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 الإستهلال 
 : قال تعالى

 الرحمن الرحيمالله بسم 

ب ِى وَرَزَقنَِى مِنْهُ رِزْقًا حَسَنًا ۚ وَمَا  {  ن رَّ قوَْمِ أرََءَيْتمُْ إِن كُنتُ عَلَىَٰ بيَ نَِة ٍۢ م ِ كُمْ عَنْهُ ۚ  قَالَ يََٰ أرُِيدُ أنَْ أخَُالِفكَُمْ إِلَىَٰ مَا  أنَْهَىَٰ

ِ ۚ عَليَْهِ توََكَّلْتُ وَإِليَْهِ أنُيِ حَ مَا ٱسْتطََعْتُ ۚ وَمَا توَْفيِقِى  إلََِّّ بِٱللََّّ
صْلََٰ  } بُ إِنْ أرُِيدُ إلََِّّ ٱلِْْ

 (  88سورة هود الآية )
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Abstract 

The time consumed between observing the production decline and identifying    

the liquid loading problem is a big challenge, facing the production engineer. The 

objective of this project is to predict the liquid loading condition using a machine 

learning approach. This work included visualizing, preprocessing and modeling the 

data by k-nearest neighbors regression algorithm. For this study gaseous wells were 

selected. Production and completion history for each well were collected. First study 

was performed on (synthetic) data where 70 percent of the information were used for 

the training purpose, 15 percent for calibration and 15 percent for validation of the 

model. The model successfully anticipated the liquid loading status with an accuracy 

of 93% and 93% of the data trained. A local data obtained from the well (FN 21) had 

experienced an attempt to be modeled by the same way, but due to lack in completion 

and production data, the attempt has failed. Another local data obtained from the well 

(FN4-7) with complete completion and production data was modeled. The model 

successfully predicted liquid loading status with an accuracy of 92 % and 100% of the 

data trained. This new smart model developed for local data shows a great promise that 

this approach can be applied in other areas where a limited history of production and  

liquid are available 
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 التجريد 
 

 (liquidالزمن المستهلك بين ملاحظة الانخفاض في كمية الإنتاج وتحديد ان السبب في ذلك هو مشكلة  

loading.الهدف من هذا المشروع هو توقع الظروف التي    ( يعتبر من أكبر التحديات التي تواجه مهندس الإنتاج

في هذا العمل   طريق لغة البايثون.  ( عن طريق استخدام نموذج تم بناؤه عن(liquid loadingتحدث فيها مشكلة  

ثم   البيانات  ومعالجة  عرض  باستخدام  تم  النموذج  تصميم   k-nearest neighbors) regressionتم 

algorithm  .)    لهذه الدراسة تم اختيار ابار انتاج غازية وتم جمع بيانات الاكمال والإنتاج لكل بئر. تم اجراء دراسة

تخليقية   بيانات  استخدام  (syntheticأولى على  تم  النموذج و  70( حيث  تدريب  لغرض  البيانات  %  15% من 

% 93% وتم تدريب  93( بدقة قدرها  liquid loadingنجح النموذج في توقع حالة ال )% للمطابقة.  15للمعايرة و

النموذج عليها ولكن ( وكانت هنالك محاولة لتنفيذ هذا  FN 21تم استخدام بيانات محلية من البئر )  من البيانات.

-FN4تم استخدام بيانات محلية أخرى من البئر )  بسبب النقص في بيانات الإنتاج والاكمال باءت المحاولة بالفشل.

( liquid loading)( وكانت بيانات الاكمال والإنتاج مكتملة هذه المرة. نجح النموذج هذه المرة في توقع حالة ال  7

 % من البيانات. 100% وتم تدريب 92بدقة مقدارها 
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Introduction 

 

1.1 INTROIDUCTION: 

One of the big challenges associated with horizontal and highly inclined 

wellbores is related to liquid loading in wellbores, which is defined as the phenomenon 

when a drop-in gas rate hinders a wells capability to lift liquid up to the surface. Onset 

of liquid loading is the condition at which critical gas velocity is reached and liquid 

starts to accumulate in the wellbore. 

Some of the problems encountered due to liquid loading involve pipeline internal 

corrosion, disturbance and/or damage to the downstream facilities, steep production 

declines due to an increase of back pressure pipeline fatigue production instability. 

Accurate prediction of the onset of liquid loading requires a good prediction of 

pressure gradient and liquid holdup for segregated flow. Segregated flow is a commonly 

encountered flow pattern during oil and gas operations. 

A generalized solution to predict friction factors is proposed in this work by 

combining machine learning with the physics-based two-fluid model to accurately 

determine pressure gradient and liquid holdup for a wide range of flow conditions and 

fluid properties Once the pressure gradient and liquid holdup are determined the model 

predicts critical gas velocity.   

                   

 1.1.1 Characteristics of gases: 
1. They are easy to compress. 

2. They expand to fill their containers. 

3. They occupy far more space than other liquid. 
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1.1.2 Natural gas is categorized by composition to: 

1.1.2.1 Dry Gas: 

Natural gas that occurs in the absence of condensate or liquid hydrocarbons, or 

gas that had condensable hydrocarbons removed, is called dry gas. It is primarily 

methane with some intermediates. The hydrocarbon mixture is solely gas in the 

reservoir and there is no liquid (condensate surface liquid) formed either in the reservoir 

or at surface. The pressure path line does not enter into the phase envelope in the phase 

diagram, thus there is only dry gas in the reservoir. Note the surface separator 

conditions also fall outside the phase envelope (in contrast to wet gas); hence, no liquid 

is formed at the surface separator. 

 

FIGURE 1.1 DRY GAS 

1.1.2.2 Wet Gas: 

Natural gas that contains significant heavy hydrocarbons such as propane, butane 

and other liquid hydrocarbons is known as wet gas or rich gas. The general rule of 

thumb is if the gas contains less methane (typically less than 85% methane) and more 

ethane, and other more complex hydrocarbons, it is labeled as wet gas.  
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FIGURE 1.2 WET GAS 

1.1.2.3 Condensate gas: 

Condensate gas is very similar to volatile oils in terms of the color (green, orange, 

brown, even clear) and gravity (40° to 60° API) of the produced oil. However, the 

reservoir temperature of a condensate gas reservoir is greater than the critical 

temperature of the fluid, and so where a volatile oil is a liquid at original reservoir 

pressure and temperature, a condensate gas is a gas. 

 

1.2 Problem Statement: 

Inability of the well to lift the fluid associated with produced gas to the surface, 

as observed when the flow pattern progresses from mist flow to bubble flow. 

Here in this project we will use the machine learning to predict the critical gas 

velocity, under which liquid accumulation will occur. 

FIGURE 1.3 CONDENSATE GAS 
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1.3 Objectives: 

1.3.1 Primary objective: 
The research aims to analyze the well production data to predict the status of the 

well either loading or unloading. 

1.3.2 Sub-objective: 
1 Preprocessing acquired well data. 

2 Modeling the data using python programing language. 

3 Predicting liquid loading status. 

1.4  Methodology: 
A supervised learning algorithm is used to create a model that aims to predicting liquid 

loading status in gaseous wells. 

The model consists of three stages: 

1. Visualizing the data. 

2. Preprocessing the data.  

3. Modeling the data. 

 

1.5 Project Layout: 
This project report has been divided into five chapters: -  

1.5.1 Chapter one:  
Represents a brief introduction related to our project.  

1.5.2 Chapter two:  
Explains the literature review with latest publications related to the most problem 

caused reduction in gas well performance. 

1.5.3 Chapter three: 
Customized our methods and program used to mention the problems which called by 

methodology. 

1.5.4 Chapter four: 
We analyze the collected data and make prediction calculations of optimum production 

of gas well by using OLGA-software, then solve the problem.  

1.5.5 The last chapter: 
We put conclusion, our future Recommendation and References helped us to 

understand these problems. 
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Literature Review  
 

This chapter is cornering to learn the liquid loading problem, the different method 

used to predict it. 

2.1 Theoretical Background: 

2.1.1 Liquid Loading in Gas Wells: 

2.1.1.1Flow Patterns in a Gas Well: 

 The flow pattern in a vertical production conduit of a gas well is usually 

illustrated by four basic flow patterns or flow regimes as shown in Fig. 2.1. The flow 

regimes are largely classified with bubble flow, slug flow, slug-annular transition flow 

and annular mist flow, which are determined by the velocity of the gas and liquid phases 

and the relative amounts of gas and liquid at any given point in the flow stream. 

 

 

FIGURE 2. 1 FLOW REGIME IN VERTICAL MULTIPHASE FLOW 

If the flow pattern is an annular-mist type, the well still may have a relatively low 

gravity pressure drop. However, as the gas velocity begins to drop, the well flow can 

become a slug type and then bubble flow. In these cases, a much larger fraction of the 

tubing volume is filled with liquid. A gas well may go through any or all of these flow 
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regimes during its lifetime. The general progression of a typical gas well from initial 

production to its end of life is shown in Fig. 2.2. 

 

FIGURE 2. 2 PROGRESSION OF A TYPICAL GAS WELL 

Initially, the well may show the mist flow regime that brings a high gas rate and 

then transit into slug-annular transition, slug, and bubble flow with time. Liquid 

production may also increase as the gas production declines. Flow at the surface will 

remain in mist flow until the conditions change sufficiently at the surface so that the 

flow exhibits transition flow. Flow downhole may show bubble or slug flow even 

though the flow regime at the surface looks like a mist flow. 

2.1.2 Occurrence of Liquid Loading: 
Gas and liquid are both produced to surface if the gas velocity is high enough to 

lift or carry liquid. The problem happens because the velocity of the gas in the tubing 

drops with time, and the velocity of the liquids decline even faster as the production 

goes on. As a result, the liquid begins to accumulate in the bottom of the well and liquid 

slugs are formed in the conduit, which increase the percentage of liquids in the conduits 

while the well is flowing. The bottomhole pressure increases and gas production 

decreases until gas flow stops. In other words, the liquid loading process occurs when 

the gas velocity within the well drops below a certain critical gas velocity. The gas is 

then unable to lift the water coproduced with the gas (either condensed or formation 

water) to surface. The water will fall back and accumulate downhole. A hydrostatic 

column is formed that imposes a back pressure on the reservoir and hence reduces gas 

production. The process eventually results in intermittent gas production and well die-

out. Several sources may be suspected as the source of liquid causing the problem. It is 



7 
 

reasonably said that the liquid sources may be from water coning, aquifer water, water 

produced from another zone, free formation water, and hydrocarbon condensate. 

 

2.1.3 Recognizing of Symptoms of Liquid Loading: 
The occurrence of liquid loading in a gas well can be recognized by several 

symptoms. If it is found out early and then the appropriate action is taken at a proper 

time, the losses in gas production can be minimized. The symptoms indicating liquid 

loading summarized by James F. Lea (2004) are like following: 

 

1. Sharp reduction of flow rate 

 

2. Onset of liquid slugs at the surface of the well  

3. Increasing difference between the tubing and casing flowing pressure (i.e. pcf-

ptf) with time, measurable without packers present. 

4. Sharp changes in gradient on a flowing pressure survey. 

 

2.1.4 Remedial Lifting Options to Reduce Liquid Loading Problem: 
Many types of technique of remedial lifting have been developed so far. Most of 

the techniques focus on increasing gas velocity and artificially water lifting to reduce 

liquid loading problems. The following table (Veeken, 2003) shows the remedial 

FIGURE 2. 3 DECLINE CURVE SHOWING ONSET OF LIQUID LOADING 
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measures depending on the purpose of use. These methods may be used singly or in 

combination of two or more. 

 

 

2.2 Liquid Loading: 
Liquid loading in gas wells is the accumulation of liquids (water, condensate, or 

both) in the wellbore due to pressure decline. It occurs in vertical or deviated wells 

during production from natural gas reservoirs as a result of condensation and 

coalescence of liquids from gas streams. This is common in both offshore and onshore 

production systems and results in the simultaneous flow of gas, liquid hydrocarbons 

and water. 

TABLE 2. 1 REMEDIAL MEASURES TO REDUCE LIQUID LOADING 



9 
 

Discussed below are the basics of Turner et al. model, Coleman et al. model and 

LI’s Model, which have been applied in this project. 

Turner, Hubbard, and Dukler (1969), after studying the earlier observations, 

proposed two physical models for the removal of gas well liquids. The models are based 

on: This model assumes that annular liquid film should have to be continuously moved 

upward along the wells to achieve liquid unloading. The model calculates the minimum 

flow rate requirement to move the film upward. Turner concluded that the predictions 

of the film model do not provide a clear definition between the adequate and inadequate 

rates. Liquid droplets entrained in the high velocity gas core. The minimum gas flow 

rate that will lift the drops out of the well to the surface. According to the study, a free-

falling particle reaches a terminal velocity which is the maximum velocity it can attain 

against gravity. Therefore, that terminal velocity, or in other terms the critical gas 

velocity which is determined by the flow conditions necessary to remove the liquids on 

a continual basis, is based on drag & gravitational forces on the droplet. Applying this 

concept of liquid droplets in a flowing core of natural gas column, the critical velocity, 

Vc of the drop is, which assumes a fixed droplet size, shape and drag coefficient and 

includes the 20% adjustment suggested by Turner, based on field results matching.  

 

𝑉𝑐 =
1.912𝜎

1
4(𝜌𝑙−𝜌𝑔)

1
4

𝜌
1
2

 ……………………………………………..… (2:1) 

Where:  

𝑉𝑐= critical velocity, ft/sec 

 σ = surface tension, dynes/cm  

 ρl = liquid density, lbm/ft3  

ρg = gas density, lbm/ft3  

Inserting typical values of: 

 Surface Tension = 20 and 60 dyne/cm for condensate and water, respectively. 

 Density = 45 and 67 lbm/ft3 for condensate and water, respectively. Gas Z factor 

= 0.9 

𝜌𝑔 =
𝑃𝑀𝑎𝑌𝑔

𝑍𝑅𝑇
………………………………………………………… (2:2) 

By substituting the above typical values, a simplified pressure equation was     

developed: 

𝜌𝑔=0.0031∗𝑃……………………………………………………….. (2:3) 
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The critical velocity can be converted to the critical rate at standard conditions for 

a given pressure, P, and tubular dimensions using the following equation: 

𝑄𝑐 =
𝑉𝑐𝐴

𝐵𝑔
…………………………………………………………… (2:4) 

Where 𝐵𝑔is the gas formation volume factor defined as follows: 

𝐵𝑔 =
𝑍𝑇𝑃𝑠𝑐

𝑃𝑇𝑠𝑐
…………………………………………………………. (2:5) 

Substituting for standard conditions, pressure 𝑃𝑠𝑐 = 14.65 psi and temperature 𝑇𝑠𝑐 

= 520 or, Eq (2:4) can be written as 

𝑄𝑐 =
3.06𝑃𝑉𝑐𝐴

(𝑇+460)𝑍
…………………………………………………........ (2:6) 

Where: 

𝐴 =
𝜋𝑑𝑡2

4∗(12)2
…………………………………………………………. (2:7) 

T = surface temperature.℉ 

P = pressure at the evaluation point, psi  

A = tubing cross-sectional area, 𝑓𝑡2 

dt = tubing ID, inches 

 

 

Coleman et al. (1991), using the Turner model but validating with field data of 

lower reservoir and wellhead flowing pressures all below approximately 500 Pisa, 

Coleman et al. discovered that a better prediction could be achieved without a 20% 

upward adjustment to fit field data with the following expressions: 

𝜗𝑐𝑟𝑖𝑡=1.593(
𝜎(𝜌𝐿−𝜌𝑔)

𝜌𝑔2
)
1

4……………………………………………. (2:8) 

𝑞𝑐𝑟𝑖𝑡=
3060𝑃𝑉𝑐𝑟𝑖𝑡𝐴

𝑇𝑧
…………………………………………………… (2:9) 

Nosier et al (1997), focused their studies on the impact of flow regimes in 

addition, changes in flow conditions on gas well loading. 

They followed the path of turner droplet model but they made a difference from 

turner model by considering the impact of flow regimes on the drag coefficient.  On 

comparing nosier observed that Turner model values were not matching with the real 

data for highly turbulent flow regime. Dealing with this deviation nosier found out the 

reason to be the change in value of Cd for this regime from .44 to 0.2. As a result, they 

proposed two new equations regarding the critical velocity:  
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For transition regime 

𝜗𝑐𝑟𝑖𝑡 =
14.6𝜎0.35(𝜌𝑝−𝜌)

0.21

𝜇0.134𝜌0.426
…………………………………………. (2:10) 

For highly turbulent regime 

𝜗𝑐𝑟𝑖𝑡 =
21.3𝜎0.25(𝜌𝑝−𝜌)

0.25

𝜌0.5
…………………………………………. (2:11) 

 

Li et al. (2001), Li, Li, Sun in there research posited that turner and Coleman’s 

models did not consider deformation of the free falling liquid droplet in a gas medium. 

They contended that as a liquid droplet is entrained in a high- velocity gas stream, 

a pressure difference exists between the fore and aft portions of the droplet 

(Figure2:1) shows the droplet’s shape changes from spherical to flat in a high 

velocity. Compared with spherical droplets, flat ones need low gas velocity and flow 

rate due to having more efficient area. For the Reynolds number range 

104<Re<2× 105, drag coefficient (𝐶𝐷) for turner’s model is 0.44, but for flat shaped 

one is 1.0, which means smaller critical velocity than spherical droplet. 

𝜗𝑐𝑟𝑖𝑡=0.7241√
(𝜌𝑙−𝜌𝑔)

𝜎

𝜌𝑔0.5
4

…………………………………………… (2:12) 

𝑄𝑐𝑟𝑖𝑡=3060
𝐴𝑝𝑣𝑐𝑟𝑖𝑡

𝑍𝑇
………………………………………………… (2:13) 

 

2.3 Literature Review: 

2.3.1 Previous experimental and modeling studies on onset of liquid 

loading: 
This section provides a comprehensive background of relevant experimental and 

modeling studies focused on the estimation of critical gas velocity. The scope is 

restricted to upward inclined pipes. The modeling work has been further divided into 

liquid droplet models and film reversal-based models, which are the two primary 

mechanisms through which liquid loading is determined. 

2.3.1.1 Previous experimental studies on onset of liquid loading: 

Multiple experimental studies can be found in the literature which have made a 

successful attempt to determine the onset of liquid loading. However, most of these 

experiments have been carried out in pipes with small size diameters, such as Wang et 

al. 2016, Fan et al. 2018, Brito 2015, etc. A summary of experimental studies for two-

phase pipe flow along with the defining parameters is available in Table 2.2. 
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According to Alsaadi et al. (2015) and Fan et al. (2018), an increase in critical gas 

velocity was observed when inclination angles were increased from 2° to 30°. They 

concluded that liquid flow rate effects on critical gas velocity are more significant for 

higher inclination angles. 

2.3.1.2 M. F. Riza, A. R. Hasan and C. S. Kabir, August 18 2016 "A 

Pragmatic Approach To Understanding Liquid Loading in Gas 

Wells": 

This study found that the flow condition at, or very near, the well bottom controls the 

onset of liquid loading. By use of the data sets of Turner et al. (1969), Coleman et al. 

(1991a, 1991b), and Veeken et al. (2010), we showed that prediction quality appears 

to improve with the entire wellbore-modeling approach. 

Forward modeling suggested that the tubing inside diameter and the well productivity 

index are the most important variables in determining the critical liquid-loading rate 

and the onset of liquid loading. 

TABLE 2. 2 SUMMARY OF EXPERIMENTAL STUDIES FOR TWO-PHASE PIPE FLOW ALONG WITH THE DEFINING 

PARAMETERS 
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2.3.1.2 Ankit Malik, Ravi Prakash, Mukesh Kumar and Miten Barot, 

October 17 2017, " Predicting Start-Up Liquid Loading in a Mature 

Oil & Gas Field: A Case Study": 

 

The key outcomes of this case study are presented below: 

1. The field observation of loading of high GLR oil wells could not be explained 

with steady state analysis. This approach was found to be optimistic in 

predicting onset of liquid loading. 

2. Dynamic model or production data analysis data derived steady-state well 

productivity and phase ratios are more relevant for normal flowing periods. For 

the duration of the unloading process, these parameters are highly uncertain and 

difficult to capture in modeling. An element of risking has been captured to 

predict the most likely time of start-up loading using a risking criterion, which 

was based on individual well's flow parameters. 

3. The workflow discussed in this paper helped to justify requirement of lift gas 

pipeline on a platform in the subject field. This lift gas pipeline has helped to 

revive wells after shutdowns and without it all the current production from this 

platform would have been risked. 

4. It is recommended to evaluate liquid loading from predicted parameters at field 

development planning stage using the proposed workflow to secure future well 

production and save on additional costs of retrofitting gas lift infrastructure. 
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2.3.1.3 Hewei Tang and Zhi Chai, 2018, "What Happens after the 

Onset of Liquid Loading? an Insight from Coupled Well-Reservoir 

Simulation":  

 In this study, we introduced a fully implicitly coupled wellbore reservoir 

model to examine the production performance and pressure dynamics of horizontal 

wells after the onset of liquid loading. The model incorporated a modified drift-flux 

model that is able to predict the onset of liquid loading and the subsequent 

unstable well behaviors. We applied the model to analyze the gas and water 

production scenarios of an open-hole horizontal well, a horizontal well with uniform 

stimulation, and a horizontal well with multi- stage hydraulic fractures. The following 

conclusions can be obtained: 

1. There exists a gas-water coproduction period and a zero liquid production 

period after the onset of liquid loading for most production scenarios being 

investigated. The lengths of both production periods increase as reservoir 

permeability decreases from 5md to 0.3md. 

2. For reservoir permeability equals to 0.1md, the horizontal gas well experiences 

natural cyclical production after the onset of liquid loading. It is because of the 

periodic buildup and draw down of reservoir pressure. The production 

phenomenon is consistent with reported field observations. 

3. The natural cyclical production is introduced by the high initial pressure 

difference between the wellbore and the reservoir. Both uniform stimulation and 

hydraulic fracturing mitigate or eliminate this production phenomenon. 

 

 

2.3.1.4 Ayush Rastogi and Yilin Fan, 2019, Experimental 

Investigation and Modeling of Onset of Liquid Accumulation in 

Large- Diameter Deviated Gas Wells: 

 An experimental facility with a 6-in. pipe diameter having a test section of 32-

ft. is constructed to conduct experiments for two-phase flow with an inclination angle 

range from 0° to 90°. The current experimental data and the comparison with other 

previous data show that the critical gas velocity increases with increasing pipe diameter 

and gas density. It increases first with increasing pipe inclination angle until 40° – 50° 

approximately, and then decreases due to the decrease of the maximum liquid film 

thickness. A new model was developed to predict the maximum liquid film thickness 

at the pipe bottom as a function of the inclination angle. In general, the new model gives 

the best prediction for the critical gas velocity when compared with others.  
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Methodology 
 

Machine learning is a process through which computer will learn from data to 

find a possible pattern in the data set. This process encompasses three main 

components; Learning algorithm, Data, and Pattern in the data. If these three 

components are present, a successful learning process can be achieved based on the 

capability of the learning algorithm. There are two major types of Machine Learning: 

supervise learning and unsupervised learning. In supervised learning, both input and 

output are available, and the learning algorithm tries to find the relationship between 

them. One of the supervised learning algorithm that will be used in this article is 

"Artificial Neural Network" (ANN). 

In unsupervised learning, there is no information about the output. The learning 

algorithm tries to find the pattern inside the input data alone. One of unsupervised 

learning algorithm that will be used in this article is "K-mean Clustering". 

3.1 Why python? 

Python has become the lingua franca for many data science applications. It 

combines the power of general-purpose programming languages with the ease of use of 

domain-specific scripting languages like MATLAB or R. Python has libraries for data 

loading, visualization, statistics, natural language processing, image processing, and 

more. 

One of the main advantages of using Python is the ability to interact directly with 

the code, using a terminal or other tools like the Jupyter Notebook, which we’ll look at 

shortly. Machine learning and data analysis are fundamentally iterative processes, in 

which the data drives the analysis. It is essential for these processes to have tools that 

allow quick iteration and easy interaction. 

 

3.2 scikit-learn: 
scikit-learn is an open source project, meaning that it is free to use and distribute, 

and anyone can easily obtain the source code to see what is going on behind the scenes. 

The scikit-learn project is constantly being developed and improved, and it has a 

very active user community. It contains a number of state-of-the-art machine learning 

algorithms, as well as comprehensive documentation about each algorithm. scikit-learn 

is a very popular tool, and the most prominent Python library for machine learning. It 
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is widely used in industry and academia, and a wealth of tutorials and code snippets are 

available online. scikit-learn works well with a number of other scientific Python tools. 

3.3 production data preprocessing: 
Data preprocessing is a process of preparing the raw data and making it suitable 

for a machine learning model. It is the first and crucial step while creating a machine 

learning model. 

A real-world data generally contains noises, missing values, and maybe in an 

unusable format which cannot be directly used for machine learning models. Data 

preprocessing is required tasks for cleaning the data and making it suitable for a 

machine learning model which also increases the accuracy and efficiency of a machine 

learning model. 

 

 

 

3.4 Data visualization: 
Data visualization is an integral part of any data science project. Understanding 

insights using excel spreadsheets or files becomes more difficult when the size of the 

dataset increases. It’s certainly not fun to scroll up/down to do an analysis. 

FIGURE 3. 1 DATA VISUALIZATION 



17 
 

It involves the creation and study of the visual representation of data. To 

communicate information clearly and efficiently, data visualization uses statistical 

graphics, plots, information graphics and other tools. Numerical data may be encoded 

using dots, lines, or bars, to visually communicate a quantitative message. 

In data visualization, we use different graphs and plots to visualize complex data 

to ease the discovery of data patterns. 

3.4.1 Importance of data visualization: 
Data visualization also helps identify areas that need attention, e.g outliers, which 

can later impact our machine learning model. It also helps us understand the factors that 

have more impacts on your results: for example, in house price predictions, the house 

price will be impacted more by the size of the house than the house style. 

3.5 model selection: 

3.5.1 k-neighbors regression: 
There is also a regression variant of the k-nearest neighbors algorithm. Again, 

let’s start by using the single nearest neighbor, this time using the wave dataset. We’ve 

added three test data points as green stars on the x-axis. The prediction using a single 

neighbor is just the target value of the nearest neighbor. These are shown as blue stars 

in Figure 3:2 : 
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FIGURE 3. 2 PREDICTIONS MADE BY ONE-NEAREST-NEIGHBOR REGRESSION ON THE WAVE 

DATASET 

we can use more than the single closest neighbor for regression. When using 

multiple nearest neighbors, the prediction is the average, or mean, of the relevant 

neighbors (Figure 3:3) 

 

 

FIGURE 3. 3 PREDICTIONS MADE BY THREE-NEAREST-NEIGHBORS REGRESSION ON THE WAVE 

DATASET 
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The k-nearest neighbors algorithm for regression is implemented in the 

KNeighbors Regressor class in scikit-learn. It’s used similarly to KNeighborsClassifier. 

 

we can make predictions on the test set: 

 

 

can also evaluate the model using the score method, which for regressors returns 

the R 2 score. The R 2 score, also known as the coefficient of determination, is a 

measure of goodness of a prediction for a regression model, and yields a score between 

0 and 1. A value of 1 corresponds to a perfect prediction, and a value of 0 corresponds 

to a constant model that just predicts the mean of the training set responses, y train: 

 

 

Here, the score is 0.83, which indicates a relatively good model fit. 

3.5.2 Analyzing KNeighborsRegressor: 
For our one-dimensional dataset, we can see what the predictions look like for all 

possible feature values (Figure 2-10). To do this, we create a test dataset consisting of 

many points on the line: 
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FIGURE 3. 4 COMPARING PREDICTIONS MADE BY NEAREST NEIGHBORS REGRESSION FOR 

DIFFERENT 

As we can see from the plot, using only a single neighbor, each point in the 

training set has an obvious influence on the predictions, and the predicted values go 

through all of the data points. This leads to a very unsteady prediction. Considering 

more neighbors leads to smoother predictions, but these do not fit the training data as 

well. 

3.5.3 Strengths, weaknesses, and parameters: 
In principle, there are two important parameters to the KNeighbors classifier: the 

number of neighbors and how you measure distance between data points. In practice, 

using a small number of neighbors like three or five often works well, but you should 

certainly adjust this parameter. Choosing the right distance measure is somewhat 

beyond the scope of this book. By default, Euclidean distance is used, which works well 

in many settings. 
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One of the strengths of k-NN is that the model is very easy to understand, and 

often gives reasonable performance without a lot of adjustments. Using this algorithm 

is a good baseline method to try before considering more advanced techniques. Building 

the nearest neighbors model is usually very fast, but when your training set is very large 

(either in number of features or in number of samples) prediction can be slow. When 

using the k-NN algorithm, it’s important to preprocess your data. This approach often 

does not perform well on datasets with many features (hundreds or more), and it does 

particularly badly with datasets where most features are 0 most of the time (so-called 

sparse datasets). 
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Results and Discussion 

 

In this chapter, we will extract the results from modeling data acquired from tow 

wells using python programming language, to predict the liquid loading status in the 

wells. 

4.1 case study for synthetic data: 

4.1.1 Data visualization: 
The figures 4:1 and 4:2 shows the data of the Latin well, which well be 

preprocessed and then modeled.  

The figure below refers to unloading status of the well (0) 

 

 

FIGURE 4. 1 UNLOADING DATA VISUALIZATION 

 

 

 

 

        The figure below refers to loading status of the well (1) 
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FIGURE 4. 2 LOADING DATA VISUALIZATION 

In the figure 4:3 the casing pressure is plotted vs the gas flowrate. 

 

 

In the figure 4:4 the tubing pressure, casing pressure and static pressure are plotted 

vs the gas flow rate 

FIGURE 4. 3 CASING PRESSURE VS FLOWRATE 
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FIGURE 4. 4 TUBING, CASING, STATIC PRESSURES VS TIME 

4.1.2 Data preprocessing: 
In the figure 4:5 using missingno function the data is visualized to find out 

whether the data is complete or not. 

 

FIGURE 4. 5 DATA CHECK USING MISSINGNO METHOD 
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In the figure 4:6 the missing data is interpolated. 

 

FIGURE 4. 6 DATA INTEGRATION USING INTERPOLATE METHOD 

4.1.3 Data modeling: 
In the figure 4:7 shows the data modeled using K-nearest-neighbors (KNN) 

 

4.1.4 The results: 
In the figure 4:8 the model is run, the accuracy of this model is 0.93 and all the 

data is tested. 

FIGURE 4. 7 DATA MODELING ALGORITHM 
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4.2 Case study for the well FN-21: 

4.2.1 Data visualization: 
As it seen in Figure 4:9, in the data below there are missing features, which is 

flowline pressure and average casing pressure, therefore the data is not appropriate to 

be modeled. 

 

FIGURE 4. 8 MODELING FINAL RESULT 
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FIGURE 4. 9 DATA LOADING VISUALIZATION 
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Moreover, the figure 4:10 shows that the flowline pressure and average casing 

pressure are missed. 

 

FIGURE 4. 10 FN21 DATA CHECK USING MISSINGNO METHOD 

 

From all above it appears that the data acquired from this well is not capable of 

being used in this project. 
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4.3 Case study for the well FN4-7: 

4.3.1 Data visualization: 
 The figures 4:11 and 4:12 shows the data of the well FN4-7, which well be 

preprocessed and then modeled.  

The figure below refers to unloading status of the well (0) 

 

FIGURE 4. 11 UNLOADING DATA VISUALIZATION 
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The figure below refers to loading status of the well (1) 

 

FIGURE 4. 12 DATA LOADING VISUALIZATION 

In the figure 4:13 the average casing pressure is plotted against the gas flow rate. 

 

FIGURE 4. 13 GAS FLOWRATE VS AVERAGE CASSING PRESSURE 

 

  

 

 

In figure 4:14 the average tubing pressure is plotted against the gas flow rate. 
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In the figure below the average casing and tubing pressure is plotted 

against the gas flowrate 

 

FIGURE 4. 14 GAS FLOWRATE VS TUBING PRESSURE 

FIGURE 4. 15 TUBING,CASING PRESSURES VS TIME 
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 4.3.2 Data preprocessing: 
In the figure 4:16 using missingno function the data is visualized to find out 

whether the data is complete or not.   

 

FIGURE 4. 16 FN4-7 DATA CHECK USING MISSINGNO METHOD 
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In the figure 4:17 the missing data is interpolated. 

4.3.3 Data modeling: 
In the figure 4:18 shows the data modeled using K-nearest-neighbors (KNN)  

 

 

 

 

FIGURE 4. 17 DATA INTEGRATION USING INTERPOLATE METHOD 

FIGURE 4. 18 DATA MODELING 
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4.3.4 The results: 
In the figure 4:19 the model is run, the accuracy of this model is 0.92 and all the 

data is tested. 

 

 

  

  

FIGURE 4. 19 MODEL FINAL RESULT 
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Conclusions and recommendations 

5.1 Conclusions: 

1- With data contains at least, features of casing pressure, static pressure, 

tubing pressure, flow line pressure and temperature and the gas flow rate, 

there will be a chance to build a model that anticipate the status of the well 

either loading or unloading. 

2- Python programing language was used to in visualizing, preprocessing and 

modelling the data. 

3- Hence using K-nearest neighbors regression algorithm, the loading status is 

predicted. 

4- One of the strengths of k-NN is that the model is very easy to understand, and 

often gives reasonable performance without a lot of adjustments. 

5- Building the nearest neighbors model is usually very fast, but when your 

training set is very large (either in number of features or in number of samples) 

prediction can be slow. When using the k-NN algorithm, it’s important to 

preprocess your data. 

6- This approach often does not perform well on datasets with many features 

(hundreds or more), and it does particularly badly with datasets where most 

features are 0 most of the time. 

7- Using Missingno method to interpolate data according on how data move and 

change from one period to another. 

5.2 Recommendation: 

A real data monitoring system is recommended to be fed with a spontaneous data, 

therefore this model is used to prevent the well from being dead, and we mean by died 

that well stop producing gas. Real data workflow base hence prevention of: 

A- Time loss. 

B- Cost loss. 

C- The inverse flow to the near wellbore region. 
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