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Chapter Three 

THEORETICAL FRAME WORK 

 

3.1: Introduction 

A critical review of statistical methods; namely binary logistic regression; 

suitable for modeling the probability of dying before age five leading to the 

determinants of such probability is presented in this chapter. In addition, 

factor analysis is used for defining under-five mortality indicators. 

 

3.2: Logistic Regression 

Logistic regression statistical method analyzes the relationship between 

multiple independent variables and a categorical dependent variable, and 

estimates the probability of occurrence of an event by fitting logistic curve 

to data. There are two models of logistic regression, binary logistic 

regression and multinomial logistic regression. Binary logistic regression is 

typically used when the dependent variable is dichotomous and the 

independent variables are either continuous or categorical. Many 

distributions have been proposed for use in analysis of dichotomous 

outcome variable. (Cox snel ,1989) discuss some of these. Logistic 

regression calculates the probability of an event occurring over the an event 

not occurring, the impact of independent variables is usually explained in 

terms of odds (Odds of an event are the ratio of the probability that an event 

will occur to the probability that it will not occur). If the probability of an 

event occurring is p, the probability of the event not occurring is (1-p). Then 

the corresponding odds is a value given by 
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                                        Odds of Event =
𝑝

1−𝑝    
                                                     (3.1) 

Unfortunately, this is not a good model because extreme values of x will 

give values of α+βx that does not fall between 0 and 1. The logistic 

regression solution to this problem is to transform the odds using the natural 

logarithm (Peng, Lee & Ingersoll, 2002). With logistic regression we model 

the natural log odds as a linear function of the explanatory variable: 

                                             logit (y)=ln (odds)=ln (
p

1−p
) = α+βx                          (3.2) 

Where p is the probability of interested outcome and x is the explanatory 

variable. The parameters of the logistic regression are α and β. This is the 

simple logistic model. 

Taking the antilog of equation (2) on both sides, one can derive an equation for the 

prediction of the probability of the occurrence of interested outcome as p=P 

(Y=interested outcome/X= χ, a specific value) 

 

3.2.1: Fitting The Logistic Regression Model 

The parameters are usually estimated using the method of maximum 

likelihood of the sample values (Menard, 2001). Maximum likelihood will 

provide values of  𝛽′(𝛽0, 𝛽1, … . 𝛽𝑝) which maximize the probability of 

obtaining the data set. It requires iterative computing with computer 

software. 

A “likelihood” is a probability that the observed values of the dependent 

variable may be predicted from the observed values of the independent 

variables. The likelihood varies from 0 to 1 like any other probabilities. 

Practically, it is easier to work with the logarithm of the likelihood function. 

This function is known as the log-likelihood. Log-likelihood will be used 

for inference testing when comparing several models. The log likelihood 



39 
 

varies from 0 to -∞ (it is negative because the natural log of any number 

less than 1 is negative).In logistic regression, we observe binary outcome 

and predictors, and we wish to draw inferences about the probability of an 

event in the population. 

                               ( 3.3) 

Note that Y is the 0/1 outcome for the 𝑖𝑡ℎ case and, Xi1,...,Xip are the values 

of the predictor variables for the𝑐  case based on a sample of n cases.The 

use of Yi and 1-Yi as exponents in the equation above includes in the 

likelihood the appropriate probability term dependent upon whether Yi =1 

or Yi =0 (note that 𝐹0 =1 for any expression, F). Using the methods of 

calculus, a set of values for a and the βj can be calculated that maximize 

Land these resulting values are known as maximum likelihood estimates 

(MLE’s). This iterative solution procedure is performed with the aid of 

SPSS.  

3.2.2: Assessing The Fit of The Model 

We begin our discussion of methods for assessing the fit an estimated 

logistic regression model with the assumption that we are at least 

preliminarily satisfied with our efforts at the model building stage. By 

this we mean that, to the best of our knowledge, the model contains 

those variables (main effects as well as interactions) that should be in 

the model and that variables have been entered in the correct functional 

form.  



40 
 

Suppose we denote the observed sample values of the outcome variable 

in vector form as y where nyyyy ˆ,...,,(ˆ
21

1  ). We conclude that the model 

fits if:  

a. Summary measures of the distance between y  and ŷ  are small.  

b. The contribution of each pair niyy ii ,...,2,1;)ˆ,(   to these summary 

measures is unsystematic and is small relative to the error structure 

of the model.  

When the model building stage has been completed, a series of 

logical steps may be used to assess the lit of the model. The components 

of the proposed approach are:  

a. Computation and evaluation of overall measures of fit.   

b. Examination of the individual components of the summary statistics, 

often graphically.  

c. Examination of other measures of the difference or distance between 

the components of y  and ŷ .  

In many statistical inference procedures, we have used chi-square 

distribution based on the likelihood ratio, Score, or Wald test statistics. 

The global chi-square addresses the question "Is this model better than 

nothing?" The answer "yes" suggests the acceptance of the model. After 

we arrived the final model, we may want to ask the question "Is these a 

better model than this one?" Now the answer "yes" will lead to rejection 

of the model. Goodness-of-fit tests are methods to determine the 

suitability of the fitted model, and the goal of a logistic regression 

analysis is to find the best fitting model to describe the relationship 

between independent variables and an outcome. 

1. R² Statistics for Logistic Regression 
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Logistic regression uses R² as measures of goodness-of-fit, there are 

many different ways to calculate R² for logistic regression, and (Menard, 

2000) considered several others. The Cox-Snell R² and McFadden (both 

corrected and uncorrected) was actually discussed earlier by (Maddala, 

1983) and by (Cragg et al,1970). Cox-Snell measures for binary logistic 

regression but McFadden’s measure for multinomial. Also for goodness 

of fit logistic regression has likelihood ratio test and Nagelkerke R 

Square statistic was developed to ensure statistic was developed to 

ensure Cox-Snell R²statisticto have values between 0 and 1. The 

likelihood ratio test for a particular parameter compares the likelihood 

of obtaining the data Logistic regression is estimated by maximizing the 

likelihood function. Let L0 be the value of the likelihood function for a 

model with no predictors, and let LM be the likelihood for the model 

being estimated. McFadden’s R²is defined as 

R² McFadden’s = 
)0ln(

)ln(
1

L

LM
                                                          (3.4) 

The statistic was developed to ensure CS-R2 statistic to have values between 0 

and 1. R² is 

R² C&S=
)(

)0(
1

LM

L
                            (3.5) 

The likelihood ratio test 

         -2 × ln(L0/L1) = -2 × (lnL0 - lnL1)              (3.6) 

 

Nagelkerke R Square= 
1−(

1−(𝑀𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡)2/𝑁

𝐿(𝑀𝑓𝑢𝑙𝑙)
)

1−𝐿(𝑀𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡)2/𝑁
     (3.7) 

2.The Hosmer-Lemeshow Goodness Of Fit Test 

After a logistic regression model has been fitted, a global test of goodness 

of fit of the resulting model should be performed. A test that is commonly 
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used to assess model fit is the Hosmer–Lemeshow test, which are available 

in statistical software programs. The purpose of any overall goodness-of-fit 

test is to determine whether the fitted model adequately describes the 

observed outcome experience in the data (Hosmer and Lemeshow, 2000). 

The validity of inferences drawn from modern statistical modeling 

techniques depends on the assumptions of the statistical model being 

satisfied. A critical step in assessing the appropriateness of the model is to 

examine its fit, or how well the model describes the observed data. Very 

few articles in subject-matter journals make any mention of having carried 

out this important step in model development. Much of what will be 

presented here is described in detail in texts by (Hosmer and Lemeshow, 

1989;Kleinbaum et al, 1988) 

The Hosmer-Lemeshow goodness of fit test statistic is given by: 

                                   ∑
(𝑂𝑗−𝑁𝑗−𝜋𝑗)

(𝑁𝑗−𝜋𝑗−(1−𝜋𝑗))

𝑔
𝑗=1                                                          (3.8) 

Where : 

g=number of groups 

Nj= number of observation in jth group 

Oj=number of response in jth group 

Πj=average of predicted probability for  jth group 

 

3.2.3. Statistical tests and confidence interval 

Inferences about individual regression coefficients, groups of regression 

coefficients, goodness-of-fit, mean responses, and predictions of group 

membership of new observations are all of interest. These inference 

procedures can be treated by considering hypothesis tests and/or confidence 
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intervals. The inference procedures in logistic regression rely on large 

sample sizes for accuracy. 

Two procedures are available for testing the significance of one or more 

independent variables in a logistic regression: likelihood ratio tests and 

Wald tests. Simulation studies usually show that the likelihood ratio test 

performs better than the Wald test. However, the Wald test is still used to 

test the significance of individual regression coefficients because of its ease 

of calculation. 

 

3.2.4: Testing the significance of the coefficients 

A logistic regression model allows us to establish a relationship between a 

binary outcome variable and a group of predictor variables.  A regression 

coefficient describes the size and direction of the relationship between a 

predictor and the response variable. Use the coefficient to determine 

whether a change in a predictor variable makes the event more likely or less 

likely. The estimated coefficient for a predictor represents the change in the 

link function for each unit change in the predictor, while the other 

predictors in the model are held constant. The relationship between the 

coefficient and the probability depends on several aspects of the analysis, 

including the reference event for the response and the reference levels for 

categorical predictors. Generally, positive coefficients make the event more 

likely and negative coefficients make the event less likely. An estimated 

coefficient near 0 implies that the effect of the predictor is small. 

1.The Standard Error of the Coefficient 

The standard error of the coefficient estimates the variability between 

coefficient estimates that you would obtain if you took samples from the 

same population again and again. Use the standard error of the coefficient to 
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measure the precision of the estimate of the coefficient. The smaller the 

standard error, the more precise the estimate. 

 

 

 

2. Wald Test 

The Wald test is the test of significance for individual regression 

coefficients in logistic regression. For maximum likelihood estimates, the 

ratio 

                        
)( i

i

SE
Z








                                                                           (3.9) 

Where SE(
i


) is an estimate of the standard error of β̂i provided by the 

square root of the corresponding diagonal element of the covariance matrix, 

V(
i


).  

3. Confidence interval for coefficient (95% CI) 

These confidence intervals (CI) are ranges of values that are likely to 

contain the true value of the coefficient for each term in the model. The 

confidence interval is accurate if the sample size is large enough that the 

distribution of the sample coefficient follows a normal distribution. The 

confidence interval ( )ˆ(ˆ

2
1

ii SEZ  


 ) will be used to assess the estimate of 

the population coefficient for each term in the model. 

 

3.2.5: Odds Ratio 

The odds ratio (OR) is a comparative measure of two odds relative to 

different events. For two events A and B, the corresponding odds of A 

occurring relative to B occurring is 
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                       Odds ratio {A vs B} =
odds {A}

odds {B}
                             (3.10) 

An OR is a measure of association between an exposure and an outcome 

The OR represents the odds that an outcome (e.g. disease or disorder) will 

occur given a particular exposure (e.g. health behavior, medical history), 

compared to the odds of the outcome occurring in the absence of that 

exposure. When a logistic regression is calculated, the regression coefficient 

(b1) is the estimated increase in the logged odds of the outcome per unit 

increase in the value of the independent variable. In other words, the 

exponential function of the regression coefficient (𝑒𝑏) is the OR associated 

with a one unit increase in the independent variable. The OR can also be 

used to determine whether a particular exposure is a risk factor for a 

particular outcome, and to compare the magnitude of various risk factors for 

that outcome. OR=1 indicates exposure does not affect odds of outcome. 

OR>1 indicates exposure associated with higher odds of outcome. OR<1 

indicates exposure associated with lower odds of outcome. 
 

3.3: Factor Analysis 

Factor analysis is a multivariate statistical approach commonly used in 

psychology, education, and more recently in the health-related professions. 

Factor analysis represents the variables y1, y2 ... yp as linear combinations 

of a few random variables f1, f2. …  fm(m<p) called factors. The factors vary 

from individual to individual; but unlike the variables, the factors cannot be 

measured or observed. The factors are underlying constructs or latent 

variables that “generate” the y’s. 
 

3.3.1: Orthogonal Factor Model 
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Factor analysis is basically a one-sample procedure which assumes a 

random sample y1, y2. . . yn selected from a homogeneous population with 

mean vector μ and covariance matrix ∑.The factor analysis model expresses 

each variable as a linear combination of underlying common factors f1, f2, . . 

. , fm, with an accompanying error term to account for that part of the 

variable that is unique (not in common with the other variables). For y1, y2. . 

. yp in any observation vector y, the model is as follows:  

    y1 ─ μ1 =λ11f1 + λ12f2 + … + λ1mfm 

    y1 ─  μ1 =λ21f1 + λ22f2 + … + λ2mfm                                                                                  ( 3.12) 

    yp ─  μ1= λ21f1 + λ22f2 + … + λ2mfm 

Ideally, m should be substantially smaller than p; f’s in (3.12) as random 

variables that engender the y’s. The coefficients λij are called loadings and 

serve as weights. The emphasis in factor analysis is on modeling the 

covariances or a correlation among the y’s and could result communality 

and specific variance, 

                                          σii = (yi) 

 = (λ²i1+ λ²i2 …….+ λ²im)+ ψi 

                                   = h²i + ψi                                                                (3.13)                        

              = communality + specific variance 

The communality h²i is also referred to as common variance, and the 

specific variance ψi has been called specificity, unique variance, or residual 

variance. 

 

3.3.2: Estimation of Loading and Communalities 

Factor analysis is based on the ‘common factor model’ which is a 

theoretical model. This model postulates that observed measures are 

affected by underlying common factors and unique factors, and the 
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correlation patterns need to be determined. There is an array of extraction 

methods available, but we will briefly touch on a few commonly used 

techniques. 

 

1. Principal Factor Method 

The first technique that study considers is commonly called the principal 

component method, this method actually does not calculate any principal 

components, and it is the most widely used method for determining a set of 

loadings is the principal component method (Johnson and Wichern, 1992) 

(Rencher, 1995). This method seeks values of the loadings that bring the 

estimate of the total communality as close as possible to the total of the 

observed variances. A method of extracting factors from the original 

correlation matrix, with squared multiple correlation coefficients placed in 

the diagonal as initial estimates of the communalities. These factor loadings 

are used to estimate new communalities that replace the old communality 

estimates in the diagonal. Iterations continue until the changes in the 

communalities from one iteration to the next satisfy the convergence 

criterion for extraction.  

       S ≝ Λ̂�̂�' + �̂�                                                   (3.14) 

In the principal component approach, we neglect �̂� and factor S into S = 

Λ̂�̂�'. In order to factor S, the method uses the spectral decomposition. 

S=CDC'                                               (3.15)   

Where: 

C is an orthogonal matrix constructed with normalized eigenvectors (c_ i ci 

= 1) of S as columns and D is a diagonal matrix with the eigenvalues θ1, θ2, 

. . . , θp of S on the diagonal: 
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1 0 .... 0 

0 2 .... 0 

. . . . 

                   D =         .    .    .          .                         (3.16) 

. . . . 

0 0 ....  p 

 

Here I for eigenvalues instead of the usual λiin order to avoid confusion 

with the notation λi j used for the loadings. 

To factoring CDC '  in (3.21) to Λ̂�̂�' the observation that of the eigenvalues 

i of the positive semi definite matrix S are all positive or zero, D can factor 

to 2

1

2

1

DDD   where: 



























p

D







....00

...........

.......

0...0

0...0

2

1

2

1

 

With this factoring of  D,                                                                        (3.17) 

S=CDC' 

           =C D¹'²D¹'²C′ 

                                                     =(C D¹'²)(C D¹'²)'                         (3.18) 

This is of the form s =  Λ̂Λ̂' but  Λ̂ do not define to be C D¹'² because C D¹'² 

is p× p and Λ̂ is p× m therefore the definition of Di as diag (1, 2…….. m  
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) with the m largest eigenvalues     1>2  >…>m  and C1 = (c1, c2. . . cm) 

containing the corresponding eigenvectors. We then estimate Λ by the first 

m columns of C D¹'², 

                  Λ̂= C1 D1¹'² = (√1 c1,√2c2……,√𝑚 cm)                      (3.19) 

So 

 

λij      λ12 c11     c12        

λ21     λ22 c21     c22 √1 0  

λ31     λ32  = c31     c32 0   √2  =                                            (3.20) 

λ41     λ41 c41     c42    

λ51     λ51 c51     c52  

 

 

 

√1c11  √2c12 

√1c21     √2    c22 

√1c31    √2   c32 

√1c41    √2     c41 

√1c51   √2       c51 
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In (3.20) the source of the term principal component solution. The columns 

of  Λ̂ are proportional to the eigenvectors of S, so that the loadings on the jth 

factor are proportional to coefficients in the jth principal component. The 

factors are thus related to the first m principal components, and it would 

seem that interpretation would be the same as for principal components. But 

after rotation of the loadings, the interpretation of the factors is usually 

different. Hence to complete the approximation of S in (3.14) and it defines  

�̂�=sii- ∑ 𝜆iĵ𝑚
𝑖=1 ²                                                                                         (3.21) 

And write 

                                                  S ≅ Λ̂�̂�' +�̂�                                                 (3.22) 

sums of squares of the rows and columns of Λ̂ are equal to communalities 

and where   ψ  ̂= diag (ψ1̂,ψ2̂,….,ψp̂). Thus in (3.22) the variances on the 

diagonal of S are modeled exactly, but the off-diagonal covariance's  are 

only approximate. In this method of estimation, the eigenvalues, 

respectively. This is easily shown. By (3.21) and the ith communality is 

estimated by 

                                  ĥi²= ∑ λ²𝑚
𝑗=1 i j                                                                   (3.23) 

This is sum of squire of ith row of �̂� .The sum of squares of the jth column of 

Λ̂ is the jth eigenvalue of S: 

∑ λ̂
p
i=1 ²ij=∑ (√∅

p
i=1 jCij)² 

=∅j∑ c
p
i=1 ²ij 

                                                                =∅j                                                                                                                      (3.24) 
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Since the normalized eigenvectors (columns of C) have length 1. By (3.22) 

and (3.23), the variance of the ith variable is partitioned into a part due to the 

factors and a part due uniquely to the variable: 

                                           Si = ℎ̂i² + ψ̂i 

                                                   =�̂�² +�̂�2² +…. +�̂�m² +ψ̂i(3.25) 

Thus the jth factor contributes λ̂²ij to sij The contribution of the jth factor to 

the total sample variance, tr(S) =s11+s12+..+spp 

 

            Variance due to jth∑ λ̂
p
i=1 ²ij= =λ̂ ² +λ̂2² +…. +λ̂m²(3.26) 

Which is sum of square of loadings in the jth column of  Λ̂ this is equal to 

the jth eigenvalue; θj .The proportion of total sample variance due to the jth 

factor is, therefore, 

                                    
∑ λ̂

𝑝
𝑖=1

 tr(𝐒)
  = 

𝜃𝑗

 tr(𝐒)
                                           (3.27) 

If the variables are not commensurate, we can use standardized variables 

and work with the correlation matrix R. The eigenvalues and eigenvectors 

of R are then used in place of those of S in (3.19) to obtain estimates of the 

loadings. In practice, R is used more often than S and is the default in most 

software packages. Since the emphasis in factor analysis is on reproducing 

the covariances or correlations rather than the variances, use of R is more 

appropriate in factor analysis than in principal components. In applications, 

R often gives better results than S. If we are factoring R, the proportion 

corresponding to (3.27) is 
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∑ λ̂

𝑝
𝑖=1

 tr(𝐒)
  = 

𝜃 𝑗

 p
                                                                  (3.28) 

The assessing of the fitting the factor analysis model by comparing the left 

and right sides of (3.22) .The error matrix   

                                     E= )ˆˆˆ( ' S                                                  (3.29)          

Has zeros on the diagonal but nonzero off-diagonal elements. The following 

inequality gives a bound on the size of the elements in E: 

                                 ij≤ 𝜃² m+1+𝜃² m+2+..+𝜃² p                                             (3.30)           

∑ 𝑒

𝑖𝑗

² 

2.The Principal Axis Factoring 

The Principal Axis Factoring method is based on the notion that all 

variables belong to the first group and when the factor is extracted, a 

residual matrix is calculated. Factors are then extracted successively until 

there is a large enough of variance accounted for in the correlation matrix 

(Tucker & McCollum, 1997). Principal Axis Factor is recommended when 

the data violate the assumption of multivariate normality (Costello & 

Osborne, 2005). 

Principal axis factor analysis and principal components analysis are 

computationally similar (Stevens, 2002). In the case of principal 

components analysis (PCA), the linear combination of variables results in 

components that account for all of the variance in the original data. 

Principal axis factor analysis yields factors that account for the common 

variance in the original data (Cureton & D’Agostino, 1983; Harman, 1976; 

Stevens, 2002). Principal components analysis employs a correlation matrix 
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as the matrix of association. When conducting a principal axis factor 

analysis, researchers focus on a reduced correlation matrix as the matrix of 

association. This reduced correlation matrix contains communality 

estimates on the main diagonal as opposed to ones (Cureton &D’Agostino, 

1983; Harman, 1976; Stevens, 2002). the principal axis factor method 

includes determining the coefficients for the second factor. These 

coefficients are selected to maximize the factor’s contribution to the 

remaining, or residual, communality. In a fashion similar to finding the 

coefficients for the first factor, the second largest root is equivalent to the 

root, or eigenvalue, of the first factor’s residual communality matrix. This 

root of this residual matrix is equivalent to the second largest eigenvalues of 

the original, reduced  correlation matrix (Cureton&D’Agostino, 1983; 

Harman, 1976). This procedure proceeds until the entire matrix of factor 

coefficients is developed. 

the principal axis method uses an initial estimate ψ̂ and factors S −ψ̂ or R −ψ̂ to 

obtain                             

                                      S −ψ̂ ≅ (Λ̂�̂�')                                                             (3.31) 

                                      R −ψ̂ ≅ (Λ̂�̂�')                                                              (3.32) 

Where Λ̂ is p×m and is calculated as in (3.19) using eigenvalues and 

eigenvectors of S −ψ̂ or R −ψ̂ ,The ith diagonal element of S –ψ̂ is given by 

sij –ψ̂ which is the ith communality ĥi²= sij –ψ̂ .A popular initial estimate 

for communality in R –ψ̂ is ℎ̂²i=R²i 

 

ℎ̂²i=R²i = 1-
1

𝑟𝑖𝑖
 (3.33) 
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ℎ̂²i=sii -
1

𝑠𝑖𝑖
(3.34) 

Where 𝑟𝑖𝑖 is the ith diagonal element of 𝑅−1. For S –ψ̂ an initial estimate of 

communality analogous to (3.33) is 

ℎ̂𝑖²= sii -
1

𝑠𝑖𝑖
= sii R²i                      (3.35) 

Which is a reasonable estimate of the amount of variance that yihas in 

common with the other y’s. To use (3.33) or (3.34), R or S must be 

nonsingular. If R is singular, we can use the absolute value or the square of 

the largest correlation in the ith row of R as an estimate of communality. 

After obtaining communality estimates, we calculate eigenvalues and 

eigenvectors of S −ψ̂ or R −ψ̂ and use (3.19) to obtain estimates of factor 

loadings, Λ̂.Then the columns and rows of Λ̂  can be used to obtain new 

eigenvalues (variance explained) and communalities, respectively. The sum 

of squares of the jth column of Λ̂   is the jth eigenvalue of S −ψ̂ or R −ψ̂ , 

and the sum of squares of the ith row of ˆ_ is the communality of yi . The 

proportion of variance explained by the jth factor is  

𝜃 𝑗

 tr(S −ψ̂)
 = 

𝜃 𝑗

∑ 𝜃 𝑖
𝑝
𝑖=1

 

Or  

𝜃 𝑗

 tr(R−ψ̂)
 = 

𝜃 𝑗

∑ 𝜃 𝑖
𝑝
𝑖=1

 

where θj is the jth eigenvalue of S − ψ̂or R − ψ̂  .The matrices S − ψ̂ and 

R − ψ̂ are not necessarily positive semidefinite and will often have some 

small negative eigenvalues. In such a case, the cumulative proportion of 

variance will exceed 1 and then decline to 1 as the negative eigenvalues are 
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added. [Note that loadings cannot be obtained by (3.19) for the negative 

eigenvalues. 

3. Maximum Likelihood 

Maximum Likelihood attempts to analyze the maximum likelihood of 

sampling the observed correlation matrix (Tabachnick&Fidell, 2007). Based 

on the assumption that a specified number offactors exists in a population, 

maximum likelihood factor analysis yields estimates of factor loadings for a 

given sample size and number of observed variables (Harman, 1976). When 

the observed variables exhibit multivariate normality and the sample size is 

large, maximum likelihood strategies facilitate the calculation of confidence 

intervals for the estimated loadings (Chen, 2003). Maximum likelihood 

strategies are dependent on the assumptions that, in addition to the observed 

variables, the common factors exhibit multivariate normality. Maximum 

likelihood techniques provide researchers with both parameter estimates 

and statistical indicators of model adequacy (Conway &Huffcutt, 2003; 

Harman, 1976; Mislevy, 1986). 

 Maximum Likelihood is more useful for confirmatory factor analysis and is 

used to estimate the factor loadings for a population. But this method for 

estimating factor models can yield distorted results when observed data are 

not multivariate normal (Costello & Osborne, 2005; Fabrigar et al., 1999). 

Assume that the observations y1, y2. . . yn constitute a random sample from 

Np(μ, ∑),then Λ and ψ can can be estimated by the method of maximum 

likelihood. It can be shown that the estimates Λ̂ and ψ̂ satisfy the following 

       Sψ̂Λ̂ = Λ̂(1+Λ̂'ψ̂−1Λ̂  )                    (3.36) 

         ψ̂ = diag(S-Λ̂Λ̂')                           (3.37) 



56 
 

       Λ̂'ψ̂−1Λ̂  is diagonal                     (3.38) 

 

3.3.3:Determining The Number of Factors 

As mentioned previously, one of the main objectives of factor analysis is to 

reduce the number of parameters. The number of parameters in the original 

model is equal to the number of unique elements in the covariance matrix. 

A good place to start in understanding conventional methods used to 

determine the number of factors to retain is with an examination of the k 

eigenvalues for an item correlation matrix, where k is the number of items. 

Each eigenvalue represents the share of the total item variance that can be 

captured using one linear combination of the items, and the sum of the 

eigenvalues equals k. To the extent that a small number of eigenvalues are 

relatively large and most are relatively small, this pattern suggests that a 

small number of linear combinations can be used to capture much of the 

total item variance. These linear combinations correspond to the latent 

factors underlying the item responses. Thus, many methods for determining 

the number of factors to retain in FA are based on an examination of the 

pattern of eigenvalues. 

(Cattell’s ,1966) scree test is a graphical method in which the k eigenvalues 

are plotted in descending order, and a graph constructed in this way is 

called a scree plot. The scree test is performed by searching for an “elbow” 

in the plot, or an abrupt transition from large to small eigenvalues. 

However, there is not always a visual elbow on the scree plot, in which case 

the test requires a difficult subjective judgment of where a line should be 

drawn to determine the number of factors to retain. (Gorsuch, 1983) noted 
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that scree plots can be ambiguous due to the presence of more than one 

discontinuity in the graph or the lack of a visible. 

The Kaiser criterion is the most commonly used stopping rule (Henson & 

Roberts, 2006). The rule sets the threshold between large and small values 

at an eigenvalue of 1, the arithmetic mean of the eigenvalues (recall that 

these sum to k for k items). Each eigenvalue greater than 1 is interpreted as 

representing a factor, and each value below 1 is not. 

 

3.3.4: Rotation Methods 

In the literature, definitions of rotation abound. For example, 

(McDonald,1985,) defines rotation as “performing arithmetic to obtain a 

new set of factor loadings (v-ƒ regression weights) from a given set,” and 

(Bryant and Yarnold ,1995) define it as “a procedure in which the 

eigenvectors (factors) are rotated in an attempt to achieve simple structure.” 

Perhaps a bit more helpful is the definition supplied in (Vogt ,1993,): “Any 

of several methods in factor analysis by which the researcher attempts to 

relate the calculated factors to theoretical entities. This is done differently 

depending upon whether the factors are believed to be correlated (oblique) 

or uncorrelated (orthogonal).” And even more helpful is (Yaremko, Harari, 

Harrison, and Lynn, 1986), who define factor rotation as follows: “In factor 

or principal-components analysis, rotation of the factor axes (dimensions) 

identified in the initial extraction of factors, in order to obtain simple and 

interpretable factors.” They then go on to explain and list some of the types 

of orthogonal and oblique procedures. 

The goal of rotation is to attain an optimal simple structure which attempts 

to have each variable load on as few factors as possible, but maximizes the 

number of high loadings on each variable (Rummel, 1970). Ultimately, the 
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simple structure attempts to have each factor define a distinct cluster of 

interrelated variables so that interpretation is easier (Cattell, 1973). For 

example, variables that relate to language should load highly on language 

ability factors but should have close to zero loadings on mathematical 

ability. 

As mentioned earlier, rotation methods are either orthogonal or oblique. 

Simply put. 

1. Orthogonal rotation methods 

Orthogonal rotation methods assume that the factors in the analysis are 

uncorrelated. (Gorsuch, 1983) lists four different orthogonal methods: 

equamax, orthomax, quartimax, and varimax. In contrast, Two common 

orthogonal techniques are Quartimax and Varimax rotation.  

Quartimax involves the minimization of the number of factors needed to 

explain each variable (Gorsuch, 1983).  

Varimax is the graphical approach to rotation is generally limited to m = 2. 

For m >2, various analytical methods have been proposed for minimizing 

the number of variables that have high loadings on each factor and works to 

make small loadings even smaller. 

 

 

2.Oblique rotation: 

Oblique rotation methods assume that the factors are correlated (Gorsuch, 

1983) lists 15 different oblique methods. 

Oblique rotation is when the factors are not rotated 90° from each other, and 

the factors are considered to be correlated. Oblique rotation is more 

complex than orthogonal rotation, since it can involve one of two 

coordinate systems: a system of primary axes or a system of reference axes 
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(Rummel, 1970). Additionally, oblique rotation produces a pattern matrix 

that contains the factor or item loadings and factor correlation matrix that 

includes the correlations between the factors. The common oblique rotation 

techniques are Direct Oblimin and Promax. 

Direct Oblimin attempts to simplify the structure and the mathematics of the 

output, while Promax is expedient because of its speed in larger datasets. 

Promax involves raising the loadings to a power of four which ultimately 

results in greater correlations among the factors and achieves a simple 

structure (Gorsuch, 1983). When interpreting the factors, you need to look 

at the loadings to determine the strength of the relationships. 

Factors can be identified by the largest loadings, but it is also important to 

examine the zero and low loadings in order to confirm the identification of 

the factors (Gorsuch, 1983). A cross loading is when an item loads at .32 or 

higher on two or more factors (Costello & Osborne, 2005). Depending on 

the design of the study, a complex variable (i.e., an item that is in the 

situation of cross loading) can be retained with the assumption that it is the 

latent nature of the variable, or the complex variable can be dropped when 

the interpretation is difficult. Another option is to choose a significant 

loading cut-off to make interpretation easier. The signs of the loadings show 

the direction of the correlation and do not affect the interpretation of the 

magnitude of the factor loading or the number of factors to retain (Kline, 

1994). A general rule to determine the reliability of the factor is to look at 

the relationship between the individual rotated factor loading and the 

magnitude of the absolute sample size. That is, the larger the sample size, 

smaller loadings are allowed for a factor to be considered significant 

(Stevens, 2002). 
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3.3.5 Interpretation of Factor Analysis 

The main goal is to achieve a simple structure in which each variable loads 

highly on only one factor, with small loadings on all other factors. In 

practice, we often fail to achieve this goal, but rotation usually produces 

loadings that are closer to the desired simple structure. 

The guidelines for interpreting the factors by examination of the matrix of 

rotated factor loadings. Moving horizontally from left to right across the m 

loadings in each row, identify the highest loading (in absolute value). If the 

highest loading is of a significant size. circle or underline it. This is done for 

each of the p variables. On the other hand, there may be variables with such 

small communalities that no significant loading appears on any factor. In 

this case, the researcher may wish to increase the number of factors and run 

the program again so that these variables might associate with a new factor. 

To assess significance of factor loadings λ̂𝑖𝑗. A threshold value of .3 has 

been advocated by many writers. For most successful applications, 

however, a critical value of .3 is too low and will result in variables of 

complexity greater than 1. A target value of .5 or .6 is typically more useful. 

The .3 criterion is loosely based on the critical value for significance of an 

ordinary correlation coefficient. 

After identifying potentially significant loadings, the experimenter then 

attempts to discover some meaning in the factors and, ideally, to label or 

name them. This can readily be done if the group of variables associated 

with each factor makes sense to the researcher. But in many situations, the 

groupings are not so logical, and a revision can be tried, such as adjusting 

the size of loading deemed to be important, changing m, using a different 

method of estimating the loadings, or employing another type of rotation. 
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3.3.6: Factor Scores 

In many applications, the researcher wishes only to ascertain whether a 

factor analysis model fits the data and to identify the factors. There are two 

potential uses for such scores: 

a- The behavior of the observations in terms of the factors may be of 

interest. 

b-The use the factor scores as input to another analysis, such as MANOVA. 


