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                                          Abstract  

    

Despite the vast research in the notions of Maxwell's 

equations, the propagation equation of an electromagnetic wave 

and the notion of soliton allowed us to derive a model known in 

optics as the Nonlinear Schrodinger Equation (NLSE) which will 

take into consideration the dispersion and non-linearity effects.   

That most of the systems in this universe qualify to be nonlinear so 

that, the immediate objective of this research project is to study 

some phenomena that occur in optical fibers during the propagation 

of an ultra-short pulse "Electromagnetic wave", which are 

nonlinear.   

              One factor which has led to a numerical method is used in 

the analytical solution of such equation is difficult and sometimes 

impossible. As a result, the most appropriate tool to solve this type 

of problem, called the Split Step Fourier Method (SSFM). To this 

end, this process leads to the formation of optical solitons which 

retain shape during propagation, the compression mechanism 

fundamentally due to high order solution.  

This a numerical simulation increases our understanding to 

describe the evolution of a pulse in an optical fiber while revealing 

the advantage of the coexistence of the two phenomena "dispersion 

and non-linearity of the medium".  
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مستخلصال  

 

علي الرغم من البحوث الكثيرة المنشورة  في مفاهيم معادلات ماكسويل فان معادلة انتشار              

سمحت باشتقاق نموذج  معروف في  علم   الموجة المنفردة وفكرةالموجة الكهرومغناطيسية 

 لتأثيراتوا الاعتبار التشتفي  ذوالتي تأخ  NLSE)البصريات باسم معادلة شرودنجرغير الخطية)

من المباشر الهدف فإن لذا  غيرخطية، لتكون مؤهلة   الكون هذا في  الأنظمةاللا خطية. أن معظم 

 " الموجاتانتشار  ثناء البصريةالألياف    التي  تحد ث  في بعض الظواهردراسة هوا البحث ذه

 .الخطية غير جداً، وهي القصيرة النبضا ت  ذا تالكهرومغناطيسية" 

أحد العوامل التي أدت إلى استخدام الطريقة العدية هو أن الحل التحليلي  لمثل هذه          

ملاءمة لحل هذا النوع من  ستحيل.  ونتيجة لذلك فإن الأداة الأكثريكون مالمعادلات يصعب وأحيانا 

 (. SSFMالخطوة المنفصلة" ) -المسائل، تسمي "طريقة فورير

تحقيقا لهذه الغاية، تؤدي تكوين موجة منفردة ضوئية والتي تحتفظ بالشكل اثناء الانتشار، ميكانيكية 

 من الضغط تعتمد أساساعلي أن الموجات المنفردة ب عالية الت تيب. تزيد هذه المحاكاة العددية

الفهم لوصف تطور النبض في الالياف الضوئية مع الكشف عن ميزة الترابط بين الظاهرتين " 

 ".التشتت واللاخطية للوسط
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Chapter one  

 Introduction  

1.1  Introduction  

          A system is said to be nonlinear if its output is not linearly proportional 

to input; on the basis of this definition, one can say that most of the systems 

in this universe qualify to be nonlinear. The science which deals with 

nonlinear systems is known as nonlinear science. In the past few decades, 

nonlinear science has emerged as a tool to study all those complex natural 

phenomena which cannot be studied completely by linear science. It is not a 

new subject or branch of science, although it delivers a whole set of 

fundamentally new ideas and surprising results. Nonlinear science qualifies 

to be a revolution due to its wide scope and coverage because it finds 

applications in almost all branches of science such as plasma physics, 

hydrodynamics, mechanics, biology, chemistry etc. Hence, due to feasibility 

of nonlinear science on system of every scale, it is possible to study same 

nonlinear phenomena in very distinct way, with the corresponding 

experimental tools.  

The study of nonlinear system means to study the nonlinearity present in it.  

Nonlinearity plays an important role in dynamics of various physical 

phenomena [1, 2], such as in electronic circuits, laser physics, nonlinear 

mechanical vibrations, population dynamics, astrophysics, plasma physics, 

chemical reactions, nonlinear wave motions, heartbeat, nonlinear diffusion, 

time-delay processes etc. Nonlinearity in any system make the system more 

complex and it became very difficult to study. A small disturbance induced 

in nonlinear system even by little variation in initial conditions can results 

into big difference in behavior in time evolution of the system. Hence a 

nonlinear system exhibits a sensitive dependence on initial conditions. 

However, linear systems are generally gradual, smooth, and regular, common 

example of linear system are slowly flowing streams, engines working at low 
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power, slowly reacting chemicals, etc. Any system with large input generally 

shows nonlinear behavior. For example, the behavior of a spring is linear for 

small displacement, but if the initial displacement is large the spring shows 

nonlinear behavior.  

In similar way, for small initial displacement simple pendulum behaves as 

linear system however as the initial displacement become large enough, its 

motion become nonlinear.  

  The nonlinear system which is to be studied is described by a 

nonlinear evolution equation (NLEE). These NLEE’s are having complex 

structures due to linear and nonlinear effects.   

The non-linearity is linked to the thresholds of excitation by an electric field, 

to multi-stability, to hysteresis, to phenomena which are modified 

qualitatively as the excitations occur, for example the propagation of a wave 

moving in a medium is determined by the properties of the medium. 

Nonlinearity leads to the distortion of the shape of large amplitude waves, for 

example, in turbulence. However, there is another source of distortion: the 

dispersion of a wave. The influence of these effects was a limit to the 

transmission of Alexandre Bell's photophone. Faced with the same problem, 

Tyndall John demonstrates that light can be guided, this experiment is 

currently used in optical fibers based on the "principle of total reflection". 

The invention of the laser in 1958 [Mah et al89] relaunched the transmission 

of information in waveguides.  

The wave propagation in real mediums, for example a rolling wave in 

an optical fiber is distorted by dispersive and non-linear effects. The 

promising quick fix for these drawbacks is the "Soliton" concept, first 

discovered by Scotsman John Scott Russell in 1885.  

More than 100 years ago, the mathematical equations describing the solitary waves 

were solved, among these there are the NLSE non-linear Schrodinger equations, 
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difficult to solve analytically, in this case the resolution requires a numerical 

approach.  

  

 1.2  Statement of the problem: 

In recent decades, soliton theory has become a very active area of 

research due to its importance in many branches of physics such as nonlinear 

optics. In general, the concept of soliton is always linked to nonlinear partial 

differential equations, whose analytical solution is difficult, for this reason it 

is necessary to use numerical methods. Which, led to study a model the 

propagation in a nonlinear dispersive medium.  

This modeling leads to a nonlinear partial differential equation known 

optically as nonlinear Schrödinger, which requires numerical solution.  

For the simulation used a method which is exclusively used to solve this kind 

of problems. An application will be made for the study of propagation in a 

single mono mode optical fiber. To this end two cases were investigated use 

of an input pulse in fundamental soliton form and chip pulse form.  

 1.3  Aims: 

The objectives of this research are:  

a) Obtaining mathematical modeling of study, the propagation in a nonlinear 

dispersive medium by the nonlinear Schrödinger Equation (NLSE).  

b) Presenting numerical approach for mathematical modeling to simulate the 

NLSE to analyze the properties of optical solitons.  

c) An applying the modest to study of propagation in a single mono mode optical 

fiber  

d)  Investigating the two cases: use of an input pulse in fundamental soliton form 

then in the form of chip pulse.  
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1.4 Methodology : 

Many physical phenomena can be modelled by partial differential 

equations, but – apart from some very specific cases – it is generally not 

possible to write down the solution to these problems in closed form. In order 

to understand the behavior of the solution, it is thus often necessary to 

construct an approximation via a numerical solution.  

this research concerns on a numerical simulation to  describe the evolution of 

a pulse in an optical fiber while revealing the advantage of the coexistence of 

the two phenomena "dispersion and non-linearity of the medium by using 

Split Step Fourier Method" SSFM.  

  

1.5 Questions:  

1. What is the soliton optics? 

2. How to solve nonlinear partial differential equations in solitons optics and how to 

apply them?  

3. How these solutions analyzed? 

4. How these solutions are plotted in graphs? 

  

  1.6 Thesis lay out:  

chapter one introduce the study. After a few reminders on non-linearity,  

we present in the chapter two the Maxwell equations to find a propagation equation. 

Then the process of propagation of an impulse in the dispersive medium, and not 

linear will be studied and at the end of the chapter we presented a small recall on 

the optical solitons, and how they are formed. As well as the derivation of the NLSE 

non-linear Schrödinger equation system.           

 In Chapter three, after a little reminder on optical fibers, devote this 

part to the methods of numerical resolution of the non-linear Schrodinger 

equation NLSE. For which used the so-called "Fourier fractional" numerical 
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method (Split-Step Fourier in English), based on the fast Fourier transform 

algorithm. Therefore, the optical fiber will be cut into thin slices. Chapter four 

is devoted to simulations of the propagation of the soliton in an optical fiber 

(single mode). We will complete our work with an interpretation of the 

results. Then a conclusion in Chapter five.  
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Chapter two 

Literature Review   

2.1. Introduction   

Non-linear effects are those that do not occur directly proportional 

to the action. This is the case with most real-world effects, and the reason for 

the difficulty in reproducing information faithfully by analog techniques.  

This chapter is devoted to reminders of a few concepts related to 

non-linear optics, namely the notion of Kerr effect, dispersion, soliton, and 

the equation governing its propagation in a non-linear medium, emphasizing 

the importance of the dispersion compromise. Non-linearity of the medium.  

2.2. The origin of non-linear optics   

Nonlinear optics is the discipline of physics in which the density of 

the electrical polarization of the medium is studied as a nonlinear function of 

the electromagnetic field of light. Being a vast field of research activity on 

the propagation of electromagnetic waves, the non-linear interaction between 

light and matter tracks to a wide spectrum of phenomena, such as optical 

frequency conversion, optical solitons, phase conjugation and Raman 

scattering. In addition, many of the analytical tools used in non-linear studies 

of optics are general in nature, such as perturbation techniques and symmetry 

considerations, and may just as easily be applied to other disciplines in 

nonlinear dynamics. [1]  

2.3 Electromagnetic properties of the medium  

2.3.1. Wave  

A wave is the propagation of a disturbance producing in its passage a 

variation of the physical properties of the medium, it is important to note that 

the wave results in a transport of energy and not of matter [2].  
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1.3.2. Electromagnetic wave:  

As the name suggests, an electromagnetic wave is an electrical and 

magnetic wave. It is broken down into an electric field and a magnetic field. 

It takes place without transport of the material and these fields are called 

disturbances. These two disturbances oscillate at the same time but in two 

perpendicular planes (Figure 2.1).  

An electromagnetic wave and a medium interact through three parameters  

[3]: Conductivity , and Electrical permittivity  and magnetic permeability 

. These parameters appear clearly in the Maxwell equations.  

   

Figure 2.1. Electromagnetic wave  

2.4. Nonlinear propagation equation:  

2.4.1. Maxwell's equations:  

If the material is insulating (non-conductive), linear, homogeneous, isotropic, and non-

magnetic.  

So, the dielectric constant (ε) is independent of orientation or location, so ε is 

treated as a scalar quantity. Under such conditions Maxwell gathered all the 

ideas on electromagnetic waves (their description and their interactions) in 

these four equations [3].  
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o is the electric field, (Volt / m). o 𝐷̂      electrical 

displacement (or induction) (Coulomb / m²). o 𝐵⃗    the 

magnetic field (or induction), (Webber / m²).  

o 𝐻⃗     magnetic excitation (or field). (Ampere / m).  

In a dielectric medium, the response of the medium to the excitation 𝐸⃗    and     

is given by:  

  

  

Where 0 is the permeability of the vacuum and 𝑃⃗   is the electric polarization,   is the 

Magnetic polarization.  

2.4-2. Electric field polarization  

The polarization created by a light wave passing through a material is written 

in the form:  

  

 is the order polarization  in powers of the electric field. More precisely, 

we can show that for i waves of frequencies 1, ···, 𝜔𝑖 we note the amplitudes 

, the polarization is written in the form:  
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Where 0 is the electrical permittivity of the vacuum, and χ (i) (ω1, ···, ωi) is the 

electrical susceptibility tensor of order i which depends on the material used. 

This last expression shows that the wave creates a frequency different from the 

waves initially present.  

An interpretation of the non-linearities appearing in the polarization comes 

from the microscopic aspect of the material. Each atom of a dielectric material 

is surrounded by an electronic cloud which can deform under the action of  

, which creates an electric dipole.  

This dipole, for a small deformation, is proportional 𝐸⃗   , but if the 

deformation is too large, this is no longer the case. The sum of all the dipoles 

is then the polarization introduced above, hence its non-linearity. Similar 

reasoning can be used in the case of metals and plasmas: the free electrons 

undergo, from the excitatory field, a Lorentz force depending on the speed of 

the electrons, and therefore on the polarization. Thus, these media can also 

exhibit non-linear effects. [18]  

2.4.3. Equation of propagation of an electromagnetic wave:  

In order to study the effects of the nonlinearities of a medium on the 

propagation of an electromagnetic wave, we first develop a simple wave 

equation suitable for a large class of important materials (dielectrics). To do 

this, we start by doing the rotational of the equation (2.3), we get [5]  

  

Knowing that  

  

So, we have:  
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In non-conductive materials the product  
     

So, equation (2.7) becomes: 

−∇2𝐸⃗⃗ = ∇⃗⃗ 𝑋 (
𝜕𝐵⃗ 

𝜕𝑡
) = 𝜇0

𝜕

𝜕𝑡
∇⃗⃗ 𝑋𝐻⃗⃗⃗                                                                 (2.11) 

−𝜇0
𝜕

𝜕𝑡
(
𝜕𝐷⃗⃗ 

𝜕𝑡
) = 𝜇0𝜀0 (

𝜕2𝐸⃗ 

𝜕𝑡2
+

𝜕2𝑃⃗ 

𝜕𝑡2)                                                             (2.12) 

  

The equation (2.11) is then written  

  

With: 

𝜕2𝑃⃗ 𝑁𝐿
(2)

𝜕𝑡2 +
𝜕2𝑃⃗ 𝑁𝐿

(3)

𝜕𝑡2 ⟺
𝜕2𝑃⃗ 𝑁𝐿

𝜕𝑡2                                                              (2.14)                                            

2.4. The speed of propagation of electromagnetic waves:  

A wave is a disturbance which moves in a medium. It is possible to 

associate two wave speeds with it, namely the phase speed and the group 

speed which sometimes are not equal.  

2. 5.1 . Phase speed and group speed:  

The phase speed: let be a wave  = 0 𝑐𝑜𝑠 (𝜔𝑡 - 𝑘𝑧 + 0), U is the 

quantity which propagates, then the phase speed represents the speed of 

displacement of the wave plane, therefore the speed of propagation of the 

phase given by:  = 𝜔𝑡 – 𝑘𝑧    
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Either: 𝑣𝜑 = (𝑑𝑧/𝑑𝑡)  =c   Where 𝑣𝜑 = 𝜔𝑘  

 Where: ω is the pulse of the wave and k is the number of waves,  the speed of 

light in a vacuum.  

Group speed: Group speed is generally presented as the speed at which energy or 

information is transported by a wave.  

         𝑣𝑔 =
𝜕𝜔

𝜕𝑘
                                                                                                                                   (2.15)  

2.6. Refractive index:  

Refraction index often noted , it is defined as the ratio of the speed of 

light in a vacuum to the speed of light in this medium [.3] 

                                                                                              (2.16) 

So is a dimensionless quantity which characterizes the medium, it depends on 

the measurement wavelength but also depends on the environment (pressure 

and temperature).  

In a material environment, the speed of light cannot exceed that in a vacuum, so a 

refractive index is always greater than or equal to 1 [4].  

                         Table 1: Refractive index of some substances. 

Matter  refractive 

index  
Matter  refractive 

index  

Air  1  Ruby  1.78  

water  1.33  Diamond  2.46  

Benzene  1.501  Sapphire  1.77  

Quartz  1.55  Glass  1.5  

Polystyrene  1.2  Pure Alcohol  1.32  

Acetone  1.3  Glycerin  1.47  
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The refractive index plays an important role in extinction:  

• deviation of the direction of the wave front (lens effect)  

• dissipation (absorption)  

2.7. Dispersion of a physical medium:  

The speed of propagation of a wave in a medium can depend on its 

wavelength, hence a differential propagation phenomenon leading to the 

dispersion relationship.  

Optics is a special case of this phenomenon for which the speed in a transparent 

medium is generally different from that in a vacuum.  

As a rule, a pulse with several components contains different 

frequencies whose speed is not the same, which results in the distortion of the 

pulse.  

The propagation of a pulse in a dispersive medium is a function of the 

order of dispersion, of the latter which is linked to the propagation constant 

 ( ), It is a Taylor development determined at the central frequency of the 

signal 0 [1].  

2.7.1. The dispersion parameters:  

Mathematically, the dispersion appears in the Taylor series development 

of the propagation constant around the central 0 pulse of the pulse [4,13].  
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With  is the propagation constant where  ( 0 ) is the refractive index at 

0. 

   1 is the inverse of the group speed of the wave.  

2.7.1.1. First order dispersion:  

In the theory of first-order dispersion by the propagation constant 

  ( ) is equal to:  

  

With:        And     

 

Consider an excitement in the form:  

               (𝑧, 𝑡) = (𝑧, 𝑡)−𝑗(𝜔0𝑡−𝛽(𝜔0)𝑧)        

where  ( , ) is the complex amplitude which can be determined from the Fourier 

transform:  

  

  0( ′) is the complex amplitude at  = 0 verifying the relation:  

   (𝑧 = 0, 𝑡) = 𝑈0 = 𝐴 0𝑒−(𝜔0𝑡)                                                                                                (2.20)  

Which can show from equation (2.19) that the complex amplitude  ( , ) 

follows the following evolution equation:  
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The solution of this last equation is:  

  

 Therefore, the complex amplitude or the wave packet  ( , ) moves in the 

space of the first order dispersion medium with a constant speed equal 𝑣𝑔 

around the point  ( ) as a single whole. without change of form. [1]  

2.7.1.2. Second order dispersion:  

 

The unchanged shape of the wave packet in first-order dispersion 

theory is not exactly exact, but it is approximated. Now consider dispersal as 

a real consequence. In this case, the second term must be introduced into the 

propagation constant. [14], [15]  

  

With 2 being the speed of dispersion equal to:  

  

Let us suppose that the linear medium considered is subjected to the excitation of the 

electric field:  

(𝑧, 𝑡) = 𝐸⃗0(𝑧, 𝑡)𝑒−𝑗(𝜔0𝑡−𝛽(𝜔0)𝑧)                                                               (2.25)   

After some calculations, we find that the complex amplitude  ( , ) satisfies the 

following differential equation:  

  

It should be noted that the equation (2.26) which describes the propagation of 

a pulse in a medium characterized by a second order dispersion, resembles 
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the differential equation which governs the propagation of heat. So, the 

presence of the term dispersion of the second order   in equation  

(2.26) acts as a type of complex term generalized diffusion for the envelope of 

the pulse  ( , ) in the time domain.  

Note that the dispersion of group speed is responsible for the appearance of 

several negative effects such as the enlargement effect which reduces the 

performance of transmission by optical fibers.  

If 2 is zero, the development of  ( ) must be pushed beyond the second  

order and a term  hence the dispersion of the medium is third  

𝜔0 

order [1].  

With regard to the influence of the dispersion effect, it can be said that 

a pulse propagating in a physical medium is thus deformed by the dispersion 

effect because its different spectral components do not undergo the same 

phase shift. This leads to an enlargement which leads to recovery of 

successive pulses leading to a detection error on reception.  

Therefore, natural chromatic dispersion is considered to be a major problem which 

limits the performance of optical communications systems [1]. 

2.7.1.3. Compromise: dispersion-non-linearity:  

To overcome the problem of dispersion, which is not only an 

experimental fact but also a consequence of general physical principles, 

theorists have proposed a solution capable of solving the problem: this new 

concept is "solitons". These are nonlinear excitations localized in space-time, 

and which propagate in the physical systems while retaining their original 

form almost indefinitely with a rigorous compensation between two 

antagonistic and inevitable characteristics: nonlinearity and dispersion.  
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2.8. Propagation of a wave in a dispersive medium:  

A physical signal, of finite energy, decomposes as a sum of harmonic signals [2], 

we speak then of "packet of waves". So, we will be able to write:  

  

The figure below represents, at  = 0, a "packet" of the harmonic waves of neighboring 

pulses as a function of x.  

  

Figure 2.2. Envelope of a wave packet  

To propagate a wave in a dispersive medium, we start by 

decomposing it into a sum of harmonic waves at time  = 0, then we propagate 

each harmonic component with its own phase speed, finally we reconstruct 

the wave by summing its components harmonics at the desired time (t).  

In general, there is a distortion of the "wave packet" because the 

harmonic components do not sum up in the same way over time: this is often 

manifested by a spatial spread of the "wave packet". [4]  

The figure below illustrates the propagation of a packet of waves:  
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Figure (2.3): Propagation of the wave packet.  

Indeed, when a wave propagates in a dispersive medium, the various 

frequency components of the wave propagate at different speeds, creating a 

temporal spread of the wave on arrival. This is called group speed dispersion  

(Group Velocity dispersion (GVD)) or chromatic dispersion [5]. 

  

2.8.1. Chromatic dispersion:  

Chromatic dispersion is expressed in 𝑝𝑠/ (𝑛𝑚 ·𝑘𝑚); it characterizes 

the spread of the signal linked to its spectral width (two different wavelengths 

do not propagate at exactly the same speed). This dispersion depends on the 

wavelength considered and results from the sum of two effects: the dispersion 

specific to the material, and the dispersion of the guide.  

2.8.1.1. Dispersion due to the material:   

               The dispersion phenomenon results from a sensitivity of the medium to the 

frequency of the wave at the microscopic level.  

2.8.1.2. Dispersion due to guidance:   

                This case of dispersion results from the wave nature of the wave 

and the desire to confine the wave in a limited volume so as to impose on the 

wave a direction of propagation. 
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2.9. Non-linearity and solitons  

When a material medium is placed in the presence of an electric field 

𝐸⃗⃗ , it is likely to modify this field by creating a polarization 𝑃⃗⃗ . This response 

of the material to the excitation can depend on the field 𝐸⃗⃗ in different ways. 

The nonlinear optic groups the set of optical phenomena having a nonlinear 

response with respect to this electric field, that is to say a response not 

proportional to E.  

In the presence of an electromagnetic wave from the optical domain 

(wavelength on the order of 1000 nm), in other words light, many materials 

are transparent, and some of them are non-linear, c is why nonlinear optics is 

possible.  

The main differences with linear optics are the possibilities of 

modifying the frequency of the wave or of making two waves interact 

between them via the material.  

These very specific properties can only appear with strong light waves. This 

is why non-linear optics experiments could not be carried out until the 1960s 

thanks to the appearance of laser technology.  

2.9.1. Nonlinear optical susceptibility:  

The optical responses, including nonlinear ones are described as [7].  

𝑃⃗(𝑡) = 𝜀{𝜒(1)𝐸⃗(𝑡) + 𝜒(2)𝐸⃗(2)(𝑡) + 𝜒(3)𝐸⃗(3)(𝑡) + ⋯ . }      

= (1) + (2) + (3) + ⋯                                                                        (2.28)  

Where we have expressed the polarization p (t) as a series of powers in the 

field strength E (t). The quantities  (1),  (2),  (3) are called 

susceptibilities;  (1) is a linear susceptibility and  (2),  (3) are called 

nonlinear second and third order.  
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For a typical solid-state system, χ (1) is of the order of unity while χ (2) is of the 

order of 1 / at, and χ (3) is of the order of 1 /  is  

the atomic characteristic of the electric field.   

𝑎0 = 4𝜋𝜀 0ℏ2⁄𝑚𝑒 2 is the Bohr radius of the hydrogen atom. Explicitly [7].  

 (2)  1.94 × 10−12  /   

 (3)  3.78 × 10−24 2/  2  

 The formal expression for third order polarization is as follows:  

(𝜔0; 𝜔𝑛; 𝜔𝑚) 

= 𝜀0𝐷̂ ∑ (3) (𝜔0 + 𝜔𝑛 

𝐽𝐾𝐿 

+ 𝜔𝑚, 𝜔0, 𝜔𝑛, 𝜔𝑚) 𝑋 (𝜔0)(𝜔𝑛)𝐸⃗𝑙(𝜔𝑚)                                  (2.29)  

Where , , ,  refer to the Cartesian components of the fields and the 

degeneration factor D represents the number of distinct permutations of the 

frequencies 0, 𝜔𝑛, 𝜔𝑚.  

 () ( = 1, 2,): Is the susceptibility of the j-th order. The linear susceptibility 

χ (1) contributes to the linear refractive index ̅0 (real and imaginary parts; the 

imaginary part being responsible for attenuation). The second order  

susceptibility χ (2) is responsible for the second harmonic generation. For 𝑆𝑖𝑂2 

the second order nonlinear effect is negligible since 𝑆𝑖𝑂2 has inversion 

symmetry. This is why optical fibers do not exhibit second order nonlinear 

effects.  

The third order susceptibility χ (3) is responsible for the lower order nonlinear 

effects in optical fibers. Generally, it manifests itself by a modification of the 
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refractive index with optical power or by a diffusion phenomenon. It is linked 

to the optical Kerr effect, four-wave mixing, third harmonic generation, 

stimulated Raman scattering, etc [9].  

Assuming a linear polarization of the propagating light and neglecting the 

tensor character of  , we find the following relation for nonlinear 

polarization:  

(𝜔) = 3𝜀0(1)(𝜔 = 𝜔 + 𝜔 − 𝜔)|𝐸⃗(𝜔)|2𝐸⃗(𝜔)                                                         (2.30)  

 The total polarization, which consists of linear and non-linear parts, is written as 

follows:  

𝑃⃗(𝜔) = 3𝜀0𝜒(1)𝐸⃗(𝜔) + 3𝜀0𝜒(3)|𝐸⃗(𝜔)|2𝐸⃗(𝜔) = 𝜀0𝜒𝑒𝑓𝑓𝐸⃗(𝜔)                               (2.31)  

The actual susceptibility depends on the field as follows  

𝜒𝑒𝑓𝑓 = (1) + 3(3)|𝐸⃗(𝜔)|2                                                                                            (2.32)  

 And it is related to the refractive index like:  

               𝑛  = 1 + (3) ≡ 𝑛 0 + 𝑛 2𝐼                                                                          (2.33) 

Here, I indicate  the mean intensity over time of the optical field. We start by 

discussing the main features of nonlinear effects  

2.9.2 Kerr effect:  

It was discovered by J. Kerr in 1875. He discovered that a transparent liquid 

becomes doubly refractory (birefringent) when placed in a strong electric 

field. 
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2.9.2.1. The optical Kerr effect:  

The optical Kerr effect corresponds to a birefringence induced by an 

electric field varying at optical frequencies, proportional to the square of this 

field. It was observed for the first time, for molecules with directions of 

greater polarizability, by the French physicists Guy Mayer and François Gires 

in 1963. A sufficient light intensity was obtained thanks to a triggered laser. 

[7]  

In general, the Kerr effect describes situations where the refractive index depends on 

the electric field as follows:  

𝑛 (𝑛, |𝐸⃗|2) = 𝑛 0(𝜔) + 𝑛 2(𝜔)|𝐸⃗|2                                                                                    (2.33)  

  

Figure (2.4). Illustration of the propagation-modulated pulse (a) and its 

spectrum (b) Here, ̅2 is known as the Kerr coefficient and it is related to 

susceptibility.  

For a wave linearly polarized in the direction  for silica, its value is approximately 1.3 

× 10−22 2 / 2.   

The Kerr effect comes from the non-harmonic movement of electrons bound 

in molecules. Consequently, it is a rapid effect, the response time being of the 

order of 10−15 .  
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2.9.3. Stimulated Raman scattering:  

Diffusion phenomena are responsible for the Raman and Brillouin effects. 

During these diffusions, the energy of the optical field is transferred to local 

phonons: in Raman diffusing optical phonons are generated while in Brillouin 

the acoustic phonons are scattered. [8]  

Because of the non-linearity and the dispersion, the solitons are existing, so what 

is a soliton.  

2.10. The solitons  

A solitary wave is a wave that propagates by ignoring the classical laws of 

energy dispersion. As a rule, this wave is strong enough to excite a non-linear 

effect which will compensate for the normal energy dispersion effect.by The 

solution of nonlinear partial differential equation which represent a solitary 

wave, which has permanent form.   

Energy, through the nonlinear phenomenon, creates a potential well in its propagation 

medium. This well traps energy and prevents it from dispersing.  

•It is localized within a region  

•It does not disperse  

•It does not obey the superposition principle [3].  

Long after Scott-Russel's observation in 1850 of these spectacular 

phenomena by a wave in a canal, we realized that these energy packets could 

be subjected to forces which give them material properties. Hence the name 

of the word soliton stems from the geek (on), meaning particle. [10] The name 

was coined by Zabusky and Norman Kruskal (ZK) due to the particle-like 

behavior of the pulses they discovered.  
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2.10.1. The classes of solitons:  

 A rough description of a classical soliton is that of a solitary wave which    

shows great stability in collision with other solitary waves. There are several 

ways to classify solitons [11]. There are topological and non-topological 

solitons. Regardless of the topological nature of the solitons. All solitons can 

be divided into two groups considering their profile: permanent and time 

dependent. The third way to classify solitons agrees with the nonlinear 

equations which describe their evolution.  

Here we discuss some classification of solitons [12]. 

2.10.1.1.   Classification of solitons in bases of shape  

a) bell soliton  

The soliton solution of KdV equation have a bell shape and a low frequency 

soliton. This soliton referred to as non-topological solitons, the soliton 

solution of  (NLS) equation have a bell-shaped hyperbolic secant envelope 

modulated a harmonic (Cosine) wave. This solution does not depend on the 

amplitude and high frequency soliton. b) Kink soliton  

The solutions of (SC) equation are called kink or anti-kink solitons, and 

velocity does not depend on the wave amplitude. This soliton referred to as 

topological solitons.  

The magnetic spins rotate from say spin down in one domain to spin up in the 

adjacent domain. The transition region between down and up is called Bloch 

wall.     

c) breather soliton  

Discrete breathers (DB), also known as intrinsic localized modes, or 

nonlinear localized excitations, are an important new phenomenon in physics, 

with potential applications of sufficient significance to rival or surpass the 

Soliton of integrable of partial differential equations.  
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2.10.1.2. Bright temporal envelope solitons:   

                 Light pulses of a certain shape and energy that can propagate unchanged over 

large distances.  

2.10.1.3. Dark temporal envelope solitons:   

                 Pulses of "darkness" in a continuous wave, where the pulses have a 

certain shape and have propagation properties similar to bright solitons.  

2.10.1.4. Spatial solitons:   

            Beams or pulses with continuous wave, with a transverse extent of the 

beam passing through the refractive index.  

Changes due to Kerr optics can compensate for the direction of the beam. 

Optically, the induced change in refractive index works as an efficient light 

guide. [12.13]  

2.10.1.5. Optical soliton:   

             The soliton arises from a balance between two compensating effects. 

In the case of an optical soliton, these effects are essentially phase self-

modulation and abnormal dispersion. Imagine an electromagnetic pulse 

propagating. The phase auto-modulation shifts towards the lowest frequencies 

(therefore the longest wavelengths) the edge of the pulse, and conversely 

shifts towards the short wavelengths the lag of the pulse. The abnormal 

dispersion shifts the high frequencies towards the front of the pulse, the low 

frequencies falling behind (red propagates here less quickly than blue, unlike 

in the case of normal dispersion). Thus, between the phase self-modulation 

which acts on the spectrum of the pulse tends to make the front redder and the 

train more blue, and the abnormal dispersion which acts on the time profile of 
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the pulse tends to make the front more blue and drags more red, the impulse 

finds a form that balances the two effects. Theory shows that it is a hyperbolic 

secant form [11].  

This is the class of solitons on which we will focus in this work.  

2.10.2 Formation of optical solitons  

A light pulse is a bundle of electromagnetic waves of finite spectrum. 

Each of its spectral components propagates with a different group velocity, 

and as a result, the energy of the pulse extends over time along its 

propagation.  

When the chromatic dispersion is negative (D <0), speak of the normal 

dispersion regime. In this case, long wavelengths (red frequencies) propagate 

faster than short wavelengths (blue frequencies). On the contrary, in socalled 

abnormal dispersion regime, the chromatic dispersion is positive (D> 0). 

Long wavelengths propagate more slowly than shorter wavelengths. In both 

cases, the pulse undergoes a temporal enlargement of its envelope.  

The zero of the chromatic dispersion is around 1312 nm. For wavelengths less 

than this value, the dispersion is positive (normal regime). It is negative 

(abnormal regime) for longer wavelengths [11,14].  

 In the absence of nonlinear effects, the distortion of the optical pulse 

is mainly caused by chromatic dispersion and can be eliminated by the 

technique of dispersion compensation.  

In reality, the response of the optical medium is not linear, because 

the refractive index depends on the intensity of the electric field (Kerr effect). 

This dependence induces a non-linear phase variation. This is called the auto 

phase modulation effect. This nonlinear effect introduces a frequency chirp.  
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In the abnormal dispersion regime, the direction of the frequency slip 

produced by the phase self-modulation effect is the opposite to that produced 

by the dispersion. This indicates that the frequency slip induced by the phase 

auto-modulation can compensate for that induced by the chromatic 

dispersion. This process leads to the formation of optical solitons which retain 

shape during propagation.  

2.10.2.1 The soliton effects:  

The soliton is an initially symmetrical light wave propagating without 

deformation of its shape in a dispersive and non-linear medium. In optics, the 

soliton is used to describe an impulse (temporal soliton) or a beam (spatial 

soliton). Mathematically, the soliton can be represented by the following 

equation [17,18]:  

       (𝑧 = 0, 𝜏) = 𝑁̂. sech(𝜏)                                                                                            (2.34)  

N is the order of the soliton which is defined by [1,2]:  

  

Where 0, 𝐿𝐷̂, 𝐿𝑁̂𝐿 are respectively the peak power of the pulse, the dispersion 

length, and the non-linear length. To determine the order of the soliton, we 

always take the nearest integer value.  

In the case where 𝐿𝑁̂𝐿 = 𝐿𝐷̂, that is, the linear effect of the group speed 

dispersion is compensated by the non-linear effect, we will have a 

fundamental (or order one) soliton. Then, for  = 1, the fundamental soliton 

retains its shape during the propagation. See Figure 2.5  



 27 

  

  

Figure 2.5. Fundamental soliton N = 1  

Consequently, the peak power necessary for the existence of a fundamental soliton 

is:  

               𝑃⃗0 = √
|𝛽2|

𝛾𝑇0
2                                                                                                          (2.36)          

several fundamental solitons propagating in a coupled manner and at the same 

group speed.  

During its propagation inside an optical fiber, the fundamental solitons 

making up the higher-order soliton cause periodic interactions. Figure 2.6 

shows the temporal evolution of the order two and order three soliton as a 

function of the propagation length. The evolution of these solitons can present 

several peaks where the impulse can regain its initial form periodically.  
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Figure 2.6 Temporal evolution of two solitons (N = 2, N = 3) as a function 

of the propagation length.  

2.11. Equations with Soliton as solutions  

In this part, we present some equations which admit the soliton as solutions. 

The Korteweg and Vries equation, the nonlinear Schrödinger equation, and 

the sine-Gordon equation.   

2.11.1. Normalized non-linear Schrodinger equation for temporal solitons:   

The starting point for the analysis of temporal solitons is the time-dependent 

wave equation for the spatial envelopes of electromagnetic fields in an optical 

Kerr medium, here for reasons of simplicity. For linearly polarized light in 

isotropic media, the propagation equation is given by [1]:  

  

Where, as before, 𝑣𝑔 = (𝑑𝑘/𝑑𝜔) is the speed of the linear group, and where  

we have introduced the notation   

For the intensity-dependent refractive index  = 0 + 2 |𝐸⃗𝜔|2. Since we are 

considering here the propagation of waves in isotropic media, with linearly 

polarized light (for which there is no crosstalk of polarization state). The wave 

equation is conveniently taken in scalar form:  

  

The equation (2.37) consists of three interacting terms. The first two terms 

contain first order derivatives of the envelope, these terms can be considered 

as the homogeneous part of a wave equation for the envelope, giving solutions 
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of progressive wave which depend on the two other terms, which rather act 

as source terms.  

The third term contains a derivative of order 2 of the envelope, this term is 

also linearly dependent on the dispersion  of the medium, i.e. the variation 

of the group speed of the medium compared to the frequency angular  of 

light. This term is generally responsible for spreading a short pulse when it 

crosses a dispersive medium.  

Finally, the fourth term is a non-linear source term, according to the sign of  

𝑛2, will concentrate components of higher frequency either at the leading edge 

or at the trailing edge of the pulse as soon as it is displayed. 
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Chapter three  

Numerical Methods 

3.1. Introduction  

In general, there are no analytical solutions to the complete Maxwell 

wave equation for a nonlinear optical system. Even numerical solutions to the 

wave equation are extremely difficult to implement due to the dimensionality 

of the problem. The vector form of the wave equation is a second order partial 

differential equation with four dimensions (three spatial and one temporal). 

Thus, approximations based on propagation conditions and experimental 

results are necessary to solve an approximate scalar form of the wave 

equation, i.e. the nonlinear Schrödinger equation. However, the 

approximations listed in the previous chapter limit the generality and validity 

of the solutions. For example, the condition of extreme non-linearity, as in 

the case of the generation of super continuum, is one where the approximation 

of the envelope, which varies slowly, can be violated.  

The purpose of this chapter is to introduce a powerful method of numerical 

resolution of the NLSE, known as the Split-step Fourier method (SSFM). The 

chapter begins with a reminder on fiber optics followed by a reminder of 

NLSE numerical resolution methods list the advantages of SSFM compared 

to finite difference methods.   

3.2. Optical fiber and light guiding:  

3.2.1. Physical principle of Light guiding  

The major physical principle that inspired fiber optic technology is 

what is known as "Total Internal Reflection". This follows from the law of 

refraction that a wave crossing through a boundary between two media of 

different density, deviated.  
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However, if the wave ever tries to pass from a medium of relatively high 

density to a less dense medium, there is a minimum angle between the 

direction of the wave and the normal of  the border for which the wave will 

not be deflected but reflected. It is therefore possible for a light wave to 

propagate indefinitely in a glass cylinder [20].  

  

Figure 3.1 reflection / refraction.  

3.2.2. Type of optical fibers:  

  A typical bare fiber consists of a core, a cladding, and a polymer jacket 

(buffer coating), the fulfill the conditions for TIR in the fiber, the angle of 

incidence of light launched into the fiber must be less than a certain angle, 

which is defined as the acceptance angle, θacc. which can be  calculated by 

Snell's law.  

3.2.2.1. Multi-mode fiber:  

Only certain angles lead to modes. Obviously, the speed of a mode 

depends on the angle. The term "multimode" means that several modes can 

be guided. A typical number for a step index fiber is 1000 modes (one mode 

corresponds to a beam). 

 

 



 32 

  

❖ Step index:  

  

Figure (3.2) step index fiber  

It is the simplest type of fiber. Indeed, it disperses the signal. In this fiber, the 

core is homogeneous and of index n1. It is surrounded by an optical cladding 

with an index n2 less than n1.  

As for the optical cladding, it plays an active role in the propagation and 

should not be confused with the protective coating deposited on the fiber. The 

ray is guided by the total reflection at the level of the core-cladding interface, 

otherwise it is refracted in the cladding. [20]. 

 ❖ Graded index:  

  

Figure (3.3) Graded index fiber  

Their core, unlike step index fibers, is not homogeneous. Their core is in fact 

made up of several layers of glasses whose refractive index is different with 

each layer and the refractive index decreases from the axis to the cladding. 

Guidance is this time due to the effect of the index gradient. The rays follow 

a sinusoidal trajectory.  
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The cladding does not intervene directly but eliminates the too inclined rays. 

The advantage with this type of fiber is to minimize the dispersion of the 

propagation time between the rays [20].  

3.2.2.2. Single mode fiber:  

 

Figure (3.4) Single-mode fiber  

The aim sought in this fiber is that the path that the beam must travel is as 

direct as possible. For this we strongly reduce the diameter of the heart which 

is in most cases less than 10μm. The modal dispersion is almost zero. Since 

we do not break the light beam the bandwidth is therefore increased, 

approximately 100 GHz * km or 1000 Mbits / s. Conventional single-mode 

fiber is stepping index. Its diameter allows the propagation of only one mode, 

the fundamental as only one mode propagates there is no difference in speed 

unlike multimode fibers. Because of these valuable advantages, it has gained 

considerable importance in long-distance transmissions [20].  

3.2.3. Assessment on the various optical fibers  

The following table gives a brief summary of the advantages and disadvantages of each 

structure: [20] 
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                                                   Table (3) 

Structures  Benefits  Disadvantages  

Step index multi-mode  Low price Ease of 

implementation  

Significant signal loss and 

distortion  

Graded index 

multimode  

Reasonable bandwidth -  

Good transmission quality  

Difficult to implement  

Single mode   Very high bandwidth - No 

distortion  

Very high price  

  

As mentioned at the beginning of this chapter, an important application of 

solitons is the transmission of information in fiber optic systems. Soliton pulses 

are stable when propagated over long distances. Fiber losses are an important 

limiting factor, so it becomes necessary to periodically compensate for fiber 

losses.  

3.3. Derivation of the nonlinear Schrödinger equation  

The solitons in optical fibers are described by the equation known as 

the non-linear Schrödinger equation (NSLE), which we will derive it. In the 

derivation, we use the concept of Fourier spectrum for the propagation of 

pulses, see Figure 2.4.  

A medium in which solitons propagate there is the non-linearity of Kerr 

effect. In such a medium, the refractive index depends on the intensity of the 

electric field  ( ) and can be written in the following form:  

𝑛 (𝑡) = 𝑛 0 + 𝑛 2𝐼(𝑡)                                                                                                             (3.1)  

With [4]:  

(𝑡) = 2𝑛 0𝜀0𝑐|(𝑧, 𝑡)|2                                                                                                           (3.2)  
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where  ( , ) is the slowly varying envelope connected to the optical pulse described 

by the optical pulse  ( , ) as:  

(𝑧, 𝑡) = (𝑧, 𝑡) (𝜔0𝑡−𝛽0𝑧)                                                                                                          (3.3)  

The Fourier transform of the optical field is [5,6]  

  

Where   ̃ ( , ) is the Fourier spectrum of the pulse,  the propagation 

constant and 0 the frequency at which the pulse spectrum is centered (also 

called carrier frequency), (See Figure. 2.4) For quasi-monochromatic pulses 

with ∆  ≡  - 0  0, it is useful to extend the propagation constant β (ω) 

in a Taylor series:  

  

Where we neglected higher order derivatives. Here ∆𝛽𝑁̂𝐿 = 𝑛̅2𝑘0  is the nonlinear 

contribution to the propagation constant.  

Replace the extension (3.5) with the equivalent (3.4):  

  

  

Where we have introduced:  
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The next step consists in obtaining a differential equation describing the 

evolution of the amplitude  ( , ) of equation (3.7) which is in integral form. 

To do this, we must take partial derivatives of the equation (3.7). We obtain  

  

  

  

When evaluating time derivatives, we have assumed in the above that  ( ) 

does not depend on time. The addition of the above derivative combination 

produces.  

  

The term in parentheses is. […] = − ∆𝛽𝑁̂𝐿 = −𝑖𝑛̅2 0  the equation (3.11) therefore gives  

  

  

During use (3.7). The final equation describing the solitons is therefore [24], [26].  

  

Where defined the non-linear coefficient γ (after [3]) as follows:  
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 Here, 𝐴𝑒𝑓𝑓 is the effective central zone.  

The interest here lies in the evolution of the impulse during propagation and 

not in the moment of arrival of the impulse. We can therefore simplify the 

above equation by transforming it into a coordinate system which moves with 

the group 𝑣𝑔. In this moving frame, the new time T and the new coordinate Z 

are the following [24]  

 =   

 =  - 1   

To get the transformed equation, we need to evaluate the derivatives against new 

variables as follows:  

  

Since  and   from the above we find:   

 Using the above results, we have:  

  

The last result is used in equation (3.13) to replace . The transformed equation is  

  

Where, in the final step, we replaced Z with z. It is a nonlinear Schrödinger equation 

(NLSE).  
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To deepen the analysis of the NLSE, we will introduce two characteristic 

lengths describing the dispersion (𝐿𝐷̂) and non-linearity (𝐿𝑁̂𝐿). These are 

defined as follows:  

  

And   

  

Where 0 is the peak power of the envelope  ( , ) which varies slowly, 0 

is a time characteristic value of the initial pulse which is often defined as 

being half of the maximum width of the pulse (l3 dB pulse). These two 

lengths characterize the distance at which an impulse must propagate to show 

the respective effect.  

Physically, 𝐿𝐷̂ is the propagation length at which a Gaussian pulse widens by 

a factor of √2 due to the dispersion of group velocities (GVD).  

GVD dominates the propagation of pulses in fibers whose length  is 

  𝐿𝑁̂𝐿 and  ≥ 𝐿𝐷̂. In such a situation, the non-linearity of the NLSE can be 

ignored and the equation can be solved analytically. Non-linear effects 

dominate in fibers where   𝐿𝐷̂ and  ≥ 𝐿𝑁̂𝐿. Within this limit, the term 

dispersal can be ignored.  

  

The width parameter 0 is related to the maximum intensity of the input pulse in 

half-maximum total width (FWHM). More precisely   

  

After a simple algebra, Eq. (3.17) takes the form:  
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Another normalized form of the Schrödinger equation exists in the literature.  

We obtain it in the lossless case, that is to say with α = 0. To calculate it, normalize the 

z coordinate as follows:  

  

After a few algebraic steps, we get: 

  

  

Where N is known as the soliton order and is defined as follows:  

  

The last popular form of NLSE is found by introducing  as:  

  

Equation (3.22) then takes the following form:  

  

3.4. Numerical solution methods of the nonlinear Schrödinger equation  

Optical pulses in media with properties of non-linearity of saturation 

are modeled by the nonlinear Schrödinger (NLS) Equation [Kato, 1989] with 

the following nonlinearity [Zemlyanaya and Alexeeva, 2011].  

           𝑗
𝜕𝜓

𝜕𝑡
+

1

2

𝜕2𝜓

𝜕𝑡
+

|𝜓|2𝜓

1+𝑠|𝜓|2
= 0                                                           (3.27)  
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It is a partial differential equation (PDE) because it describes a relation of ψ 

with regard to change in time and space. The solution to this equation is a so-

called soliton of the form.  

  

3.4.1. Fourier method with Split step  

It is assumed in the cited method that the two effects of dispersion and 

non-linearity act separately. The principle of the method consists is 

considered to be the two effects on the same calculation step dz (z: direction 

of propagation) but in an alternating way by applying the nonlinear operator 

in the middle of the discretization step. The calculation is iterative and is done 

over the entire length of the fiber taking for each new calculation step as 

distribution initial of the field that obtained at the end of the previous step. 

This method is based on the Fourier transform [21].  

3. 4.2. Finite difference method:  

The finite difference method works by matching the derivatives of the 

expression with finite differences. In our PDE, we have   and  which 

must be approximated by finite differences. How approximated determines 

what type of finite difference system is used, which has various implications 

for accuracy, stability, and implementation.  

1. The prospective difference is an explicit diagram which means that the 

solution at each point at the latest at the time level can be expressed by the 

solutions of the previous time levels. While this simplifies implementation, 

the regime suffers from stability issues.  

2. The inverse difference is an implicit scheme which means that a system 

of equations must be solved in order to calculate the solution at the next time 
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level which makes the implementation non-trivial. However, this method has 

the superior property that it does not suffer from stability problems.  

3. The central difference method has the advantage over the front 

difference and the rear difference with regard to accuracy since the error is  

( 2) with respect to  ( ) of the other methods. This means that the total error 

of PDE 1 is  ( 2+h2) where  is the time step and  the space. This method 

has the same drawback as the prospective difference method: Questions of 

stability [22].  

3.4.3. The Inverse Scattering Method  

The inverse diffusion method was the first method to solve the NLSE 

in the specific case of the propagation of solitons by Zakharov and Shabat 

[14]. The method uses the initial field  (  = 0, ) to obtain the initial 

diffusion data, then the propagation along z is found by solving the linear 

diffusion problem. The final field  ( , ) is reconstructed from the advanced 

diffusion data. Typically, this method is used for the propagation of solitons 

[22].  

However, for the propagation of the soliton, the inverse diffusion method 

reduces numerically to a problem of eigenvalue and a system of linear 

equations. The complexity of this method may force the SSFM to be desired. 

However, the inverse scattering method does not suffer from element 

separation errors. the effects of dispersion and non-linearity of the fibers.  

The form of the NLSE for the solitons to be solved by the inverse diffusion method 

is as follows:  

j   

When  
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The above equation can be written to eliminate the soliton number    

defining .   . The equation Eq (3.30) can be integrated  

and can be expressed in the form of two linear equations as follows:  

(𝜉)(𝜉, 𝜏)   = 𝜉 (𝜉, 𝜏)                                                                                        (3.32)  

 

Where L (ξ) and M (ξ) are differential operators in τ. Equation (3.32) is a 

problem of eigenvalue with eigenvalue ζ and Eq. (3.33) determines the 

evolution ξ of the function u (ξ, τ).  

The term L (ξ) corresponds to the dispersion operator D̂ , since L (ξ) evolves 

so that the spectrum remains constant. L (ξ) and M (ξ) are known as a Lax 

pair of the integrable system given by [13].  

  

And  

  

The field u (ξ = 0, τ) provides the initial diffusion information Σ (ξ = 0) from 

the eigenvalue solution of Eq (3.32). The evolution of the diffusion data Σ (ξ) 

is determined from Eq. (3.33). Finally, an inverse problem is solved to find 

the solution of propagation u (ξ, τ) from the diffusion data. In general, it is a 

question of solving a set of linear integral equations, which are reduced to a 
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set of algebraic equations for the propagation of the soliton. The reverse 

diffusion method is summarized in the figure below: [3]  

  

Figure 3.5 Block diagram of the reverse scattering method.  

In the inverse scattering method, the scattering potential Σ serves as a conduit 

for solving the direct propagation of the field from u (t, 0) to u (t, ξ). First, the 

initial condition u (t, 0) is used with Eq (3.32) to determine the diffusion 

potential Σ (0). Then Eq. (3.41) is used to determine the propagation of the 

diffusion potential. Finally, the solution u (t, ξ) is found by solving the 

opposite problem involving the diffusion potential Σ (ξ).  

3. 4.5. Fourier method with Split Step  

3.4.5.1 Use of the Fourier transform method with fractional steps (The Split Step Fourier 

Method):  

SSFM is the technique chosen to solve the NLSE because of its ease 

of implementation and its speed compared to other methods, in particular the 

finite time-domain difference methods. The finite difference method 

explicitly solves the Maxwell wave equation in the time domain under the 

assumption by axial approximation.   

SSFM belongs to the category of pseudospectra methods, which are generally 

an order of magnitude faster compared to finite difference methods. The main 

difference between time domain techniques and SSFM is that it processes all 
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electromagnetic components without eliminating the carrier frequency. As 

indicated in the previous chapter, the carrier frequency is removed from the 

derivation of the NLSE. Thus, finite difference methods can account for 

forward and backward propagation waves, while the derived NLSE for SSFM 

cannot. Since the carrier frequency is not decreased in the form of an electric 

field, finite difference methods allow the propagation of pulses to be 

described with precision almost one cycle. While the finish may be more 

precise than the SSFM method, it is only at the cost of a longer computation 

time.  

In practice, the method chosen to solve the NLSE depends on the problem to 

be solved. For pulse propagation for telecommunication applications (~ 100 

ps pulses through 80 km of fiber with dispersion and SPM) the SSFM works 

extremely well and produces results which are in excellent agreement with 

the experiments.   

3.4.5.2 Presentation of the Method:  

We will discuss the numerical solution of the nonlinear Schrödinger 

equation (NSE) which describes the propagation of optical solitons using the 

so-called Split Step Fourier Method (SSFM).  

The propagation medium (for example, cylindrical optical fiber) is 

divided into small segments of length  each. In addition, each individual 

segment of length  is subdivided in two of equal length. The linear operator 

operates on each sub-segment of the frequency domain, while the nonlinear 

operator operates only locally at the central point see figure 3.2.  

 Operation of the linear operator 𝐿  , Eq. (3.34) on the first sub-segment is as follows:  
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That is to say, you have to transform the original Fourier amplitude from the 

time domain to the frequency domain, apply the linear operator ̂ , then apply 

the inverse Fourier transform to bring the amplitude back to the time domain.  

The operation of the nonlinear operator defined by equation (3.35) is as follows:  

                                                       (3.37)  

Where 𝐴𝑖 + 1/2,  is the value of the field amplitude at an infinitesimal point to the 

left of  + 1.  

 Finally, the operation of the linear operator on the second sub-segment of the 

length  / 2 is done exactly as follows in the same way as on the first segment.  

  

Figure. 3.6 Illustration of the Fourier method with separate steps. (a)  

Division of the optical fiber into N regions (here N = 11) of equal lengths.  

b) Illustration of the operation of linear operations and nonlinear on arbitrary 

segments.  

SSFM is a numerical technique used to solve nonlinear partial differential 

equations like NLSE. The method is based on the calculation of the solution 

in small steps and on the separate considering of the linear and nonlinear 

steps. The linear step (dispersion) can be done in the frequency or time 
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domain, while the nonlinear step takes place in the time domain, this method 

widely used to study the nonlinear propagation of pulses in optical fibers 

[27].  

A nonlinear Schrödinger equation, Eq (3.17) contains dispersive and 

nonlinear terms. To introduce SSFM, write the NLSE equation in the 

following form:  

  

  

Contains losses and dispersion in the linear mean and the nonlinear term.  

𝑁̂ 𝐴 = 𝐽𝛾|𝐴|2𝐴                                                                                                                  (3.40)  

Non-linear effects in the environment are considered. The basis of the SSFM 

is to divide a propagation from z to z + h (h is a small step) in two operations 

(assuming that they act independently): during the first step, non-linear 

effects are included and at during the second step, we take into account the 

linear effects.  

The formal solution of equation (3.36) on a small step h is therefore  

(𝑧 + ℎ, 𝑡) = 𝑒ℎ(𝐿 +𝑁̂ )𝐴(𝑧, 𝑡)                                                                                           (3.41)   

In the first order approximation, the above formula can be written as follows  

 (𝑧 + ℎ, 𝑡) = 𝑒ℎ𝐿 𝑒ℎ𝑁̂ (𝑧, 𝑡) + 𝑂(ℎ2)                                                                             (3.42)  

The basis of this approximation is established by the Baker-Hausdorf lemma  

[13], namely given       that operators A and B commute with 

[A, B].  

The basis of the method is suggested by equation (3.42). He tells us that   
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(  + , ) can be determined by applying the two operators independently. 

The propagation from z to z + h is divided into two operations: first the 

nonlinear step and then the linear step assuming that they act independently. 

If h is small enough, Eq. (3.42) gives good results.  

The value of the step  can be determined by assuming that the maximum 

phase shift 𝜑𝑚𝑎𝑥 = 𝛾|𝐴𝐵⃗|2 , where 𝐴𝑃⃗ is the peak value of A (z, t) due to 

the nonlinear operator is less than the predefined value . Iannone et al [21] 

reported that 𝜑𝑚𝑎𝑥 ≤ 0.05 rad.  

For a practical implementation of the SSFM, we need to establish practical 

expressions for the dispersive and nonlinear terms. In what follows, we will 

therefore analyze the effect of the two terms independently neglecting losses.  

Let us analyze the effect of the single dispersive term. For this, we 

temporarily deactivate the non-linear term. After the Fourier transform, the 

linear equation "becomes  

  

Who has the solution  

𝐴 (𝑧, 𝜔) = 𝐴 (0, 𝜔)𝑒−𝜔2𝛽2⁄2                                                                                        (3.44)  

The action of the nonlinear term alone is described by the following equation  

  

The "natural" solution lies in the time domain.It produces  

(𝑧, 𝑡) = (0, 𝑡)|𝐴|2𝐴                                                                                                          (3.46)  

In summary, the method on each segment of length h consists of three steps:  
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Where F indicates the Fourier transform (TF) and 𝐹−1 the inverse Fourier transform.  
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                                           Chapter Four 

                                            Simulation results   

4.1. Introduction  

To understand the phenomenon that occurs during the propagation of 

solitons, we will dissect the evolution of the impulse through the fiber. Its 

evolution will consider the effects of dispersions, non-linear effects, then 

combine these two effects in order to see them consequences on the impulse. 

The modeling is done by the Step Split Fourier method to solve the 

Schrödinger propagation equation in the case of a fundamental Soliton pulse 

then a Chirped pulse.  

This study uses silica glass fiber as a research reference and the propagation 

medium because this type of fiber is widely used in several optical 

communication systems.  

4.2. Digital simulation of the propagation of a pulse in a single-mode optical 

fiber  

4.2.1 Propagation of an impulse in Soliton Fundamental form:  

 suppose an impulse given by:  (  = 0, )   𝑠𝑒𝑐ℎ ( ) represented by 

the Figure (4.1). Its propagation in an optical fiber is modeled by the NLSE 

(4.1). to understand the phenomenon that occurs during this propagation, we 

will dissect the evolution of the impulse through the fiber. Its evolution will 

consider the effects of dispersion, nonlinear effects, then associate these two 

effects in order to see them consequences on the pulse (ultrashort wave).  

  



 50 

  

Where   and 𝑁̂𝐿 = 𝑗𝛾|𝐴|2 , D is the dispersion operator and NL 

is the nonlinearity operator. Equation (4.1) takes the following form:  

                                                                                          (4.2)    

  

Figure 4.1: the input pulse.  

4. 2.1.1 Numerical simulation of the propagation of a pulse in a linear medium.  

When the distance of propagation satisfies the following parameters:  

𝑧~𝐿   in this case the nonlinear part is null and consequently the  

{ 

𝑧 ≪ 𝐿𝑁̂𝐿 dispersive effects play a preponderant role. This however applies if 

the fiber and pulse parameters meet the following conditions:  

  

The equation (4.1) becomes:  

  

The term  is replaced by the Fourier transformation of the envelope A in the 

equation (4.3), which gives:  
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Or:  

  

Let us integrate member to member, the left term from 0 to 1 and the right term 

from 0 to .  

  

Equation (4.6) gives:  

  

Equation (4.7) has the solution:  

                                                                                   (4.8)            

  

Figure 4.2: Propagation of a pulse in a medium of zero dispersion.  
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Figure 4.3: Propagation of a pulse in a dispersive medium (normal and 

abnormal dispersion).  

The two previous figures indicate that in the two dispersion regimes 

(abnormal and normal), the different frequency components of the pulse 

propagate at different speeds. These different speeds create a temporal spread 

of the wave at the exit of the fiber. This is called group velocity dispersion  

(GVD).  

On the contrary, with zero dispersion (the medium is non-dispersive), the 

pulse retains its initial shape since all the waves propagate at the same speed 

(Figure 4.2).  

4. 2.2. Numerical simulation of the propagation of a pulse in a non-linear  

medium  

4.2.2.1- Propagation of an impulse in fundamental soliton form: 

  

In this case where the nonlinear part (𝑁̂𝐿= 𝑖𝛾|𝐴|2) in equation (4.1) is 

dominant (zero linear part D), i.e. the propagation satisfies the following 
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condition:  the objective is to show the influence of non-linear 

effects, in particular the Kerr effect which induces the phenomenon of 

selfphase modulation (SPM, Self-Phase Modulation).  

  

The equation (4.1) becomes:  

  

Equation (4.9) becomes:  

  

Let us integrate the left term from 0 to 1 and the right term from 0 to    

  

The equation (4.11) becomes:  

  

Equation (4.9) has the solution:  

𝐴1 = 𝐴0𝑒 𝑗𝛾|𝐴|2ℎ                                                                                                     (4.13)  

Using the SSFM Method, with the choice of the following parameters, plus a 

variation of the propagation distance and the pulse represented by figure (4.1) 

as input pulse:  
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Figure 4.5: Propagation of a pulse in a non-linear dispersive medium   

z = 1 to Ф𝑚𝑎𝑥 =                                                 (4.14) 

  

Figure 4.6: Propagation of a pulse in a non-linear dispersive medium at   

z = 2 Ф𝑚𝑎𝑥 = 3  / 2                                                     (4.15) 

When a pulse is propagated in a nonlinear medium, the Kerr effect induces 

the phenomenon of auto phase modulation (SPM, Self-Phase Modulation) 

because of the propagation of an intense beam in the optical fiber, the 
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nonlinear coefficient γ is positive producing a gradual increase in the 

refractive index. This passage of the wave changes the refractive index which 

in turn changes the phase of the pulse. But this produces a spectral widening 

of the pulse, unlike dispersion, a widening of the spectrum of pulses. The 

phase shift and this widening vary as a function of the propagation distance 

as shown in the two Figures (4.5) and (4.6).  

4.2.2.1 Propagation of an impulse in Chirped Soliton Form:  

One of the factors that limit the performance of the transmission 

capacity, the speed at which data can be transmitted, is the dispersion and 

nonlinear effects that occur during the process of light propagation in an 

optical fiber.  

transport is limited by a widening of the pulses due to chromatic dispersion 

(GVD). In addition, there is the influence of the effects of parameters such as 

attenuation ( ), dispersion (β2), and non-linearity ( ).  

We are going to consider all these parameters, always considering the 

propagation in the optical fiber. Our simulation work is based on the SSFM 

method for solving the NLSE (4.1). But this time using a chirped pulse as the 

input pulse, so what does the word chirped mean. 

Definition: It is said that a light pulse is “chirped” (from the English chirped) 

when it undergoes a dispersion of its group velocity (GVD), as it can be 

induced by the nonlinear effect of high order at namely auto phase modulation 

(SPM), this causes a frequency variation over time.  

The term comes from the English chirp, "chirping", by allusion to the song of 

certain birds which vary the frequency of their song. The figure below shows 

the electric field as a function of the time of an “chirped” optical pulse. Note 

that the frequency of the oscillation increases over time.  
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Figure (4.7): Represents a light pulse is chirped 

To better study the influence of the value of the parameter of the chirp on the 

effect of the widening of the pulse, we propose to use a new approach based 

on the calculation of an indicator called enlargement ratio of l PBR pulse and 

its mean value given by the following expressions [28]:  

  

  

The following table (4.1) gathers the values used for the simulation. 

 Table (4.1): Value of the parameters used for the simulation.  
Variable  Value (Unit)  

𝑷𝟎 (the input power)  0.0000064 W   

T_0 (width of the initial pulse)  125 e-12   

Ld (the dispersion length corresponding to the order of 

the  

Soliton)  

( N 2)/(g*P0)  

 (Nonlinearity of the Fiber)  (0.003; 0.03; 0.3) in W/m  

Alpha (Fiber Losses in dB / km)  3; 2; 1; 0  

N (order of Soliton)  3; 2; 1; 0.5  

C (chirp parameter)  3; -2; 0; 2; 3  

𝜷𝟐 (2nd order dispersion)  (T_0) ^ 2 / Ld (s2 / m)  

h1 (Step size)  1000  
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The parameters in table (4.1) are the GVD (Group Velocity 

Dispersion) speed parameters (β2), and the non-linearity parameter . The 

other approach to revealing the effect due to the parameters is a chirp (when 

the constants C are positive or negative) from -3 to 3.  

In addition, the Fourier method with Fractional steps (SSFM) was applied to the 

system (4.1).  

  

Figure 4.7: (a) Soliton pulse with chirping parameter C = 2. (b) Soliton pulse 

with chirping parameter C = 3 (c) with a chirping parameter C = -2.  

(d) with C = -3.  

From the simulation results obtained with regard to the second order 

dispersion and the nonlinear effects, it has been observed from Table 4.2 that 

the best PBR means have been obtained when the value of the parameter of 
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the chirp is negative  = −2 and that the value of the parameter of the 

nonlinear  remains constant at 0.003W / m.  

When the mean value 𝑃⃗𝐵⃗𝑅̅̅̅̅̅̅       for C = -2 is the lowest mean value of all the results of 

the simulation. 

We can therefore say that the use of input pulses with a negative chirp value 

(C) with a constant non-linearity value is the best solution to reduce the pulse 

widening effects (reduce dispersion by GVD) and the non-linear oscillations. 

Table 4.2: PBR value for a constant non-linearity parameter  

Negative chirp 

parameter  

(C = -2)  

 = .𝟎𝟎𝟑  

Negative chirp 

parameter  

(C = -3)  

 = .𝟎𝟎𝟑  

Positive chirp 

parameter  

(C = 2)  

 = .𝟎𝟎𝟑  

positive chirp  

parameter  

(C = 3)  

 = .𝟎𝟎𝟑  

β2  PBR  β2  PBR  β2  PBR  β2  PBR  

-10   1.4081   -10   2.2820   -10   3.3205   -10   3.5737   

-15   1.4260   -15   2.3581   -15   2.8494   -15   2.1856   

-20   1.4224   -20   2.4136   -20   2.4689   -20   2.7107   

-25   1.4092   -25   2.3235   -25   2.4589   -25   4.1683   

For the following simulation, when the simulation system has modifications 

where the nonlinearity constants have become inconsistent variables and the 

2 was a constant, the simulation results are listed in the following table              

TABLE 4. 3: PBR value with constant 𝜷𝟐  

Negative chirp 

parameter  

(C = -2)  

 = 15  

Negative chirp 

parameter  

(C = -3)  

 = 20  

Positive chirp 

parameter  

(C = 2)  

 = 15  

positive chirp 

parameter  

(C = 3)  

 = 20  

β2  PBR  β2  PBR  β2  PBR  β2  PBR  

0.3   1.4051   0.3   2.2915   0.3   3.2110   0.3   4.1661   

0.03   1.4125   0.03   2.2911   0.03   3.2171   0.03   4.1254   

0.003   1.4260   0.003   2.4136   0.003   2.8494   0.003   2.7107   

0.002   1.4451   0.002   2.1458   0.002   2.0481   0.002     
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According to the results of the simulation which are illustrated in figure (4.7) 

to (c), the table (4.2) and the table (4.3). can see that with a certain variation 

in the parameter of the chirped (C), β2, and γ. However, the opposite occurs 

when the chirped process has been applied for the value C = 2 (where C > 0), 

the instantaneous frequency increases linearly from its front edge to the back 

edge. The opposite occurs when C = -2 (where C <0) which shows that the 

instantaneous frequency decreases linearly from the trailing edge to the 

leading edge.  

It can be seen that the widening of the pulse depends on the sign of the GVD parameter 

(β2) and the Chirp parameter (C).  

Table (4.2) shows that the best value of the Chirp parameter C = -2. This 

proves that its positive value and its negative value can affect the state of the 

pulse during its propagation in the fiber. The advantage of using a value of 

the negative chirp parameter makes it possible to lower the effect of widening 

of the pulse and the nonlinear oscillations. This can be explained by the fact 

that the "delay" of a longer wavelength can inhibit the effect of GVD, i.e. 

when the value of GVD decreases due to the existence of a delay, the 

widening effects of the pulse are minimized.  
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Chapter Five  

conclusion  

5.1 Introduction:  

The world of telecommunications continues to be revolutionized 

thanks to the advent of a jewel the size of a hair (optical fiber) which is used 

to transport information by light from one end to the other. During this 

transfer, there are effects leading to its distortion, in particular, chromatic 

dispersion and the Kerr effect. Under certain conditions, these effects 

compensate for each other and the signal propagates without distortion: it is 

the solitary impulse which is called soliton solution of the NLSE equation and 

known for a long time, which resists disturbances and which can in principle 

spread without spreading over long distances.  

In order to understand the main effects that impede the propagation of a pulse 

(signal), we are interested in this thesis to numerically solve the non-linear 

Schrödinger equation by the method of `` Fourier with fractional step ''. 

Method introduced because of its simplicity of use, easy to develop and has 

good performance in computing time; also provides natural access to the 

spectral evolution of the field and is fast up to two orders of magnitude 

compared to finite difference methods.  

5.2 Conclusion:   

From the results of the simulation, can conclude that the order of 

variation of the dispersion parameter takes effect where the chirped method 

was performed in the input pulse of the propagation process. Furthermore, it 

has been found that the negative chirp has the best value among all the results 

in terms of PBR ratio. To this end, the dispersion parameters, the nonlinearity, 
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and the input power value must be determined due to the shape, quantity, 

speed, and amplitude of the input pulse which are respectively affected by 

these factors.  

 We can conclude that in general in the abnormal dispersion regime, the 

direction of frequency slip (chirping) produced by the self-phase modulation 

effect (SPM) and due to the nonlinearity effect, is l opposite to that produced 

by dispersion (GVD).  

  

Figure 5.1 compensation process between self-phase modulation (Kerr 

effect) and GVD chromatic dispersion.  

This indicates that the frequency slip induced by the phase auto-modulation 

can compensate for that induced by the chromatic dispersion (See Figure 4.8). 

This process leads to the formation of optical solitons which retain shape 

during propagation, the compression mechanism fundamentally due to high 

order solitons.  

     After solution of the NLSE by the SSFM method, we studied the 

effects which limit the power of the signal during its propagation in the optical 

fiber. This allowed us to conclude that:  
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• When the dispersion effects dominate, the pulse undergoes a 

broadening of its spectrum leading to a loss of information. These effects can 

be resolved by sending the signal at the zero-dispersion wavelength.  

• When non-linear effects dominate, SPM introduce a phase shift which 

limits the maximum power of the signal to be transmitted over the fiber. As 

well as SPM increases the enlargement rate for a normal dispersion regime 

(𝛽2> 0) and reduces this rate for an abnormal dispersion regime ((𝛽2 <0)).  

• When the pulse intensities are large enough to involve non-linear 

effects, these can be used to compensate for dispersion.  

• Following the coupling of the two effects in the fiber, two regime cases 

are taken into account: normal dispersion regime, abnormal dispersion 

regime, the latter is very important because the auto phase modulation can 

compensate for the abnormal dispersion because it induces a phase term of 

sign opposite to that introduced by the dispersion of the fiber.  

• The results of our simulations using the method of "Fourier with Split-

step" for the study of the propagation of an impulse in the form of "Soliton 

Chirp" allows to conclude that the negative chirp has the best value among 

all the results in terms of the average of the PBR ratio. To this end, the 

dispersion parameters, the non-linearity, and the input power value must be 

determined due to the shape, quantity, speed, and amplitude of the input pulse 

which are respectively affected by these factors.  
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5.3 Future Work  

Finally, the work undertaken within the framework of this thesis has 

opened a direction of research which in our opinion deserves to be deepened, 

in particular:  

- Solving the nonlinear Schrödinger's equation considering other nonlinear 

effects, third order dispersion, the Brillouin or Raman effect.  

- Study of the propagation of solitons in periodic structures, namely, optical 

fibers with photonic crystals  
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