠
2  =  (𝑃𝑠−2)ℋ1  𝑇𝑠−2

2 |ℋ1  and 𝑆𝑠−2 = (𝑃𝑠−2)ℋ0  𝑇𝑠−2
2 |ℋ1  . 

We see that the closed linear span of the vectors {𝛾𝑠−1(𝑤𝑠−2
2 ), 𝑡𝑠(𝑤𝑠−2

2 ) ∶  𝑤𝑠−2
2  ∈  𝛺} is ℋ: 

Suppose 𝑥 in ℋ is orthogonal to this set of vectors. Then clearly, 𝑥 ⊥ 𝛾𝑠−1(𝑤𝑠−2
2 ) and 𝑥 ⊥

𝑡𝑠(𝑤𝑠−2
2 ) for all 𝑤𝑠−2

2  in 𝛺. Or, equivalently 𝑥 ⊥ 𝛾𝑠−1(𝑤𝑠−2
2 ) and 𝑥 ⊥ 𝛾𝑠(𝑤𝑠−2

2 ) for all 𝑤𝑠−2
2  

in 𝛺. Therefore 𝑥 must be the 0 vector. Next, we show that the two operators 𝑇𝑠−1
2  and 𝑇𝑠

2 

are in 𝐵𝑠(𝛺). 
Clearly, (𝑇𝑠

2  −  𝑤𝑠−2
2 ) is onto. Thus index (𝑇𝑠

2  −  𝑤𝑠−2
2 )  =  dim ker (𝑇𝑠

2  −  𝑤𝑠−2
2 ) and 

2 = index (𝑇𝑠−2
2  −  𝑤𝑠−2

2 )  =  index (𝑇𝑠−1
2  −  𝑤𝑠−2

2 )  + index (𝑇𝑠
2  −  𝑤𝑠−2

2 ). It follows 

that dim ker(𝑇𝑠
2  −  𝑤𝑠−2

2 )  =  1 or 2. 

Suppose dim ker (𝑇𝑠
2  −  𝑤𝑠−2

2 )  =  2 and {𝑠𝑠(𝑤𝑠−2
2 ), 𝑠2(𝑤𝑠−2

2 )} be a holomorphic choice of 

linearly independent vectors in ker (𝑇𝑠
2  −  𝑤𝑠−2

2 ). Then we can find holomorphic functions 

𝜙𝑠, 𝜙𝑠+1 defined on 𝛺 such that 𝑆𝑠−2(𝑠𝑠(𝑤𝑠−2
2 ))  =  𝜙𝑠(𝑤𝑠−2

2 )𝛾𝑠−1(𝑤𝑠−2
2 ) and 

𝑆𝑠−2(𝑠𝑠+1(𝑤𝑠−2
2 )) =  𝜙𝑠+1(𝑤𝑠−2

2 )𝛾𝑠−1(𝑤
2). Setting 

𝛾̃𝑠−1(𝑤𝑠−2
2 ) ∶=  𝛾𝑠−1(𝑤𝑠−2

2 ), 

𝛾̃𝑠(𝑤𝑠−2
2 ):=

𝜕

𝜕𝑤𝑠−2
2  (𝜙𝑠(𝑤𝑠−2

2 )𝛾𝑠−1(𝑤𝑠−2
2 ))  − 𝑠𝑠(𝑤𝑠−2

2 ) 

and 

𝛾̃𝑠+1(𝑤𝑠−2
2 ): =

𝜕

𝜕𝑤𝑠−2
2  (𝜙𝑠+1(𝑤𝑠−2

2 )𝛾𝑠−1(𝑤𝑠−2
2 )) − 𝑠𝑠+1(𝑤𝑠−2

2 ), 

we see that (𝑇𝑠−2
2  −  𝑤𝑠−2

2 )(𝛾̃𝑖(𝑤𝑠−2
2 ))  =  0 for 𝑠 − 1 ≤ 𝑖 ≤ 𝑠 + 1. If 

∑  𝑠+1
𝑖=𝑠−1 𝛼𝑖𝛾̃𝑖(𝑤𝑠−2

2 )  =  0, 𝛼𝑖  ∈ ℂ, then 

𝛼𝑠−1𝛾𝑠−1(𝑤𝑠−2
2 ) +

𝜕

𝜕𝑤𝑠−2
2 ((𝛼𝑠𝜙𝑠(𝑤𝑠−2

2 ) + 𝛼𝑠+1𝜙𝑠+1(𝑤𝑠−2
2 ))𝛾𝑠−1(𝑤𝑠−2

2 )) + 𝛼𝑠𝑠𝑠(𝑤𝑠−2
2 )

+ 𝛼𝑠+1𝑠𝑠+1(𝑤𝑠−2
2 ) = 0. 

It follows that 𝛼𝑠𝑠𝑠(𝑤𝑠−2
2 )  + 𝛼𝑠+1𝑠𝑠+1(𝑤𝑠−2

2 )  =  0 since ℋ0 is orthogonal to ℋ1. Hence 

𝛼𝑠  =  𝛼𝑠+1  =  0 implying 𝛼𝑠−1  =  0. Thus we have dim ker(𝑇𝑠−2
2  −  𝑤𝑠−2

2 )  ≥  3. This 

contradiction proves that dim ker(𝑇𝑠−1
2  −  𝑤𝑠−2

2 ) = 1 and hence 𝑇𝑠
2 is in 𝐵𝑠(𝛺). 

To show that 𝑇𝑠−1
2  is in 𝐵𝑠(𝛺), pick any 𝑥 ∈  ℋ0, and note that there exists 𝓏 ∈ ℋ such 

that (𝑇𝑠−2
2  −  𝑤𝑠−2

2 )𝓏 =  𝑥 since 𝑇𝑠−2
2  −  𝑤𝑠−2

2  is onto. Let 𝓏ℋ1  and 𝓏ℋ0  be the projections 

of 𝓏  to the subspaces ℋ0 and ℋ1, respectively. We have [(𝑇𝑠−1
2 −𝑤𝑠−2

2 )𝓏ℋ0 +

𝑆𝑠−2(𝓏ℋ1)]  + (𝑇𝑠
2  −  𝑤𝑠−2

2 )𝓏ℋ1 = 𝑥. Therefore (𝑇𝑠
2  −  𝑤𝑠−2

2 )𝓏ℋ1 = 0 and (𝑇𝑠−1
2  −
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 𝑤𝑠−2
2 )𝓏ℋ0 + 𝑆𝑠−2(𝓏ℋ1) = 𝑥. Since dim ker (𝑇𝑠

2  −  𝑤𝑠−2
2 )  =  1, so 𝓏ℋ1 = 𝑐𝑠𝑡𝑠(𝑤𝑠−2

2 ), it 

follows that 

𝑥 =  (𝑇𝑠−1
2  −  𝑤𝑠−2

2 )𝓏ℋ0 + 𝑆𝑠−2(𝓏ℋ1) 

= (𝑇𝑠−1
2 − 𝑤𝑠−2

2 )𝓏ℋ0 + 𝑆𝑠−2(𝑐𝑠𝑡𝑠(𝑤𝑠−2
2 )) 

= (𝑇𝑠−1
2  −  𝑤𝑠−2

2 )𝓏ℋ0 + 𝑐𝑠𝛾𝑠−1(𝑤𝑠−2
2 ) 

= (𝑇𝑠−1
2 −𝑤𝑠−2

2 )𝓏ℋ0 + (𝑇𝑠−1
2 −𝑤𝑠−2

2 )(𝑐𝑠
𝜕

𝜕𝑤𝑠−2
2  𝛾𝑠−1(𝑤𝑠−2

2 )) 

= ((𝑇𝑠−1
2  −  𝑤𝑠−2

2 )(𝓏ℋ0 + 𝑐𝑠
𝜕

𝜕𝑤𝑠−2
2  𝛾𝑠−1(𝑤𝑠−2

2 )). 

Thus 𝑇𝑠−1
2 −𝑤𝑠−2

2  is onto. We have 2 =  dim ker (𝑇𝑠−2
2  − 𝑤𝑠−2

2 )  =  dim ker (𝑇𝑠−1
2 −

𝑤𝑠−2
2 ) + dim ker (𝑇𝑠

2 −𝑤𝑠−2
2 ). Hence dim ker (𝑇𝑠−1

2  −  𝑤𝑠−2
2 )  =  1 and we see that 𝑇𝑠−1

2  

is in 𝐵𝑠(𝛺). 
Finally, since 𝑆𝑠−2(𝑡𝑠(𝑤𝑠−2

2 ))  =  𝛾𝑠−1(𝑤𝑠−2
2 ), it follows that 𝑇𝑠−1

2 𝑆𝑠−2  =  𝑆𝑠−2𝑇𝑠
2. 

Corollary (6.2.38)[209]: Let 𝑇𝑠−2
2  be an operator in ℱ𝐵𝑠+1(𝛺). Suppose 

{𝛾𝑠−1, 𝛾𝑠}, {𝛾̃𝑠−1, 𝛾̃𝑠} are two frames of the vector bundle 𝐸𝑇𝑠−22  such that 𝛾𝑠−1(𝑤𝑠−2
2 ) ⊥

(
𝜕

𝜕𝑤𝑠−2
2  𝛾𝑠−1(𝑤𝑠−2

2 ) − 𝛾𝑠(𝑤𝑠−2
2 )) and 𝛾̃𝑠−1(𝑤𝑠−2

2 ) ⊥ (
𝜕

𝜕𝑤𝑠−2
2  𝛾̃𝑠−1(𝑤𝑠−2

2 ) − 𝛾̃𝑠(𝑤𝑠−2
2 )) for all 

𝑤𝑠−2
2  ∈  𝛺. If 𝜙𝑠−2 = (

𝜙𝑠𝑠 𝜙𝑠 𝑠+1
𝜙𝑠+1 𝑠 𝜙𝑠+1 𝑠+1

) is any change of frame between {𝛾𝑠−1, 𝛾𝑠} and 

{𝛾̃𝑠−1, 𝛾̃𝑠}, that is, 

{𝛾̃𝑠−1, 𝛾̃𝑠} = {𝛾𝑠−1, 𝛾𝑠} (
𝜙𝑠𝑠 𝜙𝑠 𝑠+1
𝜙𝑠+1 𝑠 𝜙𝑠+1 𝑠+1

), 

then 𝜙𝑠+1 𝑠  =  0, 𝜙𝑠𝑠  =  𝜙𝑠+1 𝑠+1 and 𝜙𝑠 𝑠+1 = 𝜙𝑠𝑠
′ . 

Proof. Define the unitary map 𝛤, as above, using the holomorphic frame 𝛾𝑠−2 = {𝛾𝑠−1, 𝛾𝑠}. 
The operator 𝑇𝑠−2

2  is then unitarily equivalent to the adjoint of the multiplication operator 

on the Hilbert space ℋ𝛤 possessing a reproducing kernel (𝐾𝑠−2)𝛤 of the form (24). Let 𝑒𝑠 
and 𝑒𝑠+1 be the standard unit vectors in ℂ2. Clearly, ((𝐾𝑠−2)𝛤)𝑤𝑠−22 (·)𝑒𝑠 and 

((𝐾𝑠−2)𝛤)𝑤𝑠−22 (·)𝑒𝑠+1 are two linearly independent eigenvectors of 𝑀∗ with eigenvalue 

𝑤̅𝑠−2
2 . 

Similarly, corresponding to the holomorphic frame 𝛾̃𝑠−2 = {𝛾̃𝑠−1, 𝛾̃𝑠}, the square 

operator 𝑇𝑠−2
2  is unitarily equivalent to the adjoint of multiplication operator on the Hilbert 

space ℋ𝛤̃. 

The reproducing kernel (𝐾𝑠−2)𝛤̃ is again of the form (24) except that 𝐾𝑠−1 and 𝐾𝑠 must be 

replaced by 𝐾̃𝑠−1 and 𝐾̃𝑠, respectively. 

For 𝑖 =  𝑠 − 1, 𝑠, set 𝑠𝑖(𝑤𝑠−2
2 ) ∶=  ((𝐾𝑠−2)𝛤)(𝑤𝑠−2

2 )𝑒𝑖, and 𝑠̃𝑖(𝑤𝑠−2
2 ) ∶=

 ((𝐾𝑠−2)𝛤̃)(𝑤𝑠−2
2 )𝑒𝑖. Let 𝜙𝑠−2(𝑤𝑠−2

2 ) ∶=  (
𝜙𝑠−1 𝑠−1(𝑤𝑠−2

2 ) 𝜙𝑠−1 𝑠(𝑤𝑠−2
2 )

𝜙𝑠 𝑠−1(𝑤𝑠−2
2 ) 𝜙𝑠𝑠(𝑤𝑠−2

2 )
) be the 

holomorphic function, taking values in 2 × 2 matrices, such that 

(𝑠̃𝑠−1(𝑤𝑠−2
2 ), 𝑠̃𝑠(𝑤𝑠−2

2 ))  =  (𝑠𝑠−1(𝑤𝑠−2
2 ), 𝑠𝑠(𝑤𝑠−2

2 ))𝜙𝑠−2(𝑤𝑠−2
2 ). 

This implies that 

𝑠̃𝑠−1(𝑤𝑠−2
2 ) = 𝜙𝑠−1 𝑠−1(𝑤𝑠−2

2 )𝑠𝑠−1(𝑤𝑠−2
2 )  +  𝜙𝑠 𝑠−1(𝑤𝑠−2

2 )𝑠𝑠(𝑤𝑠−2
2 )                        (56) 

and 

𝑠̃𝑠(𝑤𝑠−2
2 )  =  𝜙𝑠−1 𝑠(𝑤𝑠−2

2 )𝑠𝑠−1(𝑤𝑠−2
2 )  + 𝜙𝑠𝑠(𝑤𝑠−2

2 )𝑠𝑠(𝑤𝑠−2
2 ).                  (57) 

From Equation (56), equating the first and the second coordinates separately, we have 
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(𝐾̃𝑠−1)𝑤𝑠−2
2 (·)

= 𝜙𝑠−1 𝑠−1(𝑤𝑠−2
2 )(𝐾𝑠−1)𝑤𝑠−22 (·) + 𝜙𝑠 𝑠−1(𝑤𝑠−2

2 )
𝜕

𝜕𝑤̅𝑠−2
2
(𝐾𝑠−1)𝑤𝑠−22 (·)    (58) 

and 
𝜕

𝜕𝓏
(𝐾̃𝑠−1)𝑤𝑠−22

(·)

= 𝜙𝑠−1 𝑠−1(𝑤𝑠−2
2 )

𝜕

𝜕𝓏
(𝐾𝑠−1)𝑤𝑠−22 (·) + 𝜙𝑠 𝑠−1(𝑤𝑠−2

2 )
𝜕2

𝜕𝓏𝜕𝑤̅𝑠−2
2
(𝐾𝑠−1)𝑤𝑠−22 (·) 

+𝜙𝑠 𝑠−1(𝑤𝑠−2
2 )(𝐾𝑠)𝑤𝑠−22 (·).                                             (59) 

From these two equations, we get 

𝜙𝑠−1 𝑠−1(𝑤𝑠−2
2 ) 

𝜕

𝜕𝓏
(𝐾𝑠−1)𝑤𝑠−22 (·) + 𝜙𝑠 𝑠−1(𝑤𝑠−2

2 )
𝜕2

𝜕𝓏𝜕𝑤̅𝑠−2
2
(𝐾𝑠−1)𝑤𝑠−22 (·)  = 

𝜙𝑠−1 𝑠−1(𝑤𝑠−2
2 )

𝜕

𝜕𝓏
 (𝐾𝑠−1)𝑤𝑠−22 (·) + 𝜙𝑠 𝑠−1(𝑤𝑠−2

2 )
𝜕2

𝜕𝓏𝜕𝑤̅𝑠−2
2
(𝐾𝑠−1)𝑤𝑠−22 (·)

+ 𝜙𝑠 𝑠−1(𝑤𝑠−2
2 )(𝐾𝑠)𝑤𝑠−22 (·), 

which implies that 𝜙𝑠 𝑠−1  =  0. Finally, from Equation (57), we have 
𝜕

𝜕𝑤̅𝑠−2
2 (𝐾̃𝑠−1)𝑤𝑠−22

(·)

= 𝜙𝑠−1 𝑠(𝑤𝑠−2
2 )(𝐾𝑠−1)𝑤𝑠−22 (·) + 𝜙𝑠𝑠(𝑤𝑠−2

2 )
𝜕

𝜕𝑤̅𝑠−2
2
(𝐾𝑠−1)𝑤𝑠−22 (·).         (60) 

The Equations (57) and (60) together give 

𝜙𝑠−1 𝑠 = 𝜙𝑠−1 𝑠−1
′    and   𝜙𝑠−1 𝑠−1 = 𝜙𝑠𝑠 

completing the proof. 

Corollary (6.2.39)[209]: Let 𝑇𝑠−2
2 , 𝑇̃𝑠−2

2 ∈ ℱ𝐵𝑠+1(𝛺) be two operators of the form 

(
𝑇𝑠−1
2 𝑆𝑠−2
0 𝑇𝑠

2 )  and (
𝑇̃𝑠−1
2 𝑆̃𝑠−2
0 𝑇̃𝑠

2
)  with respect to the decomposition ℋ =  ℋ0⊕ ℋ𝑠 and 

ℋ̃ = ℋ̃0⊕ℋ̃1, respectively. Let 𝑈𝑠−2 = (
𝑈𝑠𝑠 𝑈𝑠 𝑠+1
𝑈𝑠+1 𝑠 𝑈𝑠+1 𝑠+1

) ∶  ℋ0  ⊕ ℋ1  → ℋ̃0  ⊕ ℋ̃1 

be a unitary operator such that 

(
𝑈𝑠𝑠 𝑈𝑠 𝑠+1
𝑈𝑠+1 𝑠 𝑈𝑠+1 𝑠+1

) (
𝑇𝑠−1
2 𝑆𝑠−2
0 𝑇𝑠

2 ) = (
𝑇̃𝑠−1
2 𝑆̃𝑠−2
0 𝑇̃𝑠

2
) (

𝑈𝑠𝑠 𝑈𝑠 𝑠+1
𝑈𝑠+1 𝑠 𝑈𝑠+1 𝑠+1

), 

then 𝑈𝑠 𝑠+1  =  𝑈𝑠+1 𝑠  =  0. 

Proof. Let {𝛾𝑠−1, 𝛾𝑠} and {𝛾̃𝑠−1, 𝛾̃𝑠} be holomorphic frames of 𝐸𝑇𝑠−22  and 𝐸𝑇̃𝑠−22  respectively 

with the property that 𝛾𝑠−1  ⊥  (
𝜕

𝜕𝑤𝑠−2
2  𝛾𝑠−1  −  𝛾𝑠) and 𝛾̃𝑠−1 ⊥ (

𝜕

𝜕𝑤𝑠−2
2  𝛾̃𝑠−1  −  𝛾̃𝑠). Set 𝑡𝑠 ∶

=  (
𝜕

𝜕𝑤𝑠−2
2  𝛾𝑠−1  −  𝛾𝑠) and 𝑡̃𝑠 ∶=  (

𝜕

𝜕𝑤𝑠−2
2  𝛾̃𝑠−1  −  𝛾̃𝑠). Since 𝑈𝑠−2 intertwines 𝑇𝑠−2

2  and 𝑇̃𝑠−2
2 , 

it follows that {𝑈𝑠−2𝛾𝑠−1 , 𝑈𝑠−2𝛾𝑠} is a second holomorphic frame of 𝐸𝑇̃𝑠−22  with the property 

𝑈𝑠−2𝛾𝑠−1  ⊥  (
𝜕

𝜕𝑤𝑠−2
2  (𝑈𝑠−2𝛾𝑠−1)  − 𝑈𝑠−2𝛾𝑠)  =  𝑈𝑠−2(𝑡𝑠). By Corollary (6.2.38), we have 

that 

𝑈𝑠−2(𝛾𝑠−1)  = 𝜙𝑠−2𝛾̃𝑠−1                                                  (61) 
And 

𝑈𝑠−2(𝛾𝑠)  = 𝜙𝑠−2
′ 𝛾̃𝑠−1  + 𝜙𝑠−2𝛾̃𝑠.                                      (62) 

From equations (61) and (62), we get 
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𝑈𝑠−2(𝑡𝑠)  = 𝜙𝑠−2𝑡̃𝑠.                                          (63) 
From equations (61) and (63), it follows that 𝑈𝑠−2 maps ℋ0 to ℋ0 and ℋ1 to ℋ1. Thus 𝑈𝑠−2 

is a block diagonal from ℋ0  ⊕ ℋ1 onto ℋ̃0  ⊕ ℋ̃1. 

Corollary (6.2.40)[209]: For 𝑖 =  𝑠 − 1, 𝑠, let 𝑇𝑖
2 be any two operators in 𝐵𝑠(𝛺). Let 𝑆𝑠−2 

and 𝑆̃𝑠−2 be bounded linear operators such that 𝑇𝑠−1
2 𝑆𝑠−2  =  𝑆𝑠−2𝑇𝑠

2 and 𝑇𝑠−1
2 𝑆̃𝑠−2 =

𝑆̃𝑠−2𝑇𝑠
2. If 𝑇2 = (

𝑇𝑠−1
2 𝑆𝑠−2
0 𝑇𝑠

2 )  and 𝑇̃𝑠−2
2 = (

𝑇𝑠−1
2 𝑆̃𝑠−2
0 𝑇𝑠

2 ), then 𝑇𝑠−2
2  is unitarily equivalent 

to 𝑇̃𝑠−2
2  if and only if 𝑆̃𝑠−2 = 𝑒𝑠−2

𝑖𝜃𝑠−2𝑆𝑠−2 for some real number 𝜃𝑠−2. 

Proof. Suppose that 𝑈𝑠−2𝑇𝑠−2
2  =  𝑇̃𝑠−2

2 𝑈𝑠−2 for some unitary operator 𝑈𝑠−2. We have just 

shown that such an operator 𝑈𝑠−2 must be diagonal, say 𝑈𝑠−2 = (
𝑈𝑠𝑠 0
0 𝑈𝑠+1 𝑠+1

). Hence 

we have  

𝑈𝑠𝑠𝑇𝑠−1
2 = 𝑇𝑠−1

2 𝑈𝑠𝑠, 𝑈𝑠+1 𝑠+1𝑇𝑠
2 = 𝑇𝑠

2𝑈𝑠+1 𝑠+1, 𝑈𝑠𝑠𝑆𝑠−2 = 𝑆̃𝑠−2𝑈𝑠+1 𝑠+1.                         (64) 
Since 𝑈𝑠𝑠 is unitary, the first of the equations (64) implies that 

𝑈𝑠𝑠 ∈ {𝑇𝑠−1
2 , 𝑇𝑠−1

2∗ } ∶=  {𝑊 ∈ ℒ(ℋ0) ∶  𝑊𝑇𝑠−1
2 = 𝑇𝑠−1

2 𝑊 and 𝑊𝑇𝑠−1
2∗ = 𝑇𝑠−1

2∗ 𝑊}. 

Since 𝑇𝑠−1
2  is an irreducible operator, we conclude that 𝑈𝑠𝑠 = 𝑒𝑠−2

𝑖𝜃𝑠 𝐼ℋ0 for some 𝜃𝑠  ∈ ℝ. 

Similarly, 𝑈𝑠+1 𝑠+1 = 𝑒𝑠−2
𝑖𝜃𝑠+1𝐼ℋ1  for some 𝜃𝑠+1  ∈ ℝ. Hence the third equation in (64) 

implies that 𝑆̃𝑠−2 = 𝑒𝑠−2
𝑖(𝜃𝑠−𝜃𝑠+1)𝑆𝑠−2. 

Conversely suppose that 𝑆̃𝑠−2 = 𝑒𝑠−2
𝑖𝜃𝑠−2𝑆𝑠−2 for some real number 𝜃𝑠−2. Then evidently the 

operator 𝑈𝑠−2 ∶= (
exp  (𝑖

𝜃𝑠−2

2
) 𝐼ℋ0 0

0 exp  (−𝑖
𝜃𝑠−2

2
) 𝐼ℋ1

) is unitary on ℋ = ℋ0  ⊕ ℋ1 

and 𝑈𝑠−2𝑇𝑠−2
2 = 𝑇̃𝑠−2

2 𝑈𝑠−2. 

Corollary (6.2.41)[209]: Suppose that 𝑇𝑠−2
2  =  (

𝑇𝑠−1
2 𝑆𝑠−2
0 𝑇𝑠

2 )  and 𝑇̃𝑠−2
2 = (

𝑇̃𝑠−1
2 𝑆̃𝑠−2
0 𝑇̃𝑠

2
)  

are any two operators in ℱ𝐵𝑠+1(𝛺). Then the operators 𝑇𝑠−2
2  and 𝑇̃𝑠−2

2  are unitarily 

equivalent if and only if 𝒦𝑇𝑠
2 = 𝒦𝑇̃𝑠

2 (or, 𝒦𝑇𝑠−1
2 = 𝒦𝑇̃𝑠−1

2 ) and 
‖𝑆𝑠−2(𝑡𝑠)‖

2

‖𝑡𝑠‖
2

=
‖𝑆̃𝑠−2(𝑡̃𝑠)‖

2

‖𝑡̃𝑠‖
2

 , where 

𝑡𝑠 and 𝑡̃𝑠 are non-vanishing holomorphic sections for the vector bundles 𝐸𝑇𝑠2 and 𝐸𝑇̃𝑠2, 

respectively. 

Proof. On a small open subset of 𝛺, we can assume that 𝑆𝑠−2(𝑡𝑠) and 𝑆̃𝑠−2(𝑡̃𝑠) are 

holomorphic frames of the bundle 𝐸𝑇𝑠−12  and 𝐸𝑇̃𝑠−12  , respectively. First suppose that 

𝜕̅𝜕𝑙𝑜𝑔‖𝑆𝑠−2(𝑡𝑠)‖
2 = 𝜕̅𝜕 𝑙𝑜𝑔 ‖𝑆̃𝑠−2(𝑡𝑠)‖

2
 and 

‖𝑆𝑠−2(𝑡𝑠)‖
2

‖𝑡𝑠‖
2

=
‖𝑆̃𝑠−2(𝑡̃𝑠)‖

2

‖𝑡̃𝑠‖
2

 . Then we claim that 

𝑇𝑠−2
2  and 𝑇̃𝑠−2

2  are unitarily equivalent. The equality of the curvatures, namely, 

𝜕̅𝜕 𝑙𝑜𝑔 ‖𝑆𝑠−2(𝑡𝑠)‖
2  =  𝜕̅𝜕 𝑙𝑜𝑔 ‖𝑆̃𝑠−2(𝑡̃𝑠)‖

2
 implies that ‖𝑆𝑠−2(𝑡𝑠)‖

2 =

|𝜙𝑠−2|
2‖𝑆̃𝑠−2(𝑡̃𝑠)‖

2
 for some non-vanishing holomorphic function 𝜙𝑠−2 on 𝛺. It may be 

that we have to shrink, without loss of generality, to a smaller open set 𝛺0. The second of 

our assumptions gives ‖𝑡𝑠‖
2 = |𝜙𝑠−2|

2‖𝑡̃𝑠‖
2. Let 𝛾𝑠−1(𝑤𝑠−2

2 ) ∶=  𝑆𝑠−2(𝑡𝑠(𝑤𝑠−2
2 )) and 

𝛾̃𝑠−1(𝑤𝑠−2
2 ):=  𝑆̃𝑠−2(𝑡̃𝑠(𝑤𝑠−2

2 )); 𝛾𝑠(𝑤𝑠−2
2 ): =

𝜕

𝜕𝑤𝑠−2
2  𝛾𝑠−1(𝑤𝑠−2

2 )  − 𝑡𝑠(𝑤𝑠−2
2 ) and 

𝛾̃𝑠(𝑤𝑠−2
2 ): =

𝜕

𝜕𝑤𝑠−2
2  𝛾̃𝑠−1(𝑤𝑠−2

2 )  − 𝑡̃𝑠(𝑤𝑠−2
2 ). It follows that {𝛾𝑠−1, 𝛾𝑠} and {𝛾̃𝑠−1, 𝛾̃𝑠} are 
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holomorphic frames of 𝐸𝑇𝑠−22  and 𝐸𝑇̃𝑠−22 , respectively. Define the map 𝛷 ∶  𝐸𝑇𝑠−22  →  𝐸𝑇̃𝑠−22  

as follows: 

(i) 𝛷(𝛾𝑠−1(𝑤𝑠−2
2 ))  = 𝜙𝑠−2(𝑤𝑠−2

2 )𝛾̃𝑠−1(𝑤𝑠−2
2 ), 

(ii) 𝛷(𝛾𝑠(𝑤𝑠−2
2 ))  =  𝜙𝑠−2

′ (𝑤𝑠−2
2 )𝛾̃𝑠−1(𝑤𝑠−2

2 )  + 𝜙𝑠−2(𝑤𝑠−2
2 )𝛾̃𝑠(𝑤𝑠−2

2 ). 
Clearly, 𝛷 is holomorphic. Note that 

〈𝛷(𝛾𝑠−1(𝑤𝑠−2
2 )), 𝛷(𝛾𝑠(𝑤𝑠−2

2 ))〉  
= 〈𝜙𝑠−2(𝑤𝑠−2

2 )𝛾̃𝑠−1(𝑤𝑠−2
2 ), 𝜙𝑠−2

′ (𝑤𝑠−2
2 )𝛾̃𝑠−1(𝑤𝑠−2

2 )  + 𝜙𝑠−2(𝑤𝑠−2
2 )𝛾̃𝑠(𝑤𝑠−2

2 )〉 

= 〈𝜙𝑠−2(𝑤𝑠−2
2 )𝛾̃𝑠−1(𝑤𝑠−2

2 ), 𝜙𝑠−2
′ (𝑤𝑠−2

2 )𝛾̃𝑠−1(𝑤𝑠−2
2 ) + 𝜙𝑠−2(𝑤𝑠−2

2 )(
𝜕

𝜕𝑤𝑠−2
2  𝛾̃𝑠−1(𝑤𝑠−2

2 )  

− 𝑡̃𝑠(𝑤𝑠−2
2 ))〉 

= 〈𝜙𝑠−2(𝑤𝑠−2
2 )𝛾̃𝑠−1(𝑤𝑠−2

2 ),
𝜕

𝜕𝑤𝑠−2
2 (𝜙𝑠−2(𝑤𝑠−2

2 )𝛾̃𝑠−1(𝑤𝑠−2
2 )) − 𝜙𝑠−2(𝑤𝑠−2

2 )𝑡̃𝑠(𝑤𝑠−2
2 )〉 

=
𝜕

𝜕𝑤̅𝑠−2
2
‖𝜙𝑠−2(𝑤𝑠−2

2 )𝛾̃𝑠−1(𝑤𝑠−2
2 )‖2 

=
𝜕

𝜕𝑤̅𝑠−2
2  ‖𝛾𝑠−1(𝑤𝑠−2

2 )‖2 

and  

〈𝛾𝑠−1(𝑤𝑠−2
2 ), 𝛾𝑠(𝑤𝑠−2

2 )〉  =  〈𝛾𝑠−1(𝑤𝑠−2
2 ),

𝜕

𝜕𝑤𝑠−2
2  𝛾𝑠−1(𝑤𝑠−2

2 )  − 𝑡𝑠(𝑤𝑠−2
2 )〉

=
𝜕

𝜕𝑤̅𝑠−2
2  ‖𝛾𝑠−1(𝑤𝑠−2

2 )‖2. 

Hence we have 〈𝛷(𝛾𝑠−1(𝑤𝑠−2
2 )), 𝛷(𝛾𝑠(𝑤𝑠−2

2 ))〉  =  〈𝛾𝑠−1(𝑤𝑠−2
2 ), 𝛾𝑠(𝑤𝑠−2

2 )〉. Similarly, 

‖𝛷(𝛾𝑠−1(𝑤𝑠−2
2 ))‖ = ‖𝛾𝑠−1(𝑤𝑠−2

2 )‖ and ‖𝛷(𝛾𝑠)‖ =  ‖𝛾𝑠‖. Thus 𝐸𝑇𝑠−22  and 𝐸𝑇̃𝑠−22  are 

equivalent as holomorphic Hermitian vector bundles. Hence 𝑇𝑠−2
2  and 𝑇̃𝑠−2

2  are unitarily 

equivalent by Theorem (6.2.2) of Cowen and Douglas. 

Conversely, suppose 𝑇𝑠−2
2  and 𝑇̃𝑠−2

2  are unitarily equivalent. Let 𝑈𝑠−2 ∶ ℋ → ℋ̃ be the 

unitary map such that 𝑇𝑠−2
2 = 𝑇̃𝑠−2

2 𝑈𝑠−2 . By Corollary (6.2.39), 𝑈𝑠−2 takes the form 

(
𝑈𝑠 0
0 𝑈𝑠+1

)  for some pair of unitary operators 𝑈𝑠 and 𝑈𝑠+1. Hence we have 

𝑈𝑠(𝑆𝑠−2(𝑡𝑠))  =  𝜙𝑠(𝑆̃𝑠−2(𝑡̃𝑠)) and 𝑈𝑠+1𝑡𝑠 = 𝜙𝑠+1𝑡̃𝑠. 
The intertwining relation 𝑈𝑠𝑆𝑠−2  =  𝑆̃𝑠−2𝑈𝑠+1 implies that 𝜙𝑠 = 𝜙𝑠+1. Thus 𝒦𝑇𝑠−1

2 =

 𝒦𝑇̃𝑠−1
2  and 

‖𝑆𝑠−2(𝑡𝑠)‖
2

‖𝑡𝑠‖
2

=
‖𝑈𝑠(𝑆𝑠−2(𝑡𝑠))‖

2

‖𝑈𝑠+1(𝑡𝑠)‖
2

=
‖𝜙𝑠𝑆̃𝑠−2(𝑡̃𝑠)‖

2

‖𝜙𝑠+1𝑡̃𝑠‖
2

=
‖𝑆̃𝑠−2(𝑡̃𝑠)‖

2

‖𝑡̃𝑠‖
2

 . 

This verification completes the proof. 

Corollary (6.2.42)[209]: Let 𝑇𝑠−2
2  be an operator in ℱ𝐵𝑠+1(𝔻) and let 𝑡𝑠 be a non-vanishing 

holomorphic section of the bundle 𝐸1 corresponding to the operator 𝑇𝑠
2. For any 𝜑 in Möb, 

set 𝑡𝑠,𝜑 = 𝑡𝑠 ∘ 𝜑
−1. The operator 𝑇𝑠−2

2  is homogeneous if and only if 𝑇𝑠−1
2 , 𝑇𝑠

2 are 

homogeneous and 
‖𝑆𝑠−2(𝑡𝑠,𝜑)‖

2

‖𝑡𝑠,𝜑‖
2  = |(𝜑−1)′|2

‖𝑆𝑠−2(𝑡𝑠)‖
2

‖𝑡𝑠‖
2

 for all 𝜑 in Möb. 

Proof. Using the intertwining property in the class ℱ𝐵𝑠+1(𝐷), we see that 

𝜑(𝑇𝑠−2
2 )  =  (

𝜑(𝑇𝑠−1
2 ) 𝑆𝑠−2𝜑

′(𝑇𝑠
2)

0 𝜑(𝑇𝑠
2)

). 
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Suppose that 𝑇𝑠−2
2  is homogeneous, that is, 𝑇𝑠−2

2  is unitarily equivalent to 𝜑(𝑇𝑠−2
2 ) for 𝜑 in 

Möb. From Corollary (6.2.41), it follows that 𝑇𝑠−1
2  is unitarily equivalent to 𝜑(𝑇𝑠−1

2 ), 𝑇𝑠
2 is 

unitarily equivalent to 𝜑(𝑇𝑠
2) and 

‖𝑆𝑠−2𝜑
′(𝑇𝑠

2)(𝑡𝑠, 𝜑(𝑤𝑠−2
2 ))‖

2

‖𝑡𝑠,𝜑(𝑤𝑠−2
2 )‖

2 =
‖𝑆𝑠−2(𝑡𝑠(𝑤𝑠−2

2 ))‖
2

‖𝑡𝑠(𝑤𝑠−2
2 )‖2

 .                              (65) 

Now, we have 

‖𝑆𝑠−2 𝜑
′(𝑇𝑠

2) (𝑡𝑠,𝜑(𝑤𝑠−2
2 ))‖

2

‖𝑡𝑠,𝜑(𝑤𝑠−2
2 )‖

2 =
‖𝑆𝑠−2𝜑

′(𝜑−1(𝑤𝑠−2
2 )) (𝑡𝑠,𝜑(𝑤𝑠−2

2 ))‖
2

‖𝑡𝑠,𝜑(𝑤𝑠−2
2 )‖

2

=
|𝜑′(𝜑−1(𝑤𝑠−2

2 ))|
2
‖𝑆𝑠−2 (𝑡𝑠,𝜑(𝑤𝑠−2

2 ))‖
2

‖𝑡𝑠,𝜑(𝑤𝑠−2
2 )‖

2  

=
|(𝜑−1)′(𝑤𝑠−2

2 )|−2 ‖𝑆𝑠−2 (𝑡𝑠,𝜑(𝑤𝑠−2
2 ))‖

2

‖𝑡𝑠,𝜑(𝑤𝑠−2
2 )‖

2  .                                      (66) 

From equations (65) and (66), it follows that 

‖𝑆𝑠−2 (𝑡𝑠,𝜑(𝑤𝑠−2
2 ))‖

2

‖𝑡𝑠,𝜑(𝑤𝑠−2
2 )‖

2 = |(𝜑−1)′(𝑤𝑠−2
2 )|2  

‖𝑆𝑠−2(𝑡𝑠(𝑤𝑠−2
2 ))‖

2

‖𝑡𝑠(𝑤𝑠−2
2 )‖2

 .             (67) 

Conversely suppose that 𝑇𝑠−1
2 , 𝑇𝑠

2 are homogeneous operators and 

‖𝑆𝑠−2 (𝑡𝑠,𝜑(𝑤𝑠−2
2 ))‖

2

‖𝑡𝑠,𝜑(𝑤𝑠−2
2 )‖

2 = |(𝜑−1)′ (𝑤𝑠−2
2 )|2  

‖𝑆𝑠−2(𝑡𝑠(𝑤𝑠−2
2 ))‖

2

‖𝑡𝑠(𝑤𝑠−2
2 )‖2

 

for all 𝜑 in Möb. From equations (66), (67) and Corollary (6.2.41), it follows that 𝑇𝑠−2
2  is a 

homogeneous operator. We have (see [190]). 

Corollary (6.2.43)[209]: An operator 𝑇𝑠−2
2  in ℱ𝐵𝑠+1(𝔻) is homogeneous if and only if 

(i) 𝑇𝑠−1
2  and 𝑇𝑠

2 are homogeneous operators; 

(ii) 𝒦𝑇𝑠
2(𝑤𝑠−2

2 ) = 𝒦𝑇𝑠−1
2 (𝑤𝑠−2

2 ) + 𝒦𝐵𝑠−2∗ (𝑤𝑠−2
2 ), 𝑤𝑠−2

2  ∈ 𝔻, where 𝐵𝑠−2 is the forward 

Bergman shift; 

(iii) 𝑆𝑠−2(𝑡𝑠(𝑤𝑠−2
2 ))  =  𝛼𝑠−2𝛾𝑠−1(𝑤𝑠−2

2 ) for some positive real number 𝛼𝑠−2 and 

‖𝑡𝑠(𝑤𝑠−2
2 )‖2 =

1

(1−|𝑤𝑠−2
2 |

2
)
𝜆2+2

 , ‖𝛾𝑠−1(𝑤𝑠−2
2 )‖2 =

1

(1−|𝑤𝑠−2
2 |

2
)
𝜆2

 . 

Proof. Suppose 𝑇𝑠−2
2  is a homogeneous operator. Then Corollary (6.2.42) shows that 𝑇𝑠−1

2  

and 𝑇𝑠
2 are homogeneous operators. We may therefore find non-vanishing holomorphic 

sections 𝛾𝑠−1 and 𝑡𝑠 of 𝐸0 and 𝐸1, respectively, such that ‖𝛾𝑠−1(𝑤𝑠−2
2 )‖2 =

(1 − |𝑤𝑠−2
2 |2)−𝜆

2
 and ‖𝑡𝑠(𝑤𝑠−2

2 )‖2 = (1 − |𝑤𝑠−2
2 |2)−𝜇

2
 for some positive real 𝜆2 and 𝜇2. 

For 𝜑 in Möb, set 𝛾𝑠−1,𝜑  =  𝛾𝑠−1 ∘ 𝜑
−1 and 𝑡𝑠,𝜑 = 𝑡𝑠 ∘ 𝜑

−1. Clearly, ‖𝛾𝑠−1,𝜑(𝑤𝑠−2
2 )‖

2
=

|(𝜑−1)′(𝑤𝑠−2
2 )|−𝜆

2
‖𝛾𝑠−1(𝑤𝑠−2

2 )‖2 and ‖𝑡𝑠,𝜑(𝑤𝑠−2
2 )‖

2
= |(𝜑−1)′(𝑤𝑠−2

2 )|−𝜇
2
‖𝑡𝑠(𝑤𝑠−2

2 )‖2. 

Let 𝑆𝑠−2(𝑡𝑠(𝑤𝑠−2
2 ))  =  𝜓(𝑤𝑠−2

2 )𝛾𝑠−1(𝑤𝑠−2
2 ) for some holomorphic function 𝜓 on 𝔻. We 

have 𝑆𝑠−2(𝑡𝑠,𝜑(𝑤𝑠−2
2 )) = 𝑆𝑠−2(𝑡𝑠(𝜑

−1(𝑤𝑠−2
2 ))) = 𝜓(𝜑−1(𝑤𝑠−2

2 ))𝛾𝑠−1(𝜑
−1(𝑤𝑠−2

2 )) =

𝜓(𝜑−1(𝑤𝑠−2
2 ))𝛾𝑠−1,𝜑(𝑤𝑠−2

2 ) and 
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‖𝑆𝑠−2 (𝑡𝑠,𝜑(𝑤𝑠−2
2 ))‖

2

‖𝑡𝑠,𝜑(𝑤𝑠−2
2 )‖

2 = |(𝜑−1)′(𝑤𝑠−2
2 )|2  

‖𝑆𝑠−2(𝑡𝑠(𝑤𝑠−2
2 ))‖

2

‖𝑡𝑠(𝑤𝑠−2
2 )‖2

 .                 (68) 

Combining these we see that 

‖𝑆𝑠−2 (𝑡𝑠,𝜑(𝑤𝑠−2
2 ))‖

2

‖𝑡𝑠,𝜑(𝑤𝑠−2
2 )‖

2 = |𝜓(𝜑−1(𝑤𝑠−2
2 ))|

2
 
‖(𝛾𝑠−1,𝜑(𝑤𝑠−2

2 ))‖
2

‖𝑡𝑠,𝜑(𝑤𝑠−2
2 )‖

2  

= |𝜓(𝜑−1(𝑤𝑠−2
2 ))|

2
|(𝜑−1)′(𝑤𝑠−2

2 )|𝜇
2−𝜆2    

‖(𝛾𝑠−1(𝑤𝑠−2
2 ))‖

2

‖𝑡𝑠(𝑤𝑠−2
2 )‖2

 .                 (69) 

From the equations (68) and (69), we get 

|𝜓(𝑤𝑠−2
2 )|2|(𝜑−1)′(𝑤𝑠−2

2 )|𝜆
2+2−𝜇2 = |𝜓(𝜑−1𝑤𝑠−2

2 )|2.                    (70) 

Pick 𝜑 =  𝜑𝑢, where 𝜑𝑢(𝑤𝑠−2
2 )  =

𝑤𝑠−2
2 −𝑢

1−𝑢𝑤𝑠−2
2  and put 𝑤𝑠−2

2  =  0 in the equation (70). Then 

|𝜓(0)|2(1 − |𝑢|2)𝜆
2+2−𝜇2 = |𝜓(𝑢)|2.                               (71) 

If 𝜓(0)  =  0 then equation (71) implies that 𝜓(𝑢)  =  0 for all 𝑢 ∈ 𝔻, which makes 

𝑆𝑠−2  =  0 leading to a contradiction. Thus 𝜓(0) ≠ 0. Taking log and differentiating both 

sides of the equation (71), we see that 

(𝜆2  +  2 − 𝜇2) 
𝜕2

𝜕𝑢𝜕𝑢̅
𝑙𝑜𝑔(1 − |𝑢|2) = 0. 

Hence we conclude that 𝜇2  =  𝜆2 + 2. Putting 𝜇2  =  𝜆2 + 2 in the equation (71) we find 

that 𝜓 must be a constant function. Hence there is a constant 𝛼𝑠−2 such that 

𝑆𝑠−2(𝑡𝑠(𝑤𝑠−2
2 ))  =  𝛼𝑠−2𝛾𝑠−1(𝑤𝑠−2

2 ) for all 𝑤𝑠−2
2  ∈  𝛺. Finally, 

𝒦𝑇𝑠
2(𝑤𝑠−2

2 ) = 𝜕̅𝜕 𝑙𝑜𝑔‖𝑡𝑠(𝑤𝑠−2
2 )‖2 = 𝜕̅𝜕 𝑙𝑜𝑔(1 − |𝑤𝑠−2

2 |2)−𝜇
2
 

= 𝜕̅𝜕 𝑙𝑜𝑔(1 − |𝑤𝑠−2
2 |2)−𝜆

2−2 

= 𝜕̅𝜕𝑙𝑜𝑔(1 − |𝑤𝑠−2
2 |2)−𝜆

2
+ 𝜕̅𝜕 𝑙𝑜𝑔(1 − |𝑤𝑠−2

2 |2)−2 

= 𝜕̅𝜕𝑙𝑜𝑔 ‖𝛾𝑠−1(𝑤𝑠−2
2 )‖2 + 𝜕̅𝜕 𝑙𝑜𝑔(1 − |𝑤𝑠−2

2 |2)−2  
= 𝒦𝑇𝑠−1

2 (𝑤𝑠−2
2 )  + 𝒦𝐵𝑠−2∗ (𝑤𝑠−2

2 ). 

Conversely, suppose that conditions (i), (ii) and (iii) are met. We need to show that 𝑇𝑠−2
2  is 

a homogeneous operator. Condition (ii) is equivalent to 𝜇2  =  𝜆2  +  2. By Corollary 

(6.2.42), it is sufficient to show that 

‖𝑆𝑠−2 (𝑡𝑠,𝜑(𝑤𝑠−2
2 ))‖

2

‖𝑡𝑠,𝜑(𝑤𝑠−2
2 )‖

2 = |(𝜑−1)′(𝑤𝑠−2
2 )|2  

‖𝑆𝑠−2(𝑡𝑠(𝑤𝑠−2
2 ))‖

2

‖𝑡𝑠(𝑤𝑠−2
2 )‖2

. 

However, we have 

‖𝑆𝑠−2 (𝑡𝑠,𝜑(𝑤𝑠−2
2 ))‖

2

‖𝑡𝑠,𝜑(𝑤𝑠−2
2 )‖

2 = |𝛼𝑠−2|
2  
‖(𝛾𝑠−1,𝜑(𝑤𝑠−2

2 ))‖
2

‖𝑡𝑠,𝜑(𝑤𝑠−2
2 )‖

2

= |𝛼𝑠−2|
2|(𝜑−1)′(𝑤𝑠−2

2 )|𝜇
2−𝜆2   

‖(𝛾𝑠−1(𝑤𝑠−2
2 ))‖

2

‖𝑡𝑠(𝑤𝑠−2
2 )‖2

 

= |𝛼𝑠−2|
2|(𝜑−1)′(𝑤𝑠−2

2 )|2  
‖(𝛾𝑠−1(𝑤𝑠−2

2 ))‖
2

‖𝑡𝑠(𝑤𝑠−2
2 )‖2
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= |(𝜑−1)′(𝑤𝑠−2
2 )|2  

‖𝑆𝑠−2(𝑡𝑠(𝑤𝑠−2
2 ))‖

2

‖𝑡𝑠(𝑤𝑠−2
2 )‖2

. 

Corollary (6.2.44)[209]: Suppose 𝑇𝑠−2
2  is in 𝐵𝑠(𝛺) and 𝑋 is a quasi-nilpotent operator such 

that 𝑇𝑠−2
2 𝑋 =  𝑋𝑇𝑠−2

2 . Then 𝑋 =  0. 

Proof. Let 𝛾𝑠−2 be a non-vanishing holomorphic section for 𝐸𝑇𝑠−22  . Since 𝑇𝑠−2
2 𝑋 =  𝑋𝑇𝑠−2

2 , 

we see that 𝑋(𝛾𝑠−2) is also a holomorphic section of 𝐸𝑇𝑠−22  . Hence 𝑋(𝛾𝑠−2(𝑤𝑠−2
2 ))  =

𝜙𝑠−2(𝑤𝑠−2
2 )𝛾𝑠−2(𝑤𝑠−2

2 ) for some holomorphic function 𝜙𝑠−2 defined on 𝛺. Clearly, 

𝑋𝑛(𝛾𝑠−2(𝑤𝑠−2
2 ))  =  𝜙𝑠−2(𝑤𝑠−2

2 )𝑛𝛾𝑠−2(𝑤𝑠−2
2 ). Now, we have 

|𝜙𝑠−2(𝑤𝑠−2
2 )|𝑛‖𝛾𝑠−2(𝑤𝑠−2

2 )‖ = ‖𝜙𝑠−2(𝑤𝑠−2
2 )𝑛𝛾𝑠−2(𝑤𝑠−2

2 )‖ =  ‖𝑋𝑛(𝛾𝑠−2(𝑤𝑠−2
2 ))‖

≤  ‖𝑋𝑛‖‖𝛾𝑠−2(𝑤𝑠−2
2 )‖. 

Thus, for 𝑛 ∈ ℕ and 𝑤𝑠−2
2  ∈  𝛺, we have |𝜙𝑠−2(𝑤𝑠−2

2 )|  ≤  ‖𝑋𝑛‖1/𝑛 implying 

𝜙𝑠−2(𝑤𝑠−2
2 )  =  0, 𝑤𝑠−2

2  ∈  𝛺. Hence 𝑋 =  0. 

Corollary (6.2.45)[209]: Any operator 𝑇𝑠−2
2  in ℱ𝐵𝑠+1(𝛺) is irreducible. Also, if 𝑇𝑠−2

2  =

 (
𝑇𝑠−1
2 𝐼

0 𝑇𝑠−1
2 ) , then it is strongly irreducible. 

Proof. Let 𝑃𝑠−2  =  (𝑃𝑠+𝑖−1 𝑠+𝑗−1)2×2 be a projection in the commutant {𝑇𝑠−2
2 }′ of the 

operator 𝑇𝑠−2
2 , that is,  

(
𝑃𝑠𝑠 𝑃𝑠𝑠+1
𝑃𝑠+1 𝑠 𝑃𝑠+1 𝑠+1

) (
𝑇𝑠−1
2 𝑆𝑠−2
0 𝑇𝑠

2 ) = (
𝑇𝑠−1
2 𝑆𝑠−2
0 𝑇𝑠

2 ) (
𝑃𝑠𝑠 𝑃𝑠𝑠+1
𝑃𝑠+1 𝑠 𝑃𝑠+1 𝑠+1

). 

This equality implies that 𝑃𝑠𝑠𝑇𝑠−1
2  =  𝑇𝑠−1

2 𝑃𝑠𝑠 + 𝑆𝑠−2𝑃𝑠+1 𝑠, 𝑃𝑠𝑠𝑆𝑠−2  + 𝑃𝑠 𝑠+1𝑇𝑠
2  =

 𝑇𝑠−1
2 𝑃𝑠 𝑠+1 + 𝑆𝑠−2𝑃𝑠+1 𝑠+1, 𝑃𝑠+1 𝑠𝑇𝑠−1

2  =  𝑇𝑠
2𝑃𝑠+1 𝑠 and 𝑃𝑠+1 𝑠𝑆𝑠−2  +  𝑃𝑠+1 𝑠+1𝑇𝑠

2  =
 𝑇𝑠
2𝑃𝑠+1 𝑠+1. Now 

(𝑃𝑠+1 𝑠𝑆𝑠−2)𝑇𝑠
2  =  𝑃𝑠+1 𝑠(𝑆𝑠−2𝑇𝑠

2)  =  𝑃𝑠+1 𝑠(𝑇𝑠−1
2 𝑆𝑠−2) = (𝑃𝑠+1 𝑠𝑇𝑠−1

2 )𝑆𝑠−2  
=  𝑇𝑠

2(𝑃𝑠+1 𝑠𝑆𝑠−2). 
Thus 𝑃𝑠+1 𝑠𝑆𝑠−2  ∈  ker 𝜎𝑇𝑠2 . Also note that 

𝑃𝑠+1 𝑠𝑆𝑠−2  =  𝑇𝑠
2𝑃𝑠+1 𝑠+1  −  𝑃𝑠+1 𝑠+1𝑇𝑠

2  =  𝜎𝑇𝑠2(𝑃𝑠+1 𝑠+1). 

Hence 𝑃𝑠+1 𝑠𝑆𝑠−2  ∈  𝑟𝑎𝑛 𝜎𝑇𝑠2  ∩  ker 𝜎𝑇𝑠2 . Thus from Corollary (6.2.44) and Theorem 

(6.2.20), it follows that 𝑃𝑠+1 𝑠𝑆𝑠−2 = 0. The operator 𝑃𝑠+1 𝑠 must be 0 since 𝑆𝑠−2 has dense 

range.  

To prove the first statement, we may assume that the operator 𝑃𝑠−2 is self-adjoint and 

conclude 𝑃𝑠 𝑠+1 is 0 as well. Since both the operators 𝑇𝑠−1
2  and 𝑇𝑠

2 are irreducible and the 

projection 𝑃𝑠−2 is diagonal, it follows that 𝑇𝑠−2
2  must be irreducible. 

For the proof of the second statement, note that if 𝑃𝑠−2 is an idempotent of the form 

(
𝑃𝑠𝑠 𝑃𝑠 𝑠+1
0 𝑃𝑠+1 𝑠+1

) , both 𝑃𝑠𝑠 and 𝑃𝑠+1 𝑠+1 must be idempotents. By our hypothesis, 𝑃𝑠𝑠 and 

𝑃𝑠+1 𝑠+1  must also commute with 𝑇𝑠−1
2 , which is strongly irreducible, hence 𝑃𝑠𝑠  =  0 or 𝐼 

and 𝑃𝑠+1 𝑠+1  =  0 or 𝐼. By using Theorem (6.2.20), we see that if 𝑃𝑠−2  = (
𝐼 𝑃𝑠 𝑠+1
0 0

)  or 

𝑃𝑠−2  =  (
0 𝑃𝑠 𝑠+1
0 𝐼

)  , then 𝑃𝑠−2 does not commute with  (
𝑇𝑠−1
2 𝐼

0 𝑇𝑠−1
2 )  . Thus 𝑃𝑠−2  =

(
 𝐼 𝑃𝑠 𝑠+1
0 𝐼

)  or 𝑃𝑠−2  =   (
0 𝑃𝑠 𝑠+1
0 0

)  . Now, using the equation 𝑃𝑠−2
2  =  𝑃𝑠−2, we 

conclude that 𝑃𝑠 𝑠+1 must be zero. Thus 𝑃𝑠−2  =  𝐼 or 𝑃𝑠−2  =  0. 



240 

We now give a sufficient condition for a square operator 𝑇𝑠−2
2  in ℱ𝐵𝑠+1(𝛺) to be strongly 

irreducible (see [190]). 

Corollary (6.2.46)[209]: Let 𝑇𝑠−2
2  =  (

𝑇𝑠−1
2 𝑆𝑠−2
0 𝑇𝑠

2 ) be an operator in ℱ𝐵𝑠+1(𝛺). If the 

operator 𝑆𝑠−2 is invertible, then the operator 𝑇𝑠−2
2  is strongly irreducible. 

Proof. By our hypothesis, the operator 𝑋 =  (
𝐼 0
0 𝑆𝑠−2

) is invertible. Now 

𝑋𝑇𝑠−2
2 𝑋−1  = (

𝐼 0
0 𝑆𝑠−2

) (
𝑇𝑠−1
2 𝑆𝑠−2
0 𝑇𝑠

2 ) (
𝐼 0
0 𝑆𝑠−2

)
−1

 

= (
𝑇𝑠−1
2 𝐼

0 𝑆𝑠−2𝑇𝑠
2𝑆𝑠−2
−1 ) 

= (
𝑇𝑠−1
2 𝐼

0 𝑇𝑠−1
2 ) . 

Thus 𝑇𝑠−2
2  is similar to a strongly irreducible operator and consequently it is strongly 

irreducible. 

We conclude with a characterization of strong irreducibility in ℱ𝐵𝑠+1(𝛺) (see [190]). 

Corollary (6.2.47)[209]: An operator 𝑇𝑠−2
2  =  (

𝑇𝑠−1
2 𝑆𝑠−2
0 𝑇𝑠

2 ) in ℱ𝐵𝑠+1(𝛺) is strongly 

irreducible if and only if 𝑆𝑠−2 ∉ 𝑟𝑎𝑛 𝜎𝑇𝑠−12 ,𝑇𝑠
2. 

Proof. Let 𝑃𝑠−2 be an idempotent in the commutant {𝑇𝑠−2
2 }′ of the operator 𝑇𝑠−2

2 . The proof 

of the Corollary (6.2.45) shows that 𝑃𝑠−2 must be upper triangular:  (
𝑃𝑠𝑠 𝑃𝑠 𝑠+1
0 𝑃𝑠+1 𝑠+1

) . The 

commutation relation 𝑃𝑠−2𝑇𝑠−2
2 = 𝑇𝑠−2

2 𝑃𝑠−2 gives us 𝑃𝑠𝑠𝑇𝑠−1
2  =  𝑇𝑠−1

2 𝑃𝑠𝑠, 𝑃𝑠+1 𝑠+1𝑇𝑠
2  =

 𝑇𝑠
2𝑃𝑠+1 𝑠+1 and  

𝑃𝑠𝑠𝑆𝑠−2  −  𝑆𝑠−2𝑃𝑠+1 𝑠+1 = 𝑇𝑠−1
2 𝑃𝑠 𝑠+1  −  𝑃𝑠 𝑠+1𝑇𝑠

2.                            (72) 
Since 𝑃𝑖+1𝑖+1 ∈  {𝑇𝑖

2}′ for 𝑠 − 1 ≤ 𝑖 ≤ 𝑠, it follows that 𝑃𝑖𝑖 can be either 𝐼 or 0. If either 

𝑃𝑠𝑠  =  𝐼 and 𝑃𝑠+1 𝑠+1  =  0 or 𝑃𝑠𝑠  =  0 and 𝑃𝑠+1 𝑠+1  =  𝐼, then 𝑆𝑠−2 is in ran 𝜎𝑇𝑠−12 ,𝑇𝑠
2 

contradicting our assumption. Thus 𝑃𝑠−2 is of the form  (
𝐼 𝑃𝑠 𝑠+1
0 𝐼

) or  (
0 𝑃𝑠 𝑠+1
0 0

) . Since 

𝑃𝑠−2 is an idempotent operator, we must have 𝑃𝑠 𝑠+1  =  0. Hence 𝑇𝑠−2
2  is strongly 

irreducible. 

Assume that the operator 𝑆𝑠−2 is in ran 𝜎𝑇𝑠−12 ,𝑇𝑠
2  . In this case, we show that 𝑇𝑠−2

2  cannot be 

strongly irreducible completing the proof. Since 𝑆𝑠−2 ∈  𝑟𝑎𝑛 𝜎𝑇𝑠−12 ,𝑇𝑠
2 , we can find an 

operator 𝑃𝑠 𝑠+1 such that 

𝑆𝑠−2  =  𝜎𝑇𝑠−12 ,𝑇𝑠
2(𝑃𝑠 𝑠+1) =  𝑇𝑠−1

2 𝑃𝑠 𝑠+1 − 𝑃𝑠 𝑠+1𝑇𝑠
2.                                     (73) 

The operator 𝑃𝑠−2  =  (
𝐼 𝑃𝑠 𝑠+1
0 0

) is an idempotent operator. We have 

(
𝐼 𝑃𝑠 𝑠+1
0 0

) (
𝑇𝑠−1
2 𝑆𝑠−2

𝑠 − 1 𝑇𝑠
2 ) = (

𝑇𝑠−1
2 𝑆𝑠−2 + 𝑃𝑠 𝑠+1𝑇𝑠

2

0 0
)                         (74) 

and 

(
𝑇𝑠−1
2 𝑆𝑠−2
0 𝑇𝑠

2 ) (
𝐼 𝑃𝑠 𝑠+1
0 0

) = (𝑇𝑠−1
2 𝑇𝑠−1

2 𝑃𝑠 𝑠+1
0 0

) .                      (75) 

From these equations, we have 𝑃𝑠−2𝑇𝑠−2
2  = 𝑇𝑠−2

2 𝑃𝑠−2 proving that the operator 𝑇𝑠−2
2  is not 

strongly irreducible. 
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Corollary (6.2.48)[209]: Let 𝑋 be an invertible operator that intertwines two operators in 

ℱ𝐵𝑠+𝑛−1(𝛺). Set 𝑌 =  𝑋−1. If 𝑋 = ((𝑋𝑖,𝑗))
𝑛×𝑛

, 𝑌 = ((𝑌𝑖,𝑗))
𝑛×𝑛

 are the block 

decompositions of the two operators 𝑋 and 𝑌, then 𝑋𝑛−1,𝑗 =  0, 𝑠 − 1 ≤  𝑗 ≤ 𝑠 + 𝑛 − 3, 

and 𝑌𝑛−1,𝑗 =  0, 𝑠 − 1 ≤  𝑗 ≤ 𝑠 + 𝑛 − 3. 

Proof. Consider the three possibilities: 

(a) 𝑋𝑛−1,𝑗 =  0, 𝑠 − 1 ≤  𝑗 ≤ 𝑠 + 𝑛 − 3, but 𝑌𝑛−1,𝑗 ≠ 0 for some 𝑠 − 1 ≤  𝑗 ≤ 𝑠 + 𝑛 −

3.  

(b) 𝑌𝑛−1,𝑗  =  0, 𝑠 − 1 ≤ 𝑗 ≤ 𝑠 + 𝑛 − 3, 𝑋𝑛−1,𝑗 ≠ 0 for some 𝑠 − 1 ≤  𝑗 ≤ 𝑠 + 𝑛 − 3. 

(c) 𝑋𝑛−1,𝑗 ≠ 0 for some 𝑠 − 1 ≤  𝑗 ≤ 𝑠 + 𝑛 − 3 and 𝑌𝑛−1,𝑘 ≠ 0 for some 𝑠 − 1 ≤  𝑘 ≤

𝑠 + 𝑛 − 3. 

In each of these cases, we arrive at a contradiction proving the Lemma. 

Case 1: Choose 𝑙 to be the smallest index such that 𝑌𝑛−1,𝑙 ≠ 0, that is, 𝑌𝑛−1,𝑖 = 0 for 𝑠 −

1 ≤  𝑖 ≤ 𝑠 + 𝑙 − 2 but 𝑌𝑛−1,𝑙 ≠ 0. For this index 𝑙, the intertwining relation 𝑇𝑠−2
2 𝑌 =

 𝑌 𝑇̃𝑠−2
2  implies 𝑇𝑠+𝑛−2

2 𝑌𝑛−1,𝑙  =  𝑌𝑛−1,𝑙𝑇̃𝑙
2. Since 𝑌𝑛−1,𝑙 ≠ 0, it follows from Corollary 

(6.2.36) that 𝑌𝑛−1,𝑙 has dense range. From 𝑋𝑌 =  𝐼, we get 𝑋𝑛−1,𝑛−1𝑌𝑛−1,𝑙 =  0 and 

𝑋𝑛−1,𝑛−1𝑌𝑛−1,𝑛−1 =  𝐼. Since 𝑌𝑛−1,𝑙 has dense range and 𝑋𝑛−1,𝑛−1𝑌𝑛−1,𝑙 =  0, we conclude 

that 𝑋𝑛−1,𝑛−1 =  0. This contradicts the identity: 𝑋𝑛−1,𝑛−1𝑌𝑛−1,𝑛−1 =  𝐼. 
Case 2: The contradiction in this case is arrived at exactly in the same manner as in the first 

case after interchanging the roles of 𝑋 and 𝑌. 

Case 3: Pick 𝑗, 𝑙 to be the smallest indices such that 𝑋𝑛−1,𝑗 ≠ 0 and 𝑌𝑛−1,𝑙 ≠  0. We have 

that 𝑇𝑠−2
2  =  𝑇̃𝑠−2

2 𝑋 . Consequently, 

𝑋𝑛−1,𝑗𝑇𝑗
2 = 𝑇̃𝑛−1

2 𝑋𝑛−1,𝑗 , 𝑋𝑛−1,𝑗𝑆𝑗,𝑗+1 + 𝑋𝑛−1,𝑗+1𝑇𝑗+1
2 = 𝑇̃𝑛−1

2 𝑋𝑛−1,𝑗+1. (76) 

Since 𝑇𝑘
2𝑆𝑘,𝑘+1 = 𝑆𝑘,𝑘+1𝑇𝑘+1

2  for 𝑘 =  𝑠, 𝑠, 𝑠 + 1,··· , 𝑠 + 𝑛 − 2, multiplying the second 

equation in (76) by 𝑆𝑗+1,𝑗+2  ···  𝑆𝑛−2,𝑛−1, and replacing 𝑇𝑗+1
2 𝑆𝑗+1,𝑗+2 ···  𝑆𝑛−2,𝑛−1 with 

𝑆𝑗+1,𝑗+2 ···  𝑆𝑛−2,𝑛−1𝑇𝑛−1
2 , we have 

𝑋𝑛−1,𝑗𝑆𝑗,𝑗+1 ··· 𝑆𝑛−2,𝑛−1 + 𝑋𝑛−1,𝑗+1𝑆𝑗+1,𝑗+2 ··· 𝑆𝑛−2,𝑛−1𝑇𝑛−1
2  

= 𝑇̃𝑛−1
2 𝑋𝑛−1,𝑗+1𝑆𝑗+1,𝑗+2 ··· 𝑆𝑛−2,𝑛−1.                       (77) 

We also have 𝑇𝑠−2
2 𝑌 =  𝑌 𝑇̃𝑠−2

2 , which gives us 

𝑇𝑛−1
2 𝑌𝑛−1,𝑙 = 𝑌𝑛−1,𝑙𝑇̃𝑙

2.                                      (78) 
Now, multiply both sides of the equation (77) by 𝑌𝑛−1,𝑙, using the commutation 

𝑇𝑛−1
2 𝑌𝑛−1,𝑙 = 𝑌𝑛−1,𝑙𝑇̃𝑙

2, then again multiplying both sides of the resulting equation by 

𝑆𝑙,𝑙+1 ···  𝑆𝑛−2,𝑛−1 and finally using the commutation relations 𝑇̃𝑘
2𝑆̃𝑘,𝑘+1 = 𝑆̃𝑘,𝑘+1𝑇̃𝑘+1

2 , 𝑠 −
1 ≤  𝑘 ≤ 𝑠 + 𝑛 − 2, we have 

𝑋𝑛−1,𝑗𝑆𝑗,𝑗+1 ···  𝑆𝑛−2,𝑛−1𝑌𝑛−1,𝑙𝑆̃𝑙,𝑙+1 ···  𝑆̃𝑛−2,𝑛−1 

+ 𝑋𝑛−1,𝑗+1𝑆𝑗,𝑗+1 ··· 𝑆𝑛−2,𝑛−1𝑌𝑛−1,𝑙𝑆̃𝑙,𝑙+1 ··· 𝑆̃𝑛−2,𝑛−1𝑇̃𝑛−1
2  

= 𝑇̃𝑛−1
2 𝑋𝑛−1,𝑗+1𝑆𝑗+1,𝑗+2 ··· 𝑆𝑛−2,𝑛−1𝑌𝑛−1,𝑙𝑆̃𝑙,𝑙+1 ··· 𝑆̃𝑛−2,𝑛−1.       (79) 

Therefore, we see that 

𝑋𝑛−1,𝑗𝑆𝑗,𝑗+1𝑆𝑗+1,𝑗+2 ···  𝑆𝑛−2,𝑛−1𝑌𝑛−1,𝑙𝑆̃𝑙,𝑙+1  ···  𝑆̃𝑛−2,𝑛−1 

is in the range of the operator 𝜎𝑇̃𝑛−12  . Indeed it is also in the kernel of 𝜎̃𝑇̃𝑛−12  , as is evident 

from the following string of equalities: 

𝑋𝑛−1,𝑗𝑆𝑗,𝑗+1𝑆𝑗+1,𝑗+2  ···  𝑆𝑛−2,𝑛−1𝑌𝑛−1,𝑙𝑆̃𝑙,𝑙+1 ···  𝑆̃𝑛−2,𝑛−1𝑇̃𝑛−1
2  

= 𝑋𝑛−1,𝑗𝑆𝑗,𝑗+1𝑆𝑗+1,𝑗+2  ···  𝑆𝑛−2,𝑛−1𝑌𝑛−1,𝑙𝑇̃𝑙
2𝑆̃𝑙,𝑙+1 ···  𝑆̃𝑛−2,𝑛−1 
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= 𝑋𝑛−1,𝑗𝑆𝑗,𝑗+1𝑆𝑗+1,𝑗+2 ···  𝑆𝑛−2,𝑛−1𝑇𝑛−1
2 𝑌𝑛−1,𝑙𝑆̃𝑙,𝑙+1  ···  𝑆̃𝑛−2,𝑛−1 

= 𝑋𝑛−1,𝑗𝑇𝑗
2𝑆𝑗,𝑗+1𝑆𝑗+1,𝑗+2  ···  𝑆𝑛−2,𝑛−1𝑌𝑛−1,𝑙𝑆̃𝑙,𝑙+1  ···  𝑆̃𝑛−2,𝑛−1 

= 𝑇̃𝑛−1
2 𝑋𝑛−1,𝑗𝑆𝑗,𝑗+1𝑆𝑗+1,𝑗+2  ···  𝑆𝑛−2,𝑛−1𝑌𝑛−1,𝑙𝑆̃𝑙,𝑙+1 ···  𝑆̃𝑛−2,𝑛−1. 

Thus 

𝑋𝑛−1,𝑗𝑆𝑗,𝑗+1𝑆𝑗+1,𝑗+2  ···  𝑆𝑛−2,𝑛−1𝑌𝑛−1,𝑙𝑆̃𝑙,𝑙+1  ···  𝑆̃𝑛−2,𝑛−1 ∈  ker 𝜎𝑇̃𝑛−12 ∩  𝑟𝑎𝑛 𝜎𝑇̃𝑛−12  . 

Consequently, using Corollary (6.2.44) and Theorem 2.19, we conclude that  

𝑋𝑛−1,𝑗𝑆𝑗,𝑗+1𝑆𝑗+1,𝑗+2  ···  𝑆𝑛−2,𝑛−1𝑌𝑛−1,𝑙𝑆̃𝑙,𝑙+1 ···  𝑆̃𝑛−2,𝑛−1 =  0. 

By hypothesis, all the operators 𝑆𝑘,𝑘+1, 𝑆̃𝑘,𝑘+1, 𝑘 =  𝑠 − 1, 𝑠,··· , 𝑠 + 𝑛 − 3 have dense 

range. Since 𝑌𝑛−1,𝑙 ≠ 0, then equation (78) and Corollary (6.2.36) ensure that 𝑌𝑛−1,𝑙 has 

dense range. Hence 𝑋𝑛−1,𝑗 =  0. This contradicts the assumption 𝑋𝑛−1,𝑗 ≠ 0.  

The following proposition is the first step in the proof of the rigidity theorem (see [190]).  

Corollary (6.2.49)[209]: If 𝑋 is an invertible operator intertwining two operators 𝑇𝑠−2
2  and 

𝑇̃𝑠−2
2  from ℱ𝐵𝑠+𝑛−1(𝛺), then 𝑋 and 𝑋−1 are upper triangular. 

Proof. The proof is by induction on n. The validity of the case 𝑛 = 𝑠 + 1, is immediate 

from Corollary (6.2.48). Let us write the two operators 𝑇𝑠−2
2 , 𝑇̃𝑠−2

2  in the form of 2 ×  2 

block matrix: 

𝑇𝑠−2
2  =  (

𝑇𝑛−1×𝑛−1
2 𝑇𝑛−1×𝑠

2

0 𝑇𝑛−1,𝑛−1
2 ) , 𝑇̃𝑠−2

2 = (
𝑇̃𝑛−1×𝑛−1
2 𝑇̃𝑛−1×𝑠

2

0 𝑇̃𝑛−1,𝑛−1
2 ). 

Using Corollary (6.2.48), the operators 𝑋, 𝑌 can be written in the form of 2 ×  2 block 

matrix: 

𝑋 =  (
𝑋𝑛−1×𝑛−1 𝑋𝑛−1×1

0 𝑋𝑛−1,𝑛−1
) , 𝑌 = (

𝑌𝑛−1×𝑛−1 𝑌𝑛−1×1
0 𝑌𝑛−1,𝑛−1

) 

without loss of generality. Here 𝑋𝑛−1×𝑛−1 and 𝑌𝑛−1×𝑛−1 are the operators  

((𝑋𝑖,𝑗))
𝑖,𝑗=𝑠−1

𝑠+𝑛−3
 and ((𝑌𝑖,𝑗))

𝑖,𝑗=𝑠−1

𝑠+𝑛−3
 respectively and 

𝑇𝑛−1×𝑛−1
2 =

(

 
 

𝑇𝑠−1
2 𝑆𝑠−1,𝑠 𝑆𝑠−1,𝑠+1
0 𝑇𝑠

2 𝑆𝑠,𝑠+1
⋮
0
0

⋱
···
···

⋱
0
···

   

··· 𝑆𝑠−1,𝑛−2
··· 𝑆𝑠,𝑛−2
⋱
𝑇𝑛−3
2

0

⋮
𝑆𝑛−3,𝑛−2
𝑇𝑛−2
2 )

 
 
,

𝑇̃𝑛−1×𝑛−1
2 =

(

  
 

𝑇̃𝑠−1
2 𝑆̃𝑠−1,𝑠 𝑆̃𝑠−1,𝑠+1

0 𝑇̃𝑠
2 𝑆̃𝑠,𝑠+1

⋮
0
0

⋱
···
···

⋱
0
···

   

··· 𝑆̃𝑠−1,𝑛−2

··· 𝑆̃𝑠,𝑛−2

⋱
𝑇̃𝑛−3
2

0

⋮
𝑆̃𝑛−3,𝑛−2

𝑇̃𝑛−2
2 )

  
 
. 

From the relations 𝑋𝑇𝑠−2
2 = 𝑇̃𝑠−2

2 𝑋, 𝑇𝑠−2
2 𝑌 = 𝑌 𝑇̃𝑠−2

2  and 𝑋𝑌 =  𝑌 𝑋 =  𝐼, we get 

𝑋𝑛−1×𝑛−1𝑇𝑛−1×𝑛−1
2 = 𝑇̃𝑛−1×𝑛−1

2 𝑋𝑛−1×𝑛−1, 𝑇𝑛−1×𝑛−1
2 𝑌𝑛−1×𝑛−1 = 𝑌𝑛−1×𝑛−1𝑇̃𝑛−1×𝑛−1

2  and 

𝑋𝑛−1×𝑛−1𝑌𝑛−1×𝑛−1 = 𝑌𝑛−1×𝑛−1𝑋𝑛−1×𝑛−1 =  𝐼. 
Now, to complete the proof by induction, we assume that any invertible operator 𝑋 

intertwining two operators 𝑇𝑠−2
2 , 𝑇̃𝑠−2

2  in ℱ𝐵𝑠+𝑘−1(𝛺) is upper triangular along with its 

inverse for all 𝑘 < 𝑛. Thus the induction hypothesis guarantees that 𝑋𝑛−1×𝑛−1 and 𝑌𝑛−1×𝑛−1 

must be upper triangular completing the proof. 
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Corollary (6.2.50)[209]: Suppose 𝑇𝑠−2
2  is in ℱ𝐵𝑠+𝑛−1(𝛺) and 𝑋 is a bounded linear operator 

in the commutant of 𝑇𝑠−2
2 . Then 𝑋 is upper triangular. 

Proof. The proof is by induction 𝑛. To begin the induction, for 𝑛 =  2, following the 

method of the proof in Corollary (6.2.45), we see that an operator commute with an operator 

in ℱ𝐵𝑠+1(𝛺) must be upper triangular. Now, assume that any operator commute with an 

operator in ℱ𝐵𝑠+𝑘−1(𝛺) is upper triangular for all 𝑘 < 𝑛. 

Step 1: We claim that 𝑋𝑛−1,𝑖 =  0 for 𝑠 − 1 ≤  𝑖 ≤ 𝑠 + 𝑛 − 3. Suppose on contrary this is 

not true. Then let 𝑙, 𝑠 ≤  𝑙 ≤ 𝑠 + 𝑛 − 3, be the smallest index such that 𝑋𝑛−1,𝑙 ≠ 0. For this 

index 𝑙, the commuting relation 𝑋𝑇𝑠−2
2  =  𝑇𝑠−2

2 𝑋 implies that 

𝑋𝑛−1,𝑙𝑇𝑙
2 = 𝑇𝑛−1

2 𝑋𝑛−1,𝑙 and ∑  

𝑙

𝑘=𝑠

𝑋𝑛−1,𝑘𝑆𝑘,𝑙+1 + 𝑋𝑛−1,𝑖+1𝑇𝑙+1
2  

= 𝑇𝑛−1
2 𝑋𝑛−1,𝑙+1.                                       (80) 

From equation (80), we have 

𝑋𝑛−1,𝑙𝑆𝑙,𝑙+1𝑆1,2 ...𝑆𝑛−2,𝑛−1  ∈  ker 𝜎𝑇𝑛−12  , 

𝑋𝑛−1,𝑙𝑆𝑙,𝑙+1𝑆1,2 ...𝑆𝑛−2,𝑛−1 = 𝜎𝑇𝑛−12 (𝑋𝑛−1,𝑙+1𝑆𝑙+1,𝑙+2, … 𝑆𝑛−2,𝑛−1). 

Therefore 𝑋𝑛−1,𝑙𝑆𝑙,𝑙+1𝑆𝑙+1,𝑙+2 . . . 𝑆𝑛−2,𝑛−1 is in ran 𝜎𝑇𝑛−12 ∩ ker 𝜎𝑇𝑛−12  .Combining Corollary 

(6.2.36) with Corollary (6.2.44) and Theorem (6.2.20), we conclude that 𝑋𝑛−1,𝑙 ≠ 0. This 

contradicts the assumption 𝑋𝑛−1,𝑙 ≠ 0. 

Step 2: Write 

𝑋 = (
𝑋𝑛−1×𝑛−1 𝑋𝑛−1×1

0 𝑋𝑛−1,𝑛−1
) 

And 

𝑇𝑠−2
2  =  (

𝑇𝑛−1×𝑛−1
2 𝑇𝑛−1×1

2

0 𝑇𝑛−1,𝑛−1
2 ), 

where meaning of 𝑋𝑛−1×𝑛−1 and 𝑇𝑛−1×𝑛−1
2  are same as in Corollary (6.2.49). It follows from 

the commuting relation 𝑋𝑇𝑠−2
2  =  𝑇𝑠−2

2 𝑋 that 

𝑋𝑛−1×𝑛−1𝑇𝑛−1×𝑛−1
2 = 𝑇𝑛−1×𝑛−1

2 𝑋𝑛−1×𝑛−1. 
Now, the induction hypothesis guarantees that 𝑋𝑛−1×𝑛−1 must be upper triangular 

completing the proof. 

Corollary (6.2.51)[209]: (Rigidity). Any two operators 𝑇𝑠−2
2  and 𝑇̃𝑠−2

2  in ℱ𝐵𝑠+𝑛−1(𝛺) are 

unitarily equivalent if and only if there exist unitary operators 𝑈𝑖 , 𝑠 − 1 ≤ 𝑖 ≤ 𝑠 + 𝑛 − 2, 

such that 𝑈𝑖𝑇𝑖
2  =  𝑇̃𝑖

2𝑈𝑖 and 𝑈𝑖𝑆𝑖,𝑗 = 𝑆̃𝑖,𝑗𝑈𝑗  , 𝑖 <  𝑗. 

Proof. Clearly, it is enough to prove the necessary part of this statement. Let 𝑈 be a unitary 

operator such that 𝑇𝑠−2
2  =  𝑇̃𝑠−2

2 𝑈𝑠−2 . By Corollary (6.2.49), both 𝑈𝑠−2 and 𝑈𝑠−2
∗ = 𝑈𝑠−2

−1  

must be upper triangular, that is, 

(a) 𝑈𝑠−2 = ((𝑈𝑖𝑗))
𝑖,𝑗=1

𝑛
, 𝑈𝑖𝑗 = 0 whenever 𝑖 >  𝑗; 

(b) 𝑈𝑠−2
∗ = ((𝑈𝑗𝑖

∗))
𝑖,𝑗=1

𝑛
, 𝑈𝑗,𝑖
∗ =  0 whenever 𝑖 >  𝑗. 

It follows that the operator 𝑈𝑠−2 must be diagonal. 

Corollary (6.2.52)[209]: Suppose 𝑇𝑠−2
2  is an operator in ℱ𝐵𝑠+𝑛−1(𝛺) and 𝑡𝑠+𝑛−2 is a non-

vanishing holomorphic section of 𝐸𝑇𝑛−12  . Then 

(i) the curvature 𝒦𝑇𝑛−1
2  , 
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(ii) 
‖𝑡𝑖−1‖

‖𝑡𝑖‖
 , where 𝑡𝑖−1 = 𝑆𝑖−1,𝑖(𝑡𝑖), 𝑠 ≤ 𝑖 ≤ 𝑠 + 𝑛 − 2, 

(iii) 
〈𝑆𝑖,𝑗(𝑡𝑗),𝑡𝑖〉

‖𝑡𝑖‖
2

 , for 𝑠 − 1 ≤  𝑖 <  𝑗 ≤ 𝑠 + 𝑛 − 3 with 𝑗 −  𝑖 ≥ 𝑠 + 1 

are a complete set of unitary invariants for the operator 𝑇𝑠−2
2 . 

Proof. Suppose 𝑇𝑠−2
2 , 𝑇̃𝑠−2

2  are in ℱ𝐵𝑠+𝑛−1(𝛺) and that there is a unitary 𝑈𝑠−2 such that 

𝑇𝑠−2
2  =  𝑇𝑠−2

2 𝑈̃𝑠−2. Such an intertwining unitary must be diagonal, that is, 𝑈𝑠−2 = 𝑈𝑠−1  ⊕
···⊕ 𝑈𝑠+𝑛−2, for some choice of 𝑛 unitary operators 𝑈𝑠−1, . . . , 𝑈𝑠+𝑛−2. 

Since 𝑈𝑖𝑇𝑖
2  =  𝑇̃𝑖

2𝑈𝑖 , 𝑠 − 1 ≤  𝑖 ≤ 𝑠 + 𝑛 − 2, and 𝑈𝑖𝑆𝑖,𝑖+1 = 𝑆̃𝑖,𝑖+1𝑈𝑖+1, 𝑠 − 1 ≤  𝑖 ≤ 𝑠 +
𝑛 − 3, we have 

𝑈𝑖(𝑡𝑖(𝑤𝑠−2
2 )) = 𝜙𝑠−2(𝑤𝑠−2

2 )𝑡̃𝑖(𝑤𝑠−2
2 ), 𝑠 − 1 ≤ 𝑖 ≤ 𝑠 + 𝑛 − 3,              (81) 

where 𝜙𝑠−2 is some non-zero holomorphic function. Thus 

𝒦𝑇𝑛−1
2 = 𝒦𝑇̃𝑛−1

2    and  
‖𝑡𝑖−1‖

‖𝑡̃𝑖−1‖
 =
‖𝑡𝑖‖

‖𝑡̃𝑖‖
, 𝑠 ≤  𝑖 ≤ 𝑠 + 𝑛 − 2. 

For 𝑠 − 1 ≤ 𝑖 <  𝑗 ≤ 𝑠 + 𝑛 − 3 with 𝑗 −  𝑖 ≥  𝑠 + 1 and 𝑤𝑠−2
2  ∈  𝛺, we have 

〈𝑆𝑖,𝑗 (𝑡𝑗(𝑤𝑠−2
2 )) , 𝑡𝑖(𝑤𝑠−2

2 )〉

‖𝑡𝑖(𝑤𝑠−2
2 )‖2

=
〈𝑈𝑖 (𝑆𝑖,𝑗 (𝑡𝑗(𝑤𝑠−2

2 ))) , 𝑈𝑖(𝑡𝑖(𝑤𝑠−2
2 ))〉

‖𝑈𝑖(𝑡𝑖(𝑤𝑠−2
2 ))‖

2

=
〈𝑆̃𝑖,𝑗 (𝑈𝑗 (𝑡𝑗(𝑤𝑠−2

2 ))) , 𝑈𝑖(𝑡𝑖(𝑤𝑠−2
2 ))〉

‖𝑈𝑖(𝑡𝑖(𝑤𝑠−2
2 ))‖

2  

=
〈𝑆̃𝑖,𝑗 (𝜙𝑠−2(𝑤𝑠−2

2 )𝑡̃𝑗(𝑤𝑠−2
2 )) , 𝜙𝑠−2(𝑤𝑠−2

2 )𝑡̃𝑖(𝑤𝑠−2
2 )〉

‖𝜙𝑠−2(𝑤𝑠−2
2 )𝑡̃𝑖(𝑤𝑠−2

2 )‖2
=
〈𝑆̃𝑖,𝑗 (𝑡̃𝑗(𝑤𝑠−2

2 )) , 𝑡̃𝑖(𝑤𝑠−2
2 )〉

‖𝑡̃𝑖(𝑤𝑠−2
2 )‖2

 . 

Conversely assume that 𝑇𝑠−2
2  and 𝑇̃𝑠−2

2  are operators in ℱ𝐵𝑠+𝑛−1(𝛺) for which these 

invariants are the same. Equality of the two curvature 𝒦𝑇𝑛−1
2 = 𝒦𝑇̃𝑛−1

2  together with the 

equality of the second fundamental forms 
‖𝑡𝑖−1‖

‖𝑡̃𝑖−1‖
=
‖𝑡𝑖‖

‖𝑡̃𝑖‖
, 𝑠 ≤  𝑖 ≤ 𝑠 + 𝑛 − 2 implies that 

there exists a non-zero holomorphic function 𝜙𝑠−2 defined on 𝛺 (if necessary, one may 

choose a domain 𝛺0  ⊆  𝛺 such that 𝜙𝑠−2 is non-zero on 𝛺0) such that 

‖𝑡𝑖(𝑤𝑠−2
2 )‖ = |𝜙𝑠−2(𝑤𝑠−2

2 )|‖𝑡̃𝑖(𝑤𝑠−2
2 )‖,     𝑠 − 1 ≤  𝑖 ≤ 𝑠 + 𝑛 − 2. 

For 𝑠 − 1 ≤  𝑖 ≤ 𝑠 + 𝑛 − 2, define 𝑈𝑖 ∶  ℋ𝑖  → ℋ̃𝑖 by the formula 

𝑈𝑖(𝑡𝑖(𝑤𝑠−2
2 )) = 𝜙𝑠−2(𝑤𝑠−2

2 )𝑡̃𝑖(𝑤𝑠−2
2 ),    𝑤𝑠−2

2  ∈  𝛺, 
and extend to the linear span of these vectors. For 𝑠 − 1 ≤  𝑖 ≤ 𝑠 + 𝑛 − 2,  

‖𝑈𝑖(𝑡𝑖(𝑤𝑠−2
2 ))‖  =  ‖𝜙𝑠−2(𝑤𝑠−2

2 )𝑡̃𝑖(𝑤𝑠−2
2 )‖ =  |𝜙𝑠−2(𝑤𝑠−2

2 )|‖𝑡̃𝑖(𝑤𝑠−2
2 )‖ =  ‖𝑡𝑖(𝑤𝑠−2

2 )‖. 
Thus 𝑈𝑖 extend to an isometry from ℋ𝑖 to ℋ̃𝑖. Since 𝑈𝑖 is isometric and 𝑈𝑖𝑇𝑖

2  =  𝑇̃𝑖
2𝑈𝑖, it 

follows, using Corollary (6.2.36), that each 𝑈𝑖 is unitary. It is easy to see that 𝑈𝑖𝑆𝑖,𝑖+1 =

 𝑆̃𝑖,𝑖+1𝑈𝑖+1 for 𝑠 − 1 ≤ 𝑖 ≤ 𝑠 + 𝑛 − 3 also. For 𝑠 − 1 ≤ 𝑖 < 𝑗 ≤ 𝑠 + 𝑛 − 3 with 𝑗 −  𝑖 ≥

𝑠 + 1 and 𝑤𝑠−2
2  ∈  𝛺, 

〈𝑈𝑖(𝑆𝑖,𝑗(𝑡𝑗(𝑤𝑠−2
2 ))), 𝑈𝑖(𝑡𝑖(𝑤𝑠−2

2 ))〉  =  〈𝑆𝑖,𝑗(𝑡𝑗(𝑤𝑠−2
2 )), 𝑡𝑖(𝑤𝑠−2

2 )〉 

=
‖𝑡𝑖(𝑤𝑠−2

2 )‖2

‖𝑡̃𝑖(𝑤𝑠−2
2 )‖2

 〈𝑆̃𝑖,𝑗(𝑡̃𝑗(𝑤𝑠−2
2 )), 𝑡̃𝑖(𝑤𝑠−2

2 )〉 

= |𝜙𝑠−2(𝑤𝑠−2
2 )|2〈𝑆̃𝑖,𝑗(𝑡̃𝑗(𝑤𝑠−2

2 )), 𝑡̃𝑖(𝑤𝑠−2
2 )〉 

= 〈𝜙𝑠−2(𝑤𝑠−2
2 )𝑆̃𝑖,𝑗(𝑡̃𝑗(𝑤𝑠−2

2 )), 𝜙𝑠−2(𝑤𝑠−2
2 )𝑡̃𝑖(𝑤𝑠−2

2 )〉 

= 〈𝑆̃𝑖,𝑗(𝜙𝑠−2(𝑤𝑠−2
2 )𝑡̃𝑗(𝑤𝑠−2

2 )), 𝜙𝑠−2(𝑤𝑠−2
2 )𝑡̃𝑖(𝑤𝑠−2

2 )〉 
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= 〈𝑆̃𝑖,𝑗(𝑈𝑗(𝑡𝑗(𝑤𝑠−2
2 ))), 𝑈𝑖(𝑡𝑖(𝑤𝑠−2

2 ))〉. 

Polarizing the real analytic functions 〈𝑈𝑖(𝑆𝑖,𝑗(𝑡𝑗(𝑤𝑠−2
2 ))), 𝑈𝑖(𝑡𝑖(𝑤𝑠−2

2 ))〉 and 

〈𝑆̃𝑖,𝑗(𝑈𝑗(𝑡𝑗(𝑤𝑠−2
2 ))), 𝑈𝑖(𝑡𝑖(𝑤𝑠−2

2 ))〉 to functions which are holomorphic in the first and anti-

holomorphic in the second variable, we obtain the equality: 

〈𝑈𝑖(𝑆𝑖,𝑗(𝑡𝑗(𝓏))), 𝑈𝑖(𝑡𝑖(𝑤𝑠−2
2 ))〉  =  〈𝑆̃𝑖,𝑗(𝑈𝑗(𝑡𝑗(𝓏))), 𝑈𝑖(𝑡𝑖(𝑤𝑠−2

2 ))〉, 𝓏, 𝑤𝑠−2
2  ∈  𝛺. 

Hence for w in 𝛺 and 𝑠 − 1 ≤  𝑖 <  𝑗 ≤ 𝑠 + 𝑛 − 3 with 𝑗 −  𝑖 ≥  𝑠 + 1, we have 

𝑈𝑖(𝑆𝑖,𝑗(𝑡𝑗(𝑤𝑠−2
2 )))  =  𝑆̃𝑖,𝑗(𝑈𝑗(𝑡𝑗(𝑤𝑠−2

2 ))) 

which implies that 

𝑈𝑖𝑆𝑖,𝑗 = 𝑆̃𝑖,𝑗𝑈𝑗  . 

Now, setting 𝑈𝑠−2 = 𝑈𝑠−1  ⊕···⊕ 𝑈𝑠+𝑛−2, we see that 𝑈𝑠−2 is unitary and 𝑈𝑠−2𝑇𝑠−2
2  =

 𝑇̃𝑠−2
2 𝑈𝑠−2 completing the proof. 

Corollary (6.2.53)[209]: If an operator 𝑇𝑠−2
2  is in ℱ𝐵𝑠+𝑛−1(𝛺), then it is irreducible. 

Proof. Let 𝑃𝑠−2 be a projection in the commutant {𝑇𝑠−2
2 }′ of the operator 𝑇𝑠−2

2 . The operator 

𝑃𝑠−2 must therefore be upper triangular by Corollary (6.2.50). It is also a Hermitian 

idempotent and therefore must be diagonal with projections 𝑃𝑖𝑖 , 𝑠 − 1 ≤  𝑖 ≤ 𝑠 + 𝑛 − 2, 

on the diagonal. We are assuming that 𝑃𝑠−2𝑇𝑠−2
2 = 𝑇𝑠−2

2 𝑃𝑠−2, which gives 

𝑃𝑖𝑖𝑆𝑖,𝑖+1 = 𝑆𝑖,𝑖+1𝑃𝑖+1𝑖+1, 𝑠 − 1 ≤  𝑖 ≤ 𝑠 + 𝑛 − 3. 
None of the operators 𝑆𝑖,𝑖+1, 𝑠 − 1 ≤  𝑖 ≤ 𝑠 + 𝑛 − 3, are zero by hypothesis. It follows 

that 𝑃𝑖𝑖  =  0, if and only if 𝑃𝑖+1 𝑖+1 =  0. Thus, for any projections 𝑃𝑖𝑖  ∈  {𝑇𝑖
2}′ , we have 

only two possibilities: 

𝑃𝑠−1𝑠−1 = 𝑃𝑠𝑠 = 𝑃𝑠+1 𝑠+1 = ··· = 𝑃𝑛−1𝑛−1 = 𝐼, or 𝑃𝑠−1𝑠−1 = 𝑃𝑠𝑠 = 𝑃𝑠+1 𝑠+1 = ··· 
= 𝑃𝑠+𝑛−2 𝑠+𝑛−2 =  0. 

Hence 𝑇𝑠−2
2  is irreducible. 

Corollary (6.2.54)[209]: The following are equivalent. 

(i) 𝒥𝜇(𝑓𝑔)  =  𝒥𝜇(𝑓)𝒥𝜇(𝑔). 

(ii) (𝑝 +  1 −  𝑗 −  𝑙)𝜇𝑝+1−𝑗,𝑙 = 𝜇𝑝+1−𝑗,𝑙+1𝜇𝑙+1,𝑙 , 1 ≤ 𝑙 ≤ 𝑝 − 2, 1 ≤ 𝑗 < 𝑝 − 𝑙 + 1. 

(iii) 𝜇𝑝,𝑙𝜇𝑙,𝑖 = (
𝑝 − 𝑖
𝑙 − 𝑖

) 𝜇𝑝,𝑖 , 1 ≤  𝑝, 𝑙, 𝑖 ≤  𝑘, 𝑖 ≤  𝑙 ≤  𝑝. 

Proof. All the implications of the corollary are easy to verify except for one, which we 

verify here. For 1 ≤  𝑖, 𝑗 ≤  𝑘 and 𝑖 ≤  𝑗, note that 

(𝒥𝜇(𝑓)(𝓏)𝒥𝜇(𝑔)(𝓏))
𝑖,𝑗
= ∑  

𝑖−𝑗

𝑙=𝑠−1

𝜇𝑖,𝑗+𝑙𝜇𝑗+𝑙,𝑗  (
𝜕𝑖−𝑗−𝑙

𝜕𝓏𝑖−𝑗−𝑙
𝑓(𝓏))(

𝜕𝑙

𝜕𝓏𝑙
 𝑔(𝓏)) 

= ∑  

𝑖−𝑗

𝑙=𝑠−1

 (
𝑖 − 𝑗
𝑖 − 𝑗 − 𝑙

) 𝜇𝑖,𝑗 (
𝜕𝑖−𝑗−𝑙

𝜕𝓏𝑖−𝑗−𝑙
𝑓(𝓏))(

𝜕𝑙

𝜕𝓏𝑙
𝑔(𝓏)) 

= 𝜇𝑖,𝑗  ∑  

𝑖−𝑗

𝑙=𝑠−1

(
𝑖 − 𝑗
𝑖 − 𝑗 − 𝑙

) (
𝜕𝑖−𝑗−𝑙

𝜕𝓏𝑖−𝑗−𝑙
𝑓(𝓏))(

𝜕𝑙

𝜕𝓏𝑙
 𝑔(𝓏)) =  𝜇𝑖,𝑗  

𝜕𝑖−𝑗

𝜕𝓏𝑖−𝑗
(𝑓𝑔)(𝓏)

=  (𝒥𝜇(𝑓𝑔)(𝓏))
𝑖,𝑗
 . 

For 𝑖 >  𝑗, 

(𝒥𝜇(𝑓)(𝓏)𝒥𝜇(𝑔)(𝓏))
𝑖,𝑗
= (𝒥𝜇(𝑓𝑔)(𝓏))

𝑖,𝑗
=  0. 

Hence we have 

𝒥𝜇(𝑓𝑔)  = 𝒥𝜇(𝑓)𝒥𝜇(𝑔). 
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For 𝑥 in ℂ𝑘, and f in the polynomial ring 𝑃𝑠−2[𝓏], define the module action as follows: 

𝑓 ·  𝑥 =  𝒥𝜇(𝑓)(𝑤𝑠−2
2 )𝑥. 

Suppose 𝑇𝑠−1
2 ∶ ℳ → ℳ is an operator in 𝐵𝑠(𝛺). Assume that the operator 𝑇𝑠−2

2  has been 

realized as the adjoint of a multiplication operator acting on a Hilbert space of functions 

possessing a reproducing kernel 𝐾𝑠−2. Then the polynomial ring acts on the Hilbert space 

ℳ naturally by point-wise multiplication making it a module. We construct a module of 𝑘-

jets by setting 

𝐽ℳ = { ∑  

𝑘−1

𝑙=𝑠−1

𝜕𝑖

𝜕𝓏𝑖
 ℎ ⊗ 𝜖𝑖+1 ∶  ℎ ∈ ℳ}, 

where 𝜖𝑖+1, 𝑠 − 1 ≤  𝑖 ≤ 𝑠 + 𝑘 − 2, are the standard basis vectors in ℂ𝑘. There is a natural 

module action on 𝐽ℳ, namely,  

(𝑓, ∑  

𝑘−1

𝑙=𝑠−1

𝜕𝑖

𝜕𝓏𝑖
ℎ) ↦ 𝒥(𝑓) ( ∑  

𝑘−1

𝑙=𝑠−1

𝜕𝑖

𝜕𝓏𝑖
 ℎ ⊗ 𝜖𝑖+1) , 𝑓 ∈  𝑃𝑠−2[𝓏], ℎ ∈ ℳ, 

Where 

𝒥(𝑓)𝑖,𝑗 = {
(
𝑖 − 1
𝑗 − 1

) 𝜕𝑖−𝑗𝑓     if 𝑖 ≥  𝑗,

0                  otherwise.
 

The module tensor product 𝐽ℳ ⊗𝒜(𝛺)  ℂ𝑤𝑠−22
𝑘   is easily identified with the quotient module 

𝒩⊥, where 𝒩 ⊆ ℳ is the sub-module spanned by the vectors 

{∑ 

𝑘

𝑙=1

(𝐽𝑓 · ℎ𝑙  ⊗ 𝜖𝑙 − ℎ𝑙⊗(𝒥𝜇(𝑓)) (𝑤𝑠−2
2 ) · 𝜖𝑙): ℎ𝑙 ∈ 𝐽ℳ, 𝜖𝑙 ∈ ℂ

𝑘, 𝑓 ∈  𝑃𝑠−2[𝓏]} . 

Section (6.3): Quasi-Homogeneous Holomorphic Curves and Operators in the Cowen–

Douglas Class 

For a plane domain 𝛺, in [61], Cowen and Douglas introduced an important class of 

operators 𝐵𝑛(𝛺). It was shown by them that for operators 𝑇 in 𝐵𝑛(𝛺), the local geometry of 

the corresponding vector bundle 𝐸𝑇 of rank n (curvature tensor and its higher derivatives) 

yields a complete set of unitary invariants for the operator 𝑇. But a tractable set of unitary 

(or similarity) invariants has not been found yet. The analysis of holomorphic Hermitian 

vector bundles in case 𝑛 >  1 is much more complicated, see [198].  

In [194], [190], a class ℱ𝐵𝑛(𝛺) of operators in the Cowen–Douglas class possessing 

a flag structure was isolated. A complete set of unitary invariants for this class of operators 

were listed. Recently, Jiang and Ji have introduced methods from 𝐾 −theory to classify flags 

of holomorphic curves in the Grassmannian in order to reduce the questions involving 

operators in 𝐵𝑛(𝛺) to the case of 𝑛 = 1 (cf. [203], [58]). On the other hand, the classification 

of homogeneous holomorphic Hermitian vector bundles over the unit disc has been 

completed recently (cf. [183]) using tools from representation theory of semi-simple Lie 

groups. Although not complete, a similar classification over an arbitrary bounded symmetric 

domain is currently under way [205], [206].  

The methods of 𝐾-theory developed in [203], [58] together with the methods of [190] 

makes it possible to study a much larger class of “quasi-homogeneous” operators, where the 

techniques from representation theory are no longer available. These methods, applied to 

the class of “quasi-homogeneous” operators leads to a unitary classification. In addition the 

bundle maps describing the triangular decomposition of Jiang and Ji have an explicit 

realization in terms of the inherent harmonic analysis. A model for these operators is 
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described explicitly, which shows, among other things, that the well-known Halmos 

problem for the class of “quasi-homogeneous” operators has an affirmative answer.  

Prompted by these results, one might imagine that the multi-variate case (replacing the 

planar domain 𝛺 by the unit ball or a bounded symmetric domain) may also be accessible 

to these new techniques.  

For ℋ be a complex separable Hilbert space and let 𝐿(ℋ) be the algebra of bounded 

linear operators on ℋ. For an open connected subset 𝛺 of the complex plane ℂ, and 𝑛 ∈ ℕ, 

Cowen and Douglas introduced the class of operators 𝐵𝑛(𝛺) in [61]. An operator 𝑇 acting 

on a Hilbert space ℋ belongs to this class if each 𝓌 ∈  𝛺, is an eigenvalue of the operator 

𝑇 of constant multiplicity 𝑛, these eigenvectors span the Hilbert space ℋ and the operator 

𝑇 −𝓌,𝓌 ∈  𝛺, is surjective. They showed that for an operator 𝑇 in 𝐵𝑛(𝛺), there exists a 

holomorphic choice of 𝑛 linearly independent eigenvectors, that is, the map 𝓌 →
 𝑘𝑒𝑟(𝑇 −𝓌) is holomorphic. Thus 𝜋 ∶  𝐸𝑇  →  𝛺, where  

𝐸𝑇  =  {𝑘𝑒𝑟(𝑇 −  𝓌) ∶  𝓌 ∈  𝛺, 𝜋( 𝑘𝑒𝑟(𝑇 −  𝓌)) =  𝓌}  
defines a Hermitian holomorphic vector bundle on 𝛺.  

The Grassmannian 𝐺𝑟(𝑛,ℋ), is the set of all 𝑛 −dimensional subspaces of the Hilbert 

space ℋ. A map 𝑡 ∶  𝛺 →  𝐺𝑟(𝑛,ℋ) is said to be a holomorphic curve, if there exist 𝑛 

(point-wise linearly independent) holomorphic functions γ1, γ2,··· , γn on Ω taking values in 

a Hilbert space ℋ such that t(𝓌)  =  ⋁{γ1(𝓌),··· , γn(𝓌)},𝓌 ∈  Ω. Any holomorphic 

curve 𝑡 ∶  𝛺 →  𝐺𝑟(𝑛,ℋ) gives rise to a 𝑛 −dimensional Hermitian holomorphic vector 

bundle 𝐸𝑡 over 𝛺, namely,  

𝐸𝑡  =  {(𝑥,𝓌)  ∈ ℋ ×  𝛺 | 𝑥 ∈  𝑡(𝓌)} and 𝜋 ∶  𝐸𝑡   →  𝛺,where 𝜋(𝑥,𝓌)  =  𝓌.  
Given two holomorphic curves 𝑡, 𝑡̃ ∶  𝛺 →  𝐺𝑟(𝑛,ℋ), if there exists a unitary operator 𝑈 on 

ℋ such that 𝑡̃  =  𝑈𝑡, that is, the restriction 𝑈(𝓌) ∶=  𝑈|  
𝐸𝑡
 (𝓌) of the unitary operator 𝑈 

to the fiber 𝐸𝑡(𝓌) of 𝐸 at w maps it to the fiber of 𝐸𝑡̃ (𝓌), then 𝑡 and 𝑡̃ are said to be 

congruent. If t and 𝑡̃ are congruent, then clearly the vector bundles 𝐸𝑡  and 𝐸𝑡̃ are equivalent 

via the holomorphic bundle map induced by the unitary operator 𝑈.  
Furthermore, 𝑡 and 𝑡̃ are said to be similar if there exists an invertible operator 𝑋 ∈

ℒ(ℋ) such that 𝑡𝑡̃  =  𝑋𝑡, that is, 𝑋(𝓌) ∶=  𝑋|  
𝐸𝑡
(𝓌) is an isomorphism except that 𝑋(𝓌) 

is no longer an isometry. In this case, we say that the vector bundles 𝐸𝑡 and 𝐸𝑡̃ are similar.  

An operator 𝑇 in the class 𝐵𝑛(𝛺) determines a non-constant holomorphic curve 𝑡 ∶
 𝛺 →  𝐺𝑟(𝑛,ℋ), namely, 𝑡(𝓌)  =  𝑘𝑒𝑟(𝑇 −  𝓌),𝓌 ∈  𝛺. However, if t is a holomorphic 

curve, setting 𝑇𝑡(𝓌)  =  𝓌𝑡(𝓌), defines a linear transformation on a dense subspace of 

the Hilbert space H. In general, we have to impose additional conditions to ensure that the 

operator T is bounded. Assuming that t defines a bounded linear operator 𝑇, unitary and 

similarity invariants for the operator 𝑇 are then obtained from those of the vector bundle 𝐸𝑡.  
The motivation for this work comes from three very different directions. The attempt 

is to describe a canonical model and obtain invariants for operators in the Cowen– Douglas 

class with respect to equivalence via conjugation under a unitary or invertible linear 

transformation. These questions have been successfully addressed using ideas from 

𝐾 −theory and representation theory of Lie groups. First, the detailed study of the Cowen–

Douglas class of operators, reported in [70] provides a basic structure theorem for these 

operators: if 𝑇 is an operator in the Cowen–Douglas class 𝐵𝑛(𝛺), then there exists operators 

𝑇0, 𝑇1, . . . , 𝑇𝑛−1 in 𝐵1(𝛺) such that  
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T = 

(

 
 
 
 
 

𝑇0 𝑆0,1 𝑆0,2 ··· 𝑆0,𝑛−1 

0 𝑇1 𝑆1,2

 

···
 

𝑆1,𝑛−1
 

⋮
0
0

⋱
···
···

⋱
0
···

⋱
𝑇𝑛−2 
0

⋮
𝑆𝑛−2,𝑛−1 

𝑇𝑛−1  )

 
 
 
 
 

.                                        (82) 

A slight paraphrasing of it clearly implies that if {𝛾0, 𝛾1,··· , 𝛾𝑛−1} is a holomorphic frame 

for the vector bundle 𝐸𝑡, and ℋ =  ⋁{𝛾𝑖(𝓌),𝓌 ∈  𝛺, 0 ≤  𝑖 ≤  𝑛 −  1}, then there exists 

non-vanishing holomorphic curves 𝑡𝑖 ∶  𝛺 →  𝐺𝑟(1,ℋ𝑖), 0 ≤  𝑖 ≤  𝑛 −  1, such that  

𝛾𝑗  =  ∅0,𝑗  (𝑡0) + ···  + ∅𝑖,𝑗  (𝑡𝑖) + ···  + ∅𝑗−1,𝑗  (𝑡𝑗−1)  + 𝑡𝑗 , 0 ≤  𝑗 ≤  𝑛 −  1,    (83)  

where ∅𝑖,𝑗 are certain holomorphic bundle maps. One would expect these bundle maps to 

reflect the properties of the operator 𝑇. However the tenuous relationship between the 

operator 𝑇 and the bundle maps ∅𝑖,𝑗 becomes a little more transparent only after we impose 

a natural set of constraints.  

Secondly, to a large extent, these constraints were anticipated in [190]. A class of 

operators ℱ𝐵𝑛(𝛺) in 𝐵𝑛(𝛺) possessing, what we called, a flag structure were isolated. A 

operator 𝑇 ∈  𝐵𝑛(𝛺) in (6.3.1) belongs to ℱ𝐵𝑛(𝛺) if and only if 𝑇𝑖𝑆𝑖,𝑖+1  =  𝑆𝑖,𝑖+1𝑇𝑖+1, 𝑖 ≤
 𝑛 −  1. The flag structure was shown to be rigid. It was then shown that the complex 

geometric invariants like the curvature and the second fundamental form of the vector 

bundle 𝐸𝑇 are unitary invariants of the operator 𝑇. Indeed, a complete set of unitary 

invariants were found.  

Lemma (6.3.1)[199]: ( [190]) If 𝑋 is an invertible operator intertwining any two operators 

𝑇 and 𝑇̃in ℱ𝐵𝑛(𝛺), then the operators 𝑋 and 𝑋−1 are upper triangular relative to the 𝑛 ×  𝑛 

block decomposition of the operators 𝑇 and 𝑇̃.  

It is evident that if the intertwining operator 𝑋 is assumed to be unitary, then 𝑋 must 

be diagonal. This observation is the key to finding a set of tractable complete unitary 

invariants for the operators in the class ℱ𝐵𝑛(𝛺), see [190].  

Finally, recall that an operators 𝑇 in 𝐵𝑛(𝔻) is said to be homogeneous if the unitary 

orbit of 𝑇 under the action of the Möbius group is itself, that is, 𝜑(𝑇) is unitarily equivalent 

to 𝑇 for 𝜑 in some open neighbourhood of the identity in the Möbius group (cf. [77]). A 

canonical element 𝑇(𝜆,𝜇) in each unitary equivalence class of the homogeneous operators in 

𝐵𝑛(𝔻) was constructed in [183]. It was then shown that two operators 𝑇(𝜆,𝜇) and 𝑇(𝜆′ ,𝜇′ ) 
are similar if and only if 𝜆 =  𝜆′ . In particular choosing 𝜇 =  0, one verifies that a 

homogeneous operator in 𝐵𝑛(𝔻) is similar to the 𝑛 −fold direct sum 𝑇0  ⊕···⊕ 𝑇𝑛, where 

𝑇𝑖 is the adjoint of the multiplication operator 𝑀(𝜆𝑖) acting on the weighted Bergman space 

𝔸(𝜆𝑖)(𝔻) determined by the positive definite kernel 
1

(1−𝓏𝓌̅)𝜆𝑖
 defined the unit disc 𝔻, 0 ≤

 𝑖 ≤  𝑛 −  1, 𝜆𝑖  >  0.  
We study a class of operators, to be called quasi-homogeneous, for which we can 

prove results very similar to those for the homogeneous operators building on the techniques 

developed in [190]. This class of operators, as one may expect, contains the homogeneous 

operators and is characterized by the requirement that all the bundle maps of (83) take their 

values in a certain (full) jet bundle 𝒥𝑖(𝑡) of the holomorphic curve 𝑡.  
For a detailed account of the jet bundles, see [208].  
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Definition (6.3.2)[199]: If t is a holomorphic curve in the Grassmannian of rank 1, that is, 

𝑡 ∶  𝛺 →  𝐺𝑟(1,ℋ). Let 𝛾(𝓌) be a non-vanishing holomorphic section for the line bundle 

𝐸𝑡.  

derivatives 𝛾(𝑗) , 𝑗 ∈ ℕ, taking values again in the Hilbert space ℋ are holomorphic. (It can 

be shown that they are linearly independent.) The jet bundle 𝒥𝑛𝐸𝑡(𝛾) is defined by the 

holomorphic frame {𝛾(0)(: =  𝛾), 𝛾(1),··· , 𝛾(𝑛) }. The jet bundle 𝒥𝑛𝐸𝑡(𝛾) has a natural 

Hermitian structure obtained by taking the inner product of 𝛾(𝑖) (𝓌) and 𝛾(𝑗) (𝓌) in the 

Hilbert space ℋ.  

In the following definition we assume, implicitly, that the bundle map ∅𝑖,𝑗 of (83) are 

from the holomorphic line bundles 𝐸𝑖 to a jet bundle 𝒥𝑗𝐸𝑖 , where for brevity of notation and 

when there is no possibility of confusion, we will let 𝐸𝑖 denote the vector bundle induced 

by the holomorphic curve 𝑡𝑖 , 0 ≤  𝑖 ≤  𝑛 −  1.  
Definition (6.3.3)[199]: (𝒥 −holomorphic curve). Let 𝑡 be a holomorphic curve in the 

Grassmannian 𝐺𝑟(𝑛,ℋ) of a complex separable Hilbert space ℋ and {𝛾0, 𝛾1,··· , 𝛾𝑛−1} be a 

holomorphic frame for 𝑡. We say that 𝑡 admits an atomic decomposition if there exists 

holomorphic curves 𝑡𝑖 ∶  𝛺 →  𝐺𝑟(1,ℋ𝑖), to be called the atoms of 𝑡, corresponding to 

operators 𝑇𝑖 ∶  ℋ𝑖  →  ℋ𝑖  in 𝐵1(𝛺) and complex numbers 𝜇𝑖,𝑗  ∈ ℂ, 0 ≤  𝑗 ≤  𝑖 ≤  𝑛 −  1, 

such that ℋ =  ℋ0 ℋ𝑛−1 and 
𝛾0  =  𝜇0,0𝑡0 

𝛾1  =  𝜇0,1𝑡0
(1)
 +  𝜇1,1𝑡1

𝛾2  =  𝜇0,2𝑡0
(2)
 +  𝜇1,2𝑡1

1  +  𝜇2,2𝑡2 

⋮ ⋮

𝛾𝑗  =  𝜇0, 𝑗 𝑡0
(𝑗)
 + ···  + 𝜇𝑖,𝑗  𝑡𝑖

(𝑗−𝑖)
 + ···  + 𝜇𝑗,𝑗  𝑡𝑗

⋮ ⋮

𝛾𝑛−1  =  𝜇0,𝑛−1𝑡0
(𝑛−1)

 + ···  + 𝜇𝑖,𝑛−1𝑡𝑖
(𝑛−1−𝑖)

 + ···  + 𝜇𝑛−1,𝑛−1𝑡𝑛−1.

 

If t admits an atomic decomposition, we call it a 𝒥 −holomorphic curve.  

Fix 𝑖 in {0, . . . , 𝑛 −  1}. We say that the holomorphic curve ti is homogeneous if for 

𝓌 ∈ 𝔻, ℂ[𝑡𝑖(𝓌)]  =  𝑘𝑒𝑟(𝑇𝑖  −  𝓌) for some homogeneous operator 𝑇𝑖 in 𝐵1(𝔻). We 

realize, up to unitary equivalence, such a homogeneous operator 𝑇𝑖 in 𝐵1(𝔻) as the adjoint 

of the multiplication operator 𝑀(𝜆𝑖) on the weighted Bergman spaces 𝐴(𝜆𝑖)(𝔻). Thus for a 

fixed 𝓌  ∈  𝔻, there exists a canonical (holomorphic) choice of eigenvectors 𝑡𝑖(𝓌), 
namely, (1 − 𝓏𝓌̅)−𝜆𝑖  .  
Definition (6.3.4)[199]: (Quasi-homogeneous curve). We say that a 𝐽 −holomorphic curve 

t is quasi-homogeneous if each of the atoms ti is homogeneous, 𝜆0  ≤  𝜆1  ≤ ··· ≤  𝜆𝑛−1 and 

the difference 𝜆𝑖+1  −  𝜆𝑖 , 0 ≤  𝑖 ≤  𝑛 −  2, is a fixed positive real number 𝛬(𝑡), which is 

called the valency of 𝑡.  
We say that the 𝐽 −holomorphic curve 𝑡 defines a bounded linear operator if the linear span 

of {𝛾𝑖(𝓌) ∶  0 ≤  𝑖 ≤  𝑛 −  1},𝓌 ∈  𝛺, is dense in ℋ and the linear map defined by the  

rule 𝑇(𝛾𝑖(𝓌))  =  𝓌𝛾𝑖(𝓌), 0 ≤  𝑖 ≤  𝑛 −  1, extends to a bounded operator on the 

Hilbert space ℋ.  
We determine conditions on the scalars 𝜇𝑖,𝑗 and the valency 𝛬(𝑡), which ensure that 

the quasi-holomorphic curve 𝑡 defines bounded operator 𝑇, see Proposition (6.3.7).  

We make the standing assumption that these conditions for boundedness are fulfilled. 

We shall use the terms quasi-homogeneous holomorphic curve 𝑡, quasi-homogeneous 
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operator 𝑇 and quasi-homogeneous holomorphic vector bundle 𝐸𝑡 (or, even 𝐸𝑇 ) 

interchangeably.  

If 𝑇 is a quasi-homogeneous operator then it belong to the class ℱ𝐵𝑛(𝔻) introduced 

in [194], [190], see Theorem (6.3.8). All quasi-homogeneous operators are therefore 

irreducible. All the quasi-homogeneous operators that are strongly irreducible are identified 

in Theorem (6.3.16). Theorem (6.3.19) gives a canonical model for a quasi-homogeneous 

operator in the equivalence class under conjugation by an invertible transformation.  

As an application of our results, in Theorem (6.3.26), we show that the (topological) 

𝐾0 group and the (algebraic) 𝐾0 group of a quasi-homogeneous operator are equal. In the 

context of the usual 𝐾0 and 𝐾0 groups, this is a consequence of the well-known theorem of 

R.G. Swan. As a second application, we obtain an affirmative answer for the Halmos 

question on similarity of an operator admitting the closed unit disc as a spectral set to a 

contraction.  

A quasi-homogeneous vector bundle 𝐸𝑡 is indeed homogeneous if 𝛬(𝑡)  =  2 and the 

constants 𝜇𝑖 ,𝑗   are certain explicit functions of 𝜆 as we point out at the end of the following. 

However, a quasi-homogeneous vector bundle need not be homogeneous as the following 

example shows.  

Example (6.3.5)[199]: Let 𝑆 be the adjoint of the multiplication operator on arbitrary 

weighted Bergmann space 𝐴(𝜆) (𝔻) and let 𝑇 be the operator  

𝑇 =

(

 
 
 

𝑆 𝜇1 𝐼 0 ···  0
0 𝑆 𝜇2 𝐼 ···  0
⋮  ⋱  ⋱   ⋱    ⋮
0 ···  0 𝑆 𝜇𝑛 𝐼
0 ··· ···  0 𝑆 

 

)

 
 
    , 𝜇𝑖  ∈  𝐶,  

defined on the 𝑛 +  1 fold direct sum ⊕𝔸(𝜆) (𝔻). Then T is in ℱ𝐵𝑛+1(𝔻) and therefore 

belongs to 𝐵𝑛+1(𝔻) and the corresponding holomorphic curve 𝑡(𝓌)  =  𝑘𝑒𝑟(𝑇 −
𝓌),𝓌 ∈ 𝔻, is quasi homogeneous with 𝛬(𝑡)  =  0. In fact, in this Example, if we replace 

𝑆 with an arbitrary operator, say 𝑅, from 𝐵1(𝔻), then the resulting operator 𝑇 while no 

longer quasi-homogeneous, remains a member of ℱ𝐵𝑛+1(𝔻). Indeed, it has already 

appeared, via module tensor products, in [190].  

The class of quasi-homogeneous operators, contrary to what might appear to be a 

rather small class of operators, contains apart from the homogeneous operators, many other 

operators. Indeed, in rank 2, for instance, it is parametrized by the multiplier algebra of two 

homogeneous operators. In the definition of the quasi-homogeneous operators given above, 

if we let the atoms occur with some multiplicity rather than being multiplicity-free, it will 

make it even larger. This would cause additional complications, which we are not able to 

resolve at this time. In another direction, we need not assume that the atoms themselves are 

homogeneous. Most of our results would appear to go through if we merely assume that the 

kernel function 𝐾(𝜆)(𝓌,𝓌) ∼
1

(1−|𝓌|2)𝜆 
, |𝓌|  <  1. Deep results about such functions 

were obtained by Hardy and Littlewood (cf. [202]) and have already appeared in the context 

of similarity, see [200].  

An operator 𝑇 in the Cowen and Douglas class 𝐵𝑛(𝛺) is determined, modulo unitary 

equivalence, by the curvature (of the vector bundle 𝐸𝑇 ) together with a finite number of its 

partial derivatives. However, if the rank 𝑛 of this vector bundle is >  1, then the computation 

of the curvature and its derivatives is somewhat impractical. Here we show that if the 

operator is quasi-homogeneous, it is enough to restrict ourselves to the computation of the 
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curvature of the atoms and a 𝑛 −  1 second fundamental forms of pair-wise neighbouring 

vector bundles. We first recall, following [61], [79], that an operator 𝑇 in 𝐵𝑛(𝛺) may be 

realized as the adjoint of a multiplication operator on a Hilbert space of holomorphic 

functions on 𝛺∗ ∶=  {𝓌 ∶  𝓌̅  ∈  𝛺} possessing a reproducing kernel.  

For an operator 𝑇 in the Cowen–Douglas class 𝐵𝑛(𝛺), acting on a Hilbert space ℋ, 
there is a holomorphic frame {𝛾0, 𝛾1,··· , 𝛾𝑛−1} and atoms 𝑡0, . . . , 𝑡𝑛−1, for which we have  

𝛾𝑖  =  𝜇0 ,𝑖𝑡0
(𝑖)
 + ···  + 𝜇𝑗,𝑖𝑡𝑖

(𝑖−𝑗)
 + ···  + 𝜇𝑖,𝑖𝑡𝑖 , 𝜇𝑗,𝑖  ∈ ℂ.  

At this point, assuming that the operator is quasi-homogeneous makes the atoms 

𝑇0, 𝑇1, . . . , 𝑇𝑛−1 homogeneous. Conjugating with a diagonal unitary, if necessary, we assume 

without loss of generality that 𝑡𝑖 is the holomorphic curve defined by 𝑡𝑖(𝓌):=

 (1 − 𝓌̅𝓏 )−𝜆𝑖  , 𝜆𝑖  =  𝜆0 + 𝑖  𝛬(𝑡), 0 ≤  𝑖 ≤  𝑛 −  1, 𝜆0  >  0,  

in the weighted Bergman space 𝔸(𝜆𝑖) (𝔻). We assume without loss of generality that 𝜇𝑖,𝑖  =
 1, 0 ≤  𝑖 ≤  𝑛 –  1.  

Let t be a quasi-homogeneous holomorphic curve in 𝐺𝑟(𝑛,ℋ). Assume that it defines 

a bounded linear operator 𝑇 on the Hilbert space ℋ. An appeal to the decomposition (82) 

provides, what we would now call an atomic decomposition for the operator 𝑇. This 

decomposition has several additional properties arising out of our assumption of quasi-

homogeneity.  

Proposition (6.3.6)[199]: Let 𝑡 be a 𝒥 −holomorphic curve with atoms {𝑡0, . . . , 𝑡𝑛−1} and 

let {𝛾0, . . . , 𝛾𝑛−1} be a holomorphic frame for the vector bundle 𝐸𝑡 . Let ℋ be the closed 

linear span of the set of vectors {𝛾0(𝓌), . . . , 𝛾𝑛−1(𝓌) ∶  𝓌 ∈  𝛺} and ℋ𝑖 be the closed 

linear span of the set of vectors {𝑡𝑖(𝓌),𝓌 ∈  𝛺}, 0 ≤  𝑖 ≤  𝑛 −  1. We have  

(i) ℋ =  ℋ0  ⊕ ℋ1  ⊕···⊕ℋ𝑛−1;  
(ii) There exists an operator 𝑇, defined on a dense subset of vectors in ℋ, which is upper 

triangular with respect to the direct sum decomposition ℋ =  ℋ0  ⊕···⊕ℋ𝑛−1:  

𝑇 =

(

 
 
 

𝑇0 𝑆0,1 𝑆0,2  ···  𝑆0,𝑛−1 

0 𝑇1 𝑆1,2  ···  𝑆1,𝑛−1
⋮ ⋱ ⋱  ⋱      ⋮

0 . . . 0 𝑇𝑛−2 𝑆𝑛−2 ,𝑛−1
 0   0      . . .   0       𝑇𝑛−1 

 

)

 
 
    ,  

where 𝑆𝑖,𝑗  (𝑡𝑗  (𝓌))  =  𝑚𝑖,𝑗  𝑡𝑖
(𝑗−𝑖−1)

   (𝓌), 𝑇𝑖(𝑡𝑖(𝓌)))  =  𝓌 𝑡𝑖(𝓌), 𝓌 ∈  𝛺, 𝑖, 𝑗 =

 0, 1,··· , 𝑛 −  1, for some choice of complex constants 𝑚𝑖,𝑗 depending on the 𝜇𝑖,𝑗  . (iii) The 

constants mi,j and 𝜇𝑖,𝑗 determine each other.  

For convenience of notation, in the proof below, we set 𝑆𝑖,𝑖 ∶=  𝑇𝑖 , 0 ≤  𝑖 ≤  𝑛 −  1, in the 

proof. We will adopt this practice often and call 𝑇0, 𝑇1, . . . , 𝑇𝑛−1, the atoms of 𝑇. Also, 

𝑆𝑖,𝑖+1(𝑡𝑖+1)  =  𝜇𝑖,𝑖+1𝑡𝑖 , with the assumption that 𝜇𝑖,𝑖  =  1, 0 ≤  𝑖 ≤  𝑛 −  2.  
Proof. Note that {𝛾0, 𝛾1,··· , 𝛾𝑛−1} is a frame for 𝐸𝑡 and the atoms 𝑡𝑖 , 0 ≤  𝑖 ≤  𝑛 −  1 are 

pairwise orthogonal. From Definition (6.3.3), the first statement of the Proposition is 

included in the definition of a holomorphic quasi-homogeneous curve.  

For 0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛 − 1, let 𝑆𝑖,𝑗 ∶ ℋ𝑗  →  ℋ be the linear transformation induced by 

bundle maps 𝑠𝑖,𝑗 ∶  𝐸𝑡𝑗  →  𝐽𝑗−𝑖 − 1𝐸𝑡𝑖  , namely,  

∑ 

 

𝑖≤𝑗 

𝑠𝑖,𝑗  (𝛾𝑘(𝓌)) =  𝓌𝛾𝑘(𝓌), 𝓌 ∈ 𝛺.  

It follows that  
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(𝑠𝑘,𝑘  −𝓌)(𝜇𝑘,𝑘𝑡𝑘(𝓌)) =  0, (𝑠𝑘−1,𝑘−1  −𝓌)(𝜇𝑘−1 ,𝑘𝑡𝑘−1
(1) (𝓌)) + 𝑠𝑘−1,𝑘 (𝜇𝑘,𝑘𝑡𝑘(𝓌))

=  0.                                                                                                                           (84) 
Thus 𝑠𝑘,𝑘  induces an operator 𝑆𝑘,𝑘 with ker(𝑆𝑘,𝑘  −𝓌)  = ℂ[𝑡𝑘(𝓌)] and 𝑠𝑘−1,𝑘 is a bundle 

map from 𝐸𝑡𝑘  (𝓌)(:= ℂ[𝑡𝑘(𝓌)]) to 𝐸𝑡𝑘−1 (𝓌)(:= ℂ[𝑡𝑘−1(𝓌)]).  

For any 𝑖 ≤  𝑗 ≤  𝑛 −  1, 𝑠𝑖,𝑗 is a bundle map from 𝐸𝑡𝑗 to 𝒥𝑗−𝑖−1𝐸𝑡𝑖 and there exists 𝑚𝑖,𝑗  ∈

ℂ  such that 𝑆𝑖,𝑗  (𝑡𝑗  (𝓌))  =  𝑚𝑖,𝑗  𝑡𝑖
(𝑗−𝑖−1)

 (𝓌),𝓌 ∈  𝛺.  

Since (𝑠0,0  −  𝓌)𝛾1(𝓌)  =  (𝑠0,0  −  𝓌)(𝜇0,1𝑡0
(1)
 (𝓌))  + 𝑠0,1(𝜇1,1𝑡1(𝓌))  =  0, we 

have  

𝑠0,1(𝑡1(𝓌))  =  𝑚0,1𝑡0(𝓌),  

where 𝑚0,1  =  −
𝜇0,1

𝜇1,1
 . Thus we have  

𝑠0,2(𝑡2(𝓌)) = −
2𝜇0,2  +  𝜇1,2𝑚0,1

𝜇2,2
𝑡0
(1)(𝓌) = 𝑚0,2𝑡0

(1)(𝓌). 

Now assume that for any fixed 𝑘 and some 𝑘 <  𝑗 ≤ 𝑛 − 1. there exits 𝑚𝑘,𝑖  ∈ ℂ such that  

𝑠𝑘,𝑖( 𝑡𝑖(𝓌))  =  𝑚𝑘,𝑖𝑡𝑘
(𝑖−𝑘−1)

 (𝓌), 𝑖 < 𝑗.  
Then from equation (84), we have  

(𝑠𝑘,𝑘  −  𝓌)(𝜇𝑘,𝑗  𝑡𝑘
(𝑗−𝑘)

 )(𝓌) + 𝑠𝑘,𝑘+1(𝜇𝑘+1,𝑗  𝑡𝑘+1
(𝑗−𝑘−1)

 (𝓌))  + ···  + 𝑠𝑘,𝑗  (𝜇𝑗,𝑗  𝑡𝑗  (𝓌))  

=  0  
and from the induction hypothesis, we may rewrite this as  

𝜇𝑘,𝑗  (𝑗 −  𝑘)𝑡𝑘
(𝑗−𝑘−1)

 (𝓌) + 𝜇𝑘+1,𝑗𝑚𝑘,𝑘+1𝑡𝑘
(𝑗−𝑘−1)

 (𝓌) + ···  + 𝜇𝑗,𝑗   𝑠𝑘,𝑗  (𝑡𝑗  (𝓌))  

=  0.  
Thus  

𝑠𝑘,𝑗  (𝑡𝑗  (𝓌))  =  𝑚𝑘,𝑗  𝑡𝑘
(𝑗−𝑘−1)

 (𝓌),  

or, equivalently  

𝑚𝑘,𝑗  =  −
𝜇𝑘,𝑗  (𝑗 −  𝑘) + ∑  

 𝑗−𝑘−1
 𝑙=1  𝜇𝑘+𝑙,𝑗𝑚𝑘,𝑘+𝑙
𝜇𝑗, 𝑗

                      (85)  

completing the proof of the second statement of the Proposition.  

Claim: For any operator 𝑇 in 𝐵𝑛(𝛺) with atomic decomposition exactly as in the second 

statement of the lemma, there exists 𝜇𝑖,𝑗 satisfying the conditions in Definition (6.3.3), that 

is, there exists a holomorphic frame for 𝐸𝑇  , which is a linear combination of the non-

vanishing holomorphic sections of 𝐸𝑡𝑖 and a certain number of jets.  

Indeed, the proof of the second part of the Proposition already verifies this Claim for 

𝑛 ≤  2. To prove the Claim by induction, let us assume that it is valid for 𝑘 ≤  𝑛 − 2. Note 

that the operator ((𝑆𝑖,𝑗))
𝑖,𝑗≤𝑛−2

 is in 𝐵𝑛−1(𝛺). By the induction hypothesis, we can find 

𝑚𝑖,𝑗  , 𝑖, 𝑗 ≤  𝑛 −  2 verifying Claim 2 for any operator ((𝑆𝑖,𝑗))
𝑖,𝑗≤𝑛−2

. If we consider the 

operator  

 (
𝑇𝑛−2 𝑆𝑛−2,𝑛−1
0 𝑇𝑛−1

),  

then we have that 𝑆𝑛−2,𝑛−1(𝑡𝑛−1)  =  𝑚𝑛−2,𝑛−1𝑡𝑛−2. Now, setting 𝜇𝑛−2,𝑛−1  =  −𝑚𝑛−2,𝑛−1, 
we can define all the coefficients 𝜇𝑛−𝑘,𝑛−1, 2 ≤  𝑘 ≤  𝑛 recursively. In fact, if we consider  
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(

 
 
 
 

𝑇𝑛−𝑘  𝑆𝑛−𝑘,𝑛−𝑘+1 𝑆𝑛−𝑘,𝑛−𝑘+2  ···  𝑆𝑛−𝑘,𝑛−1
𝑇𝑛−𝑘+1 𝑆𝑛−𝑘+1,𝑛−𝑘+2  ···  𝑆𝑛−𝑘+1,𝑛−1 
⋱                                                      ⋮
                             ⋱                         ⋮
 0                                                   

                                            𝑇𝑛−2         𝑆𝑛−2,𝑛−1
                                                        𝑇𝑛−1 

 

)

 
 
 
 

  ,  

where 2 ≤  𝑘 ≤  𝑛, and set  

𝜇𝑛−𝑘,𝑛−1  =  −
∑   𝑘 −2
𝑖=1   𝑚𝑛−𝑘,𝑛−𝑘 +𝑖𝜇𝑛−𝑘+𝑖,𝑛−1  +  𝑚𝑛−𝑘,𝑛−1

𝑘 −  1
   ,  

then 𝜇𝑛−𝑘,𝑛−1 is defined involving only the coefficients 𝜇𝑛−𝑘+𝑖,𝑛−1 which exist by the 

induction hypothesis. Thus coefficients 𝜇𝑖,𝑗 depends only on the 𝑚𝑖,𝑗  , 𝑖, 𝑗 ≤  𝑛 −  1. By a 

direct computation, 𝛾𝑘  =  𝜇0,𝑘𝑡0
(𝑘)
 +  𝜇1,𝑘𝑡1

(𝑘−1)
 + ···  + 𝜇𝑘,𝑘𝑡𝑘 , 0 ≤  𝑘 <  𝑛 − 1 together 

defines a frame for 𝐸𝑇  . This completes the proof of the Claim and the third statement of the 

lemma.  

Having shown that a holomorphic quasi-homogeneous curve 𝑡 defines a linear 

transformation on a dense subset of ℋ𝑡, we determine when it extends to a bounded linear 

operator on all of ℋ𝑡 . We make the following conventions here which will be in force 

throughout.  

The positive definite kernel 𝐾(𝜆) (𝓏,𝓌) is the function (1 − 𝓌̅𝓏 )−𝜆 defined on 

𝔻 × 𝔻 and is the reproducing kernel for the weighted Bergman space 𝔸(𝜆) (𝔻). The 

coefficient 𝑎𝑛(𝜆) of 𝓌̅𝑛𝓏𝑛 in the power series expansion for 𝐾(𝜆) (in powers of 𝓏𝓌̅) is of 

the form 𝑎𝑛(𝜆)  ∼  𝑛
𝜆−1 using Stirling’s formula: 𝑎(𝜆) =

𝛤(𝜆+𝑛)

𝛤(𝑛)
 ∼  𝑛𝜆. The set of vectors 

𝑒𝑛
(𝜆)
∶=  √𝑎𝑛(𝜆)𝓏

𝑛, 𝑛 ≥  0, is an orthonormal basis in 𝔸(𝜆) (𝔻). The action of the 

multiplication operator on 𝔸(𝜆) (𝔻) is easily determined:  

𝑀(𝑒𝑛
(𝜆)
 )  ∼   (

𝑛

𝑛 +  1
)

𝜆−1
2
 𝑒𝑛+1
(𝜆)
. 

Often, one sets 𝓌𝑛
(𝜆)
∶= √

𝑎𝑛(𝜆)

𝑎𝑛+1(𝜆)
 and says that 𝑀 is a weighted shift with weights 𝓌𝑛

(𝜆)
 

since 𝑀(𝑒𝑛
(𝜆)
 )  =  𝓌𝑛

(𝜆)
 𝑒𝑛+1
(𝜆)
 . The other way round, ∏  𝑛 𝑖=0  𝓌𝑖

(𝜆)
 =  √

𝑎𝑛(𝜆)

𝑎𝑛+1(𝜆)
 ∼

 (𝑛 +  1)
1−𝜆

2  .  
The adjoint of this operator is then given by the formula:  

𝑀∗(𝑒𝑛
(𝜆)
 )  = 𝓌𝑛−1

(𝜆)
𝑒𝑛−1
(𝜆)
 ∼ (

𝑛 −  1

𝑛
 )

𝜆−1
2
 𝑒𝑛−1
(𝜆)
. 

The following Proposition shows that if the valency 𝛬(𝑡) is less than 2, then every possible 

linear combination of the atoms and their jets need not define a bounded linear 

transformation. However, from the proof of this Proposition, we infer that no such 

obstruction can occur if 𝛬(𝑡)  ≥  2.  
Proposition (6.3.7)[199]: Fix a natural number 𝑛 ≥  2. Let t be a quasi-homogeneous 

holomorphic curve with atoms 𝑡𝑖 , 𝑖 =  0, 1, . . . , 𝑛 −  1. For 0 ≤  𝑖, 𝑗 ≤  𝑛 −  1, let 

𝑠𝑖,𝑗  (𝑡𝑗  (𝓌))  =  𝑚𝑖,𝑗  𝑡𝑖
(𝑗−𝑖−1)

 (𝓌) be the bundle map from 𝐸𝑡𝑗  to 𝒥𝑗−𝑖−1𝐸𝑡𝑖 and 𝑆𝑖,𝑗 ∶
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ℋ𝑗  → ℋ𝑖  be the densely defined linear transformation induced by the maps 𝑠𝑖,𝑗  . The linear 

transformation of the form 

𝑇 =   

(

 
 
   

𝑇0 𝑆0,1 𝑆0,2  ···  𝑆0,𝑛−1 

0 𝑇1 𝑆1,2  ···  𝑆1,𝑛−1 

⋮⋱  ⋱  ⋱⋱  ⋮
0 . . . 0 𝑇𝑛−2 𝑆𝑛−2,𝑛−1
0      0 . . . 0 𝑇𝑛−1

 

)

 
 

 

is densely defined on the Hilbert space 𝔸(𝜆0)(𝔻)⊕···⊕ 𝔸(𝜆𝑛−1)(𝔻). Suppose that 𝛬(𝑡)  <
 2.  

(i) If 𝛬(𝑡)  ∈  [1 +
𝑛−3

𝑛−1
 , 2), 𝑛 ≥  2, then 𝑇 is bounded.  

(ii) If 𝛬(𝑡)  ∈  [1 +
𝑛−𝑘−4

𝑛−𝑘−2
 , 1 +

𝑛−𝑘−3

𝑛−𝑘−1 
), the operator 𝑇 is bounded only if we set 𝑚𝑖,𝑗  = 0 

whenever 𝑗 −  𝑖 ≥  𝑛 −  𝑘 −  2, 𝑛 −  1 >  𝑘 ≥  0, 𝑛 ≥  4, that is, 𝑇 must be of the form  

𝑇 =

(

 
 
 
 
 

𝑆0,0 𝑆0,1  ···  𝑆0,𝑛−𝑘−2 0 ···  0 0 

𝑆1,1 𝑆1,2   ···  𝑆1,𝑛−𝑘−1 0 ···  0 
⋱         ⋱                 ⋱     ⋱     ⋱  ⋮
⋱⋱⋱⋱                                 0

0 𝑆𝑘+1,𝑘+1 𝑆𝑘+1,𝑘+2  ···  𝑆𝑘+1,𝑛−1 

                                          ⋱   ⋱     ⋮
                                            𝑆𝑛−2,𝑛−2 𝑆𝑛−2,𝑛−1 

                                                𝑆𝑛−1,𝑛−1 )

 
 
 
 
 

  

(iii) If 𝛬(𝑡)  ∈  (0, 1), then the densely defined linear transformation 𝑇 is bounded only if 

we set 𝑚𝑖,𝑗  =  0, 𝑖 <  𝑗 +  1, 𝑖 =  0, 1,··· , 𝑛 −  2, 𝑛 ≥  3. 

Proof. For 𝑖 =  0, 1,··· , 𝑛 −  1, the operators 𝑆𝑖,𝑖 are homogeneous by definition. Thus the 

operator 𝑆𝑖,𝑖 , as we have said before, is realized as the adjoint of the multiplication operator 

on the weighted Bergman space 𝔸(𝜆𝑖) (𝔻). The reproducing kernel 𝐾(𝜆𝑖)(𝓏,𝓌) for this 

Hilbert space is of the form 
1

(1−𝓏𝓌̅)𝜆𝑖
 . Consequently, 

ker (𝑆𝑖,𝑖  −𝓌)
∗
 = ℂ[𝑡𝑖( 𝓌̅)]  = ℂ[𝐾

(𝜆𝑖) (𝓏,𝓌)],𝓌 ∈ 𝔻. 

Claim : If 𝜆𝑗  − 𝜆𝑖  >  2(𝑗 − 𝑖) − 2, 𝑗 > 𝑖 =  0, 1, 2,··· , 𝑛 − 2, then each 𝑠𝑖,𝑗 induces a non-

zero linear bounded operator 𝑆𝑖,𝑗  .  

Without loss of generality, we set 𝑠𝑖,𝑗  (𝑡𝑗  )  =  𝑚𝑖,𝑗  𝑡𝑖
(𝑗−𝑖−1)

 ,𝑚𝑖,𝑗  ∈ ℂ, 𝑖, 𝑗 =  0, 1,··· , 𝑛 − 1 

and  

𝑡𝑖(𝓌) =
1

(1 − 𝓏𝓌)𝜆𝑖  
, 𝑡𝑗  (𝓌) =

1

(1 − 𝓏𝓌)𝜆𝑖
 . 

Then the linear transformation 𝑆𝑖,𝑗 ∶ ℋ𝑗  →  ℋ𝑖 induced by 𝑠𝑖,𝑗 is densely defined by the rule  

𝑆𝑖,𝑗  (𝑡𝑗  )  =  𝑚𝑖,𝑗  𝑡𝑖
(𝑗−𝑖−1)

 , 𝑖, 𝑗 =  0, 1,··· , 𝑛 −  1.  

We have that  

||𝑆𝑖,𝑗  | | = |𝑚𝑖,𝑗  |max
ℓ
 {
√Π𝑙=0

ℓ−( 𝑗−𝑖)
 𝓌𝑙(𝜆𝑗  )

√Π𝑙=0
ℓ−1 𝓌𝑙(𝜆𝑗  )

ℓ(ℓ −  1) ··· ( ℓ − (𝑗 −  𝑖)  +  2)} . 

By a direct computation,  
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√Π𝑙=0
ℓ−( 𝑗−𝑖−1)

 𝓌𝑙(𝜆𝑗  )

√Π𝑙=0
ℓ−1 𝓌𝑙(𝜆𝑗  )

ℓ(ℓ −  1) ··· ( ℓ − (𝑗 −  𝑖)  +  2)  ∼ (
1

ℓ
𝜆𝑗 − 𝜆𝑖
2

 − (𝑗 − 𝑖 − 1)

 )   . 

It follows that each 𝑆𝑖,𝑗  is a non-zero bounded linear operator if and only if  

𝜆𝑗  − 𝜆𝑖
2

 ≥  𝑗 −  𝑖 −  1, that 𝑖𝑠, 𝜆𝑗  −  𝜆𝑖  ≥  2(𝑗 −  𝑖) −  2.  

If 𝛬(𝑡)  ≥  1 +
𝑛−3

𝑛−1
 , then 

 𝜆𝑛−1  −  𝜆0  =  (𝑛 −  1)𝛬(𝑡)  ≥  2(𝑛 −  2).  
By the argument given above, we obtain 𝑆0,𝑛−1 is non-zero and bounded. If 𝛬(𝑡)  <  1 +
𝑛−3

𝑛−1
 , then we might deduce that 𝑚0,𝑛−1  =  0 or 𝜇0,𝑛−1  =  0, i.e. 𝑆0,𝑛  =  0. Thus the proof 

of the first statement is complete.  

For the general case, if 𝛬(𝑡)  ∈  [1 + 
𝑛−𝑘−4

𝑛−𝑘−2
  , 1 + 

𝑛−𝑘−3

𝑛−𝑘−1 
), 𝑘 ≥  0, then we have 

(𝑛 −  𝑘 −  1)𝛬(𝑡)  <  2(𝑛 −  𝑘 −  1)  −  2. 
On the other hand, if 𝑗 −  𝑖 ≥  𝑛 −  𝑘 −  1, then we obtain 𝜆𝑗  −  𝜆𝑖  ≤  2(𝑗 −  𝑖)  −  2. By 

the argument above, we have 𝑆𝑖,𝑗  =  0, 𝑗 −  𝑖 ≥  𝑛 −  𝑘 −  1, and 𝑆 has the following 

matrix form:  

𝑇 =    

(

 
 
 
 
 

𝑆0,0  ···  𝑆0,𝑛−𝑘−2 0     ···      0

𝑆1,1  ···  𝑆1,𝑛−𝑘−1 0   ···    0

              ⋱              ⋱      ⋱      ⋮
                           ⋱         ⋱        0

          0          𝑆𝑘+1,𝑘+1  ···        𝑆𝑘+1,𝑛−1
                               ⋱         ⋮
                                    ⋱     ⋮

                                    𝑆𝑛−1,𝑛−1 )

 
 
 
 
 

                        (86)  

This completes the proof of the second statement. In particular, if 0 ≤  𝛬(𝑡)  <  1 and 𝑗 −
𝑖 ≥  2, then we have 𝜆𝑗  − 𝜆𝑖  ≤  2(𝑗 − 𝑖) − 2, which implies  

𝑇 =

(

 
 

𝑆0,0    𝑆0,1 0                        ···  0

0               𝑆1,1 𝑆1,2            ···  0 
⋮       ⋱             ⋱  ⋱               ⋮

0           ···   0 𝑆𝑛−2,𝑛−2   𝑆𝑛−2,𝑛−1 

0       ···  ···         0       𝑆𝑛−1,𝑛−1

  

)

 
 
 , 𝛬(𝑡)  ∈  [0, 1).  

This completes the proof of the third statement.  

Having disposed off the question of boundedness of a quasi-homogeneous operator, we 

show that all quasi-homogeneous operators are in the class 𝐹ℬ𝑛(𝔻 ). 

Theorem (6.3.8)[199]: Suppose 𝑇 is a quasi-homogeneous operator and ((𝑆𝑖,𝑗))
𝑛×𝑛
 is its 

atomic decomposition. Then we have  

𝑆𝑖,𝑖  𝑆𝑖,𝑖+1  =  𝑆𝑖,𝑖+1𝑆𝑖+1,𝑖+1, 𝑖 =  0, 1,··· , 𝑛 −  2,  
or equivalently, 𝑇 is in ℱ𝐵𝑛(𝔻).  
Proof. We have found constants 𝑚𝑖,𝑗  ∈ ℂ such that  

𝑆𝑖,𝑗  (𝑡𝑗  ) =  𝑚𝑖,𝑗  𝑡𝑖
(𝑗−𝑖−1)

 , 𝑖 <  𝑗 = 0,1,… , 𝑛 − 1 

in the second statement of Proposition (6.3.6). Since (𝑆𝑖,𝑖  − 𝑤)(𝑡𝑖(𝓌))  =  0, 𝑤 ∈  𝛺, it 
follows that 
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𝑆𝑖,𝑖𝑆𝑖,𝑖+1(𝑡𝑖+1(𝓌))  =  𝑆𝑖,𝑖+1𝑆𝑖+1,𝑖+1(𝑡𝑖+1(𝓌)).  
We have ℋ𝑖  =  𝑆𝑝𝑎𝑛𝓌∈𝛺{𝑡𝑖(𝓌)}, 𝑖 =  0, 1 ··· , 𝑛 −  1, therefore  

𝑆𝑖,𝑖𝑆𝑖,𝑖+1  =  𝑆𝑖,𝑖+1𝑆𝑖+1,𝑖+1, 𝑖 =  0, 1,··· , 𝑛 −  2.  
In [80], an explicit formula for the second fundamental form of a holomorphic 

Hermitian line bundle in its first order jet bundle of rank 2 was given. The second 

fundamental form, in a slightly different guise, was shown to be a unitary invariant for the 

class of operators ℱ̃𝐵𝑛(𝛺) in [190]. We give the computation of the second fundamental 

form here, yet again, keeping track of certain constants which appear in the description of 

the quasi-homogeneous operators. We compute the second fundamental form of the 

inclusion 𝐸0 in E, where {𝛾0, 𝛾1} is a frame for E with atoms 𝑡0 and 𝑡1. The line bundle 

defined by the atom 𝑡0 is 𝐸0. By necessity, we have  

𝛾0  =  𝑡0 𝛾 1  =  𝜇01𝑡0
′  +  𝑡1  

with 𝑡0  ⊥  𝑡1. As in [80], [190], setting ℎ =  〈𝛾0, 𝛾0 〉, the second fundamental form 𝜃0,1 is 

seen to be of the form  

𝜃0,1  =  −ℎ
 1/2

𝜕̅(ℎ−1 〈𝛾1, 𝛾0〉 )

(‖𝛾1‖
2  −

|〈𝛾1, 𝛾0〉|
2

‖𝛾0‖
2 
)
 1/2
 .  

It is important, for what follows, to express 𝜃0,1 in terms of the atoms 𝑡0 and 𝑡1 giving the 

formula  

𝜃0,1  =  
𝜇0,1𝒦0

(
‖𝑡1‖

2

‖𝑡0‖
2 
  − |𝜇0,1|

2
𝒦0 )

 1 /2
 ,                           (87)  

where 𝒦0 is the curvature of the line bundle 𝐸𝑡0 given by the formula −𝜕𝜕 𝑙𝑜𝑔  
‖𝑡0‖

2. The following lemma shows the key role of the second fundamental form in 

determining the unitary equivalence class of a quasi-homogeneous holomorphic curve.  

Lemma (6.3.9)[199]: Suppose that 𝑡 and 𝑡̃ are quasi-holomorphic curves with the same 

atoms 𝑡0, 𝑡1. Then the following statements are equivalent.  

(i) The two curves t and 𝑡̃ are unitarily equivalent;  

(ii) The second fundamental forms 𝜃0,1 and 𝜃̃0,1 are equal;  

(iii) The two constants 𝜇0,1 and 𝜇̃0,1 are equal. 

Proof. The equivalence of the first two statements was proved in [190]. The equality of 𝜃0,1 

and 𝜃̃0,1 is clearly equivalent to  

𝜇̃0,1 (
‖𝑡1‖

2

‖𝑡0‖
2
  +  |𝜇0,1|

2
𝜕̅𝜕 𝑙𝑜𝑔 ‖𝑡0‖

2)

 1/2

 =  𝜇0,1  (
‖𝑡1‖

2

‖𝑡0‖
2
+ |𝜇̃0,1|

2
𝜕̅𝜕 𝑙𝑜𝑔 ‖𝑡0‖

2)

1/2

 .  

From this equality, we infer that 𝑎𝑟𝑔(𝜇0,1)  =  𝑎𝑟𝑔(𝜇̃0,1).  

Given that we have assumed, without loss of generality, ‖𝑡0‖
2 = (1 − |𝓌|2)−𝜆0   and 

‖𝑡1‖
2 = (1 −  |𝓌|2)−𝜆1  , squaring both sides and then taking the difference of the equality 

displayed above, we find that  

𝜕̅𝜕 𝑙𝑜𝑔 ‖𝑡0‖
2  =  𝜆0(1 − |𝓌|

2)−2, 

which can be equal to 
‖𝑡1‖

2

‖𝑡0‖
2
 if and only if 𝜆1  −  𝜆0  =  2. Thus except when 𝛬(𝑡)  =  2, we 

must have 𝜇0,1
2  −  𝜇̃0,1

2  =  0. Clearly, 𝜇̃0,1  =  −𝜇0,1 is not an admissible solution. So, we 

must have 𝜇̃0,1  =  𝜇0,1. In case 𝜆1  − 𝜆0  =  2, if we assume 𝜇̃0,1  ≠  𝜇0,1, then we must have  
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(
1 + 𝜆0|𝜇̃0,1|

2

1 + 𝜆0|𝜇0,1|
2 )

1
2

 =
|𝜇̃0,1|

|𝜇0,1|
 , 

from which it follows that |𝜇̃0,1|  =  |𝜇0,1|. The arguments of these complex numbers being 

equal, they must be actually equal.  

When we consider the inclusion of the line bundle 𝐸𝑡𝑖 in the vector bundle 𝐸
{𝑡𝑖,

𝑚𝑖,𝑗

𝑗−𝑖
 𝑡𝑖
(𝑗−𝑖)

 +𝑡𝑗 }
 

of rank 2, the situation is slightly different. This is the vector bundle which corresponds to 

the 2 ×  2 operator block 𝑇𝑖,𝑗 ∶= (
𝑆𝑖,𝑖 𝑆𝑖,𝑗 

0 𝑆𝑗,𝑗 
) .  

Clearly, {𝑡𝑖 , − 
𝑚𝑖,𝑗

𝑗−𝑖
 𝑡𝑖
(𝑗−𝑖)

 + 𝑡𝑗} is the frame for 𝐸𝑇𝑖,𝑗  . By the formulae above, setting 

temporarily 𝛾0  =  𝑡𝑖 , 𝛾1  =  −
𝑚𝑖,𝑗

𝑗−𝑖
 𝑡𝑖
(𝑗−𝑖)

 + 𝑡𝑗  , we have that  

(i) ℎ𝑖  =  ||𝛾0||
2
 =  ||𝑡𝑖||

2
, ℎ𝑗  =  ||𝑡𝑗||

2
;  

(ii) ||𝛾1||
2
 =  |

𝑚𝑖,𝑗

𝑗−𝑖 
|
2
𝜕𝑗−𝑖  𝜕̅𝑗−𝑖  ||𝑡𝑖||

2
 +  ||𝑡𝑗  ||

2
  =  |

𝑚𝑖,𝑗

𝑗−𝑖
 |
2
 𝜕𝑗−𝑖  𝜕̅𝑗−𝑖  ℎ𝑖  +  ℎ𝑗  ; 

 (iii) < 𝛾1, 𝛾0  >= −
𝑚𝑖,𝑗

(𝑗−𝑖)
 𝜕𝑗−𝑖  ||𝑡𝑖||

2
 =  −

𝑚𝑖,𝑗

𝑗−𝑖
 𝜕𝑗−𝑖  ℎ𝑖; 

(iv) |<  𝛾1, 𝛾0  > |
2   =  |

𝑚𝑖,𝑗

𝑗−𝑖
 |
2
 𝜕𝑗−𝑖  ℎ𝑖𝜕̅

𝑗−𝑖  ℎ𝑖 . 

The second fundamental form 𝜃𝑖,𝑗  for the inclusion 𝐸𝑡𝑖  ⊆  𝐸{𝑡𝑖,
𝑚𝑖,𝑗

𝑗−𝑖
 𝑡𝑖
(𝑗−𝑖)

 +𝑡𝑗 }
is given by the 

formula  

𝜃𝑖,𝑗  =

𝑚𝑖,𝑗
𝑗 − 𝑖

𝜕̅(ℎ𝑖
−1 𝜕𝑗−𝑖ℎ𝑖)

 ( 
ℎ𝑗
ℎ𝑖
 +  |

𝑚𝑖,𝑗
𝑗 − 𝑖

  | 2
 
   (
ℎ𝑖𝜕

𝑗−𝑖𝜕̅𝑗−𝑖  ℎ𝑖 − 𝜕
𝑗−𝑖ℎ𝑖𝜕̅

𝑗−𝑖ℎ𝑖
ℎ𝑖
2  )   )

1
2

 

 .       (88) 

Lemma (6.3.10)[199]: Let 𝑇𝑖,𝑗 ∶=  (
𝑆𝑖,𝑖     𝑆𝑖,𝑗
0      𝑆𝑗,𝑗

)   and 𝑇̃𝑖,𝑗 ∶=  (
𝑆𝑖,𝑖     𝑆𝑖,𝑗
0      𝑆𝑗,𝑗

)  with 𝑆̃𝑖,𝑗  (𝑡𝑗  )  =

 𝑚̃𝑖,𝑗  𝑖, 𝑗 𝑡𝑖
(𝑗−𝑖−1)

 .  

The second fundamental forms 𝜃𝑖,𝑗 and 𝜃̃ 𝑖,𝑗  of the operators 𝑇𝑖,𝑗 and 𝑇̃𝑖,𝑗 are equal, that is, 

𝜃𝑖,𝑗 = 𝜃̃𝑖,𝑗 if and only if 𝑚𝑖,𝑗  =  𝜃 .  

Proof. Without loss of generality, we will give the proof only for the case 𝑖 =  0, 𝑗 =
 𝑘, 𝑗 ≠  1. In this case, 𝜃0,𝑘  =  𝜃̃0,𝑘 is equivalent to the equality:  

(
ℎ𝑘

ℎ0
 + |

𝑚0, 𝑘

𝑘
  |
2

 
  ( 
ℎ0𝜕

𝑘𝜕̅𝑘ℎ0 − 𝜕
𝑘ℎ0𝜕̅

𝑘ℎ0

ℎ0
2  ))

1
2

    

(
ℎ𝑘
ℎ0
 + | 𝑚̅0,

𝑘

𝑘
 |
2

 
  ( 
ℎ0𝜕

𝑘𝜕̅𝑘ℎ0 − 𝜕
𝑘ℎ0𝜕̅

𝑘ℎ0

ℎ0
2  ))

1
2

 =  
𝑚0,𝑘
𝑚̃0,𝑘

  

For simplicity, let 𝑔0 denote (
ℎ0𝜕

𝑘𝜕̅𝑘ℎ0−𝜕
𝑘ℎ0𝜕̅

𝑘ℎ0

ℎ0
2  ) and let 𝑚̃, mdenote 

𝑚0,𝑘

𝑘
 ,
𝑚̅0,𝑘

𝑘
 

respectively. Then the equation given above may be rewritten as  



258 

(
ℎ𝑘
ℎ0
 +  |𝑚|2𝑔0)

1
2

(
ℎ𝑘
ℎ0
 +  |𝑚̃|2  𝑔0)

1
2
 

 =
𝑚

𝑚
  

From this equality, we infer that 𝑎𝑟𝑔(𝑚)  =  𝑎𝑟𝑔(𝑚̃ ). Now, squaring both sides and then 

taking the difference, we have  
ℎ𝑘
ℎ0
 (𝑚̃2  −  𝑚2) − 𝑚̃2𝑚2𝑔0(𝑚̅

2  −  𝑚̃̅2) = 0.  

Having assumed, without loss of generality, ℎ0  =  (1 − |𝑤|
2)−𝜆0   and ℎ𝑘  =  (1 −

 |𝓌|2)−𝜆1  , we find that 𝑔0 is a polynomial of degree >  1 in (1 − |𝓌|2)−1. Thus 𝑔0 can 

be equal to hk ℎ0 if and only if 𝜆1  −  𝜆0  =  2. Therefore, except when 𝛬(𝑡)  =  2, we must 

have 𝑚2  −  𝑚̃2  =  0. Clearly, 𝑚 =  −𝑚̃ 

is not an admissible solution. So, we must have 𝑚 =  𝑚̃. Hence 𝑚0,𝑘  =  𝑚̃0,𝑘.  
Recall that a positive definite kernel 𝐾 ∶  𝛺 ×  𝛺 → ℂ𝑛×𝑛 is said to be normalized at 

𝓌0  ∈  𝛺, 𝑖𝑓 𝐾(𝓏,𝓌0)  =  𝐼, 𝓏 ∈  𝛺. An operator 𝑇 in 𝐵𝑛(𝛺) may be realized, up to unitary 

equivalence, as the adjoint of a multiplication operator on a Hilbert space possessing a 

normalized reproducing kernel (cf. [79]). Realized in this form, the operator is determined 

completely modulo multiplication by a constant unitary operator acting on ℂ𝑛. As one might 

expect, finding the normalized kernel if 𝑛 >  1 is not easy. The theorem below illustrates a 

rigidity phenomenon in the spirit of what was proved by Curto and Salinas for operators in 

𝐵𝑛(𝔻). For quasi-homogeneous operators, the atoms are homogeneous operators in 𝐵1(𝔻). 
These are assumed to be realized in normal form. Consequently, if 𝑇 is a quasi-

homogeneous operator, a set of 𝑛 −  1 fundamental forms determine the operator 𝑇 

completely, that is, two of them are unitarily equivalent if and only if they are equal 

assuming they have the same set second fundamental forms.  

Theorem (6.3.11)[199]: Suppose that 𝑡 and 𝑡̃ are unitarily equivalent. Then if the second 

fundamental forms are the same, that is, 𝜃𝑖,𝑖+1  =  𝜃̃𝑖,𝑖+1, 0 ≤  𝑖 ≤  𝑛 −  2, then 𝑡 =  𝑡̃.  
Proof. If necessary, conjugating by a diagonal unitary, without loss of generality, we may 

assume that the atoms of the operators 𝑇 and 𝑇̃ are the same. By Lemma (6.3.1), if there 

exists a unitary operator 𝑈 such that 𝑇𝑈 =  𝑈𝑇̃, then 𝑈 must be diagonal with unitaries 

𝑈0, 𝑈1, . . . 𝑈𝑛−1 on its diagonal. Then we have  

𝑈𝑖𝑆𝑖,𝑗  =  𝑆̃𝑖,𝑗𝑈𝑗, 𝑖, 𝑗 =  0, 1, . . . , 𝑛 −  1. 

In particular, 𝑈𝑖 commutes with the fixed set of atoms 𝑇𝑖 , which are irreducible, therefore 

there exists 𝛽𝑖  ∈  [0, 2𝜋] such that  

𝑈𝑖  =  𝑒
𝑖𝛽𝑖  𝐼ℋ𝑖  , 𝑖 =  0, 1,··· , 𝑛 −  1.  

Then on the one hand, we have  

𝑈𝑖𝑆𝑖,𝑖+1(𝑡𝑖+1)  =  𝑈𝑖(−𝜇𝑖,𝑖+1𝑡𝑖)  =  −𝜇𝑖,𝑖+1𝑒
𝑖𝛽𝑖  𝑡𝑖   

and on the other hand, we have  

𝑆̃𝑖,𝑖+1𝑈𝑖 + 1(𝑡𝑖+1)  =  𝑆𝑖,𝑖+1(𝑒
𝑖𝛽𝑖+1 𝑡𝑖+1)  =  −𝜇̃𝑖,𝑖+1𝑒

𝑖𝛽𝑖+1 𝑡𝑖 .  
Consequently,  

−𝜇𝑖,𝑖+1𝑒
𝑖𝛽𝑖  =  −𝜇̃𝑖,𝑖+1𝑒

𝑖𝛽𝑖+1 , 0 ≤  𝑖 ≤  𝑛 −  2.  
The assumption that the second fundamental forms are the same for the two operators 𝑇 and 

𝑇̃ implies that 𝜇𝑖,𝑖+1  =  𝜇̃𝑖,𝑖+1. Therefore, we have 𝛽𝑖  =  𝛽𝑖+1 ∶=  𝛽, 𝑖 =  0, 1, . . . , 𝑛 − 2. 
Since  
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𝑈𝑖𝑆𝑖,𝑗   =  𝑆̃𝑖,𝑗𝑈𝑗 , 𝑖, 𝑗 =  0, 1, . . . , 𝑛 −  1,  

we have  

𝑈𝑖𝑆𝑖,𝑗  (𝑡𝑗  )  =  𝑒
𝑖𝛽𝑚𝑖,𝑗  𝑡𝑖

(𝑗−𝑖−1)
 =  𝑒𝑖𝛽𝑚̃𝑖,𝑗  𝑡𝑖

(𝑗−𝑖−1)
 =  𝑆̃𝑖,𝑗𝑈𝑗  (𝑡𝑗  ).  

Then 𝑚𝑖,𝑗  =  𝑚̃𝑖,𝑗  , 𝑖, 𝑗 =  0, 1, . . . , 𝑛 −  1. It follows that 𝑆𝑖,𝑗  =  𝑆̃𝑖,𝑗 and 𝑡 =  𝑡̃.  

Remark (6.3.12)[199]: It is natural to ask which of the quasi-homogeneous operators are 

homogeneous. A comparison with the homogeneous operators given in [84] shows that a 

quasi-homogeneous operator is homogeneous if and only if  

𝜇𝑖,𝑗  =
 𝛤𝑖,𝑗(𝜆)𝜇𝑖  

𝜇𝑗
  , 𝛤𝑖,𝑗  (𝜆) =  (

𝑖

𝑗
) 

1

(2𝜆𝑗  )𝑖−𝑗

 , 𝜆𝑗  =  𝜆 −
𝑚

2
 +  𝑗,       (89)  

for some choice of positive constants 𝜇0(:=  1), 𝜇1, . . . , 𝜇𝑛−1. Here (𝛼) ∶=  𝛼(𝛼 + 1) ···
(𝛼 + ℓ −  1) is the Pochhammer symbol. Clearly, if two homogeneous operators with 

(𝜆, 𝜇) and (𝜆̃, 𝜇̃) were unitarily equivalent, then 𝜆 must equal 𝜆̃. Since it is easy to see that 

𝜇𝑖,𝑖+1  =  𝜇̃𝑖,𝑖+1 if and only if 𝜇𝑖  =  𝜇̃𝑖+1, we conclude that two of these homogeneous 

operators are unitarily equivalent if and only if they are equal recovering previous results of 

[84]. 

The main focus is on the question of reducibility and strong irreducibility of a quasi-

homogeneous operator. We recall that an operator 𝑇 is said to be strongly irreducible if there 

is no idempotent in its commutant, or equivalently, there does not exist an invertible operator 

𝐿 for which 𝐿𝑇𝐿−1 is reducible. The (multiplicity-free) homogeneous operators in the 

Cowen–Douglas class of rank n are irreducible (cf. [84]). However, they were shown (cf. 

[183]) to be similar to the 𝑛 −fold direct sum of their atoms making them strongly reducible. 

It is this phenomenon that we investigate here for quasihomogeneous operators. Along the 

way, we determine when two quasi-homogeneous operators are similar. Our investigations 

show that there is dichotomy which depends on whether or not the valency 𝛬(𝑡) is less than 

2 or greater or equal to 2. In what follows, we will say that a holomorphic curve 𝑡 ∶ 𝔻 →
 𝐺𝑟(𝑛,ℋ) is strongly irreducible if there is no invertible operator 𝑋 on the Hilbert space ℋ 

for which 𝑋𝑡  splits into orthogonal direct sum of two holomorphic curves, say 𝑡1 and 𝑡2, in 

𝐺𝑟(𝑛1,ℋ) and 𝐺𝑟(𝑛2,ℋ), 𝑛1  +  𝑛2  =  𝑛, respectively. 

Suppose 𝑡 ∶ 𝔻 →  𝐺𝑟(𝑛,ℋ) is a quasi-homogeneous holomorphic curve with atoms 

𝑡0, 𝑡1, . . . , 𝑡𝑛−1. Then t is strongly reducible, 𝑡 ∼  𝑡0  ⊕ 𝑡1  ··· ⊕ 𝑡𝑛−1, if 𝛬(𝑡)  ≥  2 and 

strongly irreducible otherwise. The dichotomy involving the valency 𝛬(𝑡) is also clear from 

the main theorem on similarity Theorem (6.3.19) of quasi-homogeneous holomorphic 

curves.  

The atoms of a quasi-homogeneous operator are homogeneous operators in 𝐵1(𝔻) by 

definition. Therefore, they are uniquely determined not only up to unitary equivalence but 

up to similarity as well. Now, pick any two quasi-homogeneous operators. They possess an 

atomic decomposition by virtue of Proposition (6.3.6). Any invertible operator intertwining 

these two quasi-homogeneous operators is necessarily upper triangular: 

Lemma (6.3.13)[199]: Let t and 𝑡̃ be two quasi-homogeneous holomorphic curves with 

atomic decomposition {𝑡𝑖 ∶  𝑖 =  0, 1, . . . , 𝑛 −  1} and {𝑡̃𝑖 ∶  𝑖 =  0, 1, . . . , 𝑛 −  1}, 
respectively. If they are quasi-similar via the intertwining operators 𝑋 and  , that is,  

𝑋𝑡 =  𝑡̃ and 𝑌 𝑡̃  =  𝑡, then for 𝑖 ≤  𝑛 –  1, we have  

𝑋 (⋁ {𝑡0(𝓌), 𝑡1(𝓌),··· , 𝑡𝑖(𝓌): 𝓌 ∈ 𝔻})  ⊆  ⋁{𝑡̃0(𝓌), 𝑡̃1(𝓌),··· , 𝑡̃𝑖(𝓌): 𝓌 ∈ 𝔻},  
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𝑌 (⋁{𝑡̃0(𝓌), 𝑡̃1(𝓌),··· , 𝑡̃𝑖(𝓌): 𝓌 ∈ 𝔻})  ⊆⋁ {𝑡0(𝓌), 𝑡1(𝓌),··· , 𝑡𝑖(𝓌) ∶  𝓌 

∈ 𝔻} 
This is easily proved by modifying the proof [190] slightly. Hence if two quasi-

homogeneous operators are similar, then each of the atoms for one must be similar to the 

other. Consequently, to determine equivalence of quasi-homogeneous operators 𝑇 under an 

invertible linear transformation, we may assume (as before) without loss of generality that 

the atoms are fixed with the weight 𝜆0 and the valency 𝛬(𝑡). Clearly, the valency 𝛬(𝑡) is 

both an unitary as well as a similarity invariant of the quasi-homogeneous curve 𝑡.  
Note that if we let 𝑅 be the 𝑛 ×  𝑛 diagonal matrix with  

(∏  𝑖 ℓ=0  𝜇ℓ,ℓ+1)  (∏  𝑖
ℓ=0  𝜇̃ℓ,ℓ+1)

−1
 on its diagonal and set 𝑡̃   =  𝑅 𝑡 𝑅−1, then 

𝑆̃𝑖,𝑖 +1(𝑡𝑖+1)  =  𝜇̃𝑖,𝑖+1, 0 ≤  𝑖 ≤  𝑛 −  2. Thus up to similarity, we may assume that the 

constants 𝜇𝑖,𝑖+1 and 𝜇̃𝑖,𝑖+1 are the same. Or equivalently (see Lemma (6.3.9)), we may 

assume that the choice of the second fundamental forms 𝜃𝑖,𝑖+1, 0 ≤  𝑖 ≤  𝑛 −  2, does not 

change the similarity class of a quasi-homogeneous holomorphic curve. Therefore the 

condition in the second statement of the theorem given below is not a restriction on the 

similarity class of the holomorphic curves 𝑡 and 𝑡̃ . 
The following lemma is the key to determining when a bundle map that intertwines 

two quasi-homogeneous holomorphic vector bundles extends to an invertible bounded 

operator. It reveals the intrinsic structure of the intertwiners between two quasi-

homogeneous bundles. Recall that if 𝐴 and 𝐵 are two operators in ℒ(ℋ𝑖), 𝑖 =  1, 2 

respectively, then the Rosenblum operator 𝜎𝐴,𝐵 is defined to be the operator 𝜎𝐴,𝐵(𝑋)  =
 𝐴𝑋 −  𝑋𝐵, 𝑋 ∈ ℒ(ℋ2,ℋ1). If 𝐴 =  𝐵, then we set 𝜎𝐴 ∶=  𝜎𝐴,𝐵.  
Lemma (6.3.14)[199]: Let 𝐸𝑡 be a quasi-homogeneous vector bundle and 𝑠𝑖,𝑗 , 𝑖, 𝑗 =  0, 1,··

· , 𝑛 −  1, be the induced bundle maps and 𝑆𝑖,𝑗 ∶  ℋ𝑗  →  ℋ𝑖 be the operators induced by 

these bundle maps. The following conditions are equivalent:  

(i) 𝑆𝑟,𝑠  ∈  𝑟𝑎𝑛 𝜎𝑆𝑟,𝑟,𝑆𝑠,𝑠 , 0 ≤  𝑟 < 𝑠 < 𝑛 − 1 

(ii) 𝛬(𝑡)  ≥  2.  
Proof. Let 𝑇𝑟 and 𝑇𝑠 be the operators induced by 𝑠𝑖,𝑖 , 𝑖 =  𝑟, 𝑠 respectively as in Proposition 

(6.3.6). These are then necessarily the operators 𝑀(𝜆𝑟)
∗
 and 𝑀(𝜆𝑠)

∗
 acting on the weighted 

Bergman spaces 𝔸(𝜆𝑟)(𝔻) and 𝔸(𝜆𝑠) (𝔻), respectively. Set 𝑘 =  𝑠 −  𝑟 −  1. 
The kernel of the operator (𝑇𝑖  −𝓌 ),𝓌 ∈ 𝔻, is spanned by the vector 𝑡𝑖(𝓌) ∶=

 (1 − 𝓏 𝓌̅)−𝜆𝑖  , 𝑖 =  𝑟, 𝑠. For 𝑗 =  𝑟 or 𝑗 =  𝑠, the set of vectors 𝑒(𝜆𝑗) ∶=

 √𝑎ℓ(𝜆𝑗  )𝓏
ℓ, ℓ ≥  0 is an orthonormal basis in 𝔸(𝜆𝑗 )(𝔻), where 𝑎ℓ(𝜆𝑗  ) is the coefficient 

of 𝓌̅ 𝑙 𝓏𝑙 in the power series expansion for (1 − 𝓏𝓌̅)−𝜆𝑗   . The matrix representation for 

the operator 𝑆𝑟,𝑠 ∶ 𝔸
(𝜆𝑠) (𝔻)  → 𝔸(𝜆𝑟) (𝔻) with respect to this orthonormal basis is obtained 

from the computation:  

𝑆𝑟,𝑠(𝑒
(𝜆𝑠))  =

(ℓ + 𝑘)!

ℓ!
 √
𝑎ℓ + 𝑘(𝜆𝑟)

𝑎ℓ(𝜆𝑠)
 𝑒ℓ +𝑘
(𝜆𝑟)  , 𝑘 =  𝑠 −  𝑟 −  1.  

Thus 𝑆𝑟,𝑠 is a forward shift of multiplicity 𝑘. We claim that if 𝛬(𝑡)  ≥  2, then we can find 

a forward shift 𝑋 of multiplicity 𝑘 +  1, namely, 𝑋(𝑒(𝜆𝑠) )  =  𝑥ℓ𝑒ℓ+𝑘+1
(𝜆𝑟)  which has the 
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required intertwining property. Thus evaluating the equation 𝑆𝑟,𝑟𝑋 −  𝑋𝑆𝑠,𝑠  =  𝑆𝑟,𝑠 on the 

vectors 𝑒ℓ
(𝜆𝑠) , ℓ ≥  0, we obtain  

(ℓ + 𝑘)!

ℓ!

∏  ℓ −1
𝑖=0  𝓌𝑖

(𝜆𝑠)

∏  ℓ+𝑘−1
𝑖=0  𝓌𝑖

(𝜆𝑟)
  𝑒ℓ+𝑘
(𝜆𝑟)  = (𝑥ℓ𝓌ℓ+𝑘

(𝜆𝑟)  −  (𝑥ℓ  −1𝓌ℓ −1
(𝜆𝑠) 𝑒ℓ+𝑘

(𝜆𝑟) .      (90)  

From this we find x recursively:  

𝓌𝑘
(𝜆𝑟) 𝑥0  =  𝑘! 

√𝑎𝑘(𝜆𝑟)

√𝑎0(𝜆𝑠)
   

and for ℓ ≥  1,  

𝑥ℓ  =  
√𝑎𝑘+ℓ(𝜆𝑟)

√𝑎ℓ(𝜆𝑠)
 ∑  

𝑘

𝑖=1

  (ℓ)𝑖  ∼ (ℓ 
 2𝑘 + 2 − 𝜆𝑠 − 𝜆𝑟

2
 ) ,  

where (ℓ)𝑘 ∶=  ℓ(ℓ + 1) ··· (ℓ + 𝑘 − 1)  =
𝛤(+𝑘)

𝛤(𝑘)
 is the Pochhammer symbol as before. 

Here, using the Stirling approximation for the 𝛤 function, we infer that  

∑  𝑘
𝑖=1 (ℓ)𝑖 ∼  ℓ

𝑘+1. If 𝛬(𝑡)  ≥  2, then 𝜆𝑟+1  −  𝜆𝑟  ≥  2, 𝜆𝑟+2  −  𝜆𝑟+1  ≥  2,··· , 𝜆𝑠  −
 𝜆𝑠−1  ≥  2. Consequently, 𝜆𝑠  −  𝜆𝑟  ≥  2𝑘 +  2 making the operator 𝑋 bounded.  

It follows that if 𝛬(𝑡)  ≥  2, then the shift 𝑋 of multiplicity n that we have constructed is 

bounded and has the desired intertwining property.  

To show that there is no such intertwining operator if 𝛬(𝑡)  <  2, assume to the contrary the 

existence of such an operator. To arrive at a contradiction, suppose  

𝑋 (𝑒(𝜆𝑠))  =  ∑  

∞

𝑖=0

 𝑥𝑖,ℓ𝑒𝑖
(𝜆𝑟) , 𝑋 = ((𝑥𝑖,ℓ)) . 

Then 

(𝑆𝑟,𝑟𝑋 −  𝑋𝑆𝑠,𝑠) 𝑒ℓ
(𝜆𝑠)  =  ∑  

∞

𝑖=0 

 (𝑥𝑖+1,ℓ+1𝓌𝑖
(𝜆𝑟)  −  𝑥𝑖,ℓ𝑤ℓ−1

(𝜆𝑠) 𝑒𝑖
(𝜆𝑟) . 

In particular, we have  

(𝑥 + 𝑘 + 1,+1 𝓌ℓ+𝑘
(𝜆𝑟)  −  𝑥 + 𝑘,𝓌ℓ−1 

𝜆𝑠 ) (𝑒𝑙+𝑘
(𝜆𝑟) )  =  𝑆𝑟,𝑠𝑒ℓ

(𝜆𝑠) ) .  

Repeating the proof given above, we conclude that 𝑥𝑙+𝑘,𝑙  →  ∞, 𝑙 →  ∞. This means 𝑋 is 

unbounded which is the desired contradiction.  

Lemma (6.3.15)[199]: Let 𝑡 be a quasi-homogeneous holomorphic curve with atoms 

𝑡𝑖 , 0 ≤  𝑖 ≤  𝑛 −  1. Let 𝑇 ∶= ((𝑆𝑖,𝑗)) be the atomic decomposition of the operator 𝑇 

representing 𝑡 as in Proposition (6.3.6).  

(i) If 𝛬(𝑡)  ∈  [1 +
𝑛−3

𝑛−1
 , 1 +

𝑛−2

𝑛
 ), then for any 1 ≤  𝑟 <  1 −  𝑛 − 3 𝑛 − 1 , we have  

𝑆0,𝑟𝑆𝑟,𝑟+1  ···  𝑆𝑛−2,𝑛−1  ∈  𝑟𝑎𝑛 𝜎𝑆0,0, 𝑆𝑛−1,𝑛−1 .  
(ii) Suppose that 𝛬(𝑡)  ≥  2. Then there exists a bounded linear operator 𝑋 ∈
 𝐿(ℋ𝑛−1,ℋ𝑛−2) such that  

𝑆𝑛−2,𝑛−2𝑋 −  𝑋𝑆𝑛−1,𝑛−1  =  𝑆𝑛−2,𝑛−1  
and 

𝑆𝑛−3,𝑛−2𝑋 ∈  𝑟𝑎𝑛𝜎𝑆𝑛−3,𝑛−3, 𝑆𝑛−1,𝑛−1 . 

Proof. We only prove that 𝑆0,𝑛−2𝑆𝑛−2,𝑛−1 is in 𝑟𝑎𝑛𝜎𝑆0,0,𝑆𝑛−1,𝑛−1  . Clearly, as can be seen 

from the proof we present below, the proof in all the other cases are exactly the same.  
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Let 𝑇0, 𝑇𝑛−2 and 𝑇𝑛−1 be the operators induced by 𝑠0,0, 𝑠𝑛−2,𝑛−2 and 𝑠𝑛−1 as in Proposition 

(6.3.6). These are then necessarily the operators 𝑀(𝜆0)
∗
 , 𝑀(𝜆𝑛−2)

∗
 and 𝑀(𝜆𝑛−1)

∗
 acting on the 

weighted Bergman spaces 𝔸(𝜆0)(𝔻),𝔸(𝜆𝑛−2)(𝔻) and 𝔸(𝜆𝑛−1)(𝔻), respectively.  

As in the proof of Lemma (6.3.14), equations (90), we have that  

𝑆0,𝑛−2   (𝑒ℓ
(𝜆𝑛−2))  =

(ℓ + 𝑛 − 3)!

ℓ!
 √
𝑎ℓ+𝑛−3(𝜆0)

𝑎ℓ(𝜆𝑛−2)
 𝑒ℓ+𝑛−3
(𝜆0)  ,  

𝑆𝑛−2,𝑛−1(𝑒ℓ
(𝜆𝑛−1 ))  =  

√𝑎ℓ(𝜆𝑛−2)

√𝑎ℓ(𝜆𝑛−1)
 𝑒ℓ
(𝜆𝑛−2)  

and 

𝑆0,𝑛−2𝑆𝑛−2,𝑛−1 (𝑒ℓ
(𝜆𝑛−1) ) =

(ℓ + 𝑛 − 3)!

ℓ!
 √
𝑎ℓ+𝑛−3(𝜆0)

𝑎ℓ(𝜆𝑛−2)
 𝑒ℓ+𝑛−3
(𝜆0) .  

Thus 𝑆0,𝑛−2𝑆𝑛−2,𝑛−1 is a forward shift of multiplicity 𝑛 −  3. We claim that if 𝛬(𝑡)  ≥  1 +
𝑛−3

𝑛−1
 , then we can find a forward shift 𝑋 of multiplicity 𝑛 −  2, namely, 𝑋(𝑒ℓ

(𝜆𝑛−1) )  =  

𝑥ℓ𝑒ℓ+𝑛−2
(𝜆0)  which has the required intertwining property. Thus evaluating the equation 

𝑆0,0𝑋 −  𝑋𝑆𝑛−1,𝑛−1  =  𝑆0,𝑛−1 on the vectors e (𝜆𝑛−1) , ℓ ≥  0, we obtain 

𝓌𝑛−3
(𝜆0)𝑥0  =  (𝑛 −  3)! 

√𝑎𝑛−3(𝜆0)

√𝑎ℓ(𝜆(𝑛−1))

  

and for ℓ ≥  1, we have that  

𝓌𝑙+𝑛−3
(𝜆0) 𝑥ℓ  −  𝑥ℓ−1𝓌𝑙

(𝜆𝑛−1)   =
(ℓ + 𝑛 − 3)!

ℓ!
 
√𝑎ℓ+𝑛−3(𝜆0)

√𝑎ℓ(𝜆(𝑛−1))

.  

It follows that  

𝑥ℓ  =
√𝑎ℓ+𝑛−3(𝜆0)

√𝑎ℓ(𝜆(𝑛−1))

 ∑  

𝑛 −3

𝑖=1 

(ℓ)𝑖  ∼ (ℓ
 𝜆0−𝜆𝑛−1+2𝑛−4

2
 ) .  

Note that when 𝛬(𝑡)  >  1 +
𝑛−3

𝑛−1
 , we obtain 

𝜆𝑛−1  −  𝜆0  =  (𝑛 −  1)𝛬(𝑡) >  (𝑛 −  1) 
2𝑛 −  4

𝑛 −  1
 =  2𝑛 −  4  

making 𝑋 bounded. This completes the proof of the first statement.  

For the proof of the second statement, note that by virtue of Lemma (6.3.14), we have 

𝑆𝑛−2,𝑛−1  ∈  𝑅𝑎𝑛𝜎𝑆𝑛−2,𝑛−1 . So there exists a bounded operator 𝑋 such that  

𝑆𝑛−2,𝑛−2𝑋 −  𝑋𝑆𝑛−1,𝑛−1  =  𝑆𝑛−2,𝑛−1.  
Repeating the proof for the first part, we conclude  

𝑆𝑛−3,𝑛−2𝑋 ∈  𝑟𝑎𝑛 𝜎𝑆𝑛−3,𝑛−3, 𝑆𝑛−1,𝑛−1 .  
We now show that a quasi-homogeneous holomorphic curve t is strongly irreducible 

or strongly reducible according as 𝛬(𝑡) is less than 2 or greater equal to 2. We recall that 

homogeneous operators (in this case, 𝛬(𝑡)  =  2) were shown to be irreducible but strongly 

reducible in [183]  
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Theorem (6.3.16)[199]: Fix a quasi-homogeneous holomorphic curve 𝑡 with atoms 𝑡𝑖 and 

let 𝑇 = ((𝑆𝑖,𝑗)) be its atomic decomposition.  

(i) If 𝛬(𝑡)  ≥  2, then 𝑇 is strongly reducible, indeed 𝑇 is similar to the direct sum of its 

atoms, namely, ⊕𝑖=0
𝑛 −1  𝑇𝑖 and  

(ii) if 𝛬(𝑡)  <  2, then 𝑇 is strongly irreducible.  

Proof. If 𝛬(𝑡)  ≥  2, then we claim that the operator 𝑇 is similar to 𝑇0  ⊕ 𝑇1  ⊕···⊕ 𝑇𝑛−1.  

When 𝑛 =  2, Let 𝑇 =   (𝑆0,0     𝑆0,1
0     𝑆1,1

) . By Lemma (6.3.14), there exists 𝑋0,1 such that 

𝑆0,0𝑋0,1  −  𝑋0,1𝑆1,1  =  𝑆0,1.  

Set 𝑌0,1  = (
𝐼     𝑋0,1
 0     𝐼

)    , then we have that  

𝑌0,1𝑇𝑌0,1
−1  = (

𝑆0,0 0

 0     𝑆1,1
)       

Notice that 𝑌0,1 is invertible, we have that 𝑇 ∼  𝑆0,0  ⊕ 𝑆1,1.  
In this case, using Lemma (6.3.14), we find an invertible bounded linear operator 𝑋0,𝑛−1 

such that  

𝑆0,0𝑋0,𝑛−1  −  𝑋0,𝑛−1𝑆𝑛−1,𝑛−1  =  𝑆0,𝑛−1.  
For any 𝑖 <  𝑗, applying Lemma (6.3.14) to the operators  

(

  
 
 

𝑆𝑖,𝑖           𝑆𝑖,𝑖+1            𝑆𝑖,𝑖+2         ···               𝑆𝑖,𝑗  

              0         𝑆𝑖+1,𝑖+1       𝑆𝑖+1,𝑖+2            ···               𝑆𝑖+1,𝑗  

            ⋮             ⋱                   ⋱                ⋱                          ⋮
         0              . . .                 0       𝑆𝑗−1,𝑗 − 1       𝑆𝑗−1,𝑗  

       0                 0                 . . .                   0          𝑆𝑗,𝑗  )

  
 
,  

we find an invertible bounded linear operator 𝑋𝑖,𝑗 such that 𝑆𝑖,𝑖𝑋𝑖,𝑗  − 𝑋𝑖,𝑗𝑆𝑗,𝑗  =  𝑆𝑖,𝑗  . Set 

𝑌𝑛−2,𝑛−1 ∶= ( 
𝐼(𝑛−2) 0
0 𝐼 𝑋𝑛−2,𝑛−1
 0          𝐼

  )  and note that 𝑌𝑛−2,𝑛−1
−1  =  ( 

𝐼(𝑛−2) 0
0 𝐼 −𝑋𝑛−2,𝑛−1
 0          𝐼

  ) . Now, we 

have  

( 
𝐼(𝑛−2) 0

0 𝐼 𝑋𝑛−2,𝑛−1
 0          𝐼

  ) 

(

 
 
  

 𝑆0,0    𝑆0,1 𝑆0,2  ···  𝑆0,𝑛−1
0     𝑆1,1     𝑆1,2  ···  𝑆1,𝑛−1 

0    ⋱   ⋱⋱           ⋮
0 . . .     0 𝑆𝑛−2,𝑛−2 𝑆𝑛−2,𝑛−1
0    0   . . .       0 𝑆𝑛−1,𝑛−1 )

 
 
( 

𝐼(𝑛−2) 0
0 𝐼 𝑋𝑛−2,𝑛−1
 0          𝐼

  ) 

=

(

 
 
  

𝑆0,0 𝑆0,1               𝑆0,2             ···                          𝑆0,𝑛−1 − 𝑆0,𝑛−2𝑋𝑛−2,𝑛−1
0        ⋱                 ⋱               ⋱                                            ⋮                          
⋮         ⋱                𝑆𝑛−3,𝑛−3 𝑆𝑛−3,𝑛−2 𝑆𝑛−3,𝑛−1 − 𝑆𝑛−3,𝑛−2𝑋𝑛−2,𝑛−1     

0        ···                    0          𝑆𝑛−2,𝑛−2                                                0           

0   ···                      ···                     0                                            𝑆𝑛−1,𝑛−1   )

 
 
 .  

By Lemma (6.3.15), we have  

𝑆𝑛−3,𝑛−2𝑋𝑛−2,𝑛−1  ∈  𝑟𝑎𝑛 𝜎𝑆𝑛−1,𝑛−1, 𝑆𝑛−3,𝑛−3 .  
Therefore, there exists an invertible bounded linear operator 𝑋 such that  

𝑆𝑛−3,𝑛−3𝑋̃ − 𝑋̃𝑆𝑛−1,𝑛−1   =  𝑆𝑛−3,𝑛−1 – 𝑆𝑛−3,𝑛−2𝑋𝑛−2,𝑛−1.  

Let 𝑋𝑛−3,𝑛−1 ∶=  𝑋̃ and 𝑌𝑛−3,𝑛−1  =   (

𝐼(𝑛−3) 0

0
 𝐼 0 𝑋𝑛−3,𝑛−2 

0 𝐼
0  0

0
𝐼

). Now, we have  
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𝑌𝑛−3,𝑛−1

(

 
 
  

𝑆0,0 𝑆0,1 𝑆0,2  ···  𝑆0,𝑛−1 − 𝑆0,𝑛−2𝑋𝑛−2,𝑛−1 

0 ⋱⋱⋱⋱⋮
⋮⋱ 𝑆𝑛−3,𝑛−3 𝑆𝑛−3,𝑛−2 𝑆𝑛−3,𝑛−1 − 𝑆𝑛−3,𝑛−2𝑋𝑛−2,𝑛−1

0 …  0 𝑆𝑛−2,𝑛−2 0 

0 … …  0 𝑆𝑛−1,𝑛−1 

 

)

 
 
 𝑌𝑛−3,𝑛−1
−1   

=   ·   

(

 
 

𝑆0,0 𝑆0,1 𝑆0,2  ···  𝑆0,𝑛−1 − 𝑆0,𝑛−2𝑋𝑛−2,𝑛−1 − 𝑆0,𝑛−3𝑋𝑛−3,𝑛−1
0         ⋱        ⋱      ⋱                                                                     ⋮
⋮            ⋱  𝑆𝑛−3,𝑛−3    ···                                                               0     

            0         ···        0   𝑆𝑛−2,𝑛−2                                                             0              

   0     ···      ···         0                                                             𝑆𝑛−1,𝑛−1 

 

)

 
 
.  

Continuing in this manner, we clearly have  

(

 
 

𝑆0,0       𝑆0,1   𝑆0,2      ···  𝑆0,𝑛−1
0     ⋱    ⋱                 ⋮

⋮⋱ 𝑆𝑛−3,𝑛−3 𝑆𝑛−3,𝑛−2 𝑆𝑛−3,𝑛−1
0 . . . 0 𝑆𝑛−2,𝑛−2 𝑆𝑛−2,𝑛−1

0 . . .                   . . .   0 𝑆𝑛−1,𝑛−1 

 

)

 
 
    ∼

(

 
 

𝑆0,0     𝑆0,1    ···    𝑆0,𝑛−2   0

0     ⋱    ⋱                 ⋮
⋮         ⋱ 𝑆𝑛−3,𝑛−3 𝑆𝑛−3,𝑛−2 0

0  . . . 0 𝑆𝑛−2,𝑛−2 0

0            . . .      . . .    0   𝑆𝑛−1,𝑛−1 

     

)

 
 
.  

This completes the proof of the induction step. We have therefore proved the first statement.  

To prove the second statement, assuming that 𝛬(𝑡)  <  2, we must show that 𝐸𝑡 is 

strongly irreducible. First, we prove that 𝐸𝑡 is irreducible. By Lemma (6.3.13), any 

projection 𝑃 = ((𝑃𝑖,𝑗))
𝑛×𝑛

 in 𝒜′ (𝐸𝑡) is diagonal. Thus  

𝑃𝑖,𝑖
2  =  𝑃𝑖,𝑖  ∈  𝒜′ (𝐸𝑡𝑖  ). 

It follows zthat for any 0 ≤  𝑖 ≤  𝑛 −  1, 𝑃𝑖,𝑖  =  0 or 𝑃𝑖,𝑖  =  𝐼. Since 𝑃𝑇 =  𝑇𝑃, we have  

𝑃𝑖,𝑖𝑆𝑖,𝑖+1  =  𝑆𝑖,𝑖+1𝑃𝑖+1,𝑖+1.  
Therefore  

𝑃𝑖,𝑖  =  𝑃𝑗,𝑗 ,𝑖, 𝑗 =  0, 1,··· , 𝑛 −  1.  

Consequently, 𝑃 =  0 or 𝑃 =  𝐼 and 𝐸𝑡 is irreducible.  

We first prove that 𝐸𝑡 is also strongly irreducible for 𝑛 =  2. By Lemma (6.3.14), we have  

𝑆0,1  ∉  𝑟𝑎𝑛 𝜎𝑆0,0𝑆1,1  .  

In [190], it follows that 𝐸𝑡 is strongly irreducible.  

To complete the proof of the second statement by induction, suppose that it is valid for any 

𝑛 ≤  𝑘 − 1. For 𝑛 =  𝑘, let 𝑃 ∈ 𝒜′ (𝐸𝑡) be an idempotent operator. By Lemma (6.3.13), 

P has the following form:  

𝑃 =

(

 
 
  

𝑃0,0 𝑃0,1 𝑃0,2  ···    𝑃0,𝑘  

0  𝑃1,1 𝑃1,2    ···   𝑃1,𝑘  

⋮    ⋱     ⋱         ⋱        ⋮
     0   . . .  0 𝑃𝑘−1,𝑘−1 𝑃𝑘−1,𝑘 

0 . . .   . . .     0    𝑃𝑘,𝑘  )

 
 
  , 

and 𝑃 ((𝑆𝑖,𝑗))
𝑘×𝑘

 = ((𝑆𝑖,𝑗))
𝑘×𝑘

𝑃. It follows that  

((𝑃𝑖,𝑗)) ((𝑆𝑖,𝑗)) =  ((𝑆𝑖,𝑗)) ((𝑃𝑖,𝑗)) , 0 ≤  𝑖, 𝑗 ≤  𝑘 −  1, ((𝑃𝑖,𝑗)) ((𝑆𝑖,𝑗))  

=  ((𝑆𝑖,𝑗)) ((𝑃𝑖,𝑗)) , 1 ≤  𝑖, 𝑗 ≤  𝑘.  

Both ((𝑃𝑖𝑗))
𝑖 ,𝑗=0

𝑘−1
 and ((𝑃𝑖,𝑗))

𝑖,𝑗=1

𝑘
 are idempotents. Since 𝛬(𝑡)  <  2, we have 

𝑆𝑟, 𝑠 ∉ 𝑟𝑎𝑛 𝜎𝑆𝑟,𝑟,𝑆𝑠,𝑠  , 𝑟, 𝑠 ≤  𝑛. 
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By the induction hypothesis, we have  

𝑃𝑖,𝑗  =  0, 𝑖 ≠  𝑗 ≤  𝑘 −  1, 

and  

𝑃0,0  =  𝑃1,1  = ··· =  𝑃𝑘,𝑘  =  0, 𝑜𝑟 𝑃0,0  =  𝑃1,1  = ··· =  𝑃𝑘,𝑘  =  𝐼.  
Thus P has the following form:  

𝑃 =

(

 
 
 

𝐼 0 0 ···  𝑃0,𝑘  

0   𝐼  0 ···      0
⋮⋱    ⋱    ⋱    ⋮
0 ···  0 𝐼 0
0 0 . . . 0 𝐼

  

)

 
 
  𝑜𝑟 𝑃 =

(

 
 
 

00 0 ···  𝑃0,𝑘
0  0 0 ···  0
⋮   ⋱  ⋱   ⋱    ⋮
 ⋮   0 ···  0 0
0 ··· ··· ···  0

   

)

 
 
    

Since 𝑃 is an idempotent, it follows that 𝑃0,𝑘  =  0.  
By Lemma (6.3.13), an intertwining operator between two quasi-homogeneous operators 

with respect to any atomic decomposition must be upper triangular. Thus any operator 𝑋 in 

the commutant of such an operator, say 𝑇, must also be upper-triangular. In particular, 𝑋𝑖,𝑖 
belongs to the commutant of 𝑆𝑖,𝑖 , 0 ≤  𝑖 ≤  𝑛 − 1. Since 𝑆𝑖,𝑖  is a homogeneous operator in 

𝐵1(𝔻), it follows that the commutant of 𝑆𝑖,𝑖  is isomorphic to ℋ∞(𝔻), the space of bounded 

analytic functions on the unit disc 𝔻. Consequently, for any ∅ ∈  ℋ∞(𝔻), the operator 

∅(𝑆𝑖,𝑖) is in the commutant A (𝑆𝑖,𝑖  ). In the following lemma, we give a description of the 

commutant of 𝑇. We will construct an operator 𝑋 in the commutant of 𝑇, where the diagonal 

elements are induced by the same holomorphic function ∅ ∈ ℋ∞(𝔻), that is, ∅(𝑆𝑖,𝑖)  =
 𝑋𝑖,𝑖 .  
Lemma (6.3.17)[199]: Let 𝑡 be a quasi-homogeneous holomorphic curve with atoms 

𝑡𝑖 , 0 ≤  𝑖 ≤  1. Let 𝑇 = ((𝑆𝑖,𝑗))
𝑖,𝑗≤1

 be its atomic decomposition. Suppose that 𝑋 =

((𝑋𝑖,𝑗))
𝑖,𝑗≤1

 is in 𝒜′ (𝑇). Then there exists ∅ ∈ ℋ∞(𝔻) such that 𝑋𝑖,𝑖  =  ∅(𝑆𝑖,𝑖), 𝑖 =  0, 1 

and we also have that  

𝑆0,0𝑋0,1  −  𝑋0,1𝑆1,1  =  𝑋0,0𝑆0,1  −  𝑆0,1𝑋1,1  =  0.  
In particular, 𝑋0,1 can be chosen as zero.  

Proof. Set 𝑋 = ((𝑋𝑖,𝑗))
𝑖,𝑗≤1

 ∈ 𝒜′(𝑇), we have the following equation  

(
𝑆0,0 𝑆0,1
0 𝑆1,1

)(
𝑋0,0  𝑋0,1 
𝑋1,0 𝑋1,1 

) = (
𝑋0,0 𝑋0,1
𝑋1,0 𝑋1,1 

) (
𝑆0,0 𝑆0,1
0 𝑆1,1 

).  

By Lemma (6.3.1), we have 𝑋1,0  =  0. Then  

𝑆0,0𝑋0,1  +  𝑆0,1𝑋1,1  =  𝑋0,0𝑆0,1  +  𝑋0,1𝑆1,1,  
and 

 𝑆0,0𝑋0,1  −  𝑋0,1𝑆1,1  =  𝑋0,0𝑆0,1  −  𝑆0,1𝑋1,1. 
Note that there exist holomorphic functions ∅0,0 and ∅1,1 such that  

𝑋0,0(𝑡0) =  ∅0,0𝑡0, 𝑋1,1(𝑡1) =  ∅1,1𝑡1,  
and by the definition of 𝑆0,1, there exist constant function ∅0,1 such that  

𝑆0,1(𝑡1) =  ∅0,1𝑡0.  
Then  

𝑋0,0𝑆0,1(𝑡1)  − 𝑆0,1𝑋1,1(𝑡1) = (∅0,0∅0,1  −  ∅1,1∅0,1)𝑡0,  

and 𝑋0,0𝑆0,1  −  𝑆0,1𝑋1,1 also intertwines 𝑆0,0 and 𝑆1,1. Taking 𝑋0,0𝑆0,1  −  𝑆0,1𝑋1,1 the place 

of 𝑆0,1 and using the proof of Lemma (6.3.14), we might deduce that  
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𝑆0,0𝑋0,1  −  𝑋0,1𝑆1,1  =  𝑋0,0𝑆0,1  −  𝑆0,1𝑋1,1  =  0, ∅0,0  =  ∅1,1.  
Thus we can choose 𝑋0,1  =  0 and there exists a holomorphic function ∅ =  ∅0,0  =

 ∅(1,1)  ∈ ℋ
∞(𝔻) such that 𝑋 = ( 𝑋0,0 0

  0 𝑋1,1
)  where 𝑋𝑖,𝑖  =  ∅(𝑆𝑖,𝑖  ) satisfies that  

  (
𝑆0,0 𝑆0,1 

0 𝑆1,1  
) (
𝑋0,0 0

0 𝑋1,1
)  =     (

𝑋0,0 0

0 𝑋1,1 
) (
𝑆0,0 𝑆0,1
0 𝑆1,1

)  .  

Lemma (6.3.18)[199]: Let t be a quasi-homogeneous holomorphic curve with atoms 𝑡𝑖 , 0 ≤

 𝑖 ≤  𝑛 −  1. Let 𝑇 = ((𝑆𝑖,𝑗)) be its atomic decomposition. Let ∅ ∈  ℋ∞(𝔻) be a 

holomorphic function. If 𝛬(𝑡)  <  2, then there exists a bounded linear operator 𝑋 ∈
𝒜′ (𝑇) such that 𝑋𝑖,𝑖  =  ∅(𝑆𝑖,𝑖), 𝑖 =  0, 1,··· , 𝑛 −  1.  
Proof. Firstly, by Lemma (6.3.17), the lemma is true for the case of 𝑛 =  2. For 𝑛 =  3, let 

𝑋 =     (

𝑋0,0 𝑋0,1 𝑋0,2
0 𝑋1,1 𝑋1,2
0 0 𝑋2,2

)  ∈ 𝒜′ (𝐸𝑡). Then we have  

(

𝑆0,0 𝑆0,1 𝑆0,2 

0 𝑆1,1 𝑆1,2
0 0 𝑆2,2

)   (

𝑋0,0 𝑋0,1 𝑋0,2
0 𝑋1,1 𝑋1,2
0 0 𝑋2,2

)  ( 

𝑋0,0 𝑋0,1 𝑋0,2
0 𝑋1,1 𝑋1,2

 0      0    𝑋2,2   
  )(

𝑆0,0𝑆0,1𝑆0,2
 0 𝑆1,1 𝑆 1,2
0 0 𝑆2,2

    )      =       

and it follows that  

(i) 𝑆0,0 𝑋0,1  +  𝑆0,1𝑋1,1  =  𝑋0,0𝑆0,1  +  𝑋0,1𝑆1,1, that is, 𝑆0,0𝑋0,1  −  𝑋0,1𝑆1,1  =  𝑋0,0𝑆0,1  −
 𝑆0,1𝑋1,1;  
(ii) 𝑆1,1𝑋1,2  +  𝑆1,2𝑋2,2  =  𝑋1,1𝑆1,2  +  𝑋1,2𝑆2,2, that is, 𝑆1,1𝑋1,2  −  𝑋1,2𝑆2,2  =  𝑋1,1𝑆1,2  −
 𝑆1,2𝑋2,2.  
By Lemma (6.3.17), we may choose, without loss of generality, 𝑋0,1  =  0 and 𝑋1,2  =  0. 
And there exists ∅ ∈ ℋ∞(𝔻) such that 𝑋𝑖,𝑖  =  ∅(𝑆𝑖,𝑖), 𝑖 =  0, 1, 2. It is therefore enough 

to find an operator 𝑋0,2 satisfying  

𝑆0,0𝑋0,2  −  𝑋0,2𝑆2,2  =  𝑋0,0𝑆0,2  −  𝑆0,2𝑋2,2 .  
Clearly, we have  

(𝑋0,0𝑆0,2  −  𝑆0,2𝑋2,2)(𝑡2(𝓌))  =  𝑋0,0(𝑚0,2𝑡0
(1)
 (𝓌))  − 𝑆0,2(∅(𝓌)𝑡2(𝓌))  

= 𝑚0,2(∅(𝓌)𝑡0(𝓌))
(1)
 – 𝑚0,2∅(𝓌)𝑡0

(1)
 (𝓌) 

= 𝑚0,2∅
(1)(𝓌)𝑡0(𝓌).  

We therefore set 𝑋0,2 be the operator: 𝑋0,2(𝑡2(𝓌)) =  𝑚0,2∅
(1)(𝓌)𝑡0

(1)
 (𝓌).  

To complete the proof by induction, we assume that we have the validity of the conclusion 

for 𝑛 =  𝑘 −  1. Thus we assume the existence of a bounded linear operator 𝑋 = ((𝑋𝑖,𝑗)) 

such that ((𝑆𝑖,𝑗))  ((𝑋𝑖,𝑗)) ((𝑋𝑖,𝑗)) ((𝑆𝑖,𝑗)) where 𝑋𝑖,𝑖  =  ∅(𝑆𝑖,𝑖) and 𝑋𝑖,𝑖+1  =  0.  

And there exists 𝑙𝑖,𝑗
𝑟  such that 𝑋𝑖,𝑗  (𝑡𝑗  ) = ∑  

𝑗−𝑖−1 
 𝑟=1  𝑙𝑖,𝑗

𝑟 ∅(𝑗−𝑘)𝑡𝑖
(𝑘)
 . To complete the inductive 

step, we only need to find the operator 𝑋0,𝑘 satisfying the following equation:  

𝑆0,0𝑋0,𝑘  −  𝑋0,𝑘𝑆𝑘,𝑘 = 𝑋0,0𝑆0,𝑘  −  𝑆0,𝑘𝑋𝑘,𝑘  +  (∑  

𝑘 −1 

𝑖=2

  𝑋0,𝑖𝑆𝑖,𝑘  −  ∑  

𝑘 −2

𝑖=2

  𝑆0,𝑖𝑋𝑖,𝑘) (91)  

Note that the induction hypothesis ensures the existence of constants 𝑐0,𝑘
𝑠  (depending on 

𝑚𝑖,𝑗) such that  
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(𝑋0,0𝑆0,𝑘  −  𝑆0,𝑘𝑋𝑘,𝑘  + ∑  

𝑘 −1 

𝑖=2

 𝑋0,𝑖𝑆𝑖,𝑘 − ∑  

𝑘 −2

𝑖=1

 𝑆0,𝑖𝑋𝑖,𝑘)(𝑡𝑘)  =  ∑  

𝑘 −1 

𝑠=2

𝑐0,𝑘
𝑠 ∅(𝑠)𝑡0

(𝑘−𝑠−1)
 .  

Now, suppose that 𝑋0,𝑘(𝑡𝑘) =  ∑  𝑘 −1 
𝑠=1  𝑙0,𝑘

𝑠 ∅(𝑠) 𝑡0
(𝑘−𝑠)

 , where the constants 𝑙0,𝑘
𝑠  are to be 

found. Then we must have  

(𝑆0,0𝑋0,𝑘  −  𝑋0,𝑘𝑆𝑘,𝑘)(𝑡𝑘(𝓌))  =  ∑  

𝑘 −1 

𝑠=1

 𝑐0,𝑘
𝑠 ∅(𝑠) 𝑡0

(𝑘−𝑠)
  (𝓌)  

It follows that if we choose 𝑙0,𝑘
𝑠  =

𝑐0,𝑘
𝑠

𝑘−𝑠
 , then 𝑋0,𝑘 with this choice of the constants validates 

equation (91). This completes the induction step.  

In particular, when 𝜇𝑖,𝑗  are all chosen to be 1, then 𝑚𝑖,𝑗  =  −1, that is, 𝑆𝑖,𝑗  (𝑡𝑗  )  =

 −𝑡𝑗
(𝑗−𝑖−1)

 . In this case, 𝑋0,𝑘(𝑡0)  =  − ∑  𝑘 −1 
𝑠=1  ∅(𝑠)𝑡0

(𝑘−𝑠)
 . Now, if 𝑚𝑖,𝑗  =  −1, 𝑖, 𝑗 =

 0, 1,··· , 𝑛 −  1, then by a similar argument, we have  

𝑋𝑖,𝑗  (𝑡𝑗  ) =  − ∑  

 𝑗− 𝑖−1 

𝑠=1

 ∅(𝑠) 𝑡𝑖
(𝑗−𝑖−𝑠)

 , 𝑖, 𝑗 =  0, 1,··· , 𝑛 −  1.              (92)  

Theorem (6.3.19)[199]: Suppose 𝑡 and 𝑡̃ are quasi-homogeneous holomorphic curves.  

(i) If 𝛬(𝑡)  ≥  2, then t is similar to the 𝑛 −fold direct sum of the atoms 𝑡0⊕ 𝑡1  ⊕···⊕
𝑡𝑛−1.  
(ii) If 𝛬(𝑡)  =  𝛬(𝑡̃)  <  2 and 𝜃𝑖,𝑖+1  =  𝜃̃𝑖,𝑖+1, 𝑖 =  0, 1,··· , 𝑛 −  2, then 𝑡 and 𝑡̃ are similar 

if and only if they are equal.  

Proof. First, if “𝛬(𝑡)  ≥  2”, then the first conclusion of the theorem follows from Theorem 

(6.3.16). So, it remains for us to verify the second statement of the theorem, where 𝛬(𝑡)  <
 2.  
Let 𝑇 and 𝑇̃ be the operators representing 𝑡 and 𝑡̃ respectively. Recall from Proposition 

(6.3.6) that 𝑆𝑖,𝑗  (𝑡𝑗  )  =  𝑚𝑖,𝑗  𝑡𝑖
(𝑗−𝑖−1)

 , 𝑆̃𝑖,𝑗  (𝑡𝑗  )  =  𝑚̃𝑖,𝑗  𝑡𝑖
(𝑗−𝑖−1)

 . Up to similarity, we can 

assume that 𝑚𝑖,𝑖+1  =  𝑚̃𝑖,𝑖+1. Then 𝑇 and 𝑇̃ have the following atomic decomposition:  

𝑇 =

(

 
 

𝑆0,0   𝑆0,1    𝑆0,2             ···        𝑆0,𝑛−1 

0    𝑆1,1     𝑆1,2             ···       𝑆1,𝑛−1
⋮          ⋱      ⋱                   ⋱                  ⋮
0         …     0           𝑆𝑛−2,𝑛−2  𝑆𝑛−2,𝑛−1 

0      0       …                0     𝑆𝑛−1,𝑛−1

   

)

 
 
𝑎𝑛𝑑  

𝑇̃  =

(

 
 
 

𝑆0,0    𝑆0,1      𝑐0,2𝑆0,2          ···       𝑐0,𝑛−1𝑆0,𝑛−1 

0 𝑆1,1 𝑆1,2               ···                       𝑐1,𝑛−1𝑆1,𝑛−1

 

⋮    ⋱            ⋱                   ⋱                  ⋮
            0         . . .             0       𝑆𝑛−2,𝑛−2  𝑐𝑛−2,𝑛−1𝑆𝑛−2,𝑛−1 

0         0          . . .                    0          𝑆𝑛−1,𝑛−1 

  

)

 
 
  

where 𝑐𝑖,𝑗  =
𝑚̅𝑖,𝑗

𝑚𝑖,𝑗
 . Now it is enough to prove the Claim stated below.  

Claim: If 𝑇 ∼  𝑇̃, then 𝑐𝑖,𝑗  =  1, 𝑖, 𝑗 =  0, 1,··· , 𝑛.  

Consider the following possibilities:  

(i)𝛬(𝑡) ∈  [0, 1) 

(ii)𝑛 =  3, 𝛬(𝑡) ∈  [1, 2);  𝑛 >  3, 𝛬(𝑡) ∈  [1,
4

3
 ) 
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(iii)𝑛 =  4, 𝛬(𝑡) ∈  [
4

3
 , 2) ;  𝑛 >  4, 𝛬(𝑡) ∈  [

4

3
 ,
3

2
 ) 

(iv) 𝑛 =  5, 𝛬(𝑡)  ∈  [
3

2
 , 2) ;  𝑛 >  5, 𝛬(𝑡)  ∈  [

3

2
 ,
8

5
 )  

The method of the proof below combined with Lemma (6.3.18) and equation (92) completes 

the proof in the remaining cases.  

In what follows, without loss of generality, we will always choose 𝑚𝑖,𝑗  =  −1, 𝑖, 𝑗 =  0, 1,·

·· , 𝑛 −  1.  
Case (i): By Proposition (6.3.7), we have  

𝑇 =  𝑇̃  =

(

 
 
   

𝑆0,0 𝑆0,1 0 ···  0

𝑆1,1 𝑆1,2  ···  0
      ⋱       ⋱   ⋮

0 𝑆𝑛−2,𝑛−2 𝑆𝑛−1,𝑛 
                     𝑆𝑛−1,𝑛−1 

 

)

 
 
,  

In this case, we clearly have 𝐾𝑡𝑖  =  𝐾𝑠𝑖 and 𝜃𝑖,𝑖+1  =  𝜃̃𝑖,𝑖+1, 𝑖 =  0, 1,··· , 𝑛 −  1.  

Case (ii): By Proposition (6.3.7), we have  

𝑇 =   

(

 
 

𝑆0,0 𝑆0,1 𝑆0,2  ···  0 0

𝑆1,1 𝑆1,2 𝑆1,3  ···  0 
       ⋱     ⋱     ⋱     ⋮
0 𝑆𝑛−2,𝑛−2 𝑆𝑛−1,𝑛 

                           𝑆𝑛−1,𝑛−1

 

)

 
 
, 

and  

𝑇̃  =   

(

 
 
 
 

 

𝑆0,0 𝑆0,1 𝑐0,2𝑆0,2         0      ···        0

𝑆1,1 𝑆1,2 𝑐1,3𝑆1,3  ···           0

     ⋱         ⋱               ⋱         ⋮
𝑆𝑛−2,𝑛−2                     𝑆𝑛−2,𝑛−1  𝑐𝑛−2,𝑛𝑆𝑛−2,𝑛 

                      0                      𝑆𝑛−1,𝑛−1      𝑆𝑛−1,𝑛 

                                                             𝑆𝑛,𝑛 )

 
 
 
 

.  

In this case, by Proposition (6.3.7), we first assume that n = 3. By Lemma (6.3.1), we have 

 ( 

𝑆0,0 𝑆0,1 𝑆0,2 

0 𝑆1,1 𝑆1,2 

0 0 𝑆2,2

 )   ( 

 𝑋0,0 𝑋0,1 𝑋0,2
0 𝑋1,1 𝑋1,2
0 0 𝑋2,2 

)  = (   

𝑋0,0 𝑋0,1 𝑋0,2
0 𝑋1,1 𝑋1,2
0 0 𝑋2,2

  )    (

𝑆0,0 𝑆0,1 𝑐0,2𝑆0,2
0 𝑆1,1 𝑆1,2 

0 0 𝑆2,2

)(93) 

By Lemma (6.3.17) and Lemma (6.3.14), without loss of generality, 𝑋0,1 and 𝑋1,2 may be 

chosen to be zero. Therefore we have the equalities:  

𝑆𝑖,𝑖+1𝑋𝑖+1,𝑖+1  =  𝑋𝑖,𝑖𝑆𝑖,𝑖+1, 𝑖 =  0, 1, 𝑎𝑛𝑑  
𝑆0,0𝑋0,2  +  𝑆0,2𝑋2,2  =  𝑐0,2𝑋0,0𝑆0,2  +  𝑋0,2𝑆2,2.  

Note that 𝒜′ (𝑆𝑖,𝑖) ≅  ℋ
∞(𝔻), by Lemma (6.3.17), we can find a holomorphic function 

∅ ∈ ℋ∞(𝔻) such that 𝑋𝑖,𝑖  𝑡𝑖  =  ∅𝑡𝑖 . Since 𝑋𝑖,𝑖 is invertible, ∅(𝑆𝑖,𝑖) is also invertible. Note 

that  

(𝑐0,2𝑋0,0𝑆0,2  −  𝑆0,2𝑋2,2)(𝑡2)  =  𝑐0,2𝑋0,0(−𝑡0
(1)
 )  − 𝑆0,2(∅𝑡2 )  

=  (𝑐0,2 − 1 )𝑆0,2∅(𝑆2,2)(𝑡2)  − 𝑐0,2𝑆0,1𝑆1,2∅(1)(𝑆2,2)(𝑡2).             (94)  

By Lemma (6.3.15), we have 𝑐0,2𝑆0,1𝑆1,2∅
(1)(𝑆2,2)  ∈  𝑟𝑎𝑛𝜎𝑆0,0,𝑆2,2  . From (94), it follows 

that  

(𝑐0,2 − 1)𝑆0,2∅(𝑆2,2)  ∈  𝑟𝑎𝑛 𝜎𝑆0,0,𝑆2,2  .  
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By Lemma (6.3.7), 𝑆0,2  ∉  𝑟𝑎𝑛 𝜎𝑆0,0,𝑆2,2  . Since ∅(𝑆2,2) is invertible and ∅𝜑(𝑆2,2)  ∈

𝒜′ (𝑆2,2 ), we have  

𝑆0,2∅(𝑆2,2)  ∉  𝑟𝑎𝑛 𝜎𝑆0,0,𝑆2,2   

it follows from Theorem (6.3.14). This shows that 𝑐0,2  =  1.  

In the following, we will prove the general case. Now suppose that we have proved Claim 

1 for 𝑛 =  𝑘 −  1. Pick 𝑋 = (  

𝑋0,0 0 ···  𝑋0,𝑘
0 𝑋1,1  ···  𝑋1,𝑘
  ··· ··· ··· ···
 0 0 ···  𝑋𝑘,𝑘

) such that 𝑋𝑇̃ =  𝑇𝑋. Then it follows that  

𝑋0((𝑆̃𝑖,𝑗  )𝑖,𝑗=0
𝑘−1

)  =  ((𝑆𝑖,𝑗  )𝑖,𝑗=0
𝑘−1

)𝑋0, 𝑋1((𝑆̃𝑖,𝑗   )𝑖,𝑗=1
𝑘

)  =  ((𝑆𝑖,𝑗  )𝑖,𝑗=1
𝑘

)𝑋1,  

where  

𝑋0  =

(

 
 
 

𝑋0,0     0       ···          𝑋0,𝑘−1 

0      𝑋1,1       ···      𝑋1,𝑘−1 

⋮            ⋱          ⋱              ⋮     
 0          ···         0    𝑋𝑘−1,𝑘−1 

 )

 
 
,𝑋1  = (

𝑋1,1      0      ···       𝑋1,𝑘  

0         𝑋2,2     ···       𝑋2,𝑘 

⋮            ⋱          ⋱              ⋮
0            ···        0         𝑋𝑘,𝑘 

 ) . 

Since 𝑋 is invertible, 𝑋0 and 𝑋1 are both invertible. By the induction hypothesis 𝑐𝑖,𝑖+2  =

 1, 𝑖 =  0, 1,··· , 𝑛 −  3.  
Case (iii) and Case (iv): By Proposition (6.3.7), 𝑇̃  = ((𝑆̃𝑖,𝑗))  , 𝑆̃𝑖,𝑗  =  0, 𝑗 −  𝑖 ≥  4 and 

𝑇̃  = ((𝑆̃𝑖,𝑗)) , 𝑆̃𝑖,𝑗  =  0, 𝑗 −  𝑖 ≥  5. Following the proof given above, by Proposition 

(6.3.7), we only need to consider the case of 𝑛 =  4 and 𝑛 =  5. For case 3, we only 

consider n = 4 and the other cases would follow by induction. In this case, we have   

(

 

𝑆0,0        𝑆0,1     𝑆0,2    𝑆0,3
0            𝑆1,1     𝑆1,2   𝑆1,3 

0           0          𝑆2,2  𝑆2,3
0          0           0    𝑆3,3  )

  

(

  

𝑋0,0       0     𝑋0,2   𝑋0,3
0           𝑋1,1     0     𝑋1,3 

0        0         𝑋2,2     0

0        0             0    𝑋3,3

 

)

  

  

(

 

𝑋0,0 0 𝑋0,2        𝑋0,3 

0 𝑋1,1 0          𝑋1,3 

0 0 𝑋2,2             0 

0 0 0             𝑋3,3 

 

)

  

(

   

𝑆0,0 𝑆0,1 𝑆0,2                𝑐0,3𝑆0,3 

0 𝑆1,1 𝑆1,2                      𝑆1,3
0 0 𝑆2,2                  𝑆2,3
 0   0   0                    𝑆3,3

 

)

         =        .  

It follows that   (

𝑋0,0 0 𝑋0,2
0 𝑋1,1 0

0 0 𝑋2,2

)  commutes with (

𝑆0,0 𝑆0,1 𝑆0,2 

0 𝑆1,1 𝑆1,2 

0 0 𝑆2,2

)  and   (

𝑋1,1 0 𝑋1,3
0 𝑋2,2 0

0 0 𝑋3,3

)  

commutes with (

𝑆1,1 𝑆1,2 𝑆1,3 

0 𝑆2,2 𝑆2,3 

0 0 𝑆3,3

 ). By equation (92), we see that 𝑋0,2 and 𝑋1,3  are equal to 

𝑆0,2∅(1)(𝑆2,2) and 𝑆1,3∅(1)(𝑆3,3). Note that  

𝑆0,0𝑋0,3  +  𝑆0,1𝑋1,3  +  𝑆0,3𝑋3,3  =  𝑐0,3𝑋0,0𝑆0,3  +  𝑋0,2𝑆2,3  +  𝑋0,3𝑆3,3.     (95)  
Then  

𝑋0,2𝑆2,3  −  𝑆0,1𝑋1,3 = 𝑆0,2   ∅
(1)(𝑆2,2)𝑆2,3  −  𝑆0,1𝑆1,3   ∅

(1)(𝑆3,3)  

=  (𝑆0,2𝑆2,3  −  𝑆0,1𝑆1,3)∅
(1)(𝑆3,3) = 0  

So we only need to consider  

𝑆0,0𝑋0,3  −  𝑋0,3𝑆3,3  =  𝑐0,3𝑋0,0𝑆0,3  −  𝑆0,3𝑋3,3. 
Since  
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(𝑐0,3𝑋0,0𝑆0,3  −  𝑆0,3𝑋3,3)(𝑡3) =  (1 − 𝑐0,3)∅𝑡0
(2)
 −  2𝑐0,3  ∅

(1)𝑡0
(1)
 −  𝑐0,3  ∅

(2)𝑡0,  
we obtain  

𝑐0,3𝑋0,0𝑆0,3  −  𝑆0,3𝑋3,3  

=  (𝑐0,3 − 1)𝑆0,3 ∅
 (𝑆3,3) + 2𝑐0,3𝑆0,1𝑆1,3 ∅

(1)(𝑆3,3)

+ 𝑐0 ,3𝑆0,1𝑆1,2𝑆2,3∅
(2)(𝑆3,3).  

By Lemma (6.3.15) and equation (95), we have  

2𝑐0,3𝑆0,1𝑆1,3∅
(1)(𝑆3,3) + 𝑐0,3𝑆0,1𝑆1,2𝑆2,3∅

(2)(𝑆3,3)  ∈  𝑅𝑎𝑛𝜎𝑆0,0,𝑆3,3  .  

Since ∅(𝑆3,3) is invertible, we deduce that  

(𝑐0,3  −  1)𝑆0,3  ∈  𝑟𝑎𝑛 𝜎𝑆0,0,𝑆3,3  .  

Note that 𝑆0,3  ∉  𝑟𝑎𝑛 𝜎𝑆0,0,𝑆3,3  , we have 𝑐0,3  =  1. For case 4 with 𝑛 =  5, we have  

 

(

  
 

𝑆0,0         𝑆0,1  𝑆0,2 𝑆0,3 𝑆0,4 

              𝑆1,1     𝑆1,2 𝑆1,3 𝑆1,4 

𝑆2,2         𝑆2,3 𝑆2,4 

           0                      𝑆3,3    𝑆3,4
                                            𝑆4,4     )

  
 
    

(

  
 

𝑋0,0      0        𝑋0,2     𝑋0,3 𝑋0,4
             𝑋1,1             0      𝑋1,3 𝑋1,4
                              𝑋2,2       0      𝑋2,4 

            0                       𝑋3,3     0 

                                               𝑋4,4 )

  
 

=

(

  
 

𝑋0,0      0       𝑋0,2 𝑋0,3 𝑋0,4
            𝑋1,1           0 𝑋1,3 𝑋1,4 

                      𝑋2,2     0 𝑋2,4
         0                  𝑋3,3    0

                                        𝑋4,4 )

  
 
    

(

  
 
 

𝑆0,0 𝑆0,1 𝑆0,2          𝑆0,3     𝑐0,4𝑆0,4
    𝑆1,1  𝑆1,2             𝑆1,3      𝑆1,4 

             𝑆2,2               𝑆2,3 𝑆2,4 

0                           𝑆3,3 𝑆3,4 

                                       𝑆4,4 

 

)

  
 

 

Therefore ((𝑋𝑖𝑗))
4×4

 commutes with ((𝑆𝑖,𝑗))
4×4

 for 𝑖, 𝑗 =  0, 1, 2, 3 and ((𝑋𝑖𝑗))
4×4

 

commutes with ((𝑆𝑖,𝑗))
4×4

 for 𝑖, 𝑗 =  1, 2, 3, 4. Then from Lemma (6.3.18), we find that 

𝑋𝑖,𝑗  , (𝑖, 𝑗)  ≠  (0, 4). We also have  

𝑆0,0𝑋0,4  −  𝑋0,4𝑆4,4  
=  (𝑐0,4𝑋0,0𝑆0,4  −  𝑆0,4𝑋4,4)  + (𝑋0,2𝑆2,4  +  𝑋0,3𝑆3,4)  − (𝑆0,1𝑋1,4 
+ 𝑆0,2𝑋2,4).                                                                                                             (96)  

By Lemma (6.3.18), we have  

𝑋0,2𝑆2,4  −  𝑆0,2𝑋2,4  =  𝑆0,2∅
(1)(𝑆2,2)𝑆2,4  −  𝑆0,2𝑆2,4∅

(1)(𝑆4,4) =  𝑆0,2𝑆2,3𝑆3,4∅
(2)(𝑆4,4).  

Lemma (6.3.18) together with the equation (92) gives  

𝑋0,3  =  𝑆0,2𝑆2,3∅
(2)(𝑆3,3) + 𝑆0,3∅

(1)(𝑆3,3), 𝑋1,4  =  𝑆1,3𝑆3,4∅
(2)(𝑆4,4) + 𝑆1,4∅

(1)(𝑆4,4).  

Note that 𝑆0,2𝑆2,3  =  𝑆0,1𝑆1,3 and 𝑆0,3𝑆3,4  =  𝑆0,1𝑆1,4, we also have  

𝑋0,3𝑆3,4  −  𝑆0,1𝑋1,4  

=  (𝑆0,2𝑆2,3∅
(2)(𝑆3,3) + 𝑆0,3∅

(1)(𝑆3,3)) 𝑆3,4  −  𝑆0,1(𝑆1,3𝑆93,4)∅
(2)(𝑆4,4)

+ 𝑆1,4∅
(1)(𝑆4,4))  =  0. 

Since  

(𝑐0,4𝑋0,0𝑆0,4  −  𝑆0,4𝑋4,4)(𝑡4) =  𝑐0,4𝑋0,0𝑆0,4(𝑡4) − 𝑆0,4(∅𝑡4)

=  (1 − 𝑐0,4)∅𝑡0
(3)
 −  3𝑐0,4∅

(2)𝑡0
(1)
 −  3𝑐0,4∅

(1)𝑡0
(2)
 −  𝑐0,4∅

(3)𝑡0,  
we also have  

𝑐0,4𝑋0,0𝑆0,4  −  𝑆0,4𝑋4,4  

=  (𝑐0,4   −  1)𝑆0,4∅(𝑆4,4) + 3𝑐0,4𝑆0,1𝑆1,3∅
(1)(𝑆3,3)

+ 3𝑐0,4𝑆0,1𝑆1,2𝑆2,3∅
(2)(𝑆3,3) + 𝑐0,4𝑆0,1𝑆1,2𝑆2,3∅

(3)(𝑆3,3).  
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Combining Lemma (6.3.15) with the equation (96), we obtain  

3𝑐0,4𝑆0,1𝑆1,3∅
(1)(𝑆3,3) + 3𝑐0,4𝑆0,1𝑆1,2𝑆2,3∅

(2)(𝑆3,3) + 𝑐0,4𝑆0,1𝑆1,2𝑆2,3∅
(3)(𝑆3,3)

∈  𝑟𝑎𝑛 𝜎𝑆0,0, 𝑆4,4 , 𝑆0,2𝑆2,3𝑆3,4∅
(2)(𝑆4,4)  ∈  𝑟𝑎𝑛𝜎𝑆0,0, 𝑆4,4 .  

Then it follows that  

(𝑐0,4  −  1)𝑆0,4∅(𝑆4,4)  ∈  𝑟𝑎𝑛 𝜎𝑆0,0, 𝑆4,4 .  

Note that ∅(𝑆4,4) is invertible, therefore  

(𝑐0,4  −  1)𝑆0,4  ∈  𝑟𝑎𝑛 𝜎𝑆0,0,𝑆4,4   .  

Since 𝑆0,4  ∉  𝑟𝑎𝑛 𝜎𝑆0,0, 𝑆4,4 , it follows that 𝑐0,4   =  1.  
We give two different applications of our results. First of these shows that the 

topological and algebraic 𝐾 −groups defined must coincide. Second, we show that the 

Halmos’ question on similarity has an affirmative answer for quasi-homogeneous operators.  

We begin with some preliminaries on 𝐾 − groups. Let 𝑡 ∶  𝛺 →  𝐺𝑟(𝑛,ℋ) be a 

holomorphic curve. Recall that the commutant 𝒜′ (𝐸𝑡) of such a holomorphic curve t is 

defined to be  

𝒜′ (𝐸𝑡)  =  {𝐴 ∈ ℒ(ℋ) ∶  𝐴 𝑡(𝓌)  ⊆  𝑡(𝓌),𝓌 ∈  𝛺}. 
Definition (6.3.20)[199]: For a holomorphic curve 𝑡 ∶  𝛺 →  𝐺𝑟(𝑛,ℋ), the Jocaboson 

radical Rad 𝒜′ (𝐸𝑡) of 𝒜′ (𝐸𝑡) is defined to be  

{𝑆 ∈  𝒜′ (𝐸𝑡)|𝜎𝒜′(𝐸𝑡)(𝑆𝐴) = 0, 𝐴 ∈  𝒜′ (𝐸𝑡)}, 
where 𝜎𝒜′(𝐸𝑡)(𝑆𝐴) denotes the spectrum of 𝑆𝐴 in the algebra 𝒜′ (𝐸𝑡).  
The discussion below follows closely in [58] of the first two authors. 

Definition (6.3.21)[199]: A holomorphic curve 𝑡 ∶  𝛺 →  𝐺𝑟(𝑛,ℋ) is said to have a finite 

decomposition if it meets one of the equivalent conditions given in [58].  

Suppose {𝑃1, 𝑃2,··· , 𝑃𝑚} and {𝑄1, 𝑄2,··· , 𝑄𝑛} are two distinct decompositions of 𝑡.  
If 𝑚 =  𝑛, there exists a permutation 𝛱 ∈  𝑆𝑛 such that 𝑋𝑄𝛱(𝑖)𝑋

−1  =  𝑃𝑖  for some 

invertible operator 𝑋 in 𝒜′(𝐸𝑡), 1 ≤  𝑖 ≤  𝑛, then we say that 𝑡 (or 𝐸𝑡) has a unique 

decomposition up to similarity.  

For a holomorphic curve, 𝑓 ∶  𝛺 →  𝐺𝑟(𝑛,ℋ), let 𝑀𝑘(𝒜′ (𝐸𝑡)) be the collection of 𝑘 ×  𝑘 

matrices with entries from 𝒜′ (𝐸𝑡). Let  

𝑀∞(𝒜′ (𝐸𝑡))  =   ⋃  

∞

𝑘=1
 𝑀𝑘(𝒜′ (𝐸𝑡)),  

and Proj(𝑀𝑘(𝒜′ (𝐸𝑡))) be the algebraic equivalence classes of idempotents in 

𝑀∞(𝒜′ (𝐸𝑡)). If 𝑝, 𝑞 are idempotents in Proj(𝒜′ (𝐸𝑡)), then say that 𝑝 ∼𝑠𝑡 𝑞 if 𝑝 ⊕
𝑟 ∼𝑎 𝑞 ⊕ 𝑟 for some idempotent 𝑟 in Proj (𝒜′ (𝐸𝑡)). The relation ∼𝑠𝑡 is known as stable 

equivalence.  

Let 𝑋 be a compact Hausdorff space, and 𝜉 =  (𝐸, 𝜋, 𝑋) be a (topological) vector bundle. A 

well-known theorem due to 𝑅. 𝐺. Swan says that a vector bundle 𝜉 =  (𝐸, 𝜋, 𝑋) is a direct 

summand of the trivial bundle, that is,  

𝜉 ⊕  𝜂 ∼=  (𝑋 ×  ℂ𝑛, 𝜋, 𝑋)  
for some vector bundle 𝜂 =  (𝐹, 𝜌, 𝑋).  

None of what we have said so far applies to holomorphic vector bundles over an open 

subset of ℂ since they are already trivial by Graut’s theorem. However, the study of 

holomorphic vector bundles over an open subset of ℂ is central to operator theory. In the 

context of operator theory, as shown in the foundational of Cowen and Douglas [61], the 

vector bundles of interest are equipped with a Hermitian structure inherited from a fixed 

inner product of some Hilbert space ℋ. This makes it possible to ask questions about their 
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equivalence under a unitary or an invertible linear transformation of ℋ. In [61], questions 

regarding unitary equivalence were dealt with quite successfully while equivalence under 

an invertible linear transformation remains somewhat of a mystery to date. However, we 

can ask if the uniqueness of the summand, which was a consequence of Swan’s theorem, 

remains valid of Cowen–Douglas operators.  

We will need the following lemma.  

Lemma (6.3.22)[199]: Let 𝐸𝑡 be a quasi-homogeneous bundle. Then 𝒜′ (𝐸𝑡)/
𝑅𝑎𝑑(𝒜′ (𝐸𝑡)) is commutative.  

Proof. Let  

𝑆 =  {𝑌 ∶  𝜎(𝑌 ) = 0, 𝑌 ∈  𝒜′ (𝐸𝑡)}.  
Claim 1: 𝑆 is an ideal of the algebra 𝒜′ (𝐸𝑡).  
By Lemma (6.3.13), 𝑌 is upper-triangular if 𝑌 ∈  𝑆. Since the spectrum 𝜎(𝑌 ) of 𝑌 is {0}, 
the operator 𝑌 must be of the form  

𝑌 =   

(

 
 
 

 0                 𝑌0,1       𝑌0,2       ···            𝑌0,𝑛−1   

0                   0         𝑌1,2        ···            𝑌1,𝑛−1   
⋮                  ⋱           ⋱          ⋱                  ⋮     
0                ···             0           0        𝑌𝑛−2,𝑛−1 

0                ···            ···        0                    0  

  

 
 
 )

 
 
,  

and it follows that each quasi-nilpotent element in the commutant of the holomorphic curve 

𝑡 of rank one is zero. Using Lemma (6.3.13) again, each element 𝑋 ∈ 𝒜′ (𝐸𝑡) is upper-

triangular. Thus 𝜎(𝑋𝑌 )  =  𝜎(𝑌 𝑋)  =  0. This completes the proof of Claim 1 and 𝑆 =
 𝑅𝑎𝑑(𝒜′  (𝐸𝑡)).  
Claim 2: 𝒜′  (𝐸𝑡)/𝑅𝑎𝑑(𝒜′ (𝐸𝑡)) is commutative.  

Note that if 𝑋 ∈  𝒜′  (𝐸𝑡) is (block) nilpotent, then 𝑋 ∈  𝑆. 𝐴 simple computation shows 

that 𝒜′  (𝐸𝑡)/𝑅𝑎𝑑(𝒜′  (𝐸𝑡)) is commutative.  

For any holomorphic curve 𝑡, we let t 𝑛 denote the 𝑛 −fold direct sum of 𝑡. For any 

two natural numbers 𝑛 and 𝑚, let 𝐸𝑟 and 𝐸𝑠 be the sub-bundles of 𝐸𝑡𝑛  and 𝐸𝑡𝑚 , respectively. 

If 𝑚 >  𝑛, then both 𝐸𝑟 and 𝐸𝑠 can be regarded as a sub-bundle of 𝐸𝑡𝑚 .  
Two holomorphic Hermitian vector bundles 𝐸𝑟 and 𝐸𝑠 are said to be similar if there exist an 

invertible operator 𝑋 ∈  𝒜′ (𝐸𝑡𝑛 ) such that 𝑋𝐸𝑟  =  𝐸𝑠. Analogous to the definition of 

𝑉𝑒𝑐𝑡(𝑋), we let 𝑉𝑒𝑐𝑡0(𝐸𝑡) be the set of equivalence classes 𝐸𝑠̅̅ ̅ of the sub-bundles 𝐸𝑠 of 

𝐸𝑡𝑛 , 𝑛 =  1, 2,··· . An addition on 𝑉𝑒𝑐𝑡0(𝐸𝑡) is defined as follows, namely,  

𝐸𝑟̅̅ ̅  + 𝐸𝑠̅̅ ̅  =  𝐸𝑟  ⊕ 𝐸𝑠,̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   
where 𝐸𝑟 and 𝐸𝑠 are both sub-bundles of 𝐸𝑡 . Now, the group 𝐾0(𝐸𝑡) is the Grothendieck 

group of (𝑉𝑒𝑐𝑡0(𝐸𝑡), +). We have the following theorem.  

Lemma (6.3.23)[199]: Let 𝐸𝑡 be a quasi-homogeneous bundle. Then  

𝑉𝑒𝑐𝑡(𝒜′ (𝐸𝑡))  ≅  𝑉𝑒𝑐𝑡(𝒜′ (𝐸𝑡)/𝑅𝑎𝑑𝒜′ (𝐸𝑡)).  
Proof. Note that 𝑀𝑛(𝒜′ (𝐸𝑡))  ≅  𝒜′ (⨁  𝑛  𝐸𝑡). Let 𝑝 ∈  𝑀𝑛(𝒜′ (𝐸𝑡)) be an idempotent. 

Define a map 𝜎 ∶  𝑉𝑒𝑐𝑡(𝒜′ (𝐸𝑡))  →  𝑉𝑒𝑐𝑡(𝒜′ (𝐸𝑡)/𝑅𝑎𝑑𝒜′ (𝐸𝑡)) as the following:  

𝜎[𝑃] = [𝜋(𝑃)],  
where 𝜋 ∶  𝒜′ (𝐸𝑡)  →  𝑉𝑒𝑐𝑡(𝒜′ (𝐸𝑡)/𝑅𝑎𝑑𝒜′ (𝐸𝑡)).  
Claim 𝜎 is well defined and it is an isomorphism.  

If [𝑝]  =  [𝑞], where 𝑝 ∈  𝑀𝑛(𝒜′ (𝐸𝑡)) and 𝑞 ∈  𝑀𝑚(𝒜′ (𝐸𝑡)) are both idempotents, 

then there exists 𝑘 ≥  𝑚𝑎𝑥{𝑚, 𝑛} and an invertible element 𝑢 ∈  𝑀𝑘(𝒜′ (𝐸𝑡)) such that  

𝑢(𝑝 ⊕ 0(𝑘−𝑛) )𝑢−1  =  𝑞 ⊕ 0(𝑘−𝑚) . 
Thus we have  
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𝜋(𝑢)𝜋(𝑝 ⊕ 0(𝑘−𝑛) )𝜋(𝑢)−1   =  𝜋(𝑢(𝑝 ⊕ 0(𝑘−𝑛) )𝑢−1)  =  𝜋(𝑞 ⊕ 0(𝑘−𝑚) ). 

That means [𝜋(𝑝)]  =  [𝜋(𝑞)], and σ is well defined.  

Now, we would prove that 𝜎 is injective. In fact, if 𝑝 ∈  𝑀𝑛(𝒜′ (𝐸𝑡)) and q ∈  𝑀𝑚(𝒜′(𝐸𝑡)) 
are idempotents with  

𝜎[𝑝] = [𝜋(𝑝)]  =  [𝜋(𝑞)]  =  𝜎[𝑞],  
then we can find 𝑘 ≥  𝑚𝑎𝑥{𝑚, 𝑛} and an invertible element 𝜋(𝑢)  ∈  𝑀𝑘(𝒜′ (𝐸𝑡))/
 𝑅𝑎𝑑(𝑀𝑘(𝒜′ (𝐸𝑡))) such that  

𝜋(𝑢) (𝜋(𝑝 ⊕ 0(𝑘−𝑛) )) 𝜋(𝑢)−1  =  𝜋(𝑞 ⊕ 0(𝑘−𝑚) ).  

Since 𝜋(𝑢) is invertible, there exists 𝜋(𝑠)  ∈  𝑅𝑎𝑑(𝑀𝑘(𝒜′ (𝐸𝑡))) such that 𝜋(𝑢)−1  =
 𝜋(𝑠). Then we have  

𝑢𝑠 =  𝐼 − 𝑅1, 𝑠𝑢 =  𝐼 − 𝑅2, 
where 𝑅1, 𝑅2  ∈  𝑅𝑎𝑑(𝑀𝑘(𝒜′ (𝐸𝑡))). Since 𝜎(𝑅1)  =  𝜎(𝑅2)  =  {0}, then us, 𝑠𝑢 are both 

invertible. Therefore, 𝑢 is invertible and thus  

𝜋(𝑢(𝑝 ⊕ 0(𝑘−𝑛) )𝑢−1)  =  𝜋(𝑢) (𝜋(𝑝 ⊕ 0(𝑘−𝑛) )) 𝜋(𝑢)−1   =  𝜋(𝑞 ⊕ 0(𝑘−𝑚) ).  

Thus  

𝑢(𝑝 ⊕ 0(𝑘−𝑛) )𝑢−1  =  𝑞 ⊕ 0(𝑘−𝑚)  +  𝑅  

for some 𝑅 ∈  𝑅𝑎𝑑(𝑀𝑘(𝒜′ (𝐸𝑡))). Let 𝑊1  =  2(𝑞 ⊕ 0(𝑘−𝑚)) − 𝐼. Since 𝜎(𝑄 ⊕

0(𝑘−𝑚))  ⊆  {0, 1}, then 𝑊1 is invertible. Since we have 𝑅 ∈  𝑅𝑎𝑑(𝑀𝑘(𝒜′ (𝐸𝑡))) and 

𝑊1
−1  ∈  𝑀𝑘(𝒜′ (𝐸𝑡)), then 𝑅𝑊1

−1  ∈  𝑅𝑎𝑑(𝑀𝑘(𝒜′ (𝐸𝑡))), so 𝐼 +  𝑅𝑊1
−1 is invertible. Set  

𝑊 =  2(𝑞 ⊕ 0(𝑘−𝑚) ) −  𝐼 +  𝑅 =  𝑊1 +  𝑅 =  (𝐼 +  𝑅𝑊1
−1 )𝑊1, 

and 𝑊 is invertible. Since 𝑝 ⊕ 0(𝑘−𝑛) is an idempotent, it follows that 𝑢(𝑝 ⊕ 0(𝑘−𝑛))𝑢−1 

and hence (𝑞 ⊕ 0(𝑘−𝑚) )  +  𝑅 is an idempotent as well. Thus  

(𝑞 ⊕ 0(𝑘−𝑚) )
2
 +  (𝑞 ⊕ 0(𝑘−𝑚) )𝑅 +  𝑅(𝑞 ⊕ 0(𝑘−𝑚) )  + 𝑅2  

=  (𝑞 ⊕ 0(𝑘−𝑚) )  +  𝑅. 
Similarly, 𝑞 ⊕ 0(𝑘−𝑚) is an idempotent, therefore  

(𝑞 ⊕ 0(𝑘−𝑚) )𝑅 +  𝑅(𝑞 ⊕ 0(𝑘−𝑚) )  + 𝑅2  =  𝑅. 
So we have  

𝑊((𝑞 ⊕ 0(𝑘−𝑚)  +  𝑅)

= (𝑞 ⊕ 0(𝑘−𝑚))  +  𝑅(𝑞 ⊕ 0(𝑘−𝑚))  +  2(𝑞 ⊕ 0(𝑘−𝑚))𝑅 −  𝑅 + 𝑅2  

= (𝑞 ⊕ 0(𝑘−𝑚)) + (𝑞 ⊕ 0(𝑘−𝑚))𝑅  

= (𝑞 ⊕ 0(𝑘−𝑚) )𝑊  
and  

𝑢(𝑝 ⊕ 0(𝑘−𝑛))𝑢−1   =  (𝑞 ⊕ 0(𝑘−𝑚)) +  𝑅 =  𝑊(𝑞 ⊕ 0(𝑘−𝑚))𝑊−1. 
It follows that 𝑝 ∼𝑎  𝑞, and 𝜎 is injective. Finally, we show that 𝜎 is surjective. For each 

[𝜋(𝑝)] ∈  𝑉𝑒𝑐𝑡 (
𝒜′(𝐸𝑡)

𝑅𝑎𝑑𝒜′(𝐸𝑡)
)with 𝜋(𝑝) ∈

𝑀𝑛(𝒜
′(𝐸𝑡))

𝑅𝑎𝑑(𝑀𝑛(𝒜
′(𝐸𝑡)))

, 𝑝 ∈  𝑀𝑛(𝒜
′(𝐸𝑡)) and 𝜋2(𝑝)  =

 𝜋(𝑝), we have  

𝑝2  −  𝑝 =  𝑅0, 𝑅0  ∈  𝑅𝑎𝑑(𝑀𝑛(𝒜′ (𝐸𝑡))).  
Note that 𝑝 =  𝐵 +  𝑅, where 𝐵 ∈  𝑀𝑛(𝒜′ (𝐸𝑡)) is a block-diagonal matrix over ℂ and 𝑅 

is in 𝑅𝑎𝑑(𝑀𝑛(𝒜′ (𝐸𝑡))). Then 𝜋(𝑝)  =  𝜋(𝐵) and 

 𝑅0  =  𝑝
2  −  𝑝 =  (𝐵 +  𝑅)2  −  (𝐵 +  𝑅)  =  𝐵2  −  𝐵 + (𝐵𝑅 +  𝑅𝐵 + 𝑅2  −  𝑅).  

Since 𝑅𝑎𝑑(𝑀𝑛(𝒜′ (𝐸𝑡))) is an ideal of 𝑀𝑛(𝒜′ (𝐸𝑡)), then we have  

𝐵2  −  𝐵 ∈  𝑅𝑎𝑑(𝑀𝑛(𝒜′ (𝐸𝑡))). 



274 

Since 𝐵 is a block-diagonal matrix, then we have 𝐵 is also an idempotent. Then we have  

𝜎([𝐵])  =  [𝜋(𝑝)].  
That means 𝜎 is also a surjective. And we also can see that 𝜎 is homomorphism. Then 𝜎 is 

an isomorphism and  

𝑉𝑒𝑐𝑡(𝒜′ (𝐸𝑡))  ∼=  𝑉𝑒𝑐𝑡(𝒜′ (𝐸𝑡)/𝑅𝑎𝑑𝒜′ (𝐸𝑡)).  
Proposition (6.3.24)[199]: Let 𝐸𝑡 and 𝐸𝑡̃  be two quasi-homogeneous bundles with 

matchable bundles {𝐸𝑡𝑖  }𝑖 =0
𝑛−1
 and {𝐸𝑠𝑖  }𝑖=0

𝑛−1
 respectively. If 𝛬(𝑡)  <  2, then 𝐸𝑡 and 𝐸𝑡̃  are 

similarity equivalent if and only if  

𝐾0(𝒜′ (𝐸𝑡  ⊕ 𝐸𝑡̃ ))  ≅ ℤ.  
If 𝛬(𝑡)  ≥  2, then 𝐸𝑡 and 𝐸𝑡  are similarity equivalent if and only if 

𝐾0(𝒜′ (𝐸𝑡  ⊕ 𝐸𝑡̃ )) ≅ ℤ
𝑛. 

Proof. Suppose that 𝛬(𝑡)  <  2. Let  

𝑇 =    

(

 
 

𝑆0,0 𝑆0,1 𝑆0,2 … 𝑆0,𝑛−1
𝑆1,1 𝑆1,2 … 𝑆1,𝑛−1

⋱
 

⋱
𝑆𝑛−1,𝑛−1 

⋮
𝑆𝑛−1,𝑛
 𝑆𝑛,𝑛 )

 
 
 𝑎𝑛𝑑 𝑋 

=    

(

 
 

𝑋0,0 𝑋0,1 𝑋0,2 ··· 𝑋0,𝑛−1
𝑋1,1 𝑋1,2 … 𝑋1,𝑛−1

⋱
 

⋱
𝑋𝑛−1,𝑛−1 

⋱
𝑋𝑛−1,𝑛
𝑋𝑛,𝑛 )

 
 
 .  

Claim 1: If 𝑋𝑇 =  𝑇𝑋, then we have 𝑋𝑖,𝑖  =  ∅(𝑆𝑖,𝑖) for any i, where ∅ ∈  ℋ∞(𝔻). In fact, 

for any 𝑖 =  0, 1,··· , 𝑛 –  1, we have  

𝑆𝑖,𝑖𝑋𝑖,𝑖+1  +  𝑆𝑖,𝑖+1𝑋𝑖+1,𝑖+1  =  𝑋𝑖,𝑖𝑆𝑖,𝑖+1  +  𝑋𝑖,𝑖+1𝑆𝑖+1,𝑖+1,  
and  

𝑆𝑖,𝑖𝑋𝑖,𝑖+1  −  𝑋𝑖,𝑖+1𝑆𝑖+1,𝑖+1  =  𝑋𝑖,𝑖𝑆𝑖,𝑖+1  −  𝑆𝑖,𝑖+1𝑋𝑖+1,𝑖+1  =  0.  

Since 𝑋𝑖,𝑖  ∈ 𝒜′ (𝐸𝑡𝑖  ) and each 𝐸𝑡𝑖 induces a Hilbert functional space ℋ𝑖   with reproducing 

kernel 
1

(1−𝓏𝓌̅)𝜆𝑖
 , then we have 𝒜′ (𝐸𝑡𝑖  )  ≅ ℋ

∞(𝔻). Then there exists ∅𝑖,𝑖  ∈  ℋ
∞(𝔻) such 

that  

𝑋𝑖,𝑖 = ∅𝑖,𝑖(𝑆𝑖,𝑖  ), 𝑖 =  0, 1,··· , 𝑛 −  1. 
Thus we have 

∅𝑖,𝑖(𝑆𝑖,𝑖)𝑆𝑖,𝑖+1  −  𝑆𝑖,𝑖+1∅𝑖+1,𝑖+1(𝑆𝑖+1,𝑖+1) = 0.  

Since 𝑆𝑖,𝑖𝑆𝑖,𝑖+1  =  𝑆𝑖,𝑖+1𝑆𝑖+1,𝑖+1, then  

𝑆𝑖,𝑖+1(∅𝑖,𝑖  −  ∅𝑖+1,𝑖+1)(𝑆𝑖+1,𝑖+1) = 0. 
Note that 𝑆𝑖,𝑖+1 has a dense range, then we can set  

∅𝑖,𝑖  =  ∅, 𝑖 =  0, 1,··· , 𝑛 −  1. 
Claim 2: 𝒜′ (𝐸𝑡)/𝑅𝑎𝑑𝒜′ (𝐸𝑡)  ≅ ℋ

∞(𝔻).  
Recall that 𝑅𝑎𝑑𝒜′ (𝐸𝑡)  =  {𝑆 ∈ 𝒜′ (𝐸𝑡)|𝜎𝒜′(𝐸𝑡)(𝑆𝑆′ )  =  0, 𝑆 ∈ 𝒜′ (𝐸𝑡)}. Any 𝑋 ∈

𝒜′ (𝐸𝑡) is upper triangular by Lemma (6.3.13) and 𝒜′(𝐸𝑡)/𝑅𝑎𝑑 𝒜
′(𝐸𝑡) is commutative by 

Lemma (6.3.22). Therefore if 𝑌 is in Rad 𝒜′(𝐸𝑡), then we have  
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𝑌 =   

(

 
 
 
 
 
 0 𝑌0,1  𝑌0,2  ···

 
 

𝑌0,𝑛−1
 
 

0
𝑌1,2
 

··· 𝑌1,𝑛−1

0 ⋱  
⋱
0

⋱
𝑌𝑛−1,𝑛
0 )

 
 
 
 
 
 

 .  

Define a map 𝛤 ∶ 𝒜′ (𝐸𝑡)/𝑅𝑎𝑑𝒜′ (𝐸𝑡)  → ℋ
∞(𝔻) by the rule:  

𝛤([𝑋])  =  ∅,𝑤ℎ𝑒𝑟𝑒 𝑋 =  ((𝑋𝑖,𝑗  ))
𝑛×𝑛

, 𝑋𝑖,𝑖  =  ∅(𝑆𝑖,𝑖).  

Obviously, 𝛤 is well defined and if 𝛤([𝑋])  =  0, then ∅ =  0. Then 𝑋𝑖,𝑖  =  0, it follows 

that 𝑋 ∈  𝑅𝑎𝑑𝒜′ (𝐸𝑡) and [𝑋]  =  0. So 𝛤 is injective.  

For any ∅ ∈ ℋ∞(𝔻), set 𝑋𝑖,𝑖  ≠  ∅(𝑆𝑖,𝑖), 𝑖 =  0, 1, 2,··· , 𝑛 −  1. By Lemma (6.3.18), we 

can construct the operators 𝑋𝑖,𝑗  , 𝑗 ≠  𝑖 such that 𝑋 ∶= ((𝑋𝑖,𝑗))
𝑛×𝑛

  ∈ 𝒜′ (𝐸𝑡). That means 

𝛤 is surjective. Then 𝛤 is an isomorphism and  

𝒜′ (𝐸𝑡)/𝑅𝑎𝑑𝒜′ (𝐸𝑡)  ≅ ℋ
∞(𝔻).  

By [58] and  ([204]), we have 

𝑉𝑒𝑐𝑡(𝒜′ (𝐸𝑡)) ≅ ℕ,𝐾0(𝒜′ (𝐸𝑡))  ≅ ℤ.  
By [58], we have 𝐸𝑡 has a unique finite decomposition up to similarity. Similarly, 𝐸𝑡̃ also 

has a unique finite decomposition up to similarity.  

If 𝐸𝑡  ∼  𝐸𝑡̃ , then (𝑡 ⊕ 𝑡̃)  ∼  𝑡(2). So we have  

𝑉𝑒𝑐𝑡(𝒜′ (𝑡 ⊕ 𝑡̃))  ≅  𝑉𝑒𝑐𝑡(𝒜′ (𝑡(2)))  ≅ 𝑉𝑒𝑐𝑡𝑀2(𝒜′ (𝑡)))  ≅ ℕ  
And 

𝐾0(𝒜′ (𝑡 ⊕ 𝑡̃))  ≅ ℤ.  
On the other hand, note that 𝑡 and 𝑡̃ are both strongly irreducible. If 𝐾0(𝒜′ (𝑡 ⊕ 𝑡̃))  ≅ ℤ 

and 𝑉𝑒𝑐𝑡(𝒜′ (𝑡 ⊕ 𝑡̃))  ≅ ℕ, then by [58], we have 𝑡 ∼  𝑡̃, otherwise we will have  

𝑉𝑒𝑐𝑡(𝒜′(𝑡 ⊕ 𝑡̃)) ≅ ℕ2. 
This is a contradiction.  

If 𝛬(𝑡)  ≥  2, then by Theorem (6.3.16), we have  

𝐸𝑡  ∼  𝐸𝑡0  ⊕ 𝐸𝑡1  ⊕···⊕ 𝐸𝑡𝑛−1  𝑎𝑛𝑑 𝐸𝑡̃  ∼  𝐸𝑡̃0  ⊕ 𝐸𝑡̃1  ⊕···⊕  𝐸𝑡̃𝑛−1 . 

By [203] and [204], we have that 𝐸𝑡  ∼  𝐸𝑡̃ if and only if  

𝐸𝑡  ⊕ 𝐸𝑡̃  ∼  𝐸𝑡0
(2)
 ⊕ 𝐸𝑡1

(2)
 ⊕···⊕ 𝐸𝑡𝑛−1

(2)
 ,  

and in this case, it follows from [203] that  

𝐾0(𝒜′ (𝐸𝑡  ⊕ 𝐸𝑡̃ ))  ∼=  ℤ
𝑛.  

If 𝐸𝑡 is not similar to 𝐸𝑡̃ , then there exists {𝑖0, 𝑖1  ··· 𝑖𝑛−1}  =  {1, 2,··· , 𝑛 −  1} and {𝑗0, 𝑗1,···
 , 𝑗𝑛−1}  =  {1, 2 ··· , 𝑛 −  1} such that 𝐸𝑡𝑖𝑚  ∼  𝐸𝑡̅ 𝑗𝑚 , 𝑚 =  0, 1,··· , 𝑙, 𝑙 ≤  𝑛 −  2.  

Note that none of the holomorphic curves 𝐸𝑡𝑖𝑙+1  , 𝐸𝑡𝑖𝑙+2  ,··· , 𝐸𝑡𝑖𝑛−1  is similar to any of the 

𝐸𝑡̅0  , 𝐸𝑡̅1  , . . . , 𝐸𝑡̅𝑛−1  . Thus, we have  

𝐸𝑡  ⊕ 𝐸𝑡̅   ∼  𝐸𝑡̅1  ⊕···⊕ 𝐸𝑡̅𝑗0
(2)
 ⊕ 𝐸𝑡̅𝑗0+1  ⊕···⊕ 𝐸𝑡̅𝑗𝑙

(2)
 ⊕···⊕ 𝐸𝑡̅𝑛−1  ⊕ 𝐸𝑡𝑖𝑙+1

⊕···

⊕ 𝐸 𝑡𝑖𝑛−1  .  

By [203], we have that  

𝐾0(𝒜
′(𝐸𝑡  ⊕ 𝐸𝑡̃ )) ∼= ℤ

2𝑛−𝑙−1.  
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Since 2𝑛 −  𝑙 −  1 >  𝑛, the proof is complete.  

Theorem (6.3.25)[199]: For any quasi-homogeneous holomorphic curve 𝑡 with atoms 

𝑡𝑖 , 0 ≤  𝑖 ≤  𝑛 −  1, we have that  

(i) 𝐸𝑡 has no non-trivial sub-bundle induced by a non-trivial idempotent of 𝒜′ (𝐸𝑡) 
whenever 𝛬(𝑡)  <  2, and  

(ii) if 𝛬(𝑡)  ≥  2, then for any direct summand 𝐸𝑟 of 𝐸𝑡 , there exists a unique subbundle 𝐸𝑠, 
up to equivalence under an invertible map, such that 𝐸𝑟  ⊕ 𝐸𝑠 is similar to 𝐸𝑡 .  
Proof. When 𝛬(𝑡)  <  2, by Theorem (6.3.16), we have 𝐸𝑡 is strongly irreducible. So there 

exists no non-trivial idempotent in 𝒜′ (𝐸𝑡), which is the same as saying that the vector 

bundle 𝐸𝑡 has no non-trivial sub-bundle could be induced by a non-trivial idempotent of the 

commutant of 𝐸𝑡 .  
When 𝛬(𝑡)  ≥  2, by Theorem (6.3.16), we have  

𝐸𝑡  ∼  𝐸𝑡0  ⊕ 𝐸𝑡1  ⊕···⊕ 𝐸𝑡𝑛−1  .  

Since 𝒜′ (𝐸𝑡𝑖  )  ∼= ℋ
∞(𝔻), we have  

𝒜′ (𝐸𝑡)  ∼= ℋ
∞(𝔻)(𝑛) ,  

and by [58],  

𝑉𝑒𝑐𝑡(𝒜′ (𝐸𝑡)) ≅ ℕ
(𝑛) , 𝐾0(𝒜′ (𝐸𝑡))  ≅ ℤ

(𝑛) .  
Then by [58], we have 𝐸𝑡 has a unique finite decomposition up to similarity. Then for any 

non-trivial reducible sub-bundle of 𝐸𝑡 denoted by 𝐸𝑟, with 

ℋ𝑟  =  𝑆𝑝𝑎𝑛𝑤∈𝛺{𝐸𝑟(𝓌)}.  
Let 𝑃𝑟 be the projection from ℋ  to ℋ𝑟. Then  

𝐸𝑡  ∼  𝐸𝑟  ⊕ (𝐸𝑡⊖ 𝐸𝑟)  =  𝑃𝑟𝐸𝑡  ⊕ (𝐼 − 𝑃𝑟)𝐸𝑡 .  
Let  

𝑃𝑡𝑖 ∶ ℋ → ℋ𝑖 ∶=  𝑆𝑝𝑎𝑛𝜆∈𝛺{𝐸𝑡𝑖  (𝓌)}, 𝑖 =  0, 1,··· , 𝑛 −  1  

be projections in 𝒜′ (𝐸𝑟 ). Then there exists an invertible operator 𝑋 such that 𝐸𝑟  =
 𝑋(⊕𝑖=0

𝑠 𝐸𝑡𝑘𝑖  ). Suppose that  

⊕𝑖=0
𝑛−1  𝐸𝑡𝑖  =  (⊕𝑖=0

𝑠 𝐸𝑡𝑘𝑖 
 )  ⊕ (⊕𝑖=0

𝑛−𝑠  𝐸𝑡𝑙𝑖
 ).  

Set 𝐸𝑠  =  𝑋(⊕𝑖=0
𝑛−𝑠  𝐸𝑡𝑙𝑖

 ), then we have  

𝐸𝑟  ⊕ 𝐸𝑠  ∼  𝐸𝑡 . 
 If there exists another bundle 𝐸𝑠 such that  

𝐸𝑟  ⊕ 𝐸𝑠  ∼  𝐸𝑡 . 
 Since 𝐸𝑟 has a unique finite decomposition up to similarity, then we have  

𝐸𝑠′  ∼ ⊕𝑖=0
𝑛−𝑠  𝐸𝑡𝑙𝑖

 ∼  𝐸𝑠.  

Theorem (6.3.26)[199]: 𝐾0(𝐸𝑡)  ≅  𝐾0(𝒜′ (𝐸𝑡)).  
Proof. Let 𝑃 ∈  𝑃𝑛(𝒜′ (𝐸𝑡))  =  𝑃(𝒜′ (𝐸𝑡𝑛 )) be an idempotent. Then we have PEtn be a 

sub-bundle of 𝐸𝑡𝑛  . Define map  

𝛤 ∶  𝑉 (𝒜′ (𝐸𝑡)))  → 𝑉
0
 
    (𝐸𝑡)  

with 𝛤([𝑝]0)  =  𝑃𝐸𝑡𝑛̅̅ ̅̅ ̅̅    .  
First, we prove that 𝛤 is well defined. In fact, for any 𝑃 ∼  𝑄 ∈  [𝑃]0, there exists 

positive integer n such that 𝑃, 𝑄 ∈ 𝒜′ (𝐸𝑡𝑛  ). Since 𝑄 =  𝑋𝑃𝑋−1, 𝑋 ∈ 𝒜′ (𝐸𝑡𝑛  ), then we 

have  

𝑄𝐸𝑡𝑛   =  𝑋𝑃𝑋
−1𝐸𝑡𝑛   ∼  𝑃𝑋

−1𝐸𝑡𝑛  . 
 And note that 𝑋, 𝑋−1  ∈ 𝒜′  (𝐸𝑡𝑛  ), then we have  

𝑋−1𝑡𝑛(𝓌) =  𝑡𝑛(𝓌), for any 𝑤 ∈  𝛺. 
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 Thus  

𝑄𝐸𝑡𝑛   ∼  𝑃𝑋𝐸𝑡𝑛  ,  
and 𝑄𝐸𝑡𝑛̅̅ ̅̅ ̅̅ ̅   = 𝑃𝐸𝑡𝑛 ̅̅ ̅̅ ̅̅ ̅  . So 𝛤 is well defined.  

Second, we prove that 𝛤 is surjective. Suppose that 𝐸𝑟 is a sub-bundle of 𝐸𝑡𝑛 with dimension 

𝐾, where 𝑛 is positive integer. Suppose that  

ℋ𝑟 ∶=  ⋁  

𝑤∈𝛺

 {𝛾  1(𝓌), 𝛾2(𝓌),··· , 𝛾𝐾(𝓌)},  

where 𝐾 ∈ ℕ and 𝑃𝑟 is the projection from ℋ to ℋ𝑟 , then we have 𝑃𝑟  ∈ 𝒜′ (𝐸𝑡𝑛 ) and  

𝑃𝑟𝐸𝑡𝑛  ∼  𝐸𝑟 . 
Then it follows that 𝛤 is surjective. 

Finally, we prove that 𝛤 is also injective. Let 𝑃, 𝑄 ∈ 𝒜′ (𝐸𝑡𝑛 ). Suppose that there exists an 

invertible operator 𝑋 ∈  𝒜′ (𝐸𝑡𝑛 ) such that  

𝑋𝑃𝐸𝑡𝑛  =  𝑄𝐸𝑡𝑛 .  
Let {𝑝1, 𝑝2,··· , 𝑝𝑚} be a decomposition of P. Then {𝑋𝑝1𝑋

−1, 𝑋𝑝2𝑋
−1,··· , 𝑋𝑝𝑚𝑋

−1} be a 

decomposition of 𝑄. In fact, we have  

𝑋𝑝1𝑋
−1𝑄𝐸𝑡𝑛  +  𝑋𝑝2𝑋

−1𝑄𝐸𝑡𝑛  + ···  + 𝑋𝑝𝑚𝑋
−1𝑄𝐸𝑡𝑛  

=  𝑋𝑝1𝐸𝑡𝑛  +  𝑋𝑝2𝐸𝑡𝑛  + ···  + 𝑋𝑝𝑚𝐸𝑡𝑛  =  𝑋𝑃𝐸𝑡𝑛  =  𝑄𝐸𝑡𝑛 .  

Suppose that {𝑝𝑚+1, 𝑝𝑚+2,··· , 𝑝𝑁 } and {𝑞𝑚+1, 𝑞𝑚+2,··· , 𝑞𝑁 } be the decompositions of (𝐼 −
 𝑃)𝐸𝑡𝑛 and (𝐼 −  𝑄)𝐸𝑡𝑛 respectively. Then we have  

{𝑝1, 𝑝2,··· , 𝑝𝑁 } 𝑎𝑛𝑑 {𝑋𝑝1𝑋
−1, 𝑋𝑝2𝑋

−1,··· , 𝑋𝑝𝑚𝑋
−1, 𝑞𝑚+1, 𝑞𝑚+2,··· , 𝑞𝑁 }  

are two different decompositions of 𝐸𝑡𝑛 . By the uniqueness of decomposition of 𝐸𝑡𝑛 , there 

exists an invertible bounded linear operator 𝑌 ∈  𝐴′ (𝐸𝑡𝑛 ) such that {𝑌−1𝑝𝑖𝑌 } is a 

rearrangement of  

{𝑋𝑝1𝑋
−1, 𝑋𝑝2𝑋

−1,··· , 𝑋𝑝𝑚𝑋
−1, 𝑞𝑚+1, 𝑞𝑚+2,··· , 𝑞𝑁 }.  

By [58]) (or [204]), for any 𝑣 ∈  {𝑚 +  1,𝑚 +  2,··· , 𝑁}, we can find 𝑍𝑣 in 

𝐺𝐿(𝐿(𝑞𝑣ℋ, 𝑝𝑣ℋ)) and 𝑝𝑣′  , 𝑣′ ∈  {𝑚 +  1,··· , 𝑁} such that  

𝑍𝑣𝑞𝑣𝐸𝑡𝑛  =  𝑝𝑣𝐸𝑡𝑛 , and 𝑣1
′  =  𝑣2

′ , when 𝑣1  =  𝑣2.  
Note that  

𝑍 ∶=  ∑  

𝑚

𝑘=1

  𝑍𝑘  + ∑  

 𝑁 

𝑣=𝑚+1 

𝑍𝑣  ∈  𝐺𝐿𝒜′ (𝐸𝑡𝑛 ),  

and  

𝑍𝑃𝑍−1  =  𝑄.  
It follows that 𝛤 is injective. Since 𝛤 is also a homomorphism, then we have 

𝑉𝑒𝑐𝑡0(𝐸𝑡)  ≅  𝑉𝑒𝑐𝑡(𝒜′ (𝐸𝑡𝑛  ), 𝐾
0(𝐸𝑡)  ≅  𝐾0(𝒜′ (𝐸𝑡)).  

The well-known question of Halmos asks if 𝜚 ∶ ℂ[𝓏]  → ℒ(ℋ) is a continuous (for 

𝑝 ∈ ℂ[𝓏], the norm 𝑝 = sup
𝓏∈𝔻
 |𝑝(𝓏)|) algebra homomorphism induced by an operator 𝑆, that 

is, 𝜚(𝑝)  =  𝑝(𝑆), then does there exist an invertible linear operator 𝐿 and a contraction 𝑇 

on the Hilbert space ℋ so that 𝑆 =  𝐿𝑇𝐿−1. After the question was raised in [201], an 

affirmative answer for several classes of operators were given.  

A counter example was found by Pisier in 1996 (cf. [207]). It was pointed out in Korányi 

[183] that the Halmos’ question has an affirmative answer for homogeneous operators in the 

Cowen–Douglas class 𝐵𝑛(𝔻). Thus it is natural to ask if the Halmos’ question has an 

affirmative answer for quasi-homogeneous operators. If 𝛬(𝑡) ≥ 2, the answer is evidently 

“yes”:  
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In this case, the quasi-homogeneous operator 𝑇 is similar to the 𝑛 − fold direct sum 

of the homogeneous operators 𝑇𝑖 (adjoint of the multiplication operator) acting on the 

weighted Bergman spaces 𝔸(𝜆𝑖) (𝔻), 𝑖 =  0, 1, . . . , 𝑛 −  1. Now, if 𝜆0  ≥  1, this direct sum 

is contractive and we are done. If 𝜆0  <  1, then 𝑇0 is not even power bounded and therefore 

neither is the operator 𝑇. So, there is nothing to prove when 𝜆0  <  1.  
If 𝛬(𝑡)  <  2, then the operator 𝑇 is strongly irreducible. Therefore, we can’t answer 

the Halmos’ question purely in terms of the atoms of the operator 𝑇. Never the less, the 

answer is affirmative even in this case. To show this, we first prove the following useful 

lemma.  

For 𝑖 =  1, 2, let ℋ𝑖 be a Hilbert space of holomorphic function on 𝔻 possessing a 

reproducing kernel, say 𝐾𝑖 , and 𝑇𝑖 be the adjoint of the multiplication operator on ℋ𝑖 . 
Assume that ℋ0  ⊆  ℋ1 and let 𝜄 ∶  ℋ0  →  ℋ1 be the inclusion map. Then the adjoint 𝜄∗ of 

the inclusion map has the property 𝜄∗(𝐾1(·,𝓌))  =  𝐾0(·,𝓌),𝓌 ∈ 𝔻. 

Lemma (6.3.27)[199]: Assume that 𝐾𝑖(𝓏,𝓌) =
1

(1−𝓏𝓌̅)
𝜆𝑖 ,𝑖 
=  0, 1. Suppose that 𝑆 ∶ ℋ0  →

 ℋ1 is a bounded linear operator with the intertwining property 𝑇0𝑆 =  𝑆𝑇1. Then there 

exists a holomorphic function ∅ such that 𝑆 =  ∅(𝑇0)𝜄
∗.  

Proof. The operators 𝑇𝑖,𝑖  =  0, 1 are in 𝐵1(𝔻 ). If 𝑆 ∶ ℋ0  →  ℋ1 is a bounded linear 

operator and 𝑇0𝑆 =  𝑆𝑇1, then there exists a holomorphic function 𝜓 such that 𝑆∗  =  𝑀𝜓. 

This is easily proved as in [72]. Let ∅ be the holomorphic function defined on the unit disc 

by the formula ∅(𝓌)  =  𝜓(𝓌),𝓌 ∈ 𝔻. For any 𝑓 ∈  ℋ0, we have that  

𝑓(𝓏), ∅(𝑇0)𝜄
∗(𝐾1(𝓏,𝓌)) =  〈𝑓(𝓏), ∅(𝓌̅)𝐾0(𝓏,𝓌)〉  =  ∅(𝓌̅)̅̅ ̅̅ ̅̅ ̅̅ 〈𝑓(𝓏), 𝐾0(𝓏,𝓌)〉

=  〈𝑓(𝓏),𝑀𝜓
∗ (𝐾1(𝓏,𝓌))〉 =  〈𝑓(𝓏), 𝑆(𝐾1(𝓏,𝓌))〉 .  

Consequently, 𝑆 =  ∅(𝑇0)𝜄
∗.  

Lemma (6.3.28)[199]: Suppose that 𝑡 is a quasi-homogeneous holomorphic curve. Assume 

that 𝛬(𝑡)  <  2 and 𝜆0  ≥  1. Then the operator 𝑇 is not power bounded.  

Proof. The top 2 × 2 block in the atomic decomposition of the quasi-homogeneous operator 

𝑇 is of the form    (𝑇0   𝑆0,1
0    𝑇1

) . As always, we assume that the operators 𝑇0 and 𝑇1 are the 

adjoints of the multiplication operator on the weighted Bergman spaces 𝔸(𝜆0)(𝔻) and 

𝔸(𝜆1)(𝔻), respectively. The operator 𝑆0,1 has the intertwining property 𝑇0𝑆0,1  =  𝑆0,1𝑇1.  

Let 𝜄 denote the inclusion map from 𝔸(𝜆0)(𝔻) to 𝔸(𝜆1)(𝔻). Then 𝜄∗ (𝑡1)(𝓌)  =
 𝑡0(𝓌),𝓌 ∈ 𝔻, and the operator 𝑆0,1 must be of the form ∅(𝑇0)𝜄

∗  for some holomorphic 

function ∅ on the unit disc 𝔻, as we have shown in Lemma (6.3.27). Indeed, 𝑆0,1(𝑡1(𝓌))  =

 ∅(𝓌)𝑡1(𝓌)  =  ∅(𝑇0)𝜄
∗(𝑡1(𝓌)).  

Without loss of generality, we assume that ∅(𝓌) =  ∑  ∞
𝑖=0   ∅𝑖𝓌𝑖 and ∅0 ≠  0. For 𝑗 =

 0, 1, the set of vectors 𝑒
ℓ

(𝜆𝑗) ∶=  √𝑎ℓ(𝜆𝑗  ) 𝓏
ℓ, ℓ ≥  0, is an orthonormal basis in 𝔸(𝜆𝑗)(𝔻 ). 

Then we have that  

𝑇0
𝑛−1  (𝑒ℓ

(𝜆0) ) =  Π𝑖=ℓ−𝑛+1
ℓ−1  𝓌𝑖(𝜆0)𝑒ℓ−𝑛+1(𝜆0), 𝑆0,1 (𝑒ℓ

(𝜆1)) =  ∅0   
Π𝑖=0
ℓ−1𝓌𝑖(𝜆1)𝑒

 Π𝑖=0
ℓ−1 𝓌𝑖(𝜆0)

𝑒ℓ
(𝜆0).  

Consequently,  

𝑛𝑇0
𝑛−1 𝑆0,1 (𝑒ℓ((𝜆1))) =  𝑛∅0  

Π𝑖=0
ℓ−1𝓌𝑖(𝜆1)

Π𝑖=0
ℓ−𝑛 𝓌𝑖(𝜆0)

 𝑒ℓ−𝑛+1(𝜆0).  

It is then easily deduced that ||𝑛𝑇0
𝑛−1 𝑆0,1||  →  ∞ as 𝑛 →  ∞.  
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Let 𝑇|
 

2 × 2  denote the top 2 ×  2 block    (𝑇0   𝑆0,1
0    𝑇1

) in the operator 𝑇. Since 𝑇 |
 

2×2

𝑛 =

  (
𝑇0
𝑛 𝑛𝑇0

𝑛−1 𝑆0,1 

0             𝑇1
𝑛 ) , and ||𝑇 |

 
2×2

𝑛  ||  ≥  ||𝑛𝑇0
𝑛−1 𝑆0,1||, it follows that ||𝑇 |

 
2×2

𝑛 ||  →  ∞ as n → ∞. 

Clearly, ||𝑇 
𝑛||  ≥  ||𝑇 |

 
2×2

𝑛 || completing the proof. 

Since a quasi-homogeneous operator for which 𝜆0 < 1 can’t be power bounded, the 

lemma we have just proved shows that if 𝑇 is quasi-homogeneous and 𝛬(𝑡)  <  2, then the 

operator 𝑇 is not power bounded. Therefore we have proved the following theorem 

answering the Halmos’ question in the affirmative.  

Theorem (6.3.29)[199]: If a quasi-homogeneous operator 𝑇 has the property ‖𝑝(𝑇)‖𝑜𝑝  ≤

 𝐾‖𝑝‖∞,𝔻, 𝑝 ∈ ℂ[𝓏], then it must be similar to a contraction.  
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