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Abstract 

We study some products with mixing subalgebras and 

non-injectivity with generator Masa of the q-deformed Araki – 

Woods of von Neumann algebras. We also study a class of II1 

factors with at most one Cartan subalgebra II and structure 

results for free Araki-Woods and their continuous cores. The 

Q-Gaussian processes, that is, non- commutative and classical 

aspects with q-deformed Araki- Woods factors are determined. 

We characterize the asymptotic matricial models, extension of 

second quantisation, Haagerup approximation property, 

absence of Cartan subalgebras, the structure of modular 

invariant subalgrbras and complete metric approximation 

property for q- Araki- Woods factors and algebras. 
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 الخلاصة
 

قمنا بدراسة بعض النواتج مع الجبريات الجزئية المختلطة و غير الاحادية       

وودز لجبريات فون نيومان. ايضا قمنا بدراسة -اراكي 𝑞–مع ماسا المولد لتشوه 

لكرتان ونتائج التشييد  IIمع على الاكثر واحد الجبر الجزئي  1IIعائلة العوامل 

ية تحديد عمليات جاوسيان اي غير التبديل وودز الحرة وجوهرها المستمر.  تم-لاراكي

قمنا بتشخيص نماذج مصفوفة  وودز.–لعوامل اراكي  q-والنواحي التقليدية مع تشوه

المقاربة والتمدد للتكميم الثاني وخاصية تقريب هاقريب والغياب للجبريات الجزئية 

لكرتان والتشييد للجبريات الجزئية اللامتغيرة بمقياس وخاصية التقريب المترية التامة 

 والجبريات. q-وودز–لعوامل اراكي 
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Introduction 

We show that certain free products of factors of type I and other von 

Neumann algebras with respect to nontracial, almost periodic states are almost 

periodic free Araki-Woods factors. In particular, they have the free absorption 

property and Connes’ Sd invariant completely classifies these free products. We 

studying the structure of Cartan subalgebras of von Neumann factors of type II1. 

We provide more examples of II1 factors having either zero, one or several Cartan 

subalgebras.  

We examine, for − 1 < q < 1, q-Gaussian processes, i.e. families of 

operators (non-commutative random variables) 𝑋𝑡 = 𝑎𝑡 + 𝑎𝑡
∗ – where the 𝑎𝑡 

fulfill the 𝑞-commutation relations 𝑎𝑠 𝑎𝑡
∗ − 𝑞𝑎𝑡

∗ 𝑎𝑠 = 𝑐 (𝑠, 𝑡 )  ·  1 for some 

covariance function 𝑐( · ,·) – equipped with the vacuum expectation state. We 

show that there is a 𝑞- analogue of the Gaussian functor of second quantization 

behind these processes and that this structure can be used to translate questions 

on 𝑞-Gaussian processes into corresponding (and much simpler) questions in the 

underlying Hilbert space. We show that the von Neumann algebra generated by 

q-gaussians is not injective as soon as the dimension of the underlying Hilbert 

space is greater than 1. The approach is based on a suitable vector valued 

Khintchine type inequality for Wick products.  

Using Speicher central limit Theorem we provide Hiai’s 𝑞-Araki-Woods 

von Neumann algebras and the 𝑞-deformed Araki-Woods factor with nice 

asymptotic matricial models.  

We show that the normalizer of any diffuse amenable subalgebra of a free 

group factor 𝐿(𝐹𝑟) generates an amenable von Neumann subalgebra. Moreover, 

any II1 factor of the form 𝑄 ⊕̅̅̅ 𝐿(𝐹𝑟), with 𝑄 an arbitrary subfactor of a tensor 

product of free group factors, has no Cartan subalgebras. We show that for any 

type 𝐼𝐼𝐼1 free Araki-Woods factor 𝑀 =  𝛤(𝐻𝑅 , 𝑈𝑡)
′′ associated with an 

orthogonal representation (𝑈𝑡) of R on a separable real Hilbert space 𝐻𝑅, the 

continuous core 𝑀 =  𝑀 ⋊𝜎  𝑅 is a semisolid II∞ factor, i.e. for any non-zero 

finite projection 𝑞 ∈ 𝑀, the 𝐼𝐼1 factor 𝑞𝑀𝑞 is semisolid. If the representation (𝑈𝑡) 
is moreover assumed to be mixing, then we show that the core M is solid. We 

show that all the free Araki-Woods factors 𝛤(𝐻𝑅 , 𝑈𝑡)
′′ have the complete metric 

approximation property. Using Ozawa-Popa’s techniques, we then prove that 

every nonamenable subfactor 𝑁 ⊂  𝛤(𝐻𝑅 , 𝑈𝑡) which is the range of a normal 

conditional expectation has no Cartan subalgebra.  

Jolissaint and Stalder introduced definitions of mixing and weak mixing 

for von Neumann subalgebras of finite von Neumann algebras. In this note, we 

study various algebraic and analytical properties of subalgebras with these mixing 

properties. We prove some basic results about mixing inclusions of von Neumann 

algebras and establish a connection between mixing properties and normalizers 
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of von Neumann subalgebras. The special case of mixing subalgebras arising 

from inclusions of countable discrete groups finds applications to ergodic theory, 

in particular, a new generalization of a classical theorem of Halmos on the 

automorphisms of a compact abelian group. To any strongly continuous 

orthogonal representation of ℝ on a real Hilbert space 𝐻𝑅, Hiai constructed q-

deformed Araki– Woods von Neumann algebras for −1 <q< 1, which are W∗-
algebras arising from non-tracial representations of the 𝑞-commutation relations, 

the latter yielding an interpolation between the Bosonic and Fermionic statistics.  

 We extend the class of contractions for which the second 

quantisation on q-Araki-Woods algebras can be defined. By adapting an 

ultraproduct technique of Junge and Zeng, we prove that radial completely 

bounded multipliers on 𝑞-Gaussian algebras transfer to 𝑞-Araki-Woods algebras. 

As a consequence, we establish the 𝑤∗ -complete metric approximation property 

for all qAraki-Woods algebras.   
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Chapter 1 

Free Products of von Neumann Algebras and a Class of II𝟏 Factors 

 

We show that for 𝜆, µ ∈]0, 1[, (𝑀2(𝐶), 𝜔𝜆)  ∗  (𝑀2(𝐶), 𝜔µ) is isomorphic to the free 

Araki-Woods factor whose Sd invariant is the subgroup of 𝑅+
∗  generated by 𝜆 and µ. The 

proofs are based on algebraic techniques and amalgamated free products. These results give 

some answers to questions of Dykema and Shlyakhtenko. We also show a rigidity result for 

some group measure space II1 factors. 

Section (1.1): Free Araki-Woods Factors 

In [5] and [7], Dykema investigated free products of finite dimensional and other von 

Neumann algebras with respect to nontracial faithful states. We are interested in free 

products of factors of type I. In this respect, we recall Theorem 1 of [5] in the particular case 

of factors of type I (see Proposition 7.3 of [5]). 

Theorem (1.1.1)[1]: (Dykema, [5]). Let 

(ℳ,𝜙) = (𝐴1, 𝜙1) ∗ (𝐴2, 𝜙2) 
be the von Neumann algebra free product of factors of type I with respect to faithful states, 

at least one of which is nontracial. Then ℳ is a full factor of type III and 𝜙 is an almost 

periodic faithful state whose centralizer is isomorphic to the type II1 factor 𝐿(𝐅∞). The point 

spectrum of the modular operator Δ𝜙 of 𝜙, is equal to the subgroup of 𝐑+
∗  generated by the 

union of the point spectra of Δ𝜙1 and of Δ𝜙2. Thus in Connes' classification, ℳ is always a 

factor of type III𝜆, with 0 < 𝜆 ≤ 1. 

The fact that 𝜙 is an almost periodic faithful state [3] is an easy consequence of basic 

results on free products (see [5]). The fact that the centralizer of 𝜙 is isomorphic to the type 

II1 factor 𝐿(𝐅∞) is the most difficult part of the theorem. To prove this, Dykema uses 

sophisticated algebraic techniques on free products that he developed also in [6] and [8]. 

Finally, the fact that ℳ is of type III follows from results of [5]. 

Dykema asked in Question 9.1 [5], whether the type III𝜆 factors that are obtainable 

by taking various free products of finite dimensional or hyperfinite algebras are isomorphic 

to each other, and whether they are isomorphic to the factor of Radulescu [11], 

(𝐿(𝑍), 𝜏𝑍) ∗ (𝑀2(𝑋),𝜔𝜆) 
where 𝜔𝜆(𝑝𝑖𝑗) = 𝛿𝑖𝑗𝜆

𝑗/(𝜆 + 1) for 𝑖, 𝑗 ∈ {0,1}. Furthermore, he asked in Question 9.3 [5], 

whether the full factors of type III1 having the same Sd invariant that are obtainable by 

taking free products of various finite dimensional or hyperfinite algebras are isomorphic to 

each other. We will see that we partially give positive answers to these questions. 

In [15], Shlyakhtenko introduced a new class of full factors of type III. His idea is to 

give a version of the CAR functor and of the associated quasi-free states in the framework 

of Voiculescu's free probability theory [19]. We recall his construction. We can say that to 

each real Hilbert space 𝐻𝐑 and to each orthogonal representation (𝑈𝑡) of 𝐑 on 𝐻𝐑, he 

associated a factor Γ(𝐻𝐑, 𝑈𝑡)
′′ called the free Araki- Woods factor. He proved that 

Γ(𝐻𝐑, 𝑈𝑡)
′′ is a type III factor except if 𝑈𝑡 = id for all 𝑡 ∈ 𝐑. The restriction to Γ(𝐻𝐑, 𝑈𝑡)

′′ 

of the vacuum state denoted by 𝜑𝑈 and called the free quasi-free state, is faithful. Moreover, 

he proved that 𝜑𝑈 is an almost periodic state iff the orthogonal representation (𝑈𝑡) is almost 

periodic. Recall in this respect the following definition: 

Definition (1.1.2)[1]: (Connes, [3]). Let 𝑀 be a von Neumann algebra with separable 

predual which has almost periodic weights. The 𝑆𝑑 invariant of 𝑀 is defined as the 
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intersection over all the almost periodic, faithful, normal, semifinite weights 𝜑 of the point 

spectra of the modular operators Δ𝜑. 

Connes proved that for a factor of type III, Sd (𝑀) is a countable subgroup of 𝐑+
∗ [3]. 

In the almost periodic case, using a powerful tool called the matricial model, Shlyakhtenko 

obtains this remarkable result: 

Theorem (1.1.3)[1]: (Shlyakhtenko, [12],[15]). Let (𝑈𝑡) be a nontrivial almost periodic 

orthogonal representation of 𝐑 on the real Hilbert space 𝐻𝐑 with dim 𝐻𝐑 ≥ 2. Let 𝐴 be the 

infinitesimal generator of (𝑈𝑡) on 𝐻𝐂, the complexified Hilbert space of 𝐻𝐑. Denote 𝑀 =
Γ(𝐻𝐑, 𝑈𝑡)

′′. Let Γ ⊂ 𝐑+
∗  be the subgroup generated by the point spectrum of 𝐴. Then, 𝑀 

only depends on Γ up to state-preserving isomorphisms.  

Conversely, the group Γ coincides with the Sd invariant of the factor 𝑀. 

Consequently, Sd completely classifies the almost periodic free Araki-Woods factors. 

Moreover, the centralizer of the free quasi-free state 𝜑𝑈 is isomorphic to the type II1 factor 

𝐿(𝐅∞). 
He proved also that the (unique) free Araki-Woods factor of type III𝜆, denoted by 

(𝑇𝜆, 𝜑𝜆) is isomorphic to the factor of Rădulescu [11] and "freely absorbs" 𝐿(𝐅∞). Since the 

free Araki-Woods factors satisfy free absorption properties, Shlyakhtenko asked whether 

the free products of matrix algebras (𝐴1, 𝜙1) ∗ (𝐴2, 𝜙2) are stable by taking free products 

with 𝐿(𝐙), in other words whether they are free Araki-Woods factors. 

We give positive answer to the question of Shlyakhtenko for certain free products of 

matrix algebras and other von Neumann algebras. Thanks to Theorem 6.6 of [15], it partially 

gives positive answers to Questions 9.1 and 9.3 of Dykema [5]. For an almost periodic state 

𝜙, we denote by Sd (𝜙) the subgroup of 𝐑+
∗  generated by the point spectrum of the modular 

operator Δ𝜙. On 𝐵(ℓ2(𝐍)), we denote by 𝜓𝜆 the state given by 𝜓𝜆(𝑒𝑖𝑗) = 𝛿𝑖𝑗𝜆
𝑗(1 − 𝜆) for 

𝑖, 𝑗 ∈ 𝐍. For 𝛽 ∈]0,1[ , we denote by (𝐂2, 𝜏𝛽) the algebra generated by a projection 𝑞 with 

𝜏𝛽(𝑞) = 𝛽. The hyperfinite type II1 factor together with its trace is denoted by (ℛ, 𝜏). At 

last, we denote by (𝑇Γ, 𝜑Γ) the unique (up to state-preserving isomorphism) almost periodic 

free Araki-Woods factor whose 𝑆𝑑 invariant is exactly Γ. 

Definition (1.1.4)[1]: Let 𝜌: (𝐵, 𝜙𝐵) ↪ (𝐴, 𝜙𝐴) be an embedding of von Neumann algebras. 

We shall say that 𝜌 is modular if it is state-preserving and if 𝜌(𝐵) is globally invariant under 

the modular group (𝜎𝑡
𝜙𝐴). 

Theorem (1.1.5)[1]: Let (𝐴𝑖 , 𝜙𝑖), 𝑖 = 1,2, be two von Neumann algebras endowed with a 

faithful, normal, almost periodic state 𝜙𝑖, such that for 𝑖 = 1,2 

(𝐴𝑖 , 𝜙𝑖) ∗ (𝐿(𝐙), 𝜏𝐙) ≅ (𝑇Sd(𝜙𝑖), 𝜑Sd(𝜙𝑖)). 

Let Γ be the subgroup of 𝐑+
∗  generated by Sd (𝜙1) and Sd (𝜙2). Assume that for some , 𝛽 ∈ 

] 0,1[, there exist modular embeddings 
(𝑀2(𝐂), 𝜔𝜆)  ↪ (𝐴1, 𝜙1)

(𝐂2, 𝜏𝛽)  ↪ (𝐴2, 𝜙2),
 

such that 𝜆/(𝜆 + 1) ≤ min{𝛽, 1 − 𝛽}. Then 

(𝑇Γ, 𝜑Γ) ≅ (𝐴1, 𝜙1) ∗ (𝐴2, 𝜙2). 
In particular, for any 𝜆, 𝜇 ∈]0,1[, (𝑀2(𝐂),𝜔𝜆) ∗ (𝑀2(𝐂),𝜔𝜇), (𝑀2(𝐂),𝜔𝜆) ∗ (ℛ, 𝜏) and 

(𝐵(ℓ2(𝐍)), 𝜓𝜆) ∗ (ℛ, 𝜏) are free Araki-Woods factors. 

We devoted to a few reminders on free products and free Araki-Woods factors. We 

show that (𝑀2(𝐂),𝜔𝜆) ∗ (𝐂
2, 𝜏𝛽) is isomorphic in a state-preserving way to (𝑇𝜆, 𝜑𝜆), 
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whenever 𝜆/(𝜆 + 1) ≤ min{𝛽, 1 − 𝛽}. We prove Theorem (1.1.5) using the "machinery" of 

amalgamated free products.  

We will be working with free products of von Neumann algebras with respect to 

states. It is useful to remind the following notation: 

Notation (1.1.6)[1]: If (𝑀,𝜑) and (𝑁,𝜓) are von Neumann algebras endowed with states 

𝜑 and 𝜓, the notation (𝑀, 𝜑) ≅ (𝑁, 𝜓) means that there exists a *-isomorphism 𝛼:𝑀 → 𝑁 

such that 𝜓𝛼 = 𝜑. 

We remind this well-known proposition concerning free products of von Neumann 

algebras with respect to states. 

Proposition (1.1.7)[1]: ([19]). Let (𝑀𝑖 , 𝜑𝑖) be a family of von Neumann algebras endowed 

with faithful normal states. Then, there exists, up to state-preserving isomorphism, a unique 

von Neumann algebra (𝑀,𝜑) endowed with a faithful normal state 𝜑 such that 

1. (𝑀𝑖 , 𝜑𝑖) embeds into (𝑀,𝜑) in a state-preserving way, 

2. 𝑀 is generated by the family of subalgebras (𝑀𝑖) which is a free family in (𝑀,𝜑). 
The free product of (𝑀𝑖 , 𝜑𝑖) is denoted by (𝑀, 𝜑) = ∗

𝑖∈𝐼
(𝑀𝑖 , 𝜑𝑖). 

Notation (1.1.8)[1]: ([8]). For von Neumann algebras 𝐴 and 𝐵, with states 𝜑𝐴 and 𝜑𝐷, the 

von Neumann algebra 

𝐴
𝑝

𝛼
⊕𝐵

𝑞

𝛽
 

where 𝛼, 𝛽 ≥ 0 and 𝛼 + 𝛽 = 1, will denote the algebra 𝐴⊕𝐵 whose associated state is 

𝜑(𝑎, 𝑏) = 𝛼𝜑𝐴(𝑎) + 𝛽𝜑𝐵(𝑏). Moreover, 𝑝 ∈ 𝐴 and 𝑞 ∈ 𝐵 are projections corresponding to 

the identity elements of 𝐴 and 𝐵. 

Now, we want to remind the construction of the free Araki-Woods factors [15]. Let 

𝐻𝐑 be a real Hilbert space and let (𝑈𝑡) be an orthogonal representation of 𝐑 on 𝐻𝐑. Let 𝐻 =
𝐻𝐑⊗𝐑 𝐂 be the complexified Hilbert space. If 𝐴 is the infinitesimal generator of (𝑈𝑡) on 

𝐻, we remind that 𝑗: 𝐻𝐑 → 𝐻 defined by 𝑗(𝜁) = (
2

𝐴−1+1
)
1/2
𝜁 is an isometric embedding of 

𝐻𝐑 into 𝐻. Let 𝐾𝐑 = 𝑗(𝐻𝐑). Introduce the full Fock space of 𝐻 : 

ℱ(𝐻) = 𝐂Ω⊕⨁ 

∞

𝑛=1

𝐻⊗𝑛. 

The unit vector Ω is called vacuum vector. For any 𝜉 ∈ 𝐻, we have the left creation operator 

𝑙(𝜉):ℱ(𝐻) → ℱ(𝐻): {
𝑙(𝜉)Ω = 𝜉,

𝑙(𝜉)(𝜉1⊗⋯⊗ 𝜉𝑛) = 𝜉 ⊗ 𝜉1⊗⋯⊗ 𝜉𝑛.
 

For any 𝜉 ∈ 𝐻, we denote by 𝑠(𝜉) the real part of 𝑙(𝜉) given by 

𝑠(𝜉) =
𝑙(𝜉) + 𝑙(𝜉)∗

2
. 

The crucial result of Voiculescu [19] claims that the distribution of the operator 𝑠(𝜉) with 

respect to the vacuum vector state 𝜑(𝑥) = ⟨𝑥Ω, Ω⟩ is the semicircular law of Wigner 

supported on the interval [−∥ 𝜉 ∥, ∥ 𝜉 ∥]. 
Definition (1.1.9)[1]: (Shlyakhtenko, [15]). Let (𝑈𝑡) be an orthogonal representation of 𝐑 

on the real Hilbert space 𝐻𝐑(dim 𝐻𝐑 ≥ 2). The free Araki-Woods factor associated with 𝐻𝐑 

and (𝑈𝑡), denoted by Γ(𝐻𝐑, 𝑈𝑡)
′′, is defined by 

Γ(𝐻𝐑, 𝑈𝑡)
′′ = {𝑠(𝜉), 𝜉 ∈ 𝐾𝐑}

′′. 
The vector state 𝜑𝑈(𝑥) = ⟨𝑥Ω, Ω⟩ is called the free quasi-free state. 
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As we said previously, the free Araki-Woods factors provide many new examples of 

full factors of type III [2],[4],[12]. We can summarize the general properties of free Araki-

Woods factors in the following theorem (see also [18]): 

Theorem (1.1.9)[1]: (Shlyakhtenko, [12],[13],[14],[15]). Let (𝑈𝑡) be an orthogonal 

representation of 𝐑 on the real Hilbert space 𝐻𝐑 with dim 𝐻𝐑 ≥ 2. Denote 𝑀 = Γ(𝐻𝐑, 𝑈𝑡)
′′. 

1. 𝑀 is a full factor. 

2. 𝑀 is of type II1 iff 𝑈𝑡 = id for every 𝑡 ∈ 𝐑. 

3. 𝑀 is of type III  𝜆(0 < 𝜆 < 1) iff (𝑈𝑡) is periodic of period 
2𝜋

|log 𝜆|
. 

4. 𝑀 is of type III1 in the other cases. 

5. The factor 𝑀 has almost periodic states iff (𝑈𝑡) is almost periodic. 

Let 𝐻𝐑 = 𝐑
2 and 0 < 𝜆 < 1. Let 

𝑈𝑡 = (
cos(tlog 𝜆) − sin(tlog 𝜆)

sin(tlog 𝜆) cos(tlog 𝜆)
).                                    (1) 

Notation (1.1.10)[1]: ([15]). Denote (𝑇𝜆, 𝜑𝜆): = Γ(𝐻𝐑, 𝑈𝑡)
′′ where 𝐻𝐑 = 𝐑

2 and (𝑈𝑡) is 

given by Equation (1). 

Using a powerful tool called the matricial model, Shlyakhtenko was able to prove the 

following isomorphism 

(𝑇𝜆, 𝜑𝜆) ≅ (𝐵(ℓ
2(𝐍)),𝜓𝜆) ∗ (𝐿

∞[−1,1], 𝜇), 

where 𝜓𝜆(𝑒𝑖𝑗) = 𝛿𝑖𝑗𝜆
𝑗(1 − 𝜆), 𝑖, 𝑗 ∈ 𝐍, and 𝜇 is a nonatomic measure on [−1,1]. He also 

proved that (𝑇𝜆, 𝜑𝜆) is isomorphic to the factor of type III𝜆 introduced by Rădulescu in [11]. 

Namely, 

(𝑇𝜆, 𝜑𝜆) ≅ (𝑀2(𝐂), 𝜔𝜆) ∗ (𝐿
∞[−1,1], 𝜇), 

where 𝜔𝜆(𝑝𝑖𝑗) = 𝛿𝑖𝑗𝜆
𝑗/(𝜆 + 1), 𝑖, 𝑗 ∈ {0,1}, and 𝜇 a nonatomic measure on [−1,1]. 

Moreover, he showed that (𝑇𝜆, 𝜑𝜆) has a good behaviour when it is compressed by a "right" 

projection. Denote (𝐶, 𝜓):= (𝐵(ℓ2(𝐍)), 𝜓𝜆) ∗ (𝐿
∞[−1,1], 𝜇) and (𝐷, 𝜔):= (𝑀2(𝐂), 𝜔𝜆) ∗

(𝐿∞[−1,1], 𝜇). The following proposition is an easy consequence of proofs of Theorems 5.4 

and 6.7 of [15]. It will be useful. 

Proposition (1.1.11)[1]: Let (𝐶, 𝜓), (𝐷,𝜔) defined as above and 𝑒00 ∈ 𝐵(ℓ
2(𝐍)) ⊂

𝐶, 𝑝00, 𝑝11 ∈ 𝑀2(𝐂) ⊂ 𝐷. Then 

(𝑇𝜆, 𝜑𝜆)  ≅ (𝑒00𝐶𝑒00,
1

𝜓(𝑒00)
𝜓)

 ≅ (𝑝00𝐷𝑝00,
1

𝜔(𝑝00)
𝜔)

 ≅ (𝑝11𝐷𝑝11,
1

𝜔(𝑝11)
𝜔) .

 

When the representation (𝑈𝑡) is assumed to be almost periodic, we have seen (Theorem 

(1.1.3)) that Γ ⊂ 𝐑+
∗ , the subgroup generated by the point spectrum of 𝐴, completely 

classifies the free Araki-Woods factor Γ(𝑈𝑡, 𝐻𝐑)
′′. 

Notation (1.1.12)[1]: For any nontrivial countable subgroup Γ ⊂ 𝐑+
∗ , we shall denote by 

(𝑇Γ, 𝜑Γ) the unique (up to state-preserving isomorphism) almost periodic free Araki-Woods 

factor whose Sd invariant is exactly Γ. Of course, 𝜑Γ is its free quasi-free state. If Γ = 𝜆𝐙 

for 𝜆 ∈]0,1[, then (𝑇Γ, 𝜑Γ) is of type III𝜆; in this case, it will be simply denoted by 

(𝑇𝜆, 𝜑𝜆)[15], as in Notation (1.1.10). Theorem 6.4 in [15] gives the following formula: 

(𝑇Γ, 𝜑Γ) ≅ ∗
𝛾∈Γ

(𝑇𝛾, 𝜑𝛾). 
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For any 𝛽 ∈]0,1[, the von Neumann algebra 𝐂
𝛽
⊕ 𝐂

1−𝛽
 is simply denoted by (𝐂2, 𝜏𝛽). 

Let 𝜆 ∈]0,1[ and denote 𝛼 = 𝜆/(𝜆 + 1). We remind that the faithful state 𝜔𝜆 on 𝑀2(𝐂) is 

defined as follows: 𝜔𝜆(𝑝𝑖𝑗) = 𝛿𝑖𝑗𝜆
𝑗/(𝜆 + 1), for 𝑖, 𝑗 ∈ {0,1}. We prove the following 

theorem: 

Notation (1.1.13)[1]: The von Neumann algebra of the left-hand side of (2) together with 

its free product state will be denoted by (𝑀,𝜔). 
We will need the following result due to Voiculescu [21] (see also [6],[8]) which 

gives a precise picture of the von Neumann algebra generated by two projections 𝑝 and 𝑞 

free with respect to a faithful trace.  

Theorem (1.1.14)[1]: (Voiculescu, [21]). Let 0 < 𝛼 ≤ min{𝛽, 1 − 𝛽} < 1. Then 

(𝐶
𝑝

𝛼
⊕ 𝐶

1−𝑝

1−𝛼
) ∗ (𝐶

𝑞

𝛽
⊕ 𝐶

1−𝑞

1−𝛽
)                                                                     

≅ 𝐶
(1−𝑝)∧𝑞

1−𝛼
⊕(𝐿∞ ([0,

𝜋

2
] , 𝜈) ⊗𝑀2)⏟              
2𝛼

⊕ 𝐶
(1−𝑝)∧(1−𝑞)

1−𝛼−𝛽
, (2) 

where 𝜈 is a probability measure without atoms on [0, 𝜋/2], and 𝐿∞([0, 𝜋/2], 𝜈) has trace 

given by integration against 𝜈. In the picture of the right-hand side of (2), we have 

𝑝 = 0⊕ (
1 0
0 0

)⊕ 0,

𝑞 = 1⊕ ( cos2 𝜃 cos 𝜃 sin 𝜃
cos 𝜃 sin 𝜃 sin2 𝜃

)⊕ 0,
 

where 𝜃 ∈ [0, 𝜋/2]. 
Definition (1.1.15)[1]: ([6]). Let (𝑆𝑡)𝜄∈𝐼 be a family of subsets of a unital algebra 𝐴 ∋ 1. A 

nontrivial traveling product in (𝑆𝜄)𝜄∈𝐼 is a product 𝑎1⋯𝑎𝑛 such that 𝑎𝑗 ∈ 𝑆𝑡𝑗(1 ≤ 𝑗 ≤ 𝑛) 

and 𝜄1 ≠ 𝜄2 ≠ ⋯ ≠ 𝜄𝑛−1 ≠ 𝜄𝑛. The trivial traveling product is the identity element 1. The set 

of all traveling products in (𝑆𝑡)𝜄∈𝐼, including the trivial one is denoted by Λ((𝑆𝑡)𝜄∈𝐼). If |𝐼| =
2, we will call traveling products alternating products. 

We are now ready to prove the following proposition; it gives a precise picture of the 

compression of the von Neumann algebra (𝑀,𝜔) by the projection 𝑝. The proof is based on 

algebraic techniques developed in [5],[6],[8], and techniques of computation of ∗-
distributions developed in [15] and [20]. 

Proposition (1.1.16)[1]: Let (𝑀,𝜔) = (𝑀2(𝐂),𝜔𝜆) ∗ (𝐂
2, 𝜏𝛽) and 𝑝 = 𝑝11 ∈ 𝑀2(𝐂). 

Assume as in Theorem (1.1.14), that 𝛼 = 𝜆/(𝜆 + 1) ≤ min{𝛽, 1 − 𝛽}. Then 

(𝑝𝑀𝑝,
1

𝜔(𝑝)
𝜔) ≅ 𝐿(𝐙) ∗ ((𝐂2, 𝜏𝛿)⊗ (𝐵(ℓ2(𝐍)),𝜓𝜆)), 

where (𝐂2, 𝜏𝛿) = 𝐂𝛿⊕ 𝐂
1−𝛿

 with 𝛿 =
1−

𝛽

1−𝜆

1−𝜆
 and 𝜓𝜆(𝑒𝑖𝑗) = 𝛿𝑖𝑗𝜆

𝑗(1 − 𝜆), for 𝑖, 𝑗 ∈ 𝐍. 

Proof. Let (𝑀,𝜔) = (𝑀2, 𝜔𝜆) ∗ (𝐂
2, 𝜏𝛽). Let 𝑝 and 𝑞 be the projections in 𝑀 such that 𝑁 =

𝑊∗(𝑝, 𝑞) as in Theorem (1.1.14); 𝑝 and 𝑞 are free in 𝑀 with respect to 𝜔 and 𝜔(𝑝) = 𝛼 = 

𝜆/(𝜆 + 1), 𝜔(𝑞) = 𝛽. Let 𝑥 and 𝑧. We know that 𝑁 = 𝑊∗(𝑝𝑞𝑝, 𝑥, 𝑧). Denote by 𝑢 = 𝑝01 ∈
𝑀2(𝐂) the partial isometry from 𝑝 to 1 − 𝑝, i.e. 𝑢∗𝑢 = 𝑝 and 𝑢𝑢∗ = 1 − 𝑝. Then, thanks to 

Lemma 5.3 from [19] 

𝑝𝑀𝑝 = 𝑊∗(𝑝𝑞𝑝, 𝑢∗𝑥, 𝑢∗𝑧𝑢). 
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Denote 𝑣 = 𝑢∗𝑥 and 𝑃 = 𝑢∗𝑧𝑢. Since 𝑣∗𝑣 = 𝑝 and 𝑣𝑣∗ ≤ 𝑝, 𝑣 is an isometry in 𝑝𝑀𝑝. 

Moreover, since 𝑃𝑣 = 𝑢∗𝑧𝑢𝑢∗𝑥 = 𝑢∗𝑧𝑥 = 𝑢∗𝑥 = 𝑣, we get 𝑣𝑣∗ ≤ 𝑃. Denote 𝜔𝑝 =
1

𝜔(𝑝)
𝜔 

the canonical state on 𝑝𝑀𝑝. First, we are going to compute the ∗-distributions of the 

elements 𝑣 and 𝑣𝑃 in 𝑝𝑀𝑝 with respect to 𝜔𝑝. 

Lemma (1.1.17)[1]: Let 𝛾 = 𝛽(𝜆 + 1) = 𝛽/(1 − 𝛼). For any 𝑘, 𝑙 ∈ 𝐍, 

𝜔𝑝(𝑣
𝑘(𝑣∗)𝑙)  = 𝛿𝑘𝑙𝜆

𝑘,                                           (3)

𝜔𝑝(𝑣
𝑘𝑃(𝑣∗)𝑙)  = 𝛿𝑘𝑙𝜆

𝑘𝛾.                                         (4)
 

Proof. Step (0). First, we review the "algebraic trick" of Dykema [6]. Denote 𝑎 = 𝑝 − 𝜔(𝑝) 
and 𝑏 = 𝑞 − 𝜔(𝑞); we have 𝑁 = span̅̅ ̅̅ ̅̅ 𝑤 Λ({𝑎}, {𝑏}). Let 𝑤 ∈ 𝑁 such that 𝜔(𝑤) =
𝜔(𝑝𝑤) = 0. By Kaplansky Density Theorem, 𝑤 is the s.o.-limit of a bounded sequence in 

span Λ({𝑎}, {𝑏}). Note that since 𝑎 and 𝑏 are free and 𝜔(𝑎) = 𝜔(𝑏) = 0, if 𝑦 ∈
span Λ({𝑎}, {𝑏}), then 𝜔(𝑦) is equal to the coefficient of 1 in 𝑦. Since 𝜔(𝑤) = 0, we may 

choose that approximating sequence in span (Λ({𝑎}, {𝑏}) ∖ {1}). Moreover, since 𝜔(𝑝𝑤) =
0, we may also assume that each coefficient of 𝑎 be zero, i.e. we have a bounded 

approximating sequence for 𝑤 of elements of span (Λ({𝑎}, {𝑏}) ∖ {1, 𝑎}). 
Step (1). We prove now Equation (3). Assume 𝑘 ≥ 1 and 𝑙 = 0, then 𝑣𝑘 = (𝑢∗𝑥)𝑘 is a 

nontrivial alternating product in {𝑢∗} and {𝑥}. Since 𝜔(𝑥) = 𝜔(𝑝𝑥) = 0, 𝑥 is a s.o.-limit of 

a bounded sequence in span (Λ({𝑎}, {𝑏}) ∖ {1, 𝑎}). So to show that 𝜔𝑝(𝑣
𝑘) = 0, it suffices 

to show that if 𝑠 is a nontrivial alternating product in span (Λ({𝑎}, {𝑏}) ∖ {1, 𝑎}) and {𝑢∗} 
then 𝜔(𝑠) = 0. But since 𝑢∗𝑎 = −𝛼𝑢∗ and 𝑎𝑢∗ = (1 − 𝛼)𝑢∗, regrouping gives a nontrivial 

alternating product in {𝑎, 𝑢∗} and {𝑏}, hence by freeness 𝜔(𝑠) = 0. We get also immediatly 

𝜔𝑝((𝑣
∗)𝑙) = 0. Assume at last 𝑘 ≥ 1 and 𝑙 ≥ 1, then 𝑣𝑘(𝑣∗)𝑙 =

(𝑢∗𝑥)𝑘−1𝑢∗𝑥𝑥∗𝑢(𝑥∗𝑢)𝑙−1. 

Let 𝑦 = 𝑥𝑥∗ − 𝛼1 + 𝜆𝑎. Since 𝜔(𝑥𝑥∗) = 𝜔(𝑥∗𝑥) = 𝛼 and 𝑝𝑦 = 0,𝜔(𝑦) =
𝜔(𝑝𝑦) = 0, hence 𝑦 is a s.o.-limit of a bounded sequence in span (Λ({𝑎}, {𝑏}) ∖ {1, 𝑎}). 
Replacing in (𝑢∗𝑥)𝑘−1𝑢∗𝑥𝑥∗𝑢(𝑥∗𝑢)𝑙−1 the term 𝑥𝑥∗ by 𝑦 + 𝛼1 − 𝜆𝑎, and since 𝑢∗𝑎𝑢 =
−𝛼𝑝, we have 

𝜔𝑝(𝑣
𝑘(𝑣∗)𝑙) = 𝜔𝑝((𝑢

∗𝑥)𝑘−1𝑢∗𝑦𝑢(𝑥∗𝑢)𝑙−1) + 𝜆𝜔𝑝((𝑢
∗𝑥)𝑘−1𝑝(𝑥∗𝑢)𝑙−1). (5) 

To prove 𝜔𝑝((𝑢
∗𝑥)𝑘−1𝑢∗𝑦𝑢(𝑥∗𝑢)𝑙−1) = 0, it suffices to show that if 𝑟 is a nontrivial 

alternating product in span (Λ({𝑎}, {𝑏}) ∖ {1, 𝑎}) and {𝑢∗, 𝑢} then 𝜔(𝑠) = 0. But for the 

same reasons as above, regrouping gives a nontrivial alternating product in {𝑎, 𝑢∗, 𝑢} and 

{𝑏}, hence by freeness 𝜔(𝑟) = 0. If in Equation (3), 𝑘 ≠ 𝑙, then applying Equation (5) 

several times we eventually get 𝜔𝑝(𝑢
∗𝑥⋯𝑢∗𝑥) or 𝜔𝑝(𝑥

∗𝑢⋯𝑥∗𝑢), both of which are zero. 

If 𝑘 = 𝑙, then we eventually get 𝜆𝑘𝜔𝑝(𝑝) = 𝜆
𝑘. Thus Equation (3) holds.  

Step (2). We prove at last Equation (4). Since 𝜔(𝑢∗𝑧𝑢) = 𝜆𝜔(𝑧), and 𝛾 = 𝛽(𝜆 + 1) = 

𝛽/(1 − 𝛼), we get 𝜔𝑝(𝑃) = 𝛾. Assume 𝑘, 𝑙 ≥ 0, then 𝑣𝑘𝑃(𝑣∗)𝑙 = (𝑢∗𝑥)𝑘𝑢∗𝑧𝑢(𝑥∗𝑢)𝑙. 

Since 𝜔(𝑧) = 𝛽 and 𝑝𝑧 = 0, 𝑦 = 𝑧 − 𝛽1 + 𝛾𝑎 satisfies 𝜔(𝑦) = 𝜔(𝑝𝑦) = 0. Consequently, 

𝑦 is a s.o.-limit of a bounded sequence in span (Λ({𝑎}, {𝑏} ∖ {1, 𝑎}). Replacing in the 

product (𝑢∗𝑥)𝑘𝑢∗𝑧𝑢(𝑥∗𝑢)𝑙 the term 𝑧 by 𝑦 + 𝛽1 − 𝛾𝑎, and since 𝑢∗𝑎𝑢 = −𝛼𝑝, we have 

𝜔𝑝(𝑣
𝑘𝑃(𝑣∗)𝑙) = 𝜔𝑝((𝑢

∗𝑥)𝑘𝑢∗𝑦𝑢(𝑥∗𝑢)𝑙) + 𝛾𝜔𝑝((𝑢
∗𝑥)𝑘𝑝(𝑥∗𝑢)𝑙). 

For the same reasons, 𝜔𝑝((𝑢
∗𝑥)𝑘𝑢∗𝑦𝑢(𝑥∗𝑢)𝑙) = 0 and 𝜔𝑝(𝑣

𝑘𝑃(𝑣∗)𝑙) = 𝛾𝜔𝑝(𝑣
𝑘(𝑣∗)𝑙). 

Thus Equation (4) holds. 
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Lemma (1.1.18)[1]: In 𝑝𝑀𝑝, the von Neumann subalgebras 𝑊∗(𝑝𝑞𝑝) and 𝑊∗(𝑣, 𝑃) are *-

free with respect to 𝜔𝑝. 
Proof. Lemma (1.1.23) in [15] inspired us to prove Lemma (1.1.18). It is slightly more 

complicated because here, in some sense, the assumptions are weaker and we must 

additionally deal with the projection 𝑃. To overcome these difficulties, we will use the 

"algebraic trick" [6] mentioned above. 

Let 𝐵 = 𝑊∗(𝑝𝑞𝑝) be the von Neumann subalgebra of 𝑝𝑀𝑝 generated by 𝑝𝑞𝑝 and 

𝐶 = 𝑊∗(𝑣, 𝑃) be the von Neumann subalgebra of 𝑝𝑀𝑝 generated by 𝑣 and 𝑃. Let 𝑔𝑘 =
(𝑝𝑞𝑝)𝑘 −𝜔𝑝((𝑝𝑞𝑝)

𝑘)𝑝 for 𝑘 ≥ 1. Let 𝑊𝑘𝑙 = 𝑣
𝑘(𝑣∗)𝑙 − 𝛿𝑘𝑙𝜆

𝑘𝑝,𝑊𝑟𝑠
′ = 𝑣𝑟𝑃(𝑣∗)𝑠 −

𝛾𝛿𝑟𝑠𝜆
𝑟𝑝 for 𝑘, 𝑙, 𝑟, 𝑠 ∈ 𝐍, 𝑘 + 𝑙 > 0. Since 

𝐵  = span̅̅ ̅̅ ̅̅ 𝑤{𝑝, 𝑔𝑘 ∣ 𝑘 ≥ 1},

𝐶  = span̅̅ ̅̅ ̅̅ 𝑤{𝑝,𝑊𝑘𝑙 ,𝑊𝑟𝑠
′ ∣ 𝑘, 𝑙, 𝑟, 𝑠 ∈ 𝐍, 𝑘 + 𝑙 > 0},

 

it follows that to check freeness of 𝐵 and 𝐶, we must show that 

𝜔𝑝 (𝑏0𝑤1𝑏1⋯𝑤𝑛𝑏𝑛⏟          
𝑊

) = 0                                          (6) 

where 

𝑏𝑗 = 𝑔𝑚𝑗
,                                                             (7) 

𝑤𝑗 = 𝑊𝑘𝑗𝑙𝑗                                                            (8) 

or   𝑤𝑗 = 𝑊𝑟𝑗𝑠𝑗
′ ,                                                     (9) 

with 𝑘𝑗 , 𝑙𝑗 , 𝑚𝑗 , 𝑟𝑗 , 𝑠𝑗 ∈ 𝐍, 𝑘𝑗 + 𝑙𝑗 > 0,𝑚𝑗 > 0 for all 𝑗, except possibly 𝑏0 and/or 𝑏𝑛 are equal 

to 1. We shall prove Equation (6) under a weaker assumption, which is that 𝑤𝑗 is also 

allowed to be 

(𝑢∗𝑥)𝑠𝑗𝑢∗𝑦𝑢(𝑥∗𝑢)𝑡𝑗 ,                                           (10) 
𝑠𝑗 , 𝑡𝑗 ≥ 0 and 𝑦 = 𝑥𝑥∗ − 𝛼1 + 𝜆𝑎 or 𝑦 = 𝑧 − 𝛽1 + 𝛾𝑎 as in proof of Lemma (1.1.17). 

We will denote by 𝑊 = 𝑏0𝑤1𝑏1⋯𝑤𝑛𝑏𝑛 such a word with 𝑤𝑗 as in Equation (8) or 

(9).  

Let 𝑤𝑗 be as in Equation (8) with both 𝑘𝑗 and 𝑙𝑗 nonzero and let 𝑦1 = 𝑥𝑥
∗ − 𝛼1 + 𝜆𝑎. 

We will replace this 𝑤𝑗 by 

𝑤𝑗 = ((𝑢∗𝑥)𝑘𝑗−1𝑢∗𝑦1𝑢(𝑥
∗𝑢)𝑙𝑗−1)

 + (𝜆(𝑢∗𝑥)𝑘𝑗−1(𝑥∗𝑢)𝑙𝑗−1 − 𝛿𝑘𝑗𝑙𝑗𝜆
𝑘𝑗)

= 𝐴𝑗 + 𝐵𝑗 .

 

Let now 𝑤𝑗 be as in Equation (9) with both 𝑟𝑗 and 𝑠𝑗 nonzero and let 𝑦2 = 𝑧 − 𝛽1 + 𝛾𝑎. We 

will replace this 𝑤𝑗 by 

𝑤𝑗 = ((𝑢∗𝑥)𝑟𝑗𝑢∗𝑦2𝑢(𝑥
∗𝑢)𝑠𝑗)

 +𝛾 (𝜆(𝑢∗𝑥)𝑟𝑗(𝑥∗𝑢)𝑠𝑗 − 𝛿𝑟𝑗𝑠𝑗𝜆
𝑟𝑗)

= ((𝑢∗𝑥)𝑟𝑗𝑢∗𝑦2𝑢(𝑥
∗𝑢)𝑠𝑗)

 +𝛾((𝑢∗𝑥)𝑟𝑗−1𝑢∗𝑦1𝑢(𝑥
∗𝑢)𝑠𝑗−1)

 +𝛾 (𝜆(𝑢∗𝑥)𝑟𝑗−1(𝑥∗𝑢)𝑠𝑗−1 − 𝛿𝑟𝑗𝑠𝑗𝜆
𝑟𝑗)

= 𝐴𝑗
′ + 𝐴𝑗

′′ + 𝐶𝑗 .

 

After such replacements are done, 𝑤 can be rewritten as a sum of terms, in which some 𝑤𝑗 

are replaced by 𝐴𝑗 's, 𝐴𝑗
′ 's, 𝐴𝑗

′′ 's, some by 𝐵𝑗 's and some by 𝐶𝑗 's. Consider the terms where 
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all replacements are replacements by 𝐴𝑗 's, 𝐴𝑗
′ 's, 𝐴𝑗

′′ 's. These terms can be written as 

alternating products in Ω = {𝑥, 𝑥∗, 𝑦1, 𝑦2, 𝑔𝑘, 𝑥𝑔𝑘, 𝑔𝑘𝑥
∗, 𝑥𝑔𝑘𝑥

∗} and {𝑢, 𝑢∗}. But each 

element ℎ ∈ Ω satisfies 𝜔(ℎ) = 𝜔(𝑝ℎ) = 0, hence ℎ is a s.o.-limit of a bounded sequence 

in span (Λ({𝑎}, {𝑏}) ∖ {1, 𝑎}). We use the same argument as before. To prove that 𝜔𝑝 is zero 

on such terms, it suffices to show that 𝜔 is zero on a nontrivial alternating product in span 

(Λ({𝑎}, {𝑏}) ∖ {1, 𝑎}) and {𝑢, 𝑢∗}. But regrouping gives a nontrivial alternating product in 

{𝑎, 𝑢, 𝑢∗} and {𝑏}. So, by freeness 𝜔 is zero on such a product.  

In the rest of the terms at least one 𝑤𝑗 is replaced by 𝐵𝑗 or 𝐶𝑗 . Then, since 

𝐵𝑗  = 𝜆 ((𝑢∗𝑥)𝑘𝑗−1(𝑥∗𝑢)𝑙𝑗−1 − 𝛿𝑘𝑗−1,𝑙𝑗−1𝜆
𝑘𝑗−1)

𝐶𝑗  = 𝛾𝜆 ((𝑢∗𝑥)𝑟𝑗−1(𝑥∗𝑢)𝑠𝑗−1 − 𝛿𝑟𝑗−1,𝑠𝑗−1𝜆
𝑟𝑗−1) ,

 

we see that such a term is once again 

𝑏0𝑤1
′𝑏1⋯𝑤𝑛

′𝑏𝑛, 
so of the same form as 𝑊 in Equation (6), but now with the total number of symbols 𝑢∗ and 

𝑥 strictly smaller than the total number of such symbols in 𝑊. Thus applying the 

replacement procedure to each of these terms repeatedly, we finally get 𝜔𝑝(𝑊) =

𝜔𝑝(∑𝑊𝑖), where each 𝑊𝑖 has the same form as 𝑊 in Equation (6), but for which the 

substrings 𝑤𝑗 are either as in Equation (8) with 𝑘𝑗 or 𝑙𝑗 equal to zero, or 𝑤𝑗 is as Equation 

(10) (so that no further replacements can be performed). But then each 𝑊𝑖 can be rewritten 

as a nontrivial alternating product in Ω and {𝑢, 𝑢∗}, so as before 𝜔𝑝(𝑊𝑖) = 0. Thus 

𝜔𝑝(𝑊) = 0. 

We finish at last the proof of Proposition (1.1.16). We know that 𝑝𝑀𝑝 =
𝑊∗(𝑝𝑞𝑝, 𝑣, 𝑃), and thanks to Lemma (1.1.18), 𝑊∗(𝑝𝑞𝑝) and 𝑊∗(𝑣, 𝑃) are ∗ − free in 𝑝𝑀𝑝 

with respect to 𝜔𝑝. As 𝑝𝑞𝑝 is with no atoms with respect to 𝜔𝑝, with the previous notation, 

we get 𝑊∗(𝑝𝑞𝑝) ≅ 𝐿(𝐙). Concerning 𝑊∗(𝑣, 𝑃), let 

𝑒𝑖𝑗  = 𝑣𝑖(𝑝 − 𝑃)(𝑣∗)𝑗

𝑓𝑘𝑙  = 𝑣𝑘(𝑃 − 𝑣𝑣∗)(𝑣∗)𝑙 ,
 

for 𝑖, 𝑗, 𝑘, 𝑙 ∈ 𝐍. With straightforward computations, we see that (𝑒𝑖𝑗)𝑖,𝑗∈𝐍 and (𝑓𝑘𝑙)𝑘,𝑙∈𝐍 are 

systems of matrix units, for all 𝑖, 𝑗, 𝑘, 𝑙 ∈ 𝐍, 𝑒𝑖𝑗𝑓𝑘𝑙 = 𝑓𝑘𝑙𝑒𝑖𝑗 = 0, and 𝑊∗(𝑒𝑖𝑗 , 𝑓𝑘𝑙) =

𝑊∗(𝑣, 𝑃).  
Moreover, 𝜔𝑝(𝑒𝑖𝑖) = (1 − 𝛾)𝜆

𝑖 and 𝜔𝑝(𝑓𝑘𝑘) = (𝛾 − 𝜆)𝜆
𝑘, with 𝛾 = 𝛽/(1 − 𝛼). 

Consequently, with notation of Proposition (1.1.16), we finally get (𝑊∗(𝑣, 𝑃), 𝜔𝑝) ≅

(𝐂2, 𝜏𝛿) ⊗ (𝐵(ℓ2(𝐍)),𝜓𝜆). 
The proof is complete. 

Notation (1.1.19)[1]: For a von Neumann (𝐴, 𝜙𝐴) endowed with a state 𝜙𝐴, we will denote 

by 𝐴∘ the kernel of 𝜙𝐴 on 𝐴. 

The next proposition is in some sense a generalization of Theorem 1.2 of [8]. We will 

write a complete proof. 

Proposition (1.1.20)[1]: Let (𝐴, 𝜙𝐴), (𝐵, 𝜙𝐵) and (𝐶, 𝜙𝐶) be three von Neumann algebras 

endowed with faithful, normal states such that 𝐴 is a factor of type I. Let 

(ℳ,𝜓)  = ((𝐶, 𝜙𝐶) ⊗ (𝐴,𝜙𝐴)) ∗ (𝐵, 𝜙𝐵)
∪   

(𝒩, 𝜓)  = (𝐴, 𝜙𝐴) ∗ (𝐵, 𝜙𝐵)                        
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and let 𝑒 be a minimal projection of 𝐴. Then in 𝑒ℳℯ, we have that 𝑒𝒩ℯ and 𝐶 ⊗ 𝑒 are free 

with respect to 𝜓𝑒 =
1

𝜓(𝑒)
𝜓 and together they generate 𝑒ℳℯ, so that 

(𝑒ℳ𝑒, 𝜓𝑒) ≅ (𝐶, 𝜙𝐶) ∗ (𝑒𝒩𝑒,𝜓𝑒). 
Proof. We follow step by step the proof of Theorem 1.2 of [8]. For notational convenience, 

we identify 𝐶 with 𝐶 ⊗ 1 ⊂ ℳ. To see that 𝑒𝒩𝑒 and 𝑒𝐶 generate 𝑒ℳℯ, note that 𝒩 and 

𝑒𝐶 generate ℳ; so span Λ(𝒩, 𝑒𝐶) is dense in ℳ and 𝑒Λ(𝒩, 𝑒𝐶)𝑒 = Λ(𝑒𝒩𝑒, 𝑒𝐶). 
We shall show that 𝜓𝑒 is zero on a nontrivial alternating product in (𝑒𝒩𝑒)∘ and 𝑒𝐶∘. 

Let 𝑎 = 𝑒 − 𝜓(𝑒)1. Then 𝐴∘ = 𝐂𝑎 + 𝑆 where 

𝑆 = { 𝑠 ∈ 𝐴 ∣∣ 𝜓(𝑠) = 0, ese = 0 }. 
Let 𝑥 ∈ (𝑒𝒩𝑒)∘. Then by Kaplansky Density Theorem, 𝑥 is a s.o.-limit of a bounded 

sequence (𝑅𝑘)𝑘∈𝐍 in span Λ({𝑎} ∪ 𝑆, 𝐵∘). For 𝑄 ∈ span (Λ({𝑎} ∪ 𝑆, 𝐵∘) ∖ {1}), we see that 

𝜓 on 𝑒𝑄𝑒 is equal to a fixed constant times the coefficient of 𝑎 in 𝑄. So since 𝜓(𝑅𝑘) → 0 

and 𝜓(𝑒𝑅𝑘𝑒) → 0, we may assume that the coefficients in each 𝑅𝑘 of 1 and 𝑎 are zero. Since 

𝑅𝑘 − 𝑒𝑅𝑘𝑒 → 0 for the s.o. topology, we may also assume that the coefficient of each 

element of 𝑆 in 𝑅𝑘 is zero, i.e., that each 𝑅𝑘 ∈ span (Λ({𝑎} ∪ 𝑆, 𝐵
∘) ∖ ({1, 𝑎} ∪ 𝑆)). To 

prove the proposition, it suffices to show that 𝜓 is zero on a nontrivial alternating product 

in Λ({𝑎} ∪ 𝑆, 𝐵∘) ∖ ({1, 𝑎} ∪ 𝑆) and 𝑒𝐶∘. But regrouping and multiplying some neighboring 

elements gives (a constant times) a nontrivial alternating product in {𝑎} ∪ 𝑆 ∪ (𝑒𝐶∘) ∪
(𝑆𝐶∘) and 𝐵∘. Thus by freeness, 𝜓 is zero on such a product. 

Theorem (1.1.21)[1]: If 𝛼 = 𝜆/(𝜆 + 1) ≤ min{𝛽, 1 − 𝛽}, then 

(𝑀2(𝐂), 𝜔𝜆) ∗ (𝐂
2, 𝜏𝛽) ≅ (𝑇𝜆, 𝜑𝜆) .                                     (11) 

Proof. Apply Proposition (1.1.20) with (𝐴, 𝜙𝐴) = (𝐵(ℓ
2(𝐍)), 𝜓𝜆), (𝐵, 𝜙𝐵) = 

(𝐿(𝐙), 𝜏), (𝐶, 𝜙𝐶) = (𝐂
2, 𝜏𝛿). Let 𝑒 = 𝑒00 ∈ 𝐵(ℓ

2(𝐍)), and denote 

(ℳ,𝜓) =  ((𝐂2, 𝜏𝛿)⊗ (𝐵(ℓ2(𝐍)),𝜓𝜆)) ∗ (𝐿(𝐙), 𝜏)
∪   

(𝒩, 𝜓) =  (𝐵(ℓ2(𝐍)),𝜓𝜆) ∗ (𝐿(𝐙), 𝜏).                       
 

We get 

(𝑒ℳ𝑒,𝜓𝑒) ≅ (𝐂
2, 𝜏𝛿) ∗ (𝑒𝒩𝑒, 𝜓𝑒). 

But with notation , (𝒩,𝜓) ≅ (𝑇𝜆, 𝜑𝜆) is the free Araki-Woods factor of type III𝜆. Since 𝑒 =
𝑒00, applying Proposition (1.1.11), we get (𝑒𝒩𝑒,𝜓𝑒) ≅ (𝑇𝜆, 𝜑𝜆). We use now the "free 

absorption" properties of (𝑇𝜆, 𝜑𝜆). Denote by 𝐿(𝐅(𝑠)) the interpolated free factor with 𝑠 
generators. We know that (𝑇𝜆, 𝜑𝜆) ∗ (𝐿(𝐅∞), 𝜏) ≅ (𝑇𝜆, 𝜑𝜆) (Corollary 5.5 in [15]) and 

𝐿(𝐙) ∗ (𝐂2, 𝜏𝛿) ≅ 𝐿(𝐅(1 + 2𝛿(1 − 𝛿)))( Lemma 1.6 in [8]). Consequently, 

(𝑒ℳ𝑒, 𝜓𝑒) ≅ (𝐂
2, 𝜏𝛿) ∗ (𝑇𝜆, 𝜑𝜆) ≅ (𝑇𝜆, 𝜑𝜆). 

But, in a canonical way 

(ℳ,𝜓) ≅ (𝑒ℳ𝑒, 𝜓𝑒) ⊗ (𝐵(ℓ2(𝐍)), 𝜓𝜆). 

Since (𝑇𝜆, 𝜑𝜆) ≅ (𝑇𝜆, 𝜑𝜆) ⊗ (𝐵(ℓ2(𝐍)),𝜓𝜆), we get 

(ℳ,𝜓) ≅ (𝑇𝜆, 𝜓𝜆). 
We remind that we have proved (Proposition (1.1.16)) that 

(𝑝𝑀𝑝,𝜔𝑝) ≅ 𝐿(𝐙) ∗ ((𝐂
2, 𝜏𝛿) ⊗ (𝐵(ℓ2(𝐍)), 𝜓𝜆)) = (ℳ,𝜓), 

where (𝑀,𝜔) = (𝑀2(𝐂),𝜔𝜆) ∗ (𝐂
2, 𝜏𝛽) and 𝑝 = 𝑝11 ∈ 𝑀2(𝐂). Thus, 

(𝑝𝑀𝑝,𝜔𝑝) ≅ (𝑇𝜆, 𝜑𝜆). 
But once again 

(𝑀,𝜔) ≅ (𝑝𝑀𝑝,𝜔𝑝) ⊗ (𝑀2(𝐂),𝜔𝜆). 
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Since (𝑇𝜆, 𝜑𝜆) ≅ (𝑇𝜆, 𝜑𝜆) ⊗ (𝑀2(𝐂),𝜔𝜆), we finally get 

(𝑀2(𝐂), 𝜔𝜆) ∗ (𝐂
2, 𝜏𝛽) ≅ (𝑇𝜆, 𝜑𝜆). 

We prove Theorem (1.1.5). We will be using the "machinery" of amalgamated free 

products of von Neumann algebras. We introduce some notations and recall some basic facts 

about free products with amalgamation (see [9],[17],[22]). 

Let (𝐵, 𝜑𝐵), (𝐴𝑖 , 𝜑𝑖), 𝑖 = 1,2, be three von Neumann algebras endowed with faithful 

normal states. Assume that there exist modular embeddings 𝜌𝑖: (𝐵, 𝜑𝐵) ↪ (𝐴𝑖 , 𝜑𝑖). Denote 

by 𝐸𝑖: 𝐴𝑖 → 𝐵 the unique state-preserving conditional expectation associated with the 

embedding 𝜌𝑖. We shall denote by 

(𝑀, 𝐸):= (𝐴1, 𝐸1) ∗𝐵∗ (𝐴2, 𝐸2) 
the free product with amalgamation over 𝐵 of 𝐴1 and 𝐴2 w.r.t. the conditional expectations 

𝐸1 and 𝐸2. 

Let (𝐵, 𝜑𝐵) and (𝐶, 𝜑𝐶) bẻ two von Neumann algebras togetherr with a faithful 

normal state. Let (𝐴, 𝜑𝐴) = (𝐵, 𝜑𝐵) ∗ (𝐶, 𝜑𝐶) be their free product. We have canonical 

modular embeddings 𝜌𝐵: (𝐵, 𝜑𝐵) ↪ (𝐴, 𝜑𝐴), 𝜌𝐶: (𝐶, 𝜑𝐶) ↪ (𝐴, 𝜑𝐴) (see [7]). 

We shall regard 𝐵, 𝐶 ⊂ 𝐴. Define as before 𝐹: 𝐴 → 𝐵 to be the (unique) state-

preserving conditional expectation. Let 𝐵∘ = 𝐵 ∩ ker (𝜑𝐵), 𝐶
∘ = 𝐶 ∩ ker (𝜑𝐶) and denote 

as usual Ω = Λ(𝐵∘, 𝐶∘) the set of alternating products in 𝐵∘ and 𝐶∘ including the trivial one. 

From [5], we know that 

∀𝑏 ∈ 𝐵, 𝐹(𝑏) = 𝑏 

∀𝑧 ∈ Ω ∖ (𝐵∘ ∪ {1}), 𝐹(𝑧) = 0. 
The following proposition is well-known from specialists but we will give a proof for the 

sake of completeness. 

Proposition (1.1.22)[1]: We use the same notations as before. Moreover, let (𝑀,𝜑𝑀) be a 

von Neumann algebra such that 𝐵 ⊂ 𝑀 together with 𝐸: (𝑀,𝜑𝑀) → (𝐵, 𝜑𝐵) a state-

preserving conditional expectation. Denote by (ℳ, 𝐺) = (𝑀, 𝐸) ∗𝐵 (𝐵 ∗ 𝐶, 𝐹) and denote 

by 𝜓 = 𝜑𝐵 ∘ 𝐺 the canonical state on ℳ. Then, 

(ℳ,𝜓) ≅ (𝑀,𝜑𝑀) ∗ (𝐶, 𝜑𝐶). 
Proof. We see immediatly that (𝑀, 𝜑𝑀) and (𝐶, 𝜑𝐶) embed in (ℳ,𝜓) in a state-preserving 

way and together they generate ℳ. It remains to prove that 𝑀 and 𝐶 are free together w.r.t. 

the state 𝜓. For notational convenience, we may assume 𝑀,𝐶 ⊂ ℳ. Denote 𝑀∘ = 𝑀 ∩
ker (𝜑𝑀), 𝐶

∘ = 𝐶 ∩ ker (𝜑𝐶). Let 𝑊 be a nontrivial alternating product in 𝑀∘ and 𝐶∘, so that 

𝑊 can be written 

𝑊 = 𝑥0𝑤1𝑥1⋯𝑤𝑛𝑥𝑛, 
where 𝑥𝑗 ∈ 𝐶

∘, 𝑤𝑗 ∈ 𝑀
∘ for all 𝑗, except possibly 𝑥0 and/or 𝑥𝑛 are equal to 1. Denote Ω =

Λ(𝐵∘, 𝐶∘). If 𝑊 ∈ 𝑀∘, there is nothing to do. If not, for each 𝑗, replace 𝑤𝑗 by 

𝑤𝑗 = 𝑤𝑗
′ + 𝑏𝑗 , 

where 𝑤𝑗
′ ∈ 𝑀 ∩ ker 𝐸 and 𝑏𝑗 ∈ 𝐵

∘. Applying the replacement procedure and multiplying 

some neighboring elements, we get 𝜓(𝑊) = 𝜓(∑𝑊𝑖) where each 𝑊𝑖 is a nontrivial 

alternating product in 𝑀 ∩ ker 𝐸 and Ω ∖ (𝐵∘ ∪ {1}). But, we saw that Ω ∖ (𝐵∘ ∪ {1}) ⊂
ker 𝐹. Thus, by freeness with amalgamation over 𝐵, we get 𝐺(𝑊𝑖) = 0. But 𝜓(𝑊𝑖) = (𝜓 ∘
𝐺)(𝑊𝑖) = 0, consequently 𝜓(𝑊) = 0. 

Lemma (1.1.23)[1]: Let (𝑁, 𝜑) be a von Neumann algebra endowed with a faithful normal 

state such that the centralizer 𝑁𝜑 is a factor. Let (𝑀𝑛(𝐂), 𝜔) be a matrix algebra endowed 
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with a faithful normal state. Let 𝜌𝑖: (𝑀𝑛(𝐂), 𝜔) ↪ (𝑁,𝜑), 𝑖 = 1,2, be two modular 

embeddings. Then, there exists a unitary 𝑢 ∈ 𝒰(𝑁𝜑) such that Ad (𝑢) ∘ 𝜌1 = 𝜌2. 

Proof. Denote by (𝑒𝑘𝑙)0≤𝑘,𝑙≤𝑛−1 the matrix unit in 𝑀𝑛(𝐂). Let 𝑖 ∈ {1,2}. Denote 𝑝𝑖 = 

𝜌𝑖(𝑒00). Since 𝜌𝑖 is modular, we have 𝑝1,2 ∈ 𝑁
𝜑 and 𝜑(𝑝1) = 𝜑(𝑝2) = 𝜔(𝑒00). Since 𝑁𝜑 

is a factor, there exists a partial isometry 𝑣 ∈ 𝑁𝜑 such that 𝑝1 = 𝑣
∗𝑣 and 𝑝2 = 𝑣𝑣

∗. Denote 

𝑢 = ∑𝑖=0
𝑛−1  𝜌2(𝑒𝑖0)𝑣𝜌1(𝑒0𝑖). An easy computation shows that 𝑢 is a unitary and 𝑢 ∈ 𝑁𝜑, 

since 𝜌1,2 are modular. Moreover, for any 0 ≤ 𝑘, 𝑙 ≤ 𝑛 − 1, 

𝑢𝜌1(𝑒𝑘𝑙)𝑢
∗ = 𝜌2(𝑒𝑘𝑙). 

Theorem (1.1.24)[1]: Let (𝐴1, 𝜙1) and (𝐴2, 𝜙2) be any von Neumann algebras endowed 

with faithful, normal states. Assume that for some 𝜆, 𝛽 ∈]0,1[, there exist modular 

embeddings 
(𝑀2(𝐂), 𝜔𝜆)  ↪ (𝐴1, 𝜙1)

(𝐂2, 𝜏𝛽)  ↪ (𝐴2, 𝜙2),
 

such that 𝜆/(𝜆 + 1) ≤ min{𝛽, 1 − 𝛽}. Then 

(𝐴1, 𝜙1) ∗ (𝐴2, 𝜙2) ≅ (𝐴1, 𝜙1) ∗ (𝑇𝜆, 𝜑𝜆) ∗ (𝐴2, 𝜙2). 
Proof. We shall simply denote by 𝑀2 the matrix algebra 𝑀2(𝐂). Denote by (𝐴, 𝜙) = 

(𝐴1, 𝜙1) ∗ (𝐴2, 𝜙2) and denote by 
𝐸1: (𝐴1, 𝜙1)  → (𝑀2, 𝜔𝜆)

𝐸2: (𝐴2, 𝜙2)  → (𝐂2, 𝜏𝛽)

�̃�: (𝐴, 𝜙)  → (𝐂2, 𝜏𝛽)

 

the canonical state-preserving conditional expectations. Since (𝑀2, 𝜔𝜆) ∗ (𝐂
2, 𝜏𝛽) ≅

(𝑇𝜆, 𝜑𝜆) (Theorem (1.1.21)), denote by 𝐹: (𝑇𝜆, 𝜑𝜆) → (𝑀2, 𝜔𝜆) the associated state-

preserving conditional expectation. Let (𝑁,𝜓) = (𝐴1, 𝜙1) ∗ (𝐂
2, 𝜏𝛽). Applying Proposition 

(1.1.22), we get 

(𝑁, 𝐸) ≅ (𝐴1, 𝐸1) ∗
𝑀2
(𝑀2 ∗ 𝐂

2, 𝐹). 

Since (𝑇𝜆)
𝜑𝜆 ≅ 𝐿(𝐅∞) is a factor, applying Lemma (1.1.23) for 𝑛 = 2, we obtain that the 

modular embedding of (𝑀2, 𝜔𝜆) into (𝑇𝜆, 𝜑𝜆) is unique up to a conjugation by a unitary in 

𝑇𝜆
𝜑𝜆, and we have 

(𝑁, 𝐸)  ≅ (𝐴1, 𝐸1) ∗ (𝑀2 ∗ 𝑇𝜆, 𝐹)

(𝑁,𝜓)  ≅ (𝐴1, 𝜙1) ∗ (𝑇𝜆, 𝜑𝜆)( by Proposition (1.1.22)) 

 ≅ ((𝐴1, 𝜙1) ∗ (𝑇𝜆, 𝜑𝜆)) ∗ (𝑇𝜆, 𝜑𝜆).

 

 

From Theorem 11 of [2], we get that the centralizer algebra 𝑁𝜓 is a factor. If 𝜌𝑖: (𝐂
2, 𝜏𝛽) ↪ 

(𝑁,𝜓) are two modular embeddings, denote 𝑝𝑖 = 𝜌𝑖(𝑝) ∈ 𝑁
𝜓 such that 𝜓(𝑝𝑖) = 𝛽. Since 

𝑝1 and 𝑝2 are equivalent in 𝑁𝜓, 𝜌1 and 𝜌2 are unitarily conjugate. Consequently, using the 

isomorphism 

(𝑁, 𝜓) ≅ (𝐴1, 𝜙1) ∗ (𝑇𝜆, 𝜑𝜆) ∗ (𝐂
2, 𝜏𝛽),                             (12) 

we shall denote by 𝐺: (𝑁, 𝜓) → (𝐂2, 𝜏𝛽) the associated state-preserving conditional 

expectation. We finally get 
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(𝐴, �̃�)  ≅ (𝐴1 ∗ 𝐂
2, 𝐺) ∗

𝐂2
(𝐴2, 𝐸2) (by Proposition (1.1.22)) 

 ≅ (𝐴1 ∗ 𝑇𝜆 ∗ 𝐂
2, 𝐺) ∗

𝐂2
(𝐴2, 𝐸2)( by (12))

(𝐴, 𝜙)  ≅ (𝐴1, 𝜙1) ∗ (𝑇𝜆, 𝜑𝜆) ∗ (𝐴2, 𝜙2). (by Proposition (1.1.22)) 

 

The proof is complete. 

Theorem (1.1.5) is a straightforward corollary of Theorem (1.1.24). We end by giving 

some examples of von Neumann algebras which satisfy assumptions of Theorem (1.1.5). 

We introduce the class 𝒮 of all von Neumann algebras (𝑀,𝜙) with separable predual and 

endowed with a faithful, normal, almost periodic state 𝜙 such that 

(𝑀,𝜙) ∗ (𝐿(𝐙), 𝜏𝐙) ≅ (𝑇Sd(𝜙), 𝜑Sd(𝜙)). 

Note that if (𝑀1, 𝜙1) and (𝑀2, 𝜙2) are in 𝒮, then (𝑀1, 𝜙1) ∗ (𝑀2, 𝜙2) is also in 𝒮. 

Example (1.1.25)[1]: We give several examples of von Neumann algebras in the class 𝒮. 

This list is not exhaustive and there is nothing really new here: these examples are mere 

consequences of results in [5],[6],[8],[10],[15],[19], and of Proposition (1.1.20). 

1. Type I: All factors of type I endowed with a faithful, normal nontracial state 𝜙.  

2. Type III: All the almost periodic free Araki-Woods factors (𝑇Γ, 𝜑Γ) endowed with 

their free quasi-free state.  

3. Tensor products: All the tensor products (𝑁, 𝜔)⊗ ( Type I, 𝜙), where (𝑁,𝜔) is: 

4. Any finite-dimensional von Neumann algebra of the form 𝐶
 

𝛼1
⊕⋯⊕ 𝐶

 

𝛼𝑛
 with 𝛼𝑖 >

0 for all 𝑖 and ∑𝛼𝑖 = 1.  

5. (ℛ, 𝜏) the hyperfinite II1 factor. 

6. Any interpolated free group factor 𝐿(𝐅(𝑠)), 𝑠 > 1  

7. Free products: All the free products of the previous examples. 

We still do not know whether all the free products of finite dimensional matrix 

algebras (𝐴1, 𝜙1) ∗ (𝐴2, 𝜙2) are isomorphic to free Araki-Woods factors. Assume that 𝐴1 =
𝑀𝑛(𝐂) with 

𝜙1 = Tr((
𝜆1

⋱
𝜆𝑛

) ⋅) , 𝜆1 ≤ ⋯ ≤ 𝜆𝑛. 

Let 𝛽 ∈]0,1[ such that 𝜆1 ≤ min{𝛽, 1 − 𝛽}. With our techniques, it is not difficult to see 

that if one can prove that (𝐴1, 𝜙1) ∗ (𝐂
2, 𝜏𝛽) is a free Araki-Woods factor, then all the free 

products (𝐴1, 𝜙1) ∗ (𝐴2, 𝜙2) are also free Araki-Woods factors. That is exactly what we did 

for 𝑛 = 2. But one of the crucial ingredients in the proof was the precise picture of 

Voiculescu in Theorem (1.1.14). This precise description no longer exists for 𝑛 ≥ 3 (see 

[8]). 
 

Section (1.2): Most one Cartan Subalgebra 𝐈𝐈 
A celebrated theorem of Connes ([28]) states that all amenable II1 factors are 

isomorphic to the approximately finite dimensional II1 factor 𝑅 of Murray and von 

Neumann. In particular, all group II1 factors 𝐿(Γ) associated with ICC (infinite conjugacy 

class) amenable groups Γ, and all group measure space II1 factors 𝐿∞(𝑋) ⋊ Γ arising from 

(essentially) free ergodic probability-measure preserving (abbreviated as p.m.p.) actions 

Γ ↷ 𝑋 of countable amenable groups Γ on standard probability spaces 𝑋, are isomorphic to 

𝑅. 
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In contrast to the amenable case, the group measure space II1 factors 𝐿∞(𝑋) ⋊ Γ of 

free ergodic p.m.p. actions of non-amenable groups Γ on standard probability spaces 𝑋 form 

a rich and particularly important class of II1 factors. More general crossed product 

construction provides a wider class. We want to investigate the isomorphy problem of the 

crossed product II1 factors. Namely, given the crossed product 𝑀 = 𝑄 ⋊ Γ of a finite 

amenable von Neumann algebra (𝑄, 𝜏) by a 𝜏-preserving action of a countable group Γ, to 

what extent can we recover information on the original action Γ ↷ 𝑄? In particular, does 

there exist a group measure space II1 factor 𝑀 = 𝐿∞(𝑋) ⋊ Γ which remembers completely 

the group Γ and the action Γ ↷ 𝑋? The first task would be to determine all regular amenable 

subalgebras of a given II1 factor 𝑀. Recall that a von Neumann subalgebra 𝑃 of 𝑀 is said 

to be regular if the normalizer group of 𝑃 in 𝑀 generates 𝑀 as a von Neumann algebra 

([35]). A regular maximal abelian subalgebra 𝐴 of 𝑀 is called a Cartan subalgebra ([36]). 

In the case of a group measure space II1 factor 𝑀 = 𝐿∞(𝑋) ⋊ Γ, the von Neumann 

subalgebra 𝐿∞(𝑋) is a Cartan subalgebra and determining its position amounts to recovering 

the orbit equivalence relation of the original action Γ ↷ 𝑋 (see [36]). By [29], the 

approximately finite dimensional II1 factor 𝑅 has a unique Cartan subalgebra, up to 

conjugacy by an automorphism of 𝑅. In ([48]), we provided the first class of examples of 

non-amenable II1 factors having unique Cartan subalgebra. They are the group measure 

space II1 factors 𝑀 = 𝐿∞(𝑋) ⋊ 𝔽𝑟 associated with free ergodic p.m.p. profinite actions 

𝔽𝑟 ↷ 𝑋 of free groups 𝔽𝑟 . We extend this result from the free groups 𝔽𝑟 to a lager class of 

countable groups with the property (strong) (HH)+, defined as follows. 

Definition (1.2.1)[23]: Let 𝐺 be a second countable locally compact group. By a 1-cocycle, 

we mean a continuous map 𝑏: 𝐺 → 𝒦, or a triplet (𝑏, 𝜋,𝒦) of 𝑏 and a continuous unitary 

𝐺-representation 𝜋 on a Hilbert space 𝒦, which satisfies the 1-cocycle identity: 

∀𝑔, ℎ ∈ Γ,  𝑏(𝑔ℎ) = 𝑏(𝑔) + 𝜋𝑔𝑏(ℎ). 

The 1-cocycle 𝑏 is called proper if the set {𝑔 ∈ 𝐺: ∥ 𝑏(𝑔) ∥≤ 𝑅} is compact for every 𝑅 >
0. Assume that 𝐺 is non-amenable. We say 𝐺 has the Haagerup property (see [27],[26]) if it 

admits a proper 1-cocycle (𝑏, 𝜋,𝒦). In the case when 𝜋 can be taken non-amenable (resp. 

to be weakly contained in the regular representation), we say 𝐺 has the property (resp. 

strong) (HH). We say 𝐺 has the property (strong) (HH)+if Γ has the property (strong) (HH) 
and the complete metric approximation property (i.e., it is weakly amenable with constant 

1). 

We will prove that lattices of products of SO(𝑛, 1)(𝑛 ≥ 2) and SU(𝑛, 1) have the 

property (HH)+, and that lattices of SL(2,ℝ) and SL(2, ℂ) have the property strong (HH)+. 

Building on our previous work ([48]) and Peterson's deformation technology ([49]), we 

obtain the following. 

Since 𝐿∞(𝑋) ⋊ Γ has the complete metric approximation property if Γ has it and the 

action is profinite, the weak compactness assumption holds automatically. 

Corollary (1.2.2)[23]: Let Γ be a countable group with the property (HH)+. Then, 𝐿(Γ) has 

no Cartan subalgebra. Moreover, if Γ ↷ 𝑋 is a free ergodic p.m.p. profinite action, then 

𝐿∞(𝑋) is the unique Cartan subalgebra in 𝐿∞(𝑋) ⋊ Γ, up to unitary conjugacy. 

As in [48], a stronger result holds if Γ has the property strong (HH). 

Corollary (1.2.3)[23]: Let Γ be a countable group with the property strong (HH)+.Then, 

𝐿(Γ) is strongly solid, i.e., the normalizer of every amenable diffuse subalgebra generates 

an amenable von Neumann subalgebra. 
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Once the Cartan subalgebra 𝐿∞(𝑋) is determined, the isomorphy problem of 𝑀 =
𝐿∞(𝑋) ⋊ Γ reduces to that of the orbit equivalence relations. Then, the group Γ and the 

action Γ ↷ 𝑋 can be recovered if the orbit equivalence cocycle untwists ([59]). Ioana ([42]) 

proved a cocycle (virtual) super-rigidity result with discrete targets for p.m.p. profinite 

actions of property (T) groups. Here, we prove a similar result for property (𝜏) groups, but 

with some restrictions on the targets. Recall that a (residually finite) group Γ is said to have 

the property (𝜏) if the trivial representation is isolated among finite unitary representations. 

See [43], [44] for more information on this property. 

It is plausible that the residual finiteness assumption on Λ is in fact redundant. Since 

there are groups having both properties (HH)+ and (𝜏), Theorems A and C together imply a 

rigidity result for group measure space von Neumann algebras. 

Let Γ′ ≤ Γ be a finite index subgroup and Γ′ ↷ (𝑋′, 𝜇′) be a m.p. action. Then, the 

induced action IndΓ′
Γ  (Γ′ ↷ 𝑋′) is the Γ-action on the measure space Γ/Γ′ × 𝑋′, given by 

𝑔(𝑝, 𝑥) = (𝑔𝑝, 𝜎(𝑔𝑝)−1𝑔𝜎(𝑝)𝑥), where 𝜎 is a fixed cross 

section 𝜎: Γ/Γ′ → Γ. (The action is unique up to conjugacy.) We say that two 

p.m.p. actions Γ𝑖 ↷ (𝑋𝑖 , 𝜇𝑖), 𝑖 = 1,2, are strongly virtually isomorphic if there are a p.m.p. 

action Γ′ ↷ (𝑋′, 𝜇′) and finite index inclusions Γ′ ↪ Γ𝑖 such that Γ𝑖 ↷ 𝑋𝑖 are measure-

preservingly conjugate to Ind
Γ′
Γ𝑖  (Γ′ ↷ 𝑋′). 

Connes and Jones ([30]) gave a first example of II1 factors having more than one 

Cartan subalgebra. We present here a new class of examples. To describe it, recall first that 

if Γ is a discrete group having an infinite normal abelian subgroup 𝐻, then 𝐿(𝐻) is a Cartan 

subalgebra of 𝐿(Γ) if and only if it satisfies the relative ICC condition: for any 𝑔 ∈ Γ ∖ 𝐻, 

the set {𝑎𝑔𝑎−1: 𝑎 ∈ 𝐻} is infinite. The group 𝐻 ⋊ Γ acts on 𝐻 by (𝑎, 𝑔)𝑏 = 𝑎𝑔𝑏𝑔−1 (cf. 

Proposition 2.11 in [48]). 

We distinguish two Cartan subalgebras by weak compactness. The simplest example 

is the following. Another example will be presented. 

Corollary (1.2.4)[23]: Let 𝑝1, 𝑝2, … be prime numbers. Then the II1-factor 

𝑀 = 𝐿∞ (lim
←
 (ℤ/𝑝1⋯𝑝𝑛ℤ)

2) ⋊ (ℤ2 ⋊ SL(2, ℤ)) 

has more than one Cartan subalgebra. 

We observe that in the above, 𝐿(ℤ2) is actually an (strong) HT Cartan subalgebra of 

𝑀, in the sense of [51]. Thus, while an HT factor has unique HT Cartan subalgebra, up to 

unitary conjugacy, there exist HT factors that have at least two non-conjugate Cartan 

subalgebras. It is plausible that there is no essentially-free group action which gives rise to 

the same orbit equivalence relation as (𝐿(ℤ2) ⊂ 𝑀). Such examples were first exhibited by 

Furman ([37]). See also [46] and [53]. 

Let 𝐺 be a locally compact group. We recall that a unitary Γ-representation (𝜋,ℋ) is 

called amenable if there is a state 𝜑 on 𝔹(ℋ) which is Ad 𝜋-invariant: 

𝜑 ∘ Ad 𝜋𝑔 = 𝜑 for all 𝑔 ∈ 𝐺. This notion was introduced and studied by Bekka ([24]). 

Ámong other things, he proved that 𝜋 is amenable if and only if 𝜋 ⊗ 𝜋‾  weakly contains the 

trivial representation. 

Let 𝜎 be the conjugate action of 𝐺 on 𝐿∞(𝐺): (𝜎ℎ𝑓)(𝑔) = 𝑓(ℎ
−1𝑔ℎ) for 𝑓 ∈ 𝐿∞(𝐺) 

and 𝑔, ℎ ∈ 𝐺. We say a locally compact group 𝐺 is inner-amenable if there is a 𝜎-invariant 

state 𝜇 on 𝐿∞(𝐺) which vanishes on 𝐶0(𝐺). We note that in several literatures it is only 

required that 𝜇 is 𝜎-invariant and 𝜇 ≠ 𝛿𝑒 (in case 𝐺 is discrete). 
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Proposition (1.2.5)[23]: A locally compact group 𝐺 with the property (HH) has the 

Haagerup property and is not inner-amenable. 

Proof. Let (𝑏, 𝜋,𝒦) be a proper 1-cocycle and suppose that there is a singular 𝜎-invariant 

state 𝜇 on 𝐿∞(𝐺). For 𝑥 ∈ 𝔹(ℋ), we define 𝑓𝑥 ∈ 𝐿
∞(𝐺) by 𝑓𝑥(𝑔) = ∥

𝑏(𝑔) ∥−2 ⟨𝑥𝑏(𝑔), 𝑏(𝑔)⟩. Let ℎ ∈ 𝐺 be fixed. Since 

∥∥𝑏(ℎ−1𝑔ℎ) − 𝜋ℎ
−1𝑏(𝑔)∥∥ = ∥∥𝑏(ℎ

−1) + 𝜋ℎ−1𝑔𝑏(ℎ)∥∥ ≤ 2 ∥ 𝑏(ℎ) ∥ ,  

and ∥ 𝑏(𝑔) ∥→ ∞ as 𝑔 → ∞, one has 𝜎ℎ(𝑓𝑥) − 𝑓𝜋ℎ𝑥𝜋ℎ
∗ ∈ 𝐶0(𝐺). It follows that 

the state 𝜑 on 𝔹(ℋ) defined by 𝜑(𝑥) = 𝜇(𝑓𝑥) is Ad 𝜋-invariant. This means 𝜋 is amenable. 

We do not know whether the converse is also true. Combined with Proposition 2.11 

in [48], the above proposition yields the following. 

Corollary (1.2.6)[23]: A discrete group Γ with the property (HH)+ does not have an infinite 

normal amenable subgroup. 

Theorem (1.2.7)[23]: The following are true. 

1. Each of the properties (HH), (HH)+, strong (HH) and strong (HH)+ inherits to a 

lattice of a locally compact group. 

2. If 𝐺1 and 𝐺2 have the property (HH) (resp. (HH)+), then so does 𝐺1 × 𝐺2. 

3. The groups SO(𝑛, 1) with 𝑛 ≥ 2 and SU(𝑛, 1) have the property (HH)+. 

4. The groups SL(2,ℝ) and SL(2, ℂ) have the property strong (HH)+. 
5. Suppose Γ is a countable non-amenable group acting properly on a finite dimensional 

CAT(0) cube complex. If all hyperplane stabilizer groups are non-co-amenable, then 

Γ has the property (HH)+. If all hyperplane stabilizer groups are amenable, then Γ has 

the property strong  (HH)+. 
Proof. The assertion (a) follows from the fact that the restriction of non-amenable (resp. 

weakly sub-regular) representation to a lattice is non-amenable (resp. weakly sub-regular). 

For the assertion (b), just consider the direct sum of 1cocycles. We prove the property 

(HH)+ for 𝐺 = SO(𝑛, 1)(𝑛 ≥ 2) and SU(𝑛, 1). It follows from Theorem 3 in [25] that every 

non-trivial irreducible representation of 𝐺 is non-amenable. Since 𝐺 does not have the 

property (T), by [56], there is a non-trivial irreducible representation with an unbounded 1-

cocycle. But, by [57], every unbounded 1-cocycles of 𝐺 is proper. Thus, 𝐺 has the property 

(HH). Weak amenability is proved in [33],[32]. 

The irreducible representation of SL(2,ℝ) and SL(2, ℂ) which have non-trivial 1-

cocycles are found in the principal series (see Example 3 in [39]) and hence are weakly 

equivalent to the regular representation. 

If a group Γ acts properly on a CAT(0) cube complex Σ, then it has a proper 1-cocycle 

into the ℓ2(𝐻), where 𝐻 is the set of hyperplanes in Σ. (See [47].) The unitary representation 

on ℓ2(𝐻) is non-amenable (resp. weakly contained in the regular representation) if and only 

if all hyperplane stabilizer subgroups are non-co-amenable (resp. amenable). Weak 

amenability for finite-dimensional CAT(0) cube complexes is proved in [38],[45]. 

Note that by a result of [31], the wreath product (ℤ/2ℤ), 𝔽2 acts properly on an 

infinite-dimensional CAT(0) cube complex with all hyperplane stabilizer subgroups 

amenable (being subgroups of ⨁𝔽2  ℤ/2ℤ). It follows that (ℤ/2ℤ){𝔽2 has the property strong 

(HH), but not (HH)+. 

We use the same conventions and notations as in ([48]). Thus the symbol "Lim" will 

be used for a state on ℓ∞(ℕ), or more generally on ℓ∞(𝐼) with 𝐼 directed, which extends the 

ordinary limit, and that the abbreviation "u.c.p." stands for "unital completely positive." We 

say a map is normal if it is ultraweakly continuous. Whenever a finite von Neumann algebra 
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𝑀 is being considered, it comes equipped with a distinguished faithful normal tracial state, 

denoted by 𝜏. Any group action on a finite von Neumann algebra is assumed to preserve the 

tracial state 𝜏. If 𝑀 = 𝑃 ⋊ Γ is a crossed product von Neumann algebra, then the tracial state 

𝜏 on 𝑀 is given by 𝜏(𝑎𝑢𝑔) = 𝛿𝑔,𝑒𝜏(𝑎) for 𝑎 ∈ 𝑃 and 𝑔 ∈ Γ. A von Neumann subalgebra 

𝑃 ⊂ 𝑀 inherits the tracial state 𝜏 from 𝑀, and the unique 𝜏-preserving conditional 

expectation from 𝑀 onto 𝑃 is denoted by 𝐸𝑃. We denote by 𝒵(𝑀) the center of 𝑀; by 𝒰(𝑀) 
the group of unitary elements in 𝑀; and by 

𝒩𝑀(𝑃) = {𝑢 ∈ 𝒰(𝑀): (Ad 𝑢)(𝑃) = 𝑃} 
the normalizer group of 𝑃 in 𝑀, where (Ad 𝑢)(𝑥) = 𝑢𝑥𝑢∗. A von Neumann subalgebra 𝑃 ⊂
𝑀 is called regular if 𝒩𝑀(𝑃)

′′ = 𝑀. A regular maximal abelian von Neumann subalgebra 

𝐴 ⊂ 𝑀 is called a Cartan subalgebra. We note that if Γ ↷ 𝑋 is a free ergodic p.m.p. action, 

then 𝐴 = 𝐿∞(𝑋) is a Cartan subalgebra in the crossed product 𝐿∞(𝑋) ⋊ Γ. (See [36].)  

We recall the definition of weak compactness. 

Definition (1.2.8)[23]: Let (𝑃, 𝜏) be a finite von Neumann algebra, and Γ ↷ 𝑃 be a 𝜏 
preserving action. The action is called weakly compact if there is a net 𝜂𝑛 ∈ 

𝐿2(𝑃 ⊗‾ 𝑃‾)+such that 

1. ∥∥𝜂𝑛 − (𝑣 ⊗ 𝑣‾)𝜂𝑛∥∥2 → 0 for 𝑣 ∈ 𝒰(𝑃); 

2. ∥∥𝜂𝑛 − Ad (𝑢 ⊗ 𝑢‾)(𝜂𝑛)∥∥2 → 0 for 𝑢 ∈ Γ; 

3. ⟨(𝑎 ⊗ 1)𝜂𝑛, 𝜂𝑛⟩ = 𝜏(𝑎) for all 𝑎 ∈ 𝑃. 

(These conditions force 𝑃 to be amenable.) A von Neumann subalgebra 𝑃 of 𝑀 is called 

weakly compact if the action 𝒩𝑀(𝑃) ↷ 𝑃 is weakly compact. 

It is proved in ([48], Proposition 3.4) that if Γ ↷ 𝑄 is weakly compact, then 𝑄 is 

weakly compact in the crossed product 𝑄 ⋊ Γ 

Theorem (1.2.9)[23]: (Theorem 3.5 in [48]). Let 𝑀 be a finite von Neumann algebra with 

the complete metric approximation property. Then, every amenable von Neumann 

subalgebra 𝑃 is weakly compact in 𝑀. 

Let 𝑄 ⊂ 𝑀 be finite von Neumann algebras. Then, the conditional expectation 𝐸𝑄 can 

be viewed as the orthogonal projection 𝑒𝑄 from 𝐿2(𝑀) onto 𝐿2(𝑄) ⊂ 𝐿2(𝑀). It satisfies 

𝑒𝑄𝑥𝑒𝑄 = 𝐸𝑄(𝑥)𝑒𝑄 for every 𝑥 ∈ 𝑀. The basic construction ⟨𝑀, 𝑒𝑄⟩ is the von Neumann 

subalgebra of 𝔹(𝐿2(𝑀)) generated by 𝑀 and 𝑒𝑄 . We note that ⟨𝑀, 𝑒𝑄⟩ coincides with the 

commutant of the right 𝑄-action in 𝔹(𝐿2(𝑀)). The conditional expectation 𝐸𝑄 extends on 

⟨𝑀, 𝑒𝑄⟩ by the formula 𝐸𝑄(𝑧)𝑒𝑄 = 𝑒𝑄𝑧𝑒𝑄 for 𝑧 ∈ ⟨𝑀, 𝑒𝑄⟩. The basic construction ⟨𝑀, 𝑒𝑄⟩ 

comes together with the faithful normal semi-finite trace Tr such that Tr (𝑥𝑒𝑄𝑦) = 𝜏(𝑥𝑦). 
We denote 

𝐶∗(𝑀𝑒𝑄𝑀) = the norm-closed linear span of {𝑥𝑒𝑄𝑦: 𝑥, 𝑦 ∈ 𝑀} 

which is an ultraweakly dense C∗-subalgebra of ⟨𝑀, 𝑒𝑄⟩. Suppose that 𝜃 is a 𝜏-preserving 

u.c.p. map on 𝑀 such that 𝜃|𝑄 = id𝑄. Then, 𝜃 can be regarded as a contraction on 𝐿2(𝑀) 

which commutes the left and right 𝑄-actions on 𝐿2(𝑀). In particular, 𝜃 ∈ ⟨𝑀, 𝑒𝑄⟩. See 

Section 1.3 in [51] for more information on the basic construction.  

The following is Theorem A.1 in [51] (see also Theorem 2.1 in [52]).  

Theorem (1.2.10)[23]: Let 𝑃, 𝑄 ⊂ 𝑀 be finite von Neumann subalgebras. Then, the 

following are equivalent. 

1. There exists a non-zero projection 𝑒 ∈ 𝑃′ ∩ ⟨𝑀, 𝑒𝑄⟩ such that Tr (𝑒) < ∞. 
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2. There exist non-zero projections 𝑝 ∈ 𝑃 and 𝑞 ∈ 𝑄, a normal ∗-homomorphism 

𝜃: 𝑝𝑃𝑝 → 𝑞𝑄𝑞 and a non-zero partial isometry 𝑣 ∈ 𝑀 such that 
∀𝑥 ∈ 𝑝𝑃𝑝 𝑥𝑣 = 𝑣𝜃(𝑥)

 and 𝑣∗𝑣 ∈ 𝜃(𝑝𝑃𝑝)′ ∩ 𝑞𝑀𝑞, 𝑣𝑣∗ ∈ 𝑝(𝑃′ ∩𝑀)𝑝.
 

Definition (1.2.11)[23]: Let 𝑃,𝑄 ⊂ 𝑀 be finite von Neumann algebras. Following [52], we 

say that 𝑃 embeds into 𝑄 inside 𝑀, and write 𝑃 ⪯𝑀 𝑄, if any of the conditions in Theorem 

(1.2.10) holds. 

Let 𝑃 ⊂ 𝒩 be von Neumann algebras. We say a state 𝜑 on 𝒩 is 𝑃-central if 

𝜑(𝑢∗𝑥𝑢) = 𝜑(𝑥) for all 𝑢 ∈ 𝒰(𝑃) and 𝑥 ∈ 𝒩, or equivalently 𝜑(𝑎𝑥) = 𝜑(𝑥𝑎) for all 𝑎 ∈
𝑃 and 𝑥 ∈ 𝒩. 

Lemma (1.2.12)[23]: Let 𝑃,𝑄 ⊂ 𝑀 be a finite von Neumann algebras, and 𝜑 be a 𝑃 central 

state on ⟨𝑀, 𝑒𝑄⟩ whose restriction to 𝑀 is normal. If 𝑃 ⋠𝑀 𝑄, then 𝜑 vanishes on 

𝐶∗(Me𝑄 𝑀). 

Proof. We assume 𝜑 (𝐶∗(𝑀𝑒𝑄𝑀)) ≠ {0} and prove 𝑃 ⪯𝑀 𝑄. Since 𝑀 sits inside the 

multiplier of 𝐶∗(𝑀𝑒𝑄𝑀), there is an approximate unit 𝑓𝑛 of 𝐶∗(𝑀𝑒𝑄𝑀) such that 

∥∥[𝑓𝑛, 𝑢]∥∥ → 0 for every 𝑢 ∈ 𝒰(𝑀). (That is, (𝑓𝑛) is a quasi-central approximate unit for the 

ideal 𝐶∗(𝑀𝑒𝑄𝑀) in the C∗-algebra 𝑀 + 𝐶∗(𝑀𝑒𝑄𝑀). ) We may assume that each 𝑓𝑛 belongs 

to the linear span of {𝑥𝑒𝑄𝑦: 𝑥, 𝑦 ∈ 𝑀} We define positive linear functionals 𝜑𝑛 and 𝜓 on 

⟨𝑀, 𝑒𝑄⟩ by 𝜑𝑛(𝑧) = 𝜑(𝑓𝑛𝑧𝑓𝑛) and 𝜓(𝑧) = Lim 𝜑𝑛(𝑧) for 𝑧 ∈ ⟨𝑀, 𝑒𝑄⟩. We note that 𝜓 is 

non-zero and still 𝑃-central. We claim that 𝜓 is normal. We observe that the net (𝜑𝑛) 
actually norm converges to 𝜓 (w.r.t. Lim), since Lim 𝜓(𝑓𝑛) = Lim 𝜑(𝑓𝑛) =∥ 𝜓 ∥. Hence, it 

suffices to show that each 𝜑𝑛 is normal. Now let 𝑛 be fixed and 𝑓𝑛 = ∑𝑖=1
𝑘  𝑥𝑖𝑒𝑄𝑦𝑖 Then, for 

any 𝑧 ∈ ⟨𝑀, 𝑒𝑄⟩+, one has 

𝑓𝑛
∗𝑧𝑓𝑛 = ∑  

𝑘

𝑖,𝑗=1

𝑦𝑖
∗𝐸𝑄(𝑥𝑖

∗𝑧𝑥𝑗)𝑒𝑄𝑦𝑗 ≤ ∑  

𝑘

𝑖,𝑗=1

𝑦𝑖
∗𝐸𝑄(𝑥𝑖

∗𝑧𝑥𝑗)𝑦𝑗 ∈ 𝑀 

since [𝐸𝑄(𝑥𝑖
∗𝑧𝑥𝑗)]𝑖,𝑗=1

𝑘
 is a positive element in 𝕄𝑘(𝑄) which commutes with 

diag (𝑒𝑄, … , 𝑒𝑄). Hence, one has 

𝜑𝑛(𝑧) = 𝜑(𝑓𝑛
∗𝑧𝑓𝑛) ≤ (𝜑|𝑀)(∑  

𝑘

𝑖,𝑗=1

 𝑦𝑖
∗𝐸𝑄(𝑥𝑖

∗𝑧𝑥𝑗)𝑦𝑗). 

This implies that 𝜑𝑛 is normal, and thus so is 𝜓. It follows that 𝜓 can be regarded as a 

positive non-zero element in 𝑃′ ∩ 𝐿1⟨𝑀, 𝑒𝑄⟩ (see Section IX.2 in [58]). Taking a suitable 

spectral projection, we are done. 

We recall that A.1 in [51] shows the following: 

Lemma (1.2.13)[23]: Let 𝐴 and 𝐵 be Cartan subalgebras of a type II1-factor 𝑀. If 𝐴 ⪯𝑀 𝐵, 

then there exists 𝑢 ∈ 𝒰(𝑀) such that 𝑢𝐴𝑢∗ = 𝐵. 

Finally, we state some elementary lemmas about u.c.p. maps and positive linear 

functionals.  

Lemma (1.2.14)[23]: Let (𝑀, 𝜏) be a finite von Neumann algebra and 𝜃 be a 𝜏-symmetric 

u.c.p. map on 𝑀. Then for every 𝑎, 𝑥 ∈ 𝑀, one has 

∥ 𝜃(𝑎𝑥) − 𝜃(𝑎)𝜃(𝑥) ∥2≤ 2 ∥ 𝑥 ∥∞∥ 𝑎 ∥∞
1/2
∥ 𝑎 − 𝜃(𝑎) ∥2

1/2
. 
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Proof. Let 𝜃(𝑥) = 𝑉∗𝜋(𝑥)𝑉 be a Stinespring dilation. Then, 

∥ 𝜃(𝑎𝑥) − 𝜃(𝑎)𝜃(𝑥) ∥2  = ∥∥𝑉∗𝜋(𝑥∗)(1 − 𝑉𝑉∗)𝜋(𝑎∗)𝑉1̂∥∥2
 ≤∥ 𝑥 ∥∞ ∥∥(1 − 𝑉𝑉

∗)1/2𝜋(𝑎∗)𝑉1̂∥∥2

 =∥ 𝑥 ∥∞ 𝜏(𝜃(𝑎𝑎
∗) − 𝜃(𝑎)𝜃(𝑎∗))

1/2
.

 

Since 𝜏 ∘ 𝜃 = 𝜏, this completes the proof. 

Lemma (1.2.15)[23]: Let 𝜑 and 𝜓 be positive linear functional on a 𝐶∗-algebra and 𝜀 > 0. 
Suppose that 𝜑(1) ≥ 𝜓(1) and 𝜑(𝑥) − 𝜓(𝑥) ≤ 𝜀 ∥ 𝑥 ∥ for all 𝑥 ≥ 0. Then, 

one has ∥ 𝜑 − 𝜓 ∥≤ 2𝜀. 
Proof. Let 𝜑 − 𝜓 = (𝜑 − 𝜓)+ − (𝜑 − 𝜓)−be the Hahn decomposition. Since (𝜑 −
𝜓)(1) ≥ 0, one has ∥∥(𝜑 − 𝜓)−∥∥ ≤ ∥∥(𝜑 − 𝜓)+∥∥ ≤ 𝜀. 

We review the work of Peterson on real closable derivations, in order to give a 

qualitative version of Lemma 2.3 in [49].  

Let (𝑀, 𝜏) be a finite von Neumann algebra. An 𝑀 −𝑀 bimodule is a Hilbert space 

ℋ together with normal representations 𝜆 of 𝑀 and 𝜌 of 𝑀op  such that 𝜆(𝑀) ⊂ 𝜌 (𝑀op )
′
. 

The action of 𝑀 is referred to as the left 𝑀-action and the action of 𝑀op  is referred to as the 

right 𝑀-action. We write intuitively 𝑎𝜉𝑏 for 𝜆(𝑎)𝜌(𝑏𝑜p)𝜉. By a closable derivation, we 

mean a map 𝛿 from a weakly dense *-subalgebra 𝒟 of 𝑀 into an 𝑀 −𝑀 bimodule ℋ, which 

is closable as an operator from 𝐿2(𝑀) into ℋ and satisfies the Leibniz's rule: 

𝛿(𝑥𝑦) = 𝛿(𝑥)𝑦 + 𝑥𝛿(𝑦) 
for every 𝑥, 𝑦 ∈ 𝒟. Moreover, a derivation is always assumed to be real: there is a conjugate-

linear isometric involution 𝐽 on ℋ such that 𝐽(𝑥𝛿(𝑦)𝑧) = 𝑧∗𝛿(𝑦∗)𝑥∗ for every 𝑥, 𝑦, 𝑧 ∈ 𝒟 

(which is equivalent to another definition: ⟨𝛿(𝑥), 𝛿(𝑦)𝑧⟩ = ⟨𝑧∗𝛿(𝑦∗), 𝛿(𝑥∗)⟩ for every 

𝑥, 𝑦, 𝑧 ∈ 𝒟). 
Let ℋ be an 𝑀 −𝑀 bimodule and 𝛿:𝑀 → ℋ be a closable derivation whose closure 

is denoted by 𝛿‾. Thanks to the important work of [34], [54], dom 𝛿‾ ∩ 𝑀 is still a weakly 

dense ∗-subalgebra and 𝛿‾ satisfies the Leibniz's rule there. Hence, for notational simplicity, 

the closure 𝛿‾ will be written as 𝛿. We recycle some notations from [49]: 

Δ = 𝛿∗𝛿, 𝜁𝛼 = √
𝛼

𝛼 + Δ
, �̃�𝛼 = 𝛼

−1/2𝛿 ∘ 𝜁𝛼 

(note that ran 𝜁𝛼 ⊂ dom Δ
1/2 = dom 𝛿) and 

Δ̃𝛼 = 𝛼
−1/2Δ1/2 ∘ 𝜁𝛼 = √

Δ

𝛼 + Δ
, 𝜃𝛼 = 1 − Δ̃𝛼 . 

All operators are firstly defined as Hilbert space operators. Since 1 − √𝑡 ≤ √1 − 𝑡 for all 

0 ≤ 𝑡 ≤ 1, one has 𝜃𝛼 ≤ 𝜁𝛼 and 

∥∥𝑎 − 𝜁𝛼(𝑎)∥∥2 ≤ ∥∥Δ̃𝛼(𝑎)∥∥2 = ∥∥�̃�𝛼(𝑎)∥∥2 ≤∥ 𝑎 ∥2≤∥ 𝑎 ∥∞ 

for all 𝑎 ∈ 𝑀. By Lemma 2.2 in [49], the operators 𝜁𝛼 and 𝜃𝛼 map 𝑀 ⊂ 𝐿2(𝑀) into 𝑀 and 

are 𝜏-symmetric u.c.p. on 𝑀. 

We recall from [55] the following facts: 𝜓𝑡 = exp (−𝑡Δ
1/2) form a semigroup of 

u.c.p. maps on 𝑀. Let 

Γ(𝑏∗, 𝑐)  = Δ1/2(𝑏∗)𝑐 + 𝑏∗Δ1/2(𝑐) − Δ1/2(𝑏∗𝑐)

 = lim
𝑡→0
 
𝜓𝑡(𝑏

∗𝑐) − 𝜓𝑡(𝑏
∗)𝜓𝑡(𝑐)

𝑡
∈ 𝐿2(𝑀)
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for 𝑏, 𝑐 ∈ dom Δ1/2 ∩𝑀 and note that 

⟨∑  

𝑖

 𝑏𝑖⊗𝑦𝑖 ,∑  

𝑗

  𝑐𝑗⊗𝑧𝑗⟩

Γ

=∑ 

𝑖,𝑗

𝜏(𝑦𝑖
∗Γ(𝑏𝑖

∗, 𝑐𝑗)𝑧𝑗) 

is a positive semi-definite form on (dom Δ1/2 ∩𝑀)⊗𝑀. In particular, one has 

|𝜏(𝑥∗Γ(𝑏∗, 𝑐)𝑦)| ≤ 𝜏(𝑥∗Γ(𝑏∗, 𝑏)𝑥)1/2𝜏(𝑦∗Γ(𝑐∗, 𝑐)𝑦)1/2. 
It follows that 

∥Γ(𝑏∗, 𝑐)∥2  = sup  {|𝜏(𝑥∗Γ(𝑏∗, 𝑐)𝑦)|: 𝑥, 𝑦 ∈ 𝑀, ∥𝑥𝑥∗∥2 ≤ 1, ∥∥𝑦𝑦
∗∥∥2 ≤ 1}

 ≤ sup  {𝜏(𝑥∗Γ(𝑏∗, 𝑏)𝑥)1/2𝜏(𝑦∗Γ(𝑐∗, 𝑐)𝑦)1/2:−}

 ≤ ∥Γ(𝑏∗, 𝑏)∥2
1/2
∥Γ(𝑐∗, 𝑐)∥2

1/2

 ≤ 4 ∥ 𝑏 ∥∞
1/2
∥ 𝛿(𝑏) ∥1/2∥ 𝑐 ∥∞

1/2
∥ 𝛿(𝑐) ∥1/2.

 

Lemma (1.2.16)[23]: (Lemma 2.3 in [49]). For every a, 𝑥 ∈ 𝑀, one has 

∥∥𝜁𝛼(𝑎)�̃�𝛼(𝑥) − �̃�𝛼(𝑎𝑥)∥∥ ≤ 10 ∥ 𝑥 ∥∞∥ 𝑎 ∥∞
1/2

∥∥�̃�𝛼(𝑎)∥∥
1/2

 

and 

∥∥�̃�𝛼(𝑥)𝜁𝛼(𝑎) − �̃�𝛼(𝑥𝑎)∥∥ ≤ 10 ∥ 𝑥 ∥∞∥ 𝑎 ∥∞
1/2

∥∥�̃�𝛼(𝑎)∥∥
1/2
. 

Proof. One has 

𝜁𝛼(𝑎)�̃�𝛼(𝑥) = 𝛼
−1/2𝛿(𝜁𝛼(𝑎)𝜁𝛼(𝑥)) − �̃�𝛼(𝑎)𝜁𝛼(𝑥) =: 𝐴1 − 𝐴2. 

We note that ∥∥𝐴2∥∥ ≤∥ 𝑥 ∥∞ ∥∥�̃�𝛼(𝑎)∥∥. Let 𝛿 = 𝑉Δ1/2 be the polar decomposition. Then, one 

has 

𝑉∗𝐴1  = 𝜁𝛼(𝑎)Δ̃𝛼(𝑥) + Δ̃𝛼(𝑎)𝜁𝛼(𝑥) − 𝛼
−1/2Γ(𝜁𝛼(𝑎), 𝜁𝛼(𝑥))

 =:  𝐵1 + 𝐵2 −  𝐵3
 

in 𝐿2(𝑀). We note that ∥∥𝐵2∥∥ ≤∥ 𝑥 ∥∞ ∥∥�̃�𝛼(𝑎)∥∥; and by the estimate preceding to this lemma 

that ∥∥𝐵3∥∥ ≤ 4 ∥ 𝑥 ∥∞∥ 𝑎 ∥∞
1/2

∥∥�̃�𝛼(𝑎)∥∥
1/2

. Finally, one has 

𝐵1 = 𝜁𝛼(𝑎)Δ̃𝛼(𝑥) = 𝜁𝛼(𝑎)(1 − 𝜃𝛼)(𝑥) ≈ 𝑎𝑥 − 𝜃𝛼(𝑎𝑥) = Δ̃𝛼(𝑎𝑥). 
For the above estimates, we used 

∥∥𝜁𝛼(𝑎)𝑥 − 𝑎𝑥∥∥2 ≤∥ 𝑥 ∥∞ ∥∥𝑎 − 𝜁𝛼(𝑎)∥∥2 ≤∥ 𝑥 ∥∞ ∥∥�̃�𝛼(𝑎)∥∥2 

and 

∥∥𝜁𝛼(𝑎)𝜃𝛼(𝑥) − 𝜃𝛼(𝑎𝑥)∥∥2  ≤∥ 𝑥 ∥∞ ∥∥(𝜁𝛼 − 𝜃𝛼)(𝑎)∥∥2 + ∥∥𝜃𝛼(𝑎)𝜃𝛼(𝑥) − 𝜃𝛼(𝑎𝑥)∥∥2

 ≤∥ 𝑥 ∥∞ (∥∥�̃�𝛼(𝑎)∥∥2 + 2 ∥ 𝑎 ∥∞
1/2

∥∥�̃�𝛼(𝑎)∥∥
1/2
)

 

(see Lemma (1.2.14)). Consequently, one has 

𝜁𝛼(𝑎)�̃�𝛼(𝑥) ≈ 𝐴1 ≈ 𝑉𝐵1 ≈ �̃�𝛼(𝑎𝑥). 
This yields the first inequality. Since the derivation is real, one obtains the second as well. 

We will need a vector-valued analogue of the above lemma. Let 

Ω = {𝜂 ∈ 𝐿2(𝑀 ⊗‾ 𝑀‾ ): (id⊗ 𝜏‾)(𝜂∗𝜂) ≤ 1 and (id⊗ 𝜏‾)(𝜂𝜂∗) ≤ 1}. 

We note that if {𝜉𝑘} is an orthonormal basis of 𝐿2(𝑀) and 𝜂 = ∑𝑘=1
∞  𝑥𝑘⊗𝜉‾𝑘, then (id⊗

𝜏‾)(𝜂∗𝜂) = ∑𝑘  𝑥𝑘
∗𝑥𝑘 and (id⊗ 𝜏‾)(𝜂𝜂∗) = ∑𝑘  𝑥𝑘𝑥𝑘

∗ . (These series converge 𝑎 priori in 

𝐿1(𝑀). ) We note that if 𝜂 ∈ Ω and 𝑏, 𝑐 ∈ 𝑀 with ∥ 𝑏 ∥∞∥ 𝑐 ∥∞≤ 1, then 𝜂∗, (𝑏 ⊗ 1)𝜂(𝑐 ⊗
1) ∈ Ω. 
Lemma (1.2.17)[23]: For every 𝑎 ∈ 𝑀 and 𝜂 ∈ Ω, one has 

∥∥(𝜁𝛼(𝑎) ⊗ 1)(�̃�𝛼⊗1)(𝜂) − (�̃�𝛼⊗1)((𝑎 ⊗ 1)𝜂)∥∥
ℋ⊗‾ 𝐿2(𝑀‾ )
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                       ≤ 20 ∥ 𝑎 ∥∞
1/2

∥∥�̃�𝛼(𝑎)∥∥
1/2

 

and 

∥∥(�̃�𝛼⊗1)(𝜂)(𝜁𝛼(𝑎) ⊗ 1) − (�̃�𝛼⊗1)(𝜂(𝑎 ⊗ 1))∥∥
ℋ⊗‾ 𝐿2(𝑀‾ )

 

         ≤ 20 ∥ 𝑎 ∥∞
1/2

∥∥�̃�𝛼(𝑎)∥∥
1/2
. 

Proof. Let 𝑎 ∈ 𝑀 be fixed and define a linear map 𝑇:𝑀 → ℋ by 

𝑇(𝑥) = 𝜁𝛼(𝑎)�̃�𝛼(𝑥) − �̃�𝛼(𝑎𝑥). 

By Lemma (1.2.16), one has ∥ 𝑇 ∥≤ 10 ∥ 𝑎 ∥∞
1/2

∥∥�̃�𝛼(𝑎)∥∥
1/2

. By the non-commutative little 

Grothendieck theorem (Theorem 9.4 in [50]), there are states 𝑓 and 𝑔 on 𝑀 such that 

∥ 𝑇(𝑥) ∥2≤∥ 𝑇 ∥2 (𝑓(𝑥∗𝑥) + 𝑔(𝑥𝑥∗)) 

for all 𝑥 ∈ 𝑀. It follows that for 𝜂 = ∑𝑘=1
∞  𝑥𝑘⊗𝜉‾𝑘 ∈ Ω, one has 

∥∥(𝜁𝛼(𝑎) ⊗ 1)(�̃�𝛼⊗1)(𝜂) − (�̃�𝛼⊗1)((𝑎 ⊗ 1)𝜂)∥∥
ℋ⊗‾ 𝐿2(𝑀‾ )

2

 = ∑  

𝑘

  ∥∥𝑇(𝑥𝑘)∥∥
2
≤∑ 

𝑘

  ∥ 𝑇 ∥2 (𝑓(𝑥𝑘
∗𝑥𝑘) + 𝑔(𝑥𝑘𝑥𝑘

∗)) ≤ 2 ∥ 𝑇 ∥2.
 

The second inequality follows similarly. 

Let Γ be a group and (𝑏, 𝜋,𝒦) be a proper 1-cocycle. Replacing (𝑏, 𝜋,𝒦) with (𝑏 ⊕
𝑏‾, 𝜋 ⊕ 𝜋‾,𝒦 ⊕ �̅�) and considering an operator defined by 𝐽0(𝜉 ⊕ 𝜂‾) = 𝜂 ⊕ 𝜉 if necessary, 

we may assume that there is a conjugate-linear involution 𝐽0 on 𝒦 such that 𝐽0𝑏(𝑔) = 𝑏(𝑔) 
and 𝐽0𝜋𝑔𝐽0 = 𝜋𝑔 for all 𝑔 ∈ Γ. (Note that 𝜋 is amenable (resp. weakly sub-regular) if and 

only if so is 𝜋⊕ 𝜋‾ .) 
Let 𝑀 = 𝑄 ⋊ Γ be the crossed product von Neumann algebra of a finite von Neumann 

algebra (𝑄, 𝜏) by a 𝜏-preserving action 𝜎 of Γ. We denote by 𝑢𝑔 the element in 𝑀 that 

corresponds to 𝑔 ∈ Γ. We equip ℋ = 𝐿2(𝑄)⊗ ℓ2(Γ) ⊗𝒦 with an 𝑀 −𝑀 bimodule 

structure by the following: 

ℋ  = 𝐿2(𝑄)  ⊗ ℓ2(Γ)  ⊗𝒦

 left action by 𝑔 ∈ Γ ∶ 𝜎𝑔  ⊗ 𝜆𝑔  ⊗ 𝜋𝑔

 left action by 𝑎 ∈ 𝑄 ∶ 𝑎  ⊗ 1  ⊗ 1

 right action by 𝑔 ∈ Γ ∶ 1  ⊗ 𝜌𝑔
−1  ⊗ 1

 right action by 𝑎 ∈ 𝑄 ∶  ∑  

ℎ∈Γ

 𝜎ℎ(𝑎)
op  ⊗ 𝑒ℎ  ⊗ 1

 

We define a conjugate-linear involution 𝐽 on ℋ by 

𝐽(�̂� ⊗ 𝛿𝑔⊗𝜉) = −𝜎𝑔−1(𝑎
∗)̂ ⊗𝛿𝑔−1 ⊗ 𝐽0𝜋𝑔−1𝜉, 

and the derivation 𝛿:𝑀 → ℋ by 

𝛿(𝑎𝑢𝑔) = �̂� ⊗ 𝛿𝑔⊗𝑏(𝑔) ∈ 𝐿2(𝑄)⊗ ℓ2(Γ)⊗𝒦 

for 𝑎 ∈ 𝑄 and 𝑔 ∈ Γ. It is routine to check that 𝐽 intertwines the left and the right 𝑀-actions, 

𝐽𝛿(𝑎𝑢𝑔) = 𝛿(𝜎𝑔−1(𝑎
∗)𝑢𝑔−1) = 𝛿((𝑎𝑢𝑔)

∗
) and moreover that 𝛿 is a real closable 

derivation satisfying 

Δ(𝑎𝑢𝑔) =∥ 𝑏(𝑔) ∥
2 𝑎𝑢𝑔 , 𝜁𝛼(𝑎𝑢𝑔) = √

𝛼

𝛼+∥ 𝑏(𝑔) ∥2
𝑎𝑢𝑔 

and 
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𝜃𝛼(𝑎𝑢𝑔) = (1 − √
∥ 𝑏(𝑔) ∥2

𝛼+∥ 𝑏(𝑔) ∥2
)𝑎𝑢𝑔 

for all 𝑎 ∈ 𝑄 and 𝑔 ∈ Γ. In particular, all 𝜃𝛼 belong to 𝐶∗(𝑀𝑒𝑄𝑀). 

Lemma (1.2.18)[23]: Suppose that 𝜋 is weakly contained in the regular representation. 

Then, the 𝑀 −𝑀 bimodule ℋ is weakly contained in the coarse bimodule 𝐿2(𝑀)⊗‾ 𝐿2(𝑀). 
In particular, the left 𝑀-action on ℋ extends to a u.c.p. map Ψ:𝔹(𝐿2(𝑀)) → 𝔹(ℋ) whose 

range commutes with the right 𝑀-action. 

Proof. It is well-known and not hard to see that if 𝜋 is weakly contained in the left regular 

representation 𝜆, then the 𝑀 −𝑀 bimodule ℋ is weakly contained in ℋ̂:=
𝐿2(𝑄)⊗‾ ℓ2(Γ)⊗‾ ℓ2(Γ), where (𝜋,𝒦) is replaced with (𝜆, ℓ2(Γ)) in the 

definition of ℋ. Let 𝑈 be the unitary operator on ℋ̂ defined by 

𝑈�̂� ⊗ 𝛿ℎ⊗𝛿𝑔 = 𝜎𝑔(𝑎)̂ ⊗ 𝛿𝑔ℎ⊗𝛿𝑔. 

It is routine to check that 𝑈∗𝜆(𝑀)𝑈 ⊂ 𝜆(𝑄)⊗‾ ℂ1⊗‾ 𝔹(ℓ2(Γ)) and 𝑈∗𝜌 (𝑀op )𝑈 ⊂

𝜌(𝑄∘𝑝) ⊗‾ 𝔹(ℓ2(Γ)) ⊗‾ ℂ1, where 𝜆 and 𝜌 respectively stand for the left and right actions 

on ℋ̂. Since the ambient von Neumann algebras are amenable and commuting, ℋ̂ and 𝑎 

fortiori ℋ is weakly contained in the coarse 𝑀 −𝑀 bimodule, i.e., the binormal 

representation 𝜇 of 𝑀⊗𝑀op  on ℋ is continuous w.r.t. the minimal tensor norm. Hence, 𝜇 

extends to a u.c.p. map �̃� from 𝔹(𝐿2(𝑀))⊗‾ 𝑀op  into 𝔹(ℋ). We define Ψ:𝔹(𝐿2(𝑀)) →

𝔹(ℋ) by Ψ(𝑥) = �̃�(𝑥 ⊗ 1). Since 𝑀op  is in the multiplicative domain of �̃�, the range of 

Ψ commutes with the right 𝑀-action. 

For the following, let 𝑃 ⊂ 𝑀 be an amenable von Neumann subalgebra such that 

𝑃 ⋠𝑀 𝑄, and 𝒢 ⊂ 𝒩𝑀(𝑃) be a subgroup whose action on 𝑃 is weakly compact. We may 

and will assume that 𝒰(𝑃) ⊂ 𝒢. By definition, there exists a sequence 𝜂𝑛 ∈
𝐿2(𝑀⊗‾ 𝑀‾ )+such that 

1. ∥∥𝜂𝑛 − (𝑣 ⊗ 𝑣‾)𝜂𝑛∥∥2 → 0 for 𝑣 ∈ 𝒰(𝑃); 

2. ∥∥𝜂𝑛 − Ad (𝑢 ⊗ 𝑢‾)(𝜂𝑛)∥∥2 → 0 for 𝑢 ∈ 𝒢; 

3. ⟨(𝑎 ⊗ 1)𝜂𝑛, 𝜂𝑛⟩ = 𝜏(𝑎) for all 𝑎 ∈ 𝑀. 

We note that 𝜂𝑛 ∈ Ω. 

Lemma (1.2.19)[23]: For every 𝛼 > 0 and 𝑎 ∈ 𝑀, one has 

Lim𝑛∥∥(�̃�𝛼⊗1)((𝑎 ⊗ 1)𝜂𝑛)∥∥ =∥ 𝑎 ∥2. 

Proof. Note that ∥∥(𝑎 ⊗ 1)𝜂𝑛∥∥2 =∥ 𝑎 ∥2. Define a state on ⟨𝑀, 𝑒𝑄⟩ by 

𝜑0(𝑥) = Lim𝑛⟨(𝑥 ⊗ 1)𝜂𝑛, 𝜂𝑛⟩. 
By construction, 𝜑0 is a 𝑃-central state such that 𝜑0|𝑀 = 𝜏. Since 𝑃 ⋠𝑀 𝑄 and 𝜃𝛼𝑎 ∈

𝐶∗(𝑀𝑒𝑄𝑀), Lemma (1.2.14) implies 𝜑0(𝑎
∗𝜃𝛼
∗𝜃𝛼𝑎) = 0. It follows that 

Lim𝑛 ∥∥(�̃�𝛼⊗1)((𝑎 ⊗ 1)𝜂𝑛)∥∥  = Lim𝑛 ∥∥((1 − 𝜃𝛼)𝑎 ⊗ 1)𝜂𝑛∥∥2
 = Lim𝑛 ∥∥(𝑎 ⊗ 1)𝜂𝑛∥∥2
 =∥ 𝑎 ∥2.

 

This completes the proof. 

For 𝛼 > 0, a non-zero projection 𝑝 ∈ 𝒢′ ∩𝑀 and 𝑛, we denote 

𝜂𝑛
𝑝,𝛼
= (�̃�𝛼⊗1)((𝑝 ⊗ 1)𝜂𝑛) 

and define a state 𝜑𝑝,𝛼 on 𝔹(ℋ) ∩ 𝜌(𝑀op)′, where 𝜌(𝑀op) is the right 𝑀-action on ℋ, by 
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𝜑𝑝,𝛼(𝑥) =∥ 𝑝 ∥2
−2 Lim𝑛⟨(𝑥 ⊗ 1)𝜂𝑛

𝑝,𝛼
, 𝜂𝑛
𝑝,𝛼
⟩. 

Lemma (1.2.20)[23]: Let 𝑎 ∈ 𝒢′′. Then, one has 

Lim𝛼  |𝜑𝑝,𝛼(𝜁𝛼(𝑎)𝑥) − 𝜑𝑝,𝛼(𝑥𝜁𝛼(𝑎))| = 0 

uniformly for 𝑥 ∈ 𝔹(ℋ) ∩ 𝜌 (𝑀op )
′
 with ∥ 𝑥 ∥∞≤ 1. 

Proof. Let 𝑢 ∈ 𝒢 and denote 𝑢𝛼 = 𝜁𝛼(𝑢). By Lemma (1.2.17), one has 

Lim𝑛 ∥∥𝜂𝑛
𝑝,𝛼
− (𝑢𝛼⊗𝑢‾)𝜂𝑛

𝑝,𝛼(𝑢𝛼⊗𝑢‾)∗∥∥ ≤ 40∥∥�̃�𝛼(𝑢)∥∥
1/2
. 

Since 𝑢𝛼
∗𝑢𝛼 ≤ 1, one has for every 𝑥 ∈ (𝜌(𝑀∘𝑝)′)+that 

𝜑𝑝,𝛼(𝑢𝛼
∗ 𝑥𝑢𝛼)  ≥∥ 𝑝 ∥2

−2 Lim𝑛 ⟨(𝑥 ⊗ 1)(𝑢𝛼⊗𝑢‾)𝜂𝑛
𝑝,𝛼(𝑢𝛼⊗𝑢‾)∗, (𝑢𝛼⊗𝑢‾)𝜂𝑛

𝑝,𝛼(𝑢𝛼⊗𝑢‾)∗⟩

 ≥ 𝜑𝑝,𝛼(𝑥) − 80 ∥ 𝑝 ∥2
−2 ∥∥�̃�𝛼(𝑢)∥∥

1/2
∥ 𝑥 ∥∞.

 

By Lemma (1.2.15), one obtains 

∥∥𝜑𝑝,𝛼(⋅) − 𝜑𝑝,𝛼(𝑢𝛼
∗ ⋅ 𝑢𝛼)∥∥ ≤ 160 ∥ 𝑝 ∥2

−2 ∥∥�̃�𝛼(𝑢)∥∥
1/2
. 

In particular, Lim𝛼 𝜑𝑝,𝛼(1 − 𝑢𝛼
∗𝑢𝛼) = 0 and 

Lim𝛼  |𝜑𝑝,𝛼(𝑢𝛼𝑥) − 𝜑𝑝,𝛼(𝑥𝑢𝛼)| = 0 

uniformly for 𝑥 with ∥ 𝑥 ∥∞≤ 1. This implies that 

Lim𝛼  |𝜑𝑝,𝛼(𝜁𝛼(𝑎)𝑥) − 𝜑𝑝,𝛼(𝑥𝜁𝛼(𝑎))| = 0 

for each 𝑎 ∈ span 𝒢 and uniformly for 𝑥 ∈ 𝔹(ℋ) ∩ 𝜌(𝑀op)′ with ∥ 𝑥 ∥∞≤ 1. 

However, by Lemma (1.2.17), 

|𝜑𝑝,𝛼(𝑥𝜁𝛼(𝑎))|  =∥ 𝑝 ∥2
−2 |Lim𝑛 ⟨(𝑥 ⊗ 1)(𝜁𝛼(𝑎) ⊗ 1)𝜂𝑛

𝑝,𝛼
, 𝜂𝑛
𝑝,𝛼
⟩|

 ≤∥ 𝑝 ∥2
−1∥ 𝑥 ∥∞ (20 ∥ 𝑎 ∥∞

1/2
∥ 𝑎 ∥2

1/2
+∥ 𝑎 ∥2),

 

and likewise for |𝜑𝑝,𝛼(𝜁𝛼(𝑎)𝑥)|. Thus, by Kaplansky's Density Theorem, we are done. 

Theorem (1.2.21)[23]: Let 𝑀 = 𝑄 ⋊ Γ be the crossed product of a finite von Neumann 

algebra (𝑄, 𝜏) by a 𝜏-preserving action of a countable group Γ with the property (HH). Let 

𝑃 ⊂ 𝑀 be a regular weakly compact von Neumann subalgebra. Then, 𝑃 ⪯𝑀 𝑄. 

Proof. Let 𝒢′′ = 𝑀 and 𝜑𝛼 = 𝜑1,𝛼. By Lemma (1.2.20), one has 

Lim𝛼 |𝜑𝛼(𝜁𝛼(𝑎)𝑥) − 𝜑𝛼(𝑥𝜁𝛼(𝑎))| = 0 

for every 𝑎 ∈ 𝒢′′ = 𝑀 and 𝑥 ∈ 𝔹(ℋ) ∩ 𝜌(𝑀op)′. Since 

∥∥𝑢𝑔 − 𝜁𝛼(𝑢𝑔)∥∥ = 1 − √
𝛼

𝛼+∥ 𝑏(𝑔) ∥2
→ 0 

as 𝛼 → ∞, one has 

Lim𝛼 |𝜑𝛼(𝑢𝑔𝑥𝑢𝑔
∗) − 𝜑𝛼(𝑥)| = 0 

for every 𝑔 ∈ Γ and 𝑥 ∈ 𝔹(ℋ) ∩ 𝜌(𝑀op)′. Hence, the state 𝜑 defined by 

𝜑(𝑥) = Lim𝛼  𝜑𝛼(𝑥) 
on 𝔹(𝒦) ⊂ 𝔹(ℋ) ∩ 𝜌(𝑀op)′ is Ad 𝜋-invariant. Therefore, 𝜋 is an amenable 

representation, in contradiction to the property (HH). 

Theorem (1.2.22)[23]: Let 𝑀 = 𝑄 ⋊ Γ be the crossed product of a finite amenable von 

Neumann algebra (𝑄, 𝜏) by a 𝜏-preserving action of a countable group Γ with the property 

strong (HH). Let 𝑃 ⊂ 𝑀 be an amenable von Neumann subalgebra such that 𝑃 ⋠𝑀 𝑄 and 

𝒢 ⊂ 𝒩𝑀(𝑃) be a subgroup whose action on 𝑃 is weakly compact. Then, the von Neumann 

subalgebra 𝒢′′ is amenable. 
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Proof. We use Haagerup's criterion for amenable von Neumann algebras (Lemma 2.2 in 

[40]). Let a non-zero projection 𝑝 ∈ 𝒢′ ∩𝑀 and a finite subset 𝐹 ⊂ 𝒰(𝒢′′) be given 

arbitrary. We need to show 

‖∑  

𝑢∈𝐹

 𝑢𝑝 ⊗ 𝑢𝑝̅̅̅̅ ‖

𝑀⊗‾ 𝑀‾

= |𝐹|. 

Let 𝑢 ∈ 𝒰(𝒢′′). By Lemma (1.2.17) and Lemma (1.2.19), one has 

𝜑𝑝,𝛼(𝜁𝛼(𝑢𝑝)
∗𝜁𝛼(𝑢𝑝))  =∥ 𝑝 ∥2

−2 Lim𝑛 ∥∥(𝜁𝛼(𝑢𝑝)⊗ 1)(�̃�𝛼⊗1)((𝑝⊗ 1)𝜂𝑛)∥∥2
2

 ≥∥ 𝑝 ∥2
−2 Lim𝑛 (∥∥(�̃�𝛼⊗1)((𝑢𝑝⊗ 1)𝜂𝑛)∥∥2 − 20∥

∥�̃�𝛼(𝑢𝑝)∥∥
1/2
)
2

 ≥ 1 − 40 ∥ 𝑝 ∥2
−1 ∥∥�̃�𝛼(𝑢𝑝)∥∥

1/2
.

 

Hence, by Lemma (1.2.20), one has 

Lim𝛼 |𝜑𝑝,𝛼(𝜁𝛼(𝑢𝑝)
∗𝑥𝜁𝛼(𝑢𝑝)) − 𝜑𝑝,𝛼(𝑥)| = 0 

uniformly for 𝑥 ∈ 𝔹(ℋ) ∩ 𝜌 (𝑀op )
′
 with ∥ 𝑥 ∥∞≤ 1. By Lemma (1.2.18), the left 𝑀-

action on ℋ extends to a u.c.p. map Ψ:𝔹(𝐿2(𝑀)) → 𝔹(ℋ) ∩ 𝜌(𝑀op)′. The state 𝜓𝑝,𝛼 =

𝜑𝑝,𝛼 ∘ Ψ on 𝔹(𝐿2(𝑀)) satisfies 

Lim𝛼 |𝜓𝑝,𝛼(𝜁𝛼(𝑢𝑝)
∗𝑥𝜁𝛼(𝑢𝑝)) − 𝜓𝑝,𝛼(𝑥)| = 0 

uniformly for 𝑥 ∈ 𝔹(𝐿2(𝑀)) with ∥ 𝑥 ∥∞≤ 1. By a standard convexity argument in 

cooperation with the Powers-Størmer inequality, this implies that 

Lim𝛼 
∥
∥
∥
∥
∑  

𝑢∈𝐹

  𝜁𝛼(𝑢𝑝)⊗ 𝜁𝛼(𝑢𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅
∥
∥
∥
∥

𝑀⊗‾ 𝑀‾

= |𝐹| 

for the finite subset 𝐹 ⊂ 𝒰(𝒢′′). Since 𝜁𝛼 are u.c.p. maps, this yields 

∥
∥
∥
∥
∑  

𝑢∈𝐹

 𝑢𝑝 ⊗ 𝑢𝑝̅̅̅̅
∥
∥
∥
∥

𝑀⊗‾ 𝑀‾

≥ Lim𝛼 
∥
∥
∥
∥
∑  

𝑢∈𝐹

  𝜁𝛼(𝑢𝑝)⊗ 𝜁𝛼(𝑢𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅
∥
∥
∥
∥

𝑀⊗‾ 𝑀‾

= |𝐹| 

This completes the proof. 

The corollaries follow from the corresponding Theorem (1.2.21) and Lemma (1.2.13), 

because all the von Neumann algebras in consideration have the complete metric 

approximation property and hence all amenable subalgebras are weakly compact (Theorem 

(1.2.9)). 

We fix a notation for profinite actions. An action Γ ↷ (𝑋, 𝜇) is said to be profinite if 

(𝑋, 𝜇) is the projective limit of finite-cardinality probability spaces (𝑋𝑛, 𝜇𝑛) on which Γ acts 

consistently. We will identify 𝐿∞(𝑋𝑛, 𝜇𝑛) as the corresponding Γ-invariant finite-

dimensional von Neumann subalgebra of 𝐿∞(𝑋, 𝜇). The same thing for 𝐿2. We write 𝑋 =
∐   𝑎 𝑋𝑎,𝑛 for the partition of 𝑋 corresponding to 𝑋𝑛, i.e., the characteristic functions of 𝑋𝑎,𝑛 

's are the non-zero minimal projections in 𝐿∞(𝑋𝑛).  
Definition (1.2.23)[23]: Let 𝜋: Γ ↷ ℋ be a unitary representation. We say 𝜋 has a spectral 

gap if there are a finite subset 𝐹 ⊂ Γ and 𝜅 > 0, called a critical pair, satisfying the following 

property: denoting by 𝑃 the orthogonal projection of ℋ onto the subspace of 𝜋-invariant 

vectors, one has 

𝜅 ∥ 𝜉 − 𝑃𝜉 ∥≤ max
𝑔∈𝐹

 ‖𝜉 − 𝜋𝑔𝜉‖ 

for every 𝜉 ∈ ℋ. (This is equivalent to that the point 1 is isolated (if it exists) in the spectrum 

of the self-adjoint operator (2|𝐹|)−1∑𝑔∈𝐹  (𝜋𝑔 + 𝜋𝑔
∗) on ℋ.) We say that 𝜋 has a stable 
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spectral gap if the unitary representation 𝜋 ⊗ 𝜋‾  of Γ on ℋ⊗‾ ℋ̅ has a spectral gap. (Note 

that we allow rank 𝑃 ≥ 1.) 

When the unitary representation 𝜋 arises from a p.m.p. action Γ ↷ 𝑋, we simply say 

Γ ↷ 𝑋 has a (stable) spectral gap if 𝜋 has. Assume moreover that the action Γ ↷ 𝑋 is 

profinite. We say Γ ↷ 𝑋 has a stable spectral gap with growth condition if there are a critical 

pair (𝐹, 𝜅) such that 𝜋𝐹, the restriction of 𝜋 to the subgroup of Γ generated by 𝐹, does not 

have a subrepresentation of infinite multiplicity. 

Suppose that Γ ↷ lim
←
𝑋𝑛 has a stable spectral gap. Then, 𝜋𝐹 has finitely many 

equivalence classes of irreducible subrepresentations of any given dimension 𝑘 ∈ ℕ. (See 

[41].) It follows that the growth condition is equivalent to that the minimal dimension 𝑘𝑛 of 

a non-zero subrepresentation of 𝜋𝐹|𝐿2(𝑋)⊖𝐿2(𝑋𝑛) tends to infinity. 

Lemma (1.2.24)[23]: Let Γ ↷ 𝑋 be a p.m.p. action which is profinite and has a stable 

spectral gap with growth condition. Let 𝐹 ⊂ Γ and 𝜅 > 0 be a critical pair. Then, for any 

𝑘 ∈ ℕ and unitary elements {𝑢𝑔}𝑔∈𝐹
 on the 𝑘-dimensional Hilbert space ℓ𝑘

2 , one has 

𝜅2

2
(1 −

𝑘

𝑘𝑛
) ∥
∥𝜉 − 𝑃𝐿2(𝑋𝑛)⊗‾ ℓ𝑘

2𝜉∥
∥
2
≤ max

𝑔∈𝐹
 ∥∥𝜉 − (𝜋𝑔⊗𝑢𝑔)𝜉∥∥2

 

for every 𝜉 ∈ 𝐿2(𝑋)⊗‾ ℓ𝑘
2  and 𝑛 ∈ ℕ. 

Proof. We denote 𝐿2(𝑋𝑛)
⊥ = 𝐿2(𝑋) ⊖ 𝐿2(𝑋𝑛). It suffices to show 

𝜅2

2
(1 −

𝑘

𝑘𝑛
) ∥ 𝜉 ∥2≤ max

𝑔∈𝐹
 ∥∥𝜉 − (𝜋𝑔⊗𝑢𝑔)𝜉∥∥2

 

for 𝜉 ∈ 𝐿2(𝑋𝑛)
⊥⊗‾ ℓ𝑘

2 . We assume ∥ 𝜉 ∥2= 1 and denote the right hand side of the asserted 

inequality by 𝜀. We view 𝜉 as a Hilbert-Schmidt operator 𝑇𝜉  from ℓ𝑘
2̅̅ ̅ into 𝐿2(𝑋𝑛)

⊥. Note 

that 

∥∥𝑇𝜉 − 𝜋𝑔𝑇𝜉𝑢‾𝑔
∗
∥∥
2
= ∥∥𝜉 − (𝜋𝑔⊗𝑢𝑔)𝜉∥∥2

≤ 𝜀. 

Hence by the Powers-Størmer inequality, the Hilbert-Schmidt operator 𝑆𝜉 =

(𝑇𝜉𝑇𝜉
∗)
1/2

 on 𝐿2(𝑋𝑛)
⊥  satisfies   

 ∥∥𝑆𝜉 − 𝜋𝑔𝑆𝜉𝜋𝑔
∗
∥∥
2

2
 ≤ ∥∥𝑇𝜉𝑇𝜉

∗ − 𝜋𝑔𝑇𝜉𝑇𝜉
∗𝜋𝑔
∗
∥∥
1

 ≤ ∥∥𝑇𝜉 + 𝜋𝑔𝑇𝜉𝑢‾𝑔
∗
∥∥
2
∥∥𝑇𝜉 − 𝜋𝑔𝑇𝜉𝑢‾𝑔

∗
∥∥
2

 ≤ 2𝜀.

 

By the stable spectral gap property, one has 

∥∥𝑆𝜉 − 𝑃(𝑆𝜉)∥∥2
2
≤ 2𝜀/𝜅2. 

Since 𝑃(𝑆𝜉) commutes with 𝜋𝑔 for all 𝑔 ∈ 𝐹, growth condition implies that 𝑃(𝑆𝜉) =

∑𝑖  𝛾𝑖𝑟𝑖
−1/2

𝑄𝑖 for some 𝛾𝑖 ≥ 0 and mutually orthogonal projections 𝑄𝑖 with 𝑟𝑖 = Tr (𝑄𝑖) ≥

𝑘𝑛. Since 𝑆𝜉 has rank at most 𝑘, denoting its range projection by 𝑅, one has 
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∥∥𝑃(𝑆𝜉)∥∥2
2
 = ⟨𝑆𝜉 , 𝑃(𝑆𝜉)⟩

 =∑ 

𝑖

 𝛾𝑖𝑟𝑖
−1/2

Tr (𝑄𝑖𝑅𝑆𝜉𝑄𝑖)

 ≤ (∑ 

𝑖

 𝛾𝑖
2𝑟𝑖
−1Tr (𝑄𝑖𝑅𝑄𝑖))

1/2

(∑𝑖  Tr (𝑄𝑖𝑆𝜉
∗𝑆𝜉𝑄𝑖))

1/2

 ≤ (∑ 

𝑖

 𝛾𝑖
2𝑘𝑛

−1𝑘)

1/2

∥∥𝑆𝜉∥∥2

 = (𝑘/𝑘𝑛)
1/2
∥∥𝑃(𝑆𝜉)∥∥2

.

 

By combining two inequalities, one obtains 

1 − (𝑘/𝑘𝑛) ≤ 1 − ∥∥𝑃(𝑆𝜉)∥∥2
2
= ∥∥𝑆𝜉 − 𝑃(𝑆𝜉)∥∥2

2
≤ 2𝜀/𝜅2 

and hence the desired inequality. 

Recall that a cocycle of Γ ↷ 𝑋 with values in a group Λ is a measurable map 𝛼: Γ × 𝑋 → Λ 

satisfying the cocycle identity: 

∀𝑔, ℎ ∈ Γ, 𝜇-a.e. 𝑥 ∈ 𝑋,  𝛼(𝑔, ℎ𝑥)𝛼(ℎ, 𝑥) = 𝛼(𝑔ℎ, 𝑥). 
A cocycle 𝛼 which is independent of the 𝑥-variable is said to be homomorphism for the 

obvious reason. Cocycles 𝛼 and 𝛽 are said to be equivalent if there is a measurable map 

𝜙:𝑋 → Λ such that 𝛽(𝑔, 𝑥) = 𝜙(𝑔𝑥)𝛼(𝑔, 𝑥)𝜙(𝑥)−1 for all 𝑔 ∈ Γ and 𝜇-a.e. 𝑥 ∈ 𝑋. 

Lemma (1.2.25)[23]: Let Γ = Γ1 × Γ2 and Γ ↷ 𝑋 = lim←  𝑋𝑛 be a p.m.p. profinite action 

such that Γ2 ↷ 𝑋 has a stable spectral gap with growth condition. Let (𝑁, 𝜏) be a finite type 

I von Neumann algebra, and 𝛼: Γ × 𝑋 → 𝒰(𝑁) be a cocycle. Then, for every 𝜀 > 0, there 

exists 𝑛 ∈ ℕ such that 

∫  
𝑋
∥∥𝛼(𝑔, 𝑥) − 𝛼𝑎(𝑥),𝑛

′ (𝑔)∥∥
2

2
𝑑𝑥 ≤ 𝜀 

for all 𝑔 ∈ ker (Γ1 → Aut (𝑋𝑛)), where 𝛼𝑎,𝑛
′ (𝑔) = |𝑋𝑎,𝑛|

−1
∫
𝑋𝑎,𝑛
 𝛼(𝑔, 𝑦)𝑑𝑦 and 

𝑎(𝑥) is such that 𝑥 ∈ 𝑋𝑎(𝑥),𝑛. 

Proof. It suffices to consider each direct summand of 𝑁 and hence we may assume 𝑁 =
𝕄𝑘(ℂ)⊗ 𝐴, where 𝐴 is an abelian von Neumann algebra. For every 𝑔 ∈ Γ, we define 𝑤𝑔 ∈

𝐿∞(𝑋)⊗‾ 𝑁 = 𝐿∞(𝑋,𝑁) by 𝑤𝑔(𝑥) = 𝛼(𝑔, 𝑔
−1𝑥). Then, it becomes a unitary 1-cocycle for 

�̃� = 𝜎 ⊗ id𝑁 : 

𝑤𝑔ℎ = 𝑤𝑔�̃�𝑔(𝑤ℎ). 

Let 𝐹 ⊂ Γ2 and 𝜅 > 0 be a critical pair for the stable spectral gap of Γ2 ↷ 𝑋. Let 𝛿 = 𝜀𝜅2/8 

and take 𝑚 ∈ ℕ and unitary elements 𝑤ℎ
′ ∈ 𝐿∞(𝑋𝑚) ⊗‾ 𝑁 

such that ∥∥𝑤ℎ −𝑤ℎ
′ ∥∥2 < 𝛿 for every ℎ ∈ 𝐹. For the rest of the proof, we fix 𝑔 ∈

ker (Γ1 → Aut (𝑋𝑚)). Since 𝑤ℎ
′ = �̃�𝑔(𝑤ℎ

′ ), one has 

𝑤𝑔𝑤ℎ
′ ≈ 𝑤𝑔�̃�𝑔(𝑤ℎ) = 𝑤𝑔ℎ = 𝑤ℎ𝑔 ≈ 𝑤ℎ

′ �̃�ℎ(𝑤𝑔), 

for every ℎ ∈ 𝐹. We define trace-preserving *-automorphisms 𝜋ℎ on 𝐿∞(𝑋)⊗‾ 𝑁 by 

𝜋ℎ(𝑥) = Ad (𝑤ℎ
′ ) ∘ �̃�ℎ(𝑥) 

and note that ∥∥𝑤𝑔 − 𝜋ℎ(𝑤𝑔)∥∥2
≤ 2𝛿 for every ℎ ∈ 𝐹. We write �̃�ℎ for the restriction of 𝜋ℎ 

to 𝐿∞(𝑋𝑚) ⊗ 𝑁. Note that �̃�ℎ acts as identity on ℂ1⊗‾ 𝐴 ⊂ 𝐿∞(𝑋𝑚) ⊗‾ 𝑁. 
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Let {𝑝𝑎} be the set of non-zero minimal projections in 𝐿∞(𝑋𝑚) and define an isometry 

𝑉: 𝐿2(𝑋) → 𝐿2(𝑋)⊗‾ 𝐿2(𝑋𝑚) by 𝑉𝜉 = |𝑋𝑚|
1/2∑𝑎  𝑝𝑎𝜉 ⊗ 𝑝𝑎. (Here |𝑋𝑚| stands for the 

cardinality of the atoms of 𝑋𝑚.) We claim that (𝑉 ⊗ 1)𝜋ℎ = (𝜎ℎ⊗ �̃�ℎ)(𝑉 ⊗ 1). Indeed, 

if 𝑤ℎ
′ = ∑𝑎  𝜎ℎ(𝑝𝑎) ⊗ 𝑦𝑎, then 

(𝜎ℎ⊗ �̃�ℎ)(𝑉 ⊗ 1)(𝜉 ⊗ 𝑐)  = |𝑋𝑚|
1/2(𝜎ℎ⊗ �̃�ℎ)∑  

𝑎

 𝑝𝑎𝜉 ⊗ 𝑝𝑎⊗ 𝑐

 = |𝑋𝑚|
1/2∑ 

𝑎

 𝜎ℎ(𝑝𝑎𝜉) ⊗ 𝜎ℎ(𝑝𝑎) ⊗ 𝑦𝑎𝑐𝑦𝑎
∗

 = 𝑉∑  

𝑎

 𝜎ℎ(𝑝𝑎𝜉) ⊗ 𝑦𝑎𝑐𝑦𝑎
∗

 = 𝑉𝜋ℎ(𝜉 ⊗ 𝑐)

 

for all 𝜉 ∈ 𝐿2(𝑋) and 𝑐 ∈ 𝐿2(𝑁). Now, it follows that 

max
ℎ∈𝐹

 ∥∥(𝑉 ⊗ 1)𝑤𝑔 − (𝜎ℎ⊗ �̃�ℎ)(𝑉 ⊗ 1)𝑤𝑔∥∥2
≤ 2𝛿. 

We observe that if �̃�ℎ is viewed as a unitary operator on 𝐿2(𝑋𝑚) ⊗‾ 𝐿
2(𝕄𝑘(ℂ)) ⊗‾ 𝐿

2(𝐴), then 

it lives in 𝔹(𝐿2(𝑋𝑚) ⊗‾ 𝐿
2(𝕄𝑘(ℂ)))⊗‾ 𝐴. Hence Lemma (1.2.24) applies and one obtains 

𝜅2

2
(1 −

𝑚𝑘2

𝑘𝑛
) ∥∥(𝑉 ⊗ 1)𝑤𝑔 − (𝑃𝐿2(𝑋𝑛)⊗1⊗ 1)(𝑉 ⊗ 1)𝑤𝑔∥∥2

≤ 2𝛿 

for every 𝑛 ∈ ℕ. Finally take 𝑛 to be such that 𝑛 ≥ 𝑚 and 𝑘𝑛 ≥ 2𝑚𝑘
2. Since 

(𝑃𝐿2(𝑋𝑛)⊗1)𝑉 = 𝑉𝑃𝐿2(𝑋𝑛) for 𝑛 ≥ 𝑚, one has 

(∫  
𝑋

  ∥∥𝛼(𝑔, 𝑥) − 𝛼𝑎(𝑥),𝑛
′ (𝑔)∥∥

2

2
𝑑𝑥)

1/2

 = ∥∥𝑤𝑔 − (𝑃𝐿2(𝑋𝑛)⊗1)𝑤𝑔∥∥2

 ≤ 4𝛿/(𝜅2 (1 − (
𝑚𝑘2

𝑘𝑛
)

1/2

)) ≤ 𝜀.

 

We note that ker (Γ1 → Aut (𝑋𝑛)) ⊂ ker (Γ1 → Aut (𝑋𝑚)). 
We combine the above result with results of Ioana in [42], to obtain the following 

cocycle rigidity result for profinite actions of product groups. 

Theorem (1.2.26)[23]: Let Γ = Γ1 × Γ2 and Γ ↷ 𝑋 be an ergodic p.m.p. profinite action 

such that Γ𝑖 ↷ 𝑋 has a stable spectral gap with growth condition, for each 𝑖 = 1,2. Let Λ be 

a finite group and 𝛼: Γ × 𝑋 → Λ be a cocycle. Then, there exists a finite index subgroup Γ′ ⊂
Γ such that for each Γ′-ergodic component 𝑋′ ⊂ 𝑋, the restricted cocycle 𝛼|Γ′×𝑋′ is 

equivalent to a homomorphism from Γ′ into Λ. 

Proof. The proof of this theorem is very similar to that of Theorem B in [42], and hence it 

will be rather sketchy. Let 𝑍 = 𝑋 × 𝑋 × Λ and we will consider the unitary representation 

𝜋: Γ ↷ 𝐿2(𝑍) induced by the m.p. transformation 

𝑔(𝑥, 𝑦, 𝑡) = (𝑔𝑥, 𝑔𝑦, 𝛼(𝑔, 𝑥)𝑡𝛼(𝑔, 𝑦)−1). 
Let 𝜀 > 0 be arbitrary. Since Λ is discrete, Lemma (1.2.25) implies that there are a 

normal finite index subgroup Γ′ and 𝑛 ∈ ℕ such that ∥∥𝜋(𝑔)𝜉𝑛 − 𝜉𝑛∥∥2 < 𝜀 for all 𝑔 ∈ Γ′, 

where 𝜉𝑛 = |𝑋𝑛|
1/2∑𝑎  𝜒𝑋𝑎,𝑛×𝑋𝑎,𝑛×{𝑒}. It follows that the circumcenter of 𝜋(Γ′)𝜉𝑛 is a 𝜋(Γ′)-

invariant vector which is close to 𝜉𝑛. Since Γ ↷ 𝑋 is ergodic and Γ′ is a normal finite index 

subgroup in Γ, there are a Γ′-ergodic component 𝑋′ ⊂ 𝑋 and a finite subset 𝐸 ⊂ Γ such that 

𝑋 = ⋃𝑠∈𝐸  𝑠𝑋
′. Thus, there are Γ′-ergodic components 𝑋1

′ , 𝑋2
′ ⊂ 𝑋 such that 𝜉′ =
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|𝑋′|−1𝜒𝑋1′×𝑋2′×{𝑒} is close to a 𝜋(Γ′)-invariant vector. We may assume that 𝑋1
′ = 𝑋′. By 

Corollary (1.2.6) in [42], the cocycle 𝛼|Γ′×𝑋′ is equivalent to a homomorphism 𝜃 via 

𝜙:𝑋′ → Λ, i.e., 𝜃(𝑔) = 𝜙(𝑔𝑥)𝛼(𝑔, 𝑥)𝜙(𝑥)−1. We observe that 𝛼|Γ′×𝑠𝑋′ is equivalent to 𝜃 ∘
Ad (𝑠−1). 

Indeed, one has 

𝜃(𝑠−1𝑔𝑠)  = 𝜙(𝑠−1𝑔𝑠𝑥)𝛼(𝑠−1𝑔𝑠, 𝑥)𝜙(𝑥)−1

 = 𝜙(𝑠−1𝑔𝑠𝑥)𝛼(𝑠−1, 𝑔𝑠𝑥)𝛼(𝑔, 𝑠𝑥)𝛼(𝑠, 𝑥)𝜙(𝑥)−1

 = 𝜓(𝑔𝑠𝑥)𝛼(𝑔, 𝑠𝑥)𝜓(𝑠𝑥)−1,

 

where 𝜓(𝑠𝑥) = 𝜙(𝑥)𝛼(𝑠−1, 𝑠𝑥) for 𝑠 ∈ 𝐸 and 𝑥 ∈ 𝑋′. 
Theorem (1.2.27)[23]: Let Γ = Γ1 × Γ2 be a group with the property (𝜏) and Γ ↷ 𝑋 = 

lim←  𝑋𝑛 be a p.m.p. profinite action with growth condition such that both Γ𝑖 ↷ 𝑋 are ergodic. 

Let Λ be a residually-finite group. Then, any cocycle 

𝛼: Γ × 𝑋 → Λ 

virtually untwists, i.e., there exist 𝑛 ∈ ℕ and a cocycle 𝛽: Γ × 𝑋𝑛 → Λ which is equivalent 

to 𝛼. 

Proof. By Theorem B and Remark 3.1 in [42], it suffices to show that the unitary 

representation 𝜋: Γ ↷ 𝐿2(𝑋 × 𝑋 × Λ) has a spectral gap. Let Λ𝑗 be the finite quotients of Λ. 

Since Λ is residually finite the unitary representation 𝜋 is weakly contained in the direct sum 

⨁𝜋𝑗, where 𝜋𝑗 is the unitary representation induced by Γ ↷ 𝑋 × 𝑋 × Λ𝑗 using the same 1-

cocycle composed with the quotient Λ → Λ𝑗. Thus, it suffices to show that 𝜋𝑗 's have a 

uniform spectral gap. We prove this by showing that each 𝜋𝑗 is contained in a direct sum of 

finite representations; then the uniformity follows from property (𝜏). We may assume that 

Λ is finite and 𝜋𝑗 = 𝜋. By Theorem (1.2.26), there is a finite index subgroup Γ′ such that for 

each Γ′-ergodic component 𝑋𝑘
′ ⊂ 𝑋, the restricted cocycle 𝛼|Γ′×𝑋𝑘

′  is equivalent to a 

homomorphism 𝜃𝑘: Γ
′ → Λ via 𝜙𝑘: 𝑋𝑘

′ → Λ, i.e., 𝜃𝑘(𝑔) = 𝜙𝑘
𝑘(𝑔𝑥)𝛼(𝑔, 𝑥)𝜙𝑘(𝑥)

−1. Let 𝜎𝑘,𝑙 

be the automorphism on 𝑋𝑘
′ × 𝑋𝑙

′ × Λ defined by 𝜎𝑘,𝑙(𝑥, 𝑦, 𝑡) = (𝑥, 𝑦, 𝜙𝑘(𝑥)𝑡𝜙𝑙(𝑦)
−1). 

Then, for 𝑔 ∈ Γ′, one has 

𝜎𝑘,𝑙𝑔𝜎𝑘,𝑙
−1(𝑥, 𝑦, 𝑡)  = (𝑔𝑥, 𝑔𝑦, 𝜙𝑘(𝑔𝑥)𝛼(𝑔, 𝑥)𝜙𝑘(𝑥)

−1𝑡𝜙𝑙(𝑦)𝛼(𝑔, 𝑦)
−1𝜙𝑙(𝑔𝑦)

−1)

 = (𝑔𝑥, 𝑔𝑦, 𝜃𝑘(𝑔)𝑡𝜃𝑙(𝑔)
−1).

 

Since 𝑋′ is profinite, this implies that the unitary representation 𝜋|Γ′ is contained in a direct 

sum of finite representations (of the form Γ′ ↷ 𝑋𝑛 × 𝑋𝑛 × Λ, 𝑔(𝑥, 𝑦, 𝑡) = 

(𝑔𝑥, 𝑔𝑦, 𝜃𝑘(𝑔)𝑡𝜃𝑙(𝑔)
−1)). Since Γ′ has finite index in Γ, the unitary representation 𝜋 ⊂

IndΓ′
Γ  (𝜋|Γ′) is contained in a direct sum of finite representations. This completes the proof. 

The following two lemmas are well-known. 

Lemma (1.2.28)[23]: Let Γ ≥ Δ1 ≥ Δ2 ≥ ⋯ be a decreasing sequence of finite index 

normal subgroups. Then, the left-and-right action Γ × Γ ↷ lim
←
Γ/Δ𝑛 is essentially-free if 

and only if lim𝑛  |𝑍𝑛(𝑔)|/|Γ/Δ𝑛| = 0 for every 𝑔 ∈ Γ with 𝑔 ≠ 𝑒, where 𝑍𝑛(𝑔) is the 

centralizer group of 𝑔 in Γ/Δ𝑛. 

Proof. The 'only if' part is trivial. We prove the 'if' part. Note that the condition implies that 

⋂Δ𝑛 = {𝑒}. Let (𝑔, ℎ) ∈ Γ × Γ and observe that 

|{𝑥 ∈ lim
←
 Γ/Δ𝑛: (𝑔, ℎ)𝑥 = 𝑥}| = lim

𝑛
 
|{𝑥 ∈ Γ/Δ𝑛: 𝑔𝑥ℎ

−1 = 𝑥}|

|Γ/Δ𝑛|
. 
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If 𝑔 = 𝑒, then (𝑔, ℎ) acts freely unless ℎ = 𝑒, too. Thus, let 𝑔 ≠ 𝑒. If 𝑥, 𝑦 ∈ Γ/Δ𝑛 are such 

that 𝑔𝑥ℎ−1 = 𝑥 and 𝑔𝑦ℎ−1 = 𝑦, then one has 𝑔𝑥𝑦−1𝑔−1 = 𝑥𝑦−1, i.e. 𝑥𝑦−1 ∈ 𝑍𝑛(𝑔). It 
follows that |{𝑥 ∈ Γ/Δ𝑛: 𝑔𝑥ℎ

−1 = 𝑥}| ≤ |𝑍𝑛(𝑔)|. 
Lemma (1.2.29)[23]: Let 𝐹 be a finite field. Then, for every 𝑔 ∈ PSL (2, 𝐹) with 𝑔 ≠ 𝑒, one 

has |𝑍(𝑔)|/|PSL (2, 𝐹)| ≤ 2/(|𝐹| − 1). 
Proof. Since the characteristic polynomial of 𝑔 is quadratic, it can be factorized in some 

quadratic extension �̃� of 𝐹. Thus 𝑔 is conjugate to a Jordan normal form in PSL(2, �̃�). Now, 

it is not hard to see that the centralizer of 𝑔 in PSL (2, �̃�) has cardinality at most |�̃�| = |𝐹|2. 

On the other hand, it is well-known that |SL(2, 𝐹)| = |𝐹|(|𝐹|2 − 1). 

Corollary (1.2.30)[23]: Let Γ𝑖 = PSL (2, ℤ[√2]) and 𝑝1 < 𝑝2 < ⋯ be prime numbers. Let 

Γ = Γ1 × Γ2 act on 𝑋 = lim←  PSL (2, (ℤ/𝑝1⋯𝑝𝑛ℤ)[√2]) by the left-and-right translation 

action. Let Λ ↷ 𝑌 be any free ergodic p.m.p. action of a residuallyfinite group Λ and suppose 

that 𝐿∞(𝑋) ⋊ Γ ≅ (𝐿∞(𝑌) ⋊ Λ)𝑡 for some 𝑡 > 0. Then, 𝑡 ∈ ℚ and the actions Γ ↷ 𝑋 and 

Λ ↷ 𝑌 are strongly virtually isomorphic. 

Proof. Since SL (2, ℤ[√2]) is an irreducible lattice in SL(2,ℝ)2, it has property (𝜏) (see 

Section 4.3 in [43]) and the property (HH)+(cf. Theorem (1.2.7)). By the above lemmas, the 

action Γ ↷ 𝑋 is essentially-free. Indeed, consider the homomorphism from PSL (2, (ℤ/

𝑝1⋯𝑝𝑛ℤ)[√2]) onto PSL (2, 𝐹), where 𝐹 is the field either ℤ/𝑝𝑛ℤ or (ℤ/𝑝𝑛ℤ)[√2], 

depending on whether the equation 𝑥2 = 2 is solvable in ℤ/𝑝𝑛ℤ or not; and apply Lemma 

(1.2.29) at PSL (2, 𝐹). Therefore, by Corollary (1.2.2), 𝐿∞(𝑋) is the unique Cartan 

subalgebra of 𝐿∞(𝑋) ⋊ Γ. It follows that the isomorphism of von Neumann algebras 

𝐿∞(𝑋) ⋊ Γ ≅ (𝐿∞(𝑌) ⋊ Λ)𝑡 gives rise to a stable orbit equivalence between Γ ↷ 𝑋 and Λ ↷
𝑌. The growth condition of Theorem (1.2.27) is satisfied because 𝑝𝑘 's are mutually distinct 

primes and PSL (2, (ℤ/𝑝1⋯𝑝𝑛ℤ)[√2]) ≅ ∏PSL (2, (ℤ/𝑝𝑘ℤ)[√2]). Therefore, 

Theorem (1.2.27) is applicable to the orbit equivalence cocycle 𝛼: Γ × 𝑋 → Λ. For the rest 

of the proof, see [42].  

Theorem (1.2.31)[23]: Let Γ ↷ 𝑋 be a free ergodic p.m.p. action of a discrete group Γ 

having an infinite normal abelian subgroup 𝐻 satisfying the relative ICC condition. Assume 

that 𝐻 ↷ 𝑋 is ergodic and profinite. Then, both 𝐿∞(𝑋) and 𝐿(𝐻) are Cartan subalgebras of 

𝐿∞(𝑋) ⋊ Γ. Assume moreover that Γ ↷ 𝑋 is profinite and there is no 𝐻 ⋊ Γ-invariant mean 

on ℓ∞(𝐻). Then, the Cartan subalgebras 𝐿∞(𝑋) and 𝐿(𝐻) are non-conjugate. 

Proof. Since 𝐻 ↷𝜎 𝑋 is an ergodic and profinite action, one has 𝑋 = lim←  𝐻/𝐻𝑛 for some 

decreasing sequence 𝐻 = 𝐻0 ⊃ 𝐻1 ⊃ ⋯ of finite-index subgroups of 𝐻 such that ⋂𝐻𝑛 =
{𝑒}. Recall that a function 𝑓 is called an eigenfunction of 𝐻 if there is a character 𝜒 on 𝐻 

such that 𝜎ℎ(𝑓) = 𝜒(ℎ)𝑓 for every ℎ ∈ 𝐻. We observe that every unitary eigenfunction 

normalizes 𝐿(𝐻) in 𝐿∞(𝑋) ⋊ 𝐻, and that 𝐿∞(𝑋) is spanned by unitary eigenfunctions since 

𝐿∞(𝐻/𝐻𝑛) is spanned by characters. This proves that 𝐿(𝐻) is regular in 𝐿∞(𝑋) ⋊ Γ. To 

prove that 𝐿(𝐻) is maximal abelian, let 𝑎 ∈ 𝐿(𝐻)′ ∩ 𝐿∞(𝑋) ⋊ Γ be given and 𝑎 =

∑𝑔∈Γ  𝑎𝑔𝑢𝑔 be the Fourier expansion. Then, [𝑎, 𝑢ℎ] = 0 implies 𝜎ℎ(𝑎𝑔) = 𝑎ℎ𝑔ℎ−1 for all 𝑔 ∈

Γ and ℎ ∈ 𝐻. In particular, one has ∥∥𝑎ℎ𝑔ℎ−1∥∥2
= ∥∥𝑎𝑔∥∥2

. Since ∑𝑔  ∥∥𝑎𝑔∥∥2
2
=∥ 𝑎 ∥2

2< ∞, the 

relative ICC condition implies that 𝑎𝑔 = 0 for all 𝑔 ∉ 𝐻. But for 𝑔 ∈ 𝐻, ergodicity of 𝐻 ↷

𝑋 implies that 𝑎𝑔 ∈ ℂ1. This proves 𝑎 ∈ 𝐿(𝐻).  

For the second assertion, recall that weak compactness is an invariant of a Cartan 

subalgebra (Proposition 3.4 in [48]). We prove that 𝐿(𝐻) is not weakly compact in 𝐿∞(𝑋) ⋊
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Γ. Suppose by contradiction that it is weakly compact. Then, by Proposition 3.2 in [48], 

there is a state 𝜑 on 𝔹(ℓ2(𝐻)) which is invariant under the 𝐻 ⋊ Γ-action. Restricting 𝜑 to 

ℓ∞(𝐻), we obtain an 𝐻 ⋊ Γ-invariant mean. This contradicts the assumption. 

Corollary (1.2.4) is an immediate consequence of Theorem (1.2.31). Here we give 

another example for which Theorem (1.2.31) applies. Let 𝐾 be a residually-finite additive 

group such that |𝐾| > 1, and Γ0 be a residually-finite non-amenable group. The wreath 

product Γ = 𝐾 ∖ Γ0 is defined to be the semidirect product of 𝐻 = ⨁Γ0  𝐾 by the shift action 

of Γ0. Then, there is a decreasing sequence 𝐻0 ⊃ 𝐻1 ⊃ ⋯ of Γ0-invariant finite-index 

subgroups of 𝐻 such that ⋂𝐻𝑛 = {0}. Indeed, let 𝐾0 ⊃ 𝐾1 ⊃ ⋯ (resp. Γ0,0 ⊃ Γ0,1 ⊃ ⋯) be 

finite-index subgroups of 𝐾 (resp. Γ0 ) such that ⋂𝐾𝑛 = {0} (resp. ∩ Γ0,𝑛 = {𝑒}). Then, the 

"augmentation subgroups" 

𝐻𝑛 = {(𝑎𝑔)𝑔∈Γ0
∈ 𝐻: ∑  

ℎ∈Γ0,𝑛

 𝑎𝑔ℎ ∈ 𝐾𝑛 for all 𝑔 ∈ Γ0}, 

which is the kernel of the homomorphism onto ⨁Γ0/Γ0,𝑛  𝐾/𝐾𝑛, satisfy the required 

conditions. It follows from Theorem (1.2.31) that the II  1-factor 

𝐿∞ (lim
←
 𝐻/𝐻𝑛) ⋊ Γ 

has two non-conjugate Cartan subalgebras, namely 𝐿(𝐻) and 𝐿∞(lim←  𝐻/𝐻𝑛). 
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Chapter 2 

Non-Commutative and Classical Aspects with Non-Injectivity 

 

We show that a large class of 𝑞-Gaussian processes possess a non-commutative kind 

of Markov property, which ensures that there exist classical versions of these non-

commutative processes. This answers an old question of Frisch and Bourret [77]. We show 

that the proof works for the more general setting of a Yang-Baxter deformation. The 

techniques can also be extended to the so called q-Araki-Woods von Neumann algebras 

recently introduced by Hiai. We obtain the non injectivity under some asssumption on the 

spectral set of the positive operator asociated with the deformation. 

Section (2.1): 𝒒-Gaussian Processes  

What we are going to call 𝑞-Gaussian processes was essentially introduced by Frisch 

and Bourret [77]. They considered generalized commutation relations given by operators 

𝐴(𝑡) and a vacuum vector Ψ0 with 

𝐴(𝑡)𝐴∗(𝑡′) − 𝑞𝐴∗(𝑡′)𝐴(𝑡) = Γ(𝑡, 𝑡′)1 

and 

𝐴(𝑡)Ψ0 = 0 

for some real covariance function Γ (i.e. positive definite function). They study the 

probabilistic properties of the 'parastochastic' process 𝑀(𝑡) = 𝐴(𝑡) + 𝐴∗(𝑡). 
The basic problems arising were the following two types of questions: 

1. (realization problem)  

Do there exist operators on some Hilbert space and a corresponding vacuum vector 

in this Hilbert space which fullfill the above relations, i.e. are there non-commutative 

realizations of the 𝑞-Gaussian processes. 

2. (random representation problem)  

Are these non-commutative processes of a classical relevance, i.e. do there exist 

classical versions of the 𝑞-Gaussian processes (in the sense of coinciding time-

ordered correlations, see Definition (2.1.33)). 

Frisch and Bourret could give the following partial answers to these questions. 

1. For 𝑞 = ±1 the realization is of course given by the Fock space realization of the 

bosonic/fermionic relations. The case 𝑞 = 0 was realized by creation and annihilation 

operators on the full Fock space (note that this was before the introduction of the 

Cuntz algebras and their extensions [72],[75]). For other values of 𝑞 the realization 

problem remained open. 

2. The 𝑞 = 1 processes are nothing but the Fock space representations of the classical 

Gaussian processes. For 𝑞 = −1 a classical realization by a dichotomic Markov 

process could be given for the special case of exponential covariance Γ(𝑡, 𝑡′) =
exp (−|𝑡 − 𝑡′|). A classical realization for 𝑞 = 0 could not be found, but they were 

able to show that there is an interesting representation in terms of Gaussian random 

matrices.  

Starting with [61] there has been another and independent approach to 

noncommutative probability theory. This wide and quite inhomogenous field - let us just 

mention as two highlights the quantum stochastic calculus of Hudson-Parthasarathy [82] 

and the free probability theory of Voiculescu [19] - is now known under the name of 

'quantum probability'. At least some of the fundamental motivation for undertaking such 

investigations can be compared with the two basic questions of Frisch and Bourret: 
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1. Non-commutative probability theory is meant as a generalization of classical 

probability theory to the description of quantum systems. Thus first of all their objects 

are operators on some Hilbert spaces having a meaning as non-commutative anlogues 

of the probabilistic notions of random variables, stochastic processes, etc. 

2. In many investigations in this area one also tries to establish connections between 

non-commutative and classical concepts. The aim of this is twofold. On one side, one 

hopes to get a better understanding of classical problems by embedding them into a 

bigger non-commutative context. Thus, e.g., the Azéma martingale, although 

classically not distinguished within the class of all martingales, behaves in some 

respects like a Brownian motion [97]. The non-commutative 'explanation' for this fact 

comes from the observation of Schürmann [100] that this martingale is one 

component of a noncommutative process with independent increments. In the other 

direction, one hopes to get a classical picture (featuring trajectories) of some aspects 

of quantum problems. A total reduction to classical concepts is in general not possible, 

but partial aspects may sometimes allow a classical interpretation.  

It was of quantum probability where two [66] reintroduced the 𝑞-relations - without 

knowing of, but much in the same spirit as [77]. Around the same time the 𝑞-relations were 

also proposed by Greenberg [79] as an example for particles with 'infinite statistics'. 

The main progress in connection with this renewed interest was the solution of the 

realization problem of Frisch and Bourret. There exist now different proofs for the existence 

of the Fock representation of the 𝑞-relations for all 𝑞 with −1 ≤ 𝑞 ≤ 1 

[66],[112],[76],[103],[68],[111]. 

In [96], the idea of Frisch and Bourret to use the 𝑞-relations as a model for a 

generalized noise was pursued further and the Greens function for such dynamical problems 

could be calculated for one special choice of the covariance function namely for the case of 

the exponential covariance. We will call this special 𝑞 process in the following 𝑞-Ornstein-

Uhlenbeck process. It soon became clear that the special status of the exponential covariance 

is connected with some kind of (noncommutative) Markovianity - as we will see the 𝑞-

Ornstein-Uhlenbeck process is the only stationary 𝑞-Gaussian Markov process. But using 

the general theory of Kümmerer on non-commutative stationary Markov processes [87],[88] 

this readily implies the existence of a classical version (being itself a classical Markov 

process) of the 𝑞-Ornstein-Uhlenbeck process.  

Thus we got a positive solution of the random representation problem of Frisch and 

Bourret in this case. However, the status of the other 𝑞-Gaussian processes, in particular 𝑞-

Brownian motion, remained unclear. 

Motivated by our preliminary results, Biane [63] (see also [64],[65]) undertook a deep 

and beautiful analysis of the free (𝑞 = 0) case and showed the remarkable result that all 

processes with free increments are Markovian and thus possess classical versions (with a 

quite explicit calculation rule for the corresponding transition probabilities). This includes 

in particular the case of free Brownian motion. 

Inspired by this work we could extend our investigations from the case of the 𝑞-

Ornstein-Uhlenbeck process to all 𝑞-Gaussian processes. The results are presented. 

Up to now there is only one strategy for establishing the existence of a classical 

version of a non-commutative process, namely by showing that the process is Markovian. 

That this implies the existence of a classical version follows by general arguments, the main 

point is to show that we have this property in the concrete case. Whereas Biane could use 

the quite developed theory of freeness [19] to prove Markovianity for processes with free 
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increments, there is at the moment (and probably also in the future [104]) no kind of 𝑞-

freeness for general 𝑞. Thus another feature of our considered class of processes is needed 

to attack the problem of Markovianity. It is the aim that the 𝑞-analogue of Gaussianity will 

do this job. 

The essential idea of Gaussianity is that one can pull back all considerations from the 

measure theoretic (or, in the non-commutative frame, from the operator algebraic) level to 

an underlying Hilbert space, thus in the end one essentially has to deal with linear problems. 

The main point is that this transcription between the linear and the algebraic level exists in 

a consistent way. The best way to see and describe this is by presenting a functor ('second 

quantization') which translates the Hilbert space properties into operator algebraic 

properties. Our basic considerations will therefore be on the existence and nice properties 

of the 𝑞-analogue of this functor. Having this functor, the rest is mainly linear theory on 

Hilbert space level. It turns out that all relevant questions on our 𝑞-Gaussian processes can 

be characterized totally in terms of the corresponding covariance function. In particular, it 

becomes quite easy to decide whether such a process is Markovian or not. 

We remind of some basic facts about the 𝑞-Fock space and its relevant operators. 

Furthermore we collect the needed combinatorial results, in particular on 𝑞-Hermite 

polynomials. We devoted to the presentation of the functor Γ𝑞 of second quantization. The 

main results (apart from the existence of this object) are the facts that the associated von 

Neumann algebras are in the infinite dimensional case non-injective 𝐼𝐼1-factors and that the 

functor maps contractions into completely positive maps. Having this 𝑞-Gaussian functor 

the definition and investigation of properties of 𝑞 Gaussian processes (like Markovianity or 

martingale property) is quite canonical and parallels the classical case. Thus our presentation 

of these aspects, we will be quite condensed. We contain the classical interpretation of the 

𝑞 Gaussian Markov processes. As pointed out above general arguments ensure the existence 

of classical versions for these processes. But we will see that we can also derive quite 

concrete formulas for the corresponding transition probabilities. 

Let 𝑞 ∈ (−1,1) be fixed in the following. For a complex Hilbert space ℋ we define 

its 𝑞-Fock space ℱ𝑞(ℋ) as follows:  

Let ℱ finite (ℋ) be the linar span of vectors of the form 𝑓1⊗⋯⊗𝑓𝑛 ∈ ℋ
⊗𝑛 (with 

varying 𝑛 ∈ ℕ0), where we put ℋ⊗0 ≅ ℂΩ for some distinguished vector Ω, called vacuum. 

On ℱ finite (ℋ) we consider the sesquilinear form ⟨⋅,⋅⟩𝑞 given by sesquilinear extension of 

⟨𝑓1⊗⋯⊗𝑓𝑛, 𝑔1⊗⋯⊗𝑔𝑚⟩𝑞: = 𝛿𝑛𝑚 ∑  

𝜋∈𝑆𝑛

𝑞𝑖(𝜋)⟨𝑓1, 𝑔𝜋(1)⟩… ⟨𝑓𝑛, 𝑔𝜋(𝑛)⟩, 

where 𝑆𝑛 denotes the symmetric group of permutations of 𝑛 elements and 𝑖(𝜋) is the number 

of inversions of the permutation 𝜋 ∈ 𝑆𝑛 defined by 

𝑖(𝜋):= #{(𝑖, 𝑗) ∣ 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, 𝜋(𝑖) > 𝜋(𝑗)}. 

Another way to describe ⟨⋅,⋅⟩𝑞 is by introducing the operator 𝑃𝑞 on ℱ finite (ℋ) by linear 

extension of 
𝑃𝑞Ω = Ω

𝑃𝑞𝑓1⊗⋯⊗𝑓𝑛 = ∑  

𝜋∈𝑆𝑛

 𝑞𝑖(𝜋)𝑓𝜋(1)⊗⋯⊗𝑓𝜋(𝑛). 

Then we can write 

⟨𝜉, 𝜂⟩𝑞 = ⟨𝜉, 𝑃𝑞𝜂⟩0 (𝜉, 𝜂 ∈ ℱ
𝑓 inite (ℋ)), 
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where ⟨⋅,⋅⟩0 is the scalar product on the usual full Fock space 

ℱ0(ℋ) =⨁ 

𝑛≥0

ℋ⊗𝑛. 

One of the main results of [66] (see also [68],[76],[103],[112]) was the strict positivity of 

𝑃𝑞, i.e. ⟨𝜉, 𝜉⟩𝑞 > 0 for 0 ≠ 𝜉 ∈ ℱ finite (ℋ). This allows the following definitions.  

Definitions (2.1.1)[60]: a) The 𝑞-Fock space ℱ𝑞(ℋ) is the completion of ℱ finite (ℋ) with 

respect to ⟨⋅,⋅⟩𝑞. 

b) Given 𝑓 ∈ ℋ, we define the creation operator 𝑎∗(𝑓) and the annihilation operator 

𝑎(𝑓) on ℱ𝑞(ℋ) by 

𝑎∗(𝑓)Ω  = 𝑓
𝑎∗(𝑓)𝑓1⊗⋯⊗𝑓𝑛  = 𝑓 ⊗ 𝑓1⊗⋯⊗𝑓𝑛

 

and 

𝑎(𝑓)Ω = 0 

𝑎(𝑓)𝑓1⊗⋯⊗ 𝑓𝑛 =∑ 

𝑛

𝑖=1

𝑞𝑖−1⟨𝑓, 𝑓𝑖⟩𝑓1⊗⋯⊗𝑓𝑖⊗⋯⊗𝑓𝑛, 

where the symbol 𝑓𝑖 means that 𝑓𝑖 has to be deleted in the tensor. 

Notation (2.1.2)[60]: For a linear operator 𝑇:ℋ → ℋ′ between two complex Hilbert spaces 

we denote by ℱ(𝑇):ℱ finite (ℋ) → ℱ finite (ℋ′) the linear extension of 
ℱ(𝑇)Ω  = Ω

ℱ(𝑇)𝑓1⊗⋯⊗𝑓𝑛  = (𝑇𝑓1) ⊗⋯⊗ (𝑇𝑓𝑛):
 

In order to keep the notation simple we denote the vacuum for ℋ and the vacuum for ℋ′ 

by the same symbol Ω. 

It is clear that ℱ(𝑇) can be extended to a bounded operator ℱ0(𝑇): ℱ0(ℋ) → ℱ0(ℋ
′) 

exactly if 𝑇 is a contraction, i.e. if ∥ 𝑇 ∥≤ 1. The following lemma ensures that the same is 

true for all other 𝑞 ∈ (−1,1), too. 

Lemma (2.1.3)[60]: Let 𝒯:ℱ finite (ℋ) → ℱ finite (ℋ′) be a linear operator which fulfills 

𝑃𝑞
′𝒯 = 𝒯𝑃𝑞, where 𝑃𝑞 and 𝑃𝑞

′ are the operators on ℱ finite (ℋ) and ℱ finite (ℋ′), respectively, 

which define the respective scalar product ⟨⋅,⋅⟩𝑞 . Then one has ∥ 𝒯 ∥𝑞= ∥ 𝒯 ∥0. Hence, if ∥

𝒯 ∥0< ∞ then 𝒯 can, for each 𝑞 ∈ (−1,1), be extended to 𝑎 bounded operator from ℱ𝑞(ℋ) 

to ℱ𝑞(ℋ
′). 

Proof. Let 𝜉 ∈ ℱ finite (ℋ). Then 

∥ 𝒯𝜉 ∥𝑞
2  = ⟨𝒯𝜉, 𝒯𝜉⟩𝑞

 = ⟨𝒯𝜉, 𝑃𝑞
′𝒯𝜉⟩

0

 = ⟨𝑃𝑞
1/2
𝜉, 𝒯∗𝒯𝑃𝑞

1/2
𝜉⟩
0

 ≤ ∥𝒯∗𝒯∥0⟨𝑃𝑞
1/2
𝜉, 𝑃𝑞

1/2
𝜉⟩
0

 

   = ∥𝒯∗𝒯∥0‖𝜉‖𝑞
2 , 

which implies 

∥ 𝒯 ∥𝑞
2≤ ∥𝒯∗𝒯∥0 ≤ ∥𝒯

∗∥0 ∥ 𝒯 ∥0=∥ 𝒯 ∥0
2, 

and thus ∥ 𝒯 ∥𝑞≤∥ 𝒯 ∥0. Since we can estimate in the same way, by replacing 𝑃𝑞 by 𝑃𝑞
−1 

and 𝑃𝑞
′ by 𝑃𝑞

′ − 1, also ∥ 𝒯 ∥0≤∥ 𝒯 ∥𝑞, we get the assertion.  
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Notation (2.1.4)[60]: For a contraction 𝑇:ℋ → ℋ′, we denote the extension of ℱ(𝑇) from 

ℱ finite (ℋ) → ℱ finite (ℋ′) to ℱ𝑞(ℋ) → ℱ𝑞(ℋ
′) by ℱ𝑞(𝑇). 

The 𝑞-relations one usually encounters some kind of 𝑞-combinatorics. Let us just 

remind of the basic facts. 

Notations (2.1.5)[60]: We put for 𝑛 ∈ ℕ0 

[𝑛]𝑞: =
1 − 𝑞𝑛

1 − 𝑞
= 1 + 𝑞 +⋯+ 𝑞𝑛−1 ([0]𝑞: = 0). 

Then we have the 𝑞-factorial 

[𝑛]𝑞!: = [1]𝑞… [𝑛]𝑞 ,  [0]𝑞!: = 1 

and a 𝑞-binomial coefficient 

(
𝑛
𝑘
)
𝑞
: =

[𝑛]𝑞!

[𝑘]𝑞! [𝑛 − 𝑘]𝑞!
=∏ 

𝑛−𝑘

𝑖=1

1 − 𝑞𝑘+𝑖

1 − 𝑞𝑖
. 

Another quite frequently used symbol is the 𝑞-analogue of the Pochhammer symbol 

(𝑎; 𝑞)𝑛: =∏  

𝑛−1

𝑗=0

(1 − 𝑎𝑞𝑗)  in particular  (𝑎; 𝑞)∞: =∏ 

∞

𝑗=0

(1 − 𝑎𝑞𝑗). 

The importance of these concepts in connection with the 𝑞-relations can be seen from 

the following 𝑞-binomial theorem, which is by now quite standard. 

Proposition (2.1.6)[60]: Let 𝑥 and 𝑦 be indeterminates which 𝑞-commute in the sense 𝑥𝑦 =
𝑞𝑦𝑥. Then one has for 𝑛 ∈ ℕ 

(𝑥 + 𝑦)𝑛 =∑  

𝑛

𝑘=0

(
𝑛
𝑘
)
𝑞
𝑦𝑘𝑥𝑛−𝑘 . 

Proof. This is just induction and the easily checked equality 

(
𝑛
𝑘
)
𝑞
+ 𝑞𝑘 (

𝑛
𝑘 + 1

)
𝑞
= (

𝑛 + 1
𝑘 + 1

)
𝑞
. 

In the same way as the usual Hermite polynomials are connected to the bosonic 

relations, the 𝑞-relations are linked to 𝑞-analogues of the Hermite polynomials. 

Definition (2.1.7)[60]: The polynomials 𝐻𝑛
(𝑞)(𝑛 ∈ ℕ0), determined by 

𝐻0
(𝑞)
(𝑥) = 1,  𝐻1

(𝑞)
(𝑥) = 𝑥 

and 

𝑥𝐻𝑛
(𝑞)
(𝑥) = 𝐻𝑛+1

(𝑞)
(𝑥) + [𝑛]𝑞𝐻𝑛−1

(𝑞)
(𝑥) (𝑛 ≥ 1) 

are called 𝑞-Hermite polynomials. 

We recall two basic facts about these polynomials which will be fundamental for our 

investigations on the classical aspects of 𝑞-Gaussian processes. 

Theorem (2.1.8)[60]: a) Let 𝜈𝑞 be the measure on the interval [−2/√1 − 𝑞, 2/√1 − 𝑞] 
given by 

𝜈𝑞(𝑑𝑥) =
1

𝜋
√1 − 𝑞 sin 𝜃∏  

∞

𝑛=1

(1 − 𝑞𝑛)|1 − 𝑞𝑛𝑒2𝑖𝜃|
2
𝑑𝑥, 

where 

𝑥 =
2

√1 − 𝑞
cos 𝜃  with 𝜃 ∈ [0, 𝜋]. 

Then the q-Hermite polynomials are orthogonal with respect to 𝜈𝑞, i.e. 
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∫  
2/√1−𝑞

−2/√1−𝑞

𝐻𝑛(𝑥)𝐻𝑚(𝑥)𝜈𝑞(𝑑𝑥) = 𝛿𝑛𝑚[𝑛]𝑞!. 

b) Let 𝑟 > 0 and 𝑥, 𝑦 ∈ [−2/√1 − 𝑞, 2/√1 − 𝑞]. Denote by 𝑝𝑟
(𝑞)
(𝑥, 𝑦) the kernel 

𝑝𝑟
(𝑞)(𝑥, 𝑦):= ∑  

∞

𝑛=0

𝑟𝑛

[𝑛]𝑞!
𝐻𝑛
(𝑞)(𝑥)𝐻𝑛

(𝑞)(𝑦). 

Then we have with 

𝑥 =
2

√1 − 𝑞
cos𝜑 , 𝑦 =

2

√1 − 𝑞
cos𝜓 

the formula 

𝑝𝑟
(𝑞)(𝑥, 𝑦) =

(𝑟2; 𝑞)∞
|(𝑟𝑒𝑖(𝜑+𝜓); 𝑞)∞(𝑟𝑒

𝑖(𝜑−𝜓); 𝑞)∞|
2
. 

In particular, for 𝑞 = 0, we get 

𝑝𝑟
(0)
(𝑥, 𝑦) =

1 − 𝑟2

(1 − 𝑟2)2 − 𝑟(1 + 𝑟2)𝑥𝑦 + 𝑟2(𝑥2 + 𝑦2)
. 

As usually in 𝑞-mathematics these formulas are quite old, namely the orthogonalizing 

measure 𝜈𝑞 was calculated by Szego [106], whereas the kernel 𝑝𝑟
(𝑞)
(𝑥, 𝑦) goes even back to 

Rogers [99]. See [70],[83],[78],[91]. 

An abstract way of dealing with classical Gaussian processes is by using the Gaussian 

functor Γ. This is a functor from real Hilbert spaces and contractions to commutative von 

Neumann algebras with specified trace-state and unital trace preserving completely positive 

maps [94],[95],[80],[101],[102]. A fermionic analogue of this functor is also known, see, 

e.g., [110],[71]. 

We will present a 𝑞-analogue of the Gaussian functor. Namely, to each real Hilbert 

space, ℋ, we will associate a von Neumann algebra with specified trace-state, (Γ𝑞(ℋ), E), 

and to every contraction 𝑇:ℋ → ℋ′ a unital completely positive trace preserving map 

Γ𝑞(𝑇): Γ𝑞(ℋ) → Γ𝑞(ℋ
′). 

Definition (2.1.9)[60]: Let ℋ be a real Hilbert space and ℋℂ its complexification ℋℂ = 

ℋ⊕ 𝑖ℋ. Put, for 𝑓 ∈ ℋ, 

𝜔(𝑓):= 𝑎(𝑓) + 𝑎∗(𝑓) ∈ 𝐵 (ℱ𝑞(ℋℂ)) 

and denote by Γ𝑞(ℋ) ⊂ 𝐵 (ℱ𝑞(ℋℂ)) the von Neumann algebra generated by all 𝜔(𝑓) 

Γ𝑞(ℋ):= vN(𝑎(𝑓) + 𝑎
∗(𝑓) ∣ 𝑓 ∈ ℋ). 

Notation (2.1.10)[60]: We denote by 

E: Γ𝑞(ℋ) → ℂ 

the vacuum expectation state on Γ𝑞(ℋ) given by 

E[𝑋]: = ⟨Ω, 𝑋Ω⟩𝑞  (𝑋 ∈ Γ𝑞(ℋ)). 

We remind of some basic facts about Γ𝑞(ℋ) in the following proposition. 

Proposition (2.1.11)[60]: The vacuum Ω is a cyclic and separating trace-vector for Γ𝑞(ℋ), 

hence the vacuum expectation 𝐸 is a faithful normal trace on Γ𝑞(ℋ) and Γ𝑞(ℋ) is a finite 

von Neumann algebra in standard form. 

Proof. See Theorems 4.3 and 4.4 in [68]. 

The first part of the proposition yields in particular that the mapping 
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Γ𝑞(ℋ) → ℱ𝑞(ℋℂ) 

𝑋 ↦ 𝑋Ω 

is injective, in this way we can identify each 𝑋 ∈ Γ𝑞(ℋ) with some element of the 𝑞-Fock 

space ℱ𝑞(ℋℂ). 
Notations (2.1.12)[60]: a) Let us denote by 

𝐿𝑞
∞(ℋ):= Γ𝑞(ℋ)Ω 

the image of Γ𝑞(ℋ) under the mapping 𝑋 ↦ 𝑋Ω. 

b) We also put 

𝐿𝑞
2 (ℋ):= ℱ𝑞(ℋℂ). 

Definition (2.1.13)[60]: Let Ψ:𝐿𝑞
∞(ℋ) → Γ𝑞(ℋ) be the identification of 𝐿𝑞

∞(ℋ) with 

Γ𝑞(ℋ) given by the requirement 

Ψ(𝜉)Ω = 𝜉  for  𝜉 ∈ 𝐿𝑞
∞(ℋ) ⊂ 𝐿𝑞

2 (ℋ) = ℱ𝑞(ℋℂ). 
The explicit form of our Wick products is given in the following proposition. 

Proposition (2.1.14)[60]: We have for 𝑛 ∈ ℕ and 𝑓1, … , 𝑓𝑛 ∈ ℋ the normal ordered 

representation 

Ψ(𝑓1⊗⋯⊗𝑓𝑛) = 

= ∑  
𝑘,𝑙=0,…,𝑛
𝑘+𝑙=𝑛

  ∑  

𝐼1={𝑖(1),…,𝑖(𝑘)}

𝐼2={𝑗(1),…,𝑗(𝑙)}

with
 𝐼1∪𝐼2={1,…,𝑛}

𝐼1∩𝐼2=∅

 𝑎∗(𝑓𝑖(1))…𝑎
∗(𝑓𝑖(𝑘))𝑎(𝑓𝑗(1))…𝑎(𝑓𝑗(𝑙)) ⋅ 𝑞

𝑖(𝐼1,𝐼2), 

where 

𝑖(𝐼1, 𝐼2) ≔ {(𝑝, 𝑞)|1 ≤ 𝑝 ≤ 𝑘, 1 ≤ 𝑞 ≤ 𝑙, 𝑖(𝑝) > 𝑗(𝑞)}. 
Denote by 𝑋 the right hand side of the above relation. It is clear that Ω = 𝑓1⊗⋯⊗𝑓𝑛, the 

problem is to see that 𝑋 can be expressed in terms of the 𝜔 's. 

Proof. Note that the formula is true for 

Ψ(𝑓) = 𝜔(𝑓) = 𝑎(𝑓) + 𝑎∗(𝑓) 
and that the definition of 𝑎∗(𝑓) and of 𝑎(𝑓) gives 

Ψ(𝑓 ⊗ 𝑓1⊗⋯⊗𝑓𝑛)

= 𝜔(𝑓)Ψ(𝑓1⊗⋯⊗𝑓𝑛) −∑  

𝑛

𝑖=1

𝑞𝑖−1⟨𝑓, 𝑓𝑖⟩Ψ(𝑓1⊗⋯⊗𝑓𝑖⊗⋯⊗𝑓𝑛). 

¿ From this the assertion follows by induction.  

Note that Ψ(𝑓1⊗⋯⊗𝑓𝑛) is just given by multiplying out 𝜔(𝑓1)…𝜔(𝑓𝑛) and bring 

all appearing terms with the help of the relation 𝑎𝑎∗ = 𝑞𝑎∗𝑎 into a normal ordered form - 

i.e. we throw away all normal ordered terms in 𝜔(𝑓1)…𝜔(𝑓𝑛) which have less than 𝑛 

factors. Thus, for the special case 𝑓1 = ⋯ = 𝑓𝑛, we are in the realm of the 𝑞-binomial 

theorem and we have the following nice formula. 

Corollary (2.1.15)[60]: We have for 𝑛 ∈ ℕ and 𝑓 ∈ ℋ 

Ψ(𝑓⊗𝑛) = ∑  

𝑛

𝑘=0

(
𝑛
𝑘
)
𝑞
𝑎∗(𝑓)𝑘𝑎(𝑓)𝑛−𝑘 . 

Instead of writing Ψ(𝑓⊗𝑛) in a normal ordered form we can also express it in terms of 𝜔(𝑓) 
with the help of the 𝑞-Hermite polynomials. 

Proposition (2.1.16)[60]: We have for 𝑛 ∈ ℕ0 and 𝑓 ∈ ℋ with ∥ 𝑓 ∥= 1 the representation 
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Ψ(𝑓⊗𝑛) = 𝐻𝑛
(𝑞)
(𝜔(𝑓)). 

Proof. This follows by the fact that the Ψ(𝑓⊗𝑛) fulfill the same recurrence relation as the 

𝐻𝑛
(𝑞)
(𝜔(𝑓)), namely 

𝜔(𝑓)Ψ(𝑓⊗𝑛) = Ψ(𝑓⊗(𝑛+1)) + [𝑛]𝑞Ψ(𝑓
⊗(𝑛−1)) 

and that we have the same initial conditions 

Ψ(𝑓⊗0) = 1,  Ψ(𝑓⊗1) = 𝜔(𝑓). 
We know [22], [19] that for 𝑞 = 0 the von Neumann algebra Γ0(ℋ) is isomorphic to 

the von Neumann algebra of the free group on dim ℋ generators - in particular, it is a non-

injective II1-factor for dim ℋ ≥ 2. We conjecture non-injectivity and factoriality in the case 

dim ℋ ≥ 2 for arbitrary 𝑞 ∈ (−1,1), but up to now we can only show the following. 

Theorem (2.1.17)[60]: i) For −1 < 𝑞 < 1 and dim ℋ > 16/(1 − |𝑞|)2 the von Neumann 

algebra Γ𝑞(ℋ) is not injective. 

ii) If −1 < 𝑞 < 1 and dim ℋ = ∞ then Γ𝑞(ℋ) is a II  1-factor. 

Proof. i) This was shown in a more general context in Theorem 4.2 in [68]. 

ii) Let {𝑒𝑖}𝑖∈ℕ be an orthonormal basis of ℋ. Fix 𝑛 ∈ ℕ0 and 𝑟(1),… , 𝑟(𝑛) ∈ ℕ and consider 

the operator 

𝑋:= Ψ(𝑒𝑟(1)⊗⋯⊗ 𝑒𝑟(𝑛)). 

(For 𝑛 = 0 this shall be understood as 𝑋 = 1.) We put 

𝜙𝑚(𝑋):=
1

𝑚
∑  

𝑚

𝑖=1

𝜔(𝑒𝑖)𝑋𝜔(𝑒𝑖)        (𝑚 ∈ ℕ) 

and claim that 𝜙𝑚(𝑋) converges for 𝑚 → ∞ weakly to 𝜙(𝑋):= 𝑞𝑛𝑋. Because of the 𝑚-

independent estimate 

∥∥𝜙𝑚(𝑋)∥∥𝑞 ≤∥ 𝑋 ∥𝑞 ∥∥𝜔(𝑒1)∥∥𝑞
2
 

it suffices to show 

lim
𝑚→∞

 ⟨𝜉, 𝜙𝑚(𝑋)𝜂⟩𝑞 = ⟨𝜉, 𝜙(𝑋)𝜂⟩𝑞 

for all 𝜉, 𝜂 ∈ ℱ𝑞(ℋC) of the form 

𝜉 = 𝑒𝑎(1)⊗⋯⊗ 𝑒𝑎(𝑢),  𝜂 = 𝑒𝑏(1)⊗⋯⊗ 𝑒𝑏(𝑣) 

with 𝑢, 𝑣 ∈ ℕ0, 𝑎(1),… , 𝑎(𝑢), 𝑏(1),… , 𝑏(𝑣) ∈ ℕ (for 𝑢 = 0 we put 𝜉 = Ω). To see this, put 

𝑚0: = max  {𝑎(1), … , 𝑎(𝑢), 𝑏(1),… , 𝑏(𝑣), 𝑟(1),… , 𝑟(𝑛)}. 

Since |⟨𝜉, 𝜔(𝑒𝑖)𝑋𝜔(𝑒𝑖)𝜂⟩𝑞| ≤ 𝑀 for some 𝑀 (independent of  ), we have 

lim
𝑚→∞

 ⟨𝜉, 𝜙𝑚(𝑋)𝜂⟩𝑞  = lim
𝑚→∞

 
1

𝑚
∑  

𝑚

𝑖=𝑚0+1

  ⟨𝜉, 𝜔(𝑒𝑖)𝑋𝜔(𝑒𝑖)𝜂⟩𝑞

 = lim
𝑚→∞

 
1

𝑚
∑  

𝑚

𝑖=𝑚0+1

  ⟨𝜉, 𝑎(𝑒𝑖)Ψ(𝑒𝑟(1)⊗⋯⊗ 𝑒𝑟(𝑛))𝑎
∗(𝑒𝑖)𝜂⟩𝑞

.

 

By Proposition (2.1.14),Ψ(𝑒𝑟(1)⊗⋯⊗ 𝑒𝑟(𝑛)) is now a linear combination of terms of the 

form 𝑌 = 𝑌1𝑌2 with 

𝑌1 = 𝑎
∗(𝑒𝑟(𝑖(1)))…𝑎

∗(𝑒𝑟(𝑖(𝑘)))  and  𝑌2 = 𝑎(𝑒𝑟(𝑗(1)))…𝑎(𝑒𝑟(𝑗(𝑙))) 

with 𝑘 + 𝑙 = 𝑛. Each such term gives, for 𝑖 > 𝑚0, a contribution 
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⟨𝜉, 𝑎(𝑒𝑖)𝑌𝑎
∗(𝑒𝑖)𝜂⟩𝑞  = ⟨𝜉, 𝑎(𝑒𝑖)𝑌1𝑌2𝑎

∗(𝑒𝑖)𝜂⟩𝑞

 = 𝑞𝑘+𝑙⟨𝜉, 𝑌1𝑎(𝑒𝑖)𝑎
∗(𝑒𝑖)𝑌2𝜂⟩𝑞

 = 𝑞𝑛⟨𝜉, 𝑌1(1 + 𝑞𝑎
∗(𝑒𝑖)𝑎(𝑒𝑖))𝑌2𝜂⟩𝑞

 = 𝑞𝑛⟨𝜉, 𝑌1𝑌2𝜂⟩𝑞

 

  = 𝑞𝑛⟨𝜉, 𝑌𝜂⟩𝑞   

and hence 

lim
𝑚→∞

 ⟨𝜉, 𝜙𝑚(𝑋)𝜂⟩𝑞 = lim
𝑚→∞

 
1

𝑚
∑  

𝑚

𝑖=𝑚0+1

𝑞𝑛⟨𝜉, Ψ(𝑒𝑟(1)⊗⋯⊗ 𝑒𝑟(𝑛))𝜂⟩𝑞
= ⟨𝜉, 𝑞𝑛𝑋𝜂⟩𝑞 . 

Thus we have shown 

w− lim  
𝑚→∞

𝜙𝑚(𝑋) = 𝜙(𝑋). 

Let now tr be a normalized normal trace on Γ𝑞(ℋ). Then 

tr [𝜙(𝑋)]  = lim
𝑚→∞

 tr [𝜙𝑚(𝑋)]

 = lim
𝑚→∞

 
1

𝑚
∑  

𝑚

𝑖=1

 tr [𝜔(𝑒𝑖)𝑋𝜔(𝑒𝑖)]

 = lim
𝑚→∞

 
1

𝑚
∑  

𝑚

𝑖=1

 tr [𝑋𝜔(𝑒𝑖)𝜔(𝑒𝑖)]

 = tr [𝑋 ⋅ lim
𝑚→∞

 
1

𝑚
∑  

𝑚

𝑖=1

 𝜔(𝑒𝑖)𝜔(𝑒𝑖)]

 = tr [𝑋𝜙(1)]

 = tr[𝑋] .

 

Since 𝜙𝑘(𝑋) = 𝑞𝑘𝑛𝑋 converges, for 𝑘 → ∞, (even in norm) to 

E[𝑋] ⋅ 1 = {
0, 𝑛 ≥ 1
𝑋 = 1, 𝑛 = 0,

 

we obtain 

tr[𝑋] = lim
𝑘→∞

  tr[𝜙𝑘(𝑋)] = tr [ lim
𝑘→∞

 𝜙𝑘(𝑋)] = E[𝑋] tr[1] = E[𝑋]. 

Thus tr coincides on all operators of the form 

𝑋 = Ψ(𝑒𝑟(1)⊗⋯⊗ 𝑒𝑟(𝑛)) (𝑛 ∈ ℕ0, 𝑟(1), … , 𝑟(𝑛) ∈ ℕ) 

with our canonical trace E. Since the set of finite linear combinations of such operators 𝑋 is 

weakly dense in Γ𝑞(ℋ), we get the uniqueness of a normalized normal trace on Γ𝑞(ℋ), 

which implies that Γ𝑞(ℋ) is a factor.  

The second part of our 𝑞-Gaussian functor Γ𝑞 assigns to each contraction: 

ℋ → ℋ′ a map Γ𝑞(𝑇): Γ𝑞(ℋ) → Γ𝑞(ℋ
′). The idea is to extend Γ𝑞(𝑇)𝜔(𝑓) = 𝜔(𝑇𝑓) in a 

canonical way to all of Γ𝑞(ℋ). In general, the 𝑞-relations prohibit the extension as a 

homomorphism, i.e. 

Γ𝑞(𝑇)𝜔(𝑓1)…𝜔(𝑓𝑛) ≠ 𝜔(𝑇𝑓1)…𝜔(𝑇𝑓𝑛)  in general . 
But what can be done is to demand the above relation for the normal ordered form, i.e. 

(Γ𝑞(𝑇)𝑋)Ω = ℱ𝑞(𝑇)(𝑋Ω). 
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Thus our second quantization Γ𝑞(𝑇) is the restriction of ℱ𝑞(𝑇) from ℱ𝑞(ℋ) = 𝐿𝑞
2 (ℋ) to 

Γ𝑞(ℋ) ≅ 𝐿𝑞
∞(ℋ) and the question on the existence of Γ𝑞(𝑇) amounts to the problem 

whether ℱ𝑞(𝑇)(𝐿𝑞
∞(ℋ)) ⊂ 𝐿𝑞

∞(ℋ′). We know that ℱ𝑞(𝑇) can be defined for 𝑇 a contraction 

and we will see in the next theorem that no extra condition is needed to ensure its nice 

behaviour with respect to 𝐿𝑞
∞. The case 𝑞 = 0 is due to Voiculescu [22],[19]. 

Theorem (2.1.18)[60]: a) Let 𝑇:ℋ → ℋ′ be a contraction between real Hilbert spaces. 

There exists a unique map Γ𝑞(𝑇): Γ𝑞(ℋ) → Γ𝑞(ℋ
′) such that 

(Γ𝑞(𝑇)𝑋)Ω = ℱ𝑞(𝑇)(𝑋Ω). 

The map Γ𝑞(𝑇) is linear, bounded, completely positive, unital and preserves the canonical 

trace 𝐸. 
b) If 𝑇 is isometric, then Γ𝑞(𝑇) is a faithful homomorphism, and if 𝑇 is the orthogonal 

projection onto a subspace, then Γ𝑞(𝑇) is a conditional expectation. 

Proof. Uniqueness of Γ𝑞(𝑇) follows from the fact that Ω is separating for Γ𝑞(ℋ
′). To prove 

the existence and the properties of Γ𝑞(𝑇) we notice that any contraction 𝑇 can be factored 

[81] as 𝑇 = 𝑃𝑂𝐼 where  

1. 𝐼:ℋ → 𝒦 = ℋ⊕ℋ′ is an isometric embedding  

2. 𝑂:𝒦 → 𝒦 is orthogonal 

3. 𝑃:𝒦 = ℋ⊕ℋ′ → ℋ′ is an orthogonal projection onto a subspace. 

Thus if we prove our assertions for each of these three cases then we will also get the 

general statement for Γ𝑞(𝑇) = Γ𝑞(𝑃)Γ𝑞(𝑂)Γ𝑞(𝐼). 

a) Let 𝐼:ℋ → 𝒦 = ℋ⊕ℋ′ be an isometric embedding and 𝑄:𝒦 → 𝒦 the 

orthogonal projection onto ℋ. Then ℱ𝑞(𝑄) is a projection in ℱ𝑞(𝒦ℂ) and ℱ𝑞(ℋℂ) can be 

identified with ℱ𝑞(𝑄)ℱ𝑞(𝒦ℂ). Let us denote by 𝜔𝒦(𝑓) the sum of creation and annihilation 

operator on ℱ𝑞(𝒦ℂ). If we put 

Γ𝑞
𝒦(ℋ):= vN(𝜔𝒦(𝑓) ∣ 𝑓 ∈ ℋ) ⊂ 𝐵 (ℱ𝑞(𝒦ℂ)), 

then 

Γ𝑞
𝒦(ℋ)ℱ𝑞(ℋℂ) ⊂ ℱ𝑞(ℋℂ) 

and we have the canonical identification 

Γ𝑞(ℋ) ≅ Γ𝑞
𝒦(ℋ)ℱ𝑞(𝑄), 

which gives a homomorphism (and thus a completely positive) 

Γ𝑞(𝐼): Γ𝑞(ℋ) → Γ𝑞(𝒦). 

Faithfulness is clear since ℱ𝑞(𝑄)Ω = Ω and Ω separating. This yields also that the trace is 

preserved. 

b) Let 𝑃:𝒦 = ℋ⊕ℋ′ → ℋ′ be an orthogonal projection, i.e. 𝑃𝑃∗ = 1ℋ′ , where 

𝑃∗:ℋ′ → 𝒦 is the canonical inclusion. Then 

Γ𝑞(𝑃)𝑋 ≔ ℱ𝑞(𝑃)𝑋ℱ𝑞(𝑃
∗)           (𝑋 ∈ Γ𝑞(𝒦)) 

gives the right operator, because we have for 𝑘, 𝑙 ∈ ℕ0 and 𝑓1, … , 𝑓𝑘 , 𝑔1, … , 𝑔𝑙 ∈ 𝒦 

ℱ𝑞(𝑃)𝑎
∗(𝑓1)…𝑎

∗(𝑓𝑘)𝑎 𝑎(𝑔1)…𝑎(𝑔𝑙)ℱ𝑞(𝑃
∗) =

= 𝑎∗(𝑃𝑓1)… 𝑎
∗(𝑃𝑓𝑘)ℱ𝑞(𝑃)ℱ𝑞(𝑃

∗)𝑎(𝑃𝑔1)…𝑎(𝑃𝑔𝑙)

= 𝑎∗(𝑃𝑓1)… 𝑎
∗(𝑃𝑓𝑘)𝑎(𝑃𝑔1)…𝑎(𝑃𝑔𝑙).

 

By its concrete form, Γ𝑞(𝑃) is a conditional expectation and 

E[ℱ𝑞(𝑃)𝑋ℱ𝑞(𝑃
∗)] = ⟨ℱ𝑞(𝑃

∗)Ω, 𝑋ℱ𝑞(𝑃
∗)Ω⟩

𝑞
= ⟨Ω, 𝑋Ω⟩𝑞 = E[𝑋] 
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shows that it preserves the trace. 

c) Let 𝑂:𝒦 → 𝒦 be orthogonal, i.e. 𝑂𝑂∗ = 𝑂∗𝑂 = 1𝒦. Then, as in b), 

Γ𝑞(𝑂)𝑋 = ℱ𝑞(𝑂)𝑋ℱ𝑞(𝑂
∗), 

which is, by 

ℱ𝑞(𝑂
∗)ℱ𝑞(𝑂) = ℱ𝑞(1𝒦) = 1ℱ𝑞(𝒦ℂ) 

also a faithful homomorphism. 

Instead of working on the level of von Neumann algebras we could also consider the 

𝐶∗-analogues of the above constructions. This would be quite similar. We just indicate the 

main points. 

Definition (2.1.19)[60]: Let ℋ be a real Hilbert space and ℋℂ its complexification ℋℂ =
ℋ⊕ 𝑖ℋ. Put, for 𝑓 ∈ ℋ, 

𝜔(𝑓):= 𝑎(𝑓) + 𝑎∗(𝑓) ∈ 𝐵 (ℱ𝑞(ℋℂ)) 

and denote by Φ𝑞(ℋ) ⊂ 𝐵 (ℱ𝑞(ℋℂ)) the 𝐶∗-algebra generated by all 𝜔(𝑓), 

Φ𝑞(ℋ):= 𝐶
∗(𝑎(𝑓) + 𝑎∗(𝑓) ∣ 𝑓 ∈ ℋ). 

Clearly, the vacuum is also a separating trace-vector for Φ𝑞(ℋ), it is also cyclic and 

Ψ(𝑓1⊗⋯⊗𝑓𝑛) ∈ Φ𝑞(ℋ) for all 𝑛 ∈ ℕ0 and all 𝑓1, … , 𝑓𝑛 ∈ ℋ. 

The most important fact for our latter considerations is that Γ𝑞(𝑇) can also be 

restricted to the 𝐶∗-level. 

Theorem (2.1.20)[60]: a) Let 𝑇:ℋ → ℋ′ be a contraction between real Hilbert spaces. 

There exists a unique map Φ𝑞(𝑇):Φ𝑞(ℋ) → Φ𝑞(ℋ
′) such that 

(Φ𝑞(𝑇)𝑋)Ω = ℱ𝑞(𝑇)(𝑋Ω). 

The map Φ𝑞(𝑇) is linear, bounded, completely positive, unital and preserves the canonical 

trace 𝐸. 

b) If 𝑇 is isometric, then Φ𝑞(𝑇) is a faithful homomorphism, and if 𝑇 is the orthogonal 

projection onto a subspace, then Φ𝑞(𝑇) is a conditional expectation. 

c) We have Φ𝑞(𝑇) = Γ𝑞(𝑇)/Φ𝑞(ℋ). 
Proof. This is analogous to the proof of Theorem (2.1.18). 

We can now also prove the analogue of the second part of Theorem (2.1.17). The 

analogue of factoriality for 𝐶∗-algebras is simplicity. 

Theorem (2.1.21)[60]: If −1 < 𝑞 < 1 and dim ℋ = ∞ then Φ𝑞(ℋ) is simple. 

Proof. Again, this is similar to the proof of the von Neumann algebra result.  We just indicate 

the main steps.  

We use the notations from the proof of Theorem (2.1.17). First, by norm estimates, 

one can show that the convergence lim𝑚→∞  𝜙𝑚(𝑋) = 𝜙(𝑋) for 𝑋 of the form 𝑋:=

Ψ(𝑒𝑟(1)⊗⋯⊗ 𝑒𝑟(𝑛)) is even a convergence in norm. Since 𝜙(𝑋) is nothing but 𝜙(𝑋) =

Γ𝑞(𝑞)𝑋, where 𝑞 is regarded as multiplication operator on ℋ, we have, by Theorem (2.1.20), 

the bound 

∥ 𝜙(𝑋) ∥𝑞≤∥ 𝑋 ∥𝑞 . 

This together with the 𝑚-independent bound 

∥∥𝜙𝑚(𝑋)∥∥𝑞 ≤∥ 𝑋 ∥𝑞 ∥∥𝜔(𝑒1)∥∥𝑞
2
 

implies that 

lim𝑚→∞  𝜙𝑚(𝑋) = Γ𝑞(𝑞)𝑋  uniformly for all 𝑋 ∈ Φ𝑞(ℋ). 
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Now assume we have a non-trivial ideal 𝐼 in Φ𝑞(ℋ) and consider a positive nonvanishing 

𝑋 ∈ 𝐼. Then 𝜙𝑚(𝑋) ∈ 𝐼 for all 𝑚 ∈ ℕ and thus Γ𝑞(𝑞)𝑋 ∈ 𝐼. Iterating shows Γ𝑞(𝑞
𝑛)𝑋 ∈ 𝐼 

for all 𝑛 ∈ ℕ and because of the uniform convergence lim𝑛→∞  Γ𝑞(𝑞
𝑛)𝑋 = E[𝑋]1 we obtain 

E[𝑋]1 ∈ 𝐼. The faithfulness of E implies then 𝐼 = Φ𝑞(ℋ). 

Before we define the notion of a 𝑞-Gaussian process, we want to present our general 

frame on non-commutative processes. By 𝑇 we will denote the range of our time parameter 

𝑡, typically 𝑇 will be some interval in ℝ. 

Definitions (2.1.22)[60]: a) Let 𝒜 be a finite von Neumann algebra and 𝜑:𝒜 → ℂ a faithful 

normal trace on 𝒜. Then we call the pair (𝒜, 𝜑) a (tracial) probability space. 

b) A random variable on (𝒜,𝜑) is a self-adjoint operator 𝑋 ∈ 𝒜. 

c) A stochastic process on (𝒜, 𝜑) is a family (𝑋𝑡)𝑡∈𝑇 of random variables 𝑋𝑡 ∈ 𝒜 

(𝑡 ∈ 𝑇). 
d) The distribution of a random variable 𝑋 on (𝒜,𝜑) is the probability measure 𝜈 on 

the spectrum of 𝑋 determined by 

𝜑(𝑋𝑛) = ∫𝑥𝑛𝑑𝑣(𝑥)     for all 𝑛 ∈ ℕ0. 

We should point out that there are also a lot of quantum probabilistic investigations 

of more general, non-tracial situations, see e.g. [61], [87].  

We will only consider centered Gaussian processes, thus a 𝑞-Gaussian process will 

be totally determined by its covariance. Since we would like to have realizations of our 

processes on separable Hilbert spaces, our admissible covariances are not just positive 

definite functions, but they should admit a separable representation. 

Definition (2.1.23)[60]: A function 𝑐: 𝑇 × 𝑇 → ℝ is called covariance function, if there 

exists a separable real Hilbert space ℋ and vectors 𝑓𝑡 ∈ ℋ for all 𝑡 ∈ 𝑇 such that 

𝑐(𝑠, 𝑡) = ⟨𝑓𝑠, 𝑓𝑡⟩ (𝑠, 𝑡 ∈ ℋ). 
Definition (2.1.24)[60]: Let 𝑐: 𝑇 × 𝑇 → ℝ be a covariance function corresponding to a real 

Hilbert space ℋ and vectors 𝑓𝑡 ∈ ℋ(𝑡 ∈ 𝑇). Then we put for all 𝑡 ∈ 𝑇 

𝑋𝑡: = 𝜔(𝑓𝑡) ∈ Γ𝑞(ℋ) 

and call the process (𝑋𝑡)𝑡∈𝑇 on (Γ𝑞(ℋ), E) the 𝑞-Gaussian process with covariance 𝑐. 
see Frisch and Bourret [77].  

We can now define 𝑞-analogues of all classical Gaussian processes, just by choosing 

the appropriate covariance. In the following we consider three prominent examples. 

Definitions (2.1.25)[60]: a) The 𝑞-Gaussian process (𝑋𝑡
𝑞𝐵𝑀

)
𝑡∈[0,∞)

 with covariance 

𝑐(𝑠, 𝑡) = min  (𝑠, 𝑡)              (0 ≤ 𝑠, 𝑡 < ∞) 
is called 𝑞-Brownian motion. 

b) The 𝑞-Gaussian process (𝑋𝑡
𝑞𝐵𝐵
)
𝑡∈[0,1]

 with covariance 

𝑐(𝑠, 𝑡) = 𝑠(1 − 𝑡) (0 ≤ 𝑠 ≤ 𝑡 ≤ 1) 
is called 𝑞-Brownian bridge. 

c) The 𝑞-Gaussian process (𝑋𝑡
𝑞𝑂𝑈

)
𝑡∈ℝ

 with covariance 

𝑐(𝑠, 𝑡) = 𝑒−|𝑡−𝑠| (𝑠, 𝑡 ∈ ℝ) 
is called 𝑞-Ornstein-Uhlenbeck process.See [102], [107]. 

Definition (2.1.26)[60]: Let (𝒜,𝜑) be a probability space and (𝑋𝑡)𝑡∈𝑇 a stochastic process 

on (𝒜,𝜑). Denote by 
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𝒜𝑡] ∶= vN(𝑋𝑢 ∣ 𝑢 ≤ 𝑡) ⊂ 𝒜  

𝒜[𝑡] ∶= vN(𝑋𝑡) ⊂ 𝒜.  
 

We say that (𝑋𝑡)𝑡∈𝑇 is a Markov process if we have for all 𝑠, 𝑡 ∈ 𝑇 with 𝑠 ≤ 𝑡 the property 

𝜑[𝑋 ∣ 𝒜𝑠] ⊂ 𝒜[𝑠]  for all 𝑋 ∈ 𝒜[𝑡]. 

Now, the conditional expectations E[⋅∣ 𝒜𝑠]] in the case of 𝑞-Gaussian processes are quite 

easy to handle because they are nothing but the second quantization of projections in the 

underlying Hilbert space. Namely, consider a 𝑞-Gaussian process (𝑋𝑡)𝑡∈𝑇 corresponding to 

the real Hilbert space ℋ and vectors 𝑓𝑡(𝑡 ∈ 𝑇). Let us denote by 
ℋ𝑡] ∶= span (𝑓𝑢 ∣ 𝑢 ≤ 𝑡) ⊂ ℋ

ℋ[𝑡] ∶= ℝ𝑓𝑡 ⊂ ℋ
 

the Hilbert space analogues of 𝒜𝑡] and 𝒜[𝑡], respectively. Then we have 

𝒜𝑡] ≅ Γ𝑞(ℋ𝑡])  and  𝒜[𝑡] ≅ Γ𝑞(ℋ[𝑡]), 

and E[⋅∣ 𝒜𝑡]] = Γ𝑞(𝑃𝑡]) is the second quantization of the orthogonal projection 

𝑃𝑡]:ℋ → ℋ𝑡].  

Thus we can translate the Markov property for 𝑞-Gaussian processes into the following 

Hilbert space level statement. 

Proposition (2.1.27)[60]:. Let (𝑋𝑡)𝑡∈𝑇 be a q-Gaussian process as above. It has the Markov 

property if and only if 

𝑃𝑠]ℋ[𝑡] ⊂ ℋ[𝑠]  for all s, 𝑡 ∈ 𝑇 with 𝑠 ≤ 𝑡.  

Thus Markovianity is a property of the underlying Hilbert space and does not depend on 𝑞 

and we get as in the classical case the following characterization in terms of the covariance. 

Proposition (2.1.28)[60]:. A 𝑞-Gaussian process with covariance 𝑐 is Markovian if and only 

if we have for all triples 𝑠, 𝑢, 𝑡 ∈ 𝑇 with 𝑠 ≤ 𝑢 ≤ 𝑡 that 

𝑐(𝑡, 𝑠)𝑐(𝑢, 𝑢) = 𝑐(𝑡, 𝑢)𝑐(𝑢, 𝑠). 
Proof. See the proof of Theorem 3.9 in [102].  

Corollary (2.1.29)[60]:. The 𝑞-Brownian motion (𝑋𝑡
𝑞𝐵𝑀

)
𝑡∈[0,∞)

, the 𝑞-Brownian bridge 

(𝑋𝑡
𝑞𝐵𝐵
)
𝑡∈[0,1]

, and the 𝑞-Ornstein-Uhlenbeck process (𝑋𝑡
𝑞𝑂𝑈

)
𝑡∈ℝ

 are all Markovian. 

Analogously, we have all statements of the classical Gaussian processes which 

depend only on Hilbert space properties. Let us just state the characterization of the 

Ornstein-Uhlenbeck process as the only stationary Gaussian Markov process with 

continuous covariance and the characterization of martingales among the Gaussian 

processes. 

Proposition (2.1.30)[60]:. Let (𝑋𝑡)𝑡∈𝑇 be a 𝑞-Gaussian process which is stationary, 

Markovian and whose covariance 𝑐(𝑠, 𝑡) = 𝑐′(𝑡 − 𝑠) is continuous. Then 𝑋𝑡 = 𝛼𝑋𝛽𝑡
𝑞𝑂𝑈

 for 

suitable 𝛼, 𝛽 > 0. 

Proof. See the proof of the analogous statement for classical Gaussian processes, Corollary 

4.10 in [102]. 

Definition (2.1.31)[60]:. Let (𝑋𝑡)𝑡∈𝑇 be a stochastic process on a probability space (𝒜,𝜑) 
and let the notations be as in Definition (2.1.26). Then we say that (𝑋𝑡)𝑡∈𝑇 is a martingale 

if 

𝜑[𝑋𝑡 ∣ 𝒜𝑠]] = 𝑋𝑠  for all 𝑠 ≤ 𝑡. 

Proposition (2.1.32)[60]:. A 𝑞-Gaussian process is a martingale if and only if 𝑃𝑠]𝑓𝑡 = 𝑓𝑠 for 

all 𝑠 ≤ 𝑡 − which is the case if and only if 𝑐(𝑠, 𝑡) = 𝑐(𝑠, 𝑠) for all 𝑠 ≤ 𝑡. 
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Proof. We have 

𝜔(𝑓𝑠) = 𝑋𝑠 = E[𝑋𝑡 ∣ 𝒜𝑠]] = Γ𝑞(𝑃𝑠])𝜔(𝑓𝑡) = 𝜔(𝑃𝑠]𝑓𝑡), 

implying 𝑃𝑠]𝑓𝑡 = 𝑓𝑠. 

We want to address the question whether our non-commutative stochastic processes 

can also be interpreted classically. 

Definition (2.1.33)[60]: Let (𝑋𝑡)𝑡∈𝑇 be a stochastic process on some non-commutative 

probability space (𝒜, 𝜑). We call a classical real-valued process (�̃�𝑡)𝑡∈𝑇 on some classical 

probability space (Ω,𝔄, 𝑃) a classical version of (𝑋𝑡)𝑡∈𝑇 if all time-ordered moments of 

(𝑋𝑡)𝑡∈𝑇 and (�̃�𝑡)𝑡∈𝑇 coincide, i.e. if we have for all 𝑛 ∈ ℕ, all 𝑡1… , 𝑡𝑛 ∈ 𝑇 with 𝑡1 ≤ ⋯ ≤

𝑡𝑛, and all bounded Borel functions ℎ1, … , ℎ𝑛 on ℝ the equality 

𝜑 [ℎ1(𝑋𝑡1)…ℎ𝑛 (𝑋𝑡𝑝)] = ∫ℎ1 (�̃�𝑡1(𝜔)) ℎ𝑛 (�̃�𝑡𝑝(𝜔)) 𝑑𝑃(𝜔). 

It is clear that there is at most one classical version for a given non-commutative 

process (𝑋𝑡)𝑡∈𝑇 . The problem consists in showing the existence. If we denote by 𝟏𝐵 the 

characteristic function of a measurable subset 𝐵 of ℝ, then we can construct the classical 

version (�̃�𝑡)𝑡∈𝑇 of (𝑋𝑡)𝑡∈𝑇 via Kolmogorov's existence theorem from the collection of all 

𝜇𝑡1,…,𝑡𝑛(𝑛 ∈ ℕ, 𝑡1 ≤ ⋯ ≤ 𝑡𝑛) − which are for 𝐵1, … , 𝐵𝑛 ⊂ ℝ defined by 

𝜇𝑡1,…,𝑡𝑛(𝐵1 ×⋯× 𝐵𝑛)  = 𝑃(�̃�𝑡1 ∈ 𝐵1, … , �̃�𝑡𝑛 ∈ 𝐵𝑛)

 = 𝜑[𝟏𝐵1(𝑋𝑡1)…𝟏𝐵𝑛(𝑋𝑡𝑛)]
 

- if and only if all 𝜇𝑡1,…,𝑡𝑛  are probability measures. Whereas this is of course the case for 

𝜇𝑡1 and, in our tracial frame because of 

𝜇𝑡1,𝑡2(𝐵1 × 𝐵2) = 𝜑[𝟏𝐵1(𝑋𝑡1)𝟏𝐵2(𝑋𝑡2)] = 𝜑[𝟏𝐵1(𝑋𝑡1)𝟏𝐵2(𝑋𝑡2)𝟏𝐵1(𝑋𝑡1)], 

also for 𝜇𝑡1,𝑡2, there is no apriori reason why it should be true for bigger 𝑛. And in general 

it is not. It is essentially the content of Bell's inequality that there are examples of non-

commutative processes which possess no classical version − for a discussion of these 

subjects see, e.g., [89]. 

But for special classes of non-commutative processes classical versions might exist. 

One prominent example of such a class are the Markov processes. 

Definition (2.1.34)[60]: Let (𝑋𝑡)𝑡∈𝑇 be a Markov process on a probability space (𝒜,𝜑). 
Let, for 𝑡 ∈ 𝑇, spect (𝑋𝑡) and 𝜈𝑡 be the spectrum und the distribution, respectively, of the 

self-adjoint operator 𝑋𝑡 . Denote by 

𝐿∞(𝑋𝑡):= vN(𝑋𝑡) = 𝐿
∞(spect (𝑋𝑡), 𝜈𝑡). 

The operators 

𝒦𝑠,𝑡: 𝐿
∞(𝑋𝑡) → 𝐿∞(𝑋𝑠) (𝑠 ≤ 𝑡), 

determined by 

𝜑[ℎ(𝑋𝑡) ∣ 𝒜𝑠]] = 𝜑[ℎ(𝑋𝑡) ∣ 𝒜[𝑠]] = (𝒦𝑠,𝑡ℎ)(𝑋𝑠) 

are called transition operators of the process (𝑋𝑡)𝑡∈𝑇, and, looked upon from the other side, 

the process (𝑋𝑡)𝑡∈𝑇 is called a dilation of the transistion operators 𝒦 = (𝒦𝑠,𝑡)𝑠≤𝑡. 

The following theorem is by now some kind of folklore in quantum probability, see, 

e.g. [61], [88],[62], [63]. We just indicate the proof for sake of completeness. 

Theorem (2.1.35)[60]: If (𝑋𝑡)𝑡∈𝑇 is a Markov process on some probability space (𝒜,𝜑), 

then there exists a classical version (�̃�𝑡)𝑡∈𝑇 of (𝑋𝑡)𝑡∈𝑇, which is a classical Markov process. 
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Proof. One can express the time-ordered moments of a Markov process in terms of the 

transition operators via 

𝜑[ℎ1(𝑋𝑡1)…ℎ𝑛(𝑋𝑡𝑛)]  = 𝜑[ℎ1(𝑋𝑡1)…ℎ𝑛(𝑋𝑡𝑛) ∣ 𝒜𝑡𝑛−1]

 = 𝜑 [ℎ1(𝑋𝑡1)…ℎ𝑛−1(𝑋𝑡𝑛−1)𝜑[ℎ𝑛(𝑋𝑡𝑛) ∣ 𝒜𝑡𝑛−1]]

 = 𝜑[ℎ1(𝑋𝑡1)…ℎ𝑛−1(𝑋𝑡𝑛−1)(𝒦𝑡𝑛−1,𝑡𝑛ℎ𝑛)(𝑋𝑡𝑛−1)]

 = 𝜑[ℎ1(𝑋𝑡1)…ℎ𝑛−2(𝑋𝑡𝑛−2)(ℎ𝑛−1 ⋅ 𝒦𝑡𝑛−1,𝑡𝑛ℎ𝑛)(𝑋𝑡𝑛−1)]

 = ⋯

 = 𝜑 [(ℎ1 ⋅ 𝒦𝑡1,𝑡2 (ℎ2 ⋅ 𝒦𝑡2,𝑡3(ℎ3 ⋅ … ))) (𝑋𝑡1)] ,

 

from which it follows − because 𝒦𝑠,𝑡 preserves positivity − that the corresponding 𝜇𝑡1,…,𝑡𝑛 

are probability measures. That the classical version is also a classical Markov process 

follows by the same formula.  

Corollary (2.1.36)[60]: There exist classical versions of all 𝑞-Gaussian Markov processes. 

In particular, we have classical versions of the 𝑞-Brownian motion, of the 𝑞-Brownian 

bridge, and of the 𝑞-Ornstein-Uhlenbeck process. 

We describe these classical versions more explicitly by calculating their transition 

probabilities in terms of the orthogonalizing measure 𝜈𝑞 and the kernel 𝑝𝑟
(𝑞)
(𝑥, 𝑦) of 

Theorem (2.1.8). 

Theorem (2.1.37)[60]: Let (𝑋𝑡)𝑡∈𝑇 be a 𝑞-Gaussian Markov process with covariance 𝑐 and 

put 

𝜆𝑡: = √𝑐(𝑡, 𝑡)  and  𝜆𝑠,𝑡: =
𝑐(𝑡, 𝑠)

√𝑐(𝑠, 𝑠)𝑐(𝑡, 𝑡)
. 

a) We have 

𝐿∞(𝑋𝑡) = 𝐿
∞ ([−2𝜆𝑡/√1 − 𝑞, 2𝜆𝑡/√1 − 𝑞], 𝜈𝑞(𝑑𝑥/𝜆𝑡)). 

b) If 𝜆𝑠,𝑡 = ±1, then the transition operator 𝒦𝑠,𝑡
(𝑞)

 is given by 

(𝒦𝑠,𝑡
(𝑞)
ℎ) (𝑥) = ℎ(±𝑥𝜆𝑡/𝜆𝑠). 

If |𝜆𝑠,𝑡| < 1, then the transition operator 𝒦𝑠,𝑡
(𝑞)

 is given by 

(𝒦𝑠,𝑡
(𝑞)
ℎ) (𝑥) = ∫  ℎ(𝑦)𝑘𝑠,𝑡

(𝑞)
(𝑥, 𝑑𝑦), 

where the transition probabilities 𝑘𝑠,𝑡
(𝑞)

 are Feller kernels which have the explicit form 

𝑘𝑠,𝑡
(𝑞)
(𝑥, 𝑑𝑦) = 𝑝𝜆𝑠,𝑡

(𝑞)(𝑥/𝜆𝑠, 𝑦/𝜆𝑡)𝜈𝑞(𝑑𝑦/𝜆𝑡). 

In particular, for 𝑞 = 0 and |𝜆𝑠,𝑡| < 1, we have the following transition probabilities for the 

free Gaussian Markov processes 

      𝑘𝑠,𝑡
(0)
(𝑥, 𝑑𝑦) = 

=
1

2 − 𝜆𝑡
2

(1 − 𝜆𝑠,𝑡
2 )√4𝜆𝑡

2 − 𝑦2𝑑𝑦

(1 − 𝜆𝑠
2)2 − 𝜆𝑠

2(1 + 𝜆𝑠
2)(𝑥/𝜆𝑠)(𝑦/𝜆𝑡) + 𝜆𝑠

2((𝑥2 𝜆𝑠
2⁄ ) + (𝑦2 𝜆𝑡

2⁄ ))
. 

Recall that a kernel 𝑘(𝑥, 𝑑𝑦) is called Feller, if the map 𝑥 ↦ 𝑘(𝑥, 𝑑𝑦) is weakly continuous 

and 𝑘(𝑥,⋅) → 0 weakly as 𝑥 → ±∞− or equivalently that the corresponding operator 𝒦 

sends 𝐶0(ℝ) to 𝐶0(ℝ), see, e.g., [73]. 
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Proof. a) This was shown in [67]; noticing the connection between 𝑞-relations and 𝑞-

Hermite polynomials the assertion reduces essentially to part a) of Theorem (2.1.8). 

a) By Proposition (2.1.7), we know 

Ψ(𝑓⊗𝑛) =∥ 𝑓 ∥𝑛 𝐻𝑛
(𝑞)
(𝜔(𝑓)/∥ 𝑓 ∥). 

Let our 𝑞-Gaussian process (𝑋𝑡)𝑡∈𝑇 now be of the form 𝑋𝑡 = 𝜔(𝑓𝑡). Markovianity implies 

𝑃𝑠]𝑓𝑡 = 𝜇𝑓𝑠  where  𝜇 =
⟨𝑓𝑡 , 𝑓𝑠⟩

⟨𝑓𝑠, 𝑓𝑠⟩
=
𝑐(𝑡, 𝑠)

𝑐(𝑠, 𝑠)
.  

Because of 

E[Ψ(𝑓𝑡
⊗𝑛) ∣ 𝒜𝑠]] = Ψ((𝑃𝑠]𝑓𝑡)

⊗𝑛
) = 𝜇𝑛Ψ(𝑓𝑠

⊗𝑛) 

we obtain with 

𝜆𝑡: = ∥∥𝑓𝑡∥∥ = √𝑐(𝑡, 𝑡)  and  𝜆𝑠,𝑡: = 𝜇
𝜆𝑠
𝜆𝑡
=

𝑐(𝑡, 𝑠)

√𝑐(𝑠, 𝑠)𝑐(𝑡, 𝑡)
 

the formula 

E [𝐻𝑛
(𝑞)(𝑋𝑡/𝜆𝑡) ∣ 𝒜𝑠]]  =

1

𝜆𝑡
𝑛 E[Ψ(𝑓𝑡

⊗𝑛) ∣ 𝒜𝑠]

 =
𝜇𝑛

𝜆𝑡
𝑛 Ψ(𝑓𝑠

⊗𝑛)

 = (𝜇
𝜆𝑠
𝜆𝑡
)
𝑛

𝐻𝑛
(𝑞)(𝑋𝑠/𝜆𝑠)

 = 𝜆𝑠,𝑡
𝑛 𝐻𝑛

(𝑞)(𝑋𝑠/𝜆𝑠),

 

implying 

𝒦𝑠,𝑡
(𝑞)
(𝐻𝑛

(𝑞)(⋅/𝜆𝑡)) = 𝜆𝑠,𝑡
𝑛 𝐻𝑛

(𝑞)(⋅/𝜆𝑠). 

Let us now consider the canonical extension of our transition operators from the 𝐿∞-spaces 

to the 𝐿2-spaces, i.e. 

𝒦𝑠,𝑡
(𝑞)
: 𝐿2(𝑋𝑡) → 𝐿2(𝑋𝑠). 

If we use the fact that the rescaled 𝑞-Hermite polynomials (𝐻𝑛
(𝑞)(⋅/𝜆𝑡)/√[𝑛]!)

𝑛∈ℕ0
 

constitute an orthonormal basis of 𝐿2(𝑋𝑡), we get directly the assertion in the case 𝜆𝑠,𝑡 =

±1. (For 𝜆𝑠,𝑡 = −1 one also has to note that 𝐻2𝑘
(𝑞)

 and 𝐻2𝑘+1
(𝑞)

 are even and odd polynomials, 

respectively.)  

In the case |𝜆𝑠,𝑡| < 1, our formula implies that 𝒦𝑠,𝑡
(𝑞)

 is a Hilbert-Schmidt operator, 

thus it has a concrete representation by a kernel 𝑘𝑠,𝑡
(𝑞)

, which is given by 

𝑘𝑠,𝑡
(𝑞)
(𝑥, 𝑑𝑦) = ∑  

∞

𝑛=0

𝜆𝑠,𝑡
𝑛

[𝑛]𝑞!
𝐻𝑛
(𝑞)(𝑥/𝜆𝑠)𝐻𝑛

(𝑞)(𝑦/𝜆𝑡)𝜈𝑞(𝑑𝑦/𝜆𝑡) 

=∑𝜆𝑠(𝑥/𝜆𝑠, 𝑦/𝜆𝑡)𝜈𝑞(𝑑𝑦/𝜆𝑡)

∞

.    

That our kernels are Feller follows from the fact that, by Theorem (2.1.20), our second 

quantization (i.e. our transition operators) restrict to the 𝐶∗-level (i.e. to continuous 

functions).  
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The formula for 𝑘𝑠,𝑡
(0)

 follows from the concrete form of 𝑝𝑟
(0)

 of Theorem (2.1.8) and 

the fact that 

𝜈0(𝑑𝑦) =
1

2𝜋
√4 − 𝑦2𝑑𝑦  for  𝑦 ∈ [−2,2]. 

The main formula of our proof, namely the action of the conditional expectation on the 𝑞-

Hermite polynomials, says that we have some quite canonical martingales associated to 𝑞-

Gaussian Markov processes - provided the factor 𝜆𝑠,𝑡 decomposes into a quotient 𝜆𝑠,𝑡 =
𝜆(𝑠)/𝜆(𝑡). Since this can be assured by a corresponding factorization property of the 

covariance function − which is not very restrictive for Gaussian Markov processes, see 

Theorem 4.9 of [102] - we get the following corollary. 

Corollary (2.1.38)[60]: Let (𝑋𝑡)𝑡∈𝑇 be a 𝑞-Gaussian process whose covariance factorizes 

for suitable functions 𝑔 and 𝑓 as 

𝑐(𝑠, 𝑡) = 𝑔(𝑠)𝑓(𝑡)  for 𝑠 ≤ 𝑡. 
Then, for all 𝑛 ∈ ℕ0, the processes (𝑀𝑛(𝑡))𝑡∈𝑇 with 

𝑀𝑛(𝑡):= (𝑔(𝑡)/𝑓(𝑡))
𝑛/2𝐻𝑛

(𝑞)(𝑋𝑡/𝜆𝑡) 
are martingales. 

Note that the assumption on the factorization of the covariance is in particular fulfilled 

for the 𝑞-Brownian motion, for the 𝑞-Ornstein-Uhlenbeck process, and for the 𝑞-Brownian 

bridge. 

Proof. Our assumption on the covariance implies 

𝜆𝑠,𝑡 = √
𝑔(𝑠)/𝑓(𝑠)

𝑔(𝑡)/𝑓(𝑡)
, 

hence our formula for the action of the conditional expectation on the 𝑞-Hermite 

polynomials can be written as 

(𝑔(𝑡)/𝑓(𝑡))
𝑛
2E[𝐻𝑛

(𝑞)(𝑋𝑡/𝜆𝑡) ∣ 𝒜𝑠]] = (𝑔(𝑠)/𝑓(𝑠))
𝑛/2𝐻𝑛

(𝑞)(𝑋𝑠/𝜆𝑠), 

which is exactly our assertion. 

Example (2.1.39)[60]: Free Gaussian processes. We will now specialize the formula for 

𝑘𝑠,𝑡
(0)

 to the case of the free Brownian motion, the free Ornstein-Uhlenbeck process and the 

free Brownian bridge. The transition probabilities for the two former cases were also derived 

by Biane [63] in the context of processes with free increments. 

a) free Brownian motion: We have 𝑐(𝑠, 𝑡) = min(𝑠, 𝑡), thus 

𝜆𝑡 = √𝑡  and  𝜆𝑠,𝑡 = √𝑠/𝑡.  
This yields 

𝑘𝑠,𝑡(𝑥, 𝑑𝑦) =
(𝑡 − 𝑠)

(𝑡 − 𝑠)2 − (𝑡 + 𝑠)𝑥𝑦 + 𝑥2𝑡 + 𝑦2𝑠

√4𝑡 − 𝑦2𝑑𝑦

2𝜋
 

for 

𝑥 ∈ [−2√𝑠, 2√𝑠]  and  𝑦 ∈ [−2√𝑡, 2√𝑡]. 
b) free Ornstein-Uhlenbeck process: We have 𝑐(𝑠, 𝑡) = 𝑒−|𝑡−𝑠|, thus 

𝜆𝑡 = 1  and  𝜆𝑠,𝑡 = 𝑒
−|𝑡−𝑠|. 

Since this process is stationary, it suffices to consider the transition probabilities for = 0 : 

𝑘0,𝑡(𝑥, 𝑑𝑦) =
(𝑒2𝑡 − 1)

4sinh2 𝑡 − 2𝑥𝑦cosh 𝑡 + 𝑥2 + 𝑦2
√4 − 𝑦2𝑑𝑦

2𝜋
  for  𝑥, 𝑦 ∈ [−2,2]. 



47 

Let us also calculate the generator 𝑁 of this process - which is characterized by 

𝒦𝑠,𝑡 = 𝑒
−(𝑡−𝑠)𝑁 . 

It has the property 

𝑁𝐻𝑛
(0)
= 𝑛𝐻𝑛

(0)
 (𝑛 ∈ ℕ0), 

and differentiating the above kernel shows that it should be given formally by a kernel 

−2/(𝑦 − 𝑥)2 with respect to 𝜈0. Making this more rigorous [108] yields that 𝑁 has on 

functions which are differentiable the form 

(𝑁ℎ)(𝑥) = 𝑥𝑓′(𝑥) − 2∫
𝑓(𝑦) − 𝑓(𝑥) − 𝑓′(𝑥)(𝑦 − 𝑥)

(𝑦 − 𝑥)2
2𝑣0(𝑑𝑦). 

c) free Brownian bridge: We have 𝑐(𝑠, 𝑡) = 𝑠(1 − 𝑡) for 𝑠 ≤ 𝑡, thus 

𝜆𝑡 = √𝑡(1 − 𝑡)  and  𝜆𝑠,𝑡 = √
𝑠(1 − 𝑡)

𝑡(1 − 𝑠)
. 

This yields 

𝑘𝑠,𝑡(𝑥, 𝑑𝑦) =

 =
1 − 𝑠

1 − 𝑡

(𝑡 − 𝑠)

(𝑡 − 𝑠)2 − (𝑠 + 𝑡 − 2𝑠𝑡)𝑥𝑦 + 𝑡(1 − 𝑡)𝑥2 + 𝑠(1 − 𝑠)𝑦2
√4𝑡(1 − 𝑡) − 𝑦2𝑑𝑦

2𝜋
,
 

for 

𝑥 ∈ [−2√𝑠(1 − 𝑠), 2√𝑠(1 − 𝑠)] 

 and  𝑦 ∈ [−2√𝑡(1 − 𝑡), 2√𝑡(1 − 𝑡)]. 
Example (2.1.40)[60]: Fermionic Gaussian processes. For illustration, we also want to 

consider the fermionic (𝑞 = −1) analogue of Gaussian processes. Although this case has 

not been included in our frame everything works similar, the only difference is that in the 

Fock space we get a kernel of our scalar product consisting of anti-symmetric tensors. This 

is responsible for the fact that the corresponding (-1)-Hermite polynomials collapse just to 

𝐻0
(−1)(𝑥) = 1  and  𝐻1

(−1)(𝑥) = 𝑥. 
The corresponding measure 𝜈−1 is not absolutely continuous with respect to the Lebesgue 

measure anymore, but collapses to 

𝜈−1(𝑑𝑥) =
1

2
(𝛿−1(𝑑𝑥) + 𝛿+1(𝑑𝑥)). 

This yields 

𝑝𝑟
(−1)(𝑥, 𝑦) = 𝐻0

(−1)(𝑥)𝐻0
(−1)(𝑦) + 𝑟𝐻1

(−1)(𝑥)𝐻1
(−1)(𝑦) = 1 + 𝑟𝑥𝑦, 

giving as transition probabilities 

𝑘𝑠,𝑡
(−1)(𝑥, 𝑑𝑦) =

1

2
(1 +

𝑐(𝑠, 𝑡)

𝑐(𝑠, 𝑠)𝑐(𝑡, 𝑡)
𝑥𝑦) (𝛿

−√𝑐(𝑡,𝑡)
(𝑑𝑦) + 𝛿

+√𝑐(𝑡,𝑡)
(𝑑𝑦)). 

a) fermionic Brownian motion: 𝑋𝑡 can only assume the values +√𝑡 and −√𝑡 and the 

transition probabilities are given by the table 

𝑘𝑠,𝑡 √𝑡 −√𝑡

√𝑠
1

2
(1 + √𝑠/𝑡)

1

2
(1 − √𝑠/𝑡).

−√𝑠
1

2
(1 − √𝑠/𝑡)

1

2
(1 + √𝑠/𝑡)

 

This case coincides with the corresponding 𝑐 = −1 case of the Azéma martingale, see [97]. 
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b) fermionic Ornstein-Uhlenbeck process: This stationary process lives on the two 

values +1 and −1 with the following transition probabilities 
𝑘𝑠,𝑡 1 −1

1
1

2
(1 + 𝑒−(𝑡−𝑠))

1

2
(1 − 𝑒−(𝑡−𝑠)).

−1
1

2
(1 − 𝑒−(𝑡−𝑠))

1

2
(1 + 𝑒−(𝑡−𝑠))

 

This classical two state Markov realization of the corresponding fermionic relations has 

been known for a long time, see [77]. 

c) fermionic Brownian bridge: 𝑋𝑡 can only assume the values +√𝑡(1 − 𝑡) and 

−√𝑡(1 − 𝑡) and the transition probabilities are given by the table 

𝑘𝑠,𝑡 √𝑡(1 − 𝑡) −√𝑡(1 − 𝑡)

√𝑠(1 − 𝑠)
1

2
(1 + √

𝑠(1 − 𝑡)

𝑡(1 − 𝑠)
)

1

2
(1 − √

𝑠(1 − 𝑡)

𝑡(1 − 𝑠)
) .

−√𝑠(1 − 𝑠)
1

2
(1 − √

𝑠(1 − 𝑡)

𝑡(1 − 𝑠)
)

1

2
(1 + √

𝑠(1 − 𝑡)

𝑡(1 − 𝑠)
)

 

Example (2.1.41)[60]: Hypercontractivity. Consider the 𝑞-Ornstein-Uhlenbeck process 

with stationary transition operators 𝒦𝑡
(𝑞)
: = 𝒦𝑠,𝑠+𝑡

𝑞𝑂𝑈
. Note that this 𝑞-OrnsteinUhlenbeck 

semigroup is nothing but the second quantization of the simplest contraction, namely with 

the one-dimensional real Hilbert space ℋ = ℝ and the corresponding identity operator 

𝟏:ℝ → ℝ we have 

Γ𝑞(ℝ) ≅ 𝐿
∞(−2/√1 − 𝑞, 2/√1 − 𝑞, 𝜈𝑞(𝑑𝑥))  and  Γ𝑞(𝑒

−𝑡𝟏) ≅ 𝒦𝑡
(𝑞)
. 

We have seen that the 𝒦𝑡
(𝑞)

 are, for all 𝑡 > 0, contractions on 𝐿2 and on 𝐿∞ (and thus, by 

duality and interpolation, on all 𝐿𝑝). In the classical case 𝑞 = 1 (and also for 𝑞 = −1 ) it is 

known [101],[94],[95],[80],[71] that much more is true, namely the Ornstein-Uhlenbeck 

semigroup is also hypercontractive, i.e. it is bounded as a map from 𝐿2 to 𝐿4 for sufficiently 

large 𝑡. Having the concrete form of the kernel 

𝑘𝑡
(𝑞)
(𝑥, 𝑑𝑦) = 𝑝

𝑒−𝑡
(𝑞)
(𝑥, 𝑦)𝜈𝑞(𝑑𝑦) 

of 𝒦𝑡
(𝑞)

 it is easy to check that we also have hypercontractivity for all −1 < 𝑞 < 1 Even 

more, we can show that 𝒦𝑡
(𝑞)

 is bounded from 𝐿2 to 𝐿∞ for 𝑡 > 0, i.e. we have what one 

might call 'ultraconctractivity' - which is, of course, not given for 𝑞 = ±1. This 

ultracontractivity follows from the estimate 

∥∥𝒦𝑡
(𝑞)
ℎ∥∥∞ ≤ 𝛼(𝑡, 𝑞)

1/2 ∥ ℎ ∥2   where  𝛼(𝑡, 𝑞):= sup
𝑥∈[−2,2]

  sup
𝑦∈[−2,2]

 𝑝
𝑒−𝑡
(𝑞)
(𝑥, 𝑦) 

and from the explicit form of 𝑝𝑟
(𝑞)

 from Theorem (2.1.8), which ensures that 𝛼(𝑡, 𝑞) is finite 

for 𝑡 > 0 and −1 < 𝑞 < 1. One may also note that for small 𝑡 the leading term of 𝛼(𝑡, 𝑞)1/2 

is of order 𝑡−3/2. 
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Section (2.2): The 𝒒-Deformed von Neumann Algebra 

For 𝐻ℝ be a real Hilbert space and 𝐻ℂ its complexification. Let 𝑇 be a Yang-Baxter 

operator on 𝐻ℂ⊗𝐻C with ∥ 𝑇 ∥< 1. Let ℱ𝑇(𝐻ℂ) be the associated deformed Fock space 

and Γ𝑇(𝐻ℝ) the von Neumann algebra generated by the corresponding deformed gaussian 

random variables, introduced by Bozejko and Speicher [68] (also see [60]). In addition, we 

will assume that 𝑇 is tracial, i.e that the vacuum expectation is a trace on Γ𝑇(𝐻ℝ) (cf [68]). 

Under these assumptions, it was proved in [68] that Γ𝑇(𝐻R) is not injective as soon as 

dim 𝐻ℝ >
16

(1−𝑞)2
, where ∥ 𝑇 ∥= 𝑞. Since then the problem whether Γ𝑇(𝐻ℝ) is not injective 

as soon as dim 𝐻ℝ ≥ 2 had been left open. We emphasize that this problem remained open 

even in the particular case of the qdeformation, that is when 𝑇 = 𝑞𝜎, where 𝜎 is the reflexion 

: 𝜎(𝜉 ⊗ 𝜂) = 𝜂 ⊗ 𝜉. Recall that the free von Neumann algebra Γ0(𝐻R) (corresponding to 

𝑇 = 0) is not injective as soon as 𝑛 = dim 𝐻ℝ ≥ 2, for Γ0(𝐻R) is isomorphic to the free 

group von Neumann algebra 𝑉𝑁(𝔽𝑛)(cf. [19]). The main result solves the above problem. 

To explain the idea of our proof we first recall the main ingredient of the proof of the 

non injectivity theorem in [68]. It is the following vector-valued non-commutative 

Khintchine inequality. Let (𝑒𝑖)𝑖∈𝐼 be an orthonormal basis of 𝐻ℝ. Let 𝐾 be a complex Hilbert 

space and 𝐵(𝐾) the space of all bounded operators on 𝐾. Then for any finitely supported 

family (𝑎𝑖)𝑖∈𝐼 ⊂ 𝐵(𝐾) 

max  {
∥
∥
∥
∥
∑  

𝑖∈𝐼

 𝑎𝑖
∗𝑎𝑖
∥
∥
∥
∥

𝐵(𝐾)

1
2

,
∥
∥
∥
∥
∑  

𝑖∈𝐼

 𝑎𝑖𝑎𝑖
∗

∥
∥
∥
∥

𝐵(𝐾)

1
2

} ≤
∥
∥
∥
∥
∑  

𝑖∈𝐼

 𝑎𝑖⊗𝐺(𝑒𝑖)
∥
∥
∥
∥
 

                ≤
2

√1 − 𝑞
max  {

∥
∥
∥
∥
∑  

𝑖∈𝐼

 𝑎𝑖
∗𝑎𝑖
∥
∥
∥
∥

𝐵(𝐾)

1
2

,
∥
∥
∥
∥
∑  

𝑖∈𝐼

 𝑎𝑖𝑎𝑖
∗

∥
∥
∥
∥

𝐵(𝐾)

1
2

} 

where 𝐺(𝑒) = 𝑎∗(𝑒) + 𝑎(𝑒) is the deformed gaussian variable associated with a vector 𝑒 ∈
𝐻ℝ. Using this Khintchine inequality and the equivalence between the injectivity and the 

semidiscreteness, one easily deduces the non-injectivity of Γ𝑇(𝐻ℝ) as soon as dim 𝐻R >
16

(1−𝑞)2
.  

The proof of our non-injectivity theorem follows the same pattern. We will first need 

to extend the preceding vector-valued non-commutative Khintchine inequality to Wick 

products. It is well known that for any 𝜉, a finite linear combination of elementary tensors, 

there is a unique operator 𝑊(𝜉) ∈ Γ𝑇(𝐻ℝ) such that 𝑊(𝜉)Ω = 𝜉. Instead of the previous 

inequality, the main ingredient of our proof is the following. Let 𝑛 ≥ 1. Let (𝜉𝑖)∣𝑖]=𝑛 be an 

orthonormal basis of 𝐻ℂ
⊗𝑛

 and (𝛼𝑖) ⊂ 𝐵(𝐾) a finitely supported family. Then 

max
0≤𝑘≤𝑛

 {‖∑  

|𝑖|=𝑛

𝛼𝑖⊗𝑅𝑛,𝑘
∗ 𝜉𝑖‖} ≤ ‖∑  

|𝑖|=𝑛

𝛼𝑖⊗ (𝜉𝑖)‖ 

≤ (𝑛 + 1)𝐶𝑞 max
0≤𝑘≤𝑛

 {‖∑  

|𝑖|=𝑛

𝛼𝑖⊗𝑅𝑛,𝑘
∗ 𝜉𝑖‖}             (1) 

where the norms in the left and right handside have to be taken in 

𝐵(𝐾)⊗min 𝐻𝑐
⊗𝑛−𝑘⊗ℎ 𝐻𝑐

⊗𝑘
 (see Theorem (2.2.6) below for the precise statement). 

Inequality (1) is the vector-valued version of Bozejko's ultracontractivity inequality proved 
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in [126] and thus it solves a problem posed in [126]. Using (1) and a careful analysis on the 

norms of Wick products on a same level, we deduce our non-injectivity result. 

We devoted to necessary definitions and preliminaries on the deformation by a Yang-

Baxter operator and the associated von Neumann algebra. We also include a brief discussion 

on the simplest case, the free case, i.e. when 𝑇 = 0. All our results and arguments become 

very simple in this case, for instance, inequality (1) above is then easy to state and prove. 

The proof of the non-injectivity of Γ0(𝐻ℝ) can be done in just a few lines. The reason why 

we have decided to include such a discussion on the free case is the fact that it already 

contains the main idea for the general case. We will establish (1) and prove the non-

injectivity of Γ𝑇(𝐻ℝ). The last aims at proving the non-injectivity of the Araki-Woods 

factors Γ𝑞(𝐻, 𝑈𝑡) introduced by Hiai in [123]. Note that Hiai proved a non-injectivity result 

with a condition on the dimension of the spectral sets of the positive generator of 𝑈𝑡, which 

is similar to that of [68]. The problem is left open whether the dimension can go down to 2. 

Although we cannot completely solve this, our method permits to improve in some sense 

the criterion for non-injectivity given in [123]. 

Recall that the free Fock space associated with 𝐻ℝ is given by 

ℱ0(𝐻ℂ) =⨁ 

𝑛≥0

𝐻ℂ
⊗𝑛

 

where 𝐻ℂ
⊗0

 is by definition ℂΩ with Ω a unit vector called the vacuum.  

A Yang-Baxter operator on 𝐻ℂ⊗𝐻ℂ is a self-adjoint contraction satisfying the 

following braid relation: 

(𝐼 ⊗ 𝑇)(𝑇 ⊗ 𝐼)(𝐼 ⊗ 𝑇) = (𝑇 ⊗ 𝐼)(𝐼 ⊗ 𝑇)(𝑇 ⊗ 𝐼) 

For 𝑛 ≥ 2 and 1 ≤ 𝑘 ≤ 𝑛 − 1 we define 𝑇𝑘 on 𝐻ℂ
⨂𝑛 by 

𝑇𝑘 = 𝐼𝐻ℂ𝑘−1
⊗𝑇⊗ 𝐼𝐻ℂ𝑛−𝑘−1

 

Let 𝑆𝑛 be the group of permutations on a set of 𝑛 elements. A function 𝜑 is defined on 𝑆𝑛 

by quasi-multiplicative extension of: 

𝜑(𝜋𝑘) = 𝑇𝑘 

where 𝜋𝑘 = (𝑘, 𝑘 + 1) is the transposition exchanging 𝑘 and 𝑘 + 1,1 ≤ 𝑘 ≤ 𝑛 − 1. The 

symmetrizator 𝑃𝑇
(𝑛)

 is the following operator defined on 𝐻ℂ
⊗𝑛

 by: 

𝑃𝑇
(𝑛)
= ∑  

𝜎∈𝑆𝑛

𝜑(𝜎) 

𝑃𝑇
(𝑛)

 is a positive operator on 𝐻ℂ
⊗𝑛

 for any Yang-Baxter operator 𝑇 and is strictly positive if 

𝑇 is strictly contractive (cf. [68]). In the latter case we are allowed to define a new scalar 

product on 𝐻ℂ
⊗𝑛( for ≥ 2 ) by: 

⟨𝜉, 𝜂⟩𝑇 = ⟨𝜉, 𝑃𝑇
(𝑛)
𝜂⟩ 

The associated norm is denoted by ∥⋅∥𝑇. The deformed Fock space associated with 𝑇 is then 

defined by 

ℱ𝑇(𝐻C) =⨁ 

𝑛≥0

𝐻ℂ
⊗𝑛

 

where 𝐻ℂ
⊗𝑛

 is now equipped with our deformed scalar product for 𝑛 ≥ 2. From now on we 

will only consider a strictly contractive Yang-Baxter 𝑇 and ∥ 𝑇 ∥≤ 𝑞 < 1. 

For 𝑓 ∈ 𝐻ℝ, 𝑎
∗(𝑓) will denote the creation operator associated with 𝑓, and 𝑎(𝑓) its 

adjoint with respect to the T-scalar product: 
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𝑎∗(𝑓)(𝑓1⊗⋯⊗𝑓𝑛) = 𝑓 ⊗ 𝑓1⊗⋯⊗𝑓𝑛 

For 𝑓 ∈ 𝐻ℝ the deformed gaussian is the following hermitian operator: 

𝐺(𝑓) = 𝑎∗(𝑓) + 𝑎(𝑓) 
We are interested in Γ𝑇(𝐻R) which is the von Neumann algebra generated by all gaussians 

𝐺(𝑓) for 𝑓 ∈ 𝐻ℝ: 

Γ𝑇(𝐻ℝ) = {𝐺(𝑓): 𝑓 ∈ 𝐻ℝ}
′′ ⊂ 𝐵(ℱ𝑇(𝐻ℂ)) 

Let (𝑒𝑖)𝑖∈𝐼 be an orthonormal basis of 𝐻ℝ and set 

𝑡𝑖𝑗
𝑠𝑟 = ⟨𝑒𝑠⊗ 𝑒𝑟 , 𝑇(𝑒𝑖⊗𝑒𝑗)⟩ 

Then the following deformed commutation relations hold: 

𝑎(𝑒𝑖)𝑎
∗(𝑒𝑗) − ∑  

𝑟,𝑠∈𝐼

𝑡𝑗𝑠
𝑖𝑟𝑎∗(𝑒𝑟)(𝑒𝑠) = 𝛿𝑖𝑗 

Moreover if the following condition holds 

⟨𝑒𝑠⊗𝑒𝑟 , 𝑇𝑒𝑖⊗𝑒𝑗⟩ = ⟨𝑒𝑟⊗𝑒𝑗 , 𝑇𝑒𝑠⊗𝑒𝑖⟩ 

which is equivalent to the cyclic condition : 

𝑡𝑖𝑗
𝑠𝑟 = 𝑡𝑠𝑖

𝑟𝑗
 

then the vacuum is cyclic and separating for Γ𝑇(𝐻ℝ) and the vacuum expectation is a faithful 

trace on Γ𝑇(𝐻ℝ) that will be denoted by 𝜏. If this cyclic condition holds we say that 𝑇 is 

tracial, and from now on we will always assume that 𝑇 has this property. 

We will denote by Γ𝑇
∞(𝐻ℝ) the subspace Γ𝑇(𝐻ℝ)Ω of ℱ𝑇(𝐻ℂ). Since Ω is separating 

for Γ𝑇(𝐻ℝ), for every 𝜉 ∈ Γ𝑇
∞(𝐻ℝ) there exists a unique operator 𝑊(𝜉) ∈ Γ𝑇(𝐻ℝ) such that 

𝑊(𝜉)Ω = 𝜉 

W is called Wick product.  

The right creation operator, 𝑎𝑟
∗(𝑓), is defined by the following formula: 

𝑎𝑟
∗(𝑓)(𝑓1⊗⋯⊗𝑓𝑛) = 𝑓1⊗⋯⊗𝑓𝑛⊗𝑓 

We will also denote by 𝑎𝑟(𝑓) the right annihilation operator, which is its adjoint with respect 

to the T-scalar product, by 𝐺𝑟(𝑓) the right gaussian operator, and by Γ𝑇,𝑟(𝐻ℝ) the von 

Neumann algebra generated by all right gaussians. It is easy to see that Γ𝑇,𝑟(𝐻ℝ) ⊂ Γ𝑇(𝐻ℝ)
′. 

Actually, by Tomita's theory, we have 

Γ𝑇,𝑟(𝐻ℝ) = 𝑆Γ𝑇(𝐻ℝ)𝑆 = Γ𝑇(𝐻ℝ)
′ 

where 𝑆 is the anti linear operator on ℱ𝑇(𝐻ℂ) (which is actually an anti unitary) defined by 

𝑆(𝑓1⊗⋯⊗𝑓𝑛) = 𝑓𝑛⊗⋯⊗𝑓1 

for any 𝑓1, ⋯ , 𝑓𝑛 ∈ 𝐻ℝ. Since Ω is also separating for Γ𝑇,𝑟(𝐻ℝ) we can define the right Wick 

product, that will be denoted by 𝑊𝑟(𝜉). For any 𝜉 ∈ Γ𝑇
∞(𝐻ℝ) we have 

(𝑊(𝜉))∗ = 𝑊(𝑆𝜉)  and  𝑆𝑊(𝜉)𝑆 = 𝑊𝑟(𝑆𝜉) 

Some particular cases of deformation have been studied in the literature. Let (𝑞𝑖𝑗)𝑖,𝑗∈𝐼 be a 

hermitian matrix such that sup𝑖,𝑗  |𝑞𝑖𝑗| < 1. Define 

𝑇𝑒𝑖⊗𝑒𝑗 = 𝑞𝑖𝑗𝑒𝑗⊗𝑒𝑖 

Then 𝑇 is a strictly contractive Yang-Baxter operator, and it is tracial if and only if the 𝑞𝑖𝑗 

are real. Our deformed Fock space is then a realisation of the following 𝑞𝑖𝑗-relations : 

𝑎(𝑒𝑖)𝑎
∗(𝑒𝑗) − 𝑞𝑖𝑗𝑎

∗(𝑒𝑗)𝑎(𝑒𝑖) = 𝛿𝑖𝑗 

In the special case where all 𝑞𝑖𝑗 are equal, we obtain the well known q-relations. 

Let us define the following selfadjoint unitary on the free Fock space : 

∀𝑓1, … , 𝑓𝑛 ∈ 𝐻C,  𝑈(𝑓1⊗⋯⊗𝑓𝑛) = 𝑓𝑛⊗⋯⊗𝑓1 
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Since 𝑈𝑃𝑇
(𝑛)
= 𝑃𝑇

(𝑛)
𝑈( cf. [124]), 𝑈 is also a selfadjoint unitary on each T-Fock space. 

Given vectors 𝑓1, … , 𝑓𝑛 in 𝐻ℝ we define : 

𝑎∗(𝑓1⊗⋯⊗𝑓𝑛) = 𝑎
∗(𝑓1)…𝑎

∗(𝑓𝑛) and 𝑎(𝑓1⊗⋯⊗𝑓𝑛) = 𝑎(𝑓1)…𝑎(𝑓𝑛) 

For 0 ≤ 𝑘 ≤ 𝑛, let 𝑅𝑛,𝑘 be the operator on 𝐻ℂ
⊗𝑛

 given by 

𝑅𝑛,𝑘 = ∑  

𝜎∈𝑆𝑛/𝑆𝑛−𝑘×𝑆𝑘

𝜑(𝜎−1) 

where the sum runs over the representatives of the right cosets of 𝑆𝑛−𝑘 × 𝑆𝑘 in 𝑆𝑛 with 

minimal number of inversions. Then 

𝑃𝑇
(𝑛)
= 𝑅𝑛,𝑘 (𝑃𝑇

(𝑛−𝑘)
⊗𝑃𝑇

(𝑘)
)   and  ∥∥𝑅𝑛,𝑘∥∥ ≤ 𝐶𝑞                         (2) 

where 𝐶𝑞 = ∏𝑛=1
∞  (1 − 𝑞𝑛)−1 (cf. [126] and [124]). It follows that 

𝑃𝑇
(𝑛)
≤ 𝐶𝑞𝑃𝑇

(𝑛−𝑘)
⊗𝑃𝑇

(𝑘)
                                 (3) 

It also follows that 𝑎∗, respectively 𝑎, extend linearly, respectively antilinearly, and 

continuously to 𝐻ℂ
⊗𝑛

 for every 𝑛 ≥ 1. Then for each vector 𝜉 ∈ 𝐻ℂ
⊗𝑛

 we have 

∥∥𝑎∗(𝜉)∥∥ ≤ 𝐶𝑞

1
2 ∥ 𝜉 ∥𝑇  and (𝑎∗(𝜉))

∗
= 𝑎(𝑈𝜉).                             (4) 

Let 𝑛 ≥ 1 and 1 ≤ 𝑘 ≤ 𝑛,𝐻ℂ
⊗𝑛−𝑘⊗𝐻ℂ

⊗𝑘
 will be the Hilbert tensor product of the Hilbert 

spaces 𝐻ℂ
⊗𝑘

 and 𝐻ℂ
⊗𝑛−𝑘

 where both 𝐻ℂ
⊗𝑘

 and 𝐻ℂ
⊗𝑛−𝑘

 are equipped with the T-scalar 

product. 

Lemma (2.2.1)[113]: There is a positive constant 𝐷𝑞,𝑛,𝑘 such that 

𝑃𝑇
(𝑛−𝑘)

⊗𝑃𝑇
(𝑘)
≤ 𝐷𝑞,𝑛,𝑘𝑃𝑇

(𝑛)
 

Consequently for every 𝑛 ≥ 1 and 1 ≤ 𝑘 ≤ 𝑛,𝐻ℂ
⊗𝑛

 and 𝐻ℂ
⊗𝑘⊗𝐻ℂ

⊗𝑛−𝑘
 are algebraically 

the same and their norms are equivalent. 

Proof. It was shown in [125] that there is a positive constant 𝜔(𝑞) such that 

𝑃𝑇
(𝑛−1)

⊗ 𝐼 ≤ 𝜔(𝑞)−1𝑃𝑇
(𝑛)

 

Since 𝑈 (𝑃𝑇
(𝑛−1)

⊗ 𝐼)𝑈 = 𝐼 ⊗ 𝑃𝑇
(𝑛−1)

 we also have 

𝐼 ⊗ 𝑃𝑇
(𝑛−1)

≤ 𝜔(𝑞)−1𝑃𝑇
(𝑛)
                                (5) 

Fix some 𝑘, 2 ≤ 𝑘 ≤ 𝑛 − 1, using (3) and (4) we get: 

𝑃𝑇
(𝑛−𝑘+1)

⊗𝑃𝑇
(𝑘−1)

 ≤ 𝐶𝑞𝑃𝑇
(𝑛−𝑘)

⊗ 𝐼 ⊗𝑃𝑇
(𝑘−1)

 ≤ 𝐶𝑞𝜔(𝑞)
−1𝑃𝑇

(𝑛−𝑘)
⊗𝑃𝑇

(𝑘)
 

Thus by iteration it follows that for 0 ≤ 𝑘 ≤ 𝑛 : 

𝑃𝑇
(𝑛−𝑘)

⊗𝑃𝑇
(𝑘)
≤ 𝜔(𝑞)−1(𝐶𝑞𝜔(𝑞)

−1)
𝑛−𝑘

𝑃𝑇
(𝑛)
                      (6) 

Since 𝑈 (𝑃𝑇
(𝑛−𝑘)

⊗𝑃𝑇
(𝑘)
)𝑈 = 𝑃𝑇

(𝑘)
⊗𝑃𝑇

(𝑛−𝑘)
 it follows from (6) that 

𝑃𝑇
(𝑘)
⊗𝑃𝑇

(𝑛−𝑘)
≤ 𝜔(𝑞)−1(𝐶𝑞𝜔(𝑞)

−1)
𝑛−𝑘

𝑃𝑇
(𝑛)

 

Combining this last inequality and (6) we finally obtain : 

𝑃𝑇
(𝑛−𝑘)

⊗𝑃𝑇
(𝑘)
≤ 𝜔(𝑞)−1(𝐶𝑞𝜔(𝑞)

−1)
min  (𝑘,𝑛−𝑘)

𝑃𝑇
(𝑛)
                     (7) 

Then the desired result follows from (3) and (7). 

For 𝑘 ≥ 0 let us now define on the family of finite linear combinations of elementary 

tensors of length not less than 𝑘 the following operator 𝑈𝑘 : 

𝑈𝑘(𝑓1⊗⋯⊗𝑓𝑛) = 𝑎
∗(𝑓1⊗⋯⊗𝑓𝑛−𝑘)𝑎(𝑓‾𝑛−𝑘+1⊗⋯⊗𝑓‾𝑛) 
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where 𝜉 + 𝑖𝜂̅̅ ̅̅ ̅̅ ̅̅ = 𝜉 − 𝑖𝜂 for all 𝜉, 𝜂 ∈ 𝐻ℝ. 

Fix 𝑛 and 𝑘 with 𝑛 ≥ 𝑘. Let 𝒥:𝐻ℂ
⊗𝑘 → 𝐻ℂ

⊗𝑘̅̅ ̅̅ ̅̅
 be the conjugation (which is an anti isometry). 

For any 𝑓1, ⋯ , 𝑓𝑛, 𝒥 is defined by 𝒥(𝑓1⊗⋯⊗𝑓𝑛) = 𝑓1⃗⃗  ⃗ ⊗ ⋯⊗ 𝑓�̅�. It is clear that 𝑈𝑘 

extends boundedly to 𝐻ℂ
⊗𝑛−𝑘⊗𝐻ℂ

⊗𝑘
 by the formula : 

𝑈𝑘 = 𝑀(𝑎
∗⊗𝑎𝒥) 

where 𝑀 is the multiplication operator from 𝐵(ℱ𝑇(𝐻ℂ))⊗min 𝐵(ℱ𝑇(𝐻ℂ)) to 𝐵(ℱ𝑇(𝐻ℂ)) 
defined by 𝑀(𝐴⊗𝐵) = 𝐴𝐵. Moreover, by (4) we have 

∥∥𝑈𝑘∥∥ ≤∥ 𝑀 ∥⋅ ∥𝑎∗⊗𝑎𝒥∥ ≤ 𝐶𝑞 

where 𝑈𝑘 is viewed as an operator from 𝐻ℂ
⊗𝑛−𝑘⊗𝐻ℂ

⊗𝑘
 to 𝐵(ℱ𝑇(𝐻ℂ)). 

In the following lemma we state an extension of the Wick formula (Theorem 3 in [124]). 

We deduce it as an easy consequence of the original Wick formula and of our previous 

discussion. 

Lemma (2.2.2)[113]: Let 𝑛 ≥ 1 and 𝜉 ∈ 𝐻ℂ
⊗𝑛

, then 𝐻ℂ
⊗𝑛 ⊂ Γ𝑇

∞(𝐻ℝ) and we have the 

following Wick formula: 

𝑊(𝜉) = ∑  

𝑛

𝑘=0

𝑈𝑘𝑅𝑛,𝑘
∗ (𝜉)                                           (8) 

Moreover 

∥ 𝜉 ∥𝑞≤∥ 𝑊(𝜉) ∥≤ 𝐶𝑞

3
2(𝑛 + 1) ∥ 𝜉 ∥𝑞                           (9) 

Proof. The usual Wick formula is the following (cf [126] and [124]): ∀𝑓1, … , 𝑓𝑛 ∈ 𝐻ℂ we 

have 

𝑊(𝑓1⊗⋯⊗𝑓𝑛) = ∑  

𝑛

𝑘=0

∑  

𝜎∈𝑆𝑛/𝑆𝑛−𝑘×𝑆𝑘

𝑈𝑘𝜑(𝜎)(𝑓1⊗⋯⊗𝑓𝑛) 

Hence (8) holds for every 𝜉 ∈ 𝒜𝑛 = { linear combinations of elementary tensors of length 

𝑛}. By Lemma (2.2.1) and our previous discussion, the right handside of (8) is continuous 

from 𝐻ℂ
⊗𝑛

 to 𝐵(ℱ𝑇(𝐻ℂ)). Since Ω is separating, it follows that 𝐻ℂ
⊗𝑛 ⊂ Γ𝑇

∞(𝐻ℝ) and that (8) 

extends by density from 𝒜𝑛 to 𝐻C
⊗𝑛. Actually, our argument shows that for any 𝜉 ∈

𝐻⊗𝑛,𝑊(𝜉) belongs to 𝐶𝑇
∗(𝐻ℝ) which is the 𝐶∗-algebra generated by the T-gaussians. 

Since for any 𝜉 ∈ 𝐻ℂ
⊗𝑛,𝑊(𝜉)Ω = 𝜉, the left inequality in (9) holds. We have just 

showed that 𝑊 is bounded from 𝐻ℂ
⊗𝑛

 to 𝐵(ℱ𝑇(𝐻ℂ)). Hence, there is a constant 𝐵𝑞,𝑛 such 

that for any 𝜉 ∈ 𝐻C
⊗𝑛

 we have ∥ 𝑊(𝜉) ∥≤ 𝐵𝑞,𝑛 ∥ 𝜉 ∥𝑞 . To end the proof of (9) we now give 

a precise estimate of 𝐵𝑞,𝑛. Let 𝜉 ∈ 𝐻ℂ
⊗𝑛

, by (8) and (3) we have 

∥ 𝑊(𝜉) ∥≤ ∑  

𝑛

𝑘=0

∥∥𝑈𝑘𝑅𝑛,𝑘
∗ (𝜉)∥∥ ≤ 𝐶𝑞∑ 

𝑛

𝑘=0

∥∥𝑅𝑛,𝑘
∗ (𝜉)∥∥

𝐻ℂ
⊗𝑛−𝑘⊗𝐻ℂ

⊗𝑘       (10) 

It remains to compute the norm of 𝑅𝑛,𝑘
∗  as an operator from 𝐻ℂ

⊗𝑛
 to 𝐻ℂ

⊗𝑛−𝑘⊗𝐻ℂ
⊗𝑘

. Let 

𝜂 ∈ 𝐻ℂ
⊗𝑛

 we have, by (2) and (3) 

∥∥𝑅𝑛,𝑘
∗ 𝜂∥∥

𝐻ℂ
⊗𝑛−𝑘⊗𝐻ℂ

⊗𝑘
2

 = ⟨𝑃𝑇
(𝑛−𝑘)

⊗𝑃𝑇
(𝑘)
𝑅𝑛,𝑘
∗ 𝜂, 𝑅𝑛,𝑘

∗ 𝜂⟩
0

 = ⟨𝑃𝑇
(𝑛)
𝜂, 𝑅𝑛,𝑘

∗ 𝜂⟩
0
≤∥ 𝜂 ∥𝑇 ∥∥𝑅𝑛,𝑘

∗ 𝜂∥∥
𝑇
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On the other hand, 

∥∥𝑅𝑛,𝑘
∗ 𝜂∥∥

𝑇

2
 = ⟨𝑃𝑇

(𝑛)
𝑅𝑛,𝑘
∗ 𝜂, 𝑅𝑛,𝑘

∗ 𝜂⟩
0
≤ 𝐶𝑞 ⟨𝑃𝑇

(𝑛−𝑘)
⊗𝑃𝑇

(𝑘)
𝑅𝑛,𝑘
∗ 𝜂, 𝑅𝑛,𝑘

∗ 𝜂⟩
0

 ≤ 𝐶𝑞 ⟨𝑃𝑇
(𝑛)
𝜂, 𝑅𝑛,𝑘

∗ 𝜂⟩
0

 ≤ 𝐶𝑞 ∥ 𝜂 ∥𝑇 ∥∥𝑅𝑛,𝑘
∗ 𝜂∥∥

𝑇

 

Hence it follows that ∥∥𝑅𝑛,𝑘
∗ 𝜂∥∥

𝑇
≤ 𝐶𝑞 ∥ 𝜂 ∥𝑇 and ∥∥𝑅𝑛,𝑘

∗ 𝜂∥∥
𝐻ℂ
⊗𝑛−𝑘⊗𝐻ℂ

⊗𝑘
2

≤ 𝐶𝑞‖𝜂‖𝑇
2 . Thus 

∥∥𝑅𝑛,𝑘
∗
∥∥ ≤ 𝐶𝑞

1

2 as an operator from 𝐻ℂ
⊗𝑛

 to 𝐻ℂ
⊗𝑛−𝑘⊗𝐻ℂ

⊗𝑘
. From (10) and this last estimate, 

follows the second inequality in (9). 

The remainder is devoted to a simple proof of the non-injectivity of the free von 

Neumann algebra Γ0(𝐻ℝ)(dim 𝐻ℝ ≥ 2). The main ingredient is the vector valued Bozejko 

inequality (Lemma (2.2.3) below), which is the free Fock space analogue of the 

corresponding inequality for the free groups proved by Haagerup and Pisier in [122] and 

extended by Buchholz in [118] (see also [117]). Note also that the inequality (11) below was 

first proved in [122] in the case 𝑛 = 1 (i.e. for free gaussians) and that a similar inequality 

holds for products of free gaussians (see [118]). 

We will need the following notations: (𝑒𝑖)𝑖∈𝐼 will denote an orthonormal basis of 𝐻ℝ, 

and for a multi-index 𝑖 of length 𝑛, 𝑖 = (𝑖1, … , 𝑖𝑛) ∈ 𝐼
𝑛, 𝑒𝑖 = 𝑒𝑖1 ⊗⋯⊗ 𝑒𝑖𝑛 . (𝑒𝑖)|𝑖|=𝑛

 is a 

real orthonormal basis of 𝐻ℂ
⊗𝑛

 equipped with the free scalar product and (𝑒𝑖)
|𝑖|≥0

 is a real 

orthonormal basis of the free Fock space. 

Lemma (2.2.3)[113]: Let 𝑛 ≥ 1,𝐾 a complex Hilbert space and (𝛼𝑖)
|𝑖|=𝑛

 a finitely 

supported family of 𝐵(𝐾). Then: 

max
0≤𝑘≤𝑛

 {‖(𝛼𝑗,𝑙)|𝑗|=𝑛−𝑘
|𝑙|=𝑘

‖} ≤ ‖∑  

|𝑖|=𝑛

𝛼𝑖⊗ (𝑒𝑖)‖                                                

≤ (𝑛 + 1) max
0≤𝑘≤𝑛

 {‖(𝛼𝑗,𝑙)|𝑗|=𝑛−𝑘
|𝑙|=𝑘

‖}              (11) 

Proof. We write 

∑  

|𝑖|=𝑛

𝛼𝑖⊗𝑊(𝑒𝑖) = ∑  

𝑛

𝑘=0

𝐹𝑘 

where 

𝐹𝑘 = ∑  

∣⌊∣≤𝑛−𝑘

𝛼𝑗,𝑙⊗𝑎∗ (𝑒𝑗) 𝑎(𝑒𝑙) 

we have 

𝐹𝑘 = (… 𝐼𝐾⊗𝑎∗ (𝑒𝑗)…)
|𝑗|=𝑛−𝑘

(𝛼𝑗,𝑙⊗ 𝐼ℱ0(𝐻ℂ))|𝑗|=𝑛−𝑘
|𝑙|=𝑘

(

⋮
𝐼𝐾⊗𝑎(𝑒𝑙)

⋮

)

⌊𝑙∣=𝑘
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that is, 𝐹𝑘 is a product of three matrices, the first is a row indexed by 𝑗, the third a column 

indexed by 𝑙. Note that 

∥
∥
∥
∥
(…𝑎∗ (𝑒𝑗)…)

|𝑗|=𝑛−𝑘∥
∥
∥
∥2
=

∥
∥
∥
∥
∥

∑  

|𝑗|=𝑛−𝑘

 𝑎∗ (𝑒𝑗) (𝑎
∗ (𝑒𝑗))

∗

∥
∥
∥
∥
∥

 

                                           =

∥
∥
∥
∥
∥

∑  

|𝑗|=𝑛−𝑘

 𝑎∗ (𝑒𝑗)𝑎 (𝑈𝑒𝑗)

∥
∥
∥
∥
∥

 

It is easy to see that ∑|𝑗|=𝑛−𝑘  𝑎
∗ (𝑒𝑗) 𝑎 (𝑈𝑒𝑗) is the orthogonal projection on ⨁𝑝≥𝑛−𝑘  𝐻

⊗𝑝. 

∥
∥
∥
∥
(…𝑎∗ (𝑒𝑗)…)

|𝑗|=𝑛−𝑘∥
∥
∥
∥
≤ 1 

Therefore 

‖𝐹𝑘‖ = ‖(… 𝐼𝐾⊗𝑎∗ (𝑒𝑗)…)
|𝑗|=𝑛−𝑘

‖ . ‖(𝛼𝑗,𝑙⊗ 𝐼ℱ0(𝐻ℂ))|𝑗|=𝑛−𝑘
|𝑙|=𝑘

‖ 

                                                                . ‖(

⋮
𝐼𝐾⊗𝑎(𝑒𝑙)

⋮

)

⌊𝑙∣=𝑘

‖ 

‖(…𝑎∗ (𝑒𝑗)…)
|𝑗|=𝑛−𝑘

‖ . ‖(𝛼𝑗,𝑙)|𝑗|=𝑛−𝑘
|𝑙|=𝑘

‖ . ‖(…𝑎∗(𝑈𝑒𝑙)… )
|𝑙|=𝑘

‖   

                                                     . ‖(𝛼𝑗,𝑙)|𝑗|=𝑛−𝑘
|𝑙|=𝑘

‖ 

It follows that 

∑  

|𝑗|=𝑛

𝛼𝑖⊗𝑊(𝑒𝑖)
∥
∥
∥
∥
≤ ∑  

𝑛

𝑘=0

 
∥
∥
∥
∥
𝐹𝑘 ∥∥
∥≤ (𝑛 + 1) max

0≤𝑘≤𝑛
 ∥∥
∥ (𝛼𝑗,𝑙)

|𝑗|=𝑛−𝑘
∥ 

To prove the first inequality, fix 0 ≤ 𝑘0 ≤ 𝑛 and consider (𝑣𝑝)
|𝑝|=𝑘0

 such that 

∑∣𝑝|=𝑘0   ∥
∥𝑣𝑝∥
∥2 < +∞. Let 𝜂 = ∑|𝑝|=𝑘0  𝑣𝑝⊗𝑈𝑒𝑝. We have: 

∥
∥
∥
∥
∥
∑  

|𝑖|=𝑛

 𝛼𝑖⊗𝑊(𝑒𝑖)𝜂
∥
∥
∥
∥
∥2

=∑  

𝑛

𝑘=0

  ∥∥𝐹𝑘𝜂∥∥
2 ≥ ∥∥𝐹𝑘0𝜂∥∥

2
 

=

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

∑  

|𝑗|𝑛−𝑘0

|𝑖|=𝑘0

 𝛼𝑗,𝑙𝑣𝑙⊗𝑒𝑗

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥2
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= ∑  

|𝑗|=𝑛−𝑘0

 

∥
∥
∥
∥
∥

∑  

|𝑙|=𝑘0

 𝛼𝑗,𝑙𝑣𝑙
∥
∥
∥
∥
∥2

 

      = ‖(𝛼𝑗,𝑙)|𝑗|=𝑛−𝑘0
|𝑙|=𝑘0

(
⋮
𝑣𝑙
⋮

)

|𝑙|=𝑘0

‖

2

 

Then the result follows. 

Using Lemma (2.2.3), it is now easy to prove that Γ0(𝐻ℝ) is not injective as soon as 

dim 𝐻ℝ ≥ 2. Suppose that Γ0(𝐻ℝ) is injective and dim 𝐻ℝ ≥ 2. Choose two orthonormal 

vectors 𝑒1 and 𝑒2 in 𝐻ℝ. For 𝑛 ≥ 1 we have by semi-discreteness (which is equivalent to 

the injectivity): 

𝜏 (∑  

|𝑖|=𝑛

 𝑊(𝑒𝑖)
∗
𝑊(𝑒𝑖)) ≤

∥
∥
∥
∥
∥
∑  

∣𝑖|=𝑛

 𝑊(𝑒𝑖)
̅̅ ̅̅ ̅̅ ̅̅ ⊗𝑊(𝑒𝑖)

∥
∥
∥
∥
∥
 

where in the above sums, the index 𝑖 ∈ {1,2}𝑛. However, 

𝜏 (∑  

∣𝑖|=𝑛

 𝑊(𝑒𝑖)
∗
𝑊(𝑒𝑖))  = ∑  

∣𝑖|=𝑛

  ⟨𝑊(𝑒𝑖)Ω,𝑊(𝑒𝑖)Ω⟩
0

 = ∑  

|𝑖|=𝑛

  ∥∥𝑒𝑖∥∥
2
= 2𝑛

 

On the other hand, by Lemma (2.2.3), 

∥
∥
∥
∥
∥
∑  

|𝑖|=𝑛

 𝑊(𝑒𝑖)
̅̅ ̅̅ ̅̅ ̅̅ ⊗𝑊(𝑒𝑖)

∥
∥
∥
∥
∥
≤ (𝑛 + 1) max

0≤𝑘≤𝑛
 {

∥
∥
∥
∥
∥
∥

(𝑊 (𝑒𝑗,𝑙)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅

)
|𝑗|=𝑛−𝑘

|𝑙|=𝑘 ∥
∥
∥
∥
∥
∥

} 

                             ≤ (𝑛 + 1)(∑  

∣𝑖|=𝑛

  ∥∥𝑊(𝑒𝑖)∥∥
2
)

1
2

 

                   ≤ (𝑛 + 1)(2𝑛(𝑛 + 1)2)
1
2 

≤ (𝑛 + 1)22
𝑛
2   

Combining the preceding inequalities, we get 2𝑛 ≤ (𝑛 + 1)22
𝑛

2 which yields a contradiction 

for sufficiently large 𝑛. Therefore, Γ0(𝐻R) is not injective if dim 𝐻ℝ ≥ 2. 

In the following we state and prove the generalized inequality (1). It actually solves 

a question of Marek Bozejko (in [126] page 210) whether it is possible to find an operator 

coefficient version of the following inequality (this is inequality (9) in Lemma (2.2.2)): 

∥
∥
∥
∥
∥
∑  

|𝑖|=𝑛

 𝛼𝑖𝑒𝑖
∥
∥
∥
∥
∥
≤

∥
∥
∥
∥
∥

∑  

|𝑖|=𝑛

 𝛼𝑖𝑊(𝑒𝑖)

∥
∥
∥
∥
∥

≤ 𝐶𝑞

3
2(𝑛 + 1)

∥
∥
∥
∥
∥

∑  

|𝑖|=𝑛

 𝛼𝑖𝑒𝑖
∥
∥
∥
∥
∥

         (12) 

where (𝛼𝑖)𝑖 is a finitely supported family of complex numbers. Inequality (12) was proved 

in [126] for the 𝑞-deformation, and generalized in [124] for the Yang-Baxter deformation. 
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First, we need to recall some basic notions from operator space theory. See [121] and 

[125] for more information. Given 𝐾 a complex Hilbert space, we can equip 𝐾 with the 

column, respectively the row, operator space structure denoted by 𝐾𝑐, respectively 𝐾𝑟, and 

defined by 

𝐾𝑐 = 𝐵(ℂ,𝐾)  and  𝐾𝑟 = 𝐵(𝐾
∗, ℂ). 

Moreover, we have 𝐾𝑐
∗ = 𝐾‾𝑟 as operator spaces.  

Given two operator spaces 𝐸 and 𝐹, let us briefly recall the definition of the Haagerup 

tensor product of 𝐸 and 𝐹. 𝐸 ⊗ 𝐹 will denote the algebraic tensor product of 𝐸 and 𝐹. For 

𝑛 ≥ 1 and 𝑥 = (𝑥𝑖,𝑗) belonging to 𝑀𝑛(𝐸 ⊗ 𝐹) we define 

∥ 𝑥 ∥(ℎ,𝑛)= inf  {∥ 𝑦 ∥𝑀𝑛,𝑟(𝐸)∥ 𝑧 ∥𝑀𝑟,𝑛(𝐹)} 

where the infimum runs over all 𝑟 ≥ 1 and all decompositions of 𝑥 of the form 

𝑥𝑖,𝑗 =∑  

𝑟

𝑘=1

𝑦𝑖,𝑘⊗𝑧𝑘,𝑗 . 

By Ruan's theorem, this sequence of norms define an operator space structure on the 

completion of 𝐸 ⊗ 𝐹 equipped with ∥⋅∥ℎ=∥⋅∥(ℎ,1). The resulting operator space, which is 

called the Haagerup tensor product of 𝐸 and 𝐹 is denoted by 𝐸 ⊗ℎ 𝐹.  

In this setting, a bilinear map 𝑢: 𝐸 × 𝐹 → 𝐵(𝐾) is said to be completely bounded, in 

short c.b, if and only if the associated linear map �̂�: 𝐸 ⊗ 𝐹 → 𝐵(𝐾) extends completely 

boundedly to 𝐸 ⊗ℎ 𝐹. We define ∥ 𝑢 ∥𝑐𝑏=∥ �̂� ∥𝑐𝑏. This notion goes back to Christensen 

and Sinclair [120]. We will often use the following classical identities for hilbertian operator 

spaces: 

𝐾𝑐⊗min 𝐻𝑟 = 𝐾𝑐⊗ℎ 𝐻𝑟 = 𝒦(𝐻‾ , 𝐾), 
where 𝒦 stands for the compact operators and 

𝐾𝑐⊗min 𝐻𝑐 = 𝐾𝑐⊗ℎ 𝐻𝑐 = (𝐾⊗2 𝐻)𝑐 
and similarly for rows using duality.  

There is another notion of complete boundedness for bilinear maps, called jointly 

complete boundedness. Let 𝐸, 𝐹 be operator spaces, 𝐾 a complex Hilbert space, and 𝑢: 𝐸 ×
𝐹 → 𝐵(𝐾) a bilinear map. 𝑢 is said to be jointly completely bounded (in short j.c.b) if and 

only if for any C∗-algebras 𝐵1 and 𝐵2, 𝑢 can be boundedly extended to a bilinear map 

(𝑢)𝐵1,𝐵2 ∶ 𝐸 ⊗min 𝐵1 × 𝐹 ⊗min 𝐵2 → 𝐵(𝐾)⊗min 𝐵1⊗min 𝐵2 taking (𝑒 ⊗ 𝑏1, 𝑓 ⊗ 𝑏2) 

to 𝑢(𝑒, 𝑓) ⊗ 𝑏1⊗𝑏2. 

We put ∥ 𝑢 ∥𝑗𝑐𝑏= sup𝐵1,𝐵2  ∥∥(𝑢)𝐵1,𝐵2∥∥. Observe that in this definition 𝐵1 and 𝐵2 can 

be replaced by operator spaces. 

We will need the fact that every bilinear c.b map is a j.c.b map with ‖𝑢‖𝑗𝑐𝑏 ≤∥ 𝑢 ∥𝑐𝑏. 

Let 𝐾 be a complex Hilbert space and 𝑢: 𝐵(𝐾) × 𝐾𝑐 → 𝐾𝑐 the bilinear map taking (𝜑, 𝑘) to 

𝜑(𝑘). Then it is easy to see that 𝑢 is a norm one bilinear cb map. To simplify our notations, 

𝐻ℂ will be, most of the time, replaced by 𝐻 in the rest. For the same reason we will denote 

by 𝐻𝑐
⊗𝑛

 (respectively 𝐻𝑟
⊗𝑛) the column Hilbert space (𝐻ℂ

⊗𝑛)
𝑐
(respectively the row Hilbert 

space (𝐻ℂ
⊗𝑛)

𝑟
). 

Lemma (2.2.4)[113]: Let 𝑛 ≥ 1. The mappings 𝑎∗: 𝐻𝑐
⊗𝑛 → 𝐵(ℱ𝑇(𝐻ℂ)) and 𝑎:𝐻‾𝑟

⊗𝑛 →

𝐵(ℱ𝑇(𝐻ℂ)) are completely bounded with 𝑐𝑏-norms less than √𝐶𝑞. 

Proof. Let us start with the proof of the statement concerning 𝑎∗. Let 𝑛 ≥ 1,𝐾 a complex 

Hilbert space and (𝛼𝑖)∣𝑖]=𝑛 a finitely supported family of 𝐵(𝐾) such that 
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∑  

|i|=𝑛

𝛼𝑖⊗𝑒𝑖 ∥𝐵(𝐾)⊗min𝐻𝑐< 1. 

Then, since the maps 𝑎∗(𝑒𝑖) acts diagonally with respect to degrees of tensors in ℱ𝑇(𝐻ℂ), 

∑  

|𝑖|=𝑛

𝛼𝑖⊗𝑎∗(𝑒𝑖) ∥
∥
∥
 𝐵(𝐾)⊗min𝐵(ℱ𝑇(𝐻C))

= sup
𝑘≥0
 
∥
∥
∥
∑  

|𝑖|=𝑛

𝛼𝑖⊗𝑎∗(𝑒𝑖) ∥𝐵(𝐾)⊗min𝐵(𝐻
⊗𝑘,𝐻⊗𝑛+𝑘) 

To compute the right term, fix 𝑘 ≥ 0 and let (𝜉𝑗)
|𝑗|=𝑘

 be a finitely supported family of 

vectors in 𝐾 such that 

∑  

|𝑗|=𝑘

𝜉𝑗⊗𝑒𝑗 ∥𝐾⊗2𝐻
⊗𝑘< 1. 

By (3) we have 

∥
∥
∥
∥
∥

∑  

𝑖,𝑗

 𝛼𝑖 (𝜉𝑗)⊗ 𝑒𝑖⊗ 𝑒𝑗
∥
∥
∥
∥
∥

𝐾⊗2𝐻 
⊗𝑛+𝑘

≤ 𝐶𝑞

1
2

∥
∥
∥
∥
∥

∑ 

𝑖,𝑗

 𝛼𝑖 (𝜉𝑗) ⊗ 𝑒𝑖⊗𝑒𝑗
∥
∥
∥
∥
∥

𝐾⊗2𝐻 
⊗𝑛⊗2𝐻

⊗𝑘

. 

Let 𝑢: 𝐵(𝐾) × 𝐾𝑐 → 𝐾𝑐 given by (𝜑, 𝜉) ↦ 𝜑(𝜉). Recall that ∥ 𝑢 ∥𝑐𝑏= 1. Consequently, ∥
𝑢 ∥𝑗𝑐𝑏≤ 1. Therefore, we deduce 

        ‖∑ 

𝑖,𝑗

 𝛼𝑖 (𝜉𝑗)⊗ 𝑒𝑖⊗𝑒𝑗‖

𝐾⊗ 2𝐻
⊗𝑛⊗2𝐻

⊗𝑘

 

=

∥
∥
∥
∥
∥

∑ 

𝑖,𝑗

 𝛼𝑖 (𝜉𝑗)⊗ 𝑒𝑖⊗𝑒𝑗
∥
∥
∥
∥
∥

𝐾𝑐⊗min𝐻𝑐
⊗𝑛⊗min𝐻𝑐

⊗𝑘

   

=

∥
∥
∥
∥
∥

(𝑢)
𝐻𝑐
⊗𝑛,𝐻𝑐

⊗𝑘𝑘
(∑ 

𝑖

𝛼𝑖⊗𝑒𝑖 ,∑  

𝑗

𝜉𝑗⊗𝑒𝑗)

∥
∥
∥
∥
∥

    

≤∥ 𝑢 ∥𝑗𝑐𝑏
∥
∥
∥
∥
∥
∑  

𝑖

 𝛼𝑖⊗𝑒𝑖
∥
∥
∥
∥
∥

𝐵(𝐾)⊗min𝐻𝑐
⊗𝑛 ∥
∥
∥
∥
∥

∑ 

𝑗

  𝜉𝑗⊗𝑒𝑗
∥
∥
∥
∥
∥

𝐾𝑐⊗min𝐻𝑐
⊗𝑘

           

≤ 1                                                                                 
By the result just proved, for any complex Hilbert space 𝐾 and for any finitely supported 

family (𝛼𝑖)
|𝑖|=𝑛

 of 𝐵(𝐾) we have 

‖∑  

|𝑖|=𝑛

𝛼𝑖⊗𝑎∗(𝑒𝑖)‖

𝐵(𝐾)⊗min𝐵(ℱ𝑇(𝐻ℂ))

≤ √𝐶𝑞 ‖∑  

|𝑖|=𝑛

𝛼𝑖⊗𝑒𝑖‖

𝐵(𝐾)⊗min𝐻𝑐
⊗𝑛

 

Taking adjoints on both sides we get 

‖∑  

|𝑖|=𝑛

𝛼𝑖
∗⊗𝑎(𝑒�̅�)‖

𝐵(𝐾)⊗min𝐵(ℱ𝑇(𝐻𝐶))

≤ √𝐶𝑞 ‖∑  

|𝑖|=𝑛

𝛼𝑖⊗𝑒�̅�‖

𝐵(𝐾)⊗min𝐻‾𝑟
⊗𝑛

 

Changing 𝛼𝑖
∗ to 𝛼𝑖 and using the fact that 𝑈 (reversing the order of tensor) is a complete 

isometry on 𝐻𝑟

1

⊗𝑛, we get that for any finitely supported family (𝛼𝑖)|𝑖|=𝑛 of 𝐵(𝐾) we have 
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‖∑  

|𝑖|=𝑛

𝛼𝑖⊗𝑎(𝑒�̅�)‖

𝐵(𝐾)⊗min𝐵(ℱ𝑇(𝐻𝐶))

≤ √𝐶𝑞 ‖∑  

|𝑖|=𝑛

𝛼𝑖⊗𝑒�̅�‖

𝐵(𝐾)⊗min𝐻‾𝑟
⊗𝑛

. 

 

In other words, 

𝑎: 𝐻‾𝑟
⊗𝑛 → 𝐵(ℱ𝑇(𝐻ℂ)) 

is also completely bounded with norm less than √𝐶𝑞. 

Corollary (2.2.5)[113]: For any 𝑛 ≥ 0, and any 𝑘 ∈ {0…𝑛}, 

𝑈𝑘: 𝐻𝑐
⊗𝑛−𝑘⊗ℎ 𝐻𝑟

⊗𝑘 → 𝐵(ℱ𝑇(𝐻ℂ)) 

is completely bounded with cb-norm less than 𝐶𝑞. 

Proof. Let us denote by 𝑀 the multiplication map 𝐵(ℱ𝑇(𝐻ℂ)) ⊗ℎ 𝐵(ℱ𝑇(𝐻ℂ)) →

𝐵(ℱ𝑇(𝐻ℂ)) given by 𝐴⊗ 𝐵 ↦ 𝐴𝐵,𝑀 is obviously completely contractive. We have the 

formula 

𝑈𝑘 = 𝑀(𝑎
∗⊗𝑎𝒥) 

if 𝒥:𝐻⊗𝑘 → 𝐻‾⊗𝑘 is the conjugation (which is a complete isometry). By injectivity of the 

Haagerup tensor product and by Lemma (2.2.4) we deduce that 

∥𝑎∗⊗𝑎𝒥∥𝑐𝑏 ≤ 𝐶𝑞 

Then 

∥∥𝑈𝑘∥∥𝑐𝑏 ≤∥ 𝑀 ∥𝑐𝑏 ∥𝑎
∗⊗𝑎𝒥∥𝑐𝑏 ≤ 𝐶𝑞 

Recall that, by definition, Γ𝑇
∞(𝐻R) is identified with Γ𝑇(𝐻ℝ) by the mapping sending 𝜉 to 

𝑊(𝜉). Thus Γ𝑇
∞(𝐻ℝ) inherits the operator space structure of Γ𝑇(𝐻ℝ). In particular for all 

𝑛 ≥ 0,𝐻⊗𝑛 will be equipped with the operator space structure of 𝐸𝑛 = {𝑊(𝜉), 𝜉 ∈ 𝐻
⊗𝑛}.  

Theorem (2.2.6) below was first obtained via elementary, but long, computations. In 

the version presented here, we have chosen to follow an approach indicated to us by Eric 

Ricard. This approach is much more transparent but involves some notions of operator space 

theory. 

Theorem (2.2.6)[113]: Let 𝐾 be a complex Hilbert space. Then for all 𝑛 ≥ 0 and for all 𝜉 ∈
𝐵(𝐾)⊗min 𝐻⊗𝑛 we have 

max
0≤𝑘≤𝑛

 ∥∥(𝐼𝑑 ⊗ 𝑅𝑛,𝑘
∗ )(𝜉)∥∥ ≤∥ (𝐼𝑑 ⊗𝑊)(𝜉) ∥min≤ 𝐶𝑞(𝑛 + 1) max

0≤𝑘≤𝑛
 ∥∥(𝐼𝑑 ⊗ 𝑅𝑛,𝑘

∗ )(𝜉)∥∥(13) 

where Id denotes the identity mapping of 𝐵(𝐾), and where the norm ∥∥(𝐼𝑑 ⊗ 𝑅𝑛,𝑘
∗ )(𝜉)∥∥ is 

that of 𝐵(𝐾)⊗min𝐻𝑐
⊗𝑛−𝑘⊗min𝐻𝑟

⊗𝑘
. 

Proof. For the second inequality, we use the Wick formula : 

𝑊|𝐻⊗𝑛 =∑  

𝑛

𝑘=0

𝑈𝑘𝑅𝑛,𝑘
∗ . 

Let 𝜉 ∈ 𝐵(𝐾)⊗min 𝐻
⊗𝑛, then by Corollary (2.2.5) 

∥ (𝐼𝑑 ⊗𝑊)(𝜉) ∥min≤ 𝐶𝑞∑ 

𝑛

𝑘=0

∥∥(𝐼𝑑 ⊗ 𝑅𝑛,𝑘
∗ )(𝜉)∥∥ 

which yields the majoration.  

For the minoration, for 𝑥 ∈ 𝐻𝑐
⊗𝑛−𝑘⊗𝐻𝑟

⊗𝑘 ⊂ 𝐵(𝐻‾⊗𝑘 , 𝐻⊗𝑛−𝑘), we claim that 

𝑃𝑛−𝑘𝑈𝑘(𝑥)|𝐻⊗𝑘 = 𝑥(𝑈𝒥)                                        (14) 
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where 𝑃𝑛−𝑘 is the projection on tensors of rank 𝑛 − 𝑘 in ℱ𝑇(𝐻ℂ). Assuming this claim and 

recalling that 𝑈 and 𝒥 are (anti)-isometry, we get that for any 𝑥 ∈

𝐵(𝐾)⊗min 𝐻𝑐
⊗𝑛−𝑘⊗min 𝐻𝑟

⊗𝑘
 

∥ 𝑥 ∥
𝐵(𝐾)⊗min𝐻𝑐

⊗𝑛−𝑘⊗min𝐻𝑟
⊗𝑘≤ ∥∥𝑃𝑛−𝑘∥∥𝐵(ℱ𝑇(𝐻ℂ))∥

∥(𝐼𝑑 ⊗ 𝑈𝑘)(𝑥)∥∥𝐵(𝐾)⊗min𝐵(ℱ𝑇(𝐻ℂ))
 

The conclusion follows applying this inequality to 𝑥 = (𝐼𝑑 ⊗ 𝑅𝑛,𝑘
∗ )(𝜉) To prove (14), it 

suffices to consider an elementary tensor product with entries in any basis of 𝐻, say 𝑥 =

𝑒𝑖⊗𝑒𝑗 . Consider 𝑒𝑙 ∈ 𝐻
⊗𝑘, a length argument gives that 𝑎 (𝒥𝑒𝑗) ⋅ 𝑒𝑙 is of the form 𝜆Ω, 

with 

𝜆 = ⟨𝑎 (𝒥𝑒𝑗) ⋅ 𝑒𝑙 , Ω⟩ = ⟨𝑒𝑙 , 𝒥𝑈𝑒𝑗⟩ 

We deduce that 

𝑃𝑛−𝑘𝑈𝑘 (𝑒𝑖⊗𝑒𝑗) ⋅ 𝑒𝑙 = ⟨𝑒𝑙 , 𝑈𝒥𝑒𝑗⟩ 𝑒𝑖 

On the other hand, viewing 𝑥 as an operator, we compute 

𝑥(𝒥𝑈) ⋅ 𝑒𝑙 = 𝑥 ⋅ (𝒥𝑈𝑒𝑙) = ⟨𝑒𝑗 , 𝒥𝑈𝑒𝑙⟩ 𝑒𝑖 

But since 𝑈 is unitary and 𝒥 antiunitary, 

⟨𝑒𝑗 , 𝒥𝑈𝑒𝑙⟩ = ⟨𝑒𝑙 , 𝑈𝒥𝑒𝑗⟩ 

This ends the proof. 

The following theorem is the main result. 

Theorem (2.2.7)[113]: Γ𝑇(𝐻ℝ) is not injective as soon as dim (𝐻ℝ) ≥ 2. 

Proof. Let 𝑑 ≤ dim 𝐻ℝ. For all 𝑛 ≥ 0, (𝜉𝑖)
|∣|=𝑛

 will denote a real orthonormal family of 

𝐻⊗𝑛 equipped with the T-scalar product of cardinal 𝑑𝑛. For example one can take 𝜉𝑖 =

(𝑃𝑇
(𝑛)
)
−
1

2
𝑒𝑖. Suppose that Γ𝑇(𝐻ℝ) is injective. Fix 𝑛 ≥ 1. By injectivity we have, 

𝜏 (∑  

|𝑖|=𝑛

 𝑊(𝜉𝑖)
∗
𝑊(𝜉𝑖)) ≤

∥
∥
∥
∥
∥
∑  

∣𝑖|=𝑛

 𝑊(𝜉𝑖)
̅̅ ̅̅ ̅̅ ̅̅ ⊗𝑊(𝜉𝑖)

∥
∥
∥
∥
∥
 

It is clear that 

𝜏 (∑  

|𝑖|=𝑛

 𝑊(𝜉𝑖)
∗
𝑊(𝜉𝑖)) = 𝑑

𝑛 

On the other hand, applying twice (13) consecutively 

∑  

∣𝑖|=𝑛

𝑊(𝜉𝑖)
̅̅ ̅̅ ̅̅ ̅̅ ⊗𝑊(𝜉𝑖) ∥≤ (𝑛 + 1)

2𝐶𝑞
2 max
0≤𝑘,𝑘′≤𝑛

 {
∥
∥
∥
∥
∥
∑  

∣𝑖|=𝑛

 𝑅𝑛,𝑘′
∗ (𝜉𝑖)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ⊗ 𝑅𝑛,𝑘

∗ (𝜉𝑖)
∥
∥
∥
∥
∥
} 

The norms are computed in 𝐻‾𝑐
⊗𝑛−𝑘′ ⊗min 𝐻‾𝑟

⊗𝑘′ ⊗min 𝐻𝑐
⊗𝑛−𝑘⊗min 𝐻𝑟

⊗𝑘
 for fixed 𝑘 and 

𝑘′. We can rearrange this tensor product and use the comparison with the Hilbert Schmidt 

norm: Let 𝑡 = ∑∣𝑖|=𝑛  𝑅𝑛,𝑘′
∗ (𝜉𝑖)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ⊗ 𝑅𝑛,𝑘

∗ (𝜉𝑖) 

        ∥ 𝑡 ∥
𝐻‾𝑐
⊗𝑛−𝑘′⊗min

𝐻‾𝑟
⊗𝑘′ ⊗min𝐻𝑐

⊗𝑛−𝑘⊗min𝐻𝑟
⊗𝑘
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                 =∥ 𝑡 ∥
(𝐻‾⊗𝑛−𝑘

′
⊗2𝐻

⊗𝑛−𝑘)
𝑐
⊗min

(𝐻‾⊗𝑘
′
⊗2 𝐻

⊗𝑘)
𝑟
 

≤∥ 𝑡 ∥
(𝐻‾⊗𝑛−𝑘

′
⊗2𝐻

⊗𝑛−𝑘)⊗2(𝐻‾
⊗𝑘′⊗2𝐻

⊗𝑘)
 

≤∥ 𝑡 ∥
𝐻⊗𝑛−𝑘

′
⊗2𝐻

8𝑘′⊗2𝐻
⊗𝑛−𝑘⊗2𝐻

⊗𝑘         

Finally, we use the estimates on 𝑅𝑛,𝑘
∗ : 

∥ 𝑡 ∥
𝐻‾𝑐
⊗𝑛−𝑘′⊗min𝐻𝑟

⊗𝑘′⊗min𝐻𝑐
⊗𝑛−𝑘⊗min𝐻𝑟

⊗𝑘  ≤∥ 𝑡 ∥
𝐻‾⊗𝑛−𝑘

′
⊗2𝐻‾

⊗𝑘′⊗2𝐻
⊗𝑛−𝑘⊗2𝐻

⊗𝑘

 ≤ 𝐶𝑞
∥
∥
∥
∥
∥
∑  

|𝑖|=𝑛

  𝜉�̅�⊗𝜉𝑖
∥
∥
∥
∥
∥

𝐻𝑛⊗2𝐻
𝑛

 

But by the choice of 𝜉𝑖: ∥∥∑|𝑖|=𝑛  𝜉�̅�⊗𝜉𝑖∥∥
𝐻𝑛̅̅ ̅̅ ⊗2𝐻

𝑛
= 𝑑𝑛/2. 

Combining all inequalities above, we deduce 

𝑑𝑛 ≤ 𝐶𝑞
3(𝑛 + 1)2𝑑𝑛/2 

which yields a contradiction when 𝑛 tends to infinity as soon as 𝑑 ≥ 2.  

Let 𝐶𝑇
∗(𝐻ℝ) be the 𝐶∗-algebra generated by all gaussians 𝐺(𝑓) for 𝑓 ∈ 𝐻ℝ. The 

preceding theorem implies directly that 𝐶𝑇
∗(𝐻ℝ) is not nuclear as soon as dim (𝐻ℝ) ≥ 2 (cf. 

[119] Corollary 6.5). Actually the preceding argument can be modified to prove that 𝐶𝑇
∗(𝐻ℝ) 

does not have the weak expectation property as soon as dim 𝐻ℝ ≥ 2. Recall that a 𝐶∗-
algebra 𝐴 has the weak expectation property (WEP in short) if and only if the canonical 

inclusion 𝐴 → 𝐴∗∗ factorizes completely contractively through 𝐵(𝐾) for some complex 

Hilbert space 𝐾. By the results of Haagerup (cf. [125] Chapter 15) a 𝐶∗-algebra 𝐴 has the 

WEP if and only if for all finite family 𝑥1, … , 𝑥𝑛 in 𝐴 

‖∑  

𝑛

𝑖=1

𝑥𝑖⊗𝑥�̅�‖

 𝐴⊗max𝐴‾

= ‖∑ 

𝑛

𝑖=1

𝑥𝑖⊗𝑥�̅�‖

𝐴⊗min�̅�

                       (15) 

Corollary (2.2.8)[113]: 𝐶𝑇
∗(𝐻ℝ) does not have the WEP as soon as dim 𝐻ℝ ≥ 2. 

Proof. Let us use the same notations as in the preceding proof and suppose that 𝐶𝑇
∗(𝐻ℝ) has 

the WEP. Fix 𝑛 ≥ 1, by (15) we have 

‖∑  

|𝑖|=𝑛

𝑊(𝜉𝑖) ⊗𝑊(𝜉𝑖)
̅̅ ̅̅ ̅̅ ̅̅ ‖

 𝐶𝑇
∗ (𝐻ℝ)⊗max𝐶𝑇

∗ (𝐻ℝ)

                                  

≤ ‖∑  

∣𝑖|=𝑛

𝑊(𝜉𝑖) ⊗𝑊(𝜉𝑖)
̅̅ ̅̅ ̅̅ ̅̅ ‖

𝐶𝑇
∗(𝐻ℝ)⊗min𝐶𝑇

∗(𝐻ℝ)̅̅ ̅̅ ̅̅ ̅̅ ̅̅

           (16) 

To estimate from below the left handside of (16) observe that Φ:𝐶𝑇
∗(𝐻ℝ)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ → 𝐶𝑇

∗(𝐻R)
′ taking 

𝑊(𝜉)̅̅ ̅̅ ̅̅ ̅ to 𝒥𝑈𝑊(𝜉)𝒥𝑈 = 𝑊𝑟(𝒥𝑈𝜉) is a *- representation. Thus 

              

∥
∥
∥
∥
∥

∑  

|𝑖|=𝑛

𝑊(𝜉𝑖) ⊗𝑊(𝜉𝑖)
̅̅ ̅̅ ̅̅ ̅̅

∥
∥
∥
∥
∥

𝐶𝑇
∗(𝐻ℝ)⊗max𝐶𝑇

∗(𝐻ℝ)

 

                        =

∥
∥
∥
∥
∥

∑  

|𝑖|=𝑛

 𝑊(𝜉𝑖) ⊗𝑊𝑟(𝒥𝑈𝜉𝑖)

∥
∥
∥
∥
∥

𝐶𝑇
∗(𝐻ℝ)⊗max𝐶𝑇

∗(𝐻R))
′
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≥

∥
∥
∥
∥
∥

∑  

|𝑖|=𝑛

 𝑊(𝜉𝑖)𝑊𝑟(𝒥𝑈𝜉𝑖)

∥
∥
∥
∥
∥

𝐵(ℱ𝑇(𝐻C))

 

≥ ∑  

|𝑖|=𝑛

  ⟨𝒥𝑈𝜉𝑖 ,𝑊(𝜉𝑖)
∗
Ω⟩

𝑇
                   

≥ ∑  

|𝑖|=𝑛

  ⟨𝒥𝑈𝜉𝑖 ,𝑊(𝒥𝑈𝜉𝑖)Ω⟩
𝑇
              

≥ ∑  

|𝑖|=𝑛

  ∥∥𝒥𝑈𝜉𝑖∥∥
𝑇

2
= 𝑑𝑛                         

Then we can finish the proof as for Theorem (2.2.7). 
For this we mainly see [123] where the 𝑞-Araki-Woods algebras are defined as a 

generalization of the 𝑞 - deformed case of Bożejko and Speicher on the one hand, and the 

quasi-free case of Shlyakhtenko (cf. [15]) on the other. Let 𝐻R be a real Hilbert space given 

with 𝑈𝑡, a strongly continuous group of orthogonal transformations on 𝐻ℝ. 𝑈𝑡 can be 

extended to a unitary group on the complexification 𝐻ℂ. Let 𝐴 be its positive non-singular 

generator on 𝐻ℂ: 𝑈𝑡 = 𝐴
𝑖𝑡 . A new scalar product ⟨. , , ⟩𝑈 is defined on 𝐻ℂ by the following 

relation: 

⟨𝜉, 𝜂⟩𝑈 = ⟨2𝐴(1 + 𝐴)
−1𝜉, 𝜂⟩ 

We will denote by 𝐻 the completion of 𝐻ℂ with respect to this new scalar product. 

For a fixed 𝑞 ∈] − 1,1[, we now consider the 𝑞-deformed Fock space associated with 𝐻 and 

we denote it by ℱ𝑞(𝐻). Recall that it is the Fock space with the following Yang-Baxter 

deformation 𝑇 defined by: 
𝑇:𝐻 ⊗𝐻  ⟶ 𝐻⊗𝐻

𝜉 ⊗ 𝜂 ⟼ 𝑞𝜂 ⊗ 𝜉
 

Or equivalently, for every 𝑛 ≥ 2 and 𝜎 ∈ 𝑆𝑛 we have 

𝜑(𝜎) = 𝑞𝑖(𝜎)𝑈𝜎 

where 𝑖(𝜎) denotes the number of inversions of the permutation 𝜎 and 𝑈𝜎 is the unitary on 

𝐻⊗𝑛 defined by 

𝑈𝜎(𝑓1⊗⋯⊗𝑓𝑛) = 𝑓𝜎−1(1)⊗⋯⊗𝑓𝜎−1(𝑛) 

In this setting, the 𝑞-Araki-Woods algebra is the following von Neumann algebra 

Γ𝑞(𝐻ℝ, 𝑈𝑡) = {𝐺(ℎ), ℎ ∈ 𝐻ℝ}
′′ ⊂ 𝐵 (ℱ𝑞(𝐻ℂ)) 

Let 𝐻ℝ
′ = {𝑔 ∈ 𝐻, ⟨𝑔, ℎ⟩𝑈 ∈ ℝ for all ℎ ∈ 𝐻ℝ} and 

Γ𝑞,𝑟(𝐻ℝ
′ , 𝑈𝑡) = {𝐺𝑟(ℎ), ℎ ∈ 𝐻ℝ

′ }′′ 

where 𝐺𝑟(ℎ) is the right gaussian corresponding to the right creation operator. 

Since Γ𝑞,𝑟(𝐻ℝ
′ , 𝑈𝑡) ⊂ Γ𝑞(𝐻ℝ, 𝑈𝑡)

′, 𝐻ℝ + 𝑖𝐻ℝ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝐻 and 𝐻ℝ
′ + 𝑖𝐻ℝ

′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝐻( cf. [15]), it is 

easy to deduce that Ω is cyclic and separating for both Γ𝑞(𝐻ℝ, 𝑈𝑡) and Γ𝑞,𝑟(𝐻ℝ
′ , 𝑈𝑡). So 

Tomita's theory can apply : recall that the anti-linear operator 𝑆 is the closure of the operator 

defined by : 

𝑆(𝑥Ω) = 𝑥∗Ω  for all 𝑥 ∈ Γ𝑞(𝐻ℝ, 𝑈𝑡) 

Let 𝑆 = 𝐽Δ
1

2 be its polar decomposition. 𝐽 and Δ are called respectively the modular 

conjugation and the modular operator. The following explicit formulas hold (cf. [123] and 

[15]) 
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𝑆(ℎ1⊗⋯⊗ℎ𝑛) = ℎ𝑛⊗⋯⊗ℎ1  for all ℎ1, … , ℎ𝑛 ∈ 𝐻ℝ 

Δ is the closure of the operator ⨁𝑛=0
∞  (𝐴−1)⊗𝑛 and 

𝐽(ℎ1⊗⋯⊗ℎ𝑛) = 𝐴
−
1
2ℎ𝑛⊗⋯⊗𝐴−

1
2ℎ1  for all ℎ1, … , ℎ𝑛 ∈ 𝐻ℝ ∩ dom 𝐴

−
1
2 

By Tomita's theory, we have 

Γ𝑞(𝐻ℝ, 𝑈𝑡)
′ = 𝐽Γ𝑞(𝐻ℝ, 𝑈𝑡)𝐽 

Let ℎ ∈ 𝐻ℝ, as in [15] we have 𝐽ℎ ∈ 𝐻ℝ′, then, since Ω is separating for Γ𝑞,𝑟(𝐻ℝ
′ , 𝑈𝑡), we 

obtain that 𝐽𝐺(ℎ)𝐽 = 𝐺𝑟(𝐽ℎ) ∈ Γ𝑞,𝑟(𝐻ℝ
′ , 𝑈𝑡), so that 

Γ𝑞(𝐻ℝ, 𝑈𝑡)
′ = Γ𝑞,𝑟(𝐻ℝ

′ , 𝑈𝑡) 

Moreover, if 𝜉 ∈ Γ𝑞(𝐻ℝ, 𝑈𝑡)Ω, then 𝐽𝜉 ∈ Γ𝑞,𝑟(𝐻ℝ
′ , 𝑈𝑡)Ω and since Ω is separating, we get 

𝐽𝑊(𝜉)𝐽 = 𝑊𝑟(𝐽𝜉). 
Recall that if 𝑈𝑡 is non trivial, the vacuum expectation 𝜑 is no longer tracial and is 

called the 𝑞-quasi-free state. In fact in most cases (cf. [123] Theorem 3.3), Araki-Woods 

factors are type III von Neumann algebras. 

When 𝐴 is bounded, it is clear that our preliminaries are still valid with minor changes. 

For example we should get an extra ∥∥𝐴−1∥∥
𝑘/2

=∥ 𝐴 ∥𝑘/2 in the estimation of ∥∥𝑈𝑘∥∥. Note, in 

particular, that the Wick formula, as stated in Lemma (2.2.2), is still true, and that the 

following analogue of Bożejko's scalar inequality holds: (proved in [123])  

If 𝐴 is bounded, (𝜂𝑢)𝑢∈𝑈 is a family of vectors in 𝐻⊗𝑛 and (𝛼𝑢)𝑢∈𝑈 a finitely 

supported family of complex numbers then : 

∥
∥
∥
∥
∑  

𝑢∈𝑈

 𝛼𝑢𝜂𝑢
∥
∥
∥
∥

𝑞

≤
∥
∥
∥
∥
∑  

𝑢∈𝑈

 𝛼𝑢𝑊(𝜂𝑢)
∥
∥
∥
∥
≤ 𝐶

|𝑞|

3
2 ∣

∣ 𝐴 ∥
𝑛+1
2 − 1

∥ 𝐴 ∥
1
2− 1 ∥

∥
∥
∥
∑  

𝑢∈𝑈

 𝛼𝑢𝜂𝑢
∥
∥
∥
∥

𝑞

  (17) 

It is also a straightforward verification that Lemma (2.2.4), still hold in this setting. Observe 

also that 𝑈 is a unitary on ℱ𝑞(𝐻): this follows from the fact that for every 𝑛 ≥ 1, 𝑃𝑞
(𝑛)
, 𝐴⊗𝑛 

and 𝑈 commute on 𝐻⊗𝑛. Note that 𝒥 is no more an anti unitary from 𝐻⊗𝑘 to 𝐻⊗𝑘, but since 

𝑈𝑘(𝐼 ⊗ 𝑆) = 𝑀(𝑎∗⊗𝑎𝑈), we can deduce, as in the proof of Corollary (2.2.5), that 𝑈𝑘(𝐼 ⊗

𝑆): 𝐻𝑐
⊗𝑛−𝑘⊗ℎ 𝐻𝑟

⊗𝑘̅̅ ̅̅ ̅̅ → 𝐵(ℱ𝑇(𝐻ℂ)) is completely bounded with norm less than 𝐶𝑞, where 

𝐼 stands 

for the identity of 𝐻𝑐
⊗𝑛−𝑘

. Following the same lines as in the proof of Theorem (2.2.6) we 

get: 

Theorem (2.2.9)[113]: Assume 𝐴 is bounded. Let 𝐾 be a complex Hilbert space. Then for 

all 𝑛 ≥ 0 and for all 𝜉 ∈ 𝐵(𝐾)⊗min 𝐻
⊗𝑛 we have 

max
0<𝑘<𝑛

  ∥ (𝐼𝑑 ⊗ ((𝐼 ⊗ 𝑆)𝑅𝑛,𝑘
∗ ) (𝜉) ∥≤∥ (𝐼𝑑 ⊗𝑊)(𝜉) ∥min          (18) 

         ≤ 𝐶𝑞(𝑛 + 1) max
0≤𝑘≤𝑛

  ∥ (𝐼𝑑 ⊗ ((𝐼 ⊗ 𝑆)𝑅𝑛,𝑘
∗ )(𝜉) ∥ 

where Id denotes the identity mapping of 𝐵(𝐾), 𝐼 the identity of 𝐻𝑐
⊗𝑛−𝑘

, and where the 

norms of the left and right handsides are taken in 𝐵(𝐾)⊗min𝐻𝑐
⊗𝑛−𝑘⊗min 𝐻𝑟

⊗𝑘̅̅ ̅̅ ̅̅
. 

It is known (cf. [123]) that if 𝑈𝑡 has a non trivial continuous part then Γ𝑞(𝐻ℝ, 𝑈𝑡) is 

not injective. Using our techniques we are able to state a non-injectivity criterion similar to 

that of [123] but independent of 𝑞. 

Corollary (2.2.10)[113]: If either 

dim 𝐸𝐴({1})𝐻ℂ ≥ 2 

or for some 𝑇 > 1 



64 

dim 𝐸𝐴(]1, 𝑇])𝐻ℂ
𝑇2

>
1

2
 

where 𝐸𝐴 is the spectral projection of 𝐴, then Γ𝑞(𝐻ℝ, 𝑈𝑡) is non injective. 

Proof. We can assume that 𝑈𝑡 is almost periodic, then we can write 

(𝐻ℝ, 𝑈𝑡) = (�̂�ℝ, Id�̂�ℝ)⨁ 

𝛼∈Λ

(𝐻ℝ
(𝛼)
, 𝑈𝑡

(𝛼)
) 

where 

𝐻ℝ
(𝛼)
= ℝ2,  𝑈𝑡

(𝛼)
= (

cos (𝑡ln 𝜆𝛼) −sin (𝑡ln 𝜆𝛼)

sin (𝑡ln 𝜆𝛼) cos (𝑡ln 𝜆𝛼)
) ,  𝜆𝛼 > 1 

Thus the eigenvalues of the generator 𝐴(𝛼) of 𝑈𝑡
(𝛼)

 are 𝜆𝛼 and 𝜆𝛼
−1.  

If dim 𝐸𝐴({1})𝐻C ≥ 2 then dim �̂�ℝ ≥ 2 and since 𝑈𝑡 is trivial on �̂�ℝ, the non-

injectivity follows from Theorem (2.2.7) . 

For the remaining case we first suppose that dim 𝐻ℝ = 2,𝑈𝑡 is not trivial and that 

Γ𝑞(𝐻ℝ, 𝑈𝑡) is injective. For all 𝑛 ≥ 1, 𝐴⊗𝑛 is a positive operator on 𝐻⊗𝑛 equipped with the 

deformed scalar product, we will denote by 𝜆 and 𝜆−1 the eigenvalues of 𝐴 with 𝜆 > 1 and 

by (𝜉𝑖)
|𝑖|=𝑛

 an orthonormal basis of eigenvectors of 𝐴⊗𝑛 associated to the eigenvalues 

(𝜆𝑖)
∣𝑖|=𝑛

. Since Γ𝑞(𝐻ℝ, 𝑈𝑡) is semidiscrete we must have for every 𝑛 ≥ 1 

‖∑  

|𝑖|=𝑛

 𝑊𝑟(𝐽𝜉𝑖)𝑊(𝜉𝑖)‖ ≤ ‖∑  

|𝑖|=𝑛

 𝑊𝑟(𝐽𝜉𝑖) ⊗𝑊(𝜉𝑖)‖ 

                                            = ‖∑  

|𝑖|=𝑛

 𝐽𝑊(𝜉𝑖)𝐽 ⊗𝑊(𝜉𝑖)‖ 

It is easily seen that 

∥
∥
∥
∥
∥
∑  

|𝑖|=𝑛

 𝑊𝑟(𝐽𝜉𝑖)𝑊(𝜉𝑖)
∥
∥
∥
∥
∥
 ≥ ∑  

∣𝑖|=𝑛

  ⟨Ω,𝑊𝑟(𝐽𝜉𝑖)𝑊(𝜉𝑖)Ω⟩
𝑞

 = ∑  

|𝑖|=𝑛

  ⟨𝐽𝑊(𝜉𝑖)
∗
𝐽Ω,𝑊(𝜉𝑖)Ω⟩

𝑞

 = ∑  

|𝑖|=𝑛

  ⟨Δ
1
2𝜉𝑖 , 𝜉𝑖⟩

𝑞
= Trace ((𝐴−

1
2)
⊗𝑛

) = (𝜆
1
2 + 𝜆−

1
2)
𝑛

 

On the other hand, the map from 𝐽Γ𝑞(𝐻ℝ, 𝑈𝑡)𝐽 to Γ𝑞(𝐻R, 𝑈𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ taking 𝐽𝑊(𝜉)𝐽 to 𝑊(𝜉)̅̅ ̅̅ ̅̅ ̅ is a *-

isomorphism, hence 

‖∑  

|𝑖|=𝑛

𝐽𝑊(𝜉𝑖)𝐽 ⊗𝑊(𝜉𝑖)‖

min  

= ‖∑  

|𝑖|=𝑛

𝑊(𝜉𝑖)
̅̅ ̅̅ ̅̅ ̅̅ ⊗𝑊(𝜉𝑖)‖ 

Applying (18) twice, and recalling that on 𝐻⊗𝑘, 𝑆 = 𝐽Δ
1

2 = 𝐽(𝐴⊗𝑘)
−
1

2 and that 𝐽: 𝐻𝑟
⊗𝑘̅̅ ̅̅ ̅̅ →

𝐻𝑟
⊗𝑘

 is completely isometric, we get 
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‖∑  

|𝑖|=𝑛

 𝑊(𝜉𝑖)
̅̅ ̅̅ ̅̅ ̅̅ ⊗𝑊(𝜉𝑖)‖

min  

≤ 𝐶𝑞
2(𝑛 + 1)2 max

0≤𝑘,𝑘′≤𝑛
‖∑  

|𝑖|=𝑛

  (𝐼 ⊗ 𝑆)𝑅𝑛,𝑘′
∗ (𝜉𝑖)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ⊗ (𝐼 ⊗ 𝑆)𝑅𝑛,𝑘
∗ (𝜉𝑖)‖

≤ 𝐶𝑞
2(𝑛 + 1)2 max

0≤𝑘,𝑘′≤𝑛
 
∥
∥
∥
∥
∥
∑  

|𝑖|=𝑛

 (𝐼 ⊗ (𝐴⊗𝑘
′
)
−
1
2)𝑅𝑛,𝑘′

∗ (𝜉𝑖)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

⊗ (𝐼 ⊗ (𝐴⊗𝑘)
−
1
2)𝑅𝑛,𝑘

∗ (𝜉𝑖)
∥
∥
∥
∥
∥

 

Where the norms are computed in 𝐻𝑐
⊗𝑛−𝑘′̅̅ ̅̅ ̅̅ ̅̅ ̅̅

⊗min 𝐻𝑟
⊗𝑘′̅̅ ̅̅ ̅̅ ̅

⊗min 𝐻𝑐
⊗𝑛−𝑘⊗min 𝐻𝑟

⊗𝑘. For a fixed 
(𝑘, 𝑘′), let us denote by 

𝑡 = ∑  

∣𝑖|=𝑛

(𝐼 ⊗ (𝐴⊗𝑘
′
)
−
1
2)𝑅𝑛,𝑘′

∗ (𝜉𝑖)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

⊗ (𝐼 ⊗ (𝐴⊗𝑘)
−
1
2)𝑅𝑛,𝑘

∗ (𝜉𝑖) 

As in the proof of Theorem (2.2.7), we have the following Hilbert-Schmidt estimate: 

‖𝑡‖
𝐻⊗𝑛−𝑘

′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
⊗min  𝐻𝑟

⊗𝑘′̅̅ ̅̅ ̅̅ ̅̅
⊗min  𝐻𝑐

⊗𝑛−𝑘⊗min  𝐻𝑟
⊗𝑘 ≤ ‖𝑡‖𝐻⊗𝑛−𝑘′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

⊗2𝐻 
⊗𝑘′̅̅ ̅̅ ̅̅ ̅̅

⊗2𝐻 
⊗𝑛−𝑘⊗2𝐻 

⊗𝑘 

Recall that 𝑅𝑛,𝑘
∗ : 𝐻⊗𝑛 → 𝐻⊗𝑛−𝑘⊗2 𝐻

⊗𝑘 is of norm less than 𝐶
|𝑞|

1

2  and that 

∥
∥
∥
(𝐴⊗𝑘)

−
1

2

∥
∥
∥

𝐵(𝐻⊗𝑘)
= 𝜆

𝑘

2. Hence,  

∥ 𝑡 ∥
𝐻⊗𝑛−𝑘

′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
⊗2𝐻

⊗𝑘′̅̅ ̅̅ ̅̅ ̅̅
⊗2𝐻

⊗𝑛−𝑘⊗2𝐻
⊗𝑘  ≤ 𝐶|𝑞|𝜆

𝑛

∥
∥
∥
∥
∥

∑  

|𝑖|=𝑛

  𝜉�̅�⊗𝜉𝑖
∥
∥
∥
∥
∥

𝐻⊗𝑛̅̅ ̅̅ ̅̅ ̅⊗𝐻⊗𝑛

 ≤ 𝐶|𝑞|(√2𝜆)
𝑛

 

Combining all inequalities we get 

(𝜆
1
2 + 𝜆−

1
2)
𝑛

≤ 𝐶|𝑞|
3 (𝑛 + 1)2(√2𝜆)𝑛. 

We now return to the general case, we fix 𝑇 > 1 and we denote by 𝜆1, … , 𝜆𝑝 the eigenvalues 

of 𝐴 in ]1, 𝑇] counted with multiplicities. Thus we have 𝑝 = dim 𝐸𝐴(]1, 𝑇])𝐻ℂ. It is easy to 

deduce from our first step that for any 𝑛 ≥ 1 we have 

(∑ 

𝑝

𝑖=1

  𝜆
𝑖

1
2 + 𝜆

𝑖

−
1
2)

𝑛

≤ 𝐶|𝑞|
3 (𝑛 + 1)2(2𝑝)

𝑛
2𝑇𝑛 

Since for any 𝑖 we have 𝜆
𝑖

1

2 + 𝜆
𝑖

−
1

2 ≥ 2 we deduce 

(2𝑝)𝑛 ≤ 𝐶|𝑞|
3 (𝑛 + 1)2(2𝑝)

𝑛
2𝑇𝑛 

So we necessarily have 
2𝑝

𝑇2
≤ 1 

that is to say 
dim 𝐸𝐴]1, 𝑇]𝐻ℂ

𝑇2
≤
1

2
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Chapter 3 

QWEP Property for 𝒒-Araki-Woods Algebras 
 

We use this model and an elaborated ultraproduct procedure, to show that all 𝑞-Araki-

Woods von Neumann algebras are QWEP. In addition we show the 𝑞-deformed Araki-

Woods factors. 
Section (3.1): 𝒒-Deformed Araki-Woods Factors 

For ℋ𝐑 be a separable real Hilbert space and 𝑈𝑡 a strongly continuous one-parameter 

group of orthogonal transformations on ℋ𝐑. By linearity 𝑈𝑡 extends to a one-parameter 

unitary group on the complexified Hilbert space ℋ𝐂: = ℋ𝐑 + 𝑖ℋ𝐑. Write 𝑈𝑡 = 𝐴
𝑖𝑡 with the 

generator 𝐴 (a positive non-singular operator on ℋ𝐂 ) and define an inner product ⟨⋅,⋅⟩𝑈 on 

ℋ𝐂 by 

⟨𝑥, 𝑦⟩𝑈 = ⟨2𝐴(1 + 𝐴)
−1𝑥, 𝑦⟩,  𝑥, 𝑦 ∈ ℋ𝐂. 

Let ℋ be the complex Hilbert space obtained by completing ℋ𝐂 with respect to ⟨⋅,⋅⟩𝑈. 
For −1 < 𝑞 < 1 the 𝑞-Fock space ℱ𝑞(ℋ) was introduced in [129, 60] as follows. 

Let ℱ finite (ℋ) be the linear span of 𝑓1⊗⋯⊗𝑓𝑛 ∈ ℋ
⊗𝑛(𝑛 = 0,1,… ) where 

ℋ⊗0 = 𝐂Ω with vacuum Ω. The sesquilinear form ⟨⋅,⋅⟩𝑞 on ℱ finite (ℋ) is given by 

⟨𝑓1⊗⋯⊗𝑓𝑛, 𝑔1⊗⋯⊗𝑔𝑚⟩𝑞 = 𝛿𝑛𝑚 ∑  

𝜋∈𝑆𝑛

𝑞𝑖(𝜋)⟨𝑓1, 𝑔𝜋(1)⟩𝑈
⋯⟨𝑓𝑛, 𝑔𝜋(𝑛)⟩𝑈, 

where 𝑖(𝜋) denotes the number of inversions of the permutation 𝜋 ∈ 𝑆𝑛. For −1 < 𝑞 <  1, ⟨⋅

,⋅⟩𝑞 is strictly positive and the 𝑞-Fock space ℱ𝑞(ℋ) is the completion of ℱ finite (ℋ) with 

respect to ⟨⋅,⋅⟩𝑞 . Given ℎ ∈ ℋ the 𝑞-creation operator 𝑎𝑞
∗ (ℎ) and the 𝑞-annihilation operator 

𝑎𝑞(ℎ) on ℱ𝑞(ℋ) are defined by 

𝑎𝑞
∗ (ℎ)Ω = ℎ,

𝑎𝑞
∗ (ℎ)(𝑓1⊗⋯⊗𝑓𝑛) = ℎ ⊗ 𝑓1⊗⋯⊗𝑓𝑛,

 

and 
𝑎𝑞(ℎ)Ω = 0,

𝑎𝑞(ℎ)(𝑓1⊗⋯⊗𝑓𝑛) =∑  

𝑛

𝑖=1

 𝑞𝑖−1⟨ℎ, 𝑓𝑖⟩𝑈𝑓1⊗⋯⊗𝑓𝑖−1⊗𝑓𝑖+1⊗⋯⊗𝑓𝑛.
 

The operators 𝑎𝑞
∗ (ℎ) and 𝑎𝑞(ℎ) are bounded operators on ℱ𝑞(ℋ) and they are adjoins of 

each other (see [60, Remark 1.2]). 

Following [15] we consider the von Neumann algebra Γ𝑞(ℋ𝐑, 𝑈𝑡)
′′, called a 𝑞 

deformed Araki-Woods algebra, generated on ℱ𝑞(ℋ) by 

𝑠𝑞(ℎ):= 𝑎𝑞
∗ (ℎ) + 𝑎𝑞(ℎ),  ℎ ∈ ℋ𝐑. 

The vacuum state 𝜑(= 𝜑𝑞,𝑈):= ⟨Ω,⋅ Ω⟩𝑞 on Γ𝑞(ℋR, 𝑈𝑡)
′′ is called the 𝑞-quasi-free 

state. 

Proposition (3.1.1)[127]: Ω is cyclic and separating for Γ𝑞(ℋ𝐑, 𝑈𝑡)
′′. 

One can canonically extend 𝑈𝑡 on ℋ to a one-parameter unitary group (the so-called 

second quantization) ℱ𝑞(𝑈𝑡) on ℱ𝑞(ℋ) by 

ℱ𝑞(𝑈𝑡)Ω = Ω,

ℱ𝑞(𝑈𝑡)(𝑓1⊗⋯⊗𝑓𝑛) = (𝑈𝑡𝑓1) ⊗⋯⊗ (𝑈𝑡𝑓𝑛).
 

Notice ℱ𝑞(𝑈𝑡)𝑎𝑞
∗(ℎ)ℱ𝑞(𝑈𝑡)

∗ = 𝑎𝑞
∗ (𝑈𝑡ℎ) for ℎ ∈ ℋ so that 
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ℱ𝑞(𝑈𝑡)𝑠𝑞(ℎ)ℱ𝑞(𝑈𝑡)
∗ = 𝑠𝑞(𝑈𝑡ℎ),  ℎ ∈ ℋ𝐑. 

Thus, 𝛼𝑡: = Ad ℱ𝑞(𝑈𝑡) defines a strongly continuous one-parameter automorphism group 

on Γ𝑞(ℋ𝐑, 𝑈𝑡)
′′. 

Proposition (3.1.2)[127]: The 𝑞-quasi-free state 𝜑 on Γ𝑞(ℋ𝐑, 𝑈𝑡)
′′ satisfies the KMS 

condition with respect to 𝛼𝑡 at 𝛽 = 1. 
Let (𝒦𝐑, 𝑉𝑡) be another pair of a separable real Hilbert space and a one-parameter 

group 𝑉𝑡 of orthogonal transformations on 𝒦𝐑. Let 𝑇:ℋ𝐑 → 𝒦𝐑 be a contraction such that 

𝑇𝑈𝑡 = 𝑉𝑡𝑇 for all 𝑡 ∈ 𝐑. By linearity 𝑇 extends to a contraction 𝑇:ℋC → 𝒦𝐂 and it satisfies 

𝑇𝑈𝑡 = 𝑉𝑡𝑇 on ℋC. Let 𝐵 be the generator of 𝑉𝑡 so that 𝑉𝑡 = 𝐵
𝑖𝑡 . Since 

𝑇𝐴(1 + 𝐴)−1 = 𝐵(1 + 𝐵)−1𝑇, 
𝑇 can further extend to a contraction from (ℋ, ⟨⋅,⋅⟩𝑈) to (𝒦, ⟨⋅,⋅⟩𝑉). Then: 

Proposition (3.1.3)[127]: There is a unique completely positive normal contraction Γ𝑞(𝑇) ∶

 Γ𝑞(ℋ𝐑, 𝑈𝑡)
′′ → Γ𝑞(𝒦𝐑, 𝑉𝑡)

′′ such that 

(Γ𝑞(𝑇)𝑥)Ω = ℱ𝑞(𝑇)(𝑥Ω),  𝑥 ∈ Γ𝑞(ℋR, 𝑈𝑡)
′′, 

where ℱ𝑞(𝑇): ℱ𝑞(ℋ) → ℱ𝑞(𝒦) is given by 

ℱ𝑞(𝑇)(𝑓1⊗⋯⊗𝑓𝑛) = (𝑇𝑓1) ⊗⋯⊗ (𝑇𝑓𝑛). 

In this way, we have presented a 𝑞-analogue of Shlyakhtenko's free CAR functor; namely, 

a von Neumann algebra with a specified state, (Γ𝑞(ℋ𝐑, 𝑈𝑡)
′′, 𝜑), is associated to each real 

Hilbert space with a one-parameter group of orthogonal transformations, (ℋ𝐑, 𝑈𝑡), and a 

unital completely positive state-preserving map Γ𝑞(𝑇): Γ𝑞(ℋ𝐑, 𝑈𝑡)
′′ → Γ𝑞(𝒦𝐑, 𝑉𝑡)

′′ to 

every contraction 𝑇: (ℋ𝐑, 𝑈𝑡) → (𝒦𝐑, 𝑉𝑡). 
When 𝑞 = 0, Γ(ℋ𝐑, 𝑈𝑡)

′′ ≡ Γ0(ℋ𝐑, 𝑈𝑡)
′′ is a free Araki-Woods factor (of type III) in 

[15]. On the other hand, when 𝑈𝑡 = id a trivial action, Γ𝑞(ℋ𝐑)
′′ ≡ Γ𝑞(ℋ𝐑, id ) is a 𝑞-

deformation of the free group factor in [60]; in particular, Γ0(ℋ𝐑)
′′ ≅ 𝐿(𝔽dim ℋ𝐑) a free 

group factor. 

The following were proven in [68, 60], but it is still open whether Γ𝑞(ℋ𝐑)
′′ is a non-

injective type II1 factor whenever dim ℋ𝐑 ≥ 2. 
1. If −1 < 𝑞 < 1 and dim ℋ𝐑 > 16/(1 − |𝑞|)

2, then Γ𝑞(ℋ𝐑)
′′ is not injective. 

2. If dim ℋ𝐑 = ∞, then Γ𝑞(ℋ𝐑) is a factor (of type II1 ) for all −1 < 𝑞 < 1. 

These results can be extended to Γ𝑞(ℋ𝐑, 𝑈𝑡)
′′ as follows. 

Theorem (3.1.4)[127]: If there is 𝑇 ∈ [1,∞) such that 
dim 𝐸𝐴([1, 𝑇])ℋ𝐂

𝑇
>

16

(1 − |𝑞|)2
 

where 𝐸𝐴 is the spectral measure of 𝐴, then Γ𝑞(ℋ𝐑, 𝑈𝑡)
′′ is not injective. In particular, 

Γ𝑞(ℋ𝐑, 𝑈𝑡)
′′ is not injective if 𝐴 has a continuous spectrum. 

Theorem (3.1.5)[127]: Assume that the almost periodic part of (ℋ𝐑, 𝑈𝑡) is infinite 

dimensional, that is, 𝐴 has infinitely many mutually orthogonal eigenvectors. Then 

(Γ𝑞(ℋ𝐑, 𝑈𝑡)
′′)
𝜑

′
∩ Γ𝑞(ℋ𝐑, 𝑈𝑡)

′′ = 𝐂𝟏, 

where (Γ𝑞(ℋ𝐑, 𝑈𝑡)
′′)
𝜑

 is the centralizer of Γ𝑞(ℋ𝐑, 𝑈𝑡)
′′ with respect to the vacuum state 

𝜑. In particular, Γ𝑞(ℋ𝐑, 𝑈𝑡)
′′ is a factor. 

As usual let 𝑆𝜑 be the closure of the operator given by 

𝑆𝜑(𝑥Ω) = 𝑥
∗Ω,  𝑥 ∈ Γ𝑞(ℋ𝐑, 𝑈𝑡)

′′, 
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and let Δ𝜑 , 𝐽𝜑 be the associated modular operator and the modular conjugation. Then the 

following are seen as in [15]: For ℎ1, … , ℎ𝑛 ∈ ℋ𝐑, 
𝑆𝜑(ℎ1⊗ℎ2⊗⋯⊗ℎ𝑛) = ℎ𝑛⊗ℎ𝑛−1⊗⋯⊗ℎ1, 

and for ℎ1, … , ℎ𝑛 ∈ ℋ𝐑 ∩ dom𝐴
−1, 

Δ𝜑(ℎ1⊗⋯⊗ℎ𝑛) = (𝐴
−1ℎ1) ⊗⋯⊗ (𝐴−1ℎ𝑛). 

Noting that 𝒟:= {ℎ + 𝑖𝑔: ℎ, 𝑔 ∈ ℋR ∩ dom 𝐴
−1} is a core of 𝐴−1( on ℋ) such that 𝑈𝑡𝒟 =

𝒟 for all 𝑡 ∈ 𝐑, we see that 

Δ𝜑
𝑖𝑡 = ℱ𝑞(𝐴

−𝑖𝑡) = ℱ𝑞(𝑈−𝑡),  𝑡 ∈ 𝐑. 

By this and Theorem (3.1.5) we obtain the following type classification result: 

Theorem (3.1.6)[127]: Assume that 𝐴 has infinitely many mutually orthogonal 

eigenvectors. Let 𝐺 be the closed multiplicative subgroup of 𝐑+generated by the spectrum 

of 𝐴 ( 𝑈𝑡 = 𝐴
𝑖𝑡). Then Γ𝑞(ℋ𝐑, 𝑈𝑡)

′′ is a non-injective factor of type 𝐼𝐼1 or type III (0 <

𝜆 ≤ 1), and 

Γ𝑞(ℋ𝐑, 𝑈𝑡)
′′ is {

 type 𝐼𝐼1  if 𝐺 = {1},

 type III 
𝜆

 if 𝐺 = {𝜆𝑛: 𝑛 ∈ 𝐙}(0 < 𝜆 < 1)

 type 𝐼𝐼𝐼  1  if 𝐺 = 𝐑+.

, 

This result for free Araki-Woods factors (in case of 𝑞 = 0 ) was shown in [15, 14] generally 

when dim ℋ𝐑 ≥ 2. Moreover, it was shown as a consequence of Barnett's theorem that free 

Araki-Woods factors are full whenever 𝑈𝑡 is almost periodic (i.e. the eigenvectors of 𝐴 span 

ℋ). The assumption of Theorems (3.1.5) and (3.1.6) is a bit too restrictive while the 

following opposite extreme case is easy to see: 

Proposition (3.1.7)[127]: If 𝑈𝑡 has no eigenvectors, then Γ𝑞(ℋ𝐑, 𝑈𝑡)
′′ is a type 𝐼𝐼𝐼  1 factor. 

It is worthwhile to note that the type 𝐼𝐼𝐼 0 case does not appear in the above type 

classifications. 

For example, let (ℋ𝐑, 𝑈𝑡) = ⨁𝑘=1
∞  (𝐑2, 𝑉𝑡) where 𝑉𝑡: =

[
cos (𝑡 log 𝜆) −sin (𝑡 log 𝜆)
sin (𝑡 log 𝜆) cos (𝑡 log 𝜆)

], 0 < 𝜆 ≤ 1, and write (𝑇𝑞,𝜆, 𝜑𝑞,𝜆):= (Γ𝑞(ℋ𝐑, 𝑈𝑡)
′′, 𝜑) with 

two parameters 𝑞 ∈ (−1,1) and 𝜆 ∈ (0,1]. For 0 < 𝜆 < 1, 𝑇𝑞,𝜆 is a type 𝐼𝐼𝐼𝜆 𝑞-deformed 

Araki-Woods factor. In particular when 𝑞 = 0, (𝑇0,𝜆, 𝜑0,𝜆) coincides with the type  𝐼𝐼𝐼𝜆 free 

Araki-Woods factor (𝑇𝜆, 𝜑𝜆) discussed in [11, 15]. For 𝜆 = 1, 𝑇𝑞,1 is the 𝑞-deformed type 

𝐼𝐼1 factor treated in [60]. 

The 𝐶∗-algebra Γ𝑞(ℋ𝐑, 𝑈𝑡),−1 < 𝑞 < 1, generated by {𝑠𝑞(ℎ): ℎ ∈ ℋ𝐑} on ℱ𝑞(ℋ) is 

considered as the 𝑞-analogue of the CAR algebra. From this point of view, the above 

𝑇𝑞,𝜆(0 < 𝜆 < 1) may be considered as the 𝑞-analogue of Powers' 𝐼𝐼𝐼𝜆 factor. In fact, we 

remark that, for 𝑞 = −1, our construction of 𝑇𝑞,𝜆 provides Powers' 𝐼𝐼𝐼𝜆 factor. To be more 

precise, for given (ℋ𝐑, 𝑈𝑡), let Γ−(ℋ𝐑, 𝑈𝑡)
′′ denote the von Neumann algebra generated by 

𝑠−(ℎ):= 𝑎−
∗ (ℎ) + 𝑎−(ℎ)(ℎ ∈ ℋ𝐑) on the Fermion Fock space ℱ−(ℋ), where 𝑎−

∗ (ℎ) and 

𝑎−(ℎ) are the Fermion (CAR) creation and annihilation operators. 

 If (ℋ𝐑, 𝑈𝑡) = ⨁𝑘=1
∞   (ℋ𝐑

(𝑘)
, 𝑈𝑡

(𝑘)
) where ℋ𝐑

(𝑘)
= 𝐑2, 𝑈𝑡

(𝑘)
=

[
cos (𝑡 log 𝜆𝑘) −sin (𝑡 log 𝜆𝑘)

sin (𝑡 log 𝜆𝑘) cos (𝑡 log 𝜆𝑘)
] with 𝜆𝑘 ≤ 1, then (Γ−(ℋ𝐑, 𝑈𝑡)

′′, 𝜑:= ⟨Ω,⋅ Ω⟩−)becomes 

an Araki-Woods factor 
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⨂ 

∞

𝑘=1

(

  
 
𝑀2(𝐂), Tr 

(

 
 
⋅

[
 
 
 
𝜆𝑘

𝜆𝑘 + 1
0

0
1

𝜆𝑘 + 1]
 
 
 

)

 
 

)

  
 
. 

Upon these considerations we called Γ𝑞(ℋ𝐑, 𝑈𝑡)
′′ a 𝑞-deformed Araki-Woods algebra. 

When 𝑇 = 𝑒−𝑡1ℋ𝐑(𝑡 > 0), we obtain a semigroup Γ𝑞(𝑒
−𝑡)(𝑡 > 0) of completely 

positive normal contractions on Γ𝑞(ℋ𝐑, 𝑈𝑡)
′′. This is a non-tracial extension of 𝑞 Ornstein-

Uhlenbeck semigroup discussed in [128,115]. In the tracial case (i.e. the case of 𝑈𝑡 being 

trivial), the ultracontractivity for Γ𝑞(𝑒
−𝑡) was proven in [115] as follows: 

∥∥Γ𝑞(𝑒
−𝑡)𝑥∥∥ ≤ 𝐶|𝑞|

3/2√
1 + 𝑒−2𝑡

(1 − 𝑒−2𝑡)3
∥ 𝑥Ω ∥,  𝑥 ∈ Γ𝑞(ℋ𝐑)

′′ 

with 𝐶|𝑞| given below. In the non-tracial type 𝐼𝐼𝐼 case, we have the following 

hypercontractivity property. This reduces to the above ultracontractivity when 𝐴 = 1 or 𝛾 =
0. 
Theorem (3.1.8)[127]: Assume that 𝐴 is bounded (in particular, this is the case if dim ℋR <

 +∞), and let 𝛾: =
1

2
log ∥ 𝐴 ∥. If −1 < 𝑞 < 1 and 𝑡 > 𝛾, then 

∥∥Γ𝑞(𝑒
−𝑡)𝑥∥∥ ≤ 𝐶|𝑞|

3/2√
1 + 𝑒−(2𝑡−𝛾)

(1 − 𝑒−2𝑡)(1 − 𝑒−(2𝑡−𝛾))(1 − 𝑒−2(𝑡−𝛾)) ∥
∥Δ𝜑
𝜃/2
𝑥Ω∥∥ 

for all 𝑥 ∈ Γ𝑞(ℋR, 𝑈𝑡)
′′ and 0 ≤ 𝜃 ≤ 1, where 

𝐶|𝑞|: =
1

∏  ∞
𝑚=1   (1 − |𝑞|

𝑚)
. 

It might be expected that the hypercontractivity given in the above theorem is valid for the 

whole 𝑡 > 0. However, the next proposition says that it is impossible to remove the 

assumption 𝑡 > 𝛾, so Theorem (3.1.8) seems more or less best possible. Also, it says that 

the hypercontractivity in the sense that ∥∥Γ𝑞(𝑒
−𝑡)𝑥∥∥ ≤ 𝐶 ∥ 𝑥Ω ∥𝑞 holds for some 𝑡 > 0 and 

for all 𝑥 ∈ Γ𝑞(ℋ𝐑, 𝑈𝑡)
′′ is impossible when 𝐴 is unbounded; for example, this is the case 

when 𝑈𝑡𝑓 = 𝑓(⋅ +𝑡) on ℋ𝐑 = 𝐿
2(𝐑;𝐑). 

Proposition (3.1.9)[127]: Let −1 < 𝑞 < 1,0 ≤ 𝜃 ≤ 1 and 𝑡 > 0. If there exists a constant 

𝑐 > 0 such that 

∥∥Γ𝑞(𝑒
−𝑡)𝑥∥∥ ≤ 𝑐

∥
∥
∥
∥
Δ𝜑

𝜃
2 𝑥Ω

∥
∥
∥
∥
,  𝑥 ∈ Γ𝑞(ℋ𝐑, 𝑈𝑡)

′′, 

then 𝐴 is bounded and 

∥ 𝐴 ∥≤ exp(
2𝑡

max{𝜃, 1 − 𝜃}
). 

It seems that it is convenient to consider the hypercontractivity of Γ𝑞(𝑇) in the setting of 

Kosaki's interpolated 𝐿𝑝-spaces. For a general von Neumann algebra ℳ and 1 ≤ 𝑝 ≤ ∞ let 

𝐿𝑝(ℳ) be Haagerup's 𝐿𝑝-space. Given a faithful normal state 𝜑 on ℳ let ℎ𝜑 denote the 

element of 𝐿1(ℳ)(≅ ℳ∗) corresponding to 𝜑. For each 1 < 𝑝 < ∞ and 0 ≤ 𝜃 ≤ 1, 
Kosaki's 𝐿𝑝-space 𝐿𝑝(ℳ;𝜑)𝜃 with respect to 𝜑 is introduced as the complex interpolation 

space 

𝐶1/𝑝(ℎ𝜑
𝜃ℳℎ𝜑

1−𝜃 , 𝐿1(ℳ)) 
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equipped with the complex interpolation norm ∥⋅∥𝑝,𝜃 (=∥⋅∥𝐶1/𝑝). Let 𝑇:ℋ𝐑 → 𝒦𝐑 be a 

contraction with 𝑇𝑈𝑡 = 𝑉𝑡𝑇, 𝑡 ∈ 𝐑. The adjoint operator 𝑇∗:𝒦𝐑 → ℋ𝐑 is also a contraction 

satisfying 𝑇∗𝑉𝑡 = 𝑈𝑡𝑇
∗, 𝑡 ∈ 𝐑. For each −1 < 𝑞 < 1 let 

ℳ ∶= Γ𝑞(ℋ𝐑, 𝑈𝑡)
′′  with  𝜑 = ⟨Ω,⋅ Ω⟩𝑞,

𝒩:= Γ𝑞(𝒦𝐑, 𝑉𝑡)
′′  with  𝜓 = ⟨Ω,⋅ Ω⟩𝑞,

 

where the vacuums in ℱ𝑞(ℋ) and in ℱ𝑞(𝒦) are denoted by the same Ω. Then, by Proposition 

(3.1.3) the completely positive normal contractions 

Γ𝑞(𝑇):ℳ → 𝒩  and  Γ𝑞(𝑇
∗):𝒩 → ℳ 

are determined by 

(Γ𝑞(𝑇)𝑥)Ω  = ℱ𝑞(𝑇)(𝑥Ω), 𝑥 ∈ ℳ,

(Γ𝑞(𝑇
∗)𝑦)Ω  = ℱ𝑞(𝑇

∗)(𝑦Ω), 𝑦 ∈ 𝒩.
 

One can define the contraction 𝜔 ↦ 𝜔 ∘ Γ𝑞(𝑇
∗) of ℳ∗ into 𝒩∗. Via ℳ∗ ≅ 𝐿

1(ℳ) and 𝒩∗ ≅

𝐿1(𝒩) this induces the contraction Γ̃𝑞(𝑇) of 𝐿1(ℳ) into 𝐿1(𝒩) as follows: 

Γ̃𝑞(𝑇)ℎ𝜔 = ℎ𝜔∘Γ9(𝑇∗),  𝜔 ∈ ℳ∗. 

We see that for every 0 ≤ 𝜃 ≤ 1 and 𝑥 ∈ ℳ, 

Γ̃𝑞(𝑇)(ℎ𝜑
𝜃𝑥ℎ𝜑

1−𝜃) = ℎ𝜓
𝜃 (Γ𝑞(𝑇)𝑥)ℎ𝜓

1−𝜃 , 

so that Γ̃𝑞(𝑇): 𝐿
1(ℳ) → 𝐿1(𝒩) is the (unique) continuous extension of the linear mapping 

from ℎ𝜑
𝜃ℳℎ𝜑

1−𝜃(⊂ 𝐿1(ℳ)) into ℎ𝜓
𝜃𝒩ℎ𝜓

1−𝜃(⊂ 𝐿1(𝒩)) given by 

ℎ𝜑
𝜃𝑥ℎ𝜑

1−𝜃 ↦ ℎ𝜓
𝜃 (Γ𝑞(𝑇)𝑥)ℎ𝜓

1−𝜃 ,  𝑥 ∈ ℳ. 

Moreover, the Riesz-Thorin theorem implies that for each 0 ≤ 𝜃 ≤ 1 and 1 ≤ 𝑝 ≤ ∞, Γ̃𝑞(𝑇) 

maps 𝐿𝑝(ℳ;𝜑)𝜃 into 𝐿𝑝(𝒩;𝜓)𝜃 and 

∥∥Γ̃𝑞(𝑇)𝑎∥∥𝑝,𝜃 ≤∥ 𝑎 ∥𝑝,𝜃 ,  𝑎 ∈ 𝐿
𝑝(ℳ;𝜑)𝜃 . 

The next theorem is shown by using Theorem (3.1.8). 

Theorem (3.1.10)[127]: Assume that either 𝐴(𝑈𝑡 = 𝐴
𝑖𝑡) or 𝐵(𝑉𝑡 = 𝐵

𝑖𝑡) is bounded, and 

let 𝜌:= min{∥ 𝐴 ∥, ∥ 𝐵 ∥}. Let 𝑇:ℋ𝐑 → 𝒦𝐑 be a bounded operator such that 𝑇𝑈𝑡 = 𝑉𝑡𝑇 for 

all 𝑡 ∈ 𝐑 and ∥ 𝑇 ∥< 𝜌−1. Then Γ̃𝑞(𝑇) maps 𝐿1(ℳ) into ⋂0≤𝜃≤1  ℎ𝜓
𝜃𝒩ℎ𝜓

1−𝜃 and 

∥∥Γ̃𝑞(𝑇)𝑎∥∥∞,𝜃 ≤ 𝐶|𝑞|
3

1 + 𝜌1/2 ∥ 𝑇 ∥

(1−∥ 𝑇 ∥)(1 − 𝜌1/2 ∥ 𝑇 ∥)(1 − 𝜌 ∥ 𝑇 ∥)
∥ 𝑎 ∥1 

for all 𝑎 ∈ 𝐿1(ℳ),0 ≤ 𝜃 ≤ 1. 
 

Section (3.2): Asymptotic Matricial Models  

Recall that a 𝐶∗-algebra has the weak expectation property (in short WEP) if the 

canonical inclusion from 𝐴 into 𝐴∗∗ factorizes completely contractively through some 𝐵(𝐻) 
(H Hilbert). A 𝐶∗-algebra is QWEP if it is a quotient by a closed ideal of an algebra with 

the WEP. The notion of QWEP was introduced by Kirchberg in [132]. Since then, it became 

an important notion in the theory of 𝐶∗-algebras. Very recently, Pisier and Shlyakhtenko 

[26] proved that Shlyakhtenko's free quasi-free factors are QWEP. This result plays an 

important role in their work on the operator space Grothendieck Theorem, as well as in the 

subsequent related works [134] and [140]. On the other hand, in [131] on the embedding of 

Pisier's operator Hilbertian space 𝑂𝐻 and the projection constant of 𝑂𝐻𝑛, Junge used QWEP 

in a crucial way.  
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Hiai [23] introduced the so-called 𝑞-Araki-Woods algebras. Let −1 < 𝑞 < 1, and let 

𝐻R be a real Hilbert space and (𝑈𝑡)𝑡∈ℝ an orthogonal group on 𝐻R. Let Γ𝑞(𝐻R, (𝑈𝑡)𝑡∈ℝ) 

denote the associated 𝑞-Araki-Woods algebra. These algebras are generalizations of both 

Shlyakhtenko's free quasi-free factors (for 𝑞 = 0), and Bożejko and Speicher's 𝑞-Gaussian 

algebras (for (𝑈𝑡)𝑡∈ℝ trivial). We prove that Γ𝑞(𝐻R, (𝑈𝑡)𝑡∈ℝ) is QWEP. This is an extension 

of Pisier Shlyakthenko's result for the free quasi-free factor (with (𝑈𝑡)𝑡∈ℝ almost periodic), 

already quoted above. 

We recall some general background on 𝑞-Araki-Woods algebras and we give a proof 

of the main result in the particular case of Bożejko and Speicher's 𝑞-Gaussian algebras 

Γ𝑞(𝐻ℝ). The proof relies on an asymptotic random matrix model for standard 𝑞-Gaussians. 

The existence of such a model goes back to Speicher's central limit Theorem for mixed 

commuting/anti-commuting non-commutative random variables (see [139]). Alternatively, 

one can also use the Gaussian random matrix model given by Śniady in [138]. Notice that 

the matrices arising from Speicher's central limit Theorem may not be uniformly bounded 

in norm. Therefore, we have to cut them off in order to define a homomorphism from a 

dense subalgebra of Γ𝑞(𝐻ℝ) into an ultraproduct of matricial algebras. In this tracial 

framework it can be shown quite easily that this homomorphism extends to an isometric *-

homomorphism of von Neumann algebras, simply because it is trace preserving. Thus 

Γ𝑞(𝐻ℝ) can be seen as a (necessarily completely complemented) subalgebra of an 

ultraproduct of matricial algebras. This solves the problem in the tracial case. 

Moreover, in this (relatively) simple situation, we are able to extend the result to the 

𝐶∗-algebra generated by all 𝑞-Gaussians, 𝐶𝑞
∗(𝐻ℝ). Indeed, using the ultracontractivity of the 

𝑞-Ornstein Uhlenbeck semi-group (see [115]) we establish that 𝐶𝑞
∗(𝐻ℝ) is "weakly ucp 

complemented" in Γ𝑞(𝐻ℝ). This last fact, combined with the QWEP of Γ𝑞(𝐻ℝ), implies that 

𝐶𝑞
∗(𝐻ℝ) is also QWEP. 

We adapt the proof of the more general type III 𝑞-Araki-Woods algebras. We start by 

recalling Raynaud's construction of the von Neumann algebra's ultraproduct when algebras 

are equipped with non-tracial states (see [136]). Then, we give some general conditions in 

order to define an embedding into such an ultraproduct, whose image is of a state preserving 

conditional expectation. 

We define a twisted Baby Fock model, to which we apply Speicher's central limit 

Theorem. This provides us with an asymptotic random matrix model for (finite dimensional) 

𝑞-Araki Woods algebras, generalizing the asymptotic model already introduced by Speicher 

and used by Biane in [128]. Using this asymptotic model, we then define an algebraic *-

homomorphism from a dense subalgebra of Γ𝑞(𝐻ℝ, (𝑈𝑡)𝑡∈ℝ) into a von Neumann 

ultraproduct of finite dimensional 𝐶∗-algebras. Notice that the cut off argument requires 

some extra work (compare the proofs of Lemma (3.2.7) and Lemma (3.2.24)), for instance 

we need to use our knowledge of the modular theory at the Baby Fock level to conclude. 

We then apply the general results (Theorem (3.2.15)) to extend this algebraic *-

homomorphism into a *-isomorphism from Γ𝑞(𝐻ℝ, (𝑈𝑡)𝑡∈ℝ) to the von Neumann algebra's 

ultraproduct, whose image is completely complemented. This allows us to show that 

Γ𝑞(𝐻ℝ, (𝑈𝑡)𝑡∈ℝ) is QWEP for 𝐻ℝ finite dimensional (see Theorem (3.2.26)). It implies, by 

inductive limit, that Γ𝑞(𝐻ℝ, (𝑈𝑡)𝑡∈ℝ) is QWEP when (𝑈𝑡)𝑡∈ℝ is almost periodic (see 

Corollary (3.2.27)). 
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We consider a general algebra Γ𝑞(𝐻ℝ, (𝑈𝑡)𝑡∈ℝ). We use a discretization procedure on 

the unitary group (𝑈𝑡)𝑡∈ℝ in order to approach Γ𝑞(𝐻ℝ, (𝑈𝑡)𝑡∈ℝ) by almost periodic 𝑞-Araki-

Woods algebras. We then apply the general results and, we recover the general algebra as a 

complemented subalgebra of the ultraproduct of the discretized ones (see Theorem (3.2.30)). 

From this last fact follows the QWEP of Γ𝑞(𝐻ℝ, (𝑈𝑡)𝑡∈ℝ). However we were unable to 

establish the corresponding result for the 𝐶∗-algebra 𝐶𝑞
∗(𝐻ℝ, (𝑈𝑡)𝑡∈ℝ). Indeed, if (𝑈𝑡)𝑡∈ℝ is 

not trivial then the ultracontractivity of the 𝑞-Ornstein-Uhlenbeck semi-group never holds 

in any right-neighborhood of zero (see [23]). 

We highlight that the modular theory on the twisted Baby Fock algebras, on their 

ultraproduct, and on the 𝑞-Araki Woods algebras, are crucial tools in order to overcome the 

difficulties arising in the non-tracial case. 

Marius Junge informed us that he had obtained our main result using his proof of the 

non-commutative 𝐿1-Khintchine inequalities for 𝑞-Araki-Woods algebras. Junge's approach 

is slightly different but its main steps are the same as ours: the proof uses in a crucial way 

Speicher's central limit Theorem, an ultraproduct argument and modular theory. 

We mainly follow the notations used in [15], [23] and [113]. Let 𝐻ℝ be a real Hilbert 

space and (𝑈𝑡)𝑡∈ℝ be a strongly continuous group of orthogonal transformations on 𝐻ℝ. We 

denote by 𝐻ℂ the complexification of 𝐻ℝ and still by (𝑈𝑡)𝑡∈ℝ its extension to a group of 

unitaries on 𝐻ℂ. Let 𝐴 be the (unbounded) non degenerate positive infinitesimal generator 

of (𝑈𝑡)𝑡∈ℝ. 

𝑈𝑡 = 𝐴
it   for all 𝑡 ∈ ℝ 

A new scalar product ⟨. , . ⟩𝑈 is defined on 𝐻C by the following relation: 

⟨𝜉, 𝜂⟩𝑈 = ⟨2𝐴(1 + 𝐴)
−1𝜉, 𝜂⟩ 

We denote by 𝐻 the completion of 𝐻C with respect to this new scalar product. For 𝑞 ∈
(−1,1) we consider the 𝑞-Fock space associated with 𝐻 and given by: 

ℱ𝑞(𝐻) = ℂΩ⨁ 

𝑛⩾1

𝐻⊗𝑛 

where 𝐻⊗𝑛 is equipped with Bożejko and Speicher's 𝑞-scalar product (see [68]). The usual 

creation and annihilation operators on ℱ𝑞(𝐻) are denoted respectively by 𝑎∗ and 𝑎 (see 

[68]). For 𝑓 ∈ 𝐻ℝ, 𝐺(𝑓), the 𝑞-Gaussian operator associated to 𝑓, is by definition: 

𝐺(𝑓) = 𝑎∗(𝑓) + 𝑎(𝑓) ∈ 𝐵(ℱ𝑞(𝐻)) 

The von Neumann algebra that they generate in 𝐵(ℱ𝑞(𝐻)) is the so-called 𝑞-Araki-Woods 

algebra: Γ𝑞(𝐻R, (𝑈𝑡)𝑡∈ℝ). The 𝑞-Araki-Woods algebra is equipped with a faithful normal 

state 𝜑 which is the expectation on the vacuum vector Ω. We denote by 𝑊 the Wick product 

; it is the inverse of the mapping: 
Γ𝑞(𝐻ℝ, (𝑈𝑡)𝑡∈ℝ)  ⟶ Γ𝑞(𝐻ℝ, (𝑈𝑡)𝑡∈ℝ)Ω

𝑋  ↦ 𝑋Ω
 

Recall that Γ𝑞(𝐻ℝ, (𝑈𝑡)𝑡∈ℝ) ⊂ 𝐵(ℱ𝑞(𝐻)) is the GNS representation of (Γ, 𝜑). The modular 

theory relative to the state 𝜑 was computed in [23] and [15]. We now briefly recall their 

results. As usual we denote by 𝑆 the closure of the operator: 

𝑆(𝑥Ω) = 𝑥∗Ω  for all 𝑥 ∈ Γ𝑞(𝐻R, (𝑈𝑡)𝑡∈ℝ) 

Let 𝑆 = 𝐽Δ
1

2 be its polar decomposition. 𝐽 and Δ are respectively the modular conjugation 

and the modular operator relative to 𝜑. The following explicit formulas hold: 

𝑆(ℎ1⊗⋯⊗ℎ𝑛) = ℎ𝑛⊗⋯⊗ℎ1  for all ℎ1, … , ℎ𝑛 ∈ 𝐻ℝ 
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Δ is the closure of the operator ⨁  ∞
𝑛=0 (𝐴

−1)⊗𝑛 and 

𝐽(ℎ1⊗⋯⊗ℎ𝑛) = 𝐴
−
1
2ℎ𝑛⊗⋯⊗𝐴−

1
2ℎ1  for all ℎ1, … , ℎ𝑛 ∈ 𝐻ℝ ∩ dom 𝐴

−
1
2 

The modular group of automorphisms (𝜎𝑡)𝑡∈ℝ on Γ𝑞(𝐻ℝ, (𝑈𝑡)𝑡∈ℝ) relative to 𝜑 is given by: 

𝜎𝑡(𝐺(𝑓)) = Δ
𝑖𝑡𝐺(𝑓)Δ−𝑖𝑡 = 𝐺(𝑈−𝑡𝑓)  for all 𝑡 ∈ ℝ  and all 𝑓 ∈ 𝐻ℝ 

In the following Lemma we state a well known formula giving, in particular, all moments 

of the 𝑞-Gaussians. 

Lemma (3.2.1)[130]: Let 𝑟 ∈ ℕ∗ and (ℎ𝑙)−𝑟⩽𝑙⩽𝑟 be a family of vectors in 𝐻ℝ. For all 𝑙 ∈
{1,… , 𝑟} consider the operator 𝑑𝑙 = 𝑎

∗(ℎ𝑙) + 𝑎(ℎ−𝑙). For all (𝑘(1),… , 𝑘(𝑟)) ∈ {1,∗}𝑟 we 

have: 

𝜑(𝑑1
𝑘(1)

…𝑑𝑟
𝑘(𝑟)

=

{
 
 

 
 

0 if 𝑟 is odd

∑ 𝑞𝑖(𝒱)∏𝜑(𝑑𝑠𝑙
𝑘(𝑠𝑙)𝑑𝑡𝑙

𝑘(𝑡𝑙))

𝑝

𝑙=1𝒱  2-partition

𝒱={(𝑠𝑡,𝑡𝑙)𝑙=1
𝑙=𝑝

} with 𝑠𝑙<𝑡𝑙

if 𝑟 = 2𝑝  

where 𝑖(𝒱) = #{(𝑘, 𝑙), 𝑠𝑘 < 𝑠𝑙 < 𝑡𝑘 < 𝑡𝑙} is the number of crossings of the 2-partition 𝒱. 

Therefore, we see that the distribution of a single gaussian does not depend on the group 
(𝑈𝑡)𝑡∈ℝ. In the tracial case (thus in all cases), and when ∥ 𝑓 ∥= 1, this distribution is the 

absolutely continuous probability measure 𝜈𝑞 supported on the interval [−2/√1 − 𝑞, 2/

√1 − 𝑞] whose orthogonal polynomials are the 𝑞-Hermite polynomials (see [60]). In 

particular, we have: 

 For all 𝑓 ∈ 𝐻ℝ,  ∥ 𝐺(𝑓) ∥=
2

√1 − 𝑞
∥ 𝑓 ∥𝐻ℝ                           (1) 

We now briefly recall a description of the von Neumann algebra Γ𝑞(𝐻ℝ, 𝑈𝑡) where 

𝐻ℝ is an Euclidian space of dimension 2𝑘(𝑘 ∈ ℕ∗). There exists (𝐻𝑗)1⩽𝑗⩽𝑘 a family of two 

dimensional spaces, invariant under (𝑈𝑡)𝑡∈ℝ, and (𝜆𝑗)1⩽𝑗⩽𝑘 some real numbers greater or 

equal to 1 such that for all 𝑗 ∈ {1,… , 𝑘}, 

𝐻ℝ = ⊕
1⩽𝑗⩽𝑘

𝐻𝑗   and  𝑈𝑡∣𝐻𝑗 = (
cos (𝑡ln (𝜆𝑗)) −sin (𝑡ln (𝜆𝑗))

sin (𝑡ln (𝜆𝑗)) cos (𝑡ln (𝜆𝑗))
) 

We put 𝐼 = {−𝑘,… ,−1} ∪ {1,… , 𝑘}. It is then easily checked that the deformed scalar 

product ⟨. , . ⟩𝑈 on the complexification 𝐻ℂ of 𝐻ℝ is characterized by the condition that there 

exists a basis (𝑓𝑗)𝑗∈𝐼 in 𝐻ℝ such that for all (𝑗, 𝑙) ∈ {1,… , 𝑘}2 

⟨𝑓𝑗 , 𝑓−𝑙⟩𝑈 = 𝛿𝑗,𝑙 . 𝑖
𝜆𝑗 − 1

𝜆𝑗 + 1
  and  ⟨𝑓±𝑗 , 𝑓±𝑙⟩𝑈 = 𝛿𝑗,𝑙                        (2) 

For all 𝑗 ∈ {1,… , 𝑘} we put 𝜇𝑗 = 𝜆𝑗

1

4. Let (𝑒𝑗)𝑗∈𝐼 be a real orthonormal basis of ℂ2𝑘 equipped 

with its canonical scalar product. For all 𝑗 ∈ {1,… , 𝑘} we put 

𝑓𝑗 =
1

√𝜇𝑗
2 + 𝜇𝑗

−2

(𝜇𝑗𝑒−𝑗 + 𝜇𝑗
−1𝑒𝑗)  and  �̂�−𝑗 =

𝑖

√𝜇𝑗
2 + 𝜇𝑗

−2

(𝜇𝑗𝑒−𝑗 − 𝜇𝑗
−1𝑒𝑗) 
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It is easy to see that the conditions (2) are fulfilled for the family (𝑓𝑗)𝑗∈𝐼. We will denote by 

𝐻R the Euclidian space generated by the family (�̂�𝑗)𝑗∈𝐼 in ℂ2𝑘. This provides us with a 

realization of Γ𝑞(𝐻ℝ, 𝑈𝑡) as a subalgebra of 𝐵 (ℱ𝑞(ℂ
2𝑘)). Indeed, Γ𝑞(𝐻R, 𝑈𝑡) =

{𝐺(�̂�𝑗), 𝑗 ∈𝐼}
′′ ⊂ 𝐵 (ℱ𝑞(ℂ

2𝑘)). For all 𝑗 ∈ {1,… , 𝑘} put 

𝑓𝑗 =
√𝜇𝑗

2 + 𝜇𝑗
−2

2
𝑓𝑗   and  𝑓−𝑗 =

√𝜇𝑗
2 + 𝜇𝑗

−2

2
𝑓−𝑗 

We define the following generalized semi-circular variable by: 

𝑐𝑗 = 𝐺(𝑓𝑗) + 𝑖𝐺(𝑓−𝑗) = 𝑊(𝑓𝑗 + 𝑖𝑓−𝑗) 

It is clear that Γ𝑞(𝐻R, 𝑈𝑡) = {𝑐𝑗 , 𝑗 ∈ {1,… , 𝑘}}
′′
⊂ 𝐵 (ℱ𝑞(ℂ

2𝑘)) and we can check that 

𝑐𝑗 = 𝜇𝑗𝑎(𝑒−𝑗) + 𝜇𝑗
−1𝑎∗(𝑒𝑗)                                        (3) 

Moreover, for all 𝑗 ∈ {1,… , 𝑘}, 𝑐𝑗 is an entire vector for (𝜎𝑡)𝑡∈ℝ and we have, for all ∈ ℂ: 

𝜎𝑧(𝑐𝑗) = 𝜆𝑗
𝑖𝑧𝑐𝑗 . 

Recall that all odd *-moments of the family (𝑐𝑗)1⩽𝑗⩽𝑘 are zero. Applying Lemma (3.2.1) to 

the operators 𝑐𝑗 we state, for further references, an explicit formula for the *-moments of 

(𝑐𝑗)1⩽𝑗⩽𝑘. In the following we use the convention 𝑐−1 = 𝑐∗ when there is no possible 

confusion. 

Lemma (3.2.2)[130]: Let 𝑟 ∈ ℕ∗, (𝑗(1), … , 𝑗(2𝑟)) ∈ {1,… , 𝑘}
2𝑟 and (𝑘(1),… , 𝑘(2𝑟)) ∈

{±1}2𝑟 

   𝜑 (𝑐𝑗(1)
𝑘(1)

…𝑐𝑗(2𝑟)
𝑘(2𝑟)

) = ∑ 𝑞𝑖(𝒱)∏𝜑(𝑐𝑗(𝑠𝑙)
𝑘(𝑠𝑙)𝑐𝑗(𝑡𝑙)

𝑘(𝑡𝑙))

𝑟

𝑙=1𝒱  2−partition

𝒱={(𝑠𝑡,𝑡𝑙)𝑙=1
𝑙=𝑟} with 𝑠𝑙<𝑡𝑙

  

 

= ∑ 𝑞𝑖(𝒱)∏𝜇𝑗(𝑠𝑙)
2𝑘(𝑠𝑙)𝛿𝑘(𝑠𝑙),−𝑘(𝑡𝑙)𝛿𝑗(𝑠𝑙),𝑗(𝑡𝑙)

𝑟

𝑙=1𝒱  2−𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛

𝒱={(𝑠𝑡,𝑡𝑙)𝑙=1
𝑙=𝑟}𝑤𝑖𝑡ℎ 𝑠𝑙<𝑡𝑙

  

Proof. As said above this is a consequence of Lemma (3.2.1) and the explicit computation 

of covariances. Using (3) we have: 

𝜑 (𝑐𝑗(1)
𝑘(1)

𝑐𝑗(2)
𝑘(2)

)  = ⟨𝑐𝑗(1)
−𝑘(1)

Ω, 𝑐𝑗(2)
𝑘(2)

Ω⟩

 = ⟨𝜇𝑗(1)
𝑘(1)

𝑒−𝑘(1)𝑗(1), 𝜇𝑗(2)
−𝑘(2)

𝑒𝑘(2)𝑗(2)⟩

 = 𝜇𝑗(1)
2𝑘(1)

𝛿𝑘(1),−𝑘(2)𝛿𝑗(1),𝑗(2)

 

The symmetric Baby Fock (also known as symmetric toy Fock space) is at some point 

a discrete approximation of the bosonic Fock space (see [92]). In [128], Biane considered 

spin systems with mixed commutation and anti-commutation relations (which is a 

generalization of the symmetric toy Fock), and used it to approximate 𝑞-Fock space (via 

Speicher central limit Theorem). We recall the formal construction of [128]. Let 𝐼 be a finite 

subset of ℤ and 𝜖 a function from 𝐼 × 𝐼 to {−1,1} satisfying for all (𝑖, 𝑗) ∈ 𝐼2, 𝜖(𝑖, 𝑗) = 𝜖(𝑗, 𝑖) 
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and 𝜖(𝑖, 𝑖) = −1. Let 𝒜(𝐼, 𝜖) be the free complex unital algebra with generators (𝑥𝑖)𝑖∈𝐼 
quotiented by the relations 

𝑥𝑖𝑥𝑗 − 𝜖(𝑖, 𝑗)𝑥𝑗𝑥𝑖 = 2𝛿𝑖,𝑗 for  (𝑖, 𝑗) ∈ 𝐼2                               (4) 

We define an involution on 𝒜(𝐼, 𝜖) by 𝑥𝑖
∗ = 𝑥𝑖 . For a subset 𝐴 = {𝑖1, … , 𝑖𝑘} of 𝐼 with 𝑖1 <

⋯ < 𝑖𝑘 we put 𝑥𝐴 = 𝑥𝑖1 …𝑥𝑖𝑘, where, by convention, 𝑥∅ = 1. Then (𝑥𝐴)𝐴⊂𝐼 is a basis of the 

vector space 𝒜(𝐼, 𝜖). Let 𝜑𝜖 be the tracial functional defined by 𝜑𝜖(𝑥𝐴) = 𝛿𝐴,∅ for all 𝐴 ⊂
𝐼. ⟨𝑥, 𝑦⟩ = 𝜑𝜖(𝑥∗𝑦) defines a positive definite hermitian form on 𝒜(𝐼, 𝜖). We will denote 

by 𝐿2(𝒜(𝐼, 𝜖), 𝜑𝜖) the Hilbert space 𝒜(𝐼, 𝜖) equipped with ⟨. , . ⟩. (𝑥𝐴)𝐴⊂𝐼  is an orthonormal 

basis of 𝐿2(𝒜(𝐼, 𝜖), 𝜑𝜖). For each 𝑖 ∈ 𝐼, define the following partial isometries 𝛽𝑖
∗ and 𝛼𝑖

∗ 

of 𝐿2(𝒜(𝐼, 𝜖), 𝜑𝜖) by: 

𝛽𝑖
∗(𝑥𝐴) = {

𝑥𝑖𝑥𝐴  if 𝑖 ∉ 𝐴

0  if 𝑖 ∈ 𝐴
  and  𝛼𝑖

∗(𝑥𝐴) = {
𝑥𝐴𝑥𝑖  if 𝑖 ∉ 𝐴

0  if 𝑖 ∈ 𝐴
 

Note that their adjoints are given by: 

𝛽𝑖(𝑥𝐴) = {
𝑥𝑖𝑥𝐴  if 𝑖 ∈ 𝐴

0  if 𝑖 ∉ 𝐴
  and  𝛼𝑖(𝑥𝐴) = {

𝑥𝐴𝑥𝑖  if 𝑖 ∈ 𝐴

0  if 𝑖 ∉ 𝐴
 

𝛽𝑖
∗ and 𝛽𝑖 (respectively 𝛼𝑖

∗ and 𝛼𝑖) are called the left (respectively right) creation and 

annihilation operators at the Baby Fock level. In the next Lemma we recall from [128] the 

fundamental relations 1. and 2., and we leave the proof of 3., 4. and 5.  

Lemma (3.2.3)[130]: The following relations hold: 

1. For all 𝑖 ∈ 𝐼(𝛽𝑖
∗)2 = 𝛽𝑖

2 = 0 and 𝛽𝑖𝛽𝑖
∗ + 𝛽𝑖

∗𝛽𝑖 = 𝐼𝑑. 

2. For all (𝑖, 𝑗) ∈ 𝐼2 with 𝑖 ≠ 𝑗𝛽𝑖𝛽𝑗 − 𝜖(𝑖, 𝑗)𝛽𝑗𝛽𝑖 = 0 and 𝛽𝑖𝛽𝑗
∗ − 𝜖(𝑖, 𝑗)𝛽𝑗

∗𝛽𝑖 = 0. 

3. Same relations as in (a). and (b). with 𝛼 in place of 𝛽. 

4. For all 𝑖 ∈ 𝐼𝛽𝑖
∗𝛼𝑖
∗ = 𝛼𝑖

∗𝛽𝑖
∗ = 0 and for all (𝑖, 𝑗) ∈ 𝐼2 with 𝑖 ≠ 𝑗𝛽𝑖

∗𝛼𝑗
∗ = 𝛼𝑗

∗𝛽𝑖
∗. 

5. For all (𝑖, 𝑗) ∈ 𝐼2𝛽𝑖
∗𝛼𝑗 = 𝛼𝑗𝛽𝑖

∗. 

It is easily seen, by (a) and (b) of Lemma (3.2.3), that the self adjoint operators defined by: 

𝛾𝑖 = 𝛽𝑖
∗ + 𝛽𝑖 satisfy the following relation : 

 for all (𝑖, 𝑗) ∈ 𝐼2,  𝛾𝑖𝛾𝑗 − 𝜖(𝑖, 𝑗)𝛾𝑗𝛾𝑖 = 2𝛿𝑖,𝑗Id                        (5) 

Let Γ𝐼 ⊂ 𝐵(𝐿
2(𝒜(𝐼, 𝜖), 𝜑𝜖)) be the ∗-algebra generated by all 𝛾𝑖 , 𝑖 ∈ 𝐼. Still denoting by 𝜑𝜖 

the vector state associated to the vector 1, it is known that 𝜑𝜖 is a faithful normalized trace 

on the finite dimensional 𝐶∗-algebra Γ𝐼. Moreover, Γ𝐼 ⊂ 𝐵(𝐿
2(𝒜(𝐼, 𝜖), 𝜑𝜖)) is the faithful 

GNS representation of (Γ𝐼 , 𝜑
𝜖) with cyclic and separating vector 1. 

Then, it is clear from (4) and (5) of Lemma (3.2.3), that Γ𝑟,𝐼 ⊂ Γ𝐼
′ (there is actually equality). 

Since 1 is clearly cyclic for Γ𝑟,𝐼, then it is also cyclic for Γ𝐼
′, thus 1 is separating for Γ𝐼. 

1. Let 𝐼 and 𝐽, 𝐼 ⊂ 𝐽, be some sets together with signs 𝜖 and 𝜖′ such that 𝜖∣𝐼×𝐼
′ = 𝜖. It is 

clear that 𝐿2(𝒜(𝐼, 𝜖), 𝜑𝜖) embeds isometrically in 𝐿2(𝒜(𝐽, 𝜖′), 𝜑𝜖
′
). Set 𝐾 = 𝐽 ∖ 𝐼. 

Fix some total orders on 𝐼 and 𝐾 and consider the total order on 𝐽 which coincides 

with the orders of 𝐼 and 𝐾 and such that any element of 𝐼 is smaller than any element 

of 𝐾. The associated orthonormal basis of 𝐿2(𝒜(𝐽, 𝜖′), 𝜑𝜖
′
) is given by the family 

(𝑥𝐴𝑥𝐵)𝐴∈ℱ(𝐼),𝐵∈ℱ(𝐾) (where ℱ(𝐼), respectively ℱ(𝐾), denotes the set of finite subsets 

of 𝐼, respectively 𝐾 ). In particular with have the following Hilbertian decomposition: 

𝐿2(𝒜(𝐽, 𝜖′), 𝜑𝜖
′
) = ⨁  

𝐵∈ℱ(𝐾)

𝐿2(𝒜(𝐼, 𝜖), 𝜑𝜖)𝑥𝐵                 (6) 
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For 𝑗 ∈ 𝐼 we (temporarily) denote by �̃�𝑗 the annihilation operator in 𝐵(𝐿2(𝒜(𝐼, 𝜖), 𝜑𝜖)) and 

simply by 𝛽𝑗 its analogue in 𝐵 (𝐿2(𝒜(𝐽, 𝜖′), 𝜑𝜖
′
)). Let �̃�𝐼 (respectively 𝐶𝐽) be the 𝐶∗-

algebra generated by {�̃�𝑗 , 𝑗 ∈ 𝐼} (respectively {𝛽𝑗 , 𝑗 ∈ 𝐽}) in 𝐵(𝐿2(𝒜(𝐼, 𝜖), 𝜑𝜖)) 

(respectively 𝐵 (𝐿2(𝒜(𝐽, 𝜖′), 𝜑𝜖
′
))). Consider also 𝐶𝐼 the 𝐶∗-algebra generated by 

{𝛽𝑗 , 𝑗 ∈ 𝐼} in 

𝐵(𝐿2(𝒜(𝐼, 𝜖), 𝜑𝜖)). For 𝐵 = {𝑗1, … , 𝑗𝑘} ⊂ 𝐾, with 𝑗1 < ⋯ < 𝑗𝑘, let us denote by 𝛼𝐵 the 

operator 𝛼𝑗1 …𝛼𝑗𝑘. If �̃� ∈ �̃�𝐼 and if 𝑇 denotes its counterpart in 𝐶𝐼, then it is easily seen that, 

with respect to the Hilbertian decomposition (6), we have 

𝑇 = ⨁  

𝐵∈ℱ(𝐾)

𝛼𝐵
∗ �̃�𝛼𝐵.                                              (7) 

It follows that �̃�𝐼 is *-isomorphic to 𝐶𝐼 ⊂ 𝐶𝐽. 
1. It is possible to find explicitly selfadjoint matrices satisfying the mixed commutation 

and anti-commutation relations (5) (see [139] and [128]). We choose to present this 

approach because it will be easier to handle the objects of modular theory in this 

abstract situation when we will deal with non-tracial von Neumann algebras. 

We recall Speicher's central limit theorem which is specially designed to handle either 

commuting or anti-commuting (depending on a function) independent variables. Speicher's 

central limit theorem asserts that such a family of centered noncommutative variables which 

have a fixed covariance, and uniformly bounded *-moments, is convergent in *-moments, 

as soon as a combinatorial quantity associated with 𝜖 is converging. Moreover the limit *-

distribution is only determined by the common covariance and the limit of the combinatorial 

quantity. We start by recalling some basic notions on independence and set partitions. 

Definition (3.2.4)[130]: Let (𝒜,𝜑) be a *-algebra equipped with a state 𝜑 and (𝒜𝑖)𝑖∈𝐼 a 

family of 𝐶∗ subalgebras of 𝒜. The family (𝒜𝑖)𝑖∈𝐼 is said to be independent if for all 𝑟 ∈
ℕ∗, (𝑖1, … , 𝑖𝑟) ∈ 𝐼

𝑟 with 𝑖𝑠 ≠ 𝑖𝑡 for 𝑠 ≠ 𝑡, and all 𝑎𝑖𝑠 ∈ 𝒜𝑖𝑠 for 𝑠 ∈ {1,… , 𝑟} we have: 

𝜑(𝑎𝑖1 …𝑎𝑖𝑟) = 𝜑(𝑎𝑖1)…𝜑(𝑎𝑖𝑟) 

As usual, a family (𝑎𝑖)𝑖∈𝐼 of non-commutative random variables of 𝒜 will be called 

independent if the family of 𝐶∗-subalgebras of 𝒜 that they generate is independent. 

On the set of 𝑝-uples of integers belonging to {1,… , 𝑁} define the equivalence 

relation ∼ by: 

(𝑖(1),… , 𝑖(𝑝)) ∼ (𝑗(1),… , 𝑗(𝑝))                                        

if (𝑖(𝑙) = 𝑖(𝑚) ⟺ 𝑗(𝑙) = 𝑗(𝑚))∀(𝑙, 𝑚) ∈ {1,… , 𝑝}2       
Then the equivalence classes for the relation ∼ are given by the partitions of the set {1,… , 𝑝}. 
We denote by 𝑉1, … , 𝑉𝑟 the blocks of the partition 𝒱 and we call 𝒱 a 2-partition if each of 

these blocks is of cardinal 2. The set of all 2-partitions of the set {1,… , 𝑝} ( even) will be 

denoted by 𝒫2(1,… , 𝑝). For 𝒱 ∈ 𝒫2(1,… ,2𝑟) let us denote by 𝑉𝑙 = (𝑠𝑙 , 𝑡𝑙), 𝑠𝑙 < 𝑡𝑙, for 𝑙 ∈
{1,… , 𝑟} the blocks of the partition 𝒱. The set of crossings of 𝒱 is defined by 

𝐼(𝒱) = {(𝑙, 𝑚) ∈ {1,… , 𝑟}2, 𝑠𝑙 < 𝑠𝑚 < 𝑡𝑙 < 𝑡𝑚} 
The 2-partition 𝒱 is said to be crossing if 𝐼(𝒱) ≠ ∅ and non-crossing if 𝐼(𝒱) = ∅. 

Theorem (3.2.5)[130]: (Speicher) Consider 𝑘 sequences (𝑏𝑖,𝑗)(𝑖,𝑗)∈ℕ+×{1,…,𝑘}
 in a 

noncommutative probability space (𝐵, 𝜑) satisfying the following conditions: 

1. The family (𝑏𝑖,𝑗)(𝑖,𝑗)∈ℕ∗×{1,…,𝑘}
 is independent. 
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2. For all (𝑖, 𝑗) ∈ ℕ∗ × {1,… , 𝑘}, 𝜑(𝑏𝑖,𝑗) = 0 

3. For all (𝑘(1), 𝑘(2)) ∈ {−1,1}2 and (𝑗(1), 𝑗(2)) ∈ {1,… , 𝑘}2, the covariance 

𝜑 (𝑏𝑖,𝑗(1)
𝑘(1)

𝑏𝑖,𝑗(2)
𝑘(2)

) is independent of 𝑖 and will be denoted by 𝜑 (𝑏𝑗(1)
𝑘(1)

𝑏𝑗(2)
𝑘(2)

). 

4. For all 𝑤 ∈ ℕ∗, (𝑘(1), … , 𝑘(𝑤)) ∈ {−1,1}
𝑤 and all 𝑗 ∈ {1,… , 𝑘} there exists a 

constant 𝐶 such that for all 𝑖 ∈ ℕ∗, |𝜑 (𝑏𝑖,𝑗
𝑘(1)

…𝑏𝑖,𝑗
𝑘(𝑤)

)| ⩽ 𝐶. 

5. For all (𝑖(1), 𝑖(2)) ∈ ℕ∗
2 there exists a sign 𝜖(𝑖(1), 𝑖(2)) ∈ {−1,1} such that for all 

(𝑗(1), 𝑗(2)) ∈ {1,… , 𝑘}2 with (𝑖(1), 𝑗(1)) ≠ (𝑖(2), 𝑗(2)) and all (𝑘(1), 𝑘(2)) ∈
{−1,1}2 we have 

𝑏𝑖(1),𝑗(1)
𝑘(1)

𝑏𝑖(2),𝑗(2)
𝑘(2)

− 𝜖(𝑖(1), 𝑖(2))𝑏𝑖(2),𝑗(2)
𝑘(2)

𝑏𝑖(1),𝑗(1)
𝑘(1)

= 0. 

(notice that the function 𝜖 is necessarily symmetric in its two arguments). 

6. For all 𝑟 ∈ ℕ∗ and all 𝒱 = {(𝑠𝑙 , 𝑡𝑙)𝑙=1
𝑙=𝑟} ∈ 𝒫2(1,… ,2𝑟) the following limit exists 

𝑡(𝒱) = lim
𝑁→+∞

 
1

𝑁𝑟
∑  

𝑁

𝑖(𝑠1)…,𝑖(𝑠𝑟)=1

𝑖(𝑠l)≠,𝑖(𝑠𝑚)≠𝑚

  ∏  

(𝑙,𝑚)∈𝐼(𝒱)

 𝜖(𝑖(𝑠𝑙), 𝑖(𝑠𝑚))) 

Let 𝑆𝑁,𝑗 =
1

√𝑁
∑𝑖=1
𝑁  𝑏𝑖,𝑗 . Then we have for all 𝑝 ∈ ℕ∗, (𝑘(1),… , 𝑘(𝑝)) ∈ {−1,1}

𝑝 and all 

(𝑗(1),… , 𝑗(𝑝)) ∈ {1,… , 𝑘}𝑝: 

lim𝑁→+∞  𝜑 (𝑆𝑁,𝑗(1)
𝑘(1)

…𝑆𝑁,𝑗(𝑝)
𝑘(𝑝)

) =

{
 
 

 
 

0 if 𝑝 is odd

∑  

 

𝒱∈𝒫2(1,…,2r)

𝒱={(𝑠𝑙,𝑡𝑙)𝑙=1
𝑙=𝑟

 𝑡(𝒱)∏𝜑(𝑏𝑗(𝑠𝑙)
𝑘(𝑠𝑙)𝑏𝑗(𝑡𝑙)

𝑘(𝑡𝑙))

𝑟

𝑙=1

if 𝑝 = 2𝑟   

The following Lemma, proved in [139], guarantees the almost sure convergence of 

the quantity 𝑡(𝒱) provided that the function 𝜖 has independent entries following the same 

2-points Dirac distribution: 

Lemma (3.2.6)[130]: Let 𝑞 ∈ (−1,1) and consider a family of random variables 𝜖(𝑖, 𝑗) for 

(𝑖, 𝑗) ∈ ℕ∗ with 𝑖 ≠ 𝑗, such that 

1. For all (𝑖, 𝑗) ∈ ℕ∗ with 𝑖 ≠ 𝑗, 𝜖(𝑖, 𝑗) = 𝜖(𝑗, 𝑖) 
2. The family (𝜖(𝑖, 𝑗))𝑖>𝑗 is independent 

3. For all (𝑖, 𝑗) ∈ ℕ∗ with 𝑖 ≠ 𝑗 the probability distribution of 𝜖(𝑖, 𝑗) is 
1 + 𝑞

2
𝛿1 +

1 − 𝑞

2
𝛿−1 

Then, almost surely, we have for all 𝑟 ∈ ℕ∗ and for all 𝒱 ∈ 𝒫2(1,… ,2𝑟) 

lim
𝑁→+∞

 
1

𝑁𝑟
∑  

𝑖(𝑠1),…,𝑖(𝑠𝑟)=1

𝑖(𝑠𝑙)≠𝑖(𝑠𝑚) 𝑓𝑜𝑟 𝑙≠𝑚

∏  

(𝑙,𝑚)∈𝐼(𝒱)

𝜖(𝑖(𝑠𝑙), 𝑖(𝑠𝑚)) = 𝑞
𝑖(𝒱) 

Alternatively, one can apply directly Speicher's theorem to families of mixed 

commuting /anticommuting creation operators as it is done in [139] and [128]. The limit ∗-
moments are in this case the ∗-moments of classical 𝑞-creation operators. 

We show that Γ𝑞(𝐻ℝ) is QWEP. In fact, by inductive limit, it is sufficient to prove it 

for 𝐻ℝ finite dimensional. Let 𝑘 ⩾ 1. We will consider ℝ𝑘 as the real Hilbert space of 

dimension 𝑘, with the canonical orthonormal basis (𝑒1, … , 𝑒𝑘), and ℂ𝑘, its complex 

counterpart. Let us fix 𝑞 ∈ (−1,1) and consider Γ𝑞(ℝ
𝑘) the von Neumann algebra generated 
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by the 𝑞-Gaussians 𝐺(𝑒1), … , 𝐺(𝑒𝑘). We denote by 𝜏 the expectation on the vacuum vector, 

which is a trace in this particular case. 

By the ending remark, there are Hermitian matrices, 𝑔𝑛,1(𝜔),… , 𝑔𝑛,𝑘(𝜔), depending 

on a random parameter denoted by 𝜔 and lying in a finite dimensional matrix algebra, such 

that their joint ∗-distribution converges almost surely to the joint ∗-distribution of the 𝑞-

Gaussians in the following sense: for all polynomial 𝑃 in 𝑘 noncommuting variables, 

lim𝑛→∞  𝜏𝑛 (𝑃(𝑔𝑛,1(𝜔),… , 𝑔𝑛,𝑘(𝜔))) = 𝜏 (𝑃(𝐺(𝑒1),… , 𝐺(𝑒𝑘))) almost surely in 𝜔. 

We will denote by 𝒜𝑛 the finite dimensional 𝐶∗-algebra generated by 

𝑔𝑛,1(𝜔),… , 𝑔𝑛,𝑘(𝜔). We recall that these algebras are equipped with the trace 𝜏𝑛 defined 

by: 

𝜏𝑛(𝑥) = ⟨1, 𝑥. 1⟩ 
Since the set of all monomials in 𝑘 noncommuting variables is countable, we have for almost 

all 𝜔, 

             lim
𝑛→∞

𝜏𝑛 (𝑃(𝑔𝑛,1(𝜔),… , 𝑔𝑛,𝑘(𝜔))) 

= 𝜏 (𝑃(𝐺(𝑒1),… , 𝐺(𝑒𝑘))) for all such monomials 𝑃           (8) 

A fortiori we can find an 𝜔0 such that (8) holds for 𝜔0. We will fix such an 𝜔0 and 

simply denote by 𝑔𝑛,𝑖 the matrix 𝑔𝑛,𝑖(𝜔0) for all 𝑖 ∈ {1,… , 𝑘}. With these notations, it is 

clear that, by linearity, we have for all polynomials 𝑃 in 𝑘 noncommuting variables, 

lim
𝑛→∞

 𝜏𝑛 (𝑃(𝑔𝑛,1, … , 𝑔𝑛,𝑘)) = 𝜏 (𝑃(𝐺(𝑒1),… , 𝐺(𝑒𝑘))) .                     (9) 

We need to have a uniform control on the norms of the matrices 𝑔𝑛,𝑖 . Let 𝐶 be such that 

∥∥𝐺(𝑒1)∥∥ < 𝐶, we will replace the 𝑔𝑛,𝑖 's by their truncations 𝜒]−𝐶,𝐶[(𝑔𝑛,𝑖)𝑔𝑛,𝑖 (where 𝜒]−𝐶,𝐶[ 

denotes the characteristic function of the interval ] − 𝐶, 𝐶[). For simplicity 𝜒]−𝐶,𝐶[(𝑔𝑛,𝑖)𝑔𝑛,𝑖 

will be denoted by �̃�𝑛,𝑖. We now check that (9) is still valid for the �̃�𝑛,𝑖 's. 

Lemma (3.2.7)[130]: With the notations above, for all polynomials 𝑃 in 𝑘 noncommuting 

variables we have 

lim
𝑛→∞

 𝜏𝑛 (𝑃(�̃�𝑛,1, … , �̃�𝑛,𝑘)) = 𝜏 (𝑃(𝐺(𝑒1), … , 𝐺(𝑒𝑘))).                      (10) 

Proof. We just have to prove that for all monomials 𝑃 in 𝑘 noncommuting variables we 

have 

lim
𝑛→∞

 𝜏𝑛[𝑃(�̃�𝑛,1, … , �̃�𝑛,𝑘) − 𝑃(𝑔𝑛,1, … , 𝑔𝑛,𝑘)] = 0. 

Writing 𝑔𝑛,𝑖 = �̃�𝑛,𝑖 + (𝑔𝑛,𝑖 − �̃�𝑛,𝑖) and developing using multilinearity, we are reduced to 

showing that the 𝐿1-norms of any monomial in �̃�𝑛,𝑖 and (𝑔𝑛,𝑖 − �̃�𝑛,𝑖) (with at least one factor 

(𝑔𝑛,𝑖 − �̃�𝑛,𝑖)) tend to 0 . By the Hölder inequality and the uniform boundedness of the ∥∥�̃�𝑛,𝑖∥∥ 

's, it suffices to show that for all 𝑖 ∈ {1…𝑘}, 

lim
𝑛→∞

 𝜏𝑛(|�̃�𝑛,𝑖 − 𝑔𝑛,𝑖|
𝑝
) = 0  for all 𝑝 ⩾ 1.                         (11) 

Let us prove (11) for 𝑖 = 1. We are now in a commutative setting. Indeed, let us introduce 

the spectral resolutions of identity, 𝐸𝑡
𝑛 (respectively 𝐸𝑡), of 𝑔𝑛,1 (respectively 𝐺(𝑒1)). By 

(9) we have for all polynomials 𝑃 

lim
𝑛→∞

 𝜏𝑛 (𝑃(𝑔𝑛,1)) = 𝜏 (𝑃(𝐺(𝑒1))). 

We can rewrite this as follows: for all polynomials 𝑃 
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lim
𝑛→∞

 ∫  
𝜎(𝑔𝑛,1)

𝑃(𝑡)d⟨𝐸𝑡
𝑛 ⋅ 1,1⟩ = ∫  

𝜎(𝐺(𝑒1))

𝑃(𝑡)d⟨𝐸𝑡 ⋅ Ω, Ω⟩. 

Let 𝜇𝑛 (respectively  ) denote the compactly supported probability measure ⟨𝐸𝑡
𝑛 ⋅ 1,1⟩ 

(respectively ⟨𝐸𝑡 ⋅ Ω, Ω⟩) on ℝ. With these notations our assumption becomes: for all 

polynomials 𝑃 

lim
𝑛→∞

 ∫  𝑃 d𝜇𝑛 = ∫  𝑃 d𝜇.                                (12) 

and (11) is equivalent to: 

lim
𝑛→∞

 ∫  
|𝑡|⩾𝐶

|𝑡|𝑝 d𝜇𝑛 = 0  for all 𝑝 ⩾ 1.                       (13) 

Then the result follows from the following elementary Lemma. We give a proof for sake of 

completeness. 

Lemma (3.2.8)[130]: Let (𝜇𝑛)𝑛⩾1 be a sequence of compactly supported probability 

measures on ℝ converging in moments to a compactly supported probability measure 𝜇 on 

ℝ. Assume that the support of 𝜇 is included in the open interval ] − 𝐶, 𝐶[. Then, 

lim
𝑛→∞

 ∫  
|𝑡|⩾𝐶

 d𝜇𝑛 = 0. 

Moreover, let 𝑓 be a borelian function on ℝ such that there exist 𝑀 > 0 and 𝑟 ∈ ℕ satisfying 

|𝑓(𝑡)| ⩽ 𝑀(𝑡2𝑟 + 1) for all 𝑡 ⩾ 𝐶. Then 

lim
𝑛→∞

 ∫  
|𝑡|⩾𝐶

𝑓 d𝜇𝑛 = 0. 

Proof. For the first assertion, let 𝐶′ < 𝐶 such that the support of 𝜇 is included in ] − 𝐶′, 𝐶′]. 

Let 𝜖 > 0 and an integer 𝑘 such that (
𝐶′

𝐶
)
2𝑘

⩽ 𝜖. Let 𝑃(𝑡) = (
𝑡

𝐶
)
2𝑘

. It is clear that 

𝜒{|𝑡|⩾𝐶}(𝑡) ⩽ 𝑃(𝑡) for all 𝑡 ∈ ℝ and that sup|𝑡|<𝐶′  𝑃(𝑡) ⩽ 𝜖. Thus, 

0 ⩽ lim sup
𝑛→∞

 ∫  
|𝑡|⩾𝐶

 d𝜇𝑛 ⩽ lim
𝑛→∞

 ∫  𝑃(𝑡)d𝜇𝑛 = ∫  𝑃(𝑡)d𝜇 ⩽ 𝜖. 

Since 𝜖 is arbitrary, we get lim𝑛→∞  ∫|𝑡|⩾𝐶   d𝜇𝑛 = 0. 

The second assertion is a consequence of the first one. Let 𝑓 be a borelian function 

on ℝ such that there exist 𝑀 > 0 and 𝑟 ∈ ℕ satisfying |𝑓(𝑡)| ⩽ 𝑀(𝑡2𝑟 + 1) for all 𝑡 ∈ ℝ. 

Using the Cauchy-Schwarz inequality we get: 

0 ⩽ lim sup
𝑛→∞

 ∫  
|𝑡|⩾𝐶

  |𝑓|d𝜇𝑛  ⩽ lim sup
𝑛→∞

 ∫  
|𝑡|⩾𝐶

 𝑀(𝑡2𝑟 + 1)d𝜇𝑛

 ⩽ 𝑀 lim
𝑛→∞

  (∫  (𝑡2𝑟 + 1)2 d𝜇𝑛)

1
2
lim
𝑛→∞

 (∫  
|𝑡|⩾𝐶

  d𝜇𝑛)

1
2

 ⩽ 𝑀 (∫  (𝑡2𝑟 + 1)2 d𝜇)

1
2
lim
𝑛→∞

 (∫  
|𝑡|⩾𝐶

  d𝜇𝑛)

1
2

= 0

 

Let 𝒰 be a free ultrafilter on ℕ∗ and consider the ultraproduct von Neumann algebra 

(see [135] section 9.10) 𝑁 defined by 

𝑁 = (∏ 

𝑛⩾1

 𝒜𝑛)/𝐼𝒰 
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where 𝐼𝑈 = {(𝑥𝑛)𝑛⩾1 ∈ ∏𝑛⩾1  𝒜𝑛, lim𝒰  𝜏𝑛(𝑥𝑛
∗𝑥𝑛) = 0}. The von Neumann algebra 𝑁 is 

equipped with the faithful normal and normalized trace 𝜏((𝑥𝑛)𝑛⩾1) = lim𝒰  𝜏𝑛(𝑥𝑛) (which 

is well defined). Using the asymptotic matrix model for the 𝑞-Gaussians and by the 

preceding remark, we can define a ∗-homomorphism 𝜑 between the *-algebras 𝒜 and 𝑁 in 

the following way: 

𝜑 (𝑃(𝐺(𝑒1),… , 𝐺(𝑒𝑘))) = (𝑃(�̃�𝑛,1, … , �̃�𝑛,𝑘))
𝑛⩾1

 

for every polynomial 𝑃 in 𝑘 noncommuting variables. By Lemma (3.2.7), 𝜑 is trace 

preserving on 𝒜. Since the ∗-algebra 𝒜 is weak-* dense in Γ𝑞(ℝ
𝑘), 𝜑 extends naturally to 

a trace preserving homomorphism of von Neumann algebras, that is still denoted by 𝜑 (see 

Lemma (3.2.14) below for a more general result). It follows that Γ𝑞(ℝ
𝑘) is isomorphic to a 

sub-algebra of 𝑁 which is the image of a conditional expectation (this is automatic in the 

tracial case). Since the 𝒜𝑛 's are finite dimensional, they are injective, hence their product 

is injective and a fortiori has the WEP, and thus 𝑁 is QWEP. Since Γ𝑞(ℝ
𝑘) is isomorphic to 

a sub-algebra of 𝑁 which is the image of a conditional expectation, Γ𝑞(ℝ
𝑘) is also QWEP 

(see [133]). We have obtained the following: 

Theorem (3.2.10)[130]: Let 𝐻ℝ be a real Hilbert space and 𝑞 ∈ (−1,1). The von Neumann 

algebra Γ𝑞(𝐻ℝ) is 𝑄𝑊𝐸𝑃. 

Proof. Our previous discussion implies the result for every finite dimensional 𝐻ℝ. The 

general result is a consequence of the stability of QWEP by inductive limit (see [132] and 

([133] Proposition 4.1 (iii)). 

Let 𝐶𝑞
∗(𝐻ℝ) be the 𝐶∗-algebra generated by all 𝑞-Gaussians: 

𝐶𝑞
∗(𝐻ℝ) = 𝐶

∗({𝐺(𝑓), 𝑓 ∈ 𝐻ℝ}) ⊂ 𝐵 (ℱ𝑞(𝐻ℂ)). 

We now deduce the following strengthening of Theorem (3.2.10). 

Corollary (3.2.11)[130]: Let 𝐻ℝ be a real Hilbert space and 𝑞 ∈ (−1,1). The 𝐶∗-algebra 

𝐶𝑞
∗(𝐻ℝ) is QWEP. 

Proof. This is a consequence of Theorem (3.2.10), Lemma (3.2.12) and Proposition 4.1 (ii) 

in [133]. 

Let 𝐴, 𝐵, with 𝐴 ⊂ 𝐵 be 𝐶∗-algebras. Recall (from [133]) that 𝐴 is said to be weakly 

cp complemented in 𝐵, if there exists a unital completely positive map Φ:𝐵 ⟶ 𝐴∗∗ such 

that Φ∣𝐴 = id𝐴. Corollary (3.2.11) is then a consequence of the following Lemma. 

Lemma (3.2.12)[130]: The 𝐶∗-algebra 𝐶𝑞
∗(𝐻R) is weakly cp complemented in the von 

Neumann algebra Γ𝑞(𝐻ℝ). 

Proof. For any 𝑡 ∈ ℝ+denote by Φ𝑡 the unital completely positive maps which are the 

second quantization of 𝑒−𝑡id:𝐻R ⟶𝐻ℝ (see [60]): 

Φ𝑡 = Γ𝑞(𝑒
−𝑡id): Γ𝑞(𝐻ℝ) ⟶ Γ𝑞(𝐻ℝ),   for all  𝑡 ⩾ 0. 

(Φ𝑡)𝑡∈ℝ+is a semi-group of unital completely positive maps which is also known as the 𝑞 

Ornstein-Uhlenbeck semi-group. By the well-known ultracontractivity of the semi-group 

(Φ𝑡)𝑡∈ℝ+ (see [115]), for all 𝑡 ∈ ℝ+
∗  and all 𝑊(𝜉) ∈ Γ𝑞(𝐻ℝ), we have 

∥∥Φ𝑡(𝑊(𝜉))∥∥ ⩽ 𝐶|𝑞|

3
2

1

1 − 𝑒−𝑡
∥ 𝜉 ∥ .                                 (14) 

On the other hand, as a consequence of the Haagerup-Bożejko's inequality (see [115]), for 

every 𝑛 ∈ ℕ and for every 𝜉𝑛 ∈ 𝐻ℂ
⊗𝑛

, we have 𝑊(𝜉𝑛) ∈ 𝐶𝑞
∗(𝐻ℝ). Fix 𝑡 ∈ ℝ+

∗ ,𝑊(𝜉) ∈
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Γ𝑞(𝐻ℝ), and write 𝜉 = ∑𝑛∈ℕ  𝜉𝑛 with 𝜉𝑛 ∈ 𝐻ℂ
⊗𝑛

 for all 𝑛. From our last observation, for all 

𝑁 ∈ ℕ, 

𝑇𝑁 = Φ𝑡 (𝑊(∑  

𝑁

𝑛=0

  𝜉𝑛)) = ∑  

𝑁

𝑛=0

𝑒−𝑡𝑛𝑊(𝜉𝑛) ∈ 𝐶𝑞
∗(𝐻ℝ). 

By (14), Φ𝑡(𝑊(𝜉)) is the norm limit of the sequence (𝑇𝑁)𝑁∈ℕ, so Φ𝑡(𝑊(𝜉)) belongs to 

𝐶𝑞
∗(𝐻ℝ). It follows that Φ𝑡 maps Γ𝑞(𝐻ℝ) into 𝐶𝑞

∗(𝐻ℝ). Moreover, it is clear that 

lim
𝑡→0
 ∥∥Φ𝑡(𝑊(𝜉)) −𝑊(𝜉)∥∥ = 0,   for all  𝑊(𝜉) ∈ 𝐶𝑞

∗(𝐻ℝ).                         (15) 

Take (𝑡𝑛)𝑛∈ℕ a sequence of positive real numbers converging to 0 and fix 𝒰 a free ultrafilter 

on ℕ. By 𝑤∗-compactness of the closed balls in (𝐶𝑞
∗(𝐻ℝ))

∗∗
, we can define the following 

mapping Φ: Γ𝑞(𝐻ℝ) ⟶ (𝐶𝑞
∗(𝐻ℝ))

∗∗
 by 

Φ(𝑊(𝜉)) = 𝑤∗ − lim
𝑛,𝒰
 Φ𝑡𝑛(𝑊(𝜉)),   for all  𝑊(𝜉) ∈ Γ𝑞(𝐻ℝ). 

Φ is a unital completely positive map satisfying Φ∣𝐶𝑞∗(𝐻ℝ) = id𝐶𝑞∗(𝐻R) by (15). 

We start with a family ((𝒜𝑛, 𝜑𝑛))𝑛∈ℕ of von Neumann algebras equipped with 

normal faithful state 𝜑𝑛. We assume that 𝒜𝑛 ⊂ 𝐵(𝐻𝑛), where the inclusion is given by the 

G.N.S. representation of (𝒜𝑛, 𝜑𝑛). Let 𝒰 be a free ultrafilter on ℕ, and let 

�̃� =∏ 

𝑛∈ℕ

𝒜𝑛/𝒰 

be the 𝐶∗-ultraproduct over 𝒰 of the algebras 𝒜𝑛. We canonically identify �̃� ⊂ 𝐵(𝐻), 
where 𝐻 = ∏𝐺  𝐻𝑛/𝒰 is the ultraproduct over 𝒰 of the Hilbert spaces 𝐻𝑛. Following 

Raynaud (see 2 [136]), we define 𝒜, the vN-ultraproduct over 𝒰 of the von Neumann 

algebras 𝒜𝑛, as the 𝑤∗ closure of �̃� in 𝐵(𝐻). Then the predual 𝒜∗ of 𝒜 is isometrically 

isomorphic to the Banach ultraproduct over 𝒰 of the preduals (𝒜𝑛)∗ 

𝒜∗ =∏ 

𝑛∈ℕ

(𝒜𝑛)∗/𝒰                                               (16) 

Let us denote by 𝜑 the normal state on 𝒜 associated to (𝜑𝑛)𝑛∈ℕ. Note that 𝜑 is not faithful 

on 𝒜, so we introduce 𝑝 ∈ 𝒜 the support of the state 𝜑. Recall that for all 𝑥 ∈ 𝒜 we have 

𝜑(𝑥) = 𝜑(𝑥𝑝) = 𝜑(𝑝𝑥), and that 𝜑(𝑥) = 0 for a positive 𝑥 implies that 𝑝𝑥𝑝 = 0. Denote 

by (𝑝𝒜𝑝,𝜑) the induced von Neumann algebra 𝑝𝒜𝑝 ⊂ 𝐵(𝑝𝐻) equipped with the 

restriction of the state 𝜑. For each 𝑛 ∈ ℕ, let (𝜎𝑡
𝑛)𝑡∈ℝ be the modular group of 

automorphisms of 𝜑𝑛 with the associated modular operator given by Δ𝑛. For all 𝑡 ∈ ℝ, let 

(Δ𝑛
𝑖𝑡)

∙
 be the associated unitary in ∏𝑛∈ℕ  𝐵(𝐻𝑛)/𝒰 ⊂ 𝐵(𝐻). Since (𝜎𝑡

𝑛)𝑛∈ℕ
∙  is the 

conjugation by (Δ𝑛
𝑖𝑡)

∙
, it follows that (𝜎𝑡

𝑛)𝑛∈ℕ
∙  extends by 𝑤∗-continuity to a group of ∗-

automorphisms of 𝒜. Let (𝜎𝑡)𝑡∈ℝ be the local modular group of automorphisms of 𝑝𝒜𝑝. 

By Raynaud's result (see Theorem 2.1 in [136]), 𝑝𝒜𝑝 is stable by (𝜎𝑡
𝑛)𝑛∈ℕ
∙  and the 

restriction of (𝜎𝑡
𝑛)𝑛∈ℕ
∙  to 𝑝𝒜𝑝 coincides with 𝜎𝑡. 

We consider a von Neumann algebra 𝒩 ⊂ 𝐵(𝐾) equipped with a normal faithful state 

𝜓. Let �̃� be a 𝑤∗-dense *-subalgebra of 𝒩 and Φ a *-homomorphism from �̃� into 𝒜 

whose image will be denoted by ℬ with 𝑤∗-closure denoted by ℬ : 

Φ: �̃� ⊂ 𝒩 ⊂ 𝐵(𝐾) ⟶ ℬ̃ ⊂ 𝒜 ⊂ 𝐵(𝐻)  and  �̅�𝑤∗ = 𝒩,  ℬ̅̃𝑤
∗
= ℬ 
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By a result of Takesaki (see [107]) there is a normal conditional expectation from 𝑝𝒜𝑝 onto 

𝑝ℬ𝑝 if and only if 𝑝ℬ𝑝 is stable by the modular group of 𝜑 (which is here given by 

Raynaud's results). Under this condition there will be a normal conditional expectation from 

𝒜 onto 𝑝ℬ𝑝 and 𝑝ℬ𝑝 will inherit some of the properties of 𝒜. We would like to pull back 

these properties to 𝒩 itself. It turns out that, with good assumptions on Φ (see Lemma 

(3.2.13) below), the compression from ℬ onto 𝑝ℬ𝑝 is a *-homomorphism. If in addition, we 

suppose that Φ is state preserving, then 𝑝Φ𝑝 can be extended into a 𝑤∗-continuous ∗-
isomorphism between 𝒩 and 𝑝ℬ𝑝. 

Lemma (3.2.13)[130]: In the following, (a) ⟹ (b) ⟹ (c) ⟺ (d) ⟺ (e).: 
1. For all 𝑥 ∈ ℬ̃ there is a representative (𝑥𝑛)𝑛∈ℕ of 𝑥 such that for all 𝑛 ∈ ℕ, 𝑥𝑛 is entire 

for (𝜎𝑡
𝑛)𝑡∈ℝ and (𝜎−𝑖

𝑛 (𝑥𝑛))𝑛∈ℕ is uniformly bounded. 

2. For all 𝑥 ∈ ℬ̃ there exists 𝑧 ∈ 𝒜 such that for all 𝑦 ∈ 𝒜 we have 𝜑(𝑥𝑦) = 𝜑(𝑦𝑧). 
3. For all (𝑥, 𝑦) ∈ ℬ2: 𝜑(𝑥𝑝𝑦) = 𝜑(𝑥𝑦) 
4. For all (𝑥, 𝑦) ∈ ℬ2, pxyp = pxpyp, i.e the canonical application from ℬ to 𝑝ℬ𝑝 is a 

*-homomorphism. 

5. 𝑝 ∈ ℬ′. 
Proof. (a)⟹(b) Consider 𝑥 ∈ ℬ̃ with a representative (𝑥𝑛)𝑛∈ℕ such that for all 𝑛 ∈ ℕ, 𝑥𝑛 is 

entire for (𝜎𝑡
𝑛)𝑡∈ℝ and (𝜎−𝑖

𝑛 (𝑥𝑛))𝑛∈ℕ is uniformly bounded. Denote by 𝑧 ∈ 𝒜 the class 

(𝜎−𝑖
𝑛 (𝑥𝑛))𝑛∈ℕ

∙
. By 𝑤∗-density and continuity if suffices to consider an element 𝑦 in �̃� with 

representative (𝑦𝑛)𝑛∈ℕ. Then, 

𝜑(𝑥𝑦) = lim
𝑛,𝒰
 𝜑𝑛(𝑥𝑛𝑦𝑛) = lim

𝑛,𝒰
 𝜑𝑛(𝑦𝑛𝜎−𝑖

𝑛 (𝑥𝑛)) = 𝜑(𝑦𝑧) 

(b)⟹(c) Here again it suffices to consider (𝑥, 𝑦) ∈ ℬ̃2. By assumption there exists 𝑧 ∈ 𝒜 

such that for all 𝑡 ∈ 𝒜,𝜑(𝑥𝑡) = 𝜑(𝑡𝑧). Applying our assumption for 𝑡 = 𝑝𝑦 and 𝑡 = 𝑦 

successively, we obtain the desired result: 

𝜑(𝑥𝑝𝑦) = 𝜑(𝑝𝑦𝑧) = 𝜑(𝑦𝑧) = 𝜑(𝑥𝑦) 
(c)⟹(d) Let 𝑥 ∈ ℬ. We have, by (c): 𝜑(𝑥(1 − 𝑝)𝑥∗) = 0. Since 𝑝 is the support of 𝜑 and 

𝑥(1 − 𝑝)𝑥∗ ⩾ 0, this implies 𝑝𝑥(1 − 𝑝)𝑥∗𝑝 = 0. Thus for all 𝑥 ∈ ℬ we have 

pxpx∗ 𝑝 = 𝑝𝑥𝑥∗𝑝 

We conclude by polarization. 

(d)⟹(e) Let 𝑞 be an orthogonal projection in ℬ. By (d), 𝑝𝑞𝑝 is again an orthogonal 

projection and we claim that this is equivalent to 𝑝𝑞 = 𝑞𝑝. Indeed, let us denote by 𝑥 the 

contraction 𝑞𝑝. Then 𝑥∗𝑥 = 𝑝𝑞𝑝 and since 𝑝𝑞𝑝 is an orthogonal projection we have |𝑥| =
𝑝𝑞𝑝. It follows that the polar decomposition of 𝑥 is of the form 𝑥 = 𝑢𝑝𝑞𝑝, with 𝑢 a partial 

isometry. Computing 𝑥2, we see that 𝑥 is a projection: 

𝑥2 = 𝑢𝑝𝑞𝑝(𝑞𝑝) =  upq 𝑝 = 𝑥.  

Since 𝑥 is contractive, we deduce that 𝑥 is an orthogonal projection and that 𝑥∗ = 𝑥. Thus 

𝑝𝑞 = 𝑞𝑝. Since ℬ is generated by its projections, we have 𝑝 ∈ ℬ′. 
(e) ⟹(c) This is clear. 

We assume that one of the technical conditions of the previous Lemma is fulfilled. 

Let us denote by Θ = 𝑝Φ𝑝. Θ is a ∗-homomorphism from �̃�, into 𝑝𝒜𝑝. 

Θ = 𝑝Φ𝑝: �̃� ⟶ 𝑝𝒜𝑝 ⊂ 𝐵(𝑝𝐻). 
We assume that Φ, and hence Θ, is state preserving. Then Θ can be extended into a 

(𝑤∗ continuous) *-isomorphism from 𝒩 onto 𝑝ℬ𝑝. This is indeed a consequence of the 

following well known fact: 
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Lemma (3.2.14)[130]: Let (ℳ,𝜑) and (𝒩,𝜓) be von Neumann algebras equipped with 

normal faithful states. Let ℳ̃, ( respectively �̃�), be a 𝑤∗ dense *-subalgebra of ℳ( 
respectively 𝒩). Let Ψ be 𝑎 ∗-homomorphism from ℳ̃ onto �̃� such that for all 𝑚 ∈ ℳ̃ we 

have 𝜓(Ψ(𝑚)) = 𝜑(𝑚) (Ψ is state preserving). Then Ψ extends uniquely into a normal *-

isomorphism between ℳ and 𝒩.  

Proof. Since 𝜑 is faithful, we have for all 𝑚 ∈ ℳ, ∥ 𝑚 ∥= lim𝑛→+∞  𝜑((𝑚
∗𝑚)𝑛)

1

2𝑛. Thus, 

since Ψ is state preserving, Ψ is isometric from ℳ̃ onto �̃�. We put 

𝜑ℳ̃ = {𝜑.𝑚,𝑚 ∈ ℳ̃} ⊂ ℳ∗  and  𝜓�̃� = {𝜓 ⋅ 𝑛, 𝑛 ∈ �̃�} ⊂ 𝒩∗. 

𝜑ℳ̃ (respectively 𝜓�̃�) is dense in ℳ∗ (respectively 𝒩∗). Let us define the following linear 

operator Ξ from 𝜓�̃� onto ℳ̃ : 

Ξ(𝜓.Ψ(𝑚)) = 𝜑.𝑚  for all 𝑚 ∈ ℳ̃ 

Using Kaplansky's density Theorem and the fact that Ψ is isometric, we compute: 

Ξ(𝜓.Ψ(𝑚)) = sup
𝑚0∈ℳ̃,∥∥𝑚0∥∥⩽1

 ∥∥𝜑(𝑚𝑚0)∥∥ = sup
𝑚0∈ℳ,∥∥𝑚0∥∥⩽1

 ∥∥𝜓(Ψ(𝑚)Ψ(𝑚0))∥∥ 

= sup
𝑛0∈�̃�,∥∥𝑛0∥∥⩽1

  ∥ 𝜓(Ψ(𝑚)𝑛0) ∥ =∥ 𝜓.Ψ(𝑚) ∥        

So that Ξ extends into a surjective isometry from 𝒩∗ onto ℳ∗. Moreover Ξ is the preadjoint 

of Ψ. Indeed we have for all (𝑚,𝑚0) ∈ ℳ̃
2 : 

⟨𝜓 ⋅ Ψ(𝑚),Ψ(𝑚0)⟩ = 𝜓(Ψ(𝑚)Ψ(𝑚0)) = 𝜑(𝑚𝑚0) = ⟨Ξ(𝜓 ⋅ Ψ(𝑚)),𝑚0⟩ 
Thus Ψ extends to a normal ∗-isomorphism between 𝒩 and ℳ. 

In the following Theorem, we sum up what we have proved in the previous 

discussion: 

Theorem (3.2.15)[130]: Let (𝒩,𝜓) and (𝒜𝑛, 𝜑𝑛), for 𝑛 ∈ ℕ, be von Neumann algebras 

equipped with normal faithful states. Let 𝒰 be a non trivial ultrafilter on ℕ, and 𝒜 the von 

Neumann algebra ultraproduct over 𝒰 of the 𝒜𝑛 's. For all 𝑛 ∈ ℕ let us denote by (𝜎𝑡
𝑛)𝑡∈ℝ 

the modular group of 𝜑𝑛 and by 𝜑 the normal state on 𝒜 which is the ultraproduct of the 

states 𝜑𝑛. 𝑝 ∈ 𝒜 denote the support of 𝜑. Consider �̃� a 𝑤∗-dense ∗-subalgebra of 𝒩 and a 

∗-homomorphism Φ 

Φ: �̃� ⊂ 𝒩 ⟶𝒜 =∏ 

𝑛,𝒰

𝒜𝑛 

Assume Φ satisfies: 

1. Φ is state preserving: for all 𝑥 ∈ �̃� we have 

𝜑(Φ(𝑥)) = 𝜓(𝑥) 
2. For all (𝑥, 𝑦) ∈ Φ(�̃�)2 

𝜑(𝑥𝑦) = 𝜑(𝑥𝑝𝑦). 
(Or one of the technical conditions of Lemma (3.2.13).) 

3. For all 𝑡 ∈ ℝ and for all 𝑦 = (𝑦𝑛)𝑛∈ℕ ∈ Φ(�̃�), 

𝑝(𝜎𝑡
𝑛(𝑦𝑛))𝑛∈ℕ

∙
𝑝(= 𝜎𝑡(𝑝𝑦𝑝)) ∈ 𝑝ℬ𝑝 

where ℬ is the 𝑤∗-closure of Φ(�̃�) in 𝒜. 

Then Θ = 𝑝Φ𝑝: �̃� ⟶ 𝑝𝒜𝑝 is a state preserving *-homomorphism which can be 

extended into a normal isomorphism (still denoted by Θ) between 𝒩 and its image Θ(𝒩) =
𝑝ℬ𝑝. Moreover there exists a (normal) state preserving conditional expectation from 𝒜 onto 

Θ(𝒩). 
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Corollary (3.2.16)[130]: Under the assumptions of the previous Theorem, 𝒩 is QWEP 

provided that each of the 𝒜𝑛 is QWEP. 

Proof. This is a consequence of Kirchberg's results (see [132], [133]). First, ∏   
𝑛∈ℕ  𝒜𝑛 is 

QWEP as a product of QWEP 𝐶∗-algebras ([133] Proposition 4.1(i)). Since �̃� is a quotient 

of a QWEP 𝐶∗-algebra, it is also QWEP. It follows that 𝒜 which is the 𝑤∗-closure of �̃� in 

𝐵(𝐻) is QWEP (by [133] Proposition 4.1 (iii)). Since there is a conditional expectation from 

𝒜 onto 𝑝𝒜𝑝, 𝑝𝒜𝑝 is QWEP (see [132]). Finally, by Theorem (3.2.15),𝒩 is isomorphic to 

a subalgebra of 𝑝𝒜𝑝 which is the image of a (state preserving) conditional expectation, thus 

𝒩 inherits the QWEP property. 

We show that Γ𝑞(𝐻ℝ, (𝑈𝑡)𝑡∈ℝ) is QWEP when 𝐻ℝ is finite dimensional. For 

notational purpose, it will be more convenient to deal with dim (𝐻ℝ) even. This is not 

relevant in our context (see the remark after Theorem (3.2.26)). We put dim (𝐻ℝ) = 2𝑘. 

Notice that Γ𝑞(𝐻ℝ, (𝑈𝑡)𝑡∈ℝ) only depends on the spectrum of the operator 𝐴. The spectrum 

of 𝐴 is given by the set {𝜆1, … , 𝜆𝑘} ∪ {𝜆1
−1, … , 𝜆𝑘

−1} where for all 𝑗 ∈ {1,… , 𝑘}, 𝜆𝑗 ⩾ 1. We 

use the notation 𝜇𝑗 = 𝜆𝑗

1

4. 

We start by adapting Biane's model to our situation. Let us denote by 𝐼 the set 

{−𝑘,… ,−1} ∪ {1,… , 𝑘}. We give us a function 𝜖 on 𝐼 × 𝐼 into {−1,1} and we consider the 

associated complex *-algebra 𝒜(𝐼, 𝜖). By analogy with (3), for all 𝑗 ∈ {1,… , 𝑘} we define 

the following generalized semi-circular variables acting on 𝐿2(𝒜(𝐼, 𝜖), 𝜑𝜖) : 

𝛾𝑖 = 𝜇𝑖
−1𝛽𝑖

∗ + 𝜇𝑖𝛽−𝑖   and  𝛿𝑖 = 𝜇𝑖𝛼𝑖
∗ + 𝜇𝑖

−1𝛼−𝑖 

We denote by Γ (respectively Γ𝑟) the von Neumann algebra generated in 𝐵(𝐿2(𝒜(𝐼, 𝜖), 𝜑𝜖)) 
by the 𝛾𝑖 (respectively 𝛿𝑖). Γ𝑟 is the natural candidate for the commutant of Γ in 

𝐵(𝐿2(𝒜(𝐼, 𝜖), 𝜑𝜖)). We need to show that the vector 1 is cyclic and separating for Γ. To do 

so we must assume that 𝜖 satisfies the following additional condition: 

 For all  (𝑖, 𝑗) ∈ 𝐼2,  𝜖(𝑖, 𝑗) = 𝜖(|𝑖|, |𝑗|)                               (17) 
This condition is in fact a necessary condition for Γ𝑟 ⊂ Γ

′ and for condition (i)(a) of Lemma 

(3.2.18) below. 

Lemma (3.2.17)[130]: Under condition (17) the following relation holds: 

 For all 𝑖 ∈ 𝐼,  𝛼𝑖𝛽𝑖
∗ + 𝛼−𝑖

∗ 𝛽−𝑖 = 𝛽𝑖
∗𝛼𝑖 + 𝛽−𝑖𝛼−𝑖

∗  

Proof. Let 𝑖 ∈ 𝐼 and 𝐴 ⊂ 𝐼. We have 

(𝛼𝑖𝛽𝑖
∗ + 𝛼−𝑖

∗ 𝛽−𝑖)(𝑥𝐴) =

{
 
 

 
 𝑥−𝑖𝑥𝐴𝑥−𝑖  if 𝑖 ∈ 𝐴  and −𝑖 ∈ 𝐴

0  if 𝑖 ∈ 𝐴  and −𝑖 ∉ 𝐴

𝑥𝑖𝑥𝐴𝑥𝑖 + 𝑥−𝑖𝑥𝐴𝑥−𝑖  if 𝑖 ∉ 𝐴  and −𝑖 ∈ 𝐴

𝑥𝑖𝑥𝐴𝑥𝑖  if 𝑖 ∉ 𝐴  and −𝑖 ∉ 𝐴

 

and 

(𝛽𝑖
∗𝛼𝑖 + 𝛽−𝑖𝛼−𝑖

∗ )(𝑥𝐴) =

{
 
 

 
 𝑥𝑖𝑥𝐴𝑥𝑖  if 𝑖 ∈ 𝐴  and − 𝑖 ∈ 𝐴

𝑥𝑖𝑥𝐴𝑥𝑖 + 𝑥−𝑖𝑥𝐴𝑥−𝑖  if 𝑖 ∈ 𝐴  and − 𝑖 ∉ 𝐴

0  if 𝑖 ∉ 𝐴  and − 𝑖 ∈ 𝐴

𝑥−𝑖𝑥𝐴𝑥−𝑖  if 𝑖 ∉ 𝐴  and − 𝑖 ∉ 𝐴

 

Thus, we need to study the following cases. Assume that 𝐴 = {𝑖1, … , 𝑖𝑝} where 𝑖1 < ⋯ < 

𝑖𝑝. 
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1. If 𝑖 and −𝑖 belong to 𝐴 then there exists (𝑙, 𝑚) ∈ {1,… , 𝑝}, 𝑙 < 𝑚, such that 𝑖𝑙 = −𝑖 
and 𝑖𝑚 = 𝑖. Applying successively relations (4) and (17), we get: 

𝑥−𝑖𝑥𝐴𝑥−𝑖  = (∏ 

𝑙−1

𝑞=1

 𝜖(𝑖𝑞 , −𝑖))𝑥𝑖1 …𝑥𝑖𝑙−1𝑥𝑖𝑙+1 …𝑥𝑖𝑝𝑥−𝑖

 = (∏ 

𝑙−1

𝑞=1

 𝜖(𝑖𝑞 , −𝑖))( ∏  

𝑝

𝑞=𝑙+1

 𝜖(𝑖𝑞 , −𝑖))𝑥𝐴 = −(∏ 

𝑝

𝑞=1

 𝜖(𝑖𝑞 , −𝑖))𝑥𝐴

 = −(∏ 

𝑝

𝑞=1

 𝜖(𝑖𝑞 , 𝑖))𝑥𝐴 = 𝑥𝑖𝑥𝐴𝑥𝑖

 

2. If 𝑖 and −𝑖 do not belong to 𝐴, we can check in a similar way that: 

𝑥−𝑖𝑥𝐴𝑥−𝑖  = (∏ 

𝑝

𝑞=1

 𝜖(𝑖𝑞 , −𝑖))𝑥𝐴 = (∏ 

𝑝

𝑞=1

 𝜖(𝑖𝑞 , 𝑖))𝑥𝐴

 = 𝑥𝑖𝑥𝐴𝑥𝑖

 

3. If 𝑖 ∈ 𝐴 and −𝑖 ∉ 𝐴, then there exists 𝑙 ∈ {1,… , 𝑝} such that 𝑖𝑙 = 𝑖. We have: 

𝑥𝑖𝑥𝐴𝑥𝑖 = (∏ 

𝑙−1

𝑞=1

 𝜖(𝑖𝑞 , 𝑖))𝑥𝑖1 …𝑥𝑖𝑙−1𝑥𝑖𝑙+1 …𝑥𝑖𝑝𝑥𝑖                  

= (∏ 

𝑙−1

𝑞=1

 𝜖(𝑖𝑞 , 𝑖))( ∏  

𝑝

𝑞=𝑙+1

 𝜖(𝑖𝑞 , 𝑖))𝑥𝐴 = −(∏ 

𝑝

𝑞=1

 𝜖(𝑖𝑞 , 𝑖))𝑥𝐴 

= −(∏ 

𝑝

𝑞=1

 𝜖(𝑖𝑞 , −𝑖))𝑥𝐴 = −𝑥−𝑖𝑥𝐴𝑥−𝑖              

This finishes the proof. 

Lemma (3.2.18)[130]: By construction we have: 

1. For all (𝑖, 𝑗) ∈ {1,… , 𝑘}2, 𝑖 ≠ 𝑗, the following mixed commutation and anti-

commutation relations hold: 

(a) 𝛾𝑖𝛾𝑗 − 𝜖(𝑖, 𝑗)𝛾𝑗𝛾𝑖 = 0 

(b) 𝛾𝑖
∗𝛾𝑗 − 𝜖(𝑖, 𝑗)𝛾𝑗𝛾𝑖

∗ = 0 

(c) (𝛾𝑖
∗)2 = 𝛾𝑖

2 = 0 

(d) 𝛾𝑖
∗𝛾𝑖 + 𝛾𝑖𝛾𝑖

∗ = (𝜇𝑖
2 + 𝜇𝑖

−2)𝐼𝑑. 

2. Same relations as in (a) for the operators 𝛿𝑖. 
3. Γ𝑟 ⊂ Γ

′. 
4. The vector 1 is cyclic and separating for both Γ and Γ𝑟. 

5. Γ ⊂ 𝐵(𝐿2(𝒜(𝐼, 𝜖), 𝜑𝜖)) is the (faithful) G.N.S representation of (Γ, 𝜑𝜖). 
Proof. (i)(a) Thanks to (ii). of Lemma (3.2.3) and (17) we get: 
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𝛾𝑖𝛾𝑗 = 𝜇𝑖
−1𝜇𝑗

−1𝛽𝑖
∗𝛽𝑗
∗ + 𝜇𝑖𝜇𝑗𝛽−𝑖𝛽−𝑗 + 𝜇𝑖

−1𝜇𝑗𝛽𝑖
∗𝛽−𝑗 + 𝜇𝑖𝜇𝑗

−1𝛽−𝑖𝛽𝑗
∗

= 𝜖(𝑖, 𝑗)𝜇𝑖
−1𝜇𝑗

−1𝛽𝑗
∗𝛽𝑖
∗ + 𝜖(−𝑖,−𝑗)𝜇𝑖𝜇𝑗𝛽−𝑗𝛽−𝑖 + 𝜖(𝑖, −𝑗)𝜇𝑖

−1𝜇𝑗𝛽−𝑗𝛽𝑖
∗

 + 𝜖(−𝑖, 𝑗)𝜇𝑖𝜇𝑗
−1𝛽𝑗

∗𝛽−𝑖

= 𝜖(𝑖, 𝑗)(𝜇𝑖
−1𝜇𝑗

−1𝛽𝑗
∗𝛽𝑖
∗ + 𝜇𝑖𝜇𝑗𝛽−𝑗𝛽−𝑖 + 𝜇𝑖

−1𝜇𝑗𝛽−𝑗𝛽𝑖
∗ + 𝜇𝑖𝜇𝑗

−1𝛽𝑗
∗𝛽−𝑖)

= 𝜖(𝑖, 𝑗)𝛾𝑗𝛾𝑖

 

(i)(b) Is analogous to (a) and is left to the reader. 

(i)(c) Using (a) and (b) of Lemma (3.2.3), and 𝜖(𝑖, −𝑖) = 𝜖(𝑖, 𝑖) = −1 we get: 

𝛾𝑖
2  = 𝜇𝑖

−2(𝛽𝑖
∗)2 + 𝜇𝑖

2𝛽−𝑖
2 + 𝛽𝑖

∗𝛽−𝑖 + 𝛽−𝑖𝛽𝑖
∗

 = 𝜖(𝑖, −𝑖)𝛽−𝑖𝛽𝑖
∗ + 𝛽−𝑖𝛽𝑖

∗ = 0
 

(i)(d) Using similar arguments, we compute: 

𝛾𝑖
∗𝛾𝑖 + 𝛾𝑖𝛾𝑖

∗ = 𝜇𝑖
−2(𝛽𝑖𝛽𝑖

∗ + 𝛽𝑖
∗𝛽𝑖) + 𝜇𝑖

2(𝛽−𝑖
∗ 𝛽−𝑖 + 𝛽−𝑖𝛽−𝑖

∗ ) + 𝛽𝑖𝛽−𝑖 + 𝛽−𝑖𝛽𝑖 
       +𝛽−𝑖

∗ 𝛽𝑖
∗ + 𝛽𝑖

∗𝛽−𝑖
∗  

= (𝜇𝑖
−2 + 𝜇𝑖

2)𝐼𝑑 + (𝜖(𝑖, −𝑖) + 1)(𝛽𝑖𝛽−𝑖 + 𝛽−𝑖
∗ 𝛽𝑖

∗) = (𝜇𝑖
−2 + 𝜇𝑖

2)𝐼𝑑 

(ii) Is now clear from the proof of (i) since the relations for the 𝛼𝑖 's are the same as 

the ones for the 𝛽𝑖 's. 

(iii) It suffices to show that for all (𝑖, 𝑗) ∈ {1,… , 𝑘}2 we have 𝛾𝑖𝛿𝑗 = 𝛿𝑗𝛾𝑖 and 𝛾𝑖𝛿𝑗
∗ =

𝛿𝑗
∗𝛾𝑖. 

If 𝑖 ≠ 𝑗 then from (v) of Lemma (3.2.3) it is clear that 𝛾𝑖𝛿𝑗 = 𝛿𝑗𝛾𝑖 and 𝛾𝑖𝛿𝑗
∗ = 𝛿𝑗

∗𝛾𝑖.  

If 𝑖 = 𝑗 then using (iv) and (v) of Lemma (3.2.3) and Lemma (3.2.17) we obtain the 

desired result as follows: 

𝛾𝑖𝛿𝑖  = 𝛽𝑖
∗𝛼𝑖
∗ + 𝛽−𝑖𝛼−𝑖 + 𝜇𝑖

−2𝛽𝑖
∗𝛼−𝑖 + 𝜇𝑖

2𝛽−𝑖𝛼𝑖
∗ = 𝜇𝑖

−2𝛽𝑖
∗𝛼−𝑖 + 𝜇𝑖

2𝛽−𝑖𝛼𝑖
∗

 = 𝜇𝑖
−2𝛼−𝑖𝛽𝑖

∗ + 𝜇𝑖
2𝛼𝑖

∗𝛽−𝑖 = 𝛿𝑖𝛾𝑖
 

and 

𝛾𝑖𝛿𝑖
∗  = 𝛽𝑖

∗𝛼𝑖 + 𝛽−𝑖𝛼−𝑖
∗ + 𝜇𝑖

−2𝛽𝑖
∗𝛼−𝑖
∗ + 𝜇𝑖

2𝛽−𝑖𝛼𝑖
 = 𝛼𝑖𝛽𝑖

∗ + 𝛼−𝑖
∗ 𝛽−𝑖 + 𝜇𝑖

−2𝛽𝑖
∗𝛼−𝑖 + 𝜇𝑖

2𝛽−𝑖𝛼𝑖
∗

 = 𝛼𝑖𝛽𝑖
∗ + 𝛼−𝑖

∗ 𝛽−𝑖 + 𝜇𝑖
−2𝛼−𝑖𝛽𝑖

∗ + 𝜇𝑖
2𝛼𝑖

∗𝛽−𝑖 = 𝛿𝑖
∗𝛾𝑖

 

(iv) It suffices to prove that for any 𝐴 ⊂ 𝐼 we have 𝑥𝐴 ∈ Γ1 ∩ Γ𝑟1. Let 𝐴 ⊂ 𝐼 and 

(𝜒𝑖)𝑖∈𝐼 ∈ {0,1}
𝐼 such that 𝜒𝑖 = 1 if and only if 𝑖 ∈ 𝐴. Then 

𝑥𝐴  = 𝑥−𝑘
𝜒−𝑘

…𝑥−1
𝜒−1𝑥1

𝜒1 …𝑥𝑘
𝜒𝑘

 = (𝜇𝑘
−1𝛾𝑘

∗)𝑥−𝑘 …(𝜇1
−1𝛾1

∗)𝜒−1(𝜇1𝛾1)
𝜒1 …(𝜇𝑘𝛾𝑘)

𝜒𝑘1

 = 𝜇1
𝜒1−𝜒−1…𝜇𝑘

𝜒𝑘−𝜒−𝑘𝛾𝑘
−𝜒−𝑘

…𝛾1
−𝜒−1

𝛾1
𝜒1 …𝛾𝑘

𝜒𝑘1

 

where by convention 𝛾𝑖
−1 = 𝛾𝑖

∗.  

The same computation is valid for Γ𝑟 and we obtain: 

𝑥𝐴 = 𝜇1
𝜒−1−𝜒1 …𝜇𝑘

𝜒−𝑘−𝜒𝑘𝛿𝑘
𝜒𝑘 …𝛿1

𝜒1
𝛿1
−𝜒−1 …𝛿𝑘

−𝜒−𝑘
1 

It follows that the vector 1 is cyclic for both Γ and Γ𝑟. Since Γ𝑟 ⊂ Γ
′ then 1 is also 

cyclic for Γ′ and thus separating for Γ. The same argument applies to Γ𝑟 and thus 1 is also a 

cyclic and separating vector for Γ𝑟. 
(v) This is clear from the just proved assertion and the fact that the state 𝜑𝜖 is equal 

to the vector state associated to the vector 1. 

By the Lemma just proved, we are in a situation where we can apply Tomita-Takesaki 

theory. As usual we denote by 𝑆 the involution on 𝐿2(𝒜(𝐼, 𝜖), 𝜑𝜖) defined by: 𝑆(𝛾1) = 𝛾∗1 

for all 𝛾 ∈ Γ. Δ will denote the modular operator and 𝐽 the modular conjugation. Recall that 
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𝑆 = 𝐽Δ
1

2 is the polar decomposition of the antilinear operator 𝑆 (which is here bounded since 

we are in a finite dimensional framework). We also denote by (𝜎𝑡)𝑡∈ℝ the modular group of 

automorphisms of Γ associated to 𝜑. Recall that for all 𝛾 ∈ Γ and all 𝑡 ∈ ℝ we have 𝜎𝑡(𝛾) =
Δ𝑖𝑡𝛾Δ−𝑖𝑡 . 
Notation (3.2.19)[130]: In the following, for 𝐴 ⊂ 𝐼 we denote by (𝜒𝑖)𝑖∈𝐼 the characteristic 

function of the set 𝐴: 𝜒𝑖 = 1 if 𝑖 ∈ 𝐴 and 𝜒𝑖 = 0 if 𝑖 ∉ 𝐴. (We will not keep track of the 

dependance in 𝐴 unless there could be some confusion.) 

Proposition (3.2.20)[130]: The modular operators and the modular group of (Γ, 𝜑𝜖) are 

determined by: 

1. 𝐽 is the antilinear operator given by: for all 𝐴 ⊂ 𝐼, 

𝐽(𝑥𝐴) = 𝐽(𝑥−𝑘
𝜒−𝑘

…𝑥−1
𝜒−1𝑥1

𝜒1 …𝑥𝑘
𝜒𝑘) = 𝑥−𝑘

𝜒𝑘 …𝑥−1
𝜒1𝑥1

𝜒−1
…𝑥𝑘

𝜒−𝑘
 

2. Δ is the diagonal and positive operator given by: for all 𝐴 ⊂ 𝐼, 

Δ(𝑥𝐴) = Δ(𝑥−𝑘
𝜒−𝑘

…𝑥−1
𝜒−1
𝑥1
𝜒1 …𝑥𝑘

𝜒𝑘) = 𝜆𝑘
(𝜒𝑘−𝜒−𝑘)…𝜆1

(𝜒1−𝜒−1)𝑥𝐴 

3. For all 𝑗 ∈ {1… , 𝑘}, 𝛾𝑗 is entire for (𝜎𝑡)𝑡 and satisfies 𝜎𝑧(𝛾𝑗) = 𝜆𝑗
𝑖𝑧𝛾𝑗 for all 𝑧 ∈ ℂ. 

Proof. Let 𝐴 ⊂ 𝐼. We have 

𝑥𝐴 = 𝑥−𝑘
𝜒−𝑘 …𝑥−1

𝜒−1
𝑥1
𝜒1
…𝑥𝑘

𝜒𝑘 = 𝜇1
𝜒1−𝜒−1…𝜇𝑘

𝜒𝑘−𝜒−𝑘𝛾𝑘
−𝜒−𝑘

…𝛾1
−𝜒−1

𝛾1
𝜒1 …𝛾𝑘

𝜒𝑘1 

Thus, 

𝑆(𝑥𝐴)  = 𝜇1
𝜒1−𝜒−1

…𝜇𝑘
𝜒𝑘−𝜒−𝑘(𝛾𝑘

−𝜒−𝑘
…𝛾1

−𝜒−1
𝛾1
𝜒1 …𝛾𝑘

𝑋𝑘)
∗
1

 = 𝜇1
𝜒1−𝜒−1…𝜇𝑘

𝜒𝑘−𝜒−𝑘𝛾𝑘
−𝜒𝑘 …𝛾1

−𝜒1𝛾1
𝜒−1

…𝛾𝑘
𝜒−𝑘

1

 = 𝜇1
2(𝜒1−𝑥−1)…𝜇𝑘

2(𝜒𝑘−𝜒−𝑘)𝑥−𝑘
𝜒𝑘 …𝑥−1

𝜒1𝑥1
𝑋−1…𝑥𝑘

𝜒−𝑘

 

By uniqueness of the polar decomposition, we obtain the stated result. Let 𝑗 ∈ {1…𝑘} and 

𝑡 ∈ ℝ we have: 

𝜎𝑡(𝛾𝑗)1  = Δ𝑖𝑡𝛾𝑗Δ
−𝑖𝑡1 = Δ𝑖𝑡𝛾𝑗1 = 𝜇𝑗

−1Δ𝑖𝑡𝑥𝑗 = 𝜇𝑗
−1𝜇𝑗

4𝑖𝑡𝑥𝑗

 = 𝜇𝑗
4𝑖𝑡𝛾𝑗1

 

It follows, since 1 is separating for Γ, that 𝜎𝑡(𝛾𝑗) = 𝜇𝑗
4𝑖𝑡𝛾𝑗. 

We use the twisted Baby Fock construction to obtain an asymptotic random matrix 

model for the 𝑞-Gaussian variables, via Speicher's central limit Theorem. Let us first check 

the independence condition: 

Lemma (3.2.21)[130]: For all 𝑗 ∈ {1,… , 𝑘} let us denote by 𝒜𝑗 the 𝐶∗-subalgebra of 

𝐵(𝐿2(𝒜(𝐼, 𝜖), 𝜑𝜖)) generated by the operators 𝛽𝑗 and 𝛽−𝑗 . Then the family (𝒜𝑗)1⩽𝑗⩽𝑘 is 

independent in 𝐵(𝐿2(𝒜(𝐼, 𝜖), 𝜑𝜖)). In particular, the family (𝛾𝑗)1⩽𝑗⩽𝑘 is independent. 

Proof. The proof proceeds by induction. Changing notation, it suffices to show that 

𝜑𝜖(𝑎1…𝑎𝑟+1) = 𝜑
𝜖(𝑎1…𝑎𝑟)𝜑

𝜖(𝑎𝑟+1) 
where 𝑎𝑙 ∈ 𝒜𝑙 for all 𝑙 ∈ {1,… , 𝑟 + 1}. Since 𝑎𝑟+1 is a certain non-commutative 

polynomial in the variables 𝛽𝑟+1, 𝛽𝑟+1
∗ , 𝛽−(𝑟+1), and 𝛽−(𝑟+1)

∗ , it is clear that there exists 𝜈 ∈ 

Span {𝑥𝑟+1, 𝑥−(𝑟+1), 𝑥−(𝑟+1)𝑥𝑟+1} such that 

𝑎𝑟+11 = ⟨1, 𝑎𝑟+11⟩1 + 𝜈 

It is easy to see that 𝑎𝑟
∗ …𝑎1

∗1 ∈ Span {𝑥𝐵 , 𝐵 ⊂ {−𝑟, … ,−1} ∪ {1,… , 𝑟}}, which is 

orthogonal to Span {𝑥𝑟+1, 𝑥−(𝑟+1), 𝑥−(𝑟+1)𝑥𝑟+1}. We compute: 
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𝜑𝜖(𝑎1…𝑎𝑟+1)  = ⟨1, 𝑎1…𝑎𝑟𝑎𝑟+11⟩ = ⟨𝑎𝑟
∗ …𝑎1

∗1, 𝑎𝑟+11⟩

 = ⟨𝑎𝑟
∗ …𝑎1

∗1,1⟩⟨1, 𝑎𝑟+11⟩ + ⟨𝑎𝑟
∗ …𝑎1

∗1, 𝜈⟩ = ⟨1, 𝑎1…𝑎𝑟1⟩⟨1, 𝑎𝑟+11⟩

 = 𝜑𝜖(𝑎1…𝑎𝑟)𝜑
𝜖(𝑎𝑟+1)

 

Let 𝑞 ∈ (−1,1) (this is Proposition 3 in [128]). Let us choose a family of random 

variables (𝜖(𝑖, 𝑗))(𝑖,𝑗)∈ℕ2,𝑖≠𝑗 as in Lemma (3.2.6), and set 𝜖(𝑖, 𝑖) = −1 for all 𝑖 ∈ ℕ∗. For all 

𝑛 ∈ ℕ∗ we will consider the complex *-algebra 𝒜(𝐼𝑛, 𝜖𝑛) where 

𝐼𝑛 = {1,… , 𝑛} × ({−𝑘,… ,−1} ∪ {1,… , 𝑘}) 
and 

𝜖𝑛((𝑖, 𝑗), (𝑖
′, 𝑗′)) = 𝜖(𝑖, 𝑖′)  for all ((𝑖, 𝑗), (𝑖′, 𝑗′)) ∈ 𝐼𝑛

2. 
Notice that the analogue of condition (17) is automatically satisfied. Indeed, we have: 

𝜖𝑛((𝑖, 𝑗), (𝑖
′, 𝑗′)) = 𝜖𝑛((𝑖, |𝑗|), (𝑖

′, |𝑗′|))  for all  ((𝑖, 𝑗), (𝑖′, 𝑗′)) ∈ 𝐼𝑛
2. 

Let us remind that 𝒜(𝐼𝑛, 𝜖𝑛) is the unital free complex algebra with generators (𝑥𝑖,𝑗)(𝑖,𝑗)∈𝐼𝑛
 

quotiented by the relations, 

𝑥𝑖,𝑗𝑥𝑖′,𝑗′ − 𝜖(𝑖, 𝑖
′)𝑥𝑖′,𝑗′𝑥𝑖,𝑗 = 2𝛿(𝑖,𝑗),(𝑖′,𝑗′) 

and with involution given by 𝑥𝑖,𝑗
∗ = 𝑥𝑖,𝑗. For all (𝑖, 𝑗) ∈ {1,… , 𝑛} × {1,… , 𝑘} let 𝛾𝑖,𝑗 be the 

"twisted semi-circular variable" associated to 𝜇𝑗 

𝛾𝑖,𝑗 = 𝜇𝑗
−1𝛽𝑖,𝑗

∗ + 𝜇𝑗𝛽𝑖,𝑗 

We denote by Γ𝑛 ⊂ 𝐵(𝐿
2(𝒜(𝐼𝑛, 𝜖𝑛), 𝜑

𝜖𝑛)) the von-Neumann algebra generated by the 𝛾𝑖,𝑗 

for (𝑖, 𝑗) ∈ {1,… , 𝑛} × {1,… , 𝑘}. Observe that all our notations are consistent since 

(Γ𝑛, 𝜑
𝜖𝑛) is naturally embedded in (Γ𝑛+1, 𝜑

𝜖𝑛+1) (see following Lemma (3.2.3)). In fact all 

these algebras (Γ𝑛, 𝜑
𝜖𝑛) can be embedded in the bigger von Neumann algebra (Γ, 𝜑𝜖‾ ) which 

is the Baby Fock construction associated to the infinite set 𝐼‾ and the sign function 𝜖‾ given 

by 

𝐼‾ = ℕ∗ × ({−𝑘,… , −1} ∪ {1,… , 𝑘}) 
and 

𝜖‾((𝑖, 𝑗), (𝑖′, 𝑗′)) = 𝜖(𝑖, 𝑖′)  for all ((𝑖, 𝑗), (𝑖′, 𝑗′)) ∈ 𝐼‾2. 

Let us denote by 𝑠𝑛,𝑗 the following sum: 

𝑠𝑛,𝑗 =
1

√𝑛
∑  

𝑛

𝑖=1

𝛾𝑖,𝑗 

We now check the hypothesis of Theorem (3.2.5) for the family (𝛾𝑖,𝑗)(𝑖,𝑗)∈ℕ∗×{1,…,𝑘}
⊂

(Γ,𝜑𝜖‾ ). 
1. The family is independent by Lemma (3.2.21). 

2. It is clear that for all (𝑖, 𝑗) we have 𝜑𝜖‾(𝛾𝑖,𝑗) = 0. 

3. Let (𝑗(1), 𝑗(2)) ∈ {1,… , 𝑘} and 𝑖 ∈ ℕ∗. We compute and identify the covariance 

thanks to Lemma (3.2.2) : 

𝜑𝜖‾ (𝛾𝑖,𝑗(1)
𝑘(1)

𝛾𝑖,𝑗(2)
𝑘(2)

)  = ⟨𝛾𝑖,𝑗(1)
−𝑘(1)

1, 𝛾𝑖,𝑗(2)
𝑘(2)

1⟩ = ⟨𝜇𝑗(1)
𝑘(1)

𝑥−𝑘(1)𝑖,−𝑘(1)𝑗(1), 𝜇𝑗(2)
−𝑘(2)

𝑥𝑘(2)𝑖,𝑘(2)𝑗(2)⟩

 = 𝜇𝑗(1)
2𝑘(1)

𝛿𝑘(2),−𝑘(1)𝛿𝑗(1),𝑗(2) = 𝜑 (𝑐𝑗(1)
𝑘(1)

𝑐𝑗(2)
𝑘(2)

)
 

4. It is easily seen that 𝜑𝜖‾ (𝛾𝑖,𝑗
𝑘(1)

…𝛾𝑖,𝑗
𝑘(𝑤)

) is independent of 𝑖 ∈ ℕ∗. 

5. This is a consequence of Lemma (3.2.18). 

6. This follows from Lemma (3.2.6) almost surely. 
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Thus, by Theorem (3.2.5), we have, almost surely, for all 𝑝 ∈ ℕ∗, (𝑘(1),… , 𝑘(𝑝)) ∈
{−1,1}𝑝 and all (𝑗(1), … , 𝑗(𝑝)) ∈ {1,… , 𝑘}𝑝 : 

          lim
𝑛→+∞

 𝜑𝜖‾ (𝑠𝑛,𝑗(1)
𝑘(1)

…𝑠𝑛,𝑗(𝑝)
𝑘(𝑝)

) 

=

{
 
 

 
 

0 if 𝑝 is odd

∑  

𝒱∈𝒫2(1,…,2𝑟)

𝒱={(𝑠𝑙,𝑡𝑙)𝑙=1
𝑙=𝑟

𝑞𝑖(𝒱)∏𝜑(𝑐𝑗(𝑠𝑙)
𝑘(𝑠𝑙)𝑐𝑗(𝑡𝑙)

𝑘(𝑡𝑙))

𝑟

𝑙=1

if 𝑝 = 2𝑟          

By Lemma (3.2.2) we see that all *-moments of the family (𝑠𝑛,𝑗)𝑗∈{1,…,𝑘} converge when 𝑛 

goes to infinity to the corresponding *-moments of the family (𝑐𝑗)𝑗∈{1,…,𝑘}: 

Proposition (3.2.22)[130]: For all 𝑝 ∈ ℕ∗, (𝑗(1), … , 𝑗(𝑝)) ∈ {1,… , 𝑘}
𝑝 and for all 

(𝑘(1),… , 𝑘(𝑝)) ∈ {−1,1}𝑝 we have: 

lim
𝑛→+∞

 𝜑𝜖‾ (𝑠𝑛,𝑗(1)
𝑘(1)

…𝑠𝑛,𝑗(𝑝)
𝑘(𝑝)

) = 𝜑 (𝑐𝑗(1)
𝑘(1)

…𝑐𝑗(𝑝)
𝑘(𝑝)

)   almost surely       (18) 

For all 𝑗 ∈ {1,… , 𝑘} let us denote by 𝑔𝑛,𝑗 = Re (𝑠𝑛,𝑗) and 𝑔𝑛,−𝑗 = Im (𝑠𝑛,𝑗). By (18) 

we have that for all monomials 𝑃 in 2𝑘 noncommuting variables: 

lim
𝑛→+∞

 𝜑𝜖‾ (𝑃(𝑔𝑛,−𝑘, … , 𝑔𝑛,𝑘)) = 𝜑 (𝑃(𝐺(𝑓−𝑘), … , 𝐺(𝑓𝑘)))  almost surely  (19) 

Since the set of all non-commutative monomials is countable, we can find a choice of signs 

𝜖 such that (19) is true for all 𝑃. In the sequel we fix such an 𝜖 and forget about the 

dependance on 𝜖 

Lemma (3.2.23)[130]: For all polynomials 𝑃 in 2𝑘 noncommuting variables we have: 

lim
𝑛→+∞

 𝜑 (𝑃(𝑔𝑛,−𝑘 , … , 𝑔𝑛,𝑘)) = 𝜑 (𝑃(𝐺(𝑓−𝑘), … , 𝐺(𝑓𝑘)))            (20) 

We are now ready to construct an embedding of Γ𝑞(𝐻ℝ, 𝑈𝑡) into an ultraproduct of the finite 

dimensional von Neumann algebras Γ𝑛. To do so we need to have a uniform bound on the 

operators 𝑔𝑛,𝑗. Let 𝐶 > 0 such that for all 𝑗 ∈ 𝐼, ∥∥𝐺(𝑓𝑗)∥∥ < 𝐶, as in the tracial case, we 

replace the 𝑔𝑛,𝑗 by the their truncations �̃�𝑛,𝑗 = 𝜒]−𝐶,𝐶[(𝑔𝑛,𝑗)𝑔𝑛,𝑗. The following is the 

analogue of Lemma (3.2.7): 

Lemma (3.2.24)[130]: For all polynomials 𝑃 in 2𝑘 noncommuting variables we have: 

lim
𝑛→+∞

 𝜑 (𝑃(�̃�𝑛,−𝑘, … , �̃�𝑛,𝑘)) = 𝜑 (𝑃(𝐺(𝑓−𝑘),… , 𝐺(𝑓𝑘)))             (21) 

Proof. It suffices to show that for all (𝑗(1),… , 𝑗(𝑝)) ∈ 𝐼𝑝 we have 

lim
𝑛→+∞

 𝜑(�̃�𝑛,𝑗(1)… �̃�𝑛,𝑗(𝑝)) = 𝜑 (𝐺(𝑓𝑗(1))…𝐺(𝑓𝑗(𝑝))) 

By (20) it is sufficient to prove that 

lim
𝑛→+∞

 |𝜑(𝑔𝑛,𝑗(1)…𝑔𝑛,𝑗(𝑝)) − 𝜑(�̃�𝑛,𝑗(1)… �̃�𝑛,𝑗(𝑝))| = 0 

Using multi-linearity we can write 

        𝜑(𝑔𝑛,𝑗(1)…𝑔𝑛,𝑗(𝑝)) − 𝜑(�̃�𝑛,𝑗(1)… �̃�𝑛,𝑗(𝑝)) 

= |∑  

𝑝

𝑙=1

 𝜑[�̃�𝑛,𝑗(1)… �̃�𝑛,𝑗(𝑙−1)(𝑔𝑛,𝑗(𝑙) − �̃�𝑛,𝑗(𝑙))𝑔𝑛,𝑗(𝑙+1)…𝑔𝑛,𝑗(𝑝)]| 

⩽∑ 

𝑝

𝑙=1

  |𝜑[�̃�𝑛,𝑗(1)… �̃�𝑛,𝑗(𝑙−1)(𝑔𝑛,𝑗(𝑙) − �̃�𝑛,𝑗(𝑙))𝑔𝑛,𝑗(𝑙+1)…𝑔𝑛,𝑗(𝑝)]| 
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Fix 𝑙 ∈ {1,… , 𝑝}, using the modular group we have: 

|𝜑[�̃�𝑛,𝑗(1)… �̃�𝑛,𝑗(𝑙−1)(𝑔𝑛,𝑗(𝑙) − �̃�𝑛,𝑗(𝑙))𝑔𝑛,𝑗(𝑙+1)…𝑔𝑛,𝑗(𝑝)]|          

= |𝜑[𝜎𝑖(𝑔𝑛,𝑗(𝑙+1)…𝑔𝑛,𝑗(𝑝))�̃�𝑛,𝑗(1)… �̃�𝑛,𝑗(𝑙−1)(𝑔𝑛,𝑗(𝑙) − �̃�𝑛,𝑗(𝑙))]| 

Estimating by Cauchy-Schwarz's inequality we obtain: 

|𝜑[𝜎𝑖(𝑔𝑛,𝑗(𝑙+1)…𝑔𝑛,𝑗(𝑝))�̃�𝑛,𝑗(1)… �̃�𝑛,𝑗(𝑙−1)(𝑔𝑛,𝑗(𝑙) − �̃�𝑛,𝑗(𝑙))]| 

⩽ 𝜑[𝜎𝑖(𝑔𝑛,𝑗(𝑙+1)…𝑔𝑛,𝑗(𝑝))�̃�𝑛,𝑗(1)… �̃�𝑛,𝑗(𝑙−1)
2 … �̃�𝑛,𝑗(1)𝜎−𝑖(𝑔𝑛,𝑗(𝑝)…𝑔𝑛,𝑗(𝑙+1))]

1
2 

× 𝜑 [(𝑔𝑛,𝑗(𝑙) − �̃�𝑛,𝑗(𝑙))
2
]

1
2
 

 ⩽ 𝐶𝑙−1𝜑[𝜎𝑖(𝑔𝑛,𝑗(𝑙+1)…𝑔𝑛,𝑗(𝑝))𝜎−𝑖(𝑔𝑛,𝑗(𝑝)…𝑔𝑛,𝑗(𝑙+1))]
1
2𝜑 [(𝑔𝑛,𝑗(𝑙) − �̃�𝑛,𝑗(𝑙))

2
]

1
2
 

The conclusion follows from the convergence of this last term to 0. Indeed, by (22) there 

exists a polynomial in 2𝑘 non-commutative variables 𝑄, independent on 𝑛, such that 

𝑄(𝑔𝑛,−𝑘 …𝑔𝑛,𝑘) = 𝜎𝑖(𝑔𝑛,𝑗(𝑙+1)…𝑔𝑛,𝑗(𝑝))𝜎−𝑖(𝑔𝑛,𝑗(𝑝)…𝑔𝑛,𝑗(𝑙+1)). It follows by (20) that 

lim
𝑛→+∞

 𝜑[𝜎𝑖(𝑔𝑛,𝑗(𝑙+1)…𝑔𝑛,𝑗(𝑝))𝜎−𝑖(𝑔𝑛,𝑗(𝑝)…𝑔𝑛,𝑗(𝑙+1))] 

= 𝜑 (𝑄(𝐺(𝑓−𝑘)…𝐺(𝑓𝑘))). 

and by Lemma (3.2.8), 𝜑 [(𝑔𝑛,𝑗(𝑙) − �̃�𝑛,𝑗(𝑙))
2
] converges to 0 when 𝑛 goes to infinity. 

Remark (3.2.25)[130]: For all 𝑛 ∈ ℕ∗ and all 𝑗 ∈ 𝐼 the element 𝑔𝑛,𝑗 is entire for the modular 

group (this is always the case in a finite dimensional framework). By (iii) of Proposition 

(3.2.20), we have for all 𝑗 ∈ {1,… , 𝑘} 

𝜎𝑧(𝑠𝑛,𝑗) = 𝜆𝑗
𝑖𝑧𝑠𝑛,𝑗   for all 𝑧 ∈ ℂ 

Thus for all 𝑧 ∈ ℂ, 

   𝜎𝑧(𝑔𝑛,𝑗) 

= {
cos(zln(𝜆𝑗))𝑔𝑛,𝑗 − sin(zln(𝜆𝑗))𝑔𝑛,−𝑗  for all 𝑗 ∈ {1,… , 𝑘}

sin(zln(𝜆−𝑗))𝑔𝑛,−𝑗 + cos(zln(𝜆−𝑗))𝑔𝑛,𝑗  for all 𝑗 ∈ {−1,… ,−𝑘}
(22) 

Let us denote by 𝒫 the 𝑤∗-dense ∗-subalgebra of Γ𝑞(𝐻ℝ, 𝑈𝑡) generated by the set 

{𝐺(𝑓𝑗), 𝑗 ∈ 𝐼}. We know that 𝒫 is isomorphic to the algebra of non-commutative 

polynomials in 2𝑘 variables (see the remark after Lemma (3.2.8)). Given 𝒰 a non trivial 

ultrafilter on ℕ, it is thus possible to define the following *-homomorphism Φ from 𝒫 into 

the von Neumann ultraproduct 𝒜 = ∏𝑛,𝒰  Γ𝑛 by: 

Φ(𝑃(𝐺(𝑓−𝑘), … , 𝐺(𝑓𝑘))) = (𝑃(�̃�𝑛,−𝑘 , … , �̃�𝑛,𝑘))
𝑛∈ℕ

∙
 

Indeed the right term is well defined since it is uniformly bounded in norm. Let us check the 

hypothesis of Theorem (3.2.15). 

1. By Lemma (3.2.24),Φ is state preserving. 

2. It is sufficient to check that condition (b) of Lemma (3.2.13) is satisfied for every 

generator Φ(𝐺(𝑓𝑗)) , 𝑗 ∈ 𝐼. Let us fix 𝑗 ∈ 𝐼 and recall that by (22) there are complex 

numbers 𝜈𝑗 and 𝜔𝑗 (independent of 𝑛) such that 𝜎−𝑖
𝑛 (𝑔𝑛,𝑗) = 𝜈𝑗𝑔𝑛,𝑗 +𝜔𝑗𝑔𝑛,−𝑗. We 

show that condition of Lemma (3.2.13) is satisfied for 𝑥 = Φ(𝐺(𝑓𝑗)) and 𝑧 =

𝜈𝑗Φ(𝐺(𝑓𝑗)) + 𝜔𝑗Φ(𝐺(𝑓−𝑗)). By 𝑤∗-density it is sufficient to consider 𝑦 =

(𝑦𝑛)𝑛∈ℕ ∈ �̃�. Using Lemma (3.2.24) we have: 
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𝜑 (Φ(𝐺(𝑓𝑗)) 𝑦) = lim
𝑛,𝒰
 𝜑𝑛(�̃�𝑛,𝑗𝑦𝑛) = lim

𝑛,𝒰
 𝜑𝑛(𝑔𝑛,𝑗𝑦𝑛) = lim

𝑛,𝒰
 𝜑𝑛 (𝑦𝑛𝜎−𝑖

𝑛 (𝑔𝑛,𝑗)) 

= lim
𝑛,𝒰
 𝜑𝑛 (𝑦𝑛(𝜈𝑗𝑔𝑛,𝑗 +𝜔𝑗𝑔𝑛,−𝑗)) = lim

𝑛,𝒰
 𝜑𝑛 (𝑦𝑛(𝜈𝑗�̃�𝑛,𝑗 +𝜔𝑗�̃�𝑛,−𝑗)) 

                       = 𝜑 (𝑦 (𝜈𝑗Φ(𝐺(𝑓𝑗)) + 𝜔𝑗Φ(𝐺(𝑓−𝑗)))) 

3. It suffices to check that the intertwining condition given in the remark of Theorem 

(3.2.15) is satisfied for the generators Φ(𝐺(𝑓𝑗)) = (�̃�𝑛,𝑗)𝑛∈𝑁
∙

: 

 for all 𝑗 ∈ 𝐼,  𝜎𝑡 (𝑝Φ (𝐺(𝑓𝑗))𝑝) = 𝑝Φ(𝜎𝑡 (𝐺(𝑓𝑗)))𝑝 

To fix ideas we will suppose that 𝑗 ⩾ 0. Recall that in this case for all 𝑡 ∈ ℝ and for all 𝑛 ∈
ℕ, we have 

𝜎𝑡
𝑛(𝑔𝑛,𝑗) = cos (𝑡ln (𝜆𝑗))𝑔𝑛,𝑗 − sin (𝑡ln (𝜆𝑗))𝑔𝑛,−𝑗.  

Since the functional calculus commutes with automorphisms, for all 𝑡 ∈ ℝ and for all 𝑛 ∈
ℕ, we have: 

𝜎𝑡
𝑛(�̃�𝑛,𝑗) = ℎ (𝜎𝑡

𝑛(𝑔𝑛,𝑗)), 

where ℎ(𝜆) = 𝜒]−𝐶,𝐶[(𝜆)𝜆, for all 𝜆 ∈ ℝ. But by Lemma 5.6, 

𝜎𝑡
𝑛(𝑔𝑛,𝑗) = cos (𝑡ln (𝜆𝑗))𝑔𝑛,𝑗 − sin (𝑡ln (𝜆𝑗))𝑔𝑛,−𝑗 

converges in distribution to 

cos (𝑡ln (𝜆𝑗))𝐺(𝑓𝑗) − sin (𝑡ln (𝜆𝑗))𝐺(𝑓−𝑗) = 𝜎𝑡 (𝐺(𝑓𝑗)) 

and ∥
∥𝜎𝑡 (𝐺(𝑓𝑗))∥

∥ = ∥∥𝐺(𝑓𝑗)∥∥ < 𝐶. Thus, by Lemma (3.2.8), we deduce that 𝜎𝑡
𝑛(�̃�𝑛,𝑗) 

converges in distribution to 𝜎𝑡 (𝐺(𝑓𝑗)). On the other hand, by Lemma (3.2.24), 

cos (𝑡ln (𝜆𝑗)) �̃�𝑛,𝑗 − sin (𝑡ln (𝜆𝑗)) �̃�𝑛,−𝑗 

also converges in distribution to 

cos (𝑡ln (𝜆𝑗))𝐺(𝑓𝑗) − sin (𝑡ln (𝜆𝑗))𝐺(𝑓−𝑗) = 𝜎𝑡 (𝐺(𝑓𝑗)). 

Let 𝑦 ∈ 𝒜, using Raynaud's results we compute: 

𝜑 (𝜎𝑡 (𝑝Φ(𝐺(𝑓𝑗)) 𝑝) 𝑝𝑦𝑝)  = 𝜑 ((Δ𝑛
𝑖𝑡)

∙
𝑝Φ(𝐺(𝑓𝑗)) 𝑝(Δ𝑛

−𝑖𝑡)
∙
𝑝𝑦𝑝)

 = 𝜑 (𝑝(Δ𝑛
𝑖𝑡)

∙
Φ(𝐺(𝑓𝑗)) (Δ𝑛

−𝑖𝑡)
∙
𝑝𝑦𝑝)

 = 𝜑 ((Δ𝑛
𝑖𝑡)

∙
Φ(𝐺(𝑓𝑗)) (Δ𝑛

−𝑖𝑡)
∙
𝑝𝑦)

 

Let 𝑧 = (𝑧𝑛)𝑛∈ℕ ∈ �̃�. By our previous observations, we have: 

   𝜑 ((Δ𝑛
𝑖𝑡)

∙
Φ(𝐺(𝑓𝑗)) (Δ𝑛

−𝑖𝑡)
∙
𝑧) 

= lim
𝑛,𝒰
 𝜑𝑛(Δ𝑛

𝑖𝑡�̃�𝑛,𝑗Δ𝑛
−𝑖𝑡𝑧𝑛)                                                     

= lim
𝑛,𝒰
 𝜑𝑛(𝜎𝑡

𝑛(�̃�𝑛,𝑗)𝑧𝑛)                                                         

= 𝜑 (𝜎𝑡 (𝐺(𝑓𝑗)) 𝑧)                                                               

= lim
𝑛,𝒰
 𝜑𝑛 ((cos (𝑡ln (𝜆𝑗)) �̃�𝑛,𝑗 − sin (𝑡ln (𝜆𝑗)) �̃�𝑛,−𝑗) 𝑧𝑛)               

= 𝜑((cos (𝑡ln (𝜆𝑗))Φ(𝐺(𝑓𝑗)) − sin (𝑡ln (𝜆𝑗))Φ (𝐺(𝑓−𝑗))) 𝑧) 
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= 𝜑((𝑝Φ(𝜎𝑡 (𝐺(𝑓𝑗)))𝑝) 𝑧𝑝)                                         

By 𝑤∗-density and continuity, we can replace 𝑧 by 𝑝𝑦 in the previous equality, which gives: 

𝜑 (𝜎𝑡 (𝑝Φ(𝐺(𝑓𝑗)) 𝑝) 𝑝𝑦𝑝) = 𝜑 ((𝑝Φ(𝜎𝑡 (𝐺(𝑓𝑗)))𝑝) 𝑝𝑦𝑝). 

Thus, taking 𝑦 = 𝜎𝑡 (𝑝Φ(𝐺(𝑓𝑗)) 𝑝) − 𝑝Φ(𝜎𝑡 (𝐺(𝑓𝑗)))𝑝, and by the faithfulness of 

𝜑(𝑝 ⋅ 𝑝) we deduce that 

𝜎𝑡 (𝑝Φ(𝐺(𝑓𝑗)) 𝑝) = 𝑝Φ(𝜎𝑡 (𝐺(𝑓𝑗))) 𝑝 ∈ 𝑝Im (Φ)𝑝 

By Theorem (3.2.15), Θ = 𝑝Φ𝑝 can be extended into a (necessarily injective because state 

preserving) 𝑤∗-continuous *-homomorphism from Γ𝑞(𝐻ℝ, 𝑈𝑡) into 𝑝𝒜𝑝 with a completely 

complemented image. By its Corollary (3.2.16), since the algebras Γ𝑛 are finite dimensional 

and a fortiori are QWEP, it follows that Γ𝑞(𝐻ℝ, 𝑈𝑡) is QWEP. 

Theorem (3.2.26)[130]: If 𝐻ℝ is a finite dimensional real Hilbert space equipped with a 

group of orthogonal transformations (𝑈𝑡)𝑡∈ℝ, then the von Neumann algebra Γ𝑞(𝐻ℝ, 𝑈𝑡) is 

𝑄𝑊𝐸𝑃. 

Corollary (3.2.27)[130]: If (𝑈𝑡)𝑡∈ℝ is almost periodic on 𝐻ℝ, then Γ𝑞(𝐻ℝ, 𝑈𝑡) is QWEP. 

Proof. There exist an invariant real Hilbert space 𝐻1, an orthogonal family of invariant 2 

dimensional real Hilbert spaces (𝐻𝛼)𝛼∈𝐴 and real eigenvalues (𝜆𝛼)𝛼∈𝐴 greater than 1 such 

that 

𝐻ℝ = 𝐻1 ⊕
𝛼∈𝐴

𝐻𝛼  and  𝑈𝑡∣𝐻1 = Id𝐻1 ,  𝑈𝑡∣𝐻𝛼 

       = (
cos (𝑡ln (𝜆𝛼)) −sin (𝑡ln (𝜆𝛼))

sin (𝑡ln (𝜆𝛼)) cos (𝑡ln (𝜆𝛼))
) 

In particular it is possible to find a net (𝐼𝛽)𝛽∈𝐵
 of isometries from finite dimensional 

subspaces 𝐻𝛽 ⊂ 𝐻ℝ into 𝐻ℝ, such that for all 𝛽 ∈ 𝐵,𝐻𝛽 is stable by (𝑈𝑡)𝑡∈ℝ and ⋃𝐵∈𝐵  𝐻𝛽 

is dense in 𝐻ℝ. By second quantization, for all 𝛽 ∈ 𝐵, there exists an isometric *-

homomorphism Γ𝑞(𝐼𝛽) from Γ𝑞 (𝐻𝛽 , 𝑈𝑡∣𝐻𝛽) into Γ𝑞(𝐻ℝ, 𝑈𝑡), and Γ𝑞(𝐻ℝ, 𝑈𝑡) is the inductive 

limit (in the von Neumann algebra's sense) of the algebras Γ𝑞 (𝐻𝛽 , 𝑈𝑡∣𝐻𝛽). By the previous 

Theorem, for all 𝛽 ∈ 𝐵, Γ𝑞 (𝐻𝛽 , 𝑈𝑡∣𝐻𝛽) is QWEP, thus Γ𝑞(𝐻R, 𝑈𝑡) is QWEP, as an inductive 

limit of QWEP von Neumann algebras. 

We will derive the general case by discretization and an ultraproduct argument 

similar. 

Let 𝐻R be a real Hilbert space and (𝑈𝑡)𝑡∈ℝ a strongly continuous group of orthogonal 

transformations on 𝐻ℝ. We denote by 𝐻ℂ the complexification of 𝐻ℝ and by (𝑈𝑡)𝑡∈ℝ its 

extension to a group of unitaries on 𝐻ℂ. Let 𝐴 be the (unbounded) non degenerate positive 

infinitesimal generator of (𝑈𝑡)𝑡∈ℝ. For every 𝑛 ∈ ℕ∗ let 𝑔𝑛 be the bounded Borelian 

function defined by: 

𝑔𝑛 = 𝜒]1,1+ 1
2𝑛
[
+ ( ∑  

𝑛2𝑛−1

𝑘=2𝑛+1

 
𝑘

2𝑛
𝜒
[
𝑘
2𝑛
,
𝑘+1
2𝑛

[
) + 𝑛𝜒[𝑛,+∞[ 

and 
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𝑓𝑛(𝑡) = 𝑔𝑛(𝑡)𝜒{𝑡>1}(𝑡) +
1

𝑔𝑛(1/𝑡)
𝜒{𝑡<1}(𝑡) + 𝜒{1}(𝑡)  for all 𝑡 ∈ ℝ+ 

It is clear that 

𝑓𝑛(𝑡) ↗ 𝑡 for all 𝑡 ⩾ 1  and  𝑓𝑛(𝑡) =
1

𝑓𝑛(1/𝑡)
 for all 𝑡 ∈ ℝ+

∗ .            (23) 

For all 𝑛 ∈ ℕ∗, let 𝐴𝑛 be the invertible positive and bounded operator on 𝐻ℂ defined by 

𝐴𝑛 = 𝑓𝑛(𝐴). Denoting by 𝒥 the conjugation on 𝐻ℂ, we know, by [15], that 𝒥𝐴 = 𝐴−1𝒥. By 

the second part of (23), it follows that for all 𝑛 ∈ ℕ∗, 
𝒥𝐴𝑛 = 𝒥𝑓𝑛(𝐴) = 𝑓𝑛(𝐴

−1)𝒥 = 𝑓𝑛(𝐴)
−1𝒥 = 𝐴𝑛

−1𝒥                       (24) 
Consider the strongly continuous unitary group (𝑈𝑡

𝑛)𝑡∈ℝ on 𝐻ℂ with positive non degenerate 

and bounded infinitesimal generator given by 𝐴𝑛. By definition, we have 𝑈𝑡
𝑛 = 𝐴𝑛

𝑖𝑡 . By (24), 

and since 𝒥 is anti-linear, we have for all 𝑛 ∈ ℕ∗ and all ∈ ℝ : 

𝒥𝑈𝑡
𝑛 = 𝒥𝐴𝑛

𝑖𝑡 = 𝐴𝑛
𝑖𝑡𝒥 = 𝑈𝑡

𝑛𝒥 

It follows that for all 𝑛 ∈ ℕ∗ and for all 𝑡 ∈ ℝ,𝐻ℝ is globally invariant by 𝑈𝑡
𝑛, thus we have 

𝑈𝑡
𝑛(𝐻ℝ) = 𝐻ℝ 

Hence, (𝑈𝑡
𝑛)𝑡∈ℝ induces a group of orthogonal transformations on 𝐻ℝ such that its extension 

on 𝐻ℂ has infinitesimal generator given by the discretized operator 𝐴𝑛. In the following we 

will index by 𝑛 ∈ ℕ∗ the objects relative to the discretized von Neumann algebra Γ𝑛 =
Γ𝑞(𝐻ℝ, (𝑈𝑡

𝑛)𝑡∈ℝ). We simply set Γ = Γ𝑞(𝐻ℝ, (𝑈𝑡)𝑡∈ℝ). 

Moreover for all 𝑛 ∈ ℕ∗ the scalar products ⟨. , . ⟩𝑈𝑛 and ⟨. , , ⟩𝐻𝐶 are equivalent on 𝐻ℂ 

since 𝐴𝑛 is bounded.  

Scholie (3.2.28)[130]: For all 𝜉 and 𝜂 in 𝐻ℂ we have: 

lim
𝑛→+∞

 ⟨𝜉, 𝜂⟩𝐻𝑛 = ⟨𝜉, 𝜂⟩𝐻 

Proof. Let 𝐸𝐴 be the spectral resolution of 𝐴. Take 𝜉 ∈ 𝐻ℂ and denote by 𝜇𝜉  the finite 

positive measure on ℝ+given by 𝜇𝜉 = ⟨𝐸𝐴(⋅)𝜉, 𝜉⟩𝐻ℂ . Since for all 𝜆 ∈ ℝ+, lim𝑛→+∞  𝑔 ∘

𝑓𝑛(𝜆) = 𝑔(𝜆), and 𝑔(𝜆) = 2𝜆/(1 + 𝜆) is bounded on ℝ+, we have by the Lebesgue 

dominated convergence Theorem: 

     ∥ 𝜉 ∥𝐻
2= ⟨

2𝐴

1 + 𝐴
𝜉, 𝜉⟩

𝐻ℂ

= ∫  
ℝ+

 𝑔(𝜆)d𝜇𝜉(𝜆) 

= lim
𝑛→+∞

 ∫  
ℝ+

 𝑔 ∘ 𝑓𝑛(𝜆)d𝜇𝜉(𝜆) = lim
𝑛→+∞

  ⟨
2𝐴𝑛
1 + 𝐴𝑛

𝜉, 𝜉⟩
𝐻ℂ

= lim
𝑛→+∞

  ∥ 𝜉 ∥𝐻𝑛
2  

and we finish the proof by polarization.  

Let 𝐸 be the vector space given by 

𝐸 =∪𝑘∈ℕ∗ 𝜒[1
𝑘
,𝑘]
(𝐴)(𝐻ℝ) 

We have 

𝒥𝜒
[
1
𝑘
,𝑘]
(𝐴) = 𝜒

[
1
𝑘
,𝑘]
(𝐴−1)𝒥 = 𝜒

[
1
𝑘
,𝑘]
(𝐴)𝒥 

thus 𝐸 ⊂ 𝐻ℝ. Since 𝐴 is non degenerate, 

∪𝑘∈ℕ∗ 𝜒[1
𝑘
,𝑘]
(𝐴)(𝐻ℂ)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝜒]0,+∞[(𝐴)(𝐻ℂ) = 𝐻ℂ 

It follows that 𝐸 is dense in 𝐻ℝ. Let (𝑒𝑖)𝑖∈𝐼 be an algebraic basis of unit vectors of 𝐸 and 

denote by ℰ the algebra generated by the Gaussians 𝐺(𝑒𝑖) for 𝑖 ∈ 𝐼. ℰ is 𝑤∗ dense in Γ and 

every element in ℰ is entire for (𝜎𝑡)𝑡∈ℝ (because for all 𝑘 ∈ ℕ∗, 𝐴 is bounded and has a 
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bounded inverse on 𝜒
[
1

𝑘
,𝑘]
(𝐴)(𝐻ℂ)). Denoting by 𝑊 the Wick product in Γ, we have for all 

𝑖 ∈ 𝐼 and all 𝑧 ∈ ℂ: 
𝜎𝑧(𝐺(𝑒𝑖)) = 𝑊(𝑈−𝑧𝑒𝑖) = 𝑊(𝐴

−𝑖𝑧𝑒𝑖)                             (25) 
Since 𝐻ℝ ⊂ 𝐻 and for all 𝑛 ∈ ℕ∗, 𝐻ℝ ⊂ 𝐻𝑛( isometrically), we have by (1) 

 For all (𝑖, 𝑛) ∈ 𝐼 × ℕ∗,     ∥∥𝐺𝑛(𝑒𝑖)∥∥ =
2

√1 − 𝑞
                             (26) 

Scholie (3.2.29)[130]: For all 𝑟 ∈ ℝ and for all 𝑖 ∈ 𝐼 we have 

sup
𝑛∈ℕ∗

 ∥∥𝜎𝑖𝑟
𝑛(𝐺𝑛(𝑒𝑖))∥∥ < +∞ 

Proof. Fix 𝑖 ∈ 𝐼. By (25): 

∥∥𝜎𝑖𝑟
𝑛(𝐺𝑛(𝑒𝑖))∥∥ = ∥∥𝑊(𝐴𝑛

𝑟𝑒𝑖)∥∥ = ∥∥𝑎𝑛
∗ (𝐴𝑛

𝑟𝑒𝑖) + 𝑎𝑛(𝒥𝐴𝑛
𝑟𝑒𝑖)∥∥ 

       ⩽ 𝐶
|𝑞|

1
2 (∥∥𝐴𝑛

𝑟𝑒𝑖∥∥𝐻𝑛
+ ∥∥𝒥𝐴𝑛

𝑟 𝑒𝑖∥∥𝐻𝑛
) 

           ⩽ 𝐶
|𝑞|

1
2 (∥∥𝐴𝑛

𝑟 𝑒𝑖∥∥𝐻𝑛
+
∥∥
∥∥Δ𝑛

1
2𝐴𝑛

𝑟𝑒𝑖
∥∥
∥∥

𝐻𝑛

) 

           ⩽ 𝐶
|𝑞|

1
2 (∥∥𝐴𝑛

𝑟𝑒𝑖∥∥𝐻𝑛
+
∥∥
∥∥𝐴𝑛

𝑟−
1
2𝑒𝑖
∥∥
∥∥

𝐻𝑛

) 

Thus it suffices to prove that for all 𝑟 ∈ ℝ we have 

sup
𝑛∈ℕ∗

 ∥∥𝐴𝑛
𝑟𝑒𝑖∥∥𝐻𝑛

< +∞ 

Let us denote by 𝜇𝑖 = ⟨𝐸𝐴(. )𝑒𝑖 , 𝑒𝑖⟩𝐻𝐶  and by 𝑔𝑟(𝜆) = 2𝜆
2𝑟+1/(1 + 𝜆). There exists 𝑘 ∈ ℕ∗ 

such that 𝑒𝑖 ∈ 𝜒[1/𝑘,𝑘](𝐴)(𝐻R), thus we have: 

∥∥𝐴𝑛
𝑟 𝑒𝑖∥∥𝐻𝑛

2 = ⟨𝑔𝑟 ∘ 𝑓𝑛(𝐴)𝑒𝑖 , 𝑒𝑖⟩𝐻C = ∫  
[1/𝑘,𝑘]

𝑔𝑟 ∘ 𝑓𝑛(𝜆)d𝜇𝑖(𝜆) 

It is easily seen that (𝑔𝑟 ∘ 𝑓𝑛)𝑛∈ℕ∗ converges uniformly to 𝑔𝑟 on [1/𝑘, 𝑘]. The result follows 

by: 

lim
𝑛→+∞

 ∥∥𝐴𝑛
𝑟𝑒𝑖∥∥𝐻𝑛

2 = lim
𝑛→+∞

 ∫  
[1/𝑘,𝑘]

𝑔𝑟 ∘ 𝑓𝑛(𝜆)d𝜇𝑖(𝜆) 

                            = ∫  
[
1
𝑘
,𝑘]

𝑔𝑟(𝜆)d𝜇𝑖(𝜆) = ∥∥𝐴
𝑟𝑒𝑖∥∥𝐻

2 . 

Recall that ℰ is isomorphic to the complex free ∗-algebra with |𝐼| generators. Let 𝒰 be a 

free ultrafilter on ℕ∗, by (26) we can define a *-homomorphism Φ from ℰ into the von 

Neumann algebra ultraproduct over 𝒰 of the algebras Γ𝑛 by: 

Φ:ℰ ⟶ 𝒜 =∏ 

𝑛,𝒰

  Γ𝑛

𝐺(𝑒𝑖) ⟼ (𝐺𝑛(𝑒𝑖))𝑛∈ℕ∗

∙
 

We will now check the hypothesis of Theorem (3.2.15). 

1. We first check that Φ is state preserving. It suffices to verify it for a product of an 

even number of Gaussians. Take (𝑖1, … , 𝑖2𝑘) ∈ 𝐼
2𝑘, we have by Scholie (3.2.28): 



95 

𝜑 (𝐺(𝑒𝑖1)…𝐺(𝑒𝑖2𝑘)) = ∑  
𝒱∈𝒫2(1,…,𝑘)

𝒱=((𝑠(𝑙),𝑡(𝑙)))
𝑙=1

𝑙=𝑘

𝑞𝑖(𝒱)  ∏⟨𝑒𝑖𝑠(𝑙) , 𝑒𝑖𝑡(𝑙)⟩
𝐻

𝑙=𝑘

𝑙=1

 

                                                      = lim
𝑛→+∞

 ∑  
𝒱∈𝒫2(1,…,𝑘)

𝒱=((𝑠(𝑙),𝑡(𝑙)))
𝑙=1

𝑙=𝑘

𝑞𝑖(𝒱)  ∏⟨𝑒𝑖𝑠(𝑙) , 𝑒𝑖𝑡(𝑙)⟩
𝐻𝑛

𝑙=𝑘

𝑙=1

 

                               = lim𝑛→+∞  𝜑𝑛 (𝐺𝑛(𝑒𝑖1)…𝐺𝑛(𝑒𝑖2𝑘)) 

This implies, in particular that Φ is state preserving. 

2. Condition (a) of Lemma (3.2.13) is satisfied by Scholie (3.2.29). 

3. It suffices to check that for all 𝑖 ∈ 𝐼 and all 𝑡 ∈ ℝ, (𝜎𝑡
𝑛(𝐺𝑛(𝑒𝑖)))

𝑛∈ℕ0

∙
∈ Im Φ̅̅ ̅̅ ̅̅ ̅𝑤∗. Fix 

𝑖 ∈ 𝐼 and 𝑡 ∈ ℝ. For all 𝑛 ∈ ℕ∗ we have 

∥∥𝐴𝑛
−𝑖𝑡𝑒𝑖 − 𝐴

−𝑖𝑡𝑒𝑖∥∥𝐻ℝ
2
= ∫  

ℝ+

|𝑓𝑛
−𝑖𝑡(𝜆) − 𝜆−𝑖𝑡|

2
 d𝜇𝑖(𝜆) 

By the Lebesgue dominated convergence Theorem, it follows that 

lim
𝑛→+∞

 ∥∥𝐴𝑛
−𝑖𝑡𝑒𝑖 − 𝐴

−𝑖𝑡𝑒𝑖∥∥𝐻ℝ
= 0. 

By (26) we deduce that 

lim
𝑛→+∞

 ∥∥𝐺𝑛(𝐴𝑛
−𝑖𝑡𝑒𝑖) − 𝐺𝑛(𝐴

−𝑖𝑡𝑒𝑖)∥∥ = 0 

Thus we have 

(𝜎𝑡
𝑛(𝐺𝑛(𝑒𝑖)))

𝑛∈ℕ∗

∙
= (𝐺𝑛(𝐴𝑛

−𝑖𝑡𝑒𝑖))
𝑛∈ℕ∗

∙
= (𝐺𝑛(𝐴

−𝑖𝑡𝑒𝑖))
𝑛∈ℕ∗

∙
∈ ImΦ̅̅ ̅̅ ̅̅ ̅∥⋅∥ ⊂ ImΦ̅̅ ̅̅ ̅̅ ̅𝑤∗ . 

By Theorem (3.2.15), we deduce our main Theorem: 

Theorem (3.2.30)[130]: Let 𝐻ℝ be a real Hilbert space given with a group of orthogonal 

transformations (𝑈𝑡)𝑡∈ℝ. Then for all 𝑞 ∈ (−1,1) the q-Araki- Woods algebra 

Γ𝑞(𝐻R, (𝑈𝑡)𝑡∈ℝ) is QWEP. 
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Chapter 4 

Most One Cartan Subalgebra and Structural Results with Approximation Properties 

 

We show that if a free ergodic measure-preserving action of a free group 𝐹𝑟 , 2 ≤ 𝑟 ≤
1, on a probability space (𝑋, 𝜇) is profinite then the group measure space factor 𝐿∞(𝑋) ⋊
 𝐹𝑟 has unique Cartan subalgebra, up to unitary conjugacy. As an application, we construct 

an example of a non-amenable solid 𝐼𝐼1 factor N with full fundamental group, i.e. 𝐹(𝑁)  =
 𝑅+
∗ , which is not isomorphic to any interpolated free group factor 𝐿(𝐹𝑡), for 1 <  𝑡 ≤  +∞. 

We finally deduce that the type 𝐼𝐼𝐼1 factors constructed by Connes in the ’70s can never be 

isomorphic to any free Araki-Woods factor, which answers a question of Shlyakhtenko and 

Vaes. 

Section (4.1): On a Class of II𝟏 Factors 

A celebrated theorem of Connes ([28]) shows that all amenable II1 factors are 

isomorphic to the approximately finite-dimensional (AFD) II1 factor 𝑅 of Murray and von 

Neumann ([161]). In particular, all II1 group factors 𝐿(Γ) associated with ICC (infinite 

conjugacy class) amenable groups Γ, and all group measure space II1 factors 𝐿∞(𝑋) ⋊ Γ 

arising from free ergodic measure-preserving (m.p.) actions of countable amenable groups 

Γ on a probability space Γ ↷ 𝑋, are isomorphic to 𝑅. Moreover, by [29], any decomposition 

of 𝑅 as a group measure space algebra is unique, i.e. if 𝑅 = 𝐿∞(𝑋𝑖) ⋊ Γ𝑖 , for some free 

ergodic measure-preserving actions Γ𝑖 ↷ 𝑋𝑖 , 𝑖 = 1,2, then there exists an automorphism of 

𝑅 taking 𝐿∞(𝑋1) onto 𝐿∞(𝑋2). In fact, any two Cartan subalgebras of 𝑅 are conjugate by an 

automorphism of 𝑅. 
Recall in this respect that a Cartan subalgebra 𝐴 in a II1 factor 𝑀 is a maximal abelian 

∗-subalgebra 𝐴 ⊂ 𝑀 with normalizer 𝒩𝑀(𝐴) = {𝑢 ∈ (𝒜) ∣ 𝑢𝐴𝑢
∗ = 𝐴} generating 

𝑀([35],[36],[36]). Its presence amounts to realizing 𝑀 as a generalized, twisted-version of 

the group measure space construction, corresponding to the equivalence relation induced by 

the orbits of some ergodic m.p. action of a countable group, Γ ↷ 𝑋, and a 2 -cocycle, with 

𝐴 = 𝐿∞(𝑋). Decomposing factors this way is important, especially if one can show 

uniqueness of their Cartan subalgebras, because then the classification of the factors reduces 

to the classification of the corresponding actions Γ ↷ 𝑋 up to orbit equivalence ([36], [36]). 

But beyond the amenable case, very little is known about uniqueness, or possible 

nonexistence, of Cartan subalgebras in group factors, or other factors that are a priori 

constructed in different ways than as group measure space algebras. 

We investigate Cartan decomposition properties for a class of nonamenable 𝐼1 factors 

that are in some sense "closest to being amenable". Thus, we consider factors 𝑀 which 

satisfy the complete metric approximation property (c.m.a.p.) of Haagerup ([153]), which 

requires existence of normal, finite rank, completely bounded (cb) maps 𝜙𝑛:𝑀 → 𝑀, such 

that ∥∥𝜙𝑛∥∥cb ≤ 1 and lim∥∥𝜙𝑛(𝑥) − 𝑥∥∥2 = 0, for all 𝑥 ∈ 𝑀, where ∥⋅∥2 denotes the Hilbert 

norm given by the trace of 𝑀 (note that if 𝜙𝑛 could in addition be taken unital, 𝑀 would 

follow amenable). This is the same as saying that the Cowling-Haagerup constant Λcb(𝑀) 
equals 1 (see [147]). The prototype nonamenable 𝑐. 𝑚. 𝑎. 𝑝. factors are the free group factors 

𝐿(𝔽𝑟), 2 ≤ 𝑟 ≤ ∞ ([153]). Like amenability, the c.m.a.p. passes to subfactors and is well-

behaved to inductive limits and tensor products. 

We in fact restrict our attention to c.m.a.p. factors of the form 𝑀 = 𝑄 ⋊ 𝔽𝑟 and to 

subfactors 𝑁 of such 𝑀. The aim is to locate all (or prove possible absence of) diffuse AFD 
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subalgebras 𝑃 ⊂ 𝑁 whose normalizer 𝒩𝑁(𝑃) generates 𝑁. Our general result along these 

lines shows: 

Theorem (4.1.1)[141]: Let 𝔽𝑟 ↷ 𝑄 be an action of a free group on a finite von Neumann 

algebra. Assume 𝑀 = 𝑄 ⋊ 𝔽𝑟 has the complete metric approximation property. If 𝑃 ⊂ 𝑀 is 

a diffuse amenable subalgebra and 𝑁 denotes the von Neumann algebra generated by its 

normalizer 𝒩𝑀(𝑃), then either 𝑁 is amenable relative to 𝑄 inside 𝑀, or 𝑃 can be embedded 

into 𝑄 inside 𝑀. 
The amenability property of a von Neumann subalgebra 𝑁 ⊂ 𝑀 relative to another 

von Neumann subalgebra 𝑄 ⊂ 𝑀 is rather self-explanatory: it requires existence of a norm-

one projection from the basic construction algebra of the inclusion 𝑄 ⊂ 𝑀 onto 𝑁 (see 

Definition (4.1.5)). The "embeddability of a subalgebra 𝑃 ⊂ 𝑀 into another subalgebra 𝑄 ⊂
𝑀 inside an ambient factor" is in the sense of [52], and roughly means that 𝑃 can be 

conjugated into 𝑄 via a unitary element of 𝑀. 
We mention three applications of the theorem, each corresponding to a particular 

choice of 𝔽𝑟 ↷ 𝑄 and solving well-known problems. Thus, taking 𝑄 = ℂ, we get: 

Corollary (4.1.2)[141]: The normalizer of any diffuse amenable subalgebra 𝑃 of a free 

group factor 𝐿(𝔽𝑟) generates an amenable (thus AFD by [28]) von Neumann algebra. 

If we take 𝑄 to be an arbitrary finite factor with Λcb(𝑄) = 1 and let 𝔽𝑟 act trivially 

on it, then 𝑀 = 𝑄⊗‾ 𝐿(𝔽𝑟), Λcb(𝑀) = 1 and the theorem implies: 

Corollary (4.1.3)[141]: If 𝑄 is 𝑎II1 factor with the complete metric approximation property 

then 𝑄⊗‾ 𝐿(𝔽𝑟) does not have Cartan subalgebras. Moreover, if 𝑁 ⊂ 𝑄 ⊗‾ 𝐿(𝔽𝑟) is a 

subfactor of finite index [ 158], then 𝑁 does not have Cartan subalgebras either. 

This shows in particular that any factor of the form (𝔽𝑟)⊗

𝑅, 𝐿(𝔽𝑟1) ⊗
‾ 𝐿(𝔽𝑟2) ⊗

‾ ⋯, and more generally any subfactor of finite index of such a factor, 

has no Cartan decomposition. Besides 𝑄 = 𝑅, 𝐿(𝔽𝑟), other examples of factors with 

Λcb(𝑄) = 1 are the group factors 𝐿(Γ) corresponding to ICC discrete subgroups Γ of 

SO (1, 𝑛) and SU (1, 𝑛) ([33], [32]), as well as any subfactor of a tensor product of such 

factors. None of the factors covered by Corollary (4.1.3) were known until now not to have 

Cartan decomposition. 

Finally, if we take 𝔽𝑟 ↷ 𝑋 to be a profinite 𝑚. 𝑝. action on a probability measure 

space (𝑋, 𝜇), i.e. an action with the property that 𝐿∞(𝑋) is a limit of an increasing sequence 

of 𝔽𝑟-invariant finite-dimensional subalgebras 𝑄𝑛 ⊂ 𝐿
∞(𝑋), 

then 𝑀 = 𝐿∞(𝑋) ⋊ 𝔽𝑟 is an increasing limit of the algebras 𝑄𝑛 ⋊ 𝔽𝑟 , each one of which is 

an amplification of 𝐿(𝔽𝑟). Since c.m.a.p. behaves well to amplifications and inductive 

limits, it follows that 𝑀 has c.m.a.p., so by applying the theorem and (A.1 in [51]) we get: 

Corollary (4.1.4)[141]: If 𝔽𝑟 ↷ 𝑋 is a free ergodic measure-preserving profinite action, 

then 𝐿∞(𝑋) is the unique Cartan subalgebra of the 𝐼𝐼  1-factor 𝐿∞(𝑋) ⋊ 𝔽𝑟 , up to unitary 

conjugacy. 

The above corollary produces the first examples of nonamenable 𝐼𝐼1 factors with all 

Cartan subalgebras unitary conjugate. Indeed, the "unique Cartan decomposition" results in 

[51], [52], [156] only showed conjugacy of Cartan subalgebras satisfying certain properties. 

This was still enough for differentiating factors of the form 𝐿∞(𝕋2) ⋊ 𝔽𝑟 and calculating 

their fundamental group in [51], by using [150]. Similarly here, when combined with 

Gaboriau's results, Corollary (4.1.4) shows that any factor 𝐿∞(𝑋) ⋊ 𝔽𝑟 , 2 ≤ 𝑟 < ∞, arising 

from a free ergodic profinite action 𝔽𝑟 ↷ 𝑋, has trivial fundamental group. Also, if 𝔽𝑠 ↷ 𝑋 

is another such action, with 𝑟 < 𝑠 ≤ ∞, then 𝐿∞(𝑋) ⋊ 𝔽𝑟L̸
∞
(𝑌) ⋊ 𝔽𝑠. It can be shown that 
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the factors considered in [51], [52], [156] cannot even be embedded into the factors arising 

from profinite actions of free groups. Note that the uniqueness of the Cartan subalgebras of 

the AFD factor 𝑅 is up to conjugacy by automorphisms ([29]), but not up to unitary 

conjugacy, i.e. up to conjugacy by inner automorphisms. Indeed, by [36], [36] there exist 

uncountably many nonunitary conjugate Cartan subalgebras in 𝑅. Finally, note that Connes 

and Jones constructed examples of II1 factors 𝑀 with two Cartan subalgebras that are not 

conjugate by automorphisms of 𝑀 ([30]). 

Corollary (4.1.2) strengthens two well-known in-decomposability properties of free 

group factors: Voiculescu's result in [172], showing that 𝐿(𝔽𝑟) has no Cartan subalgebras, 

which in fact exhibited the first examples of factors with no Cartan decomposition, and in 

[162], showing that the commutant in 𝐿(𝔽𝑟) of any diffuse subalgebra must be amenable 

(𝐿(𝔽𝑟) are solid), which itself strengthened the in-decomposability of 𝐿(𝔽𝑟) into tensor 

product of II1 factors ( primeness of free group factors) in [152]. 

One should point out that Connes already constructed in [146] a factor 𝑁 that does 

not admit a "classic" group measure space decomposition 𝐿∞(𝑋) ⋊ Γ. 
His factor 𝑁 is defined as the fixed point algebra of an appropriate finite group of 

automorphisms of 𝑀 = 𝑅⊗ 𝐿(𝔽𝑟). But it was left open whether 𝑁 cannot be obtained as a 

generalized group measure space factor either, i.e. whether it does not have Cartan 

decomposition. Corollary (4.1.3) shows that indeed it does not. 

The proof of the theorem follows a "deformation/rigidity" strategy, being inspired by 

arguments in [169] and [51]. A key role is played by a property of group actions Γ ↷ 𝑃 

called weak compactness, requiring 𝐿2(𝑃) to be a limit of finite dimensional subspaces that 

are almost invariant to both the left multiplication by elements in 𝑃 and to the Γ-action, in 

the Hilbert-Schmidt norm. In case 𝑃 = 𝐿∞(𝑋), this property is weaker than profiniteness 

and compactness, and it is an orbit equivalence invariant. The first step towards proving the 

theorem is to show that if a II1 factor 𝑀 has c.m.a.p. then given any AFD subalgebra 𝑃 ⊂ 𝑀 

the action implemented on 𝑃 by its normalizer, 𝒩𝑀(𝑃) ↷ 𝑃, is weakly compact (see 

Theorem (4.1.22)). Note that this implies wreath product factors 𝑀 = 𝐵Γ ⋊ Γ, with Γ 

nonamenable and 𝐵 ≠ ℂ, can never have the c.m.a.p. In particular, Λcb(𝐻 ∖ Γ) > 1, for all 

𝐻 ≠ 1, a fact that was open until now. 

To explain the rest of the argument, assume for simplicity 𝑀 = 𝐿(𝔽𝑟). Let 𝑃 ⊂ 𝑀 be 

AFD diffuse, 𝑁 = 𝒩𝑀(𝑃)
′′. Taking 

𝜂 ∈ 𝐻𝑆(𝐿2(𝑀)) ≃ 𝐿2(𝑀)⊗‾ 𝐿2(𝑀‾ ) 
to be Følner-type elements, as given by the weak compactness of 𝒩𝑀(𝑃) ↷ 𝑃, and 𝛼𝑡 the 

"malleable deformation" of 𝐿(𝔽𝑟) ∗ 𝐿(𝔽𝑟) in [168], [169], it follows that for 𝑡 small the 

elements (𝛼𝑡⊗1)(𝜂) ∈ 𝐿2(𝑀 ∗ 𝑀)⊗‾ 𝐿2(𝑀‾ ) are still "almost invariant," in the above 

sense. We finally use this to prove that 𝐿2(𝑁) is weakly contained in a multiple of the coarse 

bimodule 𝐿2(𝑀)⊗‾ 𝐿2(𝑀‾ ), thus showing 𝑁 is AFD by the characterizations of amenability 

in [28]. All this is the subject of Theorem (4.1.23). 

We recall a number of known results needed in the proofs. This includes a discussion 

of relative amenability, intertwining lemmas and several facts on the complete metric 

approximation property. We prove that for each 2 ≤ 𝑟 ≤ ∞ there exist uncountably many 

non orbit equivalent profinite actions 𝔽𝑟 ↷ 𝑋, which by Corollary (4.1.4) provide 

uncountably many nonisomorphic factors 𝐿∞(𝑋) ⋊ 𝔽𝑟 as well (see Corollary (4.1.39)). 

We fix conventions for (semi-)finite von Neumann algebras, but before that we note 

that the symbol "Lim" will be used for a state on ℓ∞(ℕ), or more generally on ℓ∞(𝐼) with 𝐼 
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directed, which extends the ordinary limit, and that the abbreviation "u.c.p." stands for 

"unital completely positive." We say a map is normal if it is ultraweakly continuous. 

Whenever a finite von Neumann algebra 𝑀 is being considered, it comes equipped with a 

distinguished faithful normal tracial state, denoted by 𝜏. Any group action on a finite von 

Neumann algebra is assumed to preserve the tracial state 𝜏. If 𝑀 = 𝐿(Γ) is a group von 

Neumann algebra, then the tracial state 𝜏 is given by 𝜏(𝑥) = ⟨𝑥𝛿1, 𝛿1⟩ for 𝑥 ∈ 𝐿(Γ). Any 

von Neumann subalgebra 𝑃 ⊂ 𝑀 is assumed to contain the unit of 𝑀 and inherits the tracial 

state 𝜏 from 𝑀. The unique 𝜏-preserving conditional expectation from 𝑀 onto 𝑃 is denoted 

by 𝐸𝑃 . We denote by ℐ(𝑀) the center of 𝑀; by थ(𝑀) the group of unitary elements in 𝑀; 
and by 

𝒩𝑀(𝑃) = {𝑢 ∈ 𝓊(𝑀): (Ad 𝑢)(𝑃) = 𝑃} 
the normalizing group of 𝑃 in 𝑀, where (Ad 𝑢)(𝑥) = 𝑢𝑥𝑢∗. A maximal abelian von 

Neumann subalgebra 𝐴 ⊂ 𝑀 satisfying 𝒩𝑀(𝐴)
′′ = 𝑀 is called a Cartan subalgebra. We 

note that if Γ ↷ 𝑋 is an ergodic essentially-free probabilitymeasure-preserving action, then 

𝐴 = 𝐿∞(𝑋) is a Cartan subalgebra in the crossed product 𝐿∞(𝑋) ⋊ Γ. ( See [36],[36].) 

See Section IX.2 of [58] for the details of the following facts on noncommutative 𝐿𝑝-

spaces. Let 𝒩 be a semi-finite von Neumann algebra with a faithful normal semi-finite trace 

Tr. For 1 ≤ 𝑝 < ∞, we define the 𝐿𝑝-norm on 𝒩 by ∥ 𝑥 ∥𝑝= Tr (|𝑥|
𝑝)1/𝑝. By completing 

{𝑥 ∈ 𝒩: ∥ 𝑥 ∥𝑝< ∞} with respect to the 𝐿𝑝-norm, we obtain a Banach space 𝐿𝑝(𝒩). We 

only need 𝐿1(𝒩), 𝐿2(𝒩) and 𝐿∞(𝒩) = 𝒩. The trace Tr extends to a contractive linear 

functional on 𝐿1(𝒩). 
We occasionally write �̂� for 𝑥 ∈ 𝒩 when viewed as an element in 𝐿2(𝒩). For any 

1 ≤ 𝑝, 𝑞, 𝑟 ≤ ∞ with 1/𝑝 + 1/𝑞 = 1/𝑟, there is a natural product map 

𝐿𝑝(𝒩) × 𝐿𝑞(𝒩) ∋ (𝑥, 𝑦) ↦ 𝑥𝑦 ∈ 𝐿𝑟(𝒩) 
which satisfies ∥ 𝑥𝑦 ∥𝑟≤∥ 𝑥 ∥𝑝∥ 𝑦 ∥𝑞 for any 𝑥 and 𝑦. The Banach space 𝐿1(𝒩) is identified 

with the predual of 𝒩 under the duality 𝐿1(𝒩) ×𝒩 ∋ (𝜁, 𝑥) ↦ Tr (𝜁𝑥) ∈ ℂ. 
The Banach space 𝐿2(𝒩) is identified with the GNS-Hilbert space of (𝒩, Tr). 

Elements in 𝐿𝑝(𝒩) can be regarded as closed operators on 𝐿2(𝒩) which are affiliated with 

𝒩 and hence in addition to the above-mentioned product, there are well-defined notion of 

positivity, square root, etc. We will use many times the generalized Powers-Størmer 

inequality (Theorem XI.1.2 in [58]): 

∥ 𝜂 − 𝜁 ∥2
2≤ ∥∥𝜂2 − 𝜁2∥∥1 ≤∥ 𝜂 + 𝜁 ∥2∥ 𝜂 − 𝜁 ∥2                  (1) 

for every 𝜂, 𝜁 ∈ 𝐿2(𝒩)+.The Hilbert space 𝐿2(𝒩) is an 𝒩-bimodule such that ⟨𝑥𝜉𝑦, 𝜂⟩ =
Tr (𝑥𝜉𝑦𝜂∗) for 𝜉, 𝜂 ∈ 𝐿2(𝒩) and 𝑥, 𝑦 ∈ 𝒩. We recall that this gives the canonical 

identification between the commutant 𝒩′ of 𝒩 in 𝔹(𝐿2(𝒩)) and the opposite von 

Neumann algebra 𝒩op = {𝑥op : 𝑥 ∈ 𝒩} of 𝒩. Moreover, the opposite von Neumann 

algebra 𝒩∘𝑝 is ∗-isomorphic to the complex conjugate von Neumann algebra �̅� = {𝑥‾: 𝑥 ∈

𝒩} of 𝒩 under the ∗-isomorphism 𝑥op ↦ 𝑥‾∗. 
Whenever 𝒩0 ⊂ 𝒩 is a von Neumann subalgebra such that the restriction of Tr to 𝒩0 

is still semi-finite, we identify 𝐿𝑝(𝒩0) with the corresponding subspace of 𝐿𝑝(𝒩). 
Anticipating a later use, we consider the tensor product von Neumann algebra 

(𝒩 ⊗‾ 𝑀, Tr ⊗ 𝜏) of a semi-finite von Neumann algebra (𝒩, Tr) and a finite von Neumann 

algebra (𝑀, 𝜏). Then, 𝒩 ≅𝒩⊗‾ ℂ1 ⊂ 𝒩⊗‾ 𝑀 and the restriction of Tr ⊗ 𝜏 to 𝒩 is Tr. 
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Moreover, the conditional expectation id ⊗ 𝜏:𝒩⊗‾ 𝑀 → 𝒩− extends to a contraction from 

𝐿1(𝒩 ⊗‾ 𝑀) → 𝐿1(𝒩). 
Let 𝑄 ⊂ 𝑀 be finite von Neumann algebras. Then, the conditional expectation 𝐸𝑄 can 

be viewed as the orthogonal projection 𝑒𝑄 from 𝐿2(𝑀) onto 𝐿2(𝑄) ⊂ 𝐿2(𝑀). It satisfies 

𝑒𝑄𝑥𝑒𝑄 = 𝐸𝑄(𝑥)𝑒𝑄 for every 𝑥 ∈ 𝑀. The 𝑏𝑎 − sic construction ⟨𝑀, 𝑒𝑄⟩ is the von Neumann 

subalgebra of 𝔹(𝐿2(𝑀)) generated by 𝑀 and 𝑒𝑄 . We note that ⟨𝑀, 𝑒𝑄⟩ coincides with the 

commutant of the right 𝑄-action in 𝔹(𝐿2(𝑀)). The linear span of {𝑥𝑒𝑄𝑦: 𝑥, 𝑦 ∈ 𝑀} is an 

ultraweakly dense *-subalgebra in ⟨𝑀, 𝑒𝑄⟩ and the basic construction ⟨𝑀, 𝑒𝑄⟩ comes 

together with the faithful normal semi-finite trace Tr such that Tr (𝑥𝑒𝑄𝑦) = 𝜏(𝑥𝑦). See 

Section 1.3 in [51] for more information on the basic construction. 

We adapt here Connes' characterization of amenable von Neumann algebras to the 

relative situation. Recall that for von Neumann algebras 𝑁 ⊂ 𝒩, a state 𝜑 on 𝒩 is said to 

be 𝑁-central if 𝜑 ∘ Ad (𝑢) = 𝜑 for any 𝑢 ∈ (𝒩), or equivalently if 𝜑(𝑎𝑥) = 𝜑(𝑥𝑎) for all 

𝑎 ∈ 𝑁 and 𝑥 ∈ 𝒩. 
Definition (4.1.5)[141]: Let 𝑄,𝑁 ⊂ 𝑀 be finite von Neumann algebras. We say 𝑁 is 

amenable relative to 𝑄 inside 𝑀, denoted by 𝑁 ≪𝑀 𝑄, if any of the conditions in Theorem 

(4.1.6) holds. We say 𝑄 is 𝑐𝑜-amenable in 𝑀 if 𝑀 ≪𝑀 𝑄 (cf. [167], [143]) 

Theorem (4.1.6)[141]: Let 𝑄,𝑁 ⊂ 𝑀 be finite von Neumann algebras. Then, the following 

are equivalent: 

1. There exists a 𝑁-central state 𝜑 on ⟨𝑀, 𝑒𝑄⟩ such that 𝜑|𝑀 = 𝜏. 

2. There exists a 𝑁-central state 𝜑 on ⟨𝑀, 𝑒𝑄⟩ such that 𝜑 is normal on 𝑀 and faithful 

on 𝒵(𝑁′ ∩𝑀). 

3. There exists a conditional expectation Φ from ⟨𝑀, 𝑒𝑄⟩ onto 𝑁 such that Φ|𝑀 = 𝐸𝑁 . 

4. There exists a net (𝜉𝑛) in 𝐿2⟨𝑀, 𝑒𝑄⟩ such that lim𝑛  ⟨𝑥𝜉𝑛, 𝜉𝑛⟩ = 𝜏(𝑥) for every 𝑥 ∈ 𝑀 

and that lim∥∥[𝑢, 𝜉𝑛]∥∥2 = 0 for every 𝑢 ∈ 𝑁. 

Proof. The proof follows a standard recipe of the theory (cf. [28], [40], [167]). The 

implication (a)⇒(b) is obvious. To prove the converse, assume condition (b). Then, there 

exists 𝑏 ∈ 𝐿1(𝑀)+such that 𝜑(𝑥) = 𝜏(𝑏𝑥) for 𝑥 ∈ 𝑀. Since 𝜑 is 𝑁-central, one has 𝑢𝑏𝑢∗ =
𝑏 for all 𝑢 ∈ 𝑼(𝑁), i.e. 𝑏 ∈ 𝐿1(𝑁′ ∩𝑀). We consider the directed set 𝐼 of finite subsets of 

𝒖(𝑁′ ∩𝑀). For each element 𝑖 = {𝑢1, … , 𝑢𝑛} ∈ 𝐼 and 𝑚 ∈ ℕ, we define 𝑏𝑖 =

𝑛−1∑𝑢𝑘𝑏𝑢𝑘
∗ ∈ 𝐿1(𝑁′ ∩𝑀)+, 𝑐𝑖,𝑚 = 𝜒(1/𝑚,∞)(𝑏𝑖)𝑏𝑖

−1/2
∈ 𝑁′ ∩𝑀 and 

𝜓𝑖,𝑚(𝑥) =
1

𝑛
∑  

𝑛

𝑘=1

𝜑(𝑢𝑘
∗𝑐𝑖,𝑚𝑥𝑐𝑖,𝑚𝑢𝑘) 

for 𝑥 ∈ ⟨𝑀, 𝑒𝑄⟩. Since 𝑐𝑖,𝑚𝑢𝑘 ∈ 𝑁
′ ∩𝑀, the positive linear functionals 𝜓𝑖,𝑚 are still 𝑁-

central and 𝜓𝑖,𝑚(𝑥) = 𝜏(𝜒(1/𝑚,∞)(𝑏𝑖)𝑥) for 𝑥 ∈ 𝑀. We note that 

lim
𝑖
 lim
𝑚
 𝜒(1/𝑚,∞)(𝑏𝑖) = lim

𝑖
  𝑠(𝑏𝑖) = lim

𝑖
 ⋁  𝑠(𝑢𝑘𝑏𝑢𝑘

∗) = 𝑧, 

where 𝑠(⋅) means the support projection and 𝑧 is the central support projection of 𝑏 in 𝑁′ ∩
𝑀. Since 𝜑(𝑧⊥) = 𝜏(𝑏𝑧⊥) = 0 and 𝜑 is faithful on ℐ(𝑁′ ∩𝑀), one has 𝑧 = 1. Hence, the 

state 𝜓 = Lim𝑖  Lim𝑚 𝜓𝑖,𝑚 on ⟨𝑀, 𝑒𝑄⟩ is 𝑁-central and satisfies 𝜓|𝑀 = 𝜏. This proves (a). 
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We prove (a)⇒(d): Let a 𝑁-central state 𝜑 on ⟨𝑀, 𝑒𝑄⟩ be given such that 𝜑|𝑀 = 𝜏. 

Take a net (𝜁𝑛) of positive norm-one elements in 𝐿1⟨𝑀, 𝑒𝑄⟩ such that Tr (𝜁𝑛 ⋅) converges to 

𝜑 pointwise. Then, for every 𝑥 ∈ ⟨𝑀, 𝑒𝑄⟩ and 𝑢 ∈ (𝒩), one has 

lim
𝑛
 Tr ((𝜁𝑛 − Ad (𝑢)𝜁𝑛)𝑥) = 𝜑(𝑥) − 𝜑(Ad (𝑢

∗)(𝑥)) = 0 

by assumption. It follows that for every 𝑢 ∈∼ (𝑁), the net 𝜁𝑛 − Ad (𝑢)(𝜁𝑛) in 𝐿1⟨𝑀, 𝑒𝑄⟩ 
converges to zero in the weak-topology. By the Hahn-Banach separation theorem, one may 

assume, by passing to convex combinations, that it converges to zero in norm. Thus, 

∥∥[𝑢, 𝜁𝑛]∥∥1 → 0 for every 𝑢 ∈ थ(𝑁). By (1), if we define 𝜉𝑛 = 𝜁𝑛
1/2

∈ 𝐿2⟨𝑀, 𝑒𝑄⟩, then one 

has ∥∥[𝑢, 𝜉𝑛]∥∥2 → 0 for every 𝑢 ∈ 𝒰(𝑁). 

Moreover, for any 𝑥 ∈ 𝑀, 
lim
𝑛
 ⟨𝑥𝜉𝑛, 𝜉𝑛⟩ = lim

𝑛
 Tr(𝜁𝑛𝑥) = 𝜑(𝑥) = 𝜏(𝑥). 

We prove (d)⇒(c): For each 𝑥 ∈ ⟨𝑀, 𝑒𝑄⟩, denote 𝜑(𝑥) = Lim𝑛 ⟨𝑥𝜉𝑛, 𝜉𝑛⟩ Note that 𝜑 is an 

𝑁-central sate on ⟨𝑀, 𝑒𝑄⟩ with 𝜑𝑀 = 𝜏. Since 

|𝜑(𝑏𝑐𝑦𝑧)| = |𝜑(𝑐𝑦𝑧𝑏)| ≤ 𝜑(𝑐𝑦𝑦∗𝑐∗)1/2𝜑(𝑏∗𝑧∗𝑧𝑏)1/2 ≤ ‖𝑏‖2‖𝑐‖2‖𝑦‖‖𝑧‖ 

for every 𝑏, 𝑐 ∈ 𝑁 and 𝑦, 𝑧 ∈ ⟨𝑀, 𝑒𝑄⟩, one has |𝜑(𝑎𝑥)| ≤∥ 𝑎 ∥1∥ 𝑥 ∥ for every 𝑎 ∈ 𝑁 and 

𝑥 ∈ ⟨𝑀, 𝑒𝑄⟩. Hence, for every 𝑥 ∈ ⟨𝑀, 𝑒𝑄⟩, we may define Φ(𝑥) ∈ 𝑁 = 𝐿1(𝑁)∗ by the 

duality 𝜏(𝑎Φ(𝑥)) = 𝜑(𝑎𝑥) for all 𝑎 ∈ 𝑁. It is clear that Φ is a conditional expectation onto 

𝑁 such that Φ|𝑀 = 𝐸𝑁 . 

We prove (c)⇒(a): If there is a conditional expectation Φ from ⟨𝑀, 𝑒𝑄⟩ onto 𝑁 such 

that Φ|𝑀 = 𝐸𝑁 , then 𝜑 = 𝜏 ∘ Φ is an 𝑁-central state such that 𝜑|𝑀 = 𝜏. 
Let 𝑁0 ⊂ 𝑀 be a von Neumann subalgebra whose unit 𝑒 does not coincide with the 

unit of 𝑀. We say 𝑁0 is amenable relative to 𝑄 inside 𝑀, denoted by 𝑁0 ⋖𝑀 𝑄, if 𝑁0 +
ℂ(1 − 𝑒) ⋖𝑀 𝑄. We observe that 𝑁0 ⋖𝑀 𝑄 if and only if there exists an 𝑁0-central state 𝜑 

on 𝑒⟨𝑀, 𝑒𝑄⟩𝑒 such that 𝜑(𝑒𝑥𝑒) = 𝜏( exe )/𝜏(𝑒) for 𝑥 ∈ 𝑀. 

Corollary (4.1.7)[141]: Let 𝑄1, … , 𝑄𝑘 , 𝑁 ⊂ 𝑀 be finite von Neumann algebras and ⊂⊂ (𝑁) 
be a subgroup such that 𝓎′′ = 𝑁. Assume that for every nonzero projection 𝑝 ∈ ℒ(𝑁′ ∩𝑀), 

there exists a net (𝜉𝑛) of vectors in a multiple of ⨁𝑗=1
𝑘  𝐿2 ⟨𝑀, 𝑒𝑄𝑗⟩ such that: 

1. limsup∥∥𝑥𝜉𝑛∥∥2 ≤∥ 𝑥 ∥2 for all 𝑥 ∈ 𝑀; 

2. lim inf∥∥𝑝𝜉𝑛∥∥2 > 0; and 

3. lim∥∥[𝑢, 𝜉𝑛]∥∥2 = 0 for every 𝑢 ∈ 𝒢. 

Then, there exist projections 𝑝1, … , 𝑝𝑘 ∈ ℰ(𝑁
′ ∩𝑀) such that ∑𝑗=1

𝑘  𝑝𝑗 = 1 and 𝑁𝑝𝑗 ≪𝑀 𝑄𝑗 

for every 𝑗. 
Proof. We observe that if there exists an increasing net (𝑒𝑖)𝑖 of projections in 𝒵(𝑁′ ∩𝑀) 
such that 𝑁𝑒𝑖 ⋖𝑀 𝑄 for all 𝑖, then 𝑁𝑒 ⋖𝑀 𝑄 for 𝑒 = sup𝑒𝑖 . Hence, by Zorn's lemma, there 

is a maximal 𝑘-tuple (𝑝1, … , 𝑝𝑘) of projections in 𝒵(𝑁′ ∩𝑀) such that ∑𝑗  𝑝𝑗 ≤ 1 and 

𝑁𝑝𝑗 ≪𝑀 𝑄𝑗 for every 𝑗. We prove that ∑𝑗  𝑝𝑗 = 1. Suppose by contradiction that 𝑝 = 1 −

∑𝑗  𝑝𝑗 ≠ 0, and take a net (𝜉𝑛) as in the statement of the corollary. We may assume that all 

𝜉𝑛 's are in a multiple of 𝐿2⟨𝑀, 𝑒𝑄𝑗⟩ for some fixed 𝑗 ∈ {1,… , 𝑘}. We define a state 𝜓 on 

⟨𝑀, 𝑒𝑄𝑗⟩ by 

𝜓(𝑥) = Lim𝑛 ∥∥𝑝𝜉𝑛∥∥2
−2⟨𝑥𝑝𝜉𝑛, 𝑝𝜉𝑛⟩ 
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for 𝑥 ∈ ⟨𝑀, 𝑒𝑄𝑗⟩. It is not hard to see that 𝜓(𝑝) = 1,𝜓 ∘ Ad (𝑢) = 𝜓 for every 𝑢 ∈ 𝒢 and 

𝜓(𝑥∗𝑥) ≤ (lim inf∥∥𝑝𝜉𝑛∥∥)
−2 ∥ 𝑥𝑝 ∥2

2 for every 𝑥 ∈ 𝑀. It follows that 𝜓|𝑀 is normal and 𝜓 

is 𝑁-central. Let 𝑞 be the minimal projection in 𝒵(𝑁′ ∩𝑀) such that 𝜓(𝑞) = 1. We finish 

the proof by showing 𝑁𝑟 ≪𝑀 𝑄𝑗 for 𝑟 = 𝑝𝑗 + 𝑞 (which gives the desired contradiction to 

maximality). Since 𝑁𝑝𝑗 ⋖𝑀 𝑄𝑗 , there is an 𝑁𝑝𝑗-central state 𝜑 on 𝑝𝑗⟨𝑀, 𝑒𝑗⟩𝑝𝑗 such that 

𝜑(𝑝𝑗𝑥𝑝𝑗) = 𝜏(𝑝𝑗𝑥𝑝𝑗)/𝜏(𝑝𝑗) for 𝑥 ∈ 𝑀. We fix a state extension �̃� of 𝜏 on ⟨𝑀, 𝑒𝑄𝑗⟩ and 

define a state �̃� on ⟨𝑀, 𝑒𝑄𝑗⟩ by 

�̃�(𝑥) = 𝜏(𝑝𝑗)𝜑(𝑝𝑗𝑥𝑝𝑗) + 𝜏(𝑞)𝜓(𝑞𝑥𝑞) + �̃�((1 − 𝑟)𝑥(1 − 𝑟)) 

for 𝑥 ∈ ⟨𝑀, 𝑒𝑄𝑗⟩. The state �̃� is (𝑁𝑟 + ℂ(1 − 𝑟))-central, normal on 𝑀 and faithful on 

𝒵((𝑁𝑟 + ℂ(1 − 𝑟))′ ∩𝑀) = ℓ(𝑁′ ∩𝑀)𝑟 + 𝒵(𝑀)(1 − 𝑟). Hence Theorem (4.1.6) implies 

𝑁𝑟 ≪𝑀 𝑄𝑗 . 

Compare the following result with [167] and [143]. 

Proposition (4.1.8)[141]: Let 𝑃,𝑄, 𝑁 ⊂ 𝑀 be finite von Neumann algebras. Then, the 

following are true: 

1. Suppose that 𝑀 = 𝑄 ⋊ Γ is the crossed product of 𝑄 by a group Γ. Then, 𝐿(Γ) ≪𝑀 𝑄 

if and only if Γ is amenable. 

2. Suppose that 𝑄 is AFD. Then, 𝑃 ≪𝑀 𝑄 if and only if 𝑃 is AFD. 

3. If 𝑁 ⋖𝑀 𝑃 and 𝑃 ≪𝑀 𝑄, then 𝑁 ≪𝑀 𝑄. 
Proof. Denote by 𝜆𝑔 the unitary element in 𝑀 which implements the action of 𝑔 ∈ Γ. Since 

𝑒𝑄𝜆(𝑔)𝑒𝑄 = 0 for 𝑔 ∈ Γ ∖ {1}, the projections {𝜆𝑔𝑒𝑄𝜆𝑔
∗ : 𝑔 ∈ Γ} are mutually orthogonal and 

generate an isomorphic copy of ℓ∞(Γ) in ⟨𝑀, 𝑒𝑄⟩. 

Hence, if there exists an 𝐿(Γ)-central state on ⟨𝑀, 𝑒𝑄⟩, then its restriction to ℓ∞(Γ) 

becomes a Γ-invariant mean. This proves the "only if" part of assertion (a). 

The "if" part is trivial. The assertion (b) easily follows from the fact that ⟨𝑀, 𝑒𝑄⟩ is 

injective if (and only if) 𝑄 is AFD([28]). 

Let us finally prove (c). Fix a conditional expectation Φ from ⟨𝑀, 𝑒𝑄⟩ onto 𝑃 such 

that Φ|𝑀 = 𝐸𝑃 . For 𝜉 = ∑𝑖=1
𝑚  𝑎𝑖⊗𝑏𝑖 ∈ 𝑀⊗𝑀, we denote 

∥ 𝜉 ∥2=
∥
∥
∥
∥
∑  

𝑚

𝑖=1

 𝑎𝑖𝑒𝑃𝑏𝑖
∥
∥
∥
∥

𝐿2⟨𝑀,𝑒𝑃⟩

= (∑ 

𝑖,𝑗

 𝜏(𝑏𝑖
∗𝐸𝑃(𝑎𝑖

∗𝑎𝑗)𝑏𝑗))

1
2

. 

For 𝜉 = ∑𝑖=1
𝑚  𝑎𝑖⊗𝑏𝑖 and 𝜂 = ∑𝑗=1

𝑛  𝑐𝑗⊗𝑑𝑗 in 𝑀⊗𝑀, we define a linear functional 𝜑𝜂,𝜉 

on ⟨𝑀, 𝑒𝑄⟩ by 

𝜑𝜂,𝜉(𝑥) =∑  

𝑖,𝑗

𝜏(𝑏𝑖
∗Φ(𝑎𝑖

∗𝑥𝑐𝑗)𝑑𝑗). 

We claim that ∥∥𝜑𝜂,𝜉∥∥ ≤∥ 𝜂 ∥2∥ 𝜉 ∥2. Indeed, if Φ(𝑥) = 𝑉∗𝜋(𝑥)𝑉 is a Stinespring dilation, 

then one has 

𝜑𝜂,𝜉(𝑥) = ⟨𝜋(𝑥)∑  

𝑗

 𝜋(𝑐𝑗)𝑉𝑑𝑗1̂𝑃,∑  

𝑖

 𝜋(𝑎𝑖)𝑉𝑏𝑖1̂𝑃⟩ 
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and ∥∥∑𝑖  𝜋(𝑎𝑖)𝑉𝑏𝑖1̂𝑃∥∥ =∥ 𝜉 ∥2 and likewise for 𝜂. It follows that 𝜑𝜂,𝜉 is defined for 𝜉, 𝜂 ∈

𝐿2⟨𝑀, 𝑒𝑃⟩ in such a way that ∥∥𝜑𝜂,𝜉∥∥ ≤∥ 𝜂 ∥2∥ 𝜉 ∥2. Now take a net of unit vectors (𝜉𝑛) in 

𝐿2⟨𝑀, 𝑒𝑃⟩ satisfying condition (d) in Theorem (4.1.6), and let 𝜑 = Lim 𝜑𝜉𝑛,𝜉𝑛 be the state 

on ⟨𝑀, 𝑒𝑄⟩. Then, one has 

𝜑 ∘ Ad (𝑢) = Lim𝑛 𝜑Ad (𝑢)(𝜉𝑛),Ad (𝑢)(𝜉𝑛) = Lim𝑛 𝜑𝜉𝑛,𝜉𝑛 = 𝜑 

for all 𝑢 ∈ (𝒩) and 

𝜑(𝑥) = Lim𝑛 ⟨𝑥𝜉𝑛, 𝜉𝑛⟩𝐿2⟨𝑁,𝑒𝑃⟩ = 𝜏(𝑥) 

for all 𝑥 ∈ 𝑀. This proves that 𝑁 ≪𝑀 𝑄. 
We extract from [51], [52] some results which are needed later. The following are 

Theorem A.1 in [51] and its corollary (also, a particular case of 2.1 in [52]). 

Theorem (4.1.9)[141]: Let 𝑁 be a finite von Neumann algebra and 𝑃, 𝑄 ⊂ 𝑁 be von 

Neumann subalgebras. Then, the following are equivalent: 

1. There exists a nonzero projection 𝑒 ∈ ⟨𝑁, 𝑒𝑄⟩ with Tr(𝑒) < ∞ such that the 

ultraweakly closed convex hull of {𝑤∗𝑒𝑤:𝑤 ∈ (𝒫)} does not contain 0. 
2. There exist nonzero projections 𝑝 ∈ 𝑃 and 𝑞 ∈ 𝑄, a normal *-homomorphism 𝜃 ∶

 𝑝𝑃𝑝 → 𝑞𝑄𝑞 and a nonzero partial isometry 𝑣 ∈ 𝑁 such that for all 𝑥 ∈ 𝑝𝑃𝑝,  𝑥𝑣 =
𝑣𝜃(𝑥) and 𝑣∗𝑣 ∈ 𝜃(𝑝𝑃𝑝)′ ∩ 𝑞𝑁𝑞, 𝑣𝑣∗ ∈ 𝑝(𝑃′ ∩ 𝑁)𝑝. 

Definition (4.1.10)[141]: Let 𝑃, 𝑄 ⊂ 𝑁 be finite von Neumann algebras. Following [52], 

we say that 𝑃 embeds into 𝑄 inside 𝑁, and write 𝑃 ⪯𝑁 𝑄, if any of the conditions in Theorem 

(4.1.9) holds. 

Let 𝜙 be a 𝜏-preserving u.c.p. map on 𝑁. Then, 𝜙 extends to a contraction 𝑇𝜙 on 

𝐿2(𝑁) by 𝑇𝜙(�̂�) = 𝜙(𝑥)̂. Suppose that 𝜙|𝑄 = id𝑄. Then, 𝜙 automatically satisfies 

𝜙(𝑎𝑥𝑏) = 𝑎𝜙(𝑥)𝑏 for any 𝑎, 𝑏 ∈ 𝑄 and 𝑥 ∈ 𝑁. It follows that 𝑇𝜙 ∈  𝔹(𝐿
2(𝑁)) commutes 

with the right action of 𝑄, i.e., 𝑇𝜙 ∈ ⟨𝑁, 𝑒𝑄⟩. We say 𝜙 is compact over 𝑄 if 𝑇𝜙 belongs to 

the "compact ideal" of ⟨𝑁, 𝑒𝑄⟩ (see [51]). If 𝜙 is compact over 𝑄, then for any 𝜀 > 0, the 

spectral projection 𝑒 = 𝜒[𝜀,1](𝑇𝜙
∗𝑇𝜙) ∈ ⟨𝑁, 𝑒𝑄⟩ has finite Tr (𝑒) and 

⟨𝑤∗𝑒𝑤1̂, 1̂⟩
𝐿2(𝑁)

≥ ⟨𝑇𝜙
∗𝑇𝜙�̂�, �̂�⟩𝐿2(𝑁)

− 𝜀 =∥ 𝜙(𝑤) ∥2
2− 𝜀 

for all 𝑤 ∈ 𝒰(𝑃). These observations imply the following corollary [51]. 

Corollary (4.1.11)[141]: Let 𝑃,𝑄 ⊂ 𝑁 be finite von Neumann algebras. Suppose that 𝜙 is 

a 𝜏-preserving 𝑢. 𝑐. 𝑝. map on 𝑁 such that 𝜙|𝑄 = id𝑄 and 𝜙 is compact over 𝑄. If 

inf{∥ 𝜙(𝑤) ∥2: 𝑤 ∈ 𝒰(𝑃)} > 0, then 𝑃 ⪯𝑁 𝑄. 
Finally, recall that A.1 in [51] shows the following: 

Lemma (4.1.12)[141]: Let 𝐴 and 𝐵 be maximal abelian *-subalgebras of a type 𝐼𝐼1− factor 

𝑁. If 𝐴 ⪯𝑁 𝐵, then there exists a nonzero partial isometry 𝑣 ∈ 𝑁 such that 𝑣∗𝑣 ∈ 𝐴, 𝑣𝑣∗ ∈
𝐵 and 𝑣𝐴𝑣∗ = 𝐵𝑣𝑣∗. If, moreover, 𝒩𝑁(𝐴)

′′,𝒩𝑁(𝐵)
′′ are factors (i.e. 𝐴, 𝐵 are semiregular 

[35]), then 𝑣 can be taken a unitary element. 

Let Γ be a discrete group. For a function 𝑓 on Γ, we write 𝑚𝑓 for the multiplier on 

ℂΓ ⊂ 𝐿(Γ) defined by 𝑚𝑓(𝑔) = 𝑓𝑔 for 𝑔 ∈ ℂΓ. We simply write ∥ 𝑓 ∥cb for ∥∥𝑚𝑓∥∥cb
 and 

call it the Herz Schur norm. If ∥ 𝑓 ∥cb is finite and 𝑓(1) = 1, then 𝑚𝑓 extends to a 𝜏-

preserving normal unital map on 𝐿(Γ). See Sections 5 and 6 in [166] for an account of Herz-

Schur multipliers. 

Definition (4.1.13)[141]: A discrete group Γ is weakly amenable if there exist a constant 

𝐶 ≥ 1 and a net (𝑓𝑛) of finitely supported functions on Γ such that lim sup ∥∥𝑓𝑛∥∥cb 
 ≤ 𝐶 and 
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𝑓𝑛 → 1 pointwise. The Cowling-Haagerup constant Λcb(Γ) of Γ is defined as the infimum 

of the constant 𝐶 for which a net (𝑓𝑛) as above exists. 

We say a von Neumann algebra 𝑀 has the (weak*) completely bounded 

approximation property if there exist a constant 𝐶 ≥ 1 and a net (𝜙𝑛) of normal finiterank 

maps on 𝑀 such that limsup∥∥𝜙𝑛∥∥cb ≤ 𝐶 and ∥∥𝑥 − 𝜙𝑛(𝑥)∥∥2 → 0 for every 𝑥 ∈ 𝑀. The 

Cowling-Haagerup constant Λcb(𝑀) of 𝑀 is defined as the infimum of the constant 𝐶 for 

which a net (𝜙𝑛) as above exists. Also, we say that 𝑀 has the (weak*) complete metric 

approximation property (c.m.a.p.) if Λcb(𝑀) = 1. Note that, by Connes' theorem [28], 

amenability trivially implies c.m.a.p. 

By routine perturbation arguments, one may arrange 𝜙𝑛 's in the above definition to 

be unital and trace-preserving when 𝑀 is finite. We are interested here in the case Λcb(𝑀) =
1, i.e. when 𝑀 has the complete metric approximation property. We summarize below some 

known results in this direction. For part (g), recall that an action of a group Γ on a finite von 

Neumann algebra 𝑃 is profinite if there exists an increasing sequence of Γ-invariant finite-

dimensional von Neumann subalgebras 𝑃𝑛 ⊂ 𝑃 that generate 𝑃. Note that this implies 𝑃 is 

AFD. If 𝑃 = 𝐿∞(𝑋) is abelian and Γ ↷ 𝑃 comes from 𝑎 𝑚. 𝑝. action Γ ↷ 𝑋, then the 

profiniteness of Γ ↷ 𝑃 amounts to the existence of a sequence of Γ-invariant finite partitions 

of 𝑋 that generate the 𝜎-algebra of measurable subsets of 𝑋. 
Theorem (4.1.14)[141]:  

1. Λcb(𝐿(Γ)) = Λcb(Γ) for any Γ. 
2. If Γ is a discrete subgroup of SO (1, 𝑛) or of SU(1, 𝑛), then Λcb(Γ) = 1. 
3. If Γ acts properly on a finite-dimensional CAT(0) cubical complex, then Λcb(Γ) = 1. 
4. If Λcb(Γ𝑖) = 1 for 𝑖 = 1,2, then Λcb(Γ1 × Γ2) = 1 and Λcb(Γ1 ∗ Γ2) = 1. 
5. If 𝑁 ⊂ 𝑀 are finite von Neumann algebras, then Λcb(𝑁) ≤ Λcb(𝑀). Moreover, if 

𝑁,𝑀 are factors and [𝑀:𝑁] < ∞, then Λcb(𝑀) = Λcb(𝑁) and Λcb(𝑀
𝑡) = Λcb(𝑀), 

for all 𝑡 > 0. 
6. Let 𝑀 be a finite von Neumann algebra and (𝑀𝑛) be an increasing net of von 

Neumann subalgebras of 𝑀 such that 𝑀 = (⋃𝑀𝑛)
′′. Then,Λcb(𝑀) = supΛcb(𝑀𝑛). 

7. If 𝑃 is a finite von Neumann algebra and Γ ↷ 𝑃 is a profinite action, then 

Λcb(𝑃 ⋊ Γ) = Λcb(Γ). 
The assertions (a),(b),(c) and (d) are respectively due to [147], [33], [32], [38] and 

[170]. The rest are trivial. We will see in Corollary (4.1.19) that property (g) generalizes to 

compact actions of groups Γ, and even to actions of Γ that are "weakly compact", in the 

sense of Definition (4.1.17). 

We prove a general property about normal amenable subgroups of groups with Λcb-

constant equal to 1. While this property is a consequence of Theorem (4.1.22) (via (c)⇔(d) 

in Proposition (4.1.18)), we give here a direct proof in group-theoretic framework. To this 

end, note that if Λ ◃ Γ is a normal subgroup then the semi-direct product group Λ ⋊ Γ acts 

on Λ by (𝑎, 𝑔)𝑏 = 𝑎𝑔𝑏𝑔−1, for (𝑎, 𝑔) ∈ Λ ⋊ Γ and 𝑏 ∈ Λ. 
Proposition (4.1.15)[141]: Suppose that Γ has an infinite normal amenable subgroup Λ ◃ Γ 

and that Λcb(Γ) = 1. Then there exists a Λ ⋊ Γ-invariant mean on ℓ∞(Λ) (i.e., Γ is co-

amenable in Λ ⋊ Γ ). In particular, Γ is inner-amenable. (See $5 for the definition of inner-

amenability.) 

Proof. Let 𝑓𝑛 be a net of finitely supported functions such that sup ∥∥𝑓𝑛∥∥cb = 1 and 𝑓𝑛 → 1 

pointwise. By the Bożejko-Fendler theorem (Theorem 6.4 in [166]), there are Hilbert space 
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vectors 𝜉𝑛(𝑎) and 𝜂𝑛(𝑏) of norm at most one such that 𝑓𝑛(𝑎𝑏
−1) = ⟨𝜂𝑛(𝑏), 𝜉𝑛(𝑎)⟩ for all 

𝑎, 𝑏 ∈ Γ. Then, for every 𝑔 ∈ Γ, one has 

           lim
𝑛
 sup
𝑎∈Γ
 ∥∥𝜉𝑛(𝑔𝑎) − 𝜉𝑛(𝑎)∥∥

2
 

                  ≤ lim
𝑛
 sup
𝑎∈Γ
 2(∥∥𝜉𝑛(𝑔𝑎) − 𝜂𝑛(𝑎)∥∥

2 + ∥∥𝜂𝑛(𝑎) − 𝜉𝑛(𝑎)∥∥
2) 

 ≤ lim
𝑛
 2(2 − 2ℜ)𝑓𝑛(𝑔) + 2 − 2ℜ𝑓𝑛(1)) = 0, 

and similarly lim𝑛  sup𝑏∈Γ  ∥∥𝜂𝑛(𝑔𝑏) − 𝜂𝑛(𝑏)∥∥ = 0 for every 𝑔 ∈ Γ. It follows that 

lim
𝑛
 ∥∥𝑓𝑛 − 𝑓𝑛

𝑔
∥∥cb = 0 

for every 𝑔 ∈ Γ, where 𝑓𝑛
𝑔
∈ ℂΓ is defined by 𝑓𝑛

𝑔
(𝑎) = 𝑓𝑛(𝑔𝑎𝑔

−1). Now since Λ ◃ Γ is 

amenable, the trivial representation 𝜏0: 𝐶red 

∗ (Λ) → ℂ is continuous. We define a linear 

functional 𝜔𝑛 on 𝐶
red 

∗ (Λ) by 𝜔𝑛 = 𝜏0 ∘ 𝑚𝑓𝑛 ∣ 𝐶red 

∗ (Λ). Since 𝑓𝑛 is finitely supported, 𝜔𝑛 is 

ultraweakly continuous on 𝐿(Λ). We note that lim𝜔𝑛(𝜆(𝑎)) = 1 for all 𝑎 ∈ Λ and 

lim
𝑛
 ∥∥𝜔𝑛 −𝜔𝑛 ∘ Ad (𝑔)∥∥ ≤ lim

𝑛
 ∥∥𝑓𝑛 − 𝑓𝑛

𝑔
∥∥cb = 0 

for all 𝑔 ∈ Γ. Since ∥∥𝜔𝑛∥∥ ≤ 1 and lim𝜔𝑛(1) = 1, we have lim∥∥𝜔𝑛 − |𝜔𝑛|∥∥ = 0. We view 

|𝜔𝑛| as an element in 𝐿1(𝐿(Λ)) (which is 𝐿1(Λ̂) if Λ is abelian) and consider 𝜁𝑛 = |𝜔𝑛|
1/2 ∈

𝐿2(𝐿(Λ)) = ℓ2(Λ). Then, the net (𝜁𝑛) satisfies lim𝑛  ⟨𝜆(𝑎)𝜁𝑛, 𝜁𝑛⟩ = 1 for all 𝑎 ∈ Λ and 

lim𝑛  ∥∥𝜁𝑛 − Ad (𝑔)(𝜁𝑛)∥∥2 = 0 for all 𝑔 ∈ Γ by (1). Therefore, the state 𝜔 on ℓ∞(Λ) ⊂

𝔹(ℓ2(Λ)) defined by 

𝜔(𝑥) = Lim𝑛 ⟨𝑥𝜁𝑛, 𝜁𝑛⟩ = Lim𝑛 ∑  

𝑎∈Λ

𝑥(𝑎)𝜁𝑛(𝑎)
2 

is Λ ⋊ Γ-invariant. Since Λ is infinite, the Λ-invariant mean 𝜔 is singular, i.e, 𝜁𝑛 → 0 weakly. 

This implies inner-amenability of Γ. 
Recall that the wreath product 𝐻𝜁Γ0 of a group 𝐻 by a group Γ0 is defined as the semi-

direct product (⨁Γ0  𝐻) ⋊ Γ0 of ⨁Γ0  𝐻 by the shift action Γ0 ↷ ⨁Γ0  𝐻. 

Corollary (4.1.16)[141]: If Γ0 is nonamenable and 𝐻 ≠ {1}, then Λcb(𝐻𝜁Γ0) > 1, i.e. 

𝐿(𝐻 > Γ0) does not have c.m.a.p. Also, if Γ is a nonamenable group having a nontrivial 

normal amenable subgroup Λ such that the centralizer 𝒵(𝑎) = {𝑔 ∈ Γ: 𝑔𝑎 = 𝑎𝑔} of any 

nonneutral element 𝑎 ∈ Λ is amenable, then Λcb(Γ) > 1. 
Proof. Suppose that Γ0 is nonamenable and Λcb(𝐻 > Γ0) = 1. Passing to a subgroup if 

necessary, we may assume that 𝐻 is cyclic. Thus Λ = ⨁Γ0  𝐻 is a nontrivial normal amenable 

subgroup of Γ = 𝐻 > Γ0 such that the centralizer of any nonneutral element of Λ is amenable 

(finite). It is thus sufficient to prove the second part of the statement. We consider Λ as a set 

on which Γ acts by conjugation. 

Then, Λ ∖ {1} =⊔𝑎∈𝑋 Γ/ℓ(𝑎) as a Γ-set, where 𝑋 is a system of representatives of Γ-

orbits of Λ ∖ {1}. We observe that there is a Γ-equivariant 𝑢. 𝑐. 𝑝. map from ℓ∞(Γ) into 

ℓ∞(Γ/ℓ(𝑎)), which is given by a fixed right ℐ(𝑎)-invariant mean applied to each coset 

𝑔ℰ(𝑎) ⊂ Γ. Hence, there is a Γ-equivariant 𝑢. 𝑐. 𝑝. map from ℓ∞(Γ) into ℓ∞(Λ ∖ {1}). Since 

Γ is nonamenable, there is no Γ-invariant mean on Λ ∖ {1}. Hence, any Γ-invariant mean on 

Λ has to be concentrated on {1}. Such mean cannot be Λ-invariant. This is in contradiction 

with Proposition (4.1.15). 
Definition (4.1.17)[141]: Let 𝜎 be an action of a group Γ on a finite von Neumann algebra 

𝑃. Recall that 𝜎 is called compact if 𝜎(Γ) ⊂ Aut (𝑃) is pre-compact in the point-ultraweak 
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topology. We call the action 𝜎 weakly compact if there exists a net (𝜂𝑛) of unit vectors in 

𝐿2(𝑃 ⊗‾ 𝑃‾) + such that: 

1. ∥∥𝜂𝑛 − (𝑣 ⊗ 𝑣‾)𝜂𝑛∥∥2 → 0 for every 𝑣 ∈ 𝑼(𝑃). 

2. ∥∥𝜂𝑛 − (𝜎𝑔⊗𝜎‾𝑔)(𝜂𝑛)∥∥2
→ 0 for every 𝑔 ∈ Γ. 

3. ⟨(𝑥 ⊗ 1)𝜂𝑛, 𝜂𝑛⟩ = 𝜏(𝑥) = ⟨𝜂𝑛, (1 ⊗ 𝑥‾)𝜂𝑛⟩ for every 𝑥 ∈ 𝑃 and every 𝑛. 
Here, we consider the action 𝜎 on 𝑃 as the corresponding unitary representation on 𝐿2(𝑃). 
By the proof of Proposition (4.1.18), condition (c) can be replaced with a formally weaker 

condition 

1. ⟨(𝑥 ⊗ 1)𝜂𝑛, 𝜂𝑛⟩ → 𝜏(𝑥) for every 𝑥 ∈ 𝑃. 
Weak compactness is manifestly weaker than profiniteness, which is why in an initial 

version, we called it weak profiniteness. We are very grateful to Adrian Ioana, who pointed 

out to us that the condition is even weaker than compactness (cf. (b) ⇒ (c) below) and 

suggested a change in terminology. 

Proposition (4.1.18)[141]: Let 𝜎 be an action of a group Γ on a finite von Neumann algebra 

𝑃 and consider the following conditions: 

1. The action 𝜎 is profinite. 

2. The action 𝜎 is compact and the von Neumann algebra 𝑃 is AFD. 

3. The action 𝜎 is weakly compact. 

4. There exists a state 𝜑 on 𝔹(𝐿2(𝑃)) such that 𝜑|𝑃 = 𝜏 and 𝜑 ∘ Ad𝑢 = 𝜑 for all 𝑢 ∈

𝒰(𝑃) ∪ 𝜎(Γ). 
5. The von Neumann algebra 𝐿(Γ) is co-amenable in 𝑃 × Γ. 
Then, one has (a)⇒(b)⇒(c)⇔(d)⇔(e). 

(Note that, by a result of Høegh-Krohn-Landstad-Størmer ([154]), if in the above 

statement we restrict our attention to ergodic actions Γ ↷ 𝑃, then the condition that 𝑃 is 

AFD in part (b) follows automatically from the assumption Γ ↷ 𝑃 compact. We observe 

that weak compactness also implies that 𝑃 is AFD by Connes' theorem ([28]).) 

Proof. We have (a)⇒(b), by the definitions. We prove (b)⇒(d). Since 𝑃 is AFD, there is a 

net Φ𝑛 of normal 𝑢. 𝑐. 𝑝. maps from 𝔹(𝐿2(𝑃)) into 𝑃 such that 𝜏 ∘ (Φ𝑛 ∣ 𝑃) = 𝜏 and 

∥∥𝑎 − Φ𝑛(𝑎)∥∥2 → 0 for all 𝑎 ∈ 𝑃. Let 𝐺 be the SOT-closure of 𝜎(Γ) in the unitary group on 

𝐿2(𝑃). By assumption, 𝐺 is a compact group and has a normalized Haar measure 𝑚. We 

define a state 𝜑𝑛 on 𝔹(𝐿2(𝑃)) by 

𝜑𝑛(𝑥) = ∫  
𝐺

𝜏 ∘ Φ𝑛(𝑔𝑥𝑔
−1)𝑑 𝑚(𝑔). 

It is clear that 𝜑𝑛 is Ad(\Gamma)-invariant and 𝜑𝑛 ∣ 𝑃 = 𝜏. We will prove that the net 𝜑𝑛 

is approximately 𝑃-central. Let Φ𝑛(𝑥) = 𝑉
∗𝜋(𝑥)𝑉 be a Stinespring dilation. Then, for 𝑥 ∈

𝔹(𝐿2(𝑃)) and 𝑎 ∈ 𝑃, one has 

∥∥Φ𝑛(𝑥𝑎) − Φ𝑛(𝑥)Φ𝑛(𝑎)∥∥2  = ∥∥𝑉∗𝜋(𝑥)(1 − 𝑉𝑉∗)𝜋(𝑎)𝑉1̂∥∥𝐿2(𝑃)

 ≤∥ 𝑥 ∥ ∥∥(1 − 𝑉𝑉∗)1/2𝜋(𝑎)𝑉1̂∥∥𝐿2(𝑃)

 =∥ 𝑥 ∥ 𝜏(Φ𝑛(𝑎
∗𝑎) − Φ𝑛(𝑎

∗)Φ𝑛(𝑎))
1/2

 ≤ 2 ∥ 𝑥 ∥∥ 𝑎 ∥
1
2 ∥∥𝑎 − Φ𝑛(𝑎)∥∥2

1
2.

 

It follows that for every 𝑥 ∈ 𝔹(𝐿2(𝑃)) and 𝑎 ∈ 𝑃, one has 

|𝜑𝑛(𝑥𝑎) − 𝜑𝑛(𝑎𝑥)| ≤ 4 ∥ 𝑥 ∥∥ 𝑎 ∥
1
2 sup
𝑔∈𝐺

 ∥∥𝑔𝑎𝑔−1 −Φ𝑛(𝑔𝑎𝑔
−1)∥∥2

1
2, 
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which converge to zero since {𝑔𝑎𝑔−1: 𝑔 ∈ 𝐺} is compact in 𝐿2(𝑃) and Φ𝑛 's are contractive 

on 𝐿2(𝑃). Hence 𝜑𝑛 is approximately 𝑃-central and 𝜑 = Lim𝑛 𝜑𝑛 satisfies the requirement. 

We prove (c)⇔(d). Take a net 𝜂𝑛 satisfying conditions (a),(b) and (c') of Definition 

(4.1.17). We define a state 𝜑 on 𝔹(𝐿2(𝑃)) by 𝜑 = Lim𝑛 𝜑𝑛 with 𝜑𝑛(𝑥) = ⟨(𝑥 ⊗ 1)𝜂𝑛, 𝜂𝑛⟩. 
Then, for any 𝑢 ∈ 𝒰(𝑃) ∪ 𝜎(Γ), one has 

𝜑(𝑢∗𝑥𝑢) = Lim𝑛 ⟨(𝑥 ⊗ 1)(𝑢 ⊗ 𝑢‾)𝜂𝑛, (𝑢 ⊗ 𝑢‾)𝜂𝑛⟩ = 𝜑(𝑥) 
by conditions (a) and (b) of Definition (4.1.17). That 𝜑|𝑃 = 𝜏 follows from (c'). Conversely, 

suppose now that 𝜑 is given. We recall that 𝔹(𝐿2(𝑃)) is canonically identified with the dual 

Banach space of the space 𝑆1(𝐿
2(𝑃)) of trace class operators. Take a net of positive elements 

𝑇𝑛 ∈ 𝑆1(𝐿
2(𝑃)) with Tr (𝑇𝑛) = 1 such that Tr (𝑇𝑛𝑥) → 𝜑(𝑥) for every 𝑥 ∈ 𝔹(𝐿2(𝑃)). Let 

𝑏𝑛 ∈ 𝐿
1(𝑃)+be such that Tr (𝑇𝑛𝑎) = 𝜏(𝑏𝑛𝑎) for 𝑎 ∈ 𝑃. Since Tr (𝑇𝑛𝑎) → 𝜑(𝑎) = 𝜏(𝑎) for 

𝑎 ∈ 𝑃, the net (𝑏𝑛) converges to 1 weakly in 𝐿1(𝑃). Thus, by the Hahn-Banach separation 

theorem, one may assume, by passing to a convex combinations, that ∥∥𝑏𝑛 − 1∥∥1 → 0. 

By a routine perturbation argument, we may further assume that 𝑏𝑛 = 1. We give an 

argument for this. Let ℎ(𝑡) = max{1, 𝑡} and 𝑘(𝑡) =  max{1 − 𝑡, 0} be functions on [0,∞), 
and let 𝑐𝑛 = ℎ(𝑏𝑛)

−1. We note that 0 ≤ 𝑐𝑛 ≤ 1 and 𝑏𝑛𝑐𝑛 + 𝑘(𝑏𝑛) = 1. We define 𝑇𝑛
′ =

𝑐𝑛
1/2
𝑇𝑛𝑐𝑛

1/2
+ 𝑘(𝑏𝑛)

1/2𝑃0𝑘(𝑏𝑛)
1/2, where 𝑃0 is the orthogonal projection onto ℂ1̂. Then, 

one has 

∥∥𝑇𝑛 − 𝑇𝑛
′∥∥1  ≤ 2∥∥𝑇𝑛

1/2
− 𝑐𝑛

1/2
𝑇𝑛
1/2
∥∥2 + ∥∥𝑘

(𝑏𝑛)∥∥1

 = 2𝜏 (𝑏𝑛(1 − 𝑐𝑛
1/2
)
2

)
1/2

+ ∥∥𝑘(𝑏𝑛)∥∥1

 ≤ 2𝜏(𝑏𝑛(1 − 𝑐𝑛))
1/2
+ ∥∥𝑘(𝑏𝑛)∥∥1

 ≤ 2∥∥𝑏𝑛 − 1∥∥1

1
2 + ∥∥1 − 𝑏𝑛∥∥1 → 0.

 

Hence, by replacing 𝑇𝑛 with 𝑇𝑛
′ , we may assume that Tr (𝑇𝑛𝑎) = 𝜏(𝑎) for 𝑎 ∈ 𝑃. 

Since for every 𝑥 ∈ 𝔹(𝐿2(𝑃)) and 𝑢 ∈ 𝒰(𝑃) ∪ 𝜎(Γ), one has 

Tr ((𝑇𝑛 − Ad(𝑢)𝑇𝑛)𝑥) → 𝜑(𝑥) − 𝜑(Ad(𝑢∗)(𝑥)) = 0, 
by applying the Hahn-Banach separation theorem again, one may furthermore assume that 

∥∥𝑇𝑛 − Ad (𝑢)(𝑇𝑛)∥∥𝑆1
→ 0 for every 𝑢 ∈ 𝒰(𝑃) ∪ 𝜎(Γ). Then by (1), the Hilbert-Schmidt 

operators 𝑇𝑛
1/2

 satisfy ∥
∥𝑇𝑛

1/2
− Ad (𝑢)(𝑇𝑛

1/2
)∥
∥
𝑆2
→ 0 for every 𝑢 ∈ 𝒰(𝑃) ∪ 𝜎(Γ). Now, if 

we use the standard identification between 𝑆2(𝐿
2(𝑃)) and 𝐿2(𝑃 ⊗‾ 𝑃‾) given by 

𝑆2(𝐿
2(𝑃)) ∋∑  

𝑘

⟨⋅, 𝜂𝑘⟩𝜉𝑘 ↦∑ 

𝑘

𝜉𝑘⊗𝜂‾𝑘 ∈ 𝐿
2(𝑃 ⊗‾ 𝑃‾) 

and view 𝑇𝑛
1/2

 as an element 𝜁𝑛 ∈ 𝐿
2(𝑃 ⊗‾ 𝑃‾), then we have ⟨(𝑎 ⊗ 1)𝜁𝑛, 𝜁𝑛⟩ =  𝜏(𝑎) =

⟨𝜁𝑛, (1 ⊗ 𝑎‾)𝜁𝑛⟩ and ∥∥𝜁𝑛 − (𝑢 ⊗ 𝑢‾)𝜁𝑛∥∥2 → 0 for every 𝑢 ∈ ℧(𝑃) ∪ 𝜎(Γ). 

Therefore, the net of 𝜂𝑛 = (𝜁𝑛𝜁𝑛
∗)1/2 ∈ 𝐿2(𝑃 ⊗‾ 𝑃‾)+verifies the conditions of weak 

compactness. 

Finally, we prove (d)⇔(e). We consider 𝑃 ⋊ Γ as the von Neumann subalgebra of 

𝔹(𝐿2(𝑃)⊗‾ ℓ2(Γ)) generated by 𝑃 ⊗ ℂ1 and (𝜎 ⊗ 𝜆)(Γ). This gives an identification 

between 𝐿2(𝑃 ⋊ Γ) and 𝐿2(𝑃) ⊗‾ ℓ2(Γ). Moreover, the basic construction ⟨𝑃 ⋊ Γ, 𝑒𝐿(Γ)⟩ 

becomes 𝔹(𝐿2(𝑃)) ⊗‾ 𝐿(Γ), since it is the commutant of the right 𝐿(Γ)-action (which is 

given by (1⊗ 𝜌)(Γ) ). Now suppose that 𝜑 is given as in condition (d). Then, �̃� = 𝜑⊗ 𝜏 
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on 𝔹(𝐿2(𝑃))⊗‾ 𝐿(Γ) is Ad (𝒰(𝑃 ⊗‾ ℂ1) ∪ (𝜎 ⊗ 𝜆)(Γ))-invariant and �̃�|𝑃⋊Γ = 𝜏. This 

implies that 𝐿(Γ) is co-amenable in 𝑃 ⋊ Γ. Conversely, if �̃� is a (𝑃 ⋊ Γ)-central state such 

that �̃�|𝑃⋊Γ = 𝜏, then the restriction 𝜑 of �̃� to 𝔹(𝐿2(𝑃)) satisfies condition (d). 

Note that by part (g) in Theorem (4.1.14), if Λcb(Γ) = 1 and Γ ↷ 𝑃 is a profinite 

action then Λcb(𝑃 ⋊ Γ) = 1. More generally we have the following. (Compare this with 

[157].) 

Corollary (4.1.19)[141]: Let Γ be weakly amenable and Γ ↷ 𝑃 be a weakly compact action 

on an AFD von Neumann algebra. Then, 𝑃 ⋊ Γ has the completely bounded approximation 

property and Λcb(𝑃 ⋊ Γ) = Λcb(Γ). 
Proof. By Proposition (4.1.18), 𝐿(Γ) is co-amenable in 𝑃 ⋊ Γ. Hence, Theorem 4.9 of [143] 

implies that Λcb(𝑃 ⋊ Γ) = Λcb(𝐿(Γ)) = Λcb(Γ). 
Proposition (4.1.20)[141]: Let 𝑃 ⊂ 𝑀 be an inclusion of finite von Neumann algebras such 

that 𝑃′ ∩𝑀 ⊂ 𝑃. Assume the normalizer 𝒩𝑀(𝑃) contains a subgroup 𝒢 such that its action 

on 𝑃 is weakly compact and (𝑃 ∪ 𝒢)′′ = 𝒩𝑀(𝑃)
′′. Then the action of 𝒩𝑀(𝑃) on 𝑃 is weakly 

compact. Moreover, if 𝒩𝑀(𝑃) ↷ 𝑃 is weakly compact and 𝑝 ∈ 𝒫(𝑃) then 𝒩𝑝𝑀𝑝(𝑝𝑃𝑝) ↷

𝑝𝑃𝑝 is weakly compact. 

Proof. We may clearly assume 𝒩𝑀(𝑃)
′′ = 𝑀. Denote by 𝜎 the action of 𝒩𝑀(𝑃) on 𝑃. If 

𝑢 ∈ 𝒩𝑀(𝑃), then by the conditions 𝑃′ ∩𝑀 = 𝒜(𝑃) and (𝑃 ∪ 𝒮)′′ = 𝑀 it follows that there 

exists a partition {𝑝𝑖}𝑖 ⊂ 𝒵(𝑃) and unitary elements 𝑣𝑖 ∈ 𝑃 such that 𝑣 = Σ𝑖𝑝𝑖𝑣𝑖𝑢𝑖 for some 

𝑢𝑖 ∈ 𝒢 (see e.g. [148]). Then 𝜎𝑣(𝑥) = 𝑣𝑥𝑣
∗ = Σ𝑖𝑝𝑖𝜎𝑣𝑖𝑢𝑖(𝑥). Let now 𝜂𝑛 ∈

𝐿2(𝑃 ⊗‾ 𝑃‾)+satisfy the conditions in Definition (4.1.17) for the action 𝜎∣𝑞𝐺 . By Definition 

(4.1.17)(a) we have ∥∥Σ𝑖(𝑝𝑖⊗𝑝‾𝑖)𝜂𝑛 − 𝜂𝑛∥∥2 → 0, and thus ∥∥(𝑝𝑖⊗𝑝‾𝑗)𝜂𝑛∥∥2 → 0, for all 𝑖 ≠

𝑗. Since 𝑞𝑖 = 𝜎𝑢𝑖
∗(𝑝𝑖) are mutually orthogonal as well, this also implies that for 𝑖 ≠ 𝑗 we 

have 

∥ (𝑝𝑖⊗𝑝‾𝑗) (𝜎𝑣𝑖𝑢𝑖 ⊗𝜎‾𝑣𝑗𝑢𝑗) (𝜂𝑛) ∥2

 = ∥
∥(𝜎𝑣𝑖𝑢𝑖 ⊗𝜎‾𝑣𝑗𝑢𝑗) ((𝑞𝑖⊗𝑞‾𝑗)𝜂𝑛)∥

∥
2
= ∥∥(𝑞𝑖⊗𝑞‾𝑗)𝜂𝑛∥∥2 → 0.

 

Also, since 𝑤𝑖 = 𝑢𝑖
∗𝑣𝑖𝑢𝑖 ∈ Ψ(𝑃), we have ∥ 𝜎𝑤𝑖 ⊗𝜎‾𝑤𝑖)(𝜂𝑛) − 𝜂𝑛 ∥2→ 0. Combining with 

condition Proposition (4.1.18)(b) on the action 𝒢 ↷ 𝑃, one gets 

∥
∥(𝑝𝑖⊗𝑝‾𝑖) (𝜂𝑛 − (𝜎𝑣𝑖𝑢𝑖 ⊗𝜎‾𝑣𝑖𝑢𝑖)(𝜂𝑛))∥

∥
2
→ 0. 

By Pythagoras' theorem, and using that ∑𝑖,𝑗  ∥∥𝑝𝑖⊗𝑝‾𝑗∥∥2
2
= 1, all this entails 

∥∥𝜂𝑛 − (𝜎𝑣⊗𝜎‾𝑣)(𝜂𝑛)∥∥2
2
= Σ𝑖,𝑗∥∥(𝑝𝑖⊗𝑝‾𝑗)𝜂𝑛 − (𝑝𝑖⊗𝑝‾𝑗)(𝜎𝑣⊗𝜎‾𝑣)(𝜂𝑛)∥∥2

2

= Σ𝑖,𝑗 ∥
∥(𝑝𝑖⊗𝑝‾𝑗)𝜂𝑛 − (𝑝𝑖⊗𝑝‾𝑗) (𝜎𝑣𝑖𝑢𝑖 ⊗𝜎‾𝑣𝑗𝑢𝑗) (𝜂𝑛)∥

∥
2

2
→ 0,

 

showing that 𝒩𝑀(𝑃) ↷ 𝑃 satisfies Definition (4.1.17)(b), thus being weakly compact. 

To see that weak compactness behaves well to reduction by projections, note that any 

𝑣 ∈ 𝒩𝑝𝑀𝑝(𝑝𝑃𝑝) extends to a unitary in 𝒩𝑀(𝑃). Thus, if 𝜑 satisfies Proposition (4.1.18)(d) 

for 𝒩𝑀(𝑃) ↷ 𝑃 then 𝜑𝑝 = 𝜑(𝑝 ⋅ 𝑝) clearly satisfies the same condition for 𝒩𝑝𝑀𝑝(𝑝𝑃𝑝) ↷

𝑝𝑃𝑝. 
The above result shows in particular that if a measure-preserving action of a countable 

group Γ on a probability space (𝑋, 𝜇) is weakly compact (i.e., Γ ↷ 𝐿∞(𝑋) weakly compact), 

then the action of its associated full group [Γ], as defined in [148], is weakly compact. Thus, 

weak compactness is an orbit equivalence invariant for group actions, unlike profiniteness 
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and compactness which are of course not. In fact, Proposition (4.1.20) shows that weak 

compactness is even invariant to stable orbit equivalence (also called measure equivalence). 

An embedding of finite von Neumann algebras 𝑃 ⊂ 𝑀 is called weakly compact if 

the action 𝒩𝑀(𝑃) ↷ 𝑃 is weakly compact. The next result shows that the complete metric 

approximation property of a factor 𝑀 imposes the weak compactness of all embeddings into 

𝑀 of AFD (in particular abelian) von Neumann algebras. 

For the proof, we need the following consequence of Connes' theorem [28]. This is 

well-known, but we include a proof for the reader's convenience. 

Lemma (4.1.21)[141]: Let 𝑀 be a finite von Neumann algebra, 𝑃 ⊂ 𝑀 be an AFD von 

Neumann subalgebra and 𝑢 ∈ 𝒩𝑀(𝑃). Then, the von Neumann algebra 𝑄 generated by 𝑃 

and 𝑢 is AFD. 

Proof. Since 𝑃 is injective, the 𝜏-preserving conditional expectation 𝐸𝑃 from 𝑀 onto 𝑃 

extends to a 𝑢. 𝑐. 𝑝. map �̃�𝑃 from 𝔹(𝐿2(𝑀)) onto 𝑃. We note that �̃�𝑃 is a conditional 

expectation: �̃�𝑃(𝑎𝑥𝑏) = 𝑎�̃�𝑃(𝑥)𝑏 for every 𝑎, 𝑏 ∈ 𝑃 and 𝑥 ∈ 𝔹(𝐿2(𝑀)). We define a state 

𝜎 on 𝔹(𝐿2(𝑀)) by 

𝜎(𝑥) = Lim𝑛
1

𝑛
∑  

𝑛−1

𝑘=0

𝜏 (�̃�𝑃(𝑢
𝑘𝑥𝑢−𝑘)). 

It is not hard to check that 𝜎|𝑀 = 𝜏, 𝜎 ∘ Ad 𝑢 = 𝜎 and 𝜎 ∘ Ad 𝑣 = 𝜎 for every 𝑣 ∈ 𝑼(𝑃). It 
follows that 𝜎 is a 𝑄-central state with 𝜎|𝑄 = 𝜏. By Connes' theorem, this implies that 𝑄 is 

AFD. 

Theorem (4.1.22)[141]: Let 𝑀 be a finite von Neumann algebra with the c.m.a.p., i.e. 

Λcb(𝑀) = 1. Then any embedding of an AFD von Neumann algebra 𝑃 ⊂ 𝑀 is weakly 

compact, i.e., 𝒩𝑀(𝑃) ↷ 𝑃 is weakly compact, for all 𝑃 ⊂ 𝑀 AFD subalgebra. 

Proof. First we note the following general fact: Let 𝜔 be a state on a C∗-algebra 𝑁 and 𝑢 ∈
𝑼(𝑁). We define 𝜔𝑢(𝑥) = 𝜔(𝑥𝑢

∗) for 𝑥 ∈ 𝑁. Then, one has 

max{∥∥𝜔 − 𝜔𝑢∥∥, ∥ 𝜔 − 𝜔 ∘ Ad (𝑢) ∥} ≤ 2√2|1 − 𝜔(𝑢)|.              (2) 

Indeed, one has ∥∥𝜉𝜔 − 𝑢
∗𝜉𝜔∥∥

2 = 2(1 − ℜ𝜔(𝑢)) ≤ 2|1 − 𝜔(𝑢)|, where 𝜉𝜔 is the GNS-

vector for 𝜔. 
Let (𝜙𝑛) be a net of normal finite rank maps on 𝑀 such that limsup∥∥𝜙𝑛∥∥cb ≤ 1 and 

∥∥𝑥 − 𝜙𝑛(𝑥)∥∥2 → 0 for all 𝑥 ∈ 𝑀. We observe that the net (𝜏 ∘ 𝜙𝑛) converges to 𝜏 weakly 

in 𝑀∗. Hence by the Hahn-Banach separation theorem, one may assume, by passing to 

convex combinations, that ∥∥𝜏 − 𝜏 ∘ 𝜙𝑛∥∥ → 0. Let 𝜇 be the *-representation of the algebraic 

tensor product 𝑀⊗𝑀‾  on 𝐿2(𝑀) defined by 

𝜇 (∑  

𝑘

 𝑎𝑘⊗𝑏‾𝑘) 𝜉 =∑  

𝑘

𝑎𝑘𝜉𝑏𝑘
∗ . 

We define a linear functional 𝜇𝑛 on 𝑀⊗𝑀‾  by 

𝜇𝑛 (∑  

𝑘

 𝑎𝑘⊗𝑏‾𝑘) = ⟨𝜇 (∑  

𝑘

 𝜙𝑛(𝑎𝑘) ⊗ 𝑏‾𝑘) 1̂, 1̂⟩

𝐿2(𝑀)

= 𝜏 (∑  

𝑘

 𝜙𝑛(𝑎𝑘)𝑏𝑘
∗). 

Since 𝜙𝑛 is normal and of finite rank, 𝜇𝑛 extends to a normal linear functional on 𝑀⊗‾ 𝑀‾ , 
which is still denoted by 𝜇𝑛. For an AFD von Neumann subalgebra 𝑄 ⊂ 𝑀, we denote by 

𝜇𝑛
𝑄

 the restriction of 𝜇𝑛 to 𝑄⊗‾ 𝑄‾ . Since 𝑄 is AFD, the *-representation 𝜇 is continuous with 

respect to the spatial tensor norm on 𝑄 ⊗𝑄‾  and hence ∥∥𝜇𝑛
𝑄
∥∥ ≤ ∥∥𝜙𝑛∥∥cb. We denote 𝜔𝑛

𝑄
=
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∥∥𝜇𝑛
𝑄
∥∥
−1
|𝜇𝑛
𝑄
|. Since limsup∥∥𝜇𝑛

𝑄
∥∥ ≤ 1 and lim𝜇𝑛

𝑄
(1⊗ 1) = 1, the inequality (2), applied to 

𝜔𝑛
𝑄
, implies that 

lim sup
𝑛

 ∥∥𝜇𝑛
𝑄
−𝜔𝑛

𝑄
∥∥ = 0.                                           (3) 

Now, consider the case 𝑄 = 𝑃. Since 𝜇𝑛
𝑃(𝑣 ⊗ 𝑣‾) = 𝜏(𝜙𝑛(𝑣)𝑣

∗) → 1 for any 𝑣 ∈ 𝑼(𝑃), one 

has 

lim sup
𝑛

 ∥∥𝜔𝑛
𝑃 − (𝜔𝑛

𝑃)𝑣⊗𝑣‾∥∥ = 0                                      (4) 

by (2) and (3). Now, let 𝑢 ∈ 𝒩𝑀(𝑃) and consider the case 𝑄 = ⟨𝑃, 𝑢⟩, which is AFD by 

Lemma (4.1.21). Since 𝜇𝑛
⟨𝑃,𝑢⟩

(𝑢 ⊗ 𝑢‾) = 𝜏(𝜙𝑛(𝑢)𝑢
∗) → 1, one has 

lim sup
𝑛

 ∥∥𝜇𝑛
⟨𝑃,𝑢⟩

− 𝜇𝑛
⟨𝑃,𝑢⟩

∘ Ad (𝑢 ⊗ 𝑢‾)∥∥ = 0                       (5) 

by (2) and (3). But since (𝜇𝑛
⟨𝑃,𝑢⟩

∘ Ad (𝑢 ⊗ 𝑢‾))|
𝑃⊗‾ 𝑃‾

= 𝜇𝑛
𝑃 ∘ Ad (𝑢 ⊗ 𝑢‾), one has 

lim sup
𝑛

 ∥∥𝜔𝑛
𝑃 −𝜔𝑛

𝑃 ∘ Ad (𝑢 ⊗ 𝑢‾)∥∥ = 0                            (6) 

by (3) and (5). Now, we view 𝜔𝑛
𝑃 as an 𝜁𝑛 element in 𝐿1(𝑃 ⊗‾ 𝑃‾) + and let 𝜂𝑛 = 𝜁𝑛

1/2
. By 

(1), the net 𝜂𝑛 satisfies all the required conditions. 

They will all follow from the following stronger version of the theorem stated: 

Theorem (4.1.23)[141]: Let Γ = 𝔽𝑟(1) ×⋯× 𝔽𝑟(𝑘) be a direct product of finitely many free 

groups of rank 2 ≤ 𝑟(𝑗) ≤ ∞ and denote by Γ𝑗 the kernel of the projection from Γ onto 𝔽𝑟(𝑗). 

Let 𝑀 = 𝑄 ⋊ Γ be the crossed product of a finite von Neumann algebra 𝑄 by Γ (action need 

not be ergodic nor free). Let 𝑃 ⊂ 𝑀 be such that 𝑃 Let 𝒢 ⊂ 𝒩𝑀(𝑃) be a subgroup which 

acts weakly compactly on 𝑃 by conjugation, and denote 𝑁 = 𝓎′. Then there exist projections 

𝑝1, … , 𝑝𝑘 ∈  𝒵(𝑁
′ ∩𝑀) with ∑𝑗=1

𝑘  𝑝𝑗 = 1 such that 𝑁𝑝𝑗 ⋖𝑀 𝑄 ⋊ Γ𝑗 for every 𝑗. 

From the above result, we will easily deduce several (in)decomposability properties 

for certain factors constructed out of free groups and their profinite actions. Note that 

Corollaries (4.1.24) and (4.1.25) below are just Corollaries (4.1.2) and (4.1.3) in the 

introduction, while Corollary (4.1.34) is a generalization of Corollary (4.1.4) therein. 

Corollary (4.1.24)[141]: If 𝑃 ⊂ 𝐿(𝔽𝑟)
𝑡 is a diffuse AFD von Neumann subalgebra of the 

amplification by some 𝑡 > 0 of a free group factor 𝐿(𝔽𝑟), 2 ≤ 𝑟 ≤ ∞, then 𝒩𝐿(𝔽𝑟)
𝑡(𝑃)′′ is 

AFD. 

Proof. This is a trivial consequence of Theorem (4.1.22) and Theorem (4.1.23). 

Note that the above corollary generalizes the (in)-decomposability results for free 

group factors in [162] and [172]. Indeed, Voiculescu's celebrated result in [172], showing 

that the normalizer of any amenable diffuse subalgebra 𝑃 ⊂ 𝐿(𝔽𝑟) cannot generate all 

𝐿(𝔽𝑟), follows from Corollary (4.1.24) because 𝐿(𝔽𝑟) is nonAFD by [161]. Also, since any 

unitary element commuting with a subalgebra 𝑃 ⊂ 𝐿(𝔽𝑟) lies in the normalizer of 𝑃, 
Corollary (4.1.24) shows in particular that the commutant of any diffuse AFD subalgebra 

𝑃 ⊂ 𝐿(𝔽𝑟) is amenable, i.e. 𝐿(𝔽𝑟) is solid in the sense of [162], which amounts to the free 

group case of a result in [162]. Note however that the (in)-decomposability results in [172] 

and [162] cover much larger classes of factors, e.g. all free products of diffuse von Neumann 

algebras in [172] (for absence of Cartan subalgebras) and all II1 factors arising from word-

hyperbolic groups in [162] (for solidity). 

Calling strongly solid (or 𝑠-solid) the factors satisfying the property that the 

normalizer of any diffuse amenable subalgebra generates an amenable von Neumann 

algebra, it would be interesting at this point to produce examples of II1 factors that are s-
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solid, have both c.m.a.p. and Haagerup property, yet are not isomorphic to an amplification 

of a free group factor (i.e., to an interpolated free group factor [6], [10]). 

Corollary (4.1.30) blow shows in particular that if 𝑄 is an arbitrary subfactor of a 

tensor product of free group factors, then 𝑄⊗‾ 𝐿(𝔽𝑟) (or any of its finite index subfactors) 

has no Cartan subalgebras. When applied to 𝑄 = 𝑅, this shows that the subfactor 𝑁 ⊂

𝑅 ⊗‾ 𝐿(𝔽𝑟) with 𝑁 ≁ 𝑁op  constructed in [172], as the fixed point algebra of an appropriate 

free action of a finite group on 𝑅⊗‾ 𝐿(𝔽𝑟) (which thus has finite index in 𝑅⊗‾ 𝐿(𝔽𝑟)), does 

not have Cartan subalgebras. 

Another class of factors without Cartan subalgebras is provided by part (2) of the next 

corollary. 

Note that one can view part (a) of the Corollary (4.1.32) as a strong rigidity result, in 

the spirit of results in ([51], [52], [156]). Indeed, by taking 𝐴 = 𝐿∞(𝑌) to be Cartan in 𝑀𝑡 , 
it follows that any isomorphism between group measure space 𝐼𝐼  1 factors 𝜃: (𝐿∞(𝑋) ⋊
Γ)𝑡 ≃ 𝐿∞(𝑌) ⋊ Λ, with the "source" Γ a direct product of finitely many free groups and the 

"target" Λ arbitrary but the action Λ ↷ 𝑌 weakly compact (e.g. profinite, or compact), is 

implemented by a stable orbit equivalence of the free ergodic actions Γ ↷ 𝑋, Λ ↷ 𝑌, up to 

perturbation by an inner automorphism and by an automorphism coming from a 1-cocycle 

of the target action. 

Corollary (4.1.34) implies that any isomorphism between factors 𝑀 ∈ ℘℘ comes 

from an isomorphism of the orbit equivalence relations ℛ𝑀 associated with their unique 

Cartan decomposition. Hence, like in the case of the ℋ𝒥-factors in [51], invariants of 

equivalence relations, such as Gaboriau's cost and 𝐿2-Betti numbers ([150]), are 

isomorphism invariants of II1 factors in ℘℘. The subfactor theory within the class ℘℘ is 

particularly interesting: By Corollary (4.1.34) and its proof (see Proposition (4.1.33)), and 

Section 7 in [51], any irreducible inclusion of finite index 𝑁 ⊂ 𝑀 in this class has a 

canonical decomposition 𝑁 ⊂ 𝑄 ⊂ 𝑃 ⊂ 𝑀, with 𝑃 ⊂ 𝑀 coming from a subequivalence 

relation of ℛ𝑀, 𝑁 ⊂ 𝑄 from a quotient of ℛ𝑄 and 𝑄 ⊂ 𝑃 from an irreducible U(𝓃)-valued 1 

-cocycle for ℛ𝑄. 

Note that all factors in the class ℘℘ have Λcb-constant equal to 1 by Theorem (4.1.14) 

and have Haagerup's compact approximation property by [153]. The sub-class of II1 factors 

𝐿∞(𝑋) ⋊ 𝔽𝑟 ∈ ℘℘, arising from free ergodic profinite probability-measure-preserving 

actions of free groups 𝔽𝑟 ↷ 𝑋, is of particular interest, as they are inductive limits of 

(amplifications of) free group factors. We call such a factor 𝐿∞(𝑋) ⋊ 𝔽𝑟 an approximate 

free group factor of rank 𝑟. By Corollary (4.1.34), more than being in the class ℘℘, such a 

factor has the property that any maximal abelian *-subalgebra with normalizer generating a 

von Neumann algebra with no amenable summand is unitary conjugate to 𝐿∞(𝑋). When 

combined with [150], we see that approximate free group factors of different rank are not 

isomorphic and that for 𝑟 < ∞ they have trivial fundamental group. Also, they are prime by 

[164], in fact by Theorem (4.1.23) the normalizer (in particular the commutant) of any AFD 

 𝐼𝐼1 subalgebra of such a factor must generate an AFD von Neumann algebra. We will 

construct uncountably many approximate free group factors and comment more on this 

class. 

For the proof of Theorem (4.1.23), recall from [168], [169] the construction of 1-

parameter automorphisms 𝛼𝑡 ("malleable deformation") of 𝐿(𝔽𝑟 ∗ �̃�𝑟). Let �̃�𝑟 be a copy of 

𝔽𝑟 and 𝑎1, 𝑎2, … (resp. 𝑏1, 𝑏2, … ) be the standard generators of 𝔽𝑟 (resp. �̃�𝑟 ) viewed as 
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unitary elements in 𝐿(𝔽𝑟 ∗ �̃�𝑟). Let ℎ𝑠 = (𝜋√−1)
−1log 𝑏𝑠, where log is the principal branch 

of the complex logarithm so that ℎ𝑠 is a selfadjoint element with spectrum contained in 

[−1,1]. For simplicity, we write 𝑏𝑠
𝑡(𝑠 =  1,2, … and 𝑡 ∈ ℝ ) for the unitary element 

exp (𝑡𝜋√−1ℎ𝑠). The ∗-automorphism 𝛼𝑡 is defined by 𝛼𝑡(𝑎𝑠) = 𝑏𝑠
𝑡𝑎𝑠 and 𝛼𝑡(𝑏𝑠) = 𝑏𝑠 . 

We adapt this construction to Γ = 𝔽𝑟(1) ×⋯× 𝔽𝑟(𝑘) acting on 𝑄 and 𝑀 = 𝑄 ⋊ Γ. We 

extend the action Γ ↷ 𝑄 to that of 

Γ̃ = (𝔽𝑟(1) ∗ �̃�𝑟(1)) × ⋯× (𝔽𝑟(𝑘) ∗ �̃�𝑟(𝑘)), 

where �̃�𝑟(𝑗) 's act trivially on 𝑄. We denote by 𝑎𝑗,1, 𝑎𝑗,2, … (resp. 𝑏𝑗,1, 𝑏𝑗,2, … ) the standard 

generators of 𝔽𝑟(𝑗) (resp. �̃�𝑟(𝑗)) We redefine the *-homomorphism 

𝛼𝑡:𝑀 → �̃� = 𝑄 ⋊ Γ̃ 

by 𝛼𝑡(𝑥) = 𝑥 for 𝑥 ∈ 𝑄 and 𝛼𝑡(𝑎𝑗,𝑠) = 𝑏𝑗,𝑠
𝑡 𝑎𝑗,𝑠 for each 1 ≤ 𝑗 ≤ 𝑘 and 𝑠. (We can define 

𝛼𝑡 on �̃�, but we do not need it.) 

Let 

𝛾(𝑡) = 𝜏(𝑏𝑗,𝑠
𝑡 ) =

1

2
∫  
1

−1

exp (𝑡𝜋√−1ℎ)𝑑ℎ =
sin (𝑡𝜋)

𝑡𝜋
= 𝛾(−𝑡) 

and 𝜙𝑗,𝛾(𝑡): 𝐿(𝔽𝑟(𝑗)) → 𝐿(𝔽𝑟(𝑗)) be the Haagerup multiplier ([153]) associated with the 

positive type function 𝑔 ↦ 𝛾(𝑡)|𝑔| on 𝔽𝑟(𝑗). We may extend 

𝜙𝛾(𝑡) = 𝜙1,𝛾(𝑡)⊗⋯⊗𝜙𝑘,𝛾(𝑡) 

to 𝑀 by defining 𝜙𝛾(𝑡)(𝑥𝜆(𝑔)) = 𝑥𝜙𝛾(𝑡)(𝜆(𝑔)) for 𝑥 ∈ 𝑄 and 𝜆(𝑔) ∈ 𝐿(Γ). We relate 𝛼𝑡 

and 𝜙𝛾(𝑡) as follows (cf. [49]). 

Lemma (4.1.25)[141]: One has 𝐸𝑀 ∘ 𝛼𝑡 = 𝜙𝛾(𝑡). 

Proof. Since 𝐸𝑀(𝑥𝜆(𝑔)) = 𝑥𝐸𝐿(Γ)(𝜆(𝑔)) for 𝑥 ∈ 𝑄 and 𝜆(𝑔) ∈ 𝐿(Γ̃), one has 𝐸𝑀 ∘

𝛼𝑡(𝑥𝜆(𝑔)) = 𝑥𝐸𝐿(Γ)(𝛼𝑡(𝜆(𝑔))) for 𝑥 ∈ 𝑄 and 𝜆(𝑔) ∈ 𝐿(Γ). Hence it suffices to show 

𝐸𝐿(Γ) ∘ 𝛼𝑡 = 𝜙𝛾(𝑡) on 𝐿(Γ). Since all 𝐸𝐿(Γ), 𝛼𝑡 and 𝜙𝛾(𝑡) split as tensor products, we may 

assume that 𝑘 = 1. Since 𝑎1, … , 𝑏1, … are mutually free, it is not hard to check 

(𝐸𝐿(𝐹𝑟) ∘ 𝛼𝑡)(𝑎𝑖1
±1⋯𝑎𝑖𝑛

±1) = 𝛾(𝑡)𝑛𝑎𝑖1
±1⋯𝑎𝑖𝑛

±1 = 𝜙𝛾(𝑡)(𝑎𝑖1
±1⋯𝑎𝑖𝑛

±1) 

for every reduced word 𝑎𝑖1
±1⋯𝑎𝑖𝑛

±1 in 𝔽𝑟 . 

In particular, the 𝑢. 𝑐. 𝑝. map 𝐸𝑀 ∘ 𝛼𝑡 on 𝑀 is compact over 𝑄 provided that 𝑟(𝑗) <
∞ for every 𝑗. In case of 𝑟(𝑗) = ∞, we need a little modification: we replace the defining 

equation 𝛼𝑡(𝑎𝑗,𝑠) = 𝑏𝑗,𝑠
𝑡 𝑎𝑗,𝑠 with 𝛼𝑡(𝑎𝑗,𝑠) = 𝑏𝑗,𝑠

𝑠𝑡𝑎𝑗,𝑠. Then, the 𝑢. 𝑐. 𝑝. map 𝐸𝑀 ∘ 𝛼𝑡 is 

compact over 𝑄 and 𝛼𝑡 → id𝑀 as 𝑡 → 0. 
Let Γ𝑗 be the kernel of the projection from Γ onto 𝔽𝑟(𝑗) and 𝑄𝑗 = 𝑄 ⋊ Γ𝑗 ⊂ 𝑀. We 

consider the basic construction ⟨𝑀, 𝑒𝑄𝑗⟩ of (𝑄𝑗 ⊂ 𝑀). Then, 𝐿2 ⟨𝑀, 𝑒𝑄𝑗⟩ is naturally an 𝑀-

bimodule. 

Lemma (4.1.26)[141]: Let 𝑄𝑗 ⊂ 𝑀 ⊂ �̃� be as above. Then, 𝐿2(�̃�)⊖ 𝐿2(𝑀) is isomorphic 

as an 𝑀-bimodule to a submodule of a multiple of ⨁𝑗=1
𝑘  𝐿2 ⟨𝑀, 𝑒𝑄𝑗⟩. 

Proof. Let Γ̃𝑗 be the kernel of the projection from Γ̃ onto 𝔽𝑟(𝑗) ∗ �̃�𝑟(𝑗). By permuting the 

position appropriately, we consider that Γ̃𝑗 × 𝔽𝑟(𝑗) ⊂ Γ̃ and ⋂Γ̃𝑗 × 𝔽𝑟(𝑗) = Γ. Let �̃�𝑗 = 𝑄 ⋊
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Γ̃𝑗 and �̃�𝑗 = 𝑄 ⋊ (Γ̃𝑗 × 𝔽𝑟(𝑗)). Since 𝐿2(𝑀) = ⋂𝑗=1
𝑘  𝐿2(�̃�𝑗), it suffices to show 𝐿2(�̃�) ⊖

𝐿2(�̃�𝑗) is isomorphic as an 𝑀-bimodule to a multiple of 𝐿2 ⟨𝑀, 𝑒𝑄𝑗⟩. 

We observe that 

𝐿2(�̃�)⊖ 𝐿2(�̃�𝑗) =⨁ 

𝑑

[�̃�𝑗𝜆(𝔽𝑟(𝑗)𝑑𝔽𝑟(𝑗))], 

where the square bracket means the 𝐿2-closure and the direct sum runs all over 𝑑 ∈ 𝔽𝑟(𝑗) ∗

�̃�𝑟(𝑗) whose initial and final letters in the reduced form come from �̃�𝑟(𝑗). Let 𝜋𝑗: 𝔽𝑟(𝑗) ∗

�̃�𝑟(𝑗) → 𝔽𝑟(𝑗) be the projection sending �̃�𝑟(𝑗) to {1}. It is not difficult to see that 

𝑥𝜆(𝑔𝑑ℎ) ↦ 𝑥𝜆(𝑔)𝑒𝑄𝑗𝜆(𝜋𝑗(𝑑)ℎ) 

extends to an 𝑀-bimodule isometry from [�̃�𝑗𝜆(𝔽𝑟(𝑗)𝑑𝔽𝑟(𝑗))] onto 𝐿2 ⟨𝑀, 𝑒𝑄𝑗⟩. 

We summarize the above two lemmas as follows. 

Proposition (4.1.27)[141]: Let 𝑄 ⊂ 𝑄𝑗 ⊂ 𝑀 be as above. Then, there are a finite von 

Neumann algebra �̃� ⊃ 𝑀 and trace-preserving *-homomorphisms 𝛼𝑡:𝑀 → �̃� such that: 

1. lim𝑡→0  ∥∥𝛼𝑡(𝑥) − 𝑥∥∥2 → 0 for every 𝑥 ∈ 𝑀; 

2. 𝐸𝑀 ∘ 𝛼𝑡 is compact over 𝑄 for every 𝑡 > 0; and 

3. 𝐿2(�̃�)⊖ 𝐿2(𝑀) is isomorphic as an 𝑀-bimodule to a submodule of a multiple of 

⨁𝑗=1
𝑘  𝐿2 ⟨𝑀, 𝑒𝑄𝑗⟩. 

We complete the proof of Theorem (4.1.23) in this abstract setting. 

Theorem (4.1.28)[141]: Let 𝑄 ⊂ 𝑄𝑗 ⊂ 𝑀 be as in Proposition (4.1.27). Let 𝑃 ⊂ 𝑀 be such 

that 𝑃 ⋠𝑀 𝑄. Let 𝒢 ⊂ 𝒩𝑀(𝑃) be subgroup which acts weakly compactly on 𝑃 by 

conjugation, and 𝑁 = 𝒢′′. Then there exist projection 𝑝1, … , 𝑝𝑘 ∈ 𝐿(𝑁
′ ∩𝑀) with 

∑𝑗=1
𝑘  𝑝𝑗 = 1 such that 𝑁𝑝𝑗 ≪𝑀 𝑄𝑗 for every 𝑗. 

Proof. We may assume that (𝒫) ⊂ 𝒢. We use Corollary (4.1.7) to conclude the relative 

amenability. Let a nonzero projection 𝑝 in 𝐿(𝑁′ ∩𝑀), a finite subset 𝐹 ⊂ 𝒢 and 𝜀 > 0 be 

given arbitrary. It suffices to find 𝜉 ∈ ⨁⨁𝑗=1
𝑘  𝐿2 ⟨𝑀, 𝑒𝑄𝑗⟩ such that ∥ 𝑥𝜉 ∥2≤∥ 𝑥 ∥2 for all 

𝑥 ∈ 𝑀, ∥ 𝑝𝜉 ∥2≥∥ 𝑝 ∥2/8 and ∥ [𝜉, 𝑢] ∥2
2< 𝜀 for every 𝑢 ∈ 𝐹. 

Let 𝛿 =∥ 𝑝 ∥2/8. We choose and fix 𝑡 > 0 such that 𝛼 = 𝛼𝑡 satisfies ∥ 𝑝 − 𝛼(𝑝) ∥2<
𝛿 and ∥ 𝑢 − 𝛼(𝑢) ∥2< 𝜀/6 for every 𝑢 ∈ 𝐹. We still denote by 𝛼 when it is viewed as an 

isometry from 𝐿2(𝑀) into 𝐿2(�̃�). Let (𝜂𝑛) be the net of unit vectors in 𝐿2(𝑃 ⊗‾ 𝑃‾)+as in 

Definition (4.1.17) and denote 

�̃�𝑛 = (𝛼 ⊗ 1)(𝜂𝑛) ∈ 𝐿
2(�̃�)⊗‾ 𝐿2(𝑀‾ ). 

We note that 

∥∥(𝑥 ⊗ 1)�̃�𝑛∥∥2
2 = 𝜏 (𝛼−1 (𝐸𝛼(𝑀)(𝑥

∗𝑥))) =∥ 𝑥 ∥2
2                   (7) 

for every 𝑥 ∈ �̃�. In particular, one has 

∥∥[𝑢 ⊗ 𝑢‾, �̃�𝑛]∥∥2 ≤ ∥∥[𝑢 ⊗ 𝑢‾, 𝜂𝑛]∥∥2 + 2 ∥ 𝑢 − 𝛼(𝑢) ∥2<
𝜀

2
             (8) 

for every 𝑢 ∈ 𝐹 and large enough 𝑛 ∈ ℕ. We denote 𝜁𝑛 = (𝑒𝑀⊗1)(�̃�𝑛) and 𝜁𝑛
⊥ = �̃�𝑛 −

𝜁𝑛. Noticing that 𝐿2(𝑀)⊗‾ 𝐿2(𝑀‾ ) is an 𝑀⊗‾ 𝑀‾ -bimodule, it follows from (8) that 

 ∥∥[𝑢 ⊗ 𝑢‾, 𝜁𝑛]∥∥2
2
+ ∥∥[𝑢 ⊗ 𝑢‾, 𝜁𝑛

⊥]∥∥2
2
= ∥∥[𝑢 ⊗ 𝑢‾, �̃�𝑛]∥∥2

2
<

𝜀

(2)2
          (9) 
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for every 𝑢 ∈ 𝐹 and large enough 𝑛 ∈ ℕ. We claim that 

Lim𝑛∥∥(𝑝 ⊗ 1)𝜁𝑛
⊥∥∥2 > 𝛿.                                                (10) 

Suppose this is not the case. Then, for any 𝑣 ∈ 𝑈(𝑃), one has 

Lim𝑛 ∥∥(𝑝⊗ 1)�̃�𝑛 − (𝑒𝑀𝛼(𝑣)𝑝 ⊗ 𝑣‾)𝜁𝑛∥∥2 

   ≤ Lim𝑛 ∥∥(𝑝⊗ 1)�̃�𝑛 − (𝑒𝑀𝛼(𝑣)𝑝 ⊗ 𝑣‾)�̃�𝑛∥∥2 + Lim𝑛 ∥∥(𝑝⊗ 1)𝜁𝑛
⊥∥∥2 

   ≤ Lim𝑛 ∥∥(𝑝⊗ 1)�̃�𝑛 − (𝑒𝑀𝑝⊗ 1)(𝛼(𝑣)⊗ 𝑣‾)�̃�𝑛∥∥2+∥ [𝛼(𝑣), 𝑝] ∥2+ 𝛿 

≤ Lim𝑛 ∥∥(𝑝 ⊗ 1)𝜁𝑛
⊥∥∥2 + Lim𝑛 ∥∥�̃�𝑛 − (𝛼(𝑣)⊗ 𝑣‾)�̃�𝑛∥∥2 + 2 ∥ 𝑝 − 𝛼(𝑝) ∥2+ 𝛿 

   ≤ 4𝛿 

since 𝑝𝑒𝑀 = 𝑒𝑀𝑝. It follows that 

∥∥(𝐸𝑀 ∘ 𝛼)(𝑣)𝑝∥∥2  = Lim𝑛 ∥∥((𝐸𝑀 ∘ 𝛼)(𝑣)𝑝 ⊗ 𝑣‾)�̃�𝑛∥∥

 ≥ Lim𝑛 ∥∥(𝑒𝑀⊗1)((𝐸𝑀 ∘ 𝛼)(𝑣)𝑝 ⊗ 𝑣‾)�̃�𝑛∥∥

 = Lim𝑛 ∥∥(𝑒𝑀𝛼(𝑣)𝑝 ⊗ 𝑣‾)𝜁𝑛∥∥

 ≥∥ 𝑝 ∥2− 4𝛿 > 0

          (11) 

for all 𝑣 ∈ (𝒫). (One has ∥∥(𝐸𝑀 ∘ 𝛼)(𝑣𝑝)∥∥2 ≥∥ 𝑝 ∥2− 6𝛿 as well.) Since 𝐸𝑀 ∘ 𝛼 is compact 

over 𝑄, this implies 𝑃 ⪯𝑀 𝑄 by Corollary (4.1.11), contradicting the assumption. Thus by 

(9) and (10), there exists 𝑛 ∈ ℕ such that 𝜁 = 𝜁𝑛
⊥ ∈ (𝐿2(�̃�)⊖ 𝐿2(𝑀))⊗‾ 𝐿2(𝑀‾ ) satisfies ∣

[𝑢 ⊗ 𝑢‾, 𝜁] ∥2< 𝜀/2 for every 𝑢 ∈ 𝐹 and ∥ (𝑝 ⊗ 1)𝜁 ∥2≥ 𝛿. We note that for all 𝑥 ∈ 𝑀, 
equation (7) implies 

∥ (𝑥 ⊗ 1)𝜁 ∥2
2= ∥∥(𝑒𝑀

⊥ ⊗1)(𝑥 ⊗ 1)�̃�𝑛∥∥2
2
≤ ∥∥(𝑥 ⊗ 1)�̃�𝑛∥∥2

2
=∥ 𝑥 ∥2

2 .     (12) 

By Proposition (4.1.27), we may view 𝜁 as a vector (𝜁𝑖) in ⨁𝑖  𝐿
2⟨𝑀, 𝑒𝑄𝑗(𝑖)⟩ ⊗‾ 𝐿

2(𝑀‾ ). 

We consider 𝜁𝑖𝜁𝑖
∗ ∈ 𝐿1 (⟨𝑀, 𝑒𝑄𝑗(𝑖))⊗

‾ 𝑀‾ ) and define 𝜉𝑖 = ((id⊗ 𝜏)(𝜁𝑖𝜁𝑖
∗))

1/2
 and 

then 𝜉 = (𝜉𝑖) ∈ ⨁𝑖  𝐿
2 ⟨𝑀, 𝑒𝑄𝑗(𝑖)⟩. Then, the inequality (12) implies 

∥ 𝑥𝜉 ∥2
2=∑ 

𝑖

𝜏(𝑥∗𝑥(id⊗ 𝜏)(𝜁𝑖𝜁𝑖
∗)) =∥ (𝑥 ⊗ 1)𝜁 ∥2

2≤∥ 𝑥 ∥2
2, 

and for all 𝑥 ∈ 𝑀. In particular, 

∥ 𝑝𝜉 ∥2=∥ (𝑝⊗ 1)𝜁 ∥2≥ 𝛿. 
Finally, by (1), one has 

∥ [𝜉, 𝑢] ∥2
2=∑  

𝑖

  ∥∥𝜉𝑖 − (Ad𝑢)(𝜉𝑖)∥∥2
2
≤∑ 

𝑖

  ∥∥𝜉𝑖
2 − (Ad𝑢)(𝜉𝑖

2)∥∥
1
       

≤∑ 

𝑖

  ∥∥𝜁𝑖𝜁𝑖
∗ − Ad(𝑢 ⊗ 𝑢‾) (𝜁𝑖𝜁𝑖

∗)∥∥1   

≤∑ 

𝑖

 2∥∥𝜁𝑖∥∥2∥∥[𝑢 ⊗ 𝑢‾, 𝜁𝑖]∥∥2                

≤ 2 ∥ 𝜁 ∥2∥ [𝑢 ⊗ 𝑢‾, 𝜁] ∥2< 𝜀            
for every 𝑢 ∈ 𝐹. 

Before proving the corollaries to Theorem (4.1.23), we mention one more result in 

the spirit of Theorem (4.1.23). Its proof is similar to the above, but requires more involved 

technique from [156]. 

Theorem (4.1.29)[141]: Let 𝑀 = 𝑀1 ∗ 𝑀2 be the free product of finite von Neumann 

algebras and 𝑃 ⊂ 𝑀 be a von Neumann subalgebra such that 𝑃 ⋠𝑀 𝑀𝑖 for 𝑖 = 1,2. If the 

action of 𝒢 ⊂ 𝒩𝑀(𝑃) on 𝑃 is weakly compact, then 𝒢′′ is AFD. 
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Proof. We follow the proof of Theorem (4.1.23), but use instead the deformation 𝛼𝑡 given 

in Lemma 2.2.2 in [156]. Let a nonzero projection 𝑝 ∈ 𝐿(𝒢′ ∩𝑀), a finite subset 𝐹 ⊂ 𝒢 and 

𝜀 > 0 be given arbitrary. Since 𝑃 for 𝑖 = 1,2, one has 

lim
𝑡→0
  i  {∥∥(𝐸𝑀 ∘ 𝛼𝑡)(𝑣𝑝)∥∥2: 𝑣 ∈ 𝒰(𝑃)} < (999/1000) ∥ 𝑝 ∥2 

by Proposition (4.1.20) and Theorem 4.3 in [156]. Hence, if we choose 𝛿 > 0 small enough 

and 𝑡 > 0 accordingly, then one obtains as in the proof of Theorem (4.1.23) that 

Lim𝑛 ∥∥(𝑝⊗ 1)𝜁𝑛
⊥∥∥2 ≥ 𝛿 

for 𝜁𝑛
⊥ = ((1 − 𝑒𝑀) ⊗ 1)�̃�𝑛 ∈ 𝐿

2(�̃� ⊖𝑀)⊗‾ 𝐿2(𝑀‾ ). Since 𝐿2(�̃� ⊖𝑀) is a multiple of 

𝐿2(𝑀⊗‾ 𝑀) as an 𝑀-bimodule, one obtains 𝜉 ∈ ⨁𝐿2(𝑀⊗‾ 𝑀) such that ∥ 𝑥𝜉 ∥2=∥ 𝜉𝑥 ∥2≤
∥ 𝑥 ∥2 for all 𝑥 ∈ 𝑀, ∥ 𝑝𝜉 ∥2≥ 𝛿 and ∥ [𝑢, 𝜉] ∥2< 𝜀 for every 𝑢 ∈ 𝐹. This proves that 𝒢′′ is 

AFD. 

Corollary (4.1.30)[141]: If 𝑄 is a type II1-factor with c.m.a.p., then 𝑄⊗‾ 𝐿(𝔽𝑟) does not 

have Cartan subalgebras. Moreover, if 𝑁 ⊂ 𝑄⊗‾ 𝐿(𝔽𝑟) is a subfactor of finite index, then 

𝑁 does not have Cartan subalgebras either. 

Proof. Suppose there is a Cartan subalgebra 𝐴 ⊂ 𝑀 where 𝑀 ⊂ 𝑁 = 𝑄⊗‾ 𝐿(𝔽𝑟) is a 

subfactor of finite index. Since 𝔽𝑟 is nonamenable, 𝑁 is not amenable relative to 𝑄, so by 

Proposition (4.1.8), 𝑀 is not amenable relative to 𝑄 inside 𝑁. Hence, by Theorems (4.1.22) 

and (4.1.23) one has 𝐴 ⪯ 𝑁𝑄. By Theorem (4.1.9), this implies there exist projections 𝑝 ∈
𝐴′ ∩ 𝑁, 𝑞 ∈ 𝑄, an abelian von Neumann subalgebra 𝐴0 ⊂ 𝑞𝑄𝑞 and a nonzero partial 

isometry 𝑣 ∈ 𝑁 such that 𝑝0 = 𝑣𝑣
∗ ∈ 𝑝(𝐴′ ∩ 𝑁)𝑝, 𝑞0 = 𝑣

∗𝑣 ∈ 𝐴0
′ ∩ 𝑞𝑁𝑞 and 𝑣∗(𝐴𝑝0)𝑣 =

𝐴0𝑞0. 
Since 𝑄 = 𝐿(𝔽𝑟)

′ ∩ 𝑁, by "shrinking" 𝑞 if necessary we may clearly assume 𝑞 =

⋁{𝑢𝑞0𝑢
∗: 𝑢 ∈ 𝒰(𝐿(𝔽𝑟))}. Since 𝐿(𝔽𝑟)𝑞 is contained in (𝐴0𝑞)

′ ∩ 𝑞𝑁𝑞, this implies 𝑞0 has 

central support 1 in the von Neumann algebra (𝐴0𝑞)
′ ∩ 𝑞𝑁𝑞. But (𝐴0𝑞0)

′ ∩ 𝑞0𝑁𝑞0 =
𝑣∗(𝐴′ ∩ 𝑁)𝑣 by spatiality and since 𝑀 ⊂ 𝑁 has finite index, 𝐴 ⊂ 𝐴′ ∩ 𝑁 has finite index as 

well (in the sense of [165]) so 𝐴′ ∩ 𝑁 is type I, implying (𝐴0𝑞0)
′ ∩ 𝑞0𝑁𝑞0 type I, and thus 

(𝐴0𝑞)
′ ∩ 𝑞𝑁𝑞 type I as well. But 𝐿(𝔽𝑟) ≃ 𝐿(𝔽𝑟)𝑞 ⊂ (𝐴0𝑞)

′ ∩ 𝑞𝑁𝑞, contradiction 

For the proof of Corollary (4.1.32), we will need the following general observation. 

Lemma (4.1.31)[141]: Let Γ be an ICC group and Γ o» 𝑋 an ergodic measurepreserving 

action. Let 𝑀 = 𝐿∞(𝑋) ⋊ Γ. Then 𝑀 is a factor. Moreover, the following conditions are 

equivalent: 

1. Γ ↷ 𝑋 is free. 

2. 𝐿∞(𝑋) is maximal abelian (thus Cartan) in 𝑀. 
3. There is a maximal abelian ∗-subalgebra 𝐴 ⊂ 𝑀 such that 𝐴 ⪯𝑀 𝐿

∞(𝑋). 
Proof. The first part is well-known, its proof being identical to the Murrayvon Neumann 

classical argument in [161], showing that if a group Γ is ICC then its group von Neumann 

algebra 𝐿(Γ) is a factor. 

The equivalence of (a) and (b) is a classical result of Murray and von Neumann, and 

(b)⇒(c) is trivial. To prove (c)⇒(b), denote 𝐵 = 𝐿∞(𝑋) and let 𝐴 ⊂ 𝑀 be maximal abelian 

satisfying 𝐴 ⪯ 𝑀𝐵. Then there exists a nonzero partial isometry 𝑣 ∈ 𝑀, projections 𝑝 ∈ 𝐴 =
𝐴′ ∩𝑀, 𝑞 ∈ 𝐵 and a unital isomorphism 𝜃 of 𝐴𝑝 onto a unital subalgebra 𝐵0 of 𝐵𝑞 such that 

𝑣𝑎 = 𝜃(𝑎)𝑣, for all 𝑎 ∈ 𝐴𝑝. Denoting 𝑞′ = 𝑣𝑣∗ ∈ 𝐵0
′ ∩ 𝑞𝑀𝑞, it follows that 𝑞′(𝐵0

′ ∩
𝑞𝑀𝑞)𝑞′ = (𝐵0𝑞

′)′ ∩ 𝑞′𝑀𝑞′. Since by spatiality 𝐵0𝑞
′ = 𝑣𝐴𝑣∗ is maximal abelian, this 

implies 𝑞′(𝐵0
′ ∩ 𝑞𝑀𝑞)𝑞′ = 𝑣𝐴𝑣∗. Thus, 𝐵0

′ ∩ 𝑞𝑀𝑞 has a type I direct summand. Since 

(𝐵𝑞)′ ∩ 𝑞𝑀𝑞 is a subalgebra of 𝐵0
′ ∩ 𝑝𝑀𝑝, it follows that 𝐵′ ∩𝑀 has a type I summand. 
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Since Γ acts ergodically on 𝒜(𝐵′ ∩𝑀) ⊃ 𝐵 (or else 𝑀 would not be a factor), the algebra 

𝐵′ ∩𝑀 is homogeneous of type I𝑛, for some 𝑛 < ∞. 
Note at this point that since all maximal abelian subalgebras of the type I summand 

of 𝐵0
′ ∩ 𝑞𝑀𝑞 containing 𝑞′ are unitary conjugate (cf. [160]), we may assume that 𝑞′ is in a 

maximal abelian algebra containing 𝐵𝑞. Thus, if  £ the center of 𝐵′ ∩𝑀, then £𝑞′ ⊂
𝑞′(𝐵0

′ ∩ 𝑞𝑀𝑞)𝑞′ = 𝐵0𝑞
′ ⊂ 𝐵𝑞′, showing that £𝑞′ = 𝐵𝑞′. Since 𝐵, £ are Γ-invariant with 

the corresponding Γ-actions ergodic, it follows that there exists a partition of 1 with 

projections of equal trace 𝑝1, … , 𝑝𝑚 ∈ 𝒟 such that £ = Σ𝑖𝐵𝑝𝑖 and 𝐸𝐵(𝑝𝑖) = 𝑚
−11, for all 𝑖. 

Since 𝐵′ ∩𝑀 = ℒ′ ∩𝑀 has an orthonormal basis over £ with 𝑛2 unitary elements, this 

shows that 𝐵′ ∩𝑀 has a finite unitary orthonormal basis over 𝐵. But if 𝑥 ∈ (𝐵′ ∩𝑀) ∖ 𝐵, 
and 𝑥 = Σ𝑔𝑎𝑔𝑢𝑔 is its Fourier series, with 𝑎𝑔 ≠ 0 for some 𝑔 ≠ 𝑒, then 𝑝𝑔𝑢𝑔 ∈ 𝐵

′ ∩𝑀, 

where 𝑝𝑔 denotes the support projection of 𝑎𝑔. 

Now, since Γ is ICC there exist infinitely many ℎ𝑛 ∈ Γ such that 𝑔𝑛 = ℎ𝑛𝑔ℎ𝑛
−1 are 

distinct. This shows that all 𝜎ℎ𝑛(𝑝𝑔)𝑢𝑔𝑛 ⊂ 𝐵
′ ∩𝑀 are mutually orthogonal relative to 𝐵. 

By [165], this contradicts the finiteness of the index of 𝐵 ⊂ 𝐵′ ∩𝑀. 
Thus, we must have 𝐵′ ∩𝑀 = 𝐵, showing that Γ ↷ 𝑋 is free and 𝐵 = 𝐿∞(𝑋) is 

maximal abelian, hence Cartan. 

Corollary (4.1.32)[141]: Let Γ = 𝔽𝑟(1) ×⋯× 𝔽𝑟(𝑘), as in Theorem (4.1.23), and Γ ↷ 𝑋 an 

ergodic probability-measure-preserving action. Then 𝑀 = 𝐿∞(𝑋) ⋊ Γ is 𝑎 II1 factor and for 

each 𝑡 > 0 we have: 

1. Assume 𝑀𝑡 has a maximal abelian ∗-subalgebra 𝐴 such that 𝒩𝑀𝑡(𝐴) ↷ 𝐴 is weakly 

compact and 𝑁 = 𝒩𝑀𝑡(𝐴)
′′ is a subfactor of finite index in 𝑀𝑡 . Then Γ ↷ 𝑋 is 

necessarily a free action, 𝐿∞(𝑋) is Cartan in 𝑀 and there exists a unitary element 𝑢 ∈
𝑀𝑡 such that 𝑢𝐴𝑢∗ = 𝐿∞(𝑋)𝑡 . 

2. Assume Γ ↷ 𝑋 is profinite (or merely compact). Then 𝑀 has a Cartan subalgebra if 

and only if Γ ↷ 𝑋 is free. 

3. Assume Γ = 𝔽𝑟 . If 𝑀
𝑡 has a weakly compact maximal abelian ∗-subalgebra 𝐴 whose 

normalizer generates a von Neumann algebra without amenable direct summand, then 

Γ ↷ 𝑋 follows free and 𝐴 is unitary conjugate to 𝐿∞(𝑋)𝑡 . 
Proof. The factoriality of 𝑀 was shown in Lemma (4.1.31) above. 

To prove part (a), note that 𝒩𝑀𝑡(𝐴) ↷ 𝐴 weakly compact implies 𝒩𝑀(𝐴
1/𝑡) ↷ 𝐴1/𝑡 

weakly compact, where 𝐴1/𝑡 ⊂ 𝑀 is the semiregular maximal abelian *-subalgebra obtained 

by amplifying 𝐴 ⊂ 𝑀𝑡 by 1/𝑡 (see Proposition (4.1.20) and the comments following its 

proof). This shows that it is sufficient to prove the case 𝑡 = 1. Let Γ𝑗 be as in Theorem 

(4.1.23). If 𝑁 = 𝒩𝑀(𝐴)
′′ ⋖𝑀 𝐿

∞(𝑋) ⋊ Γ𝑗 for some 𝑗, then by [𝑀:𝑁] < ∞ it follows that 

𝑀 ⋖𝑀 𝐿
∞(𝑋) ⋊ Γ𝑗 as well. But this implies 𝔽𝑟(𝑗) amenable, a contradiction. Thus, by 

Theorem (4.1.23) we have 𝐴 ⪯ 𝐿∞(𝑋) and the statement follows from Lemma (4.1.31). 
Part (b) follows trivially from part (a), since Γ ↷ 𝑋 compact implies 𝑀 has c.m.a.p., 

by Proposition (4.1.18). 
An obvious maximality argument shows that in order to prove (c) it is sufficient to 

show: (c') for all 𝑝 ∈ 𝒫(𝐴), 𝑝 ≠ 0, ∃𝑣 ∈ 𝑀𝑡, nonzero partial isometry, such that 𝑣∗𝑣 ∈
𝐴𝑝, 𝑣𝐴𝑣∗ ⊂ 𝐿∞(𝑋)𝑡 . By amplifying 𝐴 ⊂ 𝑀𝑡 by suitable integers, we see that in order to 

prove (c') for arbitrary 𝑡 > 0, it is sufficient to prove it for 𝑡 = 1. Since 𝑁 ⋖𝑀 𝐿
∞(𝑋) would 

imply 𝑁 amenable, by Theorem (4.1.23) we must have 𝐴 ⪯ 𝐿∞(𝑋). Then Lemma (4.1.31) 
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implies 𝐿∞(𝑋) maximal abelian in 𝑀 and Lemma (4.1.12) applies to get (c'), thus (c) as 

well. 

The proof of Corollary (4.1.34) will follow readily from the next general "principle". 

Proposition (4.1.33)[141]: Assume a II1 factor 𝑀 has the property: 

1. ∃ 𝐴 ⊂ 𝑀 Cartan and any maximal abelian  ∗-subalgebra 𝐴0 ⊂ 𝑀 with 𝒩𝑀(𝐴0)
′′ a 

subfactor of finite index in 𝑀 is unitary conjugate to 𝐴. 
Then any amplification and finite index extension/restriction of 𝑀 satisfies (a) as well. 

Moreover, if 𝑀 satisfies (a) and 𝑁 ⊂ 𝑀 is an irreducible subfactor of finite index, then 

[𝑀:𝑁] is an integer. 

Proof. For the proof, we call an abelian von Neumann subalgebra 𝐵 of a II1, factor 𝑃 

virtually Cartan if it is maximal abelian and 𝑄 = 𝒩𝑃(𝐵)
′′ has finitedimensional center with 

[𝑞𝑃𝑞: 𝑄𝑞] < ∞ for any atom 𝑞 ∈ ℒ(𝑄). We first prove that if 𝑃 ⊂ 𝑁 is an inclusion of 

factors with finite index and 𝐵 ⊂ 𝑃 is virtually Cartan in 𝑃 then any maximal abelian  ∗-
subalgebra 𝐴 of 𝐵′ ∩ 𝑁 is virtually Cartan in 𝑁. 

To see this, note that, by commuting squares, the index of 𝐵 ⊂ 𝐵′ ∩ 𝑁 (in the sense 

of [165]) is majorized by [𝑁: 𝑃] < ∞, implying that 𝐵′ ∩ 𝑁 is a direct sum of finitely many 

homogeneous type I𝑛𝑖 von Neumann algebras 𝐵𝑖 , with 1 ≤ 𝑛1 < 𝑛2 < ⋯ < 𝑛𝑘 < ∞. Since 

any two maximal abelian  ∗-subalgebras of a finite type I von Neumann algebra are unitary 

conjugate and 𝒩𝑃(𝐵) leaves 𝐵′ ∩ 𝑁 globally invariant, it follows that given any 𝑢 ∈ 𝒩𝑃(𝐵), 
there exists 𝑣(𝑢) ∈ 𝒰(𝐵′ ∩ 𝑁) such that 𝑣(𝑢)𝑢𝐴𝑢∗𝑣(𝑢)∗ = 𝐴. Moreover, 𝐴 is Cartan in 

𝐵′ ∩ 𝑁, i.e. 𝒩𝐵′∩𝑁(𝐴)
′′ = 𝐵′ ∩ 𝑁. This shows in particular that the von Neumann algebra 

generated by 𝒩𝑁(𝐴) contains 𝐵′ ∩ 𝑁 and 𝑣(𝑢)𝑢, and thus it contains 𝑢, i.e. 𝒩𝑃(𝐵) ⊂
𝒩𝑁(𝐴)

′′. 
Thus, the [165]-index of 𝒩𝑁(𝐴)

′′ in 𝑁 is majorized by the index of 𝑃 in 𝑁, and is 

thus finite. Since 𝑁 is a factor, this implies 𝑄 = 𝒩𝑁(𝐴)
′′ has finite-dimensional center and 

[𝑞𝑁𝑞: 𝑄𝑞] < ∞ for any atom in its center, i.e. 𝐴 is virtually Cartan in 𝑁. 
Now notice that since any unitary conjugacy of subalgebras 𝐴, 𝐴0 ⊂ 𝑀 as in (a) can 

be "amplified" to a unitary conjugacy of 𝐴𝑡 , 𝐴0
𝑡  in 𝑀𝑡 , property (a) is stable to amplifications. 

This also shows that (a) holds true for a factor 𝑀 if and only if 𝑀 satisfies: 

2. ∃ 𝐴 ⊂ 𝑀 Cartan and any virtually Cartan subalgebra 𝐴0 of 𝑀 is unitary conjugate to 

𝐴. 
Since if a subfactor 𝑁 ⊂ 𝑀 satisfies [𝑀:𝑁] < ∞ then ⟨𝑀, 𝑒𝑁⟩ is an amplification of 

𝑁 (see e.g. [165]), it follows that in order to finish the proof of the statement it is sufficient 

to prove that if 𝑀 satisfies (b) and 𝑁 ⊂ 𝑀 is a subfactor with finite index, then 𝑁 satisfies 

(b). 

Let 𝐴 ⊂ 𝑀 be a Cartan subalgebra of 𝑀. Let 𝑃 ⊂ 𝑁 be such that 𝑁 ⊂ 𝑀 is the basic 

construction of 𝑃 ⊂ 𝑁 (cf. [158]). Thus 𝑃 is isomorphic to an amplification of 𝑀 and so it 

has a Cartan subalgebra 𝐴2 ⊂ 𝑃. By the first part of the statement any maximal abelian 

subalgebra 𝐴1 of 𝐴2
′ ∩ 𝑁 is virtually Cartan in 𝑁. Applying again the first part, any maximal 

abelian 𝐴0 of 𝐴1
′ ∩𝑀 is virtually Cartan in 𝑀, so it is unitary conjugate to 𝐴. Thus, 𝐴0 ⊂ 𝑀 

follows Cartan. 

Thus, 𝐿2(𝑀) =⊕ 𝑢𝑛𝐿
2(𝐴0), for some partial isometries 𝑢𝑛 ∈ 𝑀 normalizing 𝐴0. 

Since 𝐴0 is a finitely generated 𝐴1-module, it follows that each 𝑢𝑛𝐿
2(𝐴0) is finitely 

generated both as left and as right 𝐴1 module, i.e. there exist finitely many 𝜉𝑖 , 𝜉𝑗
′ ∈ 𝑢𝑛𝐿

2(𝐴0) 

such that Σ𝑖𝜉𝑖𝐴1 and Σ𝐴1𝜉𝑖
′ are dense in 𝑢𝑛𝐿

2(𝐴0). Thus, if we denote by ℋ𝑛 the closure of 

the range of the projection of 𝑢𝑛𝐿
2(𝐴0) onto 𝐿2(𝑁) and by 𝜂𝑖 , 𝜂𝑗

′  the projection of 𝜉𝑖 , 𝜉𝑗
′ onto 
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𝐿2(𝑁), then ℋ𝑛 is a Hilbert 𝐴1-bimodule generated as left Hilbert 𝐴1-module by 𝜂𝑖 ∈ 𝐿
2(𝑁) 

and as a right Hilbert 𝐴1-module by 𝜂𝑗
′ ∈ 𝐿2(𝑁). Moreover, since ∨𝑛 𝑢𝑛𝐿

2(𝐴0) = 𝐿
2(𝑀), 

we have ∨𝑛ℋ𝑛 = 𝐿
2(𝑁). Thus, by Section 1.4 in [51], 𝐴1 is Cartan in 𝑁. 

Note that the above argument shows that 𝑁 has Cartan subalgebra, but also that any 

virtually Cartan subalgebra of 𝑁 is in fact Cartan. If now 𝐵1 ⊂ 𝑁 is another Cartan 

subalgebra of 𝑁, then let 𝐵0 be a maximal abelian subalgebra of 𝐵1
′ ∩𝑀. By the first part of 

the proof 𝐵0 is virtually Cartan, so by (b) there exists 𝑣 ∈ 𝑼(𝑀) such that 𝑣𝐴0𝑣
∗ = 𝐵0. 

Thus, if we let 𝑣𝑛 = 𝑣𝑢𝑛 then 𝐿2(𝑀) = ⊕𝑛 𝑣𝑛𝐿
2(𝐴0) =⊕𝑛 𝐿

2(𝐵0)𝑣𝑛. Since 𝐴0 (resp. 𝐵0) 
is a finitely generated 𝐴1 (resp. 𝐵1 ) module, there exist 𝜉𝑖 , 𝜉𝑗

′ ∈ 𝑣𝑛𝐿
2(𝐴0) = 𝐿

2(𝐵0)𝑣𝑛 such 

that Σ𝑖𝜉𝑖𝐴1 is dense in 𝑣𝑛𝐿
2(𝐴0) and Σ𝑗𝐵1𝜉𝑗

′ is dense in 𝐿2(𝐵0)𝑣𝑛. But then exactly the same 

argument as above shows that 𝐿2(𝑁) is spanned by Hilbert 𝐵1 − 𝐴1 bimodules ℋ𝑛 which 

are finitely generated both as right 𝐴1 Hilbert modules and as left Hilbert 𝐵1, modules. By 

Section 1.4 in [51], it follows that 𝐴1, 𝐵1 are unitary conjugate. 

Finally, to see that for irreducible inclusions of factors 𝑁 ⊂ 𝑀 satisfying (𝑎), the 

index [𝑀:𝑁] is an integer, when finite, let 𝑁 ⊂ 𝑄 ⊂ 𝑃 ⊂ 𝑀 be the canonical intermediate 

subfactors constructed in 7.1 of [51]. Then 𝑄, 𝑃 satisfy (𝑎) as well and by 7.1 in [51] the 

Cartan subalgebra of 𝑃 is maximal abelian and Cartan in 𝑀. Thus, as in the proof of 7.2. 3∘ 
in [51], we have [𝑄: 𝑁], [𝑃: 𝑄], [𝑀: 𝑃] ∈ ℕ, implying that [𝑀:𝑁] ∈ ℕ. 
Corollary (4.1.34)[141]: Let Γ = 𝔽𝑟(1) ×⋯× 𝔽𝑟(𝑘) (as in Theorem (4.1.23), Corollary 

(4.1.32)) and Γ ↷ 𝑋 a free ergodic profinite (or merely compact) action. Then, 𝐿∞(𝑋) is the 

unique Cartan subalgebra of the 𝐼𝐼  1-factor 𝐿∞(𝑋) ⋊ Γ, up to unitary conjugacy. Moreover, 

if ℘℘ denotes the class of all II1 factors that can be embedded as subfactors of finite index 

in an amplification of some 𝐿∞(𝑋) ⋊ Γ, with Γ ↷ 𝑋 free ergodic compact action and Γ as 

above, then any 𝑀 ∈ ℘℘ has unique Cartan subalgebra, up to unitary conjugacy. The class 

℘℘ is closed under amplifications, tensor product and finite index extension/restriction. 

Also, if 𝑀 ∈ ℘℘ and 𝑁 ⊂ 𝑀 is an irreducible subfactor of finite index, then [𝑀:𝑁] is an 

integer. 

Proof. Let 𝑀 = 𝐿∞(𝑋) ⋊ Γ and assume 𝐴 ⊂ 𝑀 is a Cartan subalgebra. By Proposition 

(4.1.18) and Corollary (4.1.19), 𝑀 follows c.m.a.p. Thus, Theorem (4.1.22) applies to show 

that 𝒩𝑀(𝐴) ↷ 𝐴 is weakly compact. Since 𝔽𝑟(𝑗) are all nonamenable, 𝑀 = 𝒩𝑀(𝐴)
′′ cannot 

be amenable relative to 𝐿∞(𝑋) ⋊ Γ𝑗 (with Γ𝑗 as defined in Theorem (4.1.23)), for all 𝑗. Hence, 

Theorem (4.1.23) implies 𝐴 ⪯ 𝑀𝐿∞(𝑋). 
Then Lemma (4.1.12) shows there is 𝑢 ∈ 𝑼(𝑀) such that 𝑢𝐴𝑢∗ = 𝐿∞(𝑋), proving 

the first part of the statement. The rest is a consequence of Proposition (4.1.33). 
We prove that there are uncountably many approximate free group factors of any rank 

2 ≤ 𝑛 ≤ ∞. We do this by using a "separability argument," in the spirit of [167], [159], 

[163]. The proof is independent of the previous. The result shows in particular the existence 

of uncountably many orbit inequivalent profinite actions of 𝔽𝑛. The fact that 𝔽𝑛 has 

uncountably many orbit inequivalent actions was first shown in [151]. A concrete family of 

orbit inequivalent actions of 𝔽𝑛 was recently obtained in [155]. Note that the actions 𝔽𝑛 ↷
𝑋 in [151] and [155] are not orbit equivalent to profinite actions (because they have quotients 

that are free and have relative property (T) in the sense of [51]). 

Definition (4.1.35)[141]: We say a unitary representation (𝜋,ℋ) of Γ has (resp. essential) 

spectral gap if there is a finite subset 𝐹 of Γ and 𝜀 > 0 such that the self-adjoint operator 
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1

2|𝐹|
∑  

𝑔∈𝐹

(𝜋(𝑔) + 𝜋(𝑔−1)) 

has (resp. essential) spectrum contained in [−1,1 − 𝜀]. We say such (𝐹, 𝜀) witnesses ( resp. 

essential) spectral gap of (𝜋,ℋ). 
It is well-known that (𝜋,ℋ) has spectral gap if and only if it does not contain approximate 

invariant vectors. 

Definition (4.1.36)[141]: Let Γ be a group. We say Γ is inner-amenable ([149]) if the 

conjugation action of Γ on ℓ2(Γ ∖ {1}) does not have spectral gap. 

Let {Γ𝑛} be a family of finite index (normal) subgroups of Γ. We say Γ has the property 

(𝜏) with respect to {Γ𝑛} if the unitary Γ-representation on 

⨁ 

𝑛

ℓ2(Γ/Γ𝑛)
𝑜 

has spectral gap, where ℓ2(Γ/Γ𝑛)
𝑜 = ℓ2(Γ/Γ𝑛) ⊖ ℂ1 Γ

Γ𝑛

. 

Let 𝐼 be a family of decreasing sequences 

𝑖 = (Γ = Γ0
(𝑖)
≥ Γ1

(𝑖)
≥ Γ2

(𝑖)
≥ ⋯) 

of finite index normal subgroups of Γ such that ⋂Γ𝑛
(𝑖)
= {1}. We allow the possibility that 

Γ𝑛
(𝑖)
= Γ𝑛+1

(𝑖)
. We say the family 𝐼 is admissible if Γ has the property (𝜏) with respect to 

{Γ𝑚
(𝑖)
∩ Γ𝑛

(𝑗)
: 𝑖, 𝑗 ∈ 𝐼,𝑚, 𝑛 ∈ ℕ} and 

sup {[Γ: Γ𝑚
(𝑖)
Γ𝑛
(𝑗)
] :𝑚, 𝑛 ∈ ℕ} < ∞ 

for any 𝑖, 𝑗 ∈ 𝐼 with 𝑖 ≠ 𝑗. 
Lemma (4.1.37)[141]: Let Γ ≤ SL (𝑑, ℤ) with 𝑑 ≥ 2 be a finite index subgroup and 

Γ𝑛 = Γ ∩ ker (SL(𝑑, ℤ) → SL (𝑑,
ℤ

𝑛ℤ
)). 

Let 𝐼 be a family of infinite subsets of prime numbers such that |𝑖 ∩ 𝑗| < ∞ for any 𝑖, 𝑗 ∈ 𝐼 
with 𝑖 ≠ 𝑗. (We note that there exists such an uncountable family I.) Associate each 𝑖 =

{𝑝1 < 𝑝2 < ⋯} ∈ 𝐼 with the decreasing sequence of finite index normal subgroups Γ𝑛
(𝑖)
=

Γ𝑖(𝑛) where 𝑖(𝑛) = 𝑝1⋯𝑝𝑛. Then, the family 𝐼 is admissible. 

Proof. First, we note that Γ𝑚 ∩ Γ𝑛 = Γgcd (𝑚,𝑛). By the celebrated results of Kazhdan for 𝑑 ≥

3 (see [144]) and Selberg for 𝑑 = 2 (see [42]) the group Γ has the property (𝜏) with respect 

to the family {Γ𝑛: 𝑛 ∈ ℕ}. We observe that the index [Γ: Γ𝑚
(𝑖)
Γ𝑛
(𝑗)
] is the cardinality of Γ-

orbits of (Γ/Γ𝑚
(𝑖)
) × (Γ/Γ𝑛

(𝑗)
). Since 

SL(𝑑, ℤ/𝑝1⋯𝑝𝑙ℤ) =∏ 

𝑙

𝑘=1

SL(𝑑, ℤ/𝑝𝑘ℤ) 

for any mutually distinct primes 𝑝1, … , 𝑝𝑙 , one has a group isomorphism 

SL (𝑑,
ℤ

𝑖(𝑚)ℤ
) × SL(𝑑,

ℤ

𝑗(𝑛)ℤ
) ≅ SL (𝑑,

ℤ

𝑘ℤ
) × 𝐒𝐋 (𝑑,

ℤ

𝑙ℤ
), 

where 𝑘 = gcd (𝑖(𝑚), 𝑗(𝑛)) and 𝑙 = 𝑖(𝑚)𝑗(𝑛)/gcd (𝑖(𝑚), 𝑗(𝑛)). Since 

(Γ/Γ𝑚
(𝑖)
) × (Γ/Γ𝑛

(𝑗)
) ⊂ SL(𝑑, ℤ/𝑖(𝑚)ℤ) × SL(𝑑, ℤ/𝑗(𝑛)ℤ) 

as a Γ-set, one has 
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[Γ: Γ𝑚
(𝑖)
Γ𝑛
(𝑗)
] ≤ |SL (𝑑,

ℤ

𝑘ℤ
)| [SL (𝑑,

ℤ

𝑙ℤ
) :
Γ

Γ𝑙
]. 

Therefore, the condition sup {[Γ: Γ𝑚
(𝑖)
Γ𝑛
(𝑗)
] :𝑚, 𝑛 ∈ ℕ} < ∞ follows from the fact that 

|𝑖 ∩ 𝑗| < ∞. 

For example, we can take Γ ≤ SL(2, ℤ) to be ⟨(
1 2
0 1

) , (
1 0
2 1

)⟩ ≅ 𝔽2. By [171], one 

may relax the assumption that " Γ ≤ SL(𝑑, ℤ) has finite index" to " Γ ≤ SL(𝑑, ℤ) is co-

amenable," so that one can take Γ to be isomorphic to 𝔽∞. 
Let 𝒫 = (Γ𝑛)𝑛=1

∞  be a decreasing sequence of finite index subgroups of a group Γ. 
We write 𝑋𝒮 = lim←  Γ/Γ𝑛 for the projective limit of the finite probability space Γ/Γ𝑛 with 

uniform measures. We note that 𝐿∞(𝑋𝒮) = (⋃ℓ
∞(Γ/Γ𝑛))

′′
, where the inclusion 

𝜄𝑛: ℓ
∞(Γ/Γ𝑛) ↪ ℓ∞(Γ/Γ𝑛+1) is given by 𝜄𝑛(𝑓)(𝑔Γ𝑛+1) = 𝑓(𝑔Γ𝑛). There is a natural action 

Γ ↷ 𝐿∞(𝑋𝒮) which is ergodic, measurepreserving and profinite. (Any such action arises in 

this way.) The action is essentially-free if and only if 

for all 𝑔 ∈ Γ ∖ {1} |{𝑥 ∈ 𝑋𝒮: 𝑔𝑥 = 𝑥}| = lim𝑛  
|{𝑥∈

Γ

Γ𝑛
:𝑔𝑥=𝑥}|

|
Γ

Γ𝑛
|

= 0.        (13) 

This condition clearly holds if all Γ𝑛 are normal and ⋂Γ𝑛 = {1}. We denote 𝐴𝒮 = 𝐿
∞(𝑋𝒮) 

and 𝐴𝒮,𝑛 = ℓ
∞(Γ/Γ𝑛) ⊂ 𝐴𝒮. Since 

𝐿2(𝐴𝜑) ≅ ℂ1⊕⨁ 

∞

𝑛=1

(𝐿2(𝐴𝑌,𝑛) ⊖ 𝐿2(𝐴𝒮,𝑛−1)) ⊂ ℂ1⊕⨁ 

∞

𝑛=1

ℓ2(Γ/Γ𝑛)
𝑜 

as a Γ-space, the action Γ ↷ 𝐴  is strongly ergodic if Γ has the property (𝜏) with respect to 

𝒫. 
Theorem (4.1.38)[141]: Let Γ be a countable group which is not inner-amenable, and 𝐼 be 

an uncountable admissible family of decreasing sequences of finite index normal subgroups 

of Γ. Then, all 𝑀𝑖 = 𝐿(𝑋𝑖) ⋊ Γ are full factors of type II1 and the set {𝑀𝑖: 𝑖 ∈ 𝐼} contains 

uncountably many isomorphism classes of von Neumann algebras. 

Proof. That all 𝑀𝑖 are full follows from [145]. Take a finite subset 𝐹 of Γ and 𝜀 > 0 such 

that (𝐹, 𝜀) witnesses spectral gap for both non-inner-amenability and the property (𝜏) with 

respect to {Γ𝑚
(𝑖)
∩ Γ𝑛

(𝑗)
}. We write 𝜆𝑖(𝑔) for the unitary element in 𝑀𝑖 that implements the 

action of 𝑔 ∈ Γ. 
We claim that if 𝑖 ≠ 𝑗, then (𝐹, 𝜀) witnesses essential spectral gap of the unitary Γ-

representation Ad (𝜆𝑖⊗𝜆𝑗) on 𝐿2(𝑀𝑖⊗‾ 𝑀𝑗). First, we deal with the Ad (𝜆𝑖⊗𝜆𝑖)(Γ)-

invariant subspace 

𝐿2(𝐴𝑖⊗‾ 𝐴𝑗) ≅ ℂ1⊕ ⨁(𝐿2(𝐴𝑖,𝑛⊗‾ 𝐴𝑗,𝑛) ⊖ 𝐿2(𝐴𝑖,𝑛−1⊗‾ 𝐴𝑗,𝑛−1))

∞

𝑛=1

 .  (14) 

We note that the unitary Γ-representation on 

𝐿2(𝐴𝑖,𝑛⊗‾ 𝐴𝑗,𝑛) ≅ ℓ
2 ((Γ/Γ𝑛

(𝑖)
) × (Γ/Γ𝑛

(𝑗)
)) 

is contained in a multiple of ℓ2 (Γ/ (Γ𝑛
(𝑖)
∩ Γ𝑛

(𝑗)
)). Hence if we show that the subspace of 

Γ-invariant vectors in 𝐿2(𝐴𝑖⊗‾ 𝐴𝑗) is finite-dimensional, then we can conclude by the 

property (𝜏) that (𝐹, 𝜀) witnesses essential spectral gap. Suppose 𝜉 ∈ 𝐿2(𝐴𝑖,𝑛⊗‾ 𝐴𝑗,𝑛) is Γ-
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invariant. Since Γ𝑛
(𝑖)

 acts trivially on 𝐿2(𝐴𝑖,𝑛), the vector 𝜉 is Ad (1⊗ 𝜆𝑗) (Γ𝑛
(𝑖)
)-invariant. 

The same thing is true for 𝑗. It follows that 𝜉 is in the Γ𝑛
(𝑖)
Γ𝑛
(𝑗)
× Γ𝑛

(𝑖)
Γ𝑛
(𝑗)

-invariant subspace, 

whose dimension is [Γ: Γ𝑛
(𝑖)
Γ𝑛
(𝑗)
]
2
. 

Since this number stays bounded as 𝑛 tends to ∞, we are done. Second, we deal with 

the Ad (𝜆𝑖⊗𝜆𝑗)(Γ)-invariant subspace 

(𝐿2(𝑀𝑖) ⊖ 𝐿2(𝐴𝑖))⊗‾ 𝐿
2(𝑀𝑗) ≅ ℓ

2(Γ ∖ {1}) ⊗‾ 𝐿2(𝐴𝑖)⊗‾ 𝐿
2(𝑀𝑗), (15) 

where Γ acts on the right-hand side Hilbert space (which will be denoted by ℋ ) as 

Ad (𝜆(𝑔)⊗ 𝜆𝑖(𝑔) ⊗ 𝜆𝑗(𝑔)). For every vector 𝜉 ∈ ℋ, we write it as (𝜉𝑔)𝑔∈Γ∖{1}
 with 𝜉𝑔 ∈

𝐿2(𝐴𝑖) ⊗‾ 𝐿
2(𝑀𝑗) and define |𝜉| ∈ ℓ2(Γ ∖ {1}) by |𝜉|(𝑔) = ∥∥𝜉𝑔∥∥. It follows that 

       ℜ⟨Ad (𝜆(𝑔) ⊗ 𝜆𝑖(𝑔) ⊗ 𝜆𝑗(𝑔))𝜉, 𝜉⟩ 

= ℜ ∑  

ℎ∈Γ∖{1}

  ⟨Ad (𝜆𝑖(𝑔) ⊗ 𝜆𝑗(𝑔))𝜉ℎ , 𝜉𝑔ℎ𝑔−1⟩ 

≤ ∑  

ℎ∈Γ∖{1}

  ∥∥𝜉ℎ∥∥∥∥𝜉𝑔ℎ𝑔−1∥∥ = ⟨Ad 𝜆(𝑔)|𝜉|, |𝜉|⟩ 

for every 𝑔 ∈ Γ and 𝜉 ∈ ℋ. Since (𝐹, 𝜀) witnesses spectral gap of the conjugation action on 

ℓ2(Γ ∖ {1}), it also witnesses spectral gap of the Γ-action on ℋ. Similarly, (𝐹, 𝜀) witnesses 

spectral gap of 

𝐿2(𝑀𝑖)⊗‾ (𝐿
2(𝑀𝑗) ⊖ 𝐿2(𝐴𝑗)).                                (16) 

Since the Hilbert spaces (14)-(16) cover 𝐿2(𝑀𝑖⊗‾ 𝑀𝑗), we conclude that (𝐹, 𝜀) witnesses 

essential spectral gap of the Γ-action Ad (𝜆𝑖⊗𝜆𝑗). This argument is inspired by [145]. 

We claim that for any 𝑖 ∈ 𝐼 and any unitary element 𝑢(𝑔) ∈ 𝑀𝑖 with ∥ 𝜆𝑖(𝑔) −
 𝑢(𝑔) ∥2< 𝜀/4, the essential spectrum of the self-adjoint operator 

ℎ𝐹 =
1

2|𝐹|
∑  

𝑔∈𝐹

(Ad (𝜆𝑖(𝑔) ⊗ 𝑢(𝑔)) + Ad (𝜆𝑖(𝑔
−1) ⊗ 𝑢(𝑔−1))) 

on 𝐿2(𝑀𝑖⊗‾ 𝑀𝑖) intersects with [1 − 𝜀/2,1]. We fix 𝑖 ∈ 𝐼 and define for every 𝑛 ∈ ℕ the 

projection 𝜒𝑛 ∈ 𝑀𝑖⊗‾ 𝑀𝑖 by 𝜒𝑛 = ∑𝑒𝑘⊗𝑒𝑘, where {𝑒𝑘} is the set of nonzero minimal 

projections in 𝐴𝑖,𝑛 ≅ ℓ
∞ (Γ/Γ𝑛

(𝑖)
). We normalize 𝜉𝑛 = [Γ: Γ𝑛

(𝑖)
]
1/2
𝜒𝑛 so that ∥∥𝜉𝑛∥∥2 = 1. 

Then, it is not hard to see 

Ad (𝜆𝑖(𝑔)⊗ 𝜆𝑖(𝑔))𝜉𝑛 = 𝜉𝑛 

for all 𝑔 ∈ Γ, and 

∥∥(1⊗ 𝑎)𝜉𝑛∥∥2
2 =∥ 𝑎 ∥2

2= ∥∥𝜉𝑛(1⊗ 𝑎)∥∥2
2
 

for all 𝑎 ∈ 𝑀𝑖 . It follows that 

⟨ℎ𝐹𝜉𝑛, 𝜉𝑛⟩  =
1

|𝐹|
∑  

𝑔∈𝐹

 ℜ⟨Ad (𝜆𝑖(𝑔) ⊗ 𝑢(𝑔))𝜉𝑛, 𝜉𝑛⟩

 ≥
1

|𝐹|
∑  

𝑔∈𝐹

  (1 − 2∥∥𝜆𝑖(𝑔) − 𝑢(𝑔)∥∥2) > 1 − 𝜀/2.

 

Since 𝜉𝑛 → 0 weakly as 𝑛 → ∞, the claim follows (cf. [42]). 
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From the above claims, we know that if 𝑖 ≠ 𝑗, then there is no ∗-isomorphism 𝜃 from 

𝑀𝑖 onto 𝑀𝑗 such that ∥∥𝜃(𝜆𝑖(𝑔)) − 𝜆𝑗(𝑔)∥∥2 < 𝜀/4 for all 𝑔 ∈ 𝐹. Now, if the isomorphism 

classes of {𝑀𝑖: 𝑖 ∈ 𝐼} were countable, then there would be 𝑀0 and an uncountable subfamily 

𝐼0 ⊂ 𝐼 such that 𝑀𝑖 ≅ 𝑀0 for all 𝑖 ∈ 𝐼0. Take an *isomorphism 𝜃𝑖:𝑀𝑖 → 𝑀0 for every 𝑖 ∈
𝐼0. Since 𝑀0

𝐹 is separable in ∥⋅∥2-norm, there has to be 𝑖, 𝑗 ∈ 𝐼0 with 𝑖 ≠ 𝑗 such that 

max
𝑔∈𝐹

 ∥∥𝜃𝑖(𝜆𝑖(𝑔)) − 𝜃𝑗(𝜆𝑗(𝑔))∥∥2 < 𝜀/4, 

in contradiction to the above. 

When combined with Lemma (4.1.37), Theorem (4.1.38) shows in particular that any 

arithmetic property (T) group has uncountably many orbit inequivalent free ergodic profinite 

actions, thus recovering a result in [42]. However, [42] provides a "concrete" family 

(consequence of a cocycle superrigidity result for profinite actions of Kazhdan groups) 

rather than an "existence" result, as Theorem (4.1.38) does. But the consequence of Theorem 

(4.1.38) and Lemma (4.1.37) that is relevant here is the following: 

Corollary (4.1.39)[141]: For each 2 ≤ 𝑟 ≤ ∞, there exist uncountably many 

nonisomorphic approximate free group factors of rank 𝑟. In particular, there exist 

uncountably many orbit inequivalent free ergodic profinite actions of 𝔽𝑟 . 

As mentioned, all 𝐿(𝔽1+
𝑟,𝓉) have Haagerup's compact approximation property (by 

[153]), the complete metric approximation property (by Theorem (4.1.14)) and unique 

Cartan subalgebra, up to unitary conjugacy (by Corollary (4.1.34)). Also, by [164], the 

commutant of any hyperfinite subfactor of 𝐿(𝔽1+
𝑟,9) must be an amenable von Neumann 

algebra, in particular 𝐿(𝔽1+
𝑟,𝒮) is prime, i.e. it cannot be written as a tensor product of two II1 

factors. By [𝑃𝑜𝑝06𝑎], since the factors 𝐿(𝔽1+
𝑟,𝒮) have Haagerup property they cannot contain 

factors 𝑀 which have a diffuse subalgebra with the relative property (𝑇). In particular, the 

ℋ 𝔉 − factors considered in [51]) cannot be embedded into approximate free group factors. 

Same for the factors arising from Bernoulli actions of " 𝑤-rigid" groups in [168]. 

Corollary (4.1.34) combined with [150] shows that approximate free group factors of 

different rank are nonisomorphic, 𝐿(𝔽1+
𝑟,𝒮)L̸(𝔽1+

𝑠,𝒮), for all 2 ≤ 𝑟 ≠ 𝑠 ≤ ∞, and have trivial 

Murray-von Neumann fundamental group [161] when the rank is finite, ℱ (𝐿(𝔽1+
𝑠,𝒮)) = {1}, 

for all 2 ≤ 𝑟 < ∞. (Recall from [161] that if 𝑀 is aII1 factor then its fundamental group is 

defined by ℱ(𝑀) = {𝑡 > 0 ∣ 𝑀𝑡 ≃ 𝑀}. ) The first examples of factors with trivial 

fundamental group were constructed in [51], were it is shown that ℱ(𝐿∞(𝕋2) ⋊ 𝔽𝑟) = {1}, 
for any finite 𝑟 ≥ 2, the action of 𝔽𝑟 on 𝕀2 being inherited from the natural action SL(2, ℤ) ↷

𝕀2 = ℤ2̂, for some embedding 𝔽𝑟 ⊂ SL (2, ℤ). 
One can show that amplifications of approximate free group factors are related by the 

formula 𝐿(𝔽1+
𝑟,𝒮)

𝑡
= 𝐿 (𝔽1+

𝑟′,𝒮′), with 𝑟′ = 𝑡−1(𝑟 − 1) + 1, whenever 𝑡−1 is an integer 

dividing the index of some [Γ: Γ𝑛] in the decreasing sequence of groups 𝒫 = (Γ𝑛), with 𝒫′ 
appropriately derived from 𝒮. It is not clear however if this is still the case for other values 

of 𝑡 for which 𝑡−1(𝑟 − 1) + 1 is still an integer. 

Finally, note that 𝐿(𝔽1+
𝑟,𝒮) is non Γ if and only if the action Γ ↷ 𝑋𝒮 has spectral gap. 

Indeed, since the acting group is 𝔽𝑟 , any asymptotically central sequence in 𝐿(𝔽1+
𝑟,𝒮) =

𝐿∞(𝑋𝒮) ⋊ 𝔽𝑟 must lie in 𝐿∞(𝑋𝒴), so 𝐿(𝔽1+
𝑟,𝒜) is non Γ if and only if 𝔽𝑟 ↷ 𝑋𝒮 is strongly 

ergodic, which by [142] is equivalent to 𝔽𝑟 ↷ 𝑋𝒮 having spectral gap. For each 2 ≤ 𝑟 ≤ ∞, 
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one can easily produce sequences of subgroups 𝒫 = (Γ𝑛) such that 𝔽𝑟 ↷ 𝑋𝒮 does not have 

spectral gap, thus giving factors 𝐿(𝔽1+
𝑟,𝒮) with property Γ. On the other hand, as mentioned 

before, if 𝔽𝑟 is embedded with finite index in SL (2, ℤ) (or merely embedded "co-amenably," 

see [171]) and 𝒫 = (Γ𝑛) is given by congruence subgroups, then 𝔽𝑟 ↷ 𝑋𝒮 has spectral gap 

by Selberg's theorem. Thus, the corresponding approximate free group factors 𝐿(𝔽
1+
𝑟,𝒴
) are 

non Γ. By Corollary (4.1.39) and its proof, there are uncountably many nonisomorphic such 

factors 𝐿(𝔽1+
𝑟,𝒮) for each 2 ≤ 𝑟 ≤ ∞. It is an open problem whether there exist solid factors 

within this class. 
 

Section (4.2): Free Araki-Woods Factors and Their Continuous Cores 

The free Araki-Woods factors were introduced by Shlyakhtenko in [15]. In the 

context of free probability theory, these factors can be regarded as the analogs of the 

hyperfinite factors coming from the CAR functor. To each real separable Hilbert space 𝐻R 

together with an orthogonal representation (𝑈𝑡) of 𝐑 on 𝐻𝐑, one can associate a von 

Neumann algebra denoted by Γ(𝐻𝐑, 𝑈𝑡)
′′, called the free A raki-Woods von Neumann 

algebra. The von Neumann algebra Γ(𝐻𝐑, 𝑈𝑡)
′′ comes equipped with a unique free quasi-

free state denoted by 𝜑𝑈, which is always normal and faithful on Γ(𝐻𝐑, 𝑈𝑡)
′′. If dim 𝐻𝐑 =

1, then Γ(𝐑, Id)′′ ≅ 𝐿∞[0,1]. If dim 𝐻𝐑 ≥ 2, then ℳ = Γ(𝐻𝐑, 𝑈𝑡)
′′ is a full factor. In 

particular, ℳ can never be of type III0. The type classification of these factors is the 

following: 

1. ℳ is a type II1 factor iff the representation (𝑈𝑡) is trivial: in that case the functor Γ 

is Voiculescu's free Gaussian functor [19]. Then Γ(𝐻𝐑, Id)
′′ ≅ 𝐿(𝐅dim 𝐻R). 

2. ℳ is a type III  𝜆 factor, for 0 < 𝜆 < 1, iff the representation (𝑈𝑡) is 
2𝜋

|log 𝜆|
-periodic. 

3. ℳ is a type III1 factor iff (𝑈𝑡) is non-periodic and non-trivial. Using free probability 

techniques, Shlyakhtenko obtained several remarkable classification results for 

Γ(𝐻𝐑, 𝑈𝑡)
′′. For instance, if the orthogonal representations (𝑈𝑡) are almost periodic, 

then the free Araki-Woods factors ℳ = Γ(𝐻𝐑, 𝑈𝑡)
′′ are completely classified up to 

statepreserving *-isomorphism [15]: they only depend on Connes' invariant Sd (ℳ) 
which is equal in that case to the (countable) subgroup 𝑆𝑈 ⊂ 𝐑+

∗  generated by the 

eigenvalues of (𝑈𝑡). Moreover, the discrete core ℳ⋊  𝜎𝑆�̂� (where 𝑆�̂� is the compact 

group dual of 𝑆𝑈) is *isomorphic to 𝐿(𝐅∞)⊗‾ 𝐁(ℓ
2). Shlyakhtenko showed in [14] 

that if (𝑈𝑡) is the left regular representation, then the continuous core 𝑀 =ℳ⋊𝜎 𝐑 

is isomorphic to 𝐿(𝐅∞)⊗‾ 𝐁(ℓ
2) and the dual "trace-scaling" action (𝜃𝑠) is precisely 

the one constructed by Rădulescu [184]. For more on free Araki-Woods factors, we 

refer to [179],[1],[185],[12],[186],[13],[14],[15] and also to Vaes' Bourbaki seminar 

[18]. 

The free Araki-Woods factors as well as their continuous cores carry a malleable 

deformation in the sense of Popa. Then we will use the deformation/rigidity strategy 

together with the intertwining techniques in order to study the associated continuous cores. 

The high flexibility of this approach will allow us to work in a semifinite setting, so that we 

can obtain new structural/indecomposability results for the continuous cores of the free 

Araki-Woods factors. We first need to recall a few concepts. Following Ozawa [162], [164], 

a finite von Neumann algebra 𝑁 is said to be: 

1. solid if for any diffuse von Neumann subalgebra 𝐴 ⊂ 𝑁, the relative commutant 𝐴′ ∩
𝑁 is amenable; 
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2. semisolid if for any type II1 von Neumann subalgebra 𝐴 ⊂ 𝑁, the relative commutant 

𝐴′ ∩ 𝑁 is amenable.  

It is easy to check that solidity and semisolidity for II1 factors are stable under taking 

amplification by any 𝑡 > 0. Moreover, if 𝑁 is a non-amenable II1 factor, then solid ⟹ 

semisolid ⟹ prime. Recall in this respect that 𝑁 is said to be prime if it cannot be written 

as the tensor product of two diffuse factors. 

Ozawa discovered a class 𝒮 of countable groups for which whenever Γ ∈ 𝒮, the group 

von Neumann algebra 𝐿(Γ) is solid [162]. He showed that the following countable groups 

belong to the class  : the word-hyperbolic groups [162], the wreath products Λ ≀ Γ for Λ 

amenable and Γ ∈ 𝒮[164], and 𝐙2 ⋊ SL (2, 𝐙)[181]. He moreover proved that if Γ ∈ 𝒮, then 

for any free, ergodic, p.m.p. action Γ ↷ (𝑋, 𝜇), the corresponding II1 factor 𝐿∞(𝑋, 𝜇) ⋊ Γ is 

semisolid [164]. Recall that a non-amenable solid II1 factor does not have property Γ of 

Murray & von Neumann [162]. 

Definition (4.2.1)[173]: Let 𝑀 be a II∞ factor and let Tr be a fixed faithful normal semifinite 

trace on 𝑀. We shall say that 𝑀 is solid (resp. semisolid) if for any non-zero projection 𝑞 ∈
𝑀 such that Tr (𝑞) < ∞, the II1 factor 𝑞𝑀𝑞 is solid (resp. semisolid). 

Recall that an orthogonal/unitary representation (𝑈𝑡) acting on 𝐻 is said to be mixing 

if for any 𝜉, 𝜂 ∈ 𝐻, ⟨𝑈𝑡𝜉, 𝜂⟩ → 0, as |𝑡| → ∞. The main result is the following: 

Theorem (4.2.2)[173]: Let ℳ = Γ(𝐻𝐑, 𝑈𝑡)
′′ be a type III1 free Araki-Woods factor. Then 

the continuous core 𝑀 =ℳ⋊𝜎 𝐑 is a semisolid II∞ factor. Since 𝑀 is non-amenable, 𝑀 is 

always a prime factor. If the representation (𝑈𝑡) is moreover assumed to be mixing, then 𝑀 

is a solid II∞ factor. 

The proof of Theorem (4.2.2) follows Popa's deformation/rigidity strategy. This 

theory has been successfully used over the last eight years to give a plethora of new 

classification/rigidity results for crossed products/free products von Neumann algebras. We 

refer to [176],[180],[156],[182],[169],[52],[51],[168],[183],[189] for some applications of 

the deformation/rigidity technique. We point out that in the present, the rigidity part does 

not rely on the notion of (relative) property (𝑇) but rather on a certain spectral gap property 

discovered by Popa in [182],[169]. Using this powerful technique, Popa was able to show 

for instance that the Bernoulli action of groups of the form Γ1 × Γ2, with Γ1 non-amenable 

and Γ2 infinite is 𝒰fin -cocycle superrigid [182]. The spectral gap rigidity principle gave also 

a new approach to proving primeness and (semi)solidity for type II1/III factors 

[175],[176],[182],[169]. We briefly remind below the concepts that we will play against 

each other in order to prove Theorem (4.2.2): 

1. The first ingredient we will use is the "malleable deformation" by automorphisms 
(𝛼𝑡 , 𝛽) defined on the free Araki-Woods factor ℳ ∗ℳ = Γ(𝐻𝐑⊕𝐻𝐑, 𝑈𝑡⊕𝑈𝑡)

′′. 

This deformation naturally arises as the "second quantization" of the 

rotations/reflection defined on 𝐻𝐑⊕𝐻𝐑 that commute with 𝑈𝑡⊕𝑈𝑡 . It was shown 

in [182] that such a deformation automatically features a certain "transversality 

property" (see Lemma 2.1 in [182]) which will be of essential use in our proof. 

2. The second ingredient we will use is the spectral gap rigidity principle discovered by 

Popa in [182],[169]. Let 𝐵 ⊂ 𝑀𝑖 be an inclusion of finite von Neumann algebras, for 

𝑖 = 1,2, with 𝐵 amenable. Write 𝑀 = 𝑀1 ∗𝐵 𝑀2. Then for any von Neumann 

subalgebra 𝑄 ⊂ 𝑀1 with no amenable direct summand, the action by conjugation 

Ad (𝒰(𝑄)) ↷ 𝑀 has "spectral gap" relative to 𝑀1: for any 𝜀 > 0, there exist 𝛿 > 0 
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and a finite "critical" subset 𝐹 ⊂ 𝒰(𝑄) such that for any 𝑥 ∈ (𝑀)1 (the unit ball of 

𝑀), if ∥𝑢𝑥𝑢∗ − 𝑥∥2 ≤ 𝛿, ∀𝑢 ∈ 𝐹, then ∥∥𝑥 − 𝐸𝑀1(𝑥)∥∥2
≤ 𝜀. 

3. Let 𝑀 =ℳ⋊𝜎 𝐑 be the continuous core the free Araki-Woods factor ℳ. Let 𝑞 ∈ 𝑀 

be a non-zero finite projection. A combination of (a) and (b) yields that for any 𝑄 ⊂
𝑞𝑀𝑞 with no amenable direct summand, the malleable deformation (𝛼𝑡) necessarily 

converges uniformly in ∥⋅∥2 on (𝑄′ ∩ 𝑞𝑀𝑞)1. Then, using Popa's intertwining 

techniques, one can locate the position of 𝑄′ ∩ 𝑞𝑀𝑞 inside 𝑞𝑀𝑞.  

The second result we provide a new example of a non-amenable solid II1 factor. We 

first need the following: 

Example (4.2.3)[173]: Using results of [174], we construct an example of an orthogonal 

representation (𝑈𝑡) of 𝐑 on a (separable) real Hilbert space 𝐾𝐑 such that: 

1. (𝑈𝑡) is mixing. 

2. The spectral measure of ⨁𝑛≥1  𝑈𝑡
⊗𝑛

 is singular w.r.t. the Lebesgue measure on 𝐑.  

Shlyakhtenko showed in [14] that if the spectral measure of the representation 

⨁𝑛≥1  𝑈𝑡
⊗𝑛

 is singular w.r.t. the Lebesgue measure, then the continuous core of the free 

Araki-Woods factor Γ(𝐻𝐑, 𝑈𝑡)
′′ cannot be isomorphic to any 𝐿(𝐅𝑡)⊗‾ 𝐁(ℓ

2), for 1 < 𝑡 ≤
∞, where 𝐿(𝐅𝑡) denote the interpolated free group factors [6],[10]. Therefore, we obtain: 

Theorem (4.2.4)[173]: Let (𝑈𝑡) be an orthogonal representation acting on 𝐾R as in Example 

(4.2.3). Denote by ℳ = Γ(𝐾R, 𝑈𝑡)
′′ the corresponding free Araki-Woods factor and by 𝑀 =

ℳ ⋊𝜎 𝐑 its continuous core. Let 𝑞 ∈ 𝐿(𝐑) be a non-zero projection such that Tr (𝑞) < ∞. 
Then the non-amenable II1 factor 𝑞𝑀𝑞 is solid, has full fundamental group, i.e. ℱ(𝑞𝑀𝑞) =
𝐑+
∗ , and is not isomorphic to any interpolated free group factor 𝐿(𝐅𝑡), for 1 < 𝑡 ≤ ∞. 

We recall the necessary background on free Araki-Woods factors as well as 

intertwining techniques for (semi)finite von Neumann algebras. We mainly devoted to the 

proof of Theorem (4.2.2), following the deformation/spectral gap rigidity strategy presented 

above. We construct Example (4.2.3) and deduce Theorem (4.2.4). 

Let 𝐻R be a real separable Hilbert space and let (𝑈𝑡) be an orthogonal representation 

of 𝐑 on 𝐻𝐑 such that the map 𝑡 ↦ 𝑈𝑡 is strongly continuous. Let 𝐻𝐂 = 𝐻𝐑⊗𝐑 𝐂 be the 

complexified Hilbert space. We shall still denote by (𝑈𝑡) the corresponding unitary 

representation of 𝐑 on 𝐻𝐂. Let 𝐴 be the infinitesimal generator of (𝑈𝑡) on 𝐻C (Stone's 

theorem), so that 𝐴 is the positive, self-adjoint, (possibly) unbounded operator on 𝐻C which 

satisfies 𝑈𝑡 = 𝐴
𝑖𝑡, for every 𝑡 ∈ 𝐑. Define another inner product on 𝐻𝐂 by 

⟨𝜉, 𝜂⟩𝑈 = ⟨
2

1 + 𝐴−1
𝜉, 𝜂⟩ , ∀𝜉, 𝜂 ∈ 𝐻𝐂. 

Note that for any 𝜉 ∈ 𝐻𝐑, ∥ 𝜉 ∥𝑈=∥ 𝜉 ∥; also, for any 𝜉, 𝜂 ∈ 𝐻𝐑, ℜ(⟨𝜉, 𝜂⟩𝑈) = ⟨𝜉, 𝜂⟩, where 

ℜ denotes the real part. Denote by 𝐻 the completion of 𝐻𝐂 w.r.t. the new inner product ⟨⋅,⋅
⟩𝑈, and note that (𝑈𝑡) is still a unitary representation on 𝐻. Introduce now the full Fock. 

space of 𝐻: 

ℱ(𝐻) = 𝐂Ω⊕⨁ 

∞

𝑛=1

𝐻⊗
‾ 𝑛. 

The unit vector Ω is called the vacuum vector. For any 𝜉 ∈ 𝐻, we have the left creation 

operator 

ℓ(𝜉):ℱ(𝐻) → ℱ(𝐻): {
ℓ(𝜉)Ω = 𝜉.

ℓ(𝜉)(𝜉1⊗⋯⊗ 𝜉𝑛) = 𝜉 ⊗ 𝜉1⊗⋯⊗ 𝜉𝑛.
 

For any 𝜉 ∈ 𝐻, we denote by 𝑠(𝜉) the real part of ℓ(𝜉) given by 
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𝑠(𝜉) =
ℓ(𝜉) + ℓ(𝜉)∗

2
. 

The crucial result of Voiculescu [19] is that the distribution of the operator 𝑠(𝜉) w.r.t. the 

vacuum vector state 𝜑𝑈 = ⟨⋅ Ω, Ω⟩𝑈 is the semicircular law of Wigner supported on the 

interval [−∥ 𝜉 ∥, ∥ 𝜉 ∥]. 
Definition (4.2.5)[173]: (Shlyakhtenko, [15]). Let (𝑈𝑡) be an orthogonal representation of 

𝐑 on the real Hilbert space 𝐻𝐑. The free Araki-Woods von Neumann algebra associated 

with 𝐻𝐑 and (𝑈𝑡), denoted by Γ(𝐻𝐑, 𝑈𝑡)
′′, is defined by 

Γ(𝐻𝐑, 𝑈𝑡)
′′: = {𝑠(𝜉): 𝜉 ∈ 𝐻𝐑}

′′. 
The vector state 𝜑𝑈 = ⟨⋅ Ω, Ω⟩𝑈 is called the free quasi-free state. It is normal and faithful 

on Γ(𝐻𝐑, 𝑈𝑡)
′′. 

Recall that for any type III1 factor ℳ, Connes-Takesaki's continuous decomposition 

[4],[187] yields 

ℳ⊗‾ 𝐁(𝐿2(𝐑)) ≅ (ℳ ⋊𝜎 𝐑) ⋊𝜃 𝐑, 
where the continuous core ℳ⋊𝜎 𝐑 is a II∞ factor and 𝜃 is the trace-scaling action [187]: 

Tr(𝜃𝑠(𝑥)) = 𝑒
−𝑠 Tr(𝑥) , ∀𝑥 ∈ (ℳ ⋊𝜎 𝐑)+, ∀𝑠 ∈ 𝐑. 

The fact that ℳ⋊𝜎 𝐑 does not depend on the choice of a f.n. state on ℳ follows from 

Connes' Radon-Nikodym derivative theorem [4]. Moreover, for any non-zero finite 

projection 𝑞 ∈ 𝑀 =ℳ ⋊𝜎 𝐑, the II1 factor 𝑞𝑀𝑞 has full fundamental group. 

Following [3], a factor ℳ (with separable predual) is said to be full if the subgroup 

of inner automorphisms Inn (ℳ) ⊂ Aut (ℳ) is closed. Recall that Aut (ℳ) is endowed with 

the 𝑢-topology: for any sequence (𝜃𝑛) in Aut (ℳ), 

𝜃𝑛 → Id, as 𝑛 → ∞⟺ ∥∥𝜑 ∘ 𝜃𝑛 − 𝜑∥∥ → 0, as 𝑛 → ∞,∀𝜑 ∈ ℳ∗. 
Since ℳ has a separable predual, Aut (ℳ) is a polish group. For any II1 factor 𝑁,𝑁 is full 

iff 𝑁 does not have property Γ of Murray & von Neumann (see [3]). 

Denote by 𝜋: Aut (ℳ) → Out (ℳ) the canonical projection. Assume ℳ is a full factor so 

that Out (ℳ) is a Hausdorff topological group. Fix a f.n. state 𝜑 on ℳ. Connes' invariant 

𝜏(ℳ) is defined as the weakest topology on 𝐑 that makes the map 
𝐑  → Out (ℳ)

𝑡  ↦ 𝜋(𝜎𝑡
𝜑
)

 

continuous. Note that this map does not depend on the choice of the f.n. state 𝜑 on ℳ[4]. 

Denote by ℱ(𝑈𝑡) = ⨁𝑛∈𝐍  𝑈𝑡
⊗𝑛. The modular group 𝜎𝜑𝑈 of the free quasi-free state is given 

by: 𝜎𝑡
𝜑𝑈
= Ad (ℱ(𝑈−𝑡)), for any 𝑡 ∈ 𝐑. The free Araki-Woods factors provided many new 

examples of full factors of type III [2],[4],[12]. We can summarize their general properties 

in the following theorem (see also Vaes' Bourbaki seminar [18]): 

Theorem (4.2.6)[173]: (Shlyakhtenko, [12],[13],[14],[15]). Let (𝑈𝑡) be an orthogonal 

representation of 𝐑 on the real Hilbert space 𝐻𝐑 with dim 𝐻𝐑 ≥ 2. Denote by ℳ =
Γ(𝐻𝐑, 𝑈𝑡)

′′. 

1. ℳ is a full factor and Connes' invariant 𝜏(ℳ) is the weakest topology on 𝐑 that 

makes the map 𝑡 ↦ 𝑈𝑡 strongly continuous. 

2. ℳ is of type II1 iff 𝑈𝑡 = id for every 𝑡 ∈ 𝐑. In this case, ℳ ≅ 𝐿(𝐅dim (𝐻𝐑)). 

3. ℳ is of type III𝜆(0 < 𝜆 < 1) iff (𝑈𝑡) is periodic of period 
2𝜋

|log 𝜆|
. 

4. ℳ is of type III1 in the other cases. 

5. ℳ has almost periodic states iff (𝑈𝑡) is almost periodic. 
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Moreover, it follows from [185] that any free Araki-Woods factor ℳ is generalized 

solid in the sense of [188]: for any diffuse von Neumann subalgebra 𝐴 ⊂ ℳ such that there 

exists a faithful normal conditional expectation 𝐸:ℳ → 𝐴, the relative commutant 𝐴′ ∩ℳ 

is amenable. 

Notice that the centralizer of the free quasi-free state ℳ𝜑𝑈 may be trivial. This is the 

case for instance when the representation (𝑈𝑡) has no eigenvectors. Nevertheless, the author 

recently proved in [179] that for any type III1 free Araki-Woods factor ℳ, the bicentralizer 

is trivial, i.e. there always exists a faithful normal state 𝜓 on ℳ such that (ℳ𝜓)
′
∩ℳ =

𝐂. See [178] for more on Connes' bicentralizer problem. 

Remark (4.2.7)[173]: ([15]). Explicitly the value of 𝜑𝑈 on a word in 𝑠(𝜉𝜄) is given by 

𝜑𝑈(𝑠(𝜉1)⋯𝑠(𝜉𝑛)) = 2
−𝑛 ∑  

({𝛽𝑖,𝛾𝑖})∈ℕℂ(𝑛),𝛽𝑖<𝛾𝑖

∏ 

𝑛/2

𝑘=1

⟨𝜉𝛽𝑘 , 𝜉𝛾𝑘⟩𝑈
.           (17) 

for 𝑛 even and is zero otherwise. Here NC(2𝑝) stands for all the non-crossing pairings of 

the set {1,… ,2𝑝}, i.e. pairings for which whenever 𝑎 < 𝑏 < 𝑐 < 𝑑, and 𝑎, 𝑐 are in the same 

class, then 𝑏, 𝑑 are not in the same class. The total number of such pairings is given by the 

𝑝-th Catalan number 

𝐶𝑝 =
1

𝑝 + 1
(
2𝑝
𝑝
). 

Recall that a continuous 𝜑-preserving action (𝜎𝑡) of 𝐑 on a von Neumann algebra ℳ 

endowed with a f.n. state 𝜑 is said to be 𝜑-mixing if for any 𝑥, 𝑦 ∈ ℳ with 𝜑(𝑥) = 𝜑(𝑦) =
0, 

𝜑(𝜎𝑡(𝑥)𝑦) → 0, as |𝑡| → ∞.                                       (2) 
Proposition (4.2.8)[173]: Let ℳ = Γ(𝐻𝐑, 𝑈𝑡)

′′ be any free Araki-Woods factor and let 𝜑𝑈 

be the free quasi-free state. Then  

(𝑈𝑡)   is mixing ⟺ (𝜎𝑡
𝜑𝑈) is 𝜑𝑈 −mixing. 

Proof. We prove both directions.  

⟸ For any 𝜉, 𝜂 ∈ 𝐻𝐑, 𝜑𝑈(𝑠(𝜉)) = 𝜑𝑈(𝑠(𝜂)) = 0. Moreover, 
⟨𝑈𝑡𝜉, 𝜂⟩𝑈  = 4𝜑𝑈(𝑠(𝑈𝑡𝜉)𝑠(𝜂))

 = 4𝜑𝑈(𝜎−𝑡
𝜑𝑈(𝑠(𝜉))𝑠(𝜂)) → 0, as |𝑡| → ∞.

 

It follows that (𝑈𝑡) is mixing. 

⟹ One needs to show that for any 𝑥, 𝑦 ∈ ℳ, 

lim
|𝑡|→∞

 𝜑𝑈(𝜎𝑡
𝜑𝑈(𝑥)𝑦) = 𝜑𝑈(𝑥)𝜑𝑈(𝑦). 

Note that 

span {1, 𝑠(𝜉1)⋯𝑠(𝜉𝑛): 𝑛 ≥ 1, 𝜉1, … , 𝜉𝑛 ∈ 𝐻𝐑} 
is a unital *-strongly dense ∗-subalgebra of ℳ. Using Kaplansky density theorem, it suffices 

to check Equation (18) for 𝑥, 𝑦 ∈ ℳ of the following form: 

𝑥  = 𝑠(𝜉1)⋯ 𝑠(𝜉𝑝)

𝑦  = 𝑠(𝜂1)⋯ 𝑠(𝜂𝑞).
 

Assume that 𝑝 + 𝑞 is odd. Then 𝑝 or 𝑞 is odd and we have 𝜑𝑈(𝜎𝑡
𝜑𝑈(𝑥)𝑦) = 0 =

𝜑𝑈(𝑥)𝜑𝑈(𝑦) for any 𝑡 ∈ 𝐑.  

Assume now that 𝑝 + 𝑞 is even. 

(a) Suppose that 𝑝, 𝑞 are odd and write 𝑝 = 2𝑘 + 1, 𝑞 = 2𝑙 + 1. Then 
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𝜑𝑈(𝜎𝑡
𝜑𝑈(𝑥)𝑦)  = 𝜑𝑈(𝑠(𝑈−𝑡𝜉1)⋯𝑠(𝑈−𝑡𝜉2𝑘+1)𝑠(𝜂1)⋯ 𝑠(𝜂2𝑙+1))

 = 2−2(𝑘+𝑙+1) ∑  

({𝛽𝑖,𝛾𝑖})∈𝑁𝐶(2(𝑘+𝑙+1)),𝛽𝑖<𝛾𝑖

  ∏  

𝑘+𝑙+1

𝑗=1

  ⟨ℎ𝛽𝑗 , ℎ𝛾𝑗⟩
𝑈
,
 

where the letter ℎ stands for 𝑈−𝑡𝜉 or 𝜂. Notice that since 2𝑘 + 1 and 2𝑙 + 1 are odd, for any 

non-crossing pairing ({𝛽𝑖 , 𝛾𝑖}) ∈ NC (2(𝑘 + 𝑙 + 1)), there must exist some 𝑗 ∈ {1,… , 𝑘 +

𝑙 + 1} such that ⟨ℎ𝛽𝑗 , ℎ𝛾𝑗⟩ = ⟨𝑈−𝑡𝜉𝛽𝑗 , 𝜂𝛾𝑗⟩. Since we assumed that (𝑈𝑡) is mixing, it follows 

that 𝜑𝑈(𝜎𝑡
𝜑𝑈(𝑥)𝑦) → 0 = 𝜑𝑈(𝑥)𝜑𝑈(𝑦), as |𝑡| → ∞. 

(b) Suppose that 𝑝, 𝑞 are even and write 𝑝 = 2𝑘, 𝑞 = 2𝑙. Then 

𝜑𝑈(𝜎𝑡
𝜑𝑈(𝑥)𝑦)  = 𝜑𝑈(𝑠(𝑈−𝑡𝜉1)⋯𝑠(𝑈−𝑡𝜉2𝑘)𝑠(𝜂1)⋯ 𝑠(𝜂2𝑙))

 = 2−2(𝑘+𝑙) ∑  

({𝛽𝑖,𝛾𝑖})∈𝑁𝐶(2(𝑘+𝑙)),𝛽𝑖<𝛾𝑖

 ∏  

𝑘+𝑙

𝑗=1

  ⟨ℎ𝛽𝑗 , ℎ𝛾𝑗⟩
𝑈
,
 

where the letter ℎ stands for 𝑈−𝑡𝜉 or 𝜂. Note that for a non-crossing pairing 𝜈 = ({𝛽𝑖 , 𝛾𝑖}) ∈
NC (2(𝑘 + 𝑙)) such that an element of {1,… ,2𝑘} and an element of {1,… ,2𝑙} are in the same 

class, the proof of (a) yields that the corresponding product ∏𝑗=1
𝑘+𝑙   ⟨ℎ𝛽𝑗 , ℎ𝛾𝑗⟩

𝑈
 goes to 0, as 

|𝑡| → ∞. Thus, we just need to sum up over the noncrossing pairings 𝜈 of the form 𝜈1 × 𝜈2, 

where 𝜈1 is a non-crossing pairing on the set {1,… ,2𝑘} and 𝜈2 is a non-crossing pairing on 

the set {1,… ,2𝑙}. Consequently, we get 𝜑𝑈(𝜎𝑡
𝜑𝑈(𝑥)𝑦) → 𝜑𝑈(𝑥)𝜑𝑈(𝑦), as |𝑡| → ∞. 

Therefore, (𝜎𝑡
𝜑𝑈
) is mixing. 

Proposition (4.2.9)[173]: Let ℳ = Γ(𝐻R, 𝑈𝑡)
′′. If (𝑈𝑡) is mixing, then Connes' invariant 

𝜏(ℳ) is the usual topology on R.  

Proof. Let ℳ = Γ(𝐻R, 𝑈𝑡)
′′. Recall from Theorem (4.2.6) that 𝜏(ℳ) is the weakest 

topology on R that makes the map 𝑡 ↦ 𝑈𝑡 strongly continuous. Let (𝑡𝑘) be a sequence in R 

such that 𝑡𝑘 → 0 w.r.t. the topology 𝜏(ℳ), as 𝑘 → ∞, i.e. 𝑈𝑡𝑘 → 𝐼𝑑 strongly, as 𝑘 → ∞. Fix 

𝜉 ∈ 𝐻R, ∥ 𝜉 ∥= 1. Since 

lim
𝑘→∞

 ⟨𝑈𝑡𝑘𝜉, 𝜉⟩ = 1 

and (𝑈𝑡) is assumed to be mixing, it follows that (𝑡𝑘) is necessarily bounded. Let 𝑡 ∈ R be 

any cluster point for the sequence (𝑡𝑘). Then 𝑈𝑡 = Id. Since (𝑈𝑡) is mixing, it follows that 

𝑡 = 0. Therefore (𝑡𝑘) converges to 0 w.r.t. the usual topology on R. 

Let (𝐵, 𝜏) be a finite von Neumann algebra with a distinguished f.n. trace. Since 𝜏 is 

fixed, we simply denote 𝐿2(𝐵, 𝜏) by 𝐿2(𝐵). Let 𝐻 be a right Hilbert 𝐵-module, i.e. 𝐻 is a 

complex (separable) Hilbert space together with a normal *-representation 𝜋: 𝐵op → B(𝐻). 
For any 𝑏 ∈ 𝐵, and 𝜉 ∈ 𝐻, we shall simply write 𝜋(𝑏𝑜𝑝)𝜉 = 𝜉𝑏. By the general theory, we 

know that there exists an isometry 𝑣: 𝐻 → ℓ2⊗‾ 𝐿2(𝐵) such that 𝑣(𝜉𝑏) = 𝑣(𝜉)𝑏, for any 

𝜉 ∈ 𝐻, 𝑏 ∈ 𝐵. Since 𝑝 = 𝑣𝑣∗ commutes with the right 𝐵-action on ℓ2⊗‾ 𝐿2(𝐵), it follows 

that 𝑝 ∈ 𝐁(ℓ2)⊗‾ 𝐵. Thus, as right 𝐵-modules, we have 𝐻𝐵 ≃ 𝑝(ℓ
2⊗‾ 𝐿2(𝐵))

𝐵
. 

On 𝐁(ℓ2) ⊗‾ 𝐵, we define the following f.n. semifinite trace Tr (which depends on 𝜏 ): for 

any 𝑥 = [𝑥𝑖𝑗]𝑖,𝑗 ∈ (𝐁
(ℓ2)⊗‾ 𝐵)

+
, 

Tr ([𝑥𝑖𝑗]𝑖,𝑗) =∑  

𝑖

𝜏(𝑥𝑖𝑖). 
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We set dim (𝐻𝐵) = Tr (𝑣𝑣
∗). Note that the dimension of 𝐻 depends on 𝜏 but does not depend 

on the isometry 𝑣. Indeed take another isometry  : 𝐻 → ℓ2⊗‾ 𝐿2(𝐵), satisfying 𝑤(𝜉𝑏) =
𝑤(𝜉)𝑏, for any 𝜉 ∈ 𝐻, 𝑏 ∈ 𝐵. Note that 𝑣𝑤∗ ∈ 𝐁(ℓ2) ⊗‾ 𝐵 and 𝑤∗𝑤 = 𝑣∗𝑣 = 1. Thus, we 

have 

Tr(𝑣𝑣∗) = Tr(𝑣𝑤∗𝑤𝑣∗) = Tr(𝑤𝑣∗𝑣𝑤∗) = Tr(𝑤𝑤∗). 
Assume that dim (𝐻𝐵) < ∞. Then for any 𝜀 > 0, there exists a central projection 𝑧 ∈ 𝒵(𝐵), 
with 𝜏(𝑧) ≥ 1 − 𝜀, such that the right 𝐵-module 𝐻𝑧 is finitely generated, i.e. of the form 

𝑝𝐿2(𝐵)⊕𝑛 for some projection 𝑝 ∈ 𝐌𝑛(𝐂)⊗ 𝐵. The non-normalized trace on 𝐌𝑛(𝐂) will 

be denoted by Tr𝑛. For simplicity, we shall denote 𝐵𝑛: = 𝐌𝑛(𝐂)⊗ 𝐵. 

In [52],[51], Popa introduced a powerful tool to prove the unitary conjugacy of two 

von Neumann subalgebras of a tracial von Neumann algebra (𝑀, 𝜏). If 𝐴, 𝐵 ⊂ (𝑀, 𝜏) are 

two (possibly non-unital) von Neumann subalgebras, denote by 1𝐴, 1𝐵 the units of 𝐴 and 𝐵. 

Note that we endow the finite von Neumann algebra 𝐵 with the trace 𝜏(1𝐵 ⋅ 1𝐵)/𝜏(1𝐵). 
Theorem (4.2.10)[173]: (Popa, [52],[51]). Let 𝐴, 𝐵 ⊂ (𝑀, 𝜏) be two (possibly non-unital) 

embeddings. The following are equivalent: 

1. There exist 𝑛 ≥ 1, a (possibly non-unital) *-homomorphism 𝜓: 𝐴 → 𝐵𝑛 and a 

nonzero partial isometry 𝑣 ∈ 𝐌1,𝑛(𝐂)⊗ 1𝐴𝑀1𝐵 such that 𝑥𝑣 = 𝑣𝜓(𝑥), for any 𝑥 ∈

𝐴. 
2. The bimodule  𝐴𝐿

2(1𝐴𝑀1𝐵)𝐵 contains a non-zero sub-bimodule  𝐴𝐻𝐵 which satisfies 

dim (𝐻𝐵) < ∞. 

3. There is no sequence of unitaries (𝑢𝑘) in A such that ∥∥𝐸𝐵(𝑎
∗𝑢𝑘𝑏)∥∥2 → 0, as 𝑘 → ∞, 

for any 𝑎, 𝑏 ∈ 1𝐴𝑀1𝐵. 

If one of the previous equivalent conditions is satisfied, we shall say that 𝐴 embeds 

into 𝐵 inside 𝑀 and denote 𝐴 ⪯𝑀 𝐵. 

Definition (4.2.11)[173]: (Popa & Vaes, [183]). Let 𝐴 ⊂ 𝐵 ⊂ (𝑁, 𝜏) be an inclusion of 

finite von Neumann algebras. We say that 𝐵 ⊂ 𝑁 is weakly mixing through 𝐴 if there exists 

a sequence of unitaries (𝑢𝑘) in 𝐴 such that 

∥∥𝐸𝐵(𝑎
∗𝑢𝑘𝑏)∥∥2 → 0, as 𝑘 → ∞,∀𝑎, 𝑏 ∈ 𝑁 ⊖𝐵. 

The following result will be a crucial tool: it will allow us to control the relative commutant 

𝐴′ ∩ 𝑁 of certain subalgebras 𝐴 of a given von Neumann algebra 𝑁. 

Theorem (4.2.12)[173]: (Popa, [52]). Let (𝑁, 𝜏) be a finite von Neumann algebra and 𝐴 ⊂
𝐵 ⊂ 𝑁 be von Neumann subalgebras. Assume that 𝐵 ⊂ 𝑁 is weakly mixing through 𝐴. Then 

for any sub-bimodule  𝐴𝐻𝐵 of  𝐴𝐿
2(𝑁)𝐵 such that dim (𝐻𝐵) < ∞, one has 𝐻 ⊂ 𝐿2(𝐵). In 

particular, 𝐴′ ∩ 𝑁 ⊂ 𝐵. 

We will need to use Popa's intertwining techniques for semifinite von Neumann 

algebras. See Section 2 of [176] where such techniques were developed. Namely, let (𝑀, Tr) 
be a von Neumann algebra endowed with a faithful normal semifinite trace Tr. We shall 

simply denote by 𝐿2(𝑀) the 𝑀 −𝑀 bimodule 𝐿2(𝑀, Tr), and by ∥⋅∥2,Tr the 𝐿2-norm 

associated with the trace Tr. We will use quite often the following inequality: 

∥ 𝑥𝜂𝑦 ∥2,Tr≤∥ 𝑥 ∥∞∥ 𝑦 ∥∞∥ 𝜂 ∥2,Tr, ∀𝜂 ∈ 𝐿
2(𝑀), ∀𝑥, 𝑦 ∈ 𝑀, 

where ∥⋅∥∞ denotes the operator norm. We shall say that a projection 𝑝 ∈ 𝑀 is Tr-finite if 

Tr (𝑝) < ∞. Note that a non-zero Tr-finite projection 𝑝 is necessarily finite and Tr (𝑝 ⋅
𝑝)/Tr (𝑝) is a f.n. (finite) trace on 𝑝𝑀𝑝. Remind that for any projections 𝑝, 𝑞 ∈ 𝑀, we have 

𝑝 ∨ 𝑞 − 𝑝 ∼ 𝑞 − 𝑝 ∧ 𝑞. Then it follows that for any Tr-finite projections 𝑝, 𝑞 ∈ 𝑀, 𝑝 ∨ 𝑞 is 

still Tr-finite and Tr (𝑝 ∨ 𝑞) = Tr (𝑝) + Tr (𝑞) − Tr (𝑝 ∧ 𝑞). 
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Note that if a sequence (𝑥𝑘) in 𝑀 converges to 0 strongly, as 𝑘 → ∞, then for any 

non-zero Tr-finite projection 𝑞 ∈ 𝑀, ∥∥𝑥𝑘𝑞∥∥2, Tr 
→ 0, as 𝑘 → ∞. Indeed, 

𝑥𝑘 → 0 strongly in 𝑀  ⟺ 𝑥𝑘
∗𝑥𝑘 → 0 weakly in 𝑀

 ⟹ 𝑞𝑥𝑘
∗𝑥𝑘𝑞 → 0 weakly in 𝑞𝑀𝑞

 ⟹ Tr (𝑞𝑥𝑘
∗𝑥𝑘𝑞) → 0

 ⟹ ∥∥𝑥𝑘𝑞∥∥2,Tr → 0.

 

Moreover, there always exists an increasing sequence of Tr-finite projections (𝑝𝑘) in 𝑀 

such that 𝑝𝑘 → 1 strongly, as 𝑘 → ∞. 

Theorem (4.2.13)[173]:([176]). Let (𝑀, Tr) be a semifinite von Neumann algebra. Let 𝐵 ⊂
𝑀 be a von Neumann subalgebra such that Tr∣𝐵 is still semifinite. Denote by 𝐸𝐵:𝑀 → 𝐵 the 

unique Tr-preserving faithful normal conditional expectation. Let 𝑞 ∈ 𝑀 be a non-zero 

Trfinite projection. Let 𝐴 ⊂ 𝑞𝑀𝑞 be a von Neumann subalgebra. The following conditions 

are equivalent: 

1. There exists a Tr-finite projection 𝑝 ∈ 𝐵, 𝑝 ≠ 0, such that the bimodule 

 𝐴𝐿
2(𝑞𝑀𝑝)𝑝𝐵𝑝 contains a non-zero sub-bimodule  𝐴𝐻𝑝𝐵𝑝 which satisfies 

dim (𝐻𝑝𝐵𝑝) < ∞, where 𝑝𝐵𝑝 is endowed with the finite trace Tr (𝑝 ⋅ 𝑝)/Tr (𝑝). 

2. There is no sequence of unitaries (𝑢𝑘) in 𝐴 such that 𝐸𝐵(𝑥
∗𝑢𝑘𝑦) → 0 strongly, as 

𝑘 → ∞, for any 𝑥, 𝑦 ∈ 𝑞𝑀. 

Definition (4.2.14)[173]: Under the assumptions of Theorem (4.2.13), if one of the 

equivalent conditions is satisfied, we shall still say that 𝐴 embeds into 𝐵 inside 𝑀 and still 

denote 𝐴 ⪯𝑀 𝐵. 

Let 𝐻R be a separable real Hilbert space (dim (𝐻R) ≥ 2) and let (𝑈𝑡) be an orthogonal 

representation of 𝐑 on 𝐻𝐑 that we assume to be neither trivial nor periodic. We set: 

1. ℳ = Γ(𝐻𝐑, 𝑈𝑡)
′′ is the free Araki-Woods factor associated with (𝐻𝐑, 𝑈𝑡), 𝜑 is the 

free quasi-free state and 𝜎 is the modular group of the state 𝜑.ℳ is necessarily a type 

III1 factor since (𝑈𝑡) is neither periodic nor trivial. 

2. 𝑀 =ℳ⋊𝜎 𝐑 is the continuous core of ℳ and Tr is the semifinite trace associated 

with the state 𝜑.𝑀 is a II∞ factor since ℳ is a type III1 factor. 

3. Likewise ℳ̃ = Γ(𝐻𝐑⊕𝐻𝐑, 𝑈𝑡⊕𝑈𝑡)
′′, �̃� is the corresponding free quasi-free state 

and �̃� is the modular group of �̃�. 

4. �̃� = ℳ̃ ⋊�̃� 𝐑 is the continuous core of ℳ̃ and 𝑇�̃� is the f.n. semifinite trace 

associated with �̃�.  

It follows from [15] that 

(ℳ̃, �̃�) ≅ (ℳ,𝜑) ∗ (ℳ,𝜑). 
In the latter free product, we shall write ℳ1 for the first copy of ℳ and ℳ2 for the second 

copy of ℳ. We regard ℳ ⊂ ℳ̃ via the identification of ℳ with ℳ1. 

Denote by (𝜆𝑡) the unitaries in 𝐿(𝐑) that implement the modular action 𝜎 on ℳ (resp. �̃� on 

ℳ̃). Define the following faithful normal conditional expectations: 

1. 𝐸:𝑀 → 𝐿(𝐑) such that 𝐸(𝑥𝜆𝑡) = 𝜑(𝑥)𝜆𝑡, for every 𝑥 ∈ ℳ and 𝑡 ∈ 𝐑; 

2. �̃�: �̃� → 𝐿(𝐑) such that �̃�(𝑥𝜆𝑡) = �̃�(𝑥)𝜆𝑡, for every 𝑥 ∈ ℳ̃ and 𝑡 ∈ 𝐑. 

Then 

(�̃�, �̃�) ≅ (𝑀, 𝐸) ∗𝐿(𝐑) (𝑀, 𝐸). 

Likewise, in the latter amalgamated free product, we shall write 𝑀1 for the first copy of 𝑀 

and 𝑀2 for the second copy of 𝑀. We regard 𝑀 ⊂ �̃� via the identification of 𝑀 with 𝑀1. 
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Notice that the conditional expectation 𝐸 (resp. �̃�) preserves the canonical semifinite trace 

Tr (resp. widetilder) associated with the state 𝜑( resp. �̃�) (see [17]).  

Consider the following orthogonal representation of 𝐑 on 𝐻𝐑⊕𝐻𝐑: 

𝑉𝑠 = (
cos (

𝜋

2
𝑠) −sin (

𝜋

2
𝑠)

sin (
𝜋

2
𝑠) cos (

𝜋

2
𝑠)
) , ∀𝑠 ∈ 𝐑.  

Let (𝛼𝑠) be the natural action on (ℳ̃, �̃�) associated with (𝑉𝑠): 𝛼𝑠 = Ad (ℱ(𝑉𝑠)), for every 

𝑠 ∈ 𝐑. In particular, we have 

𝛼𝑠 (𝑠 (
𝜉
𝜂
)) = 𝑠 (𝑉𝑠 (

𝜉
𝜂
) , ∀𝑠 ∈ 𝐑,∀𝜉, 𝜂 ∈ 𝐻𝐑, 

and the action (𝛼𝑠) is �̃�-preserving. We can easily see that the representation (𝑉𝑠) commutes 

with the representation (𝑈𝑡⊕𝑈𝑡). Consequently, (𝛼𝑠) commutes with modular action �̃�. 

Moreover, 𝛼1(𝑥 ∗ 1) = 1 ∗ 𝑥, for every 𝑎 ∈ ℳ. At last, consider the automorphism 𝛽 

defined on (ℳ̃, �̃�) by: 

𝛽 (𝑠 (
𝜉
𝜂
)) = 𝑠 (

𝜉
−𝜂
) , ∀𝜉, 𝜂 ∈ 𝐻𝐑. 

It is straightforward to check that 𝛽 commutes with the modular action �̃�, 𝛽2 = Id, 𝛽∣ℳ = 

Id  ∣ℳ and 𝛽𝛼𝑠 = 𝛼−𝑠𝛽, ∀𝑠 ∈ 𝐑. Since (𝛼𝑠) and 𝛽 commute with the modular action �̃�, one 

may extend (𝛼𝑠) and 𝛽 to �̃� by 𝛼𝑠∣𝐿(𝐑) = Id𝐿(𝐑), for every 𝑠 ∈ 𝐑 and 𝛽∣𝐿(𝐑) = Id𝐿(𝐑). 

Moreover (𝛼𝑠, 𝛽) preserves the semifinite trace 𝑇�̂�. Let's summarize what we have 

done so far: 

Proposition (4.2.15)[173]: The widetilder-preserving deformation (𝛼𝑠, 𝛽) defined on �̃� is 

𝑠-malleable: 

1. 𝛼𝑠∣𝐿(𝐑) = Id𝐿(𝐑), for every 𝑠 ∈ 𝐑 and 𝛼1(𝑥 ∗𝐿(𝐑) 1) = 1 ∗𝐿(𝐑) 𝑥, for every 𝑥 ∈ 𝑀. 

2. 𝛽2 = Id and 𝛽∣𝑀 = Id∣𝑀. 

3. 𝛽𝛼𝑠 = 𝛼−𝑠𝛽, for every 𝑠 ∈ 𝐑. 

Denote by 𝐸𝑀: �̃� → 𝑀 the canonical trace-preserving conditional expectation. Since 

Tr̃∣𝑀 = Tr, we will simply denote by Tr the semifinite trace on �̃�. Remind that the 

smalleable deformation (𝛼𝑠, 𝛽) automatically features a certain transversality property. 

Proposition (4.2.16)[173]: (Popa, [182]). We have the following: 

∥∥𝑥 − 𝛼2𝑠(𝑥)∥∥2,Tr ≤ 2∥∥𝛼𝑠(𝑥) − 𝐸𝑀(𝛼𝑠(𝑥))∥∥2,Tr, ∀𝑥 ∈ 𝐿
2(𝑀, Tr), ∀𝑠 > 0. (19) 

The next proposition refered as the spectral gap property was first proved by Popa in 

[169] for free products of finite von Neumann algebras. We will need the following 

straightforward generalization: 

Proposition (4.2.17)[173]: ([176]). We keep the same notation as before. Let 𝑞 ∈ 𝑀 be a 

non-zero projection such that Tr (𝑞) < ∞. Let 𝑄 ⊂ 𝑞𝑀𝑞 be a von Neumann subalgebra with 

no amenable direct summand. Then for any free ultrafilter 𝜔 on 𝐍, we have 𝑄′ ∩ (𝑞�̃�𝑞)𝜔 ⊂
(𝑞𝑀𝑞)𝜔. 

Let 𝑞 ∈ 𝑀 be a non-zero projection such that Tr (𝑞) < ∞. Note that Tr (𝑞 ⋅ 𝑞)/Tr (𝑞) 
is a finite trace on 𝑞�̃�𝑞. If 𝑄 ⊂ 𝑞𝑀𝑞 has no amenable direct summand, then for any 𝜀 > 0, 

there exist 𝛿 > 0 and a finite subset 𝐹 ⊂ 𝒰(𝑄) such that for any 𝑥 ∈ (𝑞�̃�𝑞)1 (the unit ball 

w.r.t. the operator norm), 

∥ 𝑢𝑥 − 𝑥𝑢 ∥2,Tr< 𝛿, ∀𝑢 ∈ 𝐹 ⟹ ∥∥𝑥 − 𝐸𝑞𝑀𝑞(𝑥)∥∥2,Tr < 𝜀.         (20) 
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We will simply denote 𝑢𝑥 − 𝑥𝑢 by [𝑢, 𝑥]. 
The following theorem is in some ways a reminiscence of a result of Ioana, Peterson 

& Popa, namely Theorem 4.3 of [156] and also Theorem 4.2 of [176]. The 

deformation/spectral gap rigidity strategy enables us to locate inside the core 𝑀 of a free 

Araki-Woods factor the position of subalgebras 𝐴 ⊂ 𝑀 with a large relative commutant 𝐴′ ∩
𝑀. 

Theorem (4.2.18)[173]: Let ℳ = Γ(𝐻𝐑, 𝑈𝑡)
′′ be a free Araki-Woods factor and 𝑀 =

ℳ ⋊𝜎 𝐑 be its continuous core. Let 𝑞 ∈ 𝐿(𝐑) ⊂ 𝑀 be a non-zero projection such that 

Tr (𝑞) < ∞. Let 𝑄 ⊂ 𝑞𝑀𝑞 be a von Neumann subalgebra with no amenable direct summand. 

Then 𝑄′ ∩ 𝑞𝑀𝑞 ⪯𝑀 𝐿(𝐑). 
Proof. Let 𝑞 ∈ 𝐿(𝐑) be a non-zero projection such that Tr (𝑞) < ∞. Let 𝑄 ⊂ 𝑞𝑀𝑞 be a von 

Neumann subalgebra with no amenable direct summand. Denote by 𝑄0 = 𝑄′ ∩ 𝑞𝑀𝑞. We 

keep the notation introduced previously and regard 𝑀 ⊂ �̃� = 𝑀1 ∗𝐿(𝐑) 𝑀2 via the 

identification of 𝑀 with 𝑀1. Remind that 𝛼𝑠∣𝐿(𝐑) = Id𝐿(𝐑), for every 𝑠 ∈ 𝐑. In particular 

𝛼𝑠(𝑞) = 𝑞, for every 𝑠 ∈ 𝐑. 

Step (1): Using the spectral gap condition and the transversality property of (𝜶𝒕, 𝜷) to 

find 𝒕 > 𝟎 and a non-zero intertwiner 𝒗 between Id and 𝜶𝒕. 

Let 𝜀 =
1

4
∥ 𝑞 ∥2, Tr . We know that there exist 𝛿 > 0 and a finite subset 𝐹 ⊂ 𝒰(𝑄), 

such that for every 𝑥 ∈ (𝑞�̃�𝑞)1, 

∥ [𝑥, 𝑢] ∥2,Tr≤ 𝛿, ∀𝑢 ∈ 𝐹 ⟹ ∥∥𝑥 − 𝐸𝑞𝑀𝑞(𝑥)∥∥2,Tr ≤ 𝜀. 

Since 𝛼𝑡 → Id pointwise ∗-strongly, as 𝑡 → 0, and since 𝐹 is a finite subset of 𝑄 ⊂ 𝑞𝑀𝑞, we 

may choose 𝑡 = 1/2𝑘 small enough (𝑘 ≥ 1) such that 

max  {∥∥𝑢 − 𝛼𝑡(𝑢)∥∥2,Tr: 𝑢 ∈ 𝐹} ≤
𝛿

2
. 

For every 𝑥 ∈ (𝑄0)1 and every 𝑢 ∈ 𝐹 ⊂ 𝑄, since [𝑢, 𝑥] = 0, we have 

∥∥[𝛼𝑡(𝑥), 𝑢]∥∥2,Tr  = ∥∥[𝛼𝑡(𝑥), 𝑢 − 𝛼𝑡(𝑢)]∥∥2,Tr
 ≤ 2∥∥𝑢 − 𝛼𝑡(𝑢)∥∥2,Tr
 ≤ 𝛿.

 

Consequently, we get for every 𝑥 ∈ (𝑄0)1, ∥∥𝛼𝑡(𝑥) − 𝐸𝑞𝑀𝑞(𝛼𝑡(𝑥))∥∥2,Tr ≤ 𝜀. Using 

Proposition (4.2.16), we obtain for every 𝑥 ∈ (𝑄0)1 

∥∥𝑥 − 𝛼𝑠(𝑥)∥∥2,𝑇𝑟 ≤
1

2
∥ 𝑞 ∥2,𝑇𝑟 , 

where 𝑠 = 2𝑡. Thus, for every 𝑢 ∈ 𝒰(𝑄0), we have 

∥∥𝑢∗𝛼𝑠(𝑢) − 𝑞∥∥2, Tr 
 = ∥∥𝑢∗(𝛼𝑠(𝑢) − 𝑢)∥∥2,𝑇𝑟
 ≤ ∥∥𝑢 − 𝛼𝑠(𝑢)∥∥2,Tr

 ≤
1

2
∥ 𝑞 ∥2,Tr.

 

Denote by 𝒞 = c𝑤̅̅̅̅ {𝑢∗𝛼𝑠(𝑢): 𝑢 ∈ 𝒰(𝑄0)} ⊂ 𝑞𝐿
2(�̃�)𝑞 the ultraweak closure of the convex 

hull of all 𝑢∗𝛼𝑠(𝑢), where 𝑢 ∈ 𝒰(𝑄0). Denote by 𝑎 the unique element in 𝒞 of minimal ∥
⋅∥2,Tr− norm. Since ∥ 𝑎 − 𝑞 ∥2,Tr≤ 1/2 ∥ 𝑞 ∥2,Tr, necessarily 𝑎 ≠ 0. Fix 𝑢 ∈ 𝒰(𝑄0). Since 

𝑢∗𝑎𝛼𝑠(𝑢) ∈ 𝒞 and ∥∥𝑢∗𝑎𝛼𝑠(𝑢)∥∥2,Tr =∥ 𝑎 ∥2,Tr, necessarily 𝑢∗𝑎𝛼𝑠(𝑢) = 𝑎. Taking 𝑣 =

pol (𝑎) the polar part of 𝑎, we have found a non-zero partial isometry 𝑣 ∈ 𝑞�̃�𝑞 such that 

𝑥𝑣 = 𝑣𝛼𝑠(𝑥), ∀𝑥 ∈ 𝑄0.                                     (21) 
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Step (2): Proving 𝑸𝟎 ⪯𝑴 𝑳(𝐑) using the malleability of (𝜶𝒕, 𝜷). By contradiction, assume 

𝑄0 ⋠𝑀 𝐿(𝐑). The first task is to lift Equation (21) to 𝑠 = 1. Note that it is enough to find a 

non-zero partial isometry 𝑤 ∈ 𝑞�̃�𝑞 such that 

𝑥𝑤 = 𝑤𝛼2𝑠(𝑥), ∀𝑥 ∈ 𝑄0. 
Indeed, by induction we can go till 𝑠 = 1 (because = 1/2𝑘−1 ). Remind that 𝛽(𝑧) = 𝑧, for 

every 𝑧 ∈ 𝑀. Note that 𝑣𝑣∗ ∈ 𝑄0
′ ∩ 𝑞�̃�𝑞. Since 𝑄0 ⋠𝑀 𝐿(𝐑), we know from Theorem 2.4 

in [176] that 𝑄0
′ ∩ 𝑞�̃�𝑞 ⊂ 𝑞𝑀𝑞. In particular, 𝑣𝑣∗ ∈ 𝑞𝑀𝑞. Set 𝑤 = 𝛼𝑠(𝛽(𝑣

∗)𝑣). Then, 
𝑤𝑤∗  = 𝛼𝑠(𝛽(𝑣

∗)𝑣𝑣∗𝛽(𝑣))

 = 𝛼𝑠(𝛽(𝑣
∗)𝛽(𝑣𝑣∗)𝛽(𝑣))

 = 𝛼𝑠𝛽(𝑣
∗𝑣) ≠ 0.

 

Hence, 𝑤 is a non-zero partial isometry in 𝑞�̃�𝑞. Moreover, for every 𝑥 ∈ 𝑄0, 

𝑤𝛼2𝑠(𝑥)  = 𝛼𝑠(𝛽(𝑣
∗)𝑣𝛼𝑠(𝑥))

 = 𝛼𝑠(𝛽(𝑣
∗)𝑥𝑣)

 = 𝛼𝑠(𝛽(𝑣
∗𝑥)𝑣)

 = 𝛼𝑠(𝛽(𝛼𝑠(𝑥)𝑣
∗)𝑣)

 = 𝛼𝑠𝛽𝛼𝑠(𝑥)𝛼𝑠(𝛽(𝑣
∗)𝑣)

 = 𝛽(𝑥)𝑤

 = 𝑥𝑤.

 

Since by induction, we can go till 𝑠 = 1, we have found a non-zero partial isometry 𝑣 ∈
𝑞�̃�𝑞 such that 

𝑥𝑣 = 𝑣𝛼1(𝑥), ∀𝑥 ∈ 𝑄0.                                       (22) 
Note that 𝑣∗𝑣 ∈ 𝛼1(𝑄0)

′ ∩ 𝑞𝑀𝑞. Moreover, since 𝛼1: 𝑞�̃�𝑞 → 𝑞�̃�𝑞 is a *-automorphism, 

and 𝑄0 ⋠𝑀 𝐿(𝐑), Theorem 2.4 in [176] gives 

𝛼1(𝑄0)
′ ∩ 𝑞�̃�𝑞  = 𝛼1(𝑄0

′ ∩ 𝑞�̃�𝑞)

 ⊂ 𝛼1(𝑞𝑀𝑞).
 

Hence 𝑣∗𝑣 ∈ 𝛼1(𝑞𝑀𝑞). 
Since 𝑄0 ⋠𝑀 𝐿(𝐑), we know that there exists a sequence of unitaries (𝑢𝑘) in 𝑄0 such 

that 𝐸𝐿(𝐑)(𝑥
∗𝑢𝑘𝑦) → 0 strongly, as 𝑘 → ∞, for any 𝑥, 𝑦 ∈ 𝑞𝑀. We need to go further and 

prove the following: 

Claim (4.2.19)[173]: ∀𝑎, 𝑏 ∈ 𝑞�̃�𝑞, ∥∥𝐸𝑀2(𝑎
∗𝑢𝑘𝑏)∥∥2,Tr

→ 0, as 𝑘 → ∞. 

Proof. Let 𝑎, 𝑏 ∈ (�̃�)1 be either elements in 𝐿(𝐑) or reduced words with letters alternating 

from 𝑀1⊖𝐿(𝐑) and 𝑀2⊖𝐿(𝐑). Write 𝑏 = 𝑦𝑏′ with 

1. 𝑦 = 𝑏 if 𝑏 ∈ 𝐿(𝐑); 
2. 𝑦 = 1 if 𝑏 is a reduced word beginning with a letter from 𝑀2⊖𝐿(𝐑); 
3. 𝑦 = the first letter of 𝑏 otherwise.  

Note that either 𝑏′ = 1 or 𝑏′ is a reduced word beginning with a letter from 𝑀2⊖𝐿(𝐑). 
Likewise write 𝑎 = 𝑎′𝑥 with 

4. 𝑥 = 𝑎 if 𝑥 ∈ 𝐿(𝐑); 
5. 𝑥 = 1 if 𝑎 is a reduced word ending with a letter from 𝑀2⊖𝐿(𝐑); 
6. 𝑥 = the last letter of 𝑎 otherwise.  

Either 𝑎′ = 1 or 𝑎′ is a reduced word ending with a letter from 𝑀2⊖𝐿(𝐑). For any 𝑧 ∈
𝑄0 ⊂ 𝑀1, 𝑥𝑧𝑦 − 𝐸𝐿(𝐑)(𝑥𝑧𝑦) ∈ 𝑀1⊖𝐿(𝐑), so that 

𝐸𝑀2(𝑎𝑧𝑏) = 𝐸𝑀2(𝑎
′𝐸𝐿(𝐑)(𝑥𝑧𝑦)𝑏

′). 
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Since 𝐸𝐿(𝐑)(𝑥𝑢𝑘𝑦) → 0 strongly, as 𝑘 → ∞, it follows that 𝐸𝑀2(𝑎𝑢𝑘𝑏) → 0 strongly, as 

𝑘 → ∞, as well. Thus, in the finite von Neumann algebra 𝑞�̃�𝑞, we get 

∥∥𝑞𝐸𝑀2(𝑎𝑢𝑘𝑏)𝑞∥∥2,Tr
→ 0 as 𝑘 → ∞. 

Note that 

𝒜:= span {𝐿(𝐑), (𝑀𝑖1 ⊖𝐿(𝐑))⋯ (𝑀𝑖𝑛 ⊖𝐿(𝐑)): 𝑛 ≥ 1, 𝑖1 ≠ ⋯ ≠ 𝑖𝑛} 

is a unital *-strongly dense *-subalgebra of �̃�. What we have shown so far is that for any 

𝑎, 𝑏 ∈ 𝒜, ∥∥𝑞𝐸𝑀2(𝑎𝑢𝑘𝑏)𝑞∥∥2,Tr
→ 0, as 𝑘 → ∞. Let now 𝑎, 𝑏 ∈ (�̃�)1. By Kaplansky density 

theorem, let (𝑎𝑖) and (𝑏𝑗) be sequences in (𝒜)1 such that 𝑎𝑖 → 𝑎 and 𝑏𝑗 → 𝑏 strongly. 

Recall that (𝑢𝑘) is a sequence in 𝑄0 ⊂ 𝑞�̃�𝑞. We have 

    ∥∥𝑞𝐸𝑀2(𝑎𝑢𝑘𝑏)𝑞∥∥2, Tr 
 

≤ ∥∥𝑞𝐸𝑀2(𝑎𝑖𝑢𝑘𝑏𝑗)𝑞∥∥2,Tr
+ ∥
∥𝑞𝐸𝑀2 (𝑎𝑖𝑢𝑘(𝑏 − 𝑏𝑗)) 𝑞∥

∥
2,Tr
                  

+∥
∥𝑞𝐸𝑀2 ((𝑎 − 𝑎𝑖)𝑢𝑘𝑏𝑗) 𝑞∥

∥
2,Tr

+ ∥
∥𝑞𝐸𝑀2 ((𝑎 − 𝑎𝑖)𝑢𝑘(𝑏 − 𝑏𝑗)) 𝑞∥

∥
2,Tr

 

≤ ∥∥𝑞𝐸𝑀2(𝑎𝑖𝑢𝑘𝑏𝑗)𝑞∥∥2,Tr
+ ∥∥𝑞𝑎𝑖𝑢𝑘(𝑏 − 𝑏𝑗)𝑞∥∥2,Tr                             

+∥∥𝑞(𝑎 − 𝑎𝑖)𝑢𝑘𝑏𝑗𝑞∥∥2,Tr + ∥
∥𝑞(𝑎 − 𝑎𝑖)𝑢𝑘(𝑏 − 𝑏𝑗)𝑞∥∥2,Tr         

≤ ∥∥𝑞𝐸𝑀2(𝑎𝑖𝑢𝑘𝑏𝑗)𝑞∥∥2,Tr
+ 3∥∥(𝑏 − 𝑏𝑗)𝑞∥∥2,Tr + ∥

∥𝑞(𝑎 − 𝑎𝑖)𝑞∥∥2,Tr 

Fix 𝜀 > 0. Since 𝑎𝑖 → 𝑎 and 𝑏𝑗 → 𝑏 strongly, let 𝑖0, 𝑗0 large enough such that 

3∥∥(𝑏 − 𝑏𝑗0)𝑞∥∥2,Tr
+ ∥∥𝑞(𝑎 − 𝑎𝑖0)𝑞∥∥2,Tr

≤ 𝜀/2. 

Now let 𝑘0 ∈ 𝐍 such that for any 𝑘 ≥ 𝑘0 

∥∥𝑞𝐸𝑀2(𝑎𝑖0𝑢𝑘𝑏𝑗0)𝑞∥∥2,𝑇𝑟
≤ 𝜀/2. 

We finally get ∥∥𝑞𝐸𝑀2(𝑎𝑢𝑘𝑏)𝑞∥∥2,𝑇𝑟
≤ 𝜀, for any 𝑘 ≥ 𝑘0, which finishes the proof of the 

claim. 

We remind that for any 𝑥 ∈ 𝑄0, 𝑣
∗𝑥𝑣 = 𝛼1(𝑥)𝑣

∗𝑣. Moreover, 𝑣∗𝑣 ∈ 𝛼1(𝑞𝑀𝑞) ⊂
𝑞𝑀2𝑞. So, for any 𝑥 ∈ 𝑄0, 𝑣

∗𝑥𝑣 ∈ 𝑞𝑀2𝑞. Since 𝛼1(𝑢𝑘) ∈ 𝒰(𝑞𝑀2𝑞), we get 

∥𝑣∗𝑣∥2,Tr = ∥∥𝛼1(𝑢𝑘)𝑣
∗𝑣∥∥2,Tr = ∥∥𝐸𝑀2(𝛼1(𝑢𝑘)𝑣

∗𝑣)∥∥
2,Tr

 

= ∥∥𝐸𝑀2(𝑣
∗𝑢𝑘𝑣)∥∥2,Tr

→ 0.                     

Thus 𝑣 = 0, which is a contradiction. 

Corollary (4.2.20)[173]: Let ℳ = Γ(𝐻𝐑, 𝑈𝑡)
′′ be a free Araki-Woods factor of type III  1. 

Then the continuous core 𝑀 =ℳ⋊𝜎 𝐑 is a semisolid II∞ factor. Since 𝑀 is non-amenable, 

𝑀 is always a prime factor. 

Proof. Let 𝑞 ∈ 𝐿(𝐑) be a non-zero projection such that Tr (𝑞) < ∞. Denote by 𝑁 = 𝑞𝑀𝑞 

the corresponding II1 factor and by 𝜏 = Tr (𝑞 ⋅ 𝑞)/Tr (𝑞) the canonical trace on 𝑁. By 

contradiction, assume that 𝑁 is not semisolid. Then there exists 𝑄 ⊂ 𝑁 a nonamenable von 

Neumann subalgebra such that the relative commutant 𝑄′ ∩ 𝑁 is of type II1. Write 𝑧 ∈ 𝒵(𝑄) 
for the maximal projection such that 𝑄𝑧 is amenable. Then 1 − 𝑧 ≠ 0, the von Neumann 

algebra 𝑄(1 − 𝑧) has no amenable direct summand and (𝑄′ ∩ 𝑁)(1 − 𝑧) is still of type II1. 

We may choose a projection 𝑞0 ∈ 𝑄(1 − 𝑧) such that 𝜏(𝑞0) = 1/𝑛. Since 𝑁 is a II1 factor, 

we may replace 𝑄 by 𝐌𝑛(𝐂)⊗ 𝑞0𝑄𝑞0, so that we may assume 𝑄 ⊂ 𝑁 has no amenable 

direct summand and 𝑄′ ∩ 𝑁 is still of type II1. 

If we apply Theorem (4.2.18), it follows that 𝑄′ ∩ 𝑁 ⪯𝑀 𝐿(𝐑). We get a 

contradiction because 𝑄′ ∩ 𝑁 is of type II1 and 𝐿(𝐑) is of type I. 
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It follows from [12] that for any type III1 factor ℳ, if the continuous core 𝑀 =
ℳ ⋊𝜎 𝐑 is full, then Connes' invariant 𝜏(ℳ) is the usual topology on 𝐑. Let now ℳ =
Γ(𝐻𝐑, 𝑈𝑡)

′′ be a free Araki-Woods factor associated with (𝑈𝑡) an almost periodic 

representation. Denote by 𝑆𝑈 ⊂ 𝐑+
∗  the (countable) subgroup generated by the point 

spectrum of (𝑈𝑡). Then 𝜏(ℳ) is strictly weaker than the usual topology. More precisely, 

the completion of 𝐑 w.r.t. the topology 𝜏(ℳ) is the compact group 𝑆�̂� dual of 𝑆𝑈 (see [3]). 

Therefore in this case, for any non-zero projection 𝑞 ∈ 𝐿(𝐑) such that Tr (𝑞) < ∞, the II1 

factor 𝑞𝑀𝑞 is semisolid, by Theorem (4.2.18), and has property Γ of Murray & von 

Neumann by the above remark. 

The solidity of the continuous core 𝑀 forces the centralizers on ℳ to be amenable. 

Indeed, fix 𝜓 any f.n. state on ℳ. Assume that the continuous core 𝑀 ≃ℳ ⋊𝜎 𝜓𝐑 is solid. 

Choose a non-zero projection 𝑞 ∈ 𝐿(𝐑) such that Tr (𝑞) < ∞. Since 𝐿(𝐑)𝑞 is diffuse in 

𝑞(ℳ ⋊𝜎𝜓 𝐑)𝑞, its relative commutant must be amenable. In particular ℳ𝜓⊗‾ 𝐿(𝐑)𝑞 is 

amenable. Thus, ℳ𝜓 is amenable. 

Note that if the orthogonal representation (𝑈𝑡) contains a 
2𝜋

1log 𝜆
-periodic 

subrepresentation (𝑉𝑡
𝜆), 0 < 𝜆 < 1, of the form 

𝑉𝑡
𝜆 = (

cos (𝑡log 𝜆) −sin (𝑡log 𝜆)
sin (𝑡log 𝜆) cos (𝑡log 𝜆)

), 

then the free Araki-Woods factor ℳ = Γ(𝐻𝐑, 𝑈𝑡)
′′ freely absorbs 𝐿(𝐅∞) (see [15]) : 

(ℳ,𝜑𝑈) ∗ (𝐿(𝐅∞), 𝜏) ≅ (ℳ,𝜑𝑈). 
In particular, the centralizer of the free quasi-free state ℳ𝜑𝑈 is non-amenable since it 

contains 𝐿(𝐅∞). Therefore, whenever (𝑈𝑡) contains a periodic subrepresentation of the form 

(𝑉𝑡
𝜆) for some 0 < 𝜆 < 1, the continuous core of Γ(𝐻𝐑, 𝑈𝑡)

′′ is semisolid by Theorem 

(4.2.18) but can never be solid. However, when (𝑈𝑡) is assumed to be mixing, we get solidity 

of the continuous core. Indeed in that case, we can control the relative commutant 𝐴′ ∩𝑀 

of diffuse subalgebras 𝐴 ⊂ 𝐿(𝐑) ⊂ 𝑀, where 𝑀 is the continuous core of the free Araki-

Woods factor associated with (𝑈𝑡). Thus, the next theorem can be regarded as the analog of 

a result of Popa, namely Theorem 3.1 of [52] (see also Theorem D.4 in [189]). 

Theorem (4.2.21)[173]: Let (𝑈𝑡) be a mixing orthogonal representation of 𝐑 on the real 

Hilbert space 𝐻𝐑. Denote by ℳ = Γ(𝐻𝐑, 𝑈𝑡)
′′ the corresponding free Araki-Woods factor 

and by 𝑀 =ℳ⋊𝜎 𝐑 its continuous core. Let 𝑘 ≥ 1 and let 𝑞 ∈ 𝐌𝑘(𝐂)⊗ 𝐿(𝐑) be a non-

zero projection such that 𝑇:= (Tr𝑘⊗Tr)(𝑞) < ∞.   Write 𝐿(𝐑)𝑇: = 𝑞(𝐌𝑘(𝐂)⊗ 𝐿(𝐑))𝑞 

and 𝑀𝑇: = 𝑞(𝐌𝑘(𝐂)⊗𝑀)𝑞. Let 𝐴 ⊂ 𝐿(𝐑)𝑇 be a diffuse von Neumann subalgebra.  

Then for any sub-bimodule  𝐴𝐻𝐿(𝐑)𝑇 of  𝐴𝐿
2(𝑀𝑇)𝐿(𝐑)𝑇 such that dim (𝐻𝐿(𝐑)𝑇) < ∞, 

one has 𝐻 ⊂ 𝐿2(𝐿(𝐑)𝑇). In particular 𝐴′ ∩𝑀𝑇 ⊂ 𝐿(𝐑)𝑇. 

Proof. As usual, denote by (𝜆𝑡) the unitaries in 𝐿(𝐑) that implement the modular action 𝜎 

on ℳ. Let Φ: 𝐿∞(𝐑) → 𝐿(𝐑) be the Fourier Transform so that Φ(𝑒𝑖𝑡) = 𝜆𝑡, for every 𝑡 ∈

𝐑. Let 𝑇 > 0 and denote by 𝑞 = Φ(𝜒[0,𝑇]). Notice that 𝐿∞(𝐑)𝜒[0,𝑇] ≅ 𝐿∞[0, 𝑇] and that 

span {∑  

𝑘∈𝐹

  𝑐𝑘𝑒
𝑖
2𝜋
𝑇
𝑘⋅𝜒[0,𝑇]: 𝐹 ⊂ 𝐙 finite subset, 𝑐𝑘 ∈ 𝐂, ∀𝑘 ∈ 𝐹} 

is a unital *-strongly dense *-subalgebra of 𝐿∞(𝐑)𝜒[0,𝑇]. Thus, using the isomorphism Φ, 

we get that 
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𝒜:= span {∑  

𝑘∈𝐹

  𝑐𝑘𝜆2𝜋
𝑇
𝑘
𝑞: 𝐹 ⊂ 𝐙 finite subset, 𝑐𝑘 ∈ 𝐂, ∀𝑘 ∈ 𝐹} 

is a unital *-strongly dense *-subalgebra of 𝐿(𝐑)𝑞. Let (𝑢𝑛) be bounded sequence in 𝐿(𝐑)𝑞 

such that 𝑢𝑛 → 0 weakly, as 𝑛 → ∞, and ∥∥𝑢𝑛∥∥∞ ≤ 1, for every 𝑛 ∈ 𝐍. Using Kaplansky 

density theorem together with a standard diagonal process, choose a sequence 𝑦𝑛 ∈ 𝒜 such 

that ∥∥𝑦𝑛∥∥∞ ≤ 1, for every 𝑛 ∈ 𝐍, and ∥∥𝑢𝑛 − 𝑦𝑛∥∥2,Tr → 0, as 𝑛 → ∞. We will write 𝑦𝑛 =

𝑧𝑛𝑞 with 

𝑧𝑛 = ∑  

𝑘∈𝐹𝑛

𝑐𝑘,𝑛𝜆2𝜋
𝑇
𝑘
, 

where 𝐹𝑛 ⊂ 𝐙 is finite, 𝑐𝑘,𝑛 ∈ 𝐂, for any 𝑘 ∈ 𝐹𝑛 and any 𝑛 ∈ 𝐍. Using the 𝑇-periodicity, we 

have for any 𝑛 ∈ 𝐍, 

∥∥𝑧𝑛∥∥∞  = ∥∥Φ−1(𝑧𝑛)∥∥∞

 = ess sup
𝑥∈𝐑

|∑  

𝑘∈𝐹𝑛

  𝑐𝑘,𝑛𝑒
𝑖
2𝜋
𝑇
𝑘𝑥|

 = ess sup
𝑥∈[0,𝑇]

|∑  

𝑘∈𝐹𝑛

  𝑐𝑘,𝑛𝑒
𝑖
2𝜋
𝑇
𝑘𝑥|

 = ∥∥Φ
−1(𝑧𝑛)𝜒[0,𝑇]∥∥∞

 = ∥∥𝑦𝑛∥∥∞ ≤ 1.

 

Thus, the sequence (𝑧𝑛) is uniformly bounded.  

The first step of the proof consists in proving the following: 

∥∥𝐸𝐿(𝐑)𝑞(𝑎𝑢𝑛𝑏)∥∥2,Tr
→ 0, as 𝑛 → ∞,∀𝑎, 𝑏 ∈ 𝑞𝑀𝑞 ∩ ker (𝐸𝐿(𝐑)𝑞). 

Equivalently, we need to show that 

∥∥𝑞𝐸𝐿(𝐑)(𝑎𝑢𝑛𝑏)𝑞∥∥2,Tr
→ 0, as 𝑛 → ∞,∀𝑎, 𝑏 ∈ ker(𝐸𝐿(𝐑)).           (23) 

The first step of the proof is now divided in three different claims that will lead to proving 

(23). First note that 

ℰ:= span {∑  

𝑡∈𝐹

 𝑥𝑡𝜆𝑡: 𝐹 ⊂ 𝐑 finite subset, 𝑥𝑡 ∈ ℳ with 𝜑(𝑥𝑡) = 0, ∀𝑡 ∈ 𝐹} 

is *-strongly dense in ker (𝐸𝐿(𝐑)) by Kaplansky density theorem. We first prove the 

following: 

Claim (4.2.22)[173]: If ∥∥𝑞𝐸𝐿(𝐑)(𝑥𝑢𝑛𝑦)𝑞∥∥2,Tr
→ 0, as 𝑛 → ∞,∀𝑥, 𝑦 ∈ ℳ with 𝜑(𝑥) =

𝜑(𝑦) = 0, then (23) is satisfied. 

Proof. Assume ∥∥𝑞𝐸𝐿(𝐑)(𝑥𝑢𝑛𝑦)𝑞∥∥2,Tr
→ 0, as 𝑛 → ∞,∀𝑥, 𝑦 ∈ ℳ with 𝜑(𝑥) = 𝜑(𝑦) = 0. 

First take 𝑎 ∈ ℰ that we write 𝑎 = ∑𝑠∈𝐹  𝑥𝑠𝜆𝑠, with 𝐹 ⊂ 𝐑 finite subset, such that 𝑥𝑠 ∈

ℳ,𝜑(𝑥𝑠) = 0, for every 𝑠 ∈ 𝐹. Then take 𝑏 ∈ ker (𝐸𝐿(𝐑)) and let (𝑏𝑗)𝑗∈𝐽 bea sequence in 

ℰ such that 𝑏 − 𝑏𝑗 → 0 ∗-strongly, as 𝑗 → ∞. Since ∥∥𝑢𝑛∥∥∞ ≤ 1, we get for any 𝑛 ∈ 𝐍 and 

any 𝑗 ∈ 𝐽, 
           ∥∥𝑞𝐸𝐿(𝐑)(𝑎𝑢𝑛𝑏)𝑞∥∥2, Tr 

 



137 

             ≤ ∥∥𝑞𝐸𝐿(𝐑)(𝑎𝑢𝑛𝑏𝑗)𝑞∥∥2,Tr
+ ∥
∥𝑞𝐸𝐿(𝐑) (𝑎𝑢𝑛(𝑏 − 𝑏𝑗)) 𝑞∥

∥
2,Tr

 

≤ ∥∥𝑞𝐸𝐿(𝐑)(𝑎𝑢𝑛𝑏𝑗)𝑞∥∥2,Tr
+∥ 𝑎 ∥∞ ∥∥(𝑏 − 𝑏𝑗)𝑞∥∥2,Tr 

Fix 𝜀 > 0. Since 𝑏 − 𝑏𝑗 → 0 ∗-strongly, as 𝑗 → ∞, fix 𝑗0 ∈ 𝐽 such that ∥ 𝑎 ∥∞ ∥∥(𝑏 −

𝑏𝑗0)𝑞∥∥2,Tr
≤ 𝜀/2. Write 𝑏𝑗0 = ∑𝑡∈𝐹′  𝑦𝑡𝜆𝑡, with 𝐹′ ⊂ 𝐑 finite subset, such that 𝑦𝑡 ∈

ℳ,𝜑(𝑦𝑡) = 0, for every 𝑡 ∈ 𝐹′. Therefore, for any 𝑛 ∈ 𝐍, 

∥∥𝑞𝐸𝐿(𝐑)(𝑎𝑢𝑛𝑏𝑗0)𝑞∥∥2,𝑇𝑟
 ≤ ∑  

(𝑠,𝑡)∈𝐹×𝐹′

  ∥∥𝑞𝐸𝐿(𝐑)(𝑥𝑠𝜆𝑠𝑢𝑛𝑦𝑡𝜆𝑡)𝑞∥∥2,Tr

 = ∑  

(𝑠,𝑡)∈𝐹×𝐹′

  ∥∥𝜆𝑠𝑞𝐸𝐿(𝐑)(𝜎−𝑠(𝑥𝑠)𝑢𝑛𝑦𝑡)𝑞𝜆𝑡∥∥2,Tr

 = ∑  

(𝑠,𝑡)∈𝐹×𝐹′

  ∥∥𝑞𝐸𝐿(𝐑)(𝜎−𝑠(𝑥𝑠)𝑢𝑛𝑦𝑡)𝑞∥∥2,Tr
.

 

Since 𝜑(𝜎−𝑠(𝑥𝑠)) = 𝜑(𝑦𝑡) = 0, for any (𝑠, 𝑡) ∈ 𝐹 × 𝐹′, using the assumption of the claim, 

there exists 𝑛0 ∈ 𝐍 large enough such that for any 𝑛 ≥ 𝑛0, ∥∥𝑞𝐸𝐿(𝐑)(𝑎𝑢𝑛𝑏𝑗0)𝑞∥∥2,𝑇r
≤ 𝜀/2. 

Thus, for any 𝑛 ≥ 𝑛0, ∥∥𝑞𝐸𝐿(𝐑)(𝑎𝑢𝑛𝑏)𝑞∥∥2,Tr
≤ 𝜀. This proves that for any 𝑎 ∈ ℰ and 

any 𝑏 ∈ ker (𝐸𝐿(𝐑)), ∥∥𝑞𝐸𝐿(𝐑)(𝑎𝑢𝑛𝑏)𝑞∥∥2,Tr
→ 0, as 𝑛 → ∞. If we do the same thing by 

approximating 𝑎 ∈ ker (𝐸𝐿(𝐑)) with elements in ℰ, using the fact that 𝑢𝑛 ∈ (𝐿(𝐑)𝑞)1, we 

finally get the claim. 

We now replace the sequence (𝑢𝑛) by (𝑧𝑛), use the mixing property of the modular 

action 𝜎 and prove the following: 

Claim (4.2.23)[173]L: ∀𝑎, 𝑏 ∈ (ℳ)1 with 𝜑(𝑎) = 𝜑(𝑏) = 0, ∥∥𝑞𝐸𝐿(𝐑)(𝑎𝑧𝑛𝑏)𝑞∥∥2,Tr
→ 0, 

as 𝑛 → ∞. 

Proof. Fix 𝑎, 𝑏 ∈ (ℳ)1 such that 𝜑(𝑎) = 𝜑(𝑏) = 0. Fix 𝜀 > 0. For any 𝑛 ∈ 𝐍, we have 

∥∥𝑞𝐸𝐿(𝐑)(𝑎𝑧𝑛𝑏)𝑞∥∥2,Tr
2

 =
∥
∥
∥
∥
∥
∑  

𝑘∈𝐹𝑛

  𝑐𝑘,𝑛𝜑 (𝑎𝜎2𝜋
𝑇
𝑘
(𝑏)) 𝜆2𝜋

𝑇
𝑘
𝑞
∥
∥
∥
∥
∥

2,Tr

2

 = Tr(𝑞) ∑  

𝑘∈𝐹𝑛

  |𝑐𝑘,𝑛|
2
|𝜑 (𝑎𝜎2𝜋

𝑇
𝑘
(𝑏))|

2

.

 

Moreover for any 𝑛 ∈ 𝐍, 

Tr(𝑞) ∑  

𝑘∈𝐹𝑛

|𝑐𝑘,𝑛|
2
= ∥∥𝑧𝑛𝑞∥∥2,Tr

2 ≤ Tr(𝑞) ∥∥𝑧𝑛𝑞∥∥∞
2 ≤ 𝑇. 

Since the modular group 𝜎 is 𝜑-mixing (because (𝑈𝑡) is assumed to be mixing), there exists 

a finite subset 𝐾 ⊂ 𝐙 such that for any 𝑘 ∈ 𝐙 ∖ 𝐾, |𝜑 (𝑎𝜎2𝜋
𝑇
𝑘
(𝑏))| ≤ 𝜀/√2𝑇. Thus, 

∥∥𝑞𝐸𝐿(𝐑)(𝑎𝑧𝑛𝑏)𝑞∥∥2,Tr
≤
∥
∥
∥
∥
∥
∑  

𝑘∈𝐾∩𝐹𝑛

  𝑐𝑘,𝑛𝜆2𝜋
𝑇
𝑘
𝑞
∥
∥
∥
∥
∥

2,Tr

+ 𝜀/2. 

Since 𝑢𝑛 − 𝑧𝑛𝑞 → 0 strongly and 𝑢𝑛 → 0 weakly, as 𝑛 → ∞, it follows that 𝑧𝑛𝑞 → 0 

weakly, as 𝑛 → ∞. In particular there exists 𝑛0 large enough such that for any 𝑛 ≥ 𝑛0, for 

any 𝑘 ∈ 𝐾 ∩ 𝐹𝑛, |𝑐𝑘,𝑛| ≤ 𝜀/(2|𝐾| ∥ 𝑞 ∥2,𝑇𝑟). Thus, for any 𝑛 ≥ 𝑛0 
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∥∥𝑞𝐸𝐿(𝐑)(𝑎𝑧𝑛𝑏)𝑞∥∥2,Tr
≤ 𝜀/2 + 𝜀/2 = 𝜀. 

This proves that ∥∥𝑞𝐸𝐿(𝐑)(𝑎𝑧𝑛𝑏)𝑞∥∥2,𝑇Tr
→ 0, as 𝑛 → ∞. 

The last claim consists in going back to the sequence (𝑢𝑛) and proving the following: 

Claim (4.2.24)[173]: ∀𝑎, 𝑏 ∈ (ℳ)1 with 𝜑(𝑎) = 𝜑(𝑏) = 0, ∥∥𝑞𝐸𝐿(𝐑)(𝑎𝑢𝑛𝑏)𝑞∥∥2,Tr
→ 0, as 

𝑛 → ∞. 

Proof. Applying once more Kaplansky density theorem, we can find a sequence (𝑞𝑖)𝑖∈𝐼 in 

𝐿(𝐑) such that 

1. 𝑞𝑖 = ∑𝑡∈𝐹𝑖  𝑑𝑡𝜆𝑡, with 𝐹𝑖 ⊂ 𝐑 finite subset, 𝑑𝑡 ∈ 𝐂, for any 𝑡 ∈ 𝐹𝑖 and for any 𝑖 ∈ 𝐼; 

2. ∥∥𝑞𝑖∥∥∞ ≤ 1, for any 𝑖 ∈ 𝐼; 

3. 𝑞 − 𝑞𝑖 → 0 *-strongly, as 𝑖 → ∞.  

Fix now 𝑎, 𝑏 ∈ (ℳ)1 such that 𝜑(𝑎) = 𝜑(𝑏) = 0. Using the fact that 

∥ 𝑎 ∥∞, ∥ 𝑏 ∥∞, ∥ 𝑞 ∥∞, ∥∥𝑧𝑛∥∥∞ ≤ 1, ∀𝑛 ∈ 𝐍, 

we get for any 𝑛 ∈ 𝐍 and any 𝑖 ∈ 𝐼, 

∥∥𝑞𝐸𝐿(𝐑)(𝑎𝑢𝑛𝑏)𝑞∥∥2,Tr
                                                                 

≤ ∥∥𝑞𝐸𝐿(𝐑)(𝑎(𝑢𝑛 − 𝑧𝑛𝑞)𝑏)𝑞∥∥2,Tr
+ ∥∥𝑞𝐸𝐿(𝐑)(𝑎𝑧𝑛𝑞𝑏)𝑞∥∥2,Tr

 

                         ≤ ∥∥𝑢𝑛 − 𝑧𝑛𝑞∥∥2,Tr + ∥
∥𝑞𝐸𝐿(𝐑)(𝑎𝑧𝑛(𝑞 − 𝑞𝑖)𝑏)𝑞∥∥2,Tr

 

+∥∥𝑞𝐸𝐿(𝐑)(𝑎𝑧𝑛𝑞𝑖𝑏)𝑞∥∥2,Tr
              

≤ ∥∥𝑢𝑛 − 𝑧𝑛𝑞∥∥2,Tr + ∥∥(𝑞 − 𝑞𝑖)𝑏𝑞∥∥2,Tr 

            +∑  

𝑡∈𝐹𝑖

  |𝑑𝑡|∥∥𝑞𝐸𝐿(𝐑)(𝑎𝑧𝑛𝜎𝑡(𝑏))𝜆𝑡𝑞∥∥2,Tr
 

≤ ∥∥𝑢𝑛 − 𝑧𝑛𝑞∥∥2,Tr + ∥∥(𝑞 − 𝑞𝑖)𝑏𝑞∥∥2,Tr 

         +∑  

𝑡∈𝐹𝑖

  |𝑑𝑡|∥∥𝑞𝐸𝐿(𝐑)(𝑎𝑧𝑛𝜎𝑡(𝑏))𝑞∥∥2,Tr
. 

Since 𝑞 − 𝑞𝑖 → 0 ∗-strongly, as 𝑖 → ∞, it follows that ∥∥(𝑞 − 𝑞𝑖)𝑏𝑞∥∥2,Tr → 0, as 𝑖 → ∞. Fix 

𝜀 > 0. Then, take 𝑖0 ∈ 𝐼 such that ∥∥(𝑞 − 𝑞𝑖0)𝑏𝑞∥∥2,Tr
≤ 𝜀/3. Since ∥∥𝑢𝑛 − 𝑧𝑛𝑞∥∥2,Tr → 0, as 

𝑛 → ∞ and using Claim (4.2.23), we may choose 𝑛0 large enough such that for any 𝑛 ≥ 𝑛0, 
∥∥𝑢𝑛 − 𝑧𝑛𝑞∥∥2,Tr  ≤ 𝜀/3

∑  

𝑡∈𝐹𝑖0

  |𝑑𝑡|∥∥𝑞𝐸𝐿(𝐑)(𝑎𝑧𝑛𝜎𝑡(𝑏))𝑞∥∥2,Tr
 ≤ 𝜀/3. 

Consequently, for any 𝑛 ≥ 𝑛0, we get ∥∥𝑞𝐸𝐿(𝐑)(𝑎𝑢𝑛𝑏)𝑞∥∥2,Tr
≤ 𝜀. Therefore, we have 

proven ∥∥𝑞𝐸𝐿(𝐑)(𝑎𝑢𝑛𝑏)𝑞∥∥2,Tr
→ 0, as 𝑛 → ∞. 

Thanks to Claims (4.2.22) and (4.2.24), it is then clear that (23) is satisfied. This 

finishes the first step of the proof. 

The last step of the proof consists in using Theorem (4.2.12). Let 𝑘 ≥ 1 and 𝑞 ∈
𝐌𝑘(𝐂)⊗ 𝐿(𝐑) be a non-zero projection such that 𝑇:= (Tr𝑘⊗Tr)(𝑞) < ∞. Since 

𝐌𝑘(𝐂)⊗𝑀 is a II∞ factor, there exists a unitary 𝑢 ∈ 𝒰(𝐌𝑘(𝐂)⊗𝑀) such that 

𝑞 = 𝑢(
𝑞0 0

⋱
0 𝑞0

)𝑢∗ 
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where 𝑞0 = Φ(𝜒[0,𝑇/𝑘]) ∈ 𝐿(𝐑). Using the spatiality of Ad (𝑢) on 𝐌𝑘(𝐂)⊗𝑀, we may 

assume without loss of generality that 

𝑞 = (
𝑞0 0

⋱
0 𝑞0

) 

In particular, 𝑞 ∈ 𝐌𝑘(𝐂)⊗ 𝐿(𝐑)𝑞0. Define 𝑀𝑇: = 𝑞(𝐌𝑘(𝐂)⊗𝑀)𝑞 and 𝐿(𝐑)𝑇: =
𝑞(𝐌𝑘(𝐂)⊗ 𝐿(𝐑))𝑞. Let 𝐴 ⊂ 𝐿(𝐑)𝑇 be a diffuse von Neumann subalgebra. Choose a 

sequence of unitaries (𝑢𝑛) in 𝐴 such that 𝑢𝑛 → 0 weakly, as 𝑛 → ∞. Thus, we can write 

𝑢𝑛 = [𝑢𝑛
𝑖,𝑗
]
𝑖,𝑗

 where 𝑢𝑛
𝑖,𝑗
∈ 𝐿(𝐑)𝑞0 and ∥∥𝑢𝑛

𝑖,𝑗
∥∥∞ ≤ 1, for any 𝑛 ∈ 𝐍 and any 𝑖, 𝑗 ∈ {1,… , 𝑘}. 

Moreover, 𝑢𝑛
𝑖,𝑗
→ 0 weakly, as 𝑛 → ∞, in 𝐿(𝐑)𝑞0, for any 𝑖, 𝑗 ∈ {1,… , 𝑘}. Thus, using the 

first step of the proof, it becomes clear that the inclusion 𝐿(𝐑)𝑇 ⊂ 𝑀𝑇 is weakly mixing 

through 𝐴 in the sense of Definition (4.2.11). Thus, using Theorem (4.2.12), it follows that 

for any  𝐴𝐻𝐿(𝐑)𝑇 sub-bimodule of  𝐴𝐿
2(𝑀𝑇)𝐿(𝐑)𝑇 such that dim (𝐻𝐿(𝐑)𝑇) < ∞, one has 𝐻 ⊂

𝐿2(𝐿(𝐑)𝑇). In particular 𝐴′ ∩𝑀𝑇 ⊂ 𝐿(𝐑)𝑇. 

Claim (4.2.25)[173]: Let ℳ = Γ(𝐻𝐑, 𝑈𝑡)
′′ be a free Araki-Woods factor such that the 

orthogonal representation (𝑈𝑡) is mixing. Then the continuous core 𝑀 =ℳ ⋊𝜎 𝐑 is a solid 

II∞ factor. 

Proof. Let 𝑞 ∈ 𝐿(𝐑) be a non-zero projection such that Tr (𝑞) < ∞. Denote by 𝑁 = 𝑞𝑀𝑞 

the corresponding II1 factor. By contradiction assume that 𝑁 is not solid. Then there exists 

a non-amenable von Neumann subalgebra 𝑄 ⊂ 𝑁 such that the relative commutant 𝑄′ ∩ 𝑁 

is diffuse. Since 𝑁 is a II  1 factor, using the same argument as in the proof of Corollary 

(4.2.20), we may assume that 𝑄 has no amenable direct summand and 𝑄0 = 𝑄
′ ∩ 𝑁 is still 

diffuse. 

Since 𝑄 has no amenable direct summand, Theorem (4.2.18) yields 𝑄0 ⪯𝑀 𝐿(𝐑). 
Thus using Theorem (4.2.13), we know that there exists a non-zero projection 𝑝 ∈ 𝐿(𝐑) 
such that Tr (𝑝) < ∞, and 𝑄0 ⪯𝑒𝑀𝑒 𝐿(𝐑)𝑝 where 𝑒 = 𝑝 ∨ 𝑞. Consequently, there exist 𝑛 ≥
1, a (possibly non-unital) ∗-homomorphism 𝜓:𝑄0 → 𝐌𝑛(𝐂)⊗ 𝐿(𝐑)𝑝 and a non-zero 

partial isometry 𝑣 ∈ 𝐌1,𝑛(𝐂)⊗ 𝑞𝑀𝑝 such that 

𝑥𝑣 = 𝑣𝜓(𝑥), ∀𝑥 ∈ 𝑄0. 
We moreover have 

𝑣𝑣∗ ∈ 𝑄0
′ ∩ 𝑞𝑀𝑞 and 𝑣∗𝑣 ∈ 𝜓(𝑄0)

′ ∩ 𝜓(𝑞)(𝐌𝑛(𝐂)⊗ 𝑝𝑀𝑝)𝜓(𝑞). 
Write 𝑄1 = 𝑄0

′ ∩ 𝑞𝑀𝑞 and notice that 𝑄 ⊂ 𝑄1. Since 𝜓(𝑄0) is diffuse and 𝑣∗𝑣 ∈ 𝜓(𝑄0)
′ ∩ 

𝜓(𝑞)(𝐌𝑛(𝐂)⊗ 𝑝𝑀𝑝)𝜓(𝑞), Theorem (4.2.21) yields 𝑣∗𝑣 ∈ 𝜓(𝑞)(𝐌𝑛(𝐂)⊗ 𝐿(𝐑)𝑝)𝜓(𝑞), 
so that we may assume 𝑣∗𝑣 = 𝜓(𝑞). For any 𝑦 ∈ 𝑄1, and any 𝑥 ∈ 𝑄0, 

𝑣∗𝑦𝑣𝜓(𝑥)  = 𝑣∗𝑦𝑥𝑣

 = 𝑣∗𝑥𝑦𝑣

 = 𝜓(𝑥)𝑣∗𝑦𝑣.

 

Thus, 𝑣∗𝑄1𝑣 ⊂ 𝜓(𝑄0)
′ ∩ 𝑣∗𝑣(𝐌𝑛(𝐂)⊗ 𝑝𝑀𝑝)𝑣∗𝑣. Since 𝜓(𝑄0) is diffuse, Theorem 

(4.2.21) yields 𝑣∗𝑄1𝑣 ⊂ 𝑣
∗𝑣(𝐌𝑛(𝐂)⊗ 𝐿(𝐑)𝑝)𝑣∗𝑣. Since 𝑄 has no amenable direct 

summand and 𝑄 ⊂ 𝑄1 is a unital von Neumann subalgebra, it follows that 𝑄1 has no 

amenable direct summand either. Thus the von Neumann algebra 𝑣𝑣∗𝑄1𝑣𝑣
∗ is non-

amenable. But Ad (𝑣∗): 𝑣𝑣∗𝑀𝑣𝑣∗ → 𝑣∗𝑣(𝐌𝑛(𝐂) ⊗ 𝑝𝑀𝑝)𝑣∗𝑣 is a *-isomorphism and 

Ad(𝑣∗)(𝑣𝑣∗𝑄1𝑣𝑣
∗) ⊂ 𝑣∗𝑣(𝐌𝑛(𝐂)⊗ 𝐿(𝐑)𝑝)𝑣∗𝑣. 

Since 𝑣∗𝑣(𝐌𝑛(𝐂)⊗ 𝐿(𝐑)𝑝)𝑣∗𝑣 is of type I, hence amenable, we get a contradiction. 
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Since the left regular representation (𝜆𝑡) of 𝐑 acting on 𝐿𝐑
2 (𝐑, Lebesgue ) is mixing, 

the continuous core 𝑀 of Γ(𝐿𝐑
2 (𝐑, Lebesgue ), 𝜆𝑡)

′′
 is solid. We partially retrieve a previous 

result of Shlyakhtenko [14] where he proved in this case that 𝑀 ≅ 𝐿(𝐅∞)⊗‾ 𝐁(ℓ
2), which 

is solid by [162]. We will give an example of a non-amenable solid II1 factor with full 

fundamental group which is not isomorphic to any interpolated free group factor 𝐿(𝐅𝑡), for 

1 < 𝑡 ≤ ∞. 

Note that the mixing property of the representation (𝑈𝑡) is not a necessary condition 

for the solidity of the continuous core 𝑀. Indeed, take 𝑈𝑡 = Id⊕ 𝜆𝑡 on 𝐻𝐑 = 𝐑⊕ 𝐿𝐑
2 (𝐑, 

Lebesgue). Then (𝑈𝑡) is not mixing, but the continuous core 𝑀 of Γ(𝐻𝐑, 𝑈𝑡)
′′ is still 

isomorphic to 𝐿(𝐅∞) ⊗‾ 𝐁(ℓ
2)[186]. 

Write 𝜆 for the Lebesgue measure on the real line 𝐑. Let 𝜇 be a symmetric (positive) 

probability measure on 𝐑, i.e. 𝜇(𝑋) = 𝜇(−𝑋), for any Borel subset 𝑋 ⊂ 𝐑. Consider the 

following unitary representation (𝑈𝑡
𝜇
) of 𝐑 on 𝐿2(𝐑, 𝜇) given by: 

(𝑈𝑡
𝜇
𝑓)(𝑥) = 𝑒𝑖𝑡𝑥𝑓(𝑥), ∀𝑓 ∈ 𝐿2(𝐑, 𝜇), ∀𝑡, 𝑥 ∈ 𝐑.                          (24) 

Define the Hilbert subspace of 𝐿2(𝐑, 𝜇) 

𝐾𝐑
𝜇
: = {𝑓 ∈ 𝐿2(𝐑, 𝜇): 𝑓(𝑥) = 𝑓(−𝑥)̅̅ ̅̅ ̅̅ ̅̅ , ∀𝑥 ∈ 𝐑}.                           (25) 

Since 𝜇 is assumed to be symmetric, the restriction of the inner product to 𝐾R is real-valued. 

Indeed, for any 𝑓, 𝑔 ∈ 𝐾𝐑
𝜇

, 

⟨𝑓, 𝑔⟩  = ∫  
𝐑

 𝑓(𝑥)𝑔(𝑥)̅̅ ̅̅ ̅̅ 𝑑𝜇(𝑥)

 = ∫  
𝐑

 𝑓(−𝑥)𝑔(−𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅𝑑𝜇(−𝑥)
 

       = ∫  
𝐑

 𝑓(𝑥)̅̅ ̅̅ ̅̅ 𝑔(𝑥)𝑑𝜇(𝑥) 

= ⟨𝑓, 𝑔⟩̅̅ ̅̅ ̅̅ ̅.                  
Moreover the representation (𝑈𝑡

𝜇
) leaves 𝐾𝐑

𝜇
 globally invariant. Thus, (𝑈𝑡

𝜇
) restricted to 

𝐾𝐑
𝜇

 becomes an orthogonal representation. Define the Fourier Transform of the probability 

measure 𝜇 by: 

�̃�(𝑡) = ∫ 
𝐑

𝑒𝑖𝑡𝑥𝑑𝜇(𝑥), ∀𝑡 ∈ 𝐑. 

We shall identify �̂� with 𝐑 in the usual way, such that 

𝑓(𝑡) = ∫  
𝐑

𝑒𝑖𝑡𝑥𝑓(𝑥)𝑑𝜆(𝑥), ∀𝑡 ∈ 𝐑, ∀𝑓 ∈ 𝐿1(𝐑, 𝜆). 

Proposition (4.2.26)[173]: Let 𝜇 be a symmetric probability measure on 𝐑. Then 

(𝑈𝑡
𝜇
) is mixing ⟺ �̃�(𝑡) → 0, as |𝑡| → ∞. 

Proof. We prove both directions.  

⟹ Assume (𝑈𝑡
𝜇
) is mixing. Let 𝑓 = 𝟏𝐑 ∈ 𝐿

2(𝐑, 𝜇) be the constant function equal to 1 . 

Then 

�̃�(𝑡)  = ∫  
𝐑

 𝑒𝑖𝑡𝑥𝑑𝜇(𝑥)

 = ⟨𝑈𝑡
𝜇
𝑓, 𝑓⟩ → 0, as |𝑡| → ∞.
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⟸ Assume �̃�(𝑡) → 0, as |𝑡| → ∞. Let 𝑓, 𝑔 ∈ 𝐿2(𝐑, 𝜇). Then ℎ:= 𝑓𝑔‾ ∈ 𝐿1(𝐑, 𝜇). Since the 

set {𝑓 ∈ C0(𝐑): 𝑓 ∈ 𝐿
1(𝐑, 𝜆)} is dense in 𝐿1(𝐑, 𝜇), we may choose a sequence (ℎ𝑛) in 𝐶0(𝐑) 

such that ∥∥ℎ − ℎ𝑛∥∥𝐿1(𝐑,𝜇) → 0, as 𝑛 → ∞, and ℎ̂𝑛 ∈ 𝐿
1(𝐑, 𝜆), for any 𝑛 ∈ 𝐍. Define 

ℎ̃(𝑡)  = ∫  
𝐑

 𝑒𝑖𝑡𝑥ℎ(𝑥)𝑑𝜇(𝑥), ∀𝑡 ∈ 𝐑

ℎ̃𝑛(𝑡)  = ∫  
𝐑

 𝑒𝑖𝑡𝑥ℎ𝑛(𝑥)𝑑𝜇(𝑥), ∀𝑡 ∈ 𝐑, ∀𝑛 ∈ 𝐍.
 

Since ∥∥ℎ − ℎ𝑛∥∥𝐿1(𝐑,𝜇) → 0, as 𝑛 → ∞, it follows that ∥∥ℎ̃ − ℎ̃𝑛∥∥∞ → 0, as 𝑛 → ∞. Since 

ℎ̂𝑛 ∈ 𝐿
1(𝐑, 𝜆), we know that 

ℎ𝑛(𝑥) = 𝐶∫  
𝐑

𝑒−𝑖𝑥𝑢ℎ̂𝑛(𝑢)𝑑𝜆(𝑢), ∀𝑥 ∈ 𝐑., 

where 𝐶 is a universal constant that only depends on the normalization of the Lebesgue 

measure 𝜆 on 𝐑. Therefore, for any 𝑡 ∈ 𝐑 and any 𝑛 ∈ 𝐍, 

ℎ̃𝑛(𝑡)  = ∫  
𝑥∈𝐑

  𝑒𝑖𝑡𝑥ℎ𝑛(𝑥)𝑑𝜇(𝑥)

 = 𝐶∫  
𝑥∈𝐑

 (∫  
𝑢∈𝐑

 𝑒𝑖(𝑡−𝑢)𝑥ℎ̂𝑛(𝑢)𝑑𝜆(𝑢))𝑑𝜇(𝑥)

 = 𝐶∫  
𝑢∈𝐑

  ℎ̂𝑛(𝑢) (∫  
𝑥∈𝐑

 𝑒𝑖(𝑡−𝑢)𝑥𝑑𝜇(𝑥))𝑑𝜆(𝑢)

 

= 𝐶∫  
𝑢∈𝐑

  ℎ̂𝑛(𝑢)�̃�(𝑡 − 𝑢)𝑑𝜆(𝑢)          

= 𝐶(ℎ̂𝑛 ∗ �̃�)(𝑡),                                     

where ∗ is the convolution product. Since �̃� ∈ C0(𝐑) and ℎ̂𝑛 ∈ 𝐿
1(𝐑, 𝜆), it is easy to check 

that ℎ̂𝑛 ∗ �̃� ∈ C0(𝐑). Consequently, ℎ̃𝑛 ∈ C0(𝐑) and since ∥∥ℎ̃ − ℎ̃𝑛∥∥∞ → 0, as 𝑛 → ∞, it 

follows that ℎ̃ ∈ C0(𝐑). But for any 𝑡 ∈ 𝐑, 

⟨𝑈𝑡
𝜇
𝑓, 𝑔⟩  = ∫  

𝐑

 𝑒𝑖𝑡𝑥𝑓(𝑥)𝑔(𝑥)̅̅ ̅̅ ̅̅ 𝑑𝜇(𝑥)

 = ℎ̃(𝑡).

 

Thus, the unitary representation (𝑈𝑡
𝜇
) is mixing. 

For a measure 𝜈 on 𝐑, define the measure class of 𝜈 by: 

𝒞𝜈: = {𝜈
′: 𝜈′ is absolutely continuous w.r.t. 𝜈}.  

Definition (4.2.27)[173]: Let (𝑉𝑡) be a unitary representation of 𝐑 on a separable Hilbert 

space 𝐻.  

Denote by 𝐵 the infinitesimal generator of (𝑉𝑡), i.e. 𝐵 is the positive, self-adjoint 

(possibly) unbounded operator on 𝐻 such that 𝑉𝑡 = 𝐵
𝑖𝑡, for every 𝑡 ∈ 𝐑. We define the 

spectral measure of the representation (𝑉𝑡) as the spectral measure of the operator 𝐵 and 

denote it by 𝒞𝑉. 

The measure class 𝒞𝑉 can also be defined as the smallest collection of all the measures 

𝜈 on 𝐑 such that: 

1. If 𝜈 ∈ 𝒞𝑉 and 𝜈′ is absolutely continuous w.r.t. 𝜈, then 𝜈′ ∈ 𝒞𝑉; 

2. For any unit vector 𝜂 ∈ 𝐻, the probability measure associated with the positive 

definite function 𝑡 ↦ ⟨𝑉𝑡𝜂, 𝜂⟩ belongs to 𝒞𝑉. 
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Since 𝐻 is separable, there exists a measure 𝜈 that generates 𝒞𝑉, i.e. 𝒞𝑉 is the smallest 

collection of measures on 𝐑 satisfying (a) and containing 𝜈. We will refer to this particular 

measure 𝜈 as the "spectral measure" of the representation (𝑉𝑡) and simply denote it by 𝜈.  

Let 𝜇 be a symmetric probability measure on 𝐑 and consider the unitary 

representation (𝑈𝑡
𝜇
) on 𝐿2(𝐑, 𝜇) as defined in (24). Then for any unit vector 𝑓 ∈ 𝐿2(𝐑, 𝜇), 

⟨𝑈𝑡
𝜇
𝑓, 𝑓⟩ = ∫  

𝐑

𝑒𝑖𝑡𝑥|𝑓(𝑥)|2𝑑𝜇(𝑥), ∀𝑡 ∈ 𝐑. 

Since the probability measure |𝑓(𝑥)|2𝑑𝜇(𝑥) is absolutely continuous w.r.t. 𝑑𝜇(𝑥), it is clear 

that the spectral measure of (𝑈𝑡
𝜇
) is 𝜇. More generally, we have the following: 

Proposition (4.2.28)[173]: Let 𝜇 be a symmetric probability measure on 𝐑. Consider the 

unitary representation (𝑈𝑡
𝜇
) defined on 𝐿2(𝐑, 𝜇) by (24). Then for any 𝑛 ≥ 1, the spectral 

measure of the 𝑛-fold tensor product (𝑈𝑡
𝜇
)
⊗𝑛

 is the 𝑛-fold convolution product 

𝜇∗𝑛 = 𝜇 ∗ ⋯∗ 𝜇⏟      
𝑛 times 

. 

Erdös showed in [177] that the symmetric probability measure 𝜇𝜃, with 𝜃 = 5/2, 

obtained as the weak limit of 

(
1

2
𝛿−𝜃−1 +

1

2
𝛿𝜃−1) ∗ ⋯∗ (

1

2
𝛿−𝜃−𝑛 +

1

2
𝛿𝜃−𝑛) 

has a Fourier Transform 

�̃�𝜃(𝑡) =∏  

𝑛≥1

cos (
𝑡

𝜃𝑛
) 

which vanishes at infinity, i.e. �̃�(𝑡) → 0, as |𝑡| → ∞, and 𝜇𝜃 is singular w.r.t. the Lebesgue 

measure 𝜆. 

Example (4.2.29)[173]: Modifying the measure 𝜇𝜃, Antoniou & Shkarin (see Theorem 

2.5,v in [174] ) constructed an example of a symmetric probability 𝜇 on 𝐑 such that: 

1. The Fourier Transform of 𝜇 vanishes at infinity, i.e. �̃�(𝑡) → 0, as |𝑡| → ∞. 

2. For any 𝑛 ≥ 1, the 𝑛-fold convolution product 𝜇∗𝑛 is singular w.r.t. the Lebesgue 

measure 𝜆. 

Let 𝜇 be a symmetric probability measure on 𝐑 as in Example (4.2.29). Proposition 

(4.2.26) and Proposition (4.2.28) yields that the unitary representation (𝑈𝑡
𝜇
) defined on 

𝐿2(𝐑, 𝜇) by (24) satisfies: 

1. (𝑈𝑡
𝜇
) is mixing. 

2. The spectral measure of ⨁𝑛≥1  (𝑈𝑡
𝜇
)
⊗𝑛

 is singular w.r.t. the Lebesgue measure 𝜆.  

Let now ℳ = Γ(𝐻𝐑, 𝑈𝑡)
′′ and let 𝑀 =ℳ ⋊𝜎 𝐑 be the continuous core. Let 𝑞 ∈

𝐿(𝐑) be a non-zero projection such that Tr (𝑞) < ∞. Denote by 𝑁 = 𝑞𝑀𝑞 the corresponding 

II1 factor. Using free probability techniques such as the free entropy, Shlyakhtenko (see 

Theorem 9.12 in [13]) showed that if the spectral measure of the unitary representation 

⨁𝑛≥1  𝑈𝑡
⊗𝑛

 is singular w.r.t. the Lebesgue measure 𝜆, then for any finite set of generators 

𝑋1, … , 𝑋𝑛 of 𝑁, the free entropy dimension satisfies 

𝛿0(𝑋1, … , 𝑋𝑛) ≤ 1. 
In particular, 𝑁 is not isomorphic to any interpolated free group factor 𝐿(𝐅𝑡), for 1 < 𝑡 ≤
∞. Combining these two results together with Theorem (4.2.21), we obtain the following: 

Theorem (4.2.30)[173]: Let 𝜇 be a symmetric probability measure on 𝐑 as in Example 

(4.2.29). Let ℳ = Γ(𝐾𝐑
𝜇
, 𝑈𝑡

𝜇
)
′′

 be the free Araki-Woods factor associated with the 
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orthogonal representation (𝑈𝑡
𝜇
) acting on the real Hilbert space 𝐾𝐑

𝜇
, as defined in (8 − 9). 

Let 𝑀 =ℳ⋊𝜎 𝐑 be the continuous core. Fix a non-zero projection 𝑞 ∈ 𝐿(𝐑) such that 

Tr (𝑞) < ∞, and denote by 𝑁 = 𝑞𝑀𝑞 the corresponding II1 factor. Then 

1. 𝑁 is non-amenable and solid. 

2. 𝑁 has full fundamental group, i.e. ℱ(𝑁) = 𝐑+
∗ . 

3. 𝑁 is not isomorphic to any interpolated free group factor 𝐿(𝐅𝑡), for 1 < 𝑡 ≤ ∞. 
We believe that all the free Araki-Woods factors ℳ = Γ(𝐻𝐑, 𝑈𝑡)

′′ have the complete 

metric approximation property (c.m.a.p.), i.e. there exists a sequence Φ𝑛:ℳ →ℳ of finite 

rank, completely bounded maps such that Φ𝑛 → Id ultraweakly pointwise, as 𝑛 → ∞, and 

limsup𝑛→∞  ∥∥Φ𝑛∥∥cb ≤ 1. If ℳ = Γ(𝐻𝐑, 𝑈𝑡)
′′ had the c.m.a.p. then by [143], the continuous 

core 𝑀 =ℳ⋊𝜎 𝐑 would have the c.m.a.p., as well as the II1 factor 𝑞𝑀𝑞, for 𝑞 ∈ 𝑀 non-

zero finite projection. On the other hand, the wreath product II1 factors 𝐿(𝐙{𝐅𝑛) do not have 

the c.m.a.p., for any 2 ≤ 𝑛 ≤ ∞, by [141]. Thus, we conjecture that the solid II1 factors 

constructed in Theorem (4.2.30) are not isomorphic to 𝐿(𝐙)𝐅𝑛), for any 2 ≤ 𝑛 ≤ ∞. 

 

Section (4.3): Absence of Cartan Subalgebra for Free Araki-Woods Factors 

The free Araki-Woods factors were introduced by Shlyakhtenko [15]. In the context 

of free probability theory, these factors can be regarded as analogs of the hyperfinite factors 

coming from the CAR functor. To each real separable Hilbert space 𝐻𝐑 together with an 

orthogonal representation (𝑈𝑡) of 𝐑 on 𝐻𝐑, one associates [15] a von Neumann algebra 

denoted by Γ(𝐻𝐑, 𝑈𝑡)
′′, called the free Araki-Woods von Neumann algebra. The von 

Neumann algebra Γ(𝐻𝐑, 𝑈𝑡)
′′ comes equipped with a unique free quasi-free state, which is 

always normal and faithful. If dim 𝐻𝐑 = 1, then Γ(𝐑, Id)′′ ≅ 𝐿∞([0,1]). If dim 𝐻𝐑 ≥ 2, 

then ℳ = Γ(𝐻𝐑, 𝑈𝑡)
′′ is a full factor. In particular, ℳ can never be of type III0. The type 

classification of these factors is the following: 

1. ℳ is a type II1 factor if and only if the representation (𝑈𝑡) is trivial: in that case the 

functor Γ is Voiculescu's free Gaussian functor [197]. Then Γ(𝐻𝐑, 1)
′′ ≅ 𝐿(𝐅dim 𝐻𝐑) 

is a free group factor. 

2. ℳ is a type III  𝜆 factor, for 0 < 𝜆 < 1, if and only if the representation (𝑈𝑡) is 
2𝜋

| log 𝜆|
-

periodic. 

3. ℳ is a type III1 factor if and only if (𝑈𝑡) is nonperiodic and nontrivial.  

Let us start by recalling some fundamental structural results for free group factors. In 

their breakthrough [141], Ozawa and Popa showed that the free group factors 𝐿(𝐅𝑛) are 

strongly solid, i.e. the normalizer 𝒩𝐿(𝐅𝑛)(𝑃) = {𝑢 ∈ 𝒰(𝐿(𝐅𝑛)): 𝑢𝑃𝑢
∗ = 𝑃} of any diffuse 

amenable subalgebra 𝑃 ⊂ 𝐿(𝐅𝑛) generates an amenable von Neumann algebra, thus 

hyperfinite by Connes' result [198]. This strengthened two well-known indecomposability 

results for free group factors: Voiculescu's celebrated result in [172], showing that 𝐿(𝐅𝑛) 
has no Cartan subalgebra, which in fact exhibited the first examples of factors with no Cartan 

decomposition; and Ozawa's result in [162], showing that the commutant in 𝐿(𝐅𝑛) of any 

diffuse subalgebra must be amenable (𝐿(𝐅𝑛) are solid). 

For the type III free Araki-Woods factors ℳ = Γ(𝐻𝐑, 𝑈𝑡)
′′, Shlyakhtenko obtained 

several remarkable classification results using free probability techniques: 

1. When (𝑈𝑡) are almost periodic, the free Araki-Woods factors are completely 

classified up to state-preserving *-isomorphism [15]: they only depend on Connes' 

invariant Sd (ℳ) which is equal in that case to the (countable) subgroup 𝑆𝑈 ⊂



144 

𝐑+generated by the eigenvalues of (𝑈𝑡). Moreover, the discrete core ℳ⋊𝜎 𝑆�̂� 

(where 𝑆�̂� is the Pontryagin dual of 𝑆𝑈 ) is *isomorphic to 𝐿(𝐅∞)⊗‾ 𝐁(ℓ
2). 

2. If (𝑈𝑡) is the left regular representation, then the continuous core 𝑀 = ℳ⋊𝜎 𝐑 is *-

isomorphic to 𝐿(𝐅∞) ⊗‾ 𝐁(ℓ
2)[14] and the dual "trace-scaling" action (𝜃𝑠) is 

precisely the one constructed by Rădulescu [184]. 

For more on free Araki-Woods factors, see [173],[179],[180],[1],[12], [186],[202],[13],45], 

[46] and also to Vaes' Bourbaki seminar [18]. 

We deal with approximation properties for Γ(𝐻𝐑, 𝑈𝑡)
′′. Recall that a von Neumann 

algebra 𝒩 is said to have the complete metric approximation property (c.m.a.p.) [196] if 

there exists a net of normal finite rank completely bounded maps Φ𝑛:𝒩 → 𝒩 such that 

1. Φ𝑛(𝑥) → 𝑥 ∗-strongly, for every 𝑥 ∈ 𝒩; 

2. ∥∥Φ𝑛∥∥cb ≤ 1, for every 𝑛.  

Haagerup first established in [178] that the free group factors 𝐿(𝐅𝑛) have the metric 

approximation property. His idea was to use radial multipliers on 𝐅𝑛. In a subsequent 

unpublished work with Szwarc (see [195]), a complete description of 

completely bounded radial multipliers was obtained, showing that 𝐿(𝐅𝑛) has the complete 

metric approximation property. Along the same pattern, we start by characterizing 

appropriate radial multipliers on Γ(𝐻𝐑, 𝑈𝑡)
′′. At the 𝐿2-level, that is on the Fock space, they 

just act diagonally on tensor powers of 𝐻. They allow us to reduce the question of the 

approximation property to a finite length situation, which is enough to conclude for almost 

periodic representations (𝑈𝑡). To proceed to the general case, we use completely positive 

maps arising from the second quantization functor. The novelty here is that it holds true 

under a milder assumption than the usual one [46],[1], and we obtain: 

Theorem (4.3.1)[190]: All the free Araki-Woods factors have the complete metric 

approximation property. 

The free Araki-Woods factors Γ(𝐻𝐑, 𝑈𝑡)
′′ as well as their continuous cores carry a 

free malleable deformation (𝛼𝑡) in the sense of Popa: it naturally arises from the second 

quantization of the rotations defined on 𝐻𝐑⊕𝐻𝐑 that commute with 𝑈𝑡⊕𝑈𝑡. Using 

Ozawa-Popa's techniques [141],[198], we will then apply the deformation/rigidity strategy 

together with the intertwining techniques in order to study Γ(𝐻𝐑, 𝑈𝑡)
′′. The high flexibility 

of this approach will allow us to work in a semifinite setting, so that we can obtain new 

structural/indecomposability results for the free ArakiWoods factors as well as their 

continuous cores. Recall in that respect that a von Neumann subalgebra 𝐴 ⊂ ℳ is said to 

be a Cartan subalgebra if the following conditions hold: 

1. 𝐴 is maximal abelian, i.e. 𝐴 = 𝐴′ ∩ℳ. 

2. There exists a faithful normal conditional expectation 𝐸:ℳ → 𝐴. 

3. The normalizer 𝒩ℳ(𝐴) = {𝑢 ∈ 𝒰(ℳ): 𝑢𝐴𝑢∗ = 𝐴} generates ℳ. 

It follows from [201] that in that case, 𝐿∞(𝑋, 𝜇) = 𝐴 ⊂ ℳ = 𝐿(ℛ,𝜔) is the von Neumann 

algebra of a nonsingular equivalence relation ℛ on the standard probability space (𝑋, 𝜇) up 

to a scalar 2 -cocycle 𝜔 for ℛ. 

Shlyakhtenko showed [202] that the unique type III  𝜆 free Araki-Woods factor (0 <
𝜆 < 1) has no Cartan subalgebra. We generalize this result and prove the analog of the 

strong solidity [141] for all the free Araki-Woods factors. Our second result is the following 

global dichotomy result for conditioned diffuse subalgebras of free Araki-Woods factors. 

We can deduce from Theorem (4.3.1) and Theorem (4.3.37) new classification results 

for the free Araki-Woods factors. First recall that a factor 𝒩 is said to be full if the subgroup 
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of inner automorphisms Inn (𝒩) is closed in Aut (𝒩). Write 𝜋: Aut (𝒩) → Out (𝒩) for the 

quotient map. For a full type III1 factor 𝒩, Connes' invariant 𝜏(𝒩) is defined as the weakest 

topology on 𝐑 that makes the map 𝑡 ↦ 𝜋(𝜎𝑡
𝜑
) ∈ Out (𝒩) continuous. In [3], Connes 

constructed type III1 factors 𝒩 with prescribed 𝜏 invariant. Recall his construction. Let 𝜇 

be a finite Borel measure on 𝐑+such that ∫ 𝜆d𝜇(𝜆) < ∞. We will normalize 𝜇 so that ∫ (1 +
𝜆)d𝜇(𝜆) = 1. Define the unitary representation (𝑈𝑡) of 𝐑 on the real Hilbert space 

𝐿2(𝐑+, 𝜇) by (𝑈𝑡𝜉)(𝜆) = 𝜆
𝑖𝑡𝜉(𝜆). We will assume that (𝑈𝑡) is not periodic. Define on 𝑃 =

𝐌2(𝐂)⊗ 𝐿∞(𝐑+, 𝜇) the faithful normal state 𝜑 by 

𝜑 (
𝑓11 𝑓12
𝑓21 𝑓22

) = ∫  𝑓11(𝜆)d𝜇(𝜆) + ∫  𝜆𝑓22(𝜆)d𝜇(𝜆). 

Let 𝐅𝑛 be acting by Bernoulli shift on 

𝒫∞ =⨂ 

𝑔∈𝐅𝑛

̅̅ ̅̅ ̅̅ ̅
(𝑃, 𝜑). 

Denote by 𝒩 = 𝒫∞ ⋊ 𝐅𝑛 the corresponding crossed product. By the general theory, 𝒩 is a 

type III  1 factor. Connes showed that 𝒩 is a full factor and 𝜏(𝒩) is the weakest topology 

that makes the map 𝑡 ↦ 𝑈𝑡 *-strongly continuous. In particular, if (𝑈𝑡) is the left regular 

representation, then 𝜏(𝒩) is the usual topology and 𝒩 has no almost periodic state. Observe 

that 𝒩 has a Cartan subalgebra 𝐴 given by 

𝐴 =⨂ 

𝑔∈𝐅𝑛

̅̅ ̅̅ ̅̅ ̅
Diag2(𝐿

∞(𝐑+, 𝜇)). 

The following Corollary answers a question of Shlyakhtenko (see [13], Problem 8.7]) and 

Vaes (see [18], Remarque 2.8]). 

Corollary (4.3.2)[190]: The type III1 factors constructed by Connes are never isomorphic 

to any free Araki-Woods factor. More generally, they cannot be conditionally embedded 

into a free Araki-Woods factor. 

The continuous cores 𝑀 = Γ(𝐻𝐑, 𝑈𝑡)
′′ ⋊𝜎 𝐑 of the free Araki-Woods factors were 

shown to be semisolid for every orthogonal representation (𝑈𝑡) and solid when (𝑈𝑡) is 

strongly mixing (see [173], Theorem 1.1]). They moreover have the c.m.a.p. by Theorem 

(4.3.1). Using a similar strategy as in [198], we obtain new structural results for the 

continuous cores of the free Araki-Woods factors. 

The proof of Theorem (4.3.37) and Theorem (4.3.39) is a combination of ideas and 

techniques of [176],[198],[173],[141],[198] and rely on Theorem (4.3.1). Note that Theorem 

(4.3.39) allows us to obtain other new classification results. Indeed let SL𝑛(𝐙) ↷ 𝐑
𝑛 be the 

linear action. Observe that it is an infinite measure-preserving free ergodic action. Thus the 

corresponding crossed product von Neumann algebra 𝑄𝑛 = 𝐿
∞(𝐑𝑛) ⋊ SL𝑛(𝐙) is a II∞ 

factor, which is nonamenable for 𝑛 ≥ 3. Since the dilation 𝑑𝑡: 𝐑
𝑛 ∋ 𝑥 ↦ 𝑡𝑥 ∈ 𝐑𝑛 (for 𝑡 >

0) commutes with SL𝑛(𝐙), it gives a trace-scaling action (𝜃𝑡): 𝐑+ ↷ 𝑄𝑛. Theorem (4.3.39) 

implies in particular that the type III1 factors 𝑄𝑛 ⋊(𝜃𝑡) 𝐑+obtained this way cannot be 

isomorphic to any free Araki-Woods factor. 

Using ([174], Theorem 2.5,v) (see also the discussion in [198],[4.2]), we can construct 

an example of an orthogonal representation (𝑈𝑡) of 𝐑 on a (separable) real Hilbert space 𝐻𝐑 

such that: 

1. (𝑈𝑡) is strongly mixing. 

2. The spectral measure of ⨁𝑛≥1  𝑈𝑡
⊗𝑛

 is singular with respect to the Lebesgue measure 

on 𝐑. 
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Shlyakhtenko showed ([13], Theorem 9.12) that if the spectral measure of the 

representation ⨁𝑛≥1  𝑈𝑡
⊗𝑛

 is singular with respect to the Lebesgue measure, then the 

continuous core of the free Araki-Woods factor Γ(𝐻𝐑, 𝑈𝑡)
′′ cannot be isomorphic to any 

𝐿(𝐅𝑡) ⊗‾ 𝐁(ℓ
2), for 1 < 𝑡 ≤ ∞, where 𝐿(𝐅𝑡) denote the interpolated free group factors 

[6],[10]. Therefore, we obtain: 

Corollary (4.3.3)[190]: Let (𝑈𝑡) be an orthogonal representation acting on 𝐻𝐑 as above. 

Denote by 𝕄 = Γ(𝐻𝐑, 𝑈𝑡)
′′ the corresponding free Araki-Woods factor and by 𝑀 =

ℳ ⋊𝜎 𝐑 its continuous core. Let 𝑝 ∈ 𝑀 be a nonzero finite projection and write 𝑁 = 𝑝𝑀𝑝. 
We have 

1. 𝑁 is a nonamenable strongly solid II1 factor with the c.m.a.p. and the Haagerup 

property. 

1. 𝑁 is not isomorphic to any interpolated free group factor 𝐿(𝐅𝑡), for 1 < 𝑡 ≤ ∞; 

2. 𝑁⊗‾ 𝐁(ℓ2) is endowed with a continuous trace-scaling action, in particular ℱ(𝑁) =
𝐑+. 

We recall a number of known results needed in the proofs. This includes a discussion 

of intertwining techniques for semifinite von Neumann algebras as well as several facts on 

the non-commutative flow of weights, Cartan subalgebras and the complete metric 

approximation property. Theorem (4.3.1) is proven. 

Let 𝑃 ⊂ ℳ be an inclusion of von Neumann algebras. The normalizer of 𝑃 inside ℳ 

is defined as 

𝒩ℳ(𝑃):= {𝑢 ∈ 𝒰(ℳ): Ad (𝑢)𝑃 = 𝑃}, 
where Ad (𝑢) = 𝑢 ⋅ 𝑢∗. The inclusion 𝑃 ⊂ ℳ is said to be regular if 𝒩ℳ(𝑃)

′′ = ℳ. The 

groupoid normalizer of 𝑃 inside ℳ is defined as 

𝒢𝒩ℳ(𝑃):= {𝑣 ∈ ℳ partial isometry : 𝑣𝑃𝑣∗ ⊂ 𝑃, 𝑣∗𝑃𝑣 ⊂ 𝑃}. 
The quasi-normalizer of 𝑃 inside ℳ is defined as 

𝒬𝒩ℳ(𝑃):= {𝑎 ∈ ℳ: ∃𝑏1, … , 𝑏𝑛 ∈ ℳ, 𝑎𝑃 ⊂∑  

𝑖

 𝑃𝑏𝑖 , 𝑃𝑎 ⊂∑  

𝑖

 𝑏𝑖𝑃}. 

The inclusion 𝑃 ⊂ ℳ is said to be quasi-regular if 𝒬𝒩ℳ(𝑃)
′′ =ℳ. Moreover, 

𝑃′ ∩ℳ ⊂ 𝒩ℳ(𝑃)
′′ ⊂ 𝒢𝒩ℳ(𝑃)

′′ ⊂ 𝒬𝒩ℳ(𝑃)
′′. 

In ([188] Theorem 2.1, [204] Theorem A.1), Popa introduced a powerful tool to prove 

the unitary conjugacy of two von Neumann subalgebras of a tracial von Neumann algebra 

(𝑀, 𝜏). We will make intensively use of this technique. If 𝐴, 𝐵 ⊂ (𝑀, 𝜏) are (possibly non-

unital) von Neumann subalgebras, denote by 1𝐴 (resp. 1𝐵) the unit of 𝐴 (resp. 𝐵). 

Theorem (4.3.4)[190]: (Popa, [188],[204]). Let (𝑀, 𝜏) be a finite von Neumann algebra. 

Let 𝐴, 𝐵 ⊂ 𝑀 be possibly nonunital von Neumann subalgebras. The following are 

equivalent: 

1. There exist 𝑛 ≥ 1, a possibly nonunital ∗-homomorphism 𝜓:𝐴 → 𝐌𝑛(𝐂)⊗ 𝐵 and a 

nonzero partial isometry 𝑣 ∈ 𝐌1,𝑛(𝐂)⊗ 1𝐴𝑀1𝐵 such that 𝑥𝑣 = 𝑣𝜓(𝑥), for any 𝑥 ∈

𝐴.  

2. There is no sequence of unitaries (𝑢𝑘) in A such that 

lim
𝑘→∞

 ∥∥𝐸𝐵(𝑎
∗𝑢𝑘𝑏)∥∥2 = 0, ∀𝑎, 𝑏 ∈ 1𝐴𝑀1𝐵 . 

If one of the previous equivalent conditions is satisfied, we shall say that 𝐴 embeds into 𝐵 

inside 𝑀 and denote 𝐴 ⪯𝑀 𝐵. For simplicity, we shall write 𝑀𝑛: = 𝐌𝑛(𝐂)⊗𝑀. 
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We will need to extend Popa's intertwining techniques to semifinite von Neumann 

algebras. Let (𝑀, Tr) be a von Neumann algebra endowed with a semifinite faithful normal 

trace. We shall simply denote by 𝐿2(𝑀) the 𝑀,𝑀 − bimodule 𝐿2(𝑀, Tr), and by ∥⋅∥2,Tr the 

𝐿2-norm associated with Tr. We will use the following well-known inequality (∥⋅∥∞ is the 

operator norm): 

∥ 𝑥𝜉𝑦 ∥2,Tr≤∥ 𝜉 ∥2,Tr∥ 𝑥 ∥∞∥ 𝑦 ∥∞, ∀𝜉 ∈ 𝐿
2(𝑀), ∀𝑥, 𝑦 ∈ 𝑀. 

We shall say that a projection 𝑝 ∈ 𝑀 is Tr-finite if Tr (𝑝) < ∞. Then 𝑝 is necessarily finite. 

Moreover, 𝑝𝑀𝑝 is a finite von Neumann algebra and 𝜏:= Tr (𝑝 ⋅ 𝑝)/Tr (𝑝) is a faithful 

normal tracial state on 𝑝𝑀𝑝. Recall that for any projections 𝑝, 𝑞 ∈ 𝑀, we have 𝑝 ∨ 𝑞 − 𝑝 ∼
𝑞 − 𝑝 ∧ 𝑞. Then it follows that for any Tr-finite projections 𝑝, 𝑞 ∈ 𝑀, 𝑝 ∨ 𝑞 is still Tr-finite 

and Tr (𝑝 ∨ 𝑞) = Tr (𝑝) + Tr (𝑞) − Tr (𝑝 ∧ 𝑞). 
Note that if a sequence (𝑥𝑘) in 𝑀 converges to 0 *-strongly, then for any nonzero Tr-

finite projection 𝑞 ∈ 𝑀, ∥∥𝑥𝑘𝑞∥∥2,Tr + ∥∥𝑞𝑥𝑘∥∥2,Tr → 0. Indeed,  

𝑥𝑘 → 0 ∗ − strongly in 𝑀 ⟺ 𝑥𝑘
∗𝑥𝑘 + 𝑥𝑘𝑥𝑘

∗ → 0 weakly in 𝑀 

 ⟹ 𝑞𝑥𝑘
∗𝑥𝑘𝑞 + 𝑞𝑥𝑘𝑥𝑘

∗𝑞 → 0 weakly in 𝑞𝑀𝑞

 ⟹ Tr (𝑞𝑥𝑘
∗𝑥𝑘𝑞) + Tr (𝑞𝑥𝑘𝑥𝑘

∗𝑞) → 0

 ⟺  Tr ((𝑥𝑘𝑞)
∗(𝑥𝑘𝑞)) + Tr ((𝑞𝑥𝑘)

∗𝑞𝑥𝑘) → 0

 ⟺ ∥∥𝑥𝑘𝑞∥∥2,𝑇𝑟 + ∥∥𝑞𝑥𝑘∥∥2,Tr → 0.

 

Moreover, there always exists an increasing sequence of Tr-finite projections (𝑝𝑘) in 𝑀 

such that 𝑝𝑘 → 1 strongly. 

Intertwining techniques for semifinite von Neumann algebras were developed in 

[176]. The following result due to S. Vaes is a slight improvement of ([176], Theorem 2.2) 

that will be useful in the sequel.  

Lemma (4.3.5)[190]: (Vaes, [204]). Let (𝑀, Tr) be a semifinite von Neumann algebra. Let 

𝐵 ⊂ 𝑀 be a von Neumann subalgebra such that Tr∣𝐵 is still semifinite. Let 𝑝 ∈ 𝑀 be a 

nonzero projection such that Tr (𝑝) < ∞ and 𝐴 ⊂ 𝑝𝑀𝑝 a von Neumann subalgebra. Then 

the following are equivalent: 

1. For every nonzero projection 𝑞 ∈ 𝐵 with Tr (𝑞) < ∞, we have 

𝐴 ⋠𝑒𝑀𝑒 𝑞𝐵𝑞, where 𝑒 = 𝑝 ∨ 𝑞, 
in the usual sense for finite von Neumann algebras. 

2. There exists a sequence of unitaries (𝑢𝑛) in A such that 

lim
𝑛
 ∥∥𝐸𝐵(𝑥

∗𝑢𝑛𝑦)∥∥2,Tr = 0, ∀𝑥, 𝑦 ∈ 𝑀. 

If these conditions hold, we write 𝐴 ⋠𝑀 𝐵 and otherwise we write 𝐴 ⪯𝑀 𝐵. 

Proof. We prove both directions. 

(a) ⟸ (b). Take a nonzero projection 𝑞 ∈ 𝐵 such that Tr (𝑞) < ∞ and set 𝑒 = 𝑝 ∨ 𝑞. 
Write 𝜆 = Tr (𝑒). For all 𝑥, 𝑦 ∈ 𝑝𝑀𝑞, using the ∥⋅∥2-norm with respect to the normalized 

trace on eMe, we have 

∥∥𝐸𝑞𝐵𝑞(𝑥
∗𝑢𝑛𝑦)∥∥2 = 𝜆

−1/2∥∥𝐸𝐵(𝑥
∗𝑢𝑛𝑦)∥∥2,Tr → 0. 

This means exactly that 𝐴 ⋠𝑒𝑀𝑒 𝑞𝐵𝑞. 
(a) ⟹ (b). Let (𝑞𝑛) be an increasing sequence of projections in 𝐵 such that 𝑞𝑛 → 1 

strongly and Tr (𝑞𝑛) < ∞. Set 𝑒𝑛 = 𝑝 ∨ 𝑞𝑛. Let {𝑥𝑘: 𝑘 ∈ 𝐍} be a ∗-strongly dense subset of 

(𝑀)1 (the unit ball of 𝑀). Since 𝐴 ⋠ 𝑒𝑛𝑀𝑒𝑛 𝑞𝑛𝐵𝑞𝑛, we can take a unitary 𝑢𝑛 ∈ 𝒰(𝐴) such 

that 
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∥∥𝐸𝐵(𝑞𝑛𝑥𝑖𝑢𝑛𝑥𝑗𝑞𝑛)∥∥2,Tr <
1

𝑛
, ∀1 ≤ 𝑖, 𝑗 ≤ 𝑛. 

Note that 𝑢𝑛 = 𝑝𝑢𝑛𝑝. 

Let 𝜀 > 0 and fix 𝑥, 𝑦 ∈ (𝑀)1. Since 𝑞𝑚 → 1 strongly and since Tr (𝑝) < ∞, take 

𝑚 ∈ 𝐍 large enough such that 

∥∥𝑞𝑚𝑥𝑝 − 𝑥𝑝∥∥2,Tr + ∥∥𝑝𝑦𝑞𝑚 − 𝑝𝑦∥∥2,Tr < 𝜀. 

Since Tr (𝑞𝑚) < ∞, next choose 𝑖, 𝑗 ∈ 𝐍 such that 

∥∥𝑞𝑚𝑥𝑝 − 𝑞𝑚𝑥𝑖∥∥2,Tr + ∥∥𝑝𝑦𝑞𝑚 − 𝑥𝑗𝑞𝑚∥∥2,Tr < 𝜀. 

Now, for every 𝑛 ∈ 𝐍, we have 

∥∥𝐸𝐵(𝑥𝑢𝑛𝑦)∥∥2,Tr  = ∥∥𝐸𝐵(𝑥𝑝𝑢𝑛𝑝𝑦)∥∥2,𝑇r
 ≤ ∥∥𝐸𝐵(𝑞𝑚𝑥𝑝𝑢𝑛𝑝𝑦𝑞𝑚)∥∥2,Tr + 𝜀

 ≤ ∥∥𝐸𝐵(𝑞𝑚𝑥𝑖𝑢𝑛𝑥𝑗𝑞𝑚)∥∥2,Tr + 2𝜀.

 

Therefore, if 𝑛 ≥ max{𝑚, 𝑖, 𝑗}, we get 

∥∥𝐸𝐵(𝑥𝑢𝑛𝑦)∥∥2,Tr ≤
1

𝑛
+ 2𝜀. 

Write Tr𝑛 for the non-normalized faithful trace on 𝐌𝑛(𝐂). The faithful normal semifinite 

trace Tr𝑛⊗Tr on 𝐌𝑛(𝐂)⊗𝑀 will be simply denoted by Tr. Observe that if 𝐴 ⪯𝑀 𝐵 in 

the sense of Lemma (4.3.5), then there exist 𝑛 ≥ 1, a nonzero projection 𝑞 ∈ 𝐵𝑛 such that 

Tr (𝑞) < ∞, a nonzero partial isometry 𝑣 ∈ 𝐌1,𝑛(𝐂)⊗𝑀 and a unital *-homomorphism 

𝜓:𝐴 → 𝑞𝐵𝑛𝑞 such that 𝑥𝑣 = 𝑣𝜓(𝑥), ∀𝑥 ∈ 𝐴. In the case when 𝐴 and 𝐵 are maximal 

abelian, one can get a more precise result. This is an analog of a result by Popa ([204], 

Theorem A.1) for semifinite von Neumann algebras. 

Proposition (4.3.6)[190]: Let (𝑀, Tr) be a semifinite von Neumann algebra. Let 𝐵 ⊂ 𝑀 be 

a maximal abelian von Neumann subalgebra such that Tr∣𝐵 is still semifinite. Let 𝑝 ∈ 𝑀 be 

a non-zero projection such that Tr (𝑝) < ∞ and 𝐴 ⊂ 𝑝𝑀𝑝 a maximal abelian von Neumann 

subalgebra. The following are equivalent: 

1. 𝐴 ⪯𝑀 𝐵 in the sense of Lemma (4.3.5). 

2. There exists a nonzero partial isometry 𝑣 ∈ 𝑀 such that 𝑣𝑣∗ ∈ 𝐴, 𝑣∗𝑣 ∈ 𝐵 and 

𝑣∗𝐴𝑣 = 𝐵𝑣∗𝑣. 
Proof. We only need to prove (a) ⟹ (b). The proof is very similar to the one of ([204] 

Theorem A.1). We will use exactly the same reasoning as in the proof of ([188] Theorem 

C.3). 

Since 𝐴 ⪯𝑀 𝐵 in the sense of Lemma (4.3.5), we can find 𝑛 ≥ 1, a nonzero Trfinite 

projection 𝑞 ∈ 𝐌𝑛(𝐂)⊗ 𝐵, a nonzero partial isometry 𝑤 ∈ 𝐌1,𝑛(𝐂)⊗ 𝑝𝑀 and a unital ∗-
homomorphism 𝜓:𝐴 → 𝑞(𝐌𝑛(𝐂)⊗ 𝐵)𝑞 such that 𝑥𝑤 = 𝑤𝜓(𝑥), ∀𝑥 ∈ 𝐴. Since we can 

replace 𝑞 by an equivalent projection in 𝐌𝑛(𝐂)⊗ 𝐵, we may assume 𝑞 = Diag𝑛 (𝑞1, … , 𝑞𝑛) 
(see for instance second item in ([188] Lemma C.2). Observe now that Diag𝑛 (𝑞1𝐵,… , 𝑞𝑛𝐵) 
is maximal abelian in 𝑞(𝐌𝑛(𝐂)⊗ 𝐵)𝑞. 

Since 𝐵 is abelian, 𝑞(𝐌𝑛(𝐂)⊗ 𝐵)𝑞 is of finite type I. Since 𝐴 is abelian, up to unitary 

conjugacy by a unitary in 𝑞(𝐌𝑛(𝐂)⊗ 𝐵)𝑞, we may assume that 𝜓(𝐴) ⊂
Diag𝑛 (𝑞1𝐵,… , 𝑞𝑛𝐵) (see [188] Lemma C.2). We can now cut down 𝜓 and 𝑤 by one of 

projections (0,… , 𝑞𝑖 , … ,0) and assume 𝑛 = 1 from the beginning.  

Write 𝑒 = 𝑤𝑤∗ ∈ 𝐴 (since 𝐴′ ∩ 𝑝𝑀𝑝 = 𝐴) and 𝑓 = 𝑤∗𝑤 ∈ 𝜓(𝐴)′ ∩ 𝑞𝑀𝑞. By 

spatiality, we have 
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𝑓(𝜓(𝐴)′ ∩ 𝑞𝑀𝑞)𝑓 = (𝜓(𝐴)𝑓)′ ∩ 𝑓𝑀𝑓 = (𝑤∗𝐴𝑤)′ ∩ 𝑓𝑀𝑓 = 𝑤∗𝐴𝑤, 
which is abelian. Let 𝑄:= 𝜓(𝐴)′ ∩ 𝑞𝑀𝑞, which is a finite von Neumann algebra. Since 

𝐵𝑞 ⊂ 𝑄 is maximal abelian and 𝑓 ∈ 𝑄 is an abelian projection, ([188], Lemma C.2) yields 

a partial isometry 𝑢 ∈ 𝑄 such that 𝑢𝑢∗ = 𝑓 and 𝑢∗𝑄𝑢 ⊂ 𝐵𝑞. Define now 𝑣 = 𝑤𝑢. We get 

𝑣∗𝐴𝑣 = 𝑢∗𝑤∗𝐴𝑤𝑢 = 𝑢∗𝑓(𝜓(𝐴)′ ∩ 𝑞𝑀𝑞)𝑓𝑢 ⊂ 𝐵𝑞. 
Moreover 𝑣𝑣∗ = 𝑤𝑢𝑢∗𝑤∗ = 𝑤𝑓𝑤∗ = 𝑒 ∈ 𝐴. Since 𝑣∗𝐴𝑣 and 𝐵𝑣∗𝑣 are both maximal 

abelian, we get 𝑣∗𝐴𝑣 = 𝐵𝑣∗𝑣. 
Let ℳ be a von Neumann algebra. Let 𝜑 be a faithful normal state on ℳ. Denote by 

ℳ𝜑 the centralizer and by 𝑀 =ℳ⋊𝜎𝜑 𝐑 the core of ℳ, where 𝜎𝜑 is the modular group 

associated with the state 𝜑. Denote by 𝜋𝜎𝜑:ℳ → 𝑀 the representation of ℳ in its core 𝑀, 

i.e. 𝜋𝜎𝜑(𝑥) = (𝜎−𝑡
𝜑
(𝑥))

𝑡∈𝐑
 for every 𝑥 ∈ ℳ, and denote by 𝜆𝜑(𝑠) the unitaries in 𝐿(𝐑) 

implementing the action 𝜎𝜑. Consider the dual weight �̂� on 𝑀 (see [186]) which satisfies 

the following: 

𝜎𝑡
�̂�(𝜋𝜎𝜑(𝑥))  = 𝜋𝜎𝜑(𝜎𝑡

𝜑
(𝑥)), ∀𝑥 ∈ ℳ

𝜎𝑡
�̂�(𝜆𝜑(𝑠))  = 𝜆𝜑(𝑠), ∀𝑠 ∈ 𝐑.

 

Note that �̂� is a semifinite faithful normal weight on 𝑀. Write 𝜃𝜑 for the dual action of 𝜎𝜑 

on 𝑀, where we identify 𝐑 with its Pontryagin dual. Take now ℎ𝜑 a nonsingular positive 

self-adjoint operator affiliated with 𝐿(𝐑) such that ℎ𝜑
𝑖𝑠 = 𝜆𝜑(𝑠), for any 𝑠 ∈ 𝐑. Define 

Tr𝜑: = �̂�(ℎ𝜑
−1). We get that Tr𝜑 is a semifinite 

faithful normal trace on 𝑀 and the dual action 𝜃𝜑 scales the trace Tr𝜑: 

Tr𝜑 ∘ 𝜃𝑠
𝜑(𝑥) = 𝑒−𝑠 Tr𝜑(𝑥) , ∀𝑥 ∈ 𝑀+, ∀𝑠 ∈ 𝐑. 

Moreover, the canonical faithful normal conditional expectation 𝐸𝐿(𝐑):𝑀 → 𝐿(𝐑) defined 

by 𝐸𝐿(𝐑)(𝑥𝜆
𝜑(𝑠)) = 𝜑(𝑥)𝜆𝜑(𝑠) preserves the trace Tr𝜑, i.e. 

Tr𝜑 ∘ 𝐸𝐿(𝐑)(𝑥) = Tr𝜑(𝑥) , ∀𝑥 ∈ 𝑀+. 

There is also a functorial construction of the core of the von Neumann algebra 

ℳ which does not rely on the choice of a particular state 𝜑 on ℳ(see [4], [192],[193]). 

This is called the noncommutative flow of weights. We will simply denote it by (ℳ ⊂
𝑀, 𝜃, Tr), where 𝑀 is the core of ℳ,𝜃 is the dual action of 𝐑 on the core 𝑀 and Tr is the 

semifinite faithful normal trace on 𝑀 such that Tr ∘ 𝜃𝑠 = 𝑒
−𝑠Tr, for any 𝑠 ∈ 𝐑. Let 𝜑 be a 

faithful normal state on ℳ. It follows from ([193], Theorem 3.5) and ([16], Theorem 

XII.6.10) that there exists a natural *-isomorphism 

Π𝜑:ℳ ⋊𝜎𝜑 𝐑 → 𝑀 

such that 
Π𝜑 ∘ 𝜃

𝜑  = 𝜃 ∘ Π𝜑
Tr𝜑  = Tr ∘ Π𝜑

Π𝜑(𝜋𝜎𝜑(ℳ))  = ℳ.

 

Let now 𝜑,𝜓 be two faithful normal states on ℳ. Through the *-isomorphism Π𝜑,𝜓: =

Π𝜓
−1 ∘ Π𝜑:ℳ ⋊𝜎𝜑 𝐑 → ℳ ⋊𝜎𝜓 𝐑, we will identify 

(𝜋𝜎𝜑(ℳ) ⊂ ℳ ⋊𝜎𝜑 𝐑, 𝜃
𝜑 , Tr𝜑) with (𝜋𝜎𝜓(ℳ) ⊂ ℳ ⋊𝜎𝜓 𝐑, 𝜃

𝜓, Tr𝜓). 

In the sequel, we will refer to the triple (ℳ ⊂ 𝑀, 𝜃, Tr) as the noncommutative flow of 

weights. By Takesaki's Duality Theorem [186], we have 

(ℳ ⋊𝜎 𝐑) ⋊(𝜃𝑠) 𝐑 ≅ ℳ⊗‾ 𝐁(𝐿2(𝐑)). 
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In particular, ℳ is amenable if and only if 𝑀 =ℳ ⋊  𝜎𝐑 is amenable. The following well-

known proposition will be useful. 

Proposition (4.3.7)[190]: Let 𝜑 be a faithful normal state on ℳ. Let 𝑀 =ℳ ⋊𝜎𝜑 𝐑 be as 

above. Then 𝐿(𝐑)′ ∩𝑀 =ℳ𝜑⊗‾ 𝐿(𝐑). In particular, if ℳ𝜑 = 𝐂 then 𝐿(𝐑) is maximal 

abelian in 𝑀. 

Proof. We regard 𝑀 =ℳ⋊𝜎𝜑 𝐑 generated by 𝜋(𝑥) = (𝜎−𝑡
𝜑
(𝑥))

𝑡∈𝐑
, for 𝑥 ∈ ℳ, 

and 1⊗ 𝜆𝜑(𝑡), for 𝑡 ∈ 𝐑. Therefore 𝑀 ⊂ℳ�̅�(𝐿2(𝐑)). Since 𝐿(𝐑) ⊂ 𝐁(𝐿2(𝐑)) 
is maximal abelian, we get 𝐿(𝐑)′ ∩𝑀 ⊂ℳ⊗‾ 𝐿(𝐑). 

Denote by �̂� the dual weight of 𝜑 on 𝑀 (see e.g. [186]). The following relations are 

true: for every 𝑠, 𝑡 ∈ 𝐑, for every 𝑥 ∈ ℳ, 

𝜎𝑡
�̂�
(𝜋(𝑥))  = 𝜋(𝜎𝑡

𝜑
(𝑥))

𝜎𝑡
�̂�(1⊗ 𝜆𝜑(𝑠))  = 1⊗ 𝜆𝜑(𝑠)

Δ�̂�
𝑖𝑡  = Δ𝜑

𝑖𝑡⊗1.

 

Since (1⊗ 𝜆𝜑(𝑠))𝑠∈𝐑 is a 1-cocycle for (𝜎𝑡
�̂�
), ([4], Théorème 1.2.4) implies that the 

faithful normal semifinite weight Tr given by 𝜎𝑡
Tr = (1⊗ 𝜆𝜑(𝑡))∗𝜎𝑡

�̂�(1⊗ 𝜆𝜑(𝑡)) is a trace 

on 𝑀. This implies that 𝐿(𝐑)′ ∩𝑀 is exactly the centralizer of the weight �̂�. Since Δ�̂�
𝑖𝑡 =

Δ𝜑
𝑖𝑡⊗1, for every 𝑡 ∈ 𝐑, we get 𝐿(𝐑)′ ∩𝑀 ⊂ ℳ𝜑⊗‾ 𝐁(𝐿2(𝐑)). Thus 𝐿(𝐑)′ ∩𝑀 =

ℳ𝜑⊗‾ 𝐿(𝐑). 
Definition (4.3.8)[190]: Let ℳ be any von Neumann algebra. A von Neumann subalgebra 

𝐴 ⊂ ℳ is said to be a Cartan subalgebra if the following conditions hold: 

1. 𝐴 is maximal abelian, i.e. 𝐴 = 𝐴′ ∩ℳ. 

2. There exists a faithful normal conditional expectation 𝐸:ℳ → 𝐴. 

3. The normalizer 𝒩ℳ(𝐴) = {𝑢 ∈ 𝒰(ℳ): 𝑢𝐴𝑢∗ = 𝐴} generates ℳ. 

Let 𝐴 ⊂ ℳ be a Cartan subalgebra. Let 𝜏 be a faithful normal tracial state on 

𝐴. Then 𝜑 = 𝜏 ∘ 𝐸 is a faithful normal state on ℳ. Moreover 𝐴 ⊂ ℳ𝜑, where ℳ𝜑 denotes 

the centralizer of 𝜑. Write (𝜎𝑡
𝜑
) for the modular automorphism group. Denote by 𝑀 =

ℳ ⋊𝜎𝜑 𝐑 the continuous core and write 𝜆𝜑(𝑡) for the unitaries in 𝑀 which implement the 

modular action. The following proposition is well-known and will be a crucial tool in order 

to prove Theorem (4.3.37).  

Proposition (4.3.9)[190]: The von Neumann subalgebra 𝐴⊗‾ 𝐿(𝐑) ⊂ ℳ ⋊𝜎 𝐑 is a Cartan 

subalgebra. 

Proof. Since 𝐴 ⊂ 𝑀 and 𝐿(𝐑) ⊂ 𝐁(𝐿2(𝐑)) are both maximal abelian, it follows that 

𝐴⊗‾ 𝐿(𝐑) is maximal abelian in ℳ ⊗̅̅̅ 𝐁(𝐿2(𝐑)). Therefore 𝐴⊗‾ 𝐿(𝐑) is maximal abelian 

in ℳ⋊𝜎𝜑 𝐑. 

The faithful normal conditional expectation 𝐹:ℳ ⋊𝜎𝜑 𝐑 → 𝐴⊗‾ 𝐿(𝐑) is given by: 

𝐹(𝑥𝜆𝜑(𝑡)) = 𝐸(𝑥)𝜆𝜑(𝑡), ∀𝑥 ∈ ℳ,∀𝑡 ∈ 𝐑.   Observe that 𝐹 preserves the canonical trace 

Tr𝜑. 

It remains to show that 𝐴⊗‾ 𝐿(𝐑) is regular in ℳ⋊𝜎𝜑 𝐑. Recall that 𝐴 ⊂ ℳ𝜑, so 

that 𝑎𝜆𝜑(𝑡) = 𝜆𝜑(𝑡)𝑎, for every 𝑡 ∈ 𝐑 and every 𝑎 ∈ 𝐴. For every 𝑡 ∈ 𝐑, every 𝑢 ∈ 𝒩ℳ(𝐴) 
and every 𝑎 ∈ 𝐴, we have 
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𝜎𝑡
𝜑
(𝑢)𝑢∗𝑎  = 𝜎𝑡

𝜑
(𝑢)(𝑢∗𝑎𝑢)𝑢∗

 = 𝜎𝑡
𝜑(𝑢𝑢∗𝑎𝑢)𝑢∗

 = 𝑎𝜎𝑡
𝜑(𝑢)𝑢∗,

 

so that 𝜎𝑡
𝜑
(𝑢)𝑢∗ ∈ 𝐴′ ∩ℳ = 𝐴. We moreover have 

𝑢(𝑎𝜆𝜑(𝑡))𝑢∗ = (𝑢𝑎𝑢∗)𝑢𝜆𝜑(𝑡) = (𝑢𝑎𝑢∗) (𝑢𝜎𝑡
𝜑(𝑢∗)) 𝜆𝜑(𝑡), 

so that 𝑢(𝐴⊗‾ 𝐿(𝐑))𝑢∗ = 𝐴⊗‾ 𝐿(𝐑). Consequently, 𝐴⊗‾ 𝐿(𝐑) ⊂ ℳ ⋊𝜎𝜑 𝐑 is regular. 

Assume that ℳ is a type II von Neumann algebra. Then 𝑀 =ℳ⋊𝜎 𝐑 is still of type 

II. Assume now that ℳ is a type III von Neumann algebra. Then 𝑀 is of type II∞. Let 𝑝 ∈
𝐴⊗‾ 𝐿(𝐑) be a nonzero projection such that Tr (𝑝) < ∞, so that 𝑝𝑀𝑝 is of type II1. The 

next proposition shows that (𝐴⊗‾ 𝐿(𝐑))𝑝 ⊂ 𝑝𝑀𝑝 is a Cartan subalgebra. 

Proposition (4.3.10)[190]: Let 𝑁 be a type II  ∞ von Neumann algebra with a faithful 

normal semifinite trace Tr. Let 𝐵 ⊂ 𝑁 be a maximal abelian *-subalgebra for which Tr∣𝐵 is 

still semifinite. Let 𝑝 ∈ 𝐵 be a nonzero projection such that Tr (𝑝) < ∞. Then 

𝒩𝑝𝑀𝑝(𝐵𝑝)
′′ = 𝑝𝒩𝑀(𝐵)

′′𝑝. 

Proof. The equality (𝑝𝐵𝑝)′ ∩ 𝑝𝑀𝑝 = 𝑝(𝐵′ ∩𝑀)𝑝 is well-known (see for instance ([200], 

Lemma 2.1). Thus, 𝐵𝑝 is maximal abelian in 𝑝𝑀𝑝. Let 𝑢 ∈ 𝒩𝑀(𝐵). We have 

𝑝𝑢𝑝(𝐵𝑝) = 𝑝𝑢𝐵𝑝 = 𝑝𝐵𝑢𝑝 = (𝐵𝑝)𝑝𝑢𝑝. 
It follows that 𝑝𝒩𝑀(𝐵)

′′𝑝 ⊂ 𝒬𝒩𝑝𝑀𝑝(𝐵𝑝)
′′.   The normalizer and the quasi- 

normalizer of a maximal abelian subalgebra generate the same von Neumann algebra (see 

[201], Theorem 2.7). Thus 𝒬𝒩𝑝𝑀𝑝(𝐵𝑝)
′′ = 𝒩𝑝𝑀𝑝(𝐵𝑝)

′′ and 𝑝𝒩𝑀(𝐵)
′′𝑝 ⊂ 𝒩𝑝𝑀𝑝(𝐵𝑝)

′′. 

Let now 𝑣 ∈ 𝒩𝑝𝑀𝑝(𝐵𝑝). Define 𝑢 = 𝑣 + (1 − 𝑝) ∈ 𝒰(𝑀). It is clear that 𝑢 ∈ 𝒩𝑀(𝐵) and 

𝑝𝑢𝑝 = 𝑣. Therefore 𝒩𝑝𝑀𝑝(𝐵𝑝)
′′ ⊂ 𝑝𝒩𝑀(𝐵)

′′𝑝, which finishes the proof. 

Definition (4.3.11)[190]: (Haagerup, [196]). A von Neumann algebra 𝒩 is said to have 

the (weak") complete bounded approximation property if there exist a constant 𝐶 ≥ 1 and a 

net of normal finite rank completely bounded maps Φ𝑛:𝒩 → 𝒩 such that 

1. Φ𝑛(𝑥) → 𝑥 ∗-strongly, for every 𝑥 ∈ 𝒩; 

2. lim sup𝑛  ∥∥Φ𝑛∥∥cb ≤ 𝐶. 

The Cowling-Haagerup constant Λcb(𝒩) is defined as the infimum of the constants 𝐶 for 

which a net (Φ𝑛) as above exists. Also we say that 𝒩 has the (weak*) complete metric 

approximation property (c.m.a.p.) if Λcb(𝒩) = 1. 
Theorem (4.3.12)[190]: The following are true. 

1. Λcb(𝑝ℳ𝑝) ≤ Λcb(ℳ), for every projection 𝑝 ∈ ℳ. 

2. If 𝒩 ⊂ℳ such that there exists a conditional expectation 𝐸:ℳ → 𝒩, then 

Λcb(𝒩) ≤ Λcb(ℳ). 
3. If ℳ is amenable then Λcb(ℳ) = 1. 

4. Denote by 𝜎 the modular automorphism group on 𝕄. Then Λcb(ℳ) = Λcb(ℳ ⋊𝜎 𝐑) 
5. If ℳ𝑖 is amenable for every 𝑖 ∈ 𝐼, then Λcb(∗𝑖∈𝐼ℳ𝑖) = 1. 

Proof. (i), (ii), (iv) follow from [143]. The equivalence between semidiscreteness and 

amenability [198] gives (iii). Finally (v) is due to [170]. 

Recall now the construction of the free ArakiWoods factors due to Shlyakhtenko [15]. 

Let 𝐻𝐑 be a real separable Hilbert space and let (𝑈𝑡) be an orthogonal representation of 𝐑 

on 𝐻𝐑. Let 𝐻 = 𝐻𝐑⊗𝐑 𝐂 be the complexified Hilbert space. Let 𝐽 be the canonical anti-

unitary involution on 𝐻 defined by: 

𝐽(𝜉 + 𝑖𝜂) = 𝜉 − 𝑖𝜂, ∀𝜉, 𝜂 ∈ 𝐻𝐑. 
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If 𝐴 is the infinitesimal generator of (𝑈𝑡) on 𝐻, we recall that 𝑗: 𝐻𝐑 → 𝐻 defined by 𝑗(𝜁) =

(
2

𝐴−1+1
)
1/2
𝜁 is an isometric embedding of 𝐻𝐑 into 𝐻. Moreover, we have 𝐽𝐴𝐽 = 𝐴−1. Let 

𝐾𝐑 = 𝑗(𝐻𝐑). It is easy to see that 𝐾𝐑 ∩ 𝑖𝐾𝐑 = {0} and 𝐾𝐑 + 𝑖𝐾𝐑 is dense in 𝐻. Write 𝐼 =
𝐽𝐴−1/2. Then 𝐼 is a conjugate-linear closed invertible operator on 𝐻 satisfying 𝐼 = 𝐼−1 and 

𝐼∗𝐼 = 𝐴−1. Such an operator is called an involution on 𝐻. Moreover, 𝐾𝐑 = {𝜉 ∈
dom (𝐼): 𝐼𝜉 = 𝜉}. We introduce the full Fock space of : 

ℱ(𝐻) = 𝐂Ω⊕⨁ 

∞

𝑛=1

𝐻⊗𝑛. 

The unit vector Ω is called the vacuum vector. For any 𝜉 ∈ 𝐻, define the left creation 

operator ℓ(𝜉): ℱ(𝐻) → ℱ(𝐻) 

{
ℓ(𝜉)Ω = 𝜉,

ℓ(𝜉)(𝜉1⊗⋯⊗ 𝜉𝑛) = 𝜉 ⊗ 𝜉1⊗⋯⊗ 𝜉𝑛.
 

We have ∥ ℓ(𝜉) ∥∞=∥ 𝜉 ∥ and ℓ(𝜉) is an isometry if ∥ 𝜉 ∥= 1. For any 𝜉 ∈ 𝐻, we denote 

by 𝑠(𝜉) the real part of ℓ(𝜉) given by 

𝑠(𝜉) =
ℓ(𝜉) + ℓ(𝜉)∗

2
. 

The crucial result of Voiculescu [197] is that the distribution of the operator 𝑠(𝜉) with 

respect to the vacuum vector state 𝜒(𝑥) = ⟨𝑥Ω, Ω⟩ is the semicircular law of Wigner 

supported on the interval [−∥ 𝜉 ∥, ∥ 𝜉 ∥]. 
Definition (4.3.12)[190]: (Shlyakhtenko, [15]). Let (𝑈𝑡) be an orthogonal representation 

of 𝐑 on the real Hilbert space 𝐻𝐑. The free Araki-Woods von Neumann algebra associated 

with (𝐻𝐑, 𝑈𝑡), denoted by Γ(𝐻𝐑, 𝑈𝑡)
′′, is defined by 

Γ(𝐻𝐑, 𝑈𝑡)
′′: = {𝑠(𝜉): 𝜉 ∈ 𝐾𝐑}

′′. 
We will denote by Γ(𝐻𝐑, 𝑈𝑡) the 𝐶∗-algebra generated by the (𝜉) 's for all 𝜉 ∈ 𝐾𝐑. 

The vector state 𝜒(𝑥) = ⟨𝑥Ω, Ω⟩ is called the free quasi-free state and is faithful on 

Γ(𝐻𝐑, 𝑈𝑡)
′′. Let 𝜉, 𝜂 ∈ 𝐾𝐑 and write 𝜁 = 𝜉 + 𝑖𝜂. We have 

2𝑠(𝜉) + 2𝑖𝑠(𝜂) = ℓ(𝜁) + ℓ(𝐼𝜁)∗. 
Thus, Γ(𝐻𝐑, 𝑈𝑡)

′′ is generated as a von Neumann algebra by the operators of the form 

ℓ(𝜁) + ℓ(𝐼𝜁)∗ where 𝜁 ∈ dom (𝐼). Note that the modular group (𝜎𝑡
𝜒
) of the free quasi-free 

state 𝜒 is given by 𝜎−𝑡
𝜒
= Ad (ℱ(𝑈𝑡)), where ℱ(𝑈𝑡) = 1⊕⨁𝑛≥1  𝑈𝑡

⊗𝑛
. 

In particular, it satisfies 

𝜎−𝑡
𝜒 (ℓ(𝜁) + ℓ(𝐼𝜁)∗) = ℓ(𝑈𝑡𝜁) + ℓ(𝐼𝑈𝑡𝜁)

∗, ∀𝜁 ∈ dom(𝐼) , ∀𝑡 ∈ 𝐑. 
The free Araki-Woods factors provided many new examples of full factors of type III 

[2],[4],[12]. We can summarize the general properties of the free Araki-Woods factors in 

the following theorem (see also [18]): 

Theorem (4.3.13)[190]: (Shlyakhtenko, [12],[13],[45],[46]). Let (𝑈𝑡) be an orthogonal 

representation of 𝐑 on the real Hilbert space 𝐻𝐑 with dim 𝐻𝐑 ≥ 2. Denote by ℳ:=
Γ(𝐻𝐑, 𝑈𝑡)

′′. 

1. ℳ is a full factor and Connes' invariant 𝜏(ℳ) is the weakest topology on 𝐑 that 

makes the map 𝑡 ↦ 𝑈𝑡 ∗-strongly continuous. 

2. ℳ is of type II1 if and only if 𝑈𝑡 = 1, for every 𝑡 ∈ 𝐑. 

3. ℳ is of type III  𝜆(0 < 𝜆 < 1) if and only if (𝑈𝑡) is periodic of period 
2𝜋

|log 𝜆|
. 

4. ℳ is of type III1 in the other cases. 
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5. The factor ℳ has almost periodic states if and only if (𝑈𝑡) is almost periodic. 

Shlyakhtenko moreover showed [12] that every free Araki-Woods factor ℳ = 

Γ(𝐻𝐑, 𝑈𝑡)
′′ is generalized solid in the sense of [162],[187]: for every diffuse subalgebra 𝐴 ⊂

ℳ for which there exists a faithful normal conditional expectation 𝐸:ℳ → 𝐴, the relative 

commutant 𝐴′ ∩ℳ is amenable. [179] showed that every type III1 free Araki-Woods factor 

has trivial bicentralizer [178]. 

There are not so many ways to produce concrete examples of completely bounded 

maps on free Araki-Woods von Neumann algebras. When (𝑈𝑡) is trivial, one recovers the 

free group algebras, and harmonic analysis joins the game with Fourier multipliers. On 𝐅∞, 

multipliers that only depend on the length are said to be radial. Haagerup and Szwarc 

obtained a very nice characterization of them. Their approach was based on a one-to-one 

correspondence between Fourier multipliers on a group 𝐺 and Schur multipliers on 

𝐁(ℓ2(𝐺)) established by Gilbert. Their idea was to look for a description of Schur 

multipliers obtained this way and they managed to do so for more general multipliers related 

to homogeneous trees. The key point is to find a shift algebra that is preserved by those 

Schur multipliers. This technique or some variations have operated with success on other 

groups [195],[205].  

The free semicircular random variables and the canonical generators of 𝐅∞ have 

different shape but there is a natural length for both of them which is related to freeness. 

This notion still makes sense after the quasi-free deformation and one can hope to have nice 

multipliers. We follow the scheme of Haagerup and Szwarc, but Gilbert's theorem is missing 

here (there is no easy way to extend multipliers). We obtain exactly the same 

characterization and the parallel with Schur multipliers is very striking. This is the first step 

towards the approximation property that originates from [196], where it was shown that the 

projection onto tensors of a fixed given length is bounded. Haagerup's ideas turned out to 

be efficient to prove various approximation properties in relationship with Khintchine type 

inequalities (see [191],[113]). The second step consists in using functorial completely 

positive maps called second quantizations (see [46],[60]). The new point is that we show 

that the second quantization is valid under a milder assumption than the one in [15]. 

The 𝐶∗-algebra Γ(𝐻𝐑, 𝑈𝑡) is generated by real parts of some left creation operators. 

Since we look for completely bounded maps on free ArakiWoods algebras, it seems natural 

to try to find them as restrictions on some larger algebra. This is why we are interested in 

basic properties of the algebra generated by creation operators. 

Let 𝐻 be a complex Hilbert space and ℱ(𝐻) the corresponding full Fock space. We 

write 𝒯(𝐻) for the 𝐶∗-algebra generated by all the left creation operators ℱ(𝐻) = ⟨ℓ(𝑒): 𝑒 ∈
𝐻⟩. It is easy to verify that for any , 𝑓 ∈ 𝐻: 

ℓ(𝑓)∗ℓ(𝑒) = ⟨𝑓, 𝑒⟩. 
In fact, this property completely characterizes the algebra 𝒯(𝐻). Indeed, in the sense of 

[199], 𝒯(𝐻) is a Toeplitz algebra and satisfies the following universal property (see [199] 

Theorem 3.4): if 𝑢:𝐻 → 𝐁(𝐾) is a linear map (for some Hilbert space 𝐾) so that 

𝑢∗(𝑓)𝑢(𝑒) = ⟨𝑓, 𝑒⟩, then there is a unique *-homomorphism 𝜋:𝒯(𝐻) → 𝐁(𝐾) so that 

𝜋(ℓ(𝑒)) = 𝑢(𝑒). 
When 𝐻 = 𝐂, we will simply denote 𝒯(𝐂) by 𝒯: this is the universal 𝐶∗ algebra 

generated by a shift operator 𝑆 (a nonunitary isometry). We will need the following very 

elementary estimates about creation operators: 
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Lemma (4.3.14)[190]: For orthonormal families (𝑒𝑖), (𝑓𝑖) in 𝐻 and 𝛼𝑖 ∈ 𝐂 with |𝛼𝑖| ≤ 1, 

we have 

∥
∥
∥
∥1

𝑛
∑  

𝑛

𝑖=1

 𝛼𝑖ℓ(𝑒𝑖)ℓ(𝑓𝑖)
∗

∥
∥
∥
∥

∞

≤
1

𝑛
  and  

∥
∥
∥
∥1

𝑛
∑  

𝑛

𝑖=1

 𝛼𝑖ℓ(𝑒𝑖)ℓ(𝑓𝑖)
∥
∥
∥
∥

∞

≤
1

√𝑛
. 

Proof. Let (𝑒𝑖), (𝑓𝑖) be orthonormal families in 𝐻 and 𝛼𝑖 ∈ 𝐂 with |𝛼𝑖| ≤ 1. The first 

inequality follows from 

(
1

𝑛
∑  

𝑛

𝑖=1

 𝛼𝑖ℓ(𝑒𝑖)ℓ(𝑓𝑖)
∗)(

1

𝑛
∑  

𝑛

𝑖=1

 𝛼𝑖ℓ(𝑒𝑖)ℓ(𝑓𝑖)
∗)

∗

=
1

𝑛2
∑ 

𝑛

𝑖=1

  |𝛼𝑖|
2ℓ(𝑒𝑖)ℓ(𝑒𝑖)

∗ 

≤
1

𝑛2
∑ 

𝑛

𝑖=1

 ℓ(𝑒𝑖)ℓ(𝑒𝑖)
∗               

                                                   ≤
1

𝑛2
. 

The second inequality follows from 

(
1

𝑛
∑  

𝑛

𝑖=1

 𝛼𝑖ℓ(𝑒𝑖)ℓ(𝑓𝑖))

∗

(
1

𝑛
∑  

𝑛

𝑖=1

 𝛼𝑖ℓ(𝑒𝑖)ℓ(𝑓𝑖))  =
1

𝑛2
∑ 

𝑛

𝑖=1

  |𝛼𝑖|
2ℓ(𝑓𝑖)

∗ℓ(𝑓𝑖)

 ≤
1

𝑛2
∑ 

𝑛

𝑖=1

 ℓ(𝑓𝑖)
∗ℓ(𝑓𝑖)

 =
1

𝑛
.

 

We come back to free Araki-Woods algebras: Γ(𝐻𝐑, 𝑈𝑡) = ⟨𝑠(𝜉): 𝜉 ∈ 𝐾𝐑⟩ is the 𝐶∗-
algebra generated by the (𝜉) 's for all 𝜉 ∈ 𝐾𝐑, and Γ(𝐻𝐑, 𝑈𝑡)

′′ is the corresponding von 

Neumann algebra. Given any vector 𝑒 in 𝐾𝐑 + 𝑖𝐾𝐑, we will simply write 𝑒‾ for 𝐼(𝑒) as 

𝐼(ℎ + 𝑖𝑘) = ℎ − 𝑖𝑘, for ℎ, 𝑘 ∈ 𝐾𝐑. 

The vacuum vector Ω is separating and cyclic for Γ(𝐻𝐑, 𝑈𝑡)
′′. Consequently any 𝑥 ∈

Γ(𝐻𝐑, 𝑈𝑡)
′′ is uniquely determined by 𝜉 = 𝑥Ω ∈ ℱ(𝐻), so we will write 𝑥 = 𝑊(𝜉). Note 

that for 𝜉 ∈ 𝐾𝐑, we recover the semicircular random variables 𝑊(𝜉) = 2𝑠(𝜉) generating 

Γ(𝐻𝐑, 𝑈𝑡)
′′. It readily yields 𝑊(𝑒) = ℓ(𝑒) + ℓ(𝑒‾)∗, for every 𝑒 ∈ 𝐾𝐑 + 𝑖𝐾𝐑. 

Given any vectors 𝑒𝑘 belonging to 𝐾𝐑 + 𝑖𝐾𝐑, it is easy to check that 𝑒1⊗⋯⊗ 𝑒𝑛 

lies in Γ(𝐻𝐑, 𝑈𝑡)Ω. Moreover we have a nice description of 𝑊(𝑒1⊗⋯⊗ 𝑒𝑛) in terms of 

the ℓ(𝑒𝑘 )'s called the Wick formula. Since it plays a crucial role in our arguments, we state 

it as a lemma. 

Lemma (4.3.15)[190]: (Wick formula). For any (𝑒𝑖)𝑖∈𝐍 in 𝐾𝐑 + 𝑖𝐾𝐑 and any 𝑛 ≥ 0: 

𝑊(𝑒1⊗⋯⊗ 𝑒𝑛) = ∑  

𝑛

𝑘=0

ℓ(𝑒1)⋯ℓ(𝑒𝑘)ℓ(𝑒‾𝑘+1)
∗⋯ℓ(𝑒‾𝑛)

∗. 

Proof. We prove it by induction on 𝑛. For 𝑛 = 0,1, we have 𝑊(Ω) = 1 and we observed 

that 𝑊(𝑒𝑖) = ℓ(𝑒𝑖) + ℓ(𝑒‾𝑖)
∗. 

Next, for 𝑒0 ∈ 𝐾𝐑 + 𝑖𝐾𝐑, we have 
𝑊(𝑒0)𝑊(𝑒1⊗⋯⊗ 𝑒𝑛)Ω  = 𝑊(𝑒0)(𝑒1⊗⋯⊗ 𝑒𝑛)

 = (ℓ(𝑒0) + ℓ(𝑒‾0)
∗)𝑒1⊗⋯⊗ 𝑒𝑛

 = 𝑒0⊗𝑒1⊗⋯⊗ 𝑒𝑛 + ⟨𝑒‾0, 𝑒1⟩𝑒2⊗⋯⊗ 𝑒𝑛.
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Hence 

𝑊(𝑒0⊗⋯⊗ 𝑒𝑛) = 𝑊(𝑒0)𝑊(𝑒1⊗⋯⊗ 𝑒𝑛) − ⟨𝑒‾0, 𝑒1⟩𝑊(𝑒2⊗⋯⊗ 𝑒𝑛), 
but using the assumption for 𝑛 and 𝑛 − 1 and the commutation relations 

ℓ(𝑒‾0)
∗𝑊(𝑒1⊗⋯⊗ 𝑒𝑛) = ⟨𝑒‾0, 𝑒1⟩𝑊(𝑒2⊗⋯⊗ 𝑒𝑛) + ℓ(𝑒‾0)

∗ℓ(𝑒‾1)
∗⋯ℓ(𝑒‾𝑛)

∗. 
Finally ℓ(𝑒0)𝑊(𝑒1⊗⋯⊗ 𝑒𝑛) gives the first 𝑛 terms in the Wick formula for order 𝑛 + 1. 

This formula expresses 𝑊(𝑒1⊗⋯⊗ 𝑒𝑛) as an element of ℱ(𝐻) and has many 

consequences such as Khintchine type inequalities in [191],[113],[60] for instance. We let 

𝒲 = span{𝑊(𝑒1⊗⋯⊗ 𝑒𝑛): 𝑛 ≥ 0, 𝑒𝑘 ∈ 𝐾𝐑 + 𝑖𝐾𝐑}. 
It is a dense *-subalgebra of Γ(𝐻𝐑, 𝑈𝑡).  

We will use the notion of completely bounded maps (see [135]). We will not need 

very much beyond definitions and the fact that bounded functionals are automatically 

completely bounded (with the same norm). 

The construction of our radial multipliers relies on some functionals on 𝒯. Let 𝜑:𝐍 →

𝐂 be a function. The radial functional 𝛾 associated to 𝜑 is defined on span {𝑆𝑖𝑆∗𝑗} ⊂ ℱ by 

𝛾(𝑆𝑖𝑆∗𝑗) = 𝜑(𝑖 + 𝑗). 
The 𝐶∗-algebra 𝒯 admits very few irreducible representations (the identity and its 

characters). It is thus possible to compute exactly the norm of such radial linear forms, see 

([195] Proposition 1.8 and Theorem 1.3) and [205]: 

Proposition (4.3.16)[190]: The functional 𝛾 extends to a bounded map on 𝒯 if and only if 

𝐵 = [𝜑(𝑖 + 𝑗) − 𝜑(𝑖 + 𝑗 + 2)]𝑖,𝑗≥0 is a trace-class operator. If this is the case, then there 

are constants 𝑐1, 𝑐2 ∈ 𝐂 and a unique 𝜓:𝐍 ⟶ 𝐂 such that 

∀𝑛 ∈ 𝐍,𝜑(𝑛) = 𝑐1 + 𝑐2(−1)
𝑛 + 𝜓(𝑛), and lim

𝑛
 𝜓(𝑛) = 0. 

Moreover 

∥ 𝛾 ∥𝒯∗= |𝑐1| + |𝑐2|+∥ 𝐵 ∥1, 
where ∥ 𝐵 ∥1 is the trace norm of 𝐵. 

We say that 𝛾 is the radial functional associated to 𝜑. The definition of multipliers on 

Γ(𝐻𝐑, 𝑈𝑡)
′′ follows the same scheme. Define m𝜑 on 𝒲 by 

m𝜑(𝑊(𝑒1⊗⋯⊗ 𝑒𝑛)) = 𝜑(𝑛)𝑊(𝑒1⊗⋯⊗ 𝑒𝑛). 

Lemma (4.3.17)[190]: Let 𝜑:𝐍 → 𝐂 be any function. If m𝜑 can be extended to a completely 

contractive map on Γ(𝐻𝐑, 𝑈𝑡), then there is a unique normal completely contractive 

extension of m𝜑 from Γ(𝐻𝐑, 𝑈𝑡)
′′ to Γ(𝐻𝐑, 𝑈𝑡)

′′. 

Proof. This is a standard fact. The space 𝒲 is norm dense in Γ(𝐻𝐑, 𝑈𝑡) which is weak-* 

dense in Γ(𝐻𝐑, 𝑈𝑡)
′′. So 𝒲 is also norm dense in Γ(𝐻𝐑, 𝑈𝑡)∗

′′ using the basic embedding 

Γ(𝐻𝐑, 𝑈𝑡)
′′ → Γ(𝐻𝐑, 𝑈𝑡)∗

′′ given by 𝑗(𝑥)(𝑦) = 𝜒(𝑥𝑦) (where 𝜒 denotes the free quasi-free 

state). By a duality argument, m𝜑:𝒲 → 𝒲 extends uniquely to a completely contractive 

map on Γ(𝐻𝐑, 𝑈𝑡)∗
′′, say 𝑇. Thus 𝑇∗ is the only operator that satisfies the conclusion. 

If m𝜑 is completely bounded on Γ(𝐻𝐑, 𝑈𝑡), we say that m𝜑 is a radial multiplier on 

Γ(𝐻𝐑, 𝑈𝑡)
′′. 

Theorem (4.3.18)[190]: Let 𝜑:𝐍 → 𝐂 be any function and 𝐻𝐑 an infinite dimensional real 

Hilbert space with a one-parameter group (𝑈𝑡) of orthogonal transformations. Then 𝜑 

defines a completely bounded radial multiplier on Γ(𝐻𝐑, 𝑈𝑡)
′′ if and only if the radial 

functional 𝛾 on 𝒯 associated to 𝜑 is bounded. Moreover 

∥∥m𝜑∥∥cb
=∥ 𝛾 ∥𝒯∗ . 

Thanks to Proposition (4.3.16), we have an explicit formula for ∥ 𝛾 ∥ℱ∗. 
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Proof of the upper bound. We assume that 𝜑 gives a bounded functional 𝛾 on 𝒯. By the 

universal property of 𝒯(𝐻), there is a ∗-homomorphism 

𝜋:
ℱ(𝐻)  → ℱ(𝐻)⊗min  ℱ
ℓ(𝜉)  ↦  ℓ(𝜉) ⊗ 𝑆

 

So the map m𝜑 = (Id⊗ 𝛾)𝜋: 𝒯(𝐻) → 𝒯(𝐻) is completely bounded on 𝒯(𝐻) 

with norm ∥ 𝛾 ∥𝒯∗. We have, for all 𝑛 ∈ 𝐍 and all 𝑒𝑘 ∈ 𝐾𝐑 + 𝑖𝐾𝐑 : 

m𝜑(ℓ(𝑒1)⋯ℓ(𝑒𝑘)ℓ(𝑒‾𝑘+1)
∗⋯ℓ(𝑒‾𝑛)

∗) = 𝜑(𝑛)ℓ(𝑒1)⋯ℓ(𝑒𝑘)ℓ(𝑒‾𝑘+1)
∗⋯ℓ(𝑒‾𝑛)

∗. 

Recall that the Wick formula (Lemma (4.3.15)) says 

𝑊(𝑒1⊗⋯⊗ 𝑒𝑛) = ∑  

𝑛

𝑘=0

ℓ(𝑒1)⋯ℓ(𝑒𝑘)ℓ(𝑒‾𝑘+1)
∗⋯ℓ(𝑒‾𝑛)

∗. 

Thus we derive that 𝑚𝜑(𝑊(𝑒1⊗⋯⊗ 𝑒𝑛)) = 𝜑(𝑛)𝑊(𝑒1⊗⋯⊗ 𝑒𝑛). So 𝑚𝜑 is bounded 

on Γ(𝐻𝐑, 𝑈𝑡) and is a radial multiplier. 

To check the necessity of the condition, the idea is similar to [195] or [205]. We find 

a shift algebra on which m𝜑 acts. We start by taking an orthonormal system (𝑒𝑖)𝑖≥1 in 𝐾𝐑 +

𝑖𝐾𝐑 such that ⟨𝑒‾𝑖 , 𝑒‾𝑗⟩ = ⟨𝑒‾𝑖 , 𝑒𝑗⟩ = 0 for all 𝑖 ≠ 𝑗 and ∥∥𝑒‾𝑖∥∥ ≤ 1 (this is possible by the Gram-

Schmidt algorithm). Consider the following element for ≥ 1: 

𝑆𝑛 =
1

√𝑛
∑  

𝑛

𝑖=1

ℓ(𝑒𝑖)⊗𝑊(𝑒𝑖) ∈ 𝒯(𝐻)⊗ 𝐁(ℱ(𝐻)). 

Lemma (4.3.19)[190]: For all 𝑛 ≥ 1, 

∥∥𝑆𝑛
∗𝑆𝑛 − 1∥∥∞ ≤

3

√𝑛
. 

Proof. We have 

𝑊(𝑒𝑖)
∗𝑊(𝑒𝑖)  = (ℓ(𝑒𝑖)

∗ + ℓ(𝑒‾𝑖))(ℓ(𝑒𝑖) + ℓ(𝑒‾𝑖)
∗)

 = 1 + ℓ(𝑒‾𝑖)ℓ(𝑒𝑖) + ℓ(𝑒‾𝑖)ℓ(𝑒‾𝑖)
∗ + ℓ(𝑒𝑖)

∗ℓ(𝑒‾𝑖)
∗
 

= 1 +𝑊(𝑒‾𝑖⊗𝑒𝑖).                     
It follows that 

𝑆𝑛
∗𝑆𝑛  =

1

𝑛
∑  

𝑛

𝑖,𝑗=1

 ℓ(𝑒𝑖)
∗ℓ(𝑒𝑗)⊗𝑊(𝑒𝑖)

∗𝑊(𝑒𝑗)

 = 1⊗ 1 +
1

𝑛
∑  

𝑛

𝑖=1

 1 ⊗ (ℓ(𝑒‾𝑖)ℓ(𝑒𝑖) + ℓ(𝑒‾𝑖)ℓ(𝑒‾𝑖)
∗ + ℓ(𝑒𝑖)

∗ℓ(𝑒‾𝑖)
∗).

 

Lemma (4.3.14) yields 

∥
∥
∥
∥1

𝑛
∑  

𝑛

𝑖=1

 1 ⊗𝑊(𝑒‾𝑖⊗𝑒𝑖)
∥
∥
∥
∥

∞

≤
3

√𝑛
, 

so that we get the estimate. 

For convenience, we will use a standard multi-index notation, we write 𝑖 for 

(𝑖1, … , 𝑖𝑛) ∈ 𝐍
𝑛 and |𝑖| = 𝑛. For 𝛼, 𝛽 ≥ 0, set 

𝑒𝑖
𝛼,𝛽

 = 𝑒𝑖1 ⊗⋯⊗ 𝑒𝑖𝛼 ⊗𝑒‾𝑖𝛼+1⋯⊗ 𝑒‾𝑖𝛼+𝛽

𝑉𝛼,𝛽
𝑛  = 𝑛−

𝛼+𝛽
2 ∑  

𝑛

𝑖1,…,𝑖𝛼+𝛽=1

 ℓ(𝑒𝑖1)⋯ℓ(𝑒𝑖𝛼)ℓ(𝑒𝑖𝛼+1)
∗
⋯ℓ(𝑒𝑖𝛼+𝛽)

∗
⊗𝑊(𝑒𝑖

𝛼,𝛽
) ,
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if 𝛼 + 𝛽 > 0 and 𝑉0,0
𝑛 = 1⊗ 1. 

Lemma (4.3.20)[190]: For all 𝛼, 𝛽 ≥ 0, 

𝑆𝑛
𝛼𝑆𝑛

∗𝛽
− 𝑉𝛼,𝛽

𝑛 = 𝑂 (
1

√𝑛
). 

Proof. We do it by induction on 𝛼 + 𝛽. When 𝛼 + 𝛽 ≤ 1, there is equality. Assume this 

holds for (𝛼, 𝛽), we prove it for (𝛼 + 1, 𝛽). First, 𝑆𝑛𝑉𝛼,𝛽
𝑛  is equal to 

𝑛−
𝛼+𝛽+1
2 ∑  

𝑛

𝑖0,…,𝑖𝛼+𝛽=1

ℓ(𝑒𝑖0)⋯ℓ(𝑒𝑖𝛼)ℓ(𝑒𝑖𝛼+1)
∗
⋯ℓ(𝑒𝑖𝛼+𝛽)

∗
⊗𝑊(𝑒𝑖0)𝑊 (𝑒𝑖

𝛼). 

Recall the identity 

𝑊(ℎ)𝑊(ℎ1⊗⋯) = 𝑊(ℎ⊗ ℎ1⊗⋯) + ⟨ℎ‾, ℎ1⟩𝑊(ℎ2⊗⋯) 
used in the proof of the Wick formula. Therefore 

𝑆𝑛𝑉𝛼,𝛽
𝑛 = 𝑉𝛼+1,𝛽

𝑛 + (
1

𝑛
∑  

𝑛

𝑖=1

  ⟨𝑒‾𝑖 , 𝑒𝑖
(∗)
⟩ ℓ(𝑒𝑖)ℓ(𝑒𝑖)

(∗)⊗1)𝑉�̃�,�̃�
𝑛  

where (∗) = 1, �̃� = 𝛼 − 1, �̃� = 𝛽 and 𝑒𝑖
(∗)
= 𝑒𝑖 if 𝛼 > 0, and ℓ(𝑒𝑖)

(∗) = 

ℓ(𝑒‾𝑖)
∗, �̃� = 0, �̃� = 𝛽 − 1 and 𝑒𝑖

(∗)
= 𝑒‾𝑖 if 𝛼 = 0. We have by Lemma (4.3.14) 

1

𝑛
∑𝑖=1
𝑛   ⟨𝑒‾𝑖 , 𝑒𝑖

(∗)
⟩ ℓ(𝑒𝑖)ℓ(𝑒‾𝑖)

∗ = 𝑂 (
1

𝑛
) and 

1

𝑛
∑𝑖=1
𝑛   ⟨𝑒‾𝑖 , 𝑒𝑖

(∗)
⟩ ℓ(𝑒𝑖)ℓ(𝑒𝑖) = 𝑂 (

1

√𝑛
). This yields 

𝑆𝑛𝑉𝛼,𝛽
𝑛 − 𝑉𝛼+1,𝛽

𝑛 = 𝑂 (
1

√𝑛
). According to Lemma (4.3.19) and the induction hypothesis, 𝑆𝑛 

and then 𝑉𝑎,𝑏
𝑛  for 𝑎 + 𝑏 ≤ 𝛼 + 𝛽 are uniformly bounded in 𝑛. Consequently, 

𝑆𝑛
𝛼+1𝑆𝑛

∗𝛽
− 𝑉𝛼+1,𝛽

𝑛 = 𝑆𝑛 (𝑆𝑛
𝛼𝑆𝑛

∗𝛽
− 𝑉𝛼,𝛽

𝑛 ) + 𝑂 (
1

√𝑛
) = 𝑂 (

1

√𝑛
). 

The other case (𝛼, 𝛽 + 1) is obtained by taking adjoints. ' 

Proof of the lower bound. Assume m𝜑 is a completely bounded multiplier on the free 

Araki-Woods factor Γ(𝐻R, 𝑈𝑡)
′′. Let 𝔘 be a nontrivial ultrafilter on N. Set ℬ = 𝒯(𝐻)⊗

B(ℱ(𝐻)) so that 𝑆𝑛 ∈ ℬ. Consider the 𝐶∗-algebra 𝒜 = ∏𝔘  ℬ 

and 𝑇 the ultrapower of Id ⊗m𝜑 . The element 𝑆 = (𝑆𝑛) ∈ 𝒜 satisfies 𝑆∗𝑆 = 1 by Lemma 

(4.3.19). As (Id ⊗𝑚𝜑)(𝑉𝛼,𝛽
𝑛 ) = 𝜑(𝛼 + 𝛽)𝑉𝛼,𝛽

𝑛 , we get by Lemma (4.3.20), 𝑇(𝑆𝛼𝑆∗𝛽) =

𝜑(𝛼 + 𝛽)𝑆𝛼𝑆∗𝛽. Taking a particular non constant 𝜑 (that does exist), this shows that 𝑆 is 

non unitary and 𝑆 is a shift. Thus, 𝑇 leaves 𝒯 = ⟨𝑆⟩ invariant. By composing it with the 

trivial character 𝜔 of 𝒯(𝜔(𝑆𝛼𝑆∗𝛽) = 1), we obtain that 𝛾 = 𝜔𝑇 is a bounded functional on 

𝒯 with ∥ 𝛾 ∥𝒯∗≤ ∥∥m𝜑∥∥cb
. 

A linear map between 𝐶∗-algebras 𝒜 and ℬ is decomposable if it is a linear 

combination of completely positive maps from 𝒜 to ℬ. Any functional can be decomposed 

into sums of states, so we have: 

Corollary (4.3.21)[190]: Any radial multiplier on Γ(𝐻R, 𝑈𝑡) is decomposable from 

Γ(𝐻R, 𝑈𝑡) into 𝒯(𝐻). 
More generally, a function 𝜑:N → C defines a radial multiplier on 𝒯(𝐻) if the map 

𝑇𝜑 given by 

𝑇𝜑(ℓ(𝑒1)⋯ℓ(𝑒𝑘)ℓ(𝑒𝑘+1)
∗⋯ℓ(𝑒𝑛)

∗) = 𝜑(𝑛)ℓ(𝑒1)⋯ℓ(𝑒𝑘)ℓ(𝑒𝑘+1)
∗⋯ℓ(𝑒𝑛)

∗ 

extends to a completely bounded map on 𝒯(𝐻). The above proof actually gives the 

following 
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Corollary (4.3.22)[190]: For 𝜑:𝐍 → 𝐂, we have ∥∥m𝜑∥∥cb
= ∥∥𝑇𝜑∥∥cb

= ∥∥𝑇𝜑∥∥. 

Taking 𝛿≤𝑑(𝑛) = 𝛿𝑛≤𝑑, the corresponding multiplier 𝑃𝑑 on Γ(𝐻𝐑, 𝑈𝑡) is called the 

projection onto words of length less than 𝑑. Thanks to Proposition (4.3.16), we get: 

Corollary (4.3.23)[190]: For any orthogonal group (𝑈𝑡) on an infinite dimensional real 

Hilbert space 𝐻𝐑, 

∥∥𝑃𝑑∥∥cb(Γ(𝐻𝐑,𝑈𝑡))
∼
𝑑→∞

4

𝜋
𝑑. 

Proof. We apply Theorem (4.3.18) and Proposition (4.3.16) to this particular radial function. 

It is clear that 𝑐1 = 𝑐2 = 0. It remains to estimate the trace norm of 𝐵 = ∑𝑖=0
𝑑  𝑒𝑖,𝑑−𝑖 +

∑𝑖=0
𝑑−1  𝑒𝑖,𝑑−1−𝑖 . To do so, 𝐵 + 𝑒𝑑,𝑑 is unitarily equivalent to a circulant matrix of size 𝑑 + 1, 

Id  𝑑+1 + 𝐽𝑑+1 where 𝐽𝑑+1 = ∑𝑖=0
𝑑  𝑒𝑖,𝑖+1. The singular values of 𝐵 are exactly 1 + 𝑒

2𝑖𝜋𝑘

𝑑+1 , for 

𝑘 = 0,… , 𝑑. We get that ∥ 𝐵 ∥1/𝑑 tends to ∫
0

1
 |1 + 𝑒2𝑖𝜋𝑡|d𝑡 =

4

𝜋
. 

Corollary (4.3.24)[190]: For any orthogonal group (𝑈𝑡) on an infinite dimensional real 

Hilbert space 𝐻𝐑, there are finitely supported functions 𝜑𝑛: 𝐍 → 𝐑 such that 

lim𝑛  ∥∥ m𝜑𝑛∥∥cb
= 1 and lim𝑛  𝜑𝑛(𝑘) = 1 for all 𝑘 ≥ 0. 

Proof. This is an argument due to Haagerup [196] (see also [170]). Using Corollary (4.3.26) 

below or Theorem (4.3.18), the contraction 𝐻 ∋ 𝜉 ↦ 𝑒−𝑡𝜉 ∈ 𝐻 gives rise to a unital 

completely positive multiplier m𝜓𝑡 on Γ(𝐻𝐑, 𝑈𝑡)
′′ (for 𝑡 ≥ 0) where 𝜓𝑡(𝑘) = 𝑒

−𝑘𝑡. Since 

𝜓𝑡 =∑ 

𝑑

𝑒−𝑑𝑡𝛿𝑑 =∑ 

𝑑

𝑒−𝑑𝑡(𝛿≤𝑑 − 𝛿≤𝑑−1), 

the polynomial estimate gives that 

lim sup
𝑑→∞

 ∥∥m𝜓𝑡(1 − 𝑃𝑑)∥∥cb
≤ lim sup

𝑑→∞
 ∑  

𝑘≥𝑑

𝑒−𝑘𝑡∥∥𝑃𝑘+1 − 𝑃𝑘∥∥cb = 0. 

For every 𝑛 ≥ 1, choose 𝑑𝑛 large enough so that ∥∥m𝜓1/𝑛(1 − 𝑃𝑑𝑛)∥
∥
cb
≤ 1/𝑛. The net of 

the form 𝜑𝑛 = 𝜓1/𝑛𝛿≤𝑑𝑛 satisfies the conclusion of the corollary. 

We follow a very typical approach. We first establish a second quantization procedure 

on free Araki-Woods von Neumann algebras, which generalizes [46],[1]. Then, to get the 

approximation property, we just need to cut them with some radial multipliers to get finite 

rank maps. Let 𝐻 and 𝐾 be Hilbert spaces and let 𝑇:𝐻 → 𝐾 be a contraction. We will denote 

the corresponding first quantization ℱ(𝐻) → ℱ(𝐾) by 

Γ̃(𝑇) = 1⊕⨁ 

𝑛≥1

𝑇⊗𝑛. 

Theorem (4.3.25)[190]: Let 𝐻 and 𝐾 be Hilbert spaces and 𝑇:𝐻 → 𝐾 be a contraction. 

Then there is a unique unital completely positive map Γ(𝑇):𝒯(𝐻) → 𝒯(𝐾) such that 

Γ(𝑇)(ℓ(ℎ1)⋯ℓ(ℎ𝑘)ℓ(ℎ𝑘+1)
∗⋯ℓ(ℎ𝑛)

∗) =

ℓ(𝑇(ℎ1))⋯ℓ(𝑇(ℎ𝑘))ℓ(𝑇(ℎ𝑘+1))
∗
⋯ℓ(𝑇(ℎ𝑛))

∗ 

for all ℎ𝑖 ∈ 𝐻. 

Proof. This is again a consequence of the universal property of 𝒯(𝐻). It is clear that if Γ(𝑇) 
and Γ(𝑆) exist then Γ(𝑆𝑇) = Γ(𝑆)Γ(𝑇). So by the general form of a contraction, one just 

needs to prove the result when 𝑇 is either an inclusion from 𝐻 to 𝐾, or a unitary on 𝐻, or an 

orthogonal projection from 𝐻 to 𝐾. 
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If 𝑇 is an inclusion, this is just the universal property of 𝒯(𝐻) (note that Γ(𝑇) is an 

injective *-representation). We emphasize that if 𝐻 ⊂ 𝐾 and ℎ ∈ 𝐻, then ℓ(ℎ) has a priori 

two different meanings as a creation operator on ℱ(𝐻) or ℱ(𝐾). The universal property tells 

us that there is no difference at the 𝐶∗-level. 

If 𝑇 is a unitary, this is also the universal property, but in this case Γ(𝑇) is nothing 

but the restriction of the conjugation by the unitary Γ̃(𝑇) on the full Fock space ℱ(𝐻). 
If 𝑇 is an orthogonal projection from 𝐻 to 𝐾, we write 𝑗: 𝐾 → 𝐻 for the inclusion. 

The first quantization Γ̃(𝑗) = 𝜄 is also an inclusion of ℱ(𝐾) into ℱ(𝐻), the orthogonal 

projection 𝜄∗ is exactly Γ̃(𝑇). To avoid any confusion, for 𝑘 ∈ 𝐾 write ℓ𝐾(𝑘): ℱ(𝐾) → ℱ(𝐾) 
for the creation operator on ℱ(𝐾) and ℓ𝐻(𝑘): ℱ(𝐻) → ℱ(𝐻) for the creation operator on 

ℱ(𝐻). For ℎ ∈ 𝐻 and 𝑘 ∈ 𝐾, we have ℓ𝐻(ℎ)
∗𝑘 = ⟨ℎ, 𝑘⟩Ω = ⟨𝑇(ℎ), 𝑘⟩Ω = ℓ𝐻(𝑇(ℎ))

∗𝑘 =
ℓ𝐾(𝑇(ℎ))

∗𝑘. This yields 

𝜄∗ℓ𝐻(ℎ1)⋯ℓ𝐻(ℎ𝑘)ℓ𝐻(ℎ𝑘+1)
∗⋯ℓ𝐻(ℎ𝑛)

∗𝜄 =

ℓ𝐾(𝑇(ℎ1))⋯ℓ𝐾(𝑇(ℎ𝑘))ℓ𝐾(𝑇(ℎ𝑘+1))
∗
⋯ℓ𝐾(𝑇(ℎ𝑛))

∗
.
 

Hence Γ(𝑇)(𝑥) = 𝜄∗𝑥𝜄, for all 𝑥 ∈ 𝒯(𝐻). It is then clear that Γ(𝑇):𝒯(𝐻) → 

𝒯(𝐾) is completely positive. 

The second quantization is usually stated for maps such that 𝐴𝑇 = 𝑇𝐴 which is a 

somewhat strong assumption [15]. This was the main obstacle to prove approximation 

properties for general free Araki-Woods algebras as there can be no finite rank 𝑇 satisfying 

that condition. 

Corollary (4.3.26)[190]: Let 𝑇:𝐻 → 𝐻 be a contraction so that ITI = 𝑇. Then Γ(𝑇) leaves 

Γ(𝐻𝐑, 𝑈𝑡) invariant and Γ(𝑇) extends to a normal completely positive map on Γ(𝐻𝐑, 𝑈𝑡)
′′ 

so that 

Γ(𝑇)𝑊(𝜉) = 𝑊(Γ̃(𝑇)𝜉), ∀𝜉 ∈ Γ(𝐻𝐑, 𝑈𝑡)
′′Ω. 

Proof. If 𝐼𝑇𝐼 = 𝑇, this implies that for all 𝜉 ∈ 𝐾𝐑 + 𝑖𝐾𝐑, we have 𝑇(𝜉‾) = 𝑇(𝜉)̅̅ ̅̅ ̅̅ . So by the 

Wick formula for 𝑒𝑖 in 𝐾𝐑 + 𝑖𝐾𝐑, we have 

Γ(𝑇)𝑊(𝑒1⊗⋯⊗ 𝑒𝑛)  = ∑  

𝑛

𝑘=0

 ℓ(𝑇(𝑒1))⋯ℓ(𝑇(𝑒𝑘))ℓ(𝑇(𝑒‾𝑘+1))
∗
⋯ℓ(𝑇(𝑒‾𝑛))

∗

 = ∑  

𝑛

𝑘=0

 ℓ(𝑇(𝑒1))⋯ℓ(𝑇(𝑒𝑘))ℓ(𝑇(𝑒𝑘+1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )
∗
⋯ℓ(𝑇(𝑒𝑛)̅̅ ̅̅ ̅̅ ̅̅ )

∗

 = 𝑊(𝑇(𝑒1)⊗⋯⊗𝑇(𝑒𝑛)).

 

As the set of such elements is linearly dense in Γ(𝐻𝐑, 𝑈𝑡), we get that Γ(𝐻𝐑, 𝑈𝑡) is stable by 

Γ(𝑇). The normal extension is done as in Lemma (4.3.17). 

Proposition (4.3.27)[190]: There is a net of finite rank contractions (𝑇𝑘)𝑘 converging to the 

identity on 𝐻 pointwise, such that 𝑇𝑘 = 𝐼𝑇𝑘𝐼, for every 𝑘. 

Proof. Let (𝟏[𝜆,∞](𝐴))𝜆≥0
 be the spectral projections of 𝐴. Since 𝐼𝐴𝐼 = 𝐴−1, we get 

𝐼𝟏[𝜆,∞[(𝐴)(𝐻) = 𝟏[0,1/𝜆](𝐴)(𝐻). 

Recall that 𝐼 = 𝐽𝐴−1/2 is the polar decomposition of 𝐼. We also have 𝐽𝐴𝐽 = 𝐴−1 and 𝐽 is an 

anti-unitary that sends 𝟏[𝜆,𝛽](𝐴)(𝐻) to 𝟏[1/𝛽,1/𝜆](𝐴)(𝐻). 

Fix 𝜆 > 1 and 0 < 𝛿 < 1. Take a subspace 𝐸 in 𝟏[𝜆,𝜆+𝛿](𝐴)(𝐻) and denote by 𝑃 the 

orthogonal projection onto 𝐸. We show that 𝐼𝑃𝐼 is almost the orthogonal projection 𝐽𝑃𝐽. 
Indeed, we have 
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𝐼𝑃𝐼 = 𝐽𝐴−1/2𝟏[𝜆,𝜆+𝛿](𝐴)𝑃𝟏[𝜆,𝜆+𝛿](𝐴)𝐽𝐴
−1/2𝟏

[
1
𝜆+𝛿

,
1
𝜆
]
(𝐴). 

Moreover 

∥
∥
∥
𝐴−1/2𝟏[𝜆,𝜆+𝛿](𝐴) −

1

√𝜆
𝟏[𝜆,𝜆+𝛿](𝐴)∥

∥
∥

∞

 ≤
𝛿

2√𝜆
3

∥
∥
∥
∥
𝐴−1/2𝟏

[
1

𝜆+𝜙
,
1
𝜆
]
(𝐴) − √𝜆𝟏

[
1

𝜆+𝛽
,
1
𝜆
]
(𝐴)

∥
∥
∥
∥

∞

 ≤
𝛿

2√𝜆
.

 

The triangle inequality gives 

∥ 𝐼𝑃𝐼 − 𝐽𝑃𝐽 ∥∞≤
𝛿

2𝜆
+
𝛿

2𝜆
+
𝛿2

4𝜆2
≤
2𝛿

𝜆
. 

Summarizing, for any finite dimensional subspace 𝐸 ⊂ 𝟏[𝜆,𝜆+𝛿](𝐴)(𝐻) and corresponding 

projections 𝑃𝐸 , 𝑇𝐸 =
1

1+
2𝛿

𝜆

(𝑃𝐸⊕ 𝐼𝑃𝐸𝐼) is a finite rank contraction that satisfies 𝐼𝑇𝐸𝐼 = 𝑇𝐸 

and 

∥∥𝑇𝐸 − (𝑃𝐸⊕ 𝐽𝑃𝐸𝐽)∥∥∞ <
4𝛿

𝜆
. 

Observe that for operators 𝑆 and 𝑇 which have orthogonal left and right supports, we denote 

the sum 𝑆 + 𝑇 by 𝑆 ⊕ 𝑇. 

Take 𝐹 a finite dimensional subspace of 𝐻 and fix 𝜀 > 0. Then there exists 𝑛 ∈ 𝐍 

such that for all 𝑓 ∈ 𝐹, we have ∥∥𝟏[𝑒−𝑛,𝑒𝑛](𝐴)𝑓 − 𝑓∥∥ ≤ (𝜀/3) ∥ 𝑓 ∥. Set 𝜆𝑘 = 𝑒
𝑛𝑘/𝑁, for 

1 ≤ 𝑘 ≤ 𝑁 for some large 𝑁 chosen later. Let 𝑃𝑘 be the orthogonal projection onto 

𝟏
[

1

𝜆𝑘+1
,
1

𝜆𝑘
]
(𝐴)(𝐻)⊕ 𝟏[𝜆𝑘,𝜆𝑘+1](𝐴)(𝐻) for 𝑘 ≥ 1, and 𝑃0 be the projection onto the 

eigenspace of 𝐴 for 1. Observe that 
𝜆𝑘+1−𝜆𝑘

𝜆𝑘
= 𝑒𝑛/𝑁 − 1. 

By the above construction, for each 1 ≤ 𝑘 ≤ 𝑁, we can find a finite rank contraction 

𝑇𝑘 on 𝑃𝑘(𝐻) such that 𝐼𝑇𝑘𝐼 = 𝑇𝑘 and for every 𝑓 ∈ 𝐹, 

∥∥𝑇𝑘(𝑃𝑘𝑓) − 𝑃𝑘𝑓∥∥ ≤ 4(𝑒
𝑛/𝑁 − 1)∥∥𝑃𝑘𝑓∥∥. 

For 𝑘 = 0, as 𝐼 is an anti-unitary on 𝑃0(𝐻), we take 𝑇0 the orthogonal projection onto 

𝑃0(𝐹) + 𝐼𝑃0(𝐹), it satisfies the above properties with 𝑘 = 0. 

Set 𝑇 = ⨁𝑘=0
𝑁  𝑇𝑘, which is a finite rank contraction as the 𝑇𝑘 's act on orthogonal 

subspaces. Moreover 𝐼𝑇𝐼 = 𝑇 and for all 𝑓 ∈ 𝐹, gathering the estimates 

∥ 𝑇(𝑓) − 𝑓 ∥≤ 4(𝑒𝑛/𝑁 − 1) ∥ 𝑓 ∥ +∥
∥𝟏[𝑒−𝑛/𝑁,𝑒𝑛/𝑁]∖{1}(𝐴)𝑓∥

∥ + (2𝜀/3) ∥ 𝑓 ∥. 

Letting 𝑁 → ∞, this upper bound can be made smaller than 𝜀 ∥ 𝑓 ∥. So we get the conclusion 

with a net index by finite dimensional subspace of 𝐻 and 𝜀 > 0. 

Theorem (4.3.28)[190]: (Theorem (4.3.1)). The von Neumann algebra Γ(𝐻𝐑, 𝑈𝑡)
′′ has the 

complete metric approximation property. 

Proof. Using the contractions of the previous Proposition, the net (Γ(𝑇𝑘))𝑘 is made of unital 

completely positive maps which tend pointwise to the identity. Let (m𝜑𝑛) be the multipliers 

from Corollary (4.3.24). Since 

(m𝜑𝑛 ∘ Γ(𝑇𝑘)) (𝑊(𝑒𝑖)) = 𝜑𝑛(|𝑖|)𝑊(Γ̃(𝑇𝑘)𝑒𝑖), 

the net (m𝜑𝑛 ∘ Γ(𝑇𝑘))𝑛,𝑘
 are normal finite rank completely bounded maps which satisfy: 

1. lim𝑛  lim𝑘  ( m𝜑𝑛 ∘ Γ(𝑇𝑘)) = Id pointwise ∗-strongly and 



161 

2. lim𝑛  lim𝑘  ∥∥ m𝜑𝑛 ∘ Γ(𝑇𝑘)∥∥cb
= 1 

The proof is complete. 

There is another approximation property that turns out to be useful. A von Neumann 

algebra 𝑀 satisfies the Haagerup property if there exists a net (𝑢𝑖)𝑖∈𝐼 of normal completely 

positive maps from 𝑀 to 𝑀 such that 

1. for all 𝑥 ∈ 𝑀, 𝑢𝑖(𝑥) → 𝑥𝜎-weakly. 

2. for all 𝜉 ∈ 𝐿2(𝑀) and 𝑖 ∈ 𝐼 the map 𝑥 ↦ 𝑢𝑖(𝑥)𝜉 is compact from 𝑀 to 𝐿2(𝑀). 
Theorem (4.3.29)[190]: The von Neumann algebra Γ(𝐻𝐑, 𝑈𝑡)

′′ has the Haagerup property. 

Proof. This is just a variation. As above, with the finite rank maps of the previous 

Proposition, it is easy to check that (Γ(𝑒−𝑡𝑇𝑘))𝑡>0,𝑘∈𝐍 is a net of unital completely positive 

maps that tends to the identity pointwise with respect to the 𝜎-weak topology. It remains 

only to check the second point. 

We use the notation of the proof of Corollary (4.3.24). We have Γ(𝑒−𝑡) = m𝜓𝑡 and 

lim
𝑑→∞

 ∥∥m𝜓𝑡(1 − 𝑃𝑑)∥∥cb
= 0. 

So Γ(𝑒−𝑡𝑇𝑘) = m𝜓𝑡(1 − 𝑃𝑑)Γ(𝑇𝑘) + 𝑃𝑑Γ(𝑒
−𝑡𝑇𝑘), as 𝑃𝑑Γ(𝑒

−𝑡𝑇𝑘) is finite rank, 

Γ(𝑒−𝑡𝑇𝑘) is a limit in norm of finite rank operators so is compact from Γ(𝐻𝐑, 𝑈𝑡)
′′ to 

Γ(𝐻𝐑, 𝑈𝑡)
′′. In particular, its composition with the evaluation on a vector 𝜉 ∈

𝐿2(Γ(𝐻𝐑, 𝑈𝑡)
′′) is also compact. 

Let 𝐻𝐑 be a separable real Hilbert space (dim 𝐻𝐑 ≥ 2) together with (𝑈𝑡) an 

orthogonal representation of 𝐑 on 𝐻𝐑. We set: 

1. ℳ = Γ(𝐻𝐑, 𝑈𝑡)
′′ the free Araki-Woods factor associated with (𝐻𝐑, 𝑈𝑡). Denote by 𝜒 

the free quasi-free state and by 𝜎 the modular group of the state 𝜒. 

2. 𝑀 =ℳ⋊𝜎 𝐑 is the continuous core of ℳ and Tr is the semifinite trace associated 

with the state 𝜒. 

3. Likewise ℳ̃ = Γ(𝐻𝐑⊕𝐻𝐑, 𝑈𝑡⊕𝑈𝑡)
′′, �̃� is the corresponding free quasi-free 

state and �̃� is the modular group of �̃�. 

4. �̃� = ℳ̃ ⋊�̃� 𝐑 is the continuous core of ℳ̃ and Tr̃ is the semifinite trace 

associated with �̃�.  

It follows from [15] that 

ℳ̃ ≅ ℳ ∗ℳ. 
In the latter free product, we shall write ℳ1 for the first copy of ℳ and ℳ2 for the second 

copy of ℳ. We regard ℳ ⊂ ℳ̃ via the identification of ℳ with ℳ1. Denote by (𝜆𝑡) the 

unitaries in 𝐿(𝐑) that implement the modular action 𝜎 on 

ℳ (resp. �̃� on �̃�). Define the following faithful normal conditional expectations: 

1. 𝐸:𝑀 → 𝐿(𝐑) such that 𝐸(𝑥𝜆𝑡) = 𝜒(𝑥)𝜆𝑡, for every 𝑥 ∈ ℳ and 𝑡 ∈ 𝐑; 

2. �̃�: �̃� → 𝐿(𝐑) such that �̃�(𝑥𝜆𝑡) = �̃�(𝑥)𝜆𝑡, for every 𝑥 ∈ �̃� and 𝑡 ∈ 𝐑. 

Then 

(�̃�, �̃�) ≅ (𝑀, 𝐸) ∗𝐿(𝐑) (𝑀, 𝐸). 

Likewise, in the latter amalgamated free product, we shall write 𝑀1 for the first copy of 𝑀 

and 𝑀2 for the second copy of 𝑀. We regard 𝑀 ⊂ �̃� via the identification of 𝑀 with 𝑀1. 

Notice that the conditional expectation 𝐸 (resp. �̃�) preserves the canonical semifinite trace 

Tr (resp. Tr) associated with the state 𝜒(resp. �̃�) (see [196]). 

Consider the following orthogonal representation of 𝐑 on 𝐻𝐑⊕𝐻𝐑 : 
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𝑉𝑠 = (
cos (

𝜋

2
𝑠) −sin (

𝜋

2
𝑠)

sin (
𝜋

2
𝑠) cos (

𝜋

2
𝑠)
) , ∀𝑠 ∈ 𝐑. 

Let (𝛼𝑠) be the natural action on (ℳ̃, �̃�) associated with (𝑉𝑠): 
𝛼𝑠 = Γ(𝑉𝑠), ∀𝑠 ∈ 𝐑. 

In particular, we have 

𝛼𝑠 (𝑊 (
𝜉
𝜂
)) = 𝑊(𝑉𝑠 (

𝜉
𝜂
)) , ∀𝑠 ∈ 𝐑,∀𝜉, 𝜂 ∈ 𝐻𝐑, 

and the action (𝛼𝑠) is �̃�-preserving. We can easily see that the representation (𝑉𝑠) commutes 

with the representation (𝑈𝑡⊕𝑈𝑡). Consequently, (𝛼𝑠) commutes with modular action �̃�. 

Moreover, 𝛼1(𝑥 ∗ 1) = 1 ∗ 𝑥, for every 𝑥 ∈ ℳ. At last, consider the automorphism 𝛽 

defined on (ℳ̃, �̃�) by: 

𝛽 (𝑊 (
𝜉
𝜂
)) = 𝑊 (

𝜉
−𝜂
) , ∀𝜉, 𝜂 ∈ 𝐻𝐑. 

It is straightforward to check that 𝛽 commutes with the modular action �̃�, 𝛽2 = Id, 𝛽∣ℳ =
Idℳ and 𝛽𝛼𝑠 = 𝛼−𝑠𝛽, ∀𝑠 ∈ 𝐑. Since (𝛼𝑠) and 𝛽 commute with the modular action �̃�, one 

may extend (𝛼𝑠) and 𝛽 to �̃� by 𝛼𝑠∣𝐿(𝐑) = Id𝐿(𝐑), for every 𝑠 ∈ 𝐑 and 𝛽∣𝐿(𝐑) = Id𝐿(𝐑). 

Moreover (𝛼𝑠, 𝛽) preserves the semifinite trace Tr̃. We summarize what we have done so 

far: 

Proposition (4.3.30)[190]: The {𝑇�̃�-preserving deformation} (𝛼𝑠 , 𝛽) defined on �̃� =
𝑀 ∗𝐿(𝑅) 𝑀 is s-malleable: 

1. 𝛼𝑠∣𝐿(𝐑) = Id𝐿(𝐑), for every 𝑠 ∈ 𝐑 and 𝛼1(𝑥 ∗𝐿(𝐑) 1) = 1 ∗𝐿(𝐑) 𝑥, for every 

𝑥 ∈ 𝑀. 

2. 𝛽2 = Id and 𝛽∣𝑀 = Id𝑀. 

3. 𝛽𝛼𝑠 = 𝛼−𝑠𝛽, for every 𝑠 ∈ 𝐑. Denote by 𝐸𝑀: �̃� → 𝑀 the canonical trace preserving 

conditional expectation. Since Tr̃∣𝑀 = Tr, we will simply denote by Tr the semifinite 

trace on �̃�. Recall that the s-malleable deformation (𝛼𝑠, 𝛽) automatically features a 

certain transversality property.  

Proposition (4.3.31)[190]: (Popa, [182]). We have the following: 

 ∥∥𝑥 − 𝛼2𝑠(𝑥)∥∥2,Tr ≤ 2∥∥𝛼𝑠(𝑥) − (𝐸𝑀 ∘ 𝛼𝑠)(𝑥)∥∥2,Tr, ∀𝑥 ∈ 𝐿
2(𝑀, Tr), ∀𝑠 > 0. (26) 

The following theorem is in some ways reminiscent of a result by Ioana, Peterson and 

Popa, namely ([156] Theorem 4.3) (see also [176] Theorem 4.2] and [173] Theorem 3.4).  

Proposition (4.3.32)[190]: Let ℳ = Γ(𝐻𝐑, 𝑈𝑡)
′′ and 𝑀 =ℳ⋊𝜎 𝐑 be as above. Let 𝑝 ∈

𝐿(𝑹) ⊂ 𝑀 be a nonzero projection such that Tr (𝑝) < ∞. Let 𝑃 ⊂ 𝑝𝑀𝑝 be a von Neumann 

subalgebra such that the deformation (𝛼𝑡) converges uniformly in ∥⋅∥2,Tr on 𝒰(𝑃). Then 

𝑃 ⪯𝑀 𝐿(𝐑). 
Proof. Let 𝑝 ∈ 𝐿(𝐑) be a nonzero projection such that Tr (𝑝) < ∞. Let 𝑃 ⊂ 𝑝𝑀𝑝 be a von 

Neumann subalgebra such that (𝛼𝑡) converges uniformly in ∥⋅∥2,Tr on 𝒰(𝑃). We keep the 

notation introduced previously and regard 𝑀 ⊂ �̃� = 𝑀1 ∗𝐿(𝐑) 𝑀2 via the identification of 

𝑀 with 𝑀1. Recall that 𝛼𝑠∣𝐿(𝐑) = Id𝐿(𝐑), for every 𝑠 ∈ 𝐑. In particular, 𝛼𝑠(𝑝) = 𝑝, for every 

𝑠 ∈ 𝐑. 
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Step (1): Using the uniform convergence on 𝓤(𝑷) to find 𝒕 > 𝟎 and a nonzero 

intertwiner 𝒗 between Id and 𝜶𝒕. The first step uses a standard functional analysis trick. 

Let 𝜀 =
1

2
∥ 𝑝 ∥2,𝑇𝑟 . We know that there exists 𝑠 = 1/2𝑘 such that ∀𝑢 ∈ 𝒰(𝑃), 

∥∥𝑢 − 𝛼𝑠(𝑢)∥∥2,Tr ≤
1

2
∥ 𝑝 ∥2,Tr, 

Thus, ∀𝑢 ∈ 𝒰(𝑃), we have 

∥∥𝑢∗𝛼𝑠(𝑢) − 𝑝∥∥2,𝑇𝑟  = ∥∥𝑢∗(𝛼𝑠(𝑢) − 𝑢)∥∥2,Tr
 ≤ ∥∥𝑢 − 𝛼𝑠(𝑢)∥∥2,𝑇𝑟

 ≤
1

2
∥ 𝑝 ∥2,𝑇𝑟.

 

Denote by 𝒞 = 𝑐𝑜̅̅ ̅𝑤{𝑢∗𝛼𝑠(𝑢): 𝑢 ∈ 𝒰(𝑃)} ⊂ 𝑝𝐿
2(�̃�)𝑝 the ultraweak closure of 

the convex hull of all 𝑢∗𝛼𝑠(𝑢), where 𝑢 ∈ 𝒰(𝑃). Denote by 𝑎 the unique element in 𝒞 of 

minimal ∥⋅∥2,Tr− norm. Since ∥ 𝑎 − 𝑝 ∥2,Tr≤ 1/2 ∥ 𝑝 ∥2,Tr, necessarily 𝑎 ≠ 0. Fix 𝑢 ∈
𝒰(𝑃). Since 𝑢∗𝑎𝛼𝑠(𝑢) ∈ 𝒞

′ and ∥∥𝑢∗𝑎𝛼𝑠(𝑢)∥∥2,Tr =∥ 𝑎 ∥2,Tr, necessarily 𝑢∗𝑎𝛼𝑠(𝑢) = 𝑎. 

Taking 𝑣 = pol (𝑎) the polar part of 𝑎, we have found a nonzero partial isometry 𝑣 ∈ 𝑝�̃�𝑝 

such that 

𝑥𝑣 = 𝑣𝛼𝑠(𝑥), ∀𝑥 ∈ 𝑃.                                               (27) 
Note that 𝑣𝑣∗ ∈ 𝑃′ ∩ 𝑝�̃�𝑝 and 𝑣∗𝑣 ∈ 𝛼𝑠(𝑃)

′ ∩ 𝑝�̃�𝑝. 

Step (2): Proving 𝑷 ⪯𝑴 𝑳(𝐑) using the malleability of (𝜶𝒕, 𝜷). The rest of the proof, is 

very similar to the reasoning in ([168], Lemma 4.8, Theorem 6.1), ([188], Theorem 4.1) and 

([156], Theorem 4.3) (see also [180], Theorem 5.6) and ([173], Theorem 3.4). For the sake 

of completeness, we will give a detailed proof. 

By contradiction, assume 𝑃 ⋠𝑀 𝐿(𝐑). The first task is to lift Equation (27) to 𝑠 = 1. 

Note that it is enough to find a nonzero partial isometry 𝑤 ∈ 𝑝�̃�𝑝 such that 

𝑥𝑤 = 𝑤𝛼2𝑠(𝑥), ∀𝑥 ∈ 𝑃. 
Indeed, by induction we can go till 𝑠 = 1 (because 𝑠 = 1/2𝑘). Recall that 𝛽(𝑧) = 𝑧, for 

every 𝑧 ∈ 𝑀. Recall that 𝑣𝑣∗ ∈ 𝑃′ ∩ 𝑝�̃�𝑝. Since 𝑃 ⋠𝑀 𝐿(𝐑), we know from [6, Theorem 

2.4] that 𝑃′ ∩ 𝑝�̃�𝑝 ⊂ 𝑝𝑀𝑝. In particular, 𝑣𝑣∗ ∈ 𝑝𝑀𝑝. Set 𝑤 = 𝛼𝑠(𝛽(𝑣
∗)𝑣). Then 

𝑤𝑤∗  = 𝛼𝑠(𝛽(𝑣
∗)𝑣𝑣∗𝛽(𝑣))

 = 𝛼𝑠(𝛽(𝑣
∗)𝛽(𝑣𝑣∗)𝛽(𝑣))

 

= 𝛼𝑠𝛽(𝑣
∗𝑣) ≠ 0. 

Hence, 𝑤 is a nonzero partial isometry in 𝑝�̃�𝑝. Moreover, for every 𝑥 ∈ 𝑃, 
𝑤𝛼2𝑠(𝑥)  = 𝛼𝑠(𝛽(𝑣

∗)𝑣𝛼𝑠(𝑥))

 = 𝛼𝑠(𝛽(𝑣
∗)𝑥𝑣)

 = 𝛼𝑠(𝛽(𝑣
∗𝑥)𝑣)

 = 𝛼𝑠(𝛽(𝛼𝑠(𝑥)𝑣
∗)𝑣)

 = 𝛼𝑠𝛽𝛼𝑠(𝑥)𝛼𝑠(𝛽(𝑣
∗)𝑣)

 = 𝛽(𝑥)𝑤

 = 𝑥𝑤.

 

Since by induction, we can go till 𝑠 = 1, we have found a nonzero partial isometry 𝑣 ∈ 𝑝�̃�𝑝 

such that 

𝑥𝑣 = 𝑣𝛼1(𝑥), ∀𝑥 ∈ 𝑃.                                                    (28) 
Note that 𝑣∗𝑣 ∈ 𝛼1(𝑃)

′ ∩ 𝑝𝑀𝑝.   Moreover, since 𝛼1: 𝑝�̃�𝑝 → 𝑝�̃�𝑝 is a *- 

automorphism, and 𝑃 ⋠𝑀 𝐿(𝐑), ([176] Theorem 2.4) gives 
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𝛼1(𝑃)
′ ∩ 𝑝�̃�𝑝  = 𝛼1(𝑃

′ ∩ 𝑝�̃�𝑝)

 ⊂ 𝛼1(𝑝𝑀𝑝).
 

Hence 𝑣∗𝑣 ∈ 𝛼1(𝑝𝑀𝑝). 
Since 𝑃 ⋠𝑀 𝐿(𝐑), we know that there exists a sequence of unitaries (𝑢𝑘) in 𝑃 such 

that lim𝑘  ∥∥𝐸𝐿(𝐑)(𝑥
∗𝑢𝑘𝑦)∥∥2,Tr

→ 0, for any 𝑥, 𝑦 ∈ 𝑀. We need to go further and prove the 

following: 

Claim (4.3.33)[190]: ∀𝑎, 𝑏 ∈ �̃�, lim𝑘  ∥∥𝐸𝑀2(𝑎
∗𝑢𝑘𝑏)∥∥2,Tr

= 0. 

Proof. Let 𝑎, 𝑏 ∈ (�̃�)1 be either elements in 𝐿(𝐑) or reduced words with letters alternating 

from 𝑀1⊖𝐿(𝐑) and 𝑀2⊖𝐿(𝐑). Write 𝑏 = 𝑦𝑏′ with 

1. 𝑦 = 𝑏 if 𝑏 ∈ 𝐿(𝐑); 
2. 𝑦 = 1 if 𝑏 is a reduced word beginning with a letter from 𝑀2⊖𝐿(𝐑); 
3. 𝑦 = the first letter of 𝑏 coming from 𝑀1⊖𝐿(𝐑) otherwise.  

Note that either 𝑏′ = 1 or 𝑏′ is a reduced word beginning with a letter from 𝑀2⊖ 𝐿(𝐑). 
Likewise write 𝑎 = 𝑎′𝑥 with 

1. 𝑥 = 𝑎 if 𝑥 ∈ 𝐿(𝐑); 
2. 𝑥 = 1 if 𝑎 is a reduced word ending with a letter from 𝑀2⊖𝐿(𝐑); 
3. 𝑥 = the last letter of 𝑎 coming from 𝑀1⊖𝐿(𝐑) otherwise.  

Either 𝑎′ = 1 or 𝑎′ is a reduced word ending with a letter from 𝑀2⊖𝐿(𝐑). For any 𝑧 ∈
𝑀1, 𝑥𝑧𝑦 − 𝐸𝐿(𝐑)(𝑥𝑧𝑦) ∈ 𝑀1⊖𝐿(𝐑), so that 

𝐸𝑀2(𝑎𝑧𝑏) = 𝐸𝑀2(𝑎
′𝐸𝐿(𝐑)(𝑥𝑧𝑦)𝑏

′). 

Since lim𝑘  ∥∥𝐸𝐿(𝐑)(𝑥𝑢𝑘𝑦)∥∥2,Tr
= 0, it follows that lim𝑘  ∥∥𝐸𝑀2(𝑎𝑢𝑘𝑏)∥∥2,Tr

= 0 as well.  

Note that 

𝒜:= span {𝐿(𝐑), (𝑀𝑖1 ⊖𝐿(𝐑))⋯ (𝑀𝑖𝑛 ⊖𝐿(𝐑)): 𝑛 ≥ 1, 𝑖1 ≠ ⋯ ≠ 𝑖𝑛} 

is a unital *-strongly dense *-subalgebra of �̃�. What we have shown so far is that for any 

𝑎, 𝑏 ∈ 𝒜, ∥∥𝐸𝑀2(𝑎𝑢𝑘𝑏)∥∥2,Tr
→ 0, as 𝑘 → ∞. Let now 𝑎, 𝑏 ∈ (�̃�)1 

By Kaplansky density theorem, let (𝑎𝑖) and (𝑏𝑗) be sequences in (𝒜)1 such that 𝑎𝑖 → 𝑎 

and 𝑏𝑗 → 𝑏 *-strongly. Recall that (𝑢𝑘) is a sequence in 𝑃 ⊂ 𝑝�̃�𝑝 with Tr (𝑝) < ∞. We 

have 

∥∥𝐸𝑀2(𝑎𝑢𝑘𝑏)∥∥2,Tr
≤ ∥∥𝐸𝑀2(𝑎𝑖𝑢𝑘𝑏𝑗)∥∥2,Tr

+ ∥
∥𝐸𝑀2 (𝑎𝑖𝑢𝑘(𝑏 − 𝑏𝑗))∥

∥
2,Tr

 

+∥
∥𝐸𝑀2 ((𝑎 − 𝑎𝑖)𝑢𝑘𝑏𝑗)∥

∥
2,Tr

+ ∥
∥𝐸𝑀2 ((𝑎 − 𝑎𝑖)𝑢𝑘(𝑏 − 𝑏𝑗))∥

∥
2,Tr

 

≤ ∥∥𝐸𝑀2(𝑎𝑖𝑢𝑘𝑏𝑗)∥∥2,Tr
+ ∥∥𝑎𝑖𝑢𝑘𝑝(𝑏 − 𝑏𝑗)∥∥2,Tr                  

         +∥∥(𝑎 − 𝑎𝑖)𝑝𝑢𝑘𝑏𝑗∥∥2,Tr + ∥
∥(𝑎 − 𝑎𝑖)𝑢𝑘𝑝(𝑏 − 𝑏𝑗)∥∥2,Tr 

≤ ∥∥𝐸𝑀2(𝑎𝑖𝑢𝑘𝑏𝑗)∥∥2,Tr
+ 2∥∥𝑝(𝑏 − 𝑏𝑗)∥∥2,Tr + ∥

∥(𝑎 − 𝑎𝑖)𝑝∥∥2,Tr             

Fix 𝜀 > 0. Since 𝑎𝑖 → 𝑎 and 𝑏𝑗 → 𝑏 *-strongly, let 𝑖0, 𝑗0 large enough such that 

2∥∥𝑝(𝑏 − 𝑏𝑗0)∥∥2,Tr
+ ∥∥(𝑎 − 𝑎𝑖0)𝑝∥∥2,Tr

≤ 𝜀/2. 

Now let 𝑘0 ∈ 𝐍 such that for any 𝑘 ≥ 𝑘0, 

∥∥𝐸𝑀2(𝑎𝑖0𝑢𝑘𝑏𝑗0)∥∥2,Tr
≤ 𝜀/2. 

We finally get ∥∥𝐸𝑀2(𝑎𝑢𝑘𝑏)∥∥2,Tr
≤ 𝜀, for any 𝑘 ≥ 𝑘0, which finishes the proof of the claim. 
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Recall that for any 𝑥 ∈ 𝑃, 𝑣∗𝑥𝑣 = 𝛼1(𝑥)𝑣
∗𝑣, by Equation (28). Moreover, 𝑣∗𝑣 ∈ 

𝛼1(𝑝𝑀𝑝) ⊂ 𝑝𝑀2𝑝. So, for any 𝑥 ∈ 𝑃, 𝑣∗𝑥𝑣 ∈ 𝑝𝑀2𝑝. Since 𝛼1(𝑢𝑘) ∈ 𝒰(𝑝𝑀2𝑝), we get 

∥𝑣∗𝑣∥2,Tr  = ∥∥𝛼1(𝑢𝑘)𝑣
∗𝑣∥∥2,Tr

 = ∥∥𝐸𝑀2(𝛼1(𝑢𝑘)𝑣
∗𝑣)∥∥

2,Tr

 = ∥∥𝐸𝑀2(𝑣
∗𝑢𝑘𝑣)∥∥2,Tr

→ 0.

 

Thus 𝑣 = 0, which is a contradiction. 

Corollary (4.3.34)[190]: Let ℳ = Γ(𝐻𝐑, 𝑈𝑡)
′′ and 𝑀 =ℳ⋊𝜎 𝐑 be as above. Let 𝑝 ∈

𝐿(𝐑) ⊂ 𝑀 be a nonzero projection such that Tr (𝑝) < ∞. Let 𝑃 ⊂ 𝑝𝑀𝑝 be a von Neumann 

subalgebra such that 𝑃 ⋠𝑀 𝐿(𝐑). Then there exist 0 < 𝜅 < 1, a sequence (𝑡𝑘) of positive 

reals and a sequence (𝑢𝑘) of unitaries in 𝒰(𝑃) such that lim𝑘  𝑡𝑘 = 0 and ∥∥(𝐸𝑀 ∘

𝛼𝑡𝑘)(𝑢𝑘)∥∥2,Tr
≤ 𝜅 ∥ 𝑝 ∥2,Tr, for every 𝑘 ∈ 𝐍. 

Proof. Assume 𝑃 ⋠𝑀 𝐿(𝐑). Using Proposition (4.3.32), we obtain that the deformation (𝛼𝑡) 
does not converge uniformly on 𝒰(𝑃). Combining this with Inequality (26) in Proposition 

(4.3.31), we get that there exist 0 < 𝑐 < 1, a sequence of positive reals (𝑡𝑘) and a sequence 

of unitaries (𝑢𝑘) in 𝒰(𝑃) such that lim𝑘  𝑡𝑘 = 0 and ∥∥𝛼𝑡𝑘(𝑢𝑘) − (𝐸𝑀 ∘ 𝛼𝑡𝑘)(𝑢𝑘)∥∥2,Tr
≥ 𝑐 ∥

𝑝 ∥2,Tr, ∀𝑘 ∈ 𝐍. Since ∥∥𝛼𝑡𝑘(𝑢𝑘)∥∥2,Tr
=∥ 𝑝 ∥2,Tr by Pythagora's theorem we obtain 

∥∥(𝐸𝑀 ∘ 𝛼𝑡𝑘)(𝑢𝑘)∥∥2,Tr
≤ 𝜅 ∥ 𝑝 ∥2,Tr, ∀𝑘 ∈ 𝐍. 

where 𝜅 = √1 − 𝑐2. 

Let 𝑀,𝑁, 𝑃 be any von Neumann algebras. For any 𝑀,𝑁-bimodules 𝐻,𝐾, denote by 

𝜋𝐻 (resp. 𝜋𝐾) the associated *-representation of the algebraic tensor product 𝑀⊙𝑁op  on 

𝐻 (resp. on 𝐾 ). We say that 𝐻 is weakly contained in 𝐾 and denote it by 𝐻 ⊂weak 𝐾 if 

∥∥𝜋𝐻(𝑇)∥∥∞ ≤ ∥∥𝜋𝐾(𝑇)∥∥∞, for every 𝑇 ∈ 𝑀⊙𝑁∘𝑝. Recall that 𝐻 ⊂weak 𝐾 if and only if 𝐻 

lies in the closure (for the Fell topology) of all finite direct sums of copies of 𝐾. Let 𝐻,𝐾 be 

𝑀,𝑁-bimodules. The following are true: 

1. Assume that 𝐻 ⊂weak 𝐾. Then, for any 𝑁, 𝑃-bimodule 𝐿, we have 𝐻⊗𝑁 

𝐿 ⊂weak 𝐾⊗𝑁 𝐿, as 𝑀,𝑃-bimodules. Likewise, for any 𝑃,𝑀-bimodule 𝐿 we have 

𝐿 ⊗𝑀 𝐻 ⊂weak 𝐿 ⊗𝑀 𝐾, as 𝑃,𝑁-bimodules (see [143], Lemma 1.7). 

2. A von Neumann algebra 𝐵 is amenable if and only if 𝐿2(𝐵) ⊂weak 𝐿
2(𝐵)⊗ 𝐿2(𝐵), 

as 𝐵,𝐵-bimodules.  

Let 𝐵,𝑀,𝑁 be von Neumann algebras such that 𝐵 is amenable. Let 𝐻 be any 𝑀,𝐵-

bimodule and let 𝐾 be any 𝐵,𝑁-bimodule. Then, as 𝑀,𝑁-bimodules, we have 

𝐻⊗𝐵 𝐾 ⊂weak 𝐻⊗𝐾 (straightforward consequence of (a) and (b)). 

Let ℳ = Γ(𝐻𝐑, 𝑈𝑡)
′′ be a free Araki-Woods factor. Denote by 𝑀 =ℳ⋊𝜎 𝐑 its 

continuous core. 

Lemma (4.3.35)[190]: Let 𝑝 ∈ 𝐿(𝐑) be a nonzero projection such that Tr (𝑝) < ∞. The 

𝑝𝑀1𝑝, 𝑝𝑀1𝑝-bimodule ℋ = 𝐿2(𝑝�̃�𝑝)⊖ 𝐿2(𝑝𝑀1𝑝) is weakly contained in the coarse 

bimodule 𝐿2(𝑝𝑀1𝑝) ⊗ 𝐿2(𝑝𝑀1𝑝). 
Proof. Set 𝐵 = 𝐿(𝐑). Let 𝑝 ∈ 𝐿(𝐑) be a nonzero projection such that Tr (𝑝) < ∞. By 

definition of the amalgamated free product �̃� = 𝑀1 ∗ 𝐿(𝐑)𝑀2 (see [197] and [196]), we 

have as 𝑝𝑀1𝑝, 𝑝𝑀1𝑝-bimodules 

𝐿2(𝑝�̃�𝑝)⊖ 𝐿2(𝑝𝑀1𝑝) ≅⨁ 

𝑛≥1

ℋ𝑛, 
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where 

ℋ𝑛 = 𝐿
2(𝑝𝑀1) ⊗𝐵 (𝐿

2(𝑀2) ⊖ 𝐿2(𝐵)) ⊗𝐵 ⋯⊗𝐵 (𝐿
2(𝑀2) ⊖ 𝐿2(𝐵))⏞                              

2𝑛−1

⊗𝐵 𝐿
2(𝑀1𝑝). 

Since 𝐵 = 𝐿(𝐑) is amenable, the identity bimodule 𝐿2(𝐵) is weakly contained in the coarse 

bimodule 𝐿2(𝐵) ⊗ 𝐿2(𝐵). From the standard properties of composition and weak 

containment of bimodules, it follows that as 𝑝𝑀1𝑝, 𝑝𝑀1𝑝-bimodules 

ℋ𝑛 ⊂weak 𝐿
2(𝑝𝑀1) ⊗ (𝐿2(𝑀2) ⊖ 𝐿2(𝐵)) ⊗⋯⊗ (𝐿2(𝑀2) ⊖ 𝐿2(𝐵))⏞                              

2𝑛−1

⊗𝐿2(𝑀1𝑝). 

Consequently, we obtain as 𝑝𝑀1𝑝, 𝑝𝑀1𝑝-bimodules 

ℋ = 𝐿2(𝑝�̃�𝑝)⊖ 𝐿2(𝑝𝑀1𝑝) ⊂weak ⨁ 𝐿2(𝑝𝑀1) ⊗ 𝐿2(𝑀1𝑝). 

Moreover, as a left 𝑝𝑀1𝑝-module, 𝐿2(𝑝𝑀1) is contained in ⨁𝐿2(𝑝𝑀1𝑝). Likewise, the right 

𝑝𝑀1𝑝-module 𝐿2(𝑀1𝑝) is contained in ⨁𝐿2(𝑝𝑀1𝑝). Therefore, we get as 𝑝𝑀1𝑝, 𝑝𝑀1𝑝-

bimodules 

ℋ = 𝐿2(𝑝�̃�𝑝)⊖ 𝐿2(𝑝𝑀1𝑝) ⊂weak ⨁ 𝐿2(𝑝𝑀1𝑝) ⊗ 𝐿2(𝑝𝑀1𝑝). 

Let ℳ = Γ(𝐻𝐑, 𝑈𝑡)
′′ be a free Araki-Woods factor. Since ℳ has the complete metric 

approximation property by Theorem (4.3.1), so do its core 𝑀 =ℳ⋊𝜎 𝐑 and 𝑝𝑀𝑝, for any 

Tr-finite nonzero projection 𝑝 ∈ 𝑀 by Theorem (4.3.12). 
Theorem (4.3.36)[190]: Let ℳ = Γ(𝐻𝐑, 𝑈𝑡)

′′ be a free Araki-Woods factor. Denote by 𝜒 

the corresponding free quasi-free state and by 𝑀 =ℳ⋊𝜎𝑥 𝐑 the continuous core. Let 𝑝 ∈
𝐿(𝐑) be a nonzero projection such that Tr (𝑝) < ∞. Let 𝑃 ⊂ 𝑝𝑀𝑝 be an amenable von 

Neumann subalgebra. If 𝑃 ⋠𝑀 𝐿(𝐑), then 𝒩𝑝𝑀𝑝(𝑃)
′′ is amenable. 

Proof. The proof is a generalization of the one of [198], building on the work of Ozawa and 

Popa (see [141], Theorem 4.9) and [198]. What is shown in [198], is the following. Assume 

that 𝑃 ⊂ 𝑁 are finite von Neumann algebras such that 𝑃 is amenable and 𝑁 has the c.m.a.p. 

Assume moreover that there are a finite von Neumann algebra 𝑁 ⊂ �̃� and trace-preserving 

*-homomorphisms 𝛼𝑡: 𝑁 → �̃� such that: 

1. lim𝑡→0  ∥∥𝛼𝑡(𝑥) − 𝑥∥∥2 = 0, for every 𝑥 ∈ 𝑁. 

2. There exists 0 < 𝜅 < 1, a sequence of positive reals (𝑡𝑘) and a sequence of unitaries 

(𝑢𝑘) in 𝒰(𝑃) such that lim𝑘  𝑡𝑘 = 0 and ∥∥(𝐸𝑁 ∘ 𝛼𝑡𝑘)(𝑢𝑘)∥∥2,Tr
≤ 

𝜅 ∥ 𝑝 ∥2, Tr , for every 𝑘 ∈ 𝐍. 

3. The 𝑁,𝑁-bimodule 𝐿2(�̃�) ⊖ 𝐿2(𝑁) is weakly contained in the coarse bimodule 

𝐿2(𝑁)⊗ 𝐿2(𝑁). 
Then 𝒩𝑁(𝑃)

′′ is amenable.  

Now let ℳ = Γ(𝐻𝐑, 𝑈𝑡)
′′ be a free Araki-Woods factor. Denote by 𝜒 the 

corresponding free quasi-free state and by 𝑀 =ℳ⋊𝜎 𝜒𝐑 the continuous core. Let 𝑝 ∈
𝐿(𝐑) be a nonzero projection such that Tr (𝑝) < ∞. We know that 𝑁 = 𝑝𝑀𝑝 has the c.m.a.p. 

since both ℳ and 𝑀 have the c.m.a.p. (by Theorem (4.3.1)). Let 𝑃 ⊂ 𝑝𝑀𝑝 be an amenable 

von Neumann subalgebra. The malleable deformation (𝛼𝑡) clearly satisfies (a). Since 

𝑃 ⋠𝑀 𝐿(𝐑), Corollary (4.3.34) yields (b). Lemma (4.3.35) finally yields (c). Therefore 

𝒩𝑝𝑀𝑝(𝑃)
′′ is amenable. 

Theorem (4.3.37)[190]: Let ℳ = Γ(𝐻𝐑, 𝑈𝑡)
′′ be any free Araki-Woods factor. Let 𝒩 ⊂ 

ℳ be a diffuse von Neumann subalgebra for which there exists a faithful normal conditional 

expectation 𝐸:ℳ → 𝒩. Then either 𝒩 is hyperfinite or 𝒩 has no Cartan subalgebra. 
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Proof. Let ℳ be a von Neumann algebra and let 𝜑,𝜓 be two faithful normal states on ℳ. 

Recall that through the natural *-isomorphism 

Π𝜑,𝜓:ℳ ⋊𝜎𝜑 𝐑 →ℳ ⋊𝜎𝜓 𝐑, 

we will identify 

(𝜋𝜎𝜑(ℳ) ⊂ ℳ ⋊𝜎𝜑 𝐑, 𝜃
𝜑 , Tr𝜑) with (𝜋𝜎𝜓(ℳ) ⊂ ℳ ⋊𝜎𝜓 𝐑, 𝜃

𝜓, Tr𝜓), 

and simply denote it by (ℳ ⊂ 𝑀, 𝜃, Tr), where 𝜃 is the dual action of 𝐑 on the core 𝑀 and 

Tr is the semifinite faithful normal trace on 𝑀 such that Tr ∘ 𝜃𝑠 = 𝑒
−𝑠Tr, for any 𝑠 ∈ 𝐑. 

However, we need to pay attention to the following: whereas the inclusion ℳ ⊂ 𝑀 

does not depend on the state, there are 𝑎 priori two different copies of the abelian von 

Neumann algebra 𝐿(𝐑) inside 𝑀. To avoid any confusion, we will denote by 𝜆𝜑(𝑠) (resp. 

𝜆𝜓(𝑠)) the unitaries implementing the modular action 𝜎𝜑 (resp. 𝜎𝜓) on ℳ. The following 

technical Proposition will be useful, as it explains why we do not have to worry very much 

about the state. 

Proposition (4.3.38)[190]: Let ℳ be a von Neumann algebra. Let 𝐴 ⊂ ℳ be a separable 

diffuse von Neumann subalgebra. Then, for any nonzero projection 𝑝 ∈ 𝐴′ ∩𝑀 with 

Tr (𝑝) < ∞, and any faithful normal state 𝜑 on ℳ, we have 

𝐴𝑝 ⋠𝑀 𝜆
𝜑(𝐑)′′. 

Proof. Fix 𝜑 a faithful normal state on ℳ and 𝑝 a nonzero Tr-finite projection in 𝑀. Since 

𝐴 ⊂ ℳ is diffuse and separable, any maximal abelian *-subalgebra in 𝐴 is separable and 

diffuse, and thus isomorphic to 𝐿∞([0,1]). Therefore there exists a sequence of unitaries 
(𝑢𝑛) in 𝐴 such that 𝑢𝑛 → 0 weakly. Observe that 𝐴𝑝 ⊂ 𝑝𝑀𝑝 is a von Neumann subalgebra 

and that (𝑢𝑛𝑝) are unitaries in 𝐴𝑝. 

Let (𝑞𝑚) be an increasing sequence of projections in 𝜆𝜑(𝐑)′′ such that 𝑞𝑚 → 1 strongly and 

Tr (𝑞𝑚) < ∞. Let 𝑥, 𝑦 ∈ (𝑀)1 and 𝜀 > 0. Since Tr (𝑝) < ∞, choose 𝑚 ∈ 𝐍 large enough 

such that 

∥∥𝑞𝑚𝑥
∗𝑝 − 𝑥∗𝑝∥∥2,Tr + ∥∥𝑝𝑦𝑞𝑚 − 𝑝𝑦∥∥2,Tr < 𝜀. 

Observe now that the unital *-algebra 

ℰ:= {∑  

𝑠∈𝑆

 𝑥𝑠𝜆
𝜑(𝑠): 𝑆 ⊂ 𝐑 finite, 𝑥𝑠 ∈ ℳ} 

is *-strongly dense in 𝑀, so that one can find nets (𝑥𝑖)𝑖∈𝐼 and (𝑦𝑗)𝑗∈𝐽 in (ℰ)1 such that 𝑥𝑖 →

𝑝𝑥 and 𝑦𝑗 → 𝑝𝑦 ∗-strongly. Since now Tr (𝑞𝑚) < ∞, one can find (𝑖, 𝑗) ∈ 𝐼 × 𝐽, such that 

∥∥𝑞𝑚𝑥
∗𝑝 − 𝑞𝑚𝑥𝑖

∗∥∥2,Tr + ∥
∥𝑝𝑦𝑞𝑚 − 𝑦𝑗𝑞𝑚∥∥2,Tr < 𝜀. 

For simplicity of notation write 𝐿(𝐑):= 𝜆𝜑(𝐑)′′. For every 𝑛 ∈ 𝐍, we get 

∥∥𝐸𝐿(𝐑)(𝑥
∗𝑝𝑢𝑛𝑝𝑦)∥∥2,Tr

 ≤ ∥∥𝐸𝐿(𝐑)(𝑞𝑚𝑥
∗𝑝𝑢𝑛𝑝𝑦𝑞𝑚)∥∥2,Tr

+ 𝜀

 ≤ ∥∥𝐸𝐿(𝐑)(𝑞𝑚𝑥𝑖
∗𝑢𝑛𝑦𝑗𝑞𝑚)∥∥2,𝑇𝑟 + 2𝜀.

 

Since 𝑥𝑖 , 𝑦𝑗 ∈ (ℰ)1, write 

𝑥𝑖  =∑  

𝑠∈𝑆

  𝑥𝑠𝜆
𝜑(𝑠)

𝑦𝑗  =∑  

𝑡∈𝑇

 𝑦𝑡𝜆
𝜑(𝑡),

 

where 𝑆, 𝑇 ⊂ 𝐑 are finite and 𝑥𝑠, 𝑦𝑡 ∈ ℳ. Therefore 
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𝐸𝐿(𝐑)(𝑞𝑚𝑥𝑖
∗𝑢𝑛𝑦𝑗𝑞𝑚) = ∑  

(𝑠,𝑡)∈𝑆×𝑇

𝜑(𝑥𝑠
∗𝑢𝑛𝑦𝑡)𝜆

𝜑(𝑡 − 𝑠)𝑞𝑚. 

Since 𝜑 is a faithful normal state on ℳ, one may regard 𝐴 ⊂ ℳ ⊂ 𝐁(𝐿2(ℳ,𝜑)). Since 

𝑢𝑛 → 0 weakly in 𝐴, there exists 𝑛0 ∈ 𝐍 large enough such that ∀𝑛 ≥ 𝑛0, ∀(𝑠, 𝑡) ∈ 𝑆 × 𝑇 

|𝜑(𝑥𝑠
∗𝑢𝑛𝑦𝑡)| ≤

𝜀

∥∥𝑞𝑚∥∥2,Tr(|𝑆| ⋅ |𝑇| + 1)
. 

We get, for every 𝑛 ≥ 𝑛0, 

∥∥𝐸𝐿(𝐑)(𝑞𝑚𝑥𝑖
∗𝑢𝑛𝑦𝑗𝑞𝑚)∥∥2,Tr

≤ 𝜀. 

Therefore, we have for every 𝑛 ≥ 𝑛0 

∥∥𝐸𝐿(𝐑)(𝑥
∗𝑝𝑢𝑛𝑝𝑦)∥∥2,Tr

≤ 3𝜀. 

By (27) of Lemma (4.3.5), we get 𝐴𝑝 ⋠𝑀 𝜆
𝜑(𝐑)′′. 

We are now ready to prove Theorem (4.3.37). We will denote by 𝜒 the corresponding 

free quasi-free state on ℳ. We prove the result by contradiction. Assume that there exists a 

diffuse nonamenable von Neumann subalgebra 𝒩 ⊂ℳ together with 𝐸:ℳ → 𝒩 a faithful 

normal conditional expectation such that 𝒩 has a Cartan subalgebra 𝐴 ⊂ 𝒩. Observe that 

𝐴 is necessarily diffuse. Denote by 𝐹:𝒩 → 𝐴 the faithful normal conditional expectation. 

Choose a faithful normal trace 𝜏 on 𝐴. Write 𝜓 = 𝜏 ∘ 𝐹 ∘ 𝐸. Observe that 𝜓 is a faithful 

normal state on ℳ such that 𝜓 ∘ 𝐸 = 𝜓 and 𝐴 ⊂ 𝒩𝜓. Set 𝑀 =ℳ ⋊𝜎𝜓 𝐑 and 𝑁 =

𝒩 ⋊σ𝜓 𝐑 and notice that 𝜆𝜓(𝐑)′′ ⊂ 𝐴′ ∩𝑀. Observe that since 𝒩 is a nonamenable von 

Neumann algebra, its core 𝑁 is nonamenable as well. Take a nonzero Trfinite projection 

𝑝 ∈ 𝜆𝜓(𝐑)′′ large enough such that 𝑝𝑁𝑝 is nonamenable. Since (𝐴⊗‾ 𝜆𝜓(𝐑)′′)(1⊗ 𝑝) ⊂
𝑝𝑁𝑝 is regular and 𝑝𝑁𝑝 is nonamenable, Theorem (4.3.36) implies that 

(𝐴⊗‾ 𝜆𝜓(𝐑)′′)(1⊗ 𝑝) ⪯𝑀 𝜆
𝜒(𝐑)′′ and thus 𝐴(1⊗ 𝑝) ⪯𝑀 𝜆

𝜒(𝐑)′′. Since 𝐴 is diffuse, 

this contradicts Proposition (4.3.38). 

Theorem (4.3.39)[190]: Let (𝑈𝑡) be a nontrivial nonperiodic orthogonal representation of 

𝐑. Denote by 𝕄 = Γ(𝐻𝐑, 𝑈𝑡)
′′ the corresponding type III1 free Araki-Woods factor. Denote 

by 𝑀 =ℳ⋊𝜎 𝐑 its continuous core, which is a type II∞ factor. Let 𝑝 ∈ 𝑀 be a nonzero 

finite projection and write 𝑁 = 𝑝𝑀𝑝. 

1. For any maximal abelian *-subalgebra 𝐴 ⊂ 𝑁,𝒩𝑁(𝐴)
′′ is amenable. In particular, 𝑁 

has no Cartan subalgebra. 

2. Assume that 

1. either (𝑈𝑡) is strongly mixing; 

2. or 𝑈𝑡 = 𝐑⊕𝑉𝑡, where (𝑉𝑡) is strongly mixing. Then for any diffuse amenable 

von Neumann subalgebra 𝑃 ⊂ 𝑁,𝒩𝑁(𝑃)
′′ is amenable, i.e. 𝑁 is strongly solid. 

Proof. Let ℳ = Γ(𝐻𝐑, 𝑈𝑡)
′′ be a free Araki-Woods factor. As usual, denote by 𝑀 =

ℳ ⋊𝜎 𝐑 its continuous core, where 𝜎 is the modular group associated with the free quasi-

free state 𝜒. Let 𝑝 ∈ 𝐿(𝐑):= 𝜆𝜒(𝐑)′′ be a nonzero projection such that Tr (𝑝) < ∞. 

(a) By contradiction, assume that there exists a maximal abelian *-subalgebra 𝐴 ⊂

𝑝𝑀𝑝 for which 𝒩𝑝𝑀𝑝(𝐴)
′′ is not amenable. Write 𝑝 − 𝑧 ∈ 𝒵(𝒩𝑝𝑀𝑝(𝐴)

′′) for the maximal 

projection such that 𝒩𝑝𝑀𝑝(𝐴)
′′(𝑝 − 𝑧) is amenable. Then 𝑧 ≠ 0 and 𝒩𝑝𝑀𝑝(𝐴)

′′𝑧 has no 

amenable direct summand. Notice that 

𝒩𝑝𝑀𝑝(𝐴)
′′𝑧 ⊂ 𝒩𝑧𝑀𝑧(𝐴𝑧)

′′. 

Since this is a unital inclusion (with unit 𝑧), 𝒩𝑧𝑀𝑧(𝐴𝑧)
′′ has no amenable direct summand 

either. Moreover, 𝐴𝑧 ⊂ 𝑧𝑀𝑧 is still maximal abelian. Since 𝐿(𝐑) is diffuse, Tr∣𝐿(𝐑) is 
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semifinite and 𝑀 is a type II∞ factor, we can find a projection 𝑝0 ∈ 𝐿(𝐑) such that 𝑝0 ≤ 𝑝 

and a unitary 𝑢 ∈ 𝒰(𝑀) such that 𝑢𝑧𝑢∗ = 𝑝0 Observe that 𝐴0 = 𝑢𝐴𝑧𝑢
∗ ⊂ 𝑝0𝑀𝑝0 is 

maximal abelian and 𝒩𝑝0𝑀𝑝0(𝐴0)
′′ has no amenable direct summand. Therefore, we may 

assume without loss of generality that 𝑝 = 𝑝0, i.e. 𝐴 ⊂ 𝑝𝑀𝑝 is a maximal abelian *-

subalgebra for which 𝒩𝑝𝑀𝑝(𝐴)
′′ has no amenable direct summand. 

Theorem (4.3.36) yields 𝐴 ⪯𝑀 𝐿(𝐑). Thus there exists 𝑛 ≥ 1, a nonzero Tr-finite 

projection 𝑞 ∈ 𝐿(𝐑)𝑛, a nonzero partial isometry 𝑣 ∈ 𝐌1,𝑛(𝐂)⊗ 𝑝𝑀 and a unital *-

homomorphism 𝜓:𝐴 → 𝐿(𝐑)𝑛 such that 𝑥𝑣 = 𝑣𝜓(𝑥), ∀𝑥 ∈ 𝐴. Write 𝑞 = 𝜓(𝑝), 𝑞′ = 𝑣∗𝑣. 

Note that 𝑣𝑣∗ ∈ 𝐴′ ∩ 𝑝𝑀𝑝 = 𝐴 and 𝑞′ ∈ 𝜓(𝐴)′ ∩ 𝑞𝑀𝑛𝑞. It follows that 𝑞′(𝜓(𝐴)′ ∩
𝑞𝑀𝑛𝑞)𝑞′ = (𝜓(𝐴)𝑞′)′ ∩ 𝑞′𝑀𝑛𝑞′. Since by spatiality 𝜓(𝐴)𝑞′ = 𝑣∗𝐴𝑣 is maximal abelian, 

we get 𝑞′(𝜓(𝐴)′ ∩ 𝑞𝑀𝑛𝑞)𝑞′ = 𝜓(𝐴)𝑞′ = 𝑣∗𝐴𝑣. Thus 𝜓(𝐴)′ ∩ 𝑞𝑀𝑛𝑞 has a type I abelian 

direct summand. Moreover, 

𝑞(ℳ𝜒⊗‾ 𝐿(𝐑))
𝑛
𝑞 ⊂ 𝑞(𝐿(𝐑)′ ∩𝑀)𝑛𝑞 ⊂ 𝜓(𝐴)′ ∩ 𝑞𝑀𝑛𝑞. 

Recall that one of the following situations holds: 

1. (𝑈𝑡) contains a trivial or periodic subrepresentation of dimension 2. In that case, 

𝐿(𝐅2) ⊂ ℳ
𝜒. 

2. (𝑈𝑡) = 𝐑⊕ (𝑉𝑡), where (𝑉𝑡) is weakly mixing. In that case, ℳ𝜒 = 𝐿(𝐙). 
3. (𝑈𝑡) is weakly mixing and then ℳ𝜒 = 𝐂.  

The subcase (i) cannot occur because otherwise 𝜓(𝐴)′ ∩ 𝑞𝑀𝑛𝑞 would be of type II. 

Assume now that (ii) occurs. We have (𝑈𝑡) = 𝐑⊕ (𝑉𝑡) where (𝑉𝑡) is weakly mixing. Then 

we have 

ℳ = Γ(𝐻𝐑, 𝑈𝑡)
′′ ≃ Γ(𝐾𝐑, 𝑉𝑡)

′′ ∗ 𝐿(𝐙), 
and [203] implies that 𝐿(𝐙) is maximal abelian in ℳ. Therefore 𝐵 = 𝐿(𝐙)⊗‾ 𝐿(𝐑) is 

maximal abelian in 𝑀. Since 𝐴 ⪯𝑀 𝐿(𝐑), we get 𝐴 ⪯𝑀 𝐵. 

Since 𝐴 ⊂ 𝑝𝑀𝑝 and 𝐵 ⊂ 𝑀 are both maximal abelian, Proposition (4.3.6) yields 𝑛 ≥ 1, a 

nonzero partial isometry 𝑣 ∈ 𝑝𝑀 such that 𝑣𝑣∗ ∈ 𝐴, 𝑣∗𝑣 ∈ 𝐵 and 𝑣∗𝐴𝑣 = 𝐵𝑣∗𝑣. By 

spatiality, we get 

Ad(𝑣∗)(𝒩𝑣𝑣∗𝑀𝑣𝑣∗(𝐴𝑣𝑣
∗)′′) = 𝒩𝑣∗𝑣𝑀𝑣∗𝑣(𝐵𝑣

∗𝑣)′′. 
On the one hand, 𝒩𝑣𝑣∗𝑀𝑣𝑣∗(𝐴𝑣𝑣

∗)′′ = 𝑣𝑣∗𝒩𝑝𝑀𝑝(𝐴)
′′𝑣𝑣∗ is not amenable, since 

𝒩𝑝𝑀𝑝(𝐴)
′′ has no amenable direct summand. On the other hand, since 𝐿(𝐙) = ℳ𝜒 is 

diffuse, Proposition (4.3.38) implies 𝐵𝑣∗𝑣 = (𝐿(𝐙) ⊗‾ 𝐿(𝐑))𝑣∗𝑣 ⋠𝑀 𝐿(𝐑). Theorem (4.3.36) 

implies that 𝒩𝑣∗𝑣𝑀𝑣∗𝑣(𝐵𝑣
∗𝑣)′′ is amenable. We have reached a contradiction. 

Assume at last that (iii) occurs. Since (𝑈𝑡) is weakly mixing, it follows that ℳ𝜒 = 𝐂 

and 𝐿(𝐑) is maximal abelian in 𝑀 by Proposition (4.3.10). Proposition (4.3.6) yields 𝑛 ≥ 1, 

a nonzero partial isometry 𝑣 ∈ 𝑝𝑀 such that 𝑣𝑣∗ ∈ 𝐴, 𝑣∗𝑣 ∈ 𝐿(𝐑) and 𝑣∗𝐴𝑣 = 𝐿(𝐑)𝑣∗𝑣. 
By spatiality, we get 

Ad(𝑣∗)(𝒩𝑣𝑣∗𝑀𝑣𝑣∗(𝐴𝑣𝑣
∗)′′) = 𝒩𝑣∗𝑣𝑀𝑣∗𝑣(𝐿(𝐑)𝑣

∗𝑣)′′. 
On the one hand, 𝒩𝑣𝑣∗𝑀𝑣𝑣∗(𝐴𝑣𝑣

∗)′′ = 𝑣𝑣∗𝒩𝑝𝑀𝑝(𝐴)
′′𝑣𝑣∗ is not amenable, since 

𝒩𝑝𝑀𝑝(𝐴)
′′ has no amenable direct summand. On the other hand, since (𝑈𝑡) is weakly 

mixing, 𝐿(𝐑) is singular in 𝑀, i.e. 𝒩𝑀(𝐿(𝐑))
′′ = 𝐿(𝐑). Therefore 𝒩𝑣∗𝑣𝑀𝑣∗𝑣(𝐿(𝐑)𝑣

∗𝑣)′′ =
𝐿(𝐑)𝑣∗𝑣. We have reached again a contradiction. 

(2-i) Assume that (𝑈𝑡) is strongly mixing. Let 𝑃 ⊂ 𝑝𝑀𝑝 be a unital diffuse amenable 

von Neumann subalgebra. By contradiction, assume that 𝒩𝑝𝑀𝑝(𝑃)
′′ is not amenable. With 

the same reasoning as before, we may assume that 𝒩𝑝𝑀𝑝(𝑃)
′′ has no amenable direct 

summand. 
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Theorem (4.3.36) yields 𝑃 ⪯𝑀 𝐿(𝐑). Thus there exist 𝑛 ≥ 1, a nonzero Tr-finite 

projection 𝑞 ∈ 𝐿(𝐑)𝑛, a nonzero partial isometry 𝑣 ∈ 𝐌1,𝑛(𝐂)⊗ 𝑝𝑀 and a unital *-

homomorphism 𝜓:𝑃 → 𝑞𝐿(𝐑)𝑛𝑞 such that 𝑥𝑣 = 𝑣𝜓(𝑥), ∀𝑥 ∈ 𝑃. Note that 𝑣𝑣∗ ∈ 𝑃′ ∩
𝑝𝑀𝑝 ⊂ 𝒩𝑝𝑀𝑝(𝑃)

′′ and 𝑣∗𝑣 ∈ 𝜓(𝑃)′ ∩ 𝑞𝑀𝑛𝑞. Since 𝜓(𝑃) ⊂ 𝑞𝐿(𝐑)𝑛𝑞 is a unital diffuse 

von Neumann subalgebra and the action 𝐑 ↷ℳ is strongly mixing (see [173], Proposition 

2.4 and Theorem 3.7) yields 𝒬𝒩𝑞𝑀𝑛𝑞(𝜓(𝑃))
′′ ⊂ 𝑞𝐿(𝐑)𝑛𝑞. Thus we may assume that 

𝑣∗𝑣 = 𝑞. Let 𝑢 ∈ 𝒩𝑝𝑀𝑝(𝑃). We have 

𝑣∗𝑢𝑣𝜓(𝑃)  = 𝑣∗𝑢𝑃𝑣

 = 𝑣∗𝑃𝑢𝑣
 = 𝜓(𝑃)𝑣∗𝑢𝑣.

 

Hence 𝑣∗𝒩𝑝𝑀𝑝(𝑃)
′′𝑣 ⊂ 𝒬𝒩𝑞𝑀𝑛𝑞(𝜓(𝑃))

′′ ⊂ 𝑞𝐿(𝐑)𝑛𝑞. But 

Ad (𝑣∗): 𝑣𝑣∗𝒩𝑝𝑀𝑝(𝑃)
′′𝑣𝑣∗ → 𝑞𝐿(𝐑)𝑛𝑞 

is a unital ∗-isomorphism. Since 𝒩𝑝𝑀𝑝(𝑃)
′′ has no amenable direct summand, 𝑣𝑣∗ ⋅

𝒩𝑝𝑀𝑝(𝑃)
′′𝑣𝑣∗ is not amenable. This contradicts the fact that 𝑞𝐿(𝐑)𝑛𝑞 is amenable. 

(2-ii) Assume that 𝑈𝑡 = R⊕ 𝑉𝑡 where (𝑉𝑡) is strongly mixing. Observe that we have 

Γ(𝐻𝐑, 𝑈𝑡)
′′ = Γ(𝐾𝐑, 𝑉𝑡)

′′ ∗ 𝐿(𝐙). If we denote by 𝑢 a generating Haar unitary for 𝐿(𝐙) and 

by 𝒬∞ =∗𝑛∈𝐙 𝑢
𝑛Γ(𝐾𝐑, 𝑉𝑡)

′′𝑢−𝑛 the infinite free product, we may regard Γ(𝐻𝐑, 𝑈𝑡)
′′ as the 

crossed product 

Γ(𝐻𝐑, 𝑈𝑡)
′′ = 𝒬∞ ⋊ 𝐙 

where the action 𝐙 ↷ 𝒬∞ is the free Bernoulli shift. Observe that the modular group (𝜎𝑡
𝜒
) 

acts trivially on 𝐿(𝐙). Moreover, (𝜎𝑡
𝜒
) acts diagonally on 𝒬∞ in the following sense. Denote 

by 𝜓 the free quasi-free state on Γ(𝐾𝐑, 𝑉𝑡)
′′. Let 𝑦1, … , 𝑦𝑘 ∈ Γ(𝐾𝐑, 𝑉𝑡)

′′⊖𝐂, 𝑛1 ≠ ⋯ ≠
𝑛𝑘 , 𝑥𝑖 = 𝑢

𝑛𝑖𝑦𝑖𝑢
−𝑛𝑖  and write 𝑥 = 𝑥1⋯𝑥𝑘 for the corresponding reduced word in 𝒬∞. Then 

we have 

𝜎𝑡
𝜒(𝑥) = 𝑢𝑛1𝜎𝑡

𝜓(𝑦1)𝑢
−𝑛1⋯𝑢𝑛𝑘𝜎𝑡

𝜓(𝑦𝑘)𝑢
−𝑛𝑘 . 

The core 𝑀 is therefore given by 

𝑀 = 𝒬∞ ⋊ (𝐙 × 𝐑). 
Since (𝑉𝑡) is assumed to be strongly mixing, it is straightforward to check that the action 

𝐙 × 𝐑 ↷ 𝒬∞ is strongly mixing (see [173]). 

We are now ready to prove that 𝑝𝑀𝑝 is strongly solid. Assume by contradiction that 

it is not. As we did before, let 𝑃 ⊂ 𝑝𝑀𝑝 be a unital diffuse amenable von Neumann 

subalgebra such that 𝒩𝑝𝑀𝑝(𝑃)
′′ has no amenable direct summand. Theorem (4.3.36) yields 

𝑃 ⪯𝑀 𝐿(𝐑) and hence 𝑃 ⪯𝑀 𝐿(𝐙)⊗‾ 𝐿(𝐑). Thus there exists 𝑛 ≥ 1, a nonzero Tr-finite 

projection 𝑞 ∈ (𝐿(𝐙) ⊗̅̅̅ 𝐿(𝐑))𝑛, a nonzero partial isometry 𝑣 ∈ 𝐌1,𝑛(𝐂)⊗ 𝑝𝑀 and a unital 

∗-homomorphism 𝜓:𝑃 → 𝑞(𝐿(𝐙)⊗‾ 𝐿(𝐑))𝑛𝑞 such that 𝑥𝑣 = 𝑣𝜓(𝑥), ∀𝑥 ∈ 𝑃. Note that 

𝑣𝑣∗ ∈ 𝑃′ ∩ 𝑝𝑀𝑝 ⊂ 𝒩𝑝𝑀𝑝(𝑃)
′′ and 𝑣∗𝑣 ∈ 𝜓(𝑃)′ ∩ 𝑞𝑀𝑛𝑞. Since 𝜓(𝑃) ⊂ 𝑞(𝐿(𝐙) ⊗‾ 𝐿(𝐑))𝑛𝑞 is 

a unital diffuse von Neumann subalgebra and the action 𝐙 × 𝐑 ↷ 𝒬∞ is strongly mixing, 

[173] yields 𝑣∗𝒩𝑝𝑀𝑝(𝑃)
′′𝑣 ⊂ 𝑞(𝐿(𝐙)⊗‾ 𝐿(𝐑))𝑛𝑞. But 

Ad (𝑣∗): 𝑣𝑣∗𝒩𝑝𝑀𝑝(𝑃)
′′𝑣𝑣∗ → 𝑞(𝐿(𝐙)⊗‾ 𝐿(𝐑))𝑛𝑞 

is a unital *-isomorphism. Since 𝒩𝑝𝑀𝑝(𝑃)
′′ has no amenable direct summand, 

𝑣𝑣∗𝒩𝑝𝑀𝑝(𝑃)
′′𝑣𝑣∗ is not amenable. This contradicts the fact that 𝑞(𝐿(𝐙)⊗‾ 𝐿(𝐑))𝑛𝑞 is 

amenable. 

A free malleable deformation for (amalgamated) free products of von Neumann 

algebras was discovered in [156]. Using ideas and techniques of [176],[197],[156],[141], 
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we obtain the following indecomposability results for free products of von Neumann 

algebras: 

Theorem (4.1.40)[190]: Let (ℳ𝑖 , 𝜑𝑖) be a family of von Neumann algebras endowed with 

faithful normal states. Denote by (ℳ,𝜑) =∗𝑖∈𝐼 (ℳ𝑖 , 𝜑𝑖) their free product. 

1. Assume that ℳ has the complete metric approximation property. Then either ℳ is 

amenable or ℳ has no Cartan subalgebra. 

2. Assume that each ℳ𝑖 is hyperfinite. Let 𝒩 ⊂ℳ be a diffuse von Neumann 

subalgebra for which there exists a faithful normal conditional expectation 𝐸:ℳ →
𝒩. Then either 𝒩 is hyperfinite or 𝒩 has no Cartan subalgebra. 

Observe that in (b), a free product of hyperfinite von Neumann algebras automatically 

has the complete metric approximation property by [170]. 
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Chapter 5 

Mixing Subalgebras and Generator Masas 

 

We introduce for a finite von Neumann algebra M and von Neumann subalgebras 

𝐴, 𝐵 of 𝑀, a notion of weak mixing of 𝐵 ⊂  𝑀 relative to A. We show that weak mixing of 

B ⊂ M relative to a subalgebra 𝐴 ⊂ 𝐵 is equivalent to the following property: if x ∈ M and 

there exist a finite number of elements 𝑥1, . . . , 𝑥𝑛 ∈ 𝑀 such that 𝐴𝑥 ⊂ ∑  𝑛
𝑖=1 𝑥𝑖𝐵, then 𝑥 ∈

 𝐵. We conclude with an assortment of further examples of mixing subalgebras arising from 

the amalgamated free product and crossed product constructions. We show that if the 

orthogonal representation is not ergodic then these von Neumann algebras are factors 

whenever dim(𝐻𝑅) ≥ 2 and 𝑞 ∈  (−1, 1). In such case, the centralizer of the q-quasi free 

state has trivial relative commutant. In the process, we study ‘generator MASAs’ in these 

factors and establish that they are strongly mixing. 
 

Section (5.1): Finite von Neumann Algebras 

In [211], Jolissaint and Stalder defined weak mixing and mixing for abelian von 

Neumann subalgebras of finite von Neumann algebras. These properties arose as natural 

extensions of corresponding notions in ergodic theory in the following sense: If 𝜎 is a 

measure preserving action of a countable discrete abelian group Γ0 on a finite measure space 

(𝑋, 𝜇), then the action is (weakly) mixing in the sense of [207] if and only if the abelian von 

Neumann subalgebra 𝐿(Γ0) is (weakly) mixing in the crossed product finite von Neumann 

algebra 𝐿∞(𝑋, 𝜇) ⋊ Γ0. 

We extend the definitions of weak mixing and mixing to general von Neumann 

subalgebras of finite von Neumann algebras, and study various algebraic and analytical 

properties of these subalgebras. In a forthcoming note, the authors will specialize to the 

study of mixing properties of maximal abelian von Neumann subalgebras. If 𝐵 is a von 

Neumann subalgebra of a finite von Neumann algebra 𝑀, and 𝔼𝐵 denotes the usual trace-

preserving conditional expectation onto 𝐵, we call 𝐵 a weakly mixing subalgebra of 𝑀 if 

there exists a sequence of unitary operators {𝑢𝑛} in 𝐵 such that 

lim
𝑛→∞

 ∥∥𝔼𝐵(𝑥𝑢𝑛𝑦) − 𝔼𝐵(𝑥)𝑢𝑛𝔼𝐵(𝑦)∥∥2 = 0,  ∀𝑥, 𝑦 ∈ 𝑀. 

We call 𝐵 a mixing subalgebra of 𝑀 if the above limit is satisfied for all elements 𝑥, 𝑦 in 𝑀 

and all sequences of unitary operators {𝑢𝑛} in 𝐵 such that lim𝑛→∞  𝑢𝑛 = 0 in the weak 

operator topology. When 𝐵 is an abelian algebra, our definition of weak mixing is precisely 

the weak asymptotic homomorphism property introduced by Robertson, Sinclair and Smith 

[216]. Although our definitions of weak mixing and mixing are slightly different from those 

of Jolissaint and Stalder, our definitions coincide with theirs in the setting of the action of a 

countable discrete group on a probability space. Using arguments similar to those in the 

proofs of Proposition 2.2 and Proposition 3.6 of [211], one can show: 

Proposition (5.1.1)[206]: If 𝜎 is a measure preserving action of 𝑎 countable discrete group 

Γ0 on a finite measure space (𝑋, 𝜇), then the action is (weakly) mixing in the sense of [207] 

if and only if the von Neumann subalgebra 𝐿(Γ0) is (weakly) mixing in the crossed product 

finite von Neumann algebra 

𝐿∞(𝑋, 𝜇) ⋊ Γ0. 
For an inclusion of finite von Neumann algebras 𝐵 ⊂ 𝑀, we call a unitary operator 𝑢 ∈ 𝑀 

a normalizer of 𝐵 in 𝑀 if 𝑢𝐵𝑢∗ = 𝐵[35]. Clearly, every unitary in 𝐵 satisfies this condition; 

the subalgebra 𝐵 is said to be singular in 𝑀 if the only normalizers of 𝐵 in 𝑀 are elements 

of 𝐵. There is a close relationship between the concepts of weak mixing and singularity. 
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Sinclair and Smith [218] noted one connection in proving that weakly mixing von Neumann 

subalgebras are singular in their containing algebras. The converse was proved by Sinclair, 

Smith, White and Wiggins [221] under the assumption that the subalgebra is also masa 

(maximal abelian self-adjoint subalgebra) in the ambient von Neumann algebra. In other 

words, the measure preserving action of a countable discrete abelian group Γ0 on a finite 

measure space (𝑋, 𝜇) is weakly mixing if and only if the associated von Neumann algebra 

𝐿(Γ0) is singular in 𝐿∞(𝑋, 𝜇) ⋊ Γ0. This provides an operator algebraic characterization of 

weak mixing in the abelian setting, which is the main motivation for the study undertaken 

here. In contrast to the abelian case, Grossman and Wiggins [209] showed that for general 

finite von Neumann algebras, weakly mixing is not equivalent to singularity, so techniques 

beyond those known for singular subalgebras are required. In what follows, we develop 

basic theory for mixing properties of general subalgebras of finite von Neumann algebras. 

This leads to a number of new observations about mixing properties of subalgebras and 

group actions, a characterization of weakly mixing subalgebras in terms of their finite 

bimodules, and a variety of new examples of inclusions of von Neumann algebras satisfying 

mixing conditions.  

We show that if 𝐵 is a diffuse finite von Neumann algebra, then 

𝐵𝜔⊖𝐵 = {𝑥 ∈ 𝐵𝜔: 𝜏𝜔(𝑥
∗𝑏) = 0, ∀𝑏 ∈ 𝐵} 

is the weak operator closure of the linear span of unitary operators in 𝐵𝜔⊖𝐵, where 𝐵𝜔 is 

the ultra-power algebra of 𝐵. 

We prove that if 𝐵 is a mixing von Neumann subalgebra of a finite von Neumann 

algebra 𝑀, one has 

lim
𝑛→∞

 ∥∥𝔼𝐵(𝑥𝑏𝑛𝑦) − 𝔼𝐵(𝑥)𝑏𝑛𝔼𝐵(𝑦)∥∥2 = 0,  ∀𝑥, 𝑦 ∈ 𝑀, 

if {𝑏𝑛} is a bounded sequence of operators in 𝐵 such that lim𝑛→∞  𝑏𝑛 = 0 in the weak 

operator topology. As applications, we show that if 𝐵 is mixing in 𝑀, 𝑘 is a positive integer, 

and 𝑒 ∈ 𝐵 is a projection, then 𝑀𝑘(ℂ)⊗ 𝐵 is mixing in 𝑀𝑘(ℂ)⊗𝑀 and 𝑒𝐵𝑒 is mixing in 

𝑒𝑀𝑒. We also show that, in contrast to weakly mixing masas, one cannot distinguish mixing 

masas by the presence or absence of centralizing sequences in the masa for the containing 

II1 factor. 

We concerns the special case of inclusions of group von Neumann algebras. We 

extend some results of [211] for abelian subgroups to the case of a general inclusion of 

countable, discrete groups Γ0 ⊂ Γ in showing that 𝐿(Γ0) is mixing in 𝐿(Γ) if and only if 

𝑔Γ0𝑔
−1 ∩ Γ0 is a finite group for every 𝑔 ∈ Γ ∖ Γ0. These two conditions are seen to be 

equivalent the property that for every diffuse von Neumann subalgebra 𝐴 of 𝐵 and every 

𝑦 ∈ 𝑀, 𝑦𝐴𝑦∗ ⊂ 𝐵 implies 𝑦 ∈ 𝐵. Some applications to ergodic theory are given. In 

particular, Theorem (5.1.16) generalizes results of Kitchens and Schmidt [213] and Halmos 

[210]. 

We introduce and study the concept of relative weak mixing for a triple of finite von 

Neumann algebras, and obtain several characterizations of weakly mixing triples. It turns 

out that relative weak mixing of an inclusion 𝐵 ⊂ 𝑀 with respect to a von Neumann 

subalgebra 𝐴 ⊂ 𝐵 is closely related to the bimodule structure between the two subalgebras 

𝐴 and 𝐵. In particular, we show that 𝐵 ⊂ 𝑀 is weakly mixing relative to 𝐴 if and only the 

following property holds: if 𝑥 ∈ 𝑀 satisfies 𝐴𝑥 ⊂ ∑𝑖=1
𝑛  𝑥𝑖𝐵 for a finite number of elements 

𝑥1, … , 𝑥𝑛 in 𝑀, then 𝑥 ∈ 𝐵. 

The results show that mixing von Neumann subalgebras have hereditary properties 

which are notably different from those of general singular subalgebras. We also consider 
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the relationship between mixing and normalizers; in particular, we show that subalgebras of 

mixing algebras inherit a strong singularity property from the containing algebra. Finally, 

we provide an assortment of new examples of mixing von Neumann subalgebras which arise 

from the amalgamated free product and crossed product constructions. 

We collect here some basic facts about finite von Neumann algebras. Throughout, 𝑀 

is a finite von Neumann algebra with a given faithful normal trace 𝜏. Denote by 𝐿2(𝑀) =
𝐿2(𝑀, 𝜏) the Hilbert space obtained by the GNS-construction of 𝑀 with respect to 𝜏. The 

image of 𝑥 ∈ 𝑀 via the GNS-construction is denoted by �̂�, and the image of a subset 𝐿 of 

𝑀 is denoted by �̂�. The trace norm of 𝑥 ∈ 𝑀 is defined by ∥ 𝑥 ∥2=∥ 𝑥 ∥2,𝜏= 𝜏(𝑥
∗𝑥)1/2. 

Suppose that 𝐵 is a von Neumann subalgebra of 𝑀. Then there exists a unique faithful 

normal conditional expectation 𝔼𝐵 from 𝑀 onto 𝐵 preserving 𝜏. Let 𝑒𝐵 be the projection of 

𝐿2(𝑁) onto 𝐿2(𝐵). Then the von Neumann algebra ⟨𝑀, 𝑒𝐵⟩ generated by 𝑀 and 𝑒𝐵 is called 

the basic construction of 𝑀, which plays a crucial role in the study of von Neumann 

subalgebras of finite von Neumann algebras. There is a unique faithful tracial weight Tr on 

⟨𝑀, 𝑒𝐵⟩ such that 

Tr(𝑥𝑒𝐵𝑦) = 𝜏(𝑥𝑦),  ∀𝑥, 𝑦 ∈ 𝑀. 
For 𝜉 ∈ 𝐿2(⟨𝑀, 𝑒𝐵⟩, Tr), define ∥ 𝜉 ∥2,Tr= Tr (𝜉

∗𝜉)1/2. For more details of the 

basic construction, see [208],[158],[165],[219]. For a detailed account of finite von 

Neumann algebras and the theory of masas, see [219]. 

Let 𝑀 be a finite von Neumann algebra with a faithful normal trace 𝜏, and let 𝐵 be a 

von Neumann subalgebra of 𝑀. We denote by 𝑀⊖𝐵 the orthngonal complement of 𝐵 in 

𝑀 with respect to the standard inner product on 𝑀, that is, 

𝑀⊖𝐵 = {𝑥 ∈ 𝑀: 𝜏(𝑥∗𝑏) = 0 for all 𝑏 ∈ 𝐵}. 
Then 𝑥 ∈ 𝑀⊖𝐵 if and only if 𝔼𝐵(𝑥) = 0, where 𝔼𝐵 is the trace-preserving conditional 

expectation of 𝑀 onto 𝐵. Note that if 𝑥 ∈ 𝑀⊖𝐵, then 𝜏(𝑥) = 𝜏(𝔼𝐵(𝑥)) = 0, so the unique 

positive element in 𝑀⊖𝐵 is 0. On the other hand, it is easy to see that 𝑀⊖𝐵 is the linear 

span of self-adjoint elements in 𝑀⊖𝐵. 

We will use the fact that a bounded sequence (𝑏𝑛) in a finite von Neumann algebra 

𝐵 converges to 0 in the weak operator topology if and only if it defines an element of the 

ultrapower 𝐵𝜔 which is orthogonal to 𝐵 in the above sense. A key step in the proof of 

Theorem (5.1.10) will then be to approximate an arbitrary 𝑧 ∈ 𝐵𝜔⊖𝐵 by linear 

combinations of unitary operators in 𝐵𝜔⊖𝐵. That such an approximation is possible is the 

main technical result. 

When 𝐵 ⊂ 𝑀 comes from an inclusion of countable discrete groups, there is an 

obvious dense linear subspace of ⊖𝐵 : if 𝐺 is a subgroup of a discrete group Γ, then ℒ(Γ)⊖
ℒ(𝐺) is the weak closure of the linear span of unitary operators corresponding to elements 

in Γ ∖ 𝐺. Although in the case of a general inclusion 𝐵 ⊆ 𝑀, such a canonical set of unitaries 

is not available, we nevertheless obtain a partial answer to the following question: If 𝐵 is a 

subalgebra of a diffuse finite von Neumann algebra 𝑀 such that 𝑒𝑀𝑒 ≠ 𝑒𝐵𝑒 for every 

nonzero projection 𝑒 ∈ 𝐵, is 𝑀⊖𝐵 the weak closure of the linear span of unitaries in 𝑀⊖
𝐵?  

The assumption that 𝑒𝑀𝑒 ≠ 𝑒𝐵𝑒 for every nonzero projection 𝑒 ∈ 𝐵 is necessary, as 

is the assumption that 𝑀 is diffuse. For instance, if 𝑀 = ℂ⊕ ℂ and 𝐵 = ℂ and 𝜏(1⊕ 0) ≠
𝜏(0⊕ 1), then there are no unitary operators in 𝑀⊖𝐵. 

Let (𝑀)1 be the operator norm-closed unit ball of 𝑀, and let 

Λ = {𝑥 ∈ (𝑀)1: 𝑥 = 𝑥
∗, 𝔼𝐵(𝑥) = 0}. 
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Then Λ is a convex set which is closed, hence also compact, in the weak operator topology. 

By the Krein-Milman Theorem, Λ is the weak operator closure of the convex hull of its 

extreme points. Thus, we need only characterize the extreme points of Λ. 

Lemma (5.1.2)[206]: Suppose that for every nonzero projection 𝑝 ∈ 𝑀, there exists a 

nonzero element 𝑥𝑝 ∈ 𝑝𝑀𝑝 satisfying 𝔼𝐵(𝑥𝑝) = 0. Then the extreme points of Λ are 

{2𝑒 − 1: 𝑒 ∈ 𝑀 a projection, with 𝔼𝐵(𝑒) =
1

2
} .  

Proof. If 𝑒 ∈ 𝑀 is a projection with 𝔼𝐵(𝑒) =
1

2
, then it is easy to see that the operator 𝑢 =

2𝑒 − 1 ∈ Λ is an extreme point of the unit ball (𝑀)1, hence also an extreme point of Λ. On 

the other hand, suppose that 𝑎 ∈ Λ is an extreme point of Λ, but is not of the form 2𝑒 − 1, 

for some projection 𝑒 ∈ 𝑀, as above. By the spectral decomposition theorem, there exists 

an 𝜖 > 0 and a nonzero spectral projection 𝑒 of 𝑎 such that 

(−1 + 𝜖)𝑒 ≤ 𝑎𝑒 ≤ (1 − 𝜖)𝑒. 
By assumption, there is a nonzero self-adjoint element 𝑥 ∈ 𝑒𝑀𝑒 such that 𝔼𝐵(𝑥) = 0. By 

multiplying by a scalar, we may insist that −𝜖𝑒 ≤ 𝑥 ≤ 𝜖𝑒 Then 𝑎 + 𝑥, 𝑎 − 𝑥 ∈ Λ and 𝑎 =
1

2
(𝑎 + 𝑥) +

1

2
(𝑎 − 𝑥), so 𝑎 is not an extreme point of Λ, contradicting our assumption. 

Therefore, 𝑎 = 2𝑒 − 1 for some projection 𝑒 ∈ 𝑀. Since 𝔼𝐵(𝑎) = 0, 𝔼𝐵(𝑒) =
1

2
. This 

completes the proof. 

The following example shows that the assumptions of the above lemma are essential. 

Example (5.1.3)[206]: In the inclusion ℂ ⊂ 𝑀3(ℂ), there is no projection 𝑒 ∈ 𝑀3(ℂ) 

satisfing 𝜏(𝑒) =
1

2
. In this case, the partial isometry 

(
1 0 0
0 0 0
0 0 −1

) 

is an extreme point of Λ. 

Corollary (5.1.4)[206]: Let 𝑀 be a diffuse finite von Neumann algebra with a faithful 

normal trace 𝜏. Then 𝑀⊖ℂ1 is the weak operator closure of the linear span of self-adjoint 

unitary operators in 𝑀⊖ℂ1. 

Proof. For every nonzero projection 𝑝 ∈ 𝑀, 𝑝𝑀𝑝 is diffuse and hence 𝑝𝑀𝑝 ≠ ℂ𝑝. So there 

is a nonzero operator 𝑥𝑝 ∈ 𝑝𝑀𝑝 with 𝜏(𝑥𝑝) = 0 By Lemma (5.1.2), 𝑀⊖ℂ1 is the weak 

operator closure of the linear span of self-adjoint unitary operators in 𝑀⊖ℂ1. 

For the next result, recall that every diffuse finite von Neumann algebra 𝑁 with 

faithful trace 𝜏 contains a Haar unitary, that is, a unitary element 𝑢 ∈ 𝑁 such that 𝜏(𝑢𝑛) = 0 

for all 𝑛 ∈ ℕ. 

Lemma (5.1.5)[206]: Suppose 𝐵 is a diffuse finite von Neumann algebra with a faithful 

normal trace 𝜏. For 𝜖 > 0 and 𝑥1, … , 𝑥𝑛 ∈ 𝐵, there exists a Haar unitary operator 𝑢 ∈ 𝐵 such 

that 

|𝜏(𝑥𝑖𝑢
∗)| < 𝜖,  1 ≤ 𝑖 ≤ 𝑛. 

Proof. Since 𝐵 is diffuse, 𝐵 contains a Haar unitary operator 𝑣. Note that 𝑣𝑛 → 0 in the 

weak operator topology. So there exists an 𝑁 such that 

|𝜏(𝑥𝑖(𝑣
𝑁)∗)| < 𝜖,  1 ≤ 𝑖 ≤ 𝑛. 

Let 𝑢 = 𝑣𝑁. Then 𝑢 is a Haar unitary operator and the lemma follows.  

Given a separable diffuse von Neumann algebra 𝐵 with faithful normal trace 𝜏 and 

an ultrafilter 𝜔 ∈ 𝛽ℕ ∖ ℕ, denote by 𝐵𝜔 the corresponding ultrapower algebra, and the 
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induced faithful normal trace by 𝜏𝜔 (see [217]). We again use the standard notation of 

(𝐵𝜔⊖𝐵)1 for the norm-closed unit ball of 𝐵𝜔⊖𝐵. The following proposition is the main 

result. 

Proposition (5.1.6)[206]: Suppose 𝐵 is a separable diffuse finite von Neumann algebra with 

a faithful normal trace 𝜏. Then (𝐵𝜔⊖𝐵)1 is the trace norm closure of the convex hull of 

self-adjoint unitary operators in 𝐵𝜔⊖𝐵. 

Proof. We claim that for every nonzero projection 𝑝 ∈ 𝐵𝜔, there exists a nonzero element 

𝑥𝑝 in 𝑝𝐵𝜔𝑝 such that 𝔼𝐵(𝑥𝑝) = 0, where 𝔼𝐵 is the conditional expectation of 𝐵𝜔 onto 𝐵 

preserving 𝜏𝜔. Let 𝑝 = (𝑝𝑛) ∈ 𝐵
𝜔, where 𝑝𝑛 ∈ 𝐵 is a projection with 𝜏(𝑝𝑛) = 𝜏𝜔(𝑝) > 0. 

Since 𝐵 is separable, there is a sequence {𝑦𝑘} in 𝐵 which is dense in the trace norm. We 

may assume that 𝑦1 = 1. By Lemma (5.1.5), for any initial segment {𝑦1, … , 𝑦𝑛} of the dense 

sequence, there is a Haar unitary operator 𝑢𝑛 ∈ 𝑝𝑛𝐵𝑝𝑛 such that 

|𝜏(𝑝𝑛𝑦𝑖𝑝𝑛𝑢𝑛
∗ )| <

1

𝑛
,     ∀1 ≤ 𝑖 ≤ 𝑛. 

Now define an element 𝑥𝑝 of 𝐵𝜔 by 𝑥𝑝 = (𝑢𝑛). Then 

∥∥𝑥𝑝∥∥2
2
= lim
𝑛→𝜔

 ∥∥𝑢𝑛∥∥2
2 = 𝜏(𝑝) > 0. 

Hence, 𝑥𝑝 ≠ 0 and 𝑥𝑝 ∈ 𝑝𝐵
𝜔𝑝. Note that for each 𝑘 ∈ ℕ, we have 

𝜏𝜔(𝑦𝑘(𝑥𝑝)
∗
) = 𝜏𝜔 ((𝑝𝑦𝑘𝑝)(𝑥𝑝)

∗
) = lim

𝑛→𝜔
 𝜏(𝑝𝑛𝑦𝑘𝑝𝑛𝑢𝑛

∗ ) = 0. 

Since {𝑦𝑘} is dense in 𝐵 in the trace norm topology, 𝜏𝜔(𝑦(𝑥𝑝)
∗
) = 0 for all 𝑦 ∈ 𝐵. This 

implies 𝔼𝐵(𝑥𝑝) = 0. By Lemma (5.1.2), (𝐵𝜔⊖𝐵)1 is the weak operator closure of the 

convex hull of self-adjoint unitary operators in 𝐵𝜔⊖𝐵. Note that (𝐵𝜔⊖𝐵)1 is a convex 

set, so its weak operator closure coincides with its closure in the strong operator and trace 

norm topologies. This proves the result. 

Corollary (5.1.7)[206]: Suppose 𝐵 is a separable diffuse finite von Neumann algebra with 

a faithful normal trace 𝜏. Then 𝐵𝜔⊖𝐵 is the weak operator closure of the linear span of 

self-adjoint unitary operators in 𝐵𝜔⊖𝐵. 

Using a similar approach, we can also prove the following result. 

Proposition (5.1.8)[206]: If 𝑀 is a separable type II1 factor and 𝐵 is an abelian von 

Neumann subalgebra of 𝑀, then 𝑀⊖𝐵 is the weak operator closure of the linear span of 

unitary operators in 𝑀⊖𝐵. 

It is not clear whether Proposition (5.1.8) holds for nonabelian subalgebras. We are 

unable, for instance, to establish the conclusion of the result when 𝐵 is a hyperfinite 

subfactor of a nonhyperfinite type II1 factor 𝑀, e.g. 𝐿𝔽2. 

Let 𝑀 be a finite von Neumann algebra with a faithful normal trace 𝜏, and let 𝐵 be a 

von Neumann subalgebra of 𝑀. 

Definition (5.1.9)[206]: An algebra 𝐵 is a mixing von Neumann subalgebra of 𝑀 if 

lim
𝑛→∞

 ∥∥𝔼𝐵(𝑥𝑢𝑛𝑦) − 𝔼𝐵(𝑥)𝑢𝑛𝔼𝐵(𝑦)∥∥2 = 0 

holds for all 𝑥, 𝑦 ∈ 𝑀 and every sequence of unitary operators {𝑢𝑛} in 𝐵 such that 

lim𝑛→∞  𝑢𝑛 = 0 in the weak operator topology. If 𝐵 is a mixing von Neumann subalgebra of 

𝑀, then we say 𝐵 ⊆ 𝑀 a mixing inclusion of finite von Neumann algebras. 

It is easy to see that 𝐵 is a mixing von Neumann subalgebra of 𝑀 if and only if for all 

elements 𝑥, 𝑦 in 𝑀 with 𝔼𝐵(𝑥) = 𝔼𝐵(𝑦) = 0, one has 

lim
𝑛→∞

 ∥∥𝔼𝐵(𝑥𝑢𝑛𝑦)∥∥2 = 0 
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whenever {𝑢𝑛} is a sequence of unitary operators in 𝐵 such that lim𝑛→∞  𝑢𝑛 = 0 in the weak 

operator topology. 

The following theorem, which is the main result, provides a useful equivalent 

condition for mixing inclusions of finite von Neumann algebras. 

Theorem (5.1.10)[206]: If 𝐵 is a mixing von Neumann subalgebra of 𝑀 and 𝑥, 𝑦 ∈ 𝑀 with 

𝔼𝐵(𝑥) = 𝔼𝐵(𝑦) = 0, then 

lim
𝑛→∞

 ∥∥𝔼𝐵(𝑥𝑏𝑛𝑦)∥∥2 = 0 

whenever {𝑏𝑛} is a bounded sequence of operators in Buch that lim𝑛→∞  𝑏𝑛 = 0 in the weak 

operator topology. 

Proof. Let 𝜔 be a free ultrafilter of the set of natural numbers and let 𝑀𝜔 be the ultrapower 

algebra of 𝑀. Then 𝑀𝜔 is a finite von Neumann algebra with a faithful normal trace 𝜏𝜔. We 

can identify 𝐵𝜔 with a von Neumann subalgebra of 𝑀𝜔 in the natural way. Every bounded 

sequence (𝑏𝑛) in 𝐵 defines an element 𝑧 of 𝐵𝜔. We may assume that ∥ 𝑧 ∥≤ 1. It is easy to 

see that lim𝑛→𝜔  𝑏𝑛 = 0 in the weak operator topology if and only if 

𝜏𝜔(𝑧𝑏) = 0,  ∀𝑏 ∈ 𝐵. 
Recall that 𝑀⊖𝐵 = {𝑥 ∈ 𝑀: 𝜏(𝑥∗𝑏) = 0 for all 𝑏 ∈ 𝐵}. It is easy to see that Definition 

(5.1.9) is equivalent to the following: For any 𝑥, 𝑦 in 𝑀⊖𝐵, and any unitary operator 𝑢 ∈
𝐵𝜔⊖𝐵, one has 𝔼𝐵𝜔(𝑥𝑢𝑦) = 0. 

Note that 𝐵 is a diffuse subalgebra of 𝑀. Indeed, suppose 𝑝 ∈ 𝐵 is a minimal 

projection. Since 𝐵 is mixing, then in particular we have that 𝐵′ ∩𝑀 ⊂ 𝐵, so Theorem 

12.2.4 of [219] implies that there exists a masa 𝐴 of 𝑀 such that 𝑝 ∈ 𝐴 ⊂ 𝐵. But then 𝑝 is a 

minimal projection of 𝐴, a contradiction. Thus, Proposition (5.1.6) applies, and (𝐵𝜔⊖𝐵)1 

is the trace norm closure of the convex hull of unitary operators in 𝐵𝜔⊖𝐵. Let 𝜖 > 0. Then 

there exist unitary operators 𝑢1, … , 𝑢𝑛 in 𝐵𝜔⊖𝐵 and positive numbers 𝛼1, … , 𝛼𝑛 with 𝛼1 +
⋯+ 𝛼𝑛 = 1 such that 

∥
∥
∥
∥
𝑧 −∑  

𝑛

𝑘=1

 𝛼𝑘𝑢𝑘
∥
∥
∥
∥

2,𝜏𝜔

< 𝜖. 

For any elements 𝑥 and 𝑦 of 𝑀⊖𝐵, 

∥∥𝔼𝐵𝜔(𝑥𝑧𝑦)∥∥2,𝜏𝜔
 =
∥
∥
∥
∥
𝔼𝐵𝜔 (𝑥 (𝑧 −∑  

𝑛

𝑘=1

 𝛼𝑘𝑢𝑘)𝑦)
∥
∥
∥
∥

2,𝜏𝜔

 ≤
∥
∥
∥
∥
𝑥 (𝑧 −∑  

𝑛

𝑘=1

 𝛼𝑘𝑢𝑘)𝑦
∥
∥
∥
∥

2,𝜏𝜔

 ≤∥ 𝑥 ∥⋅
∥
∥
∥
∥
𝑧 −∑  

𝑛

𝑘=1

 𝛼𝑘𝑢𝑘
∥
∥
∥
∥

2,𝜏𝜔

⋅∥ 𝑦 ∥

 ≤ 𝜖 ∥ 𝑥 ∥∥ 𝑦 ∥.

 

Since 𝜖 > 0 is arbitrary, 𝔼𝐵𝜔(𝑥𝑧𝑦) = 0, which is equivalent to 

lim
𝑛→∞

 ∥∥𝔼𝐵(𝑥𝑏𝑛𝑦)∥∥2 = 0. 

Two applications of the above theorem are the following. 

Corollary (5.1.11)[206]: If 𝐵 is a mixing von Neumann subalgebra of 𝑀 and 𝑘 is a positive 

integer, then 𝑀𝑘(ℂ)⊗ 𝐵 is mixing in 𝑀𝑘(ℂ)⊗𝑀. 
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Proof. Note that 𝑥 = (𝑥𝑖𝑗) ∈ (𝑀𝑘(ℂ)⊗𝑀)⊖ (𝑀𝑘(ℂ)⊗ 𝐵) if and only if 𝑥𝑖𝑗 ∈ 𝑀⊖𝐵 

for all 1 ≤ 𝑖, 𝑗 ≤ 𝑘. Moreover, 𝑏𝑛 = (𝑏𝑖𝑗
𝑛) ∈ 𝑀𝑘(ℂ)⊗ 𝐵 converges to 0 in the weak 

operator topology if and only if 𝑏𝑖𝑗
𝑛  converges to 0 in the weak operator topology for all 1 ≤

𝑖, 𝑗 ≤ 𝑘. Now the corollary follows from Theorem (5.1.10). 

Corollary (5.1.12)[206]: If 𝐵 is a mixing von Neumann subalgebra of 𝑀 and 𝑒 is a 

projection of 𝐵, then eBe is mixing in eMe. 

Proof. Let (𝑏𝑛) be a bounded sequence in 𝑒𝐵𝑒 which converges to 0 in the weak operator 

topology. For 𝑥, 𝑦 ∈ 𝑒𝑀𝑒 ⊖ 𝑒𝐵𝑒, we have 𝑥, 𝑦 ∈ 𝑀⊖𝐵. By Theorem (5.1.10), 

lim
𝑛→∞

 ∥∥𝔼𝑒𝐵𝑒(𝑥𝑏𝑛𝑦)∥∥2 = lim
𝑛→∞

 ∥∥𝔼𝐵(𝑥𝑏𝑛𝑦)∥∥2 = 0. 

It is well-known that the presence of centralizing sequences in a masa for its containing II1 

factor is a conjugacy invariant for the masa. More generally, it is possible to build 

nonconjugate masas of a II1 factor by controlling the existence of centralizing sequences in 

various cutdowns of each masa. Sinclair and White [220] developed this technique to 

produce uncountably many nonconjugate weakly mixing masas in the hyperfinite II1 factor 

with the same Pukánszky invariant. The final result implies that, in contrast to the larger 

class of weakly mixing masas, there is no hope of distinguishing mixing masas along these 

lines. Following the notation of [220], for a von Neumann subalgebra 𝐵 of a II1 factor 𝑀, 

we denote by Γ(𝐵) the maximal trace of a projection 𝑒 ∈ 𝐵 for which 𝑒 Be contains a 

nontrivial centralizing sequences for 𝑒𝑀𝑒. 

Proposition (5.1.13)[206]: If 𝐵 is a mixing subalgebra of a type II1 factor 𝑀 and 𝑒𝐵𝑒 ≠ 𝑒 

Me for each nonzero projection 𝑒 ∈ 𝐵, then Γ(𝐵) = 0. 
Proof. By Corollary (5.1.12), we need only show that there is no nontrivial sequence {𝑏𝑛} 
in 𝐵 which is centralizing for 𝑀. Suppose {𝑏𝑛} ⊂ 𝐵 is such a centralizing sequence for 𝑀. 

We may assume that 𝜏(𝑏𝑛) = 0 for each 𝑛. Suppose that lim𝑛→𝜔  𝑏𝑛 = 𝑧 ∈ 𝐵 in the weak 

operator topology. Then for all 𝑥 ∈ 𝑀, 

𝑧𝑥 = lim
𝑛→𝜔

 𝑏𝑛𝑥 = lim
𝑛→𝜔

 𝑥𝑏𝑛 = 𝑥𝑧. 

Since 𝑀 is a type II1 factor, 𝑧 = 𝜏(𝑧)1 = 0. Hence lim𝑛→𝜔  𝑏𝑛 = 0 in the weak operator 

topology. Choose a nonzero element 𝑥 ∈ 𝑀 such that 𝜏(𝑥𝑏) = 0 for all 𝑏 ∈ 𝐵. Note that 

∥∥𝑥𝑏𝑛 − 𝑏𝑛𝑥∥∥2
2  = ∥∥𝑥𝑏𝑛∥∥2

2 + ∥∥𝑏𝑛𝑥∥∥2
2 − 2Re 𝜏(𝑏𝑛

∗𝑥∗𝑏𝑛𝑥)

 ≥ 𝜏(𝑏𝑛
∗𝑥∗𝑥𝑏𝑛) − 2Re 𝜏(𝑏𝑛

∗𝔼𝐵(𝑥
∗𝑏𝑛𝑥))

 = 𝜏(𝑥∗𝑥𝑏𝑛𝑏𝑛
∗) − 2Re 𝜏(𝑏𝑛

∗𝔼𝐵(𝑥
∗𝑏𝑛𝑥)) .

 

Since {𝑏𝑛} is a central sequence of 𝑀, {𝑏𝑛𝑏𝑛
∗} is also a central sequence of 𝑀. The 

uniqueness of the trace on 𝑀 implies that 

lim
𝑛→𝜔

 𝜏(𝑥∗𝑥𝑏𝑛𝑏𝑛
∗) = lim

𝑛→𝜔
 𝜏(𝑥∗𝑥)𝜏(𝑏𝑛𝑏𝑛

∗) = lim
𝑛→𝜔

  ∥ 𝑥 ∥2
2⋅ ∥∥𝑏𝑛∥∥2

2. 

By Theorem (5.1.10), 

0 = lim
𝑛→∞

 ∥∥𝑥𝑏𝑛 − 𝑏𝑛𝑥∥∥2 ≥∥ 𝑥 ∥2 lim𝑛→∞
 ∥∥𝑏𝑛∥∥2, 

which implies that lim𝑛→𝜔  ∥∥𝑏𝑛∥∥2 = 0. This completes the proof. 

Corollary (5.1.14)[206]: If 𝐵 is a mixing masa of a type II1 factor 𝑀, then Γ(𝐵) = 0. 

We apply our operator-algebraic machinery to the special case of mixing inclusions 

of von Neumann algebras that arise from actions of countable, discrete groups. This 

direction was taken up in [211], where it was shown that, for an infinite abelian subgroup 

Γ0 of a countable group Γ, the inclusion 𝐿(Γ0) ⊂ 𝐿(Γ) is mixing if and only if the following 

condition (called (ST)) is satisfied: 
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For every finite subset 𝐶 of Γ ∖ Γ0, there exists a finite exceptional set 𝐸 ⊂ Γ0 such 

that 𝑔𝛾ℎ ∉ Γ0 for all 𝛾 ∈ Γ0 ∖ 𝐸 and 𝑔, ℎ ∈ 𝐶. 

Theorem (5.1.16) supplies a similar characterization for the case in which Γ0 is not 

abelian, and also establishes a connection between the group normalizer of the subgroup Γ0 

and the "analytic" normalizer of its associated group von Neumann algebra. The key 

observation required is the following, which shows that mixing subalgebras satisfy a much 

stronger form of singularity. 

Theorem (5.1.15)[206]: Let 𝐵 be a mixing von Neumann subalgebra of 𝑀, and suppose 

that 𝐴 is a diffuse von Neumann subalgebra of 𝐵. If 𝑦 ∈ 𝑀 satisfies 𝑦𝐴𝑦∗ ⊆ 𝐵, then 𝑦 ∈ 𝐵. 

Proof. We may assume that 𝐴 is a diffuse abelian von Neumann algebra. Then 𝐴 is generated 

by a Haar unitary operator 𝑤. In particular, lim𝑛→∞  𝑤
𝑛 = 0 in the weak operator topology. 

Let 𝑥 ∈ 𝑀 and 𝔼𝐵(𝑥) = 0. 
Then 

|𝜏(𝑥𝑦)|2 ≤ ∥∥𝔼𝐴′∩𝑀(𝑥𝑦)∥∥2
2
.  

Note that 

𝔼𝐴′∩𝑀(𝑥𝑦) = lim
𝑛→𝜔

 
∑  𝑛
𝑘=1  𝑤

𝑘(𝑥𝑦)(𝑤∗)𝑘

𝑛
 

in the weak operator topology. Hence, 

|𝜏(𝑥𝑦)|2  ≤ ∥∥𝔼𝐴′∩𝑀(𝑥𝑦)∥∥2
2

 ≤ lim
𝑛→𝜔

 
∥∥
∥∥
∑  𝑛
𝑘=1  𝑤

𝑘(𝑥𝑦)(𝑤∗)𝑘

𝑛 ∥∥
∥∥

2

2

 = lim
𝑛→𝜔

 
1

𝑛2
∑  

𝑛

𝑖,𝑗=1

 𝜏(𝑤𝑖(𝑥𝑦)(𝑤∗)𝑖𝑤𝑗(𝑦∗𝑥∗)(𝑤∗)𝑗)

 ≤ lim
𝑛→𝜔

 
1

𝑛2
∑  

𝑛

𝑖,𝑗=1

  |𝜏(𝑥(𝑦𝑤𝑗−𝑖𝑦∗)𝑥∗(𝑤∗)𝑗−𝑖)|

 ≤ lim
𝑛→𝜔

 
1

𝑛2
∑  

𝑛

𝑖,𝑗=1

  ∥∥𝔼𝐵(𝑥(𝑦𝑤
𝑗−𝑖𝑦∗)𝑥∗(𝑤∗)𝑗−𝑖)∥∥

2

 = lim
𝑛→𝜔

 
1

𝑛2
∑  

𝑛

𝑖,𝑗=1

  ∥∥𝔼𝐵(𝑥(𝑦𝑤
𝑗−𝑖𝑦∗)𝑥∗)∥∥

2
.

 

By hypothesis, 𝑦𝑤𝑛𝑦∗ ∈ 𝐵. Note that lim𝑛→∞  𝑦𝑤
𝑛𝑦∗ = 0 in the weak operator topology. 

By Theorem (5.1.10), 

lim
𝑛→∞

 ∥∥𝔼𝐵(𝑥(𝑦𝑤
𝑛𝑦∗)𝑥∗)∥∥2 = 0. 

So 

|𝜏(𝑥𝑦)|2 ≤ lim
𝑛→𝜔

 
1

𝑛2
∑  

𝑛

𝑖,𝑗=1

∥∥𝔼𝐵(𝑥(𝑦𝑤
𝑗−𝑖𝑦∗)𝑥∗)∥∥

2
= 0. 

Therefore, 𝜏(𝑥𝑦) = 0 for all 𝑦 ∈ 𝑀⊖𝐵. This implies that 𝑦 ∈ 𝐵. 

Theorem (5.1.16)[206]: Let 𝑀 = 𝐿(Γ) and 𝐵 = 𝐿(Γ0). Then the following conditions are 

equivalent: 

1. 𝐵 = 𝐿(Γ0) is mixing in 𝑀 = 𝐿(Γ). 
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2. 𝑔Γ0𝑔
−1 ∩ Γ0 is a finite group for every 𝑔 ∈ Γ ∖ Γ0. 

3. For every diffuse von Neumann subalgebra A of 𝐵 and every unitary operator 𝑣 ∈ 𝑀, 

if 𝑣𝐴𝑣∗ ⊆ 𝐵, then 𝑣 ∈ 𝐵. 

4. For every diffuse von Neumann subalgebra A of B and every operator 𝑦 ∈ 𝑀, if 

𝑦𝐴𝑦∗ ⊆ 𝐵, then 𝑦 ∈ 𝐵. 

Proof. (a) ⇒ (d) follows from Theorem (5.1.15) and (d)⇒(c) is trivial. 

(c)⇒(b) Suppose 𝑀 = 𝐿(Γ) and 𝐵 = 𝐿(Γ0). Suppose for some 𝑔 ∈ Γ ∖ Γ0,, 𝑔Γ0𝑔
−1 ∩

Γ0 is an infinite group. Let Γ1 = Γ0 ∩ 𝑔
−1Γ0𝑔 = 𝑔

−1(𝑔Γ0𝑔
−1 ∩ Γ0)𝑔 

Then Γ1 is an infinite group, and 𝑔Γ1𝑔
−1 ⊆ Γ0. So 𝜆(𝑔)𝐿(Γ1)𝜆(𝑔

−1) ⊆ 

𝐿(Γ0). By the third statement, 𝜆(𝑔) ∈ 𝐿(Γ0) and 𝑔 ∈ Γ0. This is a contradiction. 

(b)⇒(a) First, we show that if 𝑔1, 𝑔2 ∈ Γ ∖ Γ0, then 𝑔1Γ0𝑔2 ∩ Γ0 is a finite set. 

Suppose ℎ1, ℎ2 ∈ Γ0 and 𝑔1ℎ1𝑔2, 𝑔1ℎ2𝑔2 ∈ Γ0. Then 

𝑔1ℎ1ℎ2
−1𝑔1

−1 = 𝑔1ℎ1𝑔2(𝑔1ℎ2𝑔2)
−1 ∈ Γ0 ∩ 𝑔1Γ0𝑔1

−1.  

Since Γ0 ∩ 𝑔1Γ0𝑔1
−1 is a finite group, 

{ℎ1ℎ2
−1: ℎ1, ℎ2 ∈ Γ0 and 𝑔1ℎ1𝑔2, 𝑔1ℎ2𝑔2 ∈ Γ0} 

is a finite set. Hence, 𝑔1Γ0𝑔2 ∩ Γ0 is a finite set.  

Let {𝑣𝑛} be a sequence of unitary operators in 𝐵 such that lim𝑛→∞  𝑣𝑛 = 0 in the weak 

operator topology. Write 𝑣𝑛 = ∑𝑘=1
∞  𝛼𝑛,𝑘𝜆(ℎ𝑘). Then for each 𝑘, lim𝑛→∞  𝛼𝑛,𝑘 = 0. Suppose 

𝑔1, 𝑔2 ∈ Γ ∖ Γ0. There exists an 𝑁 such that for all 𝑚 ≥ 𝑁,𝑔1ℎ𝑚𝑔2 ∉ Γ0. Hence, 

∥∥𝔼𝐵(𝑔1𝑣𝑛𝑔2)∥∥2 =∑ 

𝑁

𝑖=1

∥∥𝛼𝑛,𝑖𝔼𝐵(𝑔1𝜆(ℎ𝑖)𝑔2)∥∥2 ≤∑ 

𝑁

𝑖=1

|𝛼𝑛,𝑖| → 0 

when 𝑛 → ∞. 𝑀 is mixing relative to 𝐵. 

We now apply Theorem (5.1.16) to the group-theoretic situation arising from a 

semidirect product Γ = 𝐺 ⋊ Γ0, where Γ0 is an infinite group. Let 𝜎ℎ(𝑔) = hgh−1 for ℎ ∈
Γ0 and 𝑔 ∈ 𝐺. Then 𝜎ℎ is an automorphism of 𝐺. Note that ℎ𝑔 = ℎ𝑔ℎ−1ℎ = 𝜎ℎ(𝑔)ℎ for ℎ ∈
Γ0 and 𝑔 ∈ 𝐺. 

Proposition (5.1.17)[206]: Let 𝑀 = 𝐿(𝐺 ⋊ Γ0) and 𝐵 = 𝐿(Γ0). Then 𝐵 is mixing in 𝑀 if 

and only if for each 𝑔 ∈ 𝐺, 𝑔 ≠ 𝑒, the group 

{ℎ ∈ Γ0: 𝜎ℎ(𝑔) = 𝑔} 
is finite. 

Proof. Let 𝑔 ∈ 𝐺 and ℎ ∈ Γ0. Suppose ℎ ∈ 𝑔Γ0𝑔
−1 ∩ Γ0. Then 𝑔ℎ𝑔−1 ∈ Γ0. Note that 

ghg−1 = ℎℎ−1ghg−1 = ℎ(𝜎ℎ−1( g)g
−1). So ghg−1 ∈ Γ0 implies that 𝜎ℎ−1(𝑔)𝑔

−1 ∈ Γ0 ∩
𝐺 = {𝑒}, i.e., 𝜎ℎ−1(𝑔) = 𝑔 and hence 𝜎ℎ(𝑔) = 𝑔 

Conversely, suppose 𝜎ℎ(𝑔) = 𝑔. Then 𝜎ℎ−1(𝑔) = 𝑔 and hence 𝑔ℎ𝑔−1 = ℎ𝜎ℎ−1(𝑔)𝑔
−1 =

ℎ ∈ Γ0 ∩ 𝑔Γ0𝑔
−1. This proves 

{ℎ ∈ Γ0: 𝜎ℎ(𝑔) = 𝑔} = {ℎ ∈ Γ0: ℎ ∈ 𝑔Γ0𝑔
−1 ∩ Γ0}. 

Suppose 𝐵 is mixing in 𝑀. By (b) of Theorem (5.1.16), 𝑔Γ0𝑔
−1 ∩ Γ0 is a finite group for 

every 𝑔 ∈ 𝐺 with 𝑔 ≠ 𝑒. So the group {ℎ ∈ 𝐻: 𝜎ℎ(𝑔) = 𝑔} is finite. Conversely, suppose 

that for each 𝑔 ∈ 𝐺, 𝑔 ≠ 𝑒, the group {ℎ ∈ Γ0: 

𝜎ℎ(𝑔) = 𝑔} is finite. Our previous observations then imply that the group 𝑔Γ0𝑔
−1 ∩ Γ0 is 

finite. A group element of Γ ∖ Γ0 can be written as ℎ, 𝑔 ∈ 𝐺 𝑔 ≠ 𝑒, ℎ ∈ Γ0. Note that 

𝑔ℎΓ0ℎ
−1𝑔−1 ∩ Γ0 = 𝑔Γ0𝑔

−1 ∩ Γ0 

is finite. So 𝐵 is mixing in 𝑀 by (b) of Theorem (5.1.16). 
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Recall that the action 𝜎 of a group 𝐻 on a finite von Neumann algebra 𝑁 is called 

ergodic if 𝜎ℎ(𝑥) = 𝑥 for all ℎ ∈ 𝐻 implies that 𝑥 = 𝜆1. The following result extends 

Theorem 2.4 of [213] to the noncommutative setting. 

Corollary (5.1.18)[206]: Let 𝑀 = 𝐿(𝐺 ⋊ Γ0) and 𝐵 = 𝐿(Γ0). Suppose Γ0 is a finitely 

generated, infinite, abelian group or Γ0 is a torsion free group. Then 𝐵 is mixing in 𝑀 if and 

only if every element ℎ ∈ Γ0 of infinite order is ergodic on 𝐿(𝐺). 
Proof. If 𝐵 is mixing in 𝑀, then clearly every element ℎ ∈ Γ0 of infinite order is ergodic on 

𝐿(𝐺). Now suppose every element ℎ ∈ Γ0 of infinite order is ergodic on 𝐿(𝐺). If 𝐵 is not 

mixing in 𝑀, then there is a 𝑔 ∈ 𝐺, 𝑔 ≠ 𝑒, such that {ℎ ∈ Γ0: 𝜎ℎ(𝑔) = 𝑔} is an infinite 

group. Under the above hypotheses on Γ0, there exists an element ℎ0 of infinite order such 

that 𝜎ℎ0(𝑔) = 𝑔. This implies that the action of ℎ0 on 𝐿(𝐺) is not ergodic, which is a 

contradiction. 

Corollary (5.1.19)[206]: Let 𝑀 = 𝐿(𝐺 ⋊ ℤ) and 𝐵 = 𝐿(ℤ). Then the following conditions 

are equivalent: 

1. The action of ℤ on 𝐿(𝐺) is mixing, i.e., 𝐵 is mixing in 𝑀. 

2. The action of ℤ on 𝐿(𝐺) is weakly mixing, i.e., 𝐵 is weakly mixing in 𝑀. 

3. The action of ℤ on 𝐿(𝐺) is ergodic. 

4. For every 𝑔 ∈ 𝐺, 𝑔 ≠ 𝑒, the orbit {𝜎ℎ(𝑔)} is infinite. 

5. For every 𝑔 ∈ 𝐺, 𝑔 ≠ 𝑒, {ℎ ∈ ℤ: 𝜎ℎ(𝑔) = 𝑔} = {𝑒}. 
Proof. Let 𝛾 be a generator of ℤ. Clearly (a) ⇒ (b) ⇒ (c). 

(c) ⇒ (d) Suppose 𝜎𝛾𝑛(𝑔) = 𝑔 and 𝑛 is the minimal positive integer satisfies this 

condition. Let 𝑥 = 𝐿𝑔 + 𝐿𝜎𝛾(𝑔) +⋯+ 𝐿𝜎𝛾𝑛−1(𝑔). Then 𝑥 ∈ 𝐿(𝐺), 𝑥 ≠ 𝜆1, and 𝜎ℎ(𝑥) = 𝑥 

for all ℎ ∈ ℤ. This implies that the action of ℤ on 𝐿(𝐺) is not ergodic. 

(d) ⇒ (e) Suppose 𝜎𝛾𝑛(𝑔) = 𝑔 for some positive integer 𝑛. Then the orbit {𝜎ℎ(𝑔)} 

has at most 𝑛 elements. 

(e) ⇒ (a) follows from Proposition (5.1.17). 

A special case of Corollary (5.1.19) implies the following classical result of Halmos 

[210]. 

Corollary (5.1.20)[206]: (Halmos's Theorem). Let 𝑋 be a compact abelian group, and 

𝑇: 𝑋 → 𝑋 a continuous automorphism. Then 𝑇 is mixing if and only if 𝑇 is ergodic. 

Proof. By the Pontryagin duality theorem, the dual group 𝐺 of 𝑋 is a discrete abelian group. 

Furthermore, there is an induced action of ℤ on 𝐺, and the action is unitarily conjugate to 

the action of 𝑇 on 𝑋. Now the corollary follows from Corollary (5.1.19). 

Suppose 𝑀 is a finite von Neumann algebra with a faithful normal trace 

𝜏, and 𝐴, 𝐵 are von Neumann subalgebras of 𝑀. We say 𝐵 ⊂ 𝑀 is weakly mixing relative 

to 𝐴 if there exists a sequence of unitary operators 𝑢𝑛 ∈ 𝐴 such that 

lim
𝑛→∞

 ∥∥𝔼𝐵(𝑥𝑢𝑛𝑦) − 𝔼𝐵(𝑥)𝑢𝑛𝔼𝐵(𝑦)∥∥2 = 0,  ∀𝑥, 𝑦 ∈ 𝑀. 

So 𝐵 is weakly mixing in 𝑀 if and only if 𝐵 ⊂ 𝑀 is weakly mixing relative to 

𝐵. Since every diffuse von Neumann algebra contains a sequence of unitary operators 

converging to 0 in the weak operator topology, 𝐵 is mixing in 𝑀 implies that 𝐵 ⊂ 𝑀 is 

weakly mixing relative to 𝐴 for all diffuse von Neumann subalgebras 𝐴 of 𝐵. 

It is easy to see that 𝐵 ⊂ 𝑀 is weakly mixing relative to 𝐴 if and only if there exists 

a sequence of unitary operators 𝑢𝑛 ∈ 𝐴 such that for all elements 𝑥, 𝑦 in 𝑀 with 𝔼𝐵(𝑥) =
𝔼𝐵(𝑦) = 0, one has 

lim
𝑛→∞

 ∥∥𝔼𝐵(𝑥𝑢𝑛𝑦)∥∥2 = 0. 
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The main result is the following, which is inspired by [52]. 

Corollary (5.1.21)[206]: Let 𝑀 be a finite von Neumann algebra with a faithful normal 

trace 𝜏, and let 𝐵 be a von Neumann subalgebra of 𝑀. Then the following conditions are 

equivalent: 

1. 𝐵 is a weakly mixing von Neumann subalgebra of 𝑀. 

2. If 𝑥 ∈ 𝑀 satisfies 𝐵𝑥 ⊂ ∑𝑖=1
𝑛  𝑥𝑖𝐵 for a finite number of elements 𝑥1, … , 𝑥𝑛 ∈ 𝑀, then 

𝑥 ∈ 𝐵. 

The following corollary gives an operator algebraic characterization of weakly 

mixing actions of countable discrete groups. 

Corollary (5.1.22)[206]: If 𝜎 is a measure preserving action of a countable discrete group 

Γ0 on a finite measure space (𝑋, 𝜇), then weak mixing of 𝜎 is equivalent to the following 

property: if 𝑥 ∈ 𝐿∞(𝑋, 𝜇) ⋊ Γ0 and 𝐿(Γ0)𝑥 ⊂ ∑𝑖=1
𝑛  𝑥𝑖𝐿(Γ0) for a finite number of elements 

𝑥1, … , 𝑥𝑛 in 𝐿∞(𝑋, 𝜇) ⋊ Γ0, then 𝑥 ∈ 𝐿(Γ0). 
Corollary (5.1.23)[206]: Let 𝑀 be a finite von Neumann algebra with a faithful normal 

trace 𝜏, and let 𝐵 be a mixing von Neumann subalgebra of 𝑀. If 𝐴 ⊂ 𝐵 is a diffuse von 

Neumann subalgebra and 𝑥 ∈ 𝑀 satisfies 𝐴𝑥 ⊂ ∑𝑖=1
𝑛  𝑥𝑖𝐵 for a finite number of elements 

𝑥1, … , 𝑥𝑛 ∈ 𝑀, then 𝑥 ∈ 𝐵. 

Lemma (5.1.24)[206]: Let 𝑝 ∈ ⟨𝑀, 𝑒𝐵⟩ be a finite projection, 𝑝 ≤ 1 − 𝑒𝐵, and 𝜖 > 0. Then 

there exist 𝑥1, … , 𝑥𝑛 ∈ 𝑀⊖𝐵, and projections 𝑓1, … , 𝑓𝑛 ∈ 𝐵 such that 𝔼𝐵(𝑥𝑗
∗𝑥𝑖) = 𝛿𝑖𝑗𝑓𝑖, 

and 

∥
∥
∥
∥
𝑝 −∑  

𝑛

𝑖=1

 𝑥𝑖𝑒𝐵𝑥𝑖
∗

∥
∥
∥
∥

2,Tr

< 𝜖. 

Proof. Let 𝑞 = 𝑒𝐵 + 𝑝. Then 𝑞 is a finite projection in ⟨𝑀, 𝑒𝐵⟩. By Lemma 1.8 of [215], 

there are 𝑥0, 𝑥1, … , 𝑥𝑛 ∈ 𝑀, 𝑥0 = 1, such that 𝔼𝐵(𝑥𝑗
∗𝑥𝑖) = 𝛿𝑖𝑗𝑓𝑖 for 0 ≤ 𝑖, 𝑗 ≤ 𝑛 and 

∥
∥
∥
∥
𝑞 −∑  

𝑛

𝑖=0

 𝑥𝑖𝑒𝐵𝑥𝑖
∗

∥
∥
∥
∥

2,Tr

< 𝜖. 

Clearly, 

∥
∥
∥
∥
𝑝 −∑  

𝑛

𝑖=1

 𝑥𝑖𝑒𝐵𝑥𝑖
∗

∥
∥
∥
∥

2,Tr

< 𝜖. 

Suppose that ℋ ⊂ 𝐿2(𝑀) is a right 𝐵-module. Let ℒ𝐵(𝐿
2(𝐵),ℋ) be the set of bounded right 

𝐵-modular operators from 𝐿2(𝐵) into ℋ. The dimension of ℋ over 𝐵 is defined as 

dim𝐵(ℋ) = Tr(1), 
where Tr is the unique tracial weight on 𝐵′ satisfying the following condition 

Tr(𝑥∗𝑥) = 𝜏(𝑥𝑥∗),  ∀𝑥 ∈ ℒ𝐵(𝐿
2(𝐵),ℋ). 

We say ℋ is a finite right 𝐵-module if Tr(1) < ∞. For details on finite modules, we refer 

the reader to appendix A of [188]. 

Suppose that ℋ ⊂ 𝐿2(𝑀) is a right 𝐵-module. We say that ℋ is finitely generated if 

there exist finitely many elements 𝜉1, … , 𝜉𝑛 ∈ ℋ such that ℋ is the closure of ∑𝑖=1
𝑛  𝜉𝑖𝐵. A 

set {𝜉𝑖}𝑖=1
𝑛  is called an orthonormal basis of ℋ if 𝔼𝐵(𝜉𝑖

∗𝜉𝑗) = 𝛿𝑖𝑗𝑝𝑖 ∈ 𝐵, 𝑝𝑖
2 = 𝑝𝑖, and for 

every 𝜉 ∈ ℋ we have 

𝜉 =∑  

𝑖

𝜉𝑖𝐸𝐵(𝜉𝑖
∗𝜉). 
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Let 𝑝 be the orthogonal projection of 𝐿2(𝑀) onto ℋ. Then 𝑝 = ∑𝑖=1
𝑛  𝜉𝑖𝑒𝐵𝜉𝑖, where 𝜉𝑖 ∈

𝐿2(𝑀) is viewed as an unbounded operator affilated with 𝑀. Every finitely generated right 

𝐵 module has an orthonormal basis. For finitely generated right 𝐵-modules, see 1.4.1 of 

[51].  

The following lemma is proved by Vaes in [188] (see Lemma A.1). 

Lemma (5.1.25)[206]: Suppose ℋ is a finite right 𝐵-module. Then there exists a sequence 

of projections 𝑧𝑛 of 𝑍(𝐵) = 𝐵′ ∩ 𝐵 such that lim𝑛→∞  𝑧𝑛 = 1 in the strong operator topology 

and, for each 𝑛, there exists a projection 𝑝𝑛 ∈ 𝑀𝑘𝑛(𝐵) such that ℋ𝑧𝑛 is unitarily equivalent 

to the 𝑝𝑛𝑀𝑘𝑛(𝐵)𝑝𝑛 𝐵-bimodule 𝑝𝑛(𝐿
2(𝐵)(𝑛)). In particular, ℋ𝑧𝑛 is a finitely-generated 

right 𝐵-module. 

The following lemma is motivated by Lemma 1.4.1 of [51]. 

Lemma (5.1.26)[206]: Suppose ℋ ⊂ 𝐿2(𝑀) is an A-B-bimodule, which is finitely 

generated as a right B-module. Let 𝑝 denote the orthogonal projection of 𝐿2(𝑀) onto ℋ. 
Then there exists a sequence of projections 𝑧𝑛 in 𝐴′ ∩𝑀 such that lim𝑛→∞  𝑧𝑛 = 1 in the 

strong operator topology and for each 𝑛, there exist a finite number of elements 

𝑥𝑛,1, … , 𝑥𝑛,𝑘 ∈ 𝑀 such that 

𝑧𝑛𝑝𝑧𝑛(�̂�) =∑  

𝑘

𝑖=1

  𝑥𝑛,𝑖𝔼𝐵(𝑥𝑛,𝑖
∗̂ 𝑥),  ∀𝑥 ∈ 𝑀. 

Proof. Let {𝜉𝑖}𝑖=1
𝑘 ⊂ ℋ ⊂ 𝐿2(𝑀, 𝜏) be an orthonormal basis for ℋ, i.e., ℋ =⊕𝑖=1

𝑘 [𝜉𝑖𝐵]. 

As in 1.4.1 of [51], the projection 𝑝 from 𝐿2(𝑀) onto ℋ has the form 𝑝 = ∑𝑖=1
𝑘  𝜉𝑖𝑒𝐵𝜉𝑖

∗, 

where 𝜉𝑖 ∈ 𝐿
2(𝑀) is viewed as an unbounded operator affilated with 𝑀. Since ℋ is a left 

𝐴-submodule of 𝐿2(𝑀), in particular it is an invariant subspace for the von Neumann algebra 

𝐴, so the projection 𝑝: 𝐿2(𝑀) → ℋ commutes with 𝐴. Thus, 𝑝 ∈ 𝐴′ ∩ ⟨𝑀, 𝑒𝐵⟩. For 𝑎 ∈ 𝐴, 

we have 

𝑎 (∑  

𝑛

𝑖=1

  𝜉𝑖𝑒𝐵𝜉𝑖
∗) = (∑  

𝑛

𝑖=1

  𝜉𝑖𝑒𝐵𝜉𝑖
∗)𝑎 

and, applying the pull down map to both sides, we obtain 

𝑎 (∑  

𝑛

𝑖=1

  𝜉𝑖𝜉𝑖
∗) = (∑  

𝑛

𝑖=1

  𝜉𝑖𝜉𝑖
∗)𝑎. 

Hence 𝑎𝑞 = 𝑞𝑎 for all spectral projections 𝑞 of 𝜉𝑖𝜉𝑖
∗. Since ∑𝑖=1

𝑛  𝜉𝑖𝜉𝑖
∗ is a densely defined 

operator affilated with 𝑀, 𝑞 ∈ 𝐴′ ∩𝑀. We thus obtain a sequence of projections 𝑧𝑛 ∈ 𝐴
′ ∩

𝑀 such that lim𝑛→∞  𝑧𝑛 = 1 in the strong operator topology and ∑𝑖=1
𝑘  𝑧𝑛𝜉𝑖𝜉𝑖

∗𝑧𝑛 is a bounded 

operator for each 𝑛. Let 𝑥𝑛,𝑖 = 𝑧𝑛𝜉𝑖 , 1 ≤ 𝑖 ≤ 𝑘. Then 𝑥𝑛,𝑖 ∈ 𝑀 and 

𝑧𝑛𝑝𝑧𝑛(�̂�) =∑  

𝑘

𝑖=1

  𝑧𝑛𝜉𝑖𝑒𝐵𝜉𝑖
∗𝑧𝑛(�̂�) =∑  

𝑘

𝑖=1

 𝑥𝑛,𝑖𝑒𝐵𝑥𝑛,𝑖
∗ (�̂�) =∑  

𝑘

𝑖=1

 𝑥𝑛,𝑖𝔼𝐵(𝑥𝑛,𝑖
∗̂ 𝑥) 

for all 𝑥 ∈ 𝑀. 

Theorem (5.1.27)[206]: Let 𝑀 be a finite von Neumann algebra with a faithful normal trace 

𝜏, and let 𝐴, 𝐵 be von Neumann subalgebras of 𝑀 with 𝐴 ⊂ 𝐵. Then the following conditions 

are equivalent: 

1. 𝐵 ⊂ 𝑀 is weakly mixing relative to 𝐴, i.e., there exists a sequence of unitary operators 

{𝑢𝑘} in A such that 

lim
𝑘→∞

 ∥∥𝔼𝐵(𝑥𝑢𝑘𝑦)∥∥2 = 0,  ∀𝑥, 𝑦 ∈ 𝑀⊖𝐵. 
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2. If 𝑧 ∈ 𝐴′ ∩ ⟨𝑀, 𝑒𝐵⟩ satisfies Tr (𝑧∗𝑧) < ∞, then 𝑒𝐵𝑧𝑒𝐵 = 𝑧. 

3. If 𝑝 ∈ 𝐴′ ∩ ⟨𝑀, 𝑒𝐵⟩ satisfies Tr (𝑝) < ∞, then 𝑒𝐵𝑝𝑒𝐵 = 𝑝. 

4. If 𝑥 ∈ 𝑀 satisfies 𝐴𝑥 ⊂ ∑𝑖=1
𝑛  𝑥𝑖𝐵 for a finite number of elements 𝑥1, … , 𝑥𝑛 ∈ 𝑀, then 

𝑥 ∈ 𝐵‾  
Proof. (a)⇒(b) Suppose 𝑒𝐵𝑧𝑒𝐵 = 𝑧 is not true. We may assume that (1 − 𝑒𝐵)𝑧 ≠ 0 

(otherwise, consider 𝑧(1 − 𝑒𝐵)). Replacing 𝑧 by a nonzero spectral projection of 

(1 − 𝑒𝐵)𝑧𝑧
∗(1 − 𝑒𝐵) corresponding to an interval [𝑐, 1] with 𝑐 > 0, we may assume that 

𝑧 = 𝑝 ≠ 0 is a subprojection of 1 − 𝑒𝐵. 

Let 𝜖 > 0. By Lemma (5.1.24), there is a natural number 𝑛 and 𝑥1, … , 𝑥𝑛 ∈ 𝑀⊖𝐵 

such that 𝔼𝐵(𝑥𝑗
∗𝑥𝑖) = 𝛿𝑖𝑗𝑓𝑖, where 𝑓𝑖 is a projection in 𝐵, and 

∥
∥
∥
∥
𝑝 −∑  

𝑛

𝑖=1

  𝑥𝑖𝑒𝐵𝑥𝑖
∗

∥
∥
∥
∥

2,Tr

< 𝜖/2. 

Let 𝑝0 = ∑𝑖=1
𝑛  𝑥𝑖𝑒𝐵𝑥𝑖

∗. Then 𝑝0 is a projection. Note that 𝑢𝑘𝑝𝑢𝑘
∗ = 𝑝. So 

∥∥𝑢𝑘𝑝0𝑢𝑘
∗ − 𝑝0∥∥2,𝑇𝑟 ≤ ∥∥𝑢𝑘(𝑝0 − 𝑝)𝑢𝑘

∗∥∥2,𝑇𝑟 + ∥∥𝑝0 − 𝑝∥∥2,𝑇𝑟 < 𝜖. 

Therefore, 

2∥∥𝑝0∥∥2,Tr
2  = ∥∥𝑢𝑘𝑝0𝑢𝑘

∗ − 𝑝0∥∥2,Tr
2

+ 2Tr (𝑢𝑘𝑝0𝑢𝑘
∗𝑝0)

 = ∥∥𝑢𝑘𝑝0𝑢𝑘
∗ − 𝑝0∥∥2,Tr

2
+ 2 ∑  

1≤𝑖,𝑗≤𝑛

 Tr (𝑢𝑘𝑥𝑖𝑒𝐵𝑥𝑖
∗𝑢𝑘
∗𝑥𝑗𝑒𝐵𝑥𝑗

∗)

 ≤ 𝜖2 + 2 ∑  

1≤𝑖,𝑗≤𝑛

 𝜏(𝔼𝐵(𝑥𝑖
∗𝑢𝑘
∗𝑥𝑗)𝑥𝑗

∗𝑢𝑘𝑥𝑖)

 ≤ 𝜖2 + 2 ∑  

1≤𝑖,𝑗≤𝑛

  ∥∥𝔼𝐵(𝑥𝑗
∗𝑢𝑘𝑥𝑖)∥∥2,𝜏

2
.

 

By the assumption of the lemma, 2∑1≤𝑖,𝑗≤𝑛  ∥∥𝔼𝐵(𝑥𝑗
∗𝑢𝑘𝑥𝑖)∥∥2,𝜏

2
→ 0 when 𝑘 → ∞. Hence, 

∥∥𝑝0∥∥2,Tr ≤ 𝜖. Since 𝜖 > 0 was arbitrary, this says 𝑝 = 0 This is a contradiction. 

(b) ⇒ (a) Suppose (a) is false. Then there exist 𝜖0 > 0 and 𝑥1, … , 𝑥𝑛 ∈ 𝑁⊖𝐵 such 

that ∑1≤𝑖,𝑗≤𝑛  ∥∥𝔼𝐵(𝑥𝑖𝑢𝑥𝑗
∗)∥∥

2,𝜏

2
≥ 𝜖0 for all 𝑢 ∈ 𝒰(𝐴). Let 

𝑧 = ∑𝑖=1
𝑛  𝑥𝑖

∗𝑒𝐵𝑥𝑖. Then 𝑧 ⊥ 𝑒𝐵, Tr (𝑧) < ∞, and 

Tr (𝑧𝑢𝑧𝑢∗) = ∑  

𝑛

𝑖,𝑗=1

  Tr (𝑥𝑖
∗𝑒𝐵𝑥𝑖𝑢𝑥𝑗

∗𝑒𝐵𝑥𝑗𝑢
∗) = ∑  

𝑛

𝑖,𝑗=1

 Tr (𝐸𝐵(𝑥𝑖𝑢𝑥𝑗
∗)𝑒𝐵𝑥𝑗𝑢

∗𝑥𝑖
∗)

 = ∑  

𝑛

𝑖,𝑗=1

 𝜏(𝐸𝐵(𝑥𝑖𝑢𝑥𝑗
∗)𝑥𝑗𝑢

∗𝑥𝑖
∗) = ∑  

𝑛

𝑖,𝑗=1

  ∥∥𝐸𝐵(𝑥𝑖𝑢𝑥𝑗
∗)∥∥

2

2
≥ 𝜖,

 

for all 𝑢 ∈ 𝒰(𝐴). Let Γ𝑧 be the weak operator closure of the convex hull of 

{𝑢𝑧𝑢∗: 𝑢 ∈ 𝒰(𝐴)}. Then there exists a unique element 𝑦 ∈ Γ𝑧 such that ∥ 𝑦 ∥2,Tr=

min{∥ 𝑥 ∥2,𝑇𝑟: 𝑥 ∈ Γ𝑧}. The uniqueness implies that 𝑢𝑦𝑢∗ = 𝑦 for all 𝑢 ∈ 𝒰(𝐴) and hence 

𝑦 ∈ 𝐴′ ∩ ⟨𝑁, 𝑒𝐵⟩. Since Tr (𝑧𝑢𝑧𝑢∗) ≥ 𝜖0, Tr (𝑧𝑦) ≥ 𝜖0 > 0. So 𝑦 > 0 and 𝑦 ⊥ 𝑒𝐵. Note that 

Tr (𝑦2) ≤∥ 𝑦 ∥ Tr (𝑦) ≤∥ 𝑦 ∥ Tr (𝑧) < ∞. 
This contradicts the assumption of (b). 

(b)⇔ (c) is easy to see. 
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(c)⇒ (d) Suppose 𝐴𝑥 ⊂ ∑𝑖=1
𝑛  𝑥𝑖𝐵. Let ℋ be the closure of 𝐴𝑥�̂� in 𝐿2(𝑁, 𝜏). Then ℋ 

is a left 𝐴 finitely generated right 𝐵 bimodule. Let 𝑝 be the projection of 𝐿2(𝑁, 𝜏) onto ℋ. 

Then 𝑝 ∈ 𝐴′ ∩ ⟨𝑁, 𝑒𝐵⟩ is a finite projection of ⟨𝑁, 𝑒𝐵⟩. By the assumption of (c),𝑝 ≤ 𝑒𝐵. So 

�̂� = 𝑝(�̂�) = 𝑒𝐵(�̂�) ∈ �̂� and 𝑥 ∈ 𝐵. 

(d)⇒(c) Suppose 𝑝 ∈ 𝐴′ ∩ ⟨𝑀, 𝑒𝐵⟩ satisfies Tr (𝑧∗𝑧) < ∞. Then ℋ = 𝑝𝐿2(𝑀) is a left 

𝐴 finite right 𝐵 bimodule. By Lemma (5.1.25), we may assume that ℋ is a left 𝐴 finitely 

generated right 𝐵 bimodule. By Lemma (5.1.26), there exists a sequence of projections 𝑧𝑛 

in 𝐴′ ∩𝑀 such that lim𝑛→∞  𝑧𝑛 = 1 in the strong operator topology and for each 𝑛, there 

exist 𝑥𝑛,1, … , 𝑥𝑛,𝑘 ∈ 𝑀 such that 

𝑧𝑛𝑝𝑧𝑛(�̂�) =∑  

𝑘

𝑖=1

 𝑥𝑛,𝑖𝔼𝐵(𝑥𝑛,𝑖
∗̂ 𝑥),   for all 𝑥 ∈ 𝑀. 

Note that 𝑧𝑛𝑝𝑧𝑛 ∈ 𝐴
′ ∩ ⟨𝑀, 𝑒𝑁⟩, and for every 𝑥 ∈ 𝑀, 

𝐴(𝑧𝑛𝑝𝑧𝑛(�̂�)) = (𝑧𝑛𝑝𝑧𝑛)(𝐴�̂�) ⊂∑  

𝑛

𝑖=1

𝑥𝑛,𝑖�̂�. 

By the assumption of (4), 𝑧𝑛𝑝𝑧𝑛(�̂�) ∈ �̂� ⊂ 𝐿
2(𝐵) for every 𝑥 ∈ 𝑀. Hence, for each 𝜉 ∈

𝐿2(𝑀), 𝑧𝑛𝑝𝑧𝑛(𝜉) ∈ 𝐿
2(𝐵). Since lim𝑛→∞  𝑧𝑛 = 1 in the strong operator topology, 𝑝(𝜉) =

lim𝑛→∞  𝑧𝑛𝑝𝑧𝑛(𝜉) ∈ 𝐿
2(𝐵), i.e., 𝑝 ≤ 𝑒𝐵. 

We explore the hereditary properties of mixing subalgebras of finite von Neumann 

algebras; that is, we show that if 𝐵 ⊂ 𝑀 is a mixing inclusion, then the properties of an 

inclusion 𝐵1 ⊂ 𝐵 can force certain mixing properties on the inclusion 𝐵1 ⊂ 𝑀. In particular, 

Proposition (5.1.28) below allows us to construct examples of weakly mixing subalgebras 

which are not mixing. We also use the crossed product and amalgamated free product 

constructions to produce further examples of mixing inclusions. 

Proposition (5.1.28)[206]: Let 𝐵 be a mixing von Neumann subalgebra of 𝑀, and let 𝐵1 be 

a diffuse von Neumann subalgebra of 𝐵. We have the following: 

1. 𝐵1
′ ∩𝑀 = 𝐵1

′ ∩ 𝐵. 

2. If 𝐵1 is singular in 𝐵, then 𝐵1 is singular in 𝑀. 

3. 𝒩𝑀(𝐵1)
′′ ⊆ 𝐵, where 𝒩𝑀(𝐵1) = {𝑢 ∈ 𝒰(𝑀): 𝑢𝐵1𝑢

∗ = 𝐵1}. 
4. If 𝐵1 is weakly mixing in 𝐵, then 𝐵1 is weakly mixing in 𝑀. 

5. If 𝐵1 is mixing in 𝐵, then 𝐵1 is mixing in 𝑀. 

Proof. (a)-(c) follow from Theorem (5.1.15). 

(d) By Corollary (5.1.21), we need to show that if 𝑥 ∈ 𝑀 satisfies 𝐵1𝑥 ⊂ ∑𝑖=1
𝑛  𝑥𝑖𝐵1 

for a finite number of elements 𝑥1, … , 𝑥𝑛 ∈ 𝑀, then 𝑥 ∈ 𝐵1. Note that 𝐵 is mixing in 𝑀. By 

Corollary (5.1.23), 𝑥 ∈ 𝐵. Let 𝑏𝑖 = 𝔼𝐵(𝑥𝑖) for 1 ≤ 𝑖 ≤ 𝑛. Applying 𝔼𝐵 to both sides of the 

inclusion 𝐵1𝑥 ⊂ ∑𝑖=1
𝑛  𝑥𝑖𝐵1 we have 𝐵1𝑥 ⊂ ∑𝑖=1

𝑛  𝑏𝑖𝐵1. Since 𝐵1 is weakly mixing in 𝐵, 𝑥 ∈
𝐵1 by Corollary (5.1.21). 

(e) Suppose 𝐵1 is mixing in 𝐵 and 𝑢𝑛 is a sequence of unitary operators in 𝐵1 with 

lim𝑛→∞  𝑢𝑛 = 0 in the weak operator topology. For 𝑥, 𝑦 ∈ 𝑀, we have 

lim
𝑛→∞

 ∥∥𝔼𝐵(𝑥𝑢𝑛𝑦) − 𝔼𝐵(𝑥)𝑢𝑛𝔼𝐵(𝑦)∥∥2 = 0 

since 𝐵 is mixing in 𝑀. Applying 𝔼𝐵1 to 𝔼𝐵(𝑥𝑢𝑛𝑦) − 𝔼𝐵(𝑥)𝑢𝑛𝔼𝐵(𝑦), we have 

lim
𝑛→∞

 ∥∥𝔼𝐵1(𝑥𝑢𝑛𝑦) − 𝔼𝐵1(𝔼𝐵(𝑥)𝑢𝑛𝔼𝐵(𝑦))∥∥2
= 0.                        (1) 

Since 𝐵1 is mixing in 𝐵, 

lim
𝑛→∞

 ∥∥𝔼𝐵1(𝔼𝐵(𝑥)𝑢𝑛𝔼𝐵(𝑦)) − 𝔼𝐵1(𝑥)𝑢𝑛𝔼𝐵1(𝑢)∥∥2
= 0.                  (2) 
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Combining (1) and (2), we have 

lim
𝑛→∞

 ∥∥𝔼𝐵1(𝑥𝑢𝑛𝑦) − 𝔼𝐵1(𝑥)𝑢𝑛𝔼𝐵1(𝑢)∥∥2
= 0, 

which implies that 𝐵1 is mixing in 𝑀. 

Proposition (5.1.29)[206]: Let 𝑀 be a type II1 factor with the faithful normal trace 𝜏, and 

let 𝐵 be a proper subfactor of 𝑀. If {𝑢𝑛} is a sequence of unitary operators in 𝐵 such that 

for all elements 𝑥, 𝑦 in 𝑀 with 𝔼𝐵(𝑥) = 𝔼𝐵(𝑦) = 0, one has 

lim
𝑛→∞

 ∥∥𝔼𝐵(𝑥𝑢𝑛𝑦)∥∥2 = 0, 

then lim𝑛→∞  𝑢𝑛 = 0 in the weak operator topology. 

Proof. Note that 𝐵 is weakly mixing in 𝑀 and hence singular in 𝑀. In particular 𝐵′ ∩𝑀 =
ℂ1. Let 𝜔 be a non principal ultrafilter of ℕ and suppose lim𝑛→𝜔  𝑢𝑛 = 𝑏 in the weak 

operator topology. For 𝑥, 𝑦 in 𝑀 with 𝔼𝐵(𝑥) = 𝔼𝐵(𝑦) = 0 

𝔼𝐵(𝑥𝑏𝑦) = lim
𝑛→𝜔

 𝔼𝐵(𝑥𝑢𝑛𝑦) = 0. 

Let 𝑏 = 𝑢|𝑏| be the polar decomposition of 𝑏. Note that 

𝔼𝐵(𝑥𝑢
∗) = 𝔼𝐵(𝑥)𝑢

∗ = 0. 
Hence, 

𝔼𝐵(𝑥|𝑏|𝑦) = 𝔼𝐵(𝑥𝑢
∗𝑢|𝑏|𝑦) = 𝔼𝐵(𝑥𝑢

∗𝑏𝑦) = 0. 
Let 𝑥 = 𝑦∗. Then 𝔼𝐵(𝑦

∗|𝑏|𝑦) = 0 and hence 𝑦∗|𝑏|𝑦 = 0. This implies that |𝑏|𝑦 = 0 for all 

𝑦 ∈ 𝑀 with 𝔼𝐵(𝑦) = 0. For 𝑏′ ∈ 𝐵, 𝔼𝐵(𝑏
′𝑦) = 𝑏′𝔼𝐵(𝑦) = 0. Hence, |𝑏|𝑏′𝑦 = 0. This 

implies that |𝑏|𝑅(𝑏′𝑦) = 0, where 𝑅(𝑏′𝑦) is the range projection of 𝑏′𝑦. Let 𝑝 =
∨𝑏′∈𝐵 𝑅(𝑏

′𝑦). Then |𝑏|𝑝 = 0. On the other hand, 0 ≠ 𝑝 ∈ 𝐵′ ∩𝑀, so 𝑝 = 1. We then have 

|𝑏| = 0, and 𝑏 = 0. Therefore, lim𝑛→𝜔  𝑢𝑛 = 0 in the weak operator topology. Since 𝜔 is an 

arbitrary non principal ultrafilter of ℕ, lim𝑛→∞  𝑢𝑛 = 0 in the weak operator topology. 

Lemma (5.1.30)[206]: Let 𝐵 be a von Neumann subalgebra of 𝑀. Then the following 

conditions are equivalent: 

1. 𝐵 is atomic type I. 

2. For every bounded sequence {𝑥𝑛} in 𝑀 with lim𝑛→∞  𝑥𝑛 = 0 in the weak operator 

topology, lim𝑛→∞  ∥∥𝔼𝐵(𝑥𝑛)∥∥2 = 0. 

Proof. (a)⇒(b) Since 𝐵 is a finite atomic type I von Neumann algebra, 𝐵 =⊕𝑘=1
𝑁 𝑀𝑛𝑘(ℂ), 

where 1 ≤ 𝑁 ≤ ∞. So there exists a sequence of finite rank central projections 𝑝𝑛 ∈ 𝐵 such 

that 𝑝𝑛 → 1 in the strong operator topology. Therefore, 𝜏(𝑝𝑛) → 1. Let {𝑥𝑛} be a bounded 

sequence in 𝑀 with 𝑥𝑛 → 0 in the weak operator topology, and let 𝜖 > 0. We may assume 

that ∥∥𝑥𝑛∥∥ ≤ 1. Choose 𝑝𝑘 such that 𝜏(1 − 𝑝𝑘) < 𝜖
2/4. Note that the map 𝑥 ∈ 𝑀 →

𝑝𝑘𝔼𝐵(𝑥) is a finite rank operator. There is an 𝑚 > 0 such that for all 𝑛 ≥
𝑚, ∥∥𝑝𝑘𝔼𝐵(𝑥𝑛)∥∥2 < 𝜖/2. Then 

∥∥𝔼𝐵(𝑥𝑛)∥∥2 ≤ ∥∥𝑝𝑘𝔼𝐵(𝑥𝑛)∥∥2 + ∥∥(1 − 𝑝𝑘)𝔼𝐵(𝑥𝑛)∥∥2 ≤ 𝜖/2 + 𝜖/2 = 𝜖. 

This proves that ∥∥𝔼𝐵(𝑥𝑛)∥∥2 → 0.  

(b)⇒(a) If 𝑀 is not atomic type I, then there is a nonzero central projection 𝑝 ∈ 𝑀 

such that 𝑝𝑀 is diffuse. Thus, there is a Haar unitary operator 𝑣 ∈ 𝑝𝑀. Note that 𝑣𝑛 → 0 in 

the weak operator topology. But ∥∥𝔼𝐵(𝑣
𝑛)∥∥2 = ∥𝑣

𝑛∥2 = 𝜏(𝑝)
1/2 does not converge to 0. 

This contradicts (b). 

Proposition (5.1.31)[206]: Let 𝑀 = 𝑀1 ∗𝐴 𝑀2 be the amalgamated free product of diffuse 

finite von Neumann algebras (𝑀1, 𝜏1) and (𝑀2, 𝜏2) over an atomic 𝑓 nite von Neumann 

algebra 𝐴. Then 𝑀1 is a mixing von Neumann subalgebra of 𝑀. 
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Proof. The following spaces are mutually orthogonal with respect to the unique trace 𝜏 on 

𝑀:𝑀2⊖𝐴, (𝑀1⊖𝐴)⊗ (𝑀2⊖𝐴), (𝑀2⊖𝐴)⊗ (𝑀1⊖𝐴), 
(𝑀1⊖𝐴)⊗ (𝑀2⊖𝐴)⊗ (𝑀1⊖𝐴),⋯ Furthermore, the trace-norm closure of the linear 

span of the above spaces is 𝐿2(𝑀, 𝜏) ⊖ 𝐿2(𝑀1, 𝜏). Suppose {𝑢𝑛} is a sequence of unitary 

operators in 𝑀1 satisfying lim𝑛→∞  𝑢𝑛 = 0 in the weak operator topology. To prove 𝑀1 is a 

mixing von Neumann subalgebra of 𝑀, we need only to show for 𝑥 in each of the above 

spaces, we have 

lim
𝑛→∞

 ∥∥𝔼𝑀1(𝑥𝑢𝑛𝑥
∗)∥∥

2
= 0. 

We will give the proof for 𝑥 in one of the following spaces: 

(𝑀1⊖𝐴)⊗ (𝑀2⊖𝐴)  and  (𝑀2⊖𝐴)⊗ (𝑀1⊖𝐴). 
The other cases can be proved similarly. 

Suppose 𝑥 = 𝑥1𝑦1, where 𝑥1 ∈ 𝑀1⊖𝐴 and 𝑦1 ∈ 𝑀2⊖𝐴. Then 

𝑥𝑢𝑛𝑥
∗ = 𝑥1𝑦1(𝑢𝑛 − 𝔼𝐴(𝑢𝑛))𝑦1

∗𝑥1 + 𝑥1𝑦1𝔼𝐴(𝑢𝑛)𝑦1
∗𝑥1
∗. 

Note that 𝔼𝑀1(𝑥1𝑦1(𝑢𝑛 − 𝔼𝐴(𝑢𝑛))𝑦1
∗𝑥1) = 0 and lim𝑛→∞  ∥∥𝐸𝐴(𝑢𝑛)∥∥2 = 0 by 

Lemma (5.1.30). So 

lim
𝑛→∞

 ∥∥𝔼𝑀1(𝑥𝑢𝑛𝑥
∗)∥∥

2
= 0. 

Suppose 𝑥 = 𝑦1𝑥1, where 𝑥1 ∈ 𝑀1⊖𝐴 and 𝑦1 ∈ 𝑀2⊖𝐴. Then 

𝑥𝑢𝑛𝑥
∗ = 𝑦1𝑥1𝑢𝑛𝑥1

∗𝑦1 = 𝑦1(𝑥1𝑢𝑛𝑥1
∗ − 𝔼𝐴(𝑥1𝑢𝑛𝑥1

∗))𝑦1
∗ − 𝑦1𝔼𝐴(𝑥1𝑢𝑛𝑥1

∗)𝑦1
∗. 

Note that 

𝔼𝑀1(𝑦1(𝑥1𝑢𝑛𝑥1
∗ − 𝔼𝐴(𝑥1𝑢𝑛𝑥1

∗))𝑦1
∗) = 0  and  lim

𝑛→∞
 ∥∥𝔼𝐴(𝑥1𝑢𝑛𝑥1

∗)∥∥2 = 0 

by Lemma (5.1.30). So 

lim
𝑛→∞

 ∥∥𝔼𝑀1(𝑥𝑢𝑛𝑥
∗)∥∥

2
= 0. 

Note, in particular, that Proposition (5.1.31) implies that if 𝐴 is a diffuse mixing masa in a 

finite von Neumann algebra 𝑀1, and 𝑀2 is also diffuse, then 𝐴 is mixing in the free product 

𝑀1 ∗ 𝑀2. 

Now let 𝐵 be a diffuse finite von Neumann algebra with a faithful normal trace 𝜏, and 

let 𝐺 be a countable discrete group. Let ∗𝑔∈𝐺 𝐵𝑔 be the free product von Neumann algebra, 

where 𝐵𝑔 is a copy of 𝐵 for each 𝑔. The shift transformation 𝜎(𝑔)((𝑥ℎ)) = (𝑥𝑔−1ℎ) defines 

an action of 𝐺 on ∗𝑔∈𝐺 𝐵𝑔. Let 𝑀 =∗𝑔∈𝐺 𝐵𝑔 ⋊ 𝐺. Then 𝑀 is a type II1 factor and we can 

identify 𝐵 with 𝐵𝑒. 

Proposition (5.1.32)[206]: The above algebra 𝐵 is a mixing von Neumann subalgebra of 

𝑀. 

Proof. Suppose 𝑣𝑔 is the classical unitary operator corresponding to the action 𝑔 in 𝑀. Then 

for every (𝑥ℎ) in ∗𝑔∈𝐺 𝐵𝑔, 

𝑣𝑔(𝑥ℎ)𝑣𝑔
−1 = (𝜎𝑔(𝑥ℎ)) = (𝑥𝑔−1ℎ). 

Suppose 𝑏𝑛 ∈ 𝐵 = 𝐵𝑒 , 𝑏𝑛 → 0 in the weak operator topology, 𝑔 ≠ 𝑒, and 𝑥ℎ ∈ 𝐵ℎ. We may 

assume 𝜏(𝑏𝑛) = 0 for each 𝑛. Note that 

𝑥ℎ𝑣𝑔𝑣𝑛𝑣𝑔
∗𝑥ℎ
∗ = 𝑥ℎ𝜎𝑔(𝑏𝑛)𝑥ℎ

∗ . 

If ℎ ≠ 𝑒, it is clear that 𝑥ℎ𝜎𝑔(𝑏𝑛)𝑥ℎ
∗  is free with 𝐵 = 𝐵𝑒 and hence orthogonal to 𝐵. If ℎ =

𝑒, direct computations show that 𝑥𝑒𝜎𝑔(𝑏𝑛)𝑥𝑒
∗ is orthogonal to 𝐵 = 𝐵𝑒. So we have 

𝔼𝐵(𝑥ℎ𝑣𝑔𝑏𝑛𝑣𝑔
∗𝑥ℎ
∗) = 𝔼𝐵(𝑥ℎ𝜎𝑔(𝑏𝑛)𝑥ℎ

∗) = 𝜏(𝑥ℎ𝜎𝑔(𝑏𝑛)𝑥ℎ
∗)  = 𝜏(𝜎𝑔(𝑏𝑛)𝑥ℎ

∗𝑥ℎ)

 = 𝜏 (𝑏𝑛𝜎𝑔−1(𝑥ℎ
∗𝑥ℎ)) ,
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and this last expression above converges to zero. Note that the linear span of the above 

elements 𝑥ℎ𝑣𝑔 is dense in 𝑀⊖𝐵 in the weak operator topology. This proves that 𝐵 is 

mixing in 𝑀. 

 

Section (5.2): 𝒒-Deformed Araki–Woods Von Neumann Algebras and Factoriality 

In free probability, Voiculescu's 𝐶∗-free Gaussian functor associates a canonical 𝐶∗-
algebra denoted by Γ(ℋℝ) to a real Hilbert space ℋℝ, the former being generated by 

𝑠(𝜉), 𝜉 ∈ ℋℝ, where each 𝑠(𝜉) is the sum of creation and annihilation operators on the full 

Fock space of the complexification of ℋℝ. The associated von Neumann algebra Γ(ℋℝ)
′′ 

is isomorphic to 𝐿(𝔽dim (ℋℝ)) and is the central object in the study of free probability (see 

[233] for more on the subject). There are three interesting types of deformations of 

Voiculescu's free Gaussian functor each of which has a real Hilbert space ℋℝ as the initial 

input data: (i) the 𝑞-Gaussian functor due to Bożejko and Speicher for −1 < 𝑞 < 1 (see 

[66]), (ii) a functor due to Shlyakhtenko (see [15]) which is a free probability analog of the 

construction of quasi free states on the CAR and CCR algebras and (iii) the third one is a 

combination of the first two and is due to Hiai (see [123]); the associated von Neumann 

algebras are respectively called BożejkoSpeicher factors (or 𝑞-Gaussian von Neumann 

algebras), free Araki-Woods factors and 𝑞-deformed Araki-Woods von Neumann algebras. 

Frisch and Bourret in [77] had considered operators satisfying the 𝑞-canonical 

commutation relations: 

𝑙(𝑒)𝑙(𝑓)∗ − 𝑞𝑙(𝑓)∗𝑙(𝑒) = ⟨𝑒, 𝑓⟩𝐼, −1 < 𝑞 < 1. 
The existence of such operators on an 'appropriate Fock space' was proved by Bożejko and 

Speicher in [66] and these operators have importance in particle statistics [230], [231]. Since 

then many experts have studied the 𝑞-Gaussian von Neumann algebras. Structural properties 

of the 𝑞-Gaussian algebras have been studied in [223], [66], [60], [68], [227], [137], [113], 

[239], [185], [238]. A short summary of the results obtained in these studies are as follows. 

For dim (ℋℝ) ≥ 2, the 𝑞-Gaussian von Neumann algebras Γ𝑞(ℋℝ) are non-injective, solid, 

strongly solid, non Γ factors with 𝑤∗-completely contractive approximation property. 

Further, Γ𝑞(ℋℝ) ≅ 𝐿(𝔽dim (ℋℝ)) for values of 𝑞 sufficiently close to zero [232]. The 

Shlyakhtenko functor in [15] associates a 𝐶∗-algebra Γ(ℋℝ, 𝑈𝑡) to a pair (ℋℝ, 𝑈𝑡), where 

ℋℝ is a real Hilbert space and (𝑈𝑡) is a strongly continuous real orthogonal representation 

of ℝ on ℋℝ. The von Neumann algebras Γ(ℋℝ, 𝑈𝑡)
′′ obtained this way i.e., the free Araki-

Woods von Neumann algebras are full factors of type III𝜆, 0 < 𝜆 ≤ 1, when (𝑈𝑡) is non-

trivial and dim (ℋℝ) ≥ 2 [15]. These von Neumann algebras are type III counterparts of the 

free group factors. In short, they satisfy the complete metric approximation property, lack 

Cartan subalgebras, are strongly solid, and, they satisfy Connes' bicentralizer problem when 

they are type III1 (see [179],[190],[224]). They have many more interesting properties. 

The third functor mentioned above is the 𝑞-deformed functor due to Hiai for −1 <
𝑞 < 1 (see [123]). Hiai's functor is the main topic. It is a combination of Bożejko Speicher's 

functor and Shlyakhtenko's functor. This functor, like the Shlyakhtenko's functor, associates 

a 𝐶∗-algebra Γ𝑞(ℋℝ, 𝑈𝑡) to a pair (ℋℝ, 𝑈𝑡), where ℋℝ is a real Hilbert space and (𝑈𝑡) is a 

strongly continuous orthogonal representation of ℝ on ℋℝ as before. The associated von 

Neumann algebras in this construction a priori depend on 𝑞 ∈ (−1,1) and are represented 

in standard form on 'twisted full Fock spaces' that carry the spectral data of (𝑈𝑡) and 

connects it to the modular theory of this particular standard representation in a manner such 

that the canonical creation and annihilation operators satisfy the 𝑞-canonical commutation 
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relations of Frisch and Bourret. Hiai's functor coincides with Bożejko-Speicher's functor 

when (𝑈𝑡) is trivial and also coincides with Shlyakhtenko's functor when 𝑞 = 0. Note that 

Γ𝑞(ℋℝ, 𝑈𝑡)
′′ is abelian when dim (ℋℝ) = 1, so the situation becomes interesting when 

dim (ℋR) ≥ 2. 

Assume dim (ℋℝ) ≥ 2. Unlike the free Araki-Woods factors, not much is known 

about the 𝑞-deformed Araki-Woods von Neumann algebras. Hiai proved amongst other 

things that when the almost periodic part of (𝑈𝑡) is infinite dimensional, the centralizer of 

the 𝑞-quasi free state (vacuum state) has trivial relative commutant and thus decided 

factoriality of the ambient von Neumann algebra Γ𝑞(ℋR, 𝑈𝑡)
′′ (Thm. 3.2, [123]). Thus, he 

was also able to decide the type of these factors under the same hypothesis imposed (Thm. 

3.3, [123]). He also exhibited non-injectivity of Γ𝑞(ℋℝ, 𝑈𝑡)
′′ depending on the 'thickness of 

the spectrum of the analytic generator of (𝑈𝑡)' (Thm. 2.3, [123]). Recently, Nelson 

generalized the techniques of free monotone transport originally developed in [232] beyond 

the tracial case. Using this powerful tool he proved that Γ𝑞(ℋℝ, 𝑈𝑡)
′′ ≅ Γ0(ℋℝ, 𝑈𝑡)

′′ (the 

latter being the free Araki-Woods factors) around a small interval centred at 0, and hence 

decided factoriality (Thm. 4.5,4.6, [236]). Thus, even factoriality of Γ𝑞(ℋℝ, 𝑈𝑡)
′′ is not 

known to hold in general. We investigate the factoriality of Γ𝑞(ℋℝ, 𝑈𝑡)
′′. The main result is 

the following: 

Theorem (5.2.1)[222]: For any strongly continuous orthogonal representation 𝑡 ↦ 𝑈𝑡, of ℝ 

on a separable real Hilbert space ℋℝ with dim (ℋℝ) ≥ 2 and for all 𝑞 ∈ (−1,1), the 𝑞-

deformed Araki-Woods von Neumann algebras Γ𝑞(ℋℝ, 𝑈𝑡)
′′ are factors, if there exists a 

unit vector 𝜉0 ∈ ℋℝ such that 𝑈𝑡𝜉0 = 𝜉0 for all 𝑡 ∈ ℝ. 

The main result in [137] which proves the factoriality of Γ𝑞(ℋℝ) uses MASAs. The 

proof of Theorem (5.2.1) also uses MASAs but from a different point of view. Note that, if 

a finite von Neumann algebra contains a diffuse MASA so that the orthocomplement of the 

associated Jones' projection (with respect to a faithful normal tracial state) as a bimodule 

over the MASA is a direct sum of coarse bimodules, then the ambient von Neumann algebra 

must be a factor. Thus, our proof depends on singular MASAs (and this is natural as we are 

dealing with algebras which are similar to free group factors [172]). So, our techniques are 

more close to understanding the measure-multiplicity invariant of a MASA that was 

introduced in [228]. The MASAs that we work with lie in the centralizer of the 𝑞-quasi free 

state. We call these generator MASAs, as these MASAs are indeed the analogue of generator 

MASAs in the free group factors. The generator MASAs in the free group factors have 

vigorous mixing properties. So, to compare, we investigate mixing properties of generator 

MASAs in Γ𝑞(ℋℝ, 𝑈𝑡)
′′ and show that the left-right measure of these MASAs (see [234] for 

Defn.) are Lebesgue absolutely continuous. The second reason of working with MASAs is 

forced, for this enables us to decide the factoriality of the centralizer of the 𝑞-quasi free state 

and thereby facilitate the computation of the 𝑆-invariant of the ambient factor. 

We collect all the necessary material that is needed to address the problem. We 

contains an account of Hiai's construction, associated modular theory, description of the 

commutant and other technical details. A convenient description of the centralizer of the 𝑞-

quasi free state is required. The centralizer depends entirely on the almost periodic 

component of (𝑈𝑡) and its GNS space is described in Theorem (5.2.11). We investigate the 

properties of the generator abelian algebras which are indispensable ingredients in our 

arguments. In Theorem (5.2.13), we establish that a canonical self-adjoint generator of 
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Γ𝑞(ℋℝ, 𝑈𝑡)
′′ generates a diffuse abelian algebra (generator MASA) having conditional 

expectation that preserves the vacuum state if and only if the generator lies in the centralizer 

of Γ𝑞(ℋℝ, 𝑈𝑡)
′′ with respect to the same state. 

By making a short account on how to regard a GNS space of an arbitrary von 

Neumann algebra equipped with a faithful normal state as a standard bimodule over a 

MASA, when the MASA comes from the centralizer of the associated state. We also discuss 

strong mixing of MASAs (lying inside the centralizer) with respect to a particular faithful 

normal state and also highlight on calculating left-right measures of MASAs. In Theorem 

(5.2.17) and Theorem (5.2.18), we show that for a generator algebra (MASA) in 

Γ𝑞(ℋℝ, 𝑈𝑡)
′′ that possess conditional expectation preserving the vacuum state, the left-right 

measure is indeed Lebesgue absolutely continuous for all 𝑞 ∈ (−1,1). This justifies the term 

'generator MASA: This statement is an indication that Γ𝑞(ℋℝ, 𝑈𝑡)
′′ will share many 

properties of the free group factors even when 𝑞 is away from 0 (the case when 𝑞 is close to 

±1 is probably more interesting from the point of view of physics) and is a reflection of a 

deep theorem of Voiculescu on the subject [172]. It readily follows that if the fixed point 

subspace of (𝑈𝑡) is at least two dimensional, then the centralizer of the vacuum state has 

trivial relative commutant and hence Γ𝑞(ℋℝ, 𝑈𝑡)
′′ is a factor (Corollary (5.2.20)). 

We establish factoriality of Γ𝑞(ℋℝ, 𝑈𝑡)
′′ in Theorem (5.2.22) and Theorem (5.2.23), 

when dim (ℋℝ) ≥ 2 and 𝑞 ∈ (−1,1), in the case when (𝑈𝑡) is not ergodic or has a non-

trivial weakly mixing component. We extend the statement of Corollary (5.2.20) in Theorem 

(5.2.24) to show that the centralizer of the vacuum state has trivial relative commutant when 

dim (ℋℝ) ≥ 2, the fixed point subspace of (𝑈𝑡) is at least one dimensional and the 

dimension of the almost periodic part of (𝑈𝑡) is at least two dimensional. Finally, we 

characterize the type of the factors obtained via Hiai's construction in Theorem (5.2.25) and 

Theorem (5.2.26) under the assumption that (𝑈𝑡) is almost periodic with a non-trivial fixed 

point or has a weakly mixing component. The results are analogous to the ones found in 

Thm. 3.3 [123]. 

We collect some well known facts about the 𝑞-deformed Araki-Woods von Neumann 

algebras constructed by Hiai in [123] that will be indispensable for our purpose. For detailed 

exposition, see [123]. As a convention, all Hilbert spaces are separable, all von Neumann 

algebras have separable preduals and inner products are linear in the second variable. 

Let ℋℝ be a real Hilbert space and let 𝑡 ↦ 𝑈𝑡 , 𝑡 ∈ ℝ, be a strongly continuous 

orthogonal representation of ℝ on ℋℝ. Let ℋℂ = ℋℝ⊗ℝ ℂ denote the complexification of 

ℋℝ. Denote the inner product and norm on ℋℂ by ⟨⋅,⋅⟩ℋℂ and ∥⋅∥ℋℂ  respectively.  

Identify ℋℝ in ℋℂ by ℋℝ⊗1. Thus, ℋℂ = ℋℝ + 𝑖ℋℝ, and as a real Hilbert space 

the inner product of ℋℝ in ℋℂ is given by ℜ⟨⋅,⋅⟩ℋc. Consider the bounded anti-linear 

operator 𝒥:ℋℂ → ℋℂ given by 𝒥(𝜉 + 𝑖𝜂) = 𝜉 − 𝑖𝜂, 𝜉, 𝜂 ∈ ℋℝ, and note that 𝒥𝜉 = 𝜉 for 𝜉 ∈
ℋℝ. Moreover, 

⟨𝜉, 𝜂⟩ℋℂ = ⟨𝜂, 𝜉⟩
̅̅ ̅̅ ̅̅ ̅

ℋℂ = ⟨𝜂, 𝒥𝜉⟩ℋC , for all 𝜉 ∈ ℋℂ, 𝜂 ∈ ℋℝ. 

Linearly extend the flow 𝑡 ↦ 𝑈𝑡 from ℋℝ to a strongly continuous one parameter group of 

unitaries in ℋℂ and denote the extensions by 𝑈𝑡 for each 𝑡 with abuse of notation. Let 𝐴 

denote the analytic generator and 𝐻 the associated Hamiltonian of the extension. Then 𝐴 is 

positive, nonsingular and self-adjoint, while 𝐻 is self-adjoint. Since ℋℝ reduces 𝑈𝑡 for all 

𝑡 ∈ ℝ, so ℋℝ reduces 𝑖𝐻 as well. Denoting 𝔇(⋅) to be the domain of an (unbounded) 
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operator, one notes that 𝔇(𝐻) = 𝔇(𝑖𝐻) and 𝐻 maps 𝔇(𝐻) ∩ℋℝ into 𝑖ℋℝ. It follows that 

𝒥𝐻 = −𝐻𝒥 and 𝒥𝐴 = 𝐴−1𝒥. 

Introduce a new inner product on ℋC by ⟨𝜉, 𝜂⟩𝑈 = ⟨
2

1+𝐴−1
𝜉, 𝜂⟩

ℋC

, 𝜉, 𝜂 ∈ ℋℂ, and let ∥⋅∥𝑈 

denote the associated norm on ℋℂ. Let ℋ denote the complex Hilbert space obtained by 

completing (ℋℂ, ∥⋅∥𝑈). The inner product and norm of ℋ will respectively be denoted by 

⟨⋅,⋅⟩𝑈 and ∥⋅∥𝑈 as well. Then, (ℋℝ, ∥⋅∥ℋc) ∋ 𝜉 ↦
 
𝜉 ∈ (ℋℂ, ∥⋅∥𝑈) ⊆ (ℋ, ∥⋅∥𝑈), is an 

isometric embedding of the real Hilbert space ℋℝ in ℋ (in the sense of [15]). With abuse 

of notation, we will identify ℋℝ with its image 𝜄(ℋℝ). Then, ℋℝ ∩ 𝑖ℋℝ = {0} and ℋℝ +
𝑖ℋℝ is dense in ℋ (see pp. 332 [15]). 

It is now appropriate to record a subtle point which will be crucial in our attempt to 

describe the centralizers of the 𝑞-deformed Araki-Woods von Neumann algebras. As 𝐴 is 

affiliated to 𝑣𝑁(𝑈𝑡: 𝑡 ∈ ℝ), so note that 

⟨𝑈𝑡𝜉, 𝑈𝑡𝜂⟩𝑈 = ⟨𝜉, 𝜂⟩𝑈, for 𝜉, 𝜂 ∈ ℋℂ.                                 (3) 

Consequently, (𝑈𝑡) extends to a strongly continuous unitary representation (�̃�𝑡) of ℝ on 

ℋ. Let �̃� be the analytic generator associated to (�̃�𝑡), which is obviously an extension of 

𝐴. From the definition of ⟨⋅,⋅⟩𝑈 on ℋℂ, it follows that if 𝜇 is the spectral measure of 𝐴, then 

𝜈 = 𝑓𝜇 is the spectral measure of �̃�, where 𝑓(𝑥) =
2𝑥

1+𝑥
 for 𝑥 ∈ ℝ≥0, and by the spectral 

theorem (direct integral form), the multiplicity functions in the associated direct integrals 

remain the same. Note that 𝐿2(𝐹, 𝜇∣𝐹) ⊆ 𝐿
2(𝐹, 𝜈∣𝐹) for all Borel subsets 𝐹 of (0,∞). But, as 

𝑓 is increasing, it follows that 𝐿2(𝐹, 𝜇∣𝐹) = 𝐿
2(𝐹, 𝜈∣𝐹) (as a vector space) when 𝐹 ⊆ [𝜆,∞) 

is measurable for all 𝜆 > 0. Moreover, 0 < 𝜆 is an atom of 𝜇 if and only if it is an atom of 

𝜈. Thus, if 𝐸𝐴 and 𝐸�̃� denote the associated projection-valued spectral measures, then 

𝐸𝐴([𝜆,∞))(ℋℂ) = 𝐸�̃�([𝜆,∞))(ℋ) and 𝐸𝐴(𝜆)(ℋℂ) = 𝐸�̃�(𝜆)(ℋ) 
for all 𝜆 > 0. We record the following in the form of a proposition. 

Proposition (5.2.2)[222]: Any eigenvector of �̃� is an eigenvector of 𝐴 corresponding to the 

same eigenvalue. 

Since the spectral data of 𝐴 and �̃� (and hence of (𝑈𝑡) and (�̃�𝑡)) are essentially the same, 

and �̃�𝑡 , �̃� are respectively extensions of 𝑈𝑡 , 𝐴 for all 𝑡 ∈ ℝ, so we would now write �̃� = 𝐴 

and �̃�𝑡 = 𝑈𝑡 for all 𝑡 ∈ ℝ.  

Given a complex Hilbert space and −1 < 𝑞 < 1, the notion of 𝑞-Fock space ℱ𝑞(⋅) 

was introduced in [66]. The 𝑞-Fock space ℱ𝑞(ℋ) of ℋ is constructed as follows. Let Ω be 

a distinguished unit vector in ℂ usually referred to as the vacuum vector. Denote ℋ⊗0 =
ℂΩ, and, for 𝑛 ≥ 1, let ℋ⊗𝑛 = spanℂ {𝜉1⊗⋯⊗ 𝜉𝑛: 𝜉𝑖 ∈ ℋ for 1 ≤ 𝑖 ≤ 𝑛} denote the 

algebraic tensor products. Let ℱ𝑓𝑖𝑛(ℋ) = spanℂ {ℋ
⊗𝑛: 𝑛 ≥ 0}. For 𝑛,𝑚 ≥ 0 and 𝑓 =

𝜉1⊗⋯⊗ 𝜉𝑛 ∈ ℋ
⊗𝑛, 𝑔 = 𝜁1⊗⋯⊗ 𝜁𝑚 ∈ ℋ

⊗𝑚, the association 

⟨𝑓, 𝑔⟩𝑞 = 𝛿𝑚,𝑛 ∑  

𝜋∈𝑆𝑛

𝑞𝑖(𝜋)⟨𝜉1, 𝜁𝜋(1)⟩𝑈⋯⟨𝜉𝑛, 𝜁𝜋(𝑛)⟩𝑈,                   (4) 

where 𝑖(𝜋) denotes the number of inversions of the permutation 𝜋 ∈ 𝑆𝑛, defines a positive 

definite sesquilinear form on ℱfin (ℋ) and the 𝑞-Fock space ℱ𝑞(ℋ) is the completion of 

ℱfin (ℋ) with respect to the norm ∥⋅∥𝑞 induced by ⟨⋅,⋅⟩𝑞. 
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For 𝑛 ∈ ℕ, let ℋ⊗𝑞𝑛 = ℋ⊗𝑛 ∥⋅∥𝑞
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. For our purposes, it is important to note that ⟨⋅,⋅⟩𝑞 

and ⟨⋅,⋅⟩0 are equivalent on ℋ⊗𝑛 and ⟨⋅,⋅⟩0 is the inner product of the standard tensor 

product. Thus, rephrasing and combining two lemmas of [66] one has the following. 

Lemma (5.2.3)[222]: The map id: (ℋ⊗𝑛, ∥⋅∥𝑞) → (ℋ⊗𝑛, ∥⋅∥0), given by 𝑖𝑑(𝜉1⊗⋯⊗

𝜉𝑛) = (𝜉1⊗⋯⊗ 𝜉𝑛), where 𝜉𝑖 ∈ ℋ, 1 ≤ 𝑖 ≤ 𝑛, extends uniquely to a bounded and 

invertible linear map 𝑇: (ℋ⊗𝑞𝑛 , ∥⋅∥𝑞) → (ℋ⊗𝑛, ∥⋅∥0) for −1 < 𝑞 < 1. 

Proof. Following [66], every 𝜋 ∈ 𝑆𝑛 induces an unitary operator on ℋ⊗0𝑛 given by 

𝑈𝜋(𝜉1⊗ ⋯⊗ 𝜉𝑛) = 𝜉𝜋(1)⊗⋯⊗ 𝜉𝜋(𝑛), 𝜉𝑖 ∈ ℋ, 1 ≤ 𝑖 ≤ 𝑛. Let 𝑃𝑞 = ∑𝜋∈𝑆𝑛  𝑞
𝑖(𝜋)𝑈𝜋 . 

Then 𝑃𝑞 ∈ 𝐁(ℋ
⊗𝑛) and by Lemma 3 and Lemma 4 of [66], 𝑃𝑞 is strictly positive for −1 <

𝑞 < 1 and ⟨𝑓, 𝑔⟩𝑞 = ⟨𝑓, 𝑃𝑞𝑔⟩0 for all 𝑓, 𝑔 ∈ ℋ⊗𝑛. Consequently, 𝑃𝑞 is injective and hence 

invertible. It follows that 
1

∥∥
∥∥𝑃𝑞

−
1
2

∥∥
∥∥
∥ 𝑓 ∥0≤∥ 𝑓 ∥𝑞≤ ∥∥𝑃𝑞∥∥

1
2 ∥ 𝑓 ∥0 , for 𝑓 ∈ ℋ⊗𝑛.               (5) 

The rest is obvious.  

The following norm inequalities will be crucial (cf. [60],[66], and [137]): 

1. If 𝜉 ∈ ℋ and ∥ 𝜉 ∥𝑈= 1, then 

∥∥𝜉⊗𝑛∥∥𝑞
2
= [𝑛]𝑞!,                                                       (6) 

where [𝑛]𝑞: = 1 + 𝑞 +⋯+ 𝑞
(𝑛−1), [𝑛]𝑞!: = ∏𝑗=1

𝑛  [𝑗]𝑞, for 𝑛 ≥ 1, and [0]𝑞: = 0, [0]𝑞!: = 1 

by convention. 

1. If 𝜉1, ⋯ , 𝜉𝑛, 𝜉 ∈ ℋ with ∥∥𝜉𝑗∥∥𝑈 =∥ 𝜉 ∥𝑈= 1 for all 1 ≤ 𝑗 ≤ 𝑛, then the following 

estimate holds: 

∥∥𝜉1⊗⋯⊗ 𝜉𝑛⊗𝜉⊗𝑚∥∥𝑞 ≤ 𝐶𝑞

𝑛
2√[𝑚]𝑞!,𝑚 ≥ 0,                        (7) 

where 𝐶𝑞 = ∏𝑖=1
∞  

1

(1−|𝑞|𝑖)
. 

For 𝜉 ∈ ℋ, the left 𝑞-creation and 𝑞-annihilation operators on ℱ𝑞(ℋ) are respectively 

defined by: 

               𝑐𝑞(𝜉)Ω = 𝜉 

               𝑐𝑞(𝜉)(𝜉1⊗⋯⊗ 𝜉𝑛) = 𝜉 ⊗ 𝜉1⊗⋯⊗ 𝜉𝑛, 

               and, 
               𝑐𝑞(𝜉)

∗Ω = 0, 

               𝑐𝑞(𝜉)
∗(𝜉1⊗⋯⊗ 𝜉𝑛) 

=∑ 

𝑛

𝑖=1

𝑞𝑖−1⟨𝜉, 𝜉𝑖⟩𝑈𝜉1⊗⋯⊗ 𝜉𝑖−1⊗𝜉𝑖+1⊗⋯⊗ 𝜉𝑛,          (8) 

where 𝜉1⊗⋯⊗ 𝜉𝑛 ∈ ℋ
⊗𝑞𝑛 for 𝑛 ≥ 1. The operators 𝑐𝑞(𝜉) and 𝑐𝑞(𝜉)

∗ are bounded on 

ℱ𝑞(ℋ) and they are adjoints of each other. Moreover, they satisfy the following 𝑞-

commutation relations: 

𝑐𝑞(𝜉)
∗𝑐𝑞(𝜁) − 𝑞𝑐𝑞(𝜁)𝑐𝑞(𝜉)

∗ = ⟨𝜉, 𝜁⟩𝑈1, for all 𝜉, 𝜁 ∈ ℋ. 
The following observation will be crucial for our purpose. 

Lemma (5.2.4)[222]: Let 𝜉, 𝜉𝑖 , 𝜂𝑗 ∈ ℋ, for 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚. Then 

𝑐𝑞(𝜉)
∗((𝜉1⊗⋯⊗ 𝜉𝑛) ⊗ (𝜂1⊗⋯⊗𝜂𝑚)) 
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= (𝑐𝑞(𝜉)
∗(𝜉1⊗⋯⊗ 𝜉𝑛))⊗ (𝜂1⊗⋯⊗𝜂𝑚)

 + 𝑞𝑛(𝜉1⊗⋯⊗ 𝜉𝑛) ⊗ (𝑐𝑞(𝜉)
∗(𝜂1⊗⋯⊗𝜂𝑚)) .

 

Proof. The proof follows easily from Eq. (5).  

Following [15] and [123], consider the 𝐶∗-algebra Γ𝑞(ℋℝ, 𝑈𝑡):= 𝐶
∗{𝑠𝑞(𝜉): 𝜉 ∈ ℋℝ} 

and the von Neumann algebra Γ𝑞(ℋℝ, 𝑈𝑡)
′′, where 

𝑠𝑞(𝜉) = 𝑐𝑞(𝜉) + 𝑐𝑞(𝜉)
∗, 𝜉 ∈ ℋℝ. 

Γ𝑞(ℋℝ, 𝑈𝑡)
′′ is known as the 𝑞-deformed Araki-Woods von Neumann algebra (see [123]).  

The vacuum state 𝜑𝑞,𝑈: = ⟨Ω,⋅ Ω⟩𝑞 (also called the 𝑞-quasi free state), is a faithful 

normal state of Γ𝑞(ℋℝ, 𝑈𝑡)
′′ and ℱ𝑞(ℋ) is the GNS Hilbert space of Γ𝑞(ℋℝ, 𝑈𝑡)

′′ associated 

to 𝜑𝑞,𝑈. Thus, Γ𝑞(ℋℝ, 𝑈𝑡)
′′ acting on ℱ𝑞(ℋ) is in standard form [233]. 

We will use the symbols ⟨⋅,⋅⟩𝑞 and ∥⋅∥𝑞 respectively to denote the inner product and 

two-norm of elements of the GNS Hilbert space. 

Most of what is taken from [15],[123]. We need to have a convenient description of 

the commutant and centralizer of Γ𝑞(ℋℝ, 𝑈𝑡)
′′ (which has been recorded in the case 𝑞 = 0 

in [15] and a similar collection of operators in the commutant has been identified in [123]). 

Thus, we need to record some facts related to the modular theory of the 𝑞-quasi free state 

𝜑𝑞,𝑈. Let 𝐽𝜑𝑞,𝑈 and Δ𝜑𝑞,𝑈 respectively denote the modular conjugation and modular operator 

associated to 𝜑𝑞,𝑈 and let 𝑆𝜑𝑞,𝑈 = 𝐽𝜑𝑞,𝑈Δ𝜑𝑞,𝑈

1

2  Then, for 𝑛 ∈ ℕ, 

𝐽𝜑𝑞,𝑈(𝜉1⊗⋯⊗ 𝜉𝑛) = 𝐴
−
1
2𝜉𝑛⊗⋯⊗𝐴−

1
2𝜉1, ∀𝜉𝑖 ∈ ℋℝ ∩ 𝔇(𝐴

−
1
2) ;

Δ𝜑𝑞,𝑈(𝜉1⊗⋯⊗ 𝜉𝑛) = 𝐴
−1𝜉1⊗⋯⊗𝐴−1𝜉𝑛, ∀𝜉𝑖 ∈ ℋℝ ∩𝔇(𝐴

−1);

𝑆𝜑𝑞,𝑈(𝜉1⊗⋯⊗ 𝜉𝑛) = 𝜉𝑛⊗⋯⊗ 𝜉1, ∀𝜉𝑖 ∈ ℋℝ.

   (9) 

The modular automorphism group (𝜎𝑡
𝜑𝑞,𝑈

) of 𝜑𝑞,𝑈 is given by 𝜎−𝑡
𝜑𝑞,𝑈 = Ad (ℱ(𝑈𝑡)), where 

ℱ(𝑈𝑡) = 𝑖𝑑 ⊕⊕𝑛≥1 𝑈𝑡
⊗𝑞𝑛

, for all 𝑡 ∈ ℝ. In particular, 

𝜎−𝑡
𝜑𝑞,𝑈

(𝑠𝑞(𝜉)) = 𝑠𝑞(𝑈𝑡𝜉), for all 𝜉 ∈ ℋℝ.                          (10) 

Now we proceed to describe the commutant of Γ𝑞(ℋℝ, 𝑈𝑡)
′′. Consider the set 

ℋℝ
′ = {𝜉 ∈ ℋ: ⟨𝜉, 𝜂⟩𝑈 ∈ ℝ for all 𝜂 ∈ ℋℝ}. 

Note that ℋℝ
′ + 𝑖ℋℝ

′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = ℋ and ℋℝ
′ ∩ 𝑖ℋℝ

′ = {0}. Let 𝜁 ∈ 𝔇(𝐴−1/2) ∩ℋℝ. Note that for all 

𝜂 ∈ ℋℝ, one has 

⟨𝐴−
1
2𝜁, 𝜂⟩

𝑈
= ⟨

2𝐴−
1
2

1 + 𝐴−1
𝜁, 𝜂⟩

ℋC

= ⟨𝜂, 𝒥
2𝐴−

1
2

1 + 𝐴−1
𝜁⟩

ℋℂ

 

                 = ⟨𝜂,
2𝐴

1
2

1 + 𝐴
𝜁ℋC = ⟨

2

1 + 𝐴−1
𝜂, 𝐴−

1
2𝜁⟩

ℋℂ

 

= ⟨𝜂, 𝐴−
1
2𝜁⟩

𝑈
.                                                                     (11) 

From Eq. (11), it follows that 
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𝐴−1/2𝜁 ∈ ℋℝ
′  for all 𝜁 ∈ 𝔇(𝐴−

1
2) ∩ℋℝ.                               (12) 

Also note that for 𝜂, 𝜉 ∈ 𝔇(𝐴−1) ∩ ℋℝ, one has 

⟨𝜂, 𝜉⟩𝑈  = ⟨
2

1 + 𝐴−1
𝜂, 𝜉⟩

ℋℂ

= ⟨𝜉, 𝒥
2

1 + 𝐴−1
𝜂⟩
ℋℂ

 = ⟨𝜉,
2

1 + 𝐴
𝜂⟩
ℋℂ

= ⟨
2

1 + 𝐴−1
𝜉, 𝐴−1𝜂⟩

ℋℂ

 = ⟨𝜉, 𝐴−1𝜂⟩𝑈 = ⟨𝐴
−
1
2𝜉, 𝐴−

1
2𝜂⟩

𝑈
 (as𝔇(𝐴−1) ⊆ 𝔇(𝐴−

1
2)) .

    (13) 

Now for 𝜉 ∈ ℋ, define the right creation operator 𝑟𝑞(𝜉) on ℱ𝑞(ℋ) by 

𝑟𝑞(𝜉)Ω = 𝜉,

𝑟𝑞(𝜉)(𝜉1⊗⋯⊗ 𝜉𝑛) = 𝜉1⊗⋯⊗ 𝜉𝑛⊗𝜉, 𝜉𝑖 ∈ ℋ, 𝑛 ≥ 1.
      (14) 

Clearly, 𝑟𝑞(𝜉) = 𝚥𝑐𝑞(𝜉)𝚥
∗, where 𝚥: ℱ𝑞(ℋ) → ℱ𝑞(ℋ) is the unitary defined by 

𝚥(𝜉1⊗⋯⊗ 𝜉𝑛) = 𝜉𝑛⊗⋯⊗ 𝜉1, where 𝜉𝑖 ∈ ℋ for all 1 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 1, (12) 
𝚥(Ω) = Ω. 

Therefore, 𝑟𝑞(𝜉) is a bounded operator on ℱ𝑞(ℋ) and its adjoint 𝑟𝑞(𝜉)
∗ is given by 

𝑟𝑞(𝜉)
∗Ω = 0,                                                           (15) 

𝑟𝑞(𝜉)
∗(𝜉1⊗⋯⊗ 𝜉𝑛) =∑  

𝑛

𝑖=1

 𝑞𝑛−𝑖⟨𝜉, 𝜉𝑖⟩𝑈𝜉1⊗⋯⊗ 𝜉𝑖−1⊗𝜉𝑖+1⊗⋯⊗ 𝜉𝑛, 𝜉𝑖 ∈ ℋ, 𝑛

≥ 1. 

Write 𝑑𝑞(𝜉) = 𝑟𝑞(𝜉) + 𝑟𝑞(𝜉)
∗, 𝜉 ∈ ℋ. It is easy to observe that {𝑑𝑞(𝜉): 𝜉 ∈ ℋℝ

′ }
′′
⊆

Γ𝑞(ℋℝ, 𝑈𝑡)
′. The following result establishes that the reverse inclusion is also true and its 

proof is similar to the one obtained in ([15]). 

Theorem (5.2.5)[222]: Suppose 𝜉 ∈ 𝔇(𝐴−1) ∩ℋℝ. Then 𝐽𝜑𝑞,𝑈𝑠𝑞(𝜉)𝐽𝜑𝑞,𝑈 = 𝑑𝑞 (𝐴
−
1

2𝜉). 

Moreover, Γ(ℋℝ, 𝑈𝑡)
′ = {𝑑𝑞(𝜉): 𝜉 ∈ ℋℝ

′ }
′′

. 

Proof. Fix 𝑛 ≥ 1 and let 𝜂1, 𝜂2, ⋯ , 𝜂𝑛 ∈ 𝔇(𝐴
−1) ∩ℋℝ. Then from Eq. (8), we have 

𝐽𝜑𝑞,𝑈𝑠𝑞(𝜉)(𝜂1⊗𝜂2⊗⋯⊗𝜂𝑛) 

= 𝐽𝜑𝑞,𝑈 (∑  

𝑛

𝑖=1

 𝑞(𝑖−1)⟨𝜉, 𝜂𝑖⟩𝑈𝜂1⊗⋯⊗𝜂𝑖−1⊗𝜂𝑖+1⋯⊗ 𝜂𝑛)                    

+𝐽𝜑𝑞,𝑈(𝜉 ⊗ 𝜂1⊗⋯⊗𝜂𝑛)                              

=∑ 

𝑛

𝑖=1

  𝑞(𝑖−1)⟨𝜂𝑖 , 𝜉⟩𝑈𝐴
−
1
2𝜂𝑛⊗⋯⊗𝐴−

1
2𝜂𝑖+1⊗𝐴−

1
2𝜂𝑖−1⊗⋯⊗𝐴−

1
2𝜂1 

                              +𝐴−
1
2𝜂𝑛⊗⋯⊗𝐴−

1
2𝜂1⊗𝐴−

1
2𝜉 ( since 𝔇(𝐴−1) ⊆ 𝔇(𝐴−

1
2)) 

=∑ 

𝑛

𝑖=1

  𝑞(𝑖−1)⟨𝜉, 𝐴−1𝜂𝑖⟩𝑈𝐴
−
1
2𝜂𝑛⊗⋯⊗𝐴−

1
2𝜂𝑖+1⊗𝐴−

1
2𝜂𝑖−1⊗⋯⊗𝐴−

1
2𝜂1 
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 + 𝐴−
1

2𝜂𝑛⊗⋯⊗𝐴−
1

2𝜂1⊗𝐴−
1

2𝜉 (by Eq. (12)) 

=∑  

𝑛

𝑖=1

 𝑞(𝑖−1) ⟨𝐴−
1
2𝜉, 𝐴−

1
2𝜂𝑖⟩

𝑈
𝐴−

1
2𝜂𝑛⊗⋯⊗𝐴−

1
2𝜂𝑖+1⊗𝐴−

1
2𝜂𝑖−1⊗⋯⊗𝐴−

1
2𝜂1      

+𝐴−
1
2𝜂𝑛⊗⋯⊗𝐴−

1
2𝜂1⊗𝐴−

1
2𝜉 (since  𝔇(𝐴−1) ⊆ 𝔇(𝐴−

1
2))  

= 𝑑𝑞 (𝐴
−
1

2𝜉) 𝐽𝜑𝑞,𝑈(𝜂1⊗𝜂2⊗⋯⊗𝜂𝑛)          (from Eq. (13) and Eq. (15)). 

It follows that 𝐽𝜑𝑞,𝑈𝑠𝑞(𝜉)𝐽𝜑𝑞,𝑈 = 𝑑𝑞 (𝐴
−
1

2𝜉). 

Since Γ𝑞(ℋℝ, 𝑈𝑡)
′′ is in standard form in ℱ𝑞(ℋ), so from the fundamental theorem 

of Tomita-Takesaki theory Γ𝑞(ℋℝ, 𝑈𝑡)
′ = 𝐽𝜑𝑞,𝑈Γ𝑞(ℋℝ, 𝑈𝑡)

′′𝐽𝜑𝑞,𝑈 . Again from Eq. (9), one 

has 𝐴−
1

2𝜉 ∈ ℋℝ
′  for all 𝜉 ∈ 𝔇(𝐴−

1

2) ∩ℋℝ.  

By what we have proved so far, it follows that {𝐽𝜑𝑞,𝑈𝑠𝑞(𝜉)𝐽𝜑𝑞,𝑈: 𝜉 ∈ 𝔇(𝐴
−1) ∩

ℋℝ} ⊆ {𝑑𝑞(𝜉): 𝜉 ∈ ℋR
′ }
′′
. Note that from Eq. (7) it follows that, if ℋℝ ∋ 𝜉𝑛 → 𝜉 ∈ ℋℝ in 

∥⋅∥ℋ𝐶
 (equivalently in ∥⋅∥𝑈), then 𝑠𝑞(𝜉𝑛) → 𝑠𝑞(𝜉) in ∥⋅∥ (as ∥∥𝑠𝑞(𝜁)∥∥ =

2

√1−𝑞
∥ 𝜁 ∥𝑈 for all 

𝜁 ∈ ℋR). Consequently, 𝔇(𝐴−1) ∩ ℋℝ being dense in ℋℝ, it follows that Γ𝑞(ℋℝ, 𝑈𝑡)
′ ⊆

{𝑑𝑞(𝜉): 𝜉 ∈ ℋℝ
′ }
′′
. Since the reverse inclusion is straightforward to check, the proof is 

complete.  

We are interested in the factoriality of Γ𝑞(ℋℝ, 𝑈𝑡)
′′ and the orthogonal representation 

remains arbitrary but fixed. Thus, to reduce notation, we will write 𝑀𝑞 = Γ𝑞(ℋℝ, 𝑈𝑡)
′′ and 

𝜑 = 𝜑𝑞,𝑈. We will also denote 𝐽𝜑𝑞,𝑈 by 𝐽 and Δ𝜑𝑞,𝑈 by Δ. As Ω is separating for both 𝑀𝑞 and 

𝑀𝑞
′ , for 𝜁 ∈ 𝑀𝑞Ω and 𝜂 ∈ 𝑀𝑞

′Ω there exist unique 𝑥𝜁 ∈ 𝑀𝑞 and 𝑥𝜂
′ ∈ 𝑀𝑞

′  such that 𝜁 = 𝑥𝜁Ω 

and 𝜂 = 𝑥𝜂
′Ω. In this case, we will write 

𝑠𝑞(𝜁) = 𝑥𝜁  and 𝑑𝑞(𝜂) = 𝑥𝜂
′ .                                       (16) 

Thus, for example, as 𝜉 ∈ 𝑀𝑞Ω for every 𝜉 ∈ ℋℝ, so 𝑠𝑞(𝜉 + 𝑖𝜂) = 𝑠𝑞(𝜉) + 𝑖𝑠𝑞(𝜂) for all 

𝜉, 𝜂 ∈ ℋℝ. 

Note that 𝑐𝑞(𝜉) and 𝑟𝑞(𝜉) are bounded operators for all 𝜉 ∈ ℋ. Write 

�̃�𝑞(𝜉) = 𝑐𝑞(𝜉) + 𝑐𝑞(𝜉)
∗ and �̃�𝑞(𝜉) = 𝑟𝑞(𝜉) + 𝑟𝑞(𝜉)

∗, 𝜉 ∈ ℋ. 

Note that if 𝜉 ∈ ℋℝ, then �̃�𝑞(𝜉) = 𝑠𝑞(𝜉), and if 𝜉 ∈ ℋℝ
′  then �̃�𝑞(𝜉) = 𝑑𝑞(𝜉). If 𝜉 = 𝜉1 +

𝑖𝜉2 for 𝜉1, 𝜉2 ∈ ℋℝ and 𝜉2 ≠ 0, then note that �̃�𝑞(𝜉) ≠ 𝑠𝑞(𝜉). 

Write 𝒵(𝑀𝑞) = 𝑀𝑞 ∩𝑀𝑞
′ . Let 𝑀𝑞

𝜑
= {𝑥 ∈ 𝑀𝑞: 𝜎𝑡

𝜑
(𝑥) = 𝑥 for all 𝑡 ∈ ℝ} denote the 

centralizer of 𝑀𝑞 associated to the state 𝜑. For 𝜉 ∈ ℋℝ, denote 𝑀𝜉 = 𝑣𝑁(𝑠𝑞(𝜉)). Note that 

𝑀𝜉 is abelian as 𝑠𝑞(𝜉) is self-adjoint. To understand the Hilbert space ℱ𝑞(ℋ) as a bimodule 

over 𝑀𝜉, it will be convenient for us to work with appropriate choice of orthonormal basis 

of ℋℝ with respect to ⟨⋅,⋅⟩ℋC
. Recall that 𝑥 ∈ 𝑀𝑞 is analytic with respect to (𝜎𝑡

𝜑
) if and only 

if the function ℝ ∋ 𝑡 ↦ 𝜎𝑡
𝜑
(𝑥) ∈ 𝑀𝑞 extends to a weakly entire function. We say that a 

vector 𝜉 ∈ ℋℝ is analytic, if 𝑠𝑞(𝜉) is analytic for (𝜎𝑡
𝜑
). 

Proposition (5.2.6)[222]: ℋℝ has an orthonormal basis with respect to ⟨⋅,⋅⟩ℋc comprising 

of analytic vectors. Further, if 𝜉0 ∈ ℋℝ be a unit vector such that 𝑈𝑡𝜉0 = 𝜉0 for all 𝑡 ∈ ℝ, 

then such an orthonormal basis of ℋℝ can be chosen so that it includes 𝜉0. 
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Proof. Note that 𝑈𝑡 = 𝐴
𝑖𝑡 for all 𝑡 ∈ ℝ. For 𝜁 ∈ ℋℝ and 𝑟 > 0, let 𝜁𝑟 = √

𝑟

𝜋
∫
ℝ
 𝑒−𝑟𝑡

2
𝑈𝑡𝜁𝑑𝑡. 

It is well known that 𝜁𝑟 → 𝜁 in ∥⋅∥ℋC
 (equivalently in ∥⋅∥𝑈 as the vectors involved are real) 

as 𝑟 → 0. As (𝑈𝑡) reduces ℋR and 𝜁 ∈ 𝑀𝑞Ω, so 𝜁𝑟 ∈ 𝑀𝑞Ω for all 𝑟 > 0. Fix 𝑟 > 0. Consider 

𝑠𝑞(𝜁𝑟) ∈ 𝑀𝑞 (as defined in Eq. (16)). Then, by Eq. (9) it follows that 

𝜎𝑠
𝜑
(𝑠𝑞(𝜁𝑟)) = 𝑠𝑞 (√

𝑟

𝜋
∫  
ℝ

 𝑒−𝑟(𝑡+𝑠)
2
𝑈𝑡𝜁𝑑𝑡) , 𝑠 ∈ ℝ.                   (17) 

Note that 𝑓𝜁𝑟(𝑧) = √
𝑇

𝜋
∫
ℝ
 𝑒−𝑟(𝑡+𝑧)

2
𝑈𝑡𝜁𝑑𝑡 ∈ ℋℂ for all 𝑧 ∈ ℂ. Thus, 𝑠𝑞(𝑓𝜁𝑟(𝑧)) is defined by 

Eq. (16) and belongs to 𝑀𝑞. It is easy to see that 𝑠𝑞(𝑓𝜁𝑟(⋅)): ℂ → 𝑀𝑞 is an analytic extension 

of ℝ ∋ 𝑠 ↦ 𝜎𝑠
𝜑
(𝑠𝑞(𝜁𝑟)). Thus, 𝜁𝑟 is analytic.  

Let 𝔇0 = spanℝ {𝜁𝑟: 𝑟 > 0, 𝜁 ∈ ℋℝ}. Note that 𝔇0 (consisting of analytic vectors) is 

dense in (ℋℝ, ⟨⋅,⋅⟩ℋℂ). Finally, use the fact that any dense subspace of a separable (real) 

Hilbert space has an orthonormal basis consisting of elements from the dense subspace. The 

rest is clear.  

Lemma (5.2.7)[222]: Let 𝜉0 ∈ ℋℝ be a unit vector such that 𝑈𝑡𝜉0 = 𝜉0 for all 𝑡. Then the 

following hold. 

(a) For 𝜂 ∈ ℋℝ + 𝑖ℋℝ one has 

⟨𝜉0, 𝜂⟩𝑈 = ⟨𝜉0, 𝜂⟩ℋℂ . 

(b) Let 𝜉1, ⋯ , 𝜉𝑛 ∈ ℋℝ be non-zero vectors. If 𝑘 ≥ 1, then 

⟨𝜉0
⊗𝑘, 𝜉1⊗⋯⊗ 𝜉𝑛⟩𝑞 = 0, 

if and only if 𝑛 ≠ 𝑘 or ⟨𝜉0, 𝜉𝑖⟩ℋC = 0 for at least one 𝑖. 

(c) Let 𝜉1, ⋯ , 𝜉𝑛 ∈ ℋℝ ∩𝔇(𝐴
−
1

2) be non-zero vectors. If 𝑘 ≥ 1, then 

⟨𝜉0
⊗𝑘 , 𝐴−

1
2𝜉1⊗⋯⊗𝐴−

1
2𝜉𝑛⟩

𝑞
= 0, 

if and only if 𝑛 ≠ 𝑘 or ⟨𝜉0, 𝜉𝑖⟩ℋC = 0 for at least one 𝑖. 

Proof. (a). Note that 
2

1+𝐴−1
𝜉0 = 𝜉0. Thus, the result follows from the definition of ⟨⋅,⋅⟩𝑈. 

(b). Note that 

⟨𝜉0
⊗𝑘 , 𝜉1⊗⋯⊗ 𝜉𝑛⟩𝑞  = 𝛿𝑛,𝑘⟨𝜉0

⊗𝑛, 𝜉1⊗⋯⊗ 𝜉𝑛⟩𝑞

 = 𝛿𝑛,𝑘 ∑  

𝜋∈𝑆𝑛

  𝑞𝑖(𝜋)∏ 

𝑛

𝑗=1

  ⟨𝜉0, 𝜉𝜋(𝑗)⟩𝑈
 (by Eq.(4)) 

 = 𝛿𝑛,𝑘 ∑  

𝜋∈𝑆𝑛

  𝑞𝑖(𝜋)∏ 

𝑛

𝑗=1

  ⟨
2

1 + 𝐴−1
𝜉0, 𝜉𝜋(𝑗)⟩

ℋℂ

 = 𝛿𝑛,𝑘 ∑  

𝜋∈𝑆𝑛

  𝑞𝑖(𝜋)∏ 

𝑛

𝑗=1

  ⟨𝜉0, 𝜉𝜋(𝑗)⟩ℋℂ

 = 𝛿𝑛,𝑘∏ 

𝑛

𝑗=1

  ⟨𝜉0, 𝜉𝑗⟩ℋℂ
∑  

𝜋∈𝑆𝑛

  𝑞𝑖(𝜋)
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= 𝛿𝑛,𝑘∏ 

𝑛

𝑗=1

⟨𝜉0, 𝜉𝑗⟩ℋℂ
[𝑛]𝑞!. 

The rest is immediate. 

(c). First note that as 𝜉𝑖 ∈ ℋℝ, so 𝐴−
1

2𝜉𝑖 ∈ ℋℂ. Observe that 

⟨𝜉0
⊗𝑘, 𝐴−

1
2𝜉1⊗⋯⊗𝐴−

1
2𝜉𝑛⟩

𝑞
 = 𝛿𝑛,𝑘 ⟨𝜉0

⊗𝑛, 𝐴−
1
2𝜉1⊗⋯⊗𝐴−

1
2𝜉𝑛⟩

𝑞

 = 𝛿𝑛,𝑘 ∑  

𝜋∈𝑆𝑛

 𝑞𝑖(𝜋)∏ 

𝑛

𝑗=1

  ⟨𝜉0, 𝐴
−
1
2𝜉𝜋(𝑗)⟩

𝑈
( by Eq.(4)) 

 = 𝛿𝑛,𝑘 ∑  

𝜋∈𝑆𝑛

 𝑞𝑖(𝜋)∏ 

𝑛

𝑗=1

  ⟨𝜉0, 𝜉𝜋(𝑗)⟩𝑈

 = ⟨𝜉0
⊗𝑘, 𝜉1⊗⋯⊗ 𝜉𝑛⟩𝑞 .

 

Thus, the result follows from (b) above.  

A convenient description of the centralizer 𝑀𝑞
𝜑

 is a component we need to decide the 

factoriality and type of 𝑀𝑞. We borrow ideas from Thm. 2.2 of [123] and show that the 

centralizer of 𝑀𝑞 depends on the almost periodic part of the orthogonal representation (𝑈𝑡). 

We need some intermediate results. 

Lemma (5.2.8)[222]: The following hold. 

1. The vector 𝜉1⊗⋯⊗ 𝜉𝑛 ∈ 𝑀𝑞Ω for any 𝜉𝑖 ∈ ℋℝ, 1 ≤ 𝑖 ≤ 𝑛 and 𝑛 ∈ ℕ. 

2. The vector 𝜉1⊗⋯⊗ 𝜉𝑛 ∈ 𝑀𝑞
′Ω for any 𝜉𝑖 ∈ 𝔇(𝐴

−
1

2) ∩ℋℝ, 1 ≤ 𝑖 ≤ 𝑛 and 𝑛 ∈ ℕ. 

Proof. In both cases, the proof proceeds by induction. 

(a) Let 𝑛 = 1. Then by definition of 𝑀𝑞 it follows that 𝜉 = 𝑠𝑞(𝜉)Ω ∈ 𝑀𝑞Ω for all 𝜉 ∈

ℋR. Now suppose that 𝜉1⊗⋯⊗ 𝜉𝑡 ∈ 𝑀𝑞Ω for all 𝜉𝑗 ∈ ℋℝ, 1 ≤ 𝑗 ≤ 𝑡 and for all 1 ≤ 𝑡 ≤

𝑛. Let 𝜉𝑛+1 ∈ ℋR. Then from Eq. (7) we have, 

𝜉1⊗⋯⊗ 𝜉𝑛⊗𝜉𝑛+1 = 𝑠𝑞(𝜉1)𝑠𝑞(𝜉2⊗⋯⊗ 𝜉𝑛+1)Ω

 −∑  

𝑛+1

𝑙=2

 𝑞𝑙−2⟨𝜉1, 𝜉𝑙⟩𝑈𝜉2⊗⋯⊗ 𝜉𝑙−1⊗𝜉𝑙+1⊗⋯⊗ 𝜉𝑛+1.
 

But the right hand side of the above expression lies in 𝑀𝑞Ω by the induction hypothesis. 

Thus, 𝜉1⊗⋯⊗ 𝜉𝑛 ∈ 𝑀𝑞Ω for 𝜉𝑖 ∈ ℋℝ, 1 ≤ 𝑖 ≤ 𝑛 and for all 𝑛 ∈ ℕ. 

(b) Let 𝜉 ∈ 𝔇(𝐴−
1

2) ∩ℋℝ. By Eq. (8), it follows that 𝐽(ℋℝ) ⊆ ℋℂ. Thus, 

write 𝐽𝜉 = 𝜂1 + 𝑖𝜂2 with 𝜂1, 𝜂2 ∈ ℋℝ. Then 𝑠𝑞(𝜂𝑗) ∈ 𝑀𝑞 for 𝑗 = 1,2, thus 𝐽𝜉 =

(𝑠𝑞(𝜂1) + 𝑖𝑠𝑞(𝜂2))Ω ∈ 𝑀𝑞Ω. Note that 𝐽𝑠𝑞(𝐽𝜉)𝐽Ω = 𝜉. Consequently, 𝜉 ∈ 𝑀𝑞
′Ω 

by the fundamental theorem of Tomita-Takesaki theory. Like before, assume that 𝜉1⊗⋯⊗

𝜉𝑡 ∈ 𝑀𝑞
′Ω for all 𝜉𝑗 ∈ ℋℝ ∩𝔇(𝐴

−
1

2) , 1 ≤ 𝑗 ≤ 𝑡 and for all 1 ≤ 𝑡 ≤ 𝑛. 

Fix 𝜉𝑛+1 ∈ 𝔇(𝐴
−
1

2) ∩ℋℝ and let 𝐽𝜉𝑛+1 = 𝐴
−
1

2𝜉𝑛+1 = 𝜂𝑛+1
1 + 𝑖𝜂𝑛+1

2  with 

𝜂𝑛+1
1 , 𝜂𝑛+1

2 ∈ ℋℝ (see Eq. (6)). Then for 𝜉𝑖 ∈ 𝔇(𝐴
−
1

2) ∩ℋℝ for all 1 ≤ 𝑖 ≤ 𝑛, from Eq. 

(7), Eq. (8), and the fact that 𝐽2 = 1, it follows that 
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   𝐽𝑠𝑞(𝐽𝜉𝑛+1)𝐽𝑑𝑞(𝜉1⊗⋯⊗ 𝜉𝑛)Ω 

= 𝐽𝑠𝑞(𝐽𝜉𝑛+1)𝐽(𝜉1⊗⋯⊗ 𝜉𝑛)                                                            

= 𝐽 ((𝑐𝑞(𝜂𝑛+1
1 ) + 𝑖𝑐𝑞(𝜂𝑛+1

2 )) (𝐴−
1
2𝜉𝑛⊗⋯⊗𝐴−

1
2𝜉1))             

+𝐽 ((𝑐𝑞(𝜂𝑛+1
1 )∗ + 𝑖𝑐𝑞(𝜂𝑛+1

2 )∗) (𝐴−
1
2𝜉𝑛⊗⋯⊗𝐴−

1
2𝜉1)) 

= 𝐽 ((𝜂𝑛+1
1 + 𝑖𝜂𝑛+1

2 ) ⊗ (𝐴−
1
2𝜉𝑛⊗⋯⊗𝐴−

1
2𝜉1))                        

 + 𝐽 ((𝑐𝑞(𝜂𝑛+1
1 )∗ + 𝑖𝑐𝑞(𝜂𝑛+1

2 )∗) (𝐴−
1
2𝜉𝑛⊗⋯⊗𝐴−

1
2𝜉1)) 

= 𝐽 (𝐴−
1
2𝜉𝑛+1⊗𝐴−

1
2𝜉𝑛⊗⋯⊗𝐴−

1
2𝜉1)                                          

 + 𝐽 ((𝑐𝑞(𝜂𝑛+1
1 )∗ + 𝑖𝑐𝑞(𝜂𝑛+1

2 )∗) (𝐴−
1
2𝜉𝑛⊗⋯⊗𝐴−

1
2𝜉1)) 

= 𝜉1⊗⋯⊗ 𝜉𝑛⊗𝜉𝑛+1                                                                        

+𝐽 ((𝑐𝑞(𝜂𝑛+1
1 )∗ + 𝑖𝑐𝑞(𝜂𝑛+1

2 )∗) (𝐴−
1
2𝜉𝑛⊗⋯⊗𝐴−

1
2𝜉1)). 

Using the induction hypothesis, Eq. (7) and decomposing vectors in ℋℂ into real and 

imaginary parts, it is straightforward to check that 

𝐽 ((𝑐𝑞(𝜂𝑛+1
1 )∗ + 𝑖𝑐𝑞(𝜂𝑛+1

2 )∗) (𝐴−
1
2𝜉𝑛⊗⋯⊗𝐴−

1
2𝜉1)) ∈ 𝑀𝑞

′Ω. 

Hence, 𝜉1⊗⋯⊗ 𝜉𝑛⊗𝜉𝑛+1 ∈ 𝑀𝑞
′Ω. Now use induction to complete the proof. 

In the next Lemma, we make use of Lemma (5.2.8) to show how certain operators in 𝑀𝑞 act 

on simple tensors. 

Lemma (5.2.9)[222]: Let 𝜉, 𝜉𝑖 ∈ ℋℝ for 1 ≤ 𝑖 ≤ 𝑛 be such that ⟨𝜉𝑖 , 𝜉⟩𝑈 = 0 for 1 ≤ 𝑖 ≤ 𝑛. 
Then, 

𝑠𝑞(𝜉1⊗⋯⊗ 𝜉𝑛)(𝜉
⊗𝑘) = 𝜉1⊗⋯⊗ 𝜉𝑛⊗𝜉⊗𝑘 , for all 𝑘 ≥ 0. 

Proof. Note that by Lemma (5.2.8), it follows that 𝑠𝑞(𝜉1⊗⋯⊗ 𝜉𝑛) ∈ 𝑀𝑞. The result is 

clearly true for 𝑘 = 0 by definition (see Eq. (16)). We will only prove this result for 𝑘 = 1. 

For 𝑘 ≥ 2, the argument is similar.  

We use induction. Let 𝑛 = 1, then note that, 

𝑠𝑞(𝜉1)𝜉 = 𝜉1⊗𝜉 + ⟨𝜉1, 𝜉⟩𝑈Ω = 𝜉1⊗𝜉, by Eq. (7) . 

Now suppose that the result is true for all 1 ≤ 𝑚 ≤ 𝑛. Let 𝜉𝑛+1 ∈ ℋℝ be such that 
⟨𝜉𝑛+1, 𝜉⟩𝑈 = 0. Then, from Eq. (7) and the proof of Lemma (5.2.8), we have 

𝑠𝑞(𝜉1⊗⋯⊗ 𝜉𝑛⊗𝜉𝑛+1) = 𝑠𝑞(𝜉1)𝑠𝑞(𝜉2⊗⋯⊗ 𝜉𝑛+1) 

−∑  

𝑛+1

𝑙=2

 𝑞𝑙−2⟨𝜉1, 𝜉𝑙⟩𝑈𝑠𝑞(𝜉2⊗⋯⊗ 𝜉𝑙−1⊗𝜉𝑙+1⊗⋯⊗ 𝜉𝑛+1) 

Consequently, by using the induction hypothesis, one has 
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𝑠𝑞(𝜉1⊗⋯⊗ 𝜉𝑛⊗𝜉𝑛+1)𝜉

= 𝑠𝑞(𝜉1)𝑠𝑞(𝜉2⊗⋯⊗ 𝜉𝑛+1)𝜉

 −∑  

𝑛+1

𝑙=2

 𝑞𝑙−2⟨𝜉1, 𝜉𝑙⟩𝑈𝑠𝑞(𝜉2⊗⋯⊗ 𝜉𝑙−1⊗𝜉𝑙+1⊗⋯⊗ 𝜉𝑛+1)𝜉

= 𝑠𝑞(𝜉1)(𝜉2⊗⋯⊗ 𝜉𝑛+1⊗ 𝜉)

 −∑  

𝑛+1

𝑙=2

 𝑞𝑙−2⟨𝜉1, 𝜉𝑙⟩𝑈(𝜉2⊗⋯⊗ 𝜉𝑙−1⊗𝜉𝑙+1⊗⋯⊗ 𝜉𝑛+1⊗𝜉)

= 𝜉1⊗⋯⊗ 𝜉𝑛⊗𝜉𝑛+1⊗𝜉, by Eq. (7).

 

This completes the proof.  

Since 𝑡 ↦ 𝑈𝑡 , 𝑡 ∈ ℝ, is a strongly continuous orthogonal representation of ℝ on the 

real Hilbert space ℋℝ, there is a unique decomposition (cf. [15]), 

(ℋℝ, 𝑈𝑡) = (⨁ 

𝑁1

𝑗=1

  (ℝ, id))⊕(⨁ 

𝑁2

𝑘=1

  (ℋℝ(𝑘), 𝑈𝑡(𝑘)))⊕ (ℋ̃ℝ, �̃�𝑡), (18) 

where 0 ≤ 𝑁1, 𝑁2 ≤ ℵ0, 

ℋℝ(𝑘) = ℝ
2,  𝑈𝑡(𝑘) = (

cos(tlog 𝜆𝑘) − sin(tlog 𝜆𝑘)

sin(tlog 𝜆𝑘) cos(tlog 𝜆𝑘)
) , 𝜆𝑘 > 1, 

and (ℋ̃ℝ, �̃�𝑡) corresponds to the weakly mixing component of the orthogonal 

representation; thus ℋ̃ℝ is either 0 or infinite dimensional.  

If 𝑁1 ≠ 0, let 𝑒𝑗 = 0⊕⋯⊕0⊕ 1⊕ 0⊕⋯⊕0 ∈ ⨁𝑗=1
𝑁1  ℝ, where 1 appears at the 

𝑗-th place for 1 ≤ 𝑗 ≤ 𝑁1. Similarly, if 𝑁2 ≠ 0, let 𝑓𝑘
1 = 0⊕⋯⊕0⊕ (

1
0
)⊕ 0⊕⋯⊕

0 ∈ ⨁𝑘=1
𝑁2  ℋℝ(𝑘) and 𝑓𝑘

2 = 0⊕⋯⊕0⊕ (
0
1
)⊕ 0⊕⋯⊕0 ∈ ⨁𝑘=1

𝑁2  ℋR(𝑘) be vectors 

with non-zero entries in the 𝑘-th position for 1 ≤ 𝑘 ≤ 𝑁2. Denote 

𝑒𝑘
1 =

√𝜆𝑘 + 1

2
(𝑓𝑘
1 + 𝑖𝑓𝑘

2) and 𝑒𝑘
2 =

√𝜆𝑘
−1 + 1

2
(𝑓𝑘
1 − 𝑖𝑓𝑘

2), 

thus 𝑒𝑘
1, 𝑒𝑘

2 ∈ ℋℝ(𝑘) + 𝑖ℋℝ(𝑘) are orthonormal basis of (ℋℝ(𝑘) + 𝑖ℋℝ(𝑘), ⟨⋅,⋅⟩𝑈) for 1 ≤
𝑘 ≤ 𝑁2. Fix 1 ≤ 𝑘 ≤ 𝑁2. The analytic generator 𝐴(𝑘) of (𝑈𝑡(𝑘)) is given by 

𝐴(𝑘) =
1

2

(

 
𝜆𝑘 +

1

𝜆𝑘
𝑖 (𝜆𝑘 −

1

𝜆𝑘
)

−𝑖 (𝜆𝑘 −
1

𝜆𝑘
) 𝜆𝑘 +

1

𝜆𝑘 )

 . 

Moreover, 

𝐴(𝑘)𝑒𝑘
1 =

1

𝜆𝑘
𝑒𝑘
1 and 𝐴(𝑘)𝑒𝑘

2 = 𝜆𝑘𝑒𝑘
2. 

Write 𝒮 = {𝑒𝑗: 1 ≤ 𝑗 ≤ 𝑁1} ∪ {𝑒𝑘
1, 𝑒𝑘

2: 1 ≤ 𝑘 ≤ 𝑁2} if 𝑁1 ≠ 0 or 𝑁2 ≠ 0, else 

set 𝒮 = {0}. If 𝒮 ≠ {0}, then 𝒮 is an orthogonal set in (ℋℂ, ⟨⋅,⋅⟩𝑈) and the space of 

eigenvectors of the analytic generator 𝐴 of (𝑈𝑡) is contained in span 𝒮. In the event 𝒮 ≠ {0}, 
rename the elements of the set 𝒮 as 𝜁1, 𝜁2, ⋯, i.e., 𝒮 = {𝜁𝑖: 1 ≤ 𝑖 ≤ 𝑁1 + 2𝑁2}, whence 

𝐴𝜁𝑙 = 𝛽𝑙𝜁𝑙 with 𝛽𝑙 ∈ ℰ𝐴 for all 𝑙, where ℰ𝐴 = {1} ∪ {𝜆𝑘: 1 ≤ 𝑘 ≤ 𝑁2} ∪ {
1

𝜆𝑘
∶ 1 ≤ 𝑘 ≤ 𝑁2}. 
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It is to be understood that when 𝑁1 = ∞ (resp. 𝑁2 = ∞ ), the constraints 𝑗 ≤ 𝑁1 and 𝑖 ≤
𝑁1 + 2𝑁2 (resp. 𝑘 ≤ 𝑁2 and 𝑖 ≤ 𝑁1 + 2𝑁2) (in defining 𝒮 and ℰ𝐴 ) is replaced by 𝑗 < 𝑁1 

and 𝑖 < 𝑁1 + 2𝑁2 (resp. 𝑘 < 𝑁2 and 𝑖 < 𝑁1 + 2𝑁2). 
The following result must be known. 

Proposition (5.2.10)[222]: Let (𝜌,ℋ) be a strongly continuous unitary representation of a 

separable locally compact abelian group 𝐺 on a Hilbert space ℋ. For 𝑛 ≥ 1 and 𝑞 ∈ (−1,1), 
let 𝜌⊗𝑞𝑛 be the 𝑛-fold amplification of 𝜌 on ℋ⊗𝑞𝑛 defined by 

𝜌⊗𝑞𝑛(𝑔)(𝜉1⊗⋯⊗ 𝜉𝑛) = 𝜌(𝑔)𝜉1⊗⋯⊗𝜌(𝑔)𝜉𝑛, 𝑔 ∈ 𝐺, 𝜉𝑖 ∈ ℋ for 1 ≤ 𝑖 ≤ 𝑛. 

Then (𝜌⊗𝑞𝑛, ℋ⊗𝑞𝑛) is a strongly continuous unitary representation of 𝐺. Let 𝜂 ∈ ℋ⊗𝑞𝑛 be 

an eigenvector of 𝜌⊗𝑞𝑛 with associated character 𝜒 ∈ �̂�. Let 

𝔢𝜒 = {𝜉1⊗⋯⊗ 𝜉𝑛: 𝜉𝑖 ∈ ℋ, ∃𝜒𝑖 ∈ �̂� such that 

 𝜌(⋅)𝜉𝑖 = 𝜒𝑖(⋅)𝜉𝑖 , 1 ≤ 𝑖 ≤ 𝑛,∏  

𝑛

𝑖=1

 𝜒𝑖 = 𝜒} .
 

Then, 𝜂 ∈ span 𝔢𝜒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 

Proof. First of all, note that Eq. (4) forces that 𝜌⊗𝑞𝑛 is a strongly continuous unitary 

representation of 𝐺. Note that by Lemma (5.2.3), the operator 𝑇: (ℋ⊗𝑞𝑛, ∥⋅∥𝑞) →

(ℋ⊗0𝑛, ∥⋅∥0) defined by 𝑇(𝜉1⊗⋯⊗ 𝜉𝑛) = 𝜉1⊗⋯⊗ 𝜉𝑛, for all 𝜉𝑖 ∈ ℋ, 1 ≤ 𝑖 ≤ 𝑛, is 

bounded and invertible. Moreover, 𝑇−1𝜌⊗𝑛(⋅)𝑇 = 𝜌⊗𝑞
𝑛
(⋅). Consequently, the spectral 

properties of 𝜌⊗𝑞𝑛 and 𝜌⊗0𝑛 are identical. Also note that 𝜌⊗0𝑛 is the usual tensor product 

representation on the usual tensor product of Hilbert spaces. 

The result now follows clearly from considering the direct integral version of the 

spectral theorem of tensor product of unitary operators.  

Theorem (5.2.11)[222]: Let 

𝒲0 =

{
 
 
 
 

 
 
 
 
{𝜁𝑖1⊗⋯⊗ 𝜁𝑖𝑛: 𝜁𝑖𝑗 ∈ 𝒮, 1 ≤ 𝑖𝑗 ≤ 𝑁1 + 2𝑁2,∏  

𝑛

𝑗=1

 𝛽𝑖𝑗 = 1, 𝑛 ∈ ℕ} ,

 if max  (𝑁1, 𝑁2) < ∞;

{𝜁𝑖1⊗⋯⊗ 𝜁𝑖𝑛: 𝜁𝑖𝑗 ∈ 𝒮, 1 ≤ 𝑖𝑗 < 𝑁1 + 2𝑁2,∏  

𝑛

𝑗=1

 𝛽𝑖𝑗 = 1, 𝑛 ∈ ℕ} ,

 if max  (𝑁1, 𝑁2) = ∞.

 

Let 𝒲 = ℂΩ⊕  span 𝒲0
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅∥⋅∥𝑞 . Then, 𝑀𝑞

𝜑
Ω = 𝒲 ∩𝑀𝑞Ω. 

Proof. Decomposing vectors in 𝒮 into real and imaginary parts and using Lemma (5.2.8), it 

follows that 𝒲0 ⊆ 𝑀𝑞Ω. Fix 𝑛 ∈ ℕ and let 1 ≤ 𝑖1, ⋯ , 𝑖𝑛 ≤ 𝑁1 + 2𝑁2 or 1 ≤ 𝑖1, ⋯ , 𝑖𝑛 <

𝑁1 + 2𝑁2 (as the case may be), be such that 𝛽𝑖1⋯𝛽𝑖𝑛 = 1. Pick 𝜁𝑖𝑗 ∈ 𝒮 for 1 ≤ 𝑗 ≤ 𝑛 

Consider 𝑥 = 𝑠𝑞(𝜁𝑖1⊗⋯⊗ 𝜁𝑖𝑛) ∈ 𝑀𝑞 . As 𝜎−𝑡
𝜑
= Ad (ℱ(𝑈𝑡)) (see Eq. (6), (7)), so 
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𝜎−𝑡
𝜑
(𝑥)Ω  = ℱ(𝑈𝑡)𝑥ℱ(𝑈𝑡)

∗Ω = ℱ(𝑈𝑡)𝑥Ω = ℱ(𝑈𝑡)(𝜁𝑖1⊗⋯⊗ 𝜁𝑖𝑛)

 = 𝑈𝑡𝜁𝑖1 ⊗⋯⊗𝑈𝑡𝜁𝑖𝑛

 = (𝛽𝑖1⋯𝛽𝑖𝑛)
𝑖𝑡
(𝜁𝑖1⊗⋯⊗ 𝜁𝑖𝑛), ( since 𝑈𝑡 = 𝐴

𝑖𝑡)

 = 𝑠𝑞(𝜁𝑖1⊗⋯⊗ 𝜁𝑖𝑛)Ω

 = 𝑥Ω, for all 𝑡 ∈ ℝ.

 

Consequently, 𝑥 = 𝑠𝑞(𝜁𝑖1 ⊗⋯⊗ 𝜁𝑖𝑛) ∈ 𝑀𝑞
𝜑
. Therefore, conclude that 𝒲∩𝑀𝑞Ω ⊆ 𝑀𝑞

𝜑
Ω. 

For the reverse inclusion, let 𝑦 ∈ 𝑀𝑞
𝜑

 and write 𝑦Ω = ∑𝑛=0
∞  𝜂𝑛, where 𝜂𝑛 ∈ ℋ

⊗𝑞𝑛 

for all 𝑛 ≥ 0 and the series converges in ∥⋅∥𝑞 . It is enough to show that 𝜂𝑛 ∈ 𝒲 for all 𝑛 ≥

0. Again, note that 

∑  

∞

𝑛=0

 𝜂𝑛  = 𝜎−𝑡
𝜑
(𝑦)Ω = ℱ(𝑈𝑡)𝑦ℱ(𝑈𝑡)

∗Ω

 = ℱ(𝑈𝑡)𝑦Ω

 = ℱ(𝑈𝑡)∑  

∞

𝑛=0

 𝜂𝑛 = ∑  

∞

𝑛=0

 ℱ(𝑈𝑡)𝜂𝑛, for all 𝑡 ∈ ℝ.

 

Since ℱ(𝑈𝑡)ℋ
⊗𝑞𝑛 = ℋ⊗𝑞𝑛 for all 𝑛 ≥ 0 and for all 𝑡 ∈ ℝ, so we have ℱ(𝑈𝑡)𝜂𝑛 = 𝜂𝑛 for 

all 𝑛 and for all 𝑡 ∈ ℝ. Fix 𝑛 ≥ 1 such that 𝜂𝑛 ≠ 0. Therefore, by Proposition (5.2.2) and 

Proposition (5.2.10), it follows that there exist 𝜁𝑘,𝑙
(𝑛)
∈ 𝒮 and 𝛽𝑘,𝑙

(𝑛)
∈ ℰ𝐴 with 𝐴𝜁𝑘,𝑙

(𝑛)
=

𝛽𝑘,𝑙
(𝑛)
𝜁𝑘,𝑙
(𝑛)

 for 1 ≤ 𝑘 ≤ 𝑛 and scalars 𝑐𝑛,𝑙 , 𝑙 ∈ ℕ, such that 𝜂𝑛 = ∑𝑙  𝑐𝑛,𝑙 (𝜁1,𝑙
(𝑛)
⊗⋯⊗ 𝜁𝑛,𝑙

(𝑛)
) 

and ∏𝑘=1
𝑛  𝛽𝑘,𝑙

(𝑛)
= 1 for all 𝑙; the series above converges in ∥⋅∥𝑞 . Consequently, 𝜂𝑛 ∈ 𝒲 for 

all 𝑛 ≥ 0 and the proof is complete. 

 

We investigate the von Neumann subalgebras 𝑀𝜉 for 𝜉 ∈ ℋR, and record some of 

their properties. This is a preparatory and the aforesaid subalgebras play a major role in 

deciding the factoriality of 𝑀𝑞. 

In the case when 𝑞 = 0, 𝑡 ↦ 𝑈𝑡 is the identity representation of ℝ and dim (ℋℝ) ≥ 2, 

it is well known that 𝑀0 = Γ0(ℋℝ, 𝑖𝑑𝑡) ≅ 𝐿𝔽dim (ℋℝ) (see [19]). In that case, for all 0 ≠ 𝜉 ∈

ℋℝ, the algebra 𝑀𝜉 is a maximal injective (see [237]), strongly mixing MASA, for which 

the orthocomplement of the associated Jones' projection regarded as an 𝑀𝜉-bimodule is an 

infinite direct sum of coarse bimodules (see [206],[228]). Moreover, if 𝜉1, 𝜉2 ∈ ℋℝ are 

nonzero elements such that ⟨𝜉1, 𝜉2⟩ℋℂ = 0, then 𝑀𝜉1 and 𝑀𝜉2 are free and outer conjugate 

[19]. 

Note that if 0 ≠ 𝜉 ∈ ℋℝ and 𝑈𝑡𝜉 = 𝜉 for all 𝑡 ∈ ℝ, then 𝑠𝑞(𝜉) ∈ 𝑀𝑞
𝜑

 (from Eq. (7)). 

So 𝐽𝜉 = 𝐽𝑠𝑞(𝜉)Ω = 𝑠𝑞(𝜉)
∗Ω = 𝑠𝑞(𝜉)Ω = 𝜉.  

By Eq. (1.2) of [123], for 𝜉 ∈ ℋℝ with ∥ 𝜉 ∥𝑈= 1, the moments of the operator 𝑠𝑞(𝜉) 

with respect to the 𝑞-quasi free state 𝜑(⋅) = ⟨Ω,⋅ Ω⟩𝑞 are given by 

𝜑(𝑠𝑞(𝜉)
𝑛) = {

0,  if 𝑛 is odd, 

∑  

𝜈={𝜋(𝑟),𝜅(𝑟)}
1≤𝑟≤

𝑛
2

 𝑞𝑐(𝒱),  if 𝑛 is even,  
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where the summation is taken over all pair partitions 𝒱 = {𝜋(𝑟), 𝜅(𝑟)}1≤𝑟≤𝑛
2
 of {1,2,⋯ , 𝑛} 

with 𝜋(𝑟) < 𝜅(𝑟) and 𝑐(𝒱) is the number of crossings of 𝒱, i.e., 

𝑐(𝒱) = #{(𝑟, 𝑠): 𝜋(𝑟) < 𝜋(𝑠) < 𝜅(𝑟) < 𝜅(𝑠)}. 
So, it follows that for 𝜉 ∈ ℋℝ with ∥ 𝜉 ∥𝑈= 1, the distribution of the single 𝑞-Gaussian 

𝑠𝑞(𝜉) does not depend on the group (𝑈𝑡). In the tracial case, and thus in all cases, this 

distribution obeys the 𝑞-semicircular law 𝜈𝑞 which is absolutely continuous with respect to 

the uniform measure supported on the interval [−
2

√1−𝑞
,

2

√1−𝑞
]. The associated orthogonal 

polynomials are 𝑞-Hermite polynomials 𝐻𝑛
𝑞
, 𝑛 ≥ 0. For the density function of 𝜈𝑞 and the 

recurrence relations defining the 𝑞-Hermite polynomials, see Defn. 1.9 and Thm. 1.10 of 

[60] (also see [130],[19]). Hence, 𝑀𝜉 ≅ 𝐿
∞ ([−

2

√1−𝑞
,

2

√1−𝑞
] , 𝜈𝑞), thus 𝑀𝜉 is diffuse and 

{𝐻𝑛
𝑞
(𝑠𝑞(𝜉))Ω: 𝑛 ≥ 0}, is a total orthogonal set of vectors in 𝑀𝜉Ω̅̅ ̅̅ ̅̅ ∥⋅∥𝑞

𝛽
. Write ℰ𝜉 =

{𝜉⊗𝑛: 𝑛 ≥ 0}. 
Lemma (5.2.12)[222]: The following hold. 

1. Let 𝜉 ∈ ℋℝ be a unit vector such that 𝑈𝑡𝜉 = 𝜉 for all 𝑡 ∈ ℝ. Then, ℰ𝜉 ⊆ 𝑀𝑞Ω ∩𝑀𝑞
′Ω. 

2. Let 𝜉 ∈ ℋℝ be a unit vector. Then, 𝑀𝜉Ω̅̅ ̅̅ ̅̅ ∥⋅∥𝑞 = span ℰ𝜉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∥⋅∥𝑞. 

Proof. (a) This follows directly from Lemma (5.2.8) as 𝜉 ∈ 𝔇(𝐴−
1

2). 

(b) From the Wick product formula in Prop. 2.9 of [60], it follows that 𝜉⊗𝑛 = 

𝐻𝑛
𝑞
(𝑠𝑞(𝜉))Ω for all 𝑛 ≥ 0 (by convention 𝜉⊗0 = Ω ). Thus, 𝜉⊗𝑛 ∈ 𝑀𝜉Ω for all 𝑛 ≥ 0. It is 

now clear that span ℰ𝜉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∥⋅∥𝑞 ⊆ 𝑀𝜉Ω̅̅ ̅̅ ̅̅ ∥⋅∥𝑞. Now use Stone-Weierstrass and Kaplansky density 

theorems or the fact that 𝑀𝜉Ω̅̅ ̅̅ ̅̅ ∥⋅∥𝑞 ≅ 𝐿2 ([−
2

√1−𝑞
,

2

√1−𝑞
] , 𝜈𝑞) to establish the reverse 

inclusion. 

The next theorem is known in the case 𝑞 = 0. When 𝑞 = 0, one uses freeness and 

results from [15] to obtain a proof of it. 

Theorem (5.2.13)[222]: Let 𝜉 ∈ ℋℝ be a unit vector. There exists unique 𝜑-preserving 

faithful normal conditional expectation 𝔼𝜉:𝑀𝑞 → 𝑀𝜉 if and only if 𝑠𝑞(𝜉) ∈ 𝑀𝑞
𝜑

, 

equivalently 𝑈𝑡𝜉 = 𝜉 for all 𝑡 ∈ ℝ. 

Proof. Suppose there exists a conditional expectation 𝔼𝜉:𝑀𝑞 → 𝑀𝜉  such that 𝜑(𝔼𝜉(𝑥)) =

𝜑(𝑥), for all 𝑥 ∈ 𝑀𝑞 . Clearly, 𝔼𝜉 is faithful and normal. By Takesaki's theorem [107], we 

have 𝜎𝑡
𝜑
(𝑀𝜉) = 𝑀𝜉 for all 𝑡 ∈ ℝ. Moreover, from [107] we have 𝔼𝜉 ∘ 𝜎𝑡

𝜑
= 𝜎𝑡

𝜑
∘ 𝔼𝜉 for all 

𝑡 ∈ ℝ. Thus 

𝔼𝜉 (𝜎𝑡
𝜑
(𝑠𝑞(𝜉))) = 𝜎𝑡

𝜑
(𝔼𝜉(𝑠𝑞(𝜉)))  for all 𝑡. 

Let 𝑃𝜉 : 𝐿
2(𝑀𝑞 , 𝜑) → 𝑀𝜉Ω̅̅ ̅̅ ̅̅ ∥⋅∥𝑞 denote the orthogonal projection (𝐿2(𝑀𝑞 , 𝜑) = ℱ𝑞(ℋ)). 

Since 𝜑(𝑠𝑞(𝜉)) = 0, so 𝜑 (𝜎𝑡(𝑠𝑞(𝜉))) = 0 for all 𝑡 ∈ ℝ as well. Thus, using Lemma 

(5.2.12) and expanding in terms of orthonormal basis, we have 𝜎𝑡
𝜑
(𝑠𝑞(𝜉))Ω =

∑𝑛=1
∞  𝑎𝑛(𝑡)𝜉

⊗𝑛, 𝑎𝑛(𝑡) ∈ ℂ, for all 𝑡 ∈ ℝ. Hence, from Eq. (9), we have 
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𝑈−𝑡𝜉  = 𝑠𝑞(𝑈−𝑡𝜉)Ω = 𝜎𝑡
𝜑
(𝑠𝑞(𝜉))Ω

 = 𝜎𝑡
𝜑
(𝔼𝜉(𝑠𝑞(𝜉)))Ω = 𝔼𝜉 (𝜎𝑡

𝜑
(𝑠𝑞(𝜉)))Ω

 = 𝑃𝜉𝜎𝑡
𝜑
(𝑠𝑞(𝜉))𝑃𝜉Ω

 

 = 𝑃𝜉∑  

∞

𝑛=1

 𝑎𝑛(𝑡)𝜉
⊗𝑛

 = ∑  

∞

𝑛=1

 𝑎𝑛(𝑡)𝜉
⊗𝑛.

 

Consequently, 𝑎𝑛(𝑡) = 0 for all 𝑛 ≥ 2 from Eq. (6), and 

𝑈−𝑡𝜉 = 𝑎1(𝑡)𝜉 = 𝜆𝑡𝜉, for all 𝑡 ∈ ℝ. 

As Ω is separating for 𝑀𝑞, it follows that 𝜎𝑡
𝜑
(𝑠𝑞(𝜉)) = 𝜆𝑡𝑠𝑞(𝜉). Thus, 𝜆𝑡𝜆𝑠 = 𝜆𝑡+𝑠 for all 

𝑡, 𝑠 ∈ ℝ, 𝜆0 = 1, 𝜆𝑡 ∈ {±1} (as 𝑠𝑞(𝜉) is self-adjoint) and 𝑡 ↦ 𝜆𝑡 is continuous. Since the 

image of a connected set under a continuous map is connected, so either 𝜆𝑡 = 1 for all 𝑡 or 

𝜆𝑡 = −1 for all 𝑡. But 𝜆0 = 1, so 𝜆𝑡 = 1 for all 𝑡. Hence, 𝑠𝑞(𝜉) ∈ 𝑀𝑞
𝜑

. 

Conversely, suppose 𝑠𝑞(𝜉) ∈ 𝑀𝑞
𝜑
. Then 𝑀𝜉 ⊆ 𝑀𝑞

𝜑
 and the modular group fixes 𝑀𝑞

𝜑
 

pointwise. Now use Takesaki's theorem [107] to finish the proof.  

We end with the following observation. 

Lemma (5.2.14)[222]: For 𝜂 ∈ 𝑀𝑞
′Ω and 𝜁 ∈ 𝑀𝑞Ω one has 𝑠𝑞(𝜁)𝜂 = 𝑑𝑞(𝜂)𝜁. In particular, 

for 𝜂 ∈ 𝒵(𝑀𝑞)Ω the same holds. 

Proof. First note that the operators in the statement are defined by Eq. (14). Now 𝑠𝑞(𝜁)𝜂 =

𝑠𝑞(𝜁)𝑑𝑞(𝜂)Ω = 𝑑𝑞(𝜂)𝑠𝑞(𝜁)Ω = 𝑑𝑞(𝜂)𝜁. 

We intend to show that for any unit vector 𝜉0 ∈ ℋℝ with 𝑈𝑡𝜉0 = 𝜉0 for all 𝑡 ∈ ℝ, the 

abelian algebra 𝑀𝜉0 of 𝑀𝑞 is a MASA and possesses vigorous mixing properties. Needless 

to say, such a MASA is then singular from [36],[235],[206]. In order to do so, we need some 

general facts on MASAs. Most of these facts appear in the framework of finite von Neumann 

algebras. But, the MASAs of interest in 𝑀𝑞 lie in the centralizer 𝑀𝑞
𝜑

 by Theorem (5.2.13); 

so we can freely invoke most of these techniques (used for finite von Neumann algebras) in 

our setup as well. We recall without proofs some facts that will be required, as a detailed 

exposition would be a digression. The proofs of these facts are analogous to the ones for the 

tracial case. 

Let 𝑀 be a von Neumann algebra equipped with a faithful normal state 𝜑. Let 𝑀 act 

on the GNS Hilbert space 𝐿2(𝑀,𝜑) via left multiplication and let ∥⋅∥2,𝜑 denote the norm of 

𝐿2(𝑀,𝜑). Let 𝐽𝜑 , Ω𝜑 respectively denote the associated modular conjugation operator and 

the vacuum vector, and let (𝜎𝑡
𝜑
)
𝑡∈ℝ

 denote the modular automorphisms associated to 𝜑. Let 

𝐴 ⊆ 𝑀 be a diffuse abelian von Neumann subalgebra contained in 𝑀𝜑 = {𝑥 ∈ 

𝑀:𝜎𝑡
𝜑
(𝑥) = 𝑥∀𝑡 ∈ ℝ}. Then there exists a unique faithful, normal and 𝜑-preserving 

conditional expectation 𝔼𝐴 from 𝑀 on to 𝐴 [107]. Let 𝐿2(𝐴, 𝜑) = 𝐴Ω𝜑̅̅ ̅̅ ̅̅ ∥⋅∥2,𝜑 . Denote 𝒜 =

(𝐴 ∪ 𝐽𝜑𝐴𝐽𝜑)
′′
. Then 𝒜 is abelian, so its commutant is a type I algebra. Note that 𝐴′ ∩𝑀 is 

globally invariant under (𝜎𝑡
𝜑
), thus there exists a unique faithful, normal and 𝜑-preserving 

conditional expectation from 𝑀 on to 𝐴′ ∩𝑀 (see [107]), and the associated Jones' 

projection 𝑒𝐴′∩𝑀 ∈ 𝒜 [219, Lemma 7.1.1] and is a central projection of 𝒜′. (This fact will 
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not be directly used, it is worth mentioning as it is this fact for which the theory of bimodules 

of MASAs works and is indispensable). This algebra 𝒜 has been studied extensively by 

many experts of MASAs to understand the size of normalizers, orbit equivalence, mixing 

properties and to provide invariants of MASAs. In short, 𝒜 captures the structure of 

𝐿2(𝑀,𝜑) as a 𝐴 − 𝐴 bimodule (see Ch. 6,7 [219]). With the setup as above we define the 

following: 

Definition (5.2.15)[222]: (cf. [206]) A diffuse abelian subalgebra 𝐵 ⊆ 𝑀 with a 𝜑-

preserving normal conditional expectation 𝔼𝐵 is said to be 𝜑-strongly mixing in 𝑀 if 

∥∥𝔼𝐵(𝑥𝑎𝑛𝑦)∥∥2,𝜑 → 0 for all 𝑥, 𝑦 ∈ 𝑀 with 𝔼𝐵(𝑥) = 0 = 𝔼𝐵(𝑦), whenever {𝑎𝑛} is a 

bounded sequence in 𝐵 that goes to 0 in the 𝑤.o.t. 

The above definition appears in [206] of finite von Neumann algebras, but the 

definition is valid in general and thus we do not assume traciality to define the property of 

𝜑-strongly mixing here. Moreover, by a polarization identity it is enough to check the 

convergence of 𝔼𝐵(𝑥𝑎𝑛𝑥
∗) in Defn. (5.2.15) for all 𝑥 ∈ 𝑀 such that 𝔼𝐵(𝑥) = 0.  

Let 𝑀𝑎 denote the *-subalgebra of all entire (analytic) elements of 𝑀 with respect to 

(𝜎𝑡
𝜑
). For 𝑥 ∈ 𝑀 and 𝑦 ∈ 𝑀𝑎, define 

𝑇𝑥,𝑦: 𝐿
2(𝐴, 𝜑) → 𝐿2(𝐴, 𝜑) by 𝑇𝑥,𝑦(𝑎Ω𝜑) = 𝔼𝐴(𝑥𝑎𝑦)Ω𝜑 , 𝑎 ∈ 𝐴.        (19) 

Note that 𝑇𝑥,𝑦 is bounded. Indeed, as 𝑦 ∈ 𝑀𝑎 so 𝑦∗ ∈ 𝔇(𝜎𝑧
𝜑
) for all 𝑧 ∈ ℂ. Hence, 

𝐽𝜑𝜎−𝑖
2

𝜑𝜑(𝑦∗)𝐽𝜑𝑎Ω𝜑 = 𝑎𝑦Ω𝜑 for all 𝑎 ∈ 𝐴, where (𝜎𝑧
𝜑
)
𝑧∈𝐶

 denotes the analytic 

continuation of (𝜎𝑡
𝜑
) (see [229]). Thus, 

∥∥𝔼𝐴(𝑥𝑎𝑦)Ω𝜑∥∥2,𝜑
 ≤ ∥∥𝑥𝑎𝑦Ω𝜑∥∥2,𝜑

 ≤∥ 𝑥 ∥ ∥∥𝑎𝑦Ω𝜑∥∥2,𝜑

 ≤∥ 𝑥 ∥
∥∥
∥∥𝐽𝜑𝜎

−
𝑖
2

𝜑 (𝑦∗)𝐽𝜑
∥∥
∥∥ ∥∥𝑎Ω𝜑∥∥2,𝜑

 =∥ 𝑥 ∥
∥∥
∥∥𝜎
−
𝑖
2

𝜑 (𝑦∗)
∥∥
∥∥ ∥∥𝑎Ω𝜑∥∥2,𝜑

, for all 𝑎 ∈ 𝐴.

 

One can identify 𝐴 ≅ 𝐿∞(𝑋, 𝜆), where 𝑋 is a standard Borel space and 𝜆 is a nonatomic 

probability measure on 𝑋. The left-right measure of 𝐴 is the measure (strictly speaking the 

measure class) on 𝑋 × 𝑋 obtained from the direct integral decomposition of 𝐿2(𝑀, 𝜑)⊖
𝐿2(𝐴, 𝜑) over 𝑋 × 𝑋 so that 𝒜(1 − 𝑒𝐴) is the algebra of diagonalizable operators with 

respect to the decomposition [235], [206] (𝑒𝐴 denoting the Jones' projection associated to ). 

The process to calculate the left left-right measure is similar to the discussion laid out in 

[234]. Many more details of the same are discussed in [234]. 

If 𝐴 is identified with 𝐿∞([𝑎, 𝑏], 𝜆) where 𝜆 is the normalized Lebesgue measure (or 

Lebesgue equivalent), then from the results of [235] (specifically Thm. 2.1), it follows that 

the left-right measure of 𝐴 is Lebesgue absolutely continuous when 𝑇𝑥,𝑦∗ is Hilbert Schmidt 

for 𝑥, 𝑦 varying over a set 𝑆 such that 𝔼𝐴(𝑥) = 0 = 𝔼𝐴(𝑦) for all 𝑥, 𝑦 ∈ 𝑆 and the span of 

𝑆Ω is dense in 𝐿2(𝐴, 𝜑)⊥. (Note that the arguments of [235] use the unit interval. It was so 

chosen to make a standard frame of reference. However, the arguments of relating to 

absolute continuity of measures do not depend on the choice of the interval. Neither do the 

same arguments to prove Thm. 2.1 in [235] require that 𝐴 is a MASA; it only involved 

measure theory.) From Thm. 4.4 and Rem. 4.5 of [225] (similarly the proof of Thm. 4.4 of 

[225] uses measure theory and not that the diffuse abelian algebra there is a MASA), it 
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follows that 𝐴 is 𝜑-strongly mixing in 𝑀 if the left-right measure of 𝐴 is Lebesgue absolutely 

continuous. Thus, one has: 

Theorem (5.2.16)[222]: Let 𝐴 ⊆ 𝑀 be a diffuse abelian algebra such that 𝐴 ⊆ 𝑀𝜑 and the 

left-right measure of 𝐴 is Lebesgue absolutely continuous. Then, 𝐴 is 𝜑-strongly mixing in 

𝑀. In particular, 𝐴 is a singular MASA in 𝑀. 

Proof. We only need to show that 𝐴 is a singular MASA in 𝑀. Let 𝑥 ∈ 𝐴′ ∩𝑀. Let 𝑦 =
𝑥 − 𝔼𝐴(𝑥). For 𝑎 ∈ 𝐴, one has 𝑎𝑦 = 𝑎(𝑥 − 𝔼𝐴(𝑥)) = 𝑎𝑥 − 𝔼𝐴(𝑎𝑥) = 𝑥𝑎 − 𝔼𝐴(𝑥𝑎) = 𝑦𝑎. 

Since 𝐴 is diffuse choose a sequence of unitaries 𝑢𝑛 ∈ 𝐴 such that 𝑢𝑛 → 0 in w.o.t. Since 𝐴 

is 𝜑-strongly mixing in 𝑀 (by the previous discussion) it follows that lim𝑛  ∥∥𝔼𝐴(𝑦𝑦
∗)∥∥2,𝜑 =

lim𝑛  ∥∥𝔼𝐴(𝑦𝑢𝑛𝑦
∗)∥∥2,𝜑 = 0. Since 𝔼𝐴 is faithful, it follows that 𝑦 = 0 Thus, 𝐴 is a MASA.  

That 𝐴 is singular follows from results of [229],[36] and [234]. 

We are now ready to prove that if 𝜉0 ∈ ℋR is a unit vector such that 𝑈𝑡𝜉0 = 𝜉0 for all 𝑡 ∈
ℝ, then 𝑀𝜉0 is 𝜑-strongly mixing in 𝑀𝑞 . Let 𝔼𝜉0 denote the unique 𝜑-preserving, faithful, 

normal conditional expectation from 𝑀𝑞 onto 𝑀𝜉0 (see Theorem (5.2.13)). Extend 𝜉0 to an 

orthonormal basis 

𝒪 = {𝜉𝑘: 𝜉𝑘 analytic, 0 ≤ 𝑘 ≤ dim (ℋℝ) − 1} 

of ℋℝ with respect to ⟨⋅,⋅⟩ℋC
 consisting of analytic vectors as described in Proposition 

(5.2.6). Fix 𝜉𝑖𝑗 ∈ 𝒪 for 1 ≤ 𝑗 ≤ 𝑛. Note that as the analytic elements form a (𝑤∗-dense) *-

subalgebra, so 𝑠𝑞(𝜉𝑖1⊗⋯⊗ 𝜉𝑖𝑛) is analytic with respect to (𝜎𝑡
𝜑
) from (the proof of) 

Lemma (5.2.8). It follows that 𝑠𝑞 (𝐴
−
1

2𝜉𝑘) is also analytic with respect to (𝜎𝑡
𝜑
) for all 𝜉𝑘 ∈

𝒪. Thus, by (the proof of) Lemma (5.2.8), it follows that 𝑠𝑞 (𝐴
−
1

2𝜉𝑖1 ⊗⋯⊗𝐴−
1

2𝜉𝑖𝑛) is also 

analytic with respect to (𝜎𝑡
𝜑
). Moreover, from Lemma (5.2.12) 

and Lemma (5.2.7) it follows that 𝔼𝜉0 (𝑠𝑞(𝜉𝑖1 ⊗⋯⊗ 𝜉𝑖𝑛)) = 0 forces that at least one 

letter 𝜉𝑖𝑗 must be different from 𝜉0. Furthermore, from Lemma (5.2.7) it follows that 

𝐴−
1

2𝜉𝑖1 ⊗ ⋯⊗𝐴−
1

2𝜉𝑖𝑛 ∈ ℱ𝑞(ℋ)⊖ 𝐿2(𝑀𝜉0 , 𝜑) if and only if 𝜉𝑖1 ⊗⋯⊗ 𝜉𝑖𝑛 ∈ ℱ𝑞(ℋ)⊖

𝐿2(𝑀𝜉0 , 𝜑). 

We have the following theorem. 

Theorem (5.2.17)[222]: Let 𝑡 ↦ 𝑈𝑡 be a strongly continuous orthogonal representation of 

ℝ on a real Hilbert space ℋℝ with dim (ℋℝ) ≥ 2. Suppose there exists a unit vector 𝜉0 ∈

ℋℝ such that 𝑈𝑡𝜉0 = 𝜉0 for all 𝑡 ∈ ℝ. Let 𝑥 = 𝑠𝑞(𝜉𝑖1⊗⋯⊗ 𝜉𝑖𝑚) and 𝑦 = 𝑠𝑞 (𝐴
−
1

2𝜉𝑗1⊗

⋯⊗𝐴−
1

2𝜉𝑗𝑘) be such that 𝔼𝜉0(𝑥) = 0 = 𝔼𝜉0(𝑦), where 𝜉𝑖𝑢 , 𝜉𝑗𝑣 ∈ 𝒪 for 1 ≤ 𝑢 ≤ 𝑚 and 

1 ≤ 𝑣 ≤ 𝑘. 

Then, 𝑇𝑥,𝑦 is a Hilbert-Schmidt operator. 

Proof. First of all, as 𝑈𝑡𝜉0 = 𝜉0 for all 𝑡 ∈ ℝ, so 𝑀𝜉0 ⊆ 𝑀𝑞 is a diffuse abelian algebra in 

𝑀𝑞 lying in 𝑀𝑞
𝜑
. By the previous discussion, it follows that 𝑥, 𝑦 are analytic with respect to 

(𝜎𝑡
𝜑
). Thus, 𝑇𝑥,𝑦 ∈ 𝐁(𝐿

2(𝑀𝜉0 , 𝜑)). 

Also note that 𝜉𝑗1 ⊗⋯⊗ 𝜉𝑗𝑘 ∈ 𝑀𝑞Ω ∩𝑀𝑞
′Ω from Lemma (5.2.8). From Lemma 

(5.2.12), it follows that 𝐻𝑛
𝑞
(𝑠𝑞(𝜉0))Ω = 𝜉0

⊗𝑛
 for all 𝑛 ≥ 0. Note that 𝑑𝑞 (𝐴

−
1

2𝜉𝑗1 ⊗⋯⊗



206 

𝐴−
1

2𝜉𝑗𝑘) ∈ 𝑀𝑞
′  by Theorem (5.2.5). Let 𝑒𝜉0: 𝐿

2(𝑀𝑞 , 𝜑) → 𝐿2(𝑀𝜉0 , 𝜑) denote the Jones' 

projection associated to 𝑀𝜉0. Then from Eq. (19), we have 

𝑇𝑥,𝑦 (𝐻𝑛
𝑞
(𝑠𝑞(𝜉0))Ω) = 𝑒𝜉0 (𝑥𝐻𝑛

𝑞
(𝑠𝑞(𝜉0)) 𝑠𝑞 (𝐴

−
1
2𝜉𝑗1 ⊗⋯⊗𝐴−

1
2𝜉𝑗𝑘)Ω)             (20)

= 𝑒𝜉0 (𝑥𝐻𝑛
𝑞
(𝑠𝑞(𝜉0)) (𝐴

−
1
2𝜉𝑗1 ⊗⋯⊗𝐴−

1
2𝜉𝑗𝑘))

= 𝑒𝜉0 (𝑥𝐻𝑛
𝑞
(𝑠𝑞(𝜉0)) 𝑑𝑞 (𝐴

−
1
2𝜉𝑗1 ⊗⋯⊗𝐴−

1
2𝜉𝑗𝑘)Ω)

 (from Eq. (16) and Lemma (5.2.14)) 

 = 𝑒𝜉0 (𝑥𝑑𝑞 (𝐴
−
1
2𝜉𝑗1 ⊗⋯⊗𝐴−

1
2𝜉𝑗𝑘)𝐻𝑛

𝑞
(𝑠𝑞(𝜉0))Ω)

= 𝑒𝜉0 (𝑥𝑑𝑞 (𝐴
−
1
2𝜉𝑗1⊗⋯⊗𝐴−

1
2𝜉𝑗𝑘) 𝜉0

⊗𝑛)

= 𝑒𝜉0 (𝑠𝑞(𝜉𝑖1 ⊗⋯⊗ 𝜉𝑖𝑚)𝑑𝑞 (𝐴
−
1
2𝜉𝑗1⊗⋯⊗𝐴−

1
2𝜉𝑗𝑘) 𝜉0

⊗𝑛) , 𝑛 ≥ 0

 

Now from Lemma 3.1 of [123], we have 

𝑠𝑞(𝜉𝑖1 ⊗⋯⊗ 𝜉𝑖𝑚)

=∑ ∑ 𝑞ℵ(𝐾,𝐼)𝑐𝑞 (𝜉𝑖𝜅(1))⋯𝑐𝑞 (𝜉𝑖𝜅(𝑛1)) 𝑐𝑞 (𝜉𝑖𝜋(1))
∗
⋯𝑐𝑞 (𝜉𝑖𝜋(𝑛2))

∗
 and 

𝑑𝑞 (𝐴
−
1
2𝜉𝑗1⊗⋯⊗𝐴−

1
2𝜉𝑗𝑘) 

=∑ ∑ 𝑞𝑁(𝐾
′,𝐼′)𝑟𝑞 (𝐴

−
1
2𝜉𝑗𝑘(1))⋯𝑟𝑞 (𝐴

−
1
2𝜉𝑗𝑘(𝑚1)) 𝑟𝑞 (𝐴

−
1
2𝜉𝑗∗(1))

∗

⋯𝑟𝑞 (𝐴
−
1
2𝜉𝑗∗(𝑚2))

∗

, 

where the first sum varies over the pairs (𝑛1, 𝑛2) and (𝐾, 𝐼) restricted to the following 

conditions: 

𝑛1, 𝑛2 ≥ 0,
𝑛1 + 𝑛2 = m;

      and,         

𝐾 = {𝜅(1),⋯ , 𝜅(𝑛1): 𝜅(1) ≤ ⋯ ≤ 𝜅(𝑛1)},

𝐼 = {𝜋(1),⋯ , 𝜋(𝑛2): 𝜋(1) ≤ ⋯ ≤ 𝜋(𝑛2)},

𝐾 ∪ 𝐼 = {1,⋯ ,𝑚}, 𝐾 ∩ 𝐼 = ∅,

 (21) 

and ℵ(𝐾, 𝐼) = #{(𝑟, 𝑠): 1 ≤ 𝑟 ≤ 𝑛1, 1 ≤ 𝑠 ≤ 𝑛2, 𝜅(𝑟) > 𝜋(𝑠)}. Similarly, the expansion of 

𝑑𝑞 (𝐴
−
1

2𝜉𝑗1 ⊗⋯⊗𝐴−
1

2𝜉𝑗𝑘) above is in terms of 𝑚1, 𝑚2 ≥ 0,𝑚1 +𝑚2 =

𝑘,𝐾′, 𝐼′, ℵ(𝐾′, 𝐼′), �̃�, �̃� and 𝑟𝑞 (𝐴
−
1

2𝜉𝑗𝑘(𝐶)) and 𝑟𝑞 (𝐴
−
1

2𝜉𝑗𝜋(⋅))
∗

 defined analogous to Eq. (21). 

Note that ∥∥𝜉0
⊗𝑛
∥∥𝑞
2
= [𝑛]𝑞! for all 𝑛 ≥ 0 (see Eq. (7)). Again from Lemma (5.2.12), it 

follows that {
1

√[𝑛]𝑞!
𝜉0
⊗𝑛: 𝑛 ≥ 0} is an orthonormal basis of 𝐿2(𝑀𝜉0 , 𝜑). Thus, to show 𝑇𝑥,𝑦 

is a Hilbert-Schmidt operator we need to show that ∑𝑛=0
∞  

1

[𝑛]𝑞!
∥∥𝑇𝑥,𝑦(𝜉0

⊗𝑛)∥∥𝑞
2
< ∞. But since 

𝑠𝑞(𝜉𝑖1 ⊗⋯⊗ 𝜉𝑖𝑚) and 𝑑𝑞 (𝐴
−
1

2𝜉𝑗1⊗⋯⊗𝐴−
1

2𝜉𝑗𝑘) split as finite sums, so from Eq. (20) 

it is enough to show that for each fixed 𝑛1, 𝑛2, 𝑚1, 𝑚2, 𝜅, 𝜋, �̃�, �̃� (in Eq. (21)), if 

𝜁𝑛 = 𝑒𝜉0 ((𝑐𝑞(𝜉𝑖𝜅(1))⋯ 𝑐𝑞(𝜉𝑖𝜅(𝑛1))𝑐𝑞(𝜉𝑖𝜋(1))
∗⋯𝑐𝑞(𝜉𝑖𝜋(𝑛2)

 )
∗

⋅ 𝑟𝑞 (𝐴
−
1
2𝜉𝑗𝑘(1))⋯𝑟𝑞 (𝐴

−
1
2𝜉𝑗𝜅(𝑚1)) 𝑟𝑞 (𝐴

−
1
2𝜉𝑗∗(1))

∗

⋯𝑟𝑞 (𝐴
−
1
2𝜉𝑗𝜋(𝑚2))

∗

) 𝜉0
⊗𝑛) , 𝑛 ≥ 0,
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then ∑𝑛=0
∞  

1

[𝑛]𝑞!
∥∥𝜁𝑛∥∥𝑞

2 < ∞. Renaming indices, we may write 

𝜁𝑛 = 𝑒𝜉0 ((𝑐𝑞(𝜉𝑖1)⋯ 𝑐𝑞(𝜉𝑖𝑙)𝑐𝑞(𝜉𝑖𝑙+1)
∗
⋯𝑐𝑞(𝜉𝑖𝑚)

∗

⋅ 𝑟𝑞 (𝐴
−
1
2𝜉𝑗1)⋯𝑟𝑞 (𝐴

−
1
2𝜉𝑗𝑝) 𝑟𝑞 (𝐴

−
1
2𝜉𝑗𝑝+1)

∗

⋯𝑟𝑞 (𝐴
−
1
2𝜉𝑗𝑘)

∗

) 𝜉0
⊗𝑛) , 𝑛 ≥ 0.

 

For 𝜉𝑗′ ∈ 𝒪, since ⟨𝜉𝑗′ , 𝜉0⟩𝑞
= 0 for 𝑗′ ≠ 0 (by Lemma (5.2.7)), (and hence 

⟨𝐴−
1

2𝜉0, 𝐴
−
1

2𝜉𝑗′⟩
𝑞
= 0 for 𝑗′ ≠ 0 by Eq. (12)), so 

𝑟𝑞 (𝐴
−
1
2𝜉𝑗′)

∗

𝜉0
⊗𝑛 = 𝑟𝑞 (𝐴

−
1
2𝜉𝑗′)

∗

(𝐴−
1
2𝜉0)

⊗𝑛

= 0 

for all 𝑛 ≥ 0 and 𝑗′ ≠ 0. Since at least one letter in 𝐴−
1

2𝜉𝑗1⊗⋯⊗𝐴−
1

2𝜉𝑗𝑘 is different from 

𝜉0 and 𝐴−
1

2𝜉0 = 𝜉0, so 𝜁𝑛 can be non-zero only when 𝜉𝑗𝑝+1 = ⋯ = 𝜉𝑗𝑘 = 𝜉0. Write 𝛿 =

∏𝑤=𝑝+1
𝑘  𝛿𝜉𝑗𝑤,𝜉0 . Hence, from Eq. (13) and Eq. (15) we have 

𝜁𝑛 = 𝛿 ∏  

𝑛

𝑡=𝑛−(𝑘−𝑝)

  (1 + 𝑞 +⋯+ 𝑞𝑡−1)

 ⋅ 𝑒𝜉0 ((𝑐𝑞(𝜉𝑖1)⋯ 𝑐𝑞(𝜉𝑖𝑙)𝑐𝑞(𝜉𝑖𝑙+1)
∗
⋯𝑐𝑞(𝜉𝑖𝑚)

∗
)

⋅ (𝜉0
⊗(𝑛−(𝑘−𝑝))

⊗𝐴−
1
2𝜉𝑗𝑝⊗⋯⊗𝐴−

1
2𝜉𝑗1))

= 𝛿
[𝑛]𝑞!

[𝑛 − (𝑘 − 𝑝)]𝑞!

𝑒𝜉0 ((𝑐𝑞(𝜉𝑖1)⋯𝑐𝑞(𝜉𝑖𝑙)𝑐𝑞(𝜉𝑖𝑙+1)
∗
⋯𝑐𝑞(𝜉𝑖𝑚)

∗
)

               (22) 

(𝜉0
⊗(𝑛−(𝑘−𝑝))

⊗𝐴−
1
2𝜉𝑗𝑝⊗⋯⊗𝐴−

1
2𝜉𝑗1)). 

By hypothesis at least one letter in 𝐴−
1

2𝜉𝑗1⊗⋯⊗𝐴−
1

2𝜉𝑗𝑝 is different from 𝜉0 (= 𝐴
−
1

2𝜉0). 

Therefore, the constraints for 𝜁𝑛 to be non-zero are 𝑖𝑟 = 0 for all 1 ≤ 𝑟 ≤
𝑙, #{𝑖𝑟: 𝑙 + 1 ≤ 𝑟 ≤ 𝑚, 𝑖𝑟 ≠ 0} ≥ 1 (counted with multiplicities) and the expression 

𝑐𝑞(𝜉𝑖1)⋯ 𝑐𝑞(𝜉𝑖𝑙)𝑐𝑞(𝜉𝑖𝑙+1)
∗
⋯𝑐𝑞(𝜉𝑖𝑚)

∗
(𝜉0

⊗(𝑛−(𝑘−𝑝))
⊗𝐴−

1
2𝜉𝑗𝑝⊗⋯⊗𝐴−

1
2𝜉𝑗1) 

has to lie in span ℰ𝜉0 (see Lemma (5.2.12) and the discussion preceding it). By repeated 

application of Lemma (5.2.4), one obtains 

𝑐𝑞(𝜉𝑖𝑙+1)
∗
⋯𝑐𝑞(𝜉𝑖𝑚)

∗
(𝜉0
⊗(𝑛−(𝑘−𝑝))⏞      

 

⊗(𝐴−
1
2𝜉𝑗𝑝 ⊗⋯⊗𝐴−

1
2𝜉𝑗1)

⏞                
 

) 

𝑐𝑞(𝜉𝑖𝑙+1)
∗
⋯𝑐𝑞(𝜉𝑖𝑚−1)

∗
((𝑐𝑞(𝜉𝑖𝑚)

∗
𝜉0
⊗(𝑛−(𝑘−𝑝))

)
⏞              

)⊗ (𝐴−
1
2𝜉𝑗𝑝 ⊗⋯⊗𝐴−

1
2𝜉𝑗1)

⏞                
 

 

+𝑞(𝑛−(𝑘−𝑝))𝜉0
⊗(𝑛−(𝑘−𝑝))⏞      

 

⊗ 𝑐𝑞(𝜉𝑖𝑚)
∗
(𝐴−

1
2𝜉𝑗𝑝 ⊗⋯⊗𝐴−

1
2𝜉𝑗1)

⏞                      
 

) 
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= ∑  

1

𝑟1=0

 ⋯ ∑  

1

𝑟𝑚−𝑙=0

  𝑐𝑟1,⋯,𝑟𝑚−𝑙 ⋅

(∏(𝑐𝑞(𝜉𝑖𝑙+𝑤)
∗
)
(1−𝑟𝑤)

𝑚−𝑙

𝑤=1

 ) 𝜉0
⊗(𝑛−(𝑘−𝑝))

 ⊗ (∏(𝑐𝑞(𝜉𝑖𝑙+𝑤)
∗
)
𝑟𝑤

𝑚−𝑙

𝑤=1

  ) (𝐴−
1
2𝜉𝑗𝑝⊗⋯⊗𝐴−

1
2𝜉𝑗1) ,

 

where 𝑐𝑟1,⋯,𝑟𝑚−𝑙 ∈ ℝ for (𝑟1, ⋯ , 𝑟𝑚−𝑙) ∈ {0,1}
𝑚−𝑙 are calculated as follows. 

Given a (𝑚 − 𝑙)-bit string (𝑟1, ⋯ , 𝑟𝑚−𝑙), let 𝑠𝑤 = # of zeros in {𝑟𝑤, 𝑟𝑤+1, ⋯ , 𝑟𝑚−𝑙} for 1 ≤
𝑤 ≤ 𝑚 − 𝑙. Then, clearly 𝑠𝑚−𝑙 = 1 − 𝑟𝑚−𝑙 and by induction it follows that 𝑠𝑚−𝑙−1 =
(1 − 𝑟𝑚−𝑙) + (1 − 𝑟𝑚−𝑙−1),⋯ , 𝑠1 = (1 − 𝑟𝑚−𝑙) + (1 − 𝑟𝑚−𝑙−1) + ⋯+ (1 − 𝑟1). 

Thus, repeated application of Lemma (5.2.4) in Eq. (23) entail that 

𝑐𝑟1,⋯,𝑟𝑚−1  = 𝑞(𝑛−(𝑘−𝑝))(∑  𝑚−𝑙
𝑤=1  𝑟𝑤)−∑  𝑚−𝑙

𝑤=1  𝑟𝑤𝑠𝑤

 = 𝑞(𝑛−(𝑘−𝑝))(∑  𝑚−𝑙
𝑤=1  𝑟𝑤)−∑  𝑚−𝑙

𝑤=1  𝑟𝑤((𝑚−𝑙)−𝑤+1−∑  𝑚−1
𝑤′=𝑤

 𝑟
𝑤′
)

 = 𝑞((𝑛−(𝑘−𝑝))−(𝑚−𝑙)−1)(∑  𝑚−𝑙
𝑤=1  𝑟𝑤)+∑  𝑚−𝑙

𝑤=1  𝑤𝑟𝑤+∑  𝑚−𝑙
𝑤=1  (∑  𝑚−𝑙

𝑤′=𝑤
 𝑟
𝑤′
)𝑟𝑤 .

 

The above formula for 𝑐𝑟1,⋯,𝑟𝑚−1 can be obtained by drawing a binary tree of height (𝑚 − 𝑙) 

with weights attached along edges in such a way that it encodes the tensoring on the left or 

on the right following Lemma (5.2.4). It is to be noted that the largest power of 𝑞 that appears 

in Eq. (23) is (𝑛 − (𝑘 − 𝑝))(𝑚 − 𝑙) which appears when 𝑟𝑤 = 1 for all 𝑤 and the smallest 

power of 𝑞 is 0 and it occurs when 𝑟𝑤 = 0 for all 𝑤. 

Further, notice that since #{𝑖𝑟: 𝑙 + 1 ≤ 𝑟 ≤ 𝑚, 𝑖𝑟 ≠ 0} ≥ 1, i.e., there is at least one 

𝑟0 with 𝑙 + 1 ≤ 𝑟0 ≤ 𝑚 such that 𝜉𝑖𝑟0 ⊥ 𝜉0 (in ⟨⋅,⋅⟩𝑈), so 

(𝑐𝑞(𝜉𝑖𝑙+1)
∗
⋯𝑐𝑞(𝜉𝑖𝑚−1)

∗
𝑐𝑞(𝜉𝑖𝑚)

∗
)𝜉0
⊗(𝑛−(𝑘−𝑝))

⊗ (𝐴−
1
2𝜉𝑗𝑝 ⊗⋯⊗𝐴−

1
2𝜉𝑗1) = 0. 

Therefore, the expression in Eq. (23) has at most 2𝑚−𝑙−1 many non-zero terms each with 

scalar coefficients of the form 𝑞𝑑, where 𝑑 ≥ ((𝑛 − (𝑘 − 𝑝)) − (𝑚 − 𝑙 − 1)). 
Consequently, by Eq. (6), Eq. (7), Eq. (14) and Eq. (22), we conclude that there is a positive 

constant 𝐾(𝑙,𝑚, 𝑝, 𝑞) independent of 𝑛 and 𝑁0 ∈ ℕ such that 

∥∥𝜁𝑛∥∥𝑞
2 ≤ 𝐾(𝑙,𝑚, 𝑝, 𝑞)𝑞2𝑛 (

[𝑛]|𝑞|!

[𝑛 − (𝑘 − 𝑝)]|𝑞|!
√[𝑛 − 𝑁0]𝑞!)

2

, for all 𝑛 > 𝑁0. 

Define a sequence {𝑎𝑛} of real numbers as follows: 

𝑎𝑛 = {

1,  if 0 ≤ 𝑛 ≤ 𝑁0,

1

[𝑛]𝑞!
|𝑞|2𝑛 (

[𝑛]|𝑞|!

[𝑛 − (𝑘 − 𝑝)]|𝑞|!
√[𝑛 − 𝑁0]𝑞!)

2

,  otherwise. 
 

Note that lim𝑛→∞  
𝑎𝑛+1

𝑎𝑛
= |𝑞|2 < 1. Consequently, by ratio test ∑𝑛≥1  𝑎𝑛 < ∞. Since the 

sequence {𝑎𝑛} eventually dominates the tail of the sequence {
1

[𝑛]𝑞!
∥∥𝜁𝑛∥∥𝑞

2} modulo a scalar 

multiple, the proof is complete. 

Thus, we have the following results. 

Theorem (5.2.18)[222]: Let 𝑡 ↦ 𝑈𝑡 be a strongly continuous orthogonal representation of 

ℝ on a real Hilbert space ℋR with dim (ℋℝ) ≥ 2. Let 𝜉0 ∈ ℋℝ be a unit vector such that 
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𝑈𝑡𝜉0 = 𝜉0 for all 𝑡 ∈ ℝ. Then, 𝑀𝜉0 is a \varphi-strongly mixing MASA in 𝑀𝑞 whose left-

right measure is Lebesgue absolutely continuous. 

Proof. In this proof, we repeatedly use Eq. (8), the right multiplication of elements of 𝑀𝜉0 

from [229] and the fact that the analytic extension of (𝜎𝑡
𝜑
) is algebraic on the analytic 

elements of 𝑀𝑞. Fix 𝑚, 𝑝 ∈ ℕ. Note that if 𝜉𝑖1 , ⋯ , 𝜉𝑖𝑚 ∈ 𝒪 and 𝜉𝑗1 , ⋯ , 𝜉𝑗𝑝 ∈ 𝒪, and 𝑥 =

𝑠𝑞(𝜉𝑖1 ⊗⋯⊗ 𝜉𝑖𝑚) and 𝑦 = 𝑠𝑞 (𝐴
−
1

2𝜉𝑗1 ⊗⋯⊗𝐴−
1

2𝜉𝑗𝑝) be such that 𝔼𝜉0(𝑥) = 0 =

𝔼𝜉0(𝑦), then by Theorem (5.2.17) it follows that 𝑇𝑥,𝑦 , 𝑇𝑥∗,𝑦 are Hilbert-Schmidt operators. 

Consequently, letting 𝑎 =
2

√1−𝑞
, there exists 𝑓 ∈ 𝐿2(𝜈𝑞⊗𝜈𝑞) such that for all 𝑛, 𝑘 ≥ 0 one 

has 

∫  
𝑎

−𝑎

∫  
𝑎

−𝑎

𝐻𝑛
𝑞
(𝑡)𝐻𝑘

𝑞
(𝑠)𝑓(𝑡, 𝑠)𝑑𝜈𝑞(𝑡)𝑑𝜈𝑞(𝑠) 

= ⟨𝑠𝑞(𝜉𝑖1⊗⋯⊗ 𝜉𝑖𝑚)Ω,𝐻𝑛
𝑞
(𝑠𝑞(𝜉0)) 𝑠𝑞 (𝐴

−
1
2𝜉𝑗1 ⊗⋯⊗𝐴−

1
2𝜉𝑗𝑝)𝐻𝑘

𝑞
(𝑠𝑞(𝜉0))Ω⟩

𝑞
 

= ⟨𝑠𝑞(𝜉𝑖1⊗⋯⊗ 𝜉𝑖𝑚)Ω,𝐻𝑛
𝑞
(𝑠𝑞(𝜉0)) 𝑠𝑞 (𝐴

−
1
2𝜉𝑗1 ⊗⋯⊗𝐴−

1
2𝜉𝑗𝑝) 𝐽𝐻𝑘

𝑞
(𝑠𝑞(𝜉0)) 𝐽Ω⟩

𝑞
 

= ⟨𝑠𝑞(𝜉𝑖1⊗⋯⊗ 𝜉𝑖𝑚)Ω,𝐻𝑛
𝑞
(𝑠𝑞(𝜉0)) 𝐽𝐻𝑘

𝑞
(𝑠𝑞(𝜉0)) 𝐽𝑠𝑞 (𝐴

−
1
2𝜉𝑗1 ⊗⋯⊗𝐴−

1
2𝜉𝑗𝑝)Ω⟩

𝑞
 

= ⟨𝐻𝑛
𝑞
(𝑠𝑞(𝜉0)) 𝑠𝑞(𝜉𝑖1 ⊗⋯⊗ 𝜉𝑖𝑚)𝐻𝑘

𝑞
(𝑠𝑞(𝜉0))Ω, 𝑠𝑞 (𝐴

−
1
2𝜉𝑗1 ⊗⋯⊗𝐴−

1
2𝜉𝑗𝑝)Ω⟩

𝑞
 

= ⟨𝐻𝑛
𝑞
(𝑠𝑞(𝜉0)) 𝑠𝑞(𝜉𝑖1 ⊗⋯⊗ 𝜉𝑖𝑚)𝐻𝑘

𝑞
(𝑠𝑞(𝜉0))Ω, Δ

1
2 (𝜉𝑗1⊗⋯⊗ 𝜉𝑗𝑝)⟩

𝑞
(𝑏𝑦 𝐸𝑞. (6)) 

= ⟨Δ
1
4 (𝐻𝑛

𝑞
(𝑠𝑞(𝜉0)) 𝑠𝑞(𝜉𝑖1⊗⋯⊗ 𝜉𝑖𝑚)𝐻𝑘

𝑞
(𝑠𝑞(𝜉0)))Ω, Δ

1
4 (𝜉𝑗1 ⊗⋯⊗ 𝜉𝑗𝑝)⟩

𝑞
 

= ⟨𝜎
−
𝑖
4

𝜑
(𝐻𝑛

𝑞
(𝑠𝑞(𝜉0)) 𝑠𝑞(𝜉𝑖1 ⊗⋯⊗ 𝜉𝑖𝑚)𝐻𝑘

𝑞
(𝑠𝑞(𝜉0)))Ω, Δ

1
4 (𝜉𝑗1⊗⋯⊗ 𝜉𝑗𝑝)⟩

𝑞

= ⟨𝐻𝑛
𝑞
(𝑠𝑞(𝜉0)) 𝜎

−
𝑖
4

𝜑
(𝑠𝑞(𝜉𝑖1⊗⋯⊗ 𝜉𝑖𝑚))𝐻𝑘

𝑞
(𝑠𝑞(𝜉0))Ω, Δ

1
4 (𝜉𝑗1 ⊗⋯⊗ 𝜉𝑗𝑝)⟩

𝑞

( as 𝑠𝑞(𝜉0) ∈ 𝑀𝑞
𝜑
)

= ⟨𝜎
−
𝑖
4

𝜑
(𝑠𝑞(𝜉𝑖1⊗⋯⊗ 𝜉𝑖𝑚))Ω,𝐻𝑛

𝑞
(𝑠𝑞(𝜉0)) (𝜎

−
𝑖
4

𝜑
(𝑠𝑞 (𝜉𝑗1⊗⋯⊗ 𝜉𝑗𝑝))𝐻𝑘

𝑞
(𝑠𝑞(𝜉0))Ω⟩

𝑞

 

From the above argument, it follows that 𝑇𝑧∗,𝑤 is also a Hilbert-Schmidt operator, where 

𝑧 = 𝜎
−
𝑖

4

𝜑
(𝑠𝑞(𝜉𝑖1⊗⋯⊗ 𝜉𝑖𝑚)) and 𝑤 = 𝜎

−
𝑖

4

𝜑
(𝑠𝑞 (𝜉𝑗1 ⊗⋯⊗ 𝜉𝑗𝑝)), as it is an integral 

operator given by a square integrable kernel.  

Now use the discussion preceding Theorem (5.2.17), Eq. (8) and the fact that the complex 

span of 

{𝜎
−
𝑖

4

𝜑
(𝑠𝑞(𝜉𝑖1⊗⋯⊗ 𝜉𝑖𝑚)) : 𝜉𝑖𝑗 ∈ 𝒪, 1 ≤ 𝑗 ≤ 𝑚, 𝜉𝑖𝑗 ≠ 𝜉0 for at least one 𝜉𝑖𝑗 , 𝑚 ∈ ℕ} 
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is dense in ℱ𝑞(ℋ)⊖ 𝐿2(𝑀𝜉0 , 𝜑) to conclude that the left-right measure of 𝑀𝜉0 is Lebesgue 

absolutely continuous. The rest is immediate from Theorem (5.2.16). 

The results obtained so far can thus be summarized as follows. 

Corollary (5.2.19)[222]: Let 𝑡 ↦ 𝑈𝑡 be a strongly continuous orthogonal representation of 

ℝ on a real Hilbert space ℋℝ with dim (ℋℝ) ≥ 2. Let 𝜉0 ∈ ℋℝ be a unit vector. Then the 

following are equivalent: 

1. 𝑠𝑞(𝜉0) ∈ 𝑀𝑞
𝜑

; 

2. 𝑈𝑡𝜉0 = 𝜉0, for all 𝑡 ∈ ℝ; 

3. there exists a faithful normal conditional expectation 𝔼𝜉0:𝑀𝑞 → 𝑀𝜉0 such that 

𝜑 (𝔼𝜉0(𝑥)) = 𝜑(𝑥) for all 𝑥 ∈ 𝑀𝑞; 

4. 𝑀𝜉0 is a 𝜑-strongly mixing MASA in 𝑀𝑞. 

Proof. The conditions in the statement are equivalent from Theorem (5.2.13) and Theorem 

(5.2.18). 

Hiai proved that if the almost periodic part of the orthogonal representation is infinite 

dimensional, then the centralizer 𝑀𝑞
𝜑

 has trivial relative commutant, i.e., (𝑀𝑞
𝜑
)
′
∩𝑀𝑞 = C1 

(Thm. 3.2 [123]). Now we show that the same result is true under a weaker hypothesis as 

well. 

Corollary (5.2.20)[222]: Let 𝑡 ↦ 𝑈𝑡 be a strongly continuous orthogonal representation of 

ℝ on a real Hilbert space ℋℝ with dim (ℋℝ) ≥ 2. Suppose there exist unit vectors 𝜉𝑖 ∈ ℋℝ 

such that 𝑈𝑡𝜉𝑖 = 𝜉𝑖 , 𝑖 = 1,2, for all 𝑡 ∈ ℝ, and ⟨𝜉1, 𝜉2⟩𝑈 = 0. Then, (𝑀𝑞
𝜑
)
′
∩𝑀𝑞 = ℂ1. 

Proof. By Theorem (5.2.13) and Theorem (5.2.18), it follows that 𝑀𝜉𝑖 ⊆ 𝑀𝑞
𝜑

 is a masa in 

𝑀𝑞 for 𝑖 = 1,2. Let 𝑥 ∈ (𝑀𝑞
𝜑
)
′
∩𝑀𝑞. Then 𝑥 ∈ 𝑀𝜉1 ∩𝑀𝜉2 and hence 𝑥Ω ∈ span ℰ𝜉1

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅∥⋅∥𝑞 ∩

span ℰ𝜉2
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅∥⋅∥𝑞 from Lemma (5.2.12). But from Eq. (4), it follows that span ℰ𝜉1

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅∥⋅∥𝑞 ∩

span ℰ 𝜉2
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∥⋅∥𝑞 = ℂΩ. As Ω is a separating vector for 𝑀𝑞 the result follows. 

We extend the previous efforts to decide the factoriality of 𝑀𝑞 . We establish that 𝑀𝑞 

is a factor when dim (ℋℝ) ≥ 2 and (𝑈𝑡) is not ergodic or has a nontrivial weakly mixing 

component. 

Our approach to prove factoriality is fundamentally along the lines of Éric Ricard 

[137]. As discussed the approach is to use ideas coming from Ergodic theory, namely, strong 

mixing. Our idea stems from the following observation. If a finite von Neumann algebra 

contains a diffuse MASA for which the orthocomplement of the associated Jones' projection 

is a coarse bimodule, then the von Neumann algebra must be a factor [225]. But for the 

MASA 𝑀𝜉0, instead of showing that the orthocomplement of the Jones' projection is a coarse 

bimodule over 𝑀𝜉0, we only settled with absolute continuity in Theorem (5.2.17) and 

Theorem (5.2.18) to avoid cumbersome calculations. We use the fact that 𝑀𝜉0 is a masa in 

𝑀𝑞 as obtained, to decide factoriality of 𝑀𝑞 in the case when (𝑈𝑡) has a non-trivial fixed 

vector. 

The arguments needed to prove factoriality of 𝑀𝑞 are divided into two cases, one 

dealing with the discrete part of the spectrum of 𝐴 corresponding to the eigenvalue 1 and 

the other dealing with the continuous part of the spectrum. 

Definition (5.2.21)[222]: A strongly continuous orthogonal representation (𝑉𝑡) of ℝ on a 

real Hilbert space 𝒦ℝ is said to be weakly mixing if for any two nonzero vectors 𝜉, 𝜂 ∈ 𝒦ℝ 

one has 
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lim
𝑇
 
1

2𝑇
∫  
𝑇

−𝑇

|⟨𝑉𝑡𝜉, 𝜂⟩|
2𝑑𝑡 → 0 as 𝑇 → ∞. 

Theorem (5.2.22)[222]: Let 𝑡 ↦ 𝑈𝑡 be a strongly continuous orthogonal representation of 

ℝ on a real Hilbert space ℋℝ. Suppose that the invariant subspace of weakly mixing vectors 

in ℋℝ is non-trivial. Then 𝑀𝑞 is a factor. 

Proof. Decompose ℋℝ = ℋ𝑐⊕ℋ𝑤𝑚 (direct sum taken in ⟨⋅,⋅⟩ℋc), where ℋ𝑐 and ℋ𝑤𝑚 are 

closed invariant subspaces of the orthogonal representation consisting of compact and 

weakly mixing vectors respectively. First of all note that ℋℝ is infinite dimensional as 

ℋ𝑤𝑚 ≠ 0. If ℋ𝑐 = 0, then by Eq. (9) and Theorem (5.2.11), (𝜎𝑡
𝜑
) acts ergodically on 𝑀𝑞. 

Consequently, 𝑀𝑞 is a III1 factor [187]. Note that this was also proved in [123].) 

Let ℋ𝑐 ≠ 0. Then 𝑀𝑞
𝜑

 is non-trivial from Theorem (5.2.11). Let 𝜉 ∈ ℋ𝑤𝑚 be a unit 

analytic vector (see Proposition (5.2.6)). Note that 𝒵(𝑀𝑞) ⊆ 𝑀𝑞
𝜑
. Borrowing notations from 

Theorem (5.2.11) and the discussion preceding it, we have the following. For 𝜁𝑖𝑗 ∈ 𝒮, 1 ≤

𝑖𝑗 ≤ 𝑁1 + 2𝑁2 (or 1 ≤ 𝑖𝑗 < 𝑁1 + 2𝑁2 as the case may be) for 1 ≤ 𝑗 ≤ 𝑛 and ∏𝑗=1
𝑛  𝛽𝑖𝑗 = 1, 

note that 𝜁𝑖1 ⊗⋯⊗ 𝜁𝑖𝑛 ∈ 𝑀𝑞
𝜑
Ω. Note that the real and imaginary parts of 𝜁𝑖𝑗 are analytic 

and individually orthogonal to 𝜉 with respect to ⟨⋅,⋅, ⟩𝑈 and ⟨⋅,⋅⟩ℋℂ for all 1 ≤ 𝑗 ≤ 𝑛. Then, 

decomposing vectors into real and imaginary parts and using Eq. (7) and Lemma (5.2.9), it 

follows that 𝑠𝑞(𝜉)𝑠𝑞(𝜁𝑖1⊗⋯⊗ 𝜁𝑖𝑛)Ω = 𝜉 ⊗ 𝜁𝑖1 ⊗⋯⊗ 𝜁𝑖𝑛, while 𝑠𝑞(𝜁𝑖1 ⊗⋯⊗

𝜁𝑖𝑛)𝑠𝑞(𝜉)Ω = 𝜁𝑖1⊗⋯⊗ 𝜁𝑖𝑛⊗𝜉. This observation forces that if 𝑎 ∈ 𝒵(𝑀𝑞) then 

𝑠𝑞(𝜉)𝑎Ω = 𝜉 ⊗ 𝑎Ω, while 𝑎𝑠𝑞(𝜉)Ω = 𝑎Ω⊗ 𝜉. 

Indeed, as 𝑎 ∈ 𝑀𝑞
𝜑

, so by Theorem (5.2.11) there is a sequence {𝑠𝑙} of linear 

combinations of elements of the form 𝑠𝑞(𝜁𝑖1⊗⋯⊗ 𝜁𝑖𝑛) (as before) such that 𝑠𝑙 → 𝑎 in 

s.o.t as 𝑙 → ∞. So 𝑠𝑙Ω → 𝑎Ω in ∥⋅∥𝑞 and thus 𝑠𝑞(𝜉)𝑠𝑙Ω → 𝑠𝑞(𝜉)𝑎Ω in ∥⋅∥𝑞 . But 𝑠𝑞(𝜉)𝑠𝑙Ω =

𝜉 ⊗ 𝑠𝑙Ω for 𝑙 and 𝑐𝑞(𝜉) being continuous, it follows that 𝜉 ⊗ 𝑠𝑙Ω → 𝜉 ⊗ 𝑎Ω. This proves 

𝑠𝑞(𝜉)𝑎Ω = 𝜉 ⊗ 𝑎Ω. 

A symmetric argument using the continuity of 𝑟𝑞(𝜉) proves that 𝑎𝑠𝑞(𝜉)Ω = 𝑎Ω⊗ 𝜉. 

Thus, 𝑠𝑞(𝜉) cannot commute with 𝑎 unless 𝑎 is a scalar multiple of 1, as Ω is a separating 

vector for 𝑀𝑞. This completes the argument.  

Theorem (5.2.23)[222]: Let ℋℝ be a real Hilbert space with dim (ℋℝ) ≥ 2. Let 𝑡 ↦ 𝑈𝑡 be 

a strongly continuous orthogonal representation of ℝ on ℋℝ. Suppose there exists a unit 

vector 𝜉0 ∈ ℋℝ such that 𝑈𝑡𝜉0 = 𝜉0 for all 𝑡 ∈ ℋℝ. Then 𝑀𝑞 is a factor. 

Proof. Let 𝑥 ∈ 𝒵(𝑀𝑞). We will show that 𝑥 is a scalar multiple of 1. By Theorem (5.2.18), 

𝑀𝜉0 ⊆ 𝑀𝑞 is a diffuse masa with a unique 𝜑-preserving faithful normal conditional 

expectation. Thus, 𝒵(𝑀𝑞) ⊆ 𝑀𝜉0 and hence 𝑥 ∈ 𝑀𝜉0 . As seen in the proof of Lemma 

(5.2.12), 𝐻𝑛
𝑞
(𝑠𝑞(𝜉0))Ω = 𝜉0

⊗𝑛
 for all 𝑛 ≥ 0. Consequently, 𝑥Ω ∈ span ℰ𝜉0

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅∥⋅∥𝑞 from 

Lemma (5.2.12) and hence 

𝑥Ω = ∑  

∞

𝑛=0

𝑎𝑛𝜉0
⊗𝑛 = ∑  

∞

𝑛=0

𝑎𝑛𝐻𝑛
𝑞
(𝑠𝑞(𝜉0))Ω, 𝑎𝑛 ∈ ℂ, 

where the series converges in ∥⋅∥𝑞.  
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Since dim (ℋR) ≥ 2, so there exists an analytic vector 𝜉1 ∈ ℋℝ (see Proposition 

(5.2.6)) such that ⟨𝜉0, 𝜉1⟩ℋ𝐶 = 0. Hence, from Eq. (7) and Lemma (5.2.7) it follows that 

𝑠𝑞(𝜉1)𝑥Ω  = ∑  

∞

𝑛=0

 𝑎𝑛𝑠𝑞(𝜉1)𝐻𝑛
𝑞
(𝑠𝑞(𝜉0))Ω

 = ∑  

∞

𝑛=0

 𝑎𝑛𝑠𝑞(𝜉1)𝜉0
⊗𝑛 = ∑  

∞

𝑛=0

 𝑎𝑛(𝜉1⊗𝜉0
⊗𝑛).

 

Again, from Eq. (7), 𝐻𝑛
𝑞
(𝑠𝑞(𝜉0)) 𝑠𝑞(𝜉1)Ω = 𝜉0

⊗𝑛⊗𝜉1 for all 𝑛 ≥ 0. To see this, we use 

induction. For 𝑛 = 0, the conclusion is obvious, and for 𝑛 = 1 the same follows from 

Lemma (5.2.7). Assume that the result is true for 𝑘 = 0,1,⋯ , 𝑛. Note that the 𝑞-Hermite 

polynomials obey the following recurrence relations: 

𝐻0
𝑞
(𝑥) = 1,𝐻1

𝑞
(𝑥) = 𝑥 and 

𝑥𝐻𝑛
𝑞
(𝑥) = 𝐻𝑛+1

𝑞
(𝑥) + [𝑛]𝑞𝐻𝑛−1

𝑞
(𝑥), 𝑛 ≥ 1, 𝑥 ∈ [−

2

√1 − 𝑞
,

2

√1 − 𝑞
] [60] Defn. 1.9.

 

Thus, by functional calculus one has 

𝐻𝑛+1
𝑞

(𝑠𝑞(𝜉0)) 𝜉1  = 𝑠𝑞(𝜉0)𝐻𝑛
𝑞
(𝑠𝑞(𝜉0)) 𝜉1 − [𝑛]𝑞𝐻𝑛−1

𝑞
(𝑠𝑞(𝜉0)) 𝜉1

 = 𝑠𝑞(𝜉0)(𝜉0
⊗𝑛⊗𝜉1) − [𝑛]𝑞 (𝜉0

⊗(𝑛−1)
⊗𝜉1)

 

= 𝜉0
⊗(𝑛+1)

⊗𝜉1, by Eq. (7) and Lemma (5.2.8).          
Thus, by induction the above conclusion follows. (This can also be proved by Lemma (5.2.7) 

and Lemma (5.2.9)). 

Note that 𝑥 is a limit in s.o.t. of a sequence of operators from the linear span of 

{𝐻𝑛
𝑞
(𝑠𝑞(𝜉0)) : 𝑛 ≥ 0}. Consequently, 𝑥𝑠𝑞(𝜉1)Ω ∈  span {𝜉0

⊗𝑛⊗𝜉1: 𝑛 ≥ 0}
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∥⋅∥𝑞 . Therefore, 

𝑥𝑠𝑞(𝜉1) = 𝑠𝑞(𝜉1)𝑥 forces that 𝑎𝑛 = 0 for all 𝑛 ≥ 1. Thus, 𝑥Ω = 𝑎0Ω and hence 𝑥 = 𝑎01 

as Ω is separating for 𝑀𝑞. So the proof is complete. 

We discuss the factoriality of the centralizer 𝑀𝑞
𝜑

 of the 𝑞-deformed Araki-Woods von 

Neumann algebra 𝑀𝑞 . By Theorem (5.2.18), it follows that if the point spectrum of the 

analytic generator 𝐴 of (𝑈𝑡) is {1} and is of simple multiplicity, then 𝑀𝑞
𝜑

 is a masa in 𝑀𝑞 . 

Thus, for the centralizer to be large, the almost periodic part of (𝑈𝑡) need to be reasonably 

large. 

For a short account on bicentralizers that follows, see [178]. Let 𝑀 be a separable 

type III1 factor and let 𝜓 be a faithful normal state on 𝑀. Denote [𝑥, 𝑦] = 𝑥𝑦 − 𝑦𝑥 and 

[𝑥, 𝜓] = 𝑥𝜓 − 𝜓𝑥 for 𝑥, 𝑦 ∈ 𝑀. The asymptotic centralizer of 𝜓 is defined to be 

AC𝜓 = {(𝑥𝑛) ∈ ℓ
∞(ℕ,𝑀): ∥∥[𝑥𝑛, 𝜓]∥∥ → 0 as 𝑛 → ∞}. 

Observe that AC𝜓 is a unital 𝐶∗-subalgebra of ℓ∞(ℕ,𝑀). The bicentralizer of 𝜓 is defined 

by 

𝐵𝜓 = {𝑦 ∈ 𝑀: [𝑦, 𝑥𝑛] → 0 ultrastrongly as 𝑛 → ∞ for all (𝑥𝑛) ∈ AC𝜓}. 

Note that 𝐵𝜓 is a von Neumann subalgebra of 𝑀 which is globally invariant with respect to 

the modular automorphism group (𝜎𝑡
𝜓
). Further, 𝐵𝜓 ⊆ (𝑀

𝜓)
′
∩𝑀. The type III1 factor 𝑀 

is said to have trivial bicentralizer if 𝐵𝜓 = ℂ1 for any faithful normal state 𝜓 of 𝑀. The 
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bicentralizer problem of Connes is open and asks if every separable type III1 factor has 

trivial bicentralizer. 

Theorem (5.2.24)[222]: Let ℋℝ be a real Hilbert space such that dim (ℋℝ) ≥ 2. Let (𝑈𝑡) 
be a strongly continuous real orthogonal representation of ℝ on ℋℝ such that: 

1. there exists a unit vector 𝜉0 ∈ ℋℝ satisfying 𝑈𝑡𝜉0 = 𝜉0 for all 𝑡 ∈ ℝ, 

2. the almost periodic part of (𝑈𝑡) is at least two dimensional. 

Then, 

(𝑀𝑞
𝜑
)
′
∩𝑀𝑞 = ℂ1. 

In particular, the centralizer 𝑀𝑞
𝜑

 of 𝑀𝑞 is a factor. Moreover, if 𝑀𝑞 is a III1 factor then it has 

trivial bicentralizer. 

Proof. Under the stated hypothesis, if the almost periodic part of (𝑈𝑡) is two dimensional 

then (𝑈𝑡) admits two orthogonal invariant vectors. Then the result follows directly from 

Corollary (5.2.20). In the remaining case the argument is as follows. 

First of all, note that from Corollary (5.2.19), the von Neumann algebra 𝑀𝜉0 = 

𝑣𝑁 (𝑠𝑞(𝜉0)) ⊆ 𝑀𝑞
𝜑

 is a MASA in 𝑀𝑞 with a unique 𝜑-preserving faithful normal 

conditional expectation 𝔼𝜉0:𝑀𝑞 → 𝑀𝜉0 . Therefore, (𝑀𝑞
𝜑
)
′
∩𝑀𝑞 ⊆ 𝑀𝜉0 . Let 𝑥 ∈ (𝑀𝑞

𝜑
)
′
∩

𝑀𝑞. 

Since the dimension of the almost periodic part of (𝑈𝑡) is at least two, so from 

Theorem (5.2.11), it follows that there exist vectors 𝜁𝑖 ∈ ℋ𝐶 (with real and imaginary parts 

individually analytic), 1 ≤ 𝑖 ≤ 𝑘, such that 𝜁1⊗⋯⊗ 𝜁𝑘 ∈ 𝑀𝑞
𝜑
Ω and 𝜁𝑖 and as well as its 

real and imaginary parts are orthogonal to 𝜉0 for all 1 ≤ 𝑖 ≤ 𝑘, with respect to ⟨⋅,⋅⟩ℋℂ (as 

well as orthogonal in ⟨⋅,⋅⟩𝑈, as dim (ℋℝ) ≥ 2). Let 𝑦 = 𝑠𝑞(𝜁1⊗⋯⊗ 𝜁𝑘) ∈ 𝑀𝑞
𝜑

. 

As seen in the proof of Lemma (5.2.12), 𝐻𝑛
𝑞
(𝑠𝑞(𝜉0))Ω = 𝜉0

⊗𝑛
 for all 𝑛 ≥ 0. 

Consequently, 𝑥Ω ∈ spanℰ𝜉0
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅∥⋅∥𝑞 from Lemma (5.2.12) and hence, 

𝑥Ω = ∑  

∞

𝑛=0

𝑎𝑛𝜉0
⊗𝑛 = ∑  

∞

𝑛=0

𝑎𝑛𝐻𝑛
𝑞
(𝑠𝑞(𝜉0))Ω, 𝑎𝑛 ∈ ℂ, 

where the series converges in ∥⋅∥𝑞 . Moreover, decomposing vectors into real and imaginary 

parts and using Lemma (5.2.9), it follows that 

𝑦𝑥Ω ∈ span{𝜁1⊗⋯⊗ 𝜁𝑘⊗𝜉0
⊗𝑛: 𝑛 ≥ 0}

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅∥⋅∥𝑞
 

Further, decomposing vectors into real and imaginary parts and using Eq. (5) and Lemma 

(5.2.7) it follows that 𝑠𝑞(𝜉0)(𝜁1⊗⋯⊗ 𝜁𝑘) = 𝜉0⊗𝜁1⊗⋯⊗ 𝜁𝑘 . Assume that 

𝑠𝑞 (𝐻𝑚
𝑞 (𝜉0)) (𝜁1⊗⋯⊗ 𝜁𝑘) = 𝜉0

⊗𝑚⊗𝜁1⊗⋯⊗ 𝜁𝑘, for 𝑚 = 0,1,⋯ , 𝑛. Using the 

recurrence relations of 𝑞-Hermite polynomials (as in the proof of Theorem (5.2.23)), Eq. 

(7), Lemma (5.2.7) and the induction hypothesis, it follows that 𝐻𝑛
𝑞
(𝑠𝑞(𝜉0)) (𝜁1⊗⋯⊗

𝜁𝑘) = 𝜉0
⊗𝑛⊗𝜁1⊗⋯⊗ 𝜁𝑘, for all 𝑛 ≥ 0. Now note that 

𝑥𝑦Ω  = 𝐽𝑦∗𝐽𝑥Ω = ∑  

∞

𝑛=0

 𝑎𝑛𝐽𝑦
∗𝐽𝐻𝑛

𝑞
(𝑠𝑞(𝜉0))Ω = ∑  

∞

𝑛=0

 𝑎𝑛𝐻𝑛
𝑞
(𝑠𝑞(𝜉0)) 𝑦Ω

 = ∑  

∞

𝑛=0

 𝑎𝑛 (𝜉0
⊗𝑛⊗ (𝜁1⊗⋯⊗ 𝜁𝑘)) .
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Since, 𝑥𝑦 = 𝑦𝑥, so 𝑎𝑛 = 0 for all 𝑛 ≠ 0. Thus, the first statement follows.  

The final statement is a direct consequence of Connes-Størmer transitivity theorem 

[9]. (This can also be deduced from the fact that 𝐵𝜑 ⊆ (𝑀𝑞
𝜑
)
′
∩𝑀𝑞 . ) 

We describe the type of 𝑀𝑞 under the same constraints by showing that the type 

depends on the spectral information of 𝐴 as expected. To begin with, we recall some well 

known facts about the 𝑆 invariant of Connes. 

The 𝑆 invariant of a factor 𝑀 was defined in [66] to be the intersection over all faithful 

normal semifinite (f.n.s.) weights 𝜙 of the spectra of the associated modular operators Δ𝜙. 

Further, 𝑀 is a type III factor if and only if 0 ∈ 𝑆(𝑀) and in this case Connes classified type 

III factors using their 𝑆 invariant as follows: 

𝑆(𝑀) = {

[0,∞),  if 𝑀 is type III1,

{0,1},  if 𝑀 is type III0,

{𝜆𝑛: 𝑛 ∈ ℤ} ∪ {0},  if 𝑀 is type III𝜆, 0 < 𝜆 < 1.

 

Also, recall from [66] that for a fixed faithful normal state (resp. f.n.s. weight) 𝜙 on 𝑀, the 

𝑆 invariant can be written as 

𝑆(𝑀) =∩ {Sp (Δ𝜙𝑝) : 0 ≠ 𝑝 ∈ 𝒫 (𝒵(𝑀
𝜙))}, 

𝒫 (𝒵(𝑀𝜙)) denoting the lattice of projections in the center of the centralizer 𝑀𝜙 and 𝜙𝑝 =

𝜙∣𝑝𝑀𝑝. So, let 𝜙 be a faithful normal state on 𝑀 and let 0 ≠ 𝑝 ∈ 𝑀𝜙 be a projection. Let 

Δ𝜙𝑝 and (𝜎𝑡
𝜙𝑝
) respectively denote the modular operator and the modular automorphism 

group of the corner 𝑝𝑀𝑝 associated to the positive functional 𝜙𝑝. When 𝑝 = 1, write Δ𝜙1 

and (𝜎𝑡
𝜙1) respectively as Δ𝜙 and (𝜎𝑡

𝜙
). It is clear that 𝜎𝑡

𝜙𝑝(𝑝𝑥𝑝) = 𝑝𝜎𝑡
𝜙
(𝑥)𝑝 for all 𝑥 ∈ 𝑀 

and 𝑡 ∈ ℝ. It is also easy to check that 𝜎𝑡
𝜙𝑝

 is implemented by Δ𝜙𝑝
𝑖𝑡 = 𝑝Δ𝜙

𝑖𝑡𝑝 for all 𝑡 ∈ ℝ. 

Theorem (5.2.25)[222]: Let (𝑈𝑡) be a strongly continuous real orthogonal representation 

of ℝ on a real Hilbert space ℋℝ such that the weakly mixing component of (𝑈𝑡) is non-

trivial. Then 𝑀𝑞 is a type III1 factor. 

Proof. Recall the definition of weak mixing from Definition (5.2.21). By the hypothesis it 

follows that ℋℝ is infinite dimensional. We need to show that 𝑆(𝑀𝑞) = [0,∞). So, let 0 ≠

𝑝 ∈ 𝒫 (𝒵(𝑀𝑞
𝜑
)). By the hypothesis and Proposition (5.2.2), there exists 0 ≠ 𝜉 ∈ ℋℝ ⊆

ℋℂ ⊆ ℱ𝑞(ℋ) such that 

1

2𝑇
∫  
𝑇

−𝑇

|⟨𝑈𝑡𝜉, 𝜉⟩𝑈|
2𝑑𝑡 → 0, as 𝑇 → ∞( see Eq. (3)). 

Thus, by Eq. (4), Eq. (8), Eq. (9) and the discussion following it, one has 

1

2𝑇
∫  
𝑇

−𝑇

|⟨ℱ(𝑈𝑡)𝜉, 𝜉⟩𝑞|
2
𝑑𝑡 → 0, as 𝑇 → ∞. 

Consequently, if 𝜇𝜉  denotes the elementary spectral measure (on ℝ ) associated to 𝜉 of the 

representation {𝑡 ↦ ℱ(𝑈𝑡): 𝑡 ∈ ℝ}, then 𝜇𝜉  is non-atomic (from Eq. (9)). 

If 𝑝 ≠ 1, note that 𝑝𝜉, (1 − 𝑝)𝜉 are non-zero vectors. Indeed, if 𝜁 ∈ 𝑀𝑞
𝜑
Ω is such that 

𝑠𝑞(𝜁) = 𝑝 (see Eq. (14)), then by Theorem (5.2.11) (as in the proof of Theorem (5.2.22)), it 

follows that 𝑝𝜉 = 𝜁 ⊗ 𝜉 ≠ 0. Similar is the argument for (1 − 𝑝)𝜉. Let 𝜇𝑝𝜉, 𝜇(1−𝑝)𝜉  
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respectively denote the elementary spectral measures of {𝑡 ↦ ℱ(𝑈𝑡): 𝑡 ∈ ℝ} associated to 

the vectors 𝑝𝜉 and (1 − 𝑝)𝜉. Note that 𝜇𝑝𝜉  is the elementary spectral measure of 𝑡 ↦

𝑝Δ𝑖𝑡𝑝 (= Δ𝜑𝑝
𝑖𝑡 ) , 𝑡 ∈ ℝ, corresponding to the vector 𝑝𝜉, and the former implements (𝜎𝑡

𝜑𝑝
). 

Also, as 𝑝 ∈ 𝑀𝑞
𝜑

, so the range of 𝑝 is an invariant subspace of {ℱ(𝑈𝑡): 𝑡 ∈ ℝ}. Hence, 

⟨ℱ(𝑈𝑡)𝑝𝜉, (1 − 𝑝)𝜉⟩𝑞 = 0, for all 𝑡 ∈ ℝ. 

Consequently, 𝜇𝜉 = 𝜇𝑝𝜉 + 𝜇(1−𝑝)𝜉 , thus 𝜇𝑝𝜉  and 𝜇(1−𝑝)𝜉 are both non-atomic. 

Note that the weakly mixing component of {𝑡 ↦ ℱ(𝑈𝑡): 𝑡 ∈ ℝ} is invariant under the 

anti-unitary 𝐽. This follows by using the fact that 𝐽Δ𝑖𝑡𝐽 = Δ𝑖𝑡 for all 𝑡 ∈ ℝ and by the 

definition of weak mixing. Thus, 𝜇𝑝𝐽𝜉  is non-zero and non-atomic. Note that both 𝜉 and 𝐽𝜉 

are vectors in the 1-particle space ℋ of ℱ𝑞(ℋ). This forces that the spectral measure of the 

action {𝑡 ↦ ℱ(𝑈𝑡): 𝑡 ∈ ℝ} when restricted to the 1-particle space ℋ contains a non-trivial 

non-atomic component 𝜇 on both sides of 0 by an application of the Stone-Weierstrass 

theorem. Since, ℱ(𝑈𝑡) = 𝑖𝑑 ⊕⊕𝑛≥1 𝑈𝑡
⊗𝑞𝑛, 𝑡 ∈ ℝ, it follows that Sp (Δ𝜑𝑝) = [0,∞). Thus, 

the result follows.  

Now we turn to the case when the orthogonal representation is almost periodic. 

Theorem (5.2.26)[222]: Let (𝑈𝑡) be a strongly continuous almost periodic orthogonal 

representation of ℝ on a real Hilbert space ℋℝ such that dim (ℋℝ) ≥ 2 and such that there 

exists a unit vector 𝜉0 ∈ ℋℝ with 𝑈𝑡𝜉0 = 𝜉0 for all 𝑡 ∈ ℝ. Let 𝐺 be the closed subgroup of 

ℝ+
×generated by the spectrum of 𝐴. Then, 

𝑀𝑞 is {

 type III1  if 𝐺 = ℝ+
×,

type III𝜆  if 𝐺 = 𝜆ℤ, 0 < 𝜆 < 1,

 type II1  if 𝐺 = {1}.

 

The type II1 case corresponds to (𝑈𝑡) = (𝑖𝑑) and thus 𝑀𝑞 is the Bożejko-Speicher's II1 

factor. 

Proof. The hypothesis forces that if dim (ℋℝ) = 2, then 𝑀𝑞 is a II1 factor from Corollary 

(5.2.20) and there is nothing to prove. If dim (ℋℝ) ≥ 3, then by Theorem (5.2.24) it follows 

that (𝑀𝑞
𝜑
)
′
∩𝑀𝑞 = ℂ1. Thus, 𝑀𝑞

𝜑
 is a factor, and hence 𝑆(𝑀𝑞) is completely determined 

by Sp (Δ). Now use the fact that ℱ(𝑈𝑡) = 𝑖𝑑 ⊕⊕𝑛≥1 𝑈𝑡
⊗𝑞𝑛, 𝑡 ∈ ℝ, and Proposition (5.2.10) 

to complete the proof.  
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Chapter 6 

Free and 𝒒-Araki-Woods Algebras and Factors 
 

We show that all q-Araki-Woods algebras possess the Haagerup approximation 

property. We show that any amenable von Neumann subalgebra of any free Araki–Woods 

factor that is globally invariant under the modular automorphism group of the free quasi-

free state is necessarily contained in the almost periodic free summand. We show that the 

canonical ultraweakly dense 𝐶∗-subalgebras of q-Araki-Woods algebras are always QWEP. 
Section (6.1): Extension of Second Quantisation and Haagerup Approximation 

Property 

The Haagerup approximation property, along with amenability and weak amenability, 

started its life as an approximation property of (discrete) groups, although it was always 

intimately connected with operator algebras, beginning from its first appearance in [153]. 

This connection was further developed by Choda (cf. [241]), who defined the respective 

property for tracial von Neumann algebras and proved that a group von Neumann algebra 

(of a discrete group) possesses the Haagerup property if and only if so does the underlying 

group. The situation in the general locally compact case is, however, not that pleasant. It 

resembles the situation with amenability - injectivty of group von Neumann algebra captures 

amenability of the group in the discrete case, but not in general. 

Ever since the advent of locally compact quantum groups and their approximation 

properties (cf. [243]), it has become crucial to extend many notions beyond the case of finite 

von Neumann algebras. As in the classical case, there is no hope to define the Haagerup 

property of a general locally compact quantum group only via its von Neumann algebra. In 

the discrete case this should be feasible. [243] prove the proposed equivalence for 

unimodular discrete quantum groups. The theory of quantum groups, however, has the 

unusual feature allowing discrete groups to be non-unimodular. This is a clear motivation 

to investigate the possibility of extending the definition to the case of non-tracial von 

Neumann algebras. Recently, two equivalent axiomatisations of the Haagerup property of 

general von Neumann algebras have been established (cf. [242] and [244]). 

Whenever a new property is defined, it is useful to have a host of examples to confirm 

that the definition is a reasonable one. We prove that a wide class of type III von Neumann 

algebras, the so-called 𝑞-Araki-Woods algebras introduced by Hiai in [123] (based on earlier 

work of Shlyakhtenko, cf. [15]), possess the Haagerup approximation property. It is a natural 

extension of the fact that the 𝑞-Gaussian algebras of Bożejko and Speicher (cf. [60]) possess 

the Haagerup property, which seems to be a folklore result. One can also view as a 

contribution to the study of the structure of 𝑞-Araki-Woods algebras. A lot is known about 

their predecessors, the 𝑞-Gaussian algebras. They are known to be factors (cf. [137]), they 

are non-injective (cf. [113]), they possess the completely contractive approximation 

property (cf. [223]). In the case of 𝑞-ArakiWoods algebras we have only partial results, e.g. 

a recent development in the study of factoriality (cf. [222] and [245]). The best known result 

about non-injectivity was obtained by Nou in ([113], Corollary 3). So far, the CCAP has 

been obtained only for free Araki-Woods algebras ([190]); the general case, however, is 

likely to require new methods. We hope that this article will prompt further study of 𝑞-

Araki-Woods algebras. Let us give a brief overview. We introduce the necessary definitions 

and tools. We provide an extension of the second quantisation procedure, necessary for the 

proof of the Haagerup approximation property. The basic idea is that second quantisation 
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allows us to build approximants on the level of the Hilbert space, which is easier than 

working directly on the level of the von Neumann algebra.  

We recall the construction of the 𝑞-Araki-Woods algebras and the definition of the 

Haagerup approximation property. 

The material about, 𝑞-Araki-Woods algebras that follows, with a much more detailed 

exposition, can be easily found in [123]. 

We start from a real separable Hilbert space ℋℝ equipped with a one-parameter group 

of orthogonal transformations (U𝑡)𝑡∈ℝ. This extends to a unitary group on the 

complexification, denoted ℋℂ, that has the form U𝑡 = 𝐴
𝑖𝑡 for some positive, injective 

operator A. We define a new inner product on ℋℂ by ⟨𝑥, 𝑦⟩⋃  : = ⟨
2𝐴

1+𝐴
𝑥, 𝑦⟩. The completion 

with respect to this inner product is denoted by ℋ. Let us denote by 𝐼 the conjugation on 

ℋℂ −it is a closed operator on ℋ because the new inner product coincides with the old one 

on ℋℝ. Consider now the 𝑞-Fock space ℱ𝑞(ℋ) (cf. [60]). 

Definition (6.1.1)[240]: For any ℎ ∈ ℋℝ define 𝑠𝑞(ℎ) = 𝑎𝑞
∗ (ℎ) + 𝑎𝑞(ℎ), where 𝑎𝑞

∗ (ℎ) and 

𝑎𝑞(ℎ) are the creation and annihilation operators on ℱ𝑞(ℋ). 𝑞-Araki-Woods algebra is the 

von Neumann algebra generated by the set of operators {𝑠𝑞(ℎ): ℎ ∈ ℋℝ}. We will denote it 

by Γ𝑞(ℋ). 
There are two special cases considered previously: 

1. If the the group (U𝑡)𝑡∈ℝ is trivial, i.e. U𝑡 = Id, then we denote the algebra Γ𝑞(ℋ) by 

Γ𝑞(ℋℝ) and call it a 𝑞-Gaussian algebra (cf. [60]); 

2. If 𝑞 = 0, then Γ0(ℋ) is called a free Araki-Woods factor; they were introduced earlier 

by Shlyakhtenko (cf. [15])  

Definition (6.1.2)[240]: Let 𝑇:𝒦 → ℋ be a contraction between two Hilbert spaces. Then 

there exists a contraction ℱ𝑞(𝑇): ℱ𝑞(𝒦) → ℱ𝑞(ℋ), called first quantisation of 𝑇, which is 

defined on finite tensors by ℱ𝑞(𝑇)(𝑣1⊗⋯⊗𝑣𝑛) = 𝑇𝑣1⊗⋯⊗𝑇𝑣𝑛. 

We will follow the approach of Caspers and Skalski (cf. [242]); for a different 

approach, based on standard forms, see [244]. 

Definition (6.1.3)[240]: Let (𝑀, 𝜑) be a von Neumann algebra (with separabla predual) 

equipped with a normal, faithful, semifinite weight 𝜑. It has Haagerup approximation 

property if there exists a sequence of unital, normal, completely positive (unital, completely 

positive will be abbreviated to ucp from now on) maps (𝑇𝑘:𝑀 → 𝑀)𝑘∈ℕ such that: 

1. 𝜑 ∘ 𝑇𝑘 ⩽ 𝜑 for all 𝑘 ∈ ℕ; 

2. GNS-implementations 𝑇𝑘: 𝐿
2(M,𝜑) → 𝐿2(M,𝜑) are compact and converge to 

𝟙𝐿2(𝑀,𝜑) strongly. 

We will prove that second quantisation can be defined for arbitrary contractions on 

ℋℝ that extend to contractions on ℋ; this condition will be written succinctly as 𝐼𝑇𝐼 = 𝑇, 

where the left-hand side is understood as the closure of the product. Motivation comes from 

[190], where the analogous generalisation of second quantisation is an indispensable tool 

for obtaining approximation properties in the free case. Before we give the details of the 

proof, let us first recall how to show that the second quantisation is always available in the 

case of 𝑞-Gaussian algebras so that the similarities and the differences are clearly visible 

(cf. [60], Theorem 2.11). Before that, we need to recall the Wick formula (cf. [60], 

Proposition 2.7). 

Lemma (6.1.4)[240]: Suppose that 𝑒1, … , 𝑒𝑛 ∈ ℋℂ. Then 
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     𝑊(𝑒1⊗⋯⊗ 𝑒𝑛) 

=∑  

𝑛

𝑘=0

  ∑  

𝑖1,…,𝑖𝑘,𝑗𝑘+1,…,𝑗𝑛

 𝑎𝑞
∗(𝑒𝑖1)…𝑎𝑞

∗(𝑒𝑖𝑘)𝑎𝑞(𝐼𝑒𝑗𝑘+1)…𝑎𝑞(𝐼𝑒𝑗𝑛)𝑞
𝑖(𝐼1 ,𝐼2), (1) 

where 𝐼1 = {𝑖1 < ⋯ < 𝑖𝑘} and 𝐼2 = {𝑗𝑘+1 < ⋯ < 𝑗𝑛} form a partition of the set {1,… , 𝑛} 

and 𝑖(𝐼1, 𝐼2) is the number of crossings between 𝐼1 and 𝐼2, equal to ∑𝑙=1
𝑘  (𝑖𝑙 − 𝑙). 

Theorem (6.1.5)[240]: ([60], Theorem 2.11). Let 𝒦ℝ and ℋℝ be real Hilbert spaces and 

let 𝑇:𝒦ℝ → ℋℝ be a contraction. Then there exists a ucp map Γ𝑞(𝑇): Γ𝑞(𝒦ℝ) → Γ𝑞(ℋℝ) 

such that Γ𝑞(𝑇)𝑊(𝑒1⊗⋯⊗ 𝑒𝑛) = 𝑊(𝑇𝑒1⊗⋯⊗𝑇𝑒𝑛) for any 𝑒1, … , 𝑒𝑛 ∈ 𝒦ℝ. 

Moreover, this map preserves the vacuum state. 

Proof. To prove the existence, we will first dilate 𝑇 to an orthogonal transformation 𝑈𝑇, i.e. 

define 𝑈𝑇 = [
(𝟙𝒦R − 𝑇

∗𝑇)
1

2 𝑇∗

𝑇 −(𝟙ℋℝ − 𝑇𝑇
∗)
1

2

], an orthogonal operator on 𝒦ℝ⊕ℋℝ such 

that 𝑇 = 𝑃𝑈𝑇𝜄, where 𝜄:𝒦ℝ → 𝒦ℝ⊕ℋℝ is the inclusion onto the first summand and 

𝑃:𝒦ℝ⊕ℋℝ → ℋℝ is the orthogonal projection onto the second summand. We will define 

separately Γ𝑞(𝜄), Γ(𝑈𝑇), and Γ𝑞(𝑃) and then define Γ𝑞(𝑇):= Γ𝑞(𝑃)Γ𝑞(𝑈𝑇)Γ𝑞(𝜄). The maps 

Γ𝑞(𝑃) and Γ𝑞(𝑈𝑇) are easy to define, so we will start with them. We define Γ𝑞(𝑃)𝑥:=

ℱ𝑞(𝑃)𝑥ℱ𝑞(𝑃)
∗. This is a normal ucp map from 𝐵 (ℱ𝑞(𝒦ℂ⊕ℋℂ)) to 𝐵 (ℱ𝑞(ℋℂ)), we just 

have to check that it maps 𝑊(𝑒1⊗⋯⊗ 𝑒𝑛) to 𝑊(𝑃𝑒1⊗⋯⊗𝑃𝑒𝑛). To this end, we will 

use the Wick formula (1). It suffices to show that 

Γ𝑞(𝑃) (𝑎𝑞
∗ (𝑣1)…𝑎𝑞

∗ (𝑣𝑘)𝑎𝑞(𝑣𝑘+1)… 𝑎𝑞(𝑣𝑛))

= 𝑎𝑞
∗ (𝑃𝑣1)…𝑎𝑞

∗ (𝑃𝑣𝑘)𝑎𝑞(𝑃𝑣𝑘+1)…𝑎𝑞(𝑃𝑣𝑛). 

We will use the fact that 𝑎𝑞(𝑣)ℱ𝑞(𝑇) = ℱ𝑞(𝑇)𝑎𝑞(𝑇
∗𝑣) and ℱ𝑞(𝑇)𝑎𝑞

∗(𝑣) = 𝑎𝑞
∗ (𝑇𝑣)ℱ𝑞(𝑇). 

An easy application of this shows that ℱ𝑞(𝑃)𝑎𝑞
∗ (𝑣1)…𝑎𝑞

∗ (𝑣𝑘)𝑎𝑞(𝑣𝑘+1)… 𝑎𝑞(𝑣𝑛)ℱ𝑞(𝑃)
∗ is 

equal to 𝑎𝑞
∗ (𝑃𝑣1)…𝑎𝑞

∗ (𝑃𝑣𝑘)ℱ𝑞(𝑃𝑃
∗)𝑎𝑞(𝑃𝑣𝑘+1)…𝑎𝑞(𝑃𝑣𝑛) and we are done, because 

𝑃𝑃∗ = 𝟙ℋℝ . We define Γ𝑞(𝑈𝑇) analogously: Γ𝑞(𝑈𝑇)𝑥 = ℱ𝑞(𝑈𝑇)𝑥ℱ𝑞(𝑈𝑇)
∗. The same 

computation as in the case of 𝑃 shows that Γ𝑞(𝑈𝑇)𝑊(𝑒1⊗⋯⊗ 𝑒𝑛) = 𝑊(𝑈𝑇𝑒1⊗⋯⊗

𝑈𝑇𝑒𝑛). 
Now we have to deal with Γ𝑞(𝜄). Since 𝑢∗ ≠ 𝟙𝒦ℝ⊕ℋℝ , the previous approach does not 

work. We know, however, that Γ𝑞(𝜄) ought to be the inclusion of Γ𝑞(𝒦ℝ) onto a von 

Neumann subalgebra of Γ𝑞(𝒦ℝ⊕ℋℝ) generated by the operators {𝑠𝑞(𝑣): 𝑣 ∈ 𝒦ℝ⊕

{0} ⊂ 𝒦ℝ⊕ℋℝ}; denote the latter by Γ𝑞(𝒦ℝ,𝒦ℝ⊕ℋℝ). To construct Γ𝑞(𝜄), we will 

define a map from Γ𝑞(𝒦ℝ, 𝒦ℝ⊕ℋℝ) onto Γ𝑞(𝒦ℝ) and show that it is an injective, hence 

isometric, *-homomorphism, therefore it has an inverse, which will be the sought Γ𝑞(𝜄). So 

far, we have a map Γ𝑞(𝜄
∗): Γ𝑞(𝒦R⊕ℋℝ) → Γ𝑞(𝒦ℝ). Let us show that this map, when 

restricted to Γ𝑞(𝒦ℝ,𝒦𝑅⊕ℋℝ), is a ∗-homomorphism. To show that, note that every 

member of the generating set of Γ𝑞(𝒦ℝ,𝒦ℝ⊕ℋℝ) preserves the subspace ℱ𝑞(𝒦ℂ) ⊂

ℱ𝑞(𝒦ℂ⊕ℋℂ); it follows that every element of Γ𝑞(𝒦ℝ,𝒦ℝ⊕ℋℝ) enjoys this property. Let 

us take two elements 𝑥, 𝑦 ∈ Γ𝑞(𝒦ℝ,𝒦ℝ⊕ℋℝ) and compute 

Γ𝑞(𝜄
∗)(𝑥𝑦) = ℱ𝑞(𝜄

∗)𝑥𝑦ℱ𝑞(𝜄) = ℱ𝑞(𝜄
∗)𝑥ℱ𝑞(𝜄)ℱ𝑞(𝜄

∗)𝑦ℱ𝑞(𝜄), 
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where the second equality follows from the fact that ℱ𝑞(𝑢
∗) is the orthogonal projection 

from ℱ𝑞(𝒦ℂ⊕ℋℂ) onto ℱ𝑞(𝒦ℂ) and the image of 𝑦ℱ𝑞(𝜄) is contained in ℱ𝑞(𝒦ℂ). Therefore 

Γ𝑞(𝜄
∗): Γ𝑞(𝒦ℝ, 𝒦ℝ⊕ℋℝ) → Γ𝑞(𝒦ℝ) is a *-homomo-rphism. We will check now that it is 

injective. Suppose then that Γ𝑞(𝜄
∗)𝑥 = 0 for some 𝑥 ∈ Γ𝑞(𝒦ℝ,𝒦ℝ⊕ℋℝ). It follows that 

Γ𝑞(𝜄
∗)𝑥Ω = 0. We have Γ𝑞(𝜄

∗)𝑥Ω = ℱ𝑞(𝜄
∗)𝑥ℱ𝑞(𝜄)Ω and ℱ𝑞(𝜄)Ω = Ω, seen now as the 

vacuum vector in ℱ𝑞(𝒦ℂ⊕ℋℂ). But we already know that 𝑥Ω ∈ ℱ𝑞(𝒦ℂ) ⊂ ℱ𝑞(𝒦ℂ⊕

ℋℂ), so from ℱ𝑞(𝜄
∗)𝑥Ω = 0 we can deduce that 𝑥Ω = 0, therefore 𝑥 = 0 as Ω is a separating 

vector for Γ𝑞(𝒦ℝ⊕ℋℝ). We proved that Γ𝑞(𝜄
∗): Γ𝑞(𝒦ℝ,ℋℝ⊕ℋℝ) → Γ𝑞(𝒦ℝ) is an 

isometric *-isomorphism, hence it has an inverse and we call this inverse Γ𝑞(𝜄); it is clear 

that Γ𝑞(𝜄)𝑊(𝑒1⊗⋯⊗ 𝑒𝑛) = 𝑊(𝜄𝑒1⊗⋯⊗ 𝜄𝑒𝑛). It is easy to see that the vacuum state is 

preserved, so this finishes the proof. 

The following extension, with almost the same proof, is due to Hiai (cf. [123]): 

Proposition (6.1.6)[240]: Let (𝒦ℝ, (U𝑡)𝑡∈ℝ) and (ℋℝ, (V𝑡)𝑡∈ℝ) be two real Hilbert spaces 

equipped with one parameter groups of orthogonal transformations. Suppose that 𝑇:𝒦ℝ →
ℋℝ is a contraction such that 𝑇U𝑡 = V𝑡𝑇 for all 𝑡 ∈ ℝ. Then there is a normal ucp map 

Γ𝑞(𝑇): Γ𝑞(𝒦) → Γ𝑞(ℋ) extending 𝑊(𝑒1⊗⋯⊗ 𝑒𝑛) ↦ 𝑊(𝑇𝑒1⊗⋯⊗𝑇𝑒𝑛). 

Proof. We decompose 𝑇 = 𝑃𝑈𝑇𝜄 as previously; the exact form of this decomposition is 

important. We equip the space 𝒦ℝ⊕ℋℝ with the orthogonal group (U𝑡⊕V𝑡)𝑡∈ℝ. Note 

that the completion of 𝒦ℂ⊕ℋℂ with respect to the inner product defined by (U𝑡⊕ V𝑡)𝑡∈ℝ 

is naturally identified with 𝒦⊕ℋ. Then the three maps 𝑃,𝑈𝑇, and 𝜄 intertwine the 

orthogonal groups and, therefore, extend to contractions between appropriate Hilbert spaces. 

The rest of the proof is exactly the same as previously. 

We would like to state now our extension of the second quantisation (with the same 

minimal requirements as in [190]). 

Theorem (6.1.7)[240]: Suppose that 𝑇:𝒦 → ℋ is a contraction such that 𝑇 = 𝐽𝑇𝐼, where 𝐼 
is the conjugation on 𝒦ℂ and 𝐽 is the conjugation on ℋC. Then the assignment 𝑊(𝑒1⊗ 

⋯⊗ 𝑒𝑛) ↦ 𝑊(𝑇𝑒1⊗⋯⊗𝑇𝑒𝑛) extends to a normal ucp map Γ𝑞(𝑇): Γ𝑞(𝒦) → Γ𝑞(ℋ) 

that preserves the vacuum state. 

Proof. We start similarly as in the proof of Theorem (6.1.5); dilate 𝑇 to a unitary 𝑈𝑇 on 

𝒦⊕ℋ given by [
(𝟙𝒦 − 𝑇

∗𝑇)
1

2 𝑇∗

𝑇 −(𝟙ℋ − 𝑇𝑇
∗)
1

2

] so that 𝑇 = 𝑃𝑈𝑇′, where 𝜄:𝒦 → 𝒦⊕

ℋ is the natural inclusion and 𝑃:𝒦 ⊕ℋ → ℋ is the orthogonal projection. Note that only 

𝑈𝑇 depends on 𝑇, so it is easy to see that 𝜄 and 𝑃 come from maps of real Hilbert spaces 

𝒦ℝ, 𝒦ℝ⊕ℋℝ, and ℋℝ and they intertwine the orthogonal groups (U𝑡)𝑡∈ℝ, (U𝑡⊕V𝑡)𝑡∈ℝ 

and (V𝑡)𝑡∈ℝ. Therefore there is no problem with defining the second quantisation for these 

maps (Proposition (6.1.6)). We get a ucp map Γ𝑞(𝜄): Γ𝑞(𝒦) → Γ𝑞(𝒦 ⊕ℋ). The condition 

𝐽𝑇𝐼 = 𝑇 is not self-adjoint, hence in general 𝑈𝑇 does not commute with 𝐼 ⊕ 𝐽, so there is 

no hope of defining a map Γ𝑞(𝑈𝑇): Γ𝑞(𝒦⊕ℋ) → Γ𝑞(𝒦 ⊕ℋ). However, there is a map 

𝒯𝑞(𝑈𝑇): B(ℱ𝑞(𝒦 ⊕ℋ)) → B(ℱ𝑞(𝒦 ⊕ℋ)) given by conjugation 𝑥 ↦ ℱ𝑞(𝑈)𝑥ℱ𝑞(𝑈𝑇)
∗. 

One can easily check that  

        𝒯𝑞(𝑈𝑇) (𝑎𝑞
∗ (𝑒1)… 𝑎𝑞

∗ (𝑒𝑘)𝑎𝑞(𝑒𝑘+1)…𝑎𝑞(𝑒𝑛))  

= 𝑎𝑞
∗ (𝑈𝑇𝑒1)… 𝑎𝑞

∗ (𝑈𝑇𝑒𝑘)𝑎𝑞(𝑈𝑇𝑒𝑘+1)…𝑎𝑞(𝑈𝑇𝑒𝑛). 
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So far, we have a normal ucp map 𝒯𝑞(𝑈𝑇) ∘ Γ𝑞
2(𝜄): Γ𝑞(𝒦) → 𝐵(ℱ𝑞(𝒦 ⊕ℋ)). We 

now have to deal with the projection 𝑃. As in the case of a unitary operator, we get a map 

𝒯𝑞(𝑃): 𝐵(ℱ𝑞(𝒦 ⊕ℋ)) → 𝐵(ℱ𝑞(ℋ)) given by 𝑥 ↦ ℱ𝑞(𝑃)𝑥ℱ𝑞(𝑃)
∗. It is a simple matter to 

check that in this case we still have 

𝒯𝑞(𝑃) (𝑎𝑞
∗ (𝑒1)…𝑎𝑞

∗ (𝑒𝑘)𝑎𝑞(𝑒𝑘+1)…𝑎𝑞(𝑒𝑛))

= 𝑎𝑞
∗ (𝑃𝑒1)…𝑎𝑞

∗ (𝑃𝑒𝑘)𝑎𝑞(𝑃𝑒𝑘+1)…𝑎𝑞(𝑃𝑒𝑛). 
Finally, we obtain a (normal) ucp map 

𝑣:= 𝒯𝑞(𝑃) ∘ 𝒯𝑞(𝑈𝑇) ∘ Γ𝑞(𝜄): Γ𝑞(𝒦) → 𝐵(ℱ𝑞(ℋ)) 

that has the property that 𝑣(𝑊(𝑒1⊗⋯⊗ 𝑒𝑛)) is equal to 

∑ 

𝑛

𝑘=0

∑  

𝑖1,…,𝑖𝑘,𝑗𝑘+1,…,𝑗𝑛

𝑎𝑞
∗(𝑃𝑈𝑇𝜄𝑒𝑖1)…𝑎𝑞

∗(𝑃𝑈𝑇𝜄𝑒𝑖𝑘)𝑎𝑞(𝑃𝑈𝑇𝐿𝐼𝑒𝑗𝑘+1)…𝑎𝑞(𝑃𝑈𝑇𝜄𝐼𝑒𝑗𝑛)𝑞
𝑖(𝐼1,𝐼2). 

Since 𝑇 = 𝑃𝑈𝑇𝜄 satisfies 𝐽𝑇𝐼 = 𝑇 this is equal to 𝑊(𝑇𝑒1⊗⋯⊗𝑇𝑒𝑛), therefore the image 

of 𝑣 is contained in Γ𝑞(ℋ) and we define Γ𝑞(𝑇):= 𝑣. 

We would like to present a second approach to the extended second quantisation. Let 

us start with a definition. 

Definition (6.1.8)[240]: Let ℋ be a (complex) Hilbert space. Let ℱ𝑞(ℋ) be the 𝑞-Fock 

space over ℋ. We define the 𝑞-Toeplitz algebra 𝒯𝑞(ℋ) to be the 𝐶∗-algebra generated by 

the creation operators 𝑎𝑞
∗ (𝑣) inside 𝐵(ℱ𝑞(ℋ)). If 𝒦 ⊂ ℋ is a closed subspace, we define 

𝒯𝑞(𝒦,ℋ) to be the 𝐶∗-subalgebra of 𝒯𝑞(ℋ) generated by the set {𝑎𝑞
∗ (𝑣): 𝑣 ∈ 𝒦}. 

We would like to note that both Γ𝑞(𝑃) and Γ𝑞(𝑈𝑇) (denoted then by 𝒯𝑞(𝑃) and 

𝒯𝑞(𝑈𝑇)) can be defined on the level of the algebra 𝒯𝑞(ℋ) by the same formula. If we could 

do that also for Γ𝑞(𝜄), we would be able to obtain a second quantisation procedure on the 

level of the 𝑞-Toeplitz algebra. The reasons for seeking such a generalisation are twofold. 

First, it is interesting in its own right because better understanding of the structure of the 𝑞-

Toeplitz algebra has potential applications to the study of radial multipliers (cf. [190] for the 

free case). Second, it allows us to use the approach of Houdayer and Ricard (cf. [190], 

Theorem 3.15 and Corollary 3.16) to extend the second quantisation for the 𝑞-Araki-Woods 

algebras. Let us point out what obstacle has to be overcome. To show that we can define 

𝒯𝑞(𝜄), we would like to show that the *-homomorphism 𝒯𝑞(𝜄
∗): 𝒯𝑞(𝒦,𝒦 ⊕ℋ) → 𝒯𝑞(𝒦) 

is injective. This is the hard part, because now the vacuum vector Ω is not separating 

anymore. The kernel ker (𝒯𝑞(𝜄
∗)) is formed by elements vanishing on the subspace 

ℱ𝑞(𝒦) ⊂ ℱ𝑞(𝒦 ⊕ℋ). We will now state the triviality of the kernel explicitly. 

To make the theorem look plausible, we would like to state a lemma saying that the 

linear span of the products of generators of the 𝑞-Toeplitz algebra, a dense ∗-subalgebra of 

it, does not contain any nontrivial element of the kernel - this shows that there are no obvious 

candidates for the elements of the kernel. Before that, let us introduce some useful notation. 

Definition (6.1.9)[240]: Let ℋ be a complex Hilbert space and let ℋ̅ be its complex 

conjugate space. We define maps 𝑎𝑞
∗ :ℋ⊗𝑘 → 𝐵(ℱ𝑞(ℋ)) and 𝑎𝑞: ℋ̅

⊗𝑘 → 𝐵(ℱ𝑞(ℋ)) (the 

tensor products are simply algebraic tensor products) to be the linear extensions of the maps 

given on simple tensors by 𝑎𝑞
∗ (𝑒1⊗⋯⊗ 𝑒𝑘) = 𝑎𝑞

∗ (𝑒1)…𝑎𝑞
∗ (𝑒𝑘) and 𝑎𝑞(𝑒‾1⊗⋯⊗ 𝑒‾𝑘) =

𝑎𝑞(𝑒1)… 𝑎𝑞(𝑒𝑘). For any 𝐯𝑘⊗ �̅�𝑛−𝑘 ∈ ℋ
⊗𝑘⊗ ℋ̅⊗(𝑛−𝑘) we also define 𝐴𝑘,𝑛(𝐯𝑘⊗

�̅�𝑛−𝑘): = 𝑎𝑞
∗ (𝐯𝑘)𝑎𝑞(�̅�𝑛−𝑘). Let us also define the space 
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T(ℋ):=⨁ 

∞

𝑛=0

(⨁ 

𝑛

𝑘=0

 ℋ⊗𝑘⊗ℋ̅⊗𝑛−𝑘), 

where the direct sums and tensor products are algebraic. Direct sum of all the operators 𝐴𝑘,𝑛 

will be denoted by 𝐴: T(ℋ) → 𝒯𝑞(ℋ). Note that if 𝜄:𝒦 → ℋ is an inclusion of Hilbert 

spaces, then 𝐴 can be equally well viewed as a map from T(𝒦) to 𝒯𝑞(𝒦,ℋ), for which we 

will use the same notation. 

Using basic algebraic manipulations, we can obtain the following lemma. 

Lemma (6.1.10)[240]: Let 𝜄: 𝒦 → ℋ be an inclusion of Hilbert spaces. Then the mapping 

𝐴 ∶ T(𝒦) → 𝒯𝑞(𝒦,ℋ) is injective. As a consequence, any 𝑥 in the range of 𝐴 is not in the 

kernel of the map 𝒯𝑞(𝜄
∗): 𝒯𝑞(𝒦,ℋ) → 𝒯𝑞(𝒦). 

Before proving Theorem (6.1.11), we need just one more lemma, which we precede 

with introduction of convenient notation.  

Elements of the form 𝑎𝑞
∗ (𝐯𝑛)𝑎𝑞(�̅�𝑛), where 𝐯𝑛, 𝐰𝑛 ∈ ℋ

⊗𝑛 will be called elements 

of length 𝑛, and their non-closed linear span will be denoted by (𝒯𝑞(ℋ))𝑛. Note that, by 

Lemma (6.1.10), the subspaces (𝒯𝑞(ℋ))𝑛 are linearly independent for different 𝑛, therefore 

the notion of length is well defined. We will also find it useful to specify the notation for 

the orthogonal projections 𝑃𝑛: ℱ𝑞(ℋ) → ℋ𝑞
⊗𝑛

, where ℋ𝑞
⊗𝑛

 denotes the 𝑛-fold tensor power 

of ℋ endowed with a 𝑞-deformed inner product. Let us also introduce the maps 

𝑅𝑛+𝑘,𝑘
∗ :ℋ𝑞

⊗(𝑛+𝑘)
→ ℋ𝑞

⊗𝑛⊗ℋ𝑞
⊗𝑘( cf. [113], Lemma 2) by their action on simple tensors: 

𝑅𝑛+𝑘,𝑘
∗ (𝑣1⊗⋯⊗𝑣𝑛+𝑘) = ∑  

|𝐼1|=𝑛,|𝐼2|=𝑘

𝑞𝑖(𝐼1,𝐼2)𝑣𝑖1⊗⋯⊗𝑣𝑖𝑛⊗𝑣𝑗𝑛+1⊗⋯⊗𝑣𝑗𝑛+𝑘 , 

with the same notation as in Lemma (6.1.4). 

Theorem (6.1.11)[240]: Let 𝒦 and ℋ complex Hilbert spaces, with inclusion 𝜄:𝒦 → ℋ. 

Then the ∗-homomorphism 𝒯𝑞(𝜄
∗): 𝒯𝑞(𝒦,ℋ) → 𝒯𝑞(𝒦) is injective. 

Proof. First, we would like to show that the task of proving triviality of the kernel can be 

reduced to a slightly easier one. To show that the kernel is trivial, it suffices to look at 

positive elements, since the kernel is an ideal, in particular a 𝐶∗ algebra, therefore it is 

spanned by positive elements. Suppose that 𝑥 is in the kernel and is positive. There is an 

action of the circle group (in our case it is the interval [0,2𝜋] with endpoints identified) on 

𝒯𝑞(𝒦,ℋ) given by 𝑡 →
𝛼
ℱ𝑞(𝑒

𝑖𝑡)𝑥ℱ𝑞(𝑒
−𝑖𝑡). This action leaves the kernel invariant, therefore 

the element 𝔼𝑥:=
1

2𝜋
∫
0

2𝜋
 ℱ𝑞(𝑒

𝑖𝑡)𝑥ℱ𝑞(𝑒
−𝑖𝑡)d𝑡 is also in the kernel and is invariant by the 

action of the circle group defined above (this action is used by Pimsner in [199] to show the 

universality of the usual Toeplitz algebra). It is a simple matter to check that the fixed point 

subalgebra is equal to the closed linear span of the elements of the form 𝑎𝑞
∗ (𝐯𝑛)𝑎𝑞(�̅�𝑛), 

where 𝐯𝑛 ∈ ℋ
⊗𝑛, �̅�𝑛 ∈ ℋ̅

⊗𝑛 and 𝑛 ranges over non-negative integers, and 𝔼 is a faithful 

conditional expectation onto this fixed point subalgebra. So it suffices to show that there are 

no non-zero positive elements in this fixed point subalgebra that are in the kernel. 

Suppose that 𝑥 is in the kernel and belongs to the subalgebra fixed by the circle action. 

We need to show that 𝑥∣ℋ⊗𝑛 = 0 for any 𝑛 ⩾ 0; note that, as vector spaces, ℋ𝑞
⊗𝑛 = ℋ⊗𝑛, 

which follows from [113]. We will prove the statement inductively. Fix a sequence (𝑥𝑘)𝑘∈ℕ 

that approximates 𝑥 in norm and is contained in the non-closed sum of the subspaces 
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(𝒯𝑞(ℋ))𝑛. Therefore every 𝑥𝑘 admits a decomposition 𝑥𝑘 = ∑𝑙=0
𝑛𝑘  𝑥𝑘

(𝑙)
, where 𝑥𝑘

(𝑙)
∈

(𝒯𝑞(ℋ))𝑙 and 𝑛𝑘 is the smallest number such that 𝑥𝑘
(𝑙)
= 0 for 𝑙 > 𝑛𝑘. 

We would like to now state explicitly the statement we intend to prove by induction:  

For every 𝑛 ∈ ℕ ∪ {0}𝑥∣ℋ⊗𝑛 = 0 and lim𝑘→∞   ∥∥∑𝑙=0
𝑛  𝑥𝑘

(𝑙)
∥∥ = 0. Let us start with 𝑛 =

0. Our inductive statement for 𝑛 = 0 means just that 𝑃0𝑥𝑃0 = 0 and lim𝑘→∞   ∥∥𝑥𝑘
(0)
∥∥ = 0. 

The first part translates to 𝑥Ω = 0 and it follows from the fact that Ω ∈ 𝒦 and 𝑥 

belongs to the kernel. For the other part, it follows from Lemma (6.1.13) that an element 𝑦𝑙 
of length 𝑙 satisfies an inequality ∥∥𝑦𝑙∥∥ ⩽ 𝐶(𝑞)∥∥𝑃𝑙𝑦𝑙𝑃𝑙∥∥, where 𝐶(𝑞) is a positive constant 

depending only on 𝑞. In our case we get ∥∥𝑥𝑘
(0)
∥∥ ⩽ 𝐶(𝑞) ∥∥𝑃0𝑥𝑘

(0)
𝑃0∥∥. We know that 𝑃0𝑥𝑃0 =

0 and 𝑃0𝑥𝑘𝑃0 converges to 𝑃0𝑥𝑃0 in norm. However, 𝑃0𝑥𝑘𝑃0 = 𝑃0𝑥𝑘
(0)
𝑃0, since elements 

of length greater than 0 annihilate the range of 𝑃0. 

Assume now that our statement has been proved for 𝑚 < 𝑛 − we would like to show 

that it is also true for 𝑛. Use the decomposition ℋ = 𝒦⊕𝒦⊥ to write ℋ⊗𝑛 = 𝒦⊗𝑛⊕
ℋ′, where ℋ′ is a direct sum of tensor products of the spaces 𝒦 and 𝒦⊥, where at least one 

factor is equal to 𝒦⊥. We would like to show that 𝑥 restricted to each of the tensor products 

vanishes. Since 𝑥 is in the kernel, we get it for 𝑥∣𝒦⊗𝑛. Let 𝒦′ be any other summand. We 

will show that 𝑥𝑘(𝐞) converges to 0 for any simple tensor 𝐞 ∈ 𝒦′. Since 𝐞 is of length 𝑛, 

we get 𝑥𝑘(𝐞) = ∑𝑙=0
𝑛  𝑥𝑘

(𝑙)
(𝐞). By the inductive assumption, we know that ∑𝑙=0

𝑛−1  𝑥𝑘
(𝑙)

 

converges in norm to 0, so we are left with 𝑥𝑘
(𝑛)
(𝐞). But every summand in 𝑥𝑘

(𝑛)
 

is of the form 𝑎𝑞
∗ (𝐯𝑛)𝑎𝑞(�̅�𝑛) and 𝑎𝑞

∗ (𝐯𝑛)𝑎𝑞(�̅�𝑛)𝐞 = ⟨Σ𝐰𝑛, 𝐞⟩𝐯𝑛, where Σ:ℋ⊗𝑛 → ℋ⊗𝑛 

is the flip map, taking ℎ1⊗⋯⊗ℎ𝑛 to ℎ𝑛⊗⋯⊗ℎ1. Since e possesses a vector from 𝒦⊥ 

in its tensor decomposition, ⟨Σ𝐰𝑛, 𝐞⟩ = 0. It follows that 𝑥∣ℋ⊗𝑛 = 0. This implies that 

lim𝑘→∞  ∥∥𝑃𝑛𝑥𝑘𝑃𝑛∥∥ = 0. Since 𝑃𝑛𝑥𝑘𝑃𝑛 = ∑𝑙=0
𝑛  𝑃𝑛𝑥𝑘

(𝑙)
𝑃𝑛 and lim𝑘→∞   ∥∥∑𝑙=0

𝑛−1  𝑥𝑘
(𝑙)
∥∥ = 0, we get 

that lim𝑘→∞   ∥∥𝑃𝑛𝑥𝑘
(𝑛)
𝑃𝑛∥∥ = 0. Using Lemma (6.1.13), we conclude that lim𝑘→∞   ∥∥𝑥𝑘

(𝑛)
∥∥ = 0 

therefore lim𝑘→∞   ∥∥∑𝑙=0
𝑛  𝑥𝑘

(𝑙)
∥∥ = 0. 

Lemma (6.1.12)[240]: Let ℋ be a Hilbert space. Suppose that 𝐴, 𝐵 are positive operators 

on ℋ and 𝑇 is a bounded operator such that 𝐴 = 𝐵𝑇. Then 𝐴 ⩽∥ 𝑇 ∥ 𝐵. 

Proof. By taking the adjoint, we get 𝐴 = 𝑇∗𝐵, hence 𝐴2 = 𝐵𝑇𝑇∗𝐵. It follows that 𝐴2 ⩽∥
𝑇 ∥2 𝐵2. The majorisation 𝐴 ⩽∥ 𝑇 ∥ 𝐵 is implied by the operator monotonicity of the square 

root. 

Lemma (6.1.13)[240]: Suppose that 𝑥 ∈ (𝒯𝑞(ℋ))𝑛. Then: 

1. 𝑃𝑛+𝑘𝑥𝑃𝑛+𝑘 = Id𝑛,𝑘(𝑃𝑛𝑥𝑃𝑛⊗ Id𝑘)𝑅𝑛+𝑘,𝑘
∗ , where Id𝑛,𝑘:ℋ𝑞

⊗𝑛⊗ℋ𝑞
⊗𝑘 → ℋ𝑞

⊗𝑛+𝑘
 is 

the extension of the identity map ℋ⊗𝑛⊗ℋ⊗𝑘 → ℋ⊗𝑛+𝑘, defined on algebraic 

tensor products. 

2. ∥ 𝑥 ∥⩽ 𝐶(𝑞)∥∥𝑃𝑛𝑥𝑃𝑛∥∥, where 𝐶(𝑞) is a positive constant depending only on q. 

Consequently, ∥ 𝑥 ∥≃ ∥∥𝑃𝑛𝑥𝑃𝑛∥∥. 
Proof. (i) Fix 𝑥 of length 𝑛 - it is a linear combination of elements of the form 𝑎𝑞

∗ (𝐯𝑛)𝑎(�̅�𝑛). 
Since the formula 

𝑃𝑛+𝑘𝑥𝑃𝑛+𝑘 = (𝑃𝑛𝑥𝑃𝑛⊗ Id𝑘)𝑅𝑛+𝑘,𝑘
∗ ,                                (2) 

is linear in 𝑥, it suffices to prove it for 𝑥 of the form 𝑎𝑞
∗ (𝐯𝑛)𝑎(�̅�𝑛), where 𝐯𝑛 = 𝑣1⊗⋯⊗

𝑣𝑛 and 𝐰𝑛 = 𝑤𝑛⊗⋯⊗𝑤1 are simple tensors. Fix 𝐞 ∈ ℋ⊗𝑛+𝑘; we have to check that 
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𝑥𝑒 = (𝑥 ⊗ Id𝑘)𝑅𝑛+𝑘,𝑘
∗ 𝑒. Note that the action of creation operators does not depend on the 

tensor power on which they act - it always boils down to tensoring by a vector on the left. 

Therefore we need only to concern ourselves with annihilation operators. We would like to 

express 𝑞-annihilation operators 𝑎𝑞(𝑣) in terms of free annihilation operators 𝑎(𝑣):=

𝑎0(𝑣). Note that 𝑎𝑞
∗ (𝑣) = 𝑎∗(𝑣), so for any finite tensors 𝐲 and 𝐳 we get ⟨𝐳, 𝑎𝑞(𝑣)𝐲⟩𝑞 =

⟨𝑎∗(𝑣)𝐳, 𝐲⟩𝑞. 

Let 𝑃𝑞
𝑛 be the positive operator on ℋ⊗𝑛 defining the 𝑞-deformed inner product; let 

us denote by 𝑃𝑞 the direct sum of all the operators 𝑃𝑞
𝑛. Using the definition of the 𝑞-deformed 

inner product, we arrive at 

⟨𝐳, 𝑃𝑞𝑎𝑞(𝑣)𝐲⟩0 = ⟨𝑃𝑞𝑎
∗(𝑣)𝐳, 𝐲⟩

0
. 

It follows that 𝑃𝑞𝑎𝑞(𝑣) = (𝑃𝑞𝑎
∗(𝑣))

∗
= 𝑎(𝑣)𝑃𝑞, so 𝑎𝑞(𝑣) = 𝑃𝑞

−1𝑎(𝑣)𝑃𝑞 . If we restrict this 

equality to ℋ⊗𝑛, we get 𝑎𝑞(𝑣)∣ℋ⊗𝑛 = (𝑃𝑞
𝑛−1)

−1
𝑎(𝑣)𝑃𝑞

𝑛. Let us compute the left-hand side 

of (2) : 

𝑎𝑞(𝑤𝑛)…𝑎𝑞(𝑤1)𝐞 = (𝑃𝑞
𝑘)
−1
𝑎(𝑤𝑛)…𝑎(𝑤1)𝑃𝑞

𝑛+𝑘𝐞. 

This formula follows from the fact that first we change 𝑎𝑞(𝑤1) to (𝑃𝑞
𝑛+𝑘−1)

−1
𝑎(𝑤1)𝑃𝑞

𝑛+𝑘, 

but then 𝑎𝑞(𝑤2) has to be changed to (𝑃𝑞
𝑛+𝑘−2)

−1
𝑎(𝑤2)𝑃𝑞

𝑛+𝑘−1 and there is a cancellation 

between 𝑎(𝑤2) and 𝑎(𝑤1); using this fact repeatedly, we obtain the above formula. To 

calculate the right-hand side, recall (cf. [113], Formula 2 on page 21) that we have an 

equality 𝑃𝑞
𝑛+𝑘 = (𝑃𝑞

𝑛⊗𝑃𝑞
𝑘)𝑅𝑛+𝑘,𝑘

∗ , so 𝑅𝑛+𝑘,𝑘
∗ = ((𝑃𝑞

𝑛)
−1
⊗ (𝑃𝑞

𝑘)
−1
)𝑃𝑞

𝑛+𝑘 . It leads us to: 

(𝑎𝑞(𝑤𝑛)…𝑎𝑞(𝑤1) ⊗ Id𝑘) ((𝑃𝑞
𝑛)
−1
⊗ (𝑃𝑞

𝑘)
−1
) 𝑃𝑞

𝑛+𝑘𝐞

 = (𝑎𝑞(𝑤𝑛)…𝑎𝑞(𝑤1)(𝑃𝑞
𝑛)
−1
⊗ (𝑃𝑞

𝑘)
−1
) 𝑃𝑞

𝑛+𝑘𝐞

 = (𝑎(𝑤𝑛)…𝑎(𝑤1) ⊗ (𝑃𝑞
𝑘)
−1
) 𝑃𝑞

𝑛+𝑘𝐞.

 

We now only need to understand that this is exactly the same formula. It follows from the 

fact that the free annihilation operators act only on the 𝑛 leftmost vectors, so the operator 

(𝑃𝑞
𝑘)
−1

 in both situations acts only on the 𝑘 rightmost ones. 

(ii) First of all, since the spaces ℋ𝑞
⊗𝑘

 are left invariant by 𝑥, we have ∥ 𝑥 ∥=

sup𝑘⩾0  ∥∥𝑃𝑘𝑥𝑃𝑘∥∥. Because 𝑃𝑘𝑥𝑃𝑘 = 0 for 𝑘 < 𝑛, we actually get ∥ 𝑥 ∥=

sup𝑘⩾0  ∥∥𝑃𝑛+𝑘𝑥𝑃𝑛+𝑘∥∥. We just have to show that ∥∥𝑃𝑛+𝑘𝑥𝑃𝑛+𝑘∥∥ ⩽ 𝐶(𝑞)∥∥𝑃𝑛𝑥𝑃𝑛∥∥. From the 

first part of the proof we get that ∥∥𝑃𝑛+𝑘𝑥𝑃𝑛+𝑘∥∥ ⩽ ∥∥Id𝑛,𝑘∥∥ ⋅ ∥∥𝑅𝑛+𝑘,𝑛
∗

∥∥ ⋅ ∥∥𝑃𝑛𝑥𝑃𝑛∥∥. It is known 

(cf. [113], Formula 2 on page 21) that ∥∥𝑅𝑛+𝑘,𝑛
∗

∥∥ ⩽ 𝐶(𝑞), where 𝐶(𝑞) = ∏𝑘=1
∞  (1 − |𝑞|𝑘)−1 

and 𝑅𝑛+𝑘,𝑛
∗  is seen as an operator on ℋ⊗(𝑛+𝑘), where ℋ⊗(𝑛+𝑘) is equipped with the 

standard inner product, not the 𝑞-deformed one. It follows from Lemma (6.1.12) that 

𝑃𝑞
(𝑛+𝑘)

⩽ 𝐶(𝑞)𝑃𝑞
(𝑛)
⊗𝑃𝑞

(𝑘)
 as operators on ℋ⊗(𝑛+𝑘), since 𝑃𝑞

(𝑛+𝑘)
= (𝑃𝑞

(𝑛)
⊗

𝑃𝑞
(𝑘)
)𝑅𝑛+𝑘,𝑘

∗ . Because 𝑃𝑞
(𝑛+𝑘)

 defines the inner product on ℋ𝑞
⊗(𝑛+𝑘)

, and 𝑃𝑞
(𝑛)
⊗𝑃𝑞

(𝑘)
 

defines the inner product on ℋ𝑞
⊗𝑛⊗ℋ𝑞

⊗𝑘
, it follows that the identity map Id𝑛,𝑘:ℋ𝑞

⊗𝑛⊗

ℋ𝑞
⊗𝑘 → ℋ𝑞

⊗(𝑛+𝑘)
 has norm not greater than √𝐶(𝑞). Finally, (Id𝑛,𝑘)

∗
= 𝑅𝑛+𝑘,𝑛

∗ , so 

∥∥𝑅𝑛+𝑘,𝑛
∗

∥∥ ⩽ √𝐶(𝑞) as an operator mapping ℋ𝑞
⊗(𝑛+𝑘)

 to ℋ𝑞
⊗𝑛⊗ℋ𝑞

⊗𝑘. 

This shows that ∥∥𝑃𝑛+𝑘𝑥𝑃𝑛+𝑘∥∥ ⩽ 𝐶(𝑞)∥∥𝑃𝑛𝑥𝑃𝑛∥∥. 
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To prove the Haagerup property, we need to use one more lemma.  

Lemma (6.1.14)[240]: (Houdayer-Ricard, [190]). There exists a sequence (𝑇𝑘)𝑘∈ℕ of 

finite rank contractions on ℋ such that 𝐼𝑇𝑘𝐼 = 𝑇𝑘 and lim𝑘→∞  𝑇𝑘 = 1 strongly. 

Theorem (6.1.15)[240]: Let (ℋR, (U𝑡)𝑡∈ℝ) be a separable, real Hilbert space equipped with 

a one parameter group of orthogonal transformations (U𝑡)𝑡∈ℝ. Then the 𝑞-Araki-Woods 

algebra Γ𝑞(ℋℝ, (U𝑡)𝑡∈ℝ)
′′ has the Haagerup approximation property. 

Proof. Consider the ucp maps 𝑣𝑘,𝑡: = Γ𝑞(𝑒
−𝑡𝑇𝑘) − they preserve the vacuum state. We 

would like to prove that the GNS-implementations of these maps converge strongly to 

identity and are compact. First of all, by definition, the GNS implementations of these maps 

are equal to ℱ𝑞(𝑒
−𝑡𝑇𝑘). Let us then check compactness. Recall that we denote by 

𝑃𝑛: ℱ𝑞(ℋ) → ℱ𝑞(ℋ) the orthogonal projection onto first 𝑛 summands in the direct sum 

decomposition of the Fock space. Since 𝑇𝑘 is a finite-rank operator, so is 𝑃𝑛ℱ𝑞(𝑒
−𝑡𝑇𝑘). We 

have to show that the norm of 𝑃𝑛
⊥ℱ𝑞(𝑒

−𝑡𝑇𝑘) converges to 0, when 𝑛 → ∞. First of all, let us 

reduce to the case 𝑞 = 0. Operator 𝑃𝑞 preserves all the tensor powers appearing in the direct 

sum decomposition of the Fock space, therefore it commutes with 𝑃𝑛
⊥. It also commutes 

with the first quantisation operators ℱ𝑞(𝑒
−𝑡𝑇𝑘). It follows from Lemma 1.4 in [60] that the 

norm of 𝑃𝑛
⊥ℱ𝑞(𝑒

−𝑡𝑇𝑘) does not change if we compute it on the free Fock space ℱ0(ℋ); this 

is the norm that we will estimate. This is easy when 𝑇𝑘 is self-adjoint and we will now show 

that one can assume that. Indeed, the first quantisation on the level of the Fock space 

interacts nicely with taking the adjoint, so we get (by the 𝐶∗-identity) 

∥∥𝑃𝑛
⊥ℱ0(𝑒

−𝑡𝑇𝑘)∥∥
2
= ∥∥𝑃𝑛

⊥ℱ0(𝑒
−2𝑡𝑇𝑘

∗𝑇𝑘)𝑃𝑛
⊥∥∥. 

Now 𝑇𝑘
∗𝑇𝑘 is a finite rank positive contraction, so there is an orthonormal basis (𝑒𝑖)𝑖∈ℕ of 

ℋ such that 𝑇𝑘
∗𝑇𝑘𝑒𝑖 = 𝜆𝑖𝑒𝑖 and 𝜆𝑖 ∈ [0,1]. From the orthonormal basis of eigenvectors of 

𝑇𝑘
∗𝑇𝑘 we can build an orthonormal basis of ℱ0(ℋ), using tensor powers; for a multi-index 

𝐼𝑛 = {𝑖1, … , 𝑖𝑘} we will denote 𝑒𝐼 = 𝑒𝑖1 ⊗⋯⊗ 𝑒𝑖𝑘 and 𝜆𝐼 = 𝜆𝑖1⋯𝜆𝑖𝑘 . We can now 

estimate the norm of 𝑃𝑛
⊥ℱ𝑞(𝑒

−2𝑡𝑇𝑘
∗𝑇𝑘)𝑃𝑛

⊥. Let 𝑣 ∈ ℱ0(ℋ) be written as 𝑣 = ∑𝑎𝐼𝑒𝐼, then 

∥∥𝑃𝑛
⊥ℱ0(𝑒

−2𝑡𝑇𝑘
∗𝑇𝑘)𝑃𝑛

⊥𝑣∥∥
2
 =
∥
∥
∥
∥
∥
∑  

|𝐼|>𝑛

  𝑒−2|𝐼|𝑎𝐼𝜆𝐼𝑒𝐼
∥
∥
∥
∥
∥2

 = ∑  

|𝐼|>𝑛

 𝑒−4|𝐼||𝑎𝐼|
2|𝜆𝐼|

2

 ⩽ 𝑒−4(𝑛+1) ∥ 𝑣 ∥2,

 

because |𝜆𝐼| ⩽ 1. The fact that the operators ℱ𝑞(𝑒
−𝑡𝑇𝑘) converge strongly to the identity 

when 𝑡 → 0 and 𝑘 → ∞ is clear; it can be easily checked on finite simple tensors and this 

suffices, since they are all contractive. This ends the proof. 

Section (6.2): Structure of Modular Invariant Subalgebras  

Free Araki-Woods factors were introduced by Shlyakhtenko in [15]. In the framework 

of Voiculescu's free probability theory, these factors can be regarded as the type III 

counterparts of free group factors using Voiculescu's free Gaussian functor [22], [19]. 

Following [15], to any orthogonal representation 𝑈:𝐑 ↷ 𝐻𝐑 on a real Hilbert space, one 

associates the free Araki- Woods von- Neumann algebra Γ(𝐻𝐑, 𝑈)
′′. The von Neumann 

algebra Γ(𝐻𝐑, 𝑈)
′′ comes equipped with a unique free quasi-free state 𝜑𝑈 which is always 

normal and faithful. We have Γ(𝐻𝐑, 𝑈)
′′ ≅ L(𝐅dim (𝐻𝐑)) when 𝑈 = 1𝐻𝐑 and Γ(𝐻𝐑, 𝑈)

′′ is a 

full type III factor when 𝑈 ≠ 1𝐻𝐑. 
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Let 𝑈:𝐑 ↷ 𝐻𝐑 be any orthogonal representation. Using Zorn's lemma, we may 

decompose 𝐻𝐑 = 𝐻𝐑
ap
⊕𝐻𝐑

wm and 𝑈 = 𝑈wm⊕𝑈ap where 𝑈ap: 𝐑 ↷ 𝐻R
ap

 (resp. 

𝑈wm: 𝐑 ↷ 𝐻R
wm) is the almost periodic (resp. weakly mixing) subrepresentation of 𝑈:𝐑 ↷

𝐻𝐑. Write 𝑀 = Γ(𝐻𝐑, 𝑈)
′′, 𝑁 = Γ (𝐻𝐑

ap 
, 𝑈ap )

′′

 and 𝑃 = Γ(𝐻𝐑
wm, 𝑈wm)′′ so that we have 

the following free product splitting 

(𝑀,𝜑𝑈) = (𝑁, 𝜑𝑈ap) ∗ (𝑃, 𝜑𝑈wm). 
We provide a general structural decomposition for any von Neumann subalgebra 𝑄 ⊂ 𝑀 

that is globally invariant under the modular automorphism group 𝜎𝜑𝑈 and shows that when 

𝑄 is moreover assumed to be amenable then 𝑄 sits inside 𝑁. Our main theorem generalizes 

([252], Theorem C) to arbitrary free Araki-Woods factors. 

The main theorem should be compared to ([249], Theorem D) which provides a 

similar result for crossed product II1 factors arising from free Bogoljubov actions of 

amenable groups. 

The core of our argument is Theorem (6.2.2) which generalizes ([252], Theorem 4.3) 

to arbitrary free Araki-Woods factors. Let us point out that Theorem (6.2.2) is reminiscent 

of Popa's asymptotic orthogonality property in free group factors [237] which is based on 

the study of central sequences in the ultraproduct framework. Unlike other results on this 

theme [249], [250], [253], we do not assume here that the subalgebra 𝑄 ⊂ 𝑀 has a diffuse 

intersection with the free summand 𝑁 of the free product splitting (𝑀,𝜑𝑈) = (𝑁, 𝜑𝑈ap ) ∗

(𝑃, 𝜑𝑈𝑤 m) and so we cannot exploit commutation relations of 𝑄-central sequences with 

elements in 𝑁. Instead, we use the facts that 𝑄 admits central sequences that are invariant 

under the modular automorphism group 𝜎𝜑𝑈 of the ultraproduct state 𝜑𝑈
𝜔 and that the 

modular automorphism group 𝜎𝜑𝑈 is weakly mixing on 𝑃. 

For any von Neumann algebra 𝑀, we denote by 𝒵(𝑀) the centre of 𝑀, by 𝒰(𝑀) the 

group of unitaries in 𝑀, by Ball (𝑀) the unit ball of 𝑀 with respect to the uniform norm and 

by (𝑀,  L2(𝑀), 𝐽,  L2(𝑀)+)the standard form of 𝑀. We say that an inclusion of von 

Neumann algebras 𝑃 ⊂ 𝑀 is with expectation if there exists a faithful normal conditional 

expectation E𝑃:𝑀 → 𝑃. All the von Neumann algebras we consider are always assumed to 

𝜎-finite. 

For 𝑀 be any 𝜎-finite von Neumann algebra with predual 𝑀∗ and 𝜑 ∈ 𝑀∗ any faithful 

state. We write ∥ 𝑥 ∥𝜑= 𝜑(𝑥
∗𝑥)1/2 for all 𝑥 ∈ 𝑀. Recall that on Ball (𝑀), the topology 

given by ∥⋅∥𝜑 coincides with the 𝜎-strong topology. Denote by 𝜉𝜑 ∈ L
2(𝑀)+the unique 

representing vector of 𝜑. The mapping 𝑀 → L2(𝑀): 𝑥 ↦ 𝑥𝜉𝜑 defines an embedding with 

dense image such that ∥ 𝑥 ∥𝜑= ∥∥𝑥𝜉𝜑∥∥𝐿2(𝑀)
 for all 𝑥 ∈ 𝑀. We denote by 𝜎𝜑 the modular 

automorphism group of the state 𝜑. The centralizer 𝑀𝜑 of the state 𝜑 is by definition the 

fixed point algebra of (𝑀, 𝜎𝜑). Recall from ([248], Section 2.1) that two subspaces 𝐸, 𝐹 ⊂
𝐻 of a Hilbert space are said to be 𝜀-orthogonal for some 0 ≤ 𝜀 ≤ 1 if |⟨𝜉, 𝜂⟩| ≤ 𝜀 ∥ 𝜉 ∥∥
𝜂 ∥ for all 𝜉 ∈ 𝐸 and all 𝜂 ∈ 𝐹. We will then simply write 𝐸 ⊥𝜀 𝐹. 

Let 𝑀 be any 𝜎-finite von Neumann algebra and 𝜔 ∈ 𝛽(𝐍) ∖ 𝐍 any nonprincipal 

ultrafilter. Define 

ℐ𝜔(𝑀) = {(𝑥𝑛)𝑛 ∈ ℓ
∞(𝑀): 𝑥𝑛 → 0 ∗ -strongly as 𝑛 → 𝜔} 

        ℳ𝜔(𝑀) 

= {(𝑥𝑛)𝑛 ∈ ℓ
∞(𝑀): (𝑥𝑛)𝑛ℐ𝜔(𝑀) ⊂ ℐ𝜔(𝑀) and ℐ𝜔(𝑀)(𝑥𝑛)𝑛 ⊂ ℐ𝜔(𝑀)}. 
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The multiplier algebra ℳ𝜔(𝑀) is a C∗-algebra and ℐ𝜔(𝑀) ⊂ ℳ
𝜔(𝑀) is a norm closed 

twosided ideal. Following [254], we define the ultraproduct von Neumann algebra 𝑀𝜔 by 

𝑀𝜔: = ℳ𝜔(𝑀)/ℐ𝜔(𝑀), which is indeed known to be a von Neumann algebra. We denote 

the image of (𝑥𝑛)𝑛 ∈ ℳ
𝜔(𝑀) by (𝑥𝑛)

𝜔 ∈ 𝑀𝜔. 

For every 𝑥 ∈ 𝑀, the constant sequence (𝑥)𝑛 lies in the multiplier algebra ℳ𝜔(𝑀). 
We will then identify 𝑀 with (𝑀 + ℐ𝜔(𝑀))/ℐ𝜔(𝑀) and regard 𝑀 ⊂ 𝑀𝜔 as a von Neumann 

subalgebra. The map 𝐸𝜔:𝑀
𝜔 → 𝑀: (𝑥𝑛)

𝜔 ↦ 𝜎-weak lim𝑛→𝜔  𝑥𝑛 is a faithful normal 

conditional expectation. 

For every faithful state 𝜑 ∈ 𝑀∗, the formula 𝜑𝜔: = 𝜑 ∘ E𝜔 defines a faithful normal 

state on 𝑀𝜔. Observe that 𝜑𝜔((𝑥𝑛)
𝜔) = lim𝑛→𝜔  𝜑(𝑥𝑛) for all (𝑥𝑛)

𝜔 ∈ 𝑀𝜔. 

Let 𝑄 ⊂ 𝑀 be any von Neumann subalgebra with faithful normal conditional 

expectation E𝑄:𝑀 → 𝑄. Choose a faithful state 𝜑 ∈ 𝑀∗ in such a way that 𝜑 = 𝜑 ∘ E𝑄. We 

have ℓ∞(𝑄) ⊂ ℓ∞(𝑀), ℐ𝜔(𝑄) ⊂ ℐ𝜔(𝑀) and ℳ𝜔(𝑄) ⊂ ℳ𝜔(𝑀). We will then identify 

𝑄𝜔 = ℳ𝜔(𝑄)/ℐ𝜔(𝑄) with (ℳ𝜔(𝑄) + ℐ𝜔(𝑀))/ℐ𝜔(𝑀) and be able to regard 𝑄𝜔 ⊂ 𝑀𝜔 as 

a von Neumann subalgebra. 

Observe that the norm ∥⋅∥
(𝜑|𝑄)

𝜔 on 𝑄𝜔 is the restriction of the norm ∥⋅∥𝜑 to 𝑄𝜔. Observe 

moreover that (E𝑄(𝑥𝑛))
𝑛
∈ ℐ𝜔(𝑄) for all (𝑥𝑛)𝑛 ∈ ℐ𝜔(𝑀) and (E𝑄(𝑥𝑛))

𝑛
∈ ℳ𝜔(𝑄) for 

all (𝑥𝑛)𝑛 ∈ ℳ
𝜔(𝑀). Therefore, the mapping E𝑄𝜔:𝑀

𝜔 → 𝑄𝜔: (𝑥𝑛)
𝜔 ↦ (E𝑄(𝑥𝑛))

𝜔
 is a 

well-defined conditional expectation satisfying 𝜑𝜔 ∘ E𝑄𝜔 = 𝜑
𝜔. Hence, E𝑄𝜔:𝑀

𝜔 → 𝑄𝜔 is 

a faithful normal conditional expectation. For more on ultraproduct von Neumann algebras, 

we refer the reader to [247], [254]. 

Let 𝐻𝐑 be any real Hilbert space and 𝑈:𝐑 ↷ 𝐻𝐑 any orthogonal representation. 

Denote by 𝐻 = 𝐻𝐑⊗𝐑 𝐂 = 𝐻𝐑⊕ i𝐻𝐑 the complexified Hilbert space, by 𝐼: 𝐻 → 𝐻: 𝜉 +
i𝜂 ↦ 𝜉 − i𝜂 the canonical anti-unitary involution on 𝐻 and by 𝐴 the infinitesimal generator 

of 𝑈:𝐑 ↷ 𝐻, that is, 𝑈𝑡 = 𝐴
it  for all 𝑡 ∈ 𝐑. Moreover, we have 𝐼𝐴𝐼 = 𝐴−1. Observe that 

𝑗: 𝐻𝐑 → 𝐻: 𝜁 ↦ (
2

𝐴−1+1
)
1/2
𝜁 defines an isometric embedding of 𝐻𝐑 into 𝐻. Put 𝐾𝐑: =

𝑗(𝐻𝐑). It is easy to see that 𝐾𝐑 ∩ i𝐾𝐑 = {0} and that 𝐾𝐑 + i𝐾𝐑 is dense in 𝐻. Write 𝑇 =
𝐼𝐴−1/2. Then 𝑇 is a conjugate-linear closed invertible operator on 𝐻 satisfying 𝑇 = 𝑇−1 and 

𝑇∗𝑇 = 𝐴−1. Such an operator is called an involution on 𝐻. Moreover, we have dom (𝑇) =

dom (𝐴−1/2) and 𝐾𝐑 = {𝜉 ∈ dom (𝑇): 𝑇𝜉 = 𝜉}. In what follows, we will simply write 

𝜉 + i𝜂̅̅ ̅̅ ̅̅ ̅̅ : = 𝑇(𝜉 + i𝜂) = 𝜉 − i𝜂, ∀𝜉, 𝜂 ∈ 𝐾𝐑. 
We introduce the full Fock space of  : 

ℱ(𝐻) = 𝐂Ω⊕⨁ 

∞

𝑛=1

𝐻⊗𝑛. 

The unit vector Ω is called the vacuum vector. For all 𝜉 ∈ 𝐻, define the left creation operator 

ℓ(𝜉):ℱ(𝐻) → ℱ(𝐻) by 

{
ℓ(𝜉)Ω = 𝜉,

ℓ(𝜉)(𝜉1⊗⋯⊗ 𝜉𝑛) = 𝜉 ⊗ 𝜉1⊗⋯⊗ 𝜉𝑛.
 

We have ∥ ℓ(𝜉) ∥∞=∥ 𝜉 ∥ and ℓ(𝜉) is an isometry if ∥ 𝜉 ∥= 1. For all 𝜉 ∈ 𝐾𝐑, put 𝑊(𝜉):= 

ℓ(𝜉) + ℓ(𝜉)∗. The crucial result of Voiculescu ([19], Lemma 2.6.3) is that the distribution 

of the self-adjoint operator 𝑊(𝜉) with respect to the vector state 𝜑𝑈 = ⟨⋅ Ω, Ω⟩ is the 

semicircular law of Wigner supported on the interval [−∥ 𝜉 ∥, ∥ 𝜉 ∥].  
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Definition (6.2.1)[246]: (Shlyakhtenko, [15]). Let 𝐻𝐑 be any real Hilbert space and 𝑈:𝐑 ↷
𝐻𝐑 any orthogonal representation. The free Araki-Woods von Neumann algebra associated 

with 𝑈:𝐑 ↷ 𝐻𝐑 is defined by 

Γ(𝐻𝐑, 𝑈)
′′: = {𝑊(𝜉): 𝜉 ∈ 𝐾𝐑}

′′. 
We will denote by Γ(𝐻𝐑, 𝑈) the unital C∗-algebra generated by 1 and by all the elements 

𝑊(𝜉) for 𝜉 ∈ 𝐾𝐑. 

The vector state 𝜑𝑈 = ⟨⋅ Ω, Ω⟩ is called the free quasi-free state and is faithful on 

Γ(𝐻𝐑, 𝑈)
′′. Let 𝜉, 𝜂 ∈ 𝐾𝐑 and write 𝜁 = 𝜉 + i𝜂. Put 

𝑊(𝜁):= 𝑊(𝜉) + i𝑊(𝜂) = ℓ(𝜁) + ℓ(𝜁‾)∗. 
Note that the modular automorphism group 𝜎𝜑𝑈 of the free quasi-free state 𝜑𝑈 is given by 

𝜎𝑡
𝜑𝑈 = Ad (ℱ(𝑈𝑡)), where ℱ(𝑈𝑡) = 1𝐂Ω⊕⨁𝑛≥1  𝑈𝑡

⊗𝑛. In particular, it satisfies 

𝜎𝑡
𝜑𝑈(𝑊(𝜁)) = 𝑊(𝑈𝑡𝜁), ∀𝜁 ∈ 𝐾𝐑 + i𝐾𝐑, ∀𝑡 ∈ 𝐑. 

It is easy to see that for all 𝑛 ≥ 1 and all 𝜁1, … , 𝜁𝑛 ∈ 𝐾𝐑 + i𝐾𝐑, 𝜁1⊗⋯⊗ 𝜁𝑛 ∈ Γ(𝐻𝐑, 𝑈)
′′Ω. 

When 𝜁1, … , 𝜁𝑛 are all nonzero, we will denote by 𝑊(𝜁1⊗⋯⊗ 𝜁𝑛) ∈ Γ(𝐻𝐑, 𝑈)
′′ the 

unique element such that 

𝜁1⊗⋯⊗ 𝜁𝑛 = 𝑊(𝜁1⊗⋯⊗ 𝜁𝑛)Ω. 
Such an element is called a reduced word. By ([252], Proposition 2.1(i)) (see also [248], 

Proposition 2.4), the reduced word 𝑊(𝜁1⊗⋯⊗ 𝜁𝑛) satisfies the Wick formula given by 

𝑊(𝜁1⊗⋯⊗ 𝜁𝑛) = ∑  

𝑛

𝑘=0

ℓ(𝜁1)⋯ℓ(𝜁𝑘)ℓ(𝜁‾𝑘+1)
∗⋯ℓ(𝜁‾𝑛)

∗. 

Note that since inner products are assumed to be linear in the first variable, we have 

ℓ(𝜉)∗ℓ(𝜂) = ⟨𝜉, 𝜂⟩̅̅ ̅̅ ̅̅ ̅1 = ⟨𝜂, 𝜉⟩1 for all 𝜉, 𝜂 ∈ 𝐻. In particular, the Wick formula from [252, 

Proposition 2.1 (ii)] is 

𝑊(𝜉1⊗⋯⊗ 𝜉𝑟)𝑊(𝜂1⊗⋯⊗𝜂𝑠)

 = 𝑊(𝜉1⊗⋯⊗ 𝜉𝑟⊗𝜂1⊗⋯⊗𝜂𝑠) + 𝜉‾𝑟 , 𝜂1⟩
̅̅ ̅̅ ̅̅ ̅̅ 𝑊(𝜉1⊗⋯⊗ 𝜉𝑟−1)𝑊(𝜂2⊗⋯⊗𝜂𝑠)

 

for all 𝜉1, … , 𝜉𝑟 , 𝜂1, … , 𝜂𝑠 ∈ 𝐾𝐑 + i𝐾𝐑. We will repeatedly use this fact. We refer to [252] 

for further details. 

Let 𝑈:𝐑 ↷ 𝐻𝐑 be any orthogonal representation. Using Zorn's lemma, we may 

decompose 𝐻𝐑 = 𝐻𝐑
ap 
⊕𝐻𝐑

wm and 𝑈 = 𝑈wm⊕𝑈ap  where 𝑈ap : 𝐑 ↷ 𝐻𝐑
ap 

 (resp. 

𝑈wm : 𝐑 ↷ 𝐻𝐑
wm) is the almost periodic (resp. weakly mixing) subrepresentation of 𝑈:𝐑 ↷

𝐻𝐑. Write 𝑀 = Γ(𝐻𝐑, 𝑈)
′′, 𝑁 = Γ(𝐻𝐑

ap
, 𝑈ap)

′′
 and 𝑃 = Γ(𝐻𝐑

wm, 𝑈𝑡
wm)′′ so that 

(𝑀,𝜑𝑈) = (𝑁, 𝜑𝑈ap) ∗ (𝑃, 𝜑𝑈wm). 
For notational convenience, we simply write 𝜑:= 𝜑𝑈.  

The main result, Theorem (6.2.2) below, strengthens and generalizes [252]. 

Theorem (6.2.2)[246]: Keep the same notation as above. Let 𝜔 ∈ 𝛽(𝐍) ∖ 𝐍 be any 

nonprincipal ultrafilter. For all 𝑎 ∈ 𝑀⊖𝑁, all 𝑏 ∈ 𝑀 and all 𝑥, 𝑦 ∈ (𝑀𝜔)𝜑𝜔 ∩
(𝑀𝜔⊖𝑀), we have 

𝜑𝜔(𝑏∗𝑦∗𝑎𝑥) = 0. 
Proof. Denote as usual by 𝐻:= 𝐻𝐑⊗𝐑 𝐂 the complexified Hilbert space and by 𝑈:𝐑 ↷ 𝐻 

the corresponding unitary representation. Put 𝐻ap: = 𝐻𝐑
ap
⊗ r𝐂 and 𝐻wm: = 𝐻𝐑

wm⊗𝐑𝐂. 

Put 𝐾𝐑: = 𝑗(𝐻𝐑), 𝐾𝐑
ap 
= 𝑗 (𝐻𝐑

ap 
) and 𝐾𝐑

wm 
: = 𝑗 (𝐻𝐑

wm 
), where 𝑗 is the isometric 

embedding 𝜉 ∈ 𝐻𝐑 ↦ (
2

1+𝐴−1
)
1/2
𝜉 ∈ 𝐻. Denote by ℋ = ℱ(𝐻) the full Fock space of 𝐻. 
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For every 𝑡 ∈ 𝐑, put 𝜅𝑡 = 1𝐂Ω⊕⨁𝑛≥1  𝑈𝑡
⊗𝑛 ∈ 𝒰(ℋ). For every 𝑡 ∈ 𝐑 and every 𝑥 ∈ 𝑀, 

we have 𝜎𝑡
𝜑
(𝑥)Ω = 𝜅𝑡(𝑥Ω). We will implicitly identify the full Fock space ℱ(𝐻) with the 

standard Hilbert space L2(𝑀) and the vacuum vector Ω ∈ ℋ with the canonical representing 

vector 𝜉𝜑 ∈ L
2(𝑀)+. 

Put 𝐾an: = ⋃𝜆>1  𝟏[𝜆−1,𝜆](𝐴)(𝐾R + i𝐾𝐑). Observe that 𝐾an ⊂ 𝐾R + i𝐾R is a dense 

subspace of elements 𝜂 ∈ 𝐾𝐑 + 𝑖𝐾R for which the map 𝐑 → 𝐾𝐑 + i𝐾𝐑: 𝑡 ↦ 𝑈𝑡𝜂 extends to 

an (𝐾R + i𝐾𝐑)-valued entire analytic function and that 𝐾an̅̅ ̅̅ ̅ = 𝐾an. For all 𝜂 ∈ 𝐾an, the 

element 𝑊(𝜂) is analytic with respect to the modular automorphism group 𝜎𝜑 and we have 

𝜎𝑧
𝜑
(𝑊(𝜂)) = 𝑊(𝐴i𝑧𝜂) for all 𝑧 ∈ 𝐂. 

Denote by 𝒲 the set of reduced words of the form 𝑊(𝜉1⊗⋯⊗ 𝜉𝑛) for which ≥
1, 𝜉1, … , 𝜉𝑛 ∈ 𝐾an. By linearity/density, in order to prove Theorem (6.2.2), we may assume 

without loss of generality that 𝑎 and 𝑏 are reduced words in 𝒲. Since moreover 𝑎 ∈ 𝑀⊖
𝑁, we can assume that at least one of its letters 𝜉𝑖 lies in 𝐾𝐑

wm + i𝐾𝐑
wm. More precisely, we 

can write 

𝑎  = 𝑎′𝑊(𝜉1⊗⋯⊗ 𝜉𝑝)𝑎
′′

𝑏  = 𝑏′𝑊(𝜂1⊗⋯⊗𝜂𝑞)𝑏
′′

 

with 𝑝 ≥ 1, 𝑞 ≥ 0𝑎′, 𝑎′′, 𝑏′, 𝑏′′ are reduced words in 𝑁 with letters in 𝐾an ∩ (𝐾𝐑
ap
+ i𝐾R

ap
), 

𝜉2, … , 𝜉𝑝−1, 𝜂2, … , 𝜂𝑞−1 ∈ 𝐾an and 𝜉1, 𝜉𝑝, 𝜂1, 𝜂𝑞 ∈ 𝐾an ∩ (𝐾𝐑
wm + i𝐾𝐑

wm). By convention, 

when 𝑞 = 0,𝑊(𝜂1⊗⋯⊗𝜂𝑞) is the trivial word 1 , so that 𝑏 = 𝑏′𝑏′′. 

Denote by 𝐿 ⊂ 𝐾𝐑
wm + i𝐾R

wm the finite dimensional subspace generated by 

𝜉1, 𝜉𝑝, 𝜂1, 𝜂𝑞 and such that 𝐿‾ = 𝐿. If 𝑞 = 0, then 𝐿 is simply the subspace generated by 

𝜉1, 𝜉𝑝, 𝜉‾1, 𝜉‾𝑝 Denote by 

1. 𝒳(1, 𝑟) ⊂ ℋ the closed linear subspace generated by all the reduced words of the 

form 𝑒1⊗⋯⊗ 𝑒𝑛 with 𝑟 ≥ 0, 𝑛 ≥ 𝑟 + 1, 𝑒1, … , 𝑒𝑟 ∈ 𝐾𝐑
ap∘
+ i𝐾𝐑

ap
 and 𝑒𝑟+1 ∈ 𝐿. 

When 𝑟 = 0 simply denote 𝒳1: = 𝒳(1,0). 
2. 𝒳(2, 𝑟) ⊂ ℋ the closed linear subspace generated by all the reduced words of the 

form 𝑒1⊗⋯⊗ 𝑒𝑛 with 𝑟 ≥ 0, 𝑛 ≥ 𝑟 + 1, 𝑒𝑛−𝑟 ∈ 𝐿 and 𝑒𝑛−𝑟+1, … , 𝑒𝑛 ∈ 𝐾𝐑
ap
+

i𝐾𝐑
ap

. When 𝑟 = 0, simply denote 𝒳2: = 𝒳(2,0). 
3. 𝒴 ⊂ ℋ the closed linear subspace generated by all the reduced words of the form 

𝑒1⊗⋯⊗ 𝑒𝑛 with 𝑛 ≥ 1 and 𝑒1, 𝑒𝑛 ∈ 𝐿
⊥. 

Observe that we have the following orthogonal decomposition 

ℋ = 𝐂Ω⊕ (𝒳1 +𝒳2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ⊕ 𝒴. 
Claim (6.2.3)[246]: Let 𝜀 ≥ 0 and 𝑡 ∈ 𝐑 such that 𝑈𝑡(𝐿) ⊥𝜀/dim 𝐿 𝐿. Then for all 𝑖 ∈ {1,2} 

and all 𝑟 ≥ 0, we have 

𝜅𝑡(𝒳(𝑖, 𝑟)) ⊥𝜀 𝒳(𝑖, 𝑟). 
Proof. Choose an orthonormal basis (𝜁1, … , 𝜁dim 𝐿) of 𝐿. We first prove the claim for 𝑖 = 1. 

We will identify 𝒳(1, 𝑟) with 𝐿 ⊗ ((𝐻ap)⊗𝑟⊗ℋ) using the following unitary defined by 

𝒱(1, 𝑟):𝐻 ⊗ (𝐻⊗𝑟⊗ℋ) → ℋ: 𝜁 ⊗ 𝜇⊗ 𝜈 ↦ 𝜇⊗ 𝜁 ⊗ 𝜈. 

Observe that 𝜅𝑡𝒱(1, 𝑟) = 𝒱(1, 𝑟)(𝑈𝑡⊗ (𝑈𝑡)
⊗𝑟⊗𝜅𝑡) for every 𝑡 ∈ 𝐑. Let Ξ1, Ξ2 ∈

𝒳(1, 𝑟) be such that Ξ1 = ∑𝑖=1
dim 𝐿  𝜁𝑖⊗Θ𝑖

1 and Ξ2 = ∑𝑗=1
dim 𝐿  𝜁𝑗⊗Θ𝑗

2 with Θ𝑖
1, Θ𝑗

2 ∈

(𝐻ap )
⊗𝑟
⊗ℋ. We have 𝜅𝑡(Ξ1) = ∑𝑖=1

dim 𝐿  𝑈𝑡(𝜁𝑖) ⊗ 𝜅𝑡(Θ𝑖
1) and hence 
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|⟨𝜅𝑡(Ξ1), Ξ2⟩| ≤ ∑  

dim 𝐿

𝑖,𝑗=1

∣ ⟨𝑈𝑡(𝜁𝑖), 𝜁𝑗⟩∥∥Θ𝑖
1∥∥∥∥Θ𝑗

2
∥∥. 

Since |⟨𝑈𝑡(𝜁𝑖), 𝜁𝑗⟩| ≤ 𝜀/dim 𝐿, we obtain |⟨𝜅𝑡(Ξ1), Ξ2⟩| ≤ 𝜀∥∥Ξ1∥∥∥∥Ξ2∥∥ by the Cauchy-

Schwarz inequality. The proof of the claim for 𝑖 = 2 is entirely analogous. 

Given a closed subspace 𝒦 ⊂ ℋ, we denote by 𝑃𝒦:ℋ → 𝒦 the orthogonal 

projection onto 𝒦. 

Claim (6.2.4)[246]: Take 𝑧 = (𝑧𝑛)
𝜔 ∈ (𝑀𝜔)𝜑

𝜔
 and let 𝑤1, 𝑤2 ∈ 𝑁 be any elements of the 

following form: 

1. either 𝑤1 = 1 or 𝑤1 = 𝑊(𝜁1⊗⋯⊗ 𝜁𝑟) with 𝑟 ≥ 1 and 𝜁1, … , 𝜁𝑟 ∈ 𝐾an ∩

(𝐾𝑅
ap 
+ 𝑖𝐾𝑅

ap 
). 

2. either 𝑤2 = 1 or 𝑤2 = 𝑊(𝜇1⊗⋯⊗𝜇𝑟) with 𝑠 ≥ 1 and 𝜇1, … , 𝜇𝑟 ∈ 𝐾an ∩

(𝐾𝑅
ap 
+ 𝑖𝐾𝑅

ap 
). 

Then for all 𝑖 ∈ {1,2}, we have lim𝑛→𝜔  ∥∥𝑃𝒳𝑖(𝑤1𝑧𝑛𝑤2Ω)∥∥ = 0. 

Proof. Observe that 𝑤1𝑧𝑛𝑤2Ω = 𝑤1𝐽𝜎−i/2
𝜑 (𝑤2

∗)𝐽𝑧𝑛Ω. Firstly, we have 

𝑃𝒳(1,𝑟) (𝐽𝜎−i/2
𝜑 (𝑤2

∗)𝐽𝑧𝑛Ω)  = 𝐽𝜎−i/2
𝜑 (𝑤2

∗)𝐽𝑃𝒳(1,𝑟)(𝑧𝑛Ω)

𝑃𝒳(2,𝑠)(𝑤1𝑧𝑛Ω)  = 𝑤1𝑃𝒳(2,𝑠)(𝑧𝑛Ω).
 

Secondly, for all Ξ ∈ ℋ, we have 

𝑃𝒳1(𝑤1Ξ) = 𝑃𝒳1(𝑤1𝑃𝒳(1,𝑟)(Ξ)) 

𝑃𝒳2 (𝐽𝜎−i/2
𝜑 (𝑤2

∗)𝐽Ξ) = 𝑃𝒳2 (𝐽𝜎−i/2
𝜑 (𝑤2

∗)𝐽𝑃𝒳(2,𝑠)(Ξ)). 

This implies that 

𝑃𝒳1(𝑤1𝑧𝑛𝑤2Ω) = 𝑃𝒳1 (𝑤1𝐽𝜎−i/2
𝜑 (𝑤2

∗)𝐽𝑃𝒳(1,𝑟)(𝑧𝑛Ω))

𝑃𝒳2(𝑤1𝑧𝑛𝑤2Ω) = 𝑃𝒳2 (𝑤1𝐽𝜎−i/2
𝜑 (𝑤2

∗)𝐽𝑃𝒳(2,𝑠)(𝑧𝑛Ω)) .
 

and we are left to show that lim𝑛→𝜔  ∥∥𝑃𝒳(1,𝑟)(𝑧𝑛Ω)∥∥ = lim𝑛→𝜔  ∥∥𝑃𝒳(2,𝑠)(𝑧𝑛Ω)∥∥ = 0. 

Let 𝑖 ∈ {1,2} and 𝑘 ∈ {𝑟, 𝑠}. Fix 𝑁 ≥ 0. Since the orthogonal representation 𝑈:𝐑 ↷
𝐻𝐑
wm is weakly mixing and 𝐿 ⊂ 𝐻wm is a finite dimensional subspace, we may choose 

inductively 𝑡1, … , 𝑡𝑁 ∈ 𝐑 such that 𝑈𝑡𝑗1(𝐿) ⊥(𝑁dim (𝐿))
−1 𝑈𝑡𝑗2(𝐿) for all 1 ≤ 𝑗1 < 𝑗2 ≤ 𝑁. 

By Claim (6.2.3), this implies that 

𝜅𝑡𝑗1(𝒳(𝑖, 𝑘)) ⊥1/𝑁 𝜅𝑡𝑗2(𝒳(𝑖, 𝑘)), ∀1 ≤ 𝑗1 < 𝑗2 ≤ 𝑁. 

For all 𝑡 ∈ 𝐑 and all 𝑛 ∈ 𝐍, we have 

∥∥𝑃𝒳(𝑖,𝑘)(𝑧𝑛Ω)∥∥
2
 = ⟨𝑃𝒳(𝑖,𝑘)(𝑧𝑛Ω), 𝑧𝑛Ω⟩

= ⟨𝜅𝑡 (𝑃𝒳(𝑖,𝑘)(𝑧𝑛Ω)) , 𝜅𝑡(𝑧𝑛Ω)⟩   (since 𝜅𝑡 ∈ 𝒰(ℋ))

 = ⟨𝑃𝜅𝑡(𝒳(𝑖,𝑘))(𝜅𝑡(𝑧𝑛Ω)), 𝜅𝑡(𝑧𝑛Ω)⟩.

 

By [247], for all 𝑡 ∈ 𝐑, we have (𝑧𝑛)
𝜔 = 𝑧 = 𝜎𝑡

𝜑𝜔
(𝑧) = (𝜎𝑡

𝜑(𝑧𝑛))
𝜔

. This implies that 

lim𝑛→𝜔  ∥∥𝜎𝑡
𝜑(𝑧𝑛) − 𝑧𝑛∥∥𝜑 = 0, and hence lim𝑛→𝜔  ∥∥𝜅𝑡(𝑧𝑛Ω) − 𝑧𝑛Ω∥∥ = 0 for all 𝑡 ∈ 𝐑. In 

particular, since the sequence (𝑧𝑛Ω)𝑛 is bounded in ℋ, we deduce that for all 𝑡 ∈ 𝐑, 

lim
𝑛→𝜔

 ∥∥𝑃𝒳(𝑖,𝑘)(𝑧𝑛Ω)∥∥
2
= lim
𝑛→𝜔

 ⟨𝑃𝜅𝑡(𝒳(𝑖,𝑘))(𝑧𝑛Ω), 𝑧𝑛Ω⟩. 
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Applying this equality to our well chosen reals (𝑡𝑗)1≤𝑗≤𝑁, taking a convex combination and 

applying Cauchy-Schwarz inequality, we obtain 

lim
𝑛→𝜔

 ∥∥𝑃𝒳(𝑖,𝑘)(𝑧𝑛Ω)∥∥
2
 = lim

𝑛→𝜔
 
1

𝑁
∑  

𝑁

𝑗=1

  ⟨𝑃𝜅𝑡𝑗(𝒳(𝑖,𝑘))(𝑧𝑛Ω), 𝑧𝑛Ω⟩

 = lim
𝑛→𝜔

 
1

𝑁
⟨∑  

𝑁

𝑗=1

 𝑃𝜅𝑡𝑗(𝒳(𝑖, 𝑘))(𝑧𝑛Ω), 𝑧𝑛Ω⟩

 ≤ lim
𝑛→𝜔

 
1

𝑁 ∥
∥
∥
∥
∥
∑  

𝑁

𝑗=1

 𝑃𝜅𝑡𝑗(𝒳(𝑖,𝑘))(𝑧𝑛Ω)
∥
∥
∥
∥
∥
∥∥𝑧𝑛∥∥𝜑 .

 

Then, for all 𝑛 ∈ 𝐍 we have, 

∥
∥
∥
∥
∥
∑  

𝑁

𝑗=1

 𝑃𝜅𝑡𝑗(𝒳(𝑖,𝑘))(𝑧𝑛Ω)
∥
∥
∥
∥
∥
 = ∑  

𝑁

𝑗1,𝑗2=1

  ⟨𝑃𝜅𝑡1(𝒳(𝑖, 𝑘))
(𝑧𝑛Ω), 𝑃𝜅𝑡𝑗

(𝒳(𝑖, 𝑘))(𝑧𝑛Ω)⟩

 ≤∑  

𝑁

𝑗=1

  ∥∥
∥𝑃𝜅𝑡𝑗(𝒳(𝑖,𝑘))

(𝑧𝑛Ω)∥∥
∥2 + ∑  

𝑁

𝑗1≠𝑗2

 
∥∥𝑧𝑛∥∥𝜑

2

𝑁

 ≤ 𝑁∥∥𝑧𝑛∥∥𝜑
2 +𝑁2

∥∥𝑧𝑛∥∥𝜑
2

𝑁
 = 2𝑁∥∥𝑧𝑛∥∥𝜑

2 .

 

Altogether, we have obtained the inequality lim𝑛→𝜔  ∥∥𝑃𝒳(𝑖,𝑘)(𝑧𝑛Ω)∥∥
2
≤ √2 ∥ 𝑧 ∥𝜑𝜔

2 /√𝑁. As 

𝑁 is arbitrarily large, this finishes the proof of Claim (6.2.4). The above argument is inspired 

from [255]. Alternatively, we could have used [248].  

Claim (6.2.5)[246]: The subspaces 𝑊(𝜉1⊗⋯⊗ 𝜉𝑝)𝒴 and 𝐽𝜎−i/2
𝜑

(𝑊(𝜂‾𝑞⊗⋯⊗

𝜂‾1)) 𝐽𝒴 are orthogonal in ℋ. Here, in the case 𝑞 = 0, the vector space 𝐽𝜎−i/2
𝜑

(𝑊(𝜂‾𝑞⊗

⋯⊗𝜂‾1)) 𝐽𝒴 is nothing but 𝒴. 

Proof. Let 𝑚, 𝑛 ≥ 1, 𝑒1, … , 𝑒𝑚, 𝑓1, … , 𝑓𝑛 ∈ 𝐻 with 𝑒1, 𝑒𝑚, 𝑓1, 𝑓𝑛 ∈ 𝐿
⊥ so that the vectors 

𝑒1⊗⋯⊗ 𝑒𝑚 and 𝑓1⊗⋯⊗𝑓𝑛 belong to 𝒴. Since 𝜉‾𝑝 ⊥ 𝑒1, 𝑓‾𝑛 ⊥ 𝜂1 and 𝜉1 ⊥ 𝑓1, we have 

⟨𝑊(𝜉1⊗⋯⊗ 𝜉𝑝)(𝑒1⊗⋯⊗ 𝑒𝑚), 𝐽𝜎−i/2
𝜑

(𝑊(𝜂‾𝑞⊗⋯⊗ 𝜂‾1)) 𝐽(𝑓1⊗⋯⊗ 𝑓𝑛)⟩

 = ⟨𝑊(𝜉1⊗⋯⊗ 𝜉𝑝)𝑊(𝑒1⊗⋯⊗ 𝑒𝑚)Ω, 𝐽𝜎−i/2
𝜑

(𝑊(𝜂‾𝑞⊗⋯⊗ 𝜂‾1)) 𝐽𝑊(𝑓1⊗⋯⊗ 𝑓𝑛)Ω⟩

 = ⟨𝑊(𝜉1⊗⋯⊗ 𝜉𝑝)𝑊(𝑒1⊗⋯⊗ 𝑒𝑚)Ω,𝑊(𝑓1⊗⋯⊗ 𝑓𝑛)𝑊(𝜂1⊗⋯⊗ 𝜂𝑞)Ω⟩

 

= ⟨𝑊(𝜉1⊗⋯⊗ 𝜉𝑝⊗ 𝑒1⊗⋯⊗𝑒𝑚)Ω,𝑊(𝑓1⊗⋯⊗ 𝑓𝑛⊗𝜂1⊗⋯⊗ 𝜂𝑞)Ω⟩ 

= ⟨𝜉1⊗⋯⊗ 𝜉𝑝⊗𝑒1⊗⋯⊗ 𝑒𝑚, 𝑓1⊗⋯⊗𝑓𝑛⊗𝜂1⊗⋯⊗𝜂𝑞⟩ 

0. 
Note that in the case 𝑞 = 0, the above calculation still makes sense. Indeed we have  

⟨𝑊(𝜉1⊗⋯⊗ 𝜉𝑝)(𝑒1⊗⋯⊗ 𝑒𝑚), (𝑓1⊗⋯⊗𝑓𝑛)⟩

= ⟨𝜉1⊗⋯⊗ 𝜉𝑝⊗𝑒1⊗⋯⊗ 𝑒𝑚, 𝑓1⊗⋯⊗𝑓𝑛⟩ = 0. 
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Since the linear span of all such reduced words 𝑒1⊗⋯⊗ 𝑒𝑚 (resp. 𝑓1⊗⋯⊗𝑓𝑛) generate 

𝒴, we obtain that the subspaces 𝑊(𝜉1⊗⋯⊗ 𝜉𝑝)𝒴 and 𝐽𝜎−i/2
𝜑

(𝑊(𝜂‾𝑞⊗⋯⊗𝜂‾1)) 𝐽𝒴 are 

orthogonal in ℋ. 

Let 𝑥, 𝑦 ∈ (𝑀𝜔)𝜑
𝜔
∩ (𝑀𝜔⊖𝑀). We have 

𝜑𝜔(𝑏∗𝑦∗𝑎𝑥) = ⟨𝑎𝑥𝜉𝜑𝜔 , 𝑦𝑏𝜉𝜑𝜔⟩ 

= lim
𝑛→𝜔

 ⟨𝑎𝑥𝑛𝜉𝜑 , 𝑦𝑛𝑏𝜉𝜑⟩ 

= lim
𝑛→𝜔

 ⟨𝑎′𝑊(𝜉1⊗⋯⊗ 𝜉𝑝)𝑎
′′𝑥𝑛Ω, 𝑦𝑛𝑏

′𝑊(𝜂1⊗⋯⊗𝜂𝑞)𝑏
′′Ω⟩ 

= lim
𝑛→𝜔

  ⟨𝑊(𝜉1⊗⋯⊗ 𝜉𝑝)𝑎
′′𝑥𝑛𝜎−i

𝜑 ((𝑏′′)∗)Ω, 𝐽𝜎−i/2
𝜑

(𝑊(𝜂‾𝑞⊗⋯⊗ 𝜂‾1)) 𝐽(𝑎
′)∗𝑦𝑛𝑏

′Ω⟩. 

Put 𝑧𝑛 = 𝑎
′′𝑥𝑛𝜎−i

𝜑((𝑏′′)∗) and 𝑧𝑛
′ = (𝑎′)∗𝑦𝑛𝑏

′. By Claim (6.2.4), we have that 

lim𝑛→𝜔  ∥∥𝑃𝒳𝑖(𝑧𝑛Ω)∥∥ = lim𝑛→𝜔  ∥∥𝑃𝒳𝑖(𝑧𝑛
′Ω)∥∥ = 0 for all 𝑖 ∈ {1,2}. Since moreover E𝜔(𝑥) =

E𝜔(𝑦) = 0, we see that lim𝑛→𝜔  ∥∥𝑃𝐂Ω(𝑧𝑛Ω)∥∥ = lim𝑛→𝜔  ∥∥𝑃𝐂Ω(𝑧𝑛
′Ω)∥∥ = 0. Since ℋ = 𝐂Ω⊕

(𝒳1 +𝒳2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ⊕ 𝒴, we obtain 

lim
𝑛→𝜔

 ∥∥𝑧𝑛Ω− 𝑃𝒴(𝑧𝑛Ω)∥∥ = 0  and  lim
𝑛→𝜔

 ∥∥𝑧𝑛
′Ω − 𝑃𝒴(𝑧𝑛

′Ω)∥∥ = 0. 

By Claim (6.2.5), we finally obtain 

𝜑𝜔(𝑏∗𝑦∗𝑎𝑥)  = lim
𝑛→𝜔

  ⟨𝑊(𝜉1⊗⋯⊗ 𝜉𝑝)𝑧𝑛Ω, 𝐽𝜎−i/2
𝜑

(𝑊(𝜂‾𝑞⊗⋯⊗𝜂‾1)) 𝐽𝑧𝑛
′Ω⟩

 = lim
𝑛→𝜔

  ⟨𝑊(𝜉1⊗⋯⊗ 𝜉𝑝)𝑃𝒴(𝑧𝑛Ω), 𝐽𝜎−i/2
𝜑

(𝑊(𝜂‾𝑞⊗⋯⊗𝜂‾1)) 𝐽𝑃𝒴(𝑧𝑛
′Ω)⟩

 = 0.

 

This finishes the proof of Theorem (6.2.2). 

We start by proving the following intermediate result. 

Theorem (6.2.6)[246]: Let (𝑀,𝜑) = (Γ(𝐻𝐑, 𝑈)
′′, 𝜑𝑈) be any free Araki-Woods factor 

endowed with its free quasi-free state. Keep the same notation as in the introduction. Let 

𝑞 ∈ 𝑀𝜑 = 𝑁
𝜑
𝑈ap  be any nonzero projection. Write 𝜑𝑞 =

𝜑(𝑞⋅𝑞)

𝜑(𝑞)
. 

Then for any amenable von Neumann subalgebra 𝑄 ⊂ 𝑞𝑀𝑞 that is globally invariant under 

the modular automorphism group 𝜎𝜑𝑞, we have 𝑄 ⊂ 𝑞𝑁𝑞. 

Proof. We may assume that 𝑄 has separable predual. Indeed, let 𝑥 ∈ 𝑄 be any element and 

denote by 𝑄0 ⊂ 𝑄 the von Neumann subalgebra generated by 𝑥 ∈ 𝑄 and that is globally 

invariant under the modular automorphism group 𝜎𝜑𝜑𝑞. Then 𝑄0 is amenable and has 

separable predual. Therefore, we may assume without loss of generality that 𝑄0 = 𝑄, that 

is, 𝑄 has separable predual.  

Special case. We first prove the result when 𝑄 ⊂ 𝑞𝑀𝑞 is globally invariant under 𝜎𝜑𝑞 and 

is an irreducible subfactor meaning that 𝑄′ ∩ 𝑞𝑀𝑞 = 𝐂𝑞.  

Let 𝑎 ∈ 𝑄 be any element. Since 𝑄 is amenable and has separable predual, 𝑄′ ∩

(𝑞𝑀𝑞)𝜔 is diffuse and so is 𝑄′ ∩ ((𝑞𝑀𝑞)𝜔)𝜑𝑞
𝜔

 by [252]. In particular, there exists a unitary 

𝑢 ∈ 𝒰(𝑄′ ∩ ((𝑞𝑀𝑞)𝜔)𝜑𝑞
𝜔
) such that 𝜑𝑞

𝜔(𝑢) = 0. Note that E𝜔(𝑢) ∈ 𝑄
′ ∩ 𝑞𝑀𝑞 = 𝐂𝑞 and 

hence E𝜔(𝑢) = 𝜑𝑞
𝜔(𝑢) = 0 so that 𝑢 ∈ (𝑀𝜔)𝜑𝜔 ∩ (𝑀𝜔⊖𝑀). Theorem (6.2.2) yields 

𝜑𝜔(𝑎∗𝑢∗(𝑎 − E𝑁(𝑎))𝑢) = 0. Since moreover 𝑎𝑢 = 𝑢𝑎 and 𝑢 ∈ 𝒰((𝑞𝑀𝑞)𝜑𝑞
𝜔
), we have 
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∥ 𝑎 ∥𝜑
2  =∥ 𝑎𝑢 ∥𝜑𝜔

2

 = 𝜑𝜔(𝑢∗𝑎∗𝑎𝑢) = 𝜑𝜔(𝑎∗𝑢∗𝑎𝑢)

 = 𝜑𝜔(𝑎∗𝑢∗E𝑁(𝑎)𝑢) = 𝜑
𝜔(𝑢𝑎∗𝑢∗E𝑁(𝑎))

 = 𝜑(𝑎∗E𝑁(𝑎))

 = ∥∥E𝑁(𝑎)∥∥𝜑
2 .

 

This shows that 𝑎 = E𝑁(𝑎) ∈ 𝑁. 

General case. We next prove the result when 𝑄 ⊂ 𝑞𝑀𝑞 is any amenable subalgebra globally 

invariant under 𝜎𝜑𝑞. 

Denote by 𝑧 ∈ 𝒵(𝑄) ⊂ 𝑁𝜑 the unique central projection such that 𝑄𝑧 is atomic and 

𝑄(1 − 𝑧) is diffuse. Since 𝑄𝑧 is atomic and globally invariant under the modular 

automorphism group 𝜎𝜑𝑧, we have that 𝜑𝑧|𝑄𝑧 is almost periodic and hence 𝑄𝑧 ⊂ 𝑁. It 

remains to prove that 𝑄(1 − 𝑧) ⊂ 𝑁. Cutting down by 1 − 𝑧 if necessary, we may assume 

that 𝑄 itself is diffuse. Since 𝑄 ⊂ 𝑞𝑀𝑞 is diffuse and with expectation and since 𝑀 is solid 

(see [252] and [251] which does not require separability of the predual), the relative 

commutant 𝑄′ ∩ 𝑞𝑀𝑞 is amenable. Up to replacing 𝑄 by 𝑄 ∨ 𝑄′ ∩ 𝑞𝑀𝑞 which is still 

amenable and globally invariant under the modular automorphism group 𝜎𝜑𝑞, we may 

assume that 𝑄′ ∩ 𝑞𝑀𝑞 = 𝒵(𝑄). Denote by (𝑧𝑛)𝑛 a sequence of central projections in 𝒵(𝑄) 
such that ∑𝑛  𝑧𝑛 = 𝑞, (𝑄𝑧0)

′ ∩ 𝑧0𝑀𝑧0 = 𝒵(𝑄)𝑧0 is diffuse and (𝑄𝑧𝑛)
′ ∩ 𝑧𝑛𝑀𝑧𝑛 = 𝐂𝑧𝑛 for 

every 𝑛 ≥ 1. 

1. By the Special case above, we know that 𝑄𝑧𝑛 ⊂ 𝑁 for all 𝑛 ≥ 1. 

2. Since 𝒵(𝑄)𝑧0⊕ (1 − 𝑧0)𝑁(1 − 𝑧0) is diffuse and with expectation in 𝑁, its relative 

commutant inside 𝑀 is contained in 𝑁 by ([253], Proposition 2.7(1)). In particular, 

we have 𝑄𝑧0 ⊂ 𝑁. 

Therefore, we have 𝑄 ⊂ 𝑁. 

Theorem (6.2.7)[246]:  Keep the same notation as above. Let 𝑄 ⊂ 𝑀 be any unital von 

Neumann subalgebra that is globally invariant under the modular automorphism group 𝜎𝜑𝑈. 

Then there exists a unique central projection 𝑧 ∈ 𝒵(𝑄) ⊂ 𝑀𝜑𝑈 = 𝑁𝜑𝑈𝑎𝑝  such that 

1. 𝑄𝑧 is amenable and 𝑄𝑧 ⊂ 𝑧𝑁𝑧 and 

2. 𝑄𝑧⊥ has no nonzero amenable direct summand and (𝑄′ ∩𝑀𝜔)𝑧⊥ = (𝑄′ ∩𝑀)𝑧⊥ is 

atomic for any nonprincipal ultrafilter 𝜔 ∈ 𝛽(𝐍) ∖ 𝐍. 

In particular, for any unital amenable von Neumann subalgebra 𝑄 ⊂ 𝑀 that is globally 

invariant under the modular automorphism group 𝜎𝜑𝑈, we have 𝑄 ⊂ 𝑁. 

Proof. Put 𝜑:= 𝜑𝑈. Denote by 𝑧 ∈ 𝒵(𝑄) ⊂ 𝑀𝜑 = 𝑁𝜑 the unique central projection such 

that 𝑄𝑧 is amenable and 𝑄𝑧⊥ has no nonzero amenable direct summand. By Theorem 

(6.2.6), we have 𝑄𝑧 ⊂ 𝑧𝑁𝑧. Next, fix 𝜔 ∈ 𝛽(𝐍) ∖ 𝐍 any nonprincipal ultrafilter. By [252] 

(see also [251]), we have that (𝑄′ ∩𝑀𝜔)𝑧⊥ = (𝑄′ ∩𝑀)𝑧⊥ is atomic. 

Corollary (6.2.7)[264]: Keep the same notation as above. Let 𝜔2 ∈ 𝛽(𝐍𝑟) ∖ 𝐍𝑟 be any 

nonprincipal ultrafilter. For all 𝑎 ∈ 𝑀𝑟⊖𝑁𝑟, all 𝑏 ∈ 𝑀𝑟 and all 𝑥2, 𝑦2 ∈ (𝑀𝑟
𝜔2)

𝜑2𝜔
2

∩

(𝑀𝑟
𝜔2⊖𝑀𝑟), we have 

𝜑2𝜔
2
(𝑏∗(𝑦2)∗𝑎𝑥2) = 0. 

Proof. Denote as usual by 𝐻:= 𝐻𝐑⊗𝐑 𝐂 the complexified Hilbert space and by 𝑈𝑟: 𝐑 ↷ 𝐻 

the corresponding unitary representation. Put 𝐻ap: = 𝐻𝐑
ap
⊗𝐑 𝐂 and 𝐻wm: = 𝐻𝐑

wm⊗𝐑𝐂. 

Put 𝐾𝐑: = 𝑗(𝐻𝐑), 𝐾𝐑
ap 
= 𝑗 (𝐻𝐑

ap 
) and 𝐾𝐑

wm 
: = 𝑗 (𝐻𝐑

wm 
), where 𝑗 is the isometric embedding 
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𝜉 ∈ 𝐻𝐑 ↦ (
2

1+𝐴−1
)
1/2
𝜉 ∈ 𝐻. Denote by ℋ = ℱ(𝐻) the full Fock space of 𝐻. For every 𝑡 ∈

𝐑, put 𝜅𝑡 = 1𝐂Ω⊕⨁𝑛≥1  (𝑈𝑟)𝑡
⊗𝑛 ∈ 𝒰(ℋ). For every 𝑡 ∈ 𝐑 and every 𝑥2 ∈ 𝑀𝑟, we have 

𝜎𝑡
𝜑2
(𝑥2)Ω = 𝜅𝑡(𝑥

2Ω). We will implicitly identify the full Fock space ℱ(𝐻) with the 

standard Hilbert space Lr
2(𝑀𝑟) and the vacuum vector Ω ∈ ℋ with the canonical 

representing vector 𝜉𝜑2 ∈ Lr
2(𝑀𝑟)+. 

Put 𝐾an: = ⋃𝜆>1  𝟏[𝜆−1,𝜆](𝐴)(𝐾R + i𝐾𝐑). Observe that 𝐾an ⊂ 𝐾R + i𝐾R is a dense subspace 

of elements 𝜂 ∈ 𝐾𝐑 + 𝑖𝐾R for which the map 𝐑 → 𝐾𝐑 + i𝐾𝐑: 𝑡 ↦ (𝑈𝑟)𝑡𝜂 extends to an 

(𝐾R + i𝐾𝐑)-valued entire analytic function and that 𝐾an̅̅ ̅̅ ̅ = 𝐾an. For all 𝜂 ∈ 𝐾an, the element 

𝑊𝑟(𝜂) is analytic with respect to the modular automorphism group 𝜎𝜑
2
 and we have 

𝜎
𝑧2
𝜑2
(𝑊𝑟(𝜂)) = 𝑊𝑟(𝐴

i𝑧2𝜂) for all 𝑧2 ∈ 𝐂. 

Denote by 𝒲 the set of reduced words of the form 𝑊𝑟(𝜉1⊗⋯⊗ 𝜉𝑛) for which ≥
1, 𝜉1, … , 𝜉𝑛 ∈ 𝐾an. By linearity/density, in order to prove Corollary (6.2.7), we may assume 

without loss of generality that 𝑎 and 𝑏 are reduced words in 𝒲. Since moreover 𝑎 ∈ 𝑀𝑟⊖
𝑁𝑟, we can assume that at least one of its letters 𝜉𝑖 lies in 𝐾𝐑

wm + i𝐾𝐑
wm. More precisely, we 

can write 

𝑎  = 𝑎′𝑊𝑟(𝜉1⊗⋯⊗ 𝜉(1+𝜖))𝑎
′′

𝑏  = 𝑏′𝑊𝑟(𝜂1⊗⋯⊗𝜂(1+𝜖))𝑏
′′

 

with 𝜖 ≥ 0, 𝑎′, 𝑎′′, 𝑏′, 𝑏′′ are reduced words in 𝑁𝑟 with letters in 𝐾an ∩ (𝐾𝐑
ap
+ i𝐾R

ap
), 

𝜉2, … , 𝜉𝜖 , 𝜂2, … , 𝜂𝜖 ∈ 𝐾an and 𝜉1, 𝜉(1+𝜖), 𝜂1, 𝜂(1+𝜖) ∈ 𝐾an ∩ (𝐾𝐑
wm + i𝐾𝐑

wm). By 

convention, when 𝜖 = −1,𝑊𝑟(𝜂1⊗⋯⊗𝜂(1+𝜖)) is the trivial word 1 , so that 𝑏 = 𝑏′𝑏′′. 

Denote by 𝐿𝑟 ⊂ 𝐾𝐑
wm + i𝐾R

wm the finite dimensional subspace generated by 

𝜉1, 𝜉(1+𝜖), 𝜂1, 𝜂(1+𝜖) and such that 𝐿‾r = 𝐿𝑟. If 𝜖 = −1, then 𝐿𝑟 is simply the subspace 

generated by 𝜉1, 𝜉(1+𝜖), 𝜉‾1, 𝜉‾(1+𝜖) Denote by 

3. 𝒳(1,1 + 𝜖) ⊂ ℋ the closed linear subspace generated by all the reduced words of 

the form 𝑒1⊗⋯⊗ 𝑒𝑛 with 𝜖 ≥ −1, 𝑛 ≥ 2 + 𝜖, 𝑒1, … , 𝑒(1+𝜖) ∈ 𝐾𝐑
ap∘
+ i𝐾𝐑

ap
 and 

𝑒2+𝜖 ∈ 𝐿𝑟 . When 𝜖 = −1 simply denote 𝒳1: = 𝒳(1,0). 
4. 𝒳(2,1 + 𝜖) ⊂ ℋ the closed linear subspace generated by all the reduced words of 

the form 𝑒1⊗⋯⊗ 𝑒𝑛 with 𝜖 ≥ −1, 𝑛 ≥ 2 + 𝜖, 𝑒𝑛−(1+𝜖) ∈ 𝐿𝑟 and 𝑒𝑛−𝜖 , … , 𝑒𝑛 ∈

𝐾𝐑
ap
+ i𝐾𝐑

ap
. When 𝜖 = −1, simply denote 𝒳2: = 𝒳(2,0). 

5. 𝒴 ⊂ ℋ the closed linear subspace generated by all the reduced words of the form 

𝑒1⊗⋯⊗ 𝑒𝑛 with 𝑛 ≥ 1 and 𝑒1, 𝑒𝑛 ∈ 𝐿𝑟
⊥. 

Observe that we have the following orthogonal decomposition 

ℋ = 𝐂Ω⊕ (𝒳1 +𝒳2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ⊕ 𝒴. 
Corollary (6.2.8)[264]: (see [246]). Let 𝜀 ≥ 0 and 𝑡 ∈ R such that (𝑈𝑟)𝑡(𝐿𝑟) ⊥ 𝜀

dim𝐿𝑟

𝐿𝑟. 

Then for all 𝑖 ∈ {1,2} and all 𝜖 ≥ −1, we have 

𝜅𝑡(𝒳(𝑖, 1 + 𝜖)) ⊥𝜀 𝒳(𝑖, 1 + 𝜖). 

Proof. Choose an orthonormal basis (𝜁1, … , 𝜁dim 𝐿𝑟) of 𝐿𝑟. We first prove the claim for 𝑖 =

1. We will identify 𝒳(1,1 + 𝜖) with 𝐿𝑟⊗ ((𝐻ap)⊗(1+𝜖)⊗ℋ) using the following unitary 

defined by 

𝒱(1,1 + 𝜖):𝐻 ⊗ (𝐻⊗(1+𝜖)⊗ℋ) → ℋ: 𝜁 ⊗ 𝜇⊗ 𝜈 ↦ 𝜇⊗ 𝜁 ⊗ 𝜈. 
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Observe that 𝜅𝑡𝒱(1,1 + 𝜖) = 𝒱(1,1 + 𝜖)((𝑈𝑟)𝑡⊗ ((𝑈𝑟)𝑡)
⊗(1+𝜖)⊗𝜅𝑡) for every 𝑡 ∈ 𝐑. 

Let Ξ1, Ξ2 ∈ 𝒳(1,1 + 𝜖) be such that Ξ1 = ∑𝑖=1
dim 𝐿𝑟  𝜁𝑖⊗Θ𝑖

1 and Ξ2 = ∑𝑗=1
dim 𝐿𝑟  𝜁𝑗⊗Θ𝑗

2 with 

Θ𝑖
1, Θ𝑗

2 ∈ (𝐻ap )
⊗(1+𝜖)

⊗ℋ. We have 𝜅𝑡(Ξ1) = ∑𝑖=1
dim 𝐿𝑟  (𝑈𝑟)𝑡(𝜁𝑖) ⊗ 𝜅𝑡(Θ𝑖

1) and hence 

|⟨𝜅𝑡(Ξ1), Ξ2⟩| ≤ ∑  

dim 𝐿𝑟

𝑖,𝑗=1

∣ ⟨(𝑈𝑟)𝑡(𝜁𝑖), 𝜁𝑗⟩∥∥Θ𝑖
1∥∥∥∥Θ𝑗

2
∥∥. 

Since |⟨(𝑈𝑟)𝑡(𝜁𝑖), 𝜁𝑗⟩| ≤ 𝜀/dim 𝐿𝑟, we obtain |⟨𝜅𝑡(Ξ1), Ξ2⟩| ≤ 𝜀∥∥Ξ1∥∥∥∥Ξ2∥∥ by the Cauchy-

Schwarz inequality. The proof of the claim for 𝑖 = 2 is entirely analogous. 

Given a closed subspace 𝒦 ⊂ ℋ, we denote by (𝑃𝑟)𝒦:ℋ → 𝒦 the orthogonal projection 

onto 𝒦. 

Corollary (6.2.9)[264]: (see [246]). Take 𝑧2 = (𝑧𝑛
2)𝜔

2
∈ (𝑀𝑟

𝜔2)
𝜑2𝜔

2

 and let 𝑤1
2, 𝑤2

2 ∈ 𝑁𝑟 
be any elements of the following form: 

6. either 𝑤1
2 = 1 or 𝑤1

2 = 𝑊𝑟(𝜁1⊗⋯⊗ 𝜁(1+𝜖)) with 𝜖 ≥ 0 and 𝜁1, … , 𝜁(1+𝜖) ∈ 𝐾an ∩

(𝐾𝑅
ap 
+ 𝑖𝐾𝑅

ap 
). 

7. either 𝑤2
2 = 1 or 𝑤2

2 = 𝑊𝑟(𝜇1⊗⋯⊗𝜇(1+𝜖)) with 𝑠 ≥ 1 and 𝜇1, … , 𝜇(1+𝜖) ∈ 𝐾an ∩

(𝐾𝑅
ap 
+ 𝑖𝐾𝑅

ap 
). 

Then for all 𝑖 ∈ {1,2}, we have lim𝑛→𝜔2  ∥∥(𝑃𝑟)𝒳𝑖(𝑤1
2𝑧𝑛
2𝑤2

2Ω)∥∥ = 0. 

Proof. Observe that 𝑤1
2𝑧𝑛
2𝑤2

2Ω = 𝑤1
2𝐽𝑟𝜎−i/2

𝜑2 ((𝑤2
2)∗)𝐽𝑟𝑧𝑛

2Ω. Firstly, we have 

(𝑃𝑟)𝒳(1,𝑟) (𝐽𝑟𝜎−i/2
𝜑2 ((𝑤2

2)∗)𝐽𝑟𝑧𝑛
2Ω)  = 𝐽𝑟𝜎−i/2

𝜑2 ((𝑤2
2)∗)𝐽𝑟(𝑃𝑟)𝒳(1,𝑟)(𝑧𝑛

2Ω)

(𝑃𝑟)𝒳(2,𝑠)(𝑤1
2𝑧𝑛
2Ω)  = 𝑤1

2(𝑃𝑟)𝒳(2,𝑠)(𝑧𝑛
2Ω).

 

Secondly, for all Ξ ∈ ℋ, we have 

(𝑃𝑟)𝒳1(𝑤1
2Ξ) = (𝑃𝑟)𝒳1(𝑤1

2(𝑃𝑟)𝒳(1,1+𝜖)(Ξ)) 

(𝑃𝑟)𝒳2 (𝐽𝑟𝜎−i/2
𝜑2 ((𝑤2

2)∗)𝐽𝑟Ξ) = (𝑃𝑟)𝒳2 (𝐽𝑟𝜎−i/2
𝜑2 ((𝑤2

2)∗)𝐽𝑟(𝑃𝑟)𝒳(2,𝑠)(Ξ)). 

This implies that 

(𝑃𝑟)𝒳1(𝑤1
2𝑧𝑛
2𝑤2

2Ω) = (𝑃𝑟)𝒳1 (𝑤1
2𝐽𝑟𝜎−i/2

𝜑2 ((𝑤2
2)∗)𝐽𝑟(𝑃𝑟)𝒳(1,1+𝜖)(𝑧𝑛

2Ω))

(𝑃𝑟)𝒳2(𝑤1
2𝑧𝑛
2𝑤2

2Ω) = (𝑃𝑟)𝒳2 (𝑤1
2𝐽𝑟𝜎−i/2

𝜑2 ((𝑤2
2)∗)𝐽𝑟(𝑃𝑟)𝒳(2,𝑠)(𝑧𝑛

2Ω)) .
 

and we are left to show that lim𝑛→𝜔2  ∥∥(𝑃𝑟)𝒳(1,1+𝜖)(𝑧𝑛
2Ω)∥∥ = lim𝑛→𝜔2  ∥∥(𝑃𝑟)𝒳(2,𝑠)(𝑧𝑛

2Ω)∥∥ =

0. 

Let 𝑖 ∈ {1,2} and 𝑘 ∈ {1 + 𝜖, 𝑠}. Fix 𝑁𝑟 ≥ 0. Since the orthogonal representation 𝑈𝑟: 𝐑 ↷
𝐻𝐑
wm is weakly mixing and 𝐿𝑟 ⊂ 𝐻

wm is a finite dimensional subspace, we may choose 

inductively 𝑡1, … , 𝑡𝑁𝑟 ∈ 𝐑 such that (𝑈𝑟)𝑡𝑗1(𝐿𝑟) ⊥(𝑁𝑟dim (𝐿𝑟))
−1 (𝑈𝑟)𝑡𝑗2(𝐿𝑟) for all 1 ≤ 𝑗1 <

𝑗2 ≤ 𝑁𝑟. By Corollary (6.2.8), this implies that 

(𝜅)𝑡𝑗1(𝒳(𝑖, 𝑘)) ⊥ 1
𝑁𝑟

(𝜅)𝑡𝑗2(𝒳(𝑖, 𝑘)), ∀1 ≤ 𝑗1 < 𝑗2 ≤ 𝑁𝑟 . 

For all 𝑡 ∈ 𝐑 and all 𝑛 ∈ 𝐍𝑟, we have 
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∥∥(𝑃𝑟)𝒳(𝑖,𝑘)(𝑧𝑛
2Ω)∥∥

2
 = ⟨(𝑃𝑟)𝒳(𝑖,𝑘)(𝑧𝑛

2Ω), 𝑧𝑛
2Ω⟩

= ⟨(𝜅)𝑡 ((𝑃𝑟)𝒳(𝑖,𝑘)(𝑧𝑛
2Ω)) , 𝜅𝑡(𝑧𝑛

2Ω)⟩   (since 𝜅𝑡 ∈ 𝒰(ℋ))

 = ⟨(𝑃𝑟)𝜅𝑡(𝒳(𝑖,𝑘))(𝜅𝑡(𝑧𝑛
2Ω)), 𝜅𝑡(𝑧𝑛

2Ω)⟩.

 

By [247], for all 𝑡 ∈ 𝐑, we have (𝑧𝑛
2)𝜔

2
= 𝑧2 = 𝜎𝑡

𝜑2𝜔2
(𝑧2) = (𝜎𝑡

𝜑2(𝑧𝑛
2))

𝜔2

. This implies 

that lim𝑛→𝜔2   ∥
∥𝜎𝑡

𝜑2(𝑧𝑛
2) − 𝑧𝑛

2
∥
∥
𝜑2
= 0, and hence lim𝑛→𝜔2  ∥∥𝜅𝑡(𝑧𝑛

2Ω) − 𝑧𝑛
2Ω∥∥ = 0 for all 𝑡 ∈

𝐑. In particular, since the sequence (𝑧𝑛
2Ω)𝑛 is bounded in ℋ, we deduce that for all 𝑡 ∈ 𝐑, 

lim
𝑛→𝜔2

 ∥∥(𝑃𝑟)𝒳(𝑖,𝑘)(𝑧𝑛
2Ω)∥∥

2
= lim
𝑛→𝜔2

 ⟨(𝑃𝑟)𝜅𝑡(𝒳(𝑖,𝑘))(𝑧𝑛
2Ω), 𝑧𝑛

2Ω⟩. 

Applying this equality to our well chosen reals (𝑡𝑗)1≤𝑗≤𝑁𝑟
, taking a convex combination and 

applying Cauchy-Schwarz inequality, we obtain 

lim
𝑛→𝜔2

 ∥∥(𝑃𝑟)𝒳(𝑖,𝑘)(𝑧𝑛
2Ω)∥∥

2
 = lim

𝑛→𝜔2
 
1

𝑁𝑟
∑ 

𝑁𝑟

𝑗=1

  ⟨(𝑃𝑟)(𝜅)𝑡𝑗(𝒳(𝑖,𝑘))
(𝑧𝑛
2Ω), 𝑧𝑛

2Ω⟩

 = lim
𝑛→𝜔2

 
1

𝑁𝑟
⟨∑  

𝑁𝑟

𝑗=1

  (𝑃𝑟)(𝜅)𝑡𝑗
(𝒳(𝑖, 𝑘))(𝑧𝑛

2Ω), 𝑧𝑛
2Ω⟩

 ≤ lim
𝑛→𝜔2

 
1

𝑁𝑟 ∥
∥
∥
∥
∥
∑  

𝑁𝑟

𝑗=1

  (𝑃𝑟)(𝜅)𝑡𝑗(𝒳(𝑖,𝑘))
(𝑧𝑛
2Ω)

∥
∥
∥
∥
∥

∥∥𝑧𝑛
2∥∥𝜑2 .

 

Then, for all 𝑛 ∈ 𝐍𝑟 we have, 

∥
∥
∥
∥
∥
∑  

𝑁𝑟

𝑗=1

  (𝑃𝑟)(𝜅)𝑡𝑗(𝒳(𝑖,𝑘))
(𝑧𝑛
2Ω)

∥
∥
∥
∥
∥
 = ∑  

𝑁𝑟

𝑗1,𝑗2=1

  ⟨(𝑃𝑟)(𝜅)𝑡1(𝒳(𝑖, 𝑘))
(𝑧𝑛
2Ω), (𝑃𝑟)(𝜅)𝑡𝑗

(𝒳(𝑖, 𝑘))(𝑧𝑛
2Ω)⟩

 ≤∑  

𝑁𝑟

𝑗=1

  ∥∥
∥(𝑃𝑟)(𝜅)𝑡𝑗(𝒳(𝑖,𝑘))

(𝑧𝑛
2Ω)∥∥

∥2 + ∑  

𝑁𝑟

𝑗1≠𝑗2

 
∥∥𝑧𝑛
2∥∥𝜑2
2

𝑁𝑟

 ≤ 𝑁𝑟∥∥𝑧𝑛
2∥∥𝜑2
2
+𝑁𝑟

2
∥∥𝑧𝑛
2∥∥𝜑2
2

𝑁𝑟

 = 2𝑁𝑟∥∥𝑧𝑛
2∥∥𝜑2
2
.

 

Altogether, we have obtained the inequality lim𝑛→𝜔2  ∥∥(𝑃𝑟)𝒳(𝑖,𝑘)(𝑧𝑛
2Ω)∥∥

2
≤ √2 ∥ 𝑧2 ∥

𝜑2𝜔
2

2 /

√𝑁𝑟. As 𝑁𝑟 is arbitrarily large, this finishes the proof of Corollary (6.2.9). The above 

argument is inspired from [255]. Alternatively, we could have used [248]. 

Corollary (6.2.10)[264]: (see [246]). The subspaces 𝑊𝑟(𝜉1⊗⋯⊗ 𝜉(1+𝜖))𝒴 and 

𝐽𝑟𝜎−i/2
𝜑2

(𝑊𝑟(𝜂‾(1+𝜖)⊗⋯⊗𝜂‾1)) 𝐽𝑟𝒴 are orthogonal in ℋ. Here, in the case 𝜖 = −1, the 

vector space 𝐽𝑟𝜎−i/2
𝜑2

(𝑊𝑟(𝜂‾(1+𝜖)⊗⋯⊗𝜂‾1)) 𝐽𝑟𝒴 is nothing but 𝒴. 
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Proof. Let 𝑚, 𝑛 ≥ 1, 𝑒1, … , 𝑒𝑚, 𝑓1, … , 𝑓𝑛 ∈ 𝐻 with 𝑒1, 𝑒𝑚, 𝑓1, 𝑓𝑛 ∈ 𝐿𝑟
⊥ so that the vectors 

𝑒1⊗⋯⊗ 𝑒𝑚 and 𝑓1⊗⋯⊗𝑓𝑛 belong to 𝒴. Since 𝜉‾(1+𝜖) ⊥ 𝑒1, 𝑓‾𝑛 ⊥ 𝜂1 and 𝜉1 ⊥ 𝑓1, we 

have 

⟨𝑊𝑟(𝜉1⊗⋯⊗ 𝜉(1+𝜖))(𝑒1⊗⋯⊗ 𝑒𝑚), 𝐽𝑟𝜎−i/2
𝜑2

(𝑊𝑟(𝜂‾(1+𝜖)⊗⋯⊗𝜂‾1)) 𝐽𝑟(𝑓1⊗⋯

⊗𝑓𝑛)⟩

= ⟨𝑊𝑟(𝜉1⊗⋯⊗ 𝜉(1+𝜖))𝑊𝑟(𝑒1⊗⋯

⊗ 𝑒𝑚)Ω, 𝐽𝑟𝜎−i/2
𝜑2

(𝑊𝑟(𝜂‾(1+𝜖)⊗⋯⊗𝜂‾1)) 𝐽𝑟𝑊𝑟(𝑓1⊗⋯⊗𝑓𝑛)Ω⟩

= ⟨𝑊𝑟(𝜉1⊗⋯⊗ 𝜉(1+𝜖))𝑊𝑟(𝑒1⊗⋯⊗ 𝑒𝑚)Ω,𝑊𝑟(𝑓1⊗⋯⊗𝑓𝑛)𝑊𝑟(𝜂1
⊗⋯⊗𝜂(1+𝜖))Ω⟩ 

= ⟨𝑊𝑟(𝜉1⊗⋯⊗ 𝜉(1+𝜖)⊗𝑒1⊗⋯⊗ 𝑒𝑚)Ω,𝑊𝑟(𝑓1⊗⋯⊗𝑓𝑛⊗𝜂1⊗⋯⊗𝜂(1+𝜖))Ω⟩ 

= ⟨𝜉1⊗⋯⊗ 𝜉(1+𝜖)⊗𝑒1⊗⋯⊗ 𝑒𝑚, 𝑓1⊗⋯⊗𝑓𝑛⊗𝜂1⊗⋯⊗𝜂(1+𝜖)⟩ 

= 0. 
Note that in the case 𝜖 = −1, the above calculation still makes sense. Indeed we have  

⟨𝑊𝑟(𝜉1⊗⋯⊗ 𝜉(1+𝜖))(𝑒1⊗⋯⊗ 𝑒𝑚), (𝑓1⊗⋯⊗𝑓𝑛)⟩

= ⟨𝜉1⊗⋯⊗ 𝜉(1+𝜖)⊗𝑒1⊗⋯⊗ 𝑒𝑚, 𝑓1⊗⋯⊗𝑓𝑛⟩ = 0. 

Since the linear span of all such reduced words 𝑒1⊗⋯⊗ 𝑒𝑚 (resp. 𝑓1⊗⋯⊗𝑓𝑛) generate 

𝒴, we obtain that the subspaces 𝑊𝑟(𝜉1⊗⋯⊗ 𝜉(1+𝜖))𝒴 and 𝐽𝑟𝜎−i/2
𝜑2

(𝑊𝑟(𝜂‾(1+𝜖)⊗⋯⊗

𝜂‾1)) 𝐽𝑟𝒴 are orthogonal in ℋ. 

Let 𝑥2, 𝑦2 ∈ (𝑀𝑟
𝜔2)

𝜑2𝜔
2

∩ (𝑀𝑟
𝜔2⊖𝑀𝑟). We have 

𝜑2𝜔
2
(𝑏∗(𝑦2)∗𝑎𝑥2) = ⟨𝑎𝑥2𝜉

𝜑2𝜔
2 , 𝑦2𝑏𝜉

𝜑2𝜔
2⟩ 

= lim
𝑛→𝜔2

 ⟨𝑎𝑥𝑛
2𝜉𝜑2 , 𝑦𝑛

2𝑏𝜉𝜑2⟩ 

= lim
𝑛→𝜔2

 ⟨𝑎′𝑊𝑟(𝜉1⊗⋯⊗ 𝜉(1+𝜖))𝑎
′′𝑥𝑛

2Ω, 𝑦𝑛
2𝑏′𝑊𝑟(𝜂1⊗⋯⊗𝜂(1+𝜖))𝑏

′′Ω⟩ 

= lim
𝑛→𝜔2

  ⟨𝑊𝑟(𝜉1⊗⋯

⊗ 𝜉(1+𝜖))𝑎
′′𝑥𝑛

2𝜎−i
𝜑2((𝑏′′)∗)Ω, 𝐽𝑟𝜎−i/2

𝜑2
(𝑊𝑟(𝜂‾(1+𝜖)⊗⋯

⊗𝜂‾1)) 𝐽𝑟(𝑎
′)∗𝑦𝑛

2𝑏′Ω⟩. 

Put 𝑧𝑛
2 = 𝑎′′𝑥𝑛

2𝜎−i
𝜑2((𝑏′′)∗) and (𝑧2)𝑛

′ = (𝑎′)∗𝑦𝑛
2𝑏′. By Corollary (6.2.9), we have that 

lim𝑛→𝜔2  ∥∥(𝑃𝑟)𝒳𝑖(𝑧𝑛
2Ω)∥∥ = lim𝑛→𝜔2  ∥∥(𝑃𝑟)𝒳𝑖((𝑧

2)𝑛
′ Ω)∥∥ = 0 for all 𝑖 ∈ {1,2}. Since 

moreover E𝜔2(𝑥
2) = E𝜔2(𝑦

2) = 0, we see that lim𝑛→𝜔2  ∥∥(𝑃𝑟)𝐂Ω(𝑧𝑛
2Ω)∥∥ =

lim𝑛→𝜔2  ∥∥(𝑃𝑟)𝐂Ω((𝑧
2)𝑛
′ Ω)∥∥ = 0. Since ℋ = 𝐂Ω⊕ (𝒳1 +𝒳2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ⊕ 𝒴, we obtain 

lim
𝑛→𝜔2

 ∥∥𝑧𝑛
2Ω− (𝑃𝑟)𝒴(𝑧𝑛

2Ω)∥∥ = 0  and  lim
𝑛→𝜔2

 ∥∥(𝑧
2)𝑛
′ Ω − (𝑃𝑟)𝒴((𝑧

2)𝑛
′ Ω)∥∥ = 0. 

By Corollary (6.2.10), we finally obtain 
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𝜑2𝜔
2
(𝑏∗(𝑦2)∗𝑎𝑥2)

= lim
𝑛→𝜔2

  ⟨𝑊𝑟(𝜉1⊗⋯

⊗ 𝜉(1+𝜖))𝑧𝑛
2Ω, 𝐽𝑟𝜎−i/2

𝜑2
(𝑊𝑟(𝜂‾(1+𝜖)⊗⋯⊗𝜂‾1)) 𝐽𝑟(𝑧

2)𝑛
′ Ω⟩

= lim
𝑛→𝜔2

  ⟨𝑊𝑟(𝜉1⊗⋯

⊗ 𝜉(1+𝜖))(𝑃𝑟)𝒴(𝑧𝑛
2Ω), 𝐽𝑟𝜎−i/2

𝜑2
(𝑊𝑟(𝜂‾(1+𝜖)⊗⋯⊗𝜂‾1)) 𝐽𝑟(𝑃𝑟)𝒴((𝑧

2)𝑛
′ Ω)⟩

= 0. 
This finishes the proof of Corollary (6.2.7). 

Corollary (6.2.11)[264]: Let (𝑀𝑟, 𝜑
2) = (Γ(𝐻𝐑, 𝑈𝑟)

′′, 𝜑𝑈𝑟
2 ) be any free Araki-Woods 

factor endowed with its free quasi-free state. Keep the same notation as in the introduction. 

Let (1 + 𝜖) ∈ 𝑀𝑟
𝜑2
= (𝑁)𝑟

𝜑
𝑈𝑟

ap 
2

 be any nonzero projection. Write 𝜑(1+𝜖)
2 =

𝜑2((1+𝜖)⋅(1+𝜖))

𝜑2(1+𝜖)
. 

Then for any amenable von Neumann subalgebra 𝑄𝑟 ⊂ (1 + 𝜖)𝑀𝑟(1 + 𝜖) that is globally 

invariant under the modular automorphism group 𝜎𝜑(1+𝜖)
2

, we have 𝑄𝑟 ⊂ (1 + 𝜖)𝑁𝑟(1 + 𝜖). 
Proof. We may assume that 𝑄𝑟 has separable predual. Indeed, let 𝑥2 ∈ 𝑄𝑟 be any element 

and denote by (𝑄𝑟)0 ⊂ 𝑄𝑟 the von Neumann subalgebra generated by 𝑥2 ∈ 𝑄𝑟 and that is 

globally invariant under the modular automorphism group 𝜎𝜑
2𝜑(1+𝜖)

2

. Then (𝑄𝑟)0 is 

amenable and has separable predual. Therefore, we may assume without loss of generality 

that (𝑄𝑟)0 = 𝑄𝑟, that is, 𝑄𝑟 has separable predual.  

Special case. We first prove the result when 𝑄𝑟 ⊂ (1 + 𝜖)𝑀𝑟(1 + 𝜖) is globally invariant 

under 𝜎𝜑(1+𝜖)
2

 and is an irreducible subfactor meaning that 𝑄𝑟
′ ∩ (1 + 𝜖)𝑀𝑟(1 + 𝜖) = 𝐂(1 +

𝜖).  
Let 𝑎 ∈ 𝑄𝑟 be any element. Since 𝑄𝑟 is amenable and has separable predual, 𝑄𝑟

′ ∩ ((1 +

𝜖)𝑀𝑟(1 + 𝜖))
𝜔2 is diffuse and so is 𝑄𝑟

′ ∩ (((1 + 𝜖)𝑀𝑟(1 + 𝜖))
𝜔2)

𝜑(1+𝜖)
2𝜔2

 by [252]. In 

particular, there exists a unitary 𝑢 ∈ 𝒰(𝑄𝑟
′ ∩ (((1 + 𝜖)𝑀𝑟(1 + 𝜖))

𝜔2)
𝜑(1+𝜖)
2𝜔2

) such that 

𝜑(1+𝜖)
2𝜔2 (𝑢) = 0. Note that E𝜔2(𝑢) ∈ 𝑄𝑟

′ ∩ (1 + 𝜖)𝑀𝑟(1 + 𝜖) = 𝐂(1 + 𝜖) and hence 

E𝜔2(𝑢) = 𝜑(1+𝜖)
2𝜔2 (𝑢) = 0 so that 𝑢 ∈ (𝑀𝑟

𝜔2)
𝜑2𝜔2

∩ (𝑀𝑟
𝜔2⊖𝑀𝑟). Corollary (6.2.7) yields 

𝜑2𝜔
2
(𝑎∗𝑢∗(𝑎 − E𝑁𝑟(𝑎))𝑢) = 0. Since moreover 𝑎𝑢 = 𝑢𝑎 and 𝑢 ∈ 𝒰 (((1 + 𝜖)𝑀𝑟(1 +

𝜖))𝜑1+𝜖
2𝜔2

), we have 

∥ 𝑎 ∥𝜑2
2  =∥ 𝑎𝑢 ∥

𝜑2𝜔
2

2

 = 𝜑2𝜔
2
(𝑢∗𝑎∗𝑎𝑢) = 𝜑2𝜔

2
(𝑎∗𝑢∗𝑎𝑢)

 = 𝜑2𝜔
2
(𝑎∗𝑢∗E𝑁𝑟(𝑎)𝑢) = 𝜑

2𝜔2(𝑢𝑎∗𝑢∗E𝑁𝑟(𝑎))

 = 𝜑2(𝑎∗E𝑁𝑟(𝑎))

 = ∥∥E𝑁𝑟(𝑎)∥∥𝜑2
2
.

 

This shows that 𝑎 = E𝑁𝑟(𝑎) ∈ 𝑁𝑟. 
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Corollary (6.2.12)[264]: Keep the same notation as above. Let 𝑄𝑟 ⊂ 𝑀𝑟 be any unital von 

Neumann subalgebra that is globally invariant under the modular automorphism group 

𝜎𝜑𝑈𝑟
2

. Then there exists a unique central projection 𝑧2 ∈ 𝒵(𝑄𝑟) ⊂ 𝑀𝑟
𝜑𝑈𝑟
2

= 𝑁𝑟

𝜑
𝑈𝑟
𝑎𝑝

2

 such that 

8. 𝑄𝑟𝑧
2 is amenable and 𝑄𝑟𝑧

2 ⊂ 𝑧2𝑁𝑟𝑧
2 and 

𝑄𝑟(𝑧
2)⊥ has no nonzero amenable direct summand and (𝑄𝑟

′ ∩𝑀𝑟
𝜔2)(𝑧2)⊥ = (𝑄𝑟

′ ∩

𝑀𝑟)(𝑧
2)⊥ is atomic for any nonprincipal ultrafilter 𝜔2 ∈ 𝛽(𝐍𝑟) ∖ 𝐍𝑟. 

Proof. Put 𝜑2: = 𝜑𝑈𝑟
2 . Denote by 𝑧2 ∈ 𝒵(𝑄𝑟) ⊂ 𝑀𝑟

𝜑2
= 𝑁𝑟

𝜑2
 the unique central projection 

such that 𝑄𝑟𝑧
2 is amenable and 𝑄𝑟(𝑧

2)⊥ has no nonzero amenable direct summand. By 

Corollary (6.2.11), we have 𝑄𝑟𝑧
2 ⊂ 𝑧2𝑁𝑟𝑧

2. Next, fix 𝜔2 ∈ 𝛽(𝐍𝑟) ∖ 𝐍𝑟 any nonprincipal 

ultrafilter. By [252] (see also [251]), we have that (𝑄𝑟
′ ∩𝑀𝑟

𝜔2)(𝑧2)⊥ = (𝑄𝑟
′ ∩𝑀𝑟)(𝑧

2)⊥ is 

atomic. 

Section (6.3): Complete Metric Approximation Property  

The study of finite approximation properties has always played a central role in the 

structure and classification program for operator algebras. In the amenable setting this can 

be seen, for example, in the seminal work of Connes on the classification of injective factors 

[28] and also in Elliot's classification program for simple nuclear 𝐶∗-algebras [263]. For 

non-amenable operator algebras, there are two approximation properties that arise as weak 

forms of amenability that stand out: the Haagerup property and the completely bounded 

approximation property. These two operator algebraic properties have their roots in the deep 

work of Cowling, de Cannière and Haagerup on the completely bounded multipliers of 

Fourier algebras and group von Neumann algebras (cf. [153], [33], [147]). In the group 

context, amenability of a (discrete) group 𝐺 corresponds to the existence of an approximate 

identity in the Fourier algebra 𝐴(𝐺) consisting of finitely supported normalised positive 

definite functions. The Haagerup property arises when one relaxes the finite support 

assumption and allows for an approximate unit of normalized positive definite functions that 

merely vanish at infinity (cf. [241] for the connection to group von Neumann algebras). If 

one instead insists on having a finitely supported approximate unit for 𝐴(𝐺), but allows for 

functions of more general type (those uniformly bounded in the completely bounded Fourier 

multiplier norm) this results in the fertile and robust notion of weak amenability (cf. [147]). 

This latter notion has a straightforward generalization to 𝐶∗-algebras and von Neumann 

algebras, yielding the so-called (w∗ −) completely bounded approximation property 

((w∗) − CBAP). The situation is a little more subtle when translating the Haagerup property 

to arbitrary von Neumann algebras, and this was obtained only very recently (cf. [242] and 

[244] for two different, but equivalent, approaches).  

The 𝑤∗-CBAP has proved to be a remarkable tool in the study of non-amenable 

operator algebras. Indeed, it yields a numerical invariant, called the Cowling-Haagerup 

constant, which was used by Cowling and Haagerup [147] to distinguish the group von 

Neumann algebras arising from lattices in the Lie groups 𝑆𝑝(1, 𝑛). Recently, in the 

breakthrough work of Ozawa and Popa (cf. [141] and [262]), the 𝑤∗-CMAP was shown to 

be intimately connected to several remarkable indecomposability results for finite von 

Neumann algebras, such as strong solidity, absence of Cartan subalgebras, primeness, and 

so on.  

All the results mentioned about pertain mostly to (semi)finite von Neumann algebras. 

However, several recent advancements have been made in the study of type III algebras. 

Most notably, the work of Isono [259], [260] on the structural theory of non-unimodular 
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free quantum group factors, as well as Boutonnét, Houdayer and Vaes' very recent proof of 

strong solidity for Shlyakhtenko's free Araki-Woods factors [224]. These latter algebras 

constitute the very first examples of non-injective strongly solid type III factors. Again, in 

the type III setting a key role is played by the w∗-CBAP, which had been established 

previously by Houdayer and Ricard [190] for free Araki-Woods algebras, and by De 

Commer, Yamashita and Freslon in the free quantum group case [257]. 

The present is concerned with the so-called 𝑞-Araki-Woods algebras Γ𝑞(H), which 

were introduced by Hiai in [123]. These (typically type III) von Neumann algebras are 

generated by the real parts of certain creation operators acting on a 𝑞-deformed Fock space 

ℱ𝑞(H) (introduced in [66]). Γ𝑞(H) can be viewed as a deformation of a free Araki-Woods 

factor depending on a parameter 𝑞 ∈ (−1,1)(𝑞 = 0 being the undeformed case). In many 

senses the 𝑞-Araki-Woods algebras are expected to be structurally very similar to their free, 

undeformed cousins. In fact, it is even known that for and dim H < ∞ and |𝑞| << 1, Γ𝑞(H) 

is isomorphic to its free cousin (cf. [236], Theorem 4.5). However, not so much is known 

about these algebras in the whole admissible regime of the parameter 𝑞. Let us just mention 

some partial results: Very recently, advances were made on the factoriality problem (cf. 

[222] and [245]). In many cases it is also known that 𝑞-Araki-Woods algebras are non-

injective (cf. [113]). For both properties there is really one case left open −𝑞-Araki Woods 

algebras built from a two-dimensional Hilbert space H, in which one cannot rely in any way 

on techniques used for 𝑞-Gaussian algebras, their tracial predecessors. All 𝑞-Araki Woods 

algebras are known to be QWEP (cf. [130]), and it was only recently shown that these 

algebras possess the Haagerup approximation property (cf. [240]). 

We establish the 𝑤∗-CBAP for all 𝑞-Araki-Woods algebras. Following Houdayer and 

Ricard's lead from the free case [190], we approach this problem by trying to characterize a 

natural class of completely bounded maps on these algebras, called radial multipliers, and 

estimate their norms. The classification problem for radial multipliers appears to be hard 

even for small values of |𝑞| because the known isomorphism between a 𝑞-Araki-Woods 

algebra and a free Araki-Woods factor does not carry radial multipliers to radial multipliers. 

So even in this setting new techniques are crucial. [190], used the universal property of the 

Fock representation of the Toeplitz algebra to translate the question of computing the 

completely bounded norm of a radial multiplier on a freeAraki-Woods factor to an 

equivalent problem of computing the completely bounded norm of the same multiplier, 

viewed now as a radial Fourier multiplier on a free group. In this latter setting, one has an 

explicit formula (cf. [195], Theorem 1.2) involving the traceclass norm of a Hankel matrix 

associated with the symbol of the multiplier. In particular, it follows from this result that the 

completely bounded norms of radial multipliers on free Araki-Woods factors do not depend 

on the type structure of the algebra. In the 𝑞-deformed setting, we conjecture that the same 

type-invariance for radial multipliers should hold for all 𝑞-Araki-Woods algebras. 

Unfortunately, if one tries to mimic the approach of Houdayer and Ricard in the free case, 

several major issues arise. One of them is that one has to work now with the Fock 

representation of the 𝑞-deformed Toeplitz algebras, and it is an interesting open problem to 

settle the universality question for the Fock representation here. We follow a different route, 

inspired by transference principles for multipliers. More precisely, we develop a non-tracial 

version of an ultraproduct embedding theorem of Junge and Zeng for mixed 𝑞-Gaussian 

algebras [261]. Our construction (Theorem (6.3.19)) yields a 𝑞-quasi-free state-preserving 

embedding of an arbitrary Γ𝑞(H) into an ultraproduct of tensor products of tracial 𝑞-
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Gaussian algebras and other 𝑞-Araki-Woods algebras. Using Theorem (6.3.19), we show 

that it is possible to transfer radial multipliers on (tracial) 𝑞-Gaussian algebras to arbitrary 

𝑞-Araki-Woods algebras in such a way that the completely bounded norm does not increase 

(Theorem (6.3.24)). Our transference result provides strong evidence towards the conjecture 

that radial multipliers on 𝑞-Araki-Woods algebras do not depend on the type structure, and 

we fully expect (but are unable to prove at this time) that our transference principle should 

be isometric and bijective. 

In any case, Theorem (6.3.24) does provide us with some new examples of completely 

bounded radial multipliers on 𝑞-Araki-Woods algebras. These are the projections onto Wick 

words of a given finite length. Upper bounds for the norms of such multipliers were obtained 

previously for 𝑞-Gaussian algebras by [223]. These norm estimates together with the 

extended second quantisation functor [240] turn out to be exactly what we need to establish 

the main result: the 𝑤∗-CBAP for all 𝑞-Araki-Woods algebras. In fact, just as in the free 

case, we obtain the completely contractive version of this property: 

As an application of the above result, we are able to answer affirmatively a question 

left open by Nou ([130,] Remark after Theorem 6.3), concerning whether or not the 

canonical w∗-dense C∗-subalgebras 𝒜𝑞(H) ⊆ Γ𝑞(H) are always QWEP; see Corollary 5.3. 

It is our hope that Theorem (6.3.27) will lead to a deeper understanding of the structure of 

𝑞-Araki-Woods algebras. In particular, we expect this result to be a fundamental tool in the 

applications of deformation/rigidity tools to these algebras. 

Let us conclude with a description of the layout of the main body. We introduce the 

relevant notation and background on operator spaces, von Neumann ultraproducts, and 𝑞-

Araki-Woods algebras. We construct our ultraproduct embedding and apply it to obtain the 

transference principle for radial multipliers. Finally, we present the proof of Theorem 

(6.3.27). 
Throughout, inner products on complex Hilbert spaces are always taken to be 

conjugate-linear in the left variable. The algebraic tensor product of two complex vector 

spaces 𝑉,𝑊 will always be denoted by 𝑉 ⊙𝑊, and elementary tensors in 𝑉 ⊙𝑊 will also 

be denoted using the symbol ⊙. Given a natural number 𝑛 ∈ ℕ, we denote by [𝑛]([𝑛]0) the 

ordered set {1,2, … , 𝑛}({0,1,2,… , 𝑛}). Given 𝑛, 𝑑 ∈ ℕ we will interchangeably view multi-

indices 𝑘 = (𝑘(1), 𝑘(2),… , 𝑘(𝑑)) ∈ [𝑛]𝑑 as functions 𝑘: [𝑑] → [𝑛]. Given 𝑑 ∈ ℕ, we 

denote by 𝒫(𝑑) the lattice of partitions of the ordered set [𝑑], and by 𝒫2(𝑑) ⊂ 𝒫(𝑑) the 

subset of pair partitions (i.e., partitions of [𝑑] into disjoint subsets ("blocks") of size 2). The 

partial order ⩽ on 𝒫(𝑑) is given by the usual refinement order on partitions, and given 

𝜋, 𝜎 ∈ 𝒫(𝑑), we denote by 𝜋 ∨ 𝜎 ∈ 𝒫(𝑑) the lattice theoretic join of 𝜋 and 𝜎 with respect 

to the partial order ⩽. The number of blocks of a partition 𝜎 will be denoted by |𝜎|. Finally, 

given a multi-index 𝑘: [𝑑] → [𝑛], we denote by ker 𝑘 ∈ 𝒫(𝑑) the partition defined by level 

sets of 𝑘 : that is, 1 ⩽ 𝑟, 𝑠 ⩽ 𝑑 belong to the same block of ker 𝑘 iff 𝑘(𝑟) = 𝑘(𝑠). 
Some amount of the theory of operator spaces is necessary for our work; even the 

statement of the main result uses notions from this field. Recall that an operator space is a 

Banach space 𝑋 endowed with a specific choice of norms on the matricial spaces M𝑛(𝑋):=
M𝑛⊙𝑋 satisfying the so-called Ruan axioms, ensuring that it comes from an isometric 

embedding of 𝑋intoB (H), the C∗-algebra of bounded linear operators on some Hilbert space 

H. Given a pair of operator spaces 𝑋, 𝑌 and a linear map 𝑇: 𝑋 → 𝑌, the cb norm of 𝑇 is given 

by 

∥ 𝑇 ∥𝑐𝑏: = sup
𝑛∈ℕ

 ∥∥Id𝑛⊙𝑇:M𝑛⊙𝑋 → M𝑛⊙𝑌∥∥. 
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If ∥ 𝑇 ∥𝑐𝑏< ∞, we say that 𝑇 is completely bounded (cb). We can now define the 

approximation properties that we are interested in. Let 𝑋 be an operator space. We say that 

𝑋 possesses the completely bounded approximation property if there exists a net (Φ𝑖)𝑖∈𝐼 of 

finite rank completely bounded maps on 𝑋 such that sup𝑖∈𝐼  ∥∥Φ𝑖∥∥𝑐𝑏 < ∞, and 

lim𝑖∈𝐼  ∥∥Φ𝑖(𝑥) − 𝑥∥∥ = 0 for every 𝑥 ∈ 𝑋. If we can find a net (Φ𝑖)𝑖∈𝐼 such that ∥∥Φ𝑖∥∥𝑐𝑏 ⩽ 1 

then we say that 𝑋 has the complete metric approximation property. For a dual operator 

space 𝑋 (i.e. 𝑋 ≃ (𝑋∗)
∗ for some operator space 𝑋∗), there is a suitable analogue of this 

approximation property which takes into account this additional structure. Namely, we say 

that 𝑋 has the 𝑤∗-complete metric approximation property if there exists a net (Φ𝑖)𝑖∈𝐼 of 

finite rank 𝑤∗-continuous completely bounded maps on 𝑋 such that ∥∥Φ𝑖∥∥𝑐𝑏 ⩽ 1 for each 

𝑖 ∈ 𝐼, and lim𝑖∈𝐼  Φ𝑖(𝑥) = 𝑥 (weak-*) for every 𝑥 ∈ 𝑋. 

We need to discuss two operator space structures associated with a given Hilbert 

space. 

Definition (6.3.1)[256]: Let H be a complex Hilbert space. We define the following operator 

space structures on H : 

1. the column Hilbert space structure H𝑐 is given by the identification H ≃ B(ℂ, H); 
2. the row Hilbert space structure H𝑟 is given by the identification H ≃ B(H̅, ℂ). 

 (cf. [258], Theorem 3.4.1 and Proposition 3.4.2). 

These Hilbertian operator spaces will turn out to be critical for obtaining a right 

formulation of the non-commutative Khintchine inequalities (cf. Proposition 2.17). 

In the theory of operator spaces there is a variety of different tensor products, 

analogous to tensor products of Banach spaces. There is, however, one tensor product that 

stands out and does not have a Banach space theoretic counterpart - the Haagerup tensor 

product. 

Definition (6.3.2)[256]: Let 𝑋 and 𝑌 be operator spaces. We define a bilinear map 

M𝑛,𝑟(𝑋) × M𝑟,𝑛(𝑌) ∋ (𝑥, 𝑦) ↦ 𝑥 ⋅ 𝑦 ∈ M𝑛(𝑋 ⊙ 𝑌) to be the bilinear extension of the 

assignment (𝐴⊙ 𝑥, 𝐵 ⊙ 𝑦) ↦ (𝐴𝐵, 𝑥 ⊙ 𝑦). For any 𝑧 ∈ M𝑛(𝑋 ⊙ 𝑌) we define the norm 

∥ 𝑧 ∥ℎ,𝑛: = inf  {∥ 𝑥 ∥∥ 𝑦 ∥: 𝑧 = 𝑥 ⋅ 𝑦, 𝑥 ∈ M𝑛,𝑟(𝑋), 𝑦 ∈ M𝑟,𝑛(𝑌), 𝑟 ∈ ℕ}. 
This sequence of norms on the matricial spaces M𝑛(𝑋 ⊙ 𝑌) satisfies Ruan's axioms and 

therefore defines an operator space structure on 𝑋⊙ 𝑌, called the Haagerup tensor product. 

The completions with respect to the norms ∥⋅∥ℎ,𝑛 will be denoted M𝑛(𝑋 ⊗ℎ 𝑌). For more 

information on the Haagerup tensor product, consult [258] and [135]. 

Later on we will need the following proposition. 

Proposition (6.3.3)[256]: (Proposition 9.3.4 from [258]). Let K and H be complex Hilbert 

spaces. Then the assignment H⊙ K̅ ∋ 𝜉 ⊙ 𝜂 ↦ |𝜉⟩⟨𝜂| ∈ K(K, H) (the compact operators) 

extends to a complete isometry H𝑐⊗ℎ K̅𝑟 ≃ K(K,H). 
We present here a construction due to Hiai (cf. [123]), which builds upon previous 

developments: 𝑞-Gaussian algebras of Bożejko and Speicher (cf. [60]) and free Araki-

Woods factors defined by Shlyakhtenko (cf. [15]). 

The starting point is a real Hilbert space Hℝ equipped with a continuous one parameter 

group of orthogonal transformations (𝑈𝑡)𝑡∈ℝ. The extension of (𝑈𝑡)𝑡∈ℝ to a unitary group 

on Hℂ, the complexification of Hℝ, will be still denoted by (𝑈𝑡)𝑡∈ℝ. By Stone's theorem, 

there exists an injective, positive operator 𝐴 on HC such that 𝑈𝑡 = 𝐴
𝑖𝑡. On Hℂ we define a 

new inner product ⟨𝜉 ∣ 𝜂⟩𝑈: = ⟨𝜉 ∣
2𝐴

1+𝐴
𝜂⟩ and denote by H the completion of Hℂ with respect 

to this inner product. Note that the norms defined by ⟨⋅∣⋅⟩𝑈 and ⟨⋅∣⋅⟩ coincide on Hℝ. This 
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implies that 𝐼, the complex conjugation on Hℂ, is a closed operator on H with dense domain 

Hℂ.  

Next we form the 𝑞-Fock space ℱ𝑞(H). Since we will have to delve deeper into its 

structure later on, we will present the construction here. First, let us fix 𝑞 ∈ (−1,1). For any 

𝑛 we define 𝑃𝑞
𝑛: H⊙𝑛 → H⊙𝑛 by 

𝑃𝑞
𝑛(𝑒1⊙⋯⊙ 𝑒𝑛) = ∑  

𝜎∈𝑆𝑛

𝑞𝑖(𝜎)𝑒𝜎(1)⊙⋯⊙ 𝑒𝜎(𝑛),                (3) 

where 𝑖(𝜎):=∣ {(𝑖, 𝑗) ∈ [𝑛]2: 𝑖 < 𝑗 and 𝜎(𝑖) > 𝜎(𝑗)} ∣ is the number of inversions. This 

operator is (strictly) positive definite (cf. [66, Proposition 1]), so it defines an inner product 

on H⊙𝑛 by ⟨𝜉 ∣ 𝜂⟩𝑞: = ⟨𝜉 ∣ 𝑃𝑞
𝑛𝜂⟩; the completion with respect to this inner product will be 

denoted by H𝑞
⊗𝑛. The 𝑞-Fock space is defined by the orthogonal direct sum ℱ𝑞(H):=

⨁𝑛⩾0  H𝑞
⊗𝑛

. For our purposes, there are two important sets of operators defined on the 𝑞-

Fock space. For any 𝜉 ∈ H we define the 𝑞-creation operator 𝑎𝑞
∗ (𝜉) ∈ B(ℱ𝑞(H)) by 

𝑎𝑞
∗ (𝜉)(𝑒1⊙⋯⊙ 𝑒𝑛) = 𝜉 ⊙ 𝑒1⊙⋯⊙ 𝑒𝑛 

and the 𝑞-annihilation operator 𝑎𝑞(𝜉) = (𝑎4
∗(𝜉))∗ ∈ R(ℱ𝑞(H)). It is known (cf. [60], 

Remark 1.2) that 

∥∥𝑎𝑞(𝜉)∥∥ = ∥∥𝑎𝑞
∗ (𝜉)∥∥ = {

∥ 𝜉 ∥, 0 ⩾ 𝑞 > −1

(1 − 𝑞)−1/2 ∥ 𝜉 ∥ 0 < 𝑞 < 1.
 (𝜉 ∈ H). 

We are now ready to define 𝑞-Araki-Woods algebras. 

Definition (6.3.4)[256]: Let (Hℝ, (𝑈𝑡)𝑡∈ℝ) be a real Hilbert space endowed with a one-

parameter group of orthogonal transformations. Let H be the complex Hilbert space obtained 

as the completion of Hℂ with respect to ⟨⋅∣⋅⟩𝑈. For any 𝜉 ∈ Hℝ we define 𝑠𝑞(𝜉) ∈ B(ℱ𝑞(H)) 

by 𝑠𝑞(𝜉) = 𝑎𝑞
∗ (𝜉) + 𝑎𝑞(𝜉). We define the 𝑞-Araki-Woods algebra Γ𝑞(H) to be the von 

Neumann algebra generated by the set {𝑠𝑞(𝜉): 𝜉 ∈ Hℝ} inside B(ℱ𝑞(H)). 

In the special case 𝑈𝑡 = 1 we obtain the 𝑞-Gaussian algebras of Bożejko and Speicher 

and we will denote them, following the tradition, by Γ𝑞(Hℝ) (cf. [60], Definition 2.1).  

There is a distinguished vector Ω in ℱ𝑞(H), called the vacuum vector, which is equal 

to 1 ∈ ℂ ≃ H𝑞
⊗0 ⊂ ℱ𝑞(H). It is not hard to see that Ω is cyclic and separating for Γ𝑞(H). In 

fact, one can verify that the algebraic direct sum ⨁𝑛⩾0  Hℂ
⊙𝑛

 is contained in Γ𝑞(H)Ω. Using 

the generator 𝐴, one can explicitly identify a big enough subset of the commutant Γ𝑞(H)
′ 

for which Ω is cyclic (cf. [15], Lemma 3.1), so Ω is also separating for Γ𝑞(H). It follows that 

the normal state 𝜒(⋅) = ⟨Ω ∣⋅ Ω⟩ is faithful on Γ𝑞(H) (called the 𝑞-quasi-free state) and 

ℱ𝑞(H) can be identified with the GNS Hilbert space associated with 𝜒. What is more, the 

commutant can be identified with the version of our algebra acting on the right, but in this 

case not only one has to use right versions of 𝑠𝑞(𝜉) but also the real Hilbert space that one 

draws the vectors from needs to be changed. We record here for later use the so-called Wick 

formula, which describes the joint moments of the generators {𝑠𝑞(𝜉)}𝜉∈Hℝ
 with respect to 

𝜒. Theorem 2.7 ([123], [130]). For any 𝑑 ∈ ℕ and any 𝑒1, … , 𝑒𝑑 ∈ Hℝ, we have 

𝜒 (𝑠𝑞(𝑒1)𝑠𝑞(𝑒2)… 𝑠𝑞(𝑒𝑑)) = ∑  

𝜎∈𝒫2(𝑑)

𝑞𝜄(𝜎) ∏  

(𝑟,𝑡)∈𝜎

⟨𝑒𝑟 ∣ 𝑒𝑡⟩𝑈, 
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where 𝜄(𝜎) denotes the number of crossings in the pairing 𝜎 ∈ 𝒫2(𝑑), and (𝑟, 𝑡) ∈ 𝜎 

indicates that 1 ⩽ 𝑟 < 𝑡 ⩽ 𝑑 are paired together by 𝜎. If 𝑑 is odd, we interpret the above 

(empty) sum as 0 . 

Since ⊕𝑛⩾0 Hℂ
⊙𝑛 ⊂ Γ𝑞(H)Ω ⊂ ℱ𝑞(H), we are allowed to make the following 

definition. 

Definition (6.3.5)[256]: Let 𝜉 ∈⊕𝑛⩾0 Hℂ
⊙𝑛. Then there is exactly one operator 𝑊(𝜉) ∈

Γ𝑞(H), called the Wick word associated with 𝜉, such that 𝑊(𝜉)Ω = 𝜉. 

This definition will help us in constructing maps on Γ𝑞(H) from operators on H. Let us first 

recall a version of this construction on the level of the 𝑞-Fock space (cf. [60], Lemma 1.4). 

Definition (6.3.6)[256]: Let 𝑇: K → H be a contraction between complex Hilbert spaces. 

Then the assignment 

ℱ𝑞(𝑇)(𝑒1⊙⋯⊙ 𝑒𝑛) = 𝑇𝑒1⊙⋯⊙𝑇𝑒𝑛 

extends to a contraction ℱ𝑞(𝑇): ℱ𝑞( K) → ℱ𝑞(H), called the first quantisation of 𝑇. 

On the level of the von Neumann algebra Γ𝑞(H) it is tempting to extend the 

assignment 

𝑊(𝑒1⊗⋯⊗ 𝑒𝑛) ↦ 𝑊(𝑇𝑒1⊗⋯⊗𝑇𝑒𝑛) 
to a nice map on Γ𝑞(H). It turns out that under a mild additional assumption on 𝑇 the 

extension exists and is a normal, unital, completely positive map. The next proposition is an 

extension of Theorem 2.11 from [60], which is an analogous result for 𝑞-Gaussian algebras. 

Proposition (6.3.7)[256]: ([240], Theorem 3.4). Let (Kℝ, (𝑉𝑡)𝑡∈ℝ) and (Hℝ, (𝑈𝑡)𝑡∈ℝ) be 

real Hilbert spaces equipped with respective one-parameter orthogonal groups. Construct 

out of them complex Hilbert spaces K and H. Suppose that 𝑇: K → H is a contraction such 

that 𝑇( Kℝ) ⊂ Hℝ (a condition written more succinctly in the form 𝐼𝑇 𝐽 = 𝑇, where 𝐽 and 𝐼 
are complex conjugations on Kℂ and Hℂ, respectively). Then the assignment 𝑊(𝑒1⊗⋯⊗
𝑒𝑛) ↦ 𝑊(Te1⊗⋯⊗Te𝑛) extends to a normal ucp map Γ𝑞(𝑇): Γ𝑞( K) → Γ𝑞(H) that 

preserves the vacuum state. The maps Γ𝑞(𝑇) is called the second quantisation of 𝑇. 

To fulfill the purpose, that is to prove the w*-complete metric approximation property 

for the 𝑞-Araki-Woods algebras, we need to expand our knowledge of the Wick words. Let 

us start with the celebrated Wick formula. The proof of the following result can be found in 

[60] in the tracial case. The general case follows along the same lines. See also [190]. 

Proposition (6.3.8)[256]: (Wick formula). Suppose that 𝑒1, … , 𝑒𝑛 ∈ Hℂ. Then  

  𝑊(𝑒1⊙⋯⊙ 𝑒𝑛) 

=∑  

𝑛

𝑘=0

∑  

𝑖1,…,𝑖𝑛−𝑘,𝑗𝑛−𝑘+1,…,𝑗𝑛

𝑎𝑞
∗(𝑒𝑖1)…𝑎𝑞

∗(𝑒𝑖𝑛−𝑘)𝑎𝑞(𝐼𝑒𝑗𝑛−𝑘+1)…𝑎𝑞(𝐼𝑒𝑗𝑛)𝑞
𝑖(𝐼1 ,𝐼2), (4) 

where 𝐼1 = {𝑖1 < ⋯ < 𝑖𝑛−𝑘} and 𝐼2 = {𝑗𝑛−𝑘+1 < ⋯ < 𝑗𝑛} form a partition of the set [𝑛] 

and 𝑖(𝐼1, 𝐼2) = ∑𝑙=1
𝑛−𝑘  (𝑖𝑙 − 𝑙) is the number of inversion of the permutation defined by 𝐼1 and 

𝐼2. In particular, we have 𝑊(𝑒) = 𝑠𝑞(𝑒) for any 𝑒 ∈ Hℝ. 

We will be concerned with the subspaces Γ𝑞
𝑛(H) of Γ𝑞(H) spanned by the sets {𝑊(𝜉): 

𝜉 ∈ Hℂ
⊙𝑛}; elements of these subspaces will be called Wick words of length 𝑛. We will also 

denote by Γ̃𝑞(H) ⊆ Γ𝑞(H) the (non-closed) linear span of (Γ𝑞
𝑛(H))

𝑛∈ℕ0
. Note that Γ̃𝑞(H) is 

a w∗-dense *-subalgebra of Γ𝑞(H), called the algebra of Wick words. Note that if 𝜉 = 𝑒1⊙

⋯⊙ 𝑒𝑛, where 𝑒1, … , 𝑒𝑛 ∈ Hℝ then 𝑊(𝜉) − 𝑠𝑞(𝑒1)… 𝑠𝑞(𝑒𝑛) is a sum of Wick words of 

length strictly smaller than 𝑛, so inductively one can show that Γ̃𝑞(H) is the same as the *-
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algebra generated by {𝑠𝑞(𝜉): 𝜉 ∈ Hℝ}. Let now (𝑒𝑖)𝑖∈𝐼 be a fixed orthonormal basis for Hℝ. 

Then the algebra of Wick words Γ̃𝑞(H) is *-isomorphic to the *-algebra of noncommutative 

polynomials ℂ⟨(𝑋𝑖)𝑖∈𝐼 ∣ 𝑋𝑖 = 𝑋𝑖
∗⟩. The isomorphism in this case is given by 𝑋𝑖 ↦ 𝑠𝑞(𝑒𝑖) =

𝑊(𝑒𝑖). See [130] for details. At times we will also need to consider the C∗-completion 

𝒜𝑞(H) of Γ̃𝑞(H). The most important part of the proof of the main theorem is providing an 

estimate (which must grow at most polynomially in 𝑛) for the cb norm of the projection 

from Γ̃𝑞(H) onto Γ𝑞
𝑛(H). Therefore we need to understand the operator space structure of 

these spaces. This will be acccomplished by reformulating the Wick formula so that it is 

more amenable to operator space theoretic techniques, following Nou's lead (cf. [113]). We 

first define some relevant maps. 

Definition (6.3.9)[256]: Let H be a complex Hilbert space coming from a pair 

(Hℝ, (𝑈𝑡)𝑡∈ℝ). We define maps ℐ, 𝑈 and 𝑆 on the algebraic direct sum ⊕𝑛⩾0 Hℂ
⊙𝑛

 by 

1. ℐ(𝑒1⊙⋯⊙ 𝑒𝑛): = 𝐼𝑒1⊙⋯⊙ 𝐼𝑒𝑛; 

2. 𝑈(𝑒1⊙⋯⊙ 𝑒𝑛) = 𝑒𝑛⊙⋯⊙ 𝑒1; 

3. 𝑆 = ℐ𝑈. 

The antilinear map ℐ is a natural extension of the complex conjugation on Hℂ, thereby it 

should be really viewed as a closed linear operator from ℱ𝑞(H) to ℱ𝑞(H̅) mapping 𝑒1⊗

⋯⊗ 𝑒𝑛 to 𝐼𝑒1̅̅ ̅̅ ⊗⋯⊗ 𝐼𝑒𝑛̅̅ ̅̅ . The flip map 𝑈 actually extends to a unitary on ℱ𝑞(H). The last 

map, 𝑆, is a conjugation relevant to the Tomita-Takesaki theory. For future reference, let us 

point out that the modular automorphism group (𝜎𝑡)𝑡∈ℝ associated to the 𝑞-quasi-free state 

𝜒 was computed in [15], [123], and is given by 

𝜎𝑡(𝑠𝑞(𝜉)) = 𝑠𝑞(𝑈−𝑡𝜉) = 𝑠𝑞(𝐴
−𝑖𝑡𝜉) (𝜉 ∈ Hℂ). 

We still need two more maps for our reformulation of the Wick formula. 

Definition (6.3.10)[256]: Fix 𝑘 ∈ ℕ0 and 𝑛 ∈ ℕ such that 0 ⩽ 𝑘 ⩽ 𝑛. We define the map 

𝑅𝑛,𝑘
∗ : H𝑞

⊗𝑛 → H𝑞
⊗(𝑛−𝑘)

⊗ℎ H𝑞
⊗𝑘

 by specifying its values on a dense subspace: 

 𝑅𝑛,𝑘
∗ (𝑒1⊙⋯⊙ 𝑒𝑛) 

≔ ∑  

𝑖1,…,𝑖𝑛−𝑘,𝑗𝑛−𝑘+1,…,𝑗𝑛

𝑞𝑖(𝐼1,𝐼2)(𝑒𝑖1⊙⋯⊙ 𝑒𝑖𝑛−𝑘) ⊗ℎ (𝑒𝑗𝑛−𝑘+1⊙⋯⊙ 𝑒𝑗𝑛). 

We also define 𝑈𝑛,𝑘: (H𝑞
⊗(𝑛−𝑘)

)
𝑐
⊗ℎ (H̅𝑞

⊗𝑘)
𝑟
→ B(ℱ𝑞(H)) by 

𝑈𝑛,𝑘((𝑒1⊙⋯⊙ 𝑒𝑛−𝑘) ⊗ℎ (𝑒𝑛−𝑘+1̅̅ ̅̅ ̅̅ ̅̅ ̅ ⊙ ⋯⊙ 𝑒𝑛̅̅ ̅)):

= 𝑎𝑞
∗ (𝑒1)…𝑎𝑞

∗ (𝑒𝑛−𝑘)𝑎𝑞(𝑒𝑛−𝑘+1)…𝑎𝑞(𝑒𝑛). 
We are now ready to state the reformulated Wick formula and the corresponding 

Khintchine inequality. 

Proposition (6.3.11)[256]: For any 𝜉 ∈ Hℂ
⊙𝑛

 we have 𝑊(𝜉) = ∑𝑘=0
𝑛  𝑈𝑛,𝑘(𝟙𝑛−𝑘⊙

ℐ)𝑅𝑛,𝑘
∗ (𝜉), where 𝟙𝑛−𝑘 is the identity map on Hℂ

⊙(𝑛−𝑘)
. 

Corollary (6.3.12)[256]: ([113], Theorem 3). Let K be a Hilbert space. If 𝜉 ∈ B(K)⊙ Hℂ
⊙𝑛

 

then 

max0⩽𝑘⩽𝑛  ∥∥(Id⊙ (𝟙𝑛−𝑘⊙ ℐ)𝑅𝑛,𝑘
∗ )(𝜉)∥∥ ⩽∥ (Id⊙𝑊)(𝜉) ∥           (5) 

∥ (Id⊙𝑊)(𝜉) ∥⩽ 𝐶(𝑞)(𝑛 + 1)max0⩽𝑘⩽𝑛  ∥∥(Id⊙ (𝟙𝑛−𝑘⊙ ℐ)𝑅𝑛,𝑘
∗ )(𝜉)∥∥. (6) 

The norm ∥ (Id⊙𝑊)(𝜉) ∥ is computed in B(K)⊗min Γ𝑞(H), and the other norms are 

computed in B(K)⊗min (H𝑞
⊗(𝑛−𝑘)

)
𝑐
⊗ℎ (H̅𝑞

⊗𝑘)
𝑟
. 
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Proof. Inequality (4) follows from the Wick formula, complete boundedness of 𝑈𝑛,𝑘 and the 

triangle inequality, as in the proof of Theorem 1 in [113]. The proof of (3) is also a repetition 

of the argument in Nou's. 

We will be primarily interested in a special class of completely bounded linear maps 

on 𝑞-Araki-Woods algebras, called radial multipliers. In the following, we fix an arbitrary 

𝑞-Araki-Woods algebra Γ𝑞(H). 

Definition (6.3.13)[256]: Let 𝜑:ℕ0 → ℂ be a bounded function. The (w∗-densely defined) 

linear map m𝜑: Γ̃𝑞(H) → Γ̃𝑞(H) given by 

m𝜑(𝑊(𝜉)) − 𝜑(𝑚)𝑊(𝜉) (𝜉 ∈ (Hℂ)
⊙𝑚) 

is called the radial multiplier with symbol 𝜑. If 𝑚𝜑 extends to a completely bounded map 

m𝜑:𝒜𝑞(H) → 𝒜𝑞(H), we call m𝜑 a completely bounded radial multiplier on Γ𝑞(H). 

In the course of the proof of the complete metric approximation property for 𝑞-

ArakiWoods algebras we will need the following result obtained by the first-named author. 

Theorem (6.3.14)[256]: ([223], Proposition 3.3 and the remark following it). Let Hℝ be a 

real Hilbert space and let Γ𝑞(Hℝ) be the 𝑞-Gaussian algebra associated with it. Fix 𝑛 ∈ ℕ 

and and consider the radial multiplier m𝜑 associated to the Kronecker delta symbol 𝜑𝑛(𝑘) =

𝛿𝑛(𝑘) = 𝛿𝑛,𝑘. Then m𝜑 is a cb radial multiplier and corresponds to the projection 𝑃𝑛 of 

Γ𝑞(Hℝ) onto the ultraweakly closed span of {𝑊(𝜉): 𝜉 ∈ H⊙𝑛}. Moreover, we have 

∥∥m𝜑𝑛∥∥𝑐𝑏
⩽ 𝐶(𝑞)2(𝑛 + 1)2. 

We will mostly follow [247]. Ultraproducts of von Neumann algebras are very useful, 

e.g. in the study of central sequences in connection with property Γ. The original 

construction was applicable only in the case of tracial algebras. The main difference in the 

type III case is that there are two different notions of ultraproducts, each havings its own 

virtues. 

We start with a definition due to Ocneanu [254], which is closer to the ultraproduct 

of tracial von Neumann algebras. We fix a sequence (M𝑛, 𝜑𝑛)𝑛∈ℕ of von Neumann algebras 

equipped with normal faithful states, and a non-principal ultrafilter 𝜔 on ℕ. Recall that if all 

the states were tracial, the ultraproduct would be defined as the direct product 

ℓ∞(ℕ,𝐌𝑛):= {(𝑥𝑛) ∈∏  

𝑛∈ℕ

 𝐌𝑛: sup
𝑛∈ℕ

 ∥∥𝑥𝑛∥∥ < ∞} 

quotiented by the ideal of 𝐿2-null sequences, i.e. sequences (𝑥𝑛) ∈ ℓ
∞(ℕ,𝐌𝑛) such that 

lim𝑛→𝜔  𝜑𝑛(𝑥𝑛
∗𝑥𝑛) = 0. The problem in the non-tracial case is that this subspace is just a left 

ideal and there is no reason why we should prefer lim𝑛→𝜔  𝜑𝑛(𝑥𝑛
∗𝑥𝑛) to lim𝑛→𝜔  𝜑(𝑥𝑛𝑥𝑛

∗). 

This little nuisance can be taken care of by defining ∥ 𝑥 ∥𝜑
# : = (𝜑(𝑥∗𝑥 + 𝑥𝑥∗))

1

2 and 

working with the condition lim𝑛→𝜔  ∥∥𝑥𝑛∥∥𝜑𝑛
# = 0 instead. This, unfortunately, gives rise to 

another problem −the subspace 

I𝜔(M𝑛, 𝜑𝑛):= {(𝑥𝑛) ∈ ℓ
∞(ℕ,M𝑛): lim

𝑛→𝜔
 ∥∥𝑥𝑛∥∥𝜑𝑛

# = 0} 

is still not an ideal. We need to find the largest subalgebra inside ℓ∞(ℕ,M𝑛) in which 

I𝜔(M𝑛, 𝜑𝑛) is an ideal. This leads us to the next definition. 

Definition (6.3.15)[256]: Let (M𝑛, 𝜑𝑛) be a sequence of von Neumann algebras equipped 

with normal faithful states. Define 

ℳ𝜔(M𝑛, 𝜑𝑛): = {(𝑥𝑛)𝑛∈ℕ ∈ ℓ
∞(ℕ,M𝑛): (𝑥𝑛)l𝜔 ⊂ I𝜔, I𝜔(𝑥𝑛) ⊂ I𝜔}. 
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Then ℳ𝜔(M𝑛, 𝜑𝑛) is a 𝐶∗-algebra in which I𝜔(M𝑛, 𝜑𝑛) is a closed ideal. Therefore we can 

form the quotient 

(M𝑛, 𝜑𝑛)
𝜔: = ℳ𝜔(M𝑛, 𝜑𝑛)/I𝜔(M𝑛, 𝜑𝑛) 

which is, a priori, a 𝐶∗-algebra but actually turns out to be a von Neumann algebra (cf. [254], 

Proposition on page 32), called the Ocneanu ultraproduct of the sequence (M𝑛, 𝜑𝑛)𝑛∈ℕ.   
The image of a sequence (𝑥𝑛)𝑛∈ℕ ∈ ℳ

𝜔(M𝑛, 𝜑𝑛) in the quotient algebra (M𝑛, 𝜑𝑛)
𝜔 will 

be denoted by (𝑥𝑛)
𝜔. 

Despite being a natural generalisation of the tracial ultraproduct, the Ocneanu 

ultraproduct suffers from being inadequate for the purpose of non-commutative integration. 

One particular problem is that the Banach space ultraproduct of preduals is usually bigger 

than the predual of the Ocneanu ultraproduct. 

There is a different construction that, as shown in [136], interacts nicely with 

ultraproducts of non-commutative 𝐿𝑝-spaces. Once again, we start from a sequence 

(M𝑛, 𝜑𝑛)𝑛∈ℕ of von Neumann algebras endowed with normal faithful states. Using the GNS 

construction, we view M𝑛 ⊂ B(H𝑛). Let (M𝑛)𝜔 denote the Banach space ultraproduct of 

the sequence (M𝑛)𝑛∈ℕ, which is a 𝐶∗-algebra. Let (H𝑛)𝜔 be the ultraproduct of the 

corresponding GNS Hilbert spaces. Then we can view (M𝑛)𝜔 as acting on (H𝑛)𝜔 via 

(𝑥𝑛)𝜔(𝜉𝑛)𝜔: = (𝑥𝑛𝜉𝑛)𝜔.                                    (7) 
It is not hard to see that this is well defined (by the joint continuity of the map B(H) × H ∋ 

(𝑥, 𝜉) ↦ 𝑥𝜉 ∈ H). 
Definition (6.3.16)[256]: Let (M𝑛, 𝜑𝑛)𝑛∈ℕ be a sequence of von Neumann algebras 

equipped with normal faithful states, represented faithfully on the GNS Hilbert spaces, i.e. 

M𝑛 ⊂ B(H𝑛). The Raynaud ultraproduct is defined as the weak closure inside B((𝐻𝑛)𝜔) of 

the image of the natural diagonal representation (5) of the 𝐶∗-ultraproduct (M𝑛)𝜔 on (H𝑛)𝜔; 
it is denoted by ∏𝜔  (M𝑛, 𝜑𝑛). 

There is a nice relationship between the two constructions which is summarised in 

the following theorem. 

Theorem (6.3.17)[256]: ([247], Theorem 3.7). Let (M𝑛, 𝜑𝑛)𝑛∈ℕ be a sequence of von 

Neumann algebras equipped with normal faithful states. Let H𝑛: = 𝐿
2(M𝑛, 𝜑𝑛) be the GNS-

Hilbert space associated with the state 𝜑𝑛 on M𝑛, so we have ∏𝜔  (M𝑛, 𝜑𝑛) ⊂ B((H𝑛)𝜔). 
Let M𝜔: = (M𝑛, 𝜑𝑛)

𝜔 and 𝜑𝜔: = (𝜑𝑛)
𝜔. Define 𝑎 map 𝑤: 𝐿2(M𝜔, 𝜑𝜔) ↪ (H𝑛)𝜔 from the 

GNS-Hilbert space of (M𝜔, 𝜑𝜔) given by 

𝑤 ((𝑥𝑛)
𝜔(𝜉𝜑𝜔)) : = (𝑥𝑛𝜉𝜑𝑛)𝜔

, 

where 𝜉 (with an appropriate subscript) is the cyclic vector coming from the GNS 

construction. Then 𝑤 is an isometry and 𝑤∗(∏𝜔  (M𝑛, 𝜑𝑛))𝑤 = M
𝜔. 

We would now like to describe a useful theorem from [130] concerning embeddings 

into ultraproducts. 

Theorem (6.3.18)[256]: ([130], Theorem 4.3). Let (N,𝜓) and (M𝑛, 𝜑𝑛)𝑛∈ℕ be von 

Neumann algebras equipped with normal faithful states. Let 𝜔 be a non-principal ultrafilter 

on ℕ and let ∏𝜔  (M𝑛, 𝜑𝑛) be the Raynaud ultraproduct. Let (𝜎𝑡
𝑛)𝑡∈ℝ denote the modular 

group of 𝜑𝑛. Let 𝑝 ∈ ∏𝜔  (M𝑛, 𝜑𝑛) denote the support of the ultraproduct state (𝜑𝑛)𝜔. 
Suppose that Ñ ⊂ N is a weak*-dense *-subalgebra of N and we are given a *-

homomorphism 

Φ: �̃� →∏ 

𝜔

(M𝑛, 𝜑𝑛). 
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Assume that Φ satisfies the following conditions: 

1. It is state preserving, i.e. (𝜑𝑛)𝜔(Φ(𝑥)) = 𝜓(𝑥) for any 𝑥 ∈ Ñ 

2. For any 𝑥 ∈ Φ(Ñ) there is a representative (𝑥𝑛)𝑛∈ℕ ∈ ℓ
∞(ℕ,M𝑛) such that 𝑥𝑛 is 

analytic for (𝜎𝑡
𝑛)𝑡∈ℝ and the sequence (𝜎−𝑖

𝑛 (𝑥𝑛))𝑛∈ℕ is bounded (cf. [130], Lemma 

4.1). 

3. For all 𝑡 ∈ ℝ and for all 𝑦 = (𝑦𝑛)𝜔 ∈ Φ(�̃�), irrespective of the choice of the 

representative (𝑦𝑛)𝑛∈ℕ ∈ ℓ
∞(ℕ,𝐌𝑛), we have 

𝑝(𝜎𝑡
𝑛(𝑦𝑛))𝜔𝑝 ∈ 𝑝 B𝑝, 

where B is the 𝑤∗-closure of Φ(Ñ). 

Then the map Θ:= 𝑝Φ𝑝: �̃� → 𝑝(∏𝜔  (M𝑛, 𝜑𝑛))𝑝 is a state-preserving *-

homomorphism that can be extended to a normal *-isomorphism from N onto  B𝑝. 

Moreover, there exists a normal, state-preserving conditional expectation from ∏𝜔  (M𝑛, 𝜑𝑛) 
onto Θ(N). 

We end with a simple remark strengthening the connection between Theorem (6.3.18) 

and the Ocneanu ultraproduct. Suppose that (𝑥𝑛)𝑛∈ℕ ∈ ℓ
∞(ℕ,M𝑛) is a representative of an 

element 𝑥 ∈ (M𝑛)𝜔 such that the sequence (𝜎−𝑖
𝑛 (𝑥𝑛))𝑛∈ℕ is bounded. Then the sequence 

(𝑥𝑛)𝑛∈ℕ belongs to ℳ𝜔(M𝑛, 𝜑𝑛), so it defines an element of the Ocneanu ultraproduct. 

Indeed, suppose that (𝑦𝑛) ∈ I𝜔(M𝑛, 𝜑𝑛). We would like to check that lim𝑛→𝜔  ∥∥𝑥𝑛𝑦𝑛∥∥𝜑𝑛
# =

0. It boils down to checking that lim𝑛→𝜔  𝜑𝑛(𝑦𝑛
∗𝑥𝑛
∗𝑥𝑛𝑦𝑛) = 0 and lim𝑛→𝜔  𝜑𝑛(𝑥𝑛𝑦𝑛𝑦𝑛

∗𝑥𝑛
∗) =

0. The first equality is easy to verify because 𝑦𝑛
∗𝑥𝑛
∗𝑥𝑛𝑦𝑛 ⩽ ∥∥𝑥𝑛∥∥

2𝑦𝑛
∗𝑦𝑛 and the sequence 

(𝑥𝑛)𝑛∈ℕ is bounded. For the second one we will use the KMS condition: 

𝜑𝑛(𝑥𝑛𝑦𝑛𝑦𝑛
∗𝑥𝑛
∗) = 𝜑𝑛(𝑦𝑛𝑦𝑛

∗𝑥𝑛
∗𝜎−𝑖

𝑛 (𝑥𝑛)). 

Note that 𝑧𝑛: = 𝑥𝑛
∗𝜎−𝑖

𝑛 (𝑥𝑛) is a bounded sequence. If we denote 𝑢𝑛 = √𝑦𝑛𝑦𝑛
∗ then we have 

to bound 𝜑(𝑢𝑛
2𝑦𝑛). By the Cauchy-Schwarz inequality we get 

∣ 𝜑𝑛(𝑢𝑛(𝑢𝑛𝑧𝑛)) ⩽ 𝜑𝑛(𝑢𝑛
2)𝜑𝑛(𝑧𝑛

∗𝑢𝑛
2𝑧𝑛). 

By assumption we have lim𝑛→𝜔  𝜑𝑛(𝑢𝑛
2) = lim𝑛→𝜔  𝜑𝑛(𝑦𝑛𝑦𝑛

∗) = 0. The second term can be 

bounded above by the norm ∥∥𝑧𝑛
∗𝑢𝑛
2𝑧𝑛∥∥ that is bounded, so the product converges to zero. 

We prove a result which shows that an arbitary 𝑞-Araki-Woods algebra embeds in a 

state preserving way into an ultraproduct of tensor products of 𝑞-Gaussian algebras and 𝑞-

Araki-Woods algebras. This result will be key to our establishment of a transference 

principle for completely bounded radial multipliers in the following.  

Let Γ𝑞(H) be a fixed 𝑞-Araki-Woods algebra for some 𝑞 ∈ (−1,1), and write 𝑞 =

𝑞0𝑞1 for some |𝑞| < 𝑞0 < 1. For any 𝑚 ∈ ℕ, we let Γ𝑞0(ℝ
𝑚) be a 𝑞-Gaussian algebra and 

Γ𝑞1(H⊗ ℂ𝑚) be a 𝑞-Araki-Woods algebra, where the inner product on H⊗ ℂ𝑚 is the 

tensor product of the given deformed inner product on H and the nondeformed one on ℂ𝑚. 

In other words, if (𝑈𝑡)𝑡 ↷ Hℝ is the orthogonal group associated to Γ𝑞(H), then 

(𝑈𝑡⊗1)𝑡 ↷ Hℝ⊗ℝ𝑚 is the orthogonal group associated to Γ𝑞1(H⊗ ℂ𝑚). Denote by 

𝜒, 𝜒0,𝑚 and 𝜒1,𝑚 the 𝑞-quasi-free states on Γ𝑞(H), Γ𝑞0(ℝ
𝑚) and Γ𝑞1(H⊗ ℂ𝑚), respectively. 

For each 𝑚, fix an orthonormal basis (𝑒1, … , 𝑒𝑚) of ℝ𝑚 and define 

𝑢𝑚(𝜉):=
1

√𝑚
∑  

𝑚

𝑘=1

𝑊(𝑒𝑘) ⊗𝑊(𝜉 ⊙ 𝑒𝑘) ∈ Γ𝑞0(ℝ
𝑚)⊗‾ Γ𝑞1(H⊗ ℂ𝑚) (𝜉 ∈ Hℂ). 
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Finally, we fix a non-principal ultrafilter 𝜔 on ℕ, form the corresponding (Raynaud) 

ultraproduct 

A =∏ 

𝜔

(Γ𝑞0(ℝ
𝑚) ⊗‾ Γ𝑞1(H⊗ ℂ𝑚), 𝜒0,𝑚⊗𝜒1,𝑚), 

and let 𝑝 ∈ A be the support of the ultraproduct state (𝜒0,𝑚⊗𝜒1,𝑚)𝜔. 

With the above notation fixed, we can now state our embedding result. 

Theorem (6.3.19)[256]:  (a) The mapping 𝑊(𝜉) ↦ (𝑢𝑚(𝜉))𝜔 ∈ A (𝜉 ∈ Hℂ) extends 

uniquely to a state-preserving *-homomorphism 𝜋𝜔: (Γ̃𝑞(H), 𝜒) → (A, (𝜒0,𝑚⊗𝜒1,𝑚)𝜔. 

(b) The map Θ:= 𝑝𝜋𝜔(⋅)𝑝: Γ̃𝑞(H) → 𝑝 A𝑝 extends to a normal state-preserving *- 

isomorphism 

Θ: Γ𝑞(H) → Θ(Γ𝑞(H)) ⊆ 𝑝 A𝑝. 

Moreover, Θ(Γ𝑞(H)) is the range of a normal state-preserving conditional expectation 

𝐸: A → Θ(Γ𝑞(H)). 

Proof. (a). Recall that the algebra of Wick words is *-isomorphic to the *-algebra of 

noncommutative polynomials, so any *-homomorphism 𝜋𝜔: Γ̃𝑞(H) → A is uniquely 

determined by specifying the images (𝜋𝜔(𝑊(𝑒𝑖)))
𝑖∈𝐼
⊂ A. Thus to conclude that the 

claimed 𝜋𝜔 exists and is well-defined, we just need to check that each sequence 

(𝑢𝑚(𝜉))𝑚∈ℕ(𝜉 ∈ Hℂ) is normbounded and hence defines an element (𝑢𝑚(𝜉))𝜔 ∈ A. To 

this end, we apply (the 𝑛 = 1 version of) Corollary (6.3.12) with coefficients 𝑊(𝜉 ⊙ 𝑒𝑘) ∈

B(K) = B(ℱ𝑞1(H⊗ ℂ𝑚)) (see also [113], Page 17) to conclude that 

    ∥∥𝑢𝑚(𝜉)∥∥ ⩽ 2(1 − 𝑞0)
−1
2 𝑚

−1
2  

max{
∥
∥
∥
∥
∑  

𝑚

𝑘=1

 𝑊(𝜉 ⊙ 𝑒𝑘)
∗𝑊(𝜉 ⊙ 𝑒𝑘)

∥
∥
∥
∥
1
2

,
∥
∥
∥
∥
∑  

𝑚

𝑘=1

 𝑊(𝜉 ⊙ 𝑒𝑘)𝑊(𝜉 ⊙ 𝑒𝑘)
∗

∥
∥
∥
∥
1
2

} 

                ⩽ 2(1 − 𝑞0)
−1
2 ∥∥𝑊(𝜉 ⊙ 𝑒1)∥∥. 

Finally we check that 𝜋𝜔 is state-preserving. By linearity, it suffices to show that for any 

𝑑 ∈ ℕ and 𝜉1, … , 𝜉𝑑 ∈ Hℝ, we have 

lim
𝑚→∞

 (𝜒0,𝑚⊗𝜒1,𝑚)(𝑢𝑚(𝜉1) ⋅ … ⋅ 𝑢𝑚(𝜉𝑑)) = 𝜒(𝑊(𝜉1) ⋅ … ⋅ 𝑊(𝜉𝑑)). 

Fixing 𝑚 and considering the terms on the left-hand side above, we have 

(𝜒0,𝑚⊗𝜒1,𝑚)(𝑢𝑚(𝜉1) ⋅ … ⋅ 𝑢𝑚(𝜉𝑑)) 

             = 𝑚−𝑑/2 ∑  

𝑘:[𝑑]→[𝑚]

 𝜒0,𝑚 (𝑊(𝑒𝑘(1)) ⋅ … ⋅ 𝑊(𝑒𝑘(𝑑))) 

                                                𝜒1,𝑚 (𝑊(𝜉1⊙𝑒𝑘(1)) ⋅ … ⋅ 𝑊(𝜉𝑑⊙𝑒𝑘(𝑑))) 

              = 𝑚−𝑑/2 ∑  

𝑘:[𝑑]→[𝑚]

 

(

 
 

∑  
𝜎∈𝒫2(𝑑)
𝑘𝑒𝑟𝑘⩾𝜎

𝑞0
𝜄(𝜎)

)
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                                               ( ∑  

𝜎′∈𝒫2(𝑑)

 𝑞1
𝜄(𝜎′)

∏ ⟨𝜉𝑟⊙𝑒𝑘(𝑟) ∣ 𝜉𝑡⊙𝑒𝑘(𝑡)⟩𝑈
(𝑟,𝑡)∈𝜎′

 ) 

= 𝑚−𝑑/2 ∑  

𝑘:[𝑑]→[𝑚]

 

(

 
 

∑  
𝜎∈𝒫2(𝑑)
𝑘𝑒𝑟𝑘⩾𝜎

 𝑞0
𝜄(𝜎)

)

 
 

(

 
 

∑  

𝜎′∈𝒫2(𝑑)

𝑘𝑒𝑟𝑘⩾𝜎′

 𝑞1
ℓ(𝜎′)

∏ ⟨𝜉𝑟 ∣ 𝜉𝑡⟩𝑈
(𝑟,𝑡)∈𝜎′

 

)

 
 

 

              = ∑  

𝜎,𝜎′∈𝒫2(𝑑)

 𝑞0
𝜄(𝜎)
𝑞1
ℓ(𝜎′)

∏ ⟨𝜉𝑟 ∣ 𝜉𝑡⟩𝑈 ∑  

𝑘:[𝑑]→[𝑚]

𝑘∈𝑟𝑘⩾𝜎,ker 𝑘⩾𝜎′

 𝑚−𝑑/2

(𝑟,𝑡)∈𝜎′

  

              = ∑  

𝜎,𝜎′∈𝒫2(𝑑)

 𝑞0
𝜄(𝜎)
𝑞1
𝜄(𝜎′)

∏ ⟨𝜉𝑟 ∣ 𝜉𝑡⟩𝑈𝑚
−𝑑/2+|𝜎∨𝜎′|

(𝑟,𝑡)∈𝜎′

 . 

Since 

lim
𝑚→∞

 𝑚−𝑑/2+|𝜎∨𝜎′| = 𝛿𝜎,𝜎′  (𝜎, 𝜎
′ ∈ 𝒫2(𝑑)), 

we conclude that 

lim
𝑚→∞

 (𝜒0,𝑚⊗𝜒1,𝑚)(𝑢𝑚(𝜉1) ⋅ … ⋅ 𝑢𝑚(𝜉𝑑)) = ∑  

𝜎∈𝒫2(𝑑)

𝑞𝜄(𝜎) ∏  

(𝑟,𝑡)∈𝜎

⟨𝜉𝑟 ∣ 𝜉𝑡⟩𝑈 

= 𝜒(𝑊(𝜉1) ⋅ … ⋅ 𝑊(𝜉𝑑)).                
(b). To exhibit the desired properties of Θ:= 𝑝𝜋𝜔(⋅)𝑝, we will verify conditions (i)-

(iii) in Theorem (6.3.18) for the ∗-homomorphism 𝜋𝜔. (i) follows immediately from part (a) 

of the present theorem. For (ii), we note that by linearity and multiplicativity of 𝜋𝜔, it 

suffices to check condition (ii) on the generators 𝜋𝜔(𝑊(𝜉)) = (𝑢𝑚(𝜉))𝜔, (𝜉 ∈ Hℂ). 
However, there is a minor issue here coming from the fact that for arbitrary 𝜉 ∈ Hℂ, there is 

no reason to expect elements 𝑢𝑚(𝜉) ∈ Γ𝑞0(ℝ
𝑚)⊗‾ Γ𝑞1(H⊗ ℂ𝑚) to even be analytic, let 

alone the sequence (𝜎−𝑖(𝑢𝑚(𝜉)))𝑚∈ℕ be uniformly bounded. To overcome this issue, put 

Hℂ
𝑎𝑛 = ⋃𝜆>1  𝟏[𝜆−1,𝜆](𝐴)Hℂ, where 𝟏[𝜆−1,𝜆](𝐴) denotes the spectral projection of the analytic 

generator 𝐴 corresponding to the interval [𝜆−1, 𝜆]. Following [246], we see that Hℂ
𝑎𝑛 ⊂ Hℂ 

is a dense linear subspace such that 𝐼Hℂ
𝑎𝑛 = Hℂ

𝑎𝑛. Moreover, for each 𝜉 ∈ Hℂ
𝑎𝑛, we have that 

𝜉 (respectively 𝑊(𝜉)) is analytic for the action of the unitary group 𝑈𝑡 = 𝐴
𝑖𝑡 (respectively 

the modular automorphism group 𝜎𝑡), and 

𝜎𝑧𝑊(𝜉) = 𝑊(𝐴
−𝑖𝑧𝜉) (𝑧 ∈ ℂ). 

In our present setting, we shall restrict the domain of 𝜋𝜔 to the *-subalgebra Γ̃𝑞(H)𝑎𝑛 ⊂ 

Γ̃𝑞(H), consisting of linear combinations of Wick words of the form 𝑊(𝜉) with 𝜉 ∈

(Hℂ
𝑎𝑛)⊙𝑛, (𝑛 ∈ ℕ0). Since Γ̃𝑞(H)𝑎𝑛 is still w∗-dense in Γ𝑞(H) and is generated by 

(𝑊(𝜉))𝜉∈Hc𝑎𝑛, we just have to show that the equivalence class representative (𝑢𝑚(𝜉))𝑚∈ℕ 

for 𝜋𝜔(𝑊(𝜉)) satisfies condition (ii) of Theorem (6.3.19) for each 𝜉 ∈ Hℂ
𝑎𝑛. To this end, 

note that on Γ𝑞0(ℝ
𝑚)⊗‾ Γ𝑞1(H⊗ ℂ𝑚 ), we have 

𝜎𝑡
𝑚 = idΓ𝑞0(ℝ

𝑚)⊗𝜎𝑡
Γ𝑞1(H⊗ℂ

𝑚)
 & 𝜎𝑡

Γ𝑞1(H⊗ℂ
𝑚)
(𝑊(𝜉 ⊙ 𝑒)) 

= 𝑊(𝐴−𝑖𝑡𝜉 ⊙ 𝑒) (𝜉 ∈ Hℂ, 𝑒 ∈ ℂ
𝑚).                          
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It follows from these identities that if 𝜉 ∈ Hℂ
𝑎𝑛 and 𝑒 ∈ ℂ𝑚, then elements 𝑊(𝜉 ⊙ 𝑒) and 

𝑢𝑚(𝜉) are analytic for their respective modular groups and 

𝜎𝑧
𝑚(𝑢𝑚(𝜉))  = (

1

√𝑚
∑  

𝑚

𝑘=1

 𝑊(𝑒𝑘) ⊗ 𝜎𝑧
Γ𝑞1(𝐻⊗ℂ

𝑚)
𝑊(𝜉 ⊙ 𝑒𝑘))

 =
1

√𝑚
∑  

𝑚

𝑘=1

 𝑊(𝑒𝑘) ⊗𝑊(𝐴−𝑖𝑧𝜉 ⊙ 𝑒𝑘) = 𝑢𝑚(𝐴
−𝑖𝑧𝜉),  (𝑧 ∈ ℂ).

 

The uniform boundedness of the sequence (𝜎−𝑖
𝑚𝑢𝑚(𝜉))𝑚∈ℕ now follows along the same 

lines as that of (𝑢𝑚(𝜉))𝑚∈ℕ : 

sup
𝑚
 ∥∥𝜎−𝑖

𝑚𝑢𝑚(𝜉)∥∥ = sup
𝑚
 ∥∥𝑢𝑚(𝐴

−1𝜉)∥∥ ⩽ 2(1 − 𝑞0)
−1
2 ∥∥𝑊(𝐴−1𝜉 ⊙ 𝑒1)∥∥. 

For (iii), it again suffices by linearity and multiplicativity to verify that for all 𝜋𝜔(𝑊(𝜉)) = 

(𝑢𝑚(𝜉))𝜔, (𝜉 ∈ Hℂ), 

𝑝 ((𝜎𝑡
𝑚(𝑢𝑚(𝜉)))𝜔) 𝑝 ∈ 𝑝 B𝑝, 

where 𝐵 is the 𝑤∗-closure of 𝜋𝜔(Γ̃𝑞(H)) in A. But this last point is obvious, because by the 

previous computation, 𝜎𝑡
𝑚(𝑢𝑚(𝜉)) = 𝑢𝑚(𝐴

−𝑖𝑡𝜉) for all 𝑚, giving 

𝑝 ((𝜎𝑡
𝑚(𝑢𝑚(𝜉)))𝜔)𝑝 = 𝑝 ((𝑢𝑚(𝐴

−𝑖𝑡𝜉))
𝜔
) 𝑝 = 𝑝𝜋𝜔 (𝑊(𝐴

−𝑖𝑡𝜉))𝑝 ∈ 𝑝 B𝑝. 

We use the ultraproduct embedding result (Theorem (6.3.19)) of the previous to 

establish the following transference result for radial multipliers on 𝑞-Araki-Woods algebras.  

The main technical tool in establishing Theorem (6.3.24) is the following 

intertwining-type property for projections onto Wick words of a given length with respect 

to the ultraproduct embedding given by Theorem (6.3.19) 

There are two things that have to be verified in Theorem (6.3.23). The first one, which 

is a routine check, is to prove that (𝑃𝑛⊗ Id)𝜔 (and therefore also the composition 

𝑝(𝑃𝑛⊗ Id)𝜔𝑝) is a well-defined map on the (Raynaud) ultraproduct 𝐴. Using Theorem 

(6.3.14), we can show that (𝑃𝑛⊗ Id)𝜔 is well defined on the 𝐶∗-ultraproduct Ã ⊂ A. To 

conclude, we have to verify that it extends to a normal map on 𝐴. Since we are dealing with 

the Raynaud ultraproduct, the predual of our ultraproduct is equal to the Banach space 

ultraproduct of preduals. On each level we can take the predual map of (𝑃𝑛⊗ Id)𝑚∈ℕ and 

use this sequence to obtain a map Ψ on the ultraproduct of 𝐿1-spaces, the predual of the 

ultraproduct. The dual of Ψ coincides with (𝑃𝑛⊗ Id)𝜔 on the 𝐶∗-ultraproduct, hence it is 

its unique normal extension. A similar argument is presented, for instance, in [190]. 

The second step in proving Theorem (6.3.23) is to understand the images of Wick 

words under the ∗-homomorphism 𝜋𝜔: Γ̃𝑞(H) → A. To accomplish this, for any 𝑑 ∈ ℕ and 

𝜉1, … , 𝜉𝑑 ∈ Hℂ, we define elements 𝑊𝑠(𝜉1⊙⋯⊙ 𝜉𝑑) ∈ A by setting 

𝑊𝑠(𝜉1⊙⋯⊙ 𝜉𝑑). 

≔

(

 
 
𝑚−

𝑑
2 ∑  
𝑘:[𝑑]→[𝑚]

 injective 

 𝑊(𝑒𝑘(1))…𝑊(𝑒𝑘(𝑑)) ⊗𝑊(𝜉1⊙𝑒𝑘(1))…𝑊(𝜉𝑑⊙ 𝑒𝑘(𝑑))

)

 
 

𝜔

 

Because we are summing over distinct indices, the vectors 𝑒𝑘(1), … , 𝑒𝑘(𝑑) are pairwise 

orthogonal, so 𝑊(𝑒𝑘(1))…𝑊(𝑒𝑘(𝑑)) = 𝑊(𝑒𝑘(1)⊙⋯⊙ 𝑒𝑘(𝑑)). One can then use the 
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Khintchine inequality (Corollary (6.3.12)) to prove that the sequence defining 𝑊𝑠(𝜉1⊙
⋯⊙ 𝜉𝑑) is uniformly bounded, hence defines a legitimate element of the ultraproduct. We 

will not give more details here because in the next proposition we show that 

𝜋𝜔(𝑊(𝜉1⊙⋯⊙ 𝜉𝑑)) = 𝑊
𝑠(𝜉1⊙⋯⊙ 𝜉𝑑), so it definitely is an element of the 

ultraproduct. 

Theorem (6.3.20)[256]: Let 𝜉1, … , 𝜉𝑑 ∈ Hℂ. Let 𝜋𝜔 be as in Theorem (6.3.19). Then 

𝜋𝜔(𝑊(𝜉1⊙⋯⊙ 𝜉𝑑)) = 𝑊𝑠(𝜉1⊙⋯⊙ 𝜉𝑑). 
Proof. We proceed by induction on 𝑑 ∈ ℕ0. The base cases 𝑑 = 0,1 are obvious from the 

definitions. Now assume that the claimed formula is true for all lengths 0 ⩽ 𝑑′ ⩽ 𝑑, and 

consider the 𝑑 + 1 case. Fix 𝜉0, 𝜉1, … , 𝜉𝑑 ∈ Hℂ. It then follows from Proposition (6.3.8) that 

the following relation holds. 

𝑊(𝜉0⊙⋯⊙ 𝜉𝑑)
= 𝑊(𝜉0)𝑊(𝜉1⊙⋯⊙ 𝜉𝑑)

−∑  

𝑑

𝑙=1

𝑞𝑙−1⟨𝐼𝜉0 ∣ 𝜉𝑙⟩𝑈𝑊(𝜉1⊙…⊙ 𝜉𝑙⊙…⊙ 𝜉𝑑), 

where, as usual, 𝜉𝑙 means that the tensor factor 𝜉𝑙 is deleted from the simple tensor under 

consideration. Applying 𝜋𝜔 to this relation and using our induction hypothesis, we have  

𝜋𝜔(𝑊(𝜉0⊙…⊙ 𝜉𝑑)) = 𝑊
𝑠(𝜉0)𝑊

𝑠(𝜉1⊙…⊙ 𝜉𝑑) 

−∑ 

𝑑

𝑙=1

 𝑞𝑙−1⟨𝐼𝜉0 ∣ 𝜉𝑙⟩𝑈𝑊
𝑠(𝜉1⊙…⊙ 𝜉𝑙⊙…⊙ 𝜉𝑑). (8) 

Next, we expand the first term on the right-hand side in the above equation: 
𝑊𝑠(𝜉0)𝑊

𝑠(𝜉1⊙⋯⊙ 𝜉𝑑) 

= (𝑚−
1
2 ∑  

m

𝑘(0)=1

 𝑊(𝑒𝑘(0)) ⊗𝑊(𝜉0⊙𝑒𝑘(0)))

𝜔

 

×

(

  
 
𝑚−

𝑑
2 ∑  
𝑘:[𝑑]→[𝑚]

𝑘 injective 

 𝑊(𝑒𝑘(1))…𝑊(𝑒𝑘(𝑑)) ⊗𝑊(𝜉1⊙𝑒𝑘(1))…𝑊(𝜉𝑑⊙ 𝑒𝑘(𝑑))

)

  
 

𝜔

 

=

(

  
 
𝑚−

𝑑+1
2 ∑  

𝑘:[𝑑]0→[𝑚]

𝑘 injective 

 𝑊(𝑒𝑘(0))…𝑊(𝑒𝑘(𝑑)) ⊗𝑊(𝜉0⊙ 𝑒𝑘(0))…𝑊(𝜉𝑑⊙ 𝑒𝑘(𝑑))

)

  
 

𝜔

 

+

(

 
 
 
 

𝑚−
𝑑+1
2 ∑ ∑ ∑ 𝑊(𝑒𝑘(0))…𝑊(𝑒𝑘(𝑑))⊗𝑊(𝜉0⊙𝑒𝑘(0))…𝑊(𝜉𝑑⊙𝑒𝑘(𝑑))

𝑘:[𝑑] →[𝑚]

𝑘 injective 

𝑘(𝑙)=𝑘(0)

𝑑

𝑙=1

𝑚

𝑘(0)=1

)

 
 
 
 

𝜔

 

= 𝑊𝑠(𝜉0⊙𝜉1⊙⋯⊙ 𝜉𝑑) (this is the first term in the preceding sum) 
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+∑ 

𝑑

𝑙=1

(

 
 
 
 

𝑚−
𝑑+1
2 ∑ ∑ 𝑊(𝑒𝑘(0))…𝑊(𝑒𝑘(𝑑))⊗𝑊(𝜉0⊙𝑒𝑘(0))…𝑊(𝜉𝑑⊙𝑒𝑘(𝑑))

𝑘:[𝑑] →[𝑚]

𝑘 injective 

𝑘(𝑙)=𝑘(0)

𝑚

𝑘(0)=1

)

 
 
 
 

𝜔

 

The first term is already a part of what we wanted, but we also have to deal with the second 

term. Note that for 𝑘(0) = 𝑘(𝑙) and 𝑘(1) ≠ ⋯ ≠ 𝑘(𝑑) we have 

   𝑊(𝑒𝑘(0))…𝑊(𝑒𝑘(𝑑)) 

= 𝑊(𝑒𝑘(0)⊙⋯⊙ 𝑒𝑘(𝑑)) + 𝑞0
𝑙−1𝑊(𝑒𝑘(0))…𝑊(𝑒𝑘(𝑙)

̂ )…𝑊(𝑒𝑘(𝑑)) (9) 

 

And 

𝑊(𝜉0⊙𝑒𝑘(0))…𝑊(𝜉𝑑⊙𝑒𝑘(𝑑)))                                                                    (10) 

= 𝑊((𝜉0⊙𝑒𝑘(0)) ⊙⋯⊙ (𝜉𝑑⊙𝑒𝑘(𝑑))) 

+⟨𝐼𝜉0⊙𝑒𝑘(0) ∣ 𝜉𝑙⊙ 𝑒𝑘(𝑙)⟩𝑈
𝑞1
𝑙−1𝑊(𝜉0⊙ 𝑒𝑘(0))…𝑊(𝜉𝑙⊙ 𝑒̂

𝑘(𝑙))…𝑊(𝜉𝑑⊙ 𝑒𝑘(𝑑)) 

= 𝑊((𝜉0⊙𝑒𝑘(0)) ⊙⋯⊙ (𝜉𝑑⊙𝑒𝑘(𝑑))) 

+⟨𝐼𝜉0 ∣ 𝜉𝑙⟩𝑈𝑞1
𝑙−1𝑊(𝜉0⊙𝑒𝑘(0))…𝑊(𝜉𝑙⊙𝑒̂

𝑘(𝑙))…𝑊(𝜉𝑑⊙𝑒𝑘(𝑑)).             

Indeed, if (𝑣1, … , 𝑣𝑛) ⊆ Hℂ is a family of orthogonal vectors then 𝑊(𝑣1)…𝑊(𝑣𝑛) =
𝑊(𝑣1⊙ ⋯⊙ 𝑣𝑛), as we remarked earlier. In our case we have a sequence (𝑤, 𝑣1, … , 𝑣𝑑), 
where 𝐼𝑤 is orthogonal to all vectors 𝑣𝑗 for 𝑗 ≠ 𝑙, so we get 

𝑊(𝑤)𝑊(𝑣1)…𝑊(𝑣𝑑)Ω  = (𝑎∗(𝑤) + 𝑎(𝐼𝑤))𝑣1⊙⋯⊙𝑣𝑑
 = 𝑤 ⊙ 𝑣1⊙⋯⊙𝑣𝑑 + 𝑎(𝐼𝑤)(𝑣1⊙⋯⊙𝑣𝑑)

 = 𝑤⊙ 𝑣1⊙⋯⊙𝑣𝑑 + 𝑞1
𝑙−1⟨𝐼𝑤 ∣ 𝑣𝑙⟩𝑈𝑣1⊙⋯⊙ �̂�𝑙⊙⋯⊙𝑣𝑑 ,

 

hence the formula above. Tensoring 𝑊(𝑒𝑘(0))…𝑊(𝑒𝑘(𝑑)) with 𝑊(𝜉0⊙𝑒𝑘(0))…𝑊(𝜉𝑑⊙

𝑒𝑘(𝑑)) (keeping in mind that 𝑞0𝑞1 = 𝑞 ) gives us four terms, one of which is  

𝑞𝑙−1⟨𝐼𝜉0 ∣ 𝜉𝑙⟩𝑈𝑊(𝑒𝑘(1))…𝑊(𝑒𝑘(𝑙)
̂ )…𝑊(𝑒𝑘(𝑑))

⊗𝑊(𝜉0⊙𝑒𝑘(0))…𝑊(𝜉𝑙⊙𝑒̂
𝑘(𝑙))…𝑊(𝜉𝑑⊙𝑒𝑘(𝑑)) 

and we will deal with the three other terms later. To these expressions we need to apply the 

sum ∑𝑙=1
𝑑  𝑚−

𝑑+1

2 ∑𝑘(0)=1
𝑚  ∑  𝑘:[𝑑] →[𝑚]

𝑘 injective 

𝑘(𝑙)=𝑘(0)

 the condition 𝑘(𝑙) = 𝑘(0) and perform the sum over 

𝑘(0) immediately, resulting in a sum ∑𝑙=1
𝑑  𝑚−

𝑑−1

2 ∑𝑘:[𝑑]∖𝑙}→[𝑚]  . Without the sum over 𝑙, this 

is the sum over 𝑑 − 1 distinct indices appearing in the definition of 𝑊𝑠, so we get the sum 

∑ 

𝑑

𝑙=1

𝑞𝑙−1⟨𝐼𝜉0 ∣ 𝜉𝑙⟩𝑈𝑊
𝑠(𝜉0⊙⋯⊙ 𝜉𝑙⊙⋯⊙ 𝜉𝑑). 

To sum up, we have checked so far that 

𝑊𝑠(𝜉0)𝑊
𝑠(𝜉1⊙⋯⊙ 𝜉𝑑)

= 𝑊𝑠(𝜉0⊙⋯⊙ 𝜉𝑑) +∑  

𝑑

𝑙=1

𝑞𝑙−1⟨𝐼𝜉0 ∣ 𝜉𝑙⟩𝑈𝑊
𝑠(𝜉0⊙⋯⊙ 𝜉𝑙⊙⋯⊙ 𝜉𝑑)

+ 𝑅, 
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where 𝑅 is the "remainder" term that will turn out to be a zero element of the ultraproduct. 

Inserting this into (8) we get that 

𝜋𝜔(𝑊(𝜉1⊙⋯⊙ 𝜉𝑑)) = 𝑊
𝑠(𝜉1⊙⋯⊙ 𝜉𝑑) + 𝑅, 

so if we can check that 𝑅 is really a zero element then this ends the proof. 

Let us just recall that 𝑅 comes from the three neglected so far terms arising from tensoring 

𝑊(𝑒𝑘(0))…𝑊(𝑒𝑘(𝑑)) with 𝑊(𝜉0⊙𝑒𝑘(0))…𝑊(𝜉𝑑⊙𝑒𝑘(𝑑)). It can be written as 

𝑅 = (𝑚−
𝑑+1
2 ∑ 

𝑑

𝑙=1

  (𝑅1,𝑙(𝑚) + ⟨𝐼𝜉0 ∣ 𝜉𝑙⟩𝑞1
𝑙−1𝑅2,𝑙(𝑚) + 𝑞0

𝑙−1𝑅3,𝑙(𝑚)))

𝜔

, 

where 

𝑅1,𝑙(𝑚) = ∑  

𝑚

𝑘(0)=1

  ∑  

𝑘:[𝑑] →[𝑚]

𝑘 injective 

𝑘(𝑙)=𝑘(0)

𝑊(𝑒𝑘(0)⊙…⊙ 𝑒𝑘(𝑑))

⊗𝑊((𝜉0⊙𝑒𝑘(0)) ⊙…⊙ (𝜉𝑑⊙𝑒𝑘(𝑑))), 

𝑅2,𝑙(𝑚) = ∑  

𝑚

𝑘(0)=1

  ∑  

𝑘:[𝑑] →[𝑚]

𝑘 injective 

𝑘(𝑙)=𝑘(0)

𝑊(𝑒𝑘(0)⊙…⊙ 𝑒𝑘(𝑑)) ⊗𝑊(𝜉1⊙𝑒𝑘(1)) ⊙𝑊(𝜉𝑙⊙𝑒̂
𝑘(𝑙))

⊙𝑊(𝜉𝑑⊙𝑒𝑘(𝑑)), 
and 

𝑅3,𝑙(𝑚) = ∑  

𝑚

𝑘(0)=1

  ∑  

𝑘:[𝑑] →[𝑚]

𝑘 injective 

𝑘(𝑙)=𝑘(0)

𝑊(𝑒𝑘(1))…𝑊(𝑒𝑘(𝑙)
̂ )…𝑊(𝑒𝑘(𝑑))

⊗𝑊 ((𝜉0⊙𝑒𝑘(0)) ⊙…⊙ (𝜉𝑑⊙𝑒𝑘(𝑑))). 

Recall the formulas (9) and (10). After tensoring the right-hand sides we get four terms, one 

of which was already incorporated in the proof of Theorem (6.3.20). The other three are: 

𝑊(𝑒𝑘(0)⊙…⊙ 𝑒𝑘(𝑑)) ⊗𝑊 ((𝜉0⊙𝑒𝑘(0)) ⊙…⊙ (𝜉𝑑⊙𝑒𝑘(𝑑)))

𝑞1
𝑙−1⟨𝐼𝜉0 ∣ 𝜉𝑙⟩𝑊(𝑒𝑘(0)⊙…⊙ 𝑒𝑘(𝑑)) ⊗𝑊(𝜉1⊙𝑒𝑘(1))…𝑊(𝜉𝑙⊙𝑒̂

𝑘(𝑙))…𝑊(𝜉𝑑⊙ 𝑒𝑘(𝑑)),
 

and 

𝑞0
𝑙−1𝑊(𝑒𝑘(1))…𝑊(𝑒𝑘(𝑙)

̂ )…𝑊(𝑒𝑘(𝑑)) ⊗𝑊 ((𝜉0⊙𝑒𝑘(0)) ⊙…⊙ (𝜉𝑑⊙𝑒𝑘(𝑑))). 

To obtain 𝑅, we just need to take sums over appropriate sets of indices.  

We will now examine properties of 𝑅. Since 𝑞0, 𝑞1, and the range of summation over 𝑙 is 

fixed, to show that 𝑅 is a zero element in the ultraproduct, it suffices to show that 

lim𝑚→∞  𝑚
−
𝑑+1

2 ∥∥𝑅𝑖,𝑙∥∥ = 0 for any 1 ⩽ 𝑖 ⩽ 3 and 𝑙 ∈ [𝑑]. We will use Nou's 

noncommutative Khintchine inequality for this (Corollary (6.3.12)), but before that we need 

to obtain a bound for the coefficients. 
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Lemma (6.3.21)[256]: There exists a constant 𝐷(𝑑) > 0 (depending only on the initial 

choice of 𝜉1, … , 𝜉𝑑 ∈ Hℂ) such that for all 𝑚 ∈ ℕ and all 𝑘: [𝑑] → [𝑚], the following 

inequalities hold: 

∥
∥𝑊 ((𝜉0⊙𝑒𝑘(0)) ⊙⋯⊙ (𝜉𝑑⊙𝑒𝑘(𝑑)))∥

∥ ⩽ 𝐷(𝑑)

∥∥𝑊(𝜉1⊙𝑒𝑘(1))…𝑊(𝜉𝑙⊙𝑒̂
𝑘(𝑙))…𝑊(𝜉𝑑⊙𝑒𝑘(𝑑))∥∥ ⩽ 𝐷(𝑑)

∥ 𝑊(𝑒𝑘(1))…𝑊(𝑒𝑘(𝑙)
̂ )…𝑊(𝑒𝑘(𝑑)) ∥⩽ 𝐷(𝑑).

 

Proof. The second and third inequality will follow if we can show that there is a constant 

𝐷 > 0 such that ∥∥𝑊(𝜉𝑟⊙𝑒𝑘(𝑟))∥∥, ∥∥𝑊(𝑒𝑘(𝑟))∥∥ ⩽ 𝐷 (independently of 𝑟 ∈ [𝑑]). But the 

existence of 𝐷 follows from the simple fact for any 𝑞-Araki-Woods algebra Γ𝑞(H) and 𝜉 ∈

HC, we have ∥ 𝑊(𝜉) ∥Γ𝑞(𝐇)⩽ ∥∥𝑎𝑞
∗ (𝜉)∥∥ + ∥∥𝑎𝑞(𝐼𝜉)∥∥ ⩽ 2(1 − |𝑞|)

−1/2max{∥ 𝜉 ∥, ∥ 𝐼𝜉 ∥}. 

Now consider the first 

inequality. By the Khintchine inequality with K = ℂ (Corollary (6.3.12)), the left-hand side 

is bounded by 

𝐶(𝑞1)(𝑑 + 1) max
0⩽𝑙⩽𝑑

  ∥∥
∥(𝟙𝑑−𝑙⊙ ℐ) (𝑅𝑑,𝑙

∗ ((𝜉0⊙ 𝑒𝑘(0)) ⊙⋯⊙ (𝜉𝑑⊙𝑒𝑘(𝑑))))∥∥
∥. 

Writing the above (𝟙𝑑−𝑙⊙ ℐ)𝑅𝑑,𝑘
∗  terms as sums of simple tensors, one easily sees that the 

corresponding norms are bounded by a constant depending only on 𝑑. (Note that the 

unboundedness of ℐ plays no role here, as 𝜉0, … , 𝜉𝑑 ∈ Hℂ remain fixed.) 

We need one more proposition. In the following, 𝑚 ∈ ℕ and 𝜉0, … , 𝜉𝑑 are fixed as 

usual. Let 𝐼𝑙 denote the set of indices (𝑘(0),… , 𝑘(𝑑)) ∈ [𝑚]𝑑+1 that are pairwise distinct 

except for the pair (𝑘(0), 𝑘(𝑙)); a generic element of 𝐼𝑙 will be called 𝐢 and the corresponding 

tensor 𝑒𝑘(0)⊗⋯⊗ 𝑒𝑘(𝑑) will also be denoted by i. We will denote 𝑊(𝑒𝑘(0)⊗⋯⊗ 𝑒𝑘(𝑑)) 

by 𝑊𝐢 and 𝑊((𝜉0⊙𝑒𝑘(0)) ⊗⋯⊗ (𝜉𝑑⊙𝑒𝑘(𝑑))) by 𝑊𝐢
𝜉
. 

Proposition (6.3.22)[256]: Given any Hilbert space K and any family of operators 

(𝐴𝑖)𝑖∈𝐼𝑙 ⊂ B(K), the following inequalities hold. 

∥
∥
∥
∥
∥
∑  

𝐼𝑙

 𝐴𝑖⊗𝑊𝑖
∥
∥
∥
∥
∥
⩽ 𝐶(𝑑)sup

𝑖∈𝐼𝑙

 ∥∥𝐴𝑖∥∥𝑚
𝑑
2

∥
∥
∥
∥
∥
∑  

𝐼𝑙

 𝐴𝑖⊗𝑊𝑖
𝜉

∥
∥
∥
∥
∥
⩽ 𝐶(𝑑)sup

𝑖∈𝐼𝑙

 ∥∥𝐴𝑖∥∥𝑚
𝑑
2 ,

 

where 𝐶(𝑑) > 0 depends only on 𝑑 and the choice of vectors 𝜉0, 𝜉1, … , 𝜉𝑑 ∈ Hℂ. 

Proof. The proofs of both inequalities are essentially the same. We will deal with the first 

one; to obtain a proof of the second one has to apply conjugation in some places but since 

we are dealing with a fixed number of vectors 𝜉0, … , 𝜉𝑑, the unboundedness of conjugation 

does not play any role. By the Khintchine inequality (Corollary (6.3.12)) we need to deal 

with 

max
0⩽𝑘⩽𝑑+1

 
∥
∥
∥
∥
∥
∑  

𝐼𝑙

 𝐴𝐢⊗𝑅𝑑+1,𝑘
∗ (𝐢)

∥
∥
∥
∥
∥
, 

up to a 𝑑-dependent constant.  

Since 𝑅𝑑+1,𝑘
∗  is a sum of operators that only permute vectors, and the coefficients of 

this sum are summable, we just need to take care of a single term of the form 
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max
0⩽𝑘⩽𝑑+1

 
∥
∥
∥
∥
∥
∑  

𝐼𝑙

 𝐴𝐢⊗𝜎(𝐢)(𝑑+1,𝑘)
∥
∥
∥
∥
∥
, 

where 𝜎 denotes the action of the permutation and the decoration (𝑑 + 1, 𝑘) reminds us of 

the fact that 𝜎(𝐢) is viewed now as an element of 𝐇𝑐
⊗(𝑑+1−𝑘)

⊗ℎ H𝑟
⊗𝑘

. Whatever the 𝜎, the 

tensor 𝜎(𝐢)𝑑+1,𝑘 is always of the form 𝑒𝑖0 ⊙⋯⊙ 𝑒𝑖𝑑−𝑘⊗𝑒𝑖𝑑−𝑘+1⊙⋯⊙ 𝑒𝑖𝑑, where for 

different indices 𝐢 and 𝐢′ these tensors are different. The key property that we will need is 

that we have two orthonormal systems (𝑣𝑠)𝑠∈𝑆 ⊂ H
⊗(𝑑+1−𝑘) and (𝑤𝑗)𝑗∈𝐽 ⊂ H

⊗𝑘 such that 

for any 𝐢 ∈ 𝐼𝑙 we have 𝜎(𝐢)𝑑+1,𝑘 = 𝑣𝑠⊗𝑤𝑗 for some 𝑠 ∈ 𝑆 and 𝑗 ∈ 𝐽. Therefore we can get 

rid of the sign 𝜎 and just consider 

max
0⩽𝑘⩽𝑑+1

 
∥
∥
∥
∥
∥
∑  

𝐼𝑙

 𝐴𝐢⊗ 𝐢(𝑑+1,𝑘)
∥
∥
∥
∥
∥
, 

Since we are dealing with tensor powers of H equipped with 𝑞-deformed inner products, we 

would rather have families (𝑣𝑠
′)𝑠∈𝑆 and (𝑤𝑗

′)
𝑗∈𝐽

 that are orthonormal in H𝑞
⊗(𝑑+1−𝑘)

 and 

H𝑞
⊗𝑘

, respectively. To achieve this, we will use the operators defining the 𝑞-deformed inner 

products, 𝑃𝑞
𝑑+1−𝑘 and 𝑃𝑞

𝑘. Let 𝜉(𝐢)𝑑+1,𝑘 be tensors defined by ((𝑃𝑞
𝑑+1−𝑘)

1

2⊗

(𝑃𝑞
𝑘)

1

2) (𝜉(𝐢)𝑑+1,𝑘) = 𝐢𝑑+1,𝑘. 

Then we can write 𝜉(𝐢)𝑑+1,𝑘 = 𝑣𝑠
′⊗𝑤𝑗

′ for some tensors 𝑣𝑠
′ and 𝑤𝑗

′ coming from 

orthonormal families in H𝑞
⊗(𝑑+1−𝑘)

 and H𝑞
⊗𝑘. Since the row/column Hilbert spaces are 

homogeneous operator spaces (and Haagerup tensor product allows tensoring cb maps) we 

can bound max0⩽𝑘⩽𝑑+1  ∥∥∑𝐼𝑙  𝐴i⊗ 𝐢𝑑+1,𝑘∥∥ by max0⩽𝑘⩽𝑑+1  ∥∥∑𝐼𝑙  𝐴i⊗𝜉(𝐢)𝑑+1,𝑘∥∥, up to a 𝑑-

dependent constant coming from the norms of (𝑃𝑞
𝑑+1−𝑘)

1

2 and (𝑃𝑞
𝑘)

1

2. Because we are using 

the Haagerup tensor product, we have the following completely isometric isomorphism 

H𝑐⊗ℎ K̅𝑟 ≃ 𝒦(K,H). Under this identification the tensors 𝜉(𝐢)𝑑+1,𝑘 correspond to matrix 

units in 𝒦(H𝑞
⊗𝑘, H𝑞

⊗(𝑑+1−𝑘)
). This means that the operators 𝐴𝐢 fill different entries in a 

large operator matrix. By comparing the operator norm with the Hilbert-Schmidt norm we 

get the estimate 

∥
∥
∥
∥
∥
∑  

𝐢∈𝐼𝑙

 𝐴𝐢⊗𝑊𝐢
∥
∥
∥
∥
∥
⩽ 𝐶(𝑑)(∑  

𝐢∈𝐼𝑙

  ∥∥𝐴𝐢∥∥
2)

1
2

⩽ 𝐶(𝑑)(|𝐼𝑙|sup
𝐢∈𝐼𝑙

 ∥∥𝐴𝐢∥∥
2)

1
2

, 

which can be further bounded by 

𝐶(𝑑) (𝑚𝑑sup
𝐢∈𝐼𝑙

 ∥∥𝐴𝐢∥∥
2)

1
2

= 𝐶(𝑑)𝑚
𝑑
2sup
𝐢∈𝐼𝑙

 ∥∥𝐴𝐢∥∥. 

Finally, to conclude that 𝑅 = 0 in the ultraproduct, we just observe that each component 

𝑅𝑖,𝑙 = (𝑅𝑖,𝑙(𝑚))𝑚∈ℕ is a a sequence of terms of the form appearing in Proposition (6.3.22) 

with coefficients (𝐴𝐢(𝑚))𝑚∈ℕ,𝐢∈𝐼𝑙 uniformly bounded in 𝐢 and 𝑚 by the constant 𝐷(𝑑) from 

Lemma (6.3.21), so the norm 𝑚−
𝑑+1

2 𝑅𝑖,𝑙(𝑚) is bounded from above by 𝐶(𝑑)𝐷(𝑑)𝑚−
1

2, and 
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hence tends to zero. This finishes the proof of Theorem (6.3.20). With this tool at hand, we 

prove Theorem (6.3.23). 

Theorem (6.3.23)[256]: Let Γ𝑞(H) be a 𝑞-Araki-Woods algebra. Let 𝑃𝑛: Γ𝑞(H) → Γ𝑞(H) be 

the projection onto the ultraweakly closed span of {𝑊(𝜉): 𝜉 ∈ Hℂ
⊙𝑛}. Then, using the 

notation from Theorem (6.3.19), we have 

Θ ∘ 𝑃𝑛 = 𝑝(𝑃𝑛⊗ Id)𝜔𝑝 ∘ Θ.                                       (11) 

Proof. Let 𝑊(𝜉) be a Wick word associated with 𝜉 ∈ Hℂ
⊙𝑑

. Then we easily obtain 

𝜋𝜔(𝑃𝑛𝑊(𝜉)) = 𝛿𝑛,𝑑𝑊
𝑠(𝜉). On the other hand, let us first apply 𝜋𝜔 to obtain 𝑊𝑠(𝜉). Since, 

as we already remarked earlier, 𝑊(𝑒𝑘(1))…𝑊(𝑒𝑘(𝑑)) = 𝑊(𝑒𝑘(1)⊗⋯⊗ 𝑒𝑘(𝑑)), the 

operators acted on by the 𝑃𝑛 part of the operator (𝑃𝑛⊗ Id)𝜔 are exactly of length 𝑛. 

Therefore (𝑃𝑛⊗ Id)𝜔𝑊
𝑠(𝜉) = 𝛿𝑛,𝑑𝑊

𝑠(𝜉). By linearity, this implies that 𝜋𝜔 ∘ 𝑃𝑛 =

(𝑃𝑛⊗ Id)𝜔 ∘ 𝜋𝜔 on the algebra of Wick words Γ̃𝑞(H). Compressing by the support 

projection 𝑝, we then obtain 

Θ ∘ 𝑃𝑛 = 𝑝(𝑃𝑛⊗ Id)𝜔 ∘ 𝜋𝜔(⋅)𝑝 = 𝑝(𝑃𝑛⊗ Id)𝜔𝑝 ∘ Θ  on  Γ̃𝑞(H), 

where in the second equality we used the fact that 𝑝 ∈ 𝜋𝜔(Γ̃𝑞(H))
′
 (see [130, Lemma 4.1]). 

Since the desired equality holds on the ultraweakly dense subset Γ̃𝑞(H), and all maps under 

consideration are normal, equality holds everywhere. 

Let us now furnish a proof of the transference result for radial multipliers. 

Theorem (6.3.24)[256]: Let 𝜑:ℕ → ℂ be a function such that the associated radial 

multipliers m𝜑: Γ𝑞(ℝ
𝑚) → Γ𝑞(ℝ

𝑚) have completely bounded norms uniformly bounded in 

m. Then the radial multiplier defined by 𝜑 on any 𝑞-Araki-Woods algebra Γ𝑞(H) is 

completely bounded and 

∥∥𝒎𝜑: 𝛤𝑞(𝐻) → 𝛤𝑞(𝐻)∥∥𝑐𝑏
⩽ 𝑠𝑢𝑝
𝑚∈ℕ

 ∥∥𝑚𝜑: 𝛤𝑞(ℝ
𝑚) → 𝛤𝑞(ℝ

𝑚)∥∥
𝑐𝑏

 

                                           = ∥∥𝑚𝜑: 𝛤𝑞(ℓ2,ℝ) → 𝛤𝑞(ℓ2,ℝ)∥∥𝑐𝑏
. 

Proof. From Theorem (6.3.23) we get that Φ ∘ m𝜑(𝑥) = 𝑝(𝐦𝜑⊗ Id)
𝜔
𝑝 ∘ Φ(𝑥) for any 

𝑥 = 𝑊(𝜉) with 𝜉 ∈ (Hℂ)
⊙𝑑. By linearity we can extend this equality to all 𝑥 ∈ Γ̃𝑞(H). It 

follows that we have control on the cb norm of 𝑚𝜑 acting on the norm-closure of finite Wick 

words, i.e. on the 𝐶∗-algebra 𝒜𝑞(H). Since m𝜑 is automatically normal (cf. [190, Lemma 

3.4]), it extends to a normal map on Γ𝑞(H) with the same cb norm, so we get 

∥∥𝐦𝜑: Γ𝑞(H) → Γ𝑞(H)∥∥cb
⩽ sup
𝑚∈ℕ

 ∥∥m𝜑: Γ𝑞(ℝ
𝑚) → Γ𝑞(ℝ

𝑚)∥∥
cb
. 

Since Γ𝑞(ℝ
𝑚) is a subalgebra of Γ𝑞(ℝ

𝑚+1) which is the range of a normal faithful 

tracepreserving conditional expectation that intertwins the action of 𝑚𝜑, the sequence of 

norms on the right-hand side is non-decreasing, so 

∥∥m𝜑: Γ𝑞(H) → Γ𝑞(H)∥∥cb
⩽ lim
𝑚→∞

 ∥∥m𝜑: Γ𝑞(ℝ
𝑚) → Γ𝑞(ℝ

𝑚)∥∥
cb
. 

By the same token, this limit is not greater than ∥∥m𝜑: Γ𝑞(ℓ2,ℝ) → Γ𝑞(ℓ2,ℝ)∥∥cb
. Since the 

union of the algebras Γ𝑞(ℝ
𝑚) is strongly dense in Γ𝑞(ℓ2,ℝ), the union of the preduals is 

normdense in the predual of Γ𝑞(ℓ2,ℝ). Therefore the limit of norms is equal to the norm of 

the multplier defined on 𝐿1 (Γ𝑞(ℓ2,ℝ)). By dualising, we get that 

lim
𝑚→∞

 ∥∥𝑚𝜑: Γ𝑞(ℝ
𝑚) → Γ𝑞(ℝ

𝑚)∥∥
cb
= ∥∥m𝜑: Γ𝑞(ℓ2,ℝ) → Γ𝑞(ℓ2,ℝ)∥∥cb

. 
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Let us conclude with an application to the extension of Theorem (6.3.14) to general 𝑞-Araki-

Woods algebras. 

Corollary (6.3.25)[256]: Let Γ𝑞(H) be a q-Araki-Woods algebra. Let 𝑃𝑛 be the projection 

onto Wick words of length 𝑛, defined by 𝑃𝑛𝑊(𝜉) = 𝛿𝑛,𝑑𝑊(𝜉), where 𝜉 ∈ Hℂ
⊙𝑑 . Then 𝑃𝑛 

extends to a completely bounded, normal map on Γ𝑞(H) and ∥∥𝑃𝑛∥∥𝑐𝑏 ⩽ 𝐶(𝑞)
2(𝑛 + 1)2. 

Proof. We just observe that 𝑃𝑛 = m𝜑𝑛, where 𝜑𝑛 is the Kroenecker delta-function 𝜑𝑛(𝑘) = 

𝛿𝑘,𝑛. We obtain ∥∥𝑃𝑛: Γ𝑞(H) → Γ𝑞(H)∥∥cb ⩽∥ 𝑃𝑛: Γ𝑞(ℓ2,ℝ) → Γ𝑞(ℓ2,ℝ) ∥cb⩽ 𝐶(𝑞)
2(𝑛 + 1)2. 

The last will be devoted to the proof of the complete metric approximation property for 

Γ𝑞(H). 

Before proving our main result, we need to recall one more lemma. 

Lemma (6.3.26)[256]: ([190, Proposition 3.17]). Let H be the Hilbert space constructed 

from the pair (Hℝ, (𝑈𝑡)𝑡∈ℝ). Let 𝐼 be the complex conjugation on Hℂ. Then there exists a 

net (𝑇𝑖)𝑖∈𝐼 of finite-rank contractions on H that satisfy 𝐼𝑇𝑖𝐼 = 𝑇𝑖, i.e. preserve Hℝ, and 

converge strongly to identity. 

Theorem (6.3.27)[256]: Let Γ𝑞(H) be a 𝑞-Araki-Woods algebra. Then Γ𝑞(H) has the 𝑤∗-

complete metric approximation property. 

Proof. We define a net Γ𝑛,𝑡,𝑖: = Γ𝑞(𝑒
−𝑡𝑇𝑖)𝑄𝑛, where 𝑛 ∈ ℕ, 𝑡 > 0, 𝑖 ∈ 𝐼, the finite-rank 

maps 𝑇𝑖 come from the previous lemma, and 𝑄𝑛 = 𝑃0 +⋯+ 𝑃𝑛 = 𝑚𝜒{0,1,…,𝑛] is the radial 

multiplier which projects onto Wick words of length at most 𝑛. Each Γ𝑛,𝑡,𝑖 is a finite rank 

map on Γ𝑞(H); indeed, 𝑄𝑛 tells us that we have only Wick words of bounded length and 𝑇𝑖 
tells us that we can only draw vectors from a finite dimensional Hilbert space, so we are left 

with a space of the form ⊕𝑑=0
𝑛 (ℂ𝑚)⊗𝑑, which is finite-dimensional. We will pass to a limit 

with 𝑖 → ∞,𝑛 → ∞ and 𝑡 → 0. The rate of convergences of 𝑡 and 𝑛 will not be independent 

and will be chosen in a way that assures the convergence ∥∥Γ𝑛,𝑡,𝑖∥∥𝑐𝑏 → 1. 

Let us check now that it is possible, using a standard argument of Haagerup (note that 

Γ𝑞(𝑒
−𝑡)𝑃𝑘 = 𝑒

−𝑘𝑡𝑃𝑘): 

∥∥Γ𝑛,𝑡,𝑖∥∥𝑐𝑏 = ∥
∥Γ𝑞(𝑒

−𝑡𝑇𝑖)𝑄𝑛∥∥𝑐𝑏                           

⩽ ∥∥Γ𝑞(𝑒
−𝑡)𝑄𝑛∥∥𝑐𝑏             

                            ⩽ ∥∥Γ𝑞(𝑒
−𝑡)∥∥

𝑐𝑏
+ ∥∥Γ𝑞(𝑒

−𝑡)(𝟙 − 𝑄𝑛)∥∥𝑐𝑏 

⩽ 1 +∑  

𝑘>𝑛

 𝑒−𝑘𝑡∥∥𝑃𝑘∥∥𝑐𝑏 

                ⩽ 1 + 𝐶(𝑞)2∑ 

𝑘>𝑛

 𝑒−𝑘𝑡(𝑘 + 1)2. 

Since the series ∑𝑘⩾0  𝑒
−𝑘𝑡(𝑘 + 1)2 is convergent, for any 𝑡 > 0 the sum will tend to zero 

when 𝑛 → ∞. Therefore we can choose the parameters 𝑖, 𝑛 → ∞ and 𝑡 → 0 such that the 

completely bounded norms of the operators Γ𝑛,𝑡,𝑖 tend to 1. Then the operators 
Γ𝑛,𝑡,𝑖

∥∥Γ𝑛,𝑡,𝑖∥∥𝑐𝑏
 are 

completely contractive. We have to check that they converge ultraweakly to 𝟙. Since the 

denominators converge to 1 and the net is uniformly bounded, it suffices to prove strong 

convergence on a linearly dense set. It is very easy to verify that the convergence holds for 

finite simple tensors, so this ends the proof. 

Let us state two corollaries of (the proof) of this theorem. 
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Corollary (6.3.28)[256]: Let H be the Hilbert space constructed from the pair 

(H𝑅 , (𝑈𝑡)𝑡∈ℝ). Consider the 𝜎-weakly dense 𝐶∗-algebra 𝒜𝑞(H) ⊆ Γ𝑞(H) generated by the 

set {𝑊(𝜉): 𝜉 ∈ Hℝ} ⊂ B(ℱ𝑞(H)). This 𝐶∗-algebra has the complete metric approximation 

property. 

Proof. Consider once again the maps Γ𝑛,𝑡,𝑖: = Γ𝑞(𝑒
−𝑡𝑇𝑖)𝑄𝑛. The ranges of these maps are 

contained in Γ̃𝑞(H), the bounds for the norms remain the same, so it suffices to check the 

pointwise convergence in norm. Since the maps are uniformly bounded, it suffices to check 

the convergence on a linearly dense set, hence we may assume that 𝑥 = 𝑊(𝜉1⊙⋯⊙ 𝜉𝑘). 
If 𝑛 is large enough the 𝑄𝑛 that appears in the definition of Γ𝑛,𝑡,𝑖 has no effect on 𝑥, so we 

get 

Γ𝑛,𝑡,𝑖𝑥 − 𝑥 = 𝑒
−𝑘𝑡𝑊(𝑇𝑖𝜉1⊙⋯⊙𝑇𝑖𝜉𝑘) −𝑊(𝜉1⊙⋯⊙ 𝜉𝑘). 

This last expression is easily seen to converge to zero in norm as 𝑡 → 0 and 𝑖 → ∞. This can 

be seen either using the Khintchine inequality (Corollary (6.3.12)), or just by expressing 

𝑊(𝜉1⊙⋯⊙ 𝜉𝑘) as a non-commutative polynomial in 𝑎𝑞(𝜉𝑟) 's and 𝑎𝑞
∗ (𝜉𝑟) 's and invoking 

the fact that 

lim
𝑖
 ∥∥𝑎𝑞

∗(𝑇𝑖𝜉𝑘) − 𝑎𝑞
∗ (𝜉𝑘)∥∥ = lim

𝑖
 ∥∥𝑎𝑞(𝑇𝑖𝜉𝑘) − 𝑎𝑞(𝜉𝑘)∥∥ ⩽ (1 − |𝑞|)

−1/2lim
𝑖
 ∥∥𝑇𝑖𝜉𝑘 − 𝜉𝑘∥∥

→ 0. 
Corollary (6.3.29)[256]: The 𝐶∗-algebra 𝒜𝑞(H) is 𝑄𝑊𝐸𝑃. 

Proof. We will show that 𝒜𝑞(H) is weakly cp complemented in the von Neumann algebra 

Γ𝑞(H), meaning that there exists a ucp map Φ: Γ𝑞(H) → (𝒜𝑞(H))
∗∗

 such that Φ|𝒜𝑞(H) = Id. 

Let (Φ𝑖)𝑖∈𝐼 be the net of maps implementing at the same time the 𝑤∗-complete metric 

approximation property of Γ𝑞(H) and the complete metric approximation property of 

𝒜𝑞(H). Using this net, we get maps Φ𝑖: Γ𝑞(H) → (𝒜𝑞(H))
∗∗

, as Φ𝑖 maps Γ𝑞(H) into 

𝒜𝑞(H). There exists a cluster point of this net in the point-weak*-topology and this cluster 

point is obviously a ucp map that is equal to identity, when restricted to 𝒜𝑞(H), because the 

net (Φ𝑖)𝑖∈𝐼 converges pointwise to identity on 𝒜𝑞(H). Since all 𝑞-Araki-Woods algebras 

are QWEP (cf. [130]) and this property descends to subalgebras that are weakly cp 

complemented (cf. [133, Proposition 4.1 (ii)]), we get the claimed result. 

Corollary (6.3.30)[264]:  (i) The mapping 

𝑊(𝜉) ↦ (𝑢𝑚(𝜉))𝜔2−1 ∈ A (𝜉 ∈ Hℂ) 

extends uniquely to a state-preserving *-homomorphism 𝜋𝜔2−1: (Γ̃𝜖−1(H), 𝜒) →

(A, (𝜒0,𝑚⊗𝜒1,𝑚)𝜔2−1. 

(ii) The map Θ:= 𝑝𝜋𝜔2−1(⋅)𝑝: Γ̃𝜖−1(H) → 𝑝 A𝑝 extends to a normal state-preserving *- 

isomorphism 

Θ: Γ𝜖−1(H) → Θ(Γ𝜖−1(H)) ⊆ 𝑝 A𝑝. 
Moreover, Θ(Γ𝜖−1(H)) is the range of a normal state-preserving conditional expectation 

𝐸: A → Θ(Γ𝜖−1(H)). 
Proof. (i). Recall that the algebra of Wick words is *-isomorphic to the *-algebra of 

noncommutative polynomials, so any *-homomorphism 𝜋𝜔2−1: Γ̃𝜖−1(H) → A is uniquely 

determined by specifying the images (𝜋𝜔2−1(𝑊(𝑒𝑖)))
𝑖∈𝐼
⊂ A. Thus to conclude that the 

claimed 𝜋𝜔2−1 exists and is well-defined, we just need to check that each sequence 

(𝑢𝑚(𝜉))𝑚∈ℕ(𝜉 ∈ Hℂ) is normbounded and hence defines an element (𝑢𝑚(𝜉))𝜔2−1 ∈ A. To 
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this end, we apply (the 𝑛 = 1 version of) Corollary (6.3.29) with coefficients 

𝑊(𝜉 ⊙ 𝑒1+𝜖) ∈ B(K) = B (ℱ𝑞1(H⊗ ℂ𝑚)) (see also [113]) to conclude that 

∥∥𝑢𝑚(𝜉)∥∥ ⩽ 2(1

− 𝑞0)
−1
2 𝑚

−1
2  max  {

∥
∥
∥
∥
∑  

𝑚

𝜖=0

 𝑊(𝜉 ⊙ 𝑒1+𝜖)
∗𝑊(𝜉 ⊙ 𝑒1+𝜖)

∥
∥
∥
∥
1
2

,
∥
∥
∥
∥
∑  

𝑚

𝜖=0

 𝑊(𝜉

⊙ 𝑒1+𝜖)𝑊(𝜉 ⊙ 𝑒1+𝜖)
∗

∥
∥
∥
∥
1
2

} 

⩽ 2(1 − 𝑞0)
−1
2 ∥∥𝑊(𝜉 ⊙ 𝑒1)∥∥. 

Finally we check that 𝜋𝜔2−1 is state-preserving. By linearity, it suffices to show that for any 

1 + 3𝜖 ∈ ℕ and 𝜉1, … , 𝜉1+3𝜖 ∈ Hℝ, we have 

lim
𝑚→∞

 (𝜒0,𝑚⊗𝜒1,𝑚)(𝑢𝑚(𝜉1) ⋅ … ⋅ 𝑢𝑚(𝜉1+3𝜖)) = 𝜒(𝑊(𝜉1) ⋅ … ⋅ 𝑊(𝜉1+3𝜖)). 

Fixing 𝑚 and considering the terms on the left-hand side above, we have 

(𝜒0,𝑚⊗𝜒1,𝑚)(𝑢𝑚(𝜉1) ⋅ … ⋅ 𝑢𝑚(𝜉1+3𝜖)) 

= 𝑚−1+3𝜖/2 ∑  

𝑘:[1+3𝜖]→[𝑚]

 𝜒0,𝑚 (𝑊(𝑒𝑘(1)) ⋅ … ⋅ 𝑊(𝑒𝑘(1+3𝜖))) 𝜒1,𝑚 (𝑊(𝜉1⊙𝑒𝑘(1)) ⋅ …

⋅ 𝑊(𝜉1+3𝜖⊙𝑒𝑘(1+3𝜖))) 

= 𝑚−
1+3𝜖
2 ∑  

(

 
 

∑  
𝜎∈𝒫2(1+3𝜖)
𝑘𝑒𝑟𝑘⩾𝜎

𝑞0
𝜄(𝜎)

)

 
 
( ∑ 𝑞1

𝜄(𝜎′)
∏ ⟨𝜉1+𝜖⊙ 𝑒𝑘(1+𝜖) ∣ 𝜉𝑡⊙ 𝑒𝑘(𝑡)⟩𝑈

(1+𝜖,𝑡)∈𝜎′𝜎′∈𝒫2(1+3𝜖)

  )

𝑘:[1+3𝜖]→[𝑚]

 

= 𝑚−
1+3𝜖
2 ∑  

𝑘:[1+3𝜖]→[𝑚]

 

(

 
 

∑  
𝜎∈𝒫2(1+3𝜖)
𝑘𝑒𝑟𝑘⩾𝜎

 𝑞0
𝜄(𝜎)

)

 
 

(

 
 

∑  

𝜎′∈𝒫2(1+3𝜖)

𝑘𝑒𝑟𝑘⩾𝜎′

 𝑞1
ℓ(𝜎′)

∏ ⟨𝜉1+𝜖 ∣ 𝜉𝑡⟩𝑈
(1+𝜖,𝑡)∈𝜎′

 

)

 
 

 

= ∑  

𝜎,𝜎′∈𝒫2(1+3𝜖)

 𝑞0
𝜄(𝜎)
𝑞1
ℓ(𝜎′)

∏ ⟨𝜉1+𝜖 ∣ 𝜉𝑡⟩𝑈 ∑  

𝑘:[1+3𝜖]→[𝑚]

𝑘∈(1+𝜖)𝑘⩾𝜎,ker 𝑘⩾𝜎′

 𝑚−
1+3𝜖
2

(1+𝜖,𝑡)∈𝜎′

  

= ∑  

𝜎,𝜎′∈𝒫2(1+3𝜖)

 𝑞0
𝜄(𝜎)
𝑞1
𝜄(𝜎′)

∏ ⟨𝜉1+𝜖 ∣ 𝜉𝑡⟩𝑈𝑚
−
1+3𝜖
2

+|𝜎∨𝜎′|

(1+𝜖,𝑡)∈𝜎′

 . 

Since 

lim
𝑚→∞

 𝑚−
1+3𝜖
2

+|𝜎∨𝜎′| = 𝛿𝜎,𝜎′  (𝜎, 𝜎
′ ∈ 𝒫2(1 + 3𝜖)), 

we conclude that 

lim
𝑚→∞

 (𝜒0,𝑚⊗𝜒1,𝑚)(𝑢𝑚(𝜉1) ⋅ … ⋅ 𝑢𝑚(𝜉1+3𝜖))

= ∑  

𝜎∈𝒫2(1+3𝜖)

(𝜖 − 1)𝜄(𝜎) ∏  

(1+𝜖,𝑡)∈𝜎

⟨𝜉1+𝜖 ∣ 𝜉𝑡⟩𝑈 = 𝜒(𝑊(𝜉1) ⋅ … ⋅ 𝑊(𝜉1+3𝜖)). 
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(ii). To exhibit the desired properties of Θ:= 𝑝𝜋𝜔2−1(⋅)𝑝, we will verify conditions (i)-(iii) 

in Theorem (6.3.27) for the ∗-homomorphism 𝜋𝜔2−1. (i) follows immediately from part (1) 

of the present theorem. For (ii), we note that by linearity and multiplicativity of 𝜋𝜔2−1, it 

suffices to check condition (ii) on the generators 𝜋𝜔2−1(𝑊(𝜉)) = (𝑢𝑚(𝜉))𝜔2−1, (𝜉 ∈ Hℂ). 
However, there is a minor issue here coming from the fact that for arbitrary 𝜉 ∈ Hℂ, there is 

no reason to expect elements 𝑢𝑚(𝜉) ∈ Γ𝑞0(ℝ
𝑚)⊗‾ Γ𝑞1(H⊗ ℂ𝑚) to even be analytic, let 

alone the sequence (𝜎−𝑖(𝑢𝑚(𝜉)))𝑚∈ℕ be uniformly bounded. To overcome this issue, put 

Hℂ
𝑎𝑛 = ⋃𝜆>1  𝟏[𝜆−1,𝜆](𝐴)Hℂ, where 𝟏[𝜆−1,𝜆](𝐴) denotes the spectral projection of the analytic 

generator 𝐴 corresponding to the interval [𝜆−1, 𝜆]. Following [246, Theorem 3.1], we see 

that Hℂ
𝑎𝑛 ⊂ Hℂ is a dense linear subspace such that 𝐼Hℂ

𝑎𝑛 = Hℂ
𝑎𝑛. Moreover, for each 𝜉 ∈

Hℂ
𝑎𝑛, we have that 𝜉 (respectively 𝑊(𝜉)) is analytic for the action of the unitary group 𝑈𝑡 =
𝐴𝑖𝑡 (respectively the modular automorphism group 𝜎𝑡), and 

𝜎𝑧𝑊(𝜉) = 𝑊(𝐴
−𝑖𝑧𝜉) (𝑧 ∈ ℂ). 

Now we shall restrict the domain of 𝜋𝜔2−1 to the *-subalgebra Γ̃𝜖−1(H)𝑎𝑛 ⊂ Γ̃𝜖−1(H), 
consisting of linear combinations of Wick words of the form 𝑊(𝜉) with 𝜉 ∈ (Hℂ

𝑎𝑛)⊙𝑛, 

(𝑛 ∈ ℕ0). Since Γ̃𝜖−1(H)𝑎𝑛 is still w∗-dense in Γ𝜖−1(H) and is generated by (𝑊(𝜉))𝜉∈Hc𝑎𝑛, 

we just have to show that the equivalence class representative (𝑢𝑚(𝜉))𝑚∈ℕ for 

𝜋𝜔2−1(𝑊(𝜉)) satisfies condition (ii) of Corollary (6.3.30) for each 𝜉 ∈ Hℂ
𝑎𝑛. To this end, 

note that on Γ𝑞0(ℝ
𝑚)⊗‾ Γ𝑞1(H⊗ ℂ𝑚 ), we have 

𝜎𝑡
𝑚 = idΓ𝑞0(ℝ

𝑚)⊗𝜎𝑡
Γ𝑞1(H⊗ℂ

𝑚)
 & 𝜎𝑡

Γ𝑞1(H⊗ℂ
𝑚)
(𝑊(𝜉 ⊙ 𝑒))

= 𝑊(𝐴−𝑖𝑡𝜉 ⊙ 𝑒) (𝜉 ∈ Hℂ, 𝑒 ∈ ℂ
𝑚). 

It follows from these identities that if 𝜉 ∈ Hℂ
𝑎𝑛 and 𝑒 ∈ ℂ𝑚, then elements 𝑊(𝜉 ⊙ 𝑒) and 

𝑢𝑚(𝜉) are analytic for their respective modular groups and 

𝜎𝑧
𝑚(𝑢𝑚(𝜉))  = (

1

√𝑚
∑ 

𝑚

𝜖=0

 𝑊(𝑒1+𝜖) ⊗ 𝜎𝑧
Γ𝑞1(𝐻⊗ℂ

𝑚)
𝑊(𝜉 ⊙ 𝑒1+𝜖))

 =
1

√𝑚
∑  

𝑚

𝜖=0

 𝑊(𝑒1+𝜖) ⊗𝑊(𝐴−𝑖𝑧𝜉 ⊙ 𝑒1+𝜖) = 𝑢𝑚(𝐴
−𝑖𝑧𝜉),  (𝑧 ∈ ℂ).

 

The uniform boundedness of the sequence (𝜎−𝑖
𝑚𝑢𝑚(𝜉))𝑚∈ℕ now follows along the same 

lines as that of (𝑢𝑚(𝜉))𝑚∈ℕ : 

sup
𝑚
 ∥∥𝜎−𝑖

𝑚𝑢𝑚(𝜉)∥∥ = sup
𝑚
 ∥∥𝑢𝑚(𝐴

−1𝜉)∥∥ ⩽ 2(1 − 𝑞0)
−1
2 ∥∥𝑊(𝐴−1𝜉 ⊙ 𝑒1)∥∥. 

For (iii), it again suffices by linearity and multiplicativity to verify that for all 

𝜋𝜔2−1(𝑊(𝜉)) = (𝑢𝑚(𝜉))𝜔2−1, (𝜉 ∈ Hℂ), 

𝑝 ((𝜎𝑡
𝑚(𝑢𝑚(𝜉)))𝜔2−1) 𝑝 ∈ 𝑝 B𝑝, 

where 𝐵 is the 𝑤∗-closure of 𝜋𝜔2−1(Γ̃𝜖−1(H)) in A. But this last point is obvious, because 

by the previous computation, 𝜎𝑡
𝑚(𝑢𝑚(𝜉)) = 𝑢𝑚(𝐴

−𝑖𝑡𝜉) for all 𝑚, giving 

𝑝 ((𝜎𝑡
𝑚(𝑢𝑚(𝜉)))𝜔2−1) 𝑝 = 𝑝 ((𝑢𝑚(𝐴

−𝑖𝑡𝜉))
𝜔2−1

) 𝑝 = 𝑝𝜋𝜔2−1 (𝑊(𝐴
−𝑖𝑡𝜉))𝑝 ∈ 𝑝 B𝑝. 

Corollary (6.3.31)[264]: (see [256]). Let 𝜉1, … , 𝜉1+3𝜖 ∈ Hℂ. Let 𝜋𝜔2−1 be as in Corollary 

(6.3.30). Then 𝜋𝜔2−1(𝑊(𝜉1⊙⋯⊙ 𝜉1+3𝜖)) = 𝑊1+2𝜖(𝜉1⊙⋯⊙ 𝜉1+3𝜖). 
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Proof. We proceed by induction on 1 + 3𝜖 ∈ ℕ0. The base cases 1 + 3𝜖 = 0,1 are obvious 

from the definitions. Now assume that the claimed formula is true for all lengths 𝜖 ≥ 0, and 

consider the 2(1 + 𝜖) case. Fix 𝜉0, 𝜉1, … , 𝜉1+3𝜖 ∈ Hℂ. It then follows from Proposition 

(6.3.22) that the following relation holds. 

𝑊(𝜉0⊙⋯⊙ 𝜉1+3𝜖)
= 𝑊(𝜉0)𝑊(𝜉1⊙⋯⊙ 𝜉1+3𝜖)

− ∑  

1+3𝜖

𝑙=1

(𝜖 − 1)𝑙−1⟨𝐼𝜉0 ∣ 𝜉𝑙⟩𝑈𝑊(𝜉1⊙…⊙ 𝜉𝑙⊙…⊙ 𝜉1+3𝜖), 

where, as usual, 𝜉𝑙 means that the tensor factor 𝜉𝑙 is deleted from the simple tensor under 

consideration. Applying 𝜋𝜔2−1 to this relation and using our induction hypothesis, we have  

𝜋𝜔2−1(𝑊(𝜉0⊙…⊙ 𝜉1+3𝜖))

= 𝑊1+2𝜖(𝜉0)𝑊
1+2𝜖(𝜉1⊙…⊙ 𝜉1+3𝜖)

− ∑  

1+3𝜖

𝑙=1

  (𝜖 − 1)𝑙−1⟨𝐼𝜉0 ∣ 𝜉𝑙⟩𝑈𝑊
1+2𝜖(𝜉1⊙…⊙ 𝜉𝑙⊙…⊙ 𝜉1+3𝜖).           (12) 

Next, we expand the first term on the right-hand side in the above equation: 

𝑊1+2𝜖(𝜉0)𝑊
1+2𝜖(𝜉1⊙⋯⊙ 𝜉1+3𝜖) 

= (𝑚−
1
2 ∑  

m

𝑘(0)=1

 𝑊(𝑒𝑘(0)) ⊗𝑊(𝜉0⊙𝑒𝑘(0)))

𝜔2−1

 

×

(

  
 
𝑚−

1+3𝜖
2 ∑  

𝑘:[1+3𝜖]→[𝑚]

𝑘 injective 

 𝑊(𝑒𝑘(1))…𝑊(𝑒𝑘(1+3𝜖))

⊗𝑊(𝜉1⊙ 𝑒𝑘(1))…𝑊(𝜉1+3𝜖⊙𝑒𝑘(1+3𝜖))

)

  
 

𝜔2−1

 

=

(

  
 
𝑚−

1+3𝜖+1
2 ∑  

𝑘:[1+3𝜖]0→[𝑚]

𝑘 injective 

 𝑊(𝑒𝑘(0))…𝑊(𝑒𝑘(1+3𝜖))

⊗𝑊(𝜉0⊙𝑒𝑘(0))…𝑊(𝜉1+3𝜖⊙𝑒𝑘(1+3𝜖))

)

  
 

𝜔2−1
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+

(

 
 
 
 

𝑚−
2+3𝜖
2 ∑  

𝑚

𝑘(0)=1

∑  

1+3𝜖

𝑙=1

∑  

𝑘:[1+3𝜖] →[𝑚]

𝑘 injective 

𝑘(𝑙)=𝑘(0)

 𝑊(𝑒𝑘(0))…𝑊(𝑒𝑘(1+3𝜖))

⊗𝑊(𝜉0⊙𝑒𝑘(0))…𝑊(𝜉1+3𝜖⊙𝑒𝑘(1+3𝜖))

)

 
 
 
 

𝜔2−1

 

= 𝑊1+2𝜖(𝜉0⊙𝜉1⊙⋯⊙ 𝜉1+3𝜖) (this is the first term in the preceding sum) 

+ ∑  

1+3𝜖

𝑙=1

(

 
 
 
 

𝑚−
2+3𝜖
2 ∑  

𝑚

𝑘(0)=1

∑  

𝑘:[1+3𝜖] →[𝑚]

𝑘 injective 

𝑘(𝑙)=𝑘(0)

𝑊(𝑒𝑘(0))…𝑊(𝑒𝑘(1+3𝜖))

⊗𝑊(𝜉0⊙𝑒𝑘(0))…𝑊(𝜉1+3𝜖⊙𝑒𝑘(1+3𝜖))

)

 
 
 
 

𝜔2−1

 

The first term is already a part of what we wanted, but we also have to deal with the second 

term. Note that for 𝑘(0) = 𝑘(𝑙) and 𝑘(1) ≠ ⋯ ≠ 𝑘(1 + 3𝜖) we have 

𝑊(𝑒𝑘(0))…𝑊(𝑒𝑘(1+3𝜖))

= 𝑊(𝑒𝑘(0)⊙⋯⊙ 𝑒𝑘(1+3𝜖))

+ 𝑞0
𝑙−1𝑊(𝑒𝑘(0))…𝑊(𝑒𝑘(𝑙)

̂ )…𝑊(𝑒𝑘(1+3𝜖))(13) 

and 

𝑊(𝜉0⊙𝑒𝑘(0))…𝑊(𝜉1+3𝜖⊙𝑒𝑘(1+3𝜖)))

 = 𝑊 ((𝜉0⊙𝑒𝑘(0)) ⊙⋯⊙ (𝜉1+3𝜖⊙𝑒𝑘(1+3𝜖)))

 +⟨𝐼𝜉0⊙𝑒𝑘(0) ∣ 𝜉𝑙⊙𝑒𝑘(𝑙)⟩𝑈
𝑞1
𝑙−1𝑊(𝜉0⊙𝑒𝑘(0))…𝑊(𝜉𝑙⊙𝑒̂

𝑘(𝑙))…𝑊(𝜉1+3𝜖⊙𝑒𝑘(1+3𝜖))

 = 𝑊 ((𝜉0⊙𝑒𝑘(0)) ⊙⋯⊙ (𝜉1+3𝜖⊙𝑒𝑘(1+3𝜖)))

 +⟨𝐼𝜉0 ∣ 𝜉𝑙⟩𝑈𝑞1
𝑙−1𝑊(𝜉0⊙𝑒𝑘(0))…𝑊(𝜉𝑙⊙𝑒̂

𝑘(𝑙))…𝑊(𝜉1+3𝜖⊙𝑒𝑘(1+3𝜖)).

 

Indeed, if (𝑣1, … , 𝑣𝑛) ⊆ Hℂ is a family of orthogonal vectors then 𝑊(𝑣1)…𝑊(𝑣𝑛) =
𝑊(𝑣1⊙ ⋯⊙ 𝑣𝑛), as we remarked earlier. In our case we have a sequence 

(𝑤, 𝑣1, … , 𝑣1+3𝜖), where 𝐼𝑤 is orthogonal to all vectors 𝑣𝑗 for 𝑗 ≠ 𝑙, so we get 
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𝑊(𝑤)𝑊(𝑣1)…𝑊(𝑣1+3𝜖)Ω  = (𝑎∗(𝑤) + 𝑎(𝐼𝑤))𝑣1⊙⋯⊙𝑣1+3𝜖
 = 𝑤 ⊙ 𝑣1⊙⋯⊙𝑣1+3𝜖 + 𝑎(𝐼𝑤)(𝑣1⊙⋯⊙𝑣1+3𝜖)

 = 𝑤 ⊙ 𝑣1⊙⋯⊙𝑣1+3𝜖 + 𝑞1
𝑙−1⟨𝐼𝑤 ∣ 𝑣𝑙⟩𝑈𝑣1⊙⋯⊙ �̂�𝑙⊙⋯⊙𝑣1+3𝜖 ,

 

hence the formula above. Tensoring 𝑊(𝑒𝑘(0))…𝑊(𝑒𝑘(1+3𝜖)) with 𝑊(𝜉0⊙

𝑒𝑘(0))…𝑊(𝜉1+3𝜖⊙𝑒𝑘(1+3𝜖)) (keeping in mind that 𝑞0𝑞1 = 𝜖 − 1 ) gives us four terms, 

one of which is  

(𝜖 − 1)𝑙−1⟨𝐼𝜉0 ∣ 𝜉𝑙⟩𝑈𝑊(𝑒𝑘(1))…𝑊(𝑒𝑘(𝑙)
̂ )…𝑊(𝑒𝑘(1+3𝜖))

⊗𝑊(𝜉0⊙𝑒𝑘(0))…𝑊(𝜉𝑙⊙𝑒̂
𝑘(𝑙))…𝑊(𝜉1+3𝜖⊙𝑒𝑘(1+3𝜖)) 

and we will deal with the three other terms later. To these expressions we need to apply the 

sum ∑𝑙=1
1+3𝜖  𝑚−

2+3𝜖

2 ∑𝑘(0)=1
𝑚  ∑  𝑘:[1+3𝜖] →[𝑚]

𝑘 injective 

𝑘(𝑙)=𝑘(0)

 the condition 𝑘(𝑙) = 𝑘(0) and perform the sum 

over 𝑘(0) immediately, resulting in a sum ∑𝑙=1
1+3𝜖  𝑚−

3𝜖

2∑𝑘:[1+3𝜖]∖𝑙}→[𝑚]  . Without the sum 

over 𝑙, this is the sum over 3𝜖 distinct indices appearing in the definition of 𝑊1+2𝜖, so we 

get the sum 

∑  

1+3𝜖

𝑙=1

(𝜖 − 1)𝑙−1⟨𝐼𝜉0 ∣ 𝜉𝑙⟩𝑈𝑊
1+2𝜖(𝜉0⊙⋯⊙ 𝜉𝑙⊙⋯⊙ 𝜉1+3𝜖). 

To sum up, we have checked so far that 

𝑊1+2𝜖(𝜉0)𝑊
1+2𝜖(𝜉1⊙⋯⊙ 𝜉1+3𝜖)
= 𝑊1+2𝜖(𝜉0⊙⋯⊙ 𝜉1+3𝜖)

+ ∑  

1+3𝜖

𝑙=1

(𝜖 − 1)𝑙−1⟨𝐼𝜉0 ∣ 𝜉𝑙⟩𝑈𝑊
1+2𝜖(𝜉0⊙⋯⊙ 𝜉𝑙⊙⋯⊙ 𝜉1+3𝜖) + 𝑅, 

where 𝑅 is the "remainder" term that will turn out to be a zero element of the ultraproduct. 

Inserting this into (12) we get that 

𝜋𝜔2−1(𝑊(𝜉1⊙⋯⊙ 𝜉1+3𝜖)) = 𝑊
1+2𝜖(𝜉1⊙⋯⊙ 𝜉1+3𝜖) + 𝑅, 

so if we can check that 𝑅 is really a zero element then this ends the proof. 

Let us just recall that 𝑅 comes from the three neglected so far terms arising from tensoring 

𝑊(𝑒𝑘(0))…𝑊(𝑒𝑘(1+3𝜖)) with 𝑊(𝜉0⊙𝑒𝑘(0))…𝑊(𝜉1+3𝜖⊙𝑒𝑘(1+3𝜖)). It can be written as 

𝑅 = (𝑚−
2+3𝜖
2 ∑  

1+3𝜖

𝑙=1

  (𝑅1,𝑙(𝑚) + ⟨𝐼𝜉0 ∣ 𝜉𝑙⟩𝑞1
𝑙−1𝑅2,𝑙(𝑚) + 𝑞0

𝑙−1𝑅3,𝑙(𝑚)))

𝜔2−1

, 

where 

𝑅1,𝑙(𝑚) = ∑  

𝑚

𝑘(0)=1

  ∑  

𝑘:[1+3𝜖] →[𝑚]

𝑘 injective 

𝑘(𝑙)=𝑘(0)

𝑊(𝑒𝑘(0)⊙…⊙ 𝑒𝑘(1+3𝜖))

⊗𝑊 ((𝜉0⊙𝑒𝑘(0)) ⊙…⊙ (𝜉1+3𝜖⊙ 𝑒𝑘(1+3𝜖))), 
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𝑅2,𝑙(𝑚) = ∑  

𝑚

𝑘(0)=1

  ∑  

𝑘:[1+3𝜖] →[𝑚]

𝑘 injective 

𝑘(𝑙)=𝑘(0)

𝑊(𝑒𝑘(0)⊙…⊙ 𝑒𝑘(1+3𝜖)) ⊗𝑊(𝜉1⊙𝑒𝑘(1))

⊙𝑊(𝜉𝑙⊙ 𝑒̂
𝑘(𝑙)) ⊙𝑊(𝜉1+3𝜖⊙𝑒𝑘(1+3𝜖)), 

and 

𝑅3,𝑙(𝑚) = ∑  

𝑚

𝑘(0)=1

  ∑  

𝑘:[1+3𝜖] →[𝑚]

𝑘 injective 

𝑘(𝑙)=𝑘(0)

𝑊(𝑒𝑘(1))…𝑊(𝑒𝑘(𝑙)
̂ )…𝑊(𝑒𝑘(1+3𝜖))

⊗𝑊 ((𝜉0⊙𝑒𝑘(0)) ⊙…⊙ (𝜉1+3𝜖⊙𝑒𝑘(1+3𝜖))). 

Recall the formulas (13) and (14). After tensoring the right-hand sides we get four terms, 

one of which was already incorporated in the proof of Corollary (6.3.31). The other three 

are: 

𝑊(𝑒𝑘(0)⊙…⊙ 𝑒𝑘(1+3𝜖)) ⊗𝑊 ((𝜉0⊙𝑒𝑘(0)) ⊙…⊙ (𝜉1+3𝜖⊙𝑒𝑘(1+3𝜖)))

𝑞1
𝑙−1⟨𝐼𝜉0 ∣ 𝜉𝑙⟩𝑊(𝑒𝑘(0)⊙…⊙ 𝑒𝑘(1+3𝜖)) ⊗𝑊(𝜉1⊙𝑒𝑘(1))…𝑊(𝜉𝑙⊙𝑒̂

𝑘(𝑙))…𝑊(𝜉1+3𝜖⊙𝑒𝑘(1+3𝜖)),
 

and 

𝑞0
𝑙−1𝑊(𝑒𝑘(1))…𝑊(𝑒𝑘(𝑙)

̂ )…𝑊(𝑒𝑘(1+3𝜖))

⊗𝑊 ((𝜉0⊙𝑒𝑘(0)) ⊙…⊙ (𝜉1+3𝜖⊙ 𝑒𝑘(1+3𝜖))). 

To obtain 𝑅, we just need to take sums over appropriate sets of indices.  

We will now examine properties of 𝑅. Since 𝑞0, 𝑞1, and the range of summation over 𝑙 is 

fixed, to show that 𝑅 is a zero element in the ultraproduct, it suffices to show that 

lim𝑚→∞  𝑚
−
2+3𝜖

2 ∥∥𝑅𝑖,𝑙∥∥ = 0 for any 1 ⩽ 𝑖 ⩽ 3 and 𝑙 ∈ [1 + 3𝜖]. We will use Nou's 

noncommutative Khintchine inequality for this (Corollary (6.3.29)), but before that we need 

to obtain a bound for the coefficients. 

Corollary (6.3.32)[264]: There exists a constant 𝐷(1 + 3𝜖) > 0 (depending only on the 

initial choice of 𝜉1, … , 𝜉1+3𝜖 ∈ Hℂ) such that for all 𝑚 ∈ ℕ and all 𝑘: [1 + 3𝜖] → [𝑚], the 

following inequalities hold: 

∥
∥𝑊 ((𝜉0⊙𝑒𝑘(0)) ⊙⋯⊙ (𝜉1+3𝜖⊙𝑒𝑘(1+3𝜖)))∥

∥ ⩽ 𝐷(1 + 3𝜖)

∥∥𝑊(𝜉1⊙𝑒𝑘(1))…𝑊(𝜉𝑙⊙𝑒̂
𝑘(𝑙))…𝑊(𝜉1+3𝜖⊙𝑒𝑘(1+3𝜖))∥∥ ⩽ 𝐷(1 + 3𝜖)

∥ 𝑊(𝑒𝑘(1))…𝑊(𝑒𝑘(𝑙)
̂ )…𝑊(𝑒𝑘(1+3𝜖)) ∥⩽ 𝐷(1 + 3𝜖).

 

Proof. The second and third inequality will follow if we can show that there is a constant 

𝐷 > 0 such that ∥∥𝑊(𝜉1+𝜖⊙𝑒𝑘(1+𝜖))∥∥, ∥∥𝑊(𝑒𝑘(1+𝜖))∥∥ ⩽ 𝐷 (independently of 1 + 𝜖 ∈ [1 +

3𝜖]). But the existence of 𝐷 follows from the simple fact for any (𝜖 − 1) −Araki-Woods 

algebra Γ𝜖−1(H) and 𝜉 ∈ HC, we have ∥ 𝑊(𝜉) ∥Γ𝜖−1(𝐇)⩽ ∥∥𝑎𝜖−1
∗ (𝜉)∥∥ + ∥∥𝑎𝜖−1(𝐼𝜉)∥∥ ⩽ 2(1 −

|𝜖 − 1|)−1/2max{∥ 𝜉 ∥, ∥ 𝐼𝜉 ∥}. Now consider the first inequality. By the Khintchine 

inequality with K = ℂ (Corollary (6.3.29)), the left-hand side is bounded by 
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𝐶(𝑞1)(2 + 3𝜖) max
0⩽𝑙⩽1+3𝜖

  ∥∥
∥(𝟙1+3𝜖−𝑙

⊙ ℐ) (𝑅1+3𝜖,𝑙
∗ ((𝜉0⊙𝑒𝑘(0)) ⊙⋯⊙ (𝜉1+3𝜖⊙𝑒𝑘(1+3𝜖))))∥∥

∥. 

Writing the above (𝟙1+3𝜖−𝑙⊙ ℐ)𝑅1+3𝜖,𝑘
∗  terms as sums of simple tensors, one easily sees 

that the corresponding norms are bounded by a constant depending only on 1 + 3𝜖. (Note 

that the unboundedness of ℐ plays no role here, as 𝜉0, … , 𝜉1+3𝜖 ∈ Hℂ remain fixed.) 

We need one more proposition. In the following, 𝑚 ∈ ℕ and 𝜉0, … , 𝜉1+3𝜖 are fixed as usual. 

Let 𝐼𝑙 denote the set of indices (𝑘(0),… , 𝑘(1 + 3𝜖)) ∈ [𝑚]2+3𝜖  that are pairwise distinct 

except for the pair (𝑘(0), 𝑘(𝑙)); a generic element of 𝐼𝑙 will be called 𝐢 and the corresponding 

tensor 𝑒𝑘(0)⊗⋯⊗ 𝑒𝑘(1+3𝜖) will also be denoted by i. We will denote 𝑊(𝑒𝑘(0)⊗⋯⊗

𝑒𝑘(1+3𝜖)) by 𝑊𝐢 and 𝑊((𝜉0⊙𝑒𝑘(0)) ⊗⋯⊗ (𝜉1+3𝜖⊙𝑒𝑘(1+3𝜖))) by 𝑊𝐢
𝜉
. 

Corollary (6.3.33)[264]: (see [256]). Given any Hilbert space K and any family of operators 

(𝐴𝑖)𝑖∈𝐼𝑙 ⊂ B(K), the following inequalities hold. 

∥
∥
∥
∥
∥
∑  

𝐼𝑙

 𝐴𝑖⊗𝑊𝑖
∥
∥
∥
∥
∥
⩽ 𝐶(1 + 3𝜖)sup

𝑖∈𝐼𝑙

 ∥∥𝐴𝑖∥∥𝑚
1+3𝜖
2

∥
∥
∥
∥
∥
∑  

𝐼𝑙

 𝐴𝑖⊗𝑊𝑖
𝜉

∥
∥
∥
∥
∥
⩽ 𝐶(1 + 3𝜖)sup

𝑖∈𝐼𝑙

 ∥∥𝐴𝑖∥∥𝑚
1+3𝜖
2 ,

 

where 𝐶(1 + 3𝜖) > 0 depends only on 1 + 3𝜖 and the choice of vectors 𝜉0, 𝜉1, … , 𝜉1+3𝜖 ∈
Hℂ. 

Proof. The proofs of both inequalities are essentially the same. We will deal with the first 

one; to obtain a proof of the second one has to apply conjugation in some places but since 

we are dealing with a fixed number of vectors 𝜉0, … , 𝜉1+3𝜖, the unboundedness of 

conjugation does not play any role. By the Khintchine inequality (Corollary (6.3.29)) we 

need to deal with 

max
0⩽𝑘⩽2+3𝜖

 
∥
∥
∥
∥
∥
∑  

𝐼𝑙

 𝐴𝐢⊗𝑅2+3𝜖,𝑘
∗ (𝐢)

∥
∥
∥
∥
∥
, 

up to a (1 + 3𝜖)-dependent constant.  

Since 𝑅2+3𝜖,𝑘
∗  is a sum of operators that only permute vectors, and the coefficients of this 

sum are summable, we just need to take care of a single term of the form 

max
0⩽𝑘⩽2+3𝜖

 
∥
∥
∥
∥
∥
∑  

𝐼𝑙

 𝐴𝐢⊗𝜎(𝐢)(2+3𝜖,𝑘)
∥
∥
∥
∥
∥
, 

where 𝜎 denotes the action of the permutation and the decoration (2 + 3𝜖, 𝑘) reminds us of 

the fact that 𝜎(𝐢) is viewed now as an element of 𝐇𝑐
⊗(2+3𝜖−𝑘)

⊗ℎ H1+𝜖
⊗𝑘

. Whatever the 𝜎, 

the tensor 𝜎(𝐢)2+3𝜖,𝑘 is always of the form 𝑒𝑖0 ⊙⋯⊙ 𝑒𝑖1+3𝜖−𝑘⊗𝑒𝑖1+3𝜖−𝑘+1⊙⋯⊙ 𝑒𝑖1+3𝜖, 

where for different indices 𝐢 and 𝐢′ these tensors are different. The key property that we will 

need is that we have two orthonormal systems (𝑣1+2𝜖)1+2𝜖∈𝑆 ⊂ H
⊗(2+3𝜖−𝑘) and (𝑤𝑗)𝑗∈𝐽 ⊂

H⊗𝑘 such that for any 𝐢 ∈ 𝐼𝑙 we have 𝜎(𝐢)2+3𝜖,𝑘 = 𝑣1+2𝜖⊗𝑤𝑗 for some 1 + 2𝜖 ∈ 𝑆 and 

𝑗 ∈ 𝐽. Therefore we can get rid of the sign 𝜎 and just consider 
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max
0⩽𝑘⩽2+3𝜖

 
∥
∥
∥
∥
∥
∑  

𝐼𝑙

 𝐴𝐢⊗ 𝐢(2+3𝜖,𝑘)
∥
∥
∥
∥
∥
, 

Since we are dealing with tensor powers of H equipped with (𝜖 − 1) −deformed inner 

products, we would rather have families (𝑣1+2𝜖
′ )1+2𝜖∈𝑆 and (𝑤𝑗

′)
𝑗∈𝐽

 that are orthonormal in 

H𝜖−1
⊗(2+3𝜖−𝑘)

 and H𝜖−1
⊗𝑘

, respectively. To achieve this, we will use the operators defining the 

(𝜖 − 1) −deformed inner products, 𝑃𝜖−1
2+3𝜖−𝑘 and 𝑃𝜖−1

𝑘 . Let 𝜉(𝐢)2+3𝜖,𝑘 be tensors defined by 

((𝑃𝜖−1
2+3𝜖−𝑘)

1

2⊗ (𝑃𝜖−1
𝑘 )

1

2) (𝜉(𝐢)2+3𝜖,𝑘) = 𝐢2+3𝜖,𝑘. 

Then we can write 𝜉(𝐢)2+3𝜖,𝑘 = 𝑣1+2𝜖
′ ⊗𝑤𝑗

′ for some tensors 𝑣1+2𝜖
′  and 𝑤𝑗

′ coming from 

orthonormal families in H𝜖−1
⊗(2+3𝜖−𝑘)

 and H𝜖−1
⊗𝑘 . Since the row/column Hilbert spaces are 

homogeneous operator spaces (and Haagerup tensor product allows tensoring cb maps) we 

can bound max0⩽𝑘⩽2+3𝜖  ∥∥∑𝐼𝑙  𝐴i⊗ 𝐢2+3𝜖,𝑘∥∥ by max0⩽𝑘⩽2+3𝜖  ∥∥∑𝐼𝑙  𝐴i⊗ 𝜉(𝐢)2+3𝜖,𝑘∥∥, up to a 

1 + 3𝜖-dependent constant coming from the norms of (𝑃𝜖−1
2+3𝜖−𝑘)

1

2 and (𝑃𝜖−1
𝑘 )

1

2. Because we 

are using the Haagerup tensor product, we have the following completely isometric 

isomorphism H𝑐⊗ℎ K̅1+𝜖 ≃ 𝒦(K,H). Under this identification the tensors 𝜉(𝐢)2+3𝜖,𝑘 

correspond to matrix units in 𝒦 (H𝜖−1
⊗𝑘 , H𝜖−1

⊗(2+3𝜖−𝑘)
). This means that the operators 𝐴𝐢 fill 

different entries in a large operator matrix. By comparing the operator norm with the Hilbert-

Schmidt norm we get the estimate 

∥
∥
∥
∥
∥
∑  

𝐢∈𝐼𝑙

 𝐴𝐢⊗𝑊𝐢
∥
∥
∥
∥
∥
⩽ 𝐶(1 + 3𝜖)(∑  

𝐢∈𝐼𝑙

  ∥∥𝐴𝐢∥∥
2)

1
2

⩽ 𝐶(1 + 3𝜖) (|𝐼𝑙|sup
𝐢∈𝐼𝑙

 ∥∥𝐴𝐢∥∥
2)

1
2

, 

which can be further bounded by 

𝐶(1 + 3𝜖) (𝑚1+3𝜖sup
𝐢∈𝐼𝑙

 ∥∥𝐴𝐢∥∥
2)

1
2

= 𝐶(1 + 3𝜖)𝑚
1+3𝜖
2 sup

𝐢∈𝐼𝑙

 ∥∥𝐴𝐢∥∥. 

Finally, to conclude that 𝑅 = 0 in the ultraproduct, we just observe that each component 

𝑅𝑖,𝑙 = (𝑅𝑖,𝑙(𝑚))𝑚∈ℕ is a a sequence of terms of the form appearing in Corollary (6.3.33) 

with coefficients (𝐴𝐢(𝑚))𝑚∈ℕ,𝐢∈𝐼𝑙 uniformly bounded in 𝐢 and 𝑚 by the constant 𝐷(1 + 3𝜖) 

from Corollary (6.3.32), so the norm 𝑚−
2+3𝜖

2 𝑅𝑖,𝑙(𝑚) is bounded from above by 𝐶(1 +

3𝜖)𝐷(1 + 3𝜖)𝑚−
1

2, and hence tends to zero. This finishes the proof of Corollary (6.3.31). 

With this tool at hand, we prove Corollary (6.3.34) (see [256]). 

Corollary (6.3.34)[264]: Let Γ𝜖−1(H) be a (𝜖 − 1) −Araki-Woods algebra. Let 

𝑃𝑛: Γ𝜖−1(H) → Γ𝜖−1(H) be the projection onto the ultraweakly closed span of {𝑊(𝜉): 𝜉 ∈

Hℂ
⊙𝑛}. Then, using the notation from Corollary (6.3.30), we have 

Θ ∘ 𝑃𝑛 = 𝑝(𝑃𝑛⊗ Id)𝜔2−1𝑝 ∘ Θ.                                      (14) 

Proof. Let 𝑊(𝜉) be a Wick word associated with 𝜉 ∈ Hℂ
⊙(1+3𝜖)

. Then we easily obtain 

𝜋𝜔2−1(𝑃𝑛𝑊(𝜉)) = 𝛿𝑛,1+3𝜖𝑊
1+2𝜖(𝜉). On the other hand, let us first apply 𝜋𝜔2−1 to obtain 

𝑊1+2𝜖(𝜉). Since, as we already remarked earlier, 𝑊(𝑒𝑘(1))…𝑊(𝑒𝑘(1+3𝜖)) = 𝑊(𝑒𝑘(1)⊗

⋯⊗ 𝑒𝑘(1+3𝜖)), the operators acted on by the 𝑃𝑛 part of the operator (𝑃𝑛⊗ Id)𝜔2−1 are 

exactly of length 𝑛. Therefore (𝑃𝑛⊗ Id)𝜔2−1𝑊
1+2𝜖(𝜉) = 𝛿𝑛,1+3𝜖𝑊

1+2𝜖(𝜉). By linearity, 
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this implies that 𝜋𝜔2−1 ∘ 𝑃𝑛 = (𝑃𝑛⊗ Id)𝜔2−1 ∘ 𝜋𝜔2−1 on the algebra of Wick words 

Γ̃𝜖−1(H). Compressing by the support projection 𝑝, we then obtain 

Θ ∘ 𝑃𝑛 = 𝑝(𝑃𝑛⊗ Id)𝜔2−1 ∘ 𝜋𝜔2−1(⋅)𝑝 = 𝑝(𝑃𝑛⊗ Id)𝜔2−1𝑝 ∘ Θ  on  Γ̃𝜖−1(H), 

where in the second equality we used the fact that 𝑝 ∈ 𝜋𝜔2−1(Γ̃𝜖−1(H))
′
 (see [130, Lemma 

4.1]). Since the desired equality holds on the ultraweakly dense subset Γ̃𝜖−1(H), and all maps 

under consideration are normal, equality holds everywhere. 

Corollary (6.3.35)[264]: Let 𝜑:ℕ → ℂ be a function such that the associated radial 

multipliers m𝜑: Γ𝜖−1(ℝ
𝑚) → Γ𝜖−1(ℝ

𝑚) have completely bounded norms uniformly 

bounded in m. Then the radial multiplier defined by 𝜑 on any (𝜖 − 1) −Araki-Woods 

algebra Γ𝜖−1(H) is completely bounded and 

∥∥𝐦𝜑: Γ𝜖−1(H) → Γ𝜖−1(H)∥∥cb
⩽ sup
𝑚∈ℕ

 ∥∥m𝜑: Γ𝜖−1(ℝ
𝑚) → Γ𝜖−1(ℝ

𝑚)∥∥
cb

= ∥∥m𝜑: Γ𝜖−1(ℓ2,ℝ) → Γ𝜖−1(ℓ2,ℝ)∥∥cb
. 

The main technical tool in establishing Corollary (6.3.35) is the following intertwining-type 

property for projections onto Wick words of a given length with respect to the ultraproduct 

embedding given by Corollary (6.3.30) 

Proof. From Corollary (6.3.34) we get that Φ ∘ m𝜑(𝑥𝑚) = 𝑝(𝐦𝜑⊗ Id)
𝜔2−1

𝑝 ∘ Φ(𝑥𝑚) for 

any 𝑥𝑚 = 𝑊(𝜉) with 𝜉 ∈ (Hℂ)
⊙(1+3𝜖). By linearity we can extend this equality to all 𝑥𝑚 ∈

Γ̃𝜖−1(H). It follows that we have control on the cb norm of 𝑚𝜑 acting on the norm-closure 

of finite Wick words, i.e. on the 𝐶∗-algebra 𝒜𝜖−1(H). Since m𝜑 is automatically normal 

(cf. [190, Lemma 3.4]), it extends to a normal map on Γ𝜖−1(H) with the same cb norm, so 

we get 

∥∥𝐦𝜑: Γ𝜖−1(H) → Γ𝜖−1(H)∥∥cb
⩽ sup
𝑚∈ℕ

 ∥∥m𝜑: Γ𝜖−1(ℝ
𝑚) → Γ𝜖−1(ℝ

𝑚)∥∥
cb
. 

Since Γ𝜖−1(ℝ
𝑚) is a subalgebra of Γ𝜖−1(ℝ

𝑚+1) which is the range of a normal faithful 

tracepreserving conditional expectation that intertwins the action of 𝑚𝜑, the sequence of 

norms on the right-hand side is non-decreasing, so 

∥∥m𝜑: Γ𝜖−1(H) → Γ𝜖−1(H)∥∥cb
⩽ lim
𝑚→∞

 ∥∥m𝜑: Γ𝜖−1(ℝ
𝑚) → Γ𝜖−1(ℝ

𝑚)∥∥
cb
. 

By the same token, this limit is not greater than ∥∥m𝜑: Γ𝜖−1(ℓ2,ℝ) → Γ𝜖−1(ℓ2,ℝ)∥∥cb
. Since 

the union of the algebras Γ𝜖−1(ℝ
𝑚) is strongly dense in Γ𝜖−1(ℓ2,ℝ), the union of the preduals 

is normdense in the predual of Γ𝜖−1(ℓ2,ℝ). Therefore the limit of norms is equal to the norm 

of the multplier defined on 𝐿1 (Γ𝜖−1(ℓ2,ℝ)). By dualising, we get that 

lim
𝑚→∞

 ∥∥𝑚𝜑: Γ𝜖−1(ℝ
𝑚) → Γ𝜖−1(ℝ

𝑚)∥∥
cb
= ∥∥m𝜑: Γ𝜖−1(ℓ2,ℝ) → Γ𝜖−1(ℓ2,ℝ)∥∥cb

. 

Corollary (6.3.36)[264]: Let Γ𝜖−1(H) be a (𝜖 − 1)-Araki-Woods algebra. Let 𝑃𝑛 be the 

projection onto Wick words of length 𝑛, defined by 𝑃𝑛𝑊(𝜉) = 𝛿𝑛,1+3𝜖𝑊(𝜉), where 𝜉 ∈

Hℂ
⊙(1+3𝜖)

. Then 𝑃𝑛 extends to a completely bounded, normal map on Γ𝜖−1(H) and ∥∥𝑃𝑛∥∥𝑐𝑏 ⩽

𝐶(𝜖 − 1)2(𝑛 + 1)2. 
Proof. We just observe that 𝑃𝑛 = m𝜑𝑛, where 𝜑𝑛 is the Kroenecker delta-function 𝜑𝑛(𝑘) = 

𝛿𝑘,𝑛. By Theorems 2.20 and (6.3.35), we obtain ∥∥𝑃𝑛: Γ𝜖−1(H) → Γ𝜖−1(H)∥∥cb ⩽∥

𝑃𝑛: Γ𝜖−1(ℓ2,ℝ) → Γ𝜖−1(ℓ2,ℝ) ∥cb⩽ 𝐶(𝜖 − 1)
2(𝑛 + 1)2. 

Now we devoted to the proof of the complete metric approximation property for Γ𝜖−1(H). 
Corollary (6.3.37)[264]: Let Γ𝜖−1(H) be a (𝜖 − 1) −Araki-Woods algebra. Then Γ𝜖−1(H) 
has the 𝑤∗-complete metric approximation property. 
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Proof. We define a net Γ𝑛,𝑡,𝑖: = Γ𝜖−1(𝑒
−𝑡𝑇𝑖)𝑄𝑛, where 𝑛 ∈ ℕ, 𝑡 > 0, 𝑖 ∈ 𝐼, the finite-rank 

maps 𝑇𝑖 come from the previous lemma, and 𝑄𝑛 = 𝑃0 +⋯+ 𝑃𝑛 = 𝑚𝜒{0,1,…,𝑛] is the radial 

multiplier which projects onto Wick words of length at most 𝑛. Each Γ𝑛,𝑡,𝑖 is a finite rank 

map on Γ𝜖−1(H); indeed, 𝑄𝑛 tells us that we have only Wick words of bounded length and 

𝑇𝑖 tells us that we can only draw vectors from a finite dimensional Hilbert space, so we are 

left with a space of the form ⊕
𝜖=−

1

3

𝑛 (ℂ𝑚)⊗(1+3𝜖), which is finite-dimensional. We will pass 

to a limit with 𝑖 → ∞, 𝑛 → ∞ and 𝑡 → 0. The rate of convergences of 𝑡 and 𝑛 will not be 

independent and will be chosen in a way that assures the convergence ∥∥Γ𝑛,𝑡,𝑖∥∥𝑐𝑏 → 1. 

Let us check now that it is possible, using a standard argument of Haagerup (note that 

Γ𝜖−1(𝑒
−𝑡)𝑃𝑘 = 𝑒

−𝑘𝑡𝑃𝑘):

∥∥Γ𝑛,𝑡,𝑖∥∥𝑐𝑏  = ∥∥Γ𝜖−1(𝑒
−𝑡𝑇𝑖)𝑄𝑛∥∥𝑐𝑏

 ⩽ ∥∥Γ𝜖−1(𝑒
−𝑡)𝑄𝑛∥∥𝑐𝑏

 ⩽ ∥∥Γ𝜖−1(𝑒
−𝑡)∥∥𝑐𝑏 + ∥∥Γ𝜖−1(𝑒

−𝑡)(𝟙 − 𝑄𝑛)∥∥𝑐𝑏

 ⩽ 1 +∑  

𝑘>𝑛

 𝑒−𝑘𝑡∥∥𝑃𝑘∥∥𝑐𝑏

 ⩽ 1 + 𝐶(𝜖 − 1)2∑  

𝑘>𝑛

 𝑒−𝑘𝑡(𝑘 + 1)2.

 

Since the series ∑𝑘⩾0  𝑒
−𝑘𝑡(𝑘 + 1)2 is convergent, for any 𝑡 > 0 the sum will tend to zero 

when 𝑛 → ∞. Therefore we can choose the parameters 𝑖, 𝑛 → ∞ and 𝑡 → 0 such that the 

completely bounded norms of the operators Γ𝑛,𝑡,𝑖 tend to 1. Then the operators 
Γ𝑛,𝑡,𝑖

∥∥Γ𝑛,𝑡,𝑖∥∥𝑐𝑏
 are 

completely contractive. We have to check that they converge ultraweakly to 𝟙. Since the 

denominators converge to 1 and the net is uniformly bounded, it suffices to prove strong 

convergence on a linearly dense set. It is very easy to verify that the convergence holds for 

finite simple tensors, so this ends the proof. 

Corollary (6.3.38)[264]: (see [256]). Let H be the Hilbert space constructed from the pair 
(H𝑅 , (𝑈𝑡)𝑡∈ℝ). Consider the 𝜎-weakly dense 𝐶∗-algebra 𝒜𝜖−1(H) ⊆ Γ𝜖−1(H) generated by 

the set {𝑊(𝜉): 𝜉 ∈ Hℝ} ⊂ B(ℱ𝜖−1(H)). This 𝐶∗-algebra has the complete metric 

approximation property. 

Proof. Consider once again the maps Γ𝑛,𝑡,𝑖: = Γ𝜖−1(𝑒
−𝑡𝑇𝑖)𝑄𝑛. The ranges of these maps are 

contained in Γ̃𝜖−1(H), the bounds for the norms remain the same, so it suffices to check the 

pointwise convergence in norm. Since the maps are uniformly bounded, it suffices to check 

the convergence on a linearly dense set, hence we may assume that 𝑥𝑚 = 𝑊(𝜉1⊙⋯⊙ 𝜉𝑘). 
If 𝑛 is large enough the 𝑄𝑛 that appears in the definition of Γ𝑛,𝑡,𝑖 has no effect on 𝑥𝑚, so we 

get 

Γ𝑛,𝑡,𝑖𝑥𝑚 − 𝑥𝑚 = 𝑒
−𝑘𝑡𝑊(𝑇𝑖𝜉1⊙⋯⊙𝑇𝑖𝜉𝑘) −𝑊(𝜉1⊙⋯⊙ 𝜉𝑘). 

This last expression is easily seen to converge to zero in norm as 𝑡 → 0 and 𝑖 → ∞. This can 

be seen either using the Khintchine inequality, or just by expressing 𝑊(𝜉1⊙⋯⊙ 𝜉𝑘) as a 

non-commutative polynomial in 𝑎𝜖−1(𝜉1+𝜖) 's and 𝑎𝜖−1
∗ (𝜉1+𝜖) 's and invoking the fact that 

lim
𝑖
 ∥∥𝑎𝜖−1

∗ (𝑇𝑖𝜉𝑘) − 𝑎𝜖−1
∗ (𝜉𝑘)∥∥ = lim

𝑖
 ∥∥𝑎𝜖−1(𝑇𝑖𝜉𝑘) − 𝑎𝜖−1(𝜉𝑘)∥∥

⩽ (1 − |𝜖 − 1|)−1/2lim
𝑖
 ∥∥𝑇𝑖𝜉𝑘 − 𝜉𝑘∥∥ → 0. 

Corollary (6.3.39)[264]: (see [256]). The 𝐶∗-algebra 𝒜𝜖−1(H) is 𝑄𝑊𝐸𝑃. 
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Proof. We will show that 𝒜𝜖−1(H) is weakly cp complemented in the von Neumann algebra 

Γ𝜖−1(H), meaning that there exists a ucp map Φ: Γ𝜖−1(H) → (𝒜𝜖−1(H))
∗∗ such that 

Φ|𝒜𝜖−1(H) = Id. 

Let (Φ𝑖)𝑖∈𝐼 be the net of maps implementing at the same time the 𝑤∗-complete metric 

approximation property of Γ𝜖−1(H) and the complete metric approximation property of 

𝒜𝜖−1(H). Using this net, we get maps Φ𝑖: Γ𝜖−1(H) → (𝒜𝜖−1(H))
∗∗, as Φ𝑖 maps Γ𝜖−1(H) 

into 𝒜𝜖−1(H). There exists a cluster point of this net in the point-weak*-topology and this 

cluster point is obviously a ucp map that is equal to identity, when restricted to 𝒜𝜖−1(H), 
because the net (Φ𝑖)𝑖∈𝐼 converges pointwise to identity on 𝒜𝜖−1(H). Since all (𝜖 −
1) −Araki-Woods algebras are QWEP (cf. [130]) and this property descends to subalgebras 

that are weakly cp complemented (cf. [113, Proposition 4.1 (ii)]), we get the claimed result. 
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List of Symbols 

 

Symbol Page 

CAR : Cartan 1 

dim : dimension  2 

ℓ2 : Hilbert space of sequences 2 

min : minimum 3 

⨁ : Direct sum 3 

⨂ : Tensor product 3 

ℱ(𝐻) : Full Fock space 3 

𝐿∞ : Essential Lebesgue space 4 

s.o : strong operator 7 

Ker : Kernel 10 

ICC : infinite conjugecy class 13 

p.m.p : probability-measure preserving 13 

Ind : induced 14 

ℓ∞ : Essential Banach space 16 

u.c.p : unital completely positive 16 

tr : trace 16 

diag : diagonal 17 

𝐿1 : Lebesgue on the real line 17 

dom : domain  19 

sup : Supremum 19 

max : maximum   24 

m-a. e : measurable almost everywhere   25 

Aut : Automorphism  25 

𝑞𝐵𝑀 : 𝑞-Brownian 42 

𝑞𝑂𝑉 : 𝑞-Ornstein-Uhlenberk 42 

𝐿𝑝 : Lebesgue space 48 

VN : Von Neumann 49 

inf : infimum   57 

c. b : completely bounded  57 

j. c. b : jointly completely bounded  57 

WEP : weak expectation property  61 

QWEP : quotient weak expectation property 67 

KMS :  Kubo-Martin-Schwinger 68 

OH : Operator Hilbertian   71 

GNS : Gelfand-Naimark-Segal 73 

AFD : approximately finite-dimensional  96 

mp : measure -preserving   97 

c.m. a. p : complete metric approximation property 97 

⊝ : Direct difference 113 

𝑔cd : greatest common divisor  120 

Inn : Inner   127 

out : outer   127 



271 

f. n :  faithful normal 127 

CN : Non-Crossing   821 

co : closure   163 

pol : polar   164 

⨀ : Algebraic Tensor product 164 

s. o. t : algebraic strong operator topology  166 

f. n. s : faithful normal semi finite  213 

CCAP : completely contractive approximation property 217 

CBAP : completely bounded approximation property 239 
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