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Abstract

The time consumed between observing the production decline and identifying
the liquid loading problem is a big challenge, facing the production engineer. The
objective of this project is to predict the liquid loading condition using a machine
learning approach. This work included visualizing, preprocessing and modeling the
data by k-nearest neighbors regression algorithm. For this study gaseous wells were
selected. Production and completion history for each well were collected. First study
was performed on (synthetic) data where 70 percent of the information were used for
the training purpose, 15 percent for calibration and 15 percent for validation of the
model. The model successfully anticipated the liquid loading status with an accuracy
of 93% and 93% of the data trained. A local data obtained from the well (FN 21) had
experienced an attempt to be modeled by the same way, but due to lack in completion
and production data, the attempt has failed. Another local data obtained from the well
(FN4-7) with complete completion and production data was modeled. The model
successfully predicted liquid loading status with an accuracy of 92 % and 100% of the
data trained. This new smart model developed for local data shows a great promise that
this approach can be applied in other areas where a limited history of production and

liquid are available
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Introduction

1.1 INTROIDUCTION:

One of the big challenges associated with horizontal and highly inclined
wellbores is related to liquid loading in wellbores, which is defined as the phenomenon
when a drop-in gas rate hinders a wells capability to lift liquid up to the surface. Onset
of liquid loading is the condition at which critical gas velocity is reached and liquid
starts to accumulate in the wellbore.

Some of the problems encountered due to liquid loading involve pipeline internal
corrosion, disturbance and/or damage to the downstream facilities, steep production
declines due to an increase of back pressure pipeline fatigue production instability.

Accurate prediction of the onset of liquid loading requires a good prediction of
pressure gradient and liquid holdup for segregated flow. Segregated flow is a commonly
encountered flow pattern during oil and gas operations.

A generalized solution to predict friction factors is proposed in this work by
combining machine learning with the physics-based two-fluid model to accurately
determine pressure gradient and liquid holdup for a wide range of flow conditions and
fluid properties Once the pressure gradient and liquid holdup are determined the model

predicts critical gas velocity.

1.1.1 Characteristics of gases:
1. They are easy to compress.

2. They expand to fill their containers.

3. They occupy far more space than other liquid.



1.1.2 Natural gas is categorized by composition to:

1.1.2.1 Dry Gas:
Natural gas that occurs in the absence of condensate or liquid hydrocarbons, or

gas that had condensable hydrocarbons removed, is called dry gas. It is primarily
methane with some intermediates. The hydrocarbon mixture is solely gas in the
reservoir and there is no liquid (condensate surface liquid) formed either in the reservoir
or at surface. The pressure path line does not enter into the phase envelope in the phase
diagram, thus there is only dry gas in the reservoir. Note the surface separator
conditions also fall outside the phase envelope (in contrast to wet gas); hence, no liquid

is formed at the surface separator.

£ _7_\2
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Temperature
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FIGURE 1.1 DRY GAS
1.1.2.2 Wet Gas:
Natural gas that contains significant heavy hydrocarbons such as propane, butane
and other liquid hydrocarbons is known as wet gas or rich gas. The general rule of
thumb is if the gas contains less methane (typically less than 85% methane) and more

ethane, and other more complex hydrocarbons, it is labeled as wet gas.
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FIGURE 1.2 WET GAS
1.1.2.3 Condensate gas:

Condensate gas is very similar to volatile oils in terms of the color (green, orange,
brown, even clear) and gravity (40° to 60° API) of the produced oil. However, the
reservoir temperature of a condensate gas reservoir is greater than the critical
temperature of the fluid, and so where a volatile oil is a liquid at original reservoir

pressure and temperature, a condensate gas is a gas.

Liquid

Critical Point

Pressure

Temperature

FIGURE 1.3 CONDENSATE GAS

1.2 Problem Statement:

Inability of the well to lift the fluid associated with produced gas to the surface,
as observed when the flow pattern progresses from mist flow to bubble flow.

Here in this project we will use the machine learning to predict the critical gas

velocity, under which liquid accumulation will occur.



1.3 Objectives:
1.3.1 Primary objective:
The research aims to analyze the well production data to predict the status of the

well either loading or unloading.
1.3.2 Sub-objective:
1 Preprocessing acquired well data.
2 Modeling the data using python programing language.
3 Predicting liquid loading status.
1.4 Methodology:
A supervised learning algorithm is used to create a model that aims to predicting liquid
loading status in gaseous wells.
The model consists of three stages:

1. Visualizing the data.

2. Preprocessing the data.

3. Modeling the data.

1.5 Project Layout:
This project report has been divided into five chapters: -

1.5.1 Chapter one:
Represents a brief introduction related to our project.

1.5.2 Chapter two:
Explains the literature review with latest publications related to the most problem

caused reduction in gas well performance.

1.5.3 Chapter three:
Customized our methods and program used to mention the problems which called by

methodology.

1.5.4 Chapter four:
We analyze the collected data and make prediction calculations of optimum production

of gas well by using OLGA-software, then solve the problem.

1.5.5 The last chapter:
We put conclusion, our future Recommendation and References helped us to

understand these problems.



Literature Review

This chapter is cornering to learn the liquid loading problem, the different method
used to predict it.

2.1 Theoretical Background:

2.1.1 Liquid Loading in Gas Wells:

2.1.1.1Flow Patterns in a Gas Well:
The flow pattern in a vertical production conduit of a gas well is usually

illustrated by four basic flow patterns or flow regimes as shown in Fig. 2.1. The flow
regimes are largely classified with bubble flow, slug flow, slug-annular transition flow
and annular mist flow, which are determined by the velocity of the gas and liquid phases

and the relative amounts of gas and liquid at any given point in the flow stream.

Bubble Slug Slug-annular Annular-mist
transition

Increasing gas rate B

FIGURE 2. 1 FLOW REGIME IN VERTICAL MULTIPHASE FLOW

If the flow pattern is an annular-mist type, the well still may have a relatively low
gravity pressure drop. However, as the gas velocity begins to drop, the well flow can
become a slug type and then bubble flow. In these cases, a much larger fraction of the
tubing volume is filled with liquid. A gas well may go through any or all of these flow



regimes during its lifetime. The general progression of a typical gas well from initial

production to its end of life is shown in Fig. 2.2.
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FIGURE 2. 2 PROGRESSION OF A TYPICAL GAS WELL

Initially, the well may show the mist flow regime that brings a high gas rate and
then transit into slug-annular transition, slug, and bubble flow with time. Liquid
production may also increase as the gas production declines. Flow at the surface will
remain in mist flow until the conditions change sufficiently at the surface so that the
flow exhibits transition flow. Flow downhole may show bubble or slug flow even
though the flow regime at the surface looks like a mist flow.

2.1.2 Occurrence of Liquid Loading:

Gas and liquid are both produced to surface if the gas velocity is high enough to
lift or carry liquid. The problem happens because the velocity of the gas in the tubing
drops with time, and the velocity of the liquids decline even faster as the production
goes on. As a result, the liquid begins to accumulate in the bottom of the well and liquid
slugs are formed in the conduit, which increase the percentage of liquids in the conduits
while the well is flowing. The bottomhole pressure increases and gas production
decreases until gas flow stops. In other words, the liquid loading process occurs when
the gas velocity within the well drops below a certain critical gas velocity. The gas is
then unable to lift the water coproduced with the gas (either condensed or formation
water) to surface. The water will fall back and accumulate downhole. A hydrostatic
column is formed that imposes a back pressure on the reservoir and hence reduces gas
production. The process eventually results in intermittent gas production and well die-

out. Several sources may be suspected as the source of liquid causing the problem. It is
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reasonably said that the liquid sources may be from water coning, aquifer water, water

produced from another zone, free formation water, and hydrocarbon condensate.

2.1.3 Recognizing of Symptoms of Liquid Loading:
The occurrence of liquid loading in a gas well can be recognized by several

symptoms. If it is found out early and then the appropriate action is taken at a proper
time, the losses in gas production can be minimized. The symptoms indicating liquid

loading summarized by James F. Lea (2004) are like following:

1. Sharp reduction of flow rate

Decline With/Without Liquid Loading

Expected

Actual With
¢ Loading

Production Rate =——»

TN Se—

FIGURE 2. 3 DECLINE CURVE SHOWING ONSET OF LIQUID LOADING

2. Onset of liquid slugs at the surface of the well
3. Increasing difference between the tubing and casing flowing pressure (i.e. pcf-
ptf) with time, measurable without packers present.

4. Sharp changes in gradient on a flowing pressure survey.

2.1.4 Remedial Lifting Options to Reduce Liquid Loading Problem:
Many types of technique of remedial lifting have been developed so far. Most of

the techniques focus on increasing gas velocity and artificially water lifting to reduce
liquid loading problems. The following table (Veeken, 2003) shows the remedial



measures depending on the purpose of use. These methods may be used singly or in

combination of two or more.

TABLE 2. 1 REMEDIAL MEASURES TO REDUCE LIQUID LOADING

Classification Techniques
Intermittent production - Gas lift
Increase gas velocity Stimulation - Venting
Compression - Velocity string

Reduce critical velocity

Compression

Velocity string

Mechanical liner solutions (stinger)
Batch soap sticks / surfactant
Continuous surfactant injection
(capillary strings)

Bubble breakers (restriction)

Artificially lift water

Plunger

Chamber (plunger plus lift gas)
Downhole pump (rod, PCP, ESP)
Swabbing

Remove water

Downhole separation & Injection
(intermittent production)
Heated tubing

2.2 Liquid Loading:

Liquid loading in gas wells is the accumulation of liquids (water, condensate, or

both) in the wellbore due to pressure decline. It occurs in vertical or deviated wells

during production from natural gas reservoirs as a result of condensation and

coalescence of liquids from gas streams. This is common in both offshore and onshore

production systems and results in the simultaneous flow of gas, liquid hydrocarbons

and water.




Discussed below are the basics of Turner et al. model, Coleman et al. model and
LI’s Model, which have been applied in this project.

Turner, Hubbard, and Dukler (1969), after studying the earlier observations,
proposed two physical models for the removal of gas well liquids. The models are based
on: This model assumes that annular liquid film should have to be continuously moved
upward along the wells to achieve liquid unloading. The model calculates the minimum
flow rate requirement to move the film upward. Turner concluded that the predictions
of the film model do not provide a clear definition between the adequate and inadequate
rates. Liquid droplets entrained in the high velocity gas core. The minimum gas flow
rate that will lift the drops out of the well to the surface. According to the study, a free-
falling particle reaches a terminal velocity which is the maximum velocity it can attain
against gravity. Therefore, that terminal velocity, or in other terms the critical gas
velocity which is determined by the flow conditions necessary to remove the liquids on
a continual basis, is based on drag & gravitational forces on the droplet. Applying this
concept of liquid droplets in a flowing core of natural gas column, the critical velocity,
V¢ of the drop is, which assumes a fixed droplet size, shape and drag coefficient and

includes the 20% adjustment suggested by Turner, based on field results matching.

1 1
V= 22T O RO e (2:1)
p2

Where:

V.= critical velocity, ft/sec

¢ = surface tension, dynes/cm

pl = liquid density, Ibm/ft3

pg = gas density, lbm/ft3

Inserting typical values of:

Surface Tension = 20 and 60 dyne/cm for condensate and water, respectively.

Density = 45 and 67 lbm/ft3 for condensate and water, respectively. Gas Z factor

=09
PM,Y,
pg = ZRTg .................................................................. (2:2)
By substituting the above typical values, a simplified pressure equation was
developed:
pg=0.0031*p ................................................................. (23)



The critical velocity can be converted to the critical rate at standard conditions for

a given pressure, P, and tubular dimensions using the following equation:

e e T 2:4
Q=7 (2:4)
Where By is the gas formation volume factor defined as follows:

ZT P, .
B, BT "t (2:5)

Substituting for standard conditions, pressure P,. = 14.65 psi and temperature Ty,

=520 or, Eq (2:4) can be written as

3.06PV A

Q.= (TaaB0)Z " T s (2:6)
Where:

dt?
A = 4*(12)2 ................................................................... (27)

T = surface temperature.°F
P = pressure at the evaluation point, psi
A = tubing cross-sectional area, ft?

dt = tubing 1D, inches

Coleman et al. (1991), using the Turner model but validating with field data of
lower reservoir and wellhead flowing pressures all below approximately 500 Pisa,
Coleman et al. discovered that a better prediction could be achieved without a 20%

upward adjustment to fit field data with the following expressions:

_ 1
19”“:1.593(%)2 .................................................... (2:8)
3060PV pitA
Qerit™ e (2:9)

Nosier et al (1997), focused their studies on the impact of flow regimes in
addition, changes in flow conditions on gas well loading.

They followed the path of turner droplet model but they made a difference from
turner model by considering the impact of flow regimes on the drag coefficient. On
comparing nosier observed that Turner model values were not matching with the real
data for highly turbulent flow regime. Dealing with this deviation nosier found out the
reason to be the change in value of Cd for this regime from .44 to 0.2. As a result, they

proposed two new equations regarding the critical velocity:

10



For transition regime

_ 14.60-0.35(pp_p)0.21

Oerit = LTI p0AzG e (2:10)
For highly turbulent regime

21_30.0.25(p _p)O.ZS
Oerit = D (2:11)

Li et al. (2001), Li, Li, Sun in there research posited that turner and Coleman’s
models did not consider deformation of the free falling liquid droplet in a gas medium.

They contended that as a liquid droplet is entrained in a high- velocity gas stream,
a pressure difference exists between the fore and aft portions of the droplet

(Figure2:1) shows the droplet’s shape changes from spherical to flat in a high
velocity. Compared with spherical droplets, flat ones need low gas velocity and flow
rate due to having more efficient area. For the Reynolds number range
10*<Re<2x 10°, drag coefficient (Cp) for turner’s model is 0.44, but for flat shaped

one is 1.0, which means smaller critical velocity than spherical droplet.

(P1—pg)°
O0rip=0.7241" /;g—o‘i ................................................... (2:12)

APV
Qerie=30807 2 (2:13)

2.3 Literature Review:

2.3.1 Previous experimental and modeling studies on onset of liquid
loading:
This section provides a comprehensive background of relevant experimental and

modeling studies focused on the estimation of critical gas velocity. The scope is
restricted to upward inclined pipes. The modeling work has been further divided into
liquid droplet models and film reversal-based models, which are the two primary

mechanisms through which liquid loading is determined.

2.3.1.1 Previous experimental studies on onset of liquid loading:
Multiple experimental studies can be found in the literature which have made a

successful attempt to determine the onset of liquid loading. However, most of these
experiments have been carried out in pipes with small size diameters, such as Wang et
al. 2016, Fan et al. 2018, Brito 2015, etc. A summary of experimental studies for two-
phase pipe flow along with the defining parameters is available in Table 2.2.

11



TABLE 2. 2 SUMMARY OF EXPERIMENTAL STUDIES FOR TWO-PHASE PIPE FLOW ALONG WITH THE DEFINING
PARAMETERS

Pr Pa

Authors d (m) [kg.-"llrr}] [kg.-"|1'|'1"'jl 4 (Pa s) 5 Fluids
Alsf‘,j‘g; ;‘ 100762 | 2~30 | 1000 1.18 0.001 | 0.01-0.1 | Air/Water
Brito (2015) | 0.0508 | 1 1000 118 0001 | % | AirWater

, 0.003- .
Nair (2017) 0.1524 1 1000 1.18 0.001 0.03 Air/Water

Fan et al. i 0.001- .

(2018) 0.0762 | 2~20 1000 1.18 0.001 0.01 Air/Water
“L}';‘Erl‘;‘}al' 0.0762 [ 45~90 | 1000 1.18 0.001 | 0.01-0.1 | Air/Water
SF, / Exxsol
angsholt 2 2 22. . &
Lngtotond |1 |gs | B3| 20 oo | o | o
B ' ' SF./Water
Rodrigues Nitrogen/lso
= ) - >

(2018) 0.154 2 760 1.165 0.0013 0.01-0.05 par L

Espedal 5 SF / Exxsol

(1998) 0.1 1,2 829 50 0.0018 0.0005 DS,

1 ] 0.5~ 0.0007- i
Current Study | 0.1524 90 997 0.97 0.001 0.02 Air'Water

According to Alsaadi et al. (2015) and Fan et al. (2018), an increase in critical gas
velocity was observed when inclination angles were increased from 2° to 30°. They
concluded that liquid flow rate effects on critical gas velocity are more significant for

higher inclination angles.

2.3.1.2 M. F. Riza, A. R. Hasan and C. S. Kabir, August 18 2016 ""A
Pragmatic Approach To Understanding Liquid Loading in Gas
Wells™:

This study found that the flow condition at, or very near, the well bottom controls the
onset of liquid loading. By use of the data sets of Turner et al. (1969), Coleman et al.
(19914, 1991b), and Veeken et al. (2010), we showed that prediction quality appears
to improve with the entire wellbore-modeling approach.

Forward modeling suggested that the tubing inside diameter and the well productivity
index are the most important variables in determining the critical liquid-loading rate
and the onset of liquid loading.

12



2.3.1.2 Ankit Malik, Ravi Prakash, Mukesh Kumar and Miten Barot,
October 17 2017, ** Predicting Start-Up Liquid Loading in a Mature
Oil & Gas Field: A Case Study"":

The key outcomes of this case study are presented below:

1. The field observation of loading of high GLR oil wells could not be explained
with steady state analysis. This approach was found to be optimistic in
predicting onset of liquid loading.

2. Dynamic model or production data analysis data derived steady-state well
productivity and phase ratios are more relevant for normal flowing periods. For
the duration of the unloading process, these parameters are highly uncertain and
difficult to capture in modeling. An element of risking has been captured to
predict the most likely time of start-up loading using a risking criterion, which
was based on individual well's flow parameters.

3. The workflow discussed in this paper helped to justify requirement of lift gas
pipeline on a platform in the subject field. This lift gas pipeline has helped to
revive wells after shutdowns and without it all the current production from this
platform would have been risked.

4. 1tis recommended to evaluate liquid loading from predicted parameters at field
development planning stage using the proposed workflow to secure future well
production and save on additional costs of retrofitting gas lift infrastructure.
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2.3.1.3 Hewei Tang and Zhi Chai, 2018, ""What Happens after the
Onset of Liquid Loading? an Insight from Coupled Well-Reservoir

Simulation™':

In this study, we introduced a fully implicitly coupled wellbore reservoir
model to examine the production performance and pressure dynamics of horizontal
wells after the onset of liquid loading. The model incorporated a modified drift-flux
model that is able to predict the onset of liquid loading and the subsequent
unstable well behaviors. We applied the model to analyze the gas and water
production scenarios of an open-hole horizontal well, a horizontal well with uniform
stimulation, and a horizontal well with multi- stage hydraulic fractures. The following
conclusions can be obtained:

1. There exists a gas-water coproduction period and a zero liquid production
period after the onset of liquid loading for most production scenarios being
investigated. The lengths of both production periods increase as reservoir
permeability decreases from 5md to 0.3md.

2. For reservoir permeability equals to 0.1md, the horizontal gas well experiences
natural cyclical production after the onset of liquid loading. It is because of the
periodic buildup and draw down of reservoir pressure. The production
phenomenon is consistent with reported field observations.

3. The natural cyclical production is introduced by the high initial pressure
difference between the wellbore and the reservoir. Both uniform stimulation and
hydraulic fracturing mitigate or eliminate this production phenomenon.

2.3.1.4 Ayush Rastogi and Yilin Fan, 2019, Experimental
Investigation and Modeling of Onset of Liquid Accumulation in

Large- Diameter Deviated Gas Wells:

An experimental facility with a 6-in. pipe diameter having a test section of 32-
ft. is constructed to conduct experiments for two-phase flow with an inclination angle
range from 0° to 90°. The current experimental data and the comparison with other
previous data show that the critical gas velocity increases with increasing pipe diameter
and gas density. It increases first with increasing pipe inclination angle until 40° — 50°
approximately, and then decreases due to the decrease of the maximum liquid film
thickness. A new model was developed to predict the maximum liquid film thickness
at the pipe bottom as a function of the inclination angle. In general, the new model gives
the best prediction for the critical gas velocity when compared with others.
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Methodology

Machine learning is a process through which computer will learn from data to
find a possible pattern in the data set. This process encompasses three main
components; Learning algorithm, Data, and Pattern in the data. If these three
components are present, a successful learning process can be achieved based on the
capability of the learning algorithm. There are two major types of Machine Learning:
supervise learning and unsupervised learning. In supervised learning, both input and
output are available, and the learning algorithm tries to find the relationship between
them. One of the supervised learning algorithm that will be used in this article is
"Artificial Neural Network™ (ANN).

In unsupervised learning, there is no information about the output. The learning
algorithm tries to find the pattern inside the input data alone. One of unsupervised
learning algorithm that will be used in this article is "K-mean Clustering".

3.1 Why python?

Python has become the lingua franca for many data science applications. It
combines the power of general-purpose programming languages with the ease of use of
domain-specific scripting languages like MATLAB or R. Python has libraries for data
loading, visualization, statistics, natural language processing, image processing, and
more.

One of the main advantages of using Python is the ability to interact directly with
the code, using a terminal or other tools like the Jupyter Notebook, which we’ll look at
shortly. Machine learning and data analysis are fundamentally iterative processes, in
which the data drives the analysis. It is essential for these processes to have tools that

allow quick iteration and easy interaction.

3.2 scikit-learn:
scikit-learn is an open source project, meaning that it is free to use and distribute,

and anyone can easily obtain the source code to see what is going on behind the scenes.

The scikit-learn project is constantly being developed and improved, and it has a
very active user community. It contains a number of state-of-the-art machine learning
algorithms, as well as comprehensive documentation about each algorithm. scikit-learn

is a very popular tool, and the most prominent Python library for machine learning. It
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is widely used in industry and academia, and a wealth of tutorials and code snippets are
available online. scikit-learn works well with a number of other scientific Python tools.
3.3 production data preprocessing:

Data preprocessing is a process of preparing the raw data and making it suitable
for a machine learning model. It is the first and crucial step while creating a machine
learning model.

A real-world data generally contains noises, missing values, and maybe in an
unusable format which cannot be directly used for machine learning models. Data
preprocessing is required tasks for cleaning the data and making it suitable for a
machine learning model which also increases the accuracy and efficiency of a machine

learning model.

In [2]: data = pd.read_csv('Wel'_Loadiltha:a.csv'b

In [3]: data.head(L0)

out [3]: AvgFlowRate FlowRate AvgStaticPressure StaticPressure AvgCasingPressure CasingPressure AvgTubingPressure TubingPressure Loading

0 T 705.591 522 3259678 176 7339601 609 6074733 False
1 7t 706.5%1 522 5238666 176 134.1985 609 6075895  False
2 11 706.59%1 522 5275421 176 1343147 609 6096815  False
3 11 690.1027 522 527 6544 176 1344816 609 6074539 False
4 Tt 6901027 522 5255143 176 7340610 609 GO07.3660  False
§ T 6901027 522 523.1964 176 1347 609 6045931  False
§ Tt 1015217 522 5258848 176 1342758 609 6087160  False
1 11 690.1027 522 526.5861 176 7333358 609 01,0349 False
§ 7 1085102 522 525.3587 176 1338141 609 6025637 False
9 T 6901027 522 526.0814 176 1377075 609 6051563 False

FIGURE 3. 1 DATA VISUALIZATION

3.4 Data visualization:
Data visualization is an integral part of any data science project. Understanding

insights using excel spreadsheets or files becomes more difficult when the size of the

dataset increases. It’s certainly not fun to scroll up/down to do an analysis.
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It involves the creation and study of the visual representation of data. To
communicate information clearly and efficiently, data visualization uses statistical
graphics, plots, information graphics and other tools. Numerical data may be encoded
using dots, lines, or bars, to visually communicate a quantitative message.

In data visualization, we use different graphs and plots to visualize complex data
to ease the discovery of data patterns.

3.4.1 Importance of data visualization:

Data visualization also helps identify areas that need attention, e.g outliers, which
can later impact our machine learning model. It also helps us understand the factors that
have more impacts on your results: for example, in house price predictions, the house

price will be impacted more by the size of the house than the house style.

3.5 model selection:

3.5.1 k-neighbors regression:
There is also a regression variant of the k-nearest neighbors algorithm. Again,

let’s start by using the single nearest neighbor, this time using the wave dataset. We’ve
added three test data points as green stars on the x-axis. The prediction using a single
neighbor is just the target value of the nearest neighbor. These are shown as blue stars
in Figure 3:2:
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FIGURE 3. 2 PREDICTIONS MADE BY ONE-NEAREST-NEIGHBOR REGRESSION ON THE WAVE
DATASET

we can use more than the single closest neighbor for regression. When using
multiple nearest neighbors, the prediction is the average, or mean, of the relevant
neighbors (Figure 3:3)

e training data/target “{3’ test data * test prediction
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FIGURE 3. 3 PREDICTIONS MADE BY THREE-NEAREST-NEIGHBORS REGRESSION ON THE WAVE
DATASET
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The k-nearest neighbors algorithm for regression is implemented in the
KNeighbors Regressor class in scikit-learn. It’s used similarly to KNeighborsClassifier.
from import KNeighborsRegressor
X, y = mglearn.datasets.make_wave(n_samples=10)

# split the wave dataset into a training and a test set
H_train, X_test, v _train, y_test = train_test_split(X, vy, random_state=0)

# instantiate the model and set the number of neighbors to consider to 3
reg = KNeighborsRegressaor(n_neighbors=3)

# fit the model using the training data and training targets
reg. fit(X _train, vy _train)

we can make predictions on the test set:

print{"Test set predictions:\n{}".format(req.predict(¥_test)))

Test set predictions:
[-8.854 @.357 1.137 -1.894 -1.139 -1.631 0.357 0.912 -0.447 -1.139]

can also evaluate the model using the score method, which for regressors returns
the R 2 score. The R 2 score, also known as the coefficient of determination, is a
measure of goodness of a prediction for a regression model, and yields a score between
0 and 1. A value of 1 corresponds to a perfect prediction, and a value of 0 corresponds

to a constant model that just predicts the mean of the training set responses, y train:
print("Test set R*2: {:.2f}".format(reg.score(X_test, y_test)}))
Test set R™2: 0.83
Here, the score is 0.83, which indicates a relatively good model fit.

3.5.2 Analyzing KNeighborsRegressor:
For our one-dimensional dataset, we can see what the predictions look like for all
possible feature values (Figure 2-10). To do this, we create a test dataset consisting of

many points on the line:
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fig, axes = plt.subplots(1l, 3, figsize=(15, 4))

# create 1,000 data points, evenly spaced between -3 and 3

line = np.linspace(-2, 3, 1600).reshape(-1, 1)

for n_neighbors, ax in zip([1, 2, 9], axes):
# make predictions using 1, 3, or 9 neighbors
reqg = KNeighborsRegressor{n_neighbors=n_neighbors)
reg.fit(¥_train, y_train)
ax.plot(line, reg.predict{line))
ax.plot(¥_train, y train, '*', c=mglearn.cm2(0), markersize=3)
ax.plot(¥_test, v_test, 'v', c=mglearn.cm2(1), markersize=8)

ax.set_title(
"I} neighbor(s)\n train score: {:.2f} test score: [:.2f}".format(
n_neighbors, reg.score(X_train, v_train),
reg.score(X_test, y test)))
ax.set_xlabel("Feature")
ax.set_ylabel("Target")
axes[0].legend(["Model predictions", "Training dataftarget"”,
"Test data/target"], loc="best")

1 neighbor(s) 3 nelghbor(s) 8 nelghbor(s)

train score: 1.00 test score: 035 28 train score: 082 test score: 083 10 traim scare: 0.73 test scare: 0.65

Target
Target
|

Targut

-1.5 = Muodel predictions
A Training daka'tasgat

-t ¥ Test dataftarget

=23
-3 -1 -1 o 1 z 3
Fiatuing

FIGURE 3. 4 COMPARING PREDICTIONS MADE BY NEAREST NEIGHBORS REGRESSION FOR
DIFFERENT

As we can see from the plot, using only a single neighbor, each point in the
training set has an obvious influence on the predictions, and the predicted values go
through all of the data points. This leads to a very unsteady prediction. Considering
more neighbors leads to smoother predictions, but these do not fit the training data as
well.

3.5.3 Strengths, weaknesses, and parameters:

In principle, there are two important parameters to the KNeighbors classifier: the
number of neighbors and how you measure distance between data points. In practice,
using a small number of neighbors like three or five often works well, but you should
certainly adjust this parameter. Choosing the right distance measure is somewhat
beyond the scope of this book. By default, Euclidean distance is used, which works well

in many settings.
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One of the strengths of k-NN is that the model is very easy to understand, and
often gives reasonable performance without a lot of adjustments. Using this algorithm
is a good baseline method to try before considering more advanced techniques. Building
the nearest neighbors model is usually very fast, but when your training set is very large
(either in number of features or in number of samples) prediction can be slow. When
using the k-NN algorithm, it’s important to preprocess your data. This approach often
does not perform well on datasets with many features (hundreds or more), and it does
particularly badly with datasets where most features are 0 most of the time (so-called

sparse datasets).
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Results and Discussion

In this chapter, we will extract the results from modeling data acquired from tow
wells using python programming language, to predict the liquid loading status in the

wells.

4.1 case study for synthetic data:

4.1.1 Data visualization:
The figures 4:1 and 4:2 shows the data of the Latin well, which well be
preprocessed and then modeled.

The figure below refers to unloading status of the well (0)

out[5]:

FlowRate StaticPressure CasingPressure TubingPressure Loading

0 706.5961 5259678 733.9601 607.4733
1  706.5961 523.8666 734.1985 607.5895
2 706.5961 5275427 734.3147 609.6815
3 6901027 527 6544 734.4816 607.4539
4 6901027 5255143 734.0510 607.3660
417 674.6470 5281722 7458297 616.9897
418 6746470 526.3243 746.2081 621.3455
419 6746470 528.3762 7461083 609.6547
420 678.9901 526.2998 749.8631 618.6455
421  674.6470 5247834 7520654 614.6701

325 rows x 5 columns

FIGURE 4. 1 UNLOADING DATA VISUALIZATION

The figure below refers to loading status of the well (1)
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out[6]:
FlowRate StaticPressure CasingPressure TubingPressure Loading

132 5525272 522 9531 873.0584 501.9169 1
133 5525272 523.7603 8855612 500.0335 1
134 5525272 523.8813 8011707 500.1304 1
135 5525272 522 7551 911.7425 497.1399 1
136 552.5272 523.0791 8919.0675 486.9730 1
315 667.4582 519.2561 7857444 559.2784 1
316 667.4582 516.6292 8056303 515.0887 1
317 483.0143 515.7208 818.7723 579.3625 1
318 699.7637 519.5049 812.7854 643.1445 1
319 780.0994 517.2853 T77.4763 674.6049 1

97 rows x 5 columns

FIGURE 4. 2 LOADING DATA VISUALIZATION

In the figure 4:3 the casing pressure is plotted vs the gas flowrate.

In [11]1: | # sns.scatterplot(data = df , x = '"FlowRate', y = 'TubingPressure', hue = 'Loading')
sns.scatterplot (data = df , x = "FlowRate', y = 'CasingPressure', hue = "Loading')
out[11l]: <AxesSubplot:xlabel='FlowRate', vylabel='CasingPressure'>
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FIGURE 4. 3 CASING PRESSURE VS FLOWRATE

In the figure 4:4 the tubing pressure, casing pressure and static pressure are plotted

vs the gas flow rate
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TUBING PRESSURE, CASING PRESSURE,static pressure VS TIME
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FIGURE 4. 4 TUBING, CASING, STATIC PRESSURES VS TIME

4.1.2 Data preprocessing:
In the figure 4:5 using missingno function the data is visualized to find out

whether the data is complete or not.

In [43]: import missingno as msno
msno.matrix(£_14)

Out[42]: <mxesSubplot:>
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FIGURE 4. 5 DATA CHECK USING MISSINGNO METHOD
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In the figure 4:6 the missing data is interpolated.
In [44]: £ 14 = £ l4.interpolate(method='linear', axis=0, )

In [45]: msno.matrix(f 14)

Out[45]: <AxesSubplot:>

FIGURE 4. 6 DATA INTEGRATION USING INTERPOLATE METHOD

4.1.3 Data modeling:

In [31]:

Ccut[31]:

In the figure 4:7 shows the data modeled using K-nearest-neighbors (KNN)

from sklearn.neighbors import KNeighborsRegressor

from sklearn.model selection import train test split

model= KNeighborsRegressor (n neighbors=3)

X = df[["FlowRate", "StaticPressure" ,"CasingPressure" ,"TubingPressurs"]]
¥y = df ["Loading"]

¥ train, X test, y train, y test=train test split(X,y)
model.fit (X train,y train)

KNeighborsRegressor (n_neighbors=3)

FIGURE 4. 7 DATA MODELING ALGORITHM

4.1.4 The results:

In the figure 4:8 the model is run, the accuracy of this model is 0.93 and all the

data is tested.
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In [32]: print("Training set score: {:.2f]}".format (model.scecre(X train, y train)))
print ("Test set score: {:.2f}".format (model.score (X_test, y_test)))
resultsl = medel.predict (X test)

Training set score: 0.93
Test set score: 0.93

In [33]: z = ([[1800,900,1200,50011)
model .predict(z)

Out[33]: array([0.66666667]1)

In [34]: resultsl

outl[34]: array([0. , 0. , 0. , 0. , 0. .
0. , 0. , 1. , 0. , 0. )
0. , 0. . 1. , 1. , 0. ,
0. , 0. . 1. , o. , 0. ,
0. , 0. , o. , o. , 0. ,
0. , 0. , 0. , 0. , 1. ,
0. , 0. . 1. , o. , 0. ,
0. , 0. , 0. , 1. , 0. ,
1. , 1. , o. , 1. , 1. ,
1. L1 , 0.66666667, 0. , 1. ,
0. , 0. , o. , o. , 0. ,
0. , 0. , o. , o. , 0.33333333,
1. , 0. , o. , o. , 0. ,
0. , 0. , 0. , 0. , 0.

0. , 0. , o. , o. , 0. ,
0. , 1. , o. , o. , 0. ,
0. , 0. . 1. , o. , 0.66666667,
0. , 0. . 1. , 1. , 0. ,
0. , 0. , o. , o. , 0. ,
1. , 1. , o. , 1. , 0. ,

FIGURE 4. 8 MODELING FINAL RESULT

4.2 Case study for the well FN-21:

4.2.1 Data visualization:
As it seen in Figure 4:9, in the data below there are missing features, which is
flowline pressure and average casing pressure, therefore the data is not appropriate to

be modeled.
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Out[1l1]:

AvgCsg AvgTBG FL_Temb Chock_size FL_pressure Gas Loading
23 NaN 1957.500000  0.000000 3.200000 NaN 2318857582 1
24 NaN 2047.400000  0.000000 4.640000 NaN  1100.778703 1
25 NaN  2030.000000 20.000000 5.175000 NaN 1561.086415 1
26 NaN 2003.806452 25.806452 3.920032 NaN 1733.621970 1
27 NaN 1937.303571 35392857 4.400000 NaN 1891611093 1
28 NaN  2044.500000 30.000000 4.500000 NaN 1861.655830 1
29 NaN  2044.500000 30.000000 4.500000 NaN  1706.867222 1
30 NaN 2044.500000 30.000000 4683333 NaN 1675895988 1
31 NaN 2044.500000 30.000000 4.000000 NaN 1715.108798 1
32 NaN  2044.500000 30.000000 4.000000 NaN  1737.394088 1
33 NaN 2065.548387 30.000000 4.000000 NaN 2001.343612 1
34 NaN 2175.000000 27.000000 4.000000 NaN 1945806565 1
35 NaN 2175.000000 27.000000 4.183333 NaN  1858.044476 1
36 NaN  2175.000000 26.000000 4.000000 NaN  1742.608428 1
37 NaN 2175.000000 26.000000 4.000000 NaN 1746.787857 1
38 NaN 2175.000000 31.548387 4.000000 NaN 1722491830 1
39 NaN  2175.000000 30.000000 4.000000 NaN  1698.936009 1
40 NaN 2184.822581 34838710 4.000000 NaN 1660.308803 1
4 NaN 2199.790323 34612903 4.000000 NaN 1871.817178 1
42 NaN  2247.500000 35.000000 4.000000 NaN 1887.273797 1
43 NaN  2303.629032 35.000000 4.000000 NaN 1687.794768 1

FIGURE 4. 9 DATA LOADING VISUALIZATION
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Moreover, the figure 4:10 shows that the flowline pressure and average casing

pressure are missed.

In [13]): import missingno as msno
msno.matrix (df)

Out[13]: <AxesSubplot:>

1

68

FIGURE 4. 10 FN21 DATA CHECK USING MISSINGNO METHOD

From all above it appears that the data acquired from this well is not capable of
being used in this project.
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4.3 Case study for the well FN4-7:
4.3.1 Data visualization:

The figures 4:11 and 4:12 shows the data of the well FN4-7, which well be
preprocessed and then modeled.

The figure below refers to unloading status of the well (0)

out[le]: AvgCsgy TBG_PRESSURE FL_TEMP GAS Loading
0 373.000000 959338710 30.000000 1100.000000 0
1 580.000000 1160.000000 30.000000 1100.000000 0
2 580.000000 1160.000000 30.000000 1100.000000 0
3 580.000000 1160.000000 30.000000 1100.000000 0
4 580.000000 1160.000000 30.000000 1100.000000 0
5  580.000000 1160.000000 30.000000 1100.000000 0
6  580.000000 1160.000000 30.000000 1100.000000 0
7 580.000000 1160.000000 30.000000 1100.000000 0
8  580.000000 1160.000000 30.000000 1100.000000 0
9 580.000000 1160.000000 30.000000 1100.000000 0
10 580.000000 1160.000000 30.000000 1100.000000 0
11 580.000000 1160.000000 30.000000 1100.000000 0
12 580.000000 1160.000000 30.000000 1100.000000 0
13 1087.500000 1268.266667 30.000000 1100.000000 0
14 1667.500000 1392.000000 30.000000 1008.333300 0
15 1667.500000 1392.000000 30.000000 1008.333300 0
16 1667.500000 1392.000000 30.000000 1055645161 0
17 1667.500000 1392.000000 30.000000 1172580645 0
18 1667.500000 1392.000000 30.000000 1323.333333 0
19 1667.500000 1507.532258 30.000000 1150.000000 0
20 1926428571 1820.785714 30.000000 1150.000000 0

FIGURE 4. 11 UNLOADING DATA VISUALIZATION
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The figure below refers to loading status of the well (1)

Ccut[8]:

AvgCsg TBG_PRESSURE FL_TEMP  GAS Loading
22 2030.000000 1862100000 1.000000  1.000 1
23 2030.000000 1882100000  1.000000  1.000 1
24 2030.000000 1862.100000 20.000000  1.000 1
25 2073.016667 1882.728333 19166667  1.000 1
26 2175.000000 1885.000000 1.000000  1.000 1
27 2175.000000 1885.000000 15000000  1.000 1
28 1885.000000 1885.000000 38.000000 765.352 1
29 1885.000000 1885.000000 38.000000 765.352 1
30 1885.000000 1885.000000 38.000000 765.352 1
31 1867.225806 1875645161 38.000000 765.352 1

FIGURE 4. 12 DATA LOADING VISUALIZATION

In the figure 4:13 the average casing pressure is plotted against the gas flow rate.

In [15]: |sns.scatterplot(data = df , x = '"GAS', y = "AvgCsg', hue = 'Loading")
Cut[l5]: <AxesSubplot:xlabel="GAS', ylabel="AvgCsg'>
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FIGURE 4. 13 GAS FLOWRATE VS AVERAGE CASSING PRESSURE

In figure 4:14 the average tubing pressure is plotted against the gas flow rate.
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In [33]: sns.scatterplot(data = df , x = '"GAS', y = 'TBG PRESSURE', hue = 'Loading')
out[33]: <Axessubplot:xlabel="'GAS', ylabel='TBG PRESSURE'>
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FIGURE 4. 14 GAS FLOWRATE VS TUBING PRESSURE

In the figure below the average casing and tubing pressure is plotted

against the gas flowrate

In [32]: plt.plot(df['Data'],df['TBG PRESSURE'],color="blue")
plt.plot(df['Data'],df["AvgCsg'],color="red")
plt.title("TUBING PRESSURE, CASING PRESSURE VS TIME')
prlt.xlabel ("TIME"}
plt.ylabel ("TUBING PRESSURE, CASING PRESSURE')
rlt.show()

TUBING PRESSURE, CASING PRESSURE VS TIME
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FIGURE 4. 15 TUBING,CASING PRESSURES VS TIME
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4.3.2 Data preprocessing:
In the figure 4:16 using missingno function the data is visualized to find out

whether the data is complete or not.

In [34]: import missingno as msno
msno.matrix (df)

Out[34]: <AxesSubplot:>

47

FIGURE 4. 16 FN4-7 DATA CHECK USING MISSINGNO METHOD
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In the figure 4:17 the missing data is interpolated.

In [39]: df = df.interpolate(method="linear', axis=0, )

In [40]: msno.matrix(df)

Out[40]: <aAxesSubplot:>

1

47

FIGURE 4. 17 DATA INTEGRATION USING INTERPOLATE METHOD

4.3.3 Data modeling:
In the figure 4:18 shows the data modeled using K-nearest-neighbors (KNN)

In [41]: from sklearn.neighbors import KNeighborsRegressor
from sklearn.model selection import train test split
model = KNeighborsRegressor (n neighbors=3)
x = df[["GAS", "FL TENP" ,"AvgCsq" ,"TBG PRESSURE"]]
y = df ["Loading"
X train, x test, y train, y test = train test split(x,y, test size=(0.3)
model.fit(x train, y train)

Out[41]: KNeighborsRegressor (n neighbors=3)
FIGURE 4. 18 DATA MODELING
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4.3.4 The results:
In the figure 4:19 the model is run, the accuracy of this model is 0.92 and all the

data is tested.
In [35]: |print("Training set score: {:.2f}".format (model.score(x train, y train)))

print ("Test set score: {:.2f}".format (model.score(x_test, y test)))
resultsl = model.predict(x_test}

Training set score: 0.%2
Test set score: 1.00

In [36]: predictions = model.predict([[1000, 20, 2000, 1800], [1500, 25,2200, 150011)

predictions
Out[36]: array([0.233333323, 0. 1)
In [38]: resultsl

out[38]: array([l., 0., 0., 1., 0., 0., 1., 0., 0., O., O., O., O., 0., 0.1)

FIGURE 4. 19 MODEL FINAL RESULT
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Conclusions and recommendations

5.1Conclusions:

1- With data contains at least, features of casing pressure, static pressure,
tubing pressure, flow line pressure and temperature and the gas flow rate,
there will be a chance to build a model that anticipate the status of the well

either loading or unloading.

2- Python programing language was used to in visualizing, preprocessing and

modelling the data.

3- Hence using K-nearest neighbors regression algorithm, the loading status is
predicted.

4- One of the strengths of k-NN is that the model is very easy to understand, and
often gives reasonable performance without a lot of adjustments.

5-Building the nearest neighbors model is usually very fast, but when your
training set is very large (either in number of features or in number of samples)
prediction can be slow. When using the k-NN algorithm, it’s important to
preprocess your data.

6- This approach often does not perform well on datasets with many features
(hundreds or more), and it does particularly badly with datasets where most

features are 0 most of the time.

7- Using Missingno method to interpolate data according on how data move and

change from one period to another.
5.2 Recommendation:

A real data monitoring system is recommended to be fed with a spontaneous data,
therefore this model is used to prevent the well from being dead, and we mean by died
that well stop producing gas. Real data workflow base hence prevention of:

A- Time loss.

B- Cost loss.

C- The inverse flow to the near wellbore region.
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