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III 

Abstract 

The effective and computing matrix geometric means satisfying 

the Ando-Li- Mathias properties are studied. The geometric means of 

structured matrices and for Toeplitz and Toeplitz -block-block-Toeplitz 

matrices are also studied. We show the regular operator mappings, 

monotone and multiplicative geometric means for a class of Toeplitz 

matrices and the Kähler mean of block – Toeplitz matrices with 

Toeplitz structured blocks. We explain and develop Beurling-Malliavin 

theory and geometric significance for Toeplitz Kernels with multipliers 

between model spaces and improved Toeplitz order. We determine the 

spectral gaps for sets, measures, two weight inequality for Hilbert 

transform, higher order multi-dimensional extensions of Cesàro 

theorem, and law- of large numbers for weighted inductive means in a 

Hadamard space. The Toeplitz lemma in geodesic metric space, 

convergence in probability, mean convergence, complete convergence 

with moment and convergence of inductive means are investigated and 

obtained. 

 

 

 

  



IV 

 الخلاصة
 

قمنا بدراسة فعالية وحوسبة الأوساط الهندسية للمصفوفة التي تحقق 

ماثياس. ايضاً درسنا الأوساط الهندسية للمصفوفات المشيدة  –لي  -اندو –خصائص 

يح رواسم تبوليتز. تم توض –كتلة  –كتلة  –ولأجل تبوليتز ومصفوفات تبوليتز 

ة والضربية لأجل عائلة مصفوفات المؤثر المنتظمة والأوساط الهندسية الرتيب

ز. تم شرح تبوليتز مع كتل تشييد تبوليت –تبوليتز ومتوسط كاهلر لمصفوفات كتلة 

ماليافين والذاتية  الهندسية لأجل نويات تبوليتز مع  -وتطوير نظرية بيرلينغ

المضاعفات  بين فضاءات النموذج ورتبة  تبوليتز المحسنة. قمنا بتحديد الفجوات 

ة لأجل الفئات والقياسات  ومتباينة المرجحين لتحويل هلبرت وتمديدات متعدد الطيفي

بعد الرتبة العليا لمبرهنة سيزارو والقانون للأعداد الكبيرة لاجل أوساط الإستنتاج 

المرجحة في فضاء هادامارد. تمت مناقشة والحصول على تمهيدية تبوليتز في 

 ل والتقارب المتوسط والتقارب التام معالفضاء المتري الجيوديسك وتقارب الإحتما

 العزم والتقارب للأوساط الأستنتاجية.
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Introduction 

We propose a new matrix geometric mean` satisfying the ten properties 

given by Ando, Li and Mathias. This mean is the limit of a sequence which 

converges superlinearly with convergence of order 3 whereas the mean 

introduced by Ando, Li and Mathias is the limit of a sequence having order of 

convergence 1. A new definition is introduced for the matrix geometric mean of 

a set of 𝑘 positive definite 𝑛 ×  𝑛 matrices together with an iterative method for 

its computation. The iterative method is locally convergent with cubic 

convergence and requires 𝑂(𝑛3𝑘2) arithmetic operations per step whereas the 

methods based on the symmetrization technique of Ando, Li and Mathias have 

complexity 𝑂(𝑛3𝑘! 2𝑘). The geometric mean of positive definite matrices is 

usually identified with the Karcher mean, which possesses all properties –

generalized from the scalar case– a geometric mean is expected to satisfy. 

Unfortunately, the Kärcher mean is typically not structure preserving, and 

destroys, e.g., Toeplitz and band structures, which emerge in many applications. 

The Kärcher mean is not always recommended for modeling averages of 

structured matrices. 

We consider the family of Toeplitz operators 𝑇𝐽𝑆𝑎 acting in the Hardy 

space 𝐻2 in the upper halfplane; 𝐽 and 𝑆 are given meromorphic inner functions, 

and a is a real parameter. If 𝑋 is a closed subset of the real line, denote by 𝐺𝑋 the 

supremum of the size of the gap in the Fourier spectrum, taken over all non-trivial 

finite complex measures supported on 𝑋. Let σ and w be locally finite positive 

Borel measures on ℝ which do not share a common point mass. Assume that the 

pair of weights satisfy a Poisson 𝐴2 condition, and satisfy the testing conditions 

below, for the Hilbert transform 𝐻, ∫  
𝐼
𝐻(𝜎1𝐼)

2𝑑𝑤 ≤ 𝜎(𝐼), ∫  
𝐼
𝐻(𝑤1𝐼)

2 𝑑𝜎 ≤

𝑤(𝐼), with constants independent of the choice of interval I. Then 𝐻(𝜎 ·

) 𝑚𝑎𝑝𝑠 𝐿2 (𝜎) to 𝐿2(𝑤), verifying a conjecture of Nazarov–Treil–Volberg. 

Three examples are provided which demonstrate that “convergence in 

probability” versions of the Toeplitz lemma, the Cesàro mean convergence 

theorem, and the Kronecker lemma can fail. We introduce the notion of regular 

operator mappings of several variables generalising the notion of spectral 

function. This setting is convenient for studying maps more general than what 

can be obtained from the functional calculus, and it allows for Jensen type 

inequalities and multivariate non-commutative perspectives. As a main 

application of the theory we consider geometric means of k operator variables 

extending the geometric mean of k commuting operators and the geometric mean 

of two arbitrary positive definite matrices. We study the Toeplitz lemma, the 
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Cesàro mean convergence theorem and the Kronecker lemma. We study 

“complete convergence” versions of the Toeplitz lemma, the Cesàro mean 

convergence theorem and the Kronecker lemma. Two counterexamples show that 

they can fail in general and some sufficient conditions for “complete 

convergence” version of the Cesàro mean convergence theorem are given.  

We introduce using Laurent operators and Fourier coefficients of their 

symbol functions, a geometric mean for a large class of 𝑛 ×  𝑛 positive semi-

definite Toeplitz matrices which satisfies the monotonicity property. When one 

computes an average of positive definite (PD) matrices, the preservation of 

additional matrix structure is desirable for interpretations in applications. An 

interesting and widely present structure is that of PD Toeplitz matrices, which we 

endow with a geometry originating in signal processing theory. As an averaging 

operation, we consider the barycenter, or minimizer of the sum of squared 

intrinsic distances. The resulting barycenter, the Kähler mean, is discussed along 

with its origin. Using the symbol functions and their associated Fourier series, we 

introduce a new definition of geometric mean for all positive semi-definite 

Toeplitz matrices and positive semi-definite block-Toeplitz matrices with 

Toeplitz structured blocks (TBBT).  

Let 𝐿2 be the Lebesgue space of square-integrable functions on the unit 

circle. We show that the injectivity problem for Toeplitz operators is linked to the 

existence of geodesics in the Grassmann manifold of 𝐿2 . A new approach to 

problems of the Uncertainty Principle in Harmonic Analysis, based on the use of 

Toeplitz operators, has brought progress to some of the classical problems in the 

area. We develop and systematize the function theoretic component of the 

Toeplitz approach by introducing a partial order on the set of inner functions 

induced by the action of Toeplitz operators.  

The Cesàro theorem is extended to the cases: higher order Ces`aro mean 

for sequence (discrete case); and higher order, multi-dimensional and continuous 

Ces`aro mean for functions. We first study the law of large numbers for weighted 

inductive means of independent identically distributed random variables taking 

values in a Hadamard space. We study the Toeplitz lemma for inductive means 

in a geodesic metric space and by using the Toeplitz lemma, we prove the Cesaro 

theorem for inductive means.  
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Chapter 1 

An Effective Matrix Geometric Mean 

 

We make the new mean very easily computable. We provide a geometric 

interpretation and a generalization which includes as special cases the mean and the Ando-

Li-Mathias mean. We show that the new mean is obtained from the properties of the centroid 

of a triangle rephrased in terms of geodesics in a suitable Riemannian geometry on the set 

of positive definite matrices. It satisfies most part of the 10 properties stated by Ando, Li 

and Mathias; a counterexample shows that monotonicity is not fulfilled. We show a new 

definition of a geometric mean for structured matrices, its properties are outlined, algorithms 

for its computation, and numerical experiments are provided. In the Toeplitz case an existing 

mean based on the Kähler metric is analyzed for comparison. 

Section (1.1): Geometric Mean Satisfying the Ando–Li–Mathias Properties 

It is natural to generalize the geometric mean of two positive real numbers 𝑎#𝑏:=

√𝑎𝑏 to real symmetric positive definite 𝑛 × 𝑛 matrices as 

𝐴#𝐵:= 𝐴(𝐴−1𝐵)
1
2 = 𝐴

1
2 (𝐴−

1
2𝐵𝐴−

1
2)

1
2
𝐴
1
2.                     (1) 

Several, e.g. [4], [5], [10], and [3] are devoted to studying the geometry of the cone of 

positive definite matrices ℙ𝑛 endowed with the Riemannian metric defined by 

𝑑𝑠 = ∥∥𝐴−1/2𝑑𝐴𝐴−1/2∥∥, 

where ∥ 𝐵 ∥= √∑𝑖,𝑗  |𝑏𝑖,𝑗|
2
 denotes the Frobenius norm. The distance induced by this metric 

is 

𝑑(𝐴, 𝐵) = ∥∥
∥log (𝐴−

1
2𝐵𝐴−

1
2)∥∥
∥.                                    (2) 

It turns out that on this manifold the geodesic joining 𝑋 and 𝑌 has the equation 

𝛾(𝑡) = 𝑋1/2(𝑋−1/2𝑌𝑋−1/2)
𝑡
𝑋1/2 = 𝑋(𝑋−1𝑌)𝑡 =:𝑋#𝑡𝑌, 𝑡 ∈ [0,1], 

and thus 𝐴#𝐵 is the midpoint of the geodesic joining 𝐴 and 𝐵. An analysis of numerical 

methods for computing the geometric mean of two matrices is carried out in [8]. 
It is less clear how to define the geometric mean of more than two matrices. In [2], Ando, 

Li and Mathias list ten properties that a "good" matrix geometric mean should satisfy, and 

they show that several natural approaches based on a generalization of formulas working 

for the scalar case, or for the case of two matrices, do not work well. They propose a new 

definition for the mean of 𝑘 matrices satisfying all the requested properties. We refer to this 

mean as to the Ando-Li-Mathias mean, or the ALM-mean, for short. 

The ALM-mean is the limit of a recursive iteration process where at each step of the iteration 

𝑘 geometric means of 𝑘 − 1 matrices must be computed. One of the main drawbacks of this 

iteration is its linear convergence. In fact, the large number of iterations needed to 

approximate each geometric mean at all the recursive steps makes it quite expensive to 

actually compute the ALM-mean with this algorithm. No other algorithms endowed with a 

higher efficiency are known. 

A class of geometric means satisfying the Ando, Li, Mathias requirements has been 

introduced in [9]. These means are defined in terms of the solution of certain matrix 

equations. This approach provides interesting theoretical properties concerning the means 

but no effective tools for their computation. 
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We propose a new matrix geometric mean satisfying the ten properties of Ando, Li 

and Mathias. Similar to the ALM-mean, our mean is defined as the limit of an iteration 

process with the relevant difference that convergence is superlinear with order of 

convergence at least three. This property makes it much less expensive to compute this 

geometric mean since the number of iterations required to reach a high accuracy is dropped 

down to just a few. 

The iteration on which our mean is based has a simple geometrical interpretation. In 

the case 𝑘 = 3, given the positive definite matrices 𝐴1, 𝐴2, 𝐴3, we generate three matrix 

sequences 𝐴1
(𝑚)
, 𝐴2
(𝑚)
, 𝐴3
(𝑚)

 starting from 𝐴𝑖
(0)
= 𝐴𝑖 , 𝑖 = 1,2,3. At the step 𝑚+ 1, the matrix 

𝐴1
(𝑚+1)

 is chosen along the geodesic which connects 𝐴1
(𝑚)

 with the midpoint of the geodesic 

connecting 𝐴2
(𝑚)

 to 𝐴3
(𝑚)

 at distance 2/3 from 𝐴1
(𝑚)

. The matrices 𝐴2
(𝑚+1)

 and 𝐴3
(𝑚+1)

 are 

similarly defined. In the case of Euclidean geometry, just one step of the iteration provides 

the value of the limit, i.e., the centroid of the triangle with vertices 𝐴1
(𝑚)
, 𝐴2
(𝑚)
, 𝐴3
(𝑚)
. In fact, 

the medians in a triangle intersect each other at 2/3 of their length. In the different geometry 

of the cone of positive definite matrices, the geodesics which play the role of the medians 

might not even intersect each other. 

In the case of 𝑘 matrices 𝐴1, 𝐴2, … , 𝐴𝑘, the matrix 𝐴𝑖
(𝑚+1)

 is chosen along the geodesic 

which connects 𝐴𝑖
(𝑚)

 with the geometric mean of the remaining matrices, at distance 𝑘/(𝑘 +

1) from 𝐴𝑖
(𝑚)

. In the customary geometry, this point is the common intersection point of all 

the "medians" of the 𝑘-dimensional simplex formed by all the matrices 𝐴𝑖
(𝑚)
, 𝑖 = 1,… , 𝑘. 

We prove that the sequences (𝐴𝑖
(𝑚)
)
𝑚=1

∞
, 𝑖 = 1,… , 𝑘, converge to a common limit 𝐴‾ with 

order of convergence at least 3. The limit 𝐴‾ is our definition of the geometric mean of 

𝐴1, … , 𝐴𝑘 . 
It is interesting to point out that our mean and the ALM-mean of 𝑘 matrices can be 

viewed as two specific instances of a class of more general means depending on 𝑘 − 1 

parameters 𝑠𝑖 ∈ [0,1], 𝑖 = 1,… , 𝑘 − 1. All the means of this class satisfy the requirements 

of Ando, Li and Mathias; moreover, the ALM-mean is obtained with 𝑠 = (1,1,… ,1,1/2), 
for 𝑠 = (𝑠𝑖), while our mean is obtained with 𝒔 = ((𝑘 − 1)/𝑘, (𝑘 − 2)/(𝑘 − 1),… ,1/2). 
The new mean is the only one in this class for which the matrix sequences generated at each 

recursive step converge superlinearly. 

We present the ten Ando-Li-Mathias properties and briefly describe the ALM-mean; 

then, we propose our new definition of a matrix geometric mean and prove some of its 

properties by also giving a geometrical interpretation; we provide a generalization which 

includes the ALM-mean and our mean as two special cases. We present some numerical 

experiments of explicit computations involving this means concerning some problems from 

physics. It turns out that, in the case of six matrices, the increased speed reached by our 

approach with respect to the ALM-mean is by a factor greater than 200. We also 

experimentally demonstrate that the ALM-mean is different, even though very close, from 

our mean. Finally, for 𝑘 = 3 we provide a pictorial description of the parametric family of 

geometric means. 

We use the positive semidefinite ordering defined by 𝐴 ≥ 𝐵 if 𝐴 − 𝐵 is positive 

semidefinite. We denote by 𝐴∗ the conjugate transpose of 𝐴. 
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Ando, Li and Mathias [2] proposed the following list of properties that a "good" 

geometric mean 𝐺(⋅) of three matrices should satisfy. 

P1: Consistency with scalars. If 𝐴, 𝐵, 𝐶 commute, then (𝐴, 𝐵, 𝐶) = (𝐴𝐵𝐶)1/3. 

P2: Joint homogeneity. 𝐺(𝛼𝐴, 𝛽𝐵, 𝛾𝐶) = (𝛼𝛽𝛾)1/3𝐺(𝐴, 𝐵, 𝐶). 
P3: Permutation invariance. For any permutation 𝜋(𝐴, 𝐵, 𝐶) of 𝐴, 𝐵, 𝐶 it follows that 

𝐺(𝐴, 𝐵, 𝐶) = 𝐺(𝜋(𝐴, 𝐵, 𝐶)). 
P4: Monotonicity. If 𝐴 ≥ 𝐴′, 𝐵 ≥ 𝐵′, 𝐶 ≥ 𝐶′, then 𝐺(𝐴, 𝐵, 𝐶) ≥ 𝐺(𝐴′, 𝐵′, 𝐶′). 
P5: Continuity from above. If 𝐴𝑛, 𝐵𝑛, 𝐶𝑛 are monotonically decreasing sequences 

converging to 𝐴, 𝐵, 𝐶, respectively, then 𝐺(𝐴𝑛, 𝐵𝑛, 𝐶𝑛) converges to 𝐺(𝐴, 𝐵, 𝐶). 
P6: Congruence invariance. For any nonsingular , 𝐺(𝑆∗𝐴𝑆, 𝑆∗𝐵𝑆, 𝑆∗𝐶𝑆) = 𝑆∗𝐺(𝐴, 𝐵, 𝐶)𝑆. 

P7: Joint concavity. If = 𝜆𝐴1 + (1 − 𝜆)𝐴2, 𝐵 = 𝜆𝐵1 + (1 − 𝜆)𝐵2, 𝐶 = 𝜆𝐶1 + (1 − 𝜆)𝐶2, 

then 𝐺(𝐴, 𝐵, 𝐶) ≥ 𝜆𝐺(𝐴1, 𝐵1, 𝐶1) + (1 − 𝜆)𝐺(𝐴2, 𝐵2, 𝐶2). 
P8: Self-duality. 𝐺(𝐴, 𝐵, 𝐶)−1 = 𝐺(𝐴−1, 𝐵−1, 𝐶−1). 
P9: Determinant identity. det 𝐺(𝐴, 𝐵, 𝐶) = (det 𝐴det 𝐵det 𝐶)1/3. 

P10: Arithmetic-geometric-harmonic mean inequality: 

𝐴 + 𝐵 + 𝐶

3
≥ 𝐺(𝐴, 𝐵, 𝐶) ≥ (

𝐴−1 + 𝐵−1 + 𝐶−1

3
)

−1

. 

It is proved in [2] that P5 and P10 are consequences of the others. All these properties can 

be easily generalized to the mean of any number of matrices. We will call a geometric mean 

of three or more matrices any map 𝐺(⋅) satisfying P1-P10 or their analogues for a number 

𝑘 ≥ 3 of entries. 

We denote by 𝐺2(𝐴, 𝐵) the usual geometric mean 𝐴#𝐵 and, given the 𝑘-tuple 
(𝐴1, … , 𝐴𝑘), we define 

𝒵𝑖(𝐴1, … , 𝐴𝑘) = (𝐴1, … , 𝐴𝑖−1, 𝐴𝑖+1, … , 𝐴𝑘), 𝑖 = 1,… , 𝑘, 
that is, the 𝑘-tuple where the 𝑖-th term has been dropped out.  

In [2], Ando, Li and Mathias note that the previously proposed definitions of means 

of more than two matrices do not satisfy all the properties P1-P10, and they propose a new 

definition that fulfills all of them. Their mean is defined inductively on the number of 

arguments 𝑘. 

Given 𝐴1, … , 𝐴𝑘 positive definite, and given the definition of a geometric mean 𝐺𝑘−1(⋅) of 

𝑘 − 1 matrices, they set 𝐴𝑖
(0)
= 𝐴𝑖 , 𝑖 = 1,… , 𝑘, and define for 𝑟 ≥ 0 

𝐴𝑖
(𝑟+1)

: = 𝐺𝑘−1 (𝒵𝑖 (𝐴1
(𝑟)
, … , 𝐴𝑘

(𝑟)
)) , 𝑖 = 1,… , 𝑘.                  (3) 

For 𝑘 = 3, the iteration reads 

[
𝐴(𝑟+1)

𝐵(𝑟+1)

𝐶(𝑟+1)
] = [

𝐺2(𝐵
(𝑟), 𝐶(𝑟))

𝐺2(𝐴
(𝑟), 𝐶(𝑟))

𝐺2(𝐴
(𝑟), 𝐵(𝑟))

]. 

Ando, Li and Mathias show that the 𝑘 sequences (𝐴𝑖
(𝑟)
)
𝑟=1

∞
 converge to the same matrix �̃�, 

and finally they define 𝐺𝑘(𝐴1, … , 𝐴𝑘) = �̃�. In the following, we shall denote by 𝐺(⋅) the 

Ando-Li-Mathias mean, dropping the subscript 𝑘 when not essential. 

An additional property of the Ando-Li-Mathias mean which will turn out to be important in 

the convergence proof is the following. Recall that 𝜌(𝑋) denotes the spectral radius of 𝑋, 

and let 

𝑅(𝐴, 𝐵):= max  (𝜌(𝐴−1𝐵), 𝜌(𝐵−1𝐴)). 
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This function is a multiplicative metric; that is, we have 𝑅(𝐴, 𝐵) ≥ 1 with equality iff 𝐴 =
𝐵, and 

𝑅(𝐴, 𝐶) ≤ 𝑅(𝐴, 𝐵)𝑅(𝐵, 𝐶). 
The additional property is 

P11: For each 𝑘 ≥ 2, and for each pair of sequences (𝐴1, … , 𝐴𝑘), (𝐵1, … , 𝐵𝑘), we require 

that 

𝑅(𝐺(𝐴1, … , 𝐴𝑘), 𝐺(𝐵1, … , 𝐵𝑘)) ≤ (∏ 

𝑘

𝑖=1

 𝑅(𝐴𝑖 , 𝐵𝑖))

1/𝑘

 

Definition (1.1.1)[1]: We are going to define for each 𝑘 ≥ 2 a new mean 𝐺‾𝑘(⋅) of 𝑘 matrices 

satisfying P1 − P11. Let 𝐺‾2(𝐴, 𝐵) = 𝐴#𝐵, and suppose that the mean has already been 

defined for up to 𝑘 − 1 matrices. Let us denote, for short, 𝑇𝑖
(𝑟)
= 𝐺‾𝑘−1 (𝒵𝑖 (𝐴‾1

(𝑟)
, … , 𝐴‾𝑘

(𝑟)
)) 

and define 𝐴‾𝑖
(𝑟+1)

 for 𝑖 = 1,… , 𝑘 as 

𝐴‾𝑖
(𝑟+1)

: = 𝐺‾𝑘(𝐴‾𝑖
(𝑟)
, 𝑇𝑖
(𝑟)
, 𝑇𝑖
(𝑟)
, … , 𝑇𝑖

(𝑟)
⏟          

𝑘−1 times 

),                           (4) 

with 𝐴‾𝑖
(0)
= 𝐴𝑖 for all 𝑖. Notice that apparently this requires the mean 𝐺‾𝑘(⋅) to already be 

defined; in fact, in the special case in which 𝑘 − 1 of the 𝑘 arguments are coincident, the 

properties P1 and P6 alone allow one to determine the common value of any geometric 

mean: 

𝐺(𝑋, 𝑌, 𝑌, … , 𝑌)  = 𝑋1/2𝐺(𝐼, 𝑋−1/2𝑌𝑋−1/2, … , 𝑋−1/2𝑌𝑋−1/2)𝑋1/2

 = 𝑋1/2(𝑋−1/2𝑌𝑋−1/2)
𝑘−1
𝑘 𝑋1/2 = 𝑋#𝑘−1

𝑘
𝑌.

 

Thus we can use this simpler expression directly in (4) and set 

𝐴‾𝑖
(𝑟+1)

= 𝐴‾𝑖
(𝑟)
#𝑘−1

𝑘
𝑇𝑖
(𝑟)
.                           (5) 

We prove that the 𝑘 sequences (𝐴‾𝑖
(𝑟)
)
𝑟=1

∞
 converge to a common limit 𝐴‾ with order 

of convergence at least three, and this will enable us to define 𝐺‾𝑘(𝐴1, … , 𝐴𝑘):= 𝐴‾. In the 

following, we will drop the index 𝑘 from 𝐺‾𝑘(⋅). 
In [4], an interesting geometrical interpretation of the Ando-Li-Mathias mean is 

proposed for 𝑘 = 3. We propose an interpretation of the new mean 𝐺‾(⋅) in the same spirit. 

For 𝑘 = 3, the iteration defining 𝐺‾(⋅) reads 

[
𝐴‾(𝑟+1)

𝐵‾ (𝑟+1)

𝐶‾(𝑟+1)
] =

[
 
 
 
 
𝐴‾(𝑟)#2

3
(𝐵‾ (𝑟)#𝐶‾(𝑟))

𝐵‾ (𝑟)#2(𝐴‾
(𝑟)#𝐶‾(𝑟))

𝐶‾(𝑟)#2
3
(𝐴‾(𝑟)#𝐵‾ (𝑟))

]
 
 
 
 

. 

We can interpret this iteration as a geometrical construction in the following way. To find 

e.g. 𝐴‾(𝑟+1), the algorithm is: 

(i) Draw the geodesic joining 𝐵‾ (𝑟) and 𝐶‾(𝑟), and take its midpoint 𝑀(𝑟). 

(ii) Draw the geodesic joining 𝐴‾(𝑟) and 𝑀(𝑟), and take the point lying at 2/3 of its length: 

this is 𝐴‾(𝑟+1). 
If we execute the same algorithm on the Euclidean plane, replacing the word "geodesic" 

with "straight line segment", it turns out that 𝐴‾(1), 𝐵‾ (1), and 𝐶‾(1) coincide in the centroid of 



5 

the triangle with vertices 𝐴, 𝐵, 𝐶. Thus, unlike the Euclidean counterpart of the Ando-Li-

Mathias mean, this process converges in one step on the plane. When 𝐴, 𝐵 and 𝐶 are very 

close to each other, we can approximate (in some intuitive sense) the geometry on the 

Riemannian manifold ℙ𝑛 with the geometry on the Euclidean plane: since this construction 

to find the centroid of a plane triangle converges faster than the Ando-Li-Mathias one, we 

can expect that also the convergence speed of the resulting algorithm is faster. This is indeed 

what will result after a more accurate convergence analysis. 

In order to prove that the iteration (5) is convergent (and thus that 𝐺‾(⋅) is well 

defined), we adapt a part of the proof of Theorem (1.1.3) of [2] (namely, Argument 1). 

Theorem (1.1.2)[1]: Let 𝐴1, … , 𝐴𝑘, be positive definite. 

(i) All the sequences (𝐴‾𝑖
(𝑟)
)
𝑟=1

∞
 converge for 𝑟 → ∞ to a common limit 𝐴‾. 

(ii) The function 𝐺‾𝑘(𝐴1, … , 𝐴𝑘) satisfies P1-P11. 

Proof. We work by induction on 𝑘. For 𝑘 = 2, our mean coincides with the ALMmean, so 

all the required work has been done in [2]. Let us now suppose that the thesis holds for all 

𝑘′ ≤ 𝑘 − 1. We have 

𝐴‾𝑖
(𝑟+1)

≤
1

𝑘
(𝐴‾𝑖

(𝑟)
+ (𝑘 − 1)𝑇𝑖

(𝑟)
) ≤

1

𝑘
∑  

𝑘

𝑖=1

𝐴‾𝑖
(𝑟)
, 

where the first inequality follows from P10 for the ALM-mean 𝐺𝑘(⋅) (remember that in the 

special case in which 𝑘 − 1 of the arguments coincide, 𝐺𝑘(⋅) = 𝐺‾𝑘(⋅)), and the second 

follows from P10 for 𝐺‾𝑘−1(⋅). Thus, 

∑ 

𝑘

𝑖=1

𝐴‾𝑖
(𝑟+1)

≤∑ 

𝑘

𝑖=1

𝐴‾𝑖
(𝑟)
≤∑ 

𝑘

𝑖=1

𝐴𝑖 .                           (6) 

Therefore, the sequence (𝐴‾1
(𝑟)
, … , 𝐴‾𝑘

(𝑟)
)
𝑟=1

∞
 is bounded, and there must be a converging 

subsequence, say, converging to (𝐴‾1, … , 𝐴‾𝑘). 
Moreover, for each 𝑝, 𝑞 ∈ {1,… , 𝑘} we have 

𝑅 (𝐴‾𝑝
(𝑟+1)

, 𝐴‾𝑞
(𝑟+1)

)  ≤ 𝑅 (𝐴‾𝑝
(𝑟)
, 𝐴‾𝑞
(𝑟)
)
1/𝑘
𝑅 (𝑇𝑝

(𝑟)
, 𝑇𝑞
(𝑟)
)

𝑘−1
𝑘

 ≤ 𝑅 (𝐴‾𝑝
(𝑟)
, 𝐴‾𝑞
(𝑟)
)
1/𝑘

(𝑅 (𝐴‾𝑞
(𝑟)
, 𝐴‾𝑝
(𝑟)
)

1
𝑘−1
)

𝑘−1
𝑘

= 𝑅 (𝐴‾𝑝
(𝑟)
, 𝐴‾𝑞
(𝑟)
)
2/𝑘
,

 

where the first inequality follows from P11 in the special case, and the second follows from 

P11 in the inductive hypothesis. Passing to the limit of the converging subsequence, one can 

verify that 

𝑅(𝐴‾𝑝, 𝐴‾𝑞) ≤ 𝑅(𝐴‾𝑝, 𝐴‾𝑞)
2/𝑘
, 

from which we get 𝑅(𝐴‾𝑝, 𝐴‾𝑞) ≤ 1, that is, 𝐴‾𝑝 = 𝐴‾𝑞, because of the properties of 𝑅; i.e., the 

limit of the subsequence is in the form (𝐴‾, 𝐴‾, … , 𝐴‾). Suppose there is another subsequence 

converging to (𝐵‾ , 𝐵‾ , … , 𝐵‾); then, by (6), we have both 𝑘𝐴‾ ≤ 𝑘𝐵‾  and 𝑘𝐵‾ ≤ 𝑘𝐴‾, that is, 𝐴‾ =
𝐵‾ . Therefore, the sequence has only one limit point; thus it is convergent. This proves the 

first point of the theorem. 
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We now turn to show that P11 holds for our mean 𝐺‾𝑘(⋅). Consider the 𝑘-tuples 𝐴1, … , 𝐴𝑘 

and 𝐵1, … , 𝐵𝑘, and let 𝐵‾𝑖
(𝑟)

 be defined as 𝐴‾𝑖
(𝑟)

 but starting the iteration from the 𝑘-tuple (𝐵𝑖) 
instead of (𝐴𝑖). We have for each 𝑖, 

𝑅 (𝐴‾𝑖
(𝑟+1)

, 𝐵‾𝑖
(𝑟+1)

)

 ≤ 𝑅 (𝐴‾𝑖
(𝑟)
, 𝐵‾𝑖

(𝑟)
)
1/𝑘
𝑅 (𝐺‾ (𝒵𝑖 (𝐴‾1

(𝑟)
, … , 𝐴‾𝑘

(𝑟)
)) , 𝐺‾ (𝒵𝑖 (𝐵‾1

(𝑟)
, … , 𝐵‾𝑘

(𝑟)
)))

𝑘−1
𝑘  

 ≤ 𝑅 (𝐴‾𝑖
(𝑟)
, 𝐵‾𝑖

(𝑟)
)
1/𝑘

(∏ 

𝑗≠𝑖

 𝑅 (𝐴‾𝑗
(𝑟)
, 𝐵‾𝑗

(𝑟)
)

1
𝑘−1
)

𝑘−1
𝑘

 =∏ 

𝑘

𝑗=1

 𝑅 (𝐴‾𝑗
(𝑟)
, 𝐵‾𝑗

(𝑟)
)
1/𝑘
.

 

This yields 

∏ 

𝑘

𝑖=1

𝑅 (𝐴‾𝑖
(𝑟+1)

, 𝐵‾𝑖
(𝑟+1)

) ≤∏ 

𝑘

𝑖=1

𝑅 (𝐴‾𝑖
(𝑟)
, 𝐵‾𝑖

(𝑟)
) ; 

chaining together these inequalities for successive values of 𝑟 and passing to the limit, we 

get 

𝑅(𝐺(𝐴1, … , 𝐴𝑘), 𝐺(𝐵1, … , 𝐵𝑘))
𝑘
≤∏ 

𝑘

𝑖=1

𝑅(𝐴𝑖 , 𝐵𝑖), 

which is P11. 

The other properties P1-P4 and P6-P9 (remember that P5 and P10 are consequences of these) 

are not difficult to prove. All the proofs are quite similar, and can be established by 

induction, using also the fact that since they hold for the ALM-mean, they can be applied to 

the mean 𝐺‾(⋅) appearing in (5) (since we just proved that all possible geometric means take 

the same value if applied with 𝑘 − 1 equal arguments). We provide only the proof for three 

of these properties. 

P1: We need to prove that if the 𝐴𝑖 commute, then 𝐺‾(𝐴1, … , 𝐴𝑘) = (𝐴1⋯𝐴𝑘)
1/𝑘. Using the 

inductive hypothesis, we have 𝑇𝑖
(1)
= ∏𝑗≠𝑖  𝐴‾𝑖

1

𝑘−1. Using the fact that P1 holds for the ALM-

mean, we have 

𝐴‾𝑖
(1)
= 𝐴𝑖

1/𝑘
(∏ 

𝑗≠𝑖

 𝐴
𝑗

1
𝑘−1)

𝑘−1
𝑘

=∏ 

𝑘

𝑖=1

𝐴𝑖
1/𝑘
, 

as needed. So, from the second iteration on, we have 𝐴‾1
(𝑟)
= 𝐴‾2

(𝑟)
= ⋯ = 𝐴‾𝑘

(𝑟)
= ∏𝑖=1

𝑘  𝐴𝑖
1/𝑘

. 

P4: Let 𝑇𝑖
′(𝑟)

 and 𝐴‾𝑖
′(𝑟)

 be defined as 𝑇𝑖
(𝑟)

 and 𝐴‾𝑖
(𝑟)

 but starting from 𝐴𝑖
′ ≤ 𝐴𝑖 . 

Using monotonicity in the inductive case and in the ALM-mean, we have for each 𝑠 ≤ 1 

and for each 𝑖, 

𝑇𝑖
(𝑟+1)

≤ 𝑇𝑖
′(𝑟+1)

 

and thus 

𝐴‾𝑖
(𝑟+1)

≤ 𝐴‾𝑖
′(𝑟+1)

. 
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Passing to the limit for 𝑟 → ∞, we obtain P4. 

P7: Suppose 𝐴𝑖 = 𝜆𝐴𝑖
′ + (1 − 𝜆)𝐴𝑖

′′, and let 𝑇𝑖
′(𝑟)

 (resp. 𝑇𝑖
′′(𝑟)

) and 𝐴‾𝑖
′(𝑟)

 (resp. 𝐴‾𝑖
′′(𝑟)

 ) be 

defined as 𝑇𝑖
(𝑟)

 and 𝐴‾𝑖
(𝑟)

 but starting from 𝐴𝑖
′ (resp. 𝐴𝑖

′′ ). Suppose that for some 𝑟 we have 

𝐴‾𝑖
(𝑟)
≥ 𝜆𝐴‾𝑖

′(𝑟)
+ (1 − 𝜆)𝐴‾𝑖

′′(𝑟)
 for all 𝑖. Then by joint concavity and monotonicity in the 

inductive case we have 

𝑇𝑖
(𝑟+1)

 = 𝐺‾ (𝒵𝑖 (𝐴‾1
(𝑟)
, … , 𝐴‾𝑘

(𝑟)
))

 ≥ 𝐺‾ (𝒵𝑖 (𝜆𝐴‾1
′(𝑟)

+ (1 − 𝜆)𝐴‾1
′′(𝑟)

, … , 𝜆𝐴‾𝑘
′(𝑟)

+ (1 − 𝜆)𝐴‾𝑘
′′(𝑟)

))

 ≥ 𝜆𝑇𝑖
′(𝑟)

+ (1 − 𝜆)𝑇𝑖
′′(𝑟)

,

 

and by joint concavity and monotonicity of the Ando-Li-Mathias mean we have 

𝐴‾𝑖
(𝑟+1)

 = 𝐴‾𝑖
(𝑟)
#
𝑘 − 1

𝑘
𝑇𝑖
(𝑟)

 ≥ (𝜆𝐴‾𝑖
′(𝑟)

+ (1 − 𝜆)𝐴‾𝑖
′′(𝑟)

)#𝑘−1
𝑘
(𝜆𝑇𝑖

′(𝑟)
+ (1 − 𝜆)𝑇𝑖

′′(𝑟)
)

 ≥ 𝜆𝐴‾𝑖
′(𝑟+1)

+ (1 − 𝜆)𝐴‾𝑖
′′(𝑟+1)

.

 

Passing to the limit for 𝑟 → ∞, we obtain P7. 

We will use the big-O notation in the norm sense; that is, we will write 𝑋 = 𝑌 +
𝑂(𝜀ℎ) to denote that there are universal positive constants 𝜀0 < 1 and 𝜃 such that for each 

0 < 𝜀 < 𝜀0 it follows that ∥ 𝑋 − 𝑌 ∥≤ 𝜃𝜀ℎ. The usual arithmetic rules involving this 

notation hold. These constants may depend on 𝑘, but not on the specific choice of the 

matrices involved in the formulas. 

Theorem (1.1.3)[1]: Let 0 < 𝜀 < 1,𝑀 and 𝐴‾𝑖
(0)
= 𝐴𝑖 , 𝑖 = 1,… , 𝑘, be positive definite 𝑛 ×

𝑛 matrices, and 𝐸𝑖: = 𝑀
−1𝐴𝑖 − 𝐼. Suppose that ∥∥𝐸𝑖∥∥ ≤ 𝜀 for all 𝑖 = 1,… , 𝑘. Then, for the 

matrices 𝐴‾𝑖
(1)

 defined in (5) the following hold. 

C1: We have 

𝑀−1𝐴‾𝑖
(1)
− 𝐼 = 𝑇𝑘 + 𝑂(𝜀

3),                                             (7) 
where 

𝑇𝑘: =
1

𝑘
∑  

𝑘

𝑗=1

𝐸𝑗 −
1

4𝑘2
∑  

𝑘

𝑖,𝑗=1

(𝐸𝑖 − 𝐸𝑗)
2
. 

C2: There are positive constants 𝜃, 𝜎 and 𝜀‾ < 1 (all of which may depend on k) such that 

for all 𝜀 ≤ 𝜀‾, 

∥∥𝑀1
−1𝐴‾𝑖

(1)
− 𝐼∥∥ ≤ 𝜃𝜀

3 

for a suitable matrix 𝑀1 satisfying ∥∥𝑀−1𝑀1 − 𝐼∥∥ ≤ 𝜎𝜀. 
C3: The iteration (5) converges at least cubically. 

C4: We have 

𝑀1
−1𝐺‾(𝐴1, … , 𝐴𝑘) − 𝐼 = 𝑂(𝜀

3).                                    (8) 
Proof. Let us first find a local expansion of a generic point on the geodesic #𝑡𝐵 : let 𝑀−1𝐴 =
𝐼 + 𝐹1 and 𝑀−1𝐵 = 𝐼 + 𝐹2 with ∥∥𝐹1∥∥ ≤ 𝛿, ∥∥𝐹2∥∥ ≤ 𝛿, 0 < 𝛿 < 1. Then we have 
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𝑀−1(𝐴#𝑡𝐵) = 𝑀−1𝐴(𝐴−1𝐵)𝑡 = (𝐼 + 𝐹1)((𝐼 + 𝐹1)
−1(𝐼 + 𝐹2))

𝑡

= (𝐼 + 𝐹1) ((𝐼 − 𝐹1 + 𝐹1
2 + 𝑂(𝛿3))(𝐼 + 𝐹2))

𝑡

= (𝐼 + 𝐹1)(𝐼 + 𝐹2 − 𝐹1 − 𝐹1𝐹2 + 𝐹1
2 + 𝑂(𝛿3))

𝑡

 = (𝐼 + 𝐹1)(𝐼 + 𝑡(𝐹2 − 𝐹1 − 𝐹1𝐹2 + 𝐹1
2)

+
𝑡(𝑡 − 1)

2
(𝐹2 − 𝐹1)

2 + 𝑂(𝛿3))

(9) 

= 𝐼 + (1 − 𝑡)𝐹1 + 𝑡𝐹2 +
𝑡(𝑡 − 1)

2
(𝐹2 − 𝐹1)

2 + 𝑂(𝛿3), 

where we have made use of the matrix series expansion (𝐼 + 𝑋)𝑡 = 𝐼 + 𝑡𝑋 + 
𝑡(𝑡−1)

2
𝑋2 +

𝑂(𝑋3). Now, we prove the theorem by induction on 𝑘 in the following way. Let C𝑖𝑘 denote 

the assertion C𝑖 of the theorem (for 𝑖 = 1,… ,4) for a given value of 𝑘. We show that 

(i) C12 holds; 

(ii) C1𝑘 ⟹ C2𝑘; 

(iii) C2𝑘 ⟹ C3𝑘, C4𝑘; 
(iv) C4𝑘 ⟹ C1𝑘+1. 

It is clear that these claims imply that the results C1 − C4 hold for all 𝑘 ≥ 2 by induction; 

we will now turn to prove them one by one. 

(i) This is simply equation (9) for 𝑡 =
1

2
. 

(ii) It is obvious that 𝑇𝑘 = 𝑂(𝜀); thus, choosing 𝑀1: = 𝑀(𝐼 + 𝑇𝑘) one has 

𝐴‾𝑖
(1)
= 𝑀(𝐼 + 𝑇𝑘 + 𝑂(𝜀

3)) = 𝑀1(𝐼 + (𝐼 + 𝑇𝑘)
−1𝑂(𝜀3)) = 𝑀1(𝐼 + 𝑂(𝜀

3)). (10) 
Using explicit constants in the big-O estimates, we get 

∥∥𝑀1
−1𝐴‾𝑖

(1)
− 𝐼∥∥ ≤ 𝜃𝜀

3,  ∥∥𝑀−1𝑀1 − 𝐼∥∥ ≤ 𝜎𝜀 

for suitable constants 𝜃 and 𝜎. 

(iii) Suppose 𝜀 is small enough to have 𝜃𝜀3 ≤ 𝜀. We shall apply C2 with initial matrices 

𝐴‾𝑖
(1)

, with 𝜀1 = 𝜃𝜀
3 in lieu of 𝜀 and 𝑀1 in lieu of 𝑀, getting 

∥∥𝑀2
−1𝐴‾𝑖

(2)
− 𝐼∥∥ ≤ 𝜃𝜀1

3,  ∥∥𝑀1
−1𝑀2 − 𝐼∥∥ ≤ 𝜎𝜀1.  

Repeating again for all the steps of our iterative process, we get for all 𝑠 = 1,2,…, 

∥∥𝑀𝑠
−1𝐴‾𝑖

(𝑠)
− 𝐼∥∥ ≤ 𝜃𝜀𝑠−1

3 = 𝜀𝑠,  ∥∥𝑀𝑠
−1𝑀𝑠+1 − 𝐼∥∥ ≤ 𝜎𝜀𝑠         (11) 

with 𝜀𝑠+1: = 𝜃𝜀𝑠
3 and 𝑀0: = 𝑀. 

We introduce the notation 

𝑑(𝑋, 𝑌):= ∥∥𝑋−1𝑌 − 𝐼∥∥ 
for any two 𝑛 × 𝑛 symmetric positive definite matrices 𝑋 and 𝑌. It will be useful to notice 

that ∥ 𝑋 − 𝑌 ∥≤∥ 𝑋 ∥ ∥∥𝑋−1𝑌 − 𝐼∥∥ ≤∥ 𝑋 ∥ 𝑑(𝑋, 𝑌) and 

𝑑(𝑋, 𝑍)  =∥ (𝑋−1𝑌 − 𝐼)(𝑌−1𝑍 − 𝐼) + 𝑋−1𝑌 − 𝐼

 ≤ 𝑑(𝑋, 𝑌)𝑑(𝑌, 𝑍) + 𝑑(𝑋, 𝑌) + 𝑑(𝑌, 𝑍).
         (12) 

With this notation, we can restate (11) as 

𝑑 (𝑀𝑠, 𝐴‾𝑖
(𝑠)
) ≤ 𝜀𝑠,  𝑑(𝑀𝑠, 𝑀𝑠+1) ≤ 𝜎𝜀𝑠. 

We will now prove by induction that, for 𝜀 smaller than a fixed constant, it follows that 

𝑑(𝑀𝑠, 𝑀𝑠+𝑡) ≤ (2 −
1

2𝑡
) 𝜎𝜀𝑠.                           (13) 

First of all, for all 𝑡 ≥ 1, 
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𝜀𝑠+𝑡 = 𝜃
3𝑡−1
2 𝜀3

𝑡
, 

which, for 𝜀 smaller than min(1/8, 𝜃−1), implies 
𝜀𝑠+𝑡

𝜀𝑠
≤ 𝜀𝑠

3𝑡−1

2 ≤ 𝜀𝑠
𝑡 ≤

1

2𝑡+2
.  

Now, using (12), and supposing additionally that 𝜀 ≤ 𝜎−1, we have 

𝑑(𝑀𝑠, 𝑀𝑠+𝑡+1) ≤ 𝑑(𝑀𝑠, 𝑀𝑠+𝑡)𝑑(𝑀𝑠+𝑡 , 𝑀𝑠+𝑡+1)

 +𝑑(𝑀𝑠, 𝑀𝑠+𝑡) + 𝑑(𝑀𝑠+𝑡 , 𝑀𝑠+𝑡+1)

≤ (2 −
1

2𝑡
)𝜎𝜀𝑠 + 𝜎𝜀𝑠 (𝜎𝜀𝑠+𝑡 +

𝜀𝑠+𝑡
𝜀𝑠
)

≤ (2 −
1

2𝑡
)𝜎𝜀𝑠 + 𝜎𝜀𝑠 (2

𝜀𝑠+𝑡
𝜀𝑠
)

≤ (2 −
1

2𝑡
)𝜎𝜀𝑠 + 𝜎𝜀𝑠

1

2𝑡+1
= (2 −

1

2𝑡+1
) 𝜎𝜀𝑠

 

Thus, we have for each 𝑡, 
∥∥𝑀𝑡 −𝑀∥∥ ≤∥ 𝑀 ∥ ∥∥𝑀−1𝑀𝑡 − 𝐼∥∥ ≤ 2𝜎 ∥ 𝑀 ∥ 𝜀, 

which implies ∥∥𝑀𝑡∥∥ ≤ 2 ∥ 𝑀 ∥ for all 𝑡. By a similar argument, 

∥∥𝑀𝑠+𝑡 −𝑀𝑠∥∥ ≤ ∥∥𝑀𝑠∥∥𝑑(𝑀𝑠+𝑡 , 𝑀𝑠) ≤ 2𝜎 ∥ 𝑀 ∥ 𝜀𝑠.                  (14) 
Due to the bounds already imposed on 𝜀, the sequence 𝜀𝑠 tends monotonically to zero with 

a cubic convergence rate; thus (𝑀𝑡) is a Cauchy sequence and therefore converges. In the 

following, let 𝑀∗ be its limit. The convergence rate is cubic, since passing to the limit (14) 

we get 

∥∥𝑀∗ −𝑀𝑠∥∥ ≤ 2𝜎 ∥ 𝑀 ∥ 𝜀𝑠. 
Now, using the other relation in (11), we get 

∥∥𝐴‾𝑖
(𝑠)
−𝑀∗

∥∥  ≤ ∥∥𝐴‾𝑖
(𝑠)
−𝑀𝑠∥∥ + ∥∥𝑀

∗ −𝑀𝑠∥∥

 ≤ 2 ∥ 𝑀 ∥ 𝑑 (𝑀𝑠, 𝐴‾𝑖
(𝑠)
) + 2𝜎 ∥ 𝑀 ∥ 𝜀𝑠

 ≤ (2𝜎 + 2) ∥ 𝑀 ∥ 𝜀𝑠;

 

that is, 𝐴‾𝑖
(𝑠)

 converges with cubic convergence rate to 𝑀∗. Thus C3 is proved. By (12), (13), 

and (11), we have 

𝑑 (𝑀1, 𝐴‾𝑖
(𝑡)
)  ≤ 𝑑(𝑀1, 𝑀𝑡)𝑑 (𝑀𝑡 , 𝐴‾𝑖

(𝑡)
) + 𝑑(𝑀1, 𝑀𝑡) + 𝑑 (𝑀𝑡 , 𝐴‾𝑖

(𝑡)
)

 ≤ 2𝜎𝜀1𝜀𝑡 + 2𝜎𝜀1 + 𝜀𝑡 ≤ (4𝜎 + 1)𝜀1 = 𝑂(𝜀
3),

 

which is C4. 

(iv) Using C4  𝑘 and (9) with 𝐹1 = 𝐸𝑘+1, 𝐹2 = 𝑀
−1𝐺‾(𝐴1, … , 𝐴𝑘) = 𝑇𝑘 + 𝑂(𝜀3), 𝛿 = 2𝑘𝜀, 

we have 

𝑀−1𝐴‾𝑘+1
(1)

 = 𝑀−1 (𝐴𝑘+1#
𝑘

𝑘 + 1
𝐺‾(𝐴1, … , 𝐴𝑘))

 = 𝐼 +
1

𝑘 + 1
𝐸𝑘+1 +

𝑘

𝑘 + 1
𝑇𝑘

         (15) 

−
𝑘

2(𝑘 + 1)2
(𝐸𝑘+1 −

1

𝑘
∑  

𝑘

𝑖=1

 𝐸𝑖)

2

+ 𝑂(𝜀3). 

Observe that 

𝑇𝑘 =
1

𝑘
𝑆𝑘 +

𝑃𝑘 − (𝑘 − 1)𝑄𝑘
2𝑘2

, 
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where 𝑆𝑘 = ∑𝑖=1
𝑘  𝐸𝑖 , 𝑄𝑘 = ∑𝑖=1

𝑘  𝐸𝑖
2, 𝑃𝑘 = ∑𝑖,𝑗=1,𝑖≠𝑗

𝑘  𝐸𝑖𝐸𝑗 . Since 𝑆𝑘
2 = 𝑃𝑘 + 𝑄𝑘 and 𝑆𝑘+1 =

𝑆𝑘 + 𝐸𝑘+1, 𝑄𝑘+1 = 𝑄𝑘 + 𝐸𝑘+1
2 , 𝑃𝑘+1 = 𝑃𝑘 + 𝐸𝑘+1𝑆𝑘 + 𝑆𝑘𝐸𝑘+1, from (15) one finds that 

𝑀−1𝐴‾𝑘+1
(1)

 = 𝐼 +
1

𝑘 + 1
𝑆𝑘+1 −

𝑘

2(𝑘 + 1)2
𝑄𝑘+1 +

1

2(𝑘 + 1)2
𝑃𝑘+1 + 𝑂(𝜀

3)

 = 𝐼 + 𝑇𝑘+1 + 𝑂(𝜀
3).

 

Since the expression we found is symmetric with respect to the 𝐸𝑖, it follows that 𝐴‾𝑗
(1)

 has 

the same expansion for any 𝑗. 
Observe that Theorems (1.1.2) and (1.1.3) imply that the iteration (5) is globally convergent 

with order of convergence at least 3. 

In the case where the matrices 𝐴𝑖 , 𝑖 = 1,… , 𝐴𝑘, commute with each other, the iteration 

(5) converges in just one step, i.e., 𝐴‾𝑖
(1)
= 𝐴‾ for any 𝑖. In the noncommutative general case, 

one has det (𝐴‾𝑖
(𝑠)
) = det (𝐴‾) for any 𝑖 and for any 𝑠 ≥ 1; i.e., the determinant converges in 

one single step to the determinant of the matrix mean. 

Our mean is different from the ALM-mean, as we will show with some numerical 

experiments. We prove that our mean and the ALM-mean belong to a general class of matrix 

geometric means, which depends on a set of 𝑘 − 1 parameters. 

We introduce a new class of matrix means depending on a set of parameters 

𝑠1, … , 𝑠𝑘−1 and show that the ALM-mean and our mean are two specific instances of this 

class. 

We describe this generalization in the case of 𝑘 = 3 matrices 𝐴, 𝐵, 𝐶. The case 𝑘 > 3 

is outlined. Here, the distance between two matrices is defined in (2). 

For 𝑘 = 3, the algorithm presented replaces the triple 𝐴, 𝐵, 𝐶 with 𝐴′, 𝐵′, 𝐶′ where 𝐴′ is 

chosen in the geodesic connecting 𝐴 with the midpoint of the geodesic connecting 𝐵 and 𝐶, 

at distance 2/3 from 𝐴, and a similar choice is made for 𝐵′ and 𝐶′. In our generalization we 

use two parameters 𝑠, 𝑡 ∈ [0,1]. We consider the point 𝑃𝑡 = 𝐵# 𝑡𝐶 in the geodesic 

connecting 𝐵 to 𝐶 at distance 𝑡 from 𝐵. Then we consider the geodesic connecting 𝐴 to 𝑃𝑡 
and define 𝐴′ to be the matrix on this geodesic at a distance 𝑠 from 𝐴. That is, we set 𝐴′ =
𝐴# 𝑠(𝐵# 𝑡𝐶). 
We do a similar step with 𝐵 and 𝐶. This transformation is recursively repeated so that the 

matrix sequences 𝐴(𝑟), 𝐵(𝑟), 𝐶(𝑟) are generated by means of 

𝐴(𝑟+1)  = 𝐴(𝑟)#𝑠(𝐵
(𝑟)#𝑡𝐶

(𝑟))

𝐵(𝑟+1)  = 𝐵(𝑟)#𝑠(𝐶
(𝑟)#𝑡𝐴

(𝑟)),  𝑟 = 0,1,… ,

𝐶(𝑟+1)  = 𝐶(𝑟)#𝑠(𝐴
(𝑟)#𝑡𝐵

(𝑟)),

         (16) 

starting with 𝐴(0) = 𝐴,𝐵(0) = 𝐵, 𝐶(0) = 𝐶. 

By following the same arguments, it can be shown that the three sequences have a 

common limit 𝐺𝑠,𝑡 for any 𝑠, 𝑡 ∈ [0,1], 𝑠 ≠ 0, (𝑠, 𝑡) ≠ (1,0), (1,1). 

Moreover, for 𝑠 = 1, 𝑡 = 1/2 one obtains the ALM-mean, i.e., 𝐺 = 𝐺
1,
1

2

, while for 𝑠 =

2/3, 𝑡 = 1/2 the limit coincides with our mean, i.e., 𝐺‾ = 𝐺2
3

,
1

2
. Moreover, it is possible to 

prove that for any 𝑠, 𝑡 ∈ [0,1], 𝑠 ≠ 0, (𝑠, 𝑡) ≠ (1,0), (1,1) the limit satisfies the conditions 

P1-P11 so that it can be considered a good geometric mean. 

Concerning the convergence speed of the sequence generated by (16) we may perform a 

more accurate analysis. Assume that 𝐴 = 𝑀(𝐼 + 𝐸1), 𝐵 = 𝑀(𝐼 + 𝐸2), 𝐶 = 𝑀 yields 
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𝐴′ ≐ 𝑀(𝐼 + (1 − 𝑠)𝐸1 + 𝑠(1 − 𝑡)𝐸2 + 𝑠𝑡𝐸3 +
𝑠𝑡(𝑡 − 1)

2
𝐻2
2 +

𝑠(𝑠 − 1)

2
(𝐻1 + 𝑡𝐻2)

2) ,

𝐵′ ≐ 𝑀(𝐼 + (1 − 𝑠)𝐸2 + 𝑠(1 − 𝑡)𝐸3 + 𝑠𝑡𝐸1 +
𝑠𝑡(𝑡 − 1)

2
𝐻3
2 +

𝑠(𝑠 − 1)

2
(𝐻2 + 𝑡𝐻3)

2) ,

𝐶′ ≐ 𝑀(𝐼 + (1 − 𝑠)𝐸3 + 𝑠(1 − 𝑡)𝐸1 + 𝑠𝑡𝐸2 +
𝑠𝑡(𝑡 − 1)

2
𝐻1
2 +

𝑠(𝑠 − 1)

2
(𝐻3 + 𝑡𝐻1)

2) ,

 

where ≐ denotes equality up to 𝑂(𝜀3) terms, with 𝐻1 = 𝐸1 − 𝐸2, 𝐻2 = 𝐸2 − 𝐸3, 𝐻3 = 𝐸3 −
𝐸1. Hence we have 𝐴′ = 𝑀(𝐼 + 𝐸1

′), 𝐵′ = 𝑀(𝐼 + 𝐸2
′), 𝐶′ = 𝑀(𝐼 + 𝐸3

′), with 

[

𝐸1
′

𝐸2
′

𝐸3
′
] ≐ 𝐶(𝑠, 𝑡) [

𝐸1
𝐸2
𝐸3

] +
𝑠𝑡(𝑡 − 1)

2
[

𝐻2
2

𝐻3
2

𝐻1
2

] +
𝑠(𝑠 − 1)

2
[

(𝐻1 − 𝑡𝐻2)
2

(𝐻2 − 𝑡𝐻3)
2

(𝐻3 − 𝑡𝐻1)
2

], 

where 

𝐶(𝑠, 𝑡) = [

(1 − 𝑠)𝐼 𝑠(1 − 𝑡)𝐼 𝑠𝑡𝐼
𝑠𝑡𝐼 (1 − 𝑠)𝐼 𝑠(1 − 𝑡)𝐼

𝑠(1 − 𝑡)𝐼 𝑠𝑡𝐼 (1 − 𝑠)𝐼
]. 

Observe that the block circulant matrix 𝐶(𝑠, 𝑡) has eigenvalues 𝜆1 = 1, 𝜆2 = (1 −
3

2
𝑠) +

𝑖
√3

2
𝑠(2𝑡 − 1), and 𝜆3 = 𝜆‾2, with multiplicity 𝑛, where 𝑖2 = −1. Moreover, the pair (𝑠, 𝑡) =

(2/3,1/2) is the only one which yields 𝜆2 = 𝜆3 = 0. In fact (2/3,1/2) is the only pair 

which provides superlinear convergence. For the ALMmean, where 𝑡 = 1/2 and 𝑠 = 1, it 

follows that |𝜆2| = |𝜆3| = 1/2, which is the rate of convergence of the ALM iteration [2]. 

In the case of 𝑘 > 3 matrices, given the (𝑘 − 1)-tuple (𝑠1, 𝑠2, … , 𝑠𝑘−1) we may recursively 

define 𝐺𝑠1,…,𝑠𝑘−1(𝐴1, … , 𝐴𝑘) as the common limit of the sequences generated by 

𝐴𝑖
(𝑟+1)

= 𝐴𝑖
(𝑟)
#𝑠1𝐺𝑠2,…,𝑠𝑘−1 (𝒵𝑖 (𝐴1

(𝑟)
, … , 𝐴𝑘

(𝑟)
)) , 𝑖 = 1,… , 𝑘. 

Observe that with (𝑠1, … , 𝑠𝑘−1) = (1,1,… ,1,1/2) one obtains the ALM-mean, while with 
(𝑠1, … , 𝑠𝑘−1) = ((𝑘 − 1)/𝑘, (𝑘 − 2)/(𝑘 − 1),… ,1/2) one obtains the new mean 

introduced. 

We have implemented the two iterations converging to the ALM-mean and to the newly 

defined geometric mean in Matlab, and we have run some numerical experiments on a quad-

Xeon 2.8Ghz computer. To compute matrix square roots we used Matlab's built-in sqrtm 

function, while for 𝑝-th roots with 𝑝 > 2 we used the rootm function in Nicholas Higham's 

Matrix Computation Toolbox [7]. To counter the loss of symmetry due to the accumulation 

of computational errors, we chose to discard the imaginary part of the computed roots. 

The experiments have been performed on the same data set as [10]. It consists of five sets, 

each composed of four to six 6 × 6 positive definite matrices, corresponding to physical 

data from elasticity experiments conducted by Hearmon [6]. The matrices are composed of 

smaller diagonal blocks of sizes 1 × 1 up to 4 × 4, depending on the symmetries of the 

involved materials. Two to three significant digits are reported for each experiment. 

We have computed both the ALM-mean and the newly defined mean of these sets; as a 

stopping criterion for each computed mean, we chose 

max
𝑖
  |𝐴𝑖

(𝑟+1)
− 𝐴𝑖

(𝑟)
| < 𝜀, 
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where |𝑋|: = max𝑖,𝑗  |𝑋𝑖𝑗|, with 𝜀 = 10−10. The CPU times, in seconds, are reported in Table 

1. For four matrices, the speed gain is a factor of 20 , and it increases even more for more 

than four matrices. 

We then focused on Hearmon's second data set (ammonium dihydrogen phosphate), 

composed of four matrices. In Table 2, we reported the number of outer (𝑘 = 4) iterations 

needed and the average number of iterations needed to reach convergence in the inner (𝑘 =
3) iterations (remember that the computation of a mean of four matrices requires the 

computation of three means of three matrices at each of its steps). Moreover, we measured 

the number of square and 𝑝-th roots needed by the two algorithms, since they are the most 

expensive operation in the algorithm. From the results, it is evident that the speed gain in 

the new 

 
mean is due not only to the reduction of the number of outer iterations, but also of the number 

of inner iterations needed to get convergence at each step of the inner mean calculations. 

When the number of involved matrices becomes larger, these increased speeds add up at 

each level. 

Hearmon's elasticity data are not suitable for measuring the accuracy of the algorithm, since 

the results to be obtained are not known. To measure the accuracy of the computed results, 

we computed instead |𝐺(𝐴4, 𝐼, 𝐼, 𝐼) − 𝐴|, which should yield zero in exact arithmetic (due 

to P1), and its analogue with the new mean. We chose 𝐴 to be the first matrix in Hearmon's 

second data set. Moreover, in order to obtain results closer to machine precision, in this 

experiment we changed the stopping criterion by choosing = 10−13 : 

 Operation  Result 

|𝐺(𝐴4, 𝐼, 𝐼, 𝐼) − 𝐴| 3.6E − 13

|𝐺‾(𝐴4, 𝐼, 𝐼, 𝐼) − 𝐴| 1.8E − 14

 

The results are well within the errors permitted by the stopping criterion, and they show that 

both algorithms can reach a satisfying precision. 

The following examples provide an experimental proof that our mean is different from the 

ALM-mean. 

Consider the following matrices: 

𝐴 = [
𝑎 𝑏
𝑏 𝑎

] , 𝐵 = [
𝑎 −𝑏
−𝑏 𝑎

] , 𝐶 = [
1 0
0 𝑐

]. 

Observe that the triple (𝐴, 𝐵, 𝐶) is transformed into (𝐵, 𝐴, 𝐶) under the map 𝑋 → 𝑆−1𝑋𝑆, 

for 𝑆 = diag (1,−1). In this way, any matrix mean 𝐺(𝐴, 𝐵, 𝐶) satisfying condition P3 is 
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such that 𝐺 = 𝑆−1𝐺𝑆; that is, the off-diagonal entries of 𝐺 are zero, whence 𝐺 must be 

diagonal. With 𝑎 = 2, 𝑏 = 1, 𝑐 = 24, for the ALM-mean 𝐺 and our mean 𝐺‾ one finds that 

𝐺‾ = [
1.487443626 0

0 4.033766318
] , 𝐺 = [

1.485347837 0
0 4.039457861

], 

where we reported the first 10 digits. Observe that the determinant of both the matrices is 6 

, that is, the geometric mean of det 𝐴, det 𝐵, det 𝐶; moreover, 𝜌(𝐺‾) < 𝜌(𝐺). 
For the matrices 

𝐴 = [
2 −1 0
−1 3 −2
0 −2 2

] ,  𝐵 = [
2 1 0
1 3 2
0 2 2

] ,

𝐶 = [
1 0 1
0 10 0
1 0 50

] ,  𝐷 = [
1 0 −1
0 10 0
−1 0 50

] ,

 

one has 

𝐺‾ = [
1.3481 0 −0.3016
0 3.8452 0

−0.3016 0 6.1068
] , 𝐺 = [

1.3472 0 −0.3106
0 3.8796 0

−0.3106 0 6.0611
] .  

Their eigenvalues are (6.1258,3.8452,1.3290), and (6.0815,3.8796,1.3268), 
respectively. Observe that, unlike in the previous example, it follows that 𝜌(𝐺‾) > 𝜌(𝐺). 
In order to illustrate the properties of the set 

{𝐺𝑠,𝑡:  (𝑠, 𝑡) ∈ (0,1] × (0,1)}, 
where 𝐺𝑠,𝑡 is the mean of three matrices defined, we considered the intervals 

[1/15,1], [1/15,14/15] and discretized them into two sets 𝒮, 𝒯 of 15 equidistant points 

{1/15 = 𝑠1 < 𝑠2 < ⋯ < 𝑠15 = 1}, {1/15 = 𝑡1 < 𝑡2 < ⋯ < 𝑡15 =14/15}, respectively. 

For each pair (𝑠𝑖 , 𝑡𝑗) ∈ 𝒮 × 𝒯, 𝑖, 𝑗 = 1,… ,15, we computed 𝐺𝑠𝑖,𝑡𝑗 and the orthogonal 

projection (𝑥(𝑖, 𝑗), 𝑦(𝑖, 𝑗), 𝑧(𝑖, 𝑗)) of the matrix 𝐺𝑠𝑖,𝑡𝑗 − 𝐺2
3
,
1

2

, over a three-dimensional fixed 

randomly generated subspace. The set 

𝒱 = {(𝑥(𝑖, 𝑗), 𝑦(𝑖, 𝑗), 𝑧(𝑖, 𝑗)) ∈ ℝ3, 𝑖, 𝑗 = 1,… ,15} 
has been plotted with the Matlab command mesh (x, y, z) which connects each point with 

coordinates (𝑥(𝑖, 𝑗), 𝑦(𝑖, 𝑗), 𝑧(𝑖, 𝑗)) to its four neighbors with coordinates (𝑥(𝑖 + 𝛿, 𝑗 +
𝛾), 𝑦(𝑖 + 𝛿, 𝑗 + 𝛾), 𝑧(𝑖 + 𝛿, 𝑗 + 𝛾)) for 𝛿, 𝛾 ∈ {1,−1}. 
Figure 1 displays the set 𝒱 from six different points of view, where the matrices 𝐴, 𝐵 and 𝐶 

of size 3 have been randomly generated. The set appears to be a flat surface with part of the 

edge tightly folded on itself. The geometric mean 𝐺2
3
,
1

2

 corresponds to the point with 

coordinates (0,0,0), which is denoted by a small circle and seems to be located in the central 

part of the figure. These properties, reported for only one triple (𝐴, 𝐵, 𝐶), are maintained 

with very light differences in all the plots that we have performed. 

The software concerning our experiments can be delivered upon request. 
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Section (1.2): Computing Matrix Geometric Means 

In certain physical applications one has to represent through a single average matrix 

𝐺 the results of several experiments made up by a set of many positive definite 𝑛 × 𝑛 

matrices 𝐴1, 𝐴2, … , 𝐴𝑘. The arithmetic mean 
1

𝑘
∑𝑖=1
𝑘  𝐴𝑖 is not well-suited to represent the 

needed quantity since for physical reasons one of the required properties is that the average 

of 𝐴1
−1, … , 𝐴𝑘

−1 as well, must coincide with 𝐺−1 (see [17], [10] ). Among the classical means 

of positive real numbers 𝑎1, … , 𝑎𝑘, this property is satisfied by the geometric mean 𝑔 =

(∏𝑖=1
𝑘  𝑎𝑖)

1/𝑘
. 

There is large agreement on what is the right definition of the geometric mean 𝐺 =
𝐴#𝐵 of two positive definite matrices 𝐴 and 𝐵, namely 𝐺:= 𝐴(𝐴−1𝐵)1/2 (see [3] for a 

concise treatment of the topic), where given a square matrix 𝑀 having no nonpositive real 

eigenvalues, 𝑀1/2 denotes the unique solution of the equation 𝑋2 = 𝑀 whose eigenvalues 

lie in the right half plane. That definition was given in the seventies by Pusz and 

Woronowicz [19], but there are many other equivalent characterizations, the most notable 

of which has been provided recently in [15], [17] and is related to the Riemannian geometry 
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obtained endowing the set ℙ𝑛 of positive definite matrices of size 𝑛 with the scalar product 

𝑔(𝑀,𝑁) = tr (𝐴−1𝑀𝐴−1𝑁) in the tangent space 𝑇𝐴ℙ𝑛 at 𝐴. 
The link to the geometric mean is through geodesics, in fact it can be proved that there exists 

a unique geodesic joining two positive definite matrices 𝐴 and 𝐵 whose parameterization is 

𝐴#𝑡𝐵:= 𝐴
1/2(𝐴−1/2𝐵𝐴−1/2)

𝑡
𝐴1/2,  𝑡 ∈ [0,1], 

and 𝐴#𝐵 = 𝐴#1/2𝐵 is its midpoint. 

We will use the symbols log (𝐴), exp (𝐴), 𝐴𝑡: = exp (𝑡log (𝐴)) to denote the usual 

functions of a square matrix. If 𝐴 is diagonalizable, namely if there exists an invertible 

matrix 𝑀 and a diagonal matrix 𝐷 = diag (𝜆1, … , 𝜆𝑛) such that 𝐴 = 𝑀𝐷𝑀−1, then 𝑓(𝐴):=

𝑀𝑓(𝐷)𝑀−1, where 𝑓(𝐷):= diag (𝑓(𝜆1),… , 𝑓(𝜆𝑛)). The above definition of 𝐴1/2 coincides 

with this one (see [14]). 

We briefly recall some properties of the matrix exponential and logarithm which will be 

useful in the following, the proofs can be found in [14]. 

Theorem (1.2.1)[11]: The following properties hold: 

(i) log (𝛼𝐼) = log (𝛼)𝐼 for any positive constant 𝛼, in particular log 𝐼 = 0; 

(ii) if 𝑀 and 𝑁 commute and have real positive eigenvalues then log (𝑀𝑁) = log (𝑀) +
log (𝑁); 

(iii) for any invertible matrix 𝑀, 𝑓(𝑀𝐴𝑀−1) = 𝑀𝑓(𝐴)𝑀−1, in particular exp (𝑀𝐴𝑀−1) 
𝑀exp (𝐴)𝑀−1 and log (𝑀𝐴𝑀−1) = 𝑀log (𝐴)𝑀−1; 

(iv) det (exp (𝐴 + 𝐵)) = det (exp (𝐴))det (exp (𝐵)); 
(v) exp (−𝑋) = exp (𝑋)−1. 

In the setting of matrix functions, it is often easy to prove general results in an elegant way. 

For example the following result holds. 

Theorem (1.2.2)[11]: Let 𝐴 and 𝐵 be positive definite matrices and let 𝑓 be a function 

defined on the eigenvalues of 𝐴−1𝐵, then 𝐴𝑓(𝐴−1𝐵) = 𝐴1/2𝑓(𝐴−1/2𝐵𝐴−1/2)𝐴1/2 

Proof. First, observe that the matrix 𝐴−1𝐵 is diagonalizable. From the above definition of 

matrix function it follows that for any diagonalizable matrix 𝐴 one has 𝑓(𝑁−1𝐴𝑁) =
𝑁−1𝑓(𝐴)𝑁, thus 

𝐴𝑓(𝐴−1𝐵) = 𝐴𝑓(𝐴−1/2𝐴−1/2𝐵𝐴−1/2𝐴1/2) = 𝐴1/2𝑓(𝐴−1/2𝐵𝐴−1/2)𝐴1/2. 

Theorem (1.2.2) explains why 𝐴#1/2𝐵 = 𝐴(𝐴
−1𝐵)1/2. 

The generalization of the definition of geometric mean to more than two positive 

definite matrices seems to be considerably more difficult. 

Ando, Li and Mathias [2] proposed a list of ten properties (the ALM properties) that a "good" 

geometric mean 𝐺(⋅) of 𝑘 matrices should satisfy. Here, for simplicity we report this list in 

the case 𝑘 = 3 where we write 𝐴 > 𝐵 if 𝐴 − 𝐵 is positive definite and 𝐴 ⩾ 𝐵 if 𝐴 − 𝐵 is 

positive semi-definite. 

P1 Consistency with scalars. If 𝐴, 𝐵, 𝐶 commute then 𝐺(𝐴, 𝐵, 𝐶) = (𝐴𝐵𝐶)1/3. 

P2 Joint homogeneity. 𝐺(𝛼𝐴, 𝛽𝐵, 𝛾𝐶) = (𝛼𝛽𝛾)1/3𝐺(𝐴, 𝐵, 𝐶), for 𝛼, 𝛽, 𝛾 > 0. 

P3 Permutation invariance. For any permutation 𝜋(𝐴, 𝐵, 𝐶) of 𝐴, 𝐵, 𝐶, it holds that 

𝐺(𝐴, 𝐵, 𝐶) = 𝐺(𝜋(𝐴, 𝐵, 𝐶)). 
P4 Monotonicity. If 𝐴 ⩾ 𝐴′, 𝐵 ⩾ 𝐵′, 𝐶 ⩾ 𝐶′, then 𝐺(𝐴, 𝐵, 𝐶) ⩾ 𝐺(𝐴′, 𝐵′, 𝐶′). 
P5 Continuity from above. If 𝐴𝑛, 𝐵𝑛, 𝐶𝑛 are monotonic decreasing sequences converging to 

𝐴, 𝐵, 𝐶, respectively, then 𝐺(𝐴𝑛, 𝐵𝑛, 𝐶𝑛) converges to 𝐺(𝐴, 𝐵, 𝐶). 
P6 Congruence invariance. For any nonsingular 𝑆, it holds that 𝑆∗𝐺(𝐴, 𝐵, 𝐶)𝑆 = 

𝐺(𝑆∗𝐴𝑆, 𝑆∗𝐵𝑆, 𝑆∗𝐶𝑆). 
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P7 Joint concavity. If 𝐴 = 𝜆𝐴1 + (1 − 𝜆)𝐴2, 𝐵 = 𝜆𝐵1 + (1 − 𝜆)𝐵2, 𝐶 = 𝜆𝐶1 + (1 − 𝜆)𝐶2, 

then 𝐺(𝐴, 𝐵, 𝐶) ⩾ 𝜆𝐺(𝐴1, 𝐵1, 𝐶1) + (1 − 𝜆)𝐺(𝐴2, 𝐵2, 𝐶2) for 0 < 𝜆 < 1. 

P8 Self-duality. 𝐺(𝐴, 𝐵, 𝐶)−1 = 𝐺(𝐴−1, 𝐵−1, 𝐶−1). 
P9 Determinant identity. det 𝐺(𝐴, 𝐵, 𝐶) = (det 𝐴det 𝐵det 𝐶)1/3. 

P10 Arithmetic-geometric-harmonic mean inequality. 

𝐴 + 𝐵 + 𝐶

3
⩾ 𝐺(𝐴, 𝐵, 𝐶) ⩾ (

𝐴−1 + 𝐵−1 + 𝐶−1

3
)

−1

. 

It has been proved in [2] that P5 and P10 are consequences of the others. Notice that all 

these properties can be easily generalized to the mean of any number of matrices. 

For 𝑘 = 2 this list uniquely defines 𝐺 = 𝐴#𝐵 = 𝐴(𝐴−1𝐵)1/2. In the case 𝑘 > 2 there are 

infinitely many means satisfying the ALM properties. 

In [2] Ando, Li and Mathias propose a numerical scheme for computing a mean of 𝑘 

matrices which satisfies the ALM properties. For 𝑘 = 3 they show that the sequences 

𝐴(𝜈+1) = 𝐵(𝜈)#𝐶(𝜈)

𝐵(𝜈+1) = 𝐶(𝜈)#𝐴(𝜈),  𝜈 = 0,1,…

𝐶(𝜈+1) = 𝐴(𝜈)#𝐵(𝜈)
,                         (17) 

obtained with 𝐴(0) = 𝐴,𝐵(0) = 𝐵, 𝐶(0) = 𝐶, converge to a common limit 𝐺 satisfying the 

ALM properties. For a set 𝐴1, … , 𝐴𝑘 of 𝑘 > 3 matrices these sequences can be defined as 

𝐴𝑖
(𝜈+1)

= 𝐺𝑘−1 (𝐴1
(𝜈)
, … , 𝐴𝑖−1

(𝜈)
, 𝐴𝑖+1
(𝜈)
, … , 𝐴𝑘

(𝜈)
) ,  𝑖 = 1,… , 𝑘, (18) 

where 𝐺𝑘−1 denotes the mean of 𝑘 − 1 matrices recursively defined by means of the same 

relations. Indeed, also these sequences converge to a common limit which satisfies the ALM 

properties. See this limit as the ALM mean. It is proved that convergence is linear with 

convergence factor 1/2. It is easy to find out that the computational cost of this scheme for 

general 𝑘 is 𝑂(𝑛3𝑘!∏𝑖=3
𝑘  𝑝𝑖) where 𝑛 is the matrix size and 𝑝𝑖 is the number of iterations 

needed in the computation of the means of 𝑖 matrices. 

A substantial improvement has been achieved in [1] relying on these observations: in the 

sequences (17) converging to the ALM mean, 𝐴(𝜈+1) is the midpoint of the geodesics 

joining the matrix 𝐵(𝜈) with 𝐶(𝜈); in the Euclidean geometry the limit of this sequence is the 

centroid of the triangle 𝐴𝐵𝐶; the centroid is also located in the median which connects 𝐴 

with the midpoint of the edge 𝐵𝐶 at distance 2/3 from 𝐴, that is 𝐴#2/3(𝐵#1/2𝐶); the three 

medians have the centroid as common point. Due to the negative curvature of ℙ𝑛 the three 

points 𝐴#2
3

(𝐵#1/2𝐶), 𝐵#2/3(𝐶#1/2𝐴), 𝐶#2/3 trices 

Therefore the iteration is given by 

𝐴(𝜈+1) = 𝐴(𝜈)#2/3(𝐵
(𝜈)#𝐶(𝜈))

𝐵(𝜈+1) = 𝐵(𝜈)#2/3(𝐶
(𝜈)#𝐴(𝜈)),  𝜈 = 0,1,…

𝐶(𝜈+1) = 𝐶(𝜈)#2/3(𝐴
(𝜈)#𝐵(𝜈))

 

It is proved that the three matrix sequences have a common limit, different from the ALM 

mean, which satisfies the ALM properties, and the convergence is cubic. See this mean as 

the BMP mean. The same iteration can be generalized to the case of 𝑘 > 3 matrices. 

The computational cost is the same as the ALM scheme, however, the number 𝑝𝑖 of 

iterations is reduced by relying on a numerical scheme having cubic convergence so the 

acceleration in certain applications is dramatic. Unfortunately, the growth of the 
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computational cost with 𝑘 is still exponential; therefore, for moderate values of 𝑘 also this 

iteration is infeasible. 

The idea of [2], [1] can be generalized by considering new means obtained by assembling 

existing ones through a recursive procedure. Unfortunately, it has been proved that no such 

definition could produce a mean whose computational cost is polynomial with respect to 𝑘 

[18]. We follow a different direction. 

By relying on the geometric interpretation given in terms of geodesics in the 

Riemannian geometry on the variety ℙ𝑛, we introduce a new iteration for computing a 

geometric mean of 𝑘 matrices with the following features: unlike the known methods, the 

computation of the mean of 𝑘 matrices does not require computing the mean of 𝑘 − 1 

matrices and no recursive process is needed; the convergence speed of the new iteration is 

cubic; its computational cost is polynomial, namely 𝑂(𝑛3𝑘2𝑝𝑘), where 𝑝𝑘 is the number of 

iterations needed by the method (typically just a few); for 𝑘 = 2 the limit is 𝐴#𝐵, so the 

proposed mean generalizes the geometric mean of two matrices; the limit of 𝑘 sequences 

satisfies the ALM properties P1-P3, P6, P8 and P9; we provide a counterexample where P4 

is not satisfied. The counterexample requires that the matrices be very far from each other; 

counterexamples where the matrices 𝐴𝑖 , 𝑖 = 1,… , 𝑘 are in a relatively small neighborhood 

of their mean are not known. We refer to this new mean as the Cheap Mean. 

The idea on which this iteration is based relies once again on the geometric interpretation of 

the centroid 𝐺 of a triangle 𝐴𝐵𝐶. In the Euclidean geometry the centroid G satisfies the 

equations 

𝐺 = 𝐴 +
1

3
((𝐵 − 𝐴) + (𝐶 − 𝐴) + (𝐴 − 𝐴)), 

that is, it lies in the geodesic passing through 𝐴 and tangent in 𝐴 to the arithmetic mean of 

the tangent vectors in 𝐴 of the three geodesics connecting 𝐴 with 𝐵, 𝐶 and 𝐴, respectively. 

Obviously, the third vector is zero. Similar expressions are obtained starting from 𝐵 and 𝐶, 

respectively. 

In the Riemannian manifold ℙ𝑛 this procedure gives three different points 𝐴′, 𝐵′ and 𝐶′, and 

can be viewed as a step of an iterative procedure converging to a possible mean. Observe 

that the mean of the tangent vectors is done in the tangent space at a point which is 

Euclidean, where it is natural to choose the arithmetic mean. 

This procedure can be easily generalized to 𝑘 ⩾ 3. Given 𝐴1, … , 𝐴𝑘, it is enough to consider, 

for each 𝑖, the geodesic starting at 𝐴𝑖 and whose tangent vector is the arithmetic mean of the 

𝑘 tangent vectors at 𝐴𝑖 to the geodesic joining 𝐴𝑖 with 𝐴𝑗 (where if 𝑖 = 𝑗 the vector is 0 ). 

Then 𝐴𝑖
′ will be the point of that geodesic for 𝑡 = 1. 

Since the tangent vector at 𝐴 to the geodesic joining 𝐴 and 𝐵 is the symmetric matrix 

𝐴log (𝐴−1𝐵), one obtains the following iteration 

𝐴𝑖
(𝜈+1)

= 𝐴𝑖
(𝜈)
exp(

1

𝑘
∑  

𝑘

𝑗=1,𝑗≠𝑖

  log ((𝐴𝑖
(𝜈)
)
−1
𝐴𝑗
(𝜈)
)) ,  𝑖 = 1,… , 𝑘, (19) 

with 𝐴𝑖
(0)
= 𝐴𝑖 , 𝑖 = 1,… , 𝑘. Observe that, by Theorem (1.2.2), (19) can be equivalently 

rewritten as 

𝐴𝑖
(𝜈+1)

= (𝐴𝑖
(𝜈)
)

1
2
exp(

1

𝑘
∑  

𝑘

𝑗=1,𝑗≠𝑖

  log ((𝐴𝑖
(𝜈)
)
−
1
2
𝐴𝑗
(𝜈)
(𝐴𝑖

(𝜈)
)
−
1
2
))(𝐴𝑖

(𝜈)
)

1
2
.  (20) 
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This equation shows that the sequences {𝐴𝑖
(𝜈)
}
𝜈
 are formed by symmetric positive definite 

matrices. 

For 𝑘 = 2 the first step of the iteration yields 𝐴1
(1)
= 𝐴exp (

1

2
(log (𝐴−1𝐵))) = 𝐴#𝐵 and 

similarly 𝐵1
(1)
= 𝐴#𝐵. Thus, in the case of two matrices the iteration yields the geometric 

mean since the first step. 

We prove that if the sequences {𝐴𝑖
(𝜈)
}
𝜈
 converge to the same limit for 𝑖 = 1,… , 𝑘, then the 

convergence is cubic. Moreover we give conditions under which convergence occurs. Even 

though the local convergence condition may appear rather restrictive, from the many 

numerical experiments that we have performed we never encountered failure of 

convergence. 

We have implemented the computation of the Cheap Mean in the Matrix Mean Toolbox, 

available for Matlab and Octave [13], and performed some numerical tests. 

In particular, we have compared the Cheap mean with the "least square geometric mean" 

[5], also called "Riemannian geometric mean" [17], or Karcher mean [16], that is, the unique 

positive definite solution of the matrix equation 

∑ 

𝑘

𝑖=1

𝑋1/2𝐴𝑖
−1𝑋1/2 = 0.                                          (21) 

It is known that this mean satisfies all the ALM properties of a geometric mean except 

perhaps the monotonicity property, for which no counterexample is known so far. By means 

of numerical experiments we show that the Cheap mean is much faster to compute than the 

Karcher mean (if for the latter, the algorithms of [16], [17] or a gradient algorithm applied 

to (21) are used). In fact, in all the experiments performed so far, iteration (19) converges to 

the Cheap mean in at most 5 iterations with a relative error of the order of 10−15 

independently of the condition number, whereas for the Karcher mean, the iterations of [16], 

[17] do not converge in certain cases and in the other cases require a larger computational 

cost. The gradient methods require always a larger computational cost. 

We wish to point out that the iteration of [16] is given by 

𝑋(𝜈+1) = 𝑋(𝜈) exp(
1

𝑘
∑  

𝑘

𝑖=1

  log ((𝑋(𝜈))
−1
𝐴𝑖)) ,  𝑋0 = 𝐴1,      (22) 

which is very similar to our iteration (19). In fact, each step of (19) can be viewed as 𝑘 first 

steps of iteration (22) with 𝐴𝑖 = 𝐴𝑖
(𝜈)
, 𝑖 = 1,… , 𝑘 and 𝑋0 = 𝐴𝑖

(𝜈)
. In [16] the convergence 

of (22) has been proved in the special orthogonal group provided that the matrices 𝐴𝑖 are 

sufficiently close to each other. The numerical tests show that iteration (22) does not 

converge if the matrices 𝐴𝑖 are positive definite and not close each other and that when 

convergence occurs it is linear. 

Another comparison that we have performed concerns the definition of geometric mean by 

𝐺 = exp(
1

𝑘
∑  

𝑘

𝑖=1

  log𝐴𝑖). 

This mean, referred to as ExpLog mean, is studied in [2], and can be computed with a cost 

of 𝑂(𝑛3𝑘) ops. However, its properties are poorer than the properties of the Cheap mean. 

First, the ExpLog mean of two matrices is different from 𝐴#𝐵. Second, it is not congruence 
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invariant as shown in the numerical experiments. Third, the ExpLog mean looses the 

monotonicity property in a very large part of cases. In fact, from a wide numerical 

experimentation it turns out that even though the matrices 𝐴𝑖 are tightly close to each other 

and have a moderate condition number, this mean fails to be monotone. Whereas, the Cheap 

mean fails to be monotone only when the matrices are severely ill conditioned and they are 

not tightly close to each other. Finally, for modeling reasons, any practical definitions of 

geometric mean should lie in a small neighborhood; from numerical experiments it turns out 

that the ALM, BMP, and Cheap means form a very tight cluster while the ExpLog mean lies 

very far from this cluster. 

We prove the local cubic convergence of iteration (20), we prove most of the ALM 

properties for the Cheap mean and provide a counterexample for the monotonicity. We 

discuss the results of the numerical experiments. 

We consider a single step of iteration (20) and for notational simplicity we write 

𝐴𝑖
′ = 𝐴

𝑖

1
2 exp(

1

𝑘
∑  

𝑘

𝑗=1

  log (𝐴
𝑖

−
1
2𝐴𝑗𝐴𝑖

−
1
2))𝐴

𝑖

1
2 .                  (23) 

Observe that the condition 𝑖 ≠ 𝑗 is not needed in (23) since the term obtained for 𝑖 = 𝑗 is 

zero. 

We introduce the following notation 

𝐴𝑗
−1/2

𝐴𝑖𝐴𝑗
−1/2

= 𝐼 + 𝐴𝑗
−1/2

(𝐴𝑖 − 𝐴𝑗)𝐴𝑗
−1/2

= 𝐼 + 𝑋𝑖,𝑗 ,

𝑋𝑖,𝑗 = 𝐴𝑗
−1/2

𝐸𝑖,𝑗𝐴𝑗
−1/2

,  𝐸𝑖,𝑗 = 𝐴𝑖 − 𝐴𝑗 ,
 

so that equation (23) can be rewritten as 

𝐴𝑖
′ = 𝐴

𝑖

1
2 exp(

1

𝑘
∑  

𝑘

𝑗=1

  log(𝐼 + 𝑋𝑖,𝑗))𝐴𝑖

1
2 .                      (24) 

We recall that if 𝜌(𝑋) < 1 then 

log(𝐼 + 𝑋) = 𝑋 −
1

2
𝑋2 +

1

3
𝑋3 −⋯ ≐ 𝑋 −

1

2
𝑋2

exp(𝑊) = 𝐼 +𝑊 +
1

2
𝑊2 +

1

3!
𝑊3 +⋯ ≐ 𝐼 +𝑊 +

1

2
𝑊2

       (25) 

where ≐ denotes equality up to terms of the third order in 𝑋 or in 𝑊. 
Here we assume that the matrices are close enough to each other, we assume that 

∥∥𝐴𝑗
−1/2

𝐸𝑖,𝑗𝐴𝑗
−1/2

∥∥ ⩽ 𝜀 < 1,  𝑖, 𝑗 = 1,… , 𝑘, 

for 𝜀 > 0 small enough, where ∥⋅∥ denotes the spectral norm. 

Since ∥∥𝑋𝑖,𝑗∥∥ < 1, applying (25) with 𝑋 = 𝑋𝑖,𝑗 in (24) yields 

𝐴𝑗
′ ≐ 𝐴𝑗

1/2
[𝐼 + 𝑍𝑗 +

1

2
𝑍𝑗
2] 𝐴𝑗

1/2
,

𝑍𝑗 ≐
1

𝑘
∑  

𝑘

𝑖=1

 (𝑋𝑖,𝑗 −
1

2
𝑋𝑖,𝑗
2 ) ,

 

whence 

𝐴𝑗
′ ≐ 𝐴𝑗 +

1

𝑘
∑  

𝑘

𝑖=1

𝐸𝑖,𝑗 −
1

2𝑘
∑  

𝑘

𝑖=1

𝐸𝑖,𝑗𝐴𝑗
−1𝐸𝑖,𝑗 +

1

2𝑘2
∑  

𝑘

𝑟,𝑠=1

𝐸𝑟,𝑗𝐴𝑗
−1𝐸𝑠,𝑗 . 
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Writing down the same equation for 𝐴ℎ
′  and subtracting the two expressions yields the 

equation which relates 𝐸ℎ,𝑗
′ = 𝐴ℎ

′ − 𝐴𝑗
′ to 𝐸𝑖,𝑗 : 

𝐸ℎ,𝑗
′ ≐ 𝐸ℎ,𝑗 +

1

𝑘
∑  

𝑘

𝑖=1

  (𝐸𝑖,ℎ − 𝐸𝑖,𝑗) −
1

2𝑘
∑  

𝑘

𝑖=1

  (𝐸𝑖,ℎ𝐴ℎ
−1𝐸𝑖,ℎ − 𝐸𝑖,𝑗𝐴𝑗

−1𝐸𝑖,𝑗)

 +
1

2𝑘2
∑  

𝑘

𝑟,𝑠=1

  (𝐸𝑟,ℎ𝐴ℎ
−1𝐸𝑠,ℎ − 𝐸𝑟,𝑗𝐴𝑗

−1𝐸𝑠,𝑗).

 

Now, since 𝐸ℎ,𝑗 +
1

𝑘
∑𝑖=1
𝑘  (𝐸𝑖,ℎ − 𝐸𝑖,𝑗) = 𝐴ℎ − 𝐴𝑗 +

1

𝑘
∑𝑖=1
𝑘  (𝐴𝑗 − 𝐴ℎ) = 0, one has 

𝐸ℎ,𝑗
′ ≐  −

1

2𝑘
∑  

𝑘

𝑖=1

  (𝐸𝑖,ℎ𝐴ℎ
−1𝐸𝑖,ℎ − 𝐸𝑖,𝑗𝐴𝑗

−1𝐸𝑖,𝑗)

 +
1

2𝑘2
∑  

𝑘

𝑟,𝑠=1

  (𝐸𝑟,ℎ𝐴ℎ
−1𝐸𝑠,ℎ − 𝐸𝑟,𝑗𝐴𝑗

−1𝐸𝑠,𝑗).

              (26) 

This implies that there exists a constant 𝜎, depending only on the matrices 𝐴1, … , 𝐴𝑘 such 

that max𝑖,𝑗  ∥∥𝐸𝑖,𝑗
′
∥∥ < 𝜎max𝑖,𝑗  ∥∥𝐸𝑖,𝑗∥∥

2
, so that if the sequence {𝐸ℎ,𝑗

(𝜈)
}
𝜈
 converges to zero the 

convergence is at least quadratic. 

We can prove more by observing that 

1

𝑘
∑  

𝑘

𝑖=1

 𝐸𝑖,ℎ𝐴ℎ
−1𝐸𝑖,ℎ =

1

𝑘
∑  

𝑘

𝑖=1

 𝐴𝑖𝐴ℎ
−1𝐴𝑖 − 2𝑀 + 𝐴ℎ ,

1

𝑘2
∑  

𝑘

𝑖,𝑗=1

 𝐸𝑖,ℎ𝐴ℎ
−1𝐸𝑗,ℎ = 𝑀𝐴ℎ

−1𝑀 − 2𝑀 + 𝐴ℎ ,

 

where we set 𝑀 =
1

𝑘
∑𝑖=1
𝑘  𝐴𝑖. Replacing the latter equations in (26) one obtains 

𝐸ℎ,𝑗
′ = −

1

2
(𝑀(𝐴ℎ

−1 − 𝐴𝑗
−1)𝑀 −

1

𝑘
∑  

𝑘

𝑖=1

 𝐴𝑖(𝐴ℎ
−1 − 𝐴𝑗

−1)𝐴𝑖). 

Since 𝑀 =
1

𝑘
∑𝑖=1
𝑘  𝐴𝑖, formally the latter expression is a quadratic form in 𝐴1, … , 𝐴𝑘, namely, 

𝐸ℎ,𝑗
′ = ∑  

𝑘

𝑟,𝑠=1

𝜂𝑟,𝑠𝐴𝑟(𝐴ℎ
−1 − 𝐴𝑗

−1)𝐴𝑠,  
1

2𝑘2
(𝑘𝐼 − 𝑒𝑒𝑇) = (𝜂𝑟,𝑠), 

where 𝑒 = (1,… ,1)𝑇, that is, the matrix associated with this quadratic form is 

𝑄ℎ,𝑗 =
1

2𝑘2
(𝑘𝐼 − 𝑒𝑒𝑇) ⊗ (𝐴ℎ

−1 − 𝐴𝑗
−1), 

where ⊗ denotes the Kronecker product. 

Now, the matrix 𝑘𝐼 − 𝑒𝑒𝑇 can be rewritten as 

𝑘𝐼 − 𝑒𝑒𝑇 = 𝑘𝑈𝑇−1𝑈𝑇 ,  𝑇 = 𝑈𝑇𝑈                                   (27) 
where 𝑈 ∈ ℝ𝑘×(𝑘−1), 𝑈𝑒𝑖 = 𝑒𝑖 − 𝑒(𝑖−1)mod𝑘, for 𝑖 = 1,… , 𝑘 − 1, and 𝑇 = 𝑈𝑇𝑈 is the (𝑛 −

1) × (𝑛 − 1) symmetric tridiagonal matrix having diagonal entries equal to 2 and super-

diagonal entries equal to −1. In fact, the two matrices in the left-hand and in the right-hand 

side of (27) have the vector 𝑒 in their kernels and thus coincide in the linear space orthogonal 

to 𝑒 spanned by the columns of 𝑈. Therefore 
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𝑄ℎ,𝑗 =
1

2𝑘
[𝑈⊗ 𝐼][𝑇−1⊗ (𝐴ℎ

−1 − 𝐴𝑗
−1)][𝑈𝑇⊗ 𝐼] 

so that we may write 

𝐸ℎ,𝑗
′  = [𝐴1 ⋯ 𝐴𝑘]𝑄ℎ,𝑗 [

𝐴1
⋮
𝐴𝑘

]

 = [𝐸1,2 ⋯ 𝐸𝑘−1,𝑘] (
1

2𝑘
𝑇−1⊗ (𝐴ℎ

−1𝐸ℎ,𝑗𝐴𝑗
−1)) [

𝐸1,2
⋮

𝐸𝑘−1,𝑘

]

 =
1

2𝑘
∑  

𝑘−1

𝑟=1

 ∑  

𝑘−1

𝑠=1

 𝛾𝑟,𝑠𝐸𝑟,𝑟+1𝐴ℎ
−1𝐸ℎ,𝑗𝐴𝑗

−1𝐸𝑠,𝑠+1,

 

with 𝑇−1 = (𝛾𝑟,𝑠). Denoting 𝛾 = 𝛾(𝑘) =
1

2𝑘
∑𝑟,𝑠  𝛾𝑟,𝑠 one has 

∥∥𝐸ℎ,𝑗
′
∥∥ ⩽ ∥∥𝐸ℎ,𝑗∥∥𝛾(𝑘)max

𝑟
 ∥∥𝐸𝑟,𝑟+1∥∥

2
∥∥𝐴ℎ

−1∥∥ ⋅ ∥∥𝐴𝑗
−1
∥∥. 

Therefore, 

max
𝑖,𝑗
 ∥∥𝐸𝑖,𝑗

′
∥∥ ⩽ 𝛾(𝑘)max

𝑖,𝑗
 ∥∥𝐸𝑖,𝑗∥∥

3
⋅ max

𝑗
 ∥∥𝐴𝑗

−1
∥∥
2
.                            (28) 

We synthesize the above discussion in the following result, where we give also a condition 

such that iteration (19) converges. 

Theorem (1.2.3)[11]: If the sequences 𝐴𝑖
(𝜈)

 generated by (19) have a common limit 𝐺, then 

there exists a constant 𝛾 such that ∥∥𝐴𝑖
(𝜈+1)

− 𝐴𝑗
(𝜈+1)

∥∥ ⩽ 𝛾 ∥∥𝐴𝑖
(𝜈)
− 𝐴𝑗

(𝜈)
∥∥
3
, for any 𝑖, 𝑗 =

1,… , 𝑘, i.e., convergence has order at least 3. If max𝑗  ∥∥𝐴𝑗
−1
∥∥ ⋅ max𝑖,𝑗   ∥ 𝐴𝑖 − 𝐴𝑗 ∥< 𝜀 for 

𝑖, 𝑗 = 1,… , 𝑘, where 0 < 𝜀 < 1/3 then max𝑗   ∥∥
∥(𝐴𝑗

(𝜈)
)
−1

∥∥
∥ ⋅ max𝑖,𝑗   ∥ 𝐴𝑖

(𝜈)
− 𝐴𝑗

(𝜈)
∥< 𝜀 for 

𝑖, 𝑗 = 1,… , 𝑘, for any 𝜈, moreover max𝑖,𝑗   ∥∥𝐴𝑖
(𝜈)
− 𝐴𝑗

(𝜈)
∥∥ ⩽ (2𝜀/(1 − 𝜀))

𝜈, and the 

sequences 𝐴𝑖
(𝜈)

 converge to the same limit 𝐺. 

Proof. The first part of the theorem follows from (28). Concerning the second part, denote 

= max𝑖,𝑗  ∥∥𝐴𝑖 − 𝐴𝑗∥∥, 𝛿
′ = max𝑖,𝑗  ∥∥𝐴𝑖

′ − 𝐴𝑗
′
∥∥, 𝑓 = max𝑖  ∥∥𝐴𝑖

−1∥∥, 𝑓′ = max𝑖  ∥∥𝐴𝑖
′−1∥∥, and 

observe that ∥∥𝐴𝑗
−1(𝐴𝑖 − 𝐴𝑗)∥∥ ⩽ 𝛿𝑓. Let us prove that if 𝛿𝑓 < 𝜀 with 𝜀 sufficiently small, 

then also 𝛿′𝑓′ ⩽ 𝜀 so that ∥∥𝐴𝑗
′−1(𝐴𝑖

′ − 𝐴𝑗
′)∥∥ ⩽ 𝜀 as well. From (26) one finds that 

𝛿′ ⩽ 2𝛿2max
𝑖
 ∥∥𝐴𝑖

−1∥∥ = 2𝛿2𝑓.                                   (29) 

Now we provide an upper bound to 𝑓′ by proving that 

𝑓′ ⩽
𝑓

1 − 𝛿𝑓
.                                                               (30) 

We rely on the following inequalities which derive directly from the definition of the matrix 

functions exp and log by taking the norms of both sides of (25): 

 ∥ exp(𝑋) ∥⩽ exp(∥ 𝑋 ∥)

 ∥ log(𝐼 + 𝑋) ∥⩽ − log(1−∥ 𝑋 ∥) ,   if ∥ 𝑋 ∥< 1.
       (31) 

We note 

∥∥𝐴𝑖
′−1∥∥ ⩽

∥
∥
∥
∥
∥

exp(−
1

𝑘
∑  

𝑘

𝑗=1

  log(𝐴𝑖
−1𝐴𝑗))

∥
∥
∥
∥
∥

⋅ ∥∥𝐴𝑖
−1∥∥ ⩽

∥
∥
∥
∥
∥

exp(−
1

𝑘
∑  

𝑘

𝑗=1

  log(𝐴𝑖
−1𝐴𝑗))

∥
∥
∥
∥
∥

𝑓. (32) 
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By using (31) one finds that 

∥
∥
∥
∥
∥
∥

exp (−
1

𝑘
∑  

𝑘

𝑗=1

 log (𝐴𝑖
−1𝐴𝑗))

∥
∥
∥
∥
∥
∥

 ⩽ exp (
∥
∥
∥
∥
∥1

𝑘
∑  

𝑘

𝑗=1

 log (𝐴𝑖
−1𝐴𝑗)

∥
∥
∥
∥
∥
)

 ⩽ exp (
1

𝑘
∑  

𝑘

𝑗=1

  ∥∥log (𝐴𝑖
−1𝐴𝑗)∥∥)

 = exp (
1

𝑘
∑  

𝑘

𝑗=1

  ∥∥log (𝐼 + 𝐴𝑖
−1𝐸𝑗,𝑖)∥∥)

 

Now, since ∥∥𝐴𝑖
−1𝐸𝑗,𝑖∥∥ ⩽ 𝛿𝑓 ⩽ 𝜀 < 1 we may apply (31) and get 

∥
∥
∥
∥
∥
∥

exp (−
1

𝑘
∑  

𝑘

𝑗=1

 log (𝐴𝑖
−1𝐴𝑗))

∥
∥
∥
∥
∥
∥

 ⩽ exp (−
1

𝑘
∑  

𝑘

𝑗=1

 log (1 − ∥∥𝐴𝑖
−1𝐸𝑗,𝑖∥∥)

 = (∏ 

𝑘

𝑗=1

  (1 − ∥∥𝐴𝑖
−1𝐸𝑗,𝑖∥∥))

−1/𝑘  

⩽ (1 − 𝛿𝑓)−1 

which in the view of (32) yields (30). Now we are ready to prove that if the condition 𝛿𝑓 ⩽
𝜀 is satisfied then 𝛿′𝑓′ ⩽ 𝜀 as well. Combining (29) and (30) yields 

𝛿′𝑓′ ⩽ (𝛿𝑓)2
2

1 − 𝛿𝑓
. 

Clearly, if 𝜀 < 1/3 then 𝛿′𝑓′ < 𝜀 and from (29) one deduces that 

𝛿′ ⩽
2

3
𝛿. 

An inductive process completes the convergence proof. 

Proving global convergence is still an open problem. From the many numerical experiments 

that we have performed we have always observed convergence. It is interesting to point out 

that if the matrices 𝐴𝑖 pairwise commute then convergence occurs in just one step for any 

𝑘-tuple of positive definite matrices 𝐴1, … , 𝐴𝑘. 

A large number of the ALM properties are satisfied by the Cheap mean. We give a 

formal proof for the properties P1, P2, P3, P6, P8, and P9, while for P4 we provide a 

counterexample which shows that monotonicity is not fulfilled by our mean. The proof of 

validity of P5, P7 and P10 is usually performed relying on P4. We have no counterexample 

for P5, P7 and P10. 

We provide the proofs in the case 𝑘 = 3. The generalization to any 𝑘 is 

straightforward. We show that starting with 𝐴0 = 𝐴, 𝐵0 = 𝐵 and 𝐶0 = 𝐶, properties P1, P2, 

P6, P8 and P9, are held by 𝐴1 itself (and 𝐵1 and 𝐶1 ). This fact can be used in an induction 

argument, proving that the same properties hold for 𝐴𝑘 , 𝐵𝑘 and 𝐶𝑘, for each 𝑘 > 0 and thus 

for the limit. 

P1 Consistency with scalars. If 𝐴, 𝐵, 𝐶 commute, then 
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𝐴1 = 𝐴exp (
1

3
(log (𝐴−1𝐵) + log (𝐴−1𝐶)))  = 𝐴exp (

1

3
(log (𝐴−1𝐵𝐴−1𝐶))

 = 𝐴(𝐴−2𝐵𝐶)1/3 = (𝐴𝐵𝐶)1/3.

 

where we have used Property 2 of Theorem (1.2.1). The same holds for 𝐵1 and 𝐶1. 

P2 Joint homogeneity. If �̂� = 𝛼𝐴, �̂� = 𝛽𝐵 and �̂� = 𝛾𝐶, with 𝛼, 𝛽, 𝛾 > 0, then 

�̂�1  = 𝛼𝐴exp (
1

3
(log (𝐴−1𝐵

𝛽

𝛼
) + log (𝐴−1𝐶

𝛾

𝛼
)))

 = 𝛼𝐴exp (
1

3
(log (𝐴−1𝐵) + log (𝐴−1𝐶) + log (

𝛽𝛾

𝛼2
𝐼)))

 = 𝛼𝐴exp (
1

3
(log (𝐴−1𝐵) + log (𝐴−1𝐶))) exp log ((

𝛽𝛾

𝛼2
)
1/3

) = (𝛼𝛽𝛾)1/3𝐴1,

 

where we have used Properties 1 and 2 of Theorem (1.2.1). The same holds for 𝐵1 and 𝐶1. 

P3 Permutation invariance. It follows immediately from the definition. 

P4 Monotonicity. This property is not satisfied in general as it is shown by the following 

numerical counterexample. 

Let 

𝐴 = 𝐼,  𝐵 = [
𝜀 0 0
0 1 0
0 0 1

] ,  𝐶 = [
1 0 0
0 𝜀 0
0 0 1

] ,  �̃� = 𝐴 + ℎ𝑒𝑒𝑇 . 

For 𝜀 = 0.0001 and 0 < ℎ ⩽ 3 it holds that �̃�(ℎ) ⩾ 𝐴 and the matrix 𝐺(�̃�, 𝐵, 𝐶) −
𝐺(𝐴, 𝐵, 𝐶) has a negative eigenvalue. For instance, for ℎ = 1 the eigenvalues are 

−2.4131e − 3,2.2853e − 2,1.0826e − 1. 

P6 Congruence invariance. Observe that starting from �̂� = 𝑆∗𝐴𝑆, �̂� = 𝑆∗𝐵𝑆, 𝐶
2

= 𝑆∗𝐶𝑆 one 

has 

�̂�1  = �̂�exp (
1

3
(log (�̂�−1�̂�) + log (�̂�−1�̂�)))

 = 𝑆∗𝐴𝑆exp (
1

3
(log (𝑆−1𝐴−1𝑆−∗𝑆∗𝐵𝑆) + log (𝑆−1𝐴−1𝑆−∗𝑆∗𝐵𝑆))

 = 𝑆∗𝐴𝑆𝑆−1 exp(
1

3
(log(𝐴−1𝐵) + log(𝐴−1𝐶))) 𝑆 = 𝑆∗𝐴1𝑆,

 

where Property 3 of Theorem (1.2.1) has been used. The same holds for �̂�1 and �̂�1. 

P8 Self duality. Observe that 

𝐴1
−1  = exp (−

1

3
(log (𝐴−1𝐵) + log (𝐴−1𝐶)))𝐴−1

 = exp (log (𝐵−1𝐴)1/3 + log (𝐶−1𝐴)1/3)𝐴−1

 = 𝐴−1exp (log (𝐴𝐵−1)1/3 + log (𝐴𝐶−1)1/3) = �̂�1,

 

where �̂�1 is obtained from �̂� = 𝐴−1, �̂� = 𝐵−1 and �̂� = 𝐶−1, thus the self-duality holds for 

𝐴1. The same holds for 𝐵1 and 𝐶1. 

P9 Determinant identity. The identity follows from det (𝑒𝐴+𝐵) = det (𝑒𝐴𝑒𝐵), in fact for 𝐴, 𝐵 

and 𝐶 
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det 𝐴1  = det 𝐴det (exp (log (𝐴−1𝐵)1/3))det (exp (log (𝐴−1𝐶)1/3))

 = det 𝐴det (𝐴−1𝐵)1/3det (𝐴−1𝐶)1/3 = (det 𝐴det 𝐵det 𝐶)1/3,
 

where Property 4 of Theorem (1.2.1) has been used. The same holds for det 𝐵1 and det 𝐶1. 

Observe that in the counterexample concerning monotonicity the matrices 𝐴, 𝐵 and 𝐶 are 

quite far from each other and do not satisfy the convergence conditions of Theorem (1.2.3). 

We do not have any counterexample to the monotonicity where the matrices 𝐴𝑖 satisfy the 

convergence conditions of Theorem (1.2.3), and we believe that monotonicity is satisfied 

"locally", i.e., if the set of matrices 𝐴𝑖 , 𝑖 = 1,… , 𝑘 lie in a neighborhood of their mean. 

Observe, moreover, that 𝐴1 verifies properties P1, P2, P6, P8 and P9, thus, it can be viewed 

as a rough mean. 

We have implemented the computation of the Cheap mean together with other 

algorithms for matrix means in the Matrix Means Toolbox [13] available for Matlab and 

Octave. Here we report part of the many numerical experiments that we have performed. 

In the first set of tests we compare the execution times of computing the Cheap mean and 

the mean of [1], in the following BMP mean, which among the ALM means is the fastest 

available. 

The test matrices are generated randomly with different values of their condition numbers 

according to the following Matlab commands: 

n = 10;W = rand (n) − rand (n); X = W′ ∗  W;X = X − eye (n) ∗ m  (eig (X))

X = X/norm (X); X = X + eye (n)/(cnd − 1); X = X/norm (X);
 

so that the parameter cnd coincides with the condition number of 𝑋. 

For various values of the condition number cnd, for 𝑛 = 4 and 𝑘 = 3: 10, in Table 4 we 

report the CPU time required to compute the Cheap mean and the BMP mean together with 

the Euclidean distance of the two means. A "*" denotes a CPU time larger than 104 seconds. 

The number of iterations required to compute the Cheap mean as well as the number of outer 

iterations in the recursive process to compute the BMP mean has been between 4 and 5. 

The exponential growth with 𝑘 of the complexity of the BMP mean is evident, while the 

polynomial complexity of the Cheap mean makes the computation possible even for much 

larger values of 𝑘. It is interesting to observe that the Cheap mean and the BMP mean are 

not so far from each other. 

The second bunch of tests compares the Cheap mean with the mean 

𝐺 = exp (
1

𝑘
∑  

𝑘

𝑖=1

 log (𝐴𝑖)) 

which, for simplicity we call ExpLog mean, in order to find out the cases where the 

monotonicity property is not satisfied. To this end, we consider a 3 × 3 diagonal matrix 𝐴1 

with diagonal entries 1, 𝛿, 𝛿2, for 0 < 𝛿 < 1 so that ∥∥𝐴1∥∥ = 1 and its condition 
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Table (1)[]: 

CPU times in seconds, rounded to one digit, required to compute the BMP mean 𝐺1 and the 

Cheap mean 𝐺2, together with the distances ‖𝐺1 − 𝐺2‖2. 𝐴 “ ∗ ” denotes a CPU time larger 

than 104 seconds. 

 
Table (2)[]: 

Percentage of cases where the ExpLog mean of 𝐴1, 𝐴2, 𝐴3 fails to be monotone where 𝐴2 

and 𝐴3 are chosen in a neighborhood of A1 of radius " and A1 has condition number cnd 

number is 1/𝛿2, and define 𝐴2 = 𝐴1 + 𝜀𝑈1, 𝐴3 = 𝐴1 + 𝜀𝑈2, where 𝑈1, 𝑈2 are positive 

definite random matrices with norm 1 , generated as follows: 

W = rand (3) − rand (3);W = W ∗  W′; U = W/norm (W); 
In this way the matrices 𝐴2, 𝐴3 stay in the sphere of center 𝐴1 and radius 𝜀. We have 

generated 100 random values and computed the number of cases where the matrix 

𝐺(𝐴1 + 0.01 ∗ 𝐴2, 𝐴2, 𝐴3) − 𝐺(𝐴1, 𝐴2, 𝐴3) is not positive definite. Tables (2) and (3) 
report these values according to the conditioning of 𝐴1 and to the radius of the neighborhood 

of 𝐴1. It is evident that the ExpLog mean fails to be monotone even for moderate values of 

the condition number and for relatively small neighborhoods of 𝐴1, whereas the Cheap mean 

seems to be more robust. 

It is not difficult to construct numerical examples showing that the ExpLog mean is not 

congruence invariant, for instance if 𝐴 = [
5 4
4 5

] and 𝑆 = [
1 0
0 2

] 

𝑆∗exp (
1

2
(log (𝐴) + log (𝐼))) 𝑆  = [

2 2
2 8

] ,

exp (
1

2
(log (𝑆∗𝐴𝑆) + log (𝑆∗𝑆)))  ≈ [

3.0 5.4
5.4 13.5

] .
 

The last bunch of tests, taken from [12], reports the number of iterations needed and the 

Cheap mean. 
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for approximating the Karcher mean relying on the iteration 

𝑋𝜈+1 = 𝑔(𝑋𝜈),  𝜈 = 0,1,… ,

𝑔(𝑋) = 𝑋 − 𝜗𝑋1/2∑ 

𝑘

𝑖=1

 log (𝑋1/2𝐴𝑖
−1𝑋1/2)𝑋1/2,

        (33) 

starting with 𝑋0 equal to the identity matrix, the arithmetic mean and the Cheap mean. Here 

we have choosen the value of 𝜗 which minimizes the number of iterations. It is interesting 

to point out that the number of iterations required is much larger than the number of 

iterations needed to approximate the Cheap mean which in all the treated cases is less than 

or equal to 5. Moreover, choosing as starting approximation the Cheap mean yields a faster 

convergence. 

We conclude with an example showing the mutual distance of most of the means of interest. 

We consider the following matrices 

𝐴 = [
3 2
2 3

] ,  𝐵 = [
2 1
1 2

] ,  𝐶 = [
1 0
0 2

],                        (34) 

and we compute the ALM, BMP, Cheap, ExpLog and the Karcher means of them. 

Moreover, we compute the arithmetic-harmonic-geometric (AHG) mean, that is the 

geometric mean of the arithmetic mean and the harmonic mean. The latter does not satisfy 

most of the ALM properties, but it is easy to compute. In Figure 4 we have plotted the 

corresponding points in the three dimensional space of 2 × 2 symmetric matrices. One can 

observe that the ALM, BMP, Cheap and Karcher means are very  
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near to each other, while ExpLog and AHG means are relatively far from the others. This is 

a typical situation that makes the Cheap mean preferable with respect to the ExpLog and 

AHG means. 

We have introduced a new definition of geometric mean which, unlike the ALM 

means, can be computed with low computational effort even for a large number of input 

matrices (Cheap mean). We have proved its local convergence and that it fulfills most of the 

ALM properties. 

A proof of global convergence of the iteration for the Cheap Mean is missing; 

concerning the lack of monotonicity, it would be interesting to find out under which 

conditions on the matrices 𝐴𝑖 the Cheap mean keeps monotonicity. For instance, it seems 

reasonable that if the matrices 𝐴𝑖 are close enough to each other then monotonicity should 

be satisfied. 

Section (1.3): Geometric Means of Structured Matrices 

We generalize the concept of the geometric mean to positive definite (positive for 

short) matrices and, on the other hand, the need to average quantities expressed by positive 

matrices in certain applications have led to the definition and the study of the Karcher mean 

[3], [5], [17]. 

We consider the set of positive Hermitian 𝑛 × 𝑛 matrices, denoted by 𝒫𝑛, as a 

manifold [21], in particular, there is a diffeomorphism from 𝒫𝑛 to ℝ𝑛
2
. In each point of 𝐴 ∈

𝒫𝑛 one can define the tangent space 𝑇𝐴𝒫𝑛, which can be identified with the space of 

Hermitian matrices. The Karcher mean can now be defined in terms of a Riemannian 

geometry defined on 𝒫𝑛 and induced by the inner product 

𝑔𝐴(𝑋, 𝑌):= tr(𝐴
−1𝑋𝐴−1𝑌) ,  𝑋, 𝑌 ∈ 𝑇𝐴𝒫𝑛                            (35) 

on the tangent space 𝑇𝐴𝒫𝑛. This inner product 𝑔𝐴 makes 𝒫𝑛 a complete Riemannian manifold 

with non-positive curvature and yields the following distance between two matrices 𝐴, 𝐵 ∈
𝒫𝑛 : 

𝛿(𝐴, 𝐵) = (∑  

𝑛

𝑘=1

  log2 𝜆𝑘)

1
2

,                                                 (36) 
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where 𝜆1, … , 𝜆𝑛, are the eigenvalues of 𝐴−1𝐵, which are positive numbers (for all the proofs 

see [3]). The Karcher mean of a set of 𝑚 positive matrices, 𝐴1, … , 𝐴𝑚 ∈ 𝒫𝑛, is defined as 

the unique positive minimizer 𝐺(𝐴1, … , 𝐴𝑚) of the function 

𝑓(𝑋; 𝐴1, … , 𝐴𝑚):=∑  

𝑚

𝑗=1

𝛿2(𝑋, 𝐴𝑗).                                   (37) 

Since this mean minimizes the sum of squared intrinsic distances to each of the matrices 𝐴𝑗 

it is a barycenter of these matrices with respect to the aforementioned metric. 

An important feature of the Karcher mean is that it possesses all the properties desired by a 

geometric mean, like the ten Ando-Li-Mathias (ALM) axioms [2]. For this reason, it is a 

viable tool in applications requiring some of these properties [24], [10]. A geometric mean 

should for instance be: permutation invariant, monotone, joint concave, and should satisfy 

the arithmetic-geometric-harmonic inequality (see [2] for the precise statements of the 

properties). In particular, one of the most characteristic properties of a geometric mean is its 

invariance under inversion: 

𝐺(𝐴1
−1, … , 𝐴𝑚

−1) = 𝐺(𝐴1, … , 𝐴𝑚)
−1.                            (38) 

Prior to having the proofs of all the properties of the Karcher mean, some of which are very 

elusive [41], other definitions of a matrix geometric mean had been proposed [2], [1], [11], 

[43], even if nowadays there is large agreement in considering the Karcher mean as the 

"right" matrix geometric mean. 

In certain applications, however, besides the positive definiteness, the data matrices 

have some further structure in the sense that they belong to some special subset 𝒮, say a 

linear space. For instance, in the design and analysis of certain radar systems, the matrices 

to be averaged are correlation matrices, which are positive Toeplitz matrices [40]. In these 

cases, one would like the geometric mean to belong to the same class 𝒮 as the data. 

Unfortunately, the Karcher mean does not preserve many structures, in particular the 

Karcher mean of Toeplitz and/or band matrices is typically not of Toeplitz and/or band form 

anymore, as illustrated by the following simple example. 

Example (1.3.1)[20]: Let 𝒮 be the set of tridiagonal Toeplitz matrices and choose 𝐴1, 𝐴2 ∈ 

𝒮 where 𝐴1 = 𝐼, and 𝐴2 = tridiag (1,2,1) is the matrix with 2 's on the main, and 1 's 

appearing on sub- and superdiagonals. We have 𝐴1𝐴2 = 𝐴2𝐴1, thus the Karcher mean 

equals (𝐴1𝐴2)
1/2. For 𝑛 = 3 we get 

(𝐴1𝐴2)
1/2 =

√2

4

[
 
 
 
 
 
 √2 + √2 + 2 √2√2 − √2 √2 + √2 − 2

√2√2 − √2 √2 + √2 √2√2 − √2

√2 + √2 − 2 √2√2 − √2 √2 + √2 + 2]
 
 
 
 
 
 

(39) 

which is neither tridiagonal nor Toeplitz. 

We introduce the concept of a structured geometric mean of positive matrices in such 

a way that if 𝐴1, … , 𝐴𝑚 ∈ 𝒮 their mean also belongs to 𝒮. Given a subset 𝒮 of 𝒫𝑛 and 

matrices 𝐴1, … , 𝐴𝑚 ∈ 𝒮, we say that 𝐺 ∈ 𝒮 is a structured geometric mean with respect to 𝒮 

of 𝐴1, … , 𝐴𝑛 if the function 𝑓(𝑋; 𝐴1, … , 𝐴𝑚) of (37) takes its minimum value over 𝒮 at 𝐺. 

The set of all structured geometric means of 𝐴1, … , 𝐴𝑚 with respect to 𝒮 is denoted by 𝐺𝒮 =
𝐺𝒮(𝐴1, … , 𝐴𝑚). 
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We show that if 𝒮 is closed (and nonempty) then 𝐺𝒮 is nonempty and the matrices 𝐺 ∈ 𝐺𝒮 

satisfy most of the ALM axioms in a suitably adjusted form. For instance, the invariance 

under inversion property (38) turns into 

𝐺𝒮(𝐴1, … , 𝐴𝑚) = 𝐺𝒮−1(𝐴1
−1, … , 𝐴𝑚

−1)−1, 
where for a set 𝒰 ⊆ 𝒫𝑛 we denote 𝒰−1 = {𝑋−1: 𝑋 ∈ 𝒰}. That is, the inverse of any 

structured geometric mean of the matrices 𝐴1, … , 𝐴𝑚 ∈ 𝒮 with respect to 𝒮 coincides with 

a structured mean of the inverses 𝐴1
−1, … , 𝐴𝑚

−1 with respect to the set 𝒮−1 where these 

inverses reside. 

We show that, in many interesting cases, structured geometric means can be characterized 

in terms of the positive solutions of a suitable vector equation and provide algorithms for 

their computation. 

In the Toeplitz case we also consider a different approach, where the mean is defined as a 

barycenter for a suitable metric on the manifold [23]. We analyze this barycenter and its 

properties in detail, obtaining an explicit expression in the real case and a quick algorithm 

in the complex case. 

The cost function (37) is examined with special focus on the existence of the 

minimizer over a closed set. The structured matrix mean itself is the subject of study, where 

the theoretical properties it should satisfy are examined. We propose two algorithms for 

computing a structured mean 𝐺 in a linear space together with their convergence analysis. 

For one algorithm, it is shown that the convergence speed is independent of the condition 

number of the mean and is faster when the condition numbers of the matrices 𝐴𝑖
−1/2

𝐺𝐴𝑖
−1/2

 

are smaller, for 𝑖 = 1,… , 𝑛. Because of its nature and its convergence properties, this 

algorithm can be viewed as the natural extension to the structured case of the Richardson-

like algorithm introduced and analyzed in [26] for the computation of the Karcher mean of 

unstructured matrices. For Toeplitz matrices, a different structured matrix mean [23] as a 

barycenter is considered, and an algorithm for computing it is developed. We show 

numerical experiments related to accuracy and speed for computing the structured matrix 

mean. 

Given a matrix 𝐴, we define 𝜎(𝐴) the spectrum of 𝐴, that is, the set of all the eigenvalues 

of 𝐴, and 𝜌(𝐴) = max𝜆∈𝜎(𝐴)  |𝜆| the spectral radius of 𝐴. Moreover we denote by ∥ 𝐴 ∥𝐹: =

(trace (𝐴∗𝐴))
1/2

= (∑𝑖,𝑗  |𝑎𝑖𝑗|
2
)
1/2

 the Euclidean (Frobenius) norm of 𝐴, and ∥ 𝐴 ∥2=

𝜌(𝐴∗𝐴)1/2 is the spectral norm. By 𝐴∗ we denote the transposed conjugate of 𝐴. Recall that 

for a positive matrix 𝐴 there exists a unique positive solution to the equation 𝑋2 = 𝐴. This 

solution, denoted by 𝐴1/2, is called the square root of 𝐴[3]. Given a matrix 𝐴 ∈ ℂ𝑛×𝑛, we 

use the vec-operator to build vec (𝐴) ∈ ℂ𝑛
2
, a long vector obtained by stacking the columns 

of 𝐴. We will use the Kronecker product ⊗ such that 𝐴⊗𝐵 is the block matrix whose (𝑖, 𝑗) 
th block is defined as 𝑎𝑖𝑗𝐵. The vec operator and the Kronecker product interplay in the 

following way [34] 
vec(𝐴𝐵𝐶) = (𝐶𝑇⊗𝐴)vec(𝐵).                                   (40) 

Finally, we recall a natural partial order in 𝒫𝑛 that will be used in the following: let 𝐴 and 𝐵 

be positive, we write 𝐴 ⩾ 𝐵 if the matrix 𝐴 − 𝐵 is semidefinite positive. 

The existence of a structured geometric mean and its relation to the classical Karcher 

mean is studied. First some necessities are repeated. 
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The Riemannian geometry on 𝒫𝑛 given by the inner product (35) turns out to be 

complete and a parametrization of the geodesic joining two positive matrices 𝐴 and 𝐵 is 

known to be [3] 

𝐴#𝑡𝐵 = 𝐴
1/2(𝐴−1/2𝐵𝐴−1/2)

𝑡
𝐴1/2 = 𝐴(𝐴−1𝐵)𝑡,  𝑡 ∈ [0,1],       (41) 

where the midpoint 𝐴#1/2𝐵 coincides with the geometric mean of the two matrices [35], 

[15]. 

Given a set of matrices 𝐴1, … , 𝐴𝑚 ∈ 𝒫𝑛, the function 𝑓(𝑋) = 𝑓(𝑋; 𝐴1, … , 𝐴𝑚) in 

(37) is strictly geodesically convex, which means that for any two different matrices 𝑋, 𝑌 ∈
𝒫𝑛, we have 

𝑓(𝑋#𝑡𝑌) < (1 − 𝑡)𝑓(𝑋) + 𝑡𝑓(𝑌),  0 < 𝑡 < 1.                            (42) 
This property follows from [3], where it is stated that for 𝑚 = 1 the function 𝑓(𝑋) is strictly 

geodesically convex. The case 𝑚 > 1 follows by summing up the 𝑚 inequalities obtained 

by applying (42) to the functions 𝑓(𝑋) = 𝑓(𝑋; 𝐴𝑖), for 𝑖 = 1,… ,𝑚, respectively. 

Geodesical convexity is a key ingredient for the proof of the existence of a unique minimizer 

of 𝑓 over 𝒫𝑛 given in [3]. A different proof is obtained using the fact that 𝒫𝑛, with the inner 

product (35), forms a Cartan-Hadamard manifold [29], [15], [42], which is a Riemannian 

manifold, complete, simply connected and with non-positive sectional curvature 

everywhere. On such a Cartan-Hadamard manifold the Karcher mean (the so-called center-

of-mass) exists and is unique [17], [38], [39]. 

The notion of geodesical convexity in 𝒫𝑛 is different from the customary convexity in the 

Euclidean space where one requires that 

𝑓((1 − 𝑡)𝑋 + 𝑡𝑌) ⩽ (1 − 𝑡)𝑓(𝑋) + 𝑡𝑓(𝑌),  𝑡 ∈ [0,1]. 
In fact, the function 𝑓 is not convex in the traditional sense as the following example shows. 

Example (1.3.2)[20]: Consider the set made of the unique matrix 𝐴 = 1, and 𝑥, 𝑦 ∈ ℝ+
∗ =

𝒫1. We have 𝑓(𝑥) = 𝛿2(𝑥, 𝐴) = log2 (𝑥) which is not convex. On the other hand the 

function log2 (𝑥) is strictly geodesically convex and this can be shown by an elementary 

argument: in fact, it is continuous and 

𝛿2(√𝑥𝑦, 1) = log2 (√𝑥𝑦) =
1

4
(log2 𝑥 + log2 𝑦 + 2log 𝑥log 𝑦)

=
1

2
(log2 𝑥 + log2 𝑦) −

1

4
(log 𝑥 − log 𝑦)2

 

<
1

2
(log2 𝑥 + log2 𝑦) =

1

2
(𝛿2(𝑥, 1) + 𝛿2(𝑦, 1)).  

Iterative selection of midpoints, by using midpoints and a continuity argument completes 

the proof. 

Since 𝑓 is strictly geodesically convex, it can be proved that it has a unique minimizer over 

any closed, geodesically convex subset 𝒮 of 𝒫𝑛, where we say that a subset 𝒮 ⊆ 𝒫𝑛 is 

geodesically convex if for any 𝑋, 𝑌 ∈ 𝒮, the entire geodesic 𝑋#𝑡𝑌, 𝑡 ∈ [0,1] belongs to 𝒮. 

Indeed, if 𝑋1 and 𝑋2 were two different matrices in 𝒮 where 𝑓 takes its minimum, then from 

(42) it would follow that 𝑓(𝑋1#𝑡𝑋2) < 𝑓(𝑋1) = 𝑓(𝑋2) for any 0 < 𝑡 < 1 which contradicts 

the assumption. 

For a generic closed subset 𝒰 of 𝒫𝑛, which is not necessarily geodesically convex, 

we can prove the existence of a minimum point by using the fact that 𝑓(𝑋) is continuous. 

In order to prove this, we first give a couple of preliminary results. 

Lemma (1.3.3)[20]: Let 𝐴, 𝑋, 𝑌 ∈ 𝒫𝑛 be such that 𝑌 = 𝐴−1/2𝑋𝐴−1/2. Then for any operator 

norm, 
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∥ 𝑌 ∥⩾∥ 𝑋 ∥/∥∥𝐴1/2∥∥
2
,  ∥∥𝑌−1∥∥ ⩾ ∥∥𝑋−1∥∥/∥∥𝐴−1/2∥∥

2
. 

Proof. The condition 𝑌 = 𝐴−1/2𝑋𝐴−1/2 can be rewritten as 𝑋 = 𝐴1/2𝑌𝐴1/2. Taking norms 

yields ∥ 𝑋 ∥⩽ ∥∥𝐴1/2∥∥
2
∥ 𝑌 ∥ from which the first inequality follows. The second inequality 

holds similarly starting from 𝑌−1 = 𝐴1/2𝑋−1𝐴1/2. 

Lemma (1.3.4)[20]: For the function 𝛿2(𝑋, 𝐴) we have 

𝛿2(𝑋, 𝐴) ⩾ log2 𝑠 
where 𝑠 = max{𝜌(𝐴−1/2𝑋𝐴−1/2), 𝜌(𝐴1/2𝑋−1𝐴1/2)}. 
Proof. This follows from the equation 

𝛿2(𝑋, 𝐴) =∑  

𝑖

log2 𝜆𝑖(𝐴
−1/2𝑋𝐴−1/2) 

and the fact that all terms are positive, implying that ∑𝑖  log
2 𝜆𝑖(𝐴

−1/2𝑋𝐴−1/2) is greater 

than any single term in the summation, in particular those given by the extreme eigenvalues 

of 𝐴−1/2𝑋𝐴−1/2, that is, the spectral radius 𝜌(𝐴−1/2𝑋𝐴−1/2) and its inverse 

𝜌(𝐴1/2𝑋−1𝐴1/2). 
Theorem (1.3.5)[20]: Let 𝒰 ⊆ 𝒫𝑛 be a closed subset. Then for any 𝐴1, … , 𝐴𝑚 ∈ 𝒫𝑛 the 

function 𝑓(𝑋) = 𝑓(𝑋; 𝐴1, … , 𝐴𝑚) has a minimum in 𝒰. 

Proof. If 𝒰 is bounded, then it is compact and the continuous function 𝑓(𝑋) has a minimum 

in it, so we may assume that 𝒰 is unbounded. Let 𝑡 > 0 and 𝒜𝑡 = {𝑋 ∈ 𝒫𝑛:  ∥ 𝑋 ∥2⩽

𝑡, ∥∥𝑋−1∥∥2 ⩽ 𝑡}, such that 𝐴𝑡 is closed and bounded. We claim that there exists a sufficiently 

large value 𝑡 such that outside the set 𝒰 ∩𝒜𝑡 the function 𝑓(𝑋) takes values larger than 

𝛾 = inf𝑋∈𝒰  𝑓(𝑋). In this way, the set where we minimize the function can be restricted to 

𝒰 ∩𝒜𝑡 which is compact and hence 𝑓(𝑋) takes its minimum over it. For simplicity, we 

prove the existence of 𝑡 for 𝑚 = 1. The case 𝑚 > 1 can be obtained by using the same 

arguments. 

Combining Lemma (1.3.3) with ∥⋅∥=∥⋅∥2, Lemma (1.3.4), and using the properties of the 

spectral norm, we find that there exist positive constants 𝛼 and 𝛽 (depending on 𝐴 ) such 

that 

𝛿2(𝑋, 𝐴) ⩾ max  {log2(𝛼 ∥ 𝑋 ∥2) , log
2(𝛽∥∥𝑋−1∥∥2)}                     (43) 

for any 𝑋 ∈ 𝒫𝑛. Choosing 𝑡 sufficiently large in such a way that log2 (𝛼𝑡), log2 (𝛽𝑡) > 𝛾, it 

follows from (43) that 𝛿2(𝑋, 𝐴) > 𝛾 for any 𝑋 having ∥ 𝑋 ∥2> 𝑡 or ∥∥𝑋−1∥∥2 > 𝑡. This 

completes the proof of the existence of a minimum of 𝑓(𝑋, 𝐴). Considering the summation 

in (37) this generalizes to an arbitrary 𝑓(𝑋). 
In general, uniqueness of the point where 𝑓(𝑋) takes its minimum cannot be guaranteed. 

For instance, if both 𝐴 and 𝐴−1 belong to 𝒰 while 𝐼 = 𝐴#1/2𝐴
−1 does not, then the function 

𝑓1(𝑋):= 𝛿
2(𝑋, 𝐴) + 𝛿2(𝑋, 𝐴−1) reaches its minimum at a point 𝐺 ≠ 𝐼 ∈ 𝒰. Clearly, 

𝑓1(𝐺
−1) = 𝑓1(𝐺) and if 𝐺−1 ≠ 𝐺 belongs to 𝒰, then we have at the following. 

Example (1.3.6)[20]: Consider the 2 × 2 matrices 𝐴 = 𝐼 and 𝐵 = [
𝑎 0
0 𝑎−1

], where 𝑎 > 1 

Define the segment 𝒰 = {𝐺(𝑡) = 𝐴 + 𝑡(𝐵 − 𝐴), 𝑡 ∈ [0,1]}, which is closed and convex, but 

not geodesically convex. The function 𝑓(𝑡) = 𝛿2(𝐺(𝑡), 𝐴) + 𝛿2(𝐺(𝑡), 𝐵) takes the form 

𝑓(𝑡) = log2 ((1 − 𝑡)/𝑎 + 𝑡) + log2 (𝑎(1 − 𝑡) + 𝑡) + log2 ((1 − 𝑡) + 𝑡/𝑎) + log2 ((1 −
𝑡) + 𝑎𝑡) and is symmetric with respect to 𝑡 = 1/2. For 𝑎 = 200 the function has the graph 

shown in Figure 1 with a local maximum at 𝑡 = 1/2 and two global minima close to the 

edges of the segment. 
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We discuss the relation between the structured and generic geometric mean, together 

with the adaptation of the generic properties to the structured setting. We will discuss just 

the real case, the set 𝒫𝑛 stands for the manifold of real positive definite matrices whose 

tangent space is the set of real and symmetric matrices. 

The properties shown imply that a structured geometric mean with respect to 𝒰, as 

defined always exists for any closed subset 𝒰 of 𝒫𝑛. In particular, this holds in the cases 

where 𝒰 = 𝒮 ∩ 𝒫𝑛 for any linear space 𝒮 of matrices 𝒮 and also for 𝒰−1: = 𝒮−1 ∩ 𝒫𝑛 where 

𝒮−1 = {𝐴−1: 𝐴 ∈ 𝒮, det 𝐴 ≠ 0}. This captures a wide class of interesting structures 

emerging in applications, e.g., Toeplitz and band matrices, as well as their inverses. For 

simplicity we will restrict our analysis in the remainder to the real case. 

More general structures are given in terms of a parametrization 𝜎(𝑡): 𝒱 → ℝ𝑛×𝑛, with 𝜎 a 

differentiable function defined in the open subset 𝒱 of ℝ𝑞, which we will call the parameter 

space. The set 𝒯 = 𝜎(ℝ𝑞) is the structure determined by 𝜎. If 𝜎 is linear and 𝒱 = ℝ𝑞, then 

𝒯 is a linear space. Examples of sets 𝒯 of interest which generally do not form a linear space 

are the set of matrices with a given displacement rank [25], the set of semiseparable [47], 
and quasiseparable matrices [17]. For an 𝑛 × 𝑛 symmetric Toeplitz matrix, a possible 

parametrization is given by 

𝜎(𝑡) = 𝜎([𝑡0, 𝑡1, … , 𝑡𝑛−1]) = [

𝑡0 𝑡1 … 𝑡𝑛−1
𝑡1 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ 𝑡1

𝑡𝑛−1 … 𝑡1 𝑡0

].           (44) 

For a band matrix, one can, e.g., just store the nonzero-elements in a long vector and map 

them onto their exact locations. In the following, given a closed set 𝒯 we let 𝒰 = 𝒯 ∩ 𝒫𝑛. 

In Example (1.3.6) we illustrated that the minimum of the cost function restricted to a closed 

subset 𝒰 ⊆ 𝒫𝑛 is not necessarily unique. For this reason, we consider the structured 

geometric mean 𝐺𝑈 = 𝐺𝒰(𝐴1, … , 𝐴𝑚) of 𝐴1, … , 𝐴𝑚 ∈ 𝒰 as the set of matrices in 𝒰 where 

the function 𝑓(𝑋) attains its minimum. Formally speaking, for 𝐴1, … , 𝐴𝑚 ∈ 𝒰, let 𝑔 ∈ ℝ𝑞 

be such that �̂� = 𝜎(𝑔) ∈ 𝐺𝒰(𝐴1, … , 𝐴𝑚), then 

𝑓(𝜎(𝑔); 𝐴1, … , 𝐴𝑚) = min
𝑡∈ℝ𝑞

 𝑓(𝜎(𝑡); 𝐴1, … , 𝐴𝑚). 

Since 𝒰 ⊆ 𝒫𝑛, the minimum over 𝒫𝑛 is less than or equal to the minimum over 𝒰. In general 

it will often happen that �̂� ≠ 𝐺(𝐴1, … , 𝐴𝑚) like in (39). 



33 

Some desired properties for a matrix geometric mean were stated by Ando, Li and 

Mathias in [2], of which the most noticeable are enlisted here. 

Consistency with scalars: If 𝐴1, … , 𝐴𝑚 commute, then 

𝐺(𝐴1, … , 𝐴𝑚) = (𝐴1⋯𝐴𝑚)
1/𝑚. 

Permutation invariance: For any permutation 𝜋 of {1,… , 𝑘}, 

𝐺(𝐴1, … , 𝐴𝑚) = 𝐺(𝐴𝜋(1), … , 𝐴𝜋(𝑚)). 

Joint homogeneity: 

𝐺(𝛼1𝐴1, 𝛼2𝐴2, … , 𝛼𝑚𝐴𝑚) = (𝛼1⋯𝛼𝑚)
1/𝑚𝐺(𝐴1, … , 𝐴𝑚). 

Monotonicity: If 𝐴𝑖 ⩾ 𝐴𝑖
′ , for 𝑖 = 1,… , 𝑘, then 

𝐺(𝐴1, … , 𝐴𝑚) ⩾ 𝐺(𝐴1
′ , … , 𝐴𝑚

′ ). 
Invariance under congruence: For any nonsingular 𝑀, 

𝐺(𝑀∗𝐴1𝑀,… ,𝑀
∗𝐴𝑚𝑀) = 𝑀

∗𝐺(𝐴1, … , 𝐴𝑚)𝑀. 
Invariance under inversion: 

𝐺(𝐴1, … , 𝐴𝑚)
−1 = 𝐺(𝐴1

−1, … , 𝐴𝑚
−1). 

Arithmetic-geometric-harmonic mean inequality: 
1

𝑚
(𝐴1 +⋯+ 𝐴𝑚) ⩾ 𝐺(𝐴1, … , 𝐴𝑚) ⩾ 𝑚(𝐴1

−1 +⋯+ 𝐴𝑚
−1)−1. 

Yet another property naturally desired of a geometric mean, but not required in the list of 

Ando, Li and Mathias, is the repetition invariance, that is, for any set of positive matrices 

𝐴1, … , 𝐴𝑚 ∈ 𝒫𝑛, 

𝐺(𝐴1, … , 𝐴𝑚, 𝐴1, … , 𝐴𝑚) = 𝐺(𝐴1, … , 𝐴𝑚).                        (45) 
Now, we consider the properties of the structured geometric mean. Some properties such as 

the permutation invariance trivially hold, others should be restated. In fact, in the generic 

case the structures we consider are neither invariant under inversion nor under congruence. 

That is because if 𝐴 ∈ 𝒰 then it is not necessarily true that 𝐴−1 ∈ 𝒰 or 𝑀∗𝐴𝑀 ∈ 𝒰. 

We start with the invariance under inversion as this is one of the most characteristic 

properties of the geometric mean. To this end we consider the set 𝒯−1 = {𝑇−1: 𝑇 ∈
𝒯, det 𝑇 ≠ 0} parametrized with the function 𝜎−1(𝑡): = 𝜎(𝑡)

−1. Clearly, the intersection 𝒰 

of 𝒯 with 𝒫𝑛 yields always invertible matrices, so that 𝒯−1 ∩ 𝒫𝑛 = 𝒰−1. 

According to our definition, the structured geometric mean of 𝐴1
−1, … , 𝐴𝑚

−1 ∈ 𝒰−1 is given 

by the set 𝐺𝒰−1(𝐴1
−1, … , 𝐴𝑚

−1). For any �̃� ∈ 𝐺𝒰−1, we have �̃� = 𝜎(�̃�)−1 such that 

𝑓(𝜎(�̃�)−1; 𝐴1
−1, … , 𝐴𝑚

−1) = min
𝑡∈ℝ𝑞

 𝑓(𝜎(𝑡)−1; 𝐴1
−1, … , 𝐴𝑚

−1). 

Since 𝛿(𝐴, 𝐵) = 𝛿(𝐴−1, 𝐵−1), one gets 𝑓(𝑋; 𝐴1, … , 𝐴𝑚) = 𝑓(𝑋
−1; 𝐴1

−1, … , 𝐴𝑚
−1) so that 

𝑓(𝜎(�̃�); 𝐴1, … , 𝐴𝑚) = min
𝑡∈ℝ𝑞

 𝑓(𝜎(𝑡); 𝐴1, … , 𝐴𝑚) 

and thus �̃�−1 ∈ 𝐺𝒰(𝐴1, … , 𝐴𝑚). Since �̃� was chosen arbitrarily, and since 𝒰 can be 

interchanged with 𝒰−1, we have the analogue of the invariance under inversion for the 

structured geometric mean: 

𝐺𝒰(𝐴1, … , 𝐴𝑚)
−1 = 𝐺𝒰−1(𝐴1

−1, … , 𝐴𝑚
−1).                                (46) 

In a similar manner we can restate the invariance under congruence in a structured style by 

defining, for any nonsingular 𝑀, the set 𝒰𝑀: = 𝑀
∗𝒰𝑀 = {𝑀∗𝑇𝑀 : 𝑇 ∈ 𝒰}. The invariance 

under congruence is then understood as 

𝐺𝒰𝑀(𝑀
∗𝐴1𝑀,… ,𝑀

∗𝐴𝑚𝑀) = 𝑀
∗𝐺𝒰(𝐴1, … , 𝐴𝑚)𝑀. 

Joint homogeneity, in order to be defined, requires that the set 𝒯 satisfies the following 

property: 

𝐴 ∈ 𝒯 ⇒ 𝛼𝐴 ∈ 𝒯 
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for any scalar 𝛼 > 0. This property clearly holds if 𝒯 is a linear space or the set formed by 

the inverses of the nonsingular matrices of a linear space. For these sets, the joint 

homogeneity holds. 

Repetition invariance holds true as well by (37), since 

𝑓(𝑋; 𝐴1, … , 𝐴𝑚, 𝐴1, … , 𝐴𝑚) = 2𝑓(𝑋; 𝐴1, … , 𝐴𝑚), 
so the minimizers (over a subset) of the functions 𝑓(𝑋; 𝐴1, … , 𝐴𝑚, 𝐴1, … , 𝐴𝑚) and 

𝑓(𝑋; 𝐴1, … , 𝐴𝑚) are the same. 

Regarding the remaining properties, we observe that the consistency with scalars is violated, 

as Example (1.3.1) shows. Weaker consistency properties hold, such as idempotency, 

namely 𝐺𝒰(𝐴, 𝐴,… , 𝐴) = 𝐴 for each structure 𝒰 and 𝐴 ∈ 𝒰. 

Moreover, if the set 𝒰 is closed and geodesically convex then 

𝐺𝒰(𝐴1, … , 𝐴𝑚) = 𝐺(𝐴1, … , 𝐴𝑚), 
so the geometric and structured geometric mean coincide. An interesting case of a 

geodesically convex set is given by 𝒰 = 𝒯 ∩ 𝒫𝑛, when 𝒯 is an algebra, i.e., a linear space 

closed under multiplication and inversion. 

Finally, the properties related to the ordering of positive matrices such as monotonicity are 

not true as shown by the following numerical example. 

Example (1.3.7)[20]: We consider the four Toeplitz matrices 

𝑇1 = [

1 1/2 1/2
1/2 1 1/2
1/2 1/2 1

] ,  𝑇2 = 𝑇1,  𝑇3 = [

3/4 1/2 0
1/2 3/4 1/2
0 1/2 3/4

] ,  𝑆 = [
1 0 1
0 1 0
1 0 1

], 

and, using the algorithms presented, we compute a structured geometric mean 𝐺𝜀 of the three 

matrices 𝑇1, 𝑇2 and 𝑇3 + 𝜀𝑆 for various 𝜀 ⩾ 0. The norm of 𝐺𝜀 − 𝐺0 becomes small as 𝜀 
tends to 0 and we observe that 𝐺𝜀 − 𝐺0 is not positive (semi)definite, while 𝑇3 + 𝜀𝑆 ⩾ 𝑇3. 

This gives numerical evidence of the lack of monotonicity of a structured geometric mean. 

On the other hand, computing the arithmetic mean 𝐴 of 𝑇1, 𝑇2 and 𝑇3, one observes also that 

the expected inequality 𝐴 ⩾ 𝐺0 does not hold in this case. 

We start from the Karcher mean, which is obtained as the unique solution in 𝒫𝑛 of the 

matrix equation 

∑ 

m

i=1

 log (𝑋𝐴𝑖
−1) = 0.                                        (47) 

Equation (47) is obtained using the fact that 𝑓 is differentiable and has a minimum at the 

Karcher mean. Thus the Karcher mean satisfies the condition ∇𝑓𝑋 = 0, where ∇𝑓𝑋 =
2𝑋−1∑𝑖=1

𝑚  log (𝑋𝐴𝑖
−1) denotes the (Euclidean) gradient of 𝑓 with respect to 𝑋 (see [37], 

[17]). In the general case, the restriction of 𝑓 to a structure given by 𝜎(𝑡) is investigated. 

For any minimum 𝑔 (with corresponding (𝑔) ) not located at the boundary of the parameter 

space, the gradient ∇(𝑓 ∘ 𝜎)𝑡 of the function with respect to 𝑡 must be zero, so we are 

interested in the solutions of the vector equation ∇(𝑓 ∘ 𝜎)𝑡 = 0. 

From the chain rule of derivation, one obtains that 

∇(𝑓 ∘ 𝜎)𝑡 = (∑ 

𝑖,𝑗

 
∂𝑓(𝜎(𝑡))

∂𝑥𝑖,𝑗

𝑑𝜎𝑖,𝑗(𝑡)

𝑑𝑡𝑠
)

𝑠=1,…,𝑞

= 0 

which leads to the vector equation 
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∑ 

𝑖,𝑗

(Γ(𝜎(𝑡)))𝑖,𝑗
𝑑𝜎𝑖,𝑗(𝑡)

𝑑𝑡𝑠
= 0, 𝑠 = 1,… , 𝑞,                                (48) 

where Γ(𝑋):=
1

2
∇𝑓𝑋. 

In the case where 𝒯 is a linear space, the function 𝜎(𝑡) is linear and can be written in matrix 

form as 

vec (𝜎(𝑡)) = 𝑈𝑡, 𝑈 ∈ ℝ𝑛
2×𝑞 , 

so that equation (48) turns into 

𝑈𝑇vec (Γ(𝜎(𝑡))) = 0,  Γ(𝑋) = 𝑋−1∑ 

𝑚

𝑖=1

 log (𝑋𝐴𝑖
−1).                (49) 

If 𝜎(𝑡) is chosen to be orthogonal, i.e. such that 𝑈𝑇𝑈 = 𝐼, then 𝑈𝑇 coincides with the Moore-

Penrose inverse of 𝑈. 

When 𝒯 denotes the set of symmetric Toeplitz matrices, the parametrization (44) leads to a 

matrix 𝑈 having orthogonal columns. In fact one has 𝑈𝑇𝑈 = 𝐷 = diag (𝑛, 2(𝑛 − 1),2(𝑛 −
2),… ,2). In particular, for 𝑛 = 3 one has 

𝑈𝑇 = [
1 0 0 0 1 0 0 0 1
0 1 0 1 0 1 0 1 0
0 0 1 0 0 0 1 0 0

]. 

For 𝒯 being the set of symmetric tridiagonal matrices the parametrization 

𝜎(𝑡) =

[
 
 
 
 
𝑡1 𝑡𝑛+1
𝑡𝑛+1 𝑡2 𝑡𝑛+2

⋱ ⋱ ⋱
𝑡2𝑛−2 𝑡𝑛−1 𝑡2𝑛−1

𝑡2𝑛−1 𝑡𝑛 ]
 
 
 
 

 

also leads to a matrix 𝑈 having orthogonal columns. Moreover, 𝑈𝑇𝑈 = diag (𝐼𝑛, 2𝐼𝑛−1). For 

𝑛 = 3, e.g., one has 

𝑈𝑇 =

[
 
 
 
 
1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1
0 1 0 1 0 0 0 0 0
0 0 0 0 0 1 0 1 0]

 
 
 
 

.  

We will give two algorithms for computing structured geometric means when they 

are characterized in terms of the solutions 𝑔 of a vector equation, as, for instance, in the 

linear case. 

We first provide a general definition of a class of algorithms based on preconditioned 

functional iteration, then we specialize to two algorithms given by two different 

preconditioners. 

The first, provided is derived by relying on the projection of the gradient with respect to the 

Euclidean scalar product. The second, presented, is obtained through projection with respect 

to the Riemannian metric of 𝒫𝑛 decribed. 
We assume that 𝐴1, … , 𝐴𝑚 ∈ 𝒰, where 𝒰 = 𝒯 ∩ 𝒫𝑛 and 𝒯 is a linear space with a 

parametrization 𝜎(𝑡) such that vec (𝜎(𝑡)) = 𝑈𝑡, and 𝐷 = 𝑈𝑇𝑈. 

The structured geometric mean 𝐺𝒰 is the set of minimizers of the function 

𝑓(𝑋; 𝐴1, … , 𝐴𝑚) over 𝒰. These minimizers must be sought among the stationary points of 

the function 𝑓, that is, among the solutions to the vector equation (49). 
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Therefore, a way to design algorithms for computing structured means 𝐺𝒰 is to apply 

numerical techniques to solve the vector equation (49). We consider a preconditioned 

Richardson-like iteration constructed in the spirit of [37]. Let 𝑉(𝑋) be a nonsingular and 

sufficiently differentiable matrix function and define 

𝜑(𝑡) = 𝑡 − 𝜃𝑆(𝑡),  𝑆(𝑡) = 𝑉(𝜎(𝑡))−1𝑈𝑇vec (Γ(𝜎(𝑡))), 
𝑡𝜈+1 = 𝜑(𝑡𝜈),  𝜈 = 0,1,…,                                (50) 

where 𝜃 is a parameter introduced to enhance convergence, 𝑉(𝜎(𝑡)) is a preconditioner and 

𝑡0 is a given vector such that 𝜎(𝑡0) is positive. Observe that the fixed points of 𝜑(𝑡) are the 

solutions of the vector equation (49) and if convergent, the sequence 𝑡𝜈 converges to a 

solution of the vector equation (49). 

Given a matrix function 𝑓(𝑋), where 𝑋 = (𝑥𝑖,𝑗) and 𝑓(𝑋) are 𝑛 × 𝑛 matrices, we denote by 

𝐽𝑓(𝐺) the 𝑛2 × 𝑛2 Jacobian matrix of vec (𝑓(𝑋)) with respect to the variable vec (𝑋) 

computed at 𝑋 = 𝐺, similarly we denote 𝐽𝑓∘𝜎(𝑡𝐺) the 𝑛2 × 𝑞 Jacobian of the composed 

function vec (𝑓(𝜎(𝑡))) with respect to the variables (𝑡1, … , 𝑡𝑞) at 𝑡 = 𝑡𝐺. In this notation, 

the function in the subscript as well as the variable between parentheses specify if the 

derivatives are taken w.r.t. the matrix variable 𝑋 or the vector variable 𝑡. 
Observe that if 𝑉(𝜎(𝑡)) is chosen as the Jacobian of 𝑈𝑇vec (Γ(𝜎(𝑡))), then (50) coincides 

with Newton's iteration. 

If 𝑡𝐺 is a solution of (49) and if 𝑡𝜈 is sufficiently near to 𝑡𝐺, then 

𝑡𝜈+1 − 𝑡𝐺 = 𝐽𝜑(𝑡𝐺)(𝑡𝜈 − 𝑡𝐺) + 𝑂(∥∥𝑡𝜈 − 𝑡𝐺∥∥
2), 

so that in order to study the local convergence of this sequence it is sufficient to estimate 

the spectral radius 𝜌 or any induced norm of 𝐽𝜑(𝑡𝐺) and determine 𝜃 in such a way that 

𝜌 (𝐽𝜑(𝑡𝐺)) < 1. Notice that the Jacobian of 𝜑(𝑡) at 𝑡 = 𝑡𝐺 is given by 𝐼 − 𝜃𝐾 where 𝐾 =

𝐽𝑆(𝑡𝐺) is the Jacobian of 𝑆(𝑡) at 𝑡 = 𝑡𝐺. Therefore, if we can find a preconditioner 𝑉(𝑡) such 

that 𝐾 has real positive eigenvalues with minimum and maximum eigenvalues 𝜅min and 

𝜅max respectively, then the choice 𝜃 = 2/(𝜅min + 𝜅max) insures local convergence and 

provides the minimum spectral radius of 𝐽𝜑(𝑡𝐺) given by 

𝜌 (𝐽𝜑(𝑡𝐺)) =
𝜅max − 𝜅min
𝜅max + 𝜅min

=
𝜇 − 1

𝜇 + 1
< 1,  𝜇 = 𝜅max/𝜅min. 

Moreover, any values �̂�min ⩽ �̂�max such that �̂�min ⩽ 𝜅min ⩽ 𝜅max ⩽ �̂�max can be used 

instead of 𝜅min and 𝜅max to determine a value �̂� = 2/(�̂�min + �̂�max) which insures 

convergence. Also notice that the closer 𝜇 is to 1 the faster is the convergence of the 

iteration. 

We perform a spectral analysis of 𝐾 and to find an upper bound to the ratio 𝜇 = 𝜅max/𝜅min, 

assuming that all the eigenvalues of 𝐾 are real positive. From the composition rule of 

derivatives one finds that 

𝐾 = 𝑉(𝜎(𝑡𝐺))
−1
𝑈𝑇𝐽Γ(𝐺)𝑈 + 𝐽𝑉(𝜎(𝑡𝐺))

−1(𝜎(𝑡𝐺))𝑈
𝑇vec (Γ(𝜎(𝑡𝐺))) 

and since 𝑈𝑇vec (Γ(𝜎(𝑡𝐺))) = 0, it follows that 

𝐾 = 𝑉(𝜎(𝑡𝐺))
−1
𝑈𝑇𝐽Γ(𝐺)𝑈.                                        (51) 

To evaluate 𝐽Γ(𝐺), we recall that Γ(𝑋) = ∑𝑖=1
𝑚  𝑋−1log (𝑋𝐴𝑖

−1), so that it is sufficient to 

determine the formal expression of 𝐽𝜓(𝐺) for 𝜓(𝐺, 𝐴) = 𝐺−1log (𝐺𝐴−1) for a generic 𝐴 and 

then to write 𝐽Γ(𝐺) = ∑𝑖=1
𝑚  𝐽𝜓(𝐺,𝐴𝑖)(𝐺). In order to evaluate 𝐽𝜓(𝐺), we rely on the definition 

of Fréchet derivative of a matrix function 𝑓(𝑋) at 𝑋 in the direction 𝐸 
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𝐷𝑓𝑋[𝐸] = lim
𝑡→0
 
𝑓(𝑋 + 𝑡𝐸) − 𝑓(𝑋)

𝑡
=
𝑑

𝑑𝑡
|
𝑡=0
𝑓(𝑋 + 𝑡𝐸). 

In fact, the 𝑛2 × 𝑛2 Jacobian matrix 𝐽𝑓(𝑋) of the vector function vec of o vec  −1 at vec (𝑋) 

is related to the Fréchet derivative by the equation 

vec(𝐷𝑓𝑋[𝐸]) = 𝐽𝑓(𝑋) vec(𝐸).                                        (52) 

We recall also the following properties of the Fréchet derivative [14] where 𝑓, 𝑔 are given 

matrix functions and (𝑋) = 𝑋−1 : 

𝐷(𝑓𝑔)𝑋[𝐸] = 𝐷𝑓𝑋[𝐸]𝑔(𝑋) + 𝑓(𝑋)𝐷𝑔𝑋[𝐸],  product rule, 

 𝐷(𝑓 ∘ 𝑔)𝑋[𝐸] = 𝐷𝑓𝑔(𝑋)[𝐷𝑔𝑋[𝐸]],  chain rule, 

𝐷𝜑𝑋[𝐸] = −𝑋
−1𝐸𝑋−1,  inversion. 

        (53) 

For the derivative of the exponential function we have (see [14]) 

𝐽exp(𝑌) = (𝐼 ⊗ exp 𝑌)𝛽(𝑌𝑇⊗ 𝐼 − 𝐼 ⊗ 𝑌),  𝛽(𝑧) = (𝑒𝑧 − 1)/𝑧. 

Therefore, since 𝐽log(𝑋) = 𝐽exp(𝑌)
−1 for 𝑌 = log 𝑋, we find that 

𝐽log(𝑋) = 𝛾(log(𝑋
𝑇)⊗ 𝐼 − 𝐼 ⊗ log𝑋)(𝐼 ⊗ 𝑋−1),  𝛾(𝑧) = 𝑧/(𝑒𝑧 − 1). (54) 

We provide an explicit expression of the Fréchet derivative of the function 𝜓(𝑋, 𝐴) =
𝑋−1log (𝑋𝐴−1) and of the Jacobian 𝐽𝜓(𝑋,𝐴)(𝑋). 

Lemma (1.3.8)[20]: Let 𝜓(𝑋) = 𝑋−1log (𝑋𝐴−1). Assume that 𝐴, 𝑋 are positive. For the 

matrix 𝐽𝜓(𝑋) such that vec (𝐷𝜓𝑋[𝐸]) = 𝐽𝜓(𝑋)vec (𝐸) we have 

𝐽𝜓(𝑋) = −𝑋
−1log (𝑋𝐴−1) ⊗ 𝑋−1 + (𝐴−1⊗𝑋−1)𝛾(𝑊)(𝐼 ⊗ 𝐴𝑋−1), 

𝑊 = log (𝑋𝐴−1) ⊗ 𝐼 − 𝐼 ⊗ log (𝑋𝐴−1), 

with  𝛾(𝑧) = 𝑧/(𝑒𝑧 − 1). 
Proof. Since ℎ(𝑋):= log (𝑋𝐴−1) is the composition of 𝑓(𝑋) = log (𝑋) and (𝑋) = 𝑋𝐴−1, 

we get by (53) 

𝐷ℎ𝑋[𝐸] = 𝐷log𝑋𝐴−1  [𝐸𝐴
−1]. 

As 𝜓(𝑋) is the product of 𝑓(𝑋) = 𝑋−1 and ℎ(𝑋), (53) gives us 

𝐷𝜓𝑋[𝐸] = −𝑋
−1𝐸𝑋−1log (𝑋𝐴−1) + 𝑋−1𝐷ℎ𝑋[𝐸].  

Combining the latter two equations yields 

𝐷𝜓𝑋[𝐸] = −𝑋
−1𝐸𝑋−1log (𝑋𝐴−1) + 𝑋−1𝐷log𝑋𝐴−1  [𝐸𝐴

−1].  
By using (52) and (40) we find that the matrix 𝐽𝜓(𝑋) representing 𝐷𝜓𝑋 is given by 

𝐽𝜓(𝑋) = −(𝑋
−1 log(𝑋𝐴−1))𝑇⊗𝑋−1 + (𝐼 ⊗ 𝑋−1)𝐽log(𝑋𝐴

−1)(𝐴−𝑇⊗ 𝐼). 

Replacing (54) in the equation above and using the fact that 𝐴 = 𝐴𝑇 , 𝑋 = 𝑋𝑇 yields 

𝐽𝜓(𝑋)  = −log (𝐴−1𝑋)𝑋−1⊗𝑋−1

 +(𝐼 ⊗ 𝑋−1)𝛾(log (𝐴−1𝑋)⊗ 𝐼 − 𝐼 ⊗ log (𝑋𝐴−1))(𝐴−1⊗𝐴𝑋−1).
 

Using the fact that 𝑊log (𝑉)𝑊−1 = log (𝑊𝑉𝑊−1), the first term can be written as 

−𝑋−1log (𝑋𝐴−1) ⊗ 𝑋−1. The sécond term can bee writtèn ás (𝐼 ⊗ 𝑋−1)(𝐴−1⊗ I) 

𝛾(log (𝑋𝐴−1) ⊗ 𝐼 − 𝐼 ⊗ log (𝑋𝐴−1))(𝐼 ⊗ 𝐴𝑋−1), which completes the proof. 

Recall that Γ(𝑋) = ∑𝑖=1
𝑚  𝜓(𝑋, 𝐴𝑖) and 𝐺−1∑𝑖=1

𝑚  log (𝐺𝐴𝑖
−1) = 0, for 𝐺 = 𝜎(𝑡𝐺). Then by 

Lemma (1.3.8), we obtain the following formula for the Jacobian 𝐽Γ(𝜎(𝑡)): 

𝐽Γ(𝐺) = (𝐼 ⊗ 𝐺−1)𝐻(𝐼 ⊗ 𝐺−1),  𝐻 =∑  

𝑚

𝑖=1

𝐻𝑖 , 

𝐻𝑖 = (𝐴𝑖
−1⊗ 𝐼)𝛾 (log (𝐺𝐴𝑖

−1) ⊗ 𝐼 − 𝐼 ⊗ log (𝐺𝐴𝑖
−1)) (𝐼 ⊗ 𝐴𝑖). 
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Moreover, by using the properties of the Kronecker product and the fact that log (𝐺𝐴−1) =

𝐴1/2log (𝐴−1/2𝐺𝐴−1/2)𝐴−1/2, we can write 

𝐻𝑖 = (𝐴𝑖
−1/2

⊗𝐴𝑖
1/2
)𝛾(log 𝑀𝑖⊗ 𝐼 − 𝐼 ⊗ log 𝑀𝑖)(𝐴𝑖

−1/2
⊗𝐴𝑖

1/2
),

𝑀𝑖 = 𝐴𝑖
−1/2

𝐺𝐴𝑖
−1/2

.
 

From this expression it turns out that 𝐻𝑖 is positive, and from (51) we find that 𝐽𝑆(𝑡𝐺) is the 

product of the matrices 𝑉(𝜎(𝑡𝐺))
−1

 and the positive matrix 𝑈𝑇(𝐼 ⊗ 𝐺−1)∑𝑖=1
𝑚  𝐻𝑖(𝐼 ⊗

𝐺−1)𝑈. 

Thus we may conclude with the following 

Theorem (1.3.9)[20]: The Jacobian 𝐾 of the function 𝑆(𝑡) in (51) at 𝜎(𝑡𝐺) = 𝐺 is given 

by 

 

𝐾 = 𝑉−1𝑈𝑇(𝐼 ⊗ 𝐺−1)𝐻(𝐼 ⊗ 𝐺−1)𝑈,

𝐻 =∑  

𝑚

𝑖=1

 𝐻𝑖 ,  𝐻𝑖 = (𝐴𝑖
−1/2

⊗𝐴𝑖
1/2
)𝛾(log 𝑀𝑖⊗ 𝐼 − 𝐼 ⊗ log 𝑀𝑖)(𝐴𝑖

−1/2
⊗𝐴𝑖

1/2
),

𝑀𝑖 = 𝐴𝑖
−1/2

𝐺𝐴𝑖
−1/2

,

𝛾(𝑧) = 𝑧/(𝑒𝑧 − 1).

 

Moreover, the eigenvalues of 𝐾 are the solutions of the equation 

det (𝜅𝑉 − 𝑈𝑇(𝐼 ⊗ 𝐺−1)𝐻(𝐼 ⊗ 𝐺−1)𝑈) = 0. 
The simplest choice for the preconditioner 𝑉(𝑡) in (50) is 𝑉(𝑡) = 𝑈𝑇𝑈 = 𝐷. This 

corresponds to projecting the gradient of the function 𝑓(𝑋, 𝐴1, … , 𝐴𝑝) on the set 𝒰 according 

to the Euclidean scalar product. The problem det (𝜅𝐼 − 𝐾) = 0 turns into the generalized 𝑞-

dimensional symmetric eigenvalue problem 

det (𝑈𝑇(𝜅𝐼 − (𝐼 ⊗ 𝐺−1)𝐻(𝐼 ⊗ 𝐺−1))𝑈) = 0. 
This problem is the projection on the space spanned by the columns of 𝑈 of the problem 

det (𝜈𝐼 − (𝐼 ⊗ 𝐺−1)𝐻(𝐼 ⊗ 𝐺−1)) = 0, which has real positive solutions. 

Now we recall the following result, valid for general positive matrices 𝐴, 𝐵, which relates 

the generalized eigenvalues of the pair (𝐴, 𝐵) to the ones of the projected pair 

(𝑈𝑇𝐴𝑈, 𝑈𝑇𝐵𝑈). 
Lemma (1.3.10)[20]: Let 𝐴, 𝐵 be positive 𝑛 × 𝑛 matrices and 𝑈 an 𝑛 ×𝑚 matrix. Then the 

generalized eigenvalues of the pair (𝑈𝑇𝐴𝑈, 𝑈𝑇𝐵𝑈), which solve the equation det (𝑈𝑇(𝐴 −
𝜅𝐵)𝑈) = 0, are real positive and lie in between the maximum and minimum eigenvalues 𝜆 

of the pair (𝐴, 𝐵), which satisfy det (𝐴 − 𝜆𝐵) = 0. Moreover, the extreme eigenvalues 

𝜆min, 𝜆max of the pair (𝐴, 𝐵) are bounded by the inequality 𝛼min/𝛽max ⩽ 𝜆min ⩽ 𝜆max ⩽
𝛼max/𝛽min, where 𝛼min, 𝛼max, 𝛽min, 𝛽max are the minimum and maximum eigenvalues of 

the matrices 𝐴 and 𝐵, respectively. 

Proof. The condition det (𝜆𝐵 − 𝐴) = 0 is equivalent to det (𝜆𝐼 − 𝐵−1/2𝐴𝐵−1/2) = 0, 

which has real positive solutions since 𝐵−1/2𝐴𝐵−1/2 is positive. The remaining part of the 

lemma follows from the fact that maximum and minimum eigenvalues of the larger and 

smaller problems coincide with maximum and minimum value of the Rayleigh quotient 

𝑥𝑇𝐴𝑥/𝑥𝑇𝐵𝑥 for 𝑥 ∈ ℝ𝑛, and for 𝑥 ∈ span (𝑈), respectively. 

A first consequence of the above lemma is that the extreme eigenvalues 𝜅min and 𝜅max of 

𝐾 are in between the maximum and the minimum eigenvalue of the 𝑛2-dimensional 
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symmetric matrix 𝑌 = (𝐼 ⊗ 𝐺−1)𝐻(𝐼 ⊗ 𝐺−1), so that the ratio 𝜇 between the maximum 

and minimum eigenvalue of 𝐾 is less than or equal to the condition number 𝜇(𝑌) of the 

symmetric matrix 𝑌. Moreover since 𝑌 = ∑𝑖=1
𝑚  𝑌𝑖 with 

𝑌𝑖 = (𝐴𝑖
−1/2

⊗𝐴𝑖
−1/2

)(𝐼 ⊗𝑀𝑖
−1)𝛾(log 𝑀𝑖⊗ 𝐼 − 𝐼 ⊗ log 𝑀𝑖)(𝐼 ⊗𝑀𝑖

−1)(𝐴𝑖
−1/2

⊗𝐴𝑖
−1/2

), 

one finds that �̂�min: = ∑𝑖=1
𝑚  𝜆min

(𝑖)
⩽ 𝜅min and �̂�max: = ∑𝑖=1

𝑚  𝜆max
(𝑖)

⩾ 𝜅max, where 𝜆min
(𝑖)

 and 

𝜆max
(𝑖)

 are the minimum and the maximum eigenvalues of 𝑌𝑖. Moreover, from Lemma (1.3.10) 

and from the expression above for 𝑌𝑖 it follows that 𝜆min
(𝑖)

⩾ 𝛾min
(𝑖)
/ (𝛼max

(𝑖)
)
2
, 𝜆max
(𝑖)

⩽

𝛾max
(𝑖)
/ (𝛼min

(𝑖)
)
2
, where 𝛼min

(𝑖)
, 𝛼max
(𝑖)

 are the minimum and the maximum eigenvalues of 𝐴𝑖, 

respectively, while 𝛾min
(𝑖)

 and 𝛾max
(𝑖)

 are the minimum and maximum eigenvalues of 

(𝐼 ⊗𝑀𝑖
−1)𝛾(log 𝑀𝑖⊗ 𝐼 − 𝐼 ⊗ log 𝑀𝑖)(𝐼 ⊗𝑀𝑖

−1), respectively. maximum eigenvalues of 

(𝐼 ⊗𝑀𝑖
−1)𝛾(log 𝑀𝑖⊗ 𝐼 − 𝐼 ⊗ log 𝑀𝑖)(𝐼 ⊗𝑀𝑖

−1), respectively. From the properties of the 

matrix function 𝛾(⋅) and from the properties of the Kronecker product one finds that the 

eigenvalues of the latter matrix can be explicitly given in terms of the eigenvalues 𝜈𝑟
(𝑖)

 of 

the matrix 𝑀𝑖. In fact, they coincide with 
1

(𝜈𝑠
(𝑖)
)
2 (log 𝑡𝑟,𝑠

(𝑖)
) / (𝑡𝑟,𝑠

(𝑖)
− 1) where 𝑡𝑟,𝑠

(𝑖)
=
𝜈𝑟
(𝑖)

𝜈𝑠
(𝑖). 

Since the function (log 𝑡)/(𝑡 − 1) is monotonically decreasing, its minimum and maximum 

are 

𝜂min
(𝑖)

= (log 𝜇(𝑖))/(𝜇(𝑖) − 1),

𝜂max
(𝑖)

= log (1/𝜇(𝑖))/(1/𝜇(𝑖) − 1) = 𝜇(𝑖)(log 𝜇(𝑖))/(𝜇(𝑖) − 1),
 

for 𝜇(𝑖) = 𝜇(𝑀𝑖) the spectral condition number of 𝑀𝑖. Additionally, taking the factor 

(𝜈(𝑖))
−2

 into consideration gives 

𝛾min
(𝑖)

 ⩾ 𝜂min
(𝑖)

(𝜈max
(𝑖)
)
−2
,

𝛾max
(𝑖)

 ⩽ 𝜂max
(𝑖)

(𝜈min
(𝑖)
)
−2
⩽ 𝜇(𝑖) (𝜈min

(𝑖)
)
−2
,
 

where 𝜈min
(𝑖)

 and 𝜈max
(𝑖)

 represent respectively the minimum and maximimum eigenvalue of 

𝑀𝑖. 
Therefore, we may conclude that the eigenvalues of 𝐾 are bounded by �̃�min: = 

∑𝑖=1
𝑚  𝜂min

(𝑖)
/ (𝜈max

(𝑖)
𝛼max
(𝑖)
)
2
 and �̃�max: = ∑𝑖=1

𝑚  𝜂max
(𝑖)
/ (𝜈min

(𝑖)
𝛼min
(𝑖)
)
2
. 

Observe that this bound gets worse when either some matrix is ill-conditioned or if some 

matrix 𝐴𝑖
−1/2

𝐺𝐴𝑖
−1/2

 is ill-conditioned. The latter case cannot occur if the matrices 𝐴𝑖 do not 

differ much from 𝐺. The dependence of this bound on the conditioning of 𝐴𝑖 makes this 

algorithm very inefficient as long as some 𝐴𝑖 is ill-conditioned. This drawback is overcome, 

where we design a more effective preconditioner. 

The Karcher mean for positive matrices inherits a beautiful interpretation in terms of 

differential geometry. It can be considered as the center of mass for a well chosen inner 

product on the manifold of positive matrices. We consider two approaches inspired by this 

idea. For more information see [36], and [28], [33], [44]-[46]. 
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When considering a manifold optimization approach, the intersection 𝒰 of a linear space 𝒯 

with the manifold of positive matrices 𝒫𝑛 can be viewed as a Riemannian submanifold of 

𝒫𝑛 itself, which in turn is called the enveloping space. This entails that the inner product 

from this enveloping space is induced on the submanifold. An immediate consequence is 

that the gradient of the cost function for the submanifold is given by the orthogonal 

projection (with respect to the inner product) of the gradient for the enveloping space. 

Similar to the space of symmetric matrices, being the tangent space to the manifold of 

positive matrices, the intersection 𝒱 of the linear space 𝒯 with the space of symmetric 

matrices is the tangent space to 𝒰. 

First consider the manifold of positive matrices endowed with the Euclidean inner product 

𝑔𝑋(𝐴, 𝐵) = tr (𝐴𝐵), with 𝐴 and 𝐵 symmetric, and 𝑋 a positive matrix. Note that even though 

this inner product 𝑔𝑋 is independent of 𝑋, the subscript notation is kept for consistency. In 

this case, the orthogonal projection of a symmetric matrix 𝐴 onto 𝒯 gives a matrix 𝑇, with 

vec(𝑇) = 𝑈(𝑈𝑇𝑈)−1𝑈𝑇 vec(𝐴), 
or vec (𝑇) = 𝑈𝑡, with 

𝑡 = (𝑈𝑇𝑈)−1𝑈𝑇 vec(𝐴).                                     (55) 
The expression for the gradient of the Karcher cost function, corresponding to the Euclidean 

inner product, is known for the manifold of positive matrices and is given by 

grad𝑒  𝑓(𝑋; 𝐴1, … , 𝐴𝑚) = 2𝑋
−1∑ 

𝑚

𝑖=1

 log (𝑋𝐴𝑖
−1).                           (56) 

The gradient naturally defines the direction of steepest ascent. The gradient lies in the 

tangent space, and to build an algorithm from this, a practical way is to follow the gradient 

and then go back to the manifold through a suitable function, called retraction. The precise 

definition of a retraction, together with general theoretical assumptions it should satisfy, can 

be found in [21]. Figure 2(a) graphically illustrates the concept of a retraction, where a 

vector 𝜉𝑋 in the tangent space 𝑇𝑋𝒫𝑛 of the positive matrices is retracted to a point 𝑅𝑋(𝜉𝑋) 
residing on the manifold 𝒫𝑛. On a manifold, the classical steepest descent algorithm is 

graphically 

 
depicted in Figure 2(b). The thin red lines depict the contour lines, the blue arrows the 

gradients, and the green curves the retractions to the manifold. 

Observe that for 𝒫𝑛 immersed in the set of symmetric matrices, the tangent space at a point 

is the whole set of symmetric matrices. So one can consider the basic retraction 𝑅𝑋(𝐴) =
𝑋 + 𝐴 for a sufficiently small symmetric matrix 𝐴. 
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Entering now the gradient (56) in projection (55) and applying a gradient descent method 

with the basic retraction 𝑅𝑋(𝐴) = 𝑋 + 𝐴, we arrive exactly at the Richardson-like algorithm 

for finding the fixed points of function (50). 

However, since the function 𝑓 to be minimized is defined through the distance (36), it is 

more natural to consider the manifold of positive matrices endowed with the inner product 

𝑔𝑋(𝐴, 𝐵) = tr (𝐴𝑋
−1𝐵𝑋−1), with 𝐴, 𝐵 and 𝑋 as before. In this case, the gradient for the 

enveloping space is known to be 

grad𝑛 𝑓(𝑋; 𝐴1, … , 𝐴𝑚) = 2𝑋∑  

𝑚

𝑖=1

log (𝐴𝑖
−1𝑋). 

Note the difference with (56). 

The orthogonal projection 𝑇 onto the intersection 𝒱 (of 𝒯 and the space of symmetric 

matrices) of this gradient, with respect to the Riemannian scalar product, can be found as 

the solution of the equations 

grad𝑛 𝑓(𝑋) = 𝑇 + 𝑆,

𝑔𝑋(𝑆, 𝐾) = tr (𝑆𝑋
−1𝐾𝑋−1) = 0,   for every 𝐾 ∈ 𝒱.

 

Writing again vec (𝑇) = 𝑈𝑡, we find in parameter space 

𝑡 = (𝑈𝑇(𝑋−1⊗𝑋−1)𝑈)−1𝑈𝑇(𝑋−1⊗𝑋−1) vec(grad𝑛 𝑓(𝑋)).        (57) 
The factor 𝑈𝑇(𝑋−1⊗𝑋−1)𝑈 is recurring and is abbreviated as 𝐷𝑋, where the subscript 

points to the intrinsic variable 𝑋. Observe that this Riemannian orthogonal projection can 

be seen as a Euclidean oblique projection where the two bases of the subspace are the 

columns of 𝑈 and (𝑋−1⊗𝑋−1)𝑈, respectively. 

Using this expression, it is possible to define another gradient descent method where we are 

now searching the fixed points of the function 

𝜑(𝑡) = 𝑡 − 𝜃𝐷𝜎(𝑡)
−1 𝑈𝑇(𝜎(𝑡)−1⊗𝜎(𝑡)−1) vec (𝜎(𝑡)∑  

m

i=1

  log (𝐴𝑖
−1𝜎(𝑡))) . (58) 

Relying on (40) to incorporate the Kronecker product into the vectorization, we find that 

(𝜎−1⊗𝜎−1)vec (𝜎∑𝑖=1
𝑚  log (𝐴𝑖

−1𝜎)) = vec (∑𝑖=1
𝑚  log (𝐴𝑖

−1𝜎)𝜎−1). Applying a property of 

the matrix logarithm we may rewrite the latter expression as vec (𝜎−1∑𝑖=1
𝑚  log (𝜎𝐴𝑖

−1)). 

This way, equation (58) takes the form of (50) with 

𝑉 = 𝑈𝑇(𝐺−1⊗𝐺−1)𝑈. 
To analyze the convergence of (50) with the choice 𝑉 = 𝑈𝑇(𝐺−1⊗𝐺−1)𝑈, we have to 

analyze the eigenvalues of the Jacobian 𝐾 = 𝐽𝑆(𝑡𝐺) of 𝑆(𝑡) in (50) where the equation 

det (𝜅𝐼 − 𝐾) = 0 takes the form of the following generalized eigenvalue problem 

det (𝑈𝑇(𝜅(𝐺−1⊗𝐺−1) − (𝐼 ⊗ 𝐺−1)𝐻(𝐼 ⊗ 𝐺−1))𝑈) = 0. (59) 
Since the two matrices in equation (59) are positive, in view of Lemma (1.3.10), the 

solutions of this generalized eigenvalue problem are real positive and are located in between 

the maximum and the minimum solution of the larger problem 

det (𝜆(𝐺−1⊗𝐺−1) − (𝐼 ⊗ 𝐺−1)𝐻(𝐼 ⊗ 𝐺−1)) = 0, 
which in turn can be rewritten as a standard eigenvalue problem 

det (𝜆𝐼 − (𝐺1/2⊗𝐺1/2)(𝐼 ⊗ 𝐺−1)𝐻(𝐼 ⊗ 𝐺−1)(𝐺1/2⊗𝐺1/2)) = 0. 
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Since 𝐻 = ∑𝑖=1
𝑚  𝐻𝑖, and the matrices 𝐻𝑖 are real symmetric, the eigenvalues of this problem 

are located in between the sum of the minimum and the sum of the maximum eigenvalues 

of each subproblem 

det (𝜆𝐼 − (𝐺
1
2⊗𝐺

1
2) (𝐼 ⊗ 𝐺−1)𝐻𝑖(𝐼 ⊗ 𝐺−1) (𝐺

1
2⊗𝐺

1
2)) = 0, (60) 

that is det (𝜆(𝐺−1⊗𝐺) − 𝐻𝑖) = 0, or equivalently det (𝜆𝐼 − (𝐺 ⊗ 𝐼)𝐻𝑖(𝐼 ⊗ 𝐺−1)) = 0. 

The matrix in the latter expression is similar to (𝐴𝑖
−1/2

⊗𝐴𝑖
−1/2

)(𝐺 ⊗ 𝐼)𝐻𝑖(𝐼 ⊗ 

𝐺−1)(𝐴𝑖
1/2
⊗𝐴𝑖

1/2
), which, using the expression of 𝐻𝑖 provided in Theorem (1.3.9), can be 

written as 

(𝑀𝑖⊗ 𝐼)𝛾(log 𝑀𝑖⊗ 𝐼 − 𝐼 ⊗ log 𝑀𝑖)(𝐼 ⊗𝑀𝑖
−1). 

This way, the eigenvalues of (60) can be explicitly given in terms of the eigenvalues 𝜈𝑟
(𝑖)

 of 

the matrix 𝑀𝑖. In fact, they coincide with the 𝑡𝑟,𝑠
(𝑖)
(log 𝑡𝑟,𝑠

(𝑖)
) / (𝑡𝑟,𝑠

(𝑖)
− 1) where 𝑡𝑟,𝑠

(𝑖)
=
𝜈𝑟
(𝑖)

𝜈𝑠
(𝑖). 

Since the function 𝑡(log 𝑡)/(𝑡 − 1) is monotone, for the minimum and maximum solution 

to (60) we have 

𝜂min
(𝑖)

= (1/𝜇(𝑖))log (1/𝜇(𝑖))/(1/𝜇(𝑖) − 1) = (log 𝜇(𝑖))/(𝜇(𝑖) − 1),

𝜂max
(𝑖)

= 𝜇(𝑖)(log 𝜇(𝑖))/(𝜇(𝑖) − 1),
 

respectively, for 𝜇(𝑖) = 𝜇(𝑀𝑖) the spectral condition number of 𝑀𝑖. Therefore, we may 

conclude that the eigenvalues of 𝐾 are in between ∑𝑖=1
𝑚  𝜂min

(𝑖)
 and ∑𝑖=1

𝑚  𝜂max
(𝑖)

. This way, we 

find for the optimal value of 𝜃 and for the optimal spectral radius the estimates 

𝜃 =
2

∑  𝑚
𝑖=1  

𝜇(𝑖) + 1
𝜇(𝑖) − 1

log 𝜇(𝑖)
,

𝜌 =
∑  𝑚
𝑖=1  log 𝜇

(𝑖)

∑  𝑚
𝑖=1  

𝜇(𝑖) + 1
𝜇(𝑖) − 1

log 𝜇(𝑖)
.

 

It is interesting to point out that in this case the convergence speed is related neither to the 

condition number of the geometric mean 𝐺 nor to those of the matrices 𝐴𝑖 but is related only 

to the relative distances of 𝐺 from each 𝐴𝑖 measured by the quantities 𝜇(𝑖) = 𝜇(𝑀𝑖),𝑀𝑖 =

𝐴𝑖
−1/2

𝐺𝐴𝑖
−1/2

. The closer they are to 1 the faster is the convergence. Therefore, if the 

matrices to average are not to far from each other, so that the quantities 𝜇(𝑀𝑖) are close to 

1 , then the optimal value of 𝜃 is close to 1/𝑚 and a very fast convergence is expected. This 

analysis is confirmed by the numerical experiments. 

From the computational point of view, at each step of the iteration (50) one has to 

compute 𝑈𝑇vec (Γ(𝜎(𝑡))) and then to solve a linear system with the matrix 𝑉(𝜎(𝑡)). The 

former computation, based on (49), requires 𝑂(mn3) arithmetic operations (ops), while the 

cost of the latter depends on the structure of 𝑉(𝜎(𝑡)). 
We examine the case where 𝒰 is the class of symmetric Toeplitz matrices and where 

𝜎(𝑡) associates 𝑡 with the Toeplitz matrix having as first column 𝑡. We describe a way to 

make the algorithm. 

Indeed, for the iteration analyzed, 𝑉 is the diagonal matrix with diagonal entries (𝑛, 2𝑛 −
2,… ,2) and the cost of solving a system with matrix 𝑉 amounts to 𝑛 divisions. 
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The iteration examined has a higher convergence speed but at each step an 𝑛 × 𝑛 system 

with 𝑉 = 𝑈𝑇(𝑋−1⊗𝑋−1)𝑈 must be solved, where 𝑋 is a symmetric positive definite 

Toeplitz matrix. 

We split the computation in two steps. In the first, the 𝑛2 entries of 𝑉 are computed, in the 

second step a standard 𝑂(𝑛3) ops linear system solver is used. Concerning the first step we 

discuss two approaches. 

In both approaches the inverse of the Toeplitz matrix 𝑋 needs to be computed, which can be 

done efficiently using the Gohberg Semencul formula [25]. Here, vectors 𝑣1, 𝑣2, 𝑣3, 𝑣4 are 

determined such that 𝑋−1 = 𝐿(𝑣1)𝐿(𝑣2)
𝑇 − 𝐿(𝑣3)𝐿(𝑣4)

𝑇, where 𝐿(𝑣) is the lower 

triangular Toeplitz matrix whose first column is 𝑣. From these, the 𝑛2 entries of 𝑋−1 can be 

found. The overall cost is 𝑂(𝑛2) ops. 

(1) As a first attempt, the entries of 𝑉 are computed in a straightforward manner using the 

entries of 𝑋−1 : 

𝑉 =

[
 
 
 
𝛾1,1 2𝛾1,2 ⋯ 2𝛾1,𝑛
2𝛾1,2 2𝛾2,2 ⋯ 2𝛾2,𝑛
⋮ ⋮ ⋱ ⋮

2𝛾1,𝑛 2𝛾2,𝑛 ⋯ 2𝛾𝑛,𝑛]
 
 
 
, 

where 

𝛾1,𝑗  = ∑  

𝑛

𝑖=1

  ∑  

𝑛−𝑗+1

𝑘=1

  (𝑋−1)𝑖,𝑘(𝑋
−1)𝑖,𝑘+𝑗−1,

𝛾𝑗,𝑝  = ∑  

𝑛−𝑗+1

𝑖=1

  ∑  

𝑛−𝑝+1

𝑘=1

  ((𝑋−1)𝑖,𝑘(𝑋
−1)𝑖+𝑗−1,𝑘+𝑝−1 + (𝑋

−1)𝑖,𝑘+𝑝−1(𝑋
−1)𝑖+𝑗−1,𝑘).

 

The cost of this approach in terms of arithmetic operations is of the order 𝑂(𝑛4). 
(2) In the second approach, we show that the cost of this computation can be kept at the 

level of 𝑂(𝑛3log 𝑛) ops by combining the Gohberg Semencul formula and the the FFT. For 

a given 𝑖, the product vector 𝑤𝑖 = (𝑋−1⊗𝑋−1)𝑈𝑒𝑖, where 𝑒𝑖 is the 𝑖 th vector of the 

canonical basis, is such that 𝑤𝑖 = vec (𝑋
−1𝐸𝑖𝑋

−1), with 𝐸𝑖 being the symmetric Toeplitz 

matrix whose first column is 𝑒𝑖. Therefore, compute first the columns of 𝐸𝑖𝑋
−1 by 

performing 𝑂(𝑛2) additions, and then multiply 𝑋−1 by these columns, stacking the results 

to obtain 𝑤𝑖. This computation is performed in 𝑂(𝑛2log 𝑛) operations for each 𝑖 by using 

the Goghberg Semencul formula, since the multiplication of a lower triangular Toeplitz 

matrix and a vector can be performed in 𝑂(𝑛log 𝑛) operations by means of the FFT [25]. 
Therefore the overall computation of this stage for 𝑖 = 1,… , 𝑛 is 𝑂(𝑛3log 𝑛) ops. Finally, 

compute for any 𝑖 the vector 𝑈𝑇𝑤𝑖 for the cost of 𝑂(𝑛2) additions. 

The performance of these methods will be compared. 

The Karcher mean of positive definite matrices has the specific interpretation of being 

the barycenter of the given matrices for the natural metric (36) on this manifold. Hence there 

are in a certain sense two possible generalizations. On the one hand, try to generalize the 

geometric mean concept, or, on the other hand, try to generalize the barycenter concept. 

Previously we focused on an extension of the geometric mean. Hereafter we focus on the 

positive definite Toeplitz matrix manifold itself, denoted by 𝒯𝑛, and consider a barycenter 

in this case. This mean cannot be called a geometric mean in the sense of satisfying all 

required properties, but through its intuitive definition, many desirable properties could 

arise. 
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The concept of a barycenter is not restricted to the specific metric used to define the Karcher 

mean. For example, when the set 𝒯𝑛 is endowed with the classical Euclidean inner product, 

the resulting barycenter is nothing else than the arithmetic mean. Using a probabilty 

argument, in [22], [23] a metric on 𝒯𝑛 is introduced, called the Kähler metric. This metric 

results in a complete, simply connected manifold with non-positive sectional curvature 

everywhere, or a Cartan-Hadamard manifold. Thus, by [17], [38], existence and uniqueness 

are guaranteed for the barycenter with respect to this metric. 

We will recall some known facts about the Kähler metric, and then we will give an explicit 

formula for the barycenter in the real case and a numerical procedure to compute the 

barycenter in the complex case. 

To construct the Kähler metric, a Toeplitz matrix is first transformed to an 𝑛-tuple 

(𝑃0, 𝜇1, … , 𝜇𝑛−1) in ℝ+
∗ ×𝔻𝑛−1, with ℝ+

∗  the set of strictly positive real numbers and 𝔻 the 

set of complex numbers of modulus less than one. This transformation, denoted as 𝜁(𝑇) =

[𝑃𝑇 , 𝜇𝑇,1, … , 𝜇𝑇,𝑛−1]
𝑇
, is performed as follows: 

𝑃𝑇 = 𝑡0,  𝜇𝑇,𝑗 = (−1)
𝑗
det (𝑆𝑗)

det (𝑅𝑗)
, 

with 𝑡0 the main diagonal element of 𝑇, 𝑅𝑗 the principal submatrix of size 𝑗 of 𝑇 (the upper 

left 𝑗 × 𝑗 submatrix) and 𝑆𝑗 obtained by shifting 𝑅𝑗 down one row, or equivalently, by 

removing the first row and last column of 𝑅𝑗+1 (the inverse transformation can be found in 

[48]). In what follows, we use this one-to-one relation between the Toeplitz matrices and 

the corresponding 𝑛-tuple, and when clear by the context, we will neglect the distinction 

and identify one with the other. 

For 𝑋 and 𝑌 being the transformations of two positive Toeplitz matrices 𝑋 = 

[𝑃𝑋, 𝜇𝑋,1, … , 𝜇𝑋,𝑛−1]
𝑇
 and 𝑌 = [𝑃𝑌, 𝜇𝑌,1, … , 𝜇𝑌,𝑛−1]

𝑇
, the metric is given by 

d(𝑋, 𝑌)  = (𝑛𝜎(𝑃𝑋, 𝑃𝑌)
2 +∑  

𝑛−1

𝑗=1

  (𝑛 − 𝑗)𝜏(𝜇𝑋,𝑗 , 𝜇𝑌,𝑗)
2
)

1/2

,

𝜎(𝑃𝑋, 𝑃𝑌)  = |log (
𝑃𝑌
𝑃𝑋
)| ,  𝜏(𝜇𝑋,𝑗 , 𝜇𝑌,𝑗) = atanh (|

𝜇𝑌,𝑗 − 𝜇𝑋,𝑗
1 − 𝜇𝑋,𝑗𝜇𝑌,𝑗

|) ,

 

where atanh (𝑧) =
1

2
log (

1+𝑧

1−𝑧
). 

The barycenter of the positive Toeplitz matrices 𝑇𝑖, for 𝑖 = 1,… ,𝑚, with respect to the 

Kähler metric will be denoted by 𝐵(𝑇1, … , 𝑇𝑚) = [𝑃𝐵, 𝜇𝐵,1, … , 𝜇𝐵,𝑛−1]
𝑇
. It is obtained in this 

transformed space by minimizing the function 

𝑓(𝑋) =∑  

𝑚

𝑖=1

 d2(𝑋, 𝑇𝑖) 

over ℝ+
∗ ×𝔻𝑛−1. Notice that the problem of minimizing 𝑓(𝑋) can be decoupled into the 

problems of minimizing 𝜑0(𝑥) = ∑𝑖=1
𝑚  𝜎(𝑥, 𝑃𝑇𝑖)

2
 over ℝ+

∗ , and the 𝑛 − 1 scalar functions 

𝜑𝑗(𝑧) =∑  

𝑚

𝑖=1

𝜏(𝑧, 𝜇𝑇𝑖,𝑗)
2
,  𝑗 = 1,… , 𝑛 − 1 
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over 𝔻. The minimum of 𝜑0(𝑥) is easily obtained as 𝑃𝐵 = (𝑃𝑇1⋯𝑃𝑇𝑚)
1/𝑚

 by solving the 

equation ∇𝜑0(𝑥) = 0. The minimum of 𝜑𝑗(𝑧) is nothing else than the barycenter of 

𝜇𝑇1,𝑗 , … , 𝜇𝑇𝑚,𝑗 with respect to the customary Poincaré metric on the unit disk and is the point 

where the gradient 

∇𝜑𝑗(𝑧) = 2(|𝑧|
2 − 1)∑ 

m

i=1

 sign (𝑐𝑖,𝑗)atanh (|𝑐𝑖,𝑗|),  𝑐𝑖,𝑗 =
𝜇𝑇𝑖,𝑗 − 𝑧

1 − 𝑧‾𝜇𝑇𝑖,𝑗
, equals zero. (61) 

In the real case we are able to find an explicit expression for this barycenter as well, 

since sign (𝑐)atanh (|𝑐|) = atanh (𝑐) and after some manipulations we get 

𝜇𝑋,𝑗 = 𝒞 ((𝒞(𝜇𝑇1,𝑗)⋯𝒞(𝜇𝑇𝑚,𝑗))
1/𝑚

), 

where 𝒞(𝑧) = (1 − 𝑧)/(1 + 𝑧) is the Cayley transform. 

In the complex case we were not able to find such an explicit formula but a quick numerical 

method can be devised using a gradient descent algorithm. We recall that the tangent space 

to the Poincaré disk can be identified with the complex plane and thus for a sufficiently 

small tangent vector 𝑣 ∈ ℂ, one can consider the retraction 𝑅𝑧(𝑣) = 𝑧 + 𝑣, which captures 

the fact that the manifold is an open subset of the complex plane. The resulting algorithm to 

find the barycenter of 𝜇1, … , 𝜇𝑛 ∈ ℂ is given by the iteration 

𝑧𝑘+1 = 𝑧𝑘 + 𝑡𝑘𝑣𝑘,  𝑣𝑘 = (1 − |𝑧𝑘|
2)∑  

𝑛

𝑖=1

sign (𝑐𝑖,𝑘)atanh (|𝑐𝑖,𝑘|),  𝑐𝑖,𝑘 =
𝜇𝑖 − 𝑧𝑘
1 − 𝑧‾𝑘𝜇𝑖

, (62) 

for a suitable initial value 𝑧0 and a sufficiently small steplength 𝑡𝑘. 

Another possibility is to consider the retraction 

𝑅𝑧(𝑣) =
𝑧 + 𝑒𝑖𝜃 + (𝑧 − 𝑒𝑖𝜃)𝑒−𝑠

1 + 𝑧‾𝑒𝑖𝜃 + (1 − 𝑧‾𝑒𝑖𝜃)𝑒−𝑠
,  𝜃 = arg 𝑣,  𝑠 =

2|𝑣|

1 − |𝑧|2
, 

which corresponds to moving along the geodesics of the Poincaré disk. The corresponding 

gradient descent method is 

𝑧𝑘+1 = 𝑅𝑧𝑘(𝑡𝑘𝑣𝑘), 

with the same 𝑣𝑘 as (62). 

Regarding the properties of this barycenter, it is easily seen that it is permutation 

invariant, repetition invariant and idempotent (this holds for any barycenter). Moreover, for 

any 𝛼 > 0, the transformed values of 𝛼𝑇 are [𝛼𝑃𝑇 , 𝜇𝑇,1, … , 𝜇𝑇,𝑚]
𝑇
 and from the explicit 

expression of 𝑃𝐵 in the real case we get that 𝐵(𝛼𝑇1, 𝛼𝑇2, … , 𝛼𝑇𝑚) = 𝛼
1/𝑚𝐵(𝑇1, … , 𝑇𝑚), that 

is, homogeneity holds. 

Unfortunately, this new barycenter does not possess other properties as shown by the 

following example. 

Example (1.3.11)[20]: From the explicit expression for the mean in the real case we get a 

simple formula for the Kähler barycenter of two 2 × 2 matrices 

𝑇1 = [
𝑥1 𝑦1
𝑦1 𝑥1

] ,  𝑇2 = [
𝑥2 𝑦2
𝑦2 𝑥2

], 

namely  

𝐵(𝑇1, 𝑇2) = √𝑥1𝑥2 [
1

𝑎 − 𝑏

𝑎 + 𝑏
𝑎 − 𝑏

𝑎 + 𝑏
1

] , with {
𝑎 = √(𝑥1 + 𝑦1)(𝑥2 + 𝑦2)

𝑏 = √(𝑥1 − 𝑦1)(𝑥2 − 𝑦2)
. 

Now consider the following matrices 
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𝑇1 = [
2 1
1 2

] �̃�1 = [
4 −1
−1 4

],      𝑇2 = [
2 −1
−1 2

], 

with �̃�1 ⩾ 𝑇1. By symbolic computation, one gets that 

𝐵(�̃�1, 𝑇2) = [
2√2 √2(√5 − 3)

√2(√5 − 3) 2√2
] B̸(𝑇1, 𝑇2) = [

2 0
0 2

], 

in fact one eigenvalue of 𝐵(�̃�1, 𝑇2) − 𝐵(𝑇1, 𝑇2) is 𝜆 = √10 − 2 − √2 < 0. Thus, we have 

proved that the Kähler barycenter is not monotonic. Moreover, 

𝐵(𝑇1, 𝑇2) ≠ (𝑇1𝑇2)
1/2 = [√

3 0

0 √3
], 

and hence the Kähler barycenter does not coincide with the Karcher mean for circulant 

matrices. In particular, it is not a structured geometric mean as defined. 
Observe that in the previous example 𝐵(𝑇1, 𝑇2) surprisingly coincides with the arithmetic 

mean of 𝑇1 and 𝑇2. It is not difficult to construct examples where it is not true that 

𝐵(𝑇1, 𝑇2) ⩽ (𝑇1 + 𝑇2)/2 as it should be for a geometric mean. 

The different algorithms proposed and will be compared w.r.t. speed and accuracy. 

The numerical experiments are confined to Toeplitz matrices, because of applicational 

interest in computing their structured matrix mean [40]. These matrices are constructed 

randomly, but with chosen condition number, using the technique described in [10]. 

Performance, accuracy and computational distance are subjects of the forthcoming 

investigations. For clarity we remind that the Richardson-iteration corresponds to a 

projection technique on a manifold, with the classical Euclidean inner product. For all 

algorithms, the stopping criteria is based on checking the relative size of the gradient and on 

comparing two consecutive iteration points. 

In spite of the lack of the proof of uniqueness for structured geometric mean in the Toeplitz 

case, for any fixed set of data matrices used in our experiments, any initial value and any 

algorithm yielded always the same structured geometric mean. This suggests the conjecture 

that in the Toeplitz case there is a unique structured geometric mean. 

We have also compared the structured geometric mean obtained by our algorithms with the 

Kähler metric mean, getting in most experiments a relative difference of the order 10−1, 

which indicates that these two means are relatively far from each other. 

The performance of the projection methods explained can be compared by looking at 

both the number of iterations the methods require and the total amount of computational 

time they need. 

In Figure 3(a), the evolution of the gradient over the iterations is displayed for both 

techniques (and hence also the number of iterations). Using the projection method 

introduced gives a faster decrease of the gradient and results in fewer iteration steps. The 

number of iterations remains almost constant for this method as the size of the matrices 

increases. For the projection technique on the other hand, this number starts to increase when 

the matrix size grows. 

However, comparing expression (55) and (57), it can be seen that the second one is 

computationally more expensive and hence the advantage of requiring fewer iterations could 

be nullified. Therefore, Figure 3(𝑏) displays the total computational time of both methods 

for varying sizes of the matrices. The two methods based maintain an advantage despite 

their larger computational cost per iteration. Note that for the largest matrix size the 

computational time of the Euclidean based method appears less than one of the other 

methods. However, this is caused by the increasing number of iterations required by this 
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Euclidean method. Consequently, the maximum number of iterations is reached before 

convergence and the algorithms is terminated prematurely. Concerning the operation count, 

the advantage of the method based on FFT starts to appear when the matrices become 

sufficiently large. Accuracy. In order to analyze the accuracy of the projection methods, we 

implement a high precision version of the first algorithm using the vpa functionality of 

MATLAB. The relative distance, based on the intrinsic distance (36), between this high 

precision computation and the result of the actual algorithms is shown in Figure 4 . For small 

condition numbers, the accuracy of all methods is similar in average, but as the condition of 

the matrices becomes worse, the accuracy of the projection method based on Euclidean 

geometry deteriorates much faster than that of the method based on the Riemannian 

geometry. This first method even fails to converge when the condition number of the 

matrices becomes significantly large. The accuracy of the two approaches is similar and 

deteriorates steadily as the condition numbers of the matrices increase. 

The Karcher mean for positive definite matrices to structured positive definite 

matrices was proposed. Besides a theoretical investigation and adaptation of the desired 

properties of such a mean, algorithms were proposed. In the design of the algorithms, two 

trajectories were put forward, one 
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relying mostly on linear algebra, and one based on differential geometry. A convergence 

analysis has been performed showing the superiority of the algorithm based on differential 

geometry. Numerical experiments compared the accuracy and speed of the various 

techniques and confirmed the theoretical analysis. 

In the case of Toeplitz matrices, we have considered also the Kähler metric mean [23], 

whose properties have been investigated, providing an explicit expression in the real case 

and a quick algorithm in the complex case. For Toeplitz matrices, both the new structured 

geometric mean and the Kähler metric mean have not completely satisfying properties. In 

fact they are neither monotone, nor do they satisfy the arithmetic-geometric inequality. We 

wonder if it is possible to provide a definition of geometric mean for Toep to the ordering 

of positive matrices. 
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Chapter 2 

Toeplitz Kernels and Spectral Gaps and Two Weight Inequality 

 

We show that where the argument of the meromorphic inner function has a power 

law type behavior on the real line, we compute the critical value (𝐽, 𝑆)  =  𝑖𝑛𝑓 {𝑎 ∶

 𝑘𝑒𝑟 𝑇𝐽𝑆𝑎 ≠ 0} . The formula for 𝑐(𝐽, 𝑆) generalizes the Beurling-Malliavin theorem on the 

radius of completeness for a system of exponentials. We attempt to find the supermom of 

the size of the gap in the Fourier spectrum in terms of metric properties of 𝑋. We show here 

two components, a ‘global to local’ reduction, carried out, and an analysis of the ‘local’ 

problem, carried out. 

Section (2.1): Beurling-Malliavin Theory 

For Λ ⊂ 𝐂 denote 

ℰΛ = {𝑒
𝑖𝜆𝑥: 𝜆 ∈ Λ}. 

By definition, the radius of completeness for the family ℰΛ is the number 

𝑅(Λ) = s  {𝑎: ℰΛ is complete in 𝐿2(−𝑎, 𝑎)}. 
(A family is complete if finite linear combinations of its elements are dense in the 

corresponding space.) In [50]-[51], Beurling and Malliavin established a formula for 𝑅(Λ) 
in terms a certain density of Λ at infinity. 

If Λ ⊂ ℝ, then the effective (or Beurling-Malliavin) density 𝐷eff (Λ) is the supremum of the 

set of numbers 𝑎 ≥ 0 such that there is a collection of disjoint intervals {𝑙𝑗} satisfying the 

following two conditions: 

∑ 

𝑗

|𝑙𝑗|
2

1 + 𝑑𝑗
2 = ∞,  𝑑𝑗: = dist(0, 𝑙𝑗), 

and 

∀𝑗,  #(Λ ∩ 𝑙𝑗) ≥ 𝑎|𝑙𝑗|. 

Beurling-Malliavin's "Second Theorem" (BM2 for short) states that if Λ ⊂ ℝ, then 

𝑅(Λ) = 𝜋𝐷eff(Λ).  
This formula extends to the general case Λ ⊂ 𝐂 as follows. If Λ satisfies the Blaschke 

condition 

(B) ∑  

𝜆∈Λ

  |ℑ𝜆−1| < ∞, 

then 

𝑅(Λ) = 𝜋𝐷eff 
(Λ∗), 

where 

Λ∗ = {𝜆∗: 𝜆 ∈ Λ,ℜ𝜆 ≠ 0},  𝜆∗: = [ℜ𝜆−1]−1; 
otherwise 

Λ ∉ (𝐵) ⇒  𝑅(Λ) = ∞. 
The Beurling-Malliavin Theorem (2.1.2)rowned a long search for a solution of the 

completeness problem, see [78],[70],[81],[69]. See [80] for historical information; let us 

only mention that one of the earliest results of the theory was the estimate 

𝑅(Λ) ≤ 𝜋𝐷(Λ),  (Λ ⊂ ℝ),                                                 (1) 
where 𝐷(Λ) is the usual upper density of Λ at infinity. 
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The Beurling-Malliavin theory also comprises their "First Theorem" (BM1), a result of 

considerable independent interest and (so far) a necessary step in the proof of BM2. A 

detailed exposition of BM theory (including clarification and further improvements of the 

argument) is presented in [66], [67], [58], see also [63], [55]. New applications and new 

approaches to various parts of the theory have been suggested; see [52], [59], [73] for some 

recent developments; also see [64] for a modern overview of the completeness problem for 

exponential systems. 

We generalize BM theory to many other families of special functions. We state our 

results in the language of Toeplitz kernels referring to [72] for a detailed explanation of how 

results of this type are related to the completeness problem for families of solutions of 

general Sturm-Liouville problems. 

The completeness radius problem can be restated in terms of Toeplitz operators as 

follows. Recall that the Toeplitz operator 𝑇𝑈 with a symbol 𝑈 ∈ 𝐿∞(ℝ) is the map 

𝑇𝑈: 𝐻
2 → 𝐻2,  𝐹 ↦ 𝑃+(𝑈𝐹), 

where 𝑃+is the orthogonal projection in 𝐿2(ℝ) onto the Hardy space 𝐻2 = 𝐻2(𝐂+) in the 

upper halfplane 𝐂+ = {ℑ𝑠𝑧 > 0}. By duality and the definition of the classical Fourier 

transform, 

𝑓(𝑡) ↦ 𝑓(𝑧) = ∫  𝑒𝑖𝑧𝑡𝑓(𝑡)𝑑𝑡, 

the exponential family ℰΛ is complete in 𝐿2(−𝑎, 𝑎) if and only if there is a non-trivial 

function 𝐹 in the Paley-Wiener space 

PW𝑎 = {𝑓: 𝑓 ∈ 𝐿
2(−𝑎, 𝑎)} 

such that 𝐹 = 0 on Λ. According to Paley-Wiener's theorem, the Fourier transform 

isometrically identifies 𝐿2(0,∞) with 𝐻2(𝐂+), and therefore 

PW𝑎 = 𝑒
−𝑖𝑎𝑧[𝐻2⊖𝑒2𝑎𝑖𝑧𝐻2]. 

The subspace 𝐻2⊕𝑒2𝑎𝑖𝑧𝐻2 is the so called model space of the inner function 𝑒2𝑎𝑖𝑧. More 

generally, one defines model spaces 

𝐾Θ = 𝐻
2⊖Θ𝐻2 

for arbitrary inner functions Θ. The elements of 𝐾Θ are analytic functions in 𝐂+ but if Θ has 

a meromorphic extention to the whole complex plane, (we call such Θ 's meromorphic inner 

functions), then the elements of 𝐾Θ are defined as functions in C. The completeness problem 

for exponentials is exactly the problem of describing the sets of uniqueness for the model 

space of 𝑒2𝑎𝑖𝑧. 
Suppose now that Λ is a subset of 𝐂+satisfying the Blaschke condition, and let 𝐵Λ be the 

corresponding Blaschke product. A simple argument shows that Λ is a set of uniqueness for 

𝐾Θ if and only if the Toeplitz operator with the symbol 𝑈 = 𝐵ΛΘ‾  has a trivial kernel. In 

particular, we obtain the formula 

𝑅(Λ) = inf  {𝑎: ker 𝑇𝐵Λ𝑒−2𝑎𝑖𝑧 ≠ 0}. 

There is a similar statement in the general case Λ ⊂ 𝐂, see [72]. For example, if Λ ⊂ ℝ, then 

𝑅(Λ) = inf  {𝑎: ker 𝑇𝐽Λ𝑒−2𝑎𝑖𝑧 ≠ 0}, 

where 𝐽Λ denotes some/any meromorphic inner function 𝐽 such that Λ is precisely the level 

set {𝐽 = 1}. 
We should mention that the idea of the Toeplitz operator approach in the study of 

exponential systems was introduced in the series of [79], [75], [61]. This approach has been 
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particularly successful for the interpolation and sampling theory in Paley-Wiener spaces, 

see [71], [77], [82]. 

We will use the following notation for kernels of Toeplitz operators (or Toeplitz kernels in 

𝐻2 ): 

𝑁[𝑈] = ker𝑇𝑈 . 
(For example, 𝑁[Θ‾ ] = 𝐾Θ if Θ is an inner function.) We will also consider Toeplitz kernels 

in the Smirnov-Nevanlinna class 𝒩+ = 𝒩+(𝐂+), 

𝑁+[𝑈] = {𝐹 ∈ 𝒩+ ∩ 𝐿loc
1 (ℝ):𝑈‾𝐹‾ ∈ 𝒩+}, 

and in the Hardy spaces 𝐻𝑝 = 𝐻𝑝(𝐂+), 
𝑁𝑝[𝑈] = 𝑁+[𝑈] ∩ 𝐿𝑝(ℝ),  (0 < 𝑝 ≤ ∞). 

See [65], [56], [76] for general references concerning the Hardy-Nevanlinna theory. 

A natural way to generalize the completeness radius problem (and the BM2 theorem) 

is to ask about the exact value of the infimum 

inf  {𝑎: ker 𝑇𝐽𝑆‾𝑎 ≠ 0}                                           (2) 

for arbitrary meromorphic inner functions 𝐽 and 𝑆. We will give an answer in the case where 

the argument of 𝑆 has a power law type behavior, 

(arg 𝑆)′(𝑥) ≍ |𝑥|𝜅 ,  𝑥 → ±∞, 
with 𝜅 ≥ 0. (We call the case 𝜅 ≥ 0 super-exponential to underline the relation to the 

classical case 𝑆(𝑥) = 𝑒𝑖𝑎𝑥. We will comment on the sub-exponential case 𝜅 < 0.) 

As explained in [72], the computation of the "radius" (2) has some immediate consequences 

for the theory of Sturm-Liouville (SL) operators. The case of SL operators with eigenvalues 

𝜆𝑛 ≍ 𝑛
𝜈 

belongs to the theory with parameter 

𝜅 =
2

𝜈
− 1 ≥ 0. 

If 𝜅 > 0, the SL operators are singular in contrast to the BM case 𝑆(𝑥) = 𝑒𝑖𝑎𝑥, which applies 

to regular operators. In addition to the completeness problem for systems of solutions of SL 

equations, cf [60], the generalized BM theory applies to certain problems of spectral theory 

as well as the theory of (Weyl-Titchmarsh) Fourier transforms associated with SL operators 

and the corresponding (de Branges) spaces of entire functions. 

To state our results, we need to introduce the notion of 𝐵𝑀 intervals. Let 𝛾 be a continuous 

function ℝ → ℝ such that 𝛾(∓∞) = ±∞. i.e. 

lim
𝑥→−∞

 𝛾(𝑥) = +∞,  lim
𝑥→+∞

 𝛾(𝑥) = −∞.  

The family ℬℳ(𝛾) is defined as the collection of the components of the open set 

{𝑥: 𝛾(𝑥) ≠ max
[𝑥,+∞)

 𝛾}. 

For an interval 𝑙 ∈ ℬℳ(𝛾), we denote its length by |𝑙| or simply by 𝑙, and we denote the 

distance to the origin by 𝑑 = 𝑑(𝑙). 
If 𝜅 ≥ 0, then we say that 𝛾 is (𝜅)-almost decreasing if 

𝛾(∓∞) = ±∞,  ∑  

𝑙∈ℬℳ(𝛾)

𝑑𝜅−2𝑙2 < ∞,                        (3) 

where the sum is taken over intervals satisfying 𝑑(𝑙) ≥ 1. 

The standard terminology in the classical 𝜅 = 0 case is the following: the family ℬℳ(𝛾) is 

short if 𝛾 is almost decreasing; otherwise we say that ℬℳ(𝛾) is long. 

Corollary (2.1.1)[49]: Let 𝑈 = 𝑒𝑖𝛾 and 𝑆 = 𝑒𝑖𝜎 be such that 
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𝛾′(𝑥) ≳ −|𝑥|𝜅 ,  𝜎′(𝑥) ≍ |𝑥|𝜅 ,  (𝑥 → ∞), 
and let 𝑐 = 𝑐(𝑈, 𝑆; 𝜅). Then for all 𝑝 < 1/3 we have 

𝑁𝑝[𝑈𝑆‾𝑎] = 0 (𝑎 < 𝑐),  𝑁𝑝[𝑈𝑆‾𝑎] ≠ 0 (𝑎 > 𝑐). 
Indeed, if 𝑎 < 𝑐 then 𝛾𝑎+𝜖 is not almost decreasing for some 𝜖 > 0, and we have 

𝑁𝑝[𝑈𝑆‾𝑎] ⊂ 𝑁+[𝑈𝑆‾𝑎+𝜖𝑆𝜖] = 0 

by Theorem (2.1.22), which can be applied because 𝛾𝑎
′(𝑥) ≳ −|𝑥|𝜅 for all 𝑎 's. Similarly, if 

𝑎 > 𝑐, then 𝛾𝑎−𝜖 is almost decreasing for some 𝜖 > 0, and we have 

𝑁𝑝[𝑈𝑆‾𝑎] = 𝑁𝑝[𝑈𝑆‾𝑎−𝜖𝑆‾𝜖] ≠ 0. 
In the special case where 𝑈 is an inner function, we can extend the statement of he corollary 

to all values of 𝑝, in particular 𝑝 = 2. 

It is easy to see that the statement of Theorem (2.1.22) (and Theorem (2.1.23)) can 

not be extended to the case 𝜅 < 0. For example, the functions 

𝜎(𝑥) = 2sign (𝑥)|𝑥|1/4,  𝛾(𝑥) = 2(1 + √2)1ℝ−(𝑥)|𝑥|
1/4 

satisfy the conditions (35) with 𝜅 = −3/4, and of course 𝛾(+∞) ≠ −∞.For 𝑈 = 𝑒𝑖𝛾 and 

𝑆 = 𝑒𝑖𝜎 we have 

𝑁∞[𝑈𝑆] ≠ 0, 
because 

𝑈𝑆 = 𝑓‾/𝑓,  𝑓(𝑧) = exp {−(1 + 𝑖)𝑧1/4} ∈ 𝐻∞(𝐂+). 

(Also note that the sum ∑𝑑𝜅−2𝑙2 in (3) is always finite if 𝜅 < 0.) 

The Beurling-Malliavin theory extends to the sub-exponential case in a different fashion. 

For 𝜅 ∈ (−1,0] we consider the weighted (non-linear) Smirnov-Nevanlinna classes 

𝒩𝜅
+ = {𝐹 ∈ 𝒩+: log |𝐹| ∈ 𝐿1 (ℝ,

1

1 + |𝑥|2+𝜅
)}, 

and define the corresponding Toeplitz kernels as follows: 

𝑁𝜅
+[𝑈] = 𝑁+[𝑈] ∩𝒩𝜅

+,  𝑁𝜅
𝑝
[𝑈] = 𝑁𝑝[𝑈] ∩𝒩𝜅

+. 
Theorem (2.1.2)[49]: Let 𝜅 ∈ (−1,0], and let 𝑈 = 𝑒𝑖𝛾 and 𝑆 = 𝑒𝑖𝜎 be smooth unimodular 

functions such that 

𝛾′(𝑥) ≳ −|𝑥|𝜅 ,  𝜎′(𝑥) ≳ |𝑥|𝜅 (𝑥 → ∞). 
(i) If the family ℬℳ(𝛾) is long, then 𝑁𝜅

+[𝑈𝑆𝜖] = 0 for all 𝜖 > 0. 

(ii) If the family ℬℳ(𝛾) is short, then 𝑁𝜅
𝑝[𝑈𝑆‾𝜖] ≠ 0 for all 𝜖 > 0 and all 𝑝 <

1

3
. 

One can also state a theorem similar to Theorem (2.1.23). Applications of these results to 

Volterra operators, see [57], and higher order differential operators will be discussed. 

The main tool in the proof of the theorems stated above is the one-dimensional Hilbert 

transform. Let Π denote the Poisson measure on ℝ, 

𝑑Π(𝑡) =
𝑑𝑡

1 + 𝑡2
. 

If ℎ ∈ 𝐿Π
1 ≡ 𝐿1(ℝ, Π) is a real-valued function, and if 𝒮𝒽 denotes its Schwarz integral, 

𝒮𝒽(𝑧) =
1

𝜋𝑖
∫  
ℝ

[
1

𝑡 − 𝑧
−

𝑡

1 + 𝑡2
] ℎ(𝑡)𝑑𝑡,  (𝑧 ∈ 𝐂+),            (4) 

then ℎ̃, the Hilbert transform of ℎ, is defined a.e. on ℝ as the angular limit of ℑ[𝒮ℎ]. 

Alternatively, ℎ̃ can be defined as a singular integral: 

ℎ̃(𝑥) =
1

𝜋
 v.p. ∫  [

1

𝑥 − 𝑡
+

𝑡

1 + 𝑡2
] ℎ(𝑡)𝑑𝑡,  (𝑥 ∈ ℝ). 
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(As a general rule we identify Nevanlinna class functions in the halfplane 𝐂+with their 

angular boundary values on ℝ; e.g. we may write 𝒮ℎ = ℎ + 𝑖ℎ̃. ) 
The relevance of the Hilbert transform in the theory of Toeplitz kernels can be explained by 

the following simple observation, see [72]. 

Suppose 𝛾:ℝ → ℝ is a smooth function. Then 𝑁+[𝑒𝑖𝛾] ≠ 0 if and only if 

𝛾 = −𝛼 + ℎ̃                                                      (5) 
for some smooth increasing function 𝛼 and some ℎ ∈ 𝐿Π−

1 . There is a similar criterion for 

Toeplitz kernels in Hardy spaces: 𝑁𝑝[𝑒𝑖𝛾] ≠ 0 if and only if 𝛾 admits a representation (5) 

with 𝛼 being the argument of some inner function and with ℎ ∈ 𝐿Π
1  such that 𝑒−ℎ ∈ 𝐿𝑝/2(ℝ). 

We recall some properties of the Hilbert transform. We denote by 𝐿Π
(1,∞)

 the usual weak 𝐿1-

space with respect to the Poisson measure. Kolmogorov's theorem states that 

ℎ̃ ∈ 𝐿Π
𝑜(1,∞)

, 

where 𝐿Π
𝑜(1,∞)

 stands for the "little o" subspace of 𝐿Π
(1,∞)

, i.e. 

Π{|ℎ̃| > 𝐴} = 𝑜 (
1

𝐴
) ,  𝐴 → ∞.                                    (6) 

For bounded functions we have the following (Smirnov-Kolmogorov) estimate : 

∥ ℎ ∥∞<
𝜋

2
 ⇒  𝑒ℎ‾ ∈ 𝐿Π

1 . 

Together with the criterion (5), this implies 

∥ 𝛾 ∥∞<
𝜋

𝑝
 ⇒  𝑁𝑝 [𝑏‾

2
𝑝𝑒𝑖𝛾] ≠ 0,                                    (7) 

where 𝑏 is the Blaschke factor 

𝑏(𝑧) =
𝑖 − 𝑧

𝑖 + 𝑧
,  𝑧 ∈ 𝐂+.                                            (8) 

We prove Theorems (2.1.22) and (2.1.23). We closely follow all the steps in our 

presentation of the classical Beurling-Malliavin theory in [72], combining them with certain 

estimates of the Hilbert transform. To make the proof selfcontained, in several places we 

had to repeat the argument outlined in [72]. To avoid further repetitions we decided to omit 

the proof of Theorem (2.1.2) because the reasoning in the sub-exponential case is quite 

similar. The proof of Theorems (2.1.22) and (2.1.23) is organized as follows. 

(i) Upper density estimate: 𝛾(±∞) ≠ ∓∞ implies 𝑁+[𝑈𝑆𝜖] = 0. This statement is 

analogous to the estimate (i). 

(ii) Effective density estimate: ∑𝑑𝜅−2𝑙2 = ∞ implies 𝑁+[𝑈𝑆𝜖] = 0. Together with (i) this 

generalizes the estimate 𝑅(Λ) ≤ 𝜋𝐷eff (Λ) in BM2. 

(iii) Little multiplier theorem: if 𝛾 is almost decreasing, then 𝑁+[𝑈𝑆‾𝜖] = 0. 

(iv) BM multiplier theorem: if the weighted Dirichlet norm of log 𝑊 is finite, then 𝑊 

belongs to some Hardy space up to a factor from 𝑁+[𝑆‾𝜖]. 
(v) A version of BM1: the logarithm of any outer function in 𝑁+-kernel has a finite weighted 

Dirichlet norm. This is used to show that non-triviality of 𝑁+-kernels implies non-triviality 

of 𝑁𝑝-kernels for symbols involving inner functions. 

(vi) 𝐿𝑝-multipliers: approximation by inner functions and multiplying the elements of 𝑁𝑝-

kernels down to 𝐻∞. 

We discuss various consequences of the weighted one-sided Lipschitz condition 

ℎ̃′(𝑥) ≲ |𝑥|𝜅 ,  𝑥 → ∞, 
for smooth real-valued functions ℎ ∈ 𝐿Π

1 . (Here and elsewhere ℎ̃′ means (ℎ̃)′.) 
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Lemma (2.1.3)[49]: If 𝜅 ≥ 0 and ℎ ∈ 𝐿Π
1 , then 

ℎ̃′(𝑥) ≲ 𝑥𝜅 ⇒  ℎ̃(𝑥) = 𝑜(𝑥𝜅+1)  as  𝑥 → +∞. 
Proof: By Kolmogorov's theorem, we have 

ℎ̃ ∈ 𝐿Π
𝑜(1,∞)

.                                                (9) 

If 𝑥∗ ≫ 1 and ℎ̃(𝑥∗) ≥ 𝑐𝑥∗
𝜅+1 for some 𝑐 > 0, then for all 𝑥 such that 1 ≪ 𝑥 ≤ 𝑥∗ we have 

ℎ̃(𝑥) ≥ ℎ̃(𝑥∗) − 𝑎∫  
𝑥∗

𝑥

𝑡𝜅𝑑𝑡 ≥ 𝑐𝑥∗
𝜅+1 − 𝑎(𝑥∗

𝜅+1 − 𝑥𝜅+1), 

and it follows that 

ℎ̃(𝑥) ≳ 𝑥∗
𝜅+1 ≥ 𝑥∗ 

for all 𝑥 in some interval (𝑥∗∗, 𝑥∗) of length ≍ 𝑥∗. Since Π(𝑥∗∗, 𝑥∗) ≍ 1/𝑥∗, this contradicts 

(9), see (6). 

If ℎ̃(𝑥∗) ≤ −𝑐𝑥∗
𝜅+1 for some 𝑐 > 0, then by a similar argument we have 

ℎ̃(𝑥) ≲ −𝑥∗
𝜅+1 ≤ 𝑥∗ 

for all 𝑥 in some interval (𝑥∗, 𝑥∗∗) of length ≍ 𝑥∗, which again contradicts (9). 

We will also need the following version of this lemma. 

Lemma (2.1.4)[49]: Let ℎ ∈ 𝐿Π
1 , 𝜅 ≥ 0, and 𝑎 ∈ ℝ. If 

ℎ̃′(𝑥) + 𝑎𝑥−1ℎ̃(𝑥) ≤ 𝑥𝜅 ,  𝑥 ≫ 1,                                                (10) 
then 

ℎ̃(𝑥) = 𝑜(𝑥𝜅+1)  and  ℎ̃′(𝑥) ≤ 𝑥𝜅 + 𝑜(𝑥𝜅)  as  𝑥 → +∞. 
Proof: Suppose we have ℎ̃(𝑥∗) ≥ 𝑐𝑥∗

𝜅+1 for some 𝑥∗ ≫ 1. Let 𝑥1 be the smallest positive 

number such that ℎ̃(𝑥1) = 𝑐𝑥∗
𝜅+1, so we have 1 ≪ 𝑥1 ≤ 𝑥∗ and ℎ̃ ≤ 𝑐𝑥∗

𝜅+1 on (0, 𝑥1). 
Together with (10), this implies 

ℎ̃′(𝑥) ≲
𝑥∗
𝜅+1

𝑥1
,  𝑥 ∈ (

𝑥1
2
, 𝑥1). 

Arguing as in the previous proof, we see that ℎ̃ ≳ 𝑥∗
𝜅+1 ≥ 𝑥1 on some interval of length ≍

𝑥1, which contradicts the weak 𝐿1-estimate (6). The argument in the case ℎ̃(𝑥∗) ≤ −𝑐𝑥∗
𝜅+1 

is similar. 

Lemma (2.1.5)[49]: If 𝜅 ∈ [−1,0) and ℎ ∈ 𝐿1(|𝑥|−2−𝜅), then 

ℎ̃′(𝑥) ≲ 𝑥𝜅 ⇒  ℎ̃(𝑥) = 𝑜(𝑥𝜅+1),  𝑥 → +∞. 
Proof: If 𝜅 ∈ (−1,0), then the weight |𝑥|−2−𝜅 satisfies the Muckenhoupt (𝐴1) condition at 

infinity, and therefore we have 

ℎ ∈ 𝐿1(|𝑥|−2−𝜅) ⇒ ℎ̃ ∈ 𝐿𝑜(1,∞)(|𝑥|−2−𝜅), 
see [62]. (One can also give an elementary proof for this particular weight.) We then argue 

as in the proof of Lemma (2.1.3). For example, if 𝑥∗ ≫ 1 and ℎ̃(𝑥∗) ≥ 𝑐𝑥∗
𝜅+1, then ℎ̃ ≳

𝑥∗
𝜅+1 on some interval [𝑥∗∗, 𝑥∗] of length ≍ 𝑥∗. The weighted length of this interval is ≍
𝑥∗
−1−𝜅, which contradicts the weak 𝐿1-estimate. 

If 𝜅 = −1, then we consider the function 

ℎ1(𝑥) = 𝑥ℎ(𝑥) ∈ 𝐿Π
1 . 

Since ℎ̃1(𝑥) = 𝑥ℎ̃(𝑥), we have 

ℎ̃1
′ (𝑥) = ℎ̃(𝑥) + 𝑥ℎ̃′(𝑥) ≤ 𝑥−1ℎ̃1(𝑥) + 𝑂(1),  𝑥 → +∞. 

By Lemma (2.1.4), we get ℎ̃1(𝑥) = 𝑜(𝑥) and therefore ℎ̃(𝑥) = 𝑜(1). 
Lemma (2.1.6)[49]: Let 𝑓 ∈ 𝐿Π

1 , 0 ∉ supp 𝑓, and let 

0 ≤ 𝛼 ≤ 𝛽,   or  0 ≤ 𝛽 < 𝛼 < 2. 
Denote 
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𝑔(𝑥) = |𝑥|−𝛼𝑓(𝑥). 
Then 

𝑓′(𝑥) ≤ (1 + 𝑜(1))|𝑥|𝛽 ⇒ �̃�′(𝑥) ≤ (1 + 𝑜(1))|𝑥|𝛽−𝛼 , (11) 
and 

𝑥−1𝑓′(𝑥) ≤ (1 + 𝑜(1))|𝑥|𝛽−1 ⇒ 𝑥−1�̃�′(𝑥) ≤ (1 + 𝑜(1))|𝑥|𝛽−𝛼−1. (12) 
Proof: We will prove (11) for 𝑥 → +∞. The proof of the other cases is similar. Since the 

statement is trivial for 𝛼 = 0, we will assume 𝛼 > 0. 

It is clear that we can modify 𝑓 on any finite interval, so we will assume that 𝑓(𝑥) = 𝑥𝑁 

near the origin for some 𝑁 ≫ 1. If we specify 𝑓(0) = 0, then 

|𝑥|−𝛼𝑓(𝑥) ∈ 𝐿Π
1 .                                                            (13) 

Indeed, by Lemma (2.1.3) we have 𝑓 = 𝑂(|𝑥|𝑁), and therefore 

|𝑥|−𝛼|𝑓| = |𝑥|−𝛼|𝑓|𝛼/𝑁|𝑓|1−(𝛼/𝑁) ≲ |𝑓|1−(𝛼/𝑁) ∈ 𝐿Π
1  

by Kolmogorov's estimate (6). 

Consider the analytic function 

𝑢(𝑧) + 𝑖�̃�(𝑧):= 𝑧−𝛼(𝑓 + 𝑖𝑓)(𝑧),  𝑧 ∈ 𝐂+, 
where 𝑧−𝛼 denotes the branch positive on ℝ+. Note that 

𝑢(𝑥) = 𝑔(𝑥),  �̃�(𝑥) = |𝑥|−𝛼𝑓(𝑥)  for  𝑥 ∈ ℝ+, 
and 

𝑢(𝑥) = |𝑥|−𝛼[𝑓(𝑥)cos 𝛼𝜋 + 𝑓(𝑥)sin 𝛼𝜋]  for  𝑥 ∈ ℝ−. 
By (13), so if we define 

𝑔 − 𝑢 ∈ 𝐿Π
1 ,  𝑔 − 𝑢 = 0  on  ℝ+, 

so if we define  

𝛿(𝑥) = �̃�(𝑥) − |𝑥|−𝛼𝑓(𝑥),  
then 𝛿 = �̅� − �̅� on ℝ+, and we have the following representation for the derivative: 

𝛿′(𝑥) = (𝑔 − 𝑢)̃ ′(𝑥) = ∫  
0

−∞

𝑐1𝑓(𝑡) + 𝑐2𝑓(𝑡)

(𝑡 − 𝑥)2
𝑑𝑡

|𝑡|𝛼
,  (𝑥 > 0). 

By the dominated convergence theorem 

𝛿′(𝑥) = 𝑜(1),  𝑥 → +∞, 
in particular  

𝛿′(𝑥) = 𝑜(𝑥𝛽−𝛼)  if  𝛽 ≥ 𝛼. 

In the case 0 ≤ 𝛽 < 𝛼 < 2, we consider the integrals involving 𝑓 and 𝑓 separately.  

We have 

∫  
−1

−∞

 
|𝑓(𝑡)|

(𝑡 − 𝑥)2
𝑑𝑡

|𝑡|𝛼
 ≤ ∫  

−𝑥

−∞

 
1

|𝑡|𝛼
|𝑓(𝑡)|𝑑𝑡

|𝑡|2
+
1

𝑥𝛼
∫  
−1

−𝑥

 
|𝑡|2−𝛼

𝑥2−𝛼
|𝑓(𝑡)|𝑑𝑡

|𝑡|2

 ≤
1

𝑥𝛼
∫  
−𝑥

−∞

 
|𝑓(𝑡)|𝑑𝑡

|𝑡|2
+
1

𝑥𝛼
∫  
−1

−𝑥

 
|𝑓(𝑡)|𝑑𝑡

|𝑡|2
= 𝑜(𝑥−𝛼) = 𝑜(𝑥𝛽−𝛼).

 

Since 𝛽 ≥ 0, by Lemma (2.1.3) we have 

𝑓(𝑡) = 𝑜(|𝑡|1+𝛽), 
and since 

∫  
−1

−∞

|𝑡|1+𝛽−𝛼

(𝑡 − 𝑥)2
𝑑𝑡 ≤ ∫  

−𝑥

−∞

|𝑡|𝛽−𝛼−1𝑑𝑡 +
1

𝑥2
∫  
−1

−𝑥

|𝑡|1+𝛽−𝛼𝑑𝑡 ≍ 𝑥𝛽−𝛼 , 

we have 
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∫  
−1

−∞

|𝑓(𝑡)|

(𝑡 − 𝑥)2
𝑑𝑡

|𝑡|𝛼
= 𝑜(𝑥𝛽−𝛼). 

It follows that in all cases we have 

𝛿′(𝑥) = 𝑜(𝑥𝛽−𝛼),  𝑥 → +∞, 
and therefore 

�̃�′(𝑥) = 𝑥−𝛼𝑓′(𝑥) − 𝛼𝑥−𝛼−1𝑓(𝑥) + 𝛿′(𝑥) ≤ 𝑥𝛽−𝛼 + 𝑜(𝑥𝛽−𝛼). 
We will also need a converse of (11). We state it only for the range of parameters that 

will be used later. 

Lemma (2.1.7)[49]: Let 𝑤 ∈ 𝐿Π
1 , 0 ∉ supp 𝑤, and 

0 < 𝛼 ≤ 𝛽,   or  1 ≤ 𝛼 ≤ min  (2, 𝛽 + 1). 
Denote 

ℎ(𝑥) = |𝑥|−𝛼𝑤(𝑥). 
Then 

ℎ̃′(𝑥) ≤ (1 + 𝑜(1))|𝑥|𝛽−𝛼 ⇒  �̃�′(𝑥) ≤ (1 + 𝑜(1))|𝑥|𝛽 . 
Proof: (a) The case 𝛽 ≥ 𝛼. Let 𝑛 be an even integer such that 

𝛼1: = 𝑛 − 𝛼 ∈ [0,2). 
Define 

𝑔(𝑥):= 𝑥−𝑛𝑤(𝑥) = |𝑥|−𝛼1ℎ(𝑥). 
Since 𝛼1 < 2 and 𝛽1: = 𝛽 − 𝛼 ≥ 0, we can apply Lemma (2.1.6) to 𝑓 = ℎ and 𝑔 and obtain 

the estimate 

�̃�′(𝑥) ≤ |𝑥|𝛽1−𝛼1 +⋯ = |𝑥|𝛽−𝑛 +⋯. 
Since �̃�(𝑥) = 𝑥𝑛�̃�(𝑥), we have 

�̃�′(𝑥) = 𝑛𝑥𝑛−1�̃�(𝑥) + 𝑥𝑛�̃�′(𝑥) ≤ 𝑛𝑥−1�̃�(𝑥) + |𝑥|𝛽 +⋯, 
and by Lemma (2.1.4) , 

�̃�′(𝑥) ≤ (1 + 𝑜(1))|𝑥|𝛽 . 
(b) The case 𝛼 ∈ [1,2] and 𝛽 − 𝛼 ∈ [−1,0]. Note that this implies 𝛽 ≥ 0. Define the 

functions 

𝑔(𝑥) = 𝑥−1𝑤(𝑥),  𝑓(𝑥) = 𝑥ℎ(𝑥), 
so 

𝑔(𝑥) = |𝑥|−𝛼1𝑓(𝑥),  𝛼1 = 2 − 𝛼 ∈ [0,1]. 
Let us show that 

𝑥−1𝑓′ ≤ |𝑥|𝛽1−1 +⋯ ,  𝛽1: = 𝛽 − 𝛼 + 1.                              (14) 
Since 

ℎ ∈ 𝐿1 (
1

|𝑥|2−𝛼
) ⊂ 𝐿1 (

1

|𝑥|2+𝜅
) ,  𝜅: = 𝛽 − 𝛼, 

by Lemma (2.1.5) we have 

ℎ̃(𝑥) = 𝑜(|𝑥|𝜅+1), 
and since 𝑓(𝑥) = 𝑥ℎ̃(𝑥), we obtain (14): 

𝑥−1𝑓′(𝑥) = ℎ̃′(𝑥) + 𝑥−1ℎ̃(𝑥) ≤ |𝑥|𝜅 + 𝑜(|𝑥|𝜅). 
We can now apply Lemma (2.1.6) with parameters 𝛼1 and 𝛽1. (Note that 𝑓 ∈ 𝐿Π

1  and the 

parameters are admissible.) By (12) we get the estimate 

𝑥−1�̃�′(𝑥) ≤ |𝑥|𝛽1−𝛼1−1 +⋯ = |𝑥|𝛽−2 +⋯, 
and from �̃�(𝑥) = 𝑥�̃�(𝑥) we derive 

�̃�′(𝑥) = �̃�(𝑥) + 𝑥�̃�′(𝑥) ≤ 𝑥−1�̃�(𝑥) + |𝑥|𝛽 +⋯. 
Applying Lemma (2.1.4) we conclude the proof. 
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We prove the first part of Theorem (2.1.22), which gives a sufficient condition for the 

triviality of a Toeplitz kernel. Let us fix 𝜅 ≥ 0 and consider two unimodular functions 𝑈 =
𝑒𝑖𝛾 and 𝑆 = 𝑒𝑖𝜎 on ℝ satisfying 

𝛾′(𝑥) ≥ −|𝑥|𝜅 ,  𝜎′(𝑥) ≥ |𝑥|𝜅 ,  (𝑥 → ∞).                                    (15) 
Proposition (2.1.8)[49]: If 𝑁+[𝑈𝑆𝜖] ≠ 0 for some 𝜖 > 0, then 𝛾(∓∞) = ±∞. 
Proof: If 𝑁+[𝑈𝑆𝜖] ≠ 0, then by the basic criterion (5) we have 

𝛾 + 𝜖𝜎 + 𝛼 = ℎ̃,  𝛼′ ≥ 0,  ℎ ∈ 𝐿Π
1 . 

Therefore,  

ℎ̃′(𝑥) ≳ 𝛾′(𝑥) ≳ −|𝑥|𝜅 , 
and ℎ̃(𝑥) = 𝑜(|𝑥|𝜅+1) by Lemma (2.1.3). It follows that 

𝛾(𝑥)

𝑥
≲
𝛾(𝑥)

𝑥
+
𝛼(𝑥)

𝑥
= −𝜖

𝜎(𝑥)

𝑥
+ 𝑜(|𝑥|𝜅) ≲ −|𝑥|𝜅 , 

which implies 𝛾(∓∞) = ±∞. 

Let 𝑐 > 0 be a fixed constant. For an interval 𝑙 ⊂ ℝ we denote by 𝑙′ and 𝑙′′ the 

intervals of length 𝑐|𝑙| adjacent to 𝑙 from the left and from the right respectively, and we 

define 

Δ𝑙
∗[𝛾] = inf

𝑙′′
 𝛾 − sup

𝑙′
 𝛾. 

Lemma (2.1.9)[49]: Let 𝜖 > 0 and suppose 

𝛾(∓) = ±∞,  ∑  

𝑙∈ℬℳ(𝛾)

𝑑𝜅−2𝑙2 = ∞.                                 (16) 

Then there is a constant 𝑐 > 0 and there is a collection of disjoint intervals {𝑙𝑛} in [1,+∞) 
or in (−∞,−1] such that 

∑ 𝑑𝑛
𝜅−2𝑙𝑛

2 = ∞,  10𝑙𝑛 ≤ 𝑑𝑛,  mult{5𝑙𝑛} < ∞,                 (17) 

and 

Δ𝑙𝑛
∗ [arg (𝑈𝑆𝜖)] ≥ 𝑐𝑑𝑛

𝜅𝑙𝑛.                                                (18) 

Here 5𝑙 is the notation for the interval of length 5|𝑙| concentric with 𝑙, and mult {⋅} is the 

multiplicity of the covering. 

Proof: Suppose the sum (16) over BM intervals in ℝ+is infinite. If there are infinitely many 

BM intervals 𝑙 = (�̃�𝑛, 𝑏𝑛) in ℝ+satisfying 10|𝑙| > 𝑑, then we set 

𝑙𝑛 = (𝑎𝑛, 𝑏𝑛),  𝑎𝑛: =
10

11
𝑏𝑛; 

otherwise we simply enumerate BM intervals such that 10|𝑙| ≤ 𝑑. In any case, we get a 

collection of intervals 𝑙𝑛 = (𝑎𝑛, 𝑏𝑛) satisfying the first two conditions in (17) and also the 

inequality 

𝛾(𝑏𝑛) ≥ 𝛾(𝑎𝑛). 
By (15), the latter implies that the intervals also satisfy (18) for some 𝑐 > 0. Finally, we 

take a subfamily {𝑙𝑛𝑘} such that {5𝑙𝑛𝑘} is a subcover of ⋃5𝑙𝑛 of finite multiplicity and 

observe that we still have the divergence of the series ∑𝑑𝜅−2𝑙2. Indeed, if ⋃𝑙𝑗 ⊂ 5𝑙, then 

𝑑𝑗 ≍ 𝑑,  ∑  𝑙𝑗
2 ≲ 𝑙2, 

and so 

∑ 

𝑗

𝑑𝑗
𝜅−2𝑙𝑗

2 ≲ 𝑑𝜅−2𝑙2. 

The following proposition completes the proof of the first part of Theorem (2.1.22). 
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Proposition (2.1.10)[49]: Suppose 𝛾′(𝑥) ≳ −|𝑥|𝜅 and suppose there is a collection {𝑙} of 

disjoint intervals in [1, +∞) such that 

∀𝑙,  Δ𝑙
∗[𝛾] ≥ 𝑐𝑙𝑑𝜅 , 

and 

∑ 𝑑𝜅−2𝑙2 = ∞,  10𝑙 ≤ 𝑑,   mult {51} < ∞, 

then 𝑁+[𝑒𝑖𝛾] = 0. 

Proof. The statement corresponds to the so-called Beurling's lemma in the classical BM 

theory. There are several versions of the proof of Beurling's lemma, e.g. Koosis [66] applies 

the Beurling-Tsuji estimate of harmonic measure, Nazarov [74] uses the Bellman function, 

and Kargaev's proof [68] is based on PDE techniques. We suggest yet another approach. 

According to the criterion (5), we have to exclude the possibility 

𝛾 + 𝛼 = ℎ̃,  𝛼 ↑,  ℎ ∈ 𝐿Π
1 . 

Denote by ℎ𝑙 the restriction of ℎ to the interval 5𝑙. We say that 𝑙 is of type I if 

𝑑𝜅−2𝑙2 ≤ 𝐶∥∥ℎ𝑙∥∥Π,                                                        (19) 

where 𝐶 is a sufficiently large constant; otherwise we call 𝑙 an interval of type II. Clearly, 

we have 

∑ 

𝑙∈𝐼

𝑑𝜅−2𝑙2 < ∞, 

and to get a contradiction we need to show 

∑ 

𝑙∈𝐼𝐼

𝑑𝜅−2𝑙2 < ∞                                                (20) 

Consider the 2D Hilbert transform 

𝐻(𝑧) = ∫  
ℝ

ℎ−(𝑡)𝑑𝑡

(𝑡 − 𝑧)2
,  (𝑧 ∈ 𝐂+). 

where ℎ− = max{0,−ℎ}. 
Lemma (2.1.11)[49]: If 𝑙 is of type II, then 

|𝐻(𝑧)| ≥ 𝑑𝜅 ,  ∀𝑧 ∈ 𝑄𝑙: = {𝑥 + 𝑖𝑦: 𝑥 ∈ 𝑙, 𝑙 < 𝑦 < 2𝑙}. 
We prove this lemma, and we now explain how the lemma implies (20). Denote 

𝜓 =∑ 

𝑙∈II

𝑑𝜅𝑙 ⋅ 1𝑙 . 

We have 

∑ 

𝑙∈𝐼𝐼

𝑑𝜅−2𝑙2 ≍ ∫  
∞

1

𝜓(𝑡)𝑑𝑡

𝑡2
=
8

3
∫  
∞

1

𝑑𝐴

𝐴3
∫  
𝐴

𝐴
2

𝜓(𝑡)𝑑𝑡.                (21) 

For every 𝐴 > 1 let 

𝐻𝐴(𝑧) = ∫  
𝐶𝐴

−𝐶𝐴

ℎ−(𝑡)𝑑𝑡

(𝑡 − 𝑧)2
, 

where 𝐶 > 0 is a large constant, and let II (𝐴) denote the set of all intervals 𝑙 ∈ II intersecting 

(𝐴/2, 𝐴). If 𝑙 ∈ II(𝐴) and 𝑧 ∈ 𝑄𝑙, then 

|𝐻(𝑧) − 𝐻𝐴(𝑧)| ≤ ∫  
|𝑡|>𝐶𝐴

ℎ−(𝑡)𝑑𝑡

|𝑡 − 𝑧|2
≍ ∫  

|𝑡|>𝐶𝐴

ℎ−(𝑡)𝑑𝑡

1 + 𝑡2
≪ 1, 

so by the lemma we have 
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|𝐻𝐴| ≥ 𝐴
𝜅  on ⋃  

𝑙∈𝐼𝐼(𝐴)

𝑄𝑙 . 

Applying the weak- 𝐿1 estimate for the 2D Hilbert transform, see [53], we get 

∑  

𝑙∈II(𝐴)

𝑙2 ≤ Area(|𝐻𝐴| ⩾ 𝐴
𝜅) ≲ 𝐴−𝜅∫  

𝐶𝐴

−𝐶𝐴

ℎ−(𝑡)𝑑𝑡, 

and therefore 

∫  
𝐴

𝐴/2

𝜓(𝑡)𝑑𝑡 ≲ 𝐴𝜅 ∑  

𝑙∈II(𝐴)

𝑙2 ≲ ∫  
𝐶𝐴

−𝐶𝐴

ℎ−(𝑡)𝑑𝑡, 

Combining this with (21), we conclude 

∑ 

𝑙∈II

𝑑𝜅−2𝑙2 ≲ ∫  
∞

1

𝑑𝐴

𝐴3
∫  
𝐶𝐴

−𝐶𝐴

ℎ−(𝑡)𝑑𝑡 ≲ ∥ℎ−∥Π, 

which proves (20) 

Proof. Since 𝛼 in the representation ℎ̃ = 𝛾 + 𝛼 is increasing, we have 

Δ𝑙
∗[ℎ̃] ≳ 𝑙𝑑𝜅 .                                                (22) 

On the other hand, for intervals of type II we have 

Δ𝑙
∗[ℎ̃𝑙] ≪ 𝑙𝑑𝜅 .                                                (23) 

Indeed, if Δ𝑙
∗[ℎ̃𝑙] ≳ 𝑙𝑑

𝜅, then |ℎ̃𝑙| ≳ 𝑙𝑑
𝜅 on either 𝑙′ or 𝑙′′. Applying the weak type inequality 

with 𝐴 ≍ 𝑙𝑑𝜅, we get 

𝑑−2𝑙 ≲ Π{|ℎ̃𝑙| > 𝐴} ≲ 𝐴
−1∥∥ℎ𝑙∥∥Π, 

which contradicts the definition of type II. 

Denote 𝑓 ≡ 𝑓𝑙 = 1ℝ∖5𝑙 ⋅ ℎ, so ℎ̃ = ℎ̃𝑙 + 𝑓𝑙. From (22)-(23) we conclude that there are points 

𝑎 ∈ 𝑙′ and 𝑏 ∈ 𝑙′′ such that 

𝑓(𝑏) − 𝑓(𝑎) ≥
𝑐

2
𝑙𝑑𝜅 .                                        (24) 

Represent 𝑓 = 𝑓+ − 𝑓−with 𝑓+ = max{𝑓, 0}, and note that the functions 𝑓±: = (𝑓
±)2 are 

decreasing on [𝑎, 𝑏] : 

𝑓±
′(𝑥) = −

1

𝜋
∫  
ℝ∖(5𝑙)

𝑓±(𝑡)𝑑𝑡

(𝑡 − 𝑥)2
< 0,  (𝑥 ∈ 5𝑙). 

From (24) it then follows that 

𝑓−(𝑎) − 𝑓−(𝑏) ≳ 𝑙𝑑
𝜅 , 

so there is a point 𝑥∗ ∈ (𝑎, 𝑏) such that 

1

𝜋
∫  

𝑓−(𝑡)𝑑𝑡

(𝑡 − 𝑥∗)
2
= −𝑓−

′(𝑥∗) =
𝑓−(𝑎) − 𝑓−(𝑏)

𝑏 − 𝑎
≳ 𝑑𝜅 . 

Observe that if 𝑧 ∈ 𝑄𝑙 and 𝑡 ∈ ℝ ∖ 5𝑙, then 

ℜ[
1

(𝑡 − 𝑧)2
] ≍

1

(𝑡 − 𝑥∗)
2
, 

and we have 

|∫  
𝑓−(𝑡)𝑑𝑡

(𝑡 − 𝑧)2
| ≥ ℜ∫  

𝑓−(𝑡)𝑑𝑡

(𝑡 − 𝑧)2
≍ ∫  

𝑓−(𝑡)𝑑𝑡

(𝑡 − 𝑥∗)
2
≳ 𝑑𝜅 . 

It follows that 

|𝐻(𝑧)| ≥ |∫  
𝑓𝑙
−(𝑡)𝑑𝑡

(𝑡 − 𝑧)2
| − |∫  

ℎ𝑙
−(𝑡)𝑑𝑡

(𝑡 − 𝑧)2
| ≳ 𝑑𝜅 , 
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because 

|∫  
ℎ𝑙
−(𝑡)𝑑𝑡

(𝑡 − 𝑧)2
| ≲

𝑑2

𝑙2
∥∥ℎ𝑙∥∥Π ≪ 𝑑𝜅 

provided that the constant 𝐶 in (19) is large enough. 

We prove the following statement. Let 𝜅 ≥ 0 and suppose that 𝑈 = 𝑒𝑖𝛾, 𝑆 = 𝑒𝑖𝜎 

satisfy conditions (35) of Theorem (2.1.22). 

Proposition (2.1.12)[49]: If 𝛾 is almost (𝜅) decreasing, then 𝑁+[𝑈𝑆‾𝜖] ≠ 0 for all 𝜖 > 0. 

Proof: By assumption we have 

∑  

𝑙∈ℬℳ(𝛾)

𝑑𝜅−2𝑙2 < ∞.                                                (25) 

Recall that the BM intervals of 𝛾 are the components of the open set {𝛾∗ ≠ 𝛾}, where 

𝛾∗(𝑥) = max𝛾[𝑥,+∞). Denote 

𝑓 = 𝛾∗ − 𝛾, 
so 𝑓 = 0 outside the union of BM intervals, and 𝑓′(𝑥) ≲ |𝑥|𝜅 on BM intervals. By (25) we 

have 𝑙 ≲ 𝑑, and therefore 

0 ≤ 𝑓 ≲ 𝑙𝑑𝑘         𝑜𝑛      𝑙,                                        (26) 
Together with (25) this implies 

𝑓 ∈ 𝐿Π
1 . 

The estimate (26) also shows that we can assume 𝑙 ≥ 𝑑−𝜅 for all BM intervals; otherwise 

we can eliminate short intervals by adding a bounded function to 𝛾 (this will not affect the 

𝑁+-kernel). In particular, we will assume that BM intervals don't cluster to a finite point. 

The non-triviality of 𝑁+[𝑈𝑆‾𝜖] is a consequence of the following statement which will be 

verified. 

Lemma (2.1.13)[49]: For any 𝜖 > 0, there is a function 𝛽 such that 

𝑓 + 𝛽 ∈ �̃�Π
1 ,  𝛽′(𝑥) ≤ 𝜖|𝑥|𝜅  for  |𝑥| ≫ 1. 

Indeed, if for instance 𝜎′(𝑥) ≥ |𝑥|𝜅 near ±∞, then we can write 

𝛾 − 𝜖𝜎 = −(𝑓 + 𝛽) + (𝛽 − 𝜖𝜎) + 𝛾∗. 
The first term in the RHS is in �̃�Π

1 , and the last two terms are decreasing near infinities, so 

we can apply the basic criterion (5). 

Proof. We will construct disjoint intervals 𝑙𝑛 such that they cover all BM intervals and 

satisfy the following two conditions: 

∑ 

𝑛

𝑑𝑛
𝜅−2𝑙𝑛

2 < ∞,                                                (27) 

and 

∀𝑛 ∃𝜖𝑛 ∈ [0, 𝜖],  ∫  
𝑙𝑛

𝑓(𝑥) − 𝜖𝑛|𝑥|
𝜅𝑇𝑛(𝑥)

1 + 𝑥2
𝑑𝑥 = 0,                (28) 

where 𝑇𝑛 is the "tent" function of the interval 𝑙𝑛, 

𝑇𝑛(𝑥) = dist (𝑥, ℝ ∖ 𝑙𝑛). 
Let us show that the existence of such intervals 𝑙𝑛 implies the statement of the lemma. 

Define 

𝛽(𝑥) = −∑  

𝑛

𝜖𝑛|𝑥|
𝜅𝑇𝑛(𝑥), 

and 

𝑔(𝑥) = 𝑓(𝑥) −∑ 𝜖𝑛|𝑥|
𝜅𝑇𝑛(𝑥). 
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Clearly, we have  

|𝛽′(𝑥)| ≲ 𝜖|𝑥|𝜅 , 
and all we need is to check 𝑔 ∈ �̃�Π

1 . 

Let us show that 𝑔 belongs to the real Hardy space ℋΠ
1(ℝ). We can represent 𝑔 as follows: 

𝑔 =∑ 𝑔𝑛 =∑ 𝜆𝑛
𝑔𝑛
𝜆𝑛
: = ∑ 𝜆𝑛𝐴𝑛, 

where 

𝑔𝑛 = 𝑔 ⋅ 1𝑙𝑛 ,  𝜆𝑛 = Π(𝑙𝑛)∥∥𝑔𝑛∥∥∞. 

The functions 𝐴𝑛 = 𝜆𝑛
−1𝑔𝑛 are "atoms": 

∫  𝐴𝑛𝑑Π =
1

𝜆𝑛
∫  
𝑙𝑛

 𝑔𝑑Π = 0    by  (28), 

and 

∥∥𝐴𝑛∥∥∞ =
∥∥𝑔𝑛∥∥∞
𝜆𝑛

=
1

Π(𝑙𝑛)
. 

Since 

∥∥𝑔𝑛∥∥∞ ≲ 𝑑𝑛
𝜅𝑙𝑛, 

(use 𝑙𝑛 ≲ 𝑑𝑛 and (26) for the BM intervals covered by 𝑙𝑛 ), we have 

∑ 𝜆𝑛 ≲∑ 
𝑙𝑛
𝑑𝑛
2
𝑑𝑛
𝜅𝑙𝑛 < ∞  by   (27).  

It follows that ∑𝜆𝑛𝐴𝑛 ∈ ℋΠ
1(ℝ), see [54]. 

Let us assume that all BM intervals 𝑙 lie in [1, +∞). In the general case we will need 

to apply the procedure described below to BM intervals in (−∞,−1] and in [1, +∞) 
separately. 

We construct our intervals 𝑙1, 𝑙2, … by induction. The left endpoint 𝑎1 of 𝑙1 will be the left 

endpoint of the leftmost BM interval. Suppose the left endpoint 𝑎𝑛 of 𝑙𝑛 has been 

constructed so that 𝑎𝑛 is also the left endpoint of some BM interval 𝑙 = (𝑎(𝑙), 𝑏(𝑙)), i.e. 𝑎𝑛 =

𝑎(𝑙). Consider the function 

𝐹(𝑏) = ∫  
𝑏

𝑎𝑛

[𝑓 − 𝜖|𝑥|𝜅𝑇(𝑎𝑛,𝑏)]𝑑Π, 

where 𝑇(𝑎𝑛,𝑏)(⋅) = dist (⋅, {𝑎𝑛, 𝑏}) is the tent function. We define 𝑏𝑛, the right endpoint of 

𝑙𝑛, as the nearest point in the complement of BM intervals at which 𝐹 is non-positive, 

𝑏𝑛 = min  {𝑏 ≥ 𝑏(𝑙):  𝑓(𝑏) = 0, 𝐹(𝑏) ≤ 0}. 

Since 𝑓 ∈ 𝐿Π
1 , we have 𝐹(+∞) = −∞ and so 𝑏𝑛 < ∞. Finally, we define 𝑎𝑛+1 as the 

leftmost endpoint of BM intervals not covered by 𝑙1 ∪⋯∪ 𝑙𝑛. (Recall that we assumed that 

there are no finite cluster points.) 

It is clear from the construction that the intervals 𝑙𝑛 cover all BM intervals. We also get (28) 

by defining 𝜖𝑛 from the equation 

∫  
𝑏𝑛

𝑎𝑛

[𝑓 − 𝜖𝑛|𝑥|
𝜅𝑇(𝑎𝑛,𝑏𝑛)]𝑑Π = 0; 

clearly we have 0 < 𝜖𝑛 ≤ 𝜖. In remains to verify (27). We have three types of intervals 𝑙𝑛 : 

(a) 𝐹(𝑏𝑛) < 0 but there is a BM interval 𝑙 ⊂ 𝑙𝑛 such that |𝑙| ≍ |𝑙𝑛|, 
(b) 𝐹(𝑏𝑛) = 0, 

(c) other intervals. 
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Property (27) is obvious for the collection of intervals of type (a): we have 𝑙 ≪ 𝑑 (except 

for finitely many 𝑙′ s) and therefore 𝑑 ≍ 𝑑𝑛 and 𝑑𝜅−2𝑙2 ≍ 𝑑𝑛
𝜅−2𝑙𝑛

2. 

To prove (27) for the collection of intervals of type (b), we note that 𝜖𝑛 − 𝜖 if 𝑙𝑛 ∈ (b), and 

since 

∫  
𝑏

𝑎

𝑥𝜅𝑇(𝑎,𝑏)(𝑥)
𝑑𝑥

𝑥2
≥
𝑎𝜅

𝑏2
∫  
𝑏

𝑎

𝑇(𝑎,𝑏) ≥
𝑎𝜅

𝑏2
(𝑏 − 𝑎)2, 

we have 

∑ 

(𝑏)

𝑑𝑛
𝜅𝑙𝑛
2

(𝑑𝑛 + 𝑙𝑛)
2
≲∑ 

(𝑏)

∫  
𝑏𝑛

𝑎𝑛

|𝑥|𝜅𝑇(𝑎𝑛,𝑏𝑛)𝑑Π =
1

𝜖
∫  
⋃  (𝑏)  𝑙𝑛

𝑓𝑑Π < ∞. 

Since 𝑑𝑛 → ∞, it follows that there are only finitely many intervals 𝑙𝑛 ∈ (𝑏) satisfying 𝑑𝑛 ≤
𝑙𝑛, so the last estimate implies 

∑ 

(𝑏)

𝑑𝑛
𝜅−2𝑙𝑛

2 < ∞. 

The argument for intervals of type (c) is the same if we can show that if 𝑙𝑛 ∈ (𝑐), then 𝜖𝑛 >
𝜖/2, i.e. 

∫  
𝑏𝑛

𝑎𝑛

[𝑓 −
𝜖

2
|𝑥|𝜅𝑇(𝑎𝑛,𝑏𝑛)] 𝑑Π > 0.                                (29) 

Since 𝑙𝑛 is not of type (b), we have 𝐹(𝑏𝑛) < 0 and by construction, 𝑏𝑛 is the right endpoint 

of some BM interval 𝑙 = (𝑐, 𝑏𝑛). Note that |𝑙| ≪ |𝑙𝑛| because 𝑙𝑛 is not of type (a). Since 

𝑓 > 0 on 𝑙, we have 

∫  
𝑏𝑛

𝑎𝑛

  (𝑓 −
𝜖

2
𝑥𝜅𝑇(𝑎𝑛,𝑏𝑛))𝑑Π > ∫  

𝑐

𝑎𝑛

  (𝑓 − 𝜖𝑥𝜅𝑇(𝑎𝑛,𝑐))𝑑Π +

 + [𝜖 ∫  
𝑐

𝑎𝑛

 𝑥𝜅𝑇(𝑎𝑛,𝑐)𝑑Π −
𝜖

2
∫  
𝑏𝑛

𝑎𝑛

 𝑥𝜅𝑇(𝑎𝑛,𝑏𝑛)𝑑Π] .

 

The first term in the RHS is equal to 𝐹(𝑐) and therefore positive by construction. Since 

|𝑙| ≪ |𝑙𝑛|, the second term in the RHS is also positive, and we get (29) 

Let 𝑆 be a unimodular function and let 0 < 𝑝 ≤ ∞. If 𝑤 ∈ 𝐿Π
1  is a real function, then 

we write 

𝑤 ∈ ℳ𝑝(𝑆) 

if the outer function 

𝑊 = 𝑒𝑤+𝑖�̃� 
satisfies the following condition: 

∀𝜖 > 0,  ∃𝐺 ∈ 𝑁+[𝑆‾𝜖],  𝑊𝐺 ∈ 𝐻𝑝. 
In other words, 𝑤 ∈ ℳ𝑝(𝑆) if the corresponding outer function belongs to 𝐻𝑝 up to an 

arbitrarily small (compared to 𝑆) factor. 

We can restate this property in terms of Toeplitz kernels. 

Lemma (2.1.14)[49]: 𝑤 ∈ ℳ𝑝(𝑆) iff 

∀𝜖 > 0,  𝑁𝑝 [𝑆‾𝜖
𝑊‾

𝑊
] ≠ 0. 

Proof: ⇒ Let 𝐺 ∈ 𝑁+[𝑆‾𝜖] be such that 𝐹:= 𝐺𝑊 ∈ 𝐻𝑝. Then 

𝐹 ∈ 𝑁𝑝 [𝑆‾𝜖
𝑊‾

𝑊
], 
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and the Toeplitz kernel is non-trivial. Indeed, 

𝑆‾𝜖
𝑊‾

𝑊
𝐹 = (𝑆‾𝜖𝐺)𝑊‾ ∈ 𝒩− ∩ 𝐿𝑝 = 𝐻‾𝑝. 

⇐ If 𝐹 is in the Toeplitz kernel, i.e. 𝐹 ∈ 𝐻𝑝 and 𝐹𝑆‾𝜖𝑊‾ /𝑊 ∈ 𝐻‾ 𝑝, then we define 𝐺 =
𝐹/𝑊 ∈ 𝒩+. Since 

𝑆‾𝜖𝐺 = 𝑆‾𝜖
𝑊‾

𝑊
𝐹
1

𝑊‾
∈ 𝒩−, 

we have 𝐺 ∈ 𝑁+[𝑆‾𝜖] and 𝑊𝐺 ∈ 𝐻𝑝. 

Corollary (2.1.15)[49]: Suppose (arg 𝑆)′ ≳ |𝑥|𝜅. If a real function 𝑤0 ∈ 𝐿Π
1  satisfies the 

following condition: 

∀𝜖 > 0,  ∃𝑤 ∈ 𝐿Π
1 ,  𝑤 ≥ 𝑤0,  �̃�

′ > −𝜖|𝑥|𝜅 + 𝑜(|𝑥|𝜅), 
then 𝑤0 ∈ ℳ𝑝(𝑆) for all 𝑝 < 1. 

Proof: Without loss of generality, (arg 𝑆)′ ≥ 2|𝑥|𝜅 for |𝑥| ≫ 1. We have 

−arg [𝑆‾2𝜖
𝑊‾0
𝑊0
] = 2(𝜖 arg 𝑆 + �̃�) + 2(�̃�0 − �̃�):= 𝛼 + �̃�, 

where 

𝛼′ ≥ 𝜖|𝑥|𝜅 ,  (|𝑥| ≫ 1), 
and 

𝑔 ∈ 𝐿Π
1 ,  𝑔 ≤ 0. 

For sufficiently large 𝑁, the function 𝛼 + arg 𝑏𝑁, where 𝑏 is the Blaschke factor (8), is 

monotone increasing on ℝ, and therefore there is an inner function Φ, not a finite Blaschke 

product, such that 

𝛼 + arg 𝑏𝑁 = arg Φ + 𝛿,  ∥ 𝛿 ∥∞≤ 𝜋. 
Clearly, 𝑁∞[𝑒−𝑖�̃�] ≠ 0, i.e. 

𝑁∞ [𝑒𝑖𝛿𝑏‾𝑁Φ𝑆‾2𝜖
𝑊‾0
𝑊0
] ≠ 0. 

By (7), we also have 

𝑁𝑝[𝑒−𝑖𝛿𝑏‾𝑁] ≠ 0, 
provided that 𝑝 < 1 and 𝑁 is sufficiently large, and of course 

𝑁∞[𝑏2𝑁Φ‾ ] ≠ 0. 
It follows that 

𝑁𝑝 [𝑆‾2𝜖
𝑊‾0
𝑊0
] ≠ 0. 

The main result is the following version of the Beurling-Malliavin multiplier theorem. 

Theorem (2.1.16)[49]: Suppose (arg 𝑆)′ ≳ |𝑥|𝜅, and let 𝑤0 ∈ 𝐿Π
1  be a real function. Then 

|𝑥|−
2+𝜅
2 𝑤0(𝑥) ∈ 𝒟(ℝ,∞) ⇒  𝑤0 ∈ ℳ𝑝(𝑆),  (∀𝑝 < 1). 

Here the notation 𝑓 ∈ 𝒟(ℝ,∞) means that there is a neighborhood of infinity where 𝑓 

coincides with some function from the Dirichlet space 𝒟(ℝ). Recall that the Hilbert space 

𝒟(ℝ) consists of functions ℎ ∈ 𝐿Π
1  such that the harmonic extension 𝑢 = 𝑢(𝑧) of ℎ to 𝐂+has 

a finite gradient norm, 

∥ ℎ ∥𝒟
2≡∥ 𝑢 ∥∇

2= ∫  
𝐂+

|∇𝑢|2𝑑𝐴 < ∞, 

(  is the area measure). If ℎ ∈ 𝒟(ℝ) is a smooth function, then we also have 
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∥ ℎ ∥𝒟
2= ∫  

ℝ

ℎ‾ℎ̃′𝑑𝑥. 

We use some ideas from the proof of Theorem 64 in [55]. 

Proof. It is clear that we can assume that the function 𝑤0 + 𝑖�̃�0 is analytic and has a zero 

of sufficiently large multiplicity at the origin; in particular 

ℎ0(𝑥):= |𝑥|
−
2+𝜅
2 𝑤0(𝑥) ∈ 𝒟(ℝ). 

Let us fix 𝜖 > 0. According to the last corollary we need to construct 𝑤 such that 

(i) 𝑤 ∈ 𝐿Π
1 , 

(ii) 𝑤 ≥ 𝑤0, 

(iii) �̃�′ > −𝜖|𝑥|𝜅 + 𝑜(|𝑥|𝜅). 
We define 

𝑤(𝑥) = |𝑥|
2+𝜅
2 ℎ(𝑥), 

where ℎ is a solution of the following extremal problem: 

m  {𝐼(ℎ): ℎ ≥ ℎ0},  𝐼(ℎ):=∥ ℎ ∥𝒟
2+ 𝜖∫  |𝑥|

2+𝜅
2 |ℎ(𝑥)|𝑑Π(𝑥). 

The existence of a solution follows from the usual argument: the set 

𝒜 = {ℎ: ∥ ℎ ∥𝒟≤ 𝐼(ℎ0),  ℎ ≥ ℎ0 a.e. } ⊂ 𝒟(ℝ) 
is bounded, closed, and convex in 𝒟(ℝ), therefore it is weakly compact. Let 𝐼0 denote the 

minimum of 𝐼(ℎ) over 𝒜. Then there is a sequence of functions ℎ𝑛 ∈ 𝒜 such that 𝐼(ℎ𝑛) →
𝐼0 and ℎ𝑛 weakly converge to some function 𝑔 ∈ 𝒜. It is then routine to see that 

𝐼0 ≤ 𝐼(𝑔) ≤ lim inf   𝐼(ℎ𝑛) = 𝐼0, 
so 𝑔 is a solution of the extremal problem. 

By construction, 𝑤 satisfies (i) and (ii). To prove (iii) we first note that 

ℎ̃′(𝑥) ≥ −𝜖|𝑥|
𝜅−2
2 .                                          (30) 

Indeed, by the extremality of ℎ we have 

∥ 𝜙 ∥𝒟
2+ 2∫  𝜙ℎ̃′ + 𝜖∫  (|ℎ + 𝜙| − |ℎ|)(𝑥)

|𝑥|
2+𝜅
2

1 + 𝑥2
𝑑𝑥 = 𝐼(ℎ + 𝜙) − 𝐼(ℎ) ≥ 0 

for all smooth test functions 𝜙 = 𝜙(𝑥) ≥ 0. (The integral ∫ 𝜙ℎ′ has to be interpreted in the 

sense of the theory of distributions.) Since 
𝜙(𝑥)

𝑥2
≥
|ℎ(𝑥) + 𝜙(𝑥)| − |ℎ(𝑥)|

1 + 𝑥2
, 

we conclude 

∥ 𝜙 ∥𝒟
2+ 2∫  𝜙(𝑥) [ℎ̃′(𝑥) + 𝜖|𝑥|

𝜅−2
2 ] 𝑑𝑥 ≥ 0 

Replacing 𝜙(𝑥) with 𝛿𝜙(𝑥) and letting 𝛿 → 0, we get 

∫  𝜙(𝑥) [ℎ̃′(𝑥) + 𝜖|𝑥|
𝜅−2
2 ] 𝑑𝑥 ≥ 0 

for all 𝜙 ≥ 0, which proves (30) 

To derive (iii) from (30) we apply Lemma (2.1.7) with 

𝛼 = 1 +
𝜅

2
,  𝛽 = 𝜅,  𝛽 − 𝛼 =

𝜅

2
− 1. 

The parameters 𝛼 and 𝛽 are admissible because for 𝜅 ≥ 2 we have 𝛼 ≤ 𝛽, and if 0 ≤ 𝜅 ≤ 2 

then 1 ≤ 𝛼 ≤ 2 and 𝛼 ≤ 𝛽 + 1. 

Proposition (2.1.17)[49]: If 𝑤 ∈ 𝐿Π
1 , 𝑤 ≥ 0, and �̃�′ ≲ |𝑥|𝜅, then 
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|𝑥|−
2+𝜅
2 𝑤(𝑥) ∈ 𝒟(ℝ,∞). 

Proof: We will assume that the function 𝑤0 + 𝑖�̃�0 is analytic and has a zero of sufficiently 

large multiplicity at the origin. Let 𝑢 = 𝑢(𝑧) be the harmonic extention of |𝑥|−
2+𝜅

2 𝑤(𝑥) to 

the upper half plane 𝐂+, and let 𝑣 = �̃�. We need to show that the gradient norm of 𝑢 + 𝑖𝑣 

in 𝐂+is finite, 

∥ 𝑢 + 𝑖𝑣 ∥∇
2= lim

𝑟→∞
 ∫  
∂𝐷(𝑟)

𝑢𝑑𝑣 < ∞, 

where 𝐷(𝑟) is the semidisc {|𝑧| < 𝑟} ∩ 𝐂+. 

We first prove that the integrals over ∂𝐷(𝑟) ∩ ℝ are uniformly bounded from above. 

Applying Lemma (2.1.6) with (admissible) parameters 

𝛼 = 1 +
𝜅

2
,  𝛽 = 𝜅,  𝛽 − 𝛼 =

𝜅

2
− 1 

to the functions 𝑓 = 𝑤 and 𝑔 = 𝑢, we see that 

𝑣′(𝑥) ≲ |𝑥|
𝜅−2
2 ,  𝑥 ∈ ℝ. 

Since 𝑢 > 0 we have 

∫  
∂𝐷(𝑟)∩ℝ

𝑢𝑑𝑣 = ∫  
𝑟

−𝑟

𝑣′𝑢 ≲ ∫  
𝑟

−𝑟

|𝑥|
𝜅−2
2 |𝑥|−

2+𝜅
2 𝑤(𝑥)𝑑𝑥 ≲∥ 𝑤 ∥Π< ∞. 

To finish the proof of the proposition it remains to show that the integrals 

∫  
∂𝐷(𝑟)∖ℝ

𝑢𝑑𝑣 = 𝑟𝐼′(𝑟),  𝐼(𝑟):=
1

2
∫  
𝜋

0

𝑢2(𝑟𝑒𝑖𝜃)𝑑𝜃, 

don't tend to +∞ as 𝑟 → ∞. In fact, it is enough to show 

𝐼(𝑟) ↛ ∞, 
because if 𝑟𝐼′(𝑟) → +∞, then 𝐼′(𝑟) ≥ 1/𝑟 for all 𝑟 ≫ 1, and we have 𝐼(𝑟) → ∞. 

Since 𝜅 ≥ 0, we can apply the following lemma. 

Lemma (2.1.18)[49]: If 𝑢 ∈ 𝐿1(1 + |𝑥|−1), then 𝐼(𝑟) ↛ ∞. 

Proof: We will prove an equivalent statement for functions in the unit disc 𝐃. Let 𝑓 = 𝑢 +
𝑖�̃� be an analytic function in 𝐃 such that 

𝑢(𝜁)

1 − |𝜁|
∈ 𝐿1(∂𝐃). 

Define 

ℎ(𝑧) =
1 + 𝑧

1 − 𝑧
𝑢(𝑧),  𝑧 ∈ 𝐃, 

and denote by ℎ∗(𝜁), 𝜁 ∈ ∂𝐃, the angular maximal function. By Hardy-Littlewood maximal 

theorem, 

ℎ∗ ∈ 𝐿
weak 

1 (∂𝐃).                                          (31) 

Let us show that as 𝜖 → 0, 
1

𝜖
∫  
𝐶𝜖

|𝑓(𝑧)|2|𝑑𝑧| ↛ ∞,  𝐶𝜖: = {|1 − 𝑧| = 𝜖} ∩ 𝐃. 

We have 
1

𝜖
∫  
𝐶𝑐

|𝑓|2 = 𝜖∫  
𝐶𝑐

|ℎ|2 ≲ [𝜖ℎ∗(𝜁)]2 + [𝜖ℎ∗(𝜁‾)]2, 

where 𝜁 ∈ ∂𝐃, |1 − 𝜁| = 𝜖. The RHS can not tend to infinity because otherwise for all small 

𝜖, we would have 
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ℎ∗(𝜁) + ℎ∗(𝜁‾) ≫
1

𝜖
 

on an interval of length 𝜖, which would contradict (31). 

Proposition (2.1.19)[49]: Suppose (arg 𝑆)′ ≳ |𝑥|𝜅 and let Θ be a meromorphic inner 

function satisfying |Θ′| ≲ |𝑥|𝜅. Then 

𝑊 ∈ 𝑁+[Θ‾ ] ⇒  log|𝑊| ∈ ℳ𝑝(𝑆),  (∀𝑝 < 1). 

Proof: We have 𝑊Θ‾ = 𝐻‾  for some 𝐻 ∈ 𝒩+. Define 

𝑊1 = 𝑊𝐻 + Θ,  

and let 𝑊1
𝑒 be the outer part of 𝑊1. From the identity 

Θ‾ 2𝑊1 = Θ‾𝑊Θ‾𝐻 + Θ‾ = 𝐻‾𝑊‾ + Θ‾ = 𝑊‾1, 
we deduce 

|𝑊1| = |𝑊𝑊‾ Θ + Θ| = 1 + |𝑊|
2 ≥ 1, 

and 

|𝑊1
𝑒| ≥ 1,  |𝑊| ≤ |𝑊1

𝑒|,  (arg𝑊1
𝑒)′ ≲ |𝑥|𝜅 . 

By Proposition (2.1.17) and the multiplier theorem, we have log |𝑊1| ∈ ℳ𝑝(𝑆) and 

therefore 

log |𝑊| ∈ ℳ𝑝(𝑆). 

Corollary (2.1.20)[49]: Let 𝑆 and Θ be as above. Then for any meromorphic inner function 

𝐽 and any 𝑝 < 1, we have 

𝑁+[Θ‾ 𝐽] ≠ 0 ⇒  ∀𝜖,  𝑁𝑝[𝑆‾𝜖Θ‾ 𝐽] ≠ 0. 
Proof: Take an outer function 𝑊 ∈ 𝑁+[Θ‾ 𝐽]. Then 𝑊 ∈ 𝑁+[Θ‾ ], and by the last proposition, 

∃𝐺 ∈ 𝑁+[𝑆‾𝜖].  𝑊𝐺 ∈ 𝐻𝑝. 
It then follows that 

𝑊𝐺 ∈ 𝑁+[𝑆‾𝜖Θ‾ 𝐽] ∩ 𝐻𝑝 = 𝑁𝑝[𝑆‾𝜖Θ‾ 𝐽]. 
We finish the proof of Theorems (2.1.22) and (2.1.23). 

It is well known that given any two intertwining discrete sets 𝐴 = {𝑎𝑛} and 𝐵 = {𝑏𝑛} 
of real numbers, …𝑎𝑛 < 𝑏𝑛 < 𝑎𝑛+1…, there exists a meromorphic inner function Θ such 

that 

{Θ = 1} = 𝐴,  {Θ = −1} = 𝐵.                                   (32) 
Indeed, the sequences 𝐴, 𝐵 determine the set 

𝐸 = {ℑΘ > 0} ∩ ℝ =∪ (𝑎𝑛, 𝑏𝑛), 
and we can define Θ in 𝐂+by the (Krein's shift) formula 

1

𝜋𝑖
log 
Θ + 1

Θ − 1
= 𝒮𝑢 + 𝑖𝑐,  𝑢:= 1𝐸 −

1

2
,  𝑐 ∈ ℝ,                            (33) 

where 𝒮𝑢 is the Schwarz integral (4), so ℜ[𝒮𝑢] is the Poisson extension of 𝑢 to the halfplane. 

(Note that 𝑢 is the boundary function of the expression in the LHS of (33), provided that Θ 

is an inner function with level sets 𝐴 and 𝐵, and in fact Krein's shift formula parametrizes 

all such inner functions.) 

An immediate consequence of this construction is the following statement:  

for any increasing, continuous function 𝜎:ℝ → ℝ, there exists a meromorphic inner function 

Θ = 𝑒𝑖𝜃 such that 

∥ 𝜃 − 𝜎 ∥∞≤ 𝜋. 
We will need the following version of this statement. 

Lemma (2.1.21)[49]: If 𝜎′(𝑥) ≍ |𝑥|𝜅, then there is a meromorphic inner function Θ = 𝑒𝑖𝜃 

such that 

𝜃 − 𝜎 ∈ 𝐿∞(ℝ),  𝜃′(𝑥) ≍ |𝑥|𝜅 . 
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Proof: We can assume that 𝜎 is strictly increasing on ℝ. Define the intertwining sequences 

𝐴 = {𝑎𝑛} and 𝐵 = {𝑏𝑛} by the equations 

𝜎(𝑎𝑛) = 2𝜋𝑛,  𝑏𝑛 =
𝑎𝑛 + 𝑎𝑛+1

2
,  (𝑛 ∈ 𝐙), 

so we have 

𝑎𝑛 ≍ (sign 𝑛)|𝑛|
1
1+𝜅 , 

and 

𝛿𝑛: = 𝑏𝑛 − 𝑎𝑛 ≍ |𝑎𝑛|
−𝜅 . 

Let Θ be an inner function satisfying (32), 

∥ 𝜃 − 𝜎 ∥∞≤ 2𝜋, 
and let 𝜇1, 𝜇−1 be the corresponding (Aleksandrov-Clark's) measures defined by the 

Herglotz representation 
1 + Θ

1 − Θ
= 𝒮𝜇1 +  const,  

1 − Θ

1 + Θ
= 𝒮𝜇−1 +  const.  

The measures 𝜇1, 𝜇−1 have the following form: 

𝜇1 =∑ 𝛼𝑛𝛿𝑎𝑛 ,  𝜇−1 =∑ 𝛽𝑛𝛿𝑏𝑛 

for some positive numbers 𝛼𝑛, 𝛽𝑛. (It is easy to see that 𝜇±1{∞} = 0 though we don't 

actually need this fact.) We claim that 

𝛼𝑛 ≍ 𝛿𝑛,  𝛽𝑛 ≍ 𝛿𝑛.                                          (34) 
The estimate 𝜃′(𝑥) ≍ |𝑥|𝜅 easily follows from (34). Since 

|Θ′| ≍ |1 − Θ2||(𝒮𝜇1)
′|,  |Θ′| ≍ |1 + Θ2||(𝒮𝜇−1)

′|, 
we have 

𝜃′(𝑥) ≍ min  {∑  
𝛼𝑛

(𝑥 − 𝑎𝑛)
2
,∑  

𝛽𝑛
(𝑥 − 𝑏𝑛)

2
} ,  (𝑥 ∈ ℝ). 

It follows that if 𝑥 ∈ (𝑎𝑚, 𝑎𝑚+1), then by (34) 

𝜃′(𝑥) ≍ ∫  
|𝑡−𝑥|≳𝛿𝑚

𝑑𝑡

(𝑥 − 𝑡)2
≍ 𝛿𝑚

−1 ≍ |𝑎𝑚|
𝜅 ≍ |𝑥|𝜅 . 

Proof of (34). We will explain the estimate for 𝛼𝑛 's; the proof for 𝛽𝑛 's is similar. According 

to (33), we have 
1 − Θ

1 + Θ
=  const 𝑒𝐾𝑢, 

where 𝑢 = 1𝐸 − 1/2, 

𝐸 = ⋃  

∞

𝑘=−∞

(𝑎𝑘, 𝑏𝑘), 

and 𝐾𝑢 is the improper integral 

𝐾𝑢(𝑧) = ∫  
𝑢(𝑡)𝑑𝑡

𝑡 − 𝑧
,  (𝑧 ∈ 𝐂+). 

By construction, 

𝛼𝑛 =  const Res𝑎𝑛 𝑒
𝐾𝑢. 

Denote 

𝑔𝑛(𝑧) = exp {∫  
𝑏𝑛

𝑏𝑛−1

 
𝑢(𝑡)𝑑𝑡

𝑡 − 𝑧
} =

√(𝑏𝑛 − 𝑧)(𝑏𝑛−1 − 𝑧)

𝑎𝑛 − 𝑧
, 

and 
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𝐴𝑛 = exp {∫  
ℝ∖(𝑏𝑛−1,𝑏𝑛)

 
𝑢(𝑡)𝑑𝑡

𝑡 − 𝑎𝑛
}, 

So 

𝑅𝑒𝑠𝑎𝑛𝑒
𝐾𝑢 = 𝐴𝑛 𝑅𝑒𝑠𝑎𝑛𝑔𝑛,             |Res𝑎𝑛 𝑔𝑛| ≍ 𝛿𝑛. 

It remains to show that 𝐴𝑛 = 𝑒
𝑂(1). This can be done as follows. 

For 𝑗 > 𝑛 we have 

∫  
𝑎𝑗+1

𝑎𝑗

 
𝑢(𝑡)𝑑𝑡

𝑡 − 𝑎𝑛
 = log 

𝑏𝑗 − 𝑎𝑛
𝑎𝑗 − 𝑎𝑛

− log 
𝑎𝑗+1 − 𝑎𝑛
𝑏𝑗 − 𝑎𝑛

 = log (1 +
𝛿𝑗

𝑎𝑗 − 𝑎𝑛
) − log (1 +

𝛿𝑗
𝑏𝑗 − 𝑎𝑛

)

 =
𝛿𝑗

𝑎𝑗 − 𝑎𝑛
−

𝛿𝑗
𝑏𝑗 − 𝑎𝑛

+ 𝑂(
𝛿𝑗
2

(𝑎𝑗 − 𝑎𝑛)
2) = 𝑂(

𝛿𝑗
2

(𝑎𝑗 − 𝑎𝑛)
2) ,

 

where we used the relation log (1 + 𝑥) = 𝑥 + 𝑂(𝑥2) for 0 < 𝑥 ≲ 1. Since 

∑  

∞

𝑗=𝑛+1

 
𝛿𝑗
2

(𝑎𝑗 − 𝑎𝑛)
2  ≍ ∑  

∞

𝑗=𝑛+1

 
𝛿𝑗

𝑎𝑗
𝜅(𝑎𝑗 − 𝑎𝑛)

2

 ≍ ∫  
∞

𝑎𝑛+𝛿𝑛

 
𝑑𝑡

𝑡𝜅(𝑡 − 𝑎𝑛)
2
= ∫  

2𝑎𝑛

𝑎𝑛+𝛿𝑛

 + ∫  
∞

2𝑎𝑛

 

 

 ≲
1

𝑎𝑛
𝜅∫  

∞

𝑎𝑛+𝛿𝑛

 
𝑑𝑡

(𝑡 − 𝑎𝑛)
2
+∫  

∞

𝑎𝑛

 
𝑑𝑡

𝑡2+𝜅

 ≍
1

𝑎𝑛
𝜅

1

𝛿𝑛
+

1

𝑎𝑛
1+𝜅 = 𝑂(1),

 

we get 

∫  
∞

𝑏𝑛

𝑢(𝑡)𝑑𝑡

𝑡 − 𝑎𝑛
= 𝑂(1). 

A similar estimate holds for the integral over (−∞, 𝑏𝑛−1), and we have 𝐴𝑛 = 𝑒
𝑂(1). 

Theorem (2.1.22)[49]: Let 𝜅 ≥ 0, and let 𝑈 = 𝑒𝑖𝛾 and 𝑆 = 𝑒𝑖𝜎 be smooth unimodular 

functions on ℝ such that 

𝛾′(𝑥) ≥ −|𝑥|𝜅 ,  𝜎′(𝑥) ≳ |𝑥|𝜅 ,  (𝑥 → ∞).                        (35) 
(i) If 𝛾 is not (𝜅)-almost decreasing, then 𝑁+[𝑈𝑆𝜖] = 0 for all 𝜖 > 0. 

(ii) If 𝛾 is (𝜅)-almost decreasing, then 𝑁𝑝[𝑈𝑆‾𝜖] ≠ 0 for all 𝜖 > 0 and all 𝑝 <
1

3
. 

Here and throughout the notation 𝑓(𝑥) ≥ 𝑔(𝑥) means that 𝑓(𝑥) ≥ cg (𝑥) for some 𝑐 > 0 

and all 𝑥 such that |𝑥| ⩾ 1. 

Given two unimodular functions 𝑈 and 𝑆 as in Theorem (2.1.22), we can consider the family 

of symbols 

𝑈𝑆‾𝑎 = 𝑒𝑖𝛾𝑎 ,  𝛾𝑎 = 𝛾 − 𝑎𝜎,  (𝑎 ∈ ℝ). 
If 𝑎1 > 𝑎 and if 𝛾𝑎 is decreasing near ∞, then 𝛾𝑎1 is also decreasing. It is not difficult to see 

that the same is true for almost decreasing functions, so we can define the transition 

parameter 

𝑐 ≡ 𝑐(𝑈, 𝑆; 𝜅) = inf  {𝑎: 𝛾𝑎 is (𝜅)-almost descreasing } ∈ (−∞,+∞]. 
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Proof. The first part of the theorem was established. The second part states that if 𝛾 is almost 

decreasing and 𝜖 > 0, then 

𝑁𝑝[𝑈𝑆‾2𝜖] ≠ 0,  (𝑝 < 1/3).                                          (36) 
By Lemma (2.1.21) there exists an inner function Θ satisfying 

(arg Θ)′ ≍ |𝑥|𝜅 . 
We will assume that 𝑈2Θ has an increasing argument (otherwise we can replace Θ with Θ𝑛 

for a large integer 𝑛). We will also assume that 𝑆Θ‾  has an increasing, unbounded argument 

(otherwise we replace 𝑆 with a large power). By Proposition (2.1.12) we have 

𝑁+[𝑈Θ1−𝜖Θ‾ ] ≠ 0.                                          (37) 
Since the argument of 𝑈Θ1−𝜖 is increasing, there is an inner function 𝐽 such that 

𝑈Θ1−𝜖 = 𝑋𝐽,  ∥ arg𝑋 ∥∞ ≤ 𝜋. 
From (37) we have 𝑁+[𝐽Θ‾ ] ≠ 0, and so by Corollary (2.1.20) 

𝑁𝑝[𝐽Θ‾𝑆‾𝜖] ≠ 0,  (𝑝 < 1).                                          (38) 
Note that  

𝑈𝑆‾2𝜖 = (𝑈Θ1−𝜖Θ‾𝑆‾𝜖)(Θ𝜖𝑆‾𝜖) = 𝑋(𝐽Θ‾𝑆‾𝜖)(Θ𝜖𝑆‾𝜖) 
. Since the argument of 𝑆𝜖�̅�𝜖 is increasing and unbounded, we can find an infi 

Blaschke product Ψ such that 

Θ𝜖𝑆‾𝜖 = 𝑌Ψ‾ ,  ∥ arg 𝑌 ∥∞ ≤ 𝜋. 
Thus the symbol 𝑈𝑆‾2𝜖 has the following representation: 

𝑈𝑆‾2𝜖 = (𝐽Θ‾𝑆‾𝜖)(𝑋𝑌Ψ‾ ),  ∥ arg𝑋𝑌 ∥∞ ≤ 2𝜋, 
and by (7) we have 

𝑁𝑝[𝑋𝑌Ψ‾ ] ≠ 0,  (𝑝 < 1/2).                                         (39) 
Combining (38) and (39), we get (36) by Hölder's inequality. 

Theorem (2.1.23)[49]: Let 𝐽 be a meromorphic inner function, and suppose that a 

unimodular function 𝑆 satisfies 

(arg 𝑆)′(𝑥) ≍ |𝑥|𝜅 ,  𝑥 → ∞. 
Denote 𝑐 = 𝑐(𝐽, 𝑆; 𝜅). Then for all 𝑝 ≤ ∞ we have 

𝑁𝑝[𝐽𝑆‾𝑎] = 0 (𝑎 < 𝑐),  𝑁𝑝[𝐽𝑆‾𝑎] ≠ 0 (𝑎 > 𝑐). 
Proof. Recall that 𝐽 is a meromorphic inner function, 𝑆 = 𝑒𝑖𝜎 with 𝜎′(𝑥) ≍ |𝑥|𝜅, and 𝑐 =
𝑐(𝐽, 𝑆; 𝜅). Applying Theorem (2.1.22) (or rather its corollary) to 𝑈 = 𝐽 we conclude that if 

𝑎 < 𝑐 then 𝑁+[𝐽𝑆‾𝑎] = 0 and therefore 𝑁𝑝[𝐽𝑆‾𝑎] = 0 for all 𝑝 > 0. On the other hand, if 

𝑎 > 𝑐, then 𝑁𝑝[𝐽𝑆‾𝑎] ≠ 0 for some 𝑝 > 0, and in fact the kernel is infinite dimensional, as 

we just mentioned. The following proposition completes the proof. 

A unimodular function 𝑆 is called tempered if ∃𝑛, 𝑆′(𝑥) = 𝑂(|𝑥|𝑛) as 𝑥 → ∞. 
Proposition (2.1.24)[49]: If 𝑆 is a tempered unimodular function, then for any meromorphic 

inner function 𝐽 and any 𝑝 > 0, 

dim𝑁𝑝[𝐽𝑆‾] = ∞ ⇒  dim𝑁∞[𝐽𝑆‾] = ∞. 
Proof: First of all we observe that the statement is true if 𝑆 is a tempered inner function, 

𝑆 = Θ. By Carleson's type embedding theorem [83], all elements in 𝑁𝑝[𝐽Θ‾ ] have at most 

polynomial growth at infinity, see details in [72]. Since the kernel is infinite dimensional, it 

contains functions with many zeros in 𝐂+. Dividing such functions by appropriate 

polynomials we obtain functions in 𝑁∞[𝐽Θ‾ ]. 
Let now 𝑆 be an arbitrary tempered unimodular function. By Lemma (2.1.21) we can find a 

tempered inner function Θ and a bounded real-valued function 𝜒 such that 

𝑆 = Θ𝑋‾,  𝑋 = 𝑒2𝑖𝜒. 
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By the previous observation, we have 

dim 𝑁∞[𝐽Θ‾ ] = ∞,                                                (40) 
and it remains to show that 

∃𝑛,  𝑁∞[𝑋𝑏‾𝑛] ≠ 0,                                                (41) 
(𝑏 is the Blaschke factor (8)). Indeed, combining (40) and (41) we conclude that the kernel 

𝑁∞[𝐽𝑆‾𝑏‾𝑛] = 𝑁∞[𝐽Θ‾𝑋𝑏‾𝑛] 
is infinite dimensional, which allows us to get rid of 𝑏𝑛. 

To prove (41), consider the outer function 

𝐻 = 𝑒𝜒‾−𝑖𝜒,   so  𝑋 =
𝐻‾

𝐻
. 

We will have 

(𝑧 + 𝑖)−𝑛𝐻(𝑧) ∈ 𝑁∞[𝑋𝑏‾𝑛],  (𝑛 ≫ 1) 

if we can show that ℎ:= |𝐻| = 𝑒 �̃� has at most polynomial growth at infinity. Without loss 

of generality, we can assume that the 𝐿∞-norm of 𝜒 is so small that ℎ ∈ 𝐿Π
2 . We have 

ℎ(𝑥) − ℎ(0) ≤ ∫  
𝑥

0

|ℎ′| = ∫  
𝑥

0

ℎ|�̃�′| ≲∥ ℎ ∥𝐿Π2 (1 + 𝑥
2)
1
2 (∫  

𝑥

0

  |�̃�′|2)

1
2

.          (42) 

Since |𝜒′(𝑡)| ≲ |𝑡|𝑛 by construction, for each 𝑥 > 0 we can represent 𝜒 as the sum of two 

smooth functions, 

𝜒 = 𝜒1 + 𝜒2, 
such that 

∥∥𝜒1
′∥∥𝐿2 ≲ |𝑥|

𝑛,  ∥∥𝜒2∥∥𝐿∞ ≍ 1,  𝜒2 = 0  on  (−2𝑥, 2𝑥). 

(For example, take 𝜒1 = 𝜙𝜒, where 𝜙 is a smooth "bump" function such that 𝜙 is equal to 

1 on (−2𝑥, 2𝑥) and 0 on ℝ ∖ (−3𝑥, 3𝑥).) Then we have 

∥∥�̃�1
′∥∥𝐿2 ≲ |𝑥|

𝑛,  |�̃�2
′ | ≲ 1  on  (0, 𝑥), 

and so (42) shows that ℎ has at most polynomial growth. 

Section (2.2): Sets and Measures 

For 𝜇 be a non-zero finite complex measure on the real line. By �̂� we denote its 

Fourier transform 

�̂�(𝑧) = ∫  exp(−𝑖𝑧𝑡) 𝑑𝜇(𝑡). 

Various properties of the Fourier transform of a measure have been studied by harmonic 

analysts for more than a century. One of the reasons for such a prolonged interest is the 

natural physical sense of the quantity �̂�(𝑡). In quantum mechanics, if 𝜇 is a spectral measure 

of a Hamiltonian then |�̂�(𝑡)|2 represents the so-called survival probability of the particle, 

i.e. the probability to find the particle in its initial state at the moment 𝑡. The problems 

considered belong to the area of the Uncertainty Principle in Harmonic Analysis, whose 

name itself suggests relations and similarities with physics. 

The Uncertainty Principle in Harmonic Analysis, as formulated in [58], says that a measure 

(function, distribution) and its Fourier transform cannot be simultaneously small. This broad 

statement gives rise to a multitude of exciting mathematical problems, each corresponding 

to a particular sense of "smallness." 

One of such problems is the well-known Gap Problem. Here the smallness of 𝜇 and �̂� is 

understood in the sense of porosity of their supports. The statement that one hopes to obtain 

is that if the support of �̂� has a large gap then the support of 𝜇 cannot be too "rare." As usual, 
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the ultimate challenge is to obtain quantative estimates relating the two supports, something 

that we will attempt to do. 

Beurling's Gap Theorem says that if the sequence of gaps in the support of 𝜇 is long, in the 

sense given by (50), then the support of �̂� cannot have any gaps, unless 𝜇 is trivial, see [87]. 

The proof used some of the methods of an earlier gap theorem by Levinson [70]. In [55] de 

Branges proved that existence of a measure with a given spectral gap is equivalent to 

existence of a certain entire function of exponential type. We discuss a version of this result. 

For further results and for gap problem see [87], [86], [66], [70]. 

We find an "if and only if" condition for a closed set 𝑋 on the real line to support a non-

trivial complex measure with a given size of the spectral gap. We introduce a new metric 

characteristic of a closed set, 𝐶𝑋, for the definition. The main result is Theorem (2.2.9) that 

says that the supremum of the lengths of the spectral gaps, taken over all non-trivial 

measures supported on 𝑋, is equal to 2𝜋𝐶𝑋. 

The definition of 𝐶𝑋 contains two conditions that, for the purposes, we call the density 

condition and the energy condition. As discussed, the density condition is similar to some 

of the definitions of densities used in this area. The physical flavor of the energy condition 

seems to suggest new connections for the gap problem that are yet to be fully understood. 

The gap problem can be equivalently reformulated as follows. Let 𝜇 be a finite 

complex measure on ℝ. Find the supremum, over all non-trivial 𝑓 ∈ 𝐿1(|𝜇|), of the size of 

the spectral gap of the measure 𝑓𝜇. If one replaces 𝐿1 with 𝐿2 in this statement, one obtains 

(via simple duality) another famous problem, the problem of Wiener and Kolmogorov on 

completness of families of exponentials in 𝐿2(𝜇), see [94] or [90]. In [94] the problem is 

formulated in the language of Krein strings. Since for finite measures 𝐿2 ⊂ 𝐿1, our result 

gives an upper estimate for the Wiener-Kolmogorov problem. The 𝐿∞-version was 

considered by Koosis, see [66]. 

Via duality the gap problem admits a reformulation in terms of Bernstein's weighted 

approximation. From that point of view, 2𝜋𝐶𝑋 is the minimal size of the interval such that 

continuous functions on 𝑋 admit weighted approximation by trigonometric polynomials 

with frequencies from that interval. The "approximative" relatives of the gap problem and 

connections with other classical areas, such as stationary Gaussian processes, are discussed 

in [91], [93], [66], [95]. 

Our methods are based on the approach developed by N. Makarov [72] and [49]. We utilize 

close connections between most problems from this area of harmonic analysis and the 

problem of injectivity of Toeplitz operators. In the case of the gap problem, this connection 

is expressed by Theorem (2.2.6) below. The Toeplitz approach for similar problems was 

first suggested by Nikolski in [75], see also [98]. Our main proof utilizes several important 

ideas of the Beurling-Malliavin theory [50], [51], [49], including its famous multiplier 

theorem. 

One of the advantages of the Toeplitz approach is that it reveals hidden connections between 

various problems of analysis and mathematical physics, see [72]. The relations between the 

gap problem and the Beurling-Malliavin theory on completeness of exponentials in 𝐿2 on 

an interval have been known to experts, at a rather intuitive level, for several decades. Now 

we can see this connection formulated in precise mathematical terms. Namely, the Beurling-

Malliavin problem is equivalent to the problem of triviality of the kernel of a Toeplitz 

operator with the symbol 

𝜙 = exp(−𝑖𝑎𝑥) 𝜃, 
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for a suitable meromorphic inner function 𝜃, whereas the gap problem is equivalent to the 

triviality of the kernel of the Toeplitz operator with the symbol 

𝜙‾ = exp (𝑖𝑎𝑥)𝜃‾,  
see [72]. 
We organized as follows: 

(i) We discuss an alternative formulation of the gap problem and show that the maximal 

size of the gap for a fixed measure taken over all possible densities is a property of 

the support of the measure. 

(ii) We look at the gap problem from the point of view of Bernstein's weighted 

approximation of continuous functions by trigonometric polynomials. 

(iii) We restate the gap problem in terms of kernels of Toeplitz operators and introduce 

the approach that will be used in the main proof. 

(iv) We contain the main definition and its discussion. For a closed real set 𝑋 we define a 

metric characteristic 𝐶𝑋 that determines the maximal size of the gap over all non-zero 

complex measures supported on 𝑋. 
(v) We contain the main result and its proof. 

(vi) We prove several technical lemmas and corollaries used. 

(vii) We can be viewed as an appendix. It contains a Toeplitz version of the statement and 

proof of theorem 66 from [55]. 

Let 𝑀 be a set of all finite Borel complex measures on the real line. If 𝑋 is a closed subset 

of the real line denote 

𝐺𝑋 = sup{𝑎 ∣ ∃𝜇 ∈ 𝑀, 𝜇 ≢ 0, supp 𝜇 ⊂ 𝑋, such that �̂� = 0 on [0, 𝑎]}. (43) 
Now let 𝜇 ∈ 𝑀. Denote 

𝐺𝜇 = s  {𝑎 ∣ ∃𝑓 ∈ 𝐿
1(|𝜇|)  such that 𝑓�̂� = 0  on  [0, 𝑎]}.      (44) 

Proposition (2.2.1)[84]: 

𝐺𝜇 = 𝐺supp𝜇 .                                          (45) 

Proof. Obviously, 𝐺supp 𝜇 ≥ 𝐺𝜇. To prove the opposite inequality, notice that by Lemma 

(2.2.20) there exists a finite discrete measure 

𝜈 =∑ 𝛼𝑛𝛿𝑥𝑛 , {𝑥𝑛} ⊂ supp 𝜇, 

such that �̂� has a gap of the size greater than 𝐺supp 𝜇 − 𝜀. Around each 𝑥𝑛 choose a small 

neighborhood 𝑉𝑛 = (𝑎𝑛, 𝑏𝑛) so that for any sequence of points 

𝑌 = {𝑦𝑛}, 𝑦𝑛 ∈ 𝑉𝑛 

there exists a non-trivial measure 𝜂𝑌 = ∑𝛽𝑛𝛿𝑦𝑛 such that �̂� has a gap of the size greater than 

𝐺supp 𝜂 − 𝜀. The existence of such a collection of neighborhoods follows from the results of 

[86] (for some sequences), from [88] as well as from Theorem (2.2.9) below. 

Now one can choose a family of finite measures 𝜂𝜏 , 𝜏 ∈ [0,1] with the following properties: 

 for each 𝜏, 

𝜂𝜏 =∑ 𝛽𝑛
𝜏𝛿𝑦𝑛𝜏  

such that 𝑦𝑛
𝜏 ∈ 𝑉𝑛 and �̂�𝜏 has a gap of the size greater than 𝐺supp 𝜂 − 𝜀 centered at 0 ; 

 the measure 

𝛾 = ∫  
1

0

𝜂𝜏𝑑𝜏 

is non-trivial and absolutely continuous with respect to 𝜇. 
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It remains to notice that then �̂� has a gap of the size greater than 𝐺supp 𝜂 − 𝜀. 

Definition (2.2.2)[84]: Let 𝑋 ⊂ ℝ be a closed set. A weight is any lower semicontinuous 

function 𝑊:ℝ → [1,∞) that tends to ∞ as 𝑥 → ±∞. For any given weight 𝑊 we define 

𝐶0(𝑊,𝑋) to be the space of all continuous functions on 𝑋 satisfying 

lim
𝑥∈𝑋,𝑥→±∞

 
𝑓(𝑥)

𝑊(𝑥)
= 0. 

(If 𝑋 is bounded from below or from above, the corresponding limit is dropped from the 

definition. In particular, for bounded 𝑋, 𝐶0(𝑊, 𝑋) is just 𝐶(𝑋). ) 
We define the norm in 𝐶0(𝑊, 𝑋) as 

∥ 𝑓 ∥= ∥∥𝑓𝑊−1∥∥∞. 

As usual, we say that a system of functions is complete in a space if finite linear 

combinations of functions from that system are dense in the space. 

If 𝑎 > 0 we denote by ℰ𝑎 the set of complex exponentials with frequencies between 0 and 

𝑎: 

ℰ𝑎 = { exp(𝑖𝜆𝑡) ∣∣ 𝜆 ∈ [0, 𝑎] }. 
Definition (2.2.3)[84]: If 𝑋 ⊂ ℝ is a closed set, define the approximative capacity of 𝑋, 𝐴𝑋, 

as 

𝐴𝑋 = inf{𝑎 ∣ ℰ𝑎 is complete in 𝐶0(𝑊, 𝑋) for any weight 𝑊} 
or ∞ if the set is empty. 

The same quantity can be defined in a different way. Denote by 𝐶0(𝑋) the space of all 

continuous functions on 𝑋 tending to 0 at infinity, with the usual supnorm. If one now wants 

to discuss approximation by trigonometric polynomials in 𝐶0(𝑋), he encounters a small 

problem: exponential functions are no longer inside the space. The solution is to consider 

"linear combinations" of exponentials, e.g. the Payley-Wiener space 

𝑃𝑊𝑎 = {𝑓 ∣ 𝑓 ∈ 𝐿
2([0, 𝑎]}, 

and define 

𝐴𝑋 = inf{𝑎 ∣ 𝑃𝑊𝑎 is dense in 𝐶0(𝑋)} 
or ∞ if the set is empty. 

It is not difficult to show that the above definitions of 𝐴𝑋 are equivalent. 

The following statement is a product of the standard duality argument. 

Proposition (2.2.4)[84]: 

𝐴𝑋 = 𝐺𝑋. 
Together with Theorem (2.2.9), this statement gives a formula for 𝐴𝑋. 

By 𝐻2 we denote the Hardy space in the upper half-plane ℂ+. We say that an inner 

function 𝜃(𝑧) in ℂ+is meromorphic if it allows a meromorphic extension to the whole 

complex plane. The meromorphic extension to the lower half-plane ℂ− is given by 

𝜃(𝑧) =
1

𝜃#(𝑧)
. 

Each inner function 𝜃(𝑧) determines a model subspace 

𝐾𝜃 = 𝐻
2⊖𝜃𝐻2 

of the Hardy space 𝐻2(ℂ+). These subspaces play an important role in complex and 

harmonic analysis, as well as in operator theory, see [98]. 

Each inner function 𝜃(𝑧) determines a positive harmonic function 

ℜ
1 + 𝜃(𝑧)

1 − 𝜃(𝑧)
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and, by the Herglotz representation, a positive measure 𝜎 such that 

ℜ
1 + 𝜃(𝑧)

1 − 𝜃(𝑧)
= 𝑝𝑦 +

1

𝜋
∫  

𝑦𝑑𝜎(𝑡)

(𝑥 − 𝑡)2 + 𝑦2
,  𝑧 = 𝑥 + 𝑖𝑦,        (46) 

for some 𝑝 ≥ 0. The number 𝑝 can be viewed as a point mass at infinity. The measure 𝜎 is 

singular, supported on the set where non-tangential limits of 𝜃 are equal to 1 and satisfies 

∫  
𝑑𝜎(𝑡)

1 + 𝑡2
< ∞.                                                (47) 

The measure 𝜎 + 𝑝𝛿∞ on ℝ̂ is called the Clark measure for 𝜃(𝑧). (Following standard 

notations, we will often denote the Clark measure defined in (46) by 𝜎1.) 

Conversely, for every positive singular measure 𝜎 satisfying (47) and a number 𝑝 ≥ 0, there 

exists an inner function 𝜃(𝑧) determined by the formula (46). 

Every function 𝑓 ∈ 𝐾𝜃 can be represented by the formula 

𝑓(𝑧) =
𝑝

2𝜋𝑖
(1 − 𝜃(𝑧))∫  𝑓(𝑡)(1 − 𝜃(𝑡))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑑𝑡 +

1 − 𝜃(𝑧)

2𝜋𝑖
∫  

𝑓(𝑡)

𝑡 − 𝑧
𝑑𝜎(𝑡). (48) 

If the Clark measure does not have a point mass at infinity, the formula is simplified to 

𝑓(𝑧) =
1

2𝜋𝑖
(1 − 𝜃(𝑧))𝐾𝑓𝜎 

where 𝐾𝑓𝜎 stands for the Cauchy integral 

𝐾𝑓𝜎(𝑧) = ∫  
𝑓(𝑡)

𝑡 − 𝑧
𝑑𝜎(𝑡). 

This gives an isometry of 𝐿2(𝜎) onto 𝐾𝜃. In the case of meromorphic 𝜃(𝑧), every function 

𝑓 ∈ 𝐾𝜃 also has a meromorphic extension in ℂ, and it is given by the formula (48). The 

corresponding Clark measure is discrete with atoms at the points of {𝜃 = 1} given by 

𝜎({𝑥}) =
2𝜋

|𝜃′(𝑥)|
. 

For more details on Clark measures We may consult [100]. 

Each meromorphic inner function 𝜃(𝑧) can be written as 𝜃(𝑡) = 𝑒𝑖𝜙(𝑡) on ℝ, where 𝜙(𝑡) is 

a real analytic and strictly increasing function. The function 𝜙(𝑡) = arg 𝜃(𝑡) is the 

continuous argument of 𝜃(𝑧). 
Recall that the Toeplitz operator 𝑇𝑈 with a symbol 𝑈 ∈ 𝐿∞(ℝ) is the map 

𝑇𝑈: 𝐻
2 → 𝐻2,  𝐹 ↦ 𝑃+(𝑈𝐹), 

where 𝑃+is the orthogonal projection in 𝐿2(ℝ) onto the Hardy space 𝐻2 = 𝐻2(ℂ+). 
We will use the following notation for kernels of Toeplitz operators (or Toeplitz kernels in 

𝐻2 ): 

𝑁[𝑈] = ker𝑇𝑈 . 
For example, 𝑁[𝜃‾] = 𝐾𝜃 if 𝜃 is an inner function. Along with 𝐻2-kernels, one may consider 

Toeplitz kernels 𝑁𝑝[𝑈] in other Hardy classes 𝐻𝑝, the kernel 𝑁1,∞[𝑈] in the "weak" space 

𝐻1,∞ = 𝐻𝑝 ∩ 𝐿1,∞, 0 < 𝑝 < 1, or the kernel in the Smirnov class 𝑁+(ℂ+): 

𝑁+[𝑈] = {𝑓 ∈ 𝑁+ ∩ 𝐿
loc 

1 (ℝ):𝑈‾𝑓‾ ∈ 𝑁+}. 

For more on such kernels see [72], [49]. 

For any inner function 𝜃 in the upper half-plane we denote by spec𝜃 the set {𝜃 = 1}, the set 

of points on the line where the non-tangential limit of 𝜃 is equal to 1 , plus the infinite point 

if the corresponding Clark measure has a point mass at infinity, i.e. if 𝑝 in (46) is positive. 

If spec𝜃 ⊂ ℝ like in the next definition, then 𝑝 in (46) is 0. Throughout, 𝑆 stands for the 

exponential inner function 𝑆(𝑧) = exp (𝑖𝑧). 
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Definition (2.2.5)[84]: If 𝑋 ⊂ ℝ is a closed set, denote 

𝑇𝑋 = sup{𝑎 ∣ 𝑁[𝜃‾𝑆
𝑎] ≠ 0 for some meromorphic inner 𝜃, spec𝜃 ⊂ 𝑋}. 

The following theorem shows the connection between the gap problem and the problem of 

triviality of Toeplitz kernels. This connection will be used throughout. 

Theorem (2.2.6)[84]: 

𝑇𝑋 = 𝐺𝑋. 
We call a sequence of real points discrete if it has no finite accumulation points. Note that 

spec𝜃 is discrete if and only if 𝜃 is meromorphic. 

Proof. Let 𝑇𝑋 = 𝑑. Then for any 𝜀 > 0 there exists a discrete sequence Λ ⊂ 𝑋 such that the 

kernel 𝑁[𝜃‾𝑆𝑎] is non-trivial for some/any meromorphic inner 𝜃, spec  𝜃 = Λ and 𝑎 = 𝑑 − 𝜀 
(if the kernel is non-trivial for some 𝜃1 with 𝑎 = 𝑑 − 𝜀/2 then it is non-trivial for any 

𝜃2, spec𝜃1 = spec𝜃2, with 𝑎 = 𝑑 − 𝜀, see [72] ). Let 𝑓 ∈ 𝑁[𝜃‾𝑆𝑎]. Then ℎ = 𝑆𝑎𝑓 ∈ 𝐾𝜃 and 

by the Clark formula 

ℎ =
1

2𝜋𝑖
(1 − 𝜃)𝐾ℎ𝜎1, 

where 𝜎1 is the Clark measure corresponding to 𝜃. Notice that the function 1 − 𝜃 decays at 

most as 𝑦−1 along the positive 𝑦-axis. Hence the Cauchy integral 𝐾ℎ𝜎1 decays as exp (−𝑎𝑦) 
as 𝑦 → ∞. Hence the measure 𝜈 = ℎ𝜎1 satisfies supp 𝜈 = supp 𝜎1 = spec𝜃 ⊂ 𝑋. 
The function 𝜃 can be chosen so that 𝜎1 is finite: one can start by choosing any finite positive 

𝜎1 supported by Λ and then simply take 𝜃 corresponding to that measure. Then 𝜈 is finite as 

well. It remains to observe that 𝜈 has a spectral gap of the size at least 𝑑 − 𝜀 and 𝐺𝑋 ≥ 𝑑 

(see, for instance, Lemma (2.2.19)). 

In the opposite direction, if 𝐺 = 𝑑 then, by Lemma (2.2.15), for any 𝜀 > 0 there exists a 

finite measure 𝜈 with a spectral gap at least 𝑑 − 𝜀 concentrated on a discrete subset of 𝑋. 

Let 𝜃 be the inner function corresponding to |𝜈|. Then the function ℎ = (1 − 𝜃)𝐾𝜈 belongs 

to 𝐾𝜃 and can be represented as ℎ = 𝑆𝑎−𝜀𝑓 for some 𝑓 ∈ 𝐻2. Hence 𝑓 ∈ 𝑁[𝜃‾𝑆𝑎−𝜀] and 

𝑇𝑋 ≥ 𝑑. 

Let Λ = {𝜆1, … , 𝜆𝑛} be a finite set of points on ℝ. Consider the quantity 

𝐸(Λ) = ∑  

𝜆𝑘,𝜆𝑗∈Λ

log |𝜆𝑘 − 𝜆𝑙|.                                    (49) 

According to the 2-dimensional Coulomb's law, 𝐸(Λ) is the energy of a system of "flat" 

electrons placed at the points of Λ. The 2D Coulomb-gas formalism corresponds to the 

planar potential theory with logarithmic potential and assumes the potential energy at 

infinity to be equal to −∞, see for instance [89], [97], [101]. 

Physically, the 2D Coulomb's law can be derived from the standard 3D law via a method of 

"reduction." According to this method, one replaces each electron in the plane with a 

uniformly charged string orthogonal to the plane. After that one applies the 3D law and a 

renormalization procedure. 

Let 𝐼 ⊂ ℝ be an interval, Λ = 𝐼 ∩ ℤ = {𝑛 + 1,… , 𝑛 + 𝑘}. Then 

𝐸(Λ) = 𝑘2log |𝐼| + 𝑂(|𝐼|2) 
as follows from Stirling's formula. Here |𝐼| stands for the length of 𝐼 and the notation 𝑂(|𝐼|2) 
corresponds to the direction |𝐼| → ∞ (see [92]). 

 We call a sequence of disjoint intervals {𝐼𝑛} on the real line long (in the sense of 

Beurling and Malliavin) if 
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∑ 

𝑛

|𝐼𝑛|
2

1 + dist2 (0, 𝐼𝑛)
= ∞.                                          (50) 

If the sum is finite we call {𝐼𝑛} short. 

Let 

… < 𝑎−2 < 𝑎−1 < 𝑎0 = 0 < 𝑎1 < 𝑎2 < ⋯ 

be a two-sided sequence of real points. We say that the intervals 𝐼𝑛 = (𝑎𝑛, 𝑎𝑛+1] form a 

short partition of ℝ if |𝐼𝑛| → ∞ as 𝑛 → ±∞ and the sequence {𝐼𝑛} is short. 

Let Λ = {𝜆𝑛} be a sequence of real points. We write 𝐶Λ ≥ 𝑎 if there exists a short partition 

{𝐼𝑛} such that 

Δ𝑛 ≥ 𝑎|𝐼𝑛| for all 𝑛 (density condition)                               (51) 
and 

∑ 

𝑛

[Δ𝑛
2 log|𝐼𝑛| − 𝐸𝑛]/(1 + dist

2(0, 𝐼𝑛)) < ∞  (energy condition)       (52) 

where 

Δ𝑛 = #(Λ ∩ 𝐼𝑛)  and  𝐸𝑛 = 𝐸(Λ ∩ 𝐼𝑛) = ∑  

𝜆𝑘,𝜆𝑙∈𝐼𝑛,𝜆𝑘≠𝜆𝑙

log |𝜆𝑘 − 𝜆𝑙|. 

If 𝑋 is a closed subset of ℝ we put 

𝐶𝑋 = sup{𝑎 ∣ there exits a sequence Λ ⊂ 𝑋 such that 𝐶Λ ≥ 𝑎}                  (53) 
Example (2.2.7)[84]: As discussed above, if the points of the sequence are spread uniformly 

over the interval then 𝐸𝑛 = ∑𝜆𝑖,𝜆𝑗∈𝐼𝑛  log |𝜆𝑖 − 𝜆𝑗| is roughly (up to 𝑂(|𝐼𝑛|
2) which is small 

for short sequences of 𝐼𝑛 ) equal to Δ𝑛
2 log |𝐼𝑛| as follows from Stirling's formula. This 

happens for instance when the sequence Λ is separated, i.e. satisfies |𝜆𝑛 − 𝜆𝑛+1| > 𝛿 > 0 

for all 𝑛. Thus for separated sequences Λ the energy condition disappears and 

𝐺Λ = 𝑑𝑖(Λ) 
where 𝑑𝑖 , 𝑖 = 1,2,3,4 is any of the equivalent densities defined in the previous remark. This 

is one of the results of [96]. 
Example (2.2.8)[84]: Let Λ be a real sequence such that the density condition (51) holds for 

some 𝑎 > 0 and some partition {𝐼𝑛} that satisfies a stronger shortness condition: 

∑ 

𝑛

|𝐼𝑛|
2log |𝐼𝑛|

1 + dist2 (0, 𝐼𝑛)
< ∞. 

Then we will automatically have that 

∑ 

𝑛

Δ𝑛
2 log |𝐼𝑛| − ∑  𝜆𝑖,𝜆𝑗∈𝐼𝑛   log+ |𝜆𝑖 − 𝜆𝑗|

1 + dist2 (0, 𝐼𝑛)
< ∞. 

Hence condition (52) will be significantly simplified and one will only need to check that 

∑  

𝜆𝑖,𝜆𝑗∈Λ,𝜆𝑖≠𝜆𝑗

log− |𝜆𝑖 − 𝜆𝑗|

1 + 𝜆𝑗
2 < ∞ 

to conclude that 𝐶Λ ≥ 𝑎. 

Theorem (2.2.9)[84]: 

𝐺𝑋 = 2𝜋𝐶𝑋. 
If 𝑓 is a function on ℝ and 𝐼 ⊂ ℝ we denote by 𝑓|𝐼 the function that is equal to 𝑓 on 𝐼 and 

to 0 on ℝ ∖ 𝐼. 
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In our estimates we write 𝑎(𝑛) ≲ 𝑏(𝑛) if 𝑎(𝑛) < 𝐶𝑏(𝑛) for some positive constant 𝐶, not 

depending on 𝑛, and large enough |𝑛|. Similarly, we write 𝑎(𝑛) ≍ 𝑏(𝑛) if 𝑐𝑎(𝑛) < 𝑏(𝑛) <
𝐶𝑎(𝑛) for some 𝐶 ≥ 𝑐 > 0. Some formulas will have other parameters in place of 𝑛 or no 

parameters at all. 

By II we denote the Poisson measure 𝑑𝑥/(1 + 𝑥2) on the real line. In particular, 𝐿Π
𝑝
=

𝐿𝑝(ℝ, 𝑑𝑥/(1 + 𝑥2)). 

We will denote by 𝒟(ℝ) the standard Dirichlet space on ℝ (in ℂ+). Recall that the Hilbert 

space 𝒟(ℝ) consists of functions ℎ ∈ 𝐿Π
1  such that the harmonic extension 𝑢 = 𝑢(𝑧) of ℎ to 

ℂ+has a finite gradient norm, 

∥ ℎ ∥𝒟
2≡∥ 𝑢 ∥∇

2 =
 def 

∫  
ℂ+

|∇𝑢|2𝑑𝐴 < ∞, 

where 𝑑𝐴 is the area measure. If ℎ ∈ 𝒟(ℝ) is a smooth function, then we also have 

∥ ℎ ∥𝒟
2= ∫  

ℝ

ℎ‾ℎ̃′𝑑𝑥, 

where ℎ̃ denotes a harmonic conjugate function. 

Proof: I) First suppose that 𝐶𝑋 >
1

2𝜋
. We will show that 𝐺𝑋 ≥ 1. 

Choose 𝜀 > 0. If 𝐶𝑋 >
1

2𝜋
, there exists a sequence Λ = {𝜆𝑛} ⊂ 𝑋, 𝐶Λ >

1

2𝜋
. Let 

𝐼𝑛 = (𝑎𝑛, 𝑎𝑛+1) 
be the corresponding short monotone partition, see remark 4 . WLOG 

1

2𝜋
|𝐼𝑛| < #(Λ ∩ 𝐼𝑛) ≤

1

2𝜋
|𝐼𝑛| + 1 

(otherwise just delete some of the points from Λ). We will assume that |𝐼𝑛| >> 1/𝜀 >> 1 

for all 𝑛. 

By Lemma (2.2.10) and Corollary (2.2.14) we can assume that the lengths of the intervals 
(𝜆𝑛, 𝜆𝑛+1) are bounded from above. It will be convenient for us to assume that the endpoints 

of 𝐼𝑛 belong to Λ, i.e. that 𝐼𝑛 = (𝜆𝑘𝑛 , 𝜆𝑘𝑛+1] for some 𝜆𝑘𝑛 , 𝜆𝑘𝑛+1 ∈ Λ. We will also include 

the endpoints of the intervals into the energy condition by defining 𝐸𝑛 as 

𝐸𝑛 = ∑  

𝜆𝑘𝑛≤𝜆𝑘,𝜆𝑙≤𝜆𝑘𝑛+1,𝜆𝑘≠𝜆𝑙

log|𝜆𝑘 − 𝜆𝑙|                     (54) 

and assuming that (52) is satisfied with these 𝐸𝑛. Such an assumption can be made because 

if the sum in (52) becomes infinite with 𝐸𝑛 defined by (54) one can, for instance, delete the 

first point, 𝜆𝑛𝑘+1, from Λ on all 𝐼𝑛 for large 𝑛. After the addition of 𝜆𝑘𝑛 and deletion of 

𝜆𝑛𝑘+1 in the sum defining 𝐸𝑛, each term in (52) will become smaller and the sum will remain 

finite. At the same time, since 

|𝐼𝑛| ≍ #{Λ ∩ 𝐼𝑛} → ∞,  

the subsequence will still have more than |𝐼𝑛| points on each 𝐼𝑛 and will satisfy the density 

condition. 

We show that 𝐺Λ ≥ 1 by producing a measure on Λ with spectral gap of the size arbitrarily 

close to 1. Due to connections discussed, existence of such a measure will follow from non-

triviality of a certain Toeplitz kernel. 

Since the lengths of (𝜆𝑛, 𝜆𝑛+1) are bounded from above, we can apply Lemma (2.2.17). 
Denote by 𝜃 the corresponding meromorphic inner function with spec𝜃 = Λ. 
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Let 𝑢 = arg (𝜃𝑆‾) = arg 𝜃 − 𝑥. First, we choose a larger partition 𝐽𝑛 = (𝑏𝑛, 𝑏𝑛+1) and a 

small"correction" function 𝑣 so that 𝑢 − 𝑣 becomes an atom on each 𝐽𝑛 : 

Claim 1. There exists a subsequence {𝑏𝑛} of the sequence {𝑎𝑛} and smooth functions 𝑣1, 𝑣2 

such that: 

1 |𝑣1
′ | < 𝜀/2 and 𝑢 − 𝑣1 = 0 at all 𝑎𝑛; 

2 𝐽𝑛 = (𝑏𝑛, 𝑏𝑛+1) is a short monotone partition; 

3 |𝑣2
′ | < 𝜀/2 and 𝑢 − 𝑣 = 𝑢 − (𝑣1 + 𝑣2) = 0 at all 𝑏𝑛; 

4 ∫
𝐽𝑛
 (𝑢 − 𝑣)𝑑𝑥 = 0 for all 𝑛; 

5 �̃� − �̃� ∈ 𝐿Π
1 . 

Proof of claim. First, choose a smooth function 𝑣1 satisfying 1 . Such a function exists 

because 

|2𝜋Δ𝑛 −|𝐼𝑛|| ≤ 2𝜋 <<
𝜀

2
|𝐼𝑛|. 

Notice that because the sequence 𝐼𝑛 is short and 

(𝑢 − 𝑣1)
′ > −1 −

𝜀

2
, 

1 implies 

𝑢 − 𝑣1 ∈ 𝐿Π
1 .                                                                (55) 

Choose 𝑏0 = 𝑎0 = 0. Choose 𝑏1 = 𝑎𝑛1 > 𝑏0 to be the smallest element of {𝑎𝑘} satisfying 

|∫  
𝑎𝑛1

𝑏0

  (𝑢 − 𝑣1)𝑑𝑥| <
𝜀

8
(𝑎𝑛1 − 𝑏0)

2
. 

Notice that because of (55) such an 𝑎𝑛1 will always exist. After that proceed choosing 

𝑏2, 𝑏3, … in the following way: If 𝑏𝑖 is chosen, choose 𝑏𝑖+1 = 𝑎𝑛𝑖+1 to be the smallest 

element of {𝑎𝑘} satisfying 𝑎𝑛𝑖+1 > 𝑏𝑖, 

|∫  
𝑎𝑛𝑖+1

𝑏𝑖

  (𝑢 − 𝑣1)𝑑𝑥| <
𝜀

8
(𝑎𝑛𝑖+1 − 𝑏𝑖)

2
                        (56) 

and 

𝑎𝑛𝑖+1 − 𝑏𝑖 ≥ 𝑏𝑖 − 𝑏𝑖−1. 

Choose 𝑏𝑘 , 𝑘 < 0 in the same way. 

We claim that the resulting sequence 𝐽𝑘 = (𝑏𝑘−1, 𝑏𝑘) forms a short monotone partition. 

Let 𝑘 be positive. By our construction, 𝐼𝑛𝑘  is the last (rightmost) among the intervals 𝐼𝑛 

contained in 𝐽𝑘. Notice that because of monotonicity 𝐼𝑛𝑘  is the largest interval among the 

intervals 𝐼𝑛 contained in 𝐽𝑘. We will show that for each 𝑘 

|𝐽𝑘| < ([
10

𝜀
] + 1) |𝐼𝑛𝑘|                                                (57) 

where [.] stands for the entire part of a real number. 

This can be proved by induction. The basic step: By our construction 𝑏1 = 𝑎𝑛1  and 

|∫  
𝑎𝑛1−1

𝑏0

  (𝑢 − 𝑣1)𝑑𝑥| ≥
𝜀

8
(𝑎𝑛1−1 − 𝑏0)

2
. 

Since (𝑢 − 𝑣1)
′ > −1 − 𝜀 and 𝑢 − 𝑣1 = 0 at all 𝑎𝑛, |𝑢 − 𝑣1| ≤ (1 + 𝜀)|𝐼𝑛1−1| on 

(𝑏0, 𝑎𝑛1−1). Hence 

(1 + 𝜀)|𝐼𝑛1−1|(𝑎𝑛1−1 − 𝑏0) ≥ |∫  
𝑎𝑛1−1

𝑏0

  (𝑢 − 𝑣1)𝑑𝑥| ≥
𝜀

8
(𝑎𝑛1−1 − 𝑏0)

2
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and 

(𝑎𝑛1−1 − 𝑏0) ≤ 8
1 + 𝜀

𝜀
|𝐼𝑚𝑘

|. 

It follows that 

|𝐽1| = (𝑎𝑛1−1 − 𝑏0) + |𝐼𝑛1| ≤ 9𝜀
−1|𝐼𝑛1−1| + |𝐼𝑛1−1| ≤

10

𝜀
|𝐼𝑛1−1|(58) 

(if 𝜀 is small enough). For the inductional step, assume that (57) holds for 𝑘 = 𝑙 − 1. For 

𝐽𝑙 = (𝑏𝑙−1, 𝑏𝑙), 𝑏𝑙 = 𝑎𝑛𝑙  there are two possibilities: 

|∫  
𝑎𝑛𝑙−1

𝑏𝑙−1

  (𝑢 − 𝑣1)𝑑𝑥| ≥
𝜀

8
(𝑎𝑛𝑙−1 − 𝑏𝑙−1)

2
 

or 

𝑎𝑛𝑙−1 − 𝑏𝑙−1 < 𝑏𝑙−1 − 𝑏𝑙−2. 

In the first case we prove (58) in the same way as in the basic step. In the second case we 

notice that by monotonicity of 𝐼𝑛 the number of intervals 𝐼𝑛 inside (𝑏𝑙−1, 𝑎𝑛𝑙−1) is at most 

(𝑎𝑛𝑙−1 − 𝑏𝑙−1)/|𝐼𝑛𝑙−1| which is strictly less than |𝐽𝑙−1|/|𝐼𝑛𝑙−1| ≤ [10/𝜀] + 1. Hence the 

number of intervals in (𝑏𝑙−1, 𝑎𝑛𝑙−1) is at most [10/𝜀]. Therefore the number of intervals in 

𝐽𝑙 = (𝑏𝑙−1, 𝑏𝑙) is at most [10/𝜀] + 1. Now, since 𝐼𝑛𝑙 is the largest interval in 𝐽𝑙 we again get 

(57), which implies shortness of 𝐽𝑛. The monotonicity follows from our construction. 

Now define the function 𝑣2 on each 𝐽𝑘 in the following way. First consider the tent function 

𝑇𝑘 defined on ℝ as 

𝑇𝑘(𝑥) =
𝜀

4
dist (𝑥, ℝ ∖ 𝐽𝑘). 

Notice that because of (56), for each 𝑘 there exists a constant 𝐶𝑘, |𝐶𝑘| ≤ 1 such that 

∫  
𝐽𝑘

[(𝑢 − 𝑣1) − 𝐶𝑘𝑇𝑘]𝑑𝑥 = 0. 

Now define 𝑣2 as a smoothed-out sum ∑𝐶𝑘𝑇𝑘 that satisfies |𝑣2
′ | < 𝜀/2 and still has the 

properties that 𝑣2(𝑏𝑘) = 0 and 

∫  
𝐽𝑘

[(𝑢 − 𝑣1) − 𝑣2]𝑑𝑥 = 0 

for each 𝑘. Finally, let 𝑣 = 𝑣1 + 𝑣2. The last condition of the claim will be satisfied because 

the restrictions (𝑢 − 𝑣)|𝐽𝑘 form a collection of atoms with a finite sum of 𝐿Π−
1 -norms: 

∥∥(𝑢 − 𝑣)|𝐽𝑘∥∥𝐿Π1
≲

|𝐽𝑘|
2

1 + dist2 (0, 𝐽𝑘)
 

(for more on atomic decompositions see [54]). 

The function 𝑣 from the last claim is a smooth function satisfying |𝑣′| ≤ 𝜀. Therefore it can 

be represented as 𝑣 = 𝑣+ − 𝑣−where 𝑣±are smooth growing functions, 0 ≤ 𝑣±
′ ≤ 𝜀. Hence 

one can choose two meromorphic inner functions 𝐼± satisfying 

{arg 𝐼± = 𝑘𝜋} = {arg 𝑣± = 𝑘𝜋} 
and 

|𝐼±
′ | ≲ 𝜀 

(the existence of such 𝐼±follows, for instance, from Lemma (2.2.17) or from the lemma in 

section 6.1 of [49] ). 
Note that then, automatically, |arg (𝐼‾+𝐼−) − 𝑣| < 2𝜋. The harmonic conjugate of 

arg (𝜃𝑆‾𝐼+𝐼‾−)still belongs to 𝐿Π−
1 . 
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WLOGarg (𝜃𝑆‾𝐼+𝐼‾−) = 0 at 0. 
Claim 2. The function arg (𝜃(𝑥)𝑆‾𝐼+(𝑥)𝐼‾−(𝑥))/𝑥 belongs to the Dirichlet class 𝒟(ℝ). 
Proof of claim. We will actually prove that 𝑤/𝑥,𝑤 = arg 𝜃 − 𝑥 − 𝑣 ∈ 𝒟 instead (again, 

WLOG 𝑤(0) = 0 with large multiplicity). The difference between −𝑣 and arg (𝐼+𝐼‾−)is a 

bounded function with bounded derivative that obviously belongs to 𝒟. 

Let 𝑞(𝑧) be the harmonic extension of 𝑤/𝑥 to the upper half plane. We need to show that 

the gradient norm of 𝑞 + 𝑖�̃� in ℂ+is finite, i.e. that 

∥ 𝑞 + 𝑖�̃� ∥∇
2= lim

𝑟→∞
 ∫  
∂𝐷(𝑟)

𝑞𝑑�̃� < ∞, 

where 𝐷(𝑟) is the semidisc {|𝑧| < 𝑟} ∩ ℂ+. 

We first prove that the integrals over ∂𝐷(𝑟) ∩ ℝ are uniformly bounded from above, i.e. 

that 

∫  
ℝ

𝑞𝑑�̃� < ∞. 

First, notice that the harmonic conjugate of 
𝑤

𝑥
 is 

�̃�

𝑥
 and (

𝑤

𝑥
)
′
=
𝑤′

𝑥
−

𝑤

𝑥2
, where 

𝑤

𝑥2
 is a bounded 

function since 𝑤′ is bounded and has a zero at zero. Hence 

∫  
ℝ

𝑞𝑑�̃� ≍ ∫  
ℝ

𝑤′�̃�
𝑑𝑥

𝑥2
 

and we can estimate the last integral instead. 

If 𝐼 is an interval then 2𝐼 denotes the interval with the same center as 𝐼 satisfying |2𝐼| =
2|𝐼|. 
Put 𝑤𝑛 = 𝑤|𝐽𝑛 . Then 

∫  
ℝ

𝑤′�̃�
𝑑𝑥

𝑥2
=∑ 

𝑛

∑ 

𝑘

∫  
𝐽𝑛

𝑤′�̃�𝑘
𝑑𝑥

𝑥2
. 

To estimate the last integral, first let us consider the case when the intervals 𝐽𝑛 and 𝐽𝑘 are 

far from each other: 

max  (|𝐽𝑛|, |𝐽𝑘|) ≤ dist(𝐽𝑛, 𝐽𝑘). 
In this case 

∫  
𝐽𝑛

 𝑤′�̃�𝑘
𝑑𝑥

𝑥2
≲ ∫  

𝐽𝑛

  |𝑤′|
|𝐽𝑘|

3

dist2(𝐽𝑘, 𝑥)

𝑑𝑥

𝑥2
≲

|𝐽𝑘|
3

1 + dist2(𝐽𝑛, 0)
∫  
𝐽𝑛

 
𝑑𝑥

dist2(𝐽𝑘, 𝑥)
.

                        (59) 

Here we used the property that each 𝑤𝑘 is an atom supported on 𝐽𝑘 whose 𝐿1-norm is ≲
|𝐽𝑘|

2 and employed the standard estimates from the theory of atomic decompositions, see 

[54]. In the last inequality we used the property 

∫  
𝐽𝑛

|𝑤′(𝑥)|𝑑𝑥 ≲ |𝐽𝑛|.                                        (60) 

Now let us consider the "mid-range" case when 

min  (|𝐽𝑛|, |𝐽𝑘|) ≤ dist(𝐽𝑛, 𝐽𝑘) < max  (|𝐽𝑛|, |𝐽𝑘|). 
Assume that 0 < 𝑘 < 𝑛. Then by monotonicity |𝐽𝑘| ≤ |𝐽𝑛|. In this case 



81 

∫  
𝐽𝑛

𝑤′�̃�𝑘
𝑑𝑥

𝑥2
≲

|𝐽𝑘|
2

1 + dist2(𝐽𝑘, 0)
∫  
𝐽𝑛

|𝑤′|
|𝐽𝑘|

dist2(𝐽𝑘, 𝑥)
𝑑𝑥

≤
|𝐽𝑘|

2

1 + dist2(𝐽𝑘, 0)

|⋅ 𝐽𝑘|

dist2(𝐽𝑘, 𝐽𝑛)
∫  
𝐽𝑛

  |𝑤′| ≲
|𝐽𝑘||𝐽𝑛|

1 + dist2(𝐽𝑘, 0)
. (61) 

Finally, the last case is 

𝑑𝑖𝑠𝑡(𝐽𝑛, 𝐽𝑘) < min  (|𝐽𝑛|, |𝐽𝑘|).  
Again we assume that 𝑛, 𝑘 >  0. Then by monotonicity either 𝑛 =  𝑘 or |𝑛 −  𝑘|  =  1, i.e. 

the intervals are either the same or adjacent. The estimates in this case are more complicated 

and will be done differently. First, integrating by parts we get 

∫  
𝐽𝑛

 𝑤′�̃�𝑘
𝑑𝑥

𝑥2
= ∫  

𝐽𝑛

 𝑤′ [∫  
𝐽𝑘

 
𝑤(𝑡)𝑑𝑡

𝑡 − 𝑥
]
𝑑𝑥

𝑥2
=

−∫  
𝐽𝑛

 𝑤′ [∫  
𝐽𝑘

  log|𝑡 − 𝑥|𝑤′(𝑡)𝑑𝑡]
𝑑𝑥

𝑥2
.

 

Next we would like to conclude that, for 𝑘 ≤ 𝑛, 

−∫  
𝐽𝑛

 𝑤′ [∫  
𝐽𝑘

 log |𝑡 − 𝑥|𝑤′(𝑡)𝑑𝑡]
𝑑𝑥

𝑥2
≲

−
1

1 + dist2(𝐽𝑛, 0)
[∬  

𝐽𝑛×𝐽𝑘

  log|𝑡 − 𝑥|𝑤′(𝑥)𝑤′(𝑡)𝑑𝑥𝑑𝑡 + |𝐽𝑛|
2] (62)

 

and work with the latter integral instead of the former. Since dist (0, 𝐽𝑛) < |𝑥| for 𝑥 ∈ |𝐽𝑛|, 
this estimate would be obvious if the function under the integral were negative. In our case, 

however, it will require some work. 

To prove the last relation denote 

𝐽𝑛
+ = {𝑤′ > 0},  𝐽𝑛

− = {𝑤′ ≤ 0}. 
Since −∫

𝐽𝑘
 log |𝑡 − 𝑥|𝑤′(𝑡)𝑑𝑡 = �̃�𝑘(𝑥) and 𝑤𝑘 is an atom, 

∥
∥
∥
∥
∫  
𝐽𝑘

 log |𝑡 − 𝑥|𝑤′(𝑡)𝑑𝑡
∥
∥
∥
∥

𝐿Π
1

≲
|𝐽𝑘|

2

1 + dist2(𝐽𝑘, 0)
. 

Since {𝐽𝑛} is a short sequence, |𝐽𝑛| ≤ dist (𝐽𝑛, 0) for large enough 𝑛. For the rest of the proof 

we will assume that this holds for all 𝑛 ≠ 0,−1. Since 𝑤′ is bounded from below and 

dist2 (𝐽𝑛, 0) ≤ 𝑥
2 ≤ 2dist2 (𝐽𝑛, 0) 

on 𝐽𝑛, 

−∫  
𝐽𝑛
−
𝑤′ [∫  

𝐽𝑘

 log |𝑡 − 𝑥|𝑤′(𝑡)𝑑𝑡]
𝑑𝑥

𝑥2
≲ 

−∫  
𝐽𝑛
−
 𝑤′ [∫  

𝐽𝑘

  log|𝑡 − 𝑥|𝑤′(𝑡)𝑑𝑡]
𝑑𝑥

1 + dist2(𝐽𝑛, 0)
+

|𝐽𝑘|
2

1 + dist2(𝐽𝑘, 0)
. (63) 

To deal with the integral over 𝐽𝑛
+notice, that �̃�𝑘 is "almost" positive on 𝐽𝑛, i.e. 

−∫  
𝐽𝑘

log |𝑡 − 𝑥|𝑤′(𝑡)𝑑𝑡 ≳ −|𝐽𝑛| 

for any 𝑥 ∈ 𝐽𝑛. Indeed 

−∫  
𝐽𝑘

log|𝑡 − 𝑥|𝑤′(𝑡)𝑑𝑡 = ∫  
𝐽𝑘

log−|𝑡 − 𝑥|𝑤
′(𝑡)𝑑𝑡 − ∫  

𝐽𝑘

log+|𝑡 − 𝑥|𝑤
′(𝑡)𝑑𝑡, 

where 
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∫  
𝐽𝑘

  log− |𝑡 − 𝑥|𝑤
′(𝑡)𝑑𝑡 = ∫  

𝐽𝑘

  log− |𝑡 − 𝑥|(arg 𝜃)
′(𝑡)𝑑𝑡 − ∫  

𝐽𝑘

  log− |𝑡 − 𝑥|(𝑥 + 𝑣)
′(𝑡)𝑑𝑡 ≥

∫  
𝐽𝑘

  (arg 𝜃)′(𝑡)𝑑𝑡 − ∫  
𝐽𝑘

  (1 + 𝜀)𝑑𝑡 ≥ −𝜀|𝐽𝑘| +  const. 

 

Here we used the property that ∫
𝐽𝑘
 (arg 𝜃)′(𝑡)𝑑𝑡 = |𝐽𝑘| + const. Also 

−∫  
𝐽𝑘

  log+ |𝑡 − 𝑥|𝑤
′(𝑡)𝑑𝑡

= ∫  
𝐽𝑘

  log+ |𝑡 − 𝑥|(𝑥 + 𝑣)
′(𝑡)𝑑𝑡 − ∫  

𝐽𝑘

  log+ |𝑡 − 𝑥|(arg 𝜃)
′(𝑡) 𝑑𝑡. 

Recall that 𝐽𝑘 = (𝑏𝑘, 𝑏𝑘+1] and 𝑥 ∈ 𝐽𝑛, 𝑛 ≥ 𝑘. If 𝑛 > 𝑘, sing Lemma (2.2.18) part 6 we 

obtain 

−∫  
𝐽𝑘

log+ |𝑡 − 𝑥|𝑤
′(𝑡)𝑑𝑡

≥ (log+ |𝑏𝑘 − 𝑥| − 𝐶)∫  
𝐽𝑘

(1 + 𝑣′)𝑑𝑥 − log+ |𝑏𝑘 − 𝑥|∫  
𝐽𝑘

(arg 𝜃)′𝑑𝑥

≥ −|𝐽𝑘|, 
which establishes (64). For 𝑛 = 𝑘 the same relation can be obtained using Lemma (2.2.18) 

part 5 . 

To finish the proof of (62) notice that 

−∫  
𝐽𝑛

 𝑤′ [∫  
𝐽𝑘

 log |𝑡 − 𝑥|𝑤′(𝑡)𝑑𝑡]
𝑑𝑥

𝑥2
=

∫  
𝐽𝑛
+
 𝑤′ [−∫  

𝐽𝑘

 log |𝑡 − 𝑥|𝑤′(𝑡)𝑑𝑡]
𝑑𝑥

𝑥2
+∫  

𝐽𝑛
−
 𝑤′ [−∫  

𝐽𝑘

 log |𝑡 − 𝑥|𝑤′(𝑡)𝑑𝑡]
𝑑𝑥

𝑥2
=

∫  
𝐽𝑛
+
 𝑤′(𝑥)m  ([−∫  

𝐽𝑘

 log |𝑡 − 𝑥|𝑤′(𝑡)𝑑𝑡] , 0)
𝑑𝑥

𝑥2
+

∫  
𝐽𝑛
+
 𝑤′(𝑥)m  ([−∫  

𝐽𝑘

 log |𝑡 − 𝑥|𝑤′(𝑡)𝑑𝑡] , 0)
𝑑𝑥

𝑥2
+

∫  
𝐽𝑛
−
 𝑤′ [−∫  

𝐽𝑘

 log |𝑡 − 𝑥|𝑤′(𝑡)𝑑𝑡]
𝑑𝑥

𝑥2
.

 

Regarding the last three integrals, if one replaces 
𝑑𝑥

𝑥2
 with 

𝑑𝑥

1+dist2 (𝐽𝑛,0)
 in the first integral, it 

will get ≳ than before because the function under the integral is positive and 𝑥2 ≳ 1 +
dist2 (𝐽𝑛, 0). Under the same operation, the second integral will decrease at most by 

𝐶|𝐽𝑘| ∫  
𝐽𝑛

|𝑤′|
𝑑𝑥

𝑥2
≲

|𝐽𝑛||𝐽𝑘|

1 + dist2 (𝐽𝑛, 0)
 

because of (64). Finally, the last integral is estimated in (63). Since dist (0, 𝐽𝑘) ≍ dist (0, 𝐽𝑛) 
and |𝐽𝑘| ≤ |𝐽𝑛|, this finishes (62). 

To estimate the integral in the right-hand side of (62), denote 𝑝 = arg 𝜃 − 𝑥 − 𝑣1 = 𝑤 +
𝑣2 where the functions 𝑣1, 𝑣2 are from claim 1. Also denote 𝑝𝑛 = 𝑝|𝐽𝑛  and 𝑣2

𝑛 = 𝑣2|𝐽𝑛. The 

key properties of 𝑣1 that we will use are that arg 𝜃 − 𝑥 − 𝑣1 = 0 at the endpoints of all 

𝐼𝑛 , 𝑣2 = 0 at the endpoints of 𝐽𝑛 and that |𝑣1
′ |, |𝑣2

′ | < 𝜀. Then 
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−∬  
𝐽𝑛×𝐽𝑘

 log |𝑡 − 𝑥|𝑤′(𝑥)𝑤′(𝑡)𝑑𝑥𝑑𝑡 = −∬  
𝐽𝑛×𝐽𝑘

 log |𝑡 − 𝑥|𝑝′(𝑥)𝑝′(𝑡)𝑑𝑥𝑑𝑡 −

+∫  
𝐽𝑛

  (�̃�𝑛𝑣2
′ + �̃�2

𝑛𝑝′ + �̃�2
𝑛𝑣2

′ )𝑑𝑥.
 

Notice that 

|∫  
𝐽𝑛

  �̃�𝑛𝑣2
′𝑑𝑥| ≤ 𝜀∥∥�̃�𝑛∥∥1 ≤ 𝜀 ∥ 𝑝𝑛||2√|𝐽𝑛| ≲ 𝜀|𝐽𝑛|

2 

because |𝑝𝑛|  ≲ |𝐽𝑛|.  Also,  

|∫  
𝐽𝑛

 𝑝′�̃�2
𝑛𝑑𝑥| = |< 𝑝, 𝑣2

𝑛 >𝒟| = |∫  
𝐽𝑛

  �̃�𝑛𝑣2
′𝑑𝑥| ≲ |𝐽𝑛|

2. 

Similarly to the first integral, 

∫  
𝐽𝑛

�̃�2
𝑛𝑣2

′𝑑𝑥 ≲ 𝜀2|𝐽𝑛|
2. 

Hence 

−∬  
𝐽𝑛×𝐽𝑘

log|𝑡 − 𝑥|𝑤′(𝑥)𝑤′(𝑡)𝑑𝑥𝑑𝑡

= −∬  
𝐽𝑛×𝐽𝑘

log|𝑡 − 𝑥| 𝑝′(𝑥)𝑝′(𝑡)𝑑𝑥𝑑𝑡 + 𝑂(|𝐽𝑛|
2).                           (65) 

For the last integral we have 

−∬  
𝐽𝑛×𝐽𝑘

log|𝑡 − 𝑥| 𝑝′(𝑥)𝑝′(𝑡)𝑑𝑥𝑑𝑡

= − ∑  

𝐼𝑖⊂𝐽𝑘

∑  

𝐼𝑗⊂𝐽𝑛

∬  
𝐼𝑖×𝐼𝑗

log|𝑡 − 𝑥| 𝑝′(𝑥)𝑝′(𝑡)𝑑𝑥𝑑𝑡.                     (66) 

To estimate 

−∬  
𝐼𝑖×𝐼𝑗

 log |𝑡 − 𝑥|𝑝′(𝑥)𝑝′(𝑡) =

∬  
𝐼𝑖×𝐼𝑗

  log− |𝑡 − 𝑥|𝑝
′(𝑥)𝑝′(𝑡) −∬  

𝐼𝑖×𝐼𝑗

  log+ |𝑡 − 𝑥|𝑝
′(𝑥)𝑝′(𝑡)(67)

 

we consider 3 cases. First, to estimate the integral in the case when 𝑖 = 𝑗, notice that, since 

1 + 𝑣1
′  is bounded, 

∫  
𝐼𝑗

log− |𝑥 − 𝑡|(1 + 𝑣1
′(𝑥))𝑑𝑥 <  const  

for any 𝑡 ∈ 𝐼𝑗. Once again, the positive functions arg′ 𝜃 and 𝑣1
′ + 1 satisfy 

∫  
𝐼𝑙

arg′ 𝜃 = ∫  
𝐼𝑙

(𝑣1
′ + 1) = 2𝜋Δ𝑙 + 𝑂(1) = |𝐼𝑙| + 𝑂(1).       (68) 

Hence 



84 

∬  
𝐼𝑗×𝐼𝑗

  log− |𝑡 − 𝑥|𝑝
′(𝑥)𝑝′(𝑡) =

∬  
𝐼𝑗×𝐼𝑗

  log− |𝑡 − 𝑥|(arg 𝜃)
′(𝑥)(arg 𝜃)′(𝑡) − 2∬  

𝐼𝑗×𝐼𝑗

  log− |𝑡 − 𝑥|(1 + 𝑣1
′(𝑥))(arg 𝜃)′(𝑡) +

∬  
𝐼𝑗×𝐼𝑗

  log− |𝑡 − 𝑥|(1 + 𝑣1
′(𝑥))(1 + 𝑣1

′(𝑡)) = ∬  
𝐼𝑗×𝐼𝑗

  log− |𝑡 − 𝑥|(arg 𝜃)
′(𝑥)(arg 𝜃)′(𝑡) + 𝑂(|𝐼𝑗|).

 

For the last integral we have 

∬  
𝐼𝑗×𝐼𝑗

  log− |𝑡 − 𝑥|(arg 𝜃)
′(𝑥)(arg 𝜃)′(𝑡) =

∑  

𝜆𝑙,𝜆𝑙+1⊂𝐼𝑗

  ∑  

𝜆𝑚,𝜆𝑚+1⊂𝐼𝑗

 ∫  
𝜆𝑙+1

𝜆𝑙

 ∫  
𝜆𝑚+1

𝜆𝑚

  (arg 𝜃)′(𝑥)(arg 𝜃)′(𝑡) .
 

Using the properties that 

∫  
𝜆𝑠+1

𝜆𝑠

arg 𝜃′ = 2𝜋 

and 

arg 𝜃′ ≲ [min  (|𝐼𝑠−1|, |𝐼𝑠|, |𝐼𝑠+1|)]
−2  on  (𝜆𝑠, 𝜆𝑠+1), 

for all 𝑠, we can apply Lemma (2.2.18) , parts 1-3. Assuming that 𝜆𝑙 ≤ 𝜆𝑚 we conclude that 

∫  
𝜆𝑙+1

𝜆𝑙

∫  
𝜆𝑚+1

𝜆𝑚

log− |𝑡 − 𝑥|(arg 𝜃)
′(𝑥)(arg 𝜃)′(𝑡) ≲ 

{

log− (𝜆𝑚 − 𝜆𝑙+1)  if  𝜆𝑚 > 𝜆𝑙+1

max  (log− (𝜆𝑙−1 − 𝜆𝑙), log− (𝜆𝑙 − 𝜆𝑙+1), log− (𝜆𝑙+1 − 𝜆𝑙+2)) + 1  if 𝜆𝑚 = 𝜆𝑙+1 

max  (log− (𝜆𝑙−1 − 𝜆𝑙), log− (𝜆𝑙 − 𝜆𝑙+1), log− (𝜆𝑙+1 − 𝜆𝑙+2)) + 1  if 𝜆𝑚 = 𝜆𝑙 , 

 

which implies 

∬  
𝐼𝑗×𝐼𝑗

  log− |𝑡 − 𝑥|𝑝
′(𝑥)𝑝′(𝑡)𝑑𝑥𝑑𝑡 ≲

∑  

𝜆𝑘𝑛≤𝜆𝑘,𝜆𝑙≤𝜆𝑘𝑛+1 ,𝜆𝑘≠𝜆𝑙

  log−|𝜆𝑘 − 𝜆𝑙| + |𝐼𝑗|.                                              (69)
 

To estimate the integral of log+, first notice that by Lemma (2.2.18) , part 5 , and (68), 

∫  
𝐼𝑗

log+ |𝑥 − 𝑡|(1 + 𝑣1
′(𝑥))𝑑𝑥 = |𝐼𝑗|log+ |𝐼𝑗| + 𝑂(|𝐼𝑗|) 

for any 𝑡 ∈ 𝐼𝑗. 

Together with part 4 of Lemma (2.2.18) and (68) we get: 

∬  
𝐼𝑗×𝐼𝑗

  log+ |𝑡 − 𝑥|𝑝
′(𝑥)𝑝′(𝑡) = ∬  

𝐼𝑗×𝐼𝑗

  log+ |𝑡 − 𝑥|arg
′ 𝜃(𝑥)arg′ 𝜃(𝑡) −

2∬  
𝐼𝑗×𝐼𝑗

  log+ |𝑡 − 𝑥|(𝑣1
′(𝑥) + 1)arg′ 𝜃(𝑡) +∬  

𝐼𝑗×𝐼𝑗

  log+ |𝑡 − 𝑥|(𝑣1
′(𝑥) + 1)(𝑣1

′(𝑡) + 1) =
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∑  

𝜆𝑙,𝜆𝑚∈𝐼𝑗

 ∫  
𝜆𝑙+1

𝜆𝑙

 ∫  
𝜆𝑚+1

𝜆𝑚

  log+ |𝑡 − 𝑥|arg
′ 𝜃(𝑥)arg′ 𝜃(𝑡) − |𝐼𝑗|

2
log |𝐼𝑗| +

4𝜋2 ∑  

𝜆𝑙,𝜆𝑚⊂𝐼𝑗

  log+ |𝜆𝑙 − 𝜆𝑚| − |𝐼𝑗|
2
log |𝐼𝑗| + 𝑂 (|𝐼𝑗|

2
)                  (70)

 

Next, let us consider the case when 𝑖 ≠ 𝑗 and the intervals 𝐼𝑖 , 𝐼𝑗  are not adjacent. This 

estimate is similar to (61), but we will do it using a different technique. Assume for instance 

that 𝑗 > 𝑖 + 1. For log−, recalling that |𝐼𝑘| > 1 for all 𝑘, we get 

−∬  
𝐼𝑖×𝐼𝑗

log− |𝑡 − 𝑥|𝑝
′(𝑥)𝑝′(𝑡)𝑑𝑥𝑑𝑡 = 0.                           (71) 

For log+we have 

−∬  
𝐼𝑖×𝐼𝑗

  log+ |𝑡 − 𝑥|𝑝
′(𝑥)𝑝′(𝑡) = −∫  

𝑎𝑖+1

𝑎𝑖

 ∫  
𝑎𝑗+1

𝑎𝑗

  log+ |𝑡 − 𝑥|𝑝
′(𝑥)𝑝′(𝑡) =

−∫  
𝑎𝑖+1

𝑎𝑖

 ∫  
𝑎𝑗+1

𝑎𝑗

  log+ |𝑡 − 𝑥|(arg 𝜃 − 𝑥 − 𝑣1)
′(𝑥)(arg 𝜃 − 𝑥 − 𝑣1)

′(𝑡) ≤

−∫  
𝐼𝑗

 (log |𝑎𝑖+1 − 𝑡|∫  
𝐼𝑖

 arg′ 𝜃(𝑥)𝑑𝑥 − log |𝑎𝑖 − 𝑡|∫  
𝐼𝑖

  (𝑣1
′ + 1)(𝑥)𝑑𝑥)arg′ 𝜃(𝑡)𝑑𝑡 +

∫  
𝐼𝑗

 (log |𝑎𝑖 − 𝑡|∫  
𝐼𝑖

 arg′ 𝜃(𝑥)𝑑𝑥 − log |𝑎𝑖+1 − 𝑡|∫  
𝐼𝑖

  (𝑣1
′ + 1)(𝑥)𝑑𝑥) (𝑣1

′ + 1)(𝑡)𝑑𝑡 ≤

2|𝐼𝑖 ∥ 𝐼𝑗|                                                                                                                (72)

 

Here we used the properties that dist (𝐼𝑖 , 𝐼𝑗) ≥ |𝐼𝑖| by monotonicity and (68). 

In the case when 𝐼𝑖 and 𝐼𝑗 are adjacent, i.e. 𝑗 = 𝑖 + 1, the estimate can be done differently. 

Note that 𝑝𝑛 = 𝑝𝑛|𝐼𝑛 is a compactly supported function with bounded derivative (the bound 

depends on 𝑛). Therefore it belongs to the Dirichlet space 𝒟. The estimates (69) and (70) 

yield 

∥∥𝑝𝑛∥∥𝒟
2 ≲

1

4𝜋2
|𝐼𝑛|

2 log|𝐼𝑛| − 𝐸𝑛 + |𝐼𝑛|
2. 

Hence 

∬  
𝐼𝑖×𝐼𝑖+1

 log |𝑡 − 𝑥|𝑝′(𝑥)𝑝′(𝑡) =< 𝑝𝑖 , 𝑝𝑖+1 >𝒟≤ ||𝑝𝑖||
2 + ||𝑝𝑖+1||

2 ≲

(
1

4𝜋2
|𝐼𝑖|

2log |𝐼𝑖| − 𝐸𝑖) + (
1

4𝜋2
|𝐼𝑖+1|

2log |𝐼𝑖+1| − 𝐸𝑖+1) +

|𝐼𝑖|
2 + |𝐼𝑖+1|

2                                                                                                        (73)

 

Now we can return to estimating 

∫  
𝐽𝑛

𝑤′�̃�𝑘
𝑑𝑥

𝑥2
 

in the case when |𝑘 − 𝑛| ≤ 1. Using the estimates (62), (65) and (66) we obtain 

∫  
𝐽𝑛

𝑤′�̃�𝑘
𝑑𝑥

𝑥2
=
−∑  𝐼𝑖⊂𝐽𝑘  ∑  𝐼𝑗⊂𝐽𝑛  ∬  

𝐼𝑖×𝐼𝑗
 log |𝑡 − 𝑥|𝑝′(𝑥)𝑝′(𝑡)𝑑𝑥𝑑𝑡 + 𝑂(|𝐽𝑛|

2)

1 + dist2 (0, 𝐽𝑛)
. 

The estimates (69)-(73) yield 
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− ∑  

𝐼𝑖⊂𝐽𝑛

  ∑  

𝐼𝑗⊂𝐽𝑘

 ∬  
𝐼𝑖×𝐼𝑗

 log |𝑡 − 𝑥|𝑝′(𝑥)𝑝′(𝑡)𝑑𝑥𝑑𝑡 ≲

∑  

𝐼𝑖⊂𝐽𝑘∪𝐽𝑛

 (
1

4𝜋2
|𝐼𝑖|

2log |𝐼𝑖| − 𝐸𝑖 + |𝐼𝑖|
2) + ∑  

𝐼𝑖,𝐼𝑗⊂𝐽𝑛

  |𝐼𝑖||𝐼𝑗| ≤

∑  

𝐼𝑖⊂𝐽𝑘∪𝐽𝑛

 (
1

4𝜋2
|𝐼𝑖|

2log |𝐼𝑖| − 𝐸𝑖) + |𝐽𝑛|
2 + |𝐽𝑘|

2.

 

All in all, in the case |𝑛 − 𝑘| ≤ 1, we have 

∫  
𝐽𝑛

 𝑤′�̃�𝑘
𝑑𝑥

𝑥2
≲

1

1 + dist2(0, 𝐽𝑛)
[ ∑  

𝐼𝑖⊂𝐽𝑘∪𝐽𝑛

 (
1

4𝜋2
|𝐼𝑖|

2 log|𝐼𝑖| − 𝐸𝑖) + |𝐽𝑛|
2 + |𝐽𝑘|

2] . (6.210

 

Combining the estimates (69),(70),(71),(72),(73) with (66),(65) and (62) we get 

∑ 

𝑛

∑ 

𝑘

∫  
𝐽𝑛

𝑤′�̃�𝑘
𝑑𝑥

𝑥2
= 

∑ 

𝑛

  [ ∑  

𝑘:max  (|𝐽𝑘|,|𝐽𝑛|≤dist (𝐽𝑘,𝐽𝑛))

 ] +

∑  

𝑛

  [ ∑  

𝑘:min  (|𝐽𝑘|,|𝐽𝑛|)≤dist (𝐽𝑘,𝐽𝑛)<max  (|𝐽𝑘|,|𝐽𝑛|)

 ] +

∑  

𝑛

  [ ∑  

𝑘:dist (𝐽𝑘,𝐽𝑛)<min  (|𝐽𝑘|,|𝐽𝑛|)

 ]

𝐼 + 𝐼𝐼 + 𝐼𝐼𝐼.

 

For the first sum, by (59), we get 

𝐼  ≤ ∑  

𝑘

  [ ∑  

𝑛:𝑛>𝑘,dist(𝐽𝑘,𝐽𝑛)>|𝐽𝑘|

 
|𝐽𝑘|

3

1 + dist2(𝐽𝑛, 0)
∫  
𝐽𝑛

 
𝑑𝑥

dist2(𝐽𝑘, 𝑥)
] ≤

 ∑  

𝑘

 
|𝐽𝑘|

3

1 + dist2(𝐽𝑘, 0)

1

|𝐽𝑘|
=∑  

𝑘

 
|𝐽𝑘|

2

1 + dist2(𝐽𝑘, 0)
< ∞.

(75) 

For the second sum, by (61), 

𝐼𝐼 ≲∑  

𝑛

[ ∑  

𝑘:𝑘≠𝑛,dist(𝐽𝑘,𝐽𝑛)<max  (|𝐽𝑘|,|𝐽𝑛|)

 
|𝐽𝑘||𝐽𝑛|

1 + dist2(𝐽𝑛, 0)
]. 

Recall that by our assumption |𝐽𝑛| ≤ dist (𝐽𝑛, 0) for all 𝑛 ≠ 0,−1. We can also assume that 

|𝐽−1| = |𝐽0|. Then in each term in the last sum 𝑘 and 𝑛 have the same sign. Let us estimate 

the part of the sum with non-negative 𝑘, 𝑛. 
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∑ 

𝑛≥0

  [∑  

𝑘≥0

  [ ∑  

𝑘≠𝑛,dist (𝐽𝑘,𝐽𝑛)<max(|𝐽𝑘|,|𝐽𝑛|)

 
|𝐽𝑘||𝐽𝑛|

1 + dist2 (𝐽𝑛, 0)
] = 

2∑ 

n≥0

  [ ∑  

𝑘≥0:𝑘<𝑛,dist (𝐽𝑘,𝐽𝑛)<|𝐽𝑛|

 
|𝐽𝑘||𝐽𝑛|

1 + dist2 (𝐽𝑛, 0)
] ≤ 4∑ 

n≥0

 
|𝐽𝑛|

2

1 + dist2 (𝐽𝑛, 0)
< ∞. 

The negative terms can be estimated similarly to conclude that 

𝐼𝐼 ≲∑  

𝑛

|𝐽𝑛|
2

1 + dist2(𝐽𝑛, 0)
< ∞. 

Finally, for the third sum by (74), 

𝐼𝐼𝐼 ≲∑  

𝑛

  [ ∑  

𝑘:|𝑘−𝑛|≤1

 
1

1 + dist2 (0, 𝐽𝑛)
[ ∑  

𝐼𝑖⊂𝐽𝑘∪𝐽𝑛

 (
1

4𝜋2
|𝐼𝑖|

2log |𝐼𝑖| − 𝐸𝑖) + |𝐽𝑛|
2 + |𝐽𝑘|

2]

∑  

𝑛

 
1

1 + dist2 (0, 𝐽𝑛)
[∑  

𝐼𝑖⊂𝐽𝑛

 (
1

4𝜋2
|𝐼𝑖|

2log |𝐼𝑖| − 𝐸𝑖) + |𝐽𝑛|
2] < ∞

 

Because Λ satisfies the energy condition on 𝐼𝑛. Altogether these estimates give us 

∫  
ℝ

�̃�𝑤′
𝑑𝑥

𝑥2
< ∞. 

The integrals over the circular part of ∂𝐷(𝑟) can be estimated like in [49]. We need to show 

that the integrals 

∫  
∂𝐷(𝑟)∖ℝ

𝑞𝑑�̃� = 𝑟𝐼′(𝑟),  𝐼(𝑟): =
1

2
∫  
𝜋

0

𝑞2(𝑟𝑒𝑖𝜙)𝑑𝜙, 

do not tend to +∞ as 𝑟 → ∞. In fact, it is enough to show 

𝐼(𝑟) ↛ ∞, 
because if 𝑟𝐼′(𝑟) → +∞, then 𝐼′(𝑟) ≥ 1/𝑟 for all 𝑟 ≫ 1, and we have 𝐼(𝑟) → ∞. 

As we will see shortly, 𝐼(𝑟) ↛ ∞ for any 𝑞 ∈ 𝐿1(1 + |𝑥|−1). It will be more convenient for 

us to prove an equivalent statement in the unit disk 𝔻. 

Let 𝑞 + 𝑖�̃� be an analytic function in 𝔻 such that 
𝑞(𝜁)

1 − |𝜁|
∈ 𝐿1(∂𝔻). 

Define 

ℎ(𝑧) =
1 + 𝑧

1 − 𝑧
(𝑞(𝑧) + 𝑖�̃�(𝑧)),  𝑧 ∈ 𝔻, 

and denote by ℎ𝑀(𝜁), 𝜁 ∈ ∂𝔻, the angular maximal function. Then ℑℎ ∈ 𝐿1(∂𝔻) and by the 

Hardy-Littlewood maximal theorem, 

ℎ𝑀 ∈ 𝐿1,∞(∂𝔻).                                                   (76) 
Let us show that as 𝜖 → 0, 

1

𝜖
∫  
𝐶𝜖

|𝑞 + 𝑖�̃�|2|𝑑𝑧| → ∞,  𝐶𝜖: = {|1 − 𝑧| = 𝜖} ∩ 𝔻. 

We have 

1

𝜖
∫  
𝐶𝜖

|𝑞 + 𝑖�̃�|2 ≤ 𝜖∫  
𝐶𝜖

| ℎ|2 ≲ [𝜖ℎ𝑀(𝜁)]2 + [𝜖ℎ𝑀(𝜁‾)]2, 
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where 𝜁 ∈ ∂𝔻, |1 − 𝜁| = 𝜖. The right-hand side cannot tend to infinity because otherwise, 

for all small 𝜖, we would have 

ℎ𝑀(𝜁) + ℎ𝑀(𝜁‾) ≫
1

𝜖
 

on an interval of length 𝜖, which would contradict (76). 

Let 

𝜙 = arg (𝜃𝑆‾𝐼+𝐼‾−)/2. 
Recall that �̃� ∈ 𝐿Π

1 . By the last claim 𝜙/𝑥 belongs to the Dirichlet class. Hence, by the 

Beurling-Malliavin multiplier theorem, see for instance [49], there exists a smooth function 

𝑚 on ℝ satisfying 

𝑚′ < 𝜀, �̃� ∈ 𝐿Π
1   and  �̃� ≥ max  (0,−�̃�).  

In other words, if Φ and 𝑀 are outer functions, 

Φ = exp (𝑖𝜙 − �̃�),𝑀 = exp (𝑖𝑚 − �̃�), 
then Φ𝑀 is bounded in ℂ+. 

Since 𝑚′ < 𝜀, 𝜀𝑥 − 𝑚 is an increasing function. There exists a meromorphic inner function 

𝐽 such that 

{𝐽 = ±1} = {2(𝜀𝑥 −𝑚) = 𝑘𝜋}. 
Denote 

𝑑1 = 2(𝜀𝑥 − 𝑚)  and  𝑑2 = arg 𝐽. 
Then the difference 

𝑑 = 2(𝜀𝑥 −𝑚) − arg 𝐽 = 𝑑1 − 𝑑2 

satisfies |𝑑| < 𝜋. 

Put 

𝑙(𝑥) =
2𝜀𝑥 − arg 𝐽

2
. 

Notice that 𝑙 ∈ 𝐿Π
1  because 2𝑙 = 𝑑 + 2𝑚 where 𝑑 is bounded and �̃� ∈ 𝐿Π

1 . 

Consider an outer function Ψ = exp (𝑖𝑙 − 𝑙). Then 

𝑆‾2𝜀Ψ = 𝐽‾Ψ‾  

or equivalently 

𝑆‾2𝜀𝐽Ψ = Ψ‾  

on ℝ. Thus Ψ ∈ 𝑁+[𝑆‾2𝜀𝐽]. 

Moreover, the ratio Ψ/𝑀 is equal to exp (𝑖
𝑑

2
−
�̃�

2
). Since |𝑑| < 𝜋,Ψ/𝑀 belongs to any 

𝐿Π
𝑝
, 𝑝 < 1. Our next goal is to construct another "small" outer multiplier function 𝑘 so that 

𝑘Ψ/𝑀 ∈ 𝐿Π∗
2 . 

Consider the step function 

𝛼(𝑥) =
𝜋

5
[
5

𝜋
𝑑1] −

𝜋

5
[
5

𝜋
𝑑2], 

where [⋅] again denotes the entire part of a real number. Then 

|𝑑 − 𝛼| <
2𝜋

5
.                                            (77) 

Since 𝑑1 = 𝑑2 = 𝜋𝑛 at the points {𝑐𝑛} = {𝐽 = ±1}, the function 𝛼 only takes values 

𝑘
𝜋

5
, 𝑘 = −4,−3,… ,4. Therefore 𝛼 can be represented as 

𝛼 =
𝜋

5
(∑  

4

𝑛=1

 𝛽𝑛 −∑  

8

𝑛=5

 𝛽𝑛), 
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where 𝛽𝑛 are elementary step functions, each taking only two values, 0 and 1 , and making 

at most one positive and one negative jump on each interval [𝑐𝑛, 𝑐𝑛+1]. For each 𝑛 =
1,2,… ,8 one can choose an inner function 𝑄𝑛 so that 

1 − 𝑄𝑛
1 + 𝑄𝑛

=  const 𝑒𝜋𝐾𝛽𝑛 . 

Notice that then 

exp (−𝑖𝜋𝛼 + 𝜋𝛼‾) = const √∏𝑛=1
4  

1 + 𝑄𝑛
1 − 𝑄𝑛

∏𝑛=5
8  

1 − 𝑄𝑛
1 + 𝑄𝑛

𝑛

 

Because of (77) we have 

|∏  

4

𝑛=1

  (1 + 𝑄𝑛)∏  

𝑠

𝑛=5

  (1 − 𝑄𝑛)Ψ/𝑀| ≲ || √∏ 

4

𝑛=1

 
1 + 𝑄𝑛
1 − 𝑄𝑛

∏ 

8

𝑛=5

 
1 − 𝑄𝑛
1 + 𝑄𝑛

Ψ/𝑀
10

||

=  const exp [
𝑑

2
−
𝛼‾

2
] ∈ 𝐿Π

2 (ℝ)

 

and since the function 𝑀Φ is bounded, 

∏ 

4

𝑛=1

(1 + 𝑄𝑛)∏  

8

𝑛=5

(1 − 𝑄𝑛)ΨΦ =∏ 

4

𝑛=1

(1 + 𝑄𝑛)∏  

8

𝑛=5

(1 − 𝑄𝑛)
Ψ

𝑀
𝑀Φ ∈ 𝐿Π

2 (ℝ). 

Now notice that since 𝑁+[𝑆‾2𝜀𝐽] ≠ 0, the set {𝑐𝑛} = {𝐽 = ±1} has BeurlingMalliavin 

density at most 2𝜀, see section 7 or [72]. By our construction the BeurlingMalliavin density 

of each of the sets {𝑄𝑛 = ±1} is the same as that of {𝑐𝑛}, i.e. at most 2𝜀. Hence the kernel 

𝑁∞[𝑆‾17𝜀∏𝑛  𝑄𝑛] contains a non-zero function 𝜏, see section 7 or [72]. 

Similarly, since the Beurling-Malliavin density of {𝐼+ = 1} is less than 𝜀, the kernel 

𝑁∞[𝑆‾𝜀𝐼+]is infinite-dimensional. Hence it contains a non-trivial function 𝜂 with at least one 

zero 𝑎 in ℂ+. Then the function 𝜅 = 𝜂/(𝑧 − 𝑎) also belongs to 𝑁∞[𝑆‾𝜀𝐼+]and satisfies |𝜅| ≲
(1 + |𝑥|)−1 on ℝ. 

Therefore 

𝜃‾𝑆1−20𝜀𝜅𝜏∏  

4

𝑛=1

  (1 + 𝑄𝑛)∏  

8

𝑛=5

  (1 − 𝑄𝑛)ΨΦ =

(𝑆‾𝜀𝐼+𝜅) (𝑆‾
17𝜀∏ 

4

𝑛=1

  (1 + 𝑄𝑛)∏  

8

𝑛=5

  (1 − 𝑄𝑛)𝜏) (𝑆‾
2𝜀Ψ)(𝜃‾𝑆1𝐼‾+Φ) ∈ 𝐻‾

2.

 

Hence the space 𝐾𝜃 contains the function 

𝑓 = 𝑆1−20𝜀𝜅𝜏∏ 

4

𝑛=1

(1 + 𝑄𝑛)∏  

8

𝑛=5

(1 − 𝑄𝑛)ΨΦ. 

Now we could simply refer to Theorem (2.2.6) to conclude this part of the proof. 

By the Clark representation formula 

𝑓 = (1 + 𝜃)𝐾𝑓𝜎1 

where 𝜎1 is the Clark measure corresponding to 𝜃 concentrated on {𝜃 = 1} = 1. Since 1 +
𝜃 is bounded in the upper half-plane and 𝑓 decreases faster than exp [−(1 − 21𝜀)𝑦] along 

the positive 𝑦-axis, so does 𝐾𝑓𝜇. Hence 𝑓𝜇 is the measure concentrated on Λ with the 

spectral gap at least (1 − 21𝜀). 
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II) Now suppose that 𝐺𝑋 > 1 but 𝐶𝑋 <
1

2𝜋
. 

By Corollary (2.2.21) there exists a discrete increasing sequence Λ = {𝜆𝑛}𝑛∈ℤ ⊂ 𝑋 and a 

measure 𝜈, supp 𝜈 = Λ such that 𝜈 has a spectral gap of the size 1 and 𝐾𝜈 does not have any 

zeros in ℂ. 

Similarly to the previous part, we assume that sup𝑛  (𝜆𝑛 − 𝜆𝑛−1) < ∞. The general case is 

discussed at the end of the proof. If sup𝑛  (𝜆𝑛 − 𝜆𝑛−1) < ∞, we can apply Lemma (2.2.17) 

and consider the inner function 𝜃 corresponding to Λ. A function 𝑓 ∈ 𝑁[𝜙] is called purely 

outer if 𝑓 is outer in the upper half-plane and 𝜙𝑓 = 𝑔‾ is outer in the lower half plane. Since 

𝐾𝜈 is divisible by 𝑆, the function 

𝑓 = 𝑆−1(1 − 𝜃)𝐾𝜈 ∈ 𝐾𝜃
1,∞

 

is a purely outer element of 𝑁1,∞[𝜃‾𝑆]. Note that 𝑓 = exp (𝑖𝜙 − �̃�) in ℂ+, where 2𝜙 =
arg 𝜃 − 𝑥. 
Denote by Γ𝑛 the middle one-third of the interval (𝜆𝑛, 𝜆𝑛+1). Our plan is to calculate the 

integral 

∫  
∪Γ𝑛

𝜙′�̃�
𝑑𝑥

𝑥2
                                                                  (78) 

in two different ways and arrive at a contradiction by obtaining two different answers. 

First let us choose a short monotone partition {𝐼𝑛} of ℝ such that Λ satisfies the density 

condition (51) with 𝑎 =
1

2𝜋
 on that partition: 

Put 𝑎0 = 0. Choose 𝑎1 > 𝑎0 to be the smallest point such that # Λ ∩ (𝑎0, 𝑎1] ≥ 
1

2𝜋
(𝑎1 − 𝑎0). Note that such a point always exists because Λ supports a measure with a 

spectral gap greater than 1: otherwise we would be able to choose a long sequence of 

intervals satisfying (86) in Lemma (2.2.11) with 𝑎 =
1

2𝜋
 and arrive at a contradiction. After 

𝑎𝑖 , 𝑖 ≥ 1 is chosen, choose 𝑎𝑖+1 > 𝑎𝑖 as the smallest point such that 

#Λ ∩ (𝑎𝑖 , 𝑎𝑖+1] ≥
1

2𝜋
(𝑎𝑖+1 − 𝑎𝑖)  and  (𝑎𝑖+1 − 𝑎𝑖) ≥ (𝑎𝑖 − 𝑎𝑖−1). 

Choose 𝑎𝑖 , 𝑖 < 0 in a similar way. Put 𝐼𝑛 = (𝑎𝑛, 𝑎𝑛+1]. Again by Lemma (2.2.11), {𝐼𝑛} has 

to be short. 

In what follows we will assume, WLOG, that 
1

2𝜋
|𝐼𝑛| = #Λ ∩ 𝐼𝑛. 

Note that since 𝐶𝑋 < 1, the sum in the energy condition (52) has to be infinite. At the same 

time, a part of that sum has to be finite: 

Claim 𝟑. 

∑ 

𝑛

log− (𝜆𝑛+1 − 𝜆𝑛)

𝜆𝑛
2

< ∞. 

Proof of claim. Suppose that the sum is infinite. Put 𝜇 = |𝜈| and let Φ be the inner function 

corresponding to 𝜇. Let 𝜓 = arg Φ − 𝑥. 

Define the intervals 𝐽𝑛 and the function 𝑣 like in part I) of the proof, with Φ replacing 𝜃. Put 

𝑤 = 𝜓 − 𝑣 = arg Φ − 𝑥 − 𝑣. Let again 𝑤𝑛 = |𝐽𝑛 , 𝑤𝑛
∗ = 𝑤 −𝑤𝑛. Then �̃� ∈ 𝐿Π

1  because 

𝑤𝑛 are atoms with summable 𝐿Π
1 -norms. 

Like in part I) we can use "atomic" estimates to show that if dist (𝐽𝑘, 𝐽𝑛) > max(|𝐽𝑘|, |𝐽𝑛|) 
and 𝑥 ∈ 𝐽𝑛 then 
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|�̃�𝑘(𝑥)| ≲
|𝐽𝑘|

3

dist2 (𝑥, 𝐽𝑘)
. 

By monotonicity and shortness of 𝐽𝑘 we conclude that 

∑  

𝜆𝑖∈𝐽𝑛

|�̃�𝑘(𝜆𝑖)|

𝜆𝑖
2 ≲ ∑  

𝜆𝑖∈𝐽𝑛

|�̃�𝑘(𝜆𝑖)|

1 + dist2(0, 𝐽𝑛)
≲

1

1 + dist2(0, 𝐽𝑛)
∫  
𝐽𝑛

|𝐽𝑘|
3

dist2(𝑥, 𝐽𝑘)
𝑑𝑥. 

Hence, similarly to (75), 

∑ 

𝑛

  [ ∑  

𝑘:dist (𝐽𝑘,𝐽𝑛)>max  (|𝐽𝑘|,|𝐽𝑛|)

  [ ∑  

𝜆𝑖∈𝐽𝑛

 
|�̃�𝑘(𝜆𝑖)|

𝜆𝑖
2 ]] =

∑  

𝑛

  [ ∑  

𝑘:𝑘<𝑛,dist (𝐽𝑘,𝐽𝑛)>max  (|𝐽𝑘|,|𝐽𝑛|)

  [ ∑  

𝜆𝑖∈𝐽𝑛

 
|�̃�𝑘(𝜆𝑖)|

𝜆𝑖
2 ]] ≲

∑  

𝑛

  [ ∑  

𝑘:𝑘<𝑛,dist (𝐽𝑘,𝐽𝑛)>max  (|𝐽𝑘|,|𝐽𝑛|)

 
1

1 + dist2 (0, 𝐽𝑛)
∫  
𝐽𝑛

 
|𝐽𝑘|

3

dist2 (𝑥, 𝐽𝑘)
𝑑𝑥] < ∞.

 

In other words, on each 𝐽𝑛 

∑  

𝑘:dist (𝐽𝑘,𝐽𝑛)>max  (|𝐽𝑘|,|𝐽𝑛|)

|�̃�𝑘
∗| ≤ 𝑔1 

where 𝑔1 is a positive function satisfying 

∑ 

𝑛

𝑔1(𝜆𝑛)

1 + 𝜆𝑛
2
< ∞. 

Also for any 𝑥 ∈ 𝐽𝑛 

�̃�𝑘(𝑥) = ∫  
𝑑𝑡

𝑡 − 𝑥
𝑤𝑘(𝑡) = −∫  

𝐽𝑘

log |𝑡 − 𝑥|𝑤′(𝑡)𝑑𝑡. 

If 𝑘 < 𝑛 then 

−∫  
𝐽𝑘

 log |𝑡 − 𝑥|𝑤′(𝑡)𝑑𝑡 ≥

−∫  
𝐽𝑘

  log+ |𝑡 − 𝑥|(arg Φ)
′(𝑡)𝑑𝑡 + ∫  

𝐽𝑘

  log+ |𝑡 − 𝑥|(1 + 𝑣
′)(𝑡)𝑑𝑡 − const ≳ −|𝐽𝑘|. (79)

 

Here we applied Lemma (2.2.18) , part 6 , to the second integral in the second line and used 

the estimate 

−∫  
𝐽𝑘

log+ |𝑡 − 𝑥|(arg Φ)
′(𝑡)𝑑𝑡 ≥ −log (𝑥 − 𝑏)∫  

𝐽𝑘

(arg Φ)′, 

where 𝑏 is the left endpoint of 𝐽𝑘, for the first integral. 

Thus for 𝑥 ∈ 𝐽𝑛 

∑  

𝑘:𝑘≠𝑛,dist (𝐽𝑘,𝐽𝑛)<max  (|𝐽𝑘|,|𝐽𝑛|)

�̃�𝑘(𝑥) ≥ 𝑔2(𝑥), 

where again 

∑ 

𝑛

|𝑔2(𝜆𝑛)|

1 + 𝜆𝑛
2
< ∞. 
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Also, for 𝑥 ∈ 𝐽𝑛 

−∫  
𝐽𝑛

log+ |𝑥 − 𝑡|𝑤
′(𝑡)𝑑𝑡 = 

−∫  
𝐽𝑛

log+ |𝑥 − 𝑡|arg
′ Φ(𝑡)𝑑𝑡 + ∫  

𝐽𝑛

log+ |𝑥 − 𝑡|(1 − 𝑣
′)(𝑡)𝑑𝑡 −  const ≳ −|𝐽𝑛|. (80)  

Here we again used the property that ∫
𝐽𝑛
 arg′ Φ = ∫

𝐽𝑛
 (𝑣′ − 1) = |𝐽𝑛| + 𝑂(1) and applied 

Lemma (2.2.18), part 5, to the second integral in the second line. 

Hence for any 𝑥 ∈ ℝ 

�̃�(𝑥) ≥ ∫  log− |𝑥 − 𝑡|𝑤
′(𝑡)𝑑𝑡 + 𝑔(𝑥) 

for some function 𝑔 satisfying 

∑ 

𝑛

|𝑔(𝜆𝑛)|

1 + 𝜆𝑛
2
< ∞. 

Therefore, 

∑ 

𝑛

 
�̃�(𝜆𝑛)

1 + 𝜆𝑛
2
≥  const +∑ 

𝑛

 
∫  
𝜆𝑛+1

𝜆𝑛−1
  log− |𝜆𝑛 − 𝑥|𝑤

′𝑑𝑥

1 + 𝜆𝑛
2

≥

 const +∑ 

𝑛

 
∫  
𝜆𝑛
𝜆𝑛−1

  log− |𝜆𝑛 − 𝑥|(arg Φ)
′𝑑𝑥

1 + 𝜆𝑛
2

≥  const +∑ 

𝑛

 
log− |𝜆𝑛 − 𝜆𝑛−1|

1 + 𝜆𝑛
2

.

 

Let 𝑓 = (1 + Φ)𝐾𝜈. Then 𝑓 is an outer function in ℂ+that belongs to 𝐻2 and satisfies 

𝑓 = exp(𝑖
𝜓

2
−
�̃�

2
). 

Since |𝑓(𝜆𝑛)| = |𝜈({𝜆𝑛})|/𝜇({𝜆𝑛}) = 1, we have that log |𝑓(𝜆𝑛)| = 2�̃�(𝜆𝑛) = 0 for all 𝑛. 

Recall that �̃�(𝜆𝑛) = �̃�(𝜆𝑛) + �̃�(𝜆𝑛) = �̃�(𝜆𝑛). It is left to show that 

∑ 

𝑛

�̃�(𝜆𝑛)

1 + 𝜆𝑛
2
< ∞. 

Recall that 𝑣 ∈ 𝐿Π
1 , �̃� = �̃� − �̃� = �̃� − log |𝑓|/2 ∈ 𝐿Π

1  and 𝑣′ is bounded on ℝ. Therefore 

the harmonic extension of 𝑣 into ℂ+has a bounded 𝑥-derivative in ℂ+. Hence �̃�𝑦 is bounded 

in ℂ+as well. 

On each interval 𝐽𝑛 choose 𝜆𝑘𝑛 so that 𝑣(𝜆𝑘𝑛) = max𝜆𝑖∈𝐽𝑛  𝑣(𝜆𝑖). If the last sum is positive 

infinite then so is 

∑ 

𝑛

|𝐽𝑛|
�̃�(𝜆𝑘𝑛)

1 + dist2 (0, 𝐽𝑛)
. 

Because of the boundedness of �̃�𝑦 , �̃�(𝜆𝑘𝑛 + 𝑖|𝐽𝑛|) ≥ �̃�(𝜆𝑘𝑛) − 𝐶|𝐽𝑛| and therefore 

∑ 

𝑛

|𝐽𝑛|
�̃�(𝜆𝑘𝑛 + 𝑖|𝐽𝑛|)

1 + dist2 (0, 𝐽𝑛)
= ∞. 

Denote by (�̃�)𝑀 the maximal non-tangential function of �̃� in ℂ+. The last equation implies 

that (�̃�)𝑀 ∉ 𝐿Π
1 . But that contradicts the property that both �̃� and 𝑣 belong to 𝐿Π

1 . 

Now notice that if 𝑥 ∈ Γ𝑛 then 

|𝑓(𝑥)| = |(1 − 𝜃(𝑥))𝐾𝜈(𝑥)| ≤ 2 |∫  
1

𝑡 − 𝑥
𝑑𝜈(𝑡)| ≤ 6||𝜈 ∥ |𝜆𝑛+1 − 𝜆𝑛|

−1. (81) 
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Hence 

∫  
∪Γ𝑛

 𝜙′�̃�
𝑑𝑥

𝑥2
≲∑ 

𝑛

 
1

𝜆𝑛
2
∫  
Γ𝑛

 arg′ 𝜃 log+|𝑓| 𝑑𝑥 +  const ≲

∑ 

𝑛

 
1

𝜆𝑛
2
∫  
Γ𝑛

  arg′ 𝜃𝑑𝑥 log−|𝜆𝑛+1 − 𝜆𝑛| +  const ≲

∑ 

𝑛

 
1

𝜆𝑛
2
log−|𝜆𝑛+1 − 𝜆𝑛| +  const < ∞.

(82) 

It follows that 

∫  
∪Γ𝑛

 𝑤′�̃�
𝑑𝑥

𝑥2
= ∫  

∪Γ𝑛

 𝜙′�̇�
𝑑𝑥

𝑥2
−∫  

∪Γ𝑛

 𝜙′�̃�
𝑑𝑥

𝑥2
−

∫  
∪Γ𝑛

 𝑣′�̃�
𝑑𝑥

𝑥2
+∫  

∪Γ𝑛

 𝑣′�̃�
𝑑𝑥

𝑥2
< ∞.

(83) 

Indeed, arguing like at the end of the proof of the last claim, from the property that (�̃�)𝑀 ∈
𝐿Π
1  we deduce that 

∑ 

𝑛

|𝐽𝑛|

sup
𝑥∈𝐽𝑛

 |�̃�(𝑥)|

1 + dist2 (0, 𝐽𝑛)
< ∞. 

Therefore 

|∫  
∪Γ𝑘∩𝐽𝑛

 𝜙′�̃�
𝑑𝑥

𝑥2
| ≤ ∫  

∪Γ𝑘∩𝐽𝑛

|𝜙′|𝑑𝑥

sup
𝑥∈𝐽𝑛

 |�̃�(𝑥)|

1 + dist2 (0, 𝐽𝑛)
≍ |𝐽𝑛|

sup
𝑥∈𝐽𝑛

 |�̃�(𝑥)|

1 + dist2 (0, 𝐽𝑛)
 

and summing over all 𝑛 we get 

|∫  
∪Γ𝑘

 𝜙′𝑣‾
𝑑𝑥

𝑥2
| < ∞. 

The second integral on the right-hand side of (83) is finite because 𝑣′ is bounded and �̃� =
log |𝑓| is in 𝐿Π

1 . The last integral is finite because 𝑣′ is bounded and �̃� = �̃� − �̃� ∈ 𝐿Π
1 . 

Denote 

𝐿𝑛 =∪dist (𝐽𝑘,𝐽𝑛)<max  (𝐽𝑘|,|𝐽𝑛∣) 𝐽𝑘,  𝑞𝑛 = 𝑤|𝐿𝑛   and  𝑞 ∗𝑛= 𝑤 − 𝑞𝑛. 

Then 

∫  
∪Γ𝑘

𝑤′�̃�
𝑑𝑥

𝑥2
=∑  

𝑛

[∫  
∪Γ𝑘∩𝐽𝑛

 𝑤′�̃�𝑛
∗
𝑑𝑥

𝑥2
+∫  

∪Γ𝑘∩𝐽𝑛

 𝑤′�̃�𝑛
𝑑𝑥

𝑥2
]. 

The first integral can be, once again, estimated like in (59), i.e. using the property that each 

𝑤𝑖 is an atom, and the sum of such integrals shown to be finite. For the second integral, 

applying similar arguments that were used in the first part to prove (62) we obtain 

∫  
∪Γ𝑘∩𝐽𝑛

 𝑤′�̃�𝑛
𝑑𝑥

𝑥2
≥

−
1

1 + dist2 (𝐽𝑛, 0)
∫  
∪Γ𝑘∩𝐽𝑛

 𝑤′(𝑥) [ ∑  

𝐽𝑙⊂𝐿𝑛

 ∫  
𝐽𝑙

 log |𝑥 − 𝑡|𝑤′(𝑡)𝑑𝑡 − |𝐽𝑛||𝐽𝑙|] 𝑑𝑥. (84)

 

Furthermore, because of (79), 
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−∫  
∪Γ𝑘∩𝐽𝑛

 𝑤′(𝑥) [ ∑  

𝐽𝑙⊂𝐿𝑛

 ∫  
𝐽𝑙

 log |𝑥 − 𝑡|𝑤′(𝑡)𝑑𝑡] 𝑑𝑥 ⩾

−∫  
∪Γ𝑘∩𝐽𝑛

 𝑤′(𝑥) [∫  
𝐽𝑛

 log |𝑥 − 𝑡|𝑤′(𝑡)𝑑𝑡] 𝑑𝑥 − ∑  

𝐽𝑙⊂𝐿𝑛

  |𝐽𝑙||𝐽𝑛|.

 

Let us remark right away that 

∑ 

𝑛

 
1

1 + dist2 (𝐽𝑛, 0)
∑  

𝐽𝑙⊂𝐿𝑛

  |𝐽𝑙||𝐽𝑛|∑  

∑  

𝑘𝑛,dist (𝐽𝑙,𝐽𝑛)<max  (𝐽𝑙|,|𝐽𝑛∣)

 
|𝐽𝑙||𝐽𝑛|

1 + dist2 (𝐽𝑛, 0)
≲∑  

𝑛

 
|𝐽𝑛|

1 + dist2 (𝐽𝑛, 0)
< ∞.

 

To continue the estimates let us split the last integral: 

−∫  
∪Γ𝑘∩𝐽𝑛

 𝑤′(𝑥) [∫  
𝐽𝑛

 log |𝑥 − 𝑡|𝑤′(𝑡)𝑑𝑡] 𝑑𝑥 =

∫  
∪Γ𝑘∩𝐽𝑛

  (arg 𝜃)′(𝑥) [∫  
𝐽𝑛

 log |𝑥 − 𝑡|(𝑣′(𝑡) + 1)(𝑡)𝑑𝑡] 𝑑𝑥

−∫  
∪Γ𝑘∩𝐽𝑛

  (arg 𝜃)′(𝑥) [∫  
𝐽𝑛

 log |𝑥 − 𝑡|(arg 𝜃)′(𝑡)(𝑡)𝑑𝑡] 𝑑𝑥

−∫  
∪Γ𝑘∩𝐽𝑛

  (𝑣′(𝑥) + 1) [∫  
𝐽𝑛

 log |𝑥 − 𝑡|(𝑣′(𝑡) + 1)𝑑𝑡] 𝑑𝑥

+∫  
∪Γ𝑘∩𝐽𝑛

  (𝑣′(𝑥) + 1) [∫  
𝐽𝑛

 log |𝑥 − 𝑡|(arg 𝜃)′(𝑡)(𝑡)𝑑𝑡] 𝑑𝑥 =

𝐼 + 𝐼𝐼 + 𝐼𝐼𝐼 + 𝐼𝑉.

 

To estimate 𝐼𝐼𝐼 and 𝐼𝑉 denote by 𝐶 the constant satisfying 

∫  
∪Γ𝑘∩𝐽𝑛

(𝑣′(𝑥) + 1)𝑑𝑥 = 𝐶|𝐽𝑛|. 

Notice that because 1 − 2𝜀 < 𝑣′ + 1 < 1 + 2𝜀 and ∫
𝐽𝑛
 𝑣′ + 1 = ∫

𝐽𝑛
 (arg 𝜃)′ = |𝐽𝑛|, for 

any 𝑦 ∈ 𝐽𝑛, 

∫  
𝐽𝑛

log |𝑦 − 𝑡|(𝑣′(𝑡) + 1)𝑑𝑡 = |𝐽𝑛|log |𝐽𝑛| + 𝑂(|𝐽𝑛|)                (85) 

and 

𝐼𝐼𝐼 = −∫  
∪Γ𝑘∩𝐽𝑛

(𝑣′(𝑥) + 1) [∫  
𝐽𝑛

  log|𝑥 − 𝑡| (𝑣′(𝑡) + 1)𝑑𝑡] 𝑑𝑥

= −𝐶|𝐽𝑛|
2 log|𝐽𝑛| + 𝑂(|𝐽𝑛|

2). 

To estimate 𝐼𝑉 observe that for any 𝑡 ∈ 𝐽𝑛, if dist (𝑡, (𝜆𝑘, 𝜆𝑘+1)) ≥ 1 then 

∫  
Γ𝑘

  (𝑣′(𝑥) + 1)log+ |𝑥 − 𝑡|𝑑𝑥 ≥

∫  
Γ𝑘

  (𝑣′(𝑥) + 1)𝑑𝑥
∫  
𝜆𝑘+1
𝜆𝑘

  log+ |𝑥 − 𝑡|𝑑𝑥

𝜆𝑘+1 − 𝜆𝑘
− (𝜆𝑘+1 − 𝜆𝑘)log 3

 



95 

(recall that Γ𝑘 is the middle one-third of (𝜆𝑘, 𝜆𝑘+1) ). Consider a positive step function 𝛼(𝑥) 
defined on each (𝜆𝑘, 𝜆𝑘+1) as 

∫  
Γ𝑘
  (𝑣′(𝑥) + 1)𝑑𝑥

𝜆𝑘+1 − 𝜆𝑘
. 

Then |𝛼 − 1| ≤ 𝜀 on 𝐽𝑛. Hence one can apply Lemma (2.2.18) part 5 to conclude that, for 

any 𝑡 ∈ 𝐽𝑛, 

∫  
∪Γ𝑘∩𝐽𝑛

  (𝑣′(𝑥) + 1)log+ |𝑥 − 𝑡|𝑑𝑥 ≥

∫  
𝐽𝑛

 𝛼(𝑥)log+ |𝑥 − 𝑡|𝑑𝑥 −  const |𝐽𝑛| ≥ (∫  
𝐽𝑛

 𝛼(𝑥)) log |𝐽𝑛| −  const |𝐽𝑛| =

𝐶|𝐽𝑛| log|𝐽𝑛| - const |𝐽𝑛| .

 

Therefore 

𝐼𝑉 = ∫  
∪Γ𝑘∩𝐽𝑛

  (𝑣′(𝑥) + 1) [∫  
𝐽𝑛

 log |𝑥 − 𝑡|(arg 𝜃)′(𝑡)(𝑡)𝑑𝑡] 𝑑𝑥 ≥

(∫  
𝐽𝑛

  (arg 𝜃)′) (𝐶|𝐽𝑛|log |𝐽𝑛| − const|𝐽𝑛|) = 𝐶|𝐽𝑛|
2log |𝐽𝑛| − const|𝐽𝑛|

2.

 

Combining the estimates we get 

𝐼𝐼𝐼 + 𝐼𝑉 ≥ −|𝐽𝑛|
2. 

To estimate 𝐼𝐼 notice that 

𝐼𝐼 = − ∑  

Γ𝑘⊂𝐽𝑛

∫  
Γ𝑘

(arg 𝜃)′(𝑥)𝑑𝑥 ∑  

𝜆𝑗,𝜆𝑗+1∈𝐽𝑛

∫  
𝜆𝑗+1

𝜆𝑗

log |𝑥 − 𝑡|(arg 𝜃)′(𝑡)𝑑𝑡. 

If 𝑡 ∈ (𝜆𝑗 , 𝜆𝑗+1) and 𝑥 ∈ Γ𝑘 then 

log  |𝑥 − 𝑡| ≥ {

log|𝜆𝑗 − 𝜆𝑘+1| if 𝑗 < 𝑘

log|𝜆𝑘 − 𝜆𝑗+1| if 𝑗 > 𝑘

log|𝜆𝑗+1 − 𝜆𝑗| if 𝑗 = 𝑘

. 

Put 𝛼𝑘 = ∫Γ𝑘
 (arg 𝜃)′. Then 

𝐼𝐼 ≥ − ∑  

Γ𝑘⊂𝐽𝑛

𝛼𝑘 ∑  

𝜆𝑗∈𝐽𝑛,𝑗≠𝑘

2𝜋log |𝜆𝑘 − 𝜆𝑗| + 𝐴𝑛 

where the constants 𝐴𝑛 satisfy 

∑ 

𝑛

|𝐴𝑛|

1 + dist2 (0, 𝐽𝑛)
< ∞. 

Using (85), I can be rewritten as 

𝐼 = ∑  

Γ𝑘⊂𝐽𝑛

 ∫  
Γ𝑘

  (arg 𝜃)′(𝑥) [∫  
𝐽𝑛

 log |𝑥 − 𝑡|(𝑣′(𝑡) + 1)(𝑡)𝑑𝑡] 𝑑𝑥 =

( ∑  

Γ𝑘⊂𝐽𝑛

 𝛼𝑘) |𝐽𝑛|log |𝐽𝑛| + 𝐵𝑛

 

where again 
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∑ 

𝑛

|𝐵𝑛|

1 + dist2 (0, 𝐽𝑛)
< ∞. 

By the left-hand side of the inequality in part 2) of Lemma (2.2.17), 

𝛼𝑘 = ∫  
Γ𝑘

(arg 𝜃)′ > 𝑐 > 0 

for all 𝑘. Therefore, since there are 
1

2𝜋
|𝐽𝑛| intervals Γ𝑘 in 𝐽𝑛, 

𝐼 + 𝐼𝐼 = ( ∑  

Γ𝑘⊂𝐽𝑛

 𝛼𝑘) |𝐽𝑛|log |𝐽𝑛| −

∑  

Γ𝑘⊂𝐽𝑛

 𝛼𝑘 ∑  

𝜆𝑗∈𝐽𝑛,𝑗≠𝑘

 2𝜋log |𝜆𝑘 − 𝜆𝑗| + 𝐴𝑛 + 𝐵𝑛 ≳

 

1

2𝜋
|𝐽𝑛|

2log |𝐽𝑛| − ∑  

𝜆𝑗,𝜆𝑘∈𝐽𝑛

2𝜋log |𝜆𝑘 − 𝜆𝑗| + 𝐴𝑛 + 𝐵𝑛.  

Now, going back to (84), we obtain 

∑ 

𝑛

 ∫  
∪Γ𝑘∩𝐽𝑛

 𝑤′�̃�𝑛
𝑑𝑥

𝑥2
≳

∑ 

𝑛

 

1
4𝜋2

|𝐽𝑛|
2log |𝐽𝑛| − ∑  𝜆𝑗,𝜆𝑘∈𝐽𝑛  log |𝜆𝑘 − 𝜆𝑗| − |𝐽𝑛|

2 + 𝐴𝑛 + 𝐵𝑛

1 + dist2 (𝐽𝑛, 0)
+  const. 

 

It remains to notice that the sum on right-hand side is positive infinite because otherwise Λ 

would satisfy the energy condition (52) and 𝐶𝑋 would be at least 1 . This contradicts (83). 

It remains to discuss the case when sup𝑛  (𝜆𝑛 − 𝜆𝑛−1) = ∞. If Λ is such a sequence, choose 

a large constant 𝐶 and consider the set of all gaps 𝑅𝑘 of Λ of the size larger than  : 

𝑅𝑘 = (𝜆𝑛𝑘 , 𝜆𝑛𝑘+1), 𝜆𝑛𝑘+1 − 𝜆𝑛𝑘 > 𝐶. 

After that one can add a separated set of points in every 𝑅𝑘 and consider a slightly larger 

sequence Λ′ = {𝜆𝑛
′ } ⊃ Λ that satisfies sup𝑛  (𝜆𝑛

′ − 𝜆𝑛−1
′ ) ≤ 𝐶 and 

inf
𝜆𝑛
′ ,𝜆𝑛−1

′ ∈Λ′∖Λ
 (𝜆𝑛
′ − 𝜆𝑛−1

′ ) ≥ 𝐶/2.  

Since 𝐶Λ < 1, for large enough 𝐶 the sequence Λ′ will still satisfy 𝐶Λ′ < 1. 

The inner function 𝜃 should then be chosen for the sequence Λ′ instead of Λ. Consider the 

outer function 

ℎ = (1 − 𝜃)𝐾𝜈 ∈ 𝐾𝜃
1,∞. 

Then ℎ is divisible by 𝑆 and has zeros at Υ = Λ′ ∖ Λ. Since Υ is a separated sequence, there 

exists an inner function 𝐼, spec𝐼 = Υ such that (arg 𝐼)′ is bounded, see for instance Lemma 

(2.2.10)6 in [55]. If 𝐶 is large enough, |(arg 𝐼)′| << 𝜀. The function 

𝑔 =
𝐼ℎ

1 − 𝐼
 

is divisible by 𝑆 and satisfies 

𝜃‾𝑔 = 𝜃‾
𝐼ℎ

1 − 𝐼
= 𝜃‾ℎ

1

1 − 𝐼‾
 

on ℝ. Therefore 𝑔 ∈ 𝐾𝜃
+. At the same time, 𝑔 no longer has zeros on ℝ. Denote 𝑓 = 𝑔/𝐼𝑆. 

Then 𝑓 ∈ 𝑁+[𝜃‾𝑆] is an outer function whose argument on ℝ is equal to (arg 𝜃 − 𝑥 −
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arg 𝐼)/2. Now we can apply claim 1 to 𝑢 = arg 𝜃 − 𝑥 − arg 𝐼 to obtain functions 𝑣 = 𝑣1 +
𝑣2 satisfying the properties 1-5. 

If one denotes by Γ𝑛 the middle one-third of (𝜆𝑛
′ , 𝜆𝑛+1

′ ), then similarly to (81), 

|𝑆−1(𝑥)ℎ(𝑥)| = |(1 − 𝜃(𝑥))𝐾𝜈(𝑥)| ≤ 6 ∥ 𝜈 ∥ |𝜆𝑛+1
′ − 𝜆𝑛

′ |−1. 
The argument of the function ℎ/𝑆 is arg 𝜃 − 𝑥. Note that claim 3 still holds with Λ′ in place 

of Λ, because Υ is separated. Hence (82) still holds for 𝜙 = arg 𝜃 − 𝑥. After that, using the 

property that |(arg 𝐼)′| << 𝜀, one can "absorb" arg 𝐼 into 𝑣1 and replace 𝑣1 with 𝑦 = 𝑣1 +
arg 𝐼. The rest of the estimates of the integral in (78) can be done in the same way as before, 

with 𝑣 = 𝑦 + 𝑣2 in place of 𝑣 = 𝑣1 + 𝑣2. 

If Λ is a real sequence we define its Beurling-Malliavin density as 

𝑑𝐵𝑀(Λ) = sup  {𝑑 ∣ ∃ long {𝐼𝑛} such that #Λ ∩ 𝐼𝑛 ≥ 𝑑|𝐼𝑛|∀𝑛} 
if Λ is discrete and as ∞ otherwise. 

An equivalent definition is given in [72]: 

𝑑𝐵𝑀(Λ) = sup  {𝑎:𝑁[𝑆‾
2𝜋𝑎𝜃] = 0}, 

where 𝜃(𝑧) denotes some/any meromorphic inner function with spec𝜃 = Λ. 

Note that the Beurling-Malliavin multiplier theorem implies that 𝑁[𝑆‾2𝜋𝑎𝜃] in the above 

definition can be replaced with any 𝑁𝑝[𝑆‾2𝜋𝑎𝜃], 0 < 𝑝 ≤ ∞, the kernel in the Hardy space 

𝐻𝑝, or with 𝑁+[𝑆‾2𝜋𝑎𝜃], the kernel in the Smirnov class. 

Lemma (2.2.10)[84]: Let 𝑋 ⊂ ℝ be a closed set and let Λ be a discrete sequence. Then 

𝐺𝑋∪Λ ≤ 𝐺𝑋 + 2𝜋𝑑𝐵𝑀(Λ). 
Proof. Let 𝑑𝐵𝑀(Λ) = 𝑑1, 𝐺𝑋 = 𝑑2 and 𝐺𝑋∪Λ = 𝑑3. Let 𝜀 > 0 be a small number. By 

Theorem (2.2.6), 𝑁[𝜃‾𝑆𝑑3−𝜀] ≠ 0 for some meromorphic inner 𝜃, spec𝜃 ⊂ 𝑋 ∪ Λ. Let 𝑓 ∈
𝑁[𝜃‾𝑆𝑑3−𝜀]. Let 𝐼 be an inner function such that spec  𝐼 = Λ. 
By the above definition of the Beurling-Malliavin density, there exists a function 𝑔 ∈
𝑁∞[𝑆‾2𝜋𝑑1+𝜀𝐼]. Then the function ℎ = (1 − 𝐼)𝑔 belongs to 𝑁∞[𝑆‾2𝜋𝑑1+𝜀] and is equal to 0 

on Λ. The function 𝑓ℎ belongs to 𝑁[𝜃‾𝑆𝑑3−2𝜋𝑑1−2𝜀] and is zero on Λ (obviously, we assume 

that 𝑑3 − 2𝜋𝑑1 − 2𝜀 > 0). Finally, the function 𝑙 = 𝑆𝑑3−2𝜋𝑑1−2𝜀𝑓ℎ belongs to 𝑁[𝜃‾] = 𝐾𝜃 

and is still zero on Λ. By the Clark representation 

𝑙 =
1

2𝜋𝑖
(1 − 𝜃)𝐾𝑙𝜎 

where 𝜎 is the Clark measure for 𝜃, supp 𝜎 = spec𝜃 ⊂ Λ ∪ 𝑋. Since 𝑙 is divisible by 

𝑆𝑑3−2𝜋𝑑1−2𝜀 in ℂ+and (1 − 𝜃) is an outer function in ℂ+, 𝐾𝑙𝜎 is divisible by 𝑆𝑑3−2𝜋𝑑1−2𝜀 
in ℂ+. Equivalently, the measure 𝑙𝜎 has a spectral gap of the size 𝑑3 − 2𝜋𝑑1 − 2𝜀. Since 𝑙 
is zero on Λ, the measure 𝑙𝜎 is supported on 𝑋. Hence 

𝐺𝑋 ≥ 𝑑3 − 2𝜋𝑑1 − 2𝜀 = 𝐺𝑋∪Λ − 2𝜋𝑑𝐵𝑀(Λ) − 2𝜀. 
The following statement can be viewed as a version of the first Beurling-Malliavin theorem, 

see [72], [49]. 

Lemma (2.2.11)[84]: Let Λ be a real sequence. Suppose that there exists a long sequence of 

intervals 𝐼𝑛 such that 

#(Λ ∩ 𝐼𝑛) ≤ 𝑎|𝐼𝑛|                                                 (86) 
for all 𝑛, for some 𝑎 ≥ 0. Then 𝐺Λ ≤ 2𝜋𝑎. 

Proof. Suppose that 𝐺Λ = 2𝜋𝑎 + 3𝜀 for some 𝜀 > 0. Then by Theorem 

(2.2.6), 𝑁[𝜃‾𝑆2𝜋𝑎+2𝜀] ≠ 0 for some inner function 𝜃, spec𝜃 ⊂ Λ. But (86) implies that the 

argument of the symbol increases greatly on 𝐼𝑛, which leads to a contradiction. More 

precisely, denote 

𝛾 = arg(𝜃‾𝑆2𝜋𝑎+2𝜀) = (2𝜋𝑎 + 2𝜀)𝑥 − arg 𝜃. 
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For each 𝐼𝑛 = (𝑎𝑛, 𝑎𝑛+1] denote 

𝛿𝑛 = inf
𝐼𝑛
′′
 𝛾 − sup

𝐼𝑛
′
 𝛾, 

where 

𝐼𝑛
′ = (𝑎𝑛, 𝑎𝑛 +

𝜀|𝐼𝑛|

6(𝜋𝑎 + 𝜀)
)   and  𝐼𝑛

′′ = (𝑎𝑛+1 −
𝜀|𝐼𝑛|

6(𝜋𝑎 + 𝜀)
, 𝑎𝑛+1). 

Then (86) implies that 𝛿𝑛 ≥
𝜀

3
|𝐼𝑛|. Hence by a theorem in [72], 𝑁[𝜃‾𝑆𝑎+2𝜀] has to be trivial. 

Lemma (2.2.12)[84]: Let 𝐼 = [𝑎, 𝑏] be an interval on ℝ and let Λ = {𝜆1, … , 𝜆𝑁}, 𝑎 ≤ 𝜆1 < 

… < 𝜆𝑁 ≤ 𝑏 be a set of points on I. Let 𝐶 > 1 be a constant and suppose that for some 

subinterval 𝐽 = [𝑐, 𝑑] ⊂ 𝐼, 

#Λ ∩ 𝐽 ≤
|𝐽|

𝐶
− 1. 

Then one can spread the points of Λ on 𝐽 without a large decrease in the energy 𝐸(Λ). More 

precisely, if 

Γ = {𝛾1, … , 𝛾𝑁},  𝑎 ≤ 𝛾1 < ⋯ < 𝛾𝑁 ≤ 𝑏 

is another set of points on 𝐼 with the properties that 

(i) 𝛾𝑘 = 𝜆𝑘 for all 𝑘 such that 𝜆𝑘 ∉ 𝐽 and 

(ii) |𝛾𝑘 − 𝛾𝑗| ≥ 𝐶 for all 𝛾𝑘 , 𝛾𝑗 ∈ 𝐽, 𝛾𝑘 ≠ 𝛾𝑗 

then 

𝐸(Γ) ≥ 𝐸(Λ) −
log 𝐶

𝐶
|𝐽|𝑁. 

where 𝐸 is defined by (49) 

Proof. Notice that ∑𝛾𝑘,𝛾𝑗∈𝐽  log− |𝛾𝑘 − 𝛾𝑗| = 0 and that 

log+ |𝛾𝑘 − 𝛾𝑗| ≥ log+ |𝜆𝑘 − 𝜆𝑗| − log+ 𝐶 

for all 𝑘, 𝑗. 
Corollary (2.2.13)[84]: Let Λ be a sequence of real points that satisfies the density (51) and 

energy (52) conditions for some partition 𝐼𝑛 and 𝑑 > 0. Let 𝐶 > 1. Let 𝐽𝑘 be 𝑎 sequence of 

disjoint intervals such that for every 𝑘, 𝐽𝑘 ⊂ 𝐼𝑛 for some 𝑛 and 

#Λ ∩ 𝐽𝑘 ≤
|𝐽𝑘|

𝐶
− 1 

for all 𝑘. Let Γ be a sequence of points obtained from Λ by spreading the points on each 

interval 𝐽𝑘 like in the last lemma. Then Γ satisfies the density and energy conditions with 

the same partition 𝐼𝑛 and 𝑑. 

Corollary (2.2.14)[84]: Let Λ = {𝜆𝑛} be a monotone sequence of real points such that 𝐶Λ ≥ 

𝑑 > 0. Then for any 𝜀 > 0 there exists a monotone sequence Γ = {𝛾𝑛} such that 

(i) 𝐶Γ ≥ 𝑑, 

(ii) 𝑑𝐵𝑀(Γ ∖ Λ) < 𝜀 and 

(iii) sup𝑛  (𝛾𝑛+1 − 𝛾𝑛) < ∞. 

Proof. Choose 𝐶 > 0 so that 1/𝐶 << 𝑑 and 1/𝐶 << 𝜀. Let [𝜆𝑛𝑘 , 𝜆𝑛𝑘+1] be a sequence of 

all "gaps" of Λ satisfying 𝜆𝑛𝑘+1 − 𝜆𝑛𝑘 > 𝐶. 

Since 𝐶Λ ≥ 𝑑, there exists a partition 𝐼𝑛 such that Λ satisfies (51) and (52) for 𝐼𝑛 and 𝑑. One 

can choose a sequence of disjoint intervals 𝐽𝑘 such that for every 𝑘, 𝐽𝑘 ⊂ 𝐼𝑛 for some 𝑛, 

∪ [𝜆𝑛𝑘 , 𝜆𝑛𝑘+1] ⊂∪ 𝐽𝑘  and  
|𝐽𝑘|

2𝐶
≤ #Λ ∩ 𝐽𝑘 ≤

|𝐽𝑘|

𝐶
− 1  for all  𝑘 
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(the choice of 𝐽𝑘 can be made by a version of the "shading" algorithm, see for instance [66]), 
volume 2, pp 507 − 508. Let Γ be a sequence of points obtained from Λ by spreading the 

points on each interval 𝐽𝑘 like in Lemma (2.2.12) . Then (i) is satisfied by the previous 

corollary and the supremum in (iii) is at most 2𝐶. Since the distances between the points of 

Γ on ∪ 𝐽𝑘 are at least 𝐶, 

𝑑𝐵𝑀(Γ ∖ Λ) ≤ 𝐶
−1 < 𝜀.  

Lemma (2.2.15)[84]: Let Λ be a sequence of real points and let {𝐼𝑛} be a short partition such 

that Λ satisfies 

𝑎|𝐼𝑛| < #Λ ∩ 𝐼𝑛 

for all 𝑛 with some 𝑎 > 0 and the energy condition (52) on {𝐼𝑛}. Then for any short partition 
{𝐽𝑛}, there exists a subsequence Γ ⊂ Λ that satisfies 

#(Λ ∖ Γ) ∩ 𝐽𝑛 = 𝑜(|𝐽𝑛|) 
as 𝑛 → ±∞, and the energy condition (52) on {𝐽𝑛}. 
Proof. To simplify the estimates we will assume that the endpoints of 𝐼𝑛 belong to Λ, i.e. 

that 𝐼𝑛 = (𝜆𝑘𝑛 , 𝜆𝑘𝑛+1] for each 𝑛, and that the energy condition (52) is satisfied on 𝐼𝑛 with 

𝐸𝑛 defined by (54), see the explanation there. 

(To include the endpoints in 𝐸𝑛 one may need to compensate by deleting a point on each 𝐼𝑛, 

as explained in the beginning of the proof of Theorem (2.2.9). This is where one may need 

to pass from Λ to a subsequence Γ. Since |𝐼𝑛| → ∞, Γ will satisfy #(Λ ∖ Γ) ∩ 𝐽𝑛 = 𝑜(|𝐽𝑛|). ) 
We will also assume that #Λ ∩ 𝐼𝑛 = |𝐼𝑛| for all 𝑛. In this case one can choose Γ = Λ. 

Fix 𝑛 and suppose that the intervals 𝐼𝑙 , … , 𝐼𝑙+𝑁 cover 𝐽𝑛. To estimate the energy expression 

for 𝐽𝑛 let us first consider the case when and ∪𝑙
𝑙+𝑁 𝐼𝑗 = 𝐽𝑛. Denote by 𝑢 a piecewise linear 

continuous function on ℝ that is zero outside of 𝐽𝑛 and grows linearly by 1 between 𝜆𝑛 and 

𝜆𝑛+1 for each 𝜆𝑛, 𝜆𝑛+1 ∈ 𝐽𝑛. Denote 

𝑝(𝑥) = {
𝑢(𝑥) − 𝑥 + 𝜆𝑘𝑙  on  𝐽𝑛 = (𝜆𝑘𝑙 , 𝜆𝑘𝑙+𝑁+1]

0  on  ℝ ∖ 𝐽𝑛
.  

Then 𝑝(𝜆𝑘𝑛) = 0 for all 𝑙 ≤ 𝑛 ≤ 𝑙 + 𝑁 + 1. Denote by 𝑝𝑛 the restriction 𝑝𝑛|𝐼𝑛 . 

On each (𝜆𝑖 , 𝜆𝑖+1) the function 𝑢′ satisfies the same estimates as |𝜃′| from the statement of 

Lemma (2.2.17) , parts 2 and 3 . Therefore for the function 𝑝 one can apply the same 

argument as in the first part of the proof of Theorem (2.2.9), where 𝑝 was defined as arg 

𝜃 − 𝑥 − 𝑣2 (we will simply assume that 𝑣2 ≡ 0 ). 

First, one can show that 

−∬  
𝐽𝑛×𝐽𝑛

 log |𝑡 − 𝑥|𝑝′(𝑡)𝑝′(𝑥)𝑑𝑡𝑑𝑥 =

|𝐽𝑛|
2log |𝐽𝑛| − ∑  

𝜆𝑘𝑙≤𝜆𝑖,𝜆𝑗≤𝜆𝑘𝑙+𝑁+1

  ∑  

𝜆𝑖≠𝜆𝑗

 log |𝜆𝑖 − 𝜆𝑗| +  const |𝐽𝑛|
2.

 

To estimate the last integral rewrite it as 

−∬  
𝐽𝑛×𝐽𝑛

log |𝑡 − 𝑥|𝑝′(𝑡)𝑝′(𝑥)𝑑𝑡𝑑𝑥 = ∑  

𝐼𝑖⊂𝐽𝑛

∑  

𝐼𝑗⊂𝐽𝑛

−∬  
𝐼𝑖×𝐼𝑗

log |𝑡 − 𝑥|𝑝′(𝑡)𝑝′(𝑥)𝑑𝑡𝑑𝑥. 

For the last integral, when 𝑖 = 𝑗 by (69) and (70) we have 

−∬  
𝐼𝑖×𝐼𝑖

log |𝑡 − 𝑥|𝑝′(𝑡)𝑝′(𝑥)𝑑𝑡𝑑𝑥 ≲ |𝐼𝑖|
2log |𝐼𝑖| − 𝐸𝑖 +  const |𝐼𝑖|

2. 
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If 𝐼𝑖 does not intersect 2𝐼𝑗 we can apply (71) and (72) (where we used that dist (𝐼𝑗 , 𝐼𝑘) ≥ |𝐼𝑗|) 

to obtain 

−∬  
𝐼𝑖×𝐼𝑗

log+|𝑡 − 𝑥| 𝑝
′(𝑡)𝑝′(𝑥)𝑑𝑡𝑑𝑥 ≲ |𝐼𝑖||𝐼𝑗|. 

For the case when 𝐼𝑖 intersects 2𝐼𝑗 but not contained in 2𝐼𝑗, or when 𝐼𝑖 is adjacent to 𝐼𝑗, (note 

that there are at most four of such 𝐼𝑖 for each 𝐼𝑗 ) we can estimate the integral like in (73) to 

conclude that 

−∬  
𝐼𝑖×𝐼𝑗

  log+ |𝑡 − 𝑥|𝑝
′(𝑡)𝑝′(𝑥)𝑑𝑡𝑑𝑥 ≲

(|𝐼𝑖|
2log |𝐼𝑖| − 𝐸𝑖) + (|𝐼𝑗|

2
log |𝐼𝑗| − 𝐸𝑗) + |𝐼𝑖|

2 + |𝐼𝑗|
2
.

 

Finally, in the case when 𝐼𝑖 ⊂ 2𝐼𝑗 , 𝑗 > 𝑖 + 1, notice that for any 𝑥 ∈ 𝐼𝑖 and any 𝑠, 𝑡 ∈ 𝐼𝑗 , 𝑡 >

𝑠, log+ |𝑠 − 𝑡| < log+ |𝑥 − 𝑡|. Hence (we assume that dist (𝑥, 𝐼𝑗) ≥ |𝐼𝑖+1| > 1 to skip the 

estimates of log−) 

−∬  
𝐼𝑗×𝐼𝑗

  log+ |𝑠 − 𝑡|𝑝
′(𝑡)𝑝′(𝑠)𝑑𝑡𝑑𝑠 = −2∫  

𝜆𝑘𝑗+1

𝜆𝑘𝑗

 ∫  
𝜆𝑘𝑗+1

𝑠

  log+ |𝑠 − 𝑡|𝑝
′(𝑡)𝑝′(𝑠)𝑑𝑡𝑑𝑠 =

2∫  
𝜆𝑘𝑗+1

𝜆𝑘𝑗

 ∫  
𝜆𝑘𝑗+1

𝑠

  log+ |𝑠 − 𝑡|𝑑𝑡𝑑𝑠 − 2∫  
𝜆𝑘𝑗+1

𝜆𝑘𝑗

 ∫  
𝜆𝑘𝑗+1

𝑠

  log+ |𝑠 − 𝑡|𝑢
′(𝑡)𝑢′(𝑠)𝑑𝑡𝑑𝑠 ≥

 

2(|𝐼𝑗|
2
log |𝐼𝑗| − |𝐼𝑗| ∫  

𝐼𝑗

  log+ |𝑥 − 𝑡|𝑢
′(𝑡)𝑑𝑡) +  const |𝐼𝑗|

2
. 

Also for any 𝑥 ∈ 𝐼𝑖 

∫  
𝐼𝑗

log+ |𝑥 − 𝑡|𝑑𝑡 − ∫  
𝐼𝑗

log+ |𝑥 − 𝑡|𝑢
′(𝑡)𝑑𝑡 ≳ −|𝐼𝑗|. 

Therefore 

−∬  
𝐼𝑖×𝐼𝑗

  log+ |𝑡 − 𝑥|𝑝
′(𝑡)𝑝′(𝑥)𝑑𝑡𝑑𝑥 ≤

∫  
𝐼𝑖

  |𝑝′(𝑥)| (∫  
𝐼𝑗

  log+ |𝑥 − 𝑡|𝑑𝑡 − ∫  
𝐼𝑗

  log+ |𝑥 − 𝑡|𝑢
′(𝑡)𝑑𝑡 +  const |𝐼𝑗|) 𝑑𝑥 ≤

2|𝐼𝑖| (|𝐼𝑗|log |𝐼𝑗| − ∫  
𝐼𝑗

  log+ |𝑥 − 𝑡|𝑢
′(𝑡)𝑑𝑡) +  const |𝐼𝑖||𝐼𝑗| ≤

−
|𝐼𝑖|

|𝐼𝑗|
∬  
𝐼𝑗×𝐼𝑗

  log+ |𝑠 − 𝑡|𝑝
′(𝑡)𝑝′(𝑠)𝑑𝑡𝑑𝑠 +  const |𝐼𝑖||𝐼𝑗| =

|𝐼𝑖|

|𝐼𝑗|
∥∥𝑝𝑗∥∥𝒟 +  const |𝐼𝑖||𝐼𝑗| ≲

|𝐼𝑖|

|𝐼𝑗|
(|𝐼𝑗|

2
log |𝐼𝑗| − 𝐸𝑗) + |𝐼𝑖||𝐼𝑗|.

 

Combining the estimates and using the shortness of {𝐽𝑛}, we obtain that Λ satisfies the energy 

condition on {𝐽𝑛}. 
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In the case when the intervals 𝐼𝑙 , … , 𝐼𝑙+𝑁 cover 𝐽𝑛 but ∪𝑙
𝑙+𝑁 𝐼𝑗 ≠ 𝐽𝑛, i.e. when 𝐼𝑙 , 𝐼𝑙+𝑁 ∩ 𝐽𝑛 ≠

∅ but at least one of 𝐼𝑙 , 𝐼𝑙+𝑁 is not a subset of 𝐽𝑛, denote 𝐼𝑙
∗ = 𝐼𝑙 ∩ 𝐽𝑛 and 𝐼𝑙+𝑁

∗ = 𝐼𝑙+𝑁 ∩ 𝐽𝑛. 

Notice that by remark 3 and the fact that log |𝐼𝑙
∗| < log |𝐼𝑙|, 

|𝐼𝑙
∗|2log |𝐼𝑙

∗| − 𝐸𝑙
∗ ≤ |𝐼𝑙|

2log |𝐼𝑙| − 𝐸𝑙 . 
Similarly, 

|𝐼𝑙+𝑁
∗ |2 log|𝐼𝑙+𝑁

∗ | − 𝐸𝑙+𝑁
∗ ≤ |𝐼𝑙+𝑁|

2 log|𝐼𝑙+𝑁| − 𝐸𝑙+𝑁 . 
Now we can use the previous case with 𝐼𝑙

∗, 𝐼𝑙+𝑁
∗  in place of 𝐼𝑙 , 𝐼𝑙+𝑁. 

Corollary (2.2.16)[84]: Let Λ be a sequence of real points and let {𝐼𝑛} be a short partition 

such that Λ satisfies the density condition (51) with some 𝑎 > 0 and the energy condition 

(52). Then for any 𝜀 > 0 there exists a subsequence Γ ⊂ Λ and a short monotone partition 

𝐽𝑛 such that Γ satisfies (51), with 𝑑 − 𝜀 in place of 𝑑, and (52) on 𝐽𝑛. 

Proof. One can choose a short monotone partition {𝐽𝑛} satisfying 

(𝑎 − 𝜀)|𝐽𝑛| ≤ #Λ ∩ 𝐽𝑛 

for all 𝑛. Such a partition can be constructed in the same way as in the second part of the 

proof of Theorem (2.2.9) , see the second paragraph before claim 3 . Then Γ can be found 

by Lemma (2.2.15). 

Lemma (2.2.17)[84]: Let 𝐴 = {𝑎𝑛}𝑛∈ℤ be a real sequence satisfying 

𝑎𝑛 < 𝑎𝑛+1, 𝑎𝑛+1 − 𝑎𝑛 < 𝐶 < ∞ 

and 𝑎𝑛 → ±∞ as 𝑛 → ±∞. Denote 𝐼𝑛 = (𝑎𝑛, 𝑎𝑛+1). Then there exists an inner function 𝜃 

satisfying 

(i) spec𝜃 = 𝐴, 

(ii) |𝐼𝑛|
−1 ≲ |𝜃′| ≲ |𝐼𝑛|

−2 on the middle one-third of 𝐼𝑛, for all 𝑛; 

(iii) |𝜃′| ≲ [min(|𝐼𝑛−1|, |𝐼𝑛|, |𝐼𝑛+1|)]
−1 on the rest of 𝐼𝑛, for all 𝑛. 

Proof. Define a second sequence 𝐵 as the sequence of midpoints of complimentary intervals 

of 𝐴 in ℝ: 𝑏𝑛 = (𝑎𝑛 + 𝑎𝑛+1)/2. 

Define the inner function 𝜃 to satisfy 
1 − 𝜃

1 + 𝜃
=  const 𝑒𝐾𝑢,                                   (87) 

where 𝑢 = 1𝐸 − 1/2, 

𝐸 = ⋃  

∞

𝑘=−∞

(𝑎𝑘, 𝑏𝑘), 

and 𝐾𝑢 is the improper integral 

𝐾𝑢(𝑧) = ∫  
𝑢(𝑡)𝑑𝑡

𝑡 − 𝑧
,  (𝑧 ∈ ℂ+). 

The integral converges since 𝑢 is a convergent sum of atoms 𝑢|[𝑎𝑛,𝑎𝑛+1]. 

(Formulas similar to (87) are often used in perturbation theory. In those settings, 𝑢 is the 

Krein-Lifshits shift function and 𝜃 is the characteristic function of the perturbed operator, 

see for instance [99], [102]) 

Let 𝜇1, 𝜇−1 be the Clark measures for 𝜃 defined by the Herglotz representation 
1 + 𝜃

1 − 𝜃
=
1

𝜋𝑖
∫  
ℝ

  [
1

𝑡 − 𝑧
−

𝑡

1 + 𝑡2
] 𝑑𝑡𝜇1(𝑡) +  const ,

1 − 𝜃

1 + 𝜃
=
1

𝜋𝑖
∫  
ℝ

  [
1

𝑡 − 𝑧
−

𝑡

1 + 𝑡2
] 𝑑𝜇−1(𝑡) +  const. 

 

The measures 𝜇1, 𝜇−1 have the following form: 
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𝜇1 =∑ 𝛼𝑛𝛿𝑎𝑛 ,  𝜇−1 =∑ 𝛽𝑛𝛿𝑏𝑛 

for some positive numbers 𝛼𝑛, 𝛽𝑛. (It is easy to see that 𝜇±1{∞} = 0 although we don't 

actually need this fact.) 

Put 𝛿𝑛 = 𝑎𝑛+1 − 𝑎𝑛. We claim that 

𝛿𝑛
2 ≲ 𝛽𝑛 ≲ 𝛿𝑛.                                                        (88) 

Assuming that this estimate holds, we could finish as follows. Since 

|𝜃′| ≍ |1 − 𝜃|2|(𝒮𝜇1)
′|,  |𝜃′| ≍ |1 + 𝜃|2|(𝒮𝜇−1)

′|, 
we have 

|𝜃′(𝑥)| ≍ min  {∑  
𝛼𝑛

(𝑥 − 𝑎𝑛)
2
,∑  

𝛽𝑛
(𝑥 − 𝑏𝑛)

2
} ,  (𝑥 ∈ ℝ). 

Now if 𝑥 belongs to the middle one-third of one of the intervals (𝑎𝑚, 𝑎𝑚+1), then |𝜃′(𝑥)| 
can be estimated as 

|𝜃′(𝑥)| ≍∑ 
𝛼𝑛

(𝑥 − 𝑎𝑛)
2
≍∑ 

𝛼𝑛
(𝑏𝑚 − 𝑎𝑛)

2
= 𝛽𝑚

−1 

and the estimate follows from (88). On the rest of the interval |𝜃′(𝑥)| can be estimated by 

∑
𝛽𝑛

(𝑥−𝑏𝑛)
2
 which together with the right half of (88) gives the desired estimate. 

It remains to prove (88). As follows from (87), 

𝛽𝑛 =  const Res𝑏𝑛 𝑒
−𝐾𝑢. 

Denote 

𝑔𝑛(𝑧) = exp {−∫  
𝑎𝑛+1

𝑎𝑛

 
𝑢(𝑡)𝑑𝑡

𝑡 − 𝑧
} =

√(𝑎𝑛 − 𝑧)(𝑎𝑛+1 − 𝑧)

𝑏𝑛 − 𝑧
, 

and 

𝐴𝑛 = exp{−∫  
ℝ∖(𝑎𝑛,𝑎𝑛+1)

 
𝑢(𝑡)𝑑𝑡

𝑡 − 𝑏𝑛
}, 

so 

𝑅𝑒𝑠𝑏𝑛𝑒
−𝐾𝑢 = 𝐴𝑛𝑅𝑒𝑠𝑏𝑛𝑔𝑛,      |Res𝑏𝑛 𝑔𝑛| =

1

2
𝛿𝑛. 

To prove the right half of (88) notice that 𝐴𝑛 ≲ 1. Indeed, to the right from 𝑎𝑛+1, on each 

(𝑎𝑗 , 𝑎𝑗+1) the function 𝑢 is positive on the half of the interval that is closer to 𝑏𝑛 and negative 

on the half that is further from it. Thus 

−∫  
(𝑎𝑛+1,∞)

𝑢(𝑡)𝑑𝑡

𝑡 − 𝑏𝑛
< 0. 

Similarly 

∫  
(−∞,𝑎𝑛)

𝑢(𝑡)𝑑𝑡

𝑡 − 𝑏𝑛
< 0. 

To prove the left half of (88) one needs to show that 𝛿𝑛 ≲ 𝐴𝑛. Notice that, since 𝛿𝑛 < 𝐶, 

− ∑  

dist (𝑏𝑛,(𝑎𝑗,𝑎𝑗+1))≥1

∫  
(𝑎𝑗,𝑎𝑗+1)

𝑢(𝑡)𝑑𝑡

𝑡 − 𝑏𝑛
>  const > −∞. 

As for the remaining part, 

− ∑  

0<dist (𝑏𝑛,(𝑎𝑗,𝑎𝑗+1))≤1

∫  
(𝑎𝑗,𝑎𝑗+1)

𝑢(𝑡)𝑑𝑡

𝑡 − 𝑏𝑛
> −∫  

1+𝐶

𝛿𝑛/2

𝑑𝑥

𝑥
= log 𝛿𝑛 +  const.  
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Lemma (2.2.18)[84]: Let 𝑎1 < 𝑎2 and 𝑏1 < 𝑏2 be points on the real line. Let 𝛼 and 𝛽 be 

nonnegative functions on the intervals (𝑎1, 𝑎2) and (𝑏1, 𝑏2) correspondingly satisfying 

∫  
𝑎2

𝑎1

𝛼 = ∫  
𝑏2

𝑏1

𝛽 = 1, 𝛼 < 𝐴  and  𝛽 < 𝐵 

where 𝐴, 𝐵 > 1. Then 

(i) log− (𝑎2 − 𝑎1) ≤ ∫𝑎1
𝑎2
 ∫
𝑎1

𝑎2
 log− (𝑥 − 𝑦)𝛼(𝑥)𝛼(𝑦)𝑑𝑥𝑑𝑦 ≤ log− 

1

𝐴
+ 1. 

(ii) If 𝑎2 < 𝑏1 then 

log−(𝑏2 − 𝑎1) ≤ ∫  
𝑎2

𝑎1

∫  
𝑏2

𝑏1

log−(𝑥 − 𝑦) 𝛼(𝑥)𝛽(𝑦)𝑑𝑥𝑑𝑦 ≤ log−(𝑏1 − 𝑎2). 

(iii) If 𝑎2 = 𝑏1 then 

∫  
𝑎2

𝑎1

∫  
𝑏2

𝑏1

log− (𝑥 − 𝑦)𝛼(𝑥)𝛽(𝑦)𝑑𝑥𝑑𝑦 ≤ m  (log− 
1

𝐴
, log− 

1

𝐵
) + 1. 

(iv) If 𝑎2 ≤ 𝑏1 then 

log+ (𝑏1 − 𝑎2) ≤ ∫  
𝑎2

𝑎1

∫  
𝑏2

𝑏1

log+ (𝑥 − 𝑦)𝛼(𝑥)𝛽(𝑦)𝑑𝑥𝑑𝑦 ≤ log+ (𝑏2 − 𝑎1). 

(v) If 𝐴/2 ≤ 𝛼(𝑥) ≤ 𝐴 on (𝑎1, 𝑎2) then for any 𝑦 ∈ (𝑎1, 𝑎2) 

log+ |𝑎2 − 𝑎1| − 𝐶 ≤ ∫  
𝑎2

𝑎1

log+ (𝑥 − 𝑦)𝛼(𝑥)𝑑𝑥 ≤ log+ |𝑎2 − 𝑎1| + 𝐶 

for some absolute constant 𝐶. 

(vi) If 𝐴/2 ≤ 𝛼(𝑥) ≤ 𝐴 on (𝑎1, 𝑎2) then for any 𝑦 > 𝑎2 

log+ |𝑦 − 𝑎1| − 𝐶 ≤ ∫  
a2

a1

log+ (𝑥 − 𝑦)𝛼(𝑥)𝑑𝑥 ≤ log+ |𝑦 − 𝑎1| 

for some absolute constant 𝐶. 

We discuss a Toeplitz version of theorem 66 from [55].  

We say that a finite measure 𝜇 on ℝ annihilates 𝐾𝜃 if ∫ 𝑓𝑑𝜇 = 0 for a dense set of 𝑓 ∈ 𝐾𝜃. 

Note that the integral always exists for a dense set of functions since, for instance, the disk 

algebra is dense in every 𝐾𝜃. 

We say that the Cauchy integral 𝐾𝜇 is divisible by an inner function 𝜃 if 𝐾𝜇/𝜃 = 𝐾𝜂 in ℂ ∖
ℝ for some finite complex measure 𝜂 on ℝ. 

Lemma (2.2.19)[84]: [85] Let 𝜇 be a finite complex measure on ℝ and let 𝜃 be an inner 

function in ℂ+. Then the following statements are equivalent: 

(i) 𝜇 annihilates 𝐾𝜃; 

(ii) The Cauchy integral of the conjugate measure 𝜇‾, 𝐾𝜇‾, is divisible by 𝜃. 

Proof. (i) ⇒ (ii). We will assume that the reproducing kernels of 𝐾𝜃 belong to the dense set 

annihilated by 𝜇 (otherwise one needs to use a standard limiting procedure). If 𝜆 ∈ ℂ+then 

0 =
1 − 𝜃‾(𝜆)𝜃(𝑧)

𝜆‾ − 𝑧
𝑑𝜇(𝑧)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
= 𝜃(𝜆)𝐾𝜃‾𝜇‾(𝜆) − 𝐾𝜇‾(𝜆) 

which implies the statement. 

(ii) ⇒ (i). Let 𝐽 be the inner function whose Clark measure is |𝜇|. Then the function 𝑓 =
(1 − 𝐽)𝐾𝜇‾ belongs to 𝐾𝐽 and is divisible by 𝜃. Let 𝑓 = 𝜃𝑔. We will assume that 𝜃(𝑖) = 0. 

The general case can be treated similarly. 

Let 
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𝜃 = 𝜃∗
𝑧 − 𝑖

𝑧 + 𝑖
. 

If 𝐼 is an inner divisor of 𝜃∗ then 𝐼𝑔/(𝑧 + 𝑖) also belongs to 𝐾𝑗 and is summable on the real 

line. Recall that the integral over ℝ of a function from 𝐻1(ℂ+)is 0 . At the same time, by 

the Clark representation, for each function ℎ from 𝐾𝐽, 

∫  
ℝ

ℎ(𝑥)𝑑𝑥 = ∫  ℎ(𝑥)𝑑|𝜇|(𝑥). 

Hence 

0 = ∫  
(𝐼𝑔)(𝑥)

𝑥 + 𝑖
𝑑𝑥 = ∫  

(𝐼𝑔)(𝑥)

𝑥 + 𝑖
𝑑|𝜇|(𝑥) = ∫  

𝐼(𝑥)𝜃‾(𝑥)𝑓(𝑥)

𝑥 + 𝑖
𝑑|𝜇(𝑥)| = ∫  

𝜃𝐼‾

𝑥 − 𝑖
𝑑𝜇

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
. 

Since functions 
𝜃

𝐼(𝑧−𝑖)
 are complete in 𝐾𝜃, we obtain the statement. 

Like in de Branges' proof of theorem 66 , we will use the Krein-Milman theorem on the 

existence of extreme points in a convex set to obtain the following lemma: 

Lemma (2.2.20)[84]: Let 𝜃 be an inner function in ℂ+. Let 𝜇 be a finite complex measure 

whose Cauchy integral 𝐾𝜇 is divisible by 𝜃 (or, equivalently, 𝜇‾ annihilates 𝐾𝜃 ). Then there 

exists a finite complex measure 𝜈 such that 

(i) supp 𝜈 ⊂ supp 𝜇; 

(ii) 𝐾𝜈 is divisible by 𝜃 ( 𝜈‾ annihilates 𝐾𝜃 ); 

(iii) K\nu has no zeros outside of supp 𝜈, except the zeros of 𝜃 in ℂ+; 

(iv) if 𝜃 is a meromorphic inner function then 𝜈 is concentrated on a discrete set. 

Proof. First, let us symmetrize 𝜇. Since together with any 𝑓 ∈ 𝐾𝜃 , 𝜃𝑓‾ ∈ 𝐾𝜃, the measure 𝜃‾𝜇, 

just like 𝜇‾, annihilates 𝐾𝜃 and 𝐾𝜃𝜇‾ is divisible by 𝜃. Consider 𝜂 = 𝜇 + 𝜃𝜇‾.WLOG ∥ 𝜂 ∥≤
1. 

Denote Σ = supp 𝜇. Let 𝐴Σ
𝜃 be the set of all finite complex measures 𝜎 such that ∥ 𝜎 ∥≤

1, supp 𝜎 ⊂ Σ, the Cauchy integral of 𝜎 is divisible by 𝜃 and 

𝜃𝜎‾ = 𝜎.                                                                (89) 

Since 𝜂 ∈ 𝐴Σ
𝜃, this set is not empty. It is also convex. By the Krein-Milman theorem it 

contains a non-zero extremal point 𝜈. We claim that this is the desired measure. 

First, let us show that the set of real 𝐿∞(|𝜈|)-functions ℎ such that 𝐾ℎ𝜈 is divisible by 𝜃 is 

one-dimensional, and therefore ℎ = 𝑐 ∈ ℝ. (This is equivalent to the statement that the 

closure of 𝐾𝜃 in 𝐿1(|𝜈|) has deficiency 1, i.e. the space of its annihilators is one dimensional) 

Let there be a bounded real ℎ such that 𝐾ℎ𝜈 is divisible by 𝜃. WLOG ℎ ≥ 0, since one can 

add constants, and ∥ ℎ𝜈 ∥= 1. Choose 0 < 𝛼 < 1 so that |𝛼ℎ| < 1. Consider probability 

measures 𝜈1 = ℎ𝜈 and 𝜈2 = (1 − 𝛼)
−1(𝜈 − 𝜈1). Then both of them belong to 𝐴Σ

𝜃 and 𝜈 =
𝛼𝜈1 + (1 − 𝛼)𝜈2 which contradicts the extremality of 𝜈. 

Now let us show that 𝜈 is a singular measure. Let 𝑔 be a continuous compactly supported 

real function such that ∫ 𝑔𝑑𝜈 = 0. By the previous part, there exists a sequence 𝑓𝑛 ∈
𝐾𝜃 , 𝑓𝑛 → 𝑔 in 𝐿1(|𝜈|) (otherwise the defect is larger than 1). Since 𝜈‾ annihilates 𝐾𝜃 and 
(𝑓𝑛(𝑧) − 𝑓𝑛(𝑤))/(𝑧 − 𝑤) ∈ 𝐾𝜃 for every fixed 𝑤 ∈ ℂ ∖ ℝ, 

0 = ∫  
𝑓𝑛(𝑧) − 𝑓𝑛(𝑤)

𝑧 − 𝑤
𝑑𝜈‾(𝑧) = 𝐾𝑓𝑛𝜈‾(𝑤) − 𝑓𝑛(𝑤)𝐾𝜈‾(𝑤) 

and therefore 

𝑓𝑛 =
𝐾𝑓𝑛𝜈‾

𝐾𝜈‾
. 
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Taking the limit, 

𝑓 = lim  𝑓𝑛 =
𝐾𝑔𝜈‾

𝐾𝜈‾
. 

Since all of 𝑓𝑛 have pseudocontinuations, one can show that the limit function 𝑓 must have 

one as well. Since the numerator is analytic outside the compact support of ℎ, the measure 

in the denominator must be singular (Cauchy integrals of nonsingular measures have jumps 

at the real line on the support of the a.c. part). 

Moreover, 𝑓 must be analytically continuable through the real line outside of clos spec  𝜃, 

like all of 𝑓𝑛. In particular, if 𝜃 is meromorphic, the zero set of 𝑓 has to be discrete. Since 𝜈 

is singular, 𝐾𝜈 tends to ∞ at 𝜈-a.e. point and 𝑓 = 0 at 𝜈-a.e. point outside of the support of 

𝑔. Choosing two different 𝑔 with disjoint supports we prove that if 𝜃 is meromorphic, then 

𝜈 is concentrated on a discrete set. 

We show that 𝐾𝜈 does not have any zeros in ℂ ∖ supp 𝜈 other than the zeros of 𝜃. Let 𝐽 be 

the inner function corresponding to |𝜈|(|𝜈| is the Clark measure for 𝐽). Denote 𝐺 = (1 −
𝐽)𝐾𝜈 ∈ 𝐾𝐽. Since 𝐾𝜈 is divisible by 𝜃 and 𝐾|𝜈| is outer, 𝐺 is divisible by 𝜃. Let us first show 

that 𝐺/𝜃 does not have an inner component in the upper half-plane. Suppose that 𝐺 = 𝜃𝑈𝐻 

for some inner 𝑈. Then 𝜃(1 + 𝑈)2𝐻 also belongs to 𝐾𝐽. Denote 

𝛾 = 𝜃(1 + 𝑈)2𝐻|𝜈|. 
Then 𝛾 = ℎ𝜈 for a bounded non-constant function ℎ = (1 + 𝑈)2/𝑈. The Cauchy integral 

of 𝛾 is divisible by 𝜃 because (1 − 𝐽)𝐾𝛾 = 𝜃(1 + 𝑈)2𝐻. We obtain a contradiction with 

the property that the space of annihilators is one dimensional. 

Thus 𝐺/𝜃 ∈ 𝐾𝐽 is outer in 𝐶+. By (89), 

𝐺𝜃‾|𝜈| = 𝜃‾𝜈 = 𝜈‾ 
and the Clark representation formula implies 

𝐽‾𝐺 = (1 − 𝐽)𝐾𝜈‾̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = (1 − 𝐽)𝐾𝐺𝜃‾|𝜈|̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝐺/𝜃̅̅ ̅̅ ̅, 
so the pseudocontinuation of 𝐺 does not have zeros in ℂ−. 

If 𝐺 has a zero at 𝑥 = 𝑎 ∈ ℝ outside of spec𝐽 then 

𝐺

𝑥 − 𝑎
∈ 𝐾𝐽 

and the measure 

𝛾 =
𝐺

𝑥 − 𝑎
|𝜈| 

leads to a similar contradiction with the property that the space of annihilators is one-

dimensional, since (𝑥 − 𝑎)−1 is bounded on the support of 𝜈. Since 

𝐺 = (1 − 𝐽)𝐾𝜈 ∈ 𝐾𝐽, 

𝐾𝜈 does not have any extra zeros. 

Recall that a function 𝑓 ∈ 𝑁[𝜙] is called purely outer if 𝑓 is outer in the upper half-

plane and 𝜙𝑓 = 𝑔‾ is outer in the lower half plane. 

Corollary (2.2.21)[84]: Let 𝐼, 𝜃 be inner functions in ℂ+. Suppose that the kernel 𝑁[𝐼‾𝜃] is 

non-trivial. 

Then there exists an inner function 𝐽 in ℂ+such that spec𝐽 ⊂ spec𝐼 and the kernel 𝑁[𝐽‾𝜃] 

contains a purely outer function 𝑓 that does not have any zeros on ℝ ∖ spec𝐽. If 𝜎1 is the 

Clark measure of 𝐽 then 𝑓 is also non-zero 𝜎1-a.e. on spec𝐽. If 𝜃 is a meromorphic function, 

then 𝐽 can be chosen as a meromorphic function. 
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Section (2.3): The Hilbert Transform: A Real Variable Characterization 

Define a truncated Hilbert transform of a locally bounded signed measure 𝑣 by 

H𝜖,𝛿𝑣(x):= ∫  
𝜖<|𝑦−x|<𝛿

d𝑣(y)

y − x
,  0 < 𝜖 < 𝛿. 

Given weights (i.e. locally bounded positive Borel measures) 𝜎 and 𝑤 on the real line ℝ, we 

consider the following two weight norm inequality for the Hilbert transform, 

sup0<𝜖<𝛿  ∫   
ℝ

  |H𝜖,𝛿(𝑓𝜎)|
2
 d𝑤 ≤ 𝒩2∫  

ℝ

  |𝑓|2𝑑𝜎,  𝑓 ∈ L2(𝜎), (90) 

where 𝒩 is the best constant in the inequality, uniform over all truncations of the Hilbert 

transform kernel. Below, we will write the inequality above as ∥ H(𝑓𝜎) ∥𝐿2(𝑤)≤ 𝒩 ∥

f ∥L2(𝑤), that is the uniformity over the truncation parameters is suppressed. 

The primary question is to find a real variable characterization of this inequality, and the 

theorem below is an answer to the beautiful conjecture of Nazarov-Treil-Volberg, see [130]. 

Set 

P(𝜎, I):= ∫  
ℝ

|I|

I|2 + dist (x, I)2
𝜎(d𝑥), 

which is approximately the Poisson extension of 𝜎 to the upper half plane, evaluated at 

(x1, |I|), where 𝜒𝐼 is the center of 𝐼. 
Theorem (2.3.1)[103]: Let 𝜎 and 𝑤 be locally finite positive Borel measures on the real 

line ℝ with no common point masses. Then, the two weight inequality (90) holds if and only 

if these three conditions hold uniformly over all intervals I, 

P(𝜎, I)P(𝑤, I) ≤ 𝒜2,                                                  (91) 

∫ 
𝐼

  |H(𝟏1𝜎)|
2 d𝑤 ≤ 𝒯2𝜎(I),  ∫ 

𝐼

  |H(𝟏1𝑤)|
2 d𝜎 ≤ 𝒯2𝑤(I).         (92) 

There holds 

𝒩 ≈ 𝒜2

1
2 + 𝒥 =:ℋ,                                (93) 

where 𝒜2 and 𝒥 are the best constants in the inequalities above. 

It is well known [130] that the 𝐴2 condition is necessary for the norm inequality, and the 

inequalities (92) are obviously necessary, thus the content of the Theorem is the sufficiency 

of the 𝐴2 and testing inequalities. We will carry out a 'global to local' reduction in the proof 

of sufficiency, with the analysis of the 'local' problem being carried out in part II of this 

series [108]. 

The Nazarov-Treil-Volberg conjecture has only been verified before under additional 

hypotheses on the pair of weights, hypotheses which are not necessary for the two weight 

inequality. The so-called pivotal condition of [130] is not necessary, as was proved in [111]. 

The pivotal condition is still an interesting condition: It is all that is needed to characterize 

the boundedness of the Hilbert transform, together with the maximal function in both 

directions. But, the boundedness of this triple of operators is decoupled in the two weight 

setting [125]. 

Our argument has these attributes. Certain degeneracies of the pair of weights must be 

addressed, the contribution of the innovative 2004 of Nazarov-Treil-Volberg [119], also see 

[130], which was further sharpened with the property of energy in [111], a crucial property 

of the Hilbert transform. This theme is further developed herein, with notion of functional 

energy. 
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The proof should proceed through the analysis of the bilinear form ⟨H(𝜎𝑓), 𝑔𝑤⟩, as one 

expects certain paraproducts to appear. Still, the paraproducts have no canonical form, 

suggesting that the proof be highly non-linear in 𝑓 and 𝑔. The non-linear point of view was 

initiated in [112]. A particular feature of our arguments is a repeated appeal to certain 

quasiorthogonality arguments, providing (many) simplifications over prior arguments. For 

instance, we never find ourselves constructing auxiliary measures, and verifying that they 

are Carleson, a frequent step in many related arguments. 

One can phrase a two weight inequality question for any operator T, a question that became 

apparent with the foundational of Muckenhoupt [113] on 𝐴𝑝 weights for the maximal 

function. Indeed, the case of Hardy's inequality was quickly resolved by Muckenhoupt 

[114]. The maximal function was resolved by one of us [127], as well as the fractional 

integrals, and, essential, Poisson integrals [128]. The latter established a result which closely 

paralleled the contemporaneous 𝑇1 theorem of David and Journé [104]. This connection, 

fundamental in nature, was not fully appreciated until the innovative work of Nazarov-Treil-

Volberg [116], [117], [118] in developing a non-homogeneous theory of singular integrals. 

The two weight problem for dyadic singular integrals was only resolved recently [120]. 

Partial information about the two weight problem for singular integrals [123] was basic to 

the resolution of the 𝐴2 conjecture [106], and several related results [107], [109], [123], 

[124]. The result is the first real variable characterization of a two weight inequality for a 

continuous singular integral. 

Interest in the two weight problem for the Hilbert transform arises from its natural 

occurrence in questions related to operator theory [122], [126], spectral theory [122], and 

model spaces [100], and analytic function spaces [71]. In operator theory Sarason posed the 

conjecture (See [105].) that the Hilbert transform would be bounded if the pair of weights 

satisfied the (full) Poisson 𝐴2 condition. This was disproved by Nazarov [115]. Advances 

on these questions have been linked to finer understanding of the two weight question, see 

for instance [121], [122], which build upon Nazarov's counterexample. 

We have stated the main theorem with 'hard' cut-offs in the truncation of the Hilbert 

transform. There are many possible variants in the choice of truncation, moreover the proof 

of sufficiency requires a different choice of truncation. 

Consider a truncation given by 

�̃�𝛼,𝛽(𝜎𝑓)(𝑥):= ∫  𝑓(𝑦)𝐾𝛼,𝛽(𝑦 − 𝑥)𝜎(𝑑𝑦) 

where K𝛼,𝛽(y) is chosen to minimize the technicalities associated with off-diagonal 

considerations. Specifically, set K𝛼,𝛽(0) = 0, and otherwise K𝛼,𝛽(y) is odd and for y > 0 

𝐾𝛼,𝛽(𝑦):=

{
 
 
 

 
 
 −

𝑦

𝛼2
+
2

𝛼
0 < 𝑦 < 𝛼,

1

𝑦
𝛼 ≤ 𝑦 ≤ 𝛽,

−
𝑦

𝛽2
+
2

𝛽
𝛽 < 𝑦 < 2𝛽,

0 2𝛽 ≤ 𝑦.

 

This is a C1 function on (0,2𝛽), and is Lipschitz, convex and monotone on (0,∞). 
We now argue that we can use these truncations in the proof of the sufficiency bound of our 

main theorem. 



108 

Proposition (2.3.2)[103]: If the pair of weights 𝜎, 𝑤 satisfy the 𝐴2 bound (91), then, one 

has the uniform norm estimate with the 'hard' truncations (90) if and only if one has uniform 

norm estimate for the 'smooth' truncations, 

sup
0<𝛼<𝛽

 ∥∥�̃�𝛼,𝛽(𝜎𝑓)∥∥𝑤
≤ 𝒩 ∥ 𝑓 ∥𝜎 . 

Indeed, |H𝛼,𝛽(𝜎𝑓) − H̃𝛼,𝛽(𝜎𝑓)| ≲ 𝐴𝛼(𝜎|𝑓|) + 𝐴𝛽(𝜎|𝑓|), where these last two operators 

are 'single-scale' averages, namely 

𝐴𝛼(𝜎𝜙)(𝑥) = 𝛼
−1∫  

(𝑥−3𝛼,𝑥+3𝛼)

𝜙(𝑦)𝜎(𝑑𝑦). 

But, the (simple) 𝐴2 bound is all that is needed to provide a uniform bound on the operators 

𝐴𝛼(𝜎𝜙). So the proposition follows. 

We use the truncations 𝐻‾𝛼,𝛽, and we suppress the tilde in the notation. The particular choice 

of truncation is motivated by this off-diagonal estimate on the kernels. 

Proposition (2.3.3)[103]: Suppose that 2|𝑥 − 𝑥′| < |𝑥 − 𝑦|, then 

K𝛼,𝛽(𝑦 − 𝑥
′) − K𝛼,𝛽(𝑦 − 𝑥) = 𝐶𝑥,𝑥′,𝑦

𝑥′ − 𝑥

(𝑦 − 𝑥)(𝑦 − 𝑥′)
, 

where  𝐶𝑥,𝑥′,𝑦 = 1 2𝛼 < |𝑥 − 𝑦| <
1

2
𝛽,                    (94) 

and is otherwise positive and never more than 4. 
Proof. The assumptions imply that 𝑦 − 𝑥′ and 𝑦 − 𝑥 have the same sign. Assume, without 

loss of generality that 0 < 𝑦 − 𝑥′ < 𝑦 − 𝑥. If 2𝛼 < |𝑥 − 𝑦| <
1

2
𝛽, it follows that 𝛼 <

|𝑥′ − 𝑦| < 𝛽, and so by the definition 

K𝛼,𝛽(y − x
′) − K𝛼,𝛽(y − x) =

1

y − 𝑥′
−

1

y − x
=

x′ − x

(y − x)(y − x′)
. 

And, in the general case, there holds |
d

dt
K𝛼,𝛽(t)| ≤ 4t

−2, so that 

0 ≤ 𝐾𝛼,𝛽(𝑦 − 𝑥
′) − 𝐾𝛼,𝛽(𝑦 − 𝑥) ≤ ∫  

𝑦−𝑥

𝑦−𝑥′

4

𝑡2
𝑑𝑡 = 4

𝑥′ − 𝑥

(𝑦 − 𝑥)(𝑦 − 𝑥′)
. 

A collection of intervals 𝒢 is a grid if for all G, G′ ∈ 𝒢, we have G ∩ G′ ∈ {∅, G, G′}. 
By a dyadic grid we mean a grid 𝒟 of intervals of ℝ such that for each interval I ∈ 𝒟, the 

subcollection {I′ ∈ 𝒟: |I′| = |I|} partitions ℝ, aside from endpoints of the intervals. In 

addition, the left and right halves of 𝐼, denoted by 𝐼±, are also in 𝒟. 

For 𝐼 ∈ 𝒟, the left and right halves 𝐼±are referred to as the children of 𝐼. We denote by 𝜋𝒟𝐼 
the unique interval in 𝒟 having I as a child, and we refer to 𝜋𝒟𝐼 as the 𝒟-parent of 𝐼. 
We will work with subsets ℱ ⊂ 𝒟. We say that I has ℱ-parent 𝜋ℱI = F if F ∈ ℱ is the 

minimal element of ℱ that contains I. 
Let 𝜎 be a weight on ℝ, one that does not assign positive mass to any endpoint of a 

dyadic grid 𝒟. If I ∈ 𝒟 is such that 𝜎 assigns non-zero weight to both children of I, the 

associated Haar function is 

h1
𝜎: = √

𝜎(I−)𝜎(I+)

𝜎(I)
(−

I−
𝜎(I−)

+
I+
𝜎(I+)

). 

In this definition, we are identifying an interval with its indicator function, and we will do 

so throughout the remainder. This is an 𝐿2(𝜎)-normalized function, and has 𝜎-integral zero. 
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For any dyadic interval 𝐼0, it holds that {𝜎(𝐼0)
−1/2𝐼0} ∪ {ℎ1

𝜎: 𝐼 ∈ 𝒟, 𝐼 ⊂ 𝐼0} is an orthogonal 

basis for 𝐿2(𝐼0, 𝜎). 

We will use the notations 𝑓(I) = ⟨f, h1
𝜎⟩𝜎, as well as 

Δ1
𝜎𝑓 = ⟨𝑓, ℎ1

𝜎⟩𝜎ℎ1
𝜎 = 𝐼+𝔼1+

𝜎 𝑓 + 𝐼−𝔼1−
𝜎 𝑓 − 𝐼𝔼1

𝜎𝑓. 

The second equality is the familiar martingale difference equality, and so we will refer to 

Δ1
𝜎𝑓 as a martingale difference. It implies the familiar telescoping identity 𝔼J

𝜎f =

∑1  : I2 J𝜎𝔼J
𝜎f. 

For any function the Haar support of 𝑓 is the collection {𝐼 ∈ 𝒟: 𝑓(𝐼) ≠ 0}. 
With a choice of dyadic grid 𝒟 understood, we say that 𝐽 ∈ 𝒟 is (𝜖, 𝑟)-good if and 

only if for all intervals 𝐼 ∈ 𝒟 with |𝐼| ≥ 2𝑟−1|𝐽|, the distance from 𝐽 to the boundary of 

either child of 𝐼 is at least |𝐽|𝜖|𝐼|1−𝜖. 
For 𝑓 ∈ 𝐿2(𝜎) we set 𝑃

good 

𝜎 𝑓 = ∑1  ∑ 1∈𝒟
(𝜖,r)−good

 Δ1
𝜎𝑓. The projection 𝑃

good 

𝑤 𝑔 is defined 

similarly. To make the two reductions below, one must make a random selection of grids, 

as is detailed in [111], [130]. The use of random dyadic grids has been a basic tool since the 

foundational work of [116], [117], [118]. Important elements of the suppressed construction 

of random grids are that 

(i) It suffices to consider a single dyadic grid 𝒟. 

(ii) For any fixed 0 < 𝜖 <
1

2
, we can choose integer r sufficiently large so that it suffices to 

consider 𝑓 such that 𝑓 = 𝑃
good 

𝜎 𝑓, and likewise for 𝑔 ∈ 𝐿2(𝑤). Namely, it suffices to estimate 

the constant below, for arbitrary dyadic grid 𝒟, 

|⟨H𝜎f, g⟩𝑤| ≤ 𝒩good ∥ f ∥𝜎∥ g ∥𝑤, 

where it is required that 𝑓 = 𝑃
good 

𝜎 ∈ 𝐿2(𝜎) and 𝑔 = 𝑃
good 

𝑤 ∈ 𝐿2(𝑤). 

That the functions are good is, at some moments, an essential property. 

A reduction, using randomized dyadic grids, allows one the extraordinarily useful reduction 

in the next Lemma. This is a well-known reduction, due to Nazarov-Treil-Volberg, 

explained in full detail in the current setting, in [119]. Below, ℋ is as in (93), the normalized 

sum of the 𝐴2 and testing constants. 

Lemma (2.3.4)[103]: For all sufficiently small €, and sufficiently large r, this holds. 

Suppose that for any dyadic grid 𝒟, such that no endpoint of an interval I ∈ 𝒟 is a point 

mass for 𝜎 or 𝑤,  1 there holds 

|⟨H𝜎Pgood 

𝜎 f, P
good 

𝑤  g⟩
𝑤
| ≲ ℋ ∥ f ∥𝜎∥ g ∥𝑤 .                   (95) 

Then, the same inequality holds without the projections 𝑃
good, 

𝜎 , and 𝑃
good 

𝑤 . 

Inequality (95) should be understood as an inequality, uniform over the class of smooth 

truncations of the Hilbert transform. But, we can suppress this in the notation without 

causing confusion. The bilinear form only needs to be controlled for (𝜖, 𝑟)-good functions 

𝑓 and 𝑔, goodness being defined with respect to a fixed dyadic grid. Suppressing the 

notation, we write 'good' for ' (𝜖, 𝑟)-good,' and it is always assumed that the dyadic grid 𝒟 

is fixed, and only good intervals are in the Haar support of 𝑓 and 𝑔, though is also suppressed 

in the notation. 

We reduce the analysis of the bilinear form in (95) to the local estimate, (96). It is 

sufficient to assume that 𝑓 and 𝑔 are supported on an interval 𝐼0; by trivial use of the interval 

testing condition, we can further assume that 𝑓 and 𝑔 are of integral zero in their respective 
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spaces. Thus, 𝑓 is in the linear span of (good) Haar functions ℎ1
𝜎 for 𝐼 ⊂ 𝐼0, and similarly 

for 𝑔, and 

⟨H𝜎f, g⟩𝑤 = ∑  

1, J:1, J⊂1∘

⟨H𝜎ΔI
𝜎f, ΔJ

𝑤 g⟩
𝑤
. 

The argument is independent of the choice of truncation that implicitly appears in the inner 

product above. 

The double sum is broken into different summands. Many of the resulting cases are 

elementary, and we summarize these estimates as follows. Define the bilinear form 

𝐵above (𝑓, 𝑔):= ∑  

𝐼:𝐼⊂𝐼0

∑  

𝐽:𝐽𝑒𝐼𝐽

𝔼𝐼𝐽
𝜎Δ𝐼

𝜎𝑓 ⋅ ⟨𝐻𝜎𝐼𝐽 , Δ𝐽
𝑤𝑔⟩

𝑤
 

where here and throughout, 𝐽 ⋐ 𝐼 means 𝐽 ⊂ 𝐼 and 2𝑟|𝐽| ≤ |𝐼|. In addition, the argument of 

the Hilbert transform, IJ, is the child of I that contains J, so that ΔI
𝜎f is constant on IJ. Define 

B  below (𝑓, 𝑔) in the dual fashion. 

Lemma (2.3.5)[103]: There holds, with the notation of (93), 

|⟨H𝜎f, g⟩𝑤 − B
above (f, g) − Bbelow (f, g)| ⩽ ℋ ∥ f ∥𝜎∥ g ∥𝑤. 

This is a common reduction in a proof of a Tl theorem, and in the current context, it only 

requires goodness of intervals and the 𝐴2 condition. For a proof, one can consult [119], 

[130]. The Lemma is specifically phrased and proved in this way in [112]. 

These definitions are needed to phrase the global to local reduction. The following definition 

depends upon the essential energy inequality (106). 

Definition (2.3.6)[103]: Given any interval 𝐹0, define ℱenergy 
(𝐹0) to be the maximal 

subintervals 𝐹 ⊆ 𝐹0 such that 

P(𝜎F0, F)
2E(𝑤, F)2𝑤( F) > 10C0ℋ

2𝜎(F), 
where 𝐸(𝑤, 𝐹) is defined in (105), and 𝐶0 is the constant in Proposition (2.3.13). There 

holds (∪ {𝐹 : 𝐹 ∈ ℱ(𝐹0)}) ≤
1

10
𝜎(𝐹0). 

Definition (2.3.7)[103]: Let I0 be an interval, and let 𝒮 be a collection of disjoint intervals 

contained in I0. A function f ∈ L0
2(I0, 𝜎) is said to be uniform (w.r.t.  ) if these conditions 

are met: 

(i) Each energy stopping interval 𝐹 ∈ ℱenergy 
(𝐼0) is contained in some 𝑆 ∈ 𝒮. 

(ii) The function 𝑓 is constant on each interval 𝑆 ∈ 𝒮. 

(iii) For any interval 𝐼 ⊂ 𝐼0 which is not contained in any 𝑆 ∈ 𝒮, 𝔼I
𝜎|𝑓| ≤ 1. 

We will say that g is weakly adapted to a function f uniform w.r.t. 𝒮, if J ⋐ S for some 

interval S ∈ 𝒮 implies that ⟨g, hJ
𝑤⟩
𝑤
= 0. We will also say that g is weakly adapted to 𝒮. 

The constant ℒ is defined as the best constant in the local estimate: 

|𝐵above (𝑓, 𝑔)| ≤ ℒ {𝜎(𝐼0)
1
2+∥ 𝑓 ∥𝜎} ∥ 𝑔 ∥𝑤 ,                  (96) 

where 𝑓, 𝑔 are of mean zero on their respective spaces, supported on an interval 𝐼0. 

Moreover, 𝑓 is uniform and 𝑔 is weakly adapted to 𝑓. The inequality above is homogeneous 

in 𝑔, but not 𝑓, since the term 𝜎(I0)
1/2 is motivated by the bounded averages property of f. 

A reduction of this type is a familiar aspect of many proofs of a T1 theorem, proved 

by exploiting standard off-diagonal estimates for Calderón-Zygmund kernels, but in the 

current setting, it is a much deeper fact, a consequence of the functional energy inequality. 

We make the following construction for an 𝑓 ∈ 𝐿2(𝐼0, 𝜎), of 𝜎-integral zero. Add 𝐼0 to ℱ, 
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and set 𝛼𝑓(𝐼
0): = 𝔼10

𝜎 |𝑓|. In the inductive stage, if F ∈ ℱ is minimal, add to ℱ those maximal 

descendants F′ of F such that F′ ∈ ℱenergy (F) or EF′
𝜎 |f| ≥ 10𝛼f(F). Then define 

𝛼𝑓(𝐹
′):= {

𝛼𝑓(𝐹) 𝔼F′
𝜎 |𝑓| < 2𝛼𝑓(𝐹)

𝔼F′
𝜎 |𝑓|  otherwise 

 

If there are no such intervals F′, the construction stops. We refer to ℱ and 𝛼𝑓(⋅) as 

CalderónZygmund stopping data for f, following the terminology of [112]. Their key 

properties are collected here. 

Lemma (2.3.8)[103]: For ℱ and 𝛼𝑓(⋅) as defined above, there holds 

(i) 𝐼0 is the maximal element of ℱ. 

(ii) For all I ∈ 𝒟, I ⊂ I0, we have 𝔼1
𝜎|f| ≤ 10𝛼f(𝜋ℱI). 

(iii) 𝛼f is monotonic: If F, F′ ∈ ℱ and F ⊂ F′ then 𝛼f(F) ≥ 𝛼f(F
′). 

(iv) The collection ℱ is 𝜎-Carleson in that 

∑  

F∈ℱ:F⊂S

 𝜎(F) ≤ 2𝜎(S),  S ∈ 𝒟.                               (97) 

(v) We have the inequality 

∥
∥
∥
∥
∑  

F∈ℱ

 𝛼f(F) ⋅ F
∥
∥
∥
∥

𝜎

≲∥ f ∥𝜎 .                                          (98) 

Proof. The first three properties are immediate from the construction. The fourth, the 𝜎-

Carleson property is seen this way. It suffices to check the property for 𝑆 ∈ ℱ. Now, the ℱ-

children can be in ℱenergy (𝑆), which satisfy 

∑  

𝐹′∈ℱ
energg 

(𝑆)

𝜎(𝐹′) ≤
1

10
𝜎(𝑆). 

Otherwise, note that by choice of 𝛼𝑓(⋅), we have 𝔼𝑆
𝜎|𝑓| ≤ 2𝛼𝑓(𝑆). These intervals 𝐹′, satisfy 

𝔼F,
𝜎 |f| ≥ 10𝛼f(S) ≥ 5𝔼S

𝜎|f|. These intervals satisfy the display above with 
1

10
 replaced by 

1

5
. 

Hence, (97) holds. 

For the final property, let 𝒢 ⊂ ℱ be the subset at which the stopping values change: If 𝐹 ∈
ℱ − 𝒢, and G is the 𝒢-parent of F, then 𝛼f(F) = 𝛼f(G). Set 

ΦG: = ∑  

F∈ℱ:𝜋𝒢F=G

F. 

Define 𝐺𝑘: = {Φ𝐺 ≥ 2
𝑘}, for 𝑘 = 0,1,…. The 𝜎-Carleson property implies integrability of 

all orders in 𝜎-measure of Φ𝐺. Using the third moment, we have 𝜎(𝐺𝑘) ≲ 2
−3𝑘𝜎(𝐺). Then, 

estimate 
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∥
∥
∥
∥
∑  

F∈ℱ

 𝛼f(F) ⋅ F
∥
∥
∥
∥

𝜎

2

 =
∥
∥
∥
∥
∥
∑  

G∈𝒢

 𝛼f(G)ΦG
∥
∥
∥
∥
∥

𝜎

2

 ≤
∥
∥
∥
∥
∥
∑  

∞

k=0

  (k + 1)+1−1∑ 

G∈𝒢

 𝛼f(G)2
k1Gk

∥
∥
∥
∥
∥

𝜎

2

 ≲
∗

∑ 

∞

k=0

  (k + 1)2

∥
∥
∥
∥
∥
∑  

G∈𝒢

 𝛼f(G)2
k1Gk(x)

∥
∥
∥
∥
∥

𝜎

2

 ≲ ∑  

∗∗

k=0

  (k + 1)2∑ 

G∈𝒢

 𝛼f(G)
222k𝜎(Gk)

 

≲∑  

𝐺∈𝒢

𝛼𝑓(𝐺)
2𝜎(𝐺) ≲∥ 𝑀𝑓 ∥𝜎

2≲∥ 𝑓 ∥𝜎
2 . 

Note that we have used Cauchy-Schwarz in k at the step marked by an ∗. In the step marked 

with ∗∗, for each point 𝑥, the non-zero summands are a (super)-geometric sequence of 

scalars, so the square can be moved inside the sum. Finally, we use the estimate on the 𝜎-

measure of 𝐺𝑘, and compare to the maximal function Mf to complete the estimate. 

We will use the notation 

𝑃𝐹
𝜎𝑓:= ∑  

𝐼∈𝒟:𝜋𝐹𝐼=𝐹

Δ𝐼
𝜎𝑓,  𝐹 ∈ ℱ. 

and similarly for QF
𝑤, but rather than use 𝜋ℱJ, in the definition, we use �̇�ℱJ, defined to be the 

minimal 𝐹 ∈ ℱ with 𝐽 ⋐ 𝐹. Without this alternate definition, some delicate case analysis 

would be forced upon us. The inequality (98) allows us to estimate 

∑ 

F∈ℱ

  {𝛼f(F)𝜎(F)
1/2+∥∥PF

𝜎f∥∥𝜎}∥∥𝑄F
𝑤𝑔∥∥𝑤 

≤ [∑  

F∈ℱ

  {𝛼f(F)
2𝜎(F) + ∥∥PF

𝜎f∥∥𝜎
2
} ×∑  

F∈ℱ

  ∥∥QF
𝑤𝑔∥∥𝑤

2
]

1
2

≲∥ f ∥𝜎∥ g ∥𝑤. (99) 

We will refer to this as the quasi-orthogonality argument, and we remark that it only requires 

orthogonality of the projections 𝑄𝐹
𝑤𝑔. It is very useful. 

Lemma (2.3.9)[103]: There holds 

|𝐵above (𝑓, 𝑔) − 𝐵ℱ
above 

(𝑓, 𝑔)| ≲ ℋ ∥ 𝑓 ∥𝜎∥ 𝑔 ∥𝑤 ,

 where 𝐵ℱ
above 

(𝑓, 𝑔):= ∑  

𝐹∈ℱ

 𝐵above (𝑃𝐹
𝜎𝑓, 𝑄𝐹

𝑤𝑔).
 

Proof. We apply functional energy. Observe that 𝑓 = ∑𝐹∈ℱ  𝑃𝐹
𝜎𝑓, and 

∑  

J:J⋐I0

ΔJ
𝑤 g = ∑  

F∈ℱ

QF
𝑤 g. 

From the definition of 𝐵above (𝑓, 𝑔), we can assume that 𝑔 equals the sum above. Therefore,  

𝐵above (𝑓, 𝑔) = ∑  

F′∈ℱ

 ∑  

F∈ℱ

 𝐵above (𝑃𝐹′
𝜎 , 𝑓, 𝑄𝐹

𝑤𝑔). 
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In the sum above, we can also add the restriction that 𝐹′ ∩ 𝐹 ≠ ∅, for otherwise 

𝐵above (𝑃F
𝜎 , 𝑓, 𝑄F

𝑤𝑔) = 0. For a pair of intervals 𝐽 ⋐ 𝐼𝐽, note that this implies that 𝐽 ⋐ 𝜋ℱ𝐼, 

that is 𝜋ℱ𝐽 ⊂ 𝜋ℱ𝐼. Therefore, we can add the restriction 𝐹 ⊂ 𝐹′. The case of 𝐹′ = 𝐹 is the 

definition of 𝐵ℱ
above 

(𝑓, 𝑔), so that it suffices to estimate 

∑  

F,F′∈ℱ
F′⊋F

 𝐵above (𝑃𝐹′
𝜎 , 𝑓, 𝑄𝐹

𝑊𝑔).                              (100) 

Observe that the functions 𝑔𝐹: = 𝑄𝐹
𝑤𝑔 are ℱ adapted in the sense of Definition (2.3.15), and 

by construction ℱ satisfies the Carleson measure condition (97). We take these steps to apply 

functional energy inequality. The argument of the Hilbert transform is IF, the child of I that 

contains 𝐹. Write 𝐼𝐹 = 𝐹 + (𝐼𝐹 − 𝐹), and use linearity of 𝐻𝜎. Note that by the standard 

martingale difference identity and the construction of stopping data, 

|∑  

𝐼:𝐼𝑍𝐹

 𝔼𝐼𝐹
𝜎 Δ𝐼

𝜎𝑓| ≲ 𝛼𝑓(𝐹),  𝐹 ∈ ℱ. 

Hence, invoking interval testing, 

|∑  

F∈ℱ

  ∑  

I:I⊋F

 𝔼IF
𝜎 ΔI

𝜎f ⋅ ⟨H𝜎F, gF⟩𝑤|  ≲ ∑  

F∈ℱ

 𝛼f(F)|⟨H𝜎F, gF⟩𝑤|

 ≲ ℋ∑  

F∈ℱ

 𝛼f(F)𝜎(F)
1
2∥∥ gF∥∥𝑤.

 

Quasi-orthogonality bounds this last expression. 

For the second expression, when the argument of the Hilbert transform is IF − F, first note 

that 

|∑  

I:I≥F

 𝔼IF
𝜎 ΔI

𝜎f ⋅ (IF − F)| ≲ 𝛷:= ∑  

F′∈ℱ

𝛼f(F
′) ⋅ F′,  F ∈ ℱ. 

Therefore, by the definition of ℱ-adapted, the monotonicity property (104) applies, and 

yields 

|∑  

𝐼:𝐼𝑍𝐹

 𝔼𝐼𝐹
𝜎 Δ𝐼

𝜎𝑓 ⋅ ⟨𝐻𝜎(𝐼𝐹 − 𝐹), 𝑔𝐹⟩𝑤| ≲ ∑  

𝐽∈𝒥∗(𝐹)

𝑃(Φ𝜎, 𝐽) ⟨
𝑥

|𝐽|
, 𝐽𝑔‾𝐹⟩

𝑤

,  𝐹 ∈ ℱ. 

Here, 𝒥∗( F) are the maximal good intervals J ⋐ F, and g̅F: = ∑J∈𝒥(F):J∈F  |ĝ(J)| ⋅ hJ
𝑤, so that 

every term has a positive inner product with 𝑥. The sum over 𝐹 ∈ ℱ of this last expression 

is controlled by functional energy, and the property that ∥ Φ ∥𝜎≲∥ 𝑓 ∥𝜎. This completes the 

bound for (100). 
Theorem (2.3.10)[103]: [Global to Local Reduction] There holds 

|𝐵above (𝑓, 𝑔)| ≲ {ℋ + ℒ} ∥ 𝑓 ∥𝜎∥ 𝑔 ∥𝑤. 

The same inequality holds for the dual form 𝐵𝑏𝑜𝑙𝑜𝑤 (𝑓, 𝑔). 

Proof. By Lemma (2.3.9), it remains to control B  ℱ
above 

(𝑓, 𝑔). Keeping the 

quasiorthogonality argument in mind, we see that appropriate control on the individual 

summands is enough to control it. For each F ∈ ℱ, let 𝒮F be the ℱ-children of F. Observe 

that the function 
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(C𝛼f(F))
−1
PF
𝜎 f                                               (101) 

is uniform on 𝐹 w.r.t. 𝒮𝐹, for appropriate absolute constant 𝐶. Moreover, the function 𝑄𝐹
𝑤𝑔 

does not have any interval 𝐽 in its Haar support strongly contained in an interval 𝑆 ∈ 𝒮F. 

That is, it is weakly adapted to the function in (101). Therefore, by assumption, 

|𝐵above (𝑃𝐹
𝜎𝑓, 𝑄𝐹

𝑤𝑔)| ≤ ℒ{𝛼𝐹(𝐹)𝜎(𝐹)
1/2 + ∥∥𝑃𝐹

𝜎𝑓∥∥𝜎}∥∥𝑄𝐹
𝑤𝑔∥∥𝑤. 

The sum over 𝐹 ∈ ℱ of the right hand side is bounded by the quasi-orthogonality argument 

of (99). 

Our Theorem is particular to the Hilbert transform, and so depends upon special 

properties of it. They largely extend from the fact that the derivative of −1/𝑦 is positive. 

The following Monotonicity Property for the Hilbert transform was observed in [112], and 

is basic to the analysis of the functional energy inequality. 

Lemma (2.3.11)[103]: Let I and J be two intervals which share an endpoint a, at which 

neither 𝜎 nor 𝑤 have a point mass. Then, 

sup0<𝛼<𝛽   |⟨H𝛼,𝛽𝜎I, J⟩𝑤
| ≲ 𝒜2

1
2√𝜎(I)𝑤( J).               (102) 

Proof. If |I| ≃ |J|, this inequality is the weak boundedness principle of [111]. So, let us 

assume that 10|I| < |J|. Then, it remains to bound 

|⟨H𝛼,𝛽𝜎I, (J ∖ 10I)⟩𝑤
|  ≤ ∑  

∞

𝑛=11

 
𝜎(I)𝑤( J ∩ ((n + 1)I ∖ nI))

n|I|

 ≤
𝜎(I)

|I|1/2
P(𝑤, I)1/2𝑤( J)1/2 ≲ 𝒜2

1/2
√𝜎(I)𝑤( J).

 

This depends upon obvious kernel bounds, and an application of Cauchy-Schwarz to derive 

the Poisson term above. 

Lemma (2.3.12)[103]: (Monotonicity Property). Let K ⊋ I be two intervals, and assume 

that 𝜎 does not have point masses at the end point of I. Then, for any function g ∈ L2(I, 𝑤), 
with 𝑤-integral zero, and 𝛽 > 2| K|, 

P(𝜎 ⋅ (K − I), I) ⟨
x

|I|
, g̅⟩

𝑤

≲ lim inf𝛼↓0  ⟨H𝛼,𝛽(𝜎(K − I)), g̅⟩𝑤
. (103) 

Here, 𝑔‾ = ∑J
′  |ĝ(J′)|hJ

𝑤 is a Haar multiplier applied to g. If J is a good interval, J ⋐ I, then, 

for function g ∈ L2( J, 𝑤), with 𝑤-integral zero, and signed measures 𝑣 and 𝜇 supported on 

K − I, with |𝑣| ≤ 𝜇, it holds that 

sup0<𝛼<𝛽   |⟨H𝛼,𝛽𝑣, g⟩𝑤
| ≲ P(𝜇, J) ⟨

𝑥

| J|
, 𝑔‾⟩

𝑤

.                (104) 

Proof. By linearity, it suffices to prove (103) in the case of g = hl
𝑤. The point is to separate 

the supports of the functions involved. Since I does not have a point mass at the end point 

of I, we have 𝜎(𝜆𝐼 ∖ 𝐼) ↓ 0 as 𝜆 ↓ 1. It follows that we can fix a 𝜆 > 1 sufficiently small so 

that P(𝜎(K − I), I) ≃ P(𝜎(K − 𝜆I), I), and one more condition that we will come back to. 

Then, for 0 < 𝛼 <
1

2
(𝜆 − 1)|𝐼|, we estimate as below, where 𝑥1 is the center of 𝐼, 

⟨H𝛼,𝛽(𝜎(K − 𝜆I)), hI
𝑤⟩
𝑤
= ∫  

K−𝜆I

∫ 
I

{K𝛼,𝛽(y − x) − K𝛼,𝛽(y − xI)}hI
𝑤(x)𝑤( d𝑥)𝜎(dy) 
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 = ∫  
K−𝜆I

 ∫ 
I

 
x − xI

(y − x)(y − xJ)
hI
𝑤(x)𝑤( dx)𝜎(dy)

 ≳ P(𝜎(K − I), I) ⟨
𝑥 − xI
|I|

, hI
𝑤⟩
𝑤

∗

.

 

We have subtracted the term, since ℎ1
𝑤 has integral zero, then applied (94) with 𝐶𝑥,𝑥𝐽,𝑦 = 1, 

as follows from our choices of 𝛼 and 𝛽. Then, note that (𝑥 − 𝑥𝐽)ℎ1
𝑤 ≥ 0, so that we can pull 

out the Poisson term. The last line follows by our selection of 𝜆 sufficiently close to 1 . Then, 

the last condition needed, is to select 𝜆 sufficiently close to one that, in view of (102), 

sup
𝛼,𝛽
  |⟨H𝛼,𝛽(𝜆I ∖ I), hI

𝑤⟩
𝑤
| ≲ 𝒜2

1/2
√𝜎(𝜆I ∖ I) < cP(𝜎(K − I), I) ⟨

𝑥 − 𝜒I
|I|

, hI
𝑤⟩
𝑤

. 

In the last line, 𝑐 > 0 is an absolute constant. This completes the proof of (103). 

Turn to (104). The estimate (94) applies. 

∣ ⟨H𝛼,𝛽𝑣, 𝑔⟩𝑤
∥  = |∫  

K−I

 ∫ 
J

  {K𝛼,𝛽(𝑦 − 𝑥) − K𝛼,𝛽(𝑦 − 𝑥J)}ℎJ
𝑤(𝑥)𝑤(𝑑𝑥)𝑣(𝑑𝑦)|

 = |∫  
K−I

 ∫ 
J

 C𝑥,xJ,𝑦
(𝑥 − 𝑥J)

(𝑦 − 𝑥)(𝑦 − 𝑥J)
hJ
𝑤(𝑥)𝑤(𝑑𝑥)𝑣(𝑑𝑦)|

 

But recall that 0 ≤ 𝐶𝑥,𝑥1,𝑦 ≤ 4, and equals one for 𝛼 sufficiently small. Moreover, 𝑦 − 𝑥 

and 𝑦 − 𝑥𝐽 have the same sign, and (𝑥 − 𝑥𝐽)ℎ𝐽
𝑤(𝑥) ≥ 0. So an upper bound is obtained by 

passing from 𝑣 to 𝜇. 

|⟨H𝛼,𝛽𝑣, 𝑔⟩𝑤
|  ≤ ∫  

K−I

 ∫ 
J

 
(x − xJ)

(y − x)(y − xJ)
hJ
𝑤(x)𝑤(dx)𝜇(dy)

 ≃ P(𝜇, J) ⟨
x

|J|
, hJ
𝑤⟩
𝑤

.

 

The concept of energy is fundamental to the subject. For interval I, define 

E(𝑤, I)2: = 𝔼I
𝑤(dx)

𝔼I
𝑤(dx′) (𝑥 − 𝑥

′)2

|I|2
=

2

𝑤(I)
∑ 

J⊂I

  ⟨
𝑥

|I|
, hJ
𝑤⟩
𝑤

2

. (105) 

Now, consider the energy constant, the smallest constant, the smallest constant ℰ such that 

this condition holds, as  presented or in its dual formulation. For all dyadic intervals 𝐼0, all 

partitions 𝒫 of 𝐼0 into dyadic intervals, it holds that 

∑ 

I∈𝒫

 P(𝜎I0, I)
2E(𝑤, I)2𝑤(I) ≤ 𝜀2𝜎(I0).                (106) 

This was shown in [111] 

Proposition (2.3.13)[103]: For a finite constant C0, 𝜀
2 ≤ C0{𝒜2

1/2
+ 𝒯}

2
= C0ℋ

2. 

We will always estimate ℰ by ℋ. The proof is recalled here. 

Proof. It suffices to consider the case of finite partitions 𝒫 of I. We first prove a version of 

the energy inequality with 'holes' in the argument of the Poisson. It follows from (103) that 

we can fix 0 < 𝛼 < 𝛽 such that 

P(𝜎(I0 − I), I)
2E(𝑤, I)2𝑤(I) ≲ ∥∥H𝛼,𝛽(𝜎(I0 − I))∥∥L2(I,𝜎)

2
,  I ∈ 𝒫. 

Then, using linearity and interval testing, we have 
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 ∑  

I∈𝒫

  ∥∥H𝛼,𝛽(𝜎 ⋅ I0)∥∥L2(I,𝜎)
2

≲ ∥∥H𝛼,𝛽(𝜎 ⋅ I0)∥∥L2(I,𝜎)
2

≲ ℋ2𝜎(I0),

 and ∑ 

I∈𝒫

  ∥∥H𝛼,𝛽(𝜎 ⋅ I)∥∥L2(I,𝜎)
2

≲ ℋ2∑ 

I∈𝒫

 𝜎(I) ≲ ℋ2𝜎(I0).
 

Then, by the 𝐴2 bound, we have 𝑃(𝜎 ⋅ 𝐼, 𝐼)2𝐸(𝑤, 𝐼)2𝑤(𝐼) ≲ 𝜎(𝐼), which we can sum over 

the partition. This completes the proof. 

One should keep in mind that the concept of energy is related to the tails of the Hilbert 

transform. The energy inequality, and its multi-scale extension to the functional energy 

inequality, show that the control of the tails is very subtle in this problem. 

We also need the following elementary Poisson estimate from [130]; used occasionally in 

this argument, it is crucial to the proof of Lemma (2.3.5). 

Lemma (2.3.14)[103]: Suppose that J ⋐ I ⊂ I0, and that J is good. Then 

|J|2𝜖−1P(𝜎(I0 − I), J) ≲ |I|
2𝜖−1P(𝜎(I0 − I), I).                   (107) 

Proof. We have dist (J, I0 − I) ≥ |J|
𝜖|I|1−𝜖, so that for any 𝑥 ∈ I0 − I, we have 

|𝐽|2𝜖

(|𝐽| + dist (𝑥, 𝐽))2
≲

|𝐼|2𝜖

(|𝐼| + dist (𝑥, 𝐼))2
. 

Integrating this last expression, it follows that 

|𝐽|2𝜖−1𝑃(𝜎 ⋅ (𝐼0 − 𝐼), 𝐽)  = |𝐽|2𝜖−1∫  
𝐼0−𝐼

 
|𝐽|

(|𝐽| + dist (𝑥, 𝐽))2
𝑑𝜎

 ≲ |𝐼|2𝜖∫  
𝐼0−1

 
1

(|𝐽| + dist (𝑥, 𝐽))2
𝑑𝜎.

 

And this proves the inequality. 

We state an important multi-scale extension of the energy inequality (106). 

Definition (2.3.15)[103]: Let ℱ be a collection of dyadic intervals. A collection of (good) 

functions {𝑔𝐹}𝐹∈ℱ in 𝐿2(𝑤) is said to be ℱ-adapted if for all 𝐹 ∈ ℱ, the Haar support of the 

function 𝑔𝐹 is contained in {J: �̇�ℱJ = F}. 
Definition (2.3.16)[103]: Let ℱ be the smallest constant in the inequality below, or its dual 

form. The inequality holds for all non-negative ℎ ∈ 𝐿2(𝜎), all 𝜎-Carleson collections ℱ, and 

all ℱ-adapted collections {𝑔𝐹}𝐹∈ℱ : 

∑ 

F∈ℱ

∑  

J∗∈𝒥∗( F)

P(ℎ𝜎, J∗) |⟨
𝑥

| J∗|
, 𝑔FJ

∗⟩
𝑤

| ≤ ℱ ∥ h ∥𝜎 [∑  

F∈ℱ

  ∥∥𝑔F∥∥𝑤
2 ]

1/2

. 

Here 𝒥∗(𝐹) consists of the maximal good intervals 𝐽 ⋐ 𝐹. Note that the estimate is universal 

in ℎ and ℱ, separately. 

This constant was identified in [112], and is herein shown to be necessary from the 𝐴2 and 

interval testing inequalities. Recall the definition of ℋ in (93). 
Theorem (2.3.17)[103]: Assume that ℱ satisfies (97), then, ℱ ≲ ℋ. 

The first step in the proof is the domination of the constant ℱ by the best constant in a certain 

two weight inequality for the Poisson operator, with the weights being determined by 𝑤 and 

𝜎 in a particular way. This is the decisive step, since there is a two weight inequality for the 

Poisson operator proved by It reduces the full norm inequality to simpler testing conditions, 

which are in turn controlled by the 𝐴2 and Hilbert transform testing conditions. 

Consider the weight 
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𝜇 ≡ ∑  

F∈ℱ

∑  

J∈𝒥∗( F)
∥
∥
∥
PF,J
𝑤
𝑥

| J|∥
∥
∥

𝑤

2

⋅ 𝛿(xJ|J|). 

Here, 𝑃𝐹,𝐽
𝑤 : = ∑𝐽′:𝐽′⊂𝐽,  𝜋𝐹𝐽 = 𝐹𝐽′

𝑤. We can replace 𝑥 by 𝑥 − 𝑐 for any choice of 𝑐 we wish; 

the projection is unchanged. And 𝛿𝑞 denotes a Dirac unit mass at a point 𝑞 in the upper half 

plane ℝ+
2 . We prove the two-weight inequality for the Poisson integral: 

∥ ℙ(ℎ𝜎) ∥𝐿2(ℝ+2 ,𝜇)≲ ℋ ∥ ℎ ∥𝜎 , 

for all nonnegative ℎ. Above, ℙ(⋅) denotes the Poisson extension operator to the upper half-

plane, so that in particular 

∥ ℙ(ℎ𝜎) ∥L2(ℝ+2 ,𝜇)
2 = ∑  

F∈ℱ

∑  

J∈𝒥∗( F)

ℙ(ℎ𝜎)(𝑥J, |J|)
2

∥
∥
∥
PF,J
𝑤
𝑥

| J|∥
∥
∥

𝑤

2

, 

where 𝑥𝐽 is the center of the interval 𝐽. The proof of Theorem (2.3.17) follows by duality. 

Phrasing things in this way brings a significant advantage: The characterization of the 

twoweight inequality for the Poisson operator, [128], reduces the full norm inequality above 

to these testing inequalities. For any dyadic interval 𝐼 ∈ 𝒟 

∫  
ℝ

 ℙ(𝜎 ⋅ I)2 d𝜇(𝑥, t) ≲ ℋ2𝜎(I),                              (108) 

∫  
ℝ

 ℙ∗(𝑡Î𝜇)2𝜎(𝑑𝑥) ≲ 𝒜2∫ 
𝐼

  𝑡2𝑑𝜇(𝑥, 𝑡),                            (109) 

where 𝐼 = 𝐼 × [0, |𝐼|] is the box over 𝐼 in the upper half-plane, and ℙ∗ is the dual Poisson 

operator 

ℙ∗(𝑡Î𝜇) = ∫ 
Î

t2

t2 + |𝑥 − 𝑦|2
𝜇(𝑑𝑦, 𝑑𝑡). 

One should keep in mind that the intervals I are restricted to be in our fixed dyadic grid, a 

reduction allowed as the integrations on the left in (108) and (109) are done over the entire 

space, either ℝ+
2  or ℝ. (Goodness of the intervals I above is not needed.) This reduction is 

critical to the analysis below. 

We concerned with a part of inequality (108): Restrict the integral on the left to the 

set 𝐼 ⊂ ℝ+
2 . 

∫ 
𝐼

ℙ(𝜎 ⋅ 𝐼)2𝑑𝜇(𝑥, 𝑡) ≲ ℋ2𝜎(𝐼). 

Since (𝑥𝐽, |𝐽|) ∈ 𝐼 if and only if 𝐽 ⊂ 𝐼, we have 

∫ 
𝐼

ℙ(𝜎 ⋅ I)(𝑥, 𝑡)2 d𝜇(𝑥, 𝑡) = ∑  

F∈ℱ

∑  

J∈𝒥∗( F):J⊂I

ℙ(𝜎 ⋅ I)(𝑥J, |J|)
2

∥
∥
∥
𝑃F,J
𝑤
𝑥

| J|∥
∥
∥

𝑤

2

 

For each 𝐽, 

∥
∥
∥
PF,J
𝑤
𝑥

| J|∥
∥
∥

𝑤

2

≤ ∫ 
J

  |
𝑥 − 𝔼J

𝑤𝑥

| J|
|

2

𝑑𝑤(𝑥) = 2E(𝑤, J)2𝑤( J) ≤ 2𝑤( J). (110) 

Let ℱ0 be the maximal 𝐹 ∈ ℱ which are strictly contained in 𝐼, and let 𝒥♯ be those dyadic 𝐽 

such that (𝑥𝐽, |𝐽|) is in the support of 𝜇, but has no parent in ℱ0. These intervals are 

necessarily disjoint. Observe that by (110) and the energy inequality, 

∑ 

J∈𝒥♯

 ℙ(𝜎F)(xJ, |J|)
2
𝜇(xJ, |J|) ≲ J ∈ 𝒥

♯  P(𝜎 ⋅ F, J)2E(𝑤, J)2𝑤( J) ≲ ℋ2𝜎(F).   (111) 

We claim that 
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∑  

F∈ℱ0

 ∫ 
F̂

 ℙ(𝜎(I ∖ F))(x, t)2 d𝜇(x, t) ≲ ℋ𝜎(I).                     (112) 

This is sufficient, since 

∫ 
Î

 ℙ(𝜎 ⋅ I)(x, t)2 d𝜇(x, t)  ≲ LHS (111) + LHS (112) + ∑  

F∈ℱ0

 ∫  
�̂�

 ℙ(𝜎 ⋅ F)(x, t)2 d𝜇(x, t)

 ≲ ℋ2𝜎(I) + + ∑  

F∈ℱ0

 ∫  
�̂�

 ℙ(𝜎 ⋅ F)(x, t)2 d𝜇(x, t).
 

The individual terms in the last sum are set up for a recursive application of this inequality. 

Due to the Carleson condition (97), this recursion will finish the proof. 

It remains to prove (112), which is another instance of the energy inequality. For an interval 

𝐹0 ∈ ℱ0, and 𝐹 ∈ ℱ strictly contained in 𝐹0, each interval 𝐽 ∈ 𝒥∗(𝐹) is contained in some 

𝐽0 ∈ 𝒥
∗(𝐹0). Then, the intervals 𝐹 ∈ ℱ are not good, but 𝐽 and 𝐽0 are good, hence 

ℙ(𝜎(𝐼 ∖ 𝐹0))(𝑥𝐽 , |𝐽|)
2
𝜇(𝑥𝐽, |𝐽|)  = [∫  

𝐼∖𝐹0

 
|𝐽|

|𝐽|2 + |𝑥 − 𝑥𝐽|
2]

2

∥
∥
∥
𝑃𝐹,𝐽
𝑤
𝑥

|𝐽|∥
∥
∥

𝑤

2

 = [∫  
𝐼∖𝐹0

 
1

|𝐽|2 + |𝑥 − 𝑥𝐽|
2]

2

∥∥𝑃𝐹,𝐽
𝑤 𝑥∥∥

𝑤

2

 ≲ [∫  
𝐼∖𝐹0

 
|𝐽0|

|𝐽0|
2 + |𝑥 − 𝑥𝐽0|

2]

2

∥
∥
∥
𝑃𝐹,𝐽
𝑤
𝑥

|𝐽0|∥
∥
∥

𝑤

2

.

 

This follows from goodness: For 𝑥 ∈ 𝐼 ∖ 𝐹0, 

|J|2 + |𝑥 − 𝑥𝐽|
2
≥ |𝑥 − 𝑥𝐽|

2
≥ |𝑥 − 𝑥J0|

2
≥ |J0|

𝜖|F0|
1−𝜖 . 

But then, we can add the projections 𝑃𝐹,𝐽
𝑤 , due to orthogonality, and use (110) again to see 

that 

∑  
F∈ℱ
F⊂F0

  ∑  

J∈𝒥∗( F)
𝐽⊂𝐽0

 ℙ(𝜎(I ∖ F0))(xJ, |J|)
2
𝜇(xJ, |J|) 

≲ ℙ(𝜎 ⋅ I)(xJ0 , | J0|)
2
∑  
F∈ℱ
F⊂F0

  ∑  

J∈𝒥∗( F)
𝐽⊂𝐽0

 
∥
∥
∥
PF,J
𝑤
𝑥

| J0|∥
∥
∥

𝑤

2

 

≲ ℙ(𝜎 ⋅ I)(𝜒J0 , | J0|)
2
E(𝑤,  J0)

2𝑤( J0). 

The sum over 𝐹0 ∈ ℱ0, and 𝐽0 ∈ 𝒥
∗(𝐹0) is controlled by the energy inequality. This 

completes the proof of (112). 
Now we turn to proving the following estimate for the global part of the first testing 

condition (108): 

∫  
ℝ+
2−Î

ℙ(𝜎 ⋅ I)2 d𝜇 ≲ 𝒜2𝜎(I). 

Decompose the integral on the left into four terms: With FJ the unique F ∈ ℱ with J ∈

𝒥∗( F), and using (110), 
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∫  
ℝ+
2−Î

 ℙ(𝜎 ⋅ I)2 d𝜇 = ∑  

J:(xJ,J,∣)∈ℝ+
2−Î

 ℙ(𝜎 ⋅ I)(xJ, |J|)
2

∥
∥
∥
𝑃FJ,J
𝑤
𝑥

| J|∥
∥
∥

𝑤

2

≤ { ∑  

J:I∩3I =∅
|J|≤|I|

 + ∑  

J:J⊂3I−I

 + ∑  

J:J∩I =∅
I|>|I∣

 +∑  

J:J≥I

 } ℙ(𝜎 ⋅ I)(xJ, |J|)
2
𝑤( J) 

= 𝐴 + 𝐵 + 𝐶 + 𝐷. 
Decompose term 𝐴 according to the length of 𝐽 and its distance from I, to obtain: 

𝐴  ≲ ∑  

∞

𝑛=0

 ∑  

∞

𝑘=1

  𝐽𝐽 ∑  

𝐽⊂3𝑘+1𝐼−3𝑘𝐼

 (
2−𝑛|𝐼|

dist (𝐽, 𝐼)2
𝜎(𝐼))

2

𝑤(𝐽)

 ≲ ∑  

∞

𝑛=0

 2−2𝑛∑ 

∞

𝑘=1

 
|𝐼|2𝜎(𝐼)𝑤(3𝑘+1𝐼 − 3𝑘𝐼)

|3𝑘𝐼|4
𝜎(𝐼)

 ≲ ∑  

∞

𝑛=0

 2−2𝑛∑ 

∞

𝑘=1

 3−2𝑘 {
𝜎(3𝑘+1𝐼)𝑤(3𝑘+1𝐼)

|3𝑘𝐼|2
}𝜎(𝐼) ≲ 𝒜2𝜎(𝐼).

 

Decompose term B according to the length of J and then use the Poisson inequality (107), 

available to use because of goodness of intervals J. We then obtain 

𝐵  ≲ ∑  

∞

𝑛=0

  ∑  
𝐽:𝐽⊂3𝐼−𝐼
|𝐽|=2−𝑛‖

 2−𝑛(2−4𝜖)
𝜎(𝐼)2

|𝐼|2
𝑤(𝐽)

 ≲ ∑  

∞

𝑛=0

 2−𝑛(2−4𝜖)
𝜎(3𝐼)𝑤(3𝐼)

|3𝐼|2
𝜎(𝐼) ≲ 𝒜2𝜎(𝐼).

 

For term 𝐶, for 𝑛 = 1,2, …, set 𝒥𝑛 to be those good dyadic intervals 𝐽 with |𝐽| > |𝐼|, 𝐽 ∩ 𝐼 =
∅, and 

(𝑛 − 1)|𝐽| ≤ dist (𝐼, 𝐽) < 𝑛|𝐽|. 
These intervals have bounded overlaps. Indeed, suppose that 𝐽1 ⊊ ⋯ ⊊ 𝐽𝑟 are all members 

for 𝒥1. Then, by goodness, 

dist (𝐽1, 𝐼)  ≥ dist (𝐽𝑟 , 𝐼) ≥ (𝑛 − 1)2
𝑟|𝐽1| + dist (𝐽1, ∂𝐽𝑟𝐼

 ≥ {(𝑛 − 1)2𝑟 + 2𝑟(1−𝜖)}|𝐽1|.
 

which is a contradiction to membership in 𝒥𝑛. Restricting the sum to intervals in 𝒥𝔫, there 

holds 

∑  

J∈𝒥n

 ℙ(𝜎 ⋅ I)(xJ, |J|)
2
𝑤( J)  ≲ 𝜎(I)2∑  

J∈𝒥n

 
𝑤( J)

n4| J|2

 ≲
𝜎(I)2

|I|
∑  

J∈𝒥n

 
𝑤( J) ⋅ |I|

n4| J|2

 ≲
𝜎(I)

n2
⋅
𝜎(I)

|I|
P(𝑤, I) ≲ 𝒜2

𝜎(I)

n2
.

 

And this is summable in 𝑛 ∈ ℕ. 

In the last term 𝐷, all the intervals 𝐽 contain 𝐼. Note that 
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∑  

J:J⊇I

 ℙ(𝜎 ⋅ I)(xJ, |J|)
2
𝑤( J)  ≲ 𝜎(I)2∑  

J:J⊇I

 
𝑤( J)

|J|2

 ≲ 𝜎(I) ⋅
𝜎(I)

|I|
∑  

J:JI

 
𝑤(I) ⋅ |I|

|J|2

 ≲ 𝜎(I) ⋅
𝜎(I)

|I|
P(𝑤, I) ≲ 𝒜2𝜎(I).

 

We are considering (109). Note that there is a power of 𝑡 on both sides, and that the 

expressions on the two sides of this inequality are 

 ∫ 
𝐼

  𝑡2𝜇(𝑑𝑥, 𝑑𝑡) = ∑  

F∈ℱ

  ∑  

J∈𝒥∗(F)
𝐽⊂𝐼

  ∥∥𝑃F,J
𝑤𝑥∥∥

𝑤

2

ℙ∗(tÎ𝜇)(𝑥) = ∑  

F∈ℱ

  ∑  

J∈𝒥∗(F)
𝐽⊂𝐼

 
∥∥𝑃F,J

𝑤𝑥∥∥
𝑤

2

| J|2 + |𝑥 − 𝑥J|
2 .

 

We are to dominate ∥∥ℙ∗(𝑡Î𝜇)∥∥𝜎
2

 by the first expression above. The squared norm will be the 

sum over integers 𝑠 of 𝑇𝑠 below, in which the relative lengths of 𝐽 and 𝐽′ are fixed by 𝑠. 
Suppressing the requirement that 𝐽, 𝐽′ ⊂ 𝐼, 

Ts: = ∑  

F∈ℱ

  ∑  

J∈𝒥∗(F)
 

  ∑  

F′∈ℱ

  ∑  

J′∈𝒥∗( F)

|J′|=2−s|J|

 ∫
∥∥PF,J

𝑤𝑥∥∥
𝑤

2

| J|2 + |𝑥 − 𝑥J|
2 ⋅

∥∥PF′,J′
𝑤 𝑥∥∥

𝑤

2

| J′|2 + |𝑥 − 𝑥J′|
2  d𝜎 

≤ 𝑀s∑ 

F∈ℱ

  ∑  

J∈𝒥∗(F)
 

∥∥𝑃F,J
𝑤𝑥∥∥

𝑤

2
 

where 𝑀𝑠 ≡ sup𝐹∈ℱ  sup𝐽∈𝒥∗(𝐹) ∑  

F′∈ℱ

  ∑  

J′∈𝒥∗( F)

|J′|=2−s|J|

 ∫  
1

|𝐽|2 + |𝑥 − 𝑥𝐽|
2 ⋅

𝑤(𝐽′) ⋅ |𝐽′|2

|𝐽′|2 + |𝑥 − 𝑥𝐽′|
2 𝑑𝜎. 

The estimate (110) has been used in the definition of 𝑀s. We claim the term 𝑀s is at most a 

constant times 𝒜22
−s, and it is here that the full Poisson 𝐴2 condition is used. 

Fix 𝐽, and let 𝑛 ∈ ℕ be the integer chosen so that (𝑛 − 1)|𝐽| ≤ dist (𝐽, 𝐽′) ≤ 𝑛|𝐽|. Estimate 

the integral in the definition of 𝐌s by 

𝑤( J′)

|J′|
∫  

|J′|2

| J|2 + |𝑥 − 𝑥J|
2 ⋅

|J′|

|J′|2 + |𝑥 − 𝑥J′|
2 𝑑𝜎 ≲ 𝒜22

−2𝑠. 

This estimate is adequate for 𝑛 = 0,1,2. Then estimate the sum over 𝐽′ as follows. 

∑  

F′∈ℱ

∑  

J′∈𝒥∗( F′):|J′|=2−𝑠| J|

(n−1)|J|≤dist(J,J′)≤n|J|

2−2 s ≲ 2−s. 

because the relative lengths of 𝐽 and 𝐽′ are fixed, and each 𝐽′ is in at most one 𝒥∗(𝐹). 

For the case of 𝑛 ≥ 3, restrict 𝐽′ to be to the right of 𝐽, and let 𝑡𝑛 =
𝑥1+𝑥1

2
, so that 

|𝑥J − tn|, |𝑥J′ − tn| ≃ n|J|. First, estimate the integral in the definition of Ms on the interval 

[𝑡𝑛, ∞). 
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𝑤(𝐽′)

|𝐽′|
∫  
∞

𝑡𝑛

|𝐽′|2

|𝐽|2 + |𝑥 − 𝑥𝐽|
2 ⋅

|𝐽′|

|𝐽′|2 + |𝑥 − 𝑥𝐽′|
2 𝑑𝜎 ≲ 𝒜2

2−2𝑠

𝑛2
 

Then estimate the sum over J′ as follows. 

∑  

F′∈ℱ

∑  

J′∈𝒥𝑒( F′):|J′|=2−s|J|

(n−1)|J|≤dist(J,J′)≤n|J|

2−2 s

n2
≲
2−s

n2
. 

This is clearly summable in n ≥ 4. 

Now, estimate on the integral on the interval (−∞, tn), 
𝑤(𝐽′)

|𝐽′|
∫  
𝑡𝑛

−∞

 
|𝐽′|2

|𝐽|2 + |𝑥 − 𝑥𝐽|
2 ⋅

|𝐽′|

|𝐽′|2 + |𝑥 − 𝑥𝐽′|
2 𝑑𝜎

 = 2−2𝑠
𝑤(𝐽′)

|𝐽|
∫  
𝑡𝑛

−∞

 
|𝐽|

|𝐽|2 + |𝑥 − 𝑥𝐽|
2 ⋅

|𝐽|2

|𝐽′|2 + |𝑥 − 𝑥𝐽′|
2 𝑑𝜎

 ≲ 2−2𝑠
𝑤(𝐽′)

𝑛2|𝐽|
𝑃(𝜎, 𝐽).

 

Drop the term with the geometric decay in 𝑠, and sum over 𝑛 and 𝐽′ to see that 

∑ 

∞

n=4

∑  

F′∈ℱ

∑  

J′∈𝒥𝑐( F′):|J′|=2−𝑠| J|

(n−1)|J|≤dis(J,J′)≤n|J|

𝑤( J′)

n2| J|
P(𝜎, I) ≲ P(𝑤, J)P(𝜎, J) ≲ 𝒜2. 

Here, we have appealed to the full Poisson 𝐴2 condition. This completes the control of the 

dual Poisson testing condition. 
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Chapter 3 

Toeplitz Lemma and Regular Operator Mappings 

 

We show that the mean convergence versions of the Toeplitz lemma, Cesàro mean 

convergence theorem, and the Kronecker lemma are presented and a general mean 

convergence theorem for a normed sum of independent random variables is established. 

Some additional problems are posed. We propose different types of updating conditions that 

seems natural in many applications and prove that each of these conditions, together with a 

few other natural axioms, uniquely defines the geometric mean for any number of operator 

variables. The means defined in this way are given by explicit formulas and are 

computationally tractable. We introduce two classes of complete moment convergence, 

which are stronger versions of mean convergence and consider the Toeplitz lemma, the 

Cesàro mean convergence theorem, and the Kronecker lemma under these two classes of 

complete moment convergence. 

Section (3.1): Convergence in Probability and Mean Convergence 

The Toeplitz lemma is a result in mathematical analysis which is a useful tool for 

proving a wide variety of probability limit theorems. It is stated as follows and its proof may 

be found in [138]. 

Theorem (3.1.1)[131]: (Toeplitz Lemma). Let {𝑎𝑛𝑘, 1 ≤ 𝑘 ≤ 𝑘𝑛, 𝑛 ≥ 1} be a double array 

of real numbers such that lim𝑛→∞  𝑎𝑛𝑘 = 0 for all 𝑘 ≥ 1 and sup𝑛≥1  ∑𝑘=1
𝑘𝑛  |𝑎𝑛𝑘| < ∞. Let 

{𝑥𝑛, 𝑛 ≥ 1} be a sequence of real numbers. 

(i) If lim𝑛→∞  𝑥𝑛 = 0, then lim𝑛→∞  ∑𝑘=1
𝑘𝑛  𝑎𝑛𝑘𝑥𝑘 = 0. 

(ii) If lim𝑛→∞  𝑥𝑛 = 𝑥 finite and lim𝑛→∞  ∑𝑘=1
𝑘𝑛  𝑎𝑛𝑘 = 1, then lim𝑛→∞  ∑𝑘=1

𝑘𝑛  𝑎𝑛𝑘𝑥𝑘 = 𝑥. 

The Toeplitz lemma contains, as corollaries, the following well-known and important 

results. 

Corollary (3.1.2)[131]: (Cesarro Mean Convergence Theorem). Let {𝑥𝑛, 𝑛 ≥ 1} be a 

sequence of real numbers and let 𝑥‾𝑛 = ∑𝑘=1
𝑛  𝑥𝑘/𝑛, 𝑛 ≥ 1. If lim𝑛→∞  𝑥𝑛 = 𝑥 finite, then 

lim𝑛→∞  𝑥‾𝑛 = 𝑥. 

Corollary (3.1.3)[131]: (Kronecker Lemma). Let {𝑥𝑛, 𝑛 ≥ 1} and {𝑏𝑛 , 𝑛 ≥ 1} be sequences 

of real numbers with 0 < 𝑏𝑛 ↑ ∞. If the series ∑𝑘=1
𝑛  𝑥𝑘/𝑏𝑘 converges, then lim𝑛→∞  ∑𝑘=1

𝑛  𝑥𝑘/
𝑏𝑛 = 0. 

The proof of the Cesaro mean convergence theorem follows immediately from the Toeplitz 

lemma (𝑖𝑖) by taking 𝑘𝑛 = 𝑛, 𝑛 ≥ 1 and 𝑎𝑛𝑘 = 𝑛
−1, 1 ≤ 𝑘 ≤ 𝑛, 𝑛 ≥ 1. 

See [138] for a proof of the Kronecker lemma, which also follows from the Toeplitz 

lemma (𝑖𝑖). 

It is clear that the Toeplitz lemma and its corollaries are are valid when the numerical 

sequence {𝑥𝑛, 𝑛 ≥ 1} and real number 𝑥 are replaced, respectively, by a sequence of random 
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variables {𝑋𝑛, 𝑛 ≥ 1} and random variable 𝑋 provided the convergence statements 

involving the random variables are couched in terms of almost sure (𝑎. 𝑠. ) convergence. 

It is natural to inquire as to whether or not the Toeplitz lemma and its corollaries hold when 

the mode of convergence is changed from a.s. convergence to convergence in probability or 

to mean convergence of some order. We demonstrate by three examples that both corollaries 

of the Toeplitz lemma fail when a.s convergence is replaced by convergence in probability, 

and that a variety of possible limiting behaviors can prevail. We present several "mean 

convergence" versions of the Toeplitz lemma, Cesàro mean convergence theorem, and the 

Kronecker lemma. 𝐴 general mean convergence theorem for a normed sum of independent 

random variables is established . 

Dugué [136] investigated the "convergence in probability" problem for the sequence 

of Cesàro means {𝑋‾𝑛 = ∑𝑘=1
𝑛  𝑋𝑘, 𝑛 ≥ 1} where {𝑋𝑛, 𝑛 ≥ 1} is a sequence of independent 

random variables and proved that if 𝑋‾𝑛 →
𝑃
𝑐 for some constant 𝑐, then 

1

𝑛
min1≤𝑘≤𝑛  𝑋𝑘 →

𝑃
0 

and 
1

𝑛
max1≤𝑘≤𝑛  𝑋𝑘 →

𝑃
0. Then, for a sequence of independent random variables {𝑋𝑛, 𝑛 ≥ 1} 

where 𝑋𝑛 has distribution function 

𝐹𝑛(𝑥) = (1 −
1

𝑥 + 𝑛
) 𝐼(0,∞)(𝑥), 𝑥 ∈ ℝ, 𝑛 ≥ 1, 

Dugué showed 𝑋𝑛 →
𝑃
0,
1

𝑛
max1≤𝑘≤𝑛  𝑋𝑘 →

𝑃
0, and, consequently, 𝑋‾𝑛 →

𝑃
0. However, for his 

example, Dugué did not actually characterize the weak limiting behavior of 𝑋‾𝑛 We present 

sequences of independent random variables {𝑋𝑛, 𝑛 ≥ 1} wherein 𝑋𝑛 →
𝑃
0 and 𝑋‾𝑛 →

𝑃
0 and 

we characterize the weak limiting behavior of 𝑋‾𝑛. 

We present three counterexamples. In the first example, 𝑋𝑛 →
𝑃
0 yet the 

corresponding sequence of Cesàro means 𝑋‾𝑛 has a nondegenerate limiting distribution. The 

following two lemmas are used in the verification of Example (3.1.6). 

Lemma (3.1.4)[131]: For 𝑥 > −1,
𝑥

𝑥+1
≤ log (1 + 𝑥) ≤ 𝑥. 

Proof. This is well known; see [133]. 

Lemma (3.1.5)[131]: For all 𝑡 ∈ ℝ, 

lim
𝑛→∞

  max
1≤𝑘≤𝑛

 
|𝑒𝑘𝑡/𝑛 − 1|

𝑘
= 0.                                             (1) 

Proof. For 𝑡 ≥ 0 and 2 ≤ 𝑚 ≤ 𝑛, 

0  ≤ max
1≤𝑘≤𝑛

 
|𝑒𝑘𝑡/𝑛 − 1|

𝑘

 ≤ max
1≤𝑘≤𝑚−1

 
|𝑒𝑘𝑡/𝑛 − 1|

𝑘
+ max
𝑚≤𝑘≤𝑛

 
|𝑒𝑘𝑡/𝑛 − 1|

𝑘

 ≤ 𝑒(𝑚−1)𝑡/𝑛 − 1 + 𝑒𝑡/𝑚 ⟶
𝑛→∞

𝑒𝑡/𝑚 ⟶
𝑚→∞

0.
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𝐴 similar argument works for 𝑡 < 0 with the right-hand side of the last inequality replaced 

by 1 − 𝑒(𝑚−1)𝑡/𝑛 +𝑚−1 and so (1) holds for all 𝑡 ∈ ℝ. 

Example (3.1.6)[131]: Let {𝑋𝑛, 𝑛 ≥ 1} be a sequence of independent random variables with 

𝑃(𝑋𝑛 = 0) = 1 − 𝑛
−1 and 𝑃(𝑋𝑛 = 𝑛) = 𝑛

−1, 𝑛 ≥ 1. It is clear that 𝑋𝑛 →
𝑃
0. Set 𝑋‾𝑛 =

 ∑𝑘=1
𝑛  𝑋𝑘/𝑛, 𝑛 ≥ 1. For 𝑘 ≥ 1, the moment generating function of 𝑋𝑘 is 

𝑚𝑋𝑘(𝑡) = 1 +
𝑒𝑘𝑡 − 1

𝑘
,  𝑡 ∈ ℝ 

and so the cumulant generating function of 𝑋‾𝑛 is 

𝜅𝑛(𝑡) = ∑  

𝑛

𝑘=1

log (1 +
𝑒
𝑘𝑡
𝑛 − 1

𝑘
) ,  𝑡 ∈ ℝ, 𝑛 ≥ 1. 

Let 𝑡 ∈ ℝ and 𝑛 ≥ 1. By Lemma (3.1.4), 

𝜅𝑛(𝑡) ≤ ∑  

𝑛

𝑘=1

𝑒
𝑘𝑡
𝑛 − 1

𝑘
=
1

𝑛
∑  

𝑛

𝑘=1

𝑒
𝑡𝑘
𝑛 − 1

𝑘
𝑛

⟶
𝑛→∞

∫  
1

0

𝑒𝑡𝑥 − 1

𝑥
𝑑𝑥, 

where we have used the fact that the upper bound for 𝜅𝑛(𝑡) is a Riemann sum. Hence, 

lim sup
𝑛→∞

 𝜅𝑛(𝑡) ≤ ∫  
1

0

𝑒𝑡𝑥 − 1

𝑥
𝑑𝑥.                                            (2) 

Again let 𝑡 ∈ ℝ and fix 0 < 𝜖 < 1. For all large 𝑛, 

𝜅𝑛(𝑡) ≥ ∑  

𝑛

𝑘=1

(𝑒𝑘𝑡/𝑛 − 1)/𝑘

1 + (𝑒𝑘𝑡/𝑛 − 1)/𝑘
= ∑  

𝑛

𝑘=1

e𝑡𝑘/𝑛 − 1
𝑘/𝑛

1
𝑛

1 +
𝑒𝑘𝑡/𝑛−1

𝑘

≥
1

1 ± 𝜖

1

𝑛
∑  

𝑛

𝑘=1

𝑒𝑡𝑘/𝑛 − 1

𝑘/𝑛
, 

where ± is taken to be + when 𝑡 ≥ 0 and − when 𝑡 < 0. Thus, 

lim inf
𝑛→∞

 𝜅𝑛(𝑡) ≥
1

1 ± 𝜖
∫  
1

0

𝑒𝑡𝑥 − 1

𝑥
𝑑𝑥, 

and since 0 < 𝜖 < 1 is arbitrary, we have 

lim inf
𝑛→∞

 𝜅𝑛(𝑡) ≥ ∫  
1

0

𝑒𝑡𝑥 − 1

𝑥
𝑑𝑥.                                            (3) 

Combining (2) and (3) gives 

lim
𝑛→∞

 𝜅𝑛(𝑡) = ∫  
1

0

𝑒𝑡𝑥 − 1

𝑥
𝑑𝑥, 𝑡 ∈ ℝ. 
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Thus the sequence of moment generating functions {𝑚𝑋‾𝑛(⋅), 𝑛 ≥ 1} corresponding to 

{𝑋‾𝑛, 𝑛 ≥ 1} satisfies 

lim
𝑛→∞

 𝑚𝑋‾𝑛(𝑡) = lim
𝑛→∞

 𝑒𝐾𝑛(𝑡) = exp(∫  
1

0

 
𝑒𝑡𝑥 − 1

𝑥
) ,  𝑡 ∈ ℝ. 

Then by the continuity theorem for moment generating functions [135], the function 

𝑚(𝑡) = exp (∫  
1

0

 
𝑒𝑡𝑥 − 1

𝑥
𝑑𝑥) ,  𝑡 ∈ ℝ 

is the moment generating function of a random variable and the sequence of Cesarro means 

𝑋‾𝑛 has a limiting distribution with moment generating function 𝑚(⋅). It is clear that the 

limiting distribution of 𝑋‾𝑛 is nondegenerate. 

In the next example, 𝑋𝑛 →
𝑃
0 yet the corresponding sequence of Cesarro means 𝑋‾𝑛 

approaches ∞ in probability. 

Example (3.1.7)[131]: Let 𝛼 > 1 and let {𝑋𝑛, 𝑛 ≥ 1} be a sequence of independent random 

variables with 𝑃(𝑋𝑛 = 0) = 1 − 𝑛
−1 and 𝑃(𝑋𝑛 = 𝑛

2) = 𝑛−1, 𝑛 ≥ 1. It is clear that 𝑋𝑛 →
𝑃
0. 

Set 𝑋‾𝑛 = ∑𝑘=1
𝑛  𝑋𝑘/𝑛, 𝑛 ≥ 1. Let 𝑀 ≥ 1 be arbitrary. Let 𝑘𝑛 be the smallest integer greater 

than or equal to (𝑀𝑛)1/𝛼 , 𝑛 ≥ 1. Then, for all large 𝑛, 

𝑃(𝑋‾𝑛 ≥ 𝑀)  = 𝑃 (∑  

𝑛

𝑘=1

 𝑋𝑘 ≥ 𝑀𝑛) ≥ 𝑃(⋃  

𝑛

𝑘=𝑘𝑛

  [𝑋𝑘 = 𝑘
𝛼])

 = 1 − 𝑃(⋂  

𝑛

𝑘=𝑘𝑛

  [𝑋𝑘 ≠ 𝑘
𝛼]) = 1 − ∏  

𝑛

𝑘=𝑘𝑛

 
𝑘 − 1

𝑘

 = 1 −
𝑘𝑛 − 1

𝑛
> 1 −

(𝑀𝑛)1/𝛼

𝑛
⟶
𝑛→∞

1.

 

Thus, 𝑋‾𝑛 →
𝑃
∞ since 𝑀 ≥ 1 is arbitrary. 

The next example demonstrates that a convergence in probability version of the 

Kronecker lemma also fails; we note, however, that for the Kronecker lemma to fail we must 

have dependence among the 𝑋𝑘 since otherwise convergence in probability of ∑𝑘=1
𝑛  𝑋𝑘/𝑏𝑘 

to a random variable implies convergence 𝑎. 𝑠. (see, e.g., [134] ), in which case the 

traditional Kronecker lemma yields ∑𝑘=1
𝑛  𝑋𝑘/𝑏𝑛 → 0 𝑎. 𝑠. and hence in probability. 

Example (3.1.8)[131]: Let {𝑌𝑛, 𝑛 ≥ 1} be a sequence of independent random variables with 

𝑃(𝑌𝑛 = 0) = 1 −
1

2𝑛−1
 and 𝑃(𝑌𝑛 = 16

𝑛−1) =
1

2𝑛−1
, 𝑛 ≥ 1. For 𝑛 ≥ 1 define 𝑋2𝑛−1 = 𝑌𝑛 

and 𝑋2𝑛 = −2𝑌𝑛. Then 

𝑋2𝑛−1
22𝑛−1

+
𝑋2𝑛
22𝑛

= 0,  𝑛 ≥ 1 
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and so for 𝑛 ≥ 1 

∑ 

𝑛

𝑘=1

𝑋𝑘
2𝑘
=
𝑋𝑛
2𝑛
𝐼(𝑛 is odd ). 

Then, since it is clear that 𝑋𝑛 →
𝑃
0, we have that ∑𝑘=1

𝑛  
𝑋𝑘

2𝑡
→
𝑃
0 as well. 

To show that ∑𝑘=1
𝑛  𝑋𝑘/2

𝑛 ↔
𝑃
0, we show that the convergence fails along a subsequence, 

namely, that 

∑  4𝑛
𝑘=1  𝑋𝑘
24𝑛

↔
𝑃
0.                                                           (4) 

Note that for all odd positive integers 𝑘, 

𝑋𝑘 + 𝑋𝑘+1 = 𝑋𝑘 − 2𝑋𝑘 = −𝑋𝑘 

and consequently for all 𝑛 ≥ 1, 

∑  2𝑛
𝑘=1  𝑋𝑘
22𝑛

=
−∑  𝑛

𝑘=1  𝑋2𝑘−1
22𝑛

. 

Thus, (4) will hold if we can show that 

∑  2𝑛
𝑘=1  𝑋2𝑘−1
16𝑛

↔
𝑃
0.                                                           (5) 

To this end, 

𝑃 (
|∑  2𝑛
𝑘=1  𝑋2𝑘−1|

16𝑛
≥ 1)  ≥ 𝑃 ( ∑  

2𝑛

𝑘=𝑛+1

 𝑋2𝑘−1 ≥ 16
𝑛)

 ≥ 𝑃 ( ⋃  

2𝑛

𝑘=𝑛+1

  [𝑋2𝑘−1 ≠ 0]) = 1 − ∏  

2𝑛

𝑘=𝑛+1

 𝑃(𝑋2𝑘−1 = 0)

 ≥ 1 − ∏  

2𝑛

𝑘=𝑛+1

  (1 −
1

2𝑘
) ≥ 1 − (1 −

1

4𝑛
)
𝑛

 → 1 − 𝑒−1/4 > 0,

 

proving (5). 

We present "mean convergence" versions of the Toeplitz lemma (Theorem (3.1.9)), 
the Cesaro mean convergence theorem (Corollary (3.1.10)), and the Kronecker lemma 

(Theorems (3.1.11) and (3.1.13)). In Theorems (3.1.9)−(3.1.13) and Corollary (3.1.10), no 

independence conditions are imposed on the random variables {𝑋𝑛, 𝑛 ≥ 1}. 
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For 𝑝 ≥ 1, the space ℒ𝑝 of the absolute 𝑝𝑡ℎ power integrable random variables is a Banach 

space with norm ∥ 𝑋 ∥𝑝= (𝐸|𝑋|
𝑝)1/𝑝, 𝑋 ∈ ℒ𝑝. Now the proof of the Toeplitz lemma in 

[138] carries over to a Banach space setting, We, thus, immediately obtain the following 

"mean convergence" version of the Toeplitz lemma. 

Theorem (3.1.9)[131]: Let {𝑎𝑛𝑘 , 1 ≤ 𝑘 ≤ 𝑘𝑛, 𝑛 ≥ 1} be a double array of real numbers 

such that lim𝑛→∞  𝑎𝑛𝑘 = 0 for all 𝑘 ≥ 1 and sup𝑛≥1  ∑𝑘=1
𝑘𝑛  |𝑎𝑛𝑘| < ∞. Let {𝑋𝑛, 𝑛 ≥ 1} be a 

sequence of ℒ𝑝, random variables for some 𝑝 ≥ 1. 

(i) If 𝑋𝑛 ⟶
L𝑝
0, then ∑𝑘=1

𝑘𝑛  𝑎𝑛𝑘𝑋𝑘 ⟶
L𝑝
0. 

(ii) If there exists a random variable 𝑋 such that 𝑋𝑛 ⟶
𝐿𝑝
𝑋 and lim𝑛→∞  ∑𝑘=1

𝑘𝑛  𝑎𝑛𝑘 = 1, then 

∑𝑘=1
𝑘𝑛  𝑎𝑛𝑘𝑋𝑘 ⟶

𝐿𝑝
𝑋. 

Letting 𝑘𝑛 = 𝑛, 𝑛 ≥ 1 and 𝑎𝑛𝑘 = 𝑛
−1, 1 ≤ 𝑘 ≤ 𝑘𝑛, 𝑛 ≥ 1 in Theorem (3.1.9) (𝑖𝑖) yields the 

following "mean convergence" version of the Cesàro mean convergence theorem. 

Corollary (3.1.10)[131]: Let {𝑋𝑛, 𝑛 ≥ 1} be a sequence of ℒ𝑝 random variables where 𝑝 ≥

1 and let 𝑋‾𝑛 = ∑k=1
𝑛  𝑋𝑘/𝑛, 𝑛 ≥ 1. If there exists a random variable 𝑋 such that 𝑋𝑛 ⟶

L𝑝
𝑋, 

then 𝑋‾𝑛 ⟶
𝐿𝑝
𝑋. 

By employing the Banach space version of the traditional Kronecker lemma (see, e.g., 

[141]), the following "mean convergence" version of the Kronecker lemma is immediate. 

Theorem (3.1.11)[131]: Let {𝑋𝑛, 𝑛 ≥ 1} be a sequence of ℒ𝑝 random variables for some 

𝑝 ≥ 1 and let {𝑏𝑛, 𝑛 ≥ 1} be a sequence of real numbers with 0 < 𝑏𝑛 ↑ ∞. If there exists 𝑎 

random variable 𝑆 such that 

∑ 

𝑛

𝑘=1

𝑋𝑘
𝑏𝑘
⟶
𝐿𝑝
𝑆,                                                           (6) 

then 

∑  𝑛
𝑘=1  𝑋𝑘
𝑏𝑛

⟶
L𝑝
0.                                                           (7) 

Remark (3.1.12)[131]: For a sequence of independent mean 0 random variables 

{𝑋𝑛, 𝑛 ≥ 1} and a sequence of real numbers {𝑏𝑛, 𝑛 ≥ 1} with 0 < 𝑏𝑛 ↑ ∞, a sufficient 

condition for the existence of a random variable 𝑆 satisfying (6) with 𝑝 ∈ [1,2] is that 

∑  

∞

𝑛=1

𝐸|𝑋𝑛|
𝑝

𝑏𝑛
𝑝 < ∞.                                                 (8) 
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This follows readily from [132] and the Cauchy convergence criterion (see, e.g., [134]). 

However, for 𝑝 ≥ 2, a necessary and sufficient condition for the existence of a random 

variable 𝑆 satisfying (6) is that 

∑  

∞

𝑛=1

𝐸|𝑋𝑛|
𝑝

𝑏𝑛
𝑝 < ∞ and ∑ 

∞

𝑛=1

𝐸𝑋𝑛
2

𝑏𝑛
2
< ∞.  

This follows readily from [140] and the Cauchy convergence criterion. 

It is easy to construct an example showing that when 𝑝 ∈ [1,2), the condition (8) is not 

necessary for the existence of a random variable 𝑆 satisfying (6); that is, (6) can hold when 

(8) fails. 

We now establish a version of Theorem (3.1.11) for a sequence of nonnegative random 

variables {𝑋𝑛, 𝑛 ≥ 1}. In view of Theorem (3.1.11), Theorem (3.1.13) is of interest only 

when 0 < 𝑝 < 1. 

Theorem (3.1.13)[131]: Let {𝑋𝑛, 𝑛 ≥ 1} be a sequence of nonnegative 𝐿𝑝 random variables 

for some 0 < 𝑝 < ∞ and let {𝑏𝑛, 𝑛 ≥ 1} be a sequence with 0 < 𝑏𝑛 ↑ ∞. If there exists 𝑎 

random variable 𝑆 such that (6) holds, then (7) holds as well. 

Proof. The ℒ𝑝 convergence in (6) implies convergence in probability which, in turn, implies 

𝑎. 𝑠. convergence since ∑𝑘=1
𝑛  𝑋𝑘/𝑏𝑘 is nondecreasing. Then by the traditional Kronecker 

lemma, ∑𝑘=1
𝑛  𝑋𝑘/𝑏𝑛 → 0 𝑎. 𝑠. On the other hand, ℒ𝑝 convergence of ∑𝑘=1

𝑛  
𝑋𝑘

𝑏𝑘
 implies that 

the sequence {|∑𝑘=1
𝑛  𝑋𝑘/𝑏𝑘|

𝑝, 𝑛 ≥ 1} is uniformly integrable by the mean convergence 

criterion (see, 𝑒. 𝑔. , [134]). By nonnegativity, 

0 ≤
∑  𝑛
𝑘=1  𝑋𝑘
𝑏𝑛

≤∑  

𝑛

𝑘=1

𝑋𝑘
𝑏𝑘

 

and so the sequence {|∑𝑘=1
𝑛  𝑋𝑘/𝑏𝑛|

𝑝, 𝑛 ≥ 1} is uniformly integrable as well. Combining this 

with ∑𝑘=1
𝑛  𝑋𝑘/𝑏𝑛 → 0 𝑎. 𝑠. and employing the mean convergence criterion gives (7). 

We close by establishing in Theorem (3.1.17) a general mean convergence theorem 

for a normed sum of independent random variables. Its proof uses three results which will 

now be stated. 

The following result is the famous de La Vallée Poussin criterion for uniform integrability; 

a proof of it may be found in [139]. 

Proposition (3.1.14)[131]: 𝐴 sequence of random variables {𝑈𝑛, 𝑛 ≥ 1} is uniformly 

integrable if and only if there exists a nondecreasing convex function 𝐺 defined on [0,∞) 
with 

𝐺(0) = 0,  lim
𝑢→∞

 
𝐺(𝑢)

𝑢
= ∞, and sup

𝑛≥1
 𝐸(𝐺(|𝑈𝑛|)) < ∞.                (9) 
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The next result is a so-called "contraction principle" and is due to [137]. 

Proposition (3.1.15)[131]: Let 𝜑 be a nonnegative nondecreasing convex function defined 

on [0,∞), let 𝑛 ≥ 1, let {𝜆1, … , 𝜆𝑛} ⊂ ℝ, and let 𝑌1, … , 𝑌𝑛 be independent symmetric random 

variables. Then 

𝐸 (𝜑(|∑  

𝑛

𝑘=1

 𝜆𝑘𝑌𝑘|)) ≤ 𝐸(𝜑((max
1≤𝑘≤𝑛

 |𝜆𝑘|) |∑  

𝑛

𝑘=1

 𝑌𝑘|)). 

The next result is referred to as a "symmetrization moment inequality" and its proof may be 

found in [138]. 

Proposition (3.1.16)[131]: Let 𝑈∗ be a symmetrized version of a random variable 𝑈 and let 

𝑚 be any median of 𝑈. Then for all 𝑝 > 0, 

𝐸|𝑈 −𝑚|𝑝 ≤ 2𝐸|𝑈∗|𝑝. 

Theorem (3.1.17)[131]: Let {𝑋𝑛, 𝑛 ≥ 1} be a sequence of independent ℒ𝑝 random variables 

for some 𝑝 ≥ 1 and let {𝑏𝑛, 𝑛 ≥ 1} and {𝐵𝑛, 𝑛 ≥ 1} be sequences of real numbers with 0 <
𝐵𝑛 ↑ ∞. Suppose that the sequence 

{|∑𝑘=1
𝑛  

𝑋𝑘

𝑏𝑘
|
𝑝
, 𝑛 ≥ 1}   is uniformly integrable.                             (10) 

(i) If 𝑏𝑛 = 𝑂(𝐵𝑛) and 

∑  𝑛
𝑘=1  𝑋𝑘
𝐵𝑛

→
𝑃
0,                                                           (11) 

then 

∑  𝑛
𝑘=1  𝑋𝑘
𝐵𝑛

⟶
𝑌𝑝
0.                                                           (12) 

(ii) If 𝑏𝑛 = 𝑜(𝐵𝑛) and 𝑚𝑛 = 𝑜(𝐵𝑛) where 𝑚𝑛 is any median of ∑𝑘=1
𝑛  𝑋𝑘, 𝑛 ≥ 1, then 

∑  𝑛
𝑘=1  𝑋𝑘
𝐵𝑛

⟶
𝑌𝑝
0.                                                           (13) 

Proof. Let {𝑋𝑛
′ , 𝑛 ≥ 1} be an independent copy of {𝑋𝑛, 𝑛 ≥ 1} and consider the sequence of 

symmetrized random variables {𝑋𝑛
∗ = 𝑋𝑛 − 𝑋𝑛

′ , 𝑛 ≥ 1}. Now (10) holds with 𝑋𝑘 replaced 

by 𝑋𝑘
′ , 𝑘 ≥ 1 and since 

|∑  

𝑛

𝑘=1

 
𝑋𝑘
∗

𝑏𝑘
|

𝑝

≤ 2𝑝−1 (|∑  

𝑛

𝑘=1

 
𝑋𝑘
𝑏𝑘
|

𝑝

+ |∑  

𝑛

𝑘=1

 
𝑋𝑘
′

𝑏𝑘
|

𝑝

) , 𝑛 ≥ 1, 

the sequence 
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{|∑𝑘=1
𝑛  

𝑋𝑘
∗

𝑏𝑘
|
𝑝

, 𝑛 ≥ 1}   is uniformly integrable.                            (14) 

By (14) and Proposition (3.1.14), there exists a nondecreasing convex function 𝐺 defined 

on [0,∞) satisfying (9) with 𝑈𝑛 = |∑𝑘=1
𝑛  𝑋𝑘

∗/𝑏𝑘|
𝑝, 𝑛 ≥ 1. Set 𝑏𝑛

∗ = max1≤𝑘≤𝑛  |𝑏𝑘|, 𝑛 ≥  1. 
Now the function 𝜑(𝑢) = 𝐺(𝑢𝑝), 𝑢 ≥ 0 is a nonnegative nondecreasing convex function 

and so by Proposition (3.1.15) 

sup
𝑛≥1
 𝐸 (𝐺 (|∑  

𝑛

𝑘=1

 
𝑋𝑘
∗

𝑏𝑛
∗
|

𝑝

))  = sup
𝑛≥1
 𝐸 (𝜑 (|∑  

𝑛

𝑘=1

 
𝑏𝑘
𝑏𝑛
∗

𝑋𝑘
∗

𝑏𝑘
|))

 ≤ sup
𝑛≥1
 𝐸 (𝜑(( max

1≤𝑘≤𝑛
  |
𝑏𝑘
𝑏𝑛
∗
|) |∑  

𝑛

𝑘=1

 
𝑋𝑘
∗

𝑏𝑘
|))

 = sup
𝑛≥1
 𝐸 (𝜑 (|∑  

𝑛

𝑘=1

 
𝑋𝑘
∗

𝑏𝑘
|))

 = sup
𝑛≥1
 𝐸 (𝐺 (|∑  

𝑛

𝑘=1

 
𝑋𝑘
∗

𝑏𝑘
|)) < ∞

 

recalling (9). Then since 𝐺(0) = 0 and lim𝑢→∞  
𝐺(𝑢)

𝑢
= ∞, again by applying Proposition 

(3.1.14) with the same function 𝐺 we get that the sequence 

{|
∑𝑘=1
𝑛  𝑋𝑘

∗

𝑏𝑛
∗ |

𝑝

, 𝑛 ≥ 1}   is uniformly integrable.                            (15) 

We first prove part (𝑖). It follows from 𝑏𝑛 = 𝑂(𝐵𝑛) and 𝐵𝑛 ↑ ∞ that 𝑏𝑛
∗ = 𝑂(𝐵𝑛) and so by 

(15) the sequence 

{|
∑𝑘=1
𝑛  𝑋𝑘

∗

𝐵𝑛
|
𝑝

, 𝑛 ≥ 1}   is uniformly integrable.                            (16) 

Now (11) also holds with 𝑋𝑘 replaced by 𝑋𝑘
′ , 𝑘 ≥ 1 and so 

∑  𝑛
𝑘=1  𝑋𝑘

∗

𝐵𝑛
=
∑  𝑛
𝑘=1  𝑋𝑘
𝐵𝑛

−
∑  𝑛
𝑘=1  𝑋𝑘

′

𝐵𝑛
→
𝑃
0.                                             (17) 

Then by (16), (17), and the mean convergence criterion, 

∑  𝑛
𝑘=1  𝑋𝑘

∗

𝐵𝑛
⟶
L𝑝
0.                                                           (18) 

Let 𝑚𝑛 be any median of ∑𝑘=1
𝑛  𝑋𝑘, 𝑛 ≥ 1. It follows from (11) that 

𝑚𝑛 = 𝑜(𝐵𝑛).                                                           (19) 



131 

Then, by Proposition (3.1.16), (18), and (19), 

𝐸 |
∑  𝑛
𝑘=1  𝑋𝑘
𝐵𝑛

|

𝑝

 ≤ 2𝑝−1 (
𝐸|∑  𝑛

𝑘=1  𝑋𝑘 −𝑚𝑛|
𝑝

𝐵𝑛
𝑝 +

|𝑚𝑛|
𝑝

𝐵𝑛
𝑝 )

 ≤ 2𝑝−1 (
2𝐸|∑  𝑛

𝑘=1  𝑋𝑘
∗|𝑝

𝐵𝑛
𝑝 +

|𝑚𝑛|
𝑝

𝐵𝑛
𝑝 )

 → 0

 

proving (12) thereby completing the proof of part (𝑖). 

Next, we prove part (𝑖𝑖). It follows from 𝑏𝑛 = 𝑜(𝐵𝑛) and 𝐵𝑛 ↑ ∞ that 𝑏𝑛
∗ = 𝑜(𝐵𝑛). 

Then, 

𝐸 |
∑  𝑛
𝑘=1  𝑋𝑘

∗

𝐵𝑛
|

𝑝

=
𝑏𝑛
∗𝑝

𝐵𝑛
𝑝 𝐸 |

∑  𝑛
𝑘=1  𝑋𝑘

∗

𝑏𝑛
∗

|

𝑝

= 𝑜(1)𝑂(1) = 𝑜(1) 

recalling (15). Since 𝑚𝑛 = 𝑜(𝐵𝑛) by hypothesis, the conclusion (13) follows by the same 

argument used to complete the proof of part (𝑖). 

Section (3.2): Multivariate Geometric Means 

The geometric mean of two positive definite operators was introduced by Pusz and 

Woronowicz [19], and their definition was soon put into the context of the axiomatic 

approach to operator means developed by Kubo and Ando [149]. Subsequently a number 

of authors [148], [2], [17], [5], [151], [150] have suggested several ways of defining means 

of operators for several variables as extensions of the geometric mean of two operators. 

There is no satisfactory definition of a geometric mean of several operator variables 

that is both computationally tractable and satisfies a number of natural conditions put 

forward by Ando, Li, and Mathias [2]. We put the emphasis on methods to extend a 

geometric mean of 𝑘 variables to a mean of 𝑘 + 1 variables, and in the process we challenge 

one of the requirements to a geometric mean put forward by Ando, Li, and Mathias. 

The symmetry condition of a geometric mean is mathematically very appealing, but the 

condition makes no sense in a number of applications. If for example positive definite 

matrices 𝐴1, 𝐴2, … , 𝐴𝑘 correspond to measurements made at times 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑘  then 

there is no way of permuting the matrices since time only goes forward. It makes more sense 

to impose an updating condition 

𝐺𝑘+1(𝐴1, … , 𝐴𝑘, 1) = 𝐺𝑘(𝐴1, … , 𝐴𝑘)
𝑘
𝑘+1                                        (20) 

when moving from a mean 𝐺𝑘 of 𝑘 variables to a mean 𝐺𝑘+1 of 𝑘 + 1 variables. The 

condition corresponds to taking the geometric mean of 𝑘 copies of 𝐺𝑘(𝐴1, … , 𝐴𝑘) and one 

copy of the unit matrix. 𝐴 variant condition would be to impose the equality 

𝐺𝑘+1(𝐴1, … , 𝐴𝑘 , 1) = 𝐺𝑘 (𝐴1
𝑘/(𝑘+1)

, … , 𝐴𝑘
𝑘/(𝑘+1)

)                      (21) 

when updating from 𝑘 to 𝑘 + 1 variables. It is an easy exercise to realise that if we set 

𝐺1(𝐴) = 𝐴, then either of the conditions (20) or (21) together with homogeneity uniquely 

defines the geometric mean of 𝑘 commuting operators. 

We furthermore prove that by setting 𝐺1(𝐴) = 𝐴 and by demanding homogeneity and 

a few more natural conditions, then either of the updating conditions (20) or (21) leads to 

unique but different solutions to the problem of defining a geometric mean of 𝑘 operators. 
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The means defined in this way are given by explicit formulas, and they are computationally 

tractable. They are given by explicit formulas, and they are computationally tractable. They 

means discussed in [2] with the notable exception of symmetry. If one emphasises either of 

the updating conditions (20) or (21) we are thus forced to abandon symmetry. 

Efficient averaging techniques of positive definite matrices are important in many practical 

applications; for example in radar imaging, medical imaging, and the analysis of financial 

data. 

Let 𝐵(ℋ) denote the set of bounded linear operators on a Hilbert space ℋ.𝐴 function 

𝐹:𝒟 → 𝐵(ℋ) defined in a convex domain 𝒟 of self-adjoint operators in 𝐵(ℋ) is called a 

spectral function, if it can be written on the form 𝐹(𝑥) = 𝑓(𝑥) for some function 𝑓 defined 

in a real interval 𝐼, where 𝑓(𝑥) is obtained by applying the functional calculus. 

The definition contains some hidden assumptions. The domain 𝒟 should be invariant under 

unitary transformations and 

𝐹(𝑢∗𝑥𝑢) = 𝑢∗𝐹(𝑥)𝑢 𝑥 ∈ 𝒟                                                         (22) 
for every unitary transformation 𝑢 on ℋ. Furthermore, to pairs of mutually orthogonal 

projections 𝑝 and 𝑞 acting on ℋ, the element 𝑝𝑥𝑝 + 𝑞𝑥𝑞 should be in 𝒟 and the equality 

𝐹(𝑝𝑥𝑝 + 𝑞𝑥𝑞) = 𝑝𝐹(𝑝𝑥𝑝)𝑝 + 𝑞𝐹(𝑞𝑥𝑞)𝑞                                      (23) 
should hold for any 𝑥 ∈ 𝐵(ℋ) such that 𝑝𝑥𝑝 and 𝑞𝑥𝑞 are in 𝒟. An operator function is a 

spectral function if and only if (22) and (23) are satisfied, cf. [143], [147]. 

The notion of spectral function is not immediately extendable to functions of several 

variables. However, we may consider the two properties of spectral functions noticed by 𝐶. 
Davis as a kind of regularity conditions, and they are readily extendable to functions of more 

than one variable. 

The notion of a regular map of two operator variables were studied by Effros and  

[144], 𝑐𝑓. also [146]. 
Definition (3.2.1)[142]: Let 𝐹:𝒟 → 𝐵(ℋ) be a mapping of 𝑘 variables defined in a convex 

domain 𝒟 ⊆ 𝐵(ℋ) ×⋯× 𝐵(ℋ). We say that 𝐹 is regular if 

(i) The domain 𝒟 is invariant under unitary transformations of ℋ and 

𝐹(𝑢∗𝑥1𝑢,… , 𝑢
∗𝑥𝑘𝑢) = 𝑢

∗𝐹(𝑥1, … , 𝑥𝑘)𝑢 

for every 𝑥 = (𝑥1, … , 𝑥𝑘) ∈ 𝒟 and every unitary 𝑢 on ℋ. 
(ii) Let 𝑝 and 𝑞 be mutually orthogonal projections acting on ℋ and take arbitrary 𝑘-tuples 
(𝑥1, … , 𝑥𝑘) and (𝑦1, … , 𝑦𝑘) of operators in 𝐵(ℋ) such that the compressed tuples 

(𝑝𝑥1𝑝,… , 𝑝𝑥𝑘𝑝)  and  (𝑞𝑦1𝑞,… , 𝑞𝑦𝑘𝑞) 
are in the domain 𝒟. Then the 𝑘-tuple of diagonal block matrices 

(𝑝𝑥1𝑝 + 𝑞𝑦1𝑞,… , 𝑝𝑥𝑘𝑝 + 𝑞𝑦𝑘𝑞) 
is also in the domain 𝒟 and 

𝐹(𝑝𝑥1𝑝 + 𝑞𝑦1𝑞,… , 𝑝𝑥𝑘𝑝 + 𝑞𝑦𝑘𝑞)

 = 𝑝𝐹(𝑝𝑥1𝑝,… , 𝑝𝑥𝑘𝑝)𝑝 + 𝑞𝐹(𝑞𝑦1𝑞,… , 𝑞𝑦𝑘𝑞)𝑞.
 

By choosing 𝑞 as the zero projection in the second condition in the above definition we 

obtain 

𝐹(𝑝𝑥1𝑝,… , 𝑝𝑥𝑘𝑝) = 𝑝𝐹(𝑝𝑥1𝑝, … , 𝑝𝑥𝑘𝑝)𝑝, 
which shows that 𝐹 for any orthogonal projection 𝑝 on ℋ may be considered as a regular 

operator mapping 

𝐹:𝒟𝑝 → 𝐵(𝑝ℋ), 
where the compressed domain 
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𝒟𝑝 = {(𝑥1, … , 𝑥𝑘) ∈⨁ 

𝑘

𝑚=1

 𝐵(𝑝ℋ) ∣ (𝑥1⊕0(1 − 𝑝),… , 𝑥𝑘⊕0(1 − 𝑝)) ∈ 𝒟}. 

With this interpretation we may unambiguously calculate block matrices by the formula 

𝐹 ((
𝑥1 0
0 𝑦1

) ,… , (
𝑥𝑘 0
0 𝑦𝑘

)) = (
𝐹(𝑥1, … , 𝑥𝑘) 0

0 𝐹(𝑦1, … , 𝑦𝑘)
) 

which is well-known from mappings generated by the functional calculus. 

 We consider throughout the domain 

𝒟𝑘 = {(𝐴1, … , 𝐴𝑘) ∣ 𝐴1, … , 𝐴𝑘 ≥ 0} 
of 𝑘-tuples of positive semi-definite operators acting on an infinite dimensional Hilbert 

space ℋ. It is convenient to consider an infinite dimensional Hilbert space since in this case 

ℋ is isomorphic to ℋ⊕ℋ which allows us to use block matrix techniques without 

imposing dimension conditions. 

Theorem (3.2.2)[142]: Consider a convex regular mapping 

𝐹:𝒟𝑘 → 𝐵(ℋ)𝑠𝑎 

of 𝒟𝑘 into self-adjoint operators acting on ℋ. 
(i) Let 𝐶 be a contraction on ℋ. If 𝐹(0,… ,0) ≤ 0 then the inequality 

𝐹(𝐶∗𝐴1𝐶,… , 𝐶
∗𝐴𝑘𝐶) ≤ 𝐶

∗𝐹(𝐴1, … , 𝐴𝑘)𝐶 

holds for 𝑘-tuples (𝐴1, … , 𝐴𝑘) in 𝒟𝑘 . 
(ii) Let 𝑋 and 𝑌 be operators acting on ℋ with 𝑋∗𝑋 + 𝑌∗𝑌 = 1. Then the inequality 

𝐹(𝑋∗𝐴1𝑋 + 𝑌∗𝐵1𝑌,… , 𝑋
∗𝐴𝑘𝑋 + 𝑌

∗𝐵𝑘𝑌)

 ≤ 𝑋∗𝐹(𝐴1, … , 𝐴𝑘)𝑋 + 𝑌
∗𝐹(𝐵1, … , 𝐵𝑘)𝑌

 

holds for 𝑘-tuples (𝐴1, … , 𝐴𝑘) and (𝐵1, … , 𝐵𝑘) in 𝒟𝑘 . 
Proof. By setting 𝑇 = (1 − 𝐶∗𝐶)1/2 and 𝑆 = (1 − 𝐶𝐶∗)1/2 we obtain that the block 

matrices 

𝑈 = (
𝐶 𝑆
𝑇 −𝐶∗

)   and  𝑉 = (
𝐶 −𝑆
−𝑇 −𝐶∗

) 

are unitary operators on ℋ⊕ℋ. Furthermore, 
1

2
𝑈∗ (

𝐴 0
0 0

)𝑈 +
1

2
𝑉∗ (

𝐴 0
0 0

)𝑉 = (
𝐶∗𝐴𝐶 0
0 𝑆𝐴𝑆

) 

for any operator 𝐴 ∈ 𝐵(ℋ). By using that 𝐹 is a convex regular map we obtain 

(
𝐹(𝐶∗𝐴1𝐶,… , 𝐶

∗𝐴𝑘𝐶) 0

0 𝐹(𝑆𝐴1𝑆,… , 𝑆𝐴𝑘𝑆)
)

= 𝐹 ((
𝐶∗𝐴1𝐶 0
0 𝑆𝐴1𝑆

) ,… , (
𝐶∗𝐴𝑘𝐶 0
0 𝑆𝐴𝑘𝑆

))

= 𝐹 (
1

2
𝑈∗ (

𝐴1 0
0 0

)𝑈 +
1

2
𝑉∗ (

𝐴1 0
0 0

)𝑉,… ,
1

2
𝑈∗ (

𝐴𝑘 0
0 0

)𝑈

+
1

2
𝑉∗ (

𝐴𝑘 0
0 0

)𝑉)  

≤
1

2
𝐹 (𝑈∗ (

𝐴1 0
0 0

)𝑈,… , 𝑈∗ (
𝐴𝑘 0
0 0

)𝑈)

+
1

2
𝐹 (𝑉∗ (

𝐴1 0
0 0

)𝑉,… , 𝑉∗ (
𝐴𝑘 0
0 0

)𝑉)  

=
1

2
𝑈∗𝐹 ((

𝐴1 0
0 0

) ,… , (
𝐴𝑘 0
0 0

))𝑈 +
1

2
𝑉∗𝐹 ((

𝐴1 0
0 0

) , … , (
𝐴𝑘 0
0 0

))𝑉 
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=
1

2
𝑈∗ (

𝐹(𝐴1, … , 𝐴𝑘) 0
0 𝐹(0,… ,0)

)𝑈 +
1

2
𝑉∗ (

𝐹(𝐴1, … , 𝐴𝑘) 0
0 𝐹(0,… ,0)

)𝑉 

≤
1

2
𝑈∗ (

𝐹(𝐴1, … , 𝐴𝑘) 0
0 0

)𝑈 +
1

2
𝑉∗ (

𝐹(𝐴1, … , 𝐴𝑘) 0
0 0

)𝑉 

= (
𝐶∗𝐹(𝐴1, … , 𝐴𝑘)𝐶 0

0 𝑆𝐹(𝐴1, … , 𝐴𝑘)𝑆
), 

where we used convexity in the first inequality, and in the second inequality used 

𝐹(0,… ,0) ≤ 0. The first statement now follows. 

In order to prove (𝑖𝑖) we define the map 

𝐺(𝐴1, … , 𝐴𝑘) = 𝐹(𝐴1, … , 𝐴𝑘) − 𝐹(0,… ,0) (𝐴1, … , 𝐴𝑘) ∈ 𝒟
𝑘 . 

Unitary invariance of 𝐹 implies that 𝐹(0,… ,0) is a multiple of the unit operator and thus 

commutes with all projections. Therefore 𝐺 is regular and convex with 𝐺(0,… ,0) = 0. We 

then define block matrices 

𝐶 = (
𝑋 0
𝑌 0

)   and  𝑍𝑚 = (
𝐴𝑚 0
0 𝐵𝑚

) ,  𝑚 = 1,… , 𝑘 

and notice that 

𝐶∗𝑍𝑚𝐶 = (
𝑋∗𝐴𝑚𝑋 + 𝑌

∗𝐵𝑚𝑌 0
0 0

) 

for 𝑚 = 1,… , 𝑘. Finally we use (𝑖) to obtain 

(
𝐺(𝑋∗𝐴1𝑋 + 𝑌

∗𝐵1𝑌,… , 𝑋
∗𝐴𝑘𝑋 + 𝑌

∗𝐵𝑘𝑌) 0
0 0

)

 = (
𝐺(𝑋∗𝐴1𝑋 + 𝑌

∗𝐵1𝑌,… , 𝑋
∗𝐴𝑘𝑋 + 𝑌

∗𝐵𝑘𝑌) 0
0 𝐺(0,… ,0)

)

 = 𝐺(𝐶∗𝑍1𝐶,… , 𝐶
∗𝑍𝑘𝐶)

 ≤ 𝐶∗𝐺(𝑍1, … , 𝑍𝑘)𝐶 = 𝐶
∗ (
𝐺(𝐴1, … , 𝐴𝑘) 0

0 𝐺(𝐵1, … , 𝐵𝑘)
)𝐶

 = (
𝑋∗𝐺(𝐴1, … , 𝐴𝑘)𝑋 + 𝑌

∗𝐺(𝐵1, … , 𝐵𝑘)𝑌 0
0 0

)

 

from which we deduce that 

𝐹(𝑋∗𝐴1𝑋 + 𝑌
∗𝐵1𝑌,… , 𝑋

∗𝐴𝑘𝑋 + 𝑌
∗𝐵𝑘𝑌)

 = 𝐺(𝑋∗𝐴1𝑋 + 𝑌
∗𝐵1𝑌,… , 𝑋

∗𝐴𝑘𝑋 + 𝑌
∗𝐵𝑘𝑌) + 𝐹(0,… ,0)

 ≤ 𝑋∗𝐺(𝐴1, … , 𝐴𝑘)𝑋 + 𝑌
∗𝐺(𝐵1, … , 𝐵𝑘)𝑌 + 𝐹(0,… ,0)

 = 𝑋∗𝐹(𝐴1, … , 𝐴𝑘)𝑋 + 𝑌
∗𝐹(𝐵1, … , 𝐵𝑘)𝑌

 − 𝑋∗𝐹(0,… ,0)𝑋 − 𝑌∗𝐹(0,… ,0)𝑌 + 𝐹(0,… ,0).

 

Since as above 𝐹(0,… ,0) = 𝑐 ⋅ 1 for some real constant 𝑐 we obtain 

 −𝑋∗𝐹(0,… ,0)𝑋 − 𝑌∗𝐹(0,… ,0)𝑌 + 𝐹(0,… ,0)

 = −𝑐(𝑋∗𝑋 + 𝑌∗𝑌) + 𝑐 ⋅ 1 = 0,
 

and the statement of the theorem follows. 

We shall for 𝑘 = 1,2,… consider the convex domain 

𝒟+
𝑘 = {(𝐴1, … , 𝐴𝑘) ∣ 𝐴1, … , 𝐴𝑘 > 0} 

of positive definite and invertible operators acting on the Hilbert space ℋ. 
Proposition (3.2.3)[142]: Let 𝐹 be a regular map of 𝒟+

𝑘 into self-adjoint operators acting 

on ℋ. We assume that 

(i) 𝐹 is convex 

(ii) 𝐹(𝑡𝐴1, … , 𝑡𝐴𝑘) = 𝑡𝐹(𝐴1, … , 𝐴𝑘) 𝑡 > 0,  (𝐴1, … , 𝐴𝑘) ∈ 𝒟+
𝑘 . 

Then 
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𝐹(𝐶∗𝐴1𝐶,… , 𝐶
∗𝐴𝑘𝐶) = 𝐶

∗𝐹(𝐴1, … , 𝐴𝑘)𝐶 

for any invertible operator 𝐶 on ℋ and (𝐴1, … , 𝐴𝑘) ∈ 𝒟+
𝑘 . 

Proof. Assume first that 𝐶 is an invertible contraction on ℋ. Jensen's subhomogeneous 

inequality is only available for regular mappings defined in 𝒟𝑘 . 
To 𝜀 > 0 we therefore consider the mapping 𝐹𝜀: 𝒟

𝑘 → 𝐵(ℋ) by setting 

𝐹𝜀(𝐴1, … , 𝐴𝑘) = 𝐹(𝜀 + 𝐴1, … , 𝜀 + 𝐴𝑘) − 𝐹(𝜀,… , 𝜀). 
By unitary invariance of 𝐹 we realise that 𝐹(𝜀, … , 𝜀) is a multiple of the unity. Therefore, 

𝐹𝜀 is regular and convex with 𝐹𝜀(0,… ,0) = 0. 
We may thus use Jensen's sub-homogeneous inequality for regular mappings and obtain 

𝐹𝜀(𝐶
∗𝐴1𝐶,… , 𝐶

∗𝐴𝑘𝐶) ≤ 𝐶
∗𝐹𝜀(𝐴1, … , 𝐴𝑘)𝐶, 

where we now restrict (𝐴1, … , 𝐴𝑘) to the domain 𝒟+
𝑘 and rearrange the inequality to 

𝐹(𝜀 + 𝐶∗𝐴1𝐶,… , 𝜀 + 𝐶
∗𝐴𝑘𝐶)

 ≤ 𝐶∗𝐹(𝐴1 + 𝜀,… , 𝐴𝑘 + 𝜀)𝐶 + 𝐹(𝜀,… , 𝜀) − 𝐶
∗𝐹(𝜀,… , 𝜀)𝐶.

 

Since 𝐹 is positively homogeneous the term 𝐹(𝜀,… , 𝜀) = 𝜀𝐹(1,… ,1) is vanishing for 𝜀 →
0 and we obtain 

𝐹(𝐶∗𝐴1𝐶,… , 𝐶
∗𝐴𝑘𝐶) ≤ 𝐶

∗𝐹(𝐴1, … , 𝐴𝑘)𝐶                             (24) 
for invertible 𝐶. Again using homogeneousness we obtain inequality (24) also for arbitrary 

invertible 𝐶. Then by repeated application of (24) we obtain 

𝐹(𝐴1, … , 𝐴𝑘) ≤ 𝐶
∗−1𝐹(𝐶∗𝐴1𝐶,… , 𝐶

∗𝐴𝑘𝐶)𝐶
−1 ≤ 𝐹(𝐴1, … , 𝐴𝑘) 

and the statement follows. 

Definition (3.2.4)[142]: Let 𝐹:𝒟+
𝑘 → 𝐵(ℋ) be a regular mapping. The perspective map 𝒫𝐹 

is the mapping defined in the domain 𝒟+
𝑘+1 by setting 

𝒫𝐹(𝐴1, … , 𝐴𝑘 , 𝐵) = 𝐵
1/2𝐹(𝐵−1/2𝐴1𝐵

−1/2, … , 𝐵−1/2𝐴𝑘𝐵
−1/2)𝐵1/2 

for positive invertible operators 𝐴1, … , 𝐴𝑘 and 𝐵 acting on ℋ. 
It is a small exercise to prove that the perspective 𝒫𝐹 is a regular mapping which is positively 

homogeneous in the sense that 

𝒫𝐹(𝑡𝐴1, … , 𝑡𝐴𝑘, 𝑡𝐵) = 𝑡𝒫𝐹(𝐴1, … , 𝐴𝑘 , 𝐵) 
for arbitrary (𝐴1, … , 𝐴𝑘, 𝐵) ∈ 𝒟+

𝑘+1 and real numbers 𝑡 > 0. The following theorem 

generalises a result of Effros [145] for functions of one variable. 

Theorem (3.2.5)[142]: The perspective 𝒫𝐹 of a convex regular map 𝐹:𝒟𝑘
+ → 𝐵(ℋ) is 

convex. 

Proof. Consider tuples (𝐴1, … , 𝐴𝑘+1) and (𝐵1, … , 𝐵𝑘+1) in 𝒟+
𝑘+1 and take 𝜆 ∈ [0,1]. We 

define the operators 
𝐶  = 𝜆𝐴𝑘+1 + (1 − 𝜆)𝐵𝑘+1

𝑋  = 𝜆1/2𝐴𝑘+1
1/2
𝐶−1/2

𝑌  = (1 − 𝜆)1/2𝐵𝑘+1
1/2
𝐶−1/2

 

and calculate that 

𝑋∗𝑋 + 𝑌∗𝑌 = 𝐶−1/2𝜆𝐴𝑘+1𝐶
−1/2 + 𝐶−1/2(1 − 𝜆)𝐵𝑘+1𝐶

−1/2 = 1 

and 

𝑋∗𝐴𝑘+1
−1/2

𝐴𝑖𝐴𝑘+1
−1/2

𝑋 + 𝑌∗𝐵𝑘+1
−1/2

𝐵𝑖𝐵𝑘+1
−1/2

𝑌

 = 𝐶−1/2𝜆1/2𝐴𝑘+1
1/2
𝐴𝑘+1
−1/2

𝐴𝑖𝐴𝑘+1
−1/2

𝜆1/2𝐴𝑘+1
1/2
𝐶−1/2

 + 𝐶−1/2(1 − 𝜆)1/2𝐵𝑘+1
1/2
𝐵𝑘+1
−1/2

𝐵𝑖𝐵𝑘+1
−1/2

(1 − 𝜆)1/2𝐵𝑘+1
1/2
𝐶−1/2

 = 𝐶−1/2(𝜆𝐴𝑖 + (1 − 𝜆)𝐵𝑖)𝐶
−1/2

 

for 𝑖 = 1,… , 𝑘. We thus obtain 
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𝒫𝐹(𝜆𝐴1 + (1 − 𝜆)𝐵1, … , 𝜆𝐴𝑘+1 + (1 − 𝜆)𝐵𝑘+1)

 = 𝐶1/2𝐹(𝐶−1/2(𝜆𝐴1 + (1 − 𝜆)𝐵1)𝐶
−1/2, … ,

 𝐶−1/2(𝜆𝐴𝑘 + (1 − 𝜆)𝐵𝑘)𝐶
−1/2)𝐶1/2

 = 𝐶1/2𝐹(𝑋∗𝐴𝑘+1
−1/2

𝐴1𝐴𝑘+1
−1/2

𝑋 + 𝑌∗𝐵𝑘+1
−1/2

𝐵1𝐵𝑘+1
−1/2

𝑌,… ,

 𝑋∗𝐴𝑘+1
−1/2

𝐴𝑘𝐴𝑘+1
−1/2

𝑋 + 𝑌∗𝐵𝑘+1
−1/2

𝐵𝑘𝐵𝑘+1
−1/2

𝑌)𝐶1/2

 ≤ 𝐶1/2 (𝑋∗𝐹(𝐴𝑘+1
−1/2

𝐴1𝐴𝑘+1
−1/2

, … , 𝐴𝑘+1
−1/2

𝐴𝑘𝐴𝑘+1
−1/2

)𝑋

 + 𝑌∗𝐹(𝐵𝑘+1
−1/2

𝐵1𝐵𝑘+1
−1/2

, … , 𝐵𝑘+1
−1/2

𝐵𝑘𝐵𝑘+1
−1/2

)𝑌)𝐶1/2

 = 𝜆𝐴𝑘+1
1/2
𝐹(𝐴𝑘+1

−1/2
𝐴1𝐴𝑘+1

−1/2
, … , 𝐴𝑘+1

−1/2
𝐴𝑘𝐴𝑘+1

−1/2
)𝐴𝑘+1

1/2

 + (1 − 𝜆)𝐵𝑘+1
1/2
𝐹(𝐵𝑘+1

−1/2
𝐵1𝐵𝑘+1

−1/2
, … , 𝐵𝑘+1

−1/2
𝐵𝑘𝐵𝑘+1

−1/2
)𝐵𝑘+1

1/2

 = 𝜆𝒫𝐹(𝐴1, … , 𝐴𝑘+1) + (1 − 𝜆)𝒫𝐹(𝐵1, … , 𝐵𝑘+1),

 

where we used Jensen's inequality for regular mappings. 

Proposition (3.2.6)[142]: Let 𝐹:𝒟+
𝑘+1 → 𝐵(ℋ) be a convex and positively homogeneous 

regular mapping. Then 𝐹 is the perspective of its restriction 𝐺 to 𝒟+
𝑘 given by 

𝐺(𝐴1, … , 𝐴𝑘) = 𝐹(𝐴1, … , 𝐴𝑘 , 1) 
for positive invertible operators 𝐴1, … , 𝐴𝑘 acting on ℋ. 
Proof. Since 𝐹 is a convex and positively homogeneous regular mapping we may apply 

Proposition (3.2.3). Then by setting 𝐶 = 𝐴𝑘+1
−1/2

 we obtain 

𝐴𝑘+1
−1/2

𝐹(𝐴1, … , 𝐴𝑘, 𝐴𝑘+1)𝐴𝑘+1
−1/2

 = 𝐹(𝐴𝑘+1
−1/2

𝐴1𝐴𝑘+1
−1/2

, … , 𝐴𝑘+1
−1/2

𝐴𝑘𝐴𝑘+1
−1/2

, 1).
 

By rearranging this equation we obtain 

𝐹(𝐴1, … , 𝐴𝑘, 𝐴𝑘+1) = 𝐴𝑘+1
1/2
𝐺(𝐴𝑘+1

−1/2
𝐴1𝐴𝑘+1

−1/2
, … , 𝐴𝑘+1

−1/2
𝐴𝑘𝐴𝑘+1

−1/2
)𝐴𝑘+1

1/2
 

which is the statement to be proved. 

The result in the above proposition may be reformulated in the following way: The 

perspective 𝒫𝐺 of a convex regular mapping 𝐺:𝒟+
𝑘 → 𝐵(ℋ) is the unique extension of 𝐺 to 

a positively homogeneous convex regular mapping 𝐹:𝒟+
𝑘+1 → 𝐵(ℋ). 

We construct a sequence of multivariate geometric means 𝐺1, 𝐺2, … by the following 

general procedure. 

(i) We begin by setting 𝐺1(𝐴) = 𝐴 for each positive definite invertible operator 𝐴. 
(ii) To each geometric mean 𝐺𝑘 of 𝑘 variables we associate an auxiliary mapping 𝐹𝑘: 𝒟+

𝑘 →
𝐵(ℋ) such that 

(a) 𝐹𝑘 is a regular map, 

(b) 𝐹𝑘 is concave, 

(c) 𝐹𝑘(𝑡1, … , 𝑡𝑘) = (𝑡1⋯𝑡𝑘)
1/(𝑘+1) for positive numbers 𝑡1, … , 𝑡𝑘 . 

(iii) We define the geometric mean 𝐺𝑘+1: 𝒟+
𝑘+1 → 𝐵(ℋ) of 𝑘 + 1 variables as the 

perspective 

𝐺𝑘+1(𝐴1, … , 𝐴𝑘+1) = 𝒫𝐹𝑘(𝐴1, … , 𝐴𝑘+1) 

of the auxiliary map 𝐹𝑘 . 
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Geometric means defined by this very general procedure are concave and positively 

homogeneous regular mappings by Theorem (3.2.5) and the preceding remarks. They also 

satisfy 

𝐺𝑘(𝐴1, … , 𝐴𝑘) = (𝐴1⋯𝐴𝑘)
1
𝑘                                                     (25) 

for commuting operators. Indeed, since 𝐺𝑘 is the perspective of 𝐹𝑘−1 and this map satisfies 

(𝑐) in condition (𝑖𝑖), we obtain 𝐺𝑘(𝑡1, … , 𝑡𝑘) = (𝑡1⋯𝑡𝑘)
1/𝑘 for positive numbers. Equality 

(25) then follows since 𝐺𝑘 is regular. The geometric mean of two variables 

𝐺2(𝐴1, 𝐴2) = 𝐴2
1/2
(𝐴2

−1/2
𝐴1𝐴2

−1/2
)
1/2
𝐴2
1/2
                              (26) 

coincides with the geometric mean of two variables 𝐴1#𝐴2 introduced by Pusz and 

Woronowicz. This is so since 𝐺2 is the perspective of 𝐹1 and 𝐹1(𝐴) = 𝐴
1/2. The last 

statement is obtained since 𝐹1 is a regular mapping and satisfies 𝐹1(𝑡) = 𝑡
1/2 for positive 

numbers by (𝑐) in condition (𝑖𝑖). 
There are many ways to associate the auxiliary map 𝐹𝑘 in the above procedure, so we should 

not in general expect much similarity between the geometric means for different number of 

variables. 

We define the auxiliary mapping 𝐹𝑘: 𝒟+
𝑘 → 𝐵(ℋ) by setting 

𝐹𝑘(𝐴1, … , 𝐴𝑘) = 𝐺𝑘(𝐴1, … , 𝐴𝑘)
𝑘/(𝑘+1) 

for 𝑘 = 1,2,…. 

Theorem (3.2.7)[142]: The means 𝐺𝑘 constructed then have the following properties: 

(i) 𝐺𝑘: 𝒟+
𝑘 → 𝐵(ℋ)+is a regular map for each 𝑘 = 1,2,… 

(ii) 𝐺𝑘(𝑡𝐴1, … , 𝑡𝐴𝑘) = 𝑡𝐺𝑘(𝐴1, … , 𝐴𝑘) for 𝑡 > 0, (𝐴1, … , 𝐴𝑘) ∈ 𝒟+
𝑘 and 𝑘 = 1,2,…. 

(iii) 𝐺𝑘: 𝒟+
𝑘 → 𝐵(ℋ) is concave for each 𝑘 = 1,2,… 

(iv) 𝐺𝑘+1(𝐴1, … , 𝐴𝑘, 1) = 𝐺𝑘(𝐴1, … , 𝐴𝑘)
𝑘/(𝑘+1) for (𝐴1, … , 𝐴𝑘) ∈ 𝒟+

𝑘 and 𝑘 = 1,2,…. 
Any sequence of mappings �̃�𝑘 beginning with �̃�1(𝐴) = 𝐴 and satisfying the above 

conditions coincide with the means 𝐺𝑘 for 𝑘 = 1,2,…. 
Proof. Each map 𝐺𝑘 is for 𝑘 = 2,3,… the perspective of a regular map and this implies (𝑖) 
and (𝑖𝑖). The assertion of concavity for 𝐺1 is immediate. Suppose now 𝐺𝑘 is concave for 

some 𝑘. Since the map 𝑡 → 𝑡𝑝 is both operator monotone and operator concave for 0 ≤ 𝑝 ≤
1, we realise that the auxiliary mapping 

𝐹𝑘(𝐴1, … , 𝐴𝑘) = 𝐺𝑘(𝐴1, … , 𝐴𝑘)
𝑘/(𝑘+1) 

is concave, and since 𝐺𝑘+1 is the perspective of 𝐹𝑘 we then obtain by Theorem (3.2.5) that 

also 𝐺𝑘+1 is concave. Since the first map 𝐺1 is concave we have thus proved by induction 

that 𝐺𝑘 is concave for all 𝑘 = 1,2…. The last property (𝑖𝑣) follows since 𝐺𝑘+1 is the 

perspective of 𝐺𝑘
𝑘/(𝑘+1)

. 

Let finally �̃�𝑘 be a sequence of mappings satisfying (𝑖) to (𝑖𝑣). Since each �̃�𝑘+1 is concave 

and homogeneous it follows by Proposition (3.2.6) that �̃�𝑘+1 is the perspective of its 

restriction �̃�𝑘+1(𝐴1, … , 𝐴𝑘 , 1). Because of (𝑖𝑣) we then realise that �̃�𝑘+1 is the perspective 

of the map 

�̃�𝑘(𝐴1, … , 𝐴𝑘) = �̃�𝑘(𝐴1, … , 𝐴𝑘)
𝑘/(𝑘+1) 

constructed from �̃�𝑘. The �̃�𝑘 mappings are thus constructed by the same algorithm as the 

mappings 𝐺𝑘 for every 𝑘 ≥ 2, and since �̃�1 = 𝐺1 they must all coincide. 

In addition to the properties listed in the above theorem the means 𝐺𝑘 enjoy a number of 

other properties that we list below. 

Theorem (3.2.8)[142]: The means 𝐺𝑘 constructed have the following additional properties: 
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(i) The means 𝐺𝑘 are increasing in each variable for 𝑘 = 1,2…. 
(ii) The means 𝐺𝑘 are congruence invariant. For any invertible operator 𝐶 on ℋ the identity 

𝐺𝑘(𝐶
∗𝐴1𝐶,… , 𝐶

∗𝐴𝑘𝐶) = 𝐶
∗𝐺𝑘(𝐴1, … , 𝐴𝑘)𝐶 

holds for (𝐴1, … , 𝐴𝑘) ∈ 𝒟+
𝑘 and 𝑘 = 1,2,… 

(iii) The means 𝐺𝑘 are jointly homogeneous in the sense that 

𝐺𝑘(𝑡1𝐴1, … , 𝑡𝑘𝐴𝑘) = (𝑡1⋯𝑡𝑘)
1/𝑘𝐺𝑘(𝐴1, … , 𝐴𝑘) 

for scalars 𝑡1, … , 𝑡𝑘 > 0, operators (𝐴1, … , 𝐴𝑘) ∈ 𝒟+
𝑘 and 𝑘 = 1,2,… 

(iv) The means 𝐺𝑘 are self-dual in the sense that 

𝐺𝑘(𝐴1
−1, … , 𝐴𝑘

−1) = 𝐺𝑘(𝐴1, … , 𝐴𝑘)
−1

 for (𝐴1, … , 𝐴𝑘) ∈ 𝒟+
𝑘 and 𝑘 = 1,2,…

 

(v) When restricted to positive definite matrices the determinant identity 

det𝐺𝑘(𝐴1, … , 𝐴𝑘) = (det𝐴1⋯det𝐴𝑘)
1
𝑘 

holds for 𝑘 = 1,2…. 
Proof. The first property follows by the following standard argument for positive concave 

mappings. Consider positive definite invertible operators 𝐴𝑚 ≤ 𝐵𝑚 for 𝑚 = 1,… , 𝑘. By 

first assuming that the difference 𝐵𝑚 − 𝐴𝑚 is invertible we may take 𝜆 ∈ (0,1) and write 

𝜆𝐵𝑚 = 𝜆𝐴𝑚 + (1 − 𝜆)𝐶𝑚 𝑚 = 1,… , 𝑘, 
where 𝐶𝑚 = 𝜆(1 − 𝜆)

−1(𝐵𝑚 − 𝐴𝑚) is positive definite and invertible. By using concavity 

we then obtain 
𝐺𝑘(𝜆𝐵1, … , 𝜆𝐵𝑘)  ≥ 𝜆𝐺(𝐴1, … , 𝐴𝑘) + (1 − 𝜆)𝐺𝑘(𝐶1, … , 𝐶𝑘)

 ≥ 𝜆𝐺(𝐴1, … , 𝐴𝑘).
 

Letting 𝜆 → 1 we obtain 𝐺𝑘(𝐵1, … , 𝐵𝑘) ≥ 𝐺𝑘(𝐴1, … , 𝐴𝑘) by continuity. In the general case 

we choose 0 < 𝜇 < 1 such that 

𝜇𝐴𝑚 < 𝐴𝑚 ≤ 𝐵𝑚 𝑚 = 1,… , 𝑘 

and obtain 𝐺𝑘(𝜇𝐴1, … , 𝜇𝐴𝑘) ≤ 𝐺𝑘(𝐵1, … , 𝐵𝑘). By letting 𝜇 → 1 we then obtain 

𝐺𝑘(𝐴1, … , 𝐴𝑘) ≤ 𝐺𝑘(𝐵1, … , 𝐵𝑘) which shows (𝑖). 
Since 𝐺𝑘 is concave and homogeneous we obtain (𝑖𝑖) from Proposition (3.2.3). 
Property (𝑖𝑖𝑖) is immediate for 𝑘 = 1 and 𝑘 = 2. Suppose the property is verified for 𝑘, then 

𝐺𝑘+1(𝑡1𝐴1, … , 𝑡𝑘𝐴𝑘, 𝑡𝑘+1𝐴𝑘+1)

 = 𝑡𝑘+1𝐴𝑘+1
1/2
𝐹𝑘(𝑡1𝑡𝑘+1

−1 𝐴𝑘+1
−1/2

𝐴1𝐴𝑘+1
−1/2

, … , 𝑡𝑘𝑡𝑘+1
−1 𝐴𝑘+1

−1/2
𝐴𝑘𝐴𝑘+1

−1/2
)𝐴𝑘+1

1/2

 = 𝑡𝑘+1𝐴𝑘+1
1/2
𝐺𝑘(𝑡1𝑡𝑘+1

−1 𝐴𝑘+1
−1/2

𝐴1𝐴𝑘+1
−1/2

, … , 𝑡𝑘𝑡𝑘+1
−1 𝐴𝑘+1

−1/2
𝐴𝑘𝐴𝑘+1

−1/2
)
𝑘/(𝑘+1)

𝐴𝑘+1
1/2
.

 

By using the induction assumption we obtain 

𝐺𝑘+1(𝑡1𝐴1, … , 𝑡𝑘𝐴𝑘 , 𝑡𝑘+1𝐴𝑘+1)

 = 𝑡𝑘+1(𝑡𝑘+1
−1 𝑡1

1/𝑘
⋯𝑡𝑘

1/𝑘
)
𝑘/(𝑘+1)

𝐺𝑘+1(𝐴1, … , 𝐴𝑘, 𝐴𝑘+1)

 = (𝑡1⋯𝑡𝑘𝑡𝑘+1)
1/(𝑘+1)𝐺𝑘+1(𝐴1, … , 𝐴𝑘 , 𝐴𝑘+1)

 

which shows (𝑖𝑖𝑖). 
Property (𝑖𝑣) is immediate for 𝑘 = 1 and 𝑘 = 2. Suppose the property is verified for 𝑘, then 

𝐺𝑘+1(𝐴1
−1, … , 𝐴𝑘

−1, 𝐴𝑘+1
−1 )

 = 𝐴𝑘+1
−1/2

𝐹𝑘(𝐴𝑘+1
1/2
𝐴1
−1𝐴𝑘+1

1/2
, … , 𝐴𝑘+1

1/2
𝐴𝑘
−1𝐴𝑘+1

1/2
)𝐴𝑘+1

−1/2

 = 𝐴𝑘+1
−1/2

𝐺𝑘(𝐴𝑘+1
1/2
𝐴1
−1𝐴𝑘+1

1/2
, … , 𝐴𝑘+1

1/2
𝐴𝑘
−1𝐴𝑘+1

1/2
)
𝑘/(𝑘+1)

𝐴𝑘+1
−1/2

.

 

By using the induction assumption we obtain 
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𝐺𝑘+1(𝐴1
−1, … , 𝐴𝑘

−1, 𝐴𝑘+1
−1 )

 = 𝐴𝑘+1
−1/2

𝐺𝑘(𝐴𝑘+1
−1/2

𝐴1𝐴𝑘+1
−1/2

, … , 𝐴𝑘+1
−1/2

𝐴𝑘𝐴𝑘+1
−1/2

)
−𝑘/(𝑘+1)

𝐴𝑘+1
−1/2

 = (𝐴𝑘+1
1/2
𝐺𝑘(𝐴𝑘+1

−1/2
𝐴1𝐴𝑘+1

−1/2
, … , 𝐴𝑘+1

−1/2
𝐴𝑘𝐴𝑘+1

−1/2
)
𝑘/(𝑘+1)

𝐴𝑘+1
1/2
)
−1

 = 𝐺𝑘+1(𝐴1, … , 𝐴𝑘 , 𝐴𝑘+1)
−1

 

which shows (𝑖𝑣). 
Notice that since det 𝐴 = exp (Tr log 𝐴) for positive definite 𝐴, we have det 𝐴𝑝 = (det 𝐴)𝑝 

for all real exponents 𝑝. Property (𝑣) is easy to calculate for 𝑘 = 1 and 𝑘 = 2. Suppose the 

property is verified for 𝑘. Since as above 

𝐺𝑘+1(𝐴1, … , 𝐴𝑘, 𝐴𝑘+1)

 = 𝐴𝑘+1
1/2
𝐺𝑘(𝐴𝑘+1

−1/2
𝐴1𝐴𝑘+1

−1/2
, … , 𝐴𝑘+1

−1/2
𝐴𝑘𝐴𝑘+1

−1/2
)
𝑘/(𝑘+1)

𝐴𝑘+1
1/2  

we obtain 

det 𝐺𝑘+1(𝐴1, … , 𝐴𝑘 , 𝐴𝑘+1)

 = det 𝐴𝑘+1(det 𝐴𝑘+1
−1 det 𝐴1⋯det 𝐴𝑘+1

−1 det 𝐴𝑘)
1/(𝑘+1)

 = (det 𝐴1⋯det 𝐴𝑘 ⋅ det 𝐴𝑘+1)
1/𝑘+1

 

which shows (𝑣). 
Theorem (3.2.9)[142]: The geometric means 𝐺𝑘 are for 𝑘 = 1,2,… bounded between the 

symmetric harmonic and arithmetic means. That is, 
𝑘

𝐴1
−1 +⋯+ 𝐴𝑘

−1 ≤ 𝐺𝑘(𝐴1, … , 𝐴𝑘) ≤
𝐴1 +⋯+ 𝐴𝑘

𝑘
 

for arbitrary (𝐴1, … , 𝐴𝑘) ∈ 𝒟+
𝑘 and 𝑘 = 1,2,…. 

Proof. The upper bound holds with equality for 𝑘 = 1. Suppose that we have verified the 

inequality for 𝑘. Since by classical analysis 

𝑋𝑘/(𝑘+1) ≤ 1 +
𝑘

𝑘 + 1
(𝑋 − 1) 

for positive definite 𝑋, we obtain 

𝐹𝑘(𝐴1, … , 𝐴𝑘) = 𝐺𝑘(𝐴1, … , 𝐴𝑘)
𝑘/(𝑘+1) ≤ 1 +

𝑘

𝑘 + 1
(𝐺𝑘(𝐴1, … , 𝐴𝑘) − 1)

 ≤ 1 +
𝑘

𝑘 + 1
(
𝐴1 +⋯+ 𝐴𝑘

𝑘
− 1) =

𝐴1 +⋯+ 𝐴𝑘 + 1

𝑘 + 1
.

 

By taking perspectives we now obtain 

𝐺𝑘+1(𝐴1, … , 𝐴𝑘 , 𝐵) = 𝒫𝐹𝑘(𝐴1, … , 𝐴𝑘 , 𝐵)

 = 𝐵1/2𝐹𝑘(𝐵
−1/2𝐴1𝐵

−1/2, … , 𝐵−1/2𝐴𝑘𝐵
−1/2)𝐵1/2

 ≤ 𝐵1/2
𝐵−1/2𝐴1𝐵

−1/2 +⋯+ 𝐵−1/2𝐴𝑘𝐵
−1/2 + 1

𝑘 + 1
𝐵1/2 =

𝐴1 +⋯𝐴𝑘 + 𝐵

𝑘 + 1

 

which proves the upper bound by induction. We next use the upper bound to obtain 

𝐺𝑘(𝐴1
−1, … , 𝐴𝑘

−1) ≤
𝐴1
−1 +⋯+ 𝐴𝑘

−1

𝑘
. 

By inversion we then obtain 
𝑘

𝐴1
−1 +⋯+ 𝐴𝑘

−1 ≤ 𝐺𝑘(𝐴1
−1, … , 𝐴𝑘

−1)−1 = 𝐺𝑘(𝐴1, … , 𝐴𝑘), 
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where we in the last equation used self-duality of the geometric mean, 𝑐𝑓. property (𝑖𝑣) in 

Theorem (3.2.8). 

The means studied are known in the literature as the inductive means of Sagae and Tanabe 

[152]. By considering the power mean 

𝐴#𝑡𝐵 = 𝐵
1/2(𝐴−1/2𝐵𝐴−1/2)

𝑡
𝐵1/2 0 ≤ 𝑡 ≤ 1 

they established the recursive relation by setting 

𝐺𝑘+1(𝐴1, … , 𝐴𝑘+1) = 𝐺𝑘(𝐴1, … , 𝐴𝑘)#𝑘/(𝑘+1)𝐴𝑘+1. 

We established the harmonic-geometric-arithmetic mean inequality of Theorem (3.2.9). 
It is possible to prove the crucial concavity property (𝑖𝑖𝑖) in Theorem (3.2.7) by induction. 

It can be done without the general theory of perspectives of regular operator mappings, and 

it only requires the properties of an operator mean of two variables as studied by Kubo and 

Ando [149]. However, this is a special situation that only applies to the inductive means. 

The inductive geometric means are uniquely specified within the general framework 

discussed by choosing the updating condition (20), cf. property (iv) in Theorem (3.2.7). We 

may instead construct geometric means satisfying updating condition (21) by choosing the 

auxiliary map 

𝐹𝑘(𝐴1, … , 𝐴𝑘) = 𝐺𝑘 (𝐴1
𝑘/(𝑘+1)

, … , 𝐴𝑘
𝑘/(𝑘+1)

) 

for 𝑘 = 1,2… It is a small exercise to realise that these means satisfy all of the properties 

listed in Theorem (3.2.7), Theorem (3.2.8), and Theorem (3.2.9) with the only exception that 

condition (𝑖𝑣) in Theorem (3.2.7) is replaced by updating condition (21). Concavity of 

these means cannot be reduced to concavity of operator means of two variables but relies 

on the general theory of regular operator mappings and Theorem (3.2.5). 
The Karcher mean Λ𝑘(𝐴1, … , 𝐴𝑘) of 𝑘 positive definite invertible operator variables 

is defined as the unique positive definite solution to the equation 

∑ 

𝑘

𝑖=1

log (𝑋
1
2𝐴𝑖𝑋

1
2) = 0,                                                  (27) 

and it enjoys all of the attractive properties of an operator mean listed by Ando, 𝐿𝑖, and 

Mathias, 𝑐𝑓. [150]. The defining equation (27) immediately implies that the Karcher mean 

Λ𝑘: 𝒟+
𝑘 → 𝐵(ℋ) is a regular operator mapping, and it may therefore be understood within 

the general framework discussed by choosing the auxiliary map 

𝐹𝑘(𝐴1, … , 𝐴𝑘) = Λ𝑘+1(𝐴1, … , 𝐴𝑘 , 1). 
The problem, however, is that we do not have any explicit expression of 𝐹𝑘 in terms of Λ𝑘. 
Section (3.3): Complete Convergence and Complete Moment Convergence 

The Toeplitz lemma and its two corollaries (the Cesàro mean convergence theorem 

and the Kronecker lemma) are useful tools in the study of probability limit theorems. We 

spell out them in the following and their proofs may be found in [138]. 
Theorem (3.3.1)[153]: (Toeplitz lemma) Let {𝑎𝑛𝑘, 1 ≤ 𝑘 ≤ 𝑘𝑛, 𝑛 ≥ 1} be a double array 

of real numbers such that for any 𝑘 ≥ 1, lim𝑛→∞  𝑎𝑛𝑘 = 0 and sup𝑛≥1  ∑𝑘=1
𝑘‾𝑛  |𝑎𝑛𝑘| < ∞. Let 

{𝑥𝑛, 𝑛 ≥ 1} ba a sequence of real numbers. 

(i) If lim𝑛→∞  𝑥𝑛 = 0, then lim𝑛→∞  ∑𝑘=1
𝑘𝑛  𝑎𝑛𝑘𝑥𝑘 = 0. 

(ii) If lim𝑛→∞  𝑥𝑛 = 𝑥 ∈ 𝐑 and lim𝑛→∞  ∑𝑘=1
𝑘𝑛  𝑎𝑛𝑘 = 1, then lim𝑛→∞  ∑𝑘=1

𝑘𝑛  𝑎𝑛𝑘𝑥𝑘 = 𝑥. 
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Corollary (3.3.2)[153]: (Cesàro mean convergence theorem) Let {𝑥𝑛, 𝑛 ≥ 1} be a sequence 

of real numbers and let 𝑥‾𝑛 = ∑𝑘=1
𝑛  𝑥𝑘/𝑛, 𝑛 ≥ 1. If lim𝑛→∞  𝑥𝑛 = 𝑥 ∈ 𝐑, then lim𝑛→∞  𝑥‾𝑛 =

𝑥. 
Corollary (3.3.3)[153]: (Kronecker lemma) Let {𝑥𝑛, 𝑛 ≥ 1} and {𝑏𝑛 , 𝑛 ≥ 1} be sequences 

of real numbers such that 0 < 𝑏𝑛 ↑ ∞. If the series ∑𝑘=1
∞  𝑥𝑘/𝑏𝑘 converges, then 

lim𝑛→∞  
1

𝑏𝑛
∑𝑘=1
𝑛  𝑥𝑘 = 0. 

By the definition of almost sure (𝑎. 𝑠. ) convergence, we know that the Toeplitz lemma and 

its two corollaries (the Cesàro mean convergence theorem and the Kronecker lemma) still 

hold when the numerical sequence {𝑥𝑛, 𝑛 ≥ 1} and real number 𝑥 are replaced by a sequence 

of random variable {𝑋𝑛, 𝑛 ≥ 1} and a random variable 𝑋, respectively, and the limit is taken 

to be 𝑎. 𝑠. convergence. 

Recently, [131] showed among other things that "convergence in probability" versions of 

the Toeplitz lemma, the Cesàro mean convergence theorem and the Kronecker lemma can 

fail, and their "mean convergence" versions are true. 

We will give two examples to show that they can fail in general. Then we give some 

sufficient conditions for the Cesàro mean convergence theorem under complete 

convergence. 

For {𝑋, 𝑋𝑛, 𝑛 ≥ 1} be a sequence of random variables on some probability space (Ω, ℱ, 𝑃). 
If ∀𝜀 > 0, 

∑  

∞

𝑛=1

𝑃{|𝑋𝑛 − 𝑋| ≥ 𝜀} < ∞, 

then {𝑋𝑛, 𝑛 ≥ 1} is said to converge completely to 𝑋 (write 𝑋𝑛 ⟶
 c.c. 

𝑋, or 𝑋𝑛 → 𝑋 𝑐. 𝑐. for 

short). 

This concept was introduced by [168]. Let {𝑋, 𝑋𝑛, 𝑛 ≥ 1} be a sequence of independent and 

indentically distributed (𝑖. 𝑖. 𝑑. ) random variables and set 𝑆𝑛 = ∑𝑘=1
𝑛  𝑋𝑘 , 𝑛 ≥ 1. 

[168] proved that if 𝐸[𝑋] = 0 and 𝐸[𝑋2] < ∞, then 𝑆𝑛/𝑛 ⟶
c.c.
0. The converse was proved 

by [160], [161]. The Hsu-Robbins-Erdös theorem was generalized in various ways, see, 

[154], [165], [166], [172], [171], [181], [180], [167], and [158]. 

In view of the relations between convergence in probability and complete 

convergence, we introduce two classes of complete moment convergences, which are 

stronger versions of mean convergence. Let 𝑝 > 0. 

Definition (3.3.4)[153]: {𝑋𝑛, 𝑛 ≥ 1} is said to 𝑠 - 𝐿𝑝 converge to 𝑋 (denote 𝑋𝑛 ⟶
𝑠−𝐿𝑝

𝑋 for 

short), if 

∑  

∞

𝑛=1

𝐸[|𝑋𝑛 − 𝑋|
𝑝] < ∞. 

Definition (3.3.5)[153]: {𝑋𝑛, 𝑛 ≥ 1} is said to 𝑠∗  −  𝐿𝑝 converge to 𝑋 (denote 𝑋𝑛 ⟶
s∗−𝐿𝑝

𝑋 

for short), if 

∑ 

∞

𝑛=1

∥∥𝑋𝑛 − 𝑋∥∥𝑝 < ∞, 

where ∥∥𝑋𝑛 − 𝑋∥∥𝑝 = (𝐸[|𝑋𝑛 − 𝑋|
𝑝])1/𝑝. 
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Remark (3.3.6)[153]: (i) Obviously, if 𝑋𝑛 ⟶
𝑠−𝐿𝑝

𝑋 or 𝑋𝑛 ⟶
𝑠∗−𝐿𝑝

𝑋 for some 𝑝 > 0, then 

∥∥𝑋𝑛 − 𝑋∥∥𝑝 → 0. 

(ii) By Markov's inequality, we know that if 𝑋𝑛 ⟶
𝑠−𝐿𝑝

𝑋 for some 𝑝 > 0, then 𝑋𝑛 ⟶
𝑐.𝑐.
𝑋 and 

thus 𝑋𝑛 ⟶
𝑎.𝑠
𝑋 by the Borel-Cantelli lemma. 

(iii) If 𝑝 > 1 and 𝑋𝑛 ⟶
𝑠∗−𝐿𝑝

𝑋, then 𝑋𝑛 ⟶
𝑠−𝐿𝑝

𝑋; if 0 < 𝑝 < 1 and 𝑋𝑛 ⟶
𝑠−𝐿𝑝

𝑋, then 𝑋𝑛 ⟶
𝑠∗−𝐿𝑝

𝑋. 
[159] first investigated the complete moment convergence, and obtained the following 

result. Let {𝑋, 𝑋𝑛, 𝑛 ≥ 1} be a sequence of 𝑖. 𝑖. 𝑑. random variables with 𝐸[𝑋] = 0. Let 1 ≤
𝑝 < 2 and 𝛾 ≥ 𝑝. If 𝐸[|𝑋|𝛾 + |𝑋|log (1 + |𝑋|)] < ∞, then 

∑ 

𝑛≥1

𝑛
2
𝑝
−2−

1
𝑝𝐸 [(|𝑆𝑛| − 𝜀𝑛

1
𝑝)

+

] < ∞ for all 𝜀 > 0, (28) 

where 𝑥+ = max{0, 𝑥}. 
Chow's result has been generalized in various directions. [182], [183], [155], [164], [179], 

[185], and [177] studied complete moment convergence for sums of Banach space valued 

random elements. 

[174], [157], [170], and [187] considered complete moment convergence for moving 

average processes. [169], [173], [176], [185], [162], [188], and [156] studied precise 

asymptotics for complete moment convergence. [184], [175], and [163] considered 

complete moment convergence for negatively associated random variables. 𝑄𝑖𝑢 and Chen 

[177] studied complete moment convergence for 𝑖. 𝑖. 𝑑. random variables, and extended two 

results in [167] to complete moment convergence. 

Example (3.3.7)[153]: Let {𝑋𝑛, 𝑛 ≥ 1} be a sequence of random variables with 

sup𝑖≥1  𝐸[|𝑋𝑖|] ≤ 𝐶 for some positive constant 𝐶. Then for any 𝛼 > 1, we have 
𝑆𝑛

𝑛2(ln 𝑛)𝑎
⟶
𝑠−𝐿1

0. In fact, 

∑  

∞

𝑛=1

𝐸 [|
𝑆𝑛

𝑛2(ln 𝑛)𝛼
|] ≤ ∑  

∞

𝑛=1

1

𝑛2(ln 𝑛)𝛼
∑ 

𝑛

𝑘=1

𝐸[|𝑋𝑖|] ≤ 𝐶∑  

∞

𝑛=1

1

𝑛(ln 𝑛)𝛼
< ∞. 

Example (3.3.8)[153]: Let {𝑋𝑛, 𝑛 ≥ 1} be a sequence of pairwise uncorrelated random 

variables with sup𝑖≥1  Var (𝑋𝑖) ≤ 𝐶 for some positive constant 𝐶, where Var (𝑋𝑖) stands for 

the variance of 𝑋𝑖 . 

Then for any 𝛼 > 1, we have 
𝑆𝑛−𝐸[𝑆𝑛]

𝑛3/2(ln 𝑛)𝛼
⟶
𝑠∗−𝐿2

0. In fact, 

∑  

∞

𝑛=1

 
∥
∥
∥𝑆𝑛 − 𝐸[𝑆𝑛]

𝑛3/2(ln 𝑛)𝛼∥
∥
∥

2

 = ∑  

∞

𝑛=1

 
1

𝑛3/2(ln 𝑛)𝛼
(Var (𝑆𝑛))

1/2

 = ∑  

∞

𝑛=1

 
1

𝑛3/2(ln 𝑛)𝛼
(∑  

𝑛

𝑘=1

 Var (𝑋𝑖))

1/2

 ≤ √𝐶∑  

∞

𝑛=1

 
1

𝑛(ln 𝑛)𝛼
< ∞.

 

We consider "𝑠 − 𝐿𝑝 convergence " versions and " s∗ − 𝐿𝑝 convergence " versions 

of the Toeplitz lemma, the Cesàro mean convergence theorem and the Kronecker lemma. 

Four counterexamples will be given to show that they can fail in general. Some sufficient 
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conditions for the Cesàro mean convergence theorem under these two complete moment 

convergences will be presented. 

We will construct two counterexamples to show that "complete convergence " 
versions of the Toeplitz lemma, the Cesarro mean convergence theorem and the Kronecker 

lemma can fail in general. 

The next example shows that complete convergence version of the Cesàro mean 

convergence theorem fails. 

Example (3.3.9)[153]: Suppose that {𝑋𝑛, 𝑛 ≥ 1} is a sequence of independent random 

variables such that 𝑃(𝑋𝑛 = 𝑛) =
1

𝑛2
, 𝑃(𝑋𝑛 = 0) = 1 −

1

𝑛2
. For any 𝜀 > 0, we have 

∑  

∞

𝑛=1

𝑃(|𝑋𝑛 − 0| ≥ 𝜀) = ∑  

∞

𝑛=1

𝑃(𝑋𝑛 = 𝑛) = ∑  

∞

𝑛=1

1

𝑛2
< ∞, 

𝑖. 𝑒. 𝑋𝑛 → 0 𝑐. 𝑐. Let 𝑋‾𝑛 =
1

𝑛
∑𝑘=1
𝑛  𝑋𝑘, 𝑛 ≥ 1. In the following, we will show that 𝑋‾𝑛 ↛ 0 𝑐. 𝑐. 

Let 𝑛 = 2𝑘, 𝑘 ≥ 2 and define 𝑘 sets 𝐴1, ⋯ , 𝐴𝑘 as follows: 
𝐴1 ∶= {𝑋2𝑘 = 2𝑘},

𝐴2 ∶= {𝑋2𝑘 = 0, 𝑋2𝑘−1 = 2𝑘 − 1},

 ⋯
𝐴𝑘 ∶= {𝑋2𝑘 = 0,⋯ , 𝑋𝑘+2 = 0, 𝑋𝑘+1 = 𝑘 + 1}.

 

Then we have ⋃𝑖=1
𝑘  𝐴𝑖 ⊂ {𝑋‾𝑛 ≥

1

2
}, and thus 

𝑃 (𝑋‾𝑛 ≥
1

2
) ≥∑  

𝑘

𝑖=1

 𝑃(𝐴𝑖)

=
1

(2𝑘)2
+ (1 −

1

(2𝑘)2
)

1

(2𝑘 − 1)2
+⋯+∏ 

𝑘

𝑗=2

 (1 −
1

(𝑘 + 𝑗)2
)

1

(𝑘 + 1)2

≥∏ 

𝑘

𝑗=2

 (1 −
1

(𝑘 + 𝑗)2
) ∑  

2𝑘

𝑖=𝑘+1

 
1

𝑖2
.

 Denote 𝐼𝑘 =∏ 

𝑘

𝑗=2

 (1 −
1

(𝑘 + 𝑗)2
) . Then 

𝐼𝑘 =
(2𝑘 + 1)(2𝑘 − 1)

(2𝑘)2
2𝑘(2𝑘 − 2)

(2𝑘 − 1)2
⋯
(𝑘 + 4)(𝑘 + 2)

(𝑘 + 3)2
(𝑘 + 3)(𝑘 + 1)

(𝑘 + 2)2

 =
(2𝑘 + 1)(𝑘 + 1)

2𝑘(𝑘 + 2)
→ 1 as 𝑘 → ∞.

 

Thus there exists a large number 𝐾 such that for any 𝑘 ≥ 𝐾, we have 𝐼𝑘 ≥
1

2
. So, for any 

𝑛 = 2𝑘 ≥ 2𝐾, we have 

𝑃 (𝑋‾𝑛 ≥
1

2
) ≥ 𝐼𝑘 ∑  

2𝑘

𝑖=𝑘+1

1

𝑖2
≥
1

2
∑  

2𝑘

𝑖=𝑘+1

1

(2𝑘)2
=
1

8𝑘
. 

It follows that 

∑  

∞

𝑛=1

𝑃 (𝑋‾𝑛 ≥
1

2
) ≥ ∑  

∞

𝑘=𝐾

1

8𝑘
= ∞. 
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Hence 𝑋‾𝑛 ↛ 0 𝑐. 𝑐. 
Example (3.3.10)[153]: Let {𝑌𝑛, 𝑛 ≥ 1} be a sequence of independent random variables 

such that 𝑃(𝑌𝑛 = 16
𝑛−1) =

1

𝑛2
, 𝑃(𝑌𝑛 = 0) = 1 −

1

𝑛2
. Denote 𝑋2𝑛−1 = 𝑌𝑛, 𝑋2𝑛 =

−2𝑌𝑛, 𝑛 ≥ 1. Then for any 𝑛 ≥ 1, we have 
𝑋2𝑛−1
22𝑛−1

+
𝑋2𝑛
22𝑛

= 0.                                                                    (29) 

By the above definitions, for any 𝜀 > 0, we have 

∑  

∞

𝑛=1

𝑃(|𝑋𝑛 − 0| ≥ 𝜀) ≤ 2∑  

∞

𝑛=1

1

𝑛2
< ∞, 

and thus 𝑋𝑛 → 0 𝑐. 𝑐. By (29), we know that ∑𝑘=1
𝑛  

𝑋𝑘

2𝑘
=
𝑋𝑛

2𝑛
𝐼(𝑛 is odd ). Hence ∑𝑘=1

𝑛  
𝑋𝑘

2𝑘
→

0 𝑐. 𝑐. 

In the following, we will show that 
1

2𝑛
∑𝑘=1
𝑛  𝑋𝑘 → 0 𝑐. 𝑐. It's enough to show one of its 

subsequence 

1

24𝑛
∑ 

4𝑛

𝑘=1

𝑋𝑘 ↛ 0 c.c.                                                (30) 

For any odd integer 𝑘, 
𝑋𝑘 + 𝑋𝑘+1 = 𝑋𝑘 − 2𝑋𝑘 = −𝑋𝑘 . 

Thus, for any 𝑛 ≥ 1, 

1

22𝑛
∑ 

2𝑛

𝑘=1

𝑋𝑘 = −
1

22𝑛
∑ 

𝑛

𝑘=1

𝑋2𝑘−1. 

And so (30) can be expressed to be 

1

16𝑛
∑ 

2𝑛

𝑘=1

𝑋2𝑘−1 ↛ 0 c.c.                                                               (31) 

For 𝑘 = 𝑛 + 1,⋯ ,2𝑛, we have 

𝑃(𝑋2𝑘−1 = 16
𝑘−1) = 𝑃(𝑌𝑘 = 16

𝑘−1) =
1

𝑘2
, 𝑃(𝑋2𝑘−1 = 0) = 𝑃(𝑌𝑘 = 0) = 1 −

1

𝑘2
.  (32) 

Define 𝑛 sets 𝐴1, ⋯ , 𝐴𝑛 as follows: 

𝐴1 ∶= {𝑋2(2𝑛)−1 = 16
2𝑛−1},

𝐴2 ∶= {𝑋2(2𝑛)−1 = 0, 𝑋2(2𝑛−1)−1 = 16
(2𝑛−1)−1},

 …
𝐴𝑛 ∶= {𝑋2(2𝑛)−1 = 0,⋯ , 𝑋2(𝑛+2)−1 = 0, 𝑋2(𝑛+1)−1 = 16

𝑛}.

 

Then ⋃𝑘=1
𝑛  𝐴𝑘 ⊂ {|

1

16𝑛
∑𝑘=1
2𝑛  𝑋2𝑘−1 − 0| ≥ 1}, and thus 

𝑃 {|
1

16𝑛
∑ 

2𝑛

𝑘=1

 𝑋2𝑘−1 − 0| ≥ 1} ≥ ∑  

𝑛

𝑘=1

 𝑃(𝐴𝑘)

 =
1

(2𝑛)2
+ (1 −

1

(2𝑛)2
)

1

(2𝑛 − 1)2
+⋯+∏ 

𝑛

𝑗=2

 (1 −
1

(𝑛 + 𝑗)2
) ⋅

1

(𝑛 + 1)2
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≥∏ 

𝑛

𝑗=2

 (1 −
1

(𝑛 + 𝑗)2
) ⋅ ∑  

2𝑛

𝑘=𝑛+1

 
1

𝑘2
.                                                                           (33) 

By (33) and following the deduction in Example (3.3.9), we can obtain that 

∑ 

∞

𝑛=1

𝑃 {|
1

16𝑛
∑ 

2𝑛

𝑘=1

 𝑋2𝑘−1 − 0| ≥ 1} = ∞, 

𝑖. 𝑒. (31) holds. 

Proposition (3.3.11)[153]: Let {𝑋1, 𝑋2, ⋯ } be pairwise uncorrelated random variables 

satisfying 

∑  

∞

𝑛=1

Var (𝑋𝑛)

𝑛𝛼
< ∞,                                                               (34) 

where 𝛼 > 0, then for any 𝜀 > 0, 

∑  

∞

𝑛=1

𝑛1−𝛼𝑃 {|
𝑆𝑛 − 𝐸(𝑆𝑛)

𝑛
| ≥ 𝜀} < ∞.                                               (35) 

If {𝑋1, 𝑋2, ⋯ } is a sequence of independent random variables satisfying (34), then for any 

𝜀 > 0, 

∑ 

∞

𝑛=1

𝑛1−𝛼𝑃 { max
1≤𝑘≤𝑛

 |𝑆𝑘 − 𝐸(𝑆𝑘)| ≥ 𝑛𝜀} < ∞.                                (36) 

Proof. For any 𝜀 > 0, by Chebyshev's inequality and (34), we get 

 ∑  

∞

𝑛=1

 𝑛1−𝛼𝑃 {|
𝑆𝑛 − 𝐸(𝑆𝑛)

𝑛
| ≥ 𝜀} ≤ ∑  

∞

𝑛=1

 𝑛1−𝛼
Var (𝑆𝑛)

(𝑛𝜀)2

 =
1

𝜀2
∑  

∞

𝑛=1

 
1

𝑛1+𝛼
∑ 

𝑛

𝑘=1

 Var (𝑋𝑘)

 =
1

𝜀2
∑ 

∞

𝑘=1

 Var (𝑋𝑘)∑  

∞

𝑛=𝑘

 
1

𝑛1+𝛼

 ≤
𝑀

𝜀2
∑ 

∞

𝑘=1

 
Var(𝑋𝑘)

𝑘𝛼
< ∞,                                                                                            (37)

 

where 𝑀 is a positive constant. Hence (35) holds. By Kolmogorov's inequality and the 

deduction of (37), we get (36). 
Corollary (3.3.12)[153]: Let {𝑋1, 𝑋2, ⋯ } be pairwise uncorrelated random variables 

satisfying ∑𝑛=1
∞  

Var (𝑋𝑛)

𝑛
< ∞, and 𝐸(𝑋𝑛) → 0. Then 

𝑆𝑛

𝑛
→ 0 𝑐. 𝑐. 

Proof. In this case, 
𝐸(𝑆𝑛)

𝑛
=
∑𝑘−1
𝑛  𝐸(𝑋𝑘)

𝑛
→ 0. Then the result follows from 

Proposition (3.3.11). 
We will construct four counterexamples to show that s − 𝐿1 convergence versions 

and 𝑠∗ − 𝐿2 convergence versions of the Toeplitz lemma, the Cesàro mean convergence 

theorem and the Kronecker lemma can fail in general. 

The next example shows that s- 𝐿1 convergence versions of the Cesàro mean convergence 

theorem and the Toeplitz lemma fail. 
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Example (3.3.13)[153]: Let {𝑋𝑛, 𝑛 ≥ 1} be a sequence of random variables such that 

𝑃(𝑋𝑛 = 𝑛) =  
1

𝑛3
, 𝑃(𝑋𝑛 = 0) = 1 −

1

𝑛3
. Then we have 𝐸[|𝑋𝑛|] =

1

𝑛2
 and thus 

∑  

∞

𝑛=1

𝐸[|𝑋𝑛|] = ∑  

∞

𝑛=1

1

𝑛2
< ∞, 

𝑖. 𝑒. 𝑋𝑛 ⟶
𝑠−𝐿1

0. 

Let 𝑋‾𝑛 =
1

𝑛
∑𝑘=1
𝑛  𝑋𝑘 , 𝑛 ≥ 1. Then 

𝐸[|𝑋‾𝑛|] =
1

𝑛
∑  

𝑛

𝑘=1

𝐸[|𝑋𝑘|] =
1

𝑛
∑  

𝑛

𝑘=1

1

𝑘2
. 

Since ∑𝑘=1
∞  

1

𝑘2
=
𝜋2

6
, there exists a large 𝑁 such that ∀𝑛 ≥ 𝑁,∑𝑘=1

𝑛  
1

𝑘2
≥
𝜋2

12
. Hence 

∑  

∞

𝑛=1

𝐸[|𝑋‾𝑛|] ≥ ∑  

∞

𝑛=𝑁

1

𝑛
⋅
𝜋2

12
= ∞, 

and so it doesn't hold that 𝑋‾𝑛 ⟶
𝑠−𝐿1

0. 
The next example shows that 𝑠 − 𝐿1 convergence version of the Kronecker lemma fails. The 

basic idea comes from Linero and Rosalsky [23]. 
Example (3.3.14)[153]: Let {𝑌𝑛, 𝑛 ≥ 1} be a sequence of independent random variables 

such that 𝑃(𝑌𝑛 = 𝑛) =
1

𝑛2(ln 𝑛)1+𝛼
, 𝑃(𝑌𝑛 = 0) = 1 −

1

𝑛2(ln 𝑛)1+𝑎
, 𝛼 > 0. Denote 𝑋2𝑛−1 =

(2𝑛 − 1)𝑌𝑛, 𝑋2𝑛 = −2𝑛𝑌𝑛, 𝑛 ≥ 

1. Then for any 𝑛 ≥ 1, we have 
𝑋2𝑛−1
2𝑛 − 1

+
𝑋2𝑛
2𝑛

= 0.                                                (38) 

By (38), we know that ∑𝑘=1
𝑛  

𝑋𝑘

𝑘
=
𝑋𝑛

𝑛
𝐼(𝑛 is odd ). If 𝑛 = 2𝑘 − 1, then we have 

𝐸[|𝑋𝑛/𝑛|] = 𝐸[|𝑌𝑘|] =
1

𝑘(ln 𝑘)1+𝛼
, 

which implies that 

∑  

∞

𝑛=1

𝐸 [|∑  

𝑛

𝑘=1

 
𝑋𝑘
𝑘
|] = ∑  

∞

𝑘=1

1

𝑘(ln 𝑘)1+𝛼
< ∞, 

𝑖. 𝑒. ∑𝑘=1
𝑛  

𝑋𝑘
𝑘
⟶
𝑠−𝐿1

0. 

In the following, we will show that 
1

𝑛
∑𝑘=1
𝑛  𝑋𝑘 →

𝑠−𝐿1

0. It's enough to show one of its 

subsequence 

1

2𝑛
∑  

2𝑛

𝑘=1

𝑋𝑘 ↛
 𝑠−𝐿
1

0.                                                              (39) 

For any integer 𝑘, we have 𝑋2𝑘−1 + 𝑋2𝑘 = −𝑌𝑘. Thus (39) can be expressed to be 

1

2𝑛
∑  

𝑛

𝑘=1

𝑌𝑘 ↔
𝑠−𝐿1

0.                                                              (40) 

By the Fubini theorem, we have 
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∑  

∞

𝑛=1

 𝐸 [|
1

2𝑛
∑  

𝑛

𝑘=1

 𝑌𝑘|]  = ∑  

∞

𝑛=1

 
1

2𝑛
∑  

𝑛

𝑘=1

 𝐸[𝑌𝑘] = ∑  

∞

𝑛=1

 
1

2𝑛
∑  

𝑛

𝑘=1

 
1

𝑘(ln 𝑘)1+𝛼

 = ∑  

∞

𝑘=1

 
1

𝑘(ln 𝑘)1+𝛼
∑  

∞

𝑛=𝑘

 
1

2𝑛
= ∞.

 

Hence (40) holds. 

The next example shows that 𝑠∗ − 𝐿2 convergence versions of the Cesàro mean convergence 

theorem and the Toeplitz lemma fail. 

Example (3.3.15)[153]: Let {𝑋𝑛, 𝑛 ≥ 1} be a sequence of random variables such that 

𝑃(𝑋𝑛 = √𝑛) =  
1

𝑛5
, 𝑃(𝑋𝑛 = 0) = 1 −

1

𝑛5
. Then we have 𝐸[|𝑋𝑛|

2] =
1

𝑛4
 and thus 

∑  

𝑛

𝑛=1

∥∥𝑋𝑛∥∥2 =∑  

∞

𝑛=1

(
1

𝑛4
)

1
2
= ∑  

∞

𝑛=1

1

𝑛2
< ∞, 

𝑖. 𝑒. 𝑋𝑛 ⟶
𝑠∗−𝐿2

0. 

Let 𝑋‾𝑛 =
1

𝑛
∑𝑘=1
𝑛  𝑋𝑘 , 𝑛 ≥ 1. Then 

𝐸[|𝑋‾𝑛|
2]  =

1

𝑛2
(∑  

𝑛

𝑘=1

 𝐸[|𝑋𝑘|
2] + 2 ∑  

1≤𝑖<𝑗≤𝑛

 𝐸[𝑋𝑖𝑋𝑗])

 ≥
1

𝑛2
∑ 

𝑛

𝑘=1

 𝐸[|𝑋𝑘|
2] =

1

𝑛2
∑ 

𝑛

𝑘=1

 
1

𝑘4
.

 

Denote 𝑐 = ∑𝑘=1
∞  

1

𝑘4
. Then 𝑐 is a positive constant and there exists a large 𝑁 such that ∀𝑛 ≥

 𝑁,∑𝑘=1
𝑛  

1

𝑘4
≥
𝑐

2
. It follows that 

∑  

∞

𝑛=1

∥∥𝑋‾𝑛∥∥2 ≥ ∑  

∞

𝑛=𝑁

(
1

𝑛2
⋅
𝑐

2
)

1
2
= √

𝑐

2
∑  

∞

𝑛=𝑁

1

𝑛
= ∞. 

Hence it doesn't hold that 𝑋‾𝑛 →
𝑠∗−𝐿2

0. 
Following Examples (3.3.14) and (3.3.15), we construct the following example, which 

shows that s∗ − 𝐿2 convergence version of the Kronecker lemma fails. 

Example (3.3.16)[153]: Let {𝑌𝑛, 𝑛 ≥ 1} be a sequence of independent random variables 

such that 𝑃(𝑌𝑛 = √𝑛) =
1

𝑛5
, 𝑃(𝑌𝑛 = 0) = 1 −

1

𝑛5
. Denote 𝑋2𝑛−1 = (2𝑛 − 1)𝑌𝑛, 𝑋2𝑛 =

−2𝑛𝑌𝑛, 𝑛 ≥ 1. Then for any 𝑛 ≥ 1, we have 
𝑋2𝑛−1
2𝑛 − 1

+
𝑋2𝑛
2𝑛

= 0.                                                               (41) 

By (41), we know that ∑𝑘=1
𝑛  

𝑋𝑘

𝑘
=
𝑋𝑛

𝑛
𝐼(𝑛 is odd ). If 𝑛 = 2𝑘 − 1, then we have 

∥∥𝑋𝑛/𝑛∥∥2 = ∥∥𝑌𝑘∥∥2 =
1

𝑘2
. 

Hence 

∑ 

∞

𝑛=1 ∥
∥
∥
∥
∑  

𝑛

𝑘=1

 
𝑋𝑘
𝑘 ∥
∥
∥
∥

2

=∑  

∞

𝑘=1

∥∥𝑌𝑘∥∥2 =∑  

∞

𝑘=1

1

𝑘2
< ∞, 
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𝑖. 𝑒. ∑𝑘=1
𝑛  

𝑋𝑘
𝑘

⟶
𝑠∗−𝐿2

0. 

In the following, we will show that 
1

𝑛
∑𝑘=1
𝑛  𝑋𝑘 ↛

𝑠∗−𝐿2

0. It's enough to show one of its 

subsequence 

1

2𝑛
∑  

2𝑛

𝑘=1

𝑋𝑘 ↛
𝑠∗−𝐿2

0.                                                (42) 

For any integer 𝑘, we have 𝑋2𝑘−1 + 𝑋2𝑘 = −𝑌𝑘. Thus (42) can be expressed to be 

1

2𝑛
∑  

𝑛

𝑘=1

𝑌𝑘 ↛
𝑠∗−𝐿2

0.                                                              (43) 

Denote 𝑐 = ∑𝑘=1
∞  

1

𝑘4
. Then 0 < 𝑐 < ∞, and there exists 𝑁 such that for any 𝑛 ≥ 𝑁, we have 

∑𝑘=1
𝑛  

1

𝑘𝑑
≥
𝑐

2
. Hence we have 

∑  

∞

𝑛=1

 
∥
∥
∥
∥ 1

2𝑛
∑  

𝑛

𝑘=1

 𝑌𝑘
∥
∥
∥
∥

2

 = ∑  

∞

𝑛=1

 
1

2𝑛
(∑  

𝑛

𝑘=1

 𝐸[𝑌𝑘
2] + 2 ∑  

1≤𝑖<𝑗≤𝑛

 𝐸[𝑌𝑖𝑌𝑗])

1/2

 ≥ ∑  

∞

𝑛=1

 
1

2𝑛
(∑  

𝑛

𝑘=1

 𝐸[𝑌𝑘
2])

1/2

= ∑  

∞

𝑛=1

 
1

2𝑛
(∑  

𝑛

𝑘=1

 
1

𝑘4
)

1/2

 ≥ ∑  

∞

𝑛=𝑁

 
1

2𝑛
(∑  

𝑛

𝑘=1

 
1

𝑘4
)

1/2

 ≥ ∑  

∞

𝑛=𝑁

 
1

2𝑛
√
𝑐

2
= ∞.

 

Hence (43) holds. 

 By Example (3.3.13), we know that, if ∑𝑛=1
∞  𝐸[|𝑋𝑛|

𝑝] < ∞, then we don't have 

∑𝑛=1
∞  𝐸[|𝑆𝑛/𝑛|

𝑝] < ∞ necessarily. In general, we have the following result. 

Proposition (3.3.17)[153]: Suppose that 1 ≤ 𝑝 < ∞ and ∑𝑛=1
∞  𝐸[|𝑋𝑛|

𝑝] < ∞, then ∀𝜀 > 0, 
we have 

∑  

∞

𝑛=1

1

(ln 𝑛)1+𝜀
𝐸[|𝑆𝑛/𝑛|

𝑝] < ∞. 

Proof. By the convexity of the function 𝑓(𝑥) = |𝑥|𝑝, we have 

∑  

∞

𝑛=1

 
1

(ln 𝑛)1+𝜀
𝐸[|𝑆𝑛/𝑛|

𝑝]  ≤ ∑  

∞

𝑛=1

 
1

𝑛(ln 𝑛)1+𝜀
(∑  

𝑛

𝑘=1

 𝐸[|𝑋𝑘|
𝑝])

 ≤ (∑  

∞

𝑘=1

 𝐸[|𝑋𝑘|
𝑝])∑  

∞

𝑛=1

 
1

𝑛(ln 𝑛)1+𝜀
< ∞.

 

Proposition (3.3.18)[153]: Let {𝑋1, 𝑋2, ⋯ } be pairwise uncorrelated random variables 

satisfying ∑𝑛=1
∞  Var (𝑋𝑛) < ∞, then for any 1 < 𝑞 ≤ 2, we have 

∑  

∞

𝑛=1

𝐸 [|
𝑆𝑛 − 𝐸(𝑆𝑛)

𝑛
|

𝑞

] < ∞, 
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in particular, 
𝑆𝑛−𝐸(𝑆𝑛)

𝑛
→ 0 𝑐. 𝑐. 

Proof. By the assumptions, we have 

∑  

∞

𝑛=1

 𝐸 [|
𝑆𝑛 − 𝐸(𝑆𝑛)

𝑛
|]

𝑞

] = ∑  

∞

𝑛=1

 (
∥
∥
∥𝑆𝑛 − 𝐸(𝑆𝑛)

𝑛 ∥
∥
∥

𝑞
)

𝑞

≤∑  

∞

𝑛=1

 (
∥
∥
∥𝑆𝑛 − 𝐸(𝑆𝑛)

𝑛 ∥
∥
∥

2
)

𝑞

=∑  

∞

𝑛=1

 
1

𝑛𝑞
(∑  

𝑛

𝑖=1

 Var (𝑋𝑖))

𝑞/2

≤∑  

∞

𝑛=1

 
1

𝑛𝑞
(∑  

∞

𝑖=1

 Var(𝑋𝑖))

𝑞
2

< ∞. 

By Example (3.3.15), we know that, if ∑𝑛=1
∞  ∥∥𝑋𝑛∥∥𝑝 < ∞, then we don't have ∑𝑛=

∞   ∥
∥𝑆𝑛
𝑛 ∥
∥
𝑝
<

∞ necessarily. In general, we have the following two propositions. 

Proposition (3.3.19)[153]: Suppose that 1 ≤ 𝑝 < ∞ and ∑𝑛=1
∞  ∥∥𝑋𝑛∥∥𝑝 < ∞, then ∀𝜀 > 0, 

we have 

∑  

∞

𝑛=1

1

(ln 𝑛)1+𝑒
∥∥𝑆𝑛/𝑛∥∥𝑝 < ∞.                                                (44) 

Proof. By Minkowski's inequality and the definition of the norm ∥⋅∥𝑝, we have that 

∥∥𝑆𝑛/𝑛∥∥𝑝 ≤
1

𝑛
(∑  

𝑛

𝑘=1

  ∥∥𝑋𝑘∥∥𝑝). 

Then we can prove (44) by following the proof of Proposition (3.3.17). 
Proposition (3.3.20)[153]: Suppose that 1 < 𝑝 < ∞ and ∑𝑛=1

∞  ∥∥𝑋𝑛∥∥𝑝 < ∞, then for any 1 <

𝑞 ≤ 𝑝, we have 

∑  

∞

𝑛=1

𝐸[|𝑆𝑛/𝑛|
𝑞] < ∞, 

in particular, 𝑆𝑛/𝑛 → 0 𝑐. 𝑐. 
Proof. By the fact that ∥⋅∥𝑞≤∥⋅∥𝑝, Minkowski's inequality and the assumption, we have 

∑  

∞

𝑛=1

 𝐸[|𝑆𝑛/𝑛|
𝑞]  = ∑  

∞

𝑛=1

 (∥∥𝑆𝑛/𝑛∥∥𝑞)
𝑞
≤∑  

∞

𝑛=1

 (∥∥𝑆𝑛/𝑛∥∥𝑝)
𝑞

 ≤ ∑  

∞

𝑛=1

 (
∑  𝑛
𝑘=1   ∥∥𝑋𝑘∥∥𝑝

𝑛
)

𝑞  

 = ∑  

∞

𝑛=1

 
1

𝑛𝑞
(∑  

𝑛

𝑘=1

  ∥∥𝑋𝑘∥∥𝑝)

𝑞

 ≤ (∑  

∞

𝑘=1

  ∥∥𝑋𝑘∥∥𝑝)

𝑞

∑  

∞

𝑛=1

 
1

𝑛𝑞
< ∞.

 

Proposition (3.3.21)[153]: Suppose that ∑𝑛=1
∞  ∥∥𝑋𝑛∥∥∞ < ∞. Then 

(i) for any 𝜀 > 0, we have 

∑  

∞

𝑛=1

1

(ln 𝑛)1+𝑒
∥∥𝑆𝑛/𝑛∥∥∞ < ∞;                                               (45) 

(ii) for any 1 < 𝑞 < ∞, we have 
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∑  

∞

𝑛=1

𝐸[|𝑆𝑛/𝑛|
𝑞] < ∞, 

in particular, 𝑆𝑛/𝑛 → 0 𝑐. 𝑐. 
Proof. (i) By the definition of the norm ∥⋅∥∞, we have that 

∥∥𝑆𝑛/𝑛∥∥∞ ≤
1

𝑛
(∑  

𝑛

𝑘=1

  ∥∥𝑋𝑘∥∥∞) .  

Then we can prove (45) by following the proof of Proposition (3.3.17). 
(ii) It's a direct consequence of Proposition (3.3.20) by noting that for any 1 < 𝑝 < ∞ and 

any random variable 𝑋, ∥ 𝑋 ∥𝑝≤∥ 𝑋 ∥∞. 
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Chapter 4 

Monotone Geometric Mean and K�̈�hler Means 

 

We show that the cost of our approach in term of arithmetic operations for m matrices 

is of the order 𝑂(𝑚𝑛2). This definition preserves the structure, is simple to calculate, 

preserves monotonicity and satisfies some other Ando–Li–Mathias properties. A 

generalization of the mean towards PD (Toeplitz-block) block-Toeplitz matrices is 

discussed. For PD Toeplitz-block block-Toeplitz matrices, we derive the generalized 

barycenter, or generalized Kähler mean, and a greedy approximation. This approximation 

is shown to be close to the generalized mean with a significantly lower computational cost. 

The proposed definition preserves the structure of the matrices and satisfies some important 

Ando– Li–Mathias properties, such as monotonicity and continuity. Also, it has low cost 

and is simple to calculate. 

Section (4.1): A Class of Toeplitz Matrices 

The notion of geometric mean for positive definite matrices naturally appears in 

several areas, for instance in radar detection [40], [48], image processing [195] and 

elasticity tensor analysis [10]. 𝐴 definition of geometric mean of three or more positive 

definite matrices has been defined by M. Moakher [17] and 𝑅. Bhatia, 𝐽. Holbrook [3], [5]. 

This is usually identified with Karcher mean. 𝑇. Ando, 𝐶. 𝐿𝑖 and 𝑅. Mathias in [2] have 

introduced a definition of geometric mean and have shown some of its properties, called the 

Ando-𝐿𝑖-Mathias (𝐴𝐿𝑀) axioms. These properties should be required for any reasonable 

notion of geometric mean of the matrices. There is a rich of the geometric means of matrices 

and methods for computing them, see [190], [191], [36] and the references in [191], [36]. 

But there are also many unsolved problems in this field yet. The Karcher mean does not 

preserve structures, for example the Karcher mean of two Toeplitz matrices is not 

necessarily a Toeplitz matrix. 𝐷. 𝐴. Bini 𝑒𝑡 𝑎𝑙. in [191] have introduced a definition of 

geometric mean for structured matrices. This definition satisfies many of the 

𝐴𝐿𝑀 properties except monotonicity. Moreover, this method can not guarantee uniqueness 

of the structured geometric mean. 

We consider only the Toeplitz matrices. 𝐴 Toeplitz matrix is a matrix in which entries 

along their diagonals are constant. These matrices have many applications in a wide variety 

of problems in engineering. For positive definite Toeplitz matrices, there is the interesting 

notion of mean based on Kähler metric [22], [23] which is not a geometric mean, but satisfies 

some desirable properties such as permutation invariance and repetition invariance. This 

mean, called Kähler metric mean, does not coincide with Karcher mean but with this manner 

the mean of two positive definite Toeplitz matrices will be a Toeplitz matrix again. 

Unfortunately, the Kähler metric mean is not monotonic. 

We introduce a new definition of geometric mean for a class of Toeplitz matrices. 

This approach is an operator theoretical approach as follows. For every 𝑛 × 𝑛 Toeplitz 

matrix 

A =

[
 
 
 
 
𝑎0 𝑎1 ⋯ 𝑎𝑛−1
𝑎−1 𝑎0 𝑎1 ⋯

⋮ ⋱ ⋮
⋱ 𝑎1

𝑎−𝑛+1 ⋯ 𝑎−1 𝑎0 ]
 
 
 
 

, 
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we consider the function 𝑎: 𝕋 ⟶ ℂ, where 𝕋 = {𝑡 ∈ ℂ: |𝑡| = 1} is the unit circle in the plane 

by definition 𝑎(𝑡) = ∑𝑘=−𝑛+1
𝑛−1  𝑎𝑘𝑡

𝑘 for all 𝑡 ∈ 𝕋. Now, let 𝑀(𝑎) ∈ ℒ(𝐿∞(𝕋)) be the 

multiplication operator associated to the function 𝑎, 𝑖. 𝑒. ,𝑀(𝑎)𝑓 = 𝑎𝑓 for all 𝑓 ∈ 𝐿∞(𝕋). 
In fact 𝑀(𝑎) is a Laurent operator with the so-called 'symbol' function 𝑎, see [194] 

and (1) below. We denote the cone of all positive semi-definite 𝑛 × 𝑛 Toeplitz matrices 

with non-negative symbols by 𝒯𝑛
++, see (4) and the Lemma (4.1.6). We introduce a new 

definition of geometric mean on 𝒯𝑛
++which satisfies among other properties, the 

monotonicity property in the ordering induced by the cone 𝒯𝑛
++, see (5) and 

Theorem (4.1.8). Comparing to the other approaches, our proposed definition admits some 

important advantages: low cost in terms of arithmetic operations, simple calculations, 

structure preserving and monotonicity. Moreover, we do not use the non-singularity of 

matrices, 𝑒. 𝑔., the zero matrix belongs to 𝒯𝑛
++. 

We state some basic definitions and theorems and then we define the geometric mean 

for Laurent operators. We introduce the main idea and explain some properties. We show 

numerical experiments and some comparisons between our proposed geometric mean, the 

structured geometric mean [191] and the Kähler metric mean [191], [22], [23]. 

The Laurent operators form a commutative ∗-algebra of bounded operators act on a 

Hilbert space as follows. First, We to recall some standard notions and notations. Let 𝕋 =

{𝑒𝑖𝜃 ∣ 𝜃 ∈ ℝ} be the unit circle in the complex number plane. For each complex-valued 

Lebesgue measurable map 𝑓: 𝕋 → ℂ and each 1 ≤ 𝑝 < +∞, let ∥ 𝑓 ∥𝑝=

(
1

2𝜋
∫
0

2𝜋
 |𝑓(𝑒𝑖𝜃)|

𝑝
𝑑𝜃)

1

𝑝
 and ∥ 𝑓 ∥∞= inf{𝑀 > 0||𝑓(𝑒𝑖𝜃) ∣< 𝑀 for 𝑎. 𝑒. 𝜃 ∈ ℝ}. 

As usual, the spaces 𝐿𝑝: = 𝐿𝑝(𝕋) = {𝑓 ∣∥ 𝑓 ∥𝑝< +∞} with norm ∥⋅∥𝑝 are Banach 

spaces for all 1 ≤ 𝑝 ≤ +∞. Since T has finite Lebesgue measure we have 𝐿𝑟 ⊂ 𝐿𝑠 when 

1 ≤ 𝑠 ≤ 𝑟 ≤ +∞. In the case 𝑝 = 2, 𝐿2 equipped whit the inner product 

(𝑓, 𝑔) =
1

2𝜋
∫  
2𝜋

0

𝑓(𝑒𝑖𝜃)𝑔(𝑒𝑖𝜃)̅̅ ̅̅ ̅̅ ̅̅ ̅𝑑𝜃 

for 𝑓, 𝑔 ∈ 𝐿2 is a Hilbert space. 

Given 𝑓 ∈ 𝐿1, we define its Fourier coefficients {𝑓𝑛} by 𝑓𝑛 =
1

2𝜋
∫
0

2𝜋
 𝑓(𝑒𝑖𝜃)𝑒−𝑖𝑛𝜃𝑑𝜃 

for all 𝑛 ∈ ℤ. Notice that 𝑓 ∈ 𝐿2 if and only if ∑𝑛∈ℤ  |𝑓𝑛|
2 < ∞. If we define the functions 𝜒𝑛 

by 𝜒𝑛(𝑡) = 𝑡
𝑛 for 𝑛 ∈ ℤ and 𝑡 ∈ 𝕋, then {𝜒𝑛}𝑛∈ℤ is an orthogonal basis for 𝐿2, see [192]. 

For each 𝑎 ∈ 𝐿∞ and each 1 < 𝑝 < +∞ the operator 𝑀(𝑎): 𝐿𝑝 → 𝐿𝑝 defined by 𝑓 ⟼ 𝑎𝑓, 
is bounded and ∥ 𝑀(𝑎) ∥ℒ(𝐿𝑝)=∥ 𝑎 ∥∞ where ℒ(𝐿𝑝) is the Banach algebra of all bounded 

operators on 𝐿𝑝. The operator 𝑀(𝑎) is called the multiplication operator on 𝐿𝑝 generated by 

the function 𝑎 ∈ 𝐿∞ and 𝑎 is called the symbol function of 𝑀(𝑎). 

From the definitions, it is obvious that (𝑀(𝑎)𝜒𝑗, 𝜒𝑘) = 𝑎𝑘−𝑗 is the (𝑘 − 𝑗) − 𝑡ℎ 

Fourier coefficients of 𝑎, see [192]. The following proposition shows that the converse is 

also true. 

Proposition (4.1.1)[189]: ([192]) Let 𝐴 ∈ ℒ(𝐿𝑝)(1 < 𝑝 < ∞) and suppose there is a 

sequence {𝑎𝑛}𝑛∈ℤ of complex numbers such that (𝐴𝜒𝑗 , 𝜒𝑘) = 𝑎𝑘−𝑗 . Then there is an 𝑎 ∈ 𝐿∞ 

such that 𝐴 = 𝑀(𝑎) and {𝑎𝑛} is the Fourier coefficient sequence of 𝑎. 
Moreover, 

∥ 𝑀(𝑎) ∥ℒ(𝐿𝑝)=∥ 𝑎 ∥∞. 
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The proof of the following lemma is straightforward. The definition of Laurent operators 

are introduced in this lemma. 

Lemma (4.1.2)[189]: The multiplication operator 𝑀: 𝐿∞ → ℒ(𝐿2) is a linear positive 

isometry from 𝐿∞ to ℳ = {𝑀(𝑎) ∣ 𝑎 ∈ 𝐿∞} the space of Laurent operators then the 

following properties hold: 

i) 𝑀(𝑎𝑏) = 𝑀(𝑎)𝑀(𝑏) for all 𝑎, 𝑏 ∈ 𝐿∞, hence the space of Laurent operators ℳ is 𝑎 

commutative algebra. 

ii) 𝑀(𝑎‾) = 𝑀(𝑎)∗ for all 𝑎 ∈ 𝐿∞. 
iii) The operator 𝑀(𝑎) is a positive semi-definite operator if and only if 𝑎 ∈ 𝐿∞ and 𝑎 ≥
0 𝑎. 𝑒. 
iv) The operator 𝑀(𝑎) is invertible in ℒ(𝐿2) if and only if 𝑎 ∈ 𝐿∞ and a is away from zero, 

𝑖. 𝑒. , |𝑎| > 𝜖 𝑎. 𝑒. for some 𝜖 > 0. 
v) 𝑀(|𝑎|) = |𝑀(𝑎)| for all 𝑎 ∈ 𝐿∞. 

vi) 𝑀( √𝑎
𝑚

) = √𝑀(𝑎)
𝑚

 when 𝑚 ∈ ℕ, 𝑎 ∈ 𝐿∞ and 𝑎 ≥ 0 𝑎. 𝑒. 
If we express the multiplication operator 𝑀(𝑎) generated by 𝑎 ∈ 𝐿∞ via Fourier coefficients, 

we have the following infinite dimensional matrix representation 

𝑀(𝑎) =

[
 
 
 
 
 
⋱
⋯ 𝑎0 𝑎−1 ⋯
⋯ 𝑎1 𝑎0 𝑎−1 𝑎−2 𝑎−3 ⋯

⋱ ⋱ ⋱
⋯ 𝑎2 𝑎1 𝑎0 𝑎−1 ⋯

⋮ ⋱ ⋱ ⋱ ]
 
 
 
 
 

. 

We denote the class of all positive semi-definite multiplication operators by ℳ+, 𝑖. 𝑒., 

ℳ+ = {𝑀(𝑎) ∣ 𝑎 ∈ 𝐿∞ and 𝑎 ≥ 0 a.e. }. 
The following definition naturally motivated by Lemma (4.1.2). 
Definition (4.1.3)[189]: Let 𝑛 ∈ ℕ and 𝑀(𝑎1),𝑀(𝑎2),⋯ ,𝑀(𝑎𝑛) ∈ ℳ

+.The geometric 

mean of these operators defined by 

𝐺(𝑀(𝑎1),⋯ ,𝑀(𝑎𝑛)): = 𝑀 ((𝑎1⋯𝑎𝑛)
1

𝑛
). 

We will show that this definition satisfies many of the Ando-𝐿𝑖-Mathias (𝐴𝐿𝑀) axioms in 

[2] for operators in ℳ+. In the following properties, we assume that all operators are in 

ℳ+and all scalars are non-negative reals. 

∎ If 𝑎1 = 𝑎2 = ⋯ = 𝑎𝑛 =: 𝑎 then by definition 

𝐺(𝑀(𝑎1),⋯ ,𝑀(𝑎𝑛)) = 𝑀(𝑎). 
∎ Joint homogeneity. Since multiplication operators are linear, we have 

𝐺(𝛼1𝑀(𝑎1),⋯ , 𝛼𝑛𝑀(𝑎𝑛))  = 𝐺(𝑀(𝛼1𝑎1),⋯ ,𝑀(𝛼𝑛𝑎𝑛))

 = 𝑀 ((𝛼1…𝛼𝑛)
1
𝑛(𝑎1⋯𝑎𝑛)

1

𝑛
)

 = (𝛼1…𝛼𝑛)

1
𝑛
𝑀
((𝑎1⋯𝑎𝑛)

1

𝑛
)

 = (𝛼1…𝛼𝑛)
1

𝑛
𝐺(𝑀(𝑎1),⋯ ,𝑀(𝑎𝑛)).

 

∎ Permutation invariance. For any permutation 𝜋 of {1,2, … , 𝑛}, obviously we have 
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𝐺(𝑀(𝑎1),⋯ ,𝑀(𝑎𝑛)) = 𝐺 (𝑀(𝑎𝜋(1)),⋯ ,𝑀(𝑎𝜋(𝑛))). 

∎ Monotonicity. Since the operator 𝑀 is positive, see Lemma (4.1.2) (𝑖𝑖𝑖), if 𝑀(𝑎𝑗) ≥

𝑀(𝑎𝑗
′) for 𝑗 = 1,⋯ , 𝑛 then 

𝐺(𝑀(𝑎1),⋯ ,𝑀(𝑎𝑛)) ≥ 𝐺(𝑀(𝑎1
′ ),⋯ ,𝑀(𝑎𝑛

′ )). 

∎ Continuity from above. If the sequences {𝑀(𝑎𝑘,𝑛)}𝑛∈ℕ converge to the operators 𝑀(𝑎𝑘) 

for each 𝑘 = 1,⋯ ,𝑚, respectively, 𝑖. 𝑒. , ∥∥𝑀(𝑎𝑘,𝑛) − 𝑀(𝑎𝑘)∥∥ℒ(𝐿2) → 0 as 𝑛 → +∞, then 

∥
∥𝐺 (𝑀(𝑎1,𝑛),⋯ ,𝑀(𝑎𝑚,𝑛)) − 𝐺(𝑀(𝑎1),⋯ ,𝑀(𝑎𝑚))∥

∥
ℒ(𝐿2)

→ 0, 

as 𝑛 → +∞. 
∎ Joint concavity. Again by linearity of multiplication operators, for each 0 < 𝜆 < 1 we 

have 

𝐺 (𝜆𝑀(𝑎1) + (1 − 𝜆)𝑀(𝑏1), 𝜆𝑀(𝑎2) + (1 − 𝜆)𝑀(𝑏2),⋯ , 𝜆𝑀(𝑎𝑛) + (1 − 𝜆)𝑀(𝑏𝑛))

 ≥ 𝜆𝐺(𝑀(𝑎1),⋯ ,𝑀(𝑎𝑛)) + (1 − 𝜆)𝐺(𝑀(𝑏1),⋯ ,𝑀(𝑏𝑛)).
 

∎ Self-duality. By Lemma (4.1.2)(i) and (𝑖𝑣), for invertible operators, we have 

𝐺(𝑀(𝑎1),⋯ ,𝑀(𝑎𝑛))
−1

 = 𝑀 ((𝑎1⋯𝑎𝑛)
1

𝑛
)

−1

 = 𝑀 ((𝑎1
−1⋯𝑎𝑛

−1)
1

𝑛
)

 = 𝐺(𝑀(𝑎1)
−1, ⋯ ,𝑀(𝑎𝑛)

−1).

 

∎The arithmetic-geometric-harmonic mean inequality. For 𝑛 ≥ 1 and 𝑎1, ⋯ , 𝑎𝑛 ≥ 0, we 

have 

(𝑎1⋯𝑎𝑛)
1
𝑛 ≤

𝑎1 +⋯+ 𝑎𝑛
𝑛

. 

So by Definition (4.1.3) and linearity of multiplication operators, we have 

𝐺(𝑀(𝑎1),⋯ ,𝑀(𝑎𝑛)) ≤
𝑀(𝑎1) + ⋯+𝑀(𝑎𝑛)

𝑛
. 

Combine this by self-duality property and the fact that for each two positive invertible 

operators 𝑇, 𝑆 we have 𝑇 ≤ 𝑆 if and only if 𝑆−1 ≤ 𝑇−1, we will have 

(
𝑀(𝑎1)

−1 +⋯+𝑀(𝑎𝑛)
−1

𝑛
)

−1

≤ 𝐺(𝑀(𝑎1),⋯ ,𝑀(𝑎𝑛)) ≤
𝑀(𝑎1) + ⋯+𝑀(𝑎𝑛)

𝑛
, 

where 𝑎1, ⋯ , 𝑎𝑛 are assumed to be away from zero. 

We introduce a concept of geometric mean for a cone of positive semi-definite 

Toeplitz matrices. Let 

𝐴 = [

𝑎0 𝑎1 ⋯ 𝑎𝑛−1
𝑎‾1 𝑎0 ⋯ ⋮

⋮ ⋱
𝑎‾𝑛−1 ⋯ 𝑎0

], 

be a Hermitian Toeplitz matrix with complex entries. The symbol of 𝐴 is a function 𝑎 ∈ 𝐿∞ 

defined by 

𝑎(𝑒𝑖𝜃) = 𝑎0 +∑  

𝑛−1

𝑘=1

(𝑎𝑘𝑒
𝑖𝑘𝜃 + 𝑎‾𝑘𝑒

−𝑖𝑘𝜃),  (𝜃 ∈ ℝ).                      (1) 

In fact, by letting 𝑎−𝑘: = 𝑎‾𝑘 for 𝑘 = 1,2,⋯ , 𝑛 − 1, and 𝑎𝑘 = 0 for |𝑘| ≥ 𝑛 we can write 
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𝑎(𝑡) = ∑  

+∞

𝑘=−∞

𝑎𝑘𝜒𝑘(𝑡),  (𝑡 ∈ 𝕋), 

where {𝜒𝑘}𝑘∈ℤ by definition 𝜒𝑘(𝑡) = 𝑡
𝑘 , (𝑡 ∈ 𝕋), is the standard basis of 𝐿2. Moreover the 

function 𝑎 is the symbol of the following Toeplitz operator [192], [194], 

𝑇𝐴 = [

𝑎0 𝑎1 𝑎2 ⋯
𝑎−1 𝑎0 𝑎1 ⋯

𝑎−2 ⋯

⋮ ⋱

]. 

Even if the Toeplitz matrix 𝐴 is positive semi-definite the associated Toeplitz operator 𝑇𝐴 

may not be (positive) semi-definite operator. For example the matrix 𝐴 = [
3 2
2 3

] is a 2 × 2 

positive definite Toeplitz matrix but its associated Toeplitz operator 

𝑇𝐴 = [

3 2 0 0 0 ⋯
2 3 2 0 0 ⋯
0 2 3 2 0 ⋯
⋮ ⋱ ⋮

] 

is not a positive semi-definite operator, to see this let 𝜉 = ∑𝑘=1
+∞  (−1)𝑘𝛼𝑘−1𝜒𝑘 for any 𝛼 ∈

(
3

4
, 1), then we have 

⟨𝑇𝐴𝜉, 𝜉⟩  = 3∑  

+∞

𝑘=1

 𝛼2𝑘−2 − 4∑  

+∞

𝑘=1

 𝛼2𝑘−1

 =
3 − 4𝛼

1 − 𝛼2
< 0.

 

In fact, the symbol function of this matrix 𝐴 is 𝑎(𝑒𝑖𝜃) = 3 + 4cos 𝜃, (𝜃 ∈ ℝ), which is not 

a positive function. In order to use the theory of positive semi-definite Laurent operators to 

define the geometric mean which satisfies the monotonicity property, we consider only those 

positive semi-definite Toeplitz matrices whose symbols are non-negative functions. 

We are going to specify a class of positive semi-definite Toeplitz matrices with nonnegative 

symbols. For each 𝑛 ∈ ℕ, let 𝑉𝑛 be the n-dimensional vector subspace of 𝐿2 generated by 

the set {𝜒0, 𝜒1, ⋯ , 𝜒𝑛−1}. The inclusion map 𝜄𝑛: 𝑉𝑛 → 𝐿2 and the orthogonal projection map 

𝜋𝑛: 𝐿
2 → 𝑉𝑛 are well-defined linear operators that ∥∥𝜄𝑛∥∥ = ∥∥𝜋𝑛∥∥ = 1 (see [193], Theorem 

2.7), note that 𝑉𝑛 is a closed subspace of the Hilbert space 𝐿2. Now for each 𝑎 ∈ 𝐿∞ the 

associated multiplication operator 𝑀(𝑎): 𝐿2 → 𝐿2 is a Laurent operator, so one can define 

the linear transformation 𝜋𝑛 ∘ 𝑀(𝑎) ∘ 𝑡𝑛: 𝑉𝑛 → 𝑉𝑛. The matrix representation of 𝜋𝑛 ∘ 𝑀(𝑎) ∘
𝐿𝑛 in the ordered basis {𝜒0, 𝜒1, ⋯ , 𝜒𝑛−1} is denoted by 𝑇𝑛(𝑎). By a simple calculation, we 

have 

𝑇𝑛(𝑎) = [

𝑎0 𝑎1 ⋯ 𝑎𝑛−1
𝑎−1 𝑎0 ⋮

⋮ ⋱ 𝑎1
𝑎−𝑛+1 ⋯ 𝑎−1 𝑎0

] 

where 

𝑎𝑘 =< 𝑎, 𝜒𝑘 >=
1

2𝜋
∫  
2𝜋

0

𝑎(𝑒𝑖𝜃)𝑒−𝑖𝑘𝜃𝑑𝜃,  (𝑘 ∈ ℤ), 

are the Fourier coefficients of 𝑎. 
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Lemma (4.1.4)[189]: If 𝑎 ∈ 𝐿∞, 𝑎 ≥ 0 𝑎. 𝑒. and 𝑛 ∈ ℕ then the matrix 𝑇𝑛(𝑎) is a positive 

semi-definite 𝑛 × 𝑛 Toeplitz matrix but the converse is not true. 

Proof. Using the notation 𝜒𝑘(𝑡) = 𝑡
𝑘 where 𝑘 ∈ ℤ and 𝑡 = 𝑒𝑖𝜃 ∈ 𝕋, 𝜃 ∈ ℝ, we can write 

𝑓 = ∑  

𝑛−1

𝑘=0

𝑓𝑘𝑡
𝑘 ∈ 𝑉𝑛 

and 

𝑎 = ∑  

+∞

𝑘=−∞

𝑎𝑘𝑡
𝑘 ∈ 𝐿∞                                                 (2) 

as two polynomials on variable 𝑡 ∈ 𝕋 where 𝑓𝑘  ′𝑠 and 𝑎𝑘 ′𝑠 are complex numbers. Now, we 

have 

𝑎𝑓 = ∑  

+∞

𝑘=−∞

(∑  

𝑛−1

𝑗=0

 𝑓𝑗𝑎𝑘−𝑗) 𝑡
𝑘 

and 
𝜋𝑛 ∘ 𝑀(𝑎) ∘ 𝜄𝑛(𝑓)  = 𝜋𝑛(𝑎𝑓)

 = ∑  

𝑛−1

𝑘=0

 (∑  

𝑛−1

𝑗=0

 𝑓𝑗𝑎𝑘−𝑗) 𝑡
𝑘.

 

Recall that 𝑡‾ = 𝑡−1 when 𝑡 ∈ 𝕋, so 𝑓‾ = ∑𝑚=0
𝑛−1  𝑓‾𝑚𝑡

−𝑚 . Notice that if 𝑝(𝑡) =
∑𝑘=−∞
+∞  𝛼𝑘𝑡

𝑘, (𝑡 ∈ 𝕋), and 𝑝 ∈ 𝐿1 then 

1

2𝜋
∫  
2𝜋

0

 𝑝(𝑒𝑖𝜃)𝑑𝜃  = 𝛼0

 =  the constant term of 𝑝.

 

Therefore 

< 𝜋𝑛 ∘ 𝑀(𝑎) ∘ 𝜄(𝑓), 𝑓 >  =
1

2𝜋
∫  
2𝜋

0

 𝜋𝑛(𝑎𝑓)(𝑒
𝑖𝜃)𝑓(𝑒𝑖𝜃)̅̅ ̅̅ ̅̅ ̅̅ 𝑑𝜃

 =  the constant term of 𝜋𝑛(𝑎𝑓)𝑓‾

 = ∑  

𝑛−1

𝑘=0

 ∑  

𝑛−1

𝑗=0

 𝑓‾𝑘𝑓𝑗𝑎𝑘−𝑗 .

   (3) 

In the other hand 

|𝑓(𝑡)|2 = 𝑓(𝑡)𝑓(𝑡)̅̅ ̅̅ ̅̅ = ∑  

𝑛−1

𝑗=0

∑  

𝑛−1

𝑘=0

𝑓‾𝑘𝑓𝑗𝑡
𝑗−𝑘 , 

using (2), we have 

1

2𝜋
∫  
2𝜋

0

 𝑎(𝑒𝑖𝜃)|𝑓(𝑒𝑖𝜃)|
2
𝑑𝜃  =  the constant term of 𝑎|𝑓|2

 = ∑  

𝑛−1

𝑘=0

 ∑  

𝑛−1

𝑗=0

 𝑓‾𝑘𝑓𝑗𝑎𝑘−𝑗 ,

 

which equals (3), so 
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< 𝜋𝑛 ∘ 𝑀(𝑎) ∘ 𝜄(𝑓), 𝑓 >=
1

2𝜋
∫  
2𝜋

0

𝑎(𝑒𝑖𝜃)|𝑓(𝑒𝑖𝜃)|
2
𝑑𝜃 ≥ 0 

whenever 𝑎 ≥ 0 𝑎. 𝑒. Hence, we just prove that the linear transformation 𝜋𝑛 ∘ 𝑀(𝑎) ∘ 𝜄(𝑓) 
and its matrix, 𝑇𝑛(𝑎), are positive semi-definite. 

The converse does not valid, 𝑒. 𝑔., the Toeplitz matrix 𝐴 = [
3 2
2 3

], which is mentioned 

before, is positive definite and 𝐴 = 𝑇𝑛(𝑎) where 𝑎(𝑒𝑖𝜃) = 3 + 4cos 𝜃, but 𝑎 ≱ 0. Now, we 

introduce the following sets 

𝒯𝑛 = The set of all 𝑛 × 𝑛 Toeplitz matrices, 

𝒯𝑛
+ = {𝐴 ∈ 𝒯𝑛 ∣ 𝐴 is positive semi-definite },                                             (4) 

𝒯𝑛
++ = {𝐴 ∈ 𝒯𝑛 ∣ the symbol of 𝐴 is a non-negative function }. 

Notice that by the Lemma (4.1.4), we have 𝒯𝑛
++ ⫋ 𝒯𝑛

+. 
Now, we summarize the above discussion in the following corollary (𝑐𝑓. Theorem 9.3 in 

[194]). 

Corollary (4.1.5)[189]: For any natural number 𝑛 ∈ ℕ, the map 𝑇𝑛: 𝐿
∞ → 𝒯𝑛 is a surjective 

linear operator and 

𝒯𝑛
++ = {𝑇𝑛(𝑎) ∣ 𝑎 ∈ 𝐿

∞, 𝑎 ≥ 0 a.e. }. 
The following lemma shows that there are many matrices in 𝒯𝑛

++. 
Lemma (4.1.6)[189]: Let 𝑛 ∈ ℕ, 𝑎0 ∈ ℝ and 𝑎1, ⋯ , 𝑎𝑛−1 ∈ ℂ be such that 

𝑎0 ≥ 2∑  

𝑛−1

𝑘=0

|𝑎𝑘|, 

then 

𝐴 = [

𝑎0 𝑎1 ⋯ 𝑎𝑛−1
𝑎‾1 𝑎0
⋮ ⋱ ⋮

𝑎‾𝑛−1 ⋯ 𝑎0

] ∈ 𝒯𝑛
++. 

Proof. We have 𝐴 = 𝑇𝑛(𝑎), where 

𝑎(𝑒𝑖𝜃) = 𝑎0 +∑  

𝑛−1

𝑘=1

(𝑎𝑘𝑒
𝑖𝑘𝜃 + 𝑎‾𝑘𝑒

−𝑖𝑘𝜃),  𝜃 ∈ ℝ. 

So we have to prove that 𝑎 ≥ 0, 𝑎. 𝑒. by the Corollary (4.1.5). But we have 

𝑎(𝑒𝑖𝜃)  = 𝑎0 + 2∑  

𝑛−1

𝑘=1

 Re (𝑎𝑘𝑒
𝑖𝑘𝜃)

 ≥ 𝑎0 − 2∑  

𝑛−1

𝑘=1

  |𝑎𝑘𝑒
𝑖𝑘𝜃|

 = 𝑎0 − 2∑  

𝑛−1

𝑘=1

  |𝑎𝑘| ≥ 0,

 

by our assumption. 

The converse of the Lemma (4.1.6) is not valid. For example, let 

𝐴 = [
19 6 9
6 19 6
9 6 19

] 
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then 𝐴 is a positive definite Toeplitz matrix with symbol 𝑎(𝑒𝑖𝜃) = 19 + 12cos (𝜃) +

 18cos (2𝜃) ≥ 0, but  

Notice that the set 𝒯𝑛
++is a cone of positive semi-definite Toeplitz matrices, 𝑖. 𝑒. , 𝐴 + 𝐵 ∈

𝒯𝑛
++when 𝐴, 𝐵 ∈ 𝒯𝑛

++and 𝛼𝐴 ∈ 𝒯𝑛
++when 𝐴 ∈ 𝒯𝑛

++, 𝛼 ≥ 0. Hence, the cone 𝒯𝑛
++naturally 

induces an order, we denote it by ≺, as follows: for any 𝐴, 𝐵 ∈ 𝒯𝑛
++we define 

𝐴 ≺ 𝐵 ⟺ 𝐵 − 𝐴 ∈ 𝒯𝑛
++.                                                      (5) 

Note that since 𝒯𝑛
++ ⊂ 𝒯𝑛

+, 𝐴 ≺ 𝐵 implies 𝐴 ≤ 𝐵. But the converse is not true, 𝑒. 𝑔., let 𝐴 =

[
1 0
0 1

] and 𝐵 = [
4 2
2 4

], then 𝐴, 𝐵 ∈ 𝒯𝑛
++but 𝐵 − 𝐴 = [

3 2
2 3

] ∈ 𝒯𝑛
+ ∖ 𝒯𝑛

++, 𝑖. 𝑒. , 𝐴 ≤ 𝐵 but 

𝐴 ⊀ 𝐵. Now we can introduce the main definition. 

Definition (4.1.7)[189]: Given 𝑚,𝑛 ≥ 1 and 𝐴1, 𝐴2, ⋯ , 𝐴𝑚 ∈ 𝒯𝑛
++and let 𝑎1, ⋯ , 𝑎𝑚 ∈ 𝐿

∞ 

be their symbols, respectively. The geometric mean of 𝐴1, ⋯ , 𝐴𝑚 is defined by the Toeplitz 

matrix 

𝐺(𝐴1, ⋯ , 𝐴𝑚) = 𝑇𝑛 ((𝑎1⋯𝑎𝑚)
1
𝑚). 

In the following theorem we collect some properties which are satisfied by this definition. 

Theorem (4.1.8)[189]: Let 𝑚 ≥ 1, 𝐴1, ⋯ , 𝐴𝑚 , 𝐵1, ⋯𝐵𝑚 ∈ 𝒯𝑛
++and 𝛼1, ⋯ , 𝛼𝑚 ∈ ℝ

+.The 

following properties hold: 

i) If 𝐴1 = 𝐴2 = ⋯ = 𝐴𝑚 =:𝐴 then 𝐺(𝐴1, ⋯ , 𝐴𝑚) = 𝐴. 

ii) Joint homogeneity. 𝐺(𝛼1𝐴1, ⋯ , 𝛼𝑚𝐴𝑚) = (𝛼1⋯𝛼𝑚)
1

𝑚
𝐺(𝐴1, ⋯ , 𝐴𝑚). 

iii) Permutation invariance. For any permutation 𝜋 of {1,⋯ ,𝑚} we have 

𝐺(𝐴1, ⋯ , 𝐴𝑚) = 𝐺(𝐴𝜋(1), ⋯ , 𝐴𝜋(𝑚)). 

iv) Monotonicity. 𝐺(𝐴1, ⋯ , 𝐴𝑚) ≺ 𝐺(𝐴1 + 𝐵1, ⋯ , 𝐴𝑚 + 𝐵𝑚). 

v) Continuity. If {𝐴𝑘,1}𝑘≥1, ⋯ , {𝐴𝑘,𝑚}𝑘≥1 are monotonic decreasing sequences in ordering 

(5), converging to 𝐴1, ⋯ , 𝐴𝑚 respectively then the sequence {𝐺(𝐴𝑘,1,, ⋯ , 𝐴𝑘,𝑚)}𝑘≥1 

converges to 𝐺(𝐴1, ⋯ , 𝐴𝑚). 
vi) Joint concavity. For each 0 < 𝜆 < 1 

𝐺 (𝜆𝐴1 + (1 − 𝜆)𝐵1, ⋯ , 𝜆𝐴𝑚 + (1 − 𝜆)𝐵𝑚)

 ≺ 𝜆𝐺(𝐴1, ⋯ , 𝐴𝑚) + (1 − 𝜆)𝐺(𝐵1,⋯ , 𝐵𝑚).
 

vii) Arithmetic-geometric inequality. 𝐺(𝐴1, ⋯ , 𝐴𝑚) ≺
𝐴1+⋯+𝐴𝑚

𝑚
. 

Proof. Properties (𝑖) and (𝑖𝑖𝑖) trivially hold. We state proof of the others. 

ii) This follows from the Definition (4.1.7) and linearity of 𝑇𝑛, Corollary (4.1.5). 
iv) Let 𝑎1, ⋯ , 𝑎𝑚 and 𝑏1, ⋯ , 𝑏𝑚 be the symbols of 𝐴1, ⋯ , 𝐴𝑚 and 𝐵1, ⋯ , 𝐵𝑚, respectively. 

By assumption 𝑎1, ⋯ , 𝑎𝑚 , 𝑏1, ⋯ , 𝑏𝑚 ≥ 0, since 

((𝑎1 + 𝑏1)⋯ (𝑎𝑚 + 𝑏𝑚))
1
𝑚 − (𝑎1⋯𝑎𝑚)

1
𝑚 ≥ 0, 

by the Corollary (4.1.5) and (5) the conclusion follows. 

v) We have 

𝐴𝑘,1 = 𝑇𝑛(𝑎𝑘,1),⋯ , 𝐴𝑘,𝑚 = 𝑇𝑛(𝑎𝑘,𝑚), 
and 

𝐴1 = 𝑇𝑛(𝑎1),⋯ , 𝐴𝑚 = 𝑇𝑛(𝑎𝑚). 
Since, all norms in finite dimensional vector spaces are equivalent, for 0 ≤ 𝑖 ≤ 𝑚,𝐴𝑘,𝑖 →

𝐴𝑖 as 𝑘 → ∞, 𝑖. 𝑒. , ∥∥𝐴𝑘,𝑖 − 𝐴𝑖∥∥𝐹 → 0 as 𝑘 → ∞, where ∥. ∥𝐹 denotes the Frobenius norm. In 

the other hand ∥∥𝑎𝑘,𝑖 − 𝑎𝑖∥∥2 = ∥
∥𝐴𝑘,𝑖 − 𝐴𝑖∥∥𝐹 , 0 ≤ 𝑖 ≤ 𝑚, and 
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∥
∥
∥
(𝑎𝑘,1⋯𝑎𝑘,𝑚)

1
𝑚 − (𝑎1⋯𝑎𝑚)

1
𝑚
∥
∥
∥

2

→ 0  as  𝑘 → ∞. 

Again, by ∥ 𝑎 ∥2= ∥∥𝑇𝑛(𝑎)∥∥𝐹 , for each 𝑎 ∈ 𝐿∞, we have 

∥∥𝐺(𝐴𝑘,1, ⋯ , 𝐴𝑘,𝑚) − 𝐺(𝐴1, ⋯ , 𝐴𝑚)∥∥𝐹 ⟶ 0 as 𝑘 ⟶ ∞. 

vi) Since 𝐴𝑘 = 𝑇𝑛(𝑎𝑘), 𝐵𝑘 = 𝑇𝑛(𝑏𝑘) for 0 ≤ 𝑘 ≤ 𝑚, and 

((𝜆𝑎1 + (1 − 𝜆)𝑏1)⋯ (𝜆𝑎𝑚 + (1 − 𝜆)𝑏𝑚))
1
𝑚

 ≤ 𝜆(𝑎1⋯𝑎𝑚)
1
𝑚 + (1 − 𝜆)(𝑏1⋯𝑏𝑚)

1
𝑚,

 

by concavity property of geometric mean of non-negative reals, the statement is deduced 

from linearity and positiveness of the operator 𝑇𝑛, see Corollary (4.1.5). 
vii) Because of 

(𝑎1⋯𝑎𝑚)
1

𝑚
≤
𝑎1 +⋯𝑎𝑚

𝑚
, 

and 𝐴𝑘 = 𝑇𝑛(𝑎𝑘), 0 ≤ 𝑘 ≤ 𝑚, the conclusion follows. 

As we mentioned before, some Ando-𝐿𝑖-Mathias axioms are not satisfied yet. Now, we 

illustrate this by the following counterexamples. Let 

𝐴 = [
2 1
1 2

] ,  𝐵 = [
2 −1
−1 2

].                                                  (6) 

∎ Consistency with scalars. We have 𝐴𝐵 = 𝐵𝐴 and 

(𝐴𝐵)
1
2 = [√

3 0

0 √3
], 

but 

𝐺(𝐴, 𝐵) = [

4

𝜋
0

0
4

𝜋

]. 

∎ Congruence invariance. Let 𝑆 = [
4 −1
−1 4

] and 𝐶 = [
3 1
1 3

] we have 

𝑆∗𝐴𝑆 = [
26 1
1 26

] ,  𝑆∗𝐶𝑆 = [
43 −7
−7 43

], 

and 

𝐺(𝑆∗𝐴𝑆, 𝑆∗𝐶𝑆) ≃ [
33.0912 −2.1114
−2.1114 33.0912

], 

but 

𝑆∗𝐺(𝐴, 𝐶)𝑆 ≃ [
32.3134 −1.1941
−1.1941 32.3134

]. 

∎ Self-duality. We have 

𝐺(𝐴, 𝐵)−1 = [

𝜋

4
0

0
𝜋

4

], 

but 

𝐺(𝐴−1, 𝐵−1) = [

4

3𝜋
0

0
4

3𝜋

]. 
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∎ Determinant identity. det (𝐺(𝐴, 𝐵)) =
16

𝜋2
 but (det 𝐴 ⋅ det 𝐵)

1

2 = 3. 

∎ The geometric-harmonic mean inequality. 

𝐺(𝐴, 𝐵) − (
𝐴−1 + 𝐵−1

2
)

−1

= [

4

𝜋
−
3

2
0

0
4

𝜋
−
3

2

]. 

 

which is not positive semi-definite, i.e., (
𝐴−1+𝐵−1

2
)
−1

≰ 𝐺(𝐴, 𝐵).  

Now, we want to glance at the comparison between our definition of the geometric 

mean and two other well-known concepts of geometric means: the Karcher mean and the 

Kähler metric mean. First let us to recall their definitions briefly. For a set of 𝑚 positive 

definite 𝑛 × 𝑛 matrices 𝐴1, ⋯ , 𝐴𝑚 , the Karcher mean is defined as the minimizer 

arg min
𝑋∈𝕊+

𝑛
 ∑  

𝑚

𝑘=1

𝛿2(𝐴𝑘, 𝑋) 

(see [36],p.8 ), where 𝕊+
𝑛  represents the set of symmetric positive definite matrices and 

𝛿(𝐴, 𝐵) = ∥∥log (𝐴−1/2𝐵𝐴−1/2)∥∥
𝐹

 with ∥. ∥𝐹 the Frobenius norm is the intrinsic distance on 

the manifold 𝕊+
𝑛 . The definition of the Kähler metric mean for Toeplitz matrices is somewhat 

more complicated. Let 𝐴1, ⋯ , 𝐴𝑚 be a set of 𝑚 positive definite 𝑛 × 𝑛 Toeplitz matrices. 

Their Kähler mean is defined as minimizer 

arg min
𝑋
 ∑  

𝑚

𝑘=1

𝑑2(𝐴𝑘, 𝑋) 

where 𝑋 varies on the manifold of all the positive definite 𝑛 × 𝑛 Toeplitz matrices. This 

manifold is a Cartan-Hadamard manifold with intrinsic metric 𝑑, see e.g., [191]. 

Example (4.1.9)[189]: Consider the following matrices of Example 5.1 in [191], 

𝐴 = [
2 1
1 2

] , 𝐵 = [
4 −1
−1 4

]  and 𝐶 = [
2 −1
−1 2

]. 

As mentioned in [191], we have 𝐴 ≤ 𝐵 but ℬ(𝐴, 𝐶) ≰ ℬ(𝐵, 𝐶) where ℬ stands for the 

Kähler barycenter mean. Also it has been shown that the Kähler barycenter mean ℬ(𝐴, 𝐶) =

[
2 0
0 2

] does not coincide with the Karcher mean (𝐴𝐶)
1

2 = [√
3 0

0 √3
]. 

Now, applying our definition on the matrices 𝐴, 𝐵 and 𝐶 we have 

𝐺(𝐴, 𝐶) = [

4

𝜋
0

0
4

𝜋

] ,  𝐺(𝐵, 𝐶) ≃ [
2.725 −1.1314
−1.1314 2.725

]. 

Since the eigenvalues of the matrix 𝐺(𝐵, 𝐶) − 𝐺(𝐴, 𝐶) are 2.580 and 0.317, so 

𝐺(𝐴, 𝐶) ≤ 𝐺(𝐵, 𝐶), 
therefore, our definition is monotone in this example. Moreover in this method 𝐺(𝐴, 𝐶) ≠

 (𝐴𝐶)
1

2
 thus our approach does not coincide with the Karcher mean and the Kähler 

barycenter mean. 

There are many well-known methods to compute these integrals like that trapezoidal 

rule, Simpson's rule, 𝑒𝑡𝑐. We will use Simpson's rule for numerical integration. 
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For illustrative purposes only, we construct randomly three matrices 3 × 3 belong to 

𝒯3
++such that |𝑎0| > 2(|𝑎1| + |𝑎2|). 𝐹𝑖𝑔. 1(𝑎) shows these matrices and their means with 

our method, structured geometric mean (𝑆𝐺𝑀), and the Kähler metric mean (𝐾𝑀𝑀) in 𝑎 3D 

diagram, note that each 3 × 3 Toeplitz matrix characterized by its first row, so corresponds 

to a point of ℝ3. As we see, our proposed geometric mean is close other ones. For our method 

the number of operations equals 𝑂(kmn2) where 𝑛 is the size of the matrices, 𝑚 is the 

number of matrices and 𝑘 is the number of subdivision of the interval [0,2𝜋] in order to use 

Simpson's rule for numerical integration, . The cost of structured geometric mean in the case 

of Toeplitz matrices with approach 4.4(1) in [191] is equal to 𝑂(𝑝𝑛4 + 𝑝𝑚𝑛3), where 𝑚,𝑛 

are same as before and 𝑝 is the number of iterations of this algorithm. The Kähler metric 

mean in the case real Toeplitz matrices as described in the Section 5 of [191], requires 

𝑂(mn4) arithmetic operations where 𝑚, 𝑛 are same as before, again. In order to compare 

the cost of different methods we let 𝑛 = 30,𝑚 = 3 to 10, for 𝑆𝐺𝑀 𝑝 = 1 and for our method 

𝑘 = 32. The results are given in 𝐹𝑖𝑔. 1(𝑏). As this figure shows our purposed method has 

less cost than others. Unfortunately in the generic case there is no reference solution. In 

order to compare our method to the 𝑆𝐺𝑀 and the 𝐾𝑀𝑀 methods, for each 𝑞 =

5,10,15,20,25,30 we construct randomly 𝑞 triples (𝐴1, 𝐵1, 𝐶1),⋯ , (𝐴𝑞 , 𝐵𝑞 , 𝐶𝑞) of 10 × 10 

Toeplitz matrices 

[

𝑎0 𝑎1 ⋯ 𝑎9
𝑎1 𝑎0 ⋯ ⋮

⋮ ⋱
𝑎9 ⋯ 𝑎0

] 

such that |𝑎0| > 2∑𝑗=1
9  |𝑎𝑘|, assuring to belong to 𝒯10

++. Then we compute the average value 

of these geometric means, 𝑖. 𝑒.
1

𝑞
∑𝑗=1
𝑞
 𝐺(𝐴𝑗 , 𝐵𝑗 , 𝐶𝑗) by our method, the 𝑆𝐺𝑀 method and the 
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𝐾𝑀𝑀 method and denote them by 𝐺, 𝐺𝑆𝐺𝑀 and 𝐺𝐾𝑀𝑀 respectively. Finally, we show the 

relative distances ∥∥𝐺𝑆𝐺𝑀 − 𝐺∥∥𝐹/∥ 𝐺 ∥𝐹 and ∥∥𝐺𝐾𝑀𝑀 − 𝐺∥∥𝐹/∥ 𝐺 ∥𝐹 by using the Frobenius 

norm in 𝐹𝑖𝑔. 1(𝑐). As one can see, the results of these three approaches are not far from 

each other, nevertheless our method is closer to 𝑆𝐺𝑀 method. 

We have introduced a new definition of geometric mean for the set of all positive 

semidefinite Toeplitz matrices with nonnegative symbol functions. This definition satisfies 

in some 𝐴𝐿𝑀 axioms. It preserves monotonicity and structure of Toeplitz matrices. 

 Moreover, computing this mean is simple and requires only 𝑂(mn2) arithmetic operations 

(for 𝑚 matrices of size 𝑛 ). Finally, we compared our approach with the structured geometric 

mean for Toeplitz matrices [191] and the Kähler metric mean [23], [191] in term of number 

of arithmetic operations and the relative distances. It is still unclear whether our approach 

can handle the set of all positive semi-definite Toeplitz matrices such that it preserves 

monotonicity and the structure of Toeplitz matrices as well. Another interesting question is 

to characterize the set of 𝑛 × 𝑛 positive semi-definite Toeplitz matrices with non-negative 

symbol 𝒯𝑛
++. This can be a topic for future investigation. 

Section (4.2): Block-Toeplitz Matrices with Toeplitz Structured Blocks 

In radar theory and other signal processing applications [197], [200], [201], [202], 

[240], autocorrelation matrices are very popular for representing windows of discrete or 

continuous signals. 

For a signal 𝑥(𝑘), the element at position (𝑡1, 𝑡2) in such an autocorrelation matrix is 

obtained from an averaging operation 𝐸[𝑥(𝑘 + 𝑡1)𝑥(𝑘 + 𝑡2)
∗] = 𝐸[𝑥(𝑘 + 𝑡)𝑥(𝑘)∗], with 

𝑡 = 𝑡1 − 𝑡2 referred to as the lag. Note that 𝐸[𝑥(𝑘 − 𝑡)𝑥(𝑘)∗] = 𝐸[𝑥(𝑘)𝑥(𝑘 + 𝑡)∗] =
 (𝐸[𝑥(𝑘 + 𝑡)𝑥(𝑘)∗])∗. Theoretically, this averaging operation is taken over the entire signal, 

resulting in an infinite sum (for a discrete signal) or integral (for a continuous signal). In 

practice, the sum/integral is taken over the finite window of interest, where as many entries 

in the sum/integral as possible are taken considering the lag and size of the window. 

For a finite window (or a stationary signal in general), the resulting autocorrelation 

matrix will be a positive definite (𝑃𝐷) Toeplitz matrix [234]. A popular detection technique 

in radar theory consists in comparing a certain window in a signal with an average of the 

signal in the neighboring windows. Translated to the autocorrelation matrices, this means 

that a 𝑃𝐷 Toeplitz matrix is compared with an average of its neighboring 𝑃𝐷 Toeplitz 

matrices. 

One approach to the averaging of 𝑃𝐷 Toeplitz matrices was proposed by Bini 𝑒𝑡 𝑎𝑙. [20], 
and is referred to as the structured geometric mean. The mean emphasizes the natural 

geometry of 𝑃𝐷 matrices in a restricted search for the center of mass or barycenter 𝑤. 𝑟. 𝑡. 
this natural geometry. An alternative could be to focus on the natural geometry of the 

Toeplitz matrices. But, as a vector space, the set of Toeplitz matrices is naturally endowed 

with Euclidean geometry, having the arithmetic mean as its corresponding barycenter. 

On the other hand, from the applications mentioned above, a transformation of the 

autocorrelation matrices and a geodesic distance measure based on information geometry 

theory can be found [202], [203]. This distance measure is derived from a natural geometry 

in the transformed space and the corresponding averaging operation shows appealing results 

in applications. We analyze the associated barycenter and discuss how it is derived from the 

signal processing application. 

When the basic signal 𝑥(𝑘) is replaced with a multichannel signal 𝑋(𝑘), the 

corresponding autocorrelation matrix can be constructed as a block matrix. Specifically, we 
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obtain a 𝑃𝐷 block-Toeplitz (𝐵𝑇) matrix, which is a 𝑃𝐷 block matrix with identical blocks 

along the block diagonals. In some applications, the blocks themselves will also have the 

Toeplitz structure, resulting in autocorrelation matrices which are 𝑃𝐷 Toeplitz-block 

𝐵𝑇 (𝑇𝐵𝐵𝑇). We derive first order optimization techniques for the computation of these 

generalized Kähler means and analyze their properties. 

We organized in the following way. The transformation of 𝑃𝐷 Toeplitz matrices and its 

underlying interpretation are discussed. Afterwards, the natural geometry of the resulting 

transformed space is presented, and the corresponding barycenter is referred to as the Kähler 

mean. Two possible generalizations for the transformation of 𝑃𝐷 Toeplitz matrices towards 

𝑃𝐷 𝐵𝑇 matrices are investigated. Moreover, we also discuss two different distance measures 

for the second generalized transformation. The generalized Kähler means for 𝑃𝐷 𝐵𝑇 

matrices and 𝑃𝐷𝑇𝐵𝐵𝑇 matrices are presented, respectively. Finally, we compare the 

resulting algorithms in numerical experiments. 

The set of 𝑃𝐷 matrices, denoted by 𝒫𝑛, is defined as the set 

𝒫𝑛 = {𝐴 ∈ ℂ
𝑛×𝑛 ∣ 𝑥𝐻𝐴𝑥 > 0, ∀𝑥 ∈ ℂ𝑛/{0}}. 

This characterization of 𝑃𝐷 matrices is equivalent to the condition that 𝐴 is Hermitian and 

has positive eigenvalues [3], and is also denoted as 𝐴 > 0.𝒫𝑛 is naturally endowed with the 

following distance measure and inner product, 

𝑑(𝐴, 𝐵) = ∥∥
∥log (𝐴−

1
2𝐵𝐴−

1
2)∥∥
∥

𝐹
,                                         (7) 

⟨𝐸, 𝐹⟩𝐴 = trace(𝐴
−1𝐸𝐴−1𝐹),                                      (8) 

where 𝐴, 𝐵 ∈ 𝒫𝑛, 𝐸, 𝐹 ∈ ℋ𝑛, the set of 𝑛 × 𝑛 Hermitian matrices, and ∥⋅∥𝐹 denotes the 

Frobenius norm. 

The vector space of Toeplitz matrices consists of all matrices having identical elements 

along the diagonals, 

 𝒯𝑛 = {[

𝑡0 𝑡1 ⋯ 𝑡𝑛−1
𝑡−1 𝑡0 ⋱ 𝑡𝑛−2
⋮ ⋱ ⋱ ⋮

𝑡−𝑛+1 𝑡−𝑛+2 ⋯ 𝑡0

] ∣ 𝑡−𝑛+1, … , 𝑡𝑛−1 ∈ ℂ}.                   (9) 

The intersection of this set of Toeplitz matrices with the Hermitian matrices ℋ𝑛 is given by 

the elements in (9) for which 𝑡−𝑖 = 𝑡𝑖
∗, 𝑖 = 0,… , 𝑛 − 1. The set of 𝑃𝐷 Toeplitz matrices will 

be denoted as 𝒯𝑛
+: = 𝒯𝑛 ∩ 𝒫𝑛. 

We denote by ℬ𝑛,𝑁 the vector space of 𝐵𝑇 matrices, where the indices 𝑛 and 𝑁 indicate that 

the matrices consist of 𝑛 by 𝑛 blocks and each block is an 𝑁 ×𝑁 matrix. As for the Toeplitz 

matrices, the set containing all 𝑃𝐷 elements in ℬ𝑛,𝑁 will be denoted by ℬ𝑛,𝑁
+ . The subspace 

of ℬ𝑛,𝑁 where the matrix blocks themselves are also Toeplitz matrices is the vector space of 

𝑇𝐵𝐵𝑇 matrices, which we denote by 𝒯𝑛,𝑁 . The intersection with the manifold of 𝑃𝐷 matrices 

is denoted by 𝒯𝑛,𝑁
+ . 

Several instances of (un)structured matrices can be combined in a least squares approach, 

and the result is, in general, referred to as the barycenter. For a number of elements 𝐴1, … , 𝐴𝑘 

in a set 𝒮 with given distance measure 𝑑𝒮 , the barycenter is defined as the minimizer of the 

sum of squared distances to these given elements: 

ℬ𝒮(𝐴1, … , 𝐴𝑘) = argmin𝑋∈𝒮  
1

2
∑ 

𝑘

𝑖=1

 𝑑𝒮
2(𝑋, 𝐴𝑖).                 (10) 
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This concept is known to be a natural method for combining elements, 𝑒. 𝑔., the barycenter 

corresponding to the classical Euclidean geometry is the arithmetic mean. 

Furthermore, by considering the set 𝒫𝑛 of 𝑃𝐷 matrices with its natural distance measure (7), 
this barycenter is identical to the Karcher mean, the main instance of the geometric mean of 

𝑃𝐷 matrices [3], [20], [26], [216], [36], [37], [225], [227], [46]. The structured geometric 

mean, proposed by Bini 𝑒𝑡 𝑎𝑙. [20], is obtained by minimizing the cost function of the 

Karcher mean, where the search space is restricted to the 𝑃𝐷 matrices of a specified matrix 

structure. 

Another averaging operation, known as the median barycenter or median for short, is 

defined as the minimizer of the sum of the distances to the given elements (instead of the 

squared distances). While this median is more robust to outliers, we will focus on 

barycenters because they behave more smoothly and are better at combining the inherent 

information of all given elements. In matrix information geometry, the median approach has 

been applied to 𝑃𝐷 Toeplitz matrices [197], [198] and 𝑃𝐷 𝐵𝑇 matrices [202]. 
The computation of these barycenters is often performed using Riemannian optimization, a 

generalized version of optimization which takes the geometry of the search space into 

account [21]. When the search space is lacking a differentiable structure and associated 

geometry, other approaches can be used, such as random and deterministic walks in the 

general setting of Hadamard spaces [207], [225], [231]. 

Throughout, expressions will be presented containing a multitude of variables. We aim to 

clearly indicate the difference between main and auxiliary variables by using the following 

notation. We denote a function 𝑓, defined as 𝑓(𝑋) =  𝑔(𝐴, 𝐵, 𝐶), with auxiliary variables 

𝐴 = 𝑔1(𝑋), 𝐵 = 𝑔2(𝑋), and 𝐶 = 𝑔3(𝑋), as 
𝑓(𝑋) = 𝑔(𝐴, 𝐵, 𝐶),

[

𝐴 = 𝑔1(𝑋),

𝐵 = 𝑔2(𝑋),

𝐶 = 𝑔3(𝑋),

 

indicating that 𝑓 is the main variable of interest. 

In what follows, the matrix 𝐼𝑛 will represent the 𝑛 × 𝑛 identity matrix, and 𝐽𝑛 the so-called 

counteridentity, the 𝑛 × 𝑛 matrix with ones on the antidiagonal and zeros everywhere else. 

For both matrices, the index might be omitted if the size is clear from the context. The 

transpose of a matrix 𝐴 will be denoted by 𝐴𝑇 , its conjugate transpose by 𝐴𝐻 , and its 

elementwise conjugate by 𝐴∗. Finally, we write 𝐴‾ to represent the form 𝐽𝐴∗𝐽. Note that this 

operation corresponds to taking the conjugate transpose of 𝐴 and reflecting the result over 

the antidiagonal. 

The set of Toeplitz matrices 𝒯𝑛 is a linear space of matrices and is therefore 

traditionally associated with Euclidean] geometry. However, we are interested in the 

intersection of 𝒯𝑛 with the set of positive matrices 𝒫𝑛. Applying the geometry of the latter 

to the intersected set results in the structured geometric mean which has been discussed by 

Bini 𝑒𝑡 𝑎𝑙. [20]. Here, we will discuss a different geometry on 𝒯𝑛
+, along with its underlying 

interpretation and its properties. 

The interpretation of the Kähler mean heavily depends on the linear autoregressive 

model from signal processing theory: 

𝑥(𝑘) +∑  

𝑛

𝑗=1

𝑎𝑗
𝑛𝑥(𝑘 − 𝑗) = 𝑤(𝑘), 
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where 𝑥 is the signal of interest and 𝑤 represents its prediction error. Our interest now goes 

to the so-called prediction coefficients 𝑎𝑗
𝑛, and the intermediate factors that arise in their 

computation. 

By applying autocorrelation to the stationary signal 𝑥(𝑘), its autocorrelation coefficients 𝑟𝑡 , 
defined as 𝐸[𝑥(𝑘 + 𝑡)𝑥(𝑘)∗], can be obtained for different lags 𝑡. If this autocorrelation is 

performed on the above autoregressive model, the following system is found: 
𝑅𝑛�̃�𝑛  = −�̃�𝑛,

�̃�𝑛  = [𝑎1
𝑛, … , 𝑎𝑛

𝑛]𝑇 ,

�̃�𝑛  = [𝑟1, … , 𝑟𝑛]
𝑇 ,

                                                         (11) 

where 𝑅𝑛 is the 𝑃𝐷 Toeplitz matrix of size 𝑛 with elements [𝑅]𝑖,𝑗 = [𝑅]𝑗,𝑖
∗ = 𝑟𝑖−𝑗 , 𝑖, 𝑗 =

0,±1,… , ±(𝑛 − 1). Note that the prediction error 𝑤(𝑘) is assumed to be uncorrelated to the 

signal 𝑥(𝑘). 𝐴 recursive method known as the Levinson algorithm [222], [238] can be used 

to find the solution to system (11) by solving the system for 𝑛 = 1, and sequentially 

obtaining the prediction coefficients �̃�𝑛 for increasing 𝑛. The Levinson recurrence relation 

for the prediction coefficients is given by 

�̃�1  = 𝑎1
1 = −

𝑟1
𝑟0
,

𝑎ℓ
ℓ  = −

𝑟ℓ + ∑  ℓ−1
𝑗=1   𝑟ℓ−𝑗𝑎𝑗

ℓ−1

𝑟0 + ∑  ℓ−1
𝑗=1   𝑟𝑗𝑎𝑗

ℓ−1∗
,

�̃�ℓ  =

[
 
 
 
 
𝑎1
ℓ

⋮
𝑎ℓ−1
ℓ

𝑎ℓ
ℓ ]
 
 
 
 

= [

𝑎1
ℓ−1

⋮
𝑎ℓ−1
ℓ−1

0

] + 𝑎ℓ
ℓ [

𝑎ℓ−1
ℓ−1∗

⋮
𝑎1
ℓ−1∗

1

] ,

                                  (12) 

with ℓ = 2,… , 𝑛. It can be shown that the factors 𝑎ℓ
ℓ all lie within the complex unit 

disk 𝔻, |𝑎ℓ
ℓ| < 1, ∀ℓ = 1,… , 𝑛. 

Our main interest in the above is the one-to-one relation between the 𝑃𝐷 Toeplitz matrix 𝑅𝑛 

and the scalars (𝑟0, 𝑎1
1, … , 𝑎𝑛−1

𝑛−1). Note that indices of the prediction coefficients only reach 

𝑛 − 1, since the computation of 𝑎𝑛
𝑛 requires the autocorrelation coefficient 𝑟𝑛, which is only 

given as an element of the right-hand side of (11), but not of 𝑅𝑛. 
The transformation of the matrix 𝑅𝑛 is the following: 

𝒯𝑛
+  → ℝ++ ×𝔻𝑛−1,

𝑅𝑛  ↦ (𝑝0, 𝜇1, … , 𝜇𝑛−1),
                                             (13) 

where we use the notation 𝑝0: = 𝑟0, 𝜇ℓ: = 𝑎ℓ
ℓ, and 𝑅++represents the set of strictly positive 

numbers. This transformation creates a one-to-one mapping between the 𝑃𝐷 Toeplitz 

matrices and the parameter space ℝ++ × 𝔻𝑛−1. Note that increasing the size of 𝑅𝑛 by 1 

(increasing 𝑛 by 1 ) only requires the computation of 1 additional parameter 𝜇𝑛: = 𝑎𝑛
𝑛, while 

all other parameters remain fixed. This corresponds to the recursive construction of the 

Levinson algorithm. 

We note that other parametrizations of the matrices are possible [199], [209]. However, 

these algorithms have mostly been designed for more robust estimation of the correlation 

coefficients 𝑟𝑡 = 𝐸[𝑥(𝑘 + 𝑡)𝑥(𝑘)
∗] from a finite number of measurements. Since our goal 

is the averaging of the correlation matrices, we assume that the estimation of the correlation 

coefficients has been performed prior to the application of the mean. 
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Moreover, changing the parametrization will not affect the following theory, since the same 

parameter space ℝ++ ×𝔻𝑛−1 is obtained for the different algorithms. 

In order to define the Kähler metric, the set of 𝑃𝐷 Toeplitz matrices is considered to 

be a Kähler manifold [22],[23],[205]. Such a manifold is associated with the concept of a 

Kähler potential, of which the Hessian form defines the inner product, and hence the 

geometry, imposed on the manifold. In the field of signal processing (and specifically in the 

context of Koszul information geometry [205]), the Kähler potential is chosen to be the 

process entropy Φ(𝑅𝑛) [203], [205], defined as follows: 

Φ(𝑅𝑛) = log(det 𝑅𝑛
−1) − log(𝜋e),                                     (14) 

where 𝜋 and e are the well-known mathematical constants. Applying some decomposition 

rules on the determinant of 𝑅𝑛 and by recognizing the components of the transformation 

(13) of 𝑅𝑛, the process entropy Φ(𝑅𝑛) can be rewritten as a function of the parameter space 

ℝ++ ×𝔻𝑛−1 ∶ 

Φ(𝑅𝑛) = −𝑛 log(𝑝0) −∑  

𝑛−1

ℓ=1

(𝑛 − ℓ) log(1 − |𝜇ℓ|
2) − log(𝜋𝑒), 

where 𝑅𝑛 is identified with its transformation (𝑝0, 𝜇1, … , 𝜇𝑛−1). This decomposition of the 

determinant of 𝑅𝑛 is discussed. 
The Kähler metric can now be obtained by determining the Hessian of the Kähler 

potential where complex differentiation should be used for the components 𝜇ℓ ∈ 𝔻. If we 

denote 𝜉(𝑛) = [𝑝0, 𝜇1, … , 𝜇𝑛−1]
𝑇 , then 

[𝐻]𝑖,𝑗 =
∂2Φ

∂𝜉𝑖
(𝑛)
∂‾𝜉𝑗

(𝑛)
. 

The desired metric can be found as 

d𝑠2  = d𝜉(𝑛)
𝐻
𝐻 d𝜉(𝑛)

 = 𝑛
d𝑝0

2

𝑝0
2 +∑  

𝑛−1

ℓ=1

  (𝑛 − ℓ)
|d𝜇ℓ|

2

(1 − |𝜇ℓ|
2)2

.
                         (15) 

By examining this differential metric, a natural geometry and distance measure can be found 

for (each of the components of) the parameter space ℝ++ × 𝔻𝑛−1. The geometry on ℝ++is 

that of the positive numbers, which is given by the scalar analog of (7) and (8) (up to a 

scaling with factor √𝑛 and 𝑛, respectively). For the complex unit disk 𝔻, the hyperbolic 

metric of the Poincaré disk can be recognized (up to a scaling of a factor (𝑛 − ℓ)/4). We 

summarize as follows: 

∀𝑎, 𝑏 ∈ ℝ++, ∀𝑒, 𝑓 ∈ ℝ: ⟨𝑒, 𝑓⟩𝑎 = 𝑛
𝑒𝑓

𝑎2
,

𝑑ℝ++(𝑎, 𝑏) = √𝑛 |log
𝑏

𝑎
| ;

∀𝜇, 𝜈 ∈ 𝔻, ∀𝜀, 𝜍 ∈ ℂ:  ⟨𝜀, 𝜍⟩𝜇 =
𝑛 − ℓ

2

𝜀𝜍∗ + 𝜍𝜀∗

(1 − |𝜇|2)2
,

𝑑𝔻(𝜇, 𝜈) =
√𝑛 − ℓ

2
log(

1 + |
𝜇 − 𝜈
1 − 𝜇𝜈∗

|

1 − |
𝜇 − 𝜈
1 − 𝜇𝜈∗

|
) ,

    (16) 
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where ℓ is chosen corresponding to the coordinate (𝜇ℓ, ℓ = 1,… , 𝑛 − 1, from (13)) to which 

it relates. 

Combined, we define the Kähler distance 𝑑𝒯𝑛+between two 𝑃𝐷 Toeplitz matrices 𝑇1 and 𝑇2 

as 

𝑑𝒯𝑛+
2 (𝑇1, 𝑇2)  = 𝑑𝒯𝑛+

2 ((𝑝0,1, 𝜇1,1, … , 𝜇𝑛−1,1), (𝑝0,2, 𝜇1,2, … , 𝜇𝑛−1,2))

 = 𝑛log2 (
𝑝0,2
𝑝0,1

) +∑  

𝑛−1

ℓ=1

 
𝑛 − ℓ

4
log2 

(

 
 
1 + |

𝜇ℓ,1 − 𝜇ℓ,2
1 − 𝜇ℓ,1𝜇ℓ,2∗

|

1 − |
𝜇ℓ,1 − 𝜇ℓ,2
1 − 𝜇ℓ,1𝜇ℓ,2

2 |
)

 
 .           (17) 

By entering this distance measure into definition (10), the Kähler mean is obtained as the 

barycenter ℬ𝒯𝑛+ . Endowing the manifold 𝒯𝑛
+with the Kähler metric (15) results in a 

complete, simply connected manifold with nonpositive sectional curvature everywhere, or 

a Cartan-Hadamard manifold. Hence, existence and uniqueness are guaranteed for the 

barycenter with respect to this metric [30], [38]. 

Regarding the properties of the barycenter ℬ𝒯𝑛+ , it can easily be seen that it is 

permutation invariant, repetition invariant, and idempotent (these hold for any barycenter). 

Moreover, if we denote the transformation (13) of a matrix 𝑇𝑖 ∈ 𝒯𝑛
+by (𝑝0,𝑖 , 𝜇1,𝑖 , … , 𝜇𝑛−1,𝑖), 

then, for any 𝛼𝑖 > 0, the transformation of 𝛼𝑖𝑇𝑖 is (𝛼𝑖𝑝0,𝑖 , 𝜇1,𝑖 , … , 𝜇𝑛−1,𝑖). Hence, from the 

explicit expression of the first coordinate 𝑝0,ℬ = (𝑝0,1⋯𝑝0,𝑘)
1/𝑘

 of the barycenter 

ℬ𝒯𝑛+(𝑇1, … , 𝑇𝑘), we get 

ℬ𝒯𝑛+(𝛼1𝑇1, 𝛼2𝑇2, … , 𝛼𝑘𝑇𝑘) = (𝛼1⋯𝛼𝑘)
1/𝑘ℬ𝒯𝑛+(𝑇1, … , 𝑇𝑘), 

that is, joint homogeneity holds. 

Properties related to the partial ordering of 𝑃𝐷 matrices do not hold in general, 𝑒. 𝑔., 

monotonicity: suppose �̃�1, 𝑇1, 𝑇2 ∈ 𝒯𝑛
+with �̃�1 ≥ 𝑇1, then, in general, ℬ𝒯𝑛+(�̃�1, 𝑇2) ⊉

ℬ𝒯𝑛+(𝑇1, 𝑇2). 

When experimenting with the Kähler mean, results have shown that its averaging properties 

cooperate very well with the application from which it was derived [197], [23], [202], [240]. 

This makes sense since at every step of the derivation, the most natural geometries and 

concepts, related to this particular model, were chosen from information theory. 

Furthermore, the mean also has a computational advantage through its separation of 

optimization. The separate coordinates of the matrices can be grouped and averaged 

independently: 

 
This results in two main advantages. First, each coordinate group can be averaged in parallel 

since they have no influence on any of the other coordinate groups, and second, the means 

we end up computing contain elements of much smaller sizes than the original data (from 
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matrices of size 𝑛 to scalars), and additional computational time is saved. The computation 

itself is discussed by Bini 𝑒𝑡 𝑎𝑙. [20]. 
Our real interest goes out to the linear autoregressive model for multichannel signals 

[226], given by 

𝑋(𝑘) +∑  

𝑛

𝑗=1

𝐴𝑗
𝑛𝑋(𝑘 − 𝑗) = 𝑊(𝑘), 

with 𝑋 and 𝑊 vectors of signals and the factors 𝐴𝑗
𝑛 square matrices. Taking the normal 

equations of the multichannel model, the so-called Yule-Walker equations are obtained: 

�̃�𝑛�̃�𝑛  = −𝑈𝑛
�̃�𝑛  = [𝐴1

𝑛, … , 𝐴𝑛
𝑛],

𝑈𝑛  = [𝑅1, … , 𝑅𝑛],

�̃�𝑛  = [

𝑅0 𝑅1 ⋯ 𝑅𝑛−1
𝑅1
𝐻 𝑅0 ⋱ 𝑅𝑛−2
⋮ ⋱ ⋱ ⋮

𝑅𝑛−1
𝐻 𝑅𝑛−2

𝐻 ⋯ 𝑅0

] ,

                                    (18) 

where �̃�𝑛 ∈ ℬ𝑛,𝑁
+ is a 𝑃𝐷 𝐵𝑇 matrix of 𝑛 by 𝑛 blocks. The size of the blocks (𝑁) is equal to 

the length of the multichannel signal vectors 𝑋 and 𝑊. 
Some interesting cases of the multichannel model (such as a two dimensional signal, when 

interpreted as a multichannel signal) result in a matrix �̃�𝑛 which is not only 𝑃𝐷 𝐵𝑇, but also 

has the Toeplitz structure in the individual blocks [221], [222], [233]. 

Hence it will become a 𝑃𝐷 𝑇𝐵𝐵𝑇 matrix. In practice, these Toeplitz blocks will often be 

Hermitian themselves, 𝑅ℓ = 𝑅ℓ
𝐻 , ℓ = 0,… , 𝑛 − 1, but we will develop our theory for the 

more general case in which only the entire matrix �̃�𝑛 is Hermitian. The results remain valid 

in the more specified setting. 

The transformation. With 𝑅𝑛 now defined as a 𝑃𝐷 𝑇𝐵𝐵𝑇 matrix, we would like to 

generalize the transformation (13) to 𝒯𝑛,𝑁
+ . Similarly to the link between the recursion (12) 

and the transformation (13), this generalization is obtained using a recursive computation 

of the prediction matrices in �̃�𝑛. This recursive computation goes as follows [222], [226], 

[237], [239]: 

 𝐴1
1 = −𝑅1𝑅0

−1,                                                                 (19) 

 𝐴ℓ
ℓ = −Δℓ𝑃ℓ−1

−1 ,                                                               (20) 

[
Δℓ = 𝑅ℓ + ∑𝑗=1

ℓ−1  𝐴𝑗
ℓ−1𝑅ℓ−𝑗 ,

𝑃ℓ−1 = 𝑅0 + ∑𝑗=1
ℓ−1  𝐽𝐴𝑗

ℓ−1∗𝐽𝑅𝑗 = 𝑅0 + ∑𝑗=1
ℓ−1  𝐴𝑗

ℓ−1̅̅ ̅̅ ̅̅ 𝑅𝑗 ,
                          (21) 

�̃�ℓ = [�̃�ℓ−1, 0] + 𝐴ℓ
ℓ [𝐴ℓ−1

ℓ−1̅̅ ̅̅ ̅̅ , … , 𝐴1
ℓ−1̅̅ ̅̅ ̅̅ , 𝐼]                                                   (22) 

with ℓ = 2,… , 𝑛. Similarly to the prediction coefficients 𝑎ℓ
ℓ from before, the factors 𝐴ℓ

ℓ will 

be the matrices of interest for the generalized transformation. To properly define this 

transformation, the set in which these matrices lie is investigated. 

First of all, note that if all blocks in �̃�𝑛 (18) are assumed to be Toeplitz matrices, we have 

𝑅ℓ̅̅ ̅ = 𝑅ℓ
𝐻 , ℓ = 0,… , 𝑛 − 1, and even stronger, 𝑅0̅̅ ̅ = 𝑅0, since this block is also a 𝑃𝐷 matrix 

and hence Hermitian. 

Next, we mention the following formula, based on the notion of the Schur complement, for 

the inversion of block matrices, 
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�̃�ℓ+1
−1 = [

𝛼ℓ −𝛼ℓ𝑈ℓ�̃�ℓ
−1

−�̃�ℓ
−1𝑈ℓ

𝐻𝛼ℓ �̃�ℓ
−1 + �̃�ℓ

−1𝑈ℓ
𝐻𝛼ℓ𝑈ℓ�̃�ℓ

−1] 

with 𝛼ℓ = (𝑅0 − 𝑈ℓ�̃�ℓ
−1𝑈ℓ

𝐻)
−1
. Note that 𝛼ℓ is a principal submatrix of the PD matrix �̃�ℓ+1

−1  

and is therefore also 𝑃𝐷. 
Now, the auxiliary matrix 𝑃ℓ in the recursive computation (21) can be written as 

𝑃ℓ̅ = 𝑅0 + �̃�ℓ𝑈ℓ
𝐻 = 𝑅0 − 𝑈ℓ�̃�ℓ

−1𝑈ℓ
𝐻 = 𝛼ℓ

−1, 
hence 𝑃ℓ̅(  and 𝑃ℓ) is also a 𝑃𝐷 matrix. Using the recursion expression (22), an updating 

rule can be found for 𝑃ℓ̅ (and consequently for 𝛼ℓ
−1 ), 

𝑃ℓ̅ = 𝑃ℓ−1̅̅ ̅̅ ̅̅ − Δℓ𝑃ℓ−1
−1 Δℓ̅̅ ̅ = (𝐼 − 𝐴ℓ

ℓ𝐴ℓ
ℓ̅̅ ̅) 𝑃ℓ−1̅̅ ̅̅ ̅̅ ,                                       (23) 

where 𝑃0̅̅ ̅ = 𝑅0. 

Finally, we show that the matrices 𝐴ℓ
ℓ belong to the set 

𝒟𝑁 = {Γ ∈ ℂ
𝑁×𝑁 ∣ 𝐼 − ΓΓ‾ > 0}. 

Note that for 𝑁 = 1, this set reduces exactly to the complex unit disk 𝔻 =
{𝛾 ∈ ℂ ∣ 𝛾𝛾‾ = 𝛾𝛾∗ < 1}. To prove that all matrix factors 𝐴ℓ

ℓ belong to 𝒟𝑁 , we start from the 

positive definiteness of 𝑃ℓ̅ ∶ 
𝑃ℓ̅ = 𝑃ℓ−1̅̅ ̅̅ ̅̅ − Δℓ𝑃ℓ−1

−1 Δℓ̅̅ ̅ > 0,

 ⟶
 congruence 

𝐼 − 𝑃
ℓ−1

−
1
2

̅̅ ̅̅ ̅̅
Δℓ𝑃ℓ−1

−1 Δℓ̅̅ ̅𝑃ℓ−1
−
1
2

̅̅ ̅̅ ̅̅
> 0,

 ⟶
 similarity 

𝐼 − Δℓ𝑃ℓ−1
−1 Δℓ̅̅ ̅𝑃ℓ−1

−1̅̅ ̅̅ ̅̅ = 𝐼 − 𝐴ℓ
ℓ𝐴ℓ

ℓ̅̅ ̅ > 0.

 

The resulting transformation will be a mapping between the 𝑃𝐷 𝐵𝑇 (not 𝑇𝐵𝐵𝑇) matrices 

and the new parameter space, and it is defined as 

ℬ𝑛,𝑁
+  →  𝒫𝑁 × 𝒟𝑁

𝑛−1,

�̃�𝑛  ↦ (𝑃0, Γ1, … , Γ𝑛−1),
                                                              (24) 

where the notation 𝑃0: = 𝑅0, Γℓ: = 𝐴ℓ
ℓ is used, and 𝑁 denotes the size of the matrix blocks. 

We do not restrict the transformation to elements in 𝒯𝑛,𝑁
+ since the inverse transformation of 

a random point (𝑃0, Γ1, … , Γ𝑛−1) ∈ 𝒫𝑁 × 𝒟𝑁
𝑛−1 does not necessarily have the Toeplitz 

structure in the individual blocks. 

The metric. To define the generalized metric, the Kähler potential is examined as in the 

scalar case. Note the following possible factorization of the determinant of �̃�𝑛[229]: 

det (�̃�𝑛)  = det (�̃�𝑛−1)det (𝑅0 − 𝑈𝑛−1�̃�𝑛−1
−1 𝑈𝑛−1

𝐻 )

 = det (�̃�𝑛−1)det (𝛼𝑛−1
−1 )

 = det (�̃�𝑛−1)det (𝐼 − 𝐴𝑛−1
𝑛−1𝐴𝑛−1

𝑛−1̅̅ ̅̅ ̅̅ ) …det (𝐼 − 𝐴1
1𝐴1

1̅̅ ̅)det (𝑅0)

 = det(𝐼 − 𝐴𝑛−1
𝑛−1𝐴𝑛−1

𝑛−1̅̅ ̅̅ ̅̅ ) …det(𝐼 − 𝐴1
1𝐴1

1̅̅ ̅)
𝑛−1

det(𝑅0)
𝑛 ,

                  (25) 

where the recursive updating rule (23) for 𝛼ℓ
−1 (and 𝑃ℓ̅ ) is used. The resulting factorization 

of the Kähler potential (14) becomes (in parameter space 𝒫𝑁 × 𝒟𝑁
𝑛−1 ) 

Φ(�̃�𝑛) = −𝑛 log(det 𝑃0) −∑  

𝑛−1

ℓ=1

(𝑛 − ℓ) log(det(𝐼 − ΓℓΓℓ̅)) − log(𝜋𝑒), 

where �̃�𝑛 is identified with (𝑃0, Γ1, … , Γ𝑛−1) under transformation (24). 
As before, we use complex differentiation to determine the Hessian of the Kähler 

potential and obtain the generalized metric 
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d𝑠2 = 𝑛trace (𝑃0
−1 d𝑃0𝑃0

−1 d𝑃0)

 +∑  

𝑛−1

ℓ=1

  (𝑛 − ℓ) trace((𝐼 − ΓℓΓℓ̅)
−1 dΓℓ(𝐼 − Γℓ̅Γℓ)

−1dΓℓ̅̅ ̅̅ ) .
 

From the metric it can be seen that the desired geometry on 𝒫𝑁 is (up to a scalar √𝑛 and 𝑛, 
respectively) given by (7) and (8). Unfortunately, the set 𝒟𝑁 with the geometry described 

in the above metric does not correspond to any known manifold, nor does a natural distance 

measure present itself intuitively. However, the set 𝒟𝑁 does bear a close resemblance to the 

set 

𝒮𝒟𝑁 = {Ω ∈ ℂ
𝑁×𝑁 ∣ 𝐼 − ΩΩ𝐻 > 0}, 

which is (almost) the Siegel disk [228] and which has been well studied along with the 

Siegel upper half-plane. We discuss the slight adaptation to the transformation in order to 

obtain elements in the parameter space 𝒫𝑁 × 𝒮𝒟𝑁
𝑛−1 and we will also elude on the geometry 

of the Siegel. 

We present a different generalized transformation, where the set 𝒟𝑁 in transformation 

(24) is replaced by the Siegel disk 𝒮𝒟𝑁 . Next, we show the relation between both sets and 

discuss how the new transformation is also a natural extension of the scalar Kähler metric. 

Finally, the geometry of the Siegel disk will be discussed. 

The transformation. A different approach to the transformation of a 𝑃𝐷 (𝑇𝐵)𝐵𝑇 matrix can 

be derived from a link with Verblunsky coefficients [235], [236] as follows. 

In the previous setting of Toeplitz matrices, a one-to-one correspondence exists between 

a 𝑃𝐷 Toeplitz matrix and a probability measure on the complex unit circle, where the 

elements in the Toeplitz matrix are found as the moments (or Fourier coefficients) of the 

corresponding probability measure [208], [212], [214], [220], [224]. The concept of 

orthogonality for polynomials on the unit circle is linked to the specified probability 

measure, and thus indirectly to the specific Toeplitz matrix. Finally, the computation of an 

orthonormal basis of polynomials on the unit circle can be performed using the Szegö's 

recursion [232], in which the Verblunsky coefficients arise. It turns out that these 

coefficients are equal to the prediction coefficients 𝑎ℓ
ℓ(12) used in transformation (13) 

[204]. 

By generalizing the scalar probability measure on the complex unit circle to a nonnegative 

matrix measure, the collection of its moments into a matrix becomes a 𝑃𝐷 𝐵𝑇 matrix [212], 

[213], [215]. On the other hand, constructing orthogonal matrix polynomials on the unit 

circle 𝑤. 𝑟. 𝑡. the matrix measure results in a generalization of the Szegô recursion, with 

corresponding generalized Verblunsky coefficients [210], [215], [230]. 

We use the proposed generalization of the Verblunsky coefficients [215] to define a new 

transformation of a 𝑃𝐷 𝐵𝑇 matrix as follows: 

ℬ𝑛,𝑁
+  → 𝒫𝑁 × 𝒮𝒟𝑁

𝑛−1,

�̃�𝑛  ↦ (𝑃0, Ω1, … , Ω𝑛−1),
                                       (26) 

where 𝑃0 is still equal to 𝑅0, but now 

 Ωℓ: = 𝐿ℓ−1
−
1
2 (𝑅ℓ −𝑀ℓ−1)𝐾ℓ−1

−
1
2 ,                                                    (27) 

[

𝐿ℓ−1 = 𝑅0 − [𝑅1, … , 𝑅ℓ−1]�̃�ℓ−1
−1 [𝑅1, … , 𝑅ℓ−1]

𝐻,

𝐾ℓ−1 = 𝑅0 − [𝑅ℓ−1
𝐻 , … , 𝑅1

𝐻]�̃�ℓ−1
−1 [𝑅ℓ−1

𝐻 , … , 𝑅1
𝐻]
𝐻
,

𝑀ℓ−1 = [𝑅1, … , 𝑅ℓ−1]�̃�ℓ−1
−1 [𝑅ℓ−1

𝐻 , … , 𝑅1
𝐻]
𝐻
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for ℓ = 1,… , 𝑛 − 1. Comparing this transformation to the previous one, the following 

relations can be found for the auxiliary matrices 𝑃ℓ and Δℓ(21):𝐾ℓ−1 = 𝑃ℓ−1, 𝐿ℓ−1 = 𝑃ℓ−1̅̅ ̅̅ ̅̅ , 
and 𝑅ℓ −𝑀ℓ−1 = Δℓ. Hence we can also write the new transformation as 

Ωℓ = 𝑃ℓ−1
−1/2̅̅ ̅̅ ̅̅ ̅

Δℓ𝑃ℓ−1
−1/2

, 

which demonstrates the close relation between both transformations. The absence of the 

minus sign is not a problem as will become clear from the geometry of the Siegel disk (28). 
As for the transformation (13) of Toeplitz matrices, adaptations of (26) have also been 

suggested [222], [223]. However, these adaptations are again designed for more robust 

estimation of the correlation blocks 𝑅𝑡 in (18) from a finite number of measurements. We 

assume that this estimation has been performed prior to the application of the averaging 

operation. Moreover, as before, the different transformations result in the same parameter 

space 𝒫𝑁 × 𝒮𝒟𝑁
𝑛−1. Hence we will not discuss these adapted transformations any further. 

It still remains to show that the coordinate matrices Ωℓ actually are elements of the Siegel 

disk. In fact, this was proven for the transformation of a general 𝑃𝐷 𝐵𝑇 matrix by Dette and 

Wagener [215] and Fritzsche and Kirstein [218]. We will discuss this for the transformation 

of elements in the set of 𝑃𝐷 𝑇𝐵𝐵𝑇 matrices 𝒯𝑛,𝑁
+ . Our interest goes specifically to 𝑃𝐷 𝑇𝐵𝐵𝑇 

matrices, but we will briefly revisit the 𝑃𝐷 𝐵𝑇 matrices. 
Suppose we have �̃�ℓ ∈ 𝒯𝑛,𝑁

+ , then by exploiting the Toeplitz structure of the blocks and �̃�ℓ =

�̃�ℓ, we can show that 

Δℓ̅̅ ̅  = 𝑅ℓ̅̅ ̅ − 𝑀ℓ−1̅̅ ̅̅ ̅̅ ̅

 = 𝑅ℓ
𝐻 − 𝐽𝑁[𝑅1, … , 𝑅ℓ−1]

∗�̃�ℓ−1
−1∗ [𝑅ℓ−1

𝐻 , … , 𝑅1
𝐻]
𝐻∗

𝐽𝑁

 = 𝑅ℓ
𝐻 − 𝐽𝑁[𝑅1, … , 𝑅ℓ−1]

∗𝐽𝑛𝑁�̃�ℓ−1
−1 𝐽𝑛𝑁[𝑅ℓ−1

𝐻 , … , 𝑅1
𝐻]
𝐻∗

𝐽𝑁

 = 𝑅ℓ
𝐻 − [𝑅ℓ−1

𝐻 , … , 𝑅1
𝐻]�̃�ℓ−1

−1 [𝑅1, … , 𝑅ℓ−1]
𝐻

 = Δℓ
𝐻,

 

after which we can again start from the positive definiteness of 𝑃ℓ̅, 

 
which proves Ωℓ ∈ 𝒮𝒟𝑁 . 
The metric. We want to define the generalized metric by starting from the Kähler potential, 

where we continue from (25) using the following, 

det (𝐼 − 𝐴ℓ
ℓ𝐴ℓ

ℓ̅̅ ̅)  = det (𝐼 − Δℓ𝑃ℓ−1
−1 Δℓ̅̅ ̅𝑃ℓ−1

−1̅̅ ̅̅ ̅̅ )

 = det (𝐼 − Δℓ𝑃ℓ−1
−1 Δℓ

𝐻𝑃ℓ−1
−1̅̅ ̅̅ ̅̅ )

 = det (𝐼 − 𝑃ℓ−1
−1/2̅̅ ̅̅ ̅̅ ̅

Δℓ𝑃ℓ−1
−1 Δℓ

𝐻𝑃ℓ−1
−1/2̅̅ ̅̅ ̅̅ ̅

)

 = det(𝐼 − ΩℓΩℓ
𝐻) .

 

The expression for the Kähler potential and resulting generalized metric [202] are 
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Φ(�̃�𝑛) =  −nlog(det 𝑃0) −∑  

𝑛−1

ℓ=1

  (𝑛 − ℓ) log(det(𝐼 − ΩℓΩℓ
𝐻)) − log(𝜋𝑒) ,

d𝑠2 = 𝑛 trace (𝑃0
−1 d𝑃0𝑃0

−1 d𝑃0)

 +∑  

𝑛−1

ℓ=1

  (𝑛 − ℓ) trace ((𝐼 − ΩℓΩℓ
𝐻)

−1
 dΩℓ(𝐼 − Ωℓ

𝐻Ωℓ)
−1

 dΩℓ
𝐻) .

(28) 

The geometry on 𝒫𝑁 remains the same as for the first transformation. For the Siegel disk 

𝒮𝒟𝑁 , the natural geometry can be derived from the geometry of the Siegel upper half-plane 

described by Siegel himself [228], using the link 

Ω = (𝐵 − 𝑖𝐼)(𝐵 + 𝑖𝐼)−1,

𝐵 = 𝑖(𝐼 + Ω)(𝐼 − Ω)−1,
 

where 𝐵 is an element of the Siegel upper half-plane (ℑ𝔪(𝐵) > 0). We should note that 

this link and the Siegel disk itself are classically only defined for symmetric matrices (in 

order for the positive definiteness of ℑ𝔪(𝐵) to make sense). However, removing the 

symmetry restriction only disrupts the link and the definition of the Siegel upper half-plane, 

while the Siegel disk and its geometry remain well-defined. 

The resulting (scaled) geometry on 𝒮𝒟𝑁 and a reminder of the (scaled) geometry on 𝒫𝑁 are 
∀𝐴, 𝐵 ∈ 𝒫𝑁 , ∀𝐸, 𝐹 ∈ ℋ𝑁:

⟨𝐸, 𝐹⟩𝐴 = 𝑛 trace(𝐴−1𝐸𝐴−1𝐹),                                                               (29)

𝑑𝒫𝑁(𝐴, 𝐵) = √𝑛∥∥log (𝐴−1/2𝐵𝐴−1/2)∥∥
𝐹
;

∀Ω,Ψ ∈ 𝒮𝒟𝑁 , ∀𝑣, 𝜔 ∈ ℂ
𝑁×𝑁:

⟨𝑣, 𝜔⟩Ω =
𝑛 − ℓ

2
trace ((𝐼 − ΩΩ𝐻)−1𝑣(𝐼 − Ω𝐻Ω)−1𝜔𝐻)

 +
𝑛 − ℓ

2
trace ((𝐼 − ΩΩ𝐻)−1𝜔(𝐼 − Ω𝐻Ω)−1𝑣𝐻),

 =
𝑛 − ℓ

4
trace (log2 (

𝐼 + 𝐶
1
2

𝐼 − 𝐶
1
2

)),                                      (30)

𝑑𝒮𝒟𝑁
2 (Ω,Ψ) = [𝐶 = (Ψ− Ω)(𝐼 − Ω𝐻Ψ)−1(Ψ𝐻 − Ω𝐻)(𝐼 − ΩΨ𝐻)−1,

 

where ℓ is chosen corresponding to the coordinate matrix (Ωℓ, ℓ = 1… , 𝑛 − 1, from (26)) 
to which it relates. Note that both inner products and distance measures reduce to the scalar 

expressions  when 𝑁 = 1. We also point out that the distance measure 𝑑𝒮𝒟𝑁 on the Siegel 

disk can be written using a Frobenius norm. This is accomplished by performing the 

similarity transformation (𝐼 − ΩΩ𝐻)−1/2𝐶(𝐼 − ΩΩ𝐻)1/2, which results in a Hermitian 

matrix (as shown below in (33)) and does not change the distance measure since only the 

eigenvalues of 𝐶 matter. 

The Kähler distance 𝑑𝐵𝑇 between two PD(TB)BT matrices �̃�1 and �̃�2, with transformations 

(𝑃0,1, Ω1,1, … , Ω𝑛−1,1) and (𝑃0,2, Ω1,2, … , Ω𝑛−1,2), is defined as 
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𝑑𝐵𝑇
2 (�̃�1, �̃�2) = 𝑑𝐵𝑇

2 ((𝑃0,1, Ω1,1, … , Ω𝑛−1,1), (𝑃0,2, Ω1,2, … , Ω𝑛−1,2))

= 𝑛 ∥
∥log (𝑃0,1

−1/2
𝑃0,2𝑃0,1

−1/2
)∥
∥
𝐹

2
+∑  

𝑛−1

ℓ=1

 
𝑛 − ℓ

4
trace(log2(

𝐼 + 𝐶
ℓ

1
2

𝐼 − 𝐶
ℓ

1
2

)) , (31)

[𝐶ℓ = (Ωℓ,2 − Ωℓ,1)(𝐼 − Ωℓ,1
𝐻 Ωℓ,2)

−1
(Ωℓ,2

𝐻 − Ωℓ,1
𝐻 )(𝐼 − Ωℓ,1Ωℓ,2

𝐻 )
−1
.

 

Using the definition of a barycenter (10), the generalized Kähler mean can now be found as 

ℬ𝐵𝑇 . 
The distance measure discussed was proposed by Siegel as a possible natural 

generalization to scalar distance measure on the Poincaré disk. Other generalizations have 

also been investigated, and among these, the one we will refer to as the Kobayashi distance 

measure 𝑑𝐾 has some interesting properties. 

For Ω,Ψ ∈ 𝒮𝒟𝑁 , it is defined as [203], [206], [217] 

𝑑𝐾(Ω,Ψ) =
1

2
log (

1 + ∥∥𝜙Ω(Ψ)∥∥2
1 − ∥∥𝜙Ω(Ψ)∥∥2

) ,

 [𝜙Ω(Ψ) = (𝐼 − ΩΩ
𝐻)−

1
2(Ψ − Ω)(𝐼 − Ω𝐻Ψ)−1(𝐼 − Ω𝐻Ω)

1
2,             (32)

 

which, up to scaling, reduces exactly to the scalar distance measure on the Poincaré disk. 

The 2-norm ∥⋅∥2 in this expression represents the spectral norm of a matrix, given by its 

largest singular value. 

Unfortunately, the Kobayashi distance measure is not naturally associated with the metric 

on the Siegel disk with which we are working. We show this by examining the differential 

metric at the zero matrix. By entering Ω = 0 in (28), our differential metric on the Siegel 

disk becomes d𝑠2 = trace (dΩdΩ𝐻) =∥ dΩ ∥𝐹
2 . The differential metric corresponding to the 

Kobayashi distance measure at the zero matrix is given by d𝑠2 =∥ dΩ ∥2
2 [217], which is 

clearly not the same. 

However, the main advantage of this distance measure lies in the transformation 𝜙Ω(32), 
which acts as an automorphism on the Siegel disk. The distance between two matrices and 

between their transformations under 𝜙Ω remains the same, for both the Siegel distance 𝑑𝒮𝒟𝑁 

and the Kobayashi distance 𝑑𝐾 , and this can be exploited in the computations. During each 

step of the optimization process, the current iteration point is translated to the origin (the 

zero matrix) while the original matrices of the mean are translated accordingly. Working at 

the origin will simplify the computation of optimization constructions such as the gradient, 

retractions, 𝑒𝑡𝑐. In the information geometry, the idea of translation to the origin on the 

Poincaré and Siegel disk for barycenter computation was introduced by Barbaresco [203]. 
We note already that this translation to the origin is no longer practical once we enforce the 

Toeplitz structure on the individual blocks 𝑅ℓ, ℓ = 0,… , 𝑛 − 1, 𝑖. 𝑒., when we go from 

𝑃𝐷 𝐵𝑇 matrices to 𝑃𝐷 𝑇𝐵𝐵𝑇 matrices. As will be fully explained, once an iteration step 𝜔 

at the translated origin is computed, the actual iteration point Ωℓ (with respect to the original 

matrices) should be updated to 𝜙(−Ωℓ)(𝜔). Imposing the Toeplitz structure on the blocks 𝑅ℓ 

now results in a very involved condition for the step 𝜔. The process of exploiting the 

translation itself is further explained . 
The presence of the underlying Toeplitz structure in the blocks greatly influences the 

computation of the generalized Kähler mean. Therefore, we first discuss the situation in 
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which the structure is not required, the necessary changes and resulting implications of 

imposing the Toeplitz condition are presented. 

In the general case of 𝑃𝐷 𝐵𝑇 matrices, all advantages of the scalar version are still valid. 

The optimization of the coordinate matrices under transformation (26) can be performed 

separately, resulting in 𝑛 parallel optimization processes involving 𝑁 × 𝑁 matrices (instead 

of a single process involving 𝑛𝑁 × 𝑛𝑁 matrices). 

The optimization in the first coordinate matrix results in the Karcher mean 

ℬ𝒫𝑁(𝑃0,1, … , 𝑃0,𝑘) of the involved 𝑃𝐷 matrices, as defined. 

For the other coordinates (Ωℓ,𝑖 ∈ 𝒮𝒟𝑁), the optimization at each level of ℓ(= 1,… , 𝑛 − 1) 
can be formulated in the same way, hence we omit the depen- dence on ℓ in the definition 

of the barycenter 

ℬ𝒮𝒟𝑁(Ω1, ⋯ , Ωk) = arg min𝑋∈𝒮𝒟𝑁

1

2
∑‖log(

1 + 𝐶
𝑖

1
2

1 − 𝐶
𝑖

1
2

)‖

𝐹

2
𝑘

𝑖=1

, 

[𝐶𝑖 = 𝐼 − (𝐼 − Ω𝑖Ω𝑖
𝐻)

1
2(𝐼 − XΩ𝑖

𝐻)
−1
(𝐼 − 𝑋𝑋𝐻)(𝐼 − Ω𝑖𝑋

𝐻)−1(𝐼 − Ω𝑖Ω𝑖
𝐻)

1
2] , (33) 

 

where the cost function has been rescaled and 𝐶𝑖 is written in the Hermitian form which was 

mentioned. The cost function in this optimization problem will be denoted as 𝑓ℬ𝑠𝒟𝑁
(𝑋). 

𝐴 first order optimization algorithm requires us to determine the (Riemannian) gradient of 

the cost function, defined for 𝒮𝒟𝑁 as 

D𝑓ℬ𝒮𝒟𝑁
(𝑋)[𝜔𝑋] = ⟨grad 𝑓ℬ𝑆𝒟𝑁

(𝑋) , 𝜔𝑋⟩
𝑋
                                                 (34) 

with the inner product (30). Note that differentiating the cost function at some point requires 

the differentiation of the matrix inverse and matrix square root. Using the notation 𝑔(𝑋) =
𝑋−1 and ℎ(𝑋) = 𝑋1/2, these are given by 

D𝑔(𝑋)[𝜔]  = −𝑋−1𝜔𝑋−1,  inversion [211], 

Dℎ(𝑋)[𝜔]𝑋
1
2 + 𝑋

1
2Dℎ(𝑋)[𝜔],  square root,

 

where the latter is obtained by applying the product rule to the definition 𝑋1/2𝑋1/2 =  𝑋 and 

can be recognized (and solved) as a continuous Lyapunov equation (𝐶𝐿𝐸). 
After some calculations, the emerging gradient is 

grad 𝑓ℬ𝑆𝒟𝑁
(𝑋) = (𝐼 − 𝑋𝑋𝐻)∑  

𝑘

𝑖=1

  (𝑉𝑖(𝑋 − Ω𝑖)(𝐼 − 𝑋
𝐻Ω𝑖)

−1)(𝐼 − 𝑋𝐻𝑋),         (35) 

[
 
 
 
 
 
 𝑉𝑖 = (𝐼 − Ω𝑖𝑋

𝐻)−1(𝐼 − Ω𝑖Ω𝑖
𝐻)

1
2𝑍𝑖(𝐼 − Ω𝑖Ω𝑖

𝐻)
1
2(𝐼 − 𝑋Ω𝑖

𝐻)
−1
,

𝑍𝑖 = 𝔏

(

 
 
𝐶
𝑖

1
2, (𝐼 − 𝐶𝑖)

−1log (
𝐼 + 𝐶

𝑖

1
2

𝐼 − 𝐶
𝑖

1
2

)

)

 
 
,

 

where 𝐶𝑖 is defined as in (33) and 𝔏(𝐴, 𝑄) stands for the solution 𝑋 of the 𝐶𝐿𝐸 𝐴𝑋 + 𝑋𝐴𝐻 =
𝑄. Note that the second argument in the Lyapunov operator 𝔏 is a Hermitian matrix, hence 
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the 𝐶𝐿𝐸 is well-defined. This gradient can be used to design a basic steepest descent or 

conjugate gradient method in order to obtain the barycenter. 

Translation to the origin. Using the translation 𝜙(32), computations can be greatly 

simplified. Suppose the initial guess for the barycenter ℬ𝒮𝒟𝑁 is given by a matrix 𝑋0. The 

translation 𝜙𝑋0 maps the matrix 𝑋0 exactly onto the origin (the zero matrix) 0 ∈ 𝒮𝒟𝑁 and 

by applying the same transformation to the original matrices Ω𝑖 , the distances 𝑑𝒮𝒟𝑁(𝑋0, Ω𝑖) 

and 𝑑𝒮𝒟𝑁 (0, 𝜙𝑋0(Ω𝑖)) remain exactly the same for all 𝑖. Hence the value of the barycenter 

cost function 𝑓ℬ𝒮𝒟𝑁
 does not change under this translation. The gradient of the (translated) 

cost function can now be computed at the origin and used in a basic descent method to obtain 

a new iteration point, denoted by Ψ1. We can translate this new point again to the origin 

using the next translation 𝜙Ψ1 . However, in order to keep track of the barycenter 

approximations with respect to the original matrices, we need to keep in mind that Ψ1 is an 

improvement over the origin for the translated matrices 𝜙𝑋0(Ω𝑖). The new barycenter 

approximation with respect to the original matrices is hence given by 𝑋1 = 𝜙−𝑋0(Ψ1) (note 

that 𝜙𝑋0
−1 = 𝜙−𝑋0). 

The resulting procedure is summarized in Algorithm 1. Note that Ω𝑖
(𝑗+1)

 can also be 

computed as 𝜙Ψ𝑗+1 (Ω𝑖
(𝑗)
) [203]. However, in both this formula and the one mentioned in 

the algorithm, a translation needs to be performed, but by always restarting from the original 

matrices, the updating formula mentioned in the algorithm is less sensitive to the 

accumulation of roundoff errors. 

 
 Finally, we present the simplified form of the gradient at the origin, 

grad 𝑓ℬ𝒮𝒟𝑁
(0;Ω1, … , Ω𝑘) = −∑ 

𝑘

𝑖=1

𝑉𝑖Ω𝑖 ,                                       (36) 

[𝑉𝑖 = 𝔏

(

 (Ω𝑖Ω𝑖
𝐻)

1
2, log (

𝐼 + (Ω𝑖Ω𝑖
𝐻)

1
2

𝐼 − (Ω𝑖Ω𝑖
𝐻)
1
2

)

)

 , 

where 𝑉𝑖 is now obtained directly as the solution of a 𝐶𝐿𝐸. 
As mentioned, in some applications the Toeplitz structure is not only present in the 

block structure, but also in the individual blocks themselves. To investigate the implications 
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of this restriction, we have another look at the transformation (26) of the matrices, with the 

𝑛 − 1 coordinate matrices in the Siegel disk given by (27). 
At first sight, imposing the Toeplitz structure requires the matrix 𝑅ℓ in each Ωℓ to be 

Toeplitz. However, the matrices 𝐿ℓ−1, 𝐾ℓ−1, and 𝑀ℓ−1 depend on the matrices 𝑅0, … , 𝑅ℓ−1, 
which should also be Toeplitz matrices now. All these Toeplitz restrictions are translated in 

an involved way to the search space in which each Ωℓ is located. By taking the involved 

connections into account, we will derive the general Kähler mean for 𝑃𝐷 𝑇𝐵𝐵𝑇 matrices. 

Afterwards, we present an approximation to this general Kähler mean which again allows 

us to perform the optimization of the coordinate matrices separately, but now sequentially 

in the given order of the variables as in transformation (26) (𝑃0 → Ω1 → ⋯ → Ω𝑛−1). 
Instead of translating the Toeplitz restriction towards involved conditions on the 

coordinate matrices (𝑃0, Ω1, … , Ω𝑛−1), we consider the barycenter cost function 𝑓ℬ𝐵𝑇 , based 

on the total Kähler distance function 𝑑𝐵𝑇(31), as a function of the blocks 𝑅0, … , 𝑅𝑛−1 of the 

matrix �̃�𝑛. Doing so will result in a more involved gradient, but it allows us to enforce the 

Toeplitz structure directly onto its components. 

The complexity of this differentiation "throughout" the coordinate matrices is caused by the 

dependence on the original blocks. While the first coordinate matrix 𝑃0 only depends on 𝑅0, 
each coordinate matrix Ωℓ depends on the blocks 𝑅0, … , 𝑅ℓ for ℓ = 1,… , 𝑛 − 1, or, 

reversely, 𝑅0 will influence all coordinate matrices, and for each ℓ = 1,… , 𝑛 − 1, block 𝑅ℓ 
is present in coordinate matrices Ωℓ, … , Ω𝑛−1. 
The gradient. As shown in (34), the gradient of the cost function depends on its derivative 

and the inner product on the search space. Because of the intricate connections between the 

variables, the gradient is now defined on the product space of the blocks as follows: 

D𝑓ℬ𝐵𝑇 ((𝑅0, … , 𝑅𝑛−1))[(𝐸0, 𝜔1, … , 𝜔𝑛−1)]

= ⟨grad𝑓ℬ𝐵𝑇((𝑅0, … , 𝑅𝑛−1)) , (𝐸0, 𝜔1, … , 𝜔𝑛−1)⟩(𝑅0,…,𝑅𝑛−1)

: = ⟨grad𝑓ℬ𝐵𝑇((𝑅0, … , 𝑅𝑛−1))0 , 𝐸0⟩
𝑃0

 +∑  

𝑛−1

ℓ=1

  ⟨𝐿
ℓ−1

−
1
2 grad 𝑓ℬ𝐵𝑇((𝑅0, … , 𝑅𝑛−1))ℓ𝐾ℓ−1

−
1
2 , 𝐿

ℓ−1

−
1
2 𝜔ℓ𝐾ℓ−1

−
1
2 ⟩

Ωℓ

,

(37) 

where (𝑃0, Ω1, … , Ω𝑛−1) is the image of �̃�𝑛 under transformation (26) with 𝐿ℓ−1 and 𝐾ℓ−1 

the matrices formed during the transformation. The inner products ⟨. , . ⟩𝑃0 and ⟨. , . ⟩Ωℓ are 

given by (29) and (30), respectively, and the (ℓ + 1)𝑡ℎ component of the gradient is 

represented by grad 𝑓ℬ𝐵𝑇((𝑅0, … , 𝑅𝑛−1))ℓ. The left and right multiplication by 𝐿ℓ−1
−1/2

 and 

𝐾ℓ−1
−1/2

 in the last inner products is a consequence of the relation between the tangent space 

at 𝑅ℓ versus the tangent space at Ωℓ. 
To demonstrate the complexity of the relations, we present the gradient below. The point at 

which the gradient is computed is denoted by �̃�𝑛, with blocks (𝑅0, … , 𝑅𝑛−1) and 

transformation (𝑃0, Ω1, … , Ω𝑛−1), while the 𝑃𝐷 𝑇𝐵𝐵𝑇 matrices of which the barycenter is 

computed will be denoted by �̃�𝑛,𝑖 , with blocks (𝑅0,𝑖 , … , 𝑅𝑛−1,𝑖) and transformation 

(𝑃0,𝑖 , Ω1,𝑖 , … , Ω𝑛−1,𝑖), 𝑖 = 1,… , 𝑘. 

In the expressions, the matrices 𝐴𝑗
ℓ−1(19) − (22), associated with the creation of Δℓ and 

𝑃ℓ−1 (and therefore 𝐿ℓ−1, 𝐾ℓ−1, and 𝑀ℓ−1 ) in the transformation of �̃�𝑛, are used to increase 
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readability and computational efficiency. The first component of the gradient becomes the 

following: 

      (38) 

where 𝐷ℓ,𝑖
𝐿 , 𝐷ℓ,𝑖

𝐾 , and 𝑍ℓ,𝑖 are obtained by solving a 𝐶𝐿𝐸. The other components of the gradient 

are, for 𝑞 = 1,… , 𝑛 − 1, given by 

        (39) 

where 𝐷ℓ,𝑖
𝐿 , 𝐷ℓ,𝑖

𝐾 , and 𝑉ℓ,𝑖
(1)

 are the same as for the first component. 

What we have done so far is to compute the gradient of 𝑓ℬ𝐵𝑇 as a function of the matrix 

blocks (𝑅0, … , 𝑅𝑛−1) instead of the coordinate matrices (𝑃0, Ω1, … , Ω𝑛−1). Finally, we can 

impose the Toeplitz structure on the blocks. 

Projection onto the Toeplitz structure. According to manifold optimization theory, 

computing the gradient of a cost function on some submanifold is equivalent to computing 

the gradient in the embedding manifold and applying the orthogonal projection onto the 

submanifold [21]. In our case, the embedding manifold is the set (ℂ𝑁×𝑁)+
𝑛  containing all 

tuples (𝑅0, … , 𝑅𝑛−1) which represent the blocks of an element in ℬ𝑛,N
+ .The submanifold is 

given by the set (𝒯𝑁)+
𝑛  which contains all tuples (𝑅0, … , 𝑅𝑛−1) holding the blocks of an 

element in 𝒯𝑛,𝑁
+ . 
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Above, we have computed the gradient of the cost function 𝑓ℬ𝐵𝑇 for the embedding manifold 

(ℂ𝑁×𝑁)+
𝑛  since no additional structure was imposed on the blocks. 

Hence, we need an orthogonal projection of this gradient at any point (𝑅0, … , 𝑅𝑛−1) ∈
 (𝒯𝑁)+

𝑛 ⊂ (ℂ𝑁×𝑁)+
𝑛  from 𝑇(𝑅0,…,𝑅𝑛−1)(ℂ

𝑁×𝑁)+
𝑛  onto 𝑇(𝑅0,…,𝑅𝑛−1)(𝒯𝑁)+

𝑛 . This projection should 

be orthogonal with respect to the inner product (37) and, for 

(𝐸0, 𝜔1, … , 𝜔𝑛−1) ∈ 𝑇(𝑅0,…,𝑅𝑛−1)(ℂ
𝑁×𝑁)+

𝑛 , 

is given by 

 𝐸0 ↦ vec−1(𝑈H(𝑈H
𝐻(𝑃0

−1 𝑇⊗𝑃0
−1)𝑈H)

−1𝑈H
𝐻 vec(𝑃0

−1𝐸0𝑃0
−1)),                  (40) 

𝜔ℓ ↦ vec−1 (𝑈T (𝑈T
𝐻 (𝑆ℓ

𝐾𝑇⊗𝑆ℓ
𝐿)𝑈T)

−1
𝑈T
𝐻 vec(𝑆ℓ

𝐿𝜔ℓ𝑆ℓ
𝐾)),                      (41) 

[
𝑆ℓ
𝐿 = 𝐿

ℓ−1

−
1
2 (𝐼 − ΩℓΩℓ

𝐻)
−1
𝐿
ℓ−1

−
1
2 ,

𝑆ℓ
𝐾 = 𝐾

ℓ−1

−
1
2 (𝐼 − Ωℓ

𝐻Ωℓ)
−1
𝐾
ℓ−1

−
1
2

 

for ℓ = 1,… , 𝑛 − 1, where (𝑃0, Ω1, … , Ω𝑛−1) is the transformation (26) of �̃�𝑛, the 𝐵𝑇 

matrix containing blocks (𝑅0, … , 𝑅𝑛−1), with associated matrices 𝐿ℓ−1 and 𝐾ℓ−1. The vec 

operator is the columnwise vectorization of a matrix, and the matrices 𝑈H and 𝑈T are 

parametrization matrices for Hermitian Toeplitz and general Toeplitz matrices, respectively. 

Hence, 𝑒. 𝑔., we write 𝑣𝑒𝑐 (𝑇1) = 𝑈H𝑡1 with 𝑡1 ∈ ℝ
2𝑁−1 the parametrization of 𝑇1 ∈ 𝒯𝑁 ∩

ℋ𝑁 , and vec (𝑇2) = 𝑈T𝑡2 with 𝑡2 ∈ ℂ
2𝑁−1 or 𝑡2 ∈ ℝ

4𝑁−2 a parametrization of 𝑇2 ∈ 𝒯𝑁 . 
Note that when the projection is combined with the gradient above, some cancellations occur 

within the vec operator of the projection. This is a consequence of the consistent use of the 

inner product (37) for both the Riemannian gradient and the orthogonal projection. 

It is obvious that even a basic construction such as the gradient is expensive for the 

generalized Kähler mean with Toeplitz structure imposed on the blocks. Here we discuss an 

approximation to this mean which is obtained as an attempt to regain the separated 

optimization of the coordinate matrices. 

Remember that the coordinate matrix 𝑃0 only depends on the block 𝑅0, coordinate matrix 

Ω1 depends on the blocks 𝑅0 and 𝑅1, 𝑒𝑡𝑐. The main idea of our approximation is to perform 

the optimization of the barycenter cost function 𝑓ℬ𝐵𝑇 in a greedy manner. 

We start by minimizing the part of the cost function which only depends directly on 𝑃0, 
while imposing the Toeplitz structure on 𝑅0. This results in the computation of the structured 

geometric mean of the given coordinate matrices (𝑃0,1, … , 𝑃0,𝑘) as described by Bini et al. 

[20]. 
When this optimization process is completed, we assume 𝑅0 (and 𝑃0 ) to be fixed. 

Next, we continue with the optimization of Ω1 = 𝐿0
−1/2(𝑅1 −𝑀0)𝐾0

−1/2
, with the Toeplitz 

structure imposed on 𝑅1. Note that since 𝑅0 is assumed to be fixed, 𝐿0, 𝐾0, and 𝑀0 are fixed 

as well, making the relation between Ω1 and 𝑅1 straightforward. 

When the optimization process on 𝑅1 is finished, assume both 𝑅0 and 𝑅1 to be fixed and 

continue this method sequentially. 

The optimization at the level of Ωℓ, ℓ = 1,… , 𝑛 − 1, is performed using a combination of 

constructions which have already been derived. We remember the barycenter cost function 

𝑓ℬ𝒮𝒟𝑁
 with associated gradient (35). Because of the Toeplitz restriction and the assumption 

that all previously optimized coordinate matrices are fixed, the tangent space at Ωℓ is given 

by 
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𝑇Ωℓ(𝐿ℓ−1
−1/2(𝒯𝑁 −𝑀ℓ−1)𝐾ℓ−1

−1/2
) ≃ {𝐿

ℓ−1

−
1
2 𝑇𝐾

ℓ−1

−
1
2 ∣ 𝑇 ∈ 𝒯𝑁}. 

We are now working directly on the level of Ωℓ instead of 𝑅ℓ, hence the projection of the 

gradient onto this tangent space slightly differs from the one presented in (41) as follows: 

𝜔ℓ ↦ vec−1 (𝑈T (𝑈T
𝐻 (𝑆ℓ

𝐾𝑇⊗𝑆ℓ
𝐿)𝑈T)

−1
𝑈T
𝐻 vec (𝑆ℓ

𝐿𝐿
ℓ−1

1
2 𝜔ℓ𝐾ℓ−1

1
2 𝑆ℓ

𝐾)), 

where 𝑈T, 𝑆ℓ
𝐾 , and 𝑆ℓ

𝐿 are the same as in (41). 
This greedy Kähler mean is only an approximation to the generalized Kähler mean since by 

assuming the previous blocks to be fixed, the search space during the optimization of the 

current block is more restricted than in the general case. The approximation does allow us 

to partially return to the situation of separated optimization, since the optimization is 

performed separately on the blocks, even though they have to be computed sequentially. 

When we consider the properties of the generalized Kähler mean, an intuitive 

approach is to start from the properties of the Kähler mean for Toeplitz matrices . 
The generalized Kähler mean of 𝑃𝐷 𝐵𝑇 matrices and both the global and greedy version of 

the Kähler mean of 𝑃𝐷 𝑇𝐵𝐵𝑇 matrices will be permutation invariant, repetition invariant, 

and idempotent, since all of them are defined as barycenters. 

As for the property of joint homogeneity, we start by discussing the change of 

transformation (26) when a 𝑃𝐷 (𝑇𝐵)𝐵𝑇 matrix �̃�𝑛 is replaced with 𝛼�̃�𝑛 for any real 𝛼 >
0. We denote the transformation of �̃�𝑛 by (𝑃0, Ω1, … , Ω𝑛−1) with corresponding prediction 

matrices 𝐴𝑗
ℓ and auxiliary matrices 𝑃ℓ−1 and Δℓ, and that of 𝛼𝑅𝑛 by (𝑃0

′ , Ω1
′ , Ω𝑛−1

′ ) 𝑃ℓ−1
′  and 

Δℓ
′ . 

First, the change of the prediction matrices 𝐴𝑗
ℓ′ , and auxiliary matrices 𝑃ℓ−1

′  and Δℓ
′ , ℓ =

1,… , 𝑛 − 1, 𝑗 = 1,… , ℓ, can be found using induction. Considering (19)(22), it is clear to 

see that 𝐴1
1′ = 𝐴1

1, 𝑃0
′ = 𝛼𝑃0, and Δ1

′ = 𝛼Δ1. Now assuming 𝐴ℓ−1
′̃ = �̃�ℓ−1, we find 𝑃ℓ−1

′ =

𝛼𝑃ℓ−1, Δℓ
′ = 𝛼Δℓ, and 𝐴ℓ

ℓ′ = 𝐴ℓ
ℓ. As a consequence of 𝐴ℓ−1

′ = �̃�ℓ−1, we find 𝑃ℓ−1
′ =

𝛼𝑃ℓ−1, Δℓ
′ = 𝛼𝜃(22), 𝐴ℓ

′̃ = �̃�ℓ, which closes the induction. 

By writing the coordinate matrices Ωℓ
′  in the form 𝑃ℓ−1

′−1/2̅̅ ̅̅ ̅̅ ̅̅
Δℓ
′ 𝑃ℓ−1

′−1/2
, we now find that Ωℓ

′ =

Ωℓ, ℓ = 1,… , 𝑛 − 1. Summarized, the transformation of 𝛼�̃�𝑛 is given by 
(𝛼𝑃0, Ω1, … , Ω𝑛−1), which is consistent with the Kähler transformation of 𝑃𝐷 Toeplitz 

matrices. Note that transformation (24) behaves in the same way for positive scaling. 

Now, as for joint homogeneity, suppose we have 𝑃𝐷 (𝑇𝐵)𝐵𝑇 matrices �̃�𝑖 , 𝑖 = 1,… , 𝑘, with 

a corresponding transformation (𝑃0,𝑖 , Ω1,𝑖 , … , Ω𝑛−1,𝑖), and 𝑘 positive scalars 𝛼𝑖 . The 

generalized Kähler mean for 𝑃𝐷 𝐵𝑇 matrices is computed separately on the coordinate 

matrices. Combining this with the joint homogeneity of the geometric mean of 𝑃𝐷 matrices 

(specifically, the Karcher mean) [2], [36] is sufficient to prove the property in this case. 

The global version of the Kähler mean for 𝑃𝐷 𝑇𝐵𝐵𝑇 matrices can be seen to satisfy the 

property by studying the gradient of the cost function. If this gradient becomes the zero 

matrix for some matrix �̃�𝑛 with given matrices �̃�𝑖, 𝑖 = 1,… , 𝑘, it can be checked matrices 

𝛼𝑖�̃�𝑖 , 𝑖 = 1,… , 𝑘. 
Moreover, the greedy approximation also satisfies the property, which can be seen as 

follows. We will denote the transformation of the greedy Kähler mean of the unscaled 

�̃�1, … , �̃�𝑘 by (𝑃0, Ω1, … , Ω𝑛−1). The greedy Kähler mean of the scaled matrices 
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𝛼1�̃�1, … , 𝛼𝑘�̃�𝑘 now starts by averaging the first coordinate matrices, resulting in 

ℬ𝒯𝑁+(𝛼1𝑃0,1, … , 𝛼𝑘𝑃0,1) = (𝛼1⋯𝛼𝑘)
1/𝑘𝑃0 because of the joint homogeneity of the 

structured geometric mean for linear structures [20]. As mentioned before, the search space 

for the coordinates of this greedy mean is dependent on the ones that have already been 

computed. Hence, for the next coefficients (Ω1,1, … , Ω1,𝑘) we still minimize the cost 

function 𝑓ℬ𝑆𝒟𝑁
(𝑋; Ω1,1, … , Ω1,𝑘). However, the search space has changed from 

𝑃0
−1/2̅̅ ̅̅ ̅̅ ̅

𝒯𝑁𝑃0
−1/2

∩ 𝒮𝒟𝑁  to  (𝛼1⋯𝛼𝑘)
−1/𝑘𝑃0

−1/2̅̅ ̅̅ ̅̅ ̅
𝒯𝑁𝑃0

−1/2
∩ 𝒮𝒟𝑁 

from which it can be seen that the resulting coordinate matrix Ω1 remains the same as in the 

unscaled setting (since a scaling of vector space 𝒯𝑁 does not change the space). The other 

coordinate matrices Ωℓ, ℓ = 2,… , 𝑛 − 1, similarly do not change. 

Finally, the greedy Kähler mean of the scaled matrices is obtained with coordinate matrices 

((𝛼1⋯𝛼𝑘)
1/𝑘𝑃0, Ω1, … , Ω𝑛−1), which corresponds to the correct matrix for joint 

homogeneity to hold. 

As for the Kähler mean of 𝑃𝐷 Toeplitz matrices, it is not difficult to find examples which 

contradict the property of monotonicity. In fact, any counterexample found for the Kähler 

mean of 𝑃𝐷 Toeplitz matrices can again be used to contradict the property, since this mean 

arises as a special example of the generalized Kähler mean for blocks of size 1 . 
We will analyze the various algorithms that were discussed for the generalized Kähler 

mean. 

First of all, we will have a closer look at the Siegel disk and compare the barycenters that 

arise when using the Siegel distance measure 𝑑𝒮𝒟𝑁 and the Kobayashi distance measure 𝑑𝐾 . 

Afterwards, a comparison of the global and greedy version of the generalized Kähler mean 

for 𝑃𝐷 𝑇𝐵𝐵𝑇 matrices is presented, where we also combine the methods by using the greedy 

version as an initial guess for the global mean algorithm. 

We have endowed the Siegel disk 𝒮𝒟𝑁 with the Siegel distance measure 𝑑𝒮𝒟𝑁and 

with the Kobayashi distance measure 𝑑𝐾 . Since each distance measure 

 
can be used to define a barycenter (ℬ𝒮𝒟𝑁 and ℬ𝐾 , respectively) on the Siegel disk, we 

compare the computational time and results of both. 
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When we investigate the distance between the barycenters, a relative distance of the order 

𝒪(10−1) can be found consistently for varying matrix sizes. Note that the diameter of the 

Siegel disk becomes infinite for both distance measures. 

As for computational time, we display some results of both barycenters for varying sizes of 

matrices in Figure 1 (𝑎). The Siegel barycenter ℬ𝒮𝒟𝑁 requires less computational time, and 

this required time also increases more slowly as the matrices grow. 

Perhaps even more interesting is the fact that when we further increase the size of the 

matrices, the steepest descent method to compute the Kobayashi barycenter starts exhibiting 

convergence problems and a lack of a unique minimizer. These problems can be ascribed to 

the presence of the spectral norm in the Kobayashi distance measure. This norm is given by 

the largest singular value of a matrix, and its derivative is only well-defined when this largest 

value is strictly greater than the other singular values [219]. During the computation of the 

barycenter ℬ𝐾 , it is possible that a matrix with two or more almost equal largest singular 

values is entered into this derivative, causing convergence problems. Furthermore, the 

derivative of the spectral norm can only contribute a rank one matrix to the gradient of the 

barycenter cost function for each given matrix in the barycenter. Consequently, this will 

start causing problems when the number of matrices in the barycenter becomes too small 

compared to the size of the matrices. 

We have suggested a steepest descent algorithm for the generalized Kähler mean of 

𝑃𝐷 𝑇𝐵𝐵𝑇 matrices, followed by a greedy approximation. Here we analyze how close this 

approximation is to the actual mean and we investigate the computational advantage of the 

approximation. 

First of all, in terms of computational time the greedy version has a clear advantage over the 

global mean, as illustrated in Figure 1( b). This was expected, since the gradient for the 

greedy optimization problem can be found in the gradient of 

 
the global optimization problem (38) − (39) by setting the factors 𝐺ℓ,𝑖 (for the first 

component) and 𝑊ℓ,𝑖
(𝑞)

 (for the other components) to zero. 

In fact, while the basic operations for the terms in the individual blocks of the gradient 

depend on the size of the matrices (𝑁), the number of terms in each block in the global 

gradient is dependent on the block size (𝑛) of the matrix. For the gradient in the greedy 

algorithm, changing the block size of the matrices from 𝑛 to 𝑛 + 1 corresponds to computing 

one additional block in the gradient, independent of all previous blocks. On the other hand, 

the gradient in the global algorithm will gain an additional term in each of the previous 

blocks of the gradient. Hence, the greedy algorithm is linearly dependent on the number of 

blocks 𝑛 in the matrices, while for the global algorithm this dependence is quadratic. 
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Moreover, in Table 1, the (averaged) relative distance between the global version of the 

generalized Kähler mean and its greedy approximation is shown for a number of block sizes. 

The observed relative proximity between both versions and the computational advantage of 

the greedy algorithm suggests that it could work well as an approximation. In fact, many 

applications require only a limited amount of significant digits, in which case the greedy 

approximation can replace the actual mean. 

The greedy approximation as initial guess for the global algorithm. Next, for those 

applications where the global version of the generalized Kähler mean is required, we analyze 

the influence of the initial guess on the algorithm. Specifically, the appropriateness of the 

greedy version as an initial guess is investigated. 

In Figure 1( b), the computational time of the global version of the mean is displayed when 

we use a random initial guess and the greedy mean. As can be seen, using the greedy 

approximation results in a faster algorithm. Note that the time to compute the greedy mean 

was included in these results. Table 1 also displays the advantage of the greedy initial guess, 

as the required number iterations of the global algorithm are reduced by half. Hence, we can 

conclude that the greedy approximation works well as an initializer to the global algorithm. 

We have focused on a geometry for 𝑃𝐷 Toeplitz matrices and a generalization thereof 

towards 𝑃𝐷 (𝑇𝐵)𝐵𝑇 matrices. 

In the case of Toeplitz matrices, the Kähler mean and its properties have been investigated. 

While this mean did not satisfy many properties relating to the ordering of matrices, such as 

monotonicity, it does cooperate well with the application from which it was derived [197], 

[23], [202], [240]. 

Afterwards, two possible generalizations of the Kähler transformation towards 𝑃𝐷 (𝑇𝐵)𝐵𝑇 

matrices were presented, of which the second was discussed in further detail. 

Two possible geometries on the Siegel disk were investigated, where one corresponded 

naturally with the manifold and the other was based on a useful automorphism of the set. 

For 𝑇𝐵𝐵𝑇 matrices, a global mean and a greedy approximation were derived, which were 

compared in numerical experiments. The greedy version of the generalized mean was a close 

approximation to the global mean, with a significantly lower computational cost. The greedy 

approximation was also shown to work well as an initializer for the global optimization 

algorithm, effectively reducing the number of iterations by half. 

Section (4.3): Toeplitz and Toeplitz-Block Block-Toeplitz Matrices 

The notion of geometric mean of scalars has been extended to positive definite matrices by 

many [2], [5], [6], [1], [36], [17]. Since the straightforward generalization (𝐴1…𝐴𝑛)
1

𝑛 does 

not satisfy many desired properties, even it is not invariant under permutation, new 

definitions of geometric mean for matrices have been developed, 

𝑒. 𝑔. 𝐴𝐿𝑀,𝑁𝐵𝑀𝑃, 𝐶𝐻𝐸𝐴𝑃, and Karcher mean, see [2], [3], [5], [6],[1], [17]. Because of the 

widespread applications of geometric mean in the many areas such as radar detection [40], 

[48], image processing [195], elasticity tensor analysis [10] and medical imaging [243], 
many researchers involved in this field. Ando, 𝐿𝑖, and Mathias [2], have suggested ten 

important properties, so-called 𝐴𝐿𝑀 properties, that any geometric mean should satisfy 

them. But most of the definitions in the literature, do not satisfy all of the 𝐴𝐿𝑀 properties, 

especially, they do not preserve the monotonicity. By the monotonicity property, we mean 

that 𝐺(𝐴1, 𝐵1) ≤ 𝐺(𝐴2, 𝐵2) whenever 𝐴1 ≤ 𝐴2 and 𝐵1 ≤ 𝐵2 where 𝐴1, 𝐴2, 𝐵1 and 𝐵2 are 

positive definite matrices and the operator 𝐺 stands for a given definition of 'geometric 

mean'. 
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Among the existing definitions, the Karcher mean satisfies all of the 𝐴𝐿𝑀 properties but 

does not preserve the structure of the matrices, see [191]. In many applications, such as 

designing of some radar systems, the used matrices are Toeplitz matrices [23]. A Toeplitz 

matrix is a matrix in which entries along their diagonals are constant, 𝑖. 𝑒., 

[
 
 
 
 
𝑎0 𝑎1 ⋯ 𝑎𝑛−1
𝑎−1 𝑎0 𝑎1 ⋯

⋮ ⋱ ⋮
⋱ 𝑎1

𝑎−𝑛+1 ⋯ 𝑎−1 𝑎0 ]
 
 
 
 

. 

We are interested in finding a definition of a geometric mean of Toeplitz matrices that itself 

is Toeplitz too. Furthermore, it should satisfy some 𝐴𝐿𝑀 properties, especially the 

monotonicity property. Using a Riemannian structure on the manifold of all positive 

Hermitian 𝑛 × 𝑛 matrices, 𝐷. 𝐴. Bini 𝑒𝑡 𝑎𝑙. [191] have introduced a (not necessarily unique) 

structured geometric mean which preserves the structure of Toeplitz matrices and satisfies 

a few 𝐴𝐿𝑀 properties but fails to satisfy some other, especially the monotonicity property. 

Also, the Kähler metric mean [22],[23] preserves the structure of Toeplitz matrices but does 

not satisfy the monotonicity property either. Moreover, the computations are somewhat 

complicated and costly. 

[189], introduced a geometric mean for positive semi-definite Toeplitz matrices with non-

negative symbols which preserves the Toeplitz structure and many 𝐴𝐿𝑀 properties, 

especially monotonicity in the sense of the order (46). Recall that every Toeplitz matrix has 

a unique symbol function, see [194]. 
Now, let 𝑎 and 𝑏 are the symbol functions of Toeplitz matrices 𝐴 and 𝐵 respectively. 

We say 𝐴 ≺ 𝐵 if 𝑎 ≤ 𝑏. This order is slightly more stronger than the usual ordering 

on matrices; see (46) and the explanations after it. We using the positive parts of the symbol 

functions, we extend the previous results of [189] to all positive semi-definite Toeplitz 

matrices, see Definition (4.3.2), Theorem (4.3.3). 

The approach is based on the concept of the symbol function and its Fourier expansion. 

Moreover, we consider block-Toeplitz matrices with Toeplitz structured blocks, or briefly 

𝑇𝐵𝐵𝑇 matrices, 𝑖. 𝑒., 

[
 
 
 
 
𝐴0 𝐴1 ⋯ 𝐴𝑛−1
𝐴−1 𝐴0 𝐴1 ⋯

⋮ ⋱ ⋮
⋱ 𝐴1

𝐴−𝑛+1 ⋯ 𝐴−1 𝐴0 ]
 
 
 
 

, 

where 

𝐴𝑗 =

[
 
 
 
 
 
𝑎𝑗,0 𝑎𝑗,1 … 𝑎𝑗,𝑁−1
𝑎𝑗,−1 𝑎𝑗,0 𝑎𝑗,1 …

⋮ ⋱ ⋮
⋱ 𝑎𝑗,1

𝑎𝑗,−𝑁+1 ⋯ 𝑎𝑗,−1 𝑎𝑗,0 ]
 
 
 
 
 

, 

for all 𝑗 = 0,±1,… , ±(𝑛 − 1), which appear in signal processing and some other fields, see 

[244], Chapter 8 . 
Ben Jeuris 𝑒𝑡 𝑎𝑙. in [196], have generalized the Kähler metric mean to 𝑇𝐵𝐵𝑇 

matrices. 
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Their proposed definition is a mean for a specific measure which preserves the structure of 

the matrices but fails to satisfy the monotonicity property and its computation is somewhat 

complicated. We initiate the two dimensional symbol functions for 𝑇𝐵𝐵𝑇 matrices and 

using two dimensional Fourier series, we introduce a definition of geometric mean for all 

positive semi-definite 𝑇𝐵𝐵𝑇 matrices, Definition (4.3.4). Our proposed definition preserves 

the 𝑇𝐵𝐵𝑇 structure, it satisfies the monotonicity property with respect to the order (46), it 
is very simple to calculate and has a low cost. 

The geometric mean of the positive semi-definite Toeplitz matrices and the 𝑇𝐵𝐵𝑇 

matrices are discussed, respectively. 

Let 𝕋 = {𝑒𝑖𝜃 ∣ 𝜃 ∈ ℝ} be the unit circle in the complex plane. Suppose 𝑓: 𝕋 → ℂ be 

a Lebesgue measurable function and for each 1 ≤ 𝑝 < +∞, let 

∥ 𝑓 ∥𝑝= (
1

2𝜋
∫  
2𝜋

0

  |𝑓(𝑒𝑖𝜃)|
𝑝
𝑑𝜃)

1
𝑝

 

and 

∥ 𝑓 ∥∞= ess s  {|𝑓(𝑒
𝑖𝜃)| ∣ 0 ≤ 𝜃 ≤ 2𝜋}. 

As usual, we denote the set of all Lebesgue measurable functions 𝑓: 𝕋 → ℂ with ∥ 𝑓 ∥𝑝<

+∞ by 𝐿𝑝(𝕋) for 1 ≤ 𝑝 ≤ +∞. It is known that 𝐿𝑝(𝕋) equipped with the norm ∥⋅∥𝑝 is a 

Banach space, 𝐿𝑟(𝕋) ⊂ 𝐿𝑠(𝕋) whenever 1 ≤ 𝑠 ≤ 𝑟 ≤ +∞, and, the space 𝐿2(𝕋) is a Hilbert 

space with the following inner product 

⟨𝑓, 𝑔⟩ =
1

2𝜋
∫  
2𝜋

0

𝑓(𝑒𝑖𝜃)𝑔(𝑒𝑖𝜃)̅̅ ̅̅ ̅̅ ̅̅ ̅𝑑𝜃,  (𝑓, 𝑔 ∈ 𝐿2(𝕋)). 

The Fourier coefficients of any 𝑓 ∈ 𝐿1(𝕋) are given by {𝑓𝑛}𝑛∈ℤ where 

𝑓𝑛 =
1

2𝜋
∫  
2𝜋

0

𝑓(𝑒𝑖𝜃)𝑒−𝑖𝑛𝜃𝑑𝜃,  (𝑛 ∈ ℤ). 

Notice that we can identify the interval [0,2𝜋] and the unit circle 𝑇 via the so-called 

exponential map 𝜃 ↦ 𝑒𝑖𝜃 . Let 𝑎 ∈ 𝐿∞(𝕋) be given, the operator 𝑀(𝑎): 𝐿2(𝕋) → 𝐿2(𝕋) 
defined by 𝑀(𝑎)𝑓 = 𝑎𝑓 for all 𝑓 ∈ 𝐿2(𝕋) is called the multiplication operator on 𝐿2(𝕋) 
generated by the function 𝑎 ∈ 𝐿∞(𝕋), 𝑎 is called the symbol function of 𝑀(𝑎). It is easy to 

see that ∥ 𝑀(𝑎) ∥𝑜𝑝=∥ 𝑎 ∥∞, where 

∥ 𝑀(𝑎) ∥𝑜𝑝= 𝑠𝑢𝑝{∥ 𝑀(𝑎)𝑓 ∥2∣ 𝑓 ∈ 𝐿
2(𝕋), ∥ 𝑓 ∥2= 1} 

is the operator norm; for proofs and more details see [192]. 
The functions 𝜒𝑛 defined by 𝜒𝑛(𝑡) = 𝑡

𝑛, (𝑡 ∈ 𝕋, 𝑛 ∈ ℤ) are an orthogonal basis for 𝐿2(𝕋), 

and ⟨𝑀(𝑎)𝜒𝑗 , 𝜒𝑘⟩ = 𝑎𝑘−𝑗 is the (𝑘 − 𝑗) − 𝑡ℎ Fourier coefficient of 𝑎. We can represent the 

operator 𝑀(𝑎) with an infinite dimensional matrix such that its entries are Fourier 

coefficients of 𝑎, 

𝑀(𝑎) =

[
 
 
 
 
 
⋱ ⋱
⋱ 𝑎0 𝑎−1

𝑎1 𝑎0 𝑎−1
⋱ ⋱ ⋱

𝑎1 𝑎0 𝑎−1
⋱ ⋱ ⋱ ]

 
 
 
 
 

. 

Let 𝑉𝑛 be the 𝑛-dimensional vector subspace of 𝐿2(𝕋) generated by the set ℬ =
 {𝜒0, ⋯ , 𝜒𝑛−1}. The inclusion map 𝜄𝑛: 𝑉𝑛 → 𝐿2(𝕋) and the orthogonal projection map 
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𝜋𝑛: 𝐿
2(𝕋) → 𝑉𝑛 are well-defined linear operators and we have ∥∥𝜄𝑛∥∥ = ∥∥𝜋𝑛∥∥ = 1. Given 𝑎 ∈

𝐿∞(𝕋) and its associated operator 𝑀(𝑎), we consider the linear transformation 𝜋𝑛 ∘ 𝑀(𝑎) ∘
𝜄𝑛: 𝑉𝑛 → 𝑉𝑛. The matrix 𝑇𝑛(𝑎) which represents the operator 𝜋𝑛 ∘ 𝑀(𝑎) ∘ 𝜄𝑛 in the ordered 

basis ℬ is 

𝑇𝑛(𝑎) =

[
 
 
 
 
𝑎0 𝑎1 … 𝑎𝑛−1
𝑎−1 𝑎0 𝑎1 …

⋮ ⋱ ⋮
⋱ 𝑎1

𝑎−𝑛+1 ⋯ 𝑎−1 𝑎0 ]
 
 
 
 

.                              (42) 

Recall that a Toeplitz matrix 𝐴 = [𝑎𝑖𝑗] is a matrix in which the entries along its diagonals 

are constant, 𝑖. 𝑒. , 𝑎𝑖𝑗 = 𝑎𝑝𝑞 whenever 𝑖 − 𝑗 = 𝑝 − 𝑞. Hence, the matrix 𝑇𝑛(𝑎) is an 𝑛 × 𝑛 

Toeplitz matrix for each 𝑎 ∈ 𝐿∞(𝕋). 
On the other hand, let 

𝐴 =

[
 
 
 
 
𝑎0 𝑎1 ⋯ 𝑎𝑛−1
𝑎−1 𝑎0 𝑎1 ⋯

⋮ ⋱ ⋮
⋱ 𝑎1

𝑎−𝑛+1 ⋯ 𝑎−1 𝑎0 ]
 
 
 
 

 

be a Toeplitz matrix. The symbol of 𝐴 is a function 𝑎 ∈ 𝐿∞(𝕋) defined by 

𝑎(𝑒𝑖𝜃)  = ∑  

𝑛−1

𝑘=−𝑛+1

 𝑎𝑘𝑒
𝑖𝑘𝜃 ,  (𝜃 ∈ ℝ)

 = ∑  

𝑛−1

𝑘=−𝑛+1

 𝑎𝑘𝜒𝑘(𝑡),  (𝑡 ∈ 𝕋),

                                        (43) 

where {𝜒𝑘}𝑘∈ℤ is the standard basis of 𝐿2(𝕋), and 𝜒𝑘(𝑡) = 𝑡
𝑘, (𝑡 ∈ 𝕋, 𝑘 ∈ ℤ); see [192], 

[194]. 

Notice that, by (42), we have that 𝑇𝑛(𝑎) = 𝐴 for 𝑎 in (43). 
As in [189], we use the following notations 

𝒯𝑛 = The set of all 𝑛 × 𝑛 Toeplitz matrices, 

𝒯𝑛
+ = {𝐴 ∈ 𝒯𝑛 ∣ 𝐴 is positive semi-definite },                                                                          (44) 

𝒯𝑛
++ = {𝐴 ∈ 𝒯𝑛 ∣ the symbol of 𝐴 is a non-negative function }. 

The relation between these sets is clarified in the following lemma. 

Lemma (4.3.1)[241]: ([189] Lemma 3.2) If 𝑎 ∈ 𝐿∞(𝕋) and 𝑎 ≥ 0 𝑎. 𝑒. then the matrix 

𝑇𝑛(𝑎) for each 𝑛 ∈ ℕ, is a positive semi-definite 𝑛 × 𝑛 Toeplitz matrix but the converse is 

not true. 

So, we have 𝒯𝑛
++ ⊂ 𝒯𝑛

+ ⊂ 𝒯𝑛. Notice that the symbol function of any 𝐴 ∈ 𝒯𝑛
+is real-valued. 

In fact, if 𝐴 = [𝑎𝑖𝑗] ∈ 𝒯𝑛
+, then 𝑎𝑗𝑖 = 𝑎𝑖𝑗̅̅ ̅̅ , 𝑎0 ≥ 0, so 
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𝑎(𝑒𝑖𝜃)  = ∑  

𝑛−1

𝑘=−𝑛+1

 𝑎𝑘𝑒
𝑖𝑘𝜃

 = 𝑎0 +∑  

𝑛−1

𝑘=1

  (𝑎𝑘𝑒
𝑖𝑘𝜃 + 𝑎𝑘̅̅ ̅𝑒

−𝑖𝑘𝜃)

 = 𝑎0 + 2∑  

𝑛−1

𝑘=1

 Re(𝑎𝑘𝑒
𝑖𝑘𝜃) ,  (𝜃 ∈ ℝ).

                    (45) 

We consider the cone 𝒯𝑛
+of all positive semi-definite 𝑛 × 𝑛 Toeplitz matrices. For 

this aim, we will use the positive part of the symbol function. Recall that for each real valued 

function 𝑓, its positive part function is defined by 

𝑓+ = 𝑚𝑎𝑥{𝑓, 0}. 
Also, we consider the following order on 𝒯𝑛

+. We say 𝐴 ≺ 𝐵 for 𝐴, 𝐵 ∈ 𝒯𝑛
+if and only if 

𝐵 − 𝐴 ∈ 𝒯𝑛
++.Recall the usual ordering between two matrices 𝐴 and 𝐵, 𝑖. 𝑒. 𝐴 ≤ 𝐵 if and 

only if 𝐵 − 𝐴 ∈ 𝒯𝑛
+. In the other words, if 𝑎 and 𝑏 are symbols of 𝐴 and 𝐵 respectively, then 

𝐴 ≺ 𝐵 ⇔ 𝑎 ≤ 𝑏.                                                               (46) 
This means that we say 𝐵 is greater than 𝐴, whenever the symbol function of 𝐵 is greater 

than or equal to the symbol function of 𝐴. Since 𝒯𝑛
++ ⊂ 𝒯𝑛

+, so 𝐴 ≺ 𝐵 implies 𝐴 ≤ 𝐵, but 

the converse does not hold [189]. For example, let 𝐴 = [
1 0
0 1

] and 𝐵 = [
4 2
2 4

], then 𝐴, 𝐵 ∈

𝒯𝑛
+and 𝐵 − 𝐴 = [

3 2
2 3

] ∈ 𝒯𝑛
+ ∖ 𝒯𝑛

++(notice that the symbol function of this matrix is 

𝑓(𝑒𝑖𝜃) = 3 + 4cos 𝜃 which is not a positive function), so 𝐴 ≤ 𝐵 but 𝐴 ⊀ 𝐵. 
Now we can introduce a definition of a geometric mean on 𝒯𝑛

+as follows. 

Definition (4.3.2)[241]: Given 𝑚,𝑛 ≥ 1 and 𝐴1, 𝐴2, ⋯ , 𝐴𝑚 ∈ 𝒯𝑛
+and let 𝑎1, ⋯ , 𝑎𝑚 ∈ 𝐿

∞ 

be their symbols, respectively. Then the geometric mean of 𝐴1, ⋯ , 𝐴𝑚 is defined by the 

Toeplitz matrix 

𝐺(𝐴1, ⋯ , 𝐴𝑚) = 𝑇𝑛 ( √𝑎1
+⋯𝑎𝑚

+𝑚
). 

First we calculate the usual geometric mean of the positive parts of the symbol functions of 

𝐴1, ⋯ , 𝐴𝑚; then using (42), the geometric mean of these matrices is obtained. 

We reduce the geometric mean of the matrices to the geometric mean of (positive part of) 

their symbol functions via the Fourier transform. Hence, it does not matter that the matrices 

are singular or not. Also, the singularity does not affect the computation costs. As a simple 

example, let 

𝐴 = [
1 1 1
1 1 1
1 1 1

] 

and 

𝐵 = [
2 −1 −1
−1 2 −1
−1 −1 2

]. 

Notice that 𝐴, 𝐵 ∈ 𝒯3
+are singular matrices and their symbol functions are 

𝑎(𝜃) = 1 + 2cos (𝜃) + 2cos (2𝜃) 
and 

𝑏(𝜃) = 2 − 2 cos(𝜃) − 2 cos(2𝜃)  (𝜃 ∈ [0,2𝜋]), 
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respectively. Their geometric mean is 𝐺(𝐴, 𝐵) = 𝑇3(√𝑎(𝜃)
+𝑏(𝜃)+).Using Simpson's rule 

for numerical integration with 𝑘 = 32 subdivisions of the interval [0,2𝜋], we will have 

𝐺(𝐴, 𝐵) = [
0.4421 −0.0988 0.1218
−0.0988 0.4421 −0.0988
0.1218 −0.0988 0.4421

], 

which is a positive semi-definite Toeplitz matrix. 

Theorem (4.3.3)[241]: (𝐶𝑓. [189] Theorem 3.7) Let 𝑚 ≥ 1, 𝐴1, ⋯ , 𝐴𝑚, 𝐵1, ⋯𝐵𝑚 ∈
𝒯𝑛
+and 𝛼1, ⋯ , 𝛼𝑚 ∈ ℝ

+. The following properties hold: 

 
ii) Permutation invariance. For any permutation 𝜋 of {1,⋯ ,𝑚} we have 

𝐺(𝐴1, ⋯ , 𝐴𝑚) = 𝐺(𝐴𝜋(1), ⋯ , 𝐴𝜋(𝑚)). 

iii) Monotonicity. 𝐺(𝐴1, ⋯ , 𝐴𝑚) ≺ 𝐺(𝐵1,⋯ , 𝐵𝑚) whenever 𝐴1 ≺ 𝐵1, ⋯ , 𝐴𝑚 ≺ 𝐵𝑚. 

iv) Continuity. If {𝐴𝑘,1}𝑘≥1, ⋯ , {𝐴𝑘,𝑚}𝑘≥1 are monotonic decreasing sequences in ordering 

(46), converging to 𝐴1, ⋯ , 𝐴𝑚 respectively then the sequence {𝐺(𝐴𝑘,1, ⋯ ,, 𝐴𝑘,𝑚)}𝑘≥1 

converges to 𝐺(𝐴1, ⋯ , 𝐴𝑚). 
Proof. i) This follows from the Definition (4.3.2), the fact that (𝛼𝑎)+ = 𝛼𝑎+when 𝛼 ≥ 0 

and 𝑎 ∈ 𝐿∞(𝕋) and the linearity of the mapping 𝑇𝑛, see [19] Corollary 3.4. 
ii) By definition, this is trivial. 

iii) Let 𝑎1, ⋯ , 𝑎𝑚 and 𝑏1, ⋯ , 𝑏𝑚 be the symbols of 𝐴1, ⋯ , 𝐴𝑚 and 𝐵1, ⋯ , 𝐵𝑚, respectively. 

By assumption 𝑎1 ≤ 𝑏1, ⋯ , 𝑎𝑚 ≤ 𝑏𝑚, so 𝑎1
+ ≤ 𝑏1

+, ⋯ , 𝑎𝑚
+ ≤ 𝑏𝑚

+ .Therefore 

(𝑎1
+⋯𝑎𝑚

+ )
1
𝑚 ≤ (𝑏1

+⋯𝑏𝑚
+ )
1

𝑚
 

by the Definition (4.3.2) and (46) the conclusion follows. 

iv) We have 

𝐴𝑘,1 = 𝑇𝑛(𝑎𝑘,1),⋯ , 𝐴𝑘,𝑚 = 𝑇𝑛(𝑎𝑘,𝑚), 
and 

𝐴1 = 𝑇𝑛(𝑎1),⋯ , 𝐴𝑚 = 𝑇𝑛(𝑎𝑚). 
Recall that in every finite dimensional vector space, all norms are equivalent, so without 

loss of generality, we can only consider ∥. ∥𝐹 , the Frobenius norm. Therefore, we have 

∥∥𝐴𝑘,𝑖 − 𝐴𝑖∥∥𝐹 → 0 as 𝑘 → ∞ for 0 ≤ 𝑖 ≤ 𝑚. On the other hand ∥∥𝑎𝑘,𝑖 − 𝑎𝑖∥∥2 = ∥
∥𝐴𝑘,𝑖 −

𝐴𝑖∥∥𝐹 , 0 ≤ 𝑖 ≤ 𝑚, and since ∥∥𝑎+∥∥∞ ≤∥ 𝑎 ∥∞ for all 𝑎 ∈ 𝐿∞, the mapping 𝑎 ↦ 𝑎+is 

continuous on 𝐿∞, so 

∥
∥
∥
(𝑎𝑘,1
+ ⋯𝑎𝑘,𝑚

+ )
1

𝑚
− (𝑎1

+⋯𝑎𝑚
+ )

1
𝑚
∥
∥
∥

2
→ 0  as  𝑘 → ∞. 

Again, by ∥ 𝑎 ∥2= ∥∥𝑇𝑛(𝑎)∥∥𝐹 , for each 𝑎 ∈ 𝐿∞, we have 

∥∥𝐺(𝐴𝑘,1, ⋯ , 𝐴𝑘,𝑚) − 𝐺(𝐴1, ⋯ , 𝐴𝑚)∥∥𝐹 ⟶ 0 as 𝑘 ⟶ ∞. 

Here, we introduce the notion of block-Toeplitz matrices with Toeplitz structured blocks 

(𝑇𝐵𝐵𝑇), following [196]. Fix some 𝑛,𝑁 ∈ ℕ. Let 𝒯𝑛,𝑁 be the vector space of all 

blockToeplitz matrices of 𝑛 by 𝑛 blocks in which each block is an 𝑁 × 𝑁 Toeplitz matrix. 

Formally, 𝒯𝑛,𝑁 includes all the following matrices 
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𝐴 =

[
 
 
 
 
𝐴0 𝐴1 ⋯ 𝐴𝑛−1
𝐴−1 𝐴0 𝐴1 ⋯

⋮ ⋱ ⋮
⋱ 𝐴1

𝐴−𝑛+1 ⋯ 𝐴−1 𝐴0 ]
 
 
 
 

,                               (47) 

where each 

𝐴𝑗 =

[
 
 
 
 
 
𝑎𝑗,0 𝑎𝑗,1 ⋯ 𝑎𝑗,𝑁−1
𝑎𝑗,−1 𝑎𝑗,0 𝑎𝑗,1 ⋯

⋮ ⋱ ⋮
⋱ 𝑎𝑗,1

𝑎𝑗,−𝑁+1 ⋯ 𝑎𝑗,−1 𝑎𝑗,0 ]
 
 
 
 
 

                       (48) 

is an 𝑁 × 𝑁 Toeplitz matrix, for all 𝑗 = 0,±1,… , ±(𝑛 − 1). We denote by 𝒯𝑛,𝑁
+ all the 

positive semi-definite matrices in 𝒯𝑛,𝑁 . Notice that 𝐵. Jeuris and R. Vandebril [196] denote 

by 𝒯𝑛,𝑁
+ all the positive definite matrices in 𝒯𝑛,𝑁 . But since our approach makes sense for 

semi-definite matrices as well, we consider a slightly more general case. 

Along the lines of the procedure that was developed and in [189] for the Toeplitz matrices, 

here, we are going to introduce the concept of a symbol function for 𝑇𝐵𝐵𝑇 matrices. For 

𝐴 ∈ 𝒯𝑛,𝑁
+ using the notations (47) and (48), let 𝑎 ∈ 𝐿∞(𝕋2) by definition be 

𝑎(𝑡, 𝑠) = ∑  

|𝑗|<𝑛

𝑎𝑗(𝑠)𝜒𝑗(𝑡),  (𝑡, 𝑠 ∈ 𝕋) 

where 𝑎𝑗 ∈ 𝐿
∞(T) is the symbol function associated to 𝐴𝑗 ∈ 𝒯𝑁 for every 𝑗 =

0,±1,… , ±(𝑛 − 1), see (43). Thus 

𝑎(𝑡, 𝑠) = ∑  

|𝑗|<𝑛

∑  

|𝑘|<𝑁

𝑎𝑗,𝑘𝜒𝑘(𝑠)𝜒𝑗(𝑡),  (𝑡, 𝑠 ∈ 𝕋) 

or 

𝑎(𝑒𝑖𝜙, 𝑒𝑖𝜃) = ∑  

𝑛−1

𝑗=−𝑛+1

∑  

𝑁+1

𝑘=−𝑁+1

𝑎𝑗,𝑘𝑒
𝑖𝑘𝜙𝑒𝑖𝑗𝜃 ,  (𝜙, 𝜃 ∈ ℝ).                       (49) 

Obviously, this definition is a generalization of (2.2). 
On the other hand, let 𝑎 ∈ 𝐿∞(𝕋2) ⊂ 𝐿2(𝕋2) be an arbitrary bounded Lebesgue measurable 

function, it is known that (𝑒. 𝑔., see [242] ) 

𝑎(𝑡, 𝑠) = ∑  

𝑗,𝑘∈ℤ

𝑎𝑗,𝑘𝜒𝑘(𝑠)𝜒𝑗(𝑡),  (𝑡, 𝑠 ∈ 𝕋) 

Or 

𝑎(𝑒𝑖𝜙, 𝑒𝑖𝜃) = ∑  

𝑗,𝑘∈ℤ

𝑎𝑗,𝑘𝑒
𝑖𝑘𝜙𝑒𝑖𝑗𝜃 ,  (𝜙, 𝜃 ∈ ℝ) 

where 

𝑎𝑗,𝑘 =
1

4𝜋2
∫  
2𝜋

0

∫  
2𝜋

0

𝑎(𝑒𝑖𝜙, 𝑒𝑖𝜃)𝑒−𝑖𝑘𝜙𝑒−𝑖𝑗𝜃𝑑𝜙𝑑𝜃,  (𝑗, 𝑘 ∈ ℤ) 

are the Fourier coefficients of 𝑎. Now, one can define 𝑇𝑛,𝑁(𝑎) ∈ 𝒯𝑛,𝑁 as in (47) and (48) 
where 𝑎𝑗,𝑘  ′𝑠 are the Fourier coefficients of 𝑎. It is easy to check that if 𝑎 is the symbol 

function of a matrix 𝐴 ∈ 𝒯𝑛,𝑁 then 𝑇𝑛,𝑁(𝑎) = 𝐴. 
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Similar to (45), it is easy to see that the symbol function of a positive semi-definite 𝑇𝐵𝐵𝑇 

matrix is real-valued. Let 𝐴, 𝐵 ∈ 𝒯𝑛,𝑁
+ and 𝑎, 𝑏 ∈ 𝐿∞(𝕋2) be their associated symbol 

functions, respectively. We say that 𝐴 ≺ 𝐵 if 𝑎 ≤ 𝑏, as in (46). Obviously, this is a partially 

order on the set 𝒯𝑛,𝑁
+ . 

Now, we can define a geometric mean in 𝒯𝑛,𝑁
+ which preserves the structure of 𝑇𝐵𝐵𝑇 

matrices by its definition. 

Definition (4.3.4)[241]: Given 𝑚,𝑛, 𝑁 ≥ 1 and 𝐴1, 𝐴2, ⋯ , 𝐴𝑚 ∈ 𝒯𝑛,𝑁
+ and let 𝑎1, ⋯ , 𝑎𝑚 ∈

𝐿∞ be their symbols, respectively. The geometric mean of 𝐴1, ⋯ , 𝐴𝑚 is defined by the 𝑇𝐵𝐵𝑇 

matrix 

𝐺(𝐴1, ⋯ , 𝐴𝑚) = 𝑇𝑛,𝑁 ((𝑎1
+⋯𝑎𝑚

+ )
1

𝑚
). 

One can prove the joint homogeneity, permutation invariance, monotonicity and continuity 

properties of this definition of geometric mean on 𝒯𝑛,𝑁
+ quite similar to Theorem (4.3.3). In 

fact, the same proofs remain valid. 

Consider the set of all 𝑛 × 𝑛 positive semi-definite Toeplitz matrices 𝒯𝑛
+. Again, 

similar to [189], the number of operations equals 𝑂(kmn2) where 𝑛 is the size of the 

matrices, 𝑚 is the number of matrices and 𝑘 is the number of subdivisions of the interval 

[0,2𝜋] in order to use the Simpson's rule for numerical integration. Recall that the cost of 

the structured geometric mean (𝑆𝐺𝑀) in [191] for the Toeplitz matrices is equal to 

𝑂(𝑝𝑛4 + 𝑝𝑚𝑛3), where 𝑚,𝑛 are the same as before and 𝑝 is the number of iterations in the 

algorithm. The Kähler metric mean in the case real Toeplitz matrices as described in the 

Section 5 of [191], requires 𝑂(𝑚𝑛4) arithmetic operations where 𝑚, 𝑛 are the same as 

before, again. In order to compare the cost of the different methods we let 𝑛 = 30,𝑚 = 3 

to 10 , for 𝑆𝐺𝑀, 𝑝 = 1 and for our method 𝑘 = 32. The results are given in Fig. 1(𝑎). Again, 

as this figure shows the new purposed method costs considerably less than others. 

On the other hand, as mentioned in [36], because of the lack of a reference solution, the 

accuracy of this method is harder to verify. Here, we investigate how close our new 

geometric mean of five Toeplitz matrices 𝒜 = {𝐴1, … , 𝐴5} ⊂ 𝒯𝑛
+(see Definition (4.3.2)), 

how close to the usual geometric mean 𝐺0 = √𝐴1…𝐴5
5 ; but notice that 𝐺0 may not be 

Toeplitz. 
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For this aim, choose a subset 𝒜 = {𝐴1, … , 𝐴5} ⊂ 𝒯𝑛
+randomly, with unit (= 1) Frobenius 

norms, i.e. ∥∥𝐴1∥∥𝐹 = ⋯ = ∥∥𝐴5∥∥𝐹 = 1, and let 𝐺KMM , 𝐺SGM  and 𝐺new  represent the Kähler 

metric mean, structured geometric mean and the new geometric mean of 𝒜, respectively. 

One can consider the following relative errors (with Frobenius norm) 

ReKMM(𝒜) =
∥∥𝐺KMM − 𝐺0∥∥

∥∥𝐺0∥∥
, ResGM(𝒜) =

∥∥𝐺SGM − 𝐺0∥∥

∥∥𝐺0∥∥
, Renew 

(𝒜) =
∥∥𝐺new − 𝐺0∥

∥

∥∥𝐺0∥∥
. 

For 𝑘 = 3,6,9,12,15,18,21,24, we construct 𝑘 subsets 𝒜1, … ,𝒜𝑘 each of which contains 

five 5 × 5 positive definite Toeplitz matrices with unit Frobenius norm, randomly. In Fig. 

1( b), the average relative errors 

1

𝑘
∑  

𝑘

𝑗=1

ReKMM (𝒜𝑗),  
1

𝑘
∑  

𝑘

𝑗=1

ReSGM (𝒜𝑗),  
1

𝑘
∑  

𝑘

𝑗=1

Renew  (𝒜𝑗) 

are shown. The result is somewhat surprising, our proposed geometric mean 𝐺new , is even 

more close to the usual geometric mean 𝐺0 = √𝐴1…𝐴5
5

 than the other two previous 

definitions, 𝑖. 𝑒. , 𝐺KMM  and 𝐺SGM . 

Now, consider the set of all the positive semi-definite block-Toeplitz matrices of 𝑛 by 𝑛 

blocks in which each block is an 𝑁 ×𝑁 Toeplitz matrix, 𝑖. 𝑒. 𝒯𝑛,𝑁
+ . Similar to the Toeplitz 

case, it is easy to show that the number of operations equals 𝑂(𝑚𝑘2𝑛3𝑁3) where 𝑚 is the 

number of matrices and 𝑘 is the number of subdivisions of the interval [0,2𝜋] in order to 

use Simpson's rule for numerical integration. 

  



191 

Chapter 5 

Geometric Significance and Multipliers 

 

We investigate the connection of restricted Grassmann manifolds associated to 𝑝-

Schatten ideals and essentially commuting projections. We examine the multipliers from 

one model space to another. We study connections of the new order with some of the 

classical problems and known results. We discuss remaining problems and possible 

directions for further research. 

Section (5.1): Toeplitz Kernels 

For 𝐿𝑝 be the usual Lebesgue spaces of complex-valued functions on the unit circle 

𝕋. The Grassmann manifold of 𝐿2 is the set of all closed subspaces of 𝐿2. We study the 

relation between geodesics on the Grassmann manifold of 𝐿2 and the injectivity problem for 

Toeplitz operators. 

To explain this relation, let 𝐻2 be the Hardy space of the unit circle. Recall that the 

injectivity problem for Toeplitz operators consists in looking for those symbols 𝜑 ∈ 𝐿∞ such 

that the Toeplitz operator 𝑇𝜑 is injective. We relate it to the problem of finding a geodesic 

on the Grassmann manifold of 𝐿2 which joins two subspaces of the form 𝜑𝐻2 and 𝜓𝐻2, 

where 𝜑,𝜓 are invertible functions in 𝐿∞. We will prove that such a geodesic exists if and 

only if the Toeplitz operator 𝑇𝜑𝜓−1 and its adjoint both have trivial kernel. Furthermore, we 

will see that these statements are also equivalent to the existence of a minimizing geodesic 

joining the given subspaces. 

The Grassmann manifold of an abstract Hilbert space (i.e. the set consisting of all the closed 

subspaces) may be identified with the bounded selfadjoint projections. It is an infinite 

dimensional homogeneous space which can be endowed with a Finsler metric by using the 

operator norm on each tangent space. Although it is complete with the corresponding 

rectifiable distance, there are subspaces in the same connected component that cannot be 

joined by a geodesic (see e.g. [246] ). This means that the Hopf-Rinow theorem fails for 

this manifold. Much information of its geodesics and their minimizing properties are known. 

The first results date back to [266], [258], [269]; both in the more general framework of 

selfadjoint projections in 𝐶∗-algebras. There has been progress about the structure of the 

geodesics in several Grassmann manifolds defined by imposing additional conditions on the 

subspaces; see [248], [249], [251] for restricted Grassmann manifolds and [250] for the 

Lagrangian Grassmann manifold. 

Taking the Hilbert space 𝐿2. This allows us to study the interplay between geodesics, 

functional spaces and operator theory. In contrast to the invertibility problem for Toeplitz 

operators, little attention has been paid in the literature to the injectivity problem until recent 

years. Except for the works of [257], [267], the problem remained untreated until the recent 

works [72], [49], [96] (see also the survey [264]). Apart from being an interesting problem 

in operator theory, in these there are relevant applications to harmonic analysis, complex 

analysis and mathematical physics. 

We give classical results on Hardy spaces, Toeplitz and Hankel operators to make the 

article reasonably self-contained. We prove the aforementioned relation between geodesics 

of the Grassmann manifold of 𝐿2 and the injectivity problem. Then, this result is used to 

derive an inequality involving the reduced minimum modulus of Toeplitz operators and the 

norm of a commutator. 
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We deal with the compact restricted Grassmannian (or Sato Grassmanian). This is a 

well-known Banach manifold related to KdV equations and loop groups (see [273], [274]). 

We need to consider the following two uniform subalgebras of 𝐿∞, the continuous functions 

𝐶 and the usual Hardy space 𝐻∞. We show that a subspace 𝜑𝐻2 belongs to the compact 

restricted Grassmannian if and only if 𝜑 is an invertible function in the Sarason algebra 

𝐻∞ + 𝐶. This is the least nontrivial closed subalgebra lying between 𝐻∞ and 𝐿∞; it has also 

been studied [254], [261], [271]. The existence of geodesics in the restricted Grassmannian 

between two subspaces 𝜑𝐻2 and 𝜓𝐻2, 𝜑, 𝜓 invertible functions in 𝐻∞ + 𝐶, depends only 

on the index of these functions. We also examine when a subspace 𝜑𝐻2 can be written as 

𝜑𝐻2 = 𝑔𝐻2, where 𝑔 is a continuous unimodular function. These results can be carried out 

also in the setting of restricted Grassmannians associated to 𝑝-Schatten ideals by using the 

notion of Krein algebras defined in [253]. 

We focus on shift-invariant subspaces of 𝐻2. Each shift-invaritant subspace can be 

expressed as 𝜑𝐻2, where 𝜑 is an inner function. We prove that the canonical factorization 

of 𝜑 determines the class where the subspace 𝜑𝐻2 belongs. Based on the results on the 

injectivity problem mentioned above, we provide examples showing the existence or non 

existence of geodesics between shift-invariant subspaces. 

For 1 ≤ 𝑝 ≤ ∞, 𝐿𝑝 = 𝐿𝑝(𝕋) denotes the usual Lebesgue spaces of functions defined 

on the unit circle 𝕋. The Hardy space 𝐻𝑝(1 ≤ 𝑝 < ∞) is the space of all analytic functions 

𝑓 on the disk 𝔻 = {𝑧 ∈ ℂ: |𝑧| < 1} for which 

∥ 𝑓 ∥𝐻𝑝: = ( sup
0<𝑟<1

 
1

2𝜋
∫  
2𝜋

0

  |𝑓(𝑟𝑒𝑖𝑡)|
𝑝
𝑑𝑡)

1/𝑝

< ∞. 

The space of all bounded analytic functions on 𝔻 with the norm ∥ 𝑓 ∥∞= sup𝑧∈𝔻  |𝑓(𝑧)| is 

the Hardy space 𝐻∞. Functions in Hardy spaces have non tangencial limits a.e., a fact which 

is used to isometrically identify these spaces with 

𝐻𝑝 = {𝑓 ∈ 𝐿𝑝: ∫  
2𝜋

0

 𝑓(𝑒𝑖𝑡)𝜒𝑛(𝑒
𝑖𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅𝑑𝑡 = 0, 𝑛 < 0}. 

Here (𝜒𝑘)𝑘∈ℤ denotes the orthonormal basis of 𝐿2 given by 𝜒𝑘(𝑒
𝑖𝑡) = 𝑒𝑖𝑘𝑡. We shall mostly 

use this representation of Hardy spaces as functions defined on 𝕋 and deal with the values 

𝑝 = 2,∞. In particular, 𝐻2 is a closed subspace of the Hilbert space 𝐿2 and 𝐻∞ is a closed 

subalgebra of 𝐿∞. For background and notational purposes, our main references are the 

books by Douglas, Nikol'skiǐ and Pavlović [98], [76], [261], [268]. 

A function 𝑓 ∈ 𝐻2 is called inner if |𝑓(𝑒𝑖𝑡)| = 1 a.e. on 𝕋. A function 𝑓 ∈ 𝐻2 is outer if 

span̅̅ ̅̅ ̅̅ {𝑓𝜒𝑛: 𝑛 ≥ 0} = 𝐻
2. For each 𝑓 ∈ 𝐻2, 𝑓 ≠ 0, there exist an inner function 𝑓inn  and an 

outer function 𝑓out ∈ 𝐻
2 such that 𝑓 = 𝑓inn 𝑓out . This is called the inner-outer factorization, 

and it is unique up to a multiplicative constant. 

The inner function can be further factorized. For each 𝑎 ∈ 𝔻 ∖ {0}, a Blaschke factor is 

given by 

𝑏𝑎(𝑧) =
𝑎‾

|𝑎|

𝑎 − 𝑧

1 − 𝑎‾𝑧
,  𝑧 ∈ 𝔻. 

When 𝑎 = 0, set 𝑏0(𝑧) = 𝑧. A Blaschke product is a function of the form 

𝑏(𝑧) =∏ 

𝑛

𝑗=1

𝑏𝑎𝑗(𝑧),  𝑧 ∈ 𝔻, 
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where 1 ≤ 𝑛 ≤ ∞. In the case where 𝑛 = ∞, the infinite Blaschke product is convergent on 

compact subsets of 𝔻 if the sequence {𝑎𝑗} ⊆ 𝔻 satisfies the Blaschke condition, that is, 

∑𝑗  (1 − |𝑎𝑗|) < ∞. A finite or infinite Blaschke product is an inner function with zeros 

given by {𝑎𝑗}. We remark that the zero set of a holomorphic function in 𝔻 satisfies the 

Blaschke condition. 

Let 𝜇 be a positive finite measure on 𝕋. Suppose in addition that 𝜇 is singular with respect 

to the Lebesgue measure, and set 

𝑠𝜇(𝑧) = exp (−∫ 
𝕋

 
𝜓 + 𝑧

𝜓 − 𝑧
𝑑𝜇(𝜓)) ,  𝑧 ∈ 𝔻. 

It turns out that 𝑠𝜇 is an inner function and 𝑠𝜇(𝑧) ≠ 0 on 𝔻. A function of this form is known 

as a singular inner function. 

The canonical factorization of a function 𝑓 ∈ 𝐻𝑝 states that there exists a unique 

factorization 𝑓 = 𝜆𝑏𝑠𝜇𝑓out , where 𝜆 ∈ ℂ, |𝜆| = 1, 𝑏 is a Blaschke product associated with 

the zero set of 𝑓, 𝑠𝜇 is a singular inner function and 𝑓out  is the outer part of 𝑓. 

Let 𝐶 denote the algebra of continuous functions on 𝕋. The Sarason algebra is the following 

algebraic sum 

𝐻∞ + 𝐶 = {𝑓 + 𝑔: 𝑓 ∈ 𝐻∞, 𝑔 ∈ 𝐶}. 
It is proved that this is indeed a closed subalgebra of 𝐿∞. The harmonic extension �̂� to 𝔻 of 

a function 𝜑 ∈ 𝐻∞ + 𝐶 is well-defined, and it plays a fundamental role in the 

characterization of invertible functions in this algebra. For 𝜑 ∈ 𝐻∞ + 𝐶 and 0 < 𝑟 < 1, set 

𝜑𝑟(𝑒
𝑖𝑡) = �̂�(𝑟𝑒𝑖𝑡). Then 𝜑 is invertible in 𝐻∞ + 𝐶 if and only if there exist 𝛿, 𝜖 > 0 such 

that |𝜑𝑟(𝑒
𝑖𝑡)| ≥ 𝜖 for 1 − 𝛿 < 𝑟 < 1 and 𝑒𝑖𝑡 ∈ 𝕋. 

This criterion allows to define the index of an invertible function in 𝐻∞ + 𝐶. For a non-

vanishing function 𝜑 ∈ 𝐶, let 𝑖𝑛𝑑(𝜑) ∈ ℤ be the index (or winding number) of 𝜑 around 

𝑧 = 0, which for differentiable 𝜑 can be computed as 

 ind (𝜑) =
1

2𝜋𝑖
∮   
𝜑′

𝜑
=
1

2𝜋
∫  
2𝜋

0

𝜑′(𝑒𝑖𝑡)

𝜑(𝑒𝑖𝑡)
𝑒𝑖𝑡𝑑𝑡. 

For 𝜑 is invertible in 𝐻∞ + 𝐶, set ind (𝜑) = lim𝑟→1−  ind (𝜑𝑟). This index is stable by small 

perturbations and it is an homomorphism of the invertible functions in 𝐻∞ + 𝐶 onto the 

group of integers. The key property to prove these facts as well as the criterion for 

invertibility is that the harmonic extension is asymptotically multiplicative in 𝐻∞ + 𝐶. 

The largest 𝐶∗-algebra of 𝐻∞ + 𝐶 is the set of quasicontinuous functions 

𝑄𝐶 = (𝐻∞ + 𝐶) ∩ (𝐻∞ + 𝐶̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) 
Every unimodular 𝜃 ∈ 𝑄𝐶 is invertible in 𝐻∞ + 𝐶. In [271] Sarason proved that each 

unimodular function 𝜃 ∈ 𝑄𝐶 of index 𝑛 ∈ ℤ can be expressed as 𝜃 = 𝜒𝑛𝑒
𝑖(𝑢+�̃�), where 𝑢, 𝑣 

are real functions in 𝐶 and �̃� stands for the harmonic conjugate of 𝑣 on 𝕋. 

The space of bounded linear operators on a Hilbert space 𝐻 to a Hilbert space 𝐿 is 

denoted by ℬ(𝐻, 𝐿) or ℬ(𝐻) if 𝐻 = 𝐿. Let 𝐻−
2 = 𝜒−1𝐻

2̅̅ ̅̅  be the orthogonal complement of 

the Hardy space 𝐻2, and consider the orthogonal projections 𝑃+and 𝑃−onto 𝐻2 and 𝐻−
2, 

respectively. Three special classes of bounded operators will be used in the sequel. For 𝜑 ∈
𝐿∞, the multiplication operator 𝑀𝜑 ∈ ℬ(𝐿

2),𝑀𝜑𝑓 = 𝜑𝑓, where 𝑓 ∈ 𝐿2; the Toeplitz 

operator 𝑇𝜑 ∈ ℬ(𝐻
2), 𝑇𝜑𝑓 = 𝑃+(𝜑𝑓), where 𝑓 ∈ 𝐻2; and the Hankel operator 𝐻𝜑 ∈

ℬ(𝐻2, 𝐻−
2),𝐻𝜑𝑓 = 𝑃−(𝜑𝑓), where 𝑓 ∈ 𝐻2. 
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Recall that the (unilateral) shift operator is given by 𝑀𝜒1. It will be useful to state some well-

known results on invariant subspaces of the shift operator. 

Theorem (5.1.1)[245]: Suppose that 𝐸 is a closed subspace of 𝐿2 and 𝑀𝜒1𝐸 ⊆ 𝐸. 

i) (Wiener) If 𝐸 is doubly invariant (i.e. 𝑀𝜒1(𝐸) = 𝐸 ), then 𝐸 = 𝜒𝑅𝐿
2 for a unique 

measurable subset 𝑅 ⊆ 𝕋, where 𝜒𝑅 is the characteristic of 𝑅 

ii) (Beurling-Helson) If 𝐸 is singly invariant (i.e. 𝑀𝜒1(𝐸) ≠ 𝐸 ), then 𝐸 = 𝜃𝐻2 for a unique 

up to a constant 𝜃 ∈ 𝐿∞ with |𝜃| = 1 a.e. 

iii) If 0 ≠ 𝐸 ⊂ 𝐻2, then 𝐸 = 𝜃𝐻2 for some inner function 𝜃. 

We will frequently use several properties of Toeplitz operators. Among the basic properties 

we recall that ∥∥𝑇𝜑∥∥ =∥ 𝜑 ∥∞, 𝑇𝜑
∗ = 𝑇𝜑‾  and 𝑇𝜑𝜓 = 𝑇𝜑𝑇𝜓 whenever 𝜓 ∈ 𝐻∞. The following 

results will be useful. 

Theorem (5.1.2)[245]: (Coburn's lemma) If 𝜑 ∈ 𝐿∞, then either ker (𝑇𝜑) = {0} or 

ker (𝑇𝜑
∗) = {0}, unless 𝜑 ≡ 0. 

Theorem (5.1.3)[245]: Let 𝜑 be a function in 𝐿∞. The following hold. 

i) 𝑇𝜑 is invertible if and only if it is Fredholm and has index zero. 

ii) If 𝜑 ∈ 𝐻∞ + 𝐶, then 𝑇𝜑 is Fredholm if and only 𝜑 is invertible in 𝐻∞ + 𝐶. Furthermore, 

the Fredholm index of 𝑇𝜑 satisfies ind (𝑇𝜑) = −𝑖𝑛𝑑(𝜑). 

Let 𝐺𝑟 be the Grassmann manifold of 𝐿2, i.e. the set of all closed subspaces of 𝐿2. Let 

𝑃𝑊 denote the orthogonal projection onto a closed subspace 𝑊 ⊂ 𝐿2. In particular, we write 

𝑃𝜑 = 𝑃𝜑𝐻2 , when 𝜑 ∈ 𝐿∞ and 𝜑𝐻2 is closed. If we identify each subspace with its 

orthogonal projection, then 

𝐺𝑟 = {𝑃𝑊:𝑊 is a closed subspace of 𝐿2}. 

As an application of Theorem (5.1.1), we determine when 𝜑𝐻2 belongs to 𝐺𝑟. 

Lemma (5.1.4)[245]: Let 𝜑 be a nonzero function in 𝐿∞. Then 𝜑𝐻2 is closed in 𝐿2 if and 

only if 𝜑 is invertible in 𝐿∞. 

Proof. Clearly, if the function 𝜑 is invertible in 𝐿∞, then the subspace 𝜑𝐻2 is closed. 

Conversely, suppose that 𝜑𝐻2 is closed. We proceed by way of contradiction and assume 

that the function 𝜑 is not invertible in 𝐿∞. We need to distinguish two cases. 

In the first case, we assume that there is a Borel set 𝑆 ⊂ 𝕋 with positive measure such that 

𝜑(𝑒𝑖𝑡) = 0 for all 𝑒𝑖𝑡 ∈ 𝑆. Moreover, we may take 𝑆 to be a maximal set with this property. 

Since 𝜑𝐻2 is shift invariant, we further need to consider two cases according to whether 

𝜑𝐻2 is singly or doubly invariant. If 𝜑𝐻2 is singly invariant, there is a function 𝜃 ∈ 𝐿∞ such 

that |𝜃| = 1 and 𝜑𝐻2 = 𝜃𝐻2. Then, there is a function 𝑓 ∈ 𝐻2 such that 𝜑𝑓 = 𝜃, which is 

a contradiction since 𝜑 ≡ 0 in 𝑆. If 𝜑𝐻2 is doubly invariant, then there a Borel set 𝑅 ⊂ 𝕋 

such that 𝜑𝐻2 = 𝜒𝑅𝐿
2. Therefore, 𝜑𝑓 = 𝜒𝑅 for some function 𝑓 ∈ 𝐻2. Recall that for a 

nonzero function in 𝐻2, the set {𝑒𝑖𝑡 ∈ 𝕋: 𝑓(𝑒𝑖𝑡) = 0} has measure zero ([261]). Using the 

maximality of 𝑆, we find that the sets 𝑆 and 𝑅𝑐 must be equal with the possible exception of 

points in a set of measure zero. Since 𝜑 ≠ 0, 𝑆𝑐 = 𝑅 has positive measure, and we can pick 

a proper subset 𝑅1 ⊂ 𝑅 such that 𝑅 ∖ 𝑅1 has positive measure. Again from the equation 

𝜑𝐻2 = 𝜒𝑅𝐿
2, we obtain a nonzero function in 𝑓 ∈ 𝐻2 such that 𝜑𝑓 = 𝜒𝑅1. This implies that 

𝑓 ≡ 0 in 𝑅 ∖ 𝑅1, which contradicts the aforementioned property of functions in 𝐻2. 

In the second case, we suppose that 𝜑 ≠ 0 a.e.. If the shift invariant subspace 𝜑𝐻2 is doubly 

invariant, we have again that 𝜑𝐻2 = 𝜒𝑅𝐿
2 for some Borel set 𝑅 ⊂ 𝕋. In particular, this gives 

𝜑 = 𝜒𝑅𝑔 for 𝑔 ∈ 𝐿2, and since 𝜑 ≠ 0 a.e., it follows that 𝜒𝑅 = 1. 



195 

Thus, we get 𝜑𝐻2 = 𝐿2, which certainly cannot be possible. Next we assume that the 

subspace 𝜑𝐻2 is single invariant. Then there is function 𝜃 ∈ 𝐿∞ satisfying |𝜃| = 1 a.e. and 

𝜑𝐻2 = 𝜃𝐻2. We may rewrite this as 𝜑1𝐻
2 = 𝐻2, where 𝜑1 = 𝜃‾𝜑. Note that 𝜑1 is not 

invertible in 𝐿∞, and 𝜑1 ∈ 𝐻
2, which gives 𝜑1 ∈ 𝐻

∞. Using this fact and that 𝜑1 ≠ 0 a.e., 

the Toeplitz operator 𝑇𝜑1 turns out to be injective. Moreover, 𝑇𝜑1𝐻
2 = 𝜑1𝐻

2 = 𝐻2 shows 

that 𝑇𝜑1 is invertible, and consequently, 𝜑1 must be invertible in 𝐿∞[261]. This gives a 

contradiction. 

Let 𝒜 be an abstract 𝐶∗-algebra. Denote by 𝐺𝑟(𝒜) the Grassmann manifold of 𝒜, i.e. the 

set of all selfadjoint projections in 𝒜. In [269], [258], Corach, Porta and Recht decribed the 

differential geometry of 𝐺𝑟(𝒜) in terms of projections and symmetries: one passes from 

projections to symmetries via the affine map 

𝑃 ⟷ 𝜖𝑃 = 2𝑃 − 1. 
In [258] a natural reductive structure was introduced in 𝐺𝑟(𝒜). In particular, geodesics were 

characterized. In [269] it was proved that these geodesics have minimal length, if one 

measures the length of curves by 

𝐿(𝛼) = ∫  
1

0

∥ �̇�(𝑡) ∥ 𝑑𝑡, 

where 𝛼: [0,1] → 𝐺𝑟(𝒜) is a piecewise 𝐶1-curve and ∥. ∥ is the norm of 𝒜. This means that 

the operator norm induces a Finsler metric on Gr (𝒜); however, note that this metric is not 

smooth, nor convex. We summarize these facts in the following. 

This map induces a linear connection in (𝒜) : if 𝑋(𝑡) is a tangent field along a curve 

𝛼(𝑡) ∈ 𝐺𝑟(𝒜), 
𝐷𝑋

𝑑𝑡
= 𝐸𝛼(𝑋). 

The geodesics of 𝐺𝑟(𝒜) starting at 𝑃 with velocity 𝑌 have the form 𝛿(𝑡) = 𝑒𝑡�̃�𝑃𝑒−𝑡�̃�, 

where �̃� = [𝑌, 𝑃] is antihermitian and co-diagonal with respect to 𝑃. 

Let 𝑃,𝑄 be two orthogonal projections such that ∥ 𝑃 − 𝑄 ∥< 1. Then there exists a unique 

operator 𝑋 ∈ 𝒜ℎ, with ∥ 𝑋 ∥< 𝜋/2, which is co-diagonal with respect to 𝑃, such that 𝑄 =
𝑒𝑖𝑋𝑃𝑒−𝑖𝑋. The curve 

𝛿(𝑡) = 𝑒𝑖𝑡𝑋𝑃𝑒−𝑖𝑡𝑋                                           (1) 
is the unique geodesic of Gr (𝒜 ) joining 𝑃 and 𝑄 (up to reparametrization). Moreover, this 

geodesic has minimal length. The exponent 𝑋 is an analytic function of 𝑃 and  : 

𝑋 = −
𝑖

2
log(𝜖𝑝𝜖𝑄), 

which is an analytic logarithm because ∥∥𝜖𝑃𝜖𝑄 − 1∥∥ = ∥∥𝜖𝑃 − 𝜖𝑄∥∥ = 2 ∥ 𝑃 − 𝑄 ∥< 2. 

Necessary and sufficient conditions were given for the existence of a geodesic joining two 

given orthogonal projections in the Grassmann manifold 𝐺𝑟(𝐻) of a Hilbert space 𝐻. This 

includes the case in which ∥ 𝑃 − 𝑄 ∥= 1. To briefly describe this result, let us recall that 

Halmos [263] (see also [259], [260]) proposed to understand the geometric properties of 

two orthogonal projections 𝑃 and 𝑄 by considering the decomposition 

(Ran (𝑃) ∩ ker (𝑄)) ⊕ (Ran (𝑄) ∩ ker (𝑃)) ⊕ (Ran (𝑃) ∩ Ran (𝑄)) ⊕ (ker (𝑃)
∩ ker (𝑄)) ⊕ 𝐻0, 

where 𝐻0 is the orthogonal complement of the first four subspaces. The projections are said 

to be in generic position when the first four subspaces are trivial. The first two subspaces 

may be interpreted as an obstruction to find a geodesic between 𝑃 and 𝑄. 
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Theorem (5.1.5)[245]: Let 𝜑,𝜓 be invertible functions in 𝐿∞. The following are equivalent. 

i) ker (𝑇𝜑𝜓−1) = ker (𝑇𝜑−1𝜓) = {0}. 

ii) There is a geodesic in 𝐺𝑟 joining 𝑃𝜑 and 𝑃𝜓. 

iii) There is unique geodesic of minimal length in 𝐺𝑟 joining 𝑃𝜑 and 𝑃𝜓 given by 

𝛿(𝑡) = 𝑒𝑖𝑡𝑋𝑃𝜑𝑒
−𝑖𝑡𝑋,  𝑡 ∈ [0,1], 

where 𝑋 = 𝑋𝜑,𝜓 is a uniquely determined selfadjoint operator such that ∥ 𝑋 ∥≤ 𝜋/2, 

𝑒𝑖𝑋𝑃𝜑𝑒
−𝑖𝑋 = 𝑃𝜓, and it is co-diagonal with respect to both 𝑃𝜑 and 𝑃𝜓. 

Proof. We can assume without loss of generality that 𝜑,𝜓 are unimodular functions by the 

argument before the statement of this theorem. Then, note that the restriction of the 

multiplication operator 

𝑀𝜓|ker (𝑇𝜑‾ 𝜓)
: ker(𝑇𝜑‾ 𝜓) → (𝜑𝐻2)⊥ ∩ 𝜓𝐻2, 

is an isomorphism. Similarly, ker (𝑇𝜑𝜓‾ ) ≃ 𝜑𝐻
2 ∩ (𝜓𝐻2)⊥. If the kernels of both 𝑇𝜑𝜓‾  and 

𝑇𝜑‾ 𝜓 are trivial, then there is a geodesic joining 𝑃𝜑 and 𝑃𝜓. Conversely, if such a geodesic 

exists, then 𝜑𝐻2 ∩ (𝜓𝐻2)⊥ and (𝜑𝐻2)⊥ ∩ 𝜓𝐻2 have the same dimension. By Coburn's 

lemma, this dimension must be zero. Thus, we have shown that the first and second item are 

equivalent. The equivalence between the second and third item is explained. 

We study in more detail the selfadjoint operator 𝑋 = 𝑋𝜑,𝜓 linking the subspaces 𝜑𝐻2 

and 𝜓𝐻2 in Theorem (5.1.5). To this effect, we recall the following facts concerning 

Halmos' model for two orthogonal projections 𝑃0 and 𝑄0 in generic position acting in a 

Hilbert space 𝐻. Under this assumption, there exists an isometric isomorphism between 𝐻 

and a product space 𝐾 × 𝐾 and a positive operator 𝑍 in 𝐾 with ∥ 𝑍 ∥≤ 𝜋/2 and ker (𝑍) =
{0}. This isomorphism transforms the projections 𝑄0 and 𝑃0 into 

𝑄0 = (
1 0
0 0

)   and  𝑃0 = (
𝐶2 𝐶𝑆
𝐶𝑆 𝑆2

), 

where 𝐶 = cos (𝑍) and 𝑆 = sin (𝑍)[263]. The unique selfadjoint operator 𝑋 linking these 

projections is (see [246]) 

𝑋 = (
0 𝑖𝑍
−𝑖𝑍 0

). 

Note that ∥ 𝑋 ∥=∥ 𝑍 ∥. 
Let 𝜎(𝐴) denote the spectrum of an operator 𝐴. Recall the definition of reduced minimum 

modulus 𝛾(𝐴) of an operator ≠ 0 : 

𝛾(𝐴)  = inf  {∥ 𝐴𝑓 ∥: ∥ 𝑓 ∥= 1, 𝑓 ∈ ker (𝐴)⊥}

 = inf  𝜎(|𝐴|) ∖ {0}.
 

Proposition (5.1.6)[245]: Let 𝜑,𝜓 be unimodular functions in 𝐿∞ such that 

ker (𝑇𝜑𝜓‾ ) = ker (𝑇𝜑‾ 𝜓) = {0}. 

Then 

𝑍 = 𝑀𝜑cos
−1 (|𝑇𝜑𝜓‾ |)𝑀𝜑‾  

and in particular 

∥∥𝑋𝜑,𝜓∥∥ = cos
−1 (𝛾(𝑇𝜑𝜓‾ )). 

Proof. On the non generic part of 𝑃𝜑 and 𝑃𝜓, the operator 𝑋 = 𝑋𝜑,𝜓 is trivial. Thus in order 

to compute its norm we restrict to the generic part, and thus they can be described by Halmos' 

model, 

𝑋 = (
0 𝑖𝑍
−𝑖𝑍 0

). 
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It is elementary that, if 𝑄0, 𝑃0 denote the reductions of 𝑃𝜑 , 𝑃𝜓 to the generic parts, then 

𝑄0𝑃0𝑄0 = (
𝐶2 0
0 0

). 

Now 

𝐶2 = 𝑃𝜑𝑃𝜓𝑃𝜑 = 𝑀𝜑𝑃+𝑀𝜑‾𝑀𝜓𝑃+𝑀𝜓‾𝑀𝜑𝑃+𝑀𝜑‾ = 𝑀𝜑𝑇𝜑𝜓‾
∗ 𝑇𝜑𝜓‾𝑀𝜑‾ = 𝑀𝜑|𝑇𝜑𝜓‾ |

2
𝑀𝜑‾ . 

Therefore 0 ≤ 𝐶 = cos (𝑍) = 𝑀𝜑|𝑇𝜑𝜓‾ |𝑀𝜑‾ , and thus, 𝑍 = 𝑀𝜑cos
−1 (|𝑇𝜑𝜓‾ |)𝑀𝜑‾ . From this 

formula, it follows that 

∥∥𝑋𝜑,𝜓∥∥ = ∥∥cos
−1 (|𝑇𝜑𝜓‾ |)∥∥ = cos

−1(𝜆0), 

where 

𝜆0 = i  𝜎(|𝑇𝜑𝜓‾ |) = i  𝜎(|𝑇𝜑𝜓‾ |) ∖ {0} = 𝛾(𝑇𝜑𝜓‾ ). 

The second equality can be deduced from the assumption that 𝑇𝜑𝜓‾ is injective, which 

implies that 0 cannot be an isolated point of 𝜎(|𝑇𝜑𝜓‾ |). 

Example (5.1.7)[245]: Consider 𝜑 = 𝜒1 and the Blaschke factor 

𝜓(𝑒𝑖𝑡) = 𝑏𝑎(𝑒
𝑖𝑡) =

𝑎‾

|𝑎|

𝑎 − 𝑒𝑖𝑡

1 − 𝑎‾𝑒𝑖𝑡
, 

for 0 < |𝑎| < 1. Then by direct computation, 

𝜑𝐻2 ∩ (𝜓𝐻2)⊥ = (𝜑𝐻2)⊥ ∩ 𝜓𝐻2 = {0},  (𝜑𝐻2)⊥ ∩ (𝜓𝐻2)⊥ = 𝐻−
2 

and 

(𝜑𝐻2) ∩ 𝜓𝐻2 = 𝜒1𝑏𝑎𝐻
2 = 𝜒1(𝜒1 − 𝑎)𝐻

2. 
Then the generic part 𝐻0 of 𝜑𝐻2 and 𝜓𝐻2 is the two dimensional space 𝐻2⊖

𝜒1(𝜒1 − 𝑎)𝐻
2. The reduced projections 𝑄0 = 𝑃𝜑|𝐻0

 and 𝑃0 = 𝑃𝜓|𝐻0
 are one dimensional, 

Ran(𝑄0) = 𝐻0 ∩ 𝜒1𝐻
2 = ⟨

𝜒1
1 − 𝑎‾𝜒1

⟩ ,  Ran(𝑃0) = 𝐻0 ∩ (𝜒1 − 𝑎)𝐻
2 = ⟨

𝜒1 − 𝑎

1 − 𝑎‾𝜒1
⟩. 

According Halmos' formulas, 

𝑄0𝑃0𝑄0 = (
𝐶2 0
0 0

). 

Denote by 𝑓 and 𝑔 the normalizations of 
𝜒1

1−𝑎‾𝜒1
 and 

𝜒1−𝑎

1−𝑎‾1
, respectively. As usual, let 𝑓1⊗𝑓2 

be the rank one operator defined by 𝑓1⊗𝑓2(ℎ) =< ℎ, 𝑓2 > 𝑓1. Then, we have another 

expression 

𝑄0𝑃0𝑄0 = (𝑓 ⊗ 𝑓)(𝑔 ⊗ 𝑔)(𝑓 ⊗ 𝑓) = | < 𝑓, 𝑔 > |2𝑓 ⊗ 𝑓. 
Therefore, 

(
𝐶 0
0 0

) = | < 𝑓, 𝑔 > |𝑓 ⊗ 𝑓. 

In this case 𝐶 = cos (𝑍) is a positive real number, and thus 𝑍 = cos−1 (| < 𝑓, 𝑔 > |). Simple 

computations show that | < 𝑓, 𝑔 > | = (1 − |𝑎|2)1/2, which gives 

𝑍 = cos−1 ((1 − |𝑎|2)
1
2) = sin−1(|𝑎|). 

Then, the part of 𝑋𝜑,𝜓 acting on 𝐻0 is 

𝑋𝜑,𝜓|𝐻0
= (

0 −𝑖sin−1 (|𝑎|)

𝑖sin−1 (|𝑎|) 0
). 

The restriction of 𝑋𝜑,𝜓 to 𝐻0
⊥ is trivial. Thus, 𝑋𝜑,𝜓 has rank two, and 

∥∥𝑋𝜑,𝜓∥∥ = sin
−1(|𝑎|). 

The minimality property of the geodesics in the Grassmann manifold may be used to obtain 

operator inequalities. 
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Theorem (5.1.8)[245]: Let 𝜑,𝜓 be unimodular functions in 𝐿∞ such that ker (𝑇𝜑𝜓‾ ) =

ker (𝑇𝜑‾ 𝜓) = {0}. Then 

∥∥𝑀𝜃𝑃+ − 𝑃+𝑀𝜃∥∥ ≥ cos
−1 (𝛾(𝑇𝜑𝜓‾ )), 

for every real argument 𝜃 ∈ 𝐿∞ of the function 𝜑𝜓‾. 
Proof. Let 𝜃 be a real function in 𝐿∞ such that 𝑒𝑖𝜃 = 𝜑𝜓‾. Consider the curve 

𝛼(𝑡) = 𝑀𝑒𝑖𝑡𝜃𝑃𝜑𝑀𝑒−𝑖𝑡𝜃. 

Apparently, 𝛼(𝑡) is a smooth curve in 𝐺𝑟 with 𝛼(0) = 𝑃𝜑 and 𝛼(1) = 𝑀𝜑‾ 𝜓𝑃𝜑𝑀𝜑𝜓‾ = 𝑃𝜓. 

Then 𝛼(𝑡) is longer than the (unique) minimal geodesic which joins 𝜑𝐻2 and 𝜓𝐻2, whose 

length is ∥∥𝑋𝜑,𝜓∥∥. Note that 

�̇�(𝑡) = 𝑖𝑀𝑒𝑖𝑡𝜃𝑀𝜃𝑃𝜑 − 𝑖𝑃𝜑𝑀𝜃𝑀𝑒−𝑖𝑡𝜃 = 𝑖𝑀𝑒𝑖𝑡𝜃𝑀𝜑(𝑀𝜃𝑃+ − 𝑃+𝑀𝜃)𝑀𝜑‾𝑀𝑒−𝑖𝑡𝜃 . 

Thus, we find that ∥ �̇�(𝑡) ∥= ∥∥𝑀𝜃𝑃+ − 𝑃+𝑀𝜃∥∥, and using Proposition (5.1.6), we obtain 

cos−1 (𝛾(𝑇𝜑𝜓‾ )) = ∥∥𝑋𝜑,𝜓∥∥ ≤ 𝐿(𝛼) = ∫  
1

0

∥ �̇�(𝑡) ∥ 𝑑𝑡 = ∥∥𝑀𝜃𝑃+ − 𝑃+𝑀𝜃∥∥. 

Corollary (5.1.9)[245]: Let 𝜃 be a real valued continuous function, then 

∥∥𝑀𝜃𝑃+ − 𝑃+𝑀𝜃∥∥ ≥ cos
−1 (𝛾(𝑇𝑒𝑖𝜃)). 

Proof. Put 𝜑 = 𝑒𝑖𝜃 and 𝜓 = 1 in Theorem (5.1.8). Then, note that 𝜑 is an invertible 

continuous function with zero index. Hence the operator 𝑇𝜑 is Fredholm and has index zero, 

which implies that it is invertible. 

Let 𝜃𝑡 , 𝑡 ∈ [0,1], be a piecewise differentiable path of real valued functions in 𝐶. Then the 

curve 𝛼(𝑡) = 𝑀𝑒𝑖𝜃𝑡𝑃+𝑀𝑒−𝑖𝜃𝑡  is piecewise differentiable. Similarly as above, its velocity is 

∥ �̇�(𝑡) ∥= ∥∥𝑀𝑒𝑖𝜃𝑡[𝑀𝑖�̇�𝑡
, 𝑃+]𝑀−𝑒𝑖𝜃𝑡∥∥ = ∥∥𝐻�̇�𝑡∥

∥ = i  {∥∥�̇�𝑡 − 𝑓∥∥∞: 𝑓 ∈ 𝐻
∞}. 

The last quantity can be regarded as the norm of [�̇�𝑡], the class of �̇�𝑡 in the quotient 𝐿∞/𝐻∞ 

(which is also the velocity of the curve [𝜃𝑡] in the quotient). Therefore, 

𝐿(𝛼) = 𝐿𝐿∞/𝐻∞([𝜃𝑡]). 

Note that the curve 𝜃𝑡 is arbitrary between 𝜃0 and 𝜃1. In particular, when 𝜃𝑡 is a straight 

line, we have the following: 

Corollary (5.1.10)[245]: Let 𝜃0, 𝜃1 be real valued continuous functions, then 

∥∥𝜃0 − 𝜃1∥∥𝐿∞/𝐻∞ ≥ ∥
∥𝑋𝑒𝑖𝜃0 ,𝑒𝑖𝜃1∥∥ = cos

−1 (𝛾(𝑇𝑒𝑖(𝜃1−𝜃𝑜))). 

The space 𝐿2 has the orthogonal decomposition 𝐿2 = 𝐻2⊕𝐻−
2, which we now use to 

give the following definition. The compact restricted Grassmannian Gr  res  is the manifold 

of closed linear subspaces 𝑊 ⊂ 𝐿2 such that 

 𝑃+|𝑊:𝑊 → 𝐻2 ∈ ℬ(𝑊,𝐻2) is a Fredholm operator, and 

 𝑃−|𝑊:𝑊 → 𝐻−
2 ∈ ℬ(𝑊,𝐻−

2) is a compact operator. 

The components of the restricted Grassmannian are parametrized by 𝑘 ∈ ℤ, where 𝑘 is the 

index of the operator 𝑃+|𝑊:𝑊 → 𝐻2 ∈ ℬ(𝑊,𝐻2), 

𝐺𝑟
res 

𝑘 = {𝑊 ∈ 𝐺𝑟res : ind (𝑃+|𝑊:𝑊 → 𝐻2) = 𝑘}. 

In particular, since 𝑃+is the identity restricted to 𝐻2, 𝐻2 = Ran (𝑃+) ∈ 𝐺𝑟res 

0 . 

Lemma (5.1.11)[245]: Let 𝜑 be an invertible function in 𝐿∞. Then the following are 

equivalent. 

i) 𝜑𝐻2 ∈ 𝐺𝑟𝑟𝑒𝑠. 
ii) 𝜑 is an invertible function in 𝐻∞ + 𝐶. 
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iii) 𝜑𝐻2 = 𝜃𝐻2 for some 𝜃 ∈ 𝑄𝐶, |𝜃| = 1 a.e. 

In this case, 𝜑𝐻2 ∈ 𝐺𝑟
res 

𝑘 , where 𝑘 = −𝑖𝑛𝑑(𝜑) = −𝑖𝑛𝑑(𝜃). 

Proof. We first prove 𝑖) ⇒ 𝑖𝑖. We claim that the Hankel operator 𝐻𝜑: 𝐻
2 → 𝐻−

2, 𝐻𝜑𝑓 =

𝑃−(𝜑𝑓), is compact if and only if 𝑃− ∣ 𝜑𝐻
2: 𝜑𝐻2 → 𝐻−is compact. In fact, note that 𝐻𝜑𝑓 =

𝑃−|𝜑𝐻2(𝜑𝑓) = 𝑃−|𝜑𝐻2𝑀𝜑𝑓, for all 𝑓 ∈ 𝐻2. Since 𝜑 is invertible in 𝐿∞, 𝑀𝜑: 𝐻
2 → 𝜑𝐻2 is 

an invertible operator. Thus, 

𝐻𝜑 = (𝑃− ∣ 𝜑𝜑2) (𝑀𝜑|𝐻2)
,  𝐻𝜑 (𝑀𝜑|𝐻2)

−1
= 𝑃−|𝜑𝐻2 , 

which clearly implies our claim. 

Suppose that 𝜑𝐻2 ∈ 𝐺𝑟res. . Then, the operator 𝑃−|𝜑𝐻2: 𝜑𝐻
2 → 𝐻−

2 is compact, so we get 

that 𝐻𝜑 is compact. Hartman's theorem asserts that a Hankel operator 𝐻𝜑 is compact if and 

only if 𝜑 ∈ 𝐻∞ + 𝐶 (see e.g. [76]). Thus, it follows that 𝜑 ∈ 𝐻∞ + 𝐶. Since 𝜑𝐻2 ∈ 𝐺𝑟𝑟𝑒𝑠, 
we also have that 𝑃+ ∣ 𝜑𝐻

2: 𝜑𝐻2 → 𝐻2 is a Fredholm operator. Note that Ran (𝑃+ ∣ 𝜑𝐻
2) =

Ran (𝑇𝜑) and ker (𝑃+ ∣ 𝜑𝐻
2) = 𝑀𝜑ker (𝑇𝜑), where 𝑇𝜑 is the Toeplitz operator with symbol 

𝜑. Therefore 𝑇𝜑 is Fredholm, and thus, 𝜑 is invertible in 𝐻∞ + 𝐶. 

Now we prove ) ⇒ 𝑖 ). Assume that 𝜑 is an invertible function in 𝐻∞ + 𝐶. Then, we have 

that 𝑇𝜑 is a Fredholm operator. By the same arguments as in the previous paragraph, we see 

that 𝑃+|𝜑𝐻2: 𝜑𝐻
2 → 𝐻2 is also a Fredholm operator. On the other hand, 𝜑 ∈ 𝐻∞ + 𝐶 is 

equivalent to 𝐻𝜑 compact. Hence 𝑃− ∣ 𝜑𝐻
2: 𝜑𝐻2 → 𝐻−is compact, and consequently, 

𝜑𝐻2 ∈ 𝐺𝑟res . 

The implication ) ⇒ 𝑖𝑖𝑖 ) is given by Theorem (5.1.1) : if 𝜑 ∈ 𝐻∞ + 𝐶, then 𝜑𝐻2 is singly 

invariant. Therefore exists a (unique up to a multiplicative constant) unimodular function 𝜃 

such that 𝜑𝐻2 = 𝜃𝐻2. Now 𝜃 = 𝜑𝑓 for some 𝑓 ∈ 𝐻2. Since 𝜑 is invertible in 𝐿∞, then 𝑓 ∈
𝐻∞. Hence, 𝜃 ∈ 𝐻∞ + 𝐶. Further, by the invertibility of 𝜑, it clearly follows that 𝑓 is 

invertible in 𝐿∞. Using that 𝜑𝐻2 = 𝜃𝐻2 = 𝜑𝑓𝐻2, we get 𝑓𝐻2 = 𝐻2, and consequently, 𝑓 

is an outer function. Recall that a function in 𝐻∞ is invertible if and only if it is outer and 

invertible in 𝐿∞. This gives 𝑓−1 ∈ 𝐻∞. Now 𝜃‾ = 𝜃−1 = 𝜑−1𝑓−1 ∈ 𝐻∞ + 𝐶, which proves 

that 𝜃 ∈ 𝑄𝐶. 

To prove the implication ) ⇒ 𝑖𝑖 ), we observe that every unimodular 𝜃 ∈ 𝑄𝐶 is invertible in 

𝐻∞ + 𝐶. By the equivalence between 𝑖 ) and 𝑖𝑖 ), we get 𝜑𝐻2 = 𝜃𝐻2 ∈ 𝐺𝑟res , and hence 𝜑 

is invertible in 𝐻∞ + 𝐶. 

Suppose that 𝜑𝐻2 ∈ 𝐺𝑟
res. 

𝑘 . To prove our claim on the index, we have pointed out that 

Ran (𝑃+|𝜑𝐻2) = Ran (𝑇𝜑) and ker (𝑃+|𝜑𝐻2) = 𝑀𝜑ker (𝑇𝜑), where 𝑀𝜑 is invertible. It 

follows that 𝑘 = 𝑖𝑛𝑑(𝑃+ ∣ 𝜑𝐻
2) = 𝑖𝑛𝑑(𝑇𝜑) = −𝑖𝑛𝑑(𝜑). Moreover, 𝜃 = 𝜑𝑓, and 𝑓 is 

invertible in 𝐻∞. Every invertible function in 𝐻∞ has index zero. Hence, ind (𝜑) = 𝑖𝑛𝑑(𝜃). 
Under the identification of each closed subspace 𝑊 ⊆ 𝐿2 with the orthogonal projection 𝑃𝑊, 

the compact restricted Grassmannian is given by 

𝐺𝑟res = {𝑃 ∈ ℬ(𝐿
2): 𝑃 − 𝑃+is compact, 𝑃 = 𝑃2 = 𝑃∗} .           (2) 

Applying the results mentioned for the algebra of compact operators, it follows that the 

tangent space (𝑇𝐺𝑟res )𝑃
 at some point 𝑃 ∈ 𝐺𝑟res  is given by 

(𝑇𝐺𝑟res )𝑃
= {𝑖𝑋𝑃 − 𝑖𝑃𝑋: 𝑋∗ = 𝑋 is compact }. 
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Then, using the usual operator norm, we have a Finsler metric to measure the length of 

curves. 

On the other hand, the above presentation of 𝐺𝑟𝑟𝑒𝑠 by means of operators is related to the 

orthogonal projections of the 𝐶∗-algebra 

ℬ𝑐𝑐 = {𝑇 ∈ ℬ(𝐿
2): [𝑇, 𝑃+]is compact }.                       (3) 

Indeed, this algebra consists on operators with compact co-diagonal entries. Denoting by 𝜋 

the projection onto the Calkin algebra, the restricted Grassmannian coincides with the class 

of projections 𝑃 such that 

𝜋(𝑃) = (
1 0
0 0

), 

where this is a matrix decomposition with respect to 𝜋(𝑃+)and 𝜋(𝑃−). Metric aspects of the 

projections in ℬ𝑐𝑐 for a general Hilbert space 𝐻 were studied in [248]. In particular, it was 

proved that any pair of projections in the same connected component of 𝐺𝑟𝑟𝑒𝑠 can be joined 

by a geodesic of minimal length. Combining these facts and the characterization in Lemma 

(5.1.11), we have the following result. 

Theorem (5.1.12)[245]: Let 𝜑,𝜓 be invertible functions in 𝐻∞ + 𝐶. The following are 

equivalent. 

i) ind (𝜑) = 𝑖𝑛𝑑(𝜓). 
ii) There is a geodesic in 𝐺𝑟res  joining 𝑃𝜑 and 𝑃𝜓. 

iii) There is unique geodesic of minimal length in 𝐺𝑟res  joining 𝑃𝜑 and 𝑃𝜓 given by 

𝛿(𝑡) = 𝑒𝑖𝑡𝑋𝑃𝜑𝑒
−𝑖𝑡𝑋,  𝑡 ∈ [0,1], 

where 𝑋 = 𝑋𝜑,𝜓 is a uniquely determined compact selfadjoint operator such that ∥ 𝑋 ∥<

𝜋/2, 𝑒𝑖𝑋𝑃𝜑𝑒
−𝑖𝑋 = 𝑃𝜓, and it is co-diagonal with respect to both 𝑃𝜑 and 𝑃𝜓. 

Proof. We first show the equivalence between  ) and 𝑖𝑖 ). Suppose that ind (𝜑) = 𝑖𝑛𝑑(𝜓), 
so we have that 𝑃𝜑 and 𝑃𝜓 belong to the same connected component of 𝐺𝑟𝑟𝑒𝑠. According to 

[248] there is a (minimal) geodesic joining these projections. The converse is obvious by 

the characterization of the connected components of 𝐺𝑟res  in terms of the index of the 

functions. 

Similarly, to prove the equivalence between  (i) and (𝑖𝑖𝑖), the only non trivial part is that 𝑖) 
implies 𝑖𝑖𝑖). If 𝑖𝑛𝑑(𝜑) = 𝑖𝑛𝑑(𝜓), then ind (𝜑𝜓−1) = 0, and consequently, as we state in 

Theorem (5.1.3),𝑇𝜑𝜓−1 is an invertible operator. Following the same argument as in the 

proof of Theorem (5.1.5), but now using Lemma (5.1.11), we can assume that 𝜑,𝜓 are 

unimodular functions in 𝑄𝐶. Therefore, 𝜑𝐻2 ∩ (𝜓𝐻2)⊥ ≃ ker (𝑇𝜑𝜓‾ ) = {0} and 𝜓𝐻2 ∩

(𝜑𝐻2)⊥ ≃ ker (𝑇𝜓𝜑‾ ) = {0}. Under these conditions, there is a unique geodesic of minimal 

length joining 𝑃𝜑 and 𝑃𝜓 of the desired form (see [248]). 

Now we address the following question: when can we take the quasicontinuous 

function 𝜃 in Lemma (5.1.11) to be continuous? Note that this function is unique up to a 

multiplicative constant. 

The conditions in Lemma (5.1.11) are also equivalent to have 𝜑𝐻2 = 𝑔𝐻2, where 𝑔 ∈ 𝐶 is 

non-vanishing. Indeed, this is easily seen from [98], which asserts that the invertibility of a 

function 𝜑 in the algebra 𝐻∞ + 𝐶 is equivalent to the factorization 𝜑 = 𝑓𝑔, where 𝑓, 𝑓−1 ∈
𝐻∞ and 𝑔, 𝑔−1 ∈ 𝐶. In addition, note that ind (𝑔) = 𝑖𝑛𝑑(𝜑). However, the function 𝑔 is not 

necessary unimodular. 
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Assuming that the function 𝜑 is continuous, we establish below a relation between 𝜃 and 𝜑. 

Given a real valued function 𝑢 ∈ 𝐿2, �̃� is the harmonic conjugate on 𝕋. Denote by Lip  𝛼 the 

Banach space of complex-valued functions on 𝕋 satisfying a Lipschitz condition of order 

𝛼(0 < 𝛼 ≤ 1). We write 𝐴 = 𝐻∞ ∩ 𝐶 for the disk algebra. 

Proposition (5.1.13)[245]: Let 𝜑 ∈ 𝐶 be non-vanishing, 𝜃 denote the quasicontinuous 

function of Lemma (5.1.11), and set 𝑢 = −log |𝜑|, then 

𝜃 =
𝜑

|𝜑|
𝑒𝑖�̃�. 

In particular, 𝜃 ∈ 𝐶, whenever �̃� ∈ 𝐶. In addition, the following assertions hold. 

i) If 𝜑 ∈ Lip𝛼 for 0 < 𝛼 < 1, then 𝜃 ∈ Lip𝛼. 

ii) If 𝜑 ∈ 𝐴, then 𝜃 ∈ 𝐴. 

Proof. Recalling that 𝜃𝐻2 = 𝜑𝐻2, and by the proof of 𝑖𝑖 ) ⇒ 𝑖𝑖𝑖 ) in Lemma (5.1.11), one 

can find an invertible function 𝑓 in 𝐻∞ such that 𝜃 = 𝑓𝜑. Since 𝑓 is an outer function, its 

harmonic extension admits a representation: 

𝑓(𝑧) = 𝜆 exp(
1

2𝜋
∫  
2𝜋

0

 
𝑒𝑖𝑡 + 𝑧

𝑒𝑖𝑡 − 𝑧
log|𝑓(𝑒𝑖𝑡)|𝑑𝑡) ,  𝑧 ∈ 𝔻, 

for some 𝜆 ∈ 𝕋; see [98]. We may assume that 𝜆 = 1. Note that 𝑓 = exp (𝑎 + 𝑖𝑏) where 

𝑎(𝑧) =
1

2𝜋
∫  
2𝜋

0

Re {
𝑒𝑖𝑡 + 𝑧

𝑒𝑖𝑡 − 𝑧
} log |𝑓(𝑒𝑖𝑡)|𝑑𝑡 = log |𝑓(𝑧)|, 

since the real part of (𝑒𝑖𝑡 + 𝑧)(𝑒𝑖𝑡 − 𝑧)
−1

 is the Poisson kernel. Since |𝑓| = 1/|𝜑| on 𝕋, 

and 𝑓 ∈ 𝐻∞, the following radial limit lim𝑟→1−  𝑎(𝑟𝑒
𝑖𝑡) = log |𝑓(𝑒𝑖𝑡)| = 𝑢(𝑒𝑖𝑡) exists a.e. 

On the other hand, 

𝑏(𝑧) =
1

2𝜋
∫  
2𝜋

0

Im {
𝑒𝑖𝑡 + 𝑧

𝑒𝑖𝑡 − 𝑧
} log |𝑓(𝑒𝑖𝑡)|𝑑𝑡 

is the harmonic conjugate of 𝑎 on 𝔻 (up to a constant). By the Privalov-Plessner theorem 

[268], lim𝑟→1−  𝑏(𝑟𝑒
𝑖𝑡) = �̃�(𝑒𝑖𝑡) a.e. Since 𝜃 = 𝜑𝑓 and 𝑓 = 𝑒𝑢𝑒𝑖�̃� =

1

|𝜑|
𝑒𝑖�̃�, we obtain 𝜃 =

𝜑

|𝜑|
𝑒𝑖�̃�. 

i) Now we assume that 𝜑 ∈ Lip𝛼. Since 𝜑 is a non-vanishing continuous function, then 𝑢 =
−log |𝜑| ∈ Lip𝛼. By Privalov's theorem, �̃� ∈ Lip𝛼 for 𝛼 < 1 (see [268]). Clearly, 

𝜑, |𝜑|−1 ∈ Lip𝛼, which yields 𝜃 ∈ Lip𝛼 . 
ii) According to [76], the outer part 𝜑out  of 𝜑 belongs to 𝐴. Since 𝜃 = 𝜑𝑓, it follows that 

|𝑓−1| = |𝜑out |. Therefore, 𝜑out = 𝜆𝑓
−1 for some 𝜆 ∈ 𝕋. Thus, the inner part of 𝜑 satisfies 

𝜃 = 𝜆𝜑inn , and thus we obtain 𝜃 ∈ 𝐴. 

Example (5.1.14)[245]: In contrast to what happens with functions in Lip𝛼 or 𝐴, we now 

show that the class of absolutely continuous functions is not preserved in the above 

proposition. Let 

𝑢(𝑒𝑖𝑡) = −∑  

𝑛≥2

sin (𝑛𝑡)

𝑛log (𝑛)
 

then 𝑢 ∈ 𝐶; moreover 𝑢 is absolutely continuous on 𝕋[276]. Let 𝜑 = 𝑒−𝑢, clearly 𝜑 ∈ 𝐶 is 

non-vanishing and absolutely continuous on 𝕋. Since 𝑢(𝕋) ⊂ ℝ, we have 𝜑 > 0 on 𝕋, 

therefore −log |𝜑| = 𝑢. Let 
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𝑣(𝑒𝑖𝑡) =∑  

𝑛≥2

cos (𝑛𝑡)

𝑛log (𝑛)
, 

and note that 

𝑓(𝑧) =∑  

𝑛≥2

𝑖

𝑛log (𝑛)
𝑧𝑛 = 𝑖𝑣 + 𝑢 

is analytic, therefore 𝑣 is the harmonic conjugate of 𝑢. But 𝑣 is not continuous on 𝕋, not 

even bounded since ∑𝑛≥2  
1

𝑛log (𝑛)
= +∞, therefore 𝜃 = 𝑒𝑖𝑣 is not continuous on 𝕋. 

Let 𝒦(𝐻, 𝐿) be the space of compact operators between two Hilbert spaces 𝐻 and 𝐿. 

Given an operator 𝑇 ∈ 𝒦(𝐻, 𝐿), we denote by (𝑠𝑛(𝑇))𝑛≥1 the sequence of its singular 

values. The 𝑝-Schatten class (1 ≤ 𝑝 < ∞) is defined by 

ℬ𝑝(𝐻, 𝐿) = {𝑇 ∈ 𝒦(𝐻, 𝐿): ∥ 𝑇 ∥𝑝= (∑  

∞

𝑛=1

  𝑠𝑛(𝑇)
𝑝)

1/𝑝

< ∞}. 

These are Banach spaces endowed with the norm ∥⋅∥𝑝. As usual, when 𝑝 = ∞, we set 

ℬ∞(𝐻, 𝐿) = 𝒦(𝐻, 𝐿). In particular, ℬ𝑝(𝐻, 𝐻) = ℬ𝑝(𝐻) is a bilateral ideal of ℬ(𝐻). Using 

the orthogonal decomposition 𝐿2 = 𝐻2⊕𝐻−
2, and the 𝑝-Schatten class (1 ≤ 𝑝 < ∞), one 

can introduce the 𝑝-restricted Grassmannian 𝐺𝑟𝑟𝑒𝑠,𝑝 as the manifold of closed linear 

subspaces 𝑊 ⊂ 𝐿2 such that 

 𝑃+|𝑊:𝑊 → 𝐻2 ∈ ℬ(𝑊,𝐻2) is a Fredholm operator, and 

 𝑃−|𝑊:𝑊 → 𝐻−
2 ∈ ℬ𝑝(𝑊,𝐻−

2). 

Its connected components 𝐺𝑟𝑟𝑒𝑠,𝑝
𝑘 , 𝑘 ∈ ℤ, are also described by the index of the projection 

𝑃+|𝑊:𝑊 → 𝐻2. The case 𝑝 = 2 was studied in connection with loop groups [270]; it is an 

infinite dimensional manifold with remarkable geometric properties [252], [262], [275]. 

Other values of 1 ≤ 𝑝 ≤ ∞, or more generally restricted Grassmannians associated with 

symmetrically-normed ideals, were treated in [251], [256]. 

We denote by 𝐵𝑝
𝛼 the Besov space, where 1 ≤ 𝑝 < ∞ and 0 < 𝛼 ≤ 1. For the definition of 

these spaces, and the following results we refer to Böttcher, Karlovich and Silbermann 

[253]. Among various generalizations of the classical Krein algebra, it was introduced the 

following algebra defined by means of Hankel operators: 

𝐾𝑝,0
1/𝑝,0

= {𝜑 ∈ 𝐿∞: 𝐻𝜑 ∈ ℬ𝑝(𝐻
2, 𝐻−

2)}, 

where 1 ≤ 𝑝 ≤ ∞. It turns out to be a Banach algebra under the norm 

∥ 𝜑 ∥
𝐾𝑝,0
1/𝑝,0=∥ 𝜑 ∥𝐿∞+ ∥∥𝐻𝜑∥∥𝑝

. 

In the case 𝑝 = ∞, it simply has the usual operator norm of a compact operator. By 

Hartman's theorem, 𝐾∞,0
1/∞,0

= 𝐻∞ + 𝐶, and for 1 ≤ 𝑝 < ∞, one has 𝐾𝑝,0
1/𝑝,0

⊆ 𝐻∞ + 𝐶. 

Given a function 𝜑 ∈ 𝐿∞ and 1 ≤ 𝑝 < ∞, Peller's theorem states that the Hankel operator 

𝐻𝜑 ∈ ℬ𝑝(𝐻
2, 𝐻−

2) if and only if 𝑃−𝜑 ∈ 𝐵𝑝
1/𝑝

 (see [98]). 

Then there is an equivalent definition of 𝐾𝑝,0
1/𝑝,0

 in terms of functions instead of operators. 

When 1 ≤ 𝑝 < ∞, it holds 

𝐾𝑝,0
1/𝑝,0

= {𝜑 ∈ 𝐿∞: 𝑃−𝜑 ∈ 𝐵𝑝
1/𝑝
} = 𝐿∞ ∩ (𝐻∞ + 𝐵𝑝

1/𝑝
). 

Moreover, when 𝑝 > 1, a function 𝜑 is invertible in 𝐾𝑝,0
1/𝑝,0

 if and only if is invertible in 

𝐻∞ + 𝐶. 
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Using the above stated results and the same arguments of Lemma (5.1.11), the following 

characterization can be obtained. 

Corollary (5.1.15)[245]: Let 𝜑 be an invertible function in 𝐿∞ and 1 ≤ 𝑝 < ∞. The 

following assertions are equivalent: 

i) 𝜑𝐻2 ∈ 𝐺𝑟𝑟𝑒𝑠,𝑝. 

ii) 𝜑 ∈ 𝐾𝑝,0
1/𝑝,0

 and 𝜑 is invertible in 𝐻∞ + 𝐶. 

iii) 𝜑𝐻2 = 𝜃𝐻2 for some 𝜃 ∈ 𝑄𝐶 ∩ 𝐾𝑝,0
1/𝑝,0

, |𝜃| = 1 a.e. 

In this case, 𝜑𝐻2 ∈ 𝐺𝑟
res 

𝑘 , where 𝑘 = −𝑖𝑛𝑑(𝜑) = −𝑖𝑛𝑑(𝜃). 

Corollary (5.1.16)[245]: Let 1 ≤ 𝑝 < ∞, and let 𝜑,𝜓 be functions in 𝐾𝑝,0
1/𝑝,0

 which are 

invertible in 𝐻∞ + 𝐶. The following are equivalent: 

i) ind (𝜑) = 𝑖𝑛𝑑(𝜓). 
ii) There is a geodesic in 𝐺𝑟res, 𝑝 joining 𝑃𝜑 and 𝑃𝜓. 

iii) There is unique geodesic of minimal length in 𝐺𝑟res, 𝑝 joining 𝑃𝜑 and 𝑃𝜓 given by 

𝛿(𝑡) = 𝑒𝑖𝑡𝑋𝑃𝜑𝑒
−𝑖𝑡𝑋,  𝑡 ∈ [0,1], 

where 𝑋 = 𝑋𝜑,𝜓 is a uniquely determined selfadjoint operator such that ∥ 𝑋 ∥< 𝜋/2, 

𝑒𝑖𝑋𝑃𝜑𝑒
−𝑖𝑋 = 𝑃𝜓, and it is co-diagonal with respect to both 𝑃𝜑 and 𝑃𝜓. 

Moreover, arguing as in the proof of Theorem (5.1.8) we also obtain 

Corollary (5.1.17)[245]: Let 1 ≤ 𝑝 < ∞, and let 𝜑,𝜓 be functions in 𝐾𝑝,0
1/𝑝,0

 which are 

invertible in 𝐻∞ + 𝐶, such that ind (𝜑) = ind (𝜓). Then if 𝜃 ∈ 𝐾𝑝,0
1/𝑝,0

 is such that 𝑒𝑖𝜃 =

𝜑𝜓‾, 

∥∥𝑀𝜃𝑃+ − 𝑃+𝑀𝜃∥∥𝑝 ≥ 2
1/𝑝
∥∥cos

−1 (|𝑇𝜑 −|)∥∥𝑝
= dist𝑝 (𝑃𝜑 , 𝑃𝜓). 

For instance, if 𝜑 and 𝜓 are 𝐶1 functions (with equal index) such an argument 𝜃 exists, 

which is continuous and piecewise smooth. 

Proof. Recall from Poposition (5.1.6) that 

𝑋𝜑,𝜓 = (
0 𝑖𝑍
−𝑖𝑍 0

) 

and thus (𝑍 ≥ 0) 

|𝑋𝜑,𝜓| = (
𝑍 0
0 𝑍

). 

Also 𝑍 = 𝑀𝜑cos
−1 (|𝑇𝜑𝜓‾|)𝑀𝜑‾ . Then 

∥∥𝑋𝜑,𝜓∥∥𝑝
= 21/𝑝 ∥ 𝑍 ∥𝑝= 2

1/𝑝
∥∥cos

−1 (|𝑇𝜑𝜓‾ |)∥∥𝑝
 

The orthogonal projections of the 𝐶∗-algebra ℬ𝑐𝑐 defined in (3) may be classified 

using their image in the Calkin algebra. In addition to the restricted Grassmannian, we shall 

need to consider the essential class 𝔼1 consisting of all the orthogonal projections which 

have the form (in terms of 𝜋(𝑃+)and 𝜋(𝑃−)) 

𝜋(𝑃) = (
𝑝 0
0 0

), 

where 𝑝 ≠ 0,1 is a projection in the Calkin algebra. It was shown that the class 𝔼1 is 

connected, and in contrast to the restricted Grassmannian, there are projections which cannot 

be joined by a geodesic in 𝔼1. 

Let 𝐸 be a closed subspace of 𝐿2 such that 𝑀𝜒1(𝐸) ⊂ 𝐸. If 0 ≠ 𝐸 ⊆ 𝐻
2, then 𝐸 = 𝜑𝐻2 for 

some inner function 𝜑. We prove below that these subspaces belong to either the restricted 

Grassmannian or the essential class 𝔼1. 
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Theorem (5.1.18)[245]: Let 𝜑 be an inner function. Then the following assertions hold: 

i) 𝜑 is a finite Blaschke product if and only if 𝑃𝜑 ∈ 𝐺𝑟res 

𝑘 , where 𝑘 is the number of zeros of 

𝜑. 

ii) 𝜑 is not a finite Blaschke product if and only if 𝑃𝜑 ∈ 𝔼1. 

Proof. i) The only inner functions which are invertible in 𝐻∞ + 𝐶 are the finite Blaschke 

products (see e.g. [272]). Therefore, the result follows from Lemma (5.1.11). The index of 

a Blaschke factor is equal to its number of zeros, and as we have already showed, it 

determines the connected component of 𝐺𝑟res  where 𝑃𝜑 lies. 

ii) Suppose that 𝜑 is not a finite Blaschke product. As we remarked in the preceding item, 

this means that 𝜑 is not invertible in 𝐻∞ + 𝐶. Therefore, 𝑃𝜑 ∉ 𝐺𝑟res  by Lemma (5.1.11). 

On the other hand, by the claim proved in the first paragraph of the same lemma, we know 

that 𝑃−𝑃𝜑|𝜑𝐻2
: 𝜑𝐻2 → 𝐻−

2 is compact, since 𝜑 ∈ 𝐻∞. Hence 𝑎∗ = 𝑃−𝑃𝜑|𝐻2
 is also compact, 

so that 𝑃𝜑 ∈ ℬ𝑐𝑐. Similarly, we also find that 𝑦 = 𝑃−𝑃𝜑|𝐻−2
 is compact. Now recall that a 

projection 

𝑃 = (
𝑥 𝑎
𝑎∗ 𝑦), 

belongs to 𝐺res  if and only if 𝑎, 𝑦 are compact operators and 𝑥 is Fredholm (see [248]). 

Applying this to 𝑃 = 𝑃𝜑 we obtain that 𝑥 = 𝑃+𝑃𝜑|𝐻2
 is not Fredholm. In order to prove that 

𝑃𝜑 ∈ 𝔼1, it only remains to verify that 𝑥 is not compact. To this end, it suffices to show that 

dim ker (𝑥 − 1) = ∞. But since 𝜑 ∈ 𝐻∞, we have ker (𝑥 − 1) = 𝐻2 ∩ 𝜑𝐻2 = 𝜑𝐻2, which 

has infinite dimension. The converse is an immediate consequence of Lemma (5.1.11) and 

the characterization of invertible inner functions in 𝐻∞ + 𝐶. 
We shall give examples of shift-invariant subspaces which can or cannot be joined by 

a (minimal) geodesic in the Grassmann manifold 𝐺𝑟. The simplest case is a consequence of 

the following result proved in [72] for Hardy spaces of the upper half-plane. It is an 

elementary but important step to understand Toeplitz kernels. We shall state it for the Hardy 

space of the circle. 

Lemma (5.1.19)[245]: Let 𝜑,𝜓 be two inner functions. Then ker (𝑇𝜑𝜓‾ ) ≠ {0} if and only 

if there exist an inner function 𝜃 and an outer function 𝑔 such that 𝜑𝜃𝑔 = 𝜓𝑔‾ on 𝕋. 

Example (5.1.20)[245]: Suppose that 𝜑 divides 𝜓. This means that there is an inner function 

𝜃 such that 𝜑𝜃 = 𝜓. Thus, the equation in Lemma (5.1.19) is satisfied with 𝑔 = 1, and 

consequently, ker (𝑇𝜑𝜓‾ ) ≠ {0}. Hence there is no geodesic in 𝐺𝑟 joining 𝜑𝐻2 and 𝜓𝐻2. 

Note that ker (𝑇𝜑‾ 𝜓) = {0}. In this case, it is not difficult to construct concrete examples 

using the following well-known description of divisors in 𝐻∞. Suppose that {𝑎𝑗} and {𝑎𝑗
′} 

are the zero sets of 𝜑 and 𝜓, respectively. If 𝜑 = 𝜆𝑏𝑠𝜇 and 𝜓 = 𝜆′𝑏′𝑠𝜇′ are the canonical 

factorizations, then 𝜑 divides 𝜓 if and only if {𝑎𝑗} ⊆ {𝑎𝑗
′} and 𝜇 ≤ 𝜇′. 

The canonical factorization factorization also turns out to be relevant to give an affirmative 

answer to the existence of a geodesic in many concrete cases. Let 𝜑 be an inner function. A 

point on 𝕋 belongs to the support of 𝜑 if it is a limit point of zeros of 𝜑 or if it belongs to 

the support of the singular measure associated with the singular factor of 𝜑. We write 

supp (𝜑) for the support of 𝜑. Sarason and Lee proved the following [267]. 

Theorem (5.1.21)[245]: Let 𝜑,𝜓 be inner functions. 

i) If supp (𝜑) ≠ supp (𝜓), then the spectrum of 𝑇𝜑𝜓‾  is the closed unit disk. 
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ii) If there is a point 𝑧0 ∈ supp (𝜓) ∖ supp (𝜑), then 𝑇𝜑𝜓‾ − 𝜆 has dense range for all 𝜆. 

From the above result and Theorem (5.1.5) we obtain this example. 

Example (5.1.22)[245]: Let 𝜑,𝜓 be inner functions. Suppose that there are two points 𝑧0 

and 𝑧1 such that 𝑧0 ∈ supp (𝜓) ∖ supp (𝜑) and 𝑧1 ∈ supp (𝜑) ∖ supp (𝜓). Then there is 

unique minimal geodesic in 𝐺𝑟 joining 𝑃𝜑 and 𝑃𝜓 of the form stated in Theorem (5.1.5). 

Now we consider the case of two inner functions with support 𝑧 = 1. As a direct 

consequence of the results on Toeplitz kernels obtained by Makarov, Mitkovski and 

Poltoratski [72], [96] (see also the survey [264] ), one can show examples of the two inner 

functions of the aforementioned type such that their corresponding subspaces can or cannot 

be joined by a geodesic in 𝐺𝑟. These remarkable results were proved for Toeplitz operators 

in Hardy spaces of the upper-half plane (and other classes of functions). For this reason, we 

shall change to the half-plane; however by the isometry exhibited below all can be translated 

to the disk. 

A function 𝐹 holomorphic on the upper half-plane ℂ+ = {𝑧: Im 𝑧 > 0} belongs to the Hardy 

space 𝐻+
2 = 𝐻2(ℂ+)if 

∥ 𝐹 ∥𝐻+2 : = (sup
𝑦>0

 ∫  
∞

−∞

  |𝐹(𝑥 + 𝑖𝑦)|2𝑑𝑥)

1/2

< ∞. 

As in Hardy spaces of the disk, one may consider 𝐻+
2 as a Hilbert subspace of 𝐿2(ℝ) since 

non tangencial limits exist a.e. No confusion will arise if we also denote by 𝑃+the orthogonal 

projection of 𝐿2(ℝ) onto 𝐻+
2. The Toeplitz operator with symbol 𝑈 ∈ 𝐿∞(ℝ) is defined by 

𝑇𝑈: 𝐻+
2 → 𝐻+

2,  𝑇𝑈(𝐹):= 𝑃+(𝑈𝐹). 

We write 𝐻+
∞ = 𝐻∞(ℂ+)for the bounded holomorphic functions on ℂ+. Notice that 𝑤 =

𝑧−𝑖

𝑧+𝑖
 

is a conformal map from ℂ+onto 𝔻. Set 𝑓(𝑤) = 𝐹(𝑧). Then, it follows that 𝐹(𝑧) ∈ 𝐻+
∞ if 

and only if 𝑓(𝑤) ∈ 𝐻∞. However, 𝐻+
2 is not obtained from 𝐻2 by conformal mapping. It 

can be shown that 𝑓(𝑤) ∈ 𝐻2 if and only if 
𝜋−1/2

(𝑧+𝑖)
𝐹(𝑧) ∈ 𝐻+

2. Taking boundary values, one 

sees that 

𝑊:𝐻2 → 𝐻+
2 ,  𝑊𝑓(𝑥) =

𝜋−1/2

(𝑥 + 𝑖)
𝑓 (
𝑥 − 𝑖

𝑥 + 𝑖
) ,  𝑥 ∈ ℝ. 

is an isometry from 𝐻2 onto 𝐻+
2. Set 𝛾(𝑥) =

𝑥−𝑖

𝑥+𝑖
 and fix 𝜃 ∈ 𝐿∞. Then, Toeplitz operators 

in the Hardy spaces of the disk and the upper half-plane are related by 

𝑊𝑇𝜃 = 𝑇𝜃∘𝛾𝑊. 

The canonical factorization of functions in 𝐻2 can be also derived in 𝐻+
2 using the isometry 

𝑊. 

By an inner function Θ in ℂ+we mean that Θ ∈ 𝐻+
∞ and |Θ| = 1 on ℝ. An inner function 

Θ(𝑧) in ℂ+is a meromorphic inner function if it has a meromorphic extension to C. In this 

case, the meromorphic extension to the lower half-plane is given by Θ(𝑧) =
1

Θ(𝑧‾)
. Each 

meromorphic inner function Θ admits a canonical factorization Θ = 𝐵Λ𝑆
𝑎, where 𝑎 ≥ 0 and 

Λ is a discrete set in ℂ+without accumulation points on ℝ such that the following Blaschke 

condition holds 

∑ 

𝜆∈Λ

Im 𝜆

1 + |𝜆|2
< ∞.  

The function 𝐵Λ is the corresponding Blaschke product in ℂ+, i.e. 
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𝐵Λ(𝑧) =∏  

𝜆∈Λ

𝜖𝜆
𝑧 − 𝜆

𝑧 − 𝜆‾
;  |𝜖𝜆| = 1. 

The other function in the factorization is given by the singular inner function 𝑆𝑎(𝑧) = 𝑒𝑖𝑎𝑧. 
Meromorphic inner functions correspond to inner functions in 𝐻2 such that 𝑧 = 1 is the only 

possible accumulation point of their zeros and also the only possible singular point mass. 

Example (5.1.23)[245]: The point spectrum of a meromorphic inner function Θ = 𝐵Λ𝑆
𝑎 is 

the set 𝜎(Θ) = {Θ = 1} or {Θ = 1} ∪ {∞}. The point ∞ belongs to the spectrum if 

∑𝜆∈Λ  Im 𝜆 < ∞ and 𝑆𝑎 ≡ 1 (see [72] for other equivalent conditions). Two meromorphic 

inner functions are said to be twins if they have the same point spectrum, possibly including 

infinity. The twin inner function theorem asserts that if Θ, 𝐽 are twins, then ker (𝑇Θ‾ 𝐽) =

{0}[72]. Thus, there is always a geodesic joining the corresponding subspaces defined by 

twin functions. 

Example (5.1.24)[245]: Recall that a sequence of real numbers is separated if |𝜆𝑛 − 𝜆𝑚| ≥
𝛿 > 0 (𝑛 ≠ 𝑚). A separated sequence (𝜆𝑛)𝑛∈ℤ is a called a Pólya sequence if every zero-

type entire function bounded on (𝜆𝑛)𝑛∈ℤ is constant (see also [96] for a new 

characterization). Among several conditions, it was proved in [96] that (𝜆𝑛)𝑛∈ℤ is a Pólya 

sequence if and only if there exists a meromorphic inner function Θ with {Θ = 1} = (𝜆𝑛)𝑛∈ℤ 

such that ker (𝑇Θ‾ 𝑆
2𝑐) ≠ {0} for some 𝑐 > 0. Hence there is no geodesic joining the 

corresponding subspaces defined by Θ and 𝑆2𝑐. 
Section (5.2): Multipliers between Model Spaces 

For an inner function Θ, let 𝒦Θ: = 𝐻
2 ∩ (Θ𝐻2)⊥ denote the model space of the open 

unit disk 𝔻 corresponding to Θ. We explore, for a pair of inner functions 𝑢 and 𝑣, the 

multipliers 

ℳ(𝑢, 𝑣):= {𝜑 ∈ Hol (𝔻):𝜑𝒦𝑢 ⊆ 𝒦𝑣} 
between 𝒦𝑢 and 𝒦𝑣. 

One motivation for comes from the work of Crofoot [285] who considered a more restricted 

version of ℳ(𝑢, 𝑣) namely {𝜑 ∈ Hol (𝔻) : 𝜑𝒦𝑢 = 𝒦𝑣}, in other words, the multipliers from 

𝒦𝑢 onto 𝒦𝑣 (see also [280]). As it turns out, these onto multipliers are unique up to 

multiplicative constants and are outer functions. Another motivation comes from examining 

pre-orders on partial isometries [288], [297]. 

The Crofoot discussion becomes quite different if we relax the (onto) multiplier condition 

𝜑𝒦𝑢 = 𝒦𝑣 to just 𝜑𝒦𝑢 ⊆ 𝒦𝑣. For one, as we shall see below, these (into but not necessarily 

onto) multipliers need not be outer functions. Secondly, unlike the onto multipliers, the into 

multipliers need not be unique. In fact, we give an example of when ℳ(𝑢, 𝑣) is infinite 

dimensional and contains unbounded functions. 

After a few initial observations about ℳ(𝑢, 𝑣) we will reformulate the description of 

ℳ(𝑢, 𝑣) in terms of Carleson measures of model spaces and kernels of Toeplitz operators. 

Along the way, we will describe ℳ(𝑢, 𝑣) when 𝑣 is an inner multiple of 𝑢. We will then 

relate ℳ(𝑢, 𝑣) to the boundary spectra of 𝑢 and 𝑣 along with their sub-level sets. 

We also consider multipliers for the model spaces of the upper half plane. In this setting we 

discuss a particular entire function introduced by Lyubarskii and Seip which allows us to 

deduce the existence of unbounded onto multipliers connecting to a question raised by 

Crofoot. As discussed earlier, the onto multipliers are unique (up to multiplicative constants) 

and thus the multipliers algebra in this case is one dimensional. In the spirit of the Lyubarskii 

and Seip construction above, we produce 𝑢 and 𝑣 such that ℳ(𝑢, 𝑣) = ℂ𝜑, yet 𝜑 is not an 

onto multiplier. 
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We assume we are familiar with the Hardy space 𝐻2[286], [290] and model spaces 

𝒦𝑢[289], [98]. 𝔻 is the open unit disk, 𝕋 the unit circle, 𝑚 normalized Lebesgue measure 

on 𝕋, and 𝐿2 the standard Lebesgue space 𝐿2: = 𝐿2(𝕋,𝑚) with norm ∥ 𝑓 ∥ and inner product 

⟨⋅,⋅⟩. The bounded analytic functions on 𝔻 are denoted by 𝐻∞. Recall that 𝐻2 is a 

reproducing kernel Hilbert space with kernel 𝑘𝜆(𝑧) = (1 − 𝜆‾𝑧)
−1. 

We begin with some useful observations. First notice that ℳ(𝑢, 𝑣) ⊆ 𝐻2. Indeed, if 

𝑘𝜆
𝑢(𝑧) =

1 − 𝑢(𝜆)̅̅ ̅̅ ̅̅ 𝑢(𝑧)

1 − 𝜆‾𝑧
,  𝜆, 𝑧 ∈ 𝔻, 

denotes the reproducing kernel for 𝒦𝑢, then 𝑘0
𝑢 = 1 − 𝑢(0)̅̅ ̅̅ ̅̅ 𝑢 ∈ 𝒦𝑢 is an invertible element 

of 𝐻∞. Thus if 𝜑 ∈ ℳ(𝑢, 𝑣) then 𝜑𝑘0
𝑢 ∈ 𝒦𝑣 ⊆ 𝐻

2 from which the result follows. 

Furthermore, when 𝜑 ∈ ℳ(𝑢, 𝑣), the closed graph theorem says that 𝑀𝜑𝑓 = 𝜑𝑓 is a 

bounded operator from 𝒦𝑢 to 𝒦𝑣 and standard arguments show that 𝑀𝜑
∗ 𝑘𝜆

𝑣 = 𝜑(𝜆)̅̅ ̅̅ ̅̅ 𝑘𝜆
𝑢. Since 

∥∥𝑘𝜆
𝑢∥∥
2
=
1 − |𝑢(𝜆)|2

1 − |𝜆|2
, 

it follows that 

|𝜑(𝜆)|2(1 − |𝑢(𝜆)|2) ≲ (1 − |𝑣(𝜆)|2),  𝜆 ∈ 𝔻.              (4) 
Though this inequality will be used later on, it does not prove that 𝜑 is always bounded. The 

following Proposition summarizes some basic facts which follow, or can be gleaned, from 

Crofoot's [285]. 

Proposition (5.2.1)[277]: Let 𝑢 and 𝑣 be inner functions. 

(i) ℳ(𝑢, 𝑢) = ℂ. 

(ii) If 𝜑𝒦𝑢 = 𝒦𝑣 then 𝜑 is outer. 

(iii) ℂ ⊆ ℳ(𝑢, 𝑣) if and only if 𝑢 divides 𝑣 

(iv) Suppose 𝑢 divides 𝑣 and 𝑢 is not a constant multiple of 𝑣. Then ℳ(𝑣, 𝑢) = {0}. 
(v) If 𝜑 ∈ ℳ(𝑢, 𝑣) and 𝐹 is the outer factor of 𝜑, then 𝐹 ∈ ℳ(𝑢, 𝑣). 

(vi) If 𝑎 ∈ 𝔻 and 𝑢𝑎: =
𝑢−𝑎

1−𝑎‾𝑢
, then 

1

1−𝑎‾𝑢
𝒦𝑢 = 𝒦𝑢𝑎. 

The map 𝑓 ↦ (1 − 𝑎‾𝑢)−1𝑓 from 𝒦𝑢 onto 𝒦𝑢𝑎 is a constant multiple of the unitary Crofoot 

transform. Using operator theory techniques, Crofoot [285] showed that when the space of 

onto multipliers is non-empty, then 𝜎(𝑢) = 𝜎(𝑣), where 

𝜎(𝑢):= {𝜉 ∈ 𝕋: lim
𝑧→𝜉

 |𝑢(𝑧)| = 0} 

is the boundary spectrum of an inner function. The following result is the ℳ(𝑢, 𝑣) analogue 

of this where our proof uses function theory. 

Proposition (5.2.2)[277]: If ℳ(𝑢, 𝑣) ≠ {0} then 𝜎(𝑢) ⊆ 𝜎(𝑣). 
Proof. Without loss of generality, we can use Proposition (5.2.1) (vi) and assume that 

𝑢(0) = 0 (the Crofoot transform preserves the regular points in 𝕋). Then 1 ∈ 𝒦𝑢 and so 

𝜑𝒦𝑢 ⊆ 𝒦𝑣 ⟹𝜑 ∈ 𝒦𝑣. Pick 𝜁 ∈ 𝕋 ∖ 𝜎(𝑣) (a regular point for 𝑣). Then [289] every 

function in 𝒦𝑣 has an analytic continuation to a two-dimensional open neighborhood Ω of 

𝜁. In particular, 𝜑 ∈ 𝒦𝑣 enjoys this property. For every 𝑓 ∈ 𝒦𝑢, 𝑔: = 𝜑𝑓 ∈ 𝒦𝑣 has an 

analytic continuation to Ω and so 𝑓 = 𝑔/𝜑 is either analytic on Ω or has a pole of order at 

least 1 at 𝜁. But this second case is not possible since 𝑓 ∈ 𝐻2 must be square integrable on 

𝕋. Hence 𝑓 extends analytically to Ω and thus 𝜁 ∈ 𝕋 ∖ 𝜎(𝑢). 
We reformulate the description of ℳ(𝑢, 𝑣) in terms of kernels of Toeplitz operators 

and Carleson measures for model spaces. 
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Theorem (5.2.3)[277]: For inner 𝑢 and 𝑣 and 𝜑 ∈ 𝐻2, the following are equivalent: 

(i) 𝜑 ∈ ℳ(𝑢, 𝑣); 
(ii) 𝜑𝑆∗𝑢 ∈ 𝒦𝑣 and |𝜑|2𝑑𝑚 is a Carleson measure for 𝒦𝑢, i.e., 

∫ 
𝕋

|𝑓|2|𝜑|2𝑑𝑚 ≲∥ 𝑓 ∥2,  𝑓 ∈ 𝒦𝑢; 

(iii) 𝜑 ∈ Ker 𝑇𝑧𝑣̅̅ ̅𝑢 and |𝜑|2𝑑𝑚 is a Carleson measure for 𝒦𝑢, where 𝑇𝑧𝑣̅̅ ̅𝑢𝑓 = 𝑃+(𝑧𝑣̅̅ ̅𝑢𝑓) is 

the standard Toeplitz operator on 𝐻2. 

Furthermore, the following are equivalent: 

(iv) 𝜑 ∈ ℳ(𝑢, 𝑣) ∩ 𝐻∞; 

(v) 𝜑𝑆∗𝑢 ∈ 𝒦𝑣 ∩ 𝐻
∞. 

(vi) 𝜑 ∈ Ker 𝑇𝑧𝑣̅̅ ̅𝑢 ∩ 𝐻
∞. 

Proof. Recall that Ker 𝑇𝑢‾ = 𝒦𝑢 [289] and that 𝑇𝑓𝑔 = 𝑇𝑓𝑇𝑔 if either 𝑓‾ ∈ 𝐻∞ or 𝑔 ∈

𝐻∞[289]. Also observe that 𝑇𝑧‾ = 𝑆
∗ and that 𝑇1−𝑢(0)𝑢‾  is invertible. Using these facts, along 

with the identity (on 𝕋), 

𝜑𝑆∗𝑢 = 𝜑𝑧‾(𝑢 − 𝑢(0)) = 𝜑𝑧‾𝑢(1 − 𝑢(0)𝑢‾),                        (5) 
it follows that 𝜑𝑆∗𝑢 ∈ 𝒦𝑣 ⟺𝜑 ∈ Ker 𝑇𝑧𝑣̅̅ ̅𝑢. This yields (ii) ⟺ (iii) and (𝑣𝑖) ⟹ (𝑣). The 

implication (𝑣) ⟹ (𝑣𝑖) needs an additional argument. Indeed, suppose that 𝜑𝑆∗𝑢 ∈ 𝒦𝑣 ∩
𝐻∞. Then the above equivalences yield 𝜑 ∈ Ker 𝑇𝑧𝑣̅̅ ̅𝑢, and we just have to check that 𝜑 is 

bounded. We already know that 𝜑 ∈ 𝐻2. Thus in order to verify 𝜑 ∈ 𝐻∞, it suffices to prove 

that 𝜑|T ∈ 𝐿
∞ (Smirnov's theorem [286]). By assumption, 𝜑𝑆∗𝑢 = 𝑔 ∈ 𝐻∞ and (5) shows 

that 𝜑|T ∈ 𝐿
∞. 

The implications (𝑖) ⟹ (𝑖𝑖) and (𝑖𝑣) ⟹ (𝑣) are automatic. The implication (𝑣) ⟹ (𝑖𝑣) 
becomes automatic once we have shown (𝑖𝑖) ⟹ (i). So it remains to prove (𝑖𝑖) ⟹ (𝑖). 
Observe that 𝑓 ∈ 𝒦𝑣 if and only if 𝑣𝑧𝑓̅̅ ̅ ∈ 𝒦𝑣 (see [289]). We know that 𝜑𝑆∗𝑢 ∈ 𝐾𝑣 which 

means, via (5) that 𝑣𝑢𝜑̅̅ ̅̅ ∈ 𝐻2. Since |𝜑|2𝑑𝑚 is a Carleson measure for 𝒦𝑢 (i.e., 

𝜑 ∈ ℳ(𝒦𝑢, 𝐻
2)) it suffices to show that 𝜑𝑔 ∈ 𝒦𝑣 for all 𝑔 ∈ 𝒦𝑢 ∩ 𝐻

∞ (which is dense in 

𝒦𝑢 ). Indeed, 

𝑣𝑧𝜑𝑔̅̅ ̅̅ ̅̅ = 𝑣𝑢𝜑̅̅ ̅̅ ⋅ 𝑢𝑧𝑔̅̅ ̅ ∈ 𝐻2 ⋅ 𝐻∞ ⊆ 𝐻2. 
Corollary (5.2.4)[277]: Ker 𝑇𝑧𝑣̅̅ ̅𝑢 ∩ 𝐻

∞ = ℳ(𝑢, 𝑣) ∩ 𝐻∞ ⊆ ℳ(𝑢, 𝑣) ⊆ Ker 𝑇𝑧𝑣̅̅ ̅𝑢. 
We will see in Example (5.2.7) below that, in general, ℳ(𝑢, 𝑣) ⊊ Ker 𝑇𝑧𝑣̅̅ ̅𝑢. 

Corollary (5.2.5)[277]: Suppose 𝑢 and 𝑣 are inner and 𝑣 = 𝑢𝐼. Then the following are 

equivalent: 

(i) 𝜑 ∈ ℳ(𝑢, 𝑣); 
(ii) 𝜑 ∈ 𝒦𝑧𝐼 and |𝜑|2𝑑𝑚 is a Carleson measure for 𝒦𝑢. 

Furthermore, the following are equivalent: 

(iii) 𝜑 ∈ ℳ(𝑢, 𝑣) ∩ 𝐻∞; 

(iv) 𝜑 ∈ 𝒦𝑧𝐼 ∩ 𝐻
∞. 

If 𝐼 is a finite Blaschke product then ℳ(𝑢, 𝑣) ∩ 𝐻∞ =ℳ(𝑢, 𝑣) = 𝒦𝑧𝐼. 
Our next result uses analytic continuation and the boundary spectrum to construct a class of 

inner functions 𝑢 and 𝑣, with 𝑣 = 𝑢𝐼, such that the Carleson condition on |𝜑|2𝑑𝑚 is 

automatic as soon as 𝜑 ∈ 𝒦𝑧𝐼. 
Theorem (5.2.6)[277]: Let 𝑢 and 𝑣 be inner functions with and 𝑣 = 𝑢𝐼 for some inner 

function 𝐼. Suppose further that 𝜎(𝑢) ∩ 𝜎(𝐼) = ∅. Then ℳ(𝑢, 𝑣) = 𝒦𝑧𝐼. Furthermore, if 𝐼 
is not a finite Blaschke product then ℳ(𝑢, 𝑣) contains unbounded functions. 
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Proof. By Corollary (5.2.5), we just need to check that |𝜑|2𝑑𝑚 is a Carleson measure for 

𝒦𝑢 for every 𝜑 ∈ 𝒦𝑧𝐼. Let 𝑉 be a two dimensional neighborhood of 𝜎(𝐼) that is far from 

𝜎(𝑢). By [289] 𝜑 extends analytically outside 𝑉 (i.e., �̅� ∖ 𝑉 ) and thus can be assumed to 

be bounded outside 𝑉. Similarly, every 𝑓 ∈ 𝒦𝑢 extends analytically to 𝑉 and can be 

assumed to be bounded there. From here it follows that 𝜑𝑓 ∈ 𝐻2. By the Closed Graph 

Theorem, 𝜑 ∈ ℳ(𝒦𝑢, 𝐻
2), equivalently, |𝜑|2𝑑𝑚 is a Carleson measure for 𝒦𝑢. 

For the last part, note that if 𝐼 is not a finite Blaschke product then 𝒦𝑧𝐼 is infinite dimensional 

[289] and thus, via a well-known theorem of Grothendieck [295], contains unbounded 

functions. 

We now construct an example of when Ker 𝑇𝑧𝐼 = Ker 𝑇𝑧𝑣̅̅ ̅𝑢 contains functions which do not 

define Carleson measures for 𝒦𝑢 and thus ℳ(𝑢, 𝑣) ⊊ Ker 𝑇𝑧𝑣̅̅ ̅𝑢. Hence the Carleson 

condition is important in Theorem (5.2.3). 

Example (5.2.7)[277]: Set 𝜆𝑛 = 1 − 2
−𝑛, 𝑛 ⩾ 1, and note this is the zero sequence of an 

interpolating Blaschke product 𝐼. With 𝑤𝑛 = 𝑛
−1, notice that ∑𝑛⩾1  𝑤𝑛

2 < ∞. By an 

interpolation theorem from [98], there is a 𝜑 ∈ 𝒦𝐼 ⊆ 𝒦𝑧𝐼 such that 

𝜑(𝜆𝑛) =
𝑤𝑛

(1 − |𝜆𝑛|
2)1/2

≍
2𝑛/2

𝑛
→ ∞. 

Now take 𝑢(𝑧) = exp ((𝑧 + 1)/(𝑧 − 1)) and observe that since 𝜆𝑛 → 1 on (0,1) we have 

𝑢(𝜆𝑛) → 0. If 𝑣 = 𝑢𝐼 then 𝜑 ∈ 𝒦𝐼 ⊆ 𝒦𝑧𝐼 = Ker 𝑇𝑧𝑣̅̅ ̅𝑢. However, 𝜑 ∉ ℳ(𝑢, 𝑣) since, if it 

were, (4) would imply that 

|𝜑(𝜆𝑛)|
2(1 − |𝑢(𝜆𝑛)|

2) ≲ 1 − |𝑣(𝜆𝑛)|
2 ≲ 1. 

The above discussion now yields a contradiction. Thus we have ℳ(𝑢, 𝑣) ⊊ Ker 𝑇𝑧𝑣̅̅ ̅𝑢 = 𝒦𝑧𝐼 . 
We now consider finite dimensional model spaces. For an inner 𝑢, the degree of 𝑢 is 

𝑛 if 𝑢 is a finite Blaschke product with 𝑛 zeros and equal to ∞ otherwise. When 𝑢 is a finite 

Blaschke product with 𝑛 zeros {𝜆1, ⋯ , 𝜆𝑛}, we have 

𝒦𝑢 = {
𝑝(𝑧)

∏  𝑛
𝑗=1   (1 − 𝜆�̅�𝑧)

: 𝑝 ∈ 𝒫𝑛−1}.                                   (6) 

where 𝒫𝑛−1 are the polynomials of degree at most 𝑛 − 1. 

Theorem (5.2.8)[277]: If 𝑢 is a finite Blaschke product with zeros {𝑎1, … , 𝑎𝑚} and 𝑣 is a 

finite Blaschke product with zeros {𝑏1, … , 𝑏𝑛} where 𝑚 ⩽ 𝑛, and the zeros are repeated 

according to their multiplicity, then 

ℳ(𝑢, 𝑣) = ℳ(𝑢, 𝑣) ∩ 𝐻∞ = {𝑞(𝑧)
∏  𝑚
𝑖=1   (1 − 𝑎�̅�𝑧)

∏  𝑛
𝑗=1   (1 − 𝑏�̅�𝑧)

: 𝑞 ∈ 𝒫𝑛−𝑚}. 

Proof. The ⊇ containment follows essentially from (6). For the ⊆ containment, notice from 

Theorem (5.2.3) that 𝜑 ∈ ℳ(𝑢, 𝑣) ⟹ 𝜑 ∈ Ker 𝑇𝑧𝑣̅̅ ̅𝑢 which is equivalent to 

𝑢𝜑 ∈ Ker𝑇𝑧𝑣̅̅ ̅ = 𝒦𝑧𝑣 = {
𝑝(𝑧)

∏  𝑛
𝑗=1   (1 − 𝑏�̅�𝑧)

: 𝑝 ∈ 𝒫𝑛} ⊆ 𝐻
∞. 

The result now follows. 

Theorem (5.2.9)[277]: If 𝑢 is a finite Blaschke product and 𝑣 is any inner function with 

infinite degree, then ℳ(𝑢, 𝑣) ∩ 𝐻∞ ≠ {0}. 

Proof. By [290] there is an 𝑎 ∈ 𝔻 (in fact "most"  ) such that the Frostman shift 𝑣𝑎 =
𝑣−𝑎

1−𝑎‾𝑣
 

of 𝑣 is a Blaschke product of infinite degree. Factor 𝑣𝑎 = 𝐼𝐽, where 𝐼 and 𝐽 are Blaschke 

products with the degree of 𝐼 equal to the degree of 𝑢, and use [98] to obtain 𝒦𝐼 ⊆ 𝒦𝑣𝑎 . 
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From Theorem (5.2.8) there is a rational 𝜑 ∈ 𝐻∞ such that 𝜑𝒦𝑢 ⊆ 𝒦𝐼 ⊆ 𝒦𝑣𝑎 . Proposition 

(5.2.1) 

(vi) now yields (1 − 𝑎‾𝑣)𝜑𝒦𝑢 ⊆ 𝒦𝑣 

We discuss some results using sub-level sets of inner functions. We start with a 

"maximum principle" result of Cohn [284]. 

Theorem (5.2.10)[277]: Suppose Θ is inner and 𝑓 ∈ 𝒦Θ is bounded on {|Θ| < 𝜖} for some 

𝜖 ∈ (0,1). Then 𝑓 ∈ 𝐻∞. 

This result can be used to show that under certain circumstances, all multipliers must be 

bounded. 

Corollary (5.2.11)[277]: Let 𝑢 and 𝑣 be inner. If, for some 𝜖1, 𝜖2 ∈ (0,1), {|𝑣| < 𝜖2} ⊆
{|𝑢| < 𝜖1}, then ℳ(𝑢, 𝑣) = Ker 𝑇𝑧𝑣̅̅ ̅𝑢 ∩ 𝐻

∞. 
Proof. Let 𝜑 ∈ ℳ(𝑢, 𝑣). The estimate in (4) says that when 𝜆 ∈ {|𝑣| < 𝜖2} ⊆ {|𝑢| < 𝜖1} 
we have |𝜑(𝜆)|2 ≲ (1 − 𝜖1

2)−1 and thus 𝜑 is bounded on {|𝑣| < 𝜖2}. Since 𝑘0
𝑢 = 1 −

𝑢(0)̅̅ ̅̅ ̅̅ 𝑢 ∈ 𝒦𝑢 and bounded on 𝔻, we see that 𝑘0
𝑢𝜑 ∈ 𝒦𝑣 and bounded on {|𝑣| < 𝜖2}. Apply 

Theorem (5.2.10) to obtain 𝑘0
𝑢𝜑 ∈ 𝐻∞. Since 𝑘0

𝑢 is invertible in 𝐻∞, we get 𝜑 ∈ 𝐻∞. Now 

apply Corollary (5.2.4). 

Example (5.2.12)[277]: Let 𝑢 be any singular inner function and 𝑣 = 𝑢𝛼 for some 𝛼 > 1 

(or perhaps 𝑢 a Blaschke product, or any inner function, and ∈ ℕ ). Notice that 𝑢 divides 𝑣 

and so ℳ(𝑢, 𝑣) ≠ {0} (Corollary (5.2.5)). Furthermore if 𝜖2 ∈ (0,1) and 𝑧 ∈ {|𝑣| < 𝜖2} 

then |𝑢(𝑧)|1/𝛼 ⩽ 𝜖2
1/𝛼

. Setting 𝜖1 = 𝜖2
1/𝛼

 we see that {|𝑣| < 𝜖2} ⊆ {|𝑢| < 𝜖1}. Corollary 

(5.2.11) yields ℳ(𝑢, 𝑣) ⊆ 𝐻∞. Combine this with Corollary (5.2.5) to see that ℳ(𝑢, 𝑣) =
𝒦𝑧𝑢𝛼−1 ∩ 𝐻

∞. 

Carleson measure results of Cohn [282], [283] allow us, in the special case where 𝑢 

satisfies the connected level set condition (i.e., {|𝑢| < 𝜀} is connected for some 𝜀 > 0), to 

replace the condition that |𝜑|2𝑑𝑚 is a Carleson measure in Theorem (5.2.3) and Corollary 

(5.2.5) with 

sup
𝜆∈𝔻

 (1 − |𝑢(𝜆)|2)∫  
𝕋

1 − |𝜆|2

|𝜉 − 𝜆|2
|𝜑(𝜉)|2𝑑𝑚(𝜉) < ∞. 

We will now turn to the upper half plane which in certain situations is a more 

appropriate setting. If ℂ+denotes the upper-half plane, we set ℋ2 to be the corresponding 

Hardy space. There is a natural unitary operator 𝒰 from 𝐻2 onto ℋ2 given by 

(𝒰𝑓)(𝑧):=
1

√𝜋(𝑧 + 𝑖)
𝑓(𝜔(𝑧)), 

where 𝜔(𝑧):=
𝑧−𝑖

𝑧+𝑖
 maps ℂ+onto 𝔻 and ℝ ∪ {−∞,∞} onto 𝕋. As with 𝐻2, one can define, 

for Ψ ∈ 𝐿∞(ℝ), the Toeplitz operator 𝑇Ψ on ℋ2. 

For an inner function 𝑈 on ℂ+, we define the model space 

𝒦𝑈: = ℋ
2 ∩ (𝑈ℋ2)⊥. 

The corresponding reproducing kernel function for 𝒦𝑈 is 

𝐾𝜆
𝑈(𝑧):=

𝑖

2𝜋

1 − 𝑈(𝜆)̅̅ ̅̅ ̅̅ 𝑈(𝑧)

𝑧 − 𝜆‾
,  𝜆, 𝑧 ∈ ℂ+. 

Note that if 𝑢 is an inner function on 𝔻 and 𝑈 = 𝑢 ∘ 𝜔, then 𝑈 is an inner function on ℂ+(and 

vice versa). Furthermore, 𝒰𝒦𝑢 = 𝒦𝑈. 

We need the elementary Blaschke factor on ℂ+with zero at  : 

𝑏𝑖
+(𝑧):=

𝑧 − 𝑖

𝑧 + 𝑖
, 



211 

and 

𝑘𝑖(𝑧) =
1

√𝜋

1

𝑧 + 𝑖
, 

the corresponding kernel at 𝑖. Observe that 𝒰𝑓 = 𝑘𝑖 × (𝑓 ∘ 𝜔), 𝑓 ∈ 𝐻
2. 

We begin with some elementary but useful facts. The proofs are straightforward. 

Lemma (5.2.13)[277]: Let 𝜓 ∈ 𝐿∞(𝕋) and Ψ = 𝜓 ∘ 𝜔. Then 

𝑓 ∈ Ker 𝑇𝜓 ⟺ 𝐹:= 𝒰𝑓 ∈ Ker 𝑇Ψ. 

Lemma (5.2.14)[277]: 𝜑 ∈ ℳ(𝑢, 𝑣) if and only if Φ = 𝜑 ∘ 𝜔 ∈ ℳ(𝑈, 𝑉). 
Corollary (5.2.15)[277]: With the notation from above, the following are equivalent for Φ 

analytic on ℂ+: 

(i) Φ ∈ ℳ(𝑈, 𝑉); 

(ii) Φ𝑘𝑖 ∈ Ker𝑇𝑏𝑖
+𝑉𝑈̅̅ ̅̅ ̅̅ ̅̅  and |Φ|2𝑑𝑥 is a Carleson measure for 𝒦𝑈. 

We now discuss a situation when the Carleson condition becomes more tractable. We begin 

with a result from Baranov [279]. 

Theorem (5.2.16)[277]: Let 𝑈 be an inner function in ℂ+such that |𝑈′(𝑥)| ≍ 1, 𝑥 ∈ ℝ. For 

a positive Borel measure 𝜇 on ℝ, the following are equivalent: 

(i) 𝜇 is a Carleson measure for 𝒦𝑈. 

(ii) We have 𝑀:= sup𝑥∈ℝ  𝜇([𝑥, 𝑥 + 1]) < ∞. 

Theorem (5.2.17)[277]: Let 𝑈 and 𝑉 be inner functions with |𝑈′(𝑥)| ≍ 1, 𝑥 ∈ ℝ. 

Then 

ℳ(𝑈, 𝑉) = {Φ ∈ (𝑧 + 𝑖)Ker 𝑇
𝑏𝑖
+𝑉̅̅ ̅̅ ̅̅ 𝑈

:𝑀 ≔ sup
𝑥∈ℝ

 ∫  
𝑥+1

𝑥

  |Φ(𝑡)|2𝑑𝑡 < ∞}. 

Proof. Observe that Φ𝑘𝑖 ∈ Ker 𝑇𝑏𝑖+𝑉̅̅ ̅̅ ̅̅ 𝑈
⟺Φ ∈ (𝑧 + 𝑖)Ker 𝑇

 

𝑏𝑖
+𝑉𝑈

 and apply Corollary 

(5.2.15) and Theorem (5.2.16). 

Lemma (5.2.18)[277]: We have 

𝐹 ∈ Ker𝑇𝑉‾𝑈 ⟺ 𝐹 ∈ ((𝑧 + 𝑖)Ker 𝑇𝑏𝑖+𝑉̅̅ ̅̅ ̅̅ 𝑈) ∩ℋ
2. 

Proof. The function 𝐹 belongs to Ker 𝑇𝑈𝑉‾  if and only if there is a 𝜓 ∈ ℋ2 such that 𝑉‾𝑈𝐹 =
𝜓‾ . A calculation shows that 

𝑉(𝑥)𝑏𝑖
+(𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑈(𝑥)𝐹(𝑥)𝑘𝑖(𝑥) = (𝜓𝑘𝑖)(𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ,  𝑥 ∈ ℝ. 

Hence 𝐹𝑘𝑖 ∈ Ker 𝑇𝑏𝑖+𝑉̅̅ ̅̅ ̅̅ 𝑈
 and so 𝐹 ∈ (𝑧 + 𝑖)Ker 𝑇𝑏𝑖

+𝑉̅̅ ̅̅ ̅𝑈. 

The converse argument is in the same spirit. Indeed, when 

𝐹 ∈ (𝑧 + 𝑖)Ker 𝑇
𝑏𝑖
+𝑉̅̅ ̅̅ ̅̅ 𝑈

∽ ℋ2, 

we get 𝐹(𝑥)(𝑉(𝑥)̅̅ ̅̅ ̅̅ 𝑈(𝑥)) = 𝜓(𝑥)̅̅ ̅̅ ̅̅ ̅(𝑥 − 𝑖) = 𝜓(𝑥)(𝑥 + 𝑖)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. Since 𝐹 ∈ ℋ2, and 𝑈𝑉‾  is 

bounded, we deduce that 𝜓(𝑧 + 𝑖) ∈ ℋ2, and so 𝐹 ∈ Ker 𝑇𝑉‾𝑈. 

Corollary (5.2.19)[277]: Let 𝑈 and 𝑉 be inner functions with |𝑈′(𝑥)| ≍ 1, 𝑥 ∈ ℝ. Then 

ℳ(𝑈, 𝑉) ∩ℋ2 = Ker 𝑇𝑈𝑉‾ . 
We notice that an example constructed in [293] answers a question of Crofoot [285]. 

We will state the result for the model spaces 𝒦Θ of the upper-half plane and then use Lemma 

(5.2.14). 

The construction is based on the relationship between the model subspaces generated by 

meromorphic inner functions and the de Branges spaces of entire functions [55]. 

First we define the Paley-Wiener class 
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𝑃𝑊 = {𝐹 ∈ Hol (ℂ):
𝐹

𝑒−𝑖𝜋𝑧
,
𝐹∗

𝑒−𝑖𝜋𝑧
∈ ℋ2} ,  𝐹∗(𝑧):= 𝐹(𝑧‾)̅̅ ̅̅ ̅̅ . 

Let 𝐸 be an entire function which belongs to the Hermite-Biehler class 𝐻𝐵, i.e., 

|𝐸(𝑧)| ⩾ |𝐸(𝑧‾)|,  ℑ𝑧 > 0 

and 𝐸 does not have any zeros in ℂ+
−(the closed upper half plane). With 𝐸 ∈ 𝐻𝐵, define the 

de Branges space 

ℋ(𝐸):= {𝐹 ∈ Hol(ℂ) :
𝐹

𝐸
,
𝐹∗

𝐸
∈ ℋ2}.                            (7) 

The norm in ℋ(𝐸) is defined by 

∥ 𝐹 ∥𝐸= ∥
∥
∥𝐹

𝐸∥
∥
∥

𝐿2(R)
,  𝐹 ∈ ℋ(𝐸). 

If 𝐸 ∈ 𝐻𝐵, then Θ = 𝐸∗/𝐸 is a meromorphic inner function in ℂ+, meaning that Θ is an 

inner function and that Θ has an analytic continuation to an open neighborhood of ℂ+
−. 

Conversely, each meromorphic inner function Θ admits a representation Θ = 𝐸∗/𝐸 for some 

entire function 𝐸 ∈ 𝐻𝐵. One can see from the identity 𝒦𝑈 = ℋ
2 ∩ 𝑈ℋ2̅̅ ̅̅̅ that when Θ =

𝐸∗/𝐸, the operator 𝐹 ↦ 𝐹/𝐸 is unitary from ℋ(𝐸) onto the model space 𝒦Θ, that is to say, 

𝒦Θ =
1

𝐸
ℋ(𝐸).                                            (8) 

When 𝐸(𝑧) = 𝑒−𝑖𝜋𝑧, one can check that 𝐸 ∈ 𝐻𝐵,Θ = 𝐸∗/𝐸 satisfies Θ(𝑧) = 𝑒2𝑖𝜋𝑧, and 

𝒦Θ = 𝑒
𝑖𝜋𝑧ℋ(𝐸) = 𝑒𝑖𝜋𝑧𝑃𝑊. 

Theorem (5.2.20)[277]: There are two inner functions 𝐵 and Θ on ℂ+and an unbounded 

analytic function Ψ on ℂ+such that Ψ𝒦𝐵 = 𝒦Θ. 

Proof. Fix 𝛿 ∈ (0,
1

4
) and set 

𝐸𝛿(𝑧) = (𝑧 + 𝑖)∏  

∞

𝑘=1

(1 −
𝑧

𝑘 − 𝛿 − 𝑖𝑘−4𝛿
) (1 −

𝑧

−𝑘 + 𝛿 − 𝑖𝑘−4𝛿
). 

It is shown in [293] that 𝐸𝛿 ∈ 𝐻𝐵, 

ℋ(𝐸𝛿) = 𝑃𝑊,                                          (9) 
with equivalent norms, and 

|𝐸𝛿(𝑥)| ≃ (1 + |𝑥|)
2𝛿dist (𝑥, Λ𝛿),  𝑥 ∈ ℝ,                            (10) 

where 

Λ𝛿  = 𝐸𝛿
−1({0})

 = {𝑘 − 𝛿 − 𝑖𝑘−4𝛿: 𝑘 ⩾ 1} ∪ {−𝑘 + 𝛿 − 𝑖𝑘−4𝛿: 𝑘 ⩾ 1} ∪ {−𝑖}.
 

If we define 𝐼𝛿 = 𝐸𝛿
∗/𝐸𝛿, then 𝐼𝛿 is a meromorphic inner function on ℂ+.  

Define Ψ𝛿(𝑧) = 𝑒
𝑖𝜋𝑧𝐸𝛿(𝑧) and use (8) and (9) to obtain 

Ψ𝛿𝒦𝐼𝛿 = 𝑒
𝑖𝜋𝑧𝐸𝛿𝒦𝐼𝛿 = 𝑒

𝑖𝜋𝑧ℋ(𝐸𝛿) = 𝑒
𝑖𝜋𝑧𝑃𝑊 = 𝒦Θ, 

where Θ(𝑧) = 𝑒2𝜋𝑖𝑧. Hence Ψ𝛿 is a multiplier from 𝒦𝐼𝛿 onto 𝒦Θ. We now argue that Ψ𝛿 is 

unbounded. Indeed, the zero set Λ𝛿 of 𝐸𝛿 contains 

𝑧𝑘 = (𝑘 − 𝛿) − 𝑖𝑘
−4𝛿 ,  𝑘 ⩾ 1. 

For each interval (𝑘 − 𝛿, 𝑘 + 1 − 𝛿), the zeros 𝑧𝑘 and 𝑧𝑘+1 lie just below the respective 

endpoints 𝑘 − 𝛿 and 𝑘 + 1 − 𝛿. If 𝑥𝑘 is the midpoint of (𝑘 − 𝛿, 𝑘 + 1 − 𝛿), one can see that 

dist (𝑥𝑘, Λ𝛿) ⩾
1

2
. From (10) we conclude that 

|𝐸𝛿(𝑥𝑘)| ≃ (1 + 𝑥𝑘)
2𝛿dist (𝑥𝑘, Λ𝛿) ≳ (1 + 𝑥𝑘)

2𝛿 ≃ 𝑘2𝛿 

which goes to infinity as 𝑘 → ∞. The fact that Ψ𝛿 is unbounded now follows. 
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This example can be transferred to the disk via = 𝐼𝛿 ∘ 𝜔
−1, 𝑣 = Θ ∘ 𝜔−1, 𝜑 = Ψ𝛿 ∘ 𝜔

−1, 

and applying Lemma (5.2.14). 

Crofoot proved that 𝜑𝒦𝑢 = 𝒦𝑣 ⟹ℳ(𝑢, 𝑣) = ℂ𝜑. A natural question to ask is 

whether or not ℳ(𝑢, 𝑣) = ℂ𝜑 ⟹ 𝜑𝒦𝑢 = 𝒦𝑣? The answer, in general, is no. Similar to 

Theorem (5.2.20), we construct our example in the upper-half plane setting. 

Theorem (5.2.21)[277]: There are two inner functions 𝐵 and Θ on ℂ+such that ℳ(𝐵, Θ) =
ℂΨ, with Ψ ≢ 0, but Ψ𝒦𝐵 ⊊ 𝒦Θ. 
Proof. Let Θ(𝑧) = 𝑒𝑖2𝜋𝑧, so that 𝒦Θ = 𝑒

𝑖𝜋𝑧𝑃𝑊, and let 𝐸(𝑧) be the canonical product 

associated with the sequence Λ = {−𝑖 + 𝑛 + sign (𝑛)𝛿}𝑛∈ℤ where we now choose the limit 

case in the Ingham-Kadets theorem: 𝛿 = 1/4. As before, set 𝐵 = 𝐸∗/𝐸. 

It is known that the family ℱ = {𝑒𝑖𝜆𝑛𝑥: 𝑛 ∈ ℤ} is complete and minimal in 𝐿2(−𝜋, 𝜋)[291], 

from which it can also be deduced that 𝐸 is of exponential type 𝜋 (see some standard 

computations in [291] along with a more general result [298] ). This yields the following 

two properties: (i) ℋ(𝐸) ⊆ 𝑃𝑊; (ii) Ker 𝑇Θ‾ 𝐵 = {0}. To see (i), observe first that on ℝ we 

have 𝐸(𝑥) ≃ (1 + |𝑥|)−2𝛿 = (1 + |𝑥|)−1/2[291] so that when 𝑓 ∈ ℋ(𝐸) (see (7)), then 

∫  
ℝ

|𝑓|2

|𝐸|2
𝑑𝑚 ≃ ∫  

ℝ

|𝑓|2(1 + |𝑥|)𝑑𝑚 < ∞, 

implying that 𝑓 ∈ 𝐿2(ℝ). Moreover, since 𝐸 is of exponential type 𝜋, if 𝑓 ∈ ℋ(𝐸), then 𝑓 

is also of exponential type 𝜋. So, by an alternate definition of the Paley-Wiener space, we 

conclude that 𝑓 ∈ 𝑃𝑊. Property (ii) follows from the completeness of ℱ which means that 

Λ is a uniqueness sequence for 𝑃𝑊. This is equivalent to Ker 𝑇Θ‾ 𝐵 = {0}. 
We are now in a position to prove our claim. By (i), as in the proof of Theorem (5.2.20), 

define Ψ(𝑧) = 𝑒𝑖𝜋𝑧𝐸(𝑧) and use (8) and (9) to obtain Ψ𝒦𝐵 = 𝑒
𝑖𝜋𝑧𝐸𝒦𝐵 = 𝑒

𝑖𝜋𝑧ℋ(𝐸) ⊆
𝑒𝑖𝜋𝑧𝑃𝑊 = 𝒦Θ, and so Ψ ∈ ℳ(𝐵,Θ). By Corollary (5.2.15), the dimension of the multiplier 

space is bounded by that of 𝐾𝑒𝑟 𝑇
𝑏𝑖
+⊖𝐵̅̅ ̅̅ ̅̅ ̅̅ ̅ By (ii), we have Ker 𝑇Θ‾ 𝐵 = {0}. Now 𝑇

𝑏𝑖
+̅̅ ̅̅ Θ𝐵

=

𝑇
𝑏𝑖
+̅̅ ̅̅ 𝑇Θ‾ 𝐵, and dim Ker 𝑇𝑏‾𝑖

+ = 1, so, by injectivity of 𝑇Θ‾ 𝐵, at most one function can be sent 

to 0 by 𝑇
𝑏𝑖
+̅̅ ̅̅ ΘB

. So the multiplier algebra is at most one dimensional, and, since 𝜑 already 

belongs to this algebra, its dimension is precisely one. Finally it is clear that the weight (1 +
|𝑥|) appearing in the norm of ℋ(𝐸) does not produce an equivalent norm to that in 𝑃𝑊 

(one could for instance consider the family 𝑓𝑛(𝑧) =
sin (𝜋(𝑧−𝑛))

𝜋(𝑧−𝑛)
) so that ℋ(𝐸) ⊊ 𝑃𝑊. 

When ℳ(𝑢, 𝑣) ≠ {0} we know from Proposition (5.2.2) that 𝜎(𝑢) ⊆ 𝜎(𝑣). Is it the 

case that the boundary behavior in 𝒦𝑢 is the same as in 𝒦𝑣 ? To discuss this further, we 

need the following result of Ahern and Clark [278]: For an inner function 𝑢, every 𝑓 ∈ 𝒦𝑢 

has a non-tangential limit at 𝜁 if and only if 

lim𝑧→𝜁
1 − |𝑢(𝑧)|

1 − |𝑧|
< ∞. 

The last equivalent condition says that 𝑢 has a finite angular derivative at 𝜁 and 𝜁 is called 

an Ahern-Clark point for 𝒦𝑢. 

In the upper-half plane case note that ∞ is an Ahern-Clark point for a model space 𝒦𝑈 

precisely when 𝑈 ∘ 𝜔−1 has a finite angular derivative at 𝑧 = 1 (equivalently 𝑈 has an 

angular derivative at ∞ ). When 𝑈 is a Blaschke product with zeros 𝜇𝑛, this happens 

precisely when 
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∑  

𝑛⩾1

ℑ𝜇𝑛 < ∞.                                                 (11) 

Proposition (5.2.22)[277]: There exists two inner functions 𝑈 and 𝑉 in the upper half plane 

such that ℳ(𝑈,𝑉) is non trivial, 𝜎(𝑈) = 𝜎(𝑉) = {∞}, and 𝑉 has an angular derivative at 

∞ while 𝑈 does not. 

Proof. Let 

𝐸1(𝑧) =∏ 

∞

𝑛=1

(1 +
𝑧

2𝑛𝑖
) ,  𝐸2(𝑧) =∏  

∞

𝑛=1

(1 −
𝑧

2𝑛 − 2−2𝑛𝑖𝑖
). 

Standard estimates from canonical products yield 

|
𝐸1(𝑧)

𝐸2(𝑧)
| ≍ |

𝑧 + 2𝑚𝑖

𝑧 − 2𝑚 + 2−2𝑚𝑖
| ,  |𝑧| ∈ [2𝑚 − 2𝑚−2, 2𝑚 + 2𝑚−1]. 

Observe that this fraction is largest when 𝑧 is close to 2𝑚 where it behaves like 23𝑚. Setting 

�̃�2: = (𝑧 +
𝑖

2
)
3
𝐸2, we get that 𝐸1/�̃�2 is bounded on ℂ+ and for any 𝐹 ∈ ℋ(𝐸1) we have 

𝐹

�̃�2
=
𝐹

𝐸1
⋅
𝐸1

�̃�2
. 

Thus 𝐹 ∈ ℋ(�̃�2). Hence 𝐸1/�̃�2 is a multiplier from 𝒦𝑈 to 𝒦𝑉 for the inner functions 𝑈 =

𝐸1
∗/𝐸1 and 𝑉 = �̃�2

∗/�̃�2. The assertions about the Ahern-Clark properties follow from (11). 

If 𝑢 is inner, we can associate [286] a unique positive finite measure 𝜎𝑢 on 𝕋, called 

the Clark measure, via the identity 

1 − |𝑢(𝑧)|2

|1 − 𝑢(𝑧)|2
= ∫ 

𝕋

 
1 − |𝑧|2

|𝑧 − 𝜉|2
𝑑𝜎𝑢(𝜉),  𝑧 ∈ 𝔻.                            (12) 

Note that 𝜎𝑢 ⊥ 𝑚 and that 𝑢(0) = 0 if and only if 𝜎𝑢 is a probability measure. This process 

can be reversed [281], [100]. 

We now exploit these measures to obtain additional information about multipliers. Using 

straightforward arguments from the theory of reproducing kernel Hilbert spaces, one obtains 

the following. 

Lemma (5.2.23)[277]: Let 𝑢, 𝑣 be two inner functions and 𝜑 ∈ 𝐻2. Then 𝜑 ∈ ℳ(𝑢, 𝑣) if 
and only if there exists a bounded linear operator 𝐿𝜑:𝒦𝑣 → 𝒦𝑢 satisfying 𝐿𝜑(𝑘𝜆

𝑣) =

𝜑(𝜆)̅̅ ̅̅ ̅̅ 𝑘𝜆
𝑢, 𝜆 ∈ 𝔻. 

Here is the rephrasing of the lemma above in terms of Clark measures. 

Theorem (5.2.24)[277]: Let 𝑢, 𝑣 be two inner functions and 𝜎𝑢, 𝜎𝑣 be their associated Clark 

measures. For 𝜑 ∈ 𝐻2, the following are equivalent: 

(i) 𝜑 ∈ ℳ(𝑢, 𝑣); 
(ii) there exists a bounded linear operator 𝔏𝜑: 𝐿

2(𝜎𝑣) → 𝐿2(𝜎𝑢) satisfying 

𝔏𝜑(𝑘𝜆) = 𝜑(𝜆)̅̅ ̅̅ ̅̅
1 − 𝑢(𝜆)̅̅ ̅̅ ̅̅

1 − 𝑣(𝜆)̅̅ ̅̅ ̅̅
𝑘𝜆,  𝜆 ∈ 𝔻.                            (13) 

Proof. Assume that 𝜑 ∈ ℳ(𝑢, 𝑣). By Lemma (5.2.23), the (bounded) operator 𝐿𝜑:𝒦𝑣 →

𝒦𝑢 satisfies 𝐿𝜑𝑘𝜆
𝑣 = 𝜑(𝜆)̅̅ ̅̅ ̅̅ 𝑘𝜆

𝑢, 𝜆 ∈ 𝔻. Define 𝔏𝜑: = 𝑉𝑢
−1𝐿𝜑𝑉𝑣: 𝐿

2(𝜎𝑢) → 𝐿2(𝜎𝑣), where the 

Clark operator 𝑉𝑢: 𝐿
2(𝜎𝑢) → 𝒦𝑢 is defined by 𝑉𝑢𝑘𝜆 = (1 − 𝑢(𝜆)̅̅ ̅̅ ̅̅ )−1𝑘𝜆

𝑢, 𝜆 ∈ 𝔻. A result of 

Poltoratski [294] says that every 𝑓 ∈ 𝒦𝑢 has radial limits 𝜎𝑢-almost everywhere and 

𝑉𝑢
−1(𝑓) = 𝑓 on the carrier of 𝜎𝑢. The identity in (13) now follows. 

It is easy to see that the above argument can be reversed. 
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Corollary (5.2.25)[277]: Let 𝑢, 𝑣 be inner with associated Clark measures 𝜎𝑢 and 𝜎𝑣 

satisfying 𝜎𝑢 ≪ 𝜎𝑣. If 𝜑 = (1 − 𝑣)/(1 − 𝑢) and ℎ = 𝑑𝜎𝑢/𝑑𝜎𝑣, the following are 

equivalent: (i) 𝜑 ∈ ℳ(𝑢, 𝑣); (ii) ℎ ∈ 𝐿∞(𝜎𝑣). 
Proof. (𝑖𝑖) ⟹ (𝑖) : Using Theorem (5.2.24), 𝜑 ∈ ℳ(𝑢, 𝑣) if and only if there exists a 

bounded linear operator 𝔏𝜑: 𝐿
2(𝜎𝑣) ⟶ 𝐿2(𝜎𝑢) such that 

𝔏𝜑(𝑘𝜆) = 𝜑(𝜆)̅̅ ̅̅ ̅̅
1 − 𝑢(𝜆)̅̅ ̅̅ ̅̅

1 − 𝑣(𝜆)̅̅ ̅̅ ̅̅
𝑘𝜆 = 𝑘𝜆,  𝜆 ∈ 𝔻. 

For every 𝑓 ∈ 𝐿2(𝜎𝑣), we have 

∫ 
𝕋

|𝑓(𝜉)|2𝑑𝜎𝑢(𝜉) = ∫ 
𝕋

|𝑓(𝜉)|2ℎ(𝜉)𝑑𝜎𝑣(𝜉) ⩽∥ ℎ ∥𝐿∞(𝜎𝑣)∥ 𝑓 ∥𝐿2(𝜎𝑣)
2 . 

Hence if we define 𝔏𝜑(𝑓) = 𝑓 for 𝑓 ∈ 𝐿2(𝜎𝑣), then 𝔏𝜑 is bounded from 𝐿2(𝜎𝑣) into 𝐿2(𝜎𝑢), 

which proves (1 − 𝑣)/(1 − 𝑢) ∈ ℳ(𝑢, 𝑣). 
(𝑖) ⟹ (𝑖𝑖) : Again using Theorem (5.2.24), the map 𝔏𝜑(𝑘𝜆) = 𝑘𝜆 extends linearly to a 

bounded operator from 𝐿2(𝜎𝑣) into 𝐿2(𝜎𝑢). In particular, for any 𝑓 in the linear span of 
{𝑘𝜆: 𝜆 ∈ 𝔻}, we have 

∫ 
𝕋

|𝑓|2ℎ𝑑𝜎𝑣 = ∫ 
𝕋

|𝑓|2𝑑𝜎𝑢 ≲ ∫ 
𝕋

|𝑓|2𝑑𝜎𝑣. 

Since the linear span of {𝑘𝜆: 𝜆 ∈ 𝔻} is dense in 𝐿2(𝜎𝑣) (use 𝜎𝑣 ⊥ 𝑚 along with [290]), we 

get ℎ ∈ 𝐿∞(𝜎𝑣). 
It was shown in [296] that if 𝜎𝑢 ≪ 𝜎𝑣 and ℎ:= 𝑑𝜎𝑢/𝑑𝜎𝑣, then ℎ ∈ 𝐿2(𝜎𝑣) if and only 

if (1 − 𝑣)/(1 − 𝑢) ∈ 𝐻2. 
Example (5.2.26)[277]: If 𝑣(𝑧) = exp ((𝑧 + 1)/(𝑧 − 1)), one can show [289] that the 

Clark measure 𝜎𝑣 is discrete and given by 

𝜎𝑣 = ∑  

∞

𝑛=−∞

𝑐𝑛𝛿𝑧𝑛 ,  𝑧𝑛 =
2𝜋𝑖𝑛 − 1

2𝜋𝑖𝑛 + 1
,  𝑐𝑛 =

2

4𝜋2𝑛2 + 1
. 

Now pick 𝑐𝑛
′  satisfying 0 ⩽ 𝑐𝑛

′ ⩽ 𝑀𝑐𝑛 for some 𝑀 ⩾ 1 and define 𝜇′ = ∑𝑛⩾1  𝑐𝑛
′ 𝛿𝑧𝑛. See 

[289]. In other words, we have 𝑑𝜇′ = ℎ𝑑𝜎𝑣, where 0 ⩽ ℎ ⩽ 𝑀. Then there is a unique inner 

function 𝑢 such that its associated Clark measure is precisely 𝜇′. Corollary (5.2.25) says that 

(1 − 𝑣)/(1 − 𝑢) ∈ ℳ(𝑢, 𝑣). This construction can be done more generally starting from 

any finite measure ∑𝑛⩾1  𝑐𝑛𝛿𝑧𝑛 on 𝕋 and its associated inner function 𝑣. See also [288]. 

Section (5.3): Toeplitz Order 

Toeplitz operator 𝑇𝑈 with symbol 𝑈 ∈ 𝐿∞(ℝ) on the Hardy space 𝐻2 in the upper 

half-plane ℂ+is defined as 

𝑇𝑈𝑓 = 𝑃+𝑈𝑓, 
where 𝑃+denotes the orthogonal projection from 𝐿2(ℝ ) onto 𝐻2 (For further discussion). 

This standard definition can be extended to larger function spaces and more general symbols 

to accommodate various applications of Toeplitz-type operators in Complex and Harmonic 

analysis. A recently developed approach based on the use of Toeplitz operators brought new 

progress to the area of Uncertainty Principle in Harmonic Analysis (UP), see [72], [49], 

[311]. This note is devoted to further development of the Toeplitz approach. 

One of the cases of the Toeplitz operator which appears most often in applications is the 

operator with the symbol 𝑈 = 𝐼‾𝐽 where 𝐼 and 𝐽 are inner functions. Recall that a bounded 

analytic function in the upper half-plane is called inner if its boundary values are unimodular 

almost everywhere with respect to Lebesgue measure on the boundary. 
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Inner functions constitute arguably the most important collection of functions in the standard 

one-dimensional complex function theory. Starting with the seminal result by Beurling, 

which says that all closed invariant subspaces of the shift operator 𝑆𝑓: 𝑓 ↦ 𝑧𝑓 in the Hardy 

space 𝐻2 in the unit disk have the form 𝜃𝐻2 where 𝜃 is inner, these functions became a 

focal point of research for complex analysts. Beurling's result implies that the invariant 

subspaces for the operator adjoint to 𝑆, the backward shift operator 𝑆∗𝑓: 𝑓 ↦ (𝑓 − 𝑓(0))/𝑧, 

have the form 𝐾𝜃 = (𝜃𝐻
2)⊥ = 𝐻2⊖𝜃𝐻2. This property of the spaces 𝐾𝜃 put them into the 

foundation of the famous Nagy-Foias functional model theory which says that any 

completely non-unitary contractive operator 𝑇 in a Hilbert space 𝐻, satisfying ∥(𝑇∗)𝑛𝑥∥ →
0 for all 𝑥 ∈ 𝐻, is unitarily equivalent to a compression of multiplication by 𝑧 on one of 

such 𝐾𝜃 spaces for a properly chosen inner function 𝜃 (in general, such spaces are vector-

valued, see [98]). 

These fundamental results demonstrated the importance of inner functions and related 

spaces in function theoretic problems stemming from functional analysis. Such problems 

became the main stream of complex function theory in the last several decades of the 20 th 

century. At present, inner functions are firmly established as a key ingredient of complex 

analysis and appear in most of its applications, including Harmonic Analysis, Control 

Theory, Spectral Theory of differential operators, Signal Processing and Mathematical 

Physics. Via the same connections, Toeplitz operators of the type 𝑇𝐼‾𝐽 where 𝐼 and 𝐽 are inner 

functions, appear in many of such applications. 

Problems on injectivity and invertibility of Toeplitz operators with symbols 𝐼‾𝐽 have been 

known to play crucial role in the study of Riesz bases, frames and completeness in various 

function spaces, see for instance [61], [72]. As was mentioned before, recently such 

operators have become a central object in the Toeplitz approach to UP [72], [49], [311]. Via 

the Toeplitz approach, these and similar operators apply to many fields of analysis including 

questions in Fourier analysis and spectral problems for differential operators, see for 

instance [72], [311], [306], [307]. 

Intuitively, the property that the Toeplitz operator 𝑇𝐼‾𝐽 has a non-trivial kernel means that 𝐼 

is, in some sense, larger than 𝐽. Similarly, invertibility of such an operator indicates that 𝐼 
and 𝐽 are 'equivalent' or have roughly the same 'size'. However, as we will discuss, neither 

of these properties can yield a formal definition of order or equivalence, since they lack 

axiomatic properties of transitivity and reflexivity correspondingly. 

We attempt to fix this problem and 'lift' these intuitive notions to the level of formal order 

and equivalence. Via the Toeplitz approach the new order encompasses a variety of 

problems and applications mentioned above. It reveals relations between problems of 

Complex and Harmonic analysis and helps to systematize some of the well-known questions 

from the area of UP and its applications. We present the basic definitions and properties of 

Toeplitz order, outline its connections with known problems, and to suggest further 

directions for research. 

We will mostly concern ourselves with inner functions in the upper halfplane ℂ+. 

Such functions can be represented as a product 

𝐼 = 𝐵Λ𝐽𝜇 , 

where 𝐵Λ is the Blaschke product corresponding to the sequence Λ = {𝜆𝑛} ⊂ ℂ+of zeros of 

𝐼 and 𝐽𝜇 is a singular inner function corresponding to a positive singular measure 𝜇 on ℝ̂ =

ℝ ∪ {∞}. The measure can be represented as 𝜇 = 𝜈 + 𝑐𝛿∞ where 𝜈 is Poisson-finite on ℝ, 

i.e., 
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∫  
𝑑𝜈(𝑥)

1 + 𝑥2
< ∞, 

and 𝑐 ≥ 0 is the mass at infinity. The singular function 𝐽𝜇 is defined as 

𝐽𝜇 = 𝑒
−𝒮𝜇 = 𝑒−𝒮𝜈+𝑖𝑐𝑧, 

where 𝒮𝜇 is the Schwarz integral of 𝜇 : 

𝒮𝜇(𝑧) =
1

𝜋𝑖
∫  [

1

𝑡 − 𝑧
−

𝑡

1 + 𝑡2
] 𝑑𝜇(𝑡). 

The Blaschke Product 𝐵Λ for Λ = {𝜆𝑛} is defined as 

𝐵Λ =∏ 𝑐𝑛
𝑧 − 𝜆𝑛
𝑧 − 𝜆𝑛

, 

where 𝑐𝑛 are unimodular constants chosen so that 𝑐𝑛
𝑖−𝜆𝑛

𝑖−𝜆𝑛
> 0. If Λ is an infinite sequence 

then the necessary and sufficient condition for the normal convergence of the partial 

products of 𝐵Λ is that Λ satisfies the Blaschke condition 

∑ 
ℑ𝜆𝑛

1 + |𝜆𝑛|
2
< ∞. 

We will use the notation 𝑆𝑎(𝑧) = 𝑒𝑖𝑎𝑧 for the complex exponential function, which is the 

singular inner function corresponding to the pointmass 𝑎 > 0 at infinity. Using our notations 

𝑆𝑎 = 𝐽𝑎𝛿∞. 

Similar statements and formulas are true for the case of the unit disk, see for instance [56], 

[65]. 

A special role in our notes will be played by meromorphic inner functions (MIF) which are 

inner functions in the upper half-plane that can be extended meromorphically to the whole 

plane. The above formulas imply that an inner function is a MIF if and only if its Blaschke 

factor corresponds to a discrete sequence Λ ⊂ ℂ (a sequence without finite accumulation 

points) and the measure in the singular factor is a point mass at infinity, i.e. 𝐽𝜇 = 𝑆
𝑎 = 𝑒𝑖𝑎𝑧 

for some non-negative 𝑎. 

For each inner function 𝜃(𝑧) one may consider a model subspace 

𝐾𝜃 = 𝐻
2⊖𝜃𝐻2 

of the Hardy space 𝐻2 = 𝐻2(ℂ+).Here ' ⊖ ' stands for the orthogonal difference, i.e., 𝐾𝜃 is 

the orthogonal complement of the space 𝜃𝐻2 = {𝜃𝑓 ∣ 𝑓 ∈ 𝐻2} in 𝐻2. As was mentioned in 

these subspaces play an important role in complex and harmonic analysis, as well as in 

operator theory, see [98]. 

Each inner function 𝜃(𝑧) defines a positive harmonic function 

ℜ
1 + 𝜃(𝑧)

1 − 𝜃(𝑧)
 

and, by the Herglotz representation, a positive measure 𝜎 such that 

ℜ
1 + 𝜃(𝑧)

1 − 𝜃(𝑧)
= 𝑝𝑦 +

1

𝜋
∫  

𝑦𝑑𝜎(𝑡)

(𝑥 − 𝑡)2 + 𝑦2
,  𝑧 = 𝑥 + 𝑖𝑦.         (14) 

for some 𝑝 ≥ 0. The number 𝑝 can be viewed as a point mass at infinity. The measure 𝜎 is 

a singular Poisson-finite measure, supported on the set where non-tangential limits of 𝜃 are 

equal to 1 . The measure 𝜎 + 𝑝𝛿∞ on ℝ̂ = ℝ ∪ {∞} is called the Clark measure for 𝜃(𝑧). 
We will sometimes denote the Clark measure defined in (14) by 𝜎1. If 𝛼 ∈ ℂ, |𝛼| = 1, then 

𝜎𝛼 is the measure defined by (14) with 𝜃 replaced by 𝛼‾𝜃. In some settings it is convenient 

to call the measure 𝜎−1 the 'Clark dual' of the measure 𝜎1. 
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Conversely, for every positive Poisson-finite singular measure 𝜎 and a number 𝑝 ≥ 0, there 

exists an inner function 𝜃(𝑧) satisfying (14). 

Every function 𝑓 ∈ 𝐾𝜃 has non-tangential boundary values 𝜎1-a.e. and can be recovered 

from these values via the formula 

𝑓(𝑧) =
𝑝

2𝜋𝑖
(1 − 𝜃(𝑧))∫  𝑓(𝑡)(1 − 𝜃(𝑡))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑑𝑡 +

1 − 𝜃(𝑧)

2𝜋𝑖
∫  

𝑓(𝑡)

𝑡 − 𝑧
𝑑𝜎(𝑡)(15) 

see [309]. If the Clark measure does not have a point mass at infinity, the formula is 

simplified to 

𝑓(𝑧) = (1 − 𝜃(𝑧))𝐾𝑓𝜎                                (16) 
where 𝐾𝑓𝜎 stands for the Cauchy integral 

𝐾𝑓𝜎(𝑧) =
1

2𝜋𝑖
∫  

𝑓(𝑡)

𝑡 − 𝑧
𝑑𝜎(𝑡).                        (17) 

This gives an isometry of 𝐿2(𝜎) onto 𝐾𝜃. The Clark measure 𝜎1 has a point mass at infinity 

if and only if 1 − 𝜃(𝑡) ∈ 𝐿2(ℝ). 
Similar formulas can be written for any 𝜎𝛼 corresponding to 𝜃. For any 𝛼, |𝛼| = 1 and any 

𝑓 ∈ 𝐾𝜃 , 𝑓 has non-tangential boundary values 𝜎𝛼-a.e. on ℝ̂. Those boundary values can be 

used in (15) or (16) to recover 𝑓. 

In the case of meromorphic 𝜃(𝑧)(MIF), every function 𝑓 ∈ 𝐾𝜃 also has a meromorphic 

extension in ℂ, and it is given by the formula (15). 

Each meromorphic inner function 𝜃(𝑧) can be written as 𝜃(𝑡) = 𝑒𝑖𝜙(𝑡) on ℝ, where 𝜙(𝑡) is 

a real analytic and strictly increasing function. The function 𝜙(𝑡) = arg 𝜃(𝑡) is a continuous 

branch of the argument of 𝜃(𝑧). 
For any inner function 𝜃 in the upper half-plane we define its spectrum spec  𝜃 as the closure 

of the set {𝜃 = 1}, the set of points on the line where the non-tangential limit of 𝜃 is equal 

to 1, plus the infinite point if the corresponding Clark measure has a point mass at infinity, 

i.e. if 𝑝 in (14) is positive. If spec𝜃 ⊂ ℝ, then 𝑝 in (14) is 0 . 

Recall that a sequence of real points is discrete if it has no finite accumulation points. Note 

that spec𝜃 is discrete if and only if 𝜃 is meromorphic. The corresponding Clark measure is 

discrete with masses at the points of the set {𝜃 = 1} given by 

𝜎({𝑥}) =
2𝜋

|𝜃′(𝑥)|
, 

plus possibly a point mass at infinity (related similarly to the derivative at infinity). 

If Λ ⊂ ℝ(ℝ̂) is a given discrete sequence, one can easily construct a meromorphic inner 

function 𝜃 satisfying {𝜃 = 1} = Λ by considering a positive Poisson-finite measure 

concentrated on Λ and then choosing 𝜃 to satisfy (14). One can prescribe the derivatives of 

𝜃 at Λ with a proper choice of pointmasses. 

The same construction shows that an arbitrary continuous growing function 𝛾 on ℝ can be 

approximated, up to a bounded function, by the argument of a meromorphic inner function. 

If Λ = {𝛾 = 2𝜋𝑛} then 𝜃, constructed as above with {𝜃 = 1} = Λ, satisfies |𝛾 − arg 𝜃| <
2𝜋 on ℝ. Furthermore, if Γ = {𝛾 = (2𝑛 + 1)𝜋} one can easily construct 𝜃 so that {𝜃 = 1} =
Λ and {𝜃 = −1} = Γ and achieve an even better approximation |𝛾 − arg 𝜃| < 𝜋. 
For more information and further references on Clark measures see [85],[302] or [100]. 

Recall that the Toeplitz operator 𝑇𝑈 with a symbol 𝑈 ∈ 𝐿∞(ℝ) is the map 

𝑇𝑈: 𝐻
2 → 𝐻2,  𝐹 ↦ 𝑃+(𝑈𝐹), 
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where 𝑃+is the Riesz projection, i.e. the orthogonal projection from 𝐿2(ℝ) onto the Hardy 

space 𝐻2. Passing from a function in 𝐻2 to its non-tangential boundary values on ℝ,𝐻2 can 

be identified with a closed subspace of 𝐿2(ℝ) formed by functions 𝑓 ∈ 𝐿2(ℝ) whose Fourier 

transform 𝑓 is supported on [0,∞), which makes the Riesz projection correctly defined. 

We will use the following notation for kernels of Toeplitz operators (or Toeplitz kernels) in 

𝐻2 : 

𝑁[𝑈] = ker𝑇𝑈 . 
An important observation is that 𝑁[𝜃‾] = 𝐾𝜃 if 𝜃 is an inner function. Along with 𝐻2-

kernels, one may consider Toeplitz kernels 𝑁𝑝[𝑈] in other Hardy classes 𝐻𝑝, the kernel 

𝑁1,∞[𝑈] in the 'weak' space 𝐻1,∞ = 𝐻𝑝 ∩ 𝐿1,∞, 0 < 𝑝 < 1, or the kernel in the Smirnov 

class 𝒩+(ℂ+), defined as 

𝑁+[𝑈] = {𝑓 ∈ 𝒩+ ∩ 𝐿𝑙𝑜𝑐
1 (ℝ):𝑈‾𝑓‾ ∈ 𝒩+} 

for 𝒩+and similarly for other spaces. 

If 𝜃 is a meromorphic inner function, 𝐾𝜃
+ = 𝑁+[𝜃‾] can also be considered. For more on 

such kernels see [311]. 

Recall that an entire function 𝐹(𝑧) is said to be of exponential type at most 𝑎 > 0 if 

|𝐹(𝑧)| = 𝑂(𝑒𝑎|𝑧|) 

as 𝑧 → ∞. The infimum of such 𝑎 is the exponential type of 𝐹. We denote by Π the Poisson 

measure on ℝ, 𝑑Π(𝑥) = 𝑑𝑥/(1 + 𝑥2). 
A classical theorem of Krein gives a connection between the Smirnov class 𝒩+(ℂ+) and 

the Cartwright class 𝐶𝑎 consisting of all entire functions 𝐹(𝑧) of exponential type ≤ 𝑎 which 

satisfy 

log|𝐹(𝑡)| ∈ 𝐿Π
1 . 

An entire function 𝐹(𝑧) belongs to the Cartwright class 𝐶𝑎 if and only if  

𝐹(𝑧)

𝑆−𝑎(𝑧)
∈ 𝑁+(ℂ+), and  

𝐹#(𝑧)

𝑆−𝑎(𝑧)
∈ 𝑁+(ℂ+), 

where 𝐹#(𝑧) = 𝐹(𝑧‾)̅̅ ̅̅ ̅̅ . 

Recall that a Paley-Wiener space 𝑃𝑊𝑎 is defined as a space of entire functions of exponential 

type at most 𝑎 which belong to 𝐿2(ℝ). Equivalently, 𝑃𝑊𝑎 = 𝐶𝑎 ∩ 𝐿
2(ℝ). As an immediate 

consequence one obtains a connection between the Hardy space 𝐻2(ℂ+) and the Paley-

Wiener space PW𝑎. Namely, an entire function 𝐹(𝑧) belongs to the PaleyWiener class PW𝑎 

if and only if 

𝐹(𝑧)

𝑆−𝑎(𝑧)
∈ 𝐻2(ℂ+),  

𝐹#(𝑧)

𝑆−𝑎(𝑧)
∈ 𝐻2(ℂ+). 

The definition of the de Branges spaces of entire functions may be viewed as a 

generalization of the last definition of the Paley-Wiener spaces with 𝑆−𝑎(𝑧) replaced by a 

more general entire function. Consider an entire function 𝐸(𝑧) satisfying the inequality 

|𝐸(𝑧)| > |𝐸(𝑧‾)|,  𝑧 ∈ ℂ+. 
Such functions are usually called de Branges functions. The de Branges space 𝐵(𝐸) 
associated with 𝐸(𝑧) is defined to be the space of entire functions 𝐹(𝑧) satisfying 

𝐹(𝑧)

𝐸(𝑧)
∈ 𝐻2(ℂ+),  

𝐹#(𝑧)

𝐸(𝑧)
∈ 𝐻2(ℂ+). 

It is a Hilbert space equipped with the norm ∥ 𝐹 ∥𝐸=∥ 𝐹/𝐸 ∥𝐿2(ℝ). If 𝐸(𝑧) is of exponential 

type then all the functions in the de Branges space 𝐵(𝐸) are of exponential type not greater 
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then the type of 𝐸(𝑧) (see, for example, the last part in the proof of Lemma (5.3.16). 5 in 

[91]). A de Branges space is called short (or regular) if together with every function 𝐹(𝑧) it 
contains (𝐹(𝑧) − 𝐹(𝑎))/(𝑧 − 𝑎) for any 𝑎 ∈ ℂ. 

One of the most important features of de Branges spaces is that they admit a second, 

axiomatic, definition. Let 𝐻 be a Hilbert space of entire functions that satisfies the following 

axioms: 

 (A1) If 𝐹 ∈ 𝐻, 𝐹(𝜆) = 0, then 
𝐹(𝑧)(𝑧−𝜆‾)

𝑧−𝜆
∈ 𝐻 with the same norm; 

 (A2) For any 𝜆 ∉ ℝ, point evaluation at 𝜆 is a bounded linear functional on 𝐻; 

 (A3) If 𝐹 ∈ 𝐻 then 𝐹# ∈ 𝐻 with the same norm. 

Then 𝐻 = 𝐵(𝐸) for a suitable de Branges function 𝐸. In [55]. 

Usually, for a given Hilbert space of entire functions it is not difficult to check the above 

axioms and conclude that the space is a de Branges space (if the axioms do hold). It is 

however a challenging problem in many situations to find a generating function 𝐸. This 

problem can be viewed as a deep and abstract generalization of the inverse spectral problem 

for second order differential operators. 

Every de Branges space 𝐵(𝐸) is a reproducing kernel Hilbert space, i.e., for each point 𝜆 ∈
ℂ there exists a function 𝑘𝜆 ∈ 𝐵(𝐸) such that 

𝐹(𝜆) =< 𝐹, 𝑘𝜆 > 

for any 𝐹 ∈ 𝐵(𝐸). The reproducing kernel 𝑘𝜆 is given by the formula 

𝑘𝜆(𝑧) =
𝐸(𝑧)𝐸‾(𝜆) − 𝐸#(𝑧)𝐸(𝜆‾)

2𝜋𝑖(𝜆‾ − 𝑧)
. 

It is not difficult to show that for any de Branges function 𝐸 sequences of reproducing 

kernels {𝑘𝜆}𝜆∈Λ, where Λ ⊂ ℝ, Λ = {𝐸#/𝐸 = 𝛼} for some constant 𝛼, |𝛼| = 1, form 

orthogonal bases of 𝐵(𝐸). Moreover, these are the only orthogonal bases of reproducing 

kernels. 

De Branges spaces possess the so called nesting property, which makes Krein-de Branges 

theory especially suitable to study spectral problems for differential operators. It says that 

for any two de Branges spaces 𝐵(𝐸1) and 𝐵(𝐸2) isometrically embedded into a third de 

Branges space, either 𝐵(𝐸1) ⊂ 𝐵(𝐸2) or 𝐵(𝐸2) ⊂ 𝐵(𝐸1). It follows that any space 𝐵(𝐸) 
admits a unique chain of subspaces 𝐵(𝐸𝑡), 0 ≤ 𝑡 ≤ 1 monotone by inclusion with 𝐸0 = 

const and 𝐸1 = 𝐸 (in the case of so-called jump intervals the parameter 𝑡 may not take all 

values from 0 to 1). Moreover, for any positive Poisson-finite measure 𝜇 on ℝ there is a 

unique regular chain of de Branges spaces isometrically embedded into 𝐿2(𝜇). 
Every de Branges function 𝐸(𝑧) gives rise to a MIF 

𝜃(𝑧) = 𝜃𝐸(𝑧) = 𝐸
#(𝑧)/𝐸(𝑧) 

and a model space 𝐾𝜃 that this inner function generates. There exists a well known isometric 

isomorphism between 𝐵(𝐸) and 𝐾𝜃 given by 𝐹 → 𝐹/𝐸. Conversely, for every MIF 𝜃 there 

exists a de Branges function 𝐸 such that 𝜃 = 𝜃𝐸 . Such a function 𝐸 is unique up to a 

multiplication by a real entire function without zeros in ℂ ∖ ℝ (an entire function is called 

real if it is real on ℝ ). We call a de Branges function 𝐸 an Hermite-Biehler (HB) function 

if it has no zeros on the real line. For a given MIF 𝜃 one can always choose the corresponding 

de Branges function 𝐸 to be an HB function. 

As was mentioned above, if 𝜃 is a MIF then all Clark measures 𝜎𝛼 of 𝜃 are discrete 

and their point masses can be computed by 𝜎𝛼(𝜆) = 2𝜋/|𝜃
′(𝜆)| for 𝜆 ∈ {𝜃 = 𝛼}. We will 

call the measures |𝐸|2𝜎𝛼, where 𝜎𝛼 is a Clark measure for 𝜃(𝑧) = 𝐸#(𝑧)/𝐸(𝑧), spectral 
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measures of the corresponding de Branges space. It is well known (and follows from a 

similar property for Clark measures) that for any spectral measure 𝜈 of a de Branges space 

𝐵(𝐸) the natural embedding gives an isometric isomorphism between 𝐵(𝐸) and 𝐿2(𝜈). This 

isomorphism generalizes the Parseval theorem. 

On the real line each inner 𝜃(𝑧) coming from a de Branges function can be written as 

𝜃(𝑡) = 𝑒𝑖𝜙(𝑡), 𝑡 ∈ ℝ, where 𝜙(𝑡) is real analytic strictly increasing function, a continuous 

branch of the argument of 𝜃(𝑧) on ℝ. The phase function of the corresponding de Branges 

space is defined by 𝜓(𝑡) = 𝜙(𝑡)/2 and is equal to −arg 𝐸. 

If 𝐸 is an HB function we will denote by 𝜃𝐸 the corresponding MIF 𝜃𝐸 = 𝐸
#/𝐸. If 𝜇 is a 

positive singular Poisson-finite measure on ℝ̂ we denote by 𝜃𝜇 the inner function with the 

Clark measure equal to 𝜇. Even though for a MIF 𝜃 the function 𝐸 such that 𝜃 = 𝜃𝐸 is not 

unique, we will use the notation 𝐸𝜃 for one of such functions. The reader may think of a 

function with lowest order and type among all such HB functions 𝐸. 

We use Toeplitz operators to define partial order and equivalence on the set of inner 

functions in the upper half-plane. Our definitions can be naturally extended to broader 

classes of functions and measures, however we choose to concentrate on the inner case. 

Moreover, in most applications discussed in the rest, the inner functions are meromorphic 

(MIFs). 

We begin with the following definition. Recall that 𝑁[𝑈] denotes the 𝐻2 −kernel of the 

Toeplitz operator with symbol 𝑈. 

Definition (5.3.1)[299]: If 𝜃 is an inner function we define its (Toeplitz) dominance set 

𝒟(𝜃) as 

𝒟(𝜃) = { 𝐼 inner ∣∣ 𝑁[𝜃‾𝐼] ≠ 0 }. 
Every collection of sets admits natural partial ordering by inclusion. In our case, we consider 

dominance sets 𝒟(𝜃) as subsets of the set of all inner functions in the upper half-plane and 

the partial order ⊂ on this collection. This partial order induces a preorder on the set of all 

inner functions in ℂ+. Proceeding in a standard way, we can modify this preorder into a 

partial order by introducing equivalence classes of inner functions. The details of this 

definition are as follows. 

Definition (5.3.2)[299]: We will say that two inner functions 𝐼 and 𝐽 are Toeplitz equivalent, 

writing 𝐼 ∼
T
𝐽, if 𝒟(𝐼) = 𝒟(𝐽). This equivalence relation divides the set of all inner functions 

in ℂ+into equivalence classes. We call this relation Toeplitz equivalence (TE). 

Further, we introduce a partial order on these equivalence classes defining it as follows. 

Definition (5.3.3)[299]: We write 𝐼 ⩽ 𝐽 (meaning that the equivalence class of 𝐼 is 'less or 

equal' than the equivalence class of 𝐽) if 𝒟(𝐼) ⊂ 𝒟(𝐽). We call this partial order on the set 

of inner functions in ℂ+Toeplitz order (TO). 

The following simple examples illustrate our definitions. 

Example (5.3.4)[299]: Let 𝐵𝑛 and 𝐵𝑘 be Blaschke products of degree 𝑛 and 𝑘 

correspondingly. Then 𝐵𝑛 ∼
T
𝐵𝑘 iff 𝑛 = 𝑘 and 𝐵𝑛 <

T
𝐵𝑘 iff 𝑛 < 𝑘. 

If 𝐽𝜇 and 𝐽𝜈 are two singular functions, 𝐽𝜇 ⩽
T
𝐽𝜈 if 𝜈 − 𝜇 is a non-negative measure. However, 

there exist 𝜇 and 𝜈 such that 𝜇 ⊥ 𝜈 but 𝐽𝜇 ⩽ 𝐽𝜈, as follows from an example given in [300]. 

It is a good exercise on Toeplitz kernels to establish the statements of the above example. 

As was explained, Clark theory provides a natural one-to-one correspondence 

between inner functions in ℂ+and positive singular Poisson-finite measures on ℝ̂. Via this 
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correspondence one may introduce Toeplitz equivalence and order on the set of all such 

measures. I.e., for any two positive singular Poisson-finite measures 𝜇 and 𝜈, 𝜇 ∼
T
𝜈 if 

𝐼𝜇 ∼
T
𝐼𝑣 and 𝜇 ⩽

T
𝑣 if 𝐼𝜇 ⩽

T
𝐼𝜈. Similarly, Toeplitz order on inner functions induces an order 

on Hermite-Biehler functions, de Branges spaces, canonical systems, model spaces, model 

contractions, etc. 

In the same way one can order the set of all unimodular functions on the real line. If 𝑈 =
𝑒𝑖𝜙 is a unimodular function on ℝ (and 𝜙 is a measurable real function) then one can defined 

its dominance set 𝒟(𝑈) as the set of inner functions 𝜃 such that 𝑁[𝑈‾𝜃] is non-trivial. After 

that, once again using the ordering of dominance sets by inclusion, one can introduce 

equivalence classes on the set of unimodular functions and partial order on those classes. In 

a slightly different way, one may view the ordering described above as an ordering of 

equivalence classes of real measurable functions 𝜙 on ℝ defined as 𝜙 ⩽ 𝜓 if 𝑒𝑖𝜙 ⩽ 𝑒𝑖𝜓. 

Analogously, TO can be moved from the upper half-plane to the unit disk or even more 

general domains. Without any changes in the above definitions, TO can be extended to 

bounded analytic functions in ℂ+or even unbounded functions if one is willing to deal with 

unbounded Toeplitz operators. 

Using quadratic forms one can consider Toeplitz operators with distributional symbols. If 

𝑚 is a distribution on ℝ then 𝒟(𝑚) can be defined as the set of inner functions such that 

𝑇𝜃𝑚‾  exists and has a non-trivial kernel. After finding a way to overcome obvious technical 

difficulties in this definition, one can proceed with an extension of TO to this class. In 

particular, one obtains a different way to extend TO to the set of measures and it may be 

interesting to study relations with the extension outlined above. 

Perhaps the simplest way to order inner functions is by division, i.e., to say that 𝐼 ≤ 𝐽 if 𝐼 
divides 𝐽 (if 𝐽/𝐼 is an inner function). The main flaw of the order by division is that most 

pairs of inner functions remain incomparable. It is easy to see that TO is an extension of the 

order by division since 𝐼 ⩽ 𝐽 whenever 𝐼 divides 𝐽. While for two functions to be comparable 

in the order by division the zero set of one has to be a subset of the zero set of the other, in 

TO one zero set only needs to be 'near' the other. 

Another way to define an order on inner functions is to say that 𝐼 > 𝐽 if 𝑁∞[𝐼‾𝐽] ≠ 0 or if 

𝑁+[𝐼‾𝐽] ≠ 0 (the kernel in the Smirnov class 𝒩+). These orders are different from ours. The 

𝑁+-order is related to (and used implicitly in) the Beurling-Malliavin theory. This order is 

meaningful, but less relevant to problems discussed in these notes. As follows from Lemma 

(5.3.13), TO is a proper extension of the 𝐻∞-version of the above order. 

While all versions of Toeplitz order mentioned seem to be interesting, we will concentrate 

on the inner version of TO in ℂ+as defined. 

We study the dominance set 𝒟(𝜃), the key element of Toeplitz order. We will identify 

two important subsets of 𝒟(𝜃), the sets of base and total elements, and discuss their relations 

with adjacent questions. 

Let 𝐼, 𝐽 be two MIFs and let us denote by 𝜙 = 𝜙(𝐼, 𝐽) the difference of arguments 
1

2
(arg 𝐼 − arg 𝐽). Recall that the argument of a MIF on the real line can be chosen as a real 

analytic function and therefore the last expression makes sense. If 𝜙(𝐼, 𝐽) is Poisson-

summable then its harmonic conjugate �̃� exists and we will denote by ℎ(𝐼, 𝐽) the outer 

function exp (�̃� − 𝑖𝜙). Note that then ℎ(𝐼, 𝐽) = 1/ℎ(𝐽, 𝐼). Clearly, a sufficient condition for 

𝐼 ∼
T
𝐽 is that 𝜙 has a bounded harmonic conjugate, i.e., 

0 < 𝑐 < ℎ < 𝐶 < ∞ 
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on ℝ for some constants 𝑐 and 𝐶. Indeed, in that case 𝑓 ∈ 𝑁[𝐼‾𝐿] iff ℎ𝑓 ∈ 𝑁[𝐽‾𝐿], which 

implies that 𝒟(𝐼) = 𝒟(𝐽). However, this condition is not necessary. 

Example (5.3.5)[299]: Let 𝐼 = 𝐵Λ, where 𝜆𝑛 = 2
𝑛(1 + 𝑖), 𝑛 ∈ ℕ. Notice that then |𝐼′| =

𝑂(1/𝑥) on ℝ as 𝑥 → ∞. Let us construct 𝐽 in the following way. For a rare subsequence 

𝑛𝑘 = 2
𝑘, 𝑘 ∈ ℕ, pull the zeros closer to the real line, i.e., define 

𝐽 = 𝐼∏ (𝑑𝑘
𝑧 − (2𝑛𝑘 + 𝑖𝑐𝑘)

𝑧 − 𝜆𝑛𝑘
⋅

𝑧 − 𝜆‾𝑛𝑘
𝑧 − (2𝑛𝑘 − 𝑖𝑐𝑘)

), 

where 𝑐𝑘 > 0 are positive constants tending to zero and 𝑑𝑘 are convergence constants. Then 

𝜙 = 𝜙(𝐽, 𝐼) satisfies 0 < 𝑐 < exp (�̃�) on ℝ, because 

exp (�̃�) =∏ 𝑞𝑘
1 − 𝑧/𝜆‾𝑛𝑘

1 − 𝑧/(2𝑛𝑘 − 𝑖𝑐𝑘)
 

with proper convergence constants 𝑞𝑘. One can show that if 𝑐𝑘 tend to zero slow enough 

(say, 𝑐𝑘 = 1/𝑘 ) we also have 

exp(�̃�) ∈ 𝐿2(ℝ, |𝐼′|𝑑𝑥) ∖ 𝐿∞(ℝ). 

If 𝑓 ∈ 𝑁[𝐼‾𝐿] for some MIF 𝐿 then ℎ𝑓 ∈ 𝑁[𝐽‾𝐿] because 𝑓 belongs to 𝐾𝐼 and hence is bounded 

on ℝ by 𝐶|𝐼′|1/2. Conversely, if 𝑓 ∈ 𝑁[𝐽‾𝐿] then 𝑓/ℎ ∈ 𝑁[𝐼‾𝐿] because 1/ℎ is bounded. 

Therefore 𝐼 ∼
T
𝐽 even though �̃� is unbounded. 

We say that an inner function 𝐼 ∈ 𝒟(𝜃) is a base element if it does not divide any 

other element of 𝒟(𝜃). In other words, base elements are the maximal elements of 𝒟(𝜃) 
with respect to the order by division. We will denote by 𝒟𝐵(𝜃) the set of all base elements 

of 𝒟(𝜃). 
We denote by 𝑏𝑎 the Blaschke factor with zero at 𝑎 ∈ ℂ+: 

𝑏𝑎 =
𝑎‾

𝑎

𝑧 − 𝑎

𝑧 − 𝑎‾
. 

If 𝜃(𝑎) = 0 for some 𝑎 ∈ ℂ+then 𝜃𝑎 = 𝜃/𝑏𝑎 is a base element of 𝒟(𝜃). More generally, 

one can show that if 𝜃(𝑐) = 𝑎 for some 𝑐 ∈ ℂ+, then 𝐛𝑎(𝜃)/𝑏𝑐 is a base element, where 𝐛𝑎 

is the Möbius transform of the unit disk with zero at 𝑎, 

𝐛𝑎 =
𝑧 − 𝑎

1 − 𝑎‾𝑧
. 

A general description of the set 𝒟𝐵(𝜃) in terms of 𝜃 is an important but difficult problem. 

It generalizes the problem of describing complete and minimal sequences of reproducing 

kernels in model and de Branges spaces. 

Let 𝐼 and 𝐽 be two inner functions. We say that 𝑓 ∈ 𝑁[𝐼‾𝐽] is purely outer if 𝑓 is outer and 

𝐼‾𝐽𝑓 = 𝑔‾ 
where 𝑔 is outer. Note that then automatically 𝑓 = 𝑔. 

We call an element 𝐼 of 𝒟(𝜃) total, if 𝑁[𝜃‾𝐼] contains a purely outer function. We chose this 

name for such elements because, in a sense, each total element represents a total inner 

component of one of the functions from 𝑁[𝜃‾] = 𝐾𝜃. Indeed, if 𝐼𝑓 ∈ 𝑁[𝜃‾] for some inner 𝐼 
and outer 𝑓, then 

𝜃‾𝐼𝑓 = 𝐽‾𝑓‾ 
for some inner 𝐽. Then 

𝜃‾𝐼𝐽𝑓 = 𝑓‾ 
and therefore 𝑁[𝜃‾𝐼𝐽] contains a purely outer function and 𝐼𝐽 is a total element of 𝒟(𝜃). 
Moreover, every total element can be obtained this way, i.e., it is a total inner component of 
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a function from 𝑁[𝜃‾], combining inner components in both half-planes. We denote by 

𝒟𝑇(𝜃) the subset of all total elements of 𝒟(𝜃). 
One can show that together with each function 𝐼 the set 𝒟𝑇(𝜃) it contains every 𝐽 such that 

𝐼/𝐽 is a finite Blaschke product. It follows that 𝒟𝑇(𝜃) contains the set of all inner divisors 𝐼 
of 𝜃 such that 𝜃/𝐼 is a finite Blaschke product. Finite products can be replaced is this 

statement with all Blaschke products whose arguments 𝜓 satisfy 𝜓/2 ∈ log |𝐻2|. Here we 

denote by log |𝐻2| the set of functions 

{𝑓|𝑓 = ln |𝑔 ∣, 𝑔 ∈ 𝐻2(ℂ+)}. 
In other words, log |𝐻2| consists of real functions 𝑓 such that 𝑓 ∈ 𝐿Π

1  and exp (𝑓+) ∈ 𝐿
2, 

where 𝑓+ = max(𝑓, 0). 
Proposition (5.3.6)[299]: Every element of 𝒟(𝜃) is a factor of a total element. 

To prove the last statement just notice that if 𝜃‾𝐼𝐽𝑓 = 𝐿‾𝑓‾ for some inner 𝐽, 𝐿 and outer 𝑓 ∈
𝐻2, then 𝐽𝐿𝐼 is the desired total element. 

In regard to relations between our new sets we have 

Proposition (5.3.7)[299]: For every inner 𝜃 

𝒟𝐵(𝜃) ⊂ 𝒟𝑇(𝜃) ⊂ 𝒟(𝜃). 
The sets 𝒟𝑇 and 𝒟𝐵 are equal iff 𝜃 is a Blaschke factor (in which case they are also equal to 

𝒟(𝜃) and consist of constants). 

Proof. If 𝐼 is a base element then the relation 𝜃‾𝐼𝑓 = 𝐽‾𝑓‾ implies that 𝑓 is outer and 𝐽 is 

constant: otherwise 𝐼 ÷ 𝐽𝐼 ∈ 𝒟(𝜃), which contradicts that 𝐼 is a base element. Hence, 𝑓 ∈
𝑁[𝜃‾𝐼] is purely outer and 𝐼 is also a total element. The second statement follows from the 

fact 𝒟𝑇 contains base elements divided by any finite Blaschke sub-products. Notice that 𝒟𝐵 

cannot consist of singular functions only. 

Since together with every element 𝒟(𝜃) contains all of its inner divisors, Proposition (5.3.6) 

implies that 𝒟(𝜃) is determined by the set of its total elements. The inverse statement 

follows from Theorem (5.3.22): 

Corollary (5.3.8)[299]: If 𝐼 ∼
T
𝐽 then 𝒟𝑇(𝐼) = 𝒟𝑇(𝐽). 

To deduce the above corollary note that total elements of 𝒟 are the total inner components 

of the de Branges space. The spaces 𝐵(𝐸𝐼) and 𝐵(𝐸𝐽) must coincide as sets by Theorem 

(5.3.22). 
It is not difficult to describe elements of 𝒟𝑇(𝜃) in terms of arguments. Let us start 

with 𝒟𝑇(𝜃) in the case when 𝜃 is a MIF. In this case all functions from 𝒟𝑇(𝜃) are MIFs and 

their arguments are real-analytic functions on ℝ (defined uniquely up to 2𝜋𝑛 ). Recall the 

notation 𝜙(𝐼, 𝐽) =
1

2
(arg 𝐼 − arg 𝐽). 

Proposition (5.3.9)[299]: 

𝐼 ∈ 𝒟𝑇(𝜃) ⇔ �̃�(𝜃, 𝐼) ∈ log|𝐻2|. 
As to 𝒟(𝜃), recall that it consists of all divisors of functions from 𝒟𝑇(𝜃). 

Corollary (5.3.10)[299]: I belongs to 𝒟(𝜃) iff 𝜙(𝜃, 𝐼) = ℎ̃ +
1

2
𝛼 where ℎ ∈ log |𝐻2| and 𝛼 

is an argument of an inner function. 

To establish the above statement, simply notice that 𝜙 −
1

2
𝛼 for some argument of a MIF 𝛼 

is the argument of a purely outer element of 𝑁[𝜃‾𝐼]. 
With some additional effort one can find analogs of statements for general (non-MIF) inner 

functions. 



225 

A well known theorem by L. de Branges, Theorem (5.3.28)6 from [55], page 271, is 

an important result in the area of UP. One can find a discussion of this result and its 

applications in [312]. 

More general versions of this theorem from [84], [310] played important roles in the study 

of the Gap and Type problems, see also [311]. Here we present the statement from [84] in 

the settings of TO. 

Theorem (5.3.11)[299]: Let 𝐼, 𝜃 be inner functions in ℂ+, 𝜃 ∈ 𝒟(𝐼). 
Then there exists an inner function 𝐽 in ℂ+such that spec𝐽 ⊂ spec𝐼 and 𝜃 ∈ 𝒟𝑇(𝐽). 

The function 𝐽 can be chosen so that the purely outer 𝑓 ∈ 𝑁[𝐽‾𝜃] is also zero-free on ℝ. If 𝜃 

is a meromorphic function, then 𝐽 can be chosen as a meromorphic function. 

If 𝐼 is a MIF, then 𝑓 in the statement is analytic through ℝ and the term 'zero-free' can be 

understood in the usual sense. In the general case, a function 𝑓 ∈ 𝐻2 has a zero at 𝑥 ∈ ℝ if 

𝑓/(𝑧 − 𝑥) ∈ 𝐻2, and a zero-free function has no such points. 

Let us finish with the following problem. Given a collection of inner functions, we will call 

the minimal 𝒟(𝜃) containing these functions the Toeplitz hull (TH) of our collection. It 

seems to be an interesting question to find TH for a given collection. In view of our 

discussion, versions of this problem are equivalent to finding the minimal de Branges space 

or model space for a given collection of zero sets, etc. 

As was mentioned before, another natural way to introduce a partial order on the set 

of inner functions is by division. We say that an inner function 𝐼 divides another inner 

function 𝐽 if 𝐽/𝐼 is an inner function. The relation 'divides' satisfies the axioms of a partial 

order. Toeplitz order introduced above is an extension of the order by division, i.e. if 𝐼 

divides 𝐽 then 𝐼 ⩽
T
𝐽. 

TO is a proper extension because one can easily construct a pair of inner functions 𝐼 and 𝐽 

such that 𝐼 ⩽
T
𝐽 but 𝐽 does not divide 𝐼. Indeed, choose any pair such that 𝐽 divides 𝐼 and 𝐽 

has at least one zero. Then that zero has also to be a zero of 𝐼. Take that zero of 𝐼 and move 

it by a finite distance in ℂ+.It is not difficult to show (an exercise on Toeplitz kernels) that 

then we still have 𝐼 ⩽
T
𝐽, although 𝐽 no longer divides 𝐼. 

Intuitively, when 𝑁[𝐼‾𝐽] ≠ 0 for two inner functions 𝐼 and 𝐽 it means that 𝐼 is 'larger' 

than 𝐽. This relation between 𝐼 and 𝐽 starts to resemble a strict order even more after one 

recalls that by a lemma of Coburn 𝑁[𝐼‾𝐽] and 𝑁[𝐽‾𝐼] cannot be non-trivial simultaneously. 

Formally, however, this relation does not constitute an order due to the lack of transitivity: 

𝑁[𝐼‾𝐽] = 𝑁[𝐽‾𝐿] = 0 does not imply 𝑁[𝐼‾𝐿] = 0. 

Accordingly, the relation 𝐼 ≍ 𝐽, which can be defined to mean that 𝑁[𝐼‾𝐽] = 0 and 

𝑁[𝐽‾𝐼] = 0, fails to produce a formal equivalence. An interesting geometric connection for 

this relation is observed in [245]. It is shown that for two inner functions 𝐼 ≍ 𝐽 holds if and 

only if the subspaces 𝐼𝐻2 and 𝐽𝐻2, viewed as points in the Grassmanian manifold of all 

closed subspaces of 𝐿2, are connected by a geodesic. Lack of transitivity for this relation can 

be illustrated by the following example. 

Example (5.3.12)[299]: Let us construct three MIFs 𝐼, 𝐽 and 𝐿 such that 𝐼 ≍ 𝐽 and 𝐽 ≍ 𝐿 but 

𝐼 ≭ 𝐿, where the relation ' ≍ ' is defined as above. 

Let 𝐶 > 0 be a large number and let 𝐼 be a Blaschke product with zeros at 𝑛 + 𝑖𝐶, 𝑛 ∈ ℤ. 

Let 𝐽 be the Blaschke product with zeros at 𝑛 + 𝑖𝐶 for 𝑛 < 0 and at (𝑛 +
1

2
) + 𝑖𝐶 for 𝑛 ≥ 0. 

Finally, let 𝐿 be the Blaschke product with zeros at 𝑛 + 𝑖𝐶, 𝑛 ∈ ℤ, 𝑛 ≠ 0. 
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Then 𝜓 = 2𝜙(𝐽, 𝐼) = arg 𝐽 − arg 𝐼 tends to 0 as 𝑥 → −∞. For large positive 𝑥, 

|𝜓(𝑥) +
𝜋

2
| < 𝜀, where 𝜀 = 𝜀(𝐶) is a small number, 𝜀(𝐶) → 0 as 𝐶 → ∞. From basic 

properties of Toeplitz kernels, since 

 lim sup
𝑥→−∞

 𝜓(𝑥) − lim inf
𝑥→∞

 𝜓(𝑥) < 𝜋 and 

 lim sup
𝑥→−∞

 − 𝜓(𝑥) − lim inf
𝑥→∞

 − 𝜓(𝑥) < 𝜋,
 

both 𝑁[𝐼‾𝐽] = 0 and 𝑁[𝐽‾𝐼] = 0, i.e., 𝐼 ≍ 𝐽. Similarly, 𝜓 = arg 𝐿 − arg 𝐽 tends to 0 as 𝑥 →

−∞ and |𝜓(𝑥) +
𝜋

2
| < 𝜀 near ∞, which implies 𝐽 ≍ 𝐿. 

It is left to notice that 𝑁[𝐼‾𝐿] = 𝑁[𝑏‾𝐶𝑖], where 𝑏𝐶𝑖 = −
𝑧+𝐶𝑖

𝑧−𝐶𝑖
 is the Blaschke factor, and the 

kernel contains an 𝐻2-function 
1

𝑧−𝐶𝑖
. Hence 𝐼 ≭ 𝐿. 

To study the relations between TO and triviality of kernels further let us formulate the 

following statement, showing in particular that TO is an extension of the order mentioned. 

Lemma (5.3.13)[299]: Let 𝐼1 and 𝐼2 be non-constant inner functions such that 𝑁∞[𝐼‾1𝐼2] ≠
0. Then 𝐼1 ⩾ 𝐼2. 

Proof. If 𝜃 ∈ 𝒟(𝐼2) then for 𝑓 ∈ 𝑁[𝐼‾2𝜃] and 𝑔 ∈ 𝑁∞[𝐼‾1𝐼2] we have 

𝐼‾1𝜃𝑔𝑓 = (𝐼‾1𝐼2𝑔)(𝐼‾2𝜃𝑓) ∈ 𝐻‾
2. 

Therefore 𝜃 ∈ 𝒟(𝐼1). 
Following [72], we will call two MIFs 𝐼 and 𝐽 twins if spec𝐼 = spec𝐽. This relation 

naturally appears in applications to spectral problems involving isospectral differential 

operators. 

Clearly, twin relation is an equivalence relation on the set of all MIFs, which is different 

from the Toeplitz equivalence. It is obvious that 𝐼 ∼
T
𝐽 does not imply that 𝐼 is a twin of 𝐽. 

The opposite implication fails in general as well. However, we do have the following 

statement. We use the notation 𝑓 ≍ 𝑔 for two functions 𝑓 and 𝑔 if 𝑐|𝑓| < |𝑔| < 𝐶|𝑓| for 

some positive constants 𝑐 and 𝐶 and all values of the argument. 

Lemma (5.3.14)[299]: Let 𝐼 and 𝐽 be two MIF twins with the common spectrum 𝜎 ⊂ ℝ̂. 

Then 𝐼 ∼
I
𝐽 iff 𝐼′ ≍ 𝐽′ on 𝜎. 

Proof. Let 𝜇 = 𝛼∞𝛿∞ + ∑𝛼𝑛𝛿𝑥𝑛 and 𝜈 = 𝛽∞𝛿∞ + ∑𝛽𝑛𝛿𝑥𝑛 be the Clark measures of 𝐼 and 

𝐽 respectively. 

Suppose first that 𝐼′ ≭ 𝐽′ on 𝜎. Then by the formula for pointmasses of Clark measures 

given, 𝛼𝑛 ≭ 𝛽𝑛. WLOG, we can assume that there exists 𝑓 ∈ 𝐾𝐼(𝑓 ∈ 𝐿2(𝜇)) such that 𝑓𝜇 ≠
ℎ𝜈 for any ℎ ∈ 𝐿2(𝜈). Let 𝜃 ∈ 𝒟(𝐼) be the total inner component of 𝑓 ∈ 𝐾𝐼. We can assume 

that it is the inner component of 𝑓 in ℂ+. Since 𝑓 = (1 − 𝐼)𝐾𝑓𝜇, 𝜃 is the inner factor of the 

Cauchy integral 𝐾𝑓𝜇. If 𝐼 ∼
T
𝐽 then 𝜃 ∈ 𝒟(𝐽) and there exists 𝑔 ∈ 𝐾𝐽 such that 𝐾𝑔𝜈 is 

divisible by 𝜃 in ℂ+.Moreover, by Corollary (5.3.8) , 𝑔 can be chosen so that 𝜃 is its total 

inner component. Then 𝐾𝑔𝜈/𝐾𝑓𝜇 is an entire function of exponential type zero without 

zeros. Hence it is a constant, which implies 𝑓𝜇 = const ⋅ 𝑔𝜈 and we have a contradiction. 

It is left to notice that if 𝐼′ ≍ 𝐽′ then 𝐿2(𝜇) = 𝐿2(𝜈), which implies 𝒟(𝐼) = 𝒟(𝐽) and 𝐼 ∼
 T 
𝐽. 

Another important relation between inner functions, which resembles equivalence, 

comes from invertibility of the Toeplitz operator with the symbol 𝐼‾𝐽. Due to the work of 

Hruschev, Nikolski, and Pavlov [61], this condition became one of the main tools in the 

study of basis properties for systems of reproducing kernels, including the classical problem 
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on exponential bases as a particular case. Up to some technical details, a system of 

reproducing kernels {𝑘𝜆}𝜆∈Λ forms a Riesz basis in a model space 𝐾𝐼 if and only if 𝑇𝐼‾𝐵Λ is 

invertible. 

Intuitively, the condition that 𝑇𝐼‾𝐽 is invertible also tells us that the functions 𝐼 and 𝐽 are 

similar. This relation is reflexive as 𝑇𝐼‾𝐽 is invertible iff 𝑇𝐽‾𝐼 is. Our next goal is to show that 

Toeplitz equivalence is not the same as the invertibility of 𝑇𝐼‾𝐽. As a matter of fact, unlike 

Toeplitz equivalence, invertibility is not a formal equivalence since, once again, it lacks 

transitivity. 

Example (5.3.15)[299]: Similar to Example (5.3.12), construct 𝐼1, 𝐼2, 𝐼3 so that the 

difference of arguments 

arg 𝐼𝑛+1 − arg 𝐼𝑛, 𝑛 = 1,2, 
is smooth and close to 𝜋/3 at ∞ and to −𝜋/3 at −∞. Then 𝑇𝐼‾𝑛𝐼𝑛+1 , 𝑛 = 1,2, is invertible but 

𝑇𝐼‾1𝐼3  is not, as follows from a theorem by Devinatz and Widom. Thus invertibility does not 

induce an equivalence relation. 

While we do not see a reasonable 'if and only if' condition which describes TE in 

terms of the arguments or other requisites of inner functions, here we give some simple 'one-

sided' conditions for two MIFs to be equivalent. Recall that for two inner functions 𝐼 and 𝐽 

we denote by 𝜙 = 𝜙(𝐼, 𝐽) the function 𝜙 =
1

2
(arg 𝐼 − arg 𝐽). If 𝐼 ∼

𝑇
𝐽 then �̃� is Poisson 

summable and ℎ = ℎ(𝐼, 𝐽) stands for the outer function ℎ = 𝑒𝜙
‾ −𝑖𝜙 , |ℎ| = exp �̃�. 

As was mentioned before, if �̃�(𝐼, 𝐽) is bounded, i.e., |ℎ(𝐼, 𝐽)| is bounded and separated from 

zero on ℝ, then 𝐼 ∼
𝑇
𝐽. This condition is not necessary as was shown in Example (5.3.5). 

Lemma (5.3.16)[299]: Let I and 𝐽 be two MIFs, 𝐼 ∼
T
𝐽. Then 

|𝐽′|

|𝐼′|
exp 2�̃� ≍ 1 

on ℝ. 

Proof. By Theorem (5.3.24) multiplication by ℎ = ℎ(𝐽, 𝐼) is a bounded operator 𝐾𝐽 → 𝐾𝐼.  
Hence, 

|ℎ(𝑥)𝑘𝑥
𝐽
(𝑥)|  = |< 𝑘𝑥

𝐼 , ℎ𝑘𝑥
𝐽
>𝐾𝐼| ≤ ∥∥𝑘𝑥

𝐼 ∥∥𝐾𝐼∥
∥ℎ𝑘𝑥

𝐽
∥∥𝐾𝐼

≤

 ≤ 𝐶|𝐼′(𝑥)|1/2∥∥𝑘𝑥
𝐽
∥∥𝐾𝐽

=

 = 𝐶|𝐼′(𝑥)|1/2|𝐽′(𝑥)|1/2 ≤ 𝐶|𝐽′(𝑥)| (
|𝐼′|

|𝐽′|
)

1/2

= 𝐶|𝑘𝑥
𝐽
(𝑥)| (

|𝐼′|

|𝐽′|
)

1/2

,

 

for all 𝑥 ∈ ℝ, which implies one of the two estimates. Applying similar argument to the 

operator 𝐾𝐼 → 𝐾𝐽 we obtain the other. 

Further metric properties of ℎ give the following conditions. 

Theorem (5.3.17)[299]: Let 𝐼, 𝐽 be 𝑀𝐼𝐹𝑠, 𝜙 = 𝜙(𝐼, 𝐽). 

If the functions |𝐽′|1/2exp (−�̃�) and |𝐼′|1/2exp (�̃�) belong to 𝐿2(ℝ) then 𝐼 ∼
T
. 

If 𝐼 ∼
𝑇
𝐽 then �̃� − log (1 + |𝑥|) ∈ log |𝐻2|. 

Proof. By Theorem (5.3.24), 𝐼 ∼
𝑇
𝐽 iff multiplication by ℎ(𝐼, 𝐽) is a bounded invertible 

operator from 𝐾𝐼 to 𝐾𝐽. Note that since every 𝑓 ∈ 𝐾𝐼 satisfies |𝑓| ≤∥ 𝑓 ∥2 |𝐼
′|1/2 the 

conditions in the statement imply that ℎ𝑓 ∈ 𝐻2 and therefore ℎ𝑓 ∈ 𝐾𝐽. Similarly, for every 

𝑓 ∈ 𝐾𝐽, 𝑓/ℎ ∈ 𝐾𝐼. 
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Note that two singular MIFs cannot be equivalent unless they are constant multiples of each 

other. Hence, if 𝐼 ∼
𝑇
𝐽 then one of them, say 𝐼, has a zero. If 𝐼(𝑎) = 0 then 𝐼/𝑏𝑎 is a base 

element of 𝒟(𝐼), and therefore a base element of 𝒟(𝐽). By Proposition (5.3.7), it is a total 

element of 𝒟(𝐽) and by Proposition (5.3.9), �̃�(𝐽, 𝐼/𝑏𝑎) ∈ log |𝐻
2|. It is left to notice that 

�̃�(𝐽, 𝐼/𝑏𝑎) ∼ �̃�(𝐼, 𝐽) − log (1 + |𝑥|) as 𝑥 → ±∞ 

of each other? 

The condition of comparability for the derivatives of the inner functions appearing is 

worth exploring a bit further. Such conditions appear in applications. Inner functions 

corresponding to Schrödinger equations with regular potentials, as well as to other similar 

classes of canonical systems, will satisfy this condition. Completeness problems for various 

families of special functions also lead to MIFs with comparable derivatives, see [72]. Let us 

provide the following description of Toeplitz equivalence pertaining to this case. 

Lemma (5.3.18)[299]: Consider two MIFs I and 𝐽 such that 𝐼′ ≍ 𝐽′ on ℝ. Then 𝐼 ∼
𝑇
𝐽 iff 

𝜙(𝐼, 𝐽) = 
1

2
(arg 𝐼 − arg 𝐽) has a bounded harmonic conjugate. 

Proof. If �̃� is bounded then 𝐼 ∼
T
𝐽. Assume now that 𝐼 ∼

T
𝐽 but �̃� is unbounded. This 

contradicts Lemma (5.3.16). 
In terms of the model space 𝐾𝜃, the set of dominance 𝒟(𝜃) has a natural meaning. It 

is the set of all inner components of functions from 𝐾𝜃. 

In case of MIFs, 𝐾𝜃 is directly related to the de Branges space 𝐵(𝐸) via the isometric 

isomorphism 𝐸𝐾𝜃 = 𝐵(𝐸). Hence, 𝒟(𝜃) is also the set of all inner components of functions 

𝑓/𝐸, 𝑓 ∈ 𝐵(𝐸), in the upper half-plane. 

The set 𝒟𝑇(𝜃) can be similarly identified with the subset of all total inner components of 

functions from 𝐾𝜃 or 𝐵(𝐸) as was discussed. 

If 𝜃 is a MIF and 𝐼 ∈ 𝒟𝐵(𝜃) then 𝐼 = 𝐵Λ𝑆
𝑎 for some Blaschke sequence Λ, 𝜆𝑛 → ∞ and 

𝑎 ≥ 0. In the case of pure Blaschke product, 𝑎 = 0, the sequence Λ satisfies Λ = {𝑓 = 0} 
(with multiplicities) for some function from 𝐾𝜃( or 𝐵(𝐸)). In the case 𝑎 > 0, for any Möbius 

transform 𝐛𝑤 of the unit disk, 𝐛𝑤(𝑆
𝑎)𝐵Λ is a Blaschke product from 𝒟𝐵(𝜃). Hence, Λ ∪

{
2𝜋𝑛

𝑎
+ 𝑖𝐶} ,ℜ𝐶 > 0, is again equal to {𝑓 = 0} for some 𝑓 ∈ 𝐾𝜃(𝐵(𝐸)). 

We will return to the discussion of zero sets. 

Sets of inner components of functions from 𝐾𝜃 have been studied by other authors, see for 

instance [303], [300]. As follows from our discussion above, 𝐼 ∈ 𝒟(𝜃) iff ' 𝐼 lurks within 

𝐾𝜃, using the terminology of [300]. In [277] the authors study the set of multipliers ℳ(𝐼, 𝐽) 
between model spaces 𝐾𝐼 and 𝐾𝐽, i.e., the set of all 𝐻∞-functions 𝜙 such that 𝜙𝐾𝐼 ⊂ 𝐾𝐽. In 

relation to TO,ℳ(𝐼, 𝐽) ≠ {0} implies 𝐼 ⩽
T
𝐽. The reader may find additional properties of 

𝒟(𝜃). 

Lemma (5.3.19)[299]: Let 𝜃 be a MIF, 𝑓 ∈ 𝐾𝜃 , 𝑓(𝑖𝑦) ≠ 𝑜(𝑦
−3/2) as 𝑦 → ∞. Then the total 

inner component of 𝑓 is a base element of 𝒟(𝜃). 
Proof. Suppose that the total inner component 𝐼 of 𝑓 is not a base element. Then there exists 

inner 𝐽 and outer 𝑔 such that 𝐼 properly divides 𝐽 and 𝐽𝑔 ∈ 𝐾𝜃. Let ℎ be an outer component 

of 𝑓. Then the argument of the outer function 𝑔/ℎ is −
1

2
arg (𝐽/𝐼), i.e., it is a continuous 

decreasing function on ℝ which decreases by at least 𝜋. By Claim 1 below and the 

asymptotics of 𝑓 this implies that 𝑔(𝑖𝑦) ≠ 𝑜(𝑦−1/2) as 𝑦 → ∞. This contradicts 𝑔 ∈ 𝐻2. 

The following can be easily established. 
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Claim 1. Let ℎ be an outer function in ℂ+whose argument 𝜓 on ℝ satisfies 

lim inf
𝑥→−∞

 𝜓(𝑥) − lim sup
𝑥→∞

 𝜓(𝑥) ≥ 𝜋. 

Then 

𝑦 = 𝑂(ℎ(𝑖𝑦)) as 𝑦 → ∞. 
Our next statement combined with Lemma (5.3.19) shows that functions whose total inner 

components are base elements of 𝒟(𝜃) are dense in 𝐾𝜃. 

Proposition (5.3.20)[299]: For every inner 𝜃, the space 𝐾𝜃 contains a dense subset of 

functions 𝑓 satisfying 

|𝑓(𝑖𝑦)| ∼
1

𝑦
 as 𝑦 → ∞. 

Proof. Let 𝐶(𝑧) be the Cayley transform from the unit disc to the upper half-plane. Then 

Φ(𝑧) = 𝜃(𝐶(𝑧)) is an inner function in the unit disc. Recall that 𝐾𝜃 is obtained from 𝐾Φ 

via the map 𝑓(𝑧) ↦ (𝐶−1(𝑤) − 1)𝑓(𝐶−1(𝑤)). Now the statement is equivalent to the 

statement that functions with finite non-zero limits lim𝑟→1−  𝑓(𝑟) are dense in 𝐾Φ. 

Let Φ𝑛 be a sequence of divisors of Φ such that Φ𝑛 → Φ point-wise in 𝔻 and each Φ𝑛 can 

be analytically continued through 1 . Then ∪ 𝐾Φ𝑛 is dense in 𝐾Φ. But in each 𝐾Φ𝑛 all 

functions can be continued through 1 and a dense subset have non-zero values there. 

Let 𝐸 be a de Branges function and let 𝜃 = 𝜃𝐸 be a corresponding MIF. If 𝐹 ∈ 𝐵(𝐸) 
then 𝐹 = 𝐼1𝑓𝐸 in ℂ+, where 𝐼1 is inner and 𝑓 ∈ 𝐻2 is outer. Similarly, in ℂ−, 𝐹 = 𝐼‾2𝑓‾𝐸

#. 

An important property of 𝐵(𝐸) is that the inner components can be moved from one half-

plane to the other, i.e., if 𝐼3𝐼4 = 𝐼1 then the function 𝐺 defined as 𝐼3𝑓𝐸 in ℂ+and as 𝐼‾4𝐼‾2𝑓‾𝐸
# 

in ℂ−also belongs to 𝐵(𝐸). Similarly one can move inner factors from ℂ−to ℂ+. 

The set of all inner functions 𝐼1(𝐼2) appearing this way for a fixed 𝐵(𝐸) is exactly the 

dominance set 𝒟(𝜃). 
If 𝐹 is an entire function defined as above in ℂ±, we will call the inner function 𝐼1𝐼2 the total 

inner component of 𝐹. If 𝐼 is a total inner component for a function from a de Branges space 

then the argument of 𝑓𝐸 on ℝ is determined by the argument of 𝐼 up to 𝜋𝑛. The argument 

of MIF 𝐼 is a real-analytic function on ℝ, while the argument of 𝑓𝐸 is piece-wise real 

analytic, making a jump of −𝜋 at each real zero of 𝑓𝐸. All in all we have 

arg 𝑓𝐸 =
1

2
arg 𝐼(mod𝜋)                                (18) 

Note that total inner components of functions from 𝐵(𝐸) are exactly the elements of 

𝒟𝑇(𝜃𝐸). 
Denote by 𝒟𝑇

∗ (𝜃𝐸) the set of exact total elements, the total elements corresponding to 

functions from 𝐵(𝐸) which have no zeros on the real line. If 𝑓 ∈ 𝐵(𝐸) is such a function 

and 𝐼 ∈ 𝒟𝑇
∗  is its inner component in ℂ+then the last equation holds exactly, i.e., arg 𝑓𝐸 =

1

2
arg 𝐼 on ℝ for a proper choice of arguments on both sides. 

Let 𝐼 and 𝐽 be two MIFs such that 𝑁[𝐼‾𝐽] ≠ 0. Notice that 

𝐼‾𝐽𝑓 =
𝐸𝐼

𝐸𝐼
#

𝐸𝐽
#

𝐸𝐽
𝑓 = 𝑔‾ 



230 

which shows that an 𝐻2-function 𝑓 belongs to 𝑁[𝐼‾𝐽] iff 
𝐸𝐼

𝐸𝐽
𝑓 can be continued to the lower 

half-plane as an entire function (the formula for the continuation is 
𝐸𝐼
#

𝐸𝐽
# 𝑔‾). Consider the space 

of entire functions 𝐵 =
𝐸𝐼

𝐸𝐽
𝑁[𝐼‾𝐽] equipped with the norm 

∥∥𝑓𝐸𝐼/𝐸𝐽∥∥ =∥ 𝑓 ∥𝐻2 . 

By verifying the axioms one can conclude that 𝐵 = 𝐵(𝐸) is a de Branges space for some 

HB function 𝐸. We will denote this HB function by 𝐸𝐼,𝐽. 

To summarize, to each pair of MIFs 𝐼, 𝐽 such that 𝑁[𝐼‾𝐽] ≠ 0 there corresponds an HB 

function 𝐸𝐼,𝐽. Our construction implies the following important property: 

Proposition (5.3.21)[299]: The set 𝐽𝒟(𝜃𝐸𝐼,𝐽) is the set of all functions from 𝒟(𝐼) divisible 

by 𝐽 
While model spaces 𝐾𝜃 are equal as sets if and only if the corresponding inner 

functions are equal up to a constant multiple, de Branges spaces 𝐵(𝐸) and 𝐵(�̃�) can be 

equal as sets for two different functions 𝐸 and �̃�. 

Equality of two de Branges spaces as sets of functions, with (possibly) different norms, is 

an important aspect of spectral theory for differential equations. The so-called 

GelfandLevitan theory which treats spectral problems for regular Schrödinger equations and 

Dirac systems utilizes the fact that the corresponding de Branges spaces are equal to Paley-

Wiener spaces as sets. This property becomes the key ingredient of the theory allowing one 

to use the structure of Paley-Wiener spaces to study relations between the potential of the 

differential operator and the Fourier transform of its spectral measure. 

An extension of Gelfand-Levitan techniques to more general classes of Krein's canonical 

systems, see for instance [307], requires further understanding of properties of HB functions 

𝐸 and �̃� which produce equal, as sets, spaces 𝐵(𝐸) and 𝐵(�̃�). Such questions are also 

equivalent to problems on sampling measures. 

Although total description of such pairs of HB functions presents an important open 

problem, intuitively such functions must be similar to each other, which raises a natural 

question on the correspondence of this relation and Toeplitz equivalence for the MIFs 𝜃 and 

�̃�. Our next theorem connects this problem to TO. 

We will use the notation 𝐵(𝐸) ≐ 𝐵(�̃�) for the two de Branges spaces equal as sets. Note 

that if 𝐵(𝐸) ≐ 𝐵(�̃�) then norms in the spaces are automatically equivalent. 

Theorem (5.3.22)[299]: Let 𝐸 and �̃� be HB functions such that 𝐸/�̃� ∈ 𝒩(ℂ+).Then 𝜃 ∼
∼
�̃� 

for the corresponding MIFs iff 𝐵(𝐸) ≐ 𝐵(�̃�). 

Conversely, if 𝜃 ∼
𝑇
�̃� for two MIFs 𝜃 and �̃� then the corresponding HB functions can be 

chosen to satisfy 𝐸/�̃� ∈ 𝒩(ℂ+)and 𝐵(𝐸) ≐ 𝐵(�̃�). 
Proof. Suppose first that 𝐵(𝐸) ≐ 𝐵(�̃�). Since 𝒟(𝜃) and 𝒟(�̃�) are the sets of inner 

components of 𝐹/𝐸 for the elements 𝐹 of the corresponding space in ℂ+, 𝒟(𝜃) = 𝒟(�̃�) and 

𝜃 ∼
𝑇
�̃�. 

Conversely, let 𝒟(𝜃) = 𝒟(�̃�). Then the subsets of base elements, 𝒟𝐵, coincide as well. If 

𝐼 ∈ 𝒟𝐵(𝜃) = 𝒟𝐵(�̃�) then 𝐼 is a total inner component for some 𝐹 ∈ 𝐵(𝐸) and for some 𝐺 ∈
𝐵(�̃�). Note that then 𝐹/𝐺 is a zero-free entire function. Indeed, since the total zero 

components of 𝐹 and 𝐺 coincide, 𝐹/𝐺 may only have zeros on the real line. Then 𝐹 has 

zeros on the real line, say at 𝑎 ∈ ℝ. But then (𝑧 − 𝑖)
𝐹

𝑧−𝑎
 is an element of 𝐵(𝐸) with total 
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inner component 𝑏𝑖𝐼 which contradicts the property that 𝐼 is a base element. Hence 𝐹/𝐺 is 

zero-free. It must be outer in both half-planes because otherwise 𝐼 is not a base element in 

one of the 𝒟 sets. Hence, 𝐹/𝐺 = const. We obtain that the sets of functions in 𝐵(𝐸) and 

𝐵(�̃�) whose total inner components are base elements coincide. 

Let now 𝐹 ∈ 𝐵(𝐸) ∖ 𝐵(�̃�). By Proposition (5.3.20) , there exists 𝐻 ∈ 𝐵(𝐸) such that 

(𝐻/𝐸)(𝑖𝑦) ≠ 𝑜(𝑦−3/2) as 𝑦 → ∞. By Lemma (5.3.19), the total inner component of 𝐻 is a 

base element and therefore 𝐻 ∈ 𝐵(�̃�) by the argument above. 

Notice that (𝐹/𝐸)(𝑖𝑦) = 𝑜(𝑦−3/2), because otherwise its total inner component would have 

been a base element which would imply 𝐹 ∈ 𝐵(�̃�). Hence, (𝐹 + 𝐻)/𝐸 ≠ 𝑜(𝑦−3/2), which 

implies that 𝐹 + 𝐻 has a base total inner component and therefore belongs to both de 

Branges spaces. Since 𝐻 also belongs to both spaces, so does 𝐹 and we arrive at a 

contradiction. 

In the process of the last proof we have established the following useful property. 

Proposition (5.3.23)[299]: If the total inner component I of a function 𝐹 from 𝐵(𝐸) is a 

base element of 𝒟(𝜃𝐸) then 𝐹 has no real zeros. Equivalently, 𝒟𝐵(𝜃) ⊂ 𝒟𝑇
∗ (𝜃) for any 

𝑀𝐼𝐹𝜃. 

We formulate our result for general inner functions. In order to do that we will need 

to extend the notations 𝜙(𝐼, 𝐽) and ℎ(𝐼, 𝐽) introduced from the case of MIFs to the general 

case. 

To make sense of the definition 𝜙(𝐼, 𝐽) =
1

2
(arg 𝐼 − arg 𝐽) in the general case we understand 

arg 𝐼(𝐽) as a measurable function on ℝ such that 𝐼/𝑒𝑖arg 𝐼 is positive a.e. on ℝ. It is not 

difficult to show that if 𝐼 ∼
T
𝐽 then their arguments can be chosen in such a way that �̃� exists 

and ℎ(𝐼, 𝐽) = 𝑒𝜙
‾ −𝑖𝜙 is an outer function. In what follows we will assume that 𝜙 and ℎ 

correspond to the arguments of 𝐼 and 𝐽 chosen in such a way. 

 

Theorem (5.3.24)[299]: 𝐼 ∼
T
𝐽 iff multiplication by ℎ(𝐼, 𝐽) is a bounded and invertible 

operator 𝐾𝐼 → 𝐾𝐽. 

For general 𝐼 and 𝐽 this means that if 𝐼 ∼
T
𝐽 then their arguments can be chosen so that the 

outer function ℎ(𝐼, 𝐽) exists and multiplication by ℎ(𝐼, 𝐽) is a bounded and invertible 

operator 𝐾𝐼 → 𝐾𝐽. Conversely, if the arguments can be chosen in such way, then 𝐼 ∼
𝑇
𝐽. 

Proof. Suppose first that 𝐼 and 𝐽 are MIFs. Then ℎ = 𝐸𝐼/𝐸𝐽 and the equivalence of 𝐼 ∼
T
𝐽 

and 𝐵(𝐸𝐼) ≐ 𝐵(𝐸𝐽) gives the statement. 

In the general case, if multiplication by ℎ(𝐼, 𝐽) is a bounded and invertible operator 𝐾𝐼 → 𝐾𝐽 

then the sets of all inner components of functions from 𝐾𝐼 and 𝐾𝐽 coincide because ℎ is 

outer. Hence 𝒟(𝐼) = 𝒟(𝐽) and 𝐼 ∼
T
𝐽. In the opposite direction, if 𝐼 ∼

T
𝐽 one can reduce the 

proof to the case of MIFs via a limiting argument. 

We call a sequence Λ ⊂ ℂ a zero set of a de Branges space 𝐵(𝐸) iff there exists 𝑓 ∈
𝐵(𝐸), 𝑓 ≢ 0, such that 𝑓 = 0 on Λ (with multiplicities). We call Λ an exact zero set if there 

exists 𝑓 ∈ 𝐵(𝐸) such that {𝑓 = 0} = Λ (with multiplicities). A maximal zero set is a 

sequence Λ of points such that there exists a non-zero function from the space vanishing on 

Λ, but there is no such function for any set properly containing Λ. 

A maximal zero set is exact but not vice versa. Blaschke products corresponding to maximal 

zero sets are base elements from 𝒟(𝜃) and those corresponding to exact zero sets are total 
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elements, see Lemma (5.3.25) below. Maximal zero sets are also related to complete and 

minimal sequences. 

We say that Λ is a complete and minimal sequence for 𝐵(𝐸) iff the system of reproducing 

kernels {𝑘𝜆}𝜆∈Λ is complete and minimal (i.e., any proper subsequence is incomplete) in 

𝐵(𝐸). Note that a sequence is complete and minimal iff the same sequence minus any one 

of its points is a maximal zero set. 

For sequences Λ ∈ ℂ+similar definitions can be given for the model spaces 𝐾𝜃. 

We will now establish relations between zero sets and the subsets of the dominance set. 

Recall that, as was defined, the spectrum spec𝐼 of a MIF 𝐼 is the sequence of points from ℝ̂ 

where the function is equal to 1. If Λ ⊂ ℂ ∖ ℝ is a sequence of complex points we denote by 

𝐵Λ the Blaschke product with zeros at the points of Λ in ℂ+and at the points conjugate to the 

points of Λ in ℂ−, assuming the Blaschke condition holds. 

Lemma (5.3.25)[299]: Let 𝐸 be an HB function, 𝜃 = 𝜃𝐸 . Let Λ ⊂ ℂ ∖ ℝ and Γ ⊂ ℝ be 

sequences of points. 

(i) Λ ∪ Γ is a zero set of 𝐵(𝐸) iff there exists an inner 𝐼 such that spec  𝐼 = Γ and 𝐵Λ𝐼 ∈
𝒟(𝜃); 

(ii) Λ ∪ Γ is an exact zero set of 𝐵(𝐸) iff there exists an inner 𝐼 such that spec𝐼 = Γ and 

𝐵Λ𝐼 ∈ 𝒟𝑇
∗ (𝜃); 

(iii) Λ ∪ Γ is a maximal zero set of 𝐵(𝐸) iff there exists an inner 𝐼 such that spec𝐼 =
Γ and 𝐵Λ𝐼 ∈ 𝒟𝐵(𝜃). 

Proof. (i) Suppose that 𝐹 = 0 on Λ ∪ Γ for some 𝐹 ∈ 𝐵(𝐸). Then there exists a finite 

positive measure 𝜇 concentrated on Γ, 

𝜇 =∑ 𝑎𝑛𝛿𝛾𝑛 , 

such that 𝑎𝑛 > 0 are small enough to satisfy (𝐹/𝐸)𝐾𝜇 ∈ 𝐻2. Then for 𝐼 = 𝐼𝜇 (the inner 

function whose Clark measure is 𝜇) we have (𝐹/(𝐸(1 − 𝐼)) ∈ 𝐻2 and = 𝐹/(1 − 𝐼) ∈ 

𝐵(𝐸). For the function 𝐺/𝐸 ∈ 𝐾𝜃𝐸 we have 

𝜃‾𝐸
𝐺

𝐸
= 𝜃‾𝐸

𝐹

𝐸

1

1 − 𝐼
= ℎ‾

𝐼‾

1 − 𝐼‾
 

a.e. on ℝ for some ℎ ∈ 𝐻2, ℎ‾ = 𝜃‾𝐸𝐹/𝐺. Here we use the fact that 𝐹/𝐸 ∈ 𝐾𝜃𝐸 and the 

observation that 𝐼‾(1 − 𝐼)/(1 − 𝐼‾) > 0 a.e. on ℝ. Since 𝐹 vanishes on Λ, the inner 

component of 𝐺/𝐸 is divisible by 𝐵Λ. According to the last equation, the inner component 

of 𝜃𝐸𝐺‾/𝐸‾  is divisible by 𝐼. Hence the total inner component of 𝐺/𝐸 is divisible by 𝐵Λ𝐼. 
Conversely, let 𝐵Λ𝐼 ∈ 𝒟(𝜃) for some inner 𝐼 such that spec𝐼 = Γ. Then 𝐵(𝐸) contains a 

function equal to 𝐵Λ𝐼𝑓𝐸 in ℂ+, where 𝑓 is outer from 𝐻2. Then 𝐵(𝐸) also contains a function 

equal to 𝐵Λ𝑓𝐸 in ℂ+. Subtracting we obtain a function in 𝐵(𝐸) equal to 𝐵Λ(1 − 𝐼)𝑓𝐸 in ℂ+, 

which vanishes on Λ ∪ Γ. 
(ii) and (iii) can be proved similarly. 

Theorem (5.3.26)[299]: Every element of 𝒟(𝜃) is a divisor of a base element. 

Before we prove the last statement let us note that each de Branges space possesses a large 

collection of maximal zero sets (complete and minimal sequences, minus one point). For 

instance, if one takes an orthogonal basis of reproducing kernels described and deletes one 

point from the corresponding sequence, the remaining sequence is a maximal zero set. By 

'perturbing' this real sequence one can obtain a maximal zero set in ℂ±.Note that maximal 

zero sets Λ in ℂ+, as any zero sets of a de Branges space 𝐵(𝐸) in ℂ+, satisfy the Blaschke 
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condition. The corresponding Blaschke products 𝐵Λ are exactly the base elements of 𝒟(𝜃𝐸) 
which have no singular divisor. 

Proof. First let us assume that 𝜃 is a MIF and let 𝐽 ∈ 𝒟(𝜃). Let Λ ⊂ ℂ+ be a maximal zero 

set of 𝐵(𝐸𝜃,𝐽). Then 𝐽𝐵Λ is a base element of 𝒟(𝜃). Indeed, if 𝑏𝑎𝐽𝐵Λ ∈ 𝒟(𝜃) for some 

Blaschke factor 𝑏𝑎, 𝑎 ∈ ℂ+then by Proposition (5.3.21) , Λ ∪ {𝑎} is a zero set of 𝐵(𝐸𝐼,𝐽), 

which contradicts maximality of Λ. Hence 𝐽 divides a base element of 𝒟(𝐼). 
Finally, in the case of non-MIF 𝜃, notice that 𝜃 is a normal limit of MIFs and apply a limiting 

argument. 

Considering the case when 𝐽 is a Blaschke product in the statement of Theorem (5.3.26) and 

using Lemma (5.3.25), we obtain the following result by Yu. Belov. In fact, our last proof 

is a variation of the proof in [301]. 
Corollary (5.3.27)[299]: ([301]). Any incomplete sequence of reproducing kernels in a de 

Branges space is contained in a complete and minimal sequence of reproducing kernels. 

(Note that any incomplete sequence of reproducing kernels is automatically minimal, which 

is used implicitly in the above statement.) 

Denote by 𝒵(𝐵(𝐸)) the collection of all zero sets for the space 𝐵(𝐸) and let 𝒵𝑒 stand for 

the exact zero sets. Then Theorem (5.3.26) becomes the following statement. 

Theorem (5.3.28)[299]: The collection of zero sets 𝒵(𝐵(𝐸)) determines the space 𝐵(𝐸) 
uniquely within the regularity class of 𝐸, i.e., if 𝒵(𝐵(𝐸)) = 𝒵(𝐵(�̃�)) and 𝐸/�̃� ∈
𝒩(ℂ+)then 𝐵(𝐸) ≐ 𝐵(�̃�). 
Proof. The collection of sets Λ ∖ ℝ, Λ ∈ 𝒵(𝐵(𝐸)) determines the set of Blaschke products 

from 𝒟(𝜃), 𝜃 = 𝜃𝐸. For the non-Blaschke elements we have the simple observation that 

whenever 𝐵𝑆𝑎 ∈ 𝒟(𝜃), the Blaschke product 𝐵𝐛𝑤(𝑆
𝑎) belongs to 𝒟(𝜃) as well for all 𝑤 ∈

𝔻, which implies that the sets Λ ∖ ℝ, Λ ∈ 𝒵𝑒(𝐵(𝐸)) determine 𝒟(𝜃) uniquely. It follows 

that 𝒵𝑒(𝐵(𝐸)) determines 𝒟(𝜃) and the statement follows from Theorem (5.3.26). 

Note that since 𝒵(𝐵(𝐸)) determines 𝐵(𝐸), it also determines 𝒵𝑒(𝐵(𝐸)). Conversely, since 

zero sets are subsets of exact zero sets, 𝒵𝑒(𝐵(𝐸)) determines 𝒵(𝐵(𝐸)). Even easier one can 

establish the same connection between 𝒵 and 𝒵𝑚, the collection of maximal zero sets, as 

each maximal zero set is a maximal element of 𝒵 with respect to inclusion. Hence either of 

the sets 𝒵𝑒 or 𝒵𝑚 can be substituted into the last statement instead of 𝒵. However, the 

statement with 𝒵(𝐵(𝐸)) is the strongest of the three. 

The last statement raises a natural question: if TE is equivalent to equality of the 

corresponding de Branges spaces, are the relations ⩽
T

 and ⩾T⩾ equivalent to inclusions of 

the spaces? If the answer were positive we would obtain an equivalent definition of TO. 

The relation does hold in one direction: 

Proposition (5.3.29)[299]: If 𝐵(𝐸) ⊂ 𝐵(�̃�) then 𝜃 ⩽
T
�̃�. 

The statement follows from the fact that the corresponding dominance set consists of all 

inner components of 𝐹/𝐸, 𝐹 ∈ 𝐵(𝐸)(𝐹/�̃�, 𝐹 ∈ 𝐵(�̃�)) in ℂ+. 

However, as shown by the example below, the opposite direction fails. 

Example (5.3.30)[299]: Consider a sequence 𝜆𝑛 = (2
|𝑛|sign 𝑛 +

1

2
)𝜋 + 𝜀|𝑛|𝑖, 𝑛 ∈ ℤ, where 

𝜀𝑛 ↓ 0, and the corresponding Blaschke product 𝐵Λ. Denote 𝐼 = 𝐵Λ𝑆 (where, once again, 

𝑆(𝑧) = 𝑒𝑖𝑧 ) and consider the corresponding Cartwright HB function 𝐸𝐼. 



234 

Let 𝑠(𝑧) = sin 𝑧/𝑧 be the sinc function. Then, if 𝜀𝑛 decays to 0 fast enough, 𝑠/𝐸𝐼 ∉ 𝐿
2. 

Hence 𝑠 ∉ 𝐵(𝐸𝐼) and 𝐵(𝐸𝑆) ⊄ 𝐵(𝐸𝐼) because 𝑠 ∈ 𝐵(𝐸𝑆) = 𝑃𝑊1. At the same time, since 

𝑆 is a divisor of 𝐼, 𝑆 <
T
𝐼. 

Recall that for a partial order a chain is a subset where every pair of elements is 

comparable. On the other hand, every de Branges space, or every Poisson finite measure on 

the real line, gives rise to a chain of de Branges spaces of entire functions. Although the 

term 'chain' is given different meanings in these two situations, we note the following simple 

connections between de Branges chains and chains in Toeplitz order. 

It follows from Proposition (5.3.29) that de Branges chains produce chains in Toeplitz order: 

if {𝐵(𝐸𝑡)} is a de Branges chain then 𝜃𝐸𝑡 is a chain in TO. Clearly, such chains do not present 

all possible chains in TO since, for instance, not all such chains consist of MIFs. Even if we 

restrict our attention to all TO chains in the subset of MIFs, de Branges chains do not 

produce all such chains as follows from Example (5.3.30). Finding a way to determine if a 

chain in TO is a de Branges chain seems like another interesting problem. 

We look at connections of Toeplitz order with some of the classical problems of 

Harmonic Analysis. We provide only a brief overview of such connections without going 

into deeper technical details. 

We start with two completeness problems for families of complex exponentials, the 

Beurling-Malliavin (BM) problem and its extensions studied in [58], [72], [49], and the 

Type problem recently considered in [310]. We then discuss sampling problems in Paley-

Wiener and de Branges spaces with some remarks on the two-weight Hilbert problem, see 

[77] and [119], [305], [103] 

Let Λ = {𝜆𝑛} be a sequence of distinct points in the complex plane and let 

𝐸Λ = {𝑒
𝑖𝜆𝑛𝑥} 

be a sequence of complex exponential functions on ℝ with frequencies from Λ. 

For any complex sequence Λ its radius of completeness is defined as 

𝑅(Λ) = sup  {𝑎 ∣ 𝐸Λ is complete in 𝐿2(0, 𝑎)}. 
The famous BM problem which was solved in [50], [51], asks to find a formula for 𝑅(Λ) 
for an arbitrary Λ ⊂ ℂ. 

It is well-known in the theory of completeness that the general problem can be easily 

reduced to the case of real sequences Λ. If Λ is a general complex sequence then 𝐸Λ is 

complete in 𝐿2([0, 𝑎]) if and only if 𝐸Λ′ is complete in the same space, where Λ′ is the real 

sequence defined as 𝜆𝑛
′ = 1/ℜ

1

𝜆𝑛
 (WLOG Λ has no purely imaginary points), see for 

instance [66]. Also, as will be explained below, one can always assume that Λ is a discrete 

sequence, i.e. has no finite accumulation points. 

A system of complex exponentials 𝐸Λ is incomplete in 𝐿2([0, 𝑎]) if and only if there exists 

a non-zero 𝑓 ∈ 𝐿2([0, 𝑎]) such that 𝑓 ⊥ 𝑒𝑖𝜆𝑛𝑥 for all 𝜆𝑛 ∈ Λ. Taking the Fourier transform 

of 𝑓 we arrive at the equivalent reformulation that 𝐸Λ is incomplete in 𝐿2([0,2𝑎)]) if and 

only if Λ is a zero for 𝑃𝑊𝑎. 
One immediate consequence of this connection is that if Λ has a finite accumulation point 

then 𝑅(Λ) = ∞. Also since any zero set Λ ⊂ ℂ+of a 𝑃𝑊-space must satisfy the Blaschke 

condition, 𝑅(Λ) = ∞ for any non-Blaschke Λ ⊂ ℂ+. 
To give the formula for 𝑅(Λ) we will need the following definitions.  

If {𝐼𝑛} is a sequence of disjoint intervals on ℝ, we call it short if 
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∑ 
|𝐼𝑛|

2

1 + dist2 (0, 𝐼𝑛)
< ∞ 

and long otherwise. 

If Λ is a sequence of real points define its exterior BM density (effective BM density) as 

𝐷∗(Λ) = sup  {𝑑 ∣ ∃ long {𝐼𝑛} such that #(Λ ∩ 𝐼𝑛) ⩾ 𝑑|𝐼𝑛|}, ∀𝑛} 
For a complex sequence define 𝐷∗(Λ):= 𝐷∗(Λ′). 
Theorem (5.3.31)[299]: (Beurling and Malliavin, around 1961, [50], [51]). Let Λ be a 

discrete sequence. Then 

𝑅(Λ) = 𝐷∗(Λ). 
In regard to Toeplitz order, BM theorem is equivalent to the following statements. 

Recall that any MIF 𝐼 has the form 𝐼 = 𝐵Λ𝑆
𝑎 where 𝐵 is a Blaschke product and 𝑆𝑎 = 𝑒𝑖𝑎𝑧 

is the exponential function. Put 𝑟(𝐼) = 𝐷∗(Λ) + 𝑎. 

The most direct equivalent of Theorem (5.3.31) is in terms of the dominance set. 

Theorem (5.3.32)[299]: 𝐼 ∈ 𝒟(𝑆𝑏) if 𝑟 < 𝑏 and 𝐼 ∉ 𝒟(𝑆𝑏) if 𝑟 > 𝑏. 

The statement can be equivalently reformulated in terms of TO. 

Theorem (5.3.33)[299]: For any MIF 𝐼, 

𝐼 ⩽
T
𝑆𝑏 ⇒ 𝑟(𝐼) ≤ 𝑏 

and 

𝑟(𝐼) < 𝑏 ⇒ I <T 𝑆𝑏 . 
Note that equivalence of the last two statement no longer holds if 𝑆 is replaced with a general 

inner function. Finding a broader set of functions for which the equivalence does hold is an 

open problem. 

Proof. The general case can be trivially reduced to the case 𝐼 = 𝐵Λ. Suppose first that 𝑟 =
𝐷∗(Λ) > 𝑏. Let 𝑎 ∈ Λ be a zero of 𝐼. Then 𝐷∗(Λ ∖ {𝑎}) > 𝑏 and 𝐼/𝑏𝑎 ∉ 𝒟(𝑆

𝑏) by BM 

theorem (Theorem (5.3.32)). Since 𝐼/𝑏𝑎 ∈ 𝒟(𝐼), the relation 𝐼 ⩽
T
𝑆𝑏 does not hold. 

To establish the second statement, suppose that 𝑟 = 𝐷∗(Λ) < 𝑏. If 𝐽 ∈ 𝒟(𝐼) then there exists 

𝑓 ∈ 𝑁[𝐼‾𝐽], 𝑓 ≢ 0. Also, since 𝐷∗(Λ) < 𝑏, by Theorem (5.3.32) there exists 𝑔 ∈ 𝑁[𝑆‾𝑏𝐼], 𝑔 ≢
0. Note that 𝐼𝑔 ∈ 𝑆𝑏/2𝑃𝑊𝑏/2 which implies 𝑔 ∈ 𝐻∞. Then 

𝑆‾𝑏𝐽𝑔𝑓 = (𝑆‾𝑏𝐼𝑔)(𝐼‾𝐽𝑓) ∈ 𝐻‾ 2, 

which means that 𝐽 ∈ 𝒟(𝑆𝑏). Hence 𝒟(𝐼) ⊂ 𝒟(𝑆𝑏) and 𝐼 <
 т 

𝑆𝑏. 

As we can see, the Beurling-Malliavin formula gives a metric condition for the relation of 

TO in the very specific case when one of the functions to be compared is the exponential 

function. Similar descriptions for more general classes of inner functions, especially those 

appearing in applications to completeness problems and spectral analysis remain mostly 

open. Below we present one of such extensions found in [49]. 

Reformulations of the BM theorem given present a clear direction for generalizations 

of the BM theory. While a statement analogous to with a general inner function in place of 

𝑆𝑎 may be out of reach at the moment, one can attempt to replace the exponential function 

with an inner function from a larger class. To determine the right classes of inner functions 

to study in these settings one may look at a variety of applications of the Toeplitz Approach 

in Harmonic analysis and Spectral Theory. 

One of such extensions was recently studied in [72], [49]. As was shown in [72] the class of 

MIFs with polynomially growing arguments appears naturally in a number of applications 

including completeness problems for Airy and Bessel functions, spectral problems for 
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regular Schrödinger operators and Dirac systems, etc. An analog of Theorem (5.3.32) 

proved in [49] can be applied to some of such problems. Here we present an equivalent 

reformulation similar to Theorem (5.3.33). 
Let 𝛾:ℝ → ℝ be a continuous function such that 𝛾(∓∞) = ±∞, i.e., 

lim
𝑥→−∞

 𝛾(𝑥) = +∞,  lim
𝑥→+∞

 𝛾(𝑥) = −∞. 

Define 𝛾∗ to be the smallest non-increasing majorant of  : 

𝛾∗(𝑥) = max
𝑡∈[𝑥,+∞)

 𝛾(𝑡). 

The family of intervals 𝐵𝑀(𝛾) = {𝐼𝑛} is defined as the collection of the connected 

components of the open set 

{𝑥 ∈ ℝ ∣ 𝛾(𝑥) ≠ 𝛾∗(𝑥)}. 
Let 𝜅 ≥ 0 be a constant. We say that 𝛾 is 𝜅-almost decreasing if 

∑  

𝐼𝑛∈𝐵𝑀(𝛾)

(dist (𝐼𝑛, 0) + 1)
𝜅−2|𝐼𝑛|

2 < ∞.                    (19) 

As before, an argument of a MIF 𝐼 on ℝ is a real analytic function 𝜓 such that 𝐼 = 𝑒𝑖𝜓. 

Theorem (5.3.34)[299]: Let 𝑈 be a MIF with |𝑈′| ≍ 𝑥𝜅 , 𝜅 ≥ 0, 𝛾 = arg 𝑈 on ℝ. Let 𝐽 be 

another 𝑀𝐼𝐹, 𝜎 = arg 𝐽 on ℝ. Then 

I) If 𝜎 − (1 − 𝜀)𝛾 is 𝜅-almost decreasing, then 𝐽 ∈ 𝒟(𝑈); 
II) If 𝜎 − (1 + 𝜀)𝛾 is not 𝜅-almost decreasing, then 𝐽 ∉ 𝒟(𝑈). 
Let us point out that even finding an analog for the above statement for 𝜅 < 0 presents an 

open problem. Such MIFs appear in some of the applications mentioned in [49]. 

Let us reformulate the last theorem using the relations of TO. 

Theorem (5.3.35)[299]: In the conditions of Theorem (5.3.34), 

I) If 𝜎 − (1 − 𝜀)𝛾 is 𝜅-almost decreasing, then 𝐽 T T𝑈; 

II) If 𝐽 ⩽
T
𝑈 then 𝜎 − (1 + 𝜀)𝛾 is 𝜅-almost decreasing. 

Proof. Once again, The general case can be reduced to the case = 𝐵Λ : otherwise replace 

the singular factor of 𝐽 with its Frostman transform 𝐛𝑤(𝑆
𝑎). 

I) If 𝜎 − (1 − 𝜀)𝛾 is 𝜅-almost decreasing, then by Theorem (5.3.34) there exists a non-trivial 

function 𝑓 ∈ 𝑁[𝑈‾𝐽𝐵], where 𝐵 is any finite Blaschke product. Denote the zeros of 𝐵 by 

𝑎1, … 𝑎𝑛. Note that then 

ℎ =
𝑓

(𝑧 − 𝑎1)(𝑧 − 𝑎2)… (𝑧 − 𝑎𝑛)
∈ 𝑁[𝑈‾𝐽]. 

If 𝑛 = 𝑛(𝜅) is large enough, ℎ is bounded because |𝑓| < 𝐶|𝑈′|1/2. Suppose now that 𝐼 ∈
𝒟(𝐽), i.e., there exists non-trivial 𝑔 ∈ 𝑁[𝐽‾𝐼]. Then 

𝑈‾𝐼ℎ𝑔 = (𝑈‾𝐽ℎ)(𝐽‾𝐼𝑔) ∈ 𝐻‾ 2, 

which implies that 𝐼 ∈ 𝒟(𝑈). Hence 𝒟(𝐽) ⊂ 𝒟(𝑈) and 𝐽 <
T
𝑈. 

II) If 𝜎 − (1 + 𝜀)𝛾 is not 𝜅-almost decreasing then 𝜎∗ − (1 + 𝜀)𝛾 is not 𝜅-almost 

decreasing where 𝜎∗ = arg 𝐽/𝑏𝑎 for some zero 𝑎 of 𝐽. By Theorem (5.3.34) it means that 

𝐽/𝑏𝑎 ∉ 𝒟(𝑈), while 𝐽/𝑏𝑎 ∈ 𝒟(𝐽). Hence the relation 𝐽 ⩽
T
𝑈 does not hold. 

Like the Beurling-Malliavin problem, the Type problem concerns completeness of 

complex exponentials in 𝐿2-spaces. This time one considers 𝐿2(𝜇) for a general finite 

positive measure 𝜇 on ℝ and studies completeness of families of exponential functions with 

frequencies from a fixed interval. We define the type of 𝜇 as 

𝒯𝜇 = inf  {𝑎 ∣ 𝑒
𝑖𝑠𝑡 , 𝑠 ∈ [−𝑎, 𝑎], are complete in 𝐿2(𝜇)}. 
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The problem is to find 𝒯𝜇 in terms of 𝜇. This problem was considered by N. Wiener (in an 

equivalent form, [313]) A. Kolmogorov and M. Krein, see [304], [94] or [311]. Using the 

Toeplitz approach, a formula for 𝒯𝜇 was recently found in [310], see also [311]. The idea of 

the Toeplitz approach to the Type problem can be expressed in terms of Toeplitz order in 

the following form. Recall that for a positive singular Poisson-finite measure 𝜇 we denote 

by 𝜃𝜇 the inner function with Clark measure 𝜇. The general case of the Type problem can 

be easily reduced to the singular case. 

Theorem (5.3.36)[299]: Let 𝜇 be a positive singular Poisson-finite measure. Then 

𝒯𝜇 = sup  {𝑎 ∣ 𝑆
𝑎 ∈ 𝒟(𝜃𝜇)}. 

We say that an inner function 𝜃 divides a Cauchy integral 𝐾𝜇 for some finite complex 

measure 𝜇 if 𝐾𝜇/𝜃 ∈ 𝐻𝑝 for some 𝑝 > 0. Note that then 𝐾𝜇/𝜃 = 𝐾𝜈 where 𝜈 is another 

finite complex measure, 𝜈 = 𝜃‾𝜇[309]. 

Proof. Recall that according to the Clark formula every function from 𝐾𝜃 , 𝜃 = 𝜃𝜇 can be 

represented in the form 𝑓 = (1 − 𝜃)𝐾𝑓𝜇. Since 1 − 𝜃 is an outer function in ℂ+, 

s  {𝑎 ∣ 𝑆𝑎 ∈ 𝒟(𝜃𝜇)}  = sup  {𝑎 ∣ 𝑆𝑎 divides 𝑓 ∈ 𝐾𝜃} =

 = sup  {𝑎 ∣ 𝑆𝑎 divides 𝐾𝑓𝜇, 𝑓 ∈ 𝐿2(𝜇)}.
 

By a theorem of Aleksandrov [85] 𝑆𝑎 divides 𝐾𝑓𝜇 iff 𝑓 ⊥ 𝑒𝑖𝑠𝑡 , 𝑠 ∈ [−𝑎, 𝑎]. Such an 𝑓 exists 

iff the family of exponentials 𝑒𝑖𝑠𝑡 , 𝑠 ∈ [−𝑎, 𝑎] is incomplete in 𝐿2(𝜇). 
Utilizing the Beurling-Malliavin multiplier theorem one can deduce the following statement. 

Theorem (5.3.37)[299]: Let 𝜇 be a positive singular Poisson-finite measure. Then 

𝒯𝜇 = sup  {𝑎 ∣ 𝑆
𝑎⩽
T

𝜃𝜇}. 

Let 𝜇, 𝜈 be two positive Poisson-finite measures such that the Hilbert (Cauchy) 

transform is bounded from 𝐿2(𝜇) to 𝐿2(𝜈). Initially one can understand this property in the 

sense that for a dense family of functions 𝑓 ∈ 𝐿2(𝜇) the Cauchy integral 𝐾𝑓𝜇 in the upper 

half-plane has non-tangential boundary values 𝑓∗(𝑥) at 𝜈-a.e. point 𝑥 and the norm estimate 

∥∥𝑓∗∥∥𝐿2(𝜈) ≤ 𝐶 ∥ 𝑓 ∥𝐿2(𝜇) holds for all 𝑓 from that family with a uniform 𝐶. It follows from 

a theorem by Aleksandrov [85] that then 𝑓∗ actually exists 𝜈-a.e. for all 𝑓 ∈ 𝐿2(𝜈) (and the 

same norm estimate holds). The general two-weight Hilbert problem asks to describe pairs 

of measures with this property. 

Extensive studies of the 'Tauberian' version of the two-weight Hilbert problem were started 

in [119] and recently completed in [305], [103]. These important results produced a real 

analytic description of pairs 𝜇 and 𝜈. We connect this problem with TO. 

Once again, if 𝜇 is a positive singular Poisson-finite measure on ℝ̂ we denote by 𝜃𝜇 the 

corresponding inner function, i.e., the function whose Clark measure is 𝜇. By a theorem 

from [309], every function 𝑓 from the model space 𝐾𝜃𝜇 has non-tangential boundary values 

a.e. with respect to 𝜇. The operator of embedding 𝐾𝜃𝜇 → 𝐿2(𝜇) is a unitary operator. As was 

mentioned before, this statement generalizes the Parseval theorem from 𝐾𝑆 and the counting 

measure of ℤ, which is the Clark measure for 𝑆, to an arbitrary model space and the 

corresponding Clark measure. The function 𝑓 ∈ 𝐾𝜃 can be recovered from its boundary 

values in 𝐿2(𝜇) via the formula 𝑓 = (1 − 𝜃)𝐾𝑓𝜇. 

Some of these connections have already been used in our discussion of TO. To summarize 

these relations let us recall that the dominance set of 𝜃 = 𝜃𝜇 is the set of all inner divisors 

of functions from 𝐾𝜃. As was discussed, 
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𝒟(𝜃𝜇) = {𝐼 ∣ 𝐼 is an inner divisor of 𝐾𝑓𝜇, 𝑓 ∈ 𝐿2(𝜇)}. 

Let us now return to a pair of Poisson-finite measures 𝜇 and 𝜈 such that the Cauchy 

transform is bounded from 𝐿2(𝜇) to 𝐿2(𝜈). In view of the above, this is equivalent to saying 

that 𝐾𝜃𝜇 is embedded (via passing from a function to its non-tangential boundary values) 

into 𝐿2(𝜂), 𝜂 = |𝐾𝜇|2𝜈 (or |1 − 𝜃𝜇|
−2
𝜈 ). Note that under the condition of boundedness of 

the Cauchy transform, the integral 𝐾𝜇, or equivalently the inner function 𝜃𝜇, have non-

tangential boundary values 𝜈-a.e. and the above definition of 𝜂 makes sense. 

In the case when the measures 𝜇 and 𝜈 are discrete the condition of boundedness of the 

Cauchy transform can be reformulated in terms of de Branges spaces. Recall that we denote 

by 𝐸𝜇 an Hermite-Biehler function such that 𝐸𝜇𝐾𝜃𝜇 = 𝐵(𝐸𝜇). The boundedness of the 

Cauchy transform is equivalent to the boundedness of the natural embedding of 𝐵(𝐸𝜇) into 

𝐿2(𝛾), 𝛾 = |𝐸𝜇𝐾𝜇|
2
𝜈. Note that if 𝐸𝜇 = 𝐴𝜇 + 𝑖𝐵𝜇 is the standard representation of 𝐸𝜇(𝐴𝜇 , 𝐵𝜇 

are real entire functions, 2𝐴𝜇 = 𝐸𝜇 + 𝐸𝜇
#, 2𝑖𝐵𝜇 = 𝐸𝜇 − 𝐸𝜇

#) then |𝐸𝜇𝐾𝜇| = (𝐴𝜇
2 + 𝐵𝜇

2)/

|𝐵𝜇|. 

We say that a positive measure 𝜈 on ℝ̂ is sampling for a Banach space 𝐻 of analytic 

functions in ℂ+if the non-tangential limits 𝑓∗(𝑥) exist 𝜈-a.e. for a dense family of 𝑓 ∈ 𝐻 

and 

∥ 𝑓 ∥𝐻≍ ∥∥𝑓
∗∥∥𝐿2(𝜈). 

An important case of the two-weight Hilbert problem is when 

∥ 𝑓 ∥𝐿2(𝜇)≍∥ 𝐾𝑓𝜇 ∥𝐿2(𝜈). 

In view of our discussion above, this is equivalent to the property that 𝜂 = |𝐾𝜇|2𝜈 is a 

sampling measure for 𝐾𝜃𝜇. The general property, when the Cauchy transform is only norm-

bounded from above, can be reduced to the sampling case by adding the Clark measure 𝜇−1 

to 𝜂. Namely, if 𝜇 = 𝜎1 is the Clark measure for 𝜃, let us denote by 𝜇−1 = 𝜎−1 the Clark 

dual measure. The Cauchy transform is bounded from 𝐿2(𝜇) to 𝐿2(𝜈) iff 𝜏 = 𝜂 + 𝜇−1 is a 

sampling measure for 𝐾𝜃. 

Reformulating Clark theory for MIFs in terms the corresponding de Branges spaces, we may 

notice that for any Poisson-finite positive discrete measure 𝜇 on ℝ there exists a unique 

regular de Branges space 𝐵(𝐸) such that 𝐵(𝐸) = 𝐿2(𝜇) and supp 𝜇 = {𝐸 = 𝐸‾}. We will 

denote the corresponding HB function by 𝐸𝜇 and the MIF (𝐸𝜇)#/𝐸𝜇 by 𝐼𝜇. The measure 𝜇 

is called a de Branges measure for 𝐵(𝐸𝜇). Note the following clear connection with the 

Clark measure 𝜎 for 𝐼𝜇 : 

𝜇 = 𝜎/|𝐸𝜇|2. 
Other Clark measures 𝜎𝛼 , 𝛼 ∈ 𝕋 produce other de Branges measures to form the family of 

de Branges measures for the given space. 

As we saw above, the two-weight Hilbert problem is directly related to the problem of 

description of sampling measures for model spaces 𝐾𝜃. If 𝜃 is a MIF and 𝜈 is a discrete 

Poisson-finite measure on ℝ then 𝜈 is sampling for 𝐾𝜃 if and only if 𝜈/|𝐸𝜃| is sampling for 

𝐵(𝐸𝜃), where 𝐸𝜃 is any HB function such that (𝐸𝜃)
#/𝐸𝜃 = 𝜃. Thus, in the case of discrete 

measures, the two-weight problem connects to the description of sampling measures for de 

Branges spaces. 

For the last problem we have the following reformulation in terms of TO. Any measure 

satisfying 
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∥ 𝑓 ∥𝐵(𝐸)=∥ 𝑓 ∥𝐿2(𝜇) 

is called a spectral measure for 𝐵(𝐸). Any de Branges space 𝐵(𝐸) possesses an infinite 

family of spectral measures with the de Branges measure defined above being one of them. 

The spectral measures for a given de Branges space are de Branges measures for the space, 

de Branges measures for larger de Branges spaces in the chain which contains the given 

space, and limits of such measures along the chain. The set of spectral measures of a given 

de Branges space is quite well understood in Krein-de Branges theory. Those measures are 

spectral measures for the corresponding Krein canonical systems of differential equations, 

see [55], [91], [308]. 

The following statement follows from Theorem (5.3.22). 

Theorem (5.3.38)[299]: Let 𝜇, 𝜈 be two positive discrete Poisson-finite measures on 

ℝ. 𝑇𝐹𝐴𝐸 

(i) The Hilbert (Cauchy) transform is bounded from 𝐿2(𝜇) to 𝐿2(𝜈). 

(ii) The measure 𝜂 = (𝜈 + 𝜇−1)/|𝐸𝜇|
2
 is a spectral measure for some 𝐵(𝐹) such that 

𝜃𝐹 ∼
T
𝜃𝜇. 

Note that the condition 𝜃𝐹 ∼
𝑥
𝜃𝜇 means that the inner factors of functions from 𝐵(𝐹) in ℂ+are 

the same as inner factors of Cauchy integrals 𝐾𝑓𝜇, 𝑓 ∈ 𝐿2(𝜇). 
In [77] a theorem by de Branges from [55] was applied to describe sampling sequences for 

the Paley-Wiener space. Recall that the Paley-Wiener space is a de Branges space with 𝐸 =
𝑆−1. Using the same ideas we can formulate the following statement in terms of TO. 

Theorem (5.3.39)[299]: 𝜈 is a sampling measure for 𝐵(𝐸) iff 

𝑃𝜈 = ℜ
𝐹 + 𝐹#𝜙

𝐹 − 𝐹#𝜙
 

for some HB function 𝐹 such that 𝜃𝐹 ∼
∼
𝜃𝐸 and some 𝜙 ∈ 𝐻∞, ∥ 𝜙 ∥≤ 1. 
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Chapter 6 

Cesàro Theorem and Hadamard Space with Convergence of Inductive Means 

 

We study the Ces`aro theorem for the case of positive-order. We give a sharp 

asymptotic estimate for the limit of (non-weighed) inductive means for the 𝑝-Schatten class. 

We study ` an asymptotic property for the Hansen’s inductive geometric mean and as an 

application of the Toeplitz lemma, we show a convergence of the Hansen’s inductive mean. 

Section (6.1): Higher Order Multi–Dimensional Extensions 

It is known that the Lévy Laplacian [331] is an infinite dimensional Laplacian that 

can be defined as a Cesàro mean of order 1 of the second derivatives along the elements of 

an orthonormal basis of a Hilbert space. Motivated by [316] this construction was 

generalized in [322] to higher order extension of Cesàro means, leading to the notion of 

exotic Laplacian. The solution of the heat equation for the hierarchy of exotic Laplacians 

was first obtained in [317]. 

In [318] it was proved that all exotic Laplacians can be realized in appropriate 

completions of subspaces of the Hida distribution space, thus showing that this space plays 

a fundamental role not only for the Lévy Laplacian, but for the whole exotic hierarchy. 

Finally, in [319] the Markov process generated by the exotic Laplacian of order 2𝑎 was 

identified to the Brownian motion associated of the 𝑎-th distribution derivative of the 

standard white noise, thus providing a natural probabilistic interpretation for the exotic 

Laplacians. In fact, after this result, the term exotic seems no longer justified, since these 

are natural expressions of a fundamental mathematical object such as the since these are 

natural standard white noise. 

The above mentioned identifications were made possible, on one side by a generalization to 

higher order means, of the known Cesàro's theorems on the arithmetic mean, on the other 

side, by the formulation and proof of the inverses of these results. This generalization was 

achieved in successive steps in increasing order of generality: the first result, obtained in 

[324], concerned sequences (as in the original Cesàro theorem) and means of integer order. 

The second result in [324] concerns the converse of the mfirst one: this seems to be a new 

type of Cesàro theorems, Both results played a crucial role in the construction, given in 

[318] of a similarity relation among exotic Laplacians of order ≥ 1. This was extended in 

[319] to sequences and means of arbitrary real order. Finally, sequences are replaced by 

arbitrary functions on ℝ𝑑. Such an extension is required in order to bring white noise theory 

nearer to the quantum field theory formalism and constitutes a first non-trivial step in this 

direction. 

We establish a continuous multidimensional extension of Cesàro theorem for positive 

higher order. We prove one of our main result concerning the higher order, multi-

dimensional and continuous extension of Cesàro theorem. We prove a converse version of 

the higher order Cesàro theorem studied. We introduce a construction that allows to reduce 

all Cesarro type theorems to the corresponding results in the discrete 1-dimensional case for 

sequences. 

We study positive order Cesàro theorems for functions on multidimensional 

Euclidean space. 

The Euclidean distance in ℝ𝑑 is denoted by dist (⋅,⋅) and, for any 𝑟 > 0, 

𝐵(𝑥, 𝑟): = {𝑦 ∈ ℝ𝑑: dist (𝑥, 𝑦) < 𝑟} 
is the open ball in ℝ𝑑, centered in 𝑥 ∈ ℝ𝑑, with radius 𝑟 and 𝐵(𝑥, 𝑟)c its complement. We 

define the generalized Cesàro means as linear functionals defined on some vector subspaces 
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of 𝐿
loc 

1 (ℝ𝑑), the space of all locally integrable functions on ℝ𝑑, and we prove some 

properties of these means. We start with the Cesàro mean of order 1 , correpsonding to the 

original version of Cesàro theorem. For a given 𝑝 ∈ ℝ+, the linear functional 𝐶𝑝 defined by: 

Dom (𝐶𝑝):= {𝑔 ∈ 𝐿loc
1 (ℝ𝑑): lim

𝑟→∞
 

1

|𝐵(0, 𝑟)|𝑝
∫  
𝐵(0,𝑟)

 𝑔(𝑘)𝑑𝑘 exists } (1)

𝐶𝑝(𝑔):= lim
𝑟→∞

 
1

|𝐵(0, 𝑟)|𝑝
∫  
𝐵(0,𝑟)

 𝑔(𝑘)𝑑𝑘                                                    (2)

 

is called the Cesàro mean of order 𝑝 of 𝑔 ∈ Dom (𝐶𝑝). The Cesàro mean of order 1 is simply 

called the Cesaro mean. 

Remark (6.1.1)[314]: In the case 𝑑 = 1, 

𝐵(0, 𝑟) = (−𝑟, 𝑟), 
hence (2) becomes, for 𝑝 = 1 : 

𝐶1(𝑔):= lim
𝑟→∞

 
1

2𝑟
∫  
𝑟

−𝑟

𝑔(𝑡)𝑑𝑡                              (3) 

for 𝑔 ∈ Dom (𝐶1), which is slightly different from the usual definition of Cesàro mean 

𝐶1(𝑔):= lim
𝑟→∞

 
1

𝑟
∫  
𝑟

0

𝑔(𝑡)𝑑𝑡                              (4) 

for 𝑔 ∈ Dom (𝐶1) that only considers the interval (0, 𝑟). For the continuous and 

multidimensional extensions, the symmetric formulation has some advantages. 

Theorem (6.1.2)[314]: Let 𝑔 ∈ 𝐿loc
1 (ℝ𝑑) be such that the limit 

lim
|𝑡|→∞

 
𝑔(𝑡)

(1 + |𝑡|2)𝑝𝑑
= lim
|𝑡|→∞

 
𝑔(𝑡)

|𝑡|2𝑝𝑑
= 𝐶                    (5) 

exists for some 𝑝 ≥ 0. Then: 

𝐶2𝑝+1(𝑔) =
1

|𝐵(0,1)|2𝑝
𝐶

(2𝑝 + 1)
                              (6) 

in the sense that the left hand side exists and is equal to the right hand side. 

Proof. It is clear that the two limits in (5) are equal in the sense that, one exists if and only 

if the other one does and in this case equality holds. Assumption (5) implies that, for any 

𝜖 > 0, there exists 𝑟𝜖 ∈ ℝ+such that, if |𝑡| ≥ 𝑟𝜖, then 

𝐶 − 𝜖 ≤
𝑔(𝑡)

|𝑡|2𝑝𝑑
≤ 𝐶 + 𝜖  or equivalently  (𝐶 − 𝜖)|𝑡|2𝑝𝑑 ≤ 𝑔(𝑡) ≤ (𝐶 + 𝜖)|𝑡|2𝑝𝑑 

Therefore, for all 𝑟 > 𝑟𝜖 we obtain that 

(𝐶 − 𝜖)
1

|𝐵(0, 𝑟)|2𝑝+1
∫  
𝐵(0,𝑟)∖𝐵(0,𝑟𝑒)

  |𝑡|2𝑝𝑑𝑑𝑡 

 ≤
1

|𝐵(0, 𝑟)|2𝑝+1
∫  
𝐵(0,𝑟)∖𝐵(0,𝑟𝑒)

 𝑔(𝑡)𝑑𝑡

 ≤ (𝐶 + 𝜖)
1

|𝐵(0, 𝑟)|2𝑝+1
∫  
𝐵(0,𝑟)∖𝐵(0,𝑟𝑒)

  |𝑡|2𝑝𝑑𝑑𝑡         (7)

 

Clearly 

1

|𝐵(0, 𝑟)|2𝑝+1
∫  
𝐵(0,𝑟𝜖)

|𝑡|2𝑝𝑑𝑑𝑡 ≤
1

|𝐵(0, 𝑟)|2𝑝+1
𝑟𝜖
2𝑝𝑑

∫  
𝐵(0,𝑟𝜖)

𝑑𝑡 =
𝑟𝜖
2𝑝𝑑|𝐵(0, 𝑟𝜖)|

|𝐵(0, 𝑟)|2𝑝+1
 

which tends to 0 as 𝑟 → ∞. Put 
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𝑐𝜖(𝑟):=
1

|𝐵(0, 𝑟)|2𝑝+1
∫  
𝐵(0,𝑟𝑒)

|𝑡|2𝑝𝑑𝑑𝑡 

Then from the known formula: 

|𝐵(0, 𝑟)| =
𝜋𝑑/2𝑟𝑑

Γ (
𝑑
2
+ 1)

= |𝐵(0,1)|𝑟𝑑 

we obtain that 
1

|𝐵(0, 𝑟)|2𝑝+1
∫  
𝐵(0,𝑟)∖𝐵(0,𝑟𝜖)

  |𝑡|2𝑝𝑑𝑑𝑡  =
1

|𝐵(0,1)|2𝑝+1
1

𝑟(2𝑝+1)𝑑
∫  
𝐵(0,𝑟)∖𝐵(0,𝑟𝜖)

  |𝑡|2𝑝𝑑𝑑𝑡

 =
1

|𝐵(0,1)|2𝑝+1
1

𝑟(2𝑝+1)𝑑
∫  
𝐵(0,𝑟)

  |𝑡|2𝑝𝑑𝑑𝑡 − 𝑐𝜖(𝑟)

 =
𝑑

|𝐵(0,1)|2𝑝
1

𝑟(2𝑝+1)𝑑
∫  
𝑟

0

  𝑠𝑑−1𝑠2𝑝𝑑𝑑𝑠 − 𝑐𝜖(𝑟)

 

which implies that 
1

|𝐵(0, 𝑟)|2𝑝+1
∫  
𝐵(0,𝑟)∖𝐵(0,𝑟𝜖)

|𝑡|2𝑝𝑑𝑑𝑡 =
1

|𝐵(0,1)|2𝑝
1

(2𝑝 + 1)
− 𝑐𝜖(𝑟) 

From this it follows that, since lim𝑟→∞  𝑐𝜖(𝑟) = 0, by taking limit as 𝑟 → ∞ in (7), 

(𝐶 − 𝜖)
1

|𝐵(0,1)|2𝑝
1

(2𝑝 + 1)
≤ lim inf

𝑟→∞
 

1

|𝐵(0, 𝑟)|2𝑝+1
∫  
𝐵(0,𝑟)∖𝐵(0,𝑟𝑒)

 𝑔(𝑡)𝑑𝑡

≤ lim sup
𝑟→∞

 
1

|𝐵(0, 𝑟)|2𝑝+1
∫  
𝐵(0,𝑟)∖𝐵(0,𝑟𝑒)

 𝑔(𝑡)𝑑𝑡 ≤ (𝐶 + 𝜖)
1

|𝐵(0,1)|2𝑝
1

(2𝑝 + 1)

 

Since 𝜖 > 0 is arbitrary and lim𝑟→∞  
1

√𝐵(0,𝑟)|2𝑝+1
∫
𝐵(0,𝑟𝑒)

 𝑔(𝑡)𝑑𝑡 = 0, it follows that 

lim
𝑟→∞

 
1

|𝐵(0, 𝑟)|2𝑝+1
∫  
𝐵(0,𝑟)

𝑔(𝑡)𝑑𝑡 =
1

|𝐵(0,1)|2𝑝
𝐶

(2𝑝 + 1)
 

in the sense that the limit on the left hand side exists and the identity holds. This proves (6). 

By taking 𝑝 = 0 in Theorem (6.1.2), we have the following multi-dimensional continuous 

Cesàro theorem. 

Theorem (6.1.3)[314]: If 𝑔 ∈ 𝐿loc
1 (ℝ𝑑) is such that the limit 

lim
|t|→∞

 =: 𝑔∞                                                      (8) 

exists in ℂ, then 

𝐶1(𝑔) = lim
𝑟→+∞

 
1

|𝐵(0, 𝑟)|
∫  
𝐵(0,𝑟)

𝑔(𝑠)𝑑𝑠 =: 𝑔∞         (9) 

in the sense that the limit exists and the equality holds. 

We study higher order Cesarro theorems for functions on multidimensional Euclidean 

space. 

Theorem (6.1.4)[314]: If, for some 𝑝 ∈ ℝ+and some 𝑔 ∈ 𝐿loc
1 (ℝ𝑑), the limit 

lim
𝑟→∞

 
1

|𝐵(0, 𝑟)|𝑝
∫  
𝐵(0,𝑟)

𝑔(𝑡)𝑑𝑡 = 𝐶𝑝(𝑔)                           (10) 

exists in ℂ, then for any 𝑎 ∈ ℝ+
∗ = ℝ+ ∖ {0}, it holds that 

lim
𝑟→∞

 
1

|𝐵(0, 𝑟)|𝑝+𝑎
∫  
𝐵(0,𝑟)

|𝑡|𝑎𝑑𝑔(𝑡)𝑑𝑡 =
1

|𝐵(0,1)|𝑎
𝑝

𝑝 + 𝑎
𝐶𝑝(𝑔)         (11) 



243 

in the sense that the limit exists and the equality holds. 

Proof. Let 𝑔 ∈ Dom (𝐶𝑝) and 𝑝 ∈ ℝ+. If 𝑝 > 0, for some 𝑅 > 0 we consider the function 

𝑔𝑅(𝑡) = {
𝑔(𝑡)  if |𝑡| ≥ 𝑅,

0  if |𝑡| < 𝑅.
 

If 𝑝 = 0 we regard 𝑔𝑅(𝑡) as 𝑔(𝑡). Then we can check that 𝑔𝑅 ∈ 𝐿loc 

1 (ℝ𝑑), 𝐶𝑝(𝑔) = 𝐶𝑝(𝑔𝑅) 

and 

lim
𝑟→∞

 
1

|𝐵(0, 𝑟)|𝑝+𝑎
∫  
𝐵(0,𝑟)

|𝑡|𝑎𝑑𝑔(𝑡)𝑑𝑡 = lim
𝑟→∞

 
1

|𝐵(0, 𝑟)|𝑝+𝑎
∫  
𝐵(0,𝑟)

|𝑡|𝑎𝑑𝑔𝑅(𝑡)𝑑𝑡 

in the sense that, if there exists one side of the equality, then there exists another side. 

Therefore we may prove (11) for 𝑔𝑅. We also have 
1

|𝐵(0, 𝑟)|𝑝+𝑎
∫  
𝐵(0,𝑟)

  |𝑡|𝑎𝑑𝑔𝑅(𝑡)𝑑𝑡 =
1

|𝐵(0, 𝑟)|𝑝+𝑎
𝑟𝑎𝑑∫  

𝐵(0,𝑟)

 𝑔𝑅(𝑡)𝑑𝑡

 −
1

|𝐵(0, 𝑟)|𝑝+𝑎
∫  
𝐵(0,𝑟)

  (𝑟𝑎𝑑 − |𝑡|𝑎𝑑)𝑔𝑅(𝑡)𝑑𝑡 (12)

 

On the one hand, by using the identity |𝐵(0, 𝑟)| = |𝐵(0,1)|𝑟𝑑, we obtain that 
1

|𝐵(0, 𝑟)|𝑝+𝑎
𝑟𝑎𝑑∫  

𝐵(0,𝑟)

 𝑔𝑅(𝑡)𝑑𝑡  =
1

|𝐵(0,1)|𝑝+𝑎𝑟𝑝𝑑
∫  
𝐵(0,𝑟)

 𝑔𝑅(𝑡)𝑑𝑡

 =
1

|𝐵(0,1)|𝑎
1

|𝐵(0, 𝑟)|𝑝
∫  
𝐵(0,𝑟)

 𝑔𝑅(𝑡)𝑑𝑡

 

and assumption (11) implies that the limit of the right hand side for 𝑟 → ∞ exists and is 

equal to 
1

|𝐵(0,1)|𝑎
𝐶𝑝(𝑔𝑅)                                                      (13) 

On the other hand, in the second term of the difference in (12), by using 𝑑-dimensional 

spherical coordinate representation, we have 

∫  
𝐵(0,𝑟)

(𝑟𝑎𝑑 − |𝑡|𝑎𝑑)𝑔𝑅(𝑡)𝑑𝑡 = ∫  
𝑟

0

(𝑟𝑎𝑑 − 𝑠𝑎𝑑)𝑠𝑑−1 (∫  
Θ

 𝑔�̂�(𝑠, �̂�)𝑑�̂�) 𝑑𝑠 

for some function 𝑔�̂� induced by 𝑔𝑅 via 𝑑-dimensional spherical coordinate representation, 

where Θ = [0, 𝜋]𝑑−2 × [0,2𝜋]. Then, by using the identity |𝐵(0, 𝑟)| = |𝐵(0,1)|𝑟𝑑 again, 

we obtain that 
1

|𝐵(0, 𝑟)|𝑝+𝑎
∫  
𝐵(0,𝑟)

(𝑟𝑎𝑑 − |𝑡|𝑎𝑑)𝑔𝑅(𝑡)𝑑𝑡 

 =
1

|𝐵(0,1)|𝑝+𝑎𝑟(𝑝+𝑎)𝑑
∫  
𝑟

0

  (𝑟𝑎𝑑 − 𝑠𝑎𝑑)𝑠𝑑−1 (∫  
Θ

 𝑔�̂�(𝑠, �̂�)𝑑�̂�) 𝑑𝑠

 =
𝑎𝑑

|𝐵(0,1)|𝑝+𝑎𝑟(𝑝+𝑎)𝑑
∫  
𝑟

0

  𝑠𝑑−1 (∫  
𝑟

0

  𝜏𝑎𝑑−1𝑑𝜏)(∫  
Θ

 𝑔�̂�(𝑠, �̂�)𝑑�̂�) 𝑑𝑠

 =
𝑎𝑑

|𝐵(0,1)|𝑝+𝑎𝑟(𝑝+𝑎)𝑑
∫  
𝑟

0

  [∫  
𝜏

0

  𝑠𝑑−1 (∫  
Θ

 𝑔�̂�(𝑠, �̂�)𝑑�̂�) 𝑑𝑠] 𝜏
𝑎𝑑−1𝑑𝜏           (14)

 

which becomes 
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=
𝑎𝑑

|𝐵(0,1)|𝑎𝑟(𝑝+𝑎)𝑑
∫  
𝑟

0

  𝜏𝑝𝑑+𝑎𝑑−1 (
1

|𝐵(0,1)|𝑝𝜏𝑝𝑑
∫  
𝐵(0,𝜏)

 𝑔𝑅(𝑡)𝑑𝑡)𝑑𝜏

=
𝑎𝑑

|𝐵(0,1)|𝑎𝑟(𝑝+𝑎)𝑑
∫  
𝑟

0

  𝜏𝑝𝑑+𝑎𝑑−1 (
1

|𝐵(0, 𝜏)|𝑝
∫  
𝐵(0,𝜏)

 𝑔𝑅(𝑡)𝑑𝑡)𝑑𝜏

=
𝑎𝑑

|𝐵(0,1)|𝑎𝑟(𝑝+𝑎)𝑑
∫  
𝑟

0

  𝜏𝑝𝑑+𝑎𝑑−1 (
1

|𝐵(0, 𝜏)|𝑝
∫  
𝐵(0,𝜏)

 𝑔𝑅(𝑡)𝑑𝑡 − 𝐶𝑝(𝑔𝑅))𝑑𝜏

 +
𝑎𝑑

|𝐵(0,1)|𝑎𝑟(𝑝+𝑎)𝑑
(∫  

𝑟

0

  𝜏𝑝𝑑+𝑎𝑑−1𝑑𝜏)𝐶𝑝(𝑔𝑅)                                                (15)

 

The second term of (15) is equal to 
𝑎𝑑

|𝐵(0,1)|𝑎𝑟(𝑝+𝑎)𝑑
1

(𝑝 + 𝑎)𝑑
𝑟𝑝𝑑+𝑎𝑑𝐶𝑝(𝑔𝑅) =

1

|𝐵(0,1)|𝑎
𝑎

𝑝 + 𝑎
𝐶𝑝(𝑔𝑅)         (16) 

and the first term of (15) is majorized, in modulus, by 

𝑎𝑑

|𝐵(0,1)|𝑎𝑟(𝑝+𝑎)𝑑
∫  
𝑟

0

𝜏(𝑝+𝑎)𝑑−1 |
1

|𝐵(0, 𝜏)|𝑝
∫  
𝐵(0,𝜏)

 𝑔𝑅(𝑡)𝑑𝑡 − 𝐶𝑝(𝑔𝑅)| 𝑑𝜏(17) 

Let 𝜀 > 0 be given. Then since by assumption 

lim
𝜏→∞

  |
1

|𝐵(0, 𝜏)|𝑝
∫  
𝐵(0,𝜏)

 𝑔𝑅(𝑡)𝑑𝑡 − 𝐶𝑝(𝑔𝑅)| = 0 

there exists 𝑡𝜀 such that, for any 𝜏 ≥ 𝑡𝜀 

|
1

|𝐵(0, 𝜏)|𝑝
∫  
𝐵(0,𝜏)

 𝑔𝑅(𝑡)𝑑𝑡 − 𝐶𝑝(𝑔𝑅)| ≤ 𝜀 

Moreover, since 𝑔𝑅 is locally integrable, the map 

𝜏 ∈ ℝ+⟼
1

|𝐵(0, 𝜏)|𝑝
∫  
𝐵(0,𝜏)

𝑔𝑅(𝑡)𝑑𝑡 

is continuous, therefore there exists a constant 𝐶 > 0 such that for all 𝜏 ≤ 𝑡𝜀 

|
1

|𝐵(0, 𝜏)|𝑝
∫  
𝐵(0,𝜏)

 𝑔𝑅(𝑡)𝑑𝑡 − 𝐶𝑝(𝑔𝑅)| ≤ 𝐶 

Therefore, by splitting the integral in 𝜏 in (17) into the two pieces, (17) is majorized by 

𝑎𝑑

|𝐵(0,1)|𝑎𝑟(𝑝+𝑎)𝑑
(𝐶 ∫  

𝑡𝜀

0

  𝜏(𝑝+𝑎)𝑑−1𝑑𝜏 + 𝜀∫  
𝑟

𝑡𝜀

  𝜏(𝑝+𝑎)𝑑−1𝑑𝜏)

 ≤
𝑎𝑑

|𝐵(0,1)|𝑎
(

1

(𝑝 + 𝑎)𝑑
(
𝑡𝜀
𝑟
)
(𝑝+𝑎)𝑑

𝐶 + 𝜀
1

𝑟(𝑝+𝑎)𝑑
∫  
𝑟

0

  𝜏(𝑝+𝑎)𝑑−1𝑑𝜏)

 ≤
𝑎

|𝐵(0,1)|𝑎(𝑝 + 𝑎)
((
𝑡𝜀
𝑟
)
(𝑝+𝑎)𝑑

𝐶 + 𝜀)

 

and so 
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 lim
𝑟→∞

 
𝑎𝑑

|𝐵(0,1)|𝑎𝑟(𝑝+𝑎)𝑑
∫  
𝑟

0

  𝜏(𝑝+𝑎)𝑑−1 |
1

|𝐵(0, 𝜏)|𝑝
∫  
𝐵(0,𝜏)

 𝑔𝑅(𝑡)𝑑𝑡 − 𝐶𝑝(𝑔𝑅)| 𝑑𝜏

 ≤ lim
𝑟→∞

 
𝑎

|𝐵(0,1)|𝑎(𝑝 + 𝑎)
((
𝑡𝜀
𝑟
)
(𝑝+𝑎)𝑑

𝐶 + 𝜀)

 ≤
𝑎

|𝐵(0,1)|𝑎(𝑝 + 𝑎)
𝜀

 

from which, since 𝜀 > 0 is arbitrary, 

lim
𝑟→∞

 
𝑎𝑑

|𝐵(0,1)|𝑎𝑟(𝑝+𝑎)𝑑
∫  
𝑟

0

𝜏𝑝𝑑+𝑎𝑑−1 (
1

|𝐵(0, 𝜏)|𝑝
∫  
𝐵(0,𝜏)

 𝑔𝑅(𝑡)𝑑𝑡 − 𝐶𝑝(𝑔𝑅))𝑑𝜏 = 0(18) 

Hence by (14), (15), (16) and (18), we have 

lim
𝑟→∞

 
1

|𝐵(0, 𝑟)|𝑝+𝑎
∫  
𝐵(0,𝑟)

(𝑟𝑎𝑑 − |𝑡|𝑎𝑑)𝑔𝑅(𝑡)𝑑𝑡 =
1

|𝐵(0,1)|𝑎
𝑎

𝑝 + 𝑎
𝐶𝑝(𝑔𝑅). 

Therefore, by (12) and (13), we have 

lim
𝑟→∞

 
1

|𝐵(0, 𝑟)|𝑝+𝑎
∫  
𝐵(0,𝑟)

  |𝑡|𝑎𝑑𝑔𝑅(𝑡)𝑑𝑡  =
1

|𝐵(0,1)|𝑎
𝐶𝑝(𝑔𝑅) −

1

|𝐵(0,1)|𝑎
𝑎

𝑝 + 𝑎
𝐶𝑝(𝑔𝑅)

 =
1

|𝐵(0,1)|𝑎
𝑝

𝑝 + 𝑎
𝐶𝑝(𝑔𝑅),

 

which implies (11) as desired. 

The following theorem gives the converse of Theorem (6.1.4). 

Theorem (6.1.5)[314]: If, for some 𝑝 ∈ ℝ+
∗ , some a ∈ ℝ+and some 𝑓 ∈ 𝐿

loc 

1 (ℝ𝑑), the limit 

𝐶𝑝+𝑎(𝑓):= lim
𝑟→∞

 
1

|𝐵(0, 𝑟)|𝑝+𝑎
∫  
𝐵(0,𝑟)

𝑓(𝑡)𝑑𝑡                                    (19) 

exists in ℂ and | ⋅ |−𝑎𝑑𝑓(⋅) ∈ 𝐿loc
1 (ℝ𝑑), then it holds that 

lim
𝑟→∞

 
1

|𝐵(0, 𝑟)|𝑝
∫  
𝐵(0,𝑟)

|𝑡|−𝑎𝑑𝑓(𝑡)𝑑𝑡 =
𝑝 + 𝑎

𝑝
|𝐵(0,1)|𝑎𝐶𝑝+𝑎(𝑓)         (20) 

in the sense that the limit exists and the equality holds. 

Proof. The proof is similar to the one Let 𝑝 ∈ ℝ+
∗ , 𝑎 ∈ ℝ+and 𝑓 ∈ 𝐿

loc 

1 (ℝ𝑑) be such that 

(19) holds. Then we have 
1

|𝐵(0, 𝑟)|𝑝
∫  
𝐵(0,𝑟)

  |𝑡|−𝑎𝑑𝑓(𝑡)𝑑𝑡 =
1

|𝐵(0, 𝑟)|𝑝
𝑟−𝑎𝑑∫  

𝐵(0,𝑟)

 𝑓(𝑡)𝑑𝑡 

 −
1

|𝐵(0, 𝑟)|𝑝
∫  
𝐵(0,𝑟)

  (𝑟−𝑎𝑑 − |𝑡|−𝑎𝑑)𝑓(𝑡)𝑑𝑡(21) 

On the one hand, with the same notations- 
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−
1

|𝐵(0, 𝑟)|𝑝
∫  
𝐵(0,𝑟)

  (𝑟−𝑎𝑑 − |𝑡|−𝑎𝑑)𝑓(𝑡)𝑑𝑡

= −
1

|𝐵(0,1)|𝑝𝑟𝑝𝑑
∫  
𝑟

0

  (𝑟−𝑎𝑑 − 𝑠−𝑎𝑑)𝑠𝑑−1 (∫  
Θ

 𝑓(𝑠, �̂�)𝑑�̂�) 𝑑𝑠

=
𝑎𝑑

|𝐵(0,1)|𝑝𝑟𝑝𝑑
∫  
𝑟

0

  𝑠𝑑−1 (∫  
𝑟

𝑠

  𝜏−𝑎𝑑−1𝑑𝜏)(∫  
Θ

 𝑓(𝑠, �̂�)𝑑�̂�) 𝑑𝑠

=
𝑎𝑑

|𝐵(0,1)|𝑝𝑟𝑝𝑑
∫  
𝑟

0

  [∫  
𝜏

0

  𝑠𝑑−1 (∫  
Θ

 𝑓(𝑠, �̂�)𝑑�̂�) 𝑑𝑠] 𝜏−𝑎𝑑−1𝑑𝜏 =          (22)

=
𝑎𝑑|𝐵(0,1)|𝑎

𝑟𝑝𝑑
∫  
𝑟

0

  𝜏𝑝𝑑−1 (
1

|𝐵(0, 𝜏)|𝑝+𝑎
∫  
𝐵(0,𝜏)

 𝑓(𝑡)𝑑𝑡)𝑑𝜏

=
𝑎𝑑|𝐵(0,1)|𝑎

𝑟𝑝𝑑
∫  
𝑟

0

  𝜏𝑝𝑑−1 (
1

|𝐵(0, 𝜏)|𝑝+𝑎
∫  
𝐵(0,𝜏)

 𝑓(𝑡)𝑑𝑡 − 𝐶𝑝+𝑎(𝑓))𝑑𝜏

+
𝑎𝑑|𝐵(0,1)|𝑎

𝑟𝑝𝑑
(∫  

𝑟

0

  𝜏𝑝𝑑−1𝑑𝜏)𝐶𝑝+𝑎(𝑓).                                                      (23)

 

Therefore, by (21), (22) and (23) the following identity holds: 
1

|𝐵(0, 𝑟)|𝑝
∫  
𝐵(0,𝑟)

|𝑡|−𝑎𝑑𝑓(𝑡)𝑑𝑡 = 𝑘1(𝑟) + 𝑘2(𝑟) + 𝑘3(𝑟), 

where 

𝑘1(𝑟) =
1

|𝐵(0, 𝑟)|𝑝
𝑟−𝑎𝑑∫  

𝐵(0,𝑟)

 𝑓(𝑡)𝑑𝑡,                                                                       (24)

𝑘2(𝑟) =
𝑎𝑑|𝐵(0,1)|𝑎

𝑟𝑝𝑑
(∫  

𝑟

0

  𝜏𝑝𝑑−1𝑑𝜏)𝐶𝑝+𝑎(𝑓),                                                         (25)

𝑘3(𝑟) =
𝑎𝑑|𝐵(0,1)|𝑎

𝑟𝑝𝑑
∫  
𝑟

0

  𝜏𝑝𝑑−1 (
1

|𝐵(0, 𝜏)|𝑝+𝑎
∫  
𝐵(0,𝜏)

 𝑓(𝑡)𝑑𝑡 − 𝐶𝑝+𝑎(𝑓))𝑑𝜏  (26)

 

Then by (24) and the assumption we obtain that 

lim
𝑟→∞

 𝑘1(𝑟) = |𝐵(0,1)|
𝑎 lim
𝑟→∞

 
1

|𝐵(0, 𝑟)|𝑝+𝑎
∫  
𝐵(0,𝑟)

𝑓(𝑡)𝑑𝑡 = |𝐵(0,1)|𝑎𝐶𝑝+𝑎(𝑓) 

and from (25), we have 

𝑘2(𝑟) =
𝑎𝑑|𝐵(0,1)|𝑎

𝑟𝑝𝑑
(∫  

𝑟

0

  𝜏𝑝𝑑−1𝑑𝜏)𝐶𝑝+𝑎(𝑓) =
𝑎

𝑝
|𝐵(0,1)|𝑎𝐶𝑝+𝑎(𝑓) 

Also, by the same arguments used for the proof of (18), we prove that lim𝑡→∞  𝑘3(𝑡) = 0. 

Therefore, from the above arguments it follows that 

lim
𝑟→∞

 
1

|𝐵(0, 𝑟)|𝑝
∫  
𝐵(0,𝑟)

  |𝑡|−𝑎𝑑𝑓(𝑡)𝑑𝑡  = lim
𝑟→∞

 (𝑘1(𝑟) + 𝑘2(𝑟) + 𝑘3(𝑟))

 = |𝐵(0,1)|𝑎𝐶𝑝+𝑎(𝑓) +
𝑎

𝑝
|𝐵(0,1)|𝑎𝐶𝑝+𝑎(𝑓)

 =
𝑝 + 𝑎

𝑝
|𝐵(0, 𝑟)|𝑎𝐶𝑝+𝑎(𝑓)

 

which is the desired result. 
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By reducing from continuous to discrete case, we show how, from the previous 

theorems, one can obtain the corresponding statements for sequences. 

Sequences of complex numbers, i.e. elements of ℂ∞, are identified with functions in 𝐿1(ℝ) 
which are constant in the intervals [𝑘, 𝑘 + 1)(𝑘 ∈ ℤ). We define the embedding 𝑐: ℂ∞ ∋

𝑎 ↦ 𝑐𝑎 ∈ 𝐿loc 

1 (ℝ) by 

𝑐𝑎(𝑡): = {
𝑎𝑛, 𝑛 ∈ ℕ, 𝑡 ∈ [𝑛, 𝑛 + 1),
0, 𝑡 < 1.

 

The action of the functionals �̃�𝑝 on ℂ∞ is defined by 

�̃�𝑝(𝑎):= 2
𝑝𝐶𝑝(𝑐𝑎): = lim

𝑛→+∞
 
1

𝑛𝑝
∑ 

𝑛

𝑘=1

 𝑎𝑘

Dom (�̃�𝑝):= {𝑎 ∈ ℂ
∞: lim

𝑛→∞
 
1

𝑛𝑝
∑ 

𝑛

𝑘=1

 𝑎(𝑘) exists in ℂ}

 

Then clearly for any 𝑝 ≥ 0, 

𝑎 ∈ Dom (�̃�𝑝) ⇔ 𝑐𝑎 ∈ Dom (𝐶𝑝) 

Let 𝑄 be the locally integrable function on ℝ defined by 

𝑄(𝑡) = {

[|𝑡|]

|𝑡|
, 𝑡 ≥ 1

0, 𝑡 < 1

 

where [|𝑡|] is the largest integer smaller than |𝑡|. For our convenience, we understand that 

∞ ⋅ 0 = 0. 

Lemma (6.1.6)[314]: Let 𝑎 ∈ Dom (�̃�𝑝). Then for any 𝛽 ∈ ℝ, it holds that 

lim
𝑟→∞

 
1

𝑟𝑝
∫  
𝑟

1

[(
[|𝑡|]

|𝑡|
)

𝛽

− 1] 𝑐𝑎(𝑡)𝑑𝑡 = 0 

Proof. Let 𝛽 ∈ ℝ be given. Then we obtain that 

lim
𝑟→∞

 
1

𝑟𝑝
∫  
𝑟

1

  [(
[|𝑡|]

|𝑡|
)
𝛽

− 1] 𝑐𝑎(𝑡)𝑑𝑡 = lim
𝑟→∞

 
1

𝑟𝑝
∑  

[𝑟]−1

𝑘=1

 𝑎𝑘 (∫  
𝑘+1

𝑘

  [(
𝑘

𝑡
)
𝛽

− 1]𝑑𝑡)

+lim
𝑟→∞

 
𝑎[𝑟]

𝑟𝑝
∫  
𝑟

[𝑟]

  [(
[𝑟]

𝑡
)

𝛽

− 1]𝑑𝑡

             (27) 

Then we can easily see that the second term of the right hand side of (27) is zero and the 

first term of the right hand side of (27) coincides with the following: 

lim
𝑁→∞

 
1

𝑁𝑝
∑ 

𝑁

𝑘=1

𝑎𝑘𝑏𝑘 ,  𝑏𝑘 = ∫  
𝑘+1

𝑘

[(
𝑘

𝑡
)
𝛽

− 1]𝑑𝑡 

Therefore, we have 

lim
𝑟→∞

 
1

𝑟𝑝
∫  
𝑟

1

[(
[|𝑡|]

|𝑡|
)

𝛽

− 1] 𝑐𝑎(𝑡)𝑑𝑡 = lim
𝑁→∞

 
1

𝑁𝑝
∑ 

𝑁

𝑘=1

𝑎𝑘𝑏𝑘          (28) 

Then the Abel identity implies that 
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lim
𝑁→∞

 
1

𝑁𝑝
∑ 

𝑁

𝑘=1

 𝑎𝑘𝑏𝑘  = lim
𝑁→∞

 
1

𝑁𝑝
(∑  

𝑘≤𝑁

 𝑎𝑘)𝑏𝑁 − lim
𝑁→∞

 
1

𝑁𝑝
∑  

𝑘≤𝑁−1

  (𝑏𝑘+1 − 𝑏𝑘) (∑  

𝑟≤𝑘

 𝑎𝑟)

 = − lim
𝑁→∞

 
1

𝑁𝑝
∑  

𝑘≤𝑁−1

  (𝑏𝑘+1 − 𝑏𝑘)𝑘
𝑝 (

1

𝑘𝑝
∑ 

𝑟≤𝑘

 𝑎𝑟)

 

On the other hand, by direct computation we can prove that lim𝑘→∞  𝑘(𝑏𝑘+1 − 𝑏𝑘) = 0. Let 

{𝑑𝑛}𝑛=1
∞  be a sequence given by 

𝑑𝑛 = −𝑛(𝑏𝑛+1 − 𝑏𝑛) (
1

𝑛𝑝
∑ 

𝑟≤𝑛

 𝑎𝑟) ,  𝑛 ∈ ℕ 

Then we have lim𝑛→∞  𝑑𝑛 = 0�̃�𝑝(𝑎) = 0, i.e., for any 𝜖 > 0 there exists a number 𝑁0 such 

that |𝑑𝑛| < 𝜖 if 𝑛 ≥ 𝑁0. Using this sequence (28) is represented as follows: 

lim
𝑟→∞

 
1

𝑟𝑝
∫  
𝑟

1

  [(
[|𝑡|]

|𝑡|
)

𝛽

− 1] 𝑐𝑎(𝑡)𝑑𝑡  = lim
𝑁→∞

 
1

𝑁𝑝
∑ 

𝑁

𝑘=1

 𝑎𝑘𝑏𝑘

 = − lim
𝑁→∞

 
1

𝑁𝑝
∑  

𝑘≤𝑁−1

  (𝑏𝑘+1 − 𝑏𝑘)𝑘
𝑝 (

1

𝑘𝑝
∑ 

𝑟≤𝑘

 𝑎𝑟)

 = lim
𝑁→∞

 
1

𝑁𝑝
∑  

𝑘≤𝑁−1

 𝑘𝑝−1𝑑𝑘

 

Therefore we obtain that 

| lim
𝑟→∞

 
1

𝑟𝑝
∫  
𝑟

1

  [(
[|𝑡|]

|𝑡|
)
𝛽

− 1] 𝑐𝑎(𝑡)𝑑𝑡| ≤ lim
𝑁→∞

 
1

𝑁𝑝
∑  

𝑘≤𝑁−1

 𝑘𝑝−1|𝑑𝑘|

= lim
𝑁→∞

 
1

𝑁𝑝
∑  

𝑁0−1

𝑘=0

 𝑘𝑝−1|𝑑𝑘| + lim
𝑁→∞

 
1

𝑁𝑝
∑  

𝑁−1

𝑘=𝑁0

 𝑘𝑝−1|𝑑𝑘| ≤ lim
𝑁→∞

 
1

𝑁𝑝
∑  

𝑁−1

𝑘=𝑁0

 𝑘𝑝−1|𝑑𝑘| ≤ 𝐶𝜖

 

with a constant 𝐶 independent on 𝑁. Since 𝜖 is arbitrary, this gives the proof of the assertion. 

Lemma (6.1.7)[314]: Let 𝑎 ∈ Dom (�̃�𝑝). Then for any 𝛽 ∈ ℝ,𝑄𝛽𝑐𝑎 ∈ Dom (𝐶𝑝) and 

𝐶𝑝(𝑄
𝛽𝑐𝑎) = 𝐶𝑝(𝑐𝑎) = 2

−𝑝�̃�𝑝(𝑎). 

Proof. For given 𝛽 ∈ ℝ, by applying Lemma (6.1.6), we obtain that 

𝐶𝑝(𝑄
𝛽𝑐𝑎)  = lim

𝑟→∞
 

1

|𝐵(0, 𝑟)|𝑝
∫  
𝐵(0,𝑟)

 (
[|𝑡|]

|𝑡|
)

𝛽

𝑐𝑎(𝑡)𝑑𝑡

 = lim
𝑟→∞

 
1

|𝐵(0, 𝑟)|𝑝
∫  
𝐵(0,𝑟)

  [(
[|𝑡|]

|𝑡|
)

𝛽

− 1] 𝑐𝑎(𝑡)𝑑𝑡 + 𝐶𝑝(𝑐𝑎)

 = 𝐶𝑝(𝑐𝑎)

 

which gives the proof. 

Denote 𝑞 the identity function on ℝ, 𝑞(𝑡) = 𝑡 for any 𝑡 ∈ ℝ. 

Lemma (6.1.8)[314]: Let 𝑎 ∈ Dom (�̃�𝑝) and 𝛽 ∈ ℝ. Then |𝑞|𝛽𝑄𝛽𝑐𝑎 ∈ Dom (𝐶𝑝) and 

𝐶𝑝(|𝑞|
𝛽𝑄𝛽𝑐𝑎) = 2

−𝑝�̃�𝑝 (𝑞𝑑
𝛽
𝑎) 

where 𝑞𝑑 is the discretization of the multiplication operator 𝑞, i.e., (𝑞𝑑
𝛽
𝑎) (𝑛) = 𝑛𝛽𝑎𝑛 for 

𝑎 ∈ ℂ∞. 



249 

Proof. We obtain that 

𝐶𝑝(|𝑞|
𝛽𝑄𝛽𝑐𝑎)  = lim

𝑟→∞
 
1

(2𝑟)𝑝
∫  
𝑟

−𝑟

  |𝑞|(𝑡)𝛽𝑄(𝑡)𝛽𝑐𝑎(𝑡)𝑑𝑡

 = lim
𝑟→∞

 
1

(2𝑟)𝑝
∫  
𝑟

−𝑟

  |𝑡|𝛽 (
[|𝑡|]

|𝑡|
)

𝛽

𝑐𝑎(𝑡)𝑑𝑡

 = lim
𝑛→∞

 
1

(2𝑛)𝑝
∫  
𝑛

1

  [|𝑡|]𝛽𝑐𝑎(𝑡)𝑑𝑡

 = 2−𝑝 lim
𝑛→∞

 
1

𝑛𝑝
∑ 

𝑛

𝑘=1

 𝑘𝛽𝑎𝑘

 = 2−𝑝�̃�𝑝 (𝑞𝑑
𝛽
𝑎)

 

which implies the proof. 

By Lemma (6.1.7), the continuous higher order Cesàro theorem reduces the higher order 

Cesàro theorem for sequences. Then the following theorems follow from Theorems (6.1.4) 

and (6.1.5). 
Theorem (6.1.9)[314]: ([324], [319]) Let the sequence 𝑎 = (𝑎𝑛)𝑛=1

∞ ∈ ℂ∞ be such that, for 

some 𝑝 > 0 the limit 

lim
𝑁→∞

 
1

𝑁𝑝
∑ 

𝑁

𝑛=1

𝑎𝑛 =:𝐶𝑝(𝑎) 

exists. Then for each 𝛼 ∈ ℝ+, one has 

lim
𝑁→∞

 
1

𝑁𝑝+𝛼
∑ 

𝑁

𝑛=1

𝑛𝛼𝑎𝑛 =
𝑝

𝑝 + 𝛼
𝐶𝑝(𝑎) 

in the sense that the limit on the left hand side exists and the equality holds. 

Theorem (6.1.10)[314]: ([324],[319]) Let 𝑝 > 0, 𝛼 ≥ 0 and let 𝑎 = (𝑎𝑛)𝑛=1
∞  be a sequence 

in ℂ∞ such that the limit 

lim
𝑁→∞

 
1

𝑁𝑝+𝛼
∑ 

𝑁

𝑛=1

𝑎𝑛 =:𝐶𝑝+𝛼(𝑎) 

exists. Then 

lim
𝑁→∞

 
1

𝑁𝑝
∑  

𝑁

𝑛=1

𝑛−𝛼𝑎𝑛 =
𝑝 + 𝛼

𝑝
𝐶𝑝+𝛼(𝑎). 

Corollary (6.1.11)[350]: (See [314]). Let 𝑔𝑚 ∈ 𝐿loc
1 (ℝ𝑑) be such that the limit 

lim
|𝑡|→∞

∑ 

𝑚

 
𝑔𝑚(𝑡)

(1 + |𝑡|2)(1+𝜖)𝑑
= lim
|𝑡|→∞

 ∑  

𝑚

𝑔𝑚(𝑡)

|𝑡|2(1+𝜖)𝑑
= 𝐶𝑚                    (29) 

exists for some 𝜖 ≥ −1. Then: 

𝐶3+2𝜖
𝑚 (𝑔𝑚) =

1

|𝐵(0,1)|2(1+𝜖)
𝐶𝑚

(3 + 2𝜖)
                              (30) 

in the sense that the left hand side exists and is equal to the right hand side. 

Proof. It is clear that the two limits in (29) are equal in the sense that, one exists if and only 

if the other one does and in this case equality holds. Assumption (29) implies that, for any 

𝜖 > 0, there exists 1 + 𝜖 ∈ ℝ+such that, if |𝑡| ≥ 1 + 𝜖, then 
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𝐶𝑚 − 𝜖 ≤∑ 

𝑚

𝑔𝑚(𝑡)

|𝑡|2(1+𝜖)𝑑
≤ 𝐶𝑚 + 𝜖  or equivalently  (𝐶𝑚 − 𝜖)|𝑡|

2(1+𝜖)𝑑 ≤∑ 

𝑚

𝑔𝑚(𝑡)

≤ (𝐶𝑚 + 𝜖)|𝑡|
2(1+𝜖)𝑑 

Therefore, for all 𝜖 > 0 we obtain that 

(𝐶𝑚 − 𝜖)
1

|𝐵(0,1 + 2𝜖)|3+2𝜖
∫  
𝐵(0,1+2𝜖)∖𝐵(0,1+𝜖)

  |𝑡|2(1+𝜖)𝑑𝑑𝑡 

 ≤
1

|𝐵(0,1 + 2𝜖)|3+2𝜖
∫  
𝐵(0,1+2𝜖)∖𝐵(0,1+𝜖)

 ∑  

𝑚

𝑔𝑚(𝑡)𝑑𝑡

 ≤ (𝐶𝑚 + 𝜖)
1

|𝐵(0,1 + 2𝜖)|3+2𝜖
∫  
𝐵(0,1+2𝜖)∖𝐵(0,1+𝜖)

  |𝑡|2(1+𝜖)𝑑𝑑𝑡         (31)

 

Clearly 
1

|𝐵(0,1 + 2𝜖)|3+2𝜖
∫  
𝐵(0,1+𝜖)

|𝑡|2(1+𝜖)𝑑𝑑𝑡 ≤
1

|𝐵(0,1 + 2𝜖)|3+2𝜖
(1 + 𝜖) 

2(1+𝜖)𝑑∫  
𝐵(0,1+𝜖)

𝑑𝑡

=
(1 + 𝜖) 

2(1+𝜖)𝑑|𝐵(0,1 + 𝜖)|

|𝐵(0,1 + 2𝜖)|3+2𝜖
 

which tends to 0 as 𝜖 → ∞. Put 

𝑐𝜖(1 + 2𝜖):=
1

|𝐵(0,1 + 2𝜖)|3+2𝜖
∫  
𝐵(0,1+𝜖)

|𝑡|2(1+𝜖)𝑑𝑑𝑡 

Then from the known formula: 

|𝐵(0,1 + 2𝜖)| =
𝜋𝑑/2(1 + 2𝜖)𝑑

Γ (
𝑑
2
+ 1)

= |𝐵(0,1)|(1 + 2𝜖)𝑑 

we obtain that 
1

|𝐵(0,1 + 2𝜖)|3+2𝜖
∫  
𝐵(0,1+2𝜖)∖𝐵(0,1+𝜖)

  |𝑡|2(1+𝜖)𝑑𝑑𝑡

=
1

|𝐵(0,1)|3+2𝜖
1

(1 + 2𝜖)(3+2𝜖)𝑑
∫  
𝐵(0,1+2𝜖)∖𝐵(0,1+𝜖)

  |𝑡|2(1+𝜖)𝑑𝑑𝑡

=
1

|𝐵(0,1)|3+2𝜖
1

(1 + 2𝜖)(3+2𝜖)𝑑
∫  
𝐵(0,1+2𝜖)

  |𝑡|2(1+𝜖)𝑑𝑑𝑡 − 𝑐𝜖(1 + 2𝜖)  

=
𝑑

|𝐵(0,1)|2(1+𝜖)
1

(1 + 2𝜖)(3+2𝜖)𝑑
∫  
1+2𝜖

0

  𝑠𝑑−1𝑠2(1+𝜖)𝑑𝑑𝑠 − 𝑐𝜖(1 + 2𝜖) 

which implies that 
1

|𝐵(0,1 + 2𝜖)|3+2𝜖
∫  
𝐵(0,1+2𝜖)∖𝐵(0,1+𝜖)

|𝑡|2(1+𝜖)𝑑𝑑𝑡

=
1

|𝐵(0,1)|2(1+𝜖)
1

(3 + 2𝜖)
− 𝑐𝜖(1 + 2𝜖) 

From this it follows that, since lim𝜖→∞  𝑐𝜖(1 + 2𝜖) = 0, by taking limit as 𝜖 → ∞ in (31), 
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(𝐶𝑚 − 𝜖)
1

|𝐵(0,1)|2(1+𝜖)
1

(3 + 2𝜖)

≤ lim inf
𝜖→∞

 
1

|𝐵(0,1 + 2𝜖)|3+2𝜖
∫  
𝐵(0,1+2𝜖)∖𝐵(0,1+𝜖)

∑ 

𝑚

 𝑔𝑚(𝑡)𝑑𝑡

≤ lim sup
𝜖→∞

 
1

|𝐵(0,1 + 2𝜖)|3+2𝜖
∫  
𝐵(0,1+2𝜖)∖𝐵(0,1+𝜖)

∑ 

𝑚

 𝑔𝑚(𝑡)𝑑𝑡

≤ (𝐶𝑚 + 𝜖)
1

|𝐵(0,1)|2(1+𝜖)
1

(3 + 2𝜖)
 

Since 𝜖 > 0 is arbitrary and lim𝜖→∞  
1

√𝐵(0,1+2𝜖)|3+2𝜖
∫
𝐵(0,1+𝜖)

 ∑  𝑚 𝑔𝑚(𝑡)𝑑𝑡 = 0, it follows 

that 

lim
𝜖→∞

 
1

|𝐵(0,1 + 2𝜖)|3+2𝜖
∫  
𝐵(0,1+2𝜖)

∑ 

𝑚

𝑔𝑚(𝑡)𝑑𝑡 =
1

|𝐵(0,1)|2(1+𝜖)
𝐶𝑚

(3 + 2𝜖)
 

in the sense that the limit on the left hand side exists and the identity holds. This proves (30). 

By taking 𝜖 = −1 in Corollary (6.1.11), we have the following multi-dimensional 

continuous Cesàro theorem (see [314]). 

Corollary (6.1.12)[250]: (See [314]). If, for some 1 + 𝜖 ∈ ℝ+and some 𝑔𝑚 ∈ 𝐿loc
1 (ℝ𝑑), 

the limit 

lim
𝜖→∞

 
1

|𝐵(0,1 + 2𝜖)|1+𝜖
∫  
𝐵(0,1+2𝜖)

∑ 

𝑚

𝑔𝑚(𝑡)𝑑𝑡 =∑ 

𝑚

𝐶1+𝜖
𝑚 (𝑔𝑚)                           (32) 

exists in ℂ, then for any 𝑎 ∈ ℝ+
∗ = ℝ+ ∖ {0}, it holds that 

lim
𝜖→∞

 
1

|𝐵(0,1 + 2𝜖)|1+𝜖+𝑎
∫  
𝐵(0,1+2𝜖)

∑ 

𝑚

|𝑡|𝑎𝑑𝑔𝑚(𝑡)𝑑𝑡

=
1

|𝐵(0,1)|𝑎
1 + 𝜖

1 + 𝜖 + 𝑎
∑ 

𝑚

𝐶1+𝜖
𝑚 (𝑔𝑚)                                       (33) 

in the sense that the limit exists and the equality holds. 

Proof. Let 𝑔𝑚 ∈ Dom (𝐶1+𝜖
𝑚 ) and 1 + 𝜖 ∈ ℝ+. If 𝜖 ≥ 0, for some 𝑅 > 0 we consider the 

function 

𝑔𝑅
𝑚(𝑡) = {

𝑔𝑚(𝑡)  if |𝑡| ≥ 𝑅,

0  if |𝑡| < 𝑅.
 

If 𝜖 = −1 we regard 𝑔𝑅
𝑚(𝑡) as 𝑔𝑚(𝑡). Then we can check that 𝑔𝑅

𝑚 ∈ 𝐿
loc 

1 (ℝ𝑑), 𝐶1+𝜖
𝑚 (𝑔𝑚) =

𝐶1+𝜖
𝑚 (𝑔𝑅

𝑚) and 

lim
𝜖→∞

 
1

|𝐵(0,1 + 2𝜖)|1+𝜖+𝑎
∫  
𝐵(0,1+2𝜖)

∑ 

𝑚

|𝑡|𝑎𝑑𝑔𝑚(𝑡)𝑑𝑡

= lim
𝜖→∞

 
1

|𝐵(0,1 + 2𝜖)|1+𝜖+𝑎
∫  
𝐵(0,1+2𝜖)

∑ 

𝑚

|𝑡|𝑎𝑑𝑔𝑅
𝑚(𝑡)𝑑𝑡 

in the sense that, if there exists one side of the equality, then there exists another side. 

Therefore we may prove (33) for 𝑔𝑅
𝑚. We also have 
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1

|𝐵(0,1 + 2𝜖)|1+𝜖+𝑎
∫  
𝐵(0,1+2𝜖)

 ∑  

𝑚

|𝑡|𝑎𝑑𝑔𝑅
𝑚(𝑡)𝑑𝑡

=
1

|𝐵(0,1 + 2𝜖)|1+𝜖+𝑎
(1 + 2𝜖)𝑎𝑑∫  

𝐵(0,1+2𝜖)

∑ 

𝑚

𝑔𝑅
𝑚(𝑡)𝑑𝑡

−
1

|𝐵(0,1 + 2𝜖)|1+𝜖+𝑎
∫  
𝐵(0,1+2𝜖)

∑ 

𝑚

((1 + 2𝜖)𝑎𝑑 − |𝑡|𝑎𝑑)𝑔𝑅
𝑚(𝑡)𝑑𝑡  (34) 

On the one hand, by using the identity |𝐵(0,1 + 2𝜖)| = |𝐵(0,1)|(1 + 2𝜖)𝑑, we obtain that 
1

|𝐵(0,1 + 2𝜖)|1+𝜖+𝑎
(1 + 2𝜖)𝑎𝑑∫  

𝐵(0,1+2𝜖)

∑ 

𝑚

𝑔𝑅
𝑚(𝑡)𝑑𝑡

=
1

|𝐵(0,1)|1+𝜖+𝑎(1 + 2𝜖)(1+𝜖)𝑑
∫  
𝐵(0,1+2𝜖)

∑ 

𝑚

𝑔𝑅
𝑚(𝑡)𝑑𝑡

=
1

|𝐵(0,1)|𝑎
1

|𝐵(0,1 + 2𝜖)|1+𝜖
∫  
𝐵(0,1+2𝜖)

∑ 

𝑚

𝑔𝑅
𝑚(𝑡)𝑑𝑡 

and assumption (33) implies that the limit of the right hand side for 𝜖 → ∞ exists and is 

equal to 
1

|𝐵(0,1)|𝑎
𝐶1+𝜖
𝑚 (𝑔𝑅

𝑚)                                                      (35) 

On the other hand, in the second term of the difference in (34), by using 𝑑-dimensional 

spherical coordinate representation, we have 

∫  
𝐵(0,1+2𝜖)

∑ 

𝑚

((1 + 2𝜖)𝑎𝑑 − |𝑡|𝑎𝑑)𝑔𝑅
𝑚(𝑡)𝑑𝑡

= ∫  
1+2𝜖

0

∑ 

𝑚

((1 + 2𝜖)𝑎𝑑 − 𝑠𝑎𝑑)𝑠𝑑−1 (∫  
Θ

  �̂�𝑅
𝑚(𝑠, �̂�)𝑑�̂�) 𝑑𝑠 

for some function �̂�𝑅
𝑚 induced by 𝑔𝑅

𝑚 via 𝑑-dimensional spherical coordinate representation, 

where Θ = [0, 𝜋]𝑑−2 × [0,2𝜋]. Then, by using the identity |𝐵(0,1 + 2𝜖)| = |𝐵(0,1)|(1 +
2𝜖)𝑑 again, we obtain that 

1

|𝐵(0,1 + 2𝜖)|1+𝜖+𝑎
∫  
𝐵(0,1+2𝜖)

∑ 

𝑚

((1 + 2𝜖)𝑎𝑑 − |𝑡|𝑎𝑑)𝑔𝑅
𝑚(𝑡)𝑑𝑡

=
1

|𝐵(0,1)|1+𝜖+𝑎(1 + 2𝜖)(1+𝜖+𝑎)𝑑
∫  
1+2𝜖

0

∑ 

𝑚

((1 + 2𝜖)𝑎𝑑 − 𝑠𝑎𝑑)𝑠𝑑−1 (∫  
Θ

  �̂�𝑅
𝑚(𝑠, �̂�)𝑑�̂�) 𝑑𝑠

=
𝑎𝑑

|𝐵(0,1)|1+𝜖+𝑎(1 + 2𝜖)(1+𝜖+𝑎)𝑑
∫  
1+2𝜖

0

∑ 

𝑚

𝑠𝑑−1 (∫  
1+2𝜖

0

  𝜏𝑎𝑑−1𝑑𝜏)(∫  
Θ

  �̂�𝑅
𝑚(𝑠, �̂�)𝑑�̂�) 𝑑𝑠 

=
𝑎𝑑

|𝐵(0,1)|1+𝜖+𝑎(1 + 2𝜖)(1+𝜖+𝑎)𝑑
∫  
1+2𝜖

0

  [∫  
𝜏

0

  𝑠𝑑−1 (∫  
Θ

∑ 

𝑚

  �̂�𝑅
𝑚(𝑠, �̂�)𝑑�̂�) 𝑑𝑠] 𝜏𝑎𝑑−1𝑑𝜏    (36) 

which becomes 
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=
𝑎𝑑

|𝐵(0,1)|𝑎(1 + 2𝜖)(1+𝜖+𝑎)𝑑
∫  
1+2𝜖

0

∑ 

𝑚

𝜏(1+𝜖)𝑑+𝑎𝑑−1 (
1

|𝐵(0,1)|1+𝜖𝜏(1+𝜖)𝑑
∫  
𝐵(0,𝜏)

 𝑔𝑅
𝑚(𝑡)𝑑𝑡)𝑑𝜏

=
𝑎𝑑

|𝐵(0,1)|𝑎(1 + 2𝜖)(1+𝜖+𝑎)𝑑
∫  
1+2𝜖

0

 ∑  

𝑚

𝜏(1+𝜖)𝑑+𝑎𝑑−1 (
1

|𝐵(0, 𝜏)|1+𝜖
∫  
𝐵(0,𝜏)

 𝑔𝑅
𝑚(𝑡)𝑑𝑡)𝑑𝜏

=
𝑎𝑑

|𝐵(0,1)|𝑎(1 + 2𝜖)(1+𝜖+𝑎)𝑑
∫  
1+2𝜖

0

 ∑  

𝑚

𝜏(1+𝜖)𝑑+𝑎𝑑−1 (
1

|𝐵(0, 𝜏)|1+𝜖
∫  
𝐵(0,𝜏)

 𝑔𝑅
𝑚(𝑡)𝑑𝑡

− 𝐶1+𝜖
𝑚 (𝑔𝑅

𝑚)) 𝑑𝜏 +
𝑎𝑑

|𝐵(0,1)|𝑎(1 + 2𝜖)(1+𝜖+𝑎)𝑑
(∫  

1+2𝜖

0

∑ 

𝑚

  𝜏(1+𝜖)𝑑+𝑎𝑑−1𝑑𝜏)𝐶1+𝜖
𝑚 (𝑔𝑅

𝑚)      (37) 

The second term of (37) is equal to 
𝑎𝑑

|𝐵(0,1)|𝑎(1 + 2𝜖)(1+𝜖+𝑎)𝑑
1

(1 + 𝜖 + 𝑎)𝑑
(1 + 2𝜖)(1+𝜖)𝑑+𝑎𝑑∑ 

𝑚

𝐶1+𝜖
𝑚 (𝑔𝑅

𝑚)

=
1

|𝐵(0,1)|𝑎
𝑎

1 + 𝜖 + 𝑎
∑ 

𝑚

𝐶1+𝜖
𝑚 (𝑔𝑅

𝑚)                                                                                      (38) 

and the first term of (37) is majorized, in modulus, by 

𝑎𝑑

|𝐵(0,1)|𝑎(1 + 2𝜖)(1+𝜖+𝑎)𝑑
∫  
1+2𝜖

0

𝜏(1+𝜖+𝑎)𝑑−1 |
1

|𝐵(0, 𝜏)|1+𝜖
∫  
𝐵(0,𝜏)

∑ 

𝑚

  (𝑔𝑅
𝑚(𝑡)𝑑𝑡

− 𝐶1+𝜖
𝑚 (𝑔𝑅

𝑚))| 𝑑𝜏                                                                                                   (39) 

Let 𝜀 > 0 be given. Then since by assumption 

lim
𝜏→∞

  |
1

|𝐵(0, 𝜏)|1+𝜖
∫  
𝐵(0,𝜏)

 ∑  

𝑚

(𝑔𝑅
𝑚(𝑡)𝑑𝑡 − 𝐶1+𝜖

𝑚 (𝑔𝑅
𝑚))| = 0 

there exists 𝑡𝜀 such that, for any 𝜏 ≥ 𝑡𝜀 

|
1

|𝐵(0, 𝜏)|1+𝜖
∫  
𝐵(0,𝜏)

∑ 

𝑚

  (𝑔𝑅
𝑚(𝑡)𝑑𝑡 − 𝐶1+𝜖

𝑚 (𝑔𝑅
𝑚))| ≤ 𝜀 

Moreover, since 𝑔𝑅
𝑚 is locally integrable, the map 

𝜏 ∈ ℝ+⟼
1

|𝐵(0, 𝜏)|1+𝜖
∫  
𝐵(0,𝜏)

∑ 

𝑚

𝑔𝑅
𝑚(𝑡)𝑑𝑡 

is continuous, therefore there exists a constant 𝐶𝑚 > 0 such that for all 𝜏 ≤ 𝑡𝜀 

|
1

|𝐵(0, 𝜏)|1+𝜖
∫  
𝐵(0,𝜏)

∑ 

𝑚

( 𝑔𝑅
𝑚(𝑡)𝑑𝑡 − 𝐶1+𝜖

𝑚 (𝑔𝑅
𝑚))| ≤ 𝐶𝑚 

Therefore, by splitting the integral in 𝜏 in (39) into the two pieces, (39) is majorized by 
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𝑎𝑑

|𝐵(0,1)|𝑎(1 + 2𝜖)(1+𝜖+𝑎)𝑑
(𝐶𝑚∫  

𝑡𝜀

0

  𝜏(1+𝜖+𝑎)𝑑−1𝑑𝜏 + 𝜀∫  
1+2𝜖

𝑡𝜀

  𝜏(1+𝜖+𝑎)𝑑−1𝑑𝜏)

≤
𝑎𝑑

|𝐵(0,1)|𝑎
(

1

(1 + 𝜖 + 𝑎)𝑑
(

𝑡𝜀
1 + 2𝜖

)
(1+𝜖+𝑎)𝑑

𝐶𝑚

+ 𝜀
1

(1 + 2𝜖)(1+𝜖+𝑎)𝑑
∫  
1+2𝜖

0

  𝜏(1+𝜖+𝑎)𝑑−1𝑑𝜏)

≤
𝑎

|𝐵(0,1)|𝑎(1 + 𝜖 + 𝑎)
((

𝑡𝜀
1 + 2𝜖

)
(1+𝜖+𝑎)𝑑

𝐶𝑚 + 𝜀) 

and so 

lim
𝜖→∞

 
𝑎𝑑

|𝐵(0,1)|𝑎(1 + 2𝜖)(1+𝜖+𝑎)𝑑
∫  
1+2𝜖

0

  𝜏(1+𝜖+𝑎)𝑑−1 |
1

|𝐵(0, 𝜏)|1+𝜖
∫  
𝐵(0,𝜏)

∑ 

𝑚

  (𝑔𝑅
𝑚(𝑡)𝑑𝑡

− 𝐶1+𝜖
𝑚 (𝑔𝑅

𝑚))| 𝑑𝜏 ≤ lim
𝜖→∞

 
𝑎

|𝐵(0,1)|𝑎(1 + 𝜖 + 𝑎)
((

𝑡𝜀
1 + 2𝜖

)
(1+𝜖+𝑎)𝑑

𝐶𝑚 + 𝜀)  

≤
𝑎

|𝐵(0,1)|𝑎(1 + 𝜖 + 𝑎)
𝜀 

from which, since 𝜀 > 0 is arbitrary, 

lim
𝜖→∞

 
𝑎𝑑

|𝐵(0,1)|𝑎(1 + 2𝜖)(1+𝜖+𝑎)𝑑
∫  
1+2𝜖

0

𝜏(1+𝜖)𝑑+𝑎𝑑−1(
1

|𝐵(0, 𝜏)|1+𝜖
∫  ∑ 

𝑚𝐵(0,𝜏)

( 𝑔𝑅
𝑚(𝑡)𝑑𝑡

− 𝐶1+𝜖
𝑚 (𝑔𝑅

𝑚)))𝑑𝜏 = 0                                                                                           (40) 

Hence by (36), (37), (38) and (40), we have 

lim
𝜖→∞

 
1

|𝐵(0,1 + 2𝜖)|1+𝜖+𝑎
∫  
𝐵(0,1+2𝜖)

∑ 

𝑚

((1 + 2𝜖)𝑎𝑑 − |𝑡|𝑎𝑑)𝑔𝑅
𝑚(𝑡)𝑑𝑡

=
1

|𝐵(0,1)|𝑎
𝑎

1 + 𝜖 + 𝑎
∑ 

𝑚

𝐶1+𝜖
𝑚 (𝑔𝑅

𝑚). 

Therefore, by (34) and (35), we have 

lim
𝜖→∞

 
1

|𝐵(0,1 + 2𝜖)|1+𝜖+𝑎
∫  
𝐵(0,1+2𝜖)

∑ 

𝑚

  |𝑡|𝑎𝑑𝑔𝑅
𝑚(𝑡)𝑑𝑡 

=
1

|𝐵(0,1)|𝑎
∑ 

𝑚

𝐶1+𝜖
𝑚 (𝑔𝑅

𝑚) −
1

|𝐵(0,1)|𝑎
𝑎

1 + 𝜖 + 𝑎
∑ 

𝑚

𝐶1+𝜖
𝑚 (𝑔𝑅

𝑚)  

=
1

|𝐵(0,1)|𝑎
1 + 𝜖

1 + 𝜖 + 𝑎
∑ 

𝑚

𝐶1+𝜖
𝑚 (𝑔𝑅

𝑚), 

which implies (33) as desired. 

Corollary (6.1.13)[250]: If, for some (1 + 𝜖) ∈ ℝ+
∗ , some a ∈ ℝ+and some 𝑓𝑚 ∈

𝐿
loc 

1 (ℝ𝑑), the limit 

𝐶1+𝜖+𝑎
𝑚 (𝑓𝑚):= lim

𝜖→∞
 

1

|𝐵(0,1 + 2𝜖)|1+𝜖+𝑎
∫  
𝐵(0,1+2𝜖)

∑ 

𝑚

𝑓𝑚(𝑡)𝑑𝑡                                    (41) 
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exists in ℂ and | ⋅ |−𝑎𝑑𝑓𝑚(⋅) ∈ 𝐿loc
1 (ℝ𝑑), then it holds that 

lim
𝜖→∞

 
1

|𝐵(0,1 + 2𝜖)|1+𝜖
∫  
𝐵(0,1+2𝜖)

∑ 

𝑚

|𝑡|−𝑎𝑑𝑓𝑚(𝑡)𝑑𝑡

=
1 + 𝜖 + 𝑎

1 + 𝜖
|𝐵(0,1)|𝑎∑ 

𝑚

𝐶1+𝜖+𝑎
𝑚 (𝑓𝑚)                                             (42) 

in the sense that the limit exists and the equality holds. 

Proof. The proof is similar Let (1 + 𝜖) ∈ ℝ+
∗ , 𝑎 ∈ ℝ+and 𝑓𝑚 ∈ 𝐿

loc 

1 (ℝ𝑑) be such that (41) 

holds. Then we have 
1

|𝐵(0,1 + 2𝜖)|1+𝜖
∫  
𝐵(0,1+2𝜖)

∑ 

𝑚

|𝑡|−𝑎𝑑𝑓𝑚(𝑡)𝑑𝑡

=
1

|𝐵(0,1 + 2𝜖)|1+𝜖
(1 + 2𝜖)−𝑎𝑑∫  

𝐵(0,1+2𝜖)

 ∑  

𝑚

𝑓𝑚(𝑡)𝑑𝑡 

 −
1

|𝐵(0,1 + 2𝜖)|1+𝜖
∫  
𝐵(0,1+2𝜖)

 ∑  

𝑚

((1 + 2𝜖)−𝑎𝑑 − |𝑡|−𝑎𝑑)𝑓𝑚(𝑡)𝑑𝑡(43) 

On the one hand, with the same notations 

−
1

|𝐵(0,1 + 2𝜖)|1+𝜖
∫  
𝐵(0,1+2𝜖)

∑ 

𝑚

  ((1 + 2𝜖)−𝑎𝑑 − |𝑡|−𝑎𝑑)𝑓𝑚(𝑡)𝑑𝑡

= −
1

|𝐵(0,1)|1+𝜖(1 + 2𝜖)(1+𝜖)𝑑
∫  
1+2𝜖

0

 ∑  

𝑚

((1 + 2𝜖)−𝑎𝑑 − 𝑠−𝑎𝑑)𝑠𝑑−1 (∫  
Θ

 𝑓𝑚(𝑠, �̂�)𝑑�̂�) 𝑑𝑠

=
𝑎𝑑

|𝐵(0,1)|1+𝜖(1 + 2𝜖)(1+𝜖)𝑑
∫  
1+2𝜖

0

  𝑠𝑑−1 (∫  
1+2𝜖

𝑠

  𝜏−𝑎𝑑−1𝑑𝜏)(∫  
Θ

∑ 

𝑚

 𝑓𝑚(𝑠, �̂�)𝑑�̂�) 𝑑𝑠

=
𝑎𝑑

|𝐵(0,1)|1+𝜖(1 + 2𝜖)(1+𝜖)𝑑
∫  
1+2𝜖

0

  [∫  
𝜏

0

  𝑠𝑑−1 (∫  
Θ

∑ 

𝑚

 𝑓𝑚(𝑠, �̂�)𝑑�̂�) 𝑑𝑠] 𝜏−𝑎𝑑−1𝑑𝜏 =          (44)

=
𝑎𝑑|𝐵(0,1)|𝑎

(1 + 2𝜖)(1+𝜖)𝑑
∫  
1+2𝜖

0

  𝜏(1+𝜖)𝑑−1 (
1

|𝐵(0, 𝜏)|1+𝜖+𝑎
∫  
𝐵(0,𝜏)

∑ 

𝑚

 𝑓𝑚(𝑡)𝑑𝑡)𝑑𝜏

=
𝑎𝑑|𝐵(0,1)|𝑎

(1 + 2𝜖)(1+𝜖)𝑑
∫  
1+2𝜖

0

  𝜏(1+𝜖)𝑑−1 (
1

|𝐵(0, 𝜏)|1+𝜖+𝑎
∫  
𝐵(0,𝜏)

∑ 

𝑚

( 𝑓𝑚(𝑡)𝑑𝑡 − 𝐶1+𝜖+𝑎
𝑚 (𝑓𝑚)))𝑑𝜏

+
𝑎𝑑|𝐵(0,1)|𝑎

(1 + 2𝜖)(1+𝜖)𝑑
(∫  

1+2𝜖

0

  𝜏(1+𝜖)𝑑−1𝑑𝜏)∑  

𝑚

𝐶1+𝜖+𝑎
𝑚 (𝑓𝑚).                                                              (45)

 

Therefore, by (43), (44) and (45) the following identity holds: 
1

|𝐵(0,1 + 2𝜖)|1+𝜖
∫  
𝐵(0,1+2𝜖)

∑ 

𝑚

|𝑡|−𝑎𝑑𝑓𝑚(𝑡)𝑑𝑡

= 𝑘1(1 + 2𝜖) + 𝑘2(1 + 2𝜖) + 𝑘3(1 + 2𝜖), 
Where 

𝑘1(1 + 2𝜖) =
1

|𝐵(0,1 + 2𝜖)|1+𝜖
(1 + 2𝜖)−𝑎𝑑∫  

𝐵(0,1+2𝜖)

∑ 

𝑚

 𝑓𝑚(𝑡)𝑑𝑡,                 (46) 

𝑘2(1 + 2𝜖) =
𝑎𝑑|𝐵(0,1)|𝑎

(1 + 2𝜖)(1+𝜖)𝑑
(∫  

1+2𝜖

0

  𝜏(1+𝜖)𝑑−1𝑑𝜏)∑ 

𝑚

𝐶1+𝜖+𝑎
𝑚 (𝑓𝑚),                     (47) 
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𝑘3(1 + 2𝜖) =
𝑎𝑑|𝐵(0,1)|𝑎

(1 + 2𝜖)(1+𝜖)𝑑
∫  
1+2𝜖

0

  𝜏(1+𝜖)𝑑−1 (
1

|𝐵(0, 𝜏)|1+𝜖+𝑎
∫  
𝐵(0,𝜏)

∑ 

𝑚

  (𝑓𝑚(𝑡)𝑑𝑡

− 𝐶1+𝜖+𝑎
𝑚 (𝑓𝑚)))𝑑𝜏                                                                                           (48) 

Then by (46) and the assumption we obtain that 

lim
𝜖→∞

 𝑘1(1 + 2𝜖) = |𝐵(0,1)|
𝑎 lim
𝜖→∞

 
1

|𝐵(0,1 + 2𝜖)|1+𝜖+𝑎
∫  
𝐵(0,1+2𝜖)

∑ 

𝑚

𝑓𝑚(𝑡)𝑑𝑡

= |𝐵(0,1)|𝑎∑ 

𝑚

𝐶1+𝜖+𝑎
𝑚 (𝑓𝑚) 

and from (47), we have 

𝑘2(1 + 2𝜖) =
𝑎𝑑|𝐵(0,1)|𝑎

(1 + 2𝜖)(1+𝜖)𝑑
(∫  

1+2𝜖

0

  𝜏(1+𝜖)𝑑−1𝑑𝜏)∑ 

𝑚

𝐶1+𝜖+𝑎
𝑚 (𝑓𝑚)

=
𝑎

1 + 𝜖
|𝐵(0,1)|𝑎∑ 

𝑚

𝐶1+𝜖+𝑎
𝑚 (𝑓𝑚) 

Also, by the same arguments used for the proof of (40), we prove that lim𝑡→∞  𝑘3(𝑡) = 0. 

Therefore, from the above arguments it follows that 

lim
𝜖→∞

 
1

|𝐵(0,1 + 2𝜖)|1+𝜖
∫  
𝐵(0,1+2𝜖)

 ∑  

𝑚

|𝑡|−𝑎𝑑𝑓𝑚(𝑡)𝑑𝑡

= lim
𝜖→∞

 (𝑘1(1 + 2𝜖) + 𝑘2(1 + 2𝜖) + 𝑘3(1 + 2𝜖))  

= |𝐵(0,1)|𝑎∑ 

𝑚

𝐶1+𝜖+𝑎
𝑚 (𝑓𝑚) +

𝑎

1 + 𝜖
|𝐵(0,1)|𝑎∑ 

𝑚

𝐶1+𝜖+𝑎
𝑚 (𝑓𝑚)  

=
1 + 𝜖 + 𝑎

1 + 𝜖
|𝐵(0,1 + 2𝜖)|𝑎∑ 

𝑚

𝐶1+𝜖+𝑎
𝑚 (𝑓𝑚) 

which is the desired result. 

Corollary (6.1.14)[250]: (See [314]). Let 𝑎𝑚 ∈ Dom (�̃�1+𝜖
𝑚 ). Then for any 𝛽 ∈ ℝ, it holds 

that 

lim
𝜖→∞

 
1

(1 + 2𝜖)1+𝜖
∫  
1+2𝜖

1

∑ 

𝑚

[(
[|𝑡|]

|𝑡|
)

𝛽

− 1] 𝑐𝑎𝑚(𝑡)𝑑𝑡 = 0 

Proof. Let 𝛽 ∈ ℝ be given. Then we obtain that 

lim
𝜖→∞

 
1

(1 + 2𝜖)1+𝜖
∫  
1+2𝜖

1

 ∑  

𝑚

[(
[|𝑡|]

|𝑡|
)

𝛽

− 1] 𝑐𝑎𝑚(𝑡)𝑑𝑡

= lim
𝜖→∞

 
1

(1 + 2𝜖)1+𝜖
∑  

[1+2𝜖]−1

𝑘=1

 ∑  

𝑚

𝑎𝑘
𝑚 (∫  

𝑘+1

𝑘

  [(
𝑘

𝑡
)
𝛽

− 1]𝑑𝑡)

+ lim
𝜖→∞

∑ 

𝑚

 
𝑎[1+2𝜖]
𝑚

(1 + 2𝜖)1+𝜖
∫  
1+2𝜖

[1+2𝜖]

  [(
[1 + 2𝜖]

𝑡
)

𝛽

− 1]𝑑𝑡                     (49) 

Then we can easily see that the second term of the right hand side of (49) is zero and the 

first term of the right hand side of (49) coincides with the following: 
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lim
𝑁→∞

 
1

𝑁1+𝜖
∑ 

𝑁

𝑘=1

∑ 

𝑚

𝑎𝑘
𝑚𝑏𝑘 ,  𝑏𝑘 = ∫  

𝑘+1

𝑘

[(
𝑘

𝑡
)
𝛽

− 1] 𝑑𝑡 

Therefore, we have 

lim
𝜖→∞

 
1

(1 + 2𝜖)1+𝜖
∫  
1+2𝜖

1

[(
[|𝑡|]

|𝑡|
)

𝛽

− 1] 𝑐𝑎𝑚(𝑡)𝑑𝑡 = lim
𝑁→∞

 
1

𝑁1+𝜖
∑ 

𝑁

𝑘=1

∑ 

𝑚

𝑎𝑘
𝑚𝑏𝑘          (50) 

Then the Abel identity implies that 

lim
𝑁→∞

 
1

𝑁1+𝜖
∑ 

𝑁

𝑘=1

 ∑  

𝑚

𝑎𝑘
𝑚𝑏𝑘  

= lim
𝑁→∞

 
1

𝑁1+𝜖
(∑  

𝑘≤𝑁

∑ 

𝑚

 𝑎𝑘
𝑚)𝑏𝑁

− lim
𝑁→∞

 
1

𝑁1+𝜖
∑  

𝑘≤𝑁−1

  (𝑏𝑘+1 − 𝑏𝑘) ( ∑  

1+2𝜖≤𝑘

∑ 

𝑚

 𝑎1+2𝜖
𝑚 )

= − lim
𝑁→∞

 
1

𝑁1+𝜖
∑  

𝑘≤𝑁−1

  (𝑏𝑘+1 − 𝑏𝑘)𝑘
1+𝜖 (

1

𝑘1+𝜖
∑  

1+2𝜖≤𝑘

∑ 

𝑚

 𝑎1+2𝜖
𝑚 ) 

On the other hand, by direct computation we can prove that lim𝑘→∞  𝑘(𝑏𝑘+1 − 𝑏𝑘) = 0. Let 
{𝑑𝑛}𝑛=1

∞  be a sequence given by 

𝑑𝑛 = −𝑛(𝑏𝑛+1 − 𝑏𝑛) (
1

𝑛1+𝜖
∑  

1+2𝜖≤𝑛

∑ 

𝑚

 𝑎1+2𝜖
𝑚 ) ,  𝑛 ∈ ℕ 

Then we have lim𝑛→∞  𝑑𝑛 = 0, �̃�1+𝜖
𝑚 (𝑎𝑚) = 0, i.e., for any 𝜖 > 0 there exists a number 𝑁0 

such that |𝑑𝑛| < 𝜖 if 𝑛 ≥ 𝑁0. Using this sequence (50) is represented as follows: 

lim
𝜖→∞

 
1

(1 + 2𝜖)1+𝜖
∫  
1+2𝜖

1

∑ 

𝑚

  [(
[|𝑡|]

|𝑡|
)

𝛽

− 1] 𝑐𝑎𝑚(𝑡)𝑑𝑡 = lim
𝑁→∞

 
1

𝑁1+𝜖
∑ 

𝑁

𝑘=1

 ∑  

𝑚

𝑎𝑘
𝑚𝑏𝑘

= − lim
𝑁→∞

 
1

𝑁1+𝜖
∑  

𝑘≤𝑁−1

  (𝑏𝑘+1 − 𝑏𝑘)𝑘
1+𝜖 (

1

𝑘1+𝜖
∑  

1+2𝜖≤𝑘

∑ 

𝑚

𝑎1+2𝜖
𝑚 )

= lim
𝑁→∞

 
1

𝑁1+𝜖
∑  

𝑘≤𝑁−1

 𝑘1+𝜖−1𝑑𝑘 

Therefore we obtain that 

| lim
𝜖→∞

 
1

(1 + 2𝜖)1+𝜖
∫  
1+2𝜖

1

 ∑  

𝑚

[(
[|𝑡|]

|𝑡|
)
𝛽

− 1] 𝑐𝑎𝑚(𝑡)𝑑𝑡| ≤ lim
𝑁→∞

 
1

𝑁1+𝜖
∑  

𝑘≤𝑁−1

 𝑘𝜖|𝑑𝑘|

= lim
𝑁→∞

 
1

𝑁1+𝜖
∑  

𝑁0−1

𝑘=0

 𝑘𝜖|𝑑𝑘| + lim
𝑁→∞

 
1

𝑁1+𝜖
∑  

𝑁−1

𝑘=𝑁0

 𝑘𝜖|𝑑𝑘| ≤ lim
𝑁→∞

 
1

𝑁1+𝜖
∑  

𝑁−1

𝑘=𝑁0

 𝑘𝜖|𝑑𝑘| ≤∑ 

𝑚

𝐶𝑚𝜖

 

with a constant 𝐶𝑚 independent on 𝑁. Since 𝜖 is arbitrary, this gives the proof of the 

assertion. 

Corollary (6.1.15)[250]: (See [314]). Let 𝑎𝑚 ∈ Dom (�̃�1+𝜖
𝑚 ). Then for any 𝛽 ∈

ℝ,𝑄𝑚𝛽𝑐𝑎𝑚 ∈ Dom (𝐶1+𝜖
𝑚 ) and 

𝐶1+𝜖
𝑚 (𝑄𝑚𝛽𝑐𝑎𝑚) = 𝐶1+𝜖

𝑚 (𝑐𝑎𝑚) = 2
−(1+𝜖)�̃�1+𝜖

𝑚 (𝑎𝑚). 
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Proof. For given 𝛽 ∈ ℝ, by applying Corollary (6.1.14), we obtain that 

𝐶1+𝜖
𝑚 (𝑄𝑚𝛽𝑐𝑎𝑚) = lim

𝜖→∞
 

1

|𝐵(0,1 + 2𝜖)|1+𝜖
∫  
𝐵(0,1+2𝜖)

∑ 

𝑚

  (
[|𝑡|]

|𝑡|
)
𝛽

𝑐𝑎𝑚(𝑡)𝑑𝑡

= lim
𝜖→∞

1

|𝐵(0,1 + 2𝜖)|1+𝜖
∫  
𝐵(0,1+2𝜖)

∑[(
[|𝑡|]

|𝑡|
)
𝛽

− 1]

𝑚

𝑐𝑎𝑚(𝑡)𝑑𝑡 +∑ 

𝑚

𝐶1+𝜖
𝑚 (𝑐𝑎𝑚)

 = ∑  

𝑚

𝐶1+𝜖
𝑚 (𝑐𝑎𝑚)

 

which gives the proof. 

Denote 𝑞 the identity function on ℝ, 𝑞(𝑡) = 𝑡 for any 𝑡 ∈ ℝ. 

Corollary (6.1.16)[250]: (See [314]). Let 𝑎𝑚 ∈ Dom (�̃�1+𝜖
𝑚 ) and 𝛽 ∈ ℝ. Then 

|𝑞|𝛽𝑄𝑚𝛽𝑐𝑎𝑚 ∈ Dom (𝐶1+𝜖
𝑚 ) and 

𝐶1+𝜖
𝑚 (|𝑞|𝛽𝑄𝑚𝛽𝑐𝑎𝑚) = 2

−(1+𝜖)�̃�1+𝜖
𝑚 (𝑞𝑑

𝛽
𝑎𝑚) 

where 𝑞𝑑 is the discretization of the multiplication operator 𝑞, i.e., (𝑞𝑑
𝛽
𝑎𝑚) (𝑛) = 𝑛𝛽𝑎𝑛

𝑚 

for 𝑎𝑚 ∈ ℂ∞. 

Proof. We obtain that 

𝐶1+𝜖
𝑚 (|𝑞|𝛽𝑄𝑚𝛽𝑐𝑎𝑚)  = lim

𝜖→∞
 

1

(2(1 + 2𝜖))1+𝜖
∫  
1+2𝜖

−(1+2𝜖)

 ∑  

𝑚

|𝑞|(𝑡)𝛽𝑄𝑚(𝑡)𝛽𝑐𝑎𝑚(𝑡)𝑑𝑡

 = lim
𝜖→∞

 
1

(2(1 + 2𝜖))1+𝜖
∫  
1+2𝜖

−(1+2𝜖)

∑ 

𝑚

|𝑡|𝛽 (
[|𝑡|]

|𝑡|
)

𝛽

𝑐𝑎𝑚(𝑡)𝑑𝑡

 = lim
𝑛→∞

 
1

(2𝑛)1+𝜖
∫  
𝑛

1

∑ 

𝑚

  [|𝑡|]𝛽𝑐𝑎𝑚(𝑡)𝑑𝑡

 = 2−(1+𝜖) lim
𝑛→∞

 
1

𝑛1+𝜖
∑ 

𝑛

𝑘=1

 ∑  

𝑚

𝑘𝛽𝑎𝑘
𝑚

 = 2−(1+𝜖)∑ 

𝑚

�̃�1+𝜖
𝑚 (𝑞𝑑

𝛽
𝑎𝑚)

 

which implies the proof. 

 

 

 

Section (6.2): Law of Large Numbers for Weighted Inductive Means 

The law of large numbers plays an important role in probability theory, which is 

concerned with the convergence of (𝑆𝑛 − 𝑏𝑛)/𝑛, where 𝑆𝑛 = ∑𝑖=1
𝑛  𝑋𝑖 , {𝑋𝑖}𝑖=1

𝑛  is a sequence 

of independent real random variables, and {𝑏𝑛} is a sequence of real numbers. If 

(𝑆𝑛 − 𝑏𝑛)/𝑛 converges almost surely to zero, then the convergence theorem is called the 

strong law of large numbers, and if (𝑆𝑛 − 𝑏𝑛)/𝑛 converges in probability to zero, then the 

convergence theorem is referred to the weak law of large numbers. The law of large numbers 

for real-valued random variables can be extended to a general metric space valued random 

variables. We study the law of large numbers for random variables valued in a Hadamard 

space. A Hadamard space is a complete metric space of which the metric satisfies the 

semiparallelogram law, and it gives geometric structures (like nonpositive curvature). In 
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[231], Sturm proved a law of large numbers for a (non-weighted) inductive mean in 

Hadamard spaces. Sturm also defined a expectation (or mean, or barycenter) of random 

variables taking values in a Hadamard space as a unique minimizer. However, there is 

another way to define expectations of random variables by using the law of large numbers 

in a Hadamard space 

A weighted sum of a sequence {𝑋𝑖} of real-valued random variables is of the form 

𝑆𝑛: =∑  

𝑛

𝑖=1

𝑎𝑛𝑖𝑋𝑖 ,                                                      (51) 

where the weighted sequence {𝑎𝑛𝑖 ∣ 1 ≤ 𝑖 ≤ 𝑛} is a triangular array. On the other hand, in 

a Hadamard space 𝑁, we can define a weighted sum with a positive weighted sequence by 

a weighted inductive mean. In the case of real-valued random variables with the usual 

Euclidean metric, the weighted inductive mean is exactly equal to the weighted sum given 

as in (51) (see [41]). The law of large numbers for weighted sums of random variables has 

been studied by [336], [337], [339], [340], [242], [243], [244], etc. 

We study the law of large numbers for weighted inductive means with a positive weighted 

sequence {𝑎𝑛𝑖 ∣ 1 ≤ 𝑖 ≤ 𝑛} for Hadamard space valued random variables {𝑋𝑖}, and then we 

prove the law of large numbers under certain independence and some conditions for a 

weighted sequence. In fact, Lim and Pálfia [225] proved that the deterministic weighted 

inductive mean on Hadamard spaces converges to the least squares mean. 

We recall elementary notions of the probability measure on a Hadamard space and 

the variance inequality in a Hadamard space. We prove the law of large numbers for 

weighted inductive means of independent identically distributed random variables valued in 

a Hadamard space. We prove an asymptotic property for (non-weighed) inductive means in 

the 𝑝-Schatten class. 

We recall basic facts of a Hadamard space (i.e., a complete non-positively curved 

metric space) and probability measures on Hadamard spaces. Let (𝑁, 𝑑) be a nonempty 

complete metric space. If for any 𝑥, 𝑦 ∈ 𝑁, there exists a point 𝑚 ∈ 𝑁 such that 𝑑(𝑥,𝑚) =

𝑑(𝑚, 𝑦) =
1

2
𝑑(𝑥, 𝑦), which is called a midpoint of 𝑥 and 𝑦, then (𝑁, 𝑑) is called a geodesic 

space. We call (𝑁, 𝑑) a Hadamard space if for any 𝑥, 𝑦 ∈ 𝑁, there exists a point 𝑚 ∈ 𝑁 such 

that 

𝑑(𝑧,𝑚)2 ≤
1

2
𝑑(𝑧, 𝑥)2 +

1

2
𝑑(𝑧, 𝑦)2 −

1

4
𝑑(𝑥, 𝑦)2  for any 𝑧 ∈ 𝑁. (52) 

Indeed, the point 𝑚 in (52) is the midpoint of 𝑥 and 𝑦 with the property 𝑑(𝑥,𝑚) =

𝑑(𝑚, 𝑦) =
1

2
𝑑(𝑥, 𝑦). We note that any Hadamard space becomes a geodesic space. Equation 

(52) is called the semiparallelogram law, since if (𝑁, 𝑑) is a Hilbert space then (52) becomes 

the parallelogram law by replacing the inequality with the equality (see [15]). It is satisfied 

by the length metric in any simply connected nonpositively curved Riemannian manifold 

[39]. Therefore, the metric inequality (52) in a Hadamard space yields a metric 

generalization of non-positive curvature. 

For a positive real constant 𝐷 > 0, a geodesic of speed 𝐷 in 𝑁 is a map 𝑝: [0,1] → 𝑁 with 

the property that for any 𝑡 ∈ [0,1], there exists a positive constant 𝛼 such that 

𝑑(𝑝(𝑡1), 𝑝(𝑡2)) = 𝐷|𝑡1 − 𝑡2|  for all 𝑡1, 𝑡2 ∈ [0,1] with 𝑡 − 𝛼 ≤ 𝑡1, 𝑡2 ≤ 𝑡 + 𝛼. 
A map 𝑝 is said to be a geodesic if it is a geodesic of some speed 𝐷. 
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Proposition (6.2.1)[335]: ([231]). Let (𝑁, 𝑑) be a Hadamard space. For 𝑥, 𝑦 ∈ 𝑁, there 

exists a unique geodesic 𝑝: [0,1] → 𝑁 of speed 𝐷 = 𝑑(𝑥, 𝑦) with 𝑝(0) = 𝑥 and 𝑝(1) = 𝑦. 
Furthermore, for any 𝑧 ∈ 𝑁 and 𝑡 ∈ [0,1], 

𝑑(𝑧, 𝑝(𝑡)) ≤ (1 − 𝑡)𝑑(𝑧, 𝑥) + 𝑡𝑑(𝑧, 𝑦)                   (53) 
and 

𝑑(𝑧, 𝑝(𝑡))2 ≤ (1 − 𝑡)𝑑(𝑧, 𝑥)2 + 𝑡𝑑(𝑧, 𝑦)2 − 𝑡(1 − 𝑡)𝑑(𝑥, 𝑦)2. (54) 
Throughout, (𝑁, 𝑑) and (Ω, ℱ, 𝑃) denote a Hadamard space and a probability space, 

respectively, unless specified otherwise. The phase "almost surely," abbreviated a.s., is often 

used. 

A function 𝑋: Ω → 𝑁 is an 𝑁-valued random variable (or simply, random variable) if 𝑋 is a 

Borel measurable function. For a Borel subset 𝐵 of 𝑁, the distribution of 𝑋 is defined by 

𝑃𝑋(𝐵):= 𝑃(𝑋
−1(𝐵)). For 1 ≤ 𝑝 < ∞, let 𝐿𝑝(Ω,𝑁) be the set of all random variables 𝑋 

such that 

∫  
Ω

[𝑑(𝑧, 𝑋(𝜔))]𝑝𝑑𝑃(𝜔) = ∫  
𝑁

[𝑑(𝑧, 𝑥)]𝑝𝑑𝑃𝑋(𝑥) < ∞  for some 𝑧 ∈ 𝑁, 

and 𝐿∞(Ω,𝑁) be the set of all random variables 𝑋 such that 

𝑑(𝑧, 𝑋(𝜔)) < 𝑅  a.s.   for some 𝑧 ∈ 𝑁 and 𝑅 > 0. 
Let 𝜑 be a real-valued function defined on 𝑁. If there exists a point 𝑥 ∈ 𝑁 such that 𝜑(𝑥) =
inf𝑧∈𝑁  𝜑(𝑧), then 𝑥 is called a minimizer and denoted by 𝑥:= argmin𝑧∈𝑁 𝜑(𝑧). We define 

the expectation (or barycenter) of 𝑋 in 𝐿1(Ω,𝑁) [231] as follows: for each fixed 𝑦 ∈ 𝑁, 

𝐄𝑋:= argmin
𝑧∈𝑁

𝐸[𝑑(𝑧, 𝑋)2 − 𝑑(𝑦, 𝑋)2] = argmin
𝑧∈𝑁

∫  
𝑁

[𝑑(𝑧, 𝑥)2 − 𝑑(𝑦, 𝑥)2]𝑑𝑃𝑋(𝑥). 

For any 𝑋 ∈ 𝐿1(Ω,𝑁), we define the variance of 𝑋 by 

𝐕(𝑋):= inf
𝑧∈𝑁
 𝐸[𝑑(𝑧, 𝑋)2]. 

Remark (6.2.2)[335]: Let 𝑋 be a Hadamard space 𝑁-valued random variable. Then we have 

the following properties (see [231]). 

(i) For a real-valued random variable 𝑋 with the Euclidean metric, the expectation is the 

same as the usual expectation: 𝐄𝑋 = 𝐸[𝑋] = ∫
ℝ
 𝑥𝑑𝑃𝑋(𝑥). 

(ii) The expectation 𝐄𝑋 is uniquely determined and is independent of 𝑦 ∈ 𝑁. 

(iii) If we restrict to 𝑋 ∈ 𝐿2(Ω,𝑁), then 𝐄𝑋 is the unique minimizer of 𝑧 ↦ 𝑑(𝑧, 𝑋)2, i.e., 

𝐄𝑋 = argmin
𝑧∈𝑁

𝐸[𝑑(𝑧, 𝑋)2] = argmin
𝑧∈𝑁

∫  
𝑁

𝑑(𝑧, 𝑥)2𝑑𝑃𝑋(𝑥).      (55) 

Hence, 𝐕(𝑋) = 𝐸[𝑑(𝐄𝑋, 𝑋)2] < ∞ 

The following proposition is the variance inequality in a Hadamard space, which is one of 

important properties.  

Proposition (6.2.3)[335]: ([231]). For any random variable 𝑋 in 𝐿2(Ω,𝑁) and for all 𝑧 ∈ 𝑁, 

𝐸[𝑑(𝑧, 𝑋)2] ≥ 𝑑(𝑧, 𝐄𝑋)2 + 𝐸[𝑑(𝐄𝑋, 𝑋)2].                   (56) 
Let {𝑋𝑖} be a sequence of independent identically distributed 𝑁-valued random 

variables and {𝑎𝑛𝑖} be a positive weighted sequence with ∑𝑖=1
𝑛  𝑎𝑛𝑖 = 1 for any 𝑛 ∈ ℕ. We 

define a new weighted sequence {𝑦(𝑛−ℓ)𝑖}𝑖=1
𝑛−ℓ

 for ℓ = 1,… , 𝑛 − 1 as follows: 

𝑦(𝑛−ℓ)𝑖: =
𝑎𝑛𝑖

∑  𝑛−ℓ
𝑘=1  𝑎𝑛𝑘

 for all 𝑖 = 1,… , 𝑛 − ℓ.                   (57) 

We see that 
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𝑦(𝑛−ℓ)(𝑛−ℓ) =
𝑎𝑛(𝑛−ℓ)

∑  𝑛−ℓ
𝑘=1  𝑎𝑛𝑘

 for ℓ = 1,… , 𝑛 − 1. 

We also define a sequence {𝑆𝑛} of random variables, which is called the weighted inductive 

mean as follows [225]: 

𝑆1 = 𝑋1  and  𝑆𝑛 = 𝑌𝑛−1#𝑎𝑛𝑛𝑋𝑛 (𝑛 ≥ 2),                   (58) 

where 𝑌1 = 𝑋1 and 𝑌𝑛−𝑘: = 𝑌𝑛−(𝑘+1)#𝑦(𝑛−𝑘)(𝑛−𝑘)𝑋𝑛−𝑘 for 𝑘 = 1,… , 𝑛 − 2. Here, 𝐴#𝑡𝐵 

denotes the 𝑡-weighted geometric mean which is the point 𝑝(𝑡) on the geodesic 𝑝: [0,1] →
𝑁 connecting 𝑝(0) = 𝐴 and 𝑝(1) = 𝐵. For our purpose, we first prove the which is the point 

𝑝(𝑡) ont following two lemmas. 

Lemma (6.2.4)[335]: Let ℓ = 1,… , 𝑛 − 1 and {𝑦(𝑛−ℓ)𝑖}𝑖=1
𝑛−ℓ

 be the weighted sequence given 

in (57). Then the following equality holds: 

∑ 

𝑛

𝑖=1

 𝑎𝑛𝑖
2 = (1 − 𝑎𝑛𝑛)

2∑  

𝑛−2

𝑘=1

  [(∏  

𝑘

𝑖=1

  (1 − 𝑦(𝑛−𝑖)(𝑛−𝑖))
2
)𝑦(𝑛−(𝑘+1))(𝑛−(𝑘+1))

2 ]

 +(1 − 𝑎𝑛𝑛)
2𝑦(𝑛−1)(𝑛−1)

2 + 𝑎𝑛𝑛
2 .

(59) 

Proof. We see that 1 − 𝑎𝑛𝑛 = ∑𝑖=1
𝑛−1  𝑎𝑛𝑖 and 

1 − 𝑦(𝑛−𝑖)(𝑛−𝑖) =
∑  
𝑛−(𝑖+1)
𝑘=1  𝑎𝑛𝑘

∑  𝑛−𝑖
𝑘=1  𝑎𝑛𝑘

  and  𝑦(𝑛−𝑖)(𝑛−𝑖) =
𝑎𝑛(𝑛−𝑖)

∑  𝑛−𝑖
𝑘=1  𝑎𝑛𝑘

 (𝑖 = 1,… , 𝑛 − 1). (60) 

Then by a direct computation, we obtain 

(1 − 𝑎𝑛𝑛)
2∏ 

𝑘

𝑖=1

  (1 − 𝑦(𝑛−𝑖)(𝑛−𝑖))
2
𝑦(𝑛−(𝑘+1))(𝑛−(𝑘+1))2 

 = (∑  

𝑛−1

𝑖=1

 𝑎𝑛𝑖)

2

(
∑  𝑛−2
𝑖=1  𝑎𝑛𝑖
∑  𝑛−1
𝑖=1  𝑎𝑛𝑖

)

2

⋯(
∑  
𝑛−(𝑘+1)
𝑖=1  𝑎𝑛𝑖

∑  𝑛−𝑘
𝑖=1  𝑎𝑛𝑖

)

2

(
𝑎𝑛(𝑛−(𝑘+1))

∑  
𝑛−(𝑘+1)𝑎𝑛𝑘
𝑖=1

)

2

= 𝑎𝑛(𝑛−(𝑘+1))
2 .

 

Therefore, we have that 

(1 − 𝑎𝑛𝑛)
2∑  

𝑛−2

𝑘=1

  [(∏  

𝑘

𝑖=1

  (1 − 𝑦(𝑛−𝑖)(𝑛−𝑖))
2
)𝑦(𝑛−(𝑘+1))(𝑛−(𝑘+1))

2 ] + (1 − 𝑎𝑛𝑛)
2𝑦(𝑛−1)(𝑛−1)

2

+ 𝑎𝑛𝑛
2 =∑  

𝑛−2

𝑘=1

 𝑎𝑛(𝑛−(𝑘+1))
2 + 𝑎𝑛(𝑛−1)

2 + 𝑎𝑛𝑛
2 =∑ 

𝑛

𝑖=1

 𝑎𝑛𝑖
2 , 

which completes the proof. 

Lemma (6.2.5)[335]: Let 𝑋, 𝑌 and 𝑍 be independent identically distributed random 

variables in 𝐿2(Ω,𝑁). Then for any 0 ≤ 𝜆 ≤ 1, it holds: 

𝐸[𝑑(𝐄𝑍, 𝑋#, 𝑌)2] ≤ (1 − 𝜆)2𝐸[𝑑(𝐄𝑍, 𝑋)2] + 𝜆2𝐸[𝑑(𝐄𝑍, 𝑌)2]. (61) 
Proof. For any 0 ≤ 𝜆 ≤ 1, we have that 

𝐸[𝑑(𝐄𝑍, 𝑋#𝜆𝜆
2] ≤  (1 − 𝜆)𝐸[𝑑(𝐄𝑍, 𝑋)2] + 𝜆𝐸[𝑑(𝐄𝑍, 𝑌)2] − (1 − 𝜆)𝜆𝐸[𝑑(𝑋, 𝑌)2]

≤  (1 − 𝜆)𝐸[𝑑(𝐄𝑍, 𝑋)2] + 𝜆𝐸[𝑑(𝐄𝑍, 𝑌)2]

 −(1 − 𝜆)𝜆[𝐸[𝑑(𝑋, 𝐄𝑌)2] + 𝐸[𝑑(𝐄𝑌, 𝑌)2]]

=  (1 − 𝜆)2𝐸[𝑑(𝐄𝑍, 𝑋)2] + 𝜆2𝐸[𝑑(𝐄𝑍, 𝑌)2],

 

where the first inequality follows from the inequality (54) and the second inequality follows 

from the inequality (61) in Proposition (6.2.3). Therefore, the proof is completed. 
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The following theorem is the weak law of large numbers for weighted inductive means in a 

Hadamard space. 

Theorem (6.2.6)[335]: Let {𝑋𝑖} be a sequence of independent identically distributed 

random variables in 𝐿2(Ω,𝑁) and {𝑎𝑛𝑖} be a positive weighted sequence with ∑𝑖=1
𝑛  𝑎𝑛𝑖 = 1. 

If {𝑎𝑛𝑖} satisfies the condition 

lim
𝑛→∞

 ∑  

𝑛

𝑖=1

𝑎𝑛𝑖
2 = 0,                                           (62) 

then 𝑆𝑛 → 𝐄𝑋1 in probability, where 𝑆𝑛 is the weighted inductive mean given in (58). 

Proof. The proof can be obtained by some modification of the proof of Theorem (6.2.20) in 

[231], but we give the proof for completeness. For ℓ = 1,… , 𝑛 − 1, let {𝑦(𝑛−ℓ)𝑖}𝑖=1
𝑛−ℓ

 be the 

weighted sequence given in (57) associated with {𝑎𝑛𝑖}. By Lemma (6.2.5), we obtain that 

𝐸[𝑑(𝐄𝑋1, 𝑆𝑛)
2]  = 𝐸 [𝑑(𝐄𝑋1, 𝑌𝑛−1#𝑎𝑛𝑛𝑋𝑛)

2
]

 ≤ (1 − 𝑎𝑛𝑛)
2𝐸[𝑑(𝐄𝑋1, 𝑌𝑛−1)

2] + 𝑎𝑛𝑛 
2𝐸[𝑑(𝐄𝑋1, 𝑋𝑛)

2], (63)
 

and that for 𝑖 = 1,… , 𝑛 − 2 

𝐸 [𝑑(𝐄𝑋1, 𝑌(𝑛−𝑖))
2
]

≤ (1 − 𝑦(𝑛−𝑖)(𝑛−𝑖))
2
𝐸 [𝑑(𝐄𝑋1, 𝑌𝑛−(𝑖+1))

2
]

+ 𝑦(𝑛−𝑖)(𝑛−𝑖)
2 𝐸[𝑑(𝐄𝑋1, 𝑋𝑛−𝑖)

2].                                                   (64) 

By the inequalities (63), (64) and Lemma (6.2.4), we have 

𝐸[𝑑(𝐄𝑋1, 𝑆𝑛)
2] ≤ (1 − 𝑎𝑛𝑛)

2∏ 

𝑛−2

𝑖=1

  (1 − 𝑦(𝑛−𝑖)(𝑛−𝑖))
2
𝐸[𝑑(𝐄𝑋1, 𝑌1)

2]

 +(1 − 𝑎𝑛𝑛)
2∏ 

𝑛−3

𝑖=1

  (1 − 𝑦(𝑛−𝑖)(𝑛−𝑖))
2
𝑦22
2 𝐸[𝑑(𝐄𝑋1, 𝑋2)

2]

 +⋯+ (1 − 𝑎𝑛𝑛)
2(1 − 𝑦(𝑛−1)(𝑛−1))

2
𝑦(𝑛−2)(𝑛−2) 

2𝐸 [𝑑(𝐄𝑋1, 𝑋(𝑛−2))
2
]

 +(1 − 𝑎𝑛𝑛)
2𝑦(𝑛−1)(𝑛−1) 

2𝐸[𝑑(𝐄𝑋1, 𝑋𝑛−1)
2] + 𝑎𝑛𝑛 

2𝐸[𝑑(𝐄𝑋1, 𝑋𝑛)
2]

= {(1 − 𝑎𝑛𝑛)
2∑ 

𝑛−2

𝑘=1

  [(∏  

𝑘

𝑖=1

  (1 − 𝑦(𝑛−𝑖)(𝑛−𝑖))
2
)𝑦(𝑛−(𝑘+1))(𝑛−(𝑘+1)) 

2]

+(1 − 𝑎𝑛𝑛)
2𝑦(𝑛−1)(𝑛−1) 

2 + 𝑎𝑛𝑛 
2}𝐕(𝑋1)

 

= (∑  

𝑛

𝑖=1

 𝑎𝑛𝑖
2 )𝐕(𝑋1),                                            (65) 

where the last equality follows from Equation (59) in Lemma (6.2.4). Therefore, by the 

equalities (62) and (65) we have that 

𝐸[𝑑(𝐄𝑋1, 𝑆𝑛)
2] ≤ (∑  

𝑛

𝑖=1

 𝑎𝑛𝑖
2 )𝐕(𝑋1) ⟶ 0  as 𝑛 → ∞. 

Since the 𝐿2-convergence implies the convergence in probability, we are done. 

Example (6.2.7)[335]: We now consider an example of a weighted sequence {𝑎𝑛𝑖} 
satisfying the condition in Theorem (6.2.6). Let 0 < 𝑟 < 2 be given and let {𝑏𝑖} be a 

sequence of positive real numbers such that ∑𝑖=1
𝑛  𝑏𝑖 = 𝑛

1/𝑟 and ∑𝑖=1
𝑛  𝑏𝑖

2 =
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𝑜(𝑛2/𝑟). 𝑃𝑢𝑡𝑎𝑛𝑖 = 𝑏𝑖/𝑛
1/𝑟 for all 𝑖 = 1,…, Since ∑𝑖=1

𝑛  𝑎𝑛𝑖 = 1 and ∑𝑖=1
𝑛  𝑏𝑖

2 = 𝑜(𝑛2/𝑟), we 

have 

∑ 

𝑛

𝑖=1

𝑎𝑛𝑖
2 =

1

𝑛2/𝑟
∑ 

𝑛

𝑖=1

𝑏𝑖
2 ⟶ 0 

as 𝑛 → ∞. Such a weighted sequence {𝑎𝑛𝑖} satisfies the conditions in Theorem (6.2.6). 

Corollary (6.2.8)[335]: Let {𝑋𝑖} be a sequence of independent identically distributed 

random variables in 𝐿2(Ω,𝑁). If {𝑎𝑛𝑖} is a positive weighted sequence with ∑𝑖=1
𝑛  𝑎𝑛𝑖 = 1 

such that for 1 ≤ 𝑟 < 2, 

max
1≤𝑖≤𝑛

 𝑎𝑛𝑖 = 𝑂(1/𝑛
1/𝑟),                                          (66) 

then 𝑆𝑛 → 𝐄𝑋1 in probability, where 𝑆𝑛 is given as in (58). 

Proof. It is easy to see that 

lim
𝑛→∞

 ∑  

𝑛

𝑖=1

𝑎𝑛𝑖
2 ≤ 𝐶2 lim

𝑛→∞
 𝑛1−

2
𝑟 = 0 

for some constant 𝐶 > 0, since 1 ≤ 𝑟 < 2. The conclusion follows from Theorem (6.2.6). 
Remark (6.2.9)[335]: Let {𝑋𝑖} be a sequence of independent identically distributed random 

variables in 𝐿2(Ω,𝑁) and {𝑎𝑛𝑖} be a positive weighted sequence with ∑𝑖=1
𝑛  𝑎𝑛𝑖 = 1. By 

Lemma (6.2.5) and using the proof in Lemma (6.2.4), we obtain 

𝐸[𝑑(𝑌𝑛−𝑖 , 𝐄𝑋1)
2] = 𝐸 [𝑑(𝑌𝑛−(𝑖+1)#𝑦(𝑛−𝑖)(𝑛−𝑖)𝑋𝑛−𝑖 , 𝐄𝑋1)

2
]

≤ (1 − 𝑦(𝑛−𝑖)(𝑛−𝑖))
2
𝐸 [𝑑(𝑌𝑛−(𝑖+1), 𝐄𝑋1)

2
] + 𝑦(𝑛−𝑖)(𝑛−𝑖)

2 𝐸[𝑑(𝑋𝑛−𝑖 , 𝐄𝑋1)
2]

≤ (1 − 𝑦(𝑛−𝑖)(𝑛−𝑖))
2
(1 − 𝑦(𝑛−(𝑖+1))(𝑛−(𝑖+1)))

2
𝐸 [𝑑(𝑌𝑛−(𝑖+2), 𝐄𝑋1)

2
]

 +(1 − 𝑦(𝑛−𝑖)(𝑛−𝑖))
2
𝑦(𝑛−(𝑖+1))(𝑛−(𝑖+1))
2 𝐸 [𝑑(𝑋𝑛−(𝑖+1), 𝐄𝑋1)

2
]

 +𝑦(𝑛−𝑖)(𝑛−𝑖)
2 𝐸[𝑑(𝑋𝑛−𝑖 , 𝐄𝑋1)

2]

 ⋮

 ≤ ∏  

𝑛−𝑖−2

𝑗=0

  (1 − 𝑦(𝑛−(𝑖+𝑗))(𝑛−(𝑖+𝑗)))
2
𝐸[𝑑(𝑌1, 𝐄𝑋1)

2]

 + ∏  

𝑛−𝑖−3

𝑗=0

  (1 − 𝑦(𝑛−(𝑖+𝑗))(𝑛−(𝑖+𝑗)))
2
𝑦22 

2𝐸[𝑑(𝑋2, 𝐄𝑋1)
2]

 

 +⋯+ (1 − 𝑦(𝑛−𝑖)(𝑛−𝑖))
2
𝑦(𝑛−(𝑖+1))(𝑛−(𝑖+1))
2 𝐸 [𝑑(𝑋𝑛−(𝑖+1), 𝐄𝑋1)

2
]

 +𝑦(𝑛−𝑖)(𝑛−𝑖)
2 𝐸[𝑑(𝑋𝑛−𝑖 , 𝐄𝑋1)

2]

=
∑  𝑛−𝑖
𝑘=1  𝑎𝑛𝑘

2 𝐸[𝑑(𝑋𝑘, 𝐄𝑋1)
2]

(∑  𝑛−𝑖
𝑘=1  𝑎𝑛𝑘)

2 ,        

             (67) 

where {𝑌𝑛−𝑖}𝑖=1
𝑛−1 is given as in (58). The inequality (67) is useful for the proof of the strong 

law of large numbers (see Theorem (6.2.11)). 

The following theorem is the strong law of large numbers for weighted inductive means in 

a Hadamard space. 

To prove the strong law of large numbers, we need the following lemma. 
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Lemma (6.2.10)[335]: Under the assumptions of Theorem (6.2.11), for any 𝑧 ∈ 𝑁, there 

exists 𝑅 > 0 such that for all 𝑛 ∈ ℕ and 𝑖 = 1,2,… , 𝑛 − 1, 

𝑑(𝑆𝑛, 𝑧) ≤ (∑  

𝑛

𝑘=1

 𝑎𝑛𝑘𝑑(𝑋𝑘, 𝑧)) < 𝑅  and  𝑑(𝑌𝑛−𝑖 , 𝑧) ≤ (
∑  𝑛−𝑖
𝑘=1  𝑎𝑛𝑘𝑑(𝑋𝑘, 𝑧)

∑  𝑛−𝑖
𝑘=1  𝑎𝑛𝑘

) < 𝑅, (68) 

where 𝑆𝑛 and {𝑌𝑛−𝑖}𝑖=1
𝑛−1 are given as in (58). 

Proof. By the convexity of the metric d and Equation (60), we obtain 

𝑑(𝑆𝑛, 𝑧) = 𝑑(𝑌𝑛−1#𝑎𝑛𝑛𝑋𝑛, 𝑧) ≤ (1 − 𝑎𝑛𝑛)𝑑(𝑌𝑛−1, 𝑧) + 𝑎𝑛𝑛𝑑(𝑋𝑛, 𝑧)

≤ (1 − 𝑎𝑛𝑛)(1 − 𝑦(𝑛−1)(𝑛−1))𝑑(𝑌𝑛−2, 𝑧) + (1 − 𝑎𝑛𝑛)𝑦(𝑛−1)(𝑛−1)𝑑(𝑋𝑛−1, 𝑧)

+ 𝑎𝑛𝑛𝑑(𝑋𝑛, 𝑧) 
⋮            

≤ (1 − 𝑎𝑛𝑛) [∏  

𝑛−2

𝑖=1

  (1 − 𝑦(𝑛−𝑖)(𝑛−𝑖))𝑑(𝑌1, 𝑧) +∏  

𝑛−3

𝑖=1

  (1 − 𝑦(𝑛−𝑖)(𝑛−𝑖))𝑦22𝑑(𝑋2, 𝑧)+⋯

+ (1 − 𝑦(𝑛−1)(𝑛−1))𝑦(𝑛−2)(𝑛−2)𝑑(𝑋𝑛−2, 𝑧) + 𝑦(𝑛−1)(𝑛−1)𝑑(𝑋𝑛−1, 𝑧)]

+ 𝑎𝑛𝑛𝑑(𝑋𝑛, 𝑧) 
 

= ∑  

𝑛

𝑘=1

 𝑎𝑛𝑘𝑑(𝑋𝑘, 𝑧).                                                                              (69) 

Since 𝑋𝑖 ∈ 𝐿
∞(Ω,𝑁)(𝑖 = 1,… , 𝑛), there exist 𝑧 ∈ 𝑁 and 𝑅 > 0 such that 𝑑(𝑋𝑖(𝜔), 𝑧) < 𝑅 

a.s. Then, by the inequalities (69), it holds that 𝑑(𝑆𝑛, 𝑧) < 𝑅 a.s. for all 𝑛 ∈ ℕ. By similar 

arguments, we have the second inequality given as in (68). 

Theorem (6.2.11)[335]: Let {𝑋𝑖} be a sequence of independent identically distributed 

random variables in 𝐿∞(Ω,𝑁). If {𝑎𝑛𝑖} is a positive weighted sequence satisfying the 

following conditions: 

(i) There exists a constant 𝐶 ≥ 1 such that max1≤𝑖≤𝑛  𝑎𝑛𝑖 ≤ 𝐶min1≤𝑖≤𝑛  𝑎𝑛𝑖, 
(ii) ∑𝑖=1

𝑛  𝑎𝑛𝑖 = 1 for all 𝑛 ∈ ℕ, 

then 

𝑆𝑛 ⟶ 𝐄𝑋1  a.s.   as 𝑛 → ∞,                                                     (70) 
where 𝑆𝑛 is given as in (58). 

Proof. For the proof, it suffices to show that 𝑑(𝑆𝑛, 𝐄𝑋1) → 0 a.s. as 𝑛 → ∞. Note that for 

all 𝑘, 𝑛 ∈ ℕ 

𝑑(𝑆𝑛, 𝐄𝑋1) ≤ 𝑑(𝑆𝑛, 𝑌𝑘2) + 𝑑(𝑌𝑘2 , 𝐄𝑋1). 
Now, we assume that 𝑘, 𝑛 are positive integers such that 𝑘2 < 𝑛 ≤ (𝑘 + 1)2. We first prove 

that 𝑑(𝑆𝑛, 𝑌𝑘2) → 0 a.s. as 𝑘 → ∞. Since 𝑋𝑖 ∈ 𝐿
∞(Ω,𝑁), there exist 𝑧 ∈ 𝑁 and 𝑅 > 0 such 

that 𝑑(𝑋𝑖(𝜔), 𝑧) < 𝑅 a.s. By (68) we have that d (𝑆𝑛, 𝑧) < 𝑅 and 𝑑(𝑌𝑛−𝑖 , 𝑧) < 𝑅 a.s. for all 

𝑛 ∈ ℕ and 𝑖 = 1,… , 𝑛 − 1. By the convexity of 𝑥 ⟼ 𝑑(𝑥, 𝑧), we have that 

𝑑(𝑆𝑛, 𝑌𝑛−1)  = 𝑑(𝑌𝑛−1#𝑎𝑛𝑛𝑋𝑛, 𝑌𝑛−1)

 ≤ (1 − 𝑎𝑛𝑛)𝑑(𝑌𝑛−1, 𝑌𝑛−1) + 𝑎𝑛𝑛𝑑(𝑋𝑛, 𝑌𝑛−1) = 𝑎𝑛𝑛𝑑(𝑋𝑛, 𝑌𝑛−1)

 ≤ 2𝑎𝑛𝑛𝑅  a.s.                                                                                  (71)

 

By similar arguments, we also obtain that 
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𝑑(𝑌𝑛−𝑖 , 𝑌𝑛−(𝑖+1))  = 𝑑 (𝑌𝑛−(𝑖+1)#𝑦(𝑛−𝑖)(𝑛−𝑖)𝑋𝑛−𝑖 , 𝑌𝑛−(𝑖+1))

 ≤ 𝑦(𝑛−𝑖)(𝑛−𝑖)𝑑(𝑋𝑛−𝑖 , 𝑌𝑛−(𝑖+1))

 ≤ 2𝑦(𝑛−𝑖)(𝑛−𝑖)𝑅  a.s.                                        (72)

 

for 𝑖 = 1,… , 𝑛 − 2. By inequalities (71), (72) and the condition (i), we have that for all 

𝑘, 𝑛 ∈ ℕ with 𝑘2 < 𝑛 ≤ (𝑘 + 1)2 

𝑑(𝑆𝑛, 𝑌𝑘2)  ≤ 2(𝑦(𝑘2+1)(𝑘2+1) + 𝑦(𝑘2+2)(𝑘2+2) +⋯+ 𝑎𝑛𝑛)𝑅

 ≤
∑  𝑛
ℓ=𝑘2+1   max1≤𝑖≤𝑛

 𝑎𝑛𝑖

∑  𝑘2+1
ℓ=1   min

1≤𝑖≤𝑛
 𝑎𝑛𝑖

2𝑅 ≤
(𝑛 − 𝑘2)𝐶 min

1≤𝑖≤𝑛
 𝑎𝑛𝑖

(𝑘2 + 1)min
1≤𝑖≤𝑛

 𝑎𝑛𝑖
2𝑅 ≤

2𝑘 + 1

𝑘2 + 1
2𝑅𝐶 ⟶ 0,

 

so that 𝑑(𝑆𝑛, 𝑌𝑘2) → 0 a.s. as 𝑘 → ∞. 

Our second claim is that 𝑌𝑘2 → 𝐄𝑋1 a.s. as 𝑘 → ∞. Indeed, by Chebyshev's inequality and 

the condition (i), we have that for any 𝜖 > 0, 

∑ 

∞

𝑘=1

 𝑃(𝑑(𝑌𝑘2 , 𝐄𝑋1) > 𝜖)  ≤
1

𝜖2
∑ 

∞

𝑘=1

 𝐸(𝑑(𝑌𝑘2 , 𝐄𝑋1)
2)

 ≤
1

𝜖2
∑ 

∞

𝑘=1

 
𝑘2𝐶2 (min

1≤𝑖≤𝑛
 𝑎𝑛𝑖)

2

𝑘4 (min
1≤𝑖≤𝑛

 𝑎𝑛𝑖)
2 𝐕(𝑋1)

 =
𝐶2

𝜖2
∑ 

∞

𝑘=1

 
1

𝑘2
𝐕(𝑋1) < ∞.

 

Therefore, by Borel-Cantelli Lemma, we have that 𝑌𝑘2 → 𝐄𝑋1 a.s. as 𝑘 → ∞, which 

completes the proof. 

The following examplé gives the strong law of lārge numbërs for wéighed inductive 

meañs of real-valued random variablēs. 

Example (6.2.12)[335]: Let (ℝ+, �̃�) be a complete metric space with the metric given by 

�̃�(𝑥, 𝑦) = |log 𝑥 − log 𝑦|. 

It is clear that (ℝ+, �̃�) is a Hadamard space, where the midpoint of 𝑥 and 𝑦 is √𝑥𝑦 (see [3]). 

If {𝑋𝑖} is a sequence of independent identically distributed and positive real-valued random 

variables and if {𝑎𝑛𝑖} is a positive weighted sequence, then the weighted inductive mean 𝑆𝑛 

is the same as in (58), and we have that 

𝐄𝑋 = argmin
𝑧∈ℝ

𝐸[𝑑(𝑧, 𝑋)2] = 𝑒𝐸[log 𝑋]. 

Therefore, if a positive weighted sequence {𝑎𝑛𝑖} satisfies the conditions (𝑖) and ( ii ) in 

Theorem (6.2.11), then we have that 𝑆𝑛 → 𝐄𝑋1 a.s. In particular, if we choose 𝑎𝑛𝑖 = 1/𝑛 

for 𝑖 = 1,… , 𝑛, then we obtain that 

(𝑋1𝑋2⋯𝑋𝑛)
1/𝑛 ⟶ 𝐄𝑋1  a.s.  

On the other hands, if (ℝ, 𝑑) is the Euclidean space with usual metric given by 𝑑(𝑥, 𝑦) =
|𝑥 − 𝑦|, (ℝ, 𝑑) is a Hadamard space ( see [41], [231]). For a sequence {𝑋𝑖} of real valued 

independent identically distributed random variables and for a positive weighted sequence 

{𝑎𝑛𝑖}, the weighted inductive mean is given by 𝑆𝑛 = ∑𝑖=1
𝑛  𝑎𝑛𝑖𝑋𝑖( see [41]). Therefore, if the 

weighted sequence {𝑎𝑛𝑖} satisfies the conditions (i) and (ii) in Theorem (6.2.11), then we 

see that 

𝑆𝑛 ⟶ 𝐄𝑋1  a.s.   as 𝑛 → ∞, 
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where 𝐄𝑋 = ∫
ℝ
 𝑥𝑑𝑃𝑋(𝑥), which gives the strong law of large numbers for weighted sums 

of real-valued random variables. In particular, if we choose 𝑎𝑛𝑖 = 1/𝑛 for 𝑖 = 1,… , 𝑛, then 

we have 

1

𝑛
∑  

𝑛

𝑖=1

𝑋𝑖 ⟶ 𝐄𝑋1  a.s.   as 𝑛 → ∞. 

The following example is the law of large numbers for weighed inductive means which are 

converging to the least squares mean. 

Example (6.2.13)[335]: Let {𝑋𝑛} be a sequence of independent identically distributed 

random variables having the distribution ∑𝑖=1
𝑛  𝜔𝑖𝛿𝑥𝑖 for 𝑥1, … , 𝑥𝑛 ∈ 𝑁. If a positive 

weighted sequence {𝑎𝑛𝑖} satisfies the conditions (i) and (ii) in Theorem (6.2.11), then we 

have 

𝑆𝑛 ⟶ 𝐄𝑋1 = Λ(𝜔1, … , 𝜔𝑛; 𝑥1, … , 𝑥𝑛)  a.s.   as 𝑛 → ∞,             (73) 
where 𝑆𝑛 is the weighted inductive mean given in (58) and Λ(𝜔1, … , 𝜔𝑛; 𝑥1, … , 𝑥𝑛) is the 

weighted least squares mean given by 

Λ(𝜔1, … , 𝜔𝑛; 𝑥1, … , 𝑥𝑛) = argmin
𝑧∈𝑁

∑ 

𝑛

𝑖=1

𝜔𝑖𝑑(𝑧, 𝑥𝑖)
2. 

Indeed, the right hand side of (73) is obtained by taking 𝑃𝑋 = ∑𝑖=1
𝑛  𝜔𝑖𝛿𝑥𝑖 in (55), i.e., 

𝐸𝑋 = argmin
𝑧∈𝑁

∫  
𝑁

𝑑(𝑧, 𝑥)2𝑑𝑃𝑋(𝑥) = argmin
𝑧∈𝑁

∑ 

𝑛

𝑖=1

𝜔𝑖𝑑(𝑧, 𝑥𝑖)
2 = Λ(𝜔1, … , 𝜔𝑛; 𝑥1, … , 𝑥𝑛). 

Let ℬ(𝐻) be the Banach space of all bounded linear operators on a separable Hilbert 

space 𝐻 equipped with the operator norm, ℬ(𝐻)𝑠𝑎 be the set of all self-adjoint elements in 

ℬ(𝐻) and 𝒫 be the set of all positive invertible elements in ℬ(𝐻)𝑠𝑎. For 1 ≤ 𝑝 < ∞, the 𝑝-

Schatten class 𝑆𝑝(𝐻) of ℬ(𝐻) is defined by 

𝒮𝑝(𝐻) = {𝑥 ∈ ℬ(𝐻) ∣ 𝑥 is a compact operator, ∥ 𝑥 ∥𝑝< ∞}. 

The class 𝑆𝑝(𝐻) is a Banach space with respect to the norm 

∥ 𝑥 ∥𝑝: = (∑  

𝑗

  [𝑠𝑗(𝑥)]
𝑝
)

1/𝑝

= (Tr |𝑥|𝑝)1/𝑝, 

where 𝑠𝑗(𝑥) is the sequence of singular values of 𝑥 with decreasing order, |𝑥| = (𝑥∗𝑥)1/2 

and Tr is the usual trace on ℬ(𝐻) (see [241]). 

On the 𝑝-Schatten class 𝑆𝑝(𝐻), we define the norm ∥⋅∥𝑝,𝑏 associated with 𝑏 ∈ 𝒫 by 

∥ 𝑎 ∥𝑝,𝑏= ∥∥𝑏
−1/2𝑎𝑏−1/2∥∥𝑝  for 𝑎 ∈ 𝑆𝑝(𝐻). 

We denote by 𝑆𝑝,𝑏 the 𝑝-Schatten class 𝑆𝑝(𝐻) equipped with the norm ∥⋅∥𝑝,𝑏, that is, 𝑆𝑝,𝑏 =

(𝑆𝑝(𝐻), ∥⋅∥𝑝,𝑏). For 1 < 𝑝 < ∞, let Δ𝑝: = {𝐼 + 𝑎 ∈ 𝒫 ∣ 𝑎 ∈ 𝑆𝑝,𝑏} be the positive cone of 

the operator algebra that is obtained by adjoining the unit to the ideal of compact 𝑝-Schatten 

operators. We define the geodesic distance between two points 𝑥, 𝑦 ∈ Δ𝑝 as follows [338]: 

𝑑𝑝(𝑥, 𝑦) = inf{𝐿(𝛾) ∣ 𝛾 is a Δ𝑝 − valued smooth curve on [0,1], 𝛾(0) = 𝑥, 𝛾(1) = 𝑦}

= ∥∥log (𝑥−1/2𝑦𝑥−1/2)∥∥
𝑝
, 

where 𝐿(𝛾) = ∫
0

1
 ∥∥𝛾′(𝑡)∥∥𝑝,𝛾(𝑡)𝑑𝑡 = ∫0

1
 ∥∥𝛾(𝑡)−1/2𝛾′(𝑡)𝛾(𝑡)−1/2∥∥𝑝𝑑𝑡. Note that ( Δ𝑝, 𝑑𝑝 ) is 

a complete metric space (see [338]). 
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Now, we recall the useful facts of a geodesic and properties of metric 𝑑𝑝. 

Theorem (6.2.14)[335]: ([338]). Let 𝑥, 𝑦 ∈ Δ𝑝 and 𝛾𝑥,𝑦(𝑡): = 𝑥
1/2(𝑥−1/2𝑦𝑥−1/2)

𝑡
𝑥1/2. 

Then 𝛾𝑥,𝑦 is a unique short piecewise smooth curve joining 𝑥 to 𝑦 in Δ𝑝. Furthermore, 𝑡 ↦

𝑑𝑝(𝛾𝑥1,𝑦1(𝑡), 𝛾𝑥2,𝑦2(𝑡)) is a convex function for any 𝑥1, 𝑥2, 𝑦1, 𝑦2 ∈ Δ𝑝. 

Note that for any 𝑥, 𝑦 ∈ Δ𝑝, since 𝛾𝑥,𝑦 (
1

2
) is a mid point of 𝑥 and 𝑦, (Δ𝑝, 𝑑𝑝) is a geodesic 

space. The following theorem is a weak semiparallelogram law in Δ𝑝. 

Theorem (6.2.15)[335]: ([338]). Let 𝑧 ∈ Δ𝑝 for 1 < 𝑝 ≤ 2 and 𝛾: [0,1] → Δ𝑝 be a geodesic. 

Then for 0 < 𝛼𝑝: = 𝑝 − 1 ≤ 1, we have 

𝑑𝑝(𝑧, 𝛾(𝑡))
2 ≤ (1 − 𝑡)𝑑𝑝(𝑧, 𝛾(0))

2 + 𝑡𝑑𝑝(𝑧, 𝛾(1))
2 − 𝑡(1 − 𝑡)𝛼𝑝𝑑𝑝(𝛾(0), 𝛾(1))

2. (74) 

In particular, for any 𝑥, 𝑦 ∈ Δ𝑝, we have 

𝑑𝑝(𝑧, 𝛾𝑥,𝑦(𝑡))
2
≤ (1 − 𝑡)𝑑𝑝(𝑧, 𝑥)

2 + 𝑡𝑑𝑝(𝑧, 𝑦)
2 − 𝑡(1 − 𝑡)𝛼𝑝𝑑𝑝(𝑥, 𝑦)

2. (75) 

If 𝑝 = 2, then 𝛼𝑝 = 1 and so the inequality (74) is the semiparallelogram law. Thus, (Δ2, 𝑑2) 

is a Hadamard space. In the remaining, we denote by (Δ𝑝, 𝑑𝑝) the complete metric space 

given in the beginning and let 𝛼𝑝 = 𝑝 − 1 with 1 < 𝑝 ≤ 2. 

Definition (6.2.16)[335]: ([231]). Let (𝑋, 𝑑) be a complete geodesic space. A function 

𝜑:𝑋 → ℝ is uniformly convex if there exists a strictly increasing function 𝜔:ℝ+ → ℝ+such 

that for any geodesic 𝛾: [0,1] → 𝑋, 

𝜑(𝛾 (
1

2
)) ≤

1

2
[𝜑(𝛾(0)) + 𝜑(𝛾(1))] − 𝜔 (𝑑(𝛾(0), 𝛾(1))). 

Proposition (6.2.17)[335]: ([231]). Let (𝑋, 𝑑) be a complete geodesic space. If 𝜑: 𝑋 → ℝ 

is a uniformly convex and lower semicontinuous function on 𝑋, then there exists a unique 

minimizer 𝑥 ∈ 𝑋, i.e., a unique point 𝑥 ∈ 𝑋 with 𝜑(𝑥) = inf𝑧∈𝑋  𝜑(𝑧). 
We now consider Δ𝑝-valued random variables, their distributions, the independence and the 

space 𝐿𝑞(Ω, Δ𝑝) for 1 < 𝑝 < ∞ and 1 ≤ 𝑞 < ∞, etc., by using arguments . 

Theorem (6.2.18)[335]: For a fixed element 𝑦 ∈ Δ𝑝 and any 𝑋 ∈ 𝐿1(Ω, Δ𝑝), there exists a 

unique element 𝑥 ∈ Δ𝑝 which minimizes the real-valued function on Δ𝑝 given by 𝑧 ↦

𝐸[𝑑𝑝(𝑧, 𝑋)
2 − 𝑑𝑝(𝑦, 𝑋)

2]. 

Proof. Let 𝐹𝑦(𝑧) = 𝐸[𝑑𝑝(𝑧, 𝑋)
2 − 𝑑𝑝(𝑦, 𝑋)

2]. Then 

|𝐹𝑦(𝑧)|  = |𝐸[(𝑑𝑝(𝑧, 𝑋) − 𝑑𝑝(𝑦, 𝑋))(𝑑𝑝(𝑧, 𝑋) + 𝑑𝑝(𝑦, 𝑋))]|

 ≤ 𝑑𝑝(𝑧, 𝑦)(𝐸[𝑑𝑝(𝑧, 𝑋)] + 𝐸[𝑑𝑝(𝑦, 𝑋)]),
 

so that |𝐹𝑦(𝑧)| < ∞. For any two elements 𝑧0, 𝑧1 ∈ Δ𝑝, let 𝛾(𝑡) be a geodesic joining 𝑧0 and 

𝑧1. Then by using the inequality (74) for 𝑑𝑝, we obtain that 

𝐹𝑦(𝛾(𝑡))  = 𝐸[𝑑𝑝(𝛾(𝑡), 𝑋)
2 − 𝑑𝑝(𝑦, 𝑋)

2]  

≤ 𝐸[(1 − 𝑡)𝑑𝑝(𝑧0, 𝑋)
2 + 𝑡𝑑𝑝(𝑧1, 𝑋)

2 − 𝑡(1 − 𝑡)𝛼𝑝𝑑𝑝(𝑧0, 𝑧1)
2

− 𝑑𝑝(𝑦, 𝑋)
2]  

= (1 − 𝑡)𝐸[𝑑𝑝(𝑧0, 𝑋)
2 − 𝑑𝑝(𝑦, 𝑋)

2] + 𝑡𝐸[𝑑𝑝(𝑧1, 𝑋)
2 − 𝑑𝑝(𝑦, 𝑋)

2] − 𝑡(1

− 𝑡)𝛼𝑝𝑑𝑝(𝑧0, 𝑧1)
2 

 = (1 − 𝑡)𝐹𝑦(𝑧0) + 𝑡𝐹𝑦(𝑧1) − 𝑡(1 − 𝑡)𝛼𝑝𝑑𝑝(𝑧0, 𝑧1)
2,                          (76) 

which implies that 𝐹𝑦 is a uniformly convex function, i.e., 
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𝐹𝑦 (𝛾 (
1

2
)) ≤

1

2
(𝐹𝑦(𝑧0) + 𝐹𝑦(𝑧1)) − 𝜔 (𝑑𝑝(𝑧0, 𝑧1)), 

where 𝜔(𝑡) = 𝛼𝑝𝑡
2/4 with 𝑡 ∈ ℝ+.Moreover, the continuity of 𝑧 ↦ 𝐹𝑦(𝑧) immediately 

follows from the inequality 

|𝐹𝑦(𝑧) − 𝐹𝑦(𝑧
′)|  = |𝐸[𝑑𝑝(𝑧, 𝑋)

2 − 𝑑𝑝(𝑦, 𝑋)
2] − 𝐸[𝑑𝑝(𝑧

′, 𝑋)2 − 𝑑𝑝(𝑦, 𝑋)
2]|

 ≤ 𝐸[|𝑑𝑝(𝑧, 𝑋)
2 − 𝑑𝑝(𝑧

′, 𝑋)2|].
 

Therefore, 𝐹𝑦 is uniformly convex and continuous, so that by applying Proposition (6.2.17), 

we get the existence and uniqueness of minimizer. 

We see that the case 𝑝 = 2 in Theorem (6.2.18) can be obtained from the results in 

[231] since (Δ2, 𝑑2) is a Hadamard space. For 𝑋 ∈ 𝐿1(Ω, Δ𝑝), the minimizer of the function 

𝑧 ∈ Δ𝑝 ⟼ 𝐸[𝑑𝑝(𝑧, 𝑋)
2 − 𝑑𝑝(𝑦, 𝑋)

2] ∈ ℝ 

is called the expectation of 𝑋 and denoted by 𝐄𝑋. The following theorem gives a variance 

inequality in (Δ𝑝, 𝑑𝑝) with 1 < 𝑝 ≤ 2.  

Theorem (6.2.19)[335]: Let 1 < 𝑝 ≤ 2. For any 𝑋 ∈ 𝐿1(Ω, Δ𝑝) and 𝑧 ∈ Δ𝑝, we have 

𝐸[𝑑𝑝(𝑧, 𝑋)
2 − 𝑑𝑝(𝐄𝑋, 𝑋)

2] ≥ 𝛼𝑝𝑑𝑝(𝑧, 𝐄𝑋)
2.                          (77) 

Proof. Given a random variable 𝑋 ∈ 𝐿1(Ω, Δ𝑝) and 𝑧 ∈ Δ𝑝, put 𝑧1 = 𝑧, and 𝑧0 = 𝐄𝑋. We 

denote by 𝛾(𝑡) the geodesic joining 𝐄𝑋 and 𝑧 in (76). Since 𝐄𝑋 is the minimizer, we have 

0 ≤ 𝐹𝐄𝑋(𝛾(𝑡))  ≤ (1 − 𝑡)𝐹𝐄𝑋(𝐄𝑋) + 𝑡𝐹𝐄𝑋(𝑧) − 𝑡(1 − 𝑡)𝛼𝑝𝑑𝑝(𝑧, 𝐄𝑋)
2

 = 𝑡𝐹𝐄𝑋(𝑧) − 𝑡(1 − 𝑡)𝛼𝑝𝑑𝑝(𝑧, 𝐄𝑋)
2.

 

Therefore, we obtain 

(1 − 𝑡)𝛼𝑝𝑑𝑝(𝑧, 𝐄𝑋)
2 ≤ 𝐹𝐄𝑋(𝑧) = 𝐸[𝑑𝑝(𝑧, 𝑋)

2 − 𝑑𝑝(𝐄𝑋, 𝑋)
2]. 

By taking the limit 𝑡 → 0, we get the inequality (77). 

Now, we consider a limiting procedure of random variables taking values in (Δ𝑝, 𝑑𝑝) for 

1 < 𝑝 ≤ 2. The followings are key lemmas for proving Theorem (6.2.22). 
Lemma (6.2.20)[335]: Let 0 < 𝛼 ≤ 1 and 𝐶 ≥ 0 be given. If {𝑎𝑛} is a nonnegative 

sequence satisfying the following recurrence relation 

𝑎1 ≤ 𝐶  and  𝑎𝑛 ≤
(𝑛 − 1)(𝑛 − 𝛼2)

𝑛2
𝑎𝑛−1 +

(𝑛 − (𝑛 − 1)𝛼)

𝑛2
𝐶 (𝑛 ≥ 2), 

then we have 

𝑎𝑛 ≤ (
(𝛼 + 1)𝑛 + (1 − 𝛼)𝛼𝑛2

𝛼(𝛼2 + 1)𝑛2
+
(𝛼 − 1)(𝛼 + 1)2Γ(𝑛 + 1 − 𝛼2)

𝛼(𝛼2 + 1)Γ(2 − 𝛼2)𝑛𝑛!
)𝐶 

and 

lim sup
𝑛→∞

 𝑎𝑛 ≤
1 − 𝛼

1 + 𝛼2
𝐶. 

Proof. By the induction on 𝑛, we can get the proof. 

Lemma (6.2.21)[335]: Let 1 < 𝑝 ≤ 2. If 𝑋, 𝑌 and 𝑍 are independent identically distributed 

random variables in 𝐿2(Ω, Δ𝑝), then we have that for any 0 ≤ 𝜆 ≤ 1, 

𝐸[𝑑(𝐄𝑍, 𝑋#𝜆𝑌)
2]

≤ (1 − 𝜆)(1 − 𝜆𝛼𝑝
2)𝐸[𝑑(𝐄𝑍, 𝑋)2] + 𝜆(1 − (1 − 𝜆)𝛼𝑝)𝐸[𝑑(𝐄𝑍, 𝑌)

2]. (78) 

Proof. For any 0 ≤ 𝜆 ≤ 1, we have 

𝐸[𝑑(𝐄𝑍, 𝑋#𝜆𝑌)
2] 
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 ≤ (1 − 𝜆)𝐸[𝑑(𝐄𝑍, 𝑋)2] + 𝜆𝐸[𝑑(𝐄𝑍, 𝑌)2] − (1 − 𝜆)𝜆𝛼𝑝𝐸[𝑑(𝑋, 𝑌)
2]

 ≤ (1 − 𝜆)𝐸[𝑑(𝐄𝑍, 𝑋)2] + 𝜆𝐸[𝑑(𝐄𝑍, 𝑌)2] − (1 − 𝜆)𝜆𝛼𝑝 [𝛼𝑝𝐸[𝑑(𝑋, 𝐄𝑌)
2] + 𝐸[𝑑(𝐄𝑌, 𝑌)2]]

 = (1 − 𝜆)(1 − 𝜆𝛼𝑝
2)𝐸[𝑑(𝐄𝑍, 𝑋)2] + 𝜆(1 − (1 − 𝜆)𝛼𝑝)𝐸[𝑑(𝐄𝑍, 𝑌)

2],

 

where the first inequality follows from the inequality (74) and the second inequality follows 

from the inequality (77) in Theorem (6.2.19). This completes the proof. 

The following theorem gives an asymptotic upper bound of 𝐸[𝑑𝑝(𝐄𝑋1, 𝑍𝑛)
2], where 𝑍𝑛 is 

the (non-weighted) inductive mean. 

Theorem (6.2.22)[335]: If {𝑋𝑖} is a sequence of independent identically distributed random 

variables in 𝐿2(Ω, Δ𝑝) with 1 < 𝑝 ≤ 2, then 

lim sup
𝑛→∞

 𝐸[𝑑𝑝(𝐄𝑋1, 𝑍𝑛)
2] ≤

1 − 𝛼𝑝
1 + 𝛼𝑝

2
𝐕(𝑋1) 

where 𝑍𝑛 = 𝑍𝑛−1#1/𝑛𝑋𝑛 for 𝑛 ≥ 2 and 𝑍1 = 𝑋1. In particular, if each random variable 𝑋𝑖 

takes values in 𝐿2(Ω, Δ2), then the weak law of large numbers holds, i.e., 

𝑍𝑛 ⟶ 𝐄𝑋1  in probability.                                     (79) 
Proof. By Lemma (6.2.21), we obtain 

𝐸[𝑑𝑝(𝐄𝑋1, 𝑍𝑛)
2] 

 = 𝐸 [𝑑𝑝(𝐄𝑋1, 𝑍𝑛−1#1/𝑛𝑋𝑛)
2
]

 ≤ (
(𝑛 − 1)(𝑛 − 𝛼𝑝

2)

𝑛2
)𝐸[𝑑𝑝(𝐄𝑋1, 𝑍𝑛−1)

2] + (
𝑛 − (𝑛 − 1)𝛼𝑝

𝑛2
)𝐕(𝑋1).

 

Since 𝐸[𝑑𝑝(𝐄𝑋1, 𝑍1)
2] = 𝐕(𝑋1), by Lemma (6.2.20), we have for 𝑛 ≥ 3, 

𝐸[𝑑𝑝(𝐄𝑋1, 𝑍𝑛)
2]

≤ (
(𝛼𝑝 + 1)𝑛 + (1 − 𝛼𝑝)𝛼𝑝𝑛

2

𝛼𝑝(𝛼𝑝
2 + 1)𝑛2

+
(𝛼𝑝 − 1)(𝛼𝑝 + 1)

2
Γ(𝑛 + 1 − 𝛼𝑝

2)

𝛼𝑝(𝛼𝑝
2 + 1)Γ(2 − 𝛼𝑝

2)𝑛𝑛!
)𝐕(𝑋1) 

⟶
1− 𝛼𝑝
1 + 𝛼𝑝

2
𝐕(𝑋1) 

as 𝑛 → ∞. Since 𝛼2 = 1, we see that the weak law of large numbers (79) holds. 

 

 

 

 

Section (6.3): Toeplitz Lemma in Geodesic Metric Space 

For {𝑥𝑛} be a sequence of real numbers with lim𝑛→∞  𝑥𝑛 = 𝑥. Then the well-known 

Toeplitz lemma says that the weighted mean: 

𝑆𝑛: =∑  

𝑛

𝑖=1

𝑎𝑛𝑖𝑥𝑖                                                           (80) 

converges to same limit 𝑥, where {𝑎𝑛𝑖} is a weighted sequence of positive real numbers with 

lim𝑛→∞  𝑎𝑛𝑖 = 0 for any fixed 𝑖 and ∑𝑖=1
𝑛  𝑎𝑛𝑖 = 1 for any 𝑛 ∈ ℕ. The Toeplitz lemma, 

considered as a generalization of the Cesàro theorem, is a useful tool for the study of 

convergence theorems in probability theory and has been applied many convergence results, 
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e.g., the law of large numbers and the limits of sequences. [131], proved that the Toeplitz 

lemma also holds in the sense of the mean convergence and constructed an example for 

which the Toeplitz lemma does not hold in the sense of the convergence in probability. Also, 

a complete convergence version of Toeplitz lemma has been studied in [153]. In [314], the 

authors studied the higher order, multi-dimensional and continuous version of the Cesàro 

theorem which was proposed for the study of continuous analogue of the Lèvy Laplacian as 

an infinite dimensional Laplacian. 

In a geodesic metric space, the notion of geodesic allow us to define a weighted 

inductive mean with a positive weighted sequence. In the case of real-valued sequence with 

the (usual) Euclidean metric, the weighted inductive mean is exactly equal to the weighted 

mean (see (80)). Thus it is a very natural and interesting question is whether the Toeplitz 

lemma holds for the weighted inductive means in a geodesic metric space. 

Another type of weighted inductive means has been introduced by Hansen [142] (also see 

[347]) in 2014 and so is called the Hansen's inductive mean. [347], proved the Hansen's 

inductive mean is a contractive weighted geometric mean for the trace matric. But, for the 

Hansen's inductive mean, it is not known whether it converges or not (see Problem 1 in 

[347]), and so it is also one of interesting questions that any convergence of the Hansen's 

inductive mean. 

We study the Toeplitz lemma for inductive means in a geodesic metric space and by 

using the Toeplitz lemma, we prove the Cesàro theorem for inductive means. Also, we study 

an asymptotic property for the Hansen's inductive geometric mean and as an application of 

the Toeplitz lemma, we prove a convergence of the Hansen's inductive mean. 

We recall the basic notions for a 𝑝-uniformly convex metric space and we prove the 

Toeplitz lemma for weighted inductive means in a 𝑝 uniformly convex metric space. Also, 

we prove the the Cesàro theorem for a non-weighted inductive means. We recall the notion 

of random variables in a metric space and then we study some inequalities for weighted 

inductive means. Using this inequality we first prove an asymptotic property for the 

Hansen's inductive geometric mean of independent identically distributed (i.i.d.) random 

variables valued in a Hadamard space. Secondly, by using the Toeplitz lemma, we prove a 

convergence of the Hansen's inductive geometric mean of i.i.d. random variables valued in 

a Hadamard space. Finally, we consider two interesting examples of metric spaces satisfying 

the Toeplitz Lemma for the matrix geometric mean and the geometric mean of positive 

operators, respectively. 

For (𝑀, 𝑑) be a metric space. For any 𝑥, 𝑦 ∈ 𝑀, a continuous map 𝛾: [0,1] → 𝑀 is 

called a geodesic joining 𝑥 and 𝑦 if it satisfies the following properties: for any 𝑠, 𝑡 ∈ [0,1], 

𝑑(𝛾(𝑠), 𝛾(𝑡)) ≤ |𝑠 − 𝑡|𝑑(𝛾(0), 𝛾(1))  and  𝛾(0) = 𝑥, 𝛾(1) = 𝑦. 
A metric space (𝑀, 𝑑) is called a geodesic metric space if for any 𝑥, 𝑦 ∈ 𝑀, there exists a 

geodesic 𝛾: [0,1] → 𝑀 such that 𝛾(0) = 𝑥 and 𝛾(1) = 𝑦. 
For any fixed 2 ≤ 𝑝 < ∞, let (𝑀, 𝑑) be a 𝑝-uniformly convex metric space, i.e., 𝑀 is a 

geodesic metric space and for any 𝑧 ∈ 𝑀 and any geodesic 𝛾: [0,1] → 𝑀 with 𝛾(0) = 𝑥, 

𝛾(1) = 𝑦, there exists a constant 0 < 𝑐𝑀 ≤ 1 such that 

𝑑(𝑧, 𝛾(𝑡))𝑝 ≤ (1 − 𝑡)𝑑(𝑧, 𝑥)𝑝 + 𝑡𝑑(𝑧, 𝑦)𝑝 − 𝑐𝑀𝑡(1 − 𝑡)𝑑(𝑥, 𝑦)
𝑝. 

For each 𝑛 ∈ ℕ and each finite sequence 𝒘:= {𝑤𝑛𝑖} of positive real numbers, 𝒘 is called a 

positive weighted sequence if ∑𝑖=1
𝑛  𝑤𝑛𝑖 = 1. For a given positive weighted sequence 𝒘:=

{𝑤𝑛𝑖}, 

we define a new positive weighted sequence �̂�ℓ: = {�̂�ℓ𝑖}𝑖=1
ℓ  for ℓ = 1,… , 𝑛 as follows: 
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�̂�ℓ =
𝑤𝑛𝑖

∑  ℓ
𝑗=1 𝑤𝑛𝑗

 for all 𝑖 = 1, . . . ℓ.                         (81) 

In fact, �̂�𝑛 = 𝒘.  
For each 𝑛 ∈ ℕ, positive weighted sequence 𝒘 = {𝑤𝑛𝑖} and (finite) sequence 𝒙:= {𝑥𝑖}𝑖=1

𝑛  

of elements in (𝑀, 𝑑), we define a sequence {𝑆𝑛} of elements in 𝑀, which is called the 

weighted inductive mean, as follows [225]: 

𝑆1(1; 𝑥1) = 𝑥1  and  𝑆𝑛(𝒘; 𝒙) = 𝑧𝑛−1#𝑤𝑛𝑛𝑥𝑛 (𝑛 ≥ 2).               (82) 

where 𝑧1 = 𝑥1 and 𝑧ℓ: = 𝑧ℓ−1#�̂�ℓ𝑡𝑥ℓ for ℓ = 2,3,⋯ , 𝑛 − 1. Here 𝑥#𝑡𝑦 denotes the 𝑡-

weighted geometric mean which is the point 𝛾(𝑡) on the geodesic 𝛾: [0,1] → 𝑀 with 𝛾(0) =
𝑥 and 𝛾(1) = 𝑦. The Hansen's (weighted) inductive (geometric) mean 𝐻𝑛 is defined as 

follows [347]: 

𝐻1(1; 𝑥1) = 𝑥1,

𝐻𝑛(𝒘; 𝒙) = 𝐻𝑛−1(�̂�𝑛−1; 𝑥1#𝑤𝑛𝑛𝑥𝑛, 𝑥2#𝑤𝑛𝑛𝑥𝑛, ⋯ , 𝑥𝑛−1#𝑤𝑛𝑛𝑥𝑛). (83)
 

Note that 𝑆2(𝑥1, 𝑥2) = 𝐻2(𝑥1, 𝑥2), but, in general, 𝑆𝑛(𝒘; 𝒙) ≠ 𝐻𝑛(𝒘; 𝒙) for 𝑛 ≥ 3 (see 

[347]). 

Lemma (6.3.1)[345]: Let (𝑀, 𝑑) be a p-uniformly convex metric space. Let 𝒙:= {𝑥𝑖}𝑖=1
𝑛  be 

a sequence of elements in (𝑀, 𝑑) and 𝒘:= {𝑤𝑛𝑖} be a positive weighted sequence. Then we 

have for any 𝑧 in 𝑀, 

𝑑(𝑆𝑛(𝒘; 𝒙), 𝑧)
𝑝 ≤∑  

𝑛

𝑘=1

 𝑤𝑛𝑘𝑑(𝑥𝑘 , 𝑧)
𝑝,                             (84)

𝑑(𝐻𝑛(𝒘; 𝒙), 𝑧)
𝑝 ≤∑  

𝑛

𝑘=1

 𝑤𝑛𝑘𝑑(𝑥𝑘, 𝑧)
𝑝.                             (85)

 

Proof. Using the convexity of 𝑥 ↦ 𝑑(𝑥, 𝑧)𝑝 (it is clear by the definition of a 𝑝-uniformly 

convex metric space) and the mathematical induction, we can prove the desired assertion. 

Let (𝑀, 𝑑) be a metric space and let 

Δ𝑛: = {𝒘 = (𝑤𝑛1, 𝑤𝑛2, ⋯ , 𝑤𝑛𝑛) ∈ ℝ
𝑛 ∣ 𝒘 is a positive weighted sequence} 

Let 𝐺: Δ𝑛 ×𝑀
𝑛 → 𝑀 be a contractive mean for the given metric 𝑑, i.e, 

𝑑(𝐺(𝒘, 𝒙), 𝐺(𝒘, 𝒚)) ≤∑  

𝑛

𝑖=1

𝑤𝑛𝑖𝑑(𝑥𝑖 , 𝑦𝑖) 

for 𝒙 = {𝑥𝑖}𝑖=1
𝑛 , 𝒚 = {𝑦𝑖}𝑖=1

𝑛 ∈ 𝑀𝑛 and 𝒘:= {𝑤𝑛𝑖} ∈ Δ𝑛. Then for any 𝑝 ≥ 1, since the 

function 𝑡𝑝 (𝑡 ≥ 0) is convex, by using the Jensen's inequality we have that 

𝑑(𝐺(𝒘; 𝒙), 𝑧)𝑝  ≤ (∑  

𝑛

𝑖=1

 𝑤𝑛𝑖𝑑(𝑥𝑖 , 𝑧))

𝑝

 ≤∑  

𝑛

𝑖=1

 𝑤𝑛𝑖𝑑(𝑥𝑖 , 𝑧)
𝑝

 

for any 𝒙 = {𝑥𝑖}𝑖=1
𝑛 , 𝒚 = {𝑦𝑖}𝑖=1

𝑛 ∈ 𝑀𝑛, 𝑧 ∈ 𝑀 and 𝒘:= {𝑤𝑛𝑖} ∈ Δ𝑛, which is compared to 

Lemma (6.3.1). 
The following theorem is well-known as Toeplitz Lemma for real valued sequences and so 

its proof is also well-known. 
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Theorem (6.3.2)[345]: Let {𝑥𝑛} be a sequence of real numbers with lim𝑛→∞  𝑥𝑛 = 0. Let 

{𝑤𝑛𝑖}(𝑛 ∈ ℕ) be a weighted sequence of real numbers with lim𝑛→∞  𝑤𝑛𝑖 = 0 for any fixed 

𝑖 ≥ 1 and ∑𝑖=1
𝑛  |𝑤𝑛𝑖| < ∞. Then it holds that 

lim
𝑛→∞

 ∑  

𝑛

𝑖=1

𝑤𝑛𝑖𝑥𝑖 = 0. 

The following theorem is a geodesic metric space version of Toeplitz Lemma. 

Theorem (6.3.3)[345]: (Toeplitz Lemma for inductive means). Let (𝑀, 𝑑) be a p-uniformly 

convex metric space. Let 𝒙:= {𝑥𝑖}𝑖=1
𝑛  be a sequence of elements in (𝑀, 𝑑) and 𝒘:= {𝑤𝑛𝑖} 

be a positive weighted sequence. Suppose that there exists a element 𝑧 in 𝑀 such that 𝑥𝑛 →
𝑧, i.e., lim𝑛→∞  𝑑(𝑥𝑛, 𝑧) = 0 and lim𝑛→∞  𝑤𝑛𝑖 = 0 for any fixed 𝑖 ≥ 1. Then we have 

𝑆𝑛(𝒘; 𝒙) → 𝑧  and  𝐻𝑛(𝒘; 𝒙) → 𝑧,                                   (86) 
as 𝑛 → ∞. In particular, if 𝑏𝑛: = ∑𝑖

𝑛  𝑎𝑖 , 𝑎𝑖 > 0 with 𝑏𝑛 → ∞ as 𝑛 → ∞, then 𝑥𝑛 → 𝑧 implies 

that 

𝑆𝑛(𝒘; 𝒙) → 𝑧  and  𝐻𝑛(𝒘; 𝒙) → 𝑧, 

where 𝒘:= {𝑤𝑛𝑖 =
𝑎𝑖

𝑏𝑛
} for 𝑛 ∈ ℕ and 𝑖 = 1,2,⋯ , 𝑛. 

Proof. By Lemma (6.3.1), we have 

𝑑(𝑆𝑛(𝒘, 𝒙), 𝑧)
𝑝 ≤∑ 

𝑛

𝑖=1

𝑤𝑛𝑖𝑑(𝑥𝑖 , 𝑧)
𝑝,  𝑑(𝐻𝑛(𝒘; 𝒙), 𝑧)

𝑝 ≤∑ 

𝑛

𝑖=1

𝑤𝑛𝑖𝑑(𝑥𝑖 , 𝑧)
𝑝. 

Therefore, by applying Theorem (6.3.2) to the right-hand side in above inequalities, the 

proof is completed. For the second part, by putting 𝑤𝑛𝑖 =
𝑎𝑖

𝑏𝑛
 with 𝑎𝑖 > 0 for 𝑖 = 1,2,⋯ , 𝑛 

in (86), the proof is immediate. 

If we take 𝑤𝑛𝑖 = 1/𝑛 for all 𝑖 = 1,… , 𝑛 in the weighted inductive mean (82), then 

we obtain that �̂�ℓ𝑖 = 1/ℓ for all 𝑖 = 1,… , ℓ and ℓ = 1,… , 𝑛 − 1. Hence, we have 

𝑆1(𝒙) = 𝑥1,

𝑆𝑛(𝒙) = 𝑆𝑛−1#1/𝑛𝑥𝑛,  𝑛 ≥ 2,
 

and 

𝐻1(𝑥) = 𝑥1,

𝐻𝑛(𝑥) = 𝐻𝑛−1 (
1

𝑛 − 1
; 𝑥1#1/𝑛𝑥𝑛, 𝑥2#1/𝑛𝑥𝑛ℎ , … , 𝑥𝑛−1#1/𝑛𝑥𝑛) ,  𝑛 ≥ 2,

 

which are called 𝑎 non-weighted inductive mean and a non-weighted Hansen's inductive 

mean, respectively. 

By using Theorem (6.3.3), we have the following Cesàro theorem for a non-weighted 

inductive mean and a non-weighted Hansen's inductive mean, respectively. 

Corollary (6.3.4)[345]: (Cesaro Theorem for inductive means). Let 𝑥:= {𝑥1}𝑖=1
𝑛  be a 

sequence of elements in 𝑀. Suppose that there exists a element zin 𝑀 such that 𝑥𝑛 → 𝑧 Then 

𝑆𝑛(𝑥) → 𝑧 and 𝐻𝑛(𝑥) → 𝑧,                                         (87) 
as 𝑛 → ∞, where 𝑆𝑛 is a non-weighted inductive mean and 𝐻𝑛 is a non-weighted Hansen's 

inductive mean given, respectively. 

We always assume that (𝑀, 𝑑) is a Hadamard space, i.e., 𝑀 is a complete geodesic 

space satisfying the following property: for any 𝑥, 𝑦 ∈ 𝑀, there exists a point 𝑚 ∈ 𝑀 such 

that 

𝑑(𝑧,𝑚)2 ≤
1

2
𝑑(𝑧, 𝑥)2 +

1

2
𝑑(𝑧, 𝑦)2 −

1

4
𝑑(𝑥, 𝑦)2  for any 𝑧 ∈ 𝑀. (88) 
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Note that any Hadamard space is a 2-uniformly convex metric space with parameter 𝑐𝑀 =
1, and that the metric function 𝑥 ↦ 𝑑(𝑧, 𝑥) is convex (indeed, (𝑥, 𝑦) ↦ 𝑑(𝑥, 𝑦) is doubly 

convex) (see [231]). 

Let (Ω, ℱ, 𝑃) be a probability space. A function 𝑋:Ω → 𝑀 is called an 𝑀-valued random 

variable (or simply, random variable) if 𝑋 is a Borel measurable function. For a Borel subset 

𝐵 of 𝑀, we put 𝑃𝑋(𝐵):= 𝑃(𝑋
−1(𝐵)), which is called the distribution (or law) of 𝑋. A 

sequence {𝑋𝑛} of random variables is said to be independent if for any finite subset 𝐼 of ℕ, 

𝑃(⋂ 

𝑖∈𝐼

 𝑋𝑖
−1(𝐵𝑖)) =∏ 

𝑖∈𝐼

𝑃 (𝑋𝑖
−1(𝐵𝑖)), 

where {𝐵𝑖}𝑖∈𝐼 is any finite sequence of Borel subsets of 𝑀, and is identically distributed if 

𝑃𝑋𝑖(𝐵) = 𝑃𝑋𝑗(𝐵) for any Borel subset 𝐵 of 𝑀 and 𝑖, 𝑗 ∈ ℕ. 

For 1 ≤ 𝑝 < ∞, let 𝐿𝑝(Ω,𝑀) be the set of all random variables 𝑋 such that 

∫  
Ω

[𝑑(𝑧, 𝑋(𝜔))]𝑝𝑑𝑃(𝜔) = ∫  
𝑀

[𝑑(𝑧, 𝑥)]𝑝𝑑𝑃𝑋(𝑥) < ∞ 

for some 𝑧 ∈ 𝑀, and 𝐿∞(Ω,𝑀) be the set of all random variables 𝑋 such that 

𝑑(𝑧, 𝑋(𝜔)) ≤ 𝑅  a.s.  

for some 𝑧 ∈ 𝑀 and 𝑅 ≥ 0. 

For a given real-valued function 𝜙 on 𝑀, if there exists a point 𝑥 ∈ 𝑀 such that 𝜙(𝑥) =
inf𝑧∈𝑀  𝜙(𝑧), then 𝑥 is called a minimizer and denoted by 𝑥:= argmin

𝑧∈𝑀
𝜙(𝑧). We now define 

the expectation (or barycenter) of 𝑋 in 𝐿1(Ω,𝑀)[231]: for each fixed 𝑦 ∈ 𝑀, 

𝐄[𝑋]:= argmin
𝑧∈𝑀

𝐸[𝑑(𝑧, 𝑋)2 − 𝑑(𝑦, 𝑋)2]:= argmin
𝑧∈𝑀

∫  
𝑀

[𝑑(𝑧, 𝑥)2 − 𝑑(𝑦, 𝑥)2]𝑑𝑃𝑋(𝑥). 

For a random variable 𝑋 ∈ 𝐿1(Ω,𝑀), we define the variance of 𝑋 by 

𝐕(𝑋):= inf
𝑧∈𝑀

 𝐸[𝑑(𝑧, 𝑋)2]. 

Remark (6.3.5)[345]: If we restrict to 𝑋 ∈ 𝐿2(Ω,𝑀), then 𝐄[𝑋] is the unique minimizer of 

𝑧 ↦ 𝑑(𝑧, 𝑋)2 (see [231]), i.e., 

𝐄[𝑋] = argmin
𝛾⊂𝑀

𝐸[𝑑(𝑧, 𝑋)2] = argmin
𝑧∈𝑀

∫  
𝑀

𝑑(𝑧, 𝑥)2𝑑𝑃𝑋(𝑥).        (89) 

Hence, 𝐕(𝑋) = 𝐸[𝑑(𝐄[𝑋], 𝑋)2] < ∞. 
Proposition (6.3.6)[345]: Let 𝐗 = {𝑋𝑖}𝑖=1

𝑛 (𝑛 ∈ ℕ) and 𝐘 = {𝑌𝑖}𝑖=1
𝑛  be two sequences of 

random variables valued in (𝑀, 𝑑) and 𝑤:= {𝑤𝑚𝑖} be a positive weighted sequence. Then 

we have 

(i) For all 𝑧 ∈ 𝑀, 𝑑(𝑧, 𝑆𝑛(𝑤; 𝐗))
2 ≤ ∑𝑖=1

𝑛  𝑤𝑚𝑖𝑑(𝑧, 𝑋𝑖)
2. 

(ii) 𝑑(𝐻𝑛(𝑤; 𝐗), 𝐻𝑛(𝑤; 𝐘)) ≤ ∑𝑖=1
𝑛  𝑤𝑤2𝑑(𝑋𝑖 , 𝑌𝑖). 

(iii) 𝑑(𝐻𝑛−1(�̂�𝑛−1; 𝑋1, ⋯𝑋𝑛−1),𝐻𝑛(𝒘;𝐗)) ≤
𝑤𝑛𝑛

1−𝑤𝑛𝑛
∑𝑖=1
𝑛−1  𝑤𝑛𝑑(𝑋𝑖 , 𝑋𝑛), where �̂�𝑛−1: =

{
𝑤𝑚

1−𝑤𝑖=
}
𝑖=1

𝑛−1
. 

(iv) For 𝑛 ≥ 2, it hold that for all 𝑧 ∈ 𝑀 

𝑑(𝑧, 𝐻𝑛(𝑤; 𝐗))
2 ≤∑ 

𝑛

𝑖=1

𝑤𝑚𝑑(𝑧, 𝑋𝑖)
2 −𝑤𝑚𝑛∑  

𝑛−1

𝑖=1

𝑤𝑚𝑑(𝑋𝑖 , 𝑋𝑛)
2. (90) 

Proof. For the proof of (i) and (ii), we refer to [347]. By using (ii) and the convexity of 𝑥 ↦
𝑑(𝑥, 𝑧), we have 
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𝑑(𝐻𝑛−1�̂�𝑛−1; 𝑋1, ⋯𝑋𝑛−1),𝐻𝑛(𝒘;𝐗))

 = 𝑑(𝐻𝑛−1�̂�𝑛−1; 𝑋1, ⋯𝑋𝑛−1), 𝐻𝑛−1(�̂�𝑛−1; 𝑋1#𝑤𝑛𝑛𝑋𝑛, ⋯𝑋𝑛−1#𝑤𝑚𝑛𝑋𝑛)

 ≤
1

1 − 𝑤𝑛𝑛
∑  

𝑛−1

𝑖=1

 𝑤𝑛𝑖𝑑(𝑋𝑖 , 𝑋𝑖#𝑤𝑛𝑛𝑋𝑛) ≤
𝑤𝑛𝑛

1 − 𝑤𝑛𝑛
∑ 

𝑛−1

𝑖=1

 𝑤𝑛𝑖𝑑(𝑋𝑖 , 𝑋𝑛),

 

where for the second inequality, we used (ii) and for the third inequality, we used the 

convexity of 𝑥 ↦ 𝑑(𝑥, 𝑧). Thus, the proof of (iii) is completed. We use the mathematical 

induction to prove (90). Indeed, it is clear for 𝑛 = 2. Suppose that (90) is hold for 𝑛 − 1. 

Then, by the convexity of 𝑥 ↦ 𝑑(𝑥, 𝑧)2, we obtain that 

𝑑 (𝑧, 𝐻𝑛(𝒘;𝐗))
2 = 𝑑 (𝑧,𝐻𝑛−1(�̂�𝑛−1; 𝑋1#𝑤𝑛𝑛𝑋𝑛, ⋯ , 𝑋𝑛−1#𝑤𝑛𝑛𝑋𝑛))

2

≤
1

1 − 𝑤𝑛𝑛
(∑  

𝑛−1

𝑖=1

 𝑤𝑖𝑑(𝑧, 𝑋𝑖#𝑤𝑛𝑛𝑋𝑛)
2
)

 −
𝑤𝑛(𝑛−1)

(1 − 𝑤𝑛𝑛)
2
(∑  

𝑛−2

𝑖=1

 𝑤𝑛𝑖𝑑(𝑋𝑖#𝑤𝑛𝑛𝑋𝑛, 𝑋𝑛−1#𝑤𝑛𝑛𝑋𝑛)
2
)

≤
1

1 − 𝑤𝑛𝑛
∑ 

𝑛−1

𝑖=1

 𝑤𝑛𝑖{(1 − 𝑤𝑛𝑛)𝑑(𝑧, 𝑋𝑖)
2 +𝑤𝑛𝑛𝑑(𝑧, 𝑋𝑛)

2 − (1 − 𝑤𝑛𝑛)𝑤𝑛𝑛𝑑(𝑋𝑖 , 𝑋𝑛)
2}

=  ∑  

𝑛−1

𝑖=1

 𝑤𝑛𝑖𝑑(𝑧, 𝑋𝑖)
2 +

𝑤𝑛𝑛
1 − 𝑤𝑛𝑛

(1 − 𝑤𝑛𝑛)𝑑(𝑧, 𝑋𝑛)
2 −𝑤𝑛𝑛∑  

𝑛−1

𝑖=1

 𝑤𝑛𝑖𝑑(𝑋𝑖 , 𝑋𝑛)
2

=  ∑  

𝑛

𝑖=1

 𝑤𝑛𝑖𝑑(𝑧, 𝑋𝑖)
2 −𝑤𝑛𝑛∑ 

𝑛−1

𝑖=1

 𝑤𝑛𝑖𝑑(𝑋𝑖 , 𝑋𝑛)
2.

 

The proof is completed. 

Proposition (6.3.7)[345]: Let 𝐗 = {𝑋𝑖}𝑖=1
𝑛  be a sequence of random variable valued in 

(𝑀, 𝑑). For all 𝑛 ≥ 2, it hold that 

𝑑(𝑆𝑛(𝒘; 𝐗),𝐻𝑛(𝒘; 𝐗))
2 ≤∑ 

𝑛

𝑖≠𝑗

𝑤𝑛𝑖𝑤𝑛𝑗𝑑(𝑋𝑖 , 𝑋𝑗)
2
−𝑤𝑛𝑛∑ 

𝑛−1

𝑖=1

𝑤𝑛𝑖𝑑(𝑋𝑖 , 𝑋𝑛)
2.    (91) 

Proof. By using (i) and (iv) in the Proposition (6.3.6), we have 

𝑑(𝑆𝑛(𝒘;𝐗), 𝐻𝑛(𝒘; 𝐗))
2  ≤∑  

𝑛

𝑗=1

 𝑤𝑛𝑗𝑑(𝑆𝑛(𝒘;𝐗), 𝑋𝑗)
2
−𝑤𝑛𝑛∑  

𝑛−1

𝑖=1

 𝑤𝑛𝑖𝑑(𝑋𝑖 , 𝑋𝑛)
2

 ≤∑  

𝑛

𝑖≠𝑗

 𝑤𝑛𝑖𝑤𝑛𝑗𝑑(𝑋𝑖 , 𝑋𝑗)
2
−𝑤𝑛𝑛∑  

𝑛−1

𝑖=1

 𝑤𝑛𝑖𝑑(𝑋𝑖 , 𝑋𝑛)
2,

 

where for the first inequality, we use (iv) and for the second inequality, we use (i). The proof 

is completed. 

We recall the strong law of large numbers for weighted inductive means in a Hadamard 

space. 

Theorem (6.3.8)[345]: ([335]). Let (𝑀, 𝑑) be a Hadamard space. Let X = {𝑋𝑖}𝑖=1
𝑛  be a 

sequence of independent identically distributed random variables in 𝐿∞(Ω,𝑀). If 𝒘:=
{𝑤𝑛𝑖} is a positive weighted sequence satisfying the following condition: 
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(C) There exists a constant 𝐶 ≥ 1 such that max1≤𝑖≤𝑛  𝑤𝑛𝑖 ≤ 𝐶min1≤𝑖≤𝑛  𝑤𝑛𝑖 
then 

𝑆𝑛(𝒘; 𝐗) → 𝐄[𝑋1]  a.s.                                                (92) 
as 𝑛 → ∞, where 𝑆𝑛 is given as in (82). 

[347], constructed some examples that the Hansen's inductive mean does not converge to 

same limit for the inductive mean 𝑆𝑛 (see Examples 5.1 and 5.3 in [347]). The following 

theorem give an asymptotic property for the Hansen's inductive geometric mean. 

Theorem (6.3.9)[345]: Under the same assumption in Theorem (6.3.8), we have for some 

𝑅 > 0, 

lim
𝑛→∞

 𝑑(𝐄[𝑋1], 𝐻𝑛(𝒘; 𝐗)) ≤ 2𝑅√2(1 −∑  

∞

𝑖=1

 𝑤𝑛𝑖
2 )                     (93) 

as 𝑛 → ∞, where 𝐻𝑛 is given as in (83). 

Proof. Since {𝑋𝑖} ⊆ 𝐿
∞(Ω,𝑀), there exists a constant 𝑅 > 0 such that for all 

𝑖, 𝑑(𝑧, 𝑋𝑖(𝜔)) < 𝑅 a.s. for some 𝑧 ∈ 𝑀. Thus by Proposition (6.3.7), we have 

𝑑(𝐄[𝑋1], 𝐻𝑛(𝒘;𝐗))  ≤ 𝑑(𝐄[𝑋1], 𝑆𝑛(𝒘; 𝐗)) + 𝑑(𝑆𝑛(𝒘;𝐗), 𝐻𝑤(𝒘; 𝐗))

 ≤ 𝑑(𝐄[𝑋1], 𝑆𝑛(𝒘; 𝐗)) + 2𝑅√∑  

𝑛

𝑖+𝑗

 𝑤𝑛𝑤𝑛𝑗

 = 𝑑(𝐄[𝑋1], 𝑆𝑛(𝒘;𝐗)) + 2𝑅√(1 −∑  

𝑛

𝑖=1

 𝑤𝑚
2 )

 

Therefore, by Theorem (6.3.8), we obtain that 

lim
𝑛→∞

 𝑑(𝐄[𝑋1], 𝐻𝑛(𝑤; 𝐗)) ≤ 2𝑅√(1 −∑  

∞

𝑖=1

 𝑤𝜇𝑖
2 ). 

The proof is completed. 

(see Problem 1 in [347]). The following theorem is a partial answer to the open problem in 

[347] (see Problem 1 in [347]). For the proof, we use the Toeplitz lemma (Theorem (6.3.3)). 

Theorem (6.3.10)[345]: Under the same assumption in Theorem (6.3.8), we have 

𝐻𝑛(𝒘; 𝑆1, ⋯ , 𝑆𝑛) → 𝐄[𝑋1]  a.s.                                  (94) 
as 𝑛 → ∞, where 𝑆𝑛 is given as in (82) and 𝐻𝑛 is given as in (83). 

Proof. Since 𝑆𝑛(𝒘; 𝐗) → 𝐄[𝑋1]  a.s. as 𝑛 → ∞, by Theorem (6.3.3), the proof is completed. 

We consider two interesting examples of metric spaces satisfying the geometric 

version of the Toeplitz lemma. 

Let ℍ:= ℍ𝑛 be the spaces of 𝑛 × 𝑛 Hermitian matrices (i.e., 𝐴 ∈ ℍ if and only if 

𝐴∗ = 𝐴 ) and ℙ:= ℙ𝑛 the convex cone of positive definite element in ℍ (i.e., 𝐴 ∈ ℙ if and 

only if ⟨𝐴𝑥, 𝑥⟩ > 0, for all 𝑥 ∈ ℝ𝑛, where ⟨⋅,⋅⟩ is the usual inner product on ℝ𝑛 ). We now 

recall the Riemannian trace metric on ℙ as following: 

𝛿(𝐴, 𝐵):= ∥∥log 𝐴−1/2𝐵𝐴−1/2∥∥2, 
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where ∥ 𝐴 ∥2: = (tr 𝐴
∗𝐴)1/2. Then it is well-known fact that (ℙ, 𝛿) is a complete geodesic 

metric space having a unique geodesic 𝐴#𝑡𝐵:= 𝐴
1/2(𝐴−1/2𝐵𝐴−1/2)

𝑡
𝐴1/2. Also, for fixed 

𝑍 ∈ ℙ, 𝐴 ↦ 𝛿(𝑍, 𝐴)2 is a convex function (see [3]). Then we have the following result. 

Theorem (6.3.11)[345]: (Toeplitz Lemma for matrix geometric means). Let 𝐴:= {𝐴𝑖}𝑖=1
𝑛  

be a sequence of elements in (ℙ, 𝛿) and 𝑤:= {𝑤𝑛𝑖} be a positive weighted sequence. 

Suppose that there exists an element 𝐴 in ℙ such that 𝐴𝑛 → 𝐴, i.e., lim𝑛→∞  𝛿(𝐴𝑛, 𝐴) = 0 

and lim𝑛→∞  𝑤𝑛𝑖 = 0 for any fixed 𝑖 ≥ 1. Then we have 

𝑆𝑛(𝒘;𝑨) → 𝐴  and  𝐻𝑛(𝒘;𝑨) → 𝐴,                               (95) 
as 𝑛 → ∞, where 𝑆𝑛 is given as in (82) and 𝐻𝑛 is given as in (83). In particular, if 𝑏𝑛: =
∑𝑖
𝑛  𝑎𝑖, 𝑎𝑖 > 0 with 𝑏𝑛 → ∞ as 𝑛 → ∞, then 𝐴𝑛 → A implies that 

𝑆𝑛(𝒘;𝑨) → 𝐴  and  𝐻𝑛(𝒘;𝑨) → 𝐴, 

where 𝒘:= {𝑤𝑛𝑖 =
𝑎𝑖

𝑏𝑛
} for 𝑛 ∈ ℕ and 𝑖 = 1,2,⋯ , 𝑛 

Proof. Since (ℙ, 𝛿) is a 2 -uniformly convex metric space with parameter 𝑐ℙ = 1( see [3]), 

the assertions are immediate from Theorem (6.3.3). 

Let 𝐻 be a Hilbert space with inner product ⟨⋅,⋅⟩𝐻 and 𝒫 be the set of all positive 

invertible elements in ℬ(𝐻), where ℬ(𝐻) is the Banach space of all bounded linear 

operators on 𝐻 equipped with the operator norm. The Thompson metric on 𝒫 is defined by 

𝑑(𝑆, 𝑇):= m  {log𝑀(𝑆 ∖ 𝑇) , log𝑀(𝑇 ∖ 𝑆)},  𝑆, 𝑇 ∈ 𝒫, 
where 𝑀(𝑆 ∖ 𝑇) = inf{𝜆 ∣ 𝑆 ≤ 𝜆𝑇} (see [349]). It is one of important fact that for fixed 𝑈 ∈
𝒫, the map 𝒫 ∋ 𝑆 ↦ 𝑑(𝑈, 𝑆) is a convex function for the geodesic 𝑆#𝑡𝑇:=

𝑆1/2(𝑆−1/2𝑇𝑆−1/2)
𝑡
𝑆1/2 (see [346], [348], [150]). 

Theorem (6.3.12)[345]: (Toeplitz Lemma for positive operators). Let 𝑇:= {𝑇𝑖}𝑖=1
𝑛  be a 

sequence of elements in (𝒫, 𝑑) and 𝒘:= {𝑤𝑛𝑖} be a positive weighted sequence. Suppose 

that there exists an element 𝑇 in 𝒫 such that 𝑇𝑛 → 𝑇, i.e., lim𝑛→∞  𝑑(𝑇𝑛, 𝑇) = 0 and 

lim𝑛→∞  𝑤𝑛𝑖 = 0 for any fixed 𝑖 ≥ 1. Then we have 

𝑆𝑛(𝒘;𝑻) → 𝑇  and 𝐻𝑛(𝒘;𝑻) → 𝑇,                          (96) 
as 𝑛 → ∞, where 𝑆𝑛 is given as in (82) and 𝐻𝑛 is given as in (83). In particular, if 𝑏𝑛: =
∑𝑖
𝑛  𝑎𝑖, 𝑎𝑖 > 0 with 𝑏𝑛 → ∞ as 𝑛 → ∞, then 𝑇𝑛 → 𝑇 implies that 

𝑆𝑛(𝒘; 𝑻) → 𝑇  and  𝐻𝑛(𝒘; 𝑻) → 𝑇. 

where 𝒘:= {𝑤𝑛𝑖 =
𝑎𝑖

𝑏𝑛
} for 𝑛 ∈ ℕ and 𝑖 = 1,2,⋯ , 𝑛 

Proof. Since the metric function 𝑑(𝑈,⋅) is convex, and using the proof of Theorem (6.3.3), 

the proof is straightforward. 

Corollary (6.3.13)[350]: Let (𝑀, 𝑑) be a (1 + 𝜖)-uniformly convex metric space. Let 𝒙𝑚: =
{𝑥𝑖
𝑚}𝑖=1

𝑛  be a sequence of elements in (𝑀, 𝑑) and 𝒘𝑚: = {𝑤𝑛𝑖
𝑚} be a positive weighted 

sequence. Then we have for any 𝑧𝑚 in 𝑀, 

𝑑(𝑆𝑛
𝑚(𝒘𝑚; 𝒙𝑚), 𝑧𝑚)2+𝜖 ≤∑  

𝑛

𝑘=1

∑ 

𝑚

𝑤𝑛𝑘
𝑚 𝑑(𝑥𝑘

𝑚, 𝑧𝑚)2+𝜖 ,                             (97)

𝑑(𝐻𝑛(𝒘
𝑚; 𝒙𝑚), 𝑧𝑚)2+𝜖 ≤∑  

𝑛

𝑘=1

∑ 

𝑚

𝑤𝑛𝑘
𝑚 𝑑(𝑥𝑘

𝑚, 𝑧𝑚)2+𝜖 .                             (98)

 

Proof. Using the convexity of 𝑥𝑚 ↦ 𝑑(𝑥𝑚, 𝑧𝑚)2+𝜖 (it is clear by the definition of a (2 +
𝜖)-uniformly convex metric space) and the mathematical induction, we can prove the 

desired assertion. 
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Corollary (6.3.14)[350]: (Toeplitz Lemma for inductive means). Let (𝑀, 𝑑) be a p-

uniformly convex metric space. Let 𝒙𝑚: = {𝑥𝑖
𝑚}𝑖=1

𝑛  be a sequence of elements in (𝑀, 𝑑) and 

𝒘𝑚: = {𝑤𝑛𝑖
𝑚} be a positive weighted sequence. Suppose that there exists a element 𝑧𝑚 in 𝑀 

such that 𝑥𝑛
𝑚 → 𝑧𝑚, i.e., lim𝑛→∞  𝑑(𝑥𝑛

𝑚, 𝑧𝑚) = 0 and lim𝑛→∞  𝑤𝑛𝑖
𝑚 = 0 for any fixed 𝑖 ≥ 1. 

Then we have 

𝑆𝑛
𝑚(𝒘𝑚; 𝒙𝑚) → 𝑧𝑚  and  𝐻𝑛(𝒘

𝑚; 𝒙𝑚) → 𝑧𝑚,                                   (99) 
as 𝑛 → ∞. In particular, if 𝑏𝑛: = ∑𝑖

𝑛  𝑎𝑖
𝑚, 𝑎𝑖

𝑚 > 0 with 𝑏𝑛 → ∞ as 𝑛 → ∞, then 𝑥𝑛
𝑚 → 𝑧𝑚 

implies that 

𝑆𝑛
𝑚(𝒘𝑚; 𝒙𝑚) → 𝑧𝑚  and  𝐻𝑛(𝒘

𝑚; 𝒙𝑚) → 𝑧𝑚, 

where 𝒘𝑚: = {𝑤𝑛𝑖
𝑚 =

𝑎𝑖
𝑚

𝑏𝑛
} for 𝑛 ∈ ℕ and 𝑖 = 1,2,⋯ , 𝑛. 

Proof. By Corollary (6.3.13), we have 

𝑑(𝑆𝑛
𝑚(𝒘𝑚, 𝒙𝑚), 𝑧𝑚)1+𝜖 ≤∑ 

𝑛

𝑖=1

∑ 

𝑚

𝑤𝑛𝑖
𝑚𝑑(𝑥𝑖

𝑚, 𝑧𝑚)1+𝜖 ,  𝑑(𝐻𝑛(𝒘
𝑚; 𝒙𝑚), 𝑧𝑚)1+𝜖

≤∑ 

𝑛

𝑖=1

∑ 

𝑚

𝑤𝑛𝑖
𝑚𝑑(𝑥𝑖

𝑚, 𝑧𝑚)1+𝜖 . 

Therefore, by applying Theorem (6.3.2) to the right-hand side in above inequalities, the 

proof is completed. For the second part, by putting 𝑤𝑛𝑖
𝑚 =

𝑎𝑖
𝑚

𝑏𝑛
 with 𝑎𝑖

𝑚 > 0 for 𝑖 = 1,2,⋯ , 𝑛 

in (99), the proof is immediate. 

Corollary (6.3.15)[350]: (See [345]). Let 𝐗 = {𝑋𝑖}𝑖=1
𝑛 (𝑛 ∈ ℕ) and 𝐘 = {𝑌𝑖}𝑖=1

𝑛  be two 

sequences of random variables valued in (𝑀, 𝑑) and 𝑤𝑚: = {𝑤𝑚𝑖

𝑚 } be a positive weighted 

sequence. Then we have 

(i) For all 𝑧𝑚 ∈ 𝑀, 𝑑(𝑧𝑚, 𝑆𝑛
𝑚(𝑤𝑚; 𝐗))2 ≤ ∑𝑖=1

𝑛  𝑤𝑚𝑖

𝑚𝑑(𝑧𝑚, 𝑋𝑖)
2. 

(ii) 𝑑(𝐻𝑛(𝑤
𝑚; 𝐗), 𝐻𝑛(𝑤

𝑚; 𝐘)) ≤ ∑𝑖=1
𝑛  ∑  𝑚 𝑤𝑤2𝑚

𝑚 𝑑(𝑋𝑖 , 𝑌𝑖). 

(iii) 𝑑(𝐻𝑛−1(�̂�𝑛−1
𝑚 ; 𝑋1, ⋯𝑋𝑛−1),𝐻𝑛(𝒘

𝑚; 𝐗)) ≤
𝑤𝑛𝑛
𝑚

1−𝑤𝑛𝑛
𝑚 ∑𝑖=1

𝑛−1 ∑  𝑚  𝑤𝑛
𝑚𝑑(𝑋𝑖 , 𝑋𝑛), where 

�̂�𝑛−1
𝑚 : = {

𝑤𝑚0
𝑚

1−𝑤𝑖
𝑚}
𝑖=1

𝑛−1

. 

(iv) For 𝑛 ≥ 2, it hold that for all 𝑧𝑚 ∈ 𝑀 

𝑑(𝑧𝑚, 𝐻𝑛(𝑤
𝑚; 𝐗))2 ≤∑ 

𝑛

𝑖=1

∑ 

𝑚

𝑤𝑚0

𝑚 𝑑(𝑧𝑚, 𝑋𝑖)
2 −𝑤𝑚0𝑛

𝑚 ∑  

𝑛−1

𝑖=1

∑ 

𝑚

𝑤𝑚0

𝑚 𝑑(𝑋𝑖 , 𝑋𝑛)
2. (100) 

Proof. For the proof of (i) and (ii), we refer to [347]. By using (ii) and the convexity of 

𝑥𝑚 ↦ 𝑑(𝑥𝑚, 𝑧𝑚), we have 

𝑑(𝐻𝑛−1�̂�𝑛−1
𝑚 ; 𝑋1, ⋯𝑋𝑛−1), 𝐻𝑛(𝒘

𝑚; 𝐗))

 = 𝑑(𝐻𝑛−1�̂�𝑛−1
𝑚 ; 𝑋1, ⋯𝑋𝑛−1), 𝐻𝑛−1 (�̂�𝑛−1

𝑚 ; 𝑋1#𝑤𝑛𝑛𝑚 𝑋𝑛, ⋯𝑋𝑛−1#𝑤𝑚0𝑛
𝑚 𝑋𝑛)

 ≤∑ 

𝑚

1

1 − 𝑤𝑛𝑛
𝑚 ∑  

𝑛−1

𝑖=1

 𝑤𝑛𝑖
𝑚𝑑(𝑋𝑖 , 𝑋𝑖#𝑤𝑛𝑛𝑚 𝑋𝑛) ≤∑ 

𝑚

𝑤𝑛𝑛
𝑚

1 − 𝑤𝑛𝑛
𝑚 ∑  

𝑛−1

𝑖=1

 𝑤𝑛𝑖
𝑚𝑑(𝑋𝑖 , 𝑋𝑛),

 

where for the second inequality, we used (ii) and for the third inequality, we used the 

convexity of 𝑥𝑚 ↦ 𝑑(𝑥𝑚, 𝑧𝑚). Thus, the proof of (iii) is completed. We use the 

mathematical induction to prove (100). Indeed, it is clear for 𝑛 = 2. Suppose that (100) is 

hold for 𝑛 − 1. Then, by the convexity of 𝑥𝑚 ↦ 𝑑(𝑥𝑚, 𝑧𝑚)2, we obtain that 
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𝑑(𝑧𝑚, 𝐻𝑛(𝒘
𝑚; 𝐗))2 = 𝑑 (𝑧𝑚, 𝐻𝑛−1(�̂�𝑛−1

𝑚 ; 𝑋1#𝑤𝑛𝑛𝑚 𝑋𝑛, ⋯ , 𝑋𝑛−1#𝑤𝑛𝑛𝑚 𝑋𝑛))
2
 

≤∑ 

𝑚

1

1 − 𝑤𝑛𝑛
𝑚 (∑  

𝑛−1

𝑖=1

 𝑤𝑖
𝑚𝑑(𝑧𝑚, 𝑋𝑖#𝑤𝑛𝑛𝑚 𝑋𝑛)

2
)

−∑ 

𝑚

𝑤𝑛(𝑛−1)
𝑚

(1 − 𝑤𝑛𝑛
𝑚 )2

(∑  

𝑛−2

𝑖=1

𝑤𝑛𝑖
𝑚𝑑(𝑋𝑖#𝑤𝑛𝑛𝑚 𝑋𝑛, 𝑋𝑛−1#𝑤𝑛𝑛𝑚 𝑋𝑛)

2
) 

≤∑ 

𝑚

1

1 − 𝑤𝑛𝑛
𝑚 ∑ 

𝑛−1

𝑖=1

 𝑤𝑛𝑖
𝑚{(1 − 𝑤𝑛𝑛

𝑚 )𝑑(𝑧𝑚, 𝑋𝑖)
2 +𝑤𝑛𝑛

𝑚 𝑑(𝑧𝑚, 𝑋𝑛)
2

− (1 − 𝑤𝑛𝑛
𝑚 )𝑤𝑛𝑛

𝑚 𝑑(𝑋𝑖 , 𝑋𝑛)
2}

= ∑  

𝑛−1

𝑖=1

 ∑  

𝑚

𝑤𝑛𝑖
𝑚𝑑(𝑧𝑚, 𝑋𝑖)

2 +∑ 

𝑚

𝑤𝑛𝑛
𝑚

1 − 𝑤𝑛𝑛
𝑚 (1 − 𝑤𝑛𝑛

𝑚 )𝑑(𝑧𝑚, 𝑋𝑛)
2

−∑ 

𝑚

𝑤𝑛𝑛
𝑚 ∑  

𝑛−1

𝑖=1

𝑤𝑛𝑖
𝑚𝑑(𝑋𝑖 , 𝑋𝑛)

2

= ∑  

𝑛

𝑖=1

 ∑  

𝑚

𝑤𝑛𝑖
𝑚𝑑(𝑧𝑚, 𝑋𝑖)

2 −∑ 

𝑚

𝑤𝑛𝑛
𝑚 ∑ 

𝑛−1

𝑖=1

 𝑤𝑛𝑖
𝑚𝑑(𝑋𝑖 , 𝑋𝑛)

2. 

The proof is completed. 

Corollary (6.3.16)[350]: (See [21]). Let 𝐗 = {𝑋𝑖}𝑖=1
𝑛  be a sequence of random variable 

valued in (𝑀, 𝑑). For all 𝑛 ≥ 2, it hold that 

𝑑(𝑆𝑛
𝑚(𝒘𝑚; 𝐗), 𝐻𝑛(𝒘

𝑚; 𝐗))2

≤∑ 

𝑛

𝑖≠𝑗

∑ 

𝑚

𝑤𝑛𝑖
𝑚𝑤𝑛𝑗

𝑚𝑑(𝑋𝑖 , 𝑋𝑗)
2
−∑ 

𝑚

𝑤𝑛𝑛
𝑚 ∑  

𝑛−1

𝑖=1

𝑤𝑛𝑖
𝑚𝑑(𝑋𝑖 , 𝑋𝑛)

2.       (101) 

Proof. By using (i) and (iv) in the Corollary (6.3.15), we have 

𝑑(𝑆𝑛
𝑚(𝒘𝑚; 𝐗), 𝐻𝑛(𝒘

𝑚; 𝐗))2  ≤ ∑  

𝑛

𝑗=1

 ∑  

𝑚

𝑤𝑛𝑗
𝑚𝑑(𝑆𝑛

𝑚(𝒘𝑚; 𝐗), 𝑋𝑗)
2
−∑  

𝑚

𝑤𝑛𝑛
𝑚 ∑ 

𝑛−1

𝑖=1

𝑤𝑛𝑖
𝑚𝑑(𝑋𝑖 , 𝑋𝑛)

2

 ≤ ∑  

𝑛

𝑖≠𝑗

∑ 

𝑚

 𝑤𝑛𝑖
𝑚𝑤𝑛𝑗

𝑚𝑑(𝑋𝑖 , 𝑋𝑗)
2
−∑  

𝑚

𝑤𝑛𝑛
𝑚 ∑ 

𝑛−1

𝑖=1

𝑤𝑛𝑖
𝑚𝑑(𝑋𝑖 , 𝑋𝑛)

2,

 

where for the first inequality, we use (iv) and for the second inequality, we use (i). The proof 

is completed. 
 

Corollary (6.3.17)[350]: Under the same assumption in Theorem (6.3.8), we have for some 

𝜖 ≥ 0, 

lim
𝑛→∞

 𝑑(𝐄[𝑋1], 𝐻𝑛(𝒘
𝑚; 𝐗)) ≤ 2(1 + 𝜖)√2(1 −∑  

∞

𝑖=1

 𝑤𝑛𝑖
2𝑚)                     (102) 

as 𝑛 → ∞, where 𝐻𝑛 is given as in (83). 

Proof. Since {𝑋𝑖} ⊆ 𝐿
∞(Ω,𝑀), there exists a constant 𝜖 ≥ 0 such that for all 

𝑖, 𝑑(𝑧𝑚, 𝑋𝑖(𝜔)) < 1 + 𝜖 a.s. for some 𝑧𝑚 ∈ 𝑀. Thus by Corollary (6.3.16), we have 
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𝑑(𝐄[𝑋1], 𝐻𝑛(𝒘
𝑚; 𝐗))  ≤ 𝑑(𝐄[𝑋1], 𝑆𝑛

𝑚(𝒘𝑚; 𝐗)) + 𝑑(𝑆𝑛
𝑚(𝒘𝑚; 𝐗), 𝐻𝑤𝑚(𝒘

𝑚; 𝐗))

 ≤ 𝑑(𝐄[𝑋1], 𝑆𝑛
𝑚(𝒘𝑚; 𝐗)) + 2(1 + 𝜖)√∑  

𝑛

𝑖+𝑗

∑ 

𝑚

 𝑤𝑛
𝑚𝑤𝑛𝑗

𝑚

 = 𝑑(𝐄[𝑋1], 𝑆𝑛
𝑚(𝒘𝑚; 𝐗)) + 2(1 + 𝜖)√(1 −∑  

𝑛

𝑖=1

 ∑  

𝑚

𝑤𝑚0
2m)

 

Therefore, by Theorem (6.3.8), we obtain that 

lim
𝑛→∞

 𝑑(𝐄[𝑋1], 𝐻𝑛(𝑤
𝑚; 𝐗)) ≤ 2(1 + 𝜖)√(1 −∑  

∞

𝑖=1

 ∑  

𝑚

𝑤𝜇𝑖
2𝑚). 

The proof is completed. 

Corollary (6.3.18)[350]: Under the same assumption in Theorem (6.3.8), we have 

𝐻𝑛(𝒘
𝑚; 𝑆1

𝑚, ⋯ , 𝑆𝑛
𝑚) → 𝐄[𝑋1]  a.s.                                  (103) 

as 𝑛 → ∞, where 𝑆𝑛
𝑚 is given as in (82) and 𝐻𝑛 is given as in (83). 

Proof. Since 𝑆𝑛
𝑚(𝒘𝑚; 𝐗) → 𝐄[𝑋1]  a.s. as 𝑛 → ∞, by Corollary (6.3.14), the proof is 

completed. 

Corollary (6.3.19)[350]: (Toeplitz Lemma for matrix geometric means). Let 𝐴:= {𝐴𝑖}𝑖=1
𝑛  

be a sequence of elements in (ℙ, 𝛿) and 𝒘𝑚: = {𝑤𝑛𝑖
𝑚} be a positive weighted sequence. 

Suppose that there exists an element 𝐴 in ℙ such that 𝐴𝑛 → 𝐴, i.e., lim𝑛→∞  𝛿(𝐴𝑛, 𝐴) = 0 

and lim𝑛→∞  𝑤𝑛𝑖
𝑚 = 0 for any fixed 𝑖 ≥ 1. Then we have 

𝑆𝑛
𝑚(𝒘𝑚; 𝑨) → 𝐴  and  𝐻𝑛(𝒘

𝑚; 𝑨) → 𝐴,                               (104) 
as 𝑛 → ∞, where 𝑆𝑛

𝑚 is given as in (82) and 𝐻𝑛 is given as in (83). In particular, if 𝑏𝑛: =
∑𝑖
𝑛  𝑎𝑖

𝑚, 𝑎𝑖
𝑚 > 0 with 𝑏𝑛 → ∞ as 𝑛 → ∞, then 𝐴𝑛 → A implies that 

𝑆𝑛
𝑚(𝒘𝑚; 𝑨) → 𝐴  and  𝐻𝑛(𝒘

𝑚; 𝑨) → 𝐴, 

where 𝒘𝑚: = {𝑤𝑛𝑖
𝑚 =

𝑎𝑖
𝑚

𝑏𝑛
} for 𝑛 ∈ ℕ and 𝑖 = 1,2,⋯ , 𝑛 

Proof. Since (ℙ, 𝛿) is a 2 -uniformly convex metric space with parameter 𝑐ℙ = 1( see [3]), 
the assertions are immediate from Corollary (6.3.14). 

Corollary (6.3.20). (See [345]) (Toeplitz Lemma for positive operators). Let 𝑇:= {𝑇𝑖}𝑖=1
𝑛  

be a sequence of elements in (𝒫, 𝑑) and 𝒘𝑚: = {𝑤𝑛𝑖
𝑚} be a positive weighted sequence. 

Suppose that there exists an element 𝑇 in 𝒫 such that 𝑇𝑛 → 𝑇, i.e., lim𝑛→∞  𝑑(𝑇𝑛, 𝑇) = 0 and 

lim𝑛→∞  𝑤𝑛𝑖
𝑚 = 0 for any fixed 𝑖 ≥ 1. Then we have 

𝑆𝑛
𝑚(𝒘𝑚; 𝑻) → 𝑇  and 𝐻𝑛(𝒘

𝑚; 𝑻) → 𝑇,                          (105) 
as 𝑛 → ∞, where 𝑆𝑛

𝑚 is given as in (82) and 𝐻𝑛 is given as in (83). In particular, if 𝑏𝑛: =
∑𝑖
𝑛  𝑎𝑖

𝑚, 𝑎𝑖
𝑚 > 0 with 𝑏𝑛 → ∞ as 𝑛 → ∞, then 𝑇𝑛 → 𝑇 implies that 

𝑆𝑛
𝑚(𝒘𝑚; 𝑻) → 𝑇  and  𝐻𝑛(𝒘

𝑚; 𝑻) → 𝑇. 

where 𝒘𝑚: = {𝑤𝑛𝑖
𝑚 =

𝑎𝑖
𝑚

𝑏𝑛
} for 𝑛 ∈ ℕ and 𝑖 = 1,2,⋯ , 𝑛 

Proof. Since the metric function 𝑑(𝑈,⋅) is convex, and using the proof of Corollary (6.3.14), 

the proof is straightforward. 
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