

Sudan University of Science and Technology

College of Graduate Studies

Design of Virtual Reality Flight
Simulator

طیران الواقع الإفتراضيتصمیم محاكي

A dissertation submitted in partial fulfilment of the requirements for the
award of Degree of Master of Science in Mechatronics Engineering

Prepared By:
Husham Hassan Badawi Zakaria

Supervised By:
Prof. Moutaman Mirghani Dafalla

(December, 2021)

II

DECLARATION OF THE STATUS OF THESIS

I hereby declare that this thesis is based on my original work except

for citations and quotations which have been duly acknowledged. I also

declare that it has not been previously and concurrently submitted for any

other degree or award at Sudan University of Science and Technology or

other institutions.

Signature: _____________________

Name: Husham Hassan Badawi Zakaria

Date: December, 2021.

III

DECLARATION OF THE STATUS OF THESIS

I hereby declare that this thesis is based on the student original work

except for citations and quotations which have been duly acknowledged. I

also declare that it has not been previously and concurrently submitted for

any other degree or award at Sudan University of Science and Technology or

other institutions.

Signature: _____________________

Name of Supervisor: Prof. Moutaman Mirghani Daffalla

Date: December, 2021.

IV

ASSIGNING THE COPYRIGHT TO CGS, SUST

I, the signing here under, declare that I’m the sole author of the thesis for the

Master of Science in Mechatronic Engineering entitled “DESIGN OF

VIRTUAL REALITY FLIGHT SIMULATOR”, which is an original

intellectual work. Willingly, I assign the copy-right of this work to the

College of Graduate Studies (CGS), Sudan University of Science and

Technology (SUST). Accordingly, SUST has all the rights to publish this

work for scientific purposes.

Candidate’s Signature:

Candidate’s Name: Husham Hassan Badawi Zakaria

Date: December, 2021.

V

VI

DEDICATION

This thesis is dedicated to:

My homeland Sudan,

Sudan University of Science and Technology my second home,

My great parents, who never stop giving of themselves in countless ways,

My dearest wife, who leads me through the valley of darkness with light of

hope and support,

My beloved kids: Mahmoud, Layal, and Mohammed whom I can't force

myself to stop loving.

My colleagues who encouraged and supported me,

I dedicate this research.

VII

ACKNOWLEDGEMENT

I would first like to thank my thesis advisor Prof. Moutaman Mirghani

Dafallah from the National Centre for Research (NCR), director of Institute

of Space Research and Aerospace (ISRA) who consistently allowed this

thesis to be my own work, and steered me in the right direction whenever he

thought I needed it.

 Finally, I must express my very profound gratitude to my parents, wife

and colleagues for providing me with unfailing support and continuous

encouragement throughout my years of study and through the process of

researching and writing this thesis. This accomplishment would not have

been possible without them. Thank you.

VIII

ABSTRACT

Flight simulators are one of the most important factors influencing

training because they play an effective role in reducing the cost and

increasing the skills of the cockpit crew. There are several types of flight

simulators depending on different criteria such as the visual arrangements,

type of the platform weather fixed or has motion, and so many others. The

full flight simulator (FFS) represents the highest level of simulation because

of the meticulous details of all the aircraft parameters, yet it remains the

highest in terms of cost. In this thesis something between the meticulous part

and the cost side has been created by providing a virtual reality flight

simulator. A 3D model of the aircraft cockpit ERJ-145 is constructed with all

its internal instruments, display, indicators and switches in Blender

application with the addition of other feature offered by Blender like skinning

the cockpit and using animation as well. Then the cockpit is integrated in a

visual engine namely Xplane v9 and tested for integrity. The results were

quite acceptable since the plane worked and all instruments were alive during

the flight, some criteria were referenced with the International Civil Aviation

Organization (ICAO) for testing Flight Simulators. The simulator offers a

new VR experience in flight simulation. The addition of other enhancement

is recommended such as VR headset, haptic tracking, and other outer

environment improvements. The simulator also could be linked to other

simulator like an air traffic control (ATC) for more integration of training.

IX

لصــــالمستخ

 بھ تقوم لما وذلك التدریب في المؤثرة العوامل أھم من الطائرات محاكیات تمثل

ھناك عدة أنواع من أجھزة .الجوي الطاقم مھارة وزیادة التكلفة تقلیل في فعال دور من

سواء محاكاة الطیران تصنف وفقاً لمعاییر مختلفة مثل أنظمة الرؤیة ونوع آلیة الحركة

 Full) یمثل جھاز محاكاة الطیران الكامل .، والكثیر غیرھاكانت ثابتھ أم متحركة

Flight Simulator) بسبب التفاصیل الدقیقة في صناعتھ، أعلى مستوى من المحاكاة

لكنھ لا یزال أعلى من حیث التكلفة. في ھذا البحث تم إنشاء شيء ما بین الدقة و التكلفة

لقد تم إنشاء نموذج ثلاثي .من خلال توفیر جھاز محاكاة بإستخدام تقنیة الواقع الافتراضي

ض المختلفة في برنامج بكل العدادات وشاشات العر ERJ-145 الأبعاد لكابینة الطائرة

. كما تم إضافة مزایا آخري یوفرھا البرنامج مثل تلوین الأجزاء Blender التصمیم

 .واختبارھا Xplane v9 ثم تم دمج كابینة الطائرة في محرك بصري وھووتحریكھا.

 كانت تعمل أثناء عدادتكانت النتائج مقبولة تماماً نظراً لأن الطائرة كانت تعمل وجمیع ال

الرحلة كما تمت مقارنة الاداء مع بعض متطلبات المنظمة الدولیة للطیران (الإیكاو)

لتصمیم المحاكیات. یوصى بإضافة تحسینات أخرى مثل نظارات الواقع الإفتراضي

والتحسینات الأخرى للبیئة الخارجیة. یمكن أیضًا ربط جھاز المحاكاة بأجھزة محاكاة

 .التدریبفي زید من تكامل أخرى مثل التحكم في الحركة لم

X

TABLE OF CONTENTS

 Page No.

DECLARATION OF THE STATUS OF THESIS II
ASSIGNING THE COPY-RIGHT TO CGS IV
 V الآیـة
DEDICATION VI
ACKNOWLEDGEMENT VII
ABSTRACT VIII
 IX المستخلص
TABLE OF CONTENTS X
LIST OF TABLES XIII
LIST OF FIGURES XIV
LIST OF SYMBOLS XVI
LIST OF ABBREVIATIONS XVII

CHAPTER ONE: INTRODUCTION 1
1.1 Preface 2
1.2 Problem Statement 2
1.3 Proposed Solution 3
1.4 Objectives 3
1.5 Methodology 3
1.6 Research Outlines 4

CHAPTER TWO: BACKGROUND AND LITERATURE
REVIEW 5

2.1 Background 6
2.2 VR, AR, MR, and VE 7
2.3 Literature Review 8

2.3.1 History of VR 8
2.3.2 Flight Simulators 12
 2.3.2.1 History of Flight Simulators 13
 2.3.2.2 Virtual Reality Flight Simulators 14

XI

CHAPTER THREE: VIRTUAL REALITY TECHNOLOGY 16
3.1 Components of VR 17

3.1.1 Hardware 17

3.1.1.1 Input Devices, Sensors, Sense Organs and Tracking
Devices 17

 3.1.1.1.1 Tracking 2D Orientation 18
 3.1.1.1.2 Tracking 3D Orientation 20
 3.1.1.1.3 Magnetic Trackers 21
 3.1.1.1.4 Acoustic Trackers 22
 3.1.1.1.5 Optical Trackers 22
 3.1.1.1.6 Mechanical Trackers 23
 3.1.1.1.7 Eye Tracking 23
 3.1.1.1.8 3D Input Devices 24
 3.1.1.1.9 Desktop Input Devices 25

 3.1.1.2 Computer Workstation 26
 3.1.1.3 Displays 27

3.1.2 Software 28
 3.1.2.1 Computer Graphics 29

3.1.2.1.1 3D Modeling 30
3.1.2.1.2 Rendering 38

3.1.2.2 Popular 3D Modelling and Rendering Programs 40
3.1.2.2.1 Blender 40
3.1.2.2.2 SketchUp 40

3.1.2.3 Popular Game Engines 41
3.1.2.3.1 Unreal Engine 41
3.1.2.3.2 Unity 3D 41
3.1.2.3.3 FlightGear 42
3.1.2.3.4 X-Plane 42
3.1.2.3.5 Prepare3D 43

3.2 Classifications of VR Systems 45
3.2.1 Desktop VR 46
3.2.2 Fish Tank VR 46
3.2.3 Immersive Systems 46

3.3 Basic Concept of VR 46
3.4 Human Factors 47

3.4.1 Visual Perception 48
3.4.1.1 Field of View (FOV) 48
3.4.1.2 Visual Acuity 48
3.4.1.3 Temporal Resolution 49

XII

3.4.1.4 Luminance and Color 49
3.4.1.5 Depth Perceptions 49

 3.4.2 Human Physiology 50
3.5 Current VR Applications 50

3.5.1 Video Games 50
3.5.2 Immersive Cinema 51
3.5.3 Telepresence and Teleoperating 51
3.5.4 Virtual Societies 52
3.5.5 Training and Education 52
3.5.6 VR Headsets 53

3.6 Virtual Reality Flight Simulator 53

CHAPTER FOUR: VIRTUAL REALITY FLIGHT
SIMULATOR 56

4.1 3D Modelling 57
 4.1.1 3D Modelling in Blender 60

 4.1.1.1 Understanding Normals 61
 4.1.1.2 3D Object Construction 61

4.1.1.3 3D Cockpit 62
4.2 Tweaking the Cockpit 66
 4.2.1 Panel Region 66
 4.2.2 Datarefs 67
4.3 Testing the Simulator 69

CHAPTER FIVE: CONCLUSION AND
RECOMMENDATIONS 74

5.1 Conclusion 75
5.2 Recommendations 76

References 77
Appendices 80
Appendix A: The ERJ Data 81
Appendix B: Documentation of Xplane2Blender Plug-In 89
Appendix C: DataRefs for Animation Objects in X-plane 119

XIII

LIST OF TABLES

Table No. Title Page No.

3-1 Contribution of Human Senses 47

XIV

LIST OF FIGURES

Figure

No. Title Page
No.

2-1 Bird Experiment from Zurich University of Arts 6

2-2
A Rodent Experiencing Virtual Maze While Running on A
Spherical Ball. 7

2-3 Morton Heilig’s Sensorama 9
2-4 Morton Heilig’s HMD 10
2-5 Call of Duty Video Game 11
2-6 Edwin Link Drawing of the Simulator for Patent Application 13
3-1 Placement of Hardware in a VR System 17
3-2 Emitter and Receiver Units of a Magnetic Tracker 22
3-3 Beacon Trackers 23
3-4 The Principle of Mechanical Trackers 24
3-5 Limbal Tracking System 25
3-6 Dexterous Hand Master 26
3-7 Points in the Virtual World 31
3-8 A Dolphin Created Using Triangular Mesh 32
3-9 Translation and Relativity 33
3-10 Applying Various M to a Model 35
3-11 The Three-Dimensional Rotation 37
3-12 Forward Ray Tracing 39
3-13 Backward Ray Tracing 39
3-14 Blender and Google SketchUp 40
3-15 Unreal Engine and Unity 3D 42
3-16 Antonov AN-26B Simulator Using Xplane Visual Engine 43
3-17 Prepare3D Visual Engine in Military and Civil Applications 44
3-18 A 3-Channels Dedicated Visual Engine 45
3-19 Schematic of a Typical VR System 47
3-20 Human Vision FOV 48
3-21 Snellen’s Chart 49
3-22 Pokémon Go Video Game 51

XV

3-23 The Idea of Teleoperating 52
3-24 A Flight Simulator Used by USAF Utilizing CAVE Concept 53
3-25 Possible Configuration for Data Flow of a VRFS 55
4-1 Block Diagram of the Model 57
4-2 Modelling the Fuselage in Plane-Maker 58

4-3
Fuselage Data, Body Location, And Body Texture of the
Aircraft 59

4-4 Front and Top View of ERJ-145 in Plane Maker 60
4-5 Edge, vertex, polygon, and Face Concepts 61
4-6 The Process of Modelling the Outer Skin of the ERJ Cockpit 62
4-7 The ERJ Outer Skin of the Cockpit 63
4-8 The Instruments and Glare shield Panels 64
4-9 The Overhead Panel 65
4-10 The 3D Model of the ERJ-145 Cockpit 66
4-11 UV Mapping 67
4-12 Assigning an Armature to the Gear Handle and the Yoke 68
4-13 Testing the Simulator in Xplane 69

4-14 Artificial Horizon, Airspeed, Altimeter, and Engines
Indicators 70

4-15 Engine Acceleration Criteria 71
4-16 Engine Acceleration Criteria for Left and Right Engines 71
4-17 Maximum Thrust for Left and Right Engines 72
4-18 Knots Indicated Airspeed, Vertical Velocity and Altitude 73

XVI

LIST OF SYMBOLS

No. Symbol Interpretation
1 𝑎𝑎 Offset Coefficient
2 𝑏𝑏 Scale Coefficient
3 α Yaw Counterclockwise Rotation
4 β Pitch Counterclockwise Rotation
5 γ Roll Counterclockwise Rotation
6 Reye The View Point Of Orientation
7 𝜔𝜔� Estimated Angular Velocity
8 𝜔𝜔 True Angular Velocity
9 𝜃𝜃� Estimated Orientation
10 𝜃𝜃 True Orientation
11 𝑘𝑘 Sampling Rate
12 M Model’s Orientation Matrix
13 𝑚𝑚 Any Real Number
14 U Horizontal Coordinate of a Mesh
15 V Vertical Coordinate of a Mesh
16 V2 Take-off Safety Speed

XVII

LIST OF ABBREVIATIONS

Abbreviation Interpretation
2D Two-Dimensions
3D Three-Dimensions
AC Alternating Current / Aircraft
AR Augmented Reality
ATC Air Traffic Control
CRT Cathode Ray Tube
DC Direct Current
DHM Dexterous Hand Master
DIY Do It Yourself
DLP Digital Light Processing
DOF Degrees of Freedom
EASA European Aviation Safety Agency
EICAS Engine Indication and Crew Altering System
EOG Electrooculography
ERJ Embraer Regional Jet
FS Flight Simulator
FSTD Flight Simulation Training Device
FFS Full Flight Simulator
FOV Field of View
FPS First-Person Shooter / Frame Per Second
FFS Full Flight Simulator
GI Global Illumination
GPU Graphical Processing Units
G/S Glide Slope
HMD Head Mounted Display
Hz Hertz
ICAO International Civil Aviation Organization
IMU Inertial Measurement Unit
iOS iPhone Operating System
KIAS Konts Indicated Airspeed
LAN Local Area Network
LCD Liquid Crystal Display
LCoS Liquid Crystal on Silicon
LED Light-Emitting Diode

XVIII

MFD Multi-Function Display
MIT Massachusetts Institute of Technology
MR Mixed Reality
OpenGL Open Graphics Library
P3D Prepar3D
PC Phase-Coherent / Personal Computer
PFD Primary Flight Display
RVR Runway Visual Range
SGI Silicon Graphics International
TOF Time-of-Flight
TUM Technische Universität München
UE Unreal Engine
USAF United States Air Force
USB Universal Serial Bus
VATSIM Virtual Air Traffic Simulation
VE Virtual Environment
VR Virtual Reality
VRFS Virtual Reality Flight Simulator
VVI Vertical Velocity Indicator
VWG Virtual World Generators
WoW Window on World

CHAPTER ONE

INTRODUCTION

2

CHAPTER ONE

INTRODUCTION

1.1 Preface
 If aerospace is one of the finest modern sciences, then flight simulation

is one of the most complexed. The invention of the airplane by the Wright

brothers was a major milestone in the scientific and technological

applications in our modern history so as flight simulators.

The first issue that emerged in the beginnings of aviation is how to build

an airplane in a way that makes it fly, and the second is to find ways to train

flying those airplanes properly. Over time, performance manuals and

technical data have become more complexed, thus increasing the burdens on

pilots, not to mention the increased complexity of aircraft systems and the

need for pilots to keep updated on a regular basis which has exacerbated the

issue. To simplify this, flight simulators emerged as a response to simplifying

and solving those problems.

Flight Simulators are designed to be used for different purposes, for

example pilots and engineers training, which contributes to some extent to

efficient and qualified personnel. Full flight simulators (FFS) are well known

for the high ability to mimic real environment and interaction, but on the

other hand it has a very high amount of cost due to that fact that it is designed

only for specific type of aircraft or helicopter or sometimes an entire aircraft

family.

3

1.2 Problem Statement
The main problem of flight simulators is the high cost of establishing

such devices, nevertheless low-cost flight simulators were also introduced

but it affects the quality of training. Also, FFS are cockpit dependent upon.

Generic FFS were also developed for lowering the cost of several simulators

but again this has major implications on both cost and quality.

1.3 Proposed Solution
Designing a generic virtual reality flight simulator capable of

simulating an airplane with complete flight physics, dynamics and

surrounding environment which can be used in airmen and engineers

training. Thus, in return lowering the cost of building a flight simulator as

operation costs with regards to quality.

1.4 Objectives

• To design a flight simulator that contributes to lower the cost of

building such establishments.

• To not affect the quality of training by reducing the cost of

building.

• To integrate the new technology emerging i.e. virtual reality in

the design of flight simulators.

1.5 Methodology
A comprehensive study is conducted to conceptualize virtual reality

with flight simulators. Then the type of the aircraft is selected, designed in a

3D model, Afterwards the 3D model is placed inside a visual engine to run

the model.

4

1.6 Research Outlines
Chapter one provides an introduction to the research, the problems

statement, proposed solution, objectives and the research methodology.

 Chapter two is a review of literature of the virtual reality (VR),

including scientific papers of different authors in the field of VR Technology.

As well as the history of flight simulator and the stages of its development.

 Chapter three provides an extensive insight of view VR technology,

how does it work, related terms and definitions, and the interaction of the VR

with human physiology.

 Chapter four is the implementation of VR into flight simulator,

designing different parts of the simulator, and the mechanism of work.

 Chapter Five discusses the findings of this research and provides

relevant recommendations for future work.

CHAPTER TWO

BaCkgROUND
aND LITERaTURE

REVIEW

6

CHAPTER TWO

BACKGROUND AND LITERATURE REVIEW

2.1 Background
 Normally in the beginning Virtual Reality (VR) is defined, but before

that, these two examples of VR experiences are explored, the first example

as shown in figure 2-1: (a) illustrates a man flapping his arms facing an air

blower, this resembles a bird flapping its wings and as the person moves his

arms the air hits the person and views a virtual city while flying and flapping,

the scene is clearly visible in figure 2-1 (b) where the user sees the city of

Zurich as a bird eye view.

 (a) (b)

Figure 2-1: Bird Experiment from Zurich University of Arts [1]

The other example in figure 2-2: (a) shows a rodent running on a

spherical ball that acts as a treadmill while viewing virtual maze, as seen in

the configuration in figure 2-2 (b) the use of projectors and collimated

establishments, such establishments are used to investigate the neural

foundations of behavior, the use of VR technology allows these types of

investigations which cannot be easily used with classical behavior setups.

7

(a) (b)

Figure 2-2: A Rodent Experiencing Virtual Maze [1].

 Thus, there are many definitions for VR, but we wanted our definition

to be broader enough to cover commonalities and differences as well as

merits of the mentioned examples, so VR might be defined as: The illusion

of participation in an artificial sensory simulation rather than external

observation.

2.2 VR, AR, MR, and VE
Computer Graphics basically means creating and manipulating images

to produce interactive images, animations, etc. Use of computer graphics led

to development of Augmented Reality, Virtual Reality and Mixed Reality

[2].

There is some difference between Virtual reality (VR), Augmented

Reality (AR), and Mixed Reality (MR), whereas VR is the use of computer

graphics systems in combination with various display and interface devices

to provide the effect of immersion in the interactive 3D computer-generated

environment. We call such an environment a virtual environment (VE) [3].

Mixed reality (MR) refers to the incorporation of virtual computer

graphics objects into a real three-dimensional scene, or alternatively the

inclusion of real-world elements into a virtual environment. The former case

is generally referred to as Augmented Reality (AR) [3].

8

 The objective of an AR framework is to improve the client's

impression of and cooperation with this present reality by supplementing this

present reality with 3D virtual articles that seem to exist together in an

indistinguishable space from this present reality [2].

2.3 Literature Review
2.3.1 History of VR

 The very first idea of VR was presented by Sutherland in 1965; where

he stated: make that (virtual) world in the window look real, sound real, feel

real, and respond realistically to the viewer’s actions, but however, history

does not really begin there.

It was early science fiction literature that sparked the imaginations of

inventors to try to recreate these artificial or illusory environments with

technology. Science fiction literature has even coined and/or popularized

some of VRs most used terms, such as cyberspace or avatar [4]. Burdea and

Coiffet in 2003 described VR as an integrated trio of immersion, interaction,

and imagination i.e. the three I’s of VR [5].

Probably the first VR device that encompassed all three I’s was Morton

Heilig’s Sensorama seen in figure (2-3), he wanted to create a technology

that he called cinema of the future the basic concept of which was a

technology of total immersion into a film in which viewer will not only see

the image and hear the sound, but also would experience other physical

sensations – the smells, the shaking, the wind, etc.

Initially, Heilig called his creation the theater immersion, but later,

when the time came to patent the development, the project was given the

name Sensorama. Unfortunately, work on the project was frozen soon as

9

Heilig hasn’t received any financing, so crucial for the further development

of the project. The investors just could not understand that such a technology

could have been successfully sold.

However, Heilig was tagged as the father of VR, and his Sensorama

became, in a sense, the prototype of the future 3D-cinemas and attractions.

Heilig also received a US patent for his Head Mounted Display (HMD) that

supported stereo sound and an odor generator as shown in figure (2-4) [4].

The 1960s and 1970s continued to see significant advancements in VR

and computer graphics. One of the most notable would be in 1963 when Ivan

Sutherland’s published his dissertation at Massachusetts Institute of

Technology (MIT) on the first interactive computer graphics system named

Sketchpad.

Figure 2-3: Morton Heilig’s Sensorama [1]

The Sketchpad system makes it possible for a man and a computer to

converse rapidly through the medium of line drawings. Heretofore, most

interaction between man and computers has been slowed down by the need

to reduce all communication to written statements that can be typed [6].

10

Figure 2-4: Morton Heilig’s HMD [7]

If we further investigate the history of VR, we can find aspects in

earlier history that contributed to some extend to the current VR; the

paintings in the walls more than 30,000 years ago leaving so much to a human

to imagine, putting pictures in motion also considered part of this history as

well.

If we recall the first experience in the cinema where a train was moving

towards the spectators fooling them, it was going to hit them although it

hadn’t any audible sound for more realism but actually it worked. The next

era was the animated pictures or some might refer to it as anime or cartoons.

Unlike motion pictures or cartoons video games as a great interaction

capability in terms of closed loop interaction; where the difference here

between closed loop and open loop is that if a person has partial control over

the sensory simulation then this is considered as closed loop and vice-versa,

the closed loop control varies in regards to person motion like movement of

eyes, hands, heads and others.

11

 Different video games we can browse here as part of this heritage such

as the famous Super Mario Bros which represented a third person

perspective. Where a first-person shooter games (FPS) such as Call of Duty

as seen in figure (2-5).

Figure 2-5: Call of Duty Video Game [7]

Additionally, a device was introduced by Sir Charles Wheatstone in

1838 called the stereoscope that used mirrors to depict different image to left

and right eyes to induce a 3D effect, this system employs two cameras and

two projectors, and, furthermore, requires a spectator to use polaroid glasses

in order to have the left eye image reaches only the left eye and the right eye

image reaches only the right eye.

Although this system does provide true 3D, it is hampered seriously

by the fact that only one-twelfth of a viewer’s field of vision is used.

Therefore, objects floating in space are disagreeably truncated by the pictures

frame [1], thus another way to increase the sense of immersion and depth was

to increase the field of view. The Cinerama system from the 1950s offered a

curved, wide field of view that is similar to the curved, large LED (Light-

Emitting Diode) displays offered today, along these lines, we could place

screens all around us.

12

This idea led to one important family of VR systems called the CAVE,

which was introduced in 1992 at the University of Illinois, the user enters a

room in which video is projected onto several walls. The CAVE system also

offers stereoscopic viewing by presenting different images to each eye using

polarized light and special glasses. Often, head tracking is additionally

performed to allow viewpoint-dependent video to appear on the walls [1].

2.3.2 Flight Simulators

 Before the introduction of flight simulators, a pilot learnt how to fly by

instruction from another pilot, flight simulators were designed to be used for

pilots training and engineers training, which contribute to some extent to

efficient and qualified personnel. Full flight simulators are well known for

the high ability to mimic real environment and interaction, but on the other

hand it has a very high amount of cost due to that fact that it is designed only

for specific type of aircraft or helicopter or sometimes aircraft family.

 Flight Simulators or full-scale flight simulators are being used since

the past century and they played great role in rising up the efficiency of

ground and air crew, the evolution of flight simulator has taken wide strides

towards more realistic simulations in regards to visual system, reactions of

the aircraft or the engines, or emulating the motion of the aircraft until

reaching 6 degrees of freedom (6DOF). Some flight simulators serve more

than one type or similar types as this one is called generic. Full Flight

Simulators (FFS) has an exact replica of the cockpit.

2.3.2.1 History of Flight Simulators

By 1910, the primitive means of flight training took the initial form, a

mockup of an aircraft consists of two halves of a barrel, where the bottom

half consists of the base and the upper section represents the cockpit of the

13

aircraft, and connected with pulleys and wires with controls to resemble the

process of keeping the balance of the real plane.

In 1927, Ed Link invented his own flight training device when he was

unsatisfied by the way the training was held. The trainer was based on the

vacuum technology used in automatic musical instruments of the 1920s. In

fact, the earliest trainer sat on a series of organ bellows, which would inflate

or deflate to various heights to cause the trainer to bank, climb, and dive. In

1930, Ed Link organized the Link Flying School in Binghamton, New York.

The trainer allowed him to reduce the cost of flying lessons by providing a

way for the student pilots to learn some flying skills on the ground [7].

Figure 2-6: Edwin Link Drawing of the Simulator for Patent Application

After the Link's electromechanical training device, immediately after

World War II, simulators based on standard primitive computers emerged

and the computer began to take its share in facilitating and improving data

for flight simulators. In 1948, Curtis Wright delivered the first flight

simulator to a civilian airliner, Pan American, which was not mobile but

static, not even with visual systems for displaying the aircraft's external

14

environments, but it provided an excellent opportunity to understand the

aircraft's systems.

Movable platform flight simulation systems emerged in the late 1950s,

and were equipped with a terrain display system that was limited in width

and limited to the area adjacent to the airport to be operated. As if they were

magnified, so if a very short flight is to be done, it would require a model the

size of a giant sports stadium.

In the 1960s, digital computers were first used in flight simulators, and

by the seventies, motion platform with six hydraulic rods were integrated in

the design of flight simulators. It should be noted that the flight simulators

are also subject to licensing to be certified as an aviation training device, just

like aircraft.

There is no doubt that flight simulators are indispensable. As the

computer and optical systems evolve, pilots' sensation will be improved

through the virtual reality generated by these devices. Flight in the simulator

is usually harder than actually flying the plane itself, as we have pointed out

because it was designed to do so, in order to simulate the hardest conditions

but without loss of life.

2.3.2.2 Virtual Reality Flight Simulators

 Virtual reality flight simulators (VRFS) was an attempt to reduce the

cost implemented by using high-end technology and lots of hardware in order

to make the experience of the flight real. Aslandere from Technische

Universität München (TUM) in 2018, they presented an outline of a generic

distributed virtual reality application which is aimed to meet the needs of the

aerospace industry [7]. The preliminary results show that the VRFS is a

15

promising flight simulator concept in spite of the real time constraint. The

VRFS is used as an engineering flight simulator for testing new aircraft

concepts at the moment. The virtual hand-button interaction might be

sufficient for virtual prototyping but it is not ready for pilot training yet.

Valentino in 2017 developed a virtual reality flight simulator

successfully to simulate the flying of the airplane namely Cessna 182 with

simple flight dynamics, limited terrain and objects [8]. It gives great

perspective of flying in mid-air, they used Samsung Galaxy S7 with Android

Marshmallow v6.0.1 and virtual reality supported Samsung Galaxy Gear VR,

Gamepad, laptop, and a unity software.

CHAPTER THREE

VIRTUaL REaLITy

TECHNOLOgy

17

CHAPTER THREE

VIRTUAL REALITY TECHNOLOGY

3.1 Components of VR
 As any computerized system VR consists of two main components;

hardware and software components.

3.1.1 Hardware

The hardware produces stimuli that override human senses; in return

hardware is subdivided into: Input devices and sense organs, Computer

workstation, and output devices or displays. Figure (3-1) shows the

arrangement of hardware among other components in a generalized VR

system.

Figure 3-1: Placement of Hardware in a VR System

3.1.1.1 Input Devices, Sensors, Sense Organs and Tracking Devices

Three categories of tracking may appear in VR systems, based on what

is being tracked; the first category is the user’s sense organs: most of the

focus is on head tracking, which is sufficient for visual and aural components

of VR; however, the visual system may further require eye tracking if the

User

Hardwar

Physical World

Tracking

Simulation

18

rendering and display technology requires compensating for the eye

movements [1].

The second category is the user’s other body parts: if the user would

like to see his body parts in VE then tracking of the user body parts is crucial.

Perhaps facial expressions or hand gestures are needed for interaction. And

the third category is the rest of the environment which is the real world that

surrounds the user.

Position and orientation tracking devices provide information to

immersive VR system, for instances the position and orientation of the user’s

head required for rendering of the images, also other body parts can be

tracked to render images according to their relative movement.

Three-dimensional objects have six degrees of freedom: position

coordinates (x, y, and z offsets) and orientation (yaw, pitch, and roll angles

for example). Each tracker must support this data or subset of it. In general,

there are two kinds of trackers: those that deliver absolute data (total position

/ orientation values) and those that deliver relative data (i.e. a change of data

from the last state) [9].

3.1.1.1.1 Tracking 2D Orientation

The 2D orientation of a rigid body is estimated using Inertial

Measurement Unit (IMU); so, the application is determining the view point

of orientation (Reye), and determining the orientation of a hand-held

controller. In fact, ever body part or moving object in the physical world can

be determined if has an IMU attached to.

The orientation of 2D is the basis and the concept will further be

applied to 3D one. First, let’s imagine mounting a gyroscope on spinning

19

merry-go-around or carousel to measure the angular velocity. In this case the

gyroscope will be producing an estimated measurement of angular velocity

denoted by 𝜔𝜔�, while the true value of the angular velocity denoted by 𝜔𝜔,

because of the calibration error where 𝜔𝜔 ≠ 𝜔𝜔� unless in ideal conditions;

different IMUs correspond to different accurate measurements, thus:

𝜔𝜔� = 𝑎𝑎 + 𝑏𝑏𝜔𝜔 (3-1)

Where: 𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑏𝑏 are offset and scale coefficients respectively, if the

measurement is 100% accurate then 𝜔𝜔 = 𝜔𝜔� and 𝑎𝑎 = 0, 𝑏𝑏 = 1. Now

combining the measured and the true angular velocities we have:

𝜔𝜔� − 𝜔𝜔 = 𝑎𝑎 + 𝑏𝑏𝜔𝜔 − 𝜔𝜔 = 𝑎𝑎 + 𝜔𝜔 (𝑏𝑏 − 1) (3-2)

Let's assume we've used a sensor to estimate the orientation of the

merry-go-around, so we'll compute the estimated orientation 𝜃𝜃� and compare

it to the true value of 𝜃𝜃. By using this imperceptibly over time will produce

the drift error denoted by 𝑎𝑎(𝑡𝑡) which is:

𝑎𝑎(𝑡𝑡) = 𝜃𝜃(𝑡𝑡)− 𝜃𝜃�(𝑡𝑡) (3-3)

For simplicity suppose 𝜃𝜃(0) = 0 and 𝜔𝜔 is constant, by integrating (3-2) the

drift error is:

𝑎𝑎(𝑡𝑡) = (𝜔𝜔� − 𝜔𝜔)𝑡𝑡 = (𝑎𝑎 + 𝑏𝑏𝜔𝜔 − 𝜔𝜔)𝑡𝑡 = (𝑎𝑎 + 𝜔𝜔(𝑏𝑏 − 1)𝑡𝑡 (3-4)

The drift error is proportional to 𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑏𝑏 as 𝑎𝑎 deviates from 0, and 𝑏𝑏 from1.

 Considering the second component and ignoring 𝑎𝑎 will result in the

drift error proportional to the speed of the carousel. In VR headset with a

gyroscope; means the rate of the tracking error increases as the user's head

rotates quickly.

 We've four major problems if dealt with correctly will have an

effective tracking system, they are:

20

1- Calibration: if we've two sensors and one of them is accurate, then the

other can be calibrated to work closely to the other.

2- Integration: The orientation is determined by aggregating the measurement

of discrete points in time provided by the sensor, and the output of the sensor

arrives at a regular sampling rate, for instance suppose we've a sensor

characteristic; provided measurement time 1 ms = 1000 Hz sampling rate.

Let 𝜔𝜔�|𝑘𝑘| denotes to the Kth sample which arrives at 𝑘𝑘𝜟𝜟𝜟𝜟, we can estimate

𝜃𝜃(𝑡𝑡) at 𝑡𝑡 = 𝑘𝑘𝜟𝜟𝜟𝜟, by integration;

𝜃𝜃�|𝑡𝑡| = 𝜃𝜃(0) + ∑ 𝜔𝜔� |𝑖𝑖|𝑘𝑘
𝑖𝑖=1 𝜟𝜟𝜟𝜟 (3-5)

Each 𝜔𝜔� |𝑖𝑖| rotates 𝛥𝛥𝜃𝜃(𝑡𝑡) = 𝜔𝜔� |𝑖𝑖| 𝜟𝜟𝜟𝜟, we can rearrange the equation as:

𝜃𝜃�|𝑘𝑘| = 𝜔𝜔�|𝑘𝑘| 𝜟𝜟𝜟𝜟 + 𝜃𝜃�[𝑘𝑘 − 1] (3-6)

3- Registration: The initial orientation must be determined which is the initial

alignment between the real and virtual world.

4- Drift error: which grows overtime and cannot be allowed to accumulate.

3.1.1.1.2 Tracking 3D Orientation

The gyroscope measures angular velocities along three orthogonal axis

which results in 𝜔𝜔�𝑥𝑥.𝜔𝜔�𝑦𝑦 .𝑎𝑎𝑎𝑎𝑎𝑎 𝜔𝜔�𝑧𝑧, the sensing elements in the gyroscope are

micromachined mechanical that vibrate and if the sensor rotates in its

direction of sensitivity then the elements output is converted to electrical

signals, in turn the electrical signals are calibrated to produce an output in

degrees or radians per seconds.

IMU's are discussed before have commonly acetometers that measure

linear acceleration along the three axes to obtain 𝑎𝑎�𝑥𝑥. 𝑎𝑎�𝑦𝑦 .𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎�𝑧𝑧. Likewise, in

the 2D tracking, the elimination of calibration, integration, registration, and

drift error is essential.

21

3.1.1.1.3 Magnetic Trackers

There are two varieties of magnetic tracker in today VR application,

one uses alternating current (AC), and the other one uses direct current (DC).

The alternating current magnetic tracker is composed of three units: a

magnetic emitter assembly, a magnetic receiver assembly, and a control unit.

The emitter assembly is constructed of three mutually perpendicular coils that

emit a magnetic field when fed a current. The sensor assembly is, likewise,

constructed of three mutually perpendicular coils that produce currents when

moved through the magnetic field, a current is sent to the emitter coils in a

sequence that radiates three mutually perpendicular nutating (rotating)

magnetic fields.

The field induces currents in the sensor coils; the current induced in

each coil varies with the distance from the emitter. Sensor position and

orientation are calculated from these nine induced currents (three sensor

currents for three emitter coils in each nutation). Position and orientation are

determined by calculating the small changes in the sensed coordinates and

then updating the previous measurements [9].

 Direct current emitters represent the recent development in the field;

these systems allow the sensor to work closer to metal objects better off the

alternating current trackers.

The emitter radiates a sequence of dc pulses; in effect switching the

emitted field off and on. This design is intended to reduce the effect of

distorting eddy currents induced by metallic objects because eddy currents

are created only when the magnetic field is changing [9].

22

Figure 3-2: Emitter and Receiver Units of a Magnetic Tracker [9]

3.1.1.1.4 Acoustic Trackers

 Also known as ultrasonic trackers since they use waves above 20 KHz

for determining the position and orientation of objects. Using sound allows

only determination of distance between two points; hence sets of emitters and

receivers are used to determine accurate position and orientation.

The two types of acoustic trackers either they use Time-of-Flight

(TOF) or Phase-Coherent (PC). TOF trackers measure the time of pulses

from emitter to receiver, whereas PC trackers compare the phase of a

reference signal with the phase of the received signal in calculating the

position and orientation.

3.1.1.1.5 Optical Trackers

 Optical Trackers are classified into three categories:

The first category is Beacon Trackers: they use a bevy of beacons and

cameras to capture the beacons patterns and since the geometries of the

beacons and cameras are known it is relatively easy to calculate the position

and orientation.

The second category is Pattern Recognition: these systems determine

position and orientation by comparing known patterns to sensed ones.

23

The third category is Laser Ranging: This approach uses laser transmitted

onto the tracked objects through diffraction grating. A sensor is implemented

to analyze the diffraction pattern to calculate the position and orientation.

Figure 3-3: Beacon Trackers [9]
3.1.1.1.6 Mechanical Trackers

 A group of mechanical arms with joints are used to measure position

and orientation of a free joint in relation to the base. The angles of the tracker

are measured with the help of potentiometers. This allows deriving the

position and orientation.

3.1.1.1.7 Eye Tracking

 From the user’s point of view eye tracking is the most appropriate way

of image rendering; the most important eye tracking technology is discussed

as follows:

1- Limbus tracking: the sharp boundary between the iris and the sclera

(limbus) can be easily identified. The infrared LEDs and photo-transistors are

mounted on the user’s glasses to monitor infrared spots reflections from the

iris and sclera in order to determine the gaze direction. This technique offers

good accuracy (1° to 3°), but limits vertical eye movements (by extreme

vertical eye movements limbus is partially obscured by eye-lids what hinders

exact measurement) [9].

24

Figure 3-4: The Principle of Mechanical Trackers [9]

2- Image tracking: this technique uses video camera and image processing in

order to determine the gaze direction.

3- Electrooculography (EOG): this one used to measure the potential

difference between the front and the back of the human eye caused by

electrodes placed besides the eyes to measure the corneo-retinal standing

potential that exists.

4- Corneal reflection: a beam is transmitted to the surface of the cornea then

the reflected one is analyzed in terms of photo-transistors functionality.

3.1.1.1.8 3D Input Devices

 These devices were developed to facilitate the human-computer

interaction; they may be either attached to our bodies or hand-held. The

functions of these devices are to select, move, modify, reposition, etc of

virtual objects.

3D Mice and Bats: They somewhat represent the basic and simple devices or

interaction tools that one can use. Also they are equipped with buttons for

other purpose.

25

Figure 3-5: Limbal Tracking System [1]

Gloves: Mainly they detect the joint angles of finger by using fiber optic

sensors, foil-strain technology or resistive sensors; additionally, they are

enhanced with a tracker for better calculations of position and orientation.

Dexterous Manipulators: They are developed for applications of VR that

require precise control; for instances, surgical operations. Further

development of these devices is the Dexterous Hand Master (DHM) they can

trace three joint angles for every finger i.e. 4DOF for every finger, and

20DOF for one hand.

3.1.1.1.9 Desktop Input Devices

 What makes these devices popular is the low-price and functionality

rather than the 3D input devices, although they decrease the level of

immersion they still handy.

Space Ball: It provides 6DOF, that the user holds the ball and does the

manipulation. It has buttons that do special functions for more interaction.

Cyber Man: Same as the space ball it provides 6DOF, it is the most used

control in computer games, and it also sometimes comes with vibration motor

to indicate an unusual event or attention grabbing property.

2D Input Devices: These 2D devices are popular, widely separated, and

relatively cheap, that does not mean less efficiency nevertheless they are used

26

to control 3D objects. The philosophy behind this is the design of a virtual

controller to be controlled by these 2D devices; in return the virtual controller

can command the 3D object.

Figure 3-6: Dexterous Hand Master [1]

3.1.1.2 Computer Workstation

The main function of computer workstations is to execute the virtual

world generators (VWG) and they are normally higher than regular personal

computers (PCs). They offer great capabilities for visualization and

manipulation of graphics, example of these workstation sold by Dell, HP, and

Silicon Graphics International (SGI).

In addition to the main computing systems, specialized computing

hardware may be utilized; graphical processing units (GPUs) have been

optimized for quickly rendering graphics to a screen and they are currently

being adapted to handle the specific performance demands of VR. Also, a

display interface chip converts an input video into display commands.

Finally, microcontrollers are frequently used to gather information from

sensing devices and send them to the main computer using standard

protocols, such as USB [9].

27

Virtual world generators run on the computer workstation and as the

name implies are generating the virtual world which might be synthetic

world, previous record of the real world, or a live connection to another part

of the real world. The user discerns the generated virtual world through the

targeted sense organ using a display designed to mimic the type of stimulus

that appears without VR.

 In the case of human eyes, the display might be a smart phone screen

or the screen of a video projector. In the case of ears, the display is referred

to as a speaker. A display need not be visual, even though this is the common

usage in everyday life [1]. The process of extracting the visuals from the

VWG to the display system is called rendering, it will be discussed later in

this chapter.

3.1.1.3 Displays

 They are used to generate a stimulus for a targeted sense organ, and

since vision contributes up to 70% of the human sense stimulation in VR, the

main concentration will be for the eye. There are many implementations of

displays in VR applications; for cave systems projectors and mirrors are used,

different types of projectors technology are into usage, including DLP

(Digital Light Processing), LCD (Liquid Crystal Display), and LCoS (Liquid

Crystal on Silicon). For headsets, smart phones’ screens are used as displays

and are put close to eyes with the help of lens for each eye.

Currently screen manufacturers are focusing on screens for headsets

by leveraging the latest LED display technology from the smart phone

industry, some are targeting one display per eye with frame rates above 90Hz

and over two megapixels per eye [1].

28

Displays are also for other sense organs of the human body i.e. for the

hearing sense organ; speakers address the ear, also bone conduction is used

which a vibration is generated into the skull making the bones conduct this

vibration to the inner ear. For touch, there are haptic displays. Haptic display

is given in some sort of vibration, pressure, or temperature. An example of

this haptic feedback is the deployment of vibration in the controller whenever

unusual event occurs.

3.1.2 Software

 There are two ways in order to program a VR system, either by

providing high-level description which is a pre-programmed VR engine

automatically that specifies all the low-level details, but this method is far to

reach having a fully general functional engine.

The good news is that VR engines are likely to emerge towards

specialized engines, for instance an engine is targeting cinema immersion,

while another engine is targeting engineering designs. The other way around

is to develop the software from scratch; in returns this requires a deeper

understanding of VR systems and deeper knowledge with the low-level

systems. The advantage of developing the software from scratch is the ability

of the programmer to execute ideas not possible in dedicated engines.

 As mentioned in section 3.1.1.2 that computer stations execute VWG

which simply represent the software discussed above. The key role of the

VWG is to maintain enough of an internal “reality” so that renderers can

extract the information they need to calculate outputs for their displays [6].

 We will discuss in greater details the engines or maybe known as game

engines; which is a software framework designed for the creation and

29

development of video games, and virtual environments. Developers use them

to create games for consoles, mobile devices and personal computers.

The core functionality typically provided by a game engine includes a

rendering engine (renderer) for 2D or 3D graphics, a physics engine, a

collision detection (and collision response) system, sound, scripting,

animation, artificial intelligence, networking, streaming, memory

management, threading, localization support, scene graph, and may include

video support for cinematics. The process of game development is often

economized, in large part, by reusing/adapting the same game engine to

create different games, or to make it easier to "port" games to multiple

platforms [10].

3.1.2.1 Computer Graphics

Any graphical image that being viewed or represented on a computer

monitor is called computer graphics, also there is another related term which

is image-processing; the difference between the two is that computer graphics

generates its own image, and image-processing are captured by a camera or

any other capturing device.

Computer generation of photorealistic graphics can be separated into

two distinct parts; modelling and rendering. Modelling involves creating

objects, moving them around to arrange a scene, defining how each object

will look in the scene, and defining how the lighting and camera will look in

the scene. Rendering involves making a realistic image out of the modelled

scene by applying surface characteristics to the surfaces of the objects in the

scene. [10].

30

3.1.2.1.1 3D Modeling

Every computer-rendered image requires three essential components:

a 3D scene description, one or more sources of light, and a description of the

camera or eye viewing the scene. The scene description is typically composed

of one or more models, or 3D structures. Typically, we think of a model as a

stand-alone part, e.g. a pencil or a tree, and the scene as the assembly of these

parts into a complete 3D environment. This attitude reflects the most

common procedure for building up a 3D scene: one builds many models, and

then assembles them [11].

If we work with high-level engines to build a VR experience, then most

of the following concepts might not seem necessary. You can just select

options from the engine with simple codes to pull everything together.

However, an understanding of the basic transformations is essential to

making the software do what you want. Furthermore, if you want to build

virtual worlds from scratch.

Firstly, we need a virtual world to contain our model, let's denote this

virtual world with Ɽ3 in which every point is represented as a triple of real-

valued coordinates: (x, y, z). Models in the virtual world are composed of

infinite number of points and are defined in terms of primitives in which each

represents an infinite set of points. The simplest and most useful primitive is

a 3D triangle, as shown in figure 3-7, all of the triangle is being represented

by the coordinates of the triangle vertices:

 ((x1, y1, z1), (x2, y2, z2), (x3, y3, z3)) (3-7)

31

To model a complicated object or body in the virtual world, numerous

triangles can be arranged into a mesh [6], but let consider we listed all

triangles that forms mesh into an array or memory and most of the triangles

share the vertices, so clearly there will be redundancy in the memory. To

overcome this problem, we can use the doubly connected edge list, also

known as half-edge data structure.

Figure 3-7: Points in the Virtual World [1]

In this method there are three data elements namely, faces, edges, and

vertices. These represent two, one, and zero-dimensional parts, respectively,

of the model. In our case, every face element represents a triangle. Each edge

represents the border of one or two triangles, without duplication. Each

vertex is shared between one or more triangles, again without duplication [6].

We’ve chosen triangles to represent the model in the virtual world

because they are simple to handle in terms of algorithms, especially if

implemented in hardware. We could've chosen other primitives such as such

as quadrilaterals, splines, and semi-algebraic surfaces but this could lead to

smaller model sizes, but often comes at the expense of greater computational

cost for handling each primitive.

32

Indeed, there are two types of models; stationary models which tends

to be fixed in the same coordinates such as: streets, buildings, and floors. The

other type is the moveable models which transform in terms of position and

orientation such as vehicles and furniture.

Figure 3-8: A Dolphin Created Using Triangular Mesh [9]

Motion can be caused in a number of ways. Using a tracking system,

the model might move to match the user’s motions. Alternatively, the user

might operate a controller to move objects in the virtual world, including a

representation of himself. Finally, objects might move on their own

according to the laws of physics in the virtual world [6].

The operation of changing position is called translation, t is the amount

we want to change and it is given by:

(x1, y1, z1) → (x1 + xt, y1 + yt, z1 + zt) (3-8)

(x2, y2, z2) → (x2 + xt, y2 + yt, z2 + zt) (3-9)

(x3, y3, z3) → (x3 + xt, y3 + yt, z3 + zt) (3-10)

So, applying t to every triangle in the model will cause every triangle

to move in the desired direction and all of the triangle will maintain their size

and shape.

33

There are two possibilities of moving the triangle either by moving the

triangle itself as explained or moving the virtual world, with the triangle

being the only part that does not move, in later this case is called relativity.

This is very important when we want to change viewpoints. If we were

standing at the origin, looking at the triangle, then the result would appear

the same in either case; however, if the origin moves, then we would move

with it [6]. Figure (3-9) explains further.

Figure 3-9: Translation and Relativity [1]

As shown in the figure there are two possible interpretations; the

triangle is defined in (a). We want to translate the triangle by xt = −8 and yt =

−7 to obtain the result in (b). If we instead wanted to hold the triangle fixed

but move the origin up by 8 in the x direction and 7 in the y direction, then

the coordinates of the triangle vertices change the exact same way, as shown

in (c).

Beside translation and relativity, another operation is important which

is rotation and we do this by changing the model’s orientation in the virtual

world. Rotation in 3D world is complicated than in 2D, we start by

considering 2D virtual world with coordinates (x,y), Now consider a generic

two-by-two matrix as follows:

34

M=�
𝑚𝑚11 𝑚𝑚12
𝑚𝑚21 𝑚𝑚22

� (3-11)

in which (m) can be a real number.

Now we multiply the matrix by the column vector (x,y)

�
𝑚𝑚11 𝑚𝑚12
𝑚𝑚21 𝑚𝑚22

� �
𝑥𝑥
𝑦𝑦� = �𝑥𝑥′𝑦𝑦′� (3-12)

In which x', y' is the transformed point

Using simple algebra yields:

𝑥𝑥′ = 𝑚𝑚11𝑥𝑥 + 𝑚𝑚12 𝑦𝑦 (3-13)

𝑦𝑦′ = 𝑚𝑚12𝑥𝑥 + 𝑚𝑚22 𝑦𝑦 (3-14)

Using notation as in equation (3-8), M is a transformation for which (x, y) →

(x', y').

Now suppose we've placed two points in the plane (1,0) and (0,1), we

substitute in (3-12):

�
𝑚𝑚11 𝑚𝑚12
𝑚𝑚21 𝑚𝑚22

� �10� = �
𝑚𝑚11
𝑚𝑚21

� (3-15)

And:

�
𝑚𝑚11 𝑚𝑚12
𝑚𝑚21 𝑚𝑚22

� �01� = �
𝑚𝑚12
𝑚𝑚22

� (3-16)

These special points simply select the column vectors on M. What does

this mean? If M is applied to transform a model, then each column of M

indicates precisely how each coordinate axis is changed. Figure (3-10) gives

an insight of applying various matrices M to a model.

35

Figure 3-10: Applying Various M to a Model [1]

 In the most upper left figure, the identity matrix makes no effect on the

coordinates where (x,y) remains the same. In the next figure to the right

shows a mirror effect where (x,y) → (-x,y). The second row from the left the

coordinates are scaled by the double, where (x,y) → (2x,2y). The adjacent

figure illustrates the stretch effect where the aspect ratio is distorted. On the

third row the coordinated are rotated by 180 degrees. The next two figure

shows the shear on the x and y axis. On the bottom right this corresponds to

the case of a singular matrix.

36

 Two of the predefined matrices produce rotation either the identity

matrix which is 0 degree of rotation or the 180-degree rotation matrix. To

ensure that the matrices does not distort the model M should satisfy the

following rules: no stretching of axes, no shearing, and no mirror images.

 To satisfy the no stretching of axes rule, the columns of M must have

unit length:

𝑚𝑚11
2 + 𝑚𝑚21

2 = 1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚12
2 + 𝑚𝑚22

2 = 1 (3-17)

 To satisfy the no shearing rule, the coordinate axes must remain

perpendicular, the rule implies that the inner dot product of columns of M is

zero:

𝑚𝑚11𝑚𝑚12 + 𝑚𝑚21𝑚𝑚22 = 0 (3-18)

 To satisfy the no mirror of images rule requires that the determinate of

M is positive:

det �
𝑚𝑚11 𝑚𝑚12
𝑚𝑚21 𝑚𝑚22

� = 𝑚𝑚11𝑚𝑚22 − 𝑚𝑚12𝑚𝑚21 = 1 (3-19)

The first constraint (3-17) indicates that each column must be chosen

so that its components lie on a unit circle, centered at the origin. In standard

planar coordinates, we commonly write the equation of this circle as x2 + y2

= 1. Recall the common parameterization of the unit circle in terms of an

angle θ that ranges from 0 to 2π radians:

𝑥𝑥 = cos𝜃𝜃 𝑎𝑎𝑎𝑎𝑎𝑎 𝑦𝑦 = sin𝜃𝜃 (3-20)

Let m11 = cos θ, m21 = sin and substitute in equation (3-11) yielding:

�cos𝜃𝜃 − sin𝜃𝜃
sin𝜃𝜃 cos𝜃𝜃 � (3-21)

In which m12 and m22 are determined by applying equations (3-18) and

(3-19), and by allowing 𝜃𝜃 to range from 0 to 2π, we can get the full range of

rotation.

37

 For the 3D case it will be consistent with the 2D, recalling the matrix

form (3-5) and applying it, resulting in 9 components:

𝑀𝑀 = �
𝑚𝑚11 𝑚𝑚12 𝑚𝑚13
𝑚𝑚21 𝑚𝑚22 𝑚𝑚23
𝑚𝑚31 𝑀𝑀32 𝑚𝑚33

� (3-22)

Following the same rules for the 2D i.e. (3-17), (3-18), and (3-19), and that

will result in the following:

𝑚𝑚11
2 + 𝑚𝑚21

2 + 𝑚𝑚31
2 = 0 (3-23)

𝑚𝑚11𝑚𝑚12 + 𝑚𝑚21 + 𝑚𝑚31𝑚𝑚32 = 0 (3-24)

Also, the constraint det M = 1 is applied.

Yaw, pitch, and roll: again, one of the simplest ways to parameterize 3D

rotations is to construct them from 2D-like transformations, as shown in the

Figure. First consider a rotation about the z-axis. Let roll be a

counterclockwise rotation of γ about the z-axis. The rotation matrix is given

by [6]:

𝑅𝑅𝑧𝑧(γ) = �
cosγ − sinγ 0
sinγ cosγ 0

0 0 1
� (3-25)

Figure 3-11: The Three-Dimensional Rotation [7]

38

The upper left part of the matrix looks exactly the same as the 2D

rotation matrix (3-21) except the replacement of θ by γ. Similarly, let pitch

be counterclockwise rotation of β about the x-axis yielding to:

𝑅𝑅𝑥𝑥(β) = �
1 0 0
0 cosβ − sinβ
0 sinβ cosβ

� (3-26)

Finally, let yaw be counterclockwise with respect to x and z, we'll have:

𝑅𝑅𝑦𝑦(α) = �
cosα 0 sinα

0 1 0
− sinα 0 cosα

� (3-27)

3.1.2.1.2 Rendering

Rendering starts after the completion of modelling process, with a

description of how objects are arranged, materials of objects, the

characteristic of light that fall into them and the place of the camera.

Rendering ends with a finished image on a 2D computer monitor. There are

several rendering methods stand out as producing most accurately

photorealistic images.

Global illumination (shortened as GI) or indirect illumination is a

general name for a group of algorithms used in 3D computer graphics that

are meant to add more realistic lighting to 3D scenes. Such algorithms take

into account not only the light which comes directly from a light source

(direct illumination), but also subsequent cases in which light rays from the

same source are reacted by other surfaces in the scene, whether reactive or

not (indirect illumination) [10].

Ray tracing, beam tracing, cone tracing, path tracing, Metropolis light

transport, ambient occlusion, photon mapping, and image-based lighting are

39

examples of algorithms used in global illumination, some of which may be

used together to yield results that are not fast, but accurate. [10].

Ray Tracing: The visual attributes of each pixel in a viewport are determined

by tracing a ray from a view in g position, via the pixel, into the world

coordinate system. At its simplest, the pixel takes the color of whichever

object is struck first by the ray. Further tracing of rays that are reflected or

transmitted at the ray’s intersection point with an object allows ray tracing to

be used to create a large variety of optical effects [12].

These techniques simulate the behavior of lights in the real world,

where a light source distributes light rays in all directions but some will reach

the eye; this type of ray tracing is called forward ray tracing. Another

technique is the backward tracing which traces back the light perceived by

the eyes but this method in not used much in computer techniques, thus

forward tracing is always referred to as ray tracing.

Figure 3-12: Forward Ray Tracing [12]

Figure 3-13: Backward Ray Tracing [12]

40

3.1.2.2 Popular 3D Modelling and Rendering Programs

3.1.2.2.1 Blender

 It’s a free and open source 3D creation suite. It supports the entirety

of the 3D pipeline-modeling, rigging, animation, simulation, rendering,

compositing and motion tracking, even video editing and game creation.

Advanced users employ Blender’s API for Python scripting to customize the

application and write specialized tools; often these are included in Blender’s

future releases. It's also cross-platform and runs equally well on Linux,

Windows, and Macintosh computers. Its interface uses Open Graphics

Library (OpenGL) to provide a consistent experience [13].

3.1.2.2.2 SketchUp

It’s a premier 3D design software from google Inc. that truly makes

3D modeling for everyone, with a simple to learn yet robust toolset that

empowers you to create whatever you can imagine. In SketchUp, you can

create 3D models of buildings, furniture, interiors, landscapes, and more,

customize the SketchUp interface to reflect the way you work, share 3D

models as walkthrough animations, scenes, or printouts, with realistic light

and shadows. [14].

(a) (b)

Figure 3-14: (a) Blender [13] and (b) Google SketchUp [14]

41

3.1.2.3 Popular Game Engines

3.1.2.3.1 Unreal Engine

Unreal Engine (UE), initially released on 1998 by Epic Games, is a

complete suite of game development tools, powering hundreds of games,

simulations and visualizations. It is one of the most advanced engines to date,

delivering top quality visuals while providing users with a large variety of

tools to work with everything they need.

Due to its capabilities, efficient design and ease of use it is well-

appreciated engine from hobbyists to development studios. It is also available

for free. Developers can also port their projects to mobile devices, both iOS

and Android. Unreal Engine also works with Virtual Reality. Finally, UE also

gives access to its users with to a marketplace, to buy re-usable content and

add to their project, speeding the development process [15].

3.1.2.3.2 Unity 3D

Initially released on 2005, is a flexible and powerful development

platform for creating high quality 2D and 3D games. Emphasizing on

portability, Unity currently supports over 20 platforms, including PCs,

consoles, mobile devices (iOS and Android) and websites.

Additionally, many settings can be configured for each platform. As a

result, Unity can detect the best variant of graphic settings for the hardware

or platform the game is running, thus optimizing performance and sacrificing

visual quality if necessary.

Apart from its next-generation graphical capabilities, Unity also comes

with an integrated physics engine (Nvidia PhysX). Much like Unreal Engine,

Unity offers developers an Asset Store to buy reusable content and assets for

42

use in their project. To sum up, due to its ability to efficiently target multiple

platform at once and user-friendly environment, this game engine is an ideal

choice for a large portion of developers [16].

(a) (b)

Figure 3-15: (a) Unreal Engine [15] and (b) Unity 3D [16]

3.1.2.3.3 FlightGear

It is an open-source flight simulator released on April 1996. It

supports a variety of popular platforms (Windows, Mac, Linux, etc.) and is

developed by skilled volunteers from around the world. The goal of

the FlightGear project is to create a sophisticated and open flight simulator

framework for use in research or academic environments, pilot training, as

an industry engineering tool, for Do It Yourself (DIY-ers) to pursue their

favorite interesting flight simulation idea, and last but certainly not least as a

fun, realistic, and challenging desktop flight simulator [17].

3.1.2.3.4 X-Plane:

 The world’s most comprehensive and powerful flight simulator for

personal computers, and it offers the most realistic flight model available. X-

Plane is not a game, but an engineering tool that can be used to predict the

flying qualities of fixed- and rotary-wing aircraft with incredible accuracy.

43

Because X-Plane predicts the performance and handling of almost any

aircraft, it is a great tool for pilots to keep up their currency in a simulator

that flies like the real plane, for engineers to predict how a new airplane will

fly, and for aviation enthusiasts to explore the world of aircraft flight

dynamics. X-Plane is used by world-leading defense contractors, air forces,

aircraft manufacturers, and even space agencies for applications ranging from

flight training to concept design and flight testing [18].

One simulator that uses Xplane as its visual system is the Antonov AN-

26B simulator based in Khartoum airbase, upon which Xplane is used for the

entire visual system as well as to control weather conditions, daytime, date

of flying, and everything else related to the visual scene.

(a) (b)

Figure 3-16: (a) Antonov AN-26B Simulator Using (b) Xplane Visual Engine

3.1.2.3.5 Prepare3D

Pronounced as "Prepared" or shortened as P3D is a visual simulation

platform that allows users to create training scenarios across aviation,

maritime and ground domains. Prepar3D engages users in immersive training

through realistic environments. Ideal for commercial, academic,

professional, or military instruction. Prepar3D can be used to quickly create

44

learning scenarios anywhere in the virtual world, from under water to sub

orbital space [19].

Prepar3D can be used for wide range of learning scenarios including

vehicle procedures training, cockpit familiarization, flight planning, air

traffic controller training and emergency response preparation. As a

commercial-off-the-shelf product, Prepar3D provides a cost-effective

training platform that evolves with technology [19].

Same as Xplane, prepar3D is also utilized in real flight simulators for

creating visual scenes for both civilian and military applications; one

example of the military application of P3D is the usage of this engine in the

visual system of a jet trainer K8, which is an advanced jet trainer-fighter

airplane. Figure (3-17) shows a visual of the runway marked 04 using P3D

with three-channels projection scheme and Mylar screen, each channel is

dedicated to one projector and all together overlap to give the full picture.

(a) (b)

Figure 3-17: Prepar3D in (a) Military and (b) Civil Applications

On the other side, for civilian utilization of P3D is in a generic flight

simulator for Beechcraft Super King Air B200; in which the airplane is a twin

45

turboprop engine used in short distance travel carrying 7-9 passengers, P3D

is used as a single channel connected to a display to give the visual

perception.

 Other dedicated game engines are for specific simulators such as

VirualF as shown in the figure below for the helicopter AK1-3, and as

depicted in figure (3-18) the simulator uses 3-channels to display the visual

scene and for every channel there is a corresponding computer having the

engine installed.

Figure 3-18: A 3-Channels Dedicated Visual Engine

3.2 Classifications of VR Systems:
 The sensory perception impression delivered to the human determines

the level of immersion and classification of a VR system, in ideal system

46

information should be presented to all human senses, but in practice this

somehow different because not all human senses are targeted. So we can

classify the level of immersion into these categories.

3.2.1 Desktop VR

It’s considered as non-immersive system and it’s the least implication

of VR. Sometimes it’s called Window on World (WoW), usually it uses

conventional display as an output.

3.2.2 Fish Tank VR

 This system is more complex than Desktop and it supports head-

tracking and conventional display.

3.2.3 Immersive Systems

The ultimate version of VR systems. They let the user totally immerse

in computer generated world with the help of Head Mounted Display (HMD)

that supports a stereoscopic view of the scene accordingly to the user’s

position and orientation. These systems may be enhanced by audio, haptic

and sensory interfaces [9].

3.3 Basic Concept of VR:
Figure (3-19) shows a concise view of the main principles of a typical

VR system; where an input that might be mouse, keyboard, game controller,

head tracking …. etc., sends all the relevant data to the computational unit

namely the VWG that creates another world which could be completely

synthetic or recorded physical world. This unit then outputs the appropriate

views to displays. The primary renderer for VR is the visual rendering since

vision contribute up to 70% of the human senses followed by hearing which

has a percentage of 20% contribution; this means that human vision provides

47

most of the information to our minds. Other human senses contribution is as

follows:

Table 3-1: Contribution of Human Senses

Touch in general is not that significant unless the application requires

touch so, smell and taste are not considered yet in VR because the relative

difficulty in implementation.

Figure 3-19: Schematic of a Typical VR System

3.4 Human Factors:
 Virtual environments are meant to fool the sense of the human being

and plunge the user in the VR world, this task is not that simple and it is very

complicated because the user must feel immersed in the environment and in

return this solution should be feasible somehow. So, we have to make deeper

Smell 5%

Touch 4%

Taste 1%

Mouse &
Keyboard

Head
Tracker

Game
Controller

Visual
Renderer

Aural
Renderer

Haptic
Renderer

Visual
Display

Aural
Display

Haptic
Display

VWG

Computation OUTPUT INPUT

48

understanding of human factors and synchronization of stimuli with user’s

actions.

3.4.1 Visual Perception

3.4.1.1 Field of View (FOV)

Human horizontal field of view is 150°: 60° towards the nose and 90°

to the side, while the vertical FOV is 180° of total horizontal viewing range

with a 120°. Figure (3-20) shows the horizontal and vertical FOV of human

vision.

Figure 3-20: Human Vision FOV [9]

3.4.1.2 Visual Acuity

It is the sharpness or clarity of vision, measured by the ability to

distinguish between letters and numbers at a certain distance according to

fixed standard. A famous method to determine the visual acuity is the

Snellen’s chart as in Figure 3-21.

49

Figure 3-21: Snellen’s Chart [9]

3.4.1.3 Temporal Resolution

Temporal resolution of the eye refers to the flickering phenomena

perceived by humans, when watching a screen e.g., CRT (Cathode Ray Tube)

that is updated by repeated impulses. Too low refresh rates, especially for

higher luminance and big displays, causes the perception of flickering [6].

3.4.1.4 Luminance and Color

The human eye has a dynamic range of ten orders of magnitude which

is far more than any current available display can support. Therefore, special

color mapping techniques must be used to achieve possibly the best picture

quality [9].

3.4.1.5 Depth Perception

To generate depth information and stereoscopic images the brain

extracts information from the pictures the eyes see and from the actual state

of the eyes. This bits of information are called depth cues. All of the depth

cues may be divided into two groups: physiological (like accommodation,

convergence or stereopsis) and psychological (like overlap, object size,

motion parallax, linear perspective, texture gradient or height in visual field)

[20].

50

3.4.2 Human Physiology

 Our bodies were not designed for VR, by applying artificial

stimulation to the senses; we are disrupting the operation of biological

mechanisms that have taken hundreds of millions of years to evolve in a

natural environment.

We sometimes provide inputs to our brains that might not be consistent

with our pervious experiences, our bodies may adapt with the new stimuli

leaving us unaware of the flaws in the VR system.

Furthermore, we may develop greater awareness or ability to

understand these 3D scenes which were hard or ambiguous to understand

before, but unfortunately this will lead to increased fatigue or headache; the

reason for this is that our brain exerts more efforts to interpret the stimuli.

The worst case is the onset of VR sickness, which typically involves

symptoms of dizziness and nausea [9].

3.5 Current VR Applications
3.5.1 Video Games

Being a part of a video game or entering a video game was a dream for

many people and has been around for over decades, luckily this dream came

true with the introduction of VR. And excellent example of this is the

interactive Pokémon Go game; where the player uses his smart phone camera

as see through the outside scenes and tries to catch Pokémons this in term a

good example of Augmented Reality AR. Figure (3-23) shows more about

the idea behind this game.

51

Figure 3-22: Pokémon Go Video Game [1]

3.5.2 Immersive Cinema

Feeling a part of the movie is this what looks like in immersive cinema,

where all the possible realization is put forward; the use of motion seats that

can move according to a specific motion or vibrate.

3.5.3 Telepresence and Teleoperating

It is a specific kind of virtual reality that simulates a real but remote

(in terms of distance or scale) environment. Another more precise definition

says that telepresence occurs when at the work site, the anipulators have the

dexterity to allow the operator to perform normal human functions; at the

control station, the operator receives sufficient quantity and quality of

sensory feedback to provide a feeling of actual presence at the worksite [9].

The idea of teleoperating is shown in figure (3-23).

52

3.5.4 Virtual Societies

Virtual reality is also capable to connect people through societies in

terms of avatars connected to real people. Those people could gather together

for various reasons such as common interests, educational purposes, or

simply escaping from real life.

Figure 3-23: The Idea of Teleoperating [9]

3.5.5 Training and Education

Using VR and first-person perspective education might also be

achieved in different aspects for example engineering concepts and theories,

visualizing the movement of air in wind tunnels. One of the most common

examples is the flight simulation and that what we would like to achieve

through this research. Figure (3-24) shows an example of a flight simulator

used by United States Air Force (USAF) where the pilot sets inside the

cockpit of the simulator and wherever the pilot looks, he is surrounded by the

projected scenes this system is widely recognized in VR as CAVE.

53

3.5.6 VR Headsets

The common trend in nowadays technology is the portability and

mobility starting from the cinemas and TV, so instead of going to the cinema

to watch a movie with a high resolution film and large projection screen,

people prefer to watch it at home with their families or sometimes even using

their own handheld smart phones, so following this trend also in VR headset

where also used with smart phone and personalize preferences of mobility

rather than using the immersive cinema as mentioned before.

Figure 3-24: A Flight Simulator Used by USAF Utilizing CAVE Concept [1]

3.6 Virtual Reality Flight Simulator
 A flight simulator is a device that recreates an aircraft and its

environment or any events where it flies. It is a world where someone who

wants to become a pilot, or someone who just wants to learn how to fly a

plane, or just to play without having to use the original plane. In this case, the

flight simulator is very important for the learning of prospective pilots or

54

airline pilots. To support this pilot prospective study, the flight simulator

should be made as closely as possible to the real situation they would have

when riding a plane. In this manner, this device needs to include equations of

how an aircraft is flying, how flight controls react when it is triggered, effects

of other aircraft systems, and reaction of aircraft to external factors such as

damping, gravity, air density, turbulence, etc [8].

 The hardware of the VRFS varies as the purpose varies whether it is

generic or specific; generic flight simulator represents a family of airplanes

or similar airplanes in terms of common systems, common switches and

indicators, or sometimes limitations, so the simulator can be used to serve

more than one type of aircraft and vice-versa for the specific simulator that

serves only one type.

 Figure 3-25 shows a possible configuration for data flow through the

hardware components of VRFS. The system is distributed as the modules are

generally located on different computing environments due to requirements

of high computing power. Also, network connected computers are needed

where multiple users are involved. The communication among the modules

is provided by Local Area Network (LAN). The data flow through the

modules would be different where more users are involved or additional

modules are executed [10].

Each module can be located on a different workstation where high

performance is needed; however, end-to-end latency of the distributed system

increases with this configuration due to network latency.

Any flight simulator has three principal tasks: image display, image

generation, and flight dynamics. Many flight simulators use either domes or

55

CRTs for out-the-window image display. However, military simulators have

used see-through head-mounted displays (HMDs) for some to display the

out-the-window imagery with physical gauges and dials still visible [10].

Any flight simulator has three principal tasks; image display, image

generation, and flight dynamics. Many flight simulators use either domes or

CRTs for out-the-window image display. However, military simulators have

used see-through head-mounted displays (HMDs) for some to display the

out-the-window imagery with physical gauges and dials still visible [9].

Figure 3-25: Possible Configuration for Data Flow of a VRFS [7]

CHAPTER FOUR

VIRTUaL REaLITy

fLIgHT sImULaTOR

57

CHAPTER FOUR
VIRTUAL REALITY FLIGHT SIMULATOR

4.1 3D Modelling

The block diagram in figure (4-1) shows the overall concept of the

modeling which consists of: the plane being modeled an Embraer Regional

Jet (ERJ-145), the plane maker application for creating the model. The model

is then placed in xplane engine for testing, after testing the model in xplane

then the model is transferred to blender for creating a detailed replica of

cockpit of the aircraft and afterwards the cockpit is integrated with the model

and tested back in xplane engine.

Figure 4-1: Block Diagram of the Model

The aircraft is ERJ-145 (Embraer Regional Jet) which is a Brazilian

made aircraft with seating for a total of 50 passengers is specifically selected

because its data package is widely available from different resources, as well

as the aircraft is somehow averagely complexed in regards with other types

of airplanes such as Airbuses or Boings.

58

Plane-Maker is a program bundled with X-Plane that lets users design

their own aircraft. Using this software, nearly any aircraft imaginable can be

built. Once all the physical specifications of the airplane have been entered

(e.g., weight, wing span, control deflections, engine power, airfoil sections,

etc.), the X-Plane simulator will predict how that plane will fly in the real

world using the blade element theory; airplanes are saved in Plane Maker as

an .acf file format or extension, these files are then opened and flown in the

X-Plane simulator.

As mentioned in figure (4-1), the first point to start with is plane-maker

application, so as seen in the next figure (4-2) the fuselage of the plane must

be created by using the ERJ-145, the side view, top and bottom view.

Figure 4-2: Modelling the Fuselage in Plane-Maker

59

As shown in the previous, the cross-section of the plane is laid down

and the corresponding lines are dragged to be aligned with the cross-sections.

The top and bottom views are mirrored meaning any alteration in one will

affect the other. The side view is merely a duplicate for both sides since they

are exactly the same.

Figure 4-3: Fuselage Data, Body Location, And Body Texture of the Aircraft

In Figure (4-3) the fuselage data is entered in terms of multiple

sections, and cross sections. during the creation of the fuselage and dragging

lines to cover the fuselage geometry, sometimes the fuselage must be

smoothed and this is done by clicking over the ellipse tap to make the

fuselage in a way that corresponds to the aerodynamics.

60

Adding the other components of the aircraft, i.e. wings, ailerons, flaps,

other control surfaces, rudder, elevator, engines, engines parameters and

specifications, engines nacelles, pylons, and landing gear will result in a

complete aircraft as shown in figure (4-4). According to the program

specification the model is scaled down to 1:48.

(a) (b)

Figure 4-4: Front (a) and (b) Top View of ERJ-145 in Plane Maker

 In designing this VR flight simulator, only the point of interested is

modelling the cockpit with its related instruments, but t in either way model

the whole aircraft since all the parameters are needed for the aircraft to make

it fly in X-plane and to make all the instruments alive in the cockpit.

One thing to note in modelling this aircraft is that the modelling uses

the polygonal mesh as discussed in chapter 3, also other components of the

cockpit e.g. instruments, switches, …etc., will be modelled using polygonal

meshes.

4.1.1 3D Modelling in Blender

The next step is to model the cockpit in a more complicated yet

meticulous program which is Blender, here Blender version 2.48 is used

although up to version 2.80 is released, but older version is selected because

61

it's less complicated and easy to use. There must be a python 2.5.X compiler

in order for blender to run.

4.1.1.1 Understanding Normals

Normals, as applied to 3D modeling, describe the way that a polygon’s

visible surface is facing. Within Blender’s default settings, polygons are not

two-sided objects and, in fact, are only visible from one side [21].

In this model most of the normals will be facing outside unless where

some places need the contrary. For example, when working on the inside

panels of the cockpit the normals will face the outside so when we sit inside

the cockpit all instruments and other components will be visible and vice

versa for the outer skin of the cockpit where the vertices' normals will be

facing inwards.

4.1.1.2 3D Object Construction

In the computer graphics industry, the points of a model are called

vertices. The lines between vertices are called edges. The three-dimensional

forms that are created when at least three vertices are connected by edges are

called polygons. If a polygon has a surface on it, this is called a face.

When polygons or faces are arranged in such a way that they create a

three-dimensional form, this is called a mesh. Some meshes of basic 3D

forms are so widely used that they come premade in 3D programs. The

objects in figure (4-5) are some of the basic mesh forms available in Blender.

Figure 4-5: Edge, vertex, polygon, and Face Concepts

62

4.1.1.3 3D Cockpit

 By creating a mockup of the cockpit resembles the basis or reference

for the other parts of the cockpit. Afterwards the front panel of the cockpit

will be modeled and following other parts of the cockpit i.e yoke, pedals,

central pedestal control panel, and finally the overhead panel.

 Figure 4-6 illustrates the process of creating the outer parts of the

cockpit. The windshield is created first in regards to the dimensions of the

aircraft. Then the windshield acts as the base for modelling the sectioned-part

of the cockpit.

Figure 4-6: The Process of Modelling the Outer Skin of the ERJ Cockpit

The final result of this work is apparent in figure (4-7). In which some

blending techniques are used such as mirror modifier; since we can divide

the cockpit latterly by two halves, we can only create one half only and then

add the mirror modifier in blender to reflect the other half.

It's visible the use of meshes in creating the outer part of the cockpit,

rectangular meshes are used with faces to link or join all meshes together. All

63

faces are editable in terms of rotation around all axis as well as vertices and

edges.

The windshield is left empty since it resembles the real windshield in

the aircraft and it acts as the view point when the cockpit is placed in the

engine, hence it will be left blank with no alteration.

Figure 4-7: The ERJ Outer Skin of the Cockpit

The next step is the creation of the inside panels of the cockpit, namely

the center main instrument and glare shield panels which contains the

following instruments: The Primary Flight Display (PFD), which presents

information about primary flight instruments, navigation instruments, and the

status of the flight in one integrated display.

64

The other significant display is the Multi-Function Display (MFD)

which acts as a backup for the PFD can be used to display anything, but

usually it's used for traffic display, route selection and weather and terrain

avoidance.

The third display is the Engine Indication and Crew Altering System

(EICAS), as the name implies it gives all relevant data concerning the engines

from fuel flow up to engine compression ratio. Besides the engines data it

also gives crew annunciations, and remedial actions known as checklists.

Figure 4-8: The Instruments and Glareshield Panels

The main instruments panel contains also three standby conventional

indicators for usage in case the MFD and PFD malfunction or any other

emergency state, these instruments are the attitude indicator, airspeed

indicator, and altimeter.

65

In figure (4-8) the instruments and glare shield panels are modelled as

well as the other switches, buttons, and knobs. The reference for drawing the

panels is a 3D view from images of the cockpit taken from different angles

all combined together.

Creating the panels separately and then combing them back together is

quite useful, and this method provides that all previous work on panel is kept

isolated and only alterations are made to the current panel being created. In

figure (4-9) the overhead panel is constructed using this method.

Figure 4-9: The Overhead Panel

The next figure is the final version of the cockpit comprising of all

panels. All of the indicators, switches, controls, do have the same colour

along with the transparent or semi-hollow indicators, to make things work,

it’s needed to integrate the indicators panels with that one of Plane-Maker

using the panel region handler from the plug-in xplane2blender.

66

Figure 4-10: The 3D Model of the ERJ-145 Cockpit

4.2 Tweaking the Cockpit
4.2.1 Panel Region

 The idea of the panel region is using a texture in the 3D cockpit, this

in return allows to have moving indicator or glass display in the 3D cockpit

using only 2D texture. In order to cast the image into the 3D model we have

to do this in the UV/Image Editor in Blender.

 The panel region is a sub-area of the panel, and it must be a power of

2 with dimensions up to 2048x2048 pixels, it also features 4 different regions

and can set to be overlapped. In this perspective we packed all required panels

in only one panel to make it easier to be processed.

In figure (4-11) shows the steps necessary to skin the parts of the

cockpits. In the figure we used two views in Blender the 3D and UV/Image

67

Editor view; so, we have to select the areas where we want to skin.

 Figure 4-11: UV Mapping

Here the standby Airspeed indicator is skinned using the command

project from view and then determining the right place for the indicator in

the UV/Image editor. One thing to note that, we've created 3D panel already

in Plane-Maker containing the essential indicators.

The same concept applies for all other indicators as well as the PFD,

MFD and EICAS. The major constrain and sometimes this constrain prevents

a successful UV mapping which is that the modeled part must have face or

faces to assign the texture to.

4.2.2 Datarefs:

 A dataref is a single bit of published information. dataref key frames

describe how X-Plane should play the animation. This is different from

traditional animation, where the animation tells a rendering engine (such as

a 3D movie exporter) how to move geometry over time. Based on the value

68

of a dataref inside X-Plane, X-Plane's rendering engine will interpolate

between keyframes and display your model at specified positions.

 For instance, taking the landing gear handle, it must be first assign an

armature to the handle to make it one part. An “armature” is a type of object

used for rigging. A rig is the controls and strings that move a marionette

(puppet). Armature object borrows many ideas from real-world skeletons,

and just like a real skeleton an Armature can consist of many bones [22].

 So back to the landing gear handle, now to animate or make the handle

clickable and it reacts when it is up consequently the landing gear goes up

and vice versa, an armature is parented to the handle and having two frames

for the handle up and down.

(a) (b)

Figure 4-12: Assigning an Armature to the Gear Handle (a) and (b) the Yoke

 In figure 4-12, the armature with pink colour, is assigned and parented

merely for the gear handle. Other moving parts or elements of the cockpit are

assigned different armatures with different datarefs. The movement of the

handle is pivoted at the cursor and only two frames are needed since the

69

position of the gear is either up or down. The same process is done for all

other parts of the simulator such as the yoke on the same figure above.

4.3 Testing the Simulator
 At this point it may be possible to test the modelled cockpit in Xplane

and the first thing is to export the 3D model from Blender to a compatible

format that can be read by Xplane which is .obj. Both the .blend and .obj files

must be in the same directory as the .acf with the name:

 airplanename_cockpit, to elaborate; the .acf file is ERJ145.acf, and the

.blend and .obj files are ERJ145_cockpit.blend / .obj.

 Figure 4-13: Testing the Simulator in Xplane

Figure (4-13) shows parts of the 3D model with live instruments, PFD,

MFD, EICAS, the yoke, pedals, centre pedestal panel, and the overhead

panel. The instruments and displays are mapped using the panel region and

70

UV mapping, the landing gear is animated by using the armature, datarefs

and bones.

In figure (4-14) which is a magnified excerpt from the figure (4-13)

showing the artificial horizon, the airspeed indicator, the altimeter, and the

two engines percentage of power, all the indicators where working during the

flight test.

 Figure 4-14: Artificial Horizon, Airspeed, Altimeter, and Engines Indicators

The test was conducted with cross-reference to some the International

Civil Aviation Organization (ICAO) FSTD qualifications criteria in terms of

engines, control dynamics, ground effect, sound system, visual system and

motion system. For the engine: tests are required to show the response of the

critical engine parameter to a rapid throttle movement for an engine

acceleration and an engine deceleration [23] as shown in figure (4-15).

71

Figure 4-15: Engine Acceleration

Criteria [23]

Where: Ago: critical engine power at go-around power, Ai: critical engine

parameter at idle power, ti: total time from initial throttle movement until a

critical engine parameter reaches 10% of its total response above idle power

tt = total time from initial throttle movement until a critical engine parameter

reaches t 90% of its total response above idle power.

(a) (b)

Figure 4-16: Engine Acceleration Criteria for (a) Left and (b) Right Engines

72

The test was in compliance with criteria for acceleration and also with

deceleration; which is in same parameters with acceleration but in reverse

and as seen in figure (4-16) both engines follow the same pattern as the

criteria depicted in figure (4-15) starting from ti up to Ago.

Another test was conducted by the comparison of the maximum thrust

of the engines produced by the simulated model and the engines data

described in Appendix (A); the maximum thrust produced by the series of

engines is given between 6000 to 8000 lbf depending upon the installed

engines. The result given by the model is >6000 and <6500 lbf for both left

and right engines as shown in figure (4-17).

(a) (b)

Figure 4-17: Maximum Thrust for (a) Left and (b) Right Engines

For the V2 speed for the ERJ; it’s indicated as 130 Knots Indicated

Airspeed (KIAS) [24], in figure (4-18) it is depicted that the indicated air

speed is about 128 Kias when the vertical velocity indicated (VVI) begins to

have a positive rate of climb while the altitude is leveling from 0 ft.

73

Figure 4-18: Knots Indicated Airspeed, Vertical Velocity and Altitude

As for the visual system we can state that the simulator met this

criterion; height and Runway Visual Range (RVR) for the assessment have

been selected in order to produce a visual scene that can be readily assessed

for accuracy (RVR calibration) and where spatial accuracy (center line and

Glide Slope (G/S)) of the airplane being simulated can be readily determined

using approach/runway lighting and flight deck instrument.

CHAPTER FIVE

CONCLUsION aND
RECOmmENDaTIONs

75

CHAPTER FIVE

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion:
This Research outlines the importance of flight simulators (FS) in the

process of pilot training, engineers, and technicians. A newly developed

approach of designing FS is the integration with the VR technology meeting

the evolution of the aircraft industry. So a closer look into the evolution of

FS is discussed in excruciating details alongside the VR technology and its

variants. Then an aircraft has been modelled which is an Embraer ERJ-145

(Embraer Regional Jet) in a 3D modeling software Plane Maker with Blender

2.45 and tested in a visual engine namely X-Plane v9.

The modelled cockpit was a replica of the real cockpit using

photographs of the cockpit, and it's possible to model any other cockpit of

whether fixed or rotatory wing air vehicle.

Then the cockpit was integrated in the visual engine, and it's notable

that the integration needs third-party software or plugin (Xplane2Blender)

for a complete and error-free integration. A test has been conducted to check

how the modelled aircraft interacts with the visual engine, and the dynamic

response of the aircraft was found to be acceptable.

The primary results show a promising an acceptable future for the

VRFS, where currently the VRFS is used for engineering purposes only not

for pilot training.

76

The training experience varies greatly between physical and virtual

flight simulators; where some features can't be found on physical simulators

and to be found on the virtual and vice versa.

5.2 Recommendations:
 For further integration for immersive VR experience, the use of VR

goggles is very much recommended along with other input devices such as

gloves.

 As for the graphics and terrains, the addition of real-time graphics

where pilots can select the map they want to fly at, to some extent at relatively

real-time. This also presents a valuable contribution.

 This project can also be enhanced by the merging of multi-contributors

acting as a combined network for more realistic experience or by combing it

to the Virtual Air Traffic Simulation network (VATSIM) where people from

around the world flying online or acting as virtual ATC.

77

REFERENCES

 [1] Steven M. LaValle, Virtual Reality, Cambridge University Press,

2015.

[2] Maithili Shah, Parth Mehta, and Neha Katre, A Review of New
Technologies: AR, VR, MR, International Journal of Computer
Applications, August 2017.

[3] Zhigeng Pan, Adrian David Cheok, Hongwei Yang, Jiejie Zhu, and
Jiaoying Shi, Virtual Reality and Mixed Reality for Virtual
Learning Environments, Computers & Graphics, 2006.

[4] Rustin Webster, Alex Clark, Turn-Key Solutions: Virtual Reality,
Proceedings of the ASME 2015 International Design Engineering
Technical Conferences & Computers and Information in
Engineering Conference, August 2015.

[5] Burdea, G. C., and Coiffet, Virtual Reality Technology, John Wiley
& Sons, 2003.

[6] Sutherland, I. E., Sketchpad, A Man-Machine Graphical
Communication System, Department of Electrical Engineering,
M.I.T., 1963.

[7] Turgay Aslandere, Daniel Dreyer, Frieder Pankratz, and Renè
Schubotz, A Generic Virtual Reality Flight Simulator, Technische
Universität München (TUM), September 2018.

[8] Kelvin Valentino, Kevin Christian, and Endra Joelianto, Virtual
Reality Flight Simulator, Internetworking Indonesia Journal Vol.
9/No. 1, 2017.

[9] Tomasz Mazuryk and Michael Gervautz, Virtual Reality, History,
Applications, Technology and Future, Institute of Computer
Graphics Vienna University of Technology, 1999.

78

[10] Panagiotis Drakopoulos, Virtual Reality Flight Simulator with
Hand-Tracking Technology and Haptic Feedback, University of
Greece, 2017.

[11] Norman I. Badler, and Andrew S. Glassner, 3D Object Modeling,
Computer and Information Science Department, University of
Pennsylvania, 1999.

[12] Derek O’ Reilly, Computer Generation of Photorealistic Images
using Ray Tracing, Dublin City University, 1991.

[13] https://blender.org/about/, [Accessed: 2nd of July, 2021].

[14] https://help.sketchup.com/en/sketchup/sketchup, [Accessed: 2nd of
July, 2021].

[15] https://unrealengine.com/en-US/what-is-unreal-engine-4,
[Accessed: 2nd of July, 2021].

[16] https://unity.com, [Accessed: 2nd of July, 2021].

[17] http://home.flightgear.org/about/, [Accessed: 2nd of July, 2021].

[18] https://x-plane.com/files/manuals/X-ne_10_Desktop_manual,
[Accessed: 20th of February, 2019].

[19] https://www.prepar3d.com/product-overview/, [Accessed: 2nd of
July, 2021].

[20] H. Scheirich: Stereoscopics - Principles and Techniques. Diploma
Thesis, Vienna University of Technology, Austria (1994)

[21] Chris Totten, Game Character Creation with Blender and Unity,
John Wiley & Sons, Inc., 2012.

[22] https://xp2b-docs.gitbook.io/xplane2blender-docs/index,
[Accessed: 2nd of July, 2021].

https://www.blender.org/about/
https://help.sketchup.com/en/sketchup/sketchup
https://www.unrealengine.com/en-US/what-is-unreal-engine-4
https://www.unity.com/
http://home.flightgear.org/about/
https://xp2b-docs.gitbook.io/xplane2blender-docs/index

79

[23] Manual of Criteria for the Qualification of Flight Simulation
Training Devices, Doc 9625, Volume 1 – Aeroplanes, Fourth
Edition, International Civil Aviation Organization, 2015.

[24] https://www.embraercommercialaviation.com/commercial-
jets/erj145/, [Accessed: 22nd of November, 2021].

[25] https://www.vatsim.net, [Accessed: 2nd of July, 2021].

[26] https://developer.x-plane.com/manuals/planemaker, [Accessed: 2nd
of July, 2021].

[27] Federal Aviation Administration (FAA), Advanced Avionics
Handbook, U.S. Department of Transportation, 2009.

[28] https://360cities.net/image/cockpit-embraer-erj-145-airplane-usa,
[Accessed: 2nd of July, 2021].

[29] https://developer.x-plane.com/2009/04/datarefs-vs-commands-i-
whats-the-difference, [Accessed: 13th of October, 2019].

[30] https://xp2b-docs.gitbook.io/xplane2blender-docs/index-
3/34_object_ settings, [Accessed: 13th of October, 2019].

[31] https://docs.blender.org/manual/en/latest/animation/armatures/
introduction, [Accessed: 13th of October, 2019].

https://www.360cities.net/image/cockpit-embraer-erj-145-airplane-usa

aPPENDICEs

81

APPENDIX (A)

THE ERJ DATA

Airplane General Characteristics

 EP LR

Maximum Takeoff

Weight
20,990 kg 46,275 lb 22,000 kg 48,501 lb

Maximum Landing

Weight
18,700 kg 41,226 lb 19,300 kg 42,549 lb

Basic Operating Weight

(std)
11,947 kg 26,339 lb 12,114 kg 26,706 lb

Maximum Zero Fuel

Weight
17,100 kg 37,699 lb 17,900 kg 39,462 lb

Maximum Payload 5,153 kg 11,360 lb 5,786 kg 12,755 lb

Maximum Usable Fuel 5,146 l 1,359 gal 6,396 l 1,690 gal

Airplane Dimensions

External Dimensions

Overall span 20.04 m (65 ft 9 in)

Height (maximum) 6.76 m (22 ft 2 in)

Overall length 28.45 m (93 ft 5 in)

Wing

Reference area 51.18 m2 (551 ft2)

Reference aspect ratio

82

Fuselage

Total Length 26,51 m (87 ft 0 in)

Length of pressurized section 19.67 m (64 ft 6 in)

Outside diameter 2.28 m (7 ft 6 in)

Horizontal Tail

Span 7.55 m (24 ft 9 in)

Area 11.20 m2 (120.6 ft2)

Vertical Tail

Reference area 7.20 m2 (77.5 ft2)

83

Interior Configuration

84

50 Seats at 31” Pitch

Interior Arrangements
The standard interior arrangement provides accommodation for two

pilots, one flight observer, one flight attendant, and 44 passengers. One

additional flight attendant seat is available as an option.

Cockpit

The ′′quiet and dark′′ cockpit is designed to accommodate the pilots

with comfort during all flight phases, with minimum workload and maximum

safety. The cockpit is provided with two pilot seats, a foldable flight observer

seat, control columns and pedals, control pedestal, left, right, and aft

consoles, as well as main, overhead, circuit breaker, and glareshield panels.

A sunshade is provided for each pilot and the compartment is separated from

the passenger cabin by a partition with a lockable door.

Panels

The main instrument panel displays the main navigation, engine, and

system indications, through the PFD, MFD, and EICAS displays, the audio

selection, ELT reset, and the landing gear and pedal electric adjustment

controls. It also accommodates the standby instruments and displays

reversionary functions.

A glareshield panel is located over the main panel, including the master

caution and master warning lights, flight control, display control, and lighting

85

intensity controls. One of the different possible configurations of glareshield

panel includes dual radar control panels.

An overhead panel provides the hydraulic, electrical, powerplant,

APU, fire protection, environmental, and external and internal lighting

controls. The circuit breakers, in ordered and grouped positions, are placed

on a panel aft of the overhead panel.

Left and Right Consoles

The left and right consoles accommodate the nose wheel steering

handle, ashtrays, holders for cups, headset, and microphone, oxygen masks

and oxygen control, a waste container, rechargeable flashlight, and recesses

for crew publications.

Control Pedestal

The control pedestal, located between the two pilots, presents the

engine control levers, the engine thrust rating panel, the speed brake lever,

the emergency/parking brake lever, flight control switches (including flap

selection), the pressurization control, the EICAS reversionary panel, radio

management units, single radar control panel, HF control (optional),

aileron/elevator disconnect handles, AP control, SPS, T/O configuration

switch, and an FMS control display unit.

Pilot Seat

The pilot seat is provided with longitudinal, vertical (electrically

actuated), seat back, and lumbar adjustments. The seat is attached to tracks

which permit the horizontal adjustments. An extended longitudinal travel

permits pilot rest during long cruise flights (pilot foot rests are provided

at the bottom of the main instrument panel).

86

Engines:
Two high bypass ratio rear-mounted engines.

Type:

AE 3007

Models:

AE 3007C, AE 3007A, AE 3007A1/1, AE 3007A1, AE 3007A1/2, AE

3007A1/3,AE 3007A3, AE 3007A1P, AE 3007C1, AE 3007A1E, AE

3007A2, AE 3007C2.

Manufacturer:

Rolls-Royce Corporation P.O. Box 420 Indianapolis, Indiana 46206-0420,

United States of America.

Description:

Direct drive turbofan engine of modular design. Incorporates a single stage

fan, a 14-stage axial compressor with 6 stages of variable vanes (including

inlet guide vanes), an annular combustion chamber, a two-stage high pressure

turbine and a 3-stage low pressure turbine. The accessory gearbox is mounted

at the bottom of the engine. The engine is equipped with two single channel

Full Authority Digital Engine Control (FADEC) System units which are

mounted in the aircraft. The engine features fore and aft mounting provisions,

which allow either underwing pylon or aft fuselage mounting installation.

Dimensions:

Overall Length 2.92 m (115.08 inches)

87

Overall Height 1.41 m (55.70 inches)

Overall Width 1.17 m (46.14 inches)

Ratings:

Model

Static Thrust

Flat Rated Take-Off (5min.) Maximum

Continuous

AE 3007C 28.65 kN (6442 lbf) 28.65 kN (6442 lbf) ISA+15°C

AE 3007A

AE 3007A1/1
33.71 kN (7580 lbf) 30.33 kN (6820 lbf) ISA+15°C

AE 3007A1/2 33.71 kN (7580 lbf) 30.33 kN (6820 lbf) ISA+23°C

AE 3007A1 33.71 kN (7580 lbf) 30.33 kN (6820 lbf) ISA+30°C

AE 3007A1/3 33.71 kN (7580 lbf) 30.33 kN (6820 lbf) ISA+30°C

AE 3007A3 32.02 kN (7201 lbf) 30.33 kN (6820 lbf) ISA+15°C

AE 3007A1P 37.08 kN (8338 lbf) 30.33 kN (6820 lbf) ISA+19°C

AE 3007C1 30.08 kN (6764 lbf) 30.08 kN (6764 lbf) ISA+15°C

AE 3007A1E 39.67 kN (8917 lbf) 32.65 kN (7339 lbf)

ISA+19°C

(Take-Off)

ISA+30°C

(Max

Continuous)

AE 3007A2 41.99 kN (9440 lbf) 36.02 kN (8097 lbf)

ISA+15°C

(Take-Off)

ISA+20°C

(Max

Continuous)

88

AE 3007C2 31.32 kN (7042 lbf) 31.32 kN (7042 lbf) ISA+15°C

89

APPENDIX (B)

Xplane 2 Blender Documentation

Preface
This is the final version of Xplane2Blender v 3.10. It's been tested and

works with Blender 2.49 on Mac, Windows, and Linux. Development of this

script is no longer done by Marginal, but collectively and in an Open-Source

manner. So please file requests and issues at the project website.

Overview
Blender is an open source 3D object editor for Windows, Mac and

UNIX.

These Blender scripts export models created in Blender to X-Plane v7, v8,

v9 or CSL .obj format.

The scripts also import existing X-Plane v6, v7, v8, v9 and CSL .obj files and

X-Plane v7, v8 and v9 .acf airplanes into Blender.

Requirements
Runs on Windows 2000 or later, Mac OS 10.3.9 or later, and Linux.

Importing objects
First, move the 3D Cursor to where you want the imported object to

be placed. Usually you'll want the object to be placed at the origin so just

press Shift C to centre the 3D Cursor at the origin.

Choose File → Import → X-Plane Object, select a .obj file and press

Import OBJ.

The scenery is imported at the 3D Cursor position.

https://xp2b-docs.gitbook.io/xplane2blender-docs/
https://xp2b-docs.gitbook.io/xplane2blender-docs/
https://xp2b-docs.gitbook.io/xplane2blender-docs/

90

You can import multiple .obj files and re-export them as a single file.

But note that the X-Plane .obj file format only supports the use of one

texture file, so you'll have to create a single larger file containing all

required textures - see below. Or you can have Blender create this single

file automatically by selecting all the objects and, in a UV/Image Editor

window, choosing Image → Consolidate into one image.

Importing planes

First, move the 3D Cursor to where you want the imported plane or

weapon to be placed. Usually you'll want it to be placed at the origin so just

press Shift C to centre the 3D Cursor at the origin.

Choose File → Import → X-Plane Plane or Weapon and choose

whether to import the plane or weapon so that the "reference point" is located

at the 3D Cursor (for making cockpit & misc objects) or so that the "centre

of gravity" is located at the 3D Cursor (for making CSLs and static scenery).

Then select a .acf or .wpn file and press Import ACF or WPN.

The script creates up to three versions of the plane or weapon in

Blender, one in each of layers 1, 2 and 3. The versions in layers 2 and 3 use

approximately 1/10th and 1/100th of the number of faces compared to the

version in layer 1. See "Level of Detail" below for an explanation of why it

does this.

Imported planes need some tweaking before you can export them as

scenery or as a CSL object; see "Tweaking planes" below.

Exporting objects
First, choose File → Save As… and save the. blend file in the aircraft or
scenery folder where you want the .obj file to end up. Then choose:
File → Export → X-Plane CSL Object or
File → Export → X-Plane v7 Object or

91

File → Export → X-Plane v8/v9 Object

The object is exported in the same folder and with the same name as

the current Blender file, but with a .obj extension. Blender may display some

informational messages - click on one of these messages to see which

object(s) the message refers to.

If there is an error then the scripts will attempt to identify and highlight

the offending Blender object(s).

cs: These objects are intended for use with multi-user plugins such as

XSquawkBox or X-IvAp. v8: These objects are supported by X-Plane

versions 8.20 and later. v9: These objects are supported by X-Plane versions

9.00 and later.

Creating X-Plane scenery
• Find and open the Custom Scenery folder inside of your X-Plane

installation.

• Create a subfolder with the name of the scenery package that you're

making.

• Save your Blender file in this subfolder folder with a descriptive name,

eg: X-Plane/Custom Scenery/EGLL/house.blend

• The X-Plane .obj file will be exported to the
same place, ie:

X-Plane/Custom Scenery/EGLL/house.obj

Tweaking planes

Imported planes need to be positioned correctly on the ground for use as

static scenery (don't do this if you're making a CSL or cockpit object):

http://www.xsquawkbox.net/xsb/
http://www.ivao.aero/softdev/X-IvAp/

92

• Select layers 1-3, select all objects and position the plane so that its

undercarriage is sitting directly on the ground (represented by the x/y

axes).

• You may also need to rotate the plane slightly so that all wheels are

level; press r and move the mouse to rotate the plane so that its

undercarriage is sitting directly on the ground. Click to set the plane's

position.

The primary file for textures is named airplane_paint. Most planes also

use textures from a secondary file named airplane_paint2. Objects that use

textures from the secondary file are imported with "*" after their name to

make them easier to identify in Blender's Outliner window.

The X-Plane .obj scenery file formats only support the use of a single file

for textures, up to 1024x1024 pixels in size. If your plane only has a few

simple objects that use textures from airplane_paint2 then you should re-

texture these objects to use airplane_paint, following the same procedure

described below for weapons and misc objects. If that is not feasible you can

use this procedure to make the plane use textures from a single file:

• Save your Blender model.

• In an image editor application, resize airplane_paint and

airplane_paint2 to 512x512. (You don't need to save these resized

versions).

• Create a new bitmap file 1024 pixels wide and 512 pixels high.

• Paste the resized airplane_paint into the left half of this bitmap.

• Paste the resized airplane_paint2 into the right half of this bitmap.

93

• Save the bitmap file in the same folder and with the same name as your

.blend file. If you're making a CSL object then you must save in PNG

format.

• If your plane uses night-time textures then repeat this procedure for the

_LIT bitmap files.

• In a Blender UV/Image Editor window choose Image → Merge _paint

and _paint2.

If your imported plane uses weapons or misc objects then each of these

will use an additional bitmap file. Weapons are imported with their names

starting with "Wnn" and objects with their names starting with "Onn". Also

note that reduced-LOD versions of weapons and misc objects may be present

in layers 2 and 3.

Open an Outliner window and choose View → Show Outliner. For each

mesh that has a name starting with "Wnn" or "Onn" or ending with "*", either:

• Delete the mesh, or

• Copy the required textures to an unused area in the primary bitmap file

and use the UV/Image Editor window to map the new copy of the

textures to the mesh's faces.

Consider performance issues when the plane is rendered in X-Plane. Ask

yourself the following questions:

• Most important: Do you really need fully detailed 1024x1024 textures

for your plane? Video memory is used up by terrain and object

geometry and textures. Once you run out of video memory the GPU

has to fall back to main memory, and this really slows things down.

94

One 1024x1024 texture uses 4MB of video memory. Some people are

running X-Plane on computers with only 32MB of video memory, so

one 1024x1024 texture at "extreme res" in X-Plane uses 1/8th of their

video memory. Consider resizing the texture file in an image editor

program to half or even quarter size. Use Image → Replace to use the

new texture file.

• Does the model have hidden faces? Some versions of X-Plane don't

handle hidden faces in v7 scenery objects very well and they also a

cause a small performance hit. Look for things like wings or misc

bodies that are partially or wholly buried in the fuselage and delete any

wholly hidden faces before exporting.

• Do you really need all that detail? Consider deleting details like flap

tracks, antennae etc before exporting. This especially goes for the

lower Level of Detail versions of the plane in layers 2 and 3 which are

only viewed in X-Plane from >1000m and >4000m respectively.

Creating 3D cockpits

X-Plane 3D cockpits are just normal v7, v8 or v9 scenery objects

except that cockpits can't contain multiple Levels of Detail, so only objects

in Blender layer 1 are exported. If you want to keep objects in your Blender

scene for reference but which you don't want to export - eg the plane fuselage

- then put them in layer 4 or greater before exporting.

Choose File → Save As and save the blender file in the same folder as

your plane's .acf file with the name airplane_cockpit.blend,

airplane_cockpit_INN.blend or airplane_cockpit_OUT.blend (where

airplane is the name of your plane's .acf file):

95

• X-Plane displays airplane_cockpit.obj in both internal and external

views.

• X-Plane displays airplane_cockpit_INN.obj only in internal views.

• X-Plane displays airplane_cockpit_OUT.obj only in external views. If

you create an airplane_cockpit_INN.obj and/or

airplane_cockpit_OUT.obj then you should not create

airplane_cockpit.obj.

You will usually want to import your plane into Blender to act as a

reference and/or starting point for your cockpit. Delete any plane parts that

you don't need in creating your cockpit - you only need to keep the fuselage

itself plus any relevant Misc Bodies. After import, your cockpit uses the same

texture file as your plane, ie airplane_paint. Choose Image → Replace in a

UV/Image Editor window to use a different texture file, which can be named

anything you like (but no spaces) and which should live in the same folder as

your plane's .acf file.

To make your 3D cockpit appear in X-Plane, on the Standard →

Viewpoint → View screen in PlaneMaker, check the show cockpit object in:

INSIDE views, exact forwards option. To hide the 2D cockpit altogether, also

check the show cockpit object in: PANEL views, exact forwards option;

hiding the 2D cockpit means that you no longer have to leave a large part of

the Panel Texture transparent to represent the windscreen, which gives you

more room on the Panel Texture for instruments.

Cockpit instruments

To construct moving cockpit instruments paint the …/cockpit/-

PANELS-/Panel.png texture in an image editor application and place

96

instuments in PlaneMaker as as you would for a 2D panel (but bear in mind

that only the top 768 lines of the Panel Texture can be used in the 3D cockpit

in X-Plane versions prior to 8.20). The Panel Texture can by 1024×any size

in X-Plane v8, and any size up to 2048×2048 in X-Plane v9. Normally you

can only use a single file to texture your X-Plane objects. But when

constructing a 3D cockpit you can additionally use this …/cockpit/-

PANELS-/Panel.png file - the instruments that X-Plane draws on the 2D

panel will also appear in your 3D model.

The …/cockpit/-PANELS-/Panel.png texture doesn't contain any

instruments when you load it into Blender (unless you've painted them on

yourself). This makes it hard to tell in Blender where X-Plane will draw the

instruments. So it's easier if you use a screenshot of the panel with the

instruments drawn on it, instead of the real Panel Texture. If your display is

larger than your Panel Texture, then this is simple:

• Run PlaneMaker.

• Choose Background → Rendering Options and set the size to be equal

to the size of your Panel Texture.

• Restart PlaneMaker

• Choose Standard → Panel

• Take a screenshot: Press Alt PrintScreen (PC) or Command Shift 3

(Mac).

• Paste (PC) or load (Mac) the screenshot into an image editor

application.

• Crop the window borders etc from the screenshot so that the image is

exactly the same size as your Panel Texture.

97

• Save the screenshot as ScreenshotPanel.png (or any filename ending

in panel.) in the same folder as your plane's .acf file.

• Use the ScreenshotPanel.png texture on those faces that you want to

display moving cockpit instruments in X-Plane.

• The screenshot file does not need to be distributed with your finished

plane.

If your Panel Texture is larger than your display then you cannot take a

screenshot of the whole panel. In this case you'll need to take multiple

screenshots of the panel in PlaneMaker and stich them together in an image

editing application.

If you later want to resize your Panel Texture then use the procedure

described below.

Note that X-Plane versions prior to 8.20 only display the 3D cockpit when

running at the default 1024x768 resolution. You may want to mention this in

the Readme with your plane if your plane is intended to work in X-Plane

versions prior to 8.20.

v9: Cockpit Panel Regions

The cockpit Panel Texture uses a lot of video memory, much of which is

wasted when the 3D cockpit is being displayed:

• X-Plane has to round up the height and width of your Panel Texture to

be powers of two. eg if your Panel Texture is 1600×1200 pixels then

X-Plane rounds this up to 2048×2048 pixels, which requires 16MB of

video memory. More if you also supply a LIT Panel Texture.

98

• Typically up to half of your Panel Texture represents your plane's

windscreen, which is fully transparent. You can't make use of this part

of the texture in any useful way in a 3D cockpit, so the memory that it

consumes is wasted. (Note: You can construct a tinted windscreen in

your 3D cockpit quite cheaply by using a small semi-transparent part

of the non-panel texture).

• The Panel Texture contains an alpha channel for transparency. The

alpha channel accounts for ¼ of the memory that the texture consumes.

But often your only need for transparency in the Panel Texture is to

represent the 2D windscreen, which is of no use in a 3D cockpit, so the

memory that the alpha channel consumes is wasted.

A "Panel Region" is a new texture which is cut out from your Panel

Texture:

• You can create up to 4 Panel Regions (which can overlap).

• The height and width of a Panel Region texture must be a power of

two eg 128, 256, 512, 1024 or 2048, but it doesn't have to be square.

• Panel Region textures are opaque - they don't contain an alpha channel.

When you use Panel Regions instead of the Panel Texture to texture your 3D

cockpit, X-Plane discards the Panel Texture's alpha channel and also discards

all areas of the Panel Texture other than the pieces that you cut out to make

the Panel Regions. This reduces video memory requirements and improves

performance.

Creating a Panel Region

99

• In the UV/Image Editor window, select your Panel Texture from the

pop-up menu.

• Choose Image → X-Plane panel regions → Create new region

• Enter the co-ordinates in your Panel Texture where you want the

bottom-left pixel of the new Panel Region to start, and the width and

height of the new Panel Region.

Any faces that you've textured using the Panel Texture which are

contained inside the new Panel Region are transferred over to use the new

Panel Region.

Any areas that are fully transparent in the Panel Texture are coloured sky

blue in the new Panel Region. You'll get undefined (ie weird) results in X-

Plane if you use these sky blue areas to texture your faces.

(Note: When you create a Panel Region, Blender also creates a hidden object

named "PanellRegionHandler" to store accounting information. Don't mess

with this object).

Deleting a Panel Region

• In the UV/Image Editor window, select your Panel Region from the

pop-up menu.

• Choose Image → X-Plane panel regions → Delete this region

Any faces that you've textured using this Panel Region are transferred

back to using the Panel Texture.

100

The deleted Panel Region will remain in the UV/Image Editor window's

pop-up menu for a while until Blender figures out that it can remove it. But

the deleted Panel Region won't count towards your maximum of four Panel

Regions.

Re-loading the Panel Regions

The Panel Regions aren't automatically updated when you edit your Panel

Texture in an image editor application and then reload it in Blender, or when

you reload your .blend file.

• In the UV/Image Editor window, select your Panel Texture from the

pop-up menu.

• Choose Image → X-Plane panel regions → Reload all regions

Using Blender to create X-Plane objects

Only Lamps and Meshes are exported to X-Plane. You can use other

Blender object types, eg Curves and Surfaces, to construct your scenery as

long as you convert them to meshes before exporting to X-Plane.

Lamps

Only Lamp objects of type "Lamp" are exported to X-Plane. Lamp

objects of types "Area", "Spot", "Semi" and "Hemi" are ignored (and so can

be used to illuminate your model in Blender).

v8/v9: Lamp objects with certain words in their names have special

behaviours when exported to an X-Plane v8 or v9 object:

101

• Lamp - Normal (legacy) light. The colour is determined by the R,G,B

sliders on the Lamp panel (F5).

• Flash - Flashing (legacy) light. The colour is determined by the R,G,B

sliders on the Lamp panel (F5).

• Traffic, smoke_black, smoke_white - As for X-Plane v7 objects; see

below. (R,G,B settings are ignored).

• other - X-Plane pre-defined "named" or "custom" light. (Supported by

X-Plane 8.50 and later. R,G,B settings are ignored). The name of the

X-Plane light is taken from the value of a property named name if this

exists, otherwise from the name of the lamp object.

v7: Lamp objects with certain words in their names have special behaviours

when exported to an X-Plane v7 object:

• Flash - Flashing light. The colour is determined by the R,G,B sliders

on the Lamp panel (F5).

• airplane_beacon - Red pulsing anti-collision light. (R,G,B settings are

ignored).

• airplane_strobe - White strobe light. (R,G,B settings are ignored).

• Traffic - Cycles red, orange, green. (R,G,B settings are ignored).

• smoke_black or smoke_white - Not really a light; emits smoke. The

size of the smoke puffs is determined by the Energy slider on the Lamp

panel (F5) (R,G,B settings are ignored).

• other - Normal light. The colour is determined by the R,G,B sliders on

the Lamp panel (F5).

102

csl: Lamp objects with certain names have special behaviours when exported

to an X-Plane CSL object. The XSquawkBox documentation strongly

recommends that you use these special lights:

• airplane_landing - White landing light. (R,G,B settings are ignored).

• airplane_taxi - White taxi light. (R,G,B settings are ignored).

• airplane_nav_left - Red navigation/position light. (R,G,B settings are

ignored).

• airplane_nav_right - Green navigation/position light. (R,G,B settings

are ignored).

• airplane_beacon - Red pulsing anti-collision light, on when engines are

running. (R,G,B settings are ignored).

• airplane_strobe - White strobe light. (R,G,B settings are ignored).

• other - Normal light. The colour is determined by the R,G,B sliders on

the Lamp panel (F5).

v8/v9: Custom lights (supported by X-Plane 8.50 and later) are created using

the vertices from a Mesh object: In the Material buttons panels (F5) add a

new material to the mesh, then press the Halo button on the Links and

Pipeline panel. You should use just one material.

• The Halo button and the R,G,B,A sliders on the Material panel control

the light's R,G,B and A values. Alternatively you can create property

named R, G, B and/or A to set these values.

• The HaloSize control on the Shaders panel controls the light's S value.

Also press the HaloTex button on this panel to make Blender render

the light correctly.

https://xp2b-docs.gitbook.io/xplane2blender-docs/index#properties

103

In the Texture buttons panels (F6) add a new texture to the material, and

change the Texture Type to Image. You should use just one texture.

• On the Image panel load the texture file that contains the light that you

want to use.

• On the Map Image panel press the UseAlpha button.

Use the MinX, MinX, MaxX, MaxY settings to select a subset of the

texture.

To drive the custom light using a dataref add a String property named name.

Meshes

Create faces with 3 or 4 edges (called "tri"s and "quad"s in X-Plane).

In the Link and Materials Editing panel (F9):

• Set Smooth and Set Solid control whether to smooth edges of faces in

a mesh. This is useful when using multiple faces to simulate a curved

surface. Go to "Object Mode", select the mesh and press Set Smooth.

The effect is only visible in Blender 3D View windows when the

Viewport Shading button is set to Solid or Shaded.

v7: Only faces that are part of a Strip will be smoothed when displayed

in X-Plane.

In the Texture Face Editing panel (F9) available in UV Face Select mode:

• Tex button controls whether the face has a texture:

https://xp2b-docs.gitbook.io/xplane2blender-docs/index#properties
https://xp2b-docs.gitbook.io/xplane2blender-docs/index#strips

104

In an image editor application create one texture file that is like a

"collage" of all of the textures that you need in your model. The height

and width of the texture file must be a power of two eg 128, 256, 512,

1024 or 2048 (X-Plane v9 only), but it doesn't have to be square. (See

…/Custom Scenery/KSBD Demo Area/KSBD_example.png for an

example).

Save the texture file in 32bit or 24bit PNG format (ie with or without

an "Alpha" channel) in the aircraft or scenery folder where you want

the X-Plane .obj file to end up.

Use the UV/Image Editor window to control mapping of the textures

to the face.

• Tiles button controls whether the face is rendered with "polygon

offsetting" (ATTR_poly_os) in X-Plane. Press this button for faces

that lie flat on the ground to prevent Z-buffer thrashing in X-Plane.

Don't press this button for other faces. For best results with X-Plane

versions prior to 8.50 you should ensure that objects that use polygon

offsetting are listed first in your .env or .dsf scenery file.

v7: "polygon offsetting" does not produce reliable results in X-Plane

versions prior to 8.20.

csl: This button has no effect when exporting CSL objects.

• Collision button indicates that the face is not "hard" (ie not "landable

on") in X-Plane. Making faces hard is very expensive, so this button

http://en.wikipedia.org/wiki/Collage

105

should normally be pressed. Unpress this button only for things like

helicopter landing pads.

(Note: The meaning of this button was changed in v1.50. Use this

script to turn the Collision button back on for all faces).

v9: You can control whether it is possible to fly under this hard face;

add a Bool property named deck and give it the value True. You can't

fly under hard faces in X-Plane v8.

v8/v9: You can specify the surface type; add a String property named

surface and give it the value water, concrete, asphalt, grass, dirt, gravel,

lakebed, snow, shoulder or blastpad. The surface type is ignored by X-

Plane versions prior to 8.50.

v7: Only faces with 4 edges (ie "quads") are exported as "hard".

v7: X-Plane versions prior to 8.20 have a bug where .obj files that

contain hard faces must be placed in WorldMaker with an "object

heading" of 0. Otherwise the "hard" part of the surface ends up in the

wrong place.

csl: This button has no effect when exporting CSL objects.

*Twoside button controls whether one or both sides of the face are

displayed. Unless you have a lot of double-sided faces it is cheaper to

avoid this button and to use two single-sided faces back-to-back

instead.

http://marginal.org.uk/x-planescenery/collide.txt
https://xp2b-docs.gitbook.io/xplane2blender-docs/index#properties
https://xp2b-docs.gitbook.io/xplane2blender-docs/index#properties

106

• Alpha button is a hint to Blender and to X-Plane that the face is

transparent or translucent. Use this for outwards-facing transparent or

translucent faces to instruct X-Plane to draw these faces last so that

you can see other faces through them. Don't press this button for

opaque (normal) faces. See drawing order for more fine-grained

control over drawing order.

v8/v9: In the Material buttons panels (F5) you can change the way that the

mesh reacts to light by specifying a material. Changing between materials in

X-Plane is expensive so you should ensure that you only use a few materials

in your model. Press Add New to create a new material, or choose an existing

material (if any) from the drop-down list. You should use just one material.

Only a few of Blender's many material buttons affect X-Plane:

• Col button and the R,G,B sliders on the Material panel control the

diffuse colour of the faces. X-Plane combines the colours that are

specified by the texture (if any) with this setting. The default X-Plane

setting is 1, 1, 1 (white). However the default setting of a new material

in Blender is 0.8, 0.8, 0.8.

You should set this to 1, 1, 1 - control the diffuse colour of the faces

by editing the texture file instead.

• Spec slider on the Shaders panel controls the specularity (shininess) of

the faces. The default X-Plane setting is 0 (matt). However the default

setting of a new material in Blender is 0.5.

• Emit slider on the Shaders panel controls the emissive brightness of

the faces. Emissive faces give off light so the effects of this setting are

https://xp2b-docs.gitbook.io/xplane2blender-docs/index#order

107

most obvious at night. It is usually cheaper and easy to use LIT_

textures to control night-time brightness instead of using this setting.

However using this setting allows you to create faces that also give off

light during the daytime, eg on overcast days, which LIT_ textures do

not. The default X-Plane and Blender setting is 0 (not emissive).

• Mir button and the R,G,B sliders on the Material panel control the

emissive colour of the faces.

Use this script if you need to reset all faces in the scene to standard settings

(ie no polygon offsetting, not hard, single sided, not transparent).

You can add "modifiers" in the Modifiers panel to change the way that the

Mesh appers. Some useful modifiers when modelling for X-Plane are:

• EdgeSplit - automatically sharpen edges between mesh faces (this only

has an effect if you've used the Set Smooth button)

• Subsurf - produce a more detailed version of the mesh by subdividing

faces

• Curve - bend the mesh along a curved path

Lines

Blender doesn't support Lines directly. Use a mesh with one 4-edged

face instead. The pair of vertices at each end of the "line" must be within 0.1

units of each other. The face must be the only face in its mesh and must not

have a texture assigned to it.

Assign a material to the face and use the Col button and the R,G,B

sliders on the Material panel to control the colour of the line. Faces not linked

to a material will be exported coloured grey.

http://marginal.org.uk/x-planescenery/normalise.txt

108

v8/v9: Animation

You can make lamps, meshes and lines animate in X-Plane according to the

value of any of the simulator datarefs listed here that have type "int", "float"

or "double".

Basic animation

Create an "Armature" object. Make the lamps and/or meshes that you want

to animate the children of the armature's "bone":

1. Click on the lamps and/or meshes (the "children")

2. Shift-click on the armature

3. Choose Pose Mode from the Mode menu in the 3D View window's

toolbar

4. Click on the bone (the "parent")

5. Press Ctrl-P and select Bone from the popup menu

Once you have assigned a parent bone to your lamps/meshes, you can specify

the simulator dataref that will drive the animation:

1. Choose Object Mode from the Mode menu in the 3D View window's

toolbar

2. Select the child lamp or mesh

3. From the 3D View window's menubar choose Object → Scripts → X-

Plane Animation

4. In the Parent Bone panel, use the pop-up menu to select the dataref

http://www.xsquawkbox.net/xpsdk/docs/DataRefs.html
http://www.xsquawkbox.net/xpsdk/docs/DataRefs.html
http://www.xsquawkbox.net/xpsdk/docs/DataRefs.html

109

(or you can type in just the "leaf" name of the dataref into the text field,

or the full name of a custom dataref)

5. Some datarefs require you to specify a "Part number";

eg the dataref sim/flightmodel/engine/ENGN_thro represents the

engine throttle settings, so you need to specify which engine you're

referring to. Specify a "Part number" of 0 for the first engine, 1 for the

second engine etc

6. Press the Apply button

Use frames to represent the desired position of the lamps/meshes at various

dataref values - X-Plane will interpolate linearly between the positions:

1. In the Animation Frame field, in the Buttons window's menubar, select

frame 1

2. Click on the armature

3. Choose Pose Mode from the Mode menu in the 3D View window's

toolbar

4. Click on a bone

5. Move and/or rotate the bone

6. Press i and specify a LocRot key (ie location and rotation)

7. Repeat for any other bones in the armature

8. Select animation frame 2 and repeat

(Note: X-Plane's animation syntax is quite simple; so don't use IPOcurves,

Vertex Groups, Deformations, Shape Keys or any other advanced Blender

http://en.wikipedia.org/wiki/Linear_interpolation

110

animation techniques since these will be ignored by the exporter - only the

positions specified by keys in the first n frames are significant to X-Plane.)

v8: X-Plane v8 only supports two frames, so if you want your .obj file to

work in X-Plane v8 then you should insert "LocRot" keys only in frames 1

and 2. If you insert keys in frame 3 and above then your animation will not

work at all in X-Plane v8. Use the Delete button in the X-Plane Animation

dialog to delete any keys from additional frames.

v9: You can add "LocRot" keys in as many frames as you like. If you skip a

frame then Blender and X-Plane will use the pose from the previous frame.

The X-Plane Animation dialog renames the parent bone to the "leaf" name of

the dataref. So pressing the Draw Names button in the Armature panel can

be helpful to see what's going on when you have lots of animations.

Use the Action Editor window to get an overview of which bones in the

selected armature have keys inserted into which frames.

Controlling animation response to dataref values

By default, X-Plane will display the meshes in the frame 1 position when the

dataref has a value of 0, and in the last frame position when the dataref has a

value of 1. You can change these values:

1. Choose Object Mode from the Mode menu in the 3D View window's

toolbar

2. Select the child lamp or mesh

3. From the 3D View window's menubar choose Object → Scripts → X-

Plane Animation

111

4. Specify in the Frame #n fields the dataref values that correspend to

each frame;

eg the yoke pitch dataref yolk_pitch_ratio takes values between -1

(forward) and +1 (back) in X-Plane. So, to make X-Plane display the

position in frame 1 when the yoke is pushed fully forward specify -1

in the Frame #1 field

5. Press the Apply button

v9: X-Plane will extrapolate your animation when the dataref has a value

outside of the range that you specified in the Frame #n fields. You can stop

the extrapolation and "clamp" your animation's position by repeating the

poses and Frame #n values in the first two and/or the last two frames. Or you

can cause your animation to loop back to frame 1 when the dataref value

exceeds a certain number by specifying this number in the Loop field.

Using multiple datarefs

You can animate your lamps/meshes using multiple bones, each bone

representing a different dataref:

1. In Edit Mode add additional bones to the armature.

2. Still in Edit Mode, in the Armature Bones panel, create parent/child

relationships between each bone. (Note: This panel also lets you

rename bones. Don't do this - use the X-Plane Animation dialog to

name the bones after the datarefs that they represent).

3. Use the technique described above to make your lamps/meshes the

children of the "youngest" bone in the chain.

http://en.wikipedia.org/wiki/Extrapolation
https://xp2b-docs.gitbook.io/xplane2blender-docs/index#basic_animation

112

4. Insert LocRot keys for every bone in the chain (each bone can have a

different number of keys).

The X-Plane Animation dialog displays the settings for the lamp/mesh's

parent bone, gandparent bone etc. (Note: Don't change the parent/child

relationships between your lamps/meshes and their parent bones while the X-

Plane Animation dialog is being displayed).

Hiding lamps and meshes

You can make all of the lamps and meshes in an animation disappear when a

dataref is within a certain range:

1. Use the technique described above to make your lamps/meshes the

children of an armature bone

(If you don't want to animate your lamps/meshes then don't insert any

animation keys for this bone, and the bone doesn't have to be a valid

dataref)

Choose Object Mode from the Mode menu in the 3D View window's

toolbar

Select a lamp or mesh that you want to hide

From the 3D View window's menubar choose Object → Scripts → X-

Plane Animation

https://xp2b-docs.gitbook.io/xplane2blender-docs/index#basic_animation

113

In the last panel, press the Add New button

Specify the dataref and the range of values (it's OK to use datarefs that

are not otherwise used in the animation)

You can make hidden lamps/meshes re-appear when a dataref value is within

a certain range by adding another entry, and changing the type from Hide to

Show. The dataref that you use to "show" the animation can be the same or

different than the datarefs that you used to "hide" the animation. (The

animation is always shown by default, so you only need to use a Show entry

if you have used one or more Hide entries and you want to override them).

The order of Hide and Show entries is significant; the animation will be

hidden if any of the Hide dataref values are in range, unless a subsequent

Show dataref value is also in range. You can use the Up and Down buttons

to change the order of the entries.

Note that the Hide and Show entries apply to all children of all bones in the

armature. You can make an armature the child of a bone in a different

armature; in which case all children are affected by any Hide and Show

entries in parent armatures.

v8/v9: Drawing order

The order in which X-Plane draws the animations, lights, lines and triangles

in your scenery or cockpit object usually has no effect on the appearance. So

the exporter optimises the order of animations, lights, lines and triangles in

your object to minimise the number of OpenGL state changes and therefore

maximise X-Plane's framerate.

114

However drawing order does become important if you use transparent and/or

translucent textures on some of your faces - transparent and translucent faces

must be drawn last, otherwise other faces and lights will not be visible

through them. You should therefore tell Blender which faces are

transparent/translucent using the Alpha button in the Texture Face Editing

panel (F9) in UV Face Select mode. The exporter will ensure that X-Plane

draws these faces last.

But sometimes you need even more control over the drawing order - eg

modelling a cockpit with a transparent HUD and (obviously) a transparent

canopy; the HUD must be drawn after the canopy.

You can specify the relative order in which lamps, meshes etc should be

drawn by assigning them to "Groups" on the Object and links panel (F7):

Objects that don't belong to a group are drawn first. The groups are sorted by

alphabetical order, and then objects that belong to the first group are drawn

next. … objects that belong to the last group are drawn last.

eg in the case of the cockpit with transparent canopy and HUD, we could put

the canopy and HUD into separate groups named GroupA and GroupB

respectively. Since A is before B in the alphabet, the canopy would be drawn

before the HUD (and both would be drawn after the rest of the cockpit).

To add objects to a new group:

Select the meshes that you want to be drawn late. Press the Add to Group

button on the Object and links panel (F7) (or press Ctrl-G). Choose ADD

NEW. Give the new group a name.

115

Objects that belong to a group are highlighted in green instead of pink so that

you can easily distinguish them.

v8/v9: Drawing group

You can specify when X-Plane should draw your scenery object relative to

other scenery elements:

Add a Blender object of type "Empty" to your scene. Add a property to the

Empty object named group_terrain, group_beaches, group_shoulders,

group_taxiways, group_runways, group_markings, group_airports,

group_roads, group_objects, group_light_objects or group_cars. Give the

property a value between -1 and -5 to make X-Plane draw your object before

this group, 0 to draw your object with this group, or between 1 and 5 to draw

your object after this group.

eg to make X-Plane draw your object at the same time that it draws runway

markings add a property named group_markings to an Empty object and give

it the value 0.

v8/v9: Slung load weight

You can specify the weight of an object for use in X-Plane's physics engine

if the object is being carried by a plane or helicopter:

Add a Blender object of type "Empty" to your scene. Add a property to the

Empty object named slung_load_weight and specify the weight in pounds.

Optimising for X-Plane

v7: Strips

116

As well as basic 3- and 4-edged faces ("tri"s and "quad"s), X-Plane v7 objects

support two compound types - "tri_fan" and "quad_strip". These are strips of

two or more tris and quads that share common edges. Because the faces in

these strips share common edges, X-Plane and the underlying OpenGL

renderer have a third or a half as much work to do to render them compared

to individual tris and quads. This gives higher frame rates.

In order for a pair of faces to be considered for inclusion in one of these strips,

the following conditions need to be true:

The faces must be facing the same way. Each pair of faces must share a

common edge (apart from the first and last face). Each shared edge must have

the same texture co-ordinates in both faces.

In practice this means that the texture must be reversed in alternate faces in

the strip. In the case of tris this can also be achieved by mapping a single area

of the texture across all the tris, with the tip of the tris at the centre of the

texture area. Use UVs → Copy & Paste from the UV/Image Editor window

to automate the creation of strips.

These compound types aren't supported directly by Blender. However, the

export script automatically tries to spot when it can use them.

v8, v9 & csl: The performance gains from using strips are more modest in X-

Plane v8 and v9, and for CSL objects. These compound types aren't supported

in v8/v9 objects (X-Plane v8 and v9 use more advanced techniques) and the

only saving from using strips over some other UV mapping methods is in

reduced "vertex count". It probably isn't worth going out of your way to look

for opportunities of making strips.

117

Level Of Detail

X-Plane has borrowed the concept of "Level Of Detail" from 3D games. This

works on the principle that when you're viewing an object from a large

distance it can be displayed with reduced detail without you noticing the

difference. By displaying distant objects with reduced detail we can simulate

a more complex scene than would be possible if all objects were drawn at

maximum detail.

Use Layers to draw scenery and CSLs (but not aircraft Cockpits or Misc

Objects) with multiple Levels Of Detail. Objects in layers 1-3 are visible in

X-Plane at the following distances:

Layer

Distance

1

< 1000m

2

1000-4000m

3

4000m-10000m

Changing the texture size

118

If you run out of space in your texture file then you can increase the size. The

panel texture can by 1024×any size in X-Plane v8, and any size up to

2048×2048 in X-Plane v9. The height and width of a non-panel texture file

must be a power of two eg 128, 256, 512, 1024 or 2048 (X-Plane v9 only),

but it doesn't have to be square.

You should use the following procedure to ensure that your UV mappings

and/or PlaneMaker instrument layouts are preserved:

Create a new, larger, texture in an image editor application. Panel texture:

Paste the original texture into the lower left corner of the new texture. Non-

panel texture: Paste the original texture into one of the corners of the new

texture, or aligned on a multiple of the original texture's width and height. In

Blender, in the UV/Image Editor window, select the original texture from the

pop-up menu. Choose Image → Replace and fixup UV mapping… Select the

new image and press Replace image. In the Fixup UV mapping dialog, press

the button in the cluster of buttons that represents where you placed the

original texture in the new texture.

You can also use this technique if you want to combine 3D models that use

different texture files; paste all of the textures used by the 3D models into a

single new texture file, then use Image → Replace and fixup UV mapping…

on each of the original textures.

119

APPENDIX (C)

DATAREFS FOR ANIMATING OBJECTS IN X-

PLANE

Flight Model: (sim/flightmodel2)

Facing the front of the plane= Left= [1] Centre= [0] Right= [2] or [0] =first

object, [1] =second object, and so on.

Left Ruder: sim/flightmodel2/wing/rudder1_deg[0]

Right Rudder: sim/flightmodel2/wing/rudder1_deg[0]

Left Aileron: sim/flightmodel2/wing/aileron1_deg[0]

Right Aileron: sim/flightmodel2/wing/aileron1_deg[0]

Left Elevator sim/flightmodel2/wing/elevator1_deg[0]

Right Elevator: sim/flightmodel2/wing/elevator1_deg[0]

Flaps Left: sim/flightmodel2/wing/flap1_deg[0]

Flaps Right: sim/flightmodel2/wing/flap1_deg[1]

Slats: sim/flightmodel2/controls/slat1_delopy_ratio[0]

Speed Brakes Left: sim/flightmodel2/controls/speedbrake_ratio[0]

Speed Brakes Right: sim/flightmodel2/controls/speedbrake_ratio[0]

Landing Gear:
Gear Deploy Ratio: sim/flightmodel2/gear/deploy_ratio[0]

Gear Steering: sim/flightmodel2/gear/tire_steer_actual_deg[0]

Gear Deflection: sim/flightmodel2/gear/tire_vertical_deflection_mt[0]

Tire Rotation: sim/flightmodel2/gear/tire_rotation_angle_deg[0]

120

Cockpit:
Throttle: sim/flightmodel2/engines/throttle_used_ratio[0]

Engine:
sim/flightmodel2/engines/engine_rotation_angle_deg

[0]

Canopy

open/close:
sim/flightmodel2/misc/canopy_open_ration[0]

Cockpit Datarefs: (sim/cockpit2) Used for Manipulators:

Navigation Lights:
sim/cockpit2/switches/navigation_lights_on

on value=1 off value=0

Strobe Lights: sim/cockpit2/switches/strobe_lights_on

Taxi Lights: sim/cockpit2/switches/taxi_lights_on

Battery: sim/cockpit2/electrical/battery_on[0]

Igniter: sim/cockpit2/engine/actuators/igniter_on[0]

Avionics: sim/cockpit2/switches/avionics_power_on

Generator: sim/cockpit2/electrical/generator_on[0]

Door open/close: sim/cockpit2/switches/door_open[0]

Parking Brake: sim/cockpit2/controls/parking_brake_ratio

Tail Hook: sim/cockpit2/switches/tailhook_deploy

Camera: sim/cockpit2/switches/camera_power_on

Cockpit Commands: Used for Manipulators:

APU:
sim/electrical/APU_start

sim/electrical/APU_off

Inverter:
sim/electrical/inverter_on

sim/electrical/inverter_off

121

Pitot Heat:
sim/ice/pitot_heat0_on

sim/ice/pitot_heat0_off

Fuel On/Off:
sim/engines/engage_starters

sim/starters/shut_down

Idle Hi/Low: sim/engines/idle_hi_lo_toggle

Landing Lights:
sim/lights/landing_lights_on

sim/lights/landing_lights_off

Landing Gear:
sim/flight_controls/landing_gear_down

sim/flight_controls/landing_gear_up

Slider: sim/operation/slider_01

	Preface
	Overview
	Requirements
	Importing objects
	Importing planes
	Exporting objects
	Creating X-Plane scenery
	Tweaking planes
	Creating 3D cockpits
	Cockpit instruments
	v9: Cockpit Panel Regions
	Creating a Panel Region
	Deleting a Panel Region
	Re-loading the Panel Regions
	Using Blender to create X-Plane objects
	Lamps
	Meshes
	Lines

	v8/v9: Animation
	Basic animation
	Controlling animation response to dataref values
	Using multiple datarefs
	Hiding lamps and meshes

