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Abstract 

 

Chan’s water control diagnostic plots are the most common way to investigate the 

mechanism that causes water production, but the traditional investigation by human has 

a degree of uncertainty and requires long time. The purpose of this project is to build a 

supervised machine learning model using ridge classifier to detect water production 

mechanism WPM (coning or channeling) accurately and time effectively. 

Firstly, we performed a conventional identification of Chan’s plots pattern from 

Heglig’s production data, then the data is divided into training set and test set, also the 

training set is split into two trends to train two different Models and create the ensemble 

classifier, then we evaluate the model ability on the test set, and then a hyper parameter 

(alpha) was tested many times to improve each model accuracy. 

We find out that Model1 demonstrates high accuracy to detect the WPM, and it 

is able to overfit the training set by 100% also it showed high degree of accuracy to 

classify unseen data (generalization) by 100% and for Model2 the overfitting is 100% 

and generalization is 89%, The accuracy of ensemble classifier is 100% on the test set. 

The project showed successful application of Machine Learning by using 

ensemble classifier and Ridge Classification algorithm to classify the WPM based on 

Chan’s water control diagnostic plots in efficient way that would make the WPM 

detection much easier. Some other mechanisms may be included in the future work that 

would be done to develop this model. 
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 التجريد 

 

لتشخيص آلية إنتاج المياه ولكن التشخيص التقليدي عن طريق العين    جدا    ةهي مخططات شائع Chan مخططات

يهدف هذا    .لى الوقت الكثير الذي يتطلبهإتخاذ القرار إضافة  إالمجردة يحدث فيه بعض اللبس وأحيانا يصعب  

لمياه تاج اإنللتنبؤ بآلية     Ridge Classifier   ستخدام خوارزمية الإب  (تعليم الآلة)لى بناء نموذج  إالمشروع  

 . بدقه عالية وزمن قياسي

البداية قمنا بدراسة أنماط . البيانات   Chan في  إنتاج من حقل هجليج ثم قسمنا  لى قسمين، أحدهم إلبيانات 

للأختبار والآخر للتدريب الذي بدوره قسم إلي قسمين من المنحنيات المتشابهة الى حد كبير لتدريب نموذجين  

 .على دقة كل نموذج hyper parameter و آخيرا  تم دراسة أثر تقليل قيمة   (الجامعف  نالمص)مختلفين لتكوين  

لنسبة     overfitting   أظهر النموذج الأول دقة عالية في تشخيص آلية إنتاج المياه حيث وصل ال

%  100لنسبة   overfitting الفيه  % أما النموذج الثاني فقد وصل  100لنسبة   generalization % وال100

 .%100فقد وصلت ألى  (للمصنف الجامع)% ،أما الدقة النهائية 89لنسبة   generalization الو

في تصنيف آلية  Ride Classifier المشروع أظهر تطبيقا  ناجحا لاستخدام مفهوم تعليم الآلة وخوارزمية ال   

لآليات الأخرى يمكن  . بعض ااجدوسريع جعل التصنيف سهل ستوالذي  Chan على مخططات انتاج المياه بناء  

 .أن تتضمن في العمل المستقبلي لتطوير هذا النموذج
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Chapter (1) 

Introduction 

Excessive water production is one of the main well-known problems that would 

face any oil operator in the world. Although this problem is typical in older wells, it 

can also occur in new developed wells as well (Taha & Amani, 2019). Water production 

is inevitable in most oil wells, Water may also be produced into the wellbore 

commingled with oil, at a rate below the economic water-oil ratio (WOR) limit, which 

may not be reduced or shut off without affecting the oil production. This is the so-called 

“sweep” and “good” water. However, a water production rate exceeding the economic 

WOR limit or a sudden outburst of water in to the oil well indicates a problem and 

requires immediate attention so called “unwanted” and “bad” water, it causes numerous 

economic problems for oil production companies (Rabiei, et al., 2009). First, excessive 

water effects the performance of the production wells and shortens their lifespan. The 

presence of the water in the wellbore increases the weight of the fluid column which 

leads to an increase in the lifting requirements. That increases the operating cost and 

leads to a lower the drawdown, water production also enhances the presence of scales, 

corrosion, and degradation in the field facilities starting from the wellbore to the surface 

facilities. Another major problem is that the cost of separating, treating, and disposing 

the produced water is a great burden to oil company budgets (Taha & Amani, 2019). 

 

1.1 Sources of Unwanted Water Production: 

1.1.1Water flooding:  

the fluid tends to take the paths least resistance  and the injected water, as a result, 

goes to the open fractures and high permeability formations instead of matrix rock to 

displace the oil. In some cases, the water injection well happens to be connected with 

the production well through an open fracture or features which are known also as ‘thief 

zones (Figure 1:1). 
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1.1.2 Aquifer: 

Open features also can result in an excessive amount of water if they are 

connected to the aquifer (Figure 1:2). 

 

 

 

 

 

 

 

 

 

1.1.3 Formation (connate) water:  

Fractures and open features can contribute to unwanted water production 

when they are connected to water formations zones (Taha & Amani, 2019). 

1.1.4 Gas hydrate reservoirs  

Can be also a main source of excessive water production when dissociated. 

Figure 1.1: Example of a water injection well connected to an oil       producer 

well (Taha & Amani, 2019) 

Figure 1.2: An oil producer connected to an aquifer through an open feature  

(Taha & Amani, 2019) 
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1.2 Mechanisms of Water Production: 

1.2.1 Coning: 

The term coning is used because, in a vertical well, the shape of the interface 

when a well is producing the second fluid resembles an upright or inverted cone. Water 

coning is a term used to describe the mechanism underlying the upward movement of 

water into the perforations of a producing well (Moradi, et al., 2010). 

It is a production-related-problem in partially perforated wells, that is, wells completed 

at the upper parts of the reservoir. During production of oil, the pressure drops in the 

well tends to draw-up water from the aquifer towards the lowest completion interval at 

the well; as shown in Figure (1:3) This rising up of aquifer content - water, is caused 

by potential distribution near the wellbore. 

 

 

       

                                                                          

 

 

 

 

 

1.2.2. Channeling: 

Channeling occurs because of the early breakthrough in the high permeability or 

fractured formations especially in water flooding. Channeling is one of the more 

important excessive water productions. Furthermore, reservoir heterogeneities lead to 

the presence of high permeability streaks. Fractures or fracture-like features 

Figure 1.3:  water coning  ( Okon, et al., 2017) 
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are the most common cause of the channeling. Water production could 

emanate via natural fractures from underlying aquifers. Induced or natural fracture 

fractures can cause channeling between wells in un fractured reservoir often 

stratification and associated permeability variations among various layers can result in 

channeling between an injector and producer or from an edge water aquifer to the 

producers (Excessive Water Production Diagnosis and Strategies Analysis -Case 

Study- Jake Field -Sudan, 2016). 

 

 

 

 

 

 

1.3 Problem Statement: 

An important problem in water control is the identification of the 

dominant reservoir or production mechanisms, The water production 

mechanism must be properly investigated and accurately diagnosed in 

order to design an appropriate and effective treatment method. Incorrect, 

inadequate, or lack of proper diagnosis usually leads to ineffective water 

control treatments that cost a lot of time and money. 

However, some investigations are proper and complete but they are usually 

made at late times after the breakthrough occurs which leads to economic 

and operational costs, therefor early investigations should be performed to 

avoid the problems of late investigation. 

 

Figure 1.4:  water channeling.  (Bailey, et al., 2000) 
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1.4 Research Objectives:  

This research aimed to: 

1. Analyze WOR and WOR’ curves using Chan’s method. 

2. perform conventional investigation for some wells production data from Heglig Oil 

field.   

3. Build a machine learning model to Perform early Prediction for excessive water 

production mechanisms. 
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Chapter (2) 

Literature review 

 

2.1 Water Production Diagnostic: 

 In the past, water control was simply a plug and cement operation, or a gel 

treatment in a well. The main reason for why industry’s failure to consistently control 

water is the lack of understanding the different problems and the consequent 

applications of inappropriate solutions. This is demonstrated by the number of technical 

papers discussing the treatments and results with little or no reference to the geology, 

reservoir or water control problem. The key optimum way for water control, is the 

diagnostics to identify the specific water problem at hand. Well diagnostics are used in 

three ways:  

I. Screening wells that are suitable candidates for water control.  

II. Determine the water problem so that a suitable water-control method can be selected. 

III. Locate the water entry point in the well so that a treatment can be correctly placed 

(Bailey, et al., 2000). 

2.1.1 Diagnostics with the Production Data:  

2.1.1.1 Recovery plot:  
 

The recovery plot is a semi log plot of WOR against cumulative oil production. 

the production trend can be extrapolated to the WOR economic limit to determine the 

oil production that will be achieved if no water-control action is taken. If the 

extrapolated production is approximately equal to the expected reserves for 

a well, then the well is producing acceptable water, and no water control is 

needed. If this value is much less than the expected recoverable reserves, 

the well is producing unacceptable water and remedial action should be 

considered if there are sufficient reserves to pay for intervention (Bailey, 

et al., 2000) 
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2.1.1.2 Production history plot:  

This plot is a log-log plot of oil and water rates against time. Good candidates for 

water control usually show an increase in water production and a decrease in oil 

production starting at about the same time. 

 

 

 

 

 

 

2.1.2 Decline-curve analysis:  

This is a semi log plot of oil production rate versus cumulative oil (below). may 

indicate a problem other than water, such as severe pressure depletion or damage 

buildup. A straight-line curve can be expected for normal depletion. An increased 

decline.  

 

 

 

 

Figure 2.1:  Recovery plot  (Excessive Water Production Diagnosis and 

Strategies Analysis -Case Study- Jake Field -Sudan, 2016) 

Figure 2.2:  Production history plot  (Bailey, et al., 2000) 
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2.1.3 Nodal Analysis: 

suggested techniques for water production mechanism diagnosis using nodal 

analysis. The design of a production system depends on the combined performance of 

the reservoir and the downhole tubing or reservoir “plumbing” system. The amount of 

oil, gas and water flowing into a well from the reservoir depends on the pressure drop 

in the piping system, and the pressure drop in the piping system depends on the amount 

of each fluid flowing through it. The deliverability of a well often can be severely 

diminished by inadequate performance or design of just one component in the system.  

An analysis of a flowing wellbore and the associated piping, known as NODAL 

analysis, is frequently used to evaluate the effect of each component in a flowing 

production system from the bottom of a well to the separator. NODAL analysis is also 

used to determine the location of excessive flow resistance, which results in severe 

pressure losses in tubing systems.  The effect of changing any component in the system 

on production rates can be determined (Bailey, et al., 2000). 

2.1.4 Well Logging: 

Various well logging techniques have also been developed that can be used in 

evaluating and predicting the water production mechanism. While they are vital tools 

in well and reservoir surveillance, their application during production is to some extent 

limiting. The logging instruments can be expensive and sometimes require shutting the 

well during logging which consequently affects the production rate and revenue. They 

could also entail costly and time-consuming log analysis and interpretation (Rabiei, 

et al., 2009). 

Figure 2.3:  Decline curve  (Bailey, et al., 2000) 
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2.1.5 Conventional plots: 

Conventionally, water cut vs time linear plots were used to show the progress and 

severity of the excessive water production problems. The correlation between water cut 

or fractional water flow and average reservoir water saturation for two-phase flow is 

well known. However, it is not practical since saturation distributions throughout the 

reservoir are changing with time. Averaging fluid saturation from material balance does 

not shed any light on fluid flow behaviors in heterogeneous formations. Although these 

plots can also show a' drastic change in the water cut indicative of the sudden failure of 

well completion or rapid breakthrough of a high-water conductivity channel, the 

information provided by water cut plots, is limited. Regardless of multilayer channeling 

or coning, the shapes of the water-cut plots are very similar. Linear or semi log WOR, 

plots have been used to. evaluate recovery efficiency. A special plot 

(Known as X-plot) that uses a correlation of. a modified fraction flow function with the 

recovery efficiency has also been shown to be capable of representing normal 

waterflood volumetric sweep efficiency. These plots could be useful to evaluate 

production efficiency, but they do not reveal any detail on reservoir flow behaviors. For 

multilayer flow, the WOR had been expressed as the ratio between the sum of the 

product of the permeability and the height of the water-out layers and that of the 

remaining oil production layer. Again, this overall estimation approach in evaluating 

excessive water production behavior does not shed any clue on the timing of the layer 

breakthrough and the relationship between the rate of change of the WOR with the 

excessive water production mechanism (Chan, 1995). 

2.1.6 Chan’s method: 

According to Chan (1995), the log-log plots of WOR (Water-Oil Ratio) versus 

time or GOR (Gas-Oil Ratio) versus time show different characteristic trends for 

different mechanisms. The time derivatives of WOR and GOR were found to be capable 

of differentiating whether the well is experiencing water and gas coning, high 

permeability layer breakthrough or near wellbore channeling. Chan identified three 

most noticeable water production mechanisms namely water coning, near well-bore 

problems and multi-layer channeling. Log-log plots of the WOR (rather than water cut) 

versus time were found to be more effective in identifying the production trends and 
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problem mechanisms. it was discovered that derivatives of the WOR versus time can 

be used for differentiating whether the excessive water production problem as seen in 

a well is due to water coning or multilayer channeling. Figures (2:4) through (2:7) Chan 

(1995) illustrate how the diagnostic plots used to differentiate among the various water 

production mechanisms. Figure (2:7) shows a comparison of WOR diagnostic plots for 

coning and channeling. The WOR behavior for both coning and channeling is divided 

into three periods; the first period extends from start of production to water 

breakthrough, where the WOR is constant for both mechanisms. When water 

production begins, Chan claims that the behavior becomes very different for coning 

and channeling. This event denotes the beginning of the second time period. For coning, 

the departure time is often short (depending on several variables), and corresponds to 

the time when the underlying water has been drawn up to the bottom of the perforations. 

According to Chan, the rate of WOR increase after water breakthrough is relatively 

slow and gradually approaches a constant value. This occurrence is called the transition 

period. 

For channeling, the departure time corresponds to water breakthrough for the most 

water-conductive layer in a multi-layer formation, and usually occurs later than for 

coning. Chan (1995) reported that the WOR increases relatively quickly for the 

channeling case, but it could slow down and enter a transition period, which is said to 

correspond to production depletion of the first layer. Thereafter, the WOR resumes at 

the same rate as before the transition period. This second departure point corresponds 

to water breakthrough for the layer with the second highest water conductivity. 

According to Chan, the transition period between each layer breakthrough may only 

occur if the permeability contrast between adjacent layers is greater than four. After the 

transition period(s), Chan describes the WOR increase to be quite rapid for both 

mechanisms, which indicates the beginning of the third period. The channeling WOR 

resumes its initial rate of increase, since all layers have been depleted. The rapid WOR 

increase for the coning case is explained by the well producing mainly bottom water, 

causing the cone to become a high-conductivity water channel where the water moves 

laterally towards the well. Chan (1995), therefore, classifies this behavior as 

channeling. Log-log plots of WOR and WOR time derivatives (WOR') versus time for 

the different excessive water production mechanisms are shown in Figures (2:5) 

through (2:7) Chan (1995) proposed that the WOR derivatives can distinguish between 
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coning and channeling. Channeling WOR' curves should show an almost constant 

positive slope (Figure 2:5), as opposed to coning WOR' curves, this should show a 

changing negative slope (Figure 2:6). A negative slope turning positive when 

“channeling” occurs as shown in Figure (2:7), characterizes a combination of the two 

mechanisms. Chan classifies this as coning with late channeling behavior. 

 

 

 

 

 

 

 

 

 
 

 
 
 
 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Water coning and channeling WOR 

comparison. Chan (1995) 

Figure 2.5: Bottom water coning with late time 

channeling. Chan (1995) 
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Recently, the use of Chan’s WOR diagnostic plots has received significant interest in 

the oil and gas industry. However, the applications of the diagnostic plot to field data 

and results from numerical simulations have indicated their limitations, especially the 

use of derivative plots with noisy production data. There is therefore, a need to 

determine the validity of using these plots as a diagnostic method and to see if it can be 

fine-tuned (Diagnostic Plots for Analysis of Water Production and Reservoir 

Performance, 2010). 

Figure 2.6: Bottom-water coning WOR and WOR’. 

Chan (1995) 

Figure 2.7:  Bottom water coning with late time 

channeling. Chan (1995) 
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2.2 Machine Learning: 

 

 

 

 

 

 

 
 

Machine learning is about extracting knowledge from data. It is a research field 

at the intersection of statistics, artificial intelligence, and computer science and is also 

known as predictive analytics or statistical learning (Muller & Guido, 2016).  

The most successful kinds of machine learning algorithms are those that automate 

decision-making processes by generalizing from known examples. In this setting, 

which is known as supervised learning, the user provides the algorithm with pairs of 

inputs and desired outputs, and the algorithm finds a way to produce the desired output 

given an input (Muller & Guido, 2016). 

There are two major types of supervised machine learning problems, called 

classification and regression. In classification, the goal is to predict a class label, which 

is a choice from a predefined list of possibilities. Classification is sometimes separated 

into binary classification, which is the special case of distinguishing between exactly 

two classes, and multiclass classification, which is classification between more than 

two classes. You can think of binary classification as trying to answer yes/no question 

(Muller & Guido, 2016), our classifications in this study are coning or channeling. 

 

2.2.1 Machine Learning Multiclass Classification Problem: 

 In multiclass classification problems the task is to classify instances into two or 

more classes; e.g., classify a well which may have patterns of constant WOR, normal 

displacement, multilayer channeling, and rapid channeling. Multiclass classification 

problem assumes that each instance is assigned one and only one label: a well can be 

Figure 2.8:  Machine learning classification  (Anon., 2018) 
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either normal displacement or multilayer channeling but not both at the same time 

(Garcia, et al., 2019). 

 

2.2.2 Ensemble classifiers: 

In ensemble classification algorithms, the results from several individual 

classifiers are integrated in some manner (averaging or voting) in an attempt to provide 

a more accurate prediction  (Rabiei, 2011). 

It has been demonstrated through several studies in the literature that ensemble 

classifiers usually perform better than the individual classifiers they are based on. 

The classification error of a classifier can be defined by a composition of bias, 

variance and noise. Bias measures the difference between the predicted and actual 

function of the data and shows how effectively the classifier can predict the 

function (Rabiei, 2011).

Variance measures the variations of predictions due to changes in the learning data. 

Typically, there is a trade-off between bias and variance; reducing one means an 

increase in the other. Simple classifiers usually have low bias but high variance 

and complex classifiers have low variance but high bias. In ensemble classifiers, 

the problem of variance is taken care of by averaging the predictions from base 

classifiers. At the same time, given the interaction between bias and variance, 

ensemble classifiers can produce low biased results by using base classifiers with 

high variance such as classification trees (Rabiei, 2011). 

To have the previous work regarding the machine learning in water production 

diagnostics as a guideline for our project we have found that (Rabiei, 2011) stepped 

away from traditional approach, extracted predictive data points from plots of 

WOR against the oil recovery factor. And considered three different scenarios of 

pre-water production, post-water production with static reservoir characteristics 

and post water without static reservoir characteristics for investigation. Next, they 

used tree-based ensemble classifiers to integrate the extracted data points with a 

range of basic reservoir characteristics and to unleash the predictive information 

hidden in the integrated data. Interpretability of the generated ensemble classifiers 

were improved by constructing a new dataset smeared from the original dataset, 

and generating a depictive tree for each ensemble using a combination of the new  
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and original datasets. To generate the depictive tree, they used a new class of tree 

classifiers called logistic model tree (LMT). LMT combines the linear logistic 

regression with the classification algorithm to overcome the disadvantages 

associated with either method. Their results show high prediction accuracy rates of 

at least 90%, 93% and 82% for the three considered scenarios and easy to 

implement workflow. Adoption of this methodology would lead to accurate and 

timely management of water production saving oil and gas companies considerable 

time and money. 

(Mukhanov, et al., 2018) concentrated on a mix of patterns that covers the following 

four production states: constant WOR, normal displacement, multilayer channeling, 

and rapid channeling. The former two represent acceptable production, whereas the 

latter two require immediate flagging and further investigation. To effectively 

maintain the scope of work, they deliberately excluded such water control problems 

as coning and thief zone formation. Moreover, both had too few examples in real data 

sets they used. 

Moreover, they have not found by the time of this writing very specific and distinctive 

criteria for each water control problem pattern. Instead, there was merely a notion of 

linear segments and relative slope changes, without strict postulation. 

On sample Chan plots of the real-life completions Figure (2:9) considered for the 

training or the testing of the algorithm, the X-axis reflects the number of days on 

production, or days elapsed from the production start date. The Y-axis reflects values 

for the WOR curve in blue and the WOR' curve beneath it in red. 

 

 

 

 

 

 

 

 

 

    Figure 2.9:  Patterns from Chan (Mukhanov, et al., 2018) 
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As is apparent from the figures, without a more thorough and hence more time-

consuming review, in the absence of a standardized, normalized template, petroleum 

engineers may struggle to distinguish a visually alike yet physically different pair, 

such as normal displacement versus multilayer channeling (Figure (2:9) b and (2:9) 

c), multilayer       versus rapid channeling (Figure (2:9) c and (2:9) d), and constant 

WOR versus normal displacement (Figure (2:9) a and (2:9) b). 

Therefore, after carefully reviewing diverse real data sets, we elaborated more specific 

guidelines on how to distinguish among pattern types. We summarize them in Table 

(2:1) Magnitudes of change were assessed in terms of the number of one base ten 

logarithmic cycles. 

 

 

 

Table 2.1:  Criteria elaborated for visual classification of water control patterns 

 

 An important applicability test for an ML model is whether a human expert can 

review features of the algorithm and confidently predict the classification output 

value. Therefore, having clear assumptions is crucial. 

Here, we review water control diagnostic patterns in detail. For each, we will 

expand below on the physical meaning and the visual classification criteria which we 

applied to collect the training data set. 

The constant WOR reflects water merely following the oil trend without 

accelerating contribution. This pattern represents the so-called "good" or "sweep" 

water that is innate or injected. When innate water is mobile in the reservoir, then it 

helps sweep oil. As the name suggests, the constant WOR is represented by a mostly 

horizontal line gravitating around single value within less than one order of magnitude. 

In other words, its values do not change by more than one base ten logarithm – as on 

Figure (2:9) a. Wells flagged as exhibiting constant WOR can be skipped from the 

workover candidate recognition process because they do not fall within the interest. 

ΔWOR ΔWOR′ Shape and timeframe Pattern type 

<

1 

1<

Δ<2 

Practically horizontal line throughout the most of well life Constant WOR 

~

1 

1<

Δ<3 

Continuous slightly upward trend often with constant slope Normal displacement 

>

1 

>=

3 

Growth of slopes often within half-log time cycle Multilayer channeling 

>

=2 

>2 Both curves rocket in a very short time of <=1/10 of log cycle Rapid channeling 

file:///C:/Users/amarm/Downloads/support%20vector%20machine(1).docx%23_bookmark1
file:///C:/Users/amarm/Downloads/support%20vector%20machine(1).docx%23_bookmark1
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The normal displacement reflects another common situation in which the WOR and 

the WC gradually increase over time. It is natural that the WC in late-stage wells 

grows to as high as 80% or more; similarly, the WOR value starts off with a gradually 

emerging distinct upward trend. The change is consistent, characterized by an almost 

linear positive slope (see Figure (2:9) b). Often, normal displacement does not lift 

the WOR to more than one log cycle on the vertical axis. Just as wells with the 

constant WOR, wells demonstrating normal displacement typically do not require 

intervention. 

The multilayer channeling refers to a sufficiently sudden and clear shift in slope from 

a constant WOR or normal displacement situation. The breakthrough from the most 

conducive layer can be traced to an initial relatively steeper and more exponential 

increase in the WOR in later stages of the well life, often exceeding one log cycle on 

the vertical axis (see Fig. 1c). On the horizontal axis, this pattern type often develops 

within a half-log timeframe. A stair-step like shape reflects transition periods and 

layered-permeability contrasts, as breakthroughs from other nearby layers intensify 

the slope increase. The pattern represents edge-water flow or a moving oil-water 

contact (OWC). 

The rapid channeling is characterized by an abrupt and quickly intensifying water 

problem or a barrier breakdown, such as a near wellbore breakthrough, an open flow 

path through a fault, a fracture, or a channel behind casing in the casing-formation 

annulus due to a poorly implemented cement job. Note a very significant change of 

WOR in a short period of time on Fig. 1d. We considered as a strong visual cue for 

the rapid channeling pattern a WOR change of two or more orders of magnitude 

within the late-time period. In the presented example, an increase by three log cycles, 

i.e., a WOR increase from 1 to 1000, is observed in approximately 20% of the latest 

portion of the well life within less than or equal to one-tenth of a late time log cycle. 

 

 

 

 

 

file:///C:/Users/amarm/Downloads/support%20vector%20machine(1).docx%23_bookmark0
file:///C:/Users/amarm/Downloads/support%20vector%20machine(1).docx%23_bookmark0
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      Chapter (3) 

Methodology 

 

3.1 Introduction: 

In an integrated methodology a machine learning model have been built with 

python programming language libraries using ridge classifier algorithm. This model 

predicts the excessive water production mechanism, and it is result have been compared 

with conventional investigation (human decision) which ensure that the model is 

providing an accurate result. 

 

3.2 General Procedure:  

1. Data Collection. 

2. Data cleaning and preparation. 

3. Data classification (Coning, Channeling). 

4. Creating an ensemble of several models each model has data with     relatively close 

trends to achieve overfitting, 

5. Passing unseen data to the ensemble to make sure it is able to generalize from the 

training data to a new data. 

 

3.3 Why machine learning?  

1. Lack of sufficient human expertise in a domain. 

2. Scenarios and behavior can keep changing over time. 

3. Human have sufficient expertise in the domain but it is extremely difficult to formally 

explain or translate this expertise into computational task.  

4. Addressing domain specific problems at scale with huge volume of data with too 

many complex conditions and constrain.  
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3.4 why python? 

Python has become the lingua franca for many data science applications. It 

combines the power of general-purpose programming languages with the ease of use 

of domain-specific scripting languages like MATLAB or R. Python has libraries for 

data loading, visualization, statistics, natural language processing, image processing, 

and more. This vast toolbox provides data scientists with a large array of general- and 

special-purpose functionality. One of the main advantages of using Python is the ability 

to interact directly with the code, using a terminal or other tools like the Jupyter 

Notebook. Machine learning and data analysis are fundamentally iterative processes, in 

which the data drives the analysis. It is essential for these processes to have tools that 

allow quick iteration and easy interaction. As a general-purpose programming 

language, Python also allows for the creation of complex graphical user interfaces 

(GUIs) and web services, and for integration into existing systems (Muller & Guido, 

2016). 

 

3.5 Concept of Ridge Classifier: 

The Ridge Classifier, based on Ridge regression method, converts the label data 

into [-1, 1] and solves the problem with regression method. The highest value in 

prediction is accepted as a target class and for multiclass data multi-output regression 

is applied. 

Ridge regression is a linear regression regularized with L2 norm. The matrix 

formulation is shown in Equation (3:1), which is obtained from minimizing the sum of 

squares of residuals (Y and Yˆ). 

 

𝑾 = (𝑿𝑻𝑿+∝ 𝑰)−𝟏𝑿𝑻𝒀…………………………………………. Equation (3:1) 

 

X is the input matrix of size m x n, where m is the number of data points and n is the 

total number of features. Y is the output vector size m. W is the vector of parameters 

(including bias term). ∝ is a hyperparameter that controls regularization strength. We 

need to adjust regularization strength such that the model is able to accurately model 

the training set (or minimize the bias) as well as perform well in other datasets with 

unseen inputs (or minimize the variance). This is a bias-variance trade-off problem. 



 

20 
 

Trying to fit every single data point in the training set can lead to high variance or 

overfitting. The high variance can be reduced by penalizing W with ∝ as W grows 

larger. In other words, ∝ shrinks the contribution of each feature in X. 

 

In the training period, given a pair of predictor X, ground truth Y, and user-defined ∝, 

we can obtain W. In this research, optimum ∝ was obtained through hyperparameter 

grid search with ∝ = [0.01, 1, 1, 2, 5, 10, 100, 1000]. After obtaining W and ∝, the 

prediction can be calculated using Equation (3:2) (Ristanto, 2018) 

 

𝒀 = 𝑾𝑿…………………………………………… Equation (3:2) 

 

3.6 Concept of Ensemble Classifier: 

Ensemble learning helps improve machine learning results by combining several 

models. This approach allows the production of better predictive performance 

compared to a single model. Basic idea is to learn a set of classifiers (experts) and to 

allow them to vote (Avik_Dutta, 2022). 

 

3.7 Used Python Libraries: 

3.7.1 NumPy: 

NumPy, short for Numerical Python, has long been a cornerstone of numerical 

computing in Python. It provides the data structures, algorithms, and library glue 

needed for most scientific applications involving numerical data in Python. NumPy 

contains, among other things:  

• A fast and efficient multidimensional array object ndarray  

• Functions for performing element-wise computations with arrays or mathematical 

operations between arrays • Tools for reading and writing array-based datasets to disk 

• Linear algebra operations, Fourier transform, and random number generation 

(McKinney, 2017). 
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3.7.2 Pandas: 

pandas provides high-level data structures and functions designed to make 

working with structured or tabular data fast, easy, and expressive. Since its emergence 

in 2010, it has helped enable Python to be a powerful and productive data analysis 

environment. The primary objects in pandas that will be used in this book are the 

DataFrame, a tabular, column-oriented data structure with both row and column labels, 

and the Series, a one-dimensional labeled array object. Pandas blends the high-

performance, array-computing ideas of NumPy with the flexible data manipulation 

capabilities of spreadsheets and relational databases (such as SQL). It provides 

sophisticated indexing functionality to make it easy to reshape, slice and dice, perform 

aggregations, and select subsets of data. Since data manipulation (McKinney, 2017). 

 

 

3.7.3 Scikit-learn: 

scikit-learn contains a number of state-of-the-art machine learning algorithms, as 

well as comprehensive documentation about each algorithm. Scikit-learn is a very 

popular tool, and the most prominent Python library for machine learning. It is widely 

used in industry and academia. 

It includes submodules for such models as:  

• Classification: ridge classifier, SVM, nearest neighbors, random forest, logistic 

regression, etc.  

•  Regression: Lasso, ridge regression, etc.  

•  Clustering: k-means, spectral clustering, etc.  

• Dimensionality reduction: PCA feature selection, matrix factorization, etc.  

• Model selection: Grid search, cross-validation, metrics  

• Preprocessing: Feature extraction, normalization Along with pandas. Scikit-learn has 

been critical for enabling Python to be a productive data science programming language 

(McKinney, 2017). 

 

3.8 Coding Procedure: 

    To build a machine learning model there are major steps, first step is  data 

preprocessing (data cleaning and scaling), it is common practices is to adjust the 



 

22 
 

features so that the data representation is more suitable to algorithm, second step is 

modeling and the third step is model evaluation   

3.8.1 Data cleaning: 

 In data cleaning and preparation three main functions, create_csv_files(), 

prep_well() and remove_before_production() are defined inside each there are many 

functions that do a specific task. 

1. Pandas and NumPy libraries are imported and then RidgeClassifier algorithm is 

imported from sklearn library: 

 

 

 

2. The data is in form of an excel file, this file includes a sheet for each well, the desired 

wells to be used are stored in a list variable named sheets and then saved in a file by 

np.save(). 

 

 

3. create_csv_files() is defined which  takes excel file name as an argument then desired 

wells names are loaded from sheets file  then creates a csv  for each well. 
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4. Now each well has a file. To make sure that everything is ok and data columns are 

exist and in the top of the sheet get_well_info() is defined which takes the file name  

and reads the file using read_csv(), if columns are existed in the top of the sheet it 

returns a dictionary, the first key in the dictionary is ready status it’s value is True, the 

second key contains the dataframe. If the columns are not existed in the top of the 

sheet, then it returns a dictionary, the first key is ready status which is False, the second 

key contains the dataframe and the third key is the true index of columns. 
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5. prep_well() passes the file name to get_well_info() and do certain operations depend 

on it’s result, fill NaN values with 0  and eventually returns a dataframe consists of two 

columns [WOR, WOR’]. 
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6. Some field’s wells have started production late than other wells and the period before 

the start of production was” filled “with zero value which makes problems in departure 

time as one of the classification parameters  

so before production period problem is solved by removing the zero values from WOR 

column. 

  

 

 

 

 

 

 

7. make_wells_ready() load the list of sheets from sheets.npy file , loops on it and 

passes each well  to prep_well() function to return the ready DataFrame.  Then remove 

zero values before production. 

60 features for each well has been considered as it’s the least number of features for a 

well in (training and test) data so that model will be built by wells that has complete 

resemblance. 
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3.8.2 Modeling:  

Cell below is the function used to read files 

 

 

 

 

1.  The WPM depends on trends of WOR and WOR’, so each one is a separate 

datapoint. make_model_dataset() takes a dictionary of wells names as a keys and 

classes (0 for coning and 1 for channeling) as values  and from the dictionary make lists 

for WOR, WOR’ and classes and return them. 
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2. Next function is used to build (instantiate) the machine learning model with ridge 

classifier algorithm.  RidgeClassifier() encapsulate the algorithm that used to build the 

model as well the algorithm to make predictions on new datapoints. To train the model, 

fit method is called which takes as arguments train data (wor or derivative) and its 

corresponding labels. 

 

 

 

 

 

 

3. model_overfit() function instantiate a model by data and measure overfitting by 

passing the same data to score() function.   

 

 

 

 

 

 

 

 

4. Model_genralize() measure the generalization by passing  test data (new data) to 

score() function.  
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5. To build the final model which combine several models for each trend next function 

is defined which loads a list of trends from trends.npy. 

 

 

 

 

 

3.8.3 Model Evaluation: 

prep_new-data() takes a well name and return WOR and WOR’.   

 

 

 

 

 

 

1. predict function is used to make predictions from models and add the votes for WOR 

and WOR’ in a list.  
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2.From the predict function the decide() function takes the final decision whether the 

well is coning or channeling (0,1). 

 

 

 

 

 

 

 

 

 

3. ensemble_score() is used to compute the accuracy of the ensemble classifier by make 

predictions for each well in the test data and compare it against it is  label (the known 

mechanism). 
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Chapter 4 

Results and Discussion 

 

In this chapter, we present the results of ensemble classifier used for identifying 

two different WPMs. Two thirds of the cases in the data are used for building and 

training the ensemble classifier. The remaining cases are used for evaluating the 

efficiency of the final model. 

To choose the suitable trends to train the models, frequent trial and error executed in 

the training data to achieve balance between overfitting and generalization. In data 

science and machine learning Overfitting is a common undesirable concept in the model 

performance, happens when the model learns details (overfit) in training and cannot 

perform accurately against unseen data, but in prediction of WPMs the trajectory of 

WOR and WOR’ is traced so there is a need to overfit the curve.  

  

 

 

 

The table below shows the chosen trends for constructing the ensemble classifier beside 

the test data. 
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Table 4.1: Trend set and Test set        

 

The generalization without applying any restriction for both models in WOR was 100% 

because it is distinguished by three different periods (departure time, transition period 

and third period), but for WOR’ the two models’ generalization is 0.67 and 0.56 

respectively because it has only one indicator (positive or negative slope) and there a 

considerable share zone in the slope whether it is positive or negative.   

  

We studied the efficiency of decreasing alpha parameter in overfitting and 

generalization for WOR’ and we ended up with this result:   

 

 

Train set 
     Test set    Classifications 

Trend1 Trend2 

“LA-01” “EF-02”    

“BA-01” “HE-06”       “TO-02” 

“EB-01” “HE-10”       “HE-05” 

“EF-02” “HE-13”       “HA-02” 

“El Bakh” “HE-14”       “Heglig” 

“El Full” “HE-17”  

“TO-01” “Toma”  

“TO-03”   

“EF-04” “HE-26”       “HA-03”  

“HE-34” “HE-34”       “HE-15” 

“HE-26” “LA-02”       “HE-33” 

“LA-02” “TO-07”       “HE-37” 

“TO-07” “BA-04”       “KA-03” 

“TO-08”   

70% 

70% 

30% 
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g
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Trend (1) 

 

 

 

 

 

 

 

Table 4.2: alpha parameter effect on model (1)alpha parameter effect on model 

(1) 

Trend (2) 

 

 

 

 

 

 

 

 

Table 4.3:  alpha parameter effect on model (2) 

 

These trends are listed in a variable named trends and then saved in a file  

 

By calling ensemble_classifier function final model will be built and saved in a file 

named ensemble_classifier.npy   

 

 

Alpha 
parameter 

overfitting generalization 

0 75% 67% 

0.1 100% 89% 

0.01 100% 89% 

0.001 100% 100% 

0.0001 100% 100% 

Alpha 
parameter 

 
overfitting 

 
generalization 

0 86% 56% 

0.1 100% 78% 

0.01 100% 78% 

0.001 100% 89% 

0.0001 100% 89% 
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Taking a decision from one model has a problem, sometimes one model would give 

coning from one classifier and channeling from another, in this case model will fail to 

decide what is the exact mechanism. to solve this problem, we built an (ensemble 

classifier)      

The ensemble classifier improves the accuracy, it is like having a number of experts 

discussing a particular issue and voting on a decision, for example "Hegilg" is a well 

producing water by channeling mechanism: 

 

 

 

 

Model1 predicts channeling mechanism[1] from WOR classifier and WOR’ classifier. 

 

But model2 predicts channeling mechanism [1] from WOR classifier and coning 

mechanism [0] from WOR’ classifier. In this case it is impossible to take a decision, 

and we can notice the failure of model1.  

 

 

   

 

 

The final decision of the ensemble classifier is that the well is producing 

water by channeling mechanism [1]  
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From conventional investigation KA-03 well trend for WOR show that there is 

very short departure time which is a strong indicator for coning, after breakthrough 

(second period) the WOR increase relatively quickly near to be channeling, and it is 

gradually approaches constant value (coning), after transition period WOR is not 

resuming it’s initial rate of increase that is an indicator for coning. In the derivative 

curve there is uncertainty whether it is coning or channeling but it is seemed to be 

coning if we considered the hall trend.  

The final decision for the production mechanism from the conventional investigation is 

coning. 

The class from the Ridge Classifier ML model: is 100% coning  

 

 

 

 

 

 

Figure 5.1:  KA-03 Diagnostic plot 
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From conventional investigation HE-33 well trend for WOR show that there is very 

short departure time and after breakthrough (second period) the WOR increase slowly 

which are strong indicators for coning. In the derivative curve the negative slope clearly 

shows that it’s coning. 

The final decision for the production mechanism from the conventional investigation is 

coning. 

The class from the Ridge Classifier ML model: is 100% coning  

 

 

 

 

 

 

 

 

Figure 4.2:  HE-33 Diagnostic plot 

Figure 4.3:  Heglig Diagnostic plot 
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From conventional investigation Hegilg well trend for WOR show that there is long 

departure time which is a strong indicator for channeling, after breakthrough (second 

period) the WOR increase relatively slowly near to be coning, and it is gradually 

approaches constant value (coning), after transition period WOR is resuming it’s initial 

rate of increase that is an indicator for channeling. In the derivative curve the positive 

slope is indicator for channeling. 

The final decision for the production mechanism from the conventional investigation is 

channeling. 

The class from the Ridge Classifier ML model : is 75% channeling  

 

 

 

 

 

 

 

 

 

 

 

From conventional investigation TO-02 well trend for WOR show that there is very 

long departure time and after breakthrough (second period) the WOR increase 

relatively quickly which are strong indicators for channeling. In the derivative curve 

the positive slope is indicator for channeling. 

The final decision for the production mechanism from the conventional investigation is 

channeling. 

Figure 4.4:  TO-02 Diagnostic plot 
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The class from the Ridge Classifier ML model: is 100% channeling 

 

 

The ensemble classifier predicts the remaining test set as follows:  

 

 

             

   

                                                                                                                              

 

 

  

    

                                                                     

                                               

 

 

 

 

 

 

Figure 4.5: HA-02 Diagnostic plot ( 

channeling) 

Figure 4.6: Figure 18 HE-05  

Diagnostic plot ( channeling) 

Figure 4.7:  Figure 18 HA-03 

Diagnostic plot ( coning) 
Figure 4.8: Figure 18 HE-15  

Diagnostic plot (coning) 

Figure 4.9:  Figure 18 HE-37 Diagnostic plot ( coning) 
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Comparing test wells classes (already known) to the predictions of the ensemble we 

found that the model gives 100% accuracy. 
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Chapter 5 

Conclusions & Recommendations 

 

5.1 Conclusions: 

1- In this work we presented a machine learning model based on Chan diagnostic plot 

pattern using Ridge classifier, we started our work by cleaning and preparing the given 

data. we identified the water production mechanisms for 30 wells split into 21wells for 

training and 9 wells for testing. Two trends have been considered from the train data to 

build the models. 

2- We studied the effectiveness of decreasing the hyperparameter in achieving highest 

overfitting with the best generalization, and it turns out to be α = 0.001. we combined 

the two models in one ensemble classifier to increase the accuracy of predictions. 

Finally, after passing the test data to the ensemble classifier model could achieve score 

of 100% on the test set.  

  

5.2 Recommendations 

1. The number of models should be increased to boost the decision boundary of the 

ensemble classifier. 

2. Water cut slope could be included as third classifier. 

3.Additional models could be trained for specific pattern from Chan plots (constant 

WOR, normal displacement, multilayer channeling, rabid channeling …etc. 
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