
 
 

Sudan University of Science and Technology 

College of Graduate Studies 

 

 

 Fully Measurable and Approximation Problems with Modular Inequalities in 

Variable Lebesgue Spaces  

 قاتهٍح انقٍاس ذًايا ويسائم انرقزٌة يع انًرثاٌناخ انًعٍارٌح فً فضاءاخ نثٍق 

A thesis Submitted in Fulfillment of the Requirement for the Degree of Ph.D in 

Mathematics 

 

 
by 

 

Ahmed Ibrahim Ahmed Elsammani 

Supervisor : 

 
Prof.Dr. Shawgy Hussein Abd Alla 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2021



  

I 
 

 

Dedication 

 
 

 

 

 

 

 

 

 

 

 

 To my Family 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

II 
 

Acknowledgements 
First I would like to thank without end our greatest ALLAH. Then I would like to thank 

my supervisor Prof.Dr.Shawgy Hussein Abdalla of Sudan University of Science and 

Technology  who gave  me great advice and help in this research . My thanks are due to 

Hamdi group for their good typing.  My  thanks are also due to any one who assisted by a 

way or another to bring this study to the light. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

III 
 

Abstract 

We show the new properties and weighted fully measure and   fully measurable  of 

small, grand and iterated grand Lebesgue spaces with their applications  and  the  maximal 

theorem .Direct and inverse  theorems  of approximation  theory  in  variable  Lebesgue 

and  Smirnov spaces are discussed . The trigonometric  and  polynomial  approximation of 

functions and problems in generalized Lebesgue spaces with variable exponent and 

Smirnov spaces with nonstandard  growth are  studied . The maximal function and atomic 

decomposition of Hardy spaces with variable exponents and its application to bounded 

linear operators are considered .We characterize the  modular inequalitis  for  the  Calderon  

and  maximal  operators in variable Lebesgue spaces. 
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 الخلاصة

قًنا ترىضٍح خصائص جذٌذج وقٍاس ذاو  يزجح وقاتهٍح قٍاس ذايح نفضاءاخ نثٍق انصغٍزج وانكثٍزج وانكثٍزج 

انًثزهناخ انًثاشزج والإنعكاسٍح ننظزٌح انرقزٌة فً انًركزرج يع ذطثٍقاذها و يثزهنح انحذ الأقصى . ذًد يناقشح 

فضاءاخ نثٍق انًرغٍزج وسًٍزنىف . قًنا تذراسح ذقزٌة حساب انًثهثاخ وكثٍزج انحذود نهذوال وانًسائم فً فضاءاخ 

انذري نثٍق انًعًًح يع أسٍح انًرغٍز وفضاءاخ سًٍزنىف يع اننًى غٍز انقٍاسً. ذى إعرثار دانح انحذ الأقصى وانرفكٍك 

نفضاءاخ هاردي يع أسٍاخ انًرغٍز وذطثٍقاذها إنى انًؤثزاخ انخطٍح انًحذودج . ذى ذشخٍص انًرثاٌناخ انًعٍارٌح لأجم 

 يؤثزاخ كانذروٌ وانحذ الأقصى فً فضاءاخ نثٍق انًرغٍزج.
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Introduction 
       

 

    We show some new properties of the small Lebesgue spaces introduced by Fiorenza in 

     Combining these properties with the Poincar ́-Sobolev inequalities for the relative 

rearrangement. The norm of the grand Lebesgue spaces is defined through the supremum 

of Lebesgue norms, balanced by an infinitesimal factor. We consider the spaces defined by 

a norm with an analogous expression, where Lebesgue norms are replaced by grand 

Lebesgue norms. Without the use of interpolation theory, we prove an iteration-type 

theorem, and we establish that the new norm is a gain equivalent to the norm of grand 

Lebesgue spaces. Let           Given        a measurable set of finite Lebesgue 

measure, the norm of the grand Lebesgue spaces         isgivenby 

                
       

 
 

     .
 

   
 ∫         

 

 

/

 
   

  

we consider the norm             obtained replacing  
 

    by a generic nonnegative 

measurable function        
 

      The approximation properties of N ̈rlund      and Riesz      means of trigonometric 

Fourier series are investigated in generalized Lebesgue spaces        We investigate the 

approximation properties of the trigonometric system in    
    

    We  deals with basic 

approximation problems such as direct, inverse and simultaneous theorems of 

trigonometric approximation of functions of weighted Lebesgue spaces with a variable 

exponent on weights satisfying a variable Muckenhoupt       type condition.  

      If              are increasing functions and   is the Calderόn operator defined on 

positive or decreasing functions, then optimal modular inequalities ∫         ∫      
are proved. We give continuity conditions on the exponent function      which are 

sufficient for the Hardy–Littlewood maximal operator to be bounded on the variable 

Lebesgue space           where   is any open subset of       
    Using variable exponents, we build a new class of rearrangement-invariant Banach 

function spaces, independent of the variable Lebesgue spaces, whose function norm is 

                                    where       denotes the norm of the Lebesgue 

space of exponent      (assumed measurable and possibly infinite) and   is measurable, 

too. Anatriello and Fiorenza  introduced the fully measurable grand Lebesgue spaces on 

the interval           which contain some known Banach spaces of functions, among 

which there are the classical and the grand Lebesgue spaces, and the        spaces 

         We introduce the weighted fully measurable grand Lebesgue spaces and we 

prove the boundedness of the Hardy–Littlewood maximal function. We build a new class 

of Banach function spaces, whose function norm is 
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∑   

    
     

∑        
       

     (           )

 

   

     

where       denotes the norm of the Lebesgue space of exponent      (assumed 

measurable and possibly infinite), constant with respect to the variable of f, and δ is 

measurable, too. Such class contains some known Banach spaces of functions, among 

which are the classical and the small Lebesgue spaces, and the Orlicz space             
     

    We consider the Lebesgue space    
    

  with variable exponent       It consists of 

measurable functions      for which the integral∫              
  

 
  exists. We establish an 

analogue of Jackson‟s second theorem in the case when the    -periodic variable exponent 

         satisfiesthe condition 

               
   

     
                   

We investigate the inverse approximation problems in the Lebesgue and Smirnov spaces 

with weights satisfying the so-called Muckenhoupt‟s    condition in terms of the  -th 

mean modulus of smoothness,        In the variable exponent Lebesgue space, the  -th 

modulus of smoothness               is defined and in this term, the direct and inverse 

theorems of approximation theory are proved.  

       We generalize the classical       inequalities of Wiener and Stein for the Hardy-

Littlewood maximal operator to variable    spaces where the exponent function    
  approaches   in value. As applications of atomic decomposition results of Hardy spaces 

with variable exponents, we shall prove the boundedness of commutators and the fractional 

integral operators as well as the Hardy operators. A now classical result in the theory of 

variable Lebesgue spaces due to Lerner        is that a modular inequality for the Hardy–

Littlewood maximal function in           holds if and only if the exponent is constant. We 

generalize this result and give a new and simpler proof. We then find necessary and 

sufficient conditions for the validity of the weaker modular inequality  

∫          
 

 

       ∫          
 

 

        

 where       are non-negative constants and   is any subset of      
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Chapter 1 

Iterated and New Properties 

We derive some new and precises estimates either for small LebesgueSobolev spaces or 

for quasilinear equations with data in the small Lebesgue spaces. We show that the 

expression involved satisfy the axioms of Banach Function Spaces, and we find explicit 

values of the constants of the equivalence. Analogous results are proved for small 

Lebesgue spaces. We find necessary and sufficient conditions on δ in order to get a 

functional equivalent to a Banach function norm, and we determine the „„interesting‟‟ class 

   of functions    with the property that every generalized function norm is equivalent to a 

function norm built with        We then define the          spaces, prove some 

embedding results and conclude with the proof of the generalized Hardy inequality.  

Section (1.1): Small Lebesgue Spaces and Their Applications 

In      we shall give some new properties of the small Lebesgue spaces introduced by 

Fiorenza       denoted by        for a bounded set            This set is smaller 

than the Lebesgue space       and contains all         for all       
If we denote by 

         
 

 
 ∫         

 

 

                        

    being the monotone rearrangement of      then               if            and 

                              ‖ ‖                    
     ‖ ‖                                                  

These spaces satisfy the Levi monotone convergence property. A first consequence of such 

a property is that if         is a monotone sequence of measurable sets with 

              ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗      then for any             one has |    
|
      

      

Here    
 is the characteristic function of     We shall give a direct application of some of 

the properties of the small Lebesgue spaces, by proceeding on a direct proof of some 

precise pointwise estimate.  

Namely,                       (if   is a bounded connected Lipschitz set) and  

                        
        

  
   ⁄

    
       ⁄         ⁄ |           |  

                                       

(We denote by       the Banach Function norm in    ). The inclusion in      is a 

consequence of the work of     (see also        since 

          {                        }  
 The inclusion in    is given in      The main part is the estimate       Furthermore, if 

      
   

     solution of 
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                 ̂                 
 
 
                

 then   is bounded if        Furthermore if    
   

    
 and         then we havethe 

following precise estimate   

                                     4∫ 
 

  

       
 

      

 

 

5 |     |
 

  
 
      

 
   

         

 with                     
 

          
  

   
         

 

 
  

  .   

 
 /

               

 If      then one has  

                                                            (
  

   
*
 

     
 
 
 
                                          

 The above estimate     shows, in particular, that if we consider the operator  

          
 

              then we have the following estimate of the norm 

           
   

          
   

 
 
 

   [
 

        

 
 

]

 

  

For      we shall introduce the following vector space  

    2     
 
 
         

  
   

     
 
 
       3 

If        then   is bounded.We shall show that    is different from  
 
 

      by producing 

an element   of  
 
 

      whose decreasing monotone rearrangement is        

   
 

            with          ⁄              
 

 
  for 

 

 
        and   is not in      

Moreover ,we shall prove that if   is a ball of measure   centered at the origin and 

      
        the unique radial solution of    

                                    

 then there exists a constant     (depending only on      ) such that       
         ‖| near the origin. This last result implies that the above    result is optimal in 

the frame of small Lebesgue spaces in the sense that there are functions      
 
 

         
    for which the solution   of     is not bounded. 

We recall that if               
 

 
    then the boundedness of solutions is known (see for 

instance    ) and is not true if     
 

 
   The   -estimate is also known in the frame of 

Lorentz spaces that is if   is in  
 

 
  

 

       the solution       
   

    of        is 
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bounded (see for instance    ). However, the techniques we employ here are slightly 

differents from those references and the estimates we have , seem to be sharp in the class 

of small Sobolev spaces. 

 When      we have the strict inclusion that  
 
 

        
 

 
  

 

       For      
 

 
  

 

       

does not contain  
 
 

       

 We remark here that for     it is easy to show that       
 

 
  

 

        In fact, applying 

the H ̈lder inequality for small and grand Lebesgue spaces, we have 

   
 

 
 

  
 

      

 
   

 ∫[ 
 
        

  

 
]

 
   

 

  

  ∫  
  

 
      

 
   

     

 

  

 

    
  

 
               

 
   

       

 and the right hand side is finite because         

 The proofs of relations     and     rely on the techniques developed in      based on the 

Poincar ́-Sobolev pointwise relation for the relative rearrangement. These techniques are 

different from those introduced by Talenti     since we don‟t make appeal to the derivative 
of the distribution function             {         }  for instance. We shall denote 

by   an open set of    (bounded or unbounded). 

 If                                  then                ∑     
 
     is the  euclidian  

product and          
 

   the associated norm,        is the ball of   centered at a point 

  of radius      For                 is the usual Lebesgue space endowed with the 

usual norm, denoted by             denotes the set of all measurable functions on    The 

usual Sobolev space     
   

 is endowed with the following norm                       

For a measurable set   of     we shall denote by   its Lebesgue measureand if       
   is a measurable function then, 

{   }  {                }          {   }  {     }  {             
   }  

A plateau of value t is the set {     }satisfying              If             we set 

      ⋃  {     }    the plateau   (  is at most countable if   is bounded or      
  for unbounded domain  ). For      measurable on    we shall associate quantity 

introduced in       

            
  ∑   

   
   
    

{∑    
        

 
  

 
   (∫  

      
   

 

 

+

 
      

  

    

}        

 with     
 

   
  ∫  

 

 
 is the average on           
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Definition             Let   be in                       if   is unbounded). The 

distribution function associated to   is the real function          {   }          
The following is proved in              

Theorem             The space defined by 

    
    {          ‖ ‖        } 

 is a Banach space under the norm given by:        
    ‖ ‖      This space is called 

small Lebesgue space. 

 Furthermore        

         
 
 

 

    
   

 
 

    
     

 

The above spaces are associated to the so-called Grand Lebesgue spaces introduced in     
(see     ). For   a bounded open set:  

       8                 
        

.
 

   
 ∫          

 

 

/

 
    

     9   

The norm in this space is      denoted also by            

Definition              We define on         the function    by setting:  

           {            }       
and                                    

 
    

The function    is called the decreasing rearrangement of     
Let                                     
If   is unbounded we assume that       and the restriction of   to {     } is 

nonnegative. Furthermore, if            satisfies the conditions: 

                                            
 then            can be infinite. For   bounded,   or   can be infinite. Consider the 

function    ̅     defined by  

      ∫     
 

{       }

     ∫ (  {       }) 
     

            

 

    

 where  {       } is the restriction of   to{        }  The following result summarizes all 

those obtained in       
     If   is bounded then one has:  
          

 
   ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  

  

  
  in       -weak if          and in       weak-star if    

     
     If   is unbounded then one has:  
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   ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  

  

  
 in         -weak if         (weak-star for      ) 

and in        -weak,   finite.  

In any case, |
  

  
|
       

            

 Definition             The function 
  

  
 is called the relative rearrangement of   with 

respect to   and is denoted by      
  

  
    

In the case of a bounded domain, a similar notion can be found in      (see also     ). 
Poincar´e-Sobolev inequality for the relative rearrangement 

Definition             Let  be abounded open set. We will say that a subset   of 

        satisfies the Poincar´e-Sobolev inequality for a relative rearrangement if there 

exists a function           from    into     such that for all         

             
          

      
                         for almost        

 For simplicity, we shall call     the above property. We shall use the following result 

proved in       
 Lemma            Let  be a ball of radius     Then             satisfies the     

property. Furthermore, 

         
 

     
 (

  

 
)
   

 
 

    (  
 
 

             
 
 

  *   

Here, ωm denotes the volume of the unit ball of     
The Levi‟s theorem of monotone convergence for small Lebesgue spaces 

Before stating and proving Levi‟s theorem, we give a few lemmas. The first one tells that 

in the expression of the norm of         we can take also       
   

 
    instead of    

         
 

Lemma             The following norms are equivalent: 

‖ ‖        
  ∑  

8∑    
       

 
  

 
   

 

 

 .∫     
         

 

 

/

 
      

9  

 ‖ ‖         
  ∑  

8∑    
    

   
 

 
  

 
   

 

 

 .∫     
         

 

 

/

 
      

9   

Proof: Of course ‖ ‖     ‖ ‖      

 On the other hand, fix      such that 

   
       

 
  

 
   .∫     

         
 

 

/
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   .∫     

         
 

 

/

 
      

  

We have 

   
    

   
 

 
  

 
   .∫     

         
 

 

/

 
      

 

 (
   

 
*
  

 

  (
   
 

)
 .∫     

(  
   
 

)
 

   
 

 

/

 

(  
   
 

)
 

 

    .∫     
(  

   
 

)
 

   
 

 

/

 

(  
   
 

)
 

 

  
  

 
  

  
   

  
  

  
   .∫     

(  
   
 

)
 

   
 

 

/

 

(  
   
 

)
 

 

  
  

     
  

 
   

  
  

  
    .∫     

         
 

 

/

 
      

 

  
   

 
        

Therefore 

   
    

   
 

 
  

 
   .∫     

         
 

 

/

 
      

 

    
     

   
 

      

 
  

  
    .∫     

         
 

 

/

 
      

 

    
    

       
 

  
 

   .∫     
         

 

 

/

 
      

 

From the above computation we get easily   
        (

   

  
)
  

 

   
    The conclusion is 

 

   
 (

   

  
*
 

 
   

‖   ‖     ‖ ‖    ‖   ‖    

 and the lemma is proved.  

Throughout the following we will use ‖   ‖    instead of ‖ ‖    Next lemma is an 

elementary inequality. 

 Lemma   .1.8       
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 Lemma             If                                         thenthere 

exists              such that 

                      
Proof: By elementary computations we have 

   
     

          

        

      
      

     

      

     
  

   

        
                  

On the other hand 

   
       

   

        
  

     

          
  

 therefore the lemma is proved with  

              
     

          
  

We have prove the following  

Theorem              Let      be a monotone nondecreasing sequence (i.e.         ) 

such that        ‖  ‖           Then the function       
 

    is such that  

            
 

                  

                     
 

Proof: Without loss of the generality we may assume that the sequence (‖    ‖    )     
 is 

convergent, where ‖   ‖     is the expression equivalent to ‖ ‖      given in Lemma          

if it is not the case, we can extract a subsequence of      and we prove first the theorem 

for such subsequence. The assertion in general then easily follows from the order-

preserving property of ‖ ‖      

Now let             and let      Let (  
   

)
   

 be a decomposition of      

                                                                  ∑  
   

 

 

                                                          

such that 

                     ∑    
    

    
 

 
  

 
     .∫ |  

   
|
       

 

  /

 
      

 

 

   ‖    ‖                

Let       
    

 
   be such that  

  
  

 
       .∫ |  

   
|
        

 

  /

 
       

 

                
    

    
 

 
  

 
     .∫ |  

   
|
       

 

  /
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On the other hand, since     and      is an increasing sequence, we have         and 

by Fiorenza       we know that there exists (  
   

) such that  

                                                              ∑  
   

 

 

                                                                 

                                                             
   

    
   

                                                    
From             we get 

 

       ∑ (  
   

   
   

) 
   

and therefore  

‖       ‖       
    

    
 

 
  

 
     .∫ |  

   
   

   
|
       

 

  /

 
      

 

 ∑  
  

 
     

 

 

  .∫ |  
   

   
   

|
        

 

  /

 
       

 

By Lemma         

‖       ‖     ∑  
  

 
     

 

 

 .∫ |  
   

|
        

 

   ∫ |  
   

|
        

 

  /

 
       

 

 

 

 

Now fix        and let  

    2     ∫ |  
   

|
        

 

          ∫ |  
   

|
        

 

  3   

          
We have 

∑   
  

 
     

 

    

.∫ |  
   

|
        

 

   ∫ |  
   

|
        

 

  /

 
       

 

  ∑  
 

 
        

 

    

    
  

 
      .∫ |  

   
|
        

 

  /

 
       

 

   

 

(  
    

 
)
 
 
 ∑   

  
 

     

 

   

  .∫ |  
   

|
        

 

  /

 
       

 

and by     
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(
   
 

)
 
 
6     ∑    

    
   
 

 

 
  

 
     

 

   

 .∫ |  
   

|
       

 

  /

 
      

7   

and by     

      
   
   

 
 [‖     ‖      ]   

   
   

 
         

On the other hand, by lemma         

∑   
  

 
     

 

    

.∫ |  
   

|
        

 

   ∫ |  
   

|
        

 

  /

 
       

 

 

   (  
   

   
* ∑ 6  

  
 

     .∫ |  
   

|
        

 

  /

 
       

 

    

   
  

 
     .∫ |  

   
|
        

 

  /

 
       

7  

    (  
   

   
* ∑ 6  

  
 

     .∫ |  
   

|
        

 

  /

 
       

 

   

   
  

 
     .∫ |  

   
|
        

 

  /

 
       

7 

and as above, by     and     

      (  
   

   
* 6‖    ‖        ∑   

  
 

     

 

   

 .∫ |  
   

|
        

 

  /

 
       

7  

   (  
   

   
* [‖    ‖     ‖    ‖      ]  

Until now we proved that              

 ‖       ‖       
   
            (  

   

   
* [‖    ‖     ‖    ‖      ] 

 Letting      we get, for any                 

‖       ‖       
   
        (  

   

   
* [‖    ‖     ‖    ‖   ]                             

Now let      and fix       ̅ such that 

                                                    ̅ 
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On the other hand, since the sequence (‖    ‖   )
   

 is convergent, there exists       

such that  

       (   
   

   
* [‖    ‖     ‖    ‖   ]  

 

 
                                                

By                we have that  

           ‖       ‖                     

therefore, by Lemma              is a Cauchy sequence in     
 and converges to some 

function        
   

From the imbedding of     
in    it follows that the limit   coincides a.e. with           

which is also the a.e. limit of        

Corollary              Let        
    and let      be a sequence of measurable sets in 

  such that  

                          
              
Then 

‖    
‖

    
   

       

Proof: Without loss of generality we may assume that        Let us set         
     

        By    the sequence      is increasing. Moreover, since        

    
        we have  

   
 

‖  ‖
    

   
 ‖  ‖    

   
     

Finally, by      we have that             

By the theorem proved,       in     
     therefore  

‖    
‖

    
   

 ‖    ‖
    

   
      

Proposition              Let   be in     
    and for        set  

         
 

 
∫         

 

 

    

Then 

‖ ‖
    

   
          

     
   ‖ ‖

    
   

  

Proof: Let      be an admissiblede composition of            ∑   
   
    Setting  

        
 

 
∫       

 

 

    

 then from Hardy‟s inequality, we have:  

                                           
                   

                                                           

 

Moreover, we have from the Hardy-Littlewood property: 
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                                                                  ∑        

  

   

                                                

From relations      and       we have, by using Lemma     of       

         
     

 ∑    
       

 
  

 
    

  

   

.∫        
      

 

  

  /

 
      

  

   ∑    
       

 
  

 
    

  

   

.∫      
      

 

  

  /

 
      

  

from which we get the upper bound.  

For the lower bound we have 

                                                                                                                                        

 Since the norm in     
 is a rearrangement invariant norm, we then have:  

‖ ‖
    

    
           

    
           

     
 

The following result has been proved in       

 Lemma              For        
                 we have 

 ‖   ‖    
    

  ‖ ‖
    

    
   

Theorem              Let   be a bounded Lipschitz connected set and 

           {                       }  
Then  

                       
Moreover, we have the following rate of convergence: 

    
      

 

    
  

 
  

     
    

 
       

 
  |           |      

   

whenever                  Here,    is the volume of the unit ball of     
Proof: The fact that                  has been proved directly in       Let       be 

such that                   Let              and   the restriction of   to         
From the Lemma         (Poincar´e-Sobolev pointwise relations), we have (see     ) 

                
    

      

 

    
  

   
 
 

 

    
 ∫  

 
 

  
    

 

     ̅   ̅                                               

 By the H¨older inequality (see     ), we then have: 

                
    

          
  

   
 
 

 

    
    | 

 
 

  |
            

      ̅   ̅                           

Since the norm of      is a rearrangement invariant norm, we then deduce from the result 

of        
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                                     ̅   ̅               ‖  ̅‖                                                       

 and coming back to the definition of the norm  

                  ‖  ̅‖               
   

 
 

      
 
 

  |            |       
                                      

 Moreover, we have: 

  | 
 
 

  |
            

     
        

(
  

    
∫  

  
 
    

    
    

 

   +

 
    

   

   

                                | 
 
 

  |
            

       
 
    

 
 
  

 
  

 
                                             

Combining relations           and       we have 

    
          

  

 
  

     
    

 
      

 
  |           |       

   

Notice that from corollary          of theorem           we deduce that 
    

                     

therefore   is continuous.   

The second application concerns the regularity of quasilinear equations. For simplicity, in, 

we shall assume that          We shall need the following assumption:  

Assumption              Let   ̂                  be a nonlinear  Caratheodory  

map satisfying the following conditions: 

   For                       
  ̂                           

for some                
     

                      ̂                              

Let       
   

    be a solution of       

∫  ̂            
 

 

   ∫  
 

 

         
   

     

 We recall that if     we shall consider 

     2     
(
 
 

 
         

 
   

  
(
 
        3   

First, we shall show that    is different from   
(
 

 
 
       

Proposition              Let   be a set of measure   We define the function  
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for     (  
 

 
)         (

 

 
) for 

 

 
       Then, for      

       
(
 

 
 
      and  

 

      
(

 

           

   There exists a function      
(
 

 
 
     such that       

 Proof: Since there are two constants             such that, for m large:  

                                   (  
 

  
 *  

it follows easily that   belongs to the Zygmund spaces  
 

        
  

 

 
  

 for all         

   and   is not in  
 

        
 
 

    
  Combining the results of Greco        and 

Fiorenza         we know that 

 
 
        

  
 
 

  
  

(
 
 

 
               

and 

 
(
 
     

(
 
          

 
 
    

   

We conclude that     
(
 

 
 
      and  

 

    cannot be in  
(

 

          
From the Lyapunov theorem (see        there exists a function       such that 

      (since   is decreasing). Since  
(
 

 
 
    is a rearrangement invariant space, therefore, 

    
(
 

 
 
      

We have    

 

     
(

 

         If not ,since            then  
 

    will belong to  
(

 

         

which is not true. Thus        

Theorem              If      
(
 

 
 
     then   is bounded if     . 

Moreover if    
  

   
  and       then  

          .∫  
 

  
       

 
       

 

 

/      
 

(
 
 

 
     

 
    

 

       

( and      
 

(
 
 

 
    

      
 

(
 
 

 
    

  ). Here,                    
   

         

with     
  

   
         

 

 
  

  .   

 
 /

         is the measure of the unit ball,           

      

If      then           (
  

    
)
 
    

(
 

 

    

If            then   is bounded.  

Proof: Let               It has been proved in      that for almost all     
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   0∫       
 

 

  1

  

 

                                          

 1st case:    
  

    
 

From H ̈lder inequality, we have:  

                                    ∫       
 

 

    |      |
 

(
 
  

)
 
/
      

 
(
 
 

 

                                           

Setting       |      |
 

(
 
  

)
 
/
                 

   

        
  

   
   we derive from relations 

     and      that, for all            

             .∫  
 

  
       

 
       

 

 

/      
 

(
 
 

 
     

 
    

 

                                         

From the lemma           we know that: 

                             
 

(
 
 

 
     

     
 

(
 
 

 
     

                                                                    

 

It remains to show that the quantity  

∫  
 

  
       

 
       

 

 

              
  

   
   

Indeed, from the result of Fiorenza (    ), we have  

    
 

   

 

   
 
        

 
 
         

  

   
   

Thus, there exist constants             

                                     
 
        

 
 
                 

 

 
                                          

 From       we the deduce:  

∫  
 

  
       

 
       

 
 

 

    ∫
   

       

 
 

 

                
   

      
   

With the change of variables,          we have:  

                  ∫
  

  

  

   

   
        

   
             

  

   
                                       

 From           and       we get   

            4∫ 
 

  

      
 

      

 

 

5    
 

(
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  nd case  
  

   
         From the work of Greco         we know that 

 
(
 

  
)
 

 (
 

   
)
 
       

(
 

  
)
 
*
               By using the result of Fiorenza        on 

associate spaces, one has the inclusion that  
(
 

         
 

  
  

 

          Applying the 

boundedness result of       we get the fact that   is bounded. 

 We can get a precise estimate when       or               First, we derive from 

relation      and Hardy-Littlewood inequality   

                                          ∫  
  

 
  

  

             
  

    

 

 

                                           

 Moreover, from the result of           (see also     ) we deduce                Thus 

relation      with H ̈lder inequality yields for        

                                            | 
  

 
  

  

  |

 
.

 

   
/

 

+

    |   

 
   

|
 

.
 

   

                                   

 and using the definition of the norm of the Grand Sobolev space, we have    

                                                   | 
  

 
  

  

  |
 

(
 
  

)
 
/
  

  

    
                                                 

 

If       knowing from proposition          that 

                                                                ( 
 
    

 

   
      

(
 
 
                                        

we obtain from      to      the result. If            we derive from      and      

that  

            
 

    
|   

 
   

|
 

.
 

   

  

To show that the last statement of Theorem          cannot be improved in the frame of 

small Lebesgue spaces, we shall prove its optimality. We shall use the same notations and 

functions as for proposition            
Proposition              Let   be a ball centered at the origin of measure   and let   be 

the unique radial solution   in   
        of  

                  

Then there exists a constant     and a neighborhood    of the origin such that for all 

                      ‖  
 In particular, if we consider                                 then    

  
(
 

        
          

    
    and            

Proof: Following the work of       one can show directly that the solution   can be 

written as  
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     .  

 
 /

      ∫ 6 
(
 
 

  ) 
∫        

 

 

7

 
    

      

  

From the expression of   and the fact that it is decreasing   

        ∫ * 
 
 

          
 
          +

 
   

  

 
 

      

   

     ∫               

 
 

      

          ‖             

The function                  satisfies         Thus      
(
 

      If         

     then        
     By a classical result       

        
Section (1.2): Grand and Small Lebesgue Spaces 
The norm of the grand Lebesgue spaces 

‖ ‖      
       

 
 

   ‖ ‖               

was introduced by Iwaniec and Sbordone in       in the framework of the study of the 

integrability properties of the Jacobian determinant. Since then, such norm attracted the 

interest of several researchers , either in Harmonic Analysis (see e.g.      ) in Interpolation 

Extrapolation Theory (see e.g.     ), either in        (see e.g.     ). Much attention has 

been devoted to the problem to identify the associate space of the grand Lebesgue spaces. 

The first characterization of the norm, which originated the small Lebesgue spaces, was 

given in       another characterization appeared in      (see also     ).  
Both grand and small Lebesgue spaces are Banach Function Spaces in the sense of Benentt 

and Sharpley        however, while in      there is an explicit proof that the expression of 

the norm of the small Lebesgue spaces satisfy all axioms of Banach Function Spaces (see 

     for the Fatou property), the (much simpler) proof that the corresponding axioms for 

the grand Lebesgue spaces seems missing in literature, even if actually this fact is 

commonly well known. We begin by establishing that the grand Lebesgue spaces are 

Banach Function Spaces. The proof will be given for a (already well known) generalized 

expression of the norm‖ ‖    namely, for 

 ‖ ‖          
        

 
 

   ‖ ‖                 

where   is a positive parameter. Of course, when       the expression‖ ‖     gives back 

the original norm‖ ‖     
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 We study norm obtained replacing, in the expression of ‖ ‖     above, the Lebesgue norm 

‖ ‖    by a grand Lebesgue norm. The resulting formula is (the single parameter   will 

be replaced by the couple of parameters    )  

   ‖ ‖            
       

 
 

     ‖ ‖                                       

This expression can play a key role in iteration-type results about grand Lebesgue spaces, 

typical of interpolation theory: be sides the pioneering      very recently a development in 

this direction seems announced in       We first prove that      is a Banach Function 

Norm and then, in Corollary          we prove that the norm in      gives back a norm in 

a grand Lebesgue space. The proofs are direct, do not require any background of the 

literature quoted above, and constants of the equivalences are given explicitly. Analogous 

results are stated and proved for the small Lebesgue spaces, whose norm has a less simple 

expression to deal with. Very recently the small Lebesgue spaces have been characterized 

as the optimal rearrangement-invariant Banach Function Spaces for the freedimensional 

Sobolev estimate, see       
For              be a set of Lebesgue measure        and let                
Let    be the set of all the measurable, real-valued functions on  and let       be the set of 

the functions   in    such that ‖ ‖           

The main result is that       is a special case of Banach Function Space, namely, its norm 

satisfies the following properties, where        are in          and   is any measurable 

subset of     
     ‖ ‖         

     ‖ ‖                a.e. in   

       ‖  ‖        ‖ ‖       

      ‖    ‖      ‖ ‖       ‖ ‖      

                   in    then ‖ ‖      ‖ ‖      

       if          a.e. in    then‖  ‖      ‖ ‖      

       ‖  ‖           

       ∫      
 

 

         ‖ ‖       

Proposition                Let                The space       is a Banach 

Function Space.  

Proof: We have to prove the properties    –       
The first three properties follow directly from the corresponding properties true for 

Lebesgue spaces. 

  It is  

‖    ‖     ‖ ‖    ‖ ‖                  

Hence  
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‖    ‖         
       

 
  

   ‖    ‖     

     
       

 
  

   ‖  ‖         
       

 
  

   ‖ ‖     

  ‖ ‖       ‖ ‖       

Since       a.e. in    then 

 
  

   ‖ ‖      
  

   ‖  ‖                

 

therefore, passing to the supremum over             
‖ ‖      ‖ ‖       

If           a.e. in    

‖  ‖         
  

‖  ‖            
  

   
       

 
  

    ‖  ‖          
       

    
  

 
  

   ‖  ‖     

     
       

 
  

   ‖  ‖     ‖ ‖        

Since  
  

    is increasing in            

‖  ‖         
       

 
  

   ‖  ‖         
       

 
  

      
 

                 
 
     

Fix           
By Hölder‟s inequality we have 

∫   
 

 

   ∫      

 

 

   ‖ ‖   .∫  
      

 

 

   /

    
 

   

    

where      denotes, as usual, the conjugate exponent of      Therefore  

∫   
 

 

      
   

 
    

  
 

      
 

 
    ‖ ‖       

   
 

     
  

 
    ‖ ‖     

from which 

∫   
 

 

    
   

   
 
 

       
 ‖ ‖     

and hence 

∫   
 

 

           ‖ ‖      

where           
   

   
 
 

       
   

  The name “grand Lebesgue space” comes from the continuous embedding             

by Hölder‟s inequality, and by the monotonicity in  of the function   
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‖ ‖          
       

  
 

 
     ‖ ‖          ‖ ‖    

This shows that the following continuous embeddings hold: 

                          

but these embeddings can be refined in the framework of Orlicz spaces (see       see      
and      for a sharp result): 

    

         
          

    

           
      

As to the embeddings between two grand Lebesgue spaces       we note that, in terms of 

inclusions, these spaces increase with    in fact, if           

‖ ‖         
        

 
 

 
    ‖ ‖        

        
  

 
   
      

 
 

    ‖ ‖    

 and, being 

   
        

  
 
   
                 

we have 

‖ ‖                ‖ ‖        

The space       is rearrangement-invariant but not separable, neither reflexive. The set of 

the bounded functions is not dense, and the closure of    in the norm of       can be 

characterized (see     ) by the functions   such that 

       
    

 
 

   ‖ ‖         

The fundamental function is equivalent to               *   (
 

 
) +

    
  Note that the 

supremum in the definition of the norm, carried over the interval          can be 

equivalently considered over the interval         for any positive    smaller than     (see 

    ). The associate space of        defined by 

(     )
 
 2         ∫  

 

 

      3   

where the     is computed over all       such that‖ ‖          can be characterized as 

the Banach Function Space whose norm is given by 

‖ ‖          
   ∑   

 
   

{∑    
       

 
 

 
   

 

   

‖  ‖      } 

and such norm is in turn equivalent to the quasinorm 

          ∫         
 

   
 

   

.∫        
  

 

 

/

 
   

  
  

 
   

For a systematic study of these spaces see       
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we study the space defined through the norm‖ ‖        in       We begin with the 

following  

Proposition              If                    then ‖ ‖        is a Banach Function 

Norm. Proof The proof of properties                 is analogous to the ones of the 

corresponding properties in Proposition           

‖  ‖            
       

 
 

    ‖   ‖        

     
       

 
 

                
 

   
 
              

 
 
 
  

Fix           By Hölder‟s inequality we have 
 

∫     
 

 

  
   

  
  

    

         
‖ ‖                    

Further 

∫     
 

 

  
   

  
  

    

         
 

  
 

   ‖ ‖                    

and therefore 

∫     
 

 

    
   
   

 
 (

 

    
*

       
   

‖ ‖          

where the constant in the right hand side comes setting, for instance,    
   

 
    

  Next results show the comparison between the iterated grand Lebesgue spaces and the 

grand Lebesgue spaces. The final conclusion that such spaces fall again within the scale of 

the grand Lebesgue spaces, will be stated after, as immediate corollary. 

 Theorem              If                    then  

‖ ‖           {     
 (  

 
 
)
     } ‖ ‖        

Proof:  Since     
  

      
  

 

    
     

 

 
                         

‖ ‖           
       

   
         

 
 

 
      

 
     ‖ ‖      

      
       

   
         

 
 

 
      

 (
 

     
  

  
    

)
  

 
   ‖ ‖      

      {     
 (  

 
 
)
     }    

       
 

   
    ‖ ‖     

     {     
 (  

 
 
)
     } ‖ ‖        

 Theorem              If                   then  
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‖ ‖                {     
 (  

 
 
)
     } ‖ ‖         

Proof ; 

‖ ‖        

      
       

 
   
    

 
‖ ‖         

     
   
 

    
   
    ‖ ‖     

         
     

   
 

  
 

       
 

     ‖ ‖              
     

   
 

 
 

     
 

     
 

 
     

 
    ‖ ‖     

 

          {     
 (  

 
 
)
     }    

     
   
 

 

 
 

      
 

    ‖ ‖     

          {     
 (  

 
 
)
     }    

       
 

 
       

         
 

 
      ‖ ‖        

Hence 

‖ ‖                 {     
 (  

 
 
)
     } ‖ ‖         

 By Theorem         and Theorem         we get immediately the following  

Corollary              If                    then‖ ‖        is equivalent 

to‖ ‖         

 

We study the “dual” functional of       namely, the functional obtained inserting the norm 

of the small spaces inside the norm of the small spaces. From the formal point of view, the 

resulting functional has a quite voluminous expression, and, after proving its equivalence 

to a norm of a small Lebesgue space, the fact that it is exactly a Banach Function Norm 

loses of interest. Therefore, here we limit ourselves to prove the analogous result of 

Corollary         for the functional  where, as usual,                   and 

             

‖ ‖             
     ∑   

 
    

8∑    
        

 
  

 
    

 
‖  ‖          

 

   

9   

Theorem              If                    then ‖ ‖        ‖ ‖         

 Proof : Step   First observe that, fixed            and                we have  

     
 

  
          

  
 

    
 
  

and therefore 

      
  

    
              

 
  

             
  

 
           

  
 

      
  

 
          

Hence, if        setting          we have  



  

22 
 

 
  

   
     ‖ ‖          

  
 

      
  

 
      ‖ ‖           

therefore 

   
        

 
  

   
      ‖ ‖          

  
 

      
  

 
      ‖ ‖          

 

 

from which 

   
        

 
  

   
      ‖ ‖          

  
 

        
          

 
  

  
      ‖ ‖                   

Step    
Let          ∑   

 
   and             

By      

∑    
        

 
  

   
      

 

 

‖  ‖          
  

 
     ∑    

           
 

  
  

      

 

 

‖  ‖          

 

then 

‖ ‖           
  ∑   

 
 

 
  

 
      ∑    

           
 

  
  

      

 

 

 ‖  ‖          

   
  

 
    ‖ ‖           

 and passing to the infimum over             we get  

                              ‖ ‖           
         

 
  

 
    ‖ ‖                                               

Step    

Let          ∑   
 
    

By      

∑‖  ‖       

 

 

 ∑    
         

 
  

 
    

 

 

 ‖  ‖          
 

and, being 

‖  ‖        ∑‖  ‖       

 

 

  

we have 

‖  ‖        ∑    
         

 
  

 
    

 

 

 ‖  ‖          
  

Passing to the infimum over all the decompositions    ∑   
 
  on the right hand side, we 

get the assertion  

‖  ‖        ‖ ‖          
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 Theorem              If                    then  

‖ ‖                 2      
 (   

 
  *  

  3 ‖  ‖         

 Proof : Fix   and fix a decomposition    ∑   
 
   We have, for any     

‖  ‖           
    

           
 

  
 

       ‖  ‖         
  

Let            Setting 

       (  
 

    
*  

we note that    is an increasing function of   in        and  

                                                                                                              
 Let           We have  

‖  ‖           
        

 
  

       ‖  ‖       
  

from which  

 
  

  
    ‖  ‖           

 

   
  

  
      

  
 

       (   
 

    
*
  

 
     

   
   
         

  
   
      ‖  ‖       

  

   
  

  
       

  
  

    (   
 

    
*
  

 
     

 (   
 

    
*

   
     

  
  

   
      ‖  ‖       

  

and therefore 

   
        

 
  

  
      ‖  ‖           

 

   (   
 

    
*

   
     

  
  

  
       

  
  

    (   
 

    
*
  

 
     

  
  

   
      ‖  ‖       

  

         {      
 (   

 
  

 )
  } (   

 

    
*
  

 
     

  
  

   
      ‖  ‖       

  

 

and, fixing              we obtain  

              
        

 
  

  
      ‖  ‖           

         {      
 (   

 
  

 )
  }             

   
          

(   
 

    
*
  

 
     

  
  

   
      ‖  ‖       

  

         {      
 (   

 
  

 )
  } (

 

    
*
  

    
          

  
  

   
      ‖  ‖       

   



  

24 
 

On the other hand, fix                   

   
          

  
  

   
      ‖  ‖       

    
      

  
    

            ‖  ‖
(    

       
)
  

   
      

  
    

           
‖   ‖(     )

    
      

  
    

              

   
       

 
   

     ‖   ‖(     )
   

Being 

   

   
                 

and 

 
      

  
    

             .
           

    
/

 
           

       

    .
     

           
/

           
       

  

we get 

   
          

  
  

   
      ‖  ‖       

  

            .
     

           
/

           
       

   
             

  

 
   

     ‖   ‖(     )
            

Then, by      and       

   
        

 
  

  
     ‖  ‖           

          2      
 (   

 
  *   3   

          

  
    {.

     

           
/

   

  }    
             

  
  

   
      ‖  ‖       

       

Now we need to estimate the left hand side of      and      by 

   
        

 
  

  
     ‖  ‖        

  

To this goal, we note that by      

   
        

 
  

  
     ‖  ‖        

     
        

  
  

   
      ‖  ‖       

   

    2    
          

  
  

   
      ‖  ‖       

     
             

  
  

   
      ‖  ‖       

 3 

and we distinguish three cases. If 

   
        

 
  

  
     ‖  ‖        

    
          

  
  

   
      ‖  ‖       

  

by      we have 

   
        

 
  

  
     ‖  ‖           
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         2      
 (  

  
  *   3    

        
 

  
  

     ‖  ‖        
                                

If 

   
        

 
  

  
     ‖  ‖        

     
          

  
  

   
      ‖  ‖       

  

we observe that 
 

     
  

    

            
               

and we consider the cases          and         
Let           By       we have 

    
         

 
  

 
     ‖  ‖           

         2      
 (   

  
  *  3   

 
          

  
  .

     

           
/

    

   
         

 
  

    
     ‖  ‖         

 

and therefore 

                                                             
         

 
  

 
     ‖  ‖           

                                         

           2      
 (   

  
  *  3    

         
 

  
    
     ‖  ‖         

  

Let        We have 

   
        

    {.
     

           
/

    

  }    

and therefore, by      also, we have 

              
         

 
  

 
     ‖  ‖           

          2      
 (   

  
  *  3             

             
         

 
  

    
     ‖  ‖         

  

By                 we have 

   
         

 
  

 
     ‖  ‖           

          2      
 (   

  
  *  3   

    {           }      
         

 
  

    
     ‖  ‖         

 

 

and, summing over    

∑    
         

 
  

 
     ‖  ‖           

 

  

          2      
 (   

  
  *  3   



  

26 
 

    {           }  ∑    
         

 
  

    
     ‖  ‖        

 

  

  

Passing to the infimum over all the decompositions    ∑     we get the assertion, taking 

into account that 

    2      
 (   

  
  *  3     {           }     2      

 (   
  
  *  

  3   

  

By Theorem         and Theorem         we get immediately the following  

Corollary             If                    then‖ ‖        is equivalent 

to ‖ ‖        

 

 

 

Section (1.3): Grand Lebesgue Spaces with Measurable Functions 

 For           be a measurable set of Lebesgue measure           In 

     Iwaniec and Sbordone      studied the integrability properties of the Jacobi an 

determinant, and introduced the grand Lebesgue space         as a space such that  

                        
     

 for all Sobolev mappings                            
Since then the grand Lebesgue spaces play an important role in      theory (see e.g. 

    ) and in Function Spaces Theory (see e.g.     ). It turns out that such spaces are 

Banach Function Spaces in the sense of       namely (here and in the following we will 

use the letter   instead of   assuming          )  

       8      ‖ ‖               
       

 
 

      .
 

   
 ∫          

 

 

/

 
   

    9   

where    is the set of all real valued measurable functions on    and, denoting by   
   the 

subset of    of then on negative function        
          is such that for  all 

                      in   
    for all constants        and for all measurable subsets 

      the following properties hold: 

                     in   
                     

                          
                                   
                                     
                          

             ∫   
 

 

          

for some constant              depending on   and    but independent of     
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Grand Lebesgue spaces belong to a special category of Banach Function Spaces: they are 

rearrangement-invariant, namely,setting  

                                           {               }                                          

it is             whenever         

A generalization of the grand Lebesgue spaces are the spaces            defined by (see 

e.g      )  

‖ ‖             
       

.   
 

   
 ∫          

 

 

/

 
   

    

When      the spaces          reduce to Lebesgue spaces       and when     the 

spaces          reduce to grand Lebesgue spaces           
A useful property of the norm, used in      is the fact that the supremum over         in 

the norm of        can be computed also in any smaller interval         the result is an 

equivalent expression of the norm (i.e. each expression can be majorized by the other, 

multiplied by a constant not depending on   ). Obviously, the constants involved in the 

equivalence will depend on   and     This phenomenon has been clarified also in a more 

general context in       Were call also the continuous embeddings, easy consequence from 

the definition,  

                                          
Let                     be a measurable function, and for all      

   set 

                                           
       

    
 

     .∫  
     

 

 

/

 
   

                                  

where ∫  
 

 
  stands for 

  

   
∫  

 

 
 For          we will also write‖ ‖  to denote the 

normalized norm of   in         

‖ ‖   .∫  
   

 

 

/

 
 

    

By convention, we establish that the right handside of      is   if for some        
    the function            this position gives always a meaning to the         

 
  also 

when the indeterminate form     appears. The case                 gives back the 

norm of the          spaces.  

We find a necessary and sufficient condition on   such that      
  is equivalent to a Banach 

function norm, i.e. equivalent to a functional satisfying all the properties    –     listed in 

the previous.  

It is clear that the first way to prove that       is equivalent to a Banach function norm is to 

try to reproduce the analogous proof, valid for grand     spaces. This latter proof is an easy 

consequence of the classical properties of the norm of Lebesgue spaces, and it seems, for 

this reason, almost absent in literature. The problem when considering the functional       
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is that   is defined almost everywhere, and the expression      does not have the meaning 

of value attained in    Moreover, the estimate of      looks much less evident when, for 

instance,   attains the value zero in finite times in a neighborhood of zero. Besides solving 

completely the problems above, we will show in particular that for any measurable 

bounded        is equivalent to a Banach function norm, and that the same resulting space 

can be obtained by using a new function ̅  defined everywhere, whose expression is 

explicitly shown. After this step, also in the case of bounded measurable functions, the 

proof of being equivalent to a Banach function norm can be considered equally trivial as in 

the case of grand Lebesgue spaces.  

Going back, an immediate necessary condition is suggested by property     when    
             

     must be finite, it must be               The Theorem we will prove 

is that this condition is actually also sufficient.   

Theorem              Let           and let                     be a 

measurable function, not identically zero. The mapping       is equivalent to a Banach 

function norm if and only if               
The proof of Theorem (1.3.1) requires some intermediate results of independent interest. 

As a byproduct, we will determine the „„interesting‟‟ class   of functions           

   with the property that every        obtained from a generic bounded measurable    is 

equivalent to a function norm built with         

Lemma              If                         are measurable functions such 

that  

           
      

     
 

              
      

     
 

                                                 

then       
       

  

 Proof: Since we may exchange the roles of       
 and       

  it is sufficient to prove that 

for all      
   

                                                     
           

                                                               

 If   is identically zero,      is trivially true, therefore we may work with functions   

having positive Lebesgue norm. If for some   it is            then both sides of      

are    therefore we may consider the functions   such that  

                                                 ‖ ‖                                               

If       
    or       

    is zero, then the other one is also zero: in fact, if for instance 

      
         from      we get that      a.e.in          By      used with 

       we deduce that      also, and our claim is proved.  

Consider the case          
       and fix        By the definition of       

    there 

exists a set of positive measure             such that 

     
 

     ‖ ‖           
             

from which 
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‖ ‖    
                                        

Now set  

  
         

   

          

  
          

   

           

and fix     
         

    From      and the monotonicity of the (normalized) norm ‖ ‖  

with respect or (due to the Hölder‟s inequality), 

       
     

     
 

      
      

     

‖ ‖    
          

and by      

       
     

     
 

      
      

     

‖ ‖    
           

We deduce the existence of a set    
         of positive measure such that 

     
 

     
      

     

‖ ‖    
       

           

from which 

     
 

     
      

     

‖ ‖    
       

  

       
     

     
 

    ‖ ‖           
       

Since   can be arbitrarily small, we get the assertion.  

Finally, if       
       we may follow the same argument as before, replacing 

      
      by any       The lemma is therefore proved.  

The next proposition shows that monotone functions play an important role in our study. 

The term increasing for a function   means that if       then                
Proposition              If                      then there exists  ̅   
          such that:  

       ̅      

     ̅     
 

     increasing in   and left continuous  

                   ̅   

Proof: For any given                      the function ¯ 

  ̅     0       
     

    
 

   1

   

                

has trivially the property      Property      follows by a well known characterization of 

increasing, left continuous functions, see e.g. [   Theorem     ]. We have to prove only 

that              ̅    



  

30 
 

On one hand, the definition of  ̅gives immediately that  

                          ̅    
 

             
     

    
 

                                                     

and, on the other hand, by       

                             ̅    
 

            
     

 ̅   
 

                                                   

Combining      and      we get 

       
     

    
 

           
     

 ̅   
 

                  

By Lemma        ,we get         
The following definition plays a crucial role in the study of the generalization of the grand 

Lebesgue spaces with respect to measurable functions. 

 Definition              Let           A function    left continuous on          is 

said to be in the class    if  

             
                

           
 

     isincreasingin    
It is easy to check that functions in    are increasing. Moreover, the left continuity of its 

functions permit us to write more simply     instead of        in the expressions related 

to         

We have now the prerequisites for the  

Let               be nonnegative. We may think to divide   by its (positive)       

norm, therefore without loss of generality we may assume that            Moreover, by 

Proposition          without loss of generality we may assume that      holds true, 

therefore, in particular,   increasing and left continuous. Therefore it makes sense to 

compute        
If           for any measurable function   on    possibly not in       it is  

     ‖ ‖            
       

‖ ‖                 ‖ ‖   

 If          since   is increasing, there are two possibilities :there exists, or not, 

           such that          In the first case let       {            
         } It is           and  

              
       

    
 

   ‖ ‖        
        

    
 

   ‖ ‖      

After a change of variable in the      

                
           

        
 

       ‖ ‖        

Setting  ̃              and         we get  

                ̃     
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Since, by the maximality of     it is  ̃        when        the first case we are studying 

will be concluded after the examinationofthesecondcase. The assumptions we have now on 

  imply that         At this point, all the axioms of the Banach function norms are 

straight forward to prove. 

 As a byproduct of the proof of Theorem         we have the following  

Theorem              Let          and let                       The 

mapping       is equivalent to      ̅   where  ̅ is the increasing, left continuous function 

defined by 

 ̅     6       
      

(
    

‖ ‖ 
*

 
   

7

   

               

Again by the proof of Theorem          it is clear that the interesting functions   to 

consider in the Banach function norm are those ones in the class     This motivates the 

following   

Definition              Let             be a measurable set of Lebesgue measure 

          let          and let        The grand    space over   with respect to   

is the Banach Function Space defined by  

          2      ‖ ‖                      
        

    
 

    ‖ ‖        3  

It is immediate from the definition that the spaces          are rearrangement-invariant, 

include        and are included in each                       
We conclude by showing a sufficient condition, and a necessary condition , for the 

embedding between grand    spaces built from two functions           We will need 

the following simple lemma, which extends the useful property of the grand Lebesgue 

spaces mentioned. 

 Lemma            : Let          and             If        there exists a 

constant             such that 

   
     

    
 

    .∫     
 

  

  /

 
   

                
     

    
 

   .∫     
 

  

  /

 
   

  

Proof: The left wing in equality is trivial, therefore we need to prove only the right wing 

one. Fix       and           By Hölder‟s inequality,      is increasing in    therefore 

we have  

   
        

    
 

   ‖ ‖     ‖ ‖          
  

 
         

 
   ‖ ‖    

from which 

   
        

    
 

   ‖ ‖          
  

 
       

        
    

 
   ‖ ‖               
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Passing to the infimum over   on the right hand side, and recalling that            we 

get the desired inequality with         
  

  

       
 Proposition              Let           be a measurable set of Lebesgue measure 

          let            and let           Then 

   
   

   
     

     

     
                              

   
   

     

     

     
      

Proof:  If 

   
   

   
     

     

     
         

then for small        it is  

                               

and this immediately implies that                       On the other hand, if this 

inclusion holds, assume, on the contrary, that 

   
   

   
     

     

     
      

 For any fixed        there exists a small       such that 

                            

Raising both sides to the power 
 

   
   multiplying by ‖ ‖     and taking the supremum over  

         by Lemma (1.3.7) we get 

‖ ‖     
   

 
 
 
 ‖ ‖     

 

 Which is in contradiction with the assumed embedding. 

 Corollary              Let           be a measurable set of Lebesgue measure 

          let           and let           be equivalent n a neighborhood of the 

origin. Then                       
The classical Hardy inequality states that 

Theorem               Let      and   be a measurable, non negative function in 

      Then  

                        .∫ .∫    
 

 

/

  

 

  /

    

  
  

   
.∫      

 

 

/

   

                                 

we extend the Hardy inequality in the context of            spaces. We will follow closely 

the proofs given in       
Theorem               Let           and        There exists a constant         

  such that  

                                                    ‖∫    
 

 

‖
     

       ‖ ‖                                          

for all non negative measurable functions   in         
Proof: Let             We have  
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‖∫    
 

 

‖
     

     8    
     

.    ∫ .∫    
 

 

/

    

 

  /

 
   

      
       

.    ∫ .∫    
 

 

/

    

 

  /

 
   

9  

     8    
     

.    ∫ .∫    
 

 

/

    

 

  /

 
   

     
       

     
 

    .∫ .∫    
 

 

/

    

 

  /

 
   

9 

     8    
     

.    ∫ .∫    
 

 

/

    

 

  /

 
   

 

     
       

    
 

        
  

 
         

 
 

   .∫ .∫    
 

 

/

    

 

  /

 
   

9   

  

      8    
     

.    ∫ .∫    
 

 

/

    

 

  /

 
   

  

     
       

    
 

        
  

 
       

     
.    ∫ .∫    

 

 

/

    

 

  /

 
   

9  

 

Therefore, 

‖∫    
 

 

‖
     

    
        

    
 

         
  

 
        

     
.    ∫ .∫    

 

 

/

    

 

  /

 
   

 

Since                
 

         
  

 

         

Now take            so that          Applying the Hardy inequality      with the 

exponent   replaced by      and multiplying both sides by     
 

      we get  

.    ∫ .∫    
 

 

/

    

 

  /

 
   

 
    

      
 .    ∫     

 

 

  /

 
   

   

If we pass to the     over           on both sides, the previous in equality implies 

   
     

.    ∫ .∫    
 

 

/

    

 

  /

 
   

 
   

      
    
     

.    ∫     
 

 

  /

 
   

 

and therefore 
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 ‖∫    
 

 

‖
     

    
        

    
 

         
  

 
    

   

      
   

     
.    ∫     

 

 

  /

 
   

 

    
        

    
 

         
  

 
    

   

      
   

       
.    ∫     

 

 

  /

 
   

  

Setting  

           
       

   
       

    
 

         
  

 
    

   

      
     

we get the inequality       
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Chapter2 

Trigonometric and Polynomial Approximation of Functions 

We show that the deviations ‖       ‖     and ‖       ‖     are estimated by      

for        (        )           We consider the fractional order moduli of 

smoothness and obtain direct, converse approximation theorems together with a 

constructive characterization of a Lipschitz-type class.  Several applications of these results 

help us transfer the approximation results for weighted variable Smirnov spaces of 

functions defined on sufficiently smooth finite domains of complex plane    

Section (2.1): Generalized Lebesgue Spaces       

For             be a measurable    −periodic function, that is          
       Denote by                      the set of all measurable    –periodic functions   

such that            for some               where 

       ∫           
  

 

    

      becomesa Banach space with respect to the norm 

 ‖ ‖         {        (
 

  
*    }   

If         is constant           then the space       is isometrically isomorphic to 

the Lebesgue space      
If the function   satisfies 

                                
         

                  
         

                                

then the function  

       
    

       
  

is well defined and satisfies     itself. 

The space       consists of all measurable    −periodicfunctions   such that  

∫               
  

 

    

for all measurable   with          and 

‖ ‖     
     2∫               

  

 

          3 

is also a norm on        It is known that the inequalities 

 ‖ ‖     ‖ ‖     
    ‖ ‖     

satisfied for all functions           where 
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and hence the norms ‖ ‖    and ‖ ‖     
  are equivalent. See                and      for 

properties above and for more general informationabout      spaces.  

Denote by   the Hardy-Littlewoodmaximal operator,defined for       by  

           
  

    ∫          
 

 

              

where the supremumis taken over all intervals   with      The boundedness problem of 

the operator   on the space       was studied by many         In      it was provedthat if 

the function   satisfies     and the condition  

                               
 

        
            

 

 
                                        

 then the maximal operator   is boundedon        that is,  

                                                ‖    ‖       ‖ ‖                                                            

for all           where   is a constant dependsonly on    The set of all measurable    –

periodic functions            satisfies the con-ditions     and     will be denoted by 

   Let     and           The modulus of continuity of the function f is defined by 

                                                  
      

‖     ‖                                                 

where 

                                           
 

 
∫                 

 

 

                                           

The existence of             follows from      and also the inequality  

             ‖ ‖     

satisfied for all        
The modulus            is nonnegative, continuous function such that  

   
    

                                                         

In the Lebesgue spaces                the classical modulus of continuity          is 

defined by 

                                             
      

‖  
     ‖                                            

where 

  
                           

It is known that in the Lebesgue spaces Lp the moduli of continuity     and     are 

equivalent see        
 We define in the spaces       the modulus of continuity by using the shift      because the 

space       is not translation invariant, in general  see, for example      Example       
 Let     and           We define the Lipschitz class               as  

              {                                   }  

 Let       has the Fourier series  
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   ∑                 

 

    

                                        

Denote by                     the nth partial sums of the series     at the point    that is,  

         ∑         

 

    

   

where  

          
  

  
                                      

Let {  } 
   be a sequence of positive real numbers. We consider two means of the series 

    defined by  

         
 

  
 ∑             

 

   

   

and 

         
 

  
 ∑           

 

   

   

where     ∑   
 
                     The means       and       are called the 

N¨orlund and Riesz means of the series     respectively. In thecase            both of 

      and       are equal to the Ces ̀ro mean 

         
 

   
∑         

 

   

    

If we take        
    

         where 

  
 

      
 

  
              

  
      

the mean       be the generalized Ces ̀ro mean   
 
         that is 

         
 

  
 
 ∑       

    
        

 

   

   

The approximate on properties of the Ces ̀ro means     in Lipschitz classes 

                            were investigated by Quade in       The 

generalizations of Quade‟s results were studied by Mohapatra and Russell       Chandra 

       and Leindler       In       Chandra obtained estimates for ‖        ‖   where 

        Chandra also gave estimates for the difference ‖        ‖   where 

                                         Chandra gave some conditions on the 

sequence {  } 
   and obtained very satisfactory results about approximation by the means 

      and       in                             Later, Leindler in      
weakened the conditions given by Chandra on the sequence {  } 

 and generalized his 
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results. In       the analogues of Chandra‟s results was obtained for weighted Lebesgue 
spaces. 

we give       analogues of the results obtained by Leindler in      and Chandra in        
We shall use the notations  

                                        
 A sequenceof positive real numbers {  } 

  is called almost monotone decreasing 

(increasing) if there exists a constant    depending only on the sequence {  } 
 such that for 

all     the inequality 

                   
holds. Such sequences will be denoted by {  } 

        {  } 
        Our main 

results are the following. 

 

Theorem              Let                             and{  } 
   be a 

sequence of positive numbers. If 

{  } 
          

or 

{  } 
                             

then 

‖        ‖               

Theorem              Let                    and {  } 
  be a sequence of positive 

numbers. If  

∑       

    

    

          

or  

∑     

    

    

  (
  

 
*   

 then the estimate  

‖        ‖              

holds for n =1,2,....  

Theorem              Let                               and{  } 
 be a 

sequence of positive numbers. If 

                                                 ∑ | (
  

   
*|

    

   

   (
  

   
*                                          

 then for           the estimate 

 ‖        ‖              

holds. In the classical Lebesgue spaces     the analogues of Theorem         and Theorem 

        were proved by Leindler in       and Theorem         in   spaces was obtained 

by Chandra       
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   will denote the constants (in general, different in different relations) depend only on 

quantities that are not important for the questions of interest. 

 Let     . Denote by                      the best approximation of           in    

(the set of trigonometric polynomials of degree at most  ), that is  

              {‖     ‖          }  

It follows that, for example from Theorem     in       there exists a trigonometric 

polynomial   
     such that 

           ‖     
 ‖     

for             
By                        we denote the set of absolutely continuous functions   such 

that           
 Lemma              Let     and            Then the estimate  

                                                                  (
 

 
‖  ‖    *                                         

holds for              
Proof: It follows from Theorem     of      that 

‖        ‖             

It is easy to see that  

  ( 
 ̃)                          

where   ̃ is the conjugate function of     By considering the uniform boundedness of 

{  } 
   and the boundedness of the conjugation operator in the space       (see     ), we 

get  

‖        ‖       ‖ ∑       

 

     

 ‖

    

   ‖ ∑
 

  
   

 

     

(  ̃)‖

    

 

 ‖ ∑ (
 

  
  

 

   
* (  ( 

 ̃)    ̃)  
 

   
 (  (  ̃)    ̃)

  

      

‖

    

 

  ∑ (
 

  
  

 

   
*

 

     

 ‖  ( 
 ̃)    ̃‖

    
 

 

   
‖  (  ̃)    ̃‖

    
 

 

  { ∑ (
 

  
  

 

   
*

 

     

} ‖  ‖      
 

   
‖  ‖     

  
 

  
‖  ‖      

and hence     follows.  

 Lemma              If       the Jackson type inequality  
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            .     (  
 

 
*/            

 

holds for            
Proof: Let           Consider the transform 

          
 

 
 ∫ .

 

 
 ∫          

 

 

/
 

  ⁄

           

It is clear that             for each      and 

(     )
 
    

 

 
∫ ∫                

 

 

 

  ⁄

   

for almost all    Since  

|(     )
 
   |  

 

 
.
 

 
  ∫                

 

 

   /   

it follows from definition of             that 

‖(     )
 
‖

    
 

 

 
‖
 

 
∫               

 

 

‖
     

 

 
 

 
              

On the other hand,since 

               
 

 
 ∫ .

 

 
 ∫                   

 

 

/  
 

  ⁄

   

we get 

 

‖         ‖      
 

 
∫ ‖

 

  
 ∫               

 

 

‖
    

  
 

  ⁄

 

 

     
  ⁄      

 

 
∫ ‖

 

  
 ∫               

 

 

‖
    

  
 

  ⁄

 

 

 
 

 
∫ (    

  ⁄      
‖

 

  
 ∫               

 

 

‖
    

  +
 

  ⁄

  

 

     
  ⁄     

‖
 

 
∫               

 

 

‖
    

              

Hence, by subadditivityof the best approximation and     we obtain 
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              (          )
    

   (       )
     

 

 

 ‖          ‖
    

 
 

 
 ‖(       )  ‖

     
 

      (  
 

 
*  

 

 
        (  

 

 
*   

which finishes the proof.  

 Lemma              Let       and            Then for every                  

the estimate 

 ‖        ‖                         

holds.  

Proof: Let   
               be the trigonometric polynomial of best approximation to 

                  By Lemma        

  ‖     
 ‖       (            )  

and hence 

 ‖     
 ‖              

By the uniform boundedness of the partial sums       in the space       (see     ), we get  

 ‖        ‖     ‖     
 ‖     ‖  

       ‖     

  ‖     
 ‖     ‖     

     ‖      

   (‖     
 ‖    ) 

           
 Lemma              Let      If                 then    is absolutely continuous 

and           that is           
 Proof: Let                and        Since          almost everywhere, by 

Theorem     of      the space      is continuously embedded in      Hence we have 

 ‖     ‖  
  ‖     ‖      

for every   with          This inequality and equivalence of    
      and    

     yield  

   
                      

 

Hence,                implies    
                and this implies that   is absolutely 

continuous and                 –      Since the relation 
            

  
              

holds almost everywhere, for almost all   we get 

 

 
 ∫

               

  

 

     

                 

By Fatou Lemma, for every measurablefunction   with           
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∫              
  

 

     ∫ .    
     

 

 
 ∫

               

  

 

     

  /
   

 

         

         
     

 ∫ . 
 

 
 ∫

               

  

 

     

  /
   

 

         

        
     

 

 
 ∫ . 

 

 
 ∫                

 

     

  /
   

 

         

        
     

 

 
 ∫               

  

 

    

        
     

 

 
 ‖     ‖             

     

 

 
             

         
     

 

 
              

and this means that            
 Lemma               Let     and                 Then for           the estimate  

‖            ‖             

holds.  

Proof:  By Lemma                   If f has the Fourier series  

      ∑         

 

   

   

 

 

then the Fourier series of the conjugate function    ̃ be 

  ̃    ∑          

  

    

    

 On the other hand,  

                   ∑
 

   
        

  

    

 

  
 

   
   (  ̃)     

Hence, by considering the uniform boundedness of the partial sums and the conjugation 

operator in the space       (see     ), we obtain  

‖            ‖             

for            
 The following Lemma was proved in       
 Lemma              Let {  } 

   be a sequence of positive numbers. If {  } 
  

      or {  } 
       and                 then  
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∑           

 

   

             

 for            

 
Since 

     
 

  
 ∑      

 

   

       

we have 

              
 

  
∑      

 

   

{             }  

By Lemma         and Lemma         we obtain  

‖        ‖       
 

  
 ∑      

 

   

‖        ‖     

 
 

  
∑      

 

   

         
  

  
 ‖        ‖     

 
 

  
           (

 

   
*  

           
It is clear that 

         
 

  
 ∑          

 

   

     

By Abel transform, 

                  
 

  
∑               

 

    

    

 
 

  
∑   (

       

 
*

 

   

  (∑          

 

   

+  
 

   
 ∑          

 

   

  

and hence 

‖           ‖     
 

  
∑ |  (

       

 
*|

 

   

‖∑       

 

   

‖

    

 

  
 

   
‖∑       

 

   

‖

    

   

Since 



  

44 
 

                  
 

   
∑       

 

   

     

by Lemma         we get 

 

   
‖∑       

 

   

‖

    

 

 ‖           ‖              

Hence, 

‖           ‖       (
 

  
* ∑ |  (

       

 
*|

 

   

                                

Suppose the condition  

∑       

    

    

        

holds. This implies that (see     ) 

 ∑ |  (
       

 
*|

 

   

  (
  

 
*   

and hence by      we have  

‖           ‖             

This relation and Lemma         yield  

‖        ‖              

Now let  

                                                  ∑     

    

   

  (
  

 
*                                                             

A simple calculation yields 

   (
       

 
*   

 

         
 ( ∑             

 

     

+   

and by induction one can easily get 

| ∑             

 

     

|   ∑               

 

    

    

 Thus, 

 ∑ |  (
       

 
*|

 

    

  ∑
 

      

 

   

    (∑               

 

    

+ 
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 ∑               

 

    

 (∑
 

      

 

   

+ 

 ∑               

 

    

 (∑
 

      

 

   

+ 

 ∑               

 

    

 ∑     

   

   

   

Combiningthis, the assumption      and      we get  

‖           ‖              

 and considering Lemma         again we obtain the desired result.  

 Let            By definition of           

              
 

  
∑   {             }

 

    

       

 From Lemma          we get  

                                ‖        ‖     
 

  
∑   ‖        ‖    

 

   

                         

   (
 

  
* ∑        

 

   

  
  

  

‖        ‖     

   (
 

  
* ∑        

 

   

   

By Abel transform, 

∑       

 

   

   ∑   {              }         

   

   

  

 ∑     
  

   
  

   

   

           

and 

∑     
  

   
  

   

   

 ∑  (
  

   
*

   

   

(∑      

 

   

+   
  

   
∑       

   

   

 

             
by condition      This yields 

∑       

 

   

            

and from this and      we get  
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‖        ‖                

Let‟s consider the case        
By Abel transform, 

         
 

  
 ∑{  (                   )            }

   

   

  

 
 

  
 ∑   (           )

   

   

            

and hence 

                   
 

  
 ∑             

   

    

   

Using Abel transform again yields 

∑             

   

    

 ∑
  

    
             

    

   

    

 ∑  (
  

    
*

    

   

(∑               

 

   

+   

 
  

   
∑               

    

    

   

 

Thus, by considering Lemma         and     we obtain 

‖∑          

   

   

‖

     

  ∑ | (
  

   
*|

   

   

 ‖∑            

 

   

‖

    

  

 

 
  

   
 ‖∑            

   

    

‖

    

  

  ∑ | (
  

   
*|

   

   

     ‖                 ‖      

   ‖            ‖      

       ∑ | (
  

   
*|

   

   

  (
  

 
*   

This gives 
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‖           ‖      
 

  
 ‖∑          

   

   

‖

     

 

  
 

  
  (

  

 
*    (

 

 
*   

 

 Combiningthis estimate with Lemma         yields  

‖        ‖              

Section (2.2): Generalized Lebesgue Spaces with Variable Exponent 

Generalized Lebesgue spaces       with variable exponent and corresponding Sobolev-

type spaces have waste applications in elasticity theory, fluid mechanics, differential 

operators       nonlinear Dirichlet boundary-value problems       nonstandard growth and 

variational calculus        
These spaces appeared first in      as an example of modular spaces      and 

Sharapudinov      has been obtained topological properties of        Furthermore if 

                        then       is a particular case of Musielak–Orlicz spaces 

      Later various mathematicians investigated the main properties of these 

spaces       In      there is a rich theory of boundedness of integral transforms of various 

type        
For                          is coincide with Lebesgue space    and basic 

problems of trigonometric approximation in    are investigated by several mathematicians 

(among others     , ...). Approximation by algebraic polynomials and rational functions in 

Lebesgue spaces, Orlicz spaces, symmetric spaces and their weighted versions on 

sufficiently smooth complex domains and curves was investigated in 

    –                  For a complete treatise of polynomial approximation 

see             
In harmonic and Fourier analysis some of operators (for example partial sum operator of 

Fourier series, conjugate operator, differentiation operator, shift operator           
            have been extensively used to prove direct and converse type approximation 

inequalities. Unfortunately the space      is not      continuous and not translation 

invariant       Under various assumptions (including translation invariance) on modular 

space Musielak      obtained some approximation theorems in modular spaces with 

respect to the usual moduli of smoothness. Since       is not translation invariant using 

Butzer–Wehrens type moduli of smoothness (see     ) Israfilov et all.       obtained 

direct and converse trigonometric approximation theorems in        we investigate the 

approximation properties of the trigonometric system in    
    

    We consider the fractional 

order moduli of smoothness and obtain direct, converse approximation theorems together 

with a constructive characterization of a Lipschitz-type class.  
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Let            and   be the class of   -periodic, Lebesgue measurable functions 

                    such that         We define class    
    

      
    

    of   -

periodic measurable functions   defined on   satisfying  

∫          
 

 

        

The class    
    

is a Banach space      with norms  

‖    ‖     ‖    ‖          2      ∫ |
    

 
|
     

 

       3 

and 

 ‖    ‖   
      2∫           

 

 

           
     

   ∫        
    

 

 

       3   

having the property   

                                                              ‖ ‖     ‖ ‖   
                                                       

 where                       is the conjugate exponent of        
The variable exponent      which is defined on   is said to be satisfy Dini– Lipschitz 

property     of order   on   if 

   
       

{                         } (  
 

 
*                  

Let       
    

       satisfy               and let 

        
 

 
∫       

    ⁄

     ⁄

         

 

be Steklov‟s mean operator. In this case the operator   is bounded      in    
    

  Using 

these facts and setting                   we define  

  
                         

          ∑       (
 
 
)

 

    

 

  
 ∫    

  ⁄

   ⁄

∫                   
  ⁄

   ⁄

                   

where         
    

   (
 
 
)    

                  

   
 for       (

 
 
)      (

 
 
)     and   is the 

identity operator. 

 Since the Binomial coefficients (
 
 
)satisfy             

(
 
 
)   

    

    
          

we get  

      ∑ (
 
 
)

 

   

    

and therefore  
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                                                 ‖  
  ‖       ‖ ‖                                                     

 provided        
    

       satisfy     and             
For           and               we define the fractional modulus of smoothness of 

index       for         
    

        satisfy     and           as  

                    
        

‖∏(      
)

  

   

  
  ‖

   

  

and 

                 
     

‖  
  ‖       

 We have by      that 

                  ‖ ‖    

where        
    

       satisfy               and the constant       dependent 

onlyon     and    
 Remark              The modulus of smoothness                     has the 

following properties for       satisfying       
                is non-negative and nondecreasing function of                       

                                                                  

Let 

               
    

‖    ‖                     

 be the approximation error of function         
    

 where    is the class of trigonometric 

polynomials of degree not greater than    For a given       
   assuming  

                                                                ∫       
 

 

                                                          

we define α-th fractional         integral of   as                 

         ∑              

 

     

   

 where     ∫             
 

 
for         {            } and 

 

                    ⁄             
as principal value.  

Let       be given. We define fractional derivative of a function         satisfying 

      as  

          
      

       
                 

provided the right-hand side exists, where     denotes the integer part of a real number    

Let       
               be the class of functions       

     
 such that         

     
        

  

becomes a Banach space with the norm 
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‖ ‖      
   ‖ ‖     ‖    ‖

   
  

Main results are following.  

Theorem              Let           
         and       satisfy     with        

then for every natural   there exists a constant       independent of   such that  

           
 

        
    (    )

    
 

 holds. 

 Corollary              Under the conditions of Theorem          

            
 

        
‖    ‖

   
 

with a constant       independent of                   
 

Theorem              If            satisfy     with       and       
     

   then 

there exists a constant       dependent only on   and   such that for                  

               (  
  

     
*
    

  

 holds. 

 The following converse theorem of trigonometric approximation holds.  

Theorem              If            satisfy     with       and       
     

   then 

for                  

  (  
 

     
)
    

  
 

        
 ∑                   

 

   

    

 hold where the constant       dependent only on   and    

 Corollary              Let            satisfy     with       and       
     

   If  

                                      

then 

              8

                         
                         

                    
  

hold. 

 

Definition              For           we set  

                ,       
    

                           -   

 Corollary              Let                 satisfy     with       and    

   
    

  be fulfilled. Then the following conditions are equivalent:  
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Theorem             Let      satisfy     with       and       
    

   If    

       and  

∑              

 

    

     

 then          
 

  and 

   (    )
    

  (                  ∑              

 

      

+  

 hold where the constant       dependent only on   and     

Corollary               Let      satisfy     with              
    

            and  

∑              

 

    

      

for some        In this case for               there exists a constant       dependent 

only on     and   such that  

  (     
 

     
)
     

 

             ∑                       

 

   

   ∑              

 

      

 

hold.  

The following simultaneous approximation theorem holds. 

Theorem               Let                satisfy     with       and    

    
    

  Then there exist a       and a constant       depending only on   and   such 

that 

 

 

‖         ‖
    

     (    )
    

 

holds.  

Definition               (Hardy space of variable exponent       on the unit disc  with 

the boundary               Let               be measurable function. We say that a 

complex valued analytic function   in   belongs to the Hardy space       if 

   
     

∫ | (    )|
     

  

 

         

where         (   )            (and therefore      is   -periodic function). Let 

                and  ̅                If        then it is obvious that   ̅          

       Therefore if          and        then there exist nontangential boundary-values 
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 (   )     on   and  (   )       
     

     Under the conditions       and             

becomes a Banach space with the norm  

‖ ‖        (   )
   

       {       ∫ |
 (   )

 
|

      

 

      }   

Theorem               If       satisfy     with         belongs to Hardy space 

      on   and        then there exists a constant       independent of   such that 

 

‖     ∑        

 

   

‖

     

     .(   ) 
 

     
/

    

                 

where                        are the Taylor coefficients of   at the origin.  

 We begin with the following lemma. 

 Lemma                      For       we suppose that 

                         
                                 
be two series in a Banach space    ‖ ‖   Let 

  
〈 〉

   ∑ .  (
 

     
*
 

/

 

    

    

and 

  
〈 〉   ∑ .  (

 

     
*
 

/

 

    

     

for              Then 

 

‖  
〈 〉 ‖                     

for some       if and only if there exists a       such that 

‖  
〈 〉   ‖  

 

  
    

where c and   are constants depending only on one another.  

Lemma                     If       satisfy     with       and       
    

  then there 

are constants         such that 

 

 

                                                   ‖ ̃‖
    

   ‖ ‖                                                                

and 

 

 

                                                     ‖       ‖       ‖ ‖                                               
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hold for              
Remark               Under the conditions of Lemma              It can be easily seen 

from      and      that there exists constant       such that 

 

‖         ‖                     ̃       

      From generalized H ̈lder inequality       (Theorem    ) we have 

   
    

       
For a given       let  

                                
   

 
 ∑                  

 

   

   ∑    
   

 

     

            

and 

 ̃     ∑                  

 

   

 

be the Fourier and the conjugate Fourier series of    respectively. Putting          
    

    in      we define 

                ∑  (             )

 

   

    

 
   

 
 ∑                  

 

   

                

  
〈 〉

       ∑ .   (
 

     
*
 

/

 

   

 (             ) 

and 

  
〈 〉

   
  

  (
     
      )

      
〈 〉

  
 

(
      
     )

  

  

   
〈 〉

        

                                                                                                                 
 

Under the conditions of Lemma          using      and Abel‟s transformation we get 

 

                 ‖  
〈 〉     ‖

   
   ‖ ‖                                

    
            

and therefore from      and      
 

 

‖  
〈 〉     ‖

   
   ‖ ‖                               
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From the property              

  
〈 〉

          

 
 

∑                 
      

∑               

  

      

                      

it is known              that 

                                                         
〈 〉                                                                       

for                      
 

Lemma               Let            satisfy     with       and        Then 

there exists a constant       independent of   such that 

 

‖   
   

‖
    

      ‖  ‖    

 

holds.  

Proof: Without loss of generality one can assume that ‖  ‖        Since 

    ∑  (              )

 

   

  

we get 

 ̃ 

  
  ∑[(              )   ⁄ ]

 

   

  

and 

   
   

  
    ∑    [(              )   ⁄ ]

 

   

   

 In this case we have by      and      that 

 

‖  
〈 〉

.
 ̃ 

  
/‖

    

 
 

  
‖ ̃ ‖

   
  

 

  
 ‖  ‖     

 

  
 

and hence applying Lemma          (with      ) to the series 

∑[(              )   ⁄ ]

 

   

                        

∑    [(              )   ⁄ ]

 

   

                        

we find 
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‖∑ .  (
 

     
*
 

/  [(              )   ⁄ ]

 

   

‖

    

      

namely 

 

 

‖  
〈 〉

 (
   

   

  
+‖

   

  ‖  ∑ .  (
 

     
*
 

/  [(              )   ⁄ ]

 

   

‖

    

  

 ‖∑ .  (
 

     
*
 

/  [(              )   ⁄ ]

 

   

‖

    

      

Since   
〈 〉

           
〈 〉

    for every real   we obtain from      and the last inequality 

that 

 

‖   
   

‖
    

 ‖  
〈 〉

 (   
   

)‖
    

    ‖
 

  
  

〈 〉
 (   

   
)‖

    
  

 

 

 

    ‖  
〈 〉

 (
  

   

  
+‖

    

      
     

 ‖  ‖      

 

General case follows immediately from this. 

Lemma               If      satisfy     with                 
  

and                then  

                                        

with some constant         
Proof: Putting 

      ∏(      
)

 

   

     

we have 

(      
)      ∏(      

)

 

   

     

and 

∏(      
)

 

   

      
 

  
 ∫ (              )

   ⁄

    ⁄
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∫ ∫ ∫          

  ⁄

   ⁄

  

 

   ⁄

 

        

Therefore from      

 

‖∏(      
)

 

   

     ‖

    

  

 
  

   
   2∫ |∫ ∫ ∫          

  ⁄

   ⁄

  

 

   ⁄

 

      |
 

 

             

     
     

      ∫         
        

 

 

   3    

 
  

   
∫  ∫ ‖

 

 
∫          

  ⁄

   ⁄

  ‖
   

  

 

   ⁄

 

       

 
  

   
∫ ∫  ‖  ‖    

  

 

   ⁄

 

          
 ‖  ‖       

Since 

 

 

 

       ∏        
 

 

   

       

we obtain that 

  
              

      
            

   
 ‖  ‖             

      
            

‖∏        
 

 

   

     ‖

   

  

         
      

              

‖∏        
 

   

   

     ‖

   

         
              

Lemma          is proved. 

 Corollary               If                     satisfy     with       and    

      
     

then 

  
                ‖     ‖

   
         

with some constant         
Lemma               Let             satisfy     with                      and 

       Then 
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   (   
 

     
)
    

    
  

        
‖  

   
‖

   
  

hold where the constant       dependent only on   and     
Proof: Firstly we prove that if                       
Lemma               Let       then  

 

                                                                                                                            

 It is easily seen that if                then  

                                                                                                                   

Now, we assume that                In this case putting          
       we have 

  
   

        ∑      (
    

 
* 

 

  
 

 

   

 ∫    
  ⁄

   ⁄

∫                           

  ⁄

   ⁄

  

 ∑      (
    

 
* 

 

  

 

   

∫    
  ⁄

   ⁄

 ∫ [∑       (
 
 
)

 

   
 ∫    

  ⁄

   ⁄

   ∫      
  ⁄

   ⁄

 

   

  ⁄

   ⁄

                                                 ]    

  ∑ ∑       (
    

 
* (

 
 
)

 

    

 

    

     

 0
 

    
 ∫    

  ⁄

   ⁄

∫                              

  ⁄

   ⁄

1    

 

 

 ∑     (
 
 
)

  

  

 

   

  ∫    

  ⁄

   ⁄

∫                      
      

     
 
       

  ⁄

   ⁄

             

Then 

‖  
 
     ‖

    
 ‖  

   
      ‖

    
    ‖  

 
     ‖

    
 

 and  

                                                                                                                            

 We note that if                         taking                        for the 

remaining cases                 or                 or                 it can 

easily be obtained from      and      that the required inequality      holds. Using       
Corollary          and Lemma          we get 



  

58 
 

    (   
 

     
)
    

        (   
 

     
)
    

    (   
 

     
)
    

‖  
      

‖
    

   

  
 

           
                    ‖  

   
‖

    
   

 

        
 ‖  

   
‖

    
 

the required result. 

 Definition               For              
    

         and               the Peetre 

Kfunctional is defined as 

                       (       
    

       
 )       

       
 

{‖    ‖       ‖    ‖    }            

Theorem               If       satisfy     with       and       
    

   then the 

Kfunctional  (         
    

      
  ) in      and the modulus                            are 

equivalent. 

 Proof: If         
     then we have by Corollary          and      that 

                ‖    ‖          ‖     ‖
   

     (         
    

      
  )   

 We estimate the reverse of the last inequality. The operator Lδ defined by 

               ∫ ∫ ∫          

  ⁄

   ⁄

  

 

  ⁄

 

                 

is bounded in    
    

 because 

‖   ‖     ∫ ∫  ‖   ‖    

  

 

  ⁄

 

        ‖ ‖       

We prove 

  

   
 ‖   ‖   

  

  
         

with a real constant    Since 

               ∫ ∫ ∫          

  ⁄

   ⁄

  

 

  ⁄

 

        

      ∫ ∫ 6 ∫      

    ⁄

 

   ∫      

    ⁄

 

  7

  

 

  ⁄

 

     

using Lebesgue Differentiation Theorem 
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                ∫ ∫ 6

 

  
∫      

    ⁄

 

   
 

  
∫      

    ⁄

 

  7

  

 

  ⁄

 

      

      ∫ ∫          ⁄          ⁄   

  

 

  ⁄

 

       

      ∫ 6∫      

   

 

   ∫      

   

 

  7

  ⁄

 

               

 Using Lebesgue Differentiation Theorem once more 

  

   
               ∫ 6

 

  
∫      

   

 

   
 

  
∫      

   

 

  7

  ⁄

 

     

      ∫                                 

  ⁄

 

     

 
 

  
 6∫          

  ⁄

 

   ∫         

  ⁄

 

        7  

 
 

  
6
 

 
∫          

  ⁄

 

   
 

 
∫         

 

   ⁄

       7  

 
 

  
6
 

 
∫          

  ⁄

   ⁄

        7    
  

  
6     

 

 
∫          

  ⁄

   ⁄

  7

  
  

  
                         

The last equality implies by induction on   that 
   

    
  
     

 

   
        

                      

Indeed, for       

 
  

   
  
    

  

   (
  

   
  
   )   

  

   .
  

   
             /   

 
  

   
.

  

   
   /   

  

   
(
  

  
   –     *   

  
  

  
 .

  

   
        /   

  

  
 .

  

   
          /       
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Since 
  

   
            (

  

   
   ) we get 

  

   
           

  

   
     

  

   
           

  

   
       .

  

   
   /

         .
  

   
   /         

and therefore 

 
  

   
  
      

  

  
 .

  

   
          /   

  

  
       0

  

   
   1  

  
  

  
       [

  

  
        ]   

 

  
        

         

Now let be 
       

         
  
     

    
 

       
        

             Then 

   

    
  
     

  

   
0

       

         
  
        

       1   
  

   
0

       

         
  
     

 1   

 
  

   
 *

 

       
        

      +   
  

   
*

 

       
       

        
 +   

 
 

       
        

     0
  

   
  
 1   

 

   
        

         

Letting   
               

     we prove that ‖
   

    
  

  ‖
    

   ‖
   

    
  
   ‖

   
 and 

  
          

      For       we have   
       (     

  )
 
     

   and ‖
  

   
  

  ‖
    

 

 ‖
  

   
  
  ‖

    
   Since 

  

   
  
     

 

  
          we get   

          
     For      

         using  

  
             

     ∑         (
 
 )   

      

   

   

     

we obtain 

 

 

‖
   

    
  

  ‖
    

  ∑ (
 
 ) 

    

   

‖
   

    
  
      

   ‖
   

   

We estimate ‖
   

    
  
      

   ‖
   

 as the following 

 

‖
   

    
  
      

   ‖
   

 ‖
   

    
  
  (  

      
      )‖
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 ‖
   

    
  
   ‖

    

 ‖
 

   
        

   ‖
    

  

 ‖
 

   
        

  *  
      

 +‖
    

 
 

   
‖       

  *  
      

 +‖
   

   

   
 

   
‖∑     (

 
 
)   

 *  
      

 +

 

    

‖

   

     

Since                   we have   
 *  

      
 +     

      
(  

  )and hence 

 

‖
   

    
  
      

   ‖
   

 
 

   
‖∑     (

 
 
)   

 *  
      

 +

 

   

‖

   

     

  
 

   
 ‖∑       (

 
 
)   

      
(  

  )

 

    

‖

    

   

  
 

   
‖  

      
[∑       (

 
 
) (  

  )

 

    

]‖

    

 
  

   
‖∑       (

 
 
) (  

  )

 

    

‖

   

  

 
  

   
‖       

  ‖     ‖
  

   
       

  ‖
   

     ‖
   

    
  
  ‖

   

   

From the last inequality 

 

‖
   

    
  

  ‖
    

   ‖
   

    
  
  ‖

   

       
          

    

Therefore we find 

‖
   

    
  

  ‖
    

   ‖
   

    
  
  ‖

   

 
  

   
‖       

  ‖       
  

   
             

Since 

     
          ∑  

 

   

   

   

we get 

‖      
   ‖       ‖      

   ‖      

 

       ∫ ∫    ‖        ‖         
  

 

  ⁄

 

      
     

‖        ‖       

Taking into account 

‖     
  ‖      ‖      

    ‖     
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by a recursive procedure we obtain  

‖     
  ‖           

      
‖(      

)      
      ‖

   
    

        
      

    
      

‖(      
)(      

)      
       ‖

    
      

         
      

             

‖∏ (      
)    

 

    

‖

    

                  

Theorem          is proved. 

We set                              Since the set of trigonometric polynomials is 

dense      in    
    

  for given       
    

 we have               as        From the first 

inequality in Remark           we have       ∑         
     in ‖ ‖    norm. For 

              we can find  

               (   
  

  
  

  

  
)        (  

  

  
 

  

  
)    

    (    
  

  
   )    

  

 
    (   

  

  
   ̃)    

  

 
  

and  

  (      )       (   
  

  
   )   

Therefore 

 ∑        

 

    

   

             
  

 
 ∑   (   

  

  
  )

 

   

     
  

 
 ∑   (   

  

  
  ̃)

 

   

  

              
  

 
∑      (      )

 

   

     
  

 
∑      (   ̃   )

 

   

 

and hence 

                
  

 
∑

 

  
  (      )

 

      

     
  

 
∑

 

  
  (   ̃   )

 

      

  

Since 

∑      (      )

 

      

  

 

 ∑    

  

      

[(  (   
   )         )  (    (   

   )         )]   
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 ∑                

 

      

(  (   
   )         )

            (  (      )         ) 
and 

∑    

  

      

  (   ̃   )   ∑                

 

      

(  (   ̃
   )   ̃      )   

           (  (   ̃   )   ̃      ) 
we obtain 

‖            ‖     ∑                

 

      

 ‖  (   
   )         ‖

   
    

          ‖  (      )         ‖
   

   

 ∑                

 

      

‖  (   ̃
   )   ̃      ‖

    

            ‖  (   ̃   )   ̃      ‖
   

   

   [ ∑                

 

      

  ( 
   )

    
              (    )

    
]   

   [ ∑                

 

      

  ( ̃
   )

    
              ( ̃   )

    
]   

Consequently from equivalence in Remark              we have 

‖            ‖      

   [ ∑                          

 

      

] ,  ( 
   )

    
    ( ̃   )

    
-   

      (    )
    

 [ ∑                          

 

      

]   
  

        
   (    )

    
  

Theorem         is proved.  

We put                      For          
    we have by Corollary              and 

Theorem          that 

                                        *‖    ‖                ‖     ‖
   

+

   
 

    (                
    

        
  )       (  

 

     
*
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as required for        Therefore by the last inequality 

                                                                            

and by      we get 

                                                         

and the assertion follows.  

 Let       be the best approximating polynomial of           
    

 and let        Then 

by Remark               

           ⁄                          ⁄                       ⁄          

                              ⁄         

Since  

   
   

        
    

      ∑ , 
    
    

       
   

   -

   

   

   

we get by Lemma          that 

               ⁄        
 

        
 {‖  

    
‖

    
 ∑ ‖ 

    
    

    
   

‖
   

   

   

}   

Lemma          gives 

 

‖ 
    
    

    
   

‖
   

      ‖     
      

 ‖
   

                   

and 

 

‖  
    

‖
    

  ‖  
    

   
    

‖
    

              

Hence 

               ⁄       
 

        
{          ∑                   

   

   

}   

Using 

                     ∑              

  

        

                

we obtain 

               ⁄        

 
 

        
 8                          ∑ ∑              

  

        

 

   

9    
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8           ∑              

  

   

9  

  
 

        
 ∑                     

     

   

  

If we choose                  then  

               ⁄       
 

        
 ∑                    

  

   

  

                         
 

        
 ∑                    

  

   

   

Last two inequalities complete the proof. 

 For the polynomial    of the best approximation to   we have by Lemma          that 

 

‖ 
     

   
  

   

   
‖

    
              ‖ 

     
   

   
 ‖

    
                            

Hence  

∑‖ 
     
   

   
 ‖

     
  

 

   

  ∑‖ 
     

   
  

   

   
‖

    

 

   

  ∑‖ 
     
   

   
 ‖

    

 

   

    

   ∑              

 

    

      

Therefore 

 ‖ 
     
   

   
 ‖

     
               

This means that { 
   
 } is a Cauchy sequence in    

    
   Since  

   
     in       2π and      

 
 is 

a Banach space we obtain         
 

   On the other hand since 

 

 

‖       (    )‖
    

   

 ‖     (    )    (    )‖
    

  ∑ ‖     (    )     (    )‖
   

 

      

 

we have for              
 

 

‖     (    )    (    )‖
    

                                          

On the other hand we find  
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∑ ‖     (    )     (    )‖
   

 

      

    ∑                  

 

       

   

    ∑ ∑              

  

         

 

       

    

 

   ∑              

 

         

    ∑              

 

      

   

Theorem         is proved. 

 We set                 
 

     
 ∑          

                    Since 

  (      )      
   

      
we have 

 

 

‖          
   

     ‖
   

  ‖          (      )‖
   

   

 ‖  
   

(       )    
   

     ‖
   

  ‖  
   

        
   

(       )‖
   

   

             
We denote by   

       the best approximating polynomial of degree at most   to f in 

   
    

    In this case, from the boundedness of the operator    in    
    

 we obtain the 

boundedness of operator    in    
    

and there holds 

    ‖          
 (      )‖

    
 ‖  

 (      )    (      )‖
   

   

     (    )
     

 ‖  (    
 (    )      )‖

    
     (    )

     
  

From Lemma          we get  

       ‖  (       )         ‖
    

 

and  

          ‖                   ‖              (     )
    

   

Now we have 

‖  (       )         ‖
    

    

 ‖  (       )         ‖
    

 ‖            ‖     ‖            ‖       

     (     )
    

                            

Since   (     )
    

             we get 
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‖          
   

     ‖
   

      (    )
    

        (     )
    

   

                          (     )
    

     (    )
    

                 

Since by Theorem         
 

           
 

        
   (    )

    
 

we obtain 

 

 

‖          
   

     ‖
   

     (    )
    

  

Theorem          is proved.  

Let               First of all if       defined on    satisfy Dini–Lipschitz property     

for       on    then  (   )        defined on    satisfy Dini–Lipschitz property     for 

      on    Since              for        let ∑    
    

       be the Fourier series of 

the function  (   )  and            ∑    
    

       be its nth partial sum. From 

 (   )         we have            
 

   {
                      

                     
   

Therefore 

 

                                ‖     ∑        

 

    

‖

     

 ‖          ‖                              

 If   
   is the best approximating trigonometric polynomial for  (   ) in    

    
    then 

from           and Theorem         we get 

 

‖     ∑         
    ‖

      ‖ (   )    
    ‖

    
 ‖        

    ‖      

      ( (   ))
    

      ( (   ) 
 

     
*
    

    

 Theorem          is proved. 

Section (2.3): Weighted Lebesgue and Smirnov Spaces with Nonstandard Growth 

For functions of weighted Lebesgue spaces   
     

 with nonstandard growth, it was proved 

in       that  

                                (  
 

   
*
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and its weak inverse 

       (  
 

 
*
      

  
 

   
∑                  

 

     

                   

 holds provided the weight  and the exponent      are such that the Hardy–Littlewood 

maximal operator   is bounded on the space   
    

  where 

               
    

‖    ‖                       
    

  

 

   is the class of trigonometric polynomials of degree not greater than    

                 
      

‖∏(     
) 

 

   

‖

      

   

     
    

                
is the modulus of smoothness of degree             is the identity operator and 

   
     

  

  
∫       

   

   

                           

In equalities            and their several consequences were given in        In the recent 

      and       we considered the weighted fractional moduli of smoothness, 

i.e            with          to obtain inequalities of types      and      in weighted 

Orlicz spaces. Fractional smoothness is not a new concept for 

nonweightedLebesguespaces;Butzer      Taberski      Tikhonov–Simonov      and 

Akgün–Israfilov       applied the fractional moduli of smoothness successfully to solve 

approximation problems in Lebesgue and Smirnov spaces. As a consequence of these facts, 

defining the weighted fractional moduli of smoothness          we consider basic 

approximation problems such as direct, inverse and simultaneous theorems of 

trigonometric approximation of functions of weighted Lebesgue spaces with variable 

exponent for weights satisfying a variable Muckenhoupt condition        Several 

applications of these results help us to transfer approximation results for weighted Smirnov 

spaces of functions defined on a finite domain with sufficiently smooth boundary.  

Generalized Lebesgue spaces       with variable exponent (with nonstandard growth) 

appeared first in       as an example of modular spaces              and the 

corresponding Sobolev type spaces have extensive applications in fluid mechanics, 

differential operators              elasticity theory, nonlinear Dirichlet boundary value 

problems ([134]), nonstandard growth and variational calculus          If        

                     then       is a particular case of Musielak– Orliczspaces       For 

a constant                  the corresponding generalized Lebesgue spaces        

with nonstandard growth become classical Lebesgue spaces     having deep 

approximation results. The main properties of        are investigated in        The 
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boundedness of classical integral transforms on        and weighted       is obtained . Let 

     be the class of Lebesgue measurable functions                   such that 

                  
   

             

We define a class    
    

 of    -periodic measurable functions           satisfy-ing 

∫             

   

    

      

For any real number   and           

The class    
    

 is a Banach space        with any of the following equivalent norms    

‖ ‖          
   

{∫ |
    

 
|

    

  

 

 

  }  

And 

                       ‖ ‖      
      

     
     

{∫            

 

 

 ∫       
      

 

 

  }              

Where                   ⁄  is the conjugate exponent of        
Let               be a    periodic weight       a Lebesgue measurable and      positive 

function. Denote by   
    

 the class of Lebesgue measurable functions          

satisfying          
    

 . Weighted Lebesgue spaces with nonstandard growth   
    

 are 

Banach spaces with the norm ‖ ‖        ‖  ‖         

For given        the class of weights   satisfying the condition         

‖     ‖
     

    
   

 

     
‖     ‖

     
‖

 

     
‖

  (         ⁄ )
     

is denoted by           Here      (
 

   
∫

 

    
  

 

 
)
  

 and   is the class of all balls in     

The variable exponent      is said to satisfy the local log- H lder continuity condition if 

                                     
 

              ⁄  
                                 

We denote by   
       the class of         satisfying       

Let      
    

 and 

        
 

 
∫       

    ⁄

    ⁄

          

be Steklov‟s mean operator. For   
       and       

    
  it was proved in       that 

The Hardy–Littlewood maximal function   is bounded in   
    

 if and only if  
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Therefore if       
       and               then    is bounded in   

    
   Using these 

facts and setting                we define via binomial expansion , for       
    

  
  

                 

 ∑     (
 
 
)

 

  
∫  ∫                    

  ⁄

   ⁄

  ⁄

   ⁄

 

   

  

Since the binomial coefficients (
 
 
)_satisfy              

(
 
 
)  

    

    
       

we get 

∑ (
 
 
)

 

   

    

and therefore 

                                                ‖  
 ‖        ‖ ‖                                                       

Provided        
                   and       

    
  

For       we can now define        the fractional moduli of smoothness of the 

index   for      
                   and       

    
 as  

                          ‖∏ (     
)  

     
 

   
   ‖

      
        • 

where                 ‖ ‖       ∏ (     
)  

   
       

    for            and .    

denotes the integer part of the nonnegative real number    
We have by      that 

                  ‖ ‖       

where       
                         

    
 and the constant       depends only on   

and    
Remark               The modulus of smoothness                      has the 

following properties for       
                   and       

    
  

                  is a nonnegative and nondecreasing function of      
                                                       

        
    

                 

 

 

If       
       and              then              This implies that the set of 

trigonometric polynomials is dense in   
    

         Therefore approximation problems 

make sense in   
    

  On the other hand, if       
       and             then   
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For given           let 

                         
  

 
 ∑                 

 

   

  ∑          

 

    

                 

and  

 ̃    ∑                 

 

   

 

be respectively the Fourier and the conjugate Fourier series of     We set 

  
      {                                    }  

Let       be given. We define the fractional derivative of a function     
     as 

          ∑               

 

    

 

provided the right-hand side, where                ⁄              exists as principalvalue. 

We say that a function      
    

 has the fractional derivative of degree      if there 

exists a function       
    

 such that its Fourier coefficients 

satisfy                    In that case, we write          

For          and        let        
  be the class of functions      

    
 such that 

        
    

   Then        
  becomes a Banach space with the norm 

‖ ‖       
     ‖ ‖       ‖    ‖

      
  

The main results are as follows. 

Theorem               If       
        

        
(
    
  

*
                 (       )  

      and            
   then for every              there exists a constant 

      independent of   such that 

             
 

      
  (    )

      
 

holds. 

Corollary               Under the conditions of Theorem          

             
 

      
‖    ‖

      
 

with a constant       independent of    

Theorem               If       
        

        
(
    
  

*
                 (       ) 

and      
    

   then there exists a constant       dependent only on   and   such 

that 
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                 (  
 

   
*
      

 

holds for       and               
The following inverse theorem of trigonometric approximation holds. 

Theorem               Under the conditions of Theorem          the inequality 

  (  
 

   
*
      

  
 

      
∑                   

 

   

 

holds for       and                where the constant       depends only 

on   and    
Corollary               Under the conditions of Theorem          if the condition 

                                     

is satisfied for some       then 

              8

          
            ⁄         

          

  

holds for        
Definition               For           we set 

                ,     
    

                        -   

Corollary               Under the conditions of Theorem          if           and 

                                     

 
then                    
Corollary               Under the conditions of Theorem          if           then 

the following conditions are equivalent  
                       
                                         

Theorem                Under the conditions of Theorem          if 

∑                

 

   

     

for some          then            
  And 

  (    )
      

    (                  ∑                

 

     

+ 

hold, where the constant       depends only on   and    
     The latter theorem gives rise to 

Corollary                Under the conditions of Theorem          if         and 
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∑                

 

   

     

for some        then there exists a constant       depending only on     and   

such that 

  (     
 

   
*
      

 
 

      
∑                       ∑                

 

     

 

   

 

holds. 

The following simultaneous approximation theorem is valid. 

Theorem                If       
          

        
(
    
  

*
                 (       )  

         and            
   then there exist                     and a constant       

depending only on   and   such that 

‖         ‖
      

     (    )
      

 

holds. 

 

 

Theorem                If       
          

 

      
(
    
  

*
                         

  belongs to the Hardy space       with a variable exponent on the unit circumference   

and        then there exists a constant       independent of   such that 

 

‖     ∑        

 

   

‖

      

    (  
 

   
*
      

               

 

where                    are the Taylor coefficients of   at the origin. 

 

We begin with  

 

Lemma                        For      we suppose that  

 

                 
 

 and  
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 are two series in the Banach space .   ‖ ‖   Let 

 

  
〈 〉

 ∑ .  (
 

   
*
 

/

 

   

   

 

and  

  
〈 〉  ∑ .  (

 

   
*
 

/  

 

   

   

 

 

for           Then 

 

‖  
〈 〉 ‖             

 

 for some       if and only if there exists       such that 

 

‖  
〈 〉

  ‖  
 

  
  

 

where   and   are constants depending only on each other. 

Putting                   in       we define 

                  ∑(            )

 

   

 
  

 
 ∑                 

 

   

     

          

  
〈 〉       ∑ .  (

 

   
*
 

/(            )

 

   

 

and 

  
〈 〉

  
 

  (
   
    )

    
〈 〉

 
 

(
    
   )

 

  

  
〈 〉

                               

 Lemma                Under the conditions of Theorem          there are constants 

        such that 

                                                   ‖ ̃‖
      

   ‖ ‖                                                            

 And 

              ‖       ‖          ‖ ‖                                                                  
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 hold. 

 Proof: Let                                           Then using Theorem      of 

      we obtain 

  ‖       ‖        ‖     ‖          ‖ ‖        

For      we use extrapolation Theorem     of       For any       we have         

‖ ̃‖
   

   ‖ ‖    

and     Theorem           is satisfied for         and           Therefore      

holds, 

‖ ̃‖
      

   ‖ ‖         

Remark              Under the conditions of Theorem          it can be easily seen 

from     and      that there exists a constant       such that 

 ‖         ‖                         ( ̃)
      

  

 
Under the conditions of Theorem          using      and  the Abel transform , we get 

              ‖  
〈 〉     ‖

      
   ‖ ‖                                  

    
      

 and therefore      and      imply  

‖  
〈 〉     ‖

      
   ‖ ‖                                  

    
   

 From the property 

  
〈 〉       

 

∑              
     

∑                   

  

     

              

     
it follows that 

                                                                  
〈 〉                                                              

 where        for            
 Lemma                Under the conditions of Theorem          if        and 

       then there exists a constant       independent of   such that 

 ‖  
〈 〉

‖
      

     ‖  ‖       

 holds. 

 Proof: Without loss of generality one can assume that ‖  ‖           Since 

     ∑(            )

 

   

 
 ̃ 

  
 ∑[(            )   ⁄ ]

 

   

  

 and  

  
〈 〉

     
 ∑   [(            )   ⁄ ]

 

   

   

we have by      and      that 
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‖  
〈 〉

.
 ̃ 

  
/‖

      

 
 

  
‖ ̃ ‖

      
  

 

  
‖  ‖       

 

  
 

 and by Lemma          

‖  
〈 〉

(
  

〈 〉

     
+‖

      

    

Hence by      

‖  
〈 〉

‖
      

   ‖  
〈 〉

(
  

〈 〉

     
+‖

      

     ‖  ‖         

A general case follows immediately from this. 

 Lemma                If       
                      and          

    then there 

exists aconstant       such that for           and       

                       
             

holds. 

 Proof: Putting 

       ∏(     
)    

 

   

  

 we have 

(     
)      ∏(     

)    

 

   

 

 And 

∏(     
)    

 

   

 
 

  
∫ (           )  

   ⁄

    ⁄

  
 

   
∫ ∫ ∫           

  ⁄

   ⁄

  
  

 

  
   ⁄

 

  

 Therefore from      
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‖∏(     
)    

 

   

‖

      

  
 

   
    
      

     

2∫ |∫ ∫ ∫           
  ⁄

   ⁄

  
  

 

  
   ⁄

 

|              
 

 

 ∫         
      

 

 

  3

 
 

   
∫ ∫  ‖

 

 
∫           

  ⁄

   ⁄

‖
      

  
  

 

  
   ⁄

 

 
 

   
∫ ∫  ‖   ‖        

  

 

  
   ⁄

 

    
 ‖   ‖         

 

 

Since 

       ∏(     
)      

 

   

  

we obtain 

  

                  
      
         

  
 ‖   ‖       

       
      
         

‖∏(     
)      

 

   

‖

      

 

 

 

       
      

           

‖∏(     
)      

   

   

‖

      

 

 

          
            

 

 and Lemma          is proved. 

 Corollary                If     
                                and   

       
     then there exists a constant       depending only on   and   such that  

    
               ‖     ‖

      
 

holds for       
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Lemma                If     
                                    and 

     then there exists a constant       depending only on   and   such that  

  (   
 

   
*
      

 
 

      
‖  

   
‖

      
 

holds.  

Proof: First we prove that if                then 

                                                                                                                  

It is easily seen that if              then  

                                                                                                          

Now, we assume that            In that case, putting  

       
       

we have  

  
   

     

 ∑     

 

   

(
   

 
*

 

  
∫  

  ⁄

   ⁄

∫  (         )
  ⁄

   ⁄

        

 ∑     

 

   

(
   

 
*

 

  
∫  

  ⁄

   ⁄

∫  
  ⁄

   ⁄

 

 [∑     

 

   

(
 
 
)

 

  
∫  

  ⁄

   ⁄

∫  (                
  ⁄

   ⁄

     )                   ] 

 ∑∑       

 

   

(
   

 
* (

 
 
)

 

   

 

 0
 

    
∫  

  ⁄

   ⁄

∫  (           )          
  ⁄

   ⁄

1 

 ∑     

 

   

(
 
 
)

 

  
∫  

  ⁄

   ⁄

∫                    

  ⁄

   ⁄

 

   
 
            

 

 

Then by      

 

 

‖  
 
    ‖
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and 

                                                                                                                    

We note that if                         taking                    for the 

remaining cases             or              or               it can be easily 

obtained from      and      that the required inequality      holds. 

 

Using       Corollary          and Lemma           we get  

  (   
 

   
*
      

      (   
 

   
*
      

 

  (
 

   
*
    

‖  
      

‖
      

 

 
 

         
                ‖  

   
‖

      
 

 
 

      
‖  

   
‖

      
 

 

which is the required result.  

Definition                For                
    

       and           the 

PeetreK-functional is defined as  

                    (      
    

        
 )     

         
 

,‖   ‖        ‖    ‖
      

-        

Theorem                If     
                             and     

    
   then 

 (         
    

        
  ) in     and the modulus               are equivalent.  

Proof: If          
    then we have by Corollary          and      that 

               ‖   ‖          ‖     ‖
      

 

  (         
    

        
  )  

Putting  

               ∫ ∫ ∫         
  ⁄

   ⁄

  

 

  ⁄

 

                     

we have 

 
  

   
     

  

  
         

 and hence  

   

    
   

   
  

   
        

                 

On the other hand, we find  
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‖   ‖           ∫ ∫  ‖   ‖      

  

 

 

 

         ‖ ‖        

 

Now, let   
           

     Then   
           

   and 

 

‖
   

    
   

  ‖
      

  ‖
   

    
   

  ‖
      

 
  

   
 ‖       

  ‖       

 

 
  

   
                

 Since  

    
       

  ∑  
 

   

   

   

we get 

 

 

‖     
   ‖        ‖     

   ‖       

      ∫ ∫  ‖       ‖      

  

 

 

 

     

     
     

‖       ‖       

 

Taking into account 

‖    
  ‖       ‖     

    ‖         
 

 by a recursive procedure we obtain 

 

‖    
  ‖                 ‖(     

)     
      ‖

      
 

 

     
      

    
      

‖(     
)(     

)     
      ‖

      
 

  

     
      

         

‖∏(     
)    

 

   

‖

      

                

 and the proof is completed. 

First of all we note that by      and Theorem     of        the condition  

         
(
    
  

*
                 (       )    
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implies that               We set                           Since the set of 

trigonometric polynomials is dense in   
    

   for given     
    

 we have  

                        

By the first inequality in Remark          we have 

     ∑        

 

   

 

in ‖ ‖       norm. For           we know that  

               (  
  

 
 

  

 
)        (  

  

 
 

  

 
)

   (  
  

  
  )    

  

 
   (  

  

  
  ̃)    

  

 
 

and 

  (      )       (  
  

  
  )   

Therefore 

∑        

 

   

            
  

 
∑   (  

  

  
  )

 

   

    
  

 
∑   (  

  

  
  ̃)

 

   

            
  

 
∑      (      )

 

   

    
  

 
∑      (   ̃   )

 

   

  

and hence 

                 
  

 
∑

 

  
  (      )

 

     

    
  

 
∑

 

  
  (   ̃   )

 

     

  

 
Since  

∑      (      )

 

     

 ∑    *(  (   
   )         )  (    (   

   )         )+

 

     

 ∑              (  (   
   )         )

 

     

        (  (      )         ) 

and 
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∑      (   ̃   )

 

     

  ∑              (  (   ̃
   )   ̃      )

 

     

        (  (   ̃   )   ̃      ) 

we obtain 

 ‖            ‖       ∑              ‖  (   
   )         ‖

      
  

     

       ‖  (      )         ‖
      

 ∑              ‖  (   ̃
   )   

     

 ̃      ‖
      

        ‖  (   ̃   )   ̃      ‖
      

  *∑       
     

          ( 
   )

      
          (    )

      
+Consequently, from the equivalence 

in Remark          we have 

 ‖            ‖      

  [ ∑                      

 

     

]

 ,  ( 
   )

      
   ( ̃   )

      
-  

    (    )
      

[ ∑                      

 

     

]

 
 

       
  (    )

      
 

 and Theorem         is proved. 

  First we give the proof for         In case            
   we have by Corollary 

              and Theorem          that 

                                       

  *‖   ‖               ‖     ‖
      

+

   (             
    

        
  )      (  

 

   
*
      

 

 as required for any         Therefore by the last inequality and      we get  

                   (  
 

   
*
      

     (  
 

   
*

      
              

 and the assertion follows for general         

Let         be the best approximating polynomial of the function       
    

 and let 

        Then by Remark              
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   (  
 

   
*
      

   (      
 

   
*
      

   (    
 

   
*
      

                 (    
 

   
*
      

   

 

By Lemma          we have  

  (    
 

   
*
      

  (
 

   
*
 

‖   
   

‖
      

  

Since 

   
         

       ∑ , 
    
          

      -

   

   

 

we get  

  (    
 

   
*
      

 
 

      
{‖  

   
‖

      
 ∑ ‖ 

    
   

    
   

‖
      

   

   

}  

 

 Lemma          gives 

 

‖ 
    
   

    
   

‖
      

     ‖     
     

 ‖
      

 

                    

 and 

 

‖  
   

‖
      

 ‖  
   

   
   

‖
      

               

  

 

Hence 

  (    
 

   
*
      

 
 

      
{            ∑        

   

   

            }  

It is easy to see that 

                      ∑     

  

        

                          

where 

   {
                    

                               
 

 

Therefore  
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  (    
 

   
*
      

 
 

      
8                           ∑ ∑                

  

        

 

   

9 

 
 

      
8            ∑                

  

   

9 

 
 

      
∑                    

    

   

  

If we choose                then  

  (    
 

   
*
      

 
 

      
∑                   

 

   

  

                            

 
 

      
∑                   

 

   

  

the last two inequalities complete the proof. 

For the polynomial    of the best trigonometric approximation for     
    

we have 

 

‖         ‖
      

               

and from Lemma          it follows that 

 

‖ 
    

   
  

  

   
‖

      
                       

 

 Hence  

 

∑‖         ‖
       

 

 

   

 ∑‖ 
    

   
  

  

   
‖

      

 

   

 ∑‖         ‖
      

 

   

 

  ∑     

 

   

               

Therefore 

 

 

‖         ‖
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This means that {   }is a Cauchy sequence in   
    

   Since        in   
    

 and        
 is a 

Banach space, we obtain           
  On the other hand, since 

 

‖       (    )‖
      

 ‖     (    )    (    )‖
      

 

 

 ∑ ‖     (    )     (    )‖
      

 

     

  

  

 we have for             

 

‖     (    )    (    )‖
      

                     

 

                      
 Thus, we find  

∑ ‖     (    )     (    )‖
      

 

     

 

  ∑        

 

     

             

 

  ∑ ∑                

  

        

 

     

 

  ∑                

 

        

 

  ∑                

 

     

 

and Theorem          is proved. 

 In the case of     the result follows from Remark          and the property       
    

‖       ‖                     
 

For      we set 

              
 

   
∑        
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Since 

  (      )    
          

we have 

 

‖          
   

     ‖
      

 ‖          (      )‖
      

 

 

 ‖  
   

(       )    
   

     ‖
      

 

 ‖  
           

   
(       )‖

      
 

           

 In this case, from the boundedness of the operator    in   
    

 we obtain the boundedness of 

the operator    in   
    

  and there holds  

 

   ‖          
         ‖

      
 ‖  

 (      )    (      )‖
      

 

  

 

                 ‖       
 (      )       ‖

      
 

 

                  

 

 

From Lemma          we get  

 

      ‖  
 (       )    

      ‖
      

 

and  

 

         ‖          
 (       )‖

      
                        

 

Now we have 

 

 

‖  
 (       )    

      ‖
      

 ‖  
 (       )         ‖

      
 

 ‖            ‖       

 ‖       
      ‖       

                               

               

Since 
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we get 

 

‖          
   

     ‖
      

                                    

 

                

                       

                                 

 Since by Theorem          

            
 

      
                

we obtain 

 

‖          
   

     ‖
      

                 

 

 and the proof is completed.  

Let ∑           
     be the Fourier series of the bound-ary function   of    

           and         ∑           
     be its   th partial sum. Since            we 

have             

      {
                  

                           
  

Therefore 

                                    ‖     ∑         
   ‖

      
 ‖         ‖                     

 

If   
  is the best approximating trigonometric polynomial for   in   

    
  thenfrom           

and Theorem         we get 

 

‖     ∑         
   ‖

      
 ‖    

 ‖       ‖       
    ‖       

 

                          

 

    (  
 

   
*
      

 

 

 and the proof of Theorem          is completed. 

 Some of the above results can be extended to the complex case. 
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Let    and   be, respectively, the bounded and the unbounded components of a closed 

rectifiable curve   of the complex plane    Without loss of generality we may assume that 

        Let        and         be the conformal mappingsof   and    onto the 

complement    of    normalized by the conditions  

          
   

     ⁄       

and  

           
   

           

 respectively. We denote by and    the inverse mappings of  and     respectively.  

Denote by      the class of Lebesgue measurable functions                 with 

      
                                                 

Let         be a bounded measurable function and let            be a weight with  

 {          }     

For these   and   we denote by   
        the class of functions        for which  

∫              
 

 

        

 The space   
        is a Banach space with the norm 

‖ ‖            
   

2∫
              

 

 

 

      3  

If   and  are as above, the set of bounded rational functions defined on   is dense in 

  
                   If      

                   for        and      then the 

space   
        coincides with  

2  |∫          
 

 

|                
        3  

where                    ⁄  is the conjugate exponent of        
We define for         and a weight   

  
         ,             

       -  

  
         ,             

       - 

 

and 

 ̃ 
         ,    

               -  

 

where                is a Smirnov space of analytic functions defined on a simply 

connected domain       If         is constant, then   
        coincides with a usual 

weighted Smirnov space on     
Basic approximation problems in the spaces        were proposed by several 

mathematicians. Walsh and Russel       gave the results in                  for 

polynomial approximation orders in the case of an analytic boundary. Al‟per       proved 
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direct and inverse approximation theorems by algebraic poly nomials in the spaces  

                 for a Dini smooth boundary. Kokilashvili       improved Al‟per‟s 
direct and inverse results for algebraic polynomial approximation and, assuming that the 

Cauchy singular integral operator is bounded (corners permitted), he obtained the 

improved direct and inverse approximation theorems in the Smirnov spaces             
               Andersson       proved that Kokilashvili‟s results also hold in         
When the boundary is a Carlesoncurve ,the approximation of functions of           
        by the partial sum of Faber series was investigated by Israfilov in       and 

       These results are generalized to the Muckenhoupt weighted case in       and 

       The approximation properties of Faber series inso-called weighted and non 

weighted Smirnov–Orlicz spaces are investigated in       and        Most of the above 

results use the partial sum of Faber series as approximation tool.  

we prove the main theorems of approximation, respectively, by algebraic polynomials and 

rational functions in the weighted variable Smirnov spaces   
         and  ̃ 

          
A smooth Jordan curve   will be called Dini-smooth         if the function       the 

angle between the tangent line and the positive real axis expressed as a function of arc 

length    has the modulus of continuity        satisfying the Dini condition  

∫
      

 

 

 

          

If   is Dini-smooth, then          

                                                                                              
with some constants   and    Similar inequalities hold also for   

  and   
  in the case of 

      and        respectively.  

Let   
        {                                                       

           }   
 

For given         the class of weights  satisfying the condition 

 

‖     ‖
        

           
 

     
‖     ‖

     
‖

 

     ‖              ⁄     

is denoted by           Here      (
 

   
∫

 

    
    

 

 
)
  

 and 

       {                                                   }  

 For given       
         we define 

   ( 
 )    ( (  ))    ( 

 )    (  ( 
 ))            

 And 

   ( 
 )    ( (  ))    ( 

 )    (  ( 
 ))             
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Theorem                Let   be a Dini-smooth curve,     
   

       

      
(
    
  

*
                 (       )  

      and     
         Then there is a constant       such that for any natural number 

   

‖         ‖          2  (  
 

   
*
        

  ̃ (  
 

   
*
        

3  

where        is the nth partial sum of the Faber–Laurent series of     

 Corollary                Let   be a Dini-smooth curve,     
         

      
(
    
  

*
                 (       )  

       and      
          Then there is a constant       such that for any natural 

number   

 ‖         ‖             (  
 

   
*

        
  

where         is the nth partial sum of the Faber series of      

Corollary                Let   be a Dini-smooth curve,      
   

      

      
(
    
  

*
                 (       )  

      and     ̃ 
          Then there is a constant       such that for any natural 

number    

‖         ‖            ̃ (  
 

   
*

        
  

where         is as in Theorem           
Theorem                Under the conditions of Corollary           the inequality  

 

• 

  (  
 

 
*
        

 
 

  
{              ∑     

 

   

             } 

 holds with a constant        
 

Corollary                Under the conditions of Corollary           if  
                                      

then 

                {

                                   

 (  |   
 

 
|*      
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Definition              Let     
        

       
(
    
  

*
                   (       ) 

 and        If       
          then for           we set  

                  ,      
                                  -  

and  

   ̃               ,     ̃ 
          ̃                    -   

Corollary               Let      
         

      
(
    
  

*
                   (       ) 

 and        If       
                   and                      for           

then                       
By Corollary          and Corollary          we have the constructive characterization of 

the classes                    

Corollary                Let      
         

      
(
    
  

*
                   (       )  

          and       
          Then the following conditions are equivalent   

                         
                                    

 

 

The inverse theorem for unbounded domains is formulated as follows. 

 Theorem                Under the conditions of Corollary           there is a constant 

      such that for every natural number    

 ̃ (  
 

 
*
        

 
 

  
{ ̃             ∑      ̃            

 

   

}  

 holds. 

 In a similar way as for   
         we obtain the following corollaries. 

Corollary               Under the conditions of Corollary           if 
 ̃                                 

 then  

 ̃               {

                                   

 (  |   
 

 
|*      

                                   

 

Using Corollary          and Definition          we get  
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Corollary               Under the conditions of Corollary           if 
 ̃                                    

then       ̃                
By Corollary          and          we have  

Corollary                Let           and the conditions of Corollary          be 

fulfilled. Then the following conditions are equivalent. 

          ̃               
      ̃                                       
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Chapter 3 

Modular Inequalities and Variable    Spaces 

We show that  if        the condition on   is both necessary and sufficient for the 

modular inequality. In addition, we establish general interpolation theorems for modular 

spaces. Further, our conditions are necessary on    Our result extends the recent work of  

Pick and Ruzicka        Diening       and Nekvinda        We also show that under 

much weaker assumptions on       the maximal operator satisfies a weak-type modular 

inequality. 

Section (3.1): The Calderon Operator 

 

For        and       be two   finite measure spaces, and let       and       be the 

sets of measurable functions defined on   and respectively. An operator          
      is called quasilinear if                         and if there exists a constant 

      independent of  and g such that                                       If 

        is said to be sublinear. 

 A function                  is called a modular function if   is an increasing (non-

decreasing) function and            If, in addition,   satisfies the   -condition 
              

for any       then   is called a   -modular function and we write        
Let  be a modular function and set  

            2        ‖ ‖   ∫                
 

 

   3     

Then, we want to study mapping properties for which         —       is bounded, 

for certain operators     
Modular inequalities have been studied previously by several authors            in 

connection with weight characterizations. However, unlike the case treated here, the 

functions   and   are typically Young's or  -functions, and the optimality of   and   is 

not in general considered.  

Recall that if   is an operator of weak type       and                     that is, 

  {                }      ‖ ‖        where       and      then 

                          ∫            
 

 

         ∫            
 

 

                                    

 

is satisfied for             —      and            Moreover, such operators satisfy 

the rearrangement inequality 

                        
      .

 

   ⁄
∫   

         ⁄   
 

 

 
 

   ⁄
∫   

         ⁄   
 

 

/       
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where   
       {         

 
       }  is the rearrangement decreasing function of   and 

  
 
        {            }  is the distribution function of    Similarly it is understood 

for       
   The term in parenthesis on the right of     is called the Calderόn operator. 

 In order to prove     for general modular functions, observe that for   modular, an 

elementary argument shows that 

∫          
 

 

      ∫  (  
    )

 

 

   ∫   
 
         

 

 

  

such that a general       modular inequality will follows if  

∫  * ((    
 )    ( ̃   

 )   )+
 

 

     ∫  (  
    )

 

 

   

holds, where  

       
 

   ⁄
∫          ⁄   

 

 

 

and 

 ̃      
 

   ⁄
∫          ⁄   

 

 

  

Note that       is the Hardy averaging operator and  ̃    ̃ is the conjugate Hardy 

operator. we provide optimal conditions characterizing modular pairs   and    for 

which       (and in case          ) modular inequalities 

∫  (      )
 

 

    ∫        
 

 

   

and 

∫  ( ̃     )
 

 

    ∫        
 

 

   

are satisfied for             The case where      and   is bounded on    is also 

considered. These results yield sharper estimates and interpolation theorems for several 

classical operators.  

We characterize       modular inequalities for              (Theorem        ) and 

give a corresponding characterization in the case when       and  is decreasing for a 

reverse Hardy modular inequality (Theorem        ). In order to prove corresponding 

      modular inequalities for          and  ̃            some general modular 

results are required. These are proved and yield general modular interpolation theorems 

(Corollary        ). Finally contains the       and     modular inequalities for          

and  ̃            A characterization of     modular functions for which a       

modular inequality for the Hubert transform holds and a short proof of an interpolation 

theorem of Miyamoto         for modular functions are also given.  

The notation usedis standard: If     is bounded above and below by positive constants, we 

write     and say that  and g are equivalent functions. Constants denoted by    
sometimes with subscripts, are assumed to be positive and independent of the functions 
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involved, and may differ at different places. If      is decreasing, we write         

       ∫  
 

 
  where the measure under which the rearrangement occurs is deleted when 

there is no ambiguity.    is the characteristic function of the set   and its Lebesgue 

measure is denoted by       
Finally, inequalities, such as      are interpreted in the sense that if the right side is finite, 

so is the left side and the inequality holds. Unless indicated to the contrary, we assume that 

  and   are modular functions or are equivalent to modular functions. 

We begin by proving       modular inequalities for the Hardy averaging operator. 

Theorem                   There exist two constants       and       such that 

                              ∫  (
∫  

 

 

 
+

 

 

     ∫  (      ) 
 

 

                                               

is satisfied for every decreasing nonnegative function   if and only if there exist constants 

      and       such that, for every        

                                                   ∫
    

  

 

 

                                                     

      The inequality     is reversed for every decreasing nonnegative function   if and only 

if the inequality     is reversed. 

 

 (iii) There exist constants       and       such that 

   
   

   (
∫  

 

 

 
+     ∫           

 

 

   

is satisfied for every decreasing nonnegative function   if and only if there exist constants 

      and       such that, for every        

   
   

    

 
   

      

 
  

We thank    Soria for pointing out that the argument in proving (i) applies also to the proof 

of         
Proof,     To show the necessary condition, let us take                   Then, we have 

that  

∫  (
 

 
    

 
     *

 

 

              

that is, 

∫     
 

 

   ∫  (
  

 
*

 

 

           ∫
    

  

 

 

              

from which the result follows with       and          

Conversely, if     holds, then we may assume that for small       ∫       ⁄   
 

 
     

and from this it follows that       ⁄      as       
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Now, writing                ∫     
 

 
    we have 

∫          
 

 

   ∫        
 

 

       

where the distribution function of    satisfies (see      )  

                                          
 

  
  

             
 

 
  

    ⁄                                                 

and hence 

∫        
 

 

      ∫
 

 
.∫       

 

{         ⁄ }

/
 

 

      

  ∫     
 

 

.∫
     

 

     

 

/   

  ∫     
 

 

.
 (     )

    
 ∫

    

 

     

 

  /   

    ∫           
 

 

    

That is,     holds with         and           
     The proof follows as in      but now the first inequality of     is applied.  

      The weak type characterization follows analogously.  

Theorem               Let            Then, there exist constants       and 

      such that 

                         ∫  .
 

   ⁄
∫     

 

 

      /
 

 

     ∫  (      )
 

 

                        

satisfied for every decreasing nonnegative function   if and only if there exist constants 

      and       such that, for every        

                                             ∫
    

    

 

 

                                                        

Proof: Let                Then obvious change of variables shows that     is equivalent 

to 

               ∫  .
 

 
∫     

 

 

  /     
 

 

     ∫  .
  

 
    /     

 

 

                          

For the necessary condition, it is enough to apply the hypothesis to the functions       
            Then     follows with       and       ⁄    

For the converse, first observe that we can assume ∫         ⁄
 

 
     for small    since 

otherwise the result is trivial. Also, in this case,             ⁄       

To show that     implies      note that, interchanging the order of integration and applying 

     we obtain 
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∫  .
 

 
∫  

 

 

/
 

 

       
 

 
∫ [       ]

 
 

 

      

 
  

 
∫ .

 

 
  

    ⁄  /

  

 

      

 

 
  

 
∫ .∫       

 

{       ⁄ }

/

  

 

     

  
 

 
  

 
∫ .∫       

  
    ⁄  

 

/

  

 

     

  
 

 
  

 
∫ (∫ .∫  

 

 

/

   

      
  

    ⁄  

 

+

 
 

 

     

  
  

 

But, since   is decreasing and            it follows that (∫  
 

 
)
   

             and 

hence 

∫  (      )
 

 

         ∫ .∫            
  

    ⁄  

 

/
 

 

     

  
 

   ∫     
 

 

     .∫
     

  

     

 

/   

   ∫     
 

 

     .
        

     
  ∫

     

    

     

 

/   

   ∫     
 

 

              

where the last inequality follows from     with            Hence,     holds with 

         
Clearly the arguments in proving Theorem         do not apply to obtain       modular 

inequalities for    with        In order to obtain such estimates for   and  ̃         
   we need some general results for quasilinear operators and the notion of admissible 

functions. As a consequence, we obtain a number of weak type estimates and general 

interpolation theorems.  

Our first result shows that, under a simple condition on         modular inequality implies 

        
Let          be a set such that          For us,   will be either       or the set of 

measurable decreasing functions on      
Proposition               Suppose that   satisfies       modular inequality for every 

function in    If there exist a measurable set   such that        and          and a 

constant       such that 

  {            }     
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then        
 Proof: Take       and                Then, since 

       
      ∫          

 

 

       

we get 

      {                 }               
Choose now         Then we get 

      
     

  {            } 
      

from which the   condition for   follows.  

Now, for our next purpose, we need to give the following definition: 

 

Definition               We say that a function                with          is 

admissible for   and   if, for every function       

   
     ∫          

 

 

       

Remark                   In terms of the decreasing rearrangement the above inequality 

is 

     
 0∫          

 

 

     1     

Since we are assuming         for every admissible function   for   and   and every 

       it holds that for any      

                                              
      ∫  .

      

 
/

 

 

                                                    

     If   is a modular function such that          for every       and, for every        

∫           
 

 

       ∫          
 

 

       

then 

   
   

        
         

   
∫        

     
 

 

    

 ∫           
 

 

       ∫          
 

 

       

In particular, if    ∫          
 

 
       then  *     

 (∫          
 

 
     )+   

    Then, by the hypothesis of    this implies      
 (∫          

 

 
     )     and hence 

  is admissible for   and     
      If   is of weak type       with        then        ‖ ‖      

  is an admissible 

function for   and         
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Observe that, for          ‖   ‖     ‖ ‖  and that if   is decreasing, then for 

              ( ̃  )         For operators which satisfy conditions of this type we 

have the following result  
 Lemma               Let   be a set as above and   a quasilinear operator defined on     
    Let  ̃    {      {     }             } and   an admissible function for   and 

   Suppose that                  is bounded with  operator  norm less than or equal 

to    Then, for every       and every        

                                 
     ∫  .

        

 
/     

 

{             ⁄ }

                               

 where   is the constant arising from the quasilinearity of     

     Let  ̃̃    {     {     }        } and   an admissible function for   and  ̃̃    

If there exists a constant       such that                        then, for every 

       
 

every       and every       

                      
     ∫  .

            

 
/         

    

 

{        }

                     

Proof:     Fix       and write              where              

if               ⁄  and zero otherwise. Then, 

  {             }     {             
 

  
}       {             

 

  
}     

But, since ‖   ‖       ‖  ‖        ⁄   the second term is zero, and hence, since 

      ̃  we obtain by     that 

    
     ∫ .

         

 
/     

 

 

 ∫  .
        

 
/     

 

{             ⁄ }

 

To show       fix       and write              where              if            

and zero otherwise. Then, for every         

   
       ({             

  

      
}*     ({             

 

      
}*

     {              }      {                    } 

    {            }  ∫ .
             

 
/     

 

 

    
      ∫  .

            

 
/      

 

{        }

 

The lemma implies now the following       interpolation theorem   
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Theorem                      Let  ̃ be as in Lemma               Let   be a quasilinear 

operator such that                   is bounded with norm    If there exist a constant 

  and an admissible function   for   and  ̃ such that, for every        

                                              ∫  (
   

 
*            

    

 

                                            

then   satisfies        modular inequality for every function in    

      Let  ̃̃ be as in Lemma               Suppose that for every                   
           for some constant   independent of    If there exist a constant   and an 

admissible functin   for   and  ̃̃ such that, for every                              

and, for some   

                                                  ∫  .
      

 
/

 

 

                                        

 then   satisfies a       modular inequality for every function in    
Proof          By      and       

∫                ∫    
         

 

 

            

 

 

 ∫ 6 ∫  .
        

 
/     

 

{             ⁄ }

7      

 

 

 ∫6 ∫  .
        

 
/     

          

 

7      

 

 

   ∫              

 

 

  

which proves      
 The proof of      follows in the same way, using now      and        
Note that if                   then         {     

         }  Similarly, if one defines 

      by         {               }  then Theorem         has the following 

formulation   
Corollary               Suppose that                 is bounded   
    If  ̃ is as in Lemma                              is bounded with norm   and   is 

an admissible function for   and  ̃  then                  is bounded for       

satisfying        

     If  ̃̃ is as in Lemma                                 is bounded and   is an 

admissible function for   and  ̃̃, then                  bounded for       satisfying 
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We now derive     and       modular inequalities for    with       and  ̃        
    as well as for  ̃  In addition, we give a short proof and an extension of an interpolation 

theorem of Miyamoto         
Proposition               Assume that       and                       satisfies a 

    modular inequality for            
Proof: Let           in Proposition          Then, it suffices to show that, for some 

      |{                     }|      But, since        we can choose            

and hence, since  

            {
       

    ⁄⁄       
   

we get 

|{                     }|    (
 

 
)
 

     

The main result for    is the following  
 Theorem                Let       and assume that, for every                  

Then the following hold. 
    If Sa satisfies        modular inequality for    there exists a constant   such that, for 

every      , 

                                                        ∫
    

    

 

 

                                                       

     If there exists an       such that 

                                                             ∫
    

      

  

 

                                     

 then    satisfies         modular inequality for    
          satisfies       modular inequality for   if and only if       and there exists a 

constant   such that, for every        

                                             ∫
    

    

 

 

                                                                      

Proof:     It is enough to check the hypothesis on the functions              

      Clearly            is bounded with norm a and                is bounded. 

Therefore, by inteφolation,                 is bounded for every        and hence, for 

some constant                 is an admissible function for    and every subset of 

    
    

Now, by Theorem         with       and               the linear operator    satisfies 

the       modular inequality provided that 
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                                                      ∫
     

    

   

 

                                                   

But since      is satisfied, it follows that                ⁄      and hence an 

integration by parts shows that      is equivalent to        
      If    satisfies       modular inequality, then by Proposition               and      

now follows from      with        Conversely, if         then there exists       such 

that         is decreasing  see         and hence, by      

         ∫
    

    

 

 

            

For                define 

     ∫
    

    

 

 

       ⁄    

  
     

Then, by       

     ∫
    

    

 

 

4∫
       ⁄      

      

  

 

 

 

5    

   ∫
       ⁄      

      
4  ∫

    

    

 

 

  5  

 

 

                                          

 

Therefore,                      Choose           and          Then 

∑      

 

   

 ∑
  

  
 

 

   

      ∑ (
 

 
*
  

   

         

Also 

∑      

 

   

 ∑    

 

   

∫
    

    
 
        ⁄    

  

 

 

     ∫
    

    
 

 

 

(
 

 
*
 

    

and hence 

    ∫
    

      
 

 

 

           

But, since       this implies      with        and so    satisfies the     modular 

inequality.  

We now consider the operator  ̃  with         
Proposition                Assume that       and            Then, if  ̃  satisfies 

      modular inequality for          Moreover, in this case, the    constant for   is 
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less than or equal to               where   is the constant arising from the     modular 

inequality. 

Proof: It is enough to see that the set           and       satisfies the condition of 

Proposition          But  ̃                                  It then follows that  

|{  | ̃          |   }|         ⁄       and hence 

      (
   

 
*
 

 (
 

 
)          

We shall also need the following lemma. 

Lemma                Let       If  is a decreasing function on       and       
       then, for every        

.∫ (   ⁄     )
 

 

 

  

 
/

  ⁄

  .∫      
 

 

  /

  ⁄

  

where the constant depends only on   and     
Proof: The result follows from a straight forward modification of the case       given in 

       
 Theorem                Let           and assume that  ̃  is defined on decreasing 

functions.  

    If  ̃ satisfies a       modular inequality, then there exists a constant   such that, for 

every        

                                                       ∫
    

    
 

 

 

                                                        

      If there exists an       such that 

                                               ∫
    

      
 

 

 

                                                          

then  ̃  satisfies         modular inequality.  

       ̃  satisfies a     modular inequality if and only if there exists a constant   such that, 

for every            holds for        
 Proof:     It is enough to check the hypothesis on the functions             

     Let us consider first the case        Choose       such that          Then, it 

follows from the weighted (conjugate) Hardy inequalities         that  ̃             is 

bounded and therefore, for some constant    the function              is an admissible 

function for  ̃  and every subset of     
    Consequently, the function           

    is 

an admissible function for  ̃ and    ̃̃and, since |     ̃  |            we can apply 

Theorem              Hence, if for some      

                    ∫
     

    
 

 

 

        

then we see that  ̃  satisfies a       modular inequality. Since we may assume that the 

integral on the left side of      is bounded, it follows that               as    



  

104 
 

   Integration by parts argument then shows that      implies the above inequality. Let 

now           Then, we do not know if the          
    is an admissible function 

for  ̃  and    but the inequality      still holds. To see this, we have to apply Lemma 

         as follows. Let  be a decreasing function and set       {     } with        

Choose       such that              Applying Lemma          with       and 

       it then follows that, if            

 

 

 ̃          ⁄ ∫          ⁄
 

 

       ⁄ ∫          ⁄    ⁄     ⁄
 

 

   

     ⁄ ∫          ⁄
 

 

        ⁄ ‖ ‖   

 

Therefore, for every        

|{       | ̃     |    } |           | {         | ̃     |    }| 

          | {              ⁄ ‖ ‖    }| 

         .
 ‖ ‖ 

 
/

 

  

 

and hence, for every        

  ̃      | {     | ̃         |  
  

     
 }|  | {   | ̃     |  

 

     
 }| 

 | {   | ̃         |    }|  | {        | ̃     |    }| 

  (  {            }  | {              | ̃     |    }|

 | {              | ̃     |    }|) 

        ∫ .
           

 
/

  

{         }

    

which is the inequality       The proof now proceeds as for the case        
       If  ̃  satisfies       modular inequality, then by          holds with    
    Conversely, if      holds with        then it follows that         tends to zero when 

  tends to infinity, and an integration by parts shows that      is equivalent to 

∫
     

  

 

 

     ∫      
 

 

  

This implies that    satisfies a    condition (see      ), and hence it is known (see for 

example Lemma   of      ) that there exists an       such that          Again an 

integration by parts shows that 

    ∫
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and the result follows from        
If       we have the following result for the conjugate Hardy operator.  

Theorem                Assume that, for every                  Then  

     

                        ∫  .∫
    

 

 

 

  /
 

 

    ∫  (    )
 

 

                                      

if and only if        
     If either   or        then  ̃ satisfies a       modular inequalities if and only if 

       
Proof:     If the inequality      holds, we have that       by Proposition          since 

obviously 

|{  | ̃         |   }|         

Conversely, if       then (see      ) there exists       such that         is equivalent 

to a decreasing function and hence  

∫
    

    

 

 

    
    

    
  

An integration by parts shows that      ∫       ⁄  
 

 
             and, since we 

already know that             is admissible for    we get     from Theorem               
 

      Suppose   or   satisfies     Then, by           or     modular inequality is satisfied. 

Since       we get the       modular inequality in either case.  

Conversely, if we apply the       modular inequality to the functions                   

we get 

∫  (     
 

 
*

 

 

          

and with                 we obtain 

 

 
     

 

 
∫     

 

 

    ⁄    ∫  (     
 

 
*

 

 

          

Theorem            and Theorem          now yields a characterization of a       

modular inequality for the Hubert transform.  

Corollary                Suppose either   or   satisfies the   condition. Then, the 

      modular inequality for the Hubert transform 

                                           ∫          
 

 

      ∫           
 

 

                                

is satisfied for          if and only if       and 

                                                             ∫
    

  

 

 

                                                       

 Proof: Clearly      is equivalent to 
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∫  (        )
  

 

      ∫  (     )  
  

 

  

But, since (see      ) 

           0
 

 
∫         

 

 

 ∫
      

 
  

 

 

1               

it follows that      is satisfied if and only if 

∫  0
 

 
∫         

 

 

1
 

 

    ∫  (     )  
  

 

  

and 

∫  0∫
      

 
  

 

 

1
 

 

    ∫  (     )  
  

 

 

is satisfied. Then, by Theorem            and Theorem                this holds if and only 

if       and      holds.  

Finally, we give a short proof of an interpolation theorem proved by Miyamoto in       in 

the case where   is continuous,      and          if and only if        As we shall 

see, these conditions can be removed. 

 

Theorem                Let   be a quasilίnear operator such that   is of weak type 

      and        where               Then,   satisfies a       modular inequality 

for every measurable function   with 

        
 

.  ∫
    

    

 

 

     ∫
    

    

 

 

  /  

Proof: It follows from the definition of   that 

   
   

    

  
    

   

    

  
    

Now, fix      and write            where              if            and zero 

otherwise. Then, by assumption 

   
         

     ⁄       
     ⁄   

  [∫ .
      

 
/

  

{        }
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/

  

{        }
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and therefore 
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  ∫ [∫ .
      

 
/

  

{        }
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{        }
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  0∫        
 

 

∫
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∫
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Since             using an integration by parts, we obtain that 

   ∫        
 

 

0
         

       
 ∫

    

    

      

 

  1        ∫          
 

 

        

The estimate for h follows similarly.  
Section (3.2): The Maximal Function 

Given an open set         and a measurable function               let          denote 

the Banach function space of measurable functions   on   such that for some        

 ∫             
 

 

         

with norm  

‖ ‖           2      ∫ (
      

 
*
     

 

       3   

These spaces are a special case of the Musielak–Orlicz spaces (    Musielak      ). When 

          is constant,          becomes the standard Lebesgue space         
Functions in these spaces and the associated Sobolev spaces            have been 

considered by a number of authors: see, for example,      and        They appear in the 

study of variational integrals and partial differential equations with non-standard growth 

conditions. Some of the properties of the Lebesgue spaces readily generalize to the spaces 

          see, for example, Kov ́ ̌ik and R ́kosn ́k        On the other hand, elementary 

properties, such as the continuity of translation, often fail to hold (see       or      ), and 

for applications it is an important and open problem to determine which results from 

harmonic analysis remain true in the variable exponent setting. We consider the Hardy–

Littlewood maximal operator, 

                                                         
   

 

   
∫       

 

   

                                          

where the supremum is taken over all balls   which contain   and for which        
    It is well known (cf. Duoandikoetxea      ) that the maximal operator satisfies the 
following weak and strong-type inequalities: 

 {               }  
 

  
  ∫         

 

 

              

∫       
 

 

      ∫         
 

 

                  

We prove analogous inequalities for functions in           Strong-type inequalities have 

been studied. Pick and R ̇ ̌i ̌ka       constructed examples which showed that the 

following uniform continuity condition on      is necessary (in some sense) for the 

maximal operator to be bounded on           
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This condition appears to be natural in the study of variable    spaces; 

see             and the references contained therein.  

Diening       has shown that this condition is sufficient on bounded domains. To state his 

result, let       {           }         {           }   
Theorem               (Diening). Let        be an open, bounded domain, and let 

             satisfy      and be such that              Then the maximal 

operator is bounded on           ‖  ‖                 ‖ ‖         

Theorem               (Nekvinda). Let             satisfy      and be such that 

                Suppose further that there is a constant        suchthat       
           where there exists       such that          if         and       such 

that 

                             ∫            ⁄
 

{           }

                                                          

Then the maximal operator is bounded on            
Theorem               Given an open set        let              be such that   
             Suppose that      satisfies      and  

                          
 

           
                                               

Then the Hardy–Littlewood maximal operator is bounded on           
Condition      is the natural analogue of      at infinity. It implies that there is some 

number     such that           as        and this limit holds uniformly in all 

directions. It is also necessary (in some sense) on    as the next example shows.  

Theorem               Fix                and let                      be 

such that            is decreasing on                as       and  

                                                     
   

                                                                     

Define the function              by  

     {
                               

                
  

then the maximal operator is not bounded on           
The assumption in Theorem         that        again holds automatically: it follows 

from       However, the assumption that       is necessary, as the following example 

shows.  

Theorem               Let        be open, and let              be upper semi-con 

tinuous. If       then the maximal operator is not bounded on            
In passing, we note that an immediate application of Theorem         has been given by 

Diening        he has shown that if    is Lipschitz, and the maximal operator is bounded 

on           then     ̅  is dense in              
Unlike the case of the strong-type inequalities, we appear to be the first to prove an 

analogue of the weak       inequality for the maximal operator. Our weak-type result is 

somewhat surprising, since it requires no continuity assumptions on       and it is satisfied 
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by unbounded functions. To state it, we need a definition. Given a non-negative, locally 

integrable function   on     we say that         if there exists a constant   such that 

for every ball    

     
 

   
 ∫    

 

 

                

Denote the smallest constant   such that this inequality holds by         The RH∞ 
condition is satisfied by a variety of functions    for instance, if there exist positive 

constants   and   such that              for all    More generally,         if 
                   or if there exists       such that     is in the Muckenhoupt class 

    For further information about      see Cruz-Uribe and Neugebauer         
Theorem               Given an open set    suppose the function             can be 

extended to    in such a way that            Then for all              and        

                                {                }    ∫ .
      

  
/

     

 

                          

The proof of Theorem         requires a series of lemmas. Throughout, let       
            
 The first lemma is due to Diening [     Lemma    ]. For completeness we include its 

short proof.  

Lemma               Given an open set   and a function              whichsatisfies 

      then for any ball   such that           

                         
Proof: Since                            we may assume that if   is theradius of    

then    
 

 
    But in that case,      implies that 

                     
 

         
    

Therefore, 

                                                                             
Though our proof of the following lemma is not directly dependent on Nekvinda      . 
Lemma               Given a set   and two non-negative functions      and       
suppose that for each         

              
 

           
    

Then for every function      

∫          
 

 

       ∫           
 

 

    ∫          
 

 

     

Proof: Let      {                   }  Then 

∫          
 

 

    ∫           
 

   

     ∫           
 

     

      

and we estimate each integral separately. First, since           
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 ∫           
 

     

    ∫         
 

     

    ∫          
 

 

    

 On the other hand, if         then 

                                                                                   
The desired inequality now follows immediately. 

The next two lemmas generalize the key step in Diening‟s proof of Theorem         (see 

[     Lemma    ]). 

Lemma               Given   and   as in the statement of Theorem          suppose 

that                and           or                 Then for all         

                                       (            ⁄ )                                             
where                     
Proof: Without loss of generality, we may assume that   is non-negative. Fix        and 

fix a ball   of radius       containing   such that              Let           It 
will suffice to show that      holds with the left-hand side replaced by  

.
 

   
 ∫       

 

  

/

    

  

and with a constant independent of    We will consider three cases. 

The maximal function on variable    spaces 

Case               Define  ̅               Then  ̅         and      holdswith   

replaced by  ̅  In particular, by our assumption on    if          

                           ̅     ̅      
 

           
                                                     

Therefore, by H ̈lder‟s inequality and by Lemma         with      replaced by the 

constant  ̅      and      by   ̅     we have that  

.
 

   
 ∫       

 

  

/

    

 .
 

   
∫      ̅      

 

  

  /

     ̅     ⁄

 

  .
 

   
 ∫      ̅    

 

  

    
 

   
∫      ̅     

 

  

  /

     ̅     ⁄

  

since           and      ̅     ⁄           

 .
 

   
 ∫      ̅    

 

  

           ̅     /

     ̅     ⁄

 

     
 .

 

   
 ∫      ̅      

 

  

/

     ̅     ⁄

    
           

If         then by H¨older‟s inequality and since                

 

   
 ∫      ̅      

 

  

   .
 

   
∫            

 

  

/

    

 .∫            
 

  

/
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Hence, since       ̅         and           we have that  

.
 

   
 ∫        

 

  

/

    

   .
 

   
 ∫      ̅      

 

  

/

  

           

    (     ̅    )                

 If, on the other hand,         then, again since                 

∫      ̅      
 

  

         
 
.∫            

 

  

/

    

      

Therefore, 

 .
 

   
 ∫        

 

  

/

    

            ̅     ⁄ .∫      ̅      
 

  

/

     ̅     ⁄  

           

            ̅     ⁄    .
 

   
∫      ̅      

 

  

/

  

           

Since         and since  

      ̅     ⁄                ⁄                 
          ⁄                    

by Lemma           

   .
 

   
∫      ̅   

 

  

  /

  

             (     ̅   )                 

This is precisely what we wanted to prove.  

Case            and            The proof is essentially the same as in the previous case: 

since                   so inequality      and the subsequent argument still hold.  

Case           and    
   

 
  Since                and                 

.
 

   
∫     

 

  

  /

    

          .∫          
 

  

  /

    

  

                     
    

                      

    (     ̅   )                  
This completes the proof. 

Definition                Given a function   on    we define the Hardy operator   by 

        |       |
  

∫       
 

         

    

Lemma                Given   and   as in the statement of Theorem          suppose 

that                and                  Then for all        

                                 (            ⁄ )                                    

where                    
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Proof: We may assume without loss of generality that   is non-negative. We argue almost 

exactly as we did in the proof of Lemma          In that proof we only used the fact that 

         in Case    so it will suffice to fix               and a ball   containing   

with radius            and prove that  

.
 

   
∫     

 

  

  /

    

     (            ⁄ )                             

 

The maximal function on variable    spaces 

 Since         we have that  

.
 

   
∫     

 

  

  /

    

      
(

 

   
 ∫     

 

          

  +

     

 

     
(

 

   
 ∫     

 

         ⁄

  +

    

   

since            

   (           ∫       
 

         

  +

    

    (
 

   
 ∫     

 

          ⁄

  +

    

 

                (
 

   
 ∫     

 

          ⁄

  +

    

  

To estimate the last term, note that if              ⁄  then      holds and              

so the argument in Case   of the proof of Lemma         goes through. This shows that  

(
 

   
 ∫     

 

          ⁄

  +

    

    (            ⁄ )                

and this completes the proof.  

Lemma                If      is a radial, increasing function,         and if        
    hen  

∫          
 

 

                ∫            
 

 

    

Proof: Without loss of generality we may assume that   is non-negative. Also, for clarity 

of notation, we extend f to all of    by setting it equal to zero on        
We first assume only that         Recall that                          Let Sdenote the 

unit sphere in     Then by switching to polar coordinates and making a change of 

variables, we get that  

           (              ∫     
 

       

   +
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 .               ∫ ∫          
   

  

 

 

     /

    

  

 .         ∫ ∫             
 

 

 

 

    /

    

 

 

 .         ∫        
 

     

  /

    

  

           ∫              
 

     

    

by H ̈lder‟s inequality.  

Now let        the exact value of   will be chosen below. By Minkowski‟s integral 

inequality, and again by switching to polar coordinates, \ 

‖         ‖
        .∫ .∫                

 

     

/

  

   

  /

  ⁄

 

   ∫ .∫                
 

   

/

  ⁄ 

     

    

   ∫ ∫ .∫                
 

   

/

  ⁄ 

  

 

 

           

   ∫ ∫     ⁄  
 

 

 

 

.∫             ⁄    
 

   

/

  ⁄

             

by a change of variables in the inner integral. Since   is a radial increasing function, 

               since               

  ∫ ∫     ⁄  
 

 

 

 

.∫               
 

   

/

  ⁄

            

   ∫ .∫               
 

   

/

  ⁄ 

 

     

Since   has constant, finite measure, by H ̈lder‟s inequality,  

   .∫ ∫               
 

   

 

 

  /

  ⁄

  

Since   is a radial function, if we rewrite the inner integral in polar coordinates, we get that  

   .∫ ∫ ∫                
 

  

 

 

 

 

      /

  ⁄

 

   .∫ ∫                
 

  

 

 

    /

  ⁄

   .∫             
 

   

/

  ⁄

  



  

114 
 

To complete the proof, we repeat the above argument with      replaced by    ̅    
         and with        since         
 

The maximal function on variable    spaces 

Without loss of generality we may assume that   is non-negative. We first show there 

exists a constant   such that if                then                 Fix               

    Let            where  

             {        }     

Then for                         Since         

∫          
 

 

         
∫           

 

 

     
∫           

 

 

     

We will show that each integral on the right-hand side is bounded by a constant. Since 

            by Lemma             satisfies inequality       Therefore, if we integrate 

over   we get that 

∫           
 

 

       ∫(      
      ⁄ )

 

 

           ∫      

 

 

     

   ∫            
 

  

    

Since         is bounded on        and               so  

   ∫          
 

 

          ∫            
 

  

          ∫            
 

  

    

 Given a function    define its increasing, radial minorant    to be the function 

          
       

        

Clearly,    is a radial, increasing function. Further,      implies that for all         

               
 

           
    

 Therefore, since           and             by Lemmas          and           

∫            
 

  

      ∫             
 

  

      ∫           
 

 

   

   ∫          
 

 

      ∫       
 

 

         

 

Hence,                   

Avery similar argument using Lemma         shows that                  Therefore, we 

have shown that if                then                 Since        it follows that  

∫              
 

 

         

which in turn implies that  

‖  ‖            
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 To complete the proof we fix a function               and let            
‖ ‖        Then ‖ ‖            so                Hence,  

‖  ‖         ‖ ‖      ‖  ‖         ‖ ‖        

Our proof is closely modeled on the construction given by Pick and R ̇ ̌i ̌ka in        By 

inequality       we have that 

   
   

 (  
  

     
*               

which in turn implies that 

   
   

            ⁄      

 Therefore, we can form a sequence {  }   
                  such that  

                 ⁄        
Let               and define the function   on   by 

      ∑         ⁄        

 

   

              

We claim that               and                 it follows immediately from this that 

‖ ‖           and ‖  ‖            so the maximal operator is not bounded on 

          First, we have that 

          ∑ ∫           ⁄        
  

   

 

   

     ∑ ∫         ⁄        
  

   

 

   

   

 ∑         ⁄        

 

   

  ∑      

 

   

      

 

On the other hand, if                  then 

      
 

      
 ∫      

     

  

    
 

      
∫     

  

  

   

 
              ⁄

     
  

 

 
              ⁄   

Therefore, since      is an increasing function and          

            
 

 
∑ ∫                 ⁄

    

     

 

    

 
 

 
∑ ∫                    ⁄

    

     

 

    

  

 
 

 
∑      

 

   

  

Fix        Since          is open and   is uppersemi-continuous, there exists       

and       such that        
         and such that if                       We 



  

116 
 

define the function                           
   . Then               On the other 

hand, for        let             then 

       
 

        
∫      

 

      

                    

Hence, ‖   ‖                 ‖  ‖        since we may take   arbitrarily large, the 

maximal operator is not bounded on           
We begin with a lemma which, intuitively, plays the role that H ̈lder‟s inequality does in 

the standard proof that the maximal operator is weak         
Lemma                Given an open set    a function               such that    is 

locally integrable,   in          and        suppose that   is a ball such that 
 

   
∫       

 

   

        

Then 

∫
  

     
 

 

 

 
 

     
∫ (

       

 
*
      

   

    

 

 

Proof: Fix a sequence of simple functions {     } on    such that              and 

such that the sequence increases monotonically to      on    For each n we have that 

       ∑          

  

   

     

where the        are disjoint sets whose union is    Let       be the conjugate function 

associated to        then       decreases to       the conjugate function of       By 

H ̈lder‟s and Young‟s inequalities, 

 ∫
      

  

 

   

      ∑∫
      

  

 

       

  

   

    

   ∑(∫ .
      

  
/

    

  
 

       

+

     ⁄  

   

      
      

 ⁄  

  ∑(
 

    
∫ .

      

  
/

    

  
 

       

 
|    |

     
 +

   

   

 

  ∑(
 

      
∫ .

      

  
/

      

  
 

       

 ∫
  

     

 

    

+
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 ∫ .

      

  
/

      

   

     ∫
  

     

 

 

   

Since this is true for all    by the monotone convergence theorem, 

 ∫
      

  

 

 

      
 

      
∫ .

      

  
/

     

   

    ∫
  

    

 

 

   

Therefore,  

∫
  

    

 

 

      ∫
  

    

 

 

  ∫
      

  

 

   

   ∫
  

    

 

 

 

   
 

      
∫ .

      

  
/

     

   

     

 For each        define the operator    by 

          
 

    
∫       

 

   

    

where the supremum is taken over all balls containing   such that          The sequence 

{      } is increasing and converges to       for each        Thus, by the monotone 

convergence theorem, for each        
 {                }       

   
 {                }     

Therefore, it will suffice to prove      with   replaced by      and with a constant 

independent of      
Fix       and let     {                }  Then for each        there exists a 

ball    containing             such that  
 

    
∫       

 

    

        

By a weak variant of the Vitali covering lemma (cf. Stein          ), there exists a 

collection of disjoint balls, {  }  contained in {         }  and a constant   depending 

only on the dimension    such that  

       ∑    

 

 

   

Therefore, by Lemma            

       ∑    

 

 

 ∑    

 

 

.∫
  

    

 

  

/

  

 ∫
  

    

 

  

 

  ∑.
 

    
∫

  

    

 

  

/

   

 

 

      
∫ .

      

  
/

     

    

      

since                        by the definition of       

          ∑∫ .
      

  
/

     

    

 

  

       ∫ .
      

  
/
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Chapter 4 

Fully Measurable and Maximal Theorem 

We show the class contains some known Banach spaces of functions, among which the 

classical and the grand Lebesgue spaces, and the      spaces        We analyze the 

function norm and we prove a boundedness result for the Hardy-Littlewood maximal 

operator, via a Hardy type inequality. We show that  

‖ ‖                    
       

.∫  (         )
    

      
 

 

/

 
    

   

where   is a weight,                      we show that if   
 
  ‖ ‖   

    the inequality  

‖  ‖              ‖ ‖             

 holds with some constant   independent of   if and only if the weight   belongs to the 

Muckenhoupt class       We show the following Hölder-type inequality 

∫      
 

 

                                  

where                is the norm of fully measurable grand Lebesgue spaces introduced by 

Anatriello and Fiorenza in        For suitable choices of      and      it reduces to the 

classical Hölder‟s inequality for the spaces        and                  

Section (4.1): Fully Measurable Grand Lebesgue Spaces 

Let                 a variable exponent defined a. e. in                     which for 

simplicity we assume finite, and   a nonnegative Lebesgue measurable function defined a. 

e. in  . It is clear that the norm of the variable exponent Lebesgue spaces cannot be neither 

the expression 

                               (∫        

 

 

   +

 
    

      (∫        

 

 

   +

 
    

                             

the main reason being the fact that both depend on     and therefore (except trivial 

cases) are not nonnegative real numbers. If          is constant, both expressions 

coincide with the usual norm of the Lebesgue space 
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 ‖ ‖  ‖ ‖      (∫     

 

 

   +

 
 

 

The first expression in     must be modified in order to define the correct norm in the 

variable Lebesgue spaces ‖ ‖     see       ). The second expression can be synthetically 

written with the symbol ‖ ‖      which has been used in       to denote ‖ ‖     (a little 

bit improperly, but a reason has been explained)  such expression gives an operator which 

has been considered, in an independent context from the variable Lebesgue spaces. 

Namely, the function      used is           when the norm of the so called grand 

Lebesgue spaces (originated in      ) are considered (here the variable   appears changed 

in  )   

‖ ‖         
       

 
 

     (∫       

 

 

   +

 
   

             

 In       the norm ‖ ‖   has been generalized, and the space of the functions   such that 

                ‖ ‖           
       

 
 

     (∫             

 

 

   +

 
   

                               

 where   is a measurable function in    has been considered. It has been shown that the 

interesting case is that one where   is left continuous, increasing                
               and such that                Note that in      differently 

from        we put the function   inside the integral  in view of the theory developed 

through several,         where the power 
 

   
 appears quite frequently, we think that it is 

worth to make this choice to simplify the volume of the formulas. We consider the further 

generalization of     where     is changed into a general measurable function, thus 

dealing with the operator ‖ ‖      We note that the variable   varies in         while   

varies in        for simplicity we can deal with functions defined in         because the 

important values of this variable are those ones close to    and the supremum of the 

interval is not influent on the norm of the space          The plan the following  we will 

build a new class of rearrangement-invariant Banach function spaces, which contains also 

some Orlicz Exp-type spaces. Then,   we will prove some reduction theorems and, finally, 
we will get the boundedness result for the Hardy-Littlewood maximal operator, via a 

Hardy type inequality. 

 A recent investigation involving the link between the variable Lebesgue spaces and the 

grand Lebesgue spaces is in         
For the sequel it is important to note that it makes sense to consider the function 

     ‖ ‖      

which is measurable, because it is a composition of the borelian function ‖ ‖    (it is well 

known that ‖ ‖    is continuous where it is finite, see e.g.                    see also 
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      Theorem              and of the measurable function     (we recall that the 

composition of two measurable functions is not necessarily a measurable function, but the 

composition of a borelian function with a measurable function it is, see e.g. 

                                       We observe also that for any measurable 

function   in   it makes sense to consider the function (by convention we set the         
equal to   if computed over the null set) 

             
             

       

which is measurable, because it is a composition of the borelian function (it is borelian 

since it is monotone, see e.g.              

                
          

      

and of the measurable function       
Let   be the set of all Lebesgue measurable functions in   with values in            

the subset of the nonnegative functions,    the subset of the real valued functions, and 

  
   the subset of the real valued, nonnegative functions. Let                     

and                        ‖ ‖     For        we set  

                     
    

                 

where  

                       

{
 
 

 
 
.∫(        )

    
 

 

  /

 
    

                

       
   

(        )                  

              

 The assumption          is needed in the proof (see Proposition        ) that            is 

a Banach function norm, namely, when we show that                 implies    

         in a set          then it would be                 ). 

 It is also needed that δ must be bounded, again in the proof of Proposition         (see 

Property  ). The assumption ‖ ‖     is made in view of the following reason. Suppose 

for the moment that the simbol            has been defined assuming only δ bounded. It is 

easy, in this case, for a given   such that ‖ ‖     to construct a function  ̅ which gives 

an equivalent function norm and whose         s bounded by    in fact, setting  

 ̅    
    

‖ ‖ 
   

since  

      
    

‖ ‖ 

‖ ‖  ‖ ‖  ̅     

 

and 

 ̅    
    

‖ ‖ 
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we have 

                            ‖ ‖                

Now we spend few words about the symbol                namely, on the square brackets inp 

     It would be natural to write       because the modular depends on the variable exponent 

       but the same symbol is already well known at least in a couple of contexts in the 

theory of variable Lebesgue spaces with a different meaning: it could be confused with the 

weighted modular associated with      or with the modular of the variable Lorentz space 

(see      ). Moreover, note that in the definition of              there is the letter f on the 

left hand side and there is      on the right hand side: we add     inside the Banach 

function norm of a Lebesgue space. This choice is made because in such situation there are 

either    either the variable of   to deal with, and it should be clear that the norm must not 

computed with respect to the   variable.  

We exhibit now a few interesting particular cases. The simbol            implicit in 

     stands for the usual Banach function norm of the Lebesgue space         
We begin by observing that if               on a set of positive measure, it is 

                               (the symbol        where  and   depend on    

  
    means, here and in the following, that there exist positive constants        

independent of    such that            and therefore           reduces to the Banach 

function norm of a Lebesgue space. In fact, it is 

                      
   

                 

        
   

 (       (    )(    )*     (    )(    )       
   

         (    )       

 On the other hand, if               in         (the symbol      will denote the 

Lebesgue measure of  ), we can consider a set      such that        and  

     
‖ ‖     

 
            

Then 

   (    )                    
    

       (    )                  

hence 

   (    )(    )  
 

‖ ‖      
                

The (standard) grand Lebesgue spaces        can be immediately obtained from     

setting         and           where        The generalized grand Lebesgue 

spaces considered in       are evidently included in the family of the function 

norm      the function     
 

      in       corresponds to the function   in our notation. 

Setting in              and              we get a norm of the Orlicz space 

       (see e.g.          ), which is the space of the functions such that              

      for some      this can be easily seen setting          in Lemma     in       



  

122 
 

(see also      ). Note also that setting in            and choosing certain continuous 

functions   one gets the so-called bilateral grand Lebesgue spaces studied in        We are 

going to show that the functional            is a Banach function norm, i.e. (see e.g.      )  

                     

                     iff     in        

                                            

                                                 

              in         then                              

               in         then                               

                             

        ∫     
 

 
                             

Proposition(4.1.1)[222]:             is a Banach function norm. 

Proof:      It is obvious. 

      It is 

                                                       

and, being           

                       (        )                                  

           

      (    )                            

        It follows immediately from the homogeneity of the modular                 

       It is consequence of the corresponding property for the norm of the Lebesgue spaces:  

     (            )       (        )       (        )          

      As above, it is consequence of the order-preserving property of the modular 

                

      If     
               

                  
 

                    
 

       
   

     (         )  

 

    
 

  (     (         ))    .   
 

     (         )/ 

        
   

                              

       Let     

                      
   

          (     )         
   

        

        Let             be such that 

      
‖ ‖ 

 
           

We have 
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‖ ‖ 
             

and therefore, by H ̈lder‟s inequality, for          

 ∫   
 

 

  ∫       
 

 

      (    )       (     )  

                                     

         
    

                        
    

              (     ) 

                      
    

         
 

‖ ‖ 
              

We are now in position to make the following 

 Definition               Let                    and                      
‖ ‖     The Banach function space  

               {       ‖ ‖          
                  }   

is called fully measurable grand Lebesgue space. 

We remark that the fully measurable grand Lebesgue spaces are rearrangement-invariant 

Banach function spaces. We observe also that these spaces cannot be considered in the 

framework of the so-called mixed norm spaces. In fact, the mixed norm spaces are defined 

starting from two Banach function spaces   and     and considering the set     of all 

functions       such that   ‖      ‖  belongs to    the norm of   is then written 

‖ ‖      ‖‖      ‖ ‖  (see details in        which gives a definition introduced 

in        going back to      ). In our case ‖ ‖          is of the type ‖‖      ‖ ‖  where   

is a weighted    space but   depends on   (in fact,         ) . We recall that       
introduced the composed grand Lebesgue spaces, which are of the type ‖ ‖       

 ‖‖      ‖ ‖  where   is a rearrangement-invariant Banach function space, while in our 

case it is not. In conclusion, our spaces escape from both categories of spaces. The norm of 

grand Lebesgue spaces has been of interest in the framework of extrapolation theory (see 

     ). Variants of the norm of grand Lebesgue spaces are of recent interest, too. Grand 

Bochner–Lebesgue spaces have been considered in        We mention the        where 

Herz-Morrey spaces are considered  the norm of these spaces, even if different from that 

one we consider, has connections either with the grand Lebesgue spaces, either with the 

variable exponent Lebesgue spaces. Grand Lebesgue spaces over sets of infinite measure 

have been recently considered in        Finally, we recall another variant recently 

appeared in        where a composition of norms of grand Lebesgue spaces has been 

investigated. 

 Generalizations of the norm of the grand Lebesgue spaces with   different from        

are of interest in Applications  for instance, in PDFs we mention        in Harmonic 

Analysis we mention        We believe that the new context of the measurable data will 

be fruitful also for the study of the small Lebesgue spaces, defined as the associate spaces 
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of the grand Lebesgue spaces. Very recently they appeared of crucial importance in the 

question of the dimension-free Sobolev embedding theorem          
We begin by a remark on the norm of the grand Lebesgue spaces, given by 

                      ‖ ‖         
       

  
 

    (∫       

 

 

  +

 
   

                              

It is known that the “influent” values of   in such norm are the “small” ones: in fact in 

      it has been used the fact that the supremum over           plays the same role as 

the supremumover all the interval          The same phenomenon has been used in 

       where the interval          ⁄   has been considered in the associate spaces of the 

grand Lebesgue spaces. This remark has been formalized and generalized in the recent 

       where the more general framework of the grand grand Morrey spaces has been 

considered. Note that the small values of   correspond to the large values of the exponent 

   , which appears in the norm       
The next two results show that this phenomenon holds also for the fully measurable grand 

Lebesgue spaces; namely, the norm is essentially given by the supremum over the   s 

where the exponent      is large. In Theorem         we show that if the supremum is 

considered over any level set of the exponent       then one gets an equivalent norm. In 

Theorem         we will show that two functions   coinciding on all of the level sets 

sufficiently high of the exponent      generate the same Banach function norm. This result 

can be combined with Theorem          where for any given   it is constructed a special 

  ̅ satisfying the assumption of Theorem          This will lead to a kind of regularity 

result: in the case     upper semicontinuous, without loss of generality one may assume   

lower semicontinuous, and the          defining the norm of the fully measurable grand 
Lebesgue spaces can be written as         
The results are the typical ones to be obtained after a generic definition like Definition 

         different preliminary data may determine the same set of functions. This situation 

appears, for instance, for Orlicz spaces (see e.g. [     Theorem           see also     ]); 

in the case of weighted Orlicz spaces, where different nontrivial weights may give the same 

space        for variable Lebesgue spaces, see        for the generalized grand Lebesgue 

spaces, see        We call these results reduction theorems because the class of the 

original data can be reduced, without loss of Banach function spaces.  

Theorem               Let                           and             
          ‖ ‖      For        we have  

                     
     ([    (    )])

     (        )                      

 Proof: If      or if                is such that                 then 

                    
     ([    (    )])

      (        ) 

and therefore there is nothing to prove. Otherwise it is                and              
    Setting 



  

125 
 

   
       ([    (    )])   

         
    

 
     (        )   

and 

  
       

                 
         

    
 

     (        ) 

we have, by H ̈lder‟s inequality, 

     (    )    (    )         
       

 And 

   (    )       (    )         
       

Then for     
       

       
    

 
     (        )        

    
 

  (        )   .      
    

 
     /        

 .      
    

 
     /            

  

If    
     

  is such that     
       and  

     
‖ ‖     

  

 
           

       

 
it is, for     

         

  
   .      

    
 

     /                       

and therefore 

  
        

    
 

      
  

‖ ‖     
  

       
    

 
         (    )  .      

    
 

    
  

‖ ‖     
  
/  

  

Therefore, being 

                 
 

{  
     

 } 

we have 

                                         
 

2        
    

 
    

  

‖ ‖     
  
3   

                                 

Finally, we observe that trivially   
                   

Theorem               Let                                            and 

                           ‖  ‖      ‖  ‖     If  
           

     ([    (    )])

               
     ([    (    )])

                                 

 then for every       
   

                                                                                                                                

Proof: It is sufficient to prove the inequality   in      excluding the case       Let 

                      There exists              such that 
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                                 (         )                                                                       

 
 

We may assume, without loss of generality, that                               

otherwise the assertion is trivially true (because in this case it would be               

and both sides of     would be infinite)  we may therefore write ‖ ‖     in place of 

             For any                  let      be the set 

                    

We observe that  

⋃           

                

    

Put 

         {                                              }  

We claim that  

                                                                                                                           

In fact, if        ( if        then     it is trivially true), we have 

                                           

 and therefore 

              (    )                          

 from which     follows. By      

               
 

‖ ‖    
    

 

‖ ‖ 
                                              

and therefore by     

      
                        

              
    

            
      

       
 

‖ ‖ 
      

                 

 Passing, on the right hand side, on the supremum over                    

      
       [                

       
 

‖ ‖    

 

 and therefore, by our assumption      being       

                                
       [       (    )   

        
 

‖ ‖    

                                                     

 We deduce that there exists   
                            

      such that 

      
 

‖ ‖    

          
       

 
and therefore by      
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     ‖ ‖            

    
 

     ‖ ‖    
   

 Since this is true for all                   we may conclude that                

                 

Corollary               Let                                             and 

                              ‖  ‖       ‖  ‖     If 
         

       [    (    )   

             
       [    (    )   

                               

Then 

                                                                                                                              

Proof: If                     by Theorem         we know that equality holds in       
Otherwise, we recall that we showed that both sides of      are equivalent to the function 

norm             
Example               We remark that in general equality in      does not hold when 

              on a set of positive measure. It is sufficient to consider     
                   ⁄            ⁄                                         

         ⁄              ⁄               It is                    {      
               

  }   and therefore if      it is                          In next result we will show the 

coincidence of the essential supremum of two measurable functions. The fact that 

             
           

       

is a measurable function has been shown. 

 Theorem               If                           and           
          ‖ ‖     then 

      
                    

             
                    

0       
           

    1                    

 
Proof: Since for every                  it is {                 }                
     for                           we have 

      
           

            
                    

      

and therefore, since the right hand side does not depend on    

      
                    

0       
           

    1          
                    

                       

We need to prove 

      
                    

            
                    

0       
           

    1                    

If, on the contrary, there exists                 such that 

      
                    

            
                    

0       
           

    1 
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then 

       2                                
                    

0       
           

    13 

has a positive measure. There are two cases: 

          
      

            
      

     

           
      

           
      

     

 In the case         is constant      in       and 

      
                    

0       
           

    1         
      

0       
           

    1 

        
      

0      
      

    1        
      

            
                    

0       
           

    1 

which is absurd. In the case       let 

   1      
      

           
      

    0 

 
and set 

          ([      
      

      ]*       

           .1        
      

    1/      

 and observe that both such sets have positive measure. 

 We have 

       
                    

0       
           

    1         
      

0       
           

    1         
      

0      
      

    1

       
      

            
                    

0       
           

    1 

which is absurd. 

Theorem          combined with Theorem          tells that a function   can be substituted 

by 

      ̅          
           

     

without changing the space. In the case considered in       where the exponent is 

decreasing, this means that one can consider the generalized grand Lebesgue spaces only 

for the  ‟s increasing (see Proposition         therein). In our case we can assert that the 

meaningful  ‟s are those ones which have “in some sense” the opposite monotonicity with 
respect to       if      is defined pointwise, 

                                          ̅       ̅                                                             
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The notion of monotonicity of a function equal or opposite with respect to another is 

known in literature  see e.g. the equally ordered functions in       or        As 

consequence of       we can show that if      is an        exponent, then it is not 

restrictive to make the extra assumption           
Proposition               If                         has no flat zone,           and 

                      ‖ ‖     then there exists  ̅         ̅           

‖ ̅‖
 

    ̅         such that for every      
     

                                                                     ̅                                                          

 Proof: Let       and let             By our assumption 

             
 

        

 If                    the assert is trivial (we can take for instance  ̅   ). Otherwise, 

setting 

 ̅          
           

             

the equivalence      follows from Corollary         and Theorem          We need only 

to show that  ̅ is              
                                                     ̅           

 
 ̅                                                           

Let us set 

   {                 } 
  {                 } 

 so that        If      it is            and therefore, by       ̅      ̅      If 
  is finite,the assertion is trivially true. Otherwise, let   {  }and set       

  It is  

                   

             
 

      

 and therefore 

             
 

            
 

            

 from which 

    
 

             

Since      has no flat zone, 

⋃{              }

 

  {              } 

and therefore 

   
 

 ̅       ̅     

from which      follows. 

After Proposition         we know that when the exponent is         then it is possible to 

write equivalently the expression of the norm in the fully measurable Lebesgue spaces by 

using       instead of          (because the measurable function   can be changed into a 
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       function, defined pointwise). Since the exponent          has no flat zone, this 

result generalizes the analogous reduction shown in       
Theorem               Let                                       
‖  ‖    and for every      

    let  

     ∫        

 

 

              

There exists a constant             such that the following inequality holds  

                                                                         
                              

 

Proof: Fix                                  Applying the classical Hardy‟s inequality 
with the exponent        and multiplying both sides by       we get  

(∫4     ∫   

 

 

  5

     

 

   ,

 
    

   
    

      
 4∫           

 

 

   5

 
    

     

                       
Passing to the esssup over   in both sides, the previous inequality becomes 

      
                   

(∫4     ∫   

 

 

  5

     

 

   ,

 
    

 

        
                   

    

      
       
                   

4∫           

 

 

   5

 
    

 

and therefore, by Theorem         (see    ) 

                  
 

2        
                      

     
 

‖ ‖                      
3    

       
                  

                

    
 

2        
                      

     
 

‖ ‖                      
3  

        
                   

    

      
      

                   
4∫           

 

 

   5

 
    

 

Setting 
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2        
                      

     
 

‖ ‖                      
3   

        
                   

    

      
    

we get the desidered inequality       
As consequence of Theorem         we can get the boundedness result for the Hardy-

Littlewood maximal operator, defined by 

          
     

 

   
  ∫   

 

 

                                 

 where the supremum extends over all nondegenerate intervals, contained in   and 

containing    We omit the (very short) proof, which is the same of Corollary     in        
the argument, inspired by                       uses the property of the space to be 

rearrangement-invariant. 

 Corollary                Let                    and                    
 ‖ ‖     There exists aconstant             such that the following inequality holds 

 ‖  ‖                   ‖ ‖                             

 

 

 

 

Section (4.2): Weighted Fully Measurable Grand Lebesgue Spaces 

The grand Lebesgue spaces                were introduced by Iwaniec and Sbordone 

in        in the framework of the study of Jacobian determinant. These spaces are Banach 

function spaces and, when considered over        are defined as  

         8                      ‖ ‖       
       

. ∫           
 

 

   /

 
   

   9              

Since then, these spaces attract interest because of their essential role and applications  in 

various fields, such as in       theory (see e.g.      ), in function spaces theory (see e.g. 

     ) and in interpolation-extrapolation theory (see e.g.      ). They have been widely 

investigated and several variations have been studied (see e.g.      ).  
In       (see also      ) the authors introduced the weighted grand Lebesgue spaces 

   
  

       equipped with the norm 

       ‖ ‖          
       

. ∫           
 

 

   /

 
   

                   

where   is a weight on       and they studied the boundedness of the Hardy– Littlewood 

maximal operator, defined by 
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 ∫    

 

 

                                        

 where the supremum extends over all nondegenerate intervals    contained in       and 

containing    and     denotes the Lebesgue measure of    In the framework of the standard 

Lebesgue spaces, it is well known that, when             
                                                 ‖  ‖      ‖ ‖                                                               

if and only if   satisfies the    condition of Muckenoupt          

                   
  

.
 

   
∫    

 

 

/. 
 

   
∫  

  
 

      
 

  

/

    

                                    

where the supremum in      extends over all intervals            and ‖ ‖    in      

denotes the norm in the weighted Lebesgue spaces   
 

   given by 

‖ ‖     .∫          
 

 

/

 
 

        

In       the authors characterized the weights for which the inequality 

                                                     ‖  ‖       ‖ ‖                                                                  

holds, where   is a constant independent of    namely, they proved that Condition      is 

necessary and sufficient for the validity of inequality       too. 

 Since then, boundedness properties of operators of various type have been investigated in 

these spaces and their generalizations. We recall some of these results. In       an 

analogous result to that one in       has been proved for the onedimensional singular 

Hilbert operator. In       boundedness of weighted singular integral operators in grand 

Lebesgue spaces we restudied . In       families of weighted grand Lebesgue spaces 

which generalize weighted grand Lebesgue spaces were introduced and boundedness 

results of the Hardy–Littlewood maximal operator and the Calderón–Zygmund singular 

operators were established.  

      introduced the weighted grand space    
   

       which is equivalent to the weighted 

space     and boundedness results for the Hardy–Littlewood maximal operator and the 

Hilbert transform were given. 

 In       weighted strong and weak-type norm inequalities for the Hardy–Littlewood 

maximal operator on the variable Lebesgue space       were proved. In the same direction 

of the results in        inspired by the new spaces introduced in        We consider the 

weighted fully measurable grand Lebesgue spaces and we establish the maximal Theorem 

of Hardy–Littlewood, when     ‖ ‖     . In the unweighted case, werecover the 

boundedness result proven in         
Let   be the set of all Lebesgue measurable functions in               with values in 

           the subset of the nonnegative functions,    the subset of the real valued 

functions, and   
   the subset of the real valued, nonnegative functions. 

 Let                       and                       ‖ ‖      In       the 

following generalization of the grand Lebesgue spaces was considered  
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         8      ‖ ‖         
       

.    ∫              
 

 

/

 
     

  

   9                                                                                                           

In        using variable exponents, the authors built a new class of Banach function 

spaces, in a framework different than the variable Lebesgue spaces See      ), called the 

fully measurable grand Lebesgue spaces  

                                {      ‖ ‖                            }                      

where 

                                             
    

      (         )       
                               

and 

      (         )  .∫(         )
    

  
 

 

/

 
    

                                    

Remark               In                         is defined also for          and it is 

proved that if        in a set of positive measure, then                  ‖ ‖    

For suitable choices of      and      these spaces reduce to the classical and grand 

Lebesgue spaces, to the generalized grand spaces          defined in      and to the 

Orliczspace               see [274]). In       the fully measurable small Lebesgue 

spaces have been introduced as a generalization of the small Lebesgue spaces given in 

       Let w be a weight on    i.e. an a.e. positive, integrable function on    We set  

                                          
    

        (         )         
                            

 where 

          (         )  .∫(         )
    

      
 

 

/

 
    

                        

Arguing as in       we note that it makes sense to consider the function 

       ‖ ‖        

which is measurable. Then the functional in      can be written equivalently as 

                                                ‖ ‖        

where ‖ ‖      denotes the norm in the weighted Lebesgue space   
     

 (for the sake of 

clarity, this is the classical weighted Lebesgue space, with weight   and constant exponent 

      here   plays the role of a parameter).  

We note that if                   then      is equivalent to the norm in the classical 

weighted Lebesgue space   
 

      since  

                    ‖ ‖ ‖ ‖     
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Next, we remark that the fully measurable grand Lebesgue spaces are not included in the 

class of the weighted Banach function spaces considered in         
We now prove that in the following it will suffice to consider only          

            
for the esssup in      only the points   where        really matter. 

Proposition               Let   be a weight on           
                   and 

                       ‖ ‖       For     
    if            and 

                  then  

                                        
             

                                                              

where                                              
Proof : Setting 

  
                 

               
if        then      is trivially true. Otherwise, putting 

  
          

    
 

    .∫            
 

 

/

 
     

   

  
          

    
 

    .∫            
 

 

/

 
     

  

we have 

                      {  
    

 }   

For      
       we obtain  

            .∫            
 

 

/

 
     

 .∫         
 

 

/

 
  

.  ∫      
 

 

/

    

   

               

In fact by Hölder‟s inequality with exponents 
 

    
 and 

 

      
   we get 

.∫            
 

 

/

 
     

 .∫             
    

     
      

   

 

 

/

 
    

  

   

 .∫         
 

 

/

 
  

.∫      
 

 

/

      
     

  

 .∫         
 

 

/

 
  

.  ∫      
 

 

/

    

   

  

 

Hence for       
       

    .∫            
 

 

/

 
     

 ‖ ‖ .∫         
 

 

/

 
  

.  ∫      
 

 

/

    

   

  

that implies 
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    ‖ ‖ .∫         

 

 

/

 
  

.  ∫      
 

 

/

    

   

                          

Similarly, for       
         we get  

                   .∫         
 

 

/

 
  

 .∫            
 

 

/

 
     

.  ∫      
 

 

/

     
   

       

using Hölder‟s inequality with exponents 
    

 
  and 

    

      
  if          

If    
    

 is such that     
       and  

     
‖ ‖     

  

 
         

        

for       
       we have  

.∫         
 

 

/

 
  

             .∫            
 

 

/

 
     

 .  ∫      
 

 

/

     
   

 

 
 

‖ ‖     
  

        
    

 
     

 .∫            
 

 

/

 
     

 .  ∫      
 

 

/

     
   

  

Hence by      we have 

  
     ‖ ‖ 

 

‖ ‖     
  

.  ∫      
 

 

/

     

  

  
  

and 

                     {     }  

    {  ‖ ‖ 

 

‖ ‖     
  

.  ∫      
 

 

/

     

  

  
 } 

 ‖ ‖ 

 

‖ ‖     
  

.  ∫      
 

 

/

     

  

  
    

Finally, we observe that 

  
                      

and this completes the proof. 

 

Proposition               The functional             defined in      is a Banach function 

norm, i.e. for all          
         the following properties hold:  
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                          iff      in         

                                                   

                                                            

     if          in         then                                     

      if         in         then                                      

                                  

        ∫     
 

 

                                   

Proof:      and       are obvious,      and      are consequence of the corresponding 

property of the norm in the weighted Lebesgue spaces   
    

    so we prove only      and 

     –        
                                                                      

On the other hand, since          and           
                                                          

                                     

                                   

                                       
      If           in         then  

                           
   

     ‖   ‖           
 

       
   

     ‖   ‖        

          
   

(   
 

     ‖   ‖       *   

        
   

     (   
 

‖   ‖       * 

          
   

     ‖   ‖                             

 

 

     . Let        then, being   integrable on    it is 

                         
   

    .∫      
 

 

/

 
    

    

        
   

     .∫       
 

 

/

 
    

        

        Let       and let                be such that 

     
‖ ‖ 
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By Hölder‟s inequality with conjugate exponents      and       
    

      
    for    

         and taking into account that we can consider             by Proposition 

         we have 

∫      
 

 

 ∫       
 

 

  ∫   
 

       
 

      
 

 

    

 .∫              
 

 

/

 
    

 .∫                
 

 

/

 
     

   

      .∫              
 

 

/

 
    

       .∫                
 

 

/

 
     

 

         
    

    .∫              
 

 

/

 
    

 

        
    

       .∫      
 

 

/

 
     

    

                    
 

‖ ‖ 
        

   
.∫      

 

 

/

 
     

   

As a consequence of Proposition          the space 

                           {       ‖ ‖                                }                  

is a Banach function space (see e.g.      ), which we will call the weighted fully 

measurable grand Lebesgue space. 

 

we characterize the weights for which the Hardy–Littlewood maximal operator 

         
     

 

   
  ∫    

 

 

          

is bounded on the weighted fully measurable grand Lebesgue space                  The 

proof of the maximal theorem uses the following well known lemma.  

Lemma               [     Lemma        ] If           and        on   with 

constant        then there exist constant     and       such that          on   with 

constant              for all          

Theorem               Let   be a weight on            be such that      
              and                       ‖ ‖      Then the inequality  

                                                ‖  ‖              ‖ ‖                                                     

 holds if and only if   belongs to the Muckenhoupt class       where   is a constant 

independent of     
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Proof:  First of all we observe that, without loss of generality, we may assume      
    in   a.e.Infact,ifthereexistsasetofpositivemeasure       such that             then by 

Proposition         

‖  ‖             ‖  ‖       

and our theorem reduces to the maximal theorem in classical weighted Lebesgue spaces 

  
   

    We begin to prove the necessary condition, therefore let us assume that the 

Inequality      holds. We have to prove that           that is 

        
 

.
 

   
 ∫   

 

 

/   .
 

   
∫  

 
 

        
 

 

/

     

                                     

 Fix        By the definition of maximal operator we have  

∫    
 

 

                       

By the Assumption      we have 

‖       ‖            
  ‖   ‖           

  

 

Therefore  

.∫     
 

 

  / ‖  ‖           
  

 ‖∫     
 

 

    ‖
           

 

  ‖       ‖           
   ‖   ‖           

  

          
   

.∫                        
 

 

/

 
    

  

          
   

 .∫                      
    
    

    
       

      
 

 

/

 
    

   

Applying Hölder‟s inequality with exponents 
  

    
  and 

  

       
 we have  

.∫     
 

 

  / ‖  ‖           
  

          
   

 .∫               
      

 

 

/

 
  

.∫      
 

 

/

       
       

   

          
   

     .∫         
 
      

 

 

/

 
  

.∫      
 

 

/
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   .∫         
 
      

 

 

/

 
  

       
   

     .∫      
 

 

/

 
    

 –
 
  

  

    .∫         
 
      

 

 

/

 
  

.∫      
 

 

/

  
 
  

        
   

    .∫      
 

 

/

 
    

 

   .∫         
 
      

 

 

/

 
  

.∫      
 

 

/

  
 
  

‖  ‖           
  

Hence 

.∫    
 

 

   /    .∫         
 
      

 

 

/

 
  

 .∫      
 

 

/

  
 
  

  

 

At this point we show, by contradiction, that we may consider the case  
 

 

    
  
         

In fact, if  
 

 

    
  
        then  

   
 

               Therefore there exists        
    

such that 

∫          
   

 
  

 

 

        

Define       
  

 

     we have 

                                                                                                                           
hence 

‖  ‖                

and, by the Assumption       we get  

                                                         ‖ ‖                                                                       

On the other hand, since    
       

        
       we have       

  

   By the 

maximal theorem in the classical Lebesgue spaces it is       
  

   which is in 

contradiction with       Moreover, Hölder‟s inequality implies                      

           hence ‖ ‖                 against       

Hence  
  

 

            Choosing      
  

 

      we have  

∫  
  

 
        

 

 

      .∫  
  

 
        

 

 

  /

 
  

.∫      
 

 

/

 
 
  

 

and therefore it is  

(
 

   
*

 
  

.∫      
 

 

/

 
  

(
 

   
*
  

 
  

.∫  
  

 
        

 

 

  /

  
 
  

    

Raising to the power    
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.∫      
 

 

/.∫  
  

 
        

 

 

  /

     

   

 and so           

Now we prove the sufficient condition, therefore let us assume         By Lemma 

        there exists             such that                  
  and thereforethere 

exists           such that                   Then 

                                

and, by the maximal theorem in the Lebesgue spaces, 

                       ‖  ‖         ‖ ‖                                                   

with uniform constant.  

By Proposition         we have 

                                           ‖  ‖              ‖ ‖                                                         

 

Remark               We observe that the sufficient condition of the maximal theorem 
in the weighted fully measurable grand Lebesgue spaces holds also in the case         
Namely, recalling that                we have  

                                      
By the maximal theorem in the Lebesgue spaces,  

               ‖  ‖        ‖ ‖                                                                    

 By Proposition         (where      ) we have  

                                             ‖  ‖             ‖ ‖                                                        

We get back the boundedness result for the Hardy–Littlewood maximal operator 

established  by Gao, Cui, Liang in        
 

Section (4.3): Fully Measurable Small Lebesgue Spaces 

In       Iwaniec and Sbordone introduced the grand Lebesgue spaces               
          of finite measure, in connection with the study of the integrability properties 

of the Jacobian determinant. In  the case               such spaces are defined as the 

Banach function spaces (see e.g.       for the definition) of the measurable functions   on 

  such that 

‖ ‖       
       

. ∫           
 

 

  /

 
   

       

Since then the grand Lebesgue spaces play an important role in PDE‟s theory (see e.g. 

     ), in Function Spaces theory (see e.g.      ) and in interpolation–extrapolation 

theory (see e.g.      ). They have been widely investigated and several variations have 

been studied, among which, in        the spaces 
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          8                   ‖ ‖          
       

.    ∫           
 

 

  /

 
   

   9            

 where   is a measurable function in I, have been considered. It has been shown that the 

interesting case is when   is left continuous, increasing (i.e.                
                such that           and with values in         
Let   be the set of all Lebesgue measurable functions in   with values in            

the subset of the nonnegative functions,    the subset of the finite a.e. functions, and   
   

the subset of the finite a.e., nonnegative functions.  

Recently in       the following further generalization of ‖ ‖      was introduced, where in 

          is changed into a general measurable function.  

Definition                        Let                        and             
          ‖ ‖       The Banach function spaces  

                                {      ‖ ‖                                 }                 

where  

                                 
    

     (        )       
                                              

 and 

              (        )  

{
 
 

 
 
.∫(        )

    
  

 

 

/

 
      

                   

       
    

(        )                     

       

 are called fully measurable grand Lebesgue spaces.  

We point out that, in the previous definition, we choice the symbol                with 

square brackets in      and not the more natural      to avoid confusion since the symbol 

     is already used in the theory of variable spaces with a different meaning. (See for 

example the monographs      for an exhaustive treatment of the variable exponent 

Lebesgue spaces.) 

 The (standard) grand Lebesgue spaces        can be immediately obtained from      

setting                      and           
The generalized grand Lebesgue spaces      are evidently included in the spaces       the 

function     
 

      in      corresponds to the function      in       

Setting in          
 

 
  and                a norm of the Orlicz space     

 

 is 

obtained while, if in                suitable continuous functions   give the so-called 

bilateral grand Lebesgue spaces (see      ). For the weighted fully measurable grand 

Lebesgue spaces see         
In       Fiorenza introduced an explicit equivalent expression of the norm of the associate 

space of the grand Lebesgue space      denoted by     
    

 

   
   They are Banach 

function spaces, defined through the abstract function norm 
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‖ ‖       2∫     
 

 

       
    ‖ ‖     3   

 and they are called small Lebesgue spaces (see also      ). It has been proved that 

   ‖ ‖       
∑   

    
    

8∑    
       

 
 

 
    .∫     

      
 

 

/

 
      

  

    

9                           

where             Some properties of small Lebesgue spaces which follow from their 

definition, along with some applications, are in      . Their role in Calculus of Variations 

(see      ), the   spaces (see      ). Very recently they appeared of crucial importance 

in the question of the dimension-free Sobolev embedding theorem         
In       Fiorenza and Karadzhov found the following equivalent expression for the norm 

by using deeply extrapolation–interpolation techniques: 

‖ ‖    ∫         
 

 
  

 

 

.∫        
 

 

  /

 
  

 
  

 
  

where   denotes the decreasing rearrangement of   (see      ); later a direct proof of such 

equivalence was given in         
Inspired by the norm in      of fully measurable grand Lebesgue spaces, We consider a 

generalization of the norm of small Lebesgue spaces      where      is changed into a 

general measurable function. We give the following  

Definition               Let                       and                       
 ‖ ‖      The spaces  

                                                {                          }                           

where 

                         
∑   

    
    

∑        
    

     (           )            
   

 

   

            

and       is defined through       are called fully measurable small Lebesgue spaces. 

 we prove that            is a Banach function norm and therefore the spaces defined in      

are Banach function spaces under the norm given by                                  

‖ ‖            We need to show (as in      ) that the infimum over   in the norm             

can be computed also in smaller intervals included in    
Finally, , we prove a Hölder-type inequality of fully measurable small Lebesgue spaces 

which reduces to the classical Hölder‟s inequality in the setting of Orlicz spaces        

and                 for suitable choices of      and       
Our first remark is that if                  the grand space      reduces to the classical 

Lebesgue space         
                          ‖ ‖ ‖ ‖   

Similarly, if                  the small space      reduces to the classical Lebesgue 

space         
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∑   

    
    

∑        
    

                   

 

   

 ‖ ‖ 
  ‖ ‖   

 the last equality due on one hand to the triangle inequality, on the other hand choosing the 

trivial decomposition                         Another remark is of reduction type: in 

the following it will suffice to consider only         
            Indeed, for any 

     
  and for any decomposition    ∑   

  
     with      

    we show that if    
       is such that         in         and        in          with                    
then  

                        
    

                           
     

                                              

Namely, first we observe that for any      
       

    
                   

    {       
     

      (           )        
     

      (           )} 

    8       
     

       .∫(     )
    

 

 

   /

 
    

          
     

              
     

 (     )9  

        
     

      (           ) 

that yields        
Now we prove that                is a Banach space. We recall the following  

Lemma               ([     Lemma    ]). If        
   and        ∑   

  
     with 

            then the functions 

    6      4  ∑   

   

    

  57 
 ,∑   

 
      -

          

are such that 

               

and 

   ∑       

 

   

   

Theorem               Let                       and                       
 ‖ ‖      The space               is a Banach space.  

Proof: We exclude the known case of     constant, and we may assume, without loss of 

generality, that      is finite      We will prove the properties of the normed spaces and we 

will get the completeness through the Riesz–Fischer property: therefore it suffices to prove 

(see                ) that, for all                  in   
     for all constants        

and for all measurable subsets        the following properties hold  
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                      iff      in         

                                                

      if           in         then                                 

               (∑     

 

    

+    ∑            ( 
   )

 

    

    

                                  

      ∫     
 

 

                                  

     It is obvious.  

    . If       in        it suffices to choose       for all       to get                     

Conversely, if                    for any decomposition    ∑   
 
     with       by 

Fatou‟s lemma, we have 

        
    

      ∫      
 

 

         
    

       ∫ ∑         

 

     

 

 

 ∑        
    

      

 

    

 ∫       
 

 

  

 ∑        
    

      

 

   

 .∫     
    

 

 

   /

      

  

from which 

                                       
    

      ∫       
 

 

                                                          

hence     in         
       If     ∑   

 
      is a decomposition with      then 

                   
   ∑   

 
   

∑        
   

     (           )

 

   

    

    
   ∑      

   

 ∑        
   

                    

 

   

                   

      For any decomposition    ∑   
 
    with        let          be given by Lemma 

        such that  

   ∑              
 
              We have 

                  
  ∑   

 
    

∑        
   

     (           )

 

   

     

     
  ∑   

 
    

∑        
   

      (                )
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  ∑   

 
    

∑        
   

     (           )

 

   

                 

     Let us assume that the functions        
   are such that ∑            (  

   )   
     

                   the assertion is trivial. Let      and let   
   

    
  be such that  

       ∑   
   

 

   

          

and 

           ∑        
   

      (        
      )

 

   

                    
 

  
                  

We have 

           (∑   
   

 

   

+             ( ∑ ∑   
   

 

   

 

   

 +             ( ∑   
   

 

     

 + 

 ∑        
   

      

 

     

(        
      )  ∑ ∑        

   
      

 

   

 

   

         
   

      

 

Therefore, by       we have 

           (∑   
   

 

   

+   ∑            (  
   )   

 

    

         

Since   is arbitrary   Let us consider the trivial decomposition                     We 

have 

                       
   

          
 

         

       By        

∫   
 

 

  ∫      
 

 

   ‖ ‖        
    

      ∫      
 

 

  ‖ ‖                  

Later we will need the following theorem, where, in the spirit of [     Theorem  ], it is 

shown that the essinf can be equivalently computed in the set where      is small. 

 

Theorem               Let         
                 and             

           ‖ ‖       For      
  the norm                defined in      is equivalent 

to 

 ̃                   
  ∑   

 
   

∑        
            

     (           )
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Proof: The following inequality 

                    
  ∑   

 
   

∑        
            

     (           )

 

   

 

holds trivially for all                          Now we have to prove that there exists 

   such that 

                     
  ∑   

 
   

∑        
            

     (           )

 

   

  

If              then of course 

                    
  ∑   

 
   

∑        
            

     (           )

 

   

 

and therefore there is nothing to prove. 

 Otherwise, it is            
    

                and therefore                        

    Setting 

  
     ([    (    )])    

           
    

 
     (           ) 

and 

  
        

                 
           

    
 

     (           )   

it is    
          

       and we have, by Hölder‟s inequality,  

                               
      

and  

  (     )       (     )      
       

Then for      
       

       
    

 
     (           )         

    
 

  (           ) 

  (       
    

 
       *   (     )  (       

    
 

       *              

If    
    

  is such that     
       and  

       
‖ ‖     

  

 
         

       

it is, for       
        

  
     (       

     
 

      *                        

 (       
     

 
      *

‖ ‖      
  

  
                   

and therefore 
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‖ ‖      

  

  
        

     
 

      (           )

        
     

 
        

‖ ‖      
  

  
    

      

Therefore, being 

       
   

      (           )     {  
       

   } 

we have 

               
   

      (           )     2         
     

 
        

‖ ‖      
  

  
  

   3         

Now, summing over   and passing to the infimum over decomposition    ∑   
  
     we 

get the assertion with 

      2         
     

 
        

‖ ‖      
  

  
3     

In order to prove that the Banach space                is a Banach function space it remains 

to show the validity of the Fatou property  

                                ( 
   )                  

which is a immediate consequence of Levi‟s Theorem .  

We first recall the following two lemmas.  

Lemma               If                                  
 Lemma               ([     Lemma  ]). If                             
          then there exists              such that  

                  
where  

             
    

          
   

Theorem               (The Levi‟s theorem of monotone convergence for fully 
measurable small Lebesgue spaces). Let         

                  and             
           ‖ ‖       Let        

  be a monotone increasing sequence (i.e.      
       ) such that  

      
 

           ( 
   )         

Then the function       
 

      is such that 

 

                       
                       
                                 
Proof: Fix                          Without loss of generality we may assume that the 

sequence   ̃          ( 
   )  is convergent, where  ̃          ( 

   ) is the expression equivalent 
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to            ( 
   ) defined in       in fact, if it is not the case, we can extract a suitable 

subsequence of      and we prove first the theorem for such subsequence. This is sufficient 

to get the full assertion. 

 Let                       so that           and let                Let       

 ∑   
    

      be such that  

                 ∑        
     

     (        
      )

 

   

    ̃          ( 
   )                             

For each      there exists                        such that  

     (        
      )   ∑        

     
     (        

      )

 

   

 
 

    
                   

    
 therefore 

       
       

(        
      )          

     
     (        

      )  
 

    
             

On the other hand, let              Since      is an increasing sequence we have      

       and, by Lemma           there exists   
   

 such that  

      ∑   
   

 

   

     
   

   
   

       

Then           ∑ (  
   

   
   

) 
      and therefore 

  ̃          ( 
        )  ∑        

       

     (      (         )   )

 

   

   

By Lemma          

     (      (         )   )

        .∫ (       )
    

  
 

 

 ∫ (       )
    

  
 

 

/

 
    

 

                

Hence 

 ̃          ( 
        )  ∑        

       

     .∫ (  
   

   )
    

   
 

 

∫ (  
   

   )
    

  
 

 

/

 
    

 

   

   

 

Now fix         and let  

   2       ∫ (   
      )

     

 

            ∫ (   
      )

    
  

 

 

              3   

and 
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We have 

∑        
       

      

 

     

.∫ (   
      )

     

 

   ∫ (   
      )

     

 

  /

 
    

 

  ∑        
       

 

    

  
 

            .∫ (   
      )

     

 

  /

 
    

 

 ∑        
       

 

    

  

 
       

   
    

       .∫ (   
      )

     

 

  /

 
    

 

   

 
       

   
    

∑        
       

  

   

      .∫ (   
      )

     

 

  /

 
    

 

  

 
       

   
    

4   ∑        
    

  

   

      .∫ (   
      )

     

 

  /

 
    

5 

   

 
       

   
    

 ( ̃          ( 
   )     )    

 
       

   
    

         

where in the last two lines we used      and      respectively. 

 On the other hand, by Lemma          there exists a constant 

  4  
 

       
   

    
5   

 

 
       

   
    

     

 
       

   
    

  

 

such that 

∑        
       

 

     

       .∫ (   
      )

     

 

   ∫ (   
      )

     

 

/

 
    

 

   4  
 

       
   

    
5 ∑        

       

 

     

       4.∫ (   
      )

     

 

  /

 
    

 .∫ (   
      )

     

 

  /

 
    

5 
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   4  
 

       
   

    
5 ∑        

       

  

   

       4.∫ (   
      )

     

 

  /

 
    

 .∫ (   
      )

     

 

  /

 
    

5 

   4  
 

       
   

    
54∑        

    
     (         

      )

 

    

  

 ∑        
    

  

    

       (         
      )5  

   4  
 

       
   

    
5   ̃          ( 

   )      ̃          ( 
   )    

where in the last two lines we used again      and       Then 

 ̃          ( 
        ) 

   

 
       

   
    

         4  
 

       
   

    
5  ̃          ( 

   )      ̃          ( 
   )   

Letting       we get, for any              

 ̃          ( 
        ) 

    

 
       

   
    

   4  
 

       
   

    
5  ̃          ( 

   )   ̃          ( 
   )      

Let      and fix    such that 

                                                                 

 
       

   
    

    
 

 
                                               

On the other hand, since the sequence  ̃          ( 
   ) is convergent, there exists      

such that 

  4  
 

       
   

    
5  ̃          ( 

   )   ̃          ( 
   )  

 

 
                   

 By           and      we have that  

            ̃          ( 
        )             

 therefore, by Theorem              is a Cauchy sequence in                and, by Theorem 

         converges to some function                    
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 Since by property        of Theorem       it is                         it follows that in   

a.e. the limit f coincides with            which is also the a.e. limit of        
 As consequence of Theorem         and Theorem         we can state the following  

Corollary               Let         
                 and             

          ‖ ‖      The space               is a Banach function space. 

we prove a Hölder-type inequality of fully measurable small Lebesgue spaces. The next 

result is a direct generalization of the Hölder inequality between grand and small Lebesgue 

spaces  proved in        Here we include the details because, as a consequence, it turns out 

that this argument is also an alternative approach to the duality between             and 

            

Theorem                Let                    and                       
 ‖ ‖      If        

     then    is integrable and 

                                     ∫    
 

 

                                                                           

where                        denotes the conjugate exponent of     (we set 

      ).  

Proof: Let    ∑   
 
    be any decomposition with        For each      we have 

∫     
 

 

       (    )      (     ) 

                              (     )   

 (       
    

     (        )*       (           ) 

                      (           ) 

and therefore 

∫     
 

 

                      
   

      (           )    

In conclusion  

∫     
 

 

 ∫  ∑   

 

   

 

 

    ∑ ∫     
 

 

 

   

 

 ∑                

 

    

       
   

      (           ) 

so that  

∫     
 

 

                  
  ∑   

 
   

∑        
   

      (           )

 

   

     

as desired.  

 Next theorem provides a norm equivalent to the norm in the Orlicz–Zygmund space 

                  We recall that             is the Orlicz space generated by the 

function                     The dual space and the associate space of             



  

152 
 

coincides with the Orlicz space            generated by the function       

              consisting of all measurable functions   on   such that               
      for some        The associate space of           is              while the dual 

space of           includes              A decomposition formula of the dual of 

          has been given in         

Theorem                Let               and        The following equivalence 

                      
  ∑   

 
   

∑    
   

   ‖  ‖
 

 
         

  

   

 ‖ ‖                                                 

holds. 

Proof: First we note that obviously it is 

      
  ∑   

 
   

∑    
    

   ‖  ‖
 

(
 
 
)
 

   

 

   

     
  ∑   

 
   

∑ (
 

  
*
   

   

‖  ‖(  )
                        

where (
 

 
)
 
 

 

   
            

  

    
  

We recall the formulas in [    Theorem       ] (see also           ) for the norm in 

           if               then the functional  

                    ‖ ‖         
  ∑   

 
   

(∑      ‖  ‖ (  )
 

 

 

   

+

    

                                     

 defines a norm in           equivalent to the Luxemburg norm. Then, by      and       
it follows 

                    
  ∑   

 
   

∑    
 

   ‖  ‖
 

 
        

 

   

    ‖ ‖                                  

On the other hand, let    ∑   
 
      be any decomposition with       For each      

we have, by      in         
     ‖  ‖                 ‖  ‖  

   
 
   

 hence  

‖  ‖                
    

    ‖  ‖  
   

 
 

and therefore 

‖ ‖             ∑‖  ‖           

 

   

     ∑    
    

 

   

    ‖  ‖  
   

 
  

 

From the previous inequality, passing to the infimum over all decomposition of    we have 

‖ ‖                  
  ∑   

 
   

∑    
    

 

   

    ‖  ‖  
   

 
 

and the assert is proved . 
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Chapter 5 

Direct and Inverse Theorems with Approximation of Functions Problems 

We show results obtained in present radically differ from other authors‟ results on this 

subject because we don‟t require from variable exponent      the fulfillment of additional 

condition               which is closely related with boundedness of Hardy - 

Littlewood maximal function      in     
    

   In the definition of the modulus of continuity 

of a function           
    

   we replace the ordinary shift                by an 

averaged shift determined by Steklov‟s function            
 

 
 ∫          

 

 
  . We 

obtain a converse theorem of trigonometric approximation in the weighted Lebesgue 

spaces and obtain some converse theorems of algebraic polynomial approximation in the 

weighted Smirnov spaces. Moreover, the constructive characterization problems for the 

some subclasses are discussed. 

Section (5.1): Approximation Theory in Variable Lebesgue and Sobolev Spaces 

In       the year when we began studying the topology of space           there was no 

theory of variable exponent Lebesgue spaces. There was only example of measurable 

functions set noted by Orlicz in        Common modular spaces theory was being 

developed by the Japanese mathematicians     Nakano               and functional 

modular spaces theory - by the Polish mathematicians  J. Musielak and W. Orlicz 

              Also note the work of Russian mathematician I. V. Tsenov         
But in these theories there was no consideration of a special theory of          spaces. 

Such spaces were noted only as exotic examples of modular spaces. Spaces of functions 

integrable with an exponent ceased to play the role of exotic examples of modular spaces 

and set off on their path of development once the topology of these spaces was shown to be 

normable, with one of the equivalent norms given by Kolmogorov‟s well-known 

theorem on the normability of linear topological spaces having a bounded balanced convex 

neighbourhood of zero        A.N.Kolmogorov       introduced a norm on such spaces 

by means of the Minkowski functional. In the same direction, the author showed in 

      but published       only in       that the Lebesgue space   
    

    with variable 

exponent           this space consists of measurable functions      on   such that 

           is integrable on    is a normed space with the norm of       
    

    given by 

                   ‖ ‖            {       ∫ |
    

  
|

     

        

 

 

}                              

For unknown reasons, many authors call such norms Luxemburg norms instead of Kol-

mogorov norms. 

 In        conditions on variable exponent      for the          space to be a linear 

topological space, were found. It was shown that         will be a linear topological space 
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if and only if      is essentially bounded function,                 ̅ for almost every 

        
The case when      is not essentially bounded was considered in        Such case is 

arising in the problem of finding conjugate space               space of continuous linear 

functionals  when essinf           Moreover, there can be cases when          on set 

with nonzero measure. In all such cases, the corresponding spaces               were found 

in        
 Results and methods developed in       have been used in the sequel by many authors 

 quoting or not quoting        and they represent now a kind of folklore in the theory of 

spaces            

 The next stage in the development of the theory of the spaces    
    

    was the imposition 

of stronger conditions on the variable exponent      and obtaining    
    

     analogues of 

classical results that were well known in the case of constant       The first step in this 
direction was made by the author       who showed that if   is the ordinary Lebesgue 

measure on the line, then Haars system forms a basis for              if and only if the 

variable exponent          satisfies the Dini-Lipschitz condition on         

              
 

       
             

 

   
   

 Under the same hypotheses, the author       proved that some families of convolution 

operators are uniformly bounded in    
    

           This covers in particular a large class of 

classical operators, including the operators of Fejr, de la Valle-Poussin, Abel, Steklov and 

many others.  

Substantial contributions to the theory of the spaces   
     

     were made by V. V. Zhikov 

     –       and L. Diening in              The best result obtained in             
is as follows. Suppose that   is a bounded domain in      is the ordinary Lebesgue 

measure on     and      is defined on   and satisfies the conditions            

                                  
 

     
               

 

  
             Then 

the operator      of the Hardy-Littlewood maximal function acts boundedly on    
     

     

As a corollary, it was shown in       that under the same restrictions on      and some 

additional condition on      outside some ball, the well-known Calderon Zygmund 

operators act boundedly in    
     

      In particular, for       it follows that the Hilbert 

transform is bounded in    
     

    provided that                               

         
 

      
                 

 

 
            and      coincides with a constant 

outside some interval. Thus, the connection between the Dini Lipschitz condition for the 

variable exponent      and the uniform boundedness in    
     

     of families of classical 

operators, described by the author in              turned out to be characteristic in the 

construction of a deep theory of integral operators in the spaces              Numerous 
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recent results obtained by specialists in the theory of differential equations show that a 

similar situation arises when constructing a deep theory of differential equations in Sobolev 

spaces with variable exponent. Many references can be found in the recent 

monograph        Among them, a special place belongs   where the spaces    
     

     were 

used for the first time to study problems arising in the multidimensional calculus of 

variations. The properties of singular integrals in the spaces    
     

    were studied in  

under the same logarithmic DiniLipschitz condition on the variable exponent        
Here we consider the problem of the approximation of functions by trigonometric 

polynomials in the metric of    
     

          Suppose that          is a measurable   -

periodic function        {           }          {           }         

          
    

  is the space of measurable   -periodic functions      with 

∫              

  
        Putting  

                                ‖ ‖         8      ∫ |
     

 
|
    

  

  

       9                         

we turn    
    

  into a Banach space. We write     for the set of all   -periodic variable 

exponents              satisfying the condition 

                                               
   

     
                                              

The subclass of all                satisfying the additional condition         is 

denoted by  ̂    The author proved       that if         ̂    then the trigonometric 

system {    }    forms a basis for the space    
     

   In other words, putting 

  ̂   
  

  
∫          

 

  

         

                                                   ∑  ̂   
   

 

     

                                                

 
we have the estimate 

                                       ‖     ‖          ‖ ‖                                                  

 It follows that the Fourier series of a function        
    

  converges to it in the norm      
that is, 

‖       ‖                   

Moreover, if         ̂    then the order of approximation of        
    

 by the partial 

sums     in the norm     as      coincides with the order of best approximation 

                                                        
  

‖     ‖                                                         
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where the infimum is taken over all trigonometric polynomials 

                                            ∑     
   

 

     

                                                                      

We may now ask how the rate of decay of           as      depends on the properties 

of        
    

   In other words, we want to define the modulus of continuity of a function 

      
    

 and estimate           in terms of it. As mentioned in        the quantity 

                
     

‖          ‖      

 cannot play the role of the modulus of continuity of        
    

 in the case of a variable 

exponent          because, generally speaking, the equation                        

does not hold for all such f. If      is not equal to a constant almost everywhere on 

        then the shift                  of a function      in    
    

 need not belong to 

   
    

   Quite the contrary, the integral∫                 

 
   usually diverges for    

    This was the main obstacle in the way of transferring the main theorems of the theory of 

approximation by trigonometric polynomials to the case of spaces    
    

   We give one of 

the possible ways to overcome this obstacle by using certain types of Steklov functions. 

We put 

      
 

 
∫         

 
 

 
 
 

                 (    
  

 
*

  
 

 
∫        

 

 

                                                                                     

and consider the quantity 

                       
     

‖         
  

 
 ‖

    
       

     
‖          ‖              

It follows from the author‟s results in       that if             then the function 

           is continuous on       and                        It also follows from the 

definition     that            is a non-decreasing function of    We call            the 

modulus of continuity of a function       
     

   

 It was proved in author‟s works       –       that if the variable exponent           

and        
     

   then the following Jackson-type inequality holds:  

                                                             (  
 

 
 *
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Moreover, if                              then the converse assertion holds. Namely, 

if                                 then                     We note that in       we 

considered the quantity  

                                              
    

           

‖          ‖            

 where        We call it the  -modulus of continuity of a function           
     

   It 
follows from     and      that 

                                    
     

‖    (  
 

 
 *‖

     
                                 

On the other hand, the following result was proved in         

Theorem               If                     
     

   then the function       
             is non-decreasing on       and continuous at the point        In particular, 

Theorem         and the estimate      yield the equation 

                                                    
   

                                                                           

mentioned above.  

The proof of Theorem         is based on the uniform boundedness in    
     

       
            of the family of shifts of the Steklov functions 

                                           
 

 
∫     

    
 
 

     
 
 

     

Namely, it was proved in       that if            then  

           ‖       ‖
    

                 
‖ ‖                                     

where   is the constant in the inequality      
 

We mention that the direct and inverse theorems of approximation theory in the spaces 

   
     

 were obtained in            under the assumption that          ̂    The principal 

difference between our results and those in            is that we are able to get rid of the 

restriction   
      and prove the direct and inverse theorems of approximation theory 

in    
     

 under the natural assumption         where         {           }  by the 

definition above   The results in            were obtained for   
       and we stress that 

this is not accidental. The methods used in those   s to study the direct and inverse 

problems of approximation theory    
     

  and even in the more general weighted spaces 

     
     

 with variable exponent are based, either directly or indirectly, on the boundedness in 

   
     

 of the operator      given by the Hardy-Littlewood maximal function  or of its 

analogues and generalizations in      
     

   and it is well known that this holds only for 

       For example, in       the proof of a direct Jackson-type theorem for    
     

 under 
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the assumption that         ̂   is based on the facts that the operator of conjugation  of 

functions  is bounded in    
     

and the trigonometric system forms a basis there. These 

facts were established by the author       using the boundedness in    
     

 of the Hilbert 

transform under the assumption that        ̂     and this boundedness was deduced in 

      from that of the maximal function, which was proved in        To obtain direct and 

inverse theorems of approximation theory in    
     

  where the variable exponent       
     satisfies the Dini-Lipschitz condition     and may be equal to   at some points  that 

is,          it is required to develop essentially new approaches which do not use the 

properties of the maximal function       In author‟s works       –       we make an 

attempt to solve the part of this problem that concerns Jackson‟s first theorem. One of the 

instruments in the proof of Jackson‟s first theorem in    
     

 is Jackson‟s well-known 

operator  trigonometric polynomial of degree        

                
 

 
∫            

 

   

                     

where  

       
 

          
 4

   
  
 

   
 
 

5

 

    

 We proved in             that          approximates every           
    

  with 

accuracy       
 

 
        In other words, if           

    
 with            then  

‖        ‖               
 

 
       

which again gives the inequality        
The proof of the inequality  analogue of Jackson‟s second theorem  

                                              
 

  
 (     

 

 
*
    

                                                   

encounters additional difficulties, and in      –       we have not been able to overcome 

them in the general case when            Therefore in             we only give it for 

        ̂    But in present work we consider the general case when            We 

succeeded in proving that the inequality      holds for every function       
      

    where                 
  is the Sobolev space of   -periodical functions      such 

that           is absolutely continuous in        and               
    

  In the author‟s 

works       –       it is shown that one of instruments in the proof of inequality      is 

the Valle - Poussin‟s well-known means 

   
         

         
 

     
  ∑         
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 where Fourier sums         are defined in      Namely, in      –       the following 

inequality 

                      ‖       
    ‖       

    

  
                                                                 

 is proved, where                                  
      {     }  The estimate 

      analogue of Jackson‟s second theorem  follows from      and      as a corollary. 

The complete proof of inequality      . 

 We will consider in       Sobolev type classes       
      which consist of   -

periodical     times continuously differentiable functions       whose derivative 

          is absolutely continuous in        and               
    

  ‖    ‖
    

      Let us 

assume 

      
    ⋃        

           
 

 

   

        
    

   

 We can consider the Fourier series for        
    

  

                            
  

 
 ∑                   

 

   

                                                    

and partial sum of Fourier series 

                                  
  

 
  ∑                   

 

   

                          

Where 

           
 

 
∫            

 

  

               
 

 
∫            

 

  

  

If                and          
   then            

                                           
  

 
  

 

 
∫               

 

  

                                        

where 

                                                         ∑    
(     

  
 

 )

  

 

   

                                         

is the Bernoulli function. Since   
   

                    then we conclude from      and 

     an equality for         
  

                                 
 

 
∫                 
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                             ∑    
(     

  
 

 )

  

 

     

                                                                

We will define Vallee-Poussin means   
           

        by equality 

                      
         

        
 

     
 ∑         

 

   

                                           

Matching equalities      and      with      we notice 

               
         

 

 
∫        

 

     
 ∑           

 

   

 

  

                            

We will assume 

                            
                ∑         

 

   

                                                

and transcribe      

                             
          

 

         
 ∫              

      

 

  

             

Since, by             
     is orthogonal to all trigonometric polynomials of degree not 

greater than    then we obtain from      
       

      

  
 

         
 ∫ (             )      

      

 

  

                                     

where       is an arbitrary trigonometric polynomial of degree    Now we can state the 

next result. 

 Theorem               Let                                  
    Then the 

following estimates hold   

                     ‖       
      ‖      

    

  
                                                               

                                      ‖     
      ‖       

    

  
                                                 

 Proof : is based on a number of auxiliary assertions concerning functions       
      

 Lemma               We have the following equalities 
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           ∑ ∑
   

   
 

    
    

 
                   

 
 

      
 
 

              

  

   

   

   

          

              ∑
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where                                                                 
                     
Proof: From      and      we have 

      
                 ∑ ∑

   *                   
  
 

+

                

 

   

 

    

  

So, with the help of Abel transform, we can write 

      
          

       ∑ ∑ [
 

                

 

   

 

   

 
 

               
]     

                                                                  

where 

                     
       ∑   *                  

  

 
+

 

   

                                          

We will consider the case when         and the two cases of    even and odd. 

If         then          
  

 
                  Therefore      takes the form 
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From      and      we have 
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We apply Abel transform to the inner sum again. From      we get 
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From      we get 
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So, the equality      follows from      and       Equality      is proved similarly. 

Lemma         is proved. 

 Lemma               Suppose            Then 

      ∫  
    

      
 

    
   

 
  

   
 
 

 

 

                    
     

     
    

 

   
  

 

   

Proof:  We have 
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where 
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(
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and, therefore, 
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On the other hand, 

∫
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        ∫
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∫
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]
 
 
 
 

        (      
      

     
*                                                          

 The statement of the lemma follows from equality      and inequalities      and 
      
 Lemma               If        then 

∫      
  

 

  

            

 Proof: Consider the case of even         Then, from Lemma         we have 

 ∫      
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Because of the Lemma          

 

 
∫
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Next, since the             
     ̅        ̅            then 
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where                 ̅                     and, similarly, 

                                                   
  

            
                                                 

From      and      we have           

 ∑                    
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Next, from      and      we have 
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 5                                           

Comparing      and      with       we complete the proof of Lemma         for 
even        Lemma           is proved similarly in case of odd         . 

 Lemma               For   
 

              
 

  we have inequality 

|    
    |         

Proof: If   
 

            
 

    then        

 
   

  

 
  and, therefore, from Lemma 

        and inequalities      and      we have 

|     
     |           ( ∑ ∑

 

                   

 

   

   

   

     ∑
 

            

 

   

  +

       
and, similarly,       

              Lemma         is proved. 
 Lemma               We have the estimate 

   
 

|    
    |                            

Proof: Consider the case        So, from      we have              
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   ∑

     

 

 

    

                       

It is well known              that  

 |∑
     

 

 

   

|                           

 Assertion of Lemma         follows from      J Now we need one result established 
                   D          v  y       a measurable   -periodical essentionally  
                  kernel              T                                 

                                                   ∫            

 

  

                                   

functional in space    
    

    We will say that the kernel family {     }                   
conditions           respectively, if the following estimates hold: 

  ∫       

 

  

          

      
 

             
   

                
            

where            are independent of    The theorem below was proved in        

 Theorem (5.1.8)      : Let                        satisfy the conditions   —    
If             then the operator family convolution {     }             y     

equality     , is uniformly bounded in    
     

    

Now we can formulate the following auxiliary assertion   

Lemma               Let                  
     

   

                    ∫          
      

 

  

                                      

 Then we have the estimate 
‖     ‖            ‖ ‖      

The assertion of this Lemma follows directly from Theorem (5.1.8), because in view 

of Lemmas        —        the kernel family     
                                

conditions   —    L                   P        T                From the equality 
     and Lemma         we have 

                    ‖       
    ‖       

     

   
 ‖        ‖

    
                                           

 where            is an arbitrary trigonometric polynomial of degree    The 
estimate      follows from       As for estimate       its proof is quite similar. The 
Theorem         is proved. 
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 N                                v             

 Theorem (5.1.10)      : Let                         
    

    Then the following 
estimate holds   

                    
 

 
        

Combined, Theorem (5.1.10) and Theorem         make it possible to formulate  
Consequence                Let                                  

     Then the 

following estimates hold   

                                        ‖  –     
      ‖       

    

  
   (     

 

 
  *

    
                         

                                ‖  –   
      ‖      

    

  
  (     

 

 
  *

    
                                      

Consequence                Let                                 
    Then the 

following estimate holds                

                                                            
    

  
 (     

 

 
  *

    
                                  

Proof: If         then estimate      follows from       If           then      
follows from       Consequence          is proved . 
 
Section (5.2): Weighted Lebesgue and Smirnov Spaces 

 For       be the Lebesgue space of   -periodic real valued functions defined on    
        such that 

 ‖ ‖   {
.∫         

 

 

  /

    

              

       
     

                          
  

is finite.  

A function            will be called a weight if   is measurable and almost 

everywhere        positive. 

 For a weight   we denote by         the class of measurable functions         such 

that             We set ‖ ‖     ‖  ‖    

If                                    and              then  

                          
A   -periodic weight function   belongs to the Muckenhoupt class     if  

.
 

   
 ∫      

 

  

   /

    

.
 

   
 ∫       

 

  

   /

    

    

 with a finite constant   independent of    where   is any subinterval of   and     denotes 

the length of    Let 
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                                                            ∑    
   

 

     

                                                      

be the Fourier series of a function            with ∫      
 

 
        so       in        

For        the  -th integral of   is defined by  

         ∑              

 

    

   

where  

                    ⁄                       {            }  
It is known                 that  

                 
 exists a.e. on   and             For           we set  

           
 

   
            

 if the right-hand side exists. Then we define 

             (         )
    

  
     

     
           

where         {         }   
Throughout this work by                                         we denote the constants 

(which can be different in different places) such that they are absolute or depend only on 

the parameters given in the corresponding brackets.  

Let                                 We set 

               
          ∑          

                 

 

    

                              

where     
     

                 

  
 for           

       for       and     
       for 

        
Since 

      
     

      

    
              

we have 

       ∑     
   

 

   

      

and   
        is defined      If        then the fractional difference   

        coincides 

with usual forward difference, namely, 

  
          ∑          
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 ∑            
  

 

   

                  

We define 

  
         

 

 
∫     

         
 

 

                         

Using the boundedness of the Hardy-Littlewood Maximal function in                 
           we get  

                          ‖  
      ‖                ‖ ‖                                                  

Now, if        we define the α-th mean modulus of smoothness of a function    
          where           and        as 

                
     

‖  
      ‖        

 

 Theorem               Let       
                                If, for 

some         

‖     ‖                                    

then 

 

‖       
   

‖
    

           ( 
   )

    
                   

Proof: We put                    ∑    
    

        for the  -th partial sum of the 

Fourier series      of      
        and 

                 
  

    
∑          

                     

Hence                  
   

       
Consequently 

 

 ‖          
   

     ‖
    

 ‖                  ‖
   

 

 ‖  
    

            
    

      ‖
    

 ‖   
   

         
    

         ‖
   

   

We denote by   
        the best approximating trigonometric polynomial of degree at 

most   to   in          In this case, using the boundedness of    in          we obtain 

 

‖                  ‖
   

 

 ‖          
         ‖

   
 ‖  

                    ‖
   

 

        (    )
   

  ‖       
             ‖

   
 

            (    )
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 From       we get 

 

‖  
    

            
    

      ‖
    

           ‖  
             

        ‖     

and 

 

‖   
   

         
    

         ‖
   

               ‖   
          

           ‖    

                   (   
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Therefore 

 ‖  
           

           ‖    ‖   
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 ‖             ‖     ‖         
       ‖     

        (   
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 Since   (   
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                 we get 
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    ,         (   
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           (    )
    

                       

 By              we have 

                                               
      

        
  (    )

    
                                          

 

 

so we finally obtain 
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          (    )
   

    

 The next result was proved in       for        
 Theorem               Let                                             and 

               Then  
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‖
   

         
 

 
                   

Proof:  Let 
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  *   ∑                 

 

    
 

    
    

and 
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If we put  
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we find that  
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        ∑              
   

 

    
 

  

The function   is positive, even and satifies                     for              
          Hence  

       ∑     
      

 

     

   

uniformly on         with                                            (see,    ). 
We get that 
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and therefore 
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Consequently, we obtain 
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By       we have 

∑      

 

     

                            

so 

∑      

 

     

      

 

for                      Hence  

                              ‖  
     

‖
    

  

On the other hand, we get, by a similar argument, that the same inequality holds also if 

              Thus the proof of the theorem is completed.  

The next result is a generalization of Theorem   of       to the fractional case.  

Theorem               Let                         Then the following 

inequality holds for              
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 ∑           

 

   

                         

 Proof: Let       be the best approximating polynomial of            and let 

       Then by assertion      of by      we have  

                                                                     

                                               

 Using Theorem          we get  

                                 (
 

     
)
  

‖   
    

‖
    

            

Since  

   
    

        
    

     ∑ , 
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we obtain 

                        

          (
 

     
)
  

{‖  
   

‖
    

 ∑ ‖ 
     
   

 –    
   

‖
   

   

   

}   

From Bernstein‟s inequality (see      ) for fractional derivatives in           where 

       and            we have 

 

‖ 
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‖
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and 
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‖
    

                       

Hence  
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 It is easily seen that 
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Therefore  
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)
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 8                               ∑ ∑             
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If we choose                    then  

                       
          

        
∑          

 

   

           

and 

                        
          

        
∑          

 

   

            

This finishes the proof.  

The next result was proved for       in        
 

Theorem               If f      
                                       

               then  

                            ‖      ‖
   

             

Proof: Let       be the trigonometric polynomial of best approximationof   in         

metric. By Theorem          and      we get 

                                                 

            ‖  
     

‖
    

                                      

Then, using inequality      of             and Theorem   of        we have  

            
        

        
   ‖    ‖
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By Theorem         we find 
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‖
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 ‖      ‖
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Choosing   with                                    we obtain  
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                            ‖      ‖
   

 

and we are done.  

 Theorem               Let                                If           and 

 ∑              

 

    

      

then  
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         (                  ∑              
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 Proof: Since 

‖           ‖
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 we have for               
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 On the other hand, we find 
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which finishes the proof.  

 Corollary               Let       
                                     and  
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Let   be a rectifiable Jordan curve and let                        {     
        }                   Without loss of generality we may assume        We 

denote by                  the set of all measurable complex valued functions   on   

such that      is Lebesgue integrable with respect to arclength. By       and 

    
              we denote the Smirnov classes of analytic functions in   and 

    respectively. Let         and          be the conformal mappings of    and   

onto   normalized by the conditions 

             
    

                             
    

             

respectively. Let            Then 

         
 

   
 ∫

      

     

 

 

          

 is analytic on    
Let   be a weight function on   and let         be the weighted Lebesgue space on 

        the space of measurable functions on   for which 

‖ ‖         .∫         
 

 

         /

    

       

The weighted Smirnov spaces          and      
     are defined as  

           {                     }    

     
      {        

                }  

We also define the following subspace of      
     

 ̃    
      {         

              }   

Let                        and          {                } 
 

 
   

 

 
      A 

weight function   belongs to the Muckenhoupt class       if the condition 

   
   

   
   

 .
 

  
∫           

 

      

/

 
 

 .
 

  
∫            

 

       

/

 
 

      

holds. 

 With every weight function   on    we associate the other weights on   by setting 

                    For an arbitrary             we set  

                                          
 If   is a Dini-smooth curve, then the condition             implies that    
          and               Using the nontangential boundary values of   

   and  
  on 

  we define for a function             and        

                   
         

         

                                  ̃                   
         

                                              

We set 

                
    

‖    ‖           ̃               
    

‖   ‖          
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where                    
        is the set of algebraic polynomials of degree not 

greater than    and    is the set of rational functions of the form ∑
  

  
 
       

Some converse approximation theorems in the weighted Lebesgue spaces            
              were proved in       and        In the weighted Smirnov spaces 

                               the converse approximation theorems were proved 

in       for Butzer-Wehrens modulus of smoothness. 

In the following we investigate the approximation problems in the weighted Smirnov 

spaces in terms of the  -th mean modulus of smoothness. The following converse 

theorems can be proved by the method given in       and        
Theorem               Let   be a finite, simply connected domain with a Dini-smooth 

boundary    If       and                                 then  

                 
        

  
  ∑          

 

    

                          

 If                     this result was proved in       for a different but equivalent 

modulus of smoothness. The converse theorem for an unbounded domain    is also true.  

Theorem               Let   be a Dini-smooth curve. If            ̃   
      and 

                     then  

 ̃               
        

  
∑          

 

    

  ̃                          

 

 

Section (5.3): Lebesgue Spaces with Variable Exponent 

Let            and let                be a Lebesgue measurable    periodic function 

such that  

               
    

               
    

             

 In addition to this requirement if 

              
  

     
                    

 with a positive constant d, then we say that              We also define        {   
             }   
 

The variable exponent Lebesgue space           is defined as the set of all the Lebesgue 

measurable    periodic functions f such that 

           ∫            
  

 

         

Equipped with the norm 

‖ ‖         {                     } 
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 it becomes a Banach space. 

 These spaces were introduced by Orlicz in        Interest in the variable exponent 

Lebesgue spaces has been increased since        because of their usage in the different 

applications problems in mechanic, especially in fluid dynamic for the modelling of 

electrorheological fluids and also in the study of image processing and some physical 

problems (see      ). Nowadays, there are sufficient investigations relating to the 

fundamental problems of these spaces, in the view of the potential theory, maximal and 

singular integral operator theory and others. Some of the corresponding results can be 

found in the monographs mentioned above. However the approximation problems in these 

spaces were not investigated widely. Meanwhile, some of the fundamental problems of 

approximation theory in the variable exponent Lebesgue spaces of periodic and non 

periodic functions which are defined on the intervals of real line, were studied and solved 

by Sharapudinov see      ). 
 One of the main problems observed in the investigations on the approximation theory is 

the correct definition of the modulus of smoothness that will provide us with a better tool 

to deal with the rate of the best approximation, inverse theorems and also some other 

similar problems. The detailed information regarding to the different moduli of the 

smoothness considered monograph       and also       and        The classical modulus 

of the smoothness, which constructed by using the shift operator           has proved to 

be very useful tool for solving the above mentioned problems in the classical Lebesgue 

spaces. However it is a fact that           is noninvariant with respect to the usual shift 

operator           in general        On the other hand, the Steklov mean value operator 

       
 

 
∫            

 

 

       

is bounded in             which follows from the boundedness of the maximal function in 

                        showed in        By using this result, the first order modulus of 
smoothness 

                
     

‖
 

 
∫                    

 

 

‖
    

  

 was constructed in       and in the term of this modulus were obtained the direct theorem 

of approximation theory in                         and also some results on the 

approximation by the N ̈rlund means of Fourier series in            Similar results under 

the condition of               using some other modulus of smoothness were proved   In 

the more general case, i.e. in the case of                     introducing the modulus 

                
     

‖
 

 
∫                    

 

 

‖
    

 

which is more sensitive than              the direct and inverse theorems were proved by 

Sharapudinov in        In term of                        one general inverse theorem, 

which generalizes the inverse theorem obtained in        was proved in        The 
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basicity problems of some well known trigonometric systems and the uniform 

boundedness problems of some families of convolution operators in the weighted variable 

exponent Lebesgue spaces were studied in       and        respectively.  

We define the  -th               modulus of smoothness              in                 

      and investigate the approximation problems in theterm of this modulus.  

Definition               Let             with            and let 

  
        ∑       

 

   

 (
 
 
)                          

 We define the  -th modulus of smoothness as 

                 
     

‖
 

 
∫   

    
 

 

‖
    

       

It is easily to show that in the case of        const this modulus is equivalent to the 

classical modulus of smoothness defined as         ‖  
      ‖   For              we 

define the best approximation number  

              {‖     ‖           } 

 in the class    of the trigonometric polynomials of degree not exceeding    Throughout 

by                                                  we denote the constants depending on the 

parameters which are given in the corresponding brackets.  

The main direct and inverse results obtained  are as following. 

 Theorem               Let                   Then there exists a positive constant 

       such that for every              and      the inequality  

                                 

holds. 

Theorem         in the case of       was proved in         
Theorem               Let                  Then there exists a positive constant 

       such that for every             and      the inequality 

               
      

  
 ∑                     

 

   

 

holds. 

Theorem         in the case of       was proved in        Denoting by 

   
    

     {                                                     }  
             the variable exponent Sobolev space and using Consequence     in       and 

also the boundedness of            we have the inequality  

                                                            
    

  
  ‖    ‖

    
                                             

which implies by using the standard way, the estimation 

          
    

  
  (    )
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Combining this estimation with Theorem (5.3.2) we have 

Corollary               Let                   Then there exists a positive constant 

       such that for every       
    

    and      the inequality  

          
      

  
   ( 

       )
     

 

holds. 

In the case of      

Corollary         was obtained in        Theorem         also implies  

 

Corollary               If                        then under the conditions of 

Theorem         

              8

                                        
           ⁄                

                                       
   

Hence, if we define a generalized Lipschitz class        
    

     for     and          

        is the integer part of    as 

       
         {                                      }  

 then we have 

 Corollary               If                        then under the conditions of 

Theorem                     
    

       

On the other hand, from Theorem         we also get 

Corollary               If           
    

     with            and for some      then 

                    

Now Corollaries         and         imply  

Theorem               Let                           and let      The following 

statements are equivalent:  

           
    

      

                            

Note that when      is a constant the classical analogues of Theorems         
        proved in the term of the classical  -th modulus of smoothness constructed via 

usual shift          can be found in the monographs we sometimes use the techniques 

developed in       and        First of all, we obtain some important properties of the 

modulus               Subadditivity property of             is immediately follows from 

Definition          that is for               we have 

                                                                                             

 Let        and let           We consider the Steklov operator        defined as 

        (     )       ∫      
      ⁄  

       ⁄  
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 The following lemma was proved in        
 

Lemma               Let            and let          Then the family of the 

Steklov operators         is uniformly bounded in           for               
    i.e., there exists a positive constant      such that 

‖     ‖
    

      ‖ ‖                        

The following lemma shows that the modulus             is well defined.  

Lemma                Let            and       Then there exists a positive 
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 for every positive integer     
Proof:  At first we suppose that              is a continuous function. Then for any     
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If               is not continuous on T, then by density of the set of continuous functions 

                 in            for any     there exist a    periodic continuous 

function   with ‖    ‖         and a number          such that                for 

every         Hence by      and Lemma           
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which implies the required relation                         

 Lemma                Let             Then there exists a positive constant 

        such that for any          and for any function       
    

      the inequality  
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holds .  

Proof:  Since 
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applying r times the generalized Minkowski inequality we have 
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and taking here the supremum we obtain the inequality  

                       ‖    ‖
    

   

 For              and     we define the Steklov mean value function as 
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which plays a crucial role in this work. 

 Lemma                If                           then         
    

     for     
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Proof:  Differentiating     times the terms under the sum in      and setting    
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Since the Steklov mean value function     
     

 is an indefinite Lebesgue integral, its 

absolute continuity on        can be showed by standard way. It remains to prove the 

imbedding     
   

             Differentiating the relation     we obtain 
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which by Lemma          implies the inequality 
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 Let    be a best approximation trigonometric polynomial for               which exists 

in the case of            and is unique when       (see, [           Theorems       

and      ] and also:           ). Let also      be the number, such that        
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using the inequality             
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Corollary (5.3.14)[492]: Let            and       Then there exists a positive constant 
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which plays a crucial role in this work. 
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Since                the relation     means that (  )
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Corollary (5.3.19)[492]: Let                  Then there exists a positive constant 
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exists in the case of            and is unique when       (see, [           Theorems 
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Chapter 6 

The Maximal Operator in Variable Lebesgue Spaces and Atomic Decompositions 

We show a modular inequality with no assumptions on the exponent function, and a strong 

norm inequality if we assume the exponent function is    - H ̈lder continuous. As an 

application of our approach we give another proof of a related endpoint result due to 

H ̈st ̈. There are many ways to prove such boundedness. For example, the boundedness of 

commutators can be proved by the sharp maximal inequalities. But here, we propose a 

different method based upon our atomic decomposition.  As a corollary we get sufficient 

conditions for the modular inequality . 

Section (6.1): Llog L Results 

The Hardy-Littlewood maximal operator is defined for all         
      by  
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 where the supremum is taken over all balls   containing    (Equivalently, the supremum 

may be taken over all balls centered at    or over all cubes   containing   )  
It is well known that for                          but that given any    
                       In fact,    need not even be locally integrable. For 

instance, if we let 
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 so    is not integrable on any interval containing the origin. Wiener       (see also 

     ) proved that    is locally integrable if   is in        More precisely, he showed 

that given any ball     
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The    boundedness results,      have been generalized to the variable    spaces. Given 

an open set   and a measurable function               we define the space          to 

be the space of functions such that for some       
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         becomes a Banach space when equipped with the Musielak-Orlicz norm  
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If the set of     such that           is empty, then we let ‖ ‖              If       

we often write simply       instead of            Given a set   let 
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 For brevity we write             and              
Theorem               Let                be such that            
    Suppose further that      satisfies the log-H¨older continuity conditions  

                    
 

         
                         

and  

                         
 

          
                                        

Then the Hardy-Littlewood maximal operator is bounded on             
Theorem         was first proved by Diening       with the stronger hypothesis that    
  is constant outside of a large ball. The full result was proved independently by Cruz-

Uribe, Fiorenza and Neugebauer       and Nekvinda        (Nekvinda did so with the 

second condition replaced by a somewhat more general condition. The relationship 

between the two conditions is discussed in      .) More recently, Diening       found a 

complex necessary and sufficient condition on      for the maximal operator to be 

bounded. 

 The assumption that        is necessary for Theorem         to be true: in       it was 

shown that if       and      is lower semicontinuous, then   cannot be bounded on 

       Therefore, in this case we are interested in the local integrability of      
Our first result is a generalization of Wiener‟s inequality     with no assumptions on       
Theorem               Given                then for any      there exists a 

constant    depending on  and       such that for any ball     
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where                             
 Remark               When              reduces to      By a straightforward 

estimate, we could prove     with          (and with       replaced by     ) directly 

from     write            where       {   }  estimate the integral of     by     and 

apply Wiener‟s result to the integral of    . 

However, the central feature of Theorem         is that      decreases in size as      

increases, and disappears on the set where           Inequality     implies an 

inequality in the scale of Orlicz spaces:  

                                              ‖  ‖        ‖ ‖                                                       

where           is the Orlicz space                           As a corollary to 

Theorem         we can prove the corresponding inequality in the scale of variable Orlicz 

spaces (also known as Musielak-Orlicz spaces). Let                  be such that 

for each        the function        is nondecreasing, continuous and convex. Assume 

that                       if      and         as         
We also assume that for each       the function        is a measurable function. Define 

the space           to be the set of all functions   such that for some       
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∫            ⁄  
 

  

         

equipped with the norm  

‖ ‖             2    ∫               
 

  

     3   

 If               then       reduces to the space        For complete information on these 

spaces, see Musielak          
A special family of the variable Orlicz spaces is the generalization of the Zygmund spaces 

           If we let                           then   satisfies the above hypotheses 

and we can define the space         Hereafter we will denote this space by                  
Corollary               Given                 there exists a constant   depending 

on       and   | such that  

‖  ‖        ‖ ‖                     

 We can considerably improve the local integrability of    if we assume that      satisfies 

the log- H ̈lder‟s continuity conditions     and       
Theorem               Let                be a function that satisfies     and 

     Given,         then there exist continuous functions      and      such that:  

         is log-H¨older continuous,           whenever      takes on values outside the 

range          and                if      takes values in            
                    if         and        if            
    Given a ball    there is a constant   depending on      and      such that 

                                        ‖  ‖           ‖ ‖                                                            

Remark               In Theorem              is essentially a linear function of       
but in Theorem         it is a considerably more complicated function that is roughly a 

linear function of         It would be interesting to determine the optimal exponent 

function      in each result. (The authors want to thank    H ̈st ̈for suggesting this 

problem.) 

The converse of Wiener‟s inequality. Stein       proved that the converse of     is also 

true. More precisely, he showed that given a ball    if             and            
then  
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 A similar result holds in variable    spaces.  

Theorem               Given a function                 let       {        }  

Then for any ball    if            and ‖  ‖             then ‖ ‖                     

     
Theorem         seems to be an unsatisfactory converse to Theorems         and 

        since       the exponent on the logarithm, is not continuous. One might conjecture 

that a sharper result holds, particularly if      and      satisfy some continuity condition. 
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But surprisingly, given very reasonable continuity assumptions on these functions, a 

sharper inequality cannot hold, as the next example shows. 

 Example               Given exponent functions               and         
       such that                if          and          if           suppose 

that      satisfies the    - H ̈lder continuity condition     and      satisfies the     
    H ̈lder condition  

                              
 

               
                                     

Then there exists a function   supported on a ball   contained in the set where      
   and            such that ‖  ‖            but ‖ ‖                        

 

The local integrability of    when        has also been considered by H ̈st ̈        He 

considered the case when the set {          } hasmeasure    and the set where      is 

close to   is small. More precisely, he showed that if   is a bounded set, and if for 

some     and all     sufficiently small, 

 {                }       where               
         ⁄  

      ⁄  
    

then ‖  ‖       ‖ ‖          The heart of his proof is to show that given 

thesehypotheses, ‖ ‖             ‖ ‖          the desired conclusion then follows 

immediately from inequality      By combining his ideas with those in the proof of 

Theorem         we can give a new proof of his result, one which does not pass through 

the classical inequality.  

Theorem               Given                suppose there exist constants      
          and             such that for           

 {                 }       
Then given any ball    there exists a constant   (depending on              and  ) such 

that  

 

‖  ‖         ‖ ‖           

 

Theorem (6.1.9) is modestly stronger than the original result of H ̈st ̈since we can take the 

domain of   to be unbounded. (If we replace   by    
   bounded, we immediately get the 

same result for any bounded domain.) Further, he assumes that         whereas we allow 

unbounded exponents. 

Proposition                Let                be a bounded measurable function 

and let             and   be positive constants. If        then it is not possible for 

     to satisfy the    -H ̈lder continuity condition     and satisfy  

                          {                  }                                          
A result of the type conjectured above may still be true, but we have no insight on how to 

prove it without    - H ̈lder continuity. 
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We prove Theorem         and Corollary          we prove Theorem          we prove 

Theorem         and construct Example          Finally, we prove Theorem         and 

Proposition           In order to emphasize that we are dealing with variable exponents, 

we will always write      instead of   to denote an exponent function. Unless otherwise 

specified,   and c will denote positive constants which will depend only on the dimension 

   any underlying sets (such as a ball  ), and the exponent function       
The proof of Theorem         requires two lemmas. The first is a generalization due to 

Aguilar Ca ̃estro and Ortega Salvador       of a modular inequality in        For 

completeness we include the short proof.  

Lemma                Given                then for all       

 {              }    {           ⁄ } .
      

  ⁄
/

    

     

Proof:  Fix      and write            where            {           ⁄ }     Then for 

all            ⁄   so  

                               ⁄   
Therefore, by the weak       inequality for the maximal operator (see      ), and since 

        
  {               }   {                 ⁄ }   

   ∫
      

  ⁄

 

{           ⁄ }

       ∫ .
      

  ⁄
/

     

{           ⁄ }

     

 To state the second lemma, recall that a function   is    -convex if      is convex. 

 Lemma                For any      the function  

     8

    

  
                 

                      
 

is    -convex. In particular, given           for all              
                       

Proof: We first use the power series expansion of    to show that  

                                                           
    

      
     

 
                                                             

Since           for all       

      ∑
           

     

 

   

     ∑
           

       

 

   

 
 

      
∑

         

   

 

   

   
    

      
  

We now show that                is convex by showing that           

       
 

  
   

          

       
     

 

  
   (

 

     
*
 

      

 (The middle inequality follows from     .)  
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Finally, to establish the desired inequality, we first let        Then by logconvexity we 

have that for all        
                                                

Now fix     and        Then  

       
       

    
                  ⁄   

Since this inequality is true for any      replace a by  ̅              then we get that  
 ̅    

    
  ̅      ̅      ⁄   

which in turn implies  
 ̅    

  
         ̅      ̅              ̅      ̅      ⁄    

Given the exponent function       fix a function f such that the right-hand side of     is 

finite. Without loss of generality we may assume that   is non-negative.  

Fix     and define the function   ̅ by 

 ̅    8

      

 
                           

                             
 

For all           ̅           Fix a ball    then  

∫     
 

 

         ∫      
 

{           }

    

       ∫  {              } 
 

 

      

by Lemma           

        ∫ ∫ .
    

  ⁄
/

  ̅    

{         ⁄ }

  

 

      

by the change of variables       ⁄  this becomes 

        ∫ ∫ .
    

 
/

  ̅    

{        }

  

 

      

by Fubini‟s theorem, 

        ∫ ∫    ̅           ̅    
     

 

 

{        }

     

We evaluate the inner integral depending on the size of  ̅     If  ̅         then  

∫    ̅       
     

 

 ∫        
     

 

              

If  ̅         then 
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 ∫    ̅       
     

 

  
 

 ̅     
 (         ̅   )       

 If     ̅          then we actually have that     ̅            Thus, since   is 

such that           

∫    ̅       
     

 

  
       ̅   

 ̅     
 (       ̅     ) 

  (
     ̅        

 ̅     
)    

by Lemma          with           with   replaced by  ̅       and with   replaced by 

      we have that 

                     ̅                 ̅       
Returning now to our original estimate, if we define the sets  

   {           }  {   ̅      }  
     {           }  {   ̅       }  

   {           }  {     ̅         }  
then 

      ∫ ∫    ̅    
    

 

 

{        }

       ̅       

        ∫      ̅            
 

  

     

     ∫      ̅    
 

  

    

     ∫      ̅      
 

  

               ̅                 

       ∫         [   (      )]
    

 

{        }

   

        ∫         [   (      )]
    

 

  

     

This completes the proof.  

 Fix a function   and a ball    then we can apply Theorem         to the family of 

functions          to get 

           ‖  ‖       

    2    ∫         
 

 

          3 

     2    ∫        ⁄                   ⁄         
 

  

    3  

 ‖ ‖                      
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In our proof we need a few basic facts about variable    and Orlicz spaces. For proofs, see 

Kov ́ ̌ik and R ́kosn´ık       and Musielak [     Section       ].  

Lemma                Given the exponent function                if ‖ ‖          

    then  

∫          
 

 

    ‖ ‖           

Conversely, if 

 ∫           
 

 

         

then ‖ ‖              

Lemma                Given variable Orlicz spaces        and         if         
                  then for all   ‖ ‖            ‖ ‖            

Similarly, given any ball    if for some                                    then 

there exists a constant   depending on     such that‖ ‖            ‖ ‖           

The proof also depends on the following lemma due to Capone, Cruz-Uribe and 

Fiorenza        who used it to give a new proof of the boundedness of the maximal 

operator on variable    spaces.  

Lemma                Given                such that               and 

such that     and     hold, then there exists a bounded function   such that if 

‖ ‖              then 

              (        )          
Lemma                Let   and   be two functions that satisfy the    - H ̈lder 

conditions     and      Then          and          also satisfy these conditions. Proof 

of Theorem          Fix          We first define r(x). Let  
                                                      

Since      is     H¨older continuous,        so 

                                 
hence,        satisfies     and      and so      does as well. Now let 

                     Then by Lemma               satisfies     and      If        

or if             then            If   is such that                 then    
               
To define      we first modify       Let    {             } and let  

        
    

       

(If   is empty, let           ) Define   ̃                 and let  

        .
 

 
  .  

 

  
 

    

  ̃   
 /   /   

By Lemma           ̃    is     H¨older continuous, so      is continuous. Since 

 ̃                   we have               Furthermore, if             
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              so              Thus for all         ̃                  
Therefore, if   is suchthat          then  

    

 ̃    
  

   

     
    

 

  
  

 Hence, if                    Similarly, if            ̃              so 

          

Now fix   and                          by homogeneity we may assume without loss of 

generality that ‖ ‖                     Then by Lemma          ‖ ‖               nd by 

Lemma           

∫           
 

  

        

 To complete the proof, again by Lemma          it will suffice to show that 

                                               ∫         
 

 

                                                                  

where   depends only on        and        
We define the following sets:  

   {                           }  
   {                             }  

   {                 }  
Now divide the integral in      into three pieces:  

∫         
 

 

     ∫          
 

  

     ∫          
 

  

     ∫          
 

  

     

We estimate each integral in turn. The first is straightforward:  

∫          
 

  

                  

To estimate the second, first note that since             

 ∫          
 

  

    ∫          
 

  

    

If                   ⁄       and            ⁄   is    - H ̈lder continuous, so by 

Lemma            

   ∫  (               ⁄  ⁄ )
    ⁄

 

  

      ∫         ⁄
 

  

     

 Since the maximal operator is bounded on      ⁄  and   is bounded,  

   ∫           
 

  

       

     
Finally, to estimate the third integral, since ̃    satisfies the hypotheses of Lemma          

we have that 
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 ∫          
 

  

    ∫       ̃   
 

  

    

   ∫  (       ̃   )
 

  

    ∫     
 

  

   

    ∫  (       ̃   )
 

  

       

 

 Now apply Theorem         with exponent       ̃    and with  replaced by   ⁄  to get 

         ∫              (  |      ̃   )
    

 

   

     

           ∫                             
 

   

    

        
This completes the proof.  

 Fix a ball   and   with              Without loss of generality we may 

assume ‖  ‖              so by Lemma          ‖  ‖          Hence, by      Stein‟s 

converse of Wiener‟s inequality,  

∫                   
 

 

        

where   depends on      Therefore,  

 ∫                             
 

  

    

 ∫                    
 

{        }

   ∫           
 

{        }

     

 ∫                    
 

{        }

   ∫           
 

{        }

        

so by Lemma          ‖ ‖                  is finite.  

The construction of Example         requires one lemma whose proof will be given after 

the construction itself. 

 Lemma                 Let                             be such that             
  satisfies    and      satisfies      If we define  

                                  

 then there exists a constant   such that for all                           
Proof : Fix              since         is contained in this interval, there exists an 

interval            containing   such that 

      
 

   
 ∫    

 

 

    

Therefore, 
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            ⁄      ∫            ⁄      

 

 

     

We now apply the continuity assumptions on      and       First, from     we have that 

      ⁄               ⁄             ⁄             

       ⁄                              ⁄             ⁄        
Similarly, we have for each       that 

       ⁄                  ⁄        
 Exactly the same argument using     shows that                and                  
Hence,  

     

    
              ⁄      

 

   
 ∫             ⁄      

 

 

     

 Since the function             ⁄        is decreasing, we can increase its average by 

taking the average over the interval        Thus, since            
     

    
                ⁄      ∫               ⁄       

 

 

            ∫         
 

 

   

    
This completes the proof.  

The proof is initially very similar to the proof of Theorem          Fix a function    
            Without loss of generality we may assume that   is non-negative. We may also 

assume that ‖ ‖              so by Lemma            

∫          
 

  

       

 Fix a ball    then again by Lemma          it will suffice to prove 

                                                                         ∫     
 

 

                                               

 where   depends only on            and       Fix       and define the function 

  ̅    8

      

    
                   

                        

 

 where the value   will be chosen below and will depend only on    Note that          
    ̅          for all    
We now argue exactly as we did in the proof of Theorem         to get  

                    ∫     
 

 

           ∫
         ̅   

 ̅     
      ̅   

 

{        }

         

To estimate this integral, we decompose the set     {               }  Choose 

    so that         For        let                    Define the sets  

   {                 }  
   {                        }        
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Then      ⋃   
 
     and by hypothesis, if                   

We further subdivide the sets           define  

   8            .
    

    
/

   
     

9   

    8             .
    

    
/

   
     

9   

Then the right-hand side of      is bounded by 

  ∫
         ̅   

 ̅     
       ̅    

 

  

     ∑∫
         ̅   

 ̅     
       ̅    

 

  

 

   

    

  ∑∫
         ̅   

 ̅     
       ̅    

 

  

 

   

   

            
 We will estimate each term separately. To estimate     we now fix           Then for 

all        ̅            so  

     ∫
            

      
           

 

  

             ∫         
 

  

         

 

(Here the constant   depends on        and  .) To estimate     first note that the integrand 
in each term is bounded by 

         ̅    

 ̅     
       ̅       ̅         

         ̅    

 ̅     
           

We will now show that the fraction on the right-hand side is bounded by    On      

  
     

    
  ̅      

   

    
  

 Therefore, on     

         ̅    

 ̅     
  (

     

    
*
   

   
      

  
     

    
 (

     

    
*
  

      

so we have that  

      ∑∫          
 

  

 

   

      ∫          
 

  

         

 Finally, we estimate     By the definition of     

       ∑∫
     ̅    

 ̅       

 

  

 

   

      ∑.
    

    
/

    
     

 (   
  

   
 )

 (
     

    
*
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We estimate the  -th term:  

.
    

    
/

    
     

 (   
  

   
 )

 (
     

    
*
  

      

  .
    

    
/

    
     

 (   
  

   
 )  

      

      (.
    

    
 (   

  

   
 *   /    .

    

    
/   + 

       (.
    

    
  

  

   
   /    .

    

    
/   +    

since             

       (.
    

    
 

 

 
/    .

    

    
/   +    

by the definition of       

    ((   (
    

   
*     (

    

         
** (

    

      
 

    

         
 

 

 
*   +   

Since   
 

 
              Hence, for all   sufficiently large, there exists     such 

that the exponent is dominated by –     Therefore, we have that for some large constant     

     ∑     

 

   

     

Combining the previous three estimates, we see that      holds; this completes our proof.  

 Assume to the contrary that there exists      that simultaneously satisfies     and      We 

will derive a contradiction. There are two cases.  

Case    If there exists a ball   such that            then, since     implies that      is 

continuous, there exists       such that             
In this case, we begin by observing that                                is strictly 

increasing and so invertible. Therefore, we can rewrite     as  

|{              }       
       

 for all     sufficiently close to     
Similarly, if we apply the    -H¨older condition     in a neighborhood of     we get that 

for all   sufficiently close to      

         
 

            
   

 Hence, for all s sufficiently small,  

{              }  {              
 

        
}   
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and, in particular,  

                               8              
 

   (
 
 )

9                                           

where    is the volume of the unit ball in     Now define                 by  

       
 

        
   

Then   is also strictly increasing and invertible. Thus we can rewrite      as  

  (      )
  

  {              }   
for all     sufficiently close to     
Therefore, we will get the desired contradiction if we can show that for all such     

   
         (      )

  
  

 or equivalently that  

    (      (      )
  
)  

To show this, note that if we take   sufficiently close to    then we have that  

   (            
   

   
 )   

         

   
 , 

            
            

Thus, for all such     

  (      (      )
  
)          

           
              

       
             

 

          

        
    

       
        

  
   

  

          
        

            
         

 

            

     
This is the desired contradiction, which completes the proof of Case     
Case     Suppose that        but          for all        Then there exists a sequence 

{  } such that       and           as       Furthermore, by passing to a 

subsequence we may assume that for all   and              Now fix any      Then 

there exists     such that if                     But then by condition      there 

exists          such that if          for some        then              The 

balls        are disjoint, so their union has infinite measure. Therefore, the set {       
             } has infinite measure. This contradicts the assumption that     holds, and 

our proof is complete. 
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Section (6.2): Hardy Spaces with Variable Exponents and its Application to Bounded 

Linear Operators 

We apply the atomic decomposition results of Hardy spaces with variable exponents, 

which was partly obtained in our earlier        to the boundedness of linear operators and 

to compare it with the atomic decomposition results of classical Hardy spaces.  

Before we describe Hardy spaces with variable exponents, let us recall classical Hardy 

spaces. Let         The Hardy space        is given by the set of all distributions 

          for which the quasi-norm ‖ ‖   ‖        
    ‖   is finite, where 

{   }    denotes the heat semigroup. 

 we replace        with            The space          is called variable Lebesgue spaces 

and initiated by Nakano        As a counterpart for Hardy spaces, we are led to 

considering Hardy spaces with variable exponents where we work mainly on. Now let us 

describe Hardy spaces with variable exponents and their decomposition results. Let 

              and         be measurable functions. Then define the variable 

Lebesgue quasi-norm ‖ ‖      of     

                         ‖ ‖         2     ∫ (
      

 
*
     

  

       3                              

where         The space           is the set of all measurable functions   on   for 

which the quasi-norm ‖ ‖     is finite.  

Here and below, we shall postulate the following conditions on        

(    H ̈lder continuity)             
 

          ⁄  
             

 

 
             

(decay condition)             
 

            
                                                  

The Hardy space           with variable exponent      is given by the set of all 

distributions           for which the quasi-norm  

                                                ‖ ‖       ‖   
    

      ‖
     

                                              

 is finite. If we assume                                             and 

      then, from Proposition         below, the Hardy–Littlewood maximal operator   is 

known to be bounded on           and from the reflexivity of            we can prove 

                   with norm equivalence.  

First, denote by      
 

     the set of all       -functions with compact support. For 

                  
   denotes the set of all polynomialswith degree less than or equal to   

and      
   {  }  The space     

   is the set of all integrable functions   satisfying 

∫               
 

        and  ∫       
 

         for all multiindices   such that 

       By conven-tion,      
    is the set of all measurable functions. For    

           we define      
   

          
 

         
     If   depends on some 

parameters such that s, then we write          
We define  
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                      {    ⁄       }  

for           
 Theorem               Let      satisfy              as well as      and 

     Let      { } and           
     Let      when        and       when        Suppose that we are given 

countable collections of cubes {  }   

 
   of non-negative numbers {  }   

 
  and of 

     
   

    -functions {  }   

 
such that  

                                                (  )      ‖  ‖       
                                   

 

that 

      

                                              ‖‖4∑(     
)
 

 

   

5

 
 

‖‖

     

                                                 

Then the series    ∑     
 
     converges in           and satisfies 

‖ ‖        ‖‖4∑(     
)
 

 

   

5

 
 

‖‖

     

 

      Let               Then there exists a decomposition 

   ∑    

 

   

  

in        by means of countable collections of cubes {  }   

 
   of nonnegative 

numbers {  }   

 
 and of      

        -functions{  }   

 
such that 

|  |     
  

and that        

 ‖4∑(     
)

 
 

   

5

  ⁄

‖

     

   ‖ ‖       

 Here and below, we use the following convention about cubes: By a “cube” we mean a 

closed cube whose edges are parallel to the coordinate axes. Its side length is denoted by 

     and its center by     For        denotes a cube concentric to   with sidelength 
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In [     Theorems     and    ], the possibility when           was excluded but 

actually it is possible by Theorem          Next, we present a decomposition result for 

compactly supported functions.  

Theorem               Let                        and           Suppose 

         
   

      is supported on a cube    Then there exists a decomposition    

 ∑     
 
     by means of finite collections of cubes {  }   

 
   of non-negative numbers 

{  }    

 
 and of      

   
     -functions {  }   

 
such that  

‖  ‖   |  |
   

                                    

and that  

‖‖4∑(     
)
 

 

   

5

 
 

‖‖

     

    ‖ ‖       

For comparison, we dare repeat to state Theorems        and         for        spaces as  

Theorems         and           
Theorem               Let                 {     } and            Suppose 

         
     Suppose that we are given countable collections of cubes {  }   

    of nonnegative 

numbers {  }   

 
  and of      

 
    -functions {  }   

 such that  

             ‖  ‖        
     

and that  

   ‖∑      

 
    ‖

  
      

Then the series     ∑     
 
     converges in        and satisfies 

‖  ‖     ‖∑     

 

   

 ‖

  

     

      Let     and         Let            Then there exist a decomposition    
∑     

 
     in        by means of countable collections of cubes {  }   

    of non-negative 

numbers {  }   

 
 and of       

        functions {  }   
  such that  

        
   

and that     
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‖4∑(     
)

 
 

   

5

   

 ‖

  

    ‖  ‖    

 

Theorem               Let               and        satisfy           Let 

          
   

      Then there exists a decomposition    ∑     
 
     by means of finite 

collections of cubes {  }   
   of non-negative numbers {  }   

 
 and of       

   
    -

functions {  }   
  such that 

        
 

and that        

 

‖4∑(     
)

 
 

   

5

   

 ‖

  

    ‖  ‖   

 Remark that Theorems         and         are already included in       and that 

Theorems            and         with       are included in [     Theorems     and    ].  

Let us look back on the history of spaces with variable exponents. It seems that the theory 

dates back of Orlicz        Later, Nakano and Luxemberg independently considered 

spaces of variable exponents       in         Especially, the definition of the variable 
exponent Lebesgue spaces can be found in        It had been left intact until Kovacik and 

J. R´akosn´ık investigated Sobolev spaces based on Lebesgue spaces with variable 

exponents. About the fractional integral operators, much was studied from earlier. From 

the point of harmonic analysis, Diening paved the theory of the boundedness of the Hardy–

Littlewood maximal operator in        Based upon the pioneering        many 

investigated the boundedness of the Hardy–Littlewood maximal operator in        With 

the boundedness of the Hardy–Littlewood maximal operator, the boundedness of other 

related operators (see       for example) and the theory of function spaces (see       for 

example) are developed rapidly. See also surveys        In       variable exponent 

Campanato spaces are defined in the setting of quasimetric measure spaces. As for Hardy 

spaces with variable exponents, see        as well as        Among others, in addition to 

the recent development about the spaces with variable exponents, the localization principle 

proved by Hasto is important        which seems to have a connection with the proof of 

the Hardy–Littlewood maximal operator. For their precise statements of the key facts, 

which we use, see to Proposition         here.  

We learn that spaces with variable exponents are difficult to analyze. The main reason was 

the difficulty of the proof of the boundedness of the Hardy–Littlewood maximal operator ; 

Diening works paved the way. See       .  
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Apart from the development of spaces with variable exponents, the classical Hardy space 

       has three different aspects as was described by Stein        When      
         contains distributions which are not     

      functions. When             

is strictly embedded into         When         by virtue of reflexivity of        

and the boundedness of the Hardy–Littlewood maximal operator,        and        

coincide as a subset of         To have a unified understanding of this strange but 
important phenomenon, we can use Lebesgue spaces with variable exponents. Notice that 

we did not require that       nor that       in Theorems         and          So, once 

we propose a framework of Hardy spaces with variable exponents, we can treat them in a 

unified manner.  

Frst, we recall some elementary facts for variable Lebesgue spaces. Then we prove 

Theorems         and          we shall review some fundamental facts for variable 

exponent Lebesgue spaces. is intended as a quick review of key inequalities in variable 

Lebesgue spaces collects a maximal inequality. We recall and supplement some basic facts 

about Hardy spaces with variable exponents is the heart of the present   . Theorem 

            Theorem             and Theorem         are proved and  

we consider applications of Theorems         and           deals with fractional integral 

operators. is devoted to the review of the definition and the boundedness of the singular 

integral operators. intends as the definition and the boundedness of commutators. The 

Fefferman–Phong inequality is considered   where we are convinced that we essentially 

improve the result of        By the Fefferman–Phong inequality, or the trace inequality, we 

mean  

                                                 ‖     ‖    ‖ ‖   ‖ ‖                                              

 

for some Banach spaces     and    When   and   are Morrey spaces, namely, if their 

norms are given by 

‖ ‖   ‖ ‖
   

      
    

   
 
  

  
 
  .∫          

 

 

/

    

  

and 

‖ ‖  ‖ ‖
   

      
    

   
 
  

  
 
  .∫          

 

 

/

    

  

then      is referred to as the Olsen inequality. In        for       Olsen considered 

     to investigate the Schr¨odinger equation with   being Morrey spaces. Later, many 

authors considered and sharpened      with        see       for related results. We take 

up the Hardy operator   Finally  we disprove that the Fourier transform is not bounded from 

          to             even when the exponent      satisfies              as well 

as      and       
We consider      under the conditions      and       
Note that                 exists in view of       From       and      it follows 

that 
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Observe that      is equivalent to the following estimate; 

                                     
 

            
                                              

Note that      is equivalent to |                    |      that is  

                                    
            

           
                                                                

Among other related in equalities, we recall the following localization principle due to 

H ̈sto        
 Proposition               Under the conditions      and       the equivalence 

‖ ‖       ( ∑ (‖          ‖
     )

  

 

    

+

   ⁄

(            ) 

holds. 

we still need the following Fefferman–Stein type inequality for the Hardy–Littlewood 

maximal operator    which is given by 

                                                    
      

 

   
∫         

 

 

                                            

Here      denotes the set of all cubes containing x. We invoke the following estimate: 

 Proposition               Let      satisfy 

              

as well as      and       For every                

 ‖4∑   
 

 

   

5

  ⁄

‖

     

           ‖4∑    
 

 

   

5

  ⁄

‖

     

    

Proposition         seems to have been a hint of defining the sequence norm in Theorems 
        and          An important fact illustrated in              was that we can not 

replace   with variable exponents. 

The following results for variable Hardy spaces are known and in the present    we take 

them for granted: first, we recall some of equivalent expression about Hardy spaces with 

variable exponents. We topologize       by the collection of semi-norms {  }    given 

by  

       ∑    
     

                

 

     

  

for each       Define  
                                            {                }                                               

Let            Denote by    the grand maximal operator given by  

         {                            }   
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where we choose and fix a large integer    Below we write      {           
 }  The Fourier transform and its inverse are defined respectively by  

      
 

    
 
  

∫               
 

  

    

        
 

    
 
  

∫              
 

  

    

Theorem               ([     Chapters   and  ]). Let      satisfy           
  as well as      and       Let           and let          satisfy the non-

degenerate condition ∫       
 

       Let           be chosen so that            

        Define                                          Then the following are 

equivalent : 

                  
     ‖  ‖      is finite.  

      ‖        
            ‖      is finite.  

        ∑    
 
       holds in        and‖(∑        

    )
 

  ‖
     

     

If one of these conditions is satisfied, then 

‖ ‖      ‖  ‖      ‖   
   

|
         

  
|‖

     

 ‖‖4 ∑       
 

    

5

 
 

 ‖‖

     

 

holds. 

 Proof: The conditions       are equivalent as we can see [     Chapter  ]. Assume 

              Then by [     Chapter    ], we have 

‖ ‖      ‖‖4 ∑       
 

    

5

 
 

 ‖‖

     

     

Let us show that    ∑    
 
      holds in          Set     ∑    

  
     for each    

   Then {  }    is a Cauchy sequence in            Denote by   its limit in 

           Since it is established in [     Remark    ] that                    it 

follows that    ∑    
 
      holds in         Since       has frequency support in 

{ }      agree with a polynomial   in         Since          belongs to            
we must have        Thus, it follows that 

       ∑    

 

     

 

holds in          
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then {∑    
 
    }

   

  
is a Cauchy sequence in           because we know that 

‖ ‖       ‖‖4 ∑       
 

    

5

 
 

 ‖‖

     

 

for all               (See [     Section    ].) Hence {∑    
 
    }

   

  
is convergent to an 

element               The convergence takes place in the topology of        as well. 

Thus, it follows that 

       
   

∑    

 

    

                 

To state some fundamental embeddings, we define  

              (⋂     
   

 

    

+   

Theorem               Let      satisfy              as well as      and        

                            in the sense of continuous embedding.  

          

          
     is dense in             

Proof: The inclusion                  is proved in [     Remark    ]. We also know 

that      

          
      is dense in            (See [     Section  ].) The inclusion 

                 holds since                                       
We modify the proof of our earlier        Actually, the following key lemma is improved:  

Lemma               Let 

                                                                                                                 

Suppose that we are given countable collections of cubes {  }   
    of nonnegative numbers 

{  }   
  and of      

        -functions {  }   
  such that  

                                      (  )     ‖  ‖    |  |
  ⁄

                                                   

Then        

 

 

 ‖‖4∑        
  

 

    

5

 
 

‖‖

     

    ‖‖4∑(     
)
 

 

   

5

 
 

‖‖

     

     

Remark that the condition      was     in our earlier [     Theorem    ].  

Proof: As before, we can assume that the sums are essentially finite. Choose a positive 

function      
(     ⁄ )

 

     so that  
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 ‖‖4∑        
  

 

    

5

 
 

‖‖

     

  4∫ ∑|       |
 
      

 

   

 

  

5

 
 

    

Then by the H ̈lder inequality, we obtain 

∫ ∑|       |
 
      

 

   

 

  

  ∑      
  

 

    

∫ |     |
 

 

  

       

 ∑  |  |
  

 

    

(‖  ‖  )
 
‖ ‖

 
(  ⁄ )

 

    
  

If we invoke       then we have 

∫ ∑|       |
 
      

 

   

 

  

 ∑|  |
 
(|  |

  ⁄
)
 

 

   

‖ ‖
 

(  ⁄ )
 

    
 

 ∑∫ |  |
 
   

    [ 
(  ⁄ )

 

]
 

  

 

   

   
 (  ⁄ )

 
⁄

    

An arithmetic shows 

.
 

 
/

 

  2.
    

 
/

 

 3

 

  
 

 
 

  

 
         

Thus, we can use H ̈lder inequality and obtain the desired result.  

Now we prove Theorem          
 Assume for the time being that       with finite number of exception. Fix         

satisfying the non-degenerate condition ∫             As weshowed in              we 

have 

              
           

   
       

            

This pointwise estimate yields 

 

‖  4∑     

 

   

5‖

     

 

 

   ‖∑      

 

   

    ∑  (    
)

       

 

 

   

‖
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   ‖∑      

 

   

   ‖

     

 ‖∑  (    
)

       

 

 

   

‖

     

  

 
Therefore, by Proposition         and Lemma          we obtain 

 

       

‖  4∑     

 

   

5‖

     

 

 

    ‖‖8∑(      
   )

 
 

   

9

 
 

‖‖

     

 ‖∑  (    
)

       

 

 

   

‖

     

 

 

   ‖‖8∑(     
)
 

 

   

9

 
 

‖‖

     

  

 

In summary, we obtained 

      

                    ‖  4∑     

 

   

5‖

     

   ‖‖8∑(     
)
 

 

   

9

 
 

‖‖

     

                             

Therefore, the result is proved if   has only a finite number of non-zero entries.  

Suppose that we are given countable collections of cubes {  }   
    of non-negative 

numbers {  }   
   and of      

        -functions{  }   
  satisfying      and       Then from 

      we learn that 

                   ‖  4 ∑      

  

    

5‖

     

   ‖‖8 ∑ (     
)
 

  

    

9

 
 

‖‖

     

                          

for              Therefore, {∑     
 
   }

   

 
  is a Cauchy sequence in           and 

converges to an element               Since           is known to be embedded 
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continuously into         it follows that the sequence {∑     
 
   }

   

 
 converges to   in 

        Note that 

   
   

‖‖8∑(     
)
 

  

   

9

 
 

‖‖

     

 ‖‖8∑(     
)
 

 

   

9

 
 

‖‖

     

  

by the monotone convergence theorem. Consequently, from      and the Fatou lemma, we 

deduce 

‖ ‖            
   

‖  4∑     

 

   

5‖

     

   ‖‖8∑(     
)
 

 

   

9

 
 

‖‖

     

 

and Theorem          was proved. 

  

We invoke the following decomposition result from         
Lemma                Let     {             }and       Suppose that           

with        Then there exist collections of cubes {    
 }    

 and functions {    }    
 

      
       and a decomposition             ∑     

 
    

   such that 

 

 

(i) The {    
 }    

have the bounded intersection property, and  

⋃     
 

 

    

 {     }      

     Each function      is supported in     
  and 

∑     

 

    

   {     }           

      The distribution    satisfies the inequality: 

         (      {     }      ∑
    

     

(     |      |)
     

 

 

+   

for         
     Each distribution      is given by                    with a polynomial      

       satisfying  ∫            
 

       for all            and  

           (          
     

      
     

|      |
      

       
 ⁄    +          
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 In the above,     and      denote the center and the side-length of     
   respectively, and 

the implicit constants are dependent only on     
the routine argument described in       and the density result obtained in        we can 

assume that                  with              For each       consider the level set  

                                            {              }                                                  

Then it follows immediately from the definition that  

                                                                                                                                      

 If we invoke Lemma           then   can be decomposed; 

               ∑    

 

 

                      

where each      is supported in a cube     
  as is described in Lemma           We have 

shown in              

                                                     ∑  (       )

 

    

                                                    

with the sum converging in the sense of distributions. Here, going through the same 

argument as the one in          –      we have an expression;  

                                       ∑    

 

    

           ∑    

 

  

                                    

in the sense of distributions, where each       supported in     
   satisfies the pointwise 

estimate |       |     
  for some universal constant    and the moment condition  

∫        
 

             for every            With these observations in mind, let us 

set 

      
    

   
 
          

   

Then we automatically obtain that each      satisfies  

|    |       
           

    

and that 

     ∑        

 

   

  

 in the topology of                  since            It remains to prove the estimate 

of coefficients; once this can be achieved, we have only to rearrange {    }    and {    }     

From the definition we need to estimate 

        

‖4∑|     
|
 

 

   

5

  ⁄

‖
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{
 
 

 
 

     ∫ 4∑4
         

    

 ‖     
 ‖

     

5

 
 

    

5

      
 

 

  

     

}
 
 

 
 

  

Since {    
 }  forms a Whitney covering of    (see Lemma             ), we have        

 ‖4∑|     
|
 

 

   

5

  ⁄

‖

     

 

    

{
 
 

 
 

     ∫ 4 ∑ (
     

   

 
+

  

    

5

    
 

 

  

        

}
 
 

 
 

   

Recall that         for each      (see      above). Consequently wehave 

∑ (
     

   

 
+

  

    

 4 ∑
     

   

 

  

    

5

 

 4 ∑
     

    ⁄    

 

 

    

5

 

    

Thus, we obtain 

       

‖4∑|     
|
 

 

   

5

  ⁄

‖

     

     {     ∫ 4 ∑
     

    ⁄    

 

 

    

5

    
 

  

    }  

 

We deduce from       the definition of    that 

 

∫ 4 ∑
     

    ⁄    

 

 

    

5

    
 

  

    ∑ ∫ .
  

 
/

     

      ⁄

 

    

    

 ∫ (
     

 
*
     

  

     

Therefore, we obtain 

‖4∑|     
|
 

 

   

5

  ⁄

‖

     

      2     ∫ (
     

 
*
     

  

     3 

                                                        ‖ ‖                                                     

if           
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 Under a special setting that          
   

       we shall reexamine the proof of Theorem 

        we need to consider the truncation with respect to    This consists of two steps.  

As the first step, we consider a truncation with respect to    We disregard       for some 

    According to the proof of Theorem     in        we know the structure of        More 

precisely,  

         2
 

   
  (

    

           
*
       

‖ ‖                   3   

Recall that    is given by      and that we have       Therefore, there exists      such 

that  

                                                                                                                                       

for all        Then 

    (   )        4     ∑ ∑    

 

 

 

    

5           

and 

     |   
   |     

           (    
    

      *                                                    

Here    is a constant that needs to be specified. Let            Then  

                                    ‖     ‖
        ‖  ‖        ‖ ‖                                       

 The next step is, roughly speaking, to truncate of   and   such that        Fix       

and write                             Recall that      is supported in      
       If 

        then       Thus, in view of the expression      and the bounded overlapping 

property of      
   we have 

∑ ∑|       |

 

   

 

    

 ∑ ∑|       |

 

   

     

    

   ∑            

 

       

           

This means that 

         4∑ ∑|       |

 

   

 

    

5               ∑ ∑|       |

 

   

 

    

                   

fg 

                        
‖   ‖

     

‖ ‖     
  ‖ ∑     

 

                   ⁄

‖

  

       
 
                               

Set 

    
‖   ‖

     

‖ ‖     
∑     

 

                   ⁄
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Then, from                     and       we conclude  

       
   

  
  ∑          

 

       

 
‖ ‖     

‖   ‖
     

   

 is the desired finite decomposition.  

Now we investigate the boundedness of fractional integral operator    of order    which is 

given by  

        ∫
     

         

 

  

             

 Theorem                Let      satisfy 

                                                                          
 

 
                                                

as well as      and       Define an index      by  

                                         
 

    
   

 

    
   

 

 
                                                         

Then Iα, which is defined initially on      
                 can be extended to a 

bounded linear operator from           to            
The following lemma, dealing with quantitative information, is necessary for the proof:  

Lemma                Let            Let      satisfy      as well as      and 

      Define      by       Then, for sequences {  }   
   of cubes and {  }   

  of non-

negative numbers, we have 

‖∑       
    

 

   

‖

     

   ‖∑     

 

   

‖

     

  

Proof: By Proposition          we may assume that each   is a dyadic cube, namely, 

               ∏ [             ) 
    for 

 (    )  (                     )         

 Indeed, if we let         ∏ [            ) 
    be a (non-unique) dyadic cube such that 

        |   | and that the triple 

          ∏[               )

 

   

 

engulfs     then we have 

‖∑       
    

 

   

‖

     

   ‖∑   (   )
 
(     

)

 
         

 

   

‖

     

  

Assuming that the assertion is true for dyadic cubes, we obtain 
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‖∑       
    

 

   

‖

     

   ‖∑      

 

   

‖

     

 

   ‖∑  (    
)

 
 

 

   

‖

     

 

   ‖∑     

 

   

‖

     

 

and our claim that    is dyadic is justified. Since dyadic cubes form a grid, that is,       

equal   or   as long as two dyadic cubes   and   intersect, we can assume that        

for              With these two reductions in mind, let us prove the lemma. Write  

      ∑     
   

 

   

       ∑       
    

   

 

   

    

Assuming that ‖ ‖           let us prove that ‖ ‖           We distinguish two cases:  

Case             for each    

 Case             for each    

 

First assume Case      Fix        Then we have  

|  |
 
    |  |

 
   ‖   

‖
     

  
 

  
   

by virtue of       From this, we have 

         ∑   ( (  )
 
      (  )

  
  

     *

 

   

   

Thus, since we are assuming      and       we obtain  

           
    
               

by virtue of our reduction that each {  }   
   is a dyadic cube and       for       

       Thus,  

∫          
 

  

      ∫         
 

  

        

Next, assume Case      Then we have  

|  |
  
    ‖   

‖
     

  
 

  
  

which shows ‖ ‖           
Going through the same argument as Case      we obtain  
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Hence, since in each               and   are constant functions and we are assuming 

      if we denote      (
 

 
 
 

 
     

 

 
)  then we obtain 

 

‖ ‖      ( ∑         
  

 

     

+

 
  

  

   ( ∑         
  

 

     

+

 
  

 

 ‖ ‖     

  
     

 by virtue of the localization principle, Proposition          Thus, in Case      the proof is 

complete as well. Combining Cases     and      we obtain 

‖ ‖       4‖ ∑       
    

    

 

         

‖

     

 ‖ ∑       
    

    

 

         

‖

     

5      

and the proof is therefore complete.  

We may assume          
         with      in view of the density of      

         in 

           Then we have 

 

   ∑    

 

   

 

as we described in Theorem          By virtue of the moment condition  

           ∑
       

   

( (  )  |   (  )|)
     

 

   

   

    ∑       
     

   
     

 

 

   

     

Since we can take   large enough, we can assume 
     

 
     

Thus, by Proposition          it follows that 

‖   ‖        ‖∑       
     

   
     

 

 

   

‖
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   ‖∑       
    

 

   

‖

     

  

If we invoke Lemma           then we have 

‖   ‖        ‖∑     

 

   

‖

     

   ‖ ‖       

This is the desired inequality.   

 

By a “singular integral operator”, we mean an       -bounded linear operator T equipped 

with the kernel   satisfying the following properties:  

      is a C-valued measurable function on             where diag is a diagonal set 

given by      {                   }  
     On             the size estimate  

                   
holds. 

       If                          satisfy                    then the H ̈lmander 

estimate 

                                   
      

        
  

holds.  

     If          
       then  

       ∫           
 

  

   

for almost all                A well-known fact in harmonic analysis is that   can be 

extended to a bounded linear operator on        for all         Thus, with this fact, 

we tacitly assume that   is defined on ⋃        
       In [     Proposition    ], we 

proved the following result: 

 Theorem                Assume that                Given a singular integral 

operator   above,    restricted to                   extends to a bounded linear 

operator from          to            
we investigate the boundedness of commutators generated by singular integral operators 

and         functions. Recall first that a locally integrable function   is said to belong 

to          if   satisfies;  

‖ ‖        
   

 

   
∫           

 

 

         

Here we wrote  

    
 

   
∫    
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 By the John–Nirenberg inequality, for all        and for all              

                                
   

.
 

   
∫            

 

 

  /

  ⁄

    ‖ ‖                                 

In view of       for any           
        with        we can define              

      

by  

                                                                                                       
 Note that             

 
     for all          and hence the definition      above 

makes sense., we prove;  

Theorem                Let      satisfy 

              

as well as      and       Then, if                  

‖      ‖        ‖ ‖       

for          
          In particular,       extends to a bounded linear operator from 

          to            To prove Theorem           we need the following estimate:  

Lemma                Let   be a cube and   be an       -function such that  

       ∫    
 

 

      

for almost all         Then for any                           and singular 

integral operators    we have  

               ‖         ⁄                     ‖
  

                              

 Proof:  For the purpose of proving       we can assume that        Notice that, since   

has a moment, 

                         ∫                    

 

  

     

Note also that; 

|    ∫(        (    ))    

 

  

  |         
       

        
         

Thus, if we use       then we have 

∫ |    ∫(        (    ))    

 

  

  |

 
 

         

   

            ∫        
 

   

     

                        
 proving the lemma.   

Let          
          Then we have 
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   ∑    

 

   

  

 

as we described in Theorem          Consequently, 

        ∑  *       
+   

 

   

 

 ∑     
(     

)   

 

   

 ∑ ∑             (     
)   

 

   

 

   

 

  4∑  (     
)   

 

   

5   

 
By using Theorem         and the boundedness of   (see Theorem         ),we obtain 

 

 

‖ 4∑  (     
)   

 

   

5‖

     

   ‖∑  (     
)   

 

   

‖

     

   ‖ ‖      

 

Let us prove 

       ‖‖8∑ ∑ (                
)
 

 

   

 

   

9

 
 

 ‖‖

     

    ‖‖8∑(     
)
 

 

   

9

 
 

‖‖

     

       

Once this is proved, according to Theorem          we have                   and 

‖      ‖        ‖‖8∑(     
)
 

 

   

9

 
 

‖‖

     

  ‖ ‖       

It remains to estimate       By using the maximal operator    we can further proceed and 

we have 

     ‖‖8∑ ∑ (                
)
 

 

   

 

   

9

 
 

 ‖‖
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   ‖‖8∑ ∑ .                 ⁄ (    
)

   
  

 /

  

   

 

   

9

 
  

‖‖

     

  

Assuming    
  

   
   we can choose     so that                 Withthis choice, 

the above series is summable and 

‖‖8∑ ∑ (                
)
 

 

   

 

   

9

 
 

 ‖‖

     

  ‖‖8∑ ∑ .  (    
)

   
  

 /

  

   

 

   

9

 
  

‖‖

     

  

Since      if we use Proposition         and the John–Nirenberg inequality, then we 

obtain       If we modify the proof, we have a similar assertion when        the range 

space will be replaced by the weak space               We omit the detail.  

Applying the improved atomic decomposition, we can prove the following theorem:  

Theorem                Let        and        
 

 
   Let      satisfy      

             as well as      and       Then for      
   

       and     

           we have 

 ‖     ‖        ‖ ‖
  

   ‖ ‖       

  

Proof: By density, we can assume that          
          Then we have 

   ∑    

 

   

  

as we described in Theorem          Here we take      so that      
 

  
  With this 

decomposition, 

            ∑     

 

   

4∑           
        

   

 

   

5    

Here          Observe that   

   ‖∑         
        

 

   

‖

     

     ‖∑           
        

 

   

‖

     

 

  ‖ ‖
  

    ‖∑        

 

   

‖

     

 



  

233 
 

    
  
   ‖ ‖

  
    ‖∑      

 

   

‖

     

 

 in view of Theorem         and Proposition          Since     
 

  
   the above 

estimate is summable over     
We place ourselves in    and consider the Hardy operator. 

      
 

 
∫       

  

 

               

Although   is defined for functions defined on        we shall use the zero extension to 

define       for functions on    That is, for          
      we define 

                
 

 
∫       

  

 

  

Here and below we assume that      satisfies 

             

as well as      and        

If          
          is supported on a cube   contained in        then a simple 

calculation shows          ‖ ‖    
     Since      

         is dense in           and 

any function         
         admits a finite decomposition    ∑     

 
    in the way 

described in Theorem          we can recapture             with        
 

Theorem                Assume that           satisfies  
           

 as well as      and       Then the Hardy operator   is bounded from          to 

          
Here we disprove that a natural extension of the Hausdorff–Young inequality is available 

for variable Lebesgue spaces.  

Proposition                Let  

        {
 

 
     {         }}           

Then there does not exist a constant     such that  

                                                        ‖  ‖
          ‖ ‖                                                    

for all                
Proof: Assume that inequality      holds. Let          

             satisfy        

   and     {  }     be an       -sequence such that       if        Then  

       ∑         

 

    

           

 belongs to        and  

                                 ‖  ‖        ‖ ‖   ‖ ‖                                                        
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On the other hand, 

                                           | ∑   

 

    

|  ‖   ‖                                                  

 If we combine           and       then 

                                                 | ∑   

 

    

|    ‖ ‖                                                         

 Since      is valid for all       --sequences    {  }     such that      if     
       is a contradiction.  

Section (6.3): Modular Inequalities for Maximal Operator 

The variable Lebesgue spaces are a generalization of the classical Lebesgue spaces, where 

the constant exponent p is replaced by a variable exponent function       They have been 

studied extensively for the past twenty years, particularly for their applications to 

      the calculus of variations        but also for their use in a variety of physical and 

engineering contexts: the modeling of electrorheological fluids        the analysis of 

quasi-Newtonian fluids        fluid flow in porous media        magnetostatics       and 

image reconstruction         
For       be a Lebesgue measurable set,              Given a measurable exponent 

function                 hereafter denoted by            for any measurable set 

                  we set 

              
     

                  
     

      

For brevity, we set           and           The space          is defined as the set 

of all measurable functions   such that for some                         where        is 

the modular functional defined by  

           ∫              
 

 

   

 In situations where there is no ambiguity we will simply write          or       The space 

         is a Banach function space when equipped with the Luxemburg norm 

                      ‖ ‖             {                     }                                            

 When           a constant, then                  and      reduces to the classical 

norm on        For the properties of these spaces, see         

Given a function             
   the (uncentered) Hardy–Littlewood maximal function    

is defined for       by  

         
   

 

   
∫        

 

 

    

where the supremum is taken over all cubes       containing   and whose sides are 

parallel to the coordinate axes. (See      .) If            
   then we define    by 

extending f to be identically   on       The following result, proved by Neugebauer and 
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       gives a nearly optimal sufficient condition on the exponent      for the maximal 

operator to satisfy a norm inequality on            
Theorem               Given an open set        let             be such that 

              and                       is log- H ̈lder continuous both locally 

and at infinity: 

              
  

           
         

 

 
           

           
  

          
         

Then   is bounded on            
                                                 ‖  ‖            ‖ ‖                                                     

 In the constant exponent case, Theorem         reduces to the classical result that the 

maximal operator is bounded on                  In this case, the norm inequality is 

equivalent to the modular inequality 

 ∫      
 

 

       ∫        
 

  

     

Similar modular inequalities hold in the scale of Orlicz spaces :see ,        It is therefore 

natural to consider the analogous question of modular inequalities for the maximal operator 

on the variable Lebesgue spaces:  

                                ∫          
 

 

      ∫            
 

  

                                             

 

Since inequality      implies the norm inequality       it is clear that stronger hypotheses 

may be needed on the exponent function      for the modular inequality to hold. The 

following example from       shows that log- H ̈lder continuity is not sufficient and the 

modular inequality need not hold even for a smooth exponent function.  

Example               Let           be a measurable exponent function which is 

equal to   on the interval       and equal to   on       (we make no other assumptions on 

       Define the sequence of functions{  }      {       }     Then for any            

         
 

 
∫        

 

 

     
 

 
   

 so that  

              ∫ (
 

 
*
  

 

      
  

  
   

On the other hand                  so      cannot hold. In fact, when       and 

        Lerner       showed that inequality      never holds unless      is constant. 

 Theorem               Let                    Then the modular inequality  

∫             
 

  

          ∫           
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where        is a constant depending on        but independent of     

holds if and only if there is a constant       such that         almost everywhere. 

Theorem               Given           such that                and      
         suppose               and ‖ ‖         Then 

∫           
 

  

            ∫            
 

  

          ∫
  

          

 

  

    

where the constant         depends on        but is independent of     

We give necessary and sufficient conditions for modular inequalities of the form 

                    ∫          
 

 

       ∫            
 

 

                                               

to hold for all measurable functions    where                 and            are 

constants depending on             and      but are independent of    We are interested in 

the weakest possible conditions on the exponent functions      and      for      to hold. 

In particular, we want to prove modular inequalities without assuming any smoothness 

conditions on the exponents. we will only consider the case         The endpoint case 

when          is substantially different. If   is bounded and         then      always 

holds: this is an immediate consequence of [     Theorem    ]. If        then      

never holds, since    is never in        unless       a.e. More generally, given any set 

  with infinite measure, then arguing as in Example          we would have          
        which is impossible: see [     Theorem     ]. When        the problem of 

characterizing      is open. Some delicate results in      show that this problem depends 

on how quickly      approaches     
Our two main results completely characterize the exponents      and      so that the 

modular inequality holds. Our characterization depends strongly on whether   has finite or 

infinite measure; When   has finite measure our result is remarkably simple.  

Theorem               Given a set                    let                     
     Then the modular inequality      holds if and only if                
As our second result below shows, the assumption that         is critical in Theorem 

         But to motivate this result, we first give the following example.  

Example               If                and if                          then 

the assumption that              is not sufficient for      to be true. We first consider 

the case                Fix an open set          and constants            
    Define         and  

     {
              

                      
  

where       is a cube. Then                Suppose      holds; then we would have  

∫       
 

 

    ∫          
 

  

  

    ∫        
 

 

      ∫           
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But then, if we let            we would get the embedding                     

which does not hold when       since   has infinite measure         
The case               is obtained from the same argument by taking        
The problem in Example         arises because the exponents      and      behave 

differently at infinity. To avoid this, we make the following definition.  

Definition               Given a set            let    denote the collection of subsets 

of Ω that have infinite measure. Given                we say that      and      touch at 

infinity, and denote this by             if for every         
                          

The exponents in Example         do not touch at infinity. We consider three additional 

examples. 

Example               Let       
     The exponents                                 touch at infinity. 

      On the other hand, if we let  ̃                       then      and ̃    do not 

touch at infinity. 

      Finally, if          and               where   is any bounded measurable set, 

then      and      touch at infinity. 
 

We can now state our second main result, characterizing the modular inequality on sets   

with infinite measure.  

Theorem               Given a set                let                       
    Define     {                  }     Then the following are equivalent:  

    The modular inequality      holds;  

                and                      
                  and there exists       such that  

                                        ∫      
 

 

                                                                 

 where      is the defect exponent defined by 
 

     
   

 

     
   

 

    
    

                and there exists a measurable function               such that  

                                                   ∫           
 

 

                                                

and  

      ‖              ‖
     

 ‖              ‖
      

                                            

  

Corollary                Given a set   and                 suppose that either 

        and                or                   and      holds. If   is any 

operator that is bounded on       for all            then  

∫            
 

 

       ∫          
 

 

        

with positive constants       that depend on           and   but not on     
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The assumption on the operator   is very general and is satisfied by most of the classical 

operators of harmonic analysis: for example, it holds for Calder´on–Zygmund singular 

integral operators and square functions. In fact, a close examination of the proof shows that 

we can assume less: given fixed      and       we only require that the operator is bounded 

on         As a consequence, we can prove a modular inequality for the Fourier transform  

 ̂    ∫               
 

  

    

on variable Lebesgue spaces, using the Plancherel theorem that ‖ ̂‖
 

 ‖ ‖   The 

importance of this result follows from the fact that natural generalization of the Hausdorff–

Young inequality fails in the variable exponent setting. (See [     Section       ] 

Corollary                Given                        suppose             and 

     holds. Then  

∫   ̂            
 

  

    ∫              
 

  

     

with positive constants       that depend on      and      but not on     
Corollary                Given                        If                
then the following inequality holds  

                                  ∫          
 

 

     ∫          
 

 

                                           

 for every           and for some positive constants       depending on            but 

independent of     
If        then inequality      holds if and only if            Moreover, if   is an 

operator that is bounded on                  then these conditions are sufficient for   

to satisfy the modular inequality  

∫            
 

 

   ∫          
 

 

     

To prove Theorems         and          we will first prove the following proposition 

which establishes a necessary condition which for sets   of finite measure is also 

sufficient.  

Proposition                Given                 if the modular inequality      

holds, then  

                                                                                                                                 
As a corollary to Proposition           together with the classical theorem on the 

boundedness of the maximal operator on                            we immediately 

get the following generalization of Theorem         to arbitrary domains and unbounded 

exponent functions.  

Corollary                 Given an open set   and            the modular inequality  

∫              
 

 

    ∫            
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with positive constants       depending on             and     but independent of    holds 

if and only if      equals a constant       almost everywhere. 

Lemma                Given a set         let                          Then the 

following conditions are equivalent:  

                 for every         
                    
Proof: The fact that      implies     is easy: for any       we have  

                                             
 In order to prove that     implies       let {  }    be a countable cover of   by elements 

of     We then have that if              for every        then 

                                                                                                                
To see this, note that for every          there exists a cube          such that 

             By hypothesis                       so 

                                     
Now, if we first take the supremum over      and then take the infimum over       
by      we get                              Therefore,  

           (⋃   

 

   

 +     
   

         

     
   

          (⋃   

 

   

+         

 The following argument is inspired by Example         and is similar to the proof of 

Theorem     in [     Thm.    ]. 

 Proof :  If      does not hold, then by Lemma          there exists a cube       such 

that                Let     be such that 

                        
Let                   be such that          for            Similarly, let 

                  be such that         for a           Define         
  where 

       Then for all         

       
 

   
 ∫         

 

 

   
     

   
    

Moreover, if               then                               for every    
     Hence,  

∫            
 

 

  ∫ .
     

   
/

     

  

    |  | .
     

   
/

 

  

  

On the other hand, 

∫             
 

 

  ∫       
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Therefore, if      holds, then we must have that  

|  | .
     

   
  /

 

               

for all   sufficiently large, which is a contradiction since        
By Proposition          we have that if the modular inequality      holds, then       
        Therefore, it remains to show that this condition is sufficient. 

 Fix a set   and                such that               and fix a function    Given a 

set        we define 

     ∫            
 

 

       ∫        

 

 

     

and  

       {                }       {                }  
 We now estimate as follows:  

∫        
 

 

                           

We immediately have that                  On the other hand, since            
    so the maximal operator is bounded on         Hence,  

          ∫         

 

      

          ∫         

 

  

                

To estimate      we argue similarly: since                

                           ∫            
 

     

        

If we combine all of these inequalities, we get 

 ∫      
 

  

         ∫            
 

  

                  

This completes the proof of sufficiency. 

We will prove the following chain of implications:  

                          
             We first prove that if the modular inequality      holds, then           
           Since     is a Banach function space, the embedding                    is 

equivalent (cf. [     Thm.    ]) to the set-theoretical inclusion                      Since 

                    in    if      holds, then                              Fix    

          then for some                         Therefore, 

                                      

and so              We now prove that if      holds, then             Given any 

measurable set       and any measurable function                  implies that  

                                ∫           
 

 

      ∫          
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with           the same constants. Fix       and define                     

      and             Since            for                      and        
         Therefore, by        

        
        ∫      

 

    

     

   ∫      
 

    

                 
          

 Since           as       we get that                
               

   for   

sufficiently large. If we take the limit as       we get that if      holds, then 

            
                     

 Since              we must have that             and        
Finally, since by Proposition                        and since                
               we get that              
             As noted above, this implication follows from the fact that the embedding  

                    is equivalent to assuming            and      holds. (See 

[     Thm.     ].)  

               We explicitly construct the function    Since              we claim that 

there exists       such that                where         {               }  For if 

not, then for all                    In particular, if we set            then         

   and                                 a contradiction.  

Fix such a   and define  

      2
                                  

                                           
  

where      is the defect exponent defined by 
 

      
  

 

     
   

 

     
  Since        we have 

that            and  

                  
       
         

      
                           

                  
       
         

      
                          

 Moreover,                                       on the set           and therefore 

     holds. Finally, to prove      we estimate as follows:  

           ∫       
 

         

              ∫      
 

 

                  

 

            The proof of this implication is similar to the proof of sufficiency in the proof 

of Theorem          However, since       we need to introduce   and use            in 

place of      As before, given a measurable function   and a measurable set        define  

     ∫         
 

 

        ∫        
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Recall that    {                  } and write 

∫          
 

  

                   

Since         we have                     on       Therefore, since      
         so the maximal operator is bounded on         Hence,  

        ∫        

 

   

                  

To estimate       define        {                   } where   is the function 

from our hypothesis        Then  

     ∫          
 

        

    ∫          
 

      

     

             ∫ (
     

    
 )

     

         

      
  . 

Since                on         

            ∫ .
     

    
 /

  

 
 

       

            

             ‖           ‖
     

∫         

 

 

    

Again since   is bounded on          

                  
 ‖           ‖

      
      

If we combine the above inequalities we get  

              *     
(  ‖           ‖

     
)+                                            

so to complete the proof we need to estimate                       As before we 

have                       on       so  

        ∫         

 

   

  ∫           
 

   

    

To estimate       let         {                    }  Since           and 

          we have                       Therefore,  

     ∫         

 

       

   ∫         

 

     

   

             ∫ .
      

    
 /

   

     

            

 

 

Since                 on       

             ∫ .
      

    
 /
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             ‖           ‖
     

∫          
 

 

    

 If we combine the previous two estimates, we get  

     ∫           
 

   

              ‖           ‖
     

∫          
 

 

    

 (  ‖           ‖
     

)∫           
 

  

               

 Together with inequality      this gives us the modular inequality       This completes 

the proof. 

Corollary (6.3.16)[492]: Given a set         let                          Then the 

following conditions are equivalent:  

                   for every             
                    
Proof. The fact that      implies     is easy: for any       we have  

                                                 
 In order to prove that     implies       let {     }    be a countable cover of   by 

elements of         We then have that if                for every            then 

             (       )                

To see this, note that for every          there exists a cube                such that 

                      By hypothesis                             so 

                                                 
Now, if we first take the supremum over      and then take the infimum over       
by      we get                                    Therefore,  

           (⋃     

 

   

 +     
   

            

     
   

             (⋃     

 

   

+         

 The following argument is inspired and is similar to the proof of Theorem     in [     
Thm.    ]. 

Corollary (6.3.17)[492]:  Given                 if the modular inequality  holds, then  

                      
As a corollary   together with the classical theorem on the boundedness of the maximal 

operator on                             we immediately get the following 

generalization to arbitrary domains and unbounded exponent functions.  

 Proof : If      does not hold, then there exists a cube           such that          
        Let       be such that 
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Let                        be such that             for        
      Similarly, let                    be such that          for a           
Define          

  where        Then for all             

 (∑        )   
 

    
 ∫ ∑               

 

  

   
     

    
    

Moreover, if                then             
                   

  for every    
      Hence,  

∫  (∑          )    
 

 

  ∫ .
     

    
/

      

    

          .
     

    
/

   

  

  

On the other hand, 

∫ ∑       
      

  
 

 

  ∫        
 

   

            

Therefore, holds, then we must have that  

      .
     

    
  /

   

                  

for all   sufficiently large, which is a contradiction since        
 

Corollary (6.3.18)[492]: Given a set                    let                     
     Then the modular inequality holds if and only if                
We show, the assumption that         is critical   , we first give the following example. 

Proof :  By Proposition         we have that if the modular inequality holds, then 

              Therefore, it remains to show that this condition is sufficient. 

 Fix a set   and                such that               and fix a  sequence of 

functions      Given a set        we define 

     ∫ ∑              
 

 

       ∫ ∑         

 

 

     

and  

   ( ∑  )  {        (∑     )     } 

    
   {      ∑           }  

 We now estimate as follows:  

∫ ∑         
 

 

  ∑                     ∑      

We immediately have that          ∑           On the other hand, since      
          so the maximal operator is bounded on         Hence,  



  

245 
 

      (∑  )   ∫  ∑        

 

       

          ∫ ∑         

 

  

   

             

To estimate      we argue similarly: since                

           ∑             ∑     ∫ ∑             
 

      

        

If we combine all of these inequalities, we get 

 ∫ ∑      
 

  

         ∫ ∑       
       

  

                  

This completes the proof of sufficiency. 

Corollary (6.3.19)[492]: Given a set                let                       
    Define     {                    }     Then the following are equivalent:  

    The modular inequality  holds;  

                and                      
                  and there exists       such that  

             ∫       
 

 

             

 where      is the defect exponent defined by 
 

      
   

 

      
   

 

     
    

                and there exists a measurable function               such that  

           ∫            
 

 

            

and  

‖              ‖
     

 ‖              ‖
      

        

Proof : We will prove the following chain of implications:  

                          
             We first prove that if the modular inequality      holds, then           
           Since     is a Banach function space, the embedding                    is 

equivalent (cf. [     Thm.    ]) to the set-theoretical inclusion                      Since 

  ∑         ∑              in    if  holds, then         ∑                 ∑    

      Fix               then for some               ∑             Therefore, 

         ∑                    ∑                

and so               We now prove that holds, then             Given any measurable 

set       and any measurable sequence of  functions                   implies 

that  

∫ ∑       
      

 

         ∫ ∑            
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with       the same constant. Fix       and define                          

  and             Since            for                       and         
         Therefore,    

        
        ∫       

 

    

     

      ∫       
 

    

                     
            

 Since           as      We get that                           
          

   for   sufficiently large. If we take the limit as       we get that holds, 

then 

                                   
 Since              we must have that             and         
Finally, since by Proposition                        and since                
               we get that              
             As noted above, this implication follows from the fact that the embedding  

                    is equivalent to assuming              holds. (See [     Thm. 

    ].)  

               We explicitly construct the function    Since              we claim that 

there exists      such that                  where         {                 

 }  For if not, then for all                     In particular, if we set            

  then            and                                     a contradiction.  

Fix such a     and define  

      2
                                      

                                             
  

where      is the defect exponent defined by 
 

      
  

 

     
   

 

      
  Since      we have 

that        

   and  

                  
       
         

      
                               

                  
       
         

      
                              

 Moreover,                                         on the set             and 

therefore  holds. Finally, to prove  we estimate as follows:  

           ∫        
 

           

                ∫       
 

 

                    

            The proof of this implication is similar to the proof of sufficiency . However, 

since       we need to introduce   and use            in place of      As before, given 

a measurable sequence of function    and a measurable set        define  
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     ∫ ∑           
 

 

        ∫ ∑         

 

 

     

Recall that    {                    } and write 

∫ ∑           
 

  

                   

Since         we have                     on       Therefore, since      
         so the maximal operator is bounded on         Hence,  

        ∫ ∑        

 

   

                  

To estimate       define      ∑     {         ∑             } where   is 

the function from our hypothesis        Then  

     ∫ ∑           
 

         

    ∫ ∑           
 

       

     

             ∫ (
      

    
 )

      

          

  ∑     
  . 

Since   ∑                on    ∑        

            ∫ ∑.
      

    
 /

  

 
 

      
  

             

             ‖           ‖
     

∫ ∑          

 

 

    

Again since   is bounded on          

                  
 ‖           ‖

      
      

If we combine the above inequalities we get  

     *     
(  ‖           ‖

     
)+                        

so to complete the proof we need to estimate                       As before we 

have                       on       so  

        ∫ ∑         

 

   

  ∫ ∑            
 

   

    

To estimate       let          {                     }  Since           and 

          we have                       Therefore,  

     ∫ ∑       
   

        

   ∫ ∑       
   

      

   

             ∫ ∑.
       

    
 /

   

      

            

Since                  on        

             ∫ ∑.
       

    
 /
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             ‖           ‖
     

∫ ∑            
 

 

    

 

 If we combine the previous two estimates, we get  

     ∫ ∑       
      

   

             

 ‖           ‖
     

∫ ∑            
 

 

    

 (  ‖           ‖
     

)∫ ∑            
 

  

               

 Together with inequality  this gives us the modular inequality   This completes the proof.  
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Symbol  page 

  : Lebesgue space  1 

Meas: measure  1 

    essential lebesgue space 1 

     sobolev space 1 

Osc: Oscillation  1 

  
   

 sobolev space 1 

Sup :Supremum  2 

   Lebesgue intergral on real line 4 

Ess: essential  4 

    Lebesgue space 4 

Inf: infimum 4 

Loc:locally 4 

PSR: Poincar Sobolev rearrangement  5 

a.e: almost every where 17 

Max: maximum 20 

PDES: partial differential equations 20 

Lip: Lipschitz 34 

       Lebesgue space with variable exponent  34 

AMDS: Almost monotone decreasing sequence  37 

AMLS:  Almost monotone increasing sequence  37 

       Sobolev space with variable exponent 38 

      Hardy space of variable exponent  50 

  
    

 Lebesgue Space with avariable exponent with a weight  69 

      
  Sobolev  Space with avariable exponent with a weight 69 

Supp: support  96 

    Dual of Lebesgue space  119 

u.s.c: upper strictly convex 126 

l.s.c: lower strictly convex 126 

Int : interior  175 

Comp: compact 175 

Diag: diagonal  209 

BMO: Bounded Mean Osciution  226 
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