بسم الله الرحمن الرحيم

Sudan University of Science and Technology College of Petroleum Engineering & Mining Department of Transport and Refining Engineering

Project Submitted to College of Petroleum Engineering & Technology In Partial Fulfillment Of The Requirements For The Degree Of B.Sc. In Transport and Refining of Petroleum Engineering

Amine LPG Sweetening Process

عملية تحلية الغاز البترولي المسال باستخدام الأمين

Prepared by:

- 1. Ayyat Omer Abdallah
- 2. Idris Adam Mohamed
- 3. Nehal Ahmed Talha
- 4. Omer Ali Musa

Supervised by: Eng. Duaa Ahmed Mohammed

February2022

الآيــة

بسم الله الرحمن الرحيم

قَالَ رَبِّ الشَرَحْ لِي صَدْرِي (25) وَيَسِّرْ لِي أَمْرِي (26) وَاحْلُلْ عُقْدَةً مِنْ لِسَانِي (27) يَفْقَهُوا قَوْلِي (28)

صدق الله العظيم سورة طه

Dedication

To our parents, the two persons that gave the tools and values necessary to be where we are standing today. To all brothers, sisters, friends, teachers, colleague, relatives, & anyone who assisted, advised, & supported us and our, project. To all SPE members around the world, we would be honor to dedicate this project.

Acknowledgment

We would like to our full gratitude and appreciation to Eng. Duaa Ahmed Mohammed for providing us the opportunity to work under her supervision, and we also express our gratitude to the Department of Transport and Refining Engineering for assistance us on the completion of this research.

We also indebted to Dr. Monira Mahmoud Bakhit for her guidance and providing us necessary information and experience that we need to complete this project.

We are also need to deliver agree amount of thanks to Khartoum Refinery company whom stand behind us and help us.

We need also to thanks Eng. Amar Magzoub who helped us to develop the simulation and finished this project.

Last but not least to our families, all our lecturers, and friends & collogues for encouragement and kind support when we needed it most

Abstract

LPG is one of the top products in refineries contains impurities like H2S, are very harmful due to its corrosive and toxic characteristics, use to Tertiary amines (MDEA) to removes these impurities, called LPG sweetening process, the simulation and optimization of LPG sweetening process using HYSYS process version 11

 H_2S concentration in sweet LPG is within permissible limit of 0-10 ppm

التجريد:

يعتبر الغاز البترولي المسال أحد المنتجات الاولى في المصافي. يحتوي الغاز البترولي المسال على شوائب مثل غاز كبريتيد الهيدروجين و هو ضار بسبب سميته وخصائصه المسببة للتآكل. باستخدام الإصدر 11 من برنامج الهايسس يستخدم ثلاثي ميثيل ألامين لإزالة هذه الشوائب في عملية تسمى بتحلية الغاز . تركيز غاز كبريتيد الهايدروجين بعد عملية التحلية صفر .

الآسية	i
Dedication	ii
Acknowledgment	iii
Abstract	iv
Table of Contents	vi
List of Tables	viii
List of Figures	ix
Chapter 1	1
1.1 Introduction	1
1.2 Liquified petroleum gas LPG	1
1.2.1 Properties of LPG	1
1.3 Problem Statement:	
1.4 Objective:	
Chapter 2	4
2.1 Introduction	
2.1.1 Hydrogen sulfide (H ₂ S)	
2.3 Sweetening process	5
2.3.1 Reasons for Sweetening	6
2.3.2 Methods of gas sweetening	6
2.4 Amines	6
2.4.1 Types of amines	7
2.5 Previous studies	
Chapter 3	
3.1 Process Description	

Table of Contents

3.2 Chemical absorption	
3.2.1 Process chemistry	11
3.3 Material Balance	
3.3.1 Introduction:	
3.3.2 Material Balance of absorber	14
3.3.3 Material Balance of Separator	16
3.3.4 Material Balance of Striper	17
3.3.5 Reflux Drum Material Balance:	
3.4 Energy Balance:	
3.4.1 Energy Balance of absorber:	
3.4.2 Energy Balance of Heat Exchanger (amine - amine):	
3.4.3 Energy Balance of Heat Exchanger (Amine - water):	
3.4.4 Energy Balance of stripper	
3.5 Hysys process simulator:	
3.5.1 Introduction	
Chapter 4	
4.1 Material balance results and discussion of absorber	
4.2 Material balance results and discussion of separator	
4.3 Material balance results and discussion of stripper	
4.4 Effect of feed LPG temperature	
Chapter 5	
5.1 Conclusion	
5.2 Recommendation	
References	
APPENDIX	

List of Tables

Table (1.1.1) LPG properties	2
Table (2.2.1) symptoms from exposure to H ₂ S	5
Table (3.2.2) comparison of amine solvent	8
Table (4.3.1) Sour LPG composition	13
Table (5.3.2) over all Material Balance of absorber	15
Table (6.3.3) over all material balance of Separator	17
Table (7.3.4) over all material balance of Stripper	18
Table (8.3.5) over all material balance of reflux Drum	18
Table (9.3.6) Cp of LPG component at temperature 298 k^o	19
Table (10.3.7) over all energy of absorber	21
Table (11.3.8) over all energy Balance of amine-amine Heat Exchanger	22
Table (12.3.9) over all energy Balance of amine-water Heat Exchanger	23
Table (13.3.10) over all energy of Stripper	25
Table (14.3.11) over all energy of Condenser	27
Table (15.4.1) Material balance results and discussion of absorber	38
Table (16.4.2) Material balance results and discussion of separator	38
Table (17.4.3) Material balance results and discussion of stripper	39

List of Figures

Figure (1.3.1) sweeting process flow sheet	
Figure (2.3.2) absorber	14
Figure (3.3.3) Separator	16
Figure (4.3.4) Stripper	17
Figure (5.3.2) absorber	
Figure (6.3.5) Heat Exchanger	
Figure (7.3.6) Cooler	
Figure (8.3.7) Stripper	
Figure (9.3.8) Condenser	

Chapter1

Introduction

Chapter 1

Introduction

1.1 Introduction

Refineries mainly process crude oil to produce valuable petroleum products like fuel gas, LPG, gasoline, naphtha, ATF, kerosene, diesel, gas oil, residue and sulfur. Refineries also have hydrogen plant to meet hydro-treating requirements and nitrogen for utility requirements, Petroleum products like ethylene, propylene, cumene, cyclohexane, benzene, xylene, methanol and ammonia are obtained from petrochemical complex. LPG is still considered one of the important products due to its domestic usage and commercial value. (K. Jayakumar1, 2017)

1.2 Liquified petroleum gas LPG

Also called LP gas, many of several liquid mixtures of the volatile hydrocarbons propene, propane, butene, and butane. It was used as early as 1860 for a portable fuel source, and its production and consumption for both domestic and industrial use have expanded ever since. A typical commercial mixture may also contain ethane and ethylene, as well as a volatile mercaptan, an odorant added as a safety precaution.

LPG reaches the domestic consumer in cylinders under relatively low pressures. The largest part of the LPG produced is used in central heating systems, and the next largest as raw material for chemical plants. LPG commonly is used as fuel for gas barbecue grills and gas cooktops and ovens, for gas fireplaces, and in portable heaters. In Europe, LPG water heaters are common. It is also used as an engine fuel and for backup generators. Natural gas and crude oil process is main sources of LPG (britannica, n.d.)

1.2.1 Properties of LPG

LPG is primarily propane and butane, the properties of LPG (properties of propane and butane).

LPG has density heavier than Air (Propane Density) – and specific gravity (Propane specific gravity)

LPG chemical formula – molecular formula: C_3H_8 or C_4H_{10} and Combustion formula

C3H8 + 5 O2 \rightarrow 3 CO2 + 4 H2O + Heat (complete combustion)

Table (1.1.1) LPG properties

LPG (propane) gas melting/freezing temperature	-188 °C or -306.4 °F
LPG (propane) gas boiling point temperature	42 °C or -44 °F
LPG gas flame temperature	1967 °C or 3573 °F
LPG-Propane auto ignition temperature	470 °C or 878 °F
LPG-Propane ignition temperature (in air)	470°C – 550°C (878°F – 1020°F)
LPG vapour pressure	637 kPa @ 27°C (128 PSIG @ 80°F)
LPG energy content	25 MJ/L or 91,547 BTU/Gal (60°F)
Gaseous expansion of LPG	1 L (liquid) = 0.27 M3 (gas)
LPG limits of flammability	2.15% to 9.6% LPG/air
Molecular weight of LPG components	Propane is 44.097 kg/kmole – Butane (n-butane) is
	58.12 kg/kmole
Specific Gravity of liquid LPG propane	0.499 (25°C)
Molecular weight	44.097 kg/kmole

1.3 Problem Statement:

In Refineries gas sweetening process is inevitable when LPG contains acid gases like H_2S . Removal of these acid gases is essential since their presence poses severe corrosion problem to the process equipment. Tertiary amines (MDEA) is used as solvent for sweetening purpose.

1.4 Objective:

- The objective of this project is to remove hydrogen sulfide H₂S from a gas stream, to meet requirement of LPG handling, and to avoid forms of acidic solutions that will cause corrosion process equipment.
- Study the effect of various feed temperature on the percentage removal of acid gas is studied and the percentage of sweet LPG recovered

Chapter 2

Literature Review

Chapter 2

Literature review

2.1 Introduction

The demand for liquid hydrocarbon sweetening facilities has increased with the rise in the production of liquefied petroleum gas (LPG). The most common contaminants present in LPG are hydrogen sulfide (H2S), mercaptans (RSH), carbon dioxide (CO2), carbonyl sulfide (COS), carbon disulfide (CS2) and elemental sulfur. (Hanan Jalal Qeshta a, 2015)

2.1.1 Hydrogen sulfide (H₂S)

 H_2S is an extremely hazardous and toxic compound. It is a colorless, flammable gas, which can be dangerous in relative low concentrations. H_2S can be characterized by the smell of rotten eggs and can be found in e.g. sewage, fertilizers, wastewater treatment plants and gas wells.

The gas is often produced under conditions where rotten organic matter containing sulfur is decomposed in a low oxygen atmosphere. The smell of H_2S can be detected by the human nose in concentrations below 1 part per million (ppm). The smell will increase as the concentration increases. In concentration up to 30 ppm the rotten smell will be present. Above this concentration the smell will change into a more sickening sweet smell. This is dangerous because H_2S can be present without anyone observing any particularly smell. When H2S reaches this level, it starts to be a threat to the life of humans. (Hansen, 2014)

L		
0	0 – 10 ppm	Irritation of the eyes, nose and throat
W		
Μ		Headache
0	10 – 50 ppm	Dizziness
D		Nausea and vomiting
		Coughing and breathing difficulty
Η		Severe respiratory tract irritation
Ι		Eye irritation/acute conjunctivitis
G	50 – 200 ppm	Shock
H		Convulsions
		Coma
		Death in severe cases

Table (2.2.1) symptoms from exposure to H₂S

H2 S is highly undesirable in liquefied petroleum gas (LPG) for several reasons: » Storage. When storing produced LPGs for later distribution, H₂S causes corrosion in the expensive sphere tanks. » Polymer yield. Sulfur compounds reduce the polymer yield in polyolefin like polypropylene. » Catalysts. H₂S is known to poison catalysts in reactions that use LPGs as feedstock. » Emissions. When burning propane or any other LPG, H₂S will oxidize to SO₂, a particularly harmful emission

2.3 Sweetening process

Processes within oil refineries or chemical processing plants that remove hydrogen sulfide are referred to as "sweetening" processes because the odor of the processed products is improved by the absence of hydrogen sulfide.

Gas sweetening is sometimes referred to as amine treating can be used in refineries, petrochemical plants, natural gas processing plants its more referred to as gas sweetening(paqell)

Gases containing H_2S or both H_2S and CO_2 are commonly referred to as sour gases or acid gases in the hydrocarbon processing industries.

Methods for gas sweetening can be divided into two categories: adsorption and absorption processes. (paqell.com, n.d.)

2.3.1 Reasons for Sweetening

- 1. Safety and environmental protection
- 2. Product Specification
- 3. Corrosion prevention
- 4. Improved Heating Values
- **5.** Economics(sometimes)

2.3.2 Methods of gas sweetening

Methods of gas sweetening can be divided into two categories: adsorption and absorption process

Adsorption is a physical/chemical method where the gas is concentrated on the surface of a solid or liquid to remove impurities of H2S. The absorption process is performed by either dissolution, which is a physical process or by reactions with other compounds, which are chemical processes. (Hansen, 2014)

2.4 Amines

Amines are compounds formed from ammonia (NH3) by replacing one or more of the hydrogen atoms with another hydrocarbon group. Replacement of a single hydrogen produces a primary amine, replacement of two hydrogen atoms produces. (Meyers, n.d.)

a secondary amine, and replacement of all three of the hydrogen atoms produces a tertiary amine. Primary amines are the most reactive, followed by the secondary and tertiary amines. The amines are used in water solutions in concentrations ranging from approximately 10 to 65 wt% amines. These amines are also used in many oil refineries to remove sour gases from liquid hydrocarbons such as liquified petroleum gas (Meyers, n.d.)

2.4.1 Types of amines

Until the 1970s, MEA was the first amine considered for any sweetening unit. In the 1970s, MEA switches to DEA mainly, and in the past 20 years, there is an interest in MDEA and mixed amines.5

Methyl diethanolamine as a solvent has been favored in the past few years because of its many advantages, such as low corrosion, environmental friendliness, high loading capacity, resistance to thermal and oxidative degradation, and low heat of regeneration, over other amines. However, the main disadvantage of this solvent is its slow reaction rate with CO_2 , however, it has selectivity to H₂S removal. (Sajjad Sharif Dashti, n.d.)

2.4.1.1 Mon ethanolamine (MEA)

MEA is the strongest alkaline between the amines, for that reason MEA will be the one reacting most rapidly with the acid gas. MEA is able to remove both hydrogen sulfide and carbon dioxide from gas streams. MEA has a low molecular weight compared to the other amines, and has a greater carrying capacity for acid gases on a unit per weight or volume basis. (NOORHAN ABBAS FADHEL, n.d.)

2.4.1.2 Diethanolamine (DEA)

DEA is in many ways similar to MEA, where DEA is a secondary amine and MEA a primary. All side groups are ethanol. DEA's reaction with carbonyl sulfide and carbon disulfide is very slow, and it is not always possible to detect reaction between those species. DEA is non-selective and removes H2S and CO2. It is more volatile than MEA, which will result in a more efficient recovering process, where the loss by evaporation will be small. (NOORHAN ABBAS FADHEL, n.d.)

2.4.1.3 Methyldiethanolamine (MDEA)

Triethanolamine (TEA) was the first amine applied for gas sweetening. In modern gas treatment, it has been replaced by MDEA, since they are similar in their efficiency, but MDEA is less toxic.

MDEA is a tertiary amine like TEA, and they react the same way in gas sweetening processes. MDEA is less reactive with H2S and CO2, and sometimes the content of these will not be reduced enough to meet the demands for sweet gas. The flow and the temperature have to be raised to compensate for less efficiency compared to the other amines.

Due to the tertiary structure, MDEA is a more compact molecule, and therefore it is reacting slower because it is harder for the volatile component to get close to the center of the molecule. Nevertheless, the use of MDEA will still be realistic in some processes as a sweetening agent, due to its low toxicity. (NOORHAN ABBAS FADHEL, n.d.)

	Primary amine	Secondary amine	Tertiary amine
Chemical formula			R^1 N R^3 R^3 R^2
Туре	MEA	DEA	MDEA
Molecular weight	61	105	119
Solvent wt% in solution	15-20	20-35	40-55
Circulation (gal/mol AG)	100-165	60-125	65-110
H ₂ S/CO ₂ selectivity	1	1	3
Steam (lb/gal)	1.0-1.2	0.9-1.1	0.9-1.1
Max. AG flow (m ³ /d)	70,000	14,000	40,000

Table (3.2.2) comparison of amine solvent

2.5 Previous studies

Hanan Jalal Qeshta a, b, Salaheddin Abuyahya a, Priyabrata Pal a, Fawzi Banat, 2015

LPG sweetening process using tertiary alkanolamine (methyldiethanolamine; MDEA) by Aspen HYSYS version 8.0.. The effects of operating parameters such as temperature and pressure on the proposed process were also studied. A steady state model was developed for determining the sensitivity of parameters affecting the process. The most suited feed LPG temperature was determined to be 45 C. The optimum MDEA concentration and flow rate was found to be 35.0 wt% and 24.43 m3 /h, respectively. The parameters which indirectly affect the extraction process such as reboiler operating pressure, rich MDEA temperature. (Hanan Jalal Qeshta a, 2015)

Ali Samadi Afshar, Sayed Reaza Hashemi, 2011 Sulfrex demercaptanization process is used to remove volatile and corrosive mercaptans from liquefied petroleum gases by caustic solution. This process consists of two steps. Removing low molecular weight mercaptans and regeneration exhaust caustic. Some parameters such as LPG feed temperature, caustic concentration and feed's mercaptan in extraction step and sodium mercaptide content in caustic, catalyst concentration, caustic temperature, air injection rate in regeneration step are effective factors. (Ali Samadi Afshar, 2011)

Ruiting Liu, Daohong Xia, Yuzhi Xiang, and Yongliang Tian,2005, In order to provide the detailed technical guidance for the industrial operation in LPG sweetening, the caustic concentration not only has influence on the dispersion of catalyst sulfonated cobalt phthalocyanine (CoSPc), but also has effects on the transformation of mercaptans to mercaptides and further to disulfides (Ruiting Liu, n.d.)

JERRY A. BULLIN 1992 The use of amine mixtures employing methyldiethanolamine (MDEA), monoethanolamine (MEA), and diethanolamine (DEA) have been investigated for a variety of cases using a process simulation program called TSWEET. At high pressures, amine mixtures have little or no advantage in the cases studied. As the pressure is lowered, it becomes more difficult for MDEA to meet residual gas requirements and mixtures can usually improve plant performance. (BULLIN, 2005)

Chapter 3

Methodology

Chapter 3

Methodology

3.1 Process Description

Sour gas inters the contactor tower and rises through the descending amine solution .Purified gas flows from the top of tower. And the amine Solution, carrying absorbed acid gas, leaves from the bottom of tower to Separator to separate any insoluble gases Rich amine is heated by hot regenerated lean amine in the heat exchanger .Rich amine is further heated in the regeneration still column, by heat supplied from the reboiler. Steam and acid gases separated from rich amine are condensed and cooled, respectively in the reflux condenser. Condenser steam is separated in reflux accumulator and returned to the still. Acid gasses may be vented, incinerated, or directed to sulfur recovery system. Hot regenerated lean amine is cooled in solvent aerial cooler and circulated to the contractor tower, completing the cycle. A variety of heat sources can be used for the still reboiler- direct fired, waste heat, hot oil and steam system. The method will be used in this project is chemical absorption

Figure (1.3.1) sweeting process flow sheet

3.2 Chemical absorption

In absorption (also called gas absorption, gas scrubbing, and gas washing), a gas mixture is contacted with a liquid (the absorbent or solvent) to selectively dissolve one or more components by mass transfer from the gas to the liquid. The components transferred to the liquid are referred to as solute or absorbate.

Absorption is used to separate gas mixture; remove impurities, contaminants, pollutants, or catalyst poisons from gas; or recovery valuable chemicals.

These processes are characterized by a high capability of absorbing large amounts of acid gases. They use a solution of a relatively weak base, such as mono-ethanolamine. The acid gas forms a weak bond with the base which can be regenerated easily. Mono- and di-ethanolamine are frequently used for this purpose. (Hansen, 2014)

3.2.1 Process chemistry

Where, H2S is reacted instantaneously with MDEA to form methyldiethanolamine-sulphide salt

 $R_2NCH_3 + H_2S \quad \bigstar \qquad R_2NHCH_3HS$

3.3 Material Balance

3.3.1 Introduction:

Material balances are important first step when designing a new process or analyzing an existing one. They are almost always prerequisite to all other calculations in the solution of process engineering problems.

The General Balance Equation A balance (or inventory) on a material in a system (a single process unit, a collection of units, or an entire process) may be written in the following general way:

```
Input + generation - output - consumption = accumulation
```

This general balance equation may be written for any material that enters or leaves any process system; it can be applied to the total mass of this material or to any molecular or atomic species involved in the process. The general balance equation may be simplified according to the process at hand. For example, by definition, the accumulation term for steady-state continuous process is zero. Thus the above equation becomes.

Input + generation = output + consumption

For physical process, since there is no chemical reaction, the generation and consumption terms will become zero, and the balance equation for steady-state physical process will be simply reduced to:

Input = Output

The main objective of mass balance is to collect physical for feedstock and products and to make hand calculation of plant mass balance. The best way to tackle a material balance problem will depend on the information given, the information required from the balance, and the constraints that arise from the nature of the problem.

Table	(4.3.1)	Sour	LPG	com	position
-------	---------	------	-----	-----	----------

Component	Mass%	M.wt	Kg/hr	Kmol/hr
Methane	1.05%	16.042	315	19.636
Ethan	7.58%	30.07	2274	75.624
Propane	15.08%	44.09	4524	102.608
Propene	17.59%	24.08	5277	125.404
i-butan	8.55%	85.12	2565	30.134
n-butane	23.47%	85.12	7122	83.67
i-butene	9.61%	56.1	2883	51.390
1-butene	5.05%	56.1	1515	27.005
Trans-butene 2	6.56%	56.1	1968	35.080
Cis-2-butene	4.45%	56.1	1335	23.797
n-pentane	0.28%	72.15	84	1.164
1-pentane	0.20%	70.13	60	0.856
H ₂ S	0.13%	34.08	39	1.144
H2	0.07%	2.016	21	10.417
H ₂ O	0.06%	18.016	18	0.999
Total			30000	588.929

3.3.2 Material Balance of absorber

Figure (2.3.2) absorber

Stream 1 sour LPG = 30000 kg/hr

Stream 7 Lean amine = 17750 kg/hr

Gas recovery = 97%

Stream 8 Sweet gas $=30000 \times 0.97 = 29100 \text{ kg/hr}$

 H_2 S In Sour gas = 39kg/hr

 H_2S In Sweet gas 0.5 ppm 29100 × 0.5/10⁶ = 0.01455 kg/hr

 H_2S In Rich Amine 39 - 0.01455 = 38.99 kg/hr

M.wt of MDEA = 119.16 kg/kmol

M.wt of H₂O 18 kg/kmol

Solvent 35% MDEA & 65% Water

$$Mole\% = \frac{\frac{Wt1}{MT1}}{\frac{Wt1}{Mt1} + \frac{Wt2}{MT2}}$$

Concentration of MDEA in water = 45 wt%

Mole % of MDEA= $\frac{\frac{0.45}{119.16}}{\frac{0.45}{119.16} + \frac{0.55}{18}} * 100 = 11\%$

Mole of H₂O =
$$\frac{\frac{0.55}{18}}{\frac{0.55}{18} + \frac{0.45}{119}} * 100 = 89\%$$

M.wt of Lean Amine = M. wt of MDEA \times mol% + M. wt of H₂0 \times mol%

 $(119.16 \times 0.11) + (18 \times 0.89) = 29.13 \text{ kg/kmole}$

Mole of lean amine = rate of lean solution in stream 7/M. wt of lean amine

17750/29.13 = 609.39 kmole/hr

Over all Material Balance

Stream 1 + Stream 7 = Stream 2 + Stream 8

Rich Amine = 18650 kg/hr

Table (5.3.2)	over all	Material	Balance	of	absorber
---------	--------	----------	----------	---------	----	----------

Component	In	kg/hr	in total	Out kg/hr		Out total
	S1 Sour	S5 Lean		S2 rich	S8 treated	
	gas	amine		amine	gas	
LPG	29961	0	29961	861	29099.99	29961
H2S	39	0	39	38.99	0.1455	39.01
MDEA	0	17750	17750	17750	0	17750
Total	30000	17750	47750	18650	29100	47750

3.3.3 Material Balance of Separator

Figure (3.3.3) Separator

In = out

Assume that overhead gases 4.5%

Stream 3 over head gases = total rich amine out * 0.045

18650 * 0.045 = 839.25

Stream 4 rich amine = total rich amine – overhead gases

18650 - 839.25 = 17810.75

Table (6.3.3) over all material balance of Separat	tor
--	-----

Stream	In	Out
S2 rich amine	18650	
Stream 3		839.25
Stream 4		17810.75
Total	18650	18650

3.3.4 Material Balance of Striper

Figure (4.3.4) Stripper

Assume reflux rate 5%

Stream5 = 17810.75

Stream 9 = 17750

Stream 12 = 0.05 Stream 11

(17810.75 + 0.05S11) = (S11 + 17750)

Stream 11 = 63.946kg/hr

Stream 12 = 3.158 kg/hr

Table (7.3.4) over all material balance of Stripper

Stream	In	Out
Stream 5 (rich amine)	17810.75	
Stream 9(lean amine)		17750
Stream 11 (acid gas)		63.908
Stream 12 (reflux)	3.158	
Total	17813.908	17813.908

3.3.5 Reflux Drum Material Balance:

 Table (8.3.5) over all material balance of reflux Drum

Stream	In	Out
Stream11	63.908	
Stream12 (Reflux)		3.158
Stream14		60.75
Total	63.908	63.908

3.4 Energy Balance:

Cp of material at any Temperature (°C) = $a + bT + cT^2 + dT^3$ (himmelblau, n.d.)

Energy balance around process units

Temperature reference for energy balance calculation =25°C

Component	Mass%	M.wt	CP (J/mol.k)	CP (kj/kg.k)	Cp*xi
Methane	1.05%	16.042	35.68	2.22E+00	2.34E-02
Ethan	7.58%	30.07	52.39	1.74E+00	1.32E-01
Propane	15.08%	44.09	73.47	1.67E+00	2.51E-01
Propene	17.59%	42.08	64.32	1.53E+00	2.69E-01
i-butan	8.55%	85.12	96.65	1.14E+00	9.71E-02
n-butane	23.74%	85.12	98.35	1.16E+00	2.74E-01
i-butene	9.61%	56.1	88.09	1.57E+00	1.51E-01
1-butene	5.05%	56.1	118	2.10E+00	1.06E-01
Trans-butene 2	656%	56.1	87.67	1.56E+00	1.03E-01
Cis-2-butene	4.45%	56.1	80.15	1.43E+00	3.36E-02
n-pentane	0.28%	72.15	119.8	1.66E+00	4.65E-03
1-pentane	0.20%	70.13	108.2	1.54E+00	3.09E-03
H2S	0.13%	34.08	34.19	1.00E+00	1.30E-03
H2	0.07%	2.016	28.78	1.43E+01	9.99E-03
H2O	0.06%	18.016	33.58	1.86E+00	1.12E-03
Total					1.49E+00

Table (9.3.6) Cp of LPG component at temperature 298 k^{^o}

3.4.1 Energy Balance of absorber:

Figure (5.3.2) absorber

 $Q_{1=mcp\Delta t}$

Sour gas

M = 30000 kg/h

 $T = 44^{\circ}C$

Cp of sour LPG= 1.49E+00

 $30000 \times 1.49E + 00(44 - 25) = 8.49E + 05 \text{ kj/kr}$

Sweet gas

M=29100 T = 40 °C

 Q_8 sweet gas = 29100 × 1.49E + 00(40 - 25) = 6.51E + 005 kj/hr

Cp of lean amine

M = 17750 $T = 43^{\circ}C$

Cp of MDEA =3.6 kj/kg. °C

Cp of $H_2O = 4.19$ kj/kg. °C

Cp of lean solution = cp of MDEA \times mol% + cp of H₂O \times mol%

 $= (3.6 \times 0.11) + (4.19 \times 0.89) = 4.1251 \text{ kj/kg. k}$

 Q_7 lean amine = 17750 × 4.1248 (43 – 25) = 1.23E + 06 kj/h

Table (10.3.7) over all energy of absorber

Stream	In	Out
Q_1 sour LPG	8.49E+05	
$\mathbf{Q_2}$ rich amine		1.52E+06
\mathbf{Q}_7 lean amine	1.32E+06	
Q ₈ Sweet gas		6.51E+05
Total	2.17E+06	2.17E+06

3.4.2 Energy Balance of Heat Exchanger (amine - amine):

Figure (6.3.5) Heat Exchanger

Cp of rich solution = cp of $H_2S * mol\% + cp$ of lean * mol%

M.wt of lean solution = 29.13kg/mol

Mole of lean amine = 609.39 kmol/hr

mole fraction of H_2S = mole of H_2S /mole of H_2S + mole of lean

= 1.144/(1.144 + 696.16) = 0.0019

Mole of fraction of lean =1 - 1.0019 = 0.998

cp of $H_2S = 0.236 + 974t * 10^{-5}$

Cp of H_2S at $25C^\circ = 0.240$ kj/kg.k

Cp of rich solution = 4.118kj/kg.k

 S_9 Lean amine = 17750kg/hr

 S_5 Rich solution = 17810.8 kg/hr

 $Q_4 = Q_2 = 1.52E + 06kj/hr$

Heat of lean solution in stream line $9 = mcp\Delta t$

17750 * 4.1251(116 - 50) = 4830000 kj/hr

Heat of rich solution in stream $5 = mcp\Delta t$

17810 * 4.118(80 - 15) = 4767202.7 kj/hr

Table (11.3.8) over all energy Balance of amine-amine Heat Exchanger

Stream	In	Out
$\mathbf{Q_4}$ Rich amine	1.52E+06	
\mathbf{Q}_{5} Rich amine		4.77E+06
Q_6 lean amine		1.58E+0.6
Q ₉ lean amine	4.83E+0.6	
Total	6.35E+06	6.35E+06

3.4.3 Energy Balance of Heat Exchanger (Amine - water):

Figure (7.3.6) Cooler

Inlet temperature of water $= 20^{\circ}C$

Outlet temperature of water $= 35^{\circ}C$

Heat gain by water = heat loss from lean

Heat loss from lean

 $Q_7 = mcp\Delta t$

 $Q_7 = 17750 * 4.1251(35 - 20) = 1.10E + 06 \text{ kj/hr}$

 Table (12.3.9) over all energy Balance of amine-water Heat Exchanger

Stream	In	Out
\mathbf{Q}_{7} lean amine	1.10E+06	
Water		1.10E+06
Total	1.10E+06	1.10E+06

3.4.4 Energy Balance of stripper

Figure (8.3.7) Stripper

Heat of Rich solution of stream 5 = 4.77E + 06kj/hr

Heat of reflux in Stream $10 = Q_{10} = mcp\Delta t$

M = 3.158 kg/hr

 $T = 30^{\circ}C$

cp of $H_2O = 4.18$ kj/hg. °C

 $Q_{12} = 3.158 * 4.18(30 - 25) = 66 \text{ kj/hr}$

Heat of acid gas = cp of $H_2S * mol\% + cp of H_2O * mol\%$

Cp of $H_2S = 0.24 \text{ kj/kg. °C}$

Kmol of $H_2O = kg$ of reflex/M.wt of $H_2O = 3.158/18 = 0.1754 kmol/hr$

Kmol of stream 11= kmol of H_2S +kmol of H_2O

$$1.144 + 0.175 = 1.3194 \text{ kmol/hr}$$

Mole fraction of $H_2S = 1.144/1.3194 = 0.8670$

Mole fraction of $H_2 0 = 1 - 0.8670 = 0.133$

Cp of acid gas = $(0.24 * 0.8670) + (4.18 * 0.133) = 0.76402 \text{kj/kg.}^{\circ}\text{C}$

- $Q_{\texttt{11}} = mcp\Delta t$
- M = 63.98 kg/hr
- $T = 50^{\circ}C$

 $Q_{11} = 63.908 * 0.76402 (50 - 25) = 1220.67 kj/hr$

Over all energy balance of Stripper

 $Q_5 + Q_{12} + Q_{10} = Q_9 + Q_{11}$ $Q_{10} = 66500 \text{ kj/hr}$

Table (13.3.10) over all energy of Stripper

Stream	In	Out
Q ₅ rich amine	4.77E+06	
Q ₉ lean amine		4.83E+06
Q ₁₀ reboiler	6.65E+04	
Q ₁₁ acid gas		1.22E+03
Q ₁₂ reflex	6.60E+01	
Total	4.83E+06	4.83E+06

3.4.5 Energy balance of Condenser:

Figure (9.3.8) Condenser

Assume:

Inlet temperature of $H_2O = 25^{\circ}C$

Outlet temperature of $H_2O = 40^{\circ}C$

Heat of stream 11 (acid gas 1220 kj/hr

Heat of stream $13 = Q_{11} = mcp\Delta t + \lambda * m$

T average $(50 + 30)/2 = 40^{\circ}$ C

From steam table $\lambda at 40^{\circ}C = 167.5 \text{ kj/kg}$

Cp of water vapor = $1.87 \text{kj/kg.}^{\circ}\text{C}$

 $S_{11}(Acid gas) = 63.908 kg/hr$

 S_{12} (Reflex) = 3.158kg/hr

 $Q_{13} = 63.908 * 1.87(30 - 25) + 167.5 * 3.158 = 1130 \text{ kj/hr}$

Heat gain by water = $Q_{11} - Q_{13} = 1220 - 1130 = 94 \text{ kj/hr}$

Stream	In	Out
Q ₁₁ acid gas	1.22E+03	
Q ₁₃ acid gas		1.13E+03
Water		9.40E+01
Total	1.22E+03	1.22E+03

Table (14.3.11) over all energy of Condenser

3.5 Hysys process simulator:

3.5.1 Introduction

Hysys is a process simulation environment designed to serve many processing industries especially oil and gas refining, rigorous steady state and dynamic models for plant design, performance monitoring, troubleshooting, operational improvement business planning and asset management can be created using HYSYS. The built-in property packages in HYSYS provide accurate thermodynamic, physical and transport property predictions for hydrocarbon, non-hydrocarbon, petrochemical and chemical fluids.

3.5.2 Simulation steps

Databank: HYSYS					Select:	Pure Components	-	Filter:	All Families	-
Component	Туре	Group	•		Search for:			Search by:	Full Name/Synonym	-
Methane	Pure Component									
Ethane	Pure Component				Simulati	on Name	Full Name	/ Synonym	Formula	Â
Propane	Pure Component			< Add		i-Pentane		i-C	5 C5H12	
i-Butane	Pure Component					n-Hexane		C	6 C6H14	
n-Butane	Pure Component		Ε			n-Heptane		C	7 C7H16	Snip
n-Pentane	Pure Component			Replace		n-Octane		G	B C8H18	
Propene	Pure Component					n-Nonane		C	9 C9H20	
1-Pentene	Pure Component					n-Decane		C1	0 C10H22	
1-Butene	Pure Component			Remove		n-C11		C1	1 C11H24	
i-Butene	Pure Component					n-C12		C1.	2 C12H26	
Hydrogen	Pure Component			Add Heat Stable Saltz		n-C13		C1.	3 C13H28	
MDEAmine	Pure Component			Aug riege Stable Sails		n-C14		C1-	4 C14H30	
CO2	Pure Component					n-C15		C1:	5 C15H32	
н 25	Dure Component		•	Remove Mart Chable Calte		n-C16		C1	5 C16H34	

First of all we have select the component

Then selecting the fluid package

Adding LPG stream composition and condition

	nts Dynamics			
Worksheet	Stream Name	Feed	Vapour Phase	Liquid Phase
Conditions	Vapour / Phase Fraction	0.7851	0.7851	0.2149
Properties	Temperature [C]	45.00	45.00	45.00
Composition	Pressure [kPa]	5686	5686	5686
Oil & Gas Feed	Molar Flow [kgmole/h]	641.6	503.7	137.9
K Value	Mass Flow [kg/h]	3.000e+004	2.304e+004	6961
Electrolytes	Std Ideal Liq Vol Flow [m3/h]	56.89	44.82	12.08
User Variables	Molar Enthalpy [kJ/kgmole]	-6.774e+004	-8.158e+004	-1.718e+004
Notes	Molar Entropy [kJ/kgmole-C]	-269.5	-271.4	-262.6
Cost Parameters	Heat Flow [kJ/h]	-4.346e+007	-4.109e+007	-2.369e+006
Normalized Yields	Liq Vol Flow @Std Cond [m3/h]	57.69	45.66	12.03
Acid Gas	Fluid Package	Basis-1		
	Utility Type			

🚯 Material Stream: Feed

```
– 🗆 🗙
```

Worksheet		Mass Fractions	Vapour Phase	Liquid Phase
Conditions	Methane	0.0105	0.0136	0.0000
Properties	Ethane	0.0758	0.0986	0.0001
Composition	Propane	0.1508	0.1963	0.0001
Oil & Gas Feed	i-Butane	0.0855	0.1114	0.0001
K Value	n-Butane	0.2374	0.3091	0.0001
Flectrolytes	n-Pentane	0.0028	0.0036	0.0000
User Variables	Propene	0.1759	0.1321	0.3210
Notes	1-Pentene	0.0020	0.0007	0.0062
Cost Parameters	1-Butene	0.0505	0.0273	0.1273
Normalized Yields	i-Butene	0.0961	0.0518	0.2429
Emissions	Hydrogen	0.0007	0.0009	0.000
Acid Gas	MDEAmine	0.0000	0.0000	0.000
	CO2	0.0000	0.0000	0.000
	H2S	0.0013	0.0016	0.000
	H2O	0.0006	0.0000	0.002
	tr2-Butene	0.0656	0.0320	0.176
	cis2-Butene	0.0445	0.0208	0.122
	Total	1.00000		
	Edit Viev	v Properties Basis OK		

Adding amine composition and condition

Worksheet		Mole Fra	ctions	Aqueous Phase			_
Conditions	Methane	WOIE Pla	0.0000	Aqueous Phase			
Properties Composition	Input Compositio	n for Stream: Material Stream: Le	an Amine		×		
Oil & Gas Feed Petroleum Assav		Mole Fraction	Comp	osition Basis			
K Value	Mathema		Mo	le Fractions			
Electrolytes	Methane	0.0000					
User Variables	Ethane	0.0000	O Ma	ss Fractions			
Notes	Propane : Dutana	0.0000	0.0000 Cliq Volume Fractions				
Cost Parameters	I-Butane	0.0000					
Normalized Yield	n-Butane	0.0000	- O Ma	le Flows			
Emissions	n-Pentane	0.0000	Ma	ss Flows			
Acid Gas	Propene 1. Destance	0.0000		0 11033 11043			
	1-Pentene	0.0000	🦳 🔘 Liq	Volume Flows			
	I-Butene	0.0000					
	I-Butene	0.0000	Comp	Composition Controls			
	Hydrogen	0.0000					
	MDEAmine	0.1101		Erase			
	02	0.0000					
	H25	0.0005		Equalize Composition			
	H2O	0.8894		dunze composition			
	tr2-Butene	0.0000					
	cis2-Butene	0.0000					
			HS	S Composition Wizard			
				Cancel	-		
	Normalize	Total 1.00	00	ОК			
	Edit	View Properties	Basis				
		OK					

Х 💽 Material Stream: Lean Amine Worksheet Attachments Dynamics Worksheet Stream Name Lean Amine Aqueous Phase Vapour / Phase Fraction 0.0000 1.0000 Conditions 43.33 43.33 Properties Temperature [C] Composition Pressure [kPa] 5686 5686 Oil & Gas Feed Molar Flow [kgmole/h] 608.7 608.7 Petroleum Assay Mass Flow [kg/h] 1.775e+004 1.775e+004 K Value Std Ideal Liq Vol Flow [m3/h] 17.50 17.50 Electrolytes -3.040e+005 Molar Enthalpy [kJ/kgmole] -3.040e+005 User Variables Notes Molar Entropy [kJ/kgmole-C] -235.9 -235.9 Cost Parameters Heat Flow [kJ/h] -1.851e+008 -1.851e+008 Normalized Yields Liq Vol Flow @Std Cond [m3/h] 17.03 17.03 Emissions Fluid Package Basis-1 Acid Gas Utility Type **+ +** Delete Define from Stream... View Assay

Adding the absorber

Column: Absaor	rber / COL1 Fluid Pkg: Basis-1 / Acid Gas - C	hemical Solvents	-		х
Design Paramete	rs Side Ops Internals Rating Worksh	eet Performance Flowsheet Reactions Dynamics			
Design	Column Name Absaorber	Sub-Flowsheet Tag COL1			
Design Connections Monitor Specs Summary Subcooling Notes	Column Name Absaorber Top Stage Inlet Lean Amine Optional Inlet Streams Stream Inlet Stage < <stream>> Bottom Stage Inlet Feed</stream>	Sub-Flowcheet Tog COL1 Sub-Flowcheet Tog COL1 Ovhd Vapour Qufet Sweet Gas P1 P1 Optional Side Draws Stream P2 Pn Sof7 kPa Bottoms Liquid Outlet R-Amine			
	Stage Numbering Top Down Bottom Up Edit Trays				
Delete	Column Environment	Run Reset Converged	✓ Update Outlets	🔲 Ignor	ed

Design Parame	eters Side Ops Internals Rating W	orksheet Performance	Flowsheet React	tions Dynamics	
Worksheet	Name	Lean Amine @COL1	Feed @COL1	Seet Gas @COL1	R-Amine @COL1
Properties	Vapour	0.0000	0.7856	1.0000	0.0000
Compositions PF Specs	Temperature [C]	43.33	44.44	43.97	17.22
	Pressure [kPa]	5686	5686	5617	5617
	Molar Flow [kgmole/h]	608.7	641.6	622.2	628.1
	Mass Flow [kg/h]	1.775e+004	3.000e+004	2.903e+004	1.872e+004
	Std Ideal Liq Vol Flow [m3/h]	17.50	56.89	55.22	19.17
	Molar Enthalpy [kJ/kgmole]	-3.040e+005	-6.774e+004	-6.626e+004	-2.982e+005
	Molar Entropy [kJ/kgmole-C]	-235.9	-269.5	-260.7	-244.8
	Heat Flow [kJ/h]	-1.851e+008	-4.346e+007	-4.123e+007	-1.873e+008
Delete	Column Environment	Run Res	et 🛛		

Absorber work sheet composition

esign Parami	eters Side Ops Internals Rating Wor	rksheet Performance Flowsheet	Reactions Dynamics			
Vorksheet		Lean Amine	Feed	Seet Gas	R-Amine	
onditions	Methane	0.0000	0.0306	0.0313	0.0002	
operties	Ethane	0.0000	0.1178	0.1205	0.0009	
ompositions	Propane	0.0000	0.1599	0.1640	0.0009	
- Specs	i-Butane	0.0000	0.0688	0.0705	0.0004	
	n-Butane	0.0000	0.1910	0.1960	0.0009	
	n-Pentane	0.0000	0.0018	0.0018	0.0000	
	Propene	0.0000	0.1955	0.1950	0.0065	
	1-Pentene	0.0000	0.0013	0.0011	0.0002	
	1-Butene	0.0000	0.0421	0.0401	0.0033	
	i-Butene	0.0000	0.0801	0.0764	0.0062	
	Hydrogen	0.0000	0.0161	0.0165	0.0001	
	MDEAmine	0.1101	0.0000	0.0000	0.1067	
	CO2	0.0000	0.0000	0.0000	0.0000	
	H2S	0.0005	0.0018	0.0000	0.0023	
	H2O	0.8894	0.0015	0.0010	0.8625	
	tr2-Butene	0.0000	0.0546	0.0512	0.0051	
	cis2-Butene	0.0000	0.0371	0.0344	0.0038	

Adding Stripper

Column: Stripper / COL2 Fluid Pkg: Basis-1 / Acid Gas - Chemical Solvents	-		×
Design Parameters Side Ops Internals Rating Worksheet Performance Flowsheet Reactions Dynamics			
Design Column Name Stripper Sub-Flowsheet Tag Cl2 Condenser Monitor Specs Summery Condenser Energy Stream			
- Stage Numbering Top Down Battom Up Edit Trays_			
Delete Column Environment Run Reset Converged	Update Outlets	🔲 Ignor	red

Chapter 4

Results and discussion

Chapter 4

Results and discussion

4.1 Material balance results and discussion of absorber

Table (15.4.1) Material balance results and discussion of absorber

Material flow in	flow by hand	Flow by hysys	Error %=	
Stream	calculation kg/hr	simulation	(Hand – hysys)	
			* 100/hand	
Stream 8	29100	29030	0.24	
(sweet gas)				
Stream 2	18650	18750	0.38	
(rich amine)				

4.2 Material balance results and discussion of separator

Table (16.4.2) Material balance results and discussion of separator

Material flow in	Flow by hand	Flow by Hysys	Error %=		
stream	stream Calculation		(Hand – hysys)		
			* 100/hand		
Stream 3	839.25	847.2	0.95		
(overhead gas)					
Stream 4	17810.75	17870	0.33		
(rich amine)					

4.3 Material balance results and discussion of stripper

Material flow in	Flow by hand	Flow by Hysys	Error %=
Stream	calculation	Simulation	(Hand - hysys)
			* 100/hand
Stream 14	60.75	71.47	17.6
(Acid gas)			
Stream 9	17750	17750	0.0
(Lean amine)			

Table (17.4.3) Material balance results and discussion of stripper

4.4 Effect of feed LPG temperature

Different feed temperature gave same percentage of removed H₂S, but different percentage of sweet LPG recovered

- At 37 °C we recovered 76% from the feed as sweet LPG
- At 45°C we recovered 96.7% from the as sweet LPG

Absorber work sheet at different feed LPG temperature

Design Parame	ters Side Ops Internals Rating Works	sheet Performance	Flowsheet React	ions Dynamics		
Worksheet Conditions	Name	Lean Amine @COL1	Feed @COL1	Seet Gas @COL1	R-Amine @COL1	
Properties	Vapour	0.0000	0.7125	1.0000	0.0000	
PF Specs	Temperature [C]	43.33	37.31	43.69	29.92	
	Pressure [kPa]	5686	5686	5617	5617	
	Molar Flow [kgmole/h]	608.7	618.6	473.1	754.1	
	Mass Flow [kg/h]	1.775e+004	3.000e+004	2.265e+004	2.510e+004	
	Std Ideal Liq Vol Flow [m3/h]	17.50	55.92	43.13	30.28	
	Molar Enthalpy [kJ/kgmole]	-3.040e+005	-6.973e+004	-8.303e+004	-2.505e+005	
	Molar Entropy [kJ/kgmole-C]	-235.9	-283.9	-284.1	-246.2	
	Heat Flow [kJ/h]	-1.851e+008	-4.313e+007	-3.928e+007	-1.889e+008	

Decision Decam	aters Side Ops Interpals Rating Wor	kehaat Dorformoneo	Elourshoot Poast	ions Dunamiss	
Worksheet	eters side ops internais nating wor	renormance	nowsneet React	ions bynamics	
Conditions	Name	Lean Amine @COL1	Feed @COL1	Seet Gas @COL1	R-Amine @COL1
Properties	Vapour	0.0000	0.7856	1.0000	0.0000
Compositions PF Specs	Temperature [C]	43.33	44,44	43.97	17.22
	Pressure (kPa)	5686	5686	5617	5617
	Molar Flow [kgmole/h]	608.7	641.6	622.2	628.1
	Mass Flow [kg/h]	1.775e+004	3.000e+004	2.903e+004	1.872e+004
	Std Ideal Liq Vol Flow [m3/h]	17.50	56.89	55.22	19.17
	Molar Enthalpy [kJ/kgmole]	-3.040e+005	-6.774e+004	-6.626e+004	-2.982e+005
	Molar Entropy [kJ/kgmole-C]	-235.9	-269.5	-260.7	-244.8
	Heat Flow [kJ/h]	-1.851e+008	-4.346e+007	-4.123e+007	-1.873e+008

Chapter 5

Conclusion and Recommendations

Chapter 5

Conclusion and Recommendation

5.1 Conclusion

In this project use amine solvent at concentration 45% in water, the LPG treatment process using the software HYSYS, MDEA was the best result in the absorption processes H_2S from the LPG, The simulation result show that, by using of the 609(kg mole /h) MDEA with T=44C were the best result in the absorption processes H_2S (0.0000, mole fraction)

5.2 Recommendation

We recommend to study the process at various parameters to identify the optimum operation condition

References

1. Ali Samadi Afshar, S., 2011. Role and Effect of Temperature on LPG Sweetening Process. s.l., World Academy of Science, Engineering and Technology.

2.britannica, n.d. britannica. [Online] Available at: <u>http://www.britannica.com/</u> [Accessed 18 9 2021].

3.BULLIN, J. A., 2005. Using Mixed Amine Solutions for Gas Sweetening. s.l., s.n.

4.Hanan Jalal Qeshta a, b. S. A. a., P. P. a., 2015. Sweetening liquefied petroleum gas (LPG): Parametric sensitivity analysis using Aspen. s.l., Journal of Natural Gas Science and Engineering.

5. Hansen, H., 2014. Amines as gas sweetening agents. s.l., s.n.

6.himmelblau, d. M., n.d. basic principle and calculation in chemical engineering. seven ed. s.l.:s.n.

7.K. Jayakumar1, R. C. P. A. P., 2017. A Review: State-of-the-Art LPG Sweetening Process. s.l., s.n.

8. Meyers, R. A., n.d. Handbook of petrolume refining processes. third edition ed. 2003: s.n.

9.NOORHAN ABBAS FADHEL, M. N. H., n.d. PRODUCTION OF CO2 FROM NATURAL GAS. 2017, AI-QADISIYAH UNIVERSITY COLLEGE OF ENGINEERING .

10.paqell.com, n.d. paqell.com. [Online] Available at: <u>http://www.paqell.com/</u> [Accessed 25 11 2021].

11.Ruiting Liu, D. X. X. a. Y. T., n.d. Effects of Caustic Concentration on the LPG Sweetening. 2005, Petroleum Science and Technology.

12.Sajjad Sharif Dashti, A. S. a. M. R. K. N., n.d. Research article Sensitivity analysis for selection of an optimum amine gas sweetening process. 2015, Department of Gas Engineering, Petroleum University of Technology, Ahwaz, Iran.

APPENDIX

Heat capacities of methyldiethanolamine (MDEA) – water mixtures as a function of composition and temperature. (Adapted through the courtesy of INEOS Oxide).

TABLE C-4 Heat Capacity of Gas

		$C_{\rm p} = A + BT + CT$	$(C_p-\text{joule}/(\text{mol }\mathbf{K}), T-\mathbf{K})$						
No.	Formula	Substance	A	В	С	D	E	T _{min}	T _{max}
1	$C_2H_3C_{13}$	1,1,1-Trichloroethane	18.674	3.3443E-01	-3.4963E-04	1.8764E-07	-4.0744E-11	100	1500
2	$C_2H_3C_{13}$	1,1,2-Trichloroethane	28.881	2.4893E-01	-1.7639E-04	5.2632E-08	-3.5668E-12	200	1500
3	$C_2H_4C_{12}$	1,1-Dichloroethane	15.730	2.6124E-01	-2.1489E-04	9.5761E-08	-1.8004E-11	200	1500
4	$C_2H_4C_{12}$	1,2-Dichloroethane	37.275	1.4362E-01	1.0378E-05	-7.8305E-08	2.8872E-11	200	1500
5	C ₄ H ₆	1,3-Butadiene	18.835	2.0473E-01	6.2485E-05	-1.7148E-07	6.0858E-11	100	1500
6	$C_4H_8O_2$	1,4-Dioxane	-46.223	5.7263E-01	-3.8800E-04	1.1392E-07	-9.0669E-12	298	1500
7	$C_4H_{10}O$	1-Butanol (n-Butanol)	8.157	4.1032E-01	-2.2645E-04	6.0372E-08	-6.2802E-12	200	2980
8	C_4H_8	1-Butene	24.915	2.0648E-01	5.9828E-05	-1.4166E-07	4.7053E-11	200	1500
9	C ₁₀ H ₂₀	1-Decene	121.553	2.0974E-01	7.8760E-04	-8.6982E-07	2.6033E-10	150	1500
10	$C_{9}H_{10}$	1-Nonane (n-Nonane)	29.687	6.6821E-01	-9.6492E-05	-2.0014E-07	8.2200E-11	200	1500
11	C ₈ H ₁₆	1-Octene	56.266	4.0665E-01	1.5805E-04	-3.2277E-07	1.0600E-10	200	1500
12	C ₃ H ₈ O	1-Propanol (n-Propanol)	31.507	2.3082E-01	-7.8983E-05	6.3696E-09	8.6908E-13	100	2980
13	C_2H_4O	Acetaldehyde	34.140	4.0020E-02	1.5634E-04	-1.6445E-07	4.7248E-11	100	1500
14	$C_2H_4O_2$	Acetic acid	34.850	3.7626E-02	2.8311E-04	-3.0767E-07	9.2646E-11	50	1500
15	$C_4H_6O_3$	Acetic anhydride	9.500	3.4425E-01	-8.6736E-05	-7.6769E-08	3.6721E-11	200	1500
16	C ₃ H ₆ O	Acetone	35.918	9.3896E-02	1.8730E-04	-2.1643E-07	6.3174E-11	100	1500
17	$C_3H_4O_2$	Acrylic acid	7.755	2.9386E-01	-2.0878E-04	7.1591E-08	-9.0960E-12	250	1500
18	NH ₃	Ammonia	33.573	-1.2581E-02	8.8906E-05	-7.1783E-08	1.8569E-11	100	1500
19	C ₆ H ₇ N	Aniline	-22.062	5.7313E-01	-4.5651E-04	1.8410E-07	-2.9867E-11	200	1500
20	C ₆ H ₆	Benzene	-31.368	4.7460E-01	-3.1137E-04	8.5237E-08	-5.0524E-12	200	1500
21	$C_4H_8O_2$	Butyric acid	14.368	3.9591E-01	-1.8906E-04	-7.6462E-09	2.0812E-11	298	1200
22	CS ₂	Carbon disulfide	20.461	1.2299E-01	-1.6184E-04	1.0199E-07	-2.4444E-11	100	1500
23	CO ₂	Carbon dioxide	27.437	4.2315E-02	-1.9555E-05	3.9968E-09	-2.9872E-13	50	5000
24	CO	Carbon monoxide	29.556	-6.5807E-03	2.0130E-05	-1.2227E-08	2.2617E-12	60	1500
25	CCl ₄	Carbon tetrachloride	19.816	3.3311E-01	-5.0511E-04	3.4057E-07	-8.4249E-11	100	1500
26	Cl ₂	Chlorine	27.213	3.0426E-02	-3.3353E-05	1.5961E-08	-2.7021E-12	50	1500
27	CHCl ₃	Chloroform	22.487	1.9823E-01	-2.1676E-04	1.1636E-07	-2.4555E-11	100	1500
28	C ₆ H ₁₂	Cyclohexane	13.783	2.0742E-01	5.3682E-04	-6.3012E-07	1.8988E-10	100	1500
29	$C_6H_{12}O$	Cyclohexanol	17.124	3.3700E-01	2.8176E-04	-4.2713E-07	1.3215E-10	200	1500
30	C ₃ H ₆	Cyclopropane	21.172	6.3106E-02	2.9197E-04	-3.2708E-07	9.9730E-11	100	1500
31	CH ₂ Cl ₂	Dichloromethane	26.694	8.3984E-02	8.9712E-06	-5.0924E-08	1.8726E-11	100	1500
32	$C_4H_{10}O$	Diethyl ether	35.979	2.8444E-01	-1.2673E-06	-1.0128E-07	3.4529E-11	200	1500
33	C ₅ H ₁₀ O	Diethyl ketone	49.800	2.6897E-01	5.0669E-05	-1.5227E-07	4.9510E-11	200	1500
34	C ₂ H ₇ N	Dimethylamine	30.638	1.0737E-01	1.5824E-04	-1.9418E-07	5.8509E-11	200	1500
35	C_2H_6	Ethane	28.146	4.3447E-02	1.8946E-04	-1.9082E-07	5.3349E-11	100	1500
36	C ₂ H ₆ O	Ethanol	27.091	1.1055E-01	1.0957E-04	-1.5046E-07	4.6601E-11	100	1500
37	$C_4H_8O_2$	Ethyl acetate	69.848	8.2338E-02	3.7159E-04	-4.1129E-07	1.2369E-10	200	1500
38	C ₂ H ₅ Cl	Ethyl chloride	35.946	5.2294E-02	2.0321E-04	-2.2795E-07	6.9123E-11	100	1500
- 39	C ₈ H ₁₀	Ethylbenzene	-20.527	5.9578E-01	-3.0849E-04	3.5621E-08	1.2409E-11	200	1500
40	C_2H_4	Ethylene	32.083	-1.4831E-02	2.4774E-04	-2.3766E-07	6.8274E-11	60	1500
41	C ₂ H ₆ O ₂	Ethylene glycol	48.218	1.9073E-01	-6.6117E-08	-1.8834E-08	1.2555E-11	200	1500
42	C ₂ H ₄ O	Ethylene oxide	30.827	-7.6041E-03	3.2347E-04	-3.2747E-07	9.7271E-11	50	1500
43	F ₂	Fluorine	27.408	1.2928E-02	7.0701E-06	-1.6302E-08	5.9789E-12	100	1500
44	C ₃ H ₈ O ₃	Glycerol	9.656	4.2826E-01	-2.6797E-04	3.1794E-08	2.7745E-11	298	1200
45	H ₂	Hydrogen	25.399	2.0178E-02	-3.8549E-05	3.1880E-08	-8.7585E-12	250	1500
46	HC1	Hydrogen chloride	29.244	-1.2615E-03	1.1210E-06	4.9676E-09	-2.4963E-12	50	1500
47	CHN	Hydrogen cyanide	25.766	3.7969E-02	-1.2416E-05	-3.2240E-09	2.2610E-12	100	1500
48	H ₂ O ₂	Hydrogen peroxide	36.181	8.2657E-03	6.6420E-05	-6.9944E-08	2.0951E-11	100	1500
49	C_4H_{10}	<i>i</i> -Butane (iso-Butane)	6.772	3.1447E-01	-1.0271E-04	-3.6849E-08	2.0429E-11	200	1500
50	CH ₄	Methane	34.942	-3.9957E-02	1.9184E-04	-1.5303E-07	3.9321E-11	50	1500
51	CH ₄ O	Methanol	40.046	-3.8287E-02	2.4529E-04	-2.1679E-07	5.9909E-11	100	1500

TABLE C-4-(continued)

$C_{\mathbf{p}} = A + BT + CT^2 + DT^3 + ET^4$					(C _p -joule/(mol K), T-K)			
No. Forn	nula Substance	A	В	С	D	E	$T_{\rm min}$	$T_{\rm max}$
52 CH ₃ Br	Methyl bromide	29.146	2.4374E-02	1.0655E-04	-1.1324E-07	3.3241E-11	100	1500
53 C ₆ H ₁₂	O Methyl isobutyl ketone	2.404	5.8495E-01	-3.7647E-04	1.2418E-07	-1.7051E-11	298	1500
54 CH ₅ N	Methylamine	40.039	-1.5108E-02	2.5012E-04	-2.3336E-07	6.5582E-11	100	1500
55 C ₈ H ₁₀	m-Xylene	-16.725	5.6424E-01	-2.6465E-04	1.3381E-08	1.5869E-11	200	1500
56 C ₁₀ H ₈	Naphthalene	67.099	4.3239E-02	9.1740E-04	-1.0019E-06	3.0896E-10	50	1500
57 C ₄ H ₁₀	n-Butane	20.056	2.8153E-01	-1.3143E-05	-9.4571E-08	3.4149E-11	200	1500
58 C ₁₀ H ₂₂	n-Decane	31.780	7.4489E-01	-1.0945E-04	-2.2668E-07	9.3458E-11	200	1500
59 C ₇ H ₁₆	n-Heptane	26.984	5.0387E-01	-4.4748E-05	-1.6835E-07	6.5183E-11	200	1500
60 C ₆ H ₁₄	n-Hexane	25.924	4.1927E-01	-1.2491E-05	-1.55916E-07	5.8784E-11	200	1500
61 C ₆ H ₅ N	O ₂ Nitrobenzene	-16.202	5.6182E-01	-3.9302E-04	1.0043E-07	-1.2252E-12	200	1500
62 N ₂	Nitrogen	29.342	-3.5395E-03	1.0076E-05	-4.3116E-09	2.5935E-13	50	1500
63 C ₉ H ₂₀	n-Nonane	29.687	6.6821E-01	-9.6492E-05	-2.0014E-07	8.2200E-11	200	1500
64 C ₈ H ₁₈	n-Octane	29.053	5.8016E-01	-5.7103E-05	-1.9548E-07	7.6614E-11	200	1500
65 C ₅ H ₁₂	n-Pentane	26.671	3.2324E01	4.2820E-05	-1.6639E-07	5.6036E-11	200	1500
66 O ₂	Oxygen	29.526	-8.8999E-03	3.8083E-05	-3.2629E-08	8.8607E-12	50	1500
67 C ₈ H ₁₀	o-Xylene	0.182	5.1344E-01	-2.0212E-04	-2.1615E-08	2.3212E-11	200	1500
68 C ₆ H ₆ O	Phenol	4.408	3.6338E-01	-6.0417E-05	-1.2794E-07	5.5287E-11	100	1500
69 C ₈ H ₁₀	p-Xylene	-17.360	5.6470E-01	-2.6293E-04	1.1217E-08	1.6544E-11	200	1500
70 C ₅ H ₅ N	Pyridine	23.262	1.1251E-01	3.7351E-04	-4.5402E-07	1.4286E-10	50	1500
71 C ₈ H ₈	Styrene	71.201	5.4767E-02	6.4793E-04	-6.9875E-07	2.1232E-10	100	1500
72 SO ₂	Sulfur dioxide	29.637	3.4735E-02	9.2903E-06	-2.9885E-08	1.0937E-11	100	1500
73 C ₇ H ₈	Toluene	-24.097	5.2187E-01	-2.9827E-04	6.1220E-08	1.2576E-12	200	1500
74 C ₄ H ₆ O	2 Vinyl acetate	27.664	2.3366E-01	6.2106E-05	-1.6972E-07	5.7917E-11	100	1500
75 H ₂ O	Water	33.933	-8.4186E-03	2.9906E-05	-1.7825E-08	3.6934E-12	100	1500
C _p – heat capacity of ideal gas, joule/(mol K)								
A, B, C, D, and E – regression coefficients for chemical compound								
<i>T</i> – temperature, K								
T _{min} – minimum temperature, K								