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Abstract 

 

This research project introduces a new method employed to tackle non-

linear partial differential equations, namely Modified Double Sumudu 

Transform Decomposition Method. This method is a combination of the 

Modified Double Sumudu Transform and Adomian Decomposition 

Method. The presented technique is provided and supported with 

necessary illustrations, together with some attached examples. The results 

reveal that the new method is very efficient, simple and can be applied to 

other non-linear problems. 
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 الخلاصة

هذا البحث قدم طريقة جديدة لحل المعادلات التفاضلية الجزئية غير الخطية 

وطريقة  المعدل الثنائي ة بالدمج بين تحويل سمودوقلي هذه الطريتم الحصول ع

ة وتدعيمها بعدد من الامثلة ووجد أن قأدوميان حيث تم تقديم شرح كامل لهذه الطري

هذه الطريقة تنافس الطرق الحديثة فهي طريقة بسيطة وفعالة للغاية ويمكن تطبيقها 

 علي معادلات أخري غير خطية.
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Chapter 1 

Introduction 

 

Partial differential equations have become a useful tool for describing 

most of the natural phenomena of science and engineering models. For 

example, in physics, the heat flow and the wave propagation, in ecology, 

most population models are governed by partial differential equations. 

The dispersion of a chemically reactive material is characterized by 

partial differential equations. In addition, most physical phenomena of 

fluid dynamics, quantum mechanics, electricity, plasma physics, 

propagation of shallow water wave, and many other models are 

controlled within its domain of validity by partial differential equations. 

Therefore, it becomes increasingly important to be familiar with all 

traditional and recently developed methods for solving partial differential 

equations, and the implementation of these methods.   

The non-linear partial differential equations, appear in many applications 

of mathematics, physics, chemistry and engineering, for this reason the 

researcher presents a number of methods for solving it, such as Adomian 

Decomposition Method (ADM) [1], Variation Iteration Method (VIM) 

[1], Homotopy Perturbation Method (HPM) [1]. 

A new option appear recently, includes the composition of previous 

methods with some integral transforms namely Laplace transform, 

Sumudu transform, or Elzaki transform, these compositions resulted 

number of methods such as Laplace Decomposition Method (LDM) ([2]-

[4]), Laplace Variation Iteration Method (LVIM)  [5], Sumudu 

Decomposition Method (SDM) ([6]-[15]), Sumudu Homotopy 

Perturbation Method (SHPM) ([16],[17]), Elzaki Variation Iteration 
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Method (EVIM) [18], Elzaki project Differential Transform Method 

(EPDTM) [19], Elzaki Homotopy Perturbation Method (EHPM) 

([20],[21]), and Elzaki Decomposition Method (EDM) ([22],[23]). 

In this thesis the essential motivation of the present study is to extend the 

application of the Modified Double Sumudu Transform by introduce a 

new method called Modified Double Sumudu Transform Decomposition 

Method  for solving non-linear partial differential equations. 

The significance of this method is its capability of combining easy 

integral transform Modified Double Sumudu Transform (DET)[24] and 

an effective method for solving non-linear partial differential equations, 

namely Adomian Decomposition Method [1]. 

This method is described and illustrated with some examples in chapter 

four to explain its effectiveness. 
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Chapter 2 

 

 

Sumudu and Modified Sumudu Transform 

 

 

In the literature, there are several works on the theory and applications 

of integral transform such as Laplace, Fourier, Mellin, Hankel, Sumudu 

and Modified Sumudu transform (Elzaki Transform). These transforms 

use to solve a lot of problems in ordinary differential equation, partial 

differential equation and integral equations. Now we take a glance for 

some transforms. 

2.1 Sumudu Transform 

Sumudu transform it was proposed originally by Watugala (1993) to 

solve differential equation and control engineering problems. 

Definition (2.1.1):Sumudu transform denoted by the operator (.)S  

defined by the integral equation: 

   21

0

,,)(
1

;)()(  
 

udtetf
u

utfSuF u

t

        (2.1) 

It appeared like the modification of the well-known Laplace transform. 

This transform may be used to solve problems without resorting to a new 

frequency domain and has many interesting properties which make its 

visualization easing some of these properties are: 

1-The differentiation and integration in the t - domain is equivalent to                               

division and multiplication of the transformed function )(uF  by u  in the 

u - domain. 
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2-The unit-step function in the t - domain is transformed into unity in the    

u - domain. 

3-Degree of the function )(tf in the t - domain is equivalent to degree of 

)(uF  in the u - domain by the same degree factor. 

4-The limit of  )(tf  as t   tends to zero is equal to the limit of )(uF as u  

tends to zero. 

5-The limit of  )(tf  as t   tends to infinity is the same as the limit of )(uF  

as u  tends to infinity. 

6-The slope of the function )(tf  at 0t is the same as the slope of )(uF

at 0u . 

2.1.1 Properties of Sumudu Transform : 

1- Linear Property: 

               𝑆[𝑎𝑓(𝑡) + 𝑏𝑔(𝑡)]  = 𝑎 𝑆 [𝑓(𝑡)] + 𝑏 𝑆[𝑔(𝑡)] 

              𝑆[𝑎𝑓(𝑡) + 𝑏𝑔(𝑡)]   =
1

𝑢
∫ 𝑒−

𝑡

𝑢[𝑎𝑓(𝑡) + 𝑏𝑔(𝑡)]
∞

0
𝑑𝑡 

                                              =
𝑎

𝑢
∫ 𝑓(𝑡) 𝑒−

𝑡

𝑢 𝑑𝑡 
∞

0
+ 

𝑏

𝑢
∫ 𝑔(𝑡) 𝑒−

𝑡

𝑢 𝑑𝑡 
∞

0
 

                                             = 𝑎 𝑆 [𝑓(𝑡)] + 𝑏 𝑆[𝑔(𝑡)] 

2- 𝑺[𝒇(𝒂𝒕)] = 𝑭(𝒂𝒖) 

             𝑆[𝑓(𝑎𝑡)]  =
1

𝑢
∫ 𝑒−

𝑡

𝑢[𝑓(𝑎𝑡)]
∞

0
𝑑𝑡 = 𝐹(𝑎𝑢) 

2.2 Modified Sumudu Transform: 

Modified Sumudu transform was introduced to facilitate the process of 

solving ordinary and partial differential equations in the time domain. 
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Definition (2.2.1): Modified Sumudu transform denoted by the operator 

(.)E  defined by the integral equation: 

  21

0

,0,)()()( kvktdtetfvvTtfE v

t

 
 

        (2.2) 

2.2.1 Existence of Modified Sumudu Transforms:

 

The sufficient conditions for the existence of Modified Sumudu transform 

are that f (t) for t ≥ 0 be Piecewise continuous and of exponential order, 

Otherwise Modified Sumudu transform may or may not exist. That is 

means Modified Sumudu transform defined for function in the set A such 

that the set A defined by: 

            













 ,0)1(,)(,0,,:)( 21 XtifMetfkkMtfA jk

t

j  

 The constant M  must be finite number, 21 ,kk    may be finite or infinite. 

Example(2.2.1): If 1)( tf  then  

  22

00

10)()1( vvevvdtevE v

t

v

t




 


 

2)1( vE   

Example (2.2.2): If ttf )(  then 
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Example (2.2.3): If atetf )( , then 
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Modified Sumudu transform (Elzaki Transform) of the some functions 

are listed in the following table     

 

f(t) E[f(t)] 

 

ate  
av

v

1

2

 

 

)(cos at  
22

2

1 va

v


 

 

)(sin at  
22

3

1 va

va


 

 

)(cosh at  
22

2

1 va

v


 

 

)(sinh at  
22

3

1 va

va


 

 

Theorem (2.2.2): Let T (v) is the Modified Sumudu transform of )(tf     

[ E(f (t))=T (v) ],then 

)0(
)(

))(()( fv
v

vT
tfEi   

)0()0(
)(

))(()(
2

fvf
v

vT
tfEii   

)0(
)(

))(()( )(
1

0

2)( k
n

k

kn

n

n fv
v

vT
tfEiii 





  

Proof 
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0

)())(()( dtetfvtfEi v

t

 

                 













 

 




00

)(
1

)( dtetf
v

etfv v

t

v

t

 

                 
 


0

)()0( dtetffv v

t

 

)0(
)(

))(( fv
v

vT
tfE 

 

)()()( tftgLetii        ,   then 

       )0())((
1

))(( gvtgE
v

tgE  , from (i) 

)0()0(
)(

))((
2

fvf
v

vT
tfE 

 

)(iii By mathematical induction: for  1n  , hold in )(i ,we assume it hold 

for n , and proved that it carries to 1n  

))(())(( )()1(   tfEtfE nn  

                      )0(
))(( )(

)(
n

n

fv
v

tfE
  

                      )0()0(
)(1 )(

1

0

)(2 n
n

k

kkn

n
fvfv

v

vT

v









 





  

                       )0()0(
)( )(

1

0

)(1

1

n
n

k

kkn

n
fvfv

v

vT
 








 

                      







n

k

kkn

n
fv

v

vT

0

)(1

1
)0(

)(
 







1

0

)(2)( )0(
)(

))((
n

k

kkn

n

n fv
v

vT
tfE

 

Theorem (2.2.3): Modified Sumudu transform of partial derivatives are: 

)0,(
),(),(

)( xfv
v

vxT

t

txf
Ei 
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t

xf
vxf

v

vxT

t

txf
Eii
















 )0,(
)0,(

),(),(
)(

22

2

 

 ),()( vxT
dx

d

x

f
Eiii 












 

 ),()(
2

2

2

2

vxT
dx

d

x

f
Eiv 












 

Proof  

We use integration by parts as follows: 
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)(ii To find 
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 ),( vxT
dx

d

x

f
E 












  

Also we can find:    ),(
2

2

2

2

vxT
dx

d

x

f
E 












 

* We can easily extend this result to the thn partial derivative by using 

mathematical induction. 

2.2.2 Laplace – Modified Sumudu Duality:  

Now we showed that modified Sumudu transform is the dual of Laplace 

transform. Hence, one should be able to reveal it to a great extent in 

problem solving. Defined for Re(s)> 0, the Laplace transform is given by: 





0

)())(()( dtetftfLsF st  

According to above definition ELzaki and Laplace transforms exhibit a 

duality , relation expressed as follows: 

                                     


















s
TssF

v
FvvT

1
)(,

1
)(  

The (L E D) formula helps us to find inverse Elzaki transform by using 

contour integral and residues theorems we know: 






 

i

i

st dssFe
i

sFLtf






)(
2

1
)]([)( 1  

Where yixs  a complex variable 

Then from the relation between ( L and E) transform we get 

    
 

































s
Tseofresiduesds

s
Tse

i
sTE st

i

i

st 11

2

1
)]([1




                   

(2.3) 

We can apply above formula as follows: 

Let 
)1(

1

1
.

1

1

1

1
1

1

1

1
)(

3

333





































































sss

s

s
s

s

s
ss

s

ss
s

Ts
v

v
vT  
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Then  











)1(
)]([1

ss

e
ofresiduesvTE

st

, do occur at the poles  

01  sands  with respective values    te and   1 . Then .1)( tetf   

2.3 Modified Double Sumudu Transform: 

Now we take modified version of double Sumudu transform which is 

called modified double Sumudu transform. This new transform rivals 

Sumudu transform and Laplace transform in problem solving.  

Definition (2.3.1):Let  Rxttxf ,,),(  be a function which can be 

expressed as a convergent infinite series, then its Modified Double 

Sumudu Transform given by: 

     .0,,),(,,,,
0 0

2   
 











txdxdtetxfuvvuTvutxfE v

t

u

x

     (2.4) 

where vu ,  are complex values. 

Example (2.3.1): If ( , )f x t x  then  

2

2

0 0 0
0

2

0

( )

x t x t

u v u v

x

u

E x uv x e dx dt uv x e dx

uv x e dx


     

      
   




 



  


 

Use Integration by Parts gives: 

 

2

2

00

2 2

0

3 2 3 2

( )

0 1

x x

u u

x

u

E x uv xue u e dx

uv u e

u v u v




 




 
   
 
 

 
  

 

   



 

Example (2.3.2): If ( , ) 2f x t t  then  

2

0 0

(2 ) 2

x t

u vE t uv t e dx dt
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Let     

2 2

x t x t

u v u v

u t du

dv e v v e

   
      
   

  

   

 

 

Use Integration by Parts gives: 

 

 

2

0 0
0

2 2

0 0
0

2 2 3

0 0

2 3 2 3

2 3

2

(2 ) 2 2

2 2 0

2 2

2 0 1 2

(2 ) 2

x t x t

u v u v

x t x

u v u

x x

u u

E t uv t v e v e dt dx

uv v e dx uv v e dx

uv v e dx u v e

u v u v

E t u v


    

      
   


  

   
 




 

 
   
 
 

   
      
    

 
   

 

  

 

 

 

  

Example (2.3.3): If ( , ) x tf x t e   then  

2

0 0

0 0

1 1
1 1

0 0

1
1

1
1

0

0

12 1

0

12
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.

.
1

1

1

x t

x t x t u v

x t
x t

u v

x t
u v

t
vx

u

x
u

x

E e uv e e dx dt

uv e e dxdt

uv e e dxdt

v e
uv e dx

v

uv
e dx

v

uv
e

v
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2 2

. .
1 1
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1 1
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u uuv u

dx e
v u

v u

v u


   

     
   




 


 



 

Example (2.3.4): If ( , ) sinf x t t  then  
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2

0 0

(sin ) sin

x t

u vE t uv t e dx dt

  
  
   

 

              0
0

sin

x t

u vuv t u e dt


 

  
 

 
  

  


 

              

2

0

sin
t

vu v t e dt




 
 

Let     

sin cos

t t

v v

u t du t

dv e dt v v e
 

  

   

 

 

Use Integration by Parts gives: 

2 2

2

0 00

2

0

2 2

0

2 2

00

2 2

(sin ) sin sin cos

cos

cos

cos sin

cos sin

sin

t t t

v v v

t

v

t

v

t t

v v

t t

v v

t

v

E t u v t e dt u v v e t v t e dt

u v zero v t e dt

u v t e dt

u t du t

dv e dt v v e

u v v e t v t e dt

u v v v t e
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2 3 2 3

0

2 2 3 2 3

0 0

2 2 2 3

0

sin

sin sin

sin 1

t

v

t t

v v

t

v

dt

u v u v t e dt

u v t e dt u v t e dt u v

u v t e dt v u v






 
 




 
 
 

 

 

   





 


 

2 3
2

2 2

0

(sin ) sin
1

t

v
u v

E t u v t e dt
v
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Now to obtain Modified double Sumudu transform of partial derivatives 

we use integration by parts [24], and then we have:  

),0(),(
1

2 vuTvuT
ux

f
E 












 

),0(),0(),(
1

22

2

2 vT
x

uvTvuT
ux

f
E

















 

)0,(),(
1

2 uvTvuT
vt

f
E 












                                                                      (2.5) 

)0,()0,(),(
1

22

2

2 uT
t

vuTvuT
vt

f
E

















 

)0,0(),0()0,(),(
12

2 uvTvT
v

u
uT

u

v
vuT

uvtx

f
E 












 

Proof: 

   
 


 










































0 00 0

2 ,),( dtdxtxf
x

euevdxdtetxf
x

uv
x

f
E u

x

v

t

v

t

u

x

 

The inner integral gives  ),0(),(
1

tfutuT
u

  

dttfeuvdttuTe
u

v

x

f
E v

t

v

t

),0(),(
00

2 



















  

),0(),(
1

2 vuTvuT
ux

f
E 












  

Also )0,(),(
1

2 uvTvuT
vt

f
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0 0

2

2

0 0

2

2

2

2

2

,,,
dtdxe

x

txf
uevdxdte

x

txf
uv

x

txf
E u

x

v

t

v

t

u

x

 

The inner integral: 
x

tf
utf

u

tuT
dxe

x

txf
u u

x








 



),0(

),0(
),(),(

2

0

2

2

. 

By taking Modified Sumudu transform with respect to t  for above 

integral we get: 

),0(),0(),(
1),(

22

2

2 vT
x

uvTvuT
ux

txf
E
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Similarly: 

)0,()0,(),(
1),(

22

2

2 uT
t

vuTvuT
vt

txf
E


















 

Theorem (2.3.2): Consider a function f in the set A defined by: 














 



2

21 ),(2,1),(0,,:),(),(
2

RtxandieMtxfthatsuchkkMAtxftxf ik

tx

 

With double Laplace transform ),( spF , and Modified double Sumudu 

transform ),( vuT  

Then:    







 RkkMwhere

vu
FuvvuT 21,,,

1
,

1
),(  

Proof: Let  
 


0 0

)(22

21 ),(),(,,),( dxdtevtuxfvuvuTkvukandAtxf tx  

Let vtandux   ,  we have 

  
 









 












0 00 0

)(22 1
,

1
),(),(),(

vu
FuvddefuvdxdtevtuxfvuvuT vutx 



 











vu
FuvvuT

1
,

1
),(  

Definition (2.3.3): Let ),(),( txgandtxf be a piecewise continuous 

function on  ,0  and having double Laplace transform 

),(),( spGandspF respectively, then the double 

Convolution of the functions ),(),( txgandtxf  exist and defined by: 

            ddtxgftxgf

t x

),(),(),)((
0 0

  
 

           ),(),(),(;),)(( spGspFsptxgfLL tx   

Theorem (2.3.4): Let ),(),( txgandtxf be defined in A  and having the 

double Laplace transform ),(),( spGandspF respectively, and also having 

Modified double Sumudu transform ),(),( vuNandvuM  respectively, then 
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the Modified double Sumudu transform of the convolution of   

),(),( txgandtxf is given by: 

  ),(),(
1

),(;),)((2 vuNvuM
uv

vutxgfE   

Proof: The Laplace transform of ),)(( txgf  is given by 

  ),(),(),(;),)(( spGspFsptxgfLL tx   

From theorem (2.3.2) we have: 

   ),(;),)((),(;),)((2 sptxgfLLuvvutxgfE tx   

   Since    
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GuvvuN

vu
uvFvuM
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,

1
),(,

1
,
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),(   then  
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1),(

.
),(1

,
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),(;),)((2 vuNvuM
uvuv
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uv
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vu
FuvvutxgfE 


































 

2.3.1 Convergence of Modified Double Sumudu Transform 

Here we need to discuss some theorems of convergence of  Modified 

Double Sumudu Transform 

Theorem (2.3.5): Let the function ),( txf  is continuous in the xt

plane, if the integral converges at 00 , vvuu   then the integral,

 
 











0 0

),( dxdtetxfuv v

t

u

x

is convergence for 00 , vvuu  . 

For the proof we will use the following theorems. 

Theorem (2.3.6): Suppose that:  




0

, dtetxfv v

t

, converges at 
0vv , then 

the integral converges for 
0vv   

Proof: 

Let     
t

v

s

tdsesxfvtx
0

0 0,,, 0  
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Clearly   00, x  and  tx
t

,lim
  

exist. 

By fundamental theorem of calculus we have: 

                                     0,, 0

v

t

t etxfvtx


                                                  (2.6) 

If we choose 
1  and 

1R such that (
110 R ) and using equation (2.6) we 

get:  

     














 











1

1

0

01

1

0

1

1

,,
1

,
00

R t
vv

vv

t

R

v

t

t

v

tR

v

t

dtetx
v

v
dtetxe

v
vdtetxfv   

Integrating the last integral by parts to gives: 

     

























 















 















 
















 
















 
 1

1

0

0
1

1

0

01

1

0

0

0

0

00

..,,,

R t
vv

vv
R

t
vv

vvR t
vv

vv

t dt
vv

vv
etxetx

v

v
dtetx

v

v
  

                      























 
 















 













 













 
 1

1

0

0
1

0

0
1

0

0

,,,
0

0

11

0

R t
vv

vv

vv

vv
R

vv

vv

dtetx
vv

vv
exeRx

v

v
  

Now let  11 ,0 R , if 
0vv   , then we have 

                   














 
















 


0

2

0

0

0

0

0

,, dtetx
v

vv
dtetxfv

t
vv

vv

v

t

  

Now if the integral on the right converges then the theorem is proved. 

By using limit test for convergence we get: 

    tx

e

t
etxt

t
t

vv

vvt

t
vv

vv

t
,lim.lim,lim

0

0

0

0 2
2 














 













 


 















  

The first limit equal zero at t if 
0vv  and the second limit exist, then 

 
0

02lim , 0,

v v
t

vv

t
t x t e

 
  
 


 finite. 
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Then the integral    dtetxfv v

t






0

,   is converges at
0vv  . 

Theorem (2.3.7): Suppose that:  




0

, dxetxfu u

x

 , converges at 
0uu , then 

the integral converges for 
0uu   

Proof 

Prove, of this theorem is same as the method in Theorem (2.3.6). 

Now the proof of the theorem (2.3.5) is as follows 

  dxdttxfeveudxdtetxfuv v

t

u

x

v

t

u

x









  







 










000 0

,),(               (2.7) 

By using theorem (2.3.6) and theorem (2.3.7) we see the integral in RHS 

of equation (2.7) is converges for
00 , vvuu  , hence the integral 

 
 











0 0

),( dxdtetxfuv v

t

u

x

converges for
00 , vvuu  ([28] [29]). 

2.4 On Some Applications of Modified Double Sumudu Transform to 

Integro-Partial Differential Equations: 

To solve integro-partial differential equations by using Modified double 

Sumudu transform first convert proposed equation to an algebraic 

equation, solving this algebraic equation and applying inverse Modified 

double Sumudu transform we obtain the exact solution of the problem 

Example (2.4.1): 

Consider the PIDE 

                                         x

t

xtt edssxustuu 2),().(2
0

   

With initial conditions:             0)0,(,)0,(  xuexu t

x  

And boundary conditions:      ttu cos),0( 
 

Solution: 
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We take Modified double Sumudu transform for equation: 

                   
u

vu
vTvvuTvuT

u
uT

t
vuTvuT

v 







1
2),0(2),0(),(

1
)0,()0,(),(

1 22
2

2
 

We take single Modified Sumudu transform for conditions 

             
2

22

1
),0(,0

)0,(
,

1
)0,(

v

v
vT

t

uT

u

u
uT









  

By substituting: 

                   
u

vu
vuTv

v

uv
vuT

uu

u
vuT

v 








1

2
),(2

1
),(

1

1
),(

1 22
2

2

22

2

 

                    
u

vu

u

u

v

uv
vuT

v
v

u 

















1

2

11
),(

1
2

1 222

2

2

2

2

 

Multiply both sides by  2uv  

    
u

vu

u

vu

v

vu
vuTuuvv










1

2

11
),(2

4323

2

42
42

 

                                                  
)1)(1(

22
2

634343234342

uv

vuvuvuvuvuvu




  

   
)1)(1(

2
),(2

2

4222
42

uv

uuvvvu
vuTuuvv




  

)1)(1(
),(

2

22

uv

vu
vuT


  

Appling inverse Modified double Sumudu transform we get: 

tetxu x cos),(   
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Chapter 3 

Adomian Decomposition Method 

The Adomian Decomposition method was introduced and developed by 

George Adomian. 

The method has a several advantages it’s powerful, effective, and can 

easily handle a wide class of linear or non-linear, ordinary or partial 

differential equations, and linear and non-linear integral equations, and 

it’s attacks the problem in a direct way and in a straightforward without 

any need to restrictive assumptions such as linearization, discretization or 

perturbation, there is no need is using this method to convert in-

homogenous conditions to homogenous conditions as required by other 

techniques. 

3.1 Solving linear ODEs and PDEs by Adomian Decomposition 

      Method: 

The adomian decomposition method consist of decomposing the 

unknown function ( , )u x y of any equation into a sum of an infinite number 

of components defined by the decomposition series  

0

( , ) ( , )n

n

u x y u x y




                                                 (3.1) 

Where the components ( , ), 0nu x y n   are to be determined in a recursive 

manner. 

We first consider the linear differential equation in an operator from by: 

Lu Ru g                                                            (3.2) 

Where L is mostly the lower order derivative which is assumed to be 

invertible, R is other linear differential operator, and g is a source term. We 

next apply the inverse operator 1L  to both sides of equation (3.2) and 

using the given condition to obtain: 

     1( )u f L Ru                                                       (3.3) 
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Where the function f represents the terms arising from integration the 

source term g  and from using the given conditions that are assumed to be 

prescribed. Adomian method defines the solution u  by an infinite series 

of components given by  

0

n

n

u u




                                                              (3.4) 

Where the components 
0 1 2, , ,...u u u are usually recurrently determined. 

Substituting (3.4) into both sides of (3.3) we get  

1

0 0

n n

n n

u f L R u
 



 

  
    

  
                                        (3.5) 

Equation (3.5) can be rewritten as  

 1

0 1 2 0 1 2... ( )u u u f L R u u u                        (3.6) 

We need to find the components 0 1 2, , ,...u u u  

 The Adomian method suggests that the zeroth component 0u is usually 

defined by the function f described above by all terms that are not 

included under the inverse operator 1L , which arise from the initial data 

and from integrating the inhomogeneous term. Accordingly the formal 

recursive relation is defined by  

0

1

1 ( ( )), 0k k

u f

u L R u k





  
                           (3.7) 

Or equivalently  

0

1

1 0

1

2 1

1

3 2

( ( ))

( ( ))

( ( ))

u f

u L R u

u L R u

u L R u









 

 

 

                                    (3.8) 

After determined these components, we then substitute them into (3.4) to 

obtain the solution in a series form. 

Now consider the problem: 
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( ) ( ), (0)u x u x u A                         (3.9) 

In an operator form, we get  

Lu u                                           (3.10) 

Where 
 

d
L

dx
                                            (3.11) 

And  

1

0

( ) ( )

x

L dx                                         (3.12) 

Applying 1L
 to both sides of (3.10) and using the initial condition we 

obtain 

1 1( ) ( )L Lu L u                                      (3.13) 

So that  

1( ) (0) ( )u x u L u                                   (3.14) 

                                                
1( ) ( )u x A L u                                     (3.15) 

1

0 0

( ) ( )n n

n n

u x A L u x
 



 

 
   

 
                          (3.16) 

Then  

 

 

0

1

1( ) ( ) , 0k k

u x A

u x L u x k





 
                          (3.17) 

Follows immediately consequently, we obtain,  

0

1 1

1 0

2
1 1

2 1

2 3
1 1

3 2

( )

( ) ( ( )) ( )

( ) ( ( )) ( )
2!

( ) ( ( )) ( )
2! 3!

u x A

u x L u x L A Ax

Ax
u x L u x L Ax

Ax Ax
u x L u x L

 

 

 



  

  

  

                         (3.18) 

Substituting (3.18) into (3.4), we get  

2 3

( )
2! 3!

x x
u x A x

 
    

 
                               (3.19) 
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And in a closed form by  

( ) xu x Ae                                              (3.20) 

Also consider the Airy’s equations  

( ) ( ), (0) , (0)u x xu x u A u B                    (3.21) 

In an operator form we get  

Lu xu                                         (3.22) 

Where  

2

2

d
L

dx


  
and  1

0 0

( ) ( )

x x

L dxdx      

Applying 1L to both sides of (3.22) and using the initial conditions  

1 1( ) ( )L Lu L xu                                                     (3.23) 

1( ) (0) (0) ( )u x xu u L xu                                      (3.24) 

1( ) ( )u x A Bx L xu                                               (3.25) 

1

0 0

( ) ( )n n

n n

u x A Bx L x u x
 



 

 
     

 
                       (3.26) 

 
0

1

1

( )

( ) ( ) , 0k k

u x A Bx

u x L xu x k



  

 
                             (3.27) 

Consequently we obtain: 

0

3 4
1 1 2

1 0

4 5 6 7
1 1

2 1

( )

( ) ( ( )) ( )
6 12

( ) ( ( )) ( )
6! 12! 180 504

u x A Bx

Ax Bx
u x L x u x L Ax Bx

Ax Bx Ax Bx
u x L x u x L

 

 

 

    

    

         (3.28) 

Substituting (3.28) into (3.4) we get  

3 6 4 7

( ) 1
6 180 12 504

x x x x
u x A B x

   
          

   
          (3.29) 

Other components can be easily computed to enhance the accuracy of the 

approximation. 
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Next we apply Adomian decomposition method to first-order partial 

differential equations, consider the inhomogeneous partial differential 

equations, 

( , ), (0, ) ( ), ( ,0) ( )x yu u f x y u y g y u x h x                (3.30) 

In an operator form Equation (3.30) can be written as: 

( , )x yL u L u f x y                                             (3.31) 

Where 

,x yL L and
x y

 
 
 

   1 1

0 0

( ) ( ) , . .

yx

yL dx L dy                (3.32) 

This means that  

1 ( , ) ( , ) (0, )x xL L u x y u x y u y                                      (3.33) 

Applying 𝐿𝑥
−1 to both sides of equation (3.31) gives 

1 1 1( ( , )) ( )x x x x yL L u L f x y L L u                                    (3.34) 

Or equivalently: 

1 1( , ) ( ) ( ( , )) ( )x x yu x y g y L f x y L L u                           (3.35) 

We obtained above equation by using equation (3.33) and condition   

(0, ) ( )u y g y . 

Now the decomposition method sets: 

0

( , ) ( , )n

n

u x y u x y




                                                 (3.36) 

Substituting (3.36) into both sides of (3.35) we get  

1 1

0 0

( , ) ( ) ( ( , )) ( , )n x x y n

n n

u x y g y L f x y L L u x y
 

 

 

  
     

  
           (3.37) 

This can be re written as  

1 1

0 1 2 0 1 2( ) ( ( , )) ( )x x yu u u g y L f x y L L u u u                  (3.38) 

We set  

         1

0( , ) ( ) ( ( , ))xu x y g y L f x y   

and  
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1

1( , ) ( ), 0k x y ku x y L L u k

                                            (3.39) 

Then we obtain the recursive scheme: 

 

 

 

1

0

1

1 0

1

2 1

1

3 2

( , ) ( ) ( ( , ))

( , ) ( , )

( , ) ( , )

( , ) ( , )

x

x y

x y

x y

u x y g y L f x y

u x y L L u x y

u x y L L u x y

u x y L L u x y









 

 

 

 

                                (3.40) 

And so on, after determined the more components ( , )nu x y  substituting in 

equation (3.36) to find approximate solution. 

It is important to note that the solution can also be obtained by finding the 

𝑦-solution by applying the inverse operator 1

yL

 
to both sides of the 

equation  

( , )y xL f x y L u                                                    (3.41) 

And complete similar to the x solution. 

The essential steps of the decomposition method for linear and nonlinear 

equations, homogenous and inhomogeneous can be outlined as follow: 

i- Express the partial differential equations, linear or nonlinear in an 

operator form. 

ii- Apply the inverse operator to both sides of the equation written in 

an operator form. 

iii- Set the unknown function ( , )u x y  into a decomposition series  

0

( , ) ( , )n

n

u x y u x y




  

         We next substitute above series into both sides of the resulting 

         equation. 

iv- Identify the zeroth component 0 ( , )u x y  as terms arising from the 

given conditions and from integration the source term ( , )f x y  . 
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v- Determine the successive components of the series solution , 1ku k 

by applying the recursive scheme (3.39), where each component 
ku

can be completely determined by using the pervious component
1ku 
 

vi- Substituting the determined components into decomposition series 

to obtain the solution in a series form.  

 

An exact solution can be easily obtained in many equations if such a 

closed form solution exists. 

 The essential steps of the adomian decomposition method will be  

illustrated by the following examples:  

Example (3.1.1): Solve the following partial differential equation 

2 22 2 , ( ,0) 0, (0, ) 0x yu u xy x y u x u y      

Solution 

                       
 

 

2 2

2 2

1 1 2 2 1

1 2 2

2 2

2 2

2 2

( , ) 0 2 2

x y

x y

x x x x y

x y

L u L u xy x y

L u xy x y L u

L L u L xy x y L L u

u x y L xy x y L u

  



  

  

  

   

 

 

 

1 2 2

0 0

2 2 3 1

0 1 2 0 1

2 2 3

0

1

1

( , ) 2 2 ( , )

2

3

2

3

( , ) ( )

n x y n

n n

x y

k x y k

u x y L xy x y L u x y

u u u x y x y L L u u

u x y x y

u x y L L u

 


 







 
   

 

       

 

 

 

 

1 2 2 3 1 2 2 3

1

3 4

1 3 4

2

2 2
( , ) 2

3 3

2 2

3 12

2 2
( , )

3 12

x y x

x y

u x y L L x y x y L x y x

x y x

u x y L L x y x
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1 3 4

1 4

3

2 2 3 3 4 4

2 2

3 12

2
( , ) 0

12

2 2 1 1
( , )

3 3 6 6

x

x y

L x x

u x y L L x

u x y x y x y x y x x





 
    

 

  
    

  

     

 

                            2 2( , )u x y x y   

Example (3.1.2): Solve the following partial differential equation: 

, ( ,0) 1 , (0, ) y

x yxu u u u x x u y e      

Solution 

                    
x yxL u L u u   

                    1 1 1

1

( )

( , ) 1 ( )

y x

y y y y x

y x

L u u xL u

L L u L u L xL u

u x y x L u xL u

  



 

 

   

 

 

   

 

1

0 0 0

0

1

1

1 1

1

1 2

2

1 2 2 3

3

( , ) 1 ( , ) ( , )

1

( , ) , 0

( , ) 1 (1 ) 1

1
( , )

2

1 1 1
( , )

2 2 6

n y n x n

n n n

k y k x k

y x y

y x

y x

u x y x L u x y xL u x y

u x

u x y L u xL u k

u x y L x xL x L x x y

u x y L y xL y y

u x y L y xL y y

  


  





 





 
    

 

  

  

       

  

 
   

 

  

 

2 3

0

( , ) , 1,2,3,...
!

( , ) 1 1
! 2! 3!

( , )

n

n

n

n

y

y
u x y n

n

y y y
u x y x x y

n

u x y x e





 

        

  

  

Example (3.1.3): Solve the following partial differential equation 

      00,,,0,,,,0,3  yxuzxuyzzyuuzuyuu zyx  

Solution 
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1 1

1

0 0 0

0

1

1

1

1 0 0 0

1

3

3

(3 )

( , , ) 3

( , , )

( , , ) (3 ), 0

( , , ) (3 )

(3

x y z

x y z

x x x y z

x n y n z n

n n n

k x k y k z k

x y z

x

L u yL u zL u u

L u u yL u zL u

L L u L u yL u zL u

u x y z yz L u yL u zL u

u x y z yz

u x y z L u yL u zL u k

u x y z L u yL u zL u

L yz

 

  


  









  

  

  

 
    

 

 

   

  



  

)y zyL yz zL yz 

 

                                    1(3 )xL yz yz zy xyz     

                     
 

1

2

1 2

( , , ) (3 )

1
3

2

x y z

x

u x y z L xyz yL xyz zL xyz

L xyz xyz xyz x yz





  

   
 

                    1 2 2 2

3

3 1 1
( , , )

2 2 2
x y zu x y z L x yz yL x yz zL x yz  

   
 

 

1 2 2 2 3

4

4

0

2 3

3 1 1 1
( )
2 2 2 6

1
( , , )

24

1
( , , )

!

( , , ) (1 )
2! 3!

( , , )

x

n

n

n

x

L x yz x yz x yz x yz

u x y z x yz

u x y z x yz
n

x x
u x y z x yz

u x y z yze







   





    

 



 

3.1.1 The Noise Terms Phenomenon 

Now we will present a useful tool that will accelerate the convergence of 

the Adomian decomposition method. 

The noise terms phenomenon provides a major advantage in that it 

demonstrates a fast convergence of the solution. It is important to note 

that the noise terms phenomenon that will be introduced, may appear only 

for inhomogeneous PDEs. In addition, this phenomenon is applicable to 

all inhomogeneous PDEs of any order. The noise terms, if existed in the 
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components 0u and 1u , will provide, in general, the solution in a closed 

form with only two successive iterations. 

In view of these remarks, we now outline the ideas of the noise terms: 

1. The noise terms are defined as the identical terms with opposite 

signs that may appear in the components 0u  and 1u . 

2. The noise terms appear only for specific of inhomogeneous 

equations whereas noise terms do not appear for homogeneous 

equations. 

3. The noise terms appear if the exact solution is part of zeroth 

component 0u . 

4. Verification that the remaining non-canceled terms satisfy the 

equation is necessary and essential. 

The phenomenon of the useful noise terms will be explained by the 

following examples. 

Example (3.1.4):  Consider the inhomogeneous PDE: 

                       xxuyuexuu y

yx  0,,0,0,1 .                       

The inhomogeneous PDE can be rewritten in an operator form by 

                  uLexuL y

y

x  1 .                      

Applying 
1

xL to both sides and using the given condition leads to 

              uLLe
x

xyxu yx

y 1
2

!2
,











 .   

Substituting    





0

,,
n

n yxuyxu

 

into both sides gives 
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 0

1
2

0

,
!2

,
n

nyx

y

n

n yxuLLe
x

xyxu ,         

Proceeding as before, the components ....,,, 210 uuu  are determined in a 

recursive manner by 

               

 

   

    y

yx

y

yx

y

e
xx

uLLyxu

e
xx

uLLyxu

e
x

xyxu



































!4!3
,

,
!3!2

,

,
!2

,

43

1

1

2
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0

1

1

2

0

 

Considering the first two components 0u  and 1u , it is easily observed that 

the noise terms ye
x

!2

2

  and  ye
x

!2

2

  appear in 0u  and 1u respectively. By 

canceling the noise terms in 0u , and by verifying that the remaining non-

canceled terms of 0u , we find that the exact solution is given by  

  yexyxu , .                                                         

3.1.2 Solution Heat Equation by Adomian Decomposition Method. 

The initial boundary value problem that controls the heat conduction in a 

rod in one, two and three dimensional is given respectively by: 

          PDE         0 , 0t xxu ku x L t     

          BC            (0, ) 0, 0u t t   

( , ) 0, 0u L t t                                                            (3.42) 

          IC             ( ,0) ( )u x f x  

 

         PDE         ( ), 0 , 0 , 0t xx yyu k u u x a y b t      
 

         BC            (0, , ) ( , , ) 0u y t u a y t   

( ,0, ) ( , , ) 0u x t u x b t                                                        (3.43)
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       IC            ( , ,0) ( , )u x y f x y  

 

       PDE          ( ), 0 , 0 , 0 , 0t xx yy zzu k u u u x a y b z c t         
 

       BC           (0, , , ) ( , , , ) 0u y z t u a y z t   

( ,0, , ) ( , , , ) 0u x z t u x b z t                                              (3.44) 

                        ( , ,0, ) ( , , , ) 0u x y t u x y c t   

       IC             ( , , ,0) ( , . )u x y z f x y z  

 

Where ( , )u u x t  represent the temperature of the rod at the position x  at 

time t  in one dimensional, ( , . )u u x y t  is the temperature of any point 

located at the position ( , )x y  of a rectangular plate at any time t  in two 

dimensional and ( , , , )u u x y z t is the temperature of any point located at 

the position ( , , )x y z  of a rectangular volume at any time t  in three 

dimensional and k  is the thermal diffusivity of the material that measures 

the rod ability to heat conduction. 

The boundary conditions (BC) that describe the temperature u  at both 

ends of the rod and the initial condition (IC) that describe the temperature 

u  at time 0t   . 

The heat equation in one, two, and three dimensional arises in two 

different types namely: 

 

1- Homogeneous Heat Equation: 

This type of equations is often given respectively by: 

, 0 , 0

( ), 0 , 0 , 0

( ), 0 , 0 , 0 , 0

t xx

t xx yy

t xx yy zz

u ku x L t

u k u u x a y b t

u k u u u x a y b z c t

   

      

         

        (3.45) 

Further, heat equation with a lateral heat loss is formally derived as a 

homogeneous partial differential equation respectively of the form: 
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, 0 , 0

( ) , 0 , 0 , 0

( ) , 0 , 0 , 0 , 0

t xx

t xx yy

t xx yy zz

u ku u x L t

u k u u u x a y b t

u k u u u u x a y b z c t

    

       

          

         (3.46) 

 

2- Inhomogeneous Heat Equation: 

This type of equation contains one or more terms that do not dependent 

variable ( , ), ( , , )u x t u x y t and ( , , , )u x y z t  respectively. It’s often given by: 

( ), 0 , 0

( ) ( , ), 0 , 0 , 0

( ) ( , , ), 0 , 0 , 0 , 0

t xx

t xx yy

t xx yy zz

u ku g x x L t

u k u u g x y x a y b t

u k u u u g x y z x a y b z c t

    

       

          

(3.47) 

Where ( ), ( , )g x g x y and ( , , )g x y z is called the heat source which independent 

of time. 

To solve equation (3.42) we first rewrite in an operator form as follows: 

 

   txuLktxuL xt ,,                                               (3.48) 

Where    

2

2
,t xL L

t x

 
 
 

                                               (3.49) 

and  

1 1

0 0 0

( ) , ( ) .

t x x

t xL dt L dxdx                                           (3.50) 

This means that:  

1 ( , ) ( , ) ( ,0)t tL L u x t u x t u x                                         (3.51) 

Applying 1

tL  to both sides of (3.48) and using the initial condition we get 

 1( , ) ( ) ( , )t xu x t f x k L L u x t                               (3.52) 

From the adomian decomposition method we defined the series 

 
0

( , ) ( , )n

n

u x t u x t




                                                   (3.53) 

Substituting (3.53) into both sides of (3.52) we get: 
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1

0 0

( , ) ( ) ( , )n t x n

n n

u x t f x kL L u x t
 



 

  
    

  
                          (3.54) 

From the adomian decomposition method we defined: 

  
0

1

1

( , ) ( )

( , ) ( , ) , 0k t x k

u x t f x

u x t kL L u x t k





 
                           (3.55) 

The components
0 1 2( , ), ( , ), ( , ),...u x t u x t u x t  are determined individually by: 

0

1

1 0

2
1 (4)

2 1

3
1 (6)

3 2

( , ) ( )

( , ) ( ) ( )

( , ) ( ) ( )
2!

( , ) ( ) ( )
3!

t x

t x

t x

u x t f x

u x t L L u f x t

t
u x t L L u f x

t
u x t L L u f x









 

 

 

                                     (3.56) 

Others components can be determined by the similar way. 

Finally substituting (3.56) into (3.53) we get the solution ( , )u x t  of the 

partial differential equation in a series form as follows: 

(2 )

0

( , ) ( )
!

n
n

n

t
u x t f x

n





                                                (3.57) 

To solve equation (3.43) we first rewrite in an operator form as follows: 

( , , ) ( )t x yL u x y t k L u L u                                              (3.58) 

Where    

 
2 2

2 2
, ,t x yL L L

t x y

  
  
  

                                             (3.59) 

and  

1 1 1

0 0 0 0 0

( ) , ( ) , ( )

y yt x x

t x yL dt L dxdx L dydy                              (3.60) 

This means that:  

1 ( , , ) ( , , ) ( , ,0)t tL Lu x y t u x y t u x y                                       (3.61) 

Applying 1

tL  to both sides of (3.58) and using the initial condition we get 

1( , , ) ( , ) ( )t x yu x y t f x y k L L u L u                                 (3.62) 



33 

From the adomian decomposition method we defined the series 

0

( , , ) ( , , )n
n

u x y t u x y t
∞

=

=∑
                                                       

(3.63) 

Substituting (3.63) into both sides of (3.62) we get: 

1

0 0 0

( , , ) ( , ) ,n t x n y n
n n n

u x y t f x y kL L u L u
∞ ∞ ∞

−

= = =

    = + +    
    

∑ ∑ ∑
         

(3.64) 

From the adomian decomposition method we defined: 

 

0

1
1

( , , ) ( , )

( , , ) ( ), 0k t x k y k

u x y t f x y

u x y t kL L u L u k−
+

=

= + ≥                                      
(3.65) 

Calculate the components 0 1 2( , , ), ( , , ), ( , , ),...u x y t u x y t u x y t  individually and 

substitute into (3.63) we get the solution ( , , )u x y t  of the partial differential 

equation in a series form. 

To solve equation (3.44) we first rewrite in an operator form as follows: 

( , , , ) ( )t x y zL u x y z t k L u L u L u= + +                                                 (3.66) 

where 

2 2 2

2 2 2
, , ,t x y zL L L L

t x y z

∂ ∂ ∂ ∂= = = =
∂ ∂ ∂ ∂                                             

(3.67) 

and 

1 1 1 1

0 0 0 0 0 0 0

( ) , ( ) , ( ) , ( )
y yt x x z z

t x y zL dt L dxdx L dydy L dzdz− − − −= ⋅ = ⋅ = ⋅ = ⋅∫ ∫ ∫ ∫ ∫ ∫ ∫
      

(3.68) 

This means that:  
1 ( , , , ) ( , , , ) ( , , ,0)t tL L u x y z t u x y z t u x y z− = −                             (3.69) 

Applying 1
tL−  to both sides of (3.66) and using the initial condition we get 

1( , , , ) ( , , ) ( )t x y zu x y z t f x y z kL L u L u L u−= + + +                        (3.70) 

From the adomian decomposition method we defined the series 

0

( , , , ) ( , , , )n
n

u x y z t u x y z t
∞

=

=∑
                                               

(3.71) 

Substituting (3.71) into both sides of (3.70) we get: 
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1

0 0 0 0

( , , , ) ( , , )n t x n y n z n

n n n n

u x y z t f x y z kL L u L u L u
   



   

      
         

      
    (3.72) 

From the adomian decomposition method we defined: 

0

1

1

( , , , ) ( , , )

( , , , ) ( ), 0k t x k y k z k

u x y z t f x y z

u x y z t kL L u L u L u k





   
                             (3.73) 

Calculate the components 0 1 2( , , , ), ( , , , ), ( , , , ),...u x y z t u x y z t u x y z t  individually 

and substitute into (3.71) we get the solution  ( , , , )u x y z t of the partial 

differential equation in a series form. 

We observe the solution for equation (3.42), (3.43), and (3.44) is obtained 

by using the initial condition only, but we can show that it’s  satisfies the 

given boundary conditions these solutions are obtained by using the 

inverse operator 1

tL . 

The solution for equation (3.42), (3.43), and (3.44) can also be obtained 

by using the inverse operator 1 1 1 1 1 1& , & , ,x x y x y zL L L L L L     

 
respectively. In this 

case we use the boundary conditions and initial condition for this reason 

the solution of partial differential equation in the t  direction reduces the 

size of computational work compare with the other directions. 

Now we have chosen several examples of one dimensional, two 

dimensional and three dimensional heat equation homogeneous and in 

homogeneous.  

Example (3.1.5): Use the adomian decomposition method to solve the 

initial-boundary value problems: 

                               PDE            , 0 , 0t xxu u x t     

                               BC              (0, ) 0, 0u t t   

                                                  ( , ) 0, 0u t t    

                                IC              ( ,0) sinu x x  

Solution 

Rewrite in an operator form: 
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            1 1

t x t t t xLu L u L L u L L u     

Where          tL
t





  and 
2

2xL
x





 

                    

1

1

0 0

0

1

1

1

1

1

1

( , ) sin

sin

sin

( ), 0

(sin )

( sin ) sin

t x

n t x n

n n

k t x k

t x

t

u x t x L L u

u x L L u

u x

u L L u k

u L L x

u L x t x



 


 









 

 

 

 



   

 

 

                    

   1 1 2

2

2

1
( , ) sin sin sin

2

( , ) sin 1 sin
2!

( , ) sin

t x t

t

t

u x t L L t x L t x t x

t
u x t x t e x

u x t e x

 





   

 
     

 

 

 

The solution satisfies the partial differential equation, the boundary 

condition and the initial condition. 

We can also solve above example by using formula (3.57) such that: 

(2 )

2 3 4

2 3 4

( ) sin ( ) ( 1) sin , 0,1,2,

( , ) sin sin sin sin sin
1! 2! 3! 4!

sin 1 sin
2! 3! 4!

( , ) sin

n n

t

t

f x x f x x n

t t t t
u x t x x x x x

t t t
x t e x

u x t e x





    

     

 
      

 

 

 

 

Example (3.1.6): Use the adomian decomposition method to solve the 

initial-boundary value problems with lateral heat loss 

                                    PDE      0 , , 0t xx yyu u u u x y t       

                                    BC        (0, , ) ( , , ) 0u y t u y t   

                                                 3( ,0, ) ( , , ) sintu x t u x t e x     

                                   IC           ( , ,0) sin cosu x y x y  

Solution 
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Rewrite in an operator form: 

 

1 1

1

0

1

1

1

1

1

2

( )

( , , ) sin cos ( )

( , , ) sin cos

(sin cos ) (sin cos ) sin cos

( 3sin cos ) 3 sin cos

( ( 3 sin cos ) ( 3 sin cos )

t x y

t t t x y

t x y

t x y

t

t x y

L u L u L u u

L L u L L u L u u

u x y t x y L L u L u u

u x y t x y

u L L x y L x y x y

u L x y t x y

u L L t x y L t x y

 









  

  

   

 

  

   

    

2
1 2

3

3

3 sin cos )

9 (3 )
(9 sin cos ) sin cos sin cos

2 2!

(3 )
( , , ) sin cos

3!

t

t x y

t
L t x y t x y x y

t
u x y t x y

  

 

 

              
2 3(3 ) (3 )

( , , ) sin cos 1 3 ,
2! 3!

t t
u x y t x y t

 
     

 
 

3( , , ) sin costu x y t e x y   

Example (3.1.7): Use the adomian decomposition method to solve the 

inhomogeneous partial differential equation 

                             PDE      sin 0 , , , 0t xx yy zzu u u u z x y z t        

                              BC        2(0, , , ) sin sintu y z t z e y   

                                           

2

2

2

2

( , , ) sin sin

( ,0, , ) sin sin

( , , , ) sin sin

( , ,0, ) ( , , , ) sin( )

t

t

t

t

u y z t z e y

u x z t z e x

u x z t z e x

u x y t u x y t e x y















 

 

 

  

 

                              IC         ( , , ,0) sin( ) sinu x y z x y z    

Solution 

Rewrite in an operator form: 
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1 1

1

0

1

1

1

( sin )

( sin )

( , , , ) sin( ) sin sin ( )

sin( ) sin sin

sin( ) sin sin sin( ) sin sin sin( ) sin sin

t x y z

t t t x y z

t x y z

t x y z

t

L u L u L u L u z

L L u L L u L u L u z

u x y z t x y z t z L L u L u L u

u x y z t z

u L L x y z t z L x y z t z L x y z t z

L

 







   

   

      

    

           



2

2 2 3

2

2 3 2 2

( sin( ) sin( ) sin sin )

2 sin( ) sin sin
2!

(2 )
sin( ) sin sin

2! 2! 3!

(2 ) (2 )
( , , , ) sin sin( ) 1 2 sin sin sin sin

2! 3! 2! 2!

( , , , ) sin

x y x y z t z

t
t x y t z z

t t t
u x y z z

t t t t
u x y z t z x y t t z t z z z

u x y z t z

     

    

   

   
              

   

  2 sin( )te x y 

 

3.1.3 Solution of Wave Equation by Adomian Decomposition Method

 
The wave equation plays a significant role in various physical problems, 

it’s needed in diverse area of science and engineering. It’s usually 

describes water wave, the vibrations of a string or a membrane, the 

propagation of electromagnetic and sound wave, or the transmission of 

electric signals in a cable. 

A: One Dimensional Wave Equation: 

A simple wave equation it’s came as the following initial-boundary value 

problem 

     PDE             2 0 , 0tt xxu c u x l t     

BC               (0, ) 0, ( , ) 0, 0u t u l t t                                               (3.74) 

     IC                ( ,0) ( ), ( ,0) ( )tu x f x u x g x   

Where ( , )u u x t  is the displacement of any point of the string at the 

position x  and at time t , and c  is a constant related to the elasticity of the 

material of the string. The term ttu  that  represents the vertical 

acceleration. The given boundary conditions indicate the end points of the 
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vibrating string are fixed. Two initial conditions 

( ,0) ( ) ( ,0) ( )tu x f x and u x g x  that describe the initial displacement and 

the initial velocity of any point at the starting time 0t   respectively. 

To solve above equation we begin by rewriting equation in an operator 

form 

2( , ) ( , )t xL u x t c L u x t                                                   (3.75) 

where 

2 2

2 2
,t xL L

t x

 
 
 

                                                      (3.76) 

And      

1 1

0 0 0 0

( ) ( ) , ( ) ( )

t t x x

t xL dtdt L dxdx                                        (3.77) 

This means that: 

       0,0,,,1 xuxtutxutxuLL ttt                                  (3.78) 

1 ( , ) ( , ) (0, ) (0, )x x xL L u x t u x t xu t u t                                  (3.79) 

Appling  𝐿𝑡
−1 to both sides of (3.75) and using the initial conditions we 

obtain: 

2 1( , ) ( ) ( ) ( ( , ))t xu x t f x tg x c L L u x t                                 (3.80) 

The Adomian’s method decomposes the displacement function ( , )u x t into 

a sum of infinite components defined by the infinite series: 

0

( , ) ( , )n

n

u x t u x t




                                                         (3.81) 

Substituting (3.81) into both sides of (3.80) gives: 

2 1

0 0

( , ) ( ) ( ) ( , )n t x n

n n

u x t f x tg x c L L u x t
 



 

  
     

  
            (3.82) 

From Adomian’s method 

  
0

2 1

1

( , ) ( ) ( )

( , ) ( , ) , 0k t x k

u x t f x tg x

u x t c L L u x t k



 

 
                             (3.83) 
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From (3.83) the components  0 1 2( , ), ( , ), ( , ),...u x t u x t u x t  can be determined 

individually by: 

0

2 3
2 1 2

1 0

4 5
2 1 4 (4) (4)

2 1

6 7
2 1 6 (6) (6)

3 2

( , ) ( ) ( ),

( , ) ( ) ( ) ( ) ,
2! 3!

( , ) ( ) ( ) ( ) ,
4! 5!

( , ) ( ) ( ) ( ) ,
6! 7!

t x

t x

t x

u x t f x tg x

t t
u x t c L L u c f x g x

t t
u x t c L L u c f x g x

t t
u x t c L L u c f x g x







 

 
    

 

 
   

 

 
   

 

                (3.84) 

And so on. 

By substituting (3.84) into (3.81) we get the solution of (3.74) in a series 

form as follows: 

2 (2 1)
2 (2 ) (2 )

0

( , ) ( ) ( )
(2 )! (2 1)!

n n
n n n

n

t t
u x t c f x g x

n n





 
  

 
                  (3.85) 

The solution (3.85) can also be obtained by using the inverse operator 1

xL  

but this solution imposes the use of initial and boundary conditions. For 

this reason and the reduce the size of calculations, we will apply the 

decomposition method in the t  direction. 

The PDE one dimensional wave equation can be came of the form: 

PDE    2 0 , 0tt xxu c u au x l t                                     (3.86) 

Such that an additional term  au   arises when each element of the string 

is subject to an additional force which is proportional to its displacement. 

Also The Inhomogeneous PDE one dimensional wave equation can be 

came of the form: 

PDE     2 ( , ) 0 , 0tt xxu c u h x t x l t                             (3.87) 

Where  ( , )h x t  is the inhomogeneous term 
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B: Two Dimensional Wave Equation: 

The propagation of waves in a two dimensional vibrating membrane of 

length a   and width b  is governed by the following initial-boundary 

value problem 

       PDE         2( ), 0 ,0 , 0tt xx yyu c u u x a y b t      
 

       BC              0, , , , 0, 0u y t u a y t t    

                            ,0, , , 0u x t u x b t                                                      (3.88) 

       IC           ( , ,0) ( , ), ( , ,0) ( , )tu x y f x y u x y g x y   

Where ( , , )u u x y t  is the displacement of any point located at the position

( , )x y  of a vibrating membrane at any time t , and c  is a constant related 

to the elasticity of the material of the rectangular plate.  

To solve above equation we begin by rewriting equation in an operator 

form 

 2( , , ) ( , , ) ( , , )t x yL u x y t c L u x y t L u x y t                             (3.89) 

where      

2 2 2

2 2 2
, ,t x yL L L

t x y

  
  
  

                                                  (3.90) 

and   

1 1 1

0 0 0 0 0 0

( ) ( ) & ( ) ( ) & ( ) ( )

y yt t x x

t x yL dtdt L dxdx L dydy                       (3.91) 

The solution in the t  direction, in the  x   space, or in the y  space will 

lead to identical results. However the solution in the t  direction reduces 

the size of calculations compared with the other space solutions because 

it uses the initial conditions only. For this reason we use the solution in 

the t  direction as follows: 

1 ( , , ) ( , , ) ( , ,0) ( , ,0)t t tL Lu x y t u x y t u x y tu x y                               (3.92) 

Appling  𝐿𝑡
−1 to both sides of (3.89) and using the initial conditions we 

obtain: 
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2 1( , , ) ( , ) ( , ) ( )t x yu x y t f x y tg x y c L L u L u                           (3.93) 

The Adomian’s method defines the solution ( , , )u x y t  as an infinite series 

given by: 

0

( , , ) ( , , )n

n

u x y t u x y t




                                                             (3.94) 

Substituting (3.94) into both sides of (3.93) gives: 

2 1

0 0 0

( , ) ( , )n t x n y n

n n n

u f x y tg x y c L L u L u
  



  

    
       

    
             (3.95) 

From Adomian’s method 

0

2 1

1

( , , ) ( , ) ( , )

( , , ) ( ), 0
kk t x y k

u x y t f x y tg x y

u x y t c L L u L u k



 

  
                                           (3.96) 

From (3.96) calculate the components 0 1 2( , , ), ( , , ), ( , , ),...u x y t u x y t u x y t and 

substitute into (3.94) we get the solution in the series form. 

The partial differential equation two dimensional wave equation can be 

came of the form: 

PDE 2( ) , 0 , 0 , 0tt xx yyu c u u au x a y b t                      (3.97) 

Such that an additional term au  arises when each element of the 

membrane is subjected to an additional force which is proportional to its 

displacement ( , , )u x y t . 

Also The Inhomogeneous partial differential equation two dimensional 

wave equation can be came of the form: 

PDE      2( ) ( , , )tt xx yyu c u u h x y t                                             (3.98) 

Where ( , , )h x y t  is the inhomogeneous term. 

C: Three Dimensional Wave Equation: 

The propagation of waves in a three dimensional volume of length a , 

width b  and  height d  is governed by the following initial-boundary 

value problem 

      PDE     2( ), 0 ,0 , 0 , 0tt xx yy zzu c u u u x a y b z d t         
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       BC     (0, , , ) ( , , , ) 0, 0u y z t u a y z t t    

( ,0, , ) ( , , , ) 0u x z t u x b z t                                                    (3.99) 

                    ( , ,0, ) ( , , , ) 0u x y t u x y d t   

      IC       ( , , ,0) ( , , ), ( , , ,0) ( , , )tu x y z f x y z u x y z g x y z   

Where ( , , , )u u x y z t  is the displacement of any point located at the 

position ( , , )x y z  of a rectangular volume at any time t , and c  is the 

velocity of a propagation wave.  

To solve above equation we begin by rewriting equation in an operator 

form 

 2

t x y zL u c L u L u L u                                               (3.100) 

where          

2 2 2 2

2 2 2 2
, , ,t x y zL L L L

t x y z

   
   
   

                              (3.101) 

and 

       

1 1

0 0 0 0

1 1

0 0 0 0

( ) ( ) & ( ) ( ) &

&

t t x x

t x

y y z z

y z

L dtdt L dxdx

L dydy L dzdz

 

 

     

     

   

   

                         (3.102) 

The solution in the t  direction, in the x  space, in the 𝑦 space, or in the z  

space will lead to identical results. However the solution in the t  

direction reduces the size of calculations compared with the other space 

solutions because it uses the initial conditions only. For this reason we 

use the solution in the t  direction as follows: 

We know that: 

1 ( , , , ) ( , , . ) ( , , ,0) ( , , ,0)t t tL Lu x y z t u x y z t u x y z tu x y z                       (3.103) 

Appling 1

tL  to both sides of (3.100) and using the initial conditions we 

obtain: 

  2 1( , , , ) ( , , ) ( , , ) t x y zu x y z t f x y z tg x y z c L L u L u L u             (3.104) 
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The Adomian’s method defines the solution ( , , , )u x y z t  as an infinite series  

as follows: 

0

( , , , ) ( , , , )n
n

u x y z t u x y z t
∞

=

=∑
                                                      

(3.105) 

Substituting (3.105) into both sides of (3.104) gives: 

2 1

0 0 0 0

( , , ) ( , , )n t x n y n z n
n n n n

u f x y z tg x y z c L L u L u L u
∞ ∞ ∞ ∞

−

= = = =

      = + + + +      
      

∑ ∑ ∑ ∑ (3.106) 

From Adomian’s method 

0

2 1
1

( , , , ) ( , , ) ( , , )

( , , , ) ( ), 0k t x k y k z k

u x y z t f x y z tg x y z

u x y z t c L L u L u L u k−
+

= +

= + + ≥                        
(3.107) 

From (3.107) calculate the components 0 1 2( , , , ), ( , , , ), ( , , , ),...u x y z t u x y z t u x y z t

and substitute into (3.105) we get the solution in the series form. 

The PDE three dimensional wave equation can be came of the form: 

PDE    2( )tt xx yy zzu c u u u au= + + −                                      (3.108) 

Such that an additional term au−  arises when each element of the 

rectangular volume is subjected to an additional force. 

Also The Inhomogeneous partial differential equation three dimensional 

wave equation can be came of the form: 

PDE   2( ) ( , , , )tt xx yy zzu c u u u h x y z t= + + +                             (3.109) 

Where ( , , , )h x y z t is the inhomogeneous term. 

D: Wave Equation in an Infinite Domain: 

The initial value problem of the one dimensional wave equation, where 

the domain of the space variable x  is unbounded, it’s describes the 

motion of a very long string that is considered not to have boundaries. It’s 

described by a partial differential equation and initial conditions only as 

follows: 

            PDE  2 , 0tt xxu c u x t= − ∞ < < ∞ >  

              IC     ( ,0) ( ), ( ,0) ( )tu x f x u x g x= =                                           (3.110) 
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Such that The solution ( , )u x t  represents the displacement of the point x  

at time t , the initial displacement ( ,0)u x  and the initial velocity ( ,0)tu x  

are prescribe by ( )f x  and ( )g x  respectively. 

To solve above equation we begin by rewriting equation in an operator 

form 

2( , ) ( , )t xL u x t c L u x t                                                     (3.111) 

Appling 1

tL  to both sides of (3.111) and using the initial conditions we 

obtain: 

 2 1( , ) ( ) ( ) ( , )t xu x t f x tg x c L L u x t                           (3.112) 

The Adomian’s method decomposes the displacement function ( , )u x t  into 

a sum of an infinite components defined by the infinite series: 

0

( , ) ( , )n

n

u x t u x t




                                                         (3.113) 

Substituting (3.113) into both sides of (3.112) gives: 

2 1

0 0

( , ) ( ) ( ) ( , )n t x n

n n

u x t f x tg x c L L u x t
 



 

  
     

  
             (3.114) 

From Adomian’s method: 

  
0

2 1

1

( , ) ( ) ( )

( , ) ( , ) , 0k t x k

u x t f x tg x

u x t c L L u x t k



 

 
                           (3.115) 

From (3.115) the components 0 1 2( , ), ( , ), ( , ),...u x t u x t u x t  can be determined 

individually by: 

0

2 3
2 1 2

1 0

4 5
2 1 (4) 4 (4)

2 1

6 7
2 1 (6) 6 (6)

3 2

( , ) ( ) ( )

( )
( , ) ( ) ( ) ( )

2! 3!

( )
( , ) ( ) ( ) ( )

4! 5!

( )
( , ) ( ) ( ) ( )

6! 7!

t x

t x

t x

u x t f x tg x

ct t
u x t c L L u f x c g x

ct t
u x t c L L u f x c g x

ct t
u x t c L L u f x c g x







 

   

  

  

                (3.116) 

and so on. 
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By substituting (3.116) into (3.113) we get the solution in a series form as 

follows: 

2 4 6
(4) 6

3 5 7
2 4 (4) 6 (6)

( ) ( ) ( )
( , ) ( ) ( ) ( ) ( )

2! 4! 6!

( ) ( ) ( ) ( )
3! 5! 7!

ct ct ct
u x t f x f x f x f x

t t t
g x t c g x c g x c g x

 
      

 

 
     

 

     (3.117) 

Or equivalent

 
2 (2 1)

(2 ) 2 (2 )

0

( )
( , ) ( ) ( )

(2 )! (2 1)!

n n
n n n

n

ct t
u x t f x c g x

n n





 
  

 
                          (3.118)

 

Now we have chosen several examples to illustrate discussion given 

above 

Example (3.1.8): Use the Adomian decomposition method to solve the 

initial-boundary value problem 

                                   PDE        0 , 0tt xxu u x t     

                                   BC          (0, ) 1 sin , ( , ) 1 sinu t t u t t     

                                   IC           ( ,0) 1, ( ,0) costu x u x x   

Solution 

1 1

1( , ) cos 1

t x

t t t x

t x

L u L u

L L u L L u

u x t t x L L u

 







  

 

1

0

0

( , ) cos 1 ( , )

cos 1

t x n

n

u x t t x L L u x t

u t x






   

  

  

3
1 1

1

3 3
1 1 5

2

3 5

( cos 1) ( cos ) cos
3!

1
cos cos cos

3! 3! 5!

( , ) 1 cos
3! 5!

t x t

t x t

t
u L L t x L t x x

t t
u L L x L x t x

t t
u x t x t

 

 

     

   
      

   

 
     

 

 

      ( , ) 1 cos sinu x t x t    

We can also solve above example by using formula (3.85) such that: 
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(2 )1, ( ) 1 ( ) cos , ( ) ( 1) cos , 0,1,2,...n nc f x and g x x g x x n       

and 

(2 )

3 5 7

1 0
( )

0 1,2,3,...

( , ) 1 cos cos cos cos ...
1! 3! 5! 7!

n
n

f x
n

t t t t
u x t x x x x


 



      
           

       
3 5 7

1 cos ...
3! 5! 7!

t t t
x t
 

      
 

 

                     

( , ) 1 cos sinu x t x t    

Example (3.1.9): Use the Adomian decomposition method to solve the 

initial-boundary value problem 

       PDE     
1

( ) 2, 0 , , 0
2

tt xx yyu u u x y t       

       BC       2 2 2 2 2 2(0, , ) , ( , , ) , ( ,0, ) , ( , , )u y t y u y t y u x t x u x t x          

       IC         2 2( , ,0) , ( , ,0) sin sintu x y x y u x y x y    

Solution 

 

 

 

1 1 1

2 2 2 1

1
2

2

1
(2)

2

1
( , , ) sin sin

2

t x y

t t t x y t

t x y

L u L u L u

L L u L L u L u L

u x y t t t x y x y L L u L u

  



  

  

       

 

   

 

2 2 2

0

1 2 2 2 2 2 2

1

1 2 3

5

2

3 5
2 2

2 2

sin sin

1
sin sin sin sin

2

1 1
2 sin sin 2 sin sin sin sin

2 3!

1
sin sin

5!

( , , ) sin sin
3! 5!

( , , )

t x y

t

u t t x y x y

u L L t t x y x y L t t x y x y

L t x y t x y t t x y

u t x y

t t
u x y t x y x y t

u x y t x y





     

          
 

     



 
       

 

   sin sin sinx y t

 

Example (3.1.10): Use the Adomian decomposition method to solve the 

initial-boundary value problem 
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                     PDE      , 0 , , , 0tt xx yy zzu u u u u x y z t      
 

                     BC       (0, , , ) ( , , , ) 0u y z t u y z t   

                                      ( ,0, , ) ( , , , ) 0u x z t u x z t   

                     IC         ( , , ,0) 0, ( , , ,0) 2sin sin sintu x y z u x y z x y z   

Solution   

 

1 1

1

0

1

1

1

( )

( , , , ) 2 sin sin sin

2 sin sin sin

( (2 sin sin sin ) (2 sin sin sin ) (2 sin sin sin ) 2 sin sin sin )

( 8 sin si

t x y z

t t x y z

t x y z

t x y z

t

L u L u L u L u u

L Lu L L u L u L u u

u x y z t t x y z L L u L u L u u

u t x y z

u L L t x y z L t x y z L t x y z t x y z

L t x

 







   

   

     

 

   

 
3

5

2

(2 )
n sin ) sin sin sin

3!

(2 )
sin sin sin

5!

t
y z x y z

t
u x y z

 



 

3 5(2 ) (2 )
( , , , ) sin sin sin 2

3! 5!

( , , , ) sin sin sin sin(2 )

t t
u x y z t x y z t

u x y z t x y z t

 
     

 

   

 

Example (3.1.11): Use the Adomian decomposition method to solve the 

initial-boundary value problem 

                                     PDE      16 , 0tt xxu u x t      

                                     IC         ( ,0) sin , ( ,0) 2tu x x u x   

Solution 
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( )

( ) ( )

( ) ( )

1 1

1

0

1 1 2
1

1 2 1 2 4
2

2 4

2 4

16

16

, sin 2 16

sin 2

16 sin 2 16 sin 8 sin

32
16 8 sin 16 8 sin sin

3
32

( , ) 2 sin 8 sin sin
3

(4 ) (4 )
2 sin 1

2!

t x

t t t x

t x

t x t

t x t

L u L u

L L u L L u

u x t x t L L u

u x t

u L L x t L x t x

u L L t x L t x t x

u x t t x t x t x

t t
t x

− −

−

− −

− −

=

=

⇒ = + +
⇒ = +

= + = − = −

= − = =

⇒ = + − + −

= + − +

⋯

4!

( , ) 2 sin cos(4 )u x t t x t

 
− 

 

⇒ = +

⋯

 

We can solve above example by using formula (3.118) such that: 

(2 )

4, ( ) sin ( ) 2

( ) ( 1) sin , 0,1,2,...n n

c f x x and g x

f x x n

= = =
= − =

 

and 

(2 ) 2, 0
( )

0, 1,2,3,...
n n

g x
n

=
=  =

 

( )

( ) ( )

2 2 1
2 (2 )

0

2 4

2 4

(4 )
, ( 1) sin 4 ( )

(2 )! (2 1)!

(4 ) (4 )
, sin 2 sin sin

2! 4!

(4 ) (4 )
2 sin 1

2! 4!

n n
n n n

n

t t
u x t x g x

n n

t t
u x t x t x x

t t
t x

+∞

=

= − +
+

   
= + + − + −   

   

 
= + − + − 

 

∑

⋯

⋯

 

( , ) 2 sin cos(4 )u x t t x t⇒ = +  

Example (3.1.12): Use the Adomian decomposition method to solve the 

initial-boundary value problem 

                             PDE      2 6 , 0tt xxu u x t x t= + + − ∞ < < ∞ >  

                             IC         ( ,0) 0, ( ,0) sintu x u x x= =  
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Solution 

   

   

1 1 1 2 3

2 3 1

2 3

0

1 2 3 1 3

1

1 3 1 3 5

2

2 6

2 6

( , ) sin

sin

1
sin sin sin

3!

1 1 1
sin sin sin

3! 3! 5!

( , )

t x

t t t x t x

t x

t x t

t x t

L u L u x t

L L u L L u x t L L u xt t

u x t xt t t x L L u

u xt t t t

u L L xt t t x L t x t x

u L L t x L t x t x

u x t x

  



 

 

  

     

    

   

      

   
      

   

 
3 5

2 3

2 3

sin
3! 5!

( , ) sin sin

t t
t t x t

u x t xt t x t

 
     

 

     

3.2 Solving Systems of Linear PDEs by Adomian Decomposition                            

Method 

We apply the Adomian decomposition method for solving systems of 

linear PDEs. We write a system in an operator form by 

                    
,2

1 ,

guLvL

gvLuL

xt

xt




 

With initial data 

                         xfxvxfxu 21 0,,0,   ,   

Where tL  and xL  are considered, without less of generality, first order 

partial differential operators, and 1g  and 2g are inhomogeneous terms. 

Applying 
1

tL  to the system and using the initial condition yields 

                  
   

    .,

,,

1

2

1

2

1

1

1

1

uLLgLxftxv

vLLgLxftxu

xtt

xtt








 

The Adomian decomposition method suggests that the linear terms  txu ,

and  txv ,  be decomposed by an infinite series of components 
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0

,,
n

n txutxu  ,     





0

,,
n

n txvtxv .                            

Where  txun ,  and   txvn ,  , 0n  are the components of   txu ,  and  txv ,  

that will be elegantly determined in a recursive manner. 

Then gives 

         

     

      .,,

,,,

0

1

2

1

2

0

0

1

1

1

1

0

















































































n

nxtt

n

n

n

nxtt

n

n

txuLLgLxftxv

txvLLgLxftxu

 

Following Adomian analysis, the system is transformed into a set of 

recursive relation given by 

         
   

    .0,,

,,

1

1

1

1

10











kvLLtxu

gLxftxu

kxtk

t
 

And 

         
   

    .0,,

,,

1

1

2

1

20











kuLLtxv

gLxftxv

kxtk

t
 

To give a clear overview of the content of this work, several illustrative 

examples have been selected to demonstrate the efficiency of the method. 

Example (3.2.1):  Consider the linear system of PDEs 

                     
,02

,02





uvLvL

vuLuL

xt

xt  

With initial condition 

                        xxvxxu sin0,,cos0,  .       
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Operating with 1

tL   and using initial condition we obtain 

              
   

    .2sin,

,2cos,

1

1

vLuLxtxv

uLvLxtxu

xt

xt









 

Using the recursive manner gives 

              
 

     .0,2,

,cos,

1

1

0







 kuLvLtxu

xtxu

kxktk

 

and 

              
 

    
0

1

1

, sin ,

, 2 , 0.k t k x k

v x t x

v x t L u L v k





  
 

Consequently, the pair of zeroth components is defined by  

               ,sin,cos, 00 xxvu   

Using  0 0,u v into recursive manner gives 

           

   

 

  .cos
!3

,sin
!3

,

,sin
!2

,cos
!2

,

,cos,sin,

33

33

22

22

11























x
t

x
t

vu

x
t

x
t

vu

xtxtvu

 

Combining the results obtained above we obtain 

          

 

  ,...
!5!3

cos...
!4!2

1sin,

,...
!5!3

sin...
!4!2

1cos,

5342

5342







































tt
tx

tt
xtxv

tt
tx

tt
xtxu

 

So that the pair  vu , is know in a closed form by 
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                txtxvu  sin,cos, .                  

Example (3.2.2):  Consider the linear system 

                   
,0

,0





uLvL

vLuL

xt

xt
 

With initial condition 

                      xx exvexu  0,,0,  .           

To derive the solution by using the decomposition method, we follow the 

recursive relation to obtain 

                  
 

    .0,,

,,

1

1

0







 kvLLtxu

etxu

kxtk

x

 

and 

                 
 

    .0,,

,,

1

1

0











kuLLtxv

etxv

kxtk

x

 

The remaining components are thus determined by 

                 

   

   

    ,
!3

,,
!3

,

,
!2

,,
!2

,

,,,,

3

3

3

3

2

2

2

2

11

xx

xx

xx

e
t

txve
t

txu

e
t

txve
t

txu

ettxvettxu













 

and so on. Using above components we obtain 

                

 

  ,...
!5!3

...
!4!2

1,

,...
!5!3

...
!4!2

1,

5342

5342











































tt
te

tt
etxv

tt
te

tt
etxu

xx

xx

 

This has an exact analytical solution of the form 
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                 tetetetevu xxxx sinhcosh,sinhcosh,   .           

3.3 Solving Non-Linear ODEs and PDEs by Adomian Decomposition 

      Method 

The method has been applied directly and in a straightforward manner to 

homogeneous and inhomogeneous problems without any restrictive 

assumptions or linearization. The method usually decomposes the 

unknown function 𝑢 into an infinite sum of components that will be 

determined recursively through iterations as discussed before. 

An important remark should be made here concerning the representation 

of the nonlinear terms that appear in the equation. Although the linear 

term u  is expressed as an infinite series of components. 

The Adomian decomposition method requires a special representation for 

the nonlinear terms such as 2 3 4 2, , ,sin , , , ,u

x xu u u u e uu u etc . that appear in the 

equation. The method introduces a formal algorithm to establish a proper 

representation for all forms of nonlinear terms. The representation of the 

nonlinear terms is necessary to handle the nonlinear equations in an 

effective and successful way. 

3.3.1 Calculation of Adomian Polynomials: 

It is well known now that Adomian decomposition method suggests that 

the unknown linear function  u  may be represented by the decomposition 

series 

0

n

n

u u




                                                             (3.119) 

The nonlinear term ( )F u  can be expressed by an infinite series of the so-

called Adomian polynomials nA  given in the form 

0 1 2

0

( ) ( , , ,..., )n n

n

F u A u u u u




                                     (3.120) 
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The Adomian polynomials nA  for the nonlinear term ( )F u  can be 

evaluated by using the following expression 

0 0

1
( ) , 0,1,2,...

!

n n
i

n in
i

d
A F u n

n d



  

 
  

 
                               (3.121) 

For example: 

0 0 0 0

1 0 1 1 0 1 1 1 00

2
2 2

2 0 1 2 1 2 0 1 22

1
[ ( )] ( )

0!

1
[ ( )] ( ) ( )

1

1 1
[ ( )] [( 2 ) ( )]

2 2

A F u A F u

d
A F u u u F u u A u F u

d

d d
A F u u u u u F u u u

d d


 



    
 



  

      

      

2 2

1 2 0 1 2 1 2 2 0 1 2 0

1 0 1 2 0

2

2 2 0 1 0

1
[( 2 )( ( )( 2 )) (2 ) ( )]

2

1
[ ( ) 2 ( )]

2

1
( ) ( )

2!

u u F u u u u u u F u u u

u F u u u F u

A u F u u F u

      
        

    

   

 

Then Adomian polynomials are given by: 

0 0

1 1 0

2

2 2 0 1 0

3

3 3 0 1 2 0 1 0

2 2 4 (4)

4 4 0 2 1 3 0 1 2 0 1 0

( )

( )

1
( ) ( )

2!

1
( ) ( ) ( )

3!

1 1 1
( ) ( ) ( ) ( )

2! 2! 4!

A F u

A u F u

A u F u u F u

A u F u u u F u u F u

A u F u u u u F u u u F u u F u





  

    

 
       

 

 (3.122) 

Other polynomials can be generated in a similar manner. 

Important observation that the 0A depends only on 0 1,u A  depends only on 

0u  and 1 2,u A  depends only on 0 1,u u and 2u , and so on. 

Calculation of Adomian Polynomials nA : 

  I- Nonlinear polynomials 

Case 1: 2( )F u u  

The polynomials can be obtained as follows: 
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2

0 0 0

1 1 0 0 1

2 2

2 2 0 1 0 0 2 1

3

3 3 0 1 2 0 1 0 0 3 1 2

( ) ,

( ) 2 ,

1
( ) ( ) 2 ,

2!

1
( ) ( ) ( ) 2 2

3!

A F u u

A u F u u u

A u F u u F u u u u

A u F u u u F u u F u u u u u

 

 

    

      

 

Case 2: 3( )F u u  

The polynomials are given by 

3

0 0 0

2

1 1 0 0 1

2 2 2

2 2 0 1 0 0 2 0 1

3 2 3

3 3 0 1 2 0 1 0 0 3 0 1 2 1

( )

( ) 2

1
( ) ( ) 3 3 ,

2!

1
( ) ( ) ( ) 3 6

3!

A F u u

A u F u u u

A u F u u F u u u u u

A u F u u u F u u F u u u u u u u

 

 

    

       

 

Case 3: 4( )F u u  

Proceeding as before we find  

4

0 0

3

1 0 1

3 2 2

2 0 2 0 1

3 3 2

3 0 3 1 0 0 1 2

,

4 ,

4 6 ,

4 4 12 .

A u

A u u

A u u u u

A u u u u u u u





 

  

 

In a parallel manner, Adomian polynomials can be calculated for 

nonlinear polynomials of higher degrees. 

 II- Nonlinear Derivatives: 

Case 1: 2( ) ( )xF u u  

  2

0 0 0

1 1 0 0 1

2 2 2

2 2 0 1 0 2 0 1 0 2 1

3 0 3 1 2

,

( ) 2 ,

1 1
( ) ( ) 2 2 2 ,

2! 2!

2 2 .

x

x x

x x x x x x

x x x x

A F u u

A u F u u u

A u F u u F u u u u u u u

A u u u u

 

 

        

 

 

Case 2: 3( ) xF u u  

The Adomian polynomials are given by  
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3

0 0 0

2 2

1 1 0 1 0 0 1

2 2 2 2 2

2 2 0 1 0 2 0 1 0 0 2 0 1

2 3

3 0 3 0 1 2 1

( ) ,

( ) 3 3 ,

1 1
( ) ( ) 3 6 3 3 ,

2! 2!

3 6 .

x

x x x x

x x x x x x x x

x x x x x x

A F u u

A u F u u u u u

A u F u u F u u u u u u u u u

A u u u u u u

 

   

        

  

 

Case 3. 21
( ) ( )

2
x xF u uu L u   

                
1 1

( ) (2 )& ( ) 2
2 2

x xF u L u F u L    

The Adomian polynomials for this linearity are given by  

0 0 0 0

1 1 0 1 0 0 1 0 1 0 1

2 2

2 2 0 1 0 2 0 1

2

0 2 1 0 2 1 1 2 0

3

3 3 0 1 2 1 0 3 1 2

0

( ) ,

1
( ) 2 ( )

2

1 1 1 1
( ) ( ) (2 ) 2

2! 2 2! 2

1
(2 ) ,

2

1 1 1 1
(2 ) 2 0 (2 2 )

2 2 3! 2

x

x x

x x x

x

x x

x x

x

x x x

A F u u u

A u F u u L u L u u u u u u

A u F u u F u u L u u L

L u u u u u u u u u

A u L u u u L u L u u u u

u

 

     

      

    

      

 3 1 2 2 1 3 0.
x x x

u u u u u u u  

 

III- Trigonometric Nonlinearity: 

Case 1: ( ) sinF u u  

The Adomian polynomials for this linearity are given by  

0 0

1 1 0

2

2 2 0 1 0

3

3 3 0 1 2 0 1 0

sin

cos

1
cos sin ,

2!

1
cos sin cos

3!

A u

A u u

A u u u u

A u u u u u u u





 

  

 

Case 2: ( ) cosF u u  

Proceeding as before gives  
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0 0

1 1 0

2

2 2 0 1 0

3

3 3 0 1 2 0 1 0

cos

sin ,

1
sin cos ,

2!

1
sin cos sin

3!

A u

A u u

A u u u u

A u u u u u u u



 

  

   

 

IV- Hyperbolic Nonlinearity: 

Case 1: ( ) sinhF u u  

The nA polynomials for this form of nonlinearity are given by  

0 0

1 1 0

2

2 2 0 1 0

3

3 3 0 1 2 0 1 0

sinh

cosh

1
cosh sinh ,

2!

1
cosh sinh cosh

3!

A u

A u u

A u u u u

A u u u u u u u





 

  

 

Case 2: ( ) coshF u u  

The Adomian polynomials are given by  

0 0

1 1 0

2

2 2 0 1 0

3

3 3 0 1 2 0 1 0

cosh

sinh

1
sinh cosh ,

2!

1
sinh cosh sinh

3!

A u

A u u

A u u u u

A u u u u u u u





 

  

 

V- Exponential Nonlinearity: 

Case 1: ( ) uF u e  

The Adomian polynomials for this form of nonlinearity are given by  

0

0

0

0

0

1 1

2

2 2 1

3

3 3 1 2 1

,

1
,

2!

1
.

3!

u

u

u

u

A e

A u e

A u u e

A u u u u e





 
  
 

 
   
 

 

Case 2. ( ) uF u e  
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0

0

0

0

0

1 1

2

2 2 1

3

3 3 1 2 1

,

1
,

2!

1
.

3!

u

u

u

u

A e

A u e

A u u e

A u u u u e











 

 
   
 

 
    
 

 

VI- Logarithmic Nonlinearity: 

Case 1: ( ) ln , 0F u u u   

The nA polynomials for logarithmic nonlinearity are given by 

0 0

1
1

0

2

2 1
2 2

0 0

3

3 1 2 1
3 2 3

0 0 0

ln

1

2

1

3

A u

u
A

u

u u
A

u u

u u u u
A

u u u





 

  

 

Case 2: ( ) ln(1 ), 1 1F u u u      

The nA polynomials are given by 

0 0

1
1

0

2

2 1
2 2

0 0

3

3 1 2 1
3 2 3

0 0 0

ln(1 )

1

1

1 2 (1 )

1

1 (1 ) 3 (1 )

A u

u
A

u

u u
A

u u

u u u u
A

u u u

 




 
 

  
    

3.3.2 Solving Nonlinear Ordinary Differential Equations by Adomian                                 

         Method: 

To apply the Adomian decomposition method for solving nonlinear 

ordinary differential equations, we consider the equation 

( ) ( ) ( )Ly R y F y g x                                             (3.123) 
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where the differential operator L may be considered as the highest order 

derivative in the equation, R  is the remainder of the differential operator, 

( )F y  expresses the nonlinear terms, and ( )g x  is an inhomogeneous term.  

If L  is a first order operator defined by:  

d
L

dx
   Then 1L  is given by: 1

0

( ) ( )

x

L dx     

so that: 

1 ( ) (0)L Ly y x y                                                              (3.124) 

If L  is a second order: 

                   
2

1

2

0 0

( ) ( )

x x
d

L L dxdx
dx

     

 
1 ( ) (0) (0)L Ly y x y xy                                                    (3.125) 

If L  is a third order we can easily show that  

                  1 21
( ) (0) (0) (0)

2!
L Ly y x y xy x y                                       (3.126) 

And so on for a higher order operators. 

Applying 1L  to both sides of equation (3.123) gives 

                 1 1 1

0( ) ( ) ( )y x L g x L Ry L F y                                            (3.127) 

where

 

2

2

3
2

0 3

4
2 3

4

5
2 3 4 (4)

5

(0)

(0) (0)

1
(0) (0) (0)

2!

1 1
(0) (0) (0) (0)

2! 3!

1 1 1
(0) (0) (0) (0) (0)

2! 3! 4!

d
y for L

dx

d
y xy for

dx

d
y xy x y for L

dx

d
y xy x y x y for L

dx

d
y xy x y x y x y for L

dx







 




    



     



      


 (3.128) 

And substitute
0

( ) n

n

y x y




 and
0

( ) n

n

F y A




  in equation (3.127) 



60 

1 1 1

0

0 0 0

( )n n n

n n n

y L g x L R y L A
  

  

  

   
       

   
                        (3.129) 

The various components 𝑦𝑛 of the solution 𝑦 can be easily determined by: 

                     1

0 0 ( ( ))y L g x  

  1 1

1 ( ), 0k k ky L Ry L A k 

                                      (3.130)

 The first few components can be written as 
1

0 0

1 1

1 0 0

1 1

2 1 1

1 1

3 2 2

1 1

4 3 3

( )

( ( )) ( )

( ( )) ( )

( ( )) ( )

( ( )) ( )

y L g x

y L R y L A

y L R y L A

y L R y L A

y L R y L A

 

 

 

 

 

 

  

  

  

  

                                                (3.131) 

 

We can written  
1

0

n

n k

k

y




 
 
to produce a closed form or may be write the 

approximate solution as the form: 

   
0

n

n

y x y x




                                                        (3.132) 

Example (3.3.1): Solve the first order nonlinear differential equation: 

                                  

2

(0) 1
1

y
y y

xy
  


 

Solution 
2

2

1 1 2

1 1

0 0 0

0

1 1

1

0

1 1 1 1

1 0 0

1 1 1 1

2 1 1

(1 )

( ) 1 ( ) ( )

1

( ) 1

( ) ( ), 0

1

( ) ( ) (0) (1)

3
( ) ( ) ( ) (2 )

2

n n n

n n n

k k k

y xy y

y xyy y

y x L xyy L y

y L xA L B

y x

y L xA L B k

y

y L xA L B L L x

y L xA L B L x L x x

 

  
 

  

 



   

   

  

  

  

   
     

   

 

  

 

    

    

  

2

1 1 1 1 2 2 3

3 2 2

2 3 4

8
( ) ( ) ( ( 3 )) (3 )

3

3 8 125
( ) 1 ...

2 3 24

y L xA L B L x x x L x x x

y x x x x x

         

        

The exact solution can be expressed in the implicit expression   xyexy   
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Example (3.3.2): Solve the first order nonlinear differential equation: 

0, (0) 1yy e y     

Solution 

 

1 1

1

0

1

0 0

0

1

1

1 1

1 0

1 1 2 2 2

2 1

1 1 2 2 2 2 1 2 3 3 3

3 2

( )

( ) ( )

( ) 1

1

1

( ), 0

( ) ( )

1
( ) ( )

2

1 1 1
( )

2 2 3

y

y

n

n

n n

n n

k k

L y e

L L y L e

y x L A

y L A

y

y L A k

y L A L e ex

y L A L xe x e

y L A L x e x e e L x e x e

 






 


 





 

 

  





 

 



 

   

  

  
      

  



 

 

And so on, the solution in a series form is given by: 

2 31 1
( ) 1 ( ) ( ) , 1 1

2 3

( ) 1 ln(1 ), 1 1

y x ex ex ex ex

y x ex ex

       

      

 

Example (3.3.3): Use the noise term phenomenon to solve the second 

order nonlinear differential equation  

2 2( ) 1 sin , (0) 0, (0) 1y y y x y y         

Solution 

Rewrite in an operator form and applying 1L to both sides of equation we 

get 

  22 1 21
( ) sin .

2
y x x x L y y      

From adomian decomposition method we can write above equation as 

follows 
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2 1

0 0

1
( ) sin

2n n
n n

y x x x L A
∞ ∞

−

= =

 = + −  
 

∑ ∑  

( )

( )( )

2
0

1
1

21 2 2
1

1
sin

2
, 0

1

2!

k k

y x x

y L A k

y L y y x

−
+

−

⇒ = +

= − ≥

′⇒ = − + = − +⋯

 

The zeroth component contains the trigonometric function sinx , therefore 

it is recommended that the noise terms phenomenon be used here. By 

canceling the noise terms 21

2
x

 
and 21

2
x−  between 0y  and 1y , and 

justifying that the remaining non-canceled term of 0y  satisfies the 

differential equation leads to the exact solution given by ( ) siny x x=  

 

3.3.3 Solution of Nonlinear Partial Differential Equations by Admian   

         Method: 

Nonlinear partial differential equations arise in different areas of physics, 

engineering, and applied mathematics such as fluid mechanics, condensed 

matter physics, soliton physics fluid dynamics, plasma physics, solid 

mechanics and quantum field theory. 

Systems of nonlinear partial differential equations have been also noticed 

to arise in chemical and biological applications. 

The first order nonlinear partial differential equation in two independent 

variables � and y  can be generally expressed in the form 

( , , , , )x yF x y u u u f=  

wheref  is a function of one or two of the independent variables x  and y . 

Similarly, the second order nonlinear partial differential equation in two 

independent variables x  and y  can be expressed by 

( , , , , , , , )x y xx xy yyF x y u u u u u u f=  
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The nonlinear partial differential equation is called homogeneous if 0f  , 

and inhomogeneous if 0f  . 

A wide variety of physically significant problems modeled by nonlinear 

partial differential equations, such as the advection problem, the KdV 

equation, the modified KdV equation, the KP equation, Boussinesq 

equation. 

An important note worth mentioning is that there is no general method 

that can be employed for obtaining analytical solutions for nonlinear 

partial differential equations. Several methods are usually used and 

numerical solutions are often obtained. Further, transformation methods 

are sometimes used to convert a nonlinear equation to an ordinary 

equation or to a system of ordinary differential equations. Furthermore, 

perturbation techniques and discretization methods, that require a massive 

size of computational work, can be used for some types of equations. 

The Adomian  decomposition  method can be used generally for all types 

of differential and integral equations. The method can be applied in a 

straightforward manner and it provides a rapidly convergent series 

solution. Now we will discuss a general description of the method that 

will be used for nonlinear partial differential.  

We first consider the nonlinear partial differential equation given in an 

operator form 

( , ) ( , ) ( ( , )) ( ( , )) ( , )x yL u x y L u x y R u x y F u x y g x y                       (3.133) 

Where xL and 
yL is the highest order differential in x  and y respectively , 

R contains the remaining linear terms of lower derivatives, ( ( , ))F u x y  is an 

analytic nonlinear term, and ( , )g x y  is an inhomogeneous or forcing term. 

The solutions for ( , )u x y  obtained from the operator equations xL u  and 

yL u  are equivalent and each converges to the exact solution, the decision 
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as to which operator 
xL  or 

yL  should be used to solve the problem 

depends mainly on two bases: 

(i) The operator of lowest order should be selected to minimize the size of 

computational work. 

(ii) The selected operator of lowest order should be of best known 

conditions to accelerate the evaluation of the components of the solution. 

Suppose that the operator 
xL  meets the two bases of selection, therefore 

we set 

( , ) ( , ) ( , ) ( ( , )) ( ( , ))x yL u x y g x y L u x y R u x y F u x y                        (3.134) 

Applying 𝐿𝑥
−1 to both sides we get 

   1 1 1 1

0( , ) ( , ) ( , ) ( , ) ( , )x x y x xu x y L g x y L L u x y L R u x y L F u x y         (3.135) 

Where 

2

2

0 3
2

3

4
2 3

4

(0, )

(0, ) (0, )

1
(0, ) (0, ) (0, )

2!

1 1
(0, ) (0, ) (0, ) (0, )

2! 3!

x

x xx

x xx xxx

u y for L
x

u y xu y for L
x

u y xu y x u y for L
x

u y xu y x u y x u y for L
x




 




 
 

 
   

 


    
 

   (3.136) 

And so on. 

Then substitute 𝑢(𝑥, 𝑦) = ∑ 𝑢𝑛(𝑥, 𝑦)∞
𝑛=0  and 𝐹(𝑢(𝑥, 𝑦)) = ∑ 𝐴𝑛

∞
𝑛=0  in 

equation 

1 1 1 1

0

0 0 0 0

( , ) ( , ) ( , ) ( , )n x x y n x n x n

n n n n

u x y L g x y L L u x y L R u x y L A
   

   

   

     
         

     
    (3.137) 

The components ( , ), 0nu x y n   can be recursively determined by using the 

relation: 

1

0 0

1 1 1

1

1

0 0

( , ) ( , )

( , ) ( ) ( ), 0

( , ) ( , )

x

k x y k x k x k

x

u x y L g x y

u x u L L u L R u L A k

u x y L g x y







  





 

    

  

                     (3.138) 
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1 1 1

1 0 0 0

1 1 1

2 1 1 1

1 1 1

3 2 2 2

1 1 1

4 3 3 3

( , ) ( , ) ( ( , ))

( , ) ( , ) ( ( , ))

( , ) ( , ) ( ( , ))

( , ) ( , ) ( ( , ))

x y x x

x y x x

x y x x

x y x x

u x y L L u x y L R u x y L A

u x y L L u x y L R u x y L A

u x y L L u x y L R u x y L A

u x y L L u x y L R u x y L A

  

  

  

  

   

   

   

   

                   (3.139) 

Substitute above components to obtain the solution in a series form. 

Example (3.3.4): 

0, ( ,0) , 0t xu uu u x x t     

Solution 

              

 

1 1

1( , )

t x

t t t x

t x

L u uu

L L u L uu

u x t x L uu

 







 

 

From adomian method 

              1

0 0

( , )n t n

n n

u x t x L A
 



 

 
   

 
   

             
 

   

0

1

1

,

, , 0k t k

u x t x

u x t L A k



 

   

The first few components are given by 

              

   

   

   

   

0

1 1

1 0

1 1 2

2 1

1 1 2 3

3 2

2 3

( , )

( , ) ,

( , ) 2 ,

( , ) 3 ,

, 1

( , ) , 1
1

t t

t t

t t

u x t x

u x t L A L x xt

u x t L A L xt xt

u x t L A L xt xt

u x t x t t t

x
u x t t

t
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Chapter 4 

Modified Double Sumudu Transform Decomposition Method for 

Solving Non-linear Partial Differential Equations 

 We discuss now a new method employed to tackle non-linear partial 

differential equations, namely Modified Double Sumudu Transform 

Decomposition Method. This method is a combination of the Modified 

Double Sumudu Transform and Adomian Decomposition Method. This 

technique is hereafter provided and supported with necessary 

illustrations, together with some attached examples.  

4.1 General Describe for the Method 

To clarify the basic idea of this method, we consider a general 

inhomogeneous nonlinear partial differential equation with the initial 

condition of the following form: 

        ,,,,, txgtxNutxRutxuL                                           (4.1) 

       .0,,0, xfxuxhxu t                                             (4.2) 

Where, L  is the second order linear differential operator R
t

L ,
2

2




  is the 

linear  differential operator of less order than  ,L  N represents the 

general nonlinear differential operator and  txg ,  is the source term. 

Taking the Modified Double Sumudu Transform on both sides of 

equation (4.1) and Modified single Sumudu Transform of equation (4.2), 

we get: 

            ,,,,, 2222 txgEtxNuEtxRuEtxuLE                              (4.3) 

                .0,0,0,0, uT
t

xfExuEanduTxhExuE t



   (4.4) 
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To substitute Equation (4.4) in (4.3) , after using Equation (2.5), we get:

                 .,,,, 2

2

2

232

2

2

2 txNuEvtxRuEvxfEvxhEvtxgEvtxuE                        

(4.5) 

Now, with the application of the inverse Double Elzaki Transform on 

both side of equation (4.5) we get: 

       1 2

2 2, , , , .u x t G x t E v E Ru x t Nu x t                              (4.6) 

Where  txG ,  represents the terms arising from the source term and the 

prescribed initial conditions. 

After that we represent solution as an infinite series given below, 

   ,,,
0







n

n txutxu                                                          (4.7) 

and the nonlinear term can be written as follow, 

    ,,
0

uAtxuN
n

n




                                                              (4.8) 

Where,  uAn  are Adomian polynomial and it can be calculated by 

formula given below: 

,3,2,1,0,
!

1

0
0



































 nuN
d

d

n
A

i

i

i

n

n

n






                    (4.9) 

To substitute (4.7) and (4.8) in (4.6), we get:      

      .,,,
00

2

21

2

0 
























 












 n

n

n

n

n

n AtxuREvEtxGtxu        (4.10) 

Then from equation (4.10) we get: 

                                 ,,,0 txGtxu   
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                   1 2

1 2 2 0 0, , ,u x t E v E Ru x t A                                              (4.11) 

                   1 2

2 2 2 1 1, , .u x t E v E Ru x t A         

In general, the recursive relation is given by: 

      .1,,, 112

21

2  

 nAtxRuEvEtxu nnn                   (4.12) 

Finally, we approximate the solution  txu ,  by the series: 

   






0

.,lim,
n

n
N

txutxu                                                              (4.13) 

4.2 Application of the Method for Some Nonlinear Equations 

Now we choose some different types for Nonlinear Partial differential 

Equations and solve it by Modified Double Sumudu transform 

decomposition method 

Example (4.2.1): Consider the following nonlinear partial differential 

equations 

,0 xxxt uuuu                                                                  (4.14)                                              

with initial condition: 

  .0, xxu                                                                     (4.15) 

Take the Modified double Sumudu transform to both sides of equation 

(4.14), we get: 

 
   ,0,

,
2 xxx uuuEuvT

v

vuT
                                      (4.16)                                           

Take single Modified Sumudu transform to initial condition we get: 

       ,0,0, 3uxEuTxuE                                            (4.17) 
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Substitute Equation (4.17) in Equation (4.16), we obtain: 

   ., 2

32

xxx uuuvEuvvuT                                         (4.18) 

Take the inverse Modified double Sumudu transform to both sides of 

equation (4.18), we obtain: 

    ., 2

1

2 xxx uuuEvExtxu                                         (4.19) 

From the Adomian decomposition method, rewrite (4.19) as follows, 

      .,
0 0 0

2

1

2  









































n n n

nxxnn uAuEvExtxu                 (4.20) 

Where,  uAn  are Adomian polynomials that represent the nonlinear 

terms. The first few components of  uAn  are given by: 

                                 ,000 x
uuuA   

      ,10101 xx
uuuuuA                                                  (4.21) 

                                     ,0211202 uuuuuuuA
xxx

  

                                      .031221303 uuuuuuuuuA
xxxx

  

                                                           

By comparing both sides of equation (4.20), we get: 

  ,,0 xtxu                                                                           (4.22) 

        .0,, 2

1

21  

 nuAuEvEtxu nxxnn                (4.23) 

Then: 

                               1

1 2 2 0 0,
xx

u x t E v E u A u      
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                                       xEvE  

2

1

2  

  ,331

2 xtuvE                                                      (4.24) 

                          uAuEvEtxu
xx 112

1

22 ,    

                                 xtEvE 22

1

2

  

 1 4 3 2

2 2 ,E v u xt                                                    (4.25) 

By similar way we get: 

  ., 3

3 xttxu                                                                         (4.26) 

And so on. Then the first four terms of the decomposition series for 

Equation (4.14), is given by: 

  ,, 32  xtxtxtxtxu                                            (4.27) 

The solution in a closed form is given by: 

  .1,
1

, 


 t
t

x
txu                                                   (4.28) 

Example (4.2.2):  Consider the following nonlinear partial differential 

equations: 

,0
2 2

 xtt uu
t

x
u                                                             (4.29) 

with initial condition: 

    .0,,00, xxuxu t                                                 (4.30) 

Take the Modified double Sumudu transform to both sides of Equation 

(4.29), we get: 
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    ,

2
0,0,

, 2

22 












 xuu

t

x
EuT

t
vuT

v

vuT
                                (4.31) 

Take single Modified Sumudu transform to initial conditions, we get: 

          ,0,0,00, 3uxEuT
t

xuEandxuE t 



                (4.32) 

Substitute Equation (4.32) in Equation (4.31) we obtain: 

  .
2

,
2

2

233









 xuu

t

x
EvuvvuT                                            (4.33) 

Take the inverse double Modified Sumudu transform to both sides of 

Equation (4.33), we obtain: 

  ,
2

,
2

2

21

2 















 

xuu
t

x
EvExttxu                                       (4.34) 

From the Adomian decomposition method, rewrite (4.34) as follows: 

    .
2

,
0

2

2

21

2

0 


















 








 n

n

n

n uA
t

x
EvExttxu                            (4.35) 

Where  uAn  are Adomian polynomials that represent the nonlinear terms. 

The first few components of  uAn are given by: 

                        ,000 x
uuuA   

      ,10101 xx
uuuuuA                                                                (4.36) 

                          ,0211202 uuuuuuuA
xxx

  

                           .031221303 uuuuuuuuuA
xxxx
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By comparing both sides of Equation (4.35), we get: 

  ,,0 xttxu                                                                       (4.37) 

  .0,
2

,
2

2

21

21 















 

 nA
t

x
EvEtxu nn                      (4.38) 

Then: 

                       















 

0

2

2

21

21

2
, A

t

x
EvEtxu  

                                  















  2

2

2

21

2 .
2

xt
t

x
EvE  

  ,
3

1
12 33551

2 txuvE                                             (4.39) 

By similar way we get: 

  ,
15

2
, 55

2 txtxu                                                               (4.40) 

  ,
315

17
, 77

3 txtxu                                                                  (4.41)
 

And so on. Then the first four terms of the decomposition series for 

Equation (4.29), is given by: 

       
3 5 71 2 17

, ,
3 15 315

u x t xt xt xt xt                        (4.42) 

The solution in a closed form is given by: 

   .tan, xttxu                                                                   (4.43) 

Example (4.2.3):  Consider the following KdV equations 

,06  xxxxt uuuu                                         (4.44) 
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with initial condition: 

  .0, xxu                                                                (4.45) 

Take the Modified double Sumudu transform to both sides of Equation 

(4.44), we get: 

 
   ,60,

,
2 xxxx uuuEuvT

v

vuT
                                (4.46) 

Take single Modified Sumudu transform to initial condition we get: 

        ,0,0, 3uxEuTxuE                                      (4.47) 

Substitute equation (4.47) in equation (4.46), we obtain: 

   .6, 2

32

xxxx uuuvEuvvuT                                          (4.48) 

Take the inverse Modified double Sumudu transform to both sides of 

Equation(4.48), we obtain: 

    .6, 2

1

2 xxxx uuuEvExtxu                                      (4.49) 

From the Adomian decomposition method, rewrite equation (4.49) as 

follows, 

      .6,
0 00

2

1

2 









































n n
xxxn

n

nn uuAEvExtxu               (4.50) 

Where,  uAn
are Adomian polynomials that represent the nonlinear terms. 

The first few components of  uAn
are given by: 

                           ,000 x
uuuA   

      ,10101 xx
uuuuuA                                                         (4.51) 

                             ,0211202 uuuuuuuA
xxx
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                           .031221303 uuuuuuuuuA
xxxx

  

                                              

By comparing both sides of equation(4.50), we get: 

  ,,0 xtxu                                                                           (4.52) 

        .0,6, 2

1

21  

 nuuAEvEtxu
xxxnnn                   (4.53) 

Then: 

                        1

1 2 2 0 0, 6
xxx

u x t E v E A u u       
 

                                  xEvE 62

1

2

  

  ,66 331

2 xtuvE                                                  (4.54) 

                      1

2 2 2 1 1, 6
xxx

u x t E v E A u u       
 

                                xtEvE 722

1

2    

  ,3672 2341

2 xtuvE                                                     (4.55) 

By similar way we get: 

  .216, 3

3 xttxu                                                                   (4.56) 

And so on, then the first four terms of the decomposition series for 

equation(4.44) are given by: 

  ,216366, 32  xtxtxtxtxu                                        (4.57) 

This can be written as: 

     
2 3

, 1 6 6 6 ,u x t x t t t     
 

                                      (4.58) 
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The solution in a closed form is given by: 

  .1,
61

, 


 t
t

x
txu                                     (4.59) 

Example (4.2.4):  Consider the following KdV equations 

,06  xxxxt uuuu                                         (4.60) 

with initial condition: 

   .1
6

1
0,  xxu                                         (4.61) 

Take the Modified double Sumudu transform to both sides of 

equation(4.60), we get: 

 
   ,60,

,
2 xxxx uuuEuvT

v

vuT
                                   (4.62) 

Take single Modified Sumudu transform to initial condition we get: 

        ,
6

1
1

6

1
0,0, 23 uuxEuTxuE 








                    (4.63) 

Substitute Equation(4.63) in equation (4.62), we obtain: 

     .6
6

1
, 2

2232

xxxx uuuvEuvuvvuT                                (4.64) 

Take the inverse Modified double Sumudu transform to both sides of 

equation(4.64), we obtain: 

      .61
6

1
, 2

1

2 xxxx uuuvEExtxu                              (4.65) 

From the Adomian decomposition method, rewrite equation(4.65) as 

follows, 
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        .61
6

1
,

0 00

2

1

2 









































n n
xxxn

n

nn uuAEvExtxu        (4.66) 

Where,  uAn
are the Adomian polynomials that represent the nonlinear terms. 

The first few components of  uAn
are given by: 

                                       ,000 x
uuuA   

      ,10101 xx
uuuuuA                                              (4.67) 

                                         ,0211202 uuuuuuuA
xxx

  

             .031221303 uuuuuuuuuA
xxxx

  

                                                            

By comparing both sides of equation(4.66), we get: 

   ,1
6

1
,0  xtxu                                                    (4.68) 

        .0,6, 2

1

21  

 nuuAEvEtxu
xxxnnn          (4.69) 

Then: 

               1

1 2 2 0 0, 6
xxx

u x t E v E A u u      
 

                         















  1

36

1
.62

1

2 xEvE  

    ,1
6

1

6

1 23331

2 txuvuvE 







                                           (4.70) 

              1

2 2 2 1 1, 6
xxx

u x t E v E A u u      
 

                       
































  txtEvEtxEvE
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By similar way we get: 

    .1
6

1
, 3

3 txtxu                                                   (4.72) 

And so on. Then the first four terms of the decomposition series for 

equation (4.60), is given by: 

      ,...11
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1
, 32  tttxtxu                              (4.73) 

The solution in a closed form is given by: 
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 t

t

x
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Conclusion 

The combination of Adomian Decomposition Method (ADM) and 

Modified Double Sumudu Transform Method can produce a very 

effective method to solve nonlinear partial differential equations. Simply, 

it can be applied to other nonlinear partial differential equations of higher 

order. 
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