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Abstract 

We deal with algebras of sphericl functions associated with 

covariant systems over a compact group with locally compact group 

action on 𝐶∗-algebras and compact subgroups and duality theory for 

nonergodic actions. The quasi product actions of compact abelian  

group on a 𝐶∗  - algebra and freeness of actions of finite abelian 

groups on 𝐶∗-algebras and free of compact quantum groups on unital 

𝐶∗ - algebras are considered. The Galois correspondence for compact 

groups of automorphisms of von Neumann algebras with a 

generalization to Kac algebras, for compact quantum group actions 

and 𝐶∗-algebras are studied.  The homoclinic groups and expansive 

algebraic actions are presented. The invariant measures for 

homeomorphisms with weak specification and orbit equivalence for 

generalized Toeplitz subshifts are introduced. The generic points of 

invariant measures for an amenable residually finite group actions 

with the weak specification property for ergodic group 

automorphisms of abelian groups are characterized. 
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 الخلاصة
تعاملنا مع الجبريات للدوال الدائرية المشاركة مع الانظمة المتغيرة فوق 

 ∗𝐶الزمرة المتراصة الموضعية علي جبريات  فعالالزمرة المتراصة مع ا

غير الارجوديه . قمنا باعتبار  فعالئية المتراصة ونظرية الثنائية للأوالزمرة الجز

 ∗𝐶 -الحرة للزمر الابيلية المتراصة علي جبريات  فعالشبه حاصل الضرب والأ

الوحيدة . تمت دراسة  ∗𝐶 -الحرة لزمر الكم المتراصة علي جبريات  فعالالأو

تقابلات جالوا لزمر التراص لأوتو مورفيزمات جبريات فون نيومن مع التعميم 

قديم .قمنا بت ∗𝐶 -علي جبريات زمر الكم المتراصة و فعالك ولأالي جبريات كا

. تم ادخال القياسات اللا متغيرة الجبر التوسعي أفعالو كلينيك وزمر هوم

للهوميومورفيزمات مع التخصيص الضعيف وتكافؤ المدار للازاحات الجزئية 

للزمرة  فعال. تم تشخيص النقاط النوعية للقياسات اللا متغيرة الأممهعليتز المتبو

يص الضعيفة تقريبا لاوتومورفيزمات المنتهية المتبقية القابلة مع خاصية التخص

 الزمرة الارجودية للزمر الابيلية .
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Introduction 

If 𝑀  is a 𝐶∗ -algebra, 𝐾  a compact group and 𝜚 : 𝐾 → Aut (𝑀)  a 

homomorphism, one can form the covariance algebra 𝐾 ×𝜚 𝑀. We show that 

the classification of the factor representations of 𝐾 ×𝜚 𝑀  (in particular the 

irreducible ones) can be reduced toe the classification of all factor (or 

irreducible) representations of the algebras 𝑀⨂𝐵(𝑋(𝐷))
𝜚⨂ad 𝐷

 (𝐷 ∈ �̂�) which 

can be considered as generalizations of the algebras of subgroup. For (𝐴, 𝐺, 𝛼) 

be a 𝐶∗-dynamical system and 𝐾 ⊂ 𝐺 a compact subgroup. We give necessary 

and suffkient conditions in order that the crossed product 𝐺 ×𝑥  𝐴 be simple. 

Several conditions on an action of a compact abelian group on a separable 

prime 𝐶∗-algebra to be equivalent.  

Generalizing work by Pinzari and Roberts, we characterize actions of a 

compact quantum group G on 𝐶∗  -algebras in terms of what we call weak 

unitary tensor functors from Rep G into categories of 𝐶∗-correspondences. We 

discuss the relation of our construction of a 𝐶∗-algebra from a functor to some 

well-known crossed product type constructions, such as cross-sectional algebras 

of Fell bundles and crossed products by Hilbert bimodules. Let F be a field, Γ a 

finite group, and Map(Γ, F) the Hopf algebra of all set-theoretic maps Γ → F. If 

E is a finite field extension of F and Γ is its Galois group, the extension is 

Galois if and only if the canonical map E ⊗F E → E ⊗F Map(Γ, F) resulting 

from viewing E as a Map(Γ, F)-comodule is an isomorphism. Similarly, a finite 

covering space is regular if and only if the analogous canonical map is an 

isomorphism. We extend this point of view to actions of compact quantum 

groups on unital 𝐶∗ -algebras.  

We show that the results of K. Sigmund hold for homeomorphisms 

satisfying weak specification. We show that every automorphism of a compact 

metric abelian group is ergodic under the Haar measure. 

For 𝑀  be a factor with separable predual and G a compact group of 

automorphisms of M whose action is minimal, i.e., 𝑀𝐺′ ∩𝑀 = 𝐶, where 𝑀𝐺 

denotes the G-fixed point subalgebra. Then every intermediate von Neumann 

algebra MG/N/M has the form 𝑁 = 𝑀𝐻 for some closed subgroup H of G.  

We establish a Galois correspondence for a minimal action of a compact 

quantum group G on a von Neumann factor 𝑀. This extends the result of Izumi, 
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Longo and Popa who treated the case of a Kac algebra. We show a Galois 

correspondence for compact group actions on 𝐶∗-algebras in the presence of a 

commuting minimal action.  

We study and classify free actions of compact quantum groups on unital 

𝐶∗ -algebras in terms of generalized factor systems. We study free actions of 

compact groups on unital 𝐶∗-algebras. For F be a field, Γ a finite group, and 

Map(Γ, F) the Hopf algebra of all set-theoretic maps Γ → F. If E is a finite field 

extension of F and Γ is its Galois group, the extension is Galois if and only if 

the canonical map E ⊗F E → E ⊗F Map(Γ, F) resulting from viewing E as a 

Map(Γ, F)-comodule is an isomorphism. Similarly, a finite covering space is 

regular if and only if the analogous canonical map is an isomorphism. We 

extend this point of view to actions of compact quantum groups on unital 𝐶∗ -

algebras. We show that such an action is free if and only if the canonical map 

(obtained using the underlying Hopf algebra of the compact quantum group) is 

an isomorphism.  

We show that for every metrizable Choquet simplex K and for every 

group G, which is infinite, countable, amenable and residually finite, there 

exists a Toeplitz G-subshift whose set of shift-invariant probability measures is 

affine homeomorphic to K. We give algebraic characterizations for 

expansiveness of algebraic actions of countable groups. The notion of p-

expansiveness is introduced for algebraic actions, and we show that for 

countable amenable groups, a finitely presented algebraic action is 1-expansive 

exactly when it has finite entropy. We also study the local entropy theory for 

actions of countable amenable groups on compact groups by automorphisms, 

and show that the IE group determines the Pinsker factor for such actions. We 

show that every measure invariant for an amenable residually finite group 

action satisfying the weak specification property has a generic point. 
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Chapter 1 

Algebras of Sphericl Functions Associated with Locally Compact Group 

and Quasi Product Actions 

We show that as a corollary we get that if 𝐾 is abelian then 𝐾 ×𝜚 𝑀 is liminal or 

postliminal if and only if 𝑀𝜚 has the same property. The conditions are in terms of the 

dual �̂�  of the compact subgroup 𝐾 . We also consider the similar problem for prime 

crossed products. We improve that some results are subsatantially. 

Section (1.1): Covariant Systems over a Compact Group 

         We classify the most fundamental building blocks, for instance to find all irreducible 

or factor representations of 𝑎∗ - algebras or a group. In the theory of representations of 

group this classification often can bedone by a reduction process . For instance if a locally 

compact group 𝐺 has a closed normal subgroup 𝑁 the classification of the irreducible 

unitary representations of 𝐺(this set is called �̂�) can be reduced to the classification of �̂� 

andcertain projctive representations of some subgroups of 𝐺/𝑁 , c.f. [12]. This theory has 

later been extended to more general systems c.f. [6], [12], [14] and [17]. 
          If the group 𝐺 contains a " large " compact subgroup 𝐾 , there is another method of 

classifying �̂�first studied by R. Godement in [7].Here the classification of �̂� is reduced to 

that of determining �̂� and to find all irreducible representations of certain algebras of " 

spherical functions". We try to extend this method to covariant systems over acompact 

group . 

           For 𝑀 be a 𝐶∗ - algebra, 𝐾 acompact group and ᵨ ahomorphism of 𝐾into the group 

Aut (M)of * - automorphisms of 𝑀such that the map 𝐾 ⟶ ᵨ𝑘(𝑎) 
Is norm-continuous for all 𝑎 ∈ 𝑀.  Let 𝐿1(𝐾,𝑀)  be all integrable functions from 

𝐾 𝑡𝑜 𝑀.With the following definitons 𝐿1(𝐾,𝑀) is a Banach∗-algebra : 

𝑓g(𝑥) = ∫ 𝑓(𝑦)ᵨ𝑦

2

𝐾

(g(𝑦−1𝑥))𝑑𝑦               

𝑓∗(𝑥) = ᵨ𝑥(𝑓(𝑥
−1))∗                                     

‖𝑓‖ = ∫ ‖𝑓(𝑥)‖𝑑𝑥
2

𝐾

.                               

      Let 𝔄 be the enveloping 𝐶∗-algebra of 𝐿1(𝐾,𝑀) 𝔄 is called the convariance algebra of 

the convariant sysetm (𝑀, ᵨ, 𝐾) and is also denoted 𝐾 ×ᵨ 𝑀.  These concepts were 

introduced by S.Doplicher , D.Kastler and  D.Robinsonin [5] and they showed that there  

is a one –to-one correspondance between non-degnenerate * - representations 𝑇 of  𝔄 and 

pairs (𝑈, 𝜋)  with 𝑈  a continuous unitary representation of 𝐾, 𝜋  a non-degnenerate * - 

representation of 𝑀 such that 𝜋 and 𝑈  acts on the same Hilbert space and  

𝑈𝑘𝜋(𝑎)𝑈𝑘−1 = 𝜋 (ᵨ𝑘(𝑎))       for 𝑘 ∈ 𝐾 , 𝑎 ∈ 𝑀.                                                   (1) 

In fact if (𝑈, 𝜋) is geven , that then 𝑇 is defined by   

𝑇𝑓 = ∫𝜋 (𝑓(𝑘))𝑈𝑘𝑑𝑘     𝑓𝑜𝑟  𝑓 ∈ 𝐿1(𝐾,𝑀). 

The starting point in the Mackey-Takesaki theory is now to study the representation 𝜋 of 

𝑀. 𝜋 is not necessarily irreducible even if  𝑇 is and one looks at 𝜋 ,s decomposition into 

irreducible representations . (This may not be possible so one has to make certain 
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assumptions about 𝑀 ). The group 𝐾  acts naturally on the set �̂�  of  irreducible 

representations of 𝑀, and if this actinon is ''nice'' it is possible to describe 𝔄 by �̂� and 

certain projective representations of some subgroups of  𝐾. 
      We are instead going to look at the decomposition of 𝑈 into irreducible representations 

of 𝐾,  and we shall classify all pairs (𝜋, 𝑈)  as above having a given 𝐷 ∈ �̂�  as a 

subrepresentation of  𝑈.  
For 𝐷 ∈ �̂�, let 𝜓𝐷be its character , i.e.  

𝜓𝐷(𝑘) = dim(D)tr (Dk−1)        for 𝑘 ∈ 𝐾.  

𝐿1(𝐾)  can be embedded in 𝑀(𝐿1(𝐾,𝑀)) =  the algebra of multipliers of 𝐿1(𝑘,𝑀)  be 

defining 

𝜑𝑓(𝑥) = ∫ 𝜑(𝑘)ᵨ𝑘

2

𝐾

(f(𝑘−1𝑥))𝑑𝑘                                                                                      

𝑓𝜑(𝑥) = ∫ 𝜑(𝑘)𝑓
2

𝐾

(𝑥𝑘−1)𝑑𝑘, 𝑓𝑜𝑟 𝜑 ∈ 𝐿1(𝐾), 𝑓 ∈ 𝐿1(𝐾,𝑀), 𝑥 ∈ 𝐾.         

𝐾 can also be embedded in 𝑀(𝐿1(𝐾,𝑀)) by  

𝐾𝑓(𝑥) = ᵨ𝑘(𝑓(𝑘
−1𝑥))                                                                               

𝑓𝑘(𝑥) =   𝑓(𝑘−1𝑥)       for 𝑓 ∈ 𝐿1(𝐾,𝑀), 𝑘, 𝑥 ∈ 𝐾.                            
Look at the two sided ideal  

                           𝐴(𝐷) = colsed lin span {𝑓𝜓Dg|f, g ∈ 𝐿1(𝐾,𝑀)} 
of  𝐿1(𝐾,𝑀). The importance of this ideal is seen from  

Lemma (1.1.1)[1]: if 𝑇 is a non - degnerate * - representationof 𝐿′(𝐾,𝑀)𝑎𝑛𝑑𝑈 𝑎𝑛𝑑 ᴫ are 

the   repersentations of  K and M such that (1) holds , then a given 𝐷 ∈ 𝐾 occurs in U if 

and only if  the restriction of  Tto the two – sided ideal A(D) is non zero. 

Proof: Let 𝑃𝐷 = ∫ 𝑘𝜓𝐷(𝐾)𝑈𝑘𝑑𝑘, 𝑠𝑜 𝑃𝐷is aprojection. Now 𝐷 occurs in 𝑈 if and only if 

𝑃𝐷 ≠ 0 . Since 𝑇 is non – degenerate 𝑃𝐷 ≠ 0 if and only if there are 𝑓 and 𝑔 in 𝐿1(𝐾,𝑀) 
with 𝑇𝑔𝑃𝐷𝑇𝑓 ≠ 0.  Using that  𝑃𝐷𝑇𝑓 = 𝑇𝜓𝐷𝑓  it follows that 𝑃𝐷 ≠ 0  if and only if 

𝑇(𝐴(𝐷))  ≠ 0 . 

ᵨ𝑘(𝑓(𝐾
−1𝑥𝐾)) = 𝑓(𝑥)       𝑓𝑜𝑟 𝑎𝑙𝑚𝑜𝑠𝑡 𝑎𝑙𝑙 𝑘 , 𝑥 ∈ 𝐾 ,                                                  (2) 

𝜓𝐷𝑓 = 𝑓                                                                                                 (3) 
So 𝐴(𝐷) and 𝐿𝐷 

0 (𝑀) are strongly Morita equivalent . (We have here used the following : 

if 𝐴 is an algebra and its multiplier algebra 𝑀(𝐴)  contains a sub algebra 𝐵 isomorphic to a 

full matrix algebra , then 𝐴 ≅ 𝐵⊗ 𝐶 where 𝐶 = (𝐴 ∩ 𝐵′). 
The algebra 𝐿𝐷 

0 (𝑀) is the analogue of the algebra 𝐿0(𝑑) considered in [7]. 

 We shall also prove that 𝐿𝐷 
0 (𝐾,𝑀) is isomorphic to algebra 

𝐵(𝐷) =  {𝑎 ∈ 𝑀⊗𝐵(𝑋(�̅� ))| (𝑒𝑥 ⊗𝑎𝑑�̅�𝑥)(𝑎) = 𝑎 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝐾}. 
(�̅�𝑖𝑠 the conjugate repersentation of 𝐷.)  

So the classificaton of  irreducible  representations of the covariant system (𝑀, ᵨ, 𝐾) has 

been redused to the classificaton of  �̂� and the irreducible representations of 𝐵(𝐷) for 

different 𝐷 ∈ �̂� .If 𝐾  in particular is abelian,this classificaton becomes very simple , 

then 𝐵(𝐷) ≅  𝑀ᵨ.  
So the  representations theory of  (𝑀, ᵨ, 𝐾) is determined by the fixpoint algebraof 𝑀,and 

by �̂�. We revised and updated version of [11] which originated during.  

     We shall keep all definitions. In addition we make the following convenntion :If  𝑆 is a 

repressentation, we let 𝑋(𝑆) denote the corresponding Hillbert space. If 𝑋 is a Hillbert 
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space, 𝐵(𝑋) is the algebra of all bounded operator on 𝑋 and 𝐶𝐶(𝑋) is the subalegbra of all 

compact opertors. For a covariant system (𝑀, ᵨ, 𝐾),𝑀ᵨ denotes its fixpont-alegbra, i.e. 

𝑀ᵨ = {𝑎 ∈ 𝑀|ᵨ𝑥(𝑎) = 𝑎  for all  𝑥 ∈ 𝑋}. 
If 𝐷 is a continuous representation of 𝐾, ad 𝐷 is the map from 𝐾 to Aut 𝐵(𝑋(𝐷)) defined 

by  

                                 ad 𝐷𝑥(𝑅) = 𝐷𝑥𝑅𝐷𝑥−1 for 𝑥 ∈ 𝐾, 𝑅 ∈ 𝐵(𝑋(𝐷)). 
Lemma (1.1.2)[1]:let 𝐴 be 𝑎 Banach *- algebra , J a closed self- adjoint two- sided ideal 

in 𝐴  Then there is a bijectivecorrspondance between non-degenetate factor 

reperesentations 𝑆 of  𝐽 and non-degenetate factor reperesentations 𝑇 of 𝐴 with 𝑇(𝐽) ≠ {0}. 
If  𝑇 is gevev, 𝑆 is the restriction of  𝑇 to 𝑗 . If  𝑆 is geven , 𝑇 is defined by  

𝑇𝑎(𝑆𝑏𝜉) = 𝑆𝑎𝑏𝜉    𝑓𝑜𝑟 𝑎 ∈ 𝐴,    𝑏 ∈ 𝐽 , 𝜉 ∈ 𝑋(𝑆).                                             (4) 
Furthermore, 𝑇(𝐴)″ = 𝑆(𝐽)″, so 𝑆 and 𝑇 are of the same type , and 𝑆 is irreducible if and 

only if 𝑇 is . 

Proof :If 𝑇 is given, let 𝑆 be the restriction of 𝑇 to 𝑗.Then the closure 𝑆(𝐽)″ is a tow – 

sided  ideal in 𝑇(𝐴)″ , so 𝑆(𝐽)″ = 𝑇(𝐴)″, 𝑆 𝑖𝑠 non- dengenerate , and 𝑆 is also a factor 

representation. 

Converesly , suppose 𝑆 is a non- degenerate *- representation of 𝐽(not necessarily a factor 

representation), and without loss of generality we may assume that 𝑆 has acyclic vector 𝜉0 

. On the dense subsace 𝑋0 = {𝑆𝑏𝜉0|𝑏 ∈ 𝐽} we define 𝑇 by  

𝑇𝑎(𝑆𝑎𝑏𝜉0) = 𝑆𝑎𝑏𝜉0 for 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐽. 
Now , 

‖𝑆𝑎𝑏𝜉0‖
2 = (𝑆𝑎∗𝑎𝑏𝜉0 , 𝑆𝑏𝜉0) ≤ ‖𝑆𝑏𝜉0‖‖𝑆𝑎∗𝑎𝑏𝜉0‖ ≤ ⋯ ≤  

 
So ‖𝑆𝑎𝑏𝜉0‖ ≤ ‖𝑎‖‖𝑆𝑏𝜉0‖ for all 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐽. 
Hence 𝑇𝑎  is well defined over 𝑋0 and extends to abounded operator over 𝑋(𝑆) .𝑇  will 

obvioslyof  be a non – degenerate *- representation of 𝐴and (4) wil lhold for all 𝑎 ∈ 𝐴, 𝑏 ∈
𝐽, 𝜉 ∈ 𝑋(𝑥)𝑜𝑏𝑣𝑖𝑜𝑢𝑠𝑙𝑦 𝑆(𝐽)″ ⊂  𝑇(𝐴)″. Converselyif𝑅 ∈ 𝑆(𝐽)′, 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐽then 

𝑅𝑇𝑎𝑆𝑏𝜉0 = 𝑅𝑆𝑎𝑏𝜉0 = 𝑆𝑎𝑏𝑅𝜉0 = 𝑇𝑎𝑆𝑏𝑅𝜉0 = 𝑇𝑎𝑅𝑆𝑏𝜉0 

Thus 𝑅𝑇𝑎 = 𝑇𝑎𝑅 for all 𝑎 ∈ 𝐴, so𝑅 ∈ 𝑇(𝐴)′. Hence 𝑇(𝐴)″ = 𝑆(𝐽)″ , and in particular 𝑆 is 

a factor representation if 𝑇 is . To conclude ,it is easy to check that the maps 𝑆 ⟶ 𝑇 and 

𝑇 ⟶ 𝑆 are each others inverses . 

Lemma (1.1.3)[1]: Define a linear map 𝜙 ∶  𝐿1(𝐾 ,𝑀) ⟶ 𝑀⊗𝐵 (𝑋 (�̅� ))𝑏𝑦 

𝜙(𝑓) = ∫ 𝑓(𝑘−1)
1

𝑘

⊗ �̅�𝐾𝑑𝐾 

Then 𝜙 is 𝑎 ∗ − isomorphism of 𝐿𝐷
0 (𝐾,𝑀) onto 

𝐵(𝐷) = 𝑀⊗B(X(�̅�))21
ᵨ⊗ad�̅�

 

Proof : Note that 𝜙 is not 𝑎 ∗ − homomorphism of 𝐿1(𝐾,𝑀), but using that elments of 

𝑳𝑫
𝟎 (𝐾,𝑀)  satisfy(2) and (3), staright forward calculations show that 𝜙  is 𝑎 ∗ − 

homomorphism of 𝑳𝑫
𝟎 (𝐾,𝑀) into 𝐵(𝐷) . 

Let 𝑄:𝑀⊗𝐵(𝑋(�̅�)) ⟶ 𝑀be defined by 

𝑄(𝑠 ⊗ 𝑎) = dim(𝐷) 𝑡𝑟(𝑎)𝑠 for 𝑠 ∈ 𝑀, 𝑎 ∈ 𝐵(𝑋(�̅�)). 

Then define 𝜓:𝑀⊗𝐵(𝑋(𝑋(�̅�)) ⟶ 𝐿1(𝐾,𝑀) by 
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𝜓(𝑏)(𝑥) = 𝑄(𝑏(𝐼 ⊗ �̅�𝑥)) for 𝑏 ∈  𝑀⊗𝐵(𝑋(𝑋(�̅�)),𝑥 ∈ 𝐾. 

It is now not difficult to see that 𝜓  maps 𝐵(𝐷)  into 𝐿𝐷
0 (𝐾,𝑀)  and that 𝜓|𝐵(𝐷)  and 

𝜙|𝐿𝐷
0 (𝐾,𝑀) are each others inverses. 

 In the introdution it was shown that 𝐴(𝐷)and𝐵(𝐷)  are Morita 

equivalent, both being equivalent to the algebra  𝐴1(𝐷). How to find animprimitivity 

bimodule connectting 𝐴(𝐷)  and 𝐴1(𝐷) is described. Using that 𝐴1(𝐷) ≅ 𝐵(𝑋(𝐷))  ⊗
𝐿𝐷
0 (𝐾,𝑀) and a procedure similar to the one can get an imprimitivity bimodule connecting 

𝐴1(𝐷)  and 𝐿𝐷
0 (𝐾,𝑀) . However ,we shalldirectly  give an imprimitivity bimodule 𝐿 

between 𝐴(𝐷) and 𝐵(𝐷), i.e 𝐴(𝐷) acts to the left on 𝐿 and 𝐵(𝐷) acts to therighton 𝐿 such 

that the axioms in [6] are sattisfied . 

 The following definitions should be rather natural . 

𝐿 = 𝑀⊗𝑋(𝐷) and we define actions of 𝐿1(𝐾,𝑀) and 𝑀⊗𝐵(𝑋(𝑋(�̅�)) on 𝐿 by 

𝑓(𝑎 ⊗ 𝜉) =  ∫𝑓(𝑥) ᵨ𝑥(𝑎)⊗ 𝐷𝑥𝜉𝑑𝑥                                        (5) 

for 𝑓 ∈ 𝐿1(𝐾,𝑀), 𝑎 ∈ 𝑀, 𝜉 ∈ 𝑋(𝐷), 
(𝑎 ⊗ 𝜉)(𝑏 ⊗ 𝑠) = 𝑎𝑏 ⊗ 𝐽∗𝑠∗𝑗𝜉                                                     (6) 

for 𝑎, 𝑏 ∈ 𝑀, 𝑠 ∈ 𝐵(𝑋(�̅�)) , 𝜉 ∈ 𝑋(𝐷), 
Straight forward computations show that this really defines actions and that 𝑓(𝑟𝑏) =
(𝑓𝑟)𝑏 for 𝑓 ∈ 𝐿1(𝐾,𝑀), 𝑟 ∈ 𝐿 and 𝑏 ∈ 𝐵(𝐷) ,but not for all 𝑏 ∈ 𝑀⊗𝐵(𝑋(�̅�)). 
If 𝜉 and 𝜂 are vectors in a Hilbert space 𝐻, let 𝐸(𝜉, 𝜂) be the rank one operator in 𝐵(𝐻) 
defined by 

𝐸(𝜉, 𝜂)𝜁 = (𝜁, 𝜂)𝜉. 
The 𝐴(𝐷) − rigging and 𝐵(𝐷) − rigging are now defined by 

[𝑎 ⊗ 𝜉, 𝑏 ⊗ 𝜂]𝐴(𝑋) = 〈𝜉, 𝐷𝑥𝜂〉𝑎𝜚𝑥(𝑏
∗) 

[𝑎 ⊗ 𝜉, 𝑏 ⊗ 𝜂]𝐵 = ∫𝜚𝑥(𝑎
∗𝑏)⊗ �̅�𝑥𝐸(𝑗𝜉, 𝑗𝜂)�̅�𝑥−1𝑑𝑥 

for𝑎, 𝑏 ∈ 𝑀 and 𝜉, 𝜂 ∈ 𝑋(𝐷). 
Obviously [𝑟, 𝑠]𝐵 ∈ 𝐵(𝐷) for 𝑟, 𝑠 ∈ 𝐿 .To see that[𝑟, 𝑠]𝐴 ∈ 𝐴(𝐷) note that if {𝜉𝑖}is an 

orthonormal basis in 𝑋(𝐷) , 

[𝑎𝑖 ⊗𝜉𝑖,𝑎𝑗𝜉𝑗]𝐴
(𝑋) = 𝑑𝑖𝑛𝐷∫〈𝜉𝑖,𝐷𝑦𝜉𝐼〉𝑎𝑖  𝜚𝑥(〈𝜉𝑗𝐷𝑥−1𝜉𝐼〉𝑎𝑗)

∗  𝑑𝑦 = 𝑓𝑖  𝑓𝑗∗ (𝑥)    (7) 

Where 

   𝑓𝑖(𝑥) = 𝑑𝑖𝑚𝐷
1

2〈𝜉𝑖,𝐷𝑖𝜉𝑖〉𝑎𝑖  .                                                             (8) 
Since 𝑓𝑖𝜓𝐷 = 𝑓𝑖 , it follows that [𝑟, 𝑠]𝐴 ∈ 𝐴(𝐷) for all 𝑟, 𝑠 ∈ 𝐿 . 

It is more or less straightforward now to check the formulas(1) –(5) on page 72 of [6]. As 

an example we take (5): 

[𝑎 ⊗ 𝜉, 𝑏 ⊗ 𝜂]𝐴(𝑐 ⊗ 𝜉) = ∫〈𝜉𝐷𝑥𝜂〉𝑎𝜚𝑥(𝑐) ⊗ 𝐷𝑥𝜁𝑑𝑥

= ∫𝑎𝜚𝑥(𝑏
∗𝑐)⊗ 𝑗∗ �̅�𝑥𝐸(𝐽𝜁, 𝐽𝜂)�̅�𝑥−1𝑗𝜉𝑑𝑥

= (𝑎 ⊗ 𝜉)(𝜚𝑥(𝑏
∗𝑐)) ⊗ �̅�𝑥𝐸(𝑗𝜂, 𝑗𝜁)�̅�𝑥−1)𝑑𝑥 = (𝑎 ⊗ 𝜉)[𝑏 ⊗ 𝜂, 𝑐 ⊗ 𝜁]𝐵. 

So(𝐿, [. , . ]𝐴, [. , . ]B) is an imprimtivity bimodule. Since 

𝑙𝑖𝑛𝑠𝑝𝑎𝑛{𝑎∗b⊗ E(jξ, jζ|a, b ∈ M, ξ, η ∈ X(D)} 
Is norm dense in 𝑀⊗B(X(D̅) it should be obvious that lin span {[𝑟, 𝑠]𝐵|𝑟, 𝑠 ∈ 𝐿} is norm 

dense in 𝐵(𝐷)  . 
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If𝑓 ∈ 𝐿1(𝐾), 𝑎 ∈ 𝑀 define𝑓 ⊗ a ∈ 𝐿1(𝐾,𝑀) by 

(𝑓 ⊗ 𝑎)(𝑥) = 𝑓(𝑥)a . 

Then with 𝜉𝑖 as above 

(𝑓 ⊗ 𝑎)𝜓𝐷(𝑔 ⊗ 𝑏)∗ = 𝑑𝑖𝑚𝐷∑ [𝑎

𝑖

⊗𝐷𝑓𝜉𝑖 , 𝑏 ⊗ 𝐷𝑔𝜉𝑖]𝐴, 

Where 

𝐷𝑓 = ∫𝑓(𝑥)𝐷𝑥 𝑑𝑥 . 

Form this it follows that lin span {[𝑟, 𝑠]𝐴|𝑟, 𝑠 ∈ 𝐿}  is norm dense in 𝐴(𝐷)  ,so our 

imprimitivity bimodule is topologically strict as defined in [6]. 

Lemma (1.1.4) [1]: Every * - representation of A(D) (respectiveiy B(D)) is L-positive. 

(cf. [6]). 

Proof: Let {𝜉𝑖}  be an orthonormal basis of 𝑋(𝐷) as before , and let 𝑟 = ∑𝑎𝑖 ⊗𝜉𝑖 ∈ 𝐿 

with 𝑎𝑖 ∈ 𝑀 . Then 

[𝑟, 𝑟]𝐵 = ∫∑𝜚𝑥(𝑎𝑖
∗

𝑖,𝑘

𝑎𝑘) ⊗ �̅�𝑥𝐸(𝑗𝜉𝑖 , 𝑗𝜉𝑘)�̅�𝑥−1𝑑𝑥, 

So [𝑟, 𝑟]𝐵 ≥ 0 as an element of the 𝐶∗ − algebra B (D). Take 𝑓𝑖 as in ( 8) and 𝑓 =  ∑ 𝑓𝑖  . 
Then (7) gives That [𝑟, 𝑟]𝐴   = 𝑓𝑓∗  Hence  𝑆[𝑟,𝑟]𝐵 ≥ 0  and 𝑇[𝑟,𝑟]𝐴  ≥ 0   for any *- 

representations 𝑆  o 𝑓 𝐵(𝐷)   and 𝑇 of 𝐴(𝐷. )  It should now be clear that 

(𝐿, [ , ]𝐴, [  , ]𝐵) satisfies 

 CoroLllary(1.1.5)[1]: 𝐾 ×ᵨ 𝑀 𝑖𝑠  postliminal ifand only if 𝑀⊗𝐵(𝑋(𝐷))ᵨ⊗𝑎𝑑𝐷 (𝑋(𝐷)) 

=𝐵(�̅�) is postliminal forall 𝐷 ∈ �̂� in particular this is the case if𝑀 itsel 𝑓 is postliminal . 

Proof : the first part follows from the fact that 𝑎 𝐶∗ − algebra is postliminal if and only if 

all its factor representations are of type 𝐼. If 𝑀 is postliminal, then so is 𝑀⊗𝐵(𝑋(𝐷)) 
and its 𝐶∗ − subalgebra (�̅�) . 
Corollary (1.1.6)[1]: 𝐾 ×ᵨ 𝑀  is liminalif and only if 𝑀⊗𝐵(𝑋(𝐷))ᵨ⊗𝑎𝑑𝐷 (𝑋(𝐷)) 

=𝐵(�̅�)𝑖𝑠 liminal for all 𝐷 ∈ 𝐾.In particular this is case it 𝑀itsel is liminal . 

Proof : it follows that 𝐴(𝐷) is liminal if and onlyif  𝐵(𝐷) is liminal . if 𝐾 ×ᵨ 𝑀 is liminal 

then so is 𝐴(𝐷) . Conversely , suppose  

For each 𝐷 occurring in the restrictionof 𝑇  to 𝐾  (𝑎𝑛𝑑 𝑇𝐷 = 0  other wise) .Now𝑓 =
∑ 𝑓𝜓𝐷𝐷∈�̂�  (convergence in norm) for each𝑓 ∈ 𝐿1(𝐾,𝑀) so to prove that 𝑇𝑓 is compact it 

suffices to prove that 𝑇𝑓𝜓𝐷
is compact for all 𝐷 ∈ �̂�  ..Now 𝑓∗𝜓𝐷𝑓 ∈ 𝐴(𝐷)  so 

(𝑇𝑓𝜓𝐷
)∗1𝑇𝑓𝜓𝐷

= 𝑇𝑓∗𝜓𝐷𝑓
𝐷 −

is compact for all 𝐷 ∈ �̂�  and we have proved that 𝐾 ×ᵨ 𝑀 is 

liminal . 

If 𝑀 itself is liminal , then obviously 𝑀⊗𝐵(𝑋(𝐷)) together with its sub algebra 

𝐵(�̅�) also will be liminal . 

The next result is a slight generalization of a result in [16]. 

Corollary (1.1.7)[1]: If 𝐾 ×ᵨ 𝑀  is simple then so are all 𝑀⊗𝐵(𝑋(𝐷))ᵨ⊗𝑎𝑑𝐷.  in 

particular 𝑀ᵨ is simple. 

Proof : if 𝐾 ×ᵨ 𝑀 is simple , then 𝐵(𝐷) also must be simple beign morita equivalent to 

the ideal 𝐴(𝐷)− in𝐾 ×ᵨ 𝑀 . 

Corollary (1.1.8)[1]: If 𝐾 is a compact abelian group 𝐾 ×ᵨ 𝑀 is liminal (postliminal) if 

and Only if𝑀ᵨ is liminal (postliminal) . 
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Our algebras 𝐵(𝐷) should be considered as analogues of the algebras 𝐿0(𝑑) of spherical 

functions defined in [7]. The  following should therefore come. 

Proposition(1.1.9)[1] :   if    dim  𝑆 ≤ 𝑛 for every irreducible representation 𝑆 of 𝐵(𝐷) =

𝑀⊗𝐵(𝑋(�̅�))𝑒⨂𝑎𝑑�̅� and 𝑇 is an irreducible * - representation of 𝐾 ×ᵨ 𝑀 , then 𝐷 occurs 

at most 𝑛 times in the restriction of 𝑇 to 𝐾 . 

Proof: Let 𝑇 be an irreducible *- representation  of 𝐾 ×ᵨ 𝑀 and let 𝑋0 be a non – zero 

subspace of 𝑋(𝑇) invariant under the restriction of 𝑇 to 𝐾 and such that 

∫𝜓𝐷(𝑋)𝑇𝑋 𝛼𝑑𝑥 = 𝛼 for 𝛼 ∈ 𝑋0 

Then the indused representation 𝑆 of 𝐵(𝐷) corresponding to 𝑇  

〈𝑎 ⊗ 𝜉 ⊗ 𝛼, 𝑏 ⊗ 𝜂 ⊗ 𝛽〉 = 〈𝑇 [𝑏 ⊗ 𝜂,𝑎 ⊗ 𝜉]𝐴 𝛼, 𝛽〉  

  =  ∫〈𝜂, 𝐷𝑥 𝜉〉𝑏ᵨ𝑥  (𝑎
∗)〈𝑇𝑥𝛼, 𝛽〉 𝑑𝑥  𝑓𝑜𝑟  𝑎, 𝑏 ∈ �̅�⨂𝑋𝑀, 𝜉, 𝜂 ∈ 𝑋(𝐷), 𝛼, 𝛽 ∈ 𝑋(𝑇).     (9) 

Take 𝑋(𝑆) to be the separated completion of with this inner product. 𝑆 is then defined by  

𝑆𝑏(𝑎 ⊗ 𝜉 ⊗ 𝛼) = (𝑎 ⊗ 𝜉)𝑏 ∗⊗ 𝛼 for 𝑏 ∈ 𝐵(𝐷) 
See [6] 

Let 𝑌0 be the closed linear span in 𝑋(𝑆) of {𝑟 ⊗ 𝛼|𝑟 ∈ �̅�, 𝛼 ∈ 𝑋0} .Then 𝑌0 ≠ {0} , 
because the expression (9) always is 0 we will have 

∫〈𝜂, 𝐷𝑥 , 𝜉〉〈𝑇𝑥, 𝛼, 𝛽〉 𝑑𝑥 = 0 ,  

so 

〈𝛼, 𝛽〉 = ∫𝜓𝐷 (𝑥)〈𝑇𝑥𝛼, 𝛽〉𝑑𝑥 = 0 for all 𝛼, 𝛽 ∈ 𝑋0 , 

acontradiction . 

Furthermore, if 𝑋1 ⊥ 𝑋0is another subspace of 𝑋(𝑇) with the same properties as 𝑋0, 

define 𝑌1 to be the corresponding subspace of 𝑋(𝑆) .(9) then shows that 𝑌0 ⊥ 𝑌1,so𝐷 can 

occur at most dim 𝑋(𝑆) times in the restriction of 𝑇 to 𝐾. 

Proposition (1.1.10)[1]: Suppose(𝑀, 𝜚, 𝐾) is 𝛼 covariant system with 𝑀  𝑎 von Neumann 

algebra and 𝜚 𝜎- weakly continuous . If each 𝐷 ∈ �̅� occurs only finitely many times in 0 , 

then 𝐾 ×ᵨ 𝑀 (𝑊∗ − 𝑐𝑟𝑜𝑠𝑠𝑒𝑑𝑝𝑟𝑜𝑑𝑢𝑐𝑡) is 𝑎 type 1 von Neumann algebra . 

Proof: suppose 𝑀 ⊆ 𝐵(𝐻) and let 

𝑀0 = {𝑎 ∈ 𝑀|𝑥 ⟶ 𝜚𝑥(𝑎)𝑖𝑠 𝑛𝑜𝑟𝑚 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 } . 
This is a 𝜎 − weakly dense 𝐶∗ -subalgebra of 𝑀 so (𝑀0, 𝜚, 𝐾)is a 𝐶∗ - covariant system . 

For 𝐷, 𝐸 ∈ �̂� let 

𝑀(𝐸 ) = {𝑎 ∈ 𝑀|∫𝜓𝐸 (𝑥)𝜚𝑥(𝑎)𝑑𝑥 = 𝑎} 

and 

𝐵(𝑋(𝐷), 𝐸) = {𝑏 ∈ 𝐵(𝑋(𝐷))| ∫𝜓𝐸(𝑥)𝐷𝑥𝑏𝐷𝑥−1𝑑𝑥 = 𝑏}. 
𝑀(𝐸) is by assumption a finite dimensional subspace of 𝑀 ,and 𝑀(𝐸) ⊂ 𝑀0 for a given 

𝐷, 𝐵(𝑋(𝐷), 𝐸) is non – zero for only finitely many 𝐸in �̂� .it then follows from the theory 

of tensor – product representations of compact groups (c.f .[8]) that 

𝐵(�̅�) = 𝑀0 ⊗𝐵(𝑋(𝐷))𝜚⊗𝑎𝑑𝐷 ⊂ ∑ 𝑀(�̅�)𝐸∈�̂� ⊗𝐵(𝑋(𝐷), 𝐸) . 
So 𝐵(�̅�)is finite dimensional for all 𝐷 ∈ �̂�,thus 𝐾 ×ᵨ 𝑀0 is a type 𝐼𝐶∗- algebra . 

Since 𝐾 ×ᵨ 𝑀 is the 𝜎 - weak closure of 𝐾 ×ᵨ 𝑀0 over 𝐿2(𝐾,𝐻), 𝐾 ×ᵨ 𝑀is type 1. 

Corollary (1.1.11)[1]: If (𝑀, 𝜚, 𝐾) is as in proposition(1.1.10) and 𝜚 is ergodic (i.e𝑀𝜚 =
𝐶𝐼),then 𝐾 ×ᵨ 𝑀 is type  1 von Neumann algebra . 

Proof: It is proved in [9] that ergodicity implies finite multiplicity , so the result follows 

form Proposition (1.1.10) . 
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Example (1.1.12)[1]: M. Takeesaki showed in [18] that if is a uniformly hyper finite 𝐶∗- 
algebra there is a compact abelian group𝐾  and 𝜚 ∶ 𝐾 ⟶ 𝐴𝑢𝑡 𝐴  such that 𝐾 ×ᵨ 𝑀  is 

liminal. It is not difficult to show that in this case 𝐴𝜚 is abelian so Corollary (1.1.8) give a 

different proof that 𝐾 ×ᵨ 𝑀 is liminal . 

Example (1.1.13)[1]:let 𝐻 be Mautners 5- dimensional non- type I solvable lie group (for 

details , see [17],)Ten one can form a semi- direct product 𝐺 of 𝐻 and the circle group 𝑇 

exatly as in [17], except that we use 𝑇 instead of the real numbers . The action of 𝑇 on 𝐻 

induces 𝜚 on 𝐶∗(𝐻) such that 

𝐶∗(𝐺) ≅ 𝑇 ×𝜚 𝐶
∗(𝐻) . 

Also in this case one can show that 𝐶∗(𝐻)𝜚is liminal so by Corollary (1.1.8) 𝐶∗(𝐺) (thus 

𝐺) is liminal . 

Corollary (1.1.8) tells us that there is a close correspondence between the  representation  

theories of 𝐾 ×ᵨ 𝑀 and 𝑀𝜚 when 𝐾is abelian . They are however  not Morita equivalent 

(e.g. take  𝑀 = 𝐶), but 𝐴. Kishimoto and  . Takai has shown in [10] that under certain 

assumptions 𝐾 ×ᵨ 𝑀 ≅ 𝑀𝜚 ⊗𝐶𝐶(𝐿2(𝐾)) so 𝐾 ×ᵨ 𝑀and 𝑀𝜚 are Morita equivalent. 

Section (1.2): 𝑪∗ Algebras and Compact Subgroups 
For (𝐴, 𝐺, 𝑎) be a 𝐶*-dynamical system with A a C*-algebra, G a locally compact 

group, and 𝛼: 𝐺 ⟶  𝐴𝑢𝑡(𝐴)  a homomorphism such that the mapping 𝑔 ⟶ 𝛼𝑔 (𝑎 ) is 

continuous from 𝐺 to A for every 𝑎 ∈  𝐴. We denote by 𝐴𝑥 the fixed point algebra of 𝛼. 

   Let also 𝐾 ∈  𝐺  be a compact subgroup. We shall give necessary and sufficient 

conditions in order that the crossed product 𝐺 ×𝛼  𝐴 be simple or prime. Our conditions 

are in terms of the dual  𝑘of the compact subgroup 𝐾.  
We summarize some definitions and results about continuous Banach 

representations of compact groups. We contain the definitions of the subspaces of 

spherical functions 𝑆𝜋1.𝜋2(𝜋1 ,. 𝜋2 , ∈ 𝐺) those of the algebras 𝑆𝜋 , 𝐼𝜋  and the relations 

between these subspaces. 

Contains a study of saturated actions of  𝐺  on 𝐴  in terms of the ideals 𝑆𝜋1.  * 𝑆𝐼𝜋.  We 

mention that for compact groups the notion of saturated action has been defined by Rieffel 

(see [36]). We contain conditions in order that the crossed product be simple. For compact 

abelian groups G, our result reduces to the following: 𝐺 ×𝛼  𝐴 is simple if and only if 

(𝑎) 𝑆𝑝(𝛼)  =  �̂� (here 𝑆𝑝(𝑥) stands for the Arveson spectrum of a) and (𝑏)𝐴𝑥. 

It is then shown that similar results hold for prime C*-crossed products. 

Let 𝐾 be a compact group. We shall denote by �̂� the dual of 𝐾, 𝑖. 𝑒., the set of all 

unitary equivalence classes of irreducible representations of 𝐾. Fo each 𝜋 ∈ �̂� we denote 

also by 𝜋 a representative of that class and by 𝐻𝜋 the (finite-dimensional) Hilbert space of 

𝜋. We let 𝑖 be the trivial one-dimensional representation of 𝐾. 
If 𝜋 ∈ �̂� 𝑙𝑒𝑡 𝑋𝜋 be its normalized character 𝑋𝜋(𝐾) = 𝑑(𝜋 )𝑡𝑟(𝜋𝑘

−1), where 𝑑(𝜋 ) is 

the dimension of  𝐻𝜋  Let 𝐵  be a Banach space and 𝛽  a continuous representation of 

𝐾 𝑜𝑛 𝐵. Associated with a 𝜋 ∈ �̂� are the following continuous operators on 𝐵: 

𝑃 
𝛽(𝜋 ): 𝑎 ⟶ ∫𝑋𝜋

0

𝑘

(𝐾)𝛽𝑘(𝑎) 𝑑 

and 

𝑃𝑖𝑗 
𝛽(𝜋 ): 𝑎 ⟶ ∫ 𝜋𝑗𝑖̅̅̅̅

0

𝑘
(𝐾)𝛽𝑘(𝑎) 𝑑𝑘 1 ≤ 𝑖, 𝑗 ≤ 𝑑(𝜋), 
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where [𝜋𝑖𝑗(𝑘)] is the matrix of 𝜋𝑘 in a fixed orthonormal basis of 𝐻𝜋 

  For standard properties of these operators we refer the reader to [29], [8]. Here we note 

some of them for further use: 

Remark (1.2.1)[19]:(i) 𝑃 
𝛽(𝜋)𝑃𝑖𝑗 

𝛽(𝜋) =  𝑃𝑖𝑗 
𝛽(𝜋)𝑃 

𝛽(𝜋) = 𝑃𝑖𝑗 
𝛽(𝜋). 

(ii) If 𝐵 is a 𝐶∗-algebra and 𝛽𝑘  are 𝐶∗-automorphisms then 𝑃 
𝛽�̅�(𝐵) =  [𝑃 

𝛽(𝜋)]∗; where �̅� 

is the conjugate representation of 𝜋  

(iii) 𝛽𝑘 (𝑃𝐼𝐽(𝜋)(𝑎)) = ∑ 𝜋𝑖𝑗𝑖 (𝐾)𝑃𝑖𝑗 
𝛽(𝑎). 

If we denote by [𝑃𝑖𝑗 
𝛽(𝜋)(𝑎)] the matrix in 𝐵 ⊗  𝐵(𝐻𝜋) with entries 𝑃𝑖𝑗 

𝛽(𝜋 ): (𝑎), then (iii) 

may be written: 

(iv) (𝛽𝑘 ⊗ 𝑖) ([𝑃𝑖𝑗 
𝛽(𝜋)(𝑎)]) = [𝑃𝑖𝑗 

𝛽(𝜋)(𝑎)] . (𝐼𝐵 ⊗ 𝜋𝐾). 

We now make the following notations: 

𝐵1(𝜋) =  (𝑎 ∈ 𝐵|𝑃𝛽(𝜋)(𝑎) = 𝑎} 
and 

𝐵2(𝜋) = {[𝑎𝑖𝑗] ∈ 𝐵 ⊗ 𝐵(𝐻𝜋)|(𝛽𝐾 ⊗ 𝑖)([𝑎𝑖𝑗]) = [𝑎𝑖𝑗]. (𝐼𝐵 ⊗𝜋𝐾). 𝑘 ∈ 𝐾} 

Clearly 𝐵1(𝜋)  ⊂  𝐵 𝑎𝑛𝑑  𝐵2(𝜋)  ⊂ 𝐵 ⊗  𝐵(𝐻𝜋)𝜋 ∈ �̂�. Using the above Remarks we also 

have 

𝐵1(𝜋) =  {𝑃 
𝛽(𝜋)(𝑎)| 𝑎 ∈ 𝐵} 

and 

 

𝐵2(𝜋) = {[𝑎𝑖𝑗] ∈ 𝐵 ⊗  𝐵(𝐻𝜋)|𝛽𝐾(𝑎𝑖𝑗) =∑ 𝜋𝑖𝑗
𝑖

(𝐾)𝑎𝑖𝑗}. 

By Remark (iii) above [𝑃𝑖𝑗
𝛽
: (𝜋)(𝑎)]  ∈  𝐵2(𝜋)  for every 𝑎 ∈ 𝐵, 𝜋 ∈ �̂�  The next lemma 

shows that every element of 𝐵2(𝜋) is of this form. 

Lemma (1.2.2)[19]: 𝐵2(𝜋) = {[𝑃𝑖𝑗
𝛽
(𝜋)(𝑎)0] |𝑎 ∈ 𝐵} 

Proof. The above discussion shows that {[𝑃𝑖𝑗
𝛽
(𝜋)(𝑎)0] |𝑎 ∈ 𝐵} ⊂ 𝐵2(𝜋) Conversely let 

[𝑎𝑖𝑗]  ∈ 𝐵2(𝜋) . Denote ∑ 𝑎𝑖𝑗𝑖 Then a standard calculation using orthogonality relations 

shows that𝑃𝑖𝑗
𝛽(𝜋)(𝑎) = 𝑎𝑖𝑗

0
 . 

The proof of the following lemma is similar to the one given in  [8] for Hilbert spaces 

Lemma (1.2.3)[19]:  ∑ 𝐵1(𝜋)𝜋∈�̂� 𝑖𝑠 𝑑𝑒𝑛𝑠𝑒 𝑖𝑛 𝐵. 
Lemma (1.2.4)[19]:  Let 𝑎 ∈ 𝐵 and suppose that 𝑃 

𝛽(𝜋)(𝑎)  =  0 for all 𝜋 ∈ �̂� Then 𝑎 =
 0. 
II. Spaces of Spherical Functions inside the Crossed Product Let (𝐴, 𝐺, 𝛼)  be a C*-

dynamical system. We denote by 𝐶(𝐺) the set of all continuous, compactly supported 

functions from 𝐺 to 𝐴. Let 𝐾 ⊂  𝐺 be a compact subgroup. It is known that 𝐿’(𝐾) can be 

imbedded in the multiplier algebra 𝑀(𝐺 ×𝛼 𝐴) of the crossed product. 

If ∅𝐸 𝐿𝐿|(𝐾)𝑎𝑛𝑑 𝑌 ∈ 𝐶𝐶  (𝐺, 𝐴)𝑡ℎ𝑒𝑛 

( ∅ ∗ 𝑦)(𝑔) = ∫∅(𝐾)𝛼𝐾

1

𝐾

 (𝑦(𝐾−1 𝑔 ))𝑑𝑘 

and 
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( 𝑦 ∗ ∅)(𝑔) = ∫∅(𝐾)𝛼𝐾

1

𝐾

 (𝑦(𝐾−1 𝑔 ))𝑑𝑘 

In particular, if ∅ = 𝑋𝑛  then ∅ is a projection in 𝑀(𝐺 ×𝛼 𝐴)  Let us define the following 

representation z of K on the (Banach space 𝐶𝐶  (𝐺, 𝐴): 
(𝑡𝑘𝑦)(𝑔)=𝑥𝑘(𝑦(𝐾

−1 𝑔)). 
Then 𝑡 extends to a continuous representation of 𝐾 on (the Banach space) 𝐺 ×𝛼 𝐴). 
Lemma (1.2.5)[19]:  (i) 𝑝𝑡(𝜋)𝑓 = 𝑥𝜋 ∗ 𝑓 for 𝜋 ∈ �̂�, 𝑓 ∈ 𝐺 ×𝑥 𝐴. 
(ii) If 𝑋𝜋* 𝑓 = 0 for all 𝜋 ∈ �̂�then 𝑓= 0. 

(iii) ∑ 𝑋𝜋 ∗ (𝐺 × 𝐴)𝜋∈�̂� 𝑛𝑒& 𝑥𝐼𝐼  𝑖𝑠 𝑑𝑒𝑛𝑠𝑒 𝑖𝑛𝐺 ×𝑥 𝐴 . 
(iv) If 𝜋1 ≠ 𝜋2, 𝑖𝑛�̂�, then the projections 𝑋𝜋1 and 𝑋𝜋2 𝑜𝑓𝑀(𝐺 ×𝛼  𝐴) are orthogonal. 

(v) ∑ 𝑋𝜋𝜋∈�̂�  =  1 (us projections in 𝑀(𝐺 ×𝛼 𝐴)). 
Proof: (i) follows from definitions, (ii) is a consequence of (i) and 

Lemma(1,2,4), (iii) follows from (i) and Lemma(1,2,3)(iv) is an easy consequence of 

orthogonality relations, and (v) follows from (iv) and 

(iii). 

 Let us denote 𝑆𝜋1.𝜋2 = 𝑋𝜋1 ∗  (𝐺 ×𝑥  𝐴) ∗ 𝑋𝜋2(𝜋1. 𝜋2 ∈ �̂�). Then 𝑆𝜋1.𝜋2  are closed 

subspaces of 𝐺 ×𝑥 𝐴. 

  If 𝜋1  = 𝜋2   = 𝜋0  we put 𝑆𝜋0  = 𝑆𝜋0.𝜋2S,,. Then 𝑆𝜋0 , is a hereditary C*-subalgebra of 

𝐺 ×𝑥  𝐴 (that is, the set of positive elements of 𝑆𝜋0 is a hereditary subcone of the cone of 

positive elements in 𝐺 ×𝑥  𝐴  ; see [35] for definitions and properties of hereditary 

subalgebras), 

Lemma (1.2.6)[19]: (i) 𝐼𝑓𝜋1 ,, 𝜋2, 𝜋3, 𝜋4 ∈ �̂�  𝑎𝑛𝑑𝜋2  ≠ 𝜋3 𝑡ℎ𝑒𝑛 

𝑆𝜋1.𝜋2 ∗ 𝑆𝜋3,𝜋4   =  0. 

(ii) 𝑆𝜋1.𝜋2 ∗  𝑆𝜋2.𝜋3  =  𝑆𝜋1.𝜋3 . 

(iii) (𝑆𝜋1.𝜋2)
∗  = 𝑆𝜋2.𝜋1 . 

(iv) 𝑆𝜋1.𝜋2 ∗  𝑆𝜋2.𝜋1  𝑖𝑠 𝑎 𝑡𝑤𝑜 − 𝑠𝑖𝑑𝑒𝑑 𝑖𝑑𝑒𝑎𝑙 𝑜𝑓 𝑆𝜋1  . 

(v) Assume that 𝐺 =  𝐾 is compact. For each 𝑎 ∈  𝐴 denote by�̃� ∈ 𝐶 , (𝐺, 𝐴) the constant 

function �̃�(𝑔) =  𝑎. In this case 𝑆𝜋1  = {�̃�|𝑎 ∈  𝐴1(𝜋). } 
   Proof:  Part (i) follows from Lemma (1.2.5)(iv). Parts (ii), (iii), (iv), and (v) from 

definitions. 

We shall assume for simplicity that the group 𝐺 is unimodular. This assumption is not 

essential but we make it in order to simplify our computations. 

We now define the algebra I generated by the 𝐾-central functions in 𝐺 ×𝑥  𝐴. 𝐴 function 

𝑦 ∈  𝐶, . (𝐺, 𝐴) is called K-central if 

𝑥𝑘(𝑦(𝐾
−1𝑔𝐾 )) =  𝑌( 𝑔 )𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 ∈ 𝐾, 𝑔 ∈ 𝐺 

Then 𝐼 is a 𝐶*-subalgebra of 𝐺 ×𝑥  𝐴. We make the following notations: 

𝐼𝜋 = 𝐼 ∩ 𝑆𝜋 

I(𝜋) = C(K) * X𝜋 
Proposition (1.2.7)[19]: The bilinear map (𝑓, 𝑦)  ⟶ 𝑓 ∗  𝑦  from 𝐼(𝜋)  × 𝐼𝜋  into 

𝐺 ×𝑥  𝐴 when l$ted to a linear map of 𝐼(𝜋)  × 𝐼𝜋  into 𝐺 ×  𝐴  establishes a *-algebra 

isomorphism of the tensor product 𝐼(𝜋)  × 𝐼𝜋 with S𝜋 

   For the theory of imprimitivity bimodules and Morita equivalence of 𝐶*-algebras we 

refer the reader to [14], [37].  

    We note the following corollary of the above proposition 
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Corollary (1.2.8)[19]: 𝐼𝜋 is strongly Morita equivaIent with 𝑆𝜋Therefore 

(i) 𝐼𝜋 is simple if and only if- 𝑆𝜋 , is simple, 

(ii) 𝐼𝜋 is prime if and ordy if 𝑆𝜋 is prime, 

(iii) 𝐼𝜋is type I if and only if 𝑆𝜋 is type 𝐼. 
Proof: 𝐼𝜋 is strongly Morita equivalent with 𝑆𝜋 by Proposition(1.2.7) (i) and (ii) follows 

from and (iii)  We consider the following map 𝑃 from 𝐶, (𝐺, 𝐴) into itself: 

                (𝑃𝑦)(𝑔)  = ∫ 𝛼𝑘(𝑦(
𝐼

𝑘
 𝐾−1𝑔𝐾) 𝑑𝑘.                                            (10) 

It is then easily seen that 𝑃(𝐶, (𝐺, 𝐴))  ⊂  𝐼  and 𝑃  can be extended to a projection of 

𝐺 ×𝑥, 𝐴  onto 𝐼.  Another fact that will be used is the following observation: 𝐼𝑓 𝑓 ∈
 𝐼 𝑎𝑛𝑑 𝑋𝜋 ∗  𝑓 = 𝑓, then also 𝑓 = 𝑓 ∗ 𝑋𝜋  Thus, the map 𝑓 ⟶ 𝑋𝜋  ∗  𝑓 is a projection of 

𝐼onto𝐼𝜋  

  Let us now specialize the above notions to the case when 𝐺 =  𝐾. The following result is 

due to Landstad. 

Lemma (1.2.9)[19]: Define a linear map  ∅  : 𝐶, (𝐺, 𝐴) ⟶  𝐴 ⊗  𝐵(𝐻𝜋)  by ∅(𝑓)  =
 ∫ 𝐹 (𝑔−1‘) ⊗ 𝜋𝑔̅̅ ̅  𝑑𝑔. Then ∅ is 𝑎 ∗ isomorphism of 𝐼𝜋 onto the fixed point algebra 𝐴⊗

   𝐵(𝐻𝜋0)
𝛼⊗𝑎𝑑�̅�)  The inverse of this isomorphism is the map  𝜓  from 𝐴⊗

  𝐵(𝐻�̅�)
𝛼⊗𝐴𝑑𝜋0   defined by 

𝜓(𝑏)(𝑔)  =  𝑑(�̅�)𝑡𝑟(𝑏(1⊗ �̅�(𝑔)). 
From the above lemma and its proof it follows that 𝐼𝜋 consists only of 

continuous functions. 

Lemma (1.2.10)[19]:𝑃(𝑆𝜋,𝑖,∗ 𝑆𝑖,𝜋)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =  𝜓(𝐴2(�̅�) ∗ 𝐴2(�̅�) ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ). 

𝐏𝐫𝐨𝐨𝐟: By Lemma (1.2.6)(v), 𝑆𝜋,𝑖 is the closure of the set of all �̃� with 

𝑎 ∈ 𝐴1(𝜋). By Lemma (1.2.6)(iii), 𝑆𝑖,𝜋 is the closure of all (�̃�)∗with 𝑏 ∈ 𝐴1(𝜋) . Since, by 

definition of the involution in 𝐺 ×𝑥  𝐴, (�̃�) ∗ (𝑔)  =  𝑥𝑔𝑎, (𝑏
∗), it follows that 𝑆𝜋,𝑖  ∗ 𝑆𝑖,𝜋̅̅ ̅̅  2  

is generated by all functions of the form 

�̃� ∗  (𝑏)̃∗(𝑔) =  𝑎𝑥𝑔( 𝑏
∗),            𝑎, 𝑏 ∈ 𝐴1(𝜋). 

We have 

𝑃(�̃� ∗  (𝑏)̃∗(𝑔)  =  ∫ 𝛼𝑘
2

𝐾
(�̃� ∗  (𝑏)̃∗  (𝐾−1𝑔𝐾)𝑑𝑘 =∫ 𝛼𝑘

2

𝐾
(𝛼𝛼𝑘

−1𝑔𝐾( 𝑏∗)𝑑𝑘 

=∫ 𝛼𝑘
2

𝐾
(𝑎)𝛼𝑔𝑘( 𝑏

∗)𝑑𝑘. 

We now use the fact that 𝑎, 𝑏 ∈ 𝐴1 𝐴(𝜋), Therefore 

𝑎 =  𝑃𝑋(�̅�)(𝑎) =  ∑ 𝑃𝑖𝑗
𝑥

𝑖
(𝜋)(𝑎) 

and 

𝑏∗  =  𝑝𝑥(�̅�)(𝑏∗) =  ∑ 𝑃𝑖𝑗
𝑥

𝑗
(�̅�)(𝑏∗). 

For simplicity, during this proof we shall denote 𝑃𝑖𝑗
𝑥(𝜋)(𝑎)  = 𝑎𝑖𝑗 and 

𝑃𝑖𝑗
𝑥(�̅�)(𝑏∗)  =  𝑏𝑖𝑗

∗ . With these notations, we have 

𝑝 (�̃�  ∗ �̃� (𝑔)) =  ∫𝑥𝑘 (𝑎)𝛼𝑔(𝑏
∗) 𝑑𝑘 =∑𝑖

𝑖

∑;

𝑗

 ∫ 𝛼𝑘 (𝑎𝑖𝑗)𝛼𝑔𝑘(𝑏𝑖𝑗
∗ )𝑑𝑘. 

Using Remark (1.2.1)(iii) we further have 
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𝑝 (�̃�  ∗ (�̃�)∗ (𝑔)) =  ∑ (∫𝜋𝑟𝑖
𝑖,𝑗,𝑟,𝑖

(𝑘)�̅�𝑖𝑗 (𝑔𝑘) 𝑑𝑘) 𝑎𝑖𝑟𝑏𝑗𝑖
∗

=∑ (�̅�)𝑖𝑠(𝑔)
𝑖,𝑗,𝑟,𝑖

(∫𝜋𝑟𝑖(𝐾) (�̅�)𝑠𝑖(𝐾)𝑑𝐾)𝑎𝑖𝑟𝑏𝑗𝑖
∗  

Taking into account the orthogonality relations we have 

𝑝 (�̃�  ∗ (�̃�)∗ (𝑔)) =  
1

𝑑(𝜋)
∑�̅�𝑖𝑠(𝑔)

𝑖,𝑗,𝑠

𝑎𝑖𝑠𝑏𝑖𝑗
∗

=
1

𝑑(𝜋)
∑𝑎𝑖𝑠(𝑔)(∑�̅�𝑖𝑠(𝑔)

𝑖,𝑗,𝑠

𝑏𝑖𝑗
∗ ) =

𝑖,𝑗,𝑠

1

𝑑(𝜋)
∑𝑎𝑖𝑠𝑎𝑗(𝑏𝑖𝑗

∗ )

𝑖,𝑠

=
1

𝑑(𝜋)
∑𝑎𝑖𝑠𝑎𝑗(𝑏𝑖𝑗

∗ ) =
1

𝑑(𝜋)
𝑡𝑟([𝐶𝑖𝑗]

𝑠,𝑖

[(𝑏𝑖𝑗
∗ ](𝐼 × �̅�𝑔) 

(by Remark (1.2.1)(iv)) = 
1

𝑑(𝜋)2
𝜓([𝐶𝑖𝑗][(𝑏𝑖𝑗

∗ ]). 

Where𝐶𝑖𝑗  = 𝑎𝑗𝑖  and the matrix [𝐶𝑖𝑗 ] belongs to𝐴2(�̅�)  and [𝑏𝑖𝑗
∗ ] belongs to 𝐴2(�̅�) 

Therefore 𝑃(𝑆𝜋,𝑖 ∗  𝑠𝑖,𝜋̅̅ ̅̅ ) ⊂  𝜓(𝐴2 ( (𝜋 ∗ 𝐴2(�̅�)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) . The reverse inclusion is obtained by 

reversing the arguments. 

Let (𝐴, 𝐺, 𝑎)  be a 𝐶 *-dynamical system. There are several approaches to questions 

concerning the ideal structure of the crossed products 𝐺 ×𝛼  𝐴. 
  We shall review them following [27]. 

   The first involves the Effros-Hahn conjecture for amenable 𝐺  [28]. The second, of 

abelian groups of automorphisms, involves the Connes spectrum  [33], [34]. 
   The third involves the notion of outer automorphism groups [26] and the fourth the 

notion of partly inner automorphism [38]. In particular, Olesen and Pedersen [33] proved 

that if G is discrete, then 𝐺 ×𝛼  𝐴  is simple if and only if (a) the Cannes spectrum 

Γ(𝛼)  = �̂�  and (𝑏) 𝐴 is G-simple (that is, A contains no G-invariant two-sided ideals). 

   This result is false if 𝐺 is not discrete. Bratteli [3] has given a counterexample for 𝐺 =
 𝑇  (the circle group) and 𝐴 the 𝑈𝐻𝐹  algebra of type 2∞.In an appendix to Bratteli’s, 

Rosenberg [16] has “explained” somewhat Bratteli’s counterexample. He proved that if 𝐺 

is compact and 𝐺 ×𝛼  𝐴  is simple then the fixed point algebra 𝐴𝛼  shows that if 𝐺  is 

compact abelian then 𝐺 ×𝛼  𝐴 is simple if and only if (𝑎) the Arveson spectrum 𝑆𝑝(𝛼)  =
 �̂�  𝑎𝑛𝑑 (𝑏)𝐴𝛼  is simple.  

   For a different approach to the above problem for G compact we send to [36]. We shall 

consider a compact subgroup 𝐾 ⊂  𝐺 and give conditions for simplicity 𝐺 ×𝛼  𝐴 in terms 

of the subspaces 𝑆𝜋𝐼,𝜋2 introduced above. 

   First, we shall exhibit a left−𝑆𝜋𝐼,-right-𝐺 ×𝛼  𝐴 bimodule 𝑋 which in some cases will be 

imprimitivity bimodule in the sense of [14]. 

   Let 𝑋 =  (𝐺 ×𝛼  𝐴)  ∗  𝑋𝑖 . Then, the convolution turns 𝑋 into a left-𝑆𝑖 -right- 𝐺 ×𝛼  𝐴 

bimodule. We define the following S,-valued (respectively 𝐺 ×𝛼  𝐴 valued) inner products 

on 𝑋: 

〈𝑥, 𝑦〉𝑠𝑖 = 𝑦∗  ∗  𝑥 

(𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦〈𝑥, 𝑦〉𝐺𝑥2𝐴  = 𝑥 ∗  𝑦∗). 
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It is then a matter of standard computations in (𝐺 ×𝛼  𝐴) that 𝑋 is aleft 𝑆𝑖- . Thus 𝑋 may 

fail to be an 𝑆𝑖- 𝐺 ×𝛼  𝐴  imprimitivity bimodule in the sense ofonly in that the range of 

the 𝐺 ×𝛼  𝐴 valued inner product need not be dense. 

    This can be fixed by making the following definition, which for the case 𝐺 =  𝐾 has 

been given by Rieffel. 

Definition(1.2.11)[19]: Let (𝐴, 𝐺, 𝑎) and 𝐾 be as above. We say that a is 𝐾-saturated if 𝑋 

is an 𝑆𝑖 − 𝐺 ×𝛼  𝐴 imprimitivity bimodule. By reformulating the denseness of the range of 

the 𝐺 ×𝛼  𝐴-valued inner product we obtain: 

Lemma (1.2.12)[19]: The action 𝑥(𝑖𝑠 𝐾 −saturated if and only if the two-sided ideal 

generated by 𝑆𝑖 coincides with 𝐺 𝑥, 𝐴 (i.𝑒. , 𝑆, 𝑖𝑠 , 𝑓𝑢𝑙𝑙 𝑖𝑛 𝐺 ×𝛼  𝐴                          
𝐏𝐫𝐨𝐨𝐟: Plainly the range of the 𝐺 ×𝛼  𝐴 -valued inner product is the closed two-sided 

ideal(𝐺 ×𝛼  𝐴)  ∗  (𝐺 ×𝛼  𝐴)  generated by 𝑋𝑖 and this last ideal coincides with the closed 

two-sided ideal generated by 𝑆𝑖  Therefore (𝐺 ×𝛼  𝐴)   ∗ 𝑋𝑖   ∗  (𝐺 ×𝛼  𝐴) =  𝐺 ×𝛼  𝐴  if 

and only if 𝑆𝑖 is full. 

Theorem(1.2.13)[19]: Let (𝐴, 𝐺, 𝑎)  be a 𝐶 *-dynamical system and 𝐾 ⊂  𝐺 𝑎 compact 

subgroup. Then 𝛼 𝑖𝑠 𝐾-saturated if and only if 𝑆𝜋,𝑖 ∗ 𝑆𝑖,𝜋̅̅ ̅̅ for all 𝜋 ∈ �̂� . 

  𝐏𝐫𝐨𝐨𝐟: Assume that 𝛼 is saturated and let 𝜋 ∈ �̂�. ByLemma(1.2.12), (𝐺 ×𝛼  𝐴)   ∗ 𝑋𝑖   ∗
 (𝐺 ×𝛼  𝐴) =  𝐺 ×𝛼.By multiplying the above equality on both sides with 𝑋𝜋 we obtain 

𝑋𝜋 ∗ (𝐺 ×𝛼  𝐴) ∗ 𝑋𝑖 ∗ (𝐺 ×𝛼  𝐴) ∗ 𝑋𝜋 = 𝑋𝜋 ∗ (𝐺 ×𝛼  𝐴)𝑋𝜋. 
Hence 𝑆𝜋,𝑖 ∗  𝑆𝑖,𝜋̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =  𝑆𝜋 . Conversely assume that 𝑆𝜋,𝑖 ∗ 𝑆𝑖,𝜋̅̅ ̅̅   = 𝑆𝜋  for all 𝜋 ∈ K. 

We shall prove that the ideal (𝐺 ×𝛼  𝐴) ∗ 𝑋𝑖 ∗ (𝐺 ×𝛼  𝐴)  (is dense in 𝐺 ×𝛼  𝐴 . By 

Lemma (1.2.14)(iii), ∑ 𝑋𝜋𝜋∈�̂�  ∗  (𝐺 ×  𝐴) is dense in 𝐺𝛼𝐴. Therefore, in order to prove 

that (𝐺 ×𝛼  𝐴) ∗ 𝑋𝑖 ∗ (𝐺 ×𝛼  𝐴) (is dense, it is suflicient to  every element in), ∑ 𝑋𝜋𝜋∈�̂�  ∗
 (𝐺 ×𝛼 𝐴)Ccan be approximated (in norm) by elements of(𝐺 ×𝛼  𝐴) ∗ 𝑋𝑖 ∗ (𝐺 ×𝛼  𝐴). 
   Let 𝜋 ∈ �̂�  and 𝑓 ∈ 𝐺 ×  𝐴  such that 𝑓 =  𝑋𝜋  ∗  𝑓 ≠  0.  Since 𝑆𝜋,𝑖  ∗ 𝑆𝑖,𝜋  is a dense 

ideal of 𝑆𝜋 then there exists an approximate identity (𝑒ℷ 𝑜𝑓 𝑆𝜋 contained in that ideal. We 

claim that (norm) 𝑙𝑖𝑚 𝑒ℷ 𝑓 =  𝑓. Indeed 

‖𝑒ℷ ∗ 𝑓 − 𝑓‖2 = ‖(𝑒ℷ ∗ 𝑓 − 𝑓) ∗ 𝑓 − 𝑓) ∗ (𝑓∗ ∗ 𝑒ℷ − 𝑓∗)‖
= ‖(𝑒ℷ ∗ 𝑓 ∗ 𝑓

∗ ∗ 𝑒ℷ ∗ 𝑓𝑓
∗ − 𝑓𝑓∗ ∗ 𝑒ℷ + 𝑓 ∗ 𝑓∗‖ . 

Taking into account that 𝑓 ∗  𝑓∗ ∈ 𝑆𝜋 and (𝑒ℷ) is an approximate identity of 𝑆𝜋 the claim 

follows. Since 𝑒ℷ ∈  𝑆𝜋,𝑖 ∗  𝑆𝑖,𝜋  it immediately follows that 𝑒ℷ ∗ 𝑓 ∈ (𝐺 ×𝛼  𝐴) ∗ 𝑋𝑖 ∗
(𝐺 ×𝛼  𝐴).  So this ideal is dense and 𝑥𝑖𝑠 𝐾-saturated. 

   We can now prove the result about simplicity of crossed products. 

Theorem(1.2.14)[19]: 𝐿𝑒𝑡 (𝐴, 𝐺, 𝛼)  be a 𝐶 *-dynamical system and 𝐾 ⊂  𝐺  compact 

subgroup. Then the following conditions are equivalent: 
(i) 𝐺 ×𝛼  𝐴 is simple and 

(ii) (𝑎) 𝑆𝜋,𝑖 ≠ (0) f or all  𝜋 ∈ �̂�  and (𝑏) 𝐼𝜋  is simple for all 𝜋 ∈ �̂�  (equivalently,  𝑆𝜋  is 

simple for all 𝜋 ∈ �̂�). 

In this case 𝐺 ×𝛼  𝐴 is strongly Morita equivalent with  𝑆𝜋,𝜋 ∈ �̂�. 

 𝐏𝐫𝐨𝐨𝐟:  Assume (i). Suppose by contradiction that 𝑆𝜋,𝑖  =  (0)  for some 𝜋 ∈ �̂�.  Then 

𝑆𝜋,𝑖  =  𝑋𝜋  ∗  (𝐺 ×𝛼  𝐴)  ∗  𝑋𝑖̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =  (0). From this, it follows that the ideal (𝐺 ×𝛼  𝐴) ∗ 𝑋𝑖 ∗
(𝐺 ×𝛼  𝐴). is proper and therefore (𝐺 ×𝛼  𝐴) is not simple. Hence (i) implies (ii)(a). 

   We now prove (ii)(b). Since 𝐺 ×𝛼  𝐴 is simple, then by  every hereditary subalgebra of 

𝐺 ×𝛼  𝐴, in particular 𝑆𝜋 is simple. By Corollary (1.2.8)(i) this is equivalent with 𝐼𝜋 being 

simple. 
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   Conversely assume (ii). Then because 𝑆𝜋, are simple and 𝑆𝜋,𝑖 * 𝑆𝑖,𝜋 are two-sided ideals 

of S,, it follows that𝑆𝜋,𝑖  ∗  𝑆𝑖,𝜋̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  = 𝑆𝜋  By Theorem (1.2.13) 𝐺 ×𝛼  𝐴 is strongly Morita 

equivalent with 𝑆𝜋,𝑖  which is simple b hypothesis. Applying it follows that 𝐺 ×𝛼  𝐴 is 

simple. 

The last part of the theorem follows from the (easily verified) fact that 𝑆𝜋,𝑖 is an 𝑆𝜋 - 𝑆𝑖 
imprimitivity bimodule. 

We shall specialize the above notions and give equivalent formulations of the 

preceding results in the case 𝐺 =  𝐾 . In this case,  𝑓 ∈  𝐶(𝐺, 𝐴), 𝑡ℎ𝑒𝑛 (𝑓 ∗  𝑋𝑖)(𝑔)  =

 ∫ 𝐹
1

𝑘
(𝑘) 𝑑𝑘 =  𝑎 ∈  𝐴 (for some �̃�)Therefore 𝑓 ∗ 𝑋𝑖   =  𝑎 for some 𝑎 ∈ 𝐴𝑘. It follows 

that the bimodule 𝑋 is the closure of{𝑐𝑖 (�̃�  ∈  𝐴 >. In the notation of  [36], 𝑋 = �̅� On the 

other hand, in this case (𝐺 compact) 𝑆𝑖 may be identified with 𝐴𝛼 [16]. It is then easy to 

see that the above left-𝑆𝑖  -right-  𝐺 ×𝛼  𝐴  bimodule structure of 𝑋  coincides with that 

defined by Rieffel . 

Corollary(1.2.115)[19]:𝐿𝑒𝑡 (𝐴, 𝐺, 𝑎) be 𝑎 𝐶*-dynamical system with  compact. Then a is 

saturated tf and only if 𝐴2(𝜋) ∗ 𝐴2(𝜋)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   =  𝐴 ×  𝐵(𝐻𝜋)
𝛼⊗𝛼𝑑𝜋 for all  𝜋 ∈  �̂�.  

Proof: From Lemmas (1.2.10)and (1.2.9)it follows that 𝐴2(𝜋) ∗ 𝐴2(𝜋)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   =  𝐴 ×
 𝐵(𝐻𝜋)

𝛼⊗𝛼𝑑𝜋  and only if 𝑆𝜋,𝑖 * 𝑆𝑖,𝜋̅̅ ̅̅ = 𝑆𝜋 The corollary follows from Theorem(1.2.15). 

   If 𝐺 is compact abelian, then for each 𝜋 ∈ �̂� we have 

𝐴1(𝜋) = 𝐴2(𝜋) = {𝑎 ∈ 𝐴|𝛼𝑔(𝑎) = 〈𝑔, 𝜋〉𝑎}. 

The following result is due to Rieffel. 

Corollary(1.2.16)[19]: Let (𝐴, 𝐺, 𝑎) be a 𝐶*-dynamical system with 𝐺 compact abelian. 

Then a is saturated tf and only if 𝐴1(𝜋) = 𝐴2(𝜋)̅̅ ̅̅ ̅̅ ̅̅  for all 𝜋 ∈ �̂�. Further, we shall derive 

consequences of Theorem (1.2.14)for compact groups . 

Corollary(1.2.17)[19]: Let (𝐴, 𝐺, 𝑎)  be a 𝐶 *-dynamical system with 𝐺  compact. The 

following conditions are equivalent 

(i) 𝐺 ×𝛼  𝐴 is simple and 

(ii) (𝑎)𝐴1(𝜋) ≠ (0)𝑓𝑜𝑟𝑎𝑙𝑙𝜋 ∈ �̂�(𝑏)𝐴⊗ 𝐵(𝐻𝜋)
𝛼⊗𝛼𝑑𝜋 is simple for 𝜋 ∈ 𝐾.̂  

Proof: From Lemma (1.2.6)(v) it follows that 𝐴1(𝜋) ≠ (0)) if and onlyif 𝑆1(𝜋) ≠ (0)). 
On the other hand, by Lemma(1.2.9),  𝐴 ×  𝐵(𝐻𝜋)

𝛼⊗𝛼𝑑𝜋  is *-isomorphic with 𝐼𝜋 . 

Therefore 𝐴 ⊗ 𝐵(𝐻𝜋)
𝛼⊗𝛼𝑑𝜋 is simple for all 𝜋 ∈  𝐺 𝑖𝑓and only if 𝐼𝜋 is simple for all 𝜋 ∈

 �̂� . It then follows that the condition (ii) of Corollary (1.2.17) is equivalent with the 

condition (ii) of Theorem (1.2.14)(for compact 𝐺) so the corollary follows from Theorem 

(1.2.14) . 

    If 𝐺 is compact abelian then the set { 𝜋 ∈  𝐺 | 𝐴1(𝜋) ≠  (0)) is the Arveson spectrum 

𝑠𝑝(𝛼) [20], [35]. Therefore: 

 Corollary(1.2.18)[19]: Let (𝐴, 𝐺, 𝑎) be a 𝐶*-dynamical system with 𝐺 compact abelian. 

The following conditions are equivalent: 

(i) 𝐺 ×𝛼  𝐴 is simple and 

(ii) (𝑎) 𝑠𝑝(𝛼)  =  �̂� 𝑎𝑛𝑑 (𝑏) 𝐴𝛼 is simple . 

 proof: Obviously, if 𝐺  is abelian we have 𝐴 ⊗ 𝐵(𝐻𝜋)
𝛼⊗𝛼𝑑𝜋= 𝐴𝛼   for all 𝜋 ∈ �̂�. The 

corollary follows from the preceding one. 

   If 𝐺  is compact not necessarily abelian for 𝜋 =  𝐼,  we obviously have 𝐴⊗
𝐵(𝐻𝑖)

𝛼⊗𝛼𝑑𝜋 = 𝐴𝛼 .  One may ask whether in Corollary (1.2.17)the simplicity of 𝐴𝛼 

together with the condition (ii)(a) still implies the simplicity of the crossed product. The 

answer is no as shown by the following. 
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Example(1.2.19)[19]: Let 𝐺 =  𝑆3be the permutation group on three elements.  

Then 𝐺 has order 6 and is generated by two elements 𝑟, 𝑠 satisfying the relations 𝑟33 =
 𝑒, 𝑠2  =  𝑒, 𝑟𝑠 =  𝑠𝑟2 . The dual �̂�  of 𝐺  consists of (the classes of) three 

representations 𝜋1, 𝜋2, 𝜋3  𝑤𝑖𝑡ℎ 𝑑(𝜋1) =    𝑑(𝜋2) = 𝐼 𝑎𝑛𝑑 𝑑(𝜋3) = 2 , where 

                                      𝜋1(𝑟)  =  1                  𝜋1(𝑠)  =  1 
𝜋2(𝑟) =  1               𝜋2 (𝑠) =  −1 

 

𝜋3(𝑟) =

[
 
 
 −1

2⁄ √3 2⁄

−√3 2⁄
−1

2⁄ ]
 
 
 

                                       𝜋3(𝑟) =  [
−1 0
0 1

]. 

Since 𝜋3 the only element in �̂� with 𝑑(𝜋3) = 2, we have 𝜋3 = 𝜋3̅̅ ̅ 𝐴 simple application of 

shows that  𝜋3 = 𝜋1 + 𝜋2 + 𝜋3 . 
     Let 𝐴 =  𝑀2 be the algebra of 2 x 2 matrices and define 𝛼 =  𝑎𝑑𝜋3. Then 𝛼  is ergodic 

on 𝐴 so 𝐴𝛼  =  𝐶. 1 is simple. Since a is equivalent with 𝜋3 ⊗𝜋3̅̅ ̅   we have that 𝐴1(𝜋)  ≠
(0)  for all 𝑋 ∈  𝐺 . However, 𝐴⊗  𝐵(𝐻 𝜋3)

𝛼⊗𝛼𝑑𝜋3  = (𝑀2  ⊗𝑀2)
𝛼⊗𝛼𝑑𝜋3⊗𝛼𝑑𝜋3   is not 

simple because its centre is not trivial. 

   We consider now the similar question for prime crossed products. 

Recall that a 𝐶*-algebra A is called prime if for all nonzero two-sided 

ideals 𝐽1, 𝐽2  of A, their product is not zero, or equivalently if for every two (positive) 

elements 𝑎, 𝑏 in the multiplier algebra 𝑀(𝐴)𝑜𝑓 𝐴, 𝑤𝑒 ℎ𝑎𝑣𝑒 𝑎. 𝐴. 𝑏 ≠ (0). 
   For actions of an abelian group on a 𝑊*-algebra 𝐴, the crossed product is 𝑎 factor if and 

only if the action is ergodic on the center of 𝐴 and th Connes spectrum 𝑇(𝑎) equals 𝐺 [21], 

[22]. 

    Research into the 𝐴* analog of this result was started in [30], [32] with the study of 

compact abelian actions on prime or simple 𝐶*-algebras. 𝐴 result, proved independently in 

 𝑖𝑠 𝑡ℎ𝑎𝑡 𝑖𝑓 

𝐴 is prime and 𝐺 is compact abelian then 𝐴𝛼is prime if and only if 𝑆𝑝(𝛼) = Γ(𝛼) 
 One of our results (Corollary(1.2.21)) is that if 𝐺  is compact abelian then 𝐺 ×𝛼  𝐴 is 

prime if and only if 𝐴𝛼 is prime and 𝑠𝑝(𝛼)  =  �̂�. This is an alternate characterization of 

primeness of 𝐺 ×𝛼  𝐴 (for compact abelian 𝐺) of that given by Olesen and Pedersen [33] 

for every locally compact abelian 𝐺.  
Remarks (1.2.20)[19]: (i) If 𝐵 ⊂  𝐴 is a hereditary 𝐶*-subalgebra of 𝐴 𝑡ℎ𝑒𝑛 𝐵𝐴𝐵̅̅ ̅̅ ̅̅  =  𝐵. 
(ii) If 𝐴 is a prime 𝐶*-algebra then every hereditary 𝐶*-subalgebra 

𝐵 𝑜𝑓 𝐴 is prime. 

(iii) Let 𝐴 be a 𝐶*-algebra. If 𝐴 contains an essential ideal J that is 

also a prime 𝐶*-algebra then 𝐴 is prime. 

Proof: Part (i) follows from 𝐸ffros’ characterization of hereditary 𝐶*- subalgebras [25]. 

(ii) Assume by contradiction that 𝐵 is not prime. Then there exist 

two non-zero positive elements 𝑎, 𝑏 ∈ 𝐵 such that 𝑎𝐵𝑏 =  (0). By (i) above 𝑎𝐴 ⊂  𝐵. 

Therefore 𝑎2𝐴𝑏2  =  𝑎(𝑎𝐴𝑏) 𝑏 ⊂   𝑎𝐵𝑏 =  (0) which contradicts the fact that 𝐴 is prime. 

(iii) is straightforward. 

Theorem(1.2.21)[19]: Let (𝐴, 𝐺, 𝛼)  be 𝑎 𝐶 *-dynamical system and 𝐾 ⊂  𝐺 𝑎 compact 

subgroup. The following conditions are equivalent: 
(i) 𝐺 ×𝛼  𝐴 is prime und 
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(ii) (𝑎) 𝑆𝜋,𝑖 ≠ (0) for all 𝜋 ∈ �̂� and (𝑏)𝑆𝜋 are prime ,for all 𝜋 ∈ �̂�. 

    𝑃𝑟𝑜𝑓 : Assume that 𝐺 ×𝛼  𝐴  is prime. Since 𝑋𝜋 , 𝑋𝑖   are non-zero elements of 

𝑀(𝐺 ×𝛼  𝐴)  we have𝑆𝜋,𝑖  = 𝑋𝜋  ∗  (𝐺 ×𝛼  𝐴) ∗ 𝑋𝑖  ≠ (0).  On the other hand,  𝑆𝜋   are 

hereditary 𝐶*-subalgebras of the prime algebra 𝐺 ×𝛼  𝐴, 𝑠𝑜 by Remark (1.2.19)(ii) they 

are prime. Conversely, assume (ii), and let 𝐼 =  (𝐺 ×𝛼  𝐴)  ∗  𝑋𝑖  ∗  (𝐺 ×𝛼  𝐴) be the two-

sided ideal of 𝐺 ×𝛼  𝐴𝑔 generated by 𝑋𝑖. 
We claim that 𝐼 is an essential ideal of 𝐺 ×𝛼  𝐴. In order to prove the claim it is enough to 

prove that ,𝑓 ∗  𝐼 ≠  (0) for all 𝑓 ∈  𝐺 ×𝛼  𝐴 , 𝑓 ≠  0 . Let 𝑓 ∈  𝐺 ×𝛼  𝐴  . 𝑓 ≠ 𝑂 . By 

Lemma (1.2.5)(ii) there exists 𝜋 ∈  𝐾 such that ,𝑓 ∗  𝑋𝜋  ≠ (0). The 

𝑋𝜋  ∗ 𝑓
∗ ∗ 𝑓 ∗ 𝑋𝜋 ≠ 𝑂.𝑁𝑜𝑤, 𝑋𝜋  ∗ 𝐼 ∗ 𝑋𝜋 = 𝑋𝜋 ∗ (𝐺 ×𝛼  𝐴) ∗ 𝑋𝜋 ∗ (𝐺 ×𝛼  𝐴) ∗ 𝑋𝜋

= 𝑆𝜋,𝑖 ∗ 𝑋𝑖,𝜋 
Therefore  𝑋𝜋  ∗ 𝐼 ∗ 𝑋𝜋  ≠ (0) by (ii)(b). On the other hand, 𝑆𝜋,𝑖 ∗ 𝑋𝑖,𝜋 

(and hence 𝑋𝜋  ∗ 𝐼 ∗ 𝑋𝜋) is a two-sided ideal of 𝑆𝜋 by Lemma (1.2.6)(iv). Since 𝑆𝜋 is prime 

by our hypothesis (ii)(b), it follows that 𝑋𝜋  ∗ 𝑓
∗ ∗ 𝑓 ∗ 𝑋𝜋 ∗ 𝐼  ∗ 𝑋𝜋 ≠ (0). From this, it 

follows that 𝑓 ∗  𝑋𝜋  ∗  𝐼 ≠  (0) so.𝑓 ∗  𝐼 ≠≠  (0). Therefore 𝐼 is an essential ideal . 

   We now claim that 𝐼 is a prime 𝐶*-algebra. Indeed, by 𝐼 is strongly Morita equivalent 

with 𝑋𝑖 ∗  (𝐺 ×𝛼  𝐴)  ∗  𝑋𝑖  which is prime by assumption. By [37] 𝐼 is prime. Therefore 

𝐺 ×𝛼  𝐴  contains an essential ideal 𝐼 which is prime. By Remark (1.2.19)(ii), 𝐺 ×𝛼  𝐴 is 

prime. 

Using arguments similar to the ones used in the proofs of Corollaries (1.2.17)and 

(1.2.18)we obtain the following consequences of the above theorem: 

Corollary (1.2.22)[19]: Let (𝐴, 𝐺, 𝛼) be a 𝐶*-dynamical system with 𝐺 compact. Then the 

following conditions are equivalent: 

(i) 𝐺 ×𝛼  𝐴 is prime and(𝑖𝑖) (𝑎)𝐴𝑖(𝜋) ≠  (0)for all 𝜋 ∈  �̂�  and (𝑏)𝐴 ⊗ 𝐵(𝐻𝜋)
𝛼⊗𝛼𝑑𝜋  is 

prime for all 𝜋 ∈  �̂� . 
Corollary (1.2.23)[19]: Let (𝐴, 𝐺, 𝛼) be 𝑎 𝑃-dynamical system with 𝐺  compact abelian. 

Then the following conditions are equivalent: 

(i) 𝐺 ×𝛼  𝐴 is prime and 

(ii) (𝑎) 𝑆𝑝(𝛼)  =  �̂� 𝑎𝑛𝑑 (𝑏) 𝐴𝛼 prime. 

Example (1.2.24)[19]:shows that if G is compact (even finite) not necessarily abelian, the 

primeness of 𝐴𝛼  together with the condition (ii)(a) of does not necessarily imply 

that 𝐺 ×𝛼  𝐴 is prime. 

An easyapplication of the above results shows that the corresponding result for von 

Neumann algebras also holds. 

Section (1.3): Compact Abelian Group on a 𝑪∗ - Algebra 
    For 𝛼 be an action of a compact abelian group on a separable prime 𝐶*-algebra 𝐴, such 

that also the fixed point subalgebra, 𝐴𝛼, is prime. Several conditions on α are shown to be 

equivalent, among which are the following: 
  for each 𝑔 𝑒 𝐺, either 𝛼𝑔  =  1 𝑜𝑟 𝛼𝑔  is properly outer; 

there exists a faithful irreducible representation of 𝐴 which is also   irreducible on 𝐴𝛼 there 

exists a faithful irreducible representation of  𝐴 which is covariant. 

    An example of a nontrivial action satisfying these conditions is the infinite tensor 

product action on 𝑀2∞  =⊗𝑛=1
∞ 𝑀2  obtained from a sequence of nontrivial inner actions 

on 𝑀2 each one appearing infinitely often. This example was shown to be, in a certain 
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sense, typical of nontrivial actions satisfying the third condition. This fact is the key to 

deducing the first two conditions from the third. 

    The second condition is noteworthy in two respects. First, it involves only the fixed 

point subalgebra𝐴𝛼 ⊆ 𝐴 , not the action 𝛼 itself. (This is not evident in the case of the 

other two conditions.) Second, while a representation verifying the third condition is 

required     to be co   variant, a representation verifying the second condition must in fact 

be as far as possible form begin covariant. 

    1. In [32], Olesen, Pedersen, and Stormer obtained results concerning the system 

consisting of a prime 𝐶*-algebra and a compact abelian group of automorphisms such that 

the fixed point subalgebra is prime. They showed that if the group is either the circle 

group or is finite of prime order, then 

   (i) the only multipliers commuting with the fixed point subalgebra are the scalars, 

and 

    (ii) the only automorphism in the group that is determined by a multiplier is the identity. 

    In addition, assuming that the group is finite but not necessarily of prime order, and that 

the 𝐶*-algebra is simple, they showed that the properties (i) and (ii), which need no longer 

hold, are equivalent. (The nontrivial implication is (𝑖𝑖)  →  (𝑖). ) 
We shall improve these two results substantially. Our methods require that the C*-

algebra be separable 

 We shall formulate properties (i)' and (ii)' (14 and 15 below) which are stronger than (i) 

and (ii), but reduce to these in the case that the 

𝐶*-algebra is simple. We shall show that the stronger properties still hold if the group is 

the circle group or is finite of prime order, and that, in any case, they are equivalent. The 

latter result is new even in the case that the 𝐶*-algebra is simple, there being no restriction 

on the compact abelian group. Furthermore, and in fact as part of the proof, we shall show 

that the properties (i)' and (ii)' are equivalent to a number of other properties (1 to 13 

below). 

    Properties (i)' and (ii)' are stated in terms of the limit multiplier 𝐶*-algebra, which was 

used in [53], after a suggestion by G. K. Pedersen, and was considered further by Pedersen 

in [66]. (See also [32].) Recall that the limit multiplier 𝐶*-algebra 𝑀∞(𝐴)), of a 𝐶*-

algebra A is defined as the inductive limit of the net of multiplier 𝐶*- algebras of essential 

closed two-sided ideals of A. In this connection, note that if𝐼 ⊇ 𝐽are two such ideals, then 

𝑀(𝐼) ⊆ 𝑀(𝐽)and that 𝑖𝑓 𝐼 and 𝐽are any two such ideals, then also 𝐼 ∩J is such. 

    Two of the properties (4 and 15) involve the proper outerness of certain automorphisms 

(either �̂�𝑦 , 𝑦 ≠ 0 𝑜𝑟 𝛼𝑔, 𝑔 ≠ 0). Proper outerness of an automorphism of a 𝐶*-algebra A 

was defined in [26] to mean that the restriction to any nonzero invariant closed two-sided 

ideal is at distance two from any automorphism of that ideal determined by a multiplier. It 

was shown in [53] and [26] that, at least in the case that A is an 𝐴𝐹 algebra (𝑖. 𝑒. , 𝑎 

separable approximately finite-dimensional 𝐶 *-algebra), the condition for an 

automorphism of A to be properly outer fails—and, moreover, with respect to an essential 

ideal—if, and only if, the canonical extension of the automorphism 𝑡𝑜 𝑀∞(𝐴) is inner. 

Various other reformulations of proper outerness in the case of 𝐴𝐹 algebras were also 

given in [53] and [26], and most of these are now known to be valid for any separable 𝐶*-

algebra, as a result of work of Kishimoto in [56] and Brown in [47]—see also [57] and 

[63] (a complete summary is given in of [63]). The 
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reformulation in terms of 𝑀∞(𝐴) follows from a result of Pedersen in [66]—see we also 

establish other facts concerning 𝑀∞(𝐴)that we shall need. 

    Two other properties (1 and 12) refer to the action on the algebra of the unitary group of 

the fixed point subalgebra; the first is topological transitivity of this action, in the sense of 

[60], and the second is strong topological transitivity, in the sense of [44]. (It is open in 

general whether these two properties are equivalent.) 

    Another property (13) is an analogue of Tannaka duality. It is stated for automorphisms 

of 𝑀∞(𝐴)), instead of just for automorphisms of A, in order to deduce the other properties 

from it. (Stated just for A, it is already known to follow from the property 1—see [60].) 

    A more general form of this analogue of Tannaka duality is given, in which some of the 

automorphisms are allowed to be inner. (In 13, none of the automorphisms can be inner, as 

follows from 13 →  15.) 

    We show that strong topological transitivity and ergodicity are equivalent notions for an 

action on a von Neumann algebra. This is used for proving the implication 10 → 12 in 

Theorem(1.3.1)[41]: This result also yields a new proof of the Tannaka duality theorem 

for von Neumann algebras given in [43]. 

    In the following theorem, 𝐺  denotes the dual group of 𝐺 , G(α) denotes the Connes 

spectrum of the action α ([35]), πω denotes the cyclic representation defined by the state 

𝜔, and ∫ 𝜋𝛼𝑔
⊗

𝐺
𝑑𝑔 is viewed in the canonical way as a representation on 𝐻𝜋 ⊗𝐿2(𝐺), 

where 𝐻𝜋 is the Hilbert space of the representation 𝜋. 
Theorem(1.3.2)[41]:  Let A be a separable 𝐶* -algebra, and let α be a faithful action of a 

compact abelian group 𝐺 𝑜𝑛 𝐴. Suppose that 𝐺 ≠ 0. 
      The following fifteen conditions are equivalent. 

1. 𝐼𝑓𝑥, 𝑦𝑒𝐴\{0}, 𝑡ℎ𝑒𝑛𝑥𝐴𝛼𝑦 ≠ 0. 
2. Any sub-𝐶* -algebra of 𝐴 containing 𝐴𝛼 is prime. 

3. For any closed subgroup 𝐻𝑜𝑓𝐺 such that G/𝐻 ≅  𝑇 𝑜𝑟𝐺/𝐻 ≅ 𝑍|𝑛𝑍 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑛 = 
1, 2,…,  the fixed point algebra 𝐴𝐻 is prime. 

4. 𝐴𝛼  is prime and the dual automorphisms �̂�𝑦 , 𝛾 ∈  �̂�\{0}, of the crossed product 𝐶*- 

algebra 𝐴 ⋊𝛼 𝐺 are properly outer. 

5. 𝐴𝛼 is prime and there exists an 𝛼-invariant pure state 𝜔 of 𝐴 such that 𝜋𝜔 is 

faithful. 

6. �̂�(𝛼)  =  �̂� and there exists an en-invariant pure state ω of 𝐴 such that 𝜋𝜔 is faithful. 

1 . For any sequence (𝜉𝑛) of finite-dimensional unitary representations of 𝐺 thereexists an 

𝛼 -invariant sub-𝐶* -algebra 𝐵 of A and a closed 𝛼∗∗ -invariant projection q in the bidual 

𝐴∗∗ of A such that 

(i) q∈ 𝐵/ 

(ii) 𝑔𝐴𝑔 =  𝐵𝑔 

(iii) 𝑞 ∈ 𝐽∗∗ ⊆ 𝐴∗∗ for any nonzero closed two-sided ideal 𝐽 of 𝐴, 

(iv) the 𝐶 * -dynamical system (𝐵𝑞, 𝐺, 𝛼∗∗  | 𝐵𝑞)  is isomorphic to the product 

system(⊗𝑛=1
∞ 𝑀𝑑𝑖𝑚𝜉𝑛𝐺 ⊗𝑛=1

∞ 𝐴𝑑𝜉𝑛). 

8. 𝐵 and 𝑞 exist as in 7 in the case that dim 𝜉𝑛  =  2 𝑎𝑛𝑑 𝜉𝑛 =  𝑙 ⊕ 𝜒𝑛 where (𝜒𝑛) is a 

sequence in �̂� in which each element of 𝐺 appears infinitely many times. 

9. There exists an 𝛼-invariant state 𝜔 of 𝐴 such that 𝜋𝜔 is faithful and 

𝜋𝜔(𝐴
𝛼)′ ∩ 𝜋𝜔(𝐴

𝛼)″ = 𝐶. 
10 .There exists a faithful representation 𝜋 𝑜𝑓 𝐴 such that 
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𝜋(𝐴𝛼)′ ∩ 𝜋(𝐴)" =  𝐶. 
11. There exists a faithful irreducible representation 𝜋 𝑜𝑓 𝐴 such that 

𝜋(𝐴𝛼)″ =  𝜋(𝐴)". 
11 '. There exists a faithful irreducible representation 𝜋 𝑜𝑓 𝐴 such that 

((∫  𝜋𝛼𝑔𝑑𝑔)(𝐴)
⊗

𝐺

)

"

=π(A)" ⊗𝐿∞(𝐺). 

12. For each pair (𝑥1 , … , 𝑥𝑛) 𝑎𝑛𝑑 (𝑦1 , … , 𝑦𝑛) of finite sequences in 𝑀∞(𝐴) such that 

∑ 𝑥𝑖 ⊗𝑦𝑖 ≠ 0𝑛
𝑖=1  there exists 𝑎 ∈ 𝐴𝛼 such that∑ 𝑥𝑖𝑎𝑦𝑖 ≠ 0𝑛

𝑖=1  . 

13. 𝐴 𝑎𝑛𝑑 𝐴𝛼 are prime, and if β is an automorphism of in 𝑀∞(𝐴)) such that β | 𝐴𝛼 = 1 

then 𝛽 = 𝛼𝑔  for some 𝑔 ∈ 𝐺. 

14. 𝐴𝛼 𝑖𝑠 𝑝𝑟𝑖𝑚𝑒, 𝑎𝑛𝑑 (𝐴𝛼)′ ∩ 𝑀∞(𝐴) =  𝐶. 
15. A and 𝐴𝛼 are prime, and 𝛼𝑔is properly outer for each 𝑔 ∈  𝐺\{0}. 

Furthermore, if𝐺 is the circle group or a finite cyclic group of prime order, then these 

conditions are equivalent to the following one. 

16. A and 𝐴𝛼 are prime. 

(If 𝐺 =  0, the equivalence of all the conditions, with the exception of 7 and 8, remains 

valid, but the theorem then reduces to the well-known fact that a separable 𝐶*- algebra is 

primitive if and only if it is prime.) 

Lemma(1.3.3)[41]: Let 𝐺 be a compact abelian group, let α be a faithful action of 𝐺 on a 

𝐶*-algebra A, and let 𝐻 be a closed subgroup of 𝐺 . The following two conditions are 

equivalent: 

1. 𝐴𝐻 is prime. 

2. (𝐴 ⋊𝛼  𝐺)  ⋊𝛼  𝐻
⊥ is prime. 

Proof: Note that (𝐴 ⋊𝛼  𝐺)  ⋊𝛼  𝐻
⊥ is the fixed point subalgebra 𝑜𝑓 (𝐴 ⋊𝛼  𝐺)  ⋊𝛼  𝐺 

under 𝛼𝐻
∧ . By [32], the system ((A XΛ G) xά G, α) is isomorphic to the system 

(𝐴 ⋊𝛼 𝐾(𝐿
2(𝐺)), 𝛼(𝑥)𝐴), where 𝐾(𝐿2(𝐺)) denotes the algebra of compact operators on 

𝐿2(𝐺),  and λ is the representation of 𝐺 𝑜𝑛 𝐾(𝐿2(𝐺))  determined by the left regular 

representation. Since 𝐺 is compact, we have a canonical system of matrix units 

(𝑒𝑥𝑥′)𝑥,𝑦′∈𝐺  𝑓𝑜𝑟 𝐾(𝐿
2(𝐺)),𝑤𝑖𝑡ℎ 𝑒𝑥𝑥′  ∈ 𝐾𝜆(𝜒 − 𝜒′)9 𝑖. 𝑒. 𝛼𝑔(𝑒𝑥𝑥′)

= 〈𝜒 − 𝜒′, 𝑔〉𝑒𝑥𝑥′  𝐶𝑙𝑒𝑎𝑟𝑙𝑦 

(1⊗ 𝑒00)(𝐴⊗ 𝐾)𝐻(1⊗ 𝑒00) = 𝐴𝐻 ⊗𝑒00 . 
    Denote by / the closed two-sided ideal of (𝐴 ⊗ 𝐾)𝐻  generated by 𝐴𝐻 ⊗𝑒00 .By 

subalgebra 𝐴𝐻 ⊗𝑒00 have the same spectrum,and, in particular, one is prime if and only if 

the other is. 

   The implication 2 →  1 is now immediate: if (𝐴 ⊗ 𝐾)𝐻 is prime, then / is prime and 

hence 𝐴𝐻 is prime. 

    To prove the implication 1 → 2, moreover, it is now enough to show that if 𝐴𝐻 is prime, 

then the ideal /of (𝐴 ⊗ 𝐾)𝐻 is essential. Suppose that 𝐴𝐻 is prime, and denote the largest 

closed two-sided ideal of (𝐴⊗ 𝐾)𝐻 orthogonal to 𝐴𝐻 ⊗𝑒00 by 𝐽. We must show that 𝐽 =
0. 

   Since 𝐺 is abelian, both (𝐴⊗ 𝐾)𝐻  and 𝐴𝐻 ⊗𝑒00  are invariant under 𝛼 ⊗ ℷ , and 

therefore 𝐽 is invariant. Hence (as G is compact), if there exists a nonzero element in 𝐽 then 

there exists one of the form 𝑎 ⊗ 𝑒𝑥𝑥′ >  𝑤𝑖𝑡ℎ𝑎 ∈ 𝐴𝛼𝛬(𝜒′ —  𝜒).  below, 𝐴𝛼* contains an 

approximate unit for 𝐴. The tensor product of this with finite sums 𝛴𝑒𝜒𝜒 is an approximate 

unit for 𝐴⊗𝐾, invariant under 𝛼 ⊗ ℷ. Hence, if 0 ≠ 𝑥 ∈ 𝐽𝛼⊗ℷ, then, after multiplication 



19 

on the left by an element of 𝐴𝛼 ⊗𝑒𝜒𝜒 for some 𝜒, and similarly on the right, 𝑥 has the 

desired form.) Fix 𝜒, 𝜒′ ∈ �̂�  and 𝑎 ∈ 𝐴𝛼𝜒′ − 𝜒) with 𝑎 ⊗ 𝑒𝜒𝜒, ∈ 𝐽, and let us show that 

𝑎 =  0. Since 𝐴𝛼(𝜒 + 𝐻⊥) ⊗ 𝑒0𝑥 ⊆ (𝐴⊗𝐾)𝐻 we have 

0 =  (𝐴𝐻 ⊗𝑒00)(𝐴
𝛼(𝑋 + 𝐻⊥) ⊗ 𝑒0𝑥) = 𝐴𝐻𝐴𝛼(𝑋 + 𝐻⊥)𝑎 ⊗ 𝑒0𝑥  

Since 𝐻 is compact, 𝐴𝐻 contains an approximate unit for 𝐴. 

𝐴𝛼(𝑋 + 𝐻⊥)𝑎 = 0 , 𝑖. 𝑒., 
𝐴𝛼(𝑋 + 𝐻⊥)∗𝐴𝛼(𝑋 + 𝐻⊥)𝑎𝑎∗ = 0. 

But 𝐴𝛼(𝜒 + 𝐻⊥)∗𝐴𝛼(𝜒 + 𝐻⊥)} is a two-sided ideal of 𝐴𝐻, and 𝑎𝑎 ∗ belongs to 𝐴𝐻 (in fact 

to 

𝐴𝛼) Hence, since 𝐴𝐻 is prime, either𝐴𝛼(𝜒 + 𝐻⊥) = 0, or a = 0. But by Lemma(1.3.3), 

below, 

with (𝐴 , 𝐻 , 𝛼 | 𝐻) and 𝜒 + 𝐻⊥ ∈  �̂� in place of (𝐴, 𝐺, 𝛼) and 𝜒, since α is faithful and 𝐴𝐻 

is 

prime, 𝐴𝛼(𝜒 + 𝐻⊥) ≠0. Therefore α = 0, as desired. 

Lemma (1.3.4)[41]: Let 𝐺  be 𝑎  compact abelian group, let α be 𝑎  faithful action of 

𝐺 𝑜𝑛 𝑎 
𝐶 ∗ -algebra 𝐴, and suppose that 𝐴𝛼 is prime. It follows that 𝑆𝑝𝛼 =  �̂� i.e., for every𝑋 ∈

�̂�, 𝐴𝛼(𝑋) ≠ 0. 
Proof: First, let us show that Sp 𝛼 is a subgroup of �̂�. If 𝐴𝛼(𝜒)  ≠  0 and 𝐴𝛼(𝑋′) ≠ ^ 0, 

Then 

𝐴𝛼(𝑋 − 𝑋′) ⊇ 𝐴𝛼(𝑋)𝐴𝛼(𝑋′)∗ 
 

and 𝐴𝛼(𝜒)∗𝐴𝛼(𝜒), 𝐴𝛼(𝜒′)∗ 𝐴𝛼(𝜒′) are nonzero two-sided ideals of the prime algebra 𝐴𝛼 , 
so 

have nonzero product. This shows that𝐴𝛼(𝑋 − 𝑋′) ≠ 0  

    Second, as Sp𝛼  is a subgroup of �̂� , we have Sp𝛼 = 𝐻⊥  where H= (𝑆𝑃𝛼)⊥ ⊆
𝐺𝐻𝑒𝑛𝑐𝑒, 𝑖𝑛�̂�, 

𝑆𝑝(𝛼 |𝐻⊥ ) =  (𝑆𝑝 𝛼)|𝐻⊥ = 𝐻⊥|𝐻⊥  =  0 . 
In other words, α | H is trivial. Since α is faithful, 𝐻 = 0, 𝑖. 𝑒. 𝑆𝑝𝛼 =  �̂�. 
Returning to the proof of the implication 3 ⟶  4, we now have that (𝐴 ⋊𝛼  𝐺)  ⋊𝛼 𝐻

⊥  
is prime. Hence by [33] (with 𝐴 ⋊𝛼   𝐺 𝑖𝑛 𝑝𝑙𝑎𝑐𝑒 𝑜𝑓 𝐴, 𝐻

⊥  inplace 𝐺, and 

𝛼|𝐻⊥𝑖𝑛𝑝𝑙𝑎𝑐𝑒 𝑜𝑓 𝛼), 
(𝐻⊥)⋀1(𝛼|𝐻⊥) = (𝐻⊥)⋀2. 

      Since 𝐻⊥  is the cyclic subgroup of 𝐺  generated by 𝑦, it follows, either  that άy is 

properly outer, as desired If 𝛽 is an automorphism of a 𝐶∗-algebra which is not properly 

outer, then to show that the Connes spectrum 𝑇(𝛽) (or the Borchers spectrum 𝑇𝐵(𝛽)) is 

equal to {1}, it is enough by 1.3 (𝑜𝑟 2.1) 𝑜𝑓 [57] to consider the case 𝛽 =  𝑒𝑥𝑝𝛿 where 𝛿 

is a derivation. Since 𝑆𝑝 𝛽" =  (𝑆𝑝 𝛽)",  we have 𝑇(𝛽𝑛) ⊆ 𝑇(𝛽)𝑛 (𝑎𝑛𝑑 𝑇𝐵(𝛽
𝑛) ⊆

𝑇𝐵(𝛽
𝑛)), and so to prove that 𝑇(𝛽)  =  {1} we may replace 𝛿 𝑏𝑦 𝑛−1𝛿 and suppose that 

||𝛽—  1||  < |𝑒
2𝜋𝜄

3 − 1 |, so that Sp𝛽 does not contain any nontrivial subgroup of 𝑇. But 

then 𝑇(𝛽)  equals {1} because it is a subgroup of 𝑇([35], 8.8.4;  𝑡𝑜 𝑔𝑒𝑡 𝑇𝐵(𝛽)  =
 {1} 𝑢𝑠𝑒 [35], 8.8.5).  and using compactness of 7, that every derivation is close to zero on 

some invariant hereditary sub-𝐶*-algebra. However, this proof does not seem to give a 

subalgebra which is invariant under all automorphisms commuting with the derivation, as 

does that in [63].) 
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   𝐴𝑑 4 ⟶ 5. (We prove this implication by combining ideas from the proof of Theorem 

(1.3.2)in [56] and the argument on page 161 in [58].) Assume 4. In particular, 𝐴* is prime, 

and it follows by Lemma(1.2.3), with 𝐺 in place 𝑜𝑓 𝐻, that 𝐴 ⋊𝛼  𝐺 is prime. (This does 

not use the hypothesis of proper outerness.) 

    Since 𝐴 ⋊𝛼  𝐺 is separable, there exists a sequence (𝐽𝑛) of nonzero closed two-sided 

ideals of 𝐴 ⋊𝛼  𝐺 such that every nonzero closed two-sided ideal contains some 𝐽𝑛 ([49], 

3.3.4). (𝐼𝑓 (𝑥𝑛) is a dense sequence in the unit sphere of 𝐴 ⋊𝛼  𝐺 A, we may take 𝐽𝑛n to 

be the 

smallest closed two-sided ideal of 𝐴 ⋊𝛼  𝐺 such that ‖𝑥𝑛  + 𝐽𝑛‖ ≤
1
2⁄     for if 𝐽 is any 

nonzero closed two-sided ideal there is some 𝑛 such that ||𝑥𝑛 +  𝐽||  ≤  ‖𝑥𝑛‖/2 =  1/2. ) 
Since 𝐴 ⋊𝛼  𝐺 is prime, we may replace 𝐽𝑛 𝑏𝑦 𝐽1 ∩ …∩ 𝐽𝑛 and suppose that the sequence 

(𝐽𝑛) is decreasing. 

    Denote by 𝑇 the set of 𝑎 ∈ 𝐴 ⋊𝛼  𝐺 such that 𝛼 ≤ 𝑂, ||𝑎||  =  1, and there exists 

0 ≠  𝑏 ∈ 𝐴 ⋊𝛼  𝐺𝐴 𝑤𝑖𝑡ℎ 𝑎𝑏 =  𝑏. By spectral theory, 𝑇 is not empty, and if 𝑎 ∈  𝑇 then 

there exists 𝑏 ∈  𝑇 such that 𝑎𝑏 =  𝑏. 

     Choose a dense sequence of unitaries (𝑈𝑀) in (𝐴 ⋊𝛼  𝐺)
1̃ ,, the 𝐶*-algebra 𝐴 ⋊𝛼  𝐺  

with unit adjoined, and let ( 𝜎𝑛 ) be an enumeration of the automorphisms 

(𝐴𝑑𝑈𝑀)�̂�𝑦
2𝑦,𝑚 = 1,2, . . . , 𝑦 ∈ �̂�\{0}. 

    Construct as follows a sequence (𝑒𝑛) 𝑖𝑛 𝑇 such that 

𝑒𝑛𝑒𝑛+1 = 𝑒𝑛+1, 𝑒𝑛 ∈ 𝐽𝑛, 𝑎𝑛𝑑 ‖𝑒𝑛𝜎𝑛(𝑒𝑛)‖ ≤ 𝑛−1 . 
Suppose that we have constructed 𝑒𝑘 ∈  𝑇 𝑓𝑜𝑟 1 ≤ 𝑘 < 𝑛 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑒𝑘−1𝑒𝑘  =  𝑒𝑘, 𝑒𝑘 ∈
𝐽𝑘, 𝑎𝑛𝑑‖𝑒𝑘(𝑒𝑘)‖ ≤ 𝐾−1 𝐶ℎ𝑜𝑜𝑠𝑒 𝑥 ∈ 𝑇 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑒𝑛−1𝑥 =  𝑥. (𝐼𝑓 𝑛 =  𝑙 , just choose 

𝑥 ∈ 𝑇.)  
applied to the properly outer automorphism 𝜎𝑛 and the hereditary sub- 𝐶* -algebra /„ 𝐽𝑛 ∩
 (𝑥(𝐴 ⋊𝛼  𝐺). 𝑥) 

− ,  there exists 𝑒𝑛  in this subalgebra such that 0 ≤ 𝑛, ‖ 𝑒𝑛‖   =
 1, 𝑎𝑛𝑑 ‖𝑒𝑛𝜎𝑛(𝑒𝑛)‖ ≤ 𝑛−1. 𝑁𝑒𝑐𝑒𝑠𝑠𝑎𝑟𝑖𝑙𝑦, 𝑒𝑛−1𝑒𝑛  = 𝑒𝑛 , and modifying 𝑒𝑛  slightl using 

spectral theory ensures that, in addition, 𝑒𝑛 ∈  𝑇, as desired. 

    As (𝑒𝑛) is a decreasing sequence of positive elements of 𝐴 ⋊𝛼  𝐺 of norm one, the set 

of states of 𝐴 ⋊𝛼  𝐺 with value 1 on 𝑒𝑛for all 𝑛 is a nonempty compact face in the state 

space of 𝐴 ⋊𝛼  𝐺. Therefore, there exists a pure state 𝜑0 𝑜𝑓𝐴 ⋊𝛼  𝐺 such 𝑡ℎ𝑎𝑡 𝜑0(𝑒𝑛)  =
 1 for all 𝑛. Denote by 𝜑 the unique 𝛼-invariant extension of 𝜑0 to a state of (𝐴 ⋊𝛼 𝐺) 
⋊𝛼 �̂�. 

We shall show that 𝜋𝜑 is faithful and that 𝜑 is pure. 

    Since 𝜑0(𝑒𝑛) =  1 𝑎𝑛𝑑 𝑒𝑛 ∈ 𝐽𝑛, 𝐽𝑛  is not contained in Ker 𝜋𝜑0
 for any 𝑛. Hence Ker 

𝜋𝜑0
 = 0. Since Ker 𝜋𝜑0

 𝑖𝑠 𝛼⩓-invariant, if it were nonzero its intersection with the fixed 

point subalgebra 𝐴 ⋊𝛼  𝐺 would be nonzero, but this intersection is clearly contained in 

Ker 𝜋𝜑0
 , which is zero. Therefore Ker 𝜋𝜑1

 = 0. 

    Since𝜑0  is pure, to show that 𝜑  is pure, it suffices to show that 𝜑 is the unique 

extension of 𝜑0  to a state of (𝐴 ⋊𝛼  𝐺) ⋊𝛼 �̂�  Let 𝜓 be a state of (𝐴 ⋊𝛼  𝐺) ⋊𝛼 �̂�  such 

that 𝜓|𝐴 ⋊𝛼  𝐺 =  𝜙0. To show that 𝜓 = 𝜙 , we must show that 𝜓 𝑖𝑠 𝛼⩓-invariant, i.e. 

that 

𝜓(𝑏𝑢(𝑦))  = 0 for any 𝑏 ∈ 𝐴 ⋊𝛼  𝐺 and any 𝑂 ≠ 𝑦 ∈ �̂�. Here 𝑢(𝑦) denotes the unitary 

multiplier of the crossed product by 𝐺 canonically associated with 𝛾 ∈  �̂�. Since any 𝐶*- 

algebra is spanned linearly by its unitary elements, it is enough to suppose that 𝑏  is 

unitary, and then of course 𝑏  can be approximated by 𝑎  subsequence of (𝑢𝑚).  In the 
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enumeration, above, of (𝐴𝑑 𝑢𝑚)𝛼𝑦
⩘as 𝜎𝑛 , let us denote by 𝜎𝑚 𝑦 and 𝑒𝑚𝑦  the 𝜎𝑛  and 𝑒𝑛 

corresponding to (𝐴𝑑𝑢𝑚)𝛼𝑦
⩘ Thus, for fixed 𝑂 ≠ 𝑦 ∈ 𝐺, 

𝑒𝑚,𝑦𝜎𝑚,𝑦(𝑒𝑚,𝑦) ⟶ 0       (𝑚 ⟶ ∞). 

In other words, with 𝑦 ∈ �̂�\{0} fixed, we have 

𝑒𝑚,𝑦𝑈𝑚(𝑦)𝑒𝑚,𝑦  = 𝑒𝑚,𝑦𝜎𝑚,𝑦(𝑒𝑚,𝑦)𝑢𝑚𝑢(𝑦) ⟶ 0. 

Since  𝜓(𝑒𝑚,𝑦)  = 𝜙 0(𝑒𝑚,𝑦)  =  1 for all m, we have 

whence 𝜓(𝑏𝑢(𝑦))  =  0. Therefore, 𝜓 =  𝜙. This shows that 𝜙  is pure. 

     Let us again identify(𝐴 ⋊𝛼  𝐺) ⋊𝛼 �̂�  with 𝐴⊗  𝐾(𝐿2(𝐺)), and 𝛼⩓ with 𝛼 ⊗ 𝜆. Then, 

with 

𝑒𝑦𝑦 as above, in the proof of Lemma(1.3.1), for any 𝑦 ∈ �̂� the positive functional 𝜙 𝑦  =

 (1⊗ 𝑒𝑦𝑦)𝜙(1⊗ 𝑒𝑦𝑦), if nonzero, is 𝑎  scalar multiple of an 𝛼⩓ −invariant pure state 

of 𝐴 ⊗ 𝑒𝑦𝑦 ≤ 𝐴⊗𝐾, i.e. an 𝛼-invariant pure state, say 𝜔𝑦 , 𝑜𝑓 𝐴. Furthermore, for some 

𝑦 ∈ �̂�, 𝜙 𝑦  is nonzero, and then 𝜋𝜙 𝑦  is faithful, since 𝜋𝜙  is. Since 𝜋𝜙 𝑦(𝑎 ⊗ 𝑒𝑦𝑦) =

 𝜋𝜔𝑦(𝛼)⊗ 𝑒𝑦𝑦 𝑖𝑡  follows that, for such 𝑦, 𝜋𝜔𝛾  is a faithful representation of 𝐴 . This 

shows that, with 𝜔 =  𝜔𝛾  for such a 7,𝜔 is an 𝛼-in variant pure state of 𝐴, 𝑎𝑛𝑑 𝜋𝜔  is 

faithful, as desired. 

    𝐴𝑑 5 ⟶ 6. Condition 5 implies that both 𝐴 𝑎𝑛𝑑 𝐴 ∗ are prime, whence by 8. 10.4 of 

[35], �̂�(𝛼)  =  𝑆𝑝 𝛼 . In particular, as 𝐺(𝛼)  is group ([35], 8.8.4),  so also 𝑖𝑠 𝑆𝑝 𝛼 , and 

since 𝛼 is faithful this implies 𝑆𝑝 𝛼 =  �̂�. 
    𝐴𝑑 6 ⟶ 7. Except for the property (iii), this is exactly Theorem (1.3.1) of [46]. 

Referring to the proof of that theorem, we ensure that 𝐵 and 𝑞 have the extra property 

as follows. 

    Since 𝐴  is separable and prime there exists a decreasing sequence (𝐽𝑛) of nonzero 

closed two-sided ideals of 𝐴 such that any nonzero closed two-sided ideal of 𝐴 contains 

some 𝐽𝑛 (𝑠𝑒𝑒 𝑝𝑟𝑜𝑜𝑓 𝑜𝑓 4 ⟶  5 𝑎𝑏𝑜𝑣𝑒). Also, since 𝐴 is prime and 𝐺 is compact we have 

                 ∩ 𝛼𝑔(𝐽) ≠ 0 

𝑔 ∈ 𝐺 

for any nonzero closed two-sided idea 𝐽  𝑜𝑓 𝐴. (First, by strong continuity of 𝛼, for any 

h∈ 𝐺 there is a neighbourhood 𝑈ℎ 𝑜𝑓 ℎ 𝑖𝑛 𝐺 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐼ℎ = ∩𝑔∈𝑈ℎ 𝛼𝑔(𝐽) ≠ 0 𝑏𝑦 

𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠  of 𝐺 , there are ℎ1 , … , ℎ𝑘  ∈ 𝐺 such that 𝑈ℎ1 ∪ …∪ 𝑈 ℎ𝑘  =  𝐺 , finally, 

byprimeness of 𝐴, 𝐼ℎ1 ∩ …∩ 𝐼ℎ1 ≠ 𝑂, 𝑖. 𝑒.  ∩  𝛼𝑔(𝐽) ≠ 0) ∩ 𝛼𝑔(𝐽) ≠ 0 

𝑔 ∈ 𝐺 

It follows that 𝐽 ∩ 𝐴𝛼  ≠ 0 

for any nonzero closed two-sided idea 𝐽 / 𝑜𝑓 𝐴 . In particular,(𝐽 ∩ 𝐴𝛼) is a decreasing 

sequence of nonzero closed two-sided ideals of 𝐴∗. 

    Now note that the quasimatrix system (𝑒𝑛), (𝑣𝑛,𝑖)𝑖
𝑑𝑛

=1 constructed so that  𝑒𝑛 ∈ 𝐽𝑛 ∩

𝐴𝛼 

n=  1, 2,. Then the projection 𝑞𝑛 ∈ 𝐴∗∗ defined in the proof of Theorem (1.3.1)of [46] is 

contained 𝑖𝑛 𝐽∗∗ , and hence the limit 𝑞 =  𝑙𝑖𝑚 𝑞𝑛  is contained in ∩ 𝐽𝑛
∗∗  . Since any 

nonzero 

closed two-sided ideal 𝐽 contains some 𝐽𝑛 (iii) holds.  

        𝐴𝑑 7 +  8. 8 is a special case of 7. 
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         𝐴𝑑 8 + 9. Assume 8 . Denote by 𝜏 the unique tracial state of the 𝐶*-algebra 𝑞𝐴𝑞 , 

which is isomorphic to the 𝐺limm algebra 𝑀2∞, and denote by 𝜔 the corresponding state 

of 𝐴, 

𝐴 ∋ 𝑎 ↦ 𝜏(𝑞𝑎𝑞). 
Since q 𝑖𝑠 𝛼**-invariant, and 𝜏 is unique, 𝜔 𝑖𝑠 𝛼-in variant. 

      Since 𝜔(𝑞) = 𝑙, 𝑞 ∉ 𝐾𝑒𝑟(𝜋𝜔
∗∗) ⊇ (𝐾𝑒𝑟𝜋𝜔)

∗∗, and hence by 8(𝑖𝑖𝑖), 𝐾𝑒𝑟𝜋𝜔  =  0. 
      That 𝜋𝜔(𝐴

𝛼)′ ∩ 𝜋𝜔(𝐴)" =  𝐶 

      𝐴𝑑 9 ⟶  10. This is evident. 

     𝐴𝑑 8 ⟶  1 1. Assume 8. Let (𝜙𝑛) be any sequence of pure states of 𝑀2 such that, for 

each 𝜒 ∈ �̂�, the (infinite) subsequence (𝜙𝑛)𝜒𝑛 = 𝜒 contains a subsequence that converges 

to a nondiagonal pure state, i.e. to a pure state with density matrix not equal to (
1 0
0 0

)or 

(
0 0
0 1

)I. For instance, 𝜙𝑛  may be taken to be a fixed pure state with density matrix 

different from(
1 0
0 0

) and(
0 0
0 1

) (e.g. the pure state with density matrix 
1

2
(
 1 1
1 1

) 

       Denote by 𝜙 the pure state of𝑞𝐴𝑞 obtained from ⊗𝑛=1
∞ 𝜙𝑛 by identifying 𝑞𝐴𝑞 with 

⊗𝑛=1
∞ 𝑀2 as in 8, and denote also by 𝜙 the corresponding pure state of 𝐴, 

𝐴 ∈ 𝑎 ⟼  𝜙(𝑞𝑎𝑞)  = ⊗𝑛=1
∞ 𝜙𝑛(𝑞𝑎𝑞) .  

       Since 𝜙 (𝑞) = 1 𝑞 ∉ 𝐾𝑒𝑟(𝜋𝜙
∗∗) ⊇ (𝐾𝑒𝑟𝜋𝜙)

∗∗, and hence by 8(iii), 𝐾𝑒𝑟𝜋𝜙  =  0. 

       We shall show that 𝜋𝜙(𝐴
𝛼)" = 𝜋𝜙 (𝐴)". We shall show this, or, equivalently, that 𝜋𝜙 

(𝐴𝛼)′  =  𝐶 , in two steps: first, we shall show that  𝜙 , the canonical cyclic vector for 

𝜋𝜙(𝐴), is also cyclic for 𝜋𝜙(𝐴"), and thus separating for 𝜋𝜙(𝐴
𝛼)′ and, second, we shall 

show that 

𝜋𝜙 (𝐴𝛼)′𝜙 =  𝐶𝜙. 

        Let us show that 𝜙 is cyclic for 𝜋𝜙(𝐴
𝛼)To do this, we shall show that, for each𝑋 ∈ �̂� 

 

𝜙 ∈ 𝜋𝜙(𝐴
𝛼(𝑋))

−
𝜙, 

where the bar denotes ultra weak closure. Then, for each 𝜒 ∈  𝐺, 

𝜋𝜙(𝐴
𝛼( − 𝜒))𝜙 ⊆  𝜋𝜙(𝐴

𝛼 (−𝑋 ))𝜋𝜙(𝐴
𝛼(𝑋))

−
𝜙,⊆ 𝜋𝜙(𝐴

𝛼( − 𝜒))𝐴𝛼 (𝑋))−𝜙 ⊆ 𝜋𝜙  

(𝐴𝛼)−𝜙 ⊆ (𝜋𝜙(𝐴
𝛼)𝜙)− 

where the last bar denotes weak closure in 𝐻𝜙, which on a linear subspace is the same as 

norm closure. Since the closed linear span of (∪𝜒∈𝐺 𝐴
𝛼(—  𝑋) is equal to 𝐴 and 𝜙is cyclic 

for 𝜋𝜙(𝐴), this shows that is cyclic for 𝜋𝜙(𝐴
𝛼) 

       Let, then, 𝜒 be an element of 𝐺 and let us show that 𝜙 ∈ 𝜋𝜙(𝐴
𝛼(𝜒))−𝜙. (𝐼𝑓 𝜒 =  0 

this follows from the fact that 𝐴𝛼 contains an approximate unit for A For each k such that 

𝜒𝐾  =  𝜒 denote by ck the image of 

(
0 0
1 0

) ∈ 𝑀2 

let 𝑀2 under the K-th embedding of 𝑀2 in 𝑞𝐴𝑞 = ⊗𝑛=1
∞ 𝑀2. Then, by the choice of 

𝜙𝑛  

𝜙𝐶𝐾 = 𝜙𝑘 (
0 0
1 0

) ↛ 0 

(Here k is such that 𝜒𝐾 =  𝜒.) Passing to a subsequence of (𝐶𝐾ck) we may suppose that 

𝜙(𝐶𝐾) ⟶ 𝜆 ≠ 0 
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and then, since (𝐶𝐾 ) is a central sequence in 𝑞𝐴𝑞 , and 𝜋𝜙(𝑞𝐴𝑞)  is irreducible on 

𝜋𝜙(𝑞)𝐻𝜙, 

𝜋𝜙(𝐶𝐾) ⟶ 𝜆𝜋𝜙(𝑞) ultra weakly . 

Since 𝑞 ∈ 𝐵', the map 

𝐵 ∋ 𝑏 ⟼ 𝑏(𝑞) ∈ 𝐵𝑞 =  𝑞𝐴𝑞 
is a morphism, and so we can choose 𝑏𝐾 ∈ 𝐵 with 𝑏𝐾𝑞 = 𝐶𝐾  , and ||𝑏𝐾|| ≤ 2 (even with 

‖𝑏𝐾‖  =  1). Replacing 𝑏𝐾  𝑏𝑦 ∫ 〈𝑋, 𝑞̅̅ ̅̅ ̅〉
8

𝐺
𝛼𝑔(𝑏𝐾)𝑑𝑔, we may suppose that 𝑏𝐾 ∈ 𝐵𝛼(𝜒). If 

now 𝑏 is any ultra weak limit point of the sequence 𝜋𝜙 (𝑏𝐾) we have 

𝑏𝜋𝜙(𝑞) = 𝜋𝜙(𝑞)𝑏 = 𝜆𝜋𝜙(𝑞). 

And as 𝜋𝜙(𝑞) 𝜙 = 𝜙 𝑤𝑒ℎ𝑎𝑣𝑒 

𝜙 =  𝜆−1𝜙 ∈ 𝜋𝜙(𝐴
𝛼(𝑋))

−
𝜙, 

as desired. 

     Now let us show that 𝜋𝜙(𝐴
𝛼)′𝜙 =  𝐶𝜙. Since 𝑞 is an 𝛼**-invariant projection in 𝐴∗∗ 

and also is closed, we have 𝑞 ∈ (𝐴𝛼)∗∗ ⊆ 𝐴∗∗. (1 − 𝑞 is the unit of the ultraweak closure 

in 𝐴∗∗  of an 𝛼 -invariant hereditary sub- 𝐶* -algebra of 𝐴 , and so is the limit of an 

approximate unit of this subalgebra; this approximate unit may, as remarked above, be 

chosen to be 𝛼-invariant.) In particular, 𝜋𝜙(𝑞) ∈ 𝜋𝜙 (𝐴
𝛼)″ ∗ 𝑦 . Moreover, for each 𝜒 ∈

�̂�, it was shown in the preceding paragraph that 𝜋𝜙(𝑞) ∈ 𝜋𝜙(𝐴
𝛼((𝜒))− (where the bar 

denotesultraweak closure). Hence, for each𝑋 ∈ 𝐺.̂ 

𝜋𝜙(𝐴
𝛼(−𝜒)𝑞)1 ⊆ 𝜋𝜙(𝐴

𝛼(−𝜒))𝜋𝜙(𝐴
𝛼((𝜒))− ⊆ 𝜋𝜙(𝐴

𝛼(−𝜒)𝐴𝛼1(𝜒))−
1
⊆ 𝜋𝜙(𝐴

𝛼)−. 

Since the closed linear span of ∪𝑋∈�̂� 𝐴
𝛼(—  𝜒) is equal to 𝐴, and 𝜋𝜙(𝐴) is irreducible, this 

shows that 𝜋𝜙(𝑞𝐴
𝛼𝑞) is irreducible on 𝜋𝜙(𝑞)𝐻𝜙. Now we have 𝜋𝜙(𝑞) ∈ 𝜋𝜙(𝐴

𝛼)" and 

𝜋𝜙(𝐴
𝛼)′(𝑞)  = 𝜋𝜙(𝑞𝐴

𝛼𝑞)′ 𝜋𝜙(𝑞)=C𝜋𝜙(𝑞) . 

Since 𝜋𝜙(𝑞)𝜙 = 𝜙  it follows that 𝜋𝜙(𝐴
𝛼)′𝜙 =  𝐶𝜙 . 

     Ad 11 ⟶ 10. This is evident. 

     Ad 10 ⟶   12.  

Remark(1.3.5)[41]: It is interesting to inquire whether the implications 9 ⟶
 1 1 𝑎𝑛𝑑 11 ⟶ 9 (which are now established, since 12 ⟶  1 is evident) can be proved 

directly. Certainly, our proof of 8⟶11 yields an alternative proof of 8 ⟶9, since the pure 

states 𝜙 constructed in the proof of 8 ⟶ 1 1 constitute a direct integral decomposition of 

the invariant state ω constructed in our proof of 8 ⟶ 9 above. Given a state 𝜔 as in 9, and 

adirect integral decomposition of 𝜋𝜔 as ∫ 𝜋 (𝜁)𝑑𝜇(𝜁),
⊗

1
  must almost every 𝜋(𝜁) verify 1 

1 ? 
     𝐴𝑑 1 1 ↔ 1 1′ Γ. If 𝜋 is an irreducible representation of 𝐴, then, as we shall show, 𝜋 

verifies 11 if, and only if, it verifies 1 1′ . (See also [59].) 

1 1 ↔ 1 1′, for 𝜋,  

Assume1 1′. Set ∫ 𝜋𝛼𝑔𝑑𝑔
⊗

𝐺
  =  𝑝. 𝑝 𝑖𝑠 𝛼-co variant, and 𝛼 is implemented by the right 

regular representation of 𝐺 𝑜𝑛 𝐻𝜋 ⊗𝐿2(𝐺) (we do not need here that 𝐺 is abelian). Since 

𝐺 is compact, P(𝐴𝛼 )″  =  (𝑃(𝐴″)𝛼  = (𝜋(𝐴)″𝜙𝐿∞)(𝐺))∞ ⊗ 𝐼. 
But 𝑝(𝐴𝛼)  =  𝜋(𝐴𝛼)⊗I, so (We have not used here that 𝜋 is irreducible.) 

     Ad 12 ⟶ 13. Assume 12. Let 𝛽 be an automorphism of 𝑀∞(𝐴) such that 𝛽 \𝐴𝛼  =  1. 
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Let us prove that 𝛽 = 𝛼𝑔  for some 𝑔 ∈ 𝐺. below, 𝑀∞(𝐴)𝛼 ⊆ 𝑀∞(𝐴𝛼), and it follows 

that 𝛽\𝑀∞(𝐴)𝛼 =I. 

We now note that, except for continuity of 𝛼 from 𝐺 into Aut 𝑀∞(𝐴), all the hypotheses 

of Theorem (1,3,2) of [44] are fulfilled, with𝑀∞(𝐴) in place of 𝐴, and (𝑈(𝑀∞(𝐴)𝛼\ 𝐴𝑑) 
in place of (𝐻, 𝜏). The proof of Theorem (1.3.2) of [44], which is valid without continuity 

of 𝛼  until the very last line — provided that 𝑀∞(𝐴)𝐹  is defined as the set of all 𝑥 ∈
𝑀∞(𝐴) such that the linear span of 𝛼𝐺(𝑥) is finite-dimensional — , yields that, for some 

𝑔 ∈  𝐺, 

𝛽(𝑥)  =  𝑎𝑔(𝑥) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈  𝑀
∞(𝐴)𝐹 . 

In particular, this holds for all 𝑥 ∈  𝐴𝐹, and since 𝐴𝐹 is dense in 𝐴 (continuity is known 

for 𝛼 ∶  𝐺 ⟶ 𝐴𝑢𝑡𝐴), this shows that 𝛽 =  𝛼𝑔. (Here we have not used that 𝐺 is abelian. 𝐴 

proof in the case that 𝐺 is abelian can also be obtained by modifying, in 𝑎 somewhat less 

trivial way, the proof of Theorem (1.3.3)of [60].) 

    Ad 13 ⟶ 14. Assume 13. Then for each unitary 𝑢 ∈ (𝐴𝛼)′ ∩ 𝑀∞(𝐴)𝑑𝑤 =  𝛼𝑔 for 

some 𝑔 ∈ 𝐺as A is prime, Centre𝑀∞(𝐴)  =  𝐶. By commutativity of 𝐺 , it follows that 

𝛼𝑔(𝑢) ∈ 𝑇𝑢 for every 𝑈 ∈ (𝐴𝛼)′ ∩𝑀∞(𝐴) and every 𝑔 ∈ 𝐺. But, for fixed such 𝑢, and 

fixed 𝑔 ∈ 𝐺 , it follows from the fact that 𝛼𝑔(𝑣)  ∈  𝑇𝑉  for every unitary v in the 𝐶*-

algebra generated by u, that 𝛼𝑔(𝑢)  =  𝑢 . Since g is arbitrary, it follows that 𝑢  is in 

𝑀∞(𝐴)𝛼, which is contained in 𝑀∞(𝐴)𝛼. But 𝑈 ∈ (𝐴𝛼)′ 𝑠𝑜 𝑢 belongs to Centre 𝑀∞(𝐴)𝛼. 

as 𝐴∗is prime, this is equal to C. Since any 𝐶∗- algebra is spanned linearly by its unitary 

elements we have 

(𝐴𝛼)′ ∩𝑀∞(𝐴) = 𝐶. 
    We should like to point out that if 𝐺 is not abelian, then the implication 13 ⟶  14 may 

fail. For example, it fails if 𝐴 =  𝑀𝑛, 𝑛 =  2, 3, , 𝑎𝑛𝑑 𝐺 =  𝐴𝑢𝑡 𝐴. However, this may 

be essentially the only case in which the implication fails. 

    𝐴𝑑 14 ⟶ 15. Assume 14. Let us first show that 𝐴 is prime. Clearly, Centre 𝑀∞(𝐴)  =
 𝐶;, this just says that A is prime. 

    Let 0 ∈ 𝐺, and suppose that ag is not properly outer there is a 

unitary u in 𝑀∞(𝐴) such that 𝛼𝑔  =  𝐴𝑑 𝑢. Since ue(𝐴𝛼)′ ∩ 𝑀∞(𝐴), by 14 we have 𝛼𝑔 =

 1. Since α is faithful, 𝑔 =  0. 
    𝐴𝑑 15 ⟶  4. Assume 15. In particular, 𝐴∗ is prime. Hence by Lemma (1.3.1)(as in the 

proof of 4 ⟶ 5), with 𝐻 =  𝐺, also 𝐴 ⋊𝛼 𝐺 is prime. 

    Let 𝑦 ∈  �̂�, and suppose that άy is not properly outer. We must prove that 𝛾 =  0. As 

𝐴 ⋊𝛼 𝐺 is prime, there exists a unitary 𝑢 ∈ 𝑀∞(𝐴 ⋊𝛼 𝐺)  such that ά𝑦  = 𝐴𝑑 𝑢. Centre 

𝑀∞(𝐴 ⋊𝛼 𝐺)  =  𝐶. Therefore u is unique up to a scalar multiple. By commutativity of 𝐺, 

it follows that 𝑢−1ά𝜉(𝑢)  ∈  𝑇 for every 𝜉 ∈  𝐺. Therefore the map 𝜉 ⟼ 𝑢−1ά𝜉(𝑢) is a 

character of �̂�, and so there exists 0 ∈ 𝐺 =  �̂� with 

ά𝜉(𝑢) =  〈𝜉, 𝑔〉𝑢 ,      𝜉 ∈ �̂�. 

Since also 

ά𝜉(ℷ(𝑔)) = 〈𝜉, 𝑔〉ℷ(𝑔)   , 𝜉 ∈ �̂�. 

whereℷ(𝑔) is the canonical unitary multiplier of 𝐴 ⋊𝛼 𝐺corresponding to 𝑔, it follows 

that, with 𝑣 =  𝜆(𝑔)𝑢∗, 
𝑣 ∈ 𝑀∞(𝐴 ⋊𝛼 𝐺)

𝛼 

By the choice of 𝑢 𝜆(𝑡)𝑢𝜆(𝑡)−1 = 〈−𝑦, 𝑡〉𝑢, 𝑡 ∈ 𝐺 and hence as 𝐺  is abelian, 

𝜆(𝑡)𝑣𝜆(𝑡)−1   = 〈𝑦, 𝑡〉𝑣, 𝑡 ∈ 𝐺. 𝑆𝑖𝑛𝑐𝑒 𝑢𝐴𝑢−1 = 𝐴, 𝑎𝑙𝑠𝑜 𝑣𝐴𝑣−1 = 𝐴, 
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𝑣 ∈ 𝑀∞(𝐴) ⊆ 𝑀∞(𝐴 ⋊𝛼 𝐺) 
    Since (𝐴𝑑𝑣)|𝐴 =  𝛼𝑔, 𝑔 = 0. This shows that 

Recall that 𝜆(𝑡)𝑢𝜆(𝑡)−1  =  〈−𝑦, 𝑡〉𝑢, 𝑡 ∈ 𝐺, 𝑎𝑛𝑑 𝑢𝐴𝑢−1 = 𝐴. Hence  

𝑢 ∈ 𝑀∞(𝐴) ⊆ 𝑀∞(𝐴 ⋊𝛼 𝐺). 
By the choice of 𝑤,𝐴𝑑𝑢 =  ά𝑦 , and in particular, (𝐴𝑑𝑢)\𝐴 =  𝐼.  Therefore, we  𝑢 ∈ 

Centre 𝑀∞(𝛬). 
𝐴𝑠 𝐴 is prime, Centre  𝑀∞(𝛬) =  𝐶, and so 𝑢 ∈T. Hence ά𝑦  =  𝐴𝑑 𝑢 =  1, and 𝑦 = 0 as 

desired. 

       𝐴𝑑4 ⟶ 1. This follows from 4 ⟶ 12, established above, since 12 is clearly stronger 

than 1. Let us, however, give a more direct proof of 4 ⟶  1. 
      Assume 4. Let 𝑥 𝑎𝑛𝑑 𝑦 be nonzero elements of 𝐴 and let us find 𝑎 ∈ 𝐴𝛼 such that 

𝑥𝑎𝑦 ≠ 0. Replacing x and y by 𝑥∗𝑥 𝑎𝑛𝑑 𝑦𝑦∗, we may suppose that 𝑥 and 𝑗 are positive. 

      As in the proof of Lemma(1.3.1), above, we shall identify the systems 

(( 𝐴 ⋊𝛼 𝐺 ) ⋊𝛼 �̂�, 𝛼
⩓) 𝑎𝑛𝑑 (𝐴 ⊗ 𝐾(𝐿2𝐺)\ 𝛼 ⊗ 𝜆) ,and the subalgebras 𝐴 ⋊𝛼 𝐺 ⊆

(𝐴 ⋊𝛼 𝐺) ⋊𝛼 𝐺 and (𝐴⊗ 𝐾)𝛼⊗𝜆 ⊆ 𝐴⊗𝐾. Recall that 

(𝐼 ⊗ 𝑒00)(𝐴⊗ 𝐾)𝛼⊗𝜆(𝐼 ⊗ 𝑒00) = 𝐴𝛼 ⊗𝑒00 , 
where 𝑒00 is the projection onto the one-dimensional subspace of 𝐿2(𝐺) generated by the 

trivial character. 

Since 𝑥 𝑎𝑛𝑑 𝑦  are positive and nonzero, so also are 𝑥0  =  ∫ 𝛼𝑔
1

𝐺
(𝑥)𝑑𝑔 𝑎𝑛𝑑 𝑦0  =

∫ 𝛼𝑔
1

𝐺
(𝑦)𝑑𝑔. 

We shall prove the following inequality, which is stronger than what is needed: 

𝑠𝑢𝑝𝑎∈𝐴𝛼 , ‖𝑎‖ ≤ 1   ‖𝑥𝑎𝑦‖ ≥ ‖𝑥0‖‖𝑦0‖. 
        Let us identify 𝑥, 𝑦 𝑤𝑖𝑡ℎ 𝑥 ⊗ 𝑒00, 𝑦 ⊗ 𝑒00 ∈ 𝐴⊗ 𝑒00.  Recalling that  

(𝐴 ⋊𝛼 𝐺)⋊𝛼 �̂�, we may replace 𝑥 and 𝑦 by finite approximating sums 

∑𝑥𝑦𝑢(𝑦)

𝑦∈𝐹

 ,∑𝑦𝑦𝑢(𝑦),

𝑦∈𝐹

 

where 𝑥𝑦 , 𝑦𝑦 ∈ 𝐴 ⋊𝛼 𝐺  for each 𝑦 in the finite set 𝐹 ⊆ �̂� . Here we cannot insist that 

all 𝑥𝑦  and 𝑦𝑦  be the canonical (Fourier) coefficients of (the original) 𝑥 𝑎𝑛𝑑 𝑦, since the 

Fourier series only converges in the Cesaro mean in general. However, we may certainly 

assume that 𝑥0 and 𝑦0 are as defined above (the zeroth Fourier coefficients). We may also 

assume that all 𝑥𝑦 and 𝑦𝑦 lie in 𝐴𝛼 ⊗𝑒00 , the cutdown of 𝐴 ⋊𝛼 𝐺 𝑏𝑦 I⊗𝑒00 From now 

on we shall suppose that 𝑥 𝑎𝑛𝑑 𝑦 are equal to such finite sums. We shall also suppose 

that ‖𝑥‖  = ‖𝑦‖ = 1 

     We shall now use  with (𝐴⊗ 𝐾)𝛼⊗𝜆  =  𝐴 ⋊𝛼 𝐺in place of 𝐴, (ά𝑦)𝑦∈\{0} in place of 

𝛼1 , . . 𝛼𝑛 , and, successively, (𝑥𝑦)𝑦∈𝐹  𝑎𝑛𝑑 (𝑌𝑦)𝑦∈𝐹  in place of 𝛼0, 𝑎1 , … , 𝑎𝑛 . This 𝑦ields, 

for each 𝜀 > 0, elements 𝑤 𝑎𝑛𝑑 𝑧 of 𝐴 ⋊𝛼 𝐺, of norm one, such that ‖𝑤𝑥0𝑤‖ ≥  ‖𝑥0‖ −

𝜀 , ‖𝑧𝑦0𝑧‖ ≥  ‖𝑦0‖ − 𝜀  , and ‖𝑤𝑥𝑦ά𝑦(𝑤)‖ ≤ 𝜀 , ‖𝑧𝑦𝑦ά𝑦(𝑧)‖ ≤ 𝜀 , 𝑦 ∈ 𝐹\{0}.  sub- 𝐶∗ -

algebras generated by 𝑥0 and 𝑦0, which are contained in 𝐴𝛼 ⊗𝑒00, and so we may 

suppose that 𝑤, 𝑍 ∈ 𝐴𝛼 ⊗𝑒00 
    Since 𝐴𝛼 ⊗𝑒00 is prime, there exists 𝑏 ∈ 𝐴𝛼 ⊗𝑒00 such that ||𝑏||  =  1 and 

‖𝑤𝑥0𝑤𝑏𝑧𝑦0𝑧‖ ≥ ‖𝑤𝑥0𝑤‖ ‖𝑧𝑦0𝑧‖ − 𝜀 . 
Hence, with 𝑎 =  𝑤𝑏𝑧,𝑤𝑒 ℎ𝑎𝑣𝑒 ||𝛼|| <  1, 𝑎 ∈ 𝐴𝛼 ⊗𝑒00, and 

‖𝑥𝑎𝑦‖  ≥  ||𝑤𝑥𝑤𝑏𝑧𝑦𝑧|| 
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≥ ‖𝑤𝑥0𝑤𝑏𝑧𝑦0 𝑧‖ – ∑ ‖𝑤𝑥𝑦𝑢(𝑦)𝑤𝑏𝑧𝑦𝑦 > 𝑢(𝑦′)𝑧‖
𝑦,𝑦′∈𝐹\{0}

 

≥ ‖𝑤𝑥0𝑤‖‖𝑧𝑦0 𝑧‖ − 𝜀 −∑ ‖𝑤𝑥𝑦ά𝑦′(𝑤)‖‖𝑧𝑦𝑦′ά𝑦′(𝑧)‖
𝑦,𝑦′∈𝐹\{0}

≥ ‖𝑥0‖‖𝑦0‖ − 3𝜀 − 𝑛2𝜀2 
where 𝑛 =  𝑐𝑎𝑟𝑑(𝐹\ {0}). Since 𝜀 > 0 is arbitrary, the desired inequality is proved. 

       Finally, suppose that 𝐺 =  𝑇 𝑜𝑟 𝐺 =  𝑍/𝑝𝑍 𝑤𝑖𝑡ℎ 𝑝 prime, and let us show that 16 is 

equivalent to 1 to 15. 

       𝐴𝑑 3 ⟶  16. This is evident. 

       𝐴𝑑 16 ⟶  3. In the case 𝐺 =  𝑍/𝑝𝑍 with 𝑝 prime, this is evident, as 𝐺 is simple. 

       In the case 𝐺 = 𝑇, there are nontrivial proper closed subgroups, but these are all finite. 

Assume 16. Let 𝐻 be a closed subgroup of 𝐺 , where now 𝐺 = 𝑇. 𝐼𝑓𝐺/𝐻 ≅ 𝑍/𝑛𝑍𝑓𝑜𝑟 

some 𝑛 =  1, 2, … then necessarily 𝑛 =  1 and 𝐻 = 𝐺, and so 𝐴𝐻 is equal to 𝐴𝛼, which is 

prime by 16. 𝐼𝑓 𝐺/𝐻 ≅T, then 𝐻 is finite and cyclic; choose an element ℎ generating 𝐻. 

We must show that 𝐴𝐻 is prime. 

         By 16, 𝐴 is prime. Therefore, by Theorem (1.3.1) of [32], it is equivalent to show 

that, if 𝛽 denotes the restriction of α to the subgroup 𝐻 ⊆ 𝐺, then the Connes spectrum of 

β is equal to the Arveson spectrum of 𝛽 —  𝑖. 𝑒. , �̂�(𝛽)  =  𝑆𝑝𝛽 . In terms of the 

automorphism 𝛼ℎ , this says that, for every nonzero hereditary sub- 𝐶∗  -algebra 𝐵 𝑜𝑓 𝐴 

which is invariant 

under 𝛼ℎ, 

(1)                                                           𝑆𝑝(𝛼ℎ/ 𝐵) =  𝑠𝑝𝛼ℎ 

         By 16, 𝐴𝛼 is prime, and so by Theorem (1.3.1) of [32], 𝐺(𝛼)  =  𝑆𝑝 𝛼. In particular, 

(1) holds if 𝐵 𝑖𝑠 𝛼-in variant. applied to αh, and as simplified using that 𝐴 is prime, there 

exists a canonical nonzero closed two-sided ideal 𝐽 𝑜𝑓 𝐴, invariant under 𝛼ℎ, such that (1) 

holds when both sides are restricted to /, i.e. 

𝑠𝑝(𝛼ℎ|𝐵 ) = 𝑠𝑝 (𝛼ℎ| 𝐽). 
That 𝐽 is canonical entails that 𝐽 is invariant under 𝛼. (𝐽 is in fact constructed to contain all 

other such ideals. Therefore (as 𝐺(𝛼)  =  𝑆𝑝𝛼), (1)  holds for /. Hence, for any 𝛼ℎ -

invariant 𝐵, 

𝑠𝑝𝛼ℎ ⊇  𝑠𝑝(𝛼ℎ|𝐵 ) ⊇ 𝑝(𝛼ℎ|𝐵 ∩ 𝐽 ) = 𝑠𝑝 (𝛼ℎ| 𝐽) =  𝑠𝑝𝛼ℎ , 
i.e. (1) hold for 𝐵,as desired . 

Proposition (1.3.6)[41]: Let 𝐴 𝑏𝑒 𝑎 𝐶∗-algebra. The following four properties are 

equivalent. 

(i) A is prime. 

(ii) 𝑀∞(𝐴) is prime. 

(iii) Centre 𝑀∞(𝐴)  =  𝐶. 

(iv) Centre𝑀 (𝐼)  =  𝐶 for every nonzero closed two-sided ideal 𝐼 𝑜𝑓 𝐴. 

Proof: 𝐴𝑑 ⟶ (𝑖𝑖). As pointed out on page 303 of [66], this follows from the fact 

that each nonzero closed two-sided ideal of 𝑀∞(𝐴) has a nonzero intersection with 𝐴. 

      𝐴𝑑 (𝑖𝑖) ⟶  (𝑖𝑖𝑖). This is evident. 

      𝐴𝑑 (𝑖𝑖𝑖) ⟶  (𝑖𝑣). Assume (iii). Let 𝐼be 𝑎  nonzero closed two-sided ideal of 𝐴. To 

show that Centre 𝑀(𝐼)  =  𝐶 it is sufficient to do this with 𝐼 replaced by 𝐼 + 𝐽 where 𝐼𝐽 =
0. 
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Therefore, we may suppose that 𝐼 is essential, so that 𝑀(𝐼) ⊆ 𝑀∞(𝐴). If .𝐽 is any essential 

closed two-sided ideal of 𝐼, then Centre 𝑀(𝐼) ⊆  𝐶𝑒𝑛𝑡𝑟𝑒 𝑀(𝐽) as follows by considering a 

faithful representation of 𝐼 which is nondegenerate on 𝐽. Hence 

𝐶𝑒𝑛𝑡𝑟𝑒 𝑀(𝐼) 𝑐 𝐶𝑒𝑛𝑡𝑟𝑒 𝑀∞ (𝐴). 
In particular, from (iii) follows Centre 𝑀(𝐴)  =  𝐶. 

    A natural question arises here: is 𝐶𝑒𝑛𝑡𝑟𝑒  𝑀∞ (𝐴) the inductive limit of Centre 𝑀(𝐼) 
(𝐼 an essential ideal)? 

    Ad (𝑖𝑣) ⟶ (𝑖). If 𝐴 is not prime, then there exist nonzero closed two-sided ideals 𝐼1 

and 𝐼2 of 𝐴 with 𝐼1𝐼2  =  0. 𝑆𝑒𝑡 𝐼1 + 𝐼2  = I. Then 𝐼 is nonzero and Centre 𝑀(𝐼)  ≠  𝐶. 
Proposition (1.3.7)[41]: Let 𝐴 𝑏𝑒 𝑎 separable prime 𝐶∗-algebra, and let 𝛼 be an 

automorphism of A. The following three properties are equivalent. 

      (i) 𝛼 is not properly outer. 

      (ii) 𝛼 is inner in  𝑀∞(𝐴). 
      (iii) 𝛼 is weakly inner in every faithful factor representation of 𝐴. 

 Proof: 𝐴𝑑 (𝑖)  ⟶ (𝑖𝑖). Assume (i). By definition, there is a nonzero invariant closed 

two-sided ideal 𝐼 of 𝐴 such that for some unitary 𝑢 in 𝑀(𝐼), ‖𝛼 |𝐼— (𝐴𝑑 𝑢)| 𝐼 ‖ <  2. By 

the Kadison-Ringrose theorem ([55]), there exists a derivation δ of 𝐼 such that 

𝛼|𝐼 = (𝐴𝑑𝑢)𝑒𝑥𝑝𝛿. 
as 𝐴 is separable, 𝛿  is inner in  𝑀∞(𝐼) . Since 𝐴  is prime,    (𝐼)  =⟶ ,  so 𝛼  is inner 

in 𝑀∞(𝐴), as desired. 

     𝐴𝑑 (𝑖𝑖) ⟶ (𝑖𝑖𝑖). This follows from the fact, that any faithful factor representation of 

𝐴 extends to a representation of 𝑀∞(𝐴). (Here we do not need 𝐴 to be separable. Also, the 

implication (𝑖𝑖) ⟶ (𝑖) holds for any 𝐶∗-algebra.) 

     𝐴𝑑 (𝑖𝑖𝑖)  ⟶ (𝑖). Assume that 𝛼 is properly outer. By the proof of Theorem (1.3.1) of 

[56], with Lemma (1.3.2) of [56] replaced by Proposition (1.3.10) of [63] (see also 

Proposition (1.3.11)of [63]), there exists a pure state 𝜙 of A such that 𝜙α is disjoint from 𝜙 

. 𝐴 modification of the proof of Theorem (1.3.1) of [56], using that 𝐴 is separable and 

prime in the same way as in the proof of 4 ⟶  5 of Theorem 1, above, shows that 𝜙 may 

be chosen so that 𝜋𝜙 is faithful. Thus, 𝜋𝜙 is a faithful factor representation in which 𝛼 is 

not weakly inner. 

 Proposition (1.3.8)[41]:  Let 𝐴be 𝑎 𝐶∗ -algebra, let 𝐺 be 𝑎 compact group, and let 𝛼 be 

an action of 𝐺 on 𝐴. Then 𝑀∞(𝐴)𝑎 ⊆ 𝑀∞𝐴𝑎. 
 Proof: As shown in the proof of 6 ⟶  7 of Theorem (1.3.1), above, if 𝐼 is a nonzero 

closed two-sided ideal of 𝐴, then (as 𝐺 is compact) /contains 𝑎 nonzero 𝛼-in variant closed 

two-sided ideal; the largest such is of course ∩𝑔∈𝐺 𝛼𝑔(𝐼)It follows easily that if 𝐼  is 

essential, then also∩𝑔∈𝐺 𝛼𝑔(𝐼)  is essential. 

     This shows that, in the definition of 𝑀∞(𝐴)1,  as the inductive limit of multiplier 

algebras 𝑀(𝐼) over all essential closed two-sided ideals 𝐼 , we may restrict / to be α- 

invariant without changing the definition (or, at least, without changing the resulting 

algebra). Thus, 

𝑀∞(𝐴)1 = 𝐿𝑖𝑚/𝑖𝑛𝑣𝑎𝑟𝑎𝑛𝑡 𝑀(𝐼). 

 

Hence, using 𝑎 second time that 𝐺 is compact, we have 

𝑀∞(𝐴)𝑎  = 𝐿𝑖𝑚/𝑖𝑛𝑣𝑎𝑟𝑎𝑛𝑡  𝑀(𝐼)
𝑎. 

      Next, let us show that for invariant 𝐼,𝑀(𝐼)𝑎  =  𝑀(𝐼𝑎). We have 
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𝑀(𝐼)𝑎 ⊆ 𝑀(𝐼𝑎) ⊆ 𝑀(𝐼). 
where the first inclusion is evident, and the second holds as 𝐼𝛼 contains an approximate 

unit for 𝐼. (This uses again that 𝐺 is compact: If (𝑒𝑖) is an approximate unit for 𝐼, then so 

also is (∫ 𝛼𝑔(𝑒𝑖)
1

𝐺
𝑑𝑔. To see this just note that 𝑒𝑖𝛼𝑔

−1(𝑎) ⟶ 𝛼𝑔
−1(𝑎) uniformly in 𝑔 

since 𝐺  is compact, or, in other words, 𝛼𝑔(𝑒𝑖)𝑎 ⟶ 𝑎  uniformly in 𝑔 .) Hence, 

immediately, 𝑀(𝐼𝑎) = 𝑀(𝐼)𝑎. 
      We now have 

𝑀∞(𝐴)𝑎  = 𝐿𝑖𝑚/𝑖𝑛𝑣𝑎𝑟𝑎𝑛𝑡  𝑀((𝐼
𝑎) ⊆ 𝑀∞(𝐴𝑎) . 

 Proposition (1.3.9)[41]:. Let 𝐴be 𝑎 𝐶∗ -algebra, let 𝐺 𝑏𝑒 𝑎 compact abelian group, and 

let α be an action of G on A. It follows that 

Assume that 𝐴 is separable and prime, that 𝐴𝛼 is prime, and that 𝐺 is separable, and let 𝑢 

be 𝑎 unitary element of 𝑀∞ (𝐴 ⋊𝛼 𝐺)
�̂�𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑢𝐴𝑢−1 =  𝐴, and, for some 𝛾 ∈ �̂�, 

ℷ(𝑔)𝑢ℷ(𝑔)−1 = 〈𝑦, 𝑔〉𝑢,        𝑔 ∈ 𝐺. 

It follows that 𝑢 ∈ 𝑀∞(𝐴). 

Proof: First, using only that 𝐺 is compact, let us show that 𝑀∞(𝐴) ⊆ 𝑀∞(𝐴 ⋊𝛼 𝐺). 
       If 𝐼 is an 𝛼-in variant closed two-sided ideal of 𝐴, then 𝐼 ⊆  𝑀(𝐼 ⋊𝛼 𝐺), and since an 

approximate unit for 𝐼acts also as one on 𝐼 ⋊𝛼 𝐺, 𝑎𝑙𝑠𝑜 𝑀(𝐼) ⊆  𝑀(𝐼 ⋊𝛼  𝐺). (This uses 

only that 𝐺 is locally compact.) 

     Since 𝐺 is amenable, for each 𝛼-invariant essential closed two-sided ideal 𝐼of A, the 

crossed product ideal on 𝐼 ⋊𝛼 𝐺 is essential in 𝐴 ⋊𝛼 𝐺. (By 7.7.8 of [35], for any faithful 

representation 𝜋  of 𝐴 , the representation of 𝐴 ⋊𝛼 𝐺 𝑜𝑛 𝐻𝜋 ⊗𝐿2(𝐺)  induced by 𝜋  is 

faithful. If 𝜋 is chosen to be nondegenerate on 𝐼 , so that / and 𝐴 have the same weak 

closure in the representation 𝜋, then 𝐼 ⋊𝛼 𝐺 and 𝐴 ⋊𝛼 𝐺 have the same weak closure in 

the induced representation, and since this is faithful it follows that 𝐼 ⋊𝛼 𝐺 is essential.) 

     Hence by compactness of 𝐺, as in the proof of Proposition (1.3.6). 

𝑀∞(𝐴)  =  𝑙𝑖𝑚/ 𝑒𝑠𝑠𝑒𝑛𝑡𝑖𝑎𝑙  𝑀(𝐼)  − 𝑙𝑖𝑚/ 𝑒𝑠𝑠𝑒𝑛𝑡𝑖𝑎𝑙 𝑎𝑛𝑑 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑀(𝐼) 

 ⊆ 𝑙𝑖𝑚/ 𝑒𝑠𝑠𝑒𝑛𝑡𝑖𝑎𝑙 𝑎𝑛𝑑 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡  𝑀(𝐼 ⋊𝛼 𝐺) ⊆ 𝑀∞(𝐴 ⋊𝛼 𝐺) . 

It of course follows, as 𝐺 is abelian, that 

𝑀∞(𝐴) ⊆ 𝑀∞(𝐴 ⋊𝛼 𝐺)
𝛼 . 

        Now, assume that 𝐴 is separable and prime, and let 𝑢 ∈ 𝑀∞(𝐴 ⋊𝛼 𝐺)
𝛼  𝑎𝑛𝑑 𝑦 ∈ �̂� 

be such that 𝑢 is unitary, 𝑢𝐴𝑢−1 = 𝐴, 𝑎𝑛𝑑 𝜆(𝑔)𝑢𝜆(𝑔)−1  = 〈𝑦, 𝑔〉𝑢, 𝑔 ∈ 𝐺. Let us show 

that 𝑢 ∈ 𝑀∞(𝐴) (If, in addition, 𝑢 ∈ 𝑀(𝐴 ⋊𝛼 𝐺), then it follows from 7.8.9 [35] of that 

𝑢 ∈ 𝑀(𝐴).What we are establishing is a very limited generalization of 7.8.9 of [35] to the 

limit multiplier algebra. In particular, the assumption that 𝐴 and 𝑀∞(𝐴) are separable and 

prime may be superfluous.) 

      First, let us show that there exists 𝑣 ∈ 𝑀∞(𝐴)  such that 𝐴𝑑 𝜐 agrees on 𝐴 with 𝐴𝑑 𝑢. 

By Proposition (1.3,5), for this it is sufficient to show that the automorphism 𝛽 =
 (𝐴𝑑𝑢) | 𝐴 is weakly inner in every faithful factor representation of 𝐴. Let 𝜋 be 𝑎 faithful 

factor representation of 𝐴, and denote by 𝑝 the representation of 𝐴 ⋊𝛼 𝐺 induced by 𝜋 on 

𝐻𝜋 ⊗𝐿2(𝐺). Note that ά, which extends to 𝑝(𝐴 ⋊𝛼 𝐺)", acts ergodically on the centre of 

𝑝(𝐴 ⋊𝛼 𝐺)" (as 𝜋 is factorial). It follows, as we shall show below, that 𝑝 can be extended 

from 𝐴 to 𝑝(𝐴 ⋊𝛼 𝐺)
𝛼, mapping this algebra into (𝑝(𝐴 ⋊𝛼 𝐺)

𝛼)″, and commuting with 

𝐴𝑑𝑈𝜆(𝑔)  for each 𝑔 ∈ 𝐺 . Since 𝜆(𝑔)𝑝(𝑢)𝜆(𝑔)−1  = 〈𝑦, 𝑔〉𝑝(𝑢), 𝑔 ∈ 𝐺 , it follows that 

𝜌(𝑢)  = 𝑉 ⊗ 𝑦 𝑤𝑖𝑡ℎ 𝑉 ∈ 𝜋(𝐴)". (𝑝(𝑢)(𝐼 ⊗ 𝑦)−1 commutes with 𝐼 ⊗ 𝜉 and 𝐼 ⊗ 𝜆) for all 
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𝜉 ∈ 𝐺 and 𝜉 ∈ �̂� , and therefore with 𝐼 ⊗ 𝐵(𝐿2(𝐺)).  By construction, 𝜌(𝐴 ⋊𝛼 𝐺)"  is 

contained in 𝜋(𝐴)"𝐵(𝐿2(𝐺). ) We now have, for each 𝑎 ∈ 𝐴, 

𝑝(𝛽(𝑎))  =  𝑝(𝑢𝑎𝑢−1)  =  𝑝(𝑢)𝑝(𝑎)𝑝(𝑢)−1  = (𝑉 ⊗ 𝑦)𝑝(𝑎)(𝑉 ⊗ 𝑦)−1 
and since 𝑝(𝛼) is just the function 𝑡 ⟶ 𝜋(𝛼𝑡(𝑎)), evaluating at 𝑡 =  0 we get 

𝜋𝛽 = (𝐴(𝑑𝑣))𝜋, 
and so 𝛽 is weakly inner in 𝜋, as desired. 

     Before proceeding to modify 𝑢 using u, let us show as announced that if 𝑝 is a faithful 

representation of 𝐴 ⋊𝛼 𝐺 such that the restriction of 𝑝 to any �̂�-invariant essential closed 

two-sided ideal of 𝐴 ⋊𝛼 𝐺 is nondegenerate, then 𝑝 |𝐴 can be extended to 𝑀∞(𝐴 ⋊𝛼 𝐺)
�̂�. 

(It was pointed out earlier in the proof of this theorem that 𝑝 as defined in the preceding 

paragraph is faithful; the second property also holds for that p, since �̂� extends to an action 

on p(𝐴 ⋊𝛼 𝐺)
" which is ergodic on the centre.) Let ∈ 𝑀∞(𝐴 ⋊𝛼 𝐺)

�̂� , and let (𝐽𝑛) be a 

sequence of essential closed two-sided ideals of 𝐴 ⋊𝛼 𝐺 such that there exists 𝑥𝑛 ∈ 𝑀(𝐽𝑛) 

with ‖𝑥 — 𝑥𝑛‖ = 𝜀𝑛 ⟶ 0. Then, for any 𝑚 and 𝑛, and any 𝜉, 𝜂 ∈ �̂�, 

‖�̂�𝜉(𝑥𝑚) − �̂�𝜂(𝑥𝑛)‖ ≤ 𝜀𝑚  + 𝜀𝑛 

(this uses the triangle inequality and �̂�𝜉(𝑥)  =  𝑥 = �̂�𝜂(𝑥𝑛) . Denote by 𝑒𝑛  the unit of 

𝑝(𝐽𝑛)
", a central projection in 𝑝(𝐴 ⋊𝛼 𝐺)" . For each𝑛, the representation 𝑝| 𝐽𝑛, on the 

Hilbert space 𝑒𝑛𝐻𝑝, has 𝑎 unique extension to 𝑎 representation of 𝑀(𝐽𝑛), which we could 

denote by (𝑝 | 𝐽𝑛)
∗∗, but will denote by 𝑝𝑛 for brevity. Let 𝜉1, 𝜉2, … be an enumeration of 

�̂� , which is countable since 𝐺  is compact and separable. Fix 𝑛, and define projections 

𝑝1
𝑛, 𝑝2

𝑛,… in Centre 𝜌(𝐴 ⋊𝛼 𝐺)" by orthogonalizing the units of ρ(�̂�𝜉1(𝐽𝑛)
"𝜌(�̂�𝜉2(𝐽𝑛)

" … , 

which we shall denote by 𝑒1
𝑛, 𝑒2

𝑛, .... Thus, 

𝑝1
𝑛 = 𝑒1,

𝑛𝑝2
𝑛 = (1 − 𝑝1

𝑛)𝑒2
𝑛, 𝑝3

𝑛 = (1 − 𝑝1
𝑛  ∨ 𝑝2

𝑛)𝑒3
𝑛. 

Then 𝑉𝑘𝑝𝑘
𝑛 = 𝑉𝑘  𝑒𝑘

𝑛 =  1 since 𝑉𝑘  𝑒𝑘
𝑛 is the unit of 𝑝(𝐽𝑛)" where 𝐽𝑛 is the smallest closed 

two-sided ideal of 𝐴 ⋊𝛼 𝐺 containing �̂�𝜉1(𝐽𝑛), �̂�𝜉2  (𝐽𝑛), … and 𝐽𝑛 𝑖𝑠 �̂� -invariant and 

essential (so by hypothesis p is nondegenerate on 𝐽𝑛 ). For each 𝑘  denote by 𝑝𝑘
𝑛  𝑘 the 

unique extension of 𝑝 |�̂�𝜉𝑘(𝐽𝑛) to a representation of 𝑀(�̂�𝜉𝑘(𝐽𝑛))  =  �̂�𝜉𝑘(𝑀(𝐽𝑛)) on the 

Hilbert space 𝑒𝑘
𝑛𝐻𝑝. (Thus, 𝑝𝑘

𝑛  =  (𝑝|�̂�𝜉𝑘(𝐽𝑛))
∗∗. Set 

∑ 𝑝𝑘
𝑛𝑝𝑘

𝑛(�̂�𝜉𝑘(𝑥𝑛))
𝑘

= 𝑦𝑛 

Then 𝑦𝑛 ∈ 𝑝(𝐴 ⋊𝛼 𝐺)". Furthermore, the sequence (𝑦𝑛) is Cauchy: 

‖𝑦𝑚 − 𝑦𝑛‖ = 𝑠𝑢𝑝𝑘,𝑖‖𝑝𝑘
𝑚𝑝𝑖

𝑛(𝑦𝑚 − 𝑦𝑛)‖ = 𝑠𝑢𝑝𝑘,𝑖 ‖𝑝𝑘
𝑚𝑝𝑖

𝑛(𝑝𝑘
𝑚 (�̂�𝜉𝑘(𝑥𝑚)) −

𝑝𝑘
𝑛 (�̂�𝜉𝑘(𝑥𝑛)))‖ ≤ 𝑠𝑢𝑝𝑘,𝑖 ‖(𝑝|�̂�𝜉𝑘(𝐽𝑚) ∩ (�̂�𝜉𝑘(𝐽𝑛))

∗∗

1
(�̂�𝜉𝑘(𝑥𝑚) − (�̂�𝜉𝑘(𝑥𝑛)))‖ =

𝑠𝑢𝑝𝑘,𝑖‖�̂�𝜉𝑘(𝑥𝑚) − �̂�𝜉𝑖(𝑥𝑛)‖ ≤ 𝜀𝑚  + 𝜀𝑛. 

Here we have used that 𝑝𝑘
𝑚, 𝑝𝑖

𝑛 ≤ 𝑒𝑘
𝑚𝑒𝑖

𝑛  and that 𝑒𝑘
𝑚𝑒𝑖

𝑛  is the unit of 𝑝(�̂�𝜉𝑘(𝐽𝑚)  ∩

(�̂�𝜉𝑘(𝐽𝑛))
∗∗
 . Set𝐿𝑖𝑚𝑦𝑛 = 𝑝(𝑥). 

From what we have shown, namely, that 

‖𝑦𝑚 − 𝑦𝑛‖ ≤ ‖𝜒𝑚 − 𝑥‖ + ‖𝑋𝑛 − 𝑥‖ , 
it is clear that 𝑝(𝑥) is independent of any choices made in the construction. Hence, in 

particular, 𝑝(𝑥) depends additively and multiplicatively on 𝑥, and 𝑝(𝑥∗)  =  𝑝(𝑥)∗. 

Furthermore, 𝑝 defined on 𝑀∞(𝐴 ⋊𝛼 𝐺)
�̂� in this way agrees with the unique extension of 

𝑝  to a representation of 𝑀(𝐴 ⋊𝛼 𝐺)  (or to 𝑀(𝐽)  for any closed two-sided ideal 𝐽  of 
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(𝐴 ⋊𝛼 𝐺)on which 𝑝 is nondegenerate). Finally, for use at the end of this proof, let us 

notethat, by construction, 𝑝 is isometric on 𝑀∞(𝐴 ⋊𝛼 𝐺)
�̂�. 

      Now let us return to the proof that 𝑢 ∈ 𝑀∞(𝐴). As we have shown, there exists a 

unitary 𝑣 ∈ 𝑀∞(𝐴) such that (𝐴𝑑𝑣)|𝐴 =  (𝐴𝑑𝑢)|𝐴 . Since (𝐴𝑑𝑤)|A commutes with 

(𝐴𝑑 𝜆(𝑔))| 𝐴 = 𝛼 𝑔 for each 𝑔 ∈ 𝐺, it follows that 𝜐−1𝛼 𝑔(𝜐) belongs to Centre 𝑀∞(𝐴) 

for each 𝑔 ∈ 𝐺 . By Proposition(1.3.4), as 𝐴  is prime, Centre𝑀∞(𝐴)   =  𝐶 . Hence, by 

Proposition (1.3.8), below, the map 𝑔 ⟶ 𝑣−1𝛼 𝑔(𝑣) is continuous. This map is clearly 

multiplicative. 

Therefore, there exists 𝜉 ∈  �̂� such that 

ℷ(𝑔)𝑣ℷ(𝑔)−1 = 〈 𝜉, 𝑔〉𝑣 ,          𝑔 ∈ 𝐺 . 

Replacing 𝑢 by 𝑢𝑣∗, and 𝛾 by 𝑦 —  𝜉, we then have that 𝑢 fulfills the hypotheses of the 

proposition and, in addition, 𝑢𝑎𝑢−1  = 𝑎 for all 𝑎 ∈ 𝐴. In other words, we now have that 

𝑢 ∈ 𝑀∞(𝐴 ⋊𝛼 𝐺)
�̂� and, replacing 𝑦 by −𝑦, 

�̂�𝑦 = 𝐴𝑑𝑢 . 

    Using only the hypothesis that 𝐴  and 𝐴𝛼  have faithful irreducible 

representations,  (�̂�)⊥ we shall now deduce that 𝑦 =  0 , and hence that 𝑢 is a scalar 

multiple of 𝐼. 
    First, let us show that 𝑦 =  0. Since 𝐴 is prime,] we have 𝐺(�̂�) =  𝐺. To show that 𝑦 =
 0, therefore, it is sufficient to show that 𝑦 ∈ 𝐺. By Proposition (1.3.7)of [63], for this it is 

sufficient to find 𝑎 nonzero �̂�-invariant hereditary sub-𝐶∗-algebra 𝐵 of 𝐴 ⋊𝛼 𝐺 such that 

�̂�𝑦 | 𝐵 =  𝑒𝑥𝑝 𝛿  for some �̂� -invariant derivation of 𝐵 . If 𝐵  is �̂� -invariant and 

| 𝑆𝑝(�̂�𝑦 | 𝐵) —  1 |  ≤  1 then this of course holds, with 𝛿 =  𝑙𝑜𝑔(�̂�𝑦 | 𝐵). 

      Since �̂�𝑦 = 𝐴𝑑𝑢 with 𝑢 ∈ 𝑀∞(𝐴 ⋊𝛼 𝐺)
�̂�  �̂�𝑦  is not properly outer. (The implication 

(𝑖𝑖)  ⟶ (𝑖)  of Proposition (1.3.5) holds for any 𝐶∗ -algebra; just note that if an 

automorphism 

𝛽 of a 𝐶∗-algebra is, when restricted to a not necessarily invariant closed two-sided ideal 𝐼, 
strictly within distance two of an automorphism of 𝐼, then 𝛽 leaves 𝐼invariant.) 

Hence, by (𝑣𝑖𝑖𝑖) ⟶ (𝑖) (this implication does not use separability), there exists a nonzero 

�̂�𝑦  -invariant hereditary sub- 𝐶∗ -algebra 𝐵0 𝑜𝑓 𝐴 ⋊𝛼 𝐺 such that | 𝑆𝑝(�̂�𝑦 | 𝐵𝑄) —  1| ≤

 1  . Using that 𝑢 is �̂�-invariant, we shall show that if 𝐵 denotes the �̂�--invariant hereditary 

sub-𝐶∗-algebra of 𝐴 ⋊𝛼 𝐺 generated by 𝐵0, then also |𝑆𝑝(�̂�𝑦|𝐵) − 1 | ≤ 1, as desired. 

      We shall in fact show that 𝑆𝑝(�̂�𝑦|𝐵)  =  𝑆𝑝(�̂�𝑦|𝐵0). To do this we shall proceed in 

two steps, using a faithful irreducible representation 𝜋 of 𝐴 ⋊𝛼 𝐺. (Recall that by Lemma 

(1.3.2), with 𝐻 = 𝐺, the hypothesis that 𝐴𝛼 is prime implies that 𝐴 ⋊𝛼 𝐺 is prime.) Since 

𝜋 extends to 𝑀∞(𝐴 ⋊𝛼 𝐺) (being both faithful and factorial), and �̂�𝑦  =  𝐴𝑑 𝑢, we may 

extend �̂�𝑦 𝑡𝑜 𝜋(𝐴 ⋊𝛼 𝐺)
″, writing �̂�𝑦  =  𝐴𝑑𝜋(𝑢). 

     We shall prove first that 

𝑆𝑝(�̂�𝑦|𝐵0)  =  𝑆𝑝(�̂�𝑦|𝜋(𝐵0)"), 
and second that 

𝑆𝑝(�̂�𝑦|𝜋(𝐵0)) =Sp(α̂y|π(B)). 

Since, for single automorphisms, spectrum and Arveson spectrum, and therefore also point 

spectrum, coincide — see [35], 8.1.14 — , we have 

𝑆𝑝(�̂�𝑦|𝐵0)  ⊆  Sp(α̂y|(B) ⊆ 𝑆𝑝(�̂�𝑦|𝜋(𝐵0)") 

and the desired equality, 
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𝑆𝑝(�̂�𝑦|𝐵0) =  Sp(α̂y|(B), 

follows. 

      Let us show that 𝑆𝑝(�̂�𝑦|𝐵0)  =  𝑆𝑝(�̂�𝑦|𝜋(𝐵0)"). By 8. 1 .9 of [35], 𝜆 ∈  𝑆𝑝 𝛽, where 

𝛽 is an automorphism of a 𝐶∗-algebra or a von Neumann algebra, if and only if, for each 

𝑓 ∈ 𝐼1(𝑍) 𝑤𝑖𝑡ℎ𝜁(𝜆) ≠ 0, 𝛴𝑓(𝑛)𝛽𝑛 ≠ 0 . Applying this first with 𝛽 =  �̂�𝑦|𝐵0  and then 

with 𝛽 = (�̂�𝑦|(𝐵0)", we see that 𝑆𝑝(�̂�𝑦|(𝐵0)" =  𝑆𝑝(�̂�𝑦|𝜋(𝐵0)"), as desired. 

       Let us show that 𝑆𝑝(�̂�𝑦|𝜋(𝐵0)")  =  𝑆𝑝(�̂�𝑦|𝜋(𝐵)"). As above, the inclusion of the 

spectrum on the smaller domain in the spectrum on the larger domain holds since the 

spectrum is point spectrum. Conversely, let 𝜆 ∈ 𝑆𝑝(�̂�𝑦|𝜋(𝐵)"), and let us show that 𝜆 ∈

𝑆𝑝(�̂�𝑦|𝜋(𝐵0)"). 𝜆 =  𝜆1𝜆2
−1

 with 𝜆1𝜆2  ∈ 𝑆𝑝𝜋(𝑢). We shall show that 𝜆1𝜆2  ∈ 𝑆𝑝𝑒0𝜋(𝑢) 

where 𝑒0  is the unit of 𝜋(𝐵0)", using that 𝑢  is �̂�-in variant. Since 𝐵  is the smallest ά-

invariant hereditary sub- 𝐶∗ -algebra of 𝐴 ⋊𝛼 𝐺 containing 𝐵0, the unit of 𝜋(𝐵)", say e, is 

the smallest projection containing the unit of 𝜋(�̂�𝑦|𝜋(𝐵0))", 𝑠𝑎𝑦 𝑒𝜉 , for every 𝜉 ∈ �̂�. For 

each 𝜉 ∈ �̂� , since �̂�𝜉(𝑢)  =  𝑢 , we have 𝑢�̂�𝜉(𝐵0)𝑢
−1 = �̂�𝜉(𝐵0 , and hence 𝑒𝜉𝜋(𝑢)  =

𝜋(𝑢)𝑒𝜉 . 

        Let us show that, for each 𝜉 ∈  �̂�, 𝑆𝑝 𝑒𝜉𝜋(𝑢)  =  𝑆𝑝 𝑒0𝜋(𝑢). 𝑆𝑖𝑛𝑐𝑒 �̂�𝑦|𝐵0  =

 (𝐴𝑑 𝑢) | 𝐵0 with 𝑢 ∈ 𝑀∞(𝐴 ⋊𝛼 𝐺), and 𝐵0 is a hereditary sub-𝐶∗-algebra of 𝐴 ⋊𝛼 𝐺, so 

that every faithful factor representation of 𝐵0 extends to a faithful factor representation of 

𝐴 ⋊𝛼 𝐺, (and hence of 𝑀∞(𝐴 ⋊𝛼 𝐺)on a larger Hilbert space, by Proposition (1.3,5)there 

exists 𝑤 ∈  𝑀∞(𝐵0)  such that �̂�𝑦|𝐵0  =  (𝐴𝑑 𝑤) | 𝐵0 . Since 𝜋  is irreducible, also the 

restriction of 𝜋 to 𝐵0 is irreducible on the Hilbert space 𝑒0𝐻𝜋. It follows that 𝜋(𝑤) is a 

scalar multiple of 𝑒0𝜋(𝑢), and so we may modify 𝑤 so that 𝜋(𝑤)  = 𝑒0𝜋(𝑢. Hence, for 

any 𝑎, 𝑏 ∈ 𝐵0, 𝑎𝑤𝑏 = 𝑎𝑢𝑏. It follows that, for any 𝜉 ∈  �̂�, on considering the irreducible 

representation 𝜋�̂�𝜉 of 𝐴 ⋊𝛼 𝐺, and its restriction to 𝐵0, which is irreducible on the Hilbert 

space 𝑒𝜉𝐻𝜋 , we have 𝜋�̂�𝜉(𝑤) = 𝑒𝜉𝜋�̂�𝜉(𝑢)  =  𝑒𝜉𝜋(𝑢). Since 𝜋�̂�𝜉  is faithful on 𝐵0  and 

therefore on 𝑀∞(𝐵0),  we have 𝑆𝑝 𝜋�̂�𝜉(𝑤)  =  𝑆𝑝 𝑤 . This shows that 𝑆𝑝𝑒𝜉𝜋(𝑢)  is 

independent of 𝜉, as desired. 

       Now let us show, as announced, that 𝜆1  and 𝜆2  belong to 𝑆𝑝𝑒0𝜋(𝑢). Note that, 

since 𝑒 = 𝑉𝜉∈�̂�𝑒𝜉, the homomorphism 

𝐶∗(𝑒𝜋(𝑢))  ∋ 𝑥 ⟼ (𝑒𝜉𝑥)  ∈ ∏𝜉∈�̂�  𝐶
∗(𝑒𝜉𝜋(𝑢)). 

 
is injective, so that 𝑆𝑝 ∈ 𝜋(𝑢)  =  (∪𝜉∈�̂� 𝑆𝜌𝑒𝜉𝜋(𝑢))

−. 𝑆𝑖𝑛𝑐𝑒 𝑆𝑝𝑒𝜉𝜋(𝑢)  =  𝑆𝑝𝑒0𝜋(𝑢) for 

each 𝜉, this shows that 𝑆𝑝 𝑒𝜋(𝑢)  =  𝑆𝑝 𝑒0𝜋(𝑢). In particular, 𝜆1, 𝜆2 ∈ 𝑆𝑝𝑒0𝜋(𝑢). 

        Since 𝜆 =  𝜆1, 𝜆2
−1

1
, and �̂�𝑦 | 𝜋(𝐵0)" =  (𝐴𝑑 𝑒0𝜋(𝑢)) | 𝜋(𝐵0)" , [21] that 𝜆 ∈

𝑆𝑝�̂�𝑦 | 𝜋(𝐵0)", as asserted. 

             This completes the proof that, after 𝑤 is modified as above, 𝑦 =  0. Let us now 

show that w, thus modified, is a scalar multiple of 1 . Let 𝜋  be a faithful factor 

representation of 𝐴, so that, as noted above, the induced representation 𝑝 of 𝐴 ⋊𝛼 𝐺  is 

also faithful, and, moreover, extends from 𝐴 ⊆ 𝑀∞(𝐴 ⋊𝛼 𝐺) to 𝑀∞(𝐴 ⋊𝛼 𝐺)
�̂�, and is 

faithful there. What we must show, then, is that 𝑝(𝑢) is a scalar multiple of 1. As shown 

above, 𝑝(𝑢)  =  𝑉 ⊗  𝛾 with ∈  𝜋(𝐴)". 𝑆𝑖𝑛𝑐𝑒 𝑦 =  0 ∈  �̂� , by which we mean that 𝑦 is 

the trivial character 1  , we have 𝑢 =  𝑉 ⊗  1  . As shown above, 𝜋((𝐴𝑑 𝑢)|𝐴)  =
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 (𝐴𝑑 𝑉)𝜋. Since (𝐴𝑑 𝑢) | 𝐴 =  1 and 𝜋 is factorial, it follows that Kis a scalar multiple of 

1, and therefore also 𝑢 is. In particular, 𝑢 ∈ 𝑀∞(𝐴). 
           We do not know if all the assumptions made in the second half of the proposition 

are necessary. 

Proposition (1.3.10)[41]:  Let 𝐴  be a prime 𝐶∗ -algebra and let 𝛼  be an action of 𝑎 

compact group 𝐺 𝑜𝑛 𝐴 . Let 𝜙  be 𝑎  pure state of 𝐴  such that 𝜋𝜙  is faithful, so that 𝜙 

extends uniquely to a pure state of 𝑀∞(𝐴). It follows that for any 𝑎, 𝑏, 𝑐 ∈  𝑀∞(𝐴) the 

map 

𝐺 ∈ 𝑔 ⟼ 𝑏 𝜙𝑐(𝛼𝑔(𝛼)𝑏) 

is continuous. 

 Proof: As shown in the proof of Proposition(1.3.6), we have 𝑀∞(𝐴)  =
𝑙𝑖𝑚/ 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡  𝑀(𝐼). Therefore it is sufficient to consider the case that 𝛼 ∈ 𝑀(𝐼), where /is 

a  nonzero 𝛼 -invariant closed two-sided ideal of 𝐴 . Again as shown in the proof of 

Proposition (1.3.6), 𝐼𝛼 contains an approximate unit (𝑒𝑖) for 𝐼 Then ‖𝜙 —  𝜙𝑒𝑖‖ ⟶ 0, and 

the same holds with 𝑏𝜙𝑐  in place of 𝜙 . The conclusion follows as 𝑔 ⟼ 𝛼𝑔(𝑒𝑖𝑎 ) is 

continuous 
        Duality for a partially inner action. 

Theorem(1.3.11)[41]: Let 𝐴 be 𝑎 separable prime 𝐶∗-algebra, and let α be an action of 𝑎 

compact abelian group 𝐺 on 𝐴. Set 

𝐻 = {𝑡 ∈ 𝐺; 𝛼𝑡, is not properly outer} , 

and suppose that 𝐴𝐺 and 𝐴𝐻are prime. 

If 𝛽 is an automorphism of A such that 𝛽 | 𝐴𝐺  =  1 and 𝛽𝛼𝑡  =  𝛼𝑡𝛽, 𝑡 ∈  𝐻, then there 

exists 𝑔 ∈ 𝐺 such that 𝛽 =  𝛼𝑔. 

Proof: We may suppose that 𝛼 is faithful. 

By Proposition (1.3.5), for each 𝑡 ∈  𝐻 there exists a unitary 𝑢(𝑡)  ∈  𝑀∞(𝐴) such that 

𝛼𝑡  = 𝐴𝑑𝑢(𝑡)  furthermore, this holds only for 𝑡 ∈  𝐻  By Proposition (1.3.5), Centre 

𝑀∞(𝐴) =  𝐶, and so 𝑢(𝑡) is unique up to a phase factor. 

It follows in particular that 𝐻  is a subgroup of 𝐺 . Let us equip 𝐻  with the discrete 

topology. Since 𝐺 is abelian we have 𝛼𝑡  =  𝐴𝑑 𝛼𝑔(𝑢(𝑡)) for each 𝑡 ∈  𝐻 and 𝑔 ∈ 𝐺, and 

by uniqueness of 𝑢(𝑡) 𝑤𝑒 ℎ𝑎𝑣𝑒 𝑢(𝑡)−1(𝑢(𝑡)) ∈ 𝑇 . Hence, for each fixed 𝑡 ∈  𝐻 , by 

Proposition (1.3.8), the map 𝑔 ⟼ 𝑢(𝑡)−1𝛼𝑔(𝑢(𝑡))  is continuous. This map is clearly 

multiplicative, and is therefore a character of 𝐺, say 𝜓(𝑡). Clearly, also, 𝜓: 𝐻 ⟶ �̂� is a 

homomorphism. 

Denoting by 𝜒 ∶  𝐺 ⟶ �̂� the dual of 𝜓, we have 

𝛼𝑔(𝑢(𝑡)) = 〈𝑔 , 𝜓(𝑡)〉 𝑢(𝑡) = 〈𝑋(𝑔), 𝑡〉𝑢(𝑡),          𝑔 ∈ 𝐺   𝑡 ∈ 𝐻 

     Let 𝑁 denote 𝐾𝑒𝑟𝜒 =  (𝐼𝑚𝜓)⊥. We shall establish the following five assertions. 

1 . 𝑋 (�̂�) = �̂� 
2. 𝜒| 𝐻 𝑖𝑠 𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑣𝑒. 

3. 𝑁�̅� = 𝐺. 
4. 𝐴𝑁 is prime. 

5. 𝐵(𝐴𝑁)  =  𝐴𝑁 . 

 Proof (1): Since 𝑋 (�̂�)is a compact subgroup of �̂�, it suffices to show that 𝜒(𝐻) is dense 

in 𝐻. Let 𝑡 ∈ 𝐻be such that 〈𝜒(ℎ), 𝑡〉 =  1 for all ℎ ∈ 𝐻, 𝑖. 𝑒. 𝛼ℎ (u(t)) = 𝑢(𝑡), ℎ ∈ 𝐻. 
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Hence, by continuity of 𝑔 ⟼ 𝑢(𝑡)−1𝛼𝑔(𝑢(𝑡)) (see above), 𝛼ℎ(𝑢(𝑡))  =  𝑢(𝑡) for all ℎ ∈

�̅�. 

Therefore,  

𝑢(𝑡) ∈ (𝐴�̅�)′ ∩𝑀∞(𝐴)�̅�.  By Proposition (1.3.6)then 𝑢(𝑡) ∈ (𝐴�̅�)′ ∩

𝑀∞(𝐴�̅�) 𝑖. 𝑒. , 𝑢(𝑡) ∈  𝐶𝑒𝑛𝑡𝑟𝑒 𝑀∞(𝐴�̅�). Since 𝐴�̅� is prime, by Proposition (1.3.4), Centre 

𝑀∞(𝐴�̅�)  =  𝐶. This shows that 𝛼𝑡  =  1 , and so 𝑡 =  0. 

 Proof (2): If ℎ, 𝑡 ∈  𝐻, then 

〈𝑋(ℎ), 𝑡〉 = 𝑢(ℎ)𝑢(𝑡)𝑢(ℎ)−1𝑢(𝑡)−1 = 〈𝑋(𝑡), ℎ〉−1. 
It follows that if 𝑡 ∈ 𝐻 and 𝜒(𝑡)  =  0 then 𝑡 ∈ 𝜒(𝐻)⊥  =  0. 
 Proof (3): Since 𝜒(�̅�)  =  �̂� and Ker 𝜒 =  𝑁, we have 𝑁�̅� =  𝐺. 

 Proof (4): By definition of 𝑁 = 𝐾𝑒𝑟 𝜒, 

𝛼𝑠(𝑢(𝑡)) = 𝑢(𝑡 )  ,       𝑠 ∈ 𝑁    ,    𝑡 ∈ 𝐻 , 

i.e. 𝑢(𝑡) ∈ 𝑀∞(𝐴)𝑁 𝑡 ∈ 𝐻 .Ry Proposition (1.3.6), it follows that 𝑢(𝑡) ∈ 𝑀∞(𝐴)𝑁 𝑡 ∈
𝐻. 𝑆𝑖𝑛𝑐𝑒 𝐺  is abelian, 𝐴𝑁  is 𝛼-invariant. Suppose that 𝐴𝑁has nonzero closed two-sided 

ideals 𝐼and 𝐼 such that 𝐼𝐽 = 𝑄, and let us deduce an absurdity. We may suppose that 𝐼 +  𝐽 
is essential, and then 𝑀∞(𝐴)𝑁  =  𝑀∞(𝐼) + 𝑀∞(𝐽),  where 𝑀∞(𝐼)𝑀∞(𝐽)  =  0 . Since 

𝛼𝑡  =  𝐴𝑑𝑢(𝑡), 𝑡 ∈ 𝐻,  it follows from u( 𝑠), 𝑢(𝑡)  ∈ 𝑀∞(𝐴)𝑁  for 𝑠, 𝑡 ∈  𝐻  that 

𝛼𝑠(𝐼)𝛼𝑡(𝐽)  =  0, for any 𝑠, 𝑡 ∈  𝐻 and hence for any 𝑠. 𝑡 ∈ 𝐻. Denote by /0 and /0 the 

smallest closed two-sided ideals of 𝐴𝑁containing 𝐼  and 𝐽 and invariant under 𝛼�̅� . Then 

𝐼0 𝐽0 =  0, and since (𝐴𝑁)�̅� = 𝐴𝑁�̅�  =  𝐴𝐺 , 𝐼0 ∩ 𝐴𝐺  𝑎𝑛𝑑 𝐽0 ∩ 𝐴𝐺  are orthogonal nonzero 

ideals of 𝐴𝐺 . (Note that 𝐼0 ∩ 𝐴𝐺  =  𝐼0
�̅� , 𝐽0 ∩ 𝐴𝐺 = 𝐽0

�̅�) This contravenes the hypothesis 

that 𝐴𝐺 is prime. 

 Proof (5): Denote by 𝜎 the action of �̅� on 𝐴𝑁 obtained by restricting 𝛼. Denote by 𝜓1the 

composition of 𝜓 ∶  𝐻 ⟶ �̂�  and the restriction map �̂� ⟶ �̂� . For each fixed 𝑡 ∈ 𝐻  we 

have, as shown in the proof of 4, 𝑢(𝑡) ∈ 𝑀∞(𝐴)𝑁 ⊆ 𝑀∞(𝐴𝑁). Furthermore, 

𝛼ℎ(𝑢(𝑡)) = 〈ℎ, 𝜓1(𝑡)〉 𝑢(𝑡),    ℎ ∈ �̅� 

and it follows, as we shall now show, that 𝜓1(𝑡) ∈ 𝑆𝑝𝜎 . As shown in the proof of 

Proposition (1.3.6), 

𝑀∞(𝐴𝑁) = 𝐿𝑖𝑚𝐼𝜎−𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑀(𝐼), 
and so there exist sequences (𝐽𝑛) 𝑎𝑛𝑑 (𝑎𝑛), 𝐼𝑛  a nonzero 𝜎 -invariant closed two-sided 

ideal 

of 𝐴𝑁  and 𝑎𝑛 ∈ 𝑀(𝐼𝑛),  such that 𝑎𝑛  converges to 𝑢(𝑡).  Then with 𝑏𝑛 =

∫ 𝑑ℎ
1

�̅�
〈ℎ, 𝛹1(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 〉(𝜎ℎ(𝑎𝑛), the integral converging in the strict topology of 𝑀(𝐼𝑛), we have 

(𝜎ℎ(𝑏𝑛) = 〈ℎ, 𝛹1(𝑡)〉𝑏𝑛  , 
 

and, as we shall show, 𝑏𝑛  ⟶ 𝑢(𝑡), and in particular, 𝑏𝑛  ≠ 0, at least for large 𝑛. 𝑇𝑜 see 

that 𝑏𝑛  ⟶ 𝑢(𝑡), note that for each 𝑐 ∈ 𝐼𝑛 and for each 𝑐 ∈ 𝐼𝑛 invariant under 𝜎, 

(𝑏𝑛   −  𝑢(𝑡))𝑐 =  ∫ 𝑑ℎ
1

�̅�
〈ℎ, 𝛹1(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 〉(𝜎ℎ ((𝑎𝑛  −  𝑢(𝑡))𝑐), , 

the integral converging in norm, and hence, if ‖𝑐‖ ≤  1, 

‖(𝑏𝑛 –  𝑢(𝑡))𝑐‖ ≤ ‖(𝑎𝑛 –  𝑢(𝑡))𝑐‖ ≤ ‖(𝑎𝑛 –  𝑢(𝑡))‖. 

Since 𝐴𝑁 is prime (by 4), and is separable, there is a faithful irreducible representation of 

𝐴𝑁 , necessarily nondegenerate on 𝐼𝑛 ,  and extending to a faithful representation of 

𝑀∞(𝐴𝑁). Hence 
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‖(𝑏𝑛 –  𝑢(𝑡))‖ = 𝑠𝑢𝑝𝑐∈𝐼𝑛‖𝑐‖≤1,‖(𝑏𝑛 –  𝑢(𝑡))𝑐‖ ≤ ‖(𝑎𝑛 –  𝑢(𝑡))‖ ⟶ 0 , 

as desired. This shows that, at least for large 𝑛, 𝑏𝑛 ≠ 0 whence, for some 𝜎-invariant 𝑐𝑛 ∈
𝐼𝑛, 𝑏𝑛𝑐𝑛 ≠ 0.  As 𝑏𝑛𝑐𝑛  belongs to the spectral subspace of 𝐼𝑛 for the action 𝜎  of �̅� 

corresponding to 𝜓1(𝑡) ∈ �̂̅�, 𝐼𝑛
𝜎(𝜓1(𝑡) ), and therefore to the spectral subspace 

(𝐴𝑁)𝜎(𝜓1(𝑡)) of 𝐴𝑁, this shows that (𝐴𝑁)𝜎(𝜓1(𝑡)) ≠ 0, 𝑖. 𝑒. 𝜓1(𝑡) ∈ 𝑆𝑝𝜎, as asserted. 

      We have shown that 𝜓1(𝐻) ⊆ 𝑆𝑝𝜎. Let us show that 𝜓1(𝐻)  =  𝑆𝑝𝜎. Let ℎ ∈ �̅�be an 

element of𝜓1  (𝐻)⊥(𝐻)𝐿. 𝑇ℎ𝑒𝑛 𝛼ℎ(𝑢(𝑡))  =  𝑢(𝑡), 𝑡 ∈ 𝐻, 𝑎𝑛𝑑 𝑠𝑜 𝜒(ℎ)  =  0 , 𝑖. 𝑒. ℎ ∈ 𝑁 . 

This shows that �̅� ∩ 𝑁 ⊇ 𝜓1(𝐻)
⊥,  or, in other words, (�̅� ∩ 𝑁)⊥ ∩ �̂̅� ⊆ 𝜓1(𝐻).  Since 

𝜎 | �̅�  ∩  𝑁  is trivial, one has 𝑆𝑝𝜎 ⊆ (�̅� ∩ 𝑁)⊥ ∩ �̂̅� . This shows that 𝑆𝑝𝜎 ⊆
𝜓1𝐻), 𝑎𝑛𝑑 𝑠𝑜 𝑆𝑝𝜎 =  𝜓1𝐻. 
     Since 𝛽𝑎𝑡  =  (𝑎𝑡𝛽 𝑓𝑜𝑟𝑡 ∈ 𝐻,  and Centre 𝑀∞(𝐴)  =  𝐶  (Proposition 3.1), there is a 

𝑝 ∈ �̂� such that 

𝛽(𝑢(𝑡)) = 〈𝑡, 𝑝〉𝑢(𝑡)  ,    𝑡 ∈ 𝐻. 

For each𝑡 ∈ 𝐻 , and each 𝑎 ∈  (𝐴𝑁)𝜎(− 𝜓1(𝑡)), 𝑜𝑛𝑒 ℎ𝑎𝑠 𝑎𝑢(𝑡)  ∈  𝑀
∞(𝐴)𝐺  (since, by 

3,  𝑁�̅� =  𝐺,  and since 𝛼ℎ(𝑢(𝑡)) =  〈ℎ, 𝜓1(𝑡)〉𝑢(𝑡 )𝑓𝑜𝑟ℎ ∈ �̅�𝑎𝑛𝑑 𝛼𝑠(𝑢(𝑡)) = 𝑢(𝑡) 𝑆 ∈

𝑁). By hypothesis, 𝛽| 𝐴𝐺 =  1, and it follows that 𝛽| 𝑀∞(𝐴)𝐺 =  1. (This can be seen by 

examining the proof of Proposition (1.3.6), which identifies 𝑀∞(𝐴)𝐺 with a subalgebra of 

𝑀∞(𝐴𝐺): since each 𝛼- invariant closed two-sided ideal 𝐼 of 𝐴 has an approximate unit 

consisting of elements that are α-invariant, and therefore 𝛽 -m variant, 𝐼  is also 𝛽 -in 

variant; hence 𝛽(𝑀(𝐼)  = 𝑀(𝐼) and therefore 𝛽| 𝑀(𝐼)𝐺  =  1; it follows in the limit that 

𝛽| 𝑀∞(𝐴)𝐺 =  1.) From this we obtain 

𝛽(𝛼𝑢(𝑡)) = 𝛼𝑢(𝑡) , 𝑡 ∈ 𝐻 , 

and as 𝛽(𝑢(𝑡)) =  〈𝑡 , 𝑝〉𝑢(𝑡)  it follows that 𝛽(𝑎)  =  〈𝑡 , 𝑝̅̅ ̅̅ ̅〉𝑎.  This shows that 

𝛽((𝐴𝑁𝛾(−𝜓1(𝑡)))  =  (𝐴𝑁)𝜎(−𝜓1(𝑡))  for each 𝑡 ∈ 𝐻 , and since �̅�  is compact and 

𝑆𝑝𝜎 =  𝜓1(𝐻), it follows that 𝛽(𝐴𝑁) =  𝐴𝑁 as desired. 
        Now let us show that 𝛽 =  𝛼𝑔 for some 𝑔 ∈  𝐺. First, we shall show that 𝛽 | 𝐴𝑁  =

 𝜎ℎ for some ℎ ∈ 𝐻, where, as in the proof of 5, 𝜎 denotes the action of �̅� by 𝛼 on 𝐴𝑁. 

What we showed in the proof of 5 is that there exists 𝑝 ∈  �̂� such that, for each 𝑡 ∈ 𝐻 

𝛽 |(𝐴𝑁)𝜎𝜓1(𝑡)  =  〈𝑡 , 𝑝〉. 
In particular, 〈𝑡 , 𝑝〉depends only on 𝜓1(𝑡); that is, there exists a character ℎ0 of 𝜓1(𝐻) ⊆

�̂̅� such that 

〈ℎ0 , 𝜓1(𝑡)〉 =  〈𝑡 , 𝑝〉 ,          𝑡 ∈ 𝐻 .    
 

Extendingℎ0 to a character on �̂̅�, we have ℎ ∈  �̅�𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 〈ℎ, 𝜓1(𝑡)〉  =  〈𝑡 , 𝑝〉 𝑡 ∈ 𝐻. 

Then 

𝛽 |(𝐴𝑁)𝜎𝜓1(𝑡) = 〈ℎ, 𝜓1(𝑡)〉   =  𝜎ℎ|(𝐴
𝑁)𝜎𝜓1(𝑡), 

𝑡 ∈  𝐻 , and since 𝜓1(𝐻)  =  𝑆𝑝𝜎 (this was shown in the proof of 5), it follows that 

𝛽|𝐴𝑁 = 𝜎ℎ = 𝛼ℎ|𝐴
𝑁 . 

Set 𝛼ℎ
−1 𝛽 =  𝛽1. Then 𝛽1 |𝐴

𝑁  =  1, and we wish to show that 𝛽1  = 𝛼𝑠 for some 𝑠 ∈ 𝑁. 

By 2,𝑁 ∩ 𝐻 = 𝑄. In other words, αs is properly outer for every 𝑠 ∈ 𝑁\{0}. Since 𝐴 is 

separable and prime, and (by 4) also 𝐴𝑁 is prime, this shows that Condition 15 of Theorem 

(1.3.1) is verified with 𝑁 in place of 𝐺 (and 𝛼 | 𝑁 in place of 𝛼). Hence Condition 1 3 of 

Theorem (1.3.1)  is also verified, with 𝛽1 in place of 𝛽, and so 𝛽1  = 𝛼𝑆 for some 𝑠 ∈ 𝑁. 

This shows that 𝛽 =  𝛼𝑔 , 𝑤𝑖𝑡ℎ 𝑔 =  ℎ𝑠 ∈ 𝐺, as desired. 
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Remark (1.3.12)[41]: If 𝛼 is ergodic under the assumptions of the theorem, then by [42] 

(see also [64]) H is dense in 𝐺. In particular, in this case 𝐴𝐻  =  𝐴𝐺, and so the assumption 

that 𝐴𝐻 is prime follows from the assumption that 𝐴𝐺 is prime. 

         In general, the hypothesis that 𝐴𝐻is prime does not follow from the other hypotheses, 

and is necessary for the conclusion of the theorem. This is seen from the following 

example. 

Example(1.3.13)[41]: Let 𝜎 be an outer automorphism of the Glimm 𝐶∗-𝑎𝑙𝑔𝑒𝑏𝑟𝑎 𝐴 =
 𝑀2∞ with period two, and define an action 𝛼 of 𝑍/2𝑍 × 𝑍/2𝑍 on 𝑀2 ⊗𝐴 by 

𝛼(1,0) = 𝐴𝑑  (
1 0
0 −1

)⊗ 1 , 

 

𝛼(0,1) = 𝐴𝑑  (
0 1
1 0

)⊗ 𝜎 , 

Then 𝐴𝛼 = {(𝑎 𝜎(𝑎), 𝑎 ∈ 𝐴)} ≅  𝐴 , 𝐻 = 𝑍/2𝑍  × 0, 𝐴𝐻 =  𝐴 × 𝐴 , and 𝛽 =

 𝐴𝑑 (
0 1
1 0

)Verifies the conditions 𝛽\𝐴𝛼 = 1 , 𝛽𝛼𝑡  =  𝛼𝑡𝛽     , 𝑡 ∈ 𝐻 . 

       We give a new proof of the following von 

Neumann algebra analogue of the Tannaka duality theorem, given in [43], [33], 

 Theorem(1.3.14)[41]: (Araki, Haag, Kastler, Takesaki). Let 𝑀 be 𝑎  von Neumann 

algebra, and let 𝛼 be an action of 𝑎 compact group 𝐺 on 𝑀. Let 𝐻 be another group and 𝜏 

an action of  𝐻 on 𝑀  such that [𝛼, 𝜏]  =  0  (𝑖. 𝑒. 𝛼𝑔𝜏ℎ  = 𝜏ℎ𝛼𝑔 𝑓𝑜𝑟 𝑎𝑙𝑙𝑔 ∈ 𝐺, ℎ ∈  𝐻) . 

Suppose that 𝜏 is ergodic(𝑖. 𝑒.𝑀𝜏  =  𝐶, where 𝑀𝜏 denotes the fixed point subalgebra for 

𝜏). It follows that for any automorphism 𝛽 of 𝑀 such that β \ 𝑀𝛼  =  1 and [𝛽, 𝜏]  =  0, 

there exists 𝑎 𝑔 ∈  𝐺 such that 

𝛽 = 𝛼𝑔 . 

         For example, if (𝑀𝛼)′ ∩ 𝑀 =  𝐶, then 𝐻 could be taken to be the unitary group of 

𝑀𝛼, and 𝜏 to be the adjoint mapping, ℎ ⟼ (𝐴𝑑ℎ) | 𝑀. 
     We shall deduce this theorem from the 𝐶∗-algebra analogue, given later in [44], in 

which the hypothesis of ergodicity of 𝜏 is replaced by a stronger condition called strong 

topological transitivity. To do this, we shall show that for an action of a group on a von 

Neumann algebra, the two conditions are equivalent: ergodicity implies strong topological 

transitivity. 

         One way in which our proof is new is that it does not depend on the type of the von 

Neumann algebra. The original proof consists of first reducing to the infinite case, and 

then using Roberts's construction of Hilbert spaces in the algebra ([67]). Our proof does 

not use Hilbert spaces in the algebra. 

Theorem(1.3.15)[41]:Let 𝑀 be 𝑎 von Neumann algebra, 𝐻 a group, and τ an action of 

𝐻 on 𝑀. 

The following three conditions are equivalent. 

1. 𝜏 is ergodic(𝑖. 𝑒.𝑀𝜏 =  𝐶. 

2. 𝜏 is topologically transitive, 𝑖. 𝑒. 
3. 𝜏 is strongly topologically transitive, 𝑖. 𝑒.   
∑ 𝑥𝑖(finite) 𝜏ℎ (𝑦𝑖)  =  0 ⩝ ℎ ∈ 𝐻 𝛴𝑥𝑖 ⊗𝑦𝑖  =  0. 

 Proof: The implications 3 ⟶  2 and 2 ⟶ 1 hold in any 𝐶∗-algebra, the firsttrivially, and 

the second by spectral theory. (If 𝑀𝜏 ≠ 𝐶  then there exist (positive) nonzero 𝑥, 𝑦 ∈
𝑀𝜏 𝑤𝑖𝑡ℎ 𝑥𝑦 = 0, whence 𝑥𝜏ℎ(ℎ)  =  𝑥𝑦 =  𝑄 for all ℎ ∈ 𝐻.) 
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        𝐴𝑑 1 ⟶ 3. We may suppose that M is represented covariantly on a Hilbert space, for 

example by taking the crossed product by 𝜏. In other words, we may suppose that 𝜏 is 

determined by a unitary representation 𝑈 of 𝐻 ∶  𝜏ℎ  =  (𝐴𝑑 𝑈(ℎ)) |𝑀, ℎ ∈ 𝐻. 

        Assume that 𝜏 is ergodic, and let (𝑥𝑖), (𝑦𝑖) be finite sequences in 𝑀 such that, for 

each ℎ ∈  𝐻, 

∑𝑥𝑖𝜏ℎ (𝑦𝑖) = 0 ,     𝑖. 𝑒,∑𝑥𝑖𝑈(ℎ)𝑦𝑖  = 0 ,      

  

It follows that 

∑𝑥𝑖𝑈(ℎ)𝑧
′𝑦𝑖  = 0 ,   ℎ ∈ 𝐻  , 𝑧′ ∈ 𝑀′. 

Hence, 

 ∑𝑥𝑖𝑏𝑦𝑖  = 0 ,                                                                         (11) 

 

for any 𝑏 in the weakly closed linear span of 𝑈(𝐻)𝑀′. But since 𝑈(ℎ)𝑀′𝑈(ℎ)∗  =  𝑀′ for 

each ℎ ∈ 𝐻, the linear span of 𝑈(𝐻)𝑀′ is a *-algebra, and so by the bicommutant theorem 

its weak closure is 

(𝑀′ ∪  𝑈(𝐻)″𝛾 = (𝑀 ∩  𝑈(𝐻)′)′ = (𝑀𝜏)′ = 𝑐′ , 
𝑖. 𝑒. the algebra of all bounded operators on the Hilbert space. 

          In particular, (11) holds with 𝑏 an operator of rank one, i.e. with 𝑏 =  𝜉 ⊗ 𝜂∗: 𝜉 ⟼
(𝜉|𝜂)𝜉 and from 

 ∑xi(ξ ⊗ η∗)yi  = 0 ,            i. e.  ∑xiξ ⊗ (yi
∗η)∗  = 0 ,              

 

Follows 

 ∑xiξ ⊗ yi
∗η = 0 ,   i. e.    (∑xi ⊗yi

∗)( ξ ⊗  η) = 0 .                  

Since ∑xi ⊗yi
∗    is a bounded linear operator and the vectors ξ and η are arbitrary, this 

shows that ∑xi ⊗yi
∗     =  0. Therefore, ∑xi ⊗yi  = 0 ,         

Corollary(1.3.16)[41]: Let Abe a C∗ -algebra, and let τ be an action of a group H on A. 

Suppose that there exists a  faithful τ -covariant representation π of A  such that the 

extension of τ  to π(A)"  is ergodic (i. e. (π(A)")τ  =  C).  It follows that τ is strongly 

topologically transitive. 

Corollary(1.3.17)[41]: (special case of 5.3). Let Abe a C∗ - algebra, and let B be a sub - 

𝐶∗-άlgebra of 𝐴. Suppose that there exists a faithful representation 𝜋 of 𝐴 such that  

π(𝐵)′ ∩ π(𝐴)″ = 𝐶 . 
 

                It follows that the unitary group of 𝐵  (with unit adjoined, if necessary) acts 

strongly topologically transitively on A. (Compare 10 ⟶  12 of Theorem (1.3.1). 

        It follows that the unitary group of B (with unit adjoined, if necessary) acts strongly 

topologically transitively on 𝐴. (Compare 10 ⟶  12 of Theorem (1.3.1) 

 (using [44]). Let 𝛽 be an automorphism of 𝑀 such that 𝛽| 𝐴𝛼  =  1 and [𝛽, 𝜏]  =  0. All 

the hypotheses of Theorem (1.3.1) of [44] are now verified, except that the system 

(𝑀, 𝐺, 𝛼) is assumed only to be a 𝑊∗ -dynamical system, not a 𝐶∗-dynamical system. It is 

straightforward, however, to modify the proof of Theorem (1.3.1) of [44] by putting the 
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ultra weak topology of 𝑀 in place of the norm topology. The conclusion 𝛽 =  𝛼𝑔 for some 

𝑔 ∈  𝐺 follows. 

       Alternatively, as in the proof of 12 ⟶ 13 of Theorem (1.3.1)  above we may note that 

the proof of Theorem (1.3.1)  of [44] is valid without any assumption of continuity of α at 

all until the last line — provided that 𝑀𝐹 is defined as the set of all 𝑥 ∈  𝑀 such that the 

linear span of 𝛼𝑔(𝑋) is finite-dimensional. This yields that, for some  ∈  𝐺, 𝛽 =  (𝛼𝑔 𝑜𝑛 

𝑀𝐹. By the Peter- Weyl theorem generalized to boundedly complete locally convex spaces 

(including Banach space duals, and therefore 𝑊∗ −algebras), 𝑀𝐹 is ultraweakly dense in 

𝑀, and hence 𝛽 =  𝛼𝑔. 

            We note, finally, that the condition that the relative commutant of the fixed point 

sub algebra be trivial appears in recent work of Doplicher and Roberts ([50], [51], [52]). 
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Chapter 2 

Duality Theory and Free Action Compact Quantum Group 

 
We relate our setting to recent work of De Commer and Yamashita by showing that 

any object in a module 𝐶∗-category over Rep G produces a weak unitary tensor functor, 

and, as a consequence, actions can also be described in terms of (Rep G)-module 𝐶∗-

categories. As an application we discuss deformations of 𝐶∗ -algebras by cocycles on 

discrete quantum groups. We show that an action is free if and only if the canonical map 

(obtained using the underlying Hopf algebra of the compact quantum group) is an 

isomorphism. In particular, we are able to express the freeness of a compact Hausdorff 

topological group action on a compact Hausdorff topological space in algebraic terms. As 

an application, we show that a field of free actions on unital 𝐶∗ -algebras yields a global 

free action. 

Section (2.1): Nonergodic Actions 
Category theory has, from the early beginning, played an important role in quantum 

groups. In the operator algebraic approach to quantum groups the key result connecting the 

two areas is due to Woronowicz [146]. Generalizing the classical Tannaka-Krein duality 

he showed that by associating to a compact quantum group its representation category 

together with the canonical fiber functor, we get a duality between compact quantum 

groups on one side, and 𝐶∗-tensor categories with conjugates and a unitary fiber functor, 

on the other. Therefore, in principle, all properties of a compact quantum group 𝐺 can be 

formulated entirely in terms of its representation category Rep𝐺  and canonical fiber 

functor. Remarkably, a lot of properties depend on Rep𝐺 alone. 𝐴 systematic study of such 

properties was made possible by Bichon, De Rijdt and Vaes [132], who showed how, 

given two monoidally equivalent (that is, having equivalent representation categories) 

compact quantum groups, to construct a linking 𝐶∗ -algebra connecting the two. The 

linking algebra is equipped with ergodic actions of both quantum groups, and by fixing 

one quantum group 𝐺 and varying the other, or in other words, by considering all possible 

unitary fiber functors on Rep 𝐺 , we get all ergodic actions of 𝐺  of full quantum 

multiplicity. This categorical point of view on actions, together with the construction of 

linking algebra, has been extremely successful. It has been applied to a variety of 

seemingly unrelated problems, from a study of random walks on discrete quantum groups 

[136] to 𝐾-theoretic computations [145]. 

 Results of Bichon, De Rijdt and Vaes were later generalized by Pinzari and Roberts 

[143], who showed how to describe all ergodic actions of 𝐺 in terms of Rep𝐺. Namely, for 

every ergodic action they constructed a “spectral functor” from Rep𝐺 into the category of 

Hilbert spaces, and then gave an abstract characterization of such functors. Their result 

implies, in particular, that isomorphism classes of ergodic actions of monoidally 

equivalent compact quantum groups are in canonical correspondence with each other. 

Soon afterwards De Rijdt and Vander Vennet [136] showed that the same is true even for 

nonergodic actions. Their argument bypasses category theory altogether and is based on 

induction using the linking algebra. 𝐴 natural problem completing this circle of ideas is 

nevertheless to find a description of actions of 𝐺 entirely in terms of Rep𝐺. Our goal is to 

do exactly that. By modifying the definition of a spectral functor and the axioms of Pinzari 

and Roberts, we show that actions of a compact quantum group G correspond to a class of 

functors, which we call weak unitary tensor functors, from Rep𝐺 into categories CorrA of 
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𝐶∗-correspondences over 𝐶∗-algebras 𝐴. It should become apparent from our results, and 

is not difficult to show directly, that in the case 𝐴 =  𝐶  our definitions/axioms are 

equivalent to the ones given by Pinzari and Roberts. Overall, the construction of a 𝐶∗-
algebra from a functor 𝑅𝑒𝑝𝐺 →  𝐶𝑜𝑟𝑟𝐴 follows familiar lines going back to Woronowicz 

[146]. Since some of the maps involved are not adjointable, we just have to be more 

careful not to overuse various dualities. 

𝐴 different solution to the same problem is suggested by recent work of De Commer 

and Yamashita [134]. Complementing the results of Pinzari and Roberts, they showed that 

ergodic actions of 𝐺  can also be described in terms of semisimple (𝑅𝑒𝑝𝐺) −
𝑚𝑜𝑑𝑢𝑙𝑒𝐶∗  −categories with a fixed simple generating object. In fact, a significant part of 

their arguments does not involve ergodicity/semisimplicity in any way, and we show that 

indeed by discarding these assumptions we get a characterization ofgeneral actions in 

terms of module categories. The relation between two categorical pictures can be 

described as follows. Given a 𝑟𝑖𝑔ℎ𝑡 (𝑅𝑒𝑝𝐺) −𝑚𝑜𝑑𝑢𝑙𝑒 𝐶∗ −category and an object 𝑀 in 

it, the functor Mor(𝑀,𝑀 ⊗ ·) has a canonical structure of a weak unitary tensor functor. 

Therefore, using the analogy with representation theory, we can say that the relation 

between two pictures is as between a cyclic representation and its matrix coefficient 

defined by the cyclic vector. From this point of view weak unitary tensor functors are 

categorifications of positive definite functions. It is interesting that the module category 

approach, being less economical than the approach via weak tensor functors, seems, 

nevertheless, more suitable for classification of actions, at least for representation 

categories described by simple universal properties [135]. 

We discuss some examples and applications of our general results. 

The construction of a 𝐶∗ -algebra from a weak unitary tensor functor is reminiscent 

of various crossed product type constructions. To make the connection more explicit, we 

reformulate this construction in a category-free way. This will make it clear that for duals 

of discrete groups it generalizes such constructions as cross-sectional algebras of Fell 

bundles or crossed products by Hilbert bimodules. We also show that categorical point of 

view on actions naturally leads to a construction of deformation of 𝐶∗-algebras by 2-

cocycles on discrete quantum groups. 

We follow the same conventions as in [142]. Consider a compact quantum group 𝐺. The 

Hopf ∗-algebra of matrix coefficients of finite dimensional representations of 𝐺 is denoted 

by (ℂ[𝐺], ∆). 𝐴  finite dimensional representation 𝑈 𝑜𝑓 𝐺  is an invertible element of 

𝐵(𝐻𝑈) ⊗ 𝐶(𝐺) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 (𝜄 ⊗ ∆)(𝑈)  =  𝑈12𝑈13 . The tensor product of two 

representations 𝑈 𝑎𝑛𝑑 𝑉 is denoted by U × V and is defined by 𝑈 ×  𝑉 =  𝑈13𝑉23.  

The contragredient representation to a finite dimensional representation 𝑈 is defined by 

                                         𝑈𝑐  =  (𝑗 ⊗  𝜄)(𝑈−1)  ∈  𝐵(𝐻𝑈
∗ )  ⊗  𝐶(𝐺), 

where j is the canonical anti-isomorphism 𝐵(𝐻𝑈)  ≅  𝐵(𝐻𝑈
∗ ). When HU is a Hilbert space, 

we identify the dual space𝐻𝑈
∗  with the complex conjugate Hilbert space 𝐻𝑈. 

We denote the Woronowicz character 𝑓1  ∈  𝐶[𝐺] ∗  𝑏𝑦 𝜌. For every finite dimensional 

representation 𝑈 𝑜𝑓 𝐺 we have a representation 𝜋𝑈 of the algebra 𝐶[𝐺]2∗ on HU defined 

by 𝜋𝑈(𝜔)  =  (𝜄 ⊗ 𝜔)(𝑈). Given a finite dimensional unitary representation 𝑈 𝑜𝑓 𝐺, the        

conjugate re resentationis defined by  

           1
𝑈
 =  (𝑗(𝜋𝑈 (𝜌)1/2) ⊗  1)𝑈𝑐(𝑗(𝜋𝑈(𝑝)

−1

2  ⊗  1)   𝐵(𝐻𝑈)  ⊗  𝐶(𝐺).  
This is a unitary representation equivalent to 𝑈𝑐, and 𝜋¯𝑈 (𝜌)  =  𝑗(𝜋𝑈 (𝜌) − 1). Unitarity 

of ¯𝑈 essentially characterizes 𝜌: 𝑖𝑓 𝑈 is an irreducible unitary representation, then 𝜋𝑈(𝜌) 
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is the unique strictly positive operator in 𝐵(𝐻𝑢) such that the above definition of ¯𝑈 gives 

a unitary element and such that 𝑇𝑟(𝜋𝑈(𝜌))  =  𝑇𝑟(𝜋𝑈(𝑝)−1). We will usually suppress 

πU and simply 𝑤𝑟𝑖𝑡𝑒 𝜌𝜉 𝑓𝑜𝑟 𝜉 ∈  𝐻𝑈 𝑖𝑛𝑠𝑡𝑒𝑎𝑑 𝑜𝑓 𝜋𝑈(𝜌)𝜉. 
Denote by Rep𝐺 the 𝐶∗-tensor category of finite dimensional unitary representations 

of 𝐺. In this category �̅� is conjugate to 𝑈, in the sense that there exist morphisms 𝑅𝑈 ∶
 1 →  �̅�  ×  𝑈 𝑎𝑛𝑑 𝑅𝑈 ∶  1 →  𝑈 × �̅� , where 1 is the trivial representation of 𝐺 on the 

one-dimensional space 𝐶, such that the compositions 

                    𝑈
⊗𝐻𝑢 
→   𝑈⊗ �̅�⊗

𝐴𝑖 ⊗𝑖
→  𝑎𝑛𝑑�̅�  

⊗ 𝑅𝑢
→   �̅� ⊗U ⊗ �̅�

𝐻𝑖 ⊗𝑖
→   �̅� 

are the identity morphisms. Using the Woronowicz character 𝜌 we can define such 

morphisms 𝑏𝑦  

𝑅𝑢(1) =  ∑4

𝑖

𝜉�̅�   ⊗ 𝑝
−1
2 ,  𝑅𝑢̅̅ ̅̅ (1) =  ∑ 1

𝑖
 𝑝

1
2𝜉𝑖  ⊗ 𝜉�̅�                                      (1) 

where { 𝜉𝑖 }i is an orthonormal basis in 𝐻𝑈. Note that the above expressions do not 

depend on the choice of an orthonormal basis, and 

                       ⟦𝑅𝑢⟧ = ⟦𝑅𝑢̅̅̅̅ ⟧  = (𝑑𝑖𝑚𝑞𝑈)𝑒
1

2, 

where dimq 𝑈 =  𝑇𝑟 𝜋𝑈(𝜌) is the quantum dimension of 𝑈. 

Consider now a continuous left action 𝜃 𝑜𝑓 𝐺 𝑜𝑛 𝑎𝐶∗  − algebra 𝐵, 𝑠𝑜 𝜃 ∶  𝐵 →
 𝐶(𝐺)⊗ 𝐵 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑣𝑒 ∗ -homomorphism such that (Δ⊗ 𝜄)𝜃 =  (𝜄 ⊗ 𝜃)𝜃  and 

(𝐶(𝐺) ⊗ 1)𝜃(𝐵) 𝑖𝑠 𝑑𝑒𝑛𝑠𝑒 𝑖𝑛 𝐶(𝐺)⊗ 𝐵. Consider the ∗-subalgebra 𝐵 ⊂  𝐵 consisting of 

elements 𝑥 ∈  𝐵  such that 𝜃(𝑥)  lies in the algebraic tensorproduct 𝐶[𝐺]  ⊗  𝐵. 

Equivalently, B is the linear span of elements of the form (ℎ ⊗  𝜄)((𝑎 ⊗  1)𝜃(𝑥)),where 

𝑎 ∈  𝐶[𝐺], 𝑥 ∈  𝐵 and h is the Haar state on 𝐺. We call B the algebra of regular elements 
in 𝐵. It is a dense ∗-subalgebra of 𝐵, and θ defines a left coaction of the Hopf ∗-algebra 

(𝐶[𝐺], _) on it. As follows from [133], the positive map 𝐸 =  (ℎ ⊗  𝜄)𝜃 ∶  𝐵 →  𝐵𝐺  is 

faithful on B, in the sense that 𝐸(𝑥∗𝑥) 6 =  0  for every nonzero 𝑥 ∈  𝐵 . Conversely, 

assume we have a left coaction θ of the Hopf ∗ −algebra (𝐶[𝐺], ∆) 𝑜𝑛 𝑎 ∗ −algebra 𝐵. By 

slightly extending the definition in [134] we say that 𝜃 is an algebraic action of 𝐺 if the 

following conditions are satisfied: 

(i) the fixed point algebra 𝐴 =  𝐵𝐺  =  {𝑥 ∈  𝐵 | 𝜃(𝑥)  =  1 ⊗  𝑥} 𝑖𝑠 𝑎 𝐶∗ −algebra; 

(ii) the projection 𝐸 =  (ℎ ⊗  𝜄)𝜃 ∶  𝐵 →  𝐴 is positive and faithful, so 𝐸(𝑥∗𝑥)  ≥  0 and 

𝐸(𝑥∗𝑥)  ≠  0 for 𝑥 ≠  0; 
(iii) 𝐸(𝑥∗𝑎∗𝑎𝑥) ≤ ⟦𝑎⟧2 𝐸(𝑥∗𝑥)𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 ∈  𝐴 𝑎𝑛𝑑 𝑥 ∈  𝐵. 
Note that condition (iii) follows from (i) and (ii) if B is unital with unit 1 ∈  𝐴. Note also 

that conditions (ii) and (iii) can be formulated by saying that 𝐵 is a right pre-Hilbert 𝐴-

module with inner product (𝑥, 𝑦) =  𝐸(𝑥∗𝑦), and the operators of multiplication on the left 

by elements of A are bounded. 

Under the above conditions (i)-(iii) it is not difficult to show that the ∗-algebra B 

admits a unique 𝐶∗-completion 𝐵 such that 𝜃 extends to a continuous left action of the 

reduced form of 𝐺 𝑜𝑛 𝐵 ,  Namely, 𝐵  is faithfully represented by operators of 

multiplication on the left on the right pre-Hilbert A-module B with inner product(𝑥, 𝑦)  =
 𝐸(𝑥∗𝑦), and this defines a norm on B. 

Note that in general the subalgebra of regular elements in the completion 𝐵 𝑜𝑓 𝐵 can be 

strictly larger than 𝐵. Given a finite dimensional unitary representation U of G, we can 

consider HU as a left comodule over (𝐶[𝐺], ∆) by defining  

𝛿𝑈 ∶  𝐻𝑈  →  𝐶[𝐺]⊗ 𝐻𝑈𝑏𝑦𝛿𝑈 (𝜉) =  𝑈21
∗ (1⊗ 𝜉) 



41 

Then, if 𝜃 is a continuous left action of 𝐺 on a 𝐶∗-algebra B, we can consider comodule 

maps 𝐻𝑈  →  𝐵. The linear span of images of all such maps is denoted by 𝐵(𝑈) and is 

called the spectral subspace of 𝐵  corresponding to 𝑈 . Choosing representatives 𝑈𝛼  of 

isomorphism classes of irreducible unitary representations of 𝐺, for the subalgebra 𝐵 ⊂  𝐵 

of regular elements we get 

𝐵 = ⨁𝛼  𝐵(𝑈𝛼). 
 

Consider the tensor product comodule 𝐻𝑈  ⊗  𝐵 . We denote by (𝐻𝑈  ⊗  𝐵) 𝐺  the 

subcomodule of invariant vectors, so 

                 (𝐻𝑈  ⊗  𝐵) 𝐺  =  {𝑋 ∈  𝐻𝑈  ⊗  𝐵 | 𝑈12𝑋13  =  (𝜄 ⊗  𝜃)(𝑋)}. 
In other words, if {𝜉𝑖}i is an orthonormal basis in 𝐻𝑈 and 𝑈 =  (𝑢𝑖𝑗)𝑖, 𝑗 is written in the 

matrix formwith respect to this basis, then 

     (𝐻𝑈  ⊗  𝐵) 𝐺  =  {𝑋 =  ∑ 𝜉𝑖𝜉𝑖 ⊗ 𝑥𝑖  | 𝜃(𝑥𝑖)  =   ∑ 1𝑖 𝑈𝑖𝑗  ⊗ 𝑥𝑗  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖}. Note that 

using Frobenius reciprocity we can identify (𝐻𝑈  ⊗  𝐵) 𝐺with Hom𝐺(𝐻𝑈 , 𝐵), but we are 

not going to do this. The spectral subspaces can be recovered from(𝐻𝑈  ⊗  𝐵) 𝐺 using the 

canonical surjective maps 

𝐻𝑈
̅̅ ̅̅  ⊗ (𝐻𝑈  ⊗  𝐵) 𝐺   →  𝐵(𝑈̅̅̅̅ ), 𝜉̅  ⊗  𝑋 ⟼ (𝜉̅  ⊗  𝜄)(𝑋), 

which are isomorphisms for irreducible 𝑈. 
The spaces (𝐻𝑈  ⊗  𝐵) 𝐺  is our main object of interest. Clearly, if 𝐴 =  𝐵𝐺  then 

these spaces are 𝐴-bimodules. Furthermore, if 𝑋 =  ∑ 𝜉𝑖𝑖  ⊗ 𝑥𝑖  𝑎𝑛𝑑 𝑌 =  ∑ 𝜉𝑖𝑖  ⊗ 𝑦𝑖 are 

vectors in(𝐻𝑈  ⊗  𝐵) 𝐺, then the element ∑ 𝜉𝑖𝑖 𝑥𝑖
∗ 𝑦𝑖𝑖𝑠 𝐺-invariant. Hence(𝐻𝑈  ⊗  𝐵) 𝐺 is a 

right Hilbert 𝐴 -module with inner product(X , Y) = ∑ 4𝑖 𝑥𝑖
∗ 𝑦𝑖  This inner product is 

independent of the choice of an orthonormal basis, and by slightly it can be written as 

(X , Y)  = 𝑋∗𝑌 . Given two finite dimensional unitary representation 𝑈  and 𝑉 𝑜𝑓 𝐺 , we 

have a map 

(𝐻𝑈  ⊗  𝐵) 𝐺 ⊗ (𝐻𝑉  ⊗  𝐵) 𝐺 ,→ (𝐻𝑈×𝑉  ⊗  𝐵) 𝐺  , 𝑋 ⊗  𝑌 ⟼ 𝑋13𝑌23 

In other words, if we fix orthonormal bases {𝜉𝑖  }i in HU and {𝜁𝑗  }j in 𝐻𝑉  , then for                   

𝑋 =   ∑ 𝜉𝑖𝑖  ⊗ 𝑥𝑖  𝑎𝑛𝑑           𝑌 = ∑ 𝜁𝐽𝑖  ⊗ 𝑌𝑗 𝑤𝑒 ℎ𝑎𝑣𝑒 

                               𝑋 ⊗  𝑌 ⟼ ∑ 4𝑖 𝜉𝑖  ⊗ 𝜁𝑗  ⊗ 𝑥𝑖𝑦𝑗  . 

It is obvious that this map defines an isometric map 

(𝐻𝑈  ⊗  𝐵) 𝐺 ⊗𝐴 (𝐻𝑉  ⊗  𝐵) 𝐺  → (𝐻𝑈×𝑉  ⊗  𝐵) 𝐺   
We are now ready to define spectral functors. 

Definition (2.1.1)[130]: Given a continuous left action of a compact quantum group 𝐺 on 

a 𝐶∗-algebra 𝐵 with fixed point algebra 𝐴, the associated spectral functor is the unitary 

functor F from Rep𝐺 into 

the 𝐶∗- tensor category CorrA of 𝐶∗ -correspondences over A defined by 

𝐹(𝑈)  = (𝐻𝑈  ⊗  𝐵) 𝐺   with inner product 〈𝑋,𝑌〉 =  𝑋∗𝑌 

for representations 𝑈, and 𝐹(𝑇)  =  𝑇 ⊗ ι for morphisms, together with the 𝐴-bilinear 

isometries 

𝐹2, 𝑈, 𝑉 ∶  𝐹(𝑈)  ⊗𝐴 𝐹(𝑉)  →  𝐹(𝑈 ×  𝑉), 𝑋 ⊗  𝑌 ⟼ 𝑋13𝑌23 

A few comments are in order. By a𝐶∗  -correspondence over 𝐴 we mean a right 

Hilbert 𝐴-modul  together with a nondegenerate left action of 𝐴 on it. We have to explain 

why the left action on (𝐻𝑈  ⊗  𝐵) 𝐺 is nondegenerate in the nonunital case. This is a 

consequence of the following simple lemma. 
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Lemma (2.1.2)[130]: If 𝜃 is a continuous left action of a compact quantum group 𝐺 on 

a 𝐶∗ -algebra 𝐵,then the fixed point algebra 𝐴 𝐵𝐺 =  is a nondegenerate 𝐶∗ -subalgebra 

of 𝐵. 

Proof: Let {𝑒𝑠}]𝑠 be an approximate unit in 𝐴. Define an 𝐴-valued inner product on 𝐵 by 

〈𝑋,𝑌〉 =  𝐸(𝑥∗𝑦). Then 𝑥𝑒𝑠  →  𝑥 in the norm defined by this inner product for every 𝑥 ∈
 𝐵 . By [133], on every spectral subspace 𝐵(𝑈)  ⊂  𝐵  the norm defined by the inner 

product is equivalent to the  𝐶∗-norm. Therefore 𝑥𝑒𝑠  →  𝑥 in the 𝐶∗ -norm for every 𝑥 ∈
 𝐵, hence for every 𝑥 ∈  𝐵. 
 𝐶∗-correspondences over 𝐴 form a 𝐶∗ -tensor category CorrA with adjointable 𝐴-bilinear 

maps as morphisms. We emphasize that the isometries 𝐹2, 𝑈, 𝑉 in the definition of the 

spectral functor are not claimed to be adjointable, and therefore formally they are not 

morphisms in CorrA. 

Finally, recall that two natural notions of isometry between Hilbert modules coincide: if 𝑀 

and 𝑁  are right Hilbert 𝐴 -modules, and 𝑇 ∶  𝑀 →  𝑁  is an A-linear map such that 

‖𝑇𝑋‖  = ‖𝑋‖ for all 𝑋 ∈  𝑀, then〈𝑇𝑋,𝑇𝑌〉 = 〈𝑋,𝑌〉for all 𝑋, 𝑌 ∈  𝑀.  

We give an abstract characterization of spectral functors. Here is the main 

definition. 

Definition (2.1.3)[130]: Given a 𝐶∗-algebra 𝐴 and a strict𝐶∗ -tensor category 𝐶 with unit 

object 1, 𝑏𝑦 𝑎 weak unitary tensor functor 𝐶 →  𝐶𝑜𝑟𝑟𝐴 we mean a linear functor 𝐹 ∶  𝐶 →
 𝐶𝑜𝑟𝑟𝐴  together with natural 𝐴-bilinear isometries 𝐹2  =  𝐹2, 𝑈, 𝑉 ∶  𝐹(𝑈)  ⊗ 𝐴 𝐹(𝑉)  →
 𝐹(𝑈 ⊗  𝑉) such that the following conditions are satisfied: 

(i) F(1) = A; 

(ii) 𝐹 =  𝐹(𝑇)∗ 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚 𝑇 𝑖𝑛 𝐶; 
 (iii) 𝐹2: 𝐴 ⊗𝐴  𝐹(𝑈) →  𝐹(1 ⊗  𝑈) =  𝐹(𝑈)𝑚𝑎𝑝𝑠 𝑎 ⊗  𝑋 𝑖𝑛𝑡𝑜 𝑎𝑋, 𝑎𝑛𝑑 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦𝐹2  ∶
 𝐹(𝑈)  ⊗𝐴  𝐴 → 𝐹(𝑈) 𝑚𝑎𝑝𝑠 𝑋 ⊗  𝑎 𝑖𝑛𝑡𝑜 𝑋𝑎; 
(iv) the diagrams 

 
 

 (v) for all objects U and V in C and every vector 𝑋 ∈  𝐹(𝑈), the right A-linear map 𝑆𝑋  = 
𝑆𝑋𝑉 , ∶  𝐹(𝑉)  →  𝐹(𝑈 ⊗  𝑉) mapping 𝑌 ∈  𝐹(𝑉) into 𝐹2(𝑋 ⊗  𝑌) is adjointable, and the 

diagrams 

 
 

commute. 

Note that any unitary tensor functor 𝐶 →  𝐶𝑜𝑟𝑟𝐴 defines a weak unitary tensor functor. In 

othe words, if conditions (i)-(iv) are satisfied and the maps 𝐹2  are surjective, then 

condition (v) is also satisfied. Indeed, the map 𝑆𝑋 ∶  𝐹(𝑉)  →  𝐹(𝑈 ⊗  𝑉) is adjointable, 

because by assumption 𝐹2  is unitary and the map 𝑌 ⟼  𝑋 ⊗  𝑌  is adjointable, with 

adjoint given by 𝑋′ ⊗  𝑌 ′ ⟼  ℎ𝑋, 𝑋′𝑖𝑌 ′. Since 



43 

𝑆𝑋𝐹2  =  𝐹2(𝑆𝑋  ⊗  𝜄) ∶  𝐹(𝑉)  ⊗𝐴  𝐹(𝑊)  →  𝐹(𝑈 ⊗  𝑉 ⊗𝑊) , by taking the adjoints 

we get 𝐹2
∗  =  (𝑆𝑋

∗  ⊗  𝜄) 𝐹2
∗. This is equivalent to commutativity of the diagram in (v) by 

unitarity of 𝐹2 Note also that if we consider 𝐹 simply as a functor into the category of 

vector spaces, then 𝐹2is a natural transformation from F to 𝐹(𝑈 ⊗ ·), 𝑎𝑛𝑑 𝑠𝑜 𝑆𝑋
∗  is a  

𝑆𝑋
∗  𝐹(𝜄 ⊗  𝑇) =  𝐹(𝑇)𝑆𝑋

∗                                                           (2) 
for morphisms 𝑇 𝑖𝑛 𝐶. 

Given a continuous left action of a compact quantum group 𝐺 on a 𝐶∗-algebra B 

with fixed point algebra 𝐴 , the associated spectral functor 𝑅𝑒𝑝𝐺 →  𝐶𝑜𝑟𝑟𝐴  is a weak 

unitary tensor functor. Indeed, properties (i)-(iv) are immediate, while (v) follows by 

observing that the adjoint of the map 

𝑆𝑋 ∶ (𝐻𝑉  ⊗  𝐵) 𝐺   →  (𝐻𝑈×𝑉  ⊗  𝐵) 𝐺 , 𝑌 ⟼ 𝑋13𝑌23 

is given by 𝑆𝑋
∗  𝑍 = 𝑋13

∗ 𝑍. In other words, if 𝑋 =  ∑ 𝜉𝑖𝑖𝑗 ⊗𝑥𝑖  and 𝑍 =  ∑ 𝜉𝑖𝑖𝑗 ⊗𝑧𝑖𝑗  for 

orthonormal bases {𝜉𝑖}i in 𝐻𝑈 and {  𝜉𝑖}j in𝐻𝑉 , then 

𝑆𝑋
∗𝑍 =  ∑ 𝜁𝑗

𝑖𝑗
⊗ 𝑥𝑖

∗ 𝑧𝑖𝑗 ∈  (𝐻𝑉  ⊗  𝐵) 𝐺                              (3) 

The following is our main result. 

𝑥𝑦 =  𝜋(𝑥 ·  𝑦)𝑓𝑜𝑟 𝑥, 𝑦 ∈  𝐵𝐹 . 
Lemma(2.1.4)[130]: The map π : �̅�𝐹 →𝐵𝐹 is a homomorphism, hence the product on 𝐵𝐹 

is associative. 

Proof: We have to check that 𝜋(𝜋(𝑥) · 𝜋(𝑦))  =  𝜋(𝑥 · 𝑦) for all 𝑥, 𝑦 ∈ 𝐵𝐹 . Take 𝑥 =
𝜉̅ ⊗ 𝑋 ∈  𝐻𝑈

̅̅ ̅̅ ⊗ 𝐹(𝑈), 𝑦 =  𝜁 ̅  ⊗  𝑌 ∈  𝐻𝑉
̅̅ ̅̅  ⊗  𝐹(𝑉) and choose isometries  

𝑈𝐼 ∈  𝑀𝑜𝑟(𝑈𝛼𝑖  , 𝑈), 𝑉𝐽  ∈  𝑀𝑜𝑟(𝑈𝛼𝐽, 𝑉) and 𝑤𝑖𝑗𝑘 𝑊𝑖𝑗𝑘 ∈  𝑀𝑜𝑟(𝑢𝛼𝐾  , 𝑢𝛼𝑖 ×,𝑢𝛼𝑗) defining 

decompositions 𝑜𝑓 𝑈, 𝑉 𝑎𝑛𝑑 𝑈𝛼𝐼 × 𝑈𝛼𝐽  into irreducibles. Then 

𝜋(𝜋(𝑥)  ·  𝜋(𝑦))  =   ∑ 7
𝑖𝑗𝑘

𝑊𝑖𝑗𝑘
∗ (𝑈𝐼

∗ 𝜉 ⊗ 𝑉𝑗
∗ 𝜁)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  ⊗  𝐹(𝑊𝑖𝑗𝑘

∗ )𝐹2(𝐹(𝑈𝐼
∗)𝑋 ⊗  𝐹(𝑉𝑗

∗)𝑌), 

While 

𝜋(𝑥 ·  𝑦) =  ∑ 7
𝑖𝑗𝑘

𝑊𝑖𝑗𝑘
∗ (𝑈𝐼

∗ 𝜉 ⊗ 𝑉𝑗
∗ 𝜁)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅   ⊗  𝐹 (𝑊𝑖𝑗𝑘

∗ (𝑈𝐼
∗  ⊗ 𝑉𝑗

∗))𝐹2(𝑋 ⊗  𝑌 ). 

By naturality of𝐹2 these expressions are equal.  

We can identify the space 𝐻𝑒̅̅ ̅̅  ⊗  𝐹(𝑈𝑒̅̅̅̅ )  =  ℂ̅ ⊗  𝐴 ⊂ 𝐵𝐹  with 𝐴.  Under this 

identification, the space 𝐴 , with its original product, becomes a subalgebra of 𝐵𝐹 . 

Furthermore, the left and right multiplications on 𝐻𝛼
̅̅ ̅̅  ⊗  𝐹(𝑈𝛼) by elements of 𝐴 ⊂  𝐵𝐹 

are defined by the 𝐴-bimodule structure 𝑜𝑛 𝐹(𝑈𝛼), that is, the product on BF has the 

property  

𝑎(𝜉̅  ⊗  𝑋)  =  𝜉̅  ⊗  𝑎𝑋, (𝜉̅  ⊗  𝑋)𝑎 =  𝜉̅  ⊗  𝑋𝑎. 
Our next goal is to define an involution on 𝐵𝐹 . For a finite dimensionalunitary 

representation 𝑈 of 𝐺 consider the standard solution (𝑅𝑈, 𝑅𝑈̅̅ ̅̅ ) of the conjugate equations 

for 𝑈 defined by (2.1.1). 

Lemma(2.1.5)[130]: For every 𝑋 ∈  𝐹(𝑈) there exists a unique element 𝑋∗  ∈  𝐹(�̅�) such 

that 

〈𝑋∗, 𝑌〉  =  𝐹(𝑅𝑈
∗ )𝐹2(𝑋 ⊗  𝑌) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑌 ∈  𝐹(�̅�). 

If the 𝐶∗-algebra 𝐴 is unital, then 𝑋∗  =  𝑆𝑋
∗  𝐹(𝑅𝑈̅̅ ̅̅ )(1). We also have 

〈𝑋∗, 𝑌〉  =  𝐹(𝑅𝑈
∗ )𝐹(𝑋∗  ⊗  𝑌) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑌 ∈  𝐹(𝑈). 

Proof: The uniqueness is clear. In order to prove the existence assume first that 𝐴 is unital. 

We then have 
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〈0𝑆𝑋
∗  𝐹(𝑅𝑈̅̅ ̅̅ )(1), 𝑌0〉  =  〈𝐹(𝑅𝑈̅̅ ̅̅ )(1), 𝐹2(𝑋 ⊗  𝑌 )〉  =  𝐹(𝑅𝑈

∗̅̅ ̅̅ )𝐹2(𝑋 ⊗  𝑌), 
so 𝑋∗  =  〈0𝑆𝑋

∗  𝐹(𝑅𝑈̅̅ ̅̅ )(1). If A is nonunital, then a similar computation shows that for any 

𝑋 ∈  𝐹(𝑈) and 𝑎 ∈  𝐴 the element(𝑎𝑋)∗exists and (𝑎𝑋)∗ = 〈0𝑆𝑋
∗  𝐹(𝑅𝑈̅̅ ̅̅ )(𝑎

∗). But this is 

enough, since by Cohen’s factorization theorem any element of F(U) has the form aX. To 

prove the last statement in the formulation, assume once again that 𝐴  is unital, the 

nonunital case requires only a minor modification. For 𝑌 ∈  𝐹(𝑈) we compute 

𝐹(𝑅𝑈
∗ )𝐹2(𝑋

∗  ⊗  𝑌)  =  𝐹(𝑅𝑈
∗ )𝐹2(𝑆𝑋

∗  𝐹(𝑅𝑈̅̅ ̅̅ )(1)  ⊗  𝑌) 
=  𝐹(𝑅𝑈

∗ )𝑆𝑋
∗𝐹2 (𝐹(𝑅𝑈̅̅ ̅̅ )(1) ⊗  𝑌) 

= 𝑆𝑋
∗  𝐹(𝜄 ⊗  𝑅𝑈

∗ )𝐹(𝑅𝑈̅̅ ̅̅  ⊗  𝜄)𝑌 𝑏𝑦 (1) 
= 𝑆𝑋

∗𝑌. 
𝐻𝑒𝑟𝑒 𝑆𝑋 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑎𝑝 𝐴 →  𝐹(𝑈), 𝑎 ⟼ 𝐹2(𝑎 ⊗  𝑋) =  𝑎𝑋, 𝑠𝑜 𝑆𝑋

∗  𝑌 = 〈𝑋, 𝑌〉 
This lemma implies that the correspondences 𝐹(𝑈) 𝑎𝑛𝑑 𝐹(�̅�) are, in some sense, 

dual to each other. In general, this is not the duality in the 𝐶∗-categorical sense. Already 

the simplest examples, such as the spectral functor associated with the action of 𝑇 by 

rotations on the unit disk, show that the objects 𝐹(𝑈) do not necessarily have conjugates 

in 𝐶𝑜𝑟𝑟𝐴. 

Similarly, for every vector 𝜉 ∈ 𝐻𝑈 define a vector 𝜉∗  ∈ 𝐻𝑈  by 

𝜉∗  =  (𝜄 ⊗ 𝜉̅)𝑅𝑈 (1) =  𝑃
−1

2⁄ 𝜉
̅̅ ̅̅ ̅̅ ̅̅ ̅

, 𝑠𝑜 (𝜁, 𝜉∗) =   𝑅𝑈
∗ (𝜁 ⊗  𝜉)𝑓𝑜𝑟 𝑎𝑙𝑙 𝜁 ∈  𝐻𝑈. 

Define an anti-linear 𝑚𝑎𝑝 �̅�𝐹 → �̅�𝐹  , 𝑥 ⟼ 𝑥∗, 𝑏𝑦 

(𝜉̅ ⊗  𝑋)∗ = 𝜉∗  ⊗ 𝑋∗. 
For 𝑥 ∈  𝐵𝐹  𝑝𝑢𝑡 𝑥

∗  =  𝜋(𝑥∗). 𝑂𝑛 𝐴 ⊂  𝐵𝐹  this clearly coincides with the involution on 

A. Although we will not need this, we remark that it is not difficult to show that the 

particular choice of solutions (𝑅𝑈, 𝑅𝑈̅̅ ̅̅ ) was not important for defining the involution on 𝐵𝐹 

, in the sense that for every 𝑥 ∈  𝐵𝐹̅̅̅̅  the element 𝜋(𝑥∗) is independent of any choices 

Lemma (2.1.6)[130]: The map 𝑥 ⟼ 𝑥∗ defines an involution on the algebra𝐵𝐹 , and for 

every 𝑥 ∈ �̅�𝐹   we have 𝜋(𝑥)∗  =  𝜋(𝑥∗) 
Proof: We start by proving the second part. We have to show that𝜋(𝜋(𝑥)∗)  =  𝜋(𝑥∗) 
Take an element 𝑥 = 𝜉̅  ⊗  𝑋 ∈  �̅�𝑈  ⊗  𝐹(𝑈 ). Choose isometries  𝑊𝑖  ∈  𝑀𝑜𝑟(𝑈𝛼𝑖  , 𝑈) 
defining a decomposition of 𝑈 into irreducibles. Write 𝑅𝑖  for 𝑅𝑈𝛼𝑖  and𝑅�̅� for �̅�𝑈𝛼𝑖 . Then 

𝑅𝑈  = ∑ (𝑖  𝑤𝑖̅̅ ̅  ⊗  𝑤𝑖)𝑅𝑖 and �̅�𝑈 = ∑ (𝑖  𝑤𝑖  ⊗ �̅�𝑖)�̅�𝑖 . For any 𝑌 ∈  𝐹(�̅�) we have 

𝐹 (�̅�𝑈
∗   𝐹2(𝑋 ⊗  𝑌 ) =  ∑ 𝐹

𝑖
(�̅�𝑈

∗ )𝐹2(𝐹(𝑊𝑖
∗ )𝑋 ⊗  𝐹(�̅�𝑖

∗ )𝑌 )

=  ∑ 〈〈𝐹
𝑖

(𝑊𝑖
∗)𝑋)2∗, 𝐹( �̅�𝑖

∗)𝑌 , 

so 𝑋•  =  ∑ 𝐹𝑖 (𝑊𝑖
̅̅ ̅)(𝐹(𝑊𝑖)𝑋)1

•. We also have 𝜉•  =   ∑ �̅�𝑖𝑖 (𝑊𝐼
∗𝜉)1•. Therefore  

𝑥•  =∑ �̅̅�𝑖
𝑖

(𝑊𝐼
∗𝜉)1•̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅   ⊗  𝐹(�̅�𝑖)𝐹(𝑊𝑖)𝑋)1

•. 

Applying π and using (3) we get 

𝜋(𝑥•)  =  ∑ 𝜋
𝑖
 (𝑊𝐼

∗𝜉)1•̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ⊗ (𝐹(𝑊𝑖)𝑋)1
•  =  𝜋(𝜋(𝑥)1

•
). 

We next prove anti-multiplicativity of the map ∗ on BF. For this it suffices to check 

that for all 

𝑥, 𝑦 ∈  �̅�𝐹  we have𝜋((𝑥. 𝑦)•)  =  𝜋(𝑦•  · 𝑥•). Take 𝑥 =  𝜉̅ ⊗ 𝑋 ∈  �̅�𝑈  ⊗ 𝐹(𝑈)𝑎𝑛𝑑 𝑦 =
 𝜁 ̅ ⊗ 𝑌 ∈  �̅�𝑉 ⊗𝐹(𝑉). 
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The unitary 𝜎 ∶  𝐻𝑉  ⊗ 𝐻𝑈  → 𝐻𝑈×𝑉̅̅ ̅̅ ̅̅ ̅   mapping �̅�  ⊗ ϑ̅into 𝜗 ⊗  𝜂̅̅ ̅̅ ̅̅ ̅̅ ̅ defines an equivalence 

between �̅�  × �̅� and 𝑈 ×  𝑉̅̅ ̅̅ ̅̅ ̅̅ ̅ , and we have 

𝑅𝑈×𝑉 = (𝜎 ⊗  𝜄 ⊗  𝜄)(𝜄 ⊗ 𝑅𝑈  ⊗𝑖)𝑅𝑉 𝑎𝑛𝑑 �̅�𝑈×𝑉  =  (𝜄 ⊗  𝜄 ⊗  𝜎)(𝜄 ⊗ �̅�𝑉  ⊗  𝜄)�̅�𝑈. 
Assuming that A is unital we compute:  

𝐹2(𝑋 ⊗ 𝑌)• = 𝑆𝐹2
(0(𝑋×𝑌)𝐹

∗  𝐹(�̅�𝑈×𝑉)(1)   by Lemma (2.1.6) 

= 𝑆𝑌
∗𝑆𝑋

∗   𝐹(𝜄 ⊗  𝜄 ⊗  𝜎)𝐹(𝜄 ⊗ �̅�𝑉  ⊗  𝜄)𝐹(�̅�𝑈 )(1)𝑎𝑠 𝑆𝐹2(𝑋 ⊗ 𝑌 ) =  𝑆𝑋𝑆𝑌 

=  𝐹(𝜎)𝑆𝑌
∗  𝐹(�̅�𝑉  ⊗  𝜄)𝑆𝑋

∗  𝐹(�̅�𝑈 )(1)                                             𝑏𝑦 (1)
=  𝐹(𝜎)𝑆𝑌

∗𝐹(�̅�𝑉  ⊗  𝜄)(𝑋•) 
=  𝐹(𝜎)𝑆𝑌

∗ 𝐹2(𝐹(�̅�𝑉  )(1) ⊗ 𝑋• ) 
        =  𝐹(𝜎)𝐹2𝑆𝑌

∗( 𝐹(�̅�𝑉  )(1)⊗ 𝑋• ) 
=  𝐹(𝜎)𝐹2(𝑌

•  ⊗ 𝑋•). 
In the nonunital case we get the same identity by replacing 𝑋 and 𝑌 by elements of the 

form 𝑎𝑋 and b𝑌 , see the proof of Lemma (2.1.6)We also have (𝜉 ⊗  𝜁)•  =  𝜎(𝜁•  ⊗
 𝜉•). Therefore 

(𝑥 ·  𝑦)•  =  (�̅�  ⊗  𝐹(𝜎)) (𝜁•  ⊗ 𝜉•̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)  ⊗ 𝐹2(𝑌
•  ⊗ 𝑋•) _  =  (¯𝜎 ⊗  𝐹(𝜎))(𝑦 • ·  𝑥 •). 

Applying π we get 𝜋((𝑥. 𝑦)•)  =  𝜋(𝑦•  · 𝑥•). 
It remains to show that the 𝑚𝑎𝑝 𝑥 ⟼ 𝑥∗  on 𝐵𝐹  is involutive. Equivalently, we 

have to show that 𝜋(𝑥••)  =  𝜋(𝑥)  for all 𝑥 ∈ �̅�𝐹  . Take an element 𝑥 =  𝜉̅  ⊗  𝑋 ∈
 �̅�𝑈  ⊗  𝐹(𝑈). Consider the unitary 

𝑢: 𝐻𝑈  →  𝐻𝑈  𝑚𝑎𝑝𝑝𝑖𝑛𝑔 𝜁 𝑖𝑛𝑡𝑜 𝜁.̅ 𝑇ℎ𝑒𝑛 �̅�𝑈  =  (𝜄 ⊗  𝑢)𝑅𝑈. 𝐻𝑒𝑛𝑐𝑒, 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑌 ∈  𝐹(�̅� ), 
〈𝑋••, 𝑌〉 =  𝐹(�̅�𝑈

∗  )𝐹2(𝑋
•  ⊗  𝑌 ) =  𝐹(𝑅𝑈

∗ )𝐹2(𝑋
•  ⊗  𝐹(𝑈∗)𝑌 ) =  〈𝑋, 𝐹(𝑈∗)𝑌〉, 

where the last equality follows from Lemma (2.1.6)Thus 𝑋••  =  𝐹(𝑢)𝑋. We also have 

𝜉••  =  𝜉̿  =  𝑢𝜉. Therefore 

𝑥••  =  (�̅�  ⊗  𝐹(𝑢))𝑥, 
and applying π we get 𝜋(𝑥••  =  𝜋(𝑥).  
We next define a linear map 𝜃𝐹 ∶  𝐵𝐹  →  𝐶[𝐺]⊗ 𝐵𝐹   by 

𝜃𝐹  (𝜉̅  ⊗  𝑋)  =  (𝑈𝛼 
𝐶 )221)

∗1(1 ⊗ 𝜉̅  ⊗  𝑋) 𝑓𝑜𝑟 𝜉̅  ⊗  𝑋 ∈  �̅�𝛼  ⊗  𝐹(𝑈𝛼). 
In other words, if we fix an orthonormal 𝑏𝑎𝑠𝑖𝑠 {𝜉𝑖}0𝑖  in 𝐻𝛼  and write 𝑈𝛼  as a matrix 

(𝑈𝑖𝑗 )1𝑖𝑗0 , then 

𝜃𝐹  (𝜉�̅�  ⊗  𝑋) =∑ 𝑈𝐼𝐽
𝑖

 ⊗ 𝜉𝑖  ⊗  𝑋. 

Lemma (2.1.7)[130]: The map 𝜃𝐹  defines a left algebraic action of 𝐺 on 𝐵𝐹  with fixed 

point algebra 𝐴. 

Proof: Clearly, the map 𝜃𝐹  turns BF into a comodule over (𝐶[𝐺], ∆) with fixed point 

subcomodule 𝐴. 

In order to show that 𝜃𝐹 is a homomorphism, observe first that we have a left 

comodule structure map 𝜃𝐹 ∶ �̅�𝐹  →  𝐶[𝐺]  ⊗ �̅�𝐹 on �̅�𝐹 defined in the same way as for  

𝐵𝐹 :�̅�𝐹, so (𝜉 ⊗  𝑋) =  (𝑈𝐶)021
∗ (1 ⊗ 𝜉̅  ⊗  𝑋) 

for 𝜉̅  ⊗  𝑋 ∈  �̅�𝑈  ⊗  𝐹(𝑈). Then 𝜋 ∶  �̅�  →  𝐵𝐹  is a comodule map, since if 𝑤 ∈
 𝑀𝑜𝑟(𝑈, 𝑉), 𝑡ℎ𝑒𝑛  𝑈𝐶∗(�̅�  ⊗  1)  =  (�̅�  ⊗  1)𝑉𝐶∗. 𝑈 sing that (𝑈 × 𝑉)𝐶∗   =
 (𝑈𝐶)013

∗ (𝑉𝐶)023
∗  , modulo identification of 𝐻𝑈  ⊗ 𝐻𝑉 .̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  with �̅�𝑈  ⊗ �̅�𝑉   , it is easy to see 

that �̅�𝐹 is a homomorphism. Hence 𝜃𝐹 is also a homomorphism 
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We check that  𝜃𝐹  is ∗ -preserving. It suffices to show that �̅�𝐹  (𝑥)
∗⊗•)  =

�̅�𝐹   (𝑥
•) 𝑓𝑜𝑟 𝑥 ∈ �̅�𝑈 ⊗  𝐹(𝑈)  ⊂  �̅�𝐹 .  𝐹 ixing an orthonormal basis {𝑈𝑖}1𝑖  in 𝐻𝑈  and 

identifying �̅̅̅�𝑈  with, 𝐻𝑈 we get 

 𝜃𝐹  (𝜉�̅� ⊗  𝑋)∗⊗•  =  ∑ 𝑈𝑖𝑗
∗

𝑖  ⊗ 𝜌−
1

2𝜉𝑗  ⊗ 𝑋•  and  �̅�𝐹((𝜉𝑗  ⊗  𝑋)•  =  (𝑈𝑐)121
∗  (1 ⊗

𝜌−
1

2𝜉𝑗   ⊗ 𝑋•). 

  

Since �̅�𝑐∗ = (𝜌−
1

2  ⊗  1)𝑈∗(𝜌
1

2  ⊗  1), these expressions coincide. 

It remains to show that 𝐵𝐹  is a right pre-Hilbert 𝐴 -module with inner product 

〈𝑥, 𝑦〉  =  𝐸(𝑥∗𝑦), where 𝐸 =  (ℎ ⊗  𝜄) 𝜃𝐹  , and the left action of 𝐴  on 𝐵𝐹  by 

multiplication is bounded. This will follow immediately, if we can show that the spaces 

�̅�𝛼  ⊗  𝐹(𝑈𝛼) are mutually orthogonal and  

〈𝜉̅   ⊗  𝑋, 𝜁 ̅  ⊗ 𝑌〉 =  
1

𝑑𝑖𝑚𝑔𝑈𝛼
 (𝑝−1𝜉, 𝜁)〈𝑋, 𝑌〉 𝑓𝑜𝑟 𝜉, 𝜁 ∈  𝐻𝛼 , 𝑋, 𝑌 ∈  𝐹(𝑈𝛼). 

Note that if 𝑧 =  �̅�  ⊗ 𝑍 ∈ �̅�𝑈  ⊗ 𝐹(𝑈), then 𝐸(𝜋(𝑧)) = ∑ 1𝑖 𝑤𝑖
∗ 𝜂̅̅ ̅̅ ̅̅  ⊗  𝐹(𝑊𝑖

∗ 𝑖 ), where 

𝑤𝑖  ∈  𝑀𝑜𝑟(1,𝑈)𝑎𝑟𝑒 isometries such 𝑡ℎ𝑎𝑡 ∑ 𝑤𝑖  𝑤𝑖
∗

𝑖   is the projection onto the isotypic 

component of U corresponding to the trivial representation. This clearly implies mutual 

orthogonality of the spaces �̅�𝛼  ⊗ 𝐹(𝑈𝛼). If 𝑈 = �̅�𝛼  × 𝑈𝛼 ,  then the only isometry in 

Mor(1, 𝑈), up to a phase factor, is (𝑑𝑖𝑚𝑔 𝑢
𝛼)

−1
2⁄ 𝑅𝛼, where 𝑅𝛼  =  𝑅𝑈𝛼1 . Therefore for 

𝜉, 𝜁 ∈ 𝐻𝛼  and 𝑋, 𝑌 ∈  𝐹(𝑈𝛼) we have 

〈𝜉̅  ⊗  𝑋, 𝜁 ̅  ⊗ 𝑌〉  =  
1

𝑑𝑖𝑚𝑔𝑈𝛼
𝑅𝛼
∗ (𝜉•  ⊗  𝜁)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝐹(𝑅𝛼

∗  )𝐹2(𝑋
•  ⊗  𝑌 ). 

By Lemma (2.1.5)we have 𝐹(𝑅𝛼
∗ )𝐹2(𝑋

• ⊗𝑌)  =  〈𝑋, 𝑌〉. Using that 𝜉•  =  𝑝
−1

2⁄ 𝜉
̅̅ ̅̅ ̅̅ ̅̅ ̅

 it is also 

straightforward to check that 𝑅𝛼
∗ (𝜉•  ⊗  𝜁)  =  (𝜁, 𝑝−1𝜉). This finishes the proof of the 

lemma. 

As we discussed in the previous, an algebraic action of 𝐺  on 𝐵  uniquely defines a 

completion 𝐵𝐹 of 𝐵𝐹 carrying a continuous action of the reduced form of 𝐺. Therefore the 

previous lemma finishes our construction of a continuous action from a weak unitary 

tensor functor. 

Theorem(2.1.8)[130]: Assume 𝐺  is a reduced compact quantum group and 𝐴  is 

𝑎 𝐶∗ −algebra. Then by associating to an action of 𝐺 on a𝐶∗ -algebra its spectral functor 

we get a bijection between iso- morphism classes of triples (𝐵, 𝜃, 𝜓) , where 𝜃  is a 

continuous left action of 𝐺 on a𝐶∗ -algebra 𝐵 and 𝜓: 𝐴 →  𝐵 is an embedding such that 

𝐵𝐺  =  𝜓(𝐴), and natural unitary monoidal isomorphism classes of weak unitary tensor 

functors 𝑅𝑒𝑝𝐺 →  𝐶𝑜𝑟𝑟𝐴. 

 In the proof we will identify A with ψ(A) and simply talk about actions with fixed point 

algebra 𝐴. 
The main part of the proof is, of course, a construction of an action from a weak unitary 

tensor functor 𝐹 ∶  𝑅𝑒𝑝𝐺 →  𝐶𝑜𝑟𝑟𝐴 . We will define this action in a series of 

lemmas.Choose representatives 𝑈𝛼  of isomorphism classes of irreducible unitary 

representations of 𝐺, and write𝐻𝛼 instead of H𝑈𝛼 for the underlying Hilbert spaces. We 

assume that there exists an index e such that 𝑈𝑒  =  1.Consider the space 

𝐵𝐹  = ⊗𝛼 𝐻𝛼  ⊗  𝐹(𝑈𝛼). 
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It will also be convenient to consider a much larger space. Choose aa small 𝐶∗-tensor 

subcategory 𝐶 ⊂  𝑅𝑒𝑝𝐺 containing the objects 𝑈𝛼, and then put 

𝐵𝐹 =⊗𝑈  𝐻𝑈  ⊗  𝐹(𝑈), 
where the summation is over all objects in C. We have a canonical linear 𝑚𝑎𝑝 𝜋 ∶  ˜ 𝐵𝐹  →
 𝐵𝐹  𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑎𝑠 follows. For a finite dimensional unitary representation 𝑈 𝑜𝑓 𝐺, choose 

isometries 𝑊𝐼  ∈  𝑀𝑜𝑟(𝑈𝛼𝐼 , 𝑈)such that ∑ 𝑤𝑖𝑤𝑖
∗

𝑖  =  𝜄. Then put 

𝜋(𝜉 ⊗  𝑋) =  ∑ 𝑤𝑖
∗

𝑖  𝜉 ⊗  𝐹(𝑤𝑖
∗ )𝑋, 

where  𝑤𝑖̅̅ ̅𝜁 =  𝑤𝑖𝜁, 𝑠𝑜 𝑤𝑖
∗̅̅ ̅̅    𝜉̅  =  𝑤𝑖

∗ 𝜉 . This definition is independent of the choice of 

isometries 𝑤𝑖 , since for any other choice vj there exists a unitary matrix ( 𝑢𝑖𝑗)𝑖𝑗   

𝑠𝑢𝑐ℎ𝑡ℎ𝑎𝑡𝑤𝑖 = ∑ 𝑢𝑖𝑖 𝑣𝑗  . One property of 𝜋 that we will regularly use, is that if 𝜉̅  ⊗  𝑋 ∈

 ¯ ⊗ 𝐻𝑈 𝐹(𝑈) 𝑎𝑛𝑑 𝑤 ∈  𝑀𝑜𝑟(𝑈, 𝑉) is an isometry, then 

𝜋 𝑤𝜉 ⊗  𝐹(𝑤)𝑋 =  𝜋(𝜉̅  ⊗  𝑋)                                               (4) 
.                                                              

 Define a product on ˜ BF by 

(𝜉 ⊗  𝑋) ·  (𝜁 ⊗  𝑌 ) =  (𝜉 ⊗  𝜁) ⊗ 𝐹3(𝑋 ⊗  𝑌 ). 

 It is immediate that this product is associative. Considering BF as a subspace of ˜ 𝐵𝐹 , we 

define a product on 𝐵𝐹 by 
Proof: It is clear that isomorphic actions produce naturally unitarily monoidally 

isomorphic weak unitary tensor functors, and naturally unitarily monoidally isomorphic 

weak unitary tensor functors produce isomorphic actions. It remains to show that up to 

isomorphisms the constructions are inverse to each other. 

Assume θ is a continuous left action of 𝐺 on a 𝐶∗-algebra B with fixed point algebra 𝐴. Let 

𝐹 be the associated spectral functor and 𝐵 ⊂  𝐵 be the subalgebra of regular elements. 

Consider the algebraic action 𝜃𝐹 of 𝐺 on BF defined by 𝐹 as described above. We have a 

linear isomorphism 

𝐵𝐹  ≅  𝐵 𝑚𝑎𝑝𝑝𝑖𝑛𝑔 𝜋(𝜉̅  ⊗  𝑋)  ∈  𝐵𝐹  𝑖𝑛𝑡𝑜 (𝜉̅  ⊗  𝜄)(𝑋)  ∈  𝐵 

for 𝜉̅  ⊗  𝑋 ∈  �̅�𝑈  ⊗ (𝐻𝑈 ⊗𝐵)𝐺 .  It is easy to see that this is a 𝐺 -equivariant 

isomorphism of algebras. It is a bit less obvious that this isomorphism is ∗-preserving. In 

order to show this, fix an irreducible representation 𝑈𝛼 and an orthonormal basis {𝜉𝑖}𝑖  in 

𝐻𝛼. Consider an element 𝑋 = ∑ 𝜉𝑖𝑖   ⊗ 𝑥𝑖  ∈ (𝐻𝛼 ⊗𝐵)𝐺 . Writing �̅�𝛼 for �̅�𝑈𝛼, assuming 

for simplicity that 𝐴 is unital and using Lemma (2.1.. 6) and identity (2.2) for 𝑆𝑋
∗  , we get 

𝑋•  = 𝑆𝑋
∗   𝐹(�̅�𝛼)(1) = 𝑆𝑋

∗ (∑𝑝
1
2⁄

𝑖

⊗𝜉𝑖 ⊗ 𝜉�̅�  ⊗  1) =∑(𝑝
1
2⁄ 𝜉𝑗𝜉𝑖)𝜉�̅�

𝑖,𝑗

⊗ 𝑥𝑗
∗

= ∑𝑝
1
2⁄ 𝜉𝑖

̅̅ ̅̅ ̅̅ ̅̅

𝑖

 ⊗ 𝑥𝑖
∗ . 

From this we see that the image of the element (𝜉̅  ⊗  𝑋)∗  =  𝜋 (𝑝
−1

2⁄ 𝜉 ⊗ 𝑋•)  ∈
 𝐵𝐹  𝑖𝑛 𝐵 𝑒𝑞𝑢𝑎𝑙𝑠  

∑(𝑝
−1

2⁄ 𝜉𝑖𝑝
1
2⁄ 𝜉𝑗) 𝑥𝑗

∗

𝐼

 = (∑(𝜉𝑖 , 𝜉)𝑥𝑖
𝑖

)∗ , 

so the isomorphism 𝐵𝐹 ≅  𝐵 is indeed ∗-preserving 

Now conversely, assume we start with a weak unitary tensor functor 𝐹, consider the action 

𝜃𝐹  of 𝐺 on 𝐵𝐹 , and define the corresponding spectral functor 𝐹′. It is easy to see that if we 

fix an irreducible representation 𝑈𝛼 and an orthonormal basis {𝜉𝑖}𝑖in 𝐻𝛼, then the dense 
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subspace (𝐻𝛼  ⊗ 𝐵𝐹)𝐺 𝑜𝑓  𝐹′(𝑈𝛼)  =  (𝐻𝛼 ⊗𝐵𝐹)
𝐺  consists of vectors of the form 

∑ (𝜉𝑖 ⊗𝜉�̅�  ⊗ 𝑋)𝑖 , 𝑤𝑖𝑡ℎ 𝑋 ∈  𝐹(𝑈𝛼).  We have the obvious 𝐴 -bilinear map 𝐹(𝑈𝛼)  →
 𝐹′(𝑈𝛼) with dense image, mapping 𝑋 into ∑ (𝜉𝑖 ⊗𝜉�̅�  ⊗ 𝑋)𝑖 . Let us check that this map is 

isometric. Taking vectors 𝑋′ = ∑ (𝜉𝑖 ⊗𝜉�̅�  ⊗ 𝑋)𝑖 𝜉�̅�   ⊗ 𝑋) and 𝑌 ′ =  ∑ (𝜉𝑖 ⊗𝜉�̅�  ⊗ 𝑌)𝑖  

in 𝐹′(𝑈𝛼), and writing 𝑅𝛼 for 𝑅𝑈𝛼, we compute: 

〈𝑋′,  𝑌′〉  =  ∑(𝜉�̅� ⊗  𝑋)
∗

𝑖

(𝜉�̅�  ⊗  𝑌 ) =  𝜋 (∑( 𝑝
−1

2⁄ 𝜉𝑖
̿̿ ̿̿ ̿̿ ̿̿ ̿̿

 ⊗ 𝑋• )

𝑖

  ·  (𝜉�̅�  ⊗  𝑌 ))

=  𝜋 (𝑅𝛼)(1)̅̅ ̅̅ ̅̅ ̅̅ ̅  ⊗ 𝐹2(𝑋
•  ⊗  𝑌 )) 

Since, up to a scalar factor, 𝑅𝛼 is an isometry in Mor(1, �̅�𝛼  ×  𝑈𝛼), the last expression 

equals 𝐹(𝑅𝛼
∗ )𝐹2(𝑋

•  ⊗  𝑌)  =  〈𝑋, 𝑌〉 
by Lemma(2.1.6). Thus we get unitary isomorphisms 𝐹(𝑈𝛼) ≅  𝐹′(𝑈𝛼) . These 

isomorphisms for all 𝛼  extend uniquely to a natural unitary isomorphism between the 

functors 𝐹 and. It isstraightforward to check that this isomorphism is monoida. 

We will give a different categorical description of actions in terms of module categories. 

Recall that given a 𝐶∗-tensor category 𝐶, a right 𝐶-module 𝐶∗ -category is a 𝐶∗ -category 

𝑀 equipped with a bilinear unitary functor ⊗ : 𝑀 ×  𝐶 →  𝑀 together with natural unitary 

isomorphisms 𝜑: (𝑀 ⊗  𝑈)  ⊗  𝑉 →  𝑀 ⊗ (𝑈 ⊗ 𝑉) 𝑎𝑛𝑑 𝑒: 𝑀 ⊗  1 →  𝑀  satisfying 

certain coherence relations, see [134] for details. If 𝐶 is strict, a module category 𝑀 is 

called strict if 𝜑 and e are the identity morphisms. Any module category over a strict 𝐶∗ -
tensor category is equivalent to a strict one. In the following discussion we will tacitly 

assume that the 𝐶∗ -categories that we consider have 

subobjects, meaning that for every projection 𝑝 in End(𝑀) there exists an object N and an 

isometry 𝑣 ∈  𝑀𝑜𝑟(𝑁,𝑀) such that 𝑣𝑣∗  =  𝑝. This is a very mild assumption, as we can 

always complete a 𝐶∗-category with respect to subobjects. 

Assume we are given a continuous left action of a reduced compact quantum group 

𝐺  on a unital 𝐶∗ -algebra 𝐵 . Following [134], consider the category 𝐷𝐵  of unitary 𝐺 -

equivariant finitely generated right Hilbert 𝐵-modules. By definition, the morphisms in 𝐷𝐵 

are 𝐺-equivariant maps of Hilbert B-modules. Since we consider only finitely generated 

Hilbert modules, such maps are automatically adjointable, so 𝐷𝐵  is a 𝐶∗ -category. It is a 

strict right (Rep𝐺)-module 𝐶∗ -category: given a right Hilbert 𝐵-module 𝑀 with the action 

of 𝐺 given by an isometry 𝛿𝑀 ∶  𝑀 →  𝐶(𝐺)  ⊗  𝑀, we define 𝑀 ⊗  𝑈 as the Hilbert 𝐵-

module 𝑀 ⊗𝐻𝑈  with the action of 𝐺 given by 𝑥 ⊗  𝜉 ⟼ 𝑈31
∗ (𝛿𝑀(𝑥)  ⊗  𝜉). Note that 

for 𝑀 =  𝐵 the module 𝐵 ⊗  𝑈 is, up to identification of 𝐻𝑈  ⊗  𝐵 with 𝐵 ⊗ 𝐻𝑈 , the 

same equivariant module 𝐻𝑈  ⊗  𝐵  that we considered. The module 𝐵  generates the 

category 𝐷𝐵, in the sense that any object 𝐷𝐵 in is a subobject of 𝐵⊗𝑈 for some 𝑈. In 

other words, any 𝐺-equivariant finitely generated right Hilbert 𝐵-module 𝑀 is isomorphic 

to a direct summand of 𝐵 ⊗ 𝐻𝑈 for some 𝑈,  

Let 𝐹 be the spectral functor associated with the action of 𝐺  on 𝐵. We have canonical 

isomorphisms 

𝐹(𝑈)  =  (𝐻𝑈  ⊗  𝐵)𝐺  ≅ 𝑀𝑜𝑟(𝐵, 𝐵 ⊗  𝑈) 
that map ∑ (𝜉𝑖  ⊗ 𝑥𝑖)𝑖  ∈ (𝐻𝑈  ⊗  𝐵)𝐺   into the morphism 𝑥 ⟼ ∑ (𝑥𝑖𝑥 ⊗ 𝜉𝑖)𝑖 .  For 

ergodic actions, these isomorphisms, modulo some identifications in terms of 𝐹 robenius 

reciprocity, were already  to identify algebras constructed in [134] with those defined by 

Pinzari and Roberts [143]. In other words, the key relation between the results in [134] and 
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[143] can be described by saying that given a (Rep𝐺)-module𝐶∗ -category 𝑀 and a simple 

object 𝑀 in 𝑀, the functor 𝑈 ⟼  𝑀𝑜𝑟(𝑀,𝑀 ⊗  𝑈) has all the properties of a spectral 

functor. With our characterization of spectral functors this becomes almost immediate. 

Specifically, and more generally, we have the following. 

Proposition(2.1.9)[130]: Assume M is a strict right module 𝐶∗ -category over a strict 𝐶∗ 
tensor category  𝐶 . Take an object M ∈M and consider the unital 𝐶∗  -algebra 𝐴 =
 𝐸𝑛𝑑(𝑀). Then the following defines a weak unitary tensor functor 𝐶 →  𝐶𝑜𝑟𝑟𝐴: 

𝐹(𝑈) =  𝑀𝑜𝑟(𝑀,𝑀 ⊗  𝑈), 
with the right  𝐴-module structure on 𝐹(𝑈) given by composition of morphisms, the left 𝐴-

module structure by 𝑎𝑋 =  (𝑎 ⊗ 𝜄)𝑋 and the inner product by 〈𝑋, 𝑌〉 =  𝑋∗𝑌 , the action 

of 𝐹 on morphisms is defined by F(𝑇)𝑋 =  (𝜄 ⊗  𝑇)𝑋, and 

 

 
𝐹2 ∶  𝐹(𝑈)  ⊗𝐴  𝐹(𝑉)  →  𝐹(𝑈 ⊗  𝑉) 

is given by X ⊗  𝑌 ⟼ (𝑋 ⊗  𝜄)𝑌. 
 Proof: This is a routine verification. We only remark that the adjoint of the map 

𝑆𝑋 ∶  𝐹(𝑉)  →  𝐹(𝑈 ⊗  𝑉) ⟼  𝑌  (𝑋 ⊗  𝜄)𝑌, 

is obviously given by 𝑆𝑍
∗ 𝑍 =  (𝑋∗  ⊗  𝜄)𝑍. 

If the object M happens to be generating, then we can reconstruct the whole category 𝑀 

from the functor 𝐹. For 𝐶 =  𝑅𝑒𝑝𝐺 this gives the following result. 

Proposition(2.1.10)[130]: Assume 𝐺  is a reduced compact quantum group and 𝑀  is a 

strict right (𝑅𝑒𝑝𝐺)- module 𝐶∗-category generated by an object 𝑀. Put 𝐴 =  𝐸𝑛𝑑(𝑀) and 

consider the weak unitary tensor functor 𝐹 ∶  𝑅𝑒𝑝𝐺 →  𝐶𝑜𝑟𝑟𝐴 defined by the object M as 

described in the previous proposition. 

Let 𝜃 ∶  𝐵 →  𝐶(𝐺)  ⊗  𝐵  be the continuous action corresponding to this functor by 

Theorem(2.1.4). Then 𝐷𝐵  is unitarily equivalent, as 𝑎 (𝑅𝑒𝑝𝐺) −module 𝐶∗  -category, to 

𝑀, via an equivalence that maps the generator 𝐵 ∈  𝐷𝐵 into 𝑀. 

Proof: Consider the functor 𝐹′ ∶ 𝐷𝐵   →  𝐶𝑜𝑟𝑟𝐴  defined by the object 𝐵 ∈ 𝐷𝐵 .  By the 

above discussion, it is naturally unitarily monoidally isomorphic to the spectral functor 

associated with the action of 𝐺 on 𝐵, hence to 𝐹. 𝐿𝑒𝑡 𝜓: 𝐹′ →  𝐹 be such an isomorphism. 

Note that we automatically have that 𝜓: 𝐴 =  𝐹′(1)  →  𝐹(1)  =  𝐴 is the identity map, 

since it is a bimodule map such that 

𝜓𝐹2  =  𝐹′2(𝜓 ⊗  𝜓). 
Consider the full subcategories �̅�𝐵  ⊂ 𝐷𝐵  and �̅�  ⊂  𝑀 consisting of objects 𝐵 ⊗  𝑈 and 

𝑀 ⊗  𝑈, 

respectively. We want to define a functor 𝐸: �̅�𝐵   →  �̅�. On objects we put 𝐸(𝐵 ⊗𝑈) =
 𝑀 ⊗ 𝑈.  For morphisms 𝑇  ∈ Mor(𝐵, 𝐵 ⊗  𝑈)  we put 𝐸(𝑇)  =  𝜓(𝑇).  More generally, 

given two finite dimensional unitary representations U and V , we have Frobenius 

reciprocity isomorphisms Mor (𝐵 ⊗  𝑈, 𝐵 ⊗  𝑉)  →  𝑀𝑜𝑟(𝐵, 𝐵 ⊗  𝑉 ⊗ �̅�), 𝑇 ⟼
 (𝑇 ⊗  𝜄)(𝜄 ⊗ �̅�𝑈),  with inverse 𝑆 ⟼ (𝜄 ⊗ 𝜄 ⊗ 𝑅𝑈

∗ )(𝑆 ⊗ 𝜄).  We also have similar 

isomorphisms in �̅�. Hence we can define linear isomorphisms 

𝐸: 𝑀𝑜𝑟(𝐵 ⊗  𝑈, 𝐵 ⊗  𝑉)  →  𝑀𝑜𝑟(𝑀 ⊗  𝑈,𝑀 ⊗  𝑉) 
𝑏𝑦 𝐸(𝑇)  =  (𝜄 ⊗  𝜄 ⊗ 𝑅𝑈

∗ ) (𝜓 ((𝑇 ⊗  𝜄)(𝜄 ⊗ �̅�𝑈))  ⊗𝑖 . 
Before we turn to the proof that E is indeed a functor, let us make two observations. The 

first one is that given a morphism 𝑇 ∶  𝐵 ⊗ 𝑈 →  𝐵 ⊗ 𝑉 and a finite dimensional unitary 
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representation 𝑊 of G, for the morphism 𝑇 ⊗  𝜄𝑊 =  𝑇 ⊗  𝜄 ∶  𝐵 ⊗  𝑈 ⊗𝑊 →  𝐵 ⊗
 𝑉 ⊗𝑊 we have 

𝐸(𝑇 ⊗  𝜄) =  𝐸(𝑇)⊗  𝜄.                                                            (5)   
The second observation is that given a morphism T : 𝐵 ⊗  𝑈 →  𝐵 ⊗  𝑉 and a morphism 

𝑆 ∶  𝑉 →  𝑊, we have 

𝐸((𝜄 ⊗  𝑆)𝑇) =  (𝜄 ⊗  𝑆)𝐸(𝑇).                                            (6)   
Both claims follow easily from naturality of ψ, which means that for any morphisms 𝑇 ∶
 𝐵 →  𝐵 ⊗ 𝑈 and 𝑆 ∶  𝑈 →  𝑉 we have 𝜓((𝜄 ⊗ 𝑆)𝑇)  =  (𝜄 ⊗  𝑆)𝜓(𝑇). 
Consider now morphisms 𝑅: 𝐵 ⊗ 𝑈 →  𝐵 ⊗ 𝑉 𝑎𝑛𝑑 𝑇 ∶  𝐵 ⊗ 𝑉 →  𝐵 ⊗𝑊, and define 

the morphisms 𝑃 =  (𝑅 ⊗  𝜄)(𝜄 ⊗ �̅�𝑈) ∶  𝐵 →  𝐵 ⊗  𝑉 ⊗ �̅�  and 𝑆 =  (𝑇 ⊗  𝜄)(𝜄 ⊗
 �̅�𝑉) ∶  𝐵 →  𝐵 ⊗𝑊 ⊗  𝑉 ̅. We then have 

𝑇𝑅 =  (𝜄𝐵 ⊗  𝜄𝑊 ⊗ 𝑅𝑉
∗  )(𝑆 ⊗  𝜄𝑉 )(𝜄𝐵 ⊗  𝜄𝑉 ⊗ 𝑅𝑈

∗  )(𝑃 ⊗  𝜄𝑈) 
= (𝜄𝐵 ⊗  𝜄𝑊 ⊗ 𝑅𝑉

∗ )(𝜄𝐵 ⊗  𝜄𝑊 ⊗  𝜄  �̅�  ⊗  𝜄𝑉 ⊗ 𝑅𝑈
∗ )((𝑆 ⊗  𝜄 ⊗  𝜄)𝑃 ⊗  𝜄𝑈) 

= (𝜄𝐵 ⊗  𝜄𝑊 ⊗ 𝑅𝑉
∗  ⊗ 𝑅𝑈

∗  )(𝐹′2(𝑆 ⊗  𝑃)⊗  𝜄𝑈), 
where 𝐹′2(𝑆 ⊗  𝑃)  =  (𝑆 ⊗  𝜄 ⊗  𝜄)𝑃 ∶  𝐵 →  𝐵 ⊗𝑊 ⊗  �̅�  ⊗  𝑉 ⊗ �̅�. 𝐴  similar 

computation gives 

𝐸(𝑇)𝐸(𝑅) =  (𝜄𝑀 ⊗  𝜄𝑊 ⊗ 𝑅𝑉
∗  ⊗ 𝑅𝑈

∗   )(𝐹2(𝜓(𝑆)⊗  𝜓(𝑃))⊗  𝜄𝑈). 
From this we immediately get that 𝐸(𝑇𝑅)  =  𝐸(𝑇)𝐸(𝑅) 𝑢𝑠𝑖𝑛𝑔 (6), (5) and monoidality 

of 𝜓, which means that 𝜓𝐹′2(𝑆 ⊗  𝑃)  =  𝐹2(𝜓(𝑆)  ⊗  𝜓(𝑃)). Therefore 𝐸 is a functor. 

Since it is surjective on objects and fully faithful, it is an equivalence of the linear 

categories ˜DB and �̃�. Let us show next that the equivalence E is unitary, that is, 𝐸(𝑇)∗  =
 𝐸(𝑇∗)  on morphisms. Let us check this first for 𝑇 ∈  𝑀𝑜𝑟(𝐵, 𝐵 ⊗  𝑈). Since 𝜓  is 

unitary, for any 𝑆 ∈  𝑀𝑜𝑟(𝐵, 𝐵 ⊗  𝑈) we have 

𝐸(𝑇)∗𝐸(𝑆)  =  𝜓(𝑇)∗𝜓(𝑆)  =  〈𝜓(𝑇), 𝜓(𝑆)〉  =  〈𝑇, 𝑆〉  = 𝑇∗ 𝑆 =  𝐸(𝑇∗𝑆)  
=  𝐸(𝑇∗)𝐸(𝑆). 

Since this is true for all S, we conclude that 𝐸(𝑇)∗  =  𝐸(𝑇)∗. By virtue of (5) we then also 

get 𝐸(𝑇 ⊗ 𝜄)∗  =  𝐸((𝑇 ⊗ 𝜄)∗) . But any morphism in �̅�𝐵  is a composition of such a 

morphism 𝑇 ⊗ 𝜄𝑊 and a morphism of the form 𝜄𝑀 ⊗  𝑆 for some morphism 𝑆 in Rep𝐺. 

Since as a particular case of (6) we have 𝐸(𝜄 ⊗  𝑆)∗  =  𝜄 ⊗ 𝑆∗  =  𝐸((𝜄 ⊗  𝑆)∗),  it 
follows that 𝐸 is unitary. Next, from (5) and (6) we see that if we define 

𝐸2  = 𝐸2 , 𝐵 ⊗ 𝑈, 𝑉 ∶  𝐸(𝐵 ⊗  𝑈)⊗  𝑉 →  𝐸(𝐵 ⊗  𝑈 ⊗  𝑉 ) 
to be the identity maps, then we get a natural isomorphism of bilinear functors 𝐸(·) ⊗· 
and 𝐸(·⊗·). Therefore the pair (𝐸, 𝐸2) defines a unitary equivalence of (𝑅𝑒𝑝𝐺)-module 

categories �̅�𝐵  and �̅�. Finally, since 𝐷𝐵 𝑎𝑛𝑑 𝑀 are completions of these categories with 

respect to subobjects, the equivalence between �̅�𝐵 and �̅� extends uniquely, up to a natural 

unitary isomorphism, to a unitary equivalence between the (𝑅𝑒𝑝𝐺) -module 𝐶∗ -

categories 𝐷𝐵  𝑎𝑛𝑑 𝑀. 

This leads to the main theorem, a generalization of results of De Commer and Yamashita 

[134] to the nonsemisimple/nonergodic case. 

Theorem (2.1.11)[130]: Assume 𝐺  is a reduced compact quantum group. Then by 

associating to an actionof 𝐺 on a unital 𝐶∗ -algebra 𝐵  the (R𝑒𝑝𝐺 )-module category 

𝐷𝐵with generator B, we get a bijec- tion between isomorphism classes of continuous left 

actions of 𝐺 on unital 𝐶∗ -algebras and unitary equivalence classes of pairs (M,M), where 

M is a right (RepG)-module 𝐶∗ -category and 𝑀 𝑖𝑠 𝑎 generating object in 𝑀. 

Proof: In view of the above proposition we only have to show that two actions of 𝐺 on 

unital 𝐶∗- algebras 𝐵 and 𝐶 are isomorphic if and only if the pairs (𝐷𝐵, 𝐵) 𝑎𝑛𝑑 (𝐷𝐶 , 𝐶) are 
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unitarily equivalent. Given such an equivalence, we first of all get an isomorphism 𝐵𝐺  =
 𝐸𝑛𝑑 𝐷𝐵(𝐵)  ≅ 𝐸𝑛𝑑𝐷𝐶  (𝐶)  =  𝐶𝐺 . Modulo the identification of 𝐵𝐺  with 𝐶𝐺 using this 

isomorphism, we then also get a natural unitary isomorphism between the spectral functors 

associated with our actions. Hence the actions are isomorphic by the easy part of Theorem 

(2.1.4). Conversely, it is clear that isomorphic actions produce unitarily equivalent pairs. 

As in [134], this result can also be formulated in terms of Morita equivalent actions. 

Corollary (2.1.12)[130]: For any reduced compact quantum group 𝐺, there is a bijection 

between Morita equivalence classes of continuous left actions of 𝐺 on unital 𝐶∗ -algebras 

and unitary equivalence classes of singly generated right (𝑅𝑒𝑝𝐺)-module  𝐶∗ -categories. 

Proof: It suffices to show that two actions of G on unital  𝐶∗ -algebras B and C are Morita 

equivalent if and only if the (𝑅𝑒𝑝𝐺) −module 𝐶∗  -categories 𝐷𝐵  𝑎𝑛𝑑 𝐷𝐶  are unitarily 

equivalent. In one direction this is obvious: if a 𝐶 − 𝐵-bimodule M defines the Morita 

equivalence, then 𝐷𝐶 and DB are unitarily equivalent, via an equivalence that maps 𝑁 ∈
𝐷𝐶  𝑖𝑛𝑡𝑜 𝑁 ⊗ 𝐶𝑀 . Conversely, assume we have a unitary equivalence 𝐸: 𝐷𝐶  →
 𝐷𝐵 𝑜𝑓 (𝑅𝑒𝑝𝐺) −module categories. Consider the right Hilbert BmoduleM 

=  𝐸(𝐶). Since it is a generating object in 𝐷𝐵, and therefore the right Hilbert 𝐵 −module 

𝐵 can be isometrically embedded into 𝑀 ⊗𝐻𝑈 for some representation 𝑈, the module 𝑀 

must be full. Thus the action of 𝐺 on 𝐵 is Morita equivalent to the action of 𝐺 𝑜𝑛 𝐶′ =
 𝐸𝑛𝑑𝐵(𝑀). 𝑇ℎ𝑒 (𝑅𝑒𝑝𝐺) −module  𝐶∗-categories 𝐷𝐵and 𝐷𝐶′  are unitarily equivalent, via 

an equivalence that maps 𝑀 ∈  𝐷𝐵  into 𝐶′ ∈ 𝐷𝐶′ . It follows that the ( 𝑅𝑒𝑝𝐺) −
𝑚𝑜𝑑𝑢𝑙𝑒 𝐶∗  −categories 𝐷𝐶and𝐷𝐶′ are unitarily equivalent, via an equivalence that maps 

𝐶 𝑖𝑛𝑡𝑜 𝐶′ . By Theorem (2.1.11)this implies that the actions of 𝐺 𝑜𝑛 𝐶𝑎𝑛𝑑 𝐶 ′ are 

isomorphic, so the actions of 𝐺 on 𝐵 and 𝐶 are Morita equivalent. 
Remark (2.1.13)[130]:In the above proof we used that if an equivariant right Hilbert B-

module M is a generating object in 𝐷𝐵, then it is full. The proof implies that the converse 

is also true, since if 𝑀 is full, then 𝑀 is the image of the generating object 𝐶 in DC, where 

𝐶 =  𝐸𝑛𝑑𝐵(𝑀), 𝑢𝑛𝑑𝑒𝑟 the equivalence of categories 𝐷𝐶  and 𝐷𝐵defined by 𝑀, hence 𝑀 is 

a generating object in𝐷𝐵. Somewhat more explicitly this can also be proved as follows. It 

suffices to show that 𝐵 ∈ 𝐷𝐵   is a subobject of 𝑀 ⊗ 𝑉  for some finite dimensional 

unitary representation 𝑉 𝑜𝑓 𝐺.  Replacing 𝑀  by 𝑀𝑛  we may assume that there exists a 

vector 𝑋 ∈  𝑀  such that the element 〈𝑋, 𝑋〉  ∈  𝐵  is invertible. Furthermore, since the 

union of spectral subspaces of 𝑀 is dense in 𝑀, we may assume that 𝑋 lies in a spectral 

subspace of 𝑀 corresponding to some representation 𝑈. In other words, there exist an 

orthonormal basis {𝜉𝑖}𝑖𝐻𝑈  and vectors  𝑋𝑖 ∈  𝑀 such that 𝛿𝑀(𝑋𝑖)  = ∑ 𝑢𝐼𝐽
∗

𝑖   ⊗ 𝑋𝑗 and one 

of the inner products 〈𝑋𝑖 , 𝑋𝑖〉  ∈  𝐵 is invertible. Consider the vector 

𝑌 =∑𝑋𝑖
𝑖

   ⊗ 𝑝
1
2⁄ 𝜉𝑖

̅̅ ̅̅ ̅̅ ̅̅
∈  𝑀 ⊗ 𝐻𝑈. 

Then 𝑌  is invariant and 〈𝑌, 𝑌〉  =  ∑ 𝑋𝑖𝑖,𝑗 〈𝑋𝑖 ,𝑋𝑗〉 (𝑝𝜉𝑖,𝜉𝑗)  Since the matrix (𝑝𝜉𝑖,𝜉𝑗)𝑖𝑗  is 

positive and invertible, and the matrix (〈𝑋𝑖 , 𝑋𝑗〉)𝑖𝑗 is positive, there exists a constant 𝑐 >

 0 such that 
〈𝑌, 𝑌〉  ≥  𝑐 ∑ 〈𝑋𝑖𝑖  , 𝑋𝑖〉. 

It follows that 〈𝑌, 𝑌〉  i is invertible, so the map 𝐵 ∋  𝑥 ↦  𝑌 〈𝑌, 𝑌〉
−1

2⁄ 𝑥  gives an 

equivariant isometric 

The data provided by a weak unitary tensor functor and the construction of the 

corresponding algebra are reminiscent of various crossed product type constructions. To 
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make the connection more explicit, let us give an equivalent description of weak unitary 

tensor functors in terms of collections of Hilbert module maps satisfying a system of 

quadratic relations. 

Assume 𝐺 is a compact quantum group and 𝐹 ∶  𝑅𝑒𝑝𝐺 →  𝐶𝑜𝑟𝑟𝐴 is a weak unitary tensor 

functor. 

As fix representatives 𝑈𝛼of irreducible unitary representations of 𝐺, and assume 𝑈𝑒 is the 

trivial representation. Consider the correspondences  𝑀𝛼 =  𝐹(𝑈𝛼) and the linear maps 

𝜑𝛼𝛽
𝛾

 from Mor(𝑈𝛼  ×  𝑈𝛽 , 𝑈𝛾) into the space of bounded 𝐴-bilinear maps 𝑀𝛼  ⊗𝐴 𝑀𝛽   →

 𝑀𝛾 defined by 𝜑𝛼𝛽
𝛾
(𝑇)  =  𝐹(𝑇)𝐹2. We then have the following: 

(i) 𝑀𝑒  =  𝐴; 
(ii) if a morphism of the form (𝑇1, . . . , 𝑇𝑛) ∶  𝑈𝛼  ×  𝛽 → ⊕𝑖=1

𝑛 = 𝑈𝛾𝑖  is unitary, then the 

map (𝜑(𝑇1), . . . , 𝜑(𝑇𝑛)): 𝑀𝛼  ⊗𝐴 𝑀𝛼   → ⊕𝑖=1
𝑛  𝑀𝛾𝑖  𝑖𝑠 𝑖𝑠𝑜𝑚𝑒𝑡𝑟𝑖𝑐; 

(iii) the image of the identity map 𝑈𝛽  →  𝑈𝛽 under 𝜑𝑒𝛽
𝛽

 is the map 𝐴 ⊗𝐴  𝑀𝛽  → 𝑀𝛽   such 

that 𝑎 ⊗  𝑋 ⟼  𝑎𝑋, and similarly the image of the identity map 𝑈𝛼  →  𝑈𝛼 under 𝜑𝛼𝑒
𝛼  e is 

the map  𝑀𝛼  ⊗𝐴  𝐴 → 𝑀𝛼  such that 𝑋 ⊗  𝑎 ↦  𝑋𝑎; 
(iv) if a morphism  𝑈𝛼 × 𝑈𝛽  ×  𝑈𝛾 → 𝑈𝛿  is written as ∑ 𝑆𝑖𝑖 (𝑇𝑖  ⊗  𝜄)  =  ∑ 𝑆′𝑗𝑖   (𝜄 ⊗

 𝑇′𝑗)  for some morphisms 𝑇𝑖 ∶  𝑈𝛼 × 𝑈𝛽 → 𝑈𝛼𝑖  , 𝑆𝑖 ∶  𝑈𝛼𝑖 × 𝑈𝛾  →  𝑈𝛿  𝑇′𝑗 ∶ 𝑈𝛽  × 𝑈𝛾  →

𝑈𝛽𝑗  𝑎𝑛𝑑 𝑆′𝑗 ∶ 𝑈𝛼  × 𝑈𝛽𝑗 → 𝑈𝛿  Then 

∑𝛿

𝑖

(𝑆𝑖)(𝛿(𝑇𝑖)⊗  𝜄) =∑𝛿

𝑖

 (𝑆′𝑗  ) (𝜄 ⊗ 𝛿 (𝑇′𝑗)) 𝑎𝑠 𝑚𝑎𝑝𝑠 𝑀𝛼  ⊗𝐴 𝑀𝛿    → 𝑀𝜂 . 

(v) for every vector 𝑋 ∈  𝑀𝛼  and every morphism 𝑇 ∶  𝑈𝛼  ×  𝑈𝛽  →  𝑈𝛾 , the right 

𝐴 −linear map 𝑆𝑋[𝑇] ∶  𝑀𝛽  →  𝑀 mapping 𝑌 into 𝜑(𝑇)(𝑋 ⊗ 𝑌) is adjointable, and if a 

morphism 𝑈𝛾 × 𝑈𝜂  →  𝑈𝛼 × 𝑈𝜂  is written 𝑎𝑠 ∑ (𝑖 𝜄 ⊗ 𝑆𝑖)(𝑇𝑖
∗ ⊗ 𝜄)  = ∑ 𝑝𝑗

∗
𝑗  𝑅𝑗  for 

somemorphism 

𝑇𝑖 ∶ 𝑈𝛼  × 𝑈𝛽𝑖  →  𝑈𝛾𝑆𝑖 :  × 𝑈𝛽𝑖   𝑈𝛿 → 𝑈𝜂, 𝑅𝑗 ∶ 𝑈𝛾  × 𝑈𝛿   →  𝑈𝛾𝑗  𝑎𝑛𝑑 𝑝𝑗 ∶ 𝑈𝛼   × 𝑈𝛾   

→ 𝑈𝛾𝑗   , 𝑡ℎ𝑒𝑛 

∑𝜑

𝑖

(𝑆𝑖)(𝑆𝑋[𝑇𝑖]
∗  ⊗  𝜄) =  ∑𝑆𝑋

𝑖

[𝑃𝑗  ]
∗
𝜑(𝑅𝑗)𝑎𝑠 𝑚𝑎𝑝𝑠 𝑀 ⊗𝐴  𝑀𝛿  → 𝑀𝜂 . 

Properties (i)-(iv) follow immediately by definition. As will become clear from the proof 

of the following proposition, the last property, in the presence of the other four, is 

equivalent to condition (v) in Definition (2.1.3) In particular, if in (ii) we have unitary 

maps instead of isometric maps, then (v) is a consequence of properties (i) (iv). 

Proposition (2.1.13). Assume we are given correspondences 𝑀𝛼  ∈  𝐶𝑜𝑟𝑟𝐴  and linear 

maps 𝜑𝛼,𝛽
𝛾

 from Mor( 𝑈𝛼  × 𝑈𝛽 , 𝑈𝛾)  into the space of bounded 𝐴 − bilinear maps 

𝑀𝛼 ⊗𝐴  𝑀𝛽  →  𝑀𝛾 such that the above 

conditions (i)-(v) are satisfied. Then there exists a unique, up to a natural unitary 

monoidal iso- 

morphism, weak unitary tensor functor 𝐹 ∶  𝑅𝑒𝑝𝐺 →  𝐶𝑜𝑟𝑟𝐴 such that  𝜑𝛼,𝛽
𝛾 (𝑇)𝑓𝑜𝑟 𝑇 ∈

 𝑀𝑜𝑟(𝑈𝛼  ×  𝑈𝛽 , 𝑈𝛾). 

Proof: By virtue of semisimplicity of Rep𝐺, there exists a unique, up to a natural unitary 

isomorphism, unitary functor 𝐹 ∶  𝑅𝑒𝑝𝐺 →  𝐶𝑜𝑟𝑟𝐴  such that 𝐹(𝑈𝛼)  =  𝑀𝛼 . We then 

define 

𝐹2 ∶  𝐹(𝑈𝛼)⊗𝐴  𝐹( 𝑈𝛽) →  𝐹(𝑈𝛼  × 𝑈𝛽  )𝑏𝑦 𝐹2  =  ∑ 𝐹𝑖 (𝑊𝑖
∗ )𝜑(𝑊𝑖), 
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where 𝑊𝑖 ∶  𝑈𝛼  × 𝑈𝛽  → 𝑈𝛾𝑖   are coisometric morphisms such that ∑ 𝑊𝑖
∗

𝑖  𝑊𝑖  =  𝜄.  It is 

easy to see that this definition does not depend on the choice of 𝑤𝑖. By condition (ii) the 

map 𝐹2  is isometric. Note also that 𝐹(𝑊𝑖)𝐹2  =  (𝑊𝑖), 𝑤ℎ𝑒𝑛𝑐𝑒 𝐹(𝑇)𝐹2  =

 𝜑(𝑇) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑇 ∈  𝑀𝑜𝑟(𝑈𝛼  ×  𝑈𝛽 , 𝑈𝛾). By semisimplicity of RepG the isometries 𝐹2 ∶

 𝐹(𝑈𝛼)  ⊗𝐴  𝐹(𝑈𝛽)  →  𝐹(𝑈𝛼  × 𝑈𝛽) uniquely define a family of natural isometries 𝐹2 ∶

 𝐹(𝑈)⊗𝐴   𝐹(𝑉)  →  𝐹(𝑈 ×  𝑉). The only not entirely obvious property left to check is 

commutativity of two diagrams in Definition(2.1.3). 

For the first diagram, we have to check that 𝐹2(𝐹2 ⊗ 𝜄) =  𝐹2(𝜄 ⊗ 𝐹2)  as maps 

𝐹(𝑈𝛼) ⊗𝐴  𝐹(𝑈𝛽)⊗𝐴 , 𝐹(𝑈𝛾)  →  𝐹(𝑈𝛼  ×  𝑈𝛽 × 𝑈𝛾) . It suffices to check that 

𝐹(𝑤)𝐹2(𝐹2  ⊗  𝜄)  =  𝐹(𝑤)𝐹2(𝜄 ⊗ 𝐹2) for any morphism 𝑤:  → 𝑈𝛼  ×  𝑈𝛽 × 𝑈𝛾  ⟶ 𝑈𝛿 . 

Any such morphism can be written as ∑ 𝑆𝑖𝑖 (𝑇𝑖 ⊗ 𝜄)  =  ∑ 𝑆′𝑗𝑖  (𝜄 ⊗ 𝑇′𝑗). By naturality of 

𝐹2 we then have 

𝐹(𝑤)𝐹2(𝐹2  ⊗  𝜄) =∑𝐹

𝑖

 (𝑆𝑖)𝐹2(𝐹(𝑇𝑖)𝐹2  ⊗  𝜄) =  ∑𝜑

𝑖

(𝑆𝑖)(𝜑(𝑇𝑖)⊗  𝜄), 

and similarly 𝐹(𝑤)𝐹2(𝜄 ⊗ 𝐹2)  =  ∑ 𝜑𝑖  (𝑆′𝑗)(𝜄 ⊗  𝜙(𝑇′𝑗)).  By condition (iv) these 

expressions are equal. 

It remains to show that for every X ∈ F(U) the maps 𝑆𝑋  =  𝑆𝑋, 𝑉 ∶  𝐹(𝑉)  →
 𝐹(𝑈 ⊗  𝑉) are adjointable and 𝐹2(𝑆𝑋

∗  ⊗  𝜄)  =  𝑆𝑋
∗  𝐹2. For the adjointability it suffices to 

show that the map 

𝑆𝑋: 𝐹(𝑈𝛽) →  𝐹(𝑈𝛼  ×  𝑈𝛽) is adjointable for every 𝑋 ∈  𝐹(𝑈𝛼). Decomposing 𝑈𝛼  ×  𝑈𝛽 

into irreducible representations, we see that adjointability of 𝑆𝑋 is equivalent to 

adjointability of 𝐹(𝑇)𝑆𝑋  for all morphisms 𝑇 ∶ 𝑈𝛼  ×  𝑈𝛽   →  𝑈𝛾 . Since 𝐹(𝑇)𝑆𝑋(𝑌)  =

 𝐹(𝑇)𝐹2(𝑋 ⊗ 𝑌)  = 𝜑 (𝑇)(𝑋 ⊗ 𝑌) , we have 𝐹(𝑇)𝑆𝑋  =  𝑆𝑋[𝑇],  so adjointability of 

𝐹(𝑇)𝑆𝑋 is part of condition (v). 

Finally, we have to show that 𝐹2(𝑆𝑋
∗  ⊗  𝜄)  =  𝑆𝑋

∗𝐹2  as maps 𝐹(𝑈𝛼  ×  𝑈𝛽)  ⊗𝐴  𝐹(𝑈𝛿)  →

 𝐹(𝑈𝜂) 

for 𝑋 ∈  𝐹(𝑈𝛼). This is equivalent to 

𝐹(𝑆)𝐹2(𝑆𝑋
∗  ⊗  𝜄)(𝐹(𝑇∗)⊗  𝜄) =  𝐹(𝑆)𝑆𝑋

∗  𝐹2(𝐹(𝑇
∗) ⊗  𝜄)𝑎𝑠 𝑚𝑎𝑝𝑠 𝐹(𝑈𝛾)⊗𝐴  𝐹(𝑈𝛿)

→  𝐹(𝑈𝜂) 

for all morphisms 𝑆 ∶ 𝑈𝛽 × 𝑈𝛿   → 𝑈𝜂   𝑎𝑛𝑑 𝑇 ∶  𝑈𝛼  ×  𝑈𝛽  → 𝑈𝛾. The left hand side of the 

above identity equals 𝜑(𝑇)(𝑆𝑋[𝑇]
∗  ⊗  𝜄), while the right hand side, by (2.1), equals 

𝑆𝑋
∗  𝐹(𝜄 ⊗  𝑆)𝐹2(𝐹(𝑇

∗) ⊗  𝜄) = 𝑆𝑋
∗   𝐹((𝜄 ⊗  𝑆)(𝑇∗  ⊗  𝜄))𝐹2. 

Writing the morphism (𝜄 ⊗ 𝑆)(𝑇∗ ⊗ 𝜄) 𝑎𝑠 ∑ 𝑝𝑗
∗

𝑗  𝑅𝑗  for some 𝑅𝑗 ∶ 𝑈𝛾  × 𝑈𝛿  →

𝑈𝛾𝑗   𝑎𝑛𝑑 𝑝𝑗 ∶ 𝑈𝛼  × 𝑈𝛿   → 𝑈𝛾𝑗   , we can write the last expression as 

∑𝑆𝑋
∗

𝑗

𝑝𝑗
∗ 𝐹(𝑅𝑗)𝐹2  =  ∑𝑆𝑋

𝑗

[𝑃𝐽 ]
∗
𝜑(𝑅𝑗 ). 

We thus see that the identity 𝐹2(𝑆𝑋
∗  ⊗ 𝜄)  = 𝑆𝑋

∗   𝐹2  follows from condition (v). 

Furthermore, from the proof we see that it is equivalent to that condition, since any 

morphism 𝑈𝛾  × 𝑈𝛿  →  𝑈𝛼  ×  𝑈𝜂  can be written as ∑ (𝜄 ⊗ 𝑆𝑖)𝑖 (𝑇𝑖
∗  ⊗ 𝜄) for appropriate 

morphisms 𝑇𝑖 ∶  𝑈𝛼  ×  𝑈𝛽𝑖  → 𝑈𝛾  𝑎𝑛𝑑 𝑆𝑖 ∶  𝑈𝛽𝑖  × 𝑈𝛿  →  𝑈𝛾 using Frobenius reciprocity. 

Given data {𝑀𝛼}𝛼 𝑎𝑛𝑑 {𝜑𝛼𝛽
𝛾
}{𝜑𝛼𝛽

𝛾
}𝛼,𝛽,𝛾  as above, the construction of the 

corresponding 𝐶∗ -algebra 𝐵𝐹  from goes as follows. For every α define a new scalar 

product on  �̅�𝛼 = �̅�𝑈𝛼 by 
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(𝜉̅, 𝜁)̅ =  
1

𝑑𝑖𝑚𝑔𝑈𝛼
 (𝜁, 𝑝−1𝜉). 

Consider the right Hilbert 𝐴-module 

𝑀 =  𝜚2 −𝛼
⨁  �̅�𝛼  ⊗𝑀𝛼 

For every 𝑥 =  𝜉̅  ⊗  𝑋 ∈ �̅�𝛼   ⊗𝑀𝛼 define an operator 𝐿𝑥  𝑜𝑛 𝑀 by 

𝐿𝑥(𝜁̅  ⊗  𝑌 ) =   ∑𝑊𝑖(𝜉 ⊗  𝜁)

𝑖

⊗ 𝜑𝛼,𝛽
𝛾𝑖 (𝑊𝑖)(𝑋 ⊗  𝑌 )𝑓𝑜𝑟 𝜁 ̅  ⊗  𝑌 ∈  �̅�𝛽  ⊗𝑀𝛽 , 

where 𝑊𝑖  ∈  𝑀𝑜𝑟(𝑈𝛼  × 𝑈𝛽  ×  𝑈𝛾𝑖) are coisometries such that ∑ 𝑊𝑖
∗𝑊𝑖 = 𝑖𝑖 Then the  can 

be summarized by saying that the operators 𝐿�̅�⊗𝑋 for all 𝜉 ∈  𝐻𝛼 , 𝑋 ∈  𝑀𝛼 and all indices 

α, span a ∗-algebra of bounded operators on the Hilbert 𝐴-module 𝑀,𝑎𝑛𝑑 𝐵𝐹 is the norm 

closure of this algebra. 

Example.(2.1.14)[130]: Assume 𝐺 is the dual of a discrete groupΓ. We identify the set of 

isomorphism classes of irreducible representations of G with Γ. Then, up to equivalence, a 

weak unitary tensor functor 𝐹 ∶  𝑅𝑒𝑝𝐺 →  𝐶𝑜𝑟𝑟𝐴  is the same as a collection of 𝐶∗ -

correspondences 𝑀𝛼 , 𝛼 ∈   Γ,  over 𝐴 , together with 𝐴 -bilinear isometries 𝜑𝛼,𝛽 ∶

 𝑀𝛼 ⊗𝐴  𝑀𝛽  → 𝑀𝛼𝛽   such that 

(a)𝑀𝑒   =  𝐴; 
(b) 𝜑𝑒,𝛼 ∶ 𝐴 ⊗𝐴 𝑀𝛼  →  𝑀𝛼 𝑎𝑛𝑑𝜑𝑒,𝛼  ∶  𝑀𝛼 ⊗𝐴 𝐴 → 𝑀𝛼  are the maps 𝑎 ⊗ 𝑋 ↦
 𝑎𝑋 𝑎𝑛𝑑 𝑋 ⊗ 𝑎 ⟼  𝑋𝑎, respectively; 

(c) 𝜑𝑒𝛽,𝛾(𝜑𝛼,𝛽  ⊗  𝜄) = 𝜑𝛼,𝛽𝛾  (𝜄 ⊗ 𝜑𝛽,𝛾  ); 

(d) for every vector 𝑋 ∈  𝑀𝛼  𝑎𝑛𝑑 𝛽 ∈ Γ , the map 𝑆𝑋 ∶  𝑀𝛽  → 𝑀𝛼𝛽  𝑌  ↦ 𝜑𝛼,𝛽𝛾(𝑋 ⊗

 𝑌), is adjointable, and 𝜑𝛽,𝛾(𝑆𝑋
∗  ⊗  𝜄)  = 𝑆𝑋

∗  𝜑𝛼𝛽,𝛾  as maps 𝑀𝛼𝛽   ⊗𝐴  𝑀𝛾  →  𝑀𝛽𝛾 

This is similar to the definition of product systems of 𝐶∗ -correspondences [138]. The 

difference is that instead of semigroups we consider groups, the maps 𝜑𝛼,𝛽  are not 

assumed to be unitary, but then the additional assumption (d) is required. We remind again 

that if the maps 𝜑𝛼,𝛽 are unitary, condition (d) is not needed. 

Since conditions (a)-(d) describe spectral subspaces of an arbitrary coaction of   Γ, our 

results for 𝐺 =  Γ̂ simply mean that these conditions give an equivalent characterization of 

Fell bundles over Γ [137]. Explicitly, the ∗-structure on the bundle {𝑀𝛼}𝛼 ∈ Γ is given by 

the operation • defined in Lemma(2.1.6), so 𝑋•  = 𝑆𝑋
∗   (1)  ∈ 𝑀𝛼−1   𝑓𝑜𝑟 𝑋 ∈  𝑀𝛼 if A is 

unital, and in general 𝑋• is characterized by 〈𝑋•, 𝑌〉 = 𝜑𝛼,,𝛼−10 (𝑋 ⊗  𝑌) 𝑓𝑜𝑟 𝑌 ∈ 𝑀𝛼−1  . 

Clearly, 𝐵𝐹 is nothing else than the cross-sectional 𝐶∗-algebra of this bundle. 

Assume 𝐺 =  𝑇.  Let 𝑀  be a Hilbert 𝐴 -bimodule, meaning thatM carries the 

structures of a right Hilbert 𝐴-module with inner product 𝐿〈. ,. 〉 and 𝑋〈 𝑌 , 𝑍〉𝑅  of a left 

Hilbert A-module with inner product 𝐿〈. ,. 〉  and  𝑋〈 𝑌 , 𝑍〉𝑅 =  𝐿〈𝑋,𝑌〉𝑍 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑋, 𝑌, 𝑍 ∈
 𝑀 . Consider the complex conjugate Hilbert 𝐴 -bimodule �̅� , 𝑠𝑜 𝑎 �̅�  =  𝑋𝑎∗, �̅� 𝑎 =
𝑎∗ 𝑋̅̅ ̅̅ ̅̅ , 𝐿〈�̅�,�̅�〉  =  and 〈 𝑋 , 𝑌〉𝑅and〈 �̅� , �̅�〉𝑅  =  𝐿〈𝑋,𝑌〉. Define 𝐶∗ -correspondences 𝑀𝑛, 𝑛 ∈

 𝑍, over A by 𝑀0  =  𝐴,𝑀𝑛  =  𝑀 ⊗⊗𝐴𝑛  𝑓𝑜𝑟 𝑛 ≥  1 and 𝑀𝑛 = �̅�⊗
𝐴|𝑛|  for 𝑛 ≤  −1.We 

have obvious isometries 𝜑𝑚,𝑛: 𝑀𝑚  ⊗𝐴 𝑀𝑛   →  𝑀𝑚+𝑛. In order to show that they define a 

weak unitary tensor functor 𝐹 ∶  𝑅𝑒𝑝 𝑇 →  𝐶𝑜𝑟𝑟𝐴, we have to check conditions (a)-(d) 

from the previous example. Conditions (a) and (b) are obviously satisfied. 𝐴 moment’s 

reflection shows that since the maps 𝜑𝑚𝑛are surjective for m and n of the same sign, it 

suffices to check the other two conditions only for 𝛼 =  ±1.For such α conditions (c) and 

(d) easily follow from the identity 𝑋〈 𝑌 , 𝑍〉𝑅  =  𝐿〈𝑋, 𝑌〉𝑍 The corresponding 𝐶∗-algebra 



55 

BF is the algebra 𝐴 ⋊𝑀ℤ, the crossed product of 𝐴 by the Hilbert 𝐴-bimodule 𝑀, defined 

in [131], where it was shown directly that {𝑀𝑛}𝑛 ∈ 𝑍 forms a Fell bundle over ℤ. Recall 

that the 𝐶∗-algebra 𝐴 ⋊ 𝑀ℤ is canonically isomorphic to the Cuntz-Pimsner algebra 𝑂𝑀.  
Let us return to the case of a general compact quantum group 𝐺. Recall that a unitary 2-

cocycleon the dual discrete quantum group �̂� is a unitary element 

Ω ∈  𝑊∗(𝐺) ⊗̅̅̅ 𝑊∗(𝐺) ⊂  (𝐶[𝐺]⊗  𝐶[𝐺])∗ 
such that (Ω ⊗  1)(Δ̂  ⊗  𝜄)(Ω)  =  (1 ⊗ Ω)(𝜄 ⊗ Δ̂)(Ω). Any such cocycle defines a 

unitary fiber functor 𝐸 ∶  𝑅𝑒𝑝𝐺 →  𝐻𝑖𝑙𝑏f that is identity on objects and morphisms, while 

the tensor structure 𝐸Ω (𝑈)  ⊗ 𝐸Ω (𝑉)  →  𝐸Ω (𝑈 ×  𝑉) is given by the action of ∗. By 

Woronowicz’s Tannaka-Krein duality, this functor defines a new deformed compact 

quantum group 𝐺 . More concretely, we have 𝑊∗(�̂�Ω)  = 𝑊∗ (�̂�)  as von Neumann 

algebras, while the new coproduct is given 𝑏𝑦 Δ̂Ω(𝑊)  = ΩΔ̂  (W) Ω∗  Equivalently, 

ℂ[𝐺Ω]  =  ℂ[𝐺] as coalgebras, while the new product and involution are 

obtained by dualizing (𝑊∗(𝐺Ω), Δ̂Ω ). 
Assume now that we have a continuous left action θ of the reduced form of 𝐺 on a 𝐶∗-
algebra 𝐵  with fixed point algebra 𝐴 . Consider the corresponding spectral functor 𝐹 ∶
 𝑅𝑒𝑝𝐺 →  𝐶𝑜𝑟𝑟𝐴. Since by construction the categories RepG and RepG are equivalent, 

we can consider 𝐹 as a weak unitary tensor functor 𝑅𝑒𝑝𝐺 →  𝐶𝑜𝑟𝑟𝐴. It defines a  𝐶∗ -
algebra B carrying a continuous left action of the reduced form of 𝐺. These algebras were 

defined and studied in greater generality in [136] and [141] (in particular, see [147] for the 

case of the dual of a discrete group). But as we will see in a moment, the categorical 

picture provides a very simple and concrete approach. 

First of all we will need a special element 𝑢 ∈ 𝑈(𝐺) = [𝐺]∗ defined by 𝑢 =  𝑚(𝜄 ⊗
 �̂�)(Ω), where m: (ℂ[𝐺]⊗ ℂ[𝐺])∗  →  ℂ[𝐺]∗ is the product map, which is by definition 

dual to the coproduct on ℂ[G]Ω.The element u is invertible, with inverse given by 

𝑈−1  =  𝑚( �̂�   ⊗  𝜄)(Ω∗) =  �̂�(𝑈∗). 

The antipode on the dual of 𝐺  is given by �̂�  =  𝑢 �̂�(·)𝑈−1 , and correspondingly the 

involution † on ℂ [𝐺Ω] is given by 

𝑎†  = [(𝑈−1)∗  ⊗  𝜄 ⊗ 𝑈∗)∆2(𝑎)]2  =  (𝑈∗  ⊗  𝜄 ⊗ (𝑈−1)∗∆(2)(𝑎∗), 
. It is easy to check that the element u can also be characterized by the identities 

                          Ω 𝑅𝑈  =  (𝑢 ⊗  𝜄)𝑅𝑈 𝑎𝑠 𝑚𝑎𝑝𝑠 ℂ →  𝐻𝑈  ⊗ 𝐻𝑈  ,                      (5) 
                       

Next, consider the subalgebra 𝐵 ⊂  𝐵 of regular elements. Then the map 𝐵 ⊗  𝑈(𝐺) →
 𝐵, 𝑥 ⊗  𝜔 ⟼  𝑥 ⊳  𝜔 =  (𝜔 ⊗  𝜄)𝜃(𝑥), defines a right 𝑈(𝐺)-module structure on 𝐵. 

Proposition(2.1.15)[130]: With the above notation, the following formulas define a new ∗-

algebra B withunderlying space 𝐵, product ⋆ and involution†  : 
𝑥 ⋆  𝑦 =  𝑚((𝑥 ⊗  𝑦)  ⊳), 𝑥 † =  𝑥∗  ⊳  𝑢∗, 

where 𝑚: 𝐵 ⊗  𝐵 →  𝐵 is the original product map. Furthermore, the map 𝜃, considered 

as a map  𝐵Ω →  ℂ[𝐺Ω] ⊗ 𝐵Ω , defines a left algebraic action of 𝐺Ω 𝑜𝑛 𝐵Ω . 
Proof: By multiplying  by a phase factor we may assume that  is counital, that is, (𝜀̂  ⊗
 𝜄)(Ω)  = (𝜄 ⊗ 𝜀̂)(Ω)  =  1. 
For every finite dimensional unitary representation 𝑈 ∈  𝐵(𝐻𝑈)  ⊗ ℂ [𝐺] denote by 𝑈 the 

same element 𝑈 considered as an element of 𝐵(𝐻𝑈)  ⊗ ℂ [𝐺]. Then we have a unitary 

monoidal equivalence ofcategories 𝐸Ω ∶  𝑅𝑒𝑝𝐺Ω  →  𝑅𝑒𝑝𝐺 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡𝐸Ω (𝑈Ω)  =  𝑈, 𝐸 is 

the identity map on morphisms, 
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and 𝐸2
Ω ∶  𝐸Ω (𝑈Ω) ⊗ 𝐸Ω (𝑉Ω ) → 𝐸Ω ( 𝑈Ω × 𝑉Ω ) is given by Ω: 𝐻𝑈  ⊗ 𝐻𝑉   → 𝐻𝑈  ⊗

𝐻𝑉   =  𝐻𝑈×𝑉 . 
we claim that with the above setup the ∗-algebra 𝐵𝐹𝐸Ω corresponding to the weak unitary 

tensor functor 𝐹𝐸Ω is exactly𝐵Ω, and the map θ𝐹𝐸Ω coincides with 𝜃. Note that counitality 

of Ω is needed for condition (iii) in Definition (2.1.3)to be satisfied by the functor 𝐹𝐸Ω. 

As linear spaces, we have 

𝐵𝐹𝐸Ω  =  �̅�𝑈𝛼Ω𝛼
⊕  ⊗ 𝐹𝐸Ω (𝑈𝛼

Ω)  =  �̅̅̅�𝛼𝛼
⊕   ⊗  𝐹(𝑈𝛼)  =  𝐵. 

Denote by ⋆ the product on 𝐵𝐹𝐸Ω . Note that if 𝑤: 𝐻𝛾  → 𝐻𝛼   ⊗ 𝐻𝛽  is a morphism  𝑈𝛾 →

𝑈𝛼   × 𝑈𝛽  , then Ω 𝑤 is a morphism 𝑈𝛾
Ω → 𝑈𝛼

Ω  ×  𝑈𝛽
Ω. From this we get that if 𝑥 = 𝜉̅  ⊗

 𝑋 ∈  �̅�𝛼  ⊗  𝐹(𝑈𝛼) and 𝑦 =  𝜁 ̅  ⊗  𝑌 ∈  �̅�𝛽  ⊗  𝐹(𝑈𝛽), then 

𝑥 ⋆  𝑦 =  ∑𝑊𝑖
∗ Ω∗(𝜉 ⊗  𝜁)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑖

⊗  𝐹(𝑊𝑖
∗)𝐹2(𝑋 ⊗  𝑌 ), 

where 𝑊𝑖  ∈  𝑀𝑜𝑟(𝑢𝛾𝑖  , 𝑈𝛼  ×  𝑈𝛽) are isometries such that ∑ 𝑊𝑖𝑊𝐼
∗  =  𝜄𝑖 . Since the right 

𝑈(𝐺)-module structure on 𝐵 = 𝐵𝐹   is given by (�̅�  ⊗  𝑍)  ⊳  𝜔 =  𝜔 ∗ 𝜂̅̅ ̅̅ ̅̅ ̅  ⊗  𝑍, the above 

identity means exactly that 

𝑥 ⋆  𝑦 =  𝑚((𝑥 ⊗  𝑦) ⊳ Ω ). 

Denote the involution on 𝐵𝐹𝐸Ω  𝑏𝑦 †.  Take 𝑥 =  𝜉̅  ⊗  𝑋 ∈  �̅�𝛼  ⊗  𝐹(𝑈𝛼) . We may 

assume that �̅�𝛼  = 𝑈�̅�  for some index �̅�. Then, by definition, 

𝑥†  = 𝜉#̅̅ ̅   ⊗ 𝑋# 𝑠, 
where 𝜉#  ∈ 𝐻�̅�  is such that (𝑅𝛼

Ω)(𝜁 ⊗  𝜉)  =  (𝜁, 𝜉#) for all 𝜁 ∈  𝐻�̅� 𝑎𝑛𝑑 𝑋
#  ∈  𝐹(𝑈�̅�) 

is such that(𝐹𝐸Ω)(�̅�𝛼
Ω)∗(𝐹𝐸Ω)2(𝑋 ⊗  𝑌)  = 〈𝑋# , 𝑌〉 for all 𝑌 ∈  𝐹(𝑈�̅�), where 𝑅𝛼

Ω  and 

�̅�𝛼
Ω  solve the conjugate equations for 𝑈𝛼

Ω and 𝑈�̅�
Ω. Note that by irreducubility the operation 

# depends on the choice of such a solution, but𝜉#̅̅ ̅  ⊗ 𝑋# does not. Taking the solutions 

𝑅𝛼 𝑎𝑛𝑑 �̅�𝛼  of the conjugate equations for 𝑈𝛼  𝑎𝑛𝑑 𝑈�̅� defined by (1.1), we can take 𝑅𝛼
Ω  =

Ω𝑅𝛼  𝑎𝑛𝑑 �̅�𝛼
Ω  = Ω�̅�𝛼 . In this case 𝑋# = 𝑋•, while for 𝜉†, using (4.1), we get 

 (𝑅𝛼
Ω)∗(𝜁 ⊗  𝜉) = 𝑅𝛼

∗   (𝑈∗𝜁 ⊗  𝜉) =  (𝑈∗𝜁, 𝜉•), 
𝑠𝑜 𝜉#  =  𝑢𝜉•. 𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 

                                 𝑥†  =  𝑢𝜉•  ⊗ 𝑋•  =  (𝜉•  ⊗ 𝑋•) ⊳ 𝑈∗   =  𝑥∗  ⊳ 𝑈∗. 
Finally, the maps 𝜃 =  𝜃𝐹  𝑎𝑛𝑑𝜃𝐹𝐸Ω   coincide on𝐵𝐹𝐸Ω , since they both define the same 

right 𝑈(𝐺)-module structure, given by (�̅�  ⊗  𝑍) ⊳  𝜔 =  𝑤∗𝜂̅̅ ̅̅ ̅  ⊗  𝑍. 
The construction of a new product on a module algebra using a cocycle on a Hopf algebra 

is, of course, well-known. The point of the above proposition is that it effortlessly gives 

not only the new product, but also the ∗-structure and the existence of a unique 𝐶∗ -

completion of the algebra carrying an action of the reduced deformed quantum group. 

Section (2.2): Unital 𝑪∗ - Algebras 
A compact quantum group [176], [177] is a unital 𝐶∗  -algebra H with a given unital 

injective ∗-homorphism Δ (referred to as comultiplication) 

                   𝛥: 𝐻 →  𝐻 𝐻𝑚𝑖𝑛
⊗                                                               (7) 

 

that is coassociative, i.e. it renders the diagram 



57 

 
commutative, and such that the two-sided cancellation property holds: 

 {(𝑎 ⊗  1)𝛥(𝑏) | 𝑎, 𝑏 ∈  𝐻}𝑐𝑙𝑠 =  𝐻⨂𝐻

min  

 =  {𝛥(𝑎)(1 ⊗  𝑏) | 𝑎, 𝑏 ∈  𝐻}𝑐𝑙𝑠.           (8) 

Here 0𝑚𝑖𝑛
⊗

denotes the spatial tensor product of 𝐶∗ -algebras and cls denotes the closed 

linear span of a subset of a Banach space. 

Let 𝐴 be a unital 𝐶∗ -algebra and 𝛿 ∶  𝐴 →  𝐴 𝐻𝑚𝑖𝑛
⊗

 an injective unital ∗-homomorphism. 

We call δ a coaction (or an action of the compact quantum group (𝐻, 𝛥) 𝑜𝑛 𝐴, 𝑐𝑓.  

(i) (𝛿 ⊗  𝑖𝑑)  ∘  𝛿 =  (𝑖𝑑 ⊗  𝛥)  ∘  𝛿 (coassociativity), 

(ii) {𝛿(𝑎)(1 ⊗  ℎ) | 𝑎 ∈  𝐴, ℎ ∈  𝐻}𝑐𝑙𝑠  =  𝐴 𝐻𝑚𝑖𝑛
⊗

 (counitality). 

We shall consider three properties of coactions. 

Definition (2.2.1)[148]: The coaction 𝛿 ∶  𝐴 →  𝐴 𝐻𝑚𝑖𝑛
⊗   is free iff 

 {(𝑥 ⊗  1)𝛿(𝑦) | 𝑥, 𝑦 ∈  𝐴}𝑐𝑙𝑠 = 𝐴 𝐻𝑚𝑖𝑛
⊗ . 

Given a compact quantum group (𝐻, 𝛥), we denote by 𝑂(𝐻) its dense Hopf ∗-subalgebra 

spanned by the matrix coefficients of its irreducible unitary representations [177], [166]. 

This is Woronowicz’s Peter-Weyl theory in the case of compact quantum groups. 

Moreover, denoting by ⊗ the purely algebraic tensor product over the field C of complex 

numbers, we define the Peter-Weyl subalgebra of 𝐴 (cf. [167], [173]) as 

              𝑃𝐻(𝐴) ∶=  { 𝑎 ∈  𝐴| 𝛿(𝑎)  ∈  𝐴 ⊗  𝑂(𝐻) }.                                            (9) 
Using the coassociativity of the coaction δ, one can check that 𝑃𝐻(𝐴)   is a right 

𝑂(𝐻) −comodule algebra. In particular, 𝑃𝐻(𝐴) =  𝑂(𝐻). The assignment 𝐴 ↦ 𝑃𝐻(𝐴) is 

functorial with respect to equivariant unital ∗ -homomorphisms and comodule algebra 

maps. We call it the Peter-Weyl functor. 

Definition (2.2.2)[148]: The coaction 𝛿 ∶  𝐴 → 𝐴 𝐻𝑚𝑖𝑛
⊗   satisfies the Peter-Weyl-Galois 

(PWG) condition iff the canonical map can: 𝑃𝐻  (𝐴) 𝑃𝐻 (𝐴𝐵
⊗ )  → 𝑃𝐻 (𝐴)   ⊗  𝑂(𝐻), 

                                       

     𝑐𝑎𝑛: 𝑥 ⊗  𝑦 ↦  (𝑥 ⊗  1)𝛿(𝑦),                                        (10) 
is bijective. Here 𝐵 ∶=  𝐴𝑐𝑜𝐻 ∶=  {𝑎 ∈  𝐴 | 𝛿(𝑎)  =  𝑎 ⊗  1} is the unital 𝐶∗ -subalgebra 

of coaction invariants (fixed-point subalgebra). 

Throughout the tensor product over an algebra denotes the purelyalgebraic tensor product 

over that algebra. Note that  𝑃𝐻(𝐴)⊗𝐵   𝑃𝐻(𝐴) is not in general an algebra, and even if we 

lift the canonical map to 

    𝑐𝑎�̃�: 𝑃𝐻 (𝐴)  ⊗ 𝑃𝐻 (𝐴) ∋  𝑥 ⊗  𝑦 ⟼ (𝑥 ⊗  1)𝛿(𝑦) ∈ 𝑃𝐻 (𝐴)  ⊗  𝑂(𝐻),         (11) 
it is not an algebra homomorphism, and cannot as such be completed into a continuous 

map between C*-algebras. However, it can be defined on the level of Hilbert modules (see 

[133]). 

Definition (2.2.3)[148]: The coaction 𝛿 ∶  𝐴 →  𝐴 𝐻𝑚𝑖𝑛
⊗

 is strongly monoidal iff for 

all left 𝑂(𝐻)-comodules V and W the map 

𝛽 ∶  (𝑃𝐻(𝐴) ⊡ 𝑉 ) ⊗ 𝐵 (𝑃𝐻 (𝐴)⊡𝑊) → 𝑃𝐻 (𝐴)⊡ (𝑉 ⊗𝑊), 
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(∑𝑎𝑖
𝑖

⊗𝑣𝑖) ⊗ (∑𝑏𝑗
𝑖

⊗𝑤𝑗)  ⟼ (∑𝑎𝑖𝑏𝑗
𝑖,𝑗

⊗𝑤𝑗)   ⊗ (𝑣𝑖  ⊗ 𝑤𝑗), 

 is bijective. 

In the above definition, we have used the cotensor product 

𝑃𝐻(𝐴) ⊡ 𝑉 ∶=  {𝑡 ∈  𝑃𝐻(𝐴)⊗  𝑉 | (𝛿 ⊗  𝑖𝑑)(𝑡)  =  (𝑖𝑑 ⊗𝑉  𝛥)(𝑡)},                  (12) 
where 𝛥𝑉

0 ∶  𝑉 →  𝑂(𝐻) ⊗  𝑉 is the given left coaction of 𝑂(𝐻) 𝑜𝑛 𝑉. The coaction of 

𝑂(𝐻) 𝑜𝑛 𝑉 ⊗𝑊 is the diagonal coaction.  

Theorem(2.2.4)[148]: Let 𝐴 be a unital 𝐶∗-algebra equipped with an action of a compact 

quantum group (𝐻, 𝛥) given by 𝛿 ∶  𝐴 → 𝐴 𝐻𝑚𝑖𝑛
⊗ . Then the following are equivalent: 

(i) The action of (𝐻, 𝛥) 𝑜𝑛 𝐴 is free. 

(ii) The action of (𝐻, 𝛥) 𝑜𝑛 𝐴 satisfies the Peter-Weyl-Galois condition. 

(iii) The action of (𝐻, 𝛥) on A is strongly monoidal. 

Note that of the three equivalent conditions, the first uses functional analysis, the second is 

algebraic, and the third is categorical. The difficult implication, which is the core of the 

theorem, is (𝑖)  ⇒  (𝑖𝑖). It proves that, for any free action, there exists a strong connection, 

a key technical device for index-pairing computations (e.g. [164]). In the spirit of 

Woronowicz’s Peter-Weyl theory, our result states that the original functional-analysis 

formulation of free action is equivalent to the much more algebraic 𝑃𝑊𝐺-condition 

We now proceed to explain our main result in the classical setting. Let 𝐺 be a compact 

Hausdorff topological group acting on a compact Hausdorff topological space 𝑋  by a 

continuous right action 𝑋 ×  𝐺 →  𝑋. It is immediate that the action is free, i.e. 𝑥𝑔 =
 𝑥 ⇒  𝑔 =  𝑒 (where e is the identity element of 𝐺), if and only if 

                                                                          (𝑥, 𝑔) ⟼ (𝑥, 𝑥𝑔)                                         , (13) 
is a homeomorphism. Here 𝑋 0𝑋/𝐺

×  𝑋 is the subset of 𝑋 ×  𝑋 consisting of pairs (𝑥1, 𝑥2) 

such that 𝑥1 and 𝑥2 are in the same 𝐺-orbit. 

This is equivalent to the assertion that the ∗-homomorphism 

                                                     

𝐶 (𝑋 0𝑋
𝐺

×   𝑋) →  𝐶(𝑋 ×  𝐺)                                                         (14) 

                                    

obtained from the above map (𝑥, 𝑔)  ↦  (𝑥, 𝑥𝑔) is an isomorphism. Here, as usual, 𝐶(𝑌) 

denotes the commutative 𝐶∗ -algebra of all continuous complexvalued functions on a 

compact Hausdorff space 𝑌. 

In turn, the assertion that the ∗-homomorphism (14) is an isomorphism is 

readily proved equivalent to 

                        {(𝑥 ⊗  1)𝛿(𝑦) | 𝑥, 𝑦 ∈  𝐶(𝑋)}𝑐𝑙𝑠 =  𝐶(𝑋) 0𝑚𝑖𝑛
 ⊗   𝐶(𝐺),                   (15) 

                        

where 

𝛿 ∶  𝐶(𝑋) ⟶ 𝐶(𝑋) 0𝑚𝑖𝑛
 ⊗  𝐶(𝐺), (𝛿(𝑓)(𝑔))(𝑥) ≔  𝑓(𝑥𝑔)                    (16) 

is the ∗-homomorphism obtained from the action map 𝑋 ×  𝐺 →  𝑋. Hence, in the case of 

a compact Hausdorff group acting on a compact Hausdorff space, freeness in the usual 

sense agrees with freeness as defined in the setting of a compact quantum group acting on 

a unital 𝐶∗-algebra. Thus Theorem (2.2.4) provides the following characterization of free 

actions in the classical case. 
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Theorem (2.2.5)[148]:  Let 𝐺 be a compact Hausdorff group acting continuously on a 

compact Hausdorff space 𝑋. Then the action is free if and only if the canonical map 

𝑐𝑎𝑛: 𝑃𝐶(𝐺)(𝐶(𝑋)) 0
𝐶(
𝑋
𝐺
)

⊗ 𝑃𝐶(𝐺) (𝐶(𝑋)) →  𝑃𝐶(𝐺)(𝐶(𝑋))⊗  𝑂(𝐶(𝐺))                      (17) 

is an isomorphism. 

Observe that even in the above special case of a compact Hausdorff group acting on a 

compact Hausdorff space, a proof is required for the equivalence of freeness of the action 

and the bijectivity of the canonical map (𝑃𝑊𝐺𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛). Theorem (2.2.5)brings a new 

algebraic tool (strong connection) to the realm of compact Hausdorff principal bundles.  

In this classical setting, the Peter-Weyl algebra 𝑃𝐶(𝐺)(𝐶(𝑋)) is the algebra of 

continuous global sections of the associated bundle of algebras 𝑋 ×𝐺  𝑂(𝐶(𝐺)): 

                                               𝑃𝐶(𝐺)(𝐶(𝑋)) =  𝛤 (𝑋 ×𝐺  𝑂(𝐶(𝐺)))                                   (18) 

Here 𝑂(𝐶(𝐺)) is the subalgebra of 𝐶(𝐺) spanned by the matrix coefficients of irreducible 

unitary representations of 𝐺 . We view 𝑂(𝐶(𝐺)) as a representation space of 𝐺  via the 

formula 

                                             (𝜚(𝑔)(𝑓))(ℎ) ≔  𝑓(𝑔−1ℎ).                                             (19 ) 
The algebra 𝑂(𝐶(𝐺)) is topologized as the direct limit of its finite-dimensional subspaces. 

Multiplication and addition is pointwise. Note that, since 𝑂(𝐶(𝐺)) is cosemisimple, it 

belongs to the category of representations of 𝐺 that are purely algebraic direct sums of 

finite-dimensional representations of 𝐺. We denote this category by 𝐹Rep⊕(𝐺). Due to 

the cosemisimplicity of 𝑂(𝐶(𝐺)),  the following formula for the left coaction of 

𝑂(𝐶(𝐺)) 𝑜𝑛 𝑉  (𝑣 𝛥(𝑣))(𝑔):= 𝜚(𝑔−1)(𝑣), 𝑤ℎ𝑒𝑟𝑒 𝜚 ∶  𝐺 →  𝐺𝐿(𝑉)  is a representation, 

establishes an equivalence of 𝐹Rep⊕(𝐺)  with the category of all left 𝑂(𝐶(𝐺)) − 

comodules. As with the special case 𝑉 =  𝑂(𝐶(𝐺)), all vector spaces in this category are 

topologized as the direct limits of their finite-dimensional subspaces. 

Theorem (2.2.5)unifies continuous free actions of compact Hausdorff groups on compact 

Hausdorff spaces and principal actions of affine algebraic groups on affine schemes [159], 

[170]. Thus the main result of might be viewed as continuing the Atiyah-Hirzebruch 

program of transferring ideas (e.g. K-theory) from algebraic geometry to topology [150], 

[151]. In the same spirit, our main theorem (Theorem(2.2.4)) unifies the 𝐶∗ -algebraic 

concept of free actions of compact quantum groups [161] with the Hopf-algebraic concept 

of principal coactions [163]. Theorem (2.2.4)implies the existence of strong connections 

[162] for free actions of compact quantum groups on unital 𝐶∗ -algebras (connections on 

compact quantum principal bundles) thus providing a theoretical foundation for the 

plethora of concrete constructions studied over the past two decades within the general 

framework noncommutativegeometry [156]. We apply Theorem (2.2.4)to fields of 𝐶∗  -

algebras. We prove the key part of our main theorem, that is the equivalence of freeness 

and the Peter-Weyl-Galois condition., we consider the general algebraic setting of 

principal coactions. Following Ulbrich [175] and Schauenburg [170], we prove thatthe 

principality of a comodule algebra P over a Hopf algebra ℋ is equivalent to the exactness 

and strong monoidality of the cotensor product functor 𝑃 ⊡ℋ. In particular, this proves 

the equivalence of the Peter-Weyl-Galois condition and strong monoidality for actions of 

compact quantum groups, thus completing the proof of the main theorem. 

Although Theorem (2.2.5)is a special case of Theorem(2.2.4), the proof we give of 

Theorem (2.2.5) is not a special case of the proof of Theorem (2.2.4), Therefore, we treat 

Theorem(2.2.5) separately, and prove it The proof uses the trong monoidality (i.e. the 
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preservation of tensor products) of the Serre-Swan equivalence and a general algebraic 

argument, we give a vector-bundle interpretation of the aforementioned general algebraic 

argument. This provides a much desired translation between the algebraic and topological 

settings. 

We prove that if a unital 𝐶∗-algebra 𝐴 equipped with an action of a compact quantum 

group can be fibred over a compact Hausdorff space 𝑋 with the 𝑃𝑊𝐺-condition valid on 

each fibre, then the 𝑃𝑊𝐺-condition is valid for the action on 𝐴. We end with an appendix 

discussing the well-known fact that regularity of a finite covering is equivalent to 

bijectivity of the canonical map (19). 

A.Equivalence of freeness and the Peter-Weyl-Galois condition 

The implication “𝑃𝑊𝐺-𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 ⇒  𝑓𝑟𝑒𝑒𝑛𝑒𝑠𝑠” is proved as follows. The 

PWG-condition immediately implies that 

(𝑃𝐻(𝐴)⊗  ℂ)𝛿(𝑃𝐻(𝐴)) =  𝑃𝐻(𝐴)⊗  𝑂(𝐻).                                     (20) 
 

As the right-hand side is a dense subspace of A ⊗𝑚𝑖𝑛 H, we obtain the density condition 

defining freeness. 

For the converse implication “𝑃𝑊𝐺-condition ⇐ freeness” we need some preparations. If 

(𝑉, 𝛿𝑉)  is a finite-dimensional right 𝐻 -comodule, we write 𝐻𝑉  for the smallest vector 

subspace of H such that 𝛿𝑉  (𝑉)  ⊆  𝑉 ⊗ 𝐻𝑉. We write 

                                  

𝐴𝑉 ∶=  {𝑎 ∈  𝐴 | 𝛿(𝑎)  ∈  𝐴 ⊗ 𝐻𝑉}.                                        (21) 
                                      

Note that in the case (𝐴, 𝛿)  =  (𝐻, 𝛥), we have 𝐴𝑉  =  𝐻𝑉. Thus HV is a coalgebra. One 

can define a continuous projection map 𝐸𝑉  from 𝐴 onto  𝐴𝑉  as follows. Let us call two 

finite-dimensional comodules of 𝐻 disjoint if the set of morphisms between them only 

contains the zero map. 

Then 𝐸𝑉 is the unique endomorphism of 𝐴 which is the identity on 𝐴𝑉 and which vanishes 

on 𝐴𝑊 for any finite-dimensional comodule W that is disjoint from 𝑉. In the special case 

of (𝐴, 𝛿)  =  (𝐻, 𝛥), we use the notation 𝑒𝑉 instead of 𝐸𝑉. The equivariance property 

      𝛿 ∘ 𝐸𝑉   =  (𝑖𝑑 ⊗ 𝑒𝑉  ) ∘  𝛿                                                    (22) 
                                                   

is proved by a straightforward verification. When 𝑉 is the trivial representation, we write 

𝐸𝑉 = 𝐸𝐵  𝑎𝑛𝑑 𝑒𝑉 =  𝜑𝐻,𝑤ℎ𝑒𝑟𝑒 𝐵 ∶= 𝐴𝑐𝑜𝐻  is the algebra ofcoaction invariants and 𝜑𝐻 

is the invariant state on 𝐻. Then the formula (3.16) specializes to 

𝐸𝐵  =  (𝑖𝑑 ⊗  𝜑𝐻) ∘   𝛿.                                              (23) 
                         

The key lemma in the proof of Theorem (2.2.4)is: 

Lemma (2.2.6)[148]: in [133]). Let 𝛿 ∶  𝐴 →  𝐴 ⊗𝑚𝑖𝑛 𝐻 be a free coaction, and let 𝑉 be a 

finite-dimensional 𝐻 -comodule. Then 𝐴𝑉  is finitely generated projective as a right 𝐵 -

module. 

Note that in the classical case 𝑋 ×  𝐺 →  𝑋, we have 𝐻 =  𝐶(𝐺) and 𝐵 =  𝐶(𝑋/𝐺). The 

𝐵-module 𝐴𝑉is then 𝛤(𝑋 ×𝐺 𝐻𝑉), and thus it is finitely generated projective. 

Define a 𝐵-valued inner product on𝐴𝑉 by 

〈𝑎, 𝑏〉𝐵 ∶=  𝐸𝐵(𝑎
∗𝑏).                                                                         (24) 

Lemma (2.2.7)[148]: The 𝐵-valued inner product(19) makes 𝐴𝑉 a right Hilbert 𝐵-module 

[139]. The Hilbert module norm ‖𝑎0‖𝐵 ∶= ‖〈𝑎 , 𝑎〉𝐵0‖
1
2⁄  is equivalent to the 𝐶∗ −norm 



61 

of A restricted to 𝐴𝑉 .We will need the following lemma concerning the interior tensor 

product of Hilbert modules. 

Lemma (2.2.8)[148]: Let 𝐶 𝑎𝑛𝑑 𝐷 be unital 𝐶∗-algebras, and let (ℰ , 〈·   , · 〉𝐶) be a right 

Hilbert 𝐶-module that is finitely generated projective as a right 𝐶-module. Let (ℊ〈· , · 〉𝐷) 
be an arbitrary right Hilbert D-module, and 𝜋 ∶  𝐶 →  𝐿(ℊ) be a unital ∗-homomorphism 

of 𝐶 into the 𝐶∗ -algebra of adjointable operators on 𝐹. Then the algebraic tensor product 

ℰ  ⊗𝐶  𝐹 is a right Hilbert 𝐷-module with respect to the inner product given by 

〈𝑥 ⊗  𝑦 , 𝑧 ⊗  𝑤〉 ∶=  〈𝑦, 𝜋(〈𝑥, 𝑧〉𝐶)𝑤〉𝐷. 

Proof: We need to prove that the semi-norm ‖𝑧0‖  =  ‖〈 𝑧, 𝑧〉𝐷‖
1
2⁄ 𝑜𝑛 ℰ ⊗𝐶 ℊ  is in fact a 

norm with respect to which  ℰ ⊗𝐶 ℊ is complete. The statement obviously holds for  ℰ =
𝐶𝑛 , the n-fold direct sum of the standard right 𝐶module 𝐶. Since 𝐸 is finitely generated 

projective, 𝐸 can be realized as a direct summand of 𝐶𝑛.o that the conclusion also applies 

in this case. 

We are now ready to prove the implication “𝑃𝑊𝐺-condition ⇐ freeness”. By the freeness 

assumption, the image of can is dense in 𝐴⊗𝐻 . In particular, for a given finite-

dimensional comodule 𝑉 and any ℎ ∈ 𝐻𝑉   , we can find a sequence 𝐾𝑛  ∈  𝑁 and elements 

𝑝𝑛.𝑖and 𝑞𝑛.𝑖 in 𝑝𝐻(A) with 1 ≤  𝑖 ≤ 𝐾𝑛  such that 

                                                 ∑ ( 𝑝𝑛.𝑖 ⊗  1)𝛿(𝑞𝑛.𝑖)
𝑛
1
→∞
→     1 ⊗  ℎ

𝐾𝑛

𝑖=1
                    (25) 

in the 𝐶∗-norm. Applying id ⊗𝑒𝑉 to this expression, and using (25), we seethat we can 

take 𝑞𝑛,𝑖  ∈ 𝐴𝑉 . 
Applying δ to the first leg of (19) and using coassociativity, we obtain 

∑ 𝛿( 𝑝𝑛.𝑖) ⊗  1)(𝑖𝑑 ⊗ ∆)(𝛿(𝑞𝑛,𝑖)
𝑛
1
→∞
→     1 ⊗ 

𝐾𝑛

𝑖=1
 1 ⊗   ℎ.                      (26) 

Observe now that, since 𝑞𝑛.𝑖  ∈  𝐴𝑉  , by (15) we obtain (𝑖𝑑 ⊗  𝛥)(𝛿(𝑞𝑛.𝑖)) ∈ 𝐴𝑉  ⊗
𝐻𝑉  ⊗ 𝐻𝑉. Hence the left-hand side of (26) belongs to the tensor product (𝐴 ⊗𝑚𝑖𝑛  𝐻) ⊗
𝐻𝑉 . 𝐴𝑠𝐻𝑉   is finite dimensional, the restriction of the antipode  𝑆  of 𝑂(𝐻)  to 𝐻𝑉  is 

continuous. Therefore, we can apply S to the third leg of 
(25) to conclude  

∑  
𝐾𝑛

𝑖=1
(𝛿(𝑝𝑛.𝑖) ⊗  1)(𝑖𝑑 ⊗ (𝑖𝑑 ⊗  𝑆)  ∘ 𝛥) (𝛿(𝑞𝑛,𝑖))

𝑛
1
→∞
→     1 ⊗  1 ⊗  𝑆(ℎ)   (27) 

Again by the finite dimensionality of 𝐻𝑉 , multiplying the second and third legs is a 

continuous operation, so that 

        ∑  
𝐾𝑛

 𝑖=1
𝛿(𝑝𝑛.𝑖)(𝑞𝑛.𝑖  ⊗  1)

𝑛
1
→∞
→    1 ⊗  𝑆(ℎ).                                     (28) 

Since 𝑆(ℎ)  ∈ 𝐻𝑉  , where �̅� is the contragredient of 𝑉 , applying 𝑖𝑑 ⊗ 𝑒𝑉   to the above 

limit and using the equivariance property (16) shows that in the above limit we can choose 

𝑝𝑛.𝑖  ∈  𝐴�̅�. 

Consider now the right B-module map 

      𝐺𝑉 ∶ 𝐴𝑉  1𝐵
⊗ 𝐴𝑉  →  𝐴𝑉⊗𝑉   ⊗ 𝐻�̅�  , 𝑎 ⊗  𝑏 ⟼  𝛿(𝑎)(𝑏 ⊗  1).            (29) 

By Lemma (2.2.6) and Lemma(2.2.8), the algebraic tensor product on the left hand side 

becomes an interior tensor product of right Hilbert 𝐵-modules. The inner product for 

 𝐴�̅� ⊗𝐵  𝐴𝑉 is 
                            

  〈𝑐 ⊗  𝑑, 𝑎 ⊗ 𝑎 ⊗  𝑏〉𝐵  =  𝐸𝐵(𝑑
∗𝐸𝐵(𝐶

∗𝑎)𝑏).                      (30) 
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On the other hand, equipping 𝐻𝑉 with the Hilbert-space structure 〈ℎ, 𝑘〉  =  𝜑𝐻(ℎ
∗𝑘), the 

right-hand side is a right Hilbert 𝐵-module with inner product 

                                       〈𝑏  ⊗  ℎ, 𝑎 ⊗  𝑔〉  =  𝜑𝐻(ℎ
∗𝑔)𝐸𝐵(𝑏

∗𝑎).                                  (31) 
It follows from these formulas and (3.17) that 𝐺𝑉is an isometry between these 

Hilbert modules. Hence the range of 𝐺𝑉 is closed. 

From (22) and the equivalence of 𝐶∗ -module and Hilbert 𝐶∗  -module norms in 

Lemma(2.2.7), we infer that the range of  𝐺𝑉 contains 1⊗ 𝑆(ℎ). Therefore, as the domain 

of  𝐺𝑉is an algebraic tensor product, we can find a finite number of 

elements 𝑝𝑖 , 𝑞𝑖 ∈  𝑃𝐻(𝐴) such that 

∑𝛿

𝑖

 (𝑝𝑖)(𝑞𝑖  ⊗  1) =  1 ⊗  𝑆(ℎ).                                           (32) 

Now applying the map 𝑎 ⊗  𝑔 ⟼ (1 ⊗ 𝑆−1(𝑔))𝛿(𝑎) to both sides yields 

∑(𝑝𝑖  ⊗  1)

𝑖

𝛿(𝑞𝑖) =  1 ⊗  ℎ.                                      (33) 

As h was arbitrary in 𝑂(𝐻), it follows that can is surjective. 

Finally, as the Hopf algebra 𝑂(𝐻)  is cosemisimple, according to, bijectivity of the 

canonical map can follows from its surjectivity.This completes the proof of the implication 

“𝑃𝑊𝐺-condition ⇐ freeness”. 

The framework of principal comodule algebras unifies in one category many algebraically 

constructed noncommutative examples and classical compact Hausdorff principal bundles. 

Definition (2.2.9)Let 𝐻 be a Hopf algebra with bijective antipode, and 

let 𝛥𝑝 ∶  𝑃 →  𝑃 ⊗  ℋ  be a coaction making P an H-comodule algebra. We call 𝑃 

principal if and only if: 

(i) 𝑃 ⊗𝐵 𝑃 ∋  𝑝 ⊗  𝑞 ⟼  𝑐𝑎𝑛(𝑝 ⊗  𝑞) ∶=  (𝑝 ⊗  1)𝛥𝑝(𝑞)  ∈  𝑃 ⊗  ℋ is bijective, 

where 𝐵 ∶= 𝑃𝑐𝑜𝐻  ∶=  {𝑝 ∈  𝑃 | 𝛥𝑝(𝑝)  =  𝑝 ⊗  1}; 

(ii) there exists a left 𝐵-linear right  ℋ -colinear splitting of the multiplication map 𝐵 ⊗
 𝑃 →  𝑃. 

Here (i) is the Hopf-Galois condition and (ii) is the right equivariant left projectivity of 𝑃.  
Alternately, one can approach principality through strong connections: 

Definition (2.2.10)[148]: Let ℋ be a Hopf algebra with bijective antipode 𝑆, 

and 𝛥𝑝 ∶  𝑃 →  𝑃 ⊗  𝐻 be a coaction making P a right ℋ -comodule algebra. 

A strong connection ℓ on P is a unital linear map ℓ : ℋ → P ⊗ P satisfying: 

(i) (𝑖𝑑 ⊗ 𝛥𝑝)  ∘  ℓ =  (ℓ ⊗  𝑖𝑑)  ∘  𝛥; 

(ii) (𝛥𝑝  ⊗  𝑖𝑑)  ∘  ℓ =  (𝑖𝑑 ⊗  ℓ)  ∘  𝛥, 𝑤ℎ𝑒𝑟𝑒 𝛥𝑝 ∶=  (𝑆−1  ⊗  𝑖𝑑)  ∘  𝑓𝑙𝑖𝑝 ∘  𝛥𝑝; 

(iii) 𝑐𝑎�̃�  ∘  ℓ =  1 ⊗  𝑖𝑑, 𝑤ℎ𝑒𝑟𝑒 𝑔𝑐𝑎𝑛: 𝑃 ⊗  𝑃 ∋  𝑝 ⊗  𝑞 ⟼ (𝑝 ⊗  1)𝛥𝑝(𝑞) ∈  𝑃 ⊗

 ℋ. 
One can prove that a comodule algebra is principal if and only if it admits a strong 

connection. 

If 𝛥𝑀 ∶  𝑀 →  𝑀 ⊗ 𝐶 is a coaction making 𝑀 a right comodule over a coalgebra 

𝐶  and 𝑁 is a left 𝐶 -comodule via a coaction 𝛥𝑁
2 : 𝑁 →  𝐶 ⊗  𝑁,  then we define their 

cotensor product as 

𝑀 1□
𝐶  𝑁 ∶=  {𝑡   ∈  𝑀 ⊗  𝑁 | (𝛥𝑀 ⊗  𝑖𝑑)(𝑡) =  (𝑖𝑑 ⊗  𝑁𝛥)(𝑡)}. 

In particular, for a right ℋ -comodule algebra P and a left ℋ -comodule 𝑉 , we observe 

that 𝑃 □𝐻𝑉 is a left 𝑃 coH- module in a natural way. One of the key properties of principal 

comodule algebras is that, for any finite-dimensional left ℋ -comodule 𝑉 , the left 𝑃coH -
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module 𝑃 □𝐻𝑉 is finitely generated projective  Here P plays the role of a principal bundle 

and 𝑃□𝐻𝑉  plays the role of an associated vector bundle. Therefore, we call 𝑃 □𝐻𝑉  an 

associated module. 

Principality can also be characterized by the exactness and strong monoidality of the 

cotensor functor. This characterisation uses the notion of coflatness ofa comodule: right 

comodule is coflat if and only if cotensoring it with leftcomodules preserves exact 

sequences. 

Theorem(2.2.11) [148]: Let H be a Hopf algebra with bijective antipode and P be a right 

H-comodule algebra. Then P is principal if and only if 𝑃 is right ℋ -coflat and for all left 

ℋ -comodules 𝑉 𝑎𝑛𝑑 𝑊 the map 

𝛽 ∶  (𝑃 □𝑉 )0𝐵
⊗ (𝑃 □𝑊) →  𝑃□(𝑉 ⊗𝑊), 

( ∑𝑎𝑖  ⊗ 𝑣𝑖
𝑖

  ) ⊗ (∑𝑏𝑗 ⊗ 𝑤𝑗
𝑗

) ↦∑ 𝑎𝑖𝑏𝑗  ⊗ (𝑣𝑖  ⊗ 𝑤𝑗)

𝑖 ,𝑗

, 

is bijective. In other words, 𝑃 is principal if and only if the cotensor product functor is 

exact and strongly monoidal with respect to the above map 𝛽. 

Proof. The proof relies on putting together. 

First assume that P is principal. Then 𝑃 is right equivariantly projective, and it follows 

from that P is faithfully flat. Now we can apply  to conclude that 𝛽 is bijective. 

Furthermore, by, the faithful flatness of 𝑃 implies the coflatness of 𝑃. Conversely, assume 

that cotensoring with P is exact and strongly monoidal with respect to β. Then substituting 

ℋ for 𝑉 and 𝑊 yields the Hopf-Galois condition. Now implies the equivariant projectivity 

of 𝑃. 

Corollary(2.2.12)[148]: Let 𝐴  be a unital 𝐶∗ -algebra equipped with an action of a 

compact quantum group (H,Δ) given by 𝛿 ∶  𝐴 →  𝐴 ⊗𝑚𝑖𝑛H. Then the following are 

equivalent: 

(i)The action of (𝐻, 𝛥) 𝑜𝑛 𝐴 satisfies the Peter-Weyl-Galois condition. 

(ii)The action of (𝐻, 𝛥) 𝑜𝑛 𝐴 is strongly monoidal. 

Proof: The Hopf algebra 𝑂(𝐻) always has bijective antipode. It follows from  that any 

comodule over this Hopf algebra is coflat. Hence  implies that the equivariant projectivity 

condition is valid for any O(H)-comodule algebra such that the canonical map is bijective. 

The corollary now follows from Theorem one can use the combination. 

i.e. we prove Theorem(2.2.5). As in the proof of the general noncommutative case, 

we rely on the fact that the module of continuous of an associated vector bundle is finitely 

generated projective. However, unlike in the proof, herein we first prove strong 

monoidality, and then conclude the 𝑃𝑊𝐺 -condition. Anentirely different proof of 

Theorem (2.2.5), using local triviality, can be found in [152]. 

To be consistent with general notation, we should only use 𝐶∗-algebras 𝐶(𝐺), 𝐶(𝑋), etc., 

rather than spaces themselves. However, this would make formulas too cluttered, we 

consistently omit writing 𝐶() in the subscript and the argument of the Peter-Weyl functor. 

The implication “𝑃𝑊𝐺-condition ⇒ freeness” is proved as follows. The 𝑃𝑊𝐺-condition 

immediately implies that 

                                        (𝑃𝐺(𝑋)⊗  ℂ)𝛿(𝑃𝐺(𝑋)) = 𝑃𝐺  (𝑋)⊗  𝑂(𝐺).                       (34) 
As the right-hand side is a dense subspace of 𝐶(𝑋)  ⊗𝑚𝑖𝑛  𝐶(𝐺), we obtain the density 

condition (34 ) The latter is equivalent to freeness, as explained in the introduction. For the 

converse implication “𝑃𝑊𝐺-condition ⇐ freeness”, we shall use the Serre-Swan theorem. 
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Theorem (2.2.13)[148]: ([174]). Let 𝑌 be a compact Hausdorff topological space. Then a 

𝐶(𝑌 ) −module is finitely generated and projective if and only if it is isomorphic to the 

module of continuous global of a vector bundle over 𝑌. 
For a compact Hausdorff topological space 𝑌 , we denote by Vect(𝑌) the category of 𝐶 

vector bundles on 𝑌. An object in Vect(𝑌) is a 𝐶 vector bundle 𝐸 with base space 𝑌. The 

projection of 𝐸 onto 𝑌 is denoted by 𝜋𝐸 ∶  𝐸 →  𝑌. 
A section of 𝐸 is a continuous map 

𝑠: 𝑌 →  𝐸 𝑤𝑖𝑡ℎ 𝜋𝐸  ∘  𝑠 =  𝑖𝑑𝑌.                     (35) 
A morphism in Vect(𝑌) is a vector bundle map, 𝑖. 𝑒. 𝑎 continuous map 

𝜑: 𝐸 →  𝐹 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝜋𝐹 ∘   𝜑 =  𝜋𝐸                              (36) 
and, for all 𝑦 ∈  𝑌  , the restriction-corestriction map 𝜑𝑦 ∶  𝜋−1𝐸  (𝑦)  →  𝜋−1𝐹  (𝑦)  is a 

linear map between finite-dimensional vector spaces. 

View the commutative 𝐶∗ -algebra 𝐶(𝑌)  as a commutative ring with unit. Denote by 

FProj(𝐶(𝑌)) the category of finitely generated projective 𝐶(𝑌) −modules. 𝐴𝑛 object in 

the category FProj(𝐶(𝑌)) is a finitely generated projective 𝐶(𝑌)-module. 𝐴 morphism in 

FProj(𝐶(𝑌)) is a map of 𝐶(𝑌) −modules 𝜓: 𝑀 →  𝑁. 
If E is a ℂ vector bundle on 𝑌 , then 𝛤(𝐸) denotes the 𝐶(𝑌) −module consisting of all 

continuous sections of 𝐸. The module structure is pointwise. According to the Serre-Swan 

theorem, the functor 𝛤 

                                          𝑉𝑒𝑐𝑡(𝑌 ) →  𝐹𝑃𝑟𝑜𝑗(𝐶(𝑌 )), 𝐸 ↦  𝛤(𝐸),                                 (37) 
 

is an equivalence of categories and preserves all the basic properties of the two categories. 

In particular, 𝐸  𝛤(𝐸) 𝑝𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑠 ⊕  𝑎𝑛𝑑 ⊗: 
𝛤(𝐸 ⊕  𝐹)  =  𝛤(𝐸)  ⊕  𝛤(𝐹), 

                                                

𝛤(𝐸 ⊗  𝐹) =  𝛤(𝐸)⊗  𝐶(𝑌 )𝛤(𝐹).                              (38) 
Let 𝑋 be a compact Hausdorff space equipped with a continuous free action of a compact 

Hausdorff group 𝐺 . Next, let FRep(𝐺) denote the category of representations of 𝐺  on 

finite-dimensional complex vector spaces. Due to the freeness asumption, we can define 

the functor 

                       

𝐹𝑅𝑒𝑝(𝐺) →  𝑉𝑒𝑐𝑡 (
𝑋

𝐺
) , 𝑉 ↦    𝑋 0𝐺

×𝑉,                                                  (39) 

preserving ⊕  𝑎𝑛𝑑 ⊗: 
𝑋 0𝐺

× (𝑉 ⊕𝑊)  =  (𝑋 0𝐺
×𝑉) ⊕ (𝑋 0𝐺

× 𝑊), 
𝑋 0𝐺

×( 𝑉 ⊗𝑊) = (𝑋 0𝐺
× 𝑉 ) ⊗ (𝑋 0𝐺

×  𝑊).                (40) 
Combining the functor 𝛤 with the functor 𝑋 ×𝐺 yields the functor 

                                          

𝐹𝑅𝑒𝑝(𝐺) →  𝐹𝑃𝑟𝑜𝑗 (𝐶 (
𝑋

𝐺
)) , 𝑉 ↦  𝛤(𝑋 0𝐺

× 𝑉 ).             (41) 

Furthermore, note that the 𝐶(𝑋/𝐺) −module 𝐶𝐺(𝑋, 𝑉) of all continuous G-equivariant 

functions from 𝑋 𝑡𝑜 𝑉  is naturally isomorphic with 𝛤(𝑋 × 𝐺 𝑉).  Here 𝐺 -equivariance 

means 

∀ 𝑥 ∈  𝑋, 𝑔 ∈  𝐺 ∶  𝑓(𝑥𝑔) = 𝜚(𝑔−1)(𝑓(𝑥)), 𝜚 ∶  𝐺 →  𝐺𝐿(𝑉 ).        (42) 
                     

Hence we can replace the above ⊗-preserving functor with the ⊗-preserving functor 



65 

                                        𝐹𝑅𝑒𝑝(𝐺) →  𝐹𝑃𝑟𝑜𝑗 (𝐶 (
𝑋

𝐺
)) , 𝑉 ↦  𝐶𝐺(𝑋, 𝑉 ).                      (43) 

The following elementary observation is key in translating from the topologicalto the 

algebraic setting. 

Lemma(2.2.14)[148]: Let 𝑋 be a compact Hausdorff space equipped with a continu- ous 

action of a compact Hausdorff group 𝐺, and let 𝑉 be a finite-dimensional representation of 

𝐺. Then the evident identification 𝐶(𝑋, 𝑉)  =  𝐶(𝑋)  ⊗  𝑉 determines an equivalence of 

tensor functors: 

𝐶𝐺(𝑋, 𝑉)  =  𝑃𝐺(𝑋)□𝑉. 
Proof. Let {𝑒𝑖}𝑖=1

𝑛  be a basis of 𝑉 and {𝑒𝑖}𝑖=1
𝑛  be the basis of 𝑉 ∗ dual to{𝑒𝑖}𝑖=1

𝑛 . Given 

𝑓 ∈  𝐶(𝑋, 𝑉), we note that 

∑(𝑒𝑖 ∘  𝑓)  ⊗ 𝑒𝑖  ∈  𝑃𝐺(𝑋)□𝑉

𝑛

𝑖=1

 

⇕ 

∑𝛿 (𝑒𝑖 ∘  𝑓)  ⊗ 𝑒𝑖
𝑛

𝑖=1

   =   ∑(𝑒𝑖 ∘  𝑓) ⊗𝑉 𝛥(𝑒
𝑖)

𝑛

𝑖=1

 

⇕ 

∀ 𝑥 ∈  𝑋, 𝑔 ∈  𝐺 ∶  𝑓(𝑥𝑔) = 𝜚(𝑔−1)(𝑓(𝑥)).                          (44) 
The second equivalence is an immediate consquence of the definitions of δ and  ̺see (17) 

and (21)). The first equivalence follows directly from the definition of cotensor product 

(see (12)) and the fact that 

∑𝛿 (𝑒𝑖 ∘  𝑓) ⊗𝑉   𝛥(𝑒
𝑖) ∈  𝐶(𝑋)⊗  𝑂(𝐺)⊗  𝑉.

𝑛

𝑖=1

                              (45) 

Thus the evident identification yields 𝐶𝐺(𝑋, 𝑉)  =  𝑃𝐺(𝑋)□𝑉. 

Finally, let 𝛽 be the map defined in Theorem(2.2.11), and let 

𝑑𝑖𝑎𝑔: 𝐶𝐺(𝑋, 𝑉 )0
𝐶(
𝑋
𝐺
)

⊗  𝐶𝐺(𝑋,𝑊) → 𝐶𝐺  (𝑋, 𝑉 ⊗𝑊), 

𝑑𝑖𝑎𝑔: 𝑓1  ⊗ 𝑓2    ⟼ (𝑥 ⟼ 𝑓1 (𝑥)⊗  𝑓2(𝑥)).                            (46) 
The commutativity of the diagram 

𝐶𝐺(𝑋, 𝑉)) 0
𝐶(
𝑋
𝐺
)

⊗ 𝐶𝐺(𝑋,𝑊)  
𝑑𝑖𝑔
→ 𝐶𝐺(𝑋, 𝑉 ⊗𝑊 

↓                                            ↓                                      (47) 

 (𝑝𝐺(𝑋)□𝑉) 0
𝐶(
𝑋
𝐺
)

⊗ (𝑝𝐺(𝑋)□𝑊) 𝛽 / 𝑝𝐺(𝑋)□(𝑉 ⊗𝑊) 

 

proves that the identification  𝐶𝐺  (𝑋, 𝑉)  =  𝑝𝐺(𝑋)□𝑉  defines an equivalence of tensor 

functors. 

Assume now that the action of 𝐺  on 𝑋  is free. Then, by the Serre-Swan theorem, the 

functor 𝛤(𝑋 ×𝐺) is strongly monoidal. Since it is equivalent as a tensor functor to 𝐶𝐺(𝑋, ), 
we conclude from Lemma (2.2.14)that the cotensor product functor 

𝐹𝑅𝑒𝑝(𝐺) →  𝐹𝑃𝑟𝑜𝑗 (𝐶 (
𝑋

𝐺
)) , 𝑉 ⟼  𝑃𝐺(𝑋)𝑉,                    (48) 

is also strongly monoidal. 
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Next, since 𝑂(𝐺) is cosemisimple, any 𝑂(𝐺) −comodule is a purely algebraic direct sum 

of finite-dimensional comodules. Furthermore, as the cotensor product is defined as the 

kernel of a linear map, it commutes with such direct sums. As it is also clear that the map 

𝛽 commutes with such direct sums, we infer that the extended cotensor product functor 

𝐹𝑅𝑒𝑝⊕(𝐺) →  𝐹𝑃𝑟𝑜𝑗⊕ (𝐶 (
𝑋

𝐺
)) , 𝑉 ⟼ 𝑃𝐺  (𝑋)𝑉,                       (49) 

is strongly monoidal. Here 𝐹𝑃𝑟𝑜𝑗⊕(𝐶(𝑋/𝐺)) is the category of projective modules over 

𝐶(𝑋/𝐺)  that are purely algebraic direct sums of finitely generated projective 𝐶(𝑋/
𝐺) −modules, and 𝐹𝑅𝑒𝑝⊕(𝐺) is the category of representations of G defined above (48). 

(One can think of these categories as the indcompletions in the sense of [149].) Combining 

this with allows us to conclude the proof of the implication “𝑃𝑊𝐺condition⇐ freeness”. 

We now give a vector-bundle interpretation of the proof. To this end, we need to extend 

the functor 𝐶𝐺(𝑋, ) to the category 𝐹𝑅𝑒𝑝⊕(𝐺), which includes the representation 𝑂(𝐺). 
Let V be a purely algebraic direct sum of finite-dimensional representations of 𝐺. We 

topologize V as the direct limitof its finite-dimensional subspaces, and denote by 𝐶(𝑋, 𝑉) 
the space of all continuous maps from X to 𝑉. An elementary topological argument shows 

that the image of any continuous map from 𝑋 to 𝑉 is contained in a finite dimensional 

subspace of 𝑉. Therefore, Lemma (2.2.14)generalizes to: 

Corollary(2.2.15)[148]: Let 𝑉 be an object in the category 𝐹𝑅𝑒𝑝⊕(𝐺). Then the evident 

identification 𝐶(𝑋, 𝑉)  =  𝐶(𝑋)  ⊗  𝑉 determines an equivalence of tensor functors: 

𝐶𝐺(𝑋, 𝑉 ) =  𝑃𝐺(𝑋)𝑉. 
Taking 𝑉 =  𝑂(𝐺) topologized with the direct limit topology, we immediately obtain the 

following presentation of the Peter-Weyl algebra: 

𝐶𝐺(𝑋, 𝑂(𝐺)) =  𝑃𝐺(𝑋)𝑂(𝐺) =  𝑃𝐺(𝑋).                                     (50) 
Assume now that the action of 𝐺 on 𝑋 is free. Then 𝑋 ×𝐺 𝑂(𝐺) is a vector bundle in the 

sense that it is a direct sum of ordinary (i.e. with finite-dimensional fibers) vector bundles, 

and    

𝛤(𝑋 ×𝐺  𝑂(𝐺)) =  𝐶𝐺(𝑋, 𝑂(𝐺)) =  𝑃𝐺(𝑋).                             (51) 
Moreover, arguing as for the cotensor product functor, we conclude that the functor 

                       𝐹𝑅𝑒𝑝⊕(𝐺) →  𝐹𝑃𝑟𝑜𝑗⊕𝑃 (𝐶 (
𝑋

𝐺
)) , 𝑉 ⟼ 𝐶𝐺  (𝑋, 𝑉 ),                ( 52) 

is strongly monoidal. Hence, taking advantage of (51), we obtain 

𝐶𝐺(𝑋, 𝑂(𝐺)⊗  𝑂(𝐺)) =  𝑃𝐺(𝑋)⊗  𝐶 (
𝑋

𝐺
)𝑃𝐺(𝑋).                      ( 53) 

Next, denote by 𝑂(𝐺)𝑡𝑟𝑖𝑣𝑖𝑎𝑙 the vector space 𝑂(𝐺) with the trivial action of 𝐺, 

i.e. every 𝑔 ∈  𝐺 is acting by the identity map of 𝑂(𝐺). Then, as before, we obt 

𝐶𝐺(𝑋, 𝑂(𝐺)⊗  𝑂(𝐺)𝑡𝑟𝑖𝑣𝑖𝑎𝑙) =  𝑃𝐺(𝑋)⊗ 𝐶 (
𝑋

𝐺
)𝐶 (

𝑋

𝐺
)⊗  𝑂(𝐺) 

                                       

= 𝑃𝐺(𝑋)⊗  𝑂(𝐺).                                                         (54) 
 

Lemma (2.2.16)[148]: The 𝐺-equivariant homeomorphism 

𝑊 ∶  𝐺 × 𝐺𝑡𝑟𝑖𝑣𝑖𝑎𝑙  →  𝐺 ×  𝐺,𝑊((𝑔, 𝑔′)) ∶=  (𝑔, 𝑔𝑔′), 
gives an isomorphism of representations of 𝐺 

𝑂(𝐺)⊗  𝑂(𝐺)𝑡𝑟𝑖𝑣𝑖𝑎𝑙  ≅  𝑂(𝐺)⊗  𝑂(𝐺). 
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Here 𝐺 × 𝐺𝑡𝑟𝑖𝑣𝑖𝑎𝑙  𝑎𝑛𝑑 𝐺 ×  𝐺 are right 𝐺-spaces via the formulas 

(𝑔, 𝑔′)ℎ ∶=  (ℎ−1𝑔, 𝑔′) 𝑎𝑛𝑑 (𝑔, 𝑔′)ℎ ∶=  (ℎ−1𝑔, ℎ−1 𝑔′), 
respectively. 

Proof. Since 𝑂(𝐺)  is a Hopf algebra, the pullback of W restricts and corestricts to 

                                                𝑊∗ ∶  𝑂(𝐺)⊗  𝑂(𝐺)−→  𝑂(𝐺)⊗  𝑂𝐺𝑡𝑟𝑖𝑣𝑖𝑎𝑙 .                   (55) 
We infer that 𝑊∗ is the required intertwining operator.  

Combining Lemma (2.2.16) with (53) and (54) gives 

𝑃𝐺(𝑋) 0
𝐶(
𝑋
𝐺
)

⊗ 𝑃𝐺  (𝑋) ≅  𝑃𝐺(𝑋)⊗  𝑂(𝐺).                                       (56) 

Finally, to see that this isomorphism is indeed the canonical map, we explicitly put 

together all identifications used on the way. First, we observe that, since the isomorphism 

𝑃𝐺(𝑋) → 𝑃𝐺  (𝑋)𝑂(𝐺)                                               (57) 
is given by the coaction δ, the identification (52) is implemented by the maps 

𝑝𝐺(𝑋)
𝐸
→  𝐶𝐺(𝑋, 𝑂(𝐺)), 

                                                                
𝐹
← 

(𝐸(𝑓)(𝑥)(𝑔) ∶=  𝑓(𝑥𝑔), 𝐹(𝛼)(𝑥) ∶=  𝛼(𝑥)(𝑒), 𝐸 ∘  𝐹 =  𝑖𝑑, 𝐹 ∘  𝐸 =  𝑖𝑑.         (58) 
We can now easily check that the following composition of isomorphisms 

𝑃𝐺(𝑋) 0𝑃𝐺
𝐶(
𝑋
𝐺
)

⊗ (𝑋)
𝐸⊗𝐸
→   𝐶𝐺(𝑋, 𝑂(𝐺)) 0

𝐶(
𝑋
𝐺
)

⊗  𝐶𝐺(𝑋, 𝑂(𝐺))

𝑑𝑖𝑔
→ 𝐶𝐺( 𝑋, 𝑂(𝐺)⊗ 𝑂(𝐺)𝑡𝑟𝑖𝑣𝑖𝑎𝑙)

∑
(𝑖𝑑⊗𝑒𝑖)⊗ 𝑒𝑖
→          𝑖

 𝐶𝐺  (𝑋, 𝑂(𝐺))⊗  𝑂(𝐺)
𝐹⊗𝑖𝑑
→   

→ 𝑃𝐺  (𝑋)⊗  𝑂(𝐺) 
is the canonical map, as desired. 

Let 𝐴 be a unital 𝐶∗ -algebra with center 𝑍(𝐴), let 𝑋 be a compact Hausdorff space and let 

𝜃 ∶  𝐶(𝑋)  →  𝑍(𝐴)  be a unital inclusion. The triple (𝐴, 𝐶(𝑋), 𝜃)  is called a unital 

𝐶(𝑋) −algebra ([165]). In the following, we simply consider 𝐶(𝑋) as a subalgebra of 𝐴. 
For 𝑥 ∈  𝑋, let 𝐽𝑥 be the closed two-sided ideal in 𝐴 generated by the functions 𝑓 ∈  𝐶(𝑋) 
that vanish at 𝑥. Then we have quotient 𝐶∗-algebras 𝐴𝑥 ∶=  𝐴/𝐽𝑥 with natural projection 

𝑚𝑎𝑝𝑠  𝜋𝑥: 𝐴 → 𝐴𝑥 , and the triple (𝑋, 𝐴, 𝜋𝑥) is a field of 𝐶∗ algebras. For any 𝑎 ∈  𝐴, the 

map 𝑛𝑥 ∶  𝑋 →  ℝ, 𝑥 ⟼ ‖𝜋𝑥(𝑎)‖is upper semi-continuous [160] (see also [168]). If the 

latter map is continuous, the field is called continuous, but this property will not be 

necessary to assume for our purposes. 

Lemma(2.2.17)[148]: Let 𝑋 be a compact Hausdorff space, 𝐴 a unital 𝐶(𝑋) −algebra, and 

(𝐻, 𝛥)  a compact quantum group acting on 𝐴 via 𝛿 ∶  𝐴 →  𝐴 ⊗𝑚𝑖𝑛  𝐻.𝐴 ssume that 

𝐶(𝑋)  ⊆  𝐴𝑐𝑜𝐻 . Then for each 𝑥 ∈  𝑋  there exists a unique coactions 𝛿𝑥 ∶  𝐴𝑥  →
 𝐴𝑥 ⊗𝑚𝑖𝑛  𝐻 such that for all 𝑎 ∈  𝐴 

                                           

𝛿𝑥(𝜋𝑥(𝑎)) =  (𝛿𝑥𝜋𝑥  ⊗  𝑖𝑑)(𝛿(𝑎)).                                         (59) 
Proof: Let 𝑥 ∈  𝑋 𝑎𝑛𝑑 𝑓 ∈  𝐶(𝑋) 𝑤𝑖𝑡ℎ 𝑓(𝑥)  =  0. 𝐴𝑠 𝛿(𝑓)  =  𝑓 ⊗  1 by assumption, it 

follows that (𝜋𝑥  ⊗  𝑖𝑑)(𝛿(𝑓))  =  0. 𝐻𝑒𝑛𝑐𝑒 (𝜋𝑥 ⊗  𝑖𝑑)(𝛿(𝑎))  =  0 𝑓𝑜𝑟 𝑎 ∈ 𝐽𝑥 , so that 

𝛿𝑥 can be defined by (59). It is straightforward to check that each 𝛿𝑥  satisfies the 

coassociativity and counitality conditions. Finally, to see that 𝛿𝑥 is injective, assume that  

𝛿𝑥 (𝜋𝑥 (𝑎))  =  0.Then 

(𝜋𝑥  ⊗  𝑖𝑑)(𝛿(𝑎)) =  0,                                      (60) 
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whence (id ⊗ ω)(δ(a)) ∈𝐽𝑥 for all 𝜔 ∈  𝐴∗. In particular, if (𝑔𝛼)𝛼 is a bounded positive 

approximate unit for 𝐶0(𝑋 \ {𝑥}), then 

𝑔𝛼(𝑖𝑑 ⊗  𝜔)(𝛿(𝑎)) 1𝛼
𝑛𝑜𝑟𝑚
→     𝛼 (𝑖𝑑 ⊗  𝜔)(𝛿(𝑎)).                                  (61) 

Hence we obtain 

       

                (𝑔𝛼𝑠 ⊗  1)𝛿(𝑎)𝑤𝑒𝑎𝑘𝑙𝑦
𝑤𝑒𝑎𝑘𝑙𝑦

⟶

𝛼

  𝛼 𝛿(𝑎).                                           (62) 

                                  𝛼 

However, as (𝑔𝛼  ⊗  1)𝛿(𝑎)  =  𝛿(𝑔𝛼𝑎) and δ is injective, we find that 

                                                           

𝑔𝛼𝑎 
𝑤𝑒𝑎𝑘𝑙𝑦
⟶
𝛼

  𝑎.                                                   (63)  

Consequently, 𝜋𝑥(𝑎)  =  0, and we conclude that 𝛿𝑥 is injective. 

Theorem(2.2.18)[148]: Let 𝑋 be a compact Hausdorff space, 𝐴 a unital 𝐶(𝑋) −algebra, 

and (𝐻, 𝛥) a compact quantum group acting on 𝐴 via 𝛿 ∶  𝐴 →  𝐴 ⊗𝑚𝑖𝑛  𝐻. Assume that 

𝐶(𝑋)  ⊆  𝐴𝑐𝑜𝐻. Then, the coaction δ is free if and only if the coactions 𝛿𝑥 are free for each 

𝑥 ∈  𝑋. 
Proof: First note that 𝐴 ⊗𝑚𝑖𝑛  𝐻 is again a 𝐶(𝑋) −algebra in a natural way. 

We will denote the quotient (𝐴 ⊗𝑚𝑖𝑛  𝐻)/(Jx⊗𝑚𝑖𝑛  𝐻) by 𝐴𝑥  ⊗𝑥  𝐻 . This will be a 

𝐶∗ −completion of the algebraic tensor product algebra 𝐴𝑥  ⊗  𝐻  (not necessarily the 

minimal one). We will denote the quotient map at 𝑥 by 𝜋𝑥  ⊗𝑥  𝑖𝑑 ∶  𝐴 ⊗𝑚𝑖𝑛 𝐻 →
 𝐴𝑥 ⊗𝑥  𝐻. 
The implication “𝛿  is free ⇒  the coactions 𝛿𝑥  are free for each 𝑥 ∈  𝑋 ” follows 

immediately from the commutativity of the diagram 

𝐴 ⊗  𝐴
𝑐𝑎𝑛
→   𝐴 1𝑚𝑖𝑛

⊗ 𝐻 

                                           𝜋𝑥 ⊗ 𝜋𝑥  ↓                 ↓ 𝜋𝑥 𝑖𝑑𝑥
⊗                                                  (64)                                     

𝐴𝑥 ⊗𝐴𝑥 → 𝐴𝑥 𝐻𝑥
⊗

 

Here the upper horizontal arrow is given by the formula 𝑎 ⊗  𝑎′ ⟼ (𝑎 ⊗  1)𝛿(𝑎′), 
and the lower horizontal arrow is given by 𝑎 ⊗  𝑎′ ⟼ (𝑎 ⊗  1)𝛿𝑥(𝑎′). Assume now that 

each 𝛿𝑥  is free. Fix 𝜀 >  0, and choose ℎ ∈  𝑂(𝐻). By Theorem (2.2.4)for each 𝑥 ∈  𝑋 

we can find an element 𝑧𝑥  ∈  (𝐴 ⊗  𝐶)𝛿(𝐴)  such that (𝜋𝑥  ⊗ 𝑥 𝑖𝑑)(𝑧𝑥)  =  1 ⊗
 ℎ 𝑖𝑛 𝐴𝑥 ⊗𝑥   𝐻. Consider the function 

    𝑓𝑥 ∶  𝑋 ∋  𝑦 ⟼ ‖(𝜋𝑦 ⊗𝑦 𝑖𝑑)(𝑧𝑥) −  1 ⊗ ℎ‖ = ‖(𝜋𝑦 ⊗𝑦 𝑖𝑑)(𝑧𝑥) −  1⊗ ℎ‖ ℝ    (65) 

As the norm on the field 𝑦 ⟼ 𝐴𝑦 ⊗𝑦 H is upper semi-continuous, the function 𝑦 ⟼

𝑓𝑥  (𝑦) is upper semi-continuous. Since 𝑓𝑥 (𝑥) =  0, we can find an open neighborhood 𝑈𝑥 

of 𝑥 such that for all 𝑦 ∈ 𝑈𝑥  

                                     𝑓𝑥(𝑦) =  ‖(𝜋𝑦 ⊗𝑦 𝑖𝑑)(𝑧𝑥) −  1⊗ ℎ‖𝐴𝑦 ⊗𝑦 𝐻 <  𝜀.                (66)                 

 Let{𝑓𝑖}𝑖 be a partition of unity subordinate to a finite subcover {𝑈𝑥𝑖}𝑖. An easy estimate 

shows that for 𝑧 ∶= ∑ (𝑓𝑖 ⊗1)𝑧𝑥𝑖𝑖   and all 𝑦 ∈  𝑋 

                                            ‖(𝜋𝑦 ⊗𝑦 𝑖𝑑) (𝑧 −  1⊗ ℎ‖𝐴𝑦 ⊗𝑦 𝐻 <  𝜀                              (67) 

Taking the supremum over all y, we conclude by [160] and the compactness of 

𝑋 𝑡ℎ𝑎𝑡 ⟦𝑧 − 1⊗ ℎ⟧  <  𝜀. Hence (𝐴⊗ ℂ)𝛿(𝐴) is dense in 𝐴⊗𝐻, 𝑖. 𝑒. 𝑡ℎ𝑒 𝑐𝑜𝑎𝑐𝑡𝑖𝑜𝑛 𝛿 is 

free. 



69 

Combining Theorem(2.2.4) and Theorem(2.2.16), we obtain: Corollary (2.2.17) Let 𝑋 be a 

compact Hausdorff space, A a unital 𝐶(𝑋) −algebra, and (𝐻, ∆) a compact quantum group 

acting on 𝐴 𝑣𝑖𝑎 𝛿 ∶  𝐴 →  𝐴 ⊗𝑚𝑖𝑛  𝐻. Assume that 𝐶(𝑋)  ⊆  𝐴𝑐𝑜𝐻. Then, the coaction 𝛿 

satisfies the 𝑃𝑊𝐺-condition if and only if the coactions 𝛿𝑥 satisfy the 𝑃𝑊𝐺-condition for 

each 𝑥 ∈  𝑋.  

We consider: 

Definition (2.2.19)[148]:(cf. [157]). Let (𝐻, 𝛥) be a compact quantum group acting on a 

unital 𝐶∗-algebra 𝐴 via 𝛿 ∶  𝐴 →  𝐴 ⊗𝑚𝑖𝑛  𝐻. We call the unital 𝐶∗-algebra 

𝐴⊛𝛿  𝐻 ∶= {𝑓 ∈  𝐶 ([0, 1], 𝐴 ⊗𝑚𝑖𝑛   𝐻)|𝑓(0)  ∈  ℂ⊗  𝐻, 𝑓(𝑖)  ∈  𝛿(𝐴)}  
the equivariant noncommutative join of 𝐴 and 𝐻. 
The 𝐶∗ − 𝑎𝑙𝑔𝑒𝑏𝑟𝑎 𝐴 ⊛𝛿  𝐻  is obviously a 𝐶([0, 1]) − algebra with (𝐴  ⊛𝛿  𝐻)𝑥 =
𝐴 ⊗𝑚𝑖𝑛  𝐻 𝑓𝑜𝑟 𝑥 ∈  (0, 1), (𝐴⊛

𝛿  H)0  =  𝐻 𝑎𝑛𝑑 (𝐴 ⊛𝛿  𝐻)1 ≅ 𝐴 . The following 

lemma shows that A ⊛𝛿 H carries a natural action of (H,Δ). 

Lemma (2.2.19) The compact quantum group (𝐻, 𝛥)  acts on the unital 𝐶∗ − algebra 

𝐴 ⊛𝛿  𝐻 via 

𝛿𝐴⊛𝛿𝐻 ∶  𝐴 ⊛𝛿   𝐻 ∋  𝑓 ⟼ (𝑖𝑑 ⊗  𝛥)1° 𝑓 ∈  (𝐴 ⊛
𝛿  𝐻)⊗𝑚𝑖𝑛 𝐻. 

Proof: We first show that the range of 𝛿𝐴⊛𝛿𝐻 is contained in(𝐴 ⊛𝛿  𝐻) ⊗𝑚𝑖𝑛  H. 

To this end, we take any function 𝑓 ∈  𝐴 ⊛𝛿 𝐻 and identify (𝐴 ⊛𝛿  𝐻)⊗𝑚𝑖𝑛  𝐻 as a 

subalgebra of 𝐶([0, 1], 𝐴 ⊗𝑚𝑖𝑛  𝐻 ⊗𝑚𝑖𝑛  𝐻). Since 𝑓 is uniformly continuous and 

𝑃𝐻(𝐴) is dense in 𝐴 by [173], an elementary partition of unity argument shows that f can 

be approximated by finite sums of functions of three kinds: 

(i) 𝐹1 ∶  [0, 1]  ∋  𝑡 ⟼ 𝜉0 (𝑡)(1 ⊗  ℎ)  ∈  ℂ ⊗  𝑂(𝐻),𝑤ℎ𝑒𝑟𝑒 𝜉0  ∈  𝐶([0, 1], [0, 1]), 
 𝜉0(1) =  0, 𝑎𝑛𝑑 ℎ 𝑖𝑠 𝑎 𝑓𝑖𝑥𝑒𝑑 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑂(𝐻); 
(ii) 𝐹2 ∶  [0, 1]  ∋  𝑡 ⟼   𝜉(𝑡)(𝑎 ⊗ ℎ)  ∈ 𝑃𝐻 (𝐴) ⊗ 𝑂(𝐻),𝑤ℎ𝑒𝑟𝑒 𝜉 ∈  𝐶([0, 1], [0, 1]) 

𝑤𝑖𝑡ℎ 𝜉(0)  =  0 =  𝜉(𝑖), 𝑎𝑛𝑑 𝑎 𝑎𝑛𝑑 ℎ 𝑎𝑟𝑒 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦 𝑓𝑖𝑥𝑒𝑑 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 
 𝑃𝐻(𝐴)𝑎𝑛𝑑 𝑂(𝐻); 

(𝑖𝑖𝑖) 𝐹3 ∶  [0, 1]  ∋  𝑡 ⟼  𝜉1(𝑡)𝛿(𝑎)  ∈  𝛿(𝑃𝐻(𝐴)), 𝑤ℎ𝑒𝑟𝑒 𝜉1  ∈  𝐶([0, 1], [0, 1]), 
 𝜉1(0) =  0, 𝑎𝑛𝑑 𝑎 𝑖𝑠 𝑎 𝑓𝑖𝑥𝑒𝑑 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑃𝐻 (𝐴). 
It is clear that (𝑖𝑑 ⊗  𝛥)  ∘  𝐹𝑖  ∈  𝐶([0, 1], 𝐴 ⊗𝑚𝑖𝑛   𝐻)  ⊗  𝐻 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖. As the rightmost 

tensor product is algebraic, evaluations commute with 𝑖𝑑 ⊗  𝛥, and 𝛿 is coassociative, we 

infer that (𝑖𝑑 ⊗  𝛥) ∘  𝐹𝑖  ∈  (𝐴 ⊛
𝛿  𝐻)⊗  𝐻 for i (cf. [157]). Furthermore, since 𝛿𝐴⊛𝛿𝐻 

viewed as a map into 𝐶([0, 1], 𝐴 ⊗𝑚𝑖𝑛  𝐻 ⊗𝑚𝑖𝑛  𝐻_ 𝑖𝑠 𝑎 ∗ − homomorphism, it is 

continuous, so that 

(𝑖𝑑 ⊗ 𝛥) ∘ 𝑓 ∈  (𝐴⊛𝛿 𝐻)⊗𝑚𝑖𝑛 𝐻.𝐻𝑒𝑛𝑐𝑒𝛿𝐴⊛𝛿𝐻 has range in (𝐴⊛𝛿 𝐻)⊗𝑚𝑖𝑛 𝐻 

The injectivity and coassociativity of 𝛿𝐴⊛𝛿𝐻  are immediate respectively from the 

injectivity and coassociativity of 𝛥 . The counitality condition follows from the same 

approximation argument as above. 

Corollary(2.2.20)[148]:  If the coaction 𝛿 ∶  𝐴 →  𝐴 ⊗min H is free, then so is the 

coaction 𝛿𝐴⊛𝛿𝐻 ∶  𝐴 ⊛𝛿  𝐻 →  (𝐴 ⊛𝛿  𝐻) ⊗min H. 

Proof. The 𝐶∗ −algebra 𝐴 ⊛𝛿  𝐻 is a unital 𝐶([0, 1]) −algebra with 𝐶([0, 1]) ⊆
(𝐴 ⊛𝛿  𝐻) 𝑐𝑜𝐻 . With the notation of Lemma(2.2.17), we have: 
(i) (, (𝐴 ∗   𝐻)0𝛿0)  =  (𝐻, 𝛥), 
(ii) ((𝐴 ∗  𝐻)𝑥, 𝛿𝑥)  =  (𝐴 ⊗𝑚𝑖𝑛  𝐻, 𝑖𝑑 ⊗  𝛥) 𝑓𝑜𝑟 𝑥 ∈  (0, 1), 
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As each of the above actions are free, we infer from Theorem(2.2.16) that δA∗H is 

free. Alternatively, one can use a direct approximation argument as in Lemma (2.2.15). 

Let 𝜋: 𝑋 →  𝑌 be 𝑎 covering map of topological spaces. As usual, this means that given 

any 𝑦 ∈  𝑌  there exists an open set 𝑈  in 𝑌  with 𝑦 ∈  𝑈  such that 𝜋−1(𝑈)  is a disjoint 

union of open sets each of which 𝜋  maps homeomorphically onto 𝑈. 𝐴  deck 

transformation is a homeomorphism ℎ: 𝑋 →  𝑋 with 𝜋 ° ℎ =  𝜋. 

Proposition (2.2.21)[148]: Let 𝑋  and 𝑌  be compact Hausdorff topological spaces. Let 

𝜋: 𝑋 →  𝑌  be a covering map, and let 𝛤  be the group of deck transformations of this 

covering map. Assume that 𝛤 is finite. Then 𝑋 is a principal 𝛤-bundle over 𝑌 if and only if 

the canonical map 

            𝑐𝑎𝑛: 𝐶(𝑋) ⊗𝐶(𝑌)⟶ 𝐶(𝑋) 𝐶(𝑋)  ⊗  𝐶(𝛤), 

𝑐𝑎𝑛: 𝑓1  ⊗ 𝑓2 ⟼ (𝑓1  ⊗  1)𝛿(𝑓2), 
is an isomorphism. Here δ is given by (3.11). 

Proof. If 𝑋  is a principal 𝛤-bundle over 𝑌  , then 𝐶(𝑌 ) =  𝐶 (
𝑋

𝛤
) = 𝐶(𝑋)𝑐𝑜𝐶(𝛤)  and, by 

(51), can is surjective. Furthermore, since 𝐶(𝛤) is cosemisimple, by the result of 𝐻.−𝐽. 
Schneider, the surjectivity of can implies its bijectivity. 
Assume now that can is bijective. The local triviality assumption in the definition of a 

covering map implies that for any continuous function f on 𝑋 one has a continuous 

function 𝛩(𝑓) on 𝑌 given by the formula 

(𝛩(𝑓))(𝑦) ≔
1

♯ 𝜋−1(𝑦)
∑ 𝑓(𝑥)

𝑥∈𝜋−1(𝑦)

.                                  (68) 

 

Note that the fibres are finite due to the compactness of 𝑋. Also, one immediately sees that 

𝛩 is a unital 𝐶(𝑌) −linear map from 𝐶(𝑋)𝑡𝑜 𝐶(𝑌 ).  
Now it follows from the bijectivity of can and that 𝐶(𝑌)  =  𝐶(𝑋)𝑐𝑜 𝐶(𝛤)  =  𝐶(𝑋/𝛤). 
Hence the fibres of the covering map 𝜋: 𝑋 →  𝑌 are the orbits of 𝛤. Finally, the freeness of 

the action of 𝛤 on 𝑋 follows from the surjectivity of can and (51). If 𝑋 is connected, then it 

is always the case that the group of deck transformations 𝛤 is finite and that the action of 𝛤 

on 𝑋  is free. The issue is then whether or not the action of 𝛤  on each fiber of 𝜋 is 

transitive. Thus we conclude from Proposition (2.2.20): 

 Corollary (2.2.22)[148]: Let 𝑋  and 𝑌  be connected compact Hausdorff topological 

spaces, and let 𝜋: 𝑋 →  𝑌  be a covering map. Denote by 𝛤  the group of deck  

transformations. Then the action of 𝛤 on each fiber of 𝜋 is transitive if and only if the 

canonical map      

 
is an isomorphism. 

Remark (2.2.23)[148]: An alternative proof of Proposition (2.2.20) is as follows. 

Consider the commutative diagram 

    

𝐶(𝑋) 𝐶(𝑋)   
𝑐𝑎𝑛

⟶𝐶(𝑌)
⊗ 𝐶(𝑋)⊗ 𝐶(Γ)

↓ ↓
𝐶(𝑋 𝑋𝑌

× )    ⟶ 𝐶(𝑋 × Γ)

                                                   (69) 
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in which each vertical arrow is the evident map and the lower horizontal arrow is the ∗-

homomorphism resulting from the map of topological spaces 

   

𝑋 × Γ ⟶ 𝑋  𝑋𝑉
×  ,     (𝑥, 𝑦) ⟼ (𝑥, 𝑥𝑦).                                           (70) 

                  

Note that 𝑋  is a (locally trivial) principal 𝛤  bundle on 𝑌  if and only if this map of 

topological spaces is a homeomorphism, and the latter is equivalent to bijectivity of the 

lower horizontal arrow. 

Hence to prove Proposition (2.2.20), it will suffice to prove that the two vertical arrows are 

isomorphisms. The right vertical arrow is an isomorphism because 𝛤 is a finite group, so 

𝐶(𝛤) is a finite-dimensional vector space over the complex numbers ℂ 

For the left vertical arrow, let 𝐸  be the vector bundle on 𝑌  whose fiber at 𝑦 ∈  𝑌  is 

𝑀𝑎𝑝(𝜋−1(𝑦), ℂ), i.e. is the set of all set-theoretic maps from 𝜋−1(𝑦) to ℂ. 𝐴𝑠 𝜋−1(𝑦) is a 

discrete subset of the compact Hausdorff space 𝑋, it is finite. Let 𝑆(𝐸) be the algebra 

consisting of all the continuous sections of 𝐸. Then S(E) = C(X). 

Similarly, define 

  

𝜋(𝑖𝑖): 𝑋  𝑋𝑌
× ⟶ 𝑌    𝑏𝑦    𝜋(𝑖𝑖): (𝑥1, 𝑥2) ⟼ 𝜋(𝑥1) = 𝜋(𝑥2).                          (71) 

   

Let 𝐹 be the vector bundle on 𝑌 whose fiber at 𝑦 ∈  𝑌 is 𝑀𝑎𝑝((𝜋(𝑖𝑖))−1(𝑦), ℂ), i.e. is the 

set of all set-theoretic maps from((𝜋(𝑖𝑖))−1(𝑦) to ℂ. Then 𝑆(𝐹)  =  𝐶(𝑋 ×𝑌  𝑋),where 

𝑆(𝐹) is the algebra consisting of all the continuous sections of 𝐹. Since 𝐹 =  𝐸 ⊗  𝐸 as 

vector bundles on 𝑌 , we conclude 𝑆(𝐹)  =  𝑆(𝐸)  ⊗ 𝐶(𝑌) 𝑆(𝐸), which proves bijectivity 

for the left vertical arrow. Without connectivity, the group of deck transformations can be 

infinite. For example, let 𝑌 be the Cantor set and let 𝜋: 𝑌 × {0, 1}  →  𝑌 be the trivial 

twofold covering. Let 𝑈 be a subset of 𝑌 which is both open and closed. Define 𝛾𝑈 ∶  𝑌 ×
 {0, 1}  →  𝑌 ×  {0, 1} by 

  

𝛾𝑈(𝑦, 𝑡) ≔ {
(𝑦, 𝑡)          for 𝑦 ∉ 𝑈
(𝑦. 1 − 𝑡)     for 𝑦 ∈ 𝑈.

                                              (72) 

 

Then 𝛾𝑈 is a deck transformation and there are infinitely many closed and open subsets 𝑈. 

The following example is a threefold covering 𝑋 of the one point union of two circles 𝑌. 

Here the preimage of the left circle of the base space is the usual threefold covering of the 

circle. The preimage of the right circle of the base space is the disjoint union of the usual 

twofold covering of the circle and the onefold covering of the circle. 
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In this example, the group of deck transformations is trivial. Indeed, let 𝛾  be a deck 

transformation. Consider 𝛾 restricted to the preimage of the right circle of the base space. 

This preimage has two connected components. Since 𝛾 is a deck transformation of this 

preimage, it must map each connected compenent to itself. This implies that 𝛾 has a fixed 

point. Hence, as 𝑋 is connected, 𝛾 =  𝑖𝑑. In particular, this shows that the group of deck 

transformations need not act transitively on fibers of a covering map. The canonical map is 

surjective but not injective. 
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Chapter 3 

Invariant Measures and Almost Weak Specification Property 

 
We consider the space of measures provided with the weak topology. We show a 

property for ergodic group automorphisms of abelian groups. 

Section (3.1): Homeomorphisms with Weak Specification 

We consider the space of measures provided with the weak topology. In [185], 

[186], K. Sigmund discussed some categories in the space of invariant measures for 

homeomorphisms satisfying specification. The ingredient of his proofs is in the densely 

periodic property of homeomorphisms with specification. It is known that weak 

specification for homeomorphisms is strictly weaker than specification. 

We show that the results of K. Sigmund hold for homeomorphisms satisfying weak 

specification (Theorems (3.1.3) and (3.1.5)). The idea of proofs is in constructing the 

property ”smallest sets“that is found in the weak specification property.  

   For 𝑋  be a compact metric space with metric 𝑑  and  𝔐(𝑋)  be the space of Borel 

probability measures of 𝑋  with metric �̅�  which is compatible with the weak topology, 

where �̅� is defined by 

�̅�(𝜇, 𝜈) = inf  {𝜀; 𝜇(𝐵) ≦ 𝜈({𝑥 ∈ 𝑋; 𝑑(𝑥, 𝐵) ≦ 𝜀}) + 𝜀 and                               
       𝜈(𝐵) ≦ 𝜇({𝑥 ∈ 𝑋; 𝑑(𝑥, 𝐵) ≦ 𝜀}) + 𝜀  for all Borel sets 𝐵} 

(p. 9 of  [183] or p. 238 of  [181]). 

      Define a point measure  𝛿(𝑥) by 𝛿(𝑥)(𝐵) = 1  if 𝑥 ∈ 𝐵  and 𝛿(𝑥)(𝐵) = 0 if 𝑥 ∉ 𝐵 

(Borel sets B ), and denote by 𝐵(𝑥, 𝜀) an 𝜀-closed ball about 𝑥 in 𝑋. For arbitrary finite 

points 𝑥𝑖 ∈ 𝑋  and 𝜇𝑖 ∈ 𝔐(𝑋) (1 ≤ 𝑖 ≤ 𝑛)  with card 

{1 ≤ 𝑖 ≤ 𝑛 ;  𝜇𝑖(𝐵(𝑥, 𝜀)) < 1} 𝑛 < 𝜀,⁄  we get easily �̅�(1 𝑛∑ 𝛿(𝑥𝑖),
𝑛
𝑖=1⁄ 1 𝑛∑  𝜇𝑖

𝑛
𝑖=1⁄ ) <

𝜀. It is clear that the map 𝑥 → 𝛿(𝑥)   𝑥 ∈ 𝑋 is a homeomorphism from 𝑋 onto  a subset of  

𝔐(𝑋). 
     Let 𝜎 be a self-homeomorphism of 𝑋 Then 𝜎 induces a homeomorphism 𝜎:𝔐(𝑋) →
𝔐(𝑋) by 𝜎𝜇(𝐵) = 𝜇(𝜎−1𝐵) (Borel sets 𝐵  and 𝜇 ∈ 𝔐(𝑋)) such that 𝛿(𝜎𝑥) = 𝜎𝛿(𝑥)for 

all 𝑥 ∈ 𝑋. Hence we can consider that (𝑋, 𝜎) is a subsystem of  (𝔐(𝑋), 𝜎). It is known (p. 

17 of [183]) that the set 𝔐𝜎(𝑋)of 𝜎 -invariant measures is a compact convex set. 

     Let ℊ(𝑋) denote the set of ergodic measures in 𝔐𝜎(𝑋). Then 2 ℊ(𝑋) is a nonempty 

𝐺𝛿-set in 𝔐𝜎(𝑋) (p. 25 of [183]). Let 𝑔(𝑥) denote the set of strongly mixing measures in 

𝔐𝜎(𝑋), 𝒟(𝑋) denote the set of measures positive on all nonempty open sets in 𝔐𝜎(𝑋), 
and 𝒩(𝑋) denote the set of non-atomic measures in 𝔐𝜎(𝑋). We denote by 𝑉𝜎(𝑥) the set 

of 𝜔-limits of the sequence {1 ∑ 𝛿(𝜎𝑗𝑥)𝑛−1
𝑗=0⁄ }

𝑛=1

∞
 for  𝑥 ∈ 𝑋. Then we know (p. 18 of 

[183]) that for every 𝑥 ∈ 𝑋 , 𝑉𝜎(𝑥) is a nonempty compact connected subset of  𝔐𝜎(𝑋). 
     Let 𝑋 and  𝜎 be as above. Then (𝑋, 𝜎 ) is said to satisfy weak specification if  for 𝜀 >
0, there exists 𝑀(𝜀) > 0 such that for every 𝑘 ≥ 1, 𝑘 points 𝑥1, ⋯ , 𝑥𝑘 ∈ 𝑋 and for every 

set of integers 𝑎1 ≤ 𝑏1 < 𝑎2 ≤ 𝑏2 < ⋯ < 𝑎𝑘 ≤ 𝑏𝑘  with 𝑎𝑖 − 𝑏𝑖−1 ≥ 𝑀(𝜀)   (2 ≤ 𝑖 ≤

𝑘), the set �̂� = ⋂ ⋂ 𝜎−𝑗𝐵(𝜎𝑗𝑥𝑖 , 𝜀)
𝑏𝑖
𝑗=𝜎𝑖

𝑘
𝑖=1  is nonempty. Since ∅ ≠

⋂ ⋂ ⋂ ⋂ 𝜎−𝑗
𝑏𝑖+𝑛𝑞
𝑗=𝑎𝑖+𝑛𝑞

𝑘
𝑖=1

1
𝐵(𝜎𝑗−𝑛𝑞𝑥𝑖 , 𝜀) ⊂ �̂�𝑟

𝑛=−𝑟
∞
𝑟=1  for all ≥ 𝑏𝑘 − 𝑎1 +𝑀(𝜀)  , we get 

easily that �̂� contains a  𝜎𝑞-invarant subset. When (𝑋, 𝜎) obeys weak specification and has 

the following additional condition; for every 𝑞 ≥ 𝑏𝑘 − 𝑎1 +𝑀(𝜀)  there is an 𝑥 ∈ 𝐵 

with 𝜎𝑞𝑥 = 𝑥 ,  we say (𝑋, 𝜎)  to satisfy specification. 



74 

    In order to solve whether every zero-dimensional ergodic automorphism satisfies 

specification, in [180]  N. Aoki constructs a zero-dimensional ergodic  automorphism 

without densely periodic property. This implies that such an automorphism obeys weak 

specification, but not specification. For the class of all solenoidal automorphisms, it is 

proved in [179] that the class of automorphisms with weak specification is wider than the 

class of automorphisms with specification. 

The following theorems are proved for the class of homeomorphisms with weak 

specification of compact metric spaces. 

We show two results which are used in the proof of the theorems. Hereafter 𝑋 is a 

compact metric space with metric 𝑑 and 𝜎is a self-homeomorphism of  𝑋. 
     A nonempty closed subset ∆ is said to be a smallest set if there is an integer 𝑞 ≥ 1 such 

that 𝜎𝑞∆= ∆ and ∆ contains no completely 𝜎𝑞-invariant closed proper subsets. We call the 

least positive integer in the set of such 𝑞 ≥ 1 the period of  ∆, and we denote it by per (∆). 
Obviously,  𝜎𝑖∆ ∩ ∆= ∅  for 𝑖with 1 ≤ 𝑖 ≤per (∆) − 1. Let ∆ be a smallest set. Then ∆̃=

⋃ 𝜎𝑖∆
𝑝𝑒𝑟(∆)−1
𝑖=1 .is a minimal set under 𝜎 ; i.e., ∆̃ contains no completely 𝜎 –invariant closed 

proper subsets. Since ∆̃ is compact and ∆̃= ∆̃ , as before we can consider the space 𝔐𝜎(∆̃) 
of 𝜎 -invariant Borel probability measures of  ∆̃.  Then every 𝜇 ∈ 𝔐 (∆̃) defines a measure  

�̅� ∈ 𝔐𝜎(𝑋)by  �̅� ∈ (𝐵) = 𝜇(𝐵 ∩ ∆̃)  for Borel sets 𝐵 of 𝑋 . It is clear that if  𝜇 ∈ 𝔐𝜎(∆̃) 

is ergodic, then  �̅� ∈ ℊ(𝑋). We remark that �̅�(𝜎𝑗∆) = 1 per(∆)    (0 ≤ 𝑗 ≤ per(∆) − 1)⁄  

for all 𝜇 ∈ 𝔐𝜎  (∆̃). Define  �̅�𝑗 ∈ 𝔐 (𝑋)  (𝑗 ≥ 0)  by �̅�𝑗  (𝐵) = per (∆)�̅�(𝐵 ∩ 𝜎𝑗∆)  for 

Borel sets 𝐵 of  𝑋.Then we have �̅� = (1 per(∆)⁄ )⋃ �̅�𝑗
per(∆)−1
𝑗=0 .We say that  𝑥 ∈ 𝑋  is a 

generic point for 𝜇 ∈ 𝔐𝜎(𝑋) if 𝑉𝜎(𝑥) = {𝜇}. Every 𝜇 ∈ ℊ(𝑋) has generic points and the 

set of generic points for 𝜇 has 𝜎-measure one (c.f. see p. 25 of [183]). 

Proposition (3.1.1)[178]: If (𝑋, 𝜎)  satisfies weak specification, then ℊ(𝑋)  is dense in 

𝔐𝜎  (𝑋). 
Proof:  It is clear that  ℊ(𝑋) ≠ ∅. First we prove that for every 𝜇1, 𝜇2 ∈ ℊ(𝑋), every  𝑡 ∈
[0,1]  and every 𝜀 > 0, there exists 𝑣 ∈ ℊ(𝑋) with �̅� (𝑣, 𝑡𝜇1 + (1 − 𝑡)𝜇2) < 𝜀. 
     Take an integer   𝑚 > 4/𝜀,   then there exists an integer 𝑚1  with 1 ≤ 𝑚1 ≤ 𝑚 − 1  

such that  |𝑚1 𝑚 − 𝑡⁄ | ≤ 1 𝑚⁄ . It follows from the definition of �̅� that  

�̅� (𝑡𝜇1 + (1 − 𝑡)𝜇2,
𝑚1

𝑚
 𝜇1 +

𝑚 −𝑚1

𝑚
𝜇2) < 𝜀 2.⁄  

Let 𝑥1 and 𝑥2 be generic points for 𝜇1 and 𝜇2, respectively and choose 𝑀 = 𝑀(𝜀/4) as in 

the definition of weak specification. Since 𝑥𝑖 is a generic point for  𝜇𝑖(𝑖 = 1,2),  we can 

find an 𝑁0 ≥ 4𝑀 𝜀⁄  such that for all 𝑛 ≥ 𝑁0, �̅� (𝜇𝑖 , (1 𝑛⁄ )∑ 𝛿(𝜎𝑗𝑥𝑖)
𝑛−1
𝑗=0 ) < 𝜀 4⁄  (𝑖 =

1,2). 
     Put 𝑁1 = 𝑚1𝑁0 −𝑀  and 𝑁2 = (𝑚 −𝑚1)𝑁0 −𝑀.  Then we can calculate easily that 

�̅� (
𝑚1

𝑚
𝜇1 +

𝑚 −𝑚1

𝑚
𝜇2, (𝑁1 +𝑁22𝑀)−1∑ ∑ 𝛿(𝜎𝑗𝑥𝑖)

𝑁𝑖+𝑀−1

𝑗=0

2

𝑖=1
) 

= �̅� (
𝑚1

𝑚
𝜇1 +

𝑚 −𝑚1

𝑚
𝜇2,

𝑚1

𝑚
(

1

𝑁1 +𝑀
∑ 𝛿(𝜎𝑗𝑥𝑖)

𝑁𝑖+𝑀−1

𝑗=0
) 

+
𝑚 −𝑚1

𝑚
(

1

𝑁2 +𝑀
∑ 𝛿(𝜎𝑗𝑥𝑖)

𝑁𝑖+𝑀−1

𝑗=0
)) < 𝜀 4.⁄  
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     To use the weak specification property, we put 𝑎1 = 0, 𝑏1 = 𝑁1, 𝑎2 = 𝑏1 +𝑀, 𝑏2 =
𝑎2 +𝑁2 , 𝑞 = 𝑏2 +𝑀, 𝑦1 = 𝑥1  and  𝑦2 = 𝜎−𝑎2𝑥2 . Since 𝑋  is compact, it follows that 

there is a smallest set ∆ such that 

𝜎𝑞∆= ∆⊂⋂⋂𝜎−𝑗

𝑏𝑖

𝑗=𝑎𝑖

2

𝑖=1

𝐵(𝜎−𝑗𝑦𝑖 , 𝜀 3⁄ ). 

Take an ergodic measure ∈ 𝔐𝜎  (∆̃).  , then  �̅�𝑗 (𝐵(𝜎
𝑗𝑦𝑖  , 𝜀 4⁄ )) = 1   (𝑎𝑖 ≦ 𝑗 ≦ 𝑏𝑖 , 𝑖 =

1,2)  and so ∑ Card {𝑎𝑖 ≦ j ≦ 𝑏𝑖 +𝑀 − 1 ; �̅�𝑗 (𝐵(𝜎
𝑗𝑦𝑖 , 𝜀 4⁄ )) < 1} 𝑞⁄ < 2𝑀 <⁄  𝜀 4⁄2

𝑖=1 .  

We remark that  �̅� = (1 𝑞⁄ )∑ �̅�𝑗
𝑞−1
𝑗=0  since 𝑞 is divided by per (∆). Then 

�̅� (�̅� ,
1

𝑞
 (∑ ∑ 𝛿(𝜎𝑗𝑥𝑖)

𝑁𝑖+𝑀−1

𝑗=0

2

𝑖=1

))                                      

           = �̅� (
1

𝑞
 ∑ �̅�𝑗

𝑞−1

𝑗=0

,
1

𝑞
∑ ∑ 𝛿(𝜎𝑗𝑦𝑖)

𝑏𝑖+𝑀−1

𝑗=𝑎1

2

𝑖=1

) ≦ 𝜀 4⁄ . 

Hence 

�̅�(�̅�, 𝑡𝜇1 + (1 − 𝑡)𝜇2) ≦ �̅� (�̅�,
1

𝑞
∑ ∑ 𝛿(𝜎𝑗𝑥𝑖)

𝑁𝑖+𝑀−1

𝑗=0

2

𝑖=1

)                                   

   +�̅� (
1

𝑞
∑ ∑ 𝛿(𝜎𝑗𝑥𝑖)

𝑁𝑖+𝑀−1

𝑗=0

2

𝑖=1

,
𝑚1

𝑚
𝜇1 +

𝑚 −𝑚1

𝑚
𝜇2) 

+�̅� (
𝑚1

𝑚
𝜇1 +

𝑚 −𝑚1

𝑚
𝜇2, 𝑡𝜇1 + (1 − 𝑡)𝜇2) < 𝜀 

                                                                                             (since = 𝑁1 +𝑁2 + 2𝑀 ). 

      We use induction to get the conclusion. Take  𝜇 ∈ 𝔐𝜎(𝑋), then for every 𝜀 > 0 there 

exist 𝑘 ≧ 1 , 𝜇1, ⋯ , 𝜇𝑘 ∈ 𝑔(𝑋)   and 𝑡1, ⋯ , 𝑡𝑘 ≧ 0  with 𝑡1 + 𝑡2…+ 𝑡𝑘 = 1 such that 

�̅�(𝜇, ∑ 𝑡𝑖
𝑘
𝑖=1 𝜇𝑖) < 𝜀 2⁄  p. 25 of [183]). By the first part of the proof, there is a 𝜈1 ∈ 𝑔(𝑋) 

such that �̅�(𝑡1 (𝑡1 + 𝑡2)𝜇1 + 𝑡2 (𝑡1 + 𝑡2)𝜇2 ,⁄⁄ 𝜈1) < 𝜀 4⁄ . Also there is a𝜈2 ∈ 𝑔(𝑋) such 

that �̅�((𝑡1 + 𝑡2) (𝑡1 + 𝑡2 + 𝑡3)𝜈1 + 𝑡3 (𝑡1 + 𝑡2 + 𝑡3)𝜇3 ,⁄⁄ 𝜈2) < 𝜀 8.⁄   Put  𝑡(𝑖)∑ 𝑡𝑗
𝑖
𝑗=1  

for 1 ≦ 𝑖 ≦ 𝑘,  then it follows from definition of  �̅� that 

                          �̅� ( ∑
𝑡𝑗

𝑡(3)

3

𝑗=1

 𝜇𝑗 , 𝜈2 ) 

                         ≦ �̅� (
𝑡(2)

𝑡(3)
(
𝑡1
𝑡(2)

𝜇1 +
𝑡2
𝑡(2)

𝜇2) +
𝑡3
𝑡(3)

𝜇3,
𝑡(2)

𝑡(3)
𝜈1 +

𝑡3
𝑡(3)

𝜇3) 

+�̅� (
𝑡(2)

𝑡(3)
𝜈1 +

𝑡3
𝑡(3)

𝜇3, 𝜈2) < 𝜀 4 + 𝜀 8⁄⁄ .    

     When 𝜈𝑖 ∈ 𝑔(𝑋)   (2 ≦ 𝑖 ≦ 𝑘 − 2) is already defined, by the above way we can find 

𝜈𝑖+1 ∈ 𝑔(𝑋) such that 
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�̅� (
𝑡(𝑖+1)

𝑡(𝑖+)
𝜈𝑖 +

𝑡𝑖+2
𝑡(𝑖+2)

𝜇𝑖+2, 𝜈𝑖+2) < 𝜀 2𝑖+1.⁄  

Since 𝜈𝑘−1 ∈ 𝑔(𝑋)and �̅�(  ∑ 𝑡𝑖
𝑘
𝑖=1 𝜇𝑖 , 𝜈𝑘−1  ) ≦ ∑ 1𝑘−1

𝑖=1 2𝑖+1 < 𝜀 2,⁄⁄   the proof is 

completed. 

     Let us put 𝑍(∆, 𝛿) = {0 ≦  𝑗 < 𝑝𝑒𝑟(∆); diam (𝜎𝑗∆) < 𝛿 } for a smallest set ∆ and 𝛿 >
0 . Denote by 𝐴(𝛿)  the collection of smallest sets ∆  with prime period satisfying the 

conditions; 

                             per (∆) > 𝛿−1 and card (𝑍(∆, 𝛿)) per (∆)⁄ > 1 − 𝛿. 
It is easy to check that  𝐴(𝛿1) ⊂  𝐴(𝛿2)  when 𝛿1 ≦ 𝛿2. 
Proposition (3.1.2)[178]:  If  (𝑋, 𝜎) (card (𝑋) > 1 ) satisfies weak specification, for every 

𝛿 > 0 with  𝛿 < diam(𝑋)/4  and for every 𝜇 ∈ 𝔐𝜎(𝑋) there exists 𝑎  ∆∈ 𝐴(𝛿)such that 

every measure 𝜈  in  𝔐𝜎(Δ̃)  holds �̅�(𝜇, �̅�) < 𝛿.  Consequently the set ⋃ {�̅� ∈∆∈𝐴(𝛿)

𝔐𝜎(𝑋);  𝜈 ∈ 𝔐𝜎(Δ̃)} is dense in 𝔐𝜎(𝑋)for all 𝛿 > 0. 
Proof:  Since 𝑔(𝑋) is dense in 𝔐𝜎(𝑋) by Proposition (3.1.1), there is an  𝜇1 ∈ 𝑔(𝑋) such 

that �̅�(𝜇, 𝜇1) < 𝛿/3. Choose  𝑀 = 𝑀(𝛿/3)  as in the definition of weak specification. Let 

𝑥1 be a generic point for  𝜇1  . Then there is an  𝑁0 > 6𝑀/𝛿  such that 

�̅� ((1 𝑛⁄ )∑ 𝛿(𝜎𝑗𝑥𝑖),
𝑛−1
𝑗=1 𝜇1) < 𝛿 3⁄  (𝑛 ≧ 𝑁0).Take a prime 𝑝 with 𝑝 > 𝑁0 + 2𝑀  and put 

𝑁 = 𝑝 − 2𝑀. For  𝑥2 ∈ 𝑋 with  𝑑(𝜎𝑁+𝑀𝑥2, 𝑥1) > 2𝛿 , putting  𝑎1 = 0,  𝑏1 = 𝑁 and  𝑎2 =
 𝑏2 = 𝑁 +𝑀 .  As before we have that there is a smallest set ∆  such that 𝜎𝑝∆= ∆⊂

⋂ ⋂ 𝜎−𝑗
𝑏𝑖
𝑗=𝑎𝑖

2
𝑖=1 𝐵(𝜎𝑗𝑥, 𝛿 3⁄ ). 

     Since ∆⋂𝜎𝑁+𝑀 ∆⊂ 𝐵(𝑥1, 𝛿 3⁄ )⋂𝐵(𝜎𝑁+𝑀𝑥2, 𝛿 3⁄ )  = ∅, we get per (∆) ≠ 1 and per 

(∆) divides 𝑝. But 𝑝 is prime so that per (∆) = 𝑝 > 𝛿−1. Since {0,1,⋯ ,𝑁} ⊂ 𝑍(Δ, 𝛿) and 

card (𝑍(∆, 𝛿))/𝑝 > 1 − 2𝑀/𝑝 > 1 − 𝛿/3  , we get ∆∈ 𝐴(𝛿).  Since 𝜈�̅�(𝐵(𝜎
𝑗𝑥1, 𝛿/3)) =

1 ≦ 𝑗 ≦  𝑁) for all 𝜈 ∈ 𝔐𝜎(Δ̃) , it follows that 

   card {0 ≦ 𝑗 ≦ 𝑝; �̅�𝑗(𝐵(𝜎
𝑗𝑥1, 𝛿/3)) < 1} <

𝑝 − (𝑁 + 1)

𝑝
< 2𝑀/𝑝 < 𝛿/3. 

       Since  �̅� = (1/𝑝)∑ �̅�𝑗   
𝑝−1
𝑗=0 , we get easily that �̅� ((1 𝑝⁄ )∑ 𝛿(𝜎𝑗𝑥1),

𝑝−1
𝑗=0 �̅�) =

�̅� ((1 𝑝⁄ )∑ 𝛿(𝜎𝑗𝑥1),
𝑝−1
𝑗=0 (1/𝑝)∑ �̅�𝑗  

𝑝−1
𝑗=0 ) < 𝛿/3. Therefore 

�̅�(𝜇1, �̅�) ≦ �̅� (𝜇1,
1

𝑝
∑ 𝛿(𝜎𝑗𝑥1)  

𝑝−1

𝑗=0
) + �̅� (

1

𝑝
∑ 𝛿(𝜎𝑗𝑥1),

𝑝−1

𝑗=0
�̅�) < 2𝛿 3⁄  

                                                                                                    (𝜈 ∈ 𝔐𝜎(∆̃)) 

and the proof is completed. 

We prove Theorems (3.1.3), (3.1.4), and (3.1.5) that are mentioned in (I). 

Theorem (3.1.3)[178]: Let  𝑋 be a compact metric space (card (𝑋) > 1 ), and a be a self-

homeomorphism of  𝑋 . If (𝑋, 𝜎)  satisfies weak specification, then  

𝑔(𝑋),𝒟(𝑋) , and 𝒩(𝑋)  are dense 𝐺𝛿-sets of  𝔐𝜎(𝑋) , and 𝑔(𝑋) is a set of first category 

in 𝔐𝜎(𝑋). 
Proof: Since 𝑔(𝑋) is dense in 𝔐𝜎(𝑋) by Proposition (31.1), 𝑔(𝑋) is a dense  𝑔𝛿 -subset 

of  𝔐𝜎(𝑋). Let 𝓊 = {𝑈𝑖}𝑖=1
∞  be a countable open basis of  . Since (𝑋, 𝜎) satisfies weak 

specification, we can find a smallest set ∆𝑖with  ∆𝑖⊂ 𝑈𝑖 for 𝑈𝑖 ∈ 𝓊. For every ≧ 1 , take 

𝜇𝑖 ∈ 𝔐𝜎(∆�̃�)  , then   𝜇𝑖 ∈ (𝑈𝑖) ≧  per (∆𝑖)
−1 .Hence  𝜇 = ∑ (1 2𝑖⁄ )∞

𝑖=1 𝜇𝑖  is a measure 

positive on all nonempty open sets; i.e.,  𝜇 ∈ 𝒟(𝑋). It follows from that 𝒟(𝑋) is a dense 
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𝑔𝛿  -subset of  𝔐𝜎(𝑋)  unless 𝒟(𝑋) is empty. For every integer 𝑟 > 0,𝐾𝑟 = {𝜇 ∈
𝔐𝜎(𝑋); 𝜇(𝑥) < 1/𝑟  for all 𝑥 ∈ 𝑋} is open in 𝔐𝜎(𝑋). Using Proposition (3.1.2), we have 

that 𝐾𝑟 is a dense in 𝔐𝜎(𝑋) for all  𝑟 ≧ 1 . Since 𝒩(𝑋) = ⋂ 𝐾𝑟
∞
𝑟=1 ,𝒩(𝑋) is a dense 𝑔𝛿 -

subset of  𝔐𝜎(𝑋). 
      Since  𝒟(𝑋) is a dense 𝐺𝛿-subset of  𝔐𝜎(𝑋), it is enough to show that  𝐿(𝑋)⋂𝒟(𝑋) 
is a set of first category in 𝔐𝜎(𝑋). 
      Since card (𝑋) > 1 , there is two nonempty disjoint closed neighbor-hoods 𝐹1 and  𝐹2 

in  𝑋 . For 𝑛 ≧ 2,  put 𝑆(𝑛) = {𝜇 ∈ 𝐿(𝑋); 𝜇(𝐹1) ≧ 1 𝑛⁄   and 𝜇(𝐹2) ≧ 1 𝑛⁄ },then  

𝐿(𝑋)⋂𝒟(𝑋) ⊂ ⋃ 𝑆(𝑛).∞
𝑛=2  Let  𝑉𝑚 be  an 1/𝑚 open neighbourhood of  𝐹1 for every 𝑚 ≧

2 , then  𝑆(𝑛) ⊂ ⋃ ⋃ 𝐸[𝑚, 𝑟]∞
𝑟=1

∞
𝑚=1 wher𝐸[𝑚, 𝑟] = ⋂ {𝜇 ∈ 𝔐𝜎(𝑋),

∞
𝑗=1  𝜇(𝑉𝑚 ∩ 𝜎𝑗𝑉𝑚) −

𝜇(𝐹1)
2 ≦ 1 2𝑟2⁄ ,   𝜇(𝐹1) ≧ 1 𝑛⁄  , and 𝜇(𝐹2) ≧ 1 𝑛⁄ }. Since  𝑉𝑚(𝑚 ≧ 1)   is open and  𝐹1 

and 𝐹2 are closed, it is easy to check that each  𝐸[𝑚, 𝑟]  is closed. 

      We show that for every 𝑚 ≧ 1  and 𝑟 ≧ 1 , 𝐸[𝑚, 𝑟]  is a nowhere dense subset of 

 𝔐𝜎(𝑋). For fixed  , take 𝑛 ≧ 1 such that  𝑚 ≦ 2𝑟2. For every ∆∈ 𝐴(2𝑟2), define a set  

𝑍 = { 0 ≦ 𝑗 < per(∆); 𝜎𝑗∆ ∩ 𝐹1 ≠ ∅ and 𝜎𝑗∆⊄ 𝑉𝑚}. Then by the definition of  𝐴(1/2𝑟2) 

, we have card (𝑍) per⁄ (∆) < 1/2𝑟2.  For every 𝜈 ∈ 𝔐𝜎(∆̃), �̅� (𝑉𝑚 ∩ 𝜎𝑗 𝑝𝑒𝑟(∆)𝑉𝑚) >

�̅�(𝐹1 − 1 2𝑟2⁄   (𝑗 ≧ 1),  , and so �̅�(𝑉𝑚 ∩ 𝜎𝑗 𝑝𝑒𝑟(∆)𝑉𝑚) − �̅�(𝐹1)
2 > �̅�(𝐹1)(1 − �̅�(𝐹1)) −

1 2𝑟2⁄ .This shows that  �̅� ∉ 𝐸[𝑚, 𝑟]. By Proposition (3.1.2), ⋃ {�̅� ∈ 𝔐𝜎(𝑋), 𝜈 ∈∆∈𝐴(1 2𝑟2⁄ )

𝔐𝜎(∆̃)} is dense in 𝔐𝜎(𝑋). Hence (𝐿)(𝑋) ∩ 𝒟(𝑋)  contained in a countable union of 

nowhere dense closed sets, and so (𝐿)(𝑋)⋂𝒟(𝑋) is a set of first category in 𝔐𝜎(𝑋). 
Theorem(3.1.4)[178]: Let 𝑋  and 𝜎  be as in Theorem (3.1.1). If (𝑋, 𝜎)  satisfies weak 

specification, then (𝔐(𝑋), 𝜎) has the specification  property. 

Proof : Let 𝜀 > 0 be given and 𝔐(𝜀/2) be as in the definition of  weak specification. Let  

𝜇1, ⋯ , 𝜇𝑘 ∈ 𝔐(𝑋) be given, as well as integers  𝑎1 ≦ 𝑏1 < 𝑎2 ≦ 𝑏2 < ⋯ < 𝑎𝑘 ≦ 𝑏𝑘 and 

𝑞  with  𝑎𝑖 − 𝑏𝑖−1 ≧ 𝑀(𝜀 2⁄ )  and 𝑞 ≧ 𝑀(𝜀/2) + 𝑏𝑘 − 𝑎1 . Since 𝜎: 𝔐(𝑋) → 𝔐(𝑋 is 

uniformly continuous, there exists an 𝜂 > 0 such that �̅�(𝜇, 𝜈) < 𝜂 implies �̅�(𝜎𝑗𝜇, 𝜎𝑗𝜈) <
𝜀/2 for 𝑎1 ≦ 𝑗 ≦ 𝑏𝑘 . For some integer 𝑛 > 0  there exist 𝑥𝑟

𝑖 ∈ 𝑋(1 ≦ 𝑟 ≦ 𝑛, 1 ≦ 𝑖 ≦

𝑘)such that putting 𝜈𝑖 = 1/𝑛∑ 𝛿(𝑥𝑟
𝑖) (1 ≦ 𝑖 ≦ 𝑘), �̅�(𝜇𝑖 , 𝜈𝑖) < 𝜂 𝑛

𝑟=1  holds for 1 ≦ 𝑖 ≦ 𝑘 

.Since 𝜎: 𝑋 → 𝑋 satisfies weak specification, there exist smallest sets  ∆𝑟 with 𝜎𝑞∆𝑟= ∆𝑟 

and ∆𝑟⊂ ⋂ ⋂ 𝜎𝑗
𝑏𝑖
𝑗=𝑎𝑖

𝑘
𝑖=1 𝐵(𝜎𝑗𝑥𝑟

𝑖  , 𝜀 2⁄  for 1 ≦ 𝑟 ≦ 𝑛 .Take 𝜌𝑟 ∈ 𝔐𝜎(∆̃𝑟) and put  𝜌 =

(1 𝑛⁄ )∑ 𝜌 ̅0
𝑟  𝑛

𝑟=1 where 𝜌 ̅0
𝑟(𝐵) =per (∆𝑟)�̅�

𝑟(𝐵 ∩ ∆𝑟)for Borel sets 𝐵. Obviously 𝜎𝑞𝜌 = 𝜌 

and �̅�(𝜎𝑗𝜌, 𝜎𝑗𝜈𝑖) = �̅�((1 𝑛⁄ )∑ 𝜎𝑗𝜌 ̅0
𝑟  ,𝑛

𝑟=1 (1 𝑛⁄ )∑ 𝜎𝑗𝜌 ̅0
𝑟  𝛿(𝜎𝑗𝑥𝑟

𝑖 )𝑛
𝑟=1 ) ≦ 𝜀 2⁄  (𝑎𝑖 ≦ 𝑗 ≦

𝑏𝑖 , 𝑖 = 1,⋯ , 𝑘) . Hence �̅�(𝜎𝑗𝜌, 𝜎𝑗𝜇𝑖) < 𝜀  for 𝑎𝑖 ≦ 𝑗 ≦ 𝑏𝑖  , 𝑖 = 1,⋯ , 𝑘.  The proof is 

completed. 

Theorem (3.1.5)[178]: Let 𝑋  and 𝜎  be as in Theorem (3.1.1). If (𝑋, 𝜎) satisfies weak 

specification, then for every nonempty compact connected subset 𝑉 of  𝔐𝜎(𝑋), there is an  

𝑥 ∈ 𝑋 such that 𝑉𝜎𝑟(𝑥) = 𝑉 for all 𝑟 ≧ 1 and the set of such points 𝑥 is a dense set in 𝑋. 
Proof:  Since 𝑉 is compact and connected, by Proposition (3.1.2), there exist a sequence 

{𝜀𝑛}𝑛=1
∞  of  positive numbers with 𝜀𝑛 ↘ 0 and a sequence  {∆𝑛}𝑛=1

∞  in 𝐴(𝜀𝑛) such that for 

some 𝜇𝑛 ∈ 𝔐𝜎(∆̃𝑛) the followings hold; 

     (i) 𝐵𝑛 ∩ 𝐵𝑛+1 ∩ 𝑉 ≠ ∅, 
     (ii) ⋂ ⋃ 𝐵𝑛

∞
𝑛=𝑚

∞
𝑚=1 = 𝑉 

where  𝐵𝑛(𝑛 ≧ 1)  is the  𝜀𝑛-closed neighborhood of �̅�𝑛 in  𝔐(𝑋). We have to show that 

for every  𝑥0 ∈ 𝑋 and 𝛿 > 0  there exists an  𝑥 ∈ 𝐵(𝑥0, 𝛿) such that  𝑉𝜎𝑟(𝑥) = 𝑉  for all  
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𝑟 ≧ 1 . For every  𝑛 ≧ 1 , take an 𝑥𝑛 ∈ ∆𝑛. Since (𝑋, 𝜎) satisfies weak specification, there 

exist positive integers 𝑀𝑛(𝑛 ≧ 0) such that for every set of integers 𝑎0 ≦ 𝑏0 < 𝑎1 ≦ 𝑏1 <
𝑎2 ≦ 𝑏2 < ⋯  with  𝑎𝑛 − 𝑏𝑛−1 ≧ 𝑀𝑛−1 (𝑛 ≧ 1),  there exists an  𝑥 ∈ 𝑋  such that 

𝑑(𝜎𝑗𝑥, 𝜎𝑗𝑥𝑛) ≦ 𝜀𝑛  (𝑎𝑛 ≦ 𝑗 ≦ 𝑏𝑛, 𝑛 > 0)  and 𝑑(𝜎𝑗𝑥, 𝜎𝑗𝑥0) ≦ 𝛿   (𝑎0 ≦ 𝑗 ≦ 𝑏0), 𝑛 >
0) (c.f. see Orbit specification lemma in [186]). With the above notations, take 𝑎𝑛 and  

𝑏𝑛(𝑛 ≧ 0) as follows; 

      (I) 𝑎0 = 𝑏0 = 0, 
     (II) 𝑎𝑛 is divided by 𝑛! and 𝑏𝑛−1 +𝑀𝑛−1 ≦ 𝑎𝑛 < 𝑏𝑛 +𝑀𝑛−1 + 𝑛!  (𝑛 ≧ 1) and  

     (III) 𝑏𝑛 = 𝑎𝑛 + (𝑛 + 1)!  (𝑎𝑛 +𝑀𝑛) per (∆𝑛)per (∆𝑛−1)  (𝑛 ≧ 1).   
Then, we have an 𝑥 ∈ 𝐵(𝑥0, 𝜎) with 𝑑(𝜎𝑗𝑥, 𝜎𝑗𝑥𝑛) ≦ 𝜀𝑛  (𝑎𝑛 ≦ 𝑗 ≦ 𝑏𝑛, 𝑛 ≧ 1). 

      We have to show that 𝑉𝜎𝑟(𝑥) = 𝑉 for all 𝑟 ≧ 1. Though the proof is similar to that in 

[186], we sketch it for completeness . 

       It is clear that for 𝑟 ≧ 1 there is 𝑁0 ≧ 𝑟 such that per (∆𝑛) > 𝑟 for all 𝑛 ≧ 𝑁0. Now 

we fix the integers  𝑟, 𝑛 with 𝑛 ≧ 𝑁0 and 𝑘 with  𝑏𝑛/𝑟 < 𝑘 ≦ 𝑏𝑛+1/𝑟, , and write. 

𝐴1 = 𝐴 ∩ [
𝑎𝑛
𝑟
,
𝑏𝑛
𝑟
) 

where  𝐴 = {0 ≦ 𝑗 ≦  𝑘;  𝑗 is an integer}. Take �́�  with 𝑘 -per (∆𝑛+1) < �́� ≦ 𝑘such that  

�́� − 𝑎𝑛+1 𝑟⁄  is divided by per (∆𝑛+1). 

     Then it is easy to see that   𝐴2 = 𝐴 ∩ [𝑎𝑛+1 𝑟⁄ , �́�) is nonempty when 𝑘 ≧ 𝑎𝑛+1 𝑟⁄ +
 per (∆𝑛+1) and 𝐴2 is empty when  𝑘 < 𝑎𝑛+1 𝑟⁄ + per (∆𝑛+1). 
       Obviously per  (∆𝑛+1)  divides card (𝐴2)  . By (III), per (∆𝑛)  divides card (𝐴1) . 

Remark that per (∆𝑛) and per (∆𝑛+1) are prime numbers. Since 𝑛 ≧ 𝑁0, per (∆𝑛) and per 

(∆𝑛+1) are both prime to the integer 𝑟, so that 

�̅�(card(𝐴1)
−1 ∑ 𝛿

𝑗∈𝐴1

(𝜎𝑗𝑟𝑥𝑛), �̅�𝑛) ≦ 𝜀𝑛 

and  

        �̅� (card(𝐴2)
−1 ∑ 𝛿

𝑗∈𝐴2

(𝜎𝑗𝑟𝑥𝑛+1), �̅�𝑛+1) ≦ 𝜀𝑛+1. 

By the definition of metric �̅� , we get that 

�̅� (
1

k
∑𝛿

𝑗∈𝐴

(𝜎𝑗𝑟𝑥), card (𝐴1 ∪ 𝐴2)
−1 ∑ 𝛿

𝑗∈𝐴1∪𝐴2

(𝜎𝑗𝑟𝑥)) 

< 2card(𝐴1)
−1{ 𝑘 − card (𝐴1 ∪ 𝐴2)} 

≦
4

(𝑛 + 1)!
+2𝜀𝑛.                                     

Since 𝑑(𝜎𝑗𝑟𝑥, 𝜎𝑗𝑟𝑥𝑛) ≦ 𝜀𝑛  (𝑗 ∈ 𝐴1) and 𝑑(𝜎𝑗𝑟𝑥, 𝜎𝑗𝑟𝑥𝑛) ≦ 𝜀𝑛+1  (𝑗 ∈ 𝐴2), it is easy to 

check that 

�̅� (
1

k
∑𝛿

𝑗∈𝐴

(𝜎𝑗𝑟𝑥), card (𝐴1 ∪ 𝐴2)
−1 ∑ 𝛿

𝑗∈𝐴1

(𝜎𝑗𝑟𝑥𝑛) + ∑ 𝛿

𝑗∈𝐴2

(𝜎𝑗𝑟𝑥𝑛+1))            
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<
4

(𝑛 + 1)!
2𝜀𝑛 + �̅�(card(𝐴1 ∪ 𝐴2)

−1 ∑ 𝛿

𝑗∈𝐴1∪𝐴2

(𝜎𝑗𝑟𝑥),             

                                                        (card(𝐴1 ∪ 𝐴2)
−1(∑ 𝛿

𝑗∈𝐴1

(𝜎𝑗𝑟𝑥𝑛) + ∑ 𝛿

𝑗∈𝐴2

(𝜎𝑗𝑟𝑥𝑛+1))) 

                         <
4

(𝑛 + 1)!
+ 3𝜀𝑛 + 𝜀𝑛+1. 

Thus we can compute that 

�̅� (
1

k
∑𝛿

𝑗∈𝐴

(𝜎𝑗𝑟𝑥), card (𝐴1 ∪ 𝐴2)
−1(card (𝐴1)�̅�𝑛 + (card (𝐴2)�̅�𝑛+1)) 

                          <
4

(𝑛 + 1)!
3𝜀𝑛 + 𝜀𝑛+1 

+�̅�(card(𝐴1 ∪ 𝐴2)
−1(∑ 𝛿

𝑗∈𝐴1

(𝜎𝑗𝑟𝑥𝑛) + ∑ 𝛿

𝑗∈𝐴2

(𝜎𝑗𝑟𝑥𝑛+1)) 

    card (𝐴1 ∪ 𝐴2)
−1(card (𝐴1)�̅�𝑛+1 + (card (𝐴2)�̅�𝑛+1)) 

                          <
4

(𝑛 + 1)!
3𝜀𝑛 + 2𝜀𝑛+1 . 

Since  �̅�(�̅�𝑛, �̅�𝑛+1) ≦ 𝜀𝑛 + 𝜀𝑛+1 by (i), we have that 

                 �̅� (
1

k
∑𝛿

𝑗∈𝐴

(𝜎𝑗𝑟𝑥), �̅�𝑛  ) <
4

(𝑛 + 1)!
+ 5𝜀𝑛 + 3𝜀𝑛+1. 

     Since  𝑛 ≧ 𝑁0  and  𝑏𝑛 𝑟⁄ < 𝑘 ≦ 𝑏𝑛+1 𝑟⁄  are arbitrary, 𝑉𝜎𝑟(𝑥) coincides with the 𝜔-

limit set of the sequence  {�̅�𝑛}𝑛+1
∞  and so 𝑉𝜎𝑟(𝑥) coincides with 𝑉 by (ii). The proof is 

completed. 

Section (3.2): For Ergodic Group Automorphisms of Abelian Groups 
     The property of specification plays an important role in classifying the class of 

invariant probability measures preserved under a homeomorphism (see K. Sigmund [185], 

[186] and [178]. In [191] B. Marcus introduced the notion of almost weak specification 

weaker than that of specification by using toral automorphisms. 

     The purpose is to prove that every automorphism of a compact metric abelian group is 

ergodic under the Haar measure if and only if it satisfies almost weak specification 

(Corollary of  Theorem (3.2.2)). 

     For 𝑋 be a compact metric space with metric 𝑑 and 𝜎 be a homeomorphism from 𝑋 

onto itself. Then 𝜎  satisfies almost weak specification  if  for every 𝜀 > 0  there is a 

function  𝑀𝜖: 𝑍
+ → 𝑍+(𝑍+denotes the set of non-negative integers) with 𝑀𝜖(𝑛)/𝑛 → 0 as 

𝑛 → ∞ such that for every 𝑘 ≧ 1 and 𝑘 points  𝑥1, ⋯ , 𝑥𝑘 ∈ 𝑋 and for every sequence of 

integers 𝑎1 ≦ 𝑏1 < 𝑎2 ≦ 𝑏2 < ⋯ < 𝑎𝑘 ≦ 𝑏𝑘  with  𝑎𝑖 − 𝑏𝑖−1 ≧ 𝑀𝜖(𝑏𝑖 − 𝑎𝑖)(2 ≦ 𝑖 ≦ 𝑘) 
there is an 𝑥 ∈ 𝑋  with 𝑑(𝜎𝑛𝑥, 𝜎𝑛𝑥𝑖) ≦ 𝜀  (𝑎𝑖 ≦ 𝑛 ≦ 𝑏𝑖  ,1 ≦ 𝑖 ≦ 𝑘).A homeomorphism 

satisfies weak specification if it has the proPerty of almost weak specification with some 

constant function 𝑀𝜖 . It is clear from definition that if  (𝑋, 𝜎)  satisfies almost weak 

specification, then it is topologically mixing. Almost weak specification is preserved under 
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direct products and homeomorPhic images. A shift of compact metric state space satisfies 

almost weak specification [183]). 

     Hereafter let 𝑋 be a compact metric abelian group and 𝜎 be an automorphism of  𝑋. 𝐺 

denotes the dual group of 𝑋 . Define the dual automorphism 𝛾  of 𝐺  by (𝛾𝑔)(𝑥) =
𝑔( 𝜎𝑥)(𝑥)(𝑔 ∈ 𝐺, 𝑥 ∈ 𝑋). Group operations of 𝑋 and 𝐺 will be denoted by addition. If 𝑋 

is connected, then 𝐺 is torsion free ( i.e., 𝑛𝑔 ≠ 0 for all  0 ≠ 𝑔 ∈ 𝐺 and 0 ≠ 𝑛 ∈ 𝑍). When 

𝑋 is connected, (𝑋, 𝜎) is said to satisfy condition (A) if for every  0 ≠ 𝑔 ∈ 𝐺 there is  0 ≠
𝑃(𝑥) ∈ 𝑍[𝑥] (𝑍[𝑥] denotes the ring of polynomials with integral coefficients) such that 

𝑝(𝛾)𝑔 = 0 , and (𝑋, 𝜎) is said to satisfy condition (B) if one has 𝑝(𝛾)𝑔 ≠ 0 for every  0 ≠
𝑔 ∈ 𝐺 and 0 ≠ 𝑃(𝑥) ∈ 𝑍[𝑥]. 
        (L.1) [188]: Let  𝑋  be a  group as above;  then 𝑋 splits into a sum  𝑋 = 𝑋1 + 𝑋2 + 𝑋3 

of    𝜎 -invariant subgroups (𝜎(𝑋𝑖) = (𝑋𝑖 , 𝑖 = 1, 2, 3)  such that (i) 𝑋𝑖  is totally 

disconnected, (ii) 𝑋2  is connected and (𝑋2, 𝜎)  satisfies condition (A), and (iii) 𝑋3  is 

connected and (𝑋3, 𝜎)satisfies condition (B). If in particular (𝑋, 𝜎) is ergodic under the 

Haar measure, then  𝑋𝑖(𝑖 = 1, 2, 3)  can be chosen such that (𝑋𝑖 , 𝜎) is ergodic under the 

Haar measure. 

       (L.2) Let {𝑋𝑛}𝑛≧0 be a sequence of 𝜎-invariant subgroups such that 𝑋 = 𝑋0 ⊃ 𝑋1 ⊃
⋯ ⊃ ⋂ 𝑋𝑛𝑛≧0 = {0}  and assume that for 𝑛 ≧ 1, (𝑋 𝑋𝑛⁄ , 𝜎)  satisfies almost weak 

specification. Then  (𝑋, 𝜎) satisfies almost weak specification. 

       Indeed, define an invariant metric 𝑑𝑛 on 𝑋 𝑋𝑛⁄ , 𝜎(𝑛 ≧ 1) by 

                                  𝑑𝑛(𝑥 + 𝑋𝑛, 𝑦 + 𝑋𝑛) = min
𝑧∈𝑋𝑛

𝑑(𝑥, 𝑦 + 𝑧)     (𝑥, 𝑦 ∈ 𝑋).  

Take and fix 𝜀 > 0 . Choose   𝑛 ≧ 1  with diam (𝑋𝑛) < 𝜀/2 . Since , (𝑋 𝑋𝑛⁄ , 𝜎)  satisfies 

almost weak specification, there is a function 𝑀𝜀 2⁄
(𝑛)
: 𝑍+ → 𝑍+  with  𝑀𝜀 2⁄

(𝑛)
(𝑚) 𝑚⁄ →

0 as 𝑚 → ∞  such that for every  𝑘 ≧ 1, 𝑘  points 𝑥1, ⋯ , 𝑥𝑘 ∈ 𝑋,  and a sequence of 

integers 𝑎1 ≦ 𝑏1 < ⋯ < 𝑎𝑘 ≦ 𝑏𝑘  with 𝑎𝑖 − 𝑏𝑖−1 ≧ 𝑀𝜀 2⁄
(𝑛)(𝑏𝑖 − 𝑎𝑖) (2 ≦ 𝑖 ≦ 𝑘),  there is 

an 𝑥 ∈ 𝑋  with 𝑑𝑛(𝜎
𝑗𝑥 + 𝑋𝑛, 𝜎

𝑗𝑥𝑖 + 𝑋𝑛) ≦ 𝜀 2⁄  (𝑎𝑖 ≦ 𝑗 ≦ 𝑏𝑖 , 1 ≦ 𝑖 ≦ 𝑘) . Obviously 

𝑑(𝜎𝑗𝑥, 𝜎𝑗𝑥𝑖) ≦ 𝑑𝑛(𝜎
𝑗𝑥 + 𝑋𝑛, 𝜎

𝑗𝑥𝑖 + 𝑋𝑛) + diam (𝑋𝑛) ≦ 𝜀  (𝑎𝑖 ≦ 𝑗 ≦ 𝑏𝑖 , 1 ≦ 𝑖 ≦ 𝑘) .  

Letting 𝑀𝜖 = 𝑀𝜀 2⁄
(𝑛)
 for simplicity, we can easily check that (𝑋, 𝜎) satisfies almost weak 

specification. 

     (L.3): Let 𝑋3  be as in (L.1). If (𝑋3, 𝜎)  is ergodic under the Haar measure, then it 

satisfies almost weak specification. 

      This follows from the proof of  [188] together with (L.2). 

     (L.4) [189]: Let  𝑋1 be as in (L.1). If (𝑋1, 𝜎) is ergodic under the Haar measure, then it 

satisfies almost weak specification. 

      Let 𝑋  be as above. Then 𝑋  is said to be solenoidal if 𝑋  is connected and finite 

dimensional. Clearly every finite-dimensional torus is solenoidal. 

     (L.5) [188]: Let 𝑋2be as in (L.1). Then there is a sequence 

                                 𝑋2 = 𝑋2,0 ⊃ 𝑋2,1 ⊃ ⋯ ⊃ ⋂ 𝑋2,𝑛𝑛≧0 = {0}  
of  𝜎-invariant subgroups such that each 𝑋2/𝑋2,𝑛 is solenoidal. 

      For the following statements (𝐿. 6)~(𝐿. 14) , let 𝑋 be 𝑟-dimensional solenoidal. Since 

rank(𝐺) = 𝑟 < ∞ and 𝐺 is torsion free, there exists an into isomorphism 𝜑:𝐺 → 𝑄𝑟  ( 𝑄𝑟 

denotes the vector space over  ), so that �̅� = 𝜑0𝛾0𝜑−1 is extended to 𝑄𝑟 and further to 𝑅𝑟. 

We denote again by 𝛾 the extension to 𝑅𝑟 .  
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      (L.6) [179]: Under the above notations there are a homomorphism 𝜓:𝑅𝑟 → 𝑋 and a 

totally disconnected subgroup 𝐹  such that (i)  𝜓0𝛾 = 𝜎0𝜓,  (ii) 𝑋 = 𝜓(𝑅𝑟) + 𝐹,  and 

further (iii) there is a small closed neighborhood 𝑈 of 0 in 𝑅𝑟such that 𝜓(𝑈) ∩ 𝐹 = {0} 
and  𝑈 × 𝐹 is homeomorphic to  𝜓(𝑈 + 𝐹 and  𝜓(𝑈) + 𝐹 is a closed neighborhood of  0 

in 𝑋 (we write  𝜓(𝑈)⨁ 𝐹  for such a neighborhood 𝜓(𝑈) + 𝐹).  
       (L.7) [179]: Let 𝐹 be as in (L.6). Then 𝐹 contains subgroups 𝐹−1, 𝐹+1, and  𝐻  such 

that (i) (𝐻) = 𝐻  ,(ii) 𝐹−1 ⊃ 𝜎−1𝐹− ⊃ ⋯ ⊃ ⋂ 𝜎−𝑛∞
0 𝐹− = {0},   (iii) 𝐹+ ⊃ 𝜎𝐹+ ⊃ ⋯ ⊃

⋂ 𝜎𝑛∞
0 𝐹+ = {0}  , and (iv) 𝐹 = 𝐹−⨁𝐹+⨁𝐻. 

      Let (𝑅𝑟 , 𝛾) be a lifting system of (𝑋, 𝜎) by  . Then 𝑅𝑟splits into a direct sum 𝑹𝑟 =
𝐸𝑢⨁𝐸𝑠⨁𝐸𝑐  of 𝜎-invariant subspaces 𝐸𝑢, 𝐸𝑠 , and 𝐸𝑐such that the eigenvalues of  𝛾1𝐸𝑢   

have modulus > 1, the eigenvalues of  𝛾1𝐸𝑠  modulus < 1 and the eigenvaIues of  𝛾1𝐸𝑐 
modulus one. We call (𝑹𝒓, 𝛾) hyperbolic if  𝐸𝑐 = {0}; i.e., 𝑹𝑟 = 𝐸𝑢⨁𝐸𝑠. If 𝐸𝑐 ≠ {0}, by 

using Jordan’s normal form in the real field for (𝐸𝑐, 𝛾) the subspace 𝐸𝑐 splits into a finite 

direct sum  𝐸𝑐 = 𝐸𝑐0⨁𝐸𝑐1⨁⋯⨁𝐸𝑐𝑘  of subspaces of  𝐸𝑐 satisfying the following three 

conditions; (a) for  0 ≦ 𝑖 ≦ 𝑘, the dimension of  𝐸𝑐𝑖 is 1 or 2, . 

 (b)                                 𝛾1𝐸𝑐 = (

𝛾0 𝐼0 0 
1 𝛾1   ⋱ 𝐼𝑘
1 0  ⋱       𝛾𝑘

) 

where 𝛾𝑖: 𝐸
𝑐𝑖 → 𝐸𝑐𝑖  is an  isometry under some norm ||. ||𝑐𝑖  of 𝐸𝑐𝑖  and each 𝐼𝑖 : 𝐸

𝑐𝑖 →

𝐸𝑐𝑖−1  is either a zero-map or a map corresponding to the identity matrix. We call that 

(𝑹𝑟, 𝛾) has central spin if  𝐸𝑐 ≠ {0} and each 𝐼𝑖: 𝐸
𝑐𝑖 → 𝐸𝑐𝑖−1  is a zero-map. If  (𝑹𝑟 , 𝛾) has 

central spin, then each 𝐸𝑐𝑖  is 𝜎-invariant. Let 𝐼 denote the identity map of 𝑅𝑟 . For every 

𝑚 > 0 , the eigenvalues of 𝐼 − 𝛾𝑚 on 𝐸𝑐𝑖 are 1 − 𝜆𝑖
𝑚 where 𝜆𝑖 is are eigenvalues of  𝛾1𝐸𝑐𝑖  

.It is easily proved that there is a constant 𝑐(𝑖) such that ||(𝐼 − 𝛾𝑚)𝑥||𝑐𝑖 < 𝑐(𝑖)|1 −

𝜆𝑖
𝑚| ||𝑥||

𝑐𝑖
(𝑥 ∈ 𝐸𝑐𝑖 , 𝑚 > 0).  We define a norm ||. ||𝑐  of 𝐸𝑐  by ||𝑥||𝑐 max

0≦𝑖≦𝑘
{||𝑥𝑖||

𝑐𝑖
} =

(𝑥 = 𝑥0 +⋯+ 𝑥𝑘 ∈ 𝐸𝑐0 ⊕⋯⊕𝐸𝑐𝑘). There are 0 < 𝜆0 < 1 and norms ||   ||𝑢 and ||   ||𝑠 

on 𝐸𝑢  and 𝐸𝑠  respectively such that ||𝛾𝑛𝑥||𝑢 ≦ 𝜆0
𝑛||𝑥||

𝑢
(𝑛 ≦ 0, 𝑥 ∈ 𝐸𝑢 )and ||𝛾𝑛𝑥||𝑠 ≦

𝜆0
𝑛||𝑥||

𝑢
(𝑛 ≦ 0, 𝑥 ∈ 𝐸𝑠 ). Define a norm ||  || on 𝑅𝑟 by 

           ||𝑥|| = max  {||𝑥𝑢||𝑢, ||𝑥𝑠||𝑠, || 𝑥𝑐||𝑐}     (x=𝑥𝑢 + 𝑥𝑠 + 𝑥𝑐 ∈ 𝐸𝑢 ⊕𝐸𝑠 ⊕𝐸𝑐) 

and define a metric 𝑑0 on  𝑹𝑟 by 

                                        𝑑0(𝑥, 𝑦) = ‖𝑥 − 𝑦‖        (𝑥, 𝑦 ∈ 𝑅𝑟).  
      (L.8) [179]: There is 𝛼1 > 0  such that (i) for 𝜀 ∈ ( 0, 𝛼1], 𝐵(𝜀) = {𝑥 ∈
𝑹𝑟  ;  𝑑0(𝑥, 0)  ≦ 𝜀} splits into a direct sum 𝐵(𝜀) =  𝐵𝑢(𝜀) ⊕ 𝐵𝑠(𝜀) + 𝐵𝑐(𝜀) where 

𝐵𝑢(𝜀) = 𝐵(𝜀) ∩ 𝐸𝑠, 𝐵𝑠(𝜀) = 𝐵(𝜀) ∩ 𝐸𝑠 and 𝐵𝑐(𝜀) = 𝐵(𝜀) ∩ 𝐸𝑐 , (ii) 𝐵(𝛼1) ⊕ 𝐹− ⊕
𝐹+ ⊕  𝐻 is a closed neighborhood of  0 in 𝑋. 
      (L.9) [179]: There is an invariant metric 𝑑 on 𝑋 and a positive number 𝛼0 with 𝛼0 <
𝛼1 such that (i) for  𝜀 ∈ (0, 𝛼0], 𝑊(𝜀) = {𝑥 ∈ 𝑋; 𝑑(𝑥, 0) ≦ 𝜀} is expressed as 𝑊(𝜀) =
𝑊𝑢(𝜀) ⊕𝑊𝑠(𝜀) ⊕𝑊𝑐(𝜀) where 𝑊𝑢(𝜀) = 𝑊(𝜀) ∩ {𝜓𝐵𝑢(𝜀)⊕ 𝐹−}, 𝑊𝑠(𝜀) = 𝑊(𝜀) ∩
{𝜓𝐵𝑠(𝜀) ⊕ 𝐹+}  and  𝑊𝑐(𝜀) = 𝑊(𝜀) ∩ {𝜓𝐵𝑐(𝜀) ⊕ 𝐻}, and (ii) for 𝜀 ∈ (0, 𝛼0]  𝑊(𝜀) ∩
𝐻 is a subgroup of 𝐻 and there is an 𝑛 ≧ 0 such that, 𝑊(𝜀) ∩ 𝐹− = 𝜎𝑛𝐹−  and 𝑊(𝜀) ∩
𝐹+ = 𝜎𝑛𝐹+ and moreover  that 𝑊(𝜀) ∩ 𝐹− = 𝜎−𝑛𝐹−and 𝑊(𝜀) ∩ 𝐹+ = 𝜎𝑛𝐹+. 
      (L.10) [179]: There is 0 < 𝜆0 < 1  such that for 𝜀 ∈ (0, 𝛼0],  and 𝑥 = 𝑥𝑢 + 𝑥𝑠 + 𝑥𝑐 ∈
𝑊𝑢(𝜀) ⊕𝑊𝑠(𝜀) ⊕𝑊𝑐(𝜀 the following hold (i) 𝑑(𝑥, 0) = max  {𝑑(𝑥𝑢, 0) ,  𝑑(𝑥𝑠, 0),
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𝑑(𝑥𝑐 , 0)}, (ii) 𝑑(𝜎𝑛𝑥, 0) ≦ 𝜆0
−𝑛𝑑(𝑥, 0) (𝑥 ∈ 𝑊𝑢(𝜀), 𝑛 ≦ 0),  (iii) 𝑑(𝜎𝑛𝑥, 0) ≦

𝜆0
𝑛𝑑(𝑥, 0) (𝑥 ∈ 𝑊𝑠(𝜀), 𝑛 ≧ 0) and (iv) 𝑑(𝜎𝑛𝑥, 0) = 𝑑(𝑥, 0) (𝑥 ∈ 𝑊𝑐(𝜀) ∩ 𝐻, 𝑛 ∈ 𝑍). 

      𝑋 is said to have property (∗) is finitely generated under 𝛾; i.e., there is a finite set 𝛬 in 

𝐺  such that  𝐺 = 𝑔𝑝⋃ 𝛾𝑗∞
−∞ Λ (the notation  𝑔𝑝𝐸 means the subgroup generated by a set 

𝐸). We say (𝑋, 𝜎) is hyperbolic if (𝑋, 𝜎) has property (∗) and (𝑹𝑟 , 𝛾) is hyperbolic, and 

we say (𝑋, 𝜎) has central spin if either (𝑹𝑟, 𝛾) is hyperbolic and 𝑋 does not have property 

(∗), or (𝑹𝑟 , 𝛾) has central spin. 

     (L.11) [179] : Assume that  (𝑋, 𝜎) is ergodic under the Haar measure. Then 𝑊𝑢(𝛼0) ≠
{0} and 𝑊𝑠(𝛼0) ≠ {0}. 
      (L.12): For  𝜀 ∈ (0, 𝛼0], the following hold: 

      (i) 𝜎−1𝑊𝑢(𝛼) ⊂ 𝑊𝑢(𝜆0𝜀), 
      (ii) 𝜎𝑊𝑠(𝛼) ⊂ 𝑊𝑠(𝜆0𝜀), 
      (iii) 𝜎𝑊𝑐(𝛼) ⊂ 𝑊𝑐(𝜆0𝜀) if  (𝑋, 𝜎) has central spin,  

      (iv) 𝑊𝑢(𝛼),𝑊𝑠(𝛼) and 𝑊𝑐(𝛼) are symmetric sets at 0 in 𝑋. 
      (i) and (ii) are the consequences of (L.10). (iii) follows from the definition of central 

spin together with (L.10). (iv) is clear from the definition. 

       For 𝜀 ∈ (0, 𝛼0],  put 𝐾(𝜀) = 𝑊𝑠(𝛼)⊕ (𝑊𝑐(𝛼) ∩ 𝐻)  and 𝑊𝑛
𝑢(𝜀) = {𝑥 ∈

𝜎𝑛𝑊𝑢(𝛼); 𝑥 +𝑊𝑢(𝛼) ⊂ 𝜎𝑛𝑊𝑢(𝛼)}  (𝑛 ≧ 1). Then we have the following: 

       (L.13): For every 𝜀 ∈ (0, 𝛼0], 
       (i) 𝜎𝐾(𝜀) ⊂ 𝐾(𝜀), 
       (ii) 𝐾(𝜀)⊕ 𝜓𝐵𝑐(𝜀) = 𝑊𝑠(𝛼)⊕𝑊𝑐(𝛼), 
       (iii) 𝑊𝑛

𝑢(𝜀) ⊂ 𝜎𝑊𝑛
𝑢(𝜀) ⊂ 𝑊𝑛+1

𝑢 (𝜀)       (𝑛 ≧ 1). 
       (L.14): Assume that either (𝑋, 𝜎 ) is hyperbolic, or ergodic and has central spin. Then, 

for every  𝜀 ∈ (0, 2𝛼0 3⁄ )  there is  𝑀 = 𝑀(𝜀) > 0  such that for every  𝑛 ≧ 𝑀,𝑊𝑛
𝑢(𝜀) +

𝐾(𝜀) ⊕ 𝜓𝐵(𝜀) = 𝑋. 
       From the proof (Step 1.2.1)  for every 𝜀 ∈ (0, 2𝛼0 3⁄ ) there is  𝑀 = 𝑀(𝜀) > 0 such 

that for every 𝑛 ≧  𝑀  and 𝑥 ∈ 𝑋,    𝑊𝑛
𝑢(𝜀) ∩ (𝑥 + 𝐾(𝜀)⊕ 𝜓𝐵𝑐(𝜀) ≠ ∅) . Since 𝐾(𝜀)⊕

𝜓𝐵𝑐  (𝜀) = 𝑊𝑠(𝛼)⊕𝑊𝑐(𝛼) is symmetric, we have 𝑥 ∈ 𝑊𝑛
𝑢(𝜀) + 𝐾(𝜀) ⊕ 𝜓𝐵𝑐(𝜀). 

       (L.15): Assume that (𝑋, 𝜎) is ergodic; then there exists a finite sequence 𝑋 = 𝑋0 ⊃
𝑋1 ⊃ ⋯ ⊃ 𝑋𝑛 ⊃ 𝑋+1 = 0  of 𝜎 -invariant subgroups such that each 𝑋𝑖  is connected and 

either (𝑋𝑖/𝑋𝑖+1, 𝜎) is hyperbolic or ergodic and has central spin. 

      By [179] there is a finite sequence  𝑋 = 𝑋0 ⊃ 𝑋1 ⊃ ⋯ ⊃ 𝑋𝑛 ⊃ 𝑋+1 = 0 of 𝜎-invariant 

subgroups such that each 𝑋𝑖  is connected and (𝑋𝑖/𝑋𝑖+1, 𝜎) satisfies weak specification. By 

([179], Theorems (3.2.2), if (𝑋𝑖/𝑋𝑖+1, 𝜎) satisfies weak specification, then  (𝑋𝑖/𝑋𝑖+1, 𝜎) is 

either hyperbolic or ergodic and has central spin. 

     (L.16): For  𝑠 ≧ 1 , (𝑎1, ⋯ , 𝑎𝑠) ∈ 𝑅𝑠 and  𝑁 ≧ 1 , there is an integer 𝑛 with  1 ≦ 𝑛 ≦
𝑁𝑠  such that |𝑛𝑎𝑖 −𝑚𝑖| < 1 𝑁(1 ≦ 𝑖 ≦ 𝑠)⁄  for some (𝑚1, ⋯ ,𝑚𝑠) ∈ 𝑍𝑠.  

      This is shown as follows. For every 1 ≦ 𝑛 ≦ 𝑁𝑠there is (𝑚1
(𝑛)
, ⋯ ,𝑚𝑠

(𝑛)
) ∈ 𝑍𝑠 such 

that  𝑛𝑎𝑖 −𝑚𝑖
(𝑛)

∈ [0,1) (1 ≦ 𝑖 ≦ 𝑠). If there is an 𝑛 with 1 ≦ 𝑛 ≦ 𝑁𝑠 such that for every 

1 ≦ 𝑖 ≦ 𝑠, 𝑛𝑎𝑖 −𝑚𝑖
(𝑛)

∈ [0, 1 𝑁⁄ ), (L.16) holds. For otherwise, we can find 𝑢 and 𝑣 with 

1 ≦ 𝑢 < 𝑣 ≦ 𝑁𝑠  and  𝑗𝑖  with 0 ≦ 𝑗𝑖 ≦ 𝑁 − 1 such that for 1 ≦ 𝑖 ≦ 𝑠, 𝑢𝑎𝑖 −𝑚𝑖
(𝑛)
, 𝑣𝑎𝑖 −

𝑚𝑖
(𝑛)

∈ [𝑗𝑖 𝑁⁄ , (𝑗𝑖 + 1) 𝑁⁄ ). Put  𝑛 = 𝑣 − 𝑢  and 𝑚𝑖 = 𝑚𝑖
(𝑣)

−𝑚𝑖
(𝑢)
(1 ≦ 𝑖 ≦ 𝑠).Then we 

have  |𝑛𝑎𝑖 −𝑚𝑖| < 1/𝑁(1 ≦ 𝑖 ≦ 𝑠). 
      The following is the main result. 
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Corollary (3.2.1)[187]: Let 𝑋  be a compact metric abelian group and 𝑎  be an 

automorphism of  𝑋. Then (𝑋, 𝜎) is ergodic (under the Haar measure) if and only if (𝑋, 𝑎) 
satisfies almost weak specification. 

      If we established Theorem (3.2.2), then the corollary is shown as follows. 

Clearly(𝑋, 𝜎)  is ergodic if  (𝑋, 𝜎) satisfies almost weak specification. Assume that (𝑋, 𝜎) 
is ergodic. Then 𝑋 splits into a sum  𝑋 = 𝑋1 + 𝑋2 + 𝑋3 and  𝜎-invariant subgroups with 

the notation of  (L.1) And so  (𝑋1, 𝜎)  satisfies almost weak specification and(𝑋3, 𝜎) 
satisfies almost weak specification by (L.3). Use (L.5) for (𝑋2, 𝜎) . Then there is a 

sequence  𝑋2 = 𝑋2,0 ⊃ 𝑋2,1 ⊃ ⋯ ⊃ ⋂ 𝑋2,𝑛𝑛≧0 = {0} of 𝜎-invariant subgroups such that 

each  𝑋2/𝑋2,𝑛  is solenoidal. Since (𝑋2, 𝜎)  is ergodic, each (𝑋2/𝑋2,𝑛, 𝜎)  is ergodic. By 

Theorem (3.2.2), (𝑋2/𝑋2,𝑛, 𝜎)  satisfies almost weak specification. Since the product 

system (𝑋1 × 𝑋2 × 𝑋3, 𝜎 × 𝜎 × 𝜎) satisfies almost weak specification, (𝑋, 𝜎)   satisfies 

almost weak specification. 

Theorem (3.2.2)[187]: Let 𝑋 be a solenoidal group and 𝜎 be an automorphism of 𝑋. Then 

(𝑋, 𝜎) is ergodic (under the Haar measure) if and only if (𝑋, 𝜎) satisfies almost weak 

specification. 

        Theorem (3.2.2) derives the following. 

Proof: AS before let (𝐺, 𝜎) be the dual of  (𝑋, 𝜎). Since 𝑋 is solenoidal, we have rank 

(𝐺) = dim(𝑋) = 𝑟 < ∞ . Then 𝑋 is expressed as 

𝑋 = 𝜓(𝐸𝑢 ⊕𝐸𝑠 ⊕𝐸𝑐) + {𝐹− ⊕𝐹+ ⊕𝐻}. 
        We prepare a sequence of lemmas leading to the proof of  Theorem (3.2.2). 

Lemma (3.2.3)[187]: If  𝐸𝑐 ≠ {0} and  𝑎 = 𝑑𝑖𝑚(𝐸𝑐),  then ||𝛾𝑛𝑥||𝑐 ≦ (𝑛 +

1)𝛼−1||𝑥||
𝑐
(𝑥 ∈ 𝐸𝑐 , 𝑛 ≧ 0). 

Proof: 𝐸𝑐  splits into a finite direct sum  𝐸𝑐 = 𝐸𝑐0 ⊕⋯⊕𝐸𝑐𝑘 of 1 or 2-dimensional 

subspaces which satisfy (a) and (b) in (3.2.2). For 𝑥 ∈ 𝐸𝑐0 ⊕⋯⊕𝐸𝑐𝑘  and for 𝑛 ≧
0, 𝛾1𝐸𝑐

𝑛 𝑥  splits into 𝛾1𝐸𝑐
𝑛 𝑥 = 𝑥0

𝑛 +⋯+ 𝑥𝑘
𝑛  with 𝑥𝑖

𝑛 ∈ 𝐸𝑐𝑖(1 ≦ 𝑖 ≦ 𝑘) . By (b) we 

get ||𝑥𝑖
𝑛||𝑐𝑖 ≦ ||𝑥𝑖

𝑛+1||𝑐𝑖 + ‖𝑥𝑖+1
𝑛−1‖

𝑐𝑖+1
(0 ≦ 𝑖 ≦ 𝑘 − 1 , 𝑛 ≧ 0)  and ||𝑥𝑘

𝑛||𝑐𝑘 =

||𝑥𝑘
0||𝑐𝑘(𝑛 ≧ 0). It is checked that for every 𝑛 ≧ 0, ||𝑥𝑖

𝑛||𝑐𝑖 ≦ (𝑛 + 1)𝑘−𝑖||𝑥||𝑐  (1 ≦ 𝑖 ≦

𝑘).  Indeed, ||𝑥𝑖
0||𝑐𝑖 ≦ ||𝑥||𝑐  when 𝑛 = 0  .Assume that the inequality is true for 𝑛 − 1. 

Then ||𝑥𝑖
𝑛||𝑐𝑖 ≦ ||𝑥𝑖

𝑛−1||𝑐𝑖 + ‖𝑥𝑖+1
𝑛−1‖

𝑐𝑖
≦ 𝑛𝑘−𝑖||𝑥||𝑐 + 𝑛𝑘−𝑖−1||𝑥||𝑐 ≦ (𝑛 + 1)𝑘−𝑖||𝑥||𝑐 

for 0 ≦ 𝑖 ≦ 𝑘 − 1. Since 𝑘 ≧ 𝑎 − 1, the conclusion is obtained. 

Lemma(3.2.4)[187]: Assume that (𝑋, 𝜎) is either hyperbolic or ergodic and has central 

spin. Then for every 𝜀 ∈ (0, 𝛼0 3⁄ )  there is a sequence {𝑁𝜀(𝑛)}𝑛=1
∞  of non-negative 

integers such that 𝑁𝜀 (𝑛
𝑝) 𝑛 → 0⁄  as 𝑛 → ∞  for all 𝑝 ≧ 1,  and 𝑊𝑚

𝑢(𝜀) + 𝐾(𝜀) ⊕
𝜓𝐵𝑐(𝜀 𝑛⁄ ) ⊃ 𝜓𝐵𝑐(𝜀) for 𝑛 ≧ 1 and 𝑚 ≧ 𝑁𝜀(𝑛). 
Proof:  If (𝑅𝑟 , 𝛾) is hyperbolic  (i. e. , 𝐸𝑐 = {0}), by putting 𝑁𝜀(𝑛) = 0 for 𝜀 ∈ (0, 𝛼0 3⁄ ) 
and ≧ 1 , the lemma holds. 

       It only remains to prove the lemma for the case when (𝑅𝑟 , 𝛾) has central spin. To see 

this, use (L.14). Then there is 𝑀 > 0  such that 𝑊𝑀
𝑢(𝜀) + 𝐾(𝜀) ⊕ 𝜓𝐵𝑐(𝜀) ⊃ 𝜓𝐵𝑐(2𝜀). 

Since  𝑎 = dim(𝐸𝑐), we can find points 𝑡1, ⋯ 𝑡𝑎 ∈ 𝐵𝑐(2𝜀) such that {𝑡1, ⋯ 𝑡𝑎} is linearly 

independent over 𝑅 and 

𝜓(𝑡𝑖) ∈ 𝑊𝑀
𝑢(𝜀) + 𝐾(𝜀)      (1 ≦ 𝑖 ≦ 𝑎).                                               (1) 

Since 𝛾 has central spin, 𝛾 is an isometry on (𝐸𝑐 , ||. ||𝑐).By Dirichlet’s theorem there is 

𝐿 > 0 such that  
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‖(𝛾𝐿 − 𝐼)𝑥‖𝑐 ≦
1

2
‖𝑥‖𝑐         (𝑥 ∈ 𝐸𝑐)                                                   (2) 

where 𝐼 denotes the identity map. 

Since 𝛾 is aperiodic (by ergodicity of 𝜎), 𝛾𝐿 − 𝐼 is one-to-one and so for some 𝜇 with 0 <
𝜇 < 1/2 

‖(𝛾𝐿 − 𝐼)𝑥‖𝑐 > 𝜇‖𝑥‖𝑐         (𝑥 ∈ 𝐸𝑐).                                                   (3) 
Notice that {(𝛾𝐿 − 𝐼)𝑛𝑡𝑖  ;  1 ≦ 𝑖 ≦ 𝑎}(𝑛 > 0) is linearly independent over 𝑅. Define 𝐴 =
{𝑠 ∈  𝐸𝑐  ;  𝑠 = ∑ 𝑎𝑖

𝑎
𝑖=1 𝑡𝑖 , 𝑎𝑖 ∈ 𝑍, 1 ≦ 𝑖 ≦ 𝑎} and put  𝛿 = min{‖𝑠‖𝑐;    0 ≠ 𝑠 ∈ 𝐴}. Then 

by (3) 

𝜇𝑛𝛿 < min{‖𝑡‖𝑐;    0 ≠ 𝑡 ∈ (𝛾𝐿 − 𝐼)𝑛𝐴}         (𝑛 > 0).                            (4) 
       Since Θ = (𝛾𝐿 − 𝐼)𝑛𝐴 ∩ 𝐵𝑐(3𝜀 2⁄ ) is non-trivial, every element of Θis expressed as 

= ∑ 𝑎𝑖
𝑎
𝑖=1 𝑛𝑖(𝛾

𝐿 − 𝐼)𝑛𝑡𝑖  . Put 𝐶1 = 2𝑎𝑎(3𝑎𝜀 2𝛿⁄ )𝑎  and 𝐶2 = 𝜇−𝑎 .  Then we have the 

following Step 1. 

       Step1.                          ∑ |𝑛𝑖|
𝑎
𝑖=1 ≦ 𝐶1𝐶2

𝑛           (𝑛 ≧ 2). 
Indeed, put  𝐶2 = 3𝑎𝜀/2𝛿𝜇𝑛. For ∈ Θ(𝑡 = ∑ 𝑎𝑖

𝑎
𝑖=1 𝑛𝑖(𝛾

𝐿 − 𝐼)𝑛𝑡𝑖 , if we have 

|𝑛𝑖| ≦ (𝑐𝑛 + 1)𝑎        (1 ≦ 𝑖 ≦ 𝑎),                                                      (5)  

then  ∑ |𝑛𝑖|
𝑎
𝑖=1 ≦ 𝑎(𝑐𝑛 + 1)𝑎 = 𝑎∑ (

𝑎
𝑗)

𝑎
𝑖=1 𝑐𝑛

𝑗
≦ 𝐶1𝐶2

𝑛. 

      We must prove (5) to get Step 1. Assume that  𝑛1 ≧ (𝑐𝑛 + 1)𝑎 for some 𝑛 ≧ 2 and 

𝑡 = ∑ 𝑛𝑖(𝛾
𝐿 − 𝐼)𝑛𝑡𝑖

𝑎
𝑖=1 ∈ Θ. We write  𝑠 = 𝑎 − 1 and put 𝑎𝑖 = 𝑛𝑖+1 𝑛1⁄ (1 ≦ 𝑖 ≦ 𝑎 − 1 =

𝑠). Choose  𝑁 ∈ ℕ with 𝑐𝑛 < 𝑁 ≦ 𝑐𝑛+1 .Then by (L.16) we get an integer 𝑚1 with 1 ≦
𝑚1 ≦ 𝑁𝑎−1  such that  |𝑚1𝑛𝑖/𝑛1 −𝑚𝑖| < 1/𝑁 < 𝑐𝑛

−1  for 2 ≦ 𝑖 ≦ 𝑎  and for some  

(𝑚2, ⋯ ,𝑚𝑎) ∈ 𝑍𝑎−1 . Since 𝑚1 ≠ 0  , we get 0 ≠ 𝑚𝑖(𝛾
𝐿 − 𝐼)𝑛𝑡𝑖  and since  𝑡 =

∑ 𝑛𝑖(𝛾
𝐿 − 𝐼)𝑛𝑡𝑖

𝑎
𝑖=1 , 𝑚𝑖(𝛾

𝐿 − 𝐼)𝑛𝑡𝑖 and since 𝑡 = ∑ 𝑛𝑖(𝛾
𝐿 − 𝐼)𝑛𝑡𝑖

𝑎
𝑖=1 , 

‖∑𝑚𝑖(𝛾
𝐿 − 𝐼)𝑛𝑡𝑖

𝑖

‖ ≦ ‖∑𝑚𝑖(𝛾
𝐿 − 𝐼)𝑛𝑡𝑖 − (𝑚1 𝑛1⁄ )𝑡

𝑖

‖

𝑐

+ ‖∑(𝑚1 𝑛1⁄ )𝑡

𝑖

‖

𝑐

 

           <∑𝑐𝑛
−1

𝑖

‖(𝛾𝐿 − 𝐼)𝑛𝑡𝑖‖𝑐 + (𝑚1 𝑛1⁄ )‖𝑡‖𝑐 . 

Since  𝑡 ∈ 𝐵𝑐(3𝜀/2),  clearly ||𝑡||𝑐 ≦ 3𝜀/2. Since ‖(𝛾𝐿 − 𝐼)𝑛𝑡𝑖‖𝑐 < (1 2𝑛⁄ )‖𝑡𝑖‖ (by (3)) 

and 𝑚1/𝑛1 < 𝑐𝑛
−1 ( because  𝑚1 < 𝑁𝑎−1 and 𝑛1 > 𝑁𝑎), we have ‖∑ 𝑚𝑖(𝛾

𝐿 − 𝐼)𝑛𝑡𝑖𝑖 ‖𝑐 <
𝛿𝜇𝑛 2𝑛⁄ + 𝛿𝜇𝑛 𝑎 < 𝛿𝜇𝑛⁄   (because 𝑎 ≧ 2 by ergodicity). Comparing this inequality with 

(4), we have 𝑡 = 0,  which is impossible. Therefore 𝑛1 ≦ (𝑐𝑛 + 1)𝑎  . Repeat the same 

argument for  𝑛𝑖 .Then we get 𝑛1 ≦ (𝑐𝑛 + 1)𝑎 for  1 ≦ 𝑖 ≦ 𝑎. 

     To get the conclusion of  Lemma (3.2.4), we prepare the following Step 2. 

     Step 2. Let 𝜓 be as in (L.6). For every 𝑛 ≧ 2, we can find 𝐷(𝑛), 𝐶(𝑛) ∈ 𝒁+ such that  

sup𝑛 𝐷(𝑛) 𝑛 < ∞,   𝐶(𝑛) < 𝐷(𝑛)⁄  and for every 𝑚 ≧ 𝐷(𝑛) 

𝑊𝑚
𝑢(𝜀) + 𝐾(𝜀) ⊃ 𝜎𝑐(𝑛)𝜓{(𝛾𝐿 − 𝐼)𝑛𝐴 ∩ 𝐵𝑐(3𝜀 2⁄ )}.                          

      Indeed, let 𝜆0  be as in (L.10) and let 𝐶1  and 𝐶2  be as in Step 1. Choose positive 

integers 𝐷1, 𝐷2(𝑛)  satisfying  𝐷1 ≧ −(log 𝜆0)
−1log 𝐶1  and  𝐷2(𝑛) ≧

−𝑛(log 𝜆0)
−1log2𝐶2,  and put 𝐶(𝑛) = 𝐷1 + 𝐷2(𝑛)  for 𝑛 ≧ 2.  Fix 𝑛 ≧ 2  and take 𝑡 ∈

(𝛾𝐿 − 𝐼)𝑛𝐴 ∩ 𝐵𝑐(3𝜀 2⁄ ). Since  𝑡 = ∑ 𝑛𝑖(𝛾
𝐿 − 𝐼)𝑛𝑡𝑖 ,

𝑎
𝑖=1  we can easily calculate 

𝜎𝑐(𝑛)𝜓(𝑡) = 𝜎𝑐(𝑛)𝜓(∑𝑛𝑖(𝛾
𝐿 − 𝐼)𝑛𝑡𝑖

𝑎

𝑖=1

) =∑𝑛𝑖(𝛾
𝐿 − 𝐼)𝑛𝜎𝑐(𝑛)𝜓(𝑡𝑖)

𝑎

𝑖=1
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                                        =∑𝑛𝑖

𝑎

𝑖=1

∑(
𝑛
𝑗)

𝑎

𝑗=0

𝜎𝐿𝑗+𝑐(𝑛)𝜓(𝑡𝑖). 

Since  ∑ |𝑛𝑖| ≦ 𝐶1𝐶2
𝑛2𝑎

𝑖=1 (by Step1) and ∑ (
𝑛
𝑗) = 2𝑛,2𝑎

𝑗=0  and since 𝑊𝑀
𝑢(𝜀) ⊂ 𝜎𝑊𝑀

𝑢(𝜀) 

and 𝐾(𝜀) ⊃ 𝜎𝐾(𝜀), we have 𝜎𝐿𝑗+𝑐(𝑛)𝜓(𝑡𝑖) ∈ 𝜎𝐿𝑛+𝑐(𝑛)𝑗𝑀
0 + 𝑗1, for 0 ≦ 𝑗 ≦ 𝑛 and 1 ≦ 𝑖 ≦

𝑎, and  𝜎𝑐(𝑛)𝜓(𝑡) ∈ 𝜎𝐿𝑛+𝑐(𝑛)𝑗𝑀
0 + 𝑗1, where 

𝑗𝑀
0 = 𝑊𝑀

𝑢(𝜀) + ⋯+𝑊𝑀
𝑢(𝜀)⏟              

𝐶1(2𝐶2)
𝑛

    𝑎𝑛𝑑  𝑗1 = 𝐾(𝜀) +⋯+ 𝐾(𝜀)⏟          
𝐶1(2𝐶2)

𝑛

. 

By (L.12, i) we get 𝜎−𝑐(𝑛)𝑊𝑢(𝜀) ⊂ 𝑊𝑢 (𝜆0
𝑐(𝑛)

𝜀) = 𝑊𝑢(𝜀 (𝐶1(2𝐶2)
𝑛⁄ )),  and 

so 𝜎−𝑐(𝑛)𝑊𝑀
𝑢(𝜀) + 𝜎−𝑐(𝑛)𝑊𝑢(𝜀) ⊂ 𝜎𝑀𝑊𝑢(𝜀 (𝐶1(2𝐶2)

𝑛⁄ )).  Therefore 𝜎−𝑐(𝑛)𝑗𝑀
0 +

𝜎−𝑐(𝑛)𝑊𝑢(𝜀) ⊂ 𝜎𝑀𝑊𝑢(𝜀), i. e. , 𝑗𝑀
0 ⊂ 𝑊𝑀+𝑐(𝑛)

𝑢 (𝜀). Since 𝜎𝑛−𝑚𝑊𝑀
𝑢(𝜀) ⊂ 𝑊𝑛

𝑢(𝜀)(𝑛 ≦ 𝑚) 

by (L.13, iii), we have 𝜎𝐿𝑛+𝑐(𝑛)𝑗𝑀
0 ⊂ 𝑊𝑀+𝐿𝑛+2𝑐(𝑛)

𝑢 (𝜀). Using (L.12, ii), we get 𝜎𝑐(𝑛)𝑗1 ⊂

𝐾(𝜀). 
Put  𝐷(𝑛) = 𝑀 + 𝐿𝑛 + 2𝐶(𝑛) for   𝑛 ≧ 2.  Then from the above facts, we have 

𝜎𝑐(𝑛)𝜓(𝑡) ∈ 𝑊𝑀
𝑢𝐾(𝜀) + 𝐾(𝜀) for every  𝑚 ≧ 𝐷(𝑛) (𝑛 ≧ 2) .The conclusion of Step 2 is 

obtained. 

      Now we are ready to prove the lemma. Let  𝐽(𝑛)  be  the integer part of 

(log 2)−1(log 3𝑎 + log 𝑛) + 1  for  𝑛 ≧ 2  .Since ||𝑡𝑖||𝑐 < 3𝜀  , by (2) we have ||(𝛾𝐿 −

𝐼)𝐽(𝑛)𝑡𝑖|| < 𝜀/𝑎𝑛 . Remark that 𝐸𝑐 = span{(𝛾𝐿 − 𝐼)𝐽(𝑛)𝑡𝑖  ; 1 ≦ 𝑖 ≦ 𝑎} . for  𝑛 ≧ 2  .For 

fixed 𝑛 ≧ 2, 𝑥 ∈ 𝐸𝑐   is expressed as 𝑥 = ∑ (𝑎𝑖 + 𝑛)(𝛾𝐿 − 𝐼)𝐽(𝑛)𝑡𝑖
𝑎
1  where 𝑎𝑖 ∈ [0,1) and 

𝑛𝑖 ∈ 𝒁.Recall that  𝐴 = { 𝑠 ∈ 𝐸𝑐;  𝑠 = ∑ 𝑛𝑖𝑡𝑖
2𝑎

1 , 𝑛𝑖 ∈ 𝒁, 1 ≦ 𝑖 ≦ 𝑎} .Then we have 

min
𝑠∈(𝛾𝐿−𝐼)𝐽(𝑛)𝑡𝑖

‖𝑥 − 𝑠‖𝑐 <∑𝑎𝑖

𝑎

1

‖(𝛾𝐿 − 𝐼)𝐽(𝑛)𝑡𝑖‖𝑐 < 𝜀 𝑛⁄ ,                            (6) 

and so {(𝛾𝐿 − 𝐼)𝐽(𝑛)𝐴 ∩ 𝐵𝑐((1 + 1 𝑛⁄ )𝜀)} + 𝐵𝑐(𝜀 𝑛⁄ ) ⊃ 𝐵𝑐(𝜀).  This follows from the 

fact that for every 𝑥 ∈ 𝐵𝑐(𝜀) there is 𝑡 ∈ (𝛾𝐿 − 𝐼)𝐽(𝑛)𝐴 such that  ||𝑥 − 𝑡||𝑐 < 𝜀 𝑛⁄  by (6), 

and then  𝑡 ∈ (𝛾𝐿 − 𝐼)𝐽(𝑛)𝐴 ∩ 𝐵𝑐((1 + 1 𝑛⁄ )𝜀).  Let 𝐶(𝑛)  be as in Step 2. Then 

𝜎𝑐(𝐽(𝑛))𝜓{(𝛾𝐿 − 𝐼)𝑛𝐴 ∩ 𝐵𝑐(3𝜀 2⁄ ) + 𝐵𝑐(𝜀 𝑛⁄ ) ⊃ 𝜓𝐵𝑐(𝜀). From this and Step 2, we have 

𝑊𝑀
𝑢(𝜀) + 𝐾(𝜀)⨁𝜓𝐵𝑐(𝜀 𝑛⁄ ) ⊃ 𝜓𝐵𝑐(𝜀)  for 𝑚 ≧  𝐷(𝐽(𝑛))  .We put 𝑁𝜀(𝑛) = 𝐷(𝐽(𝑛))  for 

𝑛 ≧ 2 and in particular 𝑁𝜀(1) = 𝑁𝜀(2) . Since 𝐽(𝑛𝑝)/𝑛 → 0 as 𝑛 → ∞ for all 𝑝 ≧ 1 and 

sup𝑛 𝐷(𝑛) 𝑛 < ∞⁄  (by Step 2), clearly 𝑁𝜀(𝑛
𝑝)/𝑛 → 0 as 𝑛 → ∞ for all 𝑝 ≧ 1. The proof 

of  Lemma (3.2.4) is completed. 

Lemma (3.2.5)[187]: Assume that (𝑋, 𝜎) is either hyperbolic or ergodic and has central 

spin. Then for every 𝜀 ∈ (0, 2𝛼0 3⁄ ), there is a sequence  {𝑀𝜀(𝑛)}𝑛=1
∞  of positive integers 

such that for 𝑝 ≧ 1 𝑀𝜀(𝑛
𝑝) 𝑛 → 0⁄  as 𝑛 → ∞and for all 𝑛 ≧ 1 and 𝑚 ≧ 𝑀𝜀(𝑛) 
𝑊𝑀

𝑢(𝜀) + 𝐾(𝜀))⨁𝜓𝐵𝑐(𝜀 𝑛⁄ ) = 𝑋. 
Proof: Take and fix 𝜀 ∈ (0, 2𝛼0 3⁄ ) .From (L.14) we have 𝑊𝑀

𝑢(𝜀 2⁄ ) +
𝐾(𝜀 2⁄ ))⨁𝜓𝐵𝑐(𝜀 2⁄ ) = 𝑋 for some 𝑀 = 𝑀(𝜀 2⁄ ) > 0. Let {𝑁𝜀(𝑛)}𝑛=1

∞  be as in Lemma 

(3.2.4). Then for 𝑚 ≧ 𝑁𝜀 2⁄ (𝑛), 
{𝑊𝑀

𝑢(𝜀 2⁄ ) + 𝐾(𝜀 2⁄ )} + {𝑊𝑚
𝑢(𝜀 2⁄ ) + 𝐾(𝜀 2⁄ )⨁𝜓𝐵𝑐(𝜀 𝑛⁄ )} = 𝑋                      (7) 

 

by Lemma (3.2.4). Let 𝜆0 ∈ (0,1) be as before, 𝑁 be an integer with 𝜆0
−𝑁 > 2 and put 

𝑀𝜀(𝑛) = 𝑁 +max{𝑀,𝑁𝜀 2⁄ (𝑛)}  .Clearly  𝑀𝜀(𝑛
𝑝)/𝑛 → 0  as 𝑛 → ∞  for all 𝑝 ≧ 1  .Since 
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𝜎𝑛𝑊𝑢(𝜀) ⊃ 𝑊𝑢(𝜀), , we have 𝑊𝑚
𝑢(𝜀/2) +𝑊𝑚

𝑢(𝜀/2) ⊂ 𝑊𝑚+𝑁
𝑢 (𝜀) for all 𝑚 ≧ 1. From 

(7) we have 𝑋 = 𝑊𝑚
𝑢(𝜀) + 𝐾(𝜀)⨁𝜓𝐵𝑐(𝜀 𝑛⁄ ) for 𝑚 ≧ 𝑀𝜀(𝑛). 

Lemma (3.2.6)[187]: If (𝑋, 𝜎)  is ergodic, then for every 𝜀 ∈ (0, 2𝛼0 3⁄ ) , there is a 

function  𝐿𝜀 ∶ 𝒁
+ → 𝒁+ such that for 𝑝 ≧ 1,    𝐿𝜀(𝑛

𝑝)/𝑛 → 0 as 𝑛 → ∞ and such that for  

𝑛 ≧ 1,𝑚 ≧ 𝐿𝜀(𝑛) and  𝑥, 𝑦 ∈ 𝑋  there is 𝑧 ∈ 𝑦 + 𝐾(𝜀)⨁𝜓𝐵𝑐(𝜀 𝑛 + 1⁄ )   such that  𝑧 +
𝑊𝑛(𝜀) ⊂ 𝜎𝑚{𝑥 +𝑊𝑢(𝜀)}. 
Proof: Since 𝑋  is solenoidal, there are 𝑛0 > 0  and a sequence  𝑋 = 𝑋0 ⊃ 𝑋1 ⊃ ⋯ ⊃
𝑋𝑛0−1 ⊃ 𝑋𝑛0 = {0} of 𝜎-invariant subgroups which satisfy all the conditions of (L.15). 

Take and fix 𝜀(0, 𝛼0]. For 0 ≦ 𝑖 ≦ 𝑛0 we put 𝑊𝑛
𝑢(𝜀)𝑖 = 𝑊𝑛

𝑢(𝜀) ∩ 𝑋𝑖 for 𝑛 ≧ 1, 𝐾(𝜀)𝑖  =
𝐾(𝜀) ∩ 𝑋𝑖  and 𝜓𝐵𝑐(𝜀)𝑖 = 𝜓𝐵𝑐(𝜀) ∩ 𝑋𝑖 . Since (𝑋𝑖/𝑋𝑖+1, 𝜎)  is either hyperbolic, or 

ergodic and has central spin, we can use Lemma (3.2.5) for (𝑋𝑖/𝑋𝑖+1, 𝜎). Then there is a 

sequence  {𝑀𝜀
(𝑖)
(𝑛)}𝑛+1

∞  of  positive integers such that for 𝑝 ≧ 1,  𝑀𝜀
(𝑖)
(𝑛𝑝)/→  0 as 𝑛 →

∞ , and for 𝑚 ≧ 𝑀𝜀
(𝑖)
(𝑛) 
𝑊𝑚

𝑢(𝜀)𝑖 + 𝐾(𝜀)𝑖)⨁𝜓𝐵
𝑐(𝜀 𝑛⁄ )𝑖 + 𝑋𝑖+1 = 𝑋𝑖 . 

Then for 𝑛 ≧ 1 and 𝑚 ≧ 𝑊𝜀 𝑛0⁄
(𝑖)

(𝑛 + 1) 

𝑊𝑚
𝑢(𝜀 𝑛0⁄ )𝑖𝐾(𝜀 𝑛0⁄ )𝑖)⨁𝜓𝐵

𝑐(𝜀 𝑛𝑖(𝑛 + 1)⁄ )𝑖 + 𝑋𝑖+1 = 𝑋𝑖                         (8) 

      Choose  𝐶 > 0 with 𝜆0
−𝑐 > 𝑛0 and put 𝐿𝜀(𝑛) = 𝐶 +max  {𝑊𝜀 𝑛0⁄

(𝑖)
(𝑛 + 1);  0 ≦ 𝑖 ≦ 𝑛0} 

for 𝑛 ≧ 1  .Clearly  𝐿𝜀(𝑛
𝑝)/𝑛 → 0  as  𝑛 → ∞  for all 𝑝 ≧ 1  .Since a 𝜎𝑐𝑊𝑢(𝜀 𝑛0⁄ ) ⊃

𝑊𝑢(𝜀), 
we have 𝑊𝑚

𝑢(𝜀) ⊃ ∑ 𝑊𝑚−𝑐
𝑢𝑛0−1

𝑖=0 (𝜀 𝑛0⁄ )𝑖  for 𝑚 ≧ 𝐿𝜀(𝑛).  It is clear that 𝐾(𝜀) ⊃

∑ 𝐾
𝑛0−1
𝑖=0 (𝜀 𝑛0⁄ )𝑖and 𝜓𝐵𝑐(𝜀 (𝑛 + 1)⁄ ) ⊃ ∑ 𝜓𝐵𝑐(𝜀 (𝑛 + 1)⁄ )𝑖

𝑛0−1
𝑖=0  , and so by (8) 

                    𝑊𝑚
𝑢(𝜀) + 𝐾(𝜀)⨁𝜓𝐵𝑐(𝜀 (𝑛 + 1)⁄ ) 

               ⊃∑ {𝑊𝑚−𝑐
𝑢

𝑛0−1

𝑖=0
(𝜀 𝑛0⁄ )𝑖 + 𝐾(𝜀 𝑛0⁄ )𝑖⨁𝜓𝐵

𝑐(𝜀 (𝑛 + 1)⁄ )𝑖} = 𝑋. 

Hence for  𝑛 ≧ 0, 𝑚 ≧ 𝐿𝜀(𝑛)  and  𝑥, 𝑦 ∈ 𝑋 , there is 𝑧 ∈ 𝑦 + 𝐾(𝜀)⨁𝜓𝐵𝑐(𝜀 (𝑛 + 1)⁄ )  
with 𝑧 +𝑊𝑢(𝜀) ⊂ 𝜎𝑚{𝑥 +𝑊𝑢(𝜀)} since 𝑋 = 𝜎𝑚𝑥 +𝑊𝑚

𝑢(𝜀) +
𝐾(𝜀)⨁𝜓𝐵𝑐(𝜀 (𝑛 + 1)⁄ ) ∋ 𝑦 and 𝐾(𝜀)⨁𝜓𝐵𝑐(𝜀 (𝑛 + 1)⁄ ) is symmetry (by (L.12, iv)). 

        Now we are ready to prove Theorem (3.2.7). 

Theorem (3.2.7)[187]: Let 𝑋 be a solenoidal group and 𝜎 be an automorphism of 𝑋 .Then 

(𝑋, 𝜎) is ergodic (under the Haar measure) if and only if (𝑋, 𝜎) satisfies almost weak 

specification . 

       Theorem (3.2.7) derives the following. 

Proof: Let  𝜀 ∈ (0, 2𝛼0/3)  and  𝐿𝜀: 𝒁
+ → 𝒁+ as in Lemma (3.2.6). With the notation  

𝑎 = dim(𝐸𝑐), we define a function 𝑀𝜀: 𝒁
+ → 𝒁+  by  𝑀𝜀(𝑛) = 𝐿𝜀(𝑛

𝑎) (𝑛 ≧ 1) .Clearly 

𝑀𝜀(𝑛) 𝑛 → 0⁄  as 𝑛 → ∞, and for every  𝑛 > 0,𝑚 ≧ 𝑀𝜀(𝑛)  and 𝑥, 𝑦 ∈ 𝑋, there is  𝑧 ∈
𝑦 + 𝐾(𝜀)⨁𝜓𝐵𝑐(𝜀 (𝑛 + 1)𝑎⁄ )  with 𝑧 +𝑊𝑢(𝜀) ⊂ 𝜎𝑚{𝑥 +𝑊𝑢(𝜀)} (by Lemma (3.2.6)). 

Applying Lemma (3.2.3), we get 𝛾𝑖𝐵𝑐(𝜀 (𝑛 + 1)𝑎⁄ ) ⊂ 𝐵𝑐(𝜀(𝑖 + 1)𝑎−1 (𝑛 + 1)𝑎⁄ ) for 𝑖 ≧
0, so that for 0 ≦ 𝑖 ≦ 𝑛 

𝜎𝑖𝑧 ∈ 𝜎𝑖𝑦 + 𝜎𝑖𝐾(𝜀)⨁𝜓𝐵𝑐(𝜀(𝑖 + 1)𝑎−1 (𝑛 + 1)𝑎⁄ ) ⊂ 𝜎𝑖𝑦 + 𝐾(𝜀)⨁𝜓𝐵𝑐(𝜀).           (9) 
      For every 𝑘 ≧ 1, 𝑥1, ⋯ , 𝑥𝑘  ∈ 𝑋 and a sequence of integers 𝑎1 ≦ 𝑏1 < ⋯ < 𝑎𝑘 ≦ 𝑏𝑘 

with   h  𝑎𝑖 − 𝑏𝑖−1 ≧ 𝑀𝜀(𝑏𝑖 − 𝑎𝑖) (2 ≦ 𝑖 ≦ 𝑘).  Letting 𝑧1 = 𝜎𝑎1𝑥1  ,we can find a 

sequence of 𝑘 − 1  points 𝑧2, ⋯ , 𝑧𝑘 such that for 1 ≦ 𝑖 ≦ 𝑘 − 1, 𝑧𝑖+1 ∈ 𝜎𝑎𝑖+1𝑥𝑖 + 

𝐾(𝜀)⨁𝜓𝐵𝑐(𝜀 (𝑏𝑖+1 − 𝑎𝑖+1 + 1)𝑎⁄ )  and 𝑧𝑖+1 +𝑊𝑢(𝜀) ⊂ 𝜎𝑖+1
−𝑏𝑖{𝜎𝑏𝑖−𝑎𝑖𝑧𝑖 +𝑊𝑢(𝜀)} 

.This is easily obtained using (9). We now have for 1 ≦ 𝑖 ≦ 𝑘 − 1, 
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𝜎−𝑎{𝑧𝑖 + 𝜎−(𝑏𝑖−𝑎𝑖)𝑊𝑢(𝜀)} ⊃ 𝜎−𝑎𝑖+1{𝑧𝑖+1 +𝑊𝑢(𝜀)}𝑧 ∈ 𝜎𝑖𝑦                                

                               ⊃ 𝜎−𝑎𝑖+1{𝑧𝑖+1 + 𝜎−(𝑏𝑖+1−𝑎𝑖+1)𝑊𝑢(𝜀)}, 
which yields 

⋂𝜎−𝑎𝑖

𝑘

1

{𝑧𝑖 + 𝜎−(𝑏𝑖−𝑎𝑖)𝑊𝑢(𝜀)} = 𝜎−𝑎𝑘{𝑧𝑘 + 𝜎−(𝑏𝑘−𝑎𝑘)𝑊𝑢(𝜀)}.            

Take a point 𝑥 from the last set. Then for 𝑎𝑖 ≦ 𝑗 ≦ 𝑏𝑖  (1 ≦ 𝑖 ≦ 𝑘) we get  

        𝜎𝑖𝑥 ∈ 𝜎𝑗−𝑎𝑖𝑧𝑖 + 𝜎−(𝑏𝑖−𝑎𝑖)𝑊𝑢(𝜀)  
           ⊂ 𝜎𝑗𝑥𝑖 + {𝜎𝑗−𝑎𝑖(𝐾(𝜀)⨁𝜓𝐵𝑐((𝑗 − 𝑎𝑖 + 1)𝑎 𝜀 (𝑏𝑖 − 𝑎𝑖 + 1)𝑎⁄ )⨁𝜎−(𝑏𝑖−𝑎𝑖)𝑊𝑢(𝜀)}. 

This shows that (𝑋, 𝜎) satisfies almost weak specification. 
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Chapter 4 

Galois Correspondence for Compact Groups 

 
We show that an extension of the result to the case of actions of compact Kac 

algebras on factors is also presented. No assumptions are made on the existence of a 

normal conditional expectation onto N. We show that there exists a one-to-one 

correspondence between the lattice of left coideals of 𝐺 and that of intermediate subfactors 

of 𝑀𝐺 ⊂ 𝑀 . We show that there is a one-to-one correspondence between the 𝐶∗ -

subalgebras that are globally invariant under the compact action and the commuting 

minimal action, that in addition contain the fixed point algebra of the compact action and 

the closed, normal subgroups of the compact group. 

Section (4.1): Automorphisms of von Neumann Algebras with a 

Generalization to Kac Algebras 

       A classical theme in Operator Algebras is the Galois correspondence between groups 

of automorphisms of a von Neumann algebra and von Neumann subalgebras. 

       To be more specific, let 𝑀  be a von Neumann algebra and to each group G of 

automorphisms of 𝑀  let associate 𝑀𝐺 , the von Neumann subalgebra of the 𝐺 -fixed 

elements 

 

𝐺 → 𝑀𝐺 .                                                                               (1) 
In a dual way to each von Neumann subalgebra 𝑁 of 𝑀 we may associate the group 𝐺𝑁 of 

the automorphisms of 𝑀 leaving 𝑁 pointwise fixed 

 

𝑁 → 𝐺𝑁 ,                                                                              (2) 
These two maps are in general not one another inverse, but restricting to (closed) 

subgroups of a given group 𝐺 and to intermediate von Neumann subalgebras 𝑀𝐺 ⊂ 𝑁 ⊂
𝑀 they may actually become one another inverse. 

      Such a Galois correspondence was shown to hold by Nakamura and Takeda [251] and 

Suzuki [262] in the case 𝑀  be 𝐼𝐼1  -factor and 𝐺  a finite group whose action on 𝑀 is 

minimal, namely 𝑀𝐺′ ∩𝑀 = 𝐶. 
      A different Galois correspondence, between normal closed subgroups of a compact 

(minimal) group 𝐺  and globally 𝐺 -invariant intermediate von Neumann algebras, was 

obtained by Kishimoto [240], following methods in the analysis of the chemical potential 

in Quantum Statistical Mechanics [43]. Generalizations of this result concerning dual 

actions of a locally compact group 𝐺 were dealt with by Takesaki, in case of 𝐺 abelian, 

and by Nakagami more generally, see [252]. 

     Another kind of Galois correspondence was provided by 𝐻. Choda [224]. It concerns 

inparticular the crossed product of a factor by an outer action of a discrete group and 

characterizes the intermediate von Neumann subalgebras that are crossed product by a 

discrete subgroup. An important assumption here is the existence of a normal conditional 

expectation onto the intermediate subalgebras. 

We consider any compact group 𝐺  of automorphisms of a (separable) factor 𝑀 , 

whose action is minimal, and show that any intermediate von Neumann algebra 𝑀𝐺𝑁 ⊂ 𝑀 

is the fixed-point algebra 𝑁 = 𝑀𝐻for some closed subgroup 𝐻 of 𝐺, namely the general 

Galois correspondence holds in the compact minimal case. Indeed as a corollary the two 

maps (1) and (2) are one another inverse. 
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        A particular case of our result concerning the action of the periodic modular group 

with maximal spectrum on a type 𝐼𝐼𝐼𝜆  factor, 0 < 𝜆 < 1, has been recently obtained in 

[234]. 

        Concerning the ingredients in our proof, we mention the spectral analysis for compact 

group actions, endomorphisms and index theory for infinite factors, arguments based on 

modular theory, injective subfactors, and averaging techniques. 

        We emphasise that the main step in the proof of our result is to show the existence of a 

(necessarily unique) normal conditional expectation of 𝑀 onto any intermediate subfactor 

between 𝑀𝐺 and 𝑀. 

        We also obtain a Galois correspondence for inter- mediate von Neumann algebras in 

the case of crossed products of factors by outer actions of discrete groups (again, without 

the a priori existence of normal conditional expectation). 

     This poses the following question: If  𝑀1 ⊂ 𝑀2 ⊂ 𝑀3 are von Neumann algebras such 

that 𝑀1
/
∩𝑀3 = 𝐶, with a normal expectation  𝜀:𝑀3 → 𝑀1  , does there exist a normal 

expectation of  𝑀3 onto 𝑀2? In other words, does = factor through 𝑀2? Besides the case 

dealt, we know a (positive) answer in some cases (for example, if  𝑀1 ⊂ 𝑀3 has finite 

index or if  𝑀3 is semifinite), but no counter-example is known. 

      We briefly comment on the super-selection structure in particle physics, which partly 

motivated our work. It is well-known that the group of the internal symmetries in a 

Quantum Field Theory is the dual of the tensor 𝐶*-category defined by the super-selection 

sectors [227]. Our result classifies the extensions of the net of the observable algebras 

made up by field operators. An analysis of further aspects of this structure goes beyond the 

purpose. However we notice that in low dimensional Quantum Field Theory the internal 

symmetry is realized by a more general, not yet understood, quantum object and this 

suggests to be of interest to extend our result to a wider class of ``quantum groups.'' 

      We take a first step in this direction by providing a version of our result of actions of 

compact Kac algebras on factors that turns out to be new even in the finite-dimensional 

case. 

       For the theory of operator valued weights and basic construction, See [231], [232], 

[241]. 

        For 𝑀 ⊂ 𝑁  be an inclusion of von Neumann algebras. We denote by 

𝒫(𝑀,𝑁), ℰ(𝑀,𝑁) the set of normal semifinite faithful (abbreviated as n.s.f.), operator 

valued weights, and that of normal faithful conditional expectations respectively. We 

denote by 𝒫0(𝑀,𝑁) the set of  𝑇 ∈ 𝒫(𝑀,𝑁) whose restriction to 𝑀 ∩ 𝑁′ is semifinite, 

(thus 𝑇 is called regular in [264], [265]). Note that 𝒫0(𝑀,𝑁)  is either empty or 𝒫(𝑀,𝑁) 
[232]. For 𝑇 ∈ 𝒫(𝑀,𝑁), we use the following standard notations:  

𝑛𝑇 = {𝑥 ∈ 𝑀; 𝑇(𝑥∗𝑥) < ∞}, 
𝑚𝑇 = 𝑛𝑇

∗ 𝑛𝑇 .                                 
For a n.f.s. weight 𝜑 on 𝑀,𝐻𝜑. and 𝛬𝜑. denote the GNS Hilbert space and the canonical 

injection 𝛬𝜑: 𝑛𝜑 → 𝐻𝜑 . 

      For 𝑀 ⊂ 𝑁with 𝐸 ∈ ℰ(𝑀,𝑁), we fix a faithful normal state 𝜔  on 𝑁  and set .𝜑 ∶=
𝜔. 𝐸. We regard M as a concrete von Neumann algebra acting on 𝐻𝜑. Let 𝑒𝑁 be the Jones 

projection defined by 𝑒𝑁𝛬𝜑(𝑥) = 𝛬𝜑 . (𝐸(𝑥)), which does not depend on 𝜔 but only on the 

natural cone of H. [242]. The basic extension of 𝑀 by 𝐸  is the von Neumann algebra 

generated by 𝑀  and 𝑒𝑁 , which coincides with 𝐽𝑀𝑁
2́𝐽𝑀,  where 𝐽𝑀  is the modular 
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conjugation for 𝑀 . For 𝑥 ∈ 𝐵(𝐻𝜑) , we set 𝑗(𝑥) = 𝐽𝑀𝑥
∗𝐽𝑀 . The dual operator valued 

weight �̂� ∈ 𝒫(𝑀1 , 𝑀)  of  𝐸  is defined by 𝑗. 𝐸−1. 𝑗 |
2
𝑀1

,  where  𝐸−1 ∈ 𝒫(𝑁 2́,𝑀2́)  is 

characterized by spatial derivatives [222]: 
𝑑(𝜓, 𝐸)

𝑑𝜑2́
=

𝑑𝜓

𝑑(𝜑2́. 𝐸−1)
,           𝜓 ∈ 𝒫(𝑁, 𝐶),     𝜑2́ ∈ 𝒫(𝑀2́, ℂ). 

Since �̂� satisfies 𝐸−1(𝑒𝑁) = 1, 𝑀𝑒𝑁𝑀 ⊂ 𝑚�̂� . In [241], Kosaki defined the index of 𝐸 by 𝐼 
and 𝐸 = 𝐸−1(1) in the case where 𝑀 and 𝑁 are factors, which is known to coincide with 

the probabilistic index defined in [257]. 

     First, we consider a Pimsner -Popa push-down lemma in our setting (cf. [257]). 

Lemma (4.1.1)[219]: Let 𝑀  be a von Neumann algebra and . a n.f.s. weight on 𝑀 . 

Suppose 𝒜  is 𝑎 *-subalgebra of 𝑛𝜑
∗ ∩ 𝑛𝜑 . which is dense in 𝑀  in weak topology, and 

globally invariant under the modular automorphism group. Then 𝛬𝜑(𝒜) is dense in 𝐻𝜑 . 

Proof: Let 𝑝 be the projection onto the closure of 𝛬𝜑(𝒜). Then 𝑝 ∈ �́� = �́�. Thanks to 

𝜎𝑡
𝜑
(𝒜) = 𝒜, 𝑝  commutes with ∆𝑡

𝜑
, and consequently we have ∆𝜑

1 2⁄  𝑝 ⊃ 𝑝∆𝜑
1 2⁄ .  Since 

𝒜 ⊂ 𝑛𝜑 ∩ 𝑛𝜑
∗ , 𝛬𝜑(𝑥), 𝑥 ∈ 𝒜 is in the domains of 𝑆𝜑 and ∆𝜑

1 2⁄ . Thus we get the following: 

𝐽𝜑𝛬𝜑(𝑥) = 𝐽𝜑𝑆𝜑𝛬𝜑(𝑥
∗) = ∆𝜑

1 2⁄ 𝛬𝜑(𝑥
∗) = 𝑝∆𝜑

1 2⁄ 𝛬𝜑(𝑥
∗) = 𝑝𝐽𝜑𝛬𝜑(𝑥). 

This means that 𝑝 commutes with 𝐽𝜑, and 𝑝 ∈ 𝑀 ∩ �́�. So we get 𝛬𝜑((1 − 𝑝) 𝑥) =

0 𝑓𝑜𝑟 𝑥 ∈ 𝒜. Since . is faithful, this implies (1 − 𝑝) 𝑥 = 0,which shows 𝑝 = 1 because 𝒜 

is dense in 𝑀 in weak topology.                                                                                                                

Proposition (4.1.2)[219]: (Push Down Lemma). Let 𝑀 ⊃ 𝑁 be an inclusion of factors 

with 𝐸 ∈ ℇ(𝑀,𝑁),  and 𝑀1  be the basic extension of 𝑀  by 𝐸 . Then for all 𝑥 ∈
𝑛�̂� , 𝑒𝑁�̂� (𝑒𝑁𝑥) = 𝑒𝑁𝑥 holds. 

Proof: Let 𝜑 be as above and 𝜑1 = 𝜑. �̂�. Then 𝑒𝑁𝑥, and 𝑒𝑁�̂� (𝑒𝑁𝑥) belong to 𝑛𝜑. So we 

get the following: 

‖𝛬𝜑1
(𝑒𝑁𝑥) − 𝛬𝜑1

𝑒𝑁�̂�( (𝑒𝑁𝑥))‖
2
                                                                    

            = 𝜑1(𝑥
∗𝑒𝑁𝑥) − 𝜑1 (𝑥

∗𝑒𝑁�̂� (𝑒𝑁𝑥)) − 𝜑1(�̂� (𝑒𝑁𝑥)
∗𝑒𝑁𝑥)        

+𝜑1(�̂� (𝑒𝑁𝑥)
∗𝑒𝑁�̂� (𝑒𝑁𝑥)𝑥

∗𝑒𝑁�̂� (𝑒𝑁𝑥))                 

= ‖𝛬𝜑1
(𝑒𝑁𝑥)‖

2
− ‖𝛬𝜑1

(𝑒𝑁�̂�(𝑒𝑁𝑥))‖
2
.                            

So, we can define a bounded operator 𝑉 on 𝑒𝑁𝐻𝜑1
 by 

𝑉𝑒𝑁𝛬𝜑1
(𝑥) = 𝛬𝜑1

((𝑒𝑁�̂�(𝑒𝑁𝑥)) , 𝑥 ∈ 𝑛�̂� .                              

By simple computation, one can show that 𝑉  is the identity on 𝑒𝑁𝛬𝜑1
(𝑀𝑒𝑁𝑀). So to 

prove the statement, it suffices to show that 𝛬𝜑1
(𝑀𝑒𝑁𝑀) is dense in 𝐻𝜑1

 . We set  𝒜 =

𝑀𝑒𝑁𝑀 and show that 𝐴 satisfies the assumption of the previous lemma. Indeed, since 𝑀1 

is the weak closure of  𝑀𝑒𝑁𝑀+𝑀, the weak closure of 𝒜 is a closed two-sided ideal of 

𝑀1  , and coincides with 𝑀1  . From the definition of 𝜑1  , we have 𝜎𝑡
𝜑1  (𝑀𝑒𝑁𝑀) =

𝜎𝑡
𝜑
(𝑀) 𝜎𝑡

𝜑1  (𝑒𝑁)𝜎𝑡
𝜑
(𝑀) = 𝑀𝜎𝑡

𝜑
(𝑒𝑁)𝑀. Thanks to  𝑗 . 𝐸−1. 𝑗 = ( 𝑗 . 𝐸.  𝑗)−1, we get 

 

𝑑𝜑1
𝑑(𝜔. 𝑗)

=
𝑑(𝜑. ( 𝑗 . 𝐸.  𝑗)−1

𝑑(𝜔. 𝑗)
=

𝑑𝜑

𝑑(𝜔. 𝐸. 𝑗)
=

𝑑𝜑

𝑑(𝜑. 𝑗)
= Δ𝜑 . 
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Since Δ𝜑 commutes with 𝑒𝑁, we get 𝜎𝑡
𝜑1  (𝑒𝑁) = 𝑒𝑁.                                                       

Lemma (4.1.3)[219]: Under the same assumption, assume that 𝑅 is a factor including 𝑀 

and satisfying the following: 

         (i) There is a projection 𝑒 ∈ 𝑅 such that 𝑅 is generated by 𝑒 and 𝑀, and 𝑒𝑥𝑒 =
𝐸(𝑥) 𝑒 holds for 𝑥 ∈ 𝑀. 
        (ii) There is 𝑇 ∈ 𝒫(𝑅,𝑀) satisfying 𝑇(𝑒) = 1, and 𝑒 ∈ (𝑅 ∩ 𝑁′)𝐸 .  𝑇  .Then there is an 

isomorphism 𝜋: 𝑀1  → 𝑅 satisfying  𝜋 |
2
𝑀
= 𝑖𝑑𝑀, 𝜋(𝑒𝑁) = 𝑒, and  𝑇. 𝜋 = 𝜋 . �̂�.  

Proof: Let 𝜓 = 𝜑. 𝑇. For the same reason as before, 𝛬𝜓(𝑀𝑒𝑀) is dense in 𝐻𝜓. So we can 

define a surjective isometry 𝑈: 𝐻𝜑1
→ 𝐻𝜓 and an isomorphism 𝜋: 𝑀1  → 𝑅 by 

𝑈𝛬𝜑1
(∑𝑥𝑖 𝑒𝑁𝑦𝑖) = 𝛬𝜓 (∑𝑥𝑖 𝑒𝑦𝑖),               𝑥𝑖  , 𝑦𝑖 ∈ 𝑀,                

 

                 𝜋(𝑥) = 𝑈𝑥𝑈∗,                                     𝑥 ∈ 𝜋 .          

Clearly,  𝜋  satisfies  𝜋 |
2
𝑀
= 𝑖𝑑𝑀, 𝜋(𝑒𝑁) = 𝑒 . Thanks to 𝜎𝑡

𝐸.  𝑇  (𝑒) = 𝑒,  the modular 

automorphism groups of 𝜑1 𝑎𝑛𝑑 𝜓 . 𝜋  coincide on 𝑀𝑒𝑁𝑀  (and on 𝑀1 ). Since 𝑀1  is a 

factor, this implies that 𝜑1 is a scalar multiple of  𝜓 . 𝜋, and consequently that �̂� is a scalar 

multiple of  𝜋−1. 𝑇. 𝜋. From �̂� (𝑒𝑁) = 1 and  𝑇(𝑒) = 1, we get the result.                                            

Lemma (4.1.4)[219]: The following hold: 

         (i) Let { 𝑝𝑖}𝑖∈𝐼 ⊂ 𝑀 ∩ �́� be a family of mutually orthogonal projections, and  𝑝 =
∑𝑝𝑖 . If  𝒫0( 𝑝𝑖𝑀𝑃𝑖  , 𝑝𝑖𝑁) ≠ ∅  for every 𝑖 ∈ 𝐼, then 𝒫0( 𝑝𝑀𝑝 , 𝑝𝑁) ≠ ∅.  
        (ii) Let  𝑝 ∈ 𝑀 ∩ �́� be a projection. If  𝒫0( 𝑀 , 𝑁) ≠ ∅ then 𝒫0( 𝑝𝑀𝑝 , 𝑝𝑁) ≠ ∅. 
        (iii) Let 𝑝 ∈ 𝑀 ∩ �́� be a projection satisfying 𝒫0( 𝑝𝑀𝑝 , 𝑝𝑁) ≠ ∅ and 𝑐( 𝑝) the 

central support of 𝑝 in 𝑀 ∩ �́�. Then 𝒫0(𝑐( 𝑝) 𝑀𝑐( 𝑝), 𝑐( 𝑝) 𝑁) ≠ ∅, 
        (iv) Let { 𝑝𝑖}𝑖∈𝐼 ⊂ 𝑀 ∩ �́�  be a family of projections, and  𝑝0 =∨ 𝑝𝑖  . If 

𝒫0( 𝑝𝑖𝑀𝑝𝑖  , 𝑝𝑖𝑀) ≠ ∅  for every 𝑖 ∈ 𝐼, then 𝒫0( 𝑝0𝑀𝑝0 , 𝑝0𝑁) ≠ ∅.   
Proof: (i) This follows from the following easy facts: 

𝒫0( 𝑝𝑀𝑝 ,⨁ 𝑝𝑖𝑀𝑝𝑖) ≠ ∅,              𝒫0(⨁ 𝑝𝑖𝑀𝑝𝑖  , ⨁ 𝑝𝑖𝑁) ≠ ∅,                  
 
                             𝒫0(⨁𝑝𝑖𝑁, 𝑝𝑁 ) ≠ ∅. 
        

          (ii) Since 𝒫0( 𝑀 , 𝑁) ≠ ∅   there is a separating family of normal conditional 

expectations from 𝑀  to 𝑁 {𝐸∝ }. Then {𝐸∝( 𝑝. 𝑝) 𝑝}  is a separating family of bounded 

normal operator valued weights from 𝑝𝑀𝑝 to 𝑝𝑁, and  𝒫0( 𝑝𝑀𝑝 , 𝑝𝑁) ≠ ∅.  

         (iii) Let {𝑒𝑗} ∈ 𝑀 ∩ �́�  be a family of projections satisfying  𝑝 ≻ 𝑒𝑗  , ∑ 𝑒𝑗 = 𝑐(𝑝) 

.Then  𝒫0( 𝑒𝑗𝑀𝑒𝑗  , 𝑒𝑗𝑁) ≠ ∅. So using (i), we get  𝒫0(𝑐( 𝑝)𝑀𝑐( 𝑝), 𝑐( 𝑝)𝑁) ≠ ∅. 

         (iv) Let  𝑧𝑖 = 𝑐( 𝑝𝑖)  and  𝑧0 =∨ 𝑧𝑖  . Then thanks to (i), (ii), and (iii), 

𝒫0(𝑧0𝑀𝑧0 , 𝑧0𝑁) ≠ ∅ . Since 𝑧0  is the central support of  𝑝0  , we get the statement by 

using (i).                      

Lemma(4.1.5)[219]: Let 𝑀 ⊃ 𝑁  be an inclusion of von Neumann algebras (not 

necessarily with separable predual). Then, there is a unique central projection 𝑧 of  𝑀 ∩ �́� 

satisfying the following two conditions: 

         (i)  𝒫0( 𝑝𝑀𝑝 , 𝑝𝑁) = ∅ holds for every projection  𝑝 ∈ 𝑀 ∩ 𝑁′, 𝑝 ≤ 1 − 𝑧. 
        (ii) 𝒫0(𝑧𝑀𝑧 , 𝑧𝑁) = 𝒫(𝑧𝑀𝑧 , 𝑧𝑁). 
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Moreover, if  𝒫( 𝑀,𝑁) is not empty, then (1 − 𝑧)(𝑀 ∩ 𝑁′) ∩ 𝑚𝑇 = {0}, 𝑧 ∈ (𝑀 ∩ �́�)𝑇, 

and 𝑇|𝑧(𝑀∩𝑁′)  is semifinite for every  𝑇 ∈ 𝒫(𝑀,𝑁).  

        To prove the lemma, we need the following: 

Proof:  Let z be the supremum of the projections 𝑝 ∈ 𝑀 ∩ 𝑁′  Satisfying  

𝒫0( 𝑝𝑀𝑝 , 𝑝𝑁) = ∅.   Then thanks to Lemma (4.1.4)(iii), (iv), 𝑧  is a central projection 

satisfying (i) and (ii). It is easy to show the uniqueness of such a projection. If  𝑇 ∈
 𝒫(𝑀,𝑁),  𝜎𝑡

𝑇(𝑧) also satisfies (i) and (iii), and we get 𝑧 ∈ (𝑀 ∩ �́�)𝑇. This implies that  

𝑧𝑇(𝑧 . 𝑧)  belongs to 𝒫(𝑧𝑀𝑧, 𝑧𝑁).  So, due to, 𝑇|𝑧(𝑀∩𝑁′)  is semifinite. Suppose 𝑥  is a 

nonzero positive element in  𝑚𝑇  ∩ (1 − 𝑧)(𝑀 ∩ 𝑁′). Then there is a nonzero spectral 

projection 𝑝 of 𝑥  satisfying 𝑇( 𝑝) < ∞. This implies ℰ(𝑝𝑀𝑝, 𝑝𝑁) = ∅,  that contradicts 

Lemma (4.1.4)(iii).                                                      

      To analyze local structure of the inclusions obtained by basic construction in the 

infinite index case, we need the following: 

Lemma (4.1.6)[219]: ([241]. Let 𝑀 ⊃ 𝑁 be an inclusion of factors. Then the following 

hold: 

       (i) Let 𝑇 ∈ 𝒫(𝑀,𝑁), and 𝑝 ∈ 𝑚𝑇 ∩ (𝑀 ∩ 𝑁′)𝑇 a non-zero projection. Then 𝐼nd  𝑇𝑝 =

𝑇( 𝑝) 𝑇−1( 𝑝),  where 𝑇𝑝 ∈ ℰ(𝑝𝑀𝑝, 𝑝𝑁) = ∅  is defined by 𝑇𝑝(𝑥) = 𝑝𝑇(𝑥)/𝑇(𝑝), 𝑥 ∈

𝑝𝑀𝑝. 
       (ii) If  𝒫0( 𝑀 , 𝑁) ≠ ∅, 𝒫0( 𝑁′ ,𝑀′) ≠ ∅ then 𝑀 ∩𝑁′ is a direct sum of type 𝐼 factors 

and 𝑝𝑀𝑝 ⊃ 𝑝𝑁 has finite index for every finite rank projection in  𝑀 ∩𝑁′. 
Proposition (4.1.7)[219]: Let 𝑀 ⊃ 𝑁 be an inclusion of factors with 𝐸 ∈ ℰ(𝑀,𝑁), and 𝑀1 

the basic extension. Then  𝑀1 ∩ �́�  is direct sum of four subalgebras, 

 

𝑀1 ∩ �́� = 𝐴⊕𝐵1 ⊕𝐵2 ⊕𝐶, 
satisfying the following: 

     (i) Each of the four subalgebras is globally invariant under {𝜎𝑡
𝐸 .�̂�} . 

       (ii)  𝑗(𝐴) = 𝐴, 𝑗(𝐵1) = 𝐵2 , 𝑗(𝐵2) = 𝐵1 , 𝑗(𝐶) = 𝐶. 

    (iii)  �̂�|
𝐴⨁𝐵1

 is semifinite. 

    (iv)  𝑚�̂� ∩ (𝐵2⨁𝐶) = {0}. 
    (v) A is direct sum of type 𝐼 factors and 𝑝𝑀1 𝑝 ⊃ 𝑝𝑁 has finite index for every finite 

rank projection 𝑝 ∈ 𝐴. 

Proof:  First, we show 𝜎𝑡
𝐸 .�̂� . 𝑗 = 𝜎𝑡

𝐸 .�̂�   on 𝑀1 ∩ 𝑁′. Indeed, for  𝑥 ∈ 𝑀1 ∩ 𝑁′ we get the 

following as :  

𝑗. 𝜎𝑡
𝐸 .�̂�(𝑗(𝑥)) = 𝐽𝑀  (

𝑑(𝜑. �̂�)

𝑑(𝜔. 𝑗)
)

𝑖𝑡

𝐽𝑀𝑥𝐽𝑀 (
𝑑(𝜑. �̂�)

𝑑(𝜔. 𝑗)
)

−𝑖𝑡

𝐽𝑀 

           = 𝐽𝑀∆𝜑
𝑖𝑡 𝐽𝑀𝑥𝐽𝑀∆𝜑

−𝑖𝑡𝐽𝑀 = ∆𝜑
𝑖𝑡𝑥∆𝜑

−𝑖𝑡 

      = (
𝑑(𝜑. �̂�)

𝑑(𝜔. 𝑗)
)

𝑖𝑡

𝑥 (
𝑑(𝜑. �̂�)

𝑑(𝜔. 𝑗)
)

−𝑖𝑡

 

= 𝜎𝑡
𝐸 .�̂�(𝑥).                             

Now, let 𝑧 be the central projection of 𝑀1 ∩ �́� determined by Lemma (4.1.5) for 𝑀1 ⊃ 𝑁. 

We set 

          𝐴 = 𝑧𝑗(𝑧)(𝑀1 ∩ 𝑁′),                      𝐶 = (1 − 𝑧) 𝑗(1 − 𝑧)(𝑀1 ∩ 𝑁′), 
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𝐵1 = 𝑧𝑗(1 − 𝑧)(𝑀1 ∩ 𝑁′), 𝐵2 = (1 − 𝑧)𝑗(𝑧)(𝑀1 ∩ 𝑁′). 

   Then by construction (ii), (iii), and (iv) hold. Since j commutes with  𝜎𝑡
𝐸 .�̂�  , 𝑗(𝑧) ∈

(𝑀1 ∩ 𝑁′)𝐸 .�̂�  ,   and we get (i). Note that for a projection 𝑝 ∈ 𝑀1 ∩ 𝑁′, 𝐽𝑀(𝑝𝑀1 𝑝)
′𝐽𝑀 =

𝑗( 𝑝) 𝑁, 𝐽𝑀(𝑝𝑁)
′ 𝐽𝑀 = 𝑗( 𝑝) 𝑀1 𝑗( 𝑝).  So ( 𝑝𝑁)′ ⊃ (𝑝𝑀1 𝑝)

′ is anti conjugate to 

𝑗( 𝑝) 𝑀1 𝑗( 𝑝) ⊃ 𝑗( 𝑝) 𝑁. Thus thanks to Lemma (4.1.6), we get (V).                               
  Our basic references for the theory of sectors are [246], [247], [237].  Let 𝑀  be an 

infinite factor. We denote by 𝐸𝑛𝑑(𝑀) and 𝑆𝑒𝑐𝑡(𝑀) the set of unital endomorphisms of 𝑀 

and that of sectors, which is the quotient of 𝐸𝑛𝑑(𝑀) by the unitary equivalence. Note that 

every element in 𝐸𝑛𝑑(𝑀)  is automatically normal for 𝑀  with separable predual. For 

𝜌1 , 𝜌2 ∈ 𝐸𝑛𝑑(𝑀), (𝜌1 , 𝜌2) denotes the set of intertwiners between 𝜌1 and  𝜌2 , i.e., 

 

𝜌1 , 𝜌2) = {𝜐 ∈ 𝑀; 𝜐𝜌1(𝑥) = 𝜌2(𝑥)𝜐, 𝑥 ∈ 𝑀}.    
If 𝜌1  is irreducible, i.e., 𝑀 ∩ 𝜌1(𝑀)

/ = 𝐶, (𝜌1 , 𝜌2) is a Hilbert space with the following 

inner product: 

〈𝑉|𝑊〉 1 = 𝑊∗𝑉,          𝑉,𝑊 ∈ (𝜌1 , 𝜌2). 

We define the dimension 𝑑(𝜌) 𝑜𝑓 𝜌 𝑏𝑦 𝑑(𝜌) = [𝑀: 𝜌(𝑀)]0
1 2⁄

, where [M: 𝜌 (M)]0 is the 

minimum index of  𝑀 ⊃  𝜌 (M) . For 𝜌  with 𝑑(𝜌) < ∞  we denote by 𝐸𝜌  and 𝜙𝜌  the 

minimal conditional expectation onto 𝜌 (M) and the standard left inverse of 𝜌, i.e., 𝜙𝜌 =

𝜌−1. 𝐸𝜌. 

      There are three natural operations in Sect (𝑀) : the sum, the product, and the 

conjugation. For simplicity, we denote by �̅� one of the representatives of the conjugate 

sector [𝜌]̅̅ ̅̅  of [𝜌]. When 𝑑(𝜌) is finite, it is known that there are two isometries 𝑅𝜌 ∈

(𝑖𝑑, �̅�𝜌), �̅�𝜌 ∋ (𝑖𝑑, �̅�𝜌 ) satisfying 

�̅�𝜌
∗𝜌(𝑅𝜌) = 𝑅𝜌

∗ �̅�(�̅�𝜌) =
1

𝑑(𝜌)
.                                                  (3) 

Although such a pair is not unique, we fix it once and forever. Unless 𝜌 is a pseudoreal 

sector [246], we can take �̅�𝜌equal to 𝑅�̅�. If it is, we set  �̅�𝜌 = −𝑅𝜌. 

       Let 2𝑀𝑋𝑀 be a 𝑀 −𝑀 bimodule, and  𝜌 ∈ 𝐸𝑛𝑑(𝑀). Then we define a new Bimodule 

2𝑀(𝑋𝜌)𝑀
  (respectively 2𝑀( 𝑋𝜌

2
2)𝑀

 by 

𝑥 . �́� . 𝑦 ∶= 𝑥 . 𝜉. 𝜌( 𝑦)          (respectively  𝑥 . �́�. 𝑦 ∶= 𝜌(𝑥). 𝜉 . 𝑦)               𝑥, 𝑦 ∈ 𝑀, 

where  �́� = 𝜉 as an element of  Hilbert space 𝑋. It is known that there is one- to-one 

correspondence between Sect (𝑀)  and the set of equivalence classes of  𝑀 −𝑀 

bimodules. The correspondence is  given by  [𝜌] → [2𝑀(𝐿
2(𝑀)𝜌)𝑀

],  which preserves the 

three operations. The conjugate sector of [𝜌] is characterized by 

2𝑀(𝐿
2(𝑀)𝜌)𝑀

≃ 2𝑀 ( (𝐿2(𝑀)𝜌)�̅�

2
)
𝑀
. 

        Let 𝜙 be a unital normal completely positive map from 𝑀 to 𝑀. Following Connes 

[223], there is a natural way to associate a 𝑀 −𝑀 bimodule with  𝜙. Let 𝛺 be a separating 

and cyclic vector of  𝑀. We introduce a positive Semidefinite  sesquilinear form on the 

algebraic tensor product 𝑀⊗𝑎𝑙𝑔 𝑀 as follows: 

〈∑𝑥𝑖 ⊗𝑦𝑖
𝑖

 ,∑𝑧𝑖 ⊗𝑤𝑖

𝑗

 〉 = ∑〈𝜙(𝑧𝑗
∗𝑥𝑖)𝐽𝑀𝑤𝑗𝑦𝑗

∗𝐽𝑀𝛺|𝛺〉

𝑖,𝑗
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We denote by 𝐻𝜙 the Hilbert space completion of the quotient of 𝑀⊗𝑎𝑙𝑔 𝑀 by the kernel 

of the sesquilinear form, and by Λ𝜙 the natural map Λ𝜙:𝑀 ⊗𝑎𝑙𝑔 𝑀 → 𝐻𝜙 . 𝐻𝜙 is naturally 

a 𝑀 −𝑀 bimodule by the following action: 

  𝑥. Λ𝜙 (∑𝑧𝑖 ⊗𝑤𝑖

𝑖

) . 𝑦 = Λ𝜙 (∑𝑥𝑧𝑖 ⊗𝑤𝑖

𝑖

𝑦). 

Thanks to the one-to-one correspondence stated above, there is an endomorphism 𝜌𝜙 

satisfying 2𝑀(𝐻𝜙)𝑀
≃ 2𝑀 (2𝜌𝜙

2 𝐿2(𝑀))
𝑀
.   Actually, 𝜌𝜙 is Steinspring type dilation of 𝜙. 

Indeed, let 𝑊: 𝐻𝜙 → 𝐿2(𝑀)𝜌 be the intertwining surjective isometry, and set  𝜉0 =

𝑊Λ𝜙(1⊗ 1). Then we get 

〈𝜙(𝑥). Ω. 𝑦|𝛺〉 = 〈𝑥. Λ𝜙(1⊗ 1). 𝑦, Λ𝜙(1⊗ 1) 〉 

 

   = 〈𝜌𝜙(𝑥). 𝜉0. 𝑦|𝜉0〉.  

We define an isometry 𝜐  by 𝜐(Ω, 𝑦) = 𝜉0. 𝑦 . Then by definition, 𝜐  commutes with the 

right action of 𝑀. So 𝜐 belongs to 𝑀 and satisfies  𝜙(𝑥) = 𝜐∗𝜌𝜙(𝑥) 𝜐, 𝑥 ∈ 𝑀. Note that 

the support of  𝜐𝜐∗  in  𝑀 ∩ 𝜌𝜙(𝑀)  ́ is 1 . Indeed, suppose 𝑧 ∈ 𝑀 ∩ 𝜌𝜙(𝑀)  ́  satisfying  

𝑧𝜉0 . 𝑦 = 0, for all 𝑦 ∈ 𝑀. Then 𝑧𝜌𝜙(𝑥)𝜉0. 𝑦 = 0 for all 𝑥, 𝑦 ∈ 𝑀. Since  𝜌𝜙(𝑀). 𝜉0. 𝑀̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =

𝑊𝐻𝜙 = 𝐿2(𝑀), we get 𝑧 = 0. 

Proposition (4.1.8)[219]: Let 𝑀 and , be as above. Then the following hold: 

       (i) Let 𝜎 ∈ 𝐸𝑛𝑑(𝑀), and 𝜐1 ∈ 𝑀 be an isometry satisfying (𝑥) = 𝜐1
∗𝜎(𝑥) 𝜐1 . If the 

support of  𝜐1𝜐1
∗  in 𝑀 ∩ 𝜎(𝑀)  ́   is 1, then [𝜌𝜙] = [𝜎]. 

       (ii) The equivalence class of  𝐻𝜙 does not depend on the choice of the cyclic 

separating vector 𝛺. 

      (iii) Let 𝜇 be another unital normal completely positive map from 𝑀 to 𝑀. If there is a 

positive constant 𝑐 such that 𝑐𝜇 + 𝜙 is completely positive, then [𝜌𝜇] contains [𝜌𝜙]. 

Proof: (i) Let 𝜉0 be as before. Then by assumption, we get the following: 

 

〈𝜎(𝑥)𝜐1Ω. 𝑦|𝜐1𝛺〉 = 〈𝜌𝜙(𝑥)𝜉0. 𝑦|𝜉0〉, 

𝜎(𝑀)𝜐1𝛺.𝑀̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝐿2(𝑀).         
So we can define a unitary 𝑢 ∈ 𝑀  by 𝑢𝜎(𝑥)𝜐1Ω . 𝑦 = 𝜌𝜙(𝑥)𝜉0. 𝑦,  and get 𝜌𝜙(𝑥) =

𝑢𝜎(𝑥)𝑢∗ 
     (ii) follows from (i). 

      (iii) Since 𝑐𝜇 − 𝜙 is completely positive, we can define a bounded map 𝑇: 𝐻𝜇 → 𝐻𝜙 by 

𝑇Λ𝜇 (∑𝑥𝑖
𝑖

⊗𝑦𝑖) = Λ𝜙 (∑𝑥𝑖
𝑖

⊗𝑦𝑖).   

Then T is an 𝑀 −𝑀 bimodule map whose image is dense in 𝐻𝜙. Let 𝑇 = 𝑈 |𝑇| be the 

polar decomposition of 𝑇 . Then 𝑈  is a co-isometry belonging to Hom 

(2𝑀(𝐻𝜇)𝑀, 2𝑀(𝐻𝜙)𝑀)
. Thus [𝜌𝜇] contains  [𝜌𝜙].                                                                                                              

     [248], proved that for an arbitrary infinite factor 𝑀  (with separable predual), there 

exists an injective subfactor 𝑅 ⊂ 𝑀  satisfying 𝑅′ ∩ 𝐽𝑀𝑅
′𝐽𝑀 = 𝐶.  A subfactor 𝑅  of 𝑀  is 

called simple if  𝑅′ ∩ 𝐽𝑀𝑅
′𝐽𝑀 = 𝐶. A simple subfactor 𝑅 determines the automorphisms of 

𝑀 in the following sense; if  𝛼 , 𝛽 ∈  𝐴𝑢𝑡(𝑀) satisfying   𝛼|𝑅 = 𝛽|𝑅′ then 𝛼 = 𝛽. Indeed, 
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let 𝑢 be the canonical implementation of  𝛼−1. 𝛽 . Then  𝑢 ∈ 𝑅′ , and 𝑢 commutes with 𝐽𝑀. 

So 𝑢  is a scalar, that means 𝛼 = 𝛽 . We can generalize this to some class of 

endomorphisms as follows:  

Proposition(4.1.9)[219]: Let 𝑀 be an infinite factor and 𝑅 a simple subfactor. For every 

𝜌 ∈ 𝐸𝑛𝑑(𝑀) with 𝐸 ∈ ℰ(𝑀, 𝜌(𝑀)), the following holds: 

 

{𝑇 ∈ 𝑀; 𝑇𝑥 = 𝜌(𝑥) 𝑇, 𝑥 ∈ 𝑅} = (𝑖𝑑, 𝜌).                                                (4) 
 

Proof:  First, we show that the general case can be reduced to the case where (𝑖𝑑, 𝜌) =
{0} . Indeed, let {𝑉𝑖}𝑖  be an orthonormal basis of (𝑖𝑑, 𝜌) , and 𝑊  an isometry in 𝑀 

satisfying 𝑊𝑊∗ = 1 − ∑𝑉𝑖 𝑉𝑖
∗  . Then 𝜌(𝑥) = ∑𝑉𝑖  𝑥 𝑉𝑖

∗ +𝑊𝜎(𝑥)𝑊∗,  where  𝜎 ∈
𝐸𝑛𝑑(𝑀) is defined by 𝜎(𝑥) = 𝑊∗𝜌(𝑥) 𝑊. Note that  (𝑖𝑑, 𝜎) = {0} by construction. If  𝑇 

is in the left-hand side of (4), then 𝑐𝑖 ∶= 𝑉𝑖
∗𝑇 ∈ �́� ∩ 𝑀 = 𝐶, and 𝑊∗𝑇 satisfies 𝑊∗𝑇𝑥 =

𝜎(𝑥)𝑊∗𝑇, 𝑥 ∈ 𝑅. Since 𝑇 = ∑𝑉𝑖 𝑉𝑖
∗𝑇 +𝑊𝑊∗𝑇, if the statement is true for 𝜎, i.e., 𝑊∗𝑇 =

0; we get  𝑇 = ∑𝑐𝑖𝑉𝑖 ∈ (𝑖𝑑, 𝜎). 
     Secondly, we construct the ``canonical implementation'' of 𝜎 as follows. 

Let 𝛺  be a separating and cyclic vector for 𝑀 , and  𝐿2(𝑀, 𝛺)+  the natural cone with 

respect to 𝛺. Then there are unique vectors   𝜉0 , 𝜉1 ∈ 𝐿2(𝑀,𝛺)+ satisfying 

 

〈𝐸(𝑥)𝛺|𝛺〉 = 〈𝑥𝜉0|𝜉0〉. 
 

〈𝜌(𝑥)𝛺|𝛺〉 = 〈𝑥𝜉1|𝜉1〉. 
Note that 𝜉0 , 𝜉1 are cyclic because they belong to the natural cone and implement faithful 

states.  So we can define an isometry 𝑉𝜌 𝑏𝑦 𝑉𝜌𝑥𝜉1 = 𝜌(𝑥) 𝜉0 . We set 𝑒𝜌 = 𝑉𝜌𝑉𝜌
∗ , which is 

the Jones projection of  𝐸. 𝑉𝜌 satisfies 𝑉𝜌𝑥 = 𝜌(𝑥) 𝑉𝜌  and  𝐽𝑀𝑉𝜌 = 𝑉𝜌𝐽𝑀 . Indeed, the first 

equality is obvious. By identifying  𝑒𝜌𝐿
2(𝑀) with 𝐿2(𝜌(𝑀), 𝜉0), we get 𝐽𝜌(𝑀)𝑉𝜌 = 𝑉𝜌𝐽𝑀 . 

On the other hand, since 𝑒𝜌 is the Jones projection, we have 𝑒𝜌𝐽𝑀 = 𝐽𝑀𝑒𝜌 = 𝐽𝜌(𝑀) .So 𝑉𝜌 

commutes with 𝐽𝑀.. 

         Now suppose that (𝑖𝑑, 𝜎) = {0} and there exists a nonzero element 𝑇 in the left-hand 

side of (4). Since 𝑇∗𝑇 ∈ 𝑀 ∩ 𝑅′ = 𝐶, we may assume that 𝑇 is an isometry. We set  �̃� =
𝑇𝐽𝑀𝑇𝐽𝑀, which commutes with 𝐽𝑀 and satisfies 

�̃� = 𝜌(𝑥)�̃�, 𝑥 ∈ 𝑅 . Then  𝑉𝜌
∗�̃�, ∈ �́� ∩ 𝐽𝑀�́�𝐽𝑀 = 𝐶. Let  𝜆 = 𝑉𝜌

∗�̃� , which is not zero 

because 

〈𝑉𝜌
∗�̃�𝜉0|𝜉1〉 = 〈 �̃�𝜉0|𝜉0〉 = 〈 𝑇𝜉0| 𝐽𝑀𝑇

∗𝜉0〉 

                              = 〈𝑇𝜉0|Δ𝜑
1 2⁄ 𝑇𝜉0〉 = ‖ Δ𝜑

1 4⁄ 𝑇𝜉0‖
2
, 

where 𝜑(𝑥) = 〈𝐸(𝑥) Ω | Ω〉, 𝑥 ∈ 𝑀. We define a unital completely positive map  𝜙: 𝑀 →
𝑀 𝑏𝑦 , 𝜙(𝑥) = 𝑇∗𝜌(𝑥) 𝑇, 𝑥 ∈ 𝑀, which equals to �̃�∗𝜌(𝑥) �̃�. By construction, [𝜌] contains 

[𝜌𝜙]. So we show that [𝜌𝜙].  contains [𝑖𝑑] and get contradiction. Thanks to Proposition 

(4.1.8), it suffices to show that 𝜙 − |𝜆|2 𝑖𝑑 is completely positive. In fact,  

𝜙(𝑥) = �̃�∗𝜌(𝑥)�̃� = �̃�∗𝑒𝜌𝜌(𝑥)�̃� + �̃�∗(1 − 𝑒𝜌)𝜌(𝑥)�̃� 

=  �̃�∗𝑉𝜌𝑉𝜌
∗ 𝜌(𝑥)�̃� + �̃�∗(1 − 𝑒𝜌)𝜌(𝑥)�̃�      

=  �̃�∗𝑉𝜌𝑥 𝑉𝜌
∗ �̃� + �̃�∗(1 − 𝑒𝜌)𝜌(𝑥)�̃�            

= |𝜆|2𝑥 + �̃�∗(1 − 𝑒𝜌)𝜌(𝑥)�̃�.                       
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Since 𝑒𝜌 commutes with 𝜌(𝑀), 𝑥 ↦ �̃�∗(1 − 𝑒𝜌)𝜌(𝑥)�̃� is a complete positive map. So [𝜌]  

contains [𝑖𝑑] and we get contradiction.                                                                               

Corollary (4.1.10)[219]: Let 𝑀,𝑅, 𝜌 be as above, and 𝜎 ∈ 𝐸𝑛𝑑(𝑀) with 𝑑(𝜎) < ∞. Then 

the following hold: 

        (i)    {𝑇 ∈ 𝑀;  𝑇𝜎(𝑥) = 𝜌(𝑥) 𝑇, 𝑥 ∈ 𝑅} = (𝜎 , 𝜌). 
        (ii) If  𝜎|𝑅 = 𝜌|𝑅, then 𝜎 = 𝜌. 
Proof: (i) Let 𝑇 be in the left-hand side of (i), and set  𝑋 = �̅� (𝑉) 𝑅𝜎 , where 𝑅𝜎  is the 

isometry in (3). Then 𝑋 satisfies 𝑋𝑥 = �̅�. 𝜌(𝑥) 𝑋 , 𝑥 ∈ 𝑅. So thanks to Proposition (4.1.9),  

we get 𝑋 ∈ (𝑖𝑑, �̅�. 𝜌 ) . By simple computation using (3), we obtain 𝑉 = 𝑑(𝜎) �̅�𝜎
∗𝜎(𝑋), 

and 𝑉 ∈ (𝜎, 𝜌). 
       (ii) Thanks to (i), 1 ∈ (𝜎, 𝜌), that means 𝜎 = 𝜌.                                                          
       Let 𝜓  be a dominant weight on 𝑀  [225]. Since every dominant weight is unitary 

equivalent, for every 𝛼 ∈ 𝐴𝑢𝑡(𝑀) there is a unitary 𝑢 ∈ 𝑀 satisfying 𝛼, 𝜓 ∈ 𝐴𝑑(𝑢) = 𝜓 

This fact is used to define the Connes-Takesaki module of 𝛼. The endomorphism version 

is given as follows, which will be used.  

Lemma (4.1.11)[219]: Let 𝑀 be an infinite factor. Then the following hold: 

        (i) For every 𝜌 ∈ 𝐸𝑛𝑑(𝑀) with 𝑑(𝜌) < ∞, there exist a dominant weight 𝜓𝜌  and a 

unitary 𝑢 ∈ 𝑀 such that 

𝜓𝜌 ∙ 𝜌 ∙ 𝐴𝑑(𝑢) = 𝑑(𝜌)𝜓𝜌,         𝜓𝜌 ∙ 𝐸𝜌 = 𝜓𝜌 . 

       (ii) Let 𝜓 be a dominant weight. Then for every [𝜌] ∈ 𝑆𝑒𝑐𝑡(𝑀) with 𝑑(𝜌) < ∞, there 

exists a representative 𝜌 satisfying 

𝜓 ∙ 𝜌 = 𝑑(𝜌)𝜓,         𝜓 ∙ 𝐸𝜌 = 𝜓. 

Proof: (i) Let 𝜓0 be a dominant weight on 𝜌(𝑀). Since both 𝑑(𝜌) 𝜓0  ∙ 𝐸𝜌 and 𝜓𝜌 ∙ 𝜌 are 

dominant weights on 𝑀, there exists a unitary 𝑢 ∈ 𝑀  satisfying 𝑑(𝜌)𝜓0  ∙ 𝐸𝜌 = 𝜓0 ∙ 𝜌 ∙

𝐴𝑑(𝑢). So 𝜓𝜌 ≔ 𝜓0 ∙ 𝐸𝜌is the desired weight. 

            (ii) follows from (i) and the fact that every dominant weight is unitary equivalent.                                                                                                                         

We investigate the structure of irreducible inclusions offactors with normal 

conditional expectations. We present the ultimate form of the Galois correspondence of 

outer actions of discrete groups and minimal actions of compact groups on factors, which 

has been studied [43], [224], [240], [250], [251]. The key argument is how to show the 

existence of a conditional expectation for every intermediate subfactor. 

      Let 𝑀 ⊃ 𝑁  be an irreducible inclusion, i.e., 𝑀 ∩ 𝑁′ = 𝐶 , of infinite factors with a 

conditional expectation  𝐸 ∈ ℇ(𝑀,𝑁). For 𝜌 ∈ 𝐸𝑛𝑑(𝑁), we set 
 

ℋ𝜌 = {𝑉 ∈ 𝑀;  𝑉𝑥 = 𝜌(𝑥) 𝑉, 𝑥 ∈ 𝑁}. 

Then thanks to the irreducibility of  𝑀 ⊃ 𝑁, ℋ𝜌 is a Hilbert space with inner product  

〈𝑉 |𝑊〉1 = 𝑊∗𝑉 as usual. We denote by 𝑠(ℋ𝜌) the support of  ℋ𝜌 , that is ∑ 𝑉𝑖  𝑉𝑖
∗

𝑖   where 

{𝑉𝑖}𝑖 is an orthonormal basis of  ℋ𝜌 . Let 𝑀1 be the basic extension of 𝑀 by 𝑁, and 𝑒𝑁 the 

Jones projection of 𝐸. Then   ℋ𝜌
∗ 𝑒𝑁ℋ𝜌 ⊂ 𝑀1 ∩ �̀�. 

      Let 𝑦: 𝑀 → 𝑁 be the canonical endomorphism [246], [247], [248]. Then it is known 

that 𝐿2𝑁
2 (𝑀)𝑁 ≃ (𝑦| 𝐿2𝑁

2 (𝑁) )𝑁
2

𝑁. When 𝐼𝑛𝑑 𝐸 < ∞ it is easy to show that an irreducible 

sector [𝜌] ∈ 𝑆𝑒𝑐𝑡(𝑁) is contained in [𝜆|𝑁]  if and only if  ℋ𝜌 ≠ 0 (Frobenius reciprocity) 

[238]. First, we establish the infinite index version of this statement. For this purpose, it is 

convenient to giveexplicit correspondence between submodules of  𝐿2𝑁
2 (𝑀)𝑁  and 

subsectors of  𝜆|𝑁 . Let  𝑝 ∈ 𝑀1 ∩ �̀�  be a nonzero projection. Since both 𝑒𝑁  and 𝜌 are 
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infinite projection in 𝑀1  , there is a partial isometry 𝑊 ∈ 𝑀1  satisfying 𝑊𝑊∗ =
𝑒𝑁 ,𝑊

∗𝑊 = 𝑝 . Due to 𝑒𝑁𝑀1𝑒𝑁 = 𝑒𝑁𝑁 , we can define 𝜌 ∈ 𝐸𝑛𝑑(𝑁)  by 𝑊𝑥𝑊∗ =
𝑒𝑁𝜌(𝑥), 𝑥 ∈ 𝑁. 
Lemma(4.1.12)[219]: Under the above assumption and notation, the following holds: 

(𝑝𝐿2(𝑀) )𝑁
2

𝑁 ≃ (𝜌𝐿2(𝑁))
𝑁

2

𝑁
. 

Proof: We regard 𝑊 as a surjective isometry from 𝑝𝐿2(𝑀)  to 𝑒𝑁𝐿
2(𝑀) = 𝐿2(𝑁)  .Since 

𝑀1 = 𝐽𝑀�̀�𝐽𝑀,Wcommutes with 𝐽𝑀𝑁𝐽𝑀. So for  𝜉 ∈ 𝑝𝐿2(𝑀), 𝑥, 𝑦 ∈ 𝑁, we obtain 

        𝑊(𝑥 ∙ 𝜉 ∙ 𝑦) = 𝑊𝑥𝐽𝑀 𝑦
∗𝐽𝑀𝜉 = 𝜌(𝑥)𝑊𝐽𝑀 𝑦

∗𝐽𝑀𝜉 = 𝜌(𝑥)𝐽𝑀 𝑦
∗𝐽𝑀𝑊𝜉.  

By using 𝑒𝑁𝐽𝑀 = 𝐽𝑀𝑒𝑁 = 𝐽𝑁, we get 𝑊(𝑥 ∙ 𝜉 ∙ 𝑦) = 𝜌(𝑥)𝐽𝑁 𝑦
∗𝐽𝑁𝑊𝜉. 

Proposition(4.1.13)[219]: Let 𝑀 ⊃ 𝑁 be an irreducible inclusion of infinite factors with 

𝐸 ∈ ℰ(𝑀,𝑁),  and 𝛾: 𝑀 → 𝑁  the canonical endomorphism. Then for 𝜌 ∈ 𝐸𝑛𝑑(𝑀) , the 

following two statements are equivalent: 

       (i) ℋ𝜌 ≠ 0 and the support of  𝐸(𝑠(ℋ𝜌)) is 1. 

      (ii)  ℰ(𝑁, 𝜌(𝑁)) is nonempty and [𝜌] is contained in [𝜆|𝑁]  up to multiplicity, i.e., 

there is   decomposition [𝜌] = ⨁[𝜌𝑎] such that each [𝜌𝑎] is contained in [𝜆|𝑁]. 
Proof: (i)⟹(ii). Assume that \ satisfies (i). By a simple argument, one can show that there 

is decomposition [𝜌] = ⨁[𝜌𝑎]  such that for every 𝑎  there exists 𝑉𝑎 ∈ ℋ𝜌𝑎  satisfying  

𝐸(𝑉𝑎𝑉𝑎
∗) ≥ 1 . We set 𝑊𝑎 = 𝑒𝑁𝐸(𝑉𝑎𝑉𝑎

∗)−1 2⁄ 𝑉𝑎 . Then 𝑊𝑎  satisfies  𝑊𝑎𝑊𝑎
∗ = 𝑒𝑁 , 𝑝𝑎 ∶=

𝑊𝑎
∗𝑊𝑎 ∈ 𝑀1 ∩ 𝑁′. Since 𝑊𝑎𝑥𝑊𝑎

∗ = 𝑒𝑁𝜌𝑎(𝑥), 𝑥 ∈ 𝑁, [𝜌𝑎] is contained in  [𝜆|𝑁]. �̂�( 𝑝𝑎) =

𝑉𝑎
∗𝐸(𝑉𝑎𝑉𝑎

∗)−1𝑉𝑎 < ∞ implies  ℰ(  𝑝𝑎𝑀1 𝑝𝑎 , 𝑝𝑎𝑁) ≠ ∅ and consequently ℰ(𝑁, 𝜌𝑎(𝑁)) ≠

∅. 
(ii) ⟹ (i). It is easy to show that if [𝜌] = ⨁[𝜌𝑎]  and each \a satisfies (i), then so does 𝜌. 

Assume that [𝜌]  is contained in [𝜆|𝑁]  and ℰ(𝑁, 𝜌(𝑁)) ≠ ∅ . Let 𝑝 ∈ 𝑀1 ∩ 𝑁′  be the 

projection corresponding to [𝜌] . Then ℰ(𝑝𝑀1, 𝑝, 𝑝(𝑁)) ≠ ∅. . which implies 𝑝 ∈ 𝐴⨁𝐵 

where 𝐴 and 𝐵 are as in Lemma (4.1.6). Let 𝑧 be the central support of 𝑝 in  𝑀1 ∩ 𝑁′. 

Since  𝜎𝑡
𝐸 .  �̂�  is trivial on the center of  𝐴⨁𝐵, �̂�|

𝑧(𝑀1∩𝑁
′)
    is semifinite. So there are two 

families of projections {𝑝𝑎}, {𝑞𝑎} in 𝑧(𝑀1 ∩ �́�) such that 𝑝 = ∑ 𝑝𝑎𝑎  , 𝑝𝑎~ 𝑞𝑎  in  𝑧(𝑀1 ∩
𝑁′)  and  𝑞𝑎 ∈  𝑚𝐸   . Let  𝑊𝑎 be a partial isometry satisfying  𝑊𝑎𝑊𝑎

∗ =  𝑒𝑁 ,𝑊𝑎
∗ 𝑊𝑎 =  𝑞𝑎 ,  

and 𝜌𝑎  ∈  𝐸𝑛𝑑(𝑁)  defined by  𝑊𝑎𝑥𝑊𝑎
∗ =  𝑒𝑁𝜌(𝑥),  𝑥 ∈ 𝑁 . Then  [𝜌] = ⨁[ 𝜌𝑎] . Since 

 𝑊𝑎 =  𝑒𝑁 𝑊𝑎 𝑞𝑎 ∈  𝑚𝐸  , due to Lemma (4.1.2), there exists  𝑉𝑎 ∈ 𝑀  satisfying  𝑊𝑎 =
 𝑒𝑁 𝑉𝑎 . It is easy to check  𝑉𝑎  ∈ ℋ𝜌𝑎 and 𝐸(𝑉𝑎𝑉𝑎

∗) = 1. So 𝜌𝑎 satisfies (i).                                                                                                                 

      Let {[𝜌𝜉]}𝜉∈ Ξ
 be the set of irreducible sectors with finite dimension   contained in 

[𝜆|𝑁] . We arrange the index set Ξ  such that [ 𝜌𝜉]̅̅ ̅̅ ̅̅ = [ 𝜌�̅�]  holds for every 𝜉 ∈  Ξ . For 

simplicity, we use notations 𝑅𝜉  , �̅�𝜉  ,ℋ𝜉  , 𝑑(𝜉), 𝐸𝜉 instead of  𝑅𝜌𝜉  , �̅�𝜌𝜉 , etc. We define the 

Frobenius maps   𝑐𝜉:ℋ𝜉 → ℋ�̅�  , 𝑐�̅� ∶ ℋ�̅� → ℋ𝜉 by 

𝑐𝜉(𝑉) = √𝑑(𝜉)  𝑉∗�̅�𝜉 ,               𝑉 ∈ ℋ𝜉 , 

𝑐�̅�(�̅�) = √𝑑(𝜉)  �̅�∗𝑅𝜉 ,               �̅� ∈ ℋ�̅� , 

Then thanks to (3), 𝑐�̅�  𝑐𝜉 = 1ℋ𝜉 
, 𝑐�̅�  𝑐𝜉 = 1ℋ𝜉

−  . So in particular, both 𝑐𝜉  and 𝑐�̅�  are 

invertible. We introduce a new inner product to ℋ𝜉 by 

( 𝑉1 ,  𝑉2)1 = 𝑑(𝜉)𝐸( 𝑉1 , 𝑉2
∗) ∈ (𝜌𝜉 , 𝜌𝜉) = 𝐶,     𝑉1 ,  𝑉2 ∈ ℋ𝜉 . 
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Due to the estimate  | 𝑉1 ,  𝑉2 | ≤ 𝑑(𝜉)‖ 𝑉1 ‖ ‖ 𝑉2 ‖, there is a nonsingular positive operator 

𝑎𝜉 ∈ 𝐵(ℋ𝜉) satisfying 

( 𝑉1 ,  𝑉2) = 〈𝑎𝜉  𝑉1 | 𝑉2 〉. 

Let { 𝑉𝑖 }𝑖 ⊂ ℋ𝜉  be an orthonormal basis of  ℋ𝜉. Since  ∑  𝑉𝑖 𝑉𝑖
∗ = 𝑠(ℋ𝜉) ≤ 1, we get 

𝑇𝑟(𝑎𝜉) =∑( 𝑉𝑖  ,  𝑉𝑖 ) 𝑑(𝜉)𝐸(𝑠(ℋ𝜉)) ≤ 𝑑(𝜉) 

So 𝑎𝜉  is a trace class operator. By simple computation one can show the following: 

〈𝑐𝜉  ( 𝑉1 )|𝑐𝜉  ( 𝑉2 )〉 = ( 𝑉2 ,  𝑉1) = 〈𝑎𝜉  𝑉2 | 𝑉1 〉, 

〈𝑐�̅�  ( �̅�1 )|𝑐�̅�  ( �̅�2 )〉 = ( �̅�2 ,  �̅�1) = 〈�̅�𝜉  �̅�2 | �̅�1 〉. 

Thus we get 𝑐𝜉
∗ 𝑐𝜉 = 𝑎𝜉  , 𝑐�̅�

∗ 𝑐�̅� = �̅�𝜉 . This shows that 𝑎𝜉  is an invertible trace class 

operator, that implies  𝑛𝜉 = dim  ℋ𝜉 < ∞. Thanks to  𝑐�̅� = 𝑐𝜉
−1 , we obtain 

𝑇𝑟(�̅�𝜉) = 𝑇𝑟(𝑐�̅�
∗, 𝑐�̅�) = 𝑇𝑟(𝑐�̅�  , 𝑐�̅�

∗) = 𝑇𝑟(𝑎𝜉
−1). 

This implies 
1

𝑑(𝜉)
≤ 𝑎𝜉 ≤ 𝑑(𝜉),           𝑛𝜉 ≤ 𝑑(𝜉)2.                

If 𝑎𝜉 = 1 (this is the case if, for instance, 𝐼𝑛𝑑 𝐸 < ∞), then 𝑛𝜉 ≤ 𝑑(𝜉). On the other hand 

if  𝑛𝜉 = 𝑑(𝜉), then it is easy to show that 𝑎𝜉 = 1 and 𝐸(𝑠(ℋ𝜉)) = 1, i.e., 𝑠(ℋ𝜉) = 1. 

Theorem (4.1.14)[219]: Let 𝑀 ⊃ 𝑁 be an irreducible inclusion of infinite factors with 

𝐸 ∈ ℰ(𝑀,𝑁), and 𝑀1 ∩ �́� = 𝐴⨁𝐵1⨁𝐵2⨁𝐶 the decomposition described in Proposition 

(4.1.7). Then with the same notation as above, the following hold: 

         (i)  𝐴 = ⨁𝜉∈Ξ 𝐴𝜉   , where  𝐴𝜉 = ℋ𝜉
∗ 𝑒𝑁 ℋ𝜉 ≃ 𝑀(𝑛𝜉 , 𝐶). 

     (ii) 𝐵1 and 𝐵2 are of type 𝐼.  

     (iii) For  𝑉1 ,  𝑉2  ∈ ℋ𝜉  , 𝜎𝑡
𝐸Ο�̂�  (𝑉1

∗  𝑒𝑁 𝑉2) = 𝑉1
∗ 𝑎𝜉

−𝑖𝑡 𝑒𝑁𝑎𝜉
𝑖𝑡 𝑉2 . 

     (iv) For  𝑉1 ,  𝑉2  ∈ ℋ𝜉  , 𝑗(𝑉1
∗  𝑒𝑁 𝑉2) = 𝑐𝜉(𝑎𝜉

1 2⁄   𝑉2)
∗  𝑒𝑁𝑐𝜉(𝑎𝜉

1 2⁄   𝑉1). 

Proof: (i) Thanks to Proposition (4.1.7), 𝐴 is direct sum of type I factors. By using the 

one-to-one correspondence as described just before Lemma (4.1.12), we can parametrize 

the direct summands of 𝐴  by 𝛯  such that 𝐴 = ⨁𝐴𝜉  and  𝐴𝜉 ⊃ ℋ𝜉
∗ 𝑒𝑁 ℋ𝜉  hold. So it 

suffices to show that 𝐴𝜉  is of type  I𝑛𝜉 . If  𝐴𝜉  is finite, then 𝐴𝜉 ⊂ 𝑚�̂�_ because �̂�|
𝐴𝜉

 is 

semifinite. So we can take matrix units  {𝑒𝑖  , 𝑗}1≤𝑖,𝑗  of 𝐴𝜉  (with ∑𝑒𝑖,𝑖  = I𝐴𝜉) such that  

�̂� (𝑒𝑖,𝑗) = 𝑏𝑖𝛿𝑖,𝑗  . We may assume that there is a partial isometry 𝑊1 ∈ 𝑀1  satisfying 

𝑊1𝑊1
∗ = 𝑒𝑁 ,𝑊1

∗𝑊1 = 𝑒1,1  and 𝑊1𝑥𝑊1
∗ = 𝑒𝑁𝜌𝜉(𝑥)  for 𝑥 ∈ 𝑁 . We set  𝑊𝑖 = 𝑊1 𝑒1,𝑖  . 

Then there exists 𝑉𝑖 ∈ 𝑀 such that 𝑊𝑖 = √𝑏𝑖  𝑒𝑁𝑉𝑖  . {𝑉𝑖} is an orthonormal basis of ℋ𝜉  . 

Indeed, it is easy to show that it is an  

orthonormal system. Suppose 𝑉 ∈ ℋ𝜉  is perpendicular to  {𝑉𝑖}. Since 𝑒𝑖,𝑗 = 𝑊𝑖
∗𝑒𝑁𝑊𝑗 =

√𝑏𝑖𝑏𝑗𝑉𝑖
∗𝑒𝑁𝑉𝑗 ,    𝑉

∗𝑒𝑁𝑉  is an element in 𝐴𝜉  satisfying  𝑒𝑖,𝑗𝑉
∗𝑒𝑁𝑉 = 0 . This means 

𝑉∗𝑒𝑁𝑉 = 0 and 0 = �̂� (𝑉∗𝑒𝑁𝑉) = 𝑉∗𝑉 , i.e., 𝑉 = 0. So {𝑉𝑖} is an orthonormal basis of  

ℋ𝜉 and the rank of 𝐴𝜉  coincides With  𝑛𝜉  . Now suppose 𝐴𝜉  is of type  I∞. Since �̂�|
𝐴𝜉

 is 

semifinite, there is a matrix unit {𝑒𝑖,𝑗   }1≤𝑖,𝑗<∞  (not necessarily ∑𝑒𝑖,𝑖 = 1) , such that  

�̂�(𝑒𝑖,𝑖) < ∞, �̂�(𝑒𝑖,𝑗) = 0  for 𝑖 ≠ 𝑗 . Then we can define 𝑊𝑖  and 𝑉𝑖  as before. However,  

{𝑉𝑖  }1≤𝑖<∞ is an orthonormal system of  ℋ𝜉 , that contradicts the fact dimℋ𝜉 = 𝑛𝑖 < ∞. 
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     (ii) Since �̂� |
2
𝐵1

is semifinite and (𝐵1) = 𝐵2 , it suffices to show that 𝑝𝐵1 𝑝 is of type I 

for every 𝑝 ∈ 𝐵1  with �̂�( 𝑝) < ∞_. Let 𝑊 ∈ 𝑀1  be a partial isometry with 𝑊𝑊∗ =
𝑒𝑁 ,𝑊

∗𝑊 = 𝑝 , and define 𝜌 ∈ 𝐸𝑛𝑑(𝑀)  by 𝑊𝑥𝑊∗ = 𝑒𝑁𝜌(𝑥), 𝑥 ∈ 𝑁  as before. there 

exists an isometry 𝑉 ∈ ℋ𝜌 satisfying 𝑊 = √𝑐   𝑒𝑁𝑉, 𝑐 = �̂�( 𝑝). So 𝐸(𝑉𝑉∗) = 1 𝑐⁄  and we 

get 1 𝑐⁄ ≤ 𝐸(𝑠(ℋ𝜌)) ≤ 1. Let 𝑃 = 𝑁 ∩ 𝜌(𝑁)     ́ . Then in the same way as in the proof of  

Lemma (4.1.12), we can show that 𝑝 𝐵1 𝑝 is isomorphic to 𝑃. So we show that 𝑃 is of type 

I. Thanks to ℋ𝜌 = ℋ𝜌 , we can define a normal representation of  𝑃 on ℋ𝜌 by 𝜋(𝑥) 𝑉 =

𝑥𝑉, 𝑥 ∈ 𝑃, 𝑉 ∈ ℋ𝜌 . Note that 1 𝑐⁄ ≤ 𝐸(𝑠(ℋ𝜌)) implies that 𝜋 is faithful. Thus to prove 

that 𝑃 is of type I, we show that there exists  a normal conditional expectation from 𝐵(ℋ𝜌) 

to 𝜋(𝑃). For 𝜔 ∈ 𝑃∗ we can define a bilinear form on ℋ𝜌  by 𝜔(𝐸(𝑉1𝑉2
∗)), 𝑉1 , 𝑉2  ∈ ℋ𝜌 

with an estimate  |𝜔(𝐸(𝑉1𝑉2
∗))| ≤ ‖𝜔‖ ‖𝑉1‖ ‖𝑉2‖ . So there exists a unique bounded 

operator ℎ𝜔 satisfying 

𝜔(𝐸(𝑉1𝑉2
∗)) = 〈ℎ𝜔𝑉1 | 𝑉2〉. 

For 𝑥, 𝑦 ∈ 𝑃, 𝜔 ∈ 𝑃∗, ℎ𝜔 satisfies  ℎ𝑥.𝜔.𝑦 = 𝜋(𝑥) ℎ𝜔𝜋( 𝑦). Indeed, by definition we get 

𝑥 ∙ 𝜔 ∙ 𝑦(𝐸(𝑉1𝑉2
∗)) = 𝜔(𝑦𝐸(𝑉1𝑉2

∗)𝑥) = 𝜔(𝐸(𝜋(𝑦)𝑉1(𝜋(𝑥)
∗𝑉2)

∗)) 

                                      = 〈ℎ𝜔𝜋 (𝑦)𝑉1|𝜋(𝑥)
∗𝑉2〉 = 〈𝜋 (𝑥)ℎ𝜔𝜋(𝑦)𝑉1|𝑉2〉. 

If 𝜔 ∈ 𝑃∗  is positive, we have 

𝑇𝑟(ℎ𝜔) = 𝜔 (𝐸 (𝑠(ℋ𝜌))) ≤ 𝜔(1) = ‖𝜔‖, 

so by using polar decomposition of linear functionals and the fact just proved above, we 

get 

‖ℎ𝜔‖1 ≔ 𝑇𝑟(|ℎ𝜔|) = 𝑇𝑟(ℎ|𝜔|) ≤ ‖(|𝜔|)‖ = ‖𝜔‖,      𝜔 ∈ 𝑃∗. 

Hence we can define a bounded order preserving linear map 𝜃: 𝑃∗ → 𝐵(ℋ𝜌)∗  by  

𝜃(𝜔)(𝑎) = 𝑇𝑟(ℎ𝜔𝑎), 𝑎 ∈ 𝐵(ℋ𝜌) . Note that 𝜃  satisfies (𝑥 , 𝜔 , 𝑦) = 𝜋(𝑥) ∙ 𝜃(𝜔) ∙

𝜋(𝑦), 𝑥, 𝑦 ∈ 𝑃 . Let 𝐹0 be the transposition of  𝜃. Then 𝐹0 is a positive normal map 𝐹0 ∶

 𝐵(ℋ𝜌) → 𝑃  satisfying 𝐹0(𝜋(𝑥)𝑎𝜋( 𝑦)) = 𝑥𝐹0(𝑎)𝑦, 𝑥, 𝑦 ∈ 𝑃, 𝑎 ∈ 𝐵(ℋ𝜌)  . Note that 

𝐹0(1) = 𝐸(𝑠(ℋ𝜌)) is a central element of 𝑃 because us (ℋ𝜌) 𝑢
∗ = 𝑠(ℋ𝜌) holds for every 

unitary 𝑢 ∈ 𝑃 . Since 𝐸(𝑠(ℋ𝜌))  is invertible, we can define a normal conditional 

expectation 𝐹: 𝐵(ℋ𝜌) → 𝜋(𝑃) by 

𝐹(𝑎) = 𝜋(𝐸(𝑠(ℋ𝜌))
−1 2⁄

𝐹0(𝑎)𝐸 (𝑠(ℋ𝜌))
−1 2⁄

),        𝑎 ∈ 𝐵(ℋ𝜌). 

Therefore, 𝑃 is of type I. 

       (iii)  By a simple argument one can show that unitary perturbation of 𝜌𝜉  does not have 

any effect on the formulae in (iii) and (iv). So thanks to Lemma (4.1.11), we assume that 

there is a dominant weight 𝜓 on 𝑁 satisfying 𝜓 ∙ 𝜌𝜉 = 𝑑(𝜉) 𝜓, 𝜓 ∙ 𝐸𝜉 = 𝜓 for every 𝜓 ∈

𝛯. Then 𝜎𝑡
𝜓

 commute with 𝜌𝜉  and we  get 𝜎𝑡
𝜓.𝐸

(ℋ𝜉) = ℋ𝜉 . So we show 𝜎𝑡
𝜓.𝐸

 (𝑉) = 𝑎𝜉
𝑖𝑡𝑉 

for ∈ ℋ𝜉 , that implies the statement. Indeed, since dimℋ𝜉 < ∞, every element in ℋ𝜉 is 

analytic for { 𝜎𝑡
𝜓.𝐸

}. Let 𝑉 ∈ ℋ𝜉  and 𝑥 ∈ 𝑚𝜓 . Then by using the KMS condition, we 

obtain 

𝜓 ∙ 𝐸(𝑉𝑥𝑉∗) = 𝜓 ∙ 𝐸 (𝑥𝑉∗𝜎−𝑖
𝜓.𝐸(𝑉)) = 〈𝜎−𝑖

𝜓.𝐸(𝑉)|𝑉〉𝜓(𝑥). 

On the other hand, from 𝐸(𝑉𝑥𝑉∗) = 𝐸(𝜌𝜉(𝑥) 𝑉𝑉
∗) = (1/𝑑(𝜉))(𝑉, 𝑉) 𝜌𝜉(𝑥) we get 
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𝜓 ∙ 𝐸(𝑉𝑥𝑉∗) =
1

𝑑(𝜉)
(𝑉, 𝑉)𝜓 ∙ 𝜌𝜉(𝑥) = 〈𝑎𝜉𝑉|𝑉〉 𝜓(𝑥) 

So we obtain 𝜎𝑡
𝜓.𝐸

 (𝑉) = 𝑎𝜉
𝑖𝑡.𝑉. 

     (iv)  Let 𝑧𝜉  be the unit of  𝐴𝜉  . Then by using the correspondence between sub-

bimodules of  𝐿2𝑁
2 (𝑀)𝑁 and subsectors of  𝛾𝑁, we get 𝑗(𝐴𝜉) = 𝐴�̅�  and  𝑗(𝑧𝜉) = 𝑧�̅� . Let 𝜓 

be as before. Then due to (i), it is easy to show that  ℋ𝜉
∗ Λ𝜓.𝐸  (𝑛𝜓 ∩ 𝑛𝜓

∗ ) is dense in 

𝑧𝜉𝐻𝜓 𝐸. Since both 𝑗(𝑉1
∗𝑒𝑁𝑉2) and 𝑐𝜉(𝑎𝜉

1 2⁄ 𝑉2)
∗ 𝑒𝑁𝑐𝜉(𝑎𝜉

1 2⁄  𝑉1) belong to 𝐴�̅�  , it suffices to 

show the equality on ℋ�̅�
∗Λ𝜓.𝐸  (𝑛𝜓 ∩ 𝑛𝜓

∗ ). Let 𝑎 ∈ 𝑛𝜓 ∩ 𝑛𝜓
∗  and  𝑋 ∈ ℋ�̅� . Since 𝑉1 , 𝑉2 are 

analytic elements for { 𝜎𝑡
𝜓.𝐸

}, we get 

𝑗(𝑉1
∗𝑒𝑁𝑉2)Λ𝜓.𝐸(𝑋

∗𝑎) = 𝐽𝑀𝑉2
∗𝐽𝑀𝑒𝑁𝐽𝑀𝑉1 𝐽𝑀Λ𝜓.𝐸(𝑋

∗𝑎)                                                    

 = 𝐽𝑀𝑉2
∗𝐽𝑀 𝑒𝑁 𝐽𝑀 Λ𝜓.𝐸(𝑋

∗𝑎𝜎𝑖 2⁄
𝜓.𝐸

(𝑉1)
∗) 

    = 𝐽𝑀𝑉2
∗𝐽𝑀 𝑒𝑁 Λ𝜓.𝐸(𝑋

∗𝜎𝑖 2⁄
𝜓.𝐸(𝑉1)

∗𝜌𝜉(𝑎)) 

         = 𝐽𝑀𝑉2
∗𝐽𝑀 𝑒𝑁 Λ𝜓.𝐸(𝐸(𝑋

∗𝜎𝑖 2⁄
𝜓.𝐸(𝑉1)

∗𝜌𝜉(𝑎)) 

                  = Λ𝜓.𝐸(𝐸(𝑋
∗𝜎𝑖 2⁄

𝜓.𝐸(𝑉1)
∗𝜌𝜉(𝑎)𝜎𝑖 2⁄

𝜓.𝐸(𝑉2))              

  = Λ𝜓.𝐸 (𝐸(𝑋
∗𝜎𝑖 2⁄

𝜓.𝐸(𝑉1)
∗)𝜎−𝑖 2⁄

𝜓.𝐸 (𝑉2)𝑎). 

By using  𝑋 = 𝑐𝜉 (𝑐�̅�(𝑋)) = √𝑑(𝜉) 𝑐�̅�(𝑋)
∗ �̅�𝜉  , we get 

𝑗(𝑉1
∗𝑒𝑁𝑉2)Λ𝜓.𝐸(𝑋

∗𝑎) = √𝑑(𝜉)  Λ𝜓.𝐸 (�̅�𝜉
∗𝐸(𝑐�̅�(𝑋)𝜎𝑖 2⁄

𝜓.𝐸(𝑉1)
∗)𝜎−𝑖 2⁄

𝜓.𝐸 (𝑉2)𝑎)                    

                  =
1

√𝑑(𝜉)
(𝑐�̅�(𝑋), 𝜎𝑖 2⁄

𝜓.𝐸(𝑉1))  Λ𝜓.𝐸(�̅�𝜉
∗𝜎−𝑖 2⁄

𝜓.𝐸 (𝑉2)𝑎) 

                     =
1

𝑑(𝜉)
(𝑐�̅�(𝑋), 𝑎𝜉

−1 2⁄ 𝑉1)   Λ𝜓.𝐸 (𝑐𝜉 (𝑎𝜉
−1 2⁄ 𝑉2)

∗
𝑎). 

On the other hand, we have 

𝑐𝜉  (𝑎𝜉
1 2⁄ 𝑉2)

∗𝑒𝑁𝑐𝜉(𝑎𝜉
1 2⁄ 𝑉1)  Λ𝜓.𝐸(𝑋

∗𝑎)                                                     

=
1

𝑑(𝜉)
(𝑐𝜉(𝑎𝜉

1 2⁄ 𝑉1), 𝑋)  Λ𝜓.𝐸 (𝑐𝜉 (𝑎𝜉
1 2⁄ 𝑉2)

∗
𝑎), 

so it suffices to show (𝑐�̅�(𝑋), 𝑎𝜉
−1 2⁄ 𝑉1 = (𝑐𝜉(𝑎𝜉

1 2⁄ 𝑉1) , 𝑋). Actually, 

                 (𝑐𝜉(𝑎𝜉
1 2⁄ 𝑉1), 𝑋) = 〈𝑐�̅�(𝑋) |𝑎𝜉

1 2⁄ 𝑉1〉 = 〈𝑐�̅�(𝑋), 𝑎𝜉
−1 2⁄ 𝑉1 〉.                                 

Remark (4.1.15) [219]:  Let 𝑉1 , 𝑉2 ∈ ℋ𝜉 . Then we get 

 

�̂�(𝑉1
∗𝑒𝑁𝑉2) = 〈𝑉2|𝑉1〉.                                            

�̂�(𝑗(𝑉1
∗𝑒𝑁𝑉2)) = 〈𝑐𝜉(𝑎𝜉

1 2⁄ 𝑉1) |𝑐𝜉(𝑎𝜉
1 2⁄ 𝑉2)〉                 

                        = (𝑎𝜉
1 2⁄ 𝑉2, 𝑎𝜉

1 2⁄ 𝑉1) = 〈 𝑎𝜉
2𝑉2)|𝑉1〉. 

So �̂� ∙ 𝑗|𝐴 = �̂�|
𝐴

 if and only if  𝑎𝜉 = 1 for all 𝜉 ∈ Ξ . It is also easy to show that �̂�|
𝐴

 is a 

trace if and only if 𝑎𝜉  is a scalar for all  𝜉 ∈ Ξ. 

     There is no known example which Violates  𝑎𝜉 = 1. However, the following example 

shows that �̂� ∙ 𝑗|𝑀1∩𝑁
′ = �̂�|

𝑀1∩𝑁
′ does not hold in.  
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Example (4.1.16)[219]: (i) Let 𝐺 be a discrete group and 𝐻 a subgroup, and let 𝛼 be an 

outer action of 𝐺  on a factor 𝐿 . We set 𝑁 = 𝐿 ×𝛼 𝐻,𝑀 = 𝐿 ×𝛼 𝐺.  Then 𝑀 ⊃ 𝑁  is an 

irreducible inclusion of factors with a unique conditional expectation 𝐸. We identify 𝑀 

and 𝑁  with (𝐿 ⊗ 𝐶) × 𝐺  and (L⊗C)  ×H acting on 𝐿2(𝐿) ⊗ ℓ2(𝐺/𝐻)⊗ ℓ2(𝐺)  in an 

obvious sense. Let 𝑓 be the ortho- gonal projection onto 𝐶𝛿�̇� ⊂ ℓ2(𝐺/𝐻), where 𝛿 stands 

for the 𝛿 -function and �̇� the class of the neutral element e, and 𝐹0 = 𝑖𝑑 ⊗ 𝑇𝑟 ∈ 𝒫(𝐿⊗
ℓ∞(𝐺/𝐻), 𝐿 ⊗ 𝐶). Then we can identify 𝑀1 with (𝐿 ⊗ ℓ∞(𝐺/𝐻) × 𝐺 where the action of 

𝐺 on ℓ∞(𝐺/𝐻) is the translation, 𝑒𝑁 with 1⊗ 𝑓 ⊗ 1 and �̂� with the natural extension of 

𝐹0 to (𝐿 ⊗ ℓ∞(𝐺/𝐻) × 𝐺. So under this 

identification we get 𝑀1 ∩ �́� = ℓ∞(𝐻\𝐺/𝐻) . For �̇� ∈ 𝐺/𝐻 , we denote by 𝑝�̇� ∈

ℓ∞(𝐻\𝐺/𝐻) the projection corresponding to the 𝐻-orbit of �̇�. Then �̂� ( 𝑝�̇�) is exactly the 

length of the orbit, i.e., �̂� ( 𝑝�̇�)  = [𝐻 ∶  𝐻𝑔]  where 𝐻𝑔 ∶= 𝑔𝐻𝑔−1 ∩ 𝐻 ∙ 𝑗(𝑝�̇�)  can be 

computed by using bimodules as in [244], and we have 𝑗(𝑝�̇�) = 𝑝�̇�−1. So for example if 

𝑔−1𝐻𝑔 ⊂ 𝐻  and 𝑔−1𝐻𝑔 ≠ 𝐻 , then �̂� ( 𝑝�̇�) = 1  although �̂� (𝑗 𝑝�̇�)) ≠ 1 . Let 𝐺  be the 

group generated by the finite permutations of 𝑍 and g where 𝑔 is the translation of 𝑍, and 

𝐻 the finite permutations of  𝑁 ∪ {0}. Then 𝑔𝐻𝑔−1 is the finite permutation of 𝑁 and we 

get 𝑔𝐻𝑔−1 ⊂ 𝐻, [𝐻 ∶  𝐻𝑔] = ∞ . So we obtain �̂� ( 𝑝�̇�) = ∞ , �̂� ( 𝑝�̇�−1) = 1.  This means 

𝐵𝑖 ≠ {0}, 𝑖 = 1, 2 in this example. 

      (ii) Let 𝐺 ⊃ 𝐻 be a pair of discrete groups with the following property: for every 𝑔 ≠
𝑒 ∈ 𝐺  {ℎ𝑔ℎ−1;  ℎ ∈ 𝐻}  is an infinite set. Let 𝑀:= 𝐿(𝐺)  be the group von Neumann 

algebra of 𝐺 and 𝑁 ∶= 𝐿(𝐻) the subfactor of 𝑀 generated by 𝐻. Then in exactly the same 

way as one proves that 𝑀 is a factor, one can show 𝑀 ∩ �́� = 𝐶. Although this example 

looks similar to the previous one, these two have essentially different natures. As before 

we can identify 𝑁,𝑀  and 𝑀1  with 𝐶 × 𝐻, 𝐶 × 𝐺  and ℓ∞(𝐺/𝐻) × 𝐺   acting on ℓ∞(𝐺/
𝐻)⊗ ℓ∞(𝐺)   . However, we can conclude only ℓ∞(𝐻\𝐺/𝐻) ⊂ 𝑀1 ∩ �́�  because the 

action of 𝐺 on 𝐺/𝐻 is not necessarily free. In fact the equality does not hold in general. 

For example, let 𝐺 = 𝐹3  be the free group generated by  𝑔1 , 𝑔2 , 𝑔3  and 𝐻 = 𝐹2 =
〈𝑔1 , 𝑔2〉 . Then the 𝑁 −𝑁  bimodule  𝑋𝑁𝑁

2  generated by 𝛿𝑔3 ∈ ℓ2 (𝐹3)  is equivalent to 

ℓ2𝑁
2 (𝐹2) ⊗ ℓ2(𝐹2)𝑁 where ⊗ is the usual tensor product and the left and the right actions 

act on each tensor component respectively. So 𝐸𝑛𝑑( 𝑋𝑁𝑁
2 ) ≃ 𝑁𝑜𝑝 ⊗𝑁. This means that 

𝑀1 ∩ �́� has a type II summand. Actually, a little more effort shows that 𝐴 = 𝐶𝑒𝑁 , 𝐵1 =
𝐵2 = 0, and 𝐶 is of type II where  𝐴, 𝐵1 , 𝐵2 , and 𝐶 are as in Proposition (4.1.7). 

Definition (4.1.17)[219]: An inclusion of factors is called discrete if and only if ℰ(𝑀,𝑁) 

is nonempty and  �̂�|
𝑀1∩𝑁

′ is semifinite for some (and equivalently all) 𝐸 ∈ ℰ(𝑀,𝑁). 

     In what follows we assume that 𝑀 ⊃ 𝑁 is an irreducible discrete inclusion of infinite 

factors. Note that discreteness is equivalent to 𝑀1 ∩ �́�  = 𝐴 in the decomposition given in 

Proposition (4.1.7), and to [𝜆|𝑁] = ⨁𝑛𝜉[𝜌𝜉], 𝑑(𝜉) < ∞. 

    For each 𝜉 ∈ Ξ  choose an orthogonal basis {𝑉(𝜉)𝑖}
𝑖=1

𝑛𝜉
 consisting of eigenvectors of 𝑎𝜉  

belonging to 𝑎𝜉,𝑖  . For 𝑥 ∈ 𝑀 we define the ``Fourier coefficient'' 𝑥(𝜉)𝑖 by 

 𝑥(𝜉)𝑖 =
𝑑(𝜉)

𝑎𝜉,𝑖
𝐸(𝑉(𝜉)𝑖𝑥).              

Then 𝑥 has the following formal expansion: 
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𝑥 =∑∑𝑉(𝜉)𝑖
∗𝑥(𝜉)𝑖

𝑛𝜉

𝑖=1𝜉∈Ξ

.                  

Although the above sum does not converge even in weak topology in general, we can give 

justification of the expansion as follows. We define 𝑝𝜉,𝑖 ∈ 𝑀1 ∩ �́� by 

𝑝𝜉,𝑖 =
𝑑(𝜉)

𝑎𝜉,𝑖
𝑉(𝜉)𝑖

∗𝑒𝑁𝑉(𝜉)𝑖 .                      

Then 𝑎𝜉,𝑖 is a projection with  𝑧𝜉 = ∑ 𝑝𝜉,𝑖
𝑛𝜉
𝑖=1

 , where 𝑧𝜉 is the unit of 𝐴𝜉 . By discreteness 

assumption we have  ∑ 𝑧𝜉𝜉∈Ξ = 1 . Let 𝜔 be a faithful normal state on 𝑁 and set 𝜑 = 𝜔 ∙

 𝐸. Since 𝑝𝜉,𝑖Λ𝜑(𝑥) = Λ𝜑(𝑉(𝜉)𝑖
∗ 𝑥(𝜉)𝑖) and Λ𝜑(𝑥) = ∑ 𝑝𝜉,𝑖𝜉,𝑖 , Λ𝜑(𝑥), the sum converges 

in Hilbert space topology. Note that  {𝑥(𝜉)𝑖} uniquely determines 𝑥 while it is difficult to 

tell when a series  {𝑥(𝜉)𝑖} is actually the Fourier coefficient of some element 𝑥 ∈ 𝑀. 

     Although the following lemma might sound trivial, we need to prove it because the 

expansion does not make sense in any decent operator algebra topology. 

Lemma (4.1.18)[219]: Under the above assumption, assume that there is an assignment of 

subspaces 𝒦𝜉 ⊂ ℋ𝜉  satisfying the following conditions. 

  (i)  𝑎𝜉𝒦𝜉 ⊂ 𝒦𝜉 .  

 (ii)  𝒦𝜉
∗ ⊂ 𝑁 𝒦�̅� . 

(iii) Let 𝜂, ∈ Ξ  and set Ξ𝜂,𝜁 = {𝜉 ∈ Ξ; 𝜌𝜂𝜌𝜁 ≻ 𝜌𝜁}. Then,  𝒦𝜂𝒦𝜁 ⊂ ∑ 𝑁𝜉∈Ξ𝜂,𝜁 𝒦𝜉  .   

Let 𝐿  be the 𝑣𝑜𝑛  Neumann algebra generated by 𝑁  and {𝒦𝜉}𝜉∈Ξ
.  Then there exists 

𝐸𝐿ℰ (𝑀, 𝐿), and 𝐿 is characterized by  

𝐿 = {𝑥 ∈ 𝑀;𝐸 (𝒦
1

𝜉
𝑥) = 0, 𝜉 ∈ Ξ },                              

Where  𝒦1

𝜉
 is the orthogonal complement of 𝒦𝜉 with respect to 〈 | 〉. 

Proof: Let 𝐿0  be the direct sum of 𝒦𝜉
∗𝑁 . Thanks to (ii) and (iii), 𝐿0  is the *-algebra 

generated by 𝑁 and {𝒦𝜉}, which is dense in 𝐿. Let 𝐿1 = {𝑥 ∈ 𝑀;  𝐸(𝒦1

𝜉
𝑥) = 0, 𝜉 ∈ Ξ} and 

𝐾 the closure of 𝛬𝜑(𝐿) in 𝐻𝜑. First, we claim 𝐿1 = [𝑥 ∈ 𝑀; 𝛬𝜑(𝑥) ∈  𝐾]. Indeed, due to 

(i) we may arrange {𝑉(𝜉)𝑖} such that {𝑉(𝜉)𝑖}𝑖=1
𝑚𝜉

 is an orthonormal basis of  𝒦𝜉 . Then we 

get  𝐾 = ⨁𝜉∈Ξ ⨁𝑖=1

𝑚𝜉  𝐻𝜉,𝑖 where 𝐻𝜉,𝑖 = 𝑝𝜉,𝑖  𝐻𝜑 ,  and so 

𝐿1 = {𝑥 ∈ 𝑀; 𝑝𝜉,𝑖  𝛬𝜑(𝑥) = 0, 𝑖 > 𝑚𝜉  }. 

Thus we get the claim. Secondly, we show that there exists 𝐸𝐿 ∈ ℰ(𝑀, 𝐿) with  𝜑 ∙ 𝐸𝐿 = 𝜑. 
Thanks to the Takesaki theorem on conditional expectations [𝑆] , it suffices to prove 

𝜎𝑡
𝜑
(𝐿) = 𝐿, or in our case  𝜎𝑡

𝜑
(𝒦𝜉) ⊂ 𝑁𝒦𝜉. As before we may and do assume that there is 

a dominant weight 𝜓  on 𝑁  satisfying   𝜓 ∙ 𝐸𝜉 = 𝜓,𝜓 ∙  𝜌𝜉 = 𝑑(𝜉) 𝜓,  so we have  

𝜎𝑡
𝜓.𝐸

 (𝑉) = 𝑎𝜉
𝑖𝑡𝑉  for 𝑉 ∈ ℋ𝜉 . We set  𝑢𝑡

𝜉
= [𝐷𝜔 ∶ 𝐷𝜓]𝑡 𝜌𝜉\! ([𝐷𝜔 ∶ 𝐷𝜓]𝑡

∗) ∈ 𝑁 , where 

[𝐷𝜔 ∶ 𝐷𝜓]𝑡 is the Connes cocycle derivative. Then we get 

𝜎𝑡
𝜑
 (𝑉) = 𝐴𝑑([𝐷𝜔 ∙ 𝐸 ∶ 𝐷𝜓 ∙ 𝐸]𝑡) ∙ 𝜎𝑡

𝜓.𝐸
(𝑉) 

                     = 𝐴𝑑([𝐷𝜔:𝐷𝜓 ∙ 𝐸]𝑡)(𝑎𝜉
𝑖𝑡𝑉) = 𝑢𝑖

𝜉
𝑎𝜉
𝑖𝑡𝑉, 

so due to (i) we get 𝜎𝑡
𝜑
(𝒦𝜉) ⊂ 𝑁𝒦𝜉 . Now let 𝑒𝐿  be the Jones projection for 𝐸𝐿 , i.e., 

𝑒𝐿𝛬𝜑(𝑥) = 𝛬𝜑(𝐸𝐿(𝑥)), 𝑥 ∈ 𝑀 . Then 𝑒𝐿  is the orthogonal projection onto 𝐾 . Since 𝐿  is 

characterized by 𝐿 = {𝑥 ∈ 𝑀; 𝑒𝐿𝛬𝜑(𝑥) = 𝛬𝜑(𝑥)}, we get  𝐿 = 𝐿1 .                                                            
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       The following is the main technical result. 

Theorem (4.1.19)[219]: Let 𝑀 ⊃ 𝑁 be an irreducible inclusion of infinite factors with 

𝐸 ∈ ℰ(𝑀,𝑁). We assume that the inclusion is of discrete type and 𝜎𝑡
𝐸.  �̂�  is trivial. Let 𝐿 be 

an intermediate subfactor and 𝒦𝜉 = 𝐿 ∩ℋ𝜉  . Then {𝒦𝜉}  satisfies the assumption of 

Lemma (4.1.18) and 𝐿  is generated by 𝑁  and {𝒦𝜉} .Consequently, there exists  𝐸𝐿 ∈

ℰ(𝑀,𝑁). 
Proof: First, we show that the statement can be reduced to the case where 𝑁 is of type III. 

Suppose that the statement holds for type III factors. Then we apply the statement to �̂�  =
𝑀⨂𝑃, �̂�  = 𝑁⨂𝑃 and �̂� = 𝐿⨂𝑃 where 𝑃 is a type III factor, and get that �̂� is generated 

by �̂�  and (ℋ𝜉⨂𝐶) ∩ �̂� = 𝒦𝜉⨂𝐶. {𝒦𝜉}  satisfies the assumption of Lemma (4.1.18) 

because so does {[𝒦𝜉⨂]} by assumption. Thanks to Lemma (4.1.18)we get 

�̂� = {𝑥 ∈ 𝑀⨂𝑃; (𝐸⨂𝑖𝑑)((𝒦
1

𝜉
⨂1)𝑥) = 0, 𝜉 ∈ Ξ}, 

and so we obtain 

𝐿 = {𝑥 ∈ 𝑀;𝐸(𝒦
1

𝜉
𝑥)𝑥 = 0, 𝜉 ∈ Ξ}. 

Therefore, the statement holds for 𝐿 as well. Now, we assume that 𝑁 is of type III. Let 

{𝑉(𝜉)𝑖}  be as in the proof of Lemma (4.1.18). Thanks to ℋ𝜉
∗ ⊂ 𝑁ℋ�̂� ,ℋ𝜂ℋ𝜁 ⊂

∑ 𝑁ℋ𝜉𝜉∈Ξ𝜂.𝜁   and the Fourier decomposition, to prove that {𝒦𝜉} satisfies the assumption 

of Lemma (4.1.18)it suffices to show 𝑥(𝜉)𝑖 = 0  for 𝑥 ∈ 𝐿, 𝜉 ∈ Ξ , 𝑖 > 𝑚𝜉  , which is 

actually enough for the statement due to Lemma (4.1.18). 

      Suppose the converse; there exists 𝑥 ∈ 𝐿 such that 𝑥(𝜉)𝑖 ≠ 0 for some 𝜉 ∈ Ξ and some 

, 𝑖 > 𝑚𝜉 . Let 𝑦 = 𝑎𝑥𝑏, 𝑎, 𝑏 ∈ 𝑁. Then 𝐸𝜉( 𝑦(𝜉)𝑖) = 𝜌𝜉(𝑎) 𝐸𝜉( 𝑥(𝜉)𝑖𝑏) since 𝑁 is a type 

III factor, we can choose 𝑎, 𝑏  such that 𝐸𝜉( 𝑦(𝜉)𝑖) = 1, so we assume  𝐸𝜉( 𝑥(𝜉)𝑖) = 1 

from the beginning. Let 𝑅 be a simple injective subfactor of 𝑁 and 𝑈(𝑅) the unitary group 

of 𝑅. We set ℭ = 𝑐𝑜𝑛𝜐{𝑢𝑥𝜌𝜉(𝑢
∗);  𝑢 ∈  𝑈(𝑅)}

𝑤̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
and define an action 𝜃 of 𝑈(𝑅) on ℭ by 

𝜃𝑢(𝑤) = 𝑢𝑤𝜌𝜉(𝑢
∗), 𝑢 ∈ 𝑈(𝑅),𝑤 ∈ ℭ . We claim that the set of fixed points of ℭ under 𝜃, 

which is the same as {𝑤 ∈ ℭ;  𝑎𝑤 = 𝑤𝜌𝜉(𝑎), 𝑎 ∈ 𝑅} , is nonempty. Indeed, since 𝑅  is 

AFD, there exists an increasing sequence of finite dimensional unital von Neumann-

subalgebras {𝑅𝑛}𝑛=1
∞  generating 𝑅. Let ℭ𝑛 be the fixed points of ℭ under|𝑈(𝑅𝑛) , that is a 

nonempty compact set because 𝑈(𝑅𝑛) is a compact group. Then  {ℭ𝑛}𝑛=1
∞   is a decreasing 

sequence of nonempty compact sets, and so ℭ∞ ∶= ⋂ ℭ𝑛 
∞
𝑛=𝑖 is nonempty as well. Let 𝑤 ∈

ℭ∞. Then w satisfies 𝑎𝑤 = 𝑤𝜌𝜉(𝑎) for ∈ ⋃ 𝑅𝑛𝑛  , and for 𝑎 ∈ 𝑅 because ⋃ 𝑅𝑛𝑛  is dense 

in 𝑅. Thus ℭ∞ is the set of the fixed points. From the definition of the Fourier coefficient 

of 𝑤 ∈ ℭ∞  we get 𝜌𝜂(𝑎) 𝑤(𝜂)𝑗 = 𝑤(𝜂)𝑗  𝜌𝜉(𝑎)  for 𝑎 ∈ 𝑅, 𝜂 ∈ Ξ . Applying Corollary  

(4.1.10) we obtain 𝑤(𝜂)𝑗 = 0 for 𝜂 ≠ 𝜉 and 𝑤(𝜂)𝑗 ∈ 𝐶 , that means 𝑤∗ ∈ ℋ𝜉 ∩ 𝑁 = 𝒦𝜉 

. On the other hand, 𝐸𝜉( 𝑥(𝜉)𝑖) = 1  implies 𝐸𝜉((𝑢𝑥𝜌𝜉(𝑢
∗)(𝜉)𝑖) =

 𝜌𝜉(𝑢)𝐸𝜉( 𝑥(𝜉)𝑖)𝜌𝜉(𝑢
∗) = 1  for 𝑢 ∈ 𝑈(𝑅) and so 𝐸𝜉( 𝑤(𝜉)𝑖) = 1 by continuity. Since 

𝑤(𝜉)𝑖 is a scalar( 𝑤(𝜉)𝑖) = 1. Hence 𝑤∗ ∉ 𝒦𝜉  , that is contradiction. Therefore we get 

𝑥(𝜉)𝑖 = 0 for 𝑥 ∈ 𝐿, 𝜉 ∈ Ξ, 𝑖 > 𝑚𝜉 .                                                        

Corollary (4.1.20)[219]: Let 𝑀 ⊃ 𝑁, Ξ be as above and Ξ1 a self-conjugate subset of Ξ 

with the following properties; whenever 𝜉, 𝜂 ∈ Ξ1 , Ξ𝜉,𝜂 ⊂ Ξ1 .Then there exists a unique 
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intermediate subfactor 𝐿 such that if we denote by �́� the canonical endomorphism  �́�: 𝐿 →
𝑁, then 

[𝜆′|𝑁] = ⨁
𝜉∈Ξ1

𝑛𝜉 [𝜌𝜉], 

Proof: Set = 𝑁 ∨ {ℋ𝜉}𝜉∈Ξ1
 .                                                                                         

Corollary (4.1.21)[219]: Let 𝑀 ⊃ 𝑁  be an irreducible inclusion of factors (𝑁  is not 

necessarily infinite) with 𝐸 ∈ ℰ(𝑀,𝑁). We assume that the inclusion is of discrete type 

and 𝜎𝑡
𝐸.�̂�  is trivial. Then for every intermediate subfactor 𝐿, ℰ(𝑀, 𝐿) is not empty. 

Proof: It is enough to prove the statement when N is finite and 𝑀 is infinite. Let 𝐹 be a 

type 𝐼∞ factor. Then thanks to Theorem (4.1.19), ℰ(𝑀⨂𝐹, 𝐿⨂𝐹)  is not empty. Since we 

can identify 𝑀 ⊃ 𝑁  with 𝑒(𝑀⨂𝐹)𝑒 ⊃ 𝑒(𝐿⨂𝐹)𝑒   where 𝑒  is  a minimal projection of  

𝐹, ℰ(𝑀, 𝐿) is not empty.                                                                                                                                   

Theorem (4.1.22)[219]: Let 𝐺 be a discrete group and 𝛼 an outer action of 𝐺 on a factor 

𝑁. Then the map 𝐻 ↦ 𝑁 ×𝛼 𝐻 gives one-to-one correspondence between the lattice of all 

subgroups of 𝐺 and that of all intermediate subfactors of 𝑁 ⊂ 𝑁 ×𝛼 𝐺. 
Proof: Let {𝜆(g)} denote the implementing unitaries of 𝛼 in  𝑀:= 𝑁 ×𝛼 𝐺. Then it is easy 

to see  Ξ = 𝐺 and ℋg = 𝐶𝜆(g) where Ξ and 𝐻g are as in Theorem (4.1.19). (Note that the 

argument in Theorem (4.1.19) makes sense even when 𝑁  is finite as far as {𝜌𝜉}  are 

automorphisms.) Let  {𝒦g}g∈𝐺
 be a system of subspaces satisfying (ii) and (iii) of 

Theorem (4.1.19). Then there exists a subgroup 𝐻 ⊂ 𝐺 such that 𝒦g = 𝐶𝜆(g) if g ∈ 𝐻 and 

𝒦g = 0 if g ∉ 𝐻. This means that for every intermediate subfactor 𝐿 there exits a subgroup 

𝐻 with 𝐿 = 𝑁 ×𝛼 𝐻.                                                                                                                                
  Let 𝐺 be a compact group. We call an action : of 𝐺 on a factor 𝑀 minimal if 𝛼 is faithful 

and 𝑀 ∩𝑀�́� = 𝐶 where 𝑀𝐺  is the fixed point algebra under 𝛼. It is known that if 𝛼 is 

minimal the crossed product 𝑀 ×𝛼 𝐺  is always a factor. We fix a complete system of 

representatives of the equivalence classes of the irreducible representations of 𝐺  and 

denote it by �̂� . If 𝛼 is minimal and the fixed point algebra 𝑀𝐺 is infinite, using the same 

type of argument as in [43], one can show that for every 𝜋 ∈ �̂� there exists a Hilbert space 

ℋπ ∈ 𝑀 with support 1 such that ℋπ is globally invariant under 𝛼 and 𝛼|ℋπ
 is equivalent 

to π. This means that 𝑀 is the crossed product of 𝑀𝐺  and the dual object of 𝐺  by the 

corresponding Roberts action [260]. We fix such a ℋπ  for each 𝜋 ∈ �̂�  and choose an 

orthonormal basis {𝑉(π)𝑖}𝑖=1
𝑑(π)

 of ℋπ  where 𝑑(π) is the dimension of ℋπ  . Let 𝑁 = 𝑀𝐺 

and 𝐸 the unique element in ℰ(𝑀,𝑁) obtained by 

𝐸(𝑥) = ∫ 𝛼g

1

𝐺

(𝑥)𝑑g ,        𝑥 ∈ 𝑀. 

We define an endomorphism 𝜌π  ∈ 𝐸𝑛𝑑(𝑁) by 

𝜌π(𝑥) = ∑ 𝑉(π)𝑖

𝑑(π)

𝑖=1

𝑥𝑉(π)𝑖
∗  , 𝑥 ∈ 𝑁. 

Thanks to the minimality of 𝛼, 𝜌π is always irreducible with 𝑑(𝜌π) = 𝑑(π). It is routine to 

show that 𝜌π does not depend on the choice of the basis and that the sector of 𝜌π does not 

depend on the choice of  ℋπ . Note that ℋπ is characterized by 

ℋπ = {𝑉 ∈ 𝑀;  𝑉𝑥 = 𝜌π(𝑥) 𝑉, 𝑥 ∈ 𝑁}. 
Let 𝑒𝑁 be the Jones projection for 𝐸. Then using Peter-Weyl theorem we can show 
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∑ ∑𝑑(π)

𝑑(π)

𝑖=1

𝑉(π)𝑖
∗

π∈�̂�

𝑒𝑁 𝑉(π)𝑖 = 1. 

This means that we can identify 𝛯 in Theorem (4.1.14) with  �̂� , and when 𝜉 ∈ 𝛯 and π ∈
�̂� are identified we can identify ℋ𝜉 with ℋπ as well. Note that 𝑎π = 1 because 

(𝑉(π)𝑖 , 𝑉(π)𝑗) = ∫ 𝛼g

1

𝐺

(𝑉(π)𝑖𝑉(π)𝑗
∗)𝑑g ,        𝑥 ∈ 𝑀.                                     

                            = 𝑑(𝜋)∑(∫ 𝜋
1

𝐺

(g)𝑘,𝑖  𝜋(g)𝑙,𝑗̅̅ ̅̅ ̅̅ ̅̅  𝑑g )𝑉

𝑘 ,𝑙

(𝜋)𝑘 𝑉(π)𝑙
∗   

= 𝛿𝑖,𝑗∑𝑉(𝜋)𝑘
𝑘

𝑉(π)𝑘
∗ = 𝛿𝑖,𝑗1.        

Lemma(4.1.23)[219]: Let 𝐺  be a compact group and 𝑅𝑒𝑝(𝐺)  the category of finite 

dimensional unitary representations of 𝐺. For 𝜋 ∈ 𝑅𝑒𝑝(𝐺), 𝐻𝜋 denotes the representation 

space of 𝜋. Suppose we have a Hilbert subspace 𝐾𝜋 ⊂ 𝐻𝜋 for each  𝜋 ∈ 𝑅𝑒𝑝(𝐺) satisfying 

the following: 

𝐾𝜋⨁𝐾𝜎 ⊂ 𝐾𝜋⨁𝜎  , 𝜋, 𝜎 ∈ 𝑅𝑒𝑝(𝐺), 
𝐾𝜋⨂𝐾𝜎 ⊂ 𝐾𝜋⨂𝜎  , 𝜋, 𝜎 ∈ 𝑅𝑒𝑝(𝐺), 

𝐾𝜋̅̅̅̅ = 𝐾�̅� , 𝜋 ∈ 𝑅𝑒𝑝(𝐺), 
where �̅�  is the complex conjugate representation and 𝐾𝜋̅̅̅̅  is the image of 𝐾𝜋  under the 

natural map from 𝐻𝜋 to its complex conjugate Hilbert space. Then there exists a closed 

subgroup 𝐻 ⊂ 𝐺 such that  

𝐾𝜋 = {𝜉 ∈ 𝐻𝜋  ;  𝜋(ℎ)𝜉 = 𝜉, ℎ ∈ 𝐻}. 
Proof: Let 𝐵0 be the linear span of 

 

{〈𝜋(⋅)𝜉|𝜂〉 ∈ 𝐶(𝐺);  𝜉 ∈ 𝐾𝜋 , 𝜂 ∈ 𝐻𝜋 , 𝜋 ∈ 𝑅𝑒𝑝(𝐺)}, 
where 𝐶(𝐺) is the 𝐶∗-algebra of the continuous functions on 𝐺. Then by assumption, 𝐵0 is 

a unital *-subalgebra of 𝐶(𝐺) that is globally invariant under the left translation by 𝐺. Let 

𝐵 be the norm closure of  𝐵0 . Then thanks to [43], there exists a closed subgroup 𝐻 ⊂ 𝐺 

such that 𝐵 = 𝐶(𝐺/𝐻). This implies that 𝐾𝜋 is a subspace of the set of 𝐻 invariant vectors 

𝐿𝜋  . Suppose 𝜉 ∈ 𝐿𝜋 ⊝𝐾𝜋  and set  𝑓𝜂(g) = 〈𝜋(g)𝜉|𝜂〉  for 𝜂 ∈ 𝐻𝜋 , g ∈ 𝐺 . Then  𝑓𝜂 ∈

𝐶(𝐺/𝐻). On the other hand, the Peter-Weyl theorem shows that 𝑓𝜂  is perpendicular to 

𝐶(𝐺/𝐻) in 𝐿2(𝐺) because 𝐵0 is dense in 𝐶(𝐺/𝐻) in uniform norm and consequently in 

𝐿2(𝐺). Thus 𝑓𝜂 = 0 for all 𝜂 ∈ 𝐻𝜋 and 𝜉 = 0. This proves the statement.                                               

Theorem (4.1.24): Let 𝐺 be a compact group and 𝛼 a minimal action of 𝐺 on 𝑀. Then the 

map 𝐻 ↦ 𝑀𝐻 gives one-to-one correspondence between the lattice of all closed subgroups 

of 𝐺 and that of all intermediate subfactors of 𝑀 ⊃ 𝑀𝐺. 

     To prove the theorem, which is essentially contained in [261].  

Proof: We may assume that 𝑀𝐺  is infinite because  after getting the result for 

𝑀⨂𝐵(ℓ2(𝑁))  we can remove 𝐵(ℓ2(𝑁)) . It easily follows from the existence of  

{ℋ𝜋}𝜋∈�̂�   that the map is infective. Let 𝐿 be an intermediate subfactor and set 𝒦𝜋 = 𝐿 ∩

ℋ𝜋. We arrange the orthonormal basis {𝑉(𝜋)𝑖}𝑖=1
𝑑(𝜋)

 such that {𝑉(𝜋)𝑖}𝑖=1
𝑚𝑛  is an orthonormal 

basis of  𝒦𝜋 . Thanks to Lemma (4.1.18) and Theorem (4.1.19), 𝐿 is characterized by 
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𝐿 = {𝑥 ∈ 𝑀;  𝐸(𝒦
1

𝑛
𝑥) = 0, 𝜋 ∈ �̂�} = {𝑥 ∈ 𝑀;  𝑥(𝜋)𝑖 = 0, 𝑖 > 𝑚𝜋 , 𝜋 ∈ �̂�}. 

Thus it is enough to show that there exists a closed subgroup 𝐻 ⊂ 𝐺 such that  

𝒦𝜋 = [𝑉 ∈ ℋ𝜋 ; 𝛼ℎℎ(𝑉) = 𝑉, ℎ ∈ 𝐻]. 
Indeed, since {𝒦𝜋}𝜋∈�̂� satisfies the assumption of Lemma (4.1.18), it is routine to show 

that one can extend the assignment 𝜋 ↦ 𝒦𝜋 to the whole category of representations such 

that the assumption of Lemma (4.1.23) is fulfilled. Thus Lemma (4.1.23) captures the 

desired closed subgroup 𝐻.                                                                                                                          

We generalize Theorem (4.1.22) and Theorem (4.1.24) to the case minimal actions 

of compact Kac algebras. It turns out that the Galois correspondence holds between the 

lattice of intermediate subfactors and that of left coideal von Neumann subalgebras. We 

also prove a bicommutant type theorem between the left coideal von Neumann 

subalgebras of a compact Kac algebra and right coideal von Neumann subalgebras of its 

dual Hopf algebras. 

      Let 𝒜  be a compact Kac algebra [229], [221] with coproduct 𝛿 , antipode 𝑘 , and 

normalized Haar measure ℎ, which is a normal trace state. We regard 𝒜 as a concrete von 

Neumann algebra represented on the G.N.S. Hilbert space 𝐿2(𝒜) of ℎ with the G.N.S. 

cyclic vector 𝛺ℎ . The multiplicative unitary associated with 𝒜 is defined by  

𝑉(𝑥𝛺ℎ ⨂𝜉) = 𝛿(𝑥)𝛺ℎ ⨂𝜉,        𝜉 ∈ 𝐿2(𝒜),     𝑥 ∈ 𝒜.                                        (5) 
Following [221], we adopt the dual Hopf algebra [221] rather than the dual Kac algebra 

[229] as the dual object of 𝒜; the dual Hopf algebra �̂� of 𝒜 is the von Neumann algebra 

generated by  

{(𝑖𝑑⨂𝜔)(𝑉);  𝜔 ∈ 𝐵(𝐿2(𝒜))∗} 
with the comultiplication and the antipode,  

�̂� (𝑦) = 𝑉∗(1⨂𝑦)𝑉,         �̂� (𝑦) = 𝐽𝒜  𝑦
∗𝐽𝒜 , 𝑦 ∈ �̂�,                                          (6) 

where 𝐽𝒜 is the canonical conjugation of 𝒜 with respect to Ωℎ . Let 𝑈 ∈ 𝐵(𝐿2(𝒜)) be the 

unitary operator defined by 

𝑈𝑥Ωℎ = 𝜅(𝑥)Ωℎ     , 𝑥 ∈ 𝒜 

and set 

�̂� = 𝐹(𝑈⨂1) 𝑉(𝑈⨂1) 𝐹 ∈ 𝒜⨂�̂́�,                                                    (7) 
�̂� = 𝐹(1⨂𝑈) 𝑉(1⨂𝑈) 𝐹 ∈ �́�⨂�̂�,                                                    (8) 

as in [221] where 𝐹 is the flip operator of  𝐿2(𝒜)⨂𝐿2 (𝒜).  �̂� 𝑎𝑛𝑑 �̃� are multiplicative 

unitaries satisfying 

�̂�∗ (𝜉⨂𝑥Ωℎ) = 𝛿(𝑥)(𝜉⨂Ωℎ),         𝜉 ∈ 𝐿2(𝒜) , 𝑥 ∈ 𝒜,                                       (9) 

�̃� (𝑦⨂1)�̃�∗ = �̂�(𝑦),                𝑦 ∈ �̂�.                                                                   
       A finite dimensional unitary corepresentation 𝜋  is a pair of a finite dimensional 

Hilbert space 𝐻𝜋 and a linear map Γ𝜋 ∶  𝐻𝜋  → 𝐻𝜋⨂𝒜 satisfying 

 (Γ𝜋⨂𝑖𝑑) ⋅ Γ𝜋 = (𝑖𝑑⨂𝛿) ⋅ Γ𝜋 

and the following unitarity condition: If {𝑒(𝜋)𝑖} is an orthonormal basis of 𝐻𝜋 and 

Γ𝜋(𝑒(𝜋)𝑗) =∑𝑒(𝜋)𝑖
𝑖

⨂𝑢(𝜋)𝑖,𝑗  , 

then 𝑢(𝜋) = (𝑢(𝜋)𝑖,𝑗) is unitary as an element in 𝑀(𝑑(𝜋), 𝐶)⨂𝒜 , where 𝑑(𝜋) is the 

dimension of 𝐻𝜋 . We abuse the notation and call 𝑢(𝜋) a unitary corepresentation as well. 

Basic notions such as tensor product, direct sum, complex conjugate corepresentations, 

and irreducibility are defined by a standard procedure. Note that since 𝒜 is a Kac algebra 

the complex conjugate corepresentation 𝑢(�̅�) = (𝑢(�̅� )𝑖,𝑗 = 𝑢(𝜋)𝑖,𝑗
∗ )  of 𝑢(𝜋)  is always 
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unitary [176]. Let 𝜋, 𝜎  be unitary corepresentations of 𝒜 . Then the following 

orthogonality relation holds: 

ℎ(𝑢(𝜋)𝑖,𝑗
∗  𝑢(𝜎 )𝜅,𝑙 , ) =

1

𝑑(𝜋)
𝛿𝑖,𝜅𝛿𝑗,𝑙𝛿𝜋,𝜎 . 

Let 𝛯 be a complete system of representatives of the irreducible corepresentations of 𝒜. 

Then the linear span of {𝑢(𝜋 )𝑖,𝑗}1≤𝑖,𝑗≤𝑑(𝜋),𝜋∈Ξ  is a dense in 𝒜 in weak topology. For 𝑥 ∈

𝒜 we define 𝑥(𝜋 )𝑖,𝑗 by 

𝑥(𝜋 )𝑖,𝑗 = 𝑑(𝜋) ℎ(𝑢(𝜋)𝑖,𝑗
∗  𝑥). 

{𝑥(𝜋 )𝑖,𝑗}  determines 𝑥  in the sense that 𝑥 = ∑𝑥(𝜋 )𝑖,𝑗  𝑢(𝜋 )𝑖,𝑗  holds in Hilbert space 

topology in 𝐿2(𝒜). 
Definition (4.1.25)[219]: A unital von Neumann subalgebra ℬ  of a 𝐾ac algebra 𝒜  is 

called a left (right) coideal von Neumann subalgebra if and only if 𝛿(ℬ) ⊂ 𝒜⨂ℬ 

(respectively𝛿(ℬ) ⊂ ℬ⨂𝒜) holds. 

    Let 𝐶orep (𝒜) be the category of finite dimensional unitary corepresentations of  𝒜.  

Proposition (4.1.26)[219]: Let 𝒜 be a compact 𝐾ac algebra. Then there exists one-to-one 

correspondence between the following two sets. 

     (i) The sets of left coideal von Neumann subalgebras of 𝒜. 

    (ii) The set of systems of Hilbert subspaces 𝐾𝜋 ⊂ 𝐻𝜋 , 𝜋 ∈ 𝐶orep (𝒜) satisfying the 

following: 

𝐾𝜋⨁𝐾𝜎 ⊂ 𝐾𝜋⨁𝜎  , 𝜋, 𝜎 ∈ 𝐶𝑜𝑟𝑒𝑝(𝒜). 
𝐾𝜋⨂𝐾𝜎 ⊂ 𝐾𝜋⨂𝜎  , 𝜋, 𝜎 ∈ 𝐶𝑜𝑟𝑒𝑝(𝒜). 

𝐾𝜋̅̅̅̅ = 𝐾�̅� , 𝜋 ∈ 𝐶𝑜𝑟𝑒𝑝(𝒜). 
      The correspondence is given as follows. Let {𝐾𝜋} be a system of subspaces satisfying 

the condition in (ii) and {𝑒(𝜋)𝑖}𝑖=1
𝑑(𝜋)

 an orthonormal basis of 𝐻𝜋 such that {𝑒(𝜋)𝑖}𝑖=1
𝑚𝜋  is an 

orthonormal basis of 𝐾𝜋 . Then the corresponding  left coideal von Neumann subalgebra ℬ 

is the weak closure of the linear span of  {𝑢(𝜋)𝑖,𝑗} 1 ≤ 𝑖 ≤ 𝑑(𝜋), 1 ≤ 𝑗 ≤ 𝑚𝜋 , 𝜋 ∈

𝐶orep(𝒜) 

Proof: First we note that two distinct von Neumann subalgebras ℬ1 and ℬ2 give rise to 

distinct Hilbert subspaces ℬ1Ωℎ
̅̅ ̅̅ ̅̅ ̅ , ℬ2Ωℎ

̅̅ ̅̅ ̅̅ ̅  because ℎ is a faithful normal trace. It is easy to 

show that the weakly closed linear sub-space ℬ defined in the statement is actually a left 

coideal von Neumann  subalgebra, so it suffices to prove that every left coideal von 

Neumann subalgebra ℬ arises in this way. {𝑒(𝜋)𝑖}𝑖=1
𝑑(𝜋)

 be an orthonormal basis of 𝐻𝜋 and 

we set 

𝐾𝜋 = 𝑠𝑝𝑎𝑛 {∑  

𝑑(𝜋)

𝑗=1

𝑥(𝜋)𝑖,𝑗𝑒(𝜋)𝑗 ; 𝑥 ∈ ℬ , 1 ≤ 𝑖 ≤ 𝑑(𝜋)}. 

Since 𝐾𝜋  does not depend on the choice of the basis, we may and do assume that 

{𝑒(𝜋)𝑖}𝑖=1
𝑚𝜋  

is an orthonormal basis. Thus 𝑥(𝜋)𝑖,𝑗 = 0 for 𝑥 ∈ ℬ , 𝑗 > 𝑚𝜋 .We show that 𝑢(𝜋)𝑖,𝑗 ∈ ℬ 

for 1 ≤ 𝑖 ≤ 𝑑(𝜋), 1 ≤ 𝑗 ≤ 𝑚𝜋  . By the definition of  𝐾𝜋  , for 𝑗  with 1 ≤ 𝑗 ≤ 𝑚𝜋  there 

exist 𝑥1, 𝑥2, . . . , 𝑥𝑑(𝜋) ∈ ℬ  such that ∑ 𝑥𝑖  (𝜋)𝑖,𝜅
𝑑(𝜋)
𝑖=1 = 𝛿𝑗,𝑘 . Using unitarity of 𝑢(𝜋)  and 

𝛿(𝑢(𝜋)𝑝,𝑞) = ∑ 𝑢(𝜋)𝑝,𝑟𝑟 ⨂𝑢(𝜋)𝑟,𝑞 , we get 
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𝑢(𝜋)𝑖,𝜅
∗ ⨂1 =∑(1⨂𝑢(𝜋)𝜅,𝑝)

𝑝

𝛿(𝑢(𝜋)𝑖,𝑝
∗ ). 

Since ℬ is a left coideal we obtain 

ℬ ∋∑(ℎ⨂𝑖𝑑)

𝑖

((𝑢(𝜋)𝑖,𝜅
∗ ⨂1)𝛿(𝑥𝑖))                                              

=∑(ℎ⨂𝑖𝑑)

𝑖,𝑝

((1⨂𝑢(𝜋)𝜅,𝑝
∗ )𝛿(𝑢(𝜋)𝑖,𝑝

∗ 𝑥𝑖))                      

=∑𝑥𝑖(𝜋)𝑖,𝑝
∗  𝑢(𝜋)𝜅,𝑝

∗

𝑖,𝑝

= 𝑢(𝜋)𝜅,𝑗
∗ .                                       

Thus ℬ is characterized as 

ℬ = {𝑥 ∈ 𝒜;  𝑥(𝜋)𝑖,𝑗
∗ = 0, 𝜋 ∈  Ξ , 𝑗 > 𝑚𝜋}.                        

Since ℬ  is a *-subalgebra, the natural extension of {𝐾𝜋}𝜋 ∈ Ξ  to the whole category of 

unitary corepresentations satisfies the three conditions of (ii).                                                        

Definition (4.1.27)[219]: Let Γ: 𝑀 → 𝑀⨂𝒜 be an action of a compact 𝐾ac algebra 𝒜 on 

a factor 𝑀. 

     (i) Γ is called minimal if and only if the linear span of {(𝜔⨂𝑖𝑑) ∙ Γ(𝑀);  𝜔 ∈ 𝑀∗} is 

dense in A and the relative commutant of the fixed point algebra 𝑀Γ = {𝑥 ∈ 𝑀;  Γ(𝑥) =
𝑥⨂1} in 𝑀 is trivial. 

     (ii) Let ℬ  be a left coideal von Neumann subalgebra of  𝒜 . The intermediate 

subalgebra  𝑀(ℬ) of 𝑀Γ ⊂ 𝑀 associated to ℬ is defined by 

𝑀(ℬ) = {𝑥 ∈ 𝑀;  Γ(𝑥) ∈ 𝑀⨂ℬ}. 
Theorem (4.1.28)[219]: Let Γ:𝑀 → 𝑀⨂𝒜 be a minimal action of a compact 𝐾ac algebra 

𝒜 on a factor 𝑀. Then the map ℬ → 𝑀(ℬ) gives one-to-one correspondence between the 

lattice of left coideal von Neumann subalgebras of 𝒜  and that of the intermediate 

subfactors of  𝑀Γ ⊂ 𝑀. 

Proof: For the same reason as in the proof of Theorem (4.1.24) we may assume that 𝑀Γ is 

infinite. Note that there exists a normal conditional expectation 𝐸 ∈ ℰ (𝑀,𝑀Γ) given by  

𝐸(𝑥)⨂1 = (𝑖𝑑⨂ℎ) ⋅  𝛿(𝑥), 𝑥 ∈ 𝑀. 
In exactly the same way as in the case of compact group actions, for each 𝜋 ∈ 𝛯 one can 

find a Hilbert space ℋ𝜋 in 𝑀 with support 1 and its basis {𝑉(𝜋)}𝑖=1
𝑑(𝜋)

 satisfying 

𝛿(𝑉(𝜋)𝑖) =∑𝑉(𝜋)𝑗
𝑗

⨂ 𝑢(𝜋)𝑗,𝑖 . 

Thus, as before, we can identify our 𝛯 with that in Theorem (4.1.14) and we get 𝑎𝜋 = 1 

thanks to the orthogonality relation. Let 𝐿 be an intermediate subfactor and 𝒦𝜋 = 𝐿 ∩ℋ𝜋 . 

Thanks to Lemma (4.1.18) and Theorem (4.1.19), 𝐿 generated by 𝑀Γ and  {𝒦𝜋}𝜋∈Γ  , and 

is characterized by 

𝐿 = {𝑥 ∈ 𝑀;  𝐸(𝒦
1

𝑛
𝑥) = 0, 𝜋 ∈ 𝛯}. 

Therefore as we can conclude 𝐿 = 𝑀(ℬ) by using Proposition (4.1.26), where ℬ is the left 

coideal von Neumann subalgebra corresponding to {ℋ𝜋}𝜋 . The map is injective because 

two distinct systems of subspaces satisfying the assumption of Proposition (4.1.26) (ii) 

give rise to two distinct intermediate subfactors.                                                                                   

Remark (4.1.29)[219]: The crossed product 𝑀 × Γ�̂�  is the von Neumann algebra 

generated by Γ(𝑀) 𝑎𝑛𝑑 𝐶⨂�̂� . As is expected, we can identify the basic extension 𝑀1 



109 

with 𝑀 × Γ�̂�  if the action is minimal as follows. Let 𝑒0  be the projection in �̂� 

corresponding to the trivial corepresentation of 𝒜 and we  set 𝑒 = 1⨂𝑒0 . Since we have 

the dual operator valued weight of the crossed product whose restriction to �̂�  is a 

semifinite trace (Plancherel weight), if 𝑀𝑒𝑀 is dense in 𝑀 × Γ�̂�  we can apply Lemma 

(4.1.3) and get the result. Indeed, it is known [221] that �̂� is a direct sum of type 𝐼𝑑(𝜋) 

factors �̂�𝜋 , 𝜋 ∈ Ξ  and the multiplicative unitary 𝑉 can be expanded as 

𝑉 = ∑   ∑ 𝑒(𝜋)𝑖,𝑗
1≤𝑖,𝑗≤𝑑(𝜋)𝜋∈Ξ

⨂ 𝑢(𝜋)𝑖,𝑗  , 

where {𝑒(𝜋)𝑖,𝑗} are matrix units of �̂�𝜋 . Thanks to (5), we have 

 

𝑒(𝜋)𝑖,𝑗  𝑢(𝜎)𝜅,𝑙Ωℎ  = 𝛿𝜋,𝜎𝛿𝑗,𝑙𝑢(𝜋)𝜅,𝑖  Ωℎ . 

Now, we show 

𝑑(𝜋) 𝛿(𝑉(𝜋)𝑖
∗) 𝑒𝛿(𝑉(𝜋)𝑗) = 1⨂�̂� (𝑒(𝜋)𝑗,𝑖). 

From  𝛿(𝑉(𝜋)𝑖) = ∑ 𝑉𝑘 (𝜋)𝑘⨂𝑢(𝜋)𝑘,𝑖 . We get 

𝛿(𝑉(𝜋)𝑖
∗)𝑒𝛿(𝑉(𝜋)𝑗) =∑:

𝑘

1⨂𝑢(𝜋)𝑘,𝑖
∗  𝑒0𝑢(𝜋)𝑘,𝑗 . 

Thanks to the orthogonality relation, we obtain 

𝑑(𝜋)∑𝑢(𝜋)𝑘,𝑖
∗

𝑘

𝑒0𝑢(𝜋)𝑘,𝑗𝑢(𝜎)𝑝,𝑞
∗ Ωℎ = 𝛿𝜋,𝜎𝛿𝑗,𝑞𝑢(𝜋)𝑝,𝑖

∗ , 

where we use the fact that 𝑒0 is the projection onto the space spanned by Ωℎ . On the other 

hand,  

�̂�(𝑒(𝜋)𝑗,𝑖)𝑢(𝜎)𝑝,𝑞
∗ Ωℎ  = 𝐽𝒜𝑒(𝜋)𝑖,𝑗𝐽𝒜𝑢(𝜎)𝑝,𝑞

∗ Ωℎ = 𝐽𝒜𝑒(𝜋)𝑖,𝑗𝑢(𝜎)𝑝,𝑞Ωℎ                        

             = 𝛿𝜋,𝜎𝛿𝑗,𝑞  𝐽𝒜𝑢(𝜋)𝑝,𝑖Ωℎ = 𝛿𝜋,𝜎𝛿𝑗,𝑞𝑢(𝜋)𝑝,𝑖
∗ Ωℎ . 

Thus 𝛿(𝑀) 𝑒𝛿(𝑀) is dense in 𝑀 × Γ�̂� . 
      The above theorem suggests that it is worth while to study the structure of the lattice of 

the left coideal von Neumann subalgebras of 𝐾ac algebras. For compact and discrete 𝐾ac 

algebras we have the following: 

Theorem (4.1.30)[219]: Let 𝒜 be a compact 𝐾ac algebra and �̂� its dual Hopf algebra 

represented on 𝐿2(𝒜). Let ℬ ⊂ 𝒜 be a left coideal von Neumann subalgebra and 𝒞 ∈ �̂� a 

right coideal von Neumann subalgebra. Then the following hold: 

     (i) ℬ́ ∩ �̂� is a right coideal von Neumann subalgebra of �̂� and (ℬ́ ∩ �̂� )2́ ∩𝒜 = ℬ. 

    (ii) �́� ∩ 𝒜 is a left coideal von Neumann subalgebra of 𝒜 and (�́� ∩ 𝒜 )2́ ∩ �̂� = 𝒞. 
    (iii) Set  �̃� = �̂� (ℬ́ ∩ �̂� ). Then the map given by ℬ ↦ �̃� is a lattice anti-isomorphism 

between the set of left coideal von Neumann subalgebras of 𝒜 and that of �̂�.   
Proof: (i) Let 𝐸ℬ be the h preserving conditional expectation in ℰ(𝒜, ℬ) and 𝑒ℬ its Jones 

projection, i.e., 𝑒ℬ is the projection defined by 𝑒ℬ𝑥Ωℎ = 𝐸ℬ(𝑥)Ωℎ , 𝑥 ∈ 𝒜 . Note that 𝑒ℬ ∈

�̂� and {𝑒ℬ }
1́ ∩𝒜 = ℬ hold. Thus to prove (ℬ́ ∩ �̂� )2́ ∩𝒜 = ℬ it suffices to show 𝑒ℬ ∈

ℬ́ ∩ �̂� . First, we prove (𝑖𝑑⨂𝐸ℬ ) ⋅ 𝛿 = 𝛿 ⋅  𝐸ℬ. Let  {𝒦𝜋}𝜋∈Ξ be the system of Hilbert 

subspaces corresponding to ℬ  and {𝑒(𝜋)𝑖}𝑖=1
𝑑(𝜋)

 an orthonormal basis of ℋ𝜋  such that   

{𝑒(𝜋)𝑖}𝑖=1
𝑚𝑛 = 1 is a basis of 𝒦𝜋 . As we saw in the proof of Proposition (4.1.26), the linear 

span of {𝑢(𝜋)𝑖,𝑗}, 𝜋 ∈ Ξ , 1 ≤ 𝑖 ≤ 𝑑(𝜋), 1 ≤ 𝑗 ≤ 𝑚𝑛 is dense in ℬ in weak topology. Let  

𝑥 ∈ 𝒜, 1 ≤ 𝑗 ≤ 𝑚𝑛 . Then we get 
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(𝑖𝑑⨂ℎ) ((1⨂𝑢(𝜋)𝑖,𝑗)𝛿(𝑥)) = ∑ 𝑢(𝜋)𝑘,𝑖
∗  

𝑑(𝜋)

𝜅=1

(𝑖𝑑⨂ℎ) (𝛿(𝑢(𝜋)𝑘,𝑗𝑥))                                  

= ∑ 𝑢(𝜋)𝑘,𝑖
∗  

𝑑(𝜋)

𝜅=1

ℎ(𝑢(𝜋)𝑘,𝑗𝑥) 

        = ∑ 𝑢(𝜋)𝑘,𝑖
∗  

𝑑(𝜋)

𝜅=1

ℎ(𝑢(𝜋)𝑘,𝑗𝐸ℬ(𝑥)) 

                = (𝑖𝑑⨂ℎ) ((1⨂𝑢(𝜋)𝑖,𝑗)𝛿(𝐸ℬ(𝑥))), 

which implies (𝑖𝑑⨂𝐸ℬ  ) ⋅ 𝛿(𝑥)  = 𝛿 ⋅  𝐸ℬ(𝑥) . Let �̂� be the multiplicative unitary defined 

in (7) for 𝜉 ∈  𝐿2(𝒜) and 𝑥 ∈ 𝒜 we get 

�̂�∗(1⨂𝑒ℬ )(𝜉⨂𝑥Ωℎ) = �̂�∗(𝜉⨂𝐸ℬ(𝑥)Ωℎ) = 𝛿(𝐸ℬ(𝑥))(𝜉⨂Ωℎ)                               

                               = (𝑖𝑑⨂𝐸ℬ ) ⋅ 𝛿(𝑥) (𝜉⨂Ωℎ) = (1⨂𝑒ℬ ) �̂�
∗(𝜉⨂𝑥Ωℎ), 

and so (1⨂𝑒ℬ )  commutes with �̂�  . Since {𝜔⨂𝑖𝑑)(�̂� );  𝜔 ∈ 𝐵(𝐿2(𝒜))∗}  is dense in 

�̂́� 𝛿, 𝑒ℬ ∈ �̂�  . Let  𝑥 ∈ ℬ, 𝑦 ∈ ℬ́ ∩ �̂� . Then 

�̂� ( 𝑦)(𝑥⨂1) = 𝑉∗(1⨂𝑦) 𝑉(𝑥⨂1) = 𝑉∗(1⨂𝑦) 𝛿(𝑥) 𝑉 = 𝑉∗𝛿(𝑥)(1⨂𝑦) 𝑉              

= (𝑥⨂1) 𝑉∗(1⨂𝑦) 𝑉 = (𝑥⨂1) �̂�( 𝑦).                                
Thus ℬ́ ∩ �̂� is a right coideal von Neumann subalgebra of  �̂� .  

    (ii) As above, in a similar way one can show that 𝒞 ∩𝒜 is a left coideal von Neumann 

subalgebra of 𝒜. Let  𝒞0 = (�́� ∩ 𝒜)2́ ∩ �̂� . Then it is easy to show �́�0 ∩  𝒜 = �́� ∩𝒜. 

Thus to prove 𝒞0 = 𝒞, it suffices to prove that if 𝒞1 and 𝒞2 are distinct right coideal von 

Neumann subalgebras of �̂� , then �́�1 ∩  𝒜 and �́�2 ∩  𝒜 are distinct. Since the Plancherel 

weight of �̂� is 

the restriction of the usual trace on 𝐵(𝐿2(𝒜)), there exists a trace preserving  conditional 

expectation 𝐹 ∈ ℰ(𝐵(𝐿2(𝒜)), �̂� ). Note that one can identify 𝐹 with the dual weight of 

the crossed product of �̂�  and �̂̂�  = �́�  when �̂�  is regarded as an action of �̂�  on itself. 

Thus the restriction of 𝐹 to �́� is a trace. We claim that 𝐹((�́� ∩ 𝒜)2́) = 𝒞 for every right 

coideal von Neumann subalgebra ⊂ �̂� . To prove the claim it is enough to show that 𝒞 ⋅
�́�  is weakly dense in (𝒞 ∪ �́�)" because of (𝒞 ∩ 𝒜)/ = (𝒞 ∪ �́�)". Let �̃�  be as in (8). 

Thanks to (8) and (9), for 𝑐 ∈ 𝒞  and 𝜔 ∈ 𝐵(𝐿2(𝒜))∗ we get 

(𝑖𝑑 ⊗𝜔)(�̃� ) 𝑐 = (𝑖𝑑 ⊗𝜔)(�̃� (𝑐 ⊗ 1)) = (𝑖𝑑 ⊗𝜔)(�̂� (𝑐) �̃� ) ∈ 𝒞 ⋅ �́�𝑤̅̅ ̅̅ ̅̅ ̅̅ ̅ , 

which shows 𝒞 ⋅ �́�𝑤̅̅ ̅̅ ̅̅ ̅̅ ̅  = (𝒞 ∪ �́�)". Using the claim, now we can show that  if  𝒞1 ≠ 𝒞2 

are right coideal von Neumann subalgebras of �̂�, (�́�1 ∩𝒜)2́ ≠ (�́�2 ∩𝒜)2́ , and so 

(�́� ∩ 𝒜)2́ ∩ �̂� = 𝒜. 
     (iii) This is a direct consequence of (i) and (ii).                                                                 

    In what follows, we assume 𝑛 ∶= dim𝒜 < ∞. Let 𝜀 and 𝜀̂ be the counit of  𝒜 and  �̂� , 

and e and �̂�  the integrals of 𝒜  and �̂�; 𝑒   and �̂�  are the minimal central projections 

satisfying 𝑒𝑥 = 𝑒𝜀(𝑥), 𝑥 ∈ 𝒜 , and �̂� 𝑦 = �̂�𝜀̂(𝑦) , 𝑦 ∈ �̂�  . It is known that the G.N.S. 

cyclic vector Ωℎ̂ of the normalized Haar measure ℎ̂ of �̂� can be identified with √𝑛 𝑒Ωℎ 
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and we have √𝑛 �̂�Ωℎ̂ = Ωℎ  as well [245]. The dual pairing between 𝒜  and �̂�  can be 

written in terms of the  Hilbert space inner product as follows: 

〈𝑥, 𝑦〉 = √𝑛 〈𝑥Ωℎ | 𝑦
∗Ωℎ̂ 〉, 𝑥 ∈ 𝒜      𝑦 ∈ �̂� .                                     (10) 

     The following is a space-free description of the anti-isomorphism of the two lattices. 

Proposition (4.1.31)[219]: Let 𝒜 be a finite dimensional 𝐾ac algebra and ℬ a left coideal 

van Neumann subalgebra of 𝒜. We set 

 

�̃� = {𝑦 ∈ �̂� ; 〈𝑥𝑏, 𝑦〉 = 𝜀(𝑏) 〈𝑥, 𝑦〉, 𝑥 ∈ 𝒜, 𝑏 ∈ ℬ}. 
Then the following hold: 

    (i) �̃� is 𝑎 left coideal von Neumann subalgebra of �̂� with 𝑑𝑖𝑚ℬ ⋅  𝑑𝑖𝑚 �̃� = 𝑑𝑖𝑚𝒜. 

   (ii) �̃̃�  = ℬ. 
   (iii) �̃� = �̂� (ℬ́ ∩ �̂� ).  
Proof: (i) It is routine to show that �̃� is a left coideal von Neumann  subalgebra of �̂� . 

Using (10) for  𝑥 ∈ 𝒜, 𝑏 ∈ ℬ, and 𝑦 ∈ �̂� we get the following: 

〈𝑥𝑏, 𝑦〉 = √𝑛 〈𝑥𝑏Ωℎ | 𝑦
∗Ωℎ̂ 〉 = √𝑛 〈𝐽𝒜𝑏

∗𝑥∗Ωℎ | 𝑦
∗Ωℎ̂ 〉                                        

= √𝑛 〈 𝑏𝐽𝒜  𝑦
∗Ωℎ̂ | 𝑥

∗Ωℎ 〉 = √𝑛 〈 𝑏�̂� ( 𝑦) Ωℎ̂ | 𝑥
∗Ωℎ 〉.             

On the other hand we have 

𝜀(𝑏)〈𝑥, 𝑦〉 = 𝜀(𝑏)√𝑛 〈𝑥Ωℎ|𝑦
∗Ωℎ̂〉 = 𝜀(𝑏)√𝑛 〈�̂� ( 𝑦)Ωℎ̂ | 𝑥

∗Ωℎ〉,                               
and so �̃� is characterized as 

�̃� = {𝑦 ∈ �̂� ;  𝑏�̂� ( 𝑦)Ωℎ̂ = 𝜀(𝑏) �̂� ( 𝑦) Ωℎ̂ , 𝑏 ∈ ℬ }. 

Let 𝐸ℬ  and 𝐸ℬ̃  be the ℎ  and ℎ̂  preserving conditional expectations onto ℬ  and ℬ̃  

respectively, and 𝑒ℬ  and 𝑒ℬ̃  the corresponding Jones projections. The above 

characterization shows 

�̃� ⊃ �̂�(ℬ́ ∩ �̂�) ∋ 𝐽𝒜  𝑒ℬ 𝐽𝒜 =  𝑒ℬ . 
More specifically we show  𝑒ℬ = 𝑛𝜀 ⋅ 𝐸ℬ(𝑒)𝐸ℬ̃ (�̂� ). Indeed, using  �̂� (𝑒ℬ) = 𝐽𝒜  𝑒ℬ 𝐽𝒜 =

 𝑒ℬ we get the following for �̃� ∈ �̃� ∶ 

ℎ̂ ((𝑒ℬ�̃�) = ℎ̂ (�̂� (�̃� )𝑒ℬ) = 〈�̂� (�̃� ) 𝑒ℬ  Ωℎ̂ |  Ωℎ̂ 〉                                                   

   = √𝑛 〈 𝑒ℬ𝑒Ωℎ |�̂� (�̃�
∗) Ωℎ̂ 〉 = √𝑛 〈𝐸ℬ(𝑒) Ωℎ |�̂� (�̃�

∗)  Ωℎ̂ 〉 

            = √𝑛 〈Ωℎ |𝐸ℬ(𝑒)�̂�(�̃�
∗) Ωℎ̂ 〉 =  𝜀 ⋅ 𝐸ℬ(𝑒)√𝑛  〈Ωℎ| �̂� (�̃�

∗)  Ωℎ̂ 〉 

                  = 𝜀 ⋅ 𝐸ℬ(𝑒)√𝑛  〈�̂� (�̃� )Ωℎ| Ωℎ̂ 〉 =  𝜀 ⋅ 𝐸ℬ(𝑒)𝜀̂(�̂�(�̃�))√𝑛〈Ωℎ | Ωℎ̂ 〉 

=  𝜀 ⋅ 𝐸ℬ(𝑒)𝜀̂ (�̂�(�̃�)) = 𝑛ℎ̂ (�̂��̃�)𝜀 ⋅ 𝐸ℬ(𝑒).                           

Thus we obtain the claim. Note that ℎ̂  is the restriction of the normalized trace of  

𝐵(𝐿2(𝒜)), and so ℎ̂(𝑒ℬ) = 𝑑𝑖𝑚 ℬ 𝑛⁄ . Thus we get 

𝜀 ⋅ 𝐸ℬ(𝑒) =
dimℬ

𝑛
 , 𝑒ℬ = 𝑑𝑖𝑚 ℬ𝐸ℬ̃ (�̂� ). 

In the same way we can get 

𝜀̂ ⋅  𝐸ℬ̃(�̂� ) =
dim �̃�

𝑛
.                      

Since  𝑒ℬ is a projection,  

𝑒ℬ = 𝑒ℬ
2 = (𝑑𝑖𝑚 ℬ)2 𝐸ℬ̃ (�̂� 𝐸ℬ̃(�̂� )) = (𝑑𝑖𝑚 ℬ)2𝜀̂ ⋅ 𝐸ℬ̃(�̂� )𝐸ℬ̃(�̂� )                      

    = 𝑑𝑖𝑚 ℬ𝜀̂ ⋅ 𝐸ℬ̃(�̂� )𝑒ℬ .                                                                                            
Therefore, 𝑑𝑖𝑚 ℬ 𝑑𝑖𝑚 �̃� = 𝑛. 
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    (ii) It is easy to show ℬ ⊂ �̃̃�. Since �̃� is a left coideal von Neumann subalgebra of �̂� 

we also have 𝑑𝑖𝑚 �̃� 𝑑𝑖𝑚 �̃̃� = 𝑛, and so ℬ = �̃̃�.   
   (iii)  In a similar way as in (i), one can show 𝑑𝑖𝑚 ℬ ⋅ 𝑑𝑖𝑚(ℬ́ ∩ �̂�) = 𝑛. Since we have 

the inclusion  �̃� ⊃ �̂� (ℬ́ ∩ �̂�) we get the equality.                                                                    

      Related to Theorem (4.1.14) and Remark (4.1.15), we give here an example of an 

irreducible inclusion of factors 𝑁 ⊂ 𝑀 with a normal conditional expectation 𝐸 such that 

𝑁 ⊂ 𝑀 is discrete, 𝐸−1 is a semifinite trace on �́� ∩ 𝑀1 ( so that 𝐵1 = 𝐵2 = 𝐶 = {0}) yet 

𝐸−1 ∘ 𝑗 ≠ 𝐸−1 on �́� ∩ 𝑀1 . In fact, our  factors 𝑁,𝑀  are hyperfinite of type II1 with 𝐸 ∈
ℰ(𝑀,𝑁) being the unique normal conditional expectation preserving the trace 𝜏 on 𝑀, and 

𝐸−1 being a semifinite trace on �́� ∩ 𝑀1 . Thus, while the irreducibility of an inclusion of 

(type II1) factors 𝑁 ⊂ 𝑀 with [𝑀 ∶  𝑁] < ∞ automatically entails its  extremality ( thus, 

the trace-preservingness of  𝑗 = 𝐽𝑀 ⋅  𝐽𝑀 on �́� ∩ 𝑀1); this is no longer the case when [𝑀 ∶
 𝑁] = ∞, even if  𝑁 ⊂ 𝑀 is discrete. 

     Our construction is based on Powers binary shifts and their properties ([255], [256]). 

Lemma (4.1.32)[219]: [256]. Let 𝜎 be a bilateral Powers binary shift acting on {𝑢𝑛}𝑛∈ℤ as 

in [255], such that each half-line bitstream of 𝜎 is aperiodic. Let 𝑃 = 𝜐𝑁{𝑢𝑛}𝑛∈ℤ and  𝑁 =
𝜐𝑁{𝑢𝑛}𝑛≥0. Then the following hold true: 

   (i) 𝑁 and 𝑃 are factors; 

   (ii)  𝜎(𝑁) ⊂ 𝑁 and [𝑁 ∶  𝜎(𝑁)] < ∞. 

  (iii)  𝜎𝑛(𝑁)́ ∩ 𝑁 = 𝐶, ∀𝑛 ≥ 1. 

  (iv)   ⋂ 𝜎𝑛(𝑁)𝑛≥1 = 𝐶1. 

   (v)  ⋃ 𝜎−𝑛𝑛≥1 (𝑁) is a dense *-subalgebra of  𝑃. 

Proof: All these are well known properties from [255], [256].                                              

Proposition (4.1.33)[219]: Let 𝑃 be a type II1  factor with an aperiodic auto-morphism  

𝜎 ∈ 𝐴𝑢𝑡 𝑃 and a subfactor 𝑁 ⊂ 𝑃 such that 𝑃, 𝜎,𝑁 satisfy the  conditions (i)-(v) of the 

previous Lemma.  

     Let  𝑀 = 𝑃 ⋊𝜎 ℤ. Then we have: 

       (a) 𝑁′ ∩ 𝑀 = 𝐶1. 
       (b) 𝑁 ⊂ 𝑀 is discrete, i.e., 𝐿2(𝑀1, 𝑇𝑟) is generated by 𝑁 −𝑁  sub-bimodules which 

have finite dimensions both as left and right N-modules, where 𝑇𝑟 is the unique semifinite 

trace on 𝑀1 = 〈𝑁,𝑀〉 such that 𝑇𝑟𝑒𝑁 = 1. 

       (c)  𝐽𝑀 ⋅ 𝐽𝑀 is not 𝑇𝑟-preserving on 𝑁′ ∩ 𝑀1 , equivalently, there are  irreducible 𝑁 −
𝑁 sub-bimodules of  𝐿2(𝑀1, 𝑇𝑟) for which the left dimension over 𝑁 does not coincide 

with the right dimension over 𝑁. 

Proof: (a) By property (iii) we have  𝑁′ ∩ 𝜎−𝑛(𝑁) = 𝐶1 . Thus, if  𝑎 ∈ �́� ∩ 𝑃  then  

‖𝐸𝜎−𝑛(𝑁)(𝑎) − 𝑎‖
2
→ 0  (by (ii) and (v)) and  𝐸𝜎−𝑛(𝑁)(𝑎) ∈ �́� ∩ 𝜎−𝑛(𝑁) = 𝐶  (by 

commuting squares). Thus 𝑎 ∈ 𝐶1 , showing that �́� ∩ 𝑃 = 𝐶 . Similarly 𝜎𝑛(𝑁)́ ∩ 𝑃 =
𝐶, ∀𝑛 ≥ 1. 

     Assume now that 𝑎 = ∑ 𝑏𝑛𝑛∈ℤ 𝑢𝑛  satisfies  𝑎𝑥 = 𝑥𝑎, ∀𝑥 ∈ 𝑁 . Thus, if 𝑏𝑛 ≠ 0  for 

some 𝑛 then  𝑥𝑏𝑛 = 𝑏𝑛𝜎
𝑛(𝑥), ∀𝑥 ∈ 𝑁. By using   𝜎𝑛(𝑁) ⊂ 𝑁, it follows that 𝑥𝑏𝑛𝑏𝑛

∗ =
𝑏𝑛𝜎

𝑛(𝑥) 𝑏𝑛
∗ = 𝑏𝑛𝑏𝑛

∗  𝑥, ∀𝑥 ∈ 𝑁 . Thus 𝑏𝑛𝑏𝑛
∗ ∈ 𝐶1 so that 𝑏𝑛  is a (multiple of a) unitary 

element 𝜐 ∈ 𝑃  satisfying 

𝑥𝜐 = 𝜐𝜎𝑛(𝑥),      ∀𝑥 ∈ 𝑁.                                                    (11) 

In particular, we have 

𝜎𝑛(𝑥)𝜐 = 𝜐𝜎2𝑛(𝑥),      ∀𝑥 ∈ 𝑁                                               (12) 
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Also, by applying 𝜎𝑛 to both sides of (11) we get 

 

𝜎𝑛(𝑥)𝜎𝑛(𝜐) = 𝜎𝑛(𝜐)𝜎2𝑛(𝑥), ∀𝑥 ∈ 𝑁.                                               (13) 
From (12) and (13) we get: 

𝜐∗𝜎𝑛(𝑥)𝜐 = 𝜎𝑛(𝜐∗)𝜎𝑛(𝑥)𝜎𝑛(𝜐), ∀𝑥 ∈ 𝑁.                                                (14) 

Thus, 𝜎𝑛(𝜐) = 𝛼𝜐  for some  𝛼 ∈ 𝐶1 . Let then𝑚𝑘 ↗ ∞  be such that  𝛼𝑚𝑘 → 1 .Then 
‖𝛼𝑛𝑚𝑘  (𝜐) − 𝜐‖ → 0  as 𝑘 → ∞  . But   ⋂ 𝜎(𝑁) = 𝐶1𝑚≥0  clearly implies 𝜎  is mixing, 

i.e.,   lim𝑢→∞ 𝜏 (𝜎𝑛(𝑥) 𝑦) = 𝜏(𝑥) 𝜏( 𝑦),   ∀𝑥, 𝑦 ∈ 𝑃 . A contradiction unless 𝜐 ∈ 𝐶1 , 

showing that 𝑁′ ∩ 𝑀 = 𝐶. 

    (b) Let   𝐾𝑛,𝑚 = 𝑢−1𝐿2(𝑁)𝑢𝑛+𝑚 , 𝑓𝑜𝑟 𝑛 ≥ 0,𝑚 ∈ 𝑍, 𝑛 ≥ −𝑚. It is trivial to see that 

𝐾𝑛,𝑚  ↗ 𝐿2(𝑃) 𝑢𝑚, 𝑎𝑠 𝑛 ↗ ∞ . Thus  {𝐾𝑛,𝑚 |𝑛 ≥ −𝑚, 𝑛 ≥ 0,𝑚 ∈ ℤ} =  𝐿2(𝑀)  ,with all  

𝐾𝑛,𝑚, m being 𝑁 −𝑁 bimodules. 

     Also, since as a left 𝑁 module  𝐾𝑛,𝑚 = 𝐿2(𝜎−𝑛(𝑁))𝑢𝑚 is isomorphic to 𝐿2(𝜎−𝑛(𝑁)), 

we have  𝑑𝑖𝑚( 𝐾𝑛,𝑚𝑁
2 ) = [𝑁 ∶  𝜎(𝑁)]𝑛 < ∞. Furthermore, as a right 𝑁-module 𝐾𝑛,𝑚 =

𝑢𝑚𝐿2(𝜎−𝑛−𝑚(𝑁))  is isomorphic to 𝐿2(𝜎−𝑛−𝑚(𝑁)),  so that we have 𝑑𝑖𝑚(𝐾𝑛,𝑚𝑁) =
[𝑁: 𝜎(𝑁)]𝑛+𝑚 < ∞.  
     This shows that 𝑁 ⊂ 𝑀 is discrete. 

     (c) This part is now clear, since we showed above that there exist sub-bimodules 𝐾 ⊂
𝐿2(𝑀1 , 𝑇𝑟) which are finitely generated both as left and right modules, but with different 

corresponding dimensions (e.g., just take  𝐾 = 𝐾𝑛,𝑚, for some 𝑛 ≥ 𝑚, 𝑛 ≥ 0,𝑚 ≠ 0).      
Corollary (4.1.34)[219]:There exist irreducible discrete inclusions of hyper finite type II1 

factors 𝑁 ⊂ 𝑀  for which  𝐽𝑀 ⋅ 𝐽𝑀  is not trace preserving on �́� ∩ 𝑀1 ;  Equivalently for 

which 𝑇𝑟𝑀1
 and 𝑇𝑟�́�  do not agree on  �́� ∩ 𝑀1  , or, further, for which the local indices 

[𝑝𝑀1 𝑝 ∶  𝑁𝑝] are not equal to (T𝑟 𝑝)2 for all 𝑝 ∈ �́� ∩ 𝑀1. 

Section (4.2): Compact Quantum Group Actions 
We present a Galois correspondence for compact quantum group actions. The 

theory of Galois correspondences for group actions on von Neumann algebras was 

initiated by M. Nakamura and Z. Takeda [270], [251] and has been studied extensively in 

various settings by many researchers. The Galois correspondence for a group action 𝐺 on a 

von Neumann algebra 𝑀 refers to a one-to-one correspondence between the subgroups 𝐻 

of 𝐺 and the intermediate von Neumann subalgebras 𝑀𝐺 ⊂ 𝑀𝐻 ⊂ 𝑀, where 𝑀𝐻 denotes 

the fixed point algebra by the 𝐻-action. 

In [251], the Galois correspondence was established for a minimal action of a finite 

group on a II1  factor. For compact group actions, A. Kishimoto obtained a Galois 

correspondence between normal closed subgroups and intermediate von Neumann 

subalgebras that are globally invariant under the compact group, assuming a certain 

condition on actions which is satisfied by minimal ones [240]. 

Another kind of Galois correspondence was provided in [270] for crossed product 

von Neumann algebras in the case of a discrete group 𝐺 acting freely on a finite factor 𝑀. 

Their result again shows a one-to-one correspondence between the lattice of subgroups 

and that of intermediate subfactors of  𝑀 ⊂ 𝐻 ⋊ 𝐺 . In [273], M. Takesaki studied a 

generalization of this result for a locally compact abelian group action. Y. Nakagami 

strengthened the result to the case of general locally compact group actions [250]. In 

[224], H. Choda investigated the crossed product by free actions of discrete groups on a 
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factor of arbitrary type and obtained the Galois correspondence for intermediate von 

Neumann subalgebras which are the ranges of normal conditional expectations. 
M. Izumi, R. Longo and S. Popa [219] have further developed theory of Galois 

correspondence to compact group minimal actions and discrete group free actions on 

factors of arbitrary type. Moreover, they obtained the Galois correspondence for minimal 

actions of compact 𝐾ac algebras, which unifies the results for compact groups and discrete 

groups. 

Therefore, it is natural to explore a generalization of the Galois correspondence of 

[219] to minimal actions of compact quantum groups. In [267], M. Enock focused on this 

problem in a more general setting, but there is a flaw in his proof. We point out the reason 

why the proof of [219] does not work in the quantum case. The main step of their proof is 

to show the existence of a normal conditional expectation from an ambient von Neumann 

algebra onto any intermediate subfactor. However, this is no longer true in general for 

compact quantum group actions. Indeed, we consider a minimal action of  𝑆𝑈𝑞(2) (0 <

𝑞 < 1) on a factor, whose existence has been shown by Y. Ueda [276]. The intermediate 

subfactor associated with a Podles´ sphere 𝑆𝑞,𝜃
2  [271], [167] is not the range of a normal 

conditional expectation. 
We proceed to study an irreducible inclusion of discrete type in the sense of [219]. 

Let 𝑁 ⊂ 𝑀 be an irreducible inclusion of discrete type. In [219], assuming a technical 

condition on the modular automorphism groups, it is shown that an intermediate subfactor 

𝑁 ⊂ 𝐻 ⊂ 𝑀  is generated by 𝑁  and Hilbert spaces in 𝐿  which implement irreducible 

endomorphisms on 𝑁 . We will strengthen the result by dropping assumptions on the 

modular automorphism groups.  

Theorem (4.2.1)[266]: Let 𝑁 ⊂ 𝑀 be an irreducible inclusion of discrete type with the 

faithful normal conditional expectation  𝐸 ∶ 𝑀 → 𝑁. Let 𝑁 ⊂ 𝐿 ⊂ 𝑀 be an intermediate 

subfactor.  Then the following statements hold. 

   (i) The subfactor 𝑁 ⊂ 𝐿 is discrete. 

  (ii) Suppose 𝑁  is infinite. Let 𝛾𝑁
𝑀 ∶  𝑀 → 𝑁  and 𝛾𝑁

𝐿 ∶  𝐿 → 𝑁  be the canonical 

endomorphisms for 𝑁 ⊂ 𝑀  and 𝑁 ⊂ 𝐿 , respectively. Then [𝛾𝑁
𝑀 |

2
𝑁
]  contains [𝛾𝑁

𝐿 |
2
𝑁
]  in 

Sect (𝑁). 
The second statement of the above theorem is equivalent to saying that the bimodule 

𝐿2𝑁
2 (𝑀)𝑁 contains  𝐿2𝑁

2 (𝐿)𝑁. This statement might sound trivial as in the case of finite 𝑀, 

but indeed we need a little more efforts to prove it (see Remark (4.2.10)). 

Next we apply this result to minimal actions of compact quantum groups and prove the 

following Galois correspondence (Theorem (4.2.18)) which generalizes the 

correspondence presented in [219].  

Theorem (4.2.2)[266]: Let 𝔾 be a compact quantum group and 𝑀 a factor. Let 𝛼 ∶ 𝑀 →
𝑀⨂𝐿∞(𝔾) be a minimal action. Then there exists a one-to-one correspondence between 

the lattice of left coideals in 𝐿∞(𝔾)  and that of intermediate subfactors of  M𝛼 ⊂ M. 
We always assume separability of von Neumann algebras. Let 𝑀 be a von Neumann 

algebra with predual  𝑀∗. For a weight 𝜙 on  𝑀, we set  𝑛𝜙 = {𝑥 ∈ 𝑀|𝜙(𝑥∗𝑥) < ∞ }. The 

GNS representation of 𝑀 with respect to a faithful normal semifinite weight f is denoted 

by the pair {𝐻𝜙 , Λ𝜙}, where Λ𝜙: 𝑛𝜙 → 𝐻𝜙 is the canonical injection to the GNS Hilbert 

space 𝐻𝜙. We always regard 𝑀 as a von Neumann subalgebra in 𝐵(𝐻𝜙). 
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Let 𝑁 ⊂ M be an inclusion of von Neumann algebras. We denote by 𝒫(𝑀,𝑁) the 

set of faithful normal semifinite operator valued weights from 𝑀  to 𝑁 . For theory of 

operator valued weights, readers are referred to [231], [232]. 

For a subset  𝑋 ⊂ 𝑀, we denote by �̅�𝑤 ,  co̅̅̅𝑤(𝑋) and span̅̅ ̅̅ ̅𝑤(𝑋) the weak closure of  

𝑋, the weak closure of the convex hull of 𝑋 and the weak closure of the linear space 

spanned by 𝑋, respectively. 

We denote by ⨂ the minimal tensor product for 𝐶∗-algebras and the spatial tensor 

product for von Neumann algebras. 

We say that ℋ is a Hilbert space in 𝑀 if ℋ ⊂ 𝑀 is a s-weakly closed subspace and 

𝜂∗𝜉 ∈ ℂ  for all 𝜉, 𝜂 ∈ ℋ  [67]. The smallest projection 𝑒 ∈ 𝑀 with 𝑒ℋ = 𝐻 is called the 

support of ℋ. 

We denote by End(𝑀) and Sect(𝑀) the set of endomorphisms and sectors on 𝑀, 

that is, Sect (𝑀) is the set of equivalence classes of endomorphisms on 𝑀  by unitary 

equivalence. For the sector theory, See [237], [246], [247]. 

We recall the notion of discreteness introduced in [219] for an inclusion of factors 

and summarize the basic properties. 

        Let 𝑁 ⊂ 𝑀 be an inclusion of factors with a faithful normal conditional expectation 

 𝐸𝑁
𝑀 ∶ 𝑀 → 𝑁. Fix a faithful state  𝜔 ∈ 𝑁∗ . We set  𝜑 ∶ 𝜔 𝑜𝐸𝑁

𝑀 ∈ 𝑀∗ . Let {𝐻𝜑 , Λ𝜑} be the 

GNS representation of 𝑀 associated with the state 𝜑. We define the Jones projection 𝑒𝑁 ∈

𝐵(𝐻𝜑) 𝑏𝑦 𝑒𝑁Λ𝜑(𝑥) = Λ𝜑(𝐸𝑁
𝑀(𝑥))  for 𝑥 ∈ 𝑀  and set the basic extension 𝑀1 ∶= 𝑀 ∨

{𝑒𝑁}
′′ ⊂ 𝐵(𝐻𝜑). The dual operator valued weight of  𝐸𝑁

𝑀 is denoted by  �̂�𝑀
𝑀1 which is an 

element of  𝒫(𝑀1, 𝑀)  [241]. By definition, we have �̂�𝑀
𝑀1(𝑎𝑒𝑁𝑏) = 𝑎𝑏  for 𝑎, 𝑏 ∈ 𝑀 . 

Define the faithful normal semifinite weight  𝜑1 =:𝜑 ∘ �̂�𝑀
𝑀1  on 𝑀1 

      In [219]  the discreteness of an inclusion of factors is introduced as follows. 

Definition (4.2.3)[266]: An inclusion of factors 𝑁 ⊂ 𝑀 is said to be discrete when there 

exists a faithful normal conditional expectation 𝐸𝑁
𝑀 ∶ 𝑀 → 𝑁. such that its dual operator 

valued weight  �̂�𝑀
𝑀1 is semifinite on  �́� ∩ 𝑀1.  

       Note that the discreteness is equivalent to saying that the 𝑁 − 𝑁-bimodule 𝐿2(𝑀) is 

the direct sum of 𝑁 −𝑁-bimodules of finite index. 

       Let 𝑁 ⊂ 𝑀  be an irreducible inclusion of discrete type. Then 𝑁′ ∩ 𝑀1  can be 

decomposed into a direct sum of matrix algebras as [219] : 

 

�́� ∩ 𝑀1 = ⨁
𝜉∈Ξ

𝐴𝜉 ,                

where 𝐴𝜉  is a type I𝑛𝜉 factor for some 𝑛𝜉 ∈ ℕ. 

      Consider the case that 𝑁 is infinite. Let  𝛾𝑁
𝑀 ∶  𝑀 → 𝑁 be the canonical endomorphism  

of the inclusion 𝑁 ⊂ 𝑀 ([246], [247], [248]). By definition, we have the isomorphism of  

𝑀 −𝑁 –bimodules 

𝛾𝑁
𝑀

𝑀
2 𝐿2(𝑁)𝑁 ≅ 𝐿2(𝑀)𝑁𝑀

2 , 
where 𝐿2(𝑀) and 𝐿2(𝑁)  denote the standard Hilbert space for 𝑀  and 𝑁 , respectively. 

Since  �́� ∩ 𝑀1 = End 𝐿2(𝑀)𝑁𝑁
2 , a minimal projection 𝑒𝜉  in 𝐴𝜉  corresponds to an 

irreducible endomorphism with finite index, 𝜌𝜉 ∈ End(𝑁), that is, we have the following 

isomorphism of  𝑁 −𝑁-bimodules ( [219]): 

𝜌𝜉𝑁
2 𝐿2(𝑁)𝑁 ≅ 𝑒𝜉𝑁

2 𝐿2(𝑀)𝑁 .                    
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By definition, the sector [𝛾𝑁
𝑀 |

2
𝑁
] contains the sector [𝜌𝜉] with multiplicity 𝑛𝜉  in Sect (𝑁). 

       We define the subspace ℋ𝜉 ⊂ 𝑀 by 

 

𝐻𝜉 = {𝑉 ∈ 𝑀|𝑉𝑥 = 𝜌𝜉(𝑥)𝑉 for all 𝑥 ∈ 𝑁}.            

Then by the inner product 〈𝑉|𝑊〉1 = 𝑊∗𝑉,ℋ𝜉   is a Hilbert space in  𝑀. We note that the 

support projection of ℋ𝜉 may not be equal to 1. We prepare another inner product defined 

by (𝑉,𝑊)1 = 𝑑(𝜉)𝐸𝑁
𝑀(𝑉𝑊∗)   for 𝑉,𝑊 ∈ ℋ𝜉  , where 𝑑(𝜉)   is the square root of the 

minimal  index of  𝜌𝜉(𝑁) ⊂ 𝑁  [268]. By [219] we have dim ℋ𝜉 = 𝑛𝜉  and 𝐴𝜉 =

ℋ𝜉
∗ 𝑒𝑁ℋ𝜉 . 

     Let 𝑁 ⊂ 𝑀 be an irreducible inclusion of discrete type  with infinite 𝑁. Let 𝑁 ⊂ 𝐿 ⊂ 𝑀 

be an intermediate subfactor. We denote by 𝐸𝑁
𝐿  the restriction of 𝐸𝑁

𝑀 on L. For  𝜉 ∈ Ξ , we 

define the Hilbert space 𝒦𝜉 in 𝐿 by 

𝒦𝜉 ≔ℋ𝜉 ∩ 𝐿.                       

We set  Ξ𝐿 ≔ { 𝜉 ∈ Ξ|𝒦𝜉 ≠ 0} and 𝑚𝜉 ∶= dim (𝒦𝜉) for  𝜉 ∈ Ξ𝐿. 

     For 𝜉 ∈ Ξ, we take a basis  {𝑉𝜉𝑖}𝑖∈𝐼𝜉
 in ℋ𝜉 such that  (𝑉𝜉𝑖  , 𝑉𝜉𝑗) = 𝑑(𝜉)𝛿𝑖,𝑗  . If  𝜉 ∈ Ξ𝐿, 

we may assume that the family {𝑉𝜉𝑖}𝑖∈𝐼𝜉
contains a basis of  𝒦𝜉 , which we denote by 

{𝑉𝜉𝑖}𝑖∈𝐼𝜉
𝐿 .Then the family {𝑉𝜉𝑖

∗𝑒𝑁𝑉𝜉𝑖}𝑖,𝑗∈𝐼𝜉
 is a system of matrix units of  𝐴𝜉 . We prepare 

the following projections in 𝑁′ ∩ 𝑀1, 

(z𝐿)𝜉 ≔ ∑𝑉𝜉𝑖
∗𝑒𝑁𝑉𝜉𝑖

𝑖∈𝐼𝜉
𝐿

     for all 𝜉 ∈ Ξ𝐿, z𝐿 ≔ ∑(z𝐿)𝜉
𝑖∈Ξ𝐿

 .           

      In the following lemma, we determine the subfactor 𝐿 ⊂ 𝑀 at the GNS Hilbert space 

level. Our argument is essentially the same as the one given in [219], but the assumption 

there is different from ours. We present a proof for the completeness of our discussion. 

Lemma (4.1.4)[266]: With the above settings,  (z𝐿ℋ𝜑 = Λ𝜑 (𝐿)̅̅ ̅̅ ̅̅ ̅̅ ̅  holds. In particular, one 

has z𝐿 ∈ �́�  ∩ 𝑀1  and 𝑒𝑁 ≦ z𝐿 .  
Proof:  First we note that the following holds: 

 

z𝐿𝐻𝜑 = span{ Λ𝜑(𝑉𝜉𝑖
∗𝑁)| 𝜉 ∈ Ξ𝐿, 𝑖 ∈ 𝐼𝜉

𝐿 }̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ .                                                   (15) 

Indeed, let 𝑥 ∈ 𝑀. Then we have 

 

z𝐿Λ𝜑(𝑥) = ∑ ∑𝑉𝜉𝑖
∗𝑒𝑁𝑉𝜉𝑖

𝑖∈𝐼𝜉
𝐿𝜉∈Ξ𝐿

Λ𝜑(𝑥) = ∑ ∑(𝑉𝜉𝑖
∗𝐸𝑁

𝑀

𝑖∈𝐼𝜉
𝐿𝜉∈Ξ𝐿

(𝑉𝜉𝑖(𝑥)). 

Hence the left-hand side of (15) is contained in the right-hand one. The converse inclusion 

follows from 𝐸𝑁
𝑀(𝑉𝜉𝑖𝑉𝜉𝜂𝑖

∗ ) = 𝛿𝜉𝜂𝛿𝑖𝑗    for 𝜉𝜂 ∈ Ξ and 𝑖 ∈ 𝐼𝜉  , 𝑗 ∈ 𝐼𝜂 .  

    In particular, this yields z𝐿H𝜑 ⊂ Λ𝜑(𝐿)̅̅ ̅̅ ̅̅ ̅̅ . We will prove the equality by using the 

averaging technique presented in the proof of [219], as shown below. To prove it, we may 

and do assume that 𝑁, 𝐿 and M are factors of type III by tensoring with a type III factor. 

Assume that there would exist 𝑥 ∈ 𝐿 such that   Λ𝜑(𝑥) ∉ z𝐿𝐻𝜑. By the following equality: 
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(1 − z𝐿)Λ𝜑(𝑥) = ∑ ∑Λ𝜑(𝑉𝜉𝑖
∗𝐸𝑁

𝑀(𝑉𝜉𝑖𝑥)) +
𝑖∈𝐼𝜉𝜉∈Ξ\Ξ𝐿

= ∑ ∑ Λ𝜑(𝑉𝜉𝑖
∗𝐸𝑁

𝑀

𝑖∈𝐼𝜉\𝐼𝜉
𝐿𝜉∈Ξ𝐿

(𝑉𝜉𝑖𝑥), 

the following two cases could occur: (I) there exists 𝜉 ∈ Ξ\Ξ𝐿 such that 𝐸𝑁
𝑀(𝑉𝜉𝑖𝑥) ≠ 0for 

some 𝑖 ∈ 𝐼𝜉 or (II) there exists 𝜉 ∈ Ξ𝐿 such that  𝐸𝑁
𝑀(𝑉𝜉𝑖𝑥) ≠ 0for some 𝑖 ∈ 𝐼𝜉\𝐼𝜉

𝐿 . In case 

(I), we set 𝐼𝜉
𝐿 = ∅ and then proceed as with case (II). Assume that case (II) would occur. 

Take 𝜉 ∈ Ξ and 𝑖 ∈ 𝐼𝜉\𝐼𝜉
𝐿  such that 𝐸𝑁

𝑀(𝑉𝜉𝑖𝑥) ≠ 0 . Let 𝐸𝜉 ∶  𝑁 → 𝜌𝜉  (𝑁) be  the faithful 

normal conditional expectation with respect to 𝜌𝜉 . By using the equality  𝐸𝑁
𝑀(𝑉𝜉𝑖𝑎𝑥𝑏) =

 𝜌𝜉  (𝑎) 𝐸𝑁
𝑀(𝑉𝜉𝑖𝑥) 𝑏 for 𝑎, 𝑏 ∈ 𝑁, we may assume that  𝐸𝜉(𝐸𝑁

𝑀(𝑉𝜉𝑖𝑥)) = 1 since 𝑁 is of 

type III. 

     We take a hyperfinite subfactor  𝑅 ⊂ 𝑁 which is simple in the sense of [248]. Then 

consider the weakly closed convex set 

 

𝐶 ≔ 𝑐𝑜̅̅ ̅𝑤{𝑢𝑥𝜌𝜉(𝑢
∗)|𝑢 ∈ 𝑈(𝑅)} ⊂ 𝐿, 

where 𝑈(𝑅) is the set of all unitaries in R. The hyperfiniteness of 𝑅 assures that there 

exists a point 𝑤∗ ∈ 𝐶 such that w satisfies 𝑤𝑥 = 𝜌𝜉(𝑥)𝑤𝑥 for all 𝑥 ∈ 𝑅 and hence for all 

𝑥 ∈ 𝑁 by [219]. This shows 𝑤 ∈ 𝐿 ∩ℋ𝜉 = 𝒦𝜉  . Since 𝑖 ∈ 𝐼𝜉\𝐼𝜉
𝐿 , 𝑉𝜉𝑖  is orthogonal to 𝒦𝜉, 

that is, 𝐸𝑁
𝑀(𝑉𝜉𝑖𝑤

∗) = 𝑑(𝜉)−1(𝑉𝜉𝑖𝑤) = 0 . However 𝐸𝜉  (𝐸𝑁
𝑀(𝑉𝜉𝑖𝐶)) = {1},  and this is a 

contradiction. Therefore the cases (I) and (II) never occur, and for any  𝑥 ∈ 𝐿 ,  (1 −

z𝐿)Λ𝜑(𝑥) = 0. This implies that Λ𝜑(𝐿)̅̅ ̅̅ ̅̅ ̅̅ ⊂ z𝐿𝐻𝜑 . 

      By the previous lemma, we can describe the corner subalgebra z𝐿𝑀1z𝐿 in 𝑀1. 
Lemma (4.2.5)[266]: One has z𝐿𝑀1z𝐿 = 𝐿𝑒𝑁 𝐿

𝑤̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝐿z𝐿⋁{𝑒𝑁}
′′ . 

Proof: Recall that  𝑒𝑁𝑀1𝑒𝑁 = 𝑁𝑒𝑁. For 𝜉, 𝜂 ∈ Ξ , 𝑖 ∈ 𝐼𝜉
𝐿  and  , 𝑗 ∈ 𝐼𝜂

𝐿 , we have 

 

𝑉𝜉𝑖
∗𝑒𝑁𝑉𝜉𝑖𝑀1𝑉𝜂𝑗

∗𝑒𝑁𝑉𝜂𝑗 ⊂ 𝑉𝜉𝑖
∗𝑒𝑁𝑀1𝑒𝑁𝑉𝜂𝑗 ⊂ 𝑉𝜉𝑖

∗𝑁𝑒𝑁𝑉𝜂𝑗 ⊂ 𝐿𝑒𝑁𝐿. 

This implies that  z𝐿𝑀1z𝐿 ⊂ 𝐿𝑒𝑁 𝐿
𝑤̅̅ ̅̅ ̅̅ ̅̅ ̅. By the previous lemma, z𝐿 ∈ �́� ∩ 𝑀1 and  z𝐿𝑒𝑁 =

𝑒𝑁 . Since 𝑀1 contains 𝐿 and 𝑒𝑁, we have z𝐿𝑀1z𝐿 ⊃ 𝐿z𝐿⋁{𝑒𝑁}
′′ ⊃ 𝐿𝑒𝑁𝐿. Hence we have  

z𝐿𝑀1z𝐿 = 𝐿𝑒𝑁 𝐿
𝑤̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝐿z𝐿⋁{𝑒𝑁}

′′.  

     Next we will show that the two-step inclusion  𝑁z𝐿 ⊂ 𝐿z𝐿 ⊂ z𝐿𝑀1z𝐿 is identified with 

the basic extension of  𝑁 ⊂ 𝐿. One might be able to prove this by using the abstract 

characterization of the basic extension [219], Lemma (4.2.6). To apply that result, we need 

to show that the restriction �̂�𝑀
𝑀1 on z𝐿𝑀1z𝐿 is an operator valued weight from z𝐿𝑀1z𝐿 to 

𝐿z𝐿 ≅ 𝐿, but we do not have a proof for such a statement yet. We avoid using this method 

and directly compare the basic extension of  𝑁 ⊂ 𝐿 with 𝑁z𝐿 ⊂ 𝐿z𝐿 ⊂ z𝐿𝑀1z𝐿 instead. 

     We set 𝜓 ≔ 𝜔 ∘ 𝐸𝑁
𝐿 ∈ 𝐿∗ .Then  𝜑 |

4
𝐿
= 𝜓 |

4
𝐿

 holds trivially. Let  {𝐻𝜓, Λ𝜓} be the GNS 

representation of  𝐿 associated with the state 𝜓. Let 𝑓𝑁 ∈ 𝐵(𝐻𝜓) be the Jones projection 

defined by  𝑓𝑁Λ𝜓(𝑥) = Λ𝜓(𝐸𝑁
𝐿(𝑥)) for  𝑥 ∈ 𝐿. We set  𝐿1 ∶= 𝐿⋁{𝑓𝑁}

′′ ⊂ 𝐵(𝐻𝜓. Then we 

obtain 

the Jones’ basic extension 𝑁 ⊂ 𝐿 ⊂ 𝐿1  associated with 𝐸𝑁
𝐿  .The dual operator valued 

weight of  𝐸𝑁
𝐿  is denoted by �̂�𝐿

𝐿1. Note that we do not know whether �̂�𝐿
𝐿1 is semifinite on 

�́� ∩ 𝐿1  or not. Set a weight  𝜓1 ≔ 𝜓 ∘ �̂�𝐿
𝐿1 ∈ 𝒫(𝐿1, ℂ) . Let  {𝐻𝜓1

, Λ𝜓1
}  be the GNS 

representation of  𝐿1 associated with the weight 𝜓1. Recall the weight  𝜑1 = 𝜑 ∘ �̂�𝑀
𝑀1 on 
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𝑀1. Let {𝐻𝜑1
, Λ𝜑1

}  be the GNS representation of  𝑀1 associated with the weight 𝜑1. Then 

the following holds [219]: 

 

𝐻𝜓1
= Λ𝜓1

(𝐿𝑓𝑁𝐿)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ,         𝐻𝜑1
= Λ𝜑1

(𝑀𝑒𝑁𝑀)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 

We introduce an isometry 𝑈 ∶ 𝐻𝜓1
→ 𝐻𝜑1

  satisfying 

 

𝑈Λ𝜓1
(𝑥𝑓𝑁𝑦) = Λ𝜑1

(𝑥𝑒𝑁𝑦),        𝑓𝑜𝑟 𝑥, 𝑦 ∈ 𝐿. 

The well-definedness is verified as follows. For 𝑥, 𝑦, 𝑎, 𝑏 ∈ 𝐿, we have 

 

〈Λ𝜑1
(𝑥𝑒𝑁𝑦), Λ𝜑1

(𝑎𝑒𝑁𝑏)〉 = 𝜑1(𝑎
∗𝑒𝑁𝑏

∗𝑥𝑒𝑁𝑦) = 𝜑1(𝑏
∗𝐸𝑁

𝑀(𝑎∗𝑥)𝑒𝑁𝑦)                       

                                   = 𝜑 ∘ �̂�𝑀
𝑀1(𝑏∗𝐸𝑁

𝑀(𝑎∗𝑥)𝑒𝑁𝑦) = 𝜑(𝑏∗𝐸𝑁
𝑀(𝑎∗𝑥)𝑦) 

                                   = 𝜓(𝑏∗𝐸𝑁
𝐿(𝑎∗𝑥)𝑦) = 〈Λ𝜓1

(𝑥𝑓𝑁𝑦), Λ𝜓1
(𝑎𝑓𝑁𝑏)〉. 

Lemma (4.2.6)[266]: One has 𝑥𝑈 =  𝑈𝑥 for 𝑥 ∈ 𝐿 and 𝑒𝑁𝑈 =  𝑈𝑓𝑁. 

Proof: Since the subspace Λ𝜓1
(𝐿𝑓𝑁𝐿) ⊂ 𝐻𝜓1

 is dense, it suffices to show the equalities on   

Λ𝜓1
(𝐿𝑓𝑁𝐿). Let  𝑥, 𝑎, 𝑏 ∈ 𝐿. Then we have 

𝑥𝑈Λ𝜓1
(𝑎𝑓𝑁𝑏) = 𝑥Λ𝜑1

(𝑎𝑒𝑁𝑏) = Λ𝜑1
(𝑥𝑎𝑒𝑁𝑏) = 𝑈Λ𝜓1

(𝑥𝑎𝑓𝑁𝑏) = 𝑈𝑥Λ𝜓1
(𝑎𝑓𝑁𝑏). 

Hence 𝑥𝑈 = 𝑈𝑥. Next  𝑒𝑁𝑈 =  𝑈𝑓𝑁  is verified as follows: 

 

𝑒𝑁𝑈Λ𝜓1
(𝑎𝑓𝑁𝑏) = 𝑒𝑁Λ𝜑1

(𝑎𝑒𝑁𝑏) = Λ𝜑1
(𝑒𝑁𝑎𝑒𝑁𝑏)                                 

        = Λ𝜑1
(𝐸𝑁

𝑀(𝑎)𝑒𝑁𝑏) = Λ𝜑1
(𝐸𝑁

𝐿(𝑎)𝑒𝑁𝑏) 

         = 𝑈Λ𝜓1
(𝐸𝑁

𝐿(𝑎)𝑓𝑁𝑏) = 𝑈𝑓𝑁Λ𝜓1
(𝑎𝑓𝑁𝑏). 

        Set the range projection   𝑝𝐿 ∶=  𝑈𝑈∗ ∈ 𝐵(𝐻𝜑1
) . It is clear that  𝑝𝐿𝐻𝜑1

=

Λ𝜑1
(𝐿𝑒𝑁𝐿)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . By the previous lemma or the definition of 𝑝𝐿, 𝑝𝐿 commutes with 𝐿 and 𝑒𝑁. In 

particular, 𝑝𝐿 ∈ (𝐿z𝐿)
′  ∩ {𝑒𝑁}

′ ⊂ 𝐵(𝐻𝜑1
) . 

        The subspace z𝐿𝐻𝜑1
 plays a similar role to the GNS Hilbert space of z𝐿𝑀1z𝐿 

associated with the restricted weight  𝜑1 |
2

z𝐿𝑀1z𝐿
 ,but  𝑝𝐿𝐻𝜑1

 may not coincide with the 

closure of  Λ𝜑1
(𝑛𝜑1

∩ z𝐿𝑀1z𝐿) because the function 𝑡 ∈ ℝ ↦ 𝜎𝑡
𝐸𝑁
𝑀∘�̂�𝑁

𝑀1

(z𝐿) ∈ 𝑁′ ∩𝑀1   

may not extend 

to the bounded analytic function on the strip {𝑧 ∈ ℂ|0 ≦ Im (𝑧) ≦ 1 2⁄ }. However, the 

following lemma is sufficient for our purpose. 

Lemma (4.2.7)[266]: 𝐼𝑛 𝐵(𝐻𝜑1
), 𝑝𝐿 ≦ z𝐿 holds. 

Proof: Using z𝐿 ∈ 𝐿′ ∩𝑀1 and  z𝐿eN = eN, we have  

 

z𝐿 𝑝𝐿𝐻𝜑1
= z𝐿 Λ𝜑1

(𝐿𝑒𝑁𝐿)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = Λ𝜑1
(𝐿z𝐿𝑒𝑁𝐿)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = Λ𝜑1

(𝐿𝑒𝑁𝐿)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝑝𝐿𝐻𝜑1
. 

Hence 𝑝𝐿 ≦ z𝐿 . 
Lemma (4.2.8)[266]: There exists an isomorphism Ψ𝐿 ∶ z𝐿𝑀1z𝐿 → 𝐿1 such that: 

     (i) Ψ𝐿(𝑥z𝐿) = 𝑥 for  𝑥 ∈ 𝐿. 

      (i) Ψ𝐿(𝑒𝑁) = 𝑓𝑁 . 
In particular, the inclusions 𝑁z𝐿 ⊂ 𝐿z𝐿 ⊂ z𝐿𝑀1z𝐿 and 𝑁 ⊂ 𝐿 ⊂ 𝐿1 are isomorphic. 

Proof: We define the normal positive map Ψ𝐿: z𝐿𝑀1z𝐿 → 𝐵(𝐻𝜓1
) by 

 

Ψ𝐿(𝑥) = 𝑈∗𝑥𝑈      for 𝑥 ∈ z𝐿𝑀1z𝐿. 
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Since 𝑝𝐿  commutes with 𝐿z𝐿⋁{𝑒𝑁}
′′ = z𝐿𝑀1z𝐿  as is remarked after Lemma (4.2.6), we 

see that Ψ𝐿 is multiplicative. By the previous lemma, we have 

 

Ψ𝐿(z𝐿) = 𝑈∗z𝐿𝑈 = 𝑈∗z𝐿𝑝𝐿𝑈 = 𝑈∗𝑝𝐿𝑈 = 1,      
that is, Ψ𝐿 is unital. Hence Ψ𝐿 is a unital _-homomorphism. By Lemma (4.2.6), the range 

of Ψ𝐿  is equal to 𝑈∗(𝐿z𝐿 ∨ {𝑒𝑁}
′′)𝑈 = 𝐿 ∨ {𝑓𝑁}

′′ = 𝐿1 . Also we have Ψ𝐿(𝑥 z𝐿) = 𝑥  for 

𝑥 ∈ 𝐿 and Ψ𝐿(𝑒𝑁) = 𝑓𝑁. Since z𝐿𝑀1z𝐿 is a factor, Ψ𝐿 is an isomorphism onto 𝐿1. 

Theorem (4.2.9)[266]: Let 𝑁 ⊂ 𝑀 be an irreducible inclusion of discrete type. Let 𝑁 ⊂
𝐿 ⊂ 𝑀 be an intermediate subfactor. Then one has the following: 

    (i) The inclusion 𝑁 ⊂ 𝑀 is discrete. 

   (ii) Suppose that 𝑁 is infinite. Let  𝛾𝑁
𝑀 and 𝛾𝑁

𝐿  be the canonical endomorphisms for 𝑁 ⊂

𝑀 and 𝑁 ⊂ 𝐿, respectively. Then [𝛾𝑁
𝑀 |

𝑁
𝑁
]contains [𝛾𝑁

𝐿 |
𝑁
𝑁
] in Sect (𝑁). 

  (iii) Suppose that 𝑁 is infinite and [𝛾𝑁
𝐿 |
𝑁
𝑁
] has in Sect  (𝑁) the following decomposition 

into irreducible sectors  [𝜌𝜉], 𝜉 ∈ Ξ𝐿 ∶ 

[𝛾𝑁
𝐿 |
𝑁
𝑁
] = ⨁

𝜉∈Ξ𝐿
𝑚𝜉 [𝜌𝜉]          

Set  𝒦𝜉 = {𝑉 ∈ 𝐿|𝑉𝑥 = 𝜌𝜉(𝑥) 𝑉  for all 𝑥 ∈ 𝑁}  for 𝜉 ∈ Ξ𝐿 . Then one has 𝑚𝜉 =

 dim(𝒦𝜉) and 𝐿 is weakly spanned by 𝒦𝜉
∗ 𝑁, 𝜉 ∈ Ξ. 

Proof: (i) We may and do assume that 𝑁 is infinite by tensoring with an infinite factor if 

necessary. For 𝜉 ∈ Ξ𝐿, we define the matrix algebra  𝐵𝜉 ⊂ 𝑁′ ∩𝑀1  by 𝐵𝜉  𝒦𝜉
∗𝑒𝑁𝒦𝜉 .Then 

it is easy to see that  z𝐿𝐴𝜉z𝐿 = (z𝐿)𝜉𝐴𝜉(z𝐿)𝜉 = 𝐵𝜉. Hence we have 

 

z𝐿(𝑁
′ ∩𝑀1)z𝐿 = ⨁

𝜉∈Ξ𝐿
𝐵𝜉 . 

Let Ψ𝐿 ∶  z𝐿𝑀1z𝐿 → 𝐿1 be the isomorphism constructed in the previous lemma. Using the 

equalities 

 

      Ψ𝐿(z𝐿(𝑁
′ ∩𝑀1)z𝐿) = Ψ𝐿((𝑁z𝐿)

′ ∩ z𝐿𝑀1z𝐿) = 𝑁′ ∩ 𝐿1 and Ψ𝐿(𝐵𝜉) = 𝒦𝜉
∗𝑓𝑁𝒦𝜉 , 

We have  

𝑁′ ∩ 𝐿1 = ⨁
𝜉∈Ξ𝐿

𝒦𝜉
∗𝑓𝑁𝒦𝜉 . 

Since  �̂�𝐿
𝐿1  is finite on each matrix algebra 𝒦𝜉

∗𝑓𝑁𝒦𝜉 , �̂�𝐿
𝐿1  is semi-finite on 𝑁′ ∩ 𝐿1 . 

Therefore the inclusion 𝑁 ⊂ 𝐿 is discrete. 

    (ii) Take 𝑉 ⊂ 𝒦𝜉  such that 𝑉∗𝑓𝑁𝑉  is a minimal projection in  𝒦𝜉
∗𝑓𝑁𝒦𝜉  .Note that  

𝐸𝑁
𝐿(𝑉∗𝑉) = 1. The projection 𝑉∗𝑓𝑁𝑉 corresponds to an irreducible sector in Sect (𝑁). The 

sector is actually equal to [𝜌𝜉] ∈ 𝑆𝑒𝑐𝑡(𝑁) as seen below. Set   𝑊:= 𝑓𝑁𝑉 ∈ 𝐿1 . Using 

𝑊𝑊∗ = 𝑓𝑁𝐸𝑁
𝐿(𝑉∗𝑉)𝑓𝑁 = 𝑓𝑁 and  𝑊∗𝑊 = 𝑉∗𝑓𝑁𝑉 , we have 

 

𝑓𝑁𝜌𝜉(𝑥) = 𝑊𝑊∗𝜌𝜉(𝑥) = 𝑊𝑉∗𝑓𝑁𝜌𝜉(𝑥) = 𝑊𝑉∗𝜌𝜉(𝑥)𝑓𝑁 = 𝑊𝑥𝑉∗𝑓𝑁 = 𝑊𝑥𝑊∗. 

By [219]  the minimal projection 𝑉∗𝑓𝑁𝑉  corresponds to [𝜌𝜉] , and the canonical 

endomorphism  𝛾𝑁
𝐿 : 𝐿 → 𝑁 has the following decomposition in Sect (𝑁): 

[𝛾𝑁
𝐿 |
𝑁
𝑁
] = ⨁

𝜉∈Ξ𝐿
dim(𝒦𝜉)[𝜌𝜉]. 
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From this, we see that [𝛾𝑁
𝐿 |
𝑁
𝑁
]  is contained in [𝛾𝑁

𝑀 |
𝑁
𝑁
]  because each irreducible is 

contained in [𝛾𝑁
𝑀 |
𝑁
𝑁
] and we trivially have dim (𝒦𝜉) ≦ dim(ℋ𝜉). 

    (iii) Apply [219] to the discrete inclusion 𝑁 ⊂ 𝐿. 

We apply Theorem (4.2.9) to inclusions of factors coming from minimal actions of 

compact quantum groups, and we obtain the Galois correspondence (Theorem (4.2.18)). 

        We briefly explain compact quantum groups and their actions. We adopt the 

definition of a compact quantum group that is introduced in [177], Definition (4.2.3) as 

follows: 

Definition (4.2.10)[266]: A compact quantum group 𝔾 is a pair (𝐶(𝔾), 𝛿) that satisfies 

the following conditions: 

   (i) 𝐶(𝔾) is a separable unital 𝐶∗-algebra. 

  (ii) The map 𝛿: 𝐶(𝔾) → 𝐶(𝔾)⨂𝐶(𝔾)  is a coproduct, i.e. it is a faithful unital *- 

homomorphism satisfying the coassociativity condition, 

(𝛿⨂id) ∘ 𝛿 = (id⨂𝛿) ∘ 𝛿. 
  (iii) The vector spaces 𝛿(𝐶(𝔾))(ℂ⨂𝐶(𝔾))  and 𝛿(𝐶(𝔾))(𝐶(𝔾)⨂𝐶)  are dense in 

𝐶(𝔾)⨂𝐶(𝔾). 
    Let ℎ be the Haar state on 𝐶(𝔾), which satisfies the invariance condition: 

 

                     (id⨂ℎ)(𝛿(𝑎)) = ℎ(𝑎)1 = (ℎ⨂id)(𝛿(𝑎))    for all 𝑎 ∈ 𝐶(𝔾). 
We always assume that the Haar state is faithful. If the Haar state is tracial, we say that the 

compact quantum group is of 𝐾ac type [229]. 

      Let {𝐿2(𝔾), Λℎ} be the GNS representation of 𝐶(𝔾) associated with  ℎ. We define the 

von Neumann algebra  𝐿∞(𝔾) = 𝐶(𝔾)𝑤̅̅ ̅̅ ̅̅ ̅̅ ̅ ⊂ 𝐵(𝐿2(𝔾)). We can extend the coproduct 𝛿 to  

𝐿∞(𝔾) by the standard procedure [269]. The extended coproduct is also denoted by 𝛿. 

Then the pair  (𝐿∞(𝔾), 𝛿) is a von Neumann algebraic compact quantum group in the 

sense of [269]. 

      Let 𝐻 be a Hilbert space. We say that a unitary 𝜐 ∈ 𝐿∞(𝔾)⨂𝐵(𝐻) is a (left) unitary 

representation on 𝐻 when it satisfies ( 𝛿⨂id)(𝜐) = 𝜐13 𝜐23. The unitary representation v 

is said to be irreducible if  {𝑇 ∈ 𝐵(𝐻)|(1⨂𝑇)𝜐 = 𝜐(1⨂𝑇) =  ℂ} . The set of the 

equivalence classes of all irreducible unitary representations is denoted by Irr(𝔾). For 𝜋 ∈
Irr(𝔾), take a representative  𝜐𝜋 ∈ 𝐿∞ (𝔾)⨂𝐵(𝐾𝜋). Then it is well-known that 𝐾𝜋 is finite 

dimensional. Set 𝑑𝜋 ∶= dim(𝐾𝜋). We denote by 𝐿∞(𝔾)𝜋 the subspace of  𝐿∞(𝔾) that is 

spanned by the entries of  𝜐𝜋. Then the subspace 𝐴(𝔾) = 𝑠𝑝𝑎𝑛{𝐿∞(𝔾)𝜋| 𝜋 ∈ Irr(𝔾)}  is a 

weakly dense unital *-subalgebra of  𝐿∞(𝔾). 
      We also use the modular objects of  𝐿∞(𝔾) . Let  {𝑓𝑧}𝑧∈𝔾  be the Woronowicz 

characters on  𝐴(𝔾) . For its characterization, readers are referred to [177]. Then the 

modular automorphism group {𝜎𝑡
ℎ}

𝑡∈ℝ
 on 𝐴(𝔾) is given by 

𝜎𝑡
ℎ(𝑥) = (𝑓𝑖𝑡⨂id⨂𝑓𝑖𝑡) ((𝛿⨂id)(𝛿(𝑥)))        for all 𝑡 ∈ ℝ, 𝑥 ∈ 𝐴(𝔾). 

We define the following map 𝜏𝑡 ∶ 𝐴(𝔾) → 𝐴(𝔾)  by 

𝜏𝑡(𝑥) = (𝑓𝑖𝑡⨂id⨂𝑓−𝑖𝑡) ((𝛿⨂id)(𝛿(𝑥)))        for all 𝑡 ∈ ℝ, 𝑥 ∈ 𝐴(𝔾). 
Then {𝜏𝑡}𝑡∈ℝ is a one-parameter automorphism group on 𝐴(𝔾) and it is called the scaling  

automorphism group. Since the Haar state h is invariant under the *-preserving maps 𝜎𝑡
ℎ 

and 𝜏𝑡 , we can extend them to the maps on 𝐶(𝔾), and on  𝐿∞(𝔾). By definition, we have 
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𝜎𝑡
ℎ(𝑥) = (𝑓2𝑖𝑡⨂𝜏−𝑡) (𝛿(𝑥))       for all  𝑥 ∈ 𝐴(𝔾).                                 (16) 

     We recall the notion of a left coideal von Neumann algebra introduced in [219] . We 

simply call it a left coideal. 

Definition (4.2.11)[266]: Let 𝐵 ∈ 𝐿∞(𝔾) be a von Neumann subalgebra. We say that 𝐵 is 

a left coideal if  𝛿(𝐵) ⊂ 𝐿∞(𝔾)⨂𝐵. 

      If 𝐺 comes from an ordinary compact group, it is known that any left coideal is of the 

form  𝐿∞(𝔾)/ℍ  for a closed subgroup ℍ ⊂ 𝔾 [43] . Therefore a left coideal can be 

considered as an object like a ‘‘closed subgroup’’ of 𝔾. Even in quantum case, we can also 

introduce the notion of a closed quantum subgroup ℍ ⊂ 𝔾 as [167]. However when G is 

not a compact group, not all the left coideals of 𝔾 have quotient forms as  𝐿∞(𝔾)/ℍ  ( 
[271], [167], [274]). For a compact quantum group satisfying a certain condition, we have 

a necessary and sufficient condition so that a left coideal is of the form 𝐿∞(𝔾)/ℍ ( [275]. 

     Now let 𝐵 be a left coideal, and we put  𝐵𝜋: = 𝐵 ∩ 𝐿∞(𝔾)𝜋. Since 𝐵 admits the left 𝔾-

action  𝛿, 𝐵 is weakly spanned by 𝐵𝜋 , 𝜋 ∈ Irr(𝔾) . 
Lemma (4.2.12)[266]: Let 𝐵 ⊂ 𝐿∞(𝔾) be a left coideal and 𝜋 ∈ Irr(𝔾). Then there exist a 

unitary representation 𝑢𝜋 = (𝑢𝜋𝑖,𝑗)𝑖,𝑗∈𝐼𝜋  and a subset  𝐼𝜋
𝐵  ⊂ 𝐼𝜋  such that: 

   (i) 𝑢𝜋 is equivalent to 𝜐𝜋. 

  (ii) 𝐵𝜋 = span {(𝑢𝜋𝑖,𝑗| 𝑖 ∈ 𝐼𝜋 , 𝑗 ∈ 𝐼𝜋
𝐵 }. 

Proof: Let Hom𝔾 (𝐾𝜋 , 𝐿
∞(𝔾)) be the set of 𝔾 -linear maps from 𝐾𝜋 into 𝐿∞(𝔾), that is, it 

consists of linear maps  𝑆 ∶  𝐾𝜋  → 𝐿∞(𝔾) such that  𝛿 ∘ 𝑆 = (𝑖𝑑⨂𝑆) ∘ 𝜐𝜋 , where 𝜐𝜋  is 

regarded as a map from 𝐾𝜋 to 𝐿∞(𝔾)𝜋⨂𝐾𝜋 . Similarly we define Hom𝔾 (𝐾𝜋 , 𝐵) , which is 

a subspace of  Hom𝔾 (𝐾𝜋, 𝐿
∞(𝔾)) .Let (ℰ𝑖)𝑖∈𝐼𝜋be an orthonormal basis of 𝐾𝜋. We prepare 

the inner product of  Hom𝔾 (𝐾𝜋, 𝐿
∞(𝔾)) defined by 

〈𝑆|𝑇〉1 ≔ ∑𝑇(𝜀𝑖)
∗𝑆(𝜀𝑖)

𝑖∈𝐼𝜋

. 

Then Hom𝔾 (𝐾𝜋 , 𝐿
∞(𝔾)) is a Hilbert space of dimension 𝑑𝜋 . We take an orthonormal 

basis  {𝑆𝑖}𝑖∈𝐼𝜋  of Hom𝔾  (𝐾𝜋, 𝐿
∞(𝔾)) which contains an orthonormal basis of  

Hom𝔾(𝐾𝜋 , 𝐵)denoted  by  {𝑆𝑖}𝑖∈𝐼𝜋𝐵 . 

      We define the linear map 𝑇𝑗 ∶  𝐾𝜋  → 𝐿∞(𝔾) by 𝑇𝑗(𝜀𝑖) = 𝜐𝜋𝑖𝑗  for  𝑗 ∈ 𝐼𝜋 . Then it is 

easy to see that  {𝑇𝑗}𝑗∈𝐼𝜋
 is an orthonormal basis of  Hom𝔾  (𝐾𝜋, 𝐿

∞(𝔾)) .Hence there 

exists a unitary matrix  𝜈𝜋𝑖𝑗 ∶= {𝜈𝑖}𝑖,𝑗∈𝐼𝜋  in  𝐵(𝐶|𝐼𝜋|) such that for 𝑖 ∈ 𝐼𝜋 , 

𝑆𝑖 = ∑ 𝜈𝜋𝑗𝑖
𝑗∈𝐼𝜋

𝑇𝑗 . 

We define the unitary representation 𝑢𝜋 ∶= (1⨂𝜈𝜋
∗)𝜐𝜋(1⨂𝜈𝜋). Then we have 

𝑢𝜋𝑖𝑗 = ∑ (𝜈𝜋
∗

𝑘,ℓ∈𝐼𝜋

)𝑖𝑘𝜐𝜋ℓ𝑗 = ∑ (𝜈𝜋
∗

𝑘,ℓ∈𝐼𝜋

)𝑖𝑘𝜈𝜋ℓ𝑗𝑇ℓ(𝜀𝑘) 

      = ∑(𝜈𝜋
∗

𝑘∈𝐼𝜋

)𝑖𝑘𝑆𝑗(𝜀𝑘) = 𝑆𝑗 (∑(𝜈𝜋
∗

𝑘∈𝐼𝜋

)𝑖𝑘𝜀𝑘), 

and  
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𝑆𝑗(𝜀𝑘) = ∑𝜈𝜋𝑘𝑖
𝑖∈𝐼𝜋

𝑢𝜋𝑘𝑖 . 

           Therefore 𝑢𝜋𝑖𝑗 ∈ 𝐵 for all 𝑖 ∈ 𝐼𝜋 and  𝑗 ∈ 𝐼𝜋
𝐵 , and they span 𝐵𝜋. 

        Let 𝑀 be a von Neumann algebra and 𝔾 a compact quantum  group. Let  𝛼 ∶ 𝑀 →
𝑀⨂𝐿∞(𝔾) be a unital faithful normal *-homomorphism. We say that a is an action of 𝔾 

on 𝑀  if   (𝛼⨂id) ∘ 𝛼 = (id⨂𝛿) ∘ 𝛼   . When the subspace {(∅⨂id)(𝛼(𝑀))|∅ ∈ 𝑀∗} is 

weakly dense in  𝐿∞(𝔾) , we say that a has full spectrum. Set 𝑀𝛼 ∶=  {𝑥 ∈ 𝑀|𝛼(𝑥) =
𝑥⨂1} . We recall the notion of minimality of an action which is introduced in [219], 

Definition (4.2.28) (i). 

Definition (4.2.13)[266]: Let 𝛼 ∶ 𝑀 → 𝑀⨂𝐿∞(𝔾) be an action. We say that a is minimal 

if 𝛼 has full spectrum and satisfies  (𝑀𝛼)′ ∩𝑀 = ℂ . 
     Let 𝛼 be a minimal action of 𝔾 on 𝑀. We set  𝑁 = 𝑀𝛼. Then the action a is dual when 

𝑁 is infinite ( [277]) that is, there exists a 𝔾 -equivariant embedding of  𝐿∞(𝔾) into 𝑀. We 

can prove this result in the same line as the proof of [279],  where minimal actions of 

compact 𝐾ac algebras have been considered. In particular, [279], also holds for minimal 

actions of compact quantum groups. Hence for any  𝜋 ∈ Irr(𝔾), there exists a Hilbert 

space ℋ𝜋 ⊂ 𝑀  with support 1 such that 𝛼(ℋ𝜋) ⊂ ℋ𝜋⨂𝐿
∞(𝔾) . If  {𝑉𝜋𝑖}𝑖∈𝐼𝜋

 is an 

orthonormal basis of  ℋ𝜋 , there exists 𝑤𝜋𝑖𝑗 ∈ 𝐿∞(𝔾)𝜋 for 𝑖, 𝑗 ∈ 𝐼𝜋  such that 

(𝑉𝜋𝑖
∗ ⨂1)𝛼(𝑉𝜋𝑖) = 1⨂𝑤𝜋𝑗𝑖  .Then we see that the matrix (𝑤𝜋𝑖,𝑗  )𝑖,𝑗∈𝐼𝜋   is a unitary 

representation equivalent to 𝜐𝜋. Hence we may assume that 𝑤𝜋𝑖𝑗 = 𝜐𝜋𝑖𝑗 by taking the new 

(𝑉𝜋𝑖  )𝑖∈𝐼𝜋  if necessary, that is, we have 

 

𝛼𝑉𝜋𝑖 = ∑𝑉𝜋𝑗
𝑗∈𝐼𝜋

𝑥⨂𝜐𝜋𝑗𝑖 .                                                              (17) 

Let 𝜌ℋ𝜋
∈ End 𝑀 be the endomorphism implemented by the Hilbert space ℋ𝜋, that is, 

 

𝜌ℋ𝜋
(𝑥) = ∑𝑉𝜋𝑖

𝑖∈𝐼𝜋

𝑥𝑉𝜋𝑖
∗      𝑓𝑜𝑟 𝑥 ∈ 𝑀. 

Then it is easy to see that   𝜌ℋ𝜋
(𝑁) ⊂ 𝑁, , and we denote  𝜌ℋ𝜋

|𝑁  by 𝜌𝜋  ,which is 

irreducible. Note that  [𝜌𝜋|𝑁] ∈ Sect(𝑁)  does not depend on the choice of  ℋ𝜋 . Let 

 𝜋, 𝜎 ∈ Irr (𝔾). Then by minimality of  𝛼, it is shown that  [𝜌𝜋] =  [𝜌𝜎] ∈ Sect(𝑁) if and 

only if  𝜋 = 𝜎. 

      Define the conditional expectation  𝐸:= (id⨂ℎ) ∘ 𝛼 a from 𝑀 onto 𝑁. Take a faithful 

state 𝜔 ∈ 𝑁∗  and  𝜑 ≔ 𝜔 ∘ 𝐸 ∈ 𝑀 . Let  [𝐻𝜑 , Λ𝜑]  be the GNS representation of  𝑀 

associated with  𝜑 . Let  𝑁 ⊂ 𝑀 ⊂ 𝑀1 ∶= 𝑀⋁{𝑒𝑁}
′′  be the basic extension where the 

Jones projection 𝑒𝑁 ∈ 𝑀1 is defined by 𝑒𝑁Λ𝜑(𝑥) = Λ𝜑(𝐸(𝑥)) for  𝑥 ∈ 𝑀.We denote by  

 �̂� ∈ 𝒫(𝑀1, 𝑀) the dual operator valued weight associated with 𝐸. 

      Now we assume that 𝑁 is infinite. Take ℋ𝜋 as before. Set 𝐴𝜋 ∶= ℋ𝜋
∗ 𝑒𝑁ℋ𝜋.Then 𝐴𝜋 is 

contained in  𝑁′ ∩𝑀1 , and {𝐴𝜋}𝜋∈Irr (𝔾)  are 𝑑𝜋 × 𝑑𝜋 -matrix algebras, respectively. 

Moreover on 𝐴𝜋, the weight  𝐸 ∘ �̂�  is finite. Let  𝑧𝜋 ∈ 𝐴𝜋 be the unit projection. 

Lemma (4.2.14)[266]: When Ma is infinite, the following statements hold: 
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(i) 1 = ∑ 𝑧𝜋𝜋∈Irr (𝔾) . 

 

(ii) 𝑁′ ∩𝑀1 = ⨂
𝜋∈Irr (𝔾)

𝐴𝜋 . 

(iii) The inclusion 𝑁 ⊂ 𝑀 is discrete. 

Proof: (i) Take {𝑊𝜋𝑘}𝑘=1
𝑑𝜋

 in ℋ𝜋 such that   𝐸(𝑊𝜋𝑘𝑊𝜋𝑘
∗ ) = 𝛿𝑘,ℓ 1. Then we have 

𝑧𝜋 = ∑𝑊𝜋𝑘
∗ 𝑒𝑁

𝑑𝜋

𝑘=1

𝑊𝜋𝑘 .                

Since 𝑀 is weakly spanned by ℋ𝜋
∗𝑁, 𝜋 ∈ Irr (𝔾), we have 

 

𝐻𝜑 = span{Λ𝜑(ℋ𝜋
∗𝑁)|𝜋 ∈ Irr (𝔾)}̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ .  

For any 𝑥 ∈ 𝑁 and 𝑉𝜎 ∈ ℋ𝜎 with 𝜎 ≠  𝜋, we have 

𝑧𝜋Λ𝜑(𝑉𝜋
∗𝑥) = ∑𝑊𝜋𝑘

∗ Λ𝜑

𝑑𝜋

𝑘=1

(𝐸(𝑊𝜋𝑘𝑉𝜎
∗)𝑥) = 0, 

where we have used  𝐸(ℋ𝜋ℋ𝜎
∗) = 0  in the last equality. If  𝜎 =  𝜋, we have 

𝑧𝜋Λ𝜑(𝑉𝜋
∗𝑥) = Λ𝜑(𝑉𝜋

∗𝑥). 

Hence the range space of 𝑧𝜋 coincides with  Λ𝜑(ℋ𝜋
∗𝑁), and {𝑧𝜋}𝜋∈Irr (𝔾) is a partition of 

unity. 

   (ii) We first show that 𝑧𝜋 is a central projection in   𝑁′ ∩𝑀1. For  𝜋 ∈ Irr (𝔾), take 

{𝑊𝜋𝑘}𝑘=1
𝑑𝜋

  as above. It  suffices to prove that  𝑧𝜋(𝑁
′ ∩𝑀1)𝑧𝜎 = 0  if  𝜋 ≠ 𝜎  . Let 𝑥 ∈

𝑁′ ∩𝑀1 and take 𝑥0 ∈ 𝑁 such that  𝑥0𝑒𝑁 = 𝑒𝑁𝑊𝜋𝑘𝑥𝑊𝜎ℓ
∗ 𝑒𝑁. Then for any  𝑦 ∈ 𝑁, we have 

 

𝑥0𝜌𝜎(𝑦)𝑒𝑁 = 𝑒𝑁𝑊𝜋𝑘𝑥𝑊𝜎ℓ
∗𝜌𝜎(𝑦)𝑒𝑁 = 𝑒𝑁𝑊𝜋𝑘𝑥𝑦𝑊𝜎ℓ

∗ 𝑒𝑁 

 

                      = 𝑒𝑁𝑊𝜋𝑘𝑦𝑥𝑊𝜎ℓ
∗ 𝑒𝑁 = 𝑒𝑁𝜌𝜋(𝑦)𝑊𝜋𝑘𝑥𝑊𝜎ℓ

∗ 𝑒𝑁 

 

= 𝜌𝜋(𝑦)𝑥0𝑒𝑁 .                              
This shows that 𝑥0  intertwines 𝜌𝜎  and   𝜌𝜋 . So, we get  𝑥0 = 0 .  Hence we have  

𝑒𝑁𝑊𝜋𝑘
(𝑁′ ∩𝑀1)𝑊𝜎ℓ

∗ 𝑒𝑁 = 0 and    𝑧𝜋(𝑁
′ ∩𝑀1)𝑧𝜎 = 0. 

      Second we show that each 𝑝𝑘 ∶= 𝑊𝜋𝑘
∗  𝑒𝑁𝑊𝜋𝑘 is a minimal projection in  𝑁′ ∩𝑀1. This  

is because the reduced inclusion  𝑁𝑝𝑘 ⊂ 𝑝𝑘𝑀1𝑝𝑘 is isomorphic to the irreducible inclusion 

𝜌𝜋(𝑁) ⊂ 𝑁. Hence   𝑁′ ∩𝑀1 is the direct sum of   𝐴𝜋 , 𝜋 ∈ Irr (𝔾).  
    (iii) This is trivial by (ii) because   �̂� is finite on each 𝐴𝜋 . 
By the previous lemma, we can regard  Ξ = Irr (𝔾). 
Definition (4.2.15)[266]: Let 𝛼: 𝑀 → 𝑀⨂𝐿∞(𝔾) be a minimal action. 

    (i) For an intermediate subfactor  𝑀𝛼 ⊂ 𝐿 ⊂ 𝑀 , we define the weakly closed 

subspace ℒ(𝐿) ⊂ 𝐿∞(𝔾) by 

ℒ(𝐿) = span̅̅ ̅̅ ̅̅ 𝑤{(𝜔⨂id)(𝛼(𝐿))|𝜔 ∈ 𝑀∗}. 
   (ii) For a left coideal   𝐵 ⊂ 𝐿∞(𝔾), we define the intermediate subfactor 

 

𝑀𝛼 ⊂ ℳ(𝐵) ⊂ 𝑀              
by 
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ℳ(𝐵) = {𝑥 ∈ 𝑀|𝛼(𝑥) ∈ 𝑀⨂𝐵}. 

        We also denote by  ℒ
𝛼
(𝐿),ℳ𝛼(𝐵) for ℒ(𝐿),ℳ(𝐵)  when we want to specify the 

action a.  

Lemma (4.2.16)[266]: For any intermediate subfactor 𝑀𝛼 ⊂ 𝐿 ⊂ 𝑀, ℒ(𝐿) is a left coideal 

of 𝐺. 

Proof: If we consider a minimal action 𝛽 ≔ id⨂𝛼  on  𝐵(ℓ2)⨂𝑀, then ℒ
𝛽
(𝐵(ℓ2)⨂𝐿) =

ℒ
𝛼
(𝐿) .Therefore we may assume that Ma is infinite. We have to check that  𝛿(ℒ(𝐿)) ⊂

𝐿∞(𝔾)⨂ℒ(𝐿) and   ℒ(𝐿)  is multiplicatively closed.  

       Set  𝒦𝜋 = ℋ𝜋 ∩ 𝐿. Then 𝐿  is weakly spanned by 𝒦𝜋
∗ 𝑁 by Theorem (4.2.9). Recall 

two bases  {𝑉𝜋𝑖}𝑖∈I𝜋
 and  {𝑊𝜋𝑖}𝑖∈I𝜋

 in ℋ𝜋 as before, that is, we have the equalities  𝑉𝜋𝑖
∗𝑉𝜋𝑗 =

𝛿𝑖𝑗   ,(17) and  𝐸 (𝑊𝜋𝑖𝑊𝜋𝑗
∗ ) = 𝛿𝑖𝑗 .We may assume that  {𝑊𝜋𝑖}𝑖∈𝐼𝜋𝐿

 is a basis of  𝒦𝜋. There 

exist 𝑐𝜋𝑗𝑖 ∈ ℂ , 𝑖, 𝑗 ∈ 𝐼𝜋  such that 𝑉𝜋𝑗
∗𝑊𝜋𝑖 = 𝑐𝜋𝑗𝑖  .Note that the matrix  (𝑐𝜋𝑗𝑖)𝑖,𝑗∈ I𝜋  is 

invertible. Since 

 

𝛼(𝑊𝜋𝑖) = ∑ 𝛼 (𝑉𝜋𝑗𝑉𝜋𝑗
∗𝑊𝜋𝑖)

𝑗∈𝐼𝜋

= ∑ 𝑐𝜋𝑗𝑖𝛼 (𝑉𝜋𝑗)

𝑗∈𝐼𝜋

                                                  (18) 

    = ∑ 𝑐𝜋𝑗𝑖𝑉𝜋𝑘⨂𝜐𝜋𝑘𝑗
𝑗,𝑘∈𝐼𝜋

= ∑𝑉𝜋𝑘⨂

𝑗∈𝐼𝜋

(∑ 𝑐𝜋𝑗𝑖⨂𝜐𝜋𝑘𝑗
𝑗∈𝐼𝜋

). 

We have  

ℒ(𝐿) = span̅̅ ̅̅ ̅̅ 𝑤 {∑ 𝑐𝜋𝑗𝑖𝜐𝜋𝑘𝑗| 𝑖 ∈ 𝐼𝜋
𝐿

𝑗∈𝐼𝜋

, 𝑗, 𝑘 ∈ 𝐼𝜋 , 𝜋 ∈ Ξ𝐿}.                                (19) 

This implies that 𝛿(ℒ(𝐿)) ⊂ 𝐿∞(𝔾)⨂ℒ(𝐿). Let  𝜋, 𝜎 ∈ (𝔾)Irr . Next we show that  ℒ(𝐿) 
is multiplicatively closed. It suffices to show that the product of ∑ 𝑐𝜋𝑟𝑗𝜐𝜋𝑖,𝑗𝑗∈𝐼𝜋  and 

∑ 𝑐𝜎𝑗ℓ𝜐𝜋𝑠,𝑗𝑗∈𝐼𝜎  

Is contained in  ℒ(𝐿) for all (𝑖, 𝑟) ∈ 𝐼𝜋
𝐿  × 𝐼𝜋 and  (ℓ, 𝑠) ∈ 𝐼𝜎

𝐿  × 𝐼𝜎 .Then it is clear because 

the left-hand side of the following equality is contained in ℂ⨂ℒ(𝐿): 

(𝑉𝜎𝑠
∗ 𝑉𝜋𝑟

∗⨂1)𝛼(𝑊𝜋𝑖𝑊𝜎ℓ) = 1⨂(∑ 𝑐𝜋𝑗𝑖⨂𝜐𝜋𝑟𝑗
𝑗∈𝐼𝜋

)(∑ 𝑐𝜎𝑗ℓ𝜐𝜎𝑠𝑗
𝑗∈𝐼𝜎

). 

        We present a Galois correspondence which is a generalization of [219] to minimal 

actions of compact quantum groups. 

Theorem (4.2.17)[266]: (Galois correspondence). Let 𝔾 be a compact quantum group and 

𝑀  a factor. Let  𝛼: 𝑀 → 𝑀⨂𝐿∞(𝔾)  be a minimal action. Then there exists an 

isomorphism between the lattice of intermediate subfactors of  𝑀𝛼 ⊂ 𝑀 and the lattice of 

left coideals of 𝔾.  More precisely, the maps ℳ and ℒ are the mutually inverse maps, that 

is, for any intermediate subfactor  𝑀𝛼 ⊂ 𝐿 ⊂ 𝑀 and any left coideal  𝐵 ⊂ 𝐿∞(𝔾), one has 

 

ℳ(ℒ(𝐿)) = 𝐿, ℒ (ℳ(B)) = 𝐵. 
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Proof: If we consider a minimal action 𝛽 ∶= id⨂𝛼  on  𝐵(ℓ2)⨂𝑀 , then we have  

ℒ
𝛽
(𝐵(ℓ2)⨂𝐿) = ℒ

𝛼
(𝐿) and  ℳ𝛽(𝐵) = 𝐵(ℓ2)⨂ℳ𝛼(𝐵). Hence we may and do assume 

That  𝑀𝛼 is infinite. 

        By definition, we see that   𝐿 ⊂ ℳ(ℒ(𝐿)). We will show  ℳ(ℒ(𝐿)) ⊂ 𝐿. Set  𝒦𝜋 ∶=

ℋ𝜋 ∩ 𝐿  and  �̃�𝜋 ∶=  ℋ𝜋 ∩ℳ(ℒ(𝐿)) . Then  ℳ(ℒ(𝐿)) is 𝜎-weakly spanned by 𝑀𝛼 �̃�𝜋  

for 𝜋 ∈ Irr(𝔾)  by Theorem (4.2.9). We choose a basis {𝑊𝜋𝑖}𝑖∈𝐼𝜋
 in ℋ𝜋  such that 

𝐸 (𝑊𝜋𝑖𝑊𝜋𝑗
∗ ) = 𝛿𝑖,𝑗  as before. We may assume that it contains bases of  𝒦𝜋  and  �̃�𝜋   , 

which are denoted by {𝑊𝜋𝑖}𝑖∈𝐼𝜋𝐿
 and {𝑊𝜋𝑖}𝑖∈𝐽𝜋

, respectively. We use the invertible matrix 

(𝑐𝜋𝑖,𝑗)𝑖,𝑗∈𝐼𝜋
as in the previous lemma. 

       Let   𝑗 ∈ 𝐽𝜋 . Since 𝑊𝑗 ∈ ℳ(ℒ(𝐿)) , 𝛼(𝑊𝑗)   is contained in  𝑀⨂ℒ(𝐿) ,  that is,  

∑ 𝑐𝜋𝑘𝑗𝜐𝜋ℓ𝑘𝑘∈𝐼𝜋 ∈ ℒ(𝐿) for all ℓ ∈ 𝐼𝜋  by (18). Recall that the  (𝜐𝜋𝑘ℓ)𝑘,ℓ∈𝐼𝜋  are linearly 

independent. By (19), there exists   𝑑𝜋𝑖𝑗 ∈ ℂ for  𝑖 ∈ 𝐼𝜋
𝐿  such that for any  ℓ ∈ 𝐼𝜋, 

∑ 𝑐𝜋𝑘𝑗𝜐𝜋ℓ𝑘
𝑘∈𝐼𝜋

= ∑𝑑𝜋𝑖𝑗
𝑖∈𝐼𝜋

𝐿

(∑ 𝑐𝜋𝑘𝑖𝜐𝜋ℓ𝑘
𝑘∈𝐼𝜋

), 

That is,  

𝑐𝜋𝑘𝑗 = ∑𝑑𝜋𝑖𝑗
𝑖∈𝐼𝜋

𝐿

𝑐𝜋𝑘𝑖        for all 𝑗 ∈ 𝐽𝜋 , 𝑘 ∈ 𝐼𝜋 .                                    (20) 

Note that 𝑑𝜋𝑖𝑗 does not depend on ℓ. We know the matrix  𝐶 ∶= (𝑐𝜋𝑘ℓ)𝑘ℓ∈𝐼𝜋  is invertible. 

Multiplying  (𝐶−1)ℓ𝑘(ℓ ∈ 𝐼𝜋
𝐿) to the both sides of the above equality, summing up with 𝑘, 

we have 

𝛿ℓ𝑗 = 𝑑𝜋ℓ𝑗        for all ℓ ∈ 𝐼𝜋
𝐿 . 

This yields  𝑗 ∈ 𝐼𝜋
𝐿 . Indeed, if  𝑗 ≠ 𝐼𝜋

𝐿 , then  𝑑𝜋ℓ𝑗 = 0 for all ℓ ∈ 𝐼𝜋
𝐿 .Together with (20), 

we have  𝑐𝜋𝑘𝑗 =  0 for all 𝑘 ∈ 𝐼𝜋. Then we have 

𝑊𝜋𝑗 = ∑ 𝑉𝜋𝑘 (𝑉𝜋𝑘
∗ 𝑊𝜋𝑗) =

𝑘∈𝐼𝜋

∑𝑉𝜋𝑘𝑐𝜋𝑘𝑗 = 0,

𝑘∈𝐼𝜋

 

but this is a contradiction. Therefore 𝑊𝜋𝑗 ∈ 𝐿 for any   𝑗 ∈ 𝐼𝜋, and  ℳ(ℒ(𝐿)) ⊂ 𝐿. 

       Next we will show that   ℒ(ℳ(𝐵)) =  𝐵. By definition, the inclusion  ℒ(ℳ(𝐵)) ⊂  𝐵 

holds. We prove 𝐵 ⊂ ℒ(ℳ(𝐵)). Since 𝐵 is 𝜎-weakly spanned by subspaces 

 

𝐵𝜋 = 𝐵 ∩ 𝐿∞(𝔾)𝜋,       𝜋 ∈ Irr(𝔾), 

it suffices to show that 𝐵𝜋 ⊂ ℒ(ℳ(𝐵)) for any  𝜋 ∈ Irr(𝔾). By Lemma (4.2.13), there 

exists a unitary matrix  𝜈𝜋 = (𝜈𝜋𝑖𝑗)𝑖𝑗∈𝐼𝜋 ∈ 𝐵(ℂ|𝐼𝜋|) such that 𝐵𝜋 is spanned by  𝑢𝜋𝑖𝑗  , 𝑖 ∈

𝐼𝜋  and   𝑗 ∈ 𝐼𝜋
𝐵 ,where  𝑢𝜋 = (1⨂𝜈𝜋

∗)𝜐𝜋(1⨂𝜈𝜋). For   𝑖 ∈ 𝐼𝜋 , we put  𝑉𝜋𝑖
′ ≔ ∑ 𝜈𝜋𝑗𝑖𝑗∈𝐼𝜋 𝑉𝜋𝑗 

.Then we have 

𝛼(𝑉𝜋𝑖
′ ) = ∑ 𝜈𝜋𝑗𝑖𝛼(𝑉𝜋𝑗) =

𝑗∈𝐼𝜋

∑ 𝜈𝜋𝑗𝑖(𝑉𝜋𝑘⨂𝜐𝜋𝑘𝑗)

𝑗,𝑘∈𝐼𝜋
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= ∑(𝑉𝜋𝑘⨂(𝜐𝜋(1⨂𝜈𝜋))𝑘𝑖)

𝑘∈𝐼𝜋

= ∑ (𝑉𝜋𝑘⨂((1⨂𝜈𝜋)𝑢𝜋)𝑘𝑖
)

𝑘∈𝐼𝜋

 

= ∑ (𝜈𝜋𝑘𝑖𝑉𝜋𝑘⨂𝑢𝜋𝑗𝑖)

𝑗,𝑘∈𝐼𝜋

= ∑𝑉𝜋𝑗
′ ⨂𝑢𝜋𝑗𝑖

𝑗∈𝐼𝜋

.                               

     Let  𝑖 ∈ 𝐼𝜋
𝐵 .Then   𝑢𝜋𝑗𝑖 ∈ 𝐵𝜋 for all   𝑗 ∈ 𝐼𝜋 , and  𝑉𝜋𝑖

′ ∈ ℳ(𝐵) by the above equality. 

Again by the above equality, 𝑢𝜋𝑗𝑖 ∈ ℒ(ℳ(𝐵))  for all  𝑗 ∈ 𝐼𝜋 . This implies  𝐵𝜋 ⊂

ℒ(ℳ(𝐵)).  
      When 𝔾  is of 𝐾 ac type, it has been proved in [219] that there exists a normal 

conditional expectation from 𝑀 onto any intermediate subfactor of  𝑀𝛼 ⊂ 𝑀. However, if 

𝔾 is not of 𝐾ac type, then this is not the case in general as we will see below. We can 

characterize which intermediate subfactor has such a property. We recall the following 

notion introduced in [275], Definition (4.2.11) (ii). 

Definition (4.2.18)[266]: Let  𝐵 ⊂ 𝐿∞(𝔾)  be a left coideal. We say that 𝐵  has the 

expectation property if there exists a faithful normal conditional expectation 𝐸𝐵  from  

𝐿∞(𝔾) onto 𝐵 satisfying  ℎ ∘  𝐸𝐵  =  ℎ. 

      The following lemma is probably well-known for specialists.  

Lemma (4.2.19)[266]: Let  𝐵 ⊂ 𝐿∞(𝔾) be 𝑎 left coideal. Then the following statements 

are equivalent: 

   (i) 𝐵 has the expectation property. 

  (ii)  𝜎𝑡
ℎ(𝐵) = 𝐵  𝑓𝑜𝑟 𝑎𝑙𝑙  𝑡 ∈ ℝ . 

  (iii)  𝜏𝑡(𝐵) = 𝐵  𝑓𝑜𝑟 𝑎𝑙𝑙  𝑡 ∈ ℝ . 
Proof: (i) ⟹ (ii). This follows from Takesaki’s theorem [272], p. 309. 

     (ii) ) ⟹ (iii). Since 𝐵𝜋 ∈ Irr(𝔾) spans a dense subspace of 𝐵, it suffices to show that 

𝜏𝑡(𝐵𝜋) ⊂ 𝐵𝜋 for all  𝑡 ∈ ℝ and 𝜋 ∈ Irr(𝔾). Recall the equality (16). Then for 𝑥 ∈ 𝐵𝜋, we 

have 

𝜏𝑡(𝑥) = (𝑓2𝑖𝑡⨂𝜎−𝑡
ℎ )(𝛿(𝑥)). Since 𝐵 is a left coideal globally invariant under the modular 

group  𝜎ℎ, we see that  𝜏𝑡(𝑥) ∈ 𝐵𝜋. Hence  𝜏𝑡(𝐵𝜋) ⊂ 𝐵𝜋 for all 𝑡 ∈ ℝ and   𝜋 ∈ Irr(𝔾). 
     (iii) ⟹  (i). Let   𝜋 ∈ Irr(𝔾)  and  𝑥 ∈ 𝐵𝜋 . By (16), we have 𝜎𝑡

ℎ(𝑥) =
(𝑓2𝑖𝑡⨂𝜏−𝑡)(𝛿(𝑥)). Since 𝐵 is a left coideal globally invariant under the scaling group 𝜏 , 

we see that  𝜎𝑡
ℎ(𝑥) ∈ 𝐵𝜋 . Hence 𝜎𝑡

ℎ(𝐵𝜋) ⊂ 𝐵𝜋  for all  𝑡 ∈ ℝ  and  𝜋 ∈ Irr(𝔾), and 𝐵 is 

globally invariant under the modular group 𝜎ℎ. Again by Takesaki’s theorem, there exists 

a faithful normal conditional expectation  𝐸𝐵 ∶ 𝐿
∞(𝔾) → 𝐵 preserving ℎ. Hence 𝐵 has the 

expectation property. 

Theorem (4.2.20)[266]: Let 𝛼 be a minimal action of 𝔾 on 𝑎 factor 𝑀. Let  𝑀𝛼 ⊂ 𝐿 ⊂ 𝑀 

be an intermediate subfactor. Then there exists 𝑎 faithful normal conditional expectation  

𝐸𝐿
𝑀:𝑀 → 𝐿 if and only if the left coideal  ℒ(𝐿)  has the expectation property. 

Proof: Let   𝜔 ∈ 𝑁∗ be a faithful state. Put  𝜑:  𝜔 o 𝐸 ∈ 𝑀. We note that L is the image of 

a faithful normal conditional expectation of  𝑀 if and only if  𝜎𝑡
𝜑(𝐿) ⊂ 𝐿 for all  𝑡 ∈ ℝ  . 

Indeed, if the former condition holds, there exists a faithful normal conditional expectation  

𝐸𝐿
𝑀:𝑀 → 𝐿. Then the conditional expectation 𝐸𝑁

𝐿o𝐸𝐿
𝑀  is equal to 𝐸  because  𝑁 ⊂ 𝑀  is 

irreducible. Hence  𝜑o𝐸𝐿
𝑀 = (𝜑o𝐸𝑁

𝐿)o𝐸𝐿
𝑀 = 𝜑oE = 𝜑.  Then by Takesaki’s theorem 

[272], p. 309, the latter condition holds. The converse implication also follows from his 

theorem. 
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      Since 𝜑 is invariant under the action  𝛼, we have  𝛼 o 𝜎𝑡
𝜑
= (𝜎𝑡

𝜑
⨂𝜏−𝑡) o𝛼 for all 𝑡 ∈

ℝ by [267].  Put  𝐵 ∶=  ℒ(𝐿)  . Then we have  𝐿 =  {𝑥 ∈ 𝑀|𝛼(𝑥) ∈ 𝑀⨂𝐵} by Theorem 

(4.2.18) .So, for  𝑥 ∈ 𝐿, 𝜎𝑡
𝜑
(𝑥) ∈ 𝐿 if and only if  𝛼(𝑥) ∈ 𝑀⨂𝜏𝑡(𝐵). The von Neumann 

subalgebra  𝜏𝑡(𝐵)  is also a left coideal by the equality  𝛿 o𝜏𝑡 = (𝜏𝑡⨂𝜏𝑡) o𝛿  . Hence 

𝜎𝑡
𝜑
(𝑥) ∈ 𝐿  if and only if  𝑥 ∈ ℳ(𝜏𝑡(𝐵)) . Therefore, 𝜎𝑡

𝜑
(𝑥)𝛼𝐿  if and only if  𝐿 ⊂

ℳ(𝜏𝑡(𝐵)). Since 𝐿 = ℳ(𝐵), this is equivalent with  𝐵 ⊂ 𝜏𝑡(𝐵). Hence 𝐿 is the image of 

a faithful normal conditional expectation of 𝑀 iff 𝐵 = 𝜏𝑡(𝐵) for all 𝑡 ∈ ℝ .By the previous 

lemma, this equivalently means that 𝐵 has the expectation property. 

      If 𝔾 is of 𝐾ac type, the Haar state h is a faithful trace. Hence any left coideal has the  

expectation property. Then we have the following result which has been already shown in 

[219], Theorem (4.2.19). 

Corollary (4.2.21)[266]: Let 𝛼 be a minimal action of 𝔾 on a factor 𝑀. Let  𝑀𝛼 ⊂ 𝐿 ⊂ 𝑀 

be an intermediate subfactor. If 𝔾 is of 𝐾ac type, then there exists a faithful normal 

conditional expectation from 𝑀 onto 𝐿. 

Example (4.2.22)[266]: We consider the twisted 𝑆𝑈𝑞(ii) group, 𝑆𝑈𝑞(ii) ( [278] ) and its 

minimal action a on a full factor 𝑀 as constructed by Ueda [276]. Then by minimality of 

𝛼 , intermediate subfactors bijectively correspond to left coideals. By using Lemma 

(4.2.20), we can show the quantum spheres  𝐿∞(𝑆𝑞,𝜃
2 ) with  0 < 𝜃 ≤ 𝜋 2⁄  ( [271], [167]) 

are left coideals without expectation property. By Theorem (4.2.21), there are no faithful 

normal conditional expectations from 𝑀 onto the corresponding subfactors.  

Corollary (4.2.23)[495]: With the above settings,  (𝑧𝑛)𝑀−𝜖ℋ𝜑𝜖
= Λ𝜑𝜖

 (𝑀 − 𝜖)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   holds. In 

particular, one has (𝑧𝑛)𝑀−𝜖 ∈ 𝑀′ − 𝜖 ∩ 𝑀1  and 𝑒𝑀−2𝜖 ≦ (𝑧𝑛)𝑀−𝜖 .  
Proof:  First we note that the following holds: 

(𝑧𝑛)𝑀−𝜖𝐻𝜑𝜖
= span{ Λ𝜑𝜖

(𝑉(𝜉𝜖)𝑖
∗ 𝑀 − 2𝜖)| 𝜉𝜖 ∈ Ξ𝑀−𝜖 , 𝑖 ∈ 𝐼𝜉𝜖

𝑀−𝜖  }̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅.               (21) 

Indeed, let 𝑥𝑛 ∈ 𝑀. Then we have 

(𝑧𝑛)𝑀−𝜖Λ𝜑𝜖
(𝑥𝑛) = ∑ ∑ 𝑉(𝜉𝜖)𝑖

∗ 𝑒𝑀−2𝜖𝑉(𝜉𝜖)𝑖
𝑖∈𝐼𝜉𝜖

𝑀−𝜖𝜉𝜖∈Ξ𝑀−𝜖

Λ𝜑𝜖
(𝑥𝑛)

= ∑ ∑ (𝑉(𝜉𝜖)𝑖
∗ 𝐸𝑀−2𝜖

𝑀

𝑖∈𝐼𝜉𝜖
𝑀−𝜖𝜉𝜖∈Ξ𝑀−𝜖

(𝑉(𝜉𝜖)𝑖(𝑥𝑛)). 

Hence the left-hand side of (21) is contained in the right-hand one. The converse inclusion 

follows from 𝐸𝑀−2𝜖
𝑀 (𝑉(𝜉𝜖)𝑖𝑉𝜉𝜖𝜂𝑖

∗ ) = 𝛿𝜉𝜖𝜂𝛿𝑖𝑗    for 𝜉𝜖𝜂 ∈ Ξ and 𝑖 ∈ 𝐼𝜉𝜖  , 𝑗 ∈ 𝐼𝜂 .  

    In particular, this yields (𝑧𝑛)𝑀−𝜖H𝜑𝜖
⊂ Λ𝜑𝜖

(𝑀 − 𝜖)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. We will prove the equality by 

using the averaging technique presented in the proof of [219], as shown below. To prove 

it, we may and do assume that 𝑀 − 2𝜖,𝑀 − 𝜖 and M are factors of type III by tensoring 

with a type III factor. Assume that there would exist 𝑥𝑛 ∈ 𝑀 − 𝜖 such that   Λ𝜑𝜖
(𝑥𝑛) ∉

(𝑧𝑛)𝑀−𝜖𝐻𝜑𝜖
. By the following equality: 

 (1 − (𝑧𝑛)𝑀−𝜖)Λ𝜑𝜖
(𝑥𝑛) = ∑ ∑ Λ𝜑𝜖

(𝑉(𝜉𝜖)𝑖
∗ 𝐸𝑀−2𝜖

𝑀 (𝑉(𝜉𝜖)𝑖𝑥𝑛)) +
𝑖∈𝐼𝜉𝜖𝜉𝜖∈Ξ\Ξ𝑀−𝜖

= ∑ ∑ Λ𝜑𝜖
(𝑉(𝜉𝜖)𝑖

∗ 𝐸𝑀−2𝜖
𝑀

𝑖∈𝐼𝜉𝜖\𝐼𝜉𝜖
𝑀−𝜖𝜉𝜖∈Ξ𝑀−𝜖

(𝑉(𝜉𝜖)𝑖𝑥𝑛), 
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the following two cases could occur: (I) there exists 𝜉𝜖 ∈ Ξ\Ξ𝑀−𝜖  such that 

𝐸𝑀−2𝜖
𝑀 (𝑉(𝜉𝜖)𝑖𝑥𝑛) ≠ 0 for some 𝑖 ∈ 𝐼𝜉𝜖  or (II) there exists 𝜉𝜖 ∈ Ξ𝑀−𝜖  such that  

𝐸𝑀−2𝜖
𝑀 (𝑉(𝜉𝜖)𝑖𝑥𝑛) ≠ 0for some 𝑖 ∈ 𝐼𝜉𝜖\𝐼𝜉𝜖

𝑀−𝜖 . In case (I), we set 𝐼𝜉𝜖
𝑀−𝜖 = ∅ and then proceed 

as with case (II). Assume that case (II) would occur. Take 𝜉𝜖 ∈ Ξ and 𝑖 ∈ 𝐼𝜉𝜖\𝐼𝜉𝜖
𝑀−𝜖  such 

that 𝐸𝑀−2𝜖
𝑀 (𝑉(𝜉𝜖)𝑖𝑥𝑛) ≠ 0  . Let 𝐸𝜉𝜖 ∶  𝑀 − 2𝜖 → 𝜌𝜉𝜖  (𝑀 − 2𝜖)  be the faithful normal 

conditional expectation with respect to 𝜌𝜉𝜖. By using the equality  𝐸𝑀−2𝜖
𝑀 (𝑉(𝜉𝜖)𝑖𝑎𝑥𝑛(𝑎 +

𝜖)) =  𝜌𝜉𝜖  (𝑎) 𝐸𝑀−2𝜖
𝑀 (𝑉(𝜉𝜖)𝑖𝑥𝑛) (𝑎 + 𝜖)  for 𝑎, 𝑎 + 𝜖 ∈ 𝑀 − 2𝜖 , we may assume that  

𝐸𝜉𝜖(𝐸𝑀−2𝜖
𝑀 (𝑉(𝜉𝜖)𝑖𝑥𝑛)) = 1 since 𝑀 − 2𝜖 is of type III. 

     We take a hyperfinite subfactor  𝑅 ⊂ 𝑀 − 2𝜖 which is simple in the sense of [248]. 

Then consider the weakly closed convex set 

𝐶 ≔ 𝑐𝑜̅̅ ̅𝑤𝜖{𝑢𝑛𝑥𝑛𝜌𝜉𝜖(𝑢𝑛
∗ )|𝑢𝑛 ∈ 𝑈(𝑅)} ⊂ 𝑀 − 𝜖, 

where 𝑈(𝑅) is the set of all unitaries in 𝑅. The hyperfiniteness of 𝑅 assures that there 

exists a point 𝑤𝜖
∗ ∈ 𝐶 such that w satisfies 𝑤𝜖𝑥𝑛 = 𝜌𝜉𝜖(𝑥𝑛)𝑤𝜖𝑥𝑛 for all 𝑥𝑛 ∈ 𝑅 and hence 

for all 𝑥𝑛 ∈ 𝑀 − 2𝜖  by [219]. This shows 𝑤𝜖 ∈ 𝑀 − 𝜖 ∩ℋ𝜉𝜖 = 𝒦𝜉𝜖  . Since 𝑖 ∈

𝐼𝜉𝜖\𝐼𝜉𝜖
𝑀−𝜖 , 𝑉(𝜉𝜖)𝑖  is orthogonal to 𝒦𝜉𝜖 , that is, 𝐸𝑀−2𝜖

𝑀 (𝑉(𝜉𝜖)𝑖𝑤𝜖
∗) = 𝑑(𝜉𝜖)

−1(𝑉(𝜉𝜖)𝑖𝑤𝜖) = 0. 

However 𝐸𝜉𝜖 (𝐸𝑀−2𝜖
𝑀 (𝑉(𝜉𝜖)𝑖𝐶)) = {1}, and this is a contradiction. Therefore the cases (I) 

and (II) never occur, and for any  𝑥𝑛 ∈ 𝑀 − 𝜖,  (1 − (𝑧𝑛)𝑀−𝜖)Λ𝜑𝜖
(𝑥𝑛) = 0. This implies 

that Λ𝜑𝜖
(𝑀 − 𝜖)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ⊂ (𝑧𝑛)𝑀−𝜖𝐻𝜑𝜖

. 

Corollary (4.2.24)[495]: One has (𝑧𝑛)𝑀−𝜖𝑀1(𝑧𝑛)𝑀−𝜖 = (𝑀 − 𝜖)𝑒𝑀−2𝜖  (𝑀 − 𝜖)𝑤𝜖̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =
(𝑀 − 𝜖)(𝑧𝑛)𝑀−𝜖⋁{𝑒𝑀−2𝜖}

′′ . 
Proof: Recall that  𝑒𝑀−2𝜖𝑀1𝑒𝑀−2𝜖 = 𝑀 − 2𝜖𝑒𝑀−2𝜖. For 𝜉𝜖 , 𝜂 ∈ Ξ , 𝑖 ∈ 𝐼𝜉𝜖

𝑀−𝜖   and  , 𝑗 ∈

𝐼𝜂
𝑀−𝜖 , we have 

𝑉(𝜉𝜖)𝑖
∗ 𝑒𝑀−2𝜖𝑉(𝜉𝜖)𝑖𝑀1𝑉𝜂𝑗

∗𝑒𝑀−2𝜖𝑉𝜂𝑗 ⊂ 𝑉(𝜉𝜖)𝑖
∗ 𝑒𝑀−2𝜖𝑀1𝑒𝑀−2𝜖𝑉𝜂𝑗 ⊂ 𝑉(𝜉𝜖)𝑖

∗ 𝑀 − 2𝜖𝑒𝑀−2𝜖𝑉𝜂𝑗
⊂ (𝑀 − 𝜖)𝑒𝑀−2𝜖(𝑀 − 𝜖). 

This implies that  (𝑧𝑛)𝑀−𝜖𝑀1(𝑧𝑛)𝑀−𝜖 ⊂ (𝑀 − 𝜖)𝑒𝑀−2𝜖  (𝑀 − 𝜖)𝑤𝜖̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . By the previous 

lemma, (𝑧𝑛)𝑀−𝜖 ∈ 𝑀 − 𝜖 ∩𝑀1  and  (𝑧𝑛)𝑀−𝜖𝑒𝑀−2𝜖 = 𝑒𝑀−2𝜖  . Since 𝑀1  contains 𝑀 − 𝜖 

and 𝑒𝑀−2𝜖 , we have (𝑧𝑛)𝑀−𝜖𝑀1(𝑧𝑛)𝑀−𝜖 ⊃ (𝑀 − 𝜖)(𝑧𝑛)𝑀−𝜖⋁{𝑒𝑀−2𝜖}
′′ ⊃ (𝑀 −

𝜖)𝑒𝑀−2𝜖(𝑀 − 𝜖) . Hence we have  (𝑧𝑛)𝑀−𝜖𝑀1(𝑧𝑛)𝑀−𝜖 = (𝑀 − 𝜖)𝑒𝑀−2𝜖  (𝑀 − 𝜖)𝑤𝜖̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =
(𝑀 − 𝜖)(𝑧𝑛)𝑀−𝜖⋁{𝑒𝑀−2𝜖}

′′.  

     Next we will show that the two-step inclusion  (𝑀 − 2𝜖)(𝑧𝑛)𝑀−𝜖 ⊂ (𝑀 −
𝜖)(𝑧𝑛)𝑀−𝜖 ⊂ (𝑧𝑛)𝑀−𝜖𝑀1(𝑧𝑛)𝑀−𝜖 is identified with the basic extension of  𝑀 − 2𝜖 ⊂ 𝑀 −
𝜖. One might be able to prove this by using the abstract characterization of the basic 

extension [219], Corollary (4.2.26). To apply that result, we need to show that the 

restriction �̂�𝑀
𝑀1  on (𝑧𝑛)𝑀−𝜖𝑀1(𝑧𝑛)𝑀−𝜖  is an operator valued weight from 

(𝑧𝑛)𝑀−𝜖𝑀1(𝑧𝑛)𝑀−𝜖 to (𝑀 − 𝜖)(𝑧𝑛)𝑀−𝜖 ≅ 𝑀 − 𝜖, but we do not have a proof for such a 

statement yet. We avoid using this method and directly compare the basic extension of  

𝑀 − 2𝜖 ⊂ 𝑀 − 𝜖  with (𝑀 − 2𝜖)(𝑧𝑛)𝑀−𝜖 ⊂ (𝑀 − 𝜖)(𝑧𝑛)𝑀−𝜖 ⊂ (𝑧𝑛)𝑀−𝜖𝑀1(𝑧𝑛)𝑀−𝜖 

instead. 

     We set 𝜓𝜖 ≔ 𝜔𝜖 ∘ 𝐸𝑀−2𝜖
𝑀−𝜖 ∈ 𝑀∗ − 𝜖  .Then  𝜑𝜖|𝑀−𝜖 = 𝜓𝜖|𝑀−𝜖  holds trivially. Let  

{𝐻𝜓𝜖
, Λ𝜓𝜖

} be the GNS representation of  𝑀 − 𝜖 associated with the state 𝜓𝜖. Let 𝑓𝑀−2𝜖 ∈

𝐵(𝐻𝜓𝜖
) be the Jones projection defined by  𝑓𝑀−2𝜖Λ𝜓𝜖

(𝑥𝑛) = Λ𝜓𝜖
(𝐸𝑀−2𝜖

𝑀−𝜖 (𝑥𝑛)) for  𝑥𝑛 ∈

𝑀 − 𝜖. We set  𝑀1 − 𝜖 ∶= (𝑀 − 𝜖)⋁{𝑓𝑀−2𝜖}
′′ ⊂ 𝐵(𝐻𝜓𝜖

). Then we obtain the Jones’ basic 
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extension 𝑀 − 2𝜖 ⊂ 𝑀 − 𝜖 ⊂ 𝑀1 − 𝜖  associated with 𝐸𝑀−2𝜖
𝑀−𝜖  .The dual operator valued 

weight of  𝐸𝑀−2𝜖
𝑀−𝜖  is denoted by �̂�𝑀−𝜖

𝑀1−𝜖 . Note that we do not know whether �̂�𝑀−𝜖
𝑀1−𝜖  is 

semifinite on �́� − 2𝜖 ∩ 𝑀1 − 𝜖  or not. Set a weight  (𝜓𝜖)1 ≔ 𝜓𝜖 ∘ �̂�𝑀−𝜖
𝑀1−𝜖 ∈ 𝒫(𝑀1 −

𝜖, ℂ) . Let  {𝐻(𝜓𝜖)1 , Λ(𝜓𝜖)1}  be the GNS representation of  𝑀1 − 𝜖  associated with the 

weight (𝜓𝜖)1 . Recall the weight  (𝜑𝜖)1 = 𝜑𝜖 ∘ �̂�𝑀
𝑀1  on 𝑀1 . Let {𝐻(𝜑𝜖)1 , Λ(𝜑𝜖)1}  be the 

GNS representation of  𝑀1 associated with the weight (𝜑𝜖)1. Then the following holds 

[219](see [31]): 

 

𝐻(𝜓𝜖)1 = Λ(𝜓𝜖)1
((𝑀 − 𝜖)𝑓𝑀−2𝜖(𝑀 − 𝜖))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ,         𝐻(𝜑𝜖)1 = Λ(𝜑𝜖)1

(𝑀𝑒𝑀−2𝜖𝑀)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. 

We introduce an isometry 𝑈 ∶ 𝐻(𝜓𝜖)1 → 𝐻(𝜑𝜖)1   satisfying 

 

𝑈Λ(𝜓𝜖)1
(𝑥𝑛𝑓𝑀−2𝜖𝑦𝑛) = Λ(𝜑𝜖)1

(𝑥𝑛𝑒𝑀−2𝜖𝑦𝑛),        𝑓𝑜𝑟 𝑥𝑛, 𝑦𝑛 ∈ 𝑀 − 𝜖. 

The well-definedness is verified as follows. For 𝑥𝑛, 𝑦𝑛, 𝑎, 𝑎 + 𝜖 ∈ 𝑀 − 𝜖, we have 

 

〈Λ(𝜑𝜖)1
(𝑥𝑛𝑒𝑀−2𝜖𝑦𝑛), Λ(𝜑𝜖)1

(𝑎𝑒𝑀−2𝜖(𝑎 + 𝜖))〉 = (𝜑𝜖)1(𝑎
∗𝑒𝑀−2𝜖(𝑎 + 𝜖)∗𝑥𝑛𝑒𝑀−2𝜖𝑦𝑛)

= (𝜑𝜖)1((𝑎 + 𝜖)∗𝐸𝑀−2𝜖
𝑀 (𝑎∗𝑥𝑛)𝑒𝑀−2𝜖𝑦𝑛)

= 𝜑𝜖 ∘ �̂�𝑀
𝑀1((𝑎 + 𝜖)∗𝐸𝑀−2𝜖

𝑀 (𝑎∗𝑥𝑛)𝑒𝑀−2𝜖𝑦𝑛) = 𝜑𝜖((𝑎 + 𝜖)∗𝐸𝑀−2𝜖
𝑀 (𝑎∗𝑥𝑛)𝑦𝑛) 

= 𝜓𝜖((𝑎 + 𝜖)∗𝐸𝑀−2𝜖
𝑀−𝜖 (𝑎∗𝑥𝑛)𝑦𝑛) = 〈Λ(𝜓𝜖)1

(𝑥𝑛𝑓𝑀−2𝜖𝑦𝑛), Λ(𝜓𝜖)1(𝑎𝑓𝑀−2𝜖(𝑎 + 𝜖))〉. 

Corollary (4.2.25)[495]: One has 𝑥𝑛𝑈 =  𝑈𝑥𝑛 for 𝑥𝑛 ∈ 𝑀 − 𝜖 and 𝑒𝑀−2𝜖𝑈 =  𝑈𝑓𝑀−2𝜖. 

Proof: Since the subspace Λ(𝜓𝜖)1((𝑀 − 𝜖)𝑓𝑀−2𝜖(𝑀 − 𝜖)) ⊂ 𝐻(𝜓𝜖)1 is dense, it suffices to 

show the equalities on   Λ(𝜓𝜖)1((𝑀 − 𝜖)𝑓𝑀−2𝜖(𝑀 − 𝜖)). Let  𝑥𝑛, 𝑎, 𝑎 + 𝜖 ∈ 𝑀 − 𝜖. Then 

we have 

𝑥𝑛𝑈Λ(𝜓𝜖)1
(𝑎𝑓𝑀−2𝜖(𝑎 + 𝜖)) = 𝑥𝑛Λ(𝜑𝜖)1

(𝑎𝑒𝑀−2𝜖(𝑎 + 𝜖)) = Λ(𝜑𝜖)1
(𝑥𝑛𝑎𝑒𝑀−2𝜖(𝑎 + 𝜖))

= 𝑈Λ(𝜓𝜖)1
(𝑥𝑛𝑎𝑓𝑀−2𝜖(𝑎 + 𝜖)) = 𝑈𝑥𝑛Λ(𝜓𝜖)1

(𝑎𝑓𝑀−2𝜖(𝑎 + 𝜖)). 

Hence 𝑥𝑛𝑈 = 𝑈𝑥𝑛. Next  𝑒𝑀−2𝜖𝑈 =  𝑈𝑓𝑀−2𝜖  is verified as follows: 

𝑒𝑀−2𝜖𝑈Λ(𝜓𝜖)1
(𝑎𝑓𝑀−2𝜖(𝑎 + 𝜖)) = 𝑒𝑀−2𝜖Λ(𝜑𝜖)1

(𝑎𝑒𝑀−2𝜖(𝑎 + 𝜖))

= Λ(𝜑𝜖)1
(𝑒𝑀−2𝜖𝑎𝑒𝑀−2𝜖(𝑎 + 𝜖)) = Λ(𝜑𝜖)1

(𝐸𝑀−2𝜖
𝑀 (𝑎)𝑒𝑀−2𝜖(𝑎 + 𝜖))

= Λ(𝜑𝜖)1
(𝐸𝑀−2𝜖

𝑀−𝜖 (𝑎)𝑒𝑀−2𝜖(𝑎 + 𝜖)) 

         = 𝑈Λ(𝜓𝜖)1
(𝐸𝑀−2𝜖

𝑀−𝜖 (𝑎)𝑓𝑀−2𝜖(𝑎 + 𝜖)) = 𝑈𝑓𝑀−2𝜖Λ(𝜓𝜖)1
(𝑎𝑓𝑀−2𝜖(𝑎 + 𝜖)). 

        Set the range projection   𝑝𝑀−𝜖 ∶=  𝑈𝑈∗ ∈ 𝐵(𝐻(𝜑𝜖)1) . It is clear that  𝑝𝑀−𝜖𝐻(𝜑𝜖)1 =

Λ(𝜑𝜖)1
((𝑀 − 𝜖)𝑒𝑀−2𝜖(𝑀 − 𝜖))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . By the previous lemma or the definition of 𝑝𝑀−𝜖 , 𝑝𝑀−𝜖 

commutes with 𝑀 − 𝜖 and 𝑒𝑀−2𝜖. In particular, 𝑝𝑀−𝜖 ∈ ((𝑀 − 𝜖)(𝑧𝑛)𝑀−𝜖)
′  ∩ {𝑒𝑀−2𝜖}

′ ⊂
𝐵(𝐻(𝜑𝜖)1) . 

        The subspace (𝑧𝑛)𝑀−𝜖𝐻(𝜑𝜖)1  plays a similar role to the GNS Hilbert space of 

(𝑧𝑛)𝑀−𝜖𝑀1(𝑧𝑛)𝑀−𝜖  associated with the restricted weight  (𝜑𝜖)1|(𝑧𝑛)𝑀−𝜖𝑀1(𝑧𝑛)𝑀−𝜖
 ,but  

𝑝𝑀−𝜖𝐻(𝜑𝜖)1  may not coincide with the closure of  Λ(𝜑𝜖)1(𝑛(𝜑𝜖)1 ∩ (𝑧𝑛)𝑀−𝜖𝑀1(𝑧𝑛)𝑀−𝜖) 

because the function 𝑡 ∈ ℝ ↦ 𝜎𝑡
𝐸𝑀−2𝜖
𝑀 ∘�̂�𝑀−2𝜖

𝑀1

((𝑧𝑛)𝑀−𝜖) ∈ (𝑀 − 2𝜖)′ ∩𝑀1   may not extend 

to the bounded analytic function on the strip {𝑧𝑛 ∈ ℂ|0 ≦ Im (𝑧𝑛) ≦ 1 2⁄ }.  

Corollary (4.2.26)[495]: 𝐼𝑛 𝐵(𝐻(𝜑𝜖)1), 𝑝𝑀−𝜖 ≦ (𝑧𝑛)𝑀−𝜖 holds. 

Proof: Using (𝑧𝑛)𝑀−𝜖 ∈ 𝑀′ − 𝜖 ∩𝑀1 and  (𝑧𝑛)𝑀−𝜖e𝑀−2𝜖 = e𝑀−2𝜖, we have  
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(𝑧𝑛)𝑀−𝜖  𝑝𝑀−𝜖𝐻(𝜑𝜖)1 = (𝑧𝑛)𝑀−𝜖  Λ(𝜑𝜖)1
((𝑀 − 𝜖)𝑒𝑀−2𝜖(𝑀 − 𝜖))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

= Λ(𝜑𝜖)1
((𝑀 − 𝜖)(𝑧𝑛)𝑀−𝜖𝑒𝑀−2𝜖(𝑀 − 𝜖))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = Λ(𝜑𝜖)1

((𝑀 − 𝜖)𝑒𝑀−2𝜖(𝑀 − 𝜖))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

= 𝑝𝑀−𝜖𝐻(𝜑𝜖)1 . 

Hence 𝑝𝑀−𝜖 ≦ (𝑧𝑛)𝑀−𝜖 . 
Corollary (4.2.27)[495]: There exists an isomorphism Ψ𝑀−𝜖 ∶ (𝑧𝑛)𝑀−𝜖𝑀1(𝑧𝑛)𝑀−𝜖 →
𝑀1 − 𝜖 such that: 

     (i) Ψ𝑀−𝜖(𝑥𝑛(𝑧𝑛)𝑀−𝜖) = 𝑥𝑛 for  𝑥𝑛 ∈ 𝑀 − 𝜖. 

       (ii) Ψ𝑀−𝜖(𝑒𝑀−2𝜖) = 𝑓𝑀−2𝜖 . 
In particular, the inclusions (𝑀 − 2𝜖)(𝑧𝑛)𝑀−𝜖 ⊂ (𝑀 − 𝜖)(𝑧𝑛)𝑀−𝜖 ⊂ (𝑧𝑛)𝑀−𝜖𝑀1(𝑧𝑛)𝑀−𝜖 

and 𝑀 − 2𝜖 ⊂ 𝑀 − 𝜖 ⊂ 𝑀1 − 𝜖 are isomorphic. 

Proof: We define the normal positive map Ψ𝑀−𝜖: (𝑧𝑛)𝑀−𝜖𝑀1(𝑧𝑛)𝑀−𝜖 → 𝐵(𝐻(𝜓𝜖)1) by 

Ψ𝑀−𝜖(𝑥𝑛) = 𝑈∗𝑥𝑛𝑈      for 𝑥𝑛 ∈ (𝑧𝑛)𝑀−𝜖𝑀1(𝑧𝑛)𝑀−𝜖 . 
Since 𝑝𝑀−𝜖  commutes with (𝑀 − 𝜖)(𝑧𝑛)𝑀−𝜖⋁{𝑒𝑀−2𝜖}

′′ = (𝑧𝑛)𝑀−𝜖𝑀1(𝑧𝑛)𝑀−𝜖  as is 

remarked after Corollary (4.2.26), we see that Ψ𝑀−𝜖  is multiplicative. By the previous 

lemma, we have 

 

Ψ𝑀−𝜖((𝑧𝑛)𝑀−𝜖) = 𝑈∗(𝑧𝑛)𝑀−𝜖𝑈 = 𝑈∗(𝑧𝑛)𝑀−𝜖𝑝𝑀−𝜖𝑈 = 𝑈∗𝑝𝑀−𝜖𝑈 = 1,      
that is, Ψ𝑀−𝜖 is unital. Hence Ψ𝑀−𝜖 is a unital *-homomorphism. By Corollary (4.2.26), 

the range of  Ψ𝑀−𝜖  is equal to 𝑈∗((𝑀 − 𝜖)(𝑧𝑛)𝑀−𝜖 ∨ {𝑒𝑀−2𝜖}
′′)𝑈 = (𝑀 − 𝜖) ∨

{𝑓𝑀−2𝜖}
′′ = 𝑀1 − 𝜖 . Also we have Ψ𝑀−𝜖(𝑥𝑛(𝑧𝑛)𝑀−𝜖) = 𝑥𝑛  for 𝑥𝑛 ∈ 𝑀 − 𝜖  and 

Ψ𝑀−𝜖(𝑒𝑀−2𝜖) = 𝑓𝑀−2𝜖 . Since (𝑧𝑛)𝑀−𝜖𝑀1(𝑧𝑛)𝑀−𝜖  is a factor, Ψ𝑀−𝜖  is an isomorphism 

onto 𝑀1 − 𝜖. 

Corollary (4.2.28)[495]: Let 𝑀 − 2𝜖 ⊂ 𝑀 be an irreducible inclusion of discrete type. Let 

𝑀 − 2𝜖 ⊂ 𝑀 − 𝜖 ⊂ 𝑀 be an intermediate subfactor. Then one has the following: 

    (i) The inclusion 𝑀 − 2𝜖 ⊂ 𝑀 is discrete. 

   (ii) Suppose that 𝑀 − 2𝜖  is infinite. Let  𝛾𝑀−2𝜖
𝑀  and 𝛾𝑀−2𝜖

𝑀−𝜖  be the canonical 

endomorphisms for 𝑀 − 2𝜖 ⊂ 𝑀  and 𝑀 − 2𝜖 ⊂ 𝑀 − 𝜖 , respectively. Then 

[𝛾𝑀−2𝜖
𝑀 |

 
𝑀 − 2𝜖]contains [𝛾𝑀−2𝜖

𝑀−𝜖 |
 

𝑀 − 2𝜖] in Sect (𝑀 − 2𝜖). 

  (iii) Suppose that 𝑀 − 2𝜖  is infinite and [𝛾𝑀−2𝜖
𝑀−𝜖 |

 
𝑀 − 2𝜖]  has in Sect  (𝑀 − 2𝜖)  the 

following decomposition into irreducible sectors  [𝜌𝜉𝜖], 𝜉𝜖 ∈ Ξ𝑀−𝜖 ∶ 

[𝛾𝑀−2𝜖
𝑀−𝜖 |

 
𝑀 − 2𝜖] = ⨁

𝜉𝜖∈Ξ𝑀−𝜖

𝑚𝜉𝜖 [𝜌𝜉𝜖]          

Set  𝒦𝜉𝜖 = {𝑉 ∈ 𝑀 − 𝜖|𝑉𝑥𝑛 = 𝜌𝜉𝜖(𝑥𝑛) 𝑉  for all 𝑥𝑛 ∈ 𝑀 − 2𝜖} for 𝜉𝜖 ∈ Ξ𝑀−𝜖  . Then one 

has 𝑚𝜉𝜖 =  dim(𝒦𝜉𝜖) and 𝑀 − 𝜖 is weakly spanned by 𝒦𝜉𝜖
∗  (𝑀 − 2𝜖), 𝜉𝜖 ∈ Ξ. 

Proof: (i) We may and do assume that 𝑀 − 2𝜖 is infinite by tensoring with an infinite 

factor if necessary. For 𝜉𝜖 ∈ Ξ𝑀−𝜖, we define the matrix algebra  𝐵𝜉𝜖 ⊂ 𝑀′ − 2𝜖 ∩ 𝑀1  by 

𝐵𝜉𝜖 𝒦𝜉𝜖
∗ 𝑒𝑀−2𝜖𝒦𝜉𝜖  .Then it is easy to see that  (𝑧𝑛)𝑀−𝜖𝐴𝜉𝜖(𝑧𝑛)𝑀−𝜖 =

((𝑧𝑛)𝑀−𝜖)𝜉𝜖𝐴𝜉𝜖((𝑧𝑛)𝑀−𝜖)𝜉𝜖 = 𝐵𝜉𝜖. Hence we have 

 

(𝑧𝑛)𝑀−𝜖((𝑀 − 2𝜖)′ ∩𝑀1)(𝑧𝑛)𝑀−𝜖
= ⨁

𝜉𝜖∈Ξ𝑀−𝜖

𝐵𝜉𝜖 . 

Let Ψ𝑀−𝜖 ∶  (𝑧𝑛)𝑀−𝜖𝑀1(𝑧𝑛)𝑀−𝜖 → 𝑀1 − 𝜖  be the isomorphism constructed in the 

previous lemma. Using the equalities 

 



131 

      Ψ𝑀−𝜖((𝑧𝑛)𝑀−𝜖((𝑀 − 2𝜖)′ ∩𝑀1)(𝑧𝑛)𝑀−𝜖
)

= Ψ𝑀−𝜖(((𝑀 − 2𝜖)(𝑧𝑛)𝑀−𝜖)
′ ∩ (𝑧𝑛)𝑀−𝜖𝑀1(𝑧𝑛)𝑀−𝜖)

= (𝑀 − 2𝜖)′ ∩𝑀1 − 𝜖 and Ψ𝑀−𝜖(𝐵𝜉𝜖) = 𝒦𝜉𝜖
∗ 𝑓𝑀−2𝜖𝒦𝜉𝜖 , 

We have  

𝑀′ − 2𝜖 ∩𝑀1 − 𝜖 = ⨁
𝜉𝜖∈Ξ𝑀−𝜖

𝒦𝜉𝜖
∗ 𝑓𝑀−2𝜖𝒦𝜉𝜖 . 

Since  �̂�𝑀−𝜖
𝑀1−𝜖 is finite on each matrix algebra 𝒦𝜉𝜖

∗ 𝑓𝑀−2𝜖𝒦𝜉𝜖 , �̂�𝑀−𝜖
𝑀1−𝜖  is semi-finite on 𝑀′ −

2𝜖 ∩𝑀1 − 𝜖. Therefore the inclusion 𝑀 − 2𝜖 ⊂ 𝑀 − 𝜖 is discrete. 

    (ii) Take 𝑉 ⊂ 𝒦𝜉𝜖 such that 𝑉∗𝑓𝑀−2𝜖𝑉 is a minimal projection in  𝒦𝜉𝜖
∗ 𝑓𝑀−2𝜖𝒦𝜉𝜖 .Note 

that  𝐸𝑀−2𝜖
𝑀−𝜖 (𝑉∗𝑉) = 1. The projection 𝑉∗𝑓𝑀−2𝜖𝑉 corresponds to an irreducible sector in 

Sect (𝑀 − 2𝜖). The sector is actually equal to [𝜌𝜉𝜖] ∈ 𝑆𝑒𝑐𝑡(𝑀 − 2𝜖) as seen below. Set   

𝑊:= 𝑓𝑀−2𝜖𝑉 ∈ 𝑀1 − 𝜖. Using 𝑊𝑊∗ = 𝑓𝑀−2𝜖𝐸𝑀−2𝜖
𝑀−𝜖 (𝑉∗𝑉)𝑓𝑀−2𝜖 = 𝑓𝑀−2𝜖  and  𝑊∗𝑊 =

 𝑉∗𝑓𝑀−2𝜖𝑉 , we have 

 

𝑓𝑀−2𝜖𝜌𝜉𝜖(𝑥𝑛) = 𝑊𝑊∗𝜌𝜉𝜖(𝑥𝑛) = 𝑊𝑉∗𝑓𝑀−2𝜖𝜌𝜉𝜖(𝑥𝑛) = 𝑊𝑉∗𝜌𝜉𝜖(𝑥𝑛)𝑓𝑀−2𝜖

= 𝑊𝑥𝑛𝑉
∗𝑓𝑀−2𝜖 = 𝑊𝑥𝑛𝑊

∗. 

By [219]  the minimal projection 𝑉∗𝑓𝑀−2𝜖𝑉  corresponds to [𝜌𝜉𝜖] , and the canonical 

endomorphism  𝛾𝑀−2𝜖
𝑀−𝜖 :𝑀 − 𝜖 → 𝑀 − 2𝜖 has the following decomposition in Sect (𝑀 −

2𝜖): 

[𝛾𝑀−2𝜖
𝑀−𝜖 |

 
𝑀 − 2𝜖] = ⨁

𝜉𝜖∈Ξ𝑀−𝜖

dim(𝒦𝜉𝜖)[𝜌𝜉𝜖]. 

From this, we see that [𝛾𝑀−2𝜖
𝑀−𝜖 |

 
𝑀 − 2𝜖]  is contained in [𝛾𝑀−2𝜖

𝑀 |
 

𝑀 − 2𝜖]  because each 

irreducible is contained in [𝛾𝑀−2𝜖
𝑀 |

 
𝑀 − 2𝜖] and we trivially have dim (𝒦𝜉𝜖) ≦ dim(ℋ𝜉𝜖). 

    (iii) Apply [219] to the discrete inclusion 𝑀 − 2𝜖 ⊂ 𝑀 − 𝜖. 

Corollary (4.2.29)[495]: Let 𝐵 ⊂ 𝐿∞(𝔾) be a left coideal and 𝜋 ∈ Irr(𝔾). Then there 

exist a unitary representation (𝑢𝑛)𝜋 = ((𝑢𝑛)𝜋𝑖,𝑗)𝑖,𝑗∈𝐼𝜋 and a subset  𝐼𝜋
𝐵  ⊂ 𝐼𝜋  such that: 

   (i) (𝑢𝑛)𝜋 is equivalent to (𝜐𝑛)𝜋. 

  (ii) 𝐵𝜋 = span {((𝑢𝑛)𝜋𝑖,𝑗| 𝑖 ∈ 𝐼𝜋 , 𝑗 ∈ 𝐼𝜋
𝐵 }. 

Proof: Let Hom𝔾 (𝐾𝜋 , 𝐿
∞(𝔾)) be the set of 𝔾 -linear maps from 𝐾𝜋 into 𝐿∞(𝔾), that is, it 

consists of linear maps  𝑆 ∶  𝐾𝜋  → 𝐿∞(𝔾)  such that  𝛿 ∘ 𝑆 = (𝑖𝑑⨂𝑆) ∘ (𝜐𝑛)𝜋 , where 

(𝜐𝑛)𝜋 is regarded as a map from 𝐾𝜋 to 𝐿∞(𝔾)𝜋⨂𝐾𝜋 . Similarly we define Hom𝔾 (𝐾𝜋 , 𝐵) , 

which is a subspace of  Hom𝔾 (𝐾𝜋 , 𝐿
∞(𝔾)) .Let (ℰ𝑖)𝑖∈𝐼𝜋be an orthonormal basis of 𝐾𝜋. 

We prepare the inner product of  Hom𝔾 (𝐾𝜋, 𝐿
∞(𝔾)) defined by 

〈𝑆|𝑇〉1 ≔ ∑𝑇(𝜀𝑖)
∗𝑆(𝜀𝑖)

𝑖∈𝐼𝜋

. 

Then Hom𝔾 (𝐾𝜋 , 𝐿
∞(𝔾)) is a Hilbert space of dimension 𝑑𝜋 . We take an orthonormal 

basis  {𝑆𝑖}𝑖∈𝐼𝜋  of Hom𝔾  (𝐾𝜋, 𝐿
∞(𝔾)) which contains an orthonormal basis of  

Hom𝔾(𝐾𝜋 , 𝐵)denoted  by  {𝑆𝑖}𝑖∈𝐼𝜋𝐵 . 

      We define the linear map 𝑇𝑗 ∶  𝐾𝜋  → 𝐿∞(𝔾) by 𝑇𝑗(𝜀𝑖) = (𝜐𝑛)𝜋𝑖𝑗 for  𝑗 ∈ 𝐼𝜋 . Then it is 

easy to see that  {𝑇𝑗}𝑗∈𝐼𝜋
 is an orthonormal basis of  Hom𝔾  (𝐾𝜋, 𝐿

∞(𝔾)) .Hence there 

exists a unitary matrix  (𝜈𝑛)𝜋𝑖𝑗 ∶= {(𝜈𝑛)𝑖}𝑖,𝑗∈𝐼𝜋  in  𝐵(𝐶|𝐼𝜋|) such that for 𝑖 ∈ 𝐼𝜋 , 
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𝑆𝑖 = ∑(𝜈𝑛)𝜋𝑗𝑖
𝑗∈𝐼𝜋

𝑇𝑗 . 

We define the unitary representation (𝑢𝑛)𝜋 ∶= (1⨂(𝜈𝑛)𝜋
∗ )(𝜐𝑛)𝜋(1⨂(𝜈𝑛)𝜋). Then we 

have 

(𝑢𝑛)𝜋𝑖𝑗 = ∑ ((𝜈𝑛)𝜋
∗

𝑘,ℓ∈𝐼𝜋

)𝑖𝑘(𝜐𝑛)𝜋ℓ𝑗 = ∑ ((𝜈𝑛)𝜋
∗

𝑘,ℓ∈𝐼𝜋

)𝑖𝑘(𝜈𝑛)𝜋ℓ𝑗𝑇ℓ(𝜀𝑘) 

      = ∑((𝜈𝑛)𝜋
∗

𝑘∈𝐼𝜋

)𝑖𝑘𝑆𝑗(𝜀𝑘) = 𝑆𝑗 (∑((𝜈𝑛)𝜋
∗

𝑘∈𝐼𝜋

)𝑖𝑘𝜀𝑘), 

and  

𝑆𝑗(𝜀𝑘) = ∑(𝜈𝑛)𝜋𝑘𝑖
𝑖∈𝐼𝜋

(𝑢𝑛)𝜋𝑘𝑖 . 

           Therefore (𝑢𝑛)𝜋𝑖𝑗 ∈ 𝐵 for all 𝑖 ∈ 𝐼𝜋 and  𝑗 ∈ 𝐼𝜋
𝐵 , and they span 𝐵𝜋. 

Corollary (4.2.30)[495]: When 𝑀𝛼𝜖 is infinite, the following statements hold: 

 (i) 1 = ∑ (𝑧𝑛)𝜋𝜋∈Irr (𝔾) . 

 (ii) (𝑀 − 2𝜖)′ ∩𝑀1 = ⨂
𝜋∈Irr (𝔾)

𝐴𝜋 . 

(iii) The inclusion 𝑀 − 2𝜖 ⊂ 𝑀 is discrete. 

Proof: (i) Take {𝑊𝜋𝑘}𝑘=1
𝑑𝜋

 in ℋ𝜋 such that   𝐸(𝑊𝜋𝑘𝑊𝜋𝑘
∗ ) = 𝛿𝑘,ℓ 1. Then we have 

(𝑧𝑛)𝜋 = ∑𝑊𝜋𝑘
∗ 𝑒𝑀−2𝜖

𝑑𝜋

𝑘=1

𝑊𝜋𝑘 .                

Since 𝑀 is weakly spanned by ℋ𝜋
∗(𝑀 − 2𝜖), 𝜋 ∈ Irr (𝔾), we have 

𝐻𝜑𝜖
= span{Λ𝜑𝜖

(ℋ𝜋
∗(𝑀 − 2𝜖))|𝜋 ∈ Irr (𝔾)}̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅.  

For any 𝑥𝑛 ∈ 𝑀 − 2𝜖 and 𝑉𝜎 ∈ ℋ𝜎 with 𝜎 ≠  𝜋, we have 

(𝑧𝑛)𝜋Λ𝜑𝜖
(𝑉𝜋

∗𝑥𝑛) = ∑𝑊𝜋𝑘
∗ Λ𝜑𝜖

𝑑𝜋

𝑘=1

(𝐸(𝑊𝜋𝑘𝑉𝜎
∗)𝑥𝑛) = 0, 

where we have used  𝐸(ℋ𝜋ℋ𝜎
∗) = 0  in the last equality. If  𝜎 =  𝜋, we have 

(𝑧𝑛)𝜋Λ𝜑𝜖
(𝑉𝜋

∗𝑥𝑛) = Λ𝜑𝜖
(𝑉𝜋

∗𝑥𝑛). 

Hence the range space of (𝑧𝑛)𝜋 coincides with  Λ𝜑𝜖
(ℋ𝜋

∗(𝑀 − 2𝜖)), and {(𝑧𝑛)𝜋}𝜋∈Irr (𝔾) is 

a partition of unity. 

   (ii) We first show that (𝑧𝑛)𝜋  is a central projection in   (𝑀 − 2𝜖)′ ∩𝑀1 . For  𝜋 ∈

Irr (𝔾) , take {𝑊𝜋𝑘}𝑘=1
𝑑𝜋

  as above. It  suffices to prove that  (𝑧𝑛)𝜋((𝑀 − 2𝜖)′ ∩

𝑀1)(𝑧𝑛)𝜎 = 0  if  𝜋 ≠ 𝜎  . Let 𝑥𝑛 ∈ 𝑀 − 2𝜖′ ∩𝑀1  and take (𝑥𝑛)0 ∈ 𝑀 − 2𝜖  such that  

(𝑥𝑛)0𝑒𝑀−2𝜖 = 𝑒𝑀−2𝜖𝑊𝜋𝑘𝑥𝑛𝑊𝜎ℓ
∗ 𝑒𝑀−2𝜖. Then for any  𝑦𝑛 ∈ 𝑀 − 2𝜖, we have 

(𝑥𝑛)0𝜌𝜎(𝑦𝑛)𝑒𝑀−2𝜖 = 𝑒𝑀−2𝜖𝑊𝜋𝑘𝑥𝑛𝑊𝜎ℓ
∗𝜌𝜎(𝑦𝑛)𝑒𝑀−2𝜖 = 𝑒𝑀−2𝜖𝑊𝜋𝑘𝑥𝑛𝑦𝑛𝑊𝜎ℓ

∗ 𝑒𝑀−2𝜖 

                      = 𝑒𝑀−2𝜖𝑊𝜋𝑘𝑦𝑛𝑥𝑛𝑊𝜎ℓ
∗ 𝑒𝑀−2𝜖 = 𝑒𝑀−2𝜖𝜌𝜋(𝑦𝑛)𝑊𝜋𝑘𝑥𝑛𝑊𝜎ℓ

∗ 𝑒𝑀−2𝜖  

= 𝜌𝜋(𝑦𝑛)(𝑥𝑛)0𝑒𝑀−2𝜖 .                              
This shows that (𝑥𝑛)0 intertwines 𝜌𝜎  and   𝜌𝜋. So, we get  (𝑥𝑛)0 = 0.  Hence we have  

𝑒𝑀−2𝜖𝑊𝜋𝑘
((𝑀 − 2𝜖)′ ∩𝑀1)𝑊𝜎ℓ

∗ 𝑒𝑀−2𝜖 = 0 and    (𝑧𝑛)𝜋((𝑀 − 2𝜖)′ ∩𝑀1)(𝑧𝑛)𝜎 = 0. 
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      Second we show that each 𝑝𝑘 ∶= 𝑊𝜋𝑘
∗  𝑒𝑀−2𝜖𝑊𝜋𝑘  is a minimal projection in  (𝑀 −

2𝜖)′ ∩𝑀1. This  is because the reduced inclusion  (𝑀 − 2𝜖)𝑝𝑘 ⊂ 𝑝𝑘𝑀1𝑝𝑘 is isomorphic 

to the irreducible inclusion 𝜌𝜋(𝑀 − 2𝜖) ⊂ 𝑀 − 2𝜖. Hence   (𝑀 − 2𝜖)′ ∩𝑀1 is the direct 

sum of   𝐴𝜋 , 𝜋 ∈ Irr (𝔾).  
    (iii) This is trivial by (ii) because   �̂� is finite on each 𝐴𝜋 . 
By the previous lemma, we can regard  Ξ = Irr (𝔾).  

Corollary (4.2.31)[495]: For any intermediate subfactor 𝑀𝛼𝜖 ⊂ 𝑀 − 𝜖 ⊂ 𝑀, ℒ(𝑀 − 𝜖) is 

a left coideal of 𝐺. 

Proof: If we consider a minimal action 𝛽 ≔ id⨂𝛼𝜖   on  𝐵(ℓ2)⨂𝑀 , then 

ℒ
𝛽
(𝐵(ℓ2)⨂(𝑀 − 𝜖)) = ℒ

𝛼𝜖
(𝑀 − 𝜖) .Therefore we may assume that 𝑀𝛼𝜖 is infinite. We 

have to check that  𝛿(ℒ(𝑀 − 𝜖)) ⊂ 𝐿∞(𝔾)⨂ℒ(𝑀 − 𝜖)  and   ℒ(𝑀 − 𝜖)   is 

multiplicatively closed.  

       Set  𝒦𝜋 = ℋ𝜋 ∩𝑀 − 𝜖 . Then 𝑀 − 𝜖   is weakly spanned by 𝒦𝜋
∗ (𝑀 − 2𝜖)  by 

Corollary (4.2.29). Recall two bases  {𝑉𝜋𝑖}𝑖∈I𝜋
 and  {𝑊𝜋𝑖}𝑖∈I𝜋

 in ℋ𝜋 as before, that is, we 

have the equalities  𝑉𝜋𝑖
∗𝑉𝜋𝑗 = 𝛿𝑖𝑗   ,(17) and  𝐸 (𝑊𝜋𝑖𝑊𝜋𝑗

∗ ) = 𝛿𝑖𝑗  .We may assume that  

{𝑊𝜋𝑖}𝑖∈𝐼𝜋𝑀−𝜖 is a basis of  𝒦𝜋. There exist 𝑐𝜋𝑗𝑖 ∈ ℂ , 𝑖, 𝑗 ∈ 𝐼𝜋  such that 𝑉𝜋𝑗
∗𝑊𝜋𝑖 = 𝑐𝜋𝑗𝑖 .Note 

that the matrix  (𝑐𝜋𝑗𝑖)𝑖,𝑗∈ I𝜋 is invertible. Since 

𝛼𝜖(𝑊𝜋𝑖) = ∑ 𝛼𝜖 (𝑉𝜋𝑗𝑉𝜋𝑗
∗𝑊𝜋𝑖)

𝑗∈𝐼𝜋

= ∑ 𝑐𝜋𝑗𝑖𝛼𝜖 (𝑉𝜋𝑗)

𝑗∈𝐼𝜋

                                                  (22) 

    = ∑ 𝑐𝜋𝑗𝑖𝑉𝜋𝑘⨂(𝜐𝑛)𝜋𝑘𝑗
𝑗,𝑘∈𝐼𝜋

= ∑𝑉𝜋𝑘⨂

𝑗∈𝐼𝜋

(∑ 𝑐𝜋𝑗𝑖⨂(𝜐𝑛)𝜋𝑘𝑗
𝑗∈𝐼𝜋

). 

We have  

ℒ(𝑀 − 𝜖) = span̅̅ ̅̅ ̅̅ 𝑤𝜖 {∑ 𝑐𝜋𝑗𝑖(𝜐𝑛)𝜋𝑘𝑗| 𝑖 ∈ 𝐼𝜋
𝑀−𝜖

𝑗∈𝐼𝜋

, 𝑗, 𝑘 ∈ 𝐼𝜋 , 𝜋 ∈ Ξ𝑀−𝜖}.         (23) 

This implies that 𝛿(ℒ(𝑀 − 𝜖)) ⊂ 𝐿∞(𝔾)⨂ℒ(𝑀 − 𝜖). Let  𝜋, 𝜎 ∈ (𝔾)Irr . Next we show 

that  ℒ(𝑀 − 𝜖)  is multiplicatively closed. It suffices to show that the product of 

∑ 𝑐𝜋𝑟𝑗(𝜐𝑛)𝜋𝑖,𝑗𝑗∈𝐼𝜋  and ∑ 𝑐𝜎𝑗ℓ(𝜐𝑛)𝜋𝑠,𝑗𝑗∈𝐼𝜎  

Is contained in  ℒ(𝑀 − 𝜖) for all (𝑖, 𝑟) ∈ 𝐼𝜋
𝑀−𝜖  × 𝐼𝜋  and  (ℓ, 𝑠) ∈ 𝐼𝜎

𝑀−𝜖  × 𝐼𝜎  .Then it is 

clear because the left-hand side of the following equality is contained in ℂ⨂ℒ(𝑀 − 𝜖): 

(𝑉𝜎𝑠
∗ 𝑉𝜋𝑟

∗⨂1)𝛼𝜖(𝑊𝜋𝑖𝑊𝜎ℓ) = 1⨂(∑ 𝑐𝜋𝑗𝑖⨂(𝜐𝑛)𝜋𝑟𝑗
𝑗∈𝐼𝜋

)(∑ 𝑐𝜎𝑗ℓ(𝜐𝑛)𝜎𝑠𝑗
𝑗∈𝐼𝜎

). 

Corollary (4.2.32)[495]: (Galois correspondence). Let 𝔾 be a compact quantum group 

and 𝑀  a factor. Let  𝛼𝜖: 𝑀 → 𝑀⨂𝐿∞(𝔾)  be a minimal action. Then there exists an 

isomorphism between the lattice of intermediate subfactors of  𝑀𝛼𝜖 ⊂ 𝑀 and the lattice of 

left coideals of 𝔾.  More precisely, the maps ℳ and ℒ are the mutually inverse maps, that 

is, for any intermediate subfactor  𝑀𝛼𝜖 ⊂ 𝑀 − 𝜖 ⊂ 𝑀 and any left coideal  𝐵 ⊂ 𝐿∞(𝔾), 
one has 
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ℳ(ℒ(𝑀 − 𝜖)) = 𝑀 − 𝜖, ℒ (ℳ(B)) = 𝐵. 

Proof: If we consider a minimal action 𝛽 ∶= id⨂𝛼𝜖  on  𝐵(ℓ2)⨂𝑀 , then we have  

ℒ
𝛽
(𝐵(ℓ2)⨂𝑀 − 𝜖) = ℒ

𝛼𝜖
(𝑀 − 𝜖) and  ℳ𝛽(𝐵) = 𝐵(ℓ2)⨂ℳ𝛼𝜖

(𝐵). Hence we may and 

do assume That  𝑀𝛼𝜖 is infinite. 

By definition, we see that   𝑀 − 𝜖 ⊂ ℳ(ℒ(𝑀 − 𝜖)). We will show  ℳ(ℒ(𝑀 −

𝜖)) ⊂ 𝑀 − 𝜖 . Set  𝒦𝜋 ∶= ℋ𝜋 ∩𝑀 − 𝜖  and  �̃�𝜋 ∶=  ℋ𝜋 ∩ℳ(ℒ(𝑀 − 𝜖))  . Then  

ℳ(ℒ(𝑀 − 𝜖)) is 𝜎-weakly spanned by 𝑀𝛼𝜖  �̃�𝜋  for 𝜋 ∈ Irr(𝔾) by Corollary (4.2.29). We 

choose a basis {𝑊𝜋𝑖}𝑖∈𝐼𝜋
 in ℋ𝜋  such that 𝐸 (𝑊𝜋𝑖𝑊𝜋𝑗

∗ ) = 𝛿𝑖,𝑗  as before. We may assume 

that it contains bases of  𝒦𝜋 and  �̃�𝜋  , which are denoted by {𝑊𝜋𝑖}𝑖∈𝐼𝜋𝑀−𝜖 and {𝑊𝜋𝑖}𝑖∈𝐽𝜋
, 

respectively. We use the invertible matrix (𝑐𝜋𝑖,𝑗)𝑖,𝑗∈𝐼𝜋
as in the previous lemma. 

       Let   𝑗 ∈ 𝐽𝜋 . Since 𝑊𝑗 ∈ ℳ(ℒ(𝑀 − 𝜖)) , 𝛼𝜖(𝑊𝑗)  is contained in  𝑀⨂ℒ(𝑀 − 𝜖),  

that is,  ∑ 𝑐𝜋𝑘𝑗(𝜐𝑛)𝜋ℓ𝑘𝑘∈𝐼𝜋 ∈ ℒ(𝑀 − 𝜖) for all ℓ ∈ 𝐼𝜋  by (22). Recall that the  

((𝜐𝑛)𝜋𝑘ℓ)𝑘,ℓ∈𝐼𝜋  are linearly independent. By (23), there exists   𝑑𝜋𝑖𝑗 ∈ ℂ for  𝑖 ∈ 𝐼𝜋
𝑀−𝜖   such 

that for any  ℓ ∈ 𝐼𝜋, 

∑ 𝑐𝜋𝑘𝑗(𝜐𝑛)𝜋ℓ𝑘
𝑘∈𝐼𝜋

= ∑ 𝑑𝜋𝑖𝑗
𝑖∈𝐼𝜋

𝑀−𝜖

(∑ 𝑐𝜋𝑘𝑖(𝜐𝑛)𝜋ℓ𝑘
𝑘∈𝐼𝜋

), 

That is,  

𝑐𝜋𝑘𝑗 = ∑ 𝑑𝜋𝑖𝑗
𝑖∈𝐼𝜋

𝑀−𝜖

𝑐𝜋𝑘𝑖        for all 𝑗 ∈ 𝐽𝜋 , 𝑘 ∈ 𝐼𝜋 .                                    (24) 

Note that 𝑑𝜋𝑖𝑗 does not depend on ℓ. We know the matrix  𝐶 ∶= (𝑐𝜋𝑘ℓ)𝑘ℓ∈𝐼𝜋  is invertible. 

Multiplying  (𝐶−1)ℓ𝑘(ℓ ∈ 𝐼𝜋
𝑀−𝜖) to the both sides of the above equality, summing up with 

𝑘, we have 

𝛿ℓ𝑗 = 𝑑𝜋ℓ𝑗        for all ℓ ∈ 𝐼𝜋
𝑀−𝜖 . 

This yields  𝑗 ∈ 𝐼𝜋
𝑀−𝜖  . Indeed, if  𝑗 ≠ 𝐼𝜋

𝑀−𝜖  , then  𝑑𝜋ℓ𝑗 = 0 for all ℓ ∈ 𝐼𝜋
𝑀−𝜖  .Together 

with (24), we have  𝑐𝜋𝑘𝑗 =  0 for all 𝑘 ∈ 𝐼𝜋. Then we have 

𝑊𝜋𝑗 = ∑ 𝑉𝜋𝑘 (𝑉𝜋𝑘
∗ 𝑊𝜋𝑗) =

𝑘∈𝐼𝜋

∑𝑉𝜋𝑘𝑐𝜋𝑘𝑗 = 0,

𝑘∈𝐼𝜋

 

but this is a contradiction. Therefore 𝑊𝜋𝑗 ∈ 𝑀 − 𝜖 for any   𝑗 ∈ 𝐼𝜋, and  ℳ(ℒ(𝑀 − 𝜖)) ⊂

𝑀 − 𝜖. 

       Next we will show that ℒ(ℳ(𝐵)) = 𝐵. By definition, the inclusion  ℒ(ℳ(𝐵)) ⊂ 𝐵 

holds. We prove 𝐵 ⊂ ℒ(ℳ(𝐵)). Since 𝐵 is 𝜎-weakly spanned by subspaces 

 

𝐵𝜋 = 𝐵 ∩ 𝐿∞(𝔾)𝜋,       𝜋 ∈ Irr(𝔾), 

it suffices to show that 𝐵𝜋 ⊂ ℒ(ℳ(𝐵)) for any  𝜋 ∈ Irr(𝔾). By Corollary (4.2.30), there 

exists a unitary matrix  (𝜈𝑛)𝜋 = ((𝜈𝑛)𝜋𝑖𝑗)𝑖𝑗∈𝐼𝜋 ∈ 𝐵(ℂ|𝐼𝜋|) such that 𝐵𝜋  is spanned by  

(𝑢𝑛)𝜋𝑖𝑗  , 𝑖 ∈ 𝐼𝜋  and   𝑗 ∈ 𝐼𝜋
𝐵 ,where  (𝑢𝑛)𝜋 = (1⨂(𝜈𝑛)𝜋

∗ )(𝜐𝑛)𝜋(1⨂(𝜈𝑛)𝜋). For   𝑖 ∈ 𝐼𝜋 , 

we put  𝑉𝜋𝑖
′ ≔ ∑ (𝜈𝑛)𝜋𝑗𝑖𝑗∈𝐼𝜋 𝑉𝜋𝑗 .Then we have 
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𝛼𝜖(𝑉𝜋𝑖
′ ) = ∑(𝜈𝑛)𝜋𝑗𝑖𝛼𝜖(𝑉𝜋𝑗) =

𝑗∈𝐼𝜋

∑ (𝜈𝑛)𝜋𝑗𝑖(𝑉𝜋𝑘⨂(𝜐𝑛)𝜋𝑘𝑗)

𝑗,𝑘∈𝐼𝜋

                                             

= ∑(𝑉𝜋𝑘⨂((𝜐𝑛)𝜋(1⨂(𝜈𝑛)𝜋))𝑘𝑖)

𝑘∈𝐼𝜋

= ∑ (𝑉𝜋𝑘⨂((1⨂(𝜈𝑛)𝜋)(𝑢𝑛)𝜋)𝑘𝑖
)

𝑘∈𝐼𝜋

 

= ∑ ((𝜈𝑛)𝜋𝑘𝑖𝑉𝜋𝑘⨂(𝑢𝑛)𝜋𝑗𝑖)

𝑗,𝑘∈𝐼𝜋

= ∑𝑉𝜋𝑗
′ ⨂(𝑢𝑛)𝜋𝑗𝑖

𝑗∈𝐼𝜋

.                               

     Let  𝑖 ∈ 𝐼𝜋
𝐵 .Then   (𝑢𝑛)𝜋𝑗𝑖 ∈ 𝐵𝜋 for all   𝑗 ∈ 𝐼𝜋 , and  𝑉𝜋𝑖

′ ∈ ℳ(𝐵)  by the above 

equality. Again by the above equality, (𝑢𝑛)𝜋𝑗𝑖 ∈ ℒ(ℳ(𝐵)) for all  𝑗 ∈ 𝐼𝜋 . This implies  

𝐵𝜋 ⊂ ℒ(ℳ(𝐵)).  
      When 𝔾  is of 𝐾 ac type, it has been proved in [219] that there exists a normal 

conditional expectation from 𝑀 onto any intermediate subfactor of  𝑀𝛼𝜖 ⊂ 𝑀. However, if 

𝔾 is not of 𝐾ac type, then this is not the case in general as we will see below. We can 

characterize which intermediate subfactor has such a property.  

Corollary (4.2.33)[495]: Let  𝐵 ⊂ 𝐿∞(𝔾) be 𝑎 left coideal. Then the following statements 

are equivalent: 

   (i) 𝐵 has the expectation property. 

  (ii)  𝜎𝑡
ℎ(𝐵) = 𝐵  𝑓𝑜𝑟 𝑎𝑙𝑙  𝑡 ∈ ℝ . 

  (iii)  𝜏𝑡(𝐵) = 𝐵  𝑓𝑜𝑟 𝑎𝑙𝑙  𝑡 ∈ ℝ . 
Proof: (i) ⟹ (ii). This follows from Takesaki’s theorem [272], p. 309. 

     (ii) ) ⟹ (iii). Since 𝐵𝜋 ∈ Irr(𝔾) spans a dense subspace of 𝐵, it suffices to show that 

𝜏𝑡(𝐵𝜋) ⊂ 𝐵𝜋 for all  𝑡 ∈ ℝ and 𝜋 ∈ Irr(𝔾). Recall the equality (16). Then for 𝑥𝑛 ∈ 𝐵𝜋, we 

have 𝜏𝑡(𝑥𝑛) = (𝑓2𝑖𝑡⨂𝜎−𝑡
ℎ )(𝛿(𝑥𝑛)). Since 𝐵 is a left coideal globally invariant under the 

modular group  𝜎ℎ, we see that  𝜏𝑡(𝑥𝑛) ∈ 𝐵𝜋. Hence  𝜏𝑡(𝐵𝜋) ⊂ 𝐵𝜋 for all 𝑡 ∈ ℝ and   𝜋 ∈
Irr(𝔾). 
     (iii) ⟹  (i). Let   𝜋 ∈ Irr(𝔾)  and  𝑥𝑛 ∈ 𝐵𝜋 . By (16), we have 𝜎𝑡

ℎ(𝑥𝑛) =
(𝑓2𝑖𝑡⨂𝜏−𝑡)(𝛿(𝑥𝑛)). Since 𝐵 is a left coideal globally invariant under the scaling group 𝜏 , 

we see that  𝜎𝑡
ℎ(𝑥𝑛) ∈ 𝐵𝜋. Hence 𝜎𝑡

ℎ(𝐵𝜋) ⊂ 𝐵𝜋 for all  𝑡 ∈ ℝ  and  𝜋 ∈ Irr(𝔾), and 𝐵 is 

globally invariant under the modular group 𝜎ℎ. Again by Takesaki’s theorem, there exists 

a faithful normal conditional expectation  𝐸𝐵 ∶ 𝐿
∞(𝔾) → 𝐵 preserving ℎ. Hence 𝐵 has the 

expectation property. Then we have the following (see [31]). 

Corollary (4.2.34)[495]: Let 𝛼𝜖 be a minimal action of 𝔾 on 𝑎 factor 𝑀. Let  𝑀𝛼𝜖 ⊂ 𝑀 −
𝜖 ⊂ 𝑀  be an intermediate subfactor. Then there exists 𝑎  faithful normal conditional 

expectation  𝐸𝑀−𝜖
𝑀 :𝑀 → 𝑀 − 𝜖  if and only if the left coideal  ℒ(𝑀 − 𝜖)   has the 

expectation property. 

Proof: Let   𝜔𝜖 ∈ 𝑀∗ − 2𝜖 be a faithful state. Put  𝜑𝜖:  𝜔𝜖 ∘  𝐸 ∈ 𝑀. We note that L is the 

image of a faithful normal conditional expectation of  𝑀 if and only if  𝜎𝑡
𝜑𝜖(𝑀 − 𝜖) ⊂

𝑀 − 𝜖 for all  𝑡 ∈ ℝ  . Indeed, if the former condition holds, there exists a faithful normal 

conditional expectation  𝐸𝑀−𝜖
𝑀 :𝑀 → 𝑀 − 𝜖 . Then the conditional expectation 𝐸𝑀−2𝜖

𝑀−𝜖 ∘
𝐸𝑀−𝜖
𝑀  is equal to 𝐸  because  𝑀 − 2𝜖 ⊂ 𝑀  is irreducible. Hence  𝜑𝜖 ∘ 𝐸𝑀−𝜖

𝑀 =
(𝜑𝜖 ∘ 𝐸𝑀−2𝜖

𝑀−𝜖 ) ∘ 𝐸𝑀−𝜖
𝑀 = 𝜑𝜖 ∘ 𝐸 = 𝜑𝜖 . Then by Takesaki’s theorem [272], p. 309, the latter 

condition holds. The converse implication also follows from his theorem. 

      Since 𝜑𝜖 is invariant under the action  𝛼𝜖, we have  𝛼𝜖  o 𝜎𝑡
𝜑𝜖 = (𝜎𝑡

𝜑𝜖⨂𝜏−𝑡) o𝛼𝜖 for all 

𝑡 ∈ ℝ  by [267].  Put  𝐵 ∶=  ℒ(𝑀 − 𝜖)  . Then we have  𝑀 − 𝜖 = {𝑥𝑛 ∈
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𝑀|𝛼𝜖(𝑥𝑛) ∈ 𝑀⨂𝐵} by Corollary (4.2.33). So, for 𝑥𝑛 ∈ 𝑀 − 𝜖, 𝜎𝑡
𝜑𝜖(𝑥𝑛) ∈ 𝑀 − 𝜖 if and 

only if  𝛼𝜖(𝑥𝑛) ∈ 𝑀⨂𝜏𝑡(𝐵). The von Neumann subalgebra  𝜏𝑡(𝐵) is also a left coideal by 

the equality  𝛿 ∘ 𝜏𝑡 = (𝜏𝑡⨂𝜏𝑡) ∘ 𝛿  . Hence 𝜎𝑡
𝜑𝜖(𝑥𝑛) ∈ 𝑀 − 𝜖  if and only if  𝑥𝑛 ∈

ℳ(𝜏𝑡(𝐵)). Therefore, 𝜎𝑡
𝜑𝜖(𝑀 − 𝜖) ⊂ 𝑀 − 𝜖 if and only if  𝑀 − 𝜖 ⊂ ℳ(𝜏𝑡(𝐵)). Since 

𝑀 − 𝜖 = ℳ(𝐵) , this is equivalent with  𝐵 ⊂ 𝜏𝑡(𝐵) . Hence 𝑀 − 𝜖  is the image of a 

faithful normal conditional expectation of 𝑀 iff 𝐵 = 𝜏𝑡(𝐵) for all 𝑡 ∈ ℝ .By the previous 

lemma, this equivalently means that 𝐵 has the expectation property. 

Section (4.3): Compact Group Actions on 𝑪∗-Algebras 
For (𝑀, 𝐺, 𝛿𝔖) be a 𝑊∗ -dynamical system with 𝑀  a von Neumann algebra, 𝐺  a 

compact group and 𝛿 ∶ g ∈ 𝐺 → 𝛿g ∈ 𝐴𝑢𝑡(𝑀)  a homomorphism of 𝐺  into the group 

𝐴𝑢𝑡(𝑀) of all automorphisms of 𝑀 such that the mapping g → 𝛿g(𝑚) is simple-weakly 

continuous for every  𝑚 ∈ 𝑀. Denote by 𝐴𝑢𝑡𝛿(𝑀) the subgroup of 𝐴𝑢𝑡(𝑀) consisting of 

all automorphisms commuting with all 𝛿g, g ∈ 𝐺. In [283] (see also [287]) it is proven that 

if 𝐴𝑢𝑡𝛿(𝑀) contains an ergodic subgroup 𝑆, then there is a one-to-one correspondence 

between the set of normal, closed subgroups of 𝐺  and the set of all 𝐺  and S globally 

invariant von Neumann subalgebras 𝑁 with 𝑀𝐺 ⊂ 𝑁 ⊂ 𝑀. This correspondence is given 

by: 𝑁 ↔ 𝐺𝑁  where 𝐺𝑁 = { g ∈ 𝐺| 𝛿g(𝑛) = 𝑛, 𝑛 ∈ 𝑁} . The main technical tool in 

Kishimoto’s approach is the method of Hilbert spaces inside a von Neumann algebra, as 

developed in [286]. Later, in [219], the case of irreducible actions was considered. They 

proved that if 𝑀𝐺 ⊂ 𝑀 is an irreducible pair of factors, i.e. (𝑀𝐺)′ ∩𝑀 = 𝐶𝐼 , then there is 

a one-to-one correspondence between the set of intermediate subfactors  𝑀𝐺 ⊂ 𝑁 ⊂ 𝑀 

and the closed subgroups of 𝐺 given by 𝑁 ↔ 𝐺𝑁, where, as above, 𝐺𝑁 = {g ∈ 𝐺|𝛿g(𝑛) =

𝑛, 𝑛 ∈ 𝑁}. This correspondence is called Galois correspondence. In [219], an action of a 

compact group with the property (𝑀𝐺)′ ∩𝑀 = 𝐶𝐼 is called minimal. Notice that in this 

case, 𝑆 = {𝐴𝑑(𝑢)| 𝑢 ∈  𝑀𝐺, unitary} is ergodic on 𝑀 and that 𝑁 is obviously 𝑆-invariant 

but is not required to be 𝐺-invariant. This result was extended to the case of compact 

quantum group actions on von Neumann factors by Tomatsu [266]. See [219] and [266] 

make extensive use of the method of Hilbert spaces inside a von Neumann algebra and 

other methods specific for von Neumann algebras. We will prove a result that extends 

Kishimoto’s result to the case of compact actions on 𝐶∗-algebras commuting with minimal 

actions, as defined below. This is the first result of this kind for 𝐶∗-dynamical systems. 

The notion of minimal action that will be used is different from the one used in [219]. Our 

methods are specific to 𝐶∗-dynamical systems and give, in particular, a new proof of 

Kishimoto’s result. We also give an example that shows that the result is not true if the 

commutant of the compact action satisfies a weaker ergodicity condition, that, in the case 

of von Neumann algebras is equivalent with the usual one. 

      If 𝑀 is a von Neumann algebra, a subgroup 𝑆 ⊂ 𝐴𝑢𝑡(𝑀) is called ergodic if  𝑀𝑆 = 𝐶𝐼 
, where 𝐶 is the set of complex numbers and 𝑀𝑆 denotes the fixed point algebra, 𝑀𝑆 =
{𝑚 ∈ 𝑀| 𝑠(𝑚) = 𝑚, 𝑠 ∈ 𝑆}.  In the case of 𝐶∗-algebras there are several distinct notions 

of ergodicity that are all equivalent for von Neumann algebras. These notions are distinct 

even for abelian 𝐶∗-algebras, the case of topological dynamics. Let 𝐴 be a 𝐶∗-algebra and 

𝑆 ⊂ 𝐴𝑢𝑡(𝐴) a subgroup of the automorphism group of 𝐴. Denote by ℋ𝑆(𝐴) the set of all 

nonzero hereditary 𝐶 ∗-subalgebras of 𝐴  that are globally 𝑆 -invariant. We recall the 

following definitions from [60]: 

   i) 𝑆 is called weakly ergodic if 𝐴𝑆 is trivial. 
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   ii) 𝑆 is called topologically transitive if for every 𝐶1, 𝐶2 ∈ ℋ𝑆(𝐴), their product 𝐶1𝐶2 =
{∑ 𝑐1

𝑖𝑐2
𝑖

finite | 𝑐1
𝑖 ∈ 𝐶1 , 𝑐2

𝑖 ∈ 𝐶2 } is not zero. In the particular case of topological dynamics 

this condition is equivalent to the usual topological transitivity of the flow. 

      In [44] it is noticed that our condition ii) is equivalent to the following: 

  𝐢𝐢′) If 𝑥, 𝑦 ∈ 𝐴 are not zero, then there is an  𝑠 ∈ 𝑆 such that  𝑥𝑠(𝑦) ≠ 0. 

  iii) 𝑆 is called minimal if ℋ𝑆(𝐴) = {𝐴}. 
      We caution that in [219] and [266] the notion of minimality is used for compact 

actions   (𝑀, 𝐺, 𝛿)  such that (𝑀𝐺)′ ∩𝑀 = 𝐶𝐼  . A group of automorphisms is called 

minimal if it satisfies condition iii) above. 

      Obviously iii) ⇒ ii) ⇒ i). Also, since in the case of von Neumann algebras, 𝑀, the S-

invariant, hereditary 𝑊∗-subalgebras, are of the form 𝑝𝑀𝑝 where 𝑝 is a projection in 𝑀𝑆 it 

follows that all the above conditions are equivalent. Another situation when all of the 

above conditions are equivalent for a 𝐶∗-dynamical system is when 𝑆 is compact [60]. 

      In [60] there are also discussed several criteria for checking topological transitivity. In 

[44], a seemingly stronger notion than topological transitivity is introduced, namely the 

notion of strong topological transitivity: 

      𝑆 is said to be strongly topologically transitive if for each finite sequence {(𝑥𝑖 , 𝑦𝑖)| 𝑖 =
1, 2, . . . , 𝑛} of pairs of elements  𝑥𝑖 , 𝑦𝑖 ∈ 𝐴 for which ∑𝑥𝑖 ⊗𝑦𝑖 ≠ 0 in the algebraic tensor 

product 𝐴⊗ 𝐴, there exists an  𝑠 ∈ 𝑆 such that ∑𝑥𝑖𝑠(𝑦𝑖) ≠ 0  in 𝐴. 
       Further, in [41] it is shown that in the case of von Neumann algebras strong 

topological transitivity is equivalent with topological transitivity and hence with the rest of 

the above conditions. 

      In what follows we will need the following results from [281]: 

Proposition(4.3.1)[280]: Let (𝐴, 𝑆) 𝑏𝑒 𝑎 𝐶∗-dynamical system and 𝐵 ⊂ 𝐴 an S-invariant 

𝐶∗-subalgebra. Then ℋ𝑆(𝐵) = {𝐶 ∩ 𝐵|𝐶 ∈ ℋ𝑆(𝐴)}. 
Proof: This is [281]. 

     If A is a 𝐶∗-algebra, we denote by 𝐴𝑠𝑎  the set of selfadjoint elements of 𝐴 and by 

(𝐴𝑠𝑎)
𝑚 the set of elements in the bidual 𝐴∗∗ of 𝐴 that can be obtained as strong limits of 

bounded, monotone increasing nets from 𝐴𝑠𝑎 (see also [35]). Then we can state [281]: 

Proposition (4.3.2)[280]: Let (𝐴, 𝑆)  be a 𝐶∗ -dynamical system. Then the following 

conditions are equivalent: 

    i) (𝐴, 𝑆) is minimal. 

   ii) If  𝑎 ∈ (𝐴𝑠𝑎)
𝑚  is such that 𝑠∗∗(𝑎) = 𝑎  for every  𝑠 ∈ 𝑆 , then  𝑎 ∈ 𝐶𝐼 . Here, 𝑠∗∗ 

denotes thedouble dual of the automorphism  𝑠 ∈ 𝑆. 
Proof: This is [281]. 

      Let (𝐴, 𝐺, 𝛿) be a 𝐶∗-dynamical system with 𝐺  compact. Denote by �̂�  the set of all 

equivalence classes of irreducible, unitary representations of 𝐺. For each   𝜋 ∈ �̂�, fix a 

unitary representation, 𝑢𝜋 in the class 𝜋 and a basis in the Hilbert space 𝐻𝜋 of  𝑢𝜋. If  𝜋 ∈

�̂� , denote by 𝜒𝜋 (g) = 𝑑𝜋 ∑ 𝑢𝑖𝑖
𝜋(g)̅̅ ̅̅ ̅̅ ̅̅𝑑𝜋

𝑖=1  the character of the class 𝜋 , where 𝑑𝜋  is the 

dimension of 𝐻𝜋. For 𝜋 ∈ �̂� we consider the following mappings from 𝐴 into itself: 

𝑃𝜋,𝛿(𝑎) = ∫𝜒𝜋 (g)𝛿g

4

𝐺

(𝑎)𝑑g 

𝑃𝑖𝑗
𝜋,𝛿(𝑎) = ∫𝑢𝑗𝑖

𝜋̅̅̅̅  (g)𝛿g

4

𝐺

(𝑎)𝑑g 
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We define the spectral subspaces of the action  𝛿: 

 

𝐴1
𝛿(𝜋) = {𝑎 ∈ 𝐴|𝑃𝜋,𝛿(𝑎) = 𝑎} , 𝜋 ∈ �̂� 

        In the particular case when  𝜋 = 𝜋0  is the trivial one-dimensional representation of 

𝐺, 𝐴1
𝛿(𝜋0) = 𝐴𝐺 the 𝐶∗-subalgebra of fixed elements of the action 𝛿. 

     As in [284] and [19], the matricial spectral subspaces are defined as follows: 

 

𝐴2
𝛿(𝑢𝜋) = {𝑋 = [𝑥𝑖𝑗] ∈ 𝐴⨂𝐵(𝐻𝜋)|[𝛿g(𝑥𝑖𝑗)] = 𝑋(1⨂𝑢𝜋(g))} 

       Notice that 𝐴2
𝛿(𝑢𝜋)  depends on the representation 𝑢𝜋  but for two equivalent 

representations, 𝐴2
𝛿(𝑢𝜋)  are spatially isomorphic. Obviously, 𝐴2

𝛿(𝑢𝜋)𝐴2
𝛿(𝑢𝜋)∗  is a two 

sided ideal of 𝐴𝐺 ⊗𝐵(𝐻𝜋)  and  𝐴2
𝛿(𝑢𝜋)∗𝐴2

𝛿(𝑢𝜋)  is a two sided ideal of  (𝐴⊗

𝐵(𝐻𝜋))
𝛿⊗𝑎𝑑(𝑢𝜋). The proof of the following remark is straightforward: 

 

Remark (4.3.3)[280]: Let (𝐴, 𝐺, 𝛿) be a 𝐶∗-dynamical system with 𝐺  compact and 𝑠 ∈

 𝐴𝑢𝑡(𝐴)  be such that 𝑠𝛿g = 𝛿g𝑠  for every g ∈ 𝐺 . Then  𝑠(𝐴1
𝛿(𝜋)) ⊂ 𝐴1

𝛿(𝜋)  and  (𝑠 ⊗

𝜄)(𝐴2
𝛿(𝑢𝜋)) ⊂ 𝐴2

𝛿(𝑢𝜋 ) for every  𝜋 ∈ �̂�. Here ι stands for the identity automorphism of 

𝐵(𝐻𝜋). 
       We will use the following results from [19]: 

Lemma (4.3.4)[280]: i)  ∑ 𝐴1
𝛿(𝜋)𝜋∈�̂�  is dense in 𝐴. 

   ii) 𝐴2
𝛿(𝑢𝜋) = {[𝑃𝑖𝑗

𝜋,𝛿(𝑎)]| 𝑎 ∈ 𝐴}. 

Proof: i) This is [19]. 

   ii) This is [19]. 

    We also need the following known result: 

Lemma (4.2.5)[280]: Let (𝐶, 𝐺, 𝛿) be a 𝐶∗-dynamical system with 𝐺 compact. Then every 

approximate unit of the fixed point algebra 𝐶𝐺 is an approximate unit of 𝐶. 

Proof: See for instance [282] for the more general case of compact quantum group 

actions. 

      Finally, we recall that a 𝐶∗ -dynamical system (𝐴, 𝐺, 𝛿)  with 𝐺  compact is called 

saturated if the closed, two sided ideal of the crossed product, 𝐴 ⋊𝛿 𝐺, generated by 𝜒𝜋0 

equals the crossed product. In this definition we used the known fact that every character, 

𝜒𝜋 , of 𝐺 is an element of  the multiplier algebra  𝑀(𝐴 ⋊𝛿 𝐺) of the crossed product [284], 

[19]. If the system is saturated then, the crossed product is strongly Morita equivalent, in 

the sense of Rieffel, with the fixed point algebra, 𝐴𝐺 [116]. Then, we have [19]: 

Lemma (4.3.6)[280]: Let (𝐶, 𝐺, 𝛿) be a 𝐶∗-dynamical system with 𝐺 compact. Then the 

following conditions are equivalent: 

    i) The system is saturated. 

  ii) The two sided ideal 𝐶2
𝛿(𝑢𝜋)∗𝐶2

𝛿(𝑢𝜋 ) is dense in  (𝐶 ⊗ 𝐵(𝐻𝜋))
𝛿⊗𝑎𝑑(𝑢𝜋)  for every  

𝜋 ∈ �̂� , where  (𝐶 ⊗ 𝐵(𝐻𝜋))
𝛿⊗𝑎𝑑(𝑢𝜋) is the fixed point algebra of  𝐶 ⊗ 𝐵(𝐻𝜋) for the 

action 𝛿 𝑎𝑑(𝑢𝜋 ) of 𝐺. 

We will prove the main results and give examples and counterexamples. 

     Let (𝐴, 𝐺, 𝛿) be a 𝐶∗-dynamical system with 𝐺 compact. Let 𝐵 ⊂ 𝐴 be 𝐺-invariant 𝐶∗-
subalgebra such that  𝐴𝐺 ⊂ 𝐵. 

Lemma (4.3.7)[280]: If  (𝐵, 𝐺, 𝛿) is saturated and if 𝛿|𝐵 is faithful, then 𝐵 = 𝐴. 

Proof. By Lemma (4.3.4)(ii), we have to prove that for every 𝜋 ∈ �̂�, 𝐴2
𝛿(𝑢𝜋) ⊂ 𝐵2

𝛿(𝑢𝜋). 
Let 𝜋 ∈ �̂�  be arbitrary. Since (𝐵, 𝐺, 𝛿)  is saturated, by Lemma (4.3.6) we have 
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𝐵2
𝛿(𝑢𝜋)∗𝐵2

𝛿(𝑢𝜋)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = (𝐵 ⊗ 𝐵(𝐻𝜋))
𝛿⊗𝑎𝑑(𝑢𝜋)  .Since (𝐴𝐺 ⊗ 𝐼𝐵(𝐻𝜋 )) ⊂ (𝐵 ⊗ 𝐵(𝐻𝜋))𝛿 ⊗

𝑎𝑑(𝑢𝜋 ),  it follows from Lemma (4.3.5) that (𝐵 ⊗ 𝐵(𝐻𝜋))
𝛿⊗𝑎𝑑(𝑢𝜋)  contains an 

approximate unit of 𝐴⊗𝐵(𝐻𝜋 ). Since  𝐵2
𝛿(𝑢𝜋)∗𝐵2

𝛿(𝑢𝜋) is a dense two sided ideal of 

(𝐵 ⊗ 𝐵(𝐻𝜋))
𝛿⊗𝑎𝑑(𝑢𝜋), by [4], this latter 𝐶∗-algebra contains an approximate unit {𝐸𝜆} ⊂

𝐵2
𝛿(𝑢𝜋)∗𝐵2

𝛿(𝑢𝜋), 𝐸𝜆 = ∑ 𝑋𝑖,𝜆
∗ 𝑌𝑖,𝜆

𝑛𝜆
𝑖=1  where 𝑋𝑖,𝜆, 𝑌𝑖,𝜆 ∈ 𝐵2

𝛿(𝑢𝜋). Let now 𝑋 ∈ 𝐴2
𝛿(𝑢𝜋) .Then  

𝑋𝐸𝜆 = ∑𝑋𝑋𝑖,𝜆
∗ 𝑌𝑖,𝜆 = ∑(𝑋𝑋𝑖,𝜆

∗ )𝑌𝑖,𝜆 ∈ (𝐴𝐺 ⊗𝐵(𝐻𝜋 ))𝐵2
𝛿(𝑢𝜋) = 𝐵2

𝛿(𝑢𝜋) . Since {𝐸𝜆}  is an 

approximate unit of  𝐴⊗𝐵(𝐻𝜋 ) , it follows that   𝑋 = (norm) lim(𝑋𝐸𝜆) ∈ 𝐵2
𝛿(𝑢𝜋). 

Therefore 𝐵 = 𝐴. 

     Let 𝐵  be a 𝐺 -invariant 𝐶∗ -subalgebra of 𝐴  such that  𝐴𝐺 ⊂ 𝐵 . Denote 𝐺𝐵 = {g ∈
𝐺| 𝛿g(𝑏) = 𝑏, 𝑏 ∈ 𝐵}. Then we have: 

Remark (4.3.8)[280]: i) 𝐺𝐵 is a closed, normal subgroup of 𝐺. 

    ii) The quotient action 𝛿• of 𝐺/𝐺𝐵 on 𝐵 is faithful. 

Proof: Straightforward. 

Corollary (4.3.9)[280]: Let (𝐴, 𝐺, 𝛿) be a 𝐶∗-dynamical system. If 𝐴𝐺 ⊂ 𝐵 ⊂ 𝐴 and 𝐵 is a  

𝐺-invariant 𝐶∗-subalgebra such that  (𝐵, 𝐺/𝐺𝐵, 𝛿•) is saturated, where 𝛿• is the quotient 

action, then 𝐵 =  𝐴𝐺
𝐵
.  

Proof: By Remark (4.3.8)ii) the quotient action 𝛿•of 𝐺/𝐺𝐵 on 𝐵 is faithful and therefore, 

if we apply Lemma (4.3.7) to 𝐺/𝐺𝐵 instead of 𝐺, we get the desired result.  

Remark (4.3.10)[280]: As we have noticed in the proof of the previous lemma, if 𝐵 is a  

𝐺-invariant 𝐶∗-subalgebra of 𝐴 and  𝜋 ∈ �̂� is such that 𝐵1
𝛿(𝜋) ≠ (0) and hence  𝐵2

𝛿(𝑢𝜋) ≠

(0), it follows  that the ideal 𝐵2
𝛿(𝑢𝜋)∗𝐵2

𝛿(𝑢𝜋)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  contains an approximate unit {𝐸𝜆} of the 

form 𝐸𝜆 = ∑ 𝑋𝑖,𝜆
∗ 𝑌𝑖,𝜆

𝑛𝜆
𝑖=1  where  𝑋𝑖,𝜆, 𝑌𝑖,𝜆 ∈ 𝐵2

𝛿(𝑢𝜋). 

Lemma (4.3.11)[280]: Let 𝐴 be a 𝐶∗-algebra and 𝐵 ⊂ 𝐴 𝑎 𝐶∗-subalgebra If  𝑆 ⊂ 𝐴𝑢𝑡(𝐴) 
acts minimally on 𝐴 and leaves 𝐵 globally invariant, then 𝑆 acts minimally on 𝐵. 

Proof: Indeed, by Proposition 1 every 𝑆-invariant hereditary 𝐶∗-subalgebra of 𝐵, 𝐶, is the 

intersection of 𝐵 with an 𝑆-invariant hereditary subalgebra of 𝐴. Since 𝑆 acts minimally on 

𝐴 it follows that 𝐶 = 𝐵. 

     In what follows, we will need the following result from [285]: 

Proposition (4.3.12)[280]: Let (𝐴, 𝐺, 𝛿) be a dynamical system with 𝐺 compact. Assume 

that the action 𝛿  is faithful and that there is a subgroup 𝑆  of 𝐴𝑢𝑡δ(𝐴)   which acts 

minimally on 𝐴. Then  𝐴1
𝛿(𝜋) ≠ (0) for every 𝜋 ∈ �̂�. 

Proof: This is [285]. 

     The next lemma provides a class of 𝐶∗-dynamical systems (𝐴, 𝐺. 𝛿) that are saturated. 

We will denote by 𝐴𝑢𝑡δ(𝐴)   the subgroup of the group of all automorphisms of 𝐴 

consisting of all automorphisms that commute with 𝛿g for all g ∈ 𝐺.  

Lemma (4.3.13)[280]: Let (𝐴, 𝐺, 𝛿) be a dynamical system with 𝐺 compact. Assume that 

the action 𝛿 is faithful and that there is a subgroup S of 𝐴𝑢𝑡δ(𝐴)   which acts minimally on 

𝐴. Then the system is saturated. 

Proof. We will prove that  𝐴2
𝛿  (𝑢𝜋 )∗𝐴2

𝛿(𝑢𝜋 )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =  𝐴⊗ 𝐵(𝐻𝜋)𝛼⊗𝑎𝑑𝑢𝜋 for every 𝜋 ∈ �̂�  and 

the result will follow from Lemma (4.3.6). Notice first that according to 

Proposition(4.3.12),  𝐴1
𝛿(𝜋) ≠ (0) f or every 𝜋 ∈ �̂�  and hence 𝐴2

𝛿(𝑢𝜋) ≠ (0)  for every 

𝜋 ∈ �̂�. Let  𝜋 ∈ �̂� be arbitrary. Let  𝐸𝜆 = ∑ 𝑋𝑖,𝜆
∗ 𝑌𝑖,𝜆

𝑛𝜆
𝑖=1 , where 𝑋𝑖,𝜆𝑌𝑖,𝜆 ∈ 𝐴2

𝛿(𝑢𝜋) , be an 

increasing approximateunit of   𝐴2
𝛿  (𝑢𝜋 )∗𝐴2

𝛿(𝑢𝜋 )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  .Then 𝐸𝜆 ↗ 𝐸  in the strong operator 
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topology, where 𝐸 is the unit of the von Neumann algebra generated by 𝐴2
𝛿  (𝑢𝜋 )∗𝐴2

𝛿(𝑢𝜋 )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   

in 𝐴∗∗ ⊗𝐵(𝐻𝜋), where 𝐴∗∗ is the second dual of 𝐴. Let  𝐻 be the Hilbert space of the 

universal representation of 𝐴 so that  𝐴∗∗ ⊂ 𝐵(𝐻). Since every 𝑠 ∈ 𝑆 commutes with every 

𝛿g, g ∈ 𝐺, by Remark (4.3.3) it follows that  𝐴2
𝛿  (𝑢𝜋 )∗𝐴2

𝛿(𝑢𝜋 ) and its weak closure in 

𝐴∗∗ ⊂ 𝐵(𝐻𝜋) is globally invariant under the automorphisms  {𝑠∗∗ ⊗ 𝜄|𝑠 ∈ 𝑆} where  𝑠∗∗ is 

the double dual of 𝑠  and 𝜄  is the identity automorphism of 𝐵(𝐻𝜋) . This means, in 

particular, that (𝑠∗∗ ⊗ 𝜄)(𝐸) = 𝐸  for every  𝑠 ∈ 𝑆 . If we write  𝐸𝜆  =  [𝐸𝑖𝑗
𝜆 ], 𝑖, 𝑗 =

1, . . . , 𝑑𝜋  , as a matrix with entries in 𝐴 and   𝐸 = [𝐸𝑖𝑗], 𝐸𝑖𝑗 ∈ 𝐴∗∗, then  𝑠∗∗(𝐸𝑖𝑗  )  = 𝐸𝑖𝑗  

for every  𝑠 ∈ 𝑆 and all  𝑖, 𝑗 . Since 𝐸 is a projection, it is in particular a positive operator 

which is a strong limit of elements of 𝐴⊗𝐵(𝐻𝜋) Therefore every diagonal entry, 𝐸𝑖𝑗, of 

𝐸, is a positive operator which is the strong limit of an increasing net of positive elements 

of 𝐴, so 𝐸𝑖𝑗 ∈ 𝐴𝑚 . By Proposition (4.3.2) it follows that there are scalars 𝜇𝑖𝑖  such that  

𝐸𝑖𝑖 = 𝜇𝑖𝑖𝐼 where 𝐼 is the unit of 𝐵(𝐻). Now,  𝐻⊗𝐻𝜋 ≃⊗𝑖=1
 𝑖=𝑑𝜋  𝐻𝑖 where 𝐻𝑖 = 𝐻 for all   

𝑖 = 1, . . . , 𝑑𝜋  with  𝑑𝜋  the dimension of  𝑑𝜋. Let  𝜁 =⊗𝜁𝑖∈ 𝐻⊗𝐻𝜋  with  𝜁𝑖0 = 𝜁𝑗0 =

 𝜉 ∈ 𝐻  and  𝜁𝑖 = 0  if  𝑗0 ≠ 𝑖 ≠  𝑖0. Then we have 

 

(𝐸𝜆 𝜁, 𝜁) = (𝐸𝑖0𝑖0
𝜆 𝜉, 𝜉) + (𝐸𝑖0𝑗0

𝜆 𝜉, 𝜉) + (𝐸𝑖0𝑗0
𝜆∗ 𝜉, 𝜉) + (𝐸𝑗0𝑗0

𝜆 𝜉, 𝜉)                    

                         = ((𝐸𝑖0𝑗0
𝜆 + 𝐸𝑖0𝑗0

𝜆∗ + 𝐸𝑖0𝑖0
𝜆 + 𝐸𝑗0𝑗0

𝜆 )𝜉, 𝜉) 

      Since 𝐸𝜆 ↗ 𝐸 , it follows that  ((𝐸𝑖0𝑗0
𝜆 + 𝐸𝑖0𝑗0

𝜆∗ + 𝐸𝑖0𝑖0
𝜆 + 𝐸𝑗0𝑗0

𝜆 )𝜉, 𝜉) ↗ (𝐸𝑖0𝑗0 + 𝐸𝑖0𝑗0
∗ +

𝜇𝑖0𝑖0𝐼 + 𝜇𝑗0𝑗0𝐼) in the weak operator topology and, since {𝐸𝜆} is norm bounded, in the 

strong operator topology. Hence, 𝐸𝑖0𝑗0 + 𝐸𝑖0𝑗0
∗ + 𝜇𝑖0𝑖0𝐼 + 𝜇𝑗0𝑗0𝐼 ∈ 𝐴𝑚  .As we noticed 

before,  𝐸𝑖0𝑗0 + 𝐸𝑖0𝑗0
∗ + 𝜇𝑖0𝑖0𝐼 + 𝜇𝑗0𝑗0𝐼 is 𝑠∗∗  -invariant for every 𝑠 ∈ 𝑆 and therefore, by 

Proposition (4.3.2) it is a scalar multiple of the identity. Hence  𝐸𝑖0𝑗0 + 𝐸𝑖0𝑗0
∗  is a scalar 

multiple of the identity. Similarly, considering  𝜁 =⊗𝜁𝑖∈ 𝐻⊗𝐻𝜋 with 𝜁𝑖0 = √−1𝜉 , 𝜁𝑗0 =

−𝜉 , 𝜉 ∈ 𝐻  and  𝜁𝑖 = 0 if  𝑗0 ≠ 𝑖 ≠  𝑖0  we infer that  𝐸𝑖0𝑗0 − 𝐸𝑖0𝑗0
∗  is a scalar multiple of 

the identity. Hence there are scalars  𝜇𝑖𝑗  such that  𝐸𝑖𝑗 = 𝜇𝑖𝑗  𝐼 , so all entries of 𝐸 are 

scalar multiples of the identity. Since 𝐸  is an element of the weak closure of  𝐴⊗
𝐵(𝐻𝜋)𝛿 ⊗ 𝑎𝑑(𝑢 𝜋) it follows that 𝐸 intertwines 𝑢 𝜋 with itself and therefore, since 𝑢 𝜋 is 

irreducible, we have 𝐸 = 𝐼 and we are done. 

Theorem (4.3.14)[280]: Let (𝐴, 𝐺, 𝛿) be a dynamical system with 𝐺  compact. Assume 

that there is a subgroup 𝑆 of  𝐴𝑢𝑡𝛿(𝐴) which acts minimally on 𝐴. If 𝐴𝐺 ⊂ 𝐵 ⊂ 𝐴 and 𝐵 is 

a 𝐺 and 𝑆 globally Invariant  𝐶∗-subalgebra, then  𝐵 = 𝐴𝐺
𝐵

 . Conversely, if  𝐺0 ⊂ 𝐺 is a 

closed, normal subgroup, Then  𝐵 = 𝐴𝐺0  is 𝑎 𝐺 and S-invariant 𝐶∗-subalgebra such that  

𝐴𝐺 ⊂ 𝐵 ⊂ 𝐴. 

Proof:  It is immediate to see that the quotient action 𝛿•acts faithfully on 𝐵. By Lemma 

(4.3.11), 𝑆  acts minimally on 𝐵 . By Lemma (4.3.13), the system (𝐵, 𝛿•, 𝐺/𝐺𝐵)   is 

saturated. By Corollary (4.3.9), 𝐵 = 𝐴𝐺
𝐵

  and we are done. The converse is easily 

checked. 

     Notice that for 𝑊∗ -dynamical systems the proof of the above Theorem (4.3.14) is 

simpler since the discussion about lower semicontinuous elements in the bidual 𝐴∗∗ is not 

necessary. 
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    A simple example of a 𝐶∗-dynamical system (𝐴, 𝐺, 𝛿) with 𝐺  compact satisfying the 

hypotheses of Theorem (4.3.14) is the following: 

Example (4.3.15)[280]: Let 𝐺 be a compact group and C(G) the 𝐶∗-algebra of continuous 

functions on 𝐺 . Denote by 𝜆 the action of 𝐺  on 𝐶(𝐺) by left translations and by 𝜌 the 

action by right translations. Let  𝐻 be a Hilbert space and 𝐾(𝐻) the algebra of compact 

operators on 𝐻. Let  𝐴 = 𝐶(𝐺)⊗ 𝐾(𝐻) and 𝛿g = 𝜆g ⊗ 𝜄, g ∈ 𝐺. Then the subgroup  𝑆 ⊂

𝐴𝑢𝑡𝛿(𝐴)  generated by {𝜌g ⊗𝑎𝑑(𝑢)|g ∈ 𝐺, 𝑢 ∈ 𝐾(𝐻)̃ , unitary }  where 𝜌g  is the right 

translation by g ∈ 𝐺 , acts minimally on 𝐴. Here 𝐾(𝐻)̃ denotes the 𝐶∗-algebra obtained 

from 𝐾(𝐻) by adjoining a unit if 𝐻 is infinite dimensional. 

      The next result provides a class of examples of 𝐶∗-dynamical systems (𝐴, 𝐺, 𝛿) that 

satisfy the hypotheses of Theorem (4.3.14). 

Theorem (4.3.16)[280]: Let (𝐴, 𝐺, 𝛿) be a 𝐶∗-dynamical system with 𝐺 compact abelian. 

Assume that the fixed point algebra 𝐴𝐺 is simple. If 𝐵 is 𝑎 𝐺-invariant 𝐶∗-subalgebra such 

that  𝐴𝐺 ⊂ 𝐵 ⊂ 𝐴, then  𝐵 = 𝐴𝐺
𝐵
.  

Proof: Denote by 𝐴�̃� the 𝐶∗-algebra obtained from 𝐴𝐺 by adjoining a unit. We will show 

that the subgroup 𝑆 ⊂ 𝐴𝑢𝑡(𝐴)  generated by 𝛿𝐺 = {𝛿g| g ∈ 𝐺}  and {𝑎𝑑(𝑢)| 𝑢 ∈ 𝐴�̃� , 

unitary} is minimal. Since 𝐺 is abelian and 𝑎𝑑(𝑢), 𝑢 ∈ 𝐴𝐺  commute with  𝛿g, g ∈ 𝐺, we 

have that 𝑆 ⊂ 𝐴𝑢𝑡𝛿(𝐴) .We prove next that S acts minimally on 𝐴. Let 𝐶 ∈ 𝐻𝑆(𝐴). Then 

if  𝐿 = 𝐴𝐶̅̅ ̅̅ , we have  that  𝐿 is an 𝑆-invariant, in particular 𝐺-invariant, closed, left ideal of 

𝐴  and 𝐶 = 𝐿 ∩ 𝐿∗ . We show that  𝐿 = 𝐴  and hence  𝐶 = 𝐴 . Since 𝐿  is 𝑆 -invariant, it 

follows that 𝐿𝐺 = {∫ 𝛿g
2

𝐺
 𝛿𝑔(𝑙)𝑑g| 𝑙 ∈ 𝐿} ⊂ 𝐿 ∩ 𝐴𝐺   is a left ideal of 𝐴𝐺 . Since 𝐿  is 

𝑎𝑑(𝑢)-invariant for every  𝑢 ∈ 𝐴�̃� , unitary, we have: 

 

𝐿𝐺𝑢 = 𝑢𝑎𝑑(𝑢∗)(𝐿𝐺) ⊂ 𝐿𝐺 , 𝑢 ∈ 𝐴�̃�  , 𝑢𝑛𝑖𝑡𝑎𝑟𝑦. 
Therefore 𝐿𝐺 is a two sided ideal of 𝐴𝐺. Since 𝐴𝐺 is simple, it follows that 𝐿𝐺 = 𝐴𝐺 and 

thus by Lemma (4.3.5), 𝐿𝐺 and so 𝐿 contains an approximate unit of  𝐴. Hence 𝐿 = 𝐴 and 

therefore  

𝐶 = 𝐿 ∩ 𝐿∗ = 𝐴  .Therefore 𝑆 ⊂ 𝐴𝑢𝑡𝛿(𝐴)  is minimal and the conclusion follows from 

Theorem (4.3.14). 

An example of 𝐶∗-dynamical system satisfying the hypotheses of Theorem(4.3.16) can be 

constructed as follows: 

Example (4.3.17)[280]: Let (𝐶, 𝐺, 𝜆) be a 𝐶∗-dynamical system with 𝐺 compact abelian. 

Assume that 𝜆 is weakly ergodic, and therefore minimal, by [60]. Let 𝐻  be a Hilbert 

space. Let  𝐴 = 𝐶 ⊗𝐾(𝐻), where 𝐾(𝐻) is the algebra of compact operators on 𝐻 and  

𝛿g  = 𝜆g ⊗ 𝜄, g ∈ 𝐺 where  𝜄 is the trivial automorphism of 𝐾(𝐻). Then (𝐴, 𝐺, 𝛿) satisfies 

the hypotheses of Theorem (4.3.16). 

Proof: Straightforward. 

      The next example shows that the conclusion of Theorem (4.3.14) may fail if the 

minimality condition on 𝑆  is replaced with a weaker ergodicity condition such as 

topological transitivity, or even with strong topological transitivity. 

Example (4.3.18)[280]: Let 𝐺 be a compact abelian group and 𝐻 an infinite dimensional 

Hilbert space. Denote by 𝜏 the action of 𝐺, by translations, on 𝐶(𝐺), the 𝐶∗-algebra of 

continuous functions on 𝐺 . Let  𝐴 = 𝐶(𝐺)⊗ 𝐾(𝐻)̃, where 𝐾(𝐻)̃ is the subalgebra of 

𝐵(𝐻) generated by 𝐾(𝐻) and the unit  𝐼 ∈ 𝐵(𝐻). Let  𝛿g = 𝜏g ⊗ 𝜄, g ∈ 𝐺, where 𝜄 is the 
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identity automorphism of 𝐾(𝐻) .Consider the system (𝐴, 𝐺, 𝛿) . Clearly, 𝐴𝐺 = 𝐼𝐶(𝐺) ⊗

𝐾(𝐻)̃. We will prove the following two facts: 

    (i) 𝐴𝑢𝑡𝛿(𝐴) contains a subgroup 𝑆 which acts strongly topologically transitively on 𝐴. 

   (ii) There is a 𝐺 and 𝑆-invariant 𝐶∗-subalgebra 𝐵 such that 𝐴𝐺 ⊂ 𝐵 ⊂ 𝐴 and  𝐵 ≠ 𝐴𝐺
𝐵
.  

Proof: (i) Let 𝑆 = {𝜏g ⊗  𝑎𝑑(𝑢)|g ∈ 𝐺, 𝑢 ∈ 𝐾(𝐻)̃ , unitary} ⊂ 𝐴𝑢𝑡(𝐴) .Obviously,every 

element 𝑠 ∈ 𝑆  commutes with all 𝛿g = 𝜏g ⊗ 𝜄, g ∈ 𝐺 . We prove next that 𝑆  acts 

ergodically on the von Neumann algebra  𝐿∞(𝐺) ⊗ 𝐵(𝐻)  and then applying [60] 

(respectively, [41]) it will follow that 𝑆  acts topologically transitively (strongly 

topologically transitively) on 𝐴. Notice first that 𝜏g is implemented by the unitary operator 

𝜆g ∈ 𝐵(𝐿2(𝐺)) of translation by g. Hence the fixed point algebra (𝐵(𝐿2(𝐺))⊗ 𝐵(𝐻))𝑆 is 

the commutant  (𝐶∗(𝐺)′′ ⊗𝐵(𝐻))′ = 𝐶∗(𝐺)′′ ⊗𝐶𝐼 where 𝐶∗(𝐺) is the group 𝐶∗-algebra 

of 𝐺. Since 𝐶∗(𝐺)′′ ∩ 𝐿∞(𝐺) = 𝐶𝐼 , i) is proven. 

   ii) Let  𝐵 ⊂ 𝐴  be the 𝐶∗ -subalgebra generated by 𝐶(𝐺)⊗ 𝐾(𝐻)  and 𝐼𝐶(𝐺) ⊗ 𝐼𝐵(𝐻) . 

Then, 𝐵 is obviously 𝐺 and 𝑆-invariant and  𝐴𝐺 = 𝐼𝐶(𝐺) ⊗𝐾(𝐻)̃ ⊂ 𝐵. Clearly, 𝐺𝐵 = {g ∈

𝐺| 𝛿g(𝑏) =  𝑏, 𝑏 ∈ 𝐵} =  {𝑒}  where 𝑒 is the identity element of 𝐺. If we show that 𝐵 ≠ 𝐴, 

ii) is proven. Let  𝑓 ∈ 𝐶(𝐺) be a non constant function. Then there are g1, g2 ∈ 𝐺 such that  

𝑓(g1) ≠ 𝑓(g2). We claim that  𝑓 ⊗ 𝐼 ∉ 𝐵. Assume to the contrary that  𝑓 ∈ 𝐵. Then there 

is a function 𝛷:𝐺 → 𝐾(𝐻) and a scalar 𝜇 such that 𝑓(g) ⊗ 𝐼 = 𝛷(g) + 𝜇𝐼. In particular 

(𝑓(g1) − 𝑓(g2))𝐼 = 𝛷(g1) − 𝛷(g2) ∈ 𝐾(𝐻) , which is a contradiction since  𝑓(g1) −
𝑓(g2) is a nonzero scalar. 
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Chapter 5 

Free Actions of Compact Quantum Abelian Groups 
 

We use the factor systems to show that all finite coverings of irrational rotation 𝐶∗-
algebras are left. We provide a complete classification theory of these actions for compact 

Abelian groups and explain its relation to the classification of classical principal bundles. 

We are able to express the freeness of a compact Hausdorff topological group action on a 

compact Hausdorff topological space in algebraic terms. As an application, we also show 

that a field of free actions yields a global free action. 

Section (5.1): Compact Quantum Groups on 𝑪∗-Algebras 
Free actions of classical groups on 𝐶∗-algebras were first introduced under the name 

saturated actions by Rieffel [123] (see also [116], [36]) and equivalent characterizations 

where given by Ellwood [161] and by Gottman, Lazar, and Peligrad [81], [19] (see also 

[148]). This class of actions does not admit degeneracies that may be present in general 

actions. For this reasons they are easier to understand and to classify. Indeed, for compact 

Abelian groups, free and ergodic actions, i. e., free actions with trivial fixed point algebra, 

were completely classified by Olesen, Pedersen and Takesaki in [64] and independently by 

Albeverio and Høegh–Krohn in [42]. This classification was generalized to compactnon-

Abelian groups by the remarkable work of Wassermann [300], [301], [302]. According to 

[42], [64], [300], for a compact group 𝐺 there is a 1-to-1 correspondence between free and 

ergodic actions of 𝐺 and unitary 2-cocycles of the dual group. An analogous result in the 

context of compact quantum groups has been obtained by Bichon, De Rijdt and Vaes 

[290]. Extending this classification beyond the ergodic case is however not straightforward 

because, even for a commutative fixed point algebra, the action cannot necessarily be 

decomposed into a bundle of ergodic actions. 

The study of non-ergodic free actions is also motivated by their role as noncommutative 

principal bundles in noncommutative geometry. In fact, by a classical result, having a free 

action of a compact group 𝐺  on a locally compact space 𝑃 is equivalent saying that 𝑃 

carries the structure of a principal bundle over the quotient  𝑋 ∶= 𝑃/𝐺 with structure group 

𝐺. Moreover, Rieffel showed that there is a 1-to-1 correspondence between classical free 

actions of compact groups on locally compact spaces and free actions of compact groups 

on commutative 𝐶∗-algebras (cf. [116]). From this perspective, the notion of a free action 

on a 𝐶∗ -algebra provides a natural framework for noncommutative principal bundles, 

which become increasingly prevalent in application to geometry and physics. Regarding 

classification, the case of locally trivial principal bundles, that is, if 𝑃 is glued together 

from spaces of the form 𝑈 × 𝐺 with an open subset 𝑈 ⊆ 𝑋, is very well-understood. This 

gluing immediately leads to 𝐺-valued cocycles. The corresponding cohomology theory, 

called �̌� ech cohomology, gives a complete classification of locally trivial principal 

bundles with base space 𝑋 and structure group 𝐺. 

The present is a sequel of [296] and [297], where we studied free actions of compact 

Abelian groups and so-called cleft actions, respectively. We achieved in [296] a complete 

classification of free, but not necessary ergodic actions of compact Abelian groups on 

unital 𝐶∗-algebras. This classification extends the results of [42], [64] and relies on the fact 

that the corresponding isotypic components are Morita self-equivalence over the fixed 

point algebra. Moreover, we provided a classification of principal bundles with compact 

Abelian structure group which are not locally trivial. For free actions of non-Abelian 
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compact groups the bimodule structure of the corresponding isotypic components is more 

subtle. For this reason we concentrated in [297] on a simple class of free actions of non-

Abelian compact groups, namely cleft actions. Regarded as noncommutative principal 

bundles, these actions are characterized by the fact that all associated noncommutative 

vector bundles are trivial. We turn to the general case of free actions of compact quantum 

groups. The main objective is to provide a complete classification of free actions of 

compact quantum groups on unital 𝐶∗-algebras. Besides an interesting characterization of 

freeness, our approach uses the fact that nonergodic actions of compact quantum groups 

can be described in terms of weak unitary tensor functors, i. e., functors from the 

representation category of the underlying compact quantum group into the category of 𝐶∗-
correspondences over the corresponding fixed point algebra (cf. [130]).  

We introduce in the notion of freeness for compact 𝐶∗-dynamical systems and prove its 

equivalence to the Ellwood condition (Theorem (5.1.2)). We also list a few examples and 

establish the basis for our later classification results. we show that every free compact 𝐶∗-
dynamical system gives rise to a socalled factor system and that free compact 𝐶∗ -

dynamical systems can be classified up to equivalence by their associated factor system 

(Theorem (5.1.11)). This extends the results presented in part 2 of this series [297], which 

deals with the particular class of cleft actions. Moreover, we give a K-theoretic 

characterization of cleft actions based on factor systems. 

We show that the information provided by a factor system is enough to explicitly 

reconstruct the 𝐶∗ -dynamical system by adapting results of [130]. This completes our 

classification result showing that there is a 1-to-1 correspondence between free compact 

𝐶∗-dynamical systems and factor systems up to equivalence and conjugacy, respectively 

(Theorem (5.1.23)). As an application, we show that finite coverings of generic irrational 

rotation 𝐶∗-algebras are always cleft (Theorem (5.1.27)). 

      We concerned with free actions of compact groups on unital 𝐶∗-algebras and their 

classification. As a consequence, we use and blend tools from operator algebras and 

representation theory. e provide some definitions and notations which are repeatedly used. 

     Let 𝒜  be a unital 𝐶∗ -algebra. For the unit of 𝒜  we write 𝕝𝒜  or simply 𝕝. We will 

frequently deal with partial isometries, i. e., elements 𝜐 ∈ 𝒜 such that 𝜐∗𝜐  and 𝜐𝜐∗ are 

projections. In this case 𝜐∗𝜐   is called the cokernel projection and 𝜐𝜐∗   the range 

projection. Moreover, we say that a projection 𝑝 is larger than the range of an element 𝑥 if 

𝑝𝑥 =  𝑥, and we say that 𝑝 is larger than the cokernel of 𝑥 if 𝑥𝑝 =  𝑥. All tensor products 

of  𝐶∗-algebras are taken with respect to the minimal tensor product. We will frequently 

deal with multiple tensor products of unital 𝐶∗ -algebras 𝒜,ℬ , and 𝒞 . If there is no 

ambiguity, we regard 𝒜,ℬ,, and 𝒞 as subalgebras of 𝒜⊗ℬ⊗𝒞  and extend maps on 

𝒜,ℬ, or 𝐶 canonically by tensoring with the identity map. For sake of clarity we may 

occasionally use the leg numbering notation, e. g., for 𝑥 ∈ 𝒜 ⊗𝒞 we write 𝑥13 to denote 

the corresponding element in 𝒜⊗ℬ⊗𝒞.  

Inner products 〈 ⋅,⋅ 〉 on a Hilbert space is always assumed to be linear in the second 

component. For a Hilbert space ℌ1, ℌ2 we denote by ℒ(ℌ1, ℌ2) the set of bounded linear 

operators  𝑇: ℌ1 → ℌ2. If  ℌ1 = ℌ2 we briefly write ℒ(ℌ1). We use the Dirac notation to 

specify operators, i. e., for two vectors 𝜐1 ∈ ℌ1, 𝜐2 ∈ ℌ2 we write |𝜐2⟩⟨𝜐1| for the operator 

𝜐 ⟼ 〈𝜐1, 𝜐〉𝜐2. 

For a unital 𝐶∗-algebra 𝒜 a right pre-Hilbert 𝒜-module is a right 𝒜-module ℌ equipped 

with a sesquilinear map 〈⋅,⋅〉𝒜 ∶ 𝐻 × 𝐻 → 𝒜 that satisfies the usual axioms of a definite 
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inner product with 𝒜-linearity in the second component. We call ℌ a right Hilbert  𝒜-

module if ℌ  is complete with respect to the norm ‖𝑥‖ℌ: =  ‖〈 𝑥, 𝑥 〉𝒜‖1 2⁄ . The right 

Hilbert 𝒜-module is called full if the two-sided ideal 〈ℌ, ℌ〉𝒜 ∶=  lin{〈 𝑥, 𝑦 〉𝒜| 𝑥, 𝑦 ∈ ℌ}̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

is dense in 𝒜. Since every dense ideal of 𝒜 meets the invertible elements, in this case we 

have 〈ℌ, ℌ〉𝒜 = 𝒜. Left (pre-) Hilbert 𝒜-modules are defined in a similar way. 

A correspondence over 𝒜, or a right Hilbert 𝒜-bimodule, is a 𝒜-bimodule ℌ equipped 

with a 𝒜-valued inner product 〈⋅,⋅〉𝒜  which turns it into a right Hilbert 𝒜-module such 

that the left action of 𝒜 on ℌ is via adjointable operators. For two correspondences ℌ and 

𝔎 over 𝒜 we denote by ℌ⊗𝒜 𝔎 their tensor product, on which the inner product is given 

by 〈 𝑥1 ⊗𝑦1 , 𝑥21 ⊗𝑦2〉𝒜 = 〈 𝑦1, 〈 𝑥1, 𝑥2 〉𝒜 , 𝑦2〉𝒜  for all  𝑥1, 𝑥2 ∈ ℌ1 and 𝑦1, 𝑦2 ∈ 𝔎. 

      We rely on the 𝐶∗ -algebraic notion of compact quantum groups as introduced by  

Woronowicz [303]. For an introduction and further details we recommend [291], [142], 

[298]. A compact quantum group is given by a unital 𝐶∗-algebra 𝒢 together with a (usually 

implicit) faithful, unital∗ -homomorphism  ∆: 𝒢 →  𝒢 ⊗ 𝒢  satisfying the identity (∆⊗
id) ∘ ∆= (id⊗ ∆) ∘ ∆ and such that ∆(𝒢)(𝕝 ⊗ 𝒢) is dense in 𝒢 ⊗ 𝒢. It can be shown that 

there is a unique state ℎ ∶ 𝒢 → ℂ such that (id⊗ ℎ) ∘ ∆ = ℎ = (ℎ ⊗ id) ∘ ∆ (see [303]). 

This state is called the Haar state of 𝒢. It is not faithful in general but via the GNS-

construction we may replace 𝒢 by its reduced version on which the Haar state is faithful. 

Since 𝒢  and its reduce version behave identically with respect to their representation 

theory and their actions (see [291]), we will throughout the text assume that the Haar state 

on 𝒢 is faithful. 

A unitary representation of a compact quantum group 𝒢 on a finite-dimensional Hilbert  

space 𝑉 is a unitary element 𝜋 ℒ(𝑉)⊗ 𝒢 such that id ⊗ ∆(𝜋) = 𝜋12 𝜋13 in ℒ(𝑉 ) ⊗ 𝒢 ⊗
𝒢. Unless explicitly stated otherwise, all representations are assumed unitary and finite 

dimensional. We recall that the set of equivalence classes of irreducible representations �̂� 

is countable and that the matrix coefficients of all  𝜋 ∈ �̂� generate a dense∗-subalgebra of 

�̂� . Since all constructions behave naturally with respect to intertwiners we will not 

distinguish between a representation and its equivalence class. The tensor product of two 

representations (𝜋, 𝑉 ) and (𝜌,𝑊) of 𝒢 is the representation (𝜋 ⊗ 𝜌, 𝑉 ⊗𝑊) given by the 

unitary element  𝜋 ⊗ 𝜌 ∶= 𝜋13𝜌23  in  ℒ(𝑉) ⊗ ℒ(𝑊)⊗ 𝒢 . We also recall that for a 

representation (𝜋, 𝑉) of 𝒢 the contragradient representation is in general not unitary. Its 

normalization (�̅�,  �̅�) is called the conjugated representation. 

Some care has to be taken in the case that the Haar state is not tracial. Then the matrix 

coefficients with respect to some chosen basis of 𝑉  are not orthogonal in general. 

However, if 𝜋 is irreducible, there is a unique positive, invertible operator 𝑄(𝜋) ∈ ℒ(𝑉) 
normalized to 𝑇𝑟[𝑄(𝜋)] =  𝑇𝑟[𝑄(𝜋)−1] with 

 

𝑇𝑟[𝑄(𝜋)𝑇]

𝑇𝑟[𝑄(𝜋)]
𝕝𝑉 = id⊗ ℎ(𝜋(𝑇 ⊗ 𝕝𝒢)𝜋

∗),
𝑇𝑟[𝑄(𝜋)−1𝑇]

𝑇𝑟[𝑄(𝜋)]
𝕝𝑉 = id⊗ ℎ(𝜋∗(𝑇 ⊗ 𝕝𝒢)𝜋) 

for every 𝑇 ∈ ℒ(𝑉). The number 𝑑𝜋 ∶= 𝑇𝑟[𝑄(𝜋)] is called the quantum dimension of 𝜋. 

The quantum dimension behaves nicely with respect to taking direct sums, tensor 

products, and conjugated representations. An important detail for us is the fact that we 

may fix intertwiners 𝑅 ∶ ℂ →  𝑉 ⊗ �̅�  and �̅� ∶  ℂ →  �̅� ⊗ 𝑉  for all irreducible 

representation such that (𝑅∗ ⊗ id𝑉)(id𝑉 ⊗ �̅�) = id𝑉 . In terms of an orthonormal basis 
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𝑒1, . . . , 𝑒𝑛 ∈ 𝑉  and its respective conjugated basis �̅�1, . . . , �̅�𝑛 ∈ 𝑉  we typically choose 

𝑅(1) = ∑  𝑄(𝜋)1/2𝑒𝑖 ⊗ �̅�𝑖
𝑛
𝑖=1 . 

An action of a compact quantum group 𝒢 on a unital 𝐶∗-algebra 𝒜 is a faithful, unital2∗-
homomorphism 𝛼 ∶ 𝒜 → 𝒜⊗𝒢 that satisfies (id⊗ ∆) ∘ 𝛼 = (𝛼 ⊗ id) ∘ 𝛼 and such that 

(𝕝 ⊗ 𝒢) 𝛼(𝒜) is dense in 𝒜⊗𝒢. Since we assume that the Haar state is faithful, the map 

𝑃1 ∶=  (id⊗ ℎ) ∘ 𝛼 is a faithful conditional expectation onto the fixed point algebra 𝒜𝒢 ∶
= {𝑥 ∈ 𝒜 | 𝛼(𝑥) = 𝑥 ⊗ 𝕝}. In particular, 𝒜 turns into a right pre-Hilbert 𝒜𝒢 -bimodule 

with the 𝒜𝒢-valued inner product 〈𝑥, 𝑦〉𝒜𝒢 : = 𝑃1(𝑥
∗𝑦) for 𝑥, 𝑦 ∈ 𝒜. For each irreducible 

representation  𝜋 ∈ �̂� the projection  𝑃𝜋 ∶ 𝒜 → 𝒜 onto the 𝜋-isotypic component  𝐴(𝜋) ∶=
 𝑃𝜋(𝒜) is given by  

 

𝑃𝜋(𝑎):=  𝑑𝜋 𝑇𝑟 ⊗ id𝒜 ⊗ℎ(�̅�13(𝑎)23 𝑄(�̅�)1
−1),                     𝑎 ∈ 𝒜, 

where the leg numbering refers to ℒ(�̅�) ⊗𝒜⊗𝒢 (see [167]). The set 𝐴(𝜋) is in fact 

closed with respect to the inner product (see [133]) and hence a correspondence over 𝒜𝒢. 

Furthermore, isotypic components for different 𝜋 ∈ �̂� are orthogonal with respect to the 

inner product and the sum ∑ 𝐴(𝜋)𝜋∈�̂�  is dense in 𝒜.  

Throughout the presentation we discuss compact 𝐶∗ -dynamical systems (𝒜, 𝒢, 𝜋) , by 

which we mean a unital 𝐶∗-algebra 𝒜, a compact quantum group 𝒢, and an action 𝛼 ∶
𝒜 → 𝒜⊗𝒢. Given such a system, we recall that 𝒜 can be decomposed in terms of  its 

isotypic components 𝐴(𝜋), 𝜋 ∈ �̂�, and that each 𝐴(𝜋) is a correspondence over the fixed 

point algebra 𝒜𝒢: = {𝑥 ∈ 𝒜 |𝛼(𝑥) = 𝑥 ⊗ 𝕝 𝒢} . For each irreducible representation 

(𝜋, 𝑉 ) ∈ �̂� we denote by Γ(𝑉) the multiplicity space of the conjugated representation  �̅�, 

which can be written in the form 
 

Γ(𝑉) =  {𝑥 ∈ 𝑉 ⊗𝒜| 𝜋𝛼(𝑥) = 𝑥 ⊗ 𝕝𝒢}. 

This space is naturally a correspondence over 𝒜𝒢 with respect to the usual left and right  

multiplication and the restriction of the inner product 〈𝜐 ⊗ 𝑎,𝑤 ⊗ 𝑏〉𝒜𝒢 ∶= 〈𝜐, 𝑤〉 𝑎∗𝑏 for 

all 𝜐,𝑤 ∈ 𝑉 and  𝑎, 𝑏 ∈ 𝒜. The 𝜋-isotypic component 𝐴(𝜋) is then as a correspondence 

isomorphic to 𝑉 ⊗ Γ( �̅�) via the isomorphism  

𝜑𝜋 ∶ 𝑉 ⊗ Γ( �̅�) → 𝐴(𝜋), 𝜑𝜋 ∶=  
1

√𝑑𝜋
 𝑅∗ ⊗ id𝒜  .                                  (1) 

The mapping (𝜋, 𝑉 ) ⟼ Γ(𝑉)  can be extended to an additive functor from the 

representation category of 𝒢 into the category of 𝐶∗-correspondences over 𝒜𝒢. Since 𝒜 is 

the closure of the direct sum of its isotypic components and every isotypic component 

𝐴(𝜋) is isomorphic to 𝑉 ⊗ Γ( �̅�), this functor allows us to reconstruct the Hilbert 𝒜𝒢-

bimodule structure of 𝒜  and the action 𝛼  up to a suitable closure. To recover the 

multiplication on 𝒜 we may look at the family of maps  

𝑚𝜋,𝜌 Γ(𝑉)⊗𝔅 Γ(𝑊) → Γ(𝑉 ⊗𝑊), 𝑚𝜋,𝜌(𝑥 ⊗ 𝑦) ∶=  𝑥13 𝑦23, 

for representations (𝜋, 𝑉 ), (𝜌,𝑊 ) of 𝒢. Here the subindices on the right hand side refer to 

the leg numbering in 𝑉 ⊗𝑊⊗𝒜, that is, for elementary tensors  𝑥 = (𝜐 ⊗ 𝑎) and  𝑦 =
(𝑤⊗ 𝑏)  we write 𝑥13 𝑦23 = 𝜐⊗𝑤⊗ 𝑎𝑏 (𝜐 ∈ 𝑉 , 𝑤 ∈ 𝑊, 𝑎, 𝑏 ∈ 𝒜) . The functor 

Γ: 𝑉 ⟼ Γ(𝑉) and the transformations (𝑚𝜋,𝜌)𝜋,𝜌 constitute a so-called weak tensor functor 

and allow to recover the reduced form of the compact 𝐶∗-dynamical system (𝒜, 𝒢, 𝛼) up 

to isomorphisms (see [130]). 
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To obtain a more concrete representation we restrict ourselves to the class of free action in 

the following sense. In addition to the correspondence structure, we equip each 

multiplicity space Γ(𝑉) with the left ℒ(𝑉)⊗𝒜-valued inner product given by 

 

ℒ(𝑉)⊗𝒜  〈𝜐 ⊗ 𝑎,𝑤 ⊗ 𝑏 〉: = |𝜐⟩⟨𝑤 ⊗ 𝑎𝑏∗ 
for 𝜐, 𝑤 ∈ 𝑉 and  𝑎, 𝑏 ∈ 𝒜. A few moments thought show that this left inner product takes 

values in the 𝐶∗-algebra {𝑥 ∈ ℒ(𝑉)⊗𝒜| 𝛼(𝑥) = 𝜋(𝑥 ⊗ 𝕝𝒢)𝜋
∗} and that the only missing 

feature for Γ(𝑉) to be a Morita equivalence bimodule is that in general the left inner 

product need not be be full. This requirement is what we demand for a free action: 

Definition (5.1.1)[288]: A compact 𝐶∗-dynamical system (𝒜, 𝒢, 𝛼) is called free if for 

every (𝜋, 𝑉 ) ∈ �̂� we have 𝕝 ∈   ℒ(𝑉)⊗𝒜 
〈 Γ(𝑉), Γ(𝑉)〉.  

There are various non-equivalent notions of freeness around the literature (see e. g. [161], 

[293] or [36] and ref. therein). The one given here was introduced for actions of classical 

groups by Rieffel [123] under the term saturated actions (see also the discussion after [81]) 

and it was already used in the other parts of this series [296], [297], where some equivalent 

conditions are summarized. A seemingly different version of freeness for actions of 

compact quantum groups was recently exploited by Commer et al. [133], [148] and is due 

to D. A. Ellwood [161]. We recall that a compact 𝐶∗-dynamical system (𝒜, 𝒢, 𝛼) is said to 

satisfy the Ellwood condition if (𝒜 ⊗ 𝕝)𝛼(𝒜) is dense in  𝒜⊗𝒢. For classical groups it 

is well-known that the Ellwood condition is equivalent to freeness in the sense of 

Definition (5.1.1) (see [296]). The following result shows that this holds for compact 

quantum groups, too. 

Theorem (5.1.2)[288]: Let (𝒜, 𝒢, 𝛼)  be a compact 𝐶∗ -dynamical system. Then the 

following conditions are equivalent: 

    (i) The 𝐶∗-dynamical system (𝒜, 𝒢, 𝛼) is free.  

   (ii) For all representations (𝜋, 𝑉 ), (𝜌,𝑊) of 𝒢 the map  

 

𝑚𝜋,𝜌 ∶ Γ(𝑉) ⊗𝔅 Γ(𝑊) → Γ(𝑉 ⊗𝑊), 𝑚𝜋,𝜌(𝑥 ⊗ 𝑦) = 𝑥13 𝑦23, 

 

     has dense range or, equivalently, is surjective. 

   (iii) The 𝐶∗-dynamical system (𝒜, 𝒢, 𝛼)  satisfies the Ellwood condition. 

Proof: The implication (iii) ⇒ (i) follows from the proof of [133]. The implication (i) ⇒ 

(ii) will follow immediately from the independent later results and from Lemma (5.1.21). 

Therefore, we here focus on the implication (ii)⇒ (iii). We first observe that for (iii) to 

hold it is sufficient to verify that (𝒜 ⊗ 𝕝)𝛼(𝒜) contains a dense subset of  𝕝 ⊗ 𝒢. For this 

purpose we choose an irreducible representation (𝜋, 𝑉) of 𝒢 and consider the co-restricted 

Ellwood map 

 

Φ𝜋 ∶ 𝐴(�̅�) ⊗ 𝐴(𝜋) → 𝐴(�̅� ⊗ 𝜋)⊗ 𝐺(𝜋), 𝑥 ⊗ 𝑦 ⟼ (𝑥 ⊗ 𝕝)𝛼(𝑦) 
(cf. [133]), where 𝐺(𝜋)  denotes the (𝜋 -isotypic component of 𝒢  with respect to the 

comultiplication. Moreover, we consider the following map which is a version of the co-

restricted Ellwood map Φ𝜋 using the identifications made in Equation (1): 

 

Ψ𝜋 ∶ �̅� ⊗ Γ(𝑉)⊗ 𝑉 ⊗ Γ(�̅�) → �̅� ⊗ 𝑉 ⊗ Γ(𝑉 ⊗ �̅�)⊗ 𝐺(𝜋),  
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         �̅�𝑖 ⊗𝑥⊗ 𝑒𝑖 ⊗𝑦 ⟼ ∑�̅�𝑖

𝑛

𝑘=1

⊗𝑒𝑘 ⊗𝑚𝜋,�̅�(𝑥 ⊗ 𝑦)⊗ 𝜋𝑘𝑗 , 

where 𝑒1, . . . , 𝑒𝑛 denotes an orthonormal basis of 𝑉 and �̅�1, . . . , �̅�𝑛 the corresponding dual 

basis of  �̅� . A few moments thought then substantiate the equation 

Φ𝜋 ∘ (𝜑�̅� ⊗𝜑𝜋) =∑𝜑𝜎ℓ

𝑚

ℓ=1

∘ (𝑆ℓ
∗ ⊗Γ(𝑆ℓ̅)

∗) ∘ Ψ𝜋 ,                                       (2) 

where  𝑆1, . . . , 𝑆𝑚  is a complete set of isometric intertwiners  𝑆ℓ ∶ 𝑉𝜎ℓ → �̅� ⊗ 𝑉 , 𝜎ℓ ∈ �̂�, 

with respective conjugates   𝑆ℓ̅: �̅�𝜎ℓ → 𝑉⊗ �̅�  . Next, we apply condition (ii) to find 

elements  𝑥1, . . . , 𝑥𝑁 ∈ Γ(�̅�)  and  𝑦1, . . . , 𝑦𝑁 ∈ Γ(�̅�)  with ∑ 𝑚𝜋,�̅�
𝑁
𝑘=1 (𝑥𝑘 ⊗𝑦𝑘) =

Γ(𝑅)(𝕝𝔅).It follows that the element 

𝑧𝑖𝑗 = ∑𝑄

𝑛

𝑘=1

(𝜋)1 2⁄ 𝑒𝑖 ⊗𝑥𝑘 ⊗𝑒𝑖 ⊗𝑦𝑥 

satisfies 

(𝑑𝜋
−1 2⁄ �̅�∗ ⊗Γ(𝑑𝜋

−1 2⁄ 𝑅)
∗
⊗ id𝒢) (Ψ𝜋(𝑧𝑖𝑗)) = 𝕝𝔅 ⊗𝜋𝑖𝑗 .           

On the other hand, the particular choice of the element 𝑧𝑖𝑗 implies that only the intertwiner 

𝑆ℓ = 𝑑𝜋
−1 2⁄ 𝑅 contributes to the right hand side of Equation (2), that is, the image of Φ𝜋 

contains the element 𝕝𝔅 ⊗𝜋𝑖𝑗  . Since the set of matrix coefficients is dense in 𝒢 , we 

conclude that the Ellwood condition is satisfied. 

We continue with the following reformulation of freeness which will be convenient for our 

classification approach. 

Lemma (5.1.3)[288]: A compact 𝐶∗-dynamical system (𝒜, 𝒢, 𝛼)  is free if and only if for 

every representation (𝜋, 𝑉)  of 𝒢  there is a finite-dimensional Hilbert space H and a 

coisometry  𝑠 ∈ ℒ(ℌ, 𝑉) ⊗𝒜 with  𝜋𝛼(𝑠) = 𝑠 ⊗ 𝕝𝒢 . 

Proof: For the “if”-implication let (𝜋, 𝑉)  ∈ �̂� and let  𝑠 ∈ ℒ(ℌ, 𝑉) ⊗𝒜 be a coisometry 

with  𝜋𝛼(𝑠) = 𝑠.  We fix an orthonormal basis of ℌ  and denote by 𝑠𝑘 ∈ 𝑉 ⊗𝒜  the 

columns of 𝑠.Then 

∑ 〈𝑠𝑘, 𝑠𝑘〉
𝑛
𝑘=1   ℒ(𝑉)⊗𝒜 = 𝑠𝑠∗ = 𝕝 . For the converse implication, we first observe that 

freeness of the 𝐶∗ -dynamical system (𝒜, 𝒢, 𝛼)    implies that, for each representation 

(𝜋, 𝑉) of 𝒢, the space  Γ(𝑉)  is a Morita equivalence bimodule between the 𝐶∗-algebras  

𝐶(𝜋) ∶= {𝑥 ∈ ℒ(𝑉)⊗𝒜| 𝛼(𝑥) =  𝜋𝑥𝜋∗} and 𝒜𝒢. Since 𝐶(𝜋) is unital, we find elements 

𝑠1, . . . , 𝑠𝑛 ∈ Γ(𝑉) such that  

∑ 〈𝑠𝑘, 𝑠𝑘〉
𝑛
𝑘=1   ℒ(𝑉)⊗𝒜 = 𝕝  (see Lemma (5.1.28)).We put  ℌ ∶= ℂ𝑛  and denote by 𝑠 ∈

ℒ(ℌ, 𝑉)⊗𝒜  the element with columns 𝑠1, . . . , 𝑠𝑛  in the canonical orthonormal basis. 

Then  𝜋𝛼(𝑠) = 𝑠 ⊗ 𝕝𝒢 , since  𝑠𝑘 ∈ Γ(𝑉 ), and further  𝑠𝑠∗ = ∑ 〈𝑠𝑘 , 𝑠𝑘〉
𝑛
𝑘=1   ℒ(𝑉)⊗𝒜 = 𝕝. 

Remark (5.1.4)[288]: For each representation 𝜋 of 𝒢 there is a minimal dimension, say 

𝑛(𝜋) , that the Hilbert space ℌ  in Lemma (5.1.3) can take. Clearly we have 𝑛(1) =
1, 𝑛(𝜋 ⊕ 𝜌) ≤ 𝑛(𝜋) + 𝑛(𝜌) , and 𝑛(𝜋 ⊕ 𝜌) ≤  𝑛(𝜋) · 𝑛(𝜌) , using a variant of the 

multiplication map 𝑚𝜋,𝜌. 

Suppose we fix a Hilbert space ℌ𝜋 and a respective coisometry 𝑠(𝜋) for each irreducible 

representation  𝜋 ∈ �̂�. Then we may extend  𝜋 ⟼ ℌ𝜋  to an additive functor and 𝜋 ⟼
𝑠(𝜋) to a family of coisometries that satisfies the condition in Lemma (5.1.3) and behaves 
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naturally with respect to intertwiners. However, the functor   𝜋 ⟼ ℌ𝜋 is in general not a 

tensor functor and 𝑠(𝜋 ⊕ 𝜌) has no immediate relation to 𝑠(𝜋) and 𝑠(𝜌). 
In the remaining part of present a collection of examples. To begin with, we recall that 

Definition (5.1.1) extends the classical notion of free actions of compact groups. In fact, 

given a compact space 𝑃 and a compact group 𝐺 , it is a consequence of [116] that a 

continuous group action   𝜎: 𝑃 × 𝐺 → 𝑃 is free, i. e., its stabilizer groups vanish at each 

point, if and only if the induced 𝐶∗-dynamical system (𝐶(𝑃), 𝐺, 𝛼𝜎) is free in the sense of 

Definition (5.1.1). Therefore, Definition (5.1.1) also a natural framework for 

noncommutative principal bundles. Furthermore, we would like to point out that 

Definition (5.1.1) characterizes classical free group actions in of associated vector bundles 

and the condition therein means that the associated bundles have non-degenerate fibres 

(see e. g. [299]). 

Example (5.1.5)[288]: We would like to recall a 𝐶∗-algebraic version of the nontrivial 

Hopf Galois extension studied in [295] (see also [292]). Let  𝜃 ∈ 𝑅 be fixed and let 𝜃′ be 

the skewsymmetric 4 × 4 -matrix with 𝜃1,2
′ = 𝜃3,4

′ = 0  and 𝜃1,3
′ = 𝜃1,4

′ = 𝜃2,3
′ = 𝜃2,4

′ =

 𝜃/2. We consider the universal unital 𝐶∗-algebra 𝒜(𝕊𝜃′
7 ) generated by normal elements 

𝑧1, . . . , 𝑧4 satisfying the relations 

𝑧𝑖𝑧𝑗 = 𝑒2𝜋𝑖𝜃𝑖,𝑗
′

𝑧𝑗𝑧𝑖 ,             𝑧𝑗
∗𝑧𝑖 = 𝑒2𝜋𝑖𝜃𝑖,𝑗

′

𝑧𝑖𝑧𝑗
∗ ,          ∑ 𝑧𝑘

∗

4

𝑘=1

𝑧𝑘 = 𝕝 

for all 1 ≤  𝑖, 𝑗 ≤ 4. A few moments thought show that the group 𝐺 = 𝑆𝑈(2) acts strongly 

continuously on 𝒜(𝕊𝜃′
7 ) via the 1∗-automorphisms (𝛼𝑈)𝑈∈𝑆𝑈(2) given on generators by 

 

𝛼𝑈: (𝑧1, . . . , 𝑧4) ⟼ (𝑧1, . . . , 𝑧4) (
𝑈 0

0 𝑈
). 

Moreover, the fixed point algebra turns out to be the universal unital 𝐶∗-algebra 𝒜(𝕊𝜃
4) 

generated by normal elements 𝑤1, 𝑤2 and a self-adjoint element 𝑥 satisfying 

 

𝑤1𝑤2 = 𝑒2𝜋𝑖𝜃𝑤2𝑤1,    𝑤2
∗𝑤1 = 𝑒2𝜋𝑖𝜃𝑤1𝑤2

∗,    and         𝑤1
∗𝑤1 +𝑤2

∗𝑤2 + 𝑥∗𝑥 = 𝕝. 
For 𝜃 = 0 all algebras are commutative and we recover the classical 7-dimensional Hopf 

fibration of the 4 -sphere, which is a well-known example of a non-trivial principal 

bundle.Many arguments from the classical case can be extended to arbitrary 𝜃 . In 

particular, it is easily checked that for the fundamental 2 -dimensional representation 

(𝜋1, ℂ
2)  of SU(2)  a coisometry 𝑠 ∈ ℒ(ℂ4, ℂ2) ⊗𝒜(𝕊𝜃′

7 )   with 𝑈𝛼𝑈(𝑠) = 𝑠  for all 𝑈 ∈
SU(2) is given by 

 

𝑠 ≔ (
𝑧1
∗ −𝑧2 𝑧3

∗ −𝑧4
𝑧2
∗ 𝑧1 𝑧4

∗ 𝑧3
). 

Since every irreducible representation of SU(2) can be obtained as a subrepresentation of a 

suitable tensor powers of 𝜋1, we may take tensor products of s with itself in order to find a 

suitable coisometry for every representation 𝜋 of SU(2). We conclude that the compact 

𝐶∗-dynamical system (𝒜(𝕊𝜃′
7 ) , SU(2), 𝛼) is free. 

Example (5.1.6)[288]: (i) Bichon, De Rijdt and Vaes introduce in [290] the notion of 

quantum multiplicity of an irreducible representation in an ergodic action of a compact 

quantum group and classify ergodic actions of so-called full quantum multiplicity in terms 

of unitary fiber functors. It follows from that these actions are free. 
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   (ii) According to [290], for sufficiently small parameters 𝑞 the compact quantum group 

SU𝑞(2) admits an ergodic action of full quantum multiplicity such that the multiplicity of 

the fundamental representation is arbitrarily large. Hence, there are plenty of free and 

ergodic actions of SU𝑞(2). 

Example (5.1.7)[288]: Let 𝒢  be an 𝑅+ -deformation (see e. g. [289]) of a semisimple 

compact Lie group. Furthermore, let (𝜋, ℂ𝑑) be a faithful representation of 𝒢. Then [294] 

implies that the induced action 𝛼  of 𝒢  on the Cuntz algebra 𝒪𝑑  defined  by 𝛼(𝑆𝑖):=
∑ 𝑆𝑖
𝑑
𝑗=1 ⊗𝜋𝑗,𝑖  is free, where 𝑆1, . . . 𝑆𝑑 denote the generators of 𝒪𝑑. It is not hard to check 

that for the representation (𝜋, ℂ𝑑) a coisometry 𝑠 ∈ ℒ(ℂ, ℂ𝑑) ⊗ 𝒪𝑑 with  𝜋𝛼(𝑠) = 𝑠 ⊗ 𝕝𝒢 

is given by  

 

𝑠 ≔ (𝑆1
∗, 𝑆2

∗, . . . , 𝑆𝑑
∗)⊺. 

We have seen in Lemma (5.1.3) that freeness of a compact 𝐶∗-dynamical system (𝒜, 𝒢, 𝛼) 
can be cast in form of a family of coisometries. These coisometries may be used to give a 

more explicit picture of the spectral subspaces of the 𝐶∗-dynamical system. In fact, let 

(𝜋, 𝑉 )  be a representation of 𝒢  and let 𝑠(𝜋) ∈ ℒ(ℌ, 𝑉)⊗𝒜  be a coisometry with 

𝜋𝛼(𝑠(𝜋)) = 𝑠(𝜋)⊗ 𝕝𝒢 in ℒ(ℌ, 𝑉)⊗𝒜⊗  𝒢. Then a few moments thought show that the 

multiplicity space Γ(𝑉) ⊆ 𝑉 ⊗𝒜 is the range of the element 𝑠(𝜋), i. e., we have 

 

Γ(𝑉) = 𝑠(𝜋)(ℌ⊗𝒜𝒢).                                                             (3) 
The explicit form allows us to phrase the correspondence structure and the multiplicative 

structure among the generalized isotypic components only in terms of the fixed point 

algebra 𝒜𝒢 and the quantum group 𝒢. This fact was already exploited in the previous part 

of this series [297], where we carried out the analysis in the case of cleft dynamical 

systems with a classical compact group. With some adjustments we generalize the 

construction here to arbitrary free 𝐶∗-dynamical systems and quantum groups.  

We start with a free compact 𝐶∗-dynamical system (𝒜, 𝒢, 𝛼)  and we write briefly 𝔅:=
𝒜𝒢 for the corresponding fixed point algebra. Furthermore, we choose a functorial version 

of the finite-dimensional Hilbert spaces ℌ𝜋  and the coisometries  𝑠(𝜋)  for each 

representation 𝜋  of 𝒢  (see also the discussion after Lemma (5.1.3)). In particular, we 

assume without loss of generality that ℌ1 = ℂ and 𝑠(1) = 𝕝𝔅. Then we consider for each 

representation 𝜋 of 𝒢 the 1∗-homomorphism  

𝛾𝜋: 𝔅 → ℒ(ℌ𝜋) ⊗𝔅,       𝛾𝜋(𝑏) ≔ 𝑠(𝜋)∗(𝕝𝑉𝜋 ⊗𝑏)𝑠(𝜋)           

and for each pair 𝜋, 𝜌 of representations of 𝒢 the element 

 

𝑤(𝜋, 𝜌) ≔ 𝑠(𝜋 ⊗ 𝜌)∗𝑠(𝜋)𝑠(𝜌) ∈ ℒ(ℌ𝜋 ⊗ℌ𝜋⊗𝜌) ⊗𝔅, 

where 𝑠(𝜋)  and 𝑠(𝜌)  are amplified to act trivially on ℌ𝜌 and ℌ𝜋, respectively. 

Definition (5.1.8)[288]: Let (𝒜, 𝒢, 𝛼) be a free compact 𝐶∗-dynamical system. Then the 

system (ℌ, 𝛾 , 𝑤) = (ℌ𝜋 , 𝛾𝜋 , 𝑤(𝜋, 𝜌))𝜋,𝜌∈�̂� constructed above is called a factor system of 

(𝒜, 𝒢, 𝛼). 
Remark(5.1.9)[288]: For some computations it is convenient to express the factor system 

in terms of fixed orthonormal bases of the Hilbert spaces ℌ𝜋 , 𝜋 ∈ �̂�. In this situation we 

denote by 𝑠(𝜋)1, . . . , 𝑠(𝜋)𝑛 ∈ Γ(𝑉)  the columns of 𝑠(𝜋) . Then the∗ -homomorphism 

𝛾𝜋: 𝔅 → 𝑀𝑛 ⊗𝔅 has the coefficients 

𝛾𝜋(𝑏)𝑖,𝑗 = 〈𝑠(𝜋)𝑖 , 𝑏 ⋅ 𝑠(𝜋)𝑗〉𝔅 
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for all 1 ≤ 𝑖 ≤ dim ℌ𝜋 and 1 ≤ 𝑗 ≤ dim ℌ𝜌. For the partial isometry 𝑤(𝜋, 𝜌) we first fix 

an irreducible subrepresentation 𝜎 of 𝜋 ⊗ 𝜌. Then the coefficients on the corresponding 

subspace  ℌ𝜎 ⊆ ℌ𝜋 ⊗ℌ𝜌 are given by 

𝑤(𝜋, 𝜌)(𝑖,𝑗),𝑘 = 〈𝑚(𝑠(𝜋)𝑖 ⊗ 𝑠(𝜌)𝑗 , 𝑠(𝜎)𝑘〉𝔅 

for all 1 ≤ 𝑖 ≤ dim ℌ𝜋 , 1 ≤ 𝑗 ≤ dim ℌ𝜌 and 1 ≤ 𝑘 ≤ dim ℌ𝜎 . 

Of course, different choices of Hilbert spaces ℌ𝜋  and coisometries 𝑠(𝜋)  give rise to 

different factor systems. However, as the following lemma shows, those choices only 

effect the factor system by a conjugacy with partial isometries: 

Lemma (5.1.10)[288]: (cf. in [297]). For a factor system (ℌ, 𝛾 , 𝑤) of a free compact 𝐶∗-
dynamical system (𝒜, 𝒢, 𝛼) with fixed point algebra 𝔅 the following assertions hold: 

   (i) We have  𝑤(1, 1) = 𝕝𝔅, 𝛾1 = id𝔅 and 

 

𝑤(𝜋, 𝜌)𝑤(𝜋, 𝜌)∗ = 𝛾𝜋⊗𝜌(𝕝), 𝑤(𝜋, 𝜌)∗ 𝑤(𝜋, 𝜌) = id⊗ 𝛾𝜌(𝛾𝜋(𝕝))                  (4) 

𝛾𝜋⊗𝜌(𝑏)𝑤(𝜋, 𝜌) = 𝑤(𝜋, 𝜌)𝛾𝜌(𝛾𝜋(𝑏)),                                               (5) 

𝑤(𝜋, 𝜌 ⊗ 𝜎)(𝕝 ⊗ 𝑤(𝜌, 𝜎)) = 𝑤(𝜋, 𝜌 ⊗ 𝜎)id⊗ 𝛾𝜎(𝑤(𝜋, 𝜌))                           (6) 
for all representations 𝜋, 𝜌 of 𝒢 and 𝑏 ∈ 𝔅. We refer to the Equation (5) as the coaction 

condition and to Equation (6) as the cocycle condition.  

   (ii) Let (ℌ′, 𝛾 ′, 𝑤′) be another factor system of (𝒜, 𝒢, 𝛼).. Then there is a family of 

partial isometries 𝜐(𝜋) ∈ ℒ(ℌ𝜋
′ , ℌ𝜋)⊗𝔅, 𝜋 ∈ �̂�, such that 

 

𝜐(𝜋)𝜐(𝜋)∗ = 𝛾𝜋(𝕝), 𝜐(𝜋)∗ 𝜐(𝜋) = 𝛾𝜋
′(𝕝)                                              (7) 

𝜐(𝜋) 𝛾𝜋
′(𝑏) =  𝛾𝜋(𝑏)𝜐(𝜋)                                                              (8) 

𝜐(𝜋 ⊗ 𝜌)𝑤′(𝜋, 𝜌) = 𝑤(𝜋, 𝜌)id⊗ 𝛾𝜌(𝜐(𝜋)) (𝕝 ⊗ 𝜐(𝜌))               (9) 

hold for all 𝜋, 𝜌 ∈ �̂� and  𝑏 ∈ 𝔅. 

   (iii) Conversely, let  𝜐(𝜋) ∈ ℒ(ℌ𝜋
′ , ℌ𝜋) ⊗𝔅,𝜋 ∈ �̂�, be a family of partial isometries for 

finite-dimensional Hilbert spaces ℌ𝜋
′  such that 𝜐(𝜋) 𝜐(𝜋)∗ = 𝛾𝜋(𝕝) holds for each  𝜋 ∈ �̂�. 

Then the following system (ℌ′, 𝛾 ′, 𝑤′)  is a factor system of (𝒜, 𝒢, 𝛼): 
 

𝛾𝜋
′(𝑏) ∶= 𝜐(𝜋)∗ 𝛾𝜋(𝑏)𝜐(𝜋)                                      

                 𝑤′(𝜋, 𝜌):= 𝑣(𝜋 ⊗  𝜌)∗  𝑤(𝜋, 𝜌) id ⊗ 𝛾𝜌(𝜐(𝜋)) (𝕝 ⊗ 𝜐(𝜌)) 

for all 𝜋, 𝜌 ∈ �̂� and 𝑏 ∈ 𝔅.  
Proof: For sake of a concise notation we amplify all elements to a common domain 

specified by the context. Let  𝑠(𝜋) ∈ ℒ(ℌ𝜋
1 , 𝑉𝜋) ⊗𝒜,𝜋 ∈ �̂� , be the coisometries with 

𝜋 𝛼(𝑠(𝜋)) = 𝑠(𝜋)⊗ 𝕝𝒢  that generate the factor system (ℌ, 𝛾 , 𝑤). 

   (i) Let 𝜋, 𝜌 be representations of  �̂�. Using the coisometry property of 𝑠(𝜋), 𝑠(𝜌), and 

𝑠(𝜋 ⊗ 𝜌) we obtain for the range and cokernel projection of 𝑤(𝜋, 𝜌) 
 

𝑤(𝜋, 𝜌)𝑤(𝜋, 𝜌)∗ = 𝑠(𝜋 ⊗ 𝜌)∗𝑠(𝜋)𝑠(𝜌)𝑠(𝜌)∗ 𝑠(𝜋)∗  𝑠(𝜋 ⊗ 𝜌)  
           = 𝑠(𝜋 ⊗ 𝜌)∗𝑠(𝜋 ⊗ 𝜌) = 𝛾𝜋⊗𝜌(𝕝), 

𝑤(𝜋, 𝜌)∗ 𝑤(𝜋, 𝜌) = 𝑠(𝜌)∗𝑠(𝜋)∗𝑠(𝜋 ⊗ 𝜌)𝑠(𝜋 ⊗ 𝜌)∗ 𝑠(𝜋)𝑠(𝜌)     
                = 𝑠(𝜌)∗𝑠(𝜋)∗𝑠(𝜋)𝑠(𝜌) = 𝛾𝜌(𝛾𝜋(𝕝)).  

To show the other two asserted equations we compute the left and right hand side 

individually using the coisometry property and compare for all 𝑏 ∈ 𝒜𝒢: 
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𝑤(𝜋, 𝜌)𝛾𝜌(𝛾𝜋(𝑏)) = 𝑠(𝜋 ⊗ 𝜌)∗𝑠(𝜋)𝑠(𝜌)𝑠(𝜌)∗ 𝑠(𝜋)∗  𝑏𝑠(𝜋)𝑠(𝜌) 

= 𝑠(𝜋 ⊗ 𝜌)∗𝑏𝑠(𝜋)𝑠(𝜌),      
  𝛾𝜋⊗𝜌(𝑏)𝑤(𝜋, 𝜌) = 𝑠(𝜋 ⊗ 𝜌)∗𝑏𝑠(𝜋 ⊗ 𝜌)𝑠(𝜋 ⊗ 𝜌)∗𝑠(𝜋)𝑠(𝜌)   

= 𝑠(𝜋 ⊗ 𝜌)∗𝑏𝑠(𝜋)𝑠(𝜌),      
   𝑤(𝜋, 𝜌 ⊗ 𝜎) 𝑤(𝜌, 𝜎) = 𝑠(𝜋, 𝜌 ⊗ 𝜎)∗ 𝑠(𝜋)𝑠(𝜌 ⊗ 𝜎)𝑠(𝜌⊗ 𝜎)∗𝑠(𝜌)𝑠(𝜎) 

           = 𝑠(𝜋 ⊗ 𝜌⊗ 𝜎)∗ 𝑠(𝜋)𝑠(𝜌)𝑠(𝜎), 
   𝑤(𝜋 ⊗  𝜌, 𝜎) 𝛾𝜎(𝑤(𝜋, 𝜌))

= 𝑠(𝜋 ⊗  𝜌 ⊗ 𝜎)∗ 𝑠(𝜋 ⊗ 𝜌)𝑠(𝜎)𝑠(𝜎)∗𝑠(𝜋 ⊗ 𝜌)∗𝑠(𝜋)𝑠(𝜌)𝑠(𝜎) 
= 𝑠(𝜋 ⊗  𝜌 ⊗ 𝜎)∗ 𝑠(𝜋)𝑠(𝜌)𝑠(𝜎).    

   (ii) Let 𝑠′(𝜋) ∈ ℒ(ℌ𝜋
′ , 𝑉𝜋

′)⊗𝒜,𝜋 ∈ �̂�, be the coisometries with 𝜋 𝛼(𝑠′(𝜋)) = 𝑠′(𝜋)⊗
𝕝𝒢 that generate the factor system (ℌ′, 𝛾 ′, 𝑤′). Then the coisometry property implies  that 

for each  𝜋 ∈ �̂�  the element 𝜐(𝜋) ∶=  𝑠(𝜋)∗ · 𝑠′(𝜋)  is a partial isometry satisfying 

𝜐(𝜋) 𝜐(𝜋)∗ = 𝑠(𝜋)∗ 𝑠(𝜋) = 𝛾𝜋(𝕝) and  𝜐(𝜋)∗𝜐(𝜋) = 𝑠′(𝜋)∗ 𝑠′(𝜋) = 𝛾𝜋
′  (𝕝). Similarly the 

asserted relation of the∗ -homomorphisms 𝛾𝜋  and 𝛾𝜋
′  and of the elements 𝑤(𝜋, 𝜌)  and  

𝑤′(𝜋, 𝜌) immediately follow from the coisometry property. 

Next, we explain how the correspondence structure of the isotypic components of a free 

compact 𝐶∗ -dynamical system can be expressed only in terms of quantities of an 

associated factor system. For this purpose, let (ℌ, 𝛾, 𝑤)  be a factor system of a free 

compact 𝐶∗ -dynamical system (𝒜, 𝒢, 𝛼) : with fixed point algebra 𝔅 . Then, for a 

representation (𝜋, 𝑉) of  𝒢, the left and right action of  𝔅 and the inner product on Γ(𝑉) 
are given by 

 

𝑏 . (𝑠(𝜋)𝑥) =  𝑠(𝜋)𝛾𝜋(𝑏)𝑥,                                                        (10) 
(𝑠(𝜋)𝑥) . 𝑏 =  𝑠(𝜋)𝑥𝑏                                                                 (11) 

〈𝑠(𝜋)𝑥, 𝑠(𝜋) 𝑦〉𝔅 = 〈𝑥, 𝛾𝜋(𝕝𝔅)𝑦〉𝔅                                                      (12) 
for all 𝑏 ∈ 𝔅 and  𝑥, 𝑦 ∈ ℌ𝜋

1 ⊗𝔅. Moreover, for two representation (𝜋, 𝑉) and (𝜌,𝑊) of 

𝒢 the multiplication map  𝑚𝜋,𝜌 ∶ Γ(𝑉)⊗𝔅 Γ(𝑊) →  Γ(𝑉 ⊗𝑊) can be written as 

 

𝑚𝜋,𝜌(𝑠(𝜋)𝑥 ⊗ 𝑠(𝜌)𝑦) =  𝑠(𝜋 ⊗ 𝜌)𝑤(𝜋, 𝜌)𝛾𝜌(𝑥)𝑦                                (13) 
for all 𝑥 ∈ ℌ𝜋

1 ⊗𝔅 and  𝑦 ∈ ℌ𝜌
1 ⊗𝔅, where 𝛾𝜌(𝑥) 𝑦 is given by the linear extension of  

𝛾𝜌(𝜐 ⊗ 𝑏1)(𝑤⊗ 𝑏2) = 𝜐 ⊗ (𝛾𝜌(𝑏1))(𝑤⊗ 𝑏2)) for all 𝜐 ∈ ℌ𝜋
1 , 𝑤 ∈ ℌ𝜌

1 , and 𝑏1, 𝑏2 ∈ 𝔅. 

As a consequence, up to equivalence, the 𝐶∗-dynamical system is uniquely determined by 

its factor system and vice versa. More precisely, we say that two factor systems (ℌ, 𝛾, 𝑤) 
and (ℌ′, 𝛾 ′, 𝑤′)  are conjugated if there is a family of partial isometries 𝜐(𝜋) ∈
ℒ(ℌ𝜋

′ , ℌ𝜋) ⊗𝔅,𝜋 ∈ �̂�, satisfying the Equations (7), (8), and (9) for all 𝜋, 𝜌, 𝜎 ∈ �̂� and  

𝑏 ∈ 𝔅. Then we have the following 1-to-1 correspondence: 

Theorem (5.1.11)[288]: Let (𝒜, 𝒢, 𝛼)  and (𝒜′, 𝒢′, 𝛼′)  be free compact 𝐶∗ -dynamical 

systems with the same fixed point algebra 𝔅  and let (ℌ, 𝛾, 𝑤)  and (ℌ′, 𝛾′, 𝑤′)   be 

associated factor systems, respectively. Then the following statements are equivalent:  

   (i) The 𝐶∗-dynamical systems (𝒜, 𝒢, 𝛼) and (𝒜′, 𝒢′, 𝛼′)  are equivalent.  

   (ii) The factor systems (ℌ, 𝛾, 𝑤)  and (ℌ′, 𝛾′, 𝑤′)   are conjugated.  

Proof: As a distinction we add a prime to all notions referring to (𝒜′, 𝒢′, 𝛼′). 
   (I) To prove that (i) implies (ii) it suffices to show that for the same 𝐶∗-dynamical 

system different choices of coisometries lead to conjugated factor systems. This is exactly 

the second statement of Lemma (5.1.10). 
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  (II) For the converse implication let 𝑠(𝜋) ∈ ℒ(ℌ𝜋 , 𝑉𝜋) ⊗𝒜, 𝜋 ∈ �̂�, be the coisometries  

with  𝜋 𝛼(𝑠(𝜋)) = 𝑠(𝜋)⊗ 𝕝𝒢  that generate the factor system (ℌ, 𝛾, 𝑤) , and likewise 

𝑠′(𝜋) ∈ ℒ(ℌ′𝜋 , 𝑉𝜋) ⊗𝒜  for  (ℌ′, 𝛾′, 𝑤′)  . Furthermore, let  𝜐(𝜋), 𝜋 ∈ �̂� , be the partial  

isometries which realize the conjugation of the factor systems. Then a few moments 

thought show that, due to Equations (7) and (8), for every representation (𝜋, 𝑉) of 𝒢 the 

map  

 

𝜙𝜋 ∶ Γ′(𝑉 ) → Γ(𝑉 ), 𝑠′(𝜋) 𝑥 ⟼ 𝑠(𝜋)𝜐(𝜋) 𝑥 

for all  𝑥 ∈ ℌ′𝜋 ⊗𝔅 is a well-defined isomorphism of correspondences of 𝔅. Moreover, 

by Equation (9), these isomorphisms intertwine the multiplication maps, i. e., we have 

 

𝑚𝜋,𝜌(𝜙𝜋(𝑥)⊗ 𝜙𝜌(𝑦)) = 𝜙𝜋⊗𝜌(𝑚𝜋,𝜌
′ (𝑥 ⊗ 𝑦)) 

for all representations (𝜋, 𝑉 ), (𝜌,𝑊) ∈ �̂�  and all elements  𝑥 ∈ Γ′(𝑉) and  𝑦 ∈ Γ′(𝑊) . 

Since (𝒜, 𝒢, 𝛼)  can be reconstructed from the correspondences Γ(𝑉)  and the 

multiplicative structure between them (cf. Lemma (5.1.21) or [130]), and likewise for 

(𝒜′, 𝒢′, 𝛼′) with Γ′(𝑉), it is now easily checked that the maps 𝜙𝜋 , 𝜋 ∈ �̂�, give rise to an 

equivalence between (𝒜, 𝒢, 𝛼) and (𝒜′, 𝒢′, 𝛼′) (cf. also [297]). 

A particular simple class of free actions are so-called cleft actions (see [297]). Regarded as 

noncommutative principal bundles, these actions are characterized by the fact that all 

associated noncommutative vector bundles are trivial.  

Definition (5.1.12)[288]: A compact 𝐶∗-dynamical system (𝒜, 𝒢, 𝛼)  is called cleft if for 

each irreducible representation (𝜋, 𝑉) of 𝒢 the so-called generalized isotypic component 

 

𝐴2(𝜋) ≔ {𝑥 ∈ ℒ(𝑉)⨂𝒜| 𝜋 𝛼(𝑥) = 𝑥⨂𝕝𝒢} ⊆ ℒ(𝑉)⨂𝒜 

contains a unitary element. It directly follows from Lemma (5.1.3) that cleft 𝐶∗-dynamical 

systems are free. 

Example (5.1.13)[288]: Given a unital 𝐶∗-algebra 𝔅 and a compact quantum group 𝒢, the 

most basic example of a cleft action is given by the 𝐶∗-dynamical system (𝔅⊗ 𝒢, 𝒢, id⊗
∆). In fact, for an irreducible representation (𝜋, 𝑉) of 𝒢 it is easily seen that the unitary 

element  𝑈 ∶= 𝜋13
∗ ∈ ℒ(𝑉)⊗𝔅⊗ 𝒢 satisfies  𝜋(id⊗ ∆)(𝑈) = 𝑈⊗ 𝕝𝒢 . 

Example (5.1.14)[288]: For 𝒢 = SU𝑞(2) the only cleft and ergodic action is the canonical 

action of  SU𝑞(2)  on itself (see [290]). For 𝑞 = 1 this already follows from the seminal 

work of Wassermann [301]. 

Example (5.1.15)[288]: (cf. Example (5.1.6)). For an arbitrary compact quantum group, 

the authors of [290] provide a classification of unitary fiber functors which preserve the 

dimension in terms of unitary 2-cocycles on the dual quantum group. It is not hard to see 

that the  corresponding actions are cleft. 

Example (5.1.16)[288]: It can be shown that the free 𝐶∗ -dynamical system  

(𝒜(𝕊𝜃′
7 ), SU(2), 𝛼) discussed in Example (5.1.5) is not cleft (cf. [295]). 

We continue with a characterization of cleft actions in terms of their factor systems and 

the 𝐾0-groups of the underlying fixed point algebras. 

Lemma (5.1.17)[288]: Let (𝒜, 𝒢, 𝛼) be a free compact 𝐶∗-dynamical system with fixed 

point algebra 𝔅. Then the following statements are equivalent: 

    (i) The system (𝒜, 𝒢, 𝛼) is cleft.  
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   (ii) For some and hence for every factor system (ℌ, 𝛾, 𝑤)  and every   𝜋 ∈ �̂� we have 

[𝛾𝜋(𝕝𝔅)] = dim(𝜋) · [𝕝𝔅] in 𝐾0(𝔅). 
Proof: If (𝒜, 𝒢, 𝛼) is cleft, every generalized isotypic component   𝐴2(𝜋), 𝜋 ∈ �̂�, contains 

a unitary element 𝑠(𝜋). The corresponding factor system (ℌ, 𝛾, 𝑤) is then given by ℌ𝜋 =
�̅�𝜋 and  𝜋(𝑥) = 𝑠(𝜋)∗(𝑥 ⊗ 𝕝)𝑠(𝜋) for all 𝜋 ∈ �̂�. In particular, in 𝐾0(𝔅) we have  

 

[𝛾𝜋(𝕝𝔅)] = [𝑠(𝜋)∗𝑠(𝜋)] = [𝕝𝔅 ⊗ 𝕝𝜋] = dim(𝜋) · [𝕝𝔅]. 
By Lemma (5.1.10) every other factor system (𝒜, 𝒢, 𝛼) differs only by partial isometries 

in a respective amplification and therefore satisfies the same equation in 𝐾0(𝔅). 
Conversely, suppose that (ℌ, 𝛾, 𝑤)  is a factor system of (𝒜, 𝒢, 𝛼)  satisfying the equation 

[𝛾𝜋(𝕝𝔅)] = dim(𝜋) · [𝕝𝔅]  in  𝐾0(𝔅) . for all 𝜋 ∈ �̂� . Since [𝛾𝜋(𝕝𝔅)] = dim(𝜋) · [𝕝𝔅]  =
 [𝕝𝔅 ⊗ 𝕝𝜋] in  𝐾0(𝔅), we find, for every 𝜋 ∈ �̂�, a partial isometry 𝜐(𝜋) ∈ 𝔅⊗ ℒ(𝑉𝜋, ℌ𝜋) 
with 𝛾𝜋(𝕝𝔅) = 𝜐(𝜋)𝜐(𝜋)∗. By conjugating with this family of partial isometries we may 

assume that  ℌ𝜋 = 𝑉𝜋  and  𝛾𝜋(𝕝𝔅) = 𝕝𝔅 ⊗ 𝕝𝜋 . Let  𝑠(𝜋), 𝜋 ∈ �̂� , be the family of  

associated coisometries in  𝐴2(𝜋) with 𝜋(𝑥) = 𝑠(𝜋)∗(𝑥 ⊗ 𝕝𝜋)𝑠(𝜋) for all  𝑥 ∈ 𝔅. Then 

for  𝑥:= 𝕝𝔅 we obtain 𝕝𝔅 ⊗ 𝕝𝜋 = 𝛾𝜋(𝕝𝔅) = 𝑠(𝜋)∗𝑠(𝜋), i. e., 𝑠(𝜋) is in fact unitary.  

Example (5.1.18)[288]: Suppose we are in the context of Example (5.1.7) and denote by 

𝔅 the fixed point algebra of the free compact 𝐶∗-dynamical system (𝑂𝑑 , 𝒢, 𝛼). Then a few 

moments thought show that the∗-homomorphism  𝛾𝜋: 𝔅 → 𝔅 induced by the coisometry 

 

𝑠 ≔ (𝑆1
∗, 𝑆2

∗, … , 𝑆𝑑
∗)⊺ 

    

is given by 𝛾𝜋(𝑏) = 𝑆1𝑏𝑆1
∗+. . . +𝑆𝑑𝑏𝑆𝑑

∗  for all 𝑏 ∈ 𝔅. In particular, we have 𝛾𝜋(𝕝𝔅) = 𝕝𝔅. 

Therefore, Lemma (5.1.17) implies that (𝒪𝑑 , 𝒢, 𝛼𝜋) is not cleft.  

We have seen that a free compact 𝐶∗-dynamical system is uniquely determined by 

its factor system (ℌ, 𝛾, 𝑤)  and under which equivalence relation this becomes 1-to-1 

correspondence (Theorem (5.1.11)). We will show that in fact  every factor system 

(ℌ, 𝛾, 𝑤)  satisfying the algebraic relations of Lemma (5.1.10) gives rise to a free compact 

𝐶∗ -dynamical system. The construction is based on the fact, that the factor system 

(ℌ, 𝛾, 𝑤)   allows us to completely reconstruct the correspondence structure of the 

multiplicity spaces Γ(𝑉) and their multiplicative structure, i. e., the factor system provides 

a unitary tensor functor 𝑉 ⟼ Γ(𝑉) and hence a compact 𝐶∗-dynamical system (see [134], 

[130]). We recall the major steps in order to show that this construction yields a free 

compact 𝐶∗-dynamical system with factor system (ℌ, 𝛾, 𝑤). 
Throughout the following let ℌ be a fixed unital 𝐶∗-algebra and let 𝒢 be a fixed reduced 

compact quantum group. Furthermore, let (ℌ, 𝛾, 𝑤) = (ℌ𝜋 , 𝛾𝜋 , 𝑤(𝜋, 𝜌))𝜋,𝜌∈�̂� be a family 

of finite-dimensional Hilbert spaces  ℌ𝜋, ∗-homomorphisms  𝛾𝜋 ∶ 𝔅 → ℒ(ℌ𝜋) ⊗𝔅, and 

partial isometries 𝑤(𝜋, 𝜌) ∈ ℒ(ℌ𝜋 ⊗ℌ𝜌, ℌ𝜋⊗𝜌) ⊗𝔅 . By taking direct sums of 

irreducible representations, we define  ℌ𝜋 , 𝛾𝜋 and 𝑤(𝜋, 𝜌) for arbitrary representations 𝜋, 𝜌 

of 𝒢. In   particular, for each intertwiner  𝑇: 𝑉𝜋 → 𝑉𝜌 we have a linear map  𝐻(𝑇) ℌ𝜋 →

ℌ𝜌. 

Definition (5.1.19)[288]: A system (ℌ, 𝛾, 𝑤) as described above is called a factor system 

for the pair (𝔅, 𝒢) if it satisfies Equations (4), (5), (6) for all 𝜋, 𝜌 ∈ �̂� and 𝑏 ∈ 𝔅, and if the 

normalization conditions ℌ1 = ℂ1, =  id𝔅, 𝑤(1, 1) = 𝕝𝔅 holds. 
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From now on we suppose that (ℌ, 𝛾, 𝑤) is a factor system. Then, for each representation 

(𝜋, 𝑉) of  𝒢, we consider the vector space 

 

Γ(𝑉) ≔ 𝛾𝜋(𝕝)(ℌ𝜋⨂𝔅).                                                                     (14) 
A few moments thought show that this space caries a natural right Hilbert 𝔅 –module 

structure given by restricting the action (𝜐11⊗ 𝑏1) . 𝑏2 ∶=  𝜐1 ⊗𝑏1𝑏2  and the inner 

product 〈𝜐1 ⊗𝑏1, 𝑣2⊗ 𝑏2〉𝔅 ∶=  〈𝜐1, 𝜐2〉 𝑏1
∗𝑏2 for 𝜐1, 𝜐2 ∈ ℌ𝜋 and  𝑏1, 𝑏2 ∈ 𝔅. Moreover, 

we equip Γ(𝑉) with the left action  𝑏 . 𝑥 ∶=  𝛾𝜋(𝑏)𝑥 for  𝑏 ∈ 𝔅 and  𝑥 ∈ Γ(𝑉). Then it is 

easily checked that Γ(𝑉) is a correspondence over 𝔅 and that  𝑉 ⟼ Γ(𝑉) becomes an 

additive functor from the representation category of 𝒢  into the category of 𝐶∗ -

correspondences over 𝔅. 

For each pair (𝜋, 𝑉), (𝜌,𝑊) of representation of 𝒢 we define a linear map 

 

𝑚𝜋,𝜌 ∶ Γ(𝑉)⊗𝔅 Γ(𝑊) →  Γ(𝑉 ⊗𝑊)  

 (15) 
𝑚𝜋,𝜌 ∶ (𝑥 ⊗ 𝑦) ≔ 𝑤(𝜋, 𝜌)𝛾𝜌(𝑥)y,  

where for elementary tensors we write briefly 𝛾𝜌(𝜐 ⊗ 𝑏1)(𝑤⊗ 𝑏2): = 𝜐 ⊗ 𝛾𝜌(𝑏1)(𝑤 ⊗

𝑏2) for all 𝜐 ∈ ℌ𝜋 , 𝑤 ∈ ℌ𝜌 , and 𝑏1, 𝑏2 ∈ 𝔅. It is easily checked that the maps 𝑚𝜋,𝜌  are  

well-defined and behave naturally with respect to intertwiners. In fact, we are going to 

show that 𝑉 ⟼ Γ(𝑉) together with the maps 𝑚𝜋,𝜌 forms a unitary tensor functor in the 

sense of [130]. Definition (5.1.20)[288]: A linear functor 𝑉 ⟼ Γ(𝑉)  from the 

representation category of 𝒢 into the category of 𝐶∗-correspondences over 𝔅 together with 

𝔅  -bilinear family of unitary maps  𝑚𝜋,𝜌: Γ(𝑉)⊗𝔅  Γ(𝑊) →  Γ(𝑉 ⊗𝑊)  for all 

representations  (𝜋, 𝑉), (𝜌,𝑊)  of 𝒢  is called a unitary tensor functor if the following 

conditions hold: 

   (i) For the trivial representation (1, ℂ) ∈ �̂� we have Γ(ℂ)  = 𝔅 and for all (𝜋, 𝑉) ∈ �̂� we 

have 𝑚𝜋,1(𝑥 ⊗ 𝑏) = 𝑥. 𝑏  and  𝑚1,𝜋(𝑏 ⊗ 𝑥) =  𝑏 . 𝑥 for all   𝑥 ∈ Γ(𝑉), 𝑏 ∈ 𝔅. 

   (ii) For every intertwiner  𝑇: 𝑉 → 𝑊 we have Γ(𝑇∗) =  Γ(𝑇)∗. 
   (iii) The maps 𝑚 are associative in the sense that for all 𝜋, 𝜌, 𝜎 ∈ �̂� we have 

 

𝑚𝜋,𝜌⊗𝜎 ∘ (id⊗𝑚𝜌,𝜎) = 𝑚𝜋⊗𝜌,𝜎 ∘ (𝑚𝜋,𝜌 ⊗ id). 

Lemma (5.1.21)[288]: The functor 𝑉 ⟼ Γ(𝑉) and the maps 𝑚𝜋,𝜌 ∶ Γ(𝑉)⊗𝔅 ∶ Γ(𝑊) →∶

Γ(𝑉 ⊗𝑊)  given by the Equations (14) and (15), respectively, for (𝜋, 𝑉), (𝜌,𝑊) ∈ �̂� 

constitute a unitary tensor functor. 

Proof: (i)  The normalization Γ(ℂ) = 𝔅  as correspondence immediately follows from 

ℌ1 = ℂ  and   𝛾1 = id𝔅 . Moreover, the normalization 𝑤(1, 1) = 1  together with 

Conditions (4) and (5) of the factor system imply 𝑤(𝜋, 1) =  𝕝ℌ𝜋 =  𝑤(1, 𝜋) thatfor every 

(𝜋, 𝑉) ∈ �̂� . Hence, we obtain  𝑚𝜋,1(𝑥 ⊗ 𝑏) = 𝑤(𝜋, 1)𝛾𝔅(𝑥)𝑏 = 𝑥 . 𝑏  and  𝑚1,𝜋(𝑏 ⊗
𝑥) =  𝑤(1, 𝜋)𝛾𝜋(𝑏)𝑥 = 𝑏 . 𝑥 for all  𝑥 ∈ Γ(𝑉) and  𝑏 ∈ 𝔅. 

(ii) For any intertwiner 𝑇: 𝑉 → 𝑊 it is easily checked that ℌ(𝑇∗) =  ℌ(𝑇)∗ which in turn 

implies that Γ(𝑇) =  ℌ(𝑇)⊗ id𝔅|Γ(𝑉) is adjointable with Γ(𝑇) = Γ(𝑇)∗. 

(iii) Associativity is an immediate consequence of the coaction and cocycle condition of 

the factor system. More precisely for all representations 𝜋, 𝜌, 𝜎 ∈ �̂�  and elements 𝑥 ∈
Γ(𝑉𝜋), 𝑦 ∈ Γ(𝑉𝜌), 𝑧 ∈ Γ(𝑉𝜎) we have  
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𝑚𝜋,𝜌⊗𝜎(𝑥 ⊗𝑚𝜌,𝜎(𝑦 ⊗ 𝑧)) = 𝑤(𝜋, 𝜌 ⊗ 𝜎)𝛾𝜌⊗𝜎(𝑥)(𝑤(𝜌, 𝜎)𝛾𝜎(𝑦)𝑧) 

         
(5)
=
3

𝑤(𝜋, 𝜌,⊗ 𝜎)𝑤(𝜌, 𝜎)𝛾𝜎(𝛾𝜌((𝑥)𝑦)𝑧
(6)
=
3

𝑤(𝜋 ⊗

𝜌, 𝜎)𝛾𝜎(𝑤(𝜋, 𝜌))𝛾𝜎(𝛾𝜎(𝑥)𝑦)  

 = 𝑤(𝜋 ⊗ 𝜌, 𝜎)𝛾𝜎(𝑤(𝜋, 𝜌)𝛾𝜌(𝑥)𝑦)𝑧 = 𝑚𝜋⊗𝜌,𝜎(𝑚𝜋,𝜌(𝑥 ⊗ 𝑦)⊗ 𝑧).     

(iv) It remains to show that the maps 𝑚𝜋,𝜌 ∶  Γ(𝑉) ⊗𝔅 Γ(𝑊) → Γ(𝑉 ⊗𝑊) are unitary for 

all representations (𝜋, 𝑉), (𝜌,𝑊) of 𝒢. To see that 𝑚𝜋,𝜌 is isometric we observe that by 

Equation (4) the projection 𝑤(𝜋, 𝜌)∗𝑤(𝜋, 𝜌) = 𝛾𝜌(𝛾𝜋(𝕝)) is larger than than the subspace 

of  ℌ𝜋 ⊗ℌ𝜌 ⊗𝔅 generated by all  𝜌(𝑥)𝑦 with  𝑥 ∈ Γ(𝑉), 𝑦 ∈ Γ(𝑊).Hence, we have 

 

〈𝑚𝜋,𝜌(𝑥1 ⊗𝑦1),𝑚𝜋,𝜌(𝑥2 ⊗𝑦2)〉𝔅 = 〈𝛾𝜌(𝑥1)𝑦1, 𝑤(𝜋, 𝜌)
∗ 𝑤(𝜋, 𝜌)𝛾𝜌(𝑥2)𝑦1〉𝔅 

      =  〈𝛾𝜌(𝑥1)𝑦1, 𝛾𝜌(𝑥2)𝑦1〉𝔅 = 〈𝑥1 ⊗𝑦1, 𝑥2 ⊗𝑦2〉𝔅                        

for all 𝑥1, 𝑥2 ∈ Γ(𝑉) and  𝑦1, 𝑦2 ∈ Γ(𝑊). To show that 𝑚𝜋,𝜌 is surjective, we notice that 

Γ(𝑉) is linearly generated by all elements of the for 𝛾𝜋(𝕝)(𝜐 ⊗ 𝑏) with 𝜐 ∈ ℌ𝜋 and 𝑏 ∈ 𝔅; 

and likewise for Γ(𝑊). By Equation (4) the projection 𝕝ℌ𝜋 ⊗𝛾𝜌(𝕝𝔅) is larger than the 

cokernel projection 𝑤(𝜋, 𝜌)∗𝑤(𝜋, 𝜌) =  𝛾𝜌(𝛾𝜋(𝕝)). Choosing the  elements  𝑥:= 𝜐⊗ 𝕝𝔅 

and  𝑦 ∶= 𝑤⊗ 𝑏, we therefore find that the range of 𝑚𝜋,𝜌 contains all elements of the 

form  

 

𝑤(𝜋, 𝜌)(𝜐 ⊗ 𝛾𝜌(𝕝)(𝑤 ⊗ 𝑏)) =  𝑤(𝜋, 𝜌)(𝜐 ⊗𝑤⊗ 𝑏) 

with 𝜐 ∈ ℌ𝜋 , 𝑤 ∈ ℌ𝜌, 𝑏 ∈ 𝔅. Hence, the image of 𝑚𝜋,𝜌  contains the range of 𝑤(𝜋, 𝜌), 

which by Equation (4) is given by  𝛾𝜋⊗𝜌(𝕝)(ℌ𝜋⊗𝜌 ⊗𝔅) = Γ(𝑉 ⊗𝑊). 

Having the unitary tensor functor in hands, we may construct a 𝐶∗-dynamical system as 

presented in [134], [130]. For convenience of the reader we briefly summarize the main 

steps. We consider the algebraic direct sum 

𝐴 ∶= ⊕
(𝜋,𝑉)∈�̂�

𝑉 ⊗ Γ( �̅�). 

We equip each summand of this space with its canonical 𝔅 -valued inner product given by  

〈𝜐 ⊗ 𝑥,𝑤 ⊗ 𝑦〉𝔅 = 〈𝜐,𝑤〉 〈𝑥, 𝑦〉𝔅  for all 𝜐,𝑤 ∈ 𝑉  and 𝑥, 𝑦 ∈ Γ( �̅�) , and we extend the  

resulting inner product sesquilinearly to 𝐴. Moreover, we equip 𝐴 with the multiplication 

defined, for  �̅� ⊗ 𝑥 ∈ �̅� ⊗ Γ(𝑉) and  �̅� ⊗ 𝑦 ∈ �̅� ⊗ Γ(𝑊) with (𝜋, 𝑉), (𝜌,𝑊) ∈ �̂� , by 

the  product 

(𝜐 ⊗ 𝑥) • (𝑤 ⊗ 𝑦) ∶= ∑𝑆𝑘
∗

𝑁

𝑘=1

⊗Γ( 𝑆�̅�)
∗(𝜐 ⊗ 𝑤⊗𝑚�̅�,�̅�(𝑥 ⊗ 𝑦)) ∈ ∑𝑉𝜎𝑘

𝑁

𝑘=1

⊗Γ(�̅�𝜎𝑘), 

where 𝑆1, . . . , 𝑆𝑁  is a complete set of isometric intertwiners  𝑆𝑘: 𝑉𝜎𝑘 → 𝑉⊗𝑊,𝜎𝑘 ∈ �̂� , 

with respective conjugates  𝑆�̅�: �̅�𝜎𝑘 → �̅� ⊗ �̅�. Extending this product bilinearly yields an 

associative multiplication on 𝐴. The algebra B can be regarded as the subalgebra of 𝐴 

corresponding to the trivial representation, and the left and right module action of 𝔅 

coincides with the multiplication on 𝐴. 

The next step is to construct an involution on 𝐴. For this purpose we first recall that for an 

irreducible representation (𝜋, 𝑉) of  �̂� there is a pair of intertwiners  𝑅: ℂ → 𝑉 ⊗ �̅� and  
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�̅�: ℂ →  �̅� ⊗ 𝑉  such that  (𝑅∗ ⊗ id𝑉)(id𝑉 ⊗ �̅�) = id𝑉  . With this we may define 

involutions 2+ ∶ Γ(𝑉 ) → Γ(�̅�) and 2+ ∶  �̅� → 𝑉 by putting 

 

𝑥+ ≔ 𝑚[𝑥]∗(Γ(𝑅)(𝕝𝔅)),            �̅�
+ ≔ 𝑖[�̅�]∗ �̅�(1)  

where we briefly write 𝑚[𝑥]: Γ(�̅�) → Γ(𝑉 ⊗ �̅�) for the map 𝑚[𝑥](𝑦) ∶= 𝑚𝜋,�̅�(𝑥 ⊗ 𝑦) 

and  𝑖[�̅�] ∶ 𝑉 → 𝑉 ⊗ �̅� for the map  𝑖[�̅�](𝑤) ∶= �̅� ⊗ 𝑤. Then for �̅� ⊗ 𝑥 ∈ �̅� ⊗ Γ(𝑉) ⊆ 𝐴 

we may put  (�̅� ⊗ 𝑥)+ ∶= �̅�+ ⊗𝑥+ and extend this anilinearly to a map on 𝐴. It can be 

shown that this involution turns 𝐴 into a∗-algebra (see [130]). 

Remark(5.1.22)[288]: Our conventions for the inner products and the involution slightly 

deviate from [130], but the reader may easily adapt the arguments of [130] to our 

conventions. 

Every summand  �̅� ⊗ Γ(𝑉) admits a unitary representation of 𝒢 by acting on the first 

tensor factor. Taking direct sums yields a map 𝛼 ∶ 𝐴 →  𝐴⊗ 𝒢. This map is in fact a ∗-

homomorphism satisfying (𝛼 ⊗ id𝒢) ∘ 𝛼 = (𝛼 ⊗ ∆) ∘ 𝛼  . Altogether we have an 

algebraic action of the quantum group 𝒢 on 𝑡ℎ𝑒∗-algebra 𝒜. From this we may pass to a 

𝐶∗-dynamical system by taking the completion ℌ𝐴 of 𝐴 with respect to the norm ‖𝑥‖2 ∶=
‖〈𝑥, 𝑥〉𝔅‖

1/2 . Then the left multiplication of 𝐴  yields a faithful representation 𝜆 ∶ 𝐴 →
ℒ(ℌ𝐴)  and a 𝐶∗ -algebra  𝒜 ∶= 𝜆(𝒜)̅̅ ̅̅ ̅̅ ̅ . The∗ -homomorphism 𝛼  can be extended to an 

action 𝛼 ∶ 𝒜 → 𝒜⊗𝒢, which we denote by the same letter. See [134]. 

Theorem (5.1.23)[288]: The compact 𝐶∗-dynamical system (𝒜, 𝒢, 𝛼) is free with fixed 

point algebra 𝔅 and factor system (ℌ, 𝛾 , 𝑤). 
Proof: For an irreducible representation (𝜋, 𝑉) ∈ �̂�, the 𝜋-isotypic component of (𝒜, 𝒢, 𝛼) 
is obviously given by 𝑉 ⊗ Γ(�̅�). Hence the 𝜋-multiplicity space of the 𝐶∗ -dynamical 

system 

 

Γ𝒜(𝑉) ∶= {𝑥 ∈ 𝑉 ⊗𝒜 | 𝜋𝛼(𝑥) = 𝑥} ⊆ 𝑉 ⊗ �̅� ⊗ Γ(𝑉) 
is isomorphic to Γ(𝑉).  as a correspondence over 𝔅. More precisely, a few moments 

thought show that an isomorphism is given by 𝜑 ∶ Γ(𝑉) → Γ𝒜(𝑉), 𝑥 ⟼ 𝑅(1)⊗ 𝑥. For the 

computations it is convenient to fix an orthonormal basis 𝑒1, . . . , 𝑒𝑑 of  . We also fix an 

arbitrary orthonormal basis  𝑓1, . . . , 𝑓𝑛 of ℌ𝜋 and consider the elements 

𝑠𝑘: = 𝛾𝜋(𝕝)(𝑓𝑘 ⊗ 𝕝𝔅). 
It it easily checked that these elements satisfy ∑ 𝑠𝑘

𝑛
𝑘=1 〈𝑠𝑘, 𝑥〉𝔅 = 𝑥 for every 𝑥 ∈ Γ(𝑉) 

and hence ∑ 𝑚[𝑠𝑘]𝑚[𝑠𝑘]
∗ = idΓ(𝑉⊗�̅�)

𝑛
𝑘=1 . It follows that for the left inner product on 

Γ𝒜(𝑉) we obtain  

∑ℒ(𝑉)⊗𝒜 〈𝜑(𝑠𝑘), 𝜑(𝑠𝑘)〉

𝑛

𝑘=1

= ∑ℒ(𝑉)⊗𝒜 〈𝑅(1)⊗𝑠𝑘
, 𝑅(1) ⊗𝑠𝑘

〉

𝑛

𝑘=1

                              

        = ∑ ∑ [𝑄1 2⁄ ]𝑖,𝑗[𝑄
1 2⁄ ]𝑠,𝑟|𝑒𝑖⟩

𝑑

𝑖,𝑗,𝑟,𝑠=1

𝑛

𝑘=1

⟨𝑒𝑟|⨂((�̅�𝑗⨂𝑠𝑘)

• (�̅�𝑠⨂𝑠𝑘)
+)                                              

= ∑ ∑ ∑[𝑄1 2⁄ ]𝑖,𝑗[𝑄
1 2⁄ ]𝑠,𝑟|𝑒𝑖⟩

𝑚

ℓ=1

⟨𝑒𝑟|⨂(𝑆ℓ̅
∗(�̅�𝑗⨂�̅�𝑠

+)⨂Γ(𝑆ℓ
∗)𝑚𝜋,�̅�(𝑠𝑘⨂𝑠𝑘

+))

𝑑

𝑖,𝑗,𝑟,𝑠=1

𝑛

𝑘=1

,

(16) 
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where 𝑄:= 𝑄(𝜋) is the modular operator and where 𝑆1, . . . ,  𝑆𝑚 is an orthonormal basis of 

intertwiners   𝑆ℓ̅ : 𝑉𝜎ℓ → 𝑉⊗ �̅�  with irreducible representations  𝜎ℓ ∈ �̂� , one of them 

being 𝑆ℓ = 𝑑𝜋
−1/2

𝑅. First summing over 𝑘 yields 

∑𝑚𝜋,�̅�

𝑛

𝑘=1

(𝑠𝑘 ⊗ 𝑠𝑘
+) = ∑𝑚

𝑛

𝑘=1

[𝑠𝑘]𝑚[𝑠𝑘]
∗Γ(𝑅)(𝕝𝔅) = Γ(𝑅)(𝕝𝔅). 

Therefore, only the intertwiner 𝑆ℓ = 𝑑𝜋
−1/2

𝑅 contributes in Equation (16). Moreover, a 

straightforward computation yields 𝑅(𝜐 ⊗𝑤+) = 〈𝑤, 𝑄(𝜋)𝜐〉 for all 𝜐,𝑤 ∈ 𝑉 . We may 

hence simplify Equation (16) to 

              ∑ ℒ(𝑉)⊗𝒜〈𝜑(𝑠𝑘), 𝜑(𝑠𝑘)〉

𝑛

  𝑘=1

= 

        =
1

𝑑𝜋
∑ [𝑄1 2⁄ ]𝑖,𝑗[𝑄

1 2⁄ ]𝑠,𝑟|𝑒𝑖⟩⟨𝑒𝑟|⨂(�̅�
∗(�̅�𝑗⨂�̅�𝑠

+)⨂Γ(𝑅∗)Γ(𝑅)(𝕝𝔅))

𝑑

𝑖,𝑗,𝑟,𝑠=1

 

= ∑ [𝑄1 2⁄ ]𝑖,𝑗[𝑄
1 2⁄ ]𝑠,𝑟| [𝑄

−1]𝑗,𝑠 |𝑒𝑖⟩⟨𝑒𝑟|⨂𝕝𝔅 = 𝕝𝔅.

𝑑

𝑖,𝑗,𝑟,𝑠=1

                     

This proves that the compact 𝐶∗-dynamical system (𝒜, 𝒢, 𝛼)  is free. Furthermore, the 

collection of elements 𝑠𝑘𝑘(1 ≤ 𝑘 ≤ 𝑛) for each 𝜋 ∈ �̂� provide a factor system (ℌ̃, �̃�, �̃�) of 

(𝒜, 𝒢, 𝛼) with Hilbert spaces ℌ̃𝜋 = ℌ𝜋 . In terms of the chosen basis  𝑓1, . . . , 𝑓𝑛 , the ∗-

homomorphism �̃�𝜋 ∶  𝔅 → 𝑀𝑛 ⊗𝔅 for 𝜋 ∈ �̂� is given by  

 

�̃�𝜋(𝑏)𝑖,𝑗 = 〈𝜑(𝑠𝑖), 𝑏 . 𝜑(𝑠𝑗)〉𝔅 = 〈𝑠𝑖 , 𝑏 . 𝑠𝑗〉𝔅 = 〈𝑓𝑖 ⊗ 𝕝𝔅, 𝛾𝜋(𝑏)(𝑓𝑖 ⊗ 𝕝𝔅)〉𝔅 = 𝛾𝜋(𝑏)𝑖,𝑗 

for all 𝑏 ∈ 𝔅 (see Remark (5.1.9)). That is, we have �̃�  = 𝛾   and similar computation 

shows that  �̃� = 𝑤, too. Summarizing, we find that (ℌ, 𝛾 , w) is indeed a factor system of 

the free compact 𝐶∗-dynamical system (𝒜, 𝒢, 𝛼). 
Given a unital 𝐶∗-algebra B, we call a free compact 𝐶∗-dynamical system (𝒜, 𝒢, 𝛼). With 

a finite quantum group 𝒢  and fixed point algebra 𝔅 a finite covering of 𝔅. The main 

purpose is to use factor systems to show that finite coverings of generic irrational rotation 

𝐶∗-algebras are cleft (cf. Definition (5.1.12)).  

Lemma (5.1.24)[288]: Let  𝜃 ∈ ℝ . Then every positive group homomorphism of ℤ + 𝜃ℤ 

is 𝑎 multiple of the identity. 

Proof: Let  ℎ ∶ ℤ +  𝜃ℤ → ℤ +  𝜃ℤ be a positive group homomorphism. Then for all 𝑥, 𝑦 ∈
ℤ  we have that  𝑥 + 𝜃𝑦 ≥ 0  implies ℎ(1)𝑥 + ℎ(𝜃)𝑦 ≥ 0  and  𝑥 + 𝜃𝑦 ≤ 0  implies 

ℎ(1)𝑥 + ℎ(𝜃)𝑦 ≤ 0. Considering  𝑞 ∶= −𝑥/𝑦, it follows that for all 𝑞 ∈ ℚ we have that 

𝑞 ≥ 𝜃 implies  ℎ(1)𝑞 ≥ ℎ(𝜃) and 𝑞 ≤ 𝜃  implies  ℎ(1)𝑞 ≤ ℎ(𝜃). Taking the limit 𝑞 → 𝜃  
in rationals, we may conclude that  ℎ(1)𝜃 = ℎ(𝜃). Finally, for every  𝑧 = 𝑥 + 𝜃𝑦 ∈ ℤ +
𝜃ℤ  we obtain  ℎ(𝑧) = 𝑥ℎ(1) + 𝑦ℎ(𝜃) = ℎ(1)𝑧 as asserted. 

Remark(5.1.25)[288]: Extending the preceding proof, the equation ℎ(1)𝜃 =  ℎ(𝜃) is a 

quadratic equation with integer coefficients. Thence for non-quadratic 𝜃 the factor ℎ(1) 
must be a positive integer. 

Given a finite group 𝐺 and its representation ring 𝑅(𝐺), it is a well-known fact that there is 

only one ring homomorphism  𝑟: 𝑅(𝐺) → ℝ with  𝑟(𝜋) > 0 for every  𝜋 ∈ �̂� , namely  

𝑟(𝜋) = dim 𝜋 for every 𝜋 ∈ �̂�.  
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The next result shows that this statement remains true in the context of finite quantum 

groups. 

Lemma (5.1.26)[288]: Let 𝒢  be a finite quantum group and denote by 𝑅(𝒢)  its 

representation ring. Then there is only one ring homomorphism 𝑟: 𝑅(𝒢) → ℝ with 𝑟(𝜋) >
0 for every  𝜋 ∈ �̂�, namely  𝑟(𝜋) = dim 𝜋 for every 𝜋 ∈ �̂�. 

Proof: Let  𝑟1, 𝑟22: 𝑅(𝐺) → ℝ be two such positive, non-zero ring homomorphisms and let 

us fix  𝜋 ∈ �̂�. We consider the matrix 𝑇(𝜋) with rows and columns index by �̂� given by 

 

𝑇(𝜋)𝜌,𝜎 ∶=
𝑚(𝜎, 𝜌 ⊗ 𝜋)𝑟1(𝜎)

𝑟1(𝜌⊗ 𝜋)
 

for all 𝜌, 𝜎 ∈ �̂� , where 𝑚(𝜎, 𝜌 ⊗ 𝜋)  denotes the multiplicity of 𝜎  in 𝜌⊗ 𝜋 . A 

straightforward computation verifies that 𝑇(𝜋) is a stochastic matrix. Moreover, the vector 

𝑐 = (𝑐𝜌)𝜌∈�̂�  with 𝑐𝜌 ∶= 𝑟2(𝜌)/𝑟1(𝜌)  is an eigenvector of 𝑇(𝜋)  with eigenvalue  𝜆 =

𝑟2(𝜋)/𝑟1(𝜋), because the homomorphism property implies 

(𝑇(𝜋)𝑐)𝜌 =
1

𝑟1(𝜌⊗ 𝜋)
∑𝑚(𝜎, 𝜌 ⊗ 𝜋)𝑟2(𝜎)

𝜎∈�̂�

=
𝑟2(𝜌⊗ 𝜋)

𝑟1(𝜌⊗ 𝜋)
=
𝑟2(𝜋)

𝑟1(𝜋)
𝑐𝜌 

Since all eigenvalues of stochastic matrices lie in the unit disc, we now conclude that 

𝑟2(𝜋) ≤ 𝑟1(𝜋) . Exchanging the role of  𝑟1  and  𝑟2  likewise yields 𝑟2(𝜋) ≤ 𝑟1(𝜋)  and 

consequently we obtain   𝑟1 = 𝑟2. 

Theorem (5.1.27)[288]: Let  𝜃 ∈ ℝ be irrational and non-quadratic. Furthermore, let 𝒢 be 

a finite quantum group. Then every free compact 𝐶∗ -dynamical system (𝒜, 𝒢, 𝛼) with 

fixed  point algebra 𝒜 𝜃
2  is cleft. 

Proof: Let (𝒜, 𝒢, 𝛼)  be a free compact 𝐶∗ -dynamical system with 𝒜 𝒢 = 𝒜 𝜃
2  and let 

(ℌ ,  𝛾  ,w) be a factor system of (𝒜, 𝒢, 𝛼)  . Then for every representation 𝜋  of 𝒢  

the ∗homomorphism  𝛾𝜋 :𝒜 𝜃
2 → 𝒜 𝜃

2 ⊗ℒ(ℌ𝜋) induces a positive group homomorpism 

 

𝐾0(𝛾𝜋 ) ∶ ℤ +  𝜃ℤ →∶ ℤ + 𝜃ℤ, 
where we have identified 𝐾0(𝒜 𝜃

2 ⊗ℒ(ℌ𝜋))  with  𝐾0(𝒜 𝜃
2 ) = ℤ + 𝜃ℤ . By Remark 

(5.1.25), this group homomorphism must be a positive integer of the identity, say for some 

factor 𝑟(𝜋) >  0 . Given two representations 𝜋, 𝜌  of 𝒢 , we clearly have  𝑟(𝜋 ⊕ 𝜌) =
𝑟(𝜋) + 𝑟(𝜌). Moreover, the coaction condition of the factor system implies that 𝐾0(𝛾𝜌 ) ∘

𝐾0(𝛾𝜋 ) = 𝐾0(𝛾𝜋⊗𝜌 ) and therefore that  𝑟(𝜌) · 𝑟(𝜋) = 𝑟(𝜋 ⊗ 𝜌). As a consequence, we 

may extend the map 𝜋 ⟼ 𝑟(𝜋) to a ring-homomorphism  𝑟: 𝑅(𝒢) → ℝ. Lemma (5.1.26) 

then shows that 𝑟(𝜋) = dim(𝜋) holds for every 𝜋 ∈ �̂� and hence we obtain 

[𝛾𝜋 (𝕝)] = 𝐾0𝛾𝜋 )[𝕝] = 𝑟(𝜋) · [𝕝] = dim(𝜋) · [𝕝] 
     in  𝐾0(𝒜 𝜃

2 ). We finally conclude from Lemma (5.1.17) that (𝒜, 𝒢, 𝛼)  is cleft.  

We show that Morita equivalence bimodules between unital 𝐶∗-algebras admit a so-called 

standard module frames. Although this might be well-known to experts, we have not 

found such a statement explicitly discussed in the literature. 

Lemma (5.1.28)[288]: Let 𝑀 be a Morita equivalence between unital 𝐶∗-algebras 𝒜 and 

𝔅. Then there are elements 𝑥1, . . . , 𝑥𝑛 ∈ 𝑀 with  ∑ 1𝒜〈𝑥𝑖 , 𝑥𝑖〉 = 𝕝𝑛
𝑖=1  . In particular, for 

anycollection of such elements we have a Fourier decomposition given for all 𝑥 ∈ 𝑀 by 

𝑥 = ∑ 𝑥𝑘〈𝑥𝑘 , 𝑥〉𝔅.
𝑛
𝑖=1  



160 

Proof: The linear span of left inner products   𝐽: = 1𝒜〈𝑀,𝑀〉 is a dense ideal in  𝒜. Since 

the invertible elements of 𝒜 form an open subset, 𝐽 contains invertible elements and hence  

𝐽 = 𝒜 . That is, there are elements  𝑥1, . . . , 𝑥𝑛 ∈ 𝑀  and  𝑦1, . . . ,  𝑦𝑛 ∈ 𝑀  with 𝕝 =
∑ 1𝒜〈𝑥𝑖 , 𝑦𝑖〉
𝑛
𝑖=1 . Then the Morita equivalence property implies 

𝑦 = 𝕝 . 𝑦 =∑1𝒜〈𝑥𝑖 , 𝑦𝑖〉

𝑛

𝑖=1

. 𝑦 =∑𝑥𝑖

𝑛

𝑖=1

. 〈𝑦𝑖 , 𝑦〉𝔅                                          (17) 

for every 𝑦 ∈ 𝑀. Now consider the matrix 𝑌 ∈ 𝔅⊗𝑀𝑛 given by 𝑌𝑖,𝑗 : = 〈𝑦𝑖 , 𝑦𝑗〉𝔅 for 1 ≤

𝑖, 𝑗 ≤ 𝑛 . Since 𝑌  is positive, we find a matrix  𝑅 = (𝑅𝑖,𝑗)𝑖,𝑗  in 𝔅⊗𝑀𝑛  with 𝑌 = 𝑅𝑅∗ . 

Putting   𝑧𝑘 ∶= ∑ 𝑥𝑖
𝑛
𝑖=1 . 𝑅𝑖,𝑘   for all 1 ≤ 𝑗 ≤ 𝑛 we find 

∑1𝒜〈𝑧𝑘, 𝑧𝑘〉

𝑛

𝑘=1

= ∑ 1𝒜〈𝑥𝑖 , 𝑅𝑖,𝑘 , 𝑥𝑗 . 𝑅𝑗,𝑘〉

𝑛

𝑖,𝑗,𝑘=1

= ∑ 1𝒜 〈𝑥𝑖 . (∑𝑅𝑖,𝑘, 𝑅𝑗,𝑘
∗

𝑛

𝑘=1

) , 𝑥𝑗〉

𝑛

𝑖,𝑗=1

 

    = ∑ 1𝒜〈𝑥𝑖 . 〈𝑦𝑖 , 𝑦𝑗〉𝔅, 𝑥𝑗〉

𝑛

𝑖,𝑗=1

(17)
=
3

∑1𝒜〈𝑦𝑗 , 𝑥𝑗〉

𝑛

𝑗=1

=. 𝕝  

Section (5.2):  Compact Abelian Groups on 𝑪∗-Algebras 
We study free actions of compact groups on unital 𝐶∗-algebras. This class of actions 

was first introduced under the name saturated actionsby Rieffel [123] and equivalent 

characterizations where given by Ellwood [318] and by Gottman, Lazar, and Peligrad 

[81](see also [133],[341]). Other related notions of freeness were studied by Phillips [116] 

in connection with K-theory (see also [36]). 

     Free actions do not admit degeneracies that may be present in general actions. For this 

reasons they are easier to understand and to classify. For compact Abelian groups, free 

ergodic actions, i.e., free actions with trivial fixed point algebra, were completely 

classified by Olesen, Pedersen and Takesaki in [64] and independently by Albeverio and 

Høegh–Krohn in [42]. This classification was generalized to compact non-Abelian groups 

by the Wassermann [342]–[302]. According to [42], [64], [342], for a compact group 

Gthere is a 1-to-1 correspondence between free ergodic actions of Gand 2-cocycles of the 

dual group. An analogous result of compact quantum groups has been obtained by Bichon 

, De Rijdt and Vaes [290]. Extending these results beyond the ergodic case is however not 

straightforward because, even for a commutative fixed point algebra, the action cannot 

necessarily be decomposed into a bundle of ergodic actions. For compact Abelian groups 

our results about free, but not necessary ergodic actions may be regarded as a 

generalization of the classification given in [42], [64]. We would also like to point out that 

Neshveyev [130] obtained a classification of actions of compact quantum groups in terms 

of weak unitary tensor functors, which do unfortunatelynot have an obvious homological 

interpretation. 

     The study of non-ergodic free actions is also motivated by the established theory of 

principal bundles. In fact, by a classical result, having a free action of a compact group 𝐺 

on a compact 𝑃 is equivalent saying that 𝑃 carries the structure of a principal bundle over 

the quotient 𝑋:= 𝑃/𝐺 with structure group 𝐺. Very well-understood is the case of locally 

trivial principal bundles, that is, if 𝑃 is glued together from spaces of the form 𝑈 × 𝐺 with 

an open subset 𝑈 ⊆ 𝑋 . This gluing immediatelyleads to 𝐺 -valued cocycles. The 

corresponding cohomology theory, called Č ech cohomology, gives a complete 

classification of locally trivial principal bundles with base space 𝑋 and structure group 𝐺 
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(see [336]). For principal bundles that are not locally trivial, however, there is no obvious 

classification available. Our results provide such a classification in the case of a compact 

Abelian structure group. 

     Passing to noncommutative geometry poses the question how to extend the concept of 

principal bundles to noncommutative geometry. In the case of vector bundles the Theorem 

of 𝑆erre and Swan (cf. [174]) gives the essential clue: The category of vector bundles over 

a compact space 𝑋 is equivalent to the category of finitely generated and projective 𝐶(𝑋)-
modules. This observation leads to a notion of noncommutative vector bundles and is the 

connection between the topological 𝐾-theory based on vector bundles and the 𝐾-theory for 

𝐶∗-algebras. For principal bundles, free and proper actions offer a good candidate for a 

notion of noncommutative principal bundles (see e.g.[308], [148], [318], [36]). Asimilar 

geometric approach based on transformation groups was developed by one of [339], [340]. 

In a purely algebraic setting, the well-established theory of Hopf–Galois extensions 

provides a wider framework comprising coactions of Hopf algebras (e.g.[319], [295], 

[170]). We also would like to mention the related notion of noncommutative principal 

torus bundles proposed by Echterhoff, Nest, and Oyono-Oyono [293](see also [320]), 

which relies on a noncommutative version of Green’s Theorem. Considering free actions 

as noncommutative principal bundles, We characterize principal bundles in terms of 

associated vector bundles. 

     Extending the classical theory of principal bundles to noncommutative geometry is not 

of purely mathematical interest. In fact, noncommutative principal bundles become more 

and more prevalent in geometry and physics. For instance, Ammann and Bär [306], [307] 

study the properties of the Riemannian spin geometry of a smooth principal 𝑈(1)-bundle. 

Under suitable hypotheses, they relate the spin structure and the Dirac operator on the total 

space to the spin structure and the Dirac operator on the base space. Anoncom-mutative 

generalization of these results was developed by Dabrowski, Sitarz, and 𝑍ucca in [314], 

[315] using spectral triples and the Hopf–Galois analogue of principal 𝑈(1)-bundles. 

Noncommutative principal bundles also appear in the study of 3-dimensional topological 

quantum field theories that are based on the modular tensor category of representations of 

the Drinfeld double (cf. [325]). In special types of Hopf–Galois extensions correspond to 

symmetries of the theory or, equivalently, to invertible defects. As such, they are 

connected to module categories and, in particular, to the Brauer–Picard group of pointed 

fusion categories. Furthermore, 𝑇-duality is considered to be an important symmetry of 

string theories ([305], [313]). It is known that a circle bundle with 𝐻-flux given by a 

Neveu–Schwarz 3-form admits a 𝑇-dual circle bundle with dual 𝐻-flux. However, it is 

also known that in general torus bundles with 𝐻-flux do not necessarily have a 𝑇-dual that 

is itself a classical torus bundle. Mathai and Rosenberg showed in [327],[328] that this 

problem is resolved by passing to noncommutative spaces. For example, it turns out that 

every principal 𝕋2-bundle with H-flux does indeed admit a 𝑇-dual but its 𝑇-dual is non-

classical. It is a bundle of noncommutative 2-tori, which can (locally) be realized as a 

noncommutative principal 𝕋2-bundle in the sense of [293]. All these examples demand a 

better understanding of the geometry of noncommutative principal bundles. Although the 

classification relies purely on the topology of the bundle, we hope that parts of our 

classification extends in such a way that additional geometrical information of the space is 

comprised. 

We investigate the structure of free actions on 𝐶∗-algebras, which is one framework 

for noncommutative principal bundles. We restrict ourselves to the compact setting, that 
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is, to compact groups acting on unital 𝐶∗-algebras. The main objective is to provide a 

complete classification of free actions of compact Abelian groups on unital 𝐶∗-algebras. 

We achieve such a classification by inspecting the Morita equivalence bimodule structure 

of the isotypic components. It turns out that the resulting classification can be handled by 

methods of group cohomology.  

      We discuss the different equivalent characterizations of free-ness in the (Theorem 

(5.2.10)). We further provide some methods to construct new free actions from given ones. 

As an example we present a one-parameter family of free 𝑆𝑈(2)-actions  which is related 

to the Connes-Landi spheres (cf. [295]). 

We construct a first invariant of a 𝐶∗ -dynamical system, namely a group 

homomorphism 𝜑: �̂� → Pic(𝔅)  from the dual of the compact Abelian group 𝐺  to the 

Picard group of the unital fixed point algebra 𝔅 . In general, this invariant neither 

distinguishes all free actions of 𝐺  nor is there a dynamical system for each group 

homomorphism  𝜑. However, refining this invariant leads to our classifying data, to which 

we refer as factor system due to some similarity with the theory of group extensions. As 

one cornerstone of our classification, we show that every factor system can indeed be 

obtained from a 𝐶∗-dynamical system. The construction of this dynamical system forms 

the main. 

       The full classification of free actions of compact Abelian groups on unital 𝐶∗ -

algebras is discussed. We additionally fix a group homomorphism 𝜑: �̂� → Pic(𝔅) and 

restrict our attention to 𝐶∗ -dynamical system with the given 𝜑  as invariant. The main 

result is that, if such dynamical systems exist, all free actions associated to the triple 

(𝔅,𝐺, 𝜑) are  parametrized, up to 2-coboundaries, by 2-cocycles on the dual group  �̂� with 

values in the group 𝑈𝑍(𝔅)  of central unitary elements in 𝔅  (Theorem (5.2.52) and 

Corollary (5.2.53)). In other words, the set in question is a principal homogeneous space 

with respect to a classical cohomology group 𝐻2(�̂�, 𝑈𝑍(𝔅)) . We provide a group  

theoretic criterion for the existence of free actions with invariant 𝜑; that is, factor systems 

associated to the triple (𝔅, 𝐺, 𝜑).  
      As already mentioned, for a compact group 𝐺 and a compact space 𝑋, locally trivial 

principal 𝐺 -bundles over 𝑋  are classified by the Čech cohomology for the pair (𝑋, 𝐺). 

From the 𝐶∗-algebraic viewpoint, local triviality is not easy to capture. We provid instead 

a classification of not necessarily locally trivial principal bundles in case of a compact 

Abelian structure group. Finally, we discuss a few examples.  

      We point out that with little effort the arguments and the results which are presented 

for actions of compact Abelian  groups extend to coactions of group 𝐶∗-algebras of finite 

groups. We also would like to mention that the first part of a larger program aiming at 

classifying more general free actions on 𝐶∗-algebras (cf. [297],[288]). This classification 

may be used to develop a fundamental group for 𝐶∗-algebras (cf. [334]). It could also 

serve as a starting point for an approach to quantum gerbes and a theory of  𝑇-duals for 

noncommutative principal torus bundles.  

       Our study is concerned with free actions of compact groups on unital 𝐶∗-algebras 

and their classification. As a consequence, we use and blend tools from geometry, repre-

sentation theory and operator algebras.  

      For 𝑃  and 𝑋  be compact spaces. Let 𝐺  be a compact group. A locally trivial 

principal bundle is a quintuple (𝑃, 𝑋, 𝐺, 𝑞, 𝜎), where 𝑞: 𝑃 → 𝑋 is a continuous map and 

𝜎: 𝑃 × 𝐺 → 𝑃 a continuous action, with the property of local triviality: Each point 𝑥 ∈ 𝑋 
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has an open neighborhood 𝑈  for which there exists a homeomorphism 𝜑𝑈: 𝑈 × 𝐺 →
𝑞−1(𝑈) satisfying 𝑞 ∘ 𝜑𝑈 = pr𝑈  and additionally the equivariance property  

𝜑𝑈(𝑥, 𝑔ℎ)  = 𝜑𝑈(𝑥, 𝑔). ℎ  
for 𝑥 ∈ 𝑈 and 𝑔, ℎ ∈ 𝐺. It follows that the map 𝑞 is surjective, that the action 𝜎 is free and 

proper, and that the natural map 𝑃/𝐺 ↦ 𝑋, 𝑝. 𝐺 ↦ 𝑞(𝑝)  is a homeomorphism. In 

particular, we recall that the action 𝜎 is called free if and only if all stabilizer groups 𝐺𝑝: =

{𝑔 ∈ 𝐺 | 𝜎(𝑝, 𝑔) = 𝑝}, 𝑝 ∈ 𝑃, are trivial. For a solid background on free group actions and 

principal bundles [25,26,36]. 

      Tensor products of 𝐶∗-algebras are taken with respect to the minimal tensor product 

denoted by ⊗. Let 𝒜 be a unital 𝐶∗-algebra and 𝐺 a compact group that acts on 𝒜 by∗-
automorphism 𝛼𝑔:𝒜 → 𝒜(𝑔 ∈ 𝐺)  such that the map 𝐺 ×𝒜 → 𝒜, (𝑔, 𝑎) ↦ 𝛼𝑔(𝑎)  is 

continuous. We call such a triple (𝒜, 𝐺, 𝛼) a 𝐶∗-dynamical system. We sometimes denote 

by 𝔅:= 𝒜𝐺 the corresponding fixed point 𝐶∗-algebra of the action αand we write 𝑃0:𝒜 →
𝒜 for the conditional expectation given by 

𝑃0(𝑥):= ∫𝛼𝑔(𝑥)𝑑𝑔.

1

𝐺

 

At this point it is worth mentioning that all integrals over compact groups are understood 

to be with respect to probability Haar measure. More generally, for an irreducible 

representation (𝜋, 𝑉)  of 𝐺  we write 𝑃𝜋:𝒜 → 𝒜  for the continuous 𝐺 -equivariant 

projection onto the isotypic component 𝐴(𝜋) ∶= 𝑃𝜋(𝒜) given by  

𝑃𝜋(𝑥):= dim  𝑉 ⋅ ∫ tr𝑉(𝜋𝑔
∗) ⋅ 𝛼𝑔(𝑥)𝑑𝑔.

1

𝐺

 

where tr𝑉 denotes the canonical trace on the algebra  ℒ(𝑉) of linear endomorphisms of 𝑉. 

It is a consequence of the Peter–Wey l Theorem [321] that the algebraic direct 

sum ⊕𝜋∈�̂� 𝐴(𝜋)  is a dense ∗ -subalgebra of  𝒜 . Here we write  �̂�  for the set of 

equivalence classes of all irreducible representations. Finally, we point out that each 

continuous group action 𝜎: 𝑃 × 𝐺 → 𝑃 of a compactgroup 𝐺 on a compact space 𝑃 gives 

rise to a 𝐶∗-dynamical system (𝐶(𝑃), 𝐺, 𝛼𝜎) defined by 

𝛼𝜎: 𝐺 × 𝐶(𝑃) → 𝐶(𝑃), (𝑔, 𝑓) ↦ 𝑓 ∘ 𝜎𝑔 . 

     A huge part is concerned with Hilbert module structures. We recall some of the central 

definitions. Let 𝔅 be a unital 𝐶∗-algebra. A right pre-Hilbert 𝔅-module is a vector space 

𝑀 which is a right 𝔅-module equipped with a positive definite 𝔅-valued sesquilinear form 

〈 · , · 〉𝔅 satisfying  
  

〈𝑥, 𝑦 · 𝑏〉𝔅 = 〈𝑥, 𝑦〉𝔅𝑏    and    〈𝑥, 𝑦〉𝔅
∗ = 〈𝑦, 𝑥〉𝔅 

for all 𝑥, 𝑦 ∈ 𝑀  and 𝑏 ∈ 𝔅 . A right Hilbert 𝔅 -module is a right pre-Hilbert 𝔅 -

moduleMwhich is complete with respect to the norm given by  ‖𝑥‖2 = ‖〈𝑥, 𝑦〉𝔅‖  for  𝑥 ∈
𝑀. It is called a full right Hilbert 𝔅-module if the right ideal 𝐽: = 𝑠𝑝𝑎𝑛{〈𝑥, 𝑦〉𝔅| 𝑥, 𝑦 ∈ 𝑀} 
is dense in 𝔅. Since every dense ideal meets the invertible elements, in this case we have  

𝐽 = 𝔅. Left (pre-) Hilbert 𝔅-modules are defined in a similar way. Next, let 𝒜 and 𝔅 be 

unital 𝐶∗ -algebras. A right (pre-) Hilbert 𝒜 −𝔅-bimodule is a right (pre-) Hilbert 𝔅-

module 𝑀 that is also a left 𝒜-module satisfying 

𝑎 · (𝑥 · 𝑏) = (𝑎 · 𝑥) · 𝑏    𝑎𝑛𝑑     〈𝑎 · 𝑥, 𝑦〉𝔅 = 〈𝑥, 𝑎∗ · 𝑦〉𝔅 
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for all 𝑥, 𝑦 ∈ 𝑀, 𝑎 ∈ 𝒜 and 𝑏 ∈ 𝔅. We point out that right Hilbert 𝒜 −𝔅-bimodules are 

sometimes called  𝒜 −𝔅 correspondences in the literature. Given a right (pre-) Hilbert A 

−B-bimodule 𝑀 and a right (pre-) Hilbert 𝔅−𝔅 –bimodule  𝑀, their algebraic 𝔅-tensor 

product 𝑀⊗𝔅 𝑁 carries a natural right pre-Hilbert 𝒜 −𝔅-bimodule structure with right 

𝔅-valued inner product given by 

〈𝑥1 ⊗𝔅 𝑦1,  𝑥2 ⊗𝔅 𝑦2〉𝔅: =  〈𝑦1, 〈𝑥1,  𝑥2〉𝔅 ·  𝑦2〉𝔅                               (18) 

for 𝑥1, 𝑥2 ∈ 𝑀 and 𝑦1, 𝑦2 ∈ 𝑁. In particular, its completion  𝑀 ⊗̂𝔅 𝑁 with respect to the 

induced norm is a right Hilbert  𝒜 −𝔅-bimodule. Left (pre-) Hilbert 𝒜 −𝔅-bimodules 

are defined in a similar way. A (pre-) Hilbert 𝒜 −𝔅-bimodule is an 𝒜 −𝔅-bimodule 𝑀 

which is a left (pre-) Hilbert 𝒜-module and a right (pre-) Hilbert 𝔅-module satisfying 

〈𝑎 · 𝑥, 𝑦〉𝔅 = 〈𝑥, 𝑎∗ · 𝑦〉𝔅,     〈𝑥 · 𝑏, 𝑦〉𝒜
2 = 〈𝑥, 𝑦 · 𝑏∗〉𝒜

2        𝑎𝑛𝑑    〈𝑥, 𝑦〉 · 𝑧 = 𝑥 · 〈𝑦, 𝑧〉𝔅𝒜
2  

for all 𝑥, 𝑦, 𝑧 ∈ 𝑀, 𝑎 ∈ 𝒜 and 𝑏 ∈ 𝔅. A Morita equivalence 𝒜 −𝔅-bimodule is a Hilbert  

𝒜 −𝔅-bimodule with full inner products. The algebraic 𝔅-tensor product  𝑀⊗𝔅 𝑁 of a 

(pre-) Hilbert A −B-bimodule 𝑀 and a (pre-) Hilbert 𝔅−𝔅 -bimodule 𝑁 carries a natural 

pre-Hilbert 𝒜 −𝔅 -bimodule structure with inner products as in Equation (18). Its 

completion  𝑀 ⊗̂𝔅 𝑁 is a Hilbert 𝒜 −𝔅-bimodule. Finally, if 𝑀 is a Morita equivalence 

𝒜 −𝔅-bimodule and Na Morita equivalence 𝔅−𝔅-bimodule, it is easily checked that 

the completion 𝑀 ⊗̂𝔅 𝑁  is a Morita equivalence 𝒜 −𝔅 -bimodule. For a detailed 

background on Hilbert module structures we refer to [309], [310], [317], [139], [332]. 

      We discuss some of the forms of free actions of compact groups on 𝐶∗-algebras that 

have been used. In particular, we give some indications of their strengths and relationships 

to each other. Furthermore, we provide some methods to construct new free actions from 

given ones. As an example we present a one-parameter family of free 𝑆𝑈(2)-actions 

which is related to the Connes–Landi spheres.  

      We use the symbol ⊗𝑎𝑙g to denote the algebraic tensor product of vector spaces and 

we write ⊗ for the minimal tensor product of 𝐶∗-algebras. 

Proposition (5.2.1)[304]: ([116]). Let (𝒜, 𝐺, 𝛼) be a 𝐶∗-dynamical system with a unital 

𝐶∗ -algebra Aand a compact group 𝐺 . Then the following definitions make a suitable 

completion of 𝒜 into a Hilbert 𝒜 ⋊𝛼 𝐺 –𝒜
𝐺-bimodule: 

   (i)   𝑓 · 𝑥 ∶= ∫ 𝑓(𝑔) 𝛼𝑔(𝑥) 𝑑𝑔 
2

𝐺
for  𝑓 ∈ 𝐿1(𝐺,𝒜, 𝛼)  and  𝑥 ∈ 𝒜. 

  (ii)  𝑥 · 𝑏 ∶= 𝑥𝑏 for 𝑥 ∈ 𝒜 and  𝑏 ∈ 𝒜𝐺. 

  (iii) 𝒜 ⋊𝛼 𝐺〈𝑥, 𝑦〉 is the function 𝑔 ↦ 𝑥𝛼𝑔(𝑦
∗)  for  𝑥, 𝑦 ∈ 𝒜 .   

  (iv) 〈𝑥, 𝑦〉𝒜𝐺: = ∫ 𝛼𝑔
1

𝐺
(𝑥∗𝑥) 𝑑𝑔 for  𝑥, 𝑦 ∈ 𝒜. 

     It is easily seen that the module under consideration in the previous statement is almost 

a Morita equivalence  𝒜 ⋊𝛼 𝐺 –𝒜
𝐺-bimodule. In fact, the only missing condition is that 

the range of  𝒜⋊𝛼𝐺  〈 · , · 〉 need not be dense. The imminent definition was originally 

introduced by 𝑀. Rieffel and has a number of good properties that resemble the classical 

theory of free actions of compact groups as we will soon see below. 

Definition(5.2.2)[304]:( [116]). Let (𝒜, 𝐺, 𝛼) be a 𝐶∗-dynamical system with a unital 𝐶∗-
algebra 𝒜  and a compact group 𝐺 . We call (𝒜, 𝐺, 𝛼)  free if the bimodule from 

Proposition (5.2.1) is a Morita equivalence bimodule, that is, the range of  𝒜⋊𝛼𝐺  〈 · , · 〉 is 

dense in the crossed product 𝒜 ⋊𝛼 𝐺.  
Remark (5.2.3)[304]: We point out that 𝑀. Rieffel used the notion “saturated” instead of 

free, i.a., because of its relation to Fell bundles in the case of compact A belian group 
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actions. Moreover, we recall that [123] provides a notion for free actions of locally 

compact groups which is consistent with Definition (5.2.2) for compact groups. 

     The next result shows that Definition (5.2.2) extends the classical notion of free actions 

of compact groups. 

Theorem (5.2.4)[304]:( [116]). Let 𝑃  be a compact space and 𝐺  𝑎  compact group. 𝐴 

continuous group action 𝜎: 𝑃 × 𝐺 → 𝑃  is free if and only if the corresponding 𝐶∗ -

dynamical system (𝐶(𝑃), 𝐺,  𝛼𝜎) is free in the sense of Definition (5.2.2).  

     Another hint for the strength of Definition (5.2.2) comes from the following 

observation: Let (𝑃, 𝑋, 𝐺, 𝑞, 𝜎)  be a locally trivial principal bundle and (𝜋, 𝑉)  a finite-

dimensional unitary representation of 𝐺. Then it is a well-known fact that the isotypic 

component 𝐶(𝑃)(𝜋)  is finitely generated and projective as a right 𝐶(𝑋) -module (cf. 

[337]). In the 𝐶∗-algebraic setting a similar statement is valid. 

Theorem (5.2.5)[304]: ( [133]). Let (𝒜, 𝐺, 𝛼) be a 𝐶∗-dynamical system with a unital 𝐶∗-
algebra 𝒜 and a compact group 𝐺. Furthermore, let (𝜋, 𝑉) be a finite-dimensional unitary 

representation of  𝐺. If (𝒜, 𝐺, 𝛼) is free, then the corresponding isotypic component 𝐴(𝜋) 
is finitely generated and projective as a right 𝒜𝐺-module. 

     We proceed with introducing two more notions which will turn out to be equivalent 

characterizations of noncommutative freeness. The first notion is a 𝐶∗-algebraic version of 

the purely algebraic Hopf–𝐺alois condition (cf. [319], [170]) and is due to 𝐷. 𝐴. Ellwood. 

Definition (5.2.6)[304]: ( [318]). Let (𝒜, 𝐺, 𝛼)  be a 𝐶∗-dynamical system with a unital 

𝐶∗ -algebra 𝒜  and a compact group 𝐺 . We say that (𝒜, 𝐺, 𝛼)  satisfies the Ellwood 

condition if the map 

Φ:𝒜 ⊗𝑎𝑙g 𝒜 → 𝐶(𝐺,𝒜),Φ(𝑥 ⊗ 𝑦)(𝑔) ∶=  𝑥𝛼𝑔(𝑦) 

has dense range (with respect to the canonical 𝐶∗-norm on 𝐶(𝐺,𝒜)). 
     The second notion is of representation-theoretic nature and makes use of the so-called 

generalized isotypic components of a 𝐶∗-dynamical system.  

Definition (5.2.7)[304]:  Let (𝒜, 𝐺, 𝛼) be a 𝐶∗-dynamical system with a unital 𝐶∗-algebra 

𝒜  and a compact group 𝐺 . Furthermore, let (𝜋, 𝑉)  be a finite-dimensional unitary 

representation of 𝐺. Then the space 

𝐴2(𝜋) ∶= {𝑠 ∈ 𝒜⊗ ℒ(𝑉) | 𝛼𝑔(𝑠) = 𝑠 · 𝜋𝑔   𝑓𝑜𝑟  𝑎𝑙𝑙  𝑔 ∈ 𝐺} 

is called the generalized isotypic component of (𝜋, 𝑉). It is easily checked that the canon-

ical right action of the unital 𝐶∗-algebra 

𝐶(𝜋):= {𝑐 ∈ 𝒜 ⊗ ℒ(𝑉)|𝛼𝑔(𝑐) =  𝜋𝑔
∗ · 𝑐 · 𝜋𝑔     for all     𝑔 ∈ 𝐺} 

turns 𝐴2(𝜋) into a right 𝐶(𝜋)-module.  

     The following statement describes the natural Hilbert bimodule structure of the 

generalized isotypic components. The arguments consist of straightforward computations. 

Proposition (5.2.8)[304]: Let (𝒜, 𝐺, 𝛼)  be a 𝐶∗ -dynamical system with a unital 𝐶∗ -

algebra 𝒜 and a compact group 𝐺. Furthermore, let (𝜋, 𝑉) be a finite-dimensional unitary 

representation of 𝐺 . Then the following definitions make 𝐴2(𝜋)  into a 𝒜𝐺 ⊗ℒ(𝑉) −
𝒞(𝜋)-Hilbert bimodule: 

    (i)   𝑏. 𝑠 ∶= 𝑏𝑠  for 𝑏 ∈ 𝒜𝐺 ⊗ℒ(𝑉) and 𝑠 ∈ 𝐴2(𝜋). 
   (ii)  𝑠. 𝑐 ∶= 𝑠𝑐  for  𝑠 ∈ 𝐴2(𝜋) and 𝑐 ∈ 𝒞(𝜋). 
   (iii) 𝒜𝐺 ⊗ℒ(𝑉) 〈𝑠, 𝑡〉 ∶= 𝑠𝑡∗ for  𝑠, 𝑡 ∈ 𝐴2(𝜋). 
   (iv)  〈𝑠, 𝑡〉𝒞(𝜋): = 𝑠∗𝑡  for   𝑠, 𝑡 ∈ 𝐴2(𝜋). 

     We are now ready to present the second notion which is of major relevance in our 

attempt to classify free 𝐶∗-dynamical systems. 
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Definition(5.2.9)[304]: ([20)]). Let  (𝒜, 𝐺, 𝛼) be a 𝐶∗-dynamical system with a unital 𝐶∗ 
algebra 𝒜 and 𝑎 compact group 𝐺. The 𝐴 𝜐erson spectrum of  (𝒜, 𝐺, 𝛼) is defined as 

 

𝑆𝑝(𝛼) ∶= {[(𝜋, 𝑉)] ∈ �̂�  | span{ 〈𝑠, 𝑡〉𝒞(𝜋) | 𝑠, 𝑡 ∈ 𝐴2(𝜋)} = 𝒞(𝜋) }. 

That is, [(𝜋, 𝑉)] ∈ 𝑆𝑝(𝛼) if and only if the corresponding generalized isotypic component 

𝐴2(𝜋) is a full right 𝒜𝐺 ⊗ℒ(𝑉) − 𝒞(𝜋)-Hilbert bimodule. 

     As the following result finally shows, all the previous notions agree. 

Theorem (5.2.10)[304]: Let (𝒜, 𝐺, 𝛼)  be a 𝐶∗-dynamical system with a unital 𝐶∗-algebra 

𝒜 and 𝑎 compact group 𝐺. Then the following statements are equivalent:  

    (i)   The 𝐶∗-dynamical system (𝒜, 𝐺, 𝛼) is free. 

   (ii)  The 𝐶∗-dynamical system (𝒜, 𝐺, 𝛼) satisfies the Ellwood condition. 

   (iii) The 𝐶∗-dynamical system (𝒜, 𝐺, 𝛼) satisfies  𝑆𝑝(𝛼) = �̂�.  

     The equivalence between (i) and (ii) was proved quite recently in [133], although it has 

been known that these two conditions are closely related to each other (cf. [341] for the 

case of compact Lie group actions). A proof of the equivalence between (i) and  (iii) can 

be found in [81]. 

     We now focus our attention on compact Abelian groups. In fact, given a 𝐶∗-dynamical 

system (𝒜, 𝐺, 𝛼) with a unital 𝐶∗-algebra 𝒜  and a compact A belian group 𝐺 , we first 

note that the definition of the isotypic component 𝐴(𝜋) corresponding to a character 𝜋 ∈

�̂� = Homg𝑟  (𝐺, 𝕋) simplifies to  

𝐴(𝜋) = {𝑎 ∈ 𝒜 |𝛼𝑔(𝑎) =  𝜋𝑔 · 𝑎     for all     𝑔 ∈ 𝐺}. 

Moreover, it is easily seen that 𝐴2(𝜋) = 𝐴(𝜋) and that 𝒞(𝜋)  = 𝒜𝐺. The next statement 

provides equivalent characterizations of a free action in the context of compact A belian 

groups. It directly follows from Theorem (5.2.10) and the previous observations by 

repeatedly using the fact that 𝐴(−𝜋) = 𝐴(𝜋)∗: = {𝑎∗ ∈ 𝒜 | 𝑎 ∈ 𝐴(𝜋)} holds for each  𝜋 ∈
�̂�.  

Corollary (5.2.11)[304]: Let (𝒜, 𝐺, 𝛼)   be a 𝐶∗ -dynamical system with a unital 𝐶∗ -

algebra 𝒜 and 𝑎 compact A belian group 𝐺. Then the following conditions are equivalent:  

(i)  The 𝐶∗-dynamical system (𝒜, 𝐺, 𝛼) is free.  

(ii)  For each  𝜋 ∈ �̂� the space 𝐴(𝜋) is 𝑎 Morita equivalence 𝒜𝐺 −𝒜𝐺-bimodule.  

(ii) For each 𝜋 ∈ �̂�  the multiplication map on 𝒜  induces an isomorphism between 

𝐴(−𝜋) ⊗̂𝒜𝐺 𝐴(𝜋) and  𝒜𝐺 . 
      As we will see soon, Corollary (5.2.11) gives rise to a first invariant for free actions of 

compact A belian groups. For the time being, we continue with some examples to get 

more comfortable with free actions of compact A belian groups. 

Example (5.2.12)[304]: Let 𝜃  be a real skew-symmetric 𝑛 × 𝑛  matrix. The 

noncommutative 𝑛 -torus 𝑇𝜃
𝑛  is the universal unital 𝐶∗ -algebra generated by unitaries 

𝑈1, . . . , 𝑈𝑛 with 

 

𝑈𝑟𝑈𝑠 =  exp(2𝜋𝑖𝜃𝑟𝑠)𝑈𝑠𝑈𝑟   for all    1 ≤  𝑟, 𝑠 ≤ 𝑛. 
It carries a continuous action 𝛼𝜃

𝑛 of the 𝑛-dimensional torus 𝕋𝑛 by algebra automorphisms 

which is on generators defined by 

𝛼𝜃,𝑧
𝑛  (𝑈𝒌) ∶= 𝑧𝒌 · 𝑈𝒌, 

where 𝑧𝒌: = 𝑧1
𝑘1 ··· 𝑧𝑛

𝑘𝑛  and  𝑈𝒌: = 𝑈1
𝑘1 ··· 𝑈𝑛

𝑘𝑛  for  𝑧 = (𝑧1, . . . ,  𝑧𝑛) ∈ 𝕋𝑛  and  𝒌:=
(𝑘1, . . . ,  𝑘𝑛) ∈ ℤ𝑛 . The isotypic component (𝕋𝜃

𝑛)(𝒌) corresponding to the character 𝒌 ∈
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ℤ𝑛 is given by  𝒞 · 𝑈𝒌. In particular, each isotypic component contains invertible elements 

from which we conclude that the 𝐶∗-dynamical system (𝕋𝜃
𝑛, 𝕋𝑛, 𝛼𝜃

𝑛) is free. 

Example (5.2.13)[304]: Let 𝐻 be the discrete, 3-dimensional Heisenberg group and let 𝐶∗ 
(𝐻) denote its group 𝐶∗-algebra. Then 𝐶∗(𝐻) is the universal 𝐶∗-algebra generated by 

unitaries 𝑈, 𝑉 and 𝑊 satisfying 

𝑈𝑊 = 𝑊𝑈,𝑉𝑊 = 𝑊𝑉      and    𝑈𝑉 = 𝑊𝑉𝑈. 
It carries a continuous action αof the 2-dimensional torus 𝕋2 by algebra automorphisms 

which is on generators defined by 

 

𝛼(𝑧,𝑤)(𝑈
𝒌𝑉𝑙 𝑊𝑚) ∶= 𝑧𝒌𝑤𝑙 · 𝑈𝒌𝑉𝑙 𝑊𝑚, 

where (𝑧, 𝑤) ∈ 𝕋 and 𝑘, 𝑙, 𝑚 ∈ ℤ. The corresponding fixed point algebra 𝔅 is the center of 

𝐶∗(𝐻) which is equal to the group 𝐶∗-algebra 𝐶∗(𝑍) of the center 𝑍 ≅ ℤ of H. Moreover, 

the isotypic component 𝐶∗(𝐻)(𝑘,𝑙) corresponding to the character (𝑘, 𝑙) ∈ ℤ2 is given by  

𝔅 · 𝑈𝑘𝑉𝑙. In particular, each isotypic component 𝐶∗(𝐻)(𝑘,𝑙) contains invertible elements 

from which we conclude that the C∗-dynamical system (𝐶∗(𝐻),  𝕋2, 𝛼) is free. We point 

out that 𝐶∗(𝐻) serves as a “universal” noncommutative principal  𝕋2-bundle in [293] and 

that its 𝐾-groups are isomorphic to  ℤ3.  

Example (5.2.14)[304]: For 𝑞 ∈ [−1, 1] consider the 𝐶∗-algebra 𝑆𝑈𝑞(2) from [278]. We 

recall that it is the universal 𝐶∗-algebra generated by two elements 𝑎 and csubject to the 

five relations 

 

𝑎∗𝑎 + 𝑐𝑐∗ = 1, 𝑎𝑎∗ + 𝑞2𝑐𝑐∗ = 1, 𝑐𝑐∗ = 𝑐∗𝑐, 𝑎𝑐 =  𝑞𝑐𝑎  and 𝑎𝑐∗ =  𝑞𝑐∗𝑎. 
It carries a continuous action 𝛼 of the one-dimensional torus 𝕋 by algebra automorphisms, 

which is on the generators defined by 

 

𝛼𝑧(𝑎) ∶= 𝑧 · 𝑎    and    𝛼𝑧(𝑐) ∶=  𝑧 · 𝑐, 𝑧 ∈ 𝕋. 
The fixed point algebra of this action is the quantum 2 -sphere 𝑆𝑞

2  and we call the 

corresponding 𝐶∗-dynamical system (𝑆𝑈𝑞(2), 𝕋, 𝛼 ) the quantum Hopf fibration. It is free 

according to [335]. In fact, the author shows that if  𝐸 is a locally finite graph with no 

sources and no sinks, then the natural gauge action on the graph 𝐶∗-algebra 𝐶∗(𝐸) is free . 

Remark (5.2.15)[304]: We recall that Example (5.2.12) and Example (5.2.13) are special 

cases of so-called trivial noncommutative principal bundles as discussed in [337], [338], 

[340]. In fact, it is not hard to see that each trivial noncommutative principal bundle is free 

(cf. Remark (5.2.59) and [297]). 

Remark (5.2.16)[304]: Let 𝕜 be the algebra of compact operators on some separable 

Hilbert space. The 𝐶∗-algebra 𝑆𝑈𝑞(2) is described in [316] as an extension of 𝐶(𝕋) by 

𝐶(𝕋)⊗ 𝕜, i.e., by a short exact sequence  

0 → 𝐶(𝕋)⊗𝕂 → 𝑆𝑈𝑞(2) → 𝐶(𝕋) → 0                                            (19) 
of 𝐶∗ -algebras. If we consider 𝐶(𝕋) endowed with the canonical T-action induced by 

right-translation, then a few moments thought shows that the sequence (19) is in fact 𝕋-

equivariant. In particular, it induces the following short exact sequence of 𝐶∗-algebras:  

 

0 → (𝐶(𝕋)⊗𝕂) ⋊ 𝕋 → 𝑆𝑈𝑞(2) ⋊𝛼 𝕋 → 𝐶(𝕋) ⋊ 𝕋 → 0.                               (20) 
Since 

(𝐶(𝕋)⊗𝕂) ⋊ 𝕋 ≅ (𝐶(𝕋) ⋊ 𝕋)⊗𝕂 ≅ 𝕂⊗𝕂 ≅ 𝕂                             
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and 𝐶(𝕋) ⋊ 𝕋 ≅ 𝕂 by the well-known Stone–von Neumann Theorem, we conclude from 

[333] that the crossed product 𝑆𝑈𝑞(2) ⋊𝛼 𝕋 is stable. Moreover, the fact that the 𝐶∗ -

dynamical system (𝑆𝑈𝑞(2), 𝕋, 𝛼) is free implies that the crossed product 𝑆𝑈𝑞(2) ⋊ 𝕋 is 

Morita equivalent to the corresponding fixed-point algebra 𝑆𝑞
2 and thus they are also stably 

isomorphic by a famous result of Brown, Green and Rieffel (cf. [311] or [332]), i.e., 

𝑆𝑈𝑞(2) ⋊ 𝕋 ≅ 𝑆𝑞
2 ⊗𝕂. The previous result affirms a question of the second author in the 

context of a notion of freeness which is related to Green’s Theorem (cf. [82] and [293]).  

We provide some methods to construct new free actions from given ones. As an 

application, we present a one-parameter family of free 𝑆𝑈(2)-actions which are related to 

the Connes–Landi spheres.  

Proposition (5.2.17)[304]: Let (𝒜, 𝐺, 𝛼)  be a 𝐶∗ -dynamical system with a unital 𝐶∗ -

algebra  𝒜 and a compact group 𝐺. If (𝒜, 𝐺, 𝛼)  is free and Ha closed subgroup of 𝐺, then 

also the restricted 𝐶∗-dynamical system (𝒜,𝐻, 𝛼|𝐻) is free.  

Proof: Since (𝒜, 𝐺, 𝛼) satisfies the Ellwood condition, the surjectivity of the restriction 

map 𝐶(𝐺,𝒜) → 𝐶(𝐻,𝒜), 𝑓 ↦ 𝑓|𝐻 implies that the map 

 

Φ: 𝒜 ⊗𝑎𝑙g 𝒜 → 𝐶(𝐻,𝒜), Φ(𝑥 ⊗ 𝑦)(ℎ) ∶= 𝑥𝛼ℎ(𝑦) 

has dense range. That is, (𝒜,𝐻, 𝛼|𝐻)  also satisfies the Ellwood condition.  

Proposition (5.2.18)[304]: Let (𝒜, 𝐺, 𝛼)   be a 𝐶∗-dynamical system with a unital 𝐶∗-

algebra 𝒜 and a compact group G. If (𝒜, 𝐺, 𝛼)    is free and Na closed normal subgroup 

of 𝐺, then also the induced 𝐶∗-dynamical system (𝒜𝑁 , 𝐺/𝑁, 𝛼|𝐺/𝑁 is free.  

Proof: Since (𝒜, 𝐺, 𝛼) satisfies the Ellwood condition, the map 

 

Φ: 𝒜 ⊗𝑎𝑙g 𝒜 → 𝐶(𝐻,𝒜), Φ(𝑥 ⊗ 𝑦)(𝑔) ∶= 𝑥𝛼𝑔(𝑦) 

has dense range. Moreover, the 𝐶∗ -algebra 𝐶(𝐺/𝑁,𝒜𝑁)  is naturally identified with 

functions in 𝐶(𝐺,𝒜)  satisfying 𝑓(𝑔) = 𝛼𝑛1(𝑓(𝑔𝑛2)) for all 𝑔 ∈ 𝐺  and  𝑛1, 𝑛2 ∈ 𝑁 . In 

other words, 𝐶(𝐺/𝑁,𝒜𝑁)  is the fixed point algebra of the action 𝛼 ⊗ rt of  𝑁 ×𝑁 on 

𝐶(𝐺)⊗𝒜 = 𝐶(𝐺,𝒜) , where  rt: 𝑁 × 𝐶(𝐺) → 𝐶(𝐺), rt(𝑛, 𝑓)(𝑔) ∶= 𝑓(𝑔𝑛)  denotes the 

right-translation action by 𝑁 . Let 𝑃𝑁:𝒜 → 𝒜  and  𝑃𝑁×𝑁: 𝐶(𝐺,𝒜) → 𝐶(𝐺,𝒜)  be the 

conditional expectations for the actions 𝛼|𝑁 and  𝛼 ⊗ rt, respectively. Then we obtain for 

arbitrary 𝑥, 𝑦 ∈ 𝒜 

Φ(𝑃𝑁(𝑥)⊗ 𝑃𝑁(𝑦)) = ∫ 𝛼𝑛1(𝑥)

2

𝑁×𝑁

𝛼𝑔𝑛2(𝑦) 𝑑𝑛1𝑑𝑛2

= ∫ 𝛼𝑛1(𝑥)

2

𝑁×𝑁

𝛼𝑛2𝑔(𝑦) 𝑑𝑛1𝑑𝑛2                      

 

                     = ∫ 𝛼𝑛1 (𝑥𝛼𝑛2𝑔(𝑦))

2

𝑁×𝑁

 𝑑𝑛1𝑑𝑛2 = ∫ 𝛼𝑛1

2

𝑁×𝑁

(𝑥𝛼𝑔𝑛2(𝑦)) 𝑑𝑛1𝑑𝑛2 

 

= 𝑃𝑁×𝑁(Φ(𝑥 ⊗ y)).                                                          
It follows that the restricted map 

Φ|𝒜𝑁 ⊗𝑎𝑙g 𝒜𝑁∶ 𝒜𝑁 ⊗𝑎𝑙g 𝒜
𝑁 → 𝐶(𝐺, 𝐴), Φ(𝑥 ⊗ 𝑦)(𝑔) ∶=  𝑥𝛼𝑔(𝑦) 
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has dense range in the 𝐶∗ -subalgebra 𝐶(𝐺/𝑁,𝒜𝑁) . That is, (𝒜𝑁 , 𝐺/𝑁, 𝛼|𝐺/𝑁)  also 

satisfies the Ellwood condition. 

Proposition (5.2.19)[304]: Let (𝒜, 𝐺, 𝛼)  and (𝐶,𝐻, 𝛾)  be 𝐶∗ -dynamical systems with 

unital 𝐶∗-algebras 𝒜,𝐶 and compact groups 𝐺,𝐻. If (𝒜, 𝐺, 𝛼) and (𝐶,𝐻, 𝛾) are free, then 

also their tensor product (𝒜 ⊗ 𝐶,𝐺 × 𝐻, 𝛼 ⊗ 𝛾) is free.  

Proof: We first note that the map 

 

Φ:𝒜 ⊗𝑎𝑙g 𝐶 ⊗𝑎𝑙g  𝒜 ⊗𝑎𝑙g 𝐶 → 𝐶(𝐺 × 𝐻,𝒜 ⊗ 𝐶), 

Φ: (𝑥 ⊗ 𝑦⊗ 𝑢⊗ 𝜐)(ℎ) ≔ 𝑥𝛼ℎ(𝑦) ⊗ 𝑢 𝛾ℎ(𝜐) 
is, up to a permutation of the tensor factors, an amplification of the corresponding maps 

induced by (𝒜, 𝐺, 𝛼)   and (𝐶,𝐻, 𝛾) . Therefore, (𝒜 ⊗ 𝐶,𝐺 × 𝐻, 𝛼 ⊗ 𝛾)  inherits the 

Ellwood condition from (𝒜, 𝐺, 𝛼)  and (𝐶,𝐻, 𝛾). 
Remark (5.2.20)[304]: Suppose that (𝒜, 𝐺, 𝛼) is a free 𝐶∗-dynamical system with a unital 

𝐶∗-algebra 𝒜 and a compact group 𝐺. Furthermore, let 𝐶 be an arbitrary unital 𝐶∗-algebra. 

Then Proposition (5.2.19) applied to the trivial group 𝐻 implies that the 𝐶∗-dynamical 

system (𝒜 ⊗ 𝐶,𝐺, 𝛼 ⊗ id𝐶)  is free. More generally, if (𝐶, 𝐺, 𝛾)  is an arbitrary 𝐶∗ -

dynamical system, it is not hard to check that the 𝐶∗-dynamical system (𝒜 ⊗ 𝐶,𝐺, 𝛼 ⊗
𝛾)  satisfies the Ellwood condition, i.e., (𝒜 ⊗ 𝐶,𝐺, 𝛼 ⊗ 𝛾)  is free. This observation 

corresponds in the classical setting to the situation of endowing the 𝐶artesian  product of a 

free and compact 𝐺-space 𝑋 and any compact 𝐺-space 𝑌 with the free diagonal action of 

𝐺.  

Theorem(5.2.21)[304]: Let (𝒜, 𝐺, 𝛼)  and (𝐶,𝐻, 𝛾)  be free 𝐶∗ -dynamical systems with 

unital 𝐶∗ -algebras 𝒜,𝐶  and compact groups 𝐺,𝐻 . Furthermore, let (𝒜,𝐻, 𝛽)  be any 

another 𝐶∗-dynamical system such that the actions 𝛼 and 𝛽 commute. Then the following 

assertions hold: 

    (i) The 𝐶∗-dynamical system (𝒜 ⊗ 𝐶), 𝐺 × 𝐻, (𝛼 ∘ 𝛽)⊗ 𝛾 is free. 

   (ii) The 𝐶∗-dynamical system  (𝒜 ⊗ 𝐶)𝐻, 𝐺, 𝛼 ⊗ id𝐶 is free, where the fixed space               

         (𝒜 ⊗ 𝐶)𝐻 is taken with respect to the tensor product action 𝛽 ⊗ 𝛾 of 𝐻. 

Proof: (i) We first note that (𝒜, 𝐺, 𝛼) and (𝐶, 𝐻, 𝛾) both satisfy the Ellwood condition 

from which we conclude that the maps 

 

Φ1:𝒜 ⊗𝑎𝑙g 𝒜⊗𝑎𝑙g 𝐶 → 𝐶(𝐺,𝒜 ⊗ 𝐶),      Φ1(𝑥1 ⊗𝑥2 ⊗𝑦)(𝑔) ∶= 𝑥1𝛼𝑔(𝑥2) ⊗ 𝑦 

and  Φ2: (𝒜 ⊗𝑎𝑙g 𝐶)⊗𝑎𝑙g (𝒜 ⊗𝑎𝑙g 𝐶) → 𝐶(𝐻,𝒜 ⊗𝒜⊗𝐶) given by 

Φ2(𝑥1 ⊗𝑦1) ⊗ (𝑥2 ⊗𝑦2)(ℎ ∶= 𝑥1 ⊗𝛽ℎ(𝑥2) ⊗ 𝑦1 𝛾ℎ(𝑦2) 
have dense range. It follows, identifying 𝐶(𝐻, 𝐶(𝐺,𝒜 ⊗ 𝐶)) with 𝐶(𝐺 × 𝐻,𝒜 ⊗ 𝐶), that 

also their amplified composition 

Φ:= (id𝐶(𝐻) ⊗Φ1) ∘ Φ2: (𝒜 ⊗𝑎𝑙g 𝐶)⊗𝑎𝑙g (𝒜 ⊗𝑎𝑙g 𝐶) → 𝐶(𝐺 × 𝐻,𝒜 ⊗ 𝐶) 

given by 

  

Φ:= ((𝑥1 ⊗𝑦1) ⊗ (𝑥2 ⊗𝑦2))(𝑔, ℎ) = 𝑥1(𝛼𝑔𝛽ℎ)(𝑥2)⊗ 𝑦1 𝛾ℎ(𝑦2) 

has dense range. That is, (𝒜 ⊗ 𝐶), 𝐺 × 𝐻, (𝛼 ∘ 𝛽)⊗ 𝛾 satisfies the Ellwood condition. (ii) 

To verify the second assertion we simply apply Proposition (5.2.18) to the 𝐶∗-dynamical 

system in part (i) and the normal subgroup {𝕝𝑮}  × 𝐻 of 𝐺 × 𝐻. 
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Example(5.2.22)[304]: The 𝐶 onnes–Landi spheres 𝑆𝜃
𝑛  are extensions of the 

noncommutative tori 𝕋𝜃
𝑛 (cf. [295]). We are in particularly interested in the case 𝑛 = 7. In 

this case there is a continuous action of the 2-torus 𝕋2 on the 7-sphere 𝕊7 ⊆ ℂ4 given by 

 

𝜎: 𝕊7 × 𝕋2 → 𝕊7, ((𝑧1, 𝑧2, 𝑧3, 𝑧4), (𝑡1,  𝑡2)) ↦ (𝑡1𝑧1, 𝑡1𝑧2, 𝑡2𝑧3, 𝑡2𝑧4). 
Let (𝐶(𝕊7), 𝕋2,  𝛼𝜎  be the corresponding 𝐶∗ -dynamical system. Furthermore, let 

(𝕋𝜃
2 , 𝕋2, 𝛼𝜃

2)  be the free 𝐶∗ -dynamical system associated to the gauge action on the 

noncommutative 2-torus 𝕋𝜃
2  (see Example (5.2.12) below). The 𝐶onnes–Landi sphere 𝑆𝜃

7 

is defined as the fixed point algebra of the tensor product action 𝛼𝜎 ⊗𝛼𝜃
2  of  𝕋2  on 

𝐶(𝕊7, 𝕋𝜃
2)  = 𝐶(𝕊7) ⊗ 𝕋𝜃

2 , i.e., 

 

𝕊𝜃
7 = 𝐶(𝕊7, 𝕊𝜃

2)
𝕋2

. 

Our intention is to use Theorem (5.2.21)(ii) to endow 𝕊𝜃
7  with a free 𝑆𝑈(2)-action. For this 

purpose, we consider the free and continuous 𝑆𝑈(2)-action on the 7-sphere 𝕊7given by  

 

𝜇 ∶ 𝕊7 × 𝑆𝑈(2) → 𝕊7, ((𝑧1, 𝑧2, 𝑧3, 𝑧4),𝑀)) ↦ (𝑧1, 𝑧2, 𝑧3, 𝑧4) (
𝑀 0
0 𝑀

). 

It follows from Theorem3.4that the induced 𝐶∗-dynamical system (𝐶(𝕊7), 𝑆𝑈(2), 𝛼𝜇) is 

free. Moreover, it is easily verified that the actions 𝛼𝜇  and 𝛼𝜎  commute. Therefore, 

Theorem  (5.2.21)(ii) implies that the 𝐶∗-dynamical system 𝕊𝜃
7 , 𝑆𝑈(2), 𝛼𝜇 ⊗ id𝕋𝜃

2  is free. 

We will specify the data on which our classification of free actions of compact a 

belian groups is based (see Definition (5.2.27)) and, moreover, we will show that it is 

complete in the sense that every classifying data indeed can be obtained from a free 𝐶∗-
dynamical system. 

     Corollary (5.2.11) suggests the relevance of Morita equivalence 𝔅−𝔅 bimodules for 

the classification of free actions with a given fixed point algebra 𝔅 and a given compact A 

belian group 𝐺 . These objects have a natural interpretation as noncommutative line 

bundles “over” 𝔅. In particular, just like in the classical theory of line bundles, the set of 

their equivalence classes carry a natural group structure. 

Definition (5.2.23)[304]: Let 𝔅 be a 𝐶∗-algebra. Then the set of equivalence classes of 

Morita equivalence 𝔅−𝔅 -bimodules forms an A belian group with respect to the internal 

tensor product of Hilbert 𝔅−𝔅 -bimodules. This group is called the Picard group of 𝔅 

and it is denoted by Pic(𝔅). 

Remark (5.2.24)[304]:  For a unital 𝐶∗-algebra 𝔅, the group of outer automorphisms Out 

(𝔅) ∶= Aut(𝔅)/ Inn(𝔅) is always a subgroup of  Pic(𝔅). More precisely, for any ∗ -

automorphism 𝛼  of  𝔅 we may define an element of the Picard group Pic(𝔅) by the 

following Morita equivalence 𝔅−𝔅 -bimodule. Let 𝑀𝛼 be the vector space 𝔅 endowed 

with the canonical left Hilbert 𝔅-module structure. Moreover, let the right action be given 

by 𝑚 · 𝑏 ∶= 𝑚 𝛼(𝑏) for 𝑚 ∈ 𝑀𝛼 and 𝑏 ∈ 𝔅, and let the right 𝔅-valued inner product be 

given by 𝑚1, 𝑚2 𝔅:= 𝛼−1(𝑚1
∗𝑚2) for 𝑚1, 𝑚2 ∈ 𝑀𝛼. It is straightforwardly checked that 

𝑀𝛼  is a Morita equivalence 𝔅−𝔅  -bimodule and that, for 𝛼, 𝛽 ∈ Aut(𝔅),  we have  

𝑀𝛼 ⊗̂𝔅 𝑀𝛽 ≃ 𝑀𝛼∘𝛽 . A few moments thought also shows that  𝑀𝛼 ≃ 𝔅 iff 𝛼  is inner. 

Summarizing we have the exact sequence of groups   

1 ⟶ Inn(𝔅) ⟶ Aut(𝔅) ⟶ Pic(𝔅). 
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Example (5.2.25)[304]: 

  (i) For a finite-dimensional 𝐶∗-algebra 𝔅, the Picard group Pic(𝔅) is isomorphic to the 

group of permutations of the spectrum of 𝔅 (see [311]).  

  (ii) For some compact space 𝑋, the Picard group Pic 𝐶(𝑋) is isomorphic to the semidirect 

product Pic(𝑋) ⋊ Homeo(𝑋) , where Pic(𝑋) denotes the set of equivalence classes of 

complex line bundles over 𝑋  and Homeo(𝑋) the group of homeomorphisms of 𝑋 (see 

[311], [312]). 

  (iii) Let 0 < 𝜃 < 1  be irrational and  𝕋𝜃
2  the corresponding quantum 2 -torus. Then 

Pic(𝕋𝜃
2) is isomorphic to Out (𝕋𝜃

2)  in case 𝜃 is quadratic and isomorphic to Out (𝕋𝜃
2) ⋊ ℤ 

otherwise (see [324]).  

     The next statement is a first step towards finding invariants, i.e., classification data, for 

free 𝐶∗-dynamical systems with a prescribed fixed point algebra. 

Proposition (5.2.26)[304]: Each free 𝐶∗ -dynamical system (𝒜, 𝐺, 𝛼) with unital 𝐶∗ -

algebra 𝒜 , compact Abelian group 𝐺  and fixed point algebra 𝔅:= 𝒜𝐺  gives rise to a 

group homomorphism 𝜑𝒜: �̂� → Pic(𝔅) given by 𝜑𝒜(𝜋) ∶= [𝐴(𝜋)].  
Proof: To verify the assertion we choose 𝜋, 𝜌 ∈ �̂� and use Corollary (5.2.11) to compute 

 

𝜑𝒜(𝜋 + 𝜌) = [𝐴(𝜋 + 𝜌)] = [𝐴(𝜋) ⊗̂𝒜 𝐴(𝜌)] = [𝐴(𝜋)][𝐴(𝜌)] = 𝜑𝒜(𝜋)𝜑𝒜(𝜌). 
This shows that the map 𝜑𝒜  is a group homomorphism. 

The group homomorphism 𝜑 ∶ 𝐺 → Pic(𝔅)  in Proposition (5.2.26) is not enough to 

uniquely determine the 𝐶∗ -dynamical system up to equivalence. Loosely speaking it 

determines the linear structure but not the multiplication of 𝒜. In order to see what is 

missing, we choose for each 𝜋 ∈ �̂� a Morita equivalence bimodule 𝑀𝜋 in the class 𝜑(𝜋). 
The group homomorphism property of 𝜑 guarantees that for each  𝜋, 𝜌 ∈ �̂�  there exist 

isomorphisms of  Morita equivalence 𝔅−𝔅-bimodules   

Ψ𝜋,𝜌: 𝑀𝜋 ⊗̂𝔅 𝑀𝜌 → 𝑀𝜋+𝜌.  

In general 𝜑 does not impose any relation among the maps Ψ𝜋,𝜌. But, comingfrom a free 

𝐶∗-dynamical system (𝒜, 𝐺, 𝛼) with unital 𝐶∗-algebra 𝒜, compact A belian group 𝐺 and 

fixed point algebra 𝔅:= 𝒜𝐺, we may choose canonically 

 

𝑀𝜋: = 𝐴(𝜋) and  Ψ𝜋,𝜌(𝑥 ⊗𝔅 𝑦) ∶= 𝑥𝑦 

for each 𝜋, 𝜌 ∈ �̂�. In this case, the associativity of the multiplication in 𝒜 implies 

 

Ψ𝜋+𝜌,𝜎 ∘ (Ψ𝜋,𝜌 ⊗𝔅 id𝜎) = Ψ𝜋,𝜌+𝜎 ∘ (id𝜋 ⊗𝔅 Ψ𝜌,𝜎).                                        (21) 

This suggests to take the following notion of factor system as a classifying object. 

Definition (5.2.27)[304]: Let 𝔅 be a unital 𝐶∗-algebra, 𝐺 be a compact A belian group, 

and let 𝜑: 𝐺 → Pic(𝔅) be a group homomorphism. Furthermore, let (𝑀𝜋 , Ψ𝜋,𝜌)𝜋,𝜌∈�̂� be a 

family where 

 (i) for each 𝜋 ∈ 𝐺 we have a Morita equivalence 𝔅−𝔅-bimodule 𝑀𝜋 in the class 𝜑(𝜋). 

(ii) for each 𝜋, 𝜌 ∈ 𝐺  we have an isomorphism Ψ𝜋,𝜌: 𝑀𝜋 ⊗̂𝔅 𝑀𝜌 → 𝑀𝜋+𝜌  of Morita 

equivalences.  

Then (𝑀𝜋, Ψ𝜋,𝜌)𝜋,𝜌∈�̂� is called a factor system (for the map 𝜑) if it satisfies equation (21) 

for all 𝜋, 𝜌 ∈ �̂� and the normalization condition (𝑀0, Ψ0,0) = (𝔅, id𝔅). 
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Remark (5.2.28)[304]: 

  (i) Up to the canonical isomorphism 𝑀𝜋 ⊗̂𝔅 𝔅 ≃ 𝑀𝜋 ≃ 𝔅 ⊗̂𝔅 𝑀𝜋 , the normalization 

condition implies for all 𝜋 ∈ �̂� 

 

Ψ𝜋,0 = id𝜋 = Ψ𝜋,0    and      Ψ𝜋,−𝜋 ⊗𝔅 id𝜋 = id𝜋 ⊗𝔅 Ψ𝜋,−𝜋 . 

  (ii) The group homomorphism 𝜑: �̂� → Pic(𝔅)  can obviously be recovered from the 

factor system. 

  (iii) Each free 𝐶∗-dynamical system (𝒜, 𝐺, 𝛼) with unital 𝐶∗-algebra 𝒜 and compact A 

belian group 𝐺  gives rise to a factor system (𝐴(𝜋),𝑚𝜋,𝜌)𝜋,𝜌∈�̂�  for the group 

homomorphism 𝜑𝒜  (cf. Proposition (5.2.26)) with 

 

𝑚𝜋,𝜌: 𝐴(𝜋) ⊗̂𝔅 𝐴(𝜌) → 𝐴(𝜋 + 𝜌), 𝑥 ⊗̂𝔅  𝑦 ↦  𝑥𝑦. 

  (iv) Given a group homomorphism 𝜑: �̂� → Pic(𝔅), the existence of a factor system 

imposes a non-trivial cohomological condition on 𝜑. we will characterize this condition 

and  provide cohomological ways to construct factor systems without a 𝐶∗ -dynamical 

system at hand.  

We will show how to construct a corresponding 𝐶∗-dynamical system from a given 

factor system. This is done by reverse engineering an adaption of the 𝐺𝑁𝑆-representation 

for 𝐶∗-dynamical systems with arbitrary fixed point algebra. For this reason, we briefly 

review the construction. Readers familiar with the material may skip.  

     Let (𝒜, 𝐺, 𝛼)  be a 𝐶∗ -dynamical system and 𝑃0:𝒜 → 𝒜  the conditional expectation 

onto the fixed point algebra  𝔅:= 𝒜𝐺. Then 𝒜 can be equipped with the structure of a 

right pre-Hilbert 𝔅−𝔅-bimodule with respect to the usual multiplication and the inner 

product given by 〈𝑥, 𝑦〉𝔅 ∶= 𝑃0(𝑥
∗𝑦) for 𝑥, 𝑦 ∈ 𝒜. Since 𝑃0 is faithful, this inner product 

on 𝒜 is definite and we may take the completion of 𝒜 with respect to the norm ‖𝑥‖2: =
‖𝑃0(𝑥

∗𝑥)‖1/2. This provides a right Hilbert 𝔅−𝔅-bimodule 𝐿2(𝒜) with 𝒜 as a dense 

subset (cf .Proposition (5.2.1)). For each 𝜋 ∈  �̂�  the projection 𝑃𝜋  onto the isotypic 

component 𝐴(𝜋) can be continuously extended to a self-adjoint projection on 𝐿2(𝒜). In 

particular, the sets 𝐴(𝜋)  are closed, pairwise orthogonal right Hilbert 𝔅−𝔅 -

subbimodules of  𝐿2(𝒜).  and  𝐿2(𝒜).  can be decomposed into  

𝐿2(𝒜) = ⊕
𝜋∈�̂�

𝐴(𝜋)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅‖⋅‖2   

as right Hilbert 𝔅−𝔅-bimodules. For each element 𝑎 ∈ 𝒜 the left multiplication operator 

𝜆𝑎:𝒜 → 𝒜, 𝑥 ↦ 𝑎𝑥 , then extends to an adjointable operator on 𝐿2(𝒜) . The arising 

representation 

𝜆 ∶ 𝒜 → ℒ (𝐿2(𝒜)), 𝑎 ↦ 𝜆𝑎 

is called the left regular representation of 𝒜 . For each 𝑔 ∈ 𝐺  the automorphism 𝛼𝑔 

extends from 𝒜  to an automorphism 𝑈𝑔: 𝐿
2(𝒜) → 𝐿2(𝒜)  of right Hilbert 𝔅  −  𝔅 -

bimodules and the strongly continuous group (𝑈𝑔)𝑔∈𝐺 implements αgin the sense that  

 

𝛼𝑔(𝜆𝑎)  = 𝑈𝑔 𝜆𝑎𝑈𝑔
+ 

for all 𝑎 ∈ 𝒜. The vector 𝟙𝔅 = 𝟙𝒜 ∈ 𝐿2(𝒜) is obviously cyclic and separating for this 

representation. In particular, the left regular representation is faithful and we may identify 

𝒜 with the subalgebra  𝜆(𝒜). Since the sum of the isotypic components is dense in 𝒜, the 

𝐶∗-algebra 𝜆(𝒜).  is in fact generated by the operators 𝜆𝑎 with 𝑎 ∈ 𝐴(𝜋), 𝜋 ∈ �̂�. For such 
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elements 𝑎 in some fixed  isotypic component 𝐴(𝜋), 𝜋 ∈ �̂� , the operator 𝜆𝑎  maps each 

subset 𝐴(𝜌) ⊆ 𝐿2(𝒜), 𝜌 ∈ �̂� , into 𝐴(𝜋 + 𝜌)  and therefore it is determined by the 

multiplication map 

 

𝑚𝜋,𝜌 ∶ 𝐴(𝜋)⊗𝑎𝑙g 𝐴(𝜌) → 𝐴(𝜋 + 𝜌),𝑚𝜋,𝜌(𝑥, 𝑦) ∶=  𝑥𝑦 = 𝜆𝑥(𝑦).   

It is easily verified that 𝑚𝜋,𝜌 factors to an isometry of the right Hilbert 𝔅− 𝔅-bimodules 

𝐴(𝜋) ⊗̂𝔅 𝐴(𝜌) and 𝐴(𝜋 + 𝜌). 
We consider a fixed unital 𝐶∗-algebra 𝔅, a compact A belian group 𝐺, and a group 

homomorphism 𝜑 ∶ �̂� → Pic(𝔅). We choose for each 𝜋 ∈ �̂� a Morita equivalence 𝔅 −𝔅-

bimodule Mπin the isomorphism class  𝜑(𝜋) ∈ Pic(𝔅) , where for  𝜋 = 0  we choose 

𝑀0: = 𝔅. Since 𝜑 is a group homomorphism, the Morita equivalence 𝔅 −𝔅-bimodules 

𝑀𝜋 ⊗̂𝔅 𝑀𝜌  and 𝑀𝜋+𝜌  must be isomorphic for all  𝜋, 𝜌 ∈ �̂�  with respect to some 

isomorphism 

 

Ψ𝜋,𝜌 ∶ 𝑀𝜋 ⊗̂𝔅 𝑀𝜌 → 𝑀𝜋+𝜌 

of Morita equivalence 𝔅−𝔅-bimodules. We fix a choice of Ψ𝜋,𝜌 for each 𝜋, 𝜌 ∈ �̂� where 

Ψ0,0: = id𝔅. This provides a bilinearmap 

 

𝑚𝜋,𝜌:𝑀𝜋 ×𝑀𝜌 → 𝑀𝜋+𝜌, 𝑚𝜋,𝜌(𝑥, 𝑦) ∶= Ψ𝜋,𝜌(𝑥 ⊗𝔅 𝑦). 

The family of all such maps (𝑚𝜋,𝜌)𝜋,𝜌∈�̂�  now gives rise to a multiplication map 𝑚 on the 

algebraic vector space 

𝐴 =⊕
𝜋∈�̂�

𝑀𝜋 . 

Proposition (5.2.29)[304]: The following statements are equivalent: 

   (i) 𝑚 is associative, i.e., 𝐴 is an algebra. 

  (ii) (𝑀𝜋 , Ψ𝜋,𝜌)𝜋,𝜌∈�̂� is a factor system. 

Proof: For given 𝜋, 𝜌, 𝜎 ∈ �̂� we explicitly compute for all  𝑥 ∈ 𝑀𝜋 𝑦 ∈ 𝑀𝜌 𝑧 ∈ 𝑀𝜎: 

 

𝑚 (𝑥,𝑚(𝑦, 𝑧)) = 𝑚 (𝑥, Ψ𝜌,𝜎(𝑦 ⊗𝔅 𝑧)) = Ψ𝜋,𝜌+𝜎  (𝑥,Ψ𝜌,𝜎(𝑦 ⊗𝔅 𝑧)) 

  

𝑚(𝑚(𝑥, 𝑦), 𝑧) = 𝑚 (Ψ𝜋,𝜌(𝑥 ⊗𝔅 𝑦), 𝑧) = Ψ𝜋,𝜌+𝜎  (Ψ𝜋,𝜌(𝑥 ⊗𝔅 𝑦), 𝑧). 

Therefore, 𝑚 is associative if and only if equation (21) holds for all   𝜋, 𝜌, 𝜎 ∈ �̂�. 

     We continue with a fixed factor system (𝑀𝜋 , Ψ𝜋,𝜌)𝜋,𝜌∈�̂� for the map 𝜑 and we write 𝐴 

for the associated algebra. Our goal is to turn 𝐴 into a ∗-algebra and right pre-Hilbert 𝔅−
𝔅-bimodule. For this purpose we involve the right Hilbert 𝔅−𝔅-bimodule structure of 

each direct summands 𝑀𝜋 of  𝐴, i.e., the right 𝔅-valued inner products 〈·,·〉𝜋 on 𝑀𝜋. 

Lemma (5.2.30)[304]: The map 〈·,·〉 ∶ 𝐴 × 𝐴 → 𝔅 defined for  𝑥 =⊕𝜋 𝑥𝜋 , 𝑦 =⊕𝜋 𝑦𝜋 ∈ 𝐴 

by 
  

〈𝑥, 𝑦〉𝔅: = ∑〈𝑥𝜋 , 𝑦𝜋〉𝜋
2

𝜋∈�̂�

̂

  

turns 𝐴 into a right pre-Hilbert 𝔅−𝔅 -bimodule and satisfies 
  

〈𝑚(𝑏, 𝑥),𝑚(𝑏, 𝑥)〉𝔅 ≤ ‖𝑏‖2  〈𝑥, 𝑦〉𝔅                                                        (22) 
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for all x ∈ A and 𝑏 ∈ 𝔅. 

Proof: The necessary computations are straightforward and thus left to the reader. We 

only point out that the inequality (22) is a consequence of the corresponding inequalities 

satisfied by the right 𝔅 -valued inner products   〈·,·〉𝜋. 

Lemma (5.2.31)[304]: For each 𝑦 ∈ 𝑀𝜋 and every 𝜌 ∈ �̂� the left multiplication operator 

 

ℓ𝑦 ∶  𝑀𝜌 → 𝑀𝜋 ⊗𝔅 𝑀𝜌, 𝑥 ↦ 𝑦⊗𝔅 𝑥 

is 𝑎djointable and hence bounded with 𝑎djoint given by 

 

ℓ𝑦
+ ∶ 𝑀𝜋 ⊗̂𝔅 𝑀𝜌 → 𝑀𝜌, 𝑧 ⊗𝔅 𝑥 ↦ 〈𝑦, 𝑧〉𝔅 ⋅ 𝑥. 

Proof: To verify the assertion we first note that the linear span of elements 𝑧 ⊗𝔅 𝑧
′ with 

𝑧 ∈ 𝑀𝜋 and 𝑧 ∈ 𝑀𝜌 is dense in  𝑀𝜋+𝜌. For such an element and 𝑥 ∈ 𝑀𝜌 we obtain 
  

〈ℓ𝑦(𝑥), 𝑧 ⊗𝔅 𝑧
′〉𝔅 = 〈𝑦 ⊗𝔅 𝑥, 𝑧 ⊗𝔅 𝑧

′〉𝔅 = 〈𝑥, 〈𝑦, 𝑧〉 · 𝑧′〉𝔅 = 〈𝑥, ℓ𝑦
+(𝑧 ⊗𝔅 𝑧

′)〉𝔅 

which implies that ℓ𝑦 is adjointable with adjoint given by the map ℓ𝑦
+.  

Proposition (5.2.32)[304]: For each 𝑦 ∈ 𝑀𝜋  and every 𝜌 ∈ �̂�  the left multiplication 

operator 

 

𝜆𝑦 ∶ 𝑀𝜌 → 𝑀𝜋+𝜌 𝜆𝑦(𝑥) ∶=  𝑚(𝑦, 𝑥) 

is 𝑎djointable and hence bounded and satisfies 
  

〈𝜆𝑦(𝑥), 𝜆𝑦(𝑥)〉𝔅 ≤ ‖〈𝑦, 𝑦〉𝔅‖ · 〈𝑥, 𝑥〉𝔅                                             (23) 

for all 𝑥 ∈ 𝑀𝜌. 

Proof: That the left multiplication operator 𝜆𝑦:𝑀𝜌 → 𝑀𝜋+𝜌 is adjointable for each 𝑦 ∈ 𝑀𝜋 

and every 𝜌 ∈ �̂� is an immediate consequence of Lemma (5.2.31) and the unitarity of the 

map Ψ𝜋,𝜌 because  𝜆𝑦 = Ψ𝜋,𝜌 ∘ ℓ𝑦. The asserted inequality (23) then easily follows from a 

short computation involving inequality (22). Indeed, we obtain 
  

〈𝜆𝑦(𝑥), 𝜆𝑦(𝑥)〉𝔅 = 〈Ψ𝜋,𝜌(𝑦 ⊗𝔅 𝑥),Ψ𝜋,𝜌(𝑦 ⊗𝔅 𝑥)〉𝔅 = 〈𝑦 ⊗𝔅 𝑥, 𝑦 ⊗𝔅 𝑥〉𝔅 

= 〈 𝑥, 〈𝑦, 𝑦〉𝔅 · 𝑥〉𝔅 ≤ ‖ 〈𝑦, 𝑦〉𝔅‖〈𝑥, 𝑥〉𝔅      
for all 𝑥 ∈ 𝑀𝜌. 

Corollary (5.2.33)[304]: For each 𝑎 ∈ 𝐴 the left multiplication operator 

 

𝜆𝑎: 𝐴 → 𝐴, 𝜆𝑎(𝑥 ∶= 𝑚(𝑎, 𝑥) 
is adjointable and bounded. 

     We are now ready to introduce an involution on A which turns A into 𝑎 ∗-algebra. Here 

we use the fact that the involution is determined by the inner product if we impose that the 

inner product on A takes it canonical form. 

Definition (5.2.34)[304]: The adjoint map 𝑖: 𝐴 → 𝐴, 𝑎 ↦ 𝑖(𝑎) is given by 

 

𝑖(𝑎) ∶= 𝜆𝑎
+(𝟙𝔅). 

It is clearly antilinear and maps the subspace  𝑀𝜋 𝜋 ∈ �̂� , into 𝑀−𝜋 . Moreover, on the 

subspace 𝔅 ⊆ 𝐴 the imap coincides with the usual adjoint, i.e., we have 𝑖(𝑏) = 𝑏∗.  
     The following lemma shows that the adjoints of left multiplication operators commute 

with right multiplication operators. 
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Lemma (5.2.35)[304]: For all 𝑥 ∈ 𝑀𝜋 , 𝑦 ∈ 𝑀𝜌 and  𝑧 ∈ 𝑀𝜋+𝜎  with  𝜋, 𝜌, 𝜎 ∈ �̂� we have 

 

𝑚(𝜆𝑥
+(𝑧), 𝑦) = 𝜆𝑥

+(𝑚(𝑧, 𝑦)). 
Proof: It suffices to note that equation (21) implies that 

 

𝜆𝑥 ∘ Ψ𝜎,𝜌 = Ψ𝜋+𝜎,𝜌 ∘ (𝜆𝑥 ⊗𝔅 id𝜌). 

Indeed, taking adjoints then leads to 

 

Ψ𝜎,𝜌
+ ∘ 𝜆𝑥

+ = (𝜆𝑥
+ ⊗𝔅 id𝜌) ∘ Ψ𝜋+𝜎,𝜌

+        

which verifies the asserted formula since the maps Ψ𝜎,𝜌 and Ψ𝜋+𝜎,𝜌 are unitary. 

Theorem (5.2.36)[304]: For all 𝑥 ∈ 𝐴 we have 𝜆𝑥
+ = 𝜆𝑖(𝑥). 

Proof: It suffices to show the assertion for elements in individual direct summands. For 

this, let 𝑥 ∈ 𝑀𝜋 , 𝑦 ∈ 𝑀𝜌, and 𝑧 ∈ 𝑀𝜎 with  𝜋, 𝜌, 𝜎 ∈ �̂�. Then using Lemma (5.2.35) gives 
  

〈𝜆𝑖(𝑥)(𝑦), 𝑧〉𝔅 = 〈𝑚(𝑖(𝑥), 𝑦), 𝑧〉𝔅 = 〈𝑚(𝜆𝑥
+(𝟙𝔅), 𝑦), 𝑧〉𝔅 = 〈𝜆𝑥

+(𝑚(𝟙𝔅, 𝑦), 𝑧〉𝔅 

        =  〈𝑚(𝟙𝔅, 𝑦),𝑚(𝑥, 𝑧)〉𝔅 = 〈𝑦,𝑚(𝑥, 𝑧)〉𝔅 = 〈𝜆𝑥
+(𝑦), 𝑧〉𝔅. 

     We conclude with two useful corollaries, e.g., we finally verify that the map 𝑖: 𝐴 → 𝐴 

from Definition (5.2.34) actually defines an involution. 

Corollary (5.2.37)[304]: Let 𝑃0: 𝐴 → 𝐴 be the canonical projection onto the subalgebra 𝔅. 

Then for all 𝑥, 𝑦 ∈ 𝐴 we have 
  

〈𝑥, 𝑦〉𝔅 = 𝑃0(𝑚(𝑖(𝑦), 𝑥)). 
Proof: Since the element 𝟙𝔅 is fixed by 𝑃0 we conclude from Theorem (5.2.36) that 
  

〈𝑥, 𝑦〉𝔅 = 〈𝑚(𝑖(𝑦), 𝑥), 𝟙𝔅〉𝔅 = 〈𝑃0(𝑚(𝑖(𝑦), 𝑥)), 𝟙𝔅〉𝔅 = 𝑃0(𝑚(𝑖(𝑦), 𝑥)). 
Corollary (5.2.38)[304]: The algebra 𝐴 is involutive, i.e., for all 𝑥, 𝑦 ∈ 𝐴 we have 

 

𝑖(𝑖(𝑥)) = 𝑥    and     𝑖(𝑚(𝑥, 𝑦)) = 𝑚(𝑖(𝑦), 𝑖(𝑥)). 
Proof: Applying Theorem (5.2.36) twice gives 
  

〈𝑖 𝑖((𝑥)) , 𝑧 〉𝔅 = 〈𝟙𝔅, 𝑚(𝑖(𝑥), 𝑧)〉𝔅 = 〈𝑥, 𝑧〉𝔅, 
 〈𝑖(𝑚(𝑥, 𝑦)), 𝑧〉𝔅 = 〈𝟙𝔅, 𝑚(𝑚(𝑥, 𝑦), 𝑧)〉𝔅 = 〈𝑖(𝑥),𝑚(𝑦, 𝑧)〉𝔅 =
 〈𝑚(𝑖(𝑦), 𝑖(𝑥)), 𝑧〉𝔅       
for all 𝑧 ∈ 𝐴 which in turn implies that 𝑖(𝑖(𝑥)) = 𝑥 and 𝑖(𝑚(𝑥, 𝑦)) = 𝑚(𝑖(𝑦), 𝑖(𝑥)).  

We turned 𝐴 =⊕𝜋∈�̂� 𝑀𝜋 into a ∗-algebra and right pre-Hilbert 𝔅− 𝔅-bimodule. We 

denote by �̅� the corresponding completion of 𝐴 with respect to the norm 

 

‖𝑥‖2: =  ‖〈𝑥, 𝑥〉𝔅‖
1/2 = ‖𝑃0(𝑚(𝑖(𝑥), 𝑥))‖

1/2 

(cf. Corollary (5.2.37)). By Corollary (5.2.33), left multiplication with an element 𝑎 ∈ 𝐴 

extends to an adjointable linear map on  �̅�. Therefore, the map 

 

𝜆: 𝐴 → ℒ(�̅�), 𝑎 ↦ 𝜆𝑎 

is well-defined. Moreover, the characterization of the norm implies that the vector 𝟙𝔅 ∈ �̅� 

is separating the operators 𝜆(𝐴) ⊆ ℒ(�̅�), i.e., if  𝜆𝑎(𝟙𝔅) = 0 for some 𝑎 ∈ 𝐴 then 𝑎 = 0. 

The intention is to finally construct a free 𝐶∗-dynamical system (𝒜, 𝐺, 𝛼) with fixed point 

algebra  𝔅. 
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Proposition (5.2.39)[304]: The map 𝜆: 𝐴 → ℒ(�̅�), 𝑎 ↦ 𝜆𝑎  is a faithful representation of 

the ∗-algebra 𝐴 by adjointable operators on the right Hilbert 𝔅− 𝔅-bimodule �̅�. Moreover, 

its restriction to each   𝑀𝜋 , 𝜋 ∈ �̂�, is isometric. 

Proof: The necessary algebraic conditions are easily checked using Corollary (5.2.38). 

Moreover, the injectivity of the map 𝜆 is a consequence of the previous discussion about 

the separating vector  𝟙𝔅 ∈ �̅�. To verify that the restriction of 𝜆 to each  𝑀𝜋 , 𝜋 ∈ �̂�, is 

isometric, we fix 𝜋 ∈ �̂� and use inequality (23) of  Proposition (5.2.32) which implies that 

‖𝜆𝑦‖op
2

≤ ‖𝑦‖2
2 holds for all 𝑦 ∈ 𝑀𝜋. On the other hand, the inequality  

 

‖𝑦‖2
2 = ‖𝜆𝑦(𝟙𝔅)‖2

2
≤ ‖𝜆𝑦‖op

2
 

Follows from the observation that 𝟙𝔅 ∈ �̅�  satisfies  ‖𝟙𝔅‖2 = 1 . We conclude that 

‖𝜆𝑦‖op =
‖𝑦‖2 holds for each 𝑦 ∈ 𝑀𝜋, which finally shows that the restriction of 𝜆 to 𝑀𝜋 

is isometric and thus completes the proof. 

Definition (5.2.40)[304]: We denote by 𝒜 the 𝐶∗-algebra which is generated by the image 

of 𝜆, i.e., the closure of 𝜆(𝐴) with respect to the operator norm on ℒ(�̅�). In particular, we 

point out that 𝒜 contains 𝒜 as a dense ∗-subalgebra. 

      To proceed we need to endow the 𝐶∗ -algebra 𝒜  with a continuous action of the 

compact A belian group 𝐺  by ∗ -automorphisms. For this purpose we first construct a 

strongly continuous unitary representation of 𝐺 on the right Hilbert  𝔅−𝔅 –bimodule  �̅�.  

Lemma (5.2.41)[304]: For each 𝜋 ∈ �̂� the map 𝑈𝜋: 𝐺 → 𝑈(𝑀𝜋), 𝑔 ↦ (𝑈𝜋)𝑔 given by 

 

(𝑈𝜋)𝑔(𝑥) ∶= 𝜋𝑔 · 𝑥 

is a strongly continuous unitary representation of 𝐺 on the right Hilbert 𝔅−𝔅 -bimodule 

𝑀𝜋. Moreover, taking direct sums and continuous extensions then gives rise to a strongly 

continuous unitary representation 𝑈: 𝐺 → 𝑈(�̅�), 𝑔 ↦ 𝑈𝑔 of 𝐺 on the right Hilbert 𝔅−𝔅 –

bimodule  �̅�. 

Proof: The necessary computations are straightforward using the right 𝔅-valued inner 

products 〈·,·〉π and 〈·,·〉 of  the spaces 𝑀𝜋 and   �̅�, respectively. 

Lemma (5.2.42)[304]: The map 𝛼: 𝐺 → Aut(𝒜), 𝑔 ↦ 𝛼𝑔 given by 

 

𝛼𝑔(𝜆𝑎) ∶=  𝑈𝑔 𝜆𝑎 𝑈𝑔
+ 

is 𝑎 continuous action of 𝐺 on 𝒜  𝑏𝑦 ∗-automorphisms. 

Proof: The action property is obviously satisfied due to the fact that 𝑔 ↦ 𝑈𝑔  is a 

representation (Lemma (5.2.41)). Continuity follows from the strong continuity of the map 

𝑈 from Lemma (5.2.41).  

Theorem(5.2.43)[304]: The 𝐶∗ -dynamical system (𝒜, 𝐺, 𝛼)  associated to the factor 

system (𝑀𝜋 , Ψ𝜋,𝜌)𝜋,𝜌∈�̂�  is free and satisfies 𝐴(𝜋) = 𝑀𝜋  for all 𝜋 ∈ �̂� . In particular, its 

fixed point algebra is given by 𝔅. 

Proof: (i) Let  𝜋 ∈ �̂�. We first check that the corresponding isotypic component 𝐴(𝜋) is 

equal to  𝑀𝜋 . Indeed, using the separating vector shows that 𝛼𝑔(𝑎) = 𝑈𝑔(𝑎) holds for 

elements 𝑎 ∈ 𝐴. In particular, the elements of  𝑀𝜋 ⊆ 𝒜 are contained in  𝐴(𝜋). Moreover, 

the continuity of the projection 𝑃𝜋:𝒜 → 𝒜 on to 𝐴(𝜋) implies that 𝑀𝜋 = 𝑃𝜋(𝐴) ⊆ 𝒜 is 

dense in 𝐴(𝜋). Since the restriction of 𝜆 to 𝑀𝜋 is isometric we conclude that 𝑀𝜋 is closed 
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in 𝐴(𝜋) and hence that 𝐴(𝜋) = 𝑀𝜋  as claimed. In particular, the fixed point algebra of 

(𝒜, 𝐺, 𝛼) is given by 𝔅.  

   (ii) Next we show that the 𝐶∗-dynamical system (𝒜, 𝐺, 𝛼) is free. For this purpose, we 

again fix  𝜋 ∈ �̂�. Since 𝐴(𝜋) = 𝑀𝜋 holds by part (i) and  

 

𝑀−𝜋 · 𝑀𝜋 ∶= span{𝑚(𝑥, 𝑦)|𝑥 ∈ 𝑀−𝜋 , 𝑦 ∈ 𝑀𝜋} 
is dense in 𝔅 by construction, it follows that the multiplication map on 𝒜  induces an 

isomorphism of 𝔅−𝔅-Morita equivalence bimodules between 𝐴(−𝜋)⊗𝔅 𝐴(𝜋) and 𝔅. 

We therefore conclude from Corollary (5.2.11) that the 𝐶∗-dynamical system (𝒜, 𝐺, 𝛼) is 

free. 
We have seen how a factor system gives rise to a free 𝐶∗-dynamical system and vice 

versa. We finally establish a classification theory for free actions of compact a belian 

groups. If not mentioned otherwise, 𝔅 denotes a fixed unital 𝐶∗-algebra and 𝐺  a fixed 

compact A belian group. 
Definition (5.2.44)[304]: 

  (i) Let (𝒜, 𝐺, 𝛼)  and (𝒜′, 𝐺′, 𝛼′)  be two free 𝐶∗ -dynamical systems with unital 𝐶∗ -

algebras 𝒜  and 𝒜′  such that  𝒜𝐺 = (𝒜′)𝐺 = 𝔅 . We call (𝒜, 𝐺, 𝛼)  and (𝒜′, 𝐺′, 𝛼′) 
equivalent if there is a 𝐺- equivariant ∗-isomorphism 𝑇:𝒜 → 𝒜′ satisfying  𝑇|𝔅 = id𝔅.  

  (ii) We call two factor systems (𝑀𝜋 , Ψ𝜋,𝜌)𝜋,𝜌∈�̂� and (𝑀𝜋
′ , Ψ𝜋,𝜌

′ )𝜋,𝜌∈�̂�  equivalent if there 

is a family (𝑇𝜋:𝑀𝜋 → 𝑀𝜋
′ )𝜋∈�̂�  of Morita equivalence 𝔅−𝔅 -bimodule isomorphisms 

satisfying for all 𝜋, 𝜌 ∈ �̂� 

Ψ𝜋,𝜌
′ ∘ (𝑇𝜋 ⊗𝔅 𝑇𝜌) = 𝑇𝜋+𝜌  ∘ Ψ𝜋,𝜌.                                         (24) 

     We are now in the position to state and prove on of the main classification theorems. 

Theorem(5.2.45)[304]: Let 𝐺  be a compact A belian group and 𝔅 a unital 𝐶∗-algebra. 

Furthermore, let  𝜑 ∶ 𝐺 → Pic(𝔅) be a group homomorphism and (𝑀𝜋 , Ψ𝜋,𝜌)𝜋,𝜌∈�̂�  and 

(𝑀𝜋
′ , Ψ𝜋,𝜌

′ )𝜋,𝜌∈�̂�  factor systems for the map  𝜑 . Then the following statements are 

equivalent: 

   (i)  The factor systems are equivalent. 

  (ii)  The associated free 𝐶∗-dynamical systems are equivalent. 

Proof: Suppose first that the factor systems (𝑀𝜋, Ψ𝜋,𝜌)𝜋,𝜌∈�̂�  and (𝑀𝜋
′ , Ψ𝜋,𝜌

′ )𝜋,𝜌∈�̂�  are 

equivalent and let (𝑇𝜋:𝑀𝜋 → 𝑀𝜋
′ )𝜋∈�̂� be a family of 𝔅−𝔅-Morita equivalence bimodule 

isomorphisms such that equation (24) holds for all   𝜋, 𝜌 ∈ �̂�. Furthermore, let 

𝐴 ∶=
2
⊕

𝜋 ∈ �̂�

 𝑀𝜋           𝑎𝑛𝑑           𝐴
′ ∶=

2
⊕

𝜋 ∈ �̂�

 𝑀𝜋
′  

be the  corresponding ∗-algebras with involutions given by 𝑖 and 𝑖′, respectively. Then a 

few moments thought shows that the direct sum of the maps 𝑇𝜋:𝑀𝜋 → 𝑀𝜋
′ , 𝜋 ∈ �̂� , 

provides a 𝐺 - equivariant ∗ -isomorphism 𝑇: 𝐴 → 𝐴′_of algebras. In fact, the map 𝑇  is 

clearly a 𝐺 -equivariant isomorphism of right pre-Hilbert 𝔅−𝔅 -bimodules by 

construction. Moreover, the assumption that equation (24) holds for all 𝜋, 𝜌 ∈ �̂� implies 

that Tis multiplicative. By Theorem (5.2.36), it is also ∗-preserving, that is, 𝑇(𝑖(𝑥)) =
𝑖′(𝑇(𝑥)) holds for all 𝑥 ∈ 𝐴. Passing over to the continuous extension of 𝑇 provides a 𝐺-

equivariant isomorphism �̅�: �̅� → �̅�′  of right Hilbert 𝔅−𝔅  -bimodules and it is easily 

checked with the help of the previous discussion that the relation 

𝐴d[�̅�] ∘ 𝜆 =  𝜆′ ∘ 𝑇 
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holds, where 𝜆: 𝐴 → ℒ(�̅�) and 𝜆′: 𝐴′ → ℒ(𝐴′̅)) denote the faithful ∗-representations from 

Proposition (5.2.39). In particular, we conclude that the map Ad[�̅�]: ℒ(�̅�) → ℒ(𝐴′̅) 
restricts to a 𝐺 -equivariant ∗ -isomorphism between the associated free 𝐶∗ -dynamical 

systems (𝒜, 𝐺, 𝛼) and (𝒜′, 𝐺′, 𝛼′)  which completes the first part of the proof. 

     Suppose, conversely, that the associated free 𝐶∗-dynamical systems ((𝒜,𝑚), 𝐺, 𝛼) and 

((𝒜′, 𝑚′), 𝐺, 𝛼′) are equivalent and let 𝑇:𝒜 → 𝒜′ be a 𝐺- equivariant ∗-isomorphism. 

Then it is a consequence of the 𝐺 -equivariance of the map Tthat the corresponding 

restriction maps 𝑇𝜋: = 𝑇|𝑀𝜋
:𝑀𝜋 → 𝑀𝜋

′ , 𝜋 ∈ �̂� , are well-defined and 𝔅−𝔅  bimodule 

isomorphisms. Moreover, the multiplicativity of  𝑇 implies that equation (24) holds for all  

𝜋, 𝜌 ∈ �̂�. Hence it remains to show that the family (𝑇𝜋:𝑀𝜋 → 𝑀𝜋
′ )𝜋∈�̂�  preserves the 𝔅-

valued inner products. To see that this is true, we first conclude from the ∗-invariance of 𝑇 

that 𝑇𝜋(𝑥)
∗ = 𝑇−𝜋(𝑥

∗)  holds for all 𝜋 ∈ �̂�  and all  𝑥 ∈ 𝑀𝜋 . It follows from a short 

computation involving equation (24) that 
  

〈𝑇𝜋(𝑥), 𝑇𝜋(𝑦)〉𝔅 = 𝑚′(𝑇𝜋(𝑥), 𝑇𝜋(𝑦)
∗) = 𝑚′(𝑇𝜋(𝑥), 𝑇−𝜋(𝑦)

∗) = 𝑚(𝑥, 𝑦∗) = 〈𝑥, 𝑦〉𝔅 

holds for all 𝜋 ∈ �̂�  and all  𝑥, 𝑦 ∈ 𝑀𝜋 . The corresponding computation for the left 𝔅-

valued inner products can be verified in a similar way and completes the proof. 

Definition(5.2.46)[304]: We write Ext(𝔅,𝐺) for the set of equivalence classes of free 

actions of 𝐺  with fixed point algebra 𝔅. The equivalence class of a free 𝐶∗-dynamical 

system (𝒜, 𝐺, 𝛼) with fixed point algebra 𝔅 is denoted by [(𝒜, 𝐺, 𝛼)]. 
     Recall that for a free 𝐶∗-dynamical system (𝒜, 𝐺, 𝛼) with fixed point algebra 𝔅 we 

have a group homomorphism 𝜑𝒜: �̂� → Pic(𝔅) given by 𝜑𝒜(𝜋):= [𝐴(𝜋)] (cf. Proposition 

(26)). By Theorem (5.2.45), the map 𝜑𝒜  only depends on the equivalence class of 

(𝒜, 𝐺, 𝛼) and hence we have an invariant 

𝐼: 𝐸𝑥𝑡(𝔅, 𝐺) → Homg𝑔𝑟  (�̂�, Pic(𝔅)) , 𝐼 ([(𝒜, 𝐺, 𝛼)]) ∶= 𝜑𝒜 . 

In particular, we may partition Ext(𝔅,𝐺) into the subsets  

Ext(𝔅,𝐺, 𝜑) ∶= 𝐼−1(𝜑) = {[(𝒜, 𝐺, 𝛼)] ∈ Ext(𝔅,𝐺)|𝜑𝒜
=  𝜑}. 

For a fixed group homomorphism  𝜑: �̂� → Pic(𝔅), set Ext(𝔅,𝐺, 𝜑) may be empty. We 

postpone this problem until the end and concentrate first on characterizing the set 

Ext(𝔅,𝐺, 𝜑)  and its 𝐶∗ -dynamical systems. We start with a useful statement about 

automorphisms of Morita equivalence bimodules. Although it might be well-known to 

experts, we have not found such a statement explicitly discussed in the literature.  

Proposition(5.2.47)[304]: Let 𝑇 be an automorphism of the Morita equivalence 𝔅−𝔅-

bimodule 𝑀. Then there exists a unique unitary element 𝑢 of the center of  𝔅, i.e., an 

element 𝑢 ∈ 𝑈𝑍(𝔅), such that 𝑇(𝑚) = 𝑢 · 𝑚 for all  𝑚 ∈ 𝑀. In particular, the map 

𝜓:𝑈𝑍(𝔅) → Aut𝑀𝐸(𝑀), 𝜓(𝑢)(𝑚):= 𝑢 · 𝑚, 
is an isomorphism of groups, where Aut𝑀𝐸(𝑀) denotes the group of automorphisms of the 

Morita equivalence 𝔅−𝔅 -bimodule 𝑀. 

Proof: We divide the proof of this statement into two steps: 

   (i) In the first step we show that the assertion holds for the canonical Morita equivalence 

𝔅−𝔅 –bimodule  𝔅. To see that this is true, we choose 𝑢 ∈ 𝑈𝑍(𝔅) and note that the map 

𝑇𝑢: 𝔅 → 𝔅, 𝑏 ⟼ 𝑢 · 𝑏  defines an automorphism of the Morita equivalence 𝔅−𝔅 -

bimodule 𝔅. In particular, the assignment 

𝜓1: 𝑈𝑍(𝔅) → Aut𝑀𝐸(𝔅) , 𝑢 ⟼ 𝑇𝑢 
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is an isomorphism of groups. In fact, given  𝑇 ∈ Aut𝑀𝐸(𝔅), a short calculation shows that 

Tis uniquely determined by 𝑇(𝟙𝔅) which is an element in 𝑈𝑍(𝔅). 
   (ii) In the second step we show that Morita equivalence automorphisms of  𝔅 are in one-

to-one correspondence with automorphisms of 𝑀. To begin with, we denote by �̅� the 

conjugate module and recall that the map 

Ψ: 𝑀 ⊗̂𝔅 �̅� → 𝔅, Ψ(𝑚⊗𝔅 𝑚
′̅̅̅̅ ) ∶=  𝔅〈𝑚,𝑚

′〉 
for 𝑚,𝑚′ ∈ 𝑀 defines an isomorphism of Morita equivalence 𝔅−𝔅-bimodules. 

Therefore, given an element 𝑇 ∈ Aut𝑀𝐸(𝑀), it is not hard to check that the composition 

map 𝑇Ψ: = Ψ ∘ (𝑇 ⊗𝔅 id�̅�) ∘ Ψ
−1 defines an automorphism of the Morita equivalence 

𝔅−𝔅 -bimodule 𝔅. Next, we show that the map 

𝜓2 ∶ Aut𝑀𝐸(𝔅) → Aut𝑀𝐸(𝑀),       𝜓2(𝑇)(𝑚) ∶=  𝑇(𝟙𝔅) · 𝑚 

is an isomorphism of groups. In fact, we first note that  𝜓2 is a well-defined and injective 

group homomorphism. Since 𝑀 is a full right Hilbert 𝔅-module, there is a finite set of  

elements 𝑚𝑖 , 𝑚𝑖
′ ∈ 𝑀(1 ≤ 𝑖 ≤ 𝑛) such that  ∑   𝔅〈𝑚𝑖 , 𝑚𝑖

′〉𝑛
𝑖=1 = 𝟙𝔅. The surjectivity of  𝜓2 

is then a consequence of the equation 

 𝜓2(𝑇Ψ)(𝑚) = 𝑇Ψ(𝟙𝔅) · 𝑚 = 𝑇(𝑚) 
which holds for all 𝑚 ∈ 𝑀. The assertion therefore follows from 𝜓 =  𝜓2 ∘  𝜓1. 

Corollary (5.2.48)[304]: Let 𝑀  be a Morita equivalence 𝔅−𝔅 -bimodule and 𝑢 ∈
𝑈𝑍(𝔅). Then there  exists a unique element Φ𝑀(𝑢) ∈ 𝑈𝑍(𝔅) such that Φ𝑀(𝑢) · 𝑚 = 𝑚 ·
𝑢 holds for all  𝑚 ∈ 𝑀. Furthermore, the map 

Φ𝑀: 𝑈𝑍(𝔅) → 𝑈𝑍(𝔅), 𝑢 ↦ Φ𝑀(𝑢) 
is an automorphism of groups. 

Proof: The first assertion is an immediate consequence of Proposition (5.2.47) applied to 

the automorphism of 𝑀 defined by 𝑚 ↦ 𝑚 · 𝑢. That the map Φ𝑀 is an automorphism of 

groups follows from a short calculation. 

Proposition (5.2.49) [304]: The map 

Φ:Pic(𝔅) → Aut(𝑈𝑍(𝔅)), [𝑀] ↦ Φ𝑀 

is a group homomorphism. 

Proof: (i) We first show that Φ  is well-defined. Therefore let Ψ:𝑀 → 𝑁  be an 

isomorphism of Morita equivalence 𝔅−𝔅-bimodules and 𝑢 ∈ 𝑈𝑍(𝔅). Then 

Φ𝑀(𝑢) ·  Ψ(𝑚) = Ψ(Φ𝑀(𝑢) · 𝑚) = Ψ(𝑚 · 𝑢) = Ψ(𝑚) · 𝑢 = Φ𝑁(𝑢) · Ψ(𝑚) 
holds for all 𝑚 ∈ 𝑀 which implies that Φ𝑀 = Φ𝑁. 

   (ii) To see that Φ is a group homomorphism, let 𝑀 and 𝑁 be Morita equivalence 𝔅−𝔅 

bimodules and 𝑢 ∈ 𝑈𝑍(𝔅). Then 

Φ𝑀⊗̂𝔅𝑁
 (𝑢) · (𝑚⊗𝔅 𝑛) = (𝑚⊗𝔅 𝑛) · 𝑢 = 𝑚⊗𝔅 (𝑛 · 𝑢) = 𝑚⊗𝔅 (Φ𝑁(𝑢) · 𝑛) 

    = (𝑚 · Φ𝑁(𝑢))𝑚⊗𝔅 𝑛 = (Φ𝑀(Φ𝑁(𝑢)) · 𝑚)⊗𝔅 𝑛 = (Φ𝑀 ∘ Φ𝑁)(𝑢) · (𝑚⊗𝔅 𝑛) 
holds for all  𝑚 ∈ 𝑀 and 𝑛 ∈ 𝑁 which shows that Φ𝑀⊗̂𝔅𝑁

= Φ𝑀 ∘ Φ𝑁. 

Remark(5.2.50)[304]: We point out that the map Φ from Proposition (5.2.49) induces a 

map 

Φ∗: Homg𝑟( �̂�, Pic(𝔅)) → Homg𝑟  ( �̂�, Aut(𝑈𝑍(𝔅) ,         Φ∗(𝜑) ∶= Φ ∘  𝜑. 

In particular, each 𝜑 ∈ Homg𝑟( �̂�, Pic(𝔅)) determines a �̂� -module structure on 𝑈𝑍(𝔅) 

which enables us to make use of classical group cohomology. In fact, given an element  

𝜑 ∈ Homg𝑟( �̂�, Pic(𝔅)), the cohomology groups 

𝐻𝜑
𝑛 (�̂�, 𝑈𝑍(𝔅) ∶= 𝐻Φ∘ 𝜑

𝑛 (�̂�, 𝑈𝑍(𝔅) 

are at our disposal(cf. [326]). 
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Theorem (5.2.51)[304]: Let 𝐺 be a compact A belian group and 𝔅 a unital 𝐶∗-algebra. 

Furthermore, let  𝜑: �̂� → Pic(𝔅) be a group homomorphism with Ext(𝔅,𝐺, 𝜑) ≠ ∅ and 

choose for all  𝜋 ∈ �̂� a Morita equivalence 𝔅−𝔅-bimodule 𝑀𝜋 ∈ 𝜑(𝜋) such that  𝑀0 =
𝔅. Then the    

Following assertions hold: 

  (i) Each class in Ext(𝔅, 𝐺, 𝜑) can be represented by a free 𝐶∗-dynamical system of the 

form  (𝒜(𝑀,Ψ), 𝐺, 𝛼(𝑀,Ψ)).  

  (ii) Any other free 𝐶∗-dynamical system ((𝒜(𝑀,Ψ′), 𝐺, 𝛼(𝑀,Ψ′)) representing an element 

of Ext(𝔅,𝐺, 𝜑)  satisfies , Ψ′ = 𝜔Ψ  with (𝜔Ψ)𝜋,𝜌: = 𝜔(𝜋, 𝜌)Ψ𝜋,𝜌  for all 𝜋, 𝜌 ∈ �̂�  for 

some 2-cocycle 

𝜔 ∈ 𝑍𝜑
2(�̂�, 𝑈𝑍(𝔅)). 

  (iii) The free 𝐶∗-dynamical systems  (𝒜(𝑀,Ψ), 𝐺, 𝛼(𝑀,Ψ)) and  𝒜(𝑀,𝜔Ψ), 𝐺,  𝛼(𝑀,𝜔Ψ)  are 

equivalent if and only if 

𝜔 ∈ 𝐵𝜑
2(�̂�, 𝑈𝑍(𝔅)). 

Proof: (i) Let (𝒜, 𝐺, 𝛼)  be a free 𝐶∗ -dynamical system representing an element in 

Ext(𝔅,𝐺, 𝜑) and recall that (𝒜, 𝐺, 𝛼)  gives rise to a factor system for the map 𝜑 of the 

form (𝐴(𝜋),𝑚𝜋,𝜌)𝜋,𝜌∈�̂� . Then the assumption implies that there is a family (𝑇𝜋:𝑀𝜋 →

𝐴(𝜋))𝜋∈�̂�  of Morita equivalence 𝔅−𝔅-bimodule isomorphisms which can be used to 

define another family (Ψ𝜋,𝜌
′′ :𝑀𝜋 ⊗̂𝔅 𝑀𝜌 → 𝑀𝜋+𝜌)𝜋,𝜌∈�̂�  of Morita equivalence 𝔅−𝔅 -

bimodule isomorphisms by 

Ψ𝜋,𝜌
′′ ≔ 𝑇𝜋+𝜌

+ ∘ 𝑚𝜋,𝜌 ∘ (𝑇𝜋 ⊗𝔅 𝑇𝜌) 

In particular, it is not hard to see that the later family gives rise to a factor system 

(𝑀𝜋 , Ψ𝜋,𝜌
′′ )𝜋,𝜌∈�̂� for the map 𝜑 which is equivalent to (𝐴(𝜋),  𝑚𝜋,𝜌)𝜋,𝜌∈�̂� . Therefore, the 

assertion is finally a consequence of Theorem (5.2.46). 

   (ii) Let  𝒜(𝑀,Ψ′), 𝐺,  𝛼(𝑀,𝛹)  be any other free 𝐶∗ -dynamical system representing an 

element of Ext(𝔅, 𝐺, 𝜑) and choose  𝜋, 𝜌 ∈ �̂�. Then Proposition (5.2.48) implies that the 

automorphism Ψ𝜋,𝜌
′ ∘ Ψ𝜋,𝜌

−1  of the Morita equivalence 𝔅−𝔅-bimodule 𝑀𝜋+𝜌  provides a 

unique element 𝜔(𝜋, 𝜌) ∈ 𝑈𝑍(𝔅) satisfying   

Ψ𝜋,𝜌
′ = 𝜔(𝜋, 𝜌)Ψ𝜋,𝜌. 

Moreover, it is easily seen that the corresponding map 𝜔: �̂� × �̂� → 𝑈𝑍(𝔅) is a normalized 

2-c  ochain. To see that 𝜔 actually defines a 2-cocycle, i.e., an element in 𝑧𝜑
2( �̂�, 𝑈𝑍(𝔅)), 

we repeatedly use the factor system condition equation (21) and Proposition (5.2.50). For 

example, we find that 

Ψ𝜋,𝜌+𝜎
′ ∘ (id𝜋 ⊗𝔅 Ψ𝜌+𝜎

′ ) = Ψ𝜋,𝜌+𝜎
′ ∘ (id𝜋 ⊗𝔅 𝜔(𝜌, 𝜎)Ψ𝜌,𝜎)                            

                                                = Ψ𝜋,𝜌+𝜎
′ ∘ (id𝜋 ⊗𝔅 𝜔(𝜌, 𝜎)Ψ𝜌,𝜎)                            

                                                        = Ψ𝜋,𝜌+𝜎
′ ∘ (Φ𝜋(𝜔(𝜌, 𝜎)id𝜋 ⊗𝔅 Ψ𝜌,𝜎)                           

                                                           = Φ𝜋(𝜔(𝜌, 𝜎))Ψ𝜋,𝜌+𝜎
′ ∘ (id𝜋 ⊗𝔅 Ψ𝜌,𝜎)                            

     = Φ𝜋(𝜔(𝜌, 𝜎))𝜔(𝜋, 𝜌 + 𝜎)Ψ𝜋,𝜌+𝜎 ∘ (id𝜋 ⊗𝔅 Ψ𝜌,𝜎)           

 holds for all 𝜋, 𝜌, 𝜎 ∈ 𝐺, where id𝜋𝜔(𝜌, 𝜎) = Φ𝜋(𝜔(𝜌, 𝜎)) id𝜋 is understood in the sense 

of Corollary (5.2.49). 

   (iii) If 𝜔 = 𝑑𝜑ℎ holds for some element ℎ ∈ 𝐶1( �̂�, 𝑈𝑍(𝔅)), then the factor systems 

(𝑀𝜋 , Ψ𝜋,𝜌)𝜋,𝜌∈�̂� and (𝑀𝜋 , 𝜔(𝜋, 𝜌)Ψ𝜋,𝜌)𝜋,𝜌∈�̂� are equivalent. Hence, the assertion follows 
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from Theorem (5.2.46). If, on the other hand, (𝑀𝜋 , Ψ𝜋,𝜌)𝜋,𝜌∈�̂� and (𝑀𝜋 , 𝜔(𝜋, 𝜌)Ψ𝜋,𝜌)𝜋,𝜌∈�̂� 

are equivalent, then we conclude from Proposition (5.2.48) that there exists an element 

ℎ ∈ 𝐶1(�̂�, 𝑈𝑍(𝐵)) which implements the equivalence given by a family (𝑇𝜋)𝜋∈�̂�  of 

Morita equivalence 𝔅−𝔅-bimodule isomorphisms    𝑇𝜋:𝑀𝜋 → 𝑀𝜋, i.e., we have 𝑇𝜋 =
𝑇ℎ(𝜋)  for all 𝜋 ∈  �̂� . Moreover, a few moments thought shows that  𝜔 = 𝑑𝜑ℎ ∈

𝐵𝜑
2(�̂�, 𝑈𝑍(𝔅)).   

Corollary (5.2.52)[304]: Let 𝐺 be a compact A belian group and 𝔅 a unital 𝐶∗-algebra. 

Furthermore, let 𝜑 ∶ 𝐺 → Pic(𝔅)  be a group homomorphism with  Ext(𝔅,𝐺, 𝜑) = 𝜑 . 

Then the map 

𝐻𝜑
2( �̂�, 𝑈𝑍(𝔅)) × 𝐸𝑥𝑡(𝔅, 𝐺, 𝜑)  →  𝐸𝑥𝑡(𝐵, 𝐺, 𝜑) 

               ([𝜔], [𝒜(𝑀,Ψ), 𝐺, 𝛼(𝑀,Ψ)]) ↦ [(𝒜(𝑀,𝜔Ψ), 𝐺, 𝛼(𝑀,𝜔Ψ))]  

is a well-defined simply transitive action. 

We conclude with a remark which shows that our constructions from are, up to 

isomorphisms, inverse to each other. 

Remark(5.2.53)[304]: We first recall that each free 𝐶∗-dynamical system (𝒜, 𝐺, 𝛼) with 

unital 𝐶∗-algebra 𝒜 and compact A belian group 𝐺 gives rise to a factor system for the 

map 𝜑𝒜  of the form (𝐴(𝜋),𝑚𝜋,𝜌)𝜋,𝜌∈�̂�  (cf. Remark (3.2.28)). Furthermore, it follows 

from Theo-rem (5.2.46) that the free 𝐶∗-dynamical system associated to this factor system 

is equivalent to (𝒜,𝐺, 𝛼). On the other hand, given a group homomorphism 𝜑 ∶ �̂� →
Pic (𝔅)  and a factor system (𝑀𝜋 , 𝛹𝜋,𝜌)𝜋,𝜌∈�̂�  for the map 𝜑 , it is easily seen that the 

associated free 𝐶∗-dynamical system (𝒜(𝑀,Ψ), 𝐺, 𝛼(𝑀,Ψ)) in Theorem (5.2.43) recovers the 

original factor system (𝑀𝜋 , 𝛹𝜋,𝜌)𝜋,𝜌∈�̂�. Indeed, Theorem (5.2.43) shows that 𝒜(𝑀,Ψ)(𝜋) =

𝑀𝜋 holds for all 𝜋 ∈ �̂�. Moreover, the multiplication map of 𝒜(𝑀,Ψ) is by construction 

uniquely determined by the factor system, i.e., we have 𝑚𝜋,𝜌 = 𝛹𝜋,𝜌 for all 𝜋, 𝜌 ∈ �̂�. We 

therefore conclude that our constructions, i.e., the procedure of associating a free 𝐶∗ -

dynamical system to a factor system and vice versa, are, up to isomorphisms, inverse to 

each other: 

(𝒜, 𝐺, 𝛼)      𝐹. 𝑆  
⟼

  (𝐴(𝜋),𝑚𝜋,𝜌)𝜋,𝜌∈�̂�  . 

(𝑀𝜋, 𝛹𝜋,𝜌)𝜋,𝜌∈�̂�
   𝐶∗  

⟼
  (𝒜(𝑀,𝛹), 𝐺, 𝛼(𝑀,𝛹))  

     As we have already discussed before, each group homomorphism 𝜑: �̂� → Pic(𝔅) gives 

rise to both a family (𝑀𝜋)𝜋∈�̂� of Morita equivalence 𝔅−𝔅-bimodules and a family 

(Ψ𝜋,𝜌 ∶ 𝑀𝜋 ⊗̂𝔅 𝑀𝜌 → 𝑀𝜋+𝜌)𝜋,𝜌∈�̂� 

of Morita equivalence 𝔅−𝔅 -bimodules isomorphisms. Given a group homomorphism 

𝜑: �̂� → Pic(𝔅)  and such a family (𝑀𝜋, 𝛹𝜋,𝜌)𝜋,𝜌∈�̂�  satisfying 𝑀0 = 𝔅,𝛹0,0 = id𝔅  and 

𝛹𝜋,0 = 𝛹0,𝜋 = id𝜋 for all 𝜋 ∈ �̂� (which need not be a factor system), we can examine for 

all 𝜋, 𝜌, 𝜎 ∈  �̂� the automorphism  

𝑑𝑀𝛹(𝜋, 𝜌, 𝜎) ∶= 𝛹𝜋+𝜌,𝜎 ∘ (𝛹𝜋,𝜌 ⊗𝔅 id𝜎) ∘ (id𝜋 ⊗𝔅 𝛹𝜌,𝜎
+ ) ∘ 𝛹𝜋,𝜌+𝜎

+  

of the Morita equivalence 𝔅−𝔅  -bimodule 𝑀𝜋+𝜌+𝜎 . The family of all such maps 

(𝑑𝑀𝛹(𝜋, 𝜌, 𝜎))𝜋,𝜌,𝜎∈�̂�  can be interpreted as an obstruction to the associativity of the 

multiplication (cf. Proposition (5.2.29)). On the other hand, it follows from the 

construction and from Proposition (5.2.48) that the map 𝑑𝑀𝛹 can also be considered as a 

normalized 𝑈𝑍(𝔅)-valued 3-cochain on �̂�, i.e., as an element in 𝐶3( �̂�, 𝑈𝑍(𝐵)). In fact, 

even more is true:  
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Lemma (5.2.54)[304]:The map 𝑑𝑀𝛹 defines an element in 𝑍𝜑
3(�̂�, 𝑈𝑍(𝔅)). 

Proof: For the sake of brevity we omit the lengthy calculation at this point and refer 

instead . 

Lemma (5.2.55)[304]:The class [𝑑𝑀𝛹] in 𝐻𝜑
3(�̂�, 𝑈𝑍(𝔅)) is independent of all choices 

made. 

Proof: (i) We first show that the class [𝑑𝑀𝛹]  is independent of the choice of the family 

(𝛹𝜋,𝜌)𝜋,𝜌∈�̂�.Therefore, let (𝛹𝜋,𝜌
′ )𝜋,𝜌∈�̂� be another choice and note that Proposition (5.2.48) 

implies that there exists an element ℎ ∈ 𝐶2(�̂�, 𝑈𝑍(𝔅)) satisfying 𝛹𝜋,𝜌
′ = ℎ(𝜋, 𝜌)𝛹𝜋,𝜌 for 

all 𝜋, 𝜌 ∈ �̂�. A short calculation then shows that 

𝛹𝜋+𝜌,𝜎
′ ∘ (𝛹𝜋,𝜌

′ ⊗𝔅  id𝜎) =  ℎ(𝜋 + 𝜌, 𝜎)ℎ(𝜋, 𝜌)𝑑𝑀𝛹(𝜋, 𝜌, 𝜎)(𝛹𝜋,𝜌+𝜎 ∘ (id𝜋 ⊗𝔅 𝛹𝜌,𝜎)) 

holds for all 𝜋, 𝜌𝜎 ∈ �̂�. On the other hand, it follows from Proposition (5.2.50) that 

𝑑𝑀𝛹
′(𝜋, 𝜌, 𝜎) (𝛹𝜋,𝜌+𝜎

′ ∘ (id𝜋 ⊗𝔅 𝛹𝜌,𝜎
′ ))                                   

= 𝑑𝑀𝛹
′(𝜋, 𝜌, 𝜎)ℎ(𝜋, 𝜌 + 𝜎)𝜋. ℎ(𝜌, 𝜎)(𝛹𝜋,𝜌+𝜎 ∘ (id𝜋 ⊗𝔅 𝛹𝜌,𝜎)) 

holds for all 𝜋, 𝜌, 𝜎 ∈ �̂�. From these observations we can now easily conclude that the 3-

cocycles 𝑑𝑀𝛹
′ and 𝑑𝑀𝛹 are cohomologous. 

Proof: (ii) As a second step, we show that the class [𝑑𝑀𝛹] does not dependent on the 

choice of the family (𝑀𝜋)𝜋∈�̂�. For this purpose, let (𝛹𝜋
′)𝜋∈�̂� be another choice and note 

that the construction implies that there is a family (𝑇𝜋:𝑀𝜋 → 𝑀𝜋
′ )𝜋∈�̂�  of Morita 

equivalence 𝔅−𝔅 -bimodule isomorphisms. This family can now be used to define 

another family (𝛹𝜋,𝜌
′′ :𝑀𝜋

′ ⊗̂𝔅 𝑀𝜌
′ → 𝑀𝜋+𝜌

′ )𝜋,𝜌∈�̂�  of Morita equivalence 𝔅−𝔅-bimodule 

isomorphisms by  

𝑀𝜋,𝜌
′ ∶= 𝑇𝜋+𝜌 ∘ 𝛹𝜋,𝜌 ∘ (𝑇𝜋

+ ⊗𝔅  𝑇𝜌
+ ).   

Then an explicit computation shows that 

𝑑𝑀𝛹
′(𝜋, 𝜌, 𝜎) = 𝛹𝜋+𝜌,𝜎

′ ∘ (𝛹𝜋,𝜌
′ ⊗𝔅 id𝜎) ∘ (id𝜋 ⊗𝔅 𝛹 𝜌,𝜎

′+ ) ∘ 𝛹𝜋,𝜌+𝜎
′+                     

= 𝑇𝜋+𝜎+𝜌 ∘ 𝛹𝜋+𝜌,𝜎 ∘ (𝑇𝜋+𝜌
+ ⊗𝔅 𝑇𝜎

+)                       

                                   ∘ (𝑇𝜋+𝜌 ⊗𝔅 id𝜎) ∘ (𝛹𝜋,𝜌 ⊗𝔅 id𝜎) ∘ (𝑇𝜋
+ ⊗𝔅 𝑇𝜌

+ ⊗𝔅 id𝜎) 

                                 ∘ (id𝜋 ⊗𝔅 𝑇𝜌 ⊗𝔅 id𝜎) ∘ (id𝜋 ⊗𝔅 𝛹𝜌,𝜎
+ ) ∘ (id𝜋 ⊗𝔅 𝑇𝜌+𝜎

+ ) 

∘ (𝑇𝜋 ⊗𝔅  𝑇𝜌+𝜎) ∘ 𝛹𝜋,𝜌+𝜎
+ ∘ 𝑇𝜋+𝜌+𝜎

+         

= 𝑑𝑀𝛹(𝜋, 𝜌, 𝜎)                                                          
 holds for all 𝜋, 𝜌, 𝜎 ∈ 𝐺. We conclude that 𝑑𝑀𝛹

′ = 𝑑𝑀𝛹, i.e., that the 3-cocycle 𝑑𝑀𝛹 is 

unchanged. 

Definition (5.2.56)[304]: Let 𝜑: �̂� → Pic(𝔅) be a group homomorphism. We call 

𝜒(𝜑) ∶= [𝑑𝑀𝛹] ∈ 𝐻𝜑
3(�̂�, 𝑈𝑍(𝔅)) 

the characteristic class of 𝜑. 

      The following result provides a group theoretic criterion for the non-emptiness of the 

set Ext(𝔅, 𝐺, 𝜙). 
Theorem(5.2.57)[304]:Let 𝐺  be 𝑎  compact A belian group and 𝔅  𝑎  unital 𝐶∗ -algebra. 

Furthermore, let 𝜑: �̂� → Pic(𝔅) be a group homomorphism. Then Ext(𝔅,𝐺, 𝜑) is non-

empty if and only if the class 𝜒(𝜑) ∈ 𝐻𝜑
3(�̂�, 𝑈𝑍(𝔅)) vanishes. 

Proof:(⇒) Suppose first that Ext(𝔅,𝐺, 𝜑) is non-empty and let (𝒜, 𝐺, 𝛼) be a free 𝐶∗-

dynamical system representing an element in Ext(𝔅, 𝐺, 𝜑). Then (𝒜, G, α) gives rise to a 

factor system for the map 𝜑 of the form (𝐴(𝜋),𝑚𝜋,𝜌)𝜋,𝜌∈�̂�   and the associativity of the 
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multiplication implies that the corresponding characteristic class 𝜒(𝜑) ∈ 𝐻𝜑
3(�̂�, 𝑈𝑍(𝔅)) 

vanishes.  

     (⇐) Let (𝑀𝜋)𝜋∈�̂� be a family of Morita equivalence 𝔅−𝔅-bimodules and 

(𝛹𝜋,𝜌 ∶ 𝑀𝜋 ⊗̂ 𝔅 𝑀𝜌 → 𝑀𝜋+𝜌)𝜋,𝜌∈�̂� 

a family of Morita equivalence 𝔅−𝔅  -bimodules isomorphisms as described in the 

introduction. Furthermore, suppose, conversely, that the class 

𝜒(𝜑) = [𝑑𝑀𝛹] ∈ 𝐻𝜑
3(�̂�, 𝑈𝑍(𝔅)) 

vanishes. Then there exists an element ℎ ∈ 𝐶2(�̂�, 𝑈𝑍(𝔅)) with 𝑑𝑀𝛹 = 𝑑𝜑ℎ
−1 which can 

be use to define a family (𝛹𝜋,𝜌
′ : 𝑀𝜋  ⊗̂ 𝔅 𝑀𝜌 → 𝑀𝜋+𝜌)𝜋,𝜌∈�̂�  of Morita equivalence 

bimodule 𝔅−𝔅 -isomorphism by 

𝛹𝜋,𝜌
′ ∶=  ℎ(𝜋, 𝜌)𝛹𝜋,𝜌. 

The construction implies that 𝑑𝑀𝛹
′ = 𝕝𝔅. In particular, it follows that (𝑀𝜋 , 𝛹𝜋,𝜌

′ )𝜋,𝜌∈�̂� is a 

factor system for the map 𝜑 and we can finally conclude from Theorem (5.2.42) that the 

set Ext(𝔅, 𝐺, 𝜑) is non-empty. 

Remark (5.2.58)[304]:The group of outer automorphisms Out (𝔅) is always a subgroup 

of the Picard group Pic(𝔅). The intention of this remark is to describe the elements of the 

set Ext(𝔅, 𝐺, 𝜑) for a given group homomorphism 𝜑: �̂� → 𝑂𝑢𝑡(𝔅). For this purpose, let 

(𝒜, 𝐺, 𝛼) be a free 𝐶∗-dynamical system representing an element of Ext(𝔅, 𝐺, 𝜑)  Then it 

is not hard to see that each isotypic component contains an invertible element in 𝒜. In 

fact, it follows from Corollary (5.2.11) that the map 

𝐴(−𝜋) ⊗̂ 𝔅 𝐴(𝜋) → 𝔅, 𝑥 ⊗𝔅  𝑦 ↦ 𝑥𝑦                                      (25) 
is an isomorphism of Morita equivalence 𝔅−𝔅-bimodules for all 𝜋 ∈ �̂�. Moreover, the 

assumption on 𝜑 implies that for each 𝜋 ∈ 𝐺 we have 𝜑(𝜋) = [𝐴(𝜋)]; that is, there is an 

automorphism 𝑆(𝜋) ∈ Aut (𝔅)  and an isomorphism 𝑇𝜋:𝑀𝑆(𝜋) → 𝐴(𝜋)  of  Morita 

equivalence 𝔅−𝔅  -bimodules. If we now define 𝑢𝜋: = 𝑇𝜋(𝕝𝔅) , then a few moments 

thought shows that 

𝐴(𝜋) = 𝑢𝜋𝔅 = 𝔅𝑢𝜋 , 
from which we conclude together with equation (25) that 

𝑢𝜋𝔅𝑢−𝜋 = 𝑢−𝜋𝔅𝑢𝜋 = 𝔅. 
Consequently, the element 𝑢𝜋 ∈ 𝐴(𝜋) is invertible in 𝒜. Conversely, let (𝒜, 𝐺, 𝛼) be a 

𝐶∗-dynamical system such that each isotypic component contains an invertible element. 

Then it is easily verified that (𝒜, 𝐺, 𝛼)  is free and that the corresponding group 

homomorphism 𝜑𝒜: �̂� → Pic(𝔅)  from Proposition (5.2.26) takes values in Out (𝔅) . 

Indeed, if for every 𝜋 ∈ �̂�  we have an element 𝑢𝜋 ∈ 𝐴(𝜋) that is invertible in 𝒜, then 

𝐴(𝜋) = 𝑢𝜋𝔅 = 𝔅𝑢𝜋, and the map (25) is an isomorphism of Morita equivalence 𝔅−𝔅 -

bimodules. In particular, (𝒜, 𝐺, 𝛼) represents an element in Ext(𝔅,𝐺, 𝜑𝒜). 
       𝐶∗ -dynamical systems with the property that each isotypic component contains 

invertible elements have been studied, for example, in [170], [338], [340], [302] and may 

be considered as a noncommutative version of trivial principal bundles (cf. Remark 

(5.2.15)). 

Remark (5.2.59)[304]: The aim of the following discussion is to explain how to classify 

the 𝐶∗-dynamical systems described. Indeed, let (𝒜, 𝐺, 𝛼)  be a 𝐶∗-dynamical system such 

that each isotypic component contains an invertible element. Furthermore, let (𝑢𝜋)𝜋∈�̂� be 
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a family of unitaries with 𝑢𝜋 ∈ 𝐴(𝜋) and 𝑢0 = 𝕝𝔅 . Then the maps  𝑆: �̂� → 𝐴𝑢𝑡(𝔅) and 

𝜔: �̂� × �̂� → 𝑈(𝔅) given by 

𝑆(𝜋)(𝑏) ∶=  𝑢𝜋𝑏        𝑎𝑛𝑑𝜋
∗     𝜔(𝜋, 𝜎) ∶=  𝑢𝜋 𝑢𝜌 𝑢𝜋+𝜌

∗ , 

give rise to an element (𝑆, 𝜔) ∈ 𝐶1(�̂�, 𝐴𝑢𝑡(𝔅)) × 𝐶2(�̂�, 𝑈(𝔅)) satisfying for all 𝜋, 𝜌, 𝜎 ∈
�̂� and 𝑏 ∈ 𝔅 the relations 

𝑆(𝜋)(𝜔(𝜌, 𝜎))𝜔(𝜋, 𝜌 + 𝜎) = 𝜔(𝜋 + 𝜌, 𝜎)𝜔(𝜋, 𝜌)                                (26) 

𝑆(𝜋)(𝑆(𝜌)(𝑏)) = 𝜔(𝜋, 𝜌)𝑆(𝜋 + 𝜌)(𝑏)𝜔(𝜋, 𝜌)∗ .                               (27) 

Conversely, each pair (𝑆, 𝜔) ∈ 𝐶1(�̂�, 𝐴𝑢𝑡(𝔅)) × 𝐶2(�̂�, 𝑈(𝔅)) satisfying, for all 𝜋, 𝜌, 𝜎 ∈
�̂� and 𝑏 ∈ 𝔅, the relations (25) and (27) defines a factor system (𝑀𝜋)𝜋∈�̂�  and (𝛹𝜋,𝜌)𝜋,𝜌∈�̂� 

given by 𝑀𝜋: = 𝑀𝑆(𝜋) and 

𝛹𝜋,𝜌(𝑏 ⊗𝔅  𝑏
′) ∶= 𝑏𝑆(𝜋)(𝑏′)𝜔(𝜋, 𝜌). 

The associated free 𝐶∗-dynamical system represents an element of Ext(𝔅,𝐺, 𝜑) with 𝜑 ∶=
pr𝔅 ∘ 𝑆: �̂� → Out(𝔅) , where pr𝔅: Aut(𝔅) → Out(𝔅)  denotes the canonical quotient 

homomorphism. It is worth pointing out that in this situation, the involution can be 

expressed explicitly in terms of the pair (𝑆, 𝜔). 
      Let 𝑃  and 𝑋  be compact spaces. Let 𝐺  be a compact group. Each locally trivial 

principal bundle (𝑃, 𝑋, 𝐺, 𝑞, 𝜎)  can be considered as a geometric object that is glued 

together from local pieces which are trivial, i.e., which are of the form 𝑈 × 𝐺 for some 

small open subset 𝑈 of 𝑋. This approach immediately leads to the concept of 

𝐺-valued cocycles and therefore to a cohomology theory, called the Čech cohomology for 

the pair (𝑋, 𝐺). This cohomology theory gives a complete classification of locally trivial 

principal bundles with structure group 𝐺 and base space 𝑋 (see [336]). On the other hand, 

Theorem (5.2.4) implies that each locally trivial principal bundle (𝑃, 𝑋, 𝐺, 𝑞, 𝜎) gives rise 

to a free 𝐶∗-dynamical system (𝐶(𝑃), 𝐺, 𝛼𝜎) and it is therefore natural to ask how the 

Čech cohomology for the pair (𝑋, 𝐺) is related to our previous classification theory. But 

since our construction is global in nature, it is not obvious how to encode local triviality in 

our factor system approach (though we recall that in the smooth category there is a one-to-

one correspondence between free actions and locally trivial principal bundles). For this 

reason we now focus our attention on topological principal bundles, a notion of principal 

bundles which need not be locally trivial.  

Definition (5.2.60)[304]: 

   i.  Let 𝑃 be a compact space and 𝐺 a compact group. We call a continuous action 𝜎: 𝑃 ×
𝐺 → 𝑃  which is free a topological principal bundle or, more precisely, a topological 

principal 𝐺-bundle over 𝑋:= 𝑃/𝐺. 

   ii. We call two topological principal bundles 𝜎: 𝑃 × 𝐺 → 𝑃 and 𝜎′: 𝑃′ × 𝐺 → 𝑃′_over 

𝑋 equivalent if there is a 𝐺-equivariant homeomorphism ℎ ∶ 𝑃 → 𝑃′such that the induced 

map on 𝑋 is the identity. 

     We now come back to our 𝐶∗-algebraic setting. Let 𝐺 be a compact A belian group and 

𝜎: 𝑃 × 𝐺 → 𝑃  a topological principal 𝐺 -bundle over  𝑋 . Then for 𝜋 ∈ �̂�  the isotypic 

component 𝐶(𝑃)(𝜋)  is a finitely generated and projective 𝐶(𝑋)-module ac-cording to 

Theorem (5.2.5). Therefore, the Theorem of Serre and Swan (cf.[174]) gives rise to a 

locally trivial complex line bundle 𝕍𝜋 over 𝑋 such that 𝐶(𝑃)(𝜋) as a right 𝐶(𝑋)-module is 

isomorphic to the corresponding space 𝛤𝕍𝜋  of continuous. We point out that this 

isomorphism can be extended to an isomorphism between Morita equivalence 𝐶(𝑋) −
𝐶(𝑋)-bimodules. In what follows we identify the class of 𝐶(𝑃)(𝜋) in Pic(𝐶(𝑋)) with the 
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class of the corresponding complex line bundle 𝕍𝜋  in Pic(𝑋) . Then the group 

homomorphism 𝜑: �̂� → Pic(𝐶(𝑋))  induced by the topological principal bundle 𝜎: 𝑃 ×
𝐺 → 𝑃 is given by  

𝜑(𝜋) =  [𝕍𝜋] ∈ Pic(𝑋) ⊆ Pic(𝐶(𝑋)) 
(cf. Example (5.2.25) and Proposition (5.2.26)). In particular, the  𝐺-module structure on 

the unitary group 𝑈(𝐶(𝑋)) = 𝐶(𝑋, 𝑇)  induced by this group homomorphism is trivial 

since the left and right action of 𝐶(𝑋) on 𝐶(𝑃)(𝜋) commute. At this point it is useful to 

introduce the following definition. 

Definition (5.2.61)[304]: Let 𝐺  be a compact A belian group and 𝑋 a compact space. 

Furthermore, let 𝜑 ∶ �̂� → Pic(𝑋)  be a group homomorphism. We denote by Exttop 

(𝑋, 𝐺, 𝜑) the subset of  Ext(𝐶(𝑋), 𝐺, 𝜑) describing the topological principal 𝐺 -bundles 

over 𝑋 inducing the map 𝜑. 

     We continue with a compact space 𝑋 and a group homomorphism 𝜑: �̂� → Pic(𝑋)  ⊆
Pic(𝐶(𝑋)). Given a factor system (𝑀𝜋 , 𝛹𝜋,𝜌)𝜋,𝜌∈�̂� for the map 𝜑, the canonical flip 

𝑓𝑙𝜋,𝜌 ∶ 𝑀𝜋 ⊗̂𝐶(𝑋) 𝑀𝜌 → 𝑀𝜌 ⊗̂𝐶(𝑋) 𝑀𝜋 , 𝑥 ⊗𝐶(𝑋)  𝑦 ↦ 𝑦⊗𝐶(𝑋) 𝑥 

defines an isomorphism of Morita equivalence 𝐶(𝑋) − 𝐶(𝑋)-bimodules for all 𝜋, 𝜌 ∈ �̂�. 

In particular, we may examine, for all  𝜋, 𝜌 ∈ �̂�, the automorphism 

𝐶𝑀𝛹(𝜋, 𝜌) ∶= 𝛹𝜌,𝜋 ∘ 𝑓𝑙𝜋,𝜌 ∘ 𝛹𝜋,𝜌
+  

of the Morita equivalence 𝐶(𝑋)  − 𝐶(𝑋) -bimodule 𝑀𝜋+𝜌 . According to Proposition 

(5.2.47), the map 𝐶𝑀𝛹 can be considered as a normalized 2-cochain on �̂� with values in 

𝐶(𝑋, 𝕋), i.e., as an element in 𝐶2(�̂�, 𝐶(𝑋, 𝑇)). In fact, even more is true: 

Lemma (5.2.62)[304]: The map 𝐶𝑀𝛹  defines an 𝑎ntisymmetric element in 𝑍2(�̂�, 𝐶(𝑋,
𝕋)). 
Proof: It is obvious that the map 𝐶𝑀𝛹 satisfies 𝐶𝑀𝛹(𝜌, 𝜋) = 𝐶𝑀𝛹(𝜋, 𝜌)

∗ for all 𝜋, 𝜌 ∈ �̂�. 

In order to verify that 𝐶𝑀𝛹 defines an element in 𝑍2(�̂�, 𝐶(𝑋, 𝕋)) we have to show that 

𝐶𝑀𝛹(𝜌, 𝜎)𝐶𝑀𝛹(𝜋, 𝜌 + 𝜎) = 𝐶𝑀𝛹(𝜋 + 𝜌, 𝜎)𝐶𝑀𝛹(𝜋, 𝜌)                                      (28) 
holds for all 𝜋, 𝜌, 𝜎 ∈ 𝐺. Indeed, explicit computations using the factor system property, 

equation (21), show that 

𝛹𝜎+𝜌,𝜋 ∘ (𝛹𝜎,𝜌 ⊗𝐶(𝑋) id𝜋) =  𝐶𝑀𝛹(𝜌, 𝜎)𝐶𝑀𝛹(𝜋, 𝜌 + 𝜎)𝛹𝜋,𝜎+𝜌 ∘ (id𝜋 ⊗𝐶(𝑋) 𝛹𝜌,𝜎)(29) 

and  

𝛹𝜎,𝜌+𝜋 ∘ (id𝜎 ⊗𝐶(𝑋) 𝛹𝜌,𝜋) = 𝐶𝑀𝛹(𝜋, 𝜌)𝐶𝑀𝛹(𝜋 + 𝜌, 𝜎)𝛹𝜋+𝜌,𝜎 ∘ (𝛹𝜋,𝜌 ⊗𝐶(𝑋) id𝜋)  (30) 

hold for all 𝜋, 𝜌, 𝜎 ∈ �̂� . Again using equation (21) to the right-hand side of the later 

expression finally leads to the desired 2-cocycle condition (28). 

Lemma(5.2.63)[304]: For equivalent factor systems (𝑀𝜋 , 𝛹𝜋,𝜌)𝜋,𝜌∈�̂� and (𝑀𝜋
′ , 𝛹𝜋,𝜌

′ )𝜋,𝜌∈�̂�  

we have 

𝐶𝑀′𝛹′ = 𝐶𝑀𝛹. 
Proof: By assumption there is a family (𝑇𝜋:𝑀𝜋 → 𝑀𝜋

′ )𝜋∈�̂�  of Morita equivalence 𝐶(𝑋) −
𝐶(𝑋)-bimodule isomorphisms satisfying 

𝛹𝜋,𝜌
′ : = 𝑇𝜋+𝜌 ∘ 𝛹𝜋,𝜌 ∘ (𝑇𝜋

+ ⊗𝐶(𝑋) 𝑇𝜌
+).  

Therefore, an explicit computation shows that for all 𝜋, 𝜌 ∈ �̂� we have 

𝐶𝑀′𝛹′(𝜋, 𝜌) = 𝛹𝜌,𝜋
′ ∘ 𝑓𝑙𝜋,𝜌

′ ∘ 𝛹 𝜋,𝜌
′+                                                                                             

                        = 𝑇𝜌+𝜋 ∘ 𝛹𝜌,𝜋 ∘ (𝑇𝜌
+ ⊗𝐶(𝑋)  𝑇𝜋

+) ∘ 𝑓𝑙𝜋,𝜌
′ ∘ (𝑇𝜋 ⊗𝐶(𝑋) 𝑇𝜌) ∘ 𝛹𝜋,𝜌

+  ∘ 𝑇𝜋+𝜌
+  

= 𝑇𝜌+𝜋 ∘ 𝛹𝜌,𝜋 ∘ 𝑓𝑙𝜋,𝜌 ∘ 𝛹𝜋,𝜌
+ ∘ 𝑇𝜋+𝜌

+ = 𝐶𝑀𝛹(𝜋, 𝜌)                
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Lemma (5.2.64)[304]: Let (𝑀𝜋 ,  𝛹𝜋,𝜌)𝜋,𝜌∈�̂� and (𝑀𝜋
′ , 𝛹𝜋,𝜌

′ )𝜋,𝜌∈�̂� be two factor systems for 

the map 𝜑. Then there exists an element 𝜔 ∈ 𝑍2(�̂�, 𝐶(𝑋, 𝕋)) satisfying for all 𝜋, 𝜌 ∈ �̂� 

𝐶𝑀′𝛹′(𝜋, 𝜌) = 𝜔(𝜋, 𝜌)𝜔(𝜌, 𝜋)∗𝐶𝑀𝛹(𝜋, 𝜌). 
Proof: To verify the assertion we use Theorem (5.2.51), which implies that the factor 

system (𝑀𝜋
′ , 𝛹𝜋,𝜌

′ )𝜋,𝜌∈�̂�  is equivalent to a factor system of the form 

(𝑀𝜋 , 𝜔(𝜋, 𝜌)𝛹𝜋,𝜌)𝜋,𝜌∈�̂�  for some 2-cocycle 𝜔 ∈ 𝑍2( �̂�, 𝐶(𝑋, 𝕋)) . In particular, we 

conclude from Lemma (5.2.63) and a short calculation that 

𝐶𝑀′𝛹′(𝜋, 𝜌) = 𝐶𝑀(𝜔𝛹)(𝜋, 𝜌) = (𝜔𝛹)𝜌,𝜋 ∘ 𝑓𝑙𝜋,𝜌 ∘ (𝜔𝛹)𝜋,𝜌
+

=  𝜔(𝜌, 𝜋)𝜔(𝜋, 𝜌)∗𝐶𝑀𝛹(𝜋, 𝜌) 
holds for all 𝜋, 𝜌 ∈ �̂�. 
      Let us denote by Alt2( �̂�, 𝐶(𝑋, 𝕋)) the group of biadditive maps  �̂� × �̂� → 𝐶(𝑋, 𝕋) 
that vanish on the diagonal. Then a few moments thought shows that each element 𝜔 ∈
𝑍2( �̂�, 𝐶(𝑋, 𝕋)) gives rise to an element 𝜆𝜔 ∈ Alt2(�̂�, 𝐶(𝑋, 𝕋)) defined by 

𝜆𝜔(𝜋, 𝜌 ∶= 𝜔(𝜋, 𝜌) 𝜔(𝜌, 𝜋)∗, 
which only depends on the class [𝜔] ∈ 𝐻2(�̂�, 𝐶(𝑋, 𝕋)). In particular, we obtain a group 

homomorphism  

𝜆:𝐻2( �̂�, 𝐶(𝑋, 𝕋)) → Alt2( �̂�, 𝐶(𝑋, 𝕋)), [𝜔] ⟼ 𝜆𝜔 

whose kernel is given by the subgroup 𝐻𝑎𝑏
2 (�̂�, 𝐶(𝑋, 𝕋)) of  𝐻2(�̂�, 𝐶(𝑋, 𝕋)) describing the 

A belian extensions of  �̂� by 𝐶(𝑋, 𝕋). We recall from [330] that the corresponding short 

exact sequence 

0 ⟶ 𝐻𝑎𝑏
2 (�̂�, 𝐶(𝑋, 𝕋)) ⟶ 𝐻2( �̂�, 𝐶(𝑋, 𝕋))  

𝜆
→

 

Alt2( �̂�, 𝐶(𝑋, 𝕋)) ⟶ 0 

is split. Moreover, we write pr𝑎𝑏: 𝐻
2( �̂�, 𝐶(𝑋, 𝕋)) → 𝐻𝑎𝑏

2 (�̂�, 𝐶(𝑋, 𝕋))  for the induced 

projection map. 

Proposition (5.2.65)[304]: The class pr𝑎𝑏([𝐶𝑀𝛹] ∈ 𝐻𝑎𝑏
2 (�̂�, 𝐶(𝑋, 𝕋)) does not depend on 

the choice of the factor system and is therefore an invariant for the set Ext(𝐶(𝑋), 𝐺, 𝜑).  
Proof: Let (𝑀𝜋 , 𝛹𝜋,𝜌)𝜋,𝜌∈�̂�  and (𝑀𝜋

′ ,  𝛹𝜋,𝜌
′ )𝜋,𝜌∈�̂�  be two factor systems for the map 𝜑 . 

Then it follows from Lemma (5.2.64) and the construction of the map pr𝑎𝑏 that 

pr𝑎𝑏([𝐶𝑀′𝛹′]) = pr𝑎𝑏([𝜆𝜔𝐶𝑀𝛹]) = pr𝑎𝑏([𝜆𝜔][𝐶𝑀𝛹]) = pr𝑎𝑏([𝐶𝑀𝛹]). 
Definition (5.2.66)[304]: Let 𝜑 ∶ �̂� → Pic(𝑋) be a group homomorphism. Then we call 

𝜒2(𝜑) ∶= pr𝑎𝑏([𝐶𝑀𝛹]) ∈ 𝐻𝑎𝑏
2 (�̂�, 𝐶(𝑋, 𝕋)) 

the secondary characteristic class of 𝜑. 

       The next result provides a group theoretic criterion for the existence of topological 

principal 𝐺-bundle over 𝑋. 

Theorem (5.2.67)[304]: Let 𝐺  be a compact A belian group and 𝑋  a compact space. 

Furthermore, let 𝜑: �̂� → Pic(𝑋) be a group homomorphism. Then the following statements 

are equivalent: 

(a) The set Exttop (𝑋, 𝐺, 𝜑)  is non-empty, that is, there exists a topological principal 

bundle       𝜎: 𝑃 × 𝐺 → 𝑃 over 𝑋 representing an element of  Exttop (𝑋, 𝐺, 𝜑). 

(b) The map 𝜑 satisfies the following two conditions in the indicated order:  

      (b1) The class 𝜒(𝜑) ∈ 𝐻3(�̂�, 𝐶(𝑋, 𝕋)) vanishes. 

      (b2) Furthermore, the class 𝐻3(�̂�, 𝐶(𝑋, 𝕋))  vanishes.  

Proof: Suppose first that the set Exttop (𝑋, 𝐺, 𝜑). is non-empty. Then Theorem (5.2.57) 

implies that the characteristic class 𝜒(𝜑) in 𝐻3(�̂�, 𝐶(𝑋, 𝕋)) vanishes. To verify that the 

class 𝜒2(𝜑) ∈ 𝐻𝑎𝑏
2 (�̂�, 𝐶(𝑋, 𝕋))  vanishes, let 𝜎: 𝑃 × 𝐺 → 𝑃  be a topological principal 
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bundle over 𝑋  representing an element of  Exttop (𝑋, 𝐺, 𝜑). Then the canonical factor 

system of the associated free 𝐶∗-dynamical system (𝐶(𝑃), 𝐺, 𝛼𝜎)(cf. Theorem (5.2.4)) is 

given by  

𝛹𝜋,𝜌 ∶ 𝐶(𝑃)(𝜋) ⊗̂𝐶(𝑋) 𝐶(𝑃)(𝜌) → 𝐶(𝑃)(𝜋 +  𝜌),     𝑓 ⊗𝐶(𝑋)  𝑔 → 𝑓𝑔.  

Therefore, the claim follows from the commutativity of 𝐶(𝑃) since we have 

𝛹𝜋,𝜌(𝑓 ⊗𝐶(𝑋) 𝑔) = 𝑓𝑔 = 𝑔𝑓 = 𝛹𝜌,𝜋(𝑔⊗𝐶(𝑋) 𝑓) 

for all  𝑓 ∈ 𝐶(𝑃)(𝜋) and 𝑔 ∈ 𝐶(𝑃)(𝜌), i.e., 𝐶𝑀𝛹 = 𝕝𝐶(𝑋). 

      If, conversely, condition (b1) is satisfied, then it follows from Theorem (5.2.57) that 

there is a free 𝐶∗-dynamical system (𝒜, 𝐺, 𝛼) representing an element of Ext(𝐶(𝑋), 𝐺, 𝜑). 
Let (𝑀𝜋, 𝛹𝜋,𝜌)𝜋,𝜌∈�̂� be its associated factor system. We then use condition (b2) to find an 

element 𝜔 ∈ 𝑍2(�̂�, 𝐶(𝑋, 𝕋)) such that 

𝜆𝜔∗ = 𝐶𝑀𝛹 ∈ Alt2 (�̂�, 𝐶(𝑋, 𝕋)).                                     

Consequently, the corresponding factor system (𝑀𝜋 , 𝜔(𝜋, 𝜌)𝛹𝜋,𝜌)𝜋,𝜌∈�̂�  has the property 

𝐶𝑀(𝜔𝛹) = 𝕝𝐶(𝑋), that is, its associated free 𝐶∗-dynamical system is equivalent to one of 

the form (𝐶(𝑃), 𝐺, 𝛼𝜎) induced by some topological principal bundle 𝜎: 𝑃 × 𝐺 → 𝑃 over 

𝑋. 
      The following statement provides a classification of topological principal G-bundles 

over 𝑋. It is a consequence of Corollary (5.2.52) and Lemma (5.2.64). 

Corollary (5.2.68)[304]: Let 𝐺  be a compact A belian group and 𝑋  a compact space. 

Furthermore, let 𝜑: �̂� → Pic(𝑋)  be a group homomorphism with Exttop (𝑋, 𝐺, 𝜑) ≠ ∅ . 

Then the map 

𝐻𝑎𝑏
2 (�̂�, 𝐶(𝑋, 𝕋)) × Exttop(𝑋, 𝐺, 𝜑) → Exttop(𝑋, 𝐺, 𝜑), ([𝜔], [ 𝑃(𝑀,𝛹)]) ↦ [𝑃(𝑀,𝜔𝛹)] 

is a well-defined simply transitive action, where 𝑃(𝑀,𝛹) denotes the topological principal 

bundle associated to a given factor system (𝑀,𝛹) ∶= (𝑀𝜋 , 𝛹𝜋,𝜌)𝜋,𝜌∈�̂�.  

     We conclude with a few words on how our previous results relates to the Čech 

cohomology for the pair (𝑋, 𝐺) classifying locally trivial principal 𝐺-bundles over  𝑋. 

Example (5.2.69)[304]: Let 𝐺 be a compact A belian group. Furthermore, let  𝕄𝑚(ℂ) be 

the 𝐶∗-algebra of 𝑚 ×𝑚 matrices and recall that its natural representation on ℂ𝑚 is, up to 

equivalence, the only irreducible representation of 𝕄𝑚(ℂ). Therefore, it follows from 

Example (5.2.25) that Pic(𝕄𝑚(ℂ)) is trivial. In particular, there is only the trivial group 

homomorphism from �̂�  to Pic (𝕄𝑚(ℂ))  and a realization is given by the free 𝐶∗ -

dynamical system 

(𝐶(𝐺, (𝕄𝑚(ℂ)), 𝐺, 𝑟𝑡 ⊗ id𝕄𝑛(ℂ)), 

where 

𝑟𝑡: 𝐺 × 𝐶(𝐺) → 𝐶(𝐺), 𝑟𝑡(𝑔, 𝑓)(ℎ) ∶= 𝑓(ℎ𝑔) 
denotes the right-translation action by 𝐺. Moreover, we conclude from Corollary (5.2.52) 

that all free actions of 𝐺  with fixed point algebra 𝕄𝑚(ℂ)  are parametrized by the 

cohomology group 𝐻2(𝐺, 𝑇) . In the case 𝐺 = 𝕋𝑛, 𝑛 ∈ ℕ , this cohomology group is 

isomorphic to 𝕋
1
2
𝑛(𝑛−1) and parametrizes the free actions given by tensor products of the 

noncommutative n-tori endowed with their natural 𝕋𝑛-action (cf. Example (5.2.12)) and 

the 𝐶∗-algebra 𝕄𝑚(ℂ). 
Example (5.2.70)[304]: Consider the 2-fold direct sum 𝕄2(ℂ)⊕𝕄2(ℂ) and notice that 

the group (𝑈𝑍𝕄2(ℂ)⊕𝕄2(ℂ)) is isomorphic to 𝕋2 . Since the spectrum of 𝕄2(ℂ)⊕
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𝕄2(ℂ) contains two elements, it follows from Example (5.2.25) that Pic𝕄2(ℂ)⊕𝕄2(ℂ) 
is isomorphic to ℤ2.  If  𝜑 ∶ ℤ → ℤ2  denote the canonical group homomorphism with 

kernel 2ℤ, then it is a consequence of [326] that the cohomology groups 𝐻𝜑
2(ℤ,𝕋2) and 

𝐻𝜑
3(ℤ, 𝕋2) are trivial. Therefore, Theorem (5.2.57) implies that the set Ext(𝕄𝑚(ℂ).⊕

𝕄𝑚(ℂ). , 𝕋, 𝜑)  is non-empty and contains according to Corollary (5.2.52) exactly one 

element, namely the class of the trivial system 

(𝐶(𝕋,𝕄2(ℂ)⊕𝕄2(ℂ), 𝕋, rt ⊗ id). 
Example(5.2.71)[304]: For the following discussion we recall the notation from Example 

(5.2.12). Let 𝕋𝜃
2  be the noncommutative n-torus defined by the real skew-symmetric 𝑛 × 𝑛 

matrix 𝜃 and let 𝜔1be the corresponding 𝕋-valued 2-cocycle on ℤ𝑛 given for 𝑘, 𝑘′ ∈ ℤ𝑛 by 

𝜔1(𝑘, 𝑘
′):= 𝑒𝑥𝑝(𝕔𝑛〈𝜃𝑘, 𝑘′〉). 

Furthermore, let 𝑆: ℤ𝑚 → Aut(𝕋𝜃
𝑛)  be a group homomorphism leaving the isotypic 

components of 𝕋𝜃
𝑛 (with respect to the canonical gauge action by 𝕋𝑛) invariant, i.e., such 

that for all 𝐼 ∈ ℤ𝑚 and 𝑘 ∈ ℤ𝑛  

𝑆(𝐼)𝑈𝑘 = 𝑐𝐼,𝑘𝑈𝑘 

for some 𝑐𝐼,𝑘 ∈ 𝕋 . Then, given another   𝕋-valued 2-cocycle 𝜔2  on  ℤ𝑚 , that the pair 

(𝑆, 𝜔2) gives rise to a factor system for the group homomorphism 𝜑:= pr𝕋𝜃
𝑛 ∘ 𝑆: ℤ𝑚 →

Pic(𝕋𝜃
𝑛) . Moreover, it is easily seen that the associated free 𝐶∗ -dynamical system is 

equivalent to the free 𝐶∗ -dynamical system (𝕋𝜃′
𝑛+𝑚, 𝕋𝑚, 𝛼) , where 𝕋𝜃′

𝑛+𝑚  denotes the 

noncommutative (𝑛 +𝑚)-torus determined by the 𝕋-valued 2-cocycle on ℤ𝑛+𝑚 given for 

𝑘, 𝑘′ ∈ ℤ𝑛 and  I, I′ ∈ ℤ𝑚 by  

𝜔 (𝑘, I), (𝑘′, I′) ∶=  𝑐I,𝑘′𝜔1(𝑘, 𝑘
′)𝜔2(I, I

′) 

and 𝛼 is the restriction of the gauge action 𝛼𝜃′
𝑛+𝑚 to the closed subgroup 𝕋𝑚  of 𝕋𝑛+𝑚 . 

That (𝛼𝜃′
𝑛+𝑚 , 𝕋𝑚, 𝛼) is actually free is a consequence of  Proposition (5.2.17). In particular, 

it represents an element in Ext (𝕋𝜃
𝑛, 𝕋𝑚, 𝜑)  which is, according to Corollary(5.2.52), 

parametrized by the cohomology group 

𝐻𝜑
2(ℤ𝑚, 𝑈𝑍(𝕋𝜃

𝑛)). 

Example (5.2.72)[304]: Let 𝜃 be an irrational number in [0, 1] and 𝕋𝜃
2  the corresponding 

noncommutative 2-torus from Example (5.2.12). We recall that in this case 𝑈𝑍(𝕋𝜃
2) is 

isomorphic to 𝕋. Furthermore, let 𝜑: ℤ2 → Pic(𝕋𝜃
2) be any group homomorphism (note 

that 𝕋2 ⊆ Aut(𝕋𝜃
2)  to apply the construction in Example (5.2.71)). Then it is a 

consequence of [326] that the cohomology group 𝐻𝜑
3(ℤ2, 𝕋) is trivial. Therefore, Theorem 

(5.2.57) implies that the set Ext(𝕋𝜃
2 , 𝕋2, 𝜑)  is non-empty and, according to Corollary 

(5.2.52), parametrized by the cohomology group 𝐻𝜑
2(ℤ2, 𝕋). For its computation we refer, 

for example, to [338]. 

Example (5.2.73)[304]: Let 𝐻 be the discrete (three-dimensional) Heisenberg group and 

let (𝐶∗(𝐻), ℤ2, 𝛼) the corresponding free 𝐶∗-dynamical system from Example (5.2.13). If 

𝜙: ℤ2 →  Pic(𝐶(𝕋)) ≅ Pic(𝕋) ⋊  Homeo(𝕋) 
denotes the associated group homomorphism, then the class of (𝐶∗(𝐻), 𝕋2, 𝛼) is contained 

in the set Ext(𝐶(𝕋), 𝕋2, 𝜑)  of equivalence classes of realizations of 𝜑 , which is by 

Corollary (5.2.52) parametrized by the cohomology group 𝐻𝜑
2(ℤ2, 𝐶(𝕋, 𝕋)) . For its 

computation we refer, again, to [338]. 

Example(5.2.74)[304]: For 𝑞 ∈ [−1, 1] let (SU𝑞(2), 𝕋, 𝛼) be the quantum Hopf  fibration 

from Example (5.2.14) and 𝐿𝑞  (1) the isotypic component corresponding to 1 ∈ ℤ. If 
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𝜑: ℤ → Pic(𝑆𝑞(2)), 1 ⟼ [𝐿𝑞(1)] 

denotes the associated group homomorphism, then the class of (SU𝑞(2), 𝕋, 𝛼) is contained 

in the set Ext (𝑆𝑞(2), 𝕋, 𝜑)  of equivalence classes of realizations of 𝜑 , which is by 

Corollary (5.2.52) parametrized by the cohomology group 𝐻𝜑
2(ℤ, 𝑈𝑍(𝑆𝑞(2)). It follows, 

for example, from [326] that this cohomology group is trivial, i.e., up to isomorphism the 

quantum Hopf fibration (SU𝑞(2), 𝕋, 𝛼)  is the unique realization of the group 

homomorphism  𝜑. 

Section (5.3): Compact Quantum Groups on Unital 𝑪∗-Algebras 

A compact quantum group [176], [177] is a unital 𝐶∗-algebra  𝐻 with a given unital 

injective ∗-homorphism ∆ (referred to as comultiplication) 

∆: 𝐻 →  𝐻 ⊗𝑚𝑖𝑛 𝐻                                                (31)   
which is coassociative i.e. there is commutativity in the diagram 

 

        
(32) 

 

 

 

 

such that the two-sided cancellation property holds: 

{(𝑎 ⊗ 1) △ (𝑏)| 𝑎, 𝑏 ∈ 𝐻}𝑐𝑙𝑠 =  𝐻 ⊗𝑚𝑖𝑛 𝐻 = {△ (𝑎)(1 ⊗𝑚𝑖𝑛 𝑏)|𝑎, 𝑏 ∈ 𝐻}𝑐𝑙𝑠 . (33) 
Here ⊗min   denotes the spatial tensor product of 𝐶∗-algebras and cls denotes the closed 

linear span of a subset of a Banach space. 

Let 𝐴  be a unital 𝐶∗ -algebra and 𝛿 ∶  𝐴 →  𝐴 ⊗min  𝐻  an injective unital ∗ -

homomorphism.We call 𝛿  a coaction of 𝐻  on 𝐴 (or an action of the compact quantum 

group (𝐻, ∆) on 𝐴) if 

 (i)    (𝛿 ⊗  𝑖𝑑) ∘  𝛿 =  (𝑖𝑑 ⊗ ∆) ∘  𝛿   (coassociativity), 

(ii)    {𝛿(𝑎)(1 ⊗  ℎ) | 𝑎 ∈  𝐴, ℎ ∈  𝐻}𝑐𝑙𝑓 =  𝐴 ⊗min  𝐻  (counitality). 

By definition [161], the coaction 𝛿 is free if and only if 

{(𝑥 ⊗  1)𝛿(𝑦) | 𝑥, 𝑦 ∈  𝐴}𝑐𝑙𝑠  =  𝐴 ⊗min  𝐻.                           (34) 
Given a compact quantum group (𝐻, ∆), we denote by 𝒪(𝐻) its dense Hopf ∗-subalgebra 

spanned by the matrix coefficients of irreducible unitary corepresentations [177], [166]. 

This is Woronowicz’s Peter-Weyl theory in the case of compact quantum groups. 

Moreover, denoting by ⊗ the purely algebraic tensor product over the field C of complex 

numbers, wedefine the Peter-Weyl subalgebra of 𝐴 (cf. [167], [173]) as 

𝒫𝐻(𝐴):= {𝑎 ∈  𝐴 | 𝛿(𝑎)  ∈  𝐴 ⊗ 𝒪(𝐻) }.                           (35) 
Using the coassociativity of 𝛿 , one can check that 𝒫𝐻(𝐴)  is a right 𝒪(𝐻) -comodule 

algebra. In particular, 𝒫𝐻(𝐻)  = 𝒪(𝐻) . The assignment 𝐴 ⟼ 𝒫𝐻(𝐴)  is functorial with 

respect to equivariant unital ∗-homomorphisms and comodule algebra maps. We call it the 

Peter-Wey functor. 

Theorem (5.3.1)[148]: Let 𝐴 be a unital 𝐶∗-algebra equipped with an action of a compact 

quantum group (𝐻, ∆) given by 𝛿 ∶  𝐴 →  𝐴 ⊗min   𝐻 . Denote by 𝐵 =  𝐴𝑐𝑜𝐻 ∶=  {𝑎 ∈
 𝐴 | 𝛿(𝑎)  =  𝑎 ⊗  1} the unital 𝐶∗-subalgebra of coaction-invariants. Then the action is 

free if and only if the canonical map 

                   𝑐𝑎𝑛:𝒫𝐻(𝐴)⊗𝐵 𝒫𝐻(𝐴) → 𝒫𝐻(𝐴)⊗ 𝒪(𝐻) 
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𝑐𝑎𝑛: 𝑥 ⊗  𝑦 ⟼ (𝑥 ⊗  1)𝛿(𝑦)                          (36) 
is bijective. (Here the tensor product over an algebra denotes the purely algebraic tensor 

product over that algebra.) 

Definition (5.3.2)[148]: The action of a compact quantum group (𝐻, ∆) on a unital 𝐶∗-
algebra A satisfies the Peter-Weyl-Galois (PWG) condition iff the canonical map (36) is 

bijective. 

Our result generalizes Woronowicz’s Peter-Weyl theory from compact quantum groups to 

compact quantum principal bundles. In the spirit of the Woronowicz theory, our result 

states that the original functional analysis formulation of free action is equivalent to the 

much more algebraic PWG-condition. 

          We now proceed to explain our main result in the classical setting. Let 𝐺  be a 

compact Hausdorff topological group acting (by a continuous right action) on a compact 

Hausdorff topological space 𝑋 

 𝑋 ×  𝐺 →  𝑋.                                                                   (37) 
It is immediate that the action is free i.e. 𝑥𝑔 =  𝑥 ⇒  𝑔 =  𝑒 (where 𝑒 the identity element 

of 𝐺) if and only 

𝑋 × 𝐺 𝑋 ×𝑋/𝐺  𝑋 

 (𝑥, 𝑔) ⟼ (𝑥, 𝑥𝑔)                                                          (38) 
is a homeomorphism. 𝐻𝑒𝑟𝑒 𝑋 ×𝑋/𝐺  𝑋 is the subset of 𝑋 ×  𝑋 consisting of pairs (𝑥1, 𝑥2) 

such that 𝑥1 and 𝑥2 are in the same 𝐺-orbit. 

This is equivalent to the assertion that the ∗-homomorphism 

  𝐶 (𝑋 ×𝑋

𝐺

𝑋) →  𝐶(𝑋 ×  𝐺)                                                         (39) 

obtained from the above map (𝑥, 𝑔)  ⟼ (𝑥, 𝑥𝑔) is an isomorphism. Here, as usual, 𝐶(𝑌 ) 
denotes the commutative 𝐶∗-algebra of all continuous complex-valued functions on the 

compact Hausdorff space  . 

     In turn, the assertion that ∗-homomorphism (39) is an isomorphism is readily proved 

equivalent to 

{(𝑥 ⊗  1)𝛿(𝑦) | 𝑥, 𝑦 ∈  𝐶(𝑋)}𝑐𝑙𝑠  =  𝐶(𝑋)⊗min  𝐶(𝐺),                              (40) 
where 

𝛿: 𝐶(𝑋) →  𝐶(𝑋)⊗min  𝐶(𝐺)                                               (41) 
is the ∗-homomorphism obtained from the map 𝑋 × 𝐺 →  𝑋 via the 

formula  (𝛿(𝑓)(𝑔))(𝑥)  =  𝑓(𝑥𝑔). 
Hence in the case of a compact group acting on a compact space “free action” agrees with 

“free action” as defined in the setting of a compact quantum group acting on a unital 𝐶∗-
algebra. 

Thus we can formulate the classical case of Theorem (5.3.1) as follows. 

Theorem (5.3.3)[148]: Let 𝐺  be a compact Hausdorff group acting continuously on a 

compact Hausdorff space 𝑋. Then the action is free if and only if the canonical map 

   𝑐𝑎𝑛:𝒫𝐶(𝐺)(𝐶(𝑋))⊗𝐶(𝑋/𝐺) 𝒫𝐶 (𝐺)(𝐶(𝑋)) →                          (42) 

    𝒫𝐶(𝐺)(𝐶(𝑋)) ⊗ 𝒪(𝐶(𝐺)) 
is and isomorphism. 

     Observe that even in the above special case of a compact group acting on a compact 

space, a proof is required for the equivalence of “free action” and the bijectivity of the 

canonical map (PWG-condition). Theorem (5.3.3) brings a new algebraic tool (strong 

connection) to the realm of compact principal bundles. In this setting, the Peter-Weyl 



191 

algebra 𝒫𝐶(𝐺)(𝐶(𝑋))  is the algebra of continuous global of the associated bundle of 

algebras 𝑋 ×𝐺 𝒪(𝐶(𝐺)): 
𝒫𝐶(𝐺)(𝐶(𝑋))  =  𝛤(𝑋 ×𝐺 𝒪(𝐶(𝐺))).                                    (43) 

Here 𝒪(𝐶(𝐺)) is the subalgebra of 𝐶(𝐺) generated by matrix coefficients of irreducible 

representations of 𝐺. The algebra 𝒪(𝐶(𝐺)) is topologized as the direct limit of its finite 

dimensional subspaces. Multiplication and addition is pointwise. 

       Although Theorem (5.3.3) is a special case of Theorem (5.3.1), the proof we give of 

Theorem (5.3.3) is not a special case of the proof of Theorem (5.3.1). Therefore we treat 

Theorem (5.3.3) separately, and prove it. The proof uses the strong monoidality (i.e. 

preservation of tensor products) of the Serre-Swan Theorem. This is later reflected in the 

noncommutative setting of Theorem (5.3.14). We prove the main result (Theorem (5.3.1)) 

by taking advantage of an underlying Hilbert module structure.  

We consider the general algebraic setting of principal coactions. We prove that 

principality of a comodule algebra 𝒫 over a Hopf algebra ℋ is equivalent to the exactness 

and strong monoidality of the cotensor product functor 𝒫⊡ℋ . This framework unifies 

free actions of compact Hausdorff groups on compact Hausdorff spaces and principal 

actions of affine algebraic groups on affine schemes. Thus the main result is somewhat 

analogous to the Atiyah-Hirzebruch transplantation of 𝐾-theory from algebraic geometry 

to topology [150], [151]. 

As an application, we prove that if a unital 𝐶∗-algebra 𝐴 equipped with an action of 

a compact quantum group can be fibred over a compact Hausdorff space 𝑋 with the PWG-

condition valid on each fibre, then the PWG-condition is valid for the action on 𝐴. We end 

with an appendix observing that regularity of a finite covering is equivalent to bijectivity 

of the canonical map (42). 

The main advantage of the proof over the approximation proof in [152] is that it 

does not rely on an approximation argument which can be used only in the classical case. 

To be consistent with general notation, we should only use 𝐶∗-algebras 𝐶(𝐺), 𝐶(𝑋), etc., 

rather than spaces themselves. However, this would make formulas too cluttered, so that 

throughout we consistently omit writing 𝐶( ) in the subscript and the argument of the 

Peter-Weyl functor.  

The implication “PWG-condition ⇒ freeness” is proved as follows. The PWG-condition 

immediately implies 

 (𝒫𝐺(𝑋)  ⊗ ℂ)𝛿(𝒫𝐺(𝑋))  = 𝒫𝐺(𝑋)  ⊗ 𝒪(𝐺).                                    (44) 
As the right hand side is a dense subspace of 𝐶(𝑋)⊗min  𝐶(𝐺), we obtain the density 

condition (40). The latter is equivalent to freeness, as explained in the introduction. 

       For the converse implication “PWG-condition ⇐ freeness” we shall use the Serre-

Swan theorem. 

Theorem (5.3.4)[148]: ([174]). Let 𝑌 be a compact Hausdorff topological space. Then a 

𝐶(𝑌 )-module is finitely generated and projective if and only if it is isomorphic to the 

module of continuous global sections of a vector bundle over 𝑌. 

    For a compact Hausdorff topological space 𝑌, we denote by Vect(𝑌 ) the category of ℂ 

vector bundle on 𝑌 . An object in Vect(𝑌) is a ℂ vector bundle 𝐸 with base space 𝑌. The 

projection of 𝐸 onto 𝑌 is denoted by 𝜋 ∶  𝐸 →  𝑌. A section of 𝐸 is a continuous map 

𝑠 ∶  𝑌 →  𝐸 𝑤𝑖𝑡ℎ 𝜋 ∘  𝑠 =   𝐼𝑌  =  identity map of 𝑌.                                    (45) 
A morphism in Vect(𝑌) is a vector bundle map 

𝜑 ∶  𝐸 →  𝐹, 𝜑 ∶  𝐸𝑦  →  𝐹𝑦 ,       ∀𝑦 ∈  𝑌.                                     (46) 
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Note that 𝐸𝑦 and 𝐹𝑦 are both finite dimensional vector spaces over 𝐶 and 𝜑 ∶ 𝐸𝑦  →  𝐹𝑦 is a 

linear transformation in the sense of standard linear algebra. 

     View the commutative 𝐶∗-algebra 𝐶(𝑌 ) as a commutative ring with unit. Denote by 

FProj(𝐶(𝑌 )) the category of finitely generated projective (left) 𝐶(𝑌)-modules. An object 

in FProj(𝐶(𝑌 )) is a finitely generated projective (left) 𝐶(𝑌)-module. A morphism in 

FProj(𝐶(𝑌 )) is a map of 𝐶(𝑌)-modules 𝜓 ∶  𝑀 →  𝑁. 

If 𝐸 is a ℂ vector bundle on 𝑌, then 𝛤(𝐸) denotes the (left) 𝐶(𝑌)-module consisting of all 

(continuous) sections of 𝐸. The module structure is pointwise, i.e. for 𝑠1, 𝑠2, 𝑠 ∈ 𝛤(𝐸), 𝑓 ∈
 𝐶(𝑌 ), 𝑦 ∈  𝑌, 

(𝑠1  +  𝑠2)(𝑦) =  𝑠1(𝑦) + 𝑠2(𝑦),     (𝑓𝑠)(𝑦)  =  𝑓 (𝑦)𝑠(𝑦).                                    (47) 
According to the Serre-Swan theorem, the functor 𝛤 

𝑉𝑒𝑐𝑡(𝑌) → 𝐹𝑃𝑟𝑜𝑗(𝐶(𝑌)), 𝐸 ⟼  𝛤(𝐸),                                    (48) 
is an equivalence of categories and preserves all the basic properties of the two categories. 

In particular, 𝐸 ⟼  𝛤(𝐸) preserves ⊕ and ⊗: 

 𝛤(𝐸 ⊕  𝐹 )  =  𝛤(𝐸)  ⊕  𝛤(𝐹 ),                                    (49) 

 𝛤(𝐸 ⊗  𝐹 ) =  𝛤(𝐸)𝑎𝑙𝑔⊗𝐶(𝑌)
𝑎𝑙𝑔

𝛤(𝐹 ).                                    (50) 

In order to prove  action of 𝐺 on 𝑋 is free ⇒ 𝒫𝐺(𝑋)⊗𝐶(𝑋/𝐺)
𝑎𝑙𝑔

𝒫𝐺(𝑋) → 𝒫𝐺(𝑋)⊗ℂ
𝑎𝑙𝑔

𝒪(𝐺) 

is an isomorphism we shall use a (very slight) extension of Serre-Swan. The extension is 

that each category will be replaced by its minimal enlargement which admits countable 

direct sums. 

     On the 𝐶(𝑌) -module side, let FProj (𝐶(𝑌))
⊕

 be the minimal enlargement of 

FProj(𝐶(𝑌)) which allows countable direct sums. An object in FProj(𝐶(𝑌 ))
⊕

 is a 𝐶(𝑌)-

module 𝑀 such that 

∃ finitely generated projective 𝐶(𝑌)-modules 

                     𝑃0, 𝑃1, 𝑃2, . .. with 𝑀 ≅  𝑃0 ⊕  𝑃1 ⊕  𝑃2 ⊕ · · ·  .                                    (51) 

A morphism in FProj (𝐶(𝑌 ))
⊕

 is a map of 𝐶(𝑌 ) -modules 𝜓 ∶  𝑀 →  𝑁 . 

      On the vector bundle side, we will have vector bundles 𝐸 on 𝑌 such that each fiber 𝐸𝑦 

is a ℂ vector space which admits a countable (or finite) basis. The bundle 𝐸 is required to 

satisfy: 

∃  𝐸0  ⊆  𝐸1  ⊆  𝐸2  ⊆ · · · ⊆  𝐸                                    (52) 
with: 

•  Each 𝐸𝑗  is an ordinary (i.e. finite-dimensional fibers) vector bundle on 𝑌  and is a 

subvector-bundle of 𝐸. 

• ∪𝑗  𝐸𝑗  =  𝐸 . 

• Each 𝐸𝑗 is a closed subset of 𝐸. 

• 𝐸  has the direct limit topology, i.e. a subset Ω  of 𝐸  is closed if and only if ∀𝑗 =
 0, 1, 2, . . . Ω ∩ 𝐸𝑗 is a closed subset of 𝐸𝑗. 

Equivalently, the condition on E is: ∃  ordinary vector bundles (i.e. finite-dimensional 

fibers)  

𝐹0 , 𝐹1, 𝐹2, . .. with 𝐸 ≅ 𝐹0  ⊕ 𝐹1  ⊕ 𝐹2  ⊕ · · ·.           
      Denote the category of such vector bundles by Vect(𝑌)⊕. The category Vect(𝑌)⊕ is 

the minimal enlargement of Vect(𝑌) which allows countable direct sums.  A morphism in 

Vect(𝑌 )⊕ is a vector bundle map 𝜑: 𝐸 →  𝐹.  
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 Note that 𝐸𝑦 and 𝐹𝑦 are vector spaces over ℂ and 𝜑: 𝐸𝑦  →  𝐹𝑦 is a linear transformation. 

As with ordinary vector bundles 𝛤(𝐸) is the set of all (continuous) sections of 𝐸, and 

𝛤(𝐸) is a 𝐶(𝑌)-module. Since 𝐸 is topologized by the direct limit topology, given any 𝑠 ∈
 𝛤(𝐸), there exists a sub-vector-bundle 𝐹 of 𝐸, 𝐹 ⊆  𝐸 such that: 

•  𝐹 is an ordinary vector bundle on 𝐸, i.e. 𝐹 has finite-dimensonal fibers. 

•  𝑠(𝑌 )  ⊆  𝐹. 

The Serre-Swan theorem implies that he functor 𝛤 

Vect(𝑌)⊕ →  𝐹𝑃𝑟𝑜𝑗(𝐶(𝑌 ))
⊕
, 𝐸 ⟼  𝛤(𝐸),                                    (53) 

is an equivalence of categories and preserves all the basic properties of the two categories. 

In particular, 𝐸 ⟼  𝛤(𝐸) preserves ⊕ and ⊗: 

𝛤(𝐸 ⊕  𝐹)  =  𝛤(𝐸)  ⊕  𝛤(𝐹),                                    (54) 

𝛤(𝐸 ⊗ 𝐹) =  𝛤(𝐸)⊗𝐶(𝑌)
𝑎𝑙𝑔

𝛤(𝐹).                                    (55) 

     For a compact Hausdorff topological group 𝐺, �̂�  is the set of (equivalence classes 

of) irreducible representations of 𝐺. For simplicity, from now on will assume that �̂� is 

countable. (If �̂�  is not countable, then the proof is the same except that the enlarged 

categories have to admit uncountable direct sums.) The examples of interest all satisfy this 

countability assumption. {𝐹 𝐷 Reps of 𝐺}  denotes the category of finite dimensional 

representations of 𝐺. 

The representations are on finite dimensional vector spaces over the complex numbers ℂ. 

If 𝑋 is a compact Hausdorff 𝐺-space, with the action of 𝐺 on 𝑋 free, then there is a functor 

{𝐹 𝐷 Reps 𝑜𝑓 𝐺} →  {Vector bundles 𝑜𝑛 𝑋/𝐺}                                    (56) 
𝑉 ⟼  𝑋 ×𝐺 𝑉                                    (57) 

⊕  𝑎𝑛𝑑 ⊗  are preserved.                                    (58) 
{𝐿 𝐹 𝐷 Reps of 𝐺}  denotes the minimal enlargement of {𝐹 𝐷 Reps of 𝐺}  which allows 

(purely algebraic) countable direct sums. If 𝑋 is a compact Hausdorff G-space, with the 

action of 𝐺 on 𝑋 free, then there is a functor 

 {𝑀 𝐹 𝐷 Reps of 𝐺} →  {𝑀 Vector bundles on 𝑋/𝐺}                                    (59) 
 𝑉 ↦  𝑋 ×𝐺 𝑉                                    (60) 

 ⊕  𝑎𝑛𝑑 ⊗  are preserved.                                    (61) 
𝑋 ×𝐺 (𝑉1 ⊕ 𝑉2)  =  (𝑋 ×𝐺 𝑉1)  ⊕ (𝑋 ×𝐺 𝑉2) 
𝑋 ×𝐺 (𝑉1  ⊗ 𝑉2)  =  (𝑋 × 𝐺𝑉1)  ⊗ (𝑋 × 𝐺𝑉2) 

For example 

𝒪(𝐺) ⟼  𝑋 ×𝐺  𝒪(𝐺) ⟼ 𝛤(𝑋 ×𝐺  𝒪(𝐺)).                                    (62) 
Lemma (5.3.5)[148]: If 𝑋 is a compact Hausdorff 𝐺-space with free 𝐺-action, then 

𝛤(𝑋 ×𝐺 𝒪(𝐺))  = 𝒫𝐺(𝑋).                                    (63) 

Corollary (5.3.6)[148]: 𝛤(𝑋 ×𝐺 (𝒪(𝐺)⊗𝐶(𝑋/𝐺)
𝑎𝑙𝑔

𝒪(𝐺)) = 𝒫𝐺(𝑋)⊗𝐶(𝑋/𝐺)
𝑎𝑙𝑔

𝒫𝐺(𝑋) 

Corollary (5.3.7)[148]: Denote by 𝒪(𝐺) trivial the vector space 𝒪(𝐺) with the trivial 

action of 𝐺, i.e. every 𝑔 ∈  𝐺 is acting by the identity map of 𝒪(𝐺). Then 

 𝛤(𝑋 ×𝐺 (𝒪(𝐺)⊗ 𝒪(𝐺)𝑡𝑟𝑖𝑣𝑖𝑎𝑙) = 𝒫𝐺(𝑋)⊗
𝐶(

𝑋

𝐺
)

𝑎𝑙𝑔
 (𝐶(𝑋/𝐺) ⊗ 𝒪(𝐺)),                 (64) 

which implies 

𝛤(𝑋 ×𝐺 (𝒪(𝐺)  ⊗ 𝒪(𝐺)𝑡𝑟𝑖𝑣𝑖𝑎𝑙)  = 𝒫𝐺(𝑋)⊗ 𝒪(𝐺).                            (65) 
Lemma (5.3.8)[148]: As representations of 𝐺, 

 𝒪(𝐺)  ⊗ 𝒪(𝐺) ≅ 𝒪 ⊗ 𝒪(𝐺)𝑡𝑟𝑖𝑣𝑖𝑎𝑙 .                                    (66) 
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Proof. The group 𝐺 acts on 𝐺 ×  𝐺 and on 𝐺 × (𝐺)𝑡𝑟𝑖𝑣𝑖𝑎𝑙 by 

(𝑎, 𝑏)𝑔 =  (𝑎𝑔, 𝑏𝑔) (𝑎, 𝑏)𝑔 =  (𝑎𝑔, 𝑏) 𝑎, 𝑏, 𝑔 ∈  𝐺                                    (67) 
The map 

𝐺 ×  𝐺 ←  𝐺 ×  (𝐺)𝑡𝑟𝑖𝑣𝑖𝑎𝑙                                     (68) 
(𝑎, 𝑏𝑎)  ←  (𝑎, 𝑏)                                    (69) 

is a 𝐺 -equivariant homeomorphism. The resulting map 𝒪(𝐺)  ⊗ 𝒪(𝐺)  → 𝒪(𝐺)⊗
𝒪(𝐺)𝑡𝑟𝑖𝑣𝑖𝑎𝑙 is then an isomorphism of representations of 𝐺. 

Combining the Lemma (5.3.5) with Corollary (5.3.6) and Corollary (5.3.7) gives 

 𝒫𝐺(𝑋)⊗𝐶(
𝑋

𝐺
)
𝒫𝐺(𝑋) ≅ 𝒫𝐺(𝑋)  ⊗ 𝒪(𝐺).                                    (70) 

                                                         (71)  
 

 

 

 𝐸(𝑓)(𝑥)(𝑔):=  𝑓(𝑥𝑔), 𝐹(𝛼)(𝑥):=  𝛼(𝑥)(𝑒), 𝐸 ∘  𝐹 =  𝑖𝑑, 𝐹 ∘  𝐸 =  𝑖𝑑.         (72) 

𝒫𝐺(𝑋)⊗
𝐶(
𝑋
𝐺
)

𝑎𝑙𝑔
𝒫𝐺(𝑋)

𝐸⊗𝐸
→    𝐶𝐺

 𝑓.𝑑.
(𝑋, 𝒪(𝐺)) ×𝐶(𝑋/𝐺)

𝑎𝑙𝑔
𝐶𝐺
𝑓.𝑑.

 (𝑋, 𝒪(𝐺))
𝑑𝑖𝑎𝑔
→   

𝐶𝐺
𝑓.𝑑.

 (𝑋, 𝒪(𝐺)⊗𝑎𝑙𝑔 𝒪(𝐺))
𝑊∗∘ 
→   𝐶𝐺,𝑖𝑑

𝑓.𝑑.
 (𝑋, 𝒪(𝐺)⊗𝑎𝑙𝑔 𝒪(𝐺))

∑(𝑖𝑑⊗𝑒𝑖)⊗𝑒𝑖 

𝑖
→            

𝐶𝐺
𝑓.𝑑.

 (𝑋, 𝒪(𝐺))⊗𝑎𝑙𝑔 𝒪(𝐺) 
𝐹⊗𝑖𝑑
→   𝒫𝐺(𝑋)⊗𝑎𝑙𝑔  𝒪(𝐺),where 𝑊(𝑔, 𝑔′) =  (𝑔, 𝑔𝑔′). 

Why is the isomorphism obtained from this vector bundle point of view the same as the 

canonical map 𝒫𝐺(𝑋)⊗
𝐶(

𝑋

𝐺
)

𝑎𝑙𝑔
𝒫𝐺(𝑋) →  𝒫𝐺(𝑋)⊗ℂ 𝒪(𝐺) 

Will consistently take all actions of 𝐺  on spaces to be right actions. Modules and 

representations will be left. For example, the regular representation of 𝐺 on 𝐿2𝐺 is 

 (𝑔𝑓)(𝑎)  =  𝑓(𝑎𝑔) 𝑓 ∈  𝐿2𝐺 𝑔, 𝑎 ∈  𝐺                                    (73) 

If 𝑊 and 𝑍 are 𝐺 spaces, then 𝑊 ×  𝐺𝑍 =
𝑊 × 𝑍

𝐺
 where 𝐺 acts on 𝑊 ×  𝑍 by  

(𝑤, 𝑧)𝑔 =  (𝑤𝑔, 𝑧𝑔). 
(74)  

 

 

 

 

 

The upper horizontal arrow is (𝑥, (𝑎, 𝑏𝑎))  ←  (𝑥, (𝑎, 𝑏)). 
The lower horizontal arrow is (𝑥, 𝑥𝑔)  ←  (𝑥, 𝑔). The left vertical arrow is 

(𝑥, (𝑎, 𝑏)) 
↓  

(𝑥𝑎−1, 𝑥𝑏−1). 
The right vertical arrow is 

 (𝑥, (𝑎, 𝑏)) 
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↓  
(𝑥𝑎−1, 𝑏−1). 

This diagram commutes and all four maps are homeomorphisms. 

This is the desired isomorphism, which completes the proof. 

The implication “PWG-condition ⇒ freeness” is proved as follows. The PWG-

condition immediately implies 

(𝒫𝐻(𝐴)  ⊗ ℂ)𝛿(𝒫𝐻(𝐴))  = 𝒫𝐻(𝐴)  ⊗ 𝒪(𝐻).                                    (75) 
As the right hand side is a dense subspace of 𝐴 ⊗min   𝐻 (see [167] and [173]), we obtain 

the density condition defining freeness. 

   For the converse implication “PWG-condition ⇐ freeness” we need some preparations. 

If (𝑉, 𝛿𝑉  )  is a finite-dimensional 𝐻 -comodule, we write 𝐻𝑉  for the smallest vector 

subspace of 𝐻 such that 𝛿𝑉  (𝑉 )  ⊆  𝑉 ⊗ 𝐻𝑉 . We write 

𝐴𝑉 ∶= {𝑎 ∈  𝐴 | 𝛿(𝑎)  ∈  𝐴 ⊗ 𝐻𝑉  }                                    (76) 
Note that in the case (𝐴, 𝛿)  =  (𝐻, ∆), we have 𝐴𝑉  =  𝐻𝑉 . Thus 𝐻𝑉 is a coalgebra. 

      One can define a continuous projection map 𝐸𝑉 from 𝐴 onto 𝐴𝑉 as follows [167]. Let 

us call two finite-dimensional comodules of 𝐻 disjoint if the set of morphisms between 

them only contains the zero map. Then 𝐸𝑉 is the unique endomorphism of 𝐴 which is the 

identity on 𝐴𝑉 and which vanishes on 𝐴𝑊 for W any finite-dimensional comodule disjoint 

from  . In the special case of (𝐴, 𝛿)  =  (𝐻, ∆), we use the notation eV instead of 𝐸𝑉 . The 

equivariance property 

𝛿 ∘ 𝐸𝑉 =  (𝑖𝑑 ⊗  𝑒𝑉 ) ∘  𝛿.                                    (77) 
is proved by a straightforward verification. When 𝑉 is the trivial representation, we write 

𝐸𝑉  =  𝐸𝐵 and 𝑒𝑉  = 𝜑𝐻 , where 𝐵 =  𝐴𝑐𝑜𝐻 is the algebra of coaction invariants and 𝜑𝐻 is 

the invariant state on 𝐻. Then the formula (77) specializes to 

𝐸𝐵 =  (𝑖𝑑 ⊗ 𝜑𝐻)∆ 𝛿.                                    (78) 
The key lemma in the proof of Theorem (5.3.1) is: 

Lemma (5.3.9)[148]: (Theorem (5.3.5) in [133]). Let 𝛿 ∶  𝐴 →  𝐴⊗min  𝐻  be a free 

coaction, and let 𝑉  be a finite-dimensional 𝐻 -comodule. Then 𝐴𝑉  is finitely generated 

projective as a right 𝐵-module. 

In classical case 𝑋 ×  𝐺 →  𝑋 , we have 𝐻 =  𝐶(𝐺)  and 𝐵 =  𝐶(𝑋/𝐺) .The 𝐵 -module 

𝐴𝑉  = Γ(𝑋 ×𝐺  𝐻𝑉  ) and thus is finitely generated projective. 

Define a 𝐵-valued inner product on 𝐴𝑉 by 

〈𝑎, 𝑏〉𝐵 ∶=  𝐸𝐵(𝑎
∗𝑏).                                    (79) 

Lemma (5.3.10)[148]: (Corollary 2.6 in [133]). The B-valued inner product (79) makes 

AV a (right) Hilbert B-module [139]. The Hilbert module norm ‖𝑎‖𝐵 ∶= ‖〈𝑎, 𝑎〉𝐵‖
1/2 is 

equivalent to the 𝐶∗-norm of 𝐴 restricted to 𝐴𝑉 . 

We will need the following lemma concerning the interior tensor product of Hilbert 

modules. 

Lemma (5.3.11)[148]: (cf. Proposition (5.3.19) in [139]). Let 𝐶  and 𝐷  be unital  𝐶∗ -

algebras, and let (ℰ , 〈. , . 〉𝐶)  be a right Hilbert 𝐶 -module which is finitely generated 

projective as a right 𝐶-module. Let (ℱ, 〈. , . 〉𝐷) be an arbitrary right Hilbert 𝐷-module, and 

𝜋 ∶  𝐶 →  ℒ(ℱ) a unital ∗-homorphism of 𝐶 into the 𝐶∗-algebra of adjointable operators 

on ℱ . Then the algebraic tensor product ℰ ⊗𝐶
𝑎𝑙𝑔

ℱ  is a right Hilbert 𝐷 -module with 

respect to the inner product 

〈𝑥 ⊗  𝑦, 𝑧 ⊗  𝑤𝑖〉 ∶= 〈𝑦, 𝜋(〈𝑥, 𝑧〉𝐶)𝑤〉𝐷.                                    (80) 
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Proof. We are to show that the semi-norm ‖𝑧‖  = ‖〈𝑧, 𝑧〉𝐷‖
1/2 on ℰ ⊗𝐶

𝑎𝑙𝑔
ℱ is in fact a 

norm with respect to which the space is complete. The statement obviously holds for ℰ =
 𝐶𝑛, the 𝑛-fold direct sum of the standard right 𝐶-module 𝐶. Since ℰ is finitely generated 

projective, ℰ can be realized as a direct summand of 𝐶𝑛, so that the conclusion also applies 

for this case. 

We are now ready to prove the implication “PWG-condition ⇐ freeness”. By the freeness 

assumption, the image of can is dense in 𝐴 ⊗  𝐻 . In particular, for a given finite-

dimensional comodule 𝑉 and any ℎ ∈  𝐻𝑉 , we can find a sequence 𝑘𝑛  ∈ ℕ and elements 

𝑝𝑛,𝑖 and 𝑞𝑛,𝑖 in 𝒫𝐻(𝐴) with 1 ≤  𝑖 ≤  𝑘𝑛 such that 

∑(𝑝𝑛,𝑖  ⊗  1)𝛿(𝑞𝑛,𝑖)
𝑛→∞
→   1 ⊗  ℎ

𝑘𝑛

𝑖=1

                                    (81) 

in the 𝐶∗-norm. Applying 𝑖𝑑 ⊗ 𝑒𝑉 to this expression, and using (77), we see that we can 

take 𝑞𝑛,𝑖  ∈  𝐴𝑉. 

Applying δ to the first leg of (81) and using coassociativity, we obtain 

∑(𝛿(𝑝𝑛,𝑖) ⊗  1)(𝑖𝑑 ⊗ ∆) (𝛿(𝑞𝑛,𝑖))
𝑛→∞
→   1 ⊗  1 ⊗  ℎ.

𝑘𝑛

𝑖=1

                          (82) 

Observe now that, since 𝑞𝑛,𝑖  ∈  𝐴𝑉  , by (76) we obtain (𝑖𝑑 ⊗ ∆)(𝛿(𝑞𝑛,𝑖))  ∈  𝐴𝑉  ⊗
 𝐻𝑉  ⊗ 𝐻𝑉  .  Hence the left hand side of (82) belongs to the tensor product 

(𝐴 ⊗min  𝐻) ⊗ 𝐻𝑉 . As 𝐻𝑉  is finite dimensional, the restriction of the antipode 𝑆  of 

𝒪(𝐻) to 𝐻𝑉 is continuous. Therefore, we can apply S to the third leg of (82) to conclude 

∑(𝛿(𝑝𝑛,𝑖) ⊗  1)(𝑖𝑑 ⊗ (𝑖𝑑 ⊗  𝑆) ∘ ∆) (𝛿(𝑞𝑛,𝑖))
𝑛→∞
→   1 ⊗  1 ⊗  𝑆(ℎ).

𝑘𝑛

𝑖=1

      (83) 

Again by the finite dimensionality of 𝐻𝑉  , multiplying the second and third legs is a 

continuous operation, so that 

∑𝛿(𝑝𝑛,𝑖)(𝑞𝑛,𝑖  ⊗  1)   
𝑛→∞
→   1 ⊗  𝑆(ℎ).

𝑘𝑛

𝑖=1

                                    (84) 

Since (ℎ)  ∈  𝐻𝑉  , where  �̅�  is the contragredient of 𝑉  , applying 𝑖𝑑 ⊗ 𝑒𝑉  to the above 

limit, and using the equivariance property (77), we infer that in the above limit we can 

choose 𝑝𝑛,𝑖  ∈  𝐴𝑉 . 

Consider now the right 𝐵-module map 

𝐺𝑉 ∶  𝐴𝑉  ⊗𝐵
𝑎𝑙𝑔

𝐴𝑉 → 𝐴𝑉⊗𝑉   ⊗ 𝐻𝑉  , 𝑎 ↦   𝛿(𝑎)(𝑏 ⊗ 1).                                    (85) 
By Lemma (5.3.9) and Lemma (5.3.11), the left hand side becomes an interior tensor 

product of right Hilbert 𝐵-modules for the inner product 

〈𝑐 ⊗  𝑑, 𝑎 ⊗  𝑏〉𝐵  =  𝐸𝐵(𝑑
∗𝐸𝐵(𝑐

∗𝑎)𝑏).                                    (86) 
     On the other hand, equipping 𝐻𝑉 with the Hilbert space structure 〈ℎ, 𝑘〉 = 𝜑𝐻(ℎ

∗𝑘) the 

right hand side is a right Hilbert 𝐵-module by 

〈𝑏 ⊗  ℎ, 𝑎 ⊗  𝑔〉𝐵  = 𝜑𝐻(ℎ
∗𝑔)𝐸𝐵(𝑏

∗𝑎).                                    (87) 
From these formulas and (78), it follows that 𝐺𝑉  is an isometry between these Hilbert 

modules. Hence the range of 𝐺𝑉 is closed. 
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From (84) and the equivalence of 𝐶∗- and Hilbert 𝐶∗-module norms in Lemma (5.3.10), it 

follows that the range of 𝐺𝑉  contains 1 ⊗  𝑆(ℎ). Therefore, as the domain of 𝐺𝑉  is an 

algebraic tensor product, we can find a finite number of elements 𝑝𝑖 , 𝑞𝑖  ∈ 𝒫𝐻(𝐴) such that 

∑𝛿(𝑝𝑖)(𝑞𝑖 ⊗  1) =  1 ⊗  𝑆(ℎ)

𝑖

.                                    (88) 

Now applying the map 𝑎 ⊗  𝑔 ⟼ (1 ⊗ 𝑆−1(𝑔))𝛿(𝑎) to both sides yields 

∑(𝑝𝑖  ⊗  1)𝛿(𝑞𝑖) =  1⊗ ℎ.

𝑖

                                    (89) 

As ℎ was arbitrary in 𝒪(𝐻), it follows that can is surjective. 

Finally, as the Hopf algebra 𝒪(𝐻) is cosemisimple, according to [172], bijectivity of the 

canonical map can follows from surjectivity. This completes the proof of the implication 

“PWG-condition ⇐ freeness”. 

The framework of principal comodule algebras unifies in one category many 

algebraically constructed non-commutative examples and classical compact principal 

bundles. 

Definition (5.3.12)[148]: ([154]). Let ℋ be a Hopf algebra with bijective antipode, and let 

∆𝒫 : 𝒫 → 𝒫 ⊗ℋ be a coaction making 𝒫 an ℋ-comodule algebra. We call 𝒫 principal if 

and only if: 

(i) 𝒫⊗ℬ 𝒫 ∋  𝑝 ⊗  𝑞 ⟼  𝑐𝑎𝑛(𝑝 ⊗  𝑞) ∶=  (𝑝 ⊗  1)∆𝒫(𝑞) ∈ 𝒫 ⊗ℋ is bijective, 

where ℬ = 𝒫𝑐𝑜𝐻 ∶=  {𝑝 ∈ 𝒫 |∆𝒫(𝑝)  =  𝑝 ⊗  1}; 
(ii) there exists a left ℬ-linear right ℋ-colinear splitting of the multiplication map ℬ ⊗
𝒫 → 𝒫. 

Here (i) is the Hopf-Galois condition and (ii) is right equivariant left projectivity of 𝒫. 

Alternatively, one can approach principality through strong connections: 

Definition (5.3.13)[148]: Let ℋ  be a Hopf algebra with bijective antipode 𝑆 , and  

∆𝒫: 𝒫 → 𝒫 ⊗ℋ  be a coaction making 𝒫  a right ℋ -comodule algebra. A strong 

connection ℓ on 𝒫 is a unital linear map ℓ ∶ ℋ → 𝒫 ⊗ 𝒫 satisfying: 

(i)  (𝑖𝑑 ⊗ ∆𝒫) ∘  ℓ =  (ℓ ⊗  𝑖𝑑) ∘ ∆; 
(ii) ( ∆𝒫

 ⊗  𝑖𝑑) ∘  ℓ =  (𝑖𝑑 ⊗  ℓ) ∘ ∆ , where ∆𝒫
 ∶=  (𝑆−1  ⊗  𝑖𝑑) ∘  flip ∘   ∆𝒫; 

(iii)  𝑐𝑎�̃� ∘  ℓ =  1 ⊗  𝑖𝑑,where 𝑐𝑎𝑛 ̃: 𝒫 ⊗ 𝒫 ∋  𝑝 ⊗  𝑞 ⟼ (𝑝 ⊗  1)∆𝒫(𝑞)  ∈ 𝒫 ⊗
ℋ. 
One can prove (see [155]) that a comodule algebra is principal if and only if it admits a 

strong connection. 

If ∆𝑀∶  𝑀 →  𝑀 ⊗  𝐶 is a coaction making 𝑀 a right comodule over a coalgebra 𝐶 and 𝑁 

is a left 𝐶 - comodule via a coaction ∆𝑁
 : 𝑁 →  𝐶 ⊗  𝑁 , then we define their cotensor 

product as 

 𝑀 ⊡𝐶 𝑁 ∶= {𝑡 ∈  𝑀 ⊗  𝑁 |(∆𝑀  ⊗  𝑖𝑑)(𝑡) = (𝑖𝑑 ⊗ ∆𝑁
 )(𝑡)}.           (90) 

In particular, for a right 𝐻-comodule algebra 𝒫 and a left ℋ-comodule  , we observe that 

𝑃 ⊡ℋ 𝑉 is a left 𝒫𝑐𝑜𝐻- module in a natural way. One of the key properties of principal 

comodule algebras is that, for any finite-dimensional left 𝐻-comodule 𝑉, the left 𝒫𝑐𝑜𝐻-

module 𝒫⊡ℋ 𝑉 is finitely generated projective [154]. Here 𝒫 plays the role of a principal 

bundle and 𝒫⊡ℋ 𝑉  plays the role of an associated vector bundle. Therefore, we call 

𝒫 ⊡ℋ 𝑉 an associated module. 

Principality can also be characterized by the exactness and strong monoidality of the 

cotensor functor. This characterisation uses the notion of coflatness of a comodule: a right 
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comodule is coflat if and only if cotensoring it with left comodules preserves exact 

sequences. 

Theorem (5.3.14)[148]: Let ℋ be a Hopf algebra with bijective antipode, and 𝒫 a right 

ℋ-comodule algebra. Then 𝒫 is principal if and only if 𝒫 is right ℋ-coflat and for all left 

ℋ-comodules 𝑉 and 𝑊 the map 

𝛽 ∶  (𝒫 ⊡ 𝑉 ) ⊗ℬ (𝒫 ⊡𝑊) → 𝒫⊡ (𝑉 ⊗𝑊) 
(𝑎 ⊗  𝑣)  ⊗ (𝑏 ⊗  𝑤)  ⟼  𝑎𝑏 ⊗ (𝑣 ⊗  𝑤) 

is bijective. In other words, 𝒫 is principal if and only if the cotensor product functor is 

exact and strongly monoidal with respect to the above map 𝛽. 

Proof. The proof relies on putting together [172], [169], [154] and [171]. First assume that 

𝒫 is principal. Then 𝒫 is right equivariantly projective, and it follows from [154] that 𝒫 is 

faithfully flat. Now we can apply [169] to conclude that β is bijective. Furthermore, by 

[172], the faithful flatness of 𝒫  implies the coflatness of 𝒫  Conversely, assume that 

cotensoring with 𝒫 is exact and strongly monoidal with respect to 𝛽. Then substituting ℋ 

for 𝑉  and 𝑊  yields the Hopf-Galois condition. Now [171] implies the equivariant 

projectivity of 𝒫. 
Let 𝐴 be a unital 𝐶∗-algebra with center 𝑍(𝐴), let 𝑋 be a compact Hausdorff space 

and let 𝜃 ∶  𝐶(𝑋)  →  𝑍(𝐴) be a unital inclusion. The triple (𝐴, 𝐶(𝑋), 𝜃) is called a unital 

𝐶(𝑋)-algebra ([165]). In the following, we simply consider 𝐶(𝑋) as a subalgebra of 𝐴. For 

𝑥 ∈  𝑋, let 𝐽𝑥 be the closed 2-sided ideal in 𝐴 generated by the functions 𝑓 ∈  𝐶(𝑋) that 

vanish at 𝑥. Then we have quotient 𝐶∗-algebras 𝐴𝑥  =  𝐴/𝐽𝑥 with natural projection maps 

𝜋𝑥 ∶  𝐴 →  𝐴𝑥, and the triple (𝑋, 𝐴, 𝜋𝑥) is a field of 𝐶∗-algebras. For any 𝑎 ∈  𝐴, the map 

𝑛𝑥  ∶  𝑋 → 𝑅, 𝑥 ⟼ ‖𝜋𝑥(𝑎)‖ 

is upper semi-continuous [160] (see also [168]). If the latter map is continuous, the field is 

called continuous, but this property will not be necessary to assume for our purposes. 

Lemma (5.3.15)[148]: Let 𝑋 be a compact Hausdorff space, 𝐴 a unital 𝐶(𝑋)-algebra, and 

(𝐻, ∆)  a compact quantum group acting on 𝐴  via 𝛿 ∶  𝐴 →  𝐴 ⊗min   𝐻 . Assume that 

𝐶(𝑋)  ⊆  𝐴𝑐𝑜𝐻 . Then for each 𝑥 ∈  𝑋  there exists a unique coaction 𝛿𝑥 ∶ 𝐴𝑥  →
 𝐴𝑥  ⊗min   𝐻 such that for all 𝑎 ∈  𝐴 

𝛿𝑥(𝜋𝑥(𝑎))  =  (𝜋𝑥 ⊗  𝑖𝑑)(𝛿(𝑎)).                                    (91) 
Proof. Let 𝑥 ∈  𝑋 and 𝑓 ∈  𝐶(𝑋) with 𝑓(𝑥)  =  0. As 𝛿(𝑓)  =  𝑓 ⊗ 1 by assumption, it 

follows 𝑡ℎ𝑎𝑡 (𝜋𝑥 ⊗ 𝑖𝑑)(𝛿(𝑓))  =  0 . Hence (𝜋𝑥 ⊗ 𝑖𝑑)(𝛿(𝑎))  =  0 for 𝑎 ∈  𝐽𝑥 , so that 

𝛿𝑥  can be defined by (91). It is straightforward to check that each 𝛿𝑥  satisfies the 

coassociativity and counitality conditions. 

Theorem (5.3.16)[148]: Let 𝑋 be a compact Hausdorff space, A a unital 𝐶(𝑋)-algebra, 

and (𝐻, ∆) a compact quantum group acting on 𝐴 via 𝛿 ∶  𝐴 →  𝐴 ⊗min  𝐻. Assume that 

𝐶(𝑋)  ⊆  𝐴𝑐𝑜𝐻. Then, if the coactions 𝛿𝑥 are free for each 𝑥 ∈  𝑋, so is the coaction 𝛿. 

Proof. First note that 𝐴 ⊗min  H is again a 𝐶(𝑋)-algebra in a natural way. We will denote 

the quotient (𝐴 ⊗min   𝐻)/(𝐽𝑥  ⊗min   𝐻) by 𝐴𝑥 ⊗𝑥 𝐻. This will be a 𝐶∗ -completion of 

the algebraic will denote the quotient map at 𝑥  by 𝜋𝑥  ⊗𝑥  𝑖𝑑 ∶  𝐴 ⊗min  𝐻 →
 𝐴𝑥  ⊗𝑥  𝐻. 

Assume now that each 𝛿𝑥 is free. Fix 𝜀 >  0, and choose ℎ ∈ 𝒪(𝐻). By Theorem (5.3.1), 

for each 𝑥 ∈  𝑋  we can find an element 𝑧𝑥  ∈  (𝐴 ⊗  1)𝛿(𝐴)  such that 

(𝜋𝑥  ⊗𝑥  𝑖𝑑)(𝑧𝑥)  =  1 ⊗  ℎ in 𝐴𝑥  ⊗𝑥  𝐻. 

Consider the function 

𝑓𝑥 ∶  𝑋 ∋  𝑦 ⟼ ‖(𝜋𝑦  ⊗𝑦  𝑖𝑑)(𝑧𝑥  −  1 ⊗  ℎ)‖ 
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= ‖(𝜋𝑦 ⊗ 𝑦 𝑖𝑑)(𝑧𝑥)  −  1 ⊗  ℎ‖  ∈ ℝ.                            (92) 
As the norm on the field 𝑦 ⟼ 𝐴𝑦  ⊗𝑦  𝐻 is upper semi-continuous, the function 𝑦 ⟼

 𝑓𝑥(𝑦) is upper semi-continuous. Since 𝑓𝑥(𝑥)  =  0, we can find an open neighborhood 𝑈𝑥 

of 𝑥 such that for all 𝑦 ∈  𝑈𝑥 

𝑓𝑥(𝑦) = ‖(𝜋𝑦  ⊗𝑦  𝑖𝑑)(𝑧𝑥) −  1 ⊗  ℎ‖
𝐴𝑦⊗𝑦𝐻

 <  𝜀.                       (93) 

Let {𝑓𝑖}𝑖 be a partition of unity subordinate to a finite subcover {𝑈𝑥𝑖}𝑖. An easy estimate 

shows that for 𝑧 ∶=  ∑ (𝑓𝑖  ⊗  1)𝑧𝑥𝑖𝑖  and all 𝑦 ∈  𝑋 

‖(𝜋𝑦  ⊗𝑦  𝑖𝑑)(𝑧 −  1 ⊗  ℎ)‖
𝐴𝑦⊗𝑦𝐻

 <  𝜀.                             (94) 

Taking the supremum over all 𝑦, we conclude by [160] and the compactness of 𝑋 that 

‖𝑧 − 1 ⊗  ℎ‖  <  𝜀. Hence (𝐴 ⊗  1)𝛿(𝐴) is dense in 𝐴⊗𝐻, i.e. the coaction 𝛿 is free. 

As a particular case we consider: 

Definition (5.3.17)[148]: ([353]). Let (𝐻, ∆) be a compact quantum group acting on a 

unital 𝐶∗-algebra 𝐴 via 𝛿 ∶  𝐴 →  𝐴 ⊗min   𝐻. We call the unital 𝐶∗ -algebra 

𝐴 ∗ ℎ:= {𝑓 ∈  𝐶([0, 1], 𝐴 ⊗min  𝐻)𝑓(0) ∈ ℂ ⊗  𝐻, 𝑓(1) ∈  𝛿(𝐴)}            (95) 
the noncommutative join of 𝐴 and 𝐻. 

The 𝐶∗ -algebra 𝐴 ∗ 𝐻  is obviously a 𝐶([0, 1])-algebra with (𝐴 ∗ 𝐻)𝑥 ≅ 𝐴⊗min  𝐻  for 

𝑥 ∈  (0, 1), (𝐴 ∗ 𝐻)0 ≅ 𝐻  and (𝐴 ∗ 𝐻)1 ≅  𝐴 .  We identify 𝐴 ∗ 𝐻  as a subalgebra of 

𝐶([0, 1]) ⊗min   𝐴 ⊗min   𝐻. 
The following lemma shows that 𝐴 ∗ 𝐻 carries a natural coaction by (𝐻, ∆). 
Lemma (5.3.18)[148]: The compact quantum group (𝐻, ∆) acts on the unital 𝐶∗-algebra 

𝐴 ∗ 𝐻 via 

𝛿𝐴∗𝐻 ∶  𝐴 ∗  𝐻 ∋  𝑓 ⟼ (𝑖𝑑 ⊗  𝑖𝑑 ⊗ ∆) ∘  𝑓 ∈ (𝐴 ∗  𝐻)⊗min  𝐻.           (96) 
Proof. Note that 𝛿𝐴 ∗𝐻 is the restriction of (𝑖𝑑 ⊗  𝑖𝑑 ⊗ ∆) to 𝐴 ∗ 𝐻. Let us first show that 

the range of 𝛿𝐻 is contained in (𝐴 ∗ 𝐻)⊗min   𝐻. 

Consider an element 𝐹 ∈  𝐴 ∗ 𝐻  as an 𝐴⊗min  𝐻-valued function on [0,1]. Since 𝐹  is 

uniformly continuous and 𝒫𝐻(𝐴) is dense in 𝐴 by [167] and [173], an elementary partition 

of unity argument shows that 𝐹 can be approximated by a finite sum of functions of three 

kinds: 

(i)   𝐹1 ∶ [0, 1]  ∋  𝑡 ⟼ 𝜉0(𝑡)(1⊗  ℎ)  ∈ ℂ ⊗ 𝒪(𝐻),where 𝜉0  ∈  𝐶([0, 1], [0, 1]) , 

𝜉0(1)  =  0, and ℎ 𝑖𝑠 𝑎 𝑓ixed element 𝑜𝑓 𝒪(𝐻). 
(ii)    𝐹2 ∶  [0, 1] ∋  𝑡 ⟼  𝜉(𝑡)(𝑎 ⊗  ℎ) ∈ 𝒫𝐻(𝐴)⊗𝑎𝑙𝑔  𝒪(𝐻), where 𝜉 ∈

 𝐶([0, 1], [0, 1])with 𝜉(0) =  𝜉(1) =  0 , and 𝑎  and ℎ  are fixed elements of 𝒫𝐻(𝐴)  and 

𝒪(𝐻) respectively. 
(iii ) 𝐹3 ∶  [0, 1] ∋ 𝑡 ⟼ 𝜉1(𝑡)𝛿(𝑎)  ∈  𝛿(𝒫𝐻(𝐴)), where 𝜉1  ∈  𝐶([0, 1], [0, 1]), 𝜉1(0)  =
 0, and 𝑎 is afixed element of 𝒫𝐻(𝐴). 
It is clear that 𝛿𝐴∗𝐻(𝐹𝑖) ∈  𝐶([0, 1], 𝐴 ⊗min  𝐻)⊗𝑎𝑙𝑔 𝒪(𝐻)  for all 𝑖 . Let 𝜔  be a 

functional on  𝒪(𝐻) . Then (𝑖𝑑 ⊗𝜔)(𝛿𝐴 ∗ 𝐻(𝐹𝑖)) ∈ 𝐴 ∗ 𝐻  for all 𝑖 . This implies that 

𝛿𝐴∗𝐻(𝐹𝑖) ∈  (𝐴 ∗ 𝐻)⊗𝑎𝑙𝑔  𝐻  for all 𝑖 . It follows from the continuity of 𝛿𝐴∗𝐻  that 

𝛿𝐴∗𝐻(𝐹) ∈  (𝐴 ∗ 𝐻)⊗min  𝐻. Hence 𝛿𝐴∗𝐻 has range in (𝐴 ∗ 𝐻)⊗min  𝐻. 

The coassociativity of 𝛿𝐴∗𝐻 is immediate from the coassociativity of ∆. The counitality 

condition follows from the same approximation argument as above. 

Corollary (5.3.19)[148]: The coaction 𝛿𝐴∗𝐻 ∶  𝐴 ∗ 𝐻 →  (𝐴 ∗ 𝐻)⊗min  𝐻 is free. 

Proof. The 𝐶∗-algebra 𝐴 ∗ 𝐻  is a unital 𝐶([0, 1])-algebra with 𝐶([0, 1])  ∈  (𝐴 ∗ 𝐻)𝑐𝑜𝐻 . 

With the notation of Lemma (5.3.15), we have: 
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 (i)((𝐴 ∗ 𝐻)0, 𝛿0)  ≅  (𝐻, ∆), 
(ii) ((𝐴 ∗ 𝐻)𝑥, 𝛿𝑥) ≅  (𝐴 ⊗min   𝐻, 𝑖𝑑 ⊗ ∆) 𝑓𝑜𝑟 𝑥 ∈  (0, 1), 
(iii) ((𝐴 ∗  𝐻)1, 𝛿1) ≅  (𝐴, 𝛿). 
As each of the above actions are free, we infer from Theorem (5.3.16) that𝛿𝐴∗𝐻 is free. 

Alternatively, one can use a direct approximation argument as in Lemma (5.3.18). 

         Let 𝑋, 𝑌 be topological spaces and let 𝜋 ∶  𝑋 →  𝑌 be a covering map — i.e. Given 

any 𝑦 ∈  𝑌 , ∃ an open set 𝑈  in 𝑌 with 𝑦 ∈  𝑈 such that 𝜋−1(𝑈) is a disjoint union of 

open sets each of which 𝜋 maps homeomorphically onto 𝑈. A deck transformation is a 

homeomorphism 

ℎ: 𝑋 →  𝑋 with 𝜋 ∘  ℎ =  𝜋. 

Proposition (5.3.20)[148]: Let 𝑋 and 𝑌 be compact Hausdorff topological spaces.Let 𝜋 ∶
 𝑋 →  𝑌  be a covering map, and let Γ  be the group of deck transformations of this 

covering. Assume that Γ is finite. Then 𝑋 is a locally trivial principal Γ bundle on 𝑌 if and 

only if the canonical map 

𝑐𝑎𝑛: 𝐶(𝑋)⊗𝐶(𝑌 ) 𝐶(𝑋) →  𝐶(𝑋) ⊗ 𝐶(Γ) 

𝑐𝑎𝑛: 𝑓1  ⊗ 𝑓2  ⟼  (𝑓1  ⊗  1)𝛿(𝑓2) 
is an isomorphism. 

Proof. Consider the commutative diagram 

(97) 

 

 

 

 

in which each vertical arrow is the evident inclusion and the lower horizontal arrow is the 

∗-homomorphism resulting from the map of topological spaces 

 

𝑋 × Γ →  𝑋 ×𝑌 𝑋         (𝑥, 𝛾)  ⟼ (𝑥, 𝑥𝛾)                                    (98) 

𝑋 is a (locally trivial) principal Γ bundle on 𝑌 if and only if this map of topological spaces 

is a homeomorphism — which is equivalent to bijectivity of the lower horizontal arrow. 

Hence to prove the proposition, it will suffice to prove that the two vertical arrows are 

isomor-phisms. 

The right vertical arrow is an isomorphism because Γ is a finite group, so 𝐶(Γ) is a finite 

dimensional vector space over the complex numbers ℂ. 

For the left vertical arrow, let 𝐸  be the vector bundle on 𝑌  whose fiber at  𝑦 ∈  𝑌  is 

Map(𝜋−1(𝑦), ℂ)  i.e. is the set of all set-theoretic maps from 𝜋−1(𝑦)  to ℂ . Note that 

𝜋−1(𝑦) is a discrete subset of the compact Hausdorff space 𝑋 and therefore is finite. 

Let 𝑆(𝐸) be all the continuous sections of 𝐸. Then : 

𝑆(𝐸)  =  𝐶(𝑋)                                                               (99) 

Similarly, let 

𝜌: 𝑋 ×𝑌 𝑋 →  𝑌   be (𝑥1, 𝑥2)  ⟼  𝜋(𝑥1)  =  𝜋(𝑥2)                                    (100) 

and let 𝐹 be the vector bundle on 𝑌 whose fiber at 𝑦 ∈  𝑌 is Map(𝜌−1(𝑦), ℂ) i.e. is the set 

of all set-theoretic maps from 𝜌−1(𝑦) to ℂ. Then : 
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𝑆(𝐹)  =  𝐶(𝑋 ×𝑌 𝑋)                                                        (101) 

where 𝑆(𝐹) is all the continuous sections of 𝐹. 

As vector bundles on 𝑌 

𝐹 =  𝐸 ⊗  𝐸                                                               (102) 

This implies 𝑆(𝐹) =  𝑆(𝐸)⊗𝐶(𝑌 ) 𝑆(𝐸) and thus proves bijectivity for the left vertical 

arrow. 

Special Case. Let 𝑋, 𝑌 be connected finite CW complexes. Let 𝜋 ∶  𝑋 →  𝑌 be a covering 

map. Γ denotes the group of deck transformations. Then the action of Γ on each fiber of 𝜋 

is transitive if and only if the canonical map 

𝑐𝑎𝑛: 𝐶(𝑋)⊗𝐶(𝑌 ) 𝐶(𝑋) →  𝐶(𝑋)⊗ 𝐶(Γ)                                    (103) 

is an isomorphism. 

Example (5.3.21)[148]: Without connectivity conditions the group of deck 

transformations can be infinite. Let 𝑌 be the Cantor set 𝐶 and let 𝑋 be 𝐶 × {0, 1} where 

the two-element set {0, 1}  has the discrete topology. Let 𝜋 ∶  𝐶 × {0, 1}  →  𝐶  be the 

projection 

𝜋(𝑐, 𝑡)  =  𝑐        𝑐 ∈  𝐶 𝑡 ∈  {0, 1}                                    (104) 

Let 𝑈 be a subset of 𝐶  which is both open and closed. Define ℎ𝑈 ∶ 𝐶 × {0, 1}  →  𝐶 ×

{0, 1} by: 

ℎ𝑈(𝑐, 𝑡)  = {
(𝑐, 𝑡)                𝑐 ∉  𝑈
(𝑐, 1 −  𝑡)     𝑐 ∈  𝑈

                                    (105) 

Then ℎ𝑈 is a deck transformation and there are infinitely many ℎ𝑈. 
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Chapter 6 

Invariant Measures with Homoclinic Groups and Generic Points 

 
We get that for every integer d > 1 and every Toeplitz flow (X, T), there exists a 

Toeplitz ℤ𝑑 -subshift which is topologically orbit equivalent to (X, T). We show that for 

an expansive algebraic action of a polycyclic-by-finite group on X, the entropy of the 

action is equal to the entropy of the induced action on the Pontryagin dual of the 

homoclinic group, the homoclinic group is a dense subgroup of the IE group, the 

homoclinic group is nontrivial exactly when the action has positive entropy, and the 

homoclinic group is dense in X exactly when the action has completely positive entropy. 

We extend the Sigmund theorem and completes the result of Ren. 

Section (6.1): Orbit Equivalence for Generalized Toeplitz Subshifts 
The Toeplitz subshifts are a rich class of symbolic systems introduced by Jacobs and 

Keane in [388], 𝑍-actions. Since then, they have been extensively studied and used to 

provide series of examples with interesting dynamical properties (see for example [374], 

[375], [384], [394]). Generalizations of Toeplitz subshifts and some of their propertiesto 

more general group actions can be found in [370], [372], [376], [389], [390]. For instance, 

in [372] Toeplitz subshifts are characterized as the minimal symbolic almost 1-1 

extensions of odometers (see [380]). We give an explicit construction that generalizes the 

result of Downarowicz in [374], to Toeplitz subshifts given by actions of groups which are 

amenable, countable and residually finite. The following is our main result.  

      By a topological dynamical system we mean a triple (𝑋, 𝑇, 𝐺), where T is a continuous 

left action of a countable group G on the compact metric space (𝑋, 𝑑). For every  g ∈ 𝐺, 

we denote  𝑇g the homeomorphism that induces the action of g on 𝑋. The unit element of 

𝐺 will be called e. The system (𝑋, 𝑇, 𝐺) or the action T is minimal if for every 𝑥 ∈ 𝑋 the 

orbit 𝑜𝑇  (𝑥) =  { 𝑇g(𝑥) ∶ g ∈ 𝐺} is dense in 𝑋. We say that (𝑋, 𝑇, 𝐺) is a minimal Cantor 

system or a minimal Cantor 𝐺 -system if (𝑋, 𝑇, 𝐺) is a minimal topological dynamical 

system with X a Cantor set. 

An invariant probability measure of the topological dynamical system (𝑋, 𝑇, 𝐺)  is a 

probability Borel measure μ such that 𝜇( 𝑇g(𝐴))  =  𝜇(𝐴), for every Borel set 𝐴 . We 

denote by ℳ(𝑋, 𝑇, 𝐺) the space of invariant probability measures of (𝑋, 𝑇, 𝐺). 
      For every  𝑔 ∈ 𝐺 , denote 𝐿𝑔 ∶ 𝐺 → 𝐺  the left multiplication by 𝑔 ∈ 𝐺 . That is,  

𝐿𝑔(ℎ)  =  𝑔ℎ  for every  ℎ ∈ 𝐺. Let  ∑ be a finite alphabet. ∑G denotes the set of all the 

functions 𝑥 ∶ 𝐺 → ∑. The (left) shift action 𝜎 of 𝐺 on ∑G is given by  𝜎𝑔(𝑥) = 𝑥 ∘ 𝐿𝑔−1  , 

for every 𝑔 ∈ 𝐺. Thus  𝜎𝑔(𝑥)(ℎ) = 𝑥(𝑔−1ℎ). We consider ∑ endowed with the discrete 

topology and ∑G with the product topology. Thus every 𝜎𝑔 is a homeomorphism of the 

Cantor set  ∑G. The topological dynamical system (∑G, 𝜎, 𝐺) is called the full 𝐺-shift on  

∑. For every finite subset 𝐷 of 𝐺 and  𝑥 ∈ ∑G, we denote 𝑥|𝐷 ∈ ∑G the restriction of 𝑥 to 

𝐷. For  𝐹 ∈ ∑G (𝐹 is a function from 𝐷 to ∑) we denote by [𝐹] the set of all  𝑥 ∈ ∑G  such 

that  𝑥|𝐷 = 𝐹. The set [𝐹] is called the cylinder defined by 𝐹, and it is a clopen set (both 

open and closed). The collection of all the sets [𝐹] is a base of the topology of  ∑ 2𝐺2 . 

Definition(6.1.1)[367]: 𝐴 subshift or 𝐺-subshift of  ∑G is a closed subset X of ∑G which is 

invariant by the shift action. 

The topological dynamical system (𝑋, 𝜎|𝑋, 𝐺) is also called subshift or 𝐺-subshift. See 

[369] for details. 
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        Toeplitz 𝐺-subshifts. An element 𝑥 ∈ ∑G is a Toeplitz sequence, if for every 𝑔 ∈ 𝐺 

there exists a finite index subgroup 𝛤 of 𝐺  such that 𝜎𝛾(𝑥)(𝑔) = 𝑥(𝛾−1𝑔) = 𝑥(𝑔), for 

every  𝛾 ∈ 𝛤. 

A subshift 𝑋 ⊆ ∑G is a Toeplitz subshift or Toeplitz 𝐺-subshift if there exists a Toeplitz 

sequence 𝑥 ∈ ∑G  such that  𝑋 =  𝑜𝜎(𝑥)̅̅ ̅̅ ̅̅ ̅. It is shown in [372], [389] and [390] that a 

Toeplitz sequence x is regularly recurrent, i.e. for every neighborhood 𝑉 of 𝑥 there exists a 

finite index subgroup 𝛤  of 𝐺  such that 𝜎𝛾(𝑥) ∈ 𝑉  , for every 𝛾 ∈ 𝛤 . This condition is 

stronger than almost periodicity, which implies minimality of the closure of the orbit of x 

(see [368] ). 

Given a sequence of continuous maps 𝑓𝑛 : 𝑋𝑛+1  → 𝑋𝑛 , 𝑛 ≥ 0 on topological spaces  

𝑋𝑛, we denote the associated inverse limit by 
 

 

lim
←𝑛

(𝑋𝑛, 𝑓𝑛) =  𝑋0  
𝑓0
←𝑋1

𝑓1
← 𝑋2  

𝑓2
← · · ·                                                      

                         ≔ {(𝑥𝑛)𝑛;𝑥𝑛 ∈ 𝑋𝑛, 𝑥𝑛 = 𝑓𝑛(𝑥𝑛 + 1) ∀𝑛 ≥ 0}.                     
Let us recall that this space is compact when all the spaces 𝑋𝑛 are compact and the inverse 

limit spaces associated to any increasing subsequences(𝑛𝑖)𝑖of indices are homeomorphic. 

In a similar way, we denote for a sequence of maps 𝑔𝑛 ∶ 𝑋𝑛 → 𝑋𝑛+1, 𝑛 ≥ 0 the associated 

direct limit by 

            lim
→𝑛

(𝑋𝑛, 𝑔𝑛) =  𝑋0  
𝑔0
→𝑋1

𝑔1
→ 𝑋2  

𝑔2
→ · · ·                                                      

                         ≔ {(𝑥, 𝑛), 𝑥 ∈ 𝑋𝑛, 𝑛 ≥ 0} ∼⁄                                        
where two elements are equivalent (𝑥, 𝑛) ∼ (𝑦,𝑚) if and only if there exists 𝑘 ≥ 𝑚, 𝑛 

such that 𝑔𝑘  ∘ . . .∘  𝑔𝑛(𝑥) = 𝑔𝑘  ∘ . . .∘  𝑔𝑚(𝑥). We denote by [𝑥, 𝑛] the equivalence class 

of (𝑥, 𝑛). When the maps 𝑔𝑛  are homomorphisms on groups 𝑋𝑛 , then the direct limit 

inherits a group structure. 

A group 𝐺 is said to be residually finite if there exists a nested sequence (Γ𝑛)𝑛≥0 of 

finite index normal subgroups such that  ⋂ Γ𝑛𝑛≥0  is trivial. For every 𝑛 ≥ 0, there exists 

then a canonical projection  𝜋𝑛 ∶  𝐺/Γ𝑛+1 →  𝐺/Γ𝑛. The 𝐺-odometer or adding machine 𝑂 

associated to the sequence (Γ𝑛)𝑛 is the inverse limit 

 

𝑂 ≔ lim
←𝑛

(𝐺 Γ𝑛⁄ 𝜋𝑛) =  𝐺/Γ0  
𝜋0
← 𝐺/Γ1

𝜋1
←  𝐺/Γ2  

𝜋2
←  · · · 

See [372] for the basic properties of such a space. Let us recall that it inherits a group 

structure through the quotient groups 𝐺 Γ𝑛⁄ n and it contains 𝐺 as a subgroup thanks the 

injection 𝐺 ∋ 𝑔 ↦ ([𝑔]𝑛) ∈ 𝑂, where [𝑔]𝑛 denotes the class of g in 𝐺 Γ𝑛⁄ .Thus the group 

𝐺 acts by left multiplication on 𝑂. When there is no confusion, we call this action also 

odometer. It is equicontiuous, minimal and the left Haar measure is the unique invariant 

probability measure. Notice that this action is free: the stabilizer of any point is trivial. The 

Toeplitz 𝐺 -subshifts are characterized as the subshifts that are minimal almost 1-1 

extensions of 𝐺-odometers [372]. 

For more details about ordered groups and dimension groups we refer to [379] and 

[385]. An ordered group is a pair (𝐻,𝐻+), such that 𝐻 is a countable abelian group and 

𝐻+  is a subset of 𝐻  verifying (𝐻+) + (𝐻+) ⊆ 𝐻+, (𝐻+) + (−𝐻+) =  𝐻  and (𝐻+) ∩
(−𝐻+) = {0} (we use 0 as the unit of 𝐻 when 𝐻 is abelian). An ordered group (𝐻,𝐻+),  
is a dimension group if for every 𝑛 ∈ ℤ+ there exist 𝑘𝑛 ≥ 1 and a positive homomorphism 

𝐴𝑛 ∶ ℤ
𝑘𝑛 → ℤ𝑘𝑛+1 , such that (𝐻, 𝐻+),   is isomorphic to (𝐽, 𝐽+), where 𝐽 is the direct limit 
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lim
→𝑛

( ℤ𝑘𝑛 , 𝐴𝑛) =  ℤ𝑘0  
𝐴0
→ ℤ𝑘1

𝐴1
→  ℤ𝑘2  

𝐴2
→  · · · ,  

And   𝐽+ = {[𝑣, 𝑛] ∶ 𝑎 ∈ (ℤ+)𝑘𝑛 , 𝑛 ∈ ℤ+}. The dimension group is simple if the matrices 

An can be chosen strictly positive. 

An order unit in the ordered group (𝐻,𝐻+),    is an element 𝑢 ∈ 𝐻+ such that for every 

𝑔 ∈ 𝐻 there exists 𝑛 ∈ ℤ+  such that 𝑛𝑢 − 𝑔 ∈ 𝐻+ . If  (𝐻,𝐻+),  is a simple dimension 

group then each element in  𝐻+\ {0} is an order unit. 𝐴 unital ordered group is a triple 

(𝐻,𝐻+, 𝑢) such that (𝐻,𝐻+) is an ordered group and u is an order unit. An isomorphism 

between two unital ordered groups (𝐻,𝐻+, 𝑢)  and (𝐽, 𝐽+, 𝑣) is an isomorphism 𝜙 ∶ 𝐻 → 𝐽 
such that 𝜙(𝐻+) = 𝐽+ and 𝜙(𝑢) = 𝑣. 𝐴 state of the unital ordered group (𝐻,𝐻+, 𝑢)  is a 

homomorphism 𝜙 ∶ 𝐻 → 𝑅  so that 𝜙(𝑢) = 1  and 𝜙(𝐻+) ⊆ ℝ+.  The infinitesimal 

subgroup of a simple dimension group with unit (𝐻,𝐻+, 𝑢) is  

inf(𝐻) = {𝑎 ∈ 𝐻 ∶ 𝜙(𝑎) = 0  for all state 𝜙}. 
It is not difficult to show that inf (𝐻) does not depend on the order unit. The quotient 

group 𝐻/inf(𝐻) of a simple dimension group (𝐻,𝐻+),   is also a simple dimension group 

with positive cone 

(𝐻/inf(𝐻))+ = {[𝑎]: 𝑎 ∈ 𝐻+}. 
The next result is well-known.  

Lemma (6.1.2)[367]: Let (𝐻,𝐻+), be a simple dimension group equals to the direct limit 

lim
→𝑛

( ℤ𝑘𝑛 , 𝑀𝑛) =  ℤ𝑘0  
𝑀0
→ ℤ𝑘1

𝑀1
→  ℤ𝑘2  

𝑀2
→  · · · .  

Then for every 𝑧 = (𝑧𝑛)𝑛 ≥ 0 in the inverse limit 

lim 
←𝑛

((ℝ+)𝑘𝑛 , 𝑀𝑛
𝑇) =  (ℝ+)𝑘0  

,𝑀0
𝑇

← (ℝ+)𝑘1
,𝑀1

𝑇

←  (ℝ+)𝑘2  
,𝑀2

𝑇

←  · · · 

the function 𝜙𝑧 ∶ 𝐻 → ℝ  given by 𝜙([𝑛, 𝑣]) =< 𝑣, 𝑧𝑛 > , for every [𝑛, 𝑣] ∈ 𝐻 , is well 

defined and is a homomorphism of groups such that 𝜙𝑧(𝐻
+) ⊆ ℝ+. Conversely, for every 

group homomorphism 𝜙:𝐻 → ℝ  such that 𝜙(𝐻+) ⊆ ℝ+ , there exists a unique 𝑧 ∈
lim←𝑛((ℝ

+)𝑘𝑛 , , 𝑀𝑛
𝑇 ) such that 𝜙 = 𝜙𝑧 . 

The following lemma is a preparatory lemma to prove Theorem (6.1.21) and (6.1.23). 

Lemma (6.1.3)[367]: Let (𝐻,𝐻+, 𝑢) be a simple dimension group with unit given by the 

following direct limit 

lim
→𝑛

( ℤ𝑘𝑛 , 𝐴𝑛) =  ℤ 
𝐴0
→ ℤ𝑘1

𝐴1
→  ℤ𝑘2  

𝐴2
→  · · · ,  

with unit 𝑢 = [1, 0]. Suppose that 𝐴𝑛 > 0 for every   𝑛 ≥ 0. Then (𝐻,𝐻+, 𝑢) is 

isomorphic to 

ℤ 
�̃�0
→ ℤ𝑘1+1

�̃�1
→  ℤ𝑘2+1  

�̃�2
→  · · · , 

where �̃�0 is the (𝑘1 + 1) × 1-dimensional matrix given by 

�̃�0 =

[
 
 
 
 
𝐴0(1,⋅)
𝐴0(1,⋅)
𝐴0(2,⋅)

⋮
𝐴0(𝑘1,⋅)]

 
 
 
 

 , 

and �̃�𝑛 is the (𝑘1 + 1 × 1) × (𝑘𝑛 + 1) dimensional matix given by 
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     �̃�𝑛 =

[
 
 
 
 
1                  𝐴𝑛(1, 1) − 1 𝐴𝑛(1, 2)  · · ·    𝐴𝑛(1, 𝑘𝑛)

1                  𝐴𝑛(1, 1) − 1 𝐴𝑛(1, 2)  · · ·    𝐴𝑛(1, 𝑘𝑛)

1                  𝐴𝑛(2, 1) − 1 𝐴𝑛(2, 2) · · ·    𝐴𝑛(2, 𝑘𝑛)

   ⋮                               ⋮                       ⋮                 2   ⋮    2
1  𝐴𝑛(𝑘𝑛+1, 1) − 1 𝐴𝑛(𝑘𝑛+1, 2) · · · 𝐴𝑛(𝑘𝑛+1, 𝑘𝑛)

   

]
 
 
 
 

  , for every 𝑛 ≥ 0. 

 

Proof: For 𝑛 ≥ 1, consider 𝑀𝑛 the (𝑘𝑛 + 1) × 𝑘𝑛-dimensional matrix given by 

 

𝑀𝑛(⋅, 𝑘) = {
𝑒𝑛,1 + 𝑒𝑛,2 if 𝑘 = 1

𝑒𝑘+1               if            3 ≤ 𝑘 ≤ 𝑘𝑛
, 

where  𝑒𝑛,1,· · · , 𝑒𝑛,𝑘𝑛+1 are the canonical vectors in ℝ𝑘𝑛+1. Let 𝐵𝑛 be the 𝑘𝑛+1 × (𝑘𝑛 + 1)- 

dimensional matrix defined by  

𝐵𝑛(𝑖, 𝑗) = {

1                   if 𝑗 = 1                 

𝐴𝑛(𝑖, 1) − 1 if 𝑗 = 2                  

𝐴𝑛(𝑖, 𝑗 − 1) if 3 ≤ 𝑗 ≤ 𝑘𝑛 + 1
 

 

We have 𝐴𝑛 = 𝐵𝑛𝑀𝑛  and �̃�𝑛 = 𝑀𝑛+1 + 𝐵𝑛  for every 𝑛 ≥ 1, and �̃�0 = 𝑀1𝐴0 .Thus the 

Bratteli diagrams defined by the sequences of matrices (𝐴𝑛)𝑛 ≥ 0  and (�̃�𝑛)𝑛 ≥ 0  are 

contractions of the same diagram. This shows that the respective dimension groups with 

unit are isomorphic (see [383] or [377]). 

Let (𝑋, 𝑇, 𝐺) be a topological dynamical system such that 𝑋 is a Cantor set and 𝑇 is 

minimal. The ordered group associated to (𝑋, 𝑇, 𝐺) is the unital ordered group 

 

𝒢(𝑋, 𝑇, 𝐺) = (𝐷𝑚(𝑋, 𝑇, 𝐺), 𝐷𝑚(𝑋, 𝑇, 𝐺)
+, [368]), 

where 

𝐷𝑚(𝑋, 𝑇, 𝐺) =  𝐶(𝑋, 𝑍)/{𝑓 ∈ 𝐶(𝑋, ℤ) ∶ ∫𝑓𝑑𝜇 =  0, ∀𝜇 ∈ 𝑀(𝑋, 𝑇, 𝐺)}, 

       𝐷𝑚(𝑋, 𝑇, 𝐺)
+ = {[𝑓]: 𝑓 ≥ 0} , 

 

and [368] ∈  𝐷𝑚(𝑋, 𝑇, 𝐺) is the class of the constant function 1. 

Two topological dynamical systems (𝑋1, 𝑇1, 𝐺1) and (𝑋2, 𝑇2, 𝐺2) are (topologically) orbit 

equivalent if there exists a homeomorphism 𝐹: 𝑋1 → 𝑋2  such that 𝐹(𝑜𝑇1 (𝑥)) =
𝑜𝑇2 (𝐹(𝑥)) for every 𝑥 ∈ 𝑋1. 

 [382] show the following algebraic caracterization of orbit equivalence. 

Theorem (6.1.4)[367]: [382]. Let (𝑋, 𝑇, ℤ𝑑) and (𝑋′, 𝑇′, ℤ𝑚) be two minimal actions on 

the Cantor set. Then they are orbit equivalednt if and only if 

 

𝒢(𝑋, 𝑇, ℤ𝑑) ≃ 𝒢(𝑋′, 𝑇′, ℤ𝑚) 
as isomorphism of unital ordered group. 

Let 𝐺 be a residually finite group, and let (Γ𝑛)𝑛≥0 be a nested sequence of finite index 

normal subgroup of 𝐺 such that⋂ T𝑛𝑛≥0 = {𝑒}. 
For technical reasons it is important to notice that since the groups Γ𝑛 are normal, we have 

𝑔Γ𝑛 = Γ𝑛𝑔, for every 𝑔 ∈ 𝐺. 
To construct a Toeplitz 𝐺-subshift that is an almost 1-1 extension of the odometer defined 

by the sequence (Γ𝑛)𝑛, we need a “suitable” sequence (𝐹𝑛)𝑛 of fundamental domains of 
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𝐺/Γ𝑛. More precisely, each 𝐹𝑛+1 has to be tileable by translated copies of 𝐹𝑛. To control 

the simplex of invariant measures of the subshift, we need in addition the sequence (𝐹𝑛)𝑛 

to be Følner. We did not find in the specialized litterature a result ensuring these 

conditions. 

Let Γ be a normal subgroup of 𝐺. By a fundamental domain of 𝐺/Γ, we mean a 

subset 𝐷 ⊆ 𝐺 containing exactly one representative element of each equivalence class in 

𝐺/Γ. 

Lemma (6.1.5)[367]: Let (𝐷𝑛)𝑛≥0 be an increasing sequence of finite subsets of 𝐺 such 

that for every  𝑛 ≥ 0, 𝑒 ∈ 𝐷𝑛 and 𝐷𝑛 is a fundamental domain of 𝐺/Γ𝑛. Let (𝑛𝑖)𝑖≥0 ⊆ ℤ+ 

be an increasing sequence. Consider (𝐹𝑖)𝑖≥0 defined by 𝐹0 = 𝐷𝑛0 and 

𝐹𝑖 = ⋃ 𝑣𝐹𝑖−1
𝑣∈𝐷𝑛𝑖∩Γ𝑛𝑖−1

 for every  𝑖 ≥ 1. 

Then for every  𝑖 ≥ 0 we have the following: 

      (i) 𝐹𝑖 ⊆ 𝐹𝑖+1 and 𝐹𝑖 is a fundamental domain of 𝐺/Γ𝑛𝑖. 

         (ii) 𝐹𝑖+1 = ⋃ 𝑣𝑣∈𝐹𝑖+1∩Γ𝑛𝑖
∈ 𝐹𝑖. 

Proof: Since ∈ D𝑛𝑖  , the sequence (𝐹𝑖)𝑖≥0 is increasing. 

𝐹0 = D𝑛0 is a fundamental domain of 𝐺/Γ𝑛0 . We will prove by induction on i that 𝐹𝑖 is a 

fundamental domain of  𝐺/Γ𝑛𝑖 . Let  𝑖 > 0 and suppose that 𝐹𝑖−1 is a fundamental domain 

of 𝐺/Γ𝑛𝑖−1 .  

Let ∈ D𝑛𝑖  . There exist then 𝑢 ∈ 𝐹𝑖−1 and 𝑤 ∈ Γ𝑛𝑖−1  such that  𝑣 = 𝑤𝑢. Let 𝑧 ∈ D𝑛𝑖  and 

𝛾 ∈ Γ𝑛𝑖  be such that 𝑤 = 𝛾𝑧 . Since  𝑧 ∈ 𝐹𝑖−1 ∩ D𝑛𝑖  and 𝑣 = 𝛾𝑧𝑢 , we conclude that 

𝐹𝑖contains one representing element of each class in 𝐺/Γ𝑛𝑖 .  

Let 𝑤1, 𝑤2 ∈ 𝐹𝑖  be such that there exists 𝛾 ∈ Γ𝑛𝑖  verifying  𝑤1 =  𝛾𝑤2 . By definition, 

𝑤1 = 𝑣1𝑢1 and 𝑤2 = 𝑣2𝑢2, for some 𝑢1, 𝑢2 ∈ 𝐹𝑖−1 and 𝑣1, 𝑣2 ∈ D𝑛𝑖 ∩ Γ𝑛𝑖−1 . This implies 

that 𝑢1 and 𝑢2 are in the same class of /Γ𝑛𝑖−1  . Since 𝐹𝑖−1 is a fundamental domain, we 

have 𝑢1 = 𝑢2. From this we get  𝑣1 = 𝛾𝑣2, which implies that 𝑣1 = 𝑣2. Thus we deduce 

that 𝐹𝑖 contains at most one representing element of each class in /Γ𝑛𝑖 . This shows that 𝐹𝑖 

is a fundamental domain of 𝐺/Γ𝑛𝑖 .  

To show that D𝑛𝑖 ∩ Γ𝑛𝑖−1 ⊆ 𝐹𝑖 ∩ Γ𝑛𝑖−1 , observe that the definition of 𝐹𝑖  implies that for 

every 𝑣 ∈ D𝑛𝑖 ∩ Γ𝑛𝑖−1 and  𝑢 ∈ Γ𝑛𝑖−1 , 𝑣𝑢 ∈ 𝐹𝑖 . Then for  𝑢 = 𝑒 ∈ 𝐹𝑖−1 we get 𝑣 = 𝑣𝑒 ∈ 𝐹𝑖 . 

Now suppose that 𝑣 ∈ 𝐹𝑖 ∩ Γ𝑛𝑖−1 ⊆ 𝐹𝑖 . The definition of 𝐹𝑖  implies there exist  𝑢 ∈ 𝐹𝑖−1 

and 𝛾 ∈ D𝑛𝑖 ∩ Γ𝑛𝑖−1 such that 𝑣 =  𝛾𝑢. Since v and 𝛾 are in Γ𝑛𝑖−1 , we get that  𝑢 ∈  Γ𝑛𝑖−1 ∩

𝐹𝑖−1. This implies that 𝑢 = 𝑒 because Γ𝑛𝑖−1 ∩ 𝐹𝑖−1 = {𝑒}. 

By Følner sequences we mean right Følner sequences. That is, a sequence (𝐹𝑛)𝑖≥0  of 

nonempty finite sets of 𝐺 is a Følner sequence if for every 𝑔 ∈ 𝐺 

 

lim
𝑛→∞

|𝐹𝑛𝑔∆𝐹𝑛|

𝐹𝑛
= 0. 

Observe that  (𝐹𝑛)𝑛≥0 is a right Følner sequence if and only if (𝐹𝑛
−1)𝑛≥0 is a left Følner 

sequence. 

Lemma (6.1.6)[367]: Suppose that 𝐺 is amenable. There exists an increasing sequence 

(𝑛𝑖)𝑖≥0 ⊆ ℤ+ and a Følner sequence (𝐹𝑖)𝑖∈ℤ+ , such that 
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    i) 𝐹𝑖 ⊆ 𝐹𝑖+1  and 𝐹𝑖 is a fundamental domain of 𝐺/Γ𝑛𝑖 , for every 𝑖 ≥ 0. 

    ii)   𝐺 = ⋃ 𝐹𝑖𝑖≥0 . 
   iii)  𝐹𝑖+1 = ⋃ 𝑣𝑣∈𝐹𝑖+1∩Γ𝑛𝑖

𝐹𝑖 , for every 𝑖 ≥ 0. 

Proof: From [393] (see [389] for a proof in our context), there exists an increasing 

sequence (𝑚𝑖)𝑖≥0  ⊆ ℤ+  and a Følner sequence (𝐷𝑖)𝑖∈ℤ+  such that for every 𝑖 ≥ 0, 𝐷𝑖 ⊆
𝐷𝑖+1, 𝐷𝑖 is a fundamental domain of /Γ𝑚𝑖

 , and 𝐺 = ⋃ 𝐷𝑖𝑖≥0 . Up to take subsequences, we 

can assume that 𝐷𝑖  is a fundamental domain of  𝐺/Γ𝑖, for every 𝑖 ≥ 0, and that  𝑒 ∈ 𝐷0. 

We will construct the sequences (𝑛𝑖)𝑖≥0 and (𝐹𝑛)𝑛≥0 as follows: 

Step 0: We set 𝑛0 = 0 and  𝐹0 = 𝐷0. 

Step i: Let  𝑖 > 0. We assume that we have chosen 𝑛𝑖 and 𝐹𝑗 for every 0 ≤ 𝑗 < 𝑖. We take  

𝑛𝑖 > 𝑛𝑖−1  in order that the following two conditions are verified: 

 

|𝐷𝑛𝑖𝑔 ∆ 𝐷𝑛𝑖|

𝐷𝑛𝑖
<

1

𝑖|𝐹𝑖−1|
, for every 𝑔 ∈ 𝐹𝑖−1.                                     (1) 

 

𝐷𝑛𝑖−1 ⊆ ⋃ 𝑣𝐹𝑖−1
𝑣∈𝐷𝑛𝑖∩Γ𝑛𝑖−1

 .                                                       (2) 

Such integer ni exists because (𝐷𝑛)𝑛≥0 is a Følner sequence and  𝐹𝑖−1 is a fundamental 

domain of  𝐺/Γ𝑛𝑖−1  (then  𝐺 = ⋃ 𝑣𝐹𝑖−1𝑣∈Γ𝑛𝑖−1
). 

We define 

𝐹𝑖 = ⋃ 𝑣𝐹𝑖−1
𝑣∈𝐷𝑛𝑖∩Γ𝑛𝑖−1

 

Lemma (6.1.5) ensures that (𝐹𝑖)𝑖≥0 verifies i) and iii) of the lemma. The equation (2) 

implies that (𝐹𝑖)𝑖≥0 verifies ii) of the lemma. 

It remains to show that (𝐹𝑖)𝑖≥0 is a Følner sequence. By definition of 𝐹𝑖 we have 

 

(𝐹𝑖\𝐷𝑛𝑖) ⊆ ⋃ (𝐷𝑛𝑖𝑔\ 𝐷𝑛𝑖) .

𝑔∈𝐹𝑖−1

 

Then by equation (1) we get 

|𝐹𝑖\ 𝐷𝑛𝑖|

𝐷𝑛𝑖
≤ ∑ (

| 𝐷𝑛𝑖𝑔\ 𝐷𝑛𝑖|

| 𝐷𝑛𝑖|
)

𝑔∈𝐹𝑖−1

                       

≤ |𝐹𝑖−1|
1

𝑖|𝐹𝑖−1|
=
1

𝑖
.           

Since 

|𝐹𝑖 ∩ 𝐷𝑛𝑖| + |𝐷𝑛𝑖\ 𝐹𝑖|) = |𝐷𝑛𝑖 |  =  |𝐹𝑖|  =  |𝐹𝑖 ∩ 𝐷𝑛𝑖| + |𝐹𝑖  \ 𝐷𝑛𝑖  |, 

we obtain 

| 𝐷𝑛𝑖\𝐹𝑖|

|𝐷𝑛𝑖|
≤

1

𝑖
.                 

Let 𝑔 ∈ 𝐺. Since 

𝐹𝑖𝑔\𝐹𝑖 = [(𝐹𝑖 ∩ 𝐷𝑛𝑖)𝑔\𝐹𝑖]⋃[(𝐹𝑖\𝐷𝑛𝑖)𝑔\𝐹𝑖]                          
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⊆ [(𝐹𝑖 ∩ 𝐷𝑛𝑖)𝑔\ 𝐹𝑖]⋃(𝐹𝑖  \𝐷𝑛𝑖)𝑔                    

⊆ [𝐷𝑛𝑖𝑔\ (𝐹𝑖 ∩ 𝐷𝑛𝑖)]⋃(𝐹𝑖\𝐷𝑛𝑖)𝑔,                

we have 

𝐹𝑖𝑔\𝐹𝑖
|𝐹𝑖|

≤
|𝐷𝑛𝑖𝑔(𝐹𝑖 ∩ 𝐷𝑛𝑖)|

|𝐷𝑛𝑖|
+
|(𝐹𝑖  \𝐷𝑛𝑖)𝑔|

|𝐷𝑛𝑖|
≤
|𝐷𝑛𝑖𝑔\ (𝐹𝑖 ∩ 𝐷𝑛𝑖)|

|𝐷𝑛𝑖|
+

1

𝑖
.                         (3) 

On the other hand, the relation 

𝐷𝑛𝑖𝑔\𝐷𝑛𝑖 = 𝐷𝑛𝑖𝑔\[(𝐷𝑛𝑖 ∩ 𝐹𝑖) ∪ (𝐷𝑛𝑖  \𝐹𝑖)] = [𝐷𝑛𝑖𝑔\ (𝐷𝑛𝑖 ∩ 𝐹𝑖)]\(𝐷𝑛𝑖  \𝐹𝑖) 

implies that 

𝐷𝑛𝑖𝑔\ (𝐹𝑖 ∩ 𝐷𝑛𝑖)

= [(𝐷𝑛𝑖𝑔\ (𝐹𝑖 ∩ 𝐷𝑛𝑖)) ∩ (𝐷𝑛𝑖  \𝐹𝑖)]⋃[(𝐷𝑛𝑖𝑔\ (𝐹𝑖 ∩ 𝐷𝑛𝑖)) \(𝐷𝑛𝑖  \𝐹𝑖)] 

= [(𝐷𝑛𝑖𝑔\ (𝐹𝑖 ∩ 𝐷𝑛𝑖)) ∩ (𝐷𝑛𝑖  \𝐹𝑖)]⋃[𝐷𝑛𝑖𝑔\𝐷𝑛𝑖]       

⊆ (𝐷𝑛𝑖\𝐹𝑖)⋃(𝐷𝑛𝑖𝑔\𝐷𝑛𝑖),                                                   

which ensures that 

|𝐷𝑛𝑖𝑔\(𝐹𝑖 ∩ 𝐷𝑛𝑖)|

|𝐷𝑛𝑖|
≤
|𝐷𝑛𝑖\𝐹𝑖|

|𝐷𝑛𝑖|
+
|𝐷𝑛𝑖𝑔\ 𝐷𝑛𝑖|

|𝐷𝑛𝑖|
.                                                   (4) 

From equations (3) and (4), we obtain 

|𝐹𝑖𝑔\𝐹𝑖|

|𝐹𝑖|
≤

2

𝑖
+
|𝐷𝑛𝑖𝑔\ 𝐷𝑛𝑖|

|𝐷𝑛𝑖|
,  

 

which implies 

lim
𝑖→∞

|𝐹𝑖𝑔\𝐹𝑖|

|𝐹𝑖|
= 0.                                                                    (5) 

In a similar way we deduce that 

𝐹𝑖\𝐹𝑖𝑔 ⊆ [𝐷𝑛𝑖\(𝐹𝑖 ∩ 𝐷𝑛𝑖)𝑔]⋃(𝐹𝑖\𝐷𝑛𝑖),               

𝐷𝑛𝑖\𝐷𝑛𝑖𝑔 = [𝐷𝑛𝑖\(𝐷𝑛𝑖 ∩ 𝐹𝑖)𝑔](𝐷𝑛𝑖\𝐹𝑖),                           

and 

𝐷𝑛𝑖\(𝐹𝑖 ∩ 𝐷𝑛𝑖)𝑔 ⊆ (𝐷𝑛𝑖\𝐹𝑖)⋃(𝐷𝑛𝑖\𝐷𝑛𝑖𝑔).                    

Combining the last three equations we get  

|𝐹𝑖\𝐹𝑖𝑔|

|𝐹𝑖|
≤

2

𝑖
+
|𝐷𝑛𝑖\𝐷𝑛𝑖𝑔 |

|𝐷𝑛𝑖|
,              

which implies 

lim
𝑖→∞

|𝐹𝑖\𝐹𝑖𝑔|

|𝐹𝑖|
= 0.                                                                    (6) 

 

Equations (5) and (6) imply that (𝐹𝑖)𝑖≥0 is Følner. 

The following result is a direct consequence of Lemma (6.1.6). 

Lemma (6.1.7)[367]: Let 𝐺 be an amenable residually finite group and let (Γ𝑛)𝑛≥0 be a 

decreasingmsequence of finite index normal subgroups of 𝐺  such that ⋂ Γ𝑛𝑛≥0 = {𝑒} . 
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There exists an increasing sequence (𝑛𝑖)𝑖≥0 ⊆  ℤ+  and 𝑎  Følner sequence (𝐹𝑖)𝑖≥0   of 𝐺 

such that 

     (i) {𝑒} ⊆ 𝐹𝑖 ⊆ 𝐹𝑖+1 and  𝐹𝑖 is a fundamental domain of  𝐺/𝐹𝑛𝑖  , for every 𝑖 ≥ 0. 

    (ii) 𝐺 = ⋃ 𝐹𝑖𝑖≥0 . 
      (iii) 𝐹𝑖 = ⋃ 𝜐𝐹𝑖𝜐∈𝐹𝑗∩𝐹𝑛𝑖 ,

 for every  𝑗 > 𝑖 ≥ 0. 

Proof: The existence of the sequence of subgroups of 𝐺 and the Følner sequence verifying 

(i), (ii) and (iii) for 𝑗 = 𝑖 + 1  is direct from Lemma (6.1.6). Using induction, it is 

straightforward to show (iii) for every 𝑗 > 𝑖 ≥ 0. 

𝐺 is an amenable, countable, and residually finite group. 

Let ∑ be a finite alphabet and let (∑𝐺 , 𝜎, 𝐺) be the respective full G-shift. 

For a finite index subgroup Γ of 𝐺, 𝑥 ∈ ∑𝐺 and 𝑎 ∈ ∑, we define 

𝑃𝑒𝑟(𝑥, Γ, 𝑎) = {𝑔 ∈ 𝐺:  𝜎𝛾(𝑥)(𝑔) = 𝑥(𝛾−1𝑔) = 𝑎, ∀𝛾 ∈ Γ}, 
and 𝑃𝑒𝑟(𝑥, Γ)  = ⋃ 𝑃𝑒𝑟(𝑥, Γ, 𝑎).𝑎∈∑   

It is straightforward to show that 𝑥 ∈ ∑𝐺 is a Toeplitz sequence if and only if there exists 

an increasing sequence (Γ𝑛)𝑛≥0  of finite index subgroups of 𝐺  such that  𝐺 =
⋃ 𝑃𝑒𝑟(x, Γ𝑛) 𝑛≥0  (see [372]). 

A period structure of  𝑥 ∈ ∑𝐺 is an increasing sequence of finite index subgroups (Γ𝑛)𝑛≥0 

of 𝐺  such that  𝐺 = ⋃ 𝑃𝑒𝑟(x, Γ𝑛) 𝑛≥0 and such that for every 𝑛 ≥ 0 , Γ𝑛  is an essential 

group of periods: This means that if 𝑔 ∈ 𝐺 is such that 𝑃𝑒𝑟(𝑥, Γ𝑛, 𝑎) ⊆ 𝑃𝑒𝑟(𝜎𝑔(𝑥), Γ𝑛, 𝑎) 
for every 𝑎 ∈ ∑, then 𝑔 ∈ Γ𝑛. 

It is known that every Toeplitz sequence has a period structure (see for example [372]). 

We construct, thanks the period structure, a KakutaniRokhlin partition and we deduce a 

characterization of its ordered group. 

We suppose that 𝑥0 ∈ ∑𝐺  is a non-periodic Toeplitz sequence  (𝜎𝑔(𝑥0) =  𝑥0 

implies 𝑔 = 𝑒) having a period structure (Γ𝑛)𝑛≥0 such that for every 𝑛 ≥ 0, 
     (i) Γ𝑛+1 is a proper subset of Γ𝑛, 

     (ii) Γ𝑛 is a normal subgroup of 𝐺. 

Every non-periodic Toeplitz sequence has a period structure verifying (i) [372]. Condition 

(ii) is satisfied for every Toeplitz sequence whose Toeplitz subshift is an almost 1-1 

extension of an odometer (in the general case these systems are almost 1-1 extensions of 

subodometers. See [372]). 

By Lemma (6.1.7) we can assume there exists a Følner sequence (F𝑛)𝑛≥0 of 𝐺 such that 

     (F1) {𝑒} ⊆ F𝑛 ⊆ F𝑛+1 and F𝑛 is a fundamental domain of 𝐺/Γ𝑛, for every 𝑛 ≥ 0. 
     (F2) 𝐺 = ⋃ 𝐹𝑛𝑛≥0 . 

     (F3) F𝑛 = ⋃ 𝜐𝐹𝑖𝜐∈𝐹𝑛∩Γ𝑖, , for every 𝑛 > 𝑖 ≥ 0. 

We denote by 𝑋 the closure of the orbit of  𝑥0. Thus (𝑋, 𝜎|𝑋, 𝐺) is a Toeplitz subshift. 

Definition (6.1.8)[367]: We say that a finite 𝑐𝑙𝑜𝑝𝑒𝑛  partition 𝒫  of 𝑋  is a regular 

Kakutani- Rokhlin partition (𝑟 − 𝐾 − 𝑅 partition), if there exists a finite index subgroup Γ 

of 𝐺 with a fundamental domain 𝐹 containing 𝑒 and 𝑎 clopen 𝐶𝑘, such that 

 

𝒫 = {𝜎𝑢
−1
(𝐶𝑘): 𝑢 ∈ 𝐹, 1 ≤ 𝑘 ≤ 𝑁} 

and  

𝜎𝛾 (⋃𝐶𝑘

𝑁

𝑘=1

) =⋃𝐶𝑘

𝑁

𝑘=1

for every 𝛾 ∈ Γ. 



210 

To construct a regular KakutaniRokhlin partition of X, we need the following technical 

lemma. 

Lemma (6.1.9)[367]: Let  𝒫′ =  {𝜎𝑢
−1
(𝐷𝑘): 𝑢 ∈ 𝐹, 1 ≤ 𝑘 ≤ 𝑁} be 𝑎 𝑟-𝐾-𝑅 partition of 

𝑋 and 𝒬 any other finite clopen partition of 𝑋. Then there exists 𝑎 𝑟-𝐾-𝑅 partition 𝒫 =

{𝜎𝑢
−1
(𝐶𝑘) ∶ 𝑢 ∈ 𝐹, 1 ≤ 𝑘 ≤ 𝑀} of 𝑋 such that 

   (i) 𝒫 is finer than 𝒫 and 𝒬, 

  (ii) ⋃ 𝐶𝑘
𝑀
𝑘=1 = ⋃ 𝐷𝑘

𝑁
𝑘=1 . 

Proof: Let  𝐹 = {𝑢0, 𝑢1,· · · , 𝑢|𝐹| − 1}, 𝑤𝑖𝑡ℎ 𝑢0 = 𝑒. 
We refine every set 𝐷𝑘 with respect to the partition  𝒬. Thus we get a collection of disjoint 

sets 

 

𝐷1,1,· · · , 𝐷1,𝑙1  ; · · · ; 𝐷𝑁,1,· · · , 𝐷𝑁,𝑙𝑁  , 

such that each of these sets is in an atom of 𝒬 and 𝐷𝑘 = ⋃ 𝐷𝑘,𝑗
𝑙𝑘
𝑗=1  for every 1 ≤ 𝑘 ≤ 𝑁 

.Thus 𝒫0 = {𝜎𝑢
−1
(𝐷𝑘): 𝑢 ∈ 𝐹, 1 ≤ 𝑗 ≤ 𝑙𝑘 , 1 ≤ 𝑘 ≤ 𝑁}  is 𝑎 𝑟 -𝐾 -𝑅  partition of 𝑋 . For 

simplicity we write 

𝒫0 = {𝜎𝑢
−1
(𝐷𝑘

(0)
) : 𝑢 ∈ 𝐹, 1 ≤ 𝑘 ≤ 𝑁0}. 

We have that 𝒫0 verifies (2) and every 𝐷𝑘
(0)

is contained in atoms of 𝒫′ and  𝒬. Let  0 ≤
𝑛 < |𝐹| − 1. Suppose that we have defined 𝑎 𝑟-𝐾-𝑅 partition of 𝑋 

 

𝒫𝑛 = {𝜎𝑢
−1
(𝐷𝑘

(𝑛)
) : 𝑢 ∈ 𝐹, 1 ≤ 𝑘 ≤ 𝑁𝑛}, 

such that 𝒫𝑛 verifies (2) and such that for every 0 ≤ 𝑗 ≤ 𝑛 and 1 ≤ 𝑘 ≤ 𝑁𝑛 there exist 𝐴 ∈
𝒫′ and 𝐵 ∈ 𝒬 such that 

𝜎𝑢𝑗
−1

(𝐷𝑘
(𝑛)
) ⊆ 𝐴, 𝐵. 

Now we refine every set 𝜎𝑢𝑛+1
−1

(𝐷𝑘
(𝑛)
) with respect to 𝒬 . Thus we get a collection of 

disjoint sets 

𝐷1,1,· · · , 𝐷1,𝑠1  ; · · · ; 𝐷𝑁𝑛,1,· · · , 𝐷𝑁𝑛,𝑠𝑁𝑛  , 
 

such that each of these sets is in an atom of 𝒬 and 𝜎𝑢𝑛+1
−1

(𝐷𝑘
(𝑛)
) = ⋃ 𝐷𝑘,𝑗

𝑠𝑘
𝑗=1  , for every 

1 ≤ 𝑘 ≤ 𝑁𝑛. For every 1 ≤ 𝑘 ≤ 𝑁𝑛. and 1 ≤  𝑗 ≤ 𝑠𝑘 , let  𝐶𝑘,𝑗 = 𝜎𝑢𝑛+1(𝐷𝑘,𝑗) ⊆ 𝐷𝑘
(𝑛)

 . We 

have that 

 

𝒫𝑛+1 = {𝜎𝑢
−1
(𝐶𝑘,𝑗): 𝑢 ∈ 𝐹, 1 ≤ 𝑗 ≤ 𝑠𝑘 , 1 ≤ 𝑘 ≤ 𝑁𝑛} 

is a 𝑟-𝐾-𝑅 partition of 𝑋 verifying (2) and such that for every 0 ≤ 𝑖 ≤ 𝑛 + 1, 1 ≤ 𝑗 ≤ 𝑠𝑘 

and 1 ≤ 𝑘 ≤ 𝑁𝑛 there exist 𝐴 ∈ 𝒫′ and 𝐵 ∈ 𝒬 such that 

 

𝜎𝑢𝑗
−1

(𝐶𝑘,𝑗) ⊆ 𝐴, 𝐵. 

At the step 𝑛 = |𝐹| − 1 we get 𝒫 = 𝒫|𝐹|−1 verifying (1) and (2). 

Proposition (6.1.10)[367]: There exists a sequence (𝒫𝑛 = {𝜎𝑢
−1
(𝐶𝑛,𝑘): 𝑢 ∈ 𝐹𝑛, 1 ≤ 𝑘 ≤

𝑘𝑛, 1 ≤ 𝑘 ≤ 𝑘𝑛})𝑛≥0 of 𝑟-𝐾-𝑅 partitions of 𝑋 such that for every 𝑛 ≥  0, 

   (i) 𝒫𝑛+1 is finer than  𝒫𝑛 , 

    (ii) 𝐶𝑛+1 ⊆ 𝐶𝑛 = ⋃ = 𝐶𝑛,𝑘
𝑘𝑛
𝑘=1 , 
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   (iii) ⋂ 𝐶𝑛𝑛≥1 = {𝑥0}, 
  (iv) The sequence (𝒫𝑛)𝑛≥0 spans the topology of 𝑋. 

Proof: For every 𝑛 ≥ 0, let define 

 

𝐶𝑛 = {𝑥 ∈ 𝑋: 𝑃𝑒𝑟(𝑥, Γ𝑛, 𝑎) = 𝑃𝑒𝑟(𝑥0, Γ𝑛, 𝑎)∀𝑎 ∈ ∑ }. 
From [372] we get 

𝐶𝑛 = {𝜎𝛾(𝑥0): 𝛾 ∈ Γ𝑛 }̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, 

and that  𝒫𝑛
′  =  {𝜎𝑢

−1
(𝐶𝑛): 𝑢 ∈ 𝐹𝑛} is a clopen partition of 𝑋 such that  𝜎𝛾(𝐶𝑛) = 𝐶𝑛 for 

every  𝛾 ∈ Γ𝑛 . Thus 𝒫𝑛
′  is a 𝑟-𝐾-𝑅  partition of  𝑋. Furthermore, the sequence (𝒫𝑛

′)𝑛≥0 

verifies (1), (2) and (3). 

For every  𝑛 ≥ 0 , let 𝒬𝑛 = {[𝐵] ∩ 𝑋: 𝐵 ∈ ∑𝐹𝑛 , [𝐵] ∩ 𝑋 ≠ ∅} . This is a finite clopen 

partition of 𝑋 and (𝒬𝑛)𝑛≥0 spans the topology of  𝑋. 

We define  𝒫0 = {𝜎𝑢
−1
(𝐶0,𝑘) ∶ 𝑢 ∈ 𝐹0, 1 ≤ 𝑘 ≤ 𝐾0})  the 𝑟 -𝐾 -𝑅  partition finer than 𝒫0

′ 

and 𝒬0 given by Lemma (6.1.9). Now we take 𝒫𝑛
′′ the 𝑟-𝐾-𝑅 partition finer that 𝒫𝑛−1 and 

𝒬𝑛 given by Lemma (6.1.9), and we define 

 

𝒫𝑛 = {𝜎𝑢
−1
(𝐶𝑛,𝑘): 𝑢 ∈ 𝐹𝑛, 1 ≤ 𝑘 ≤ 𝐾𝑛 }, 

the 𝑟-𝐾-𝑅 partition finer than 𝒫′ = 𝒫𝑛
′ 𝑎𝑛𝑑 𝒬 = 𝒫𝑛

′′ given by Lemma (6.1.9). Thus 𝒫𝑛 is 

finer 

Sthan 𝒫𝑛−1 and  𝒬𝑛. This implies that the sequence (𝒫𝑛)𝑛≥0 verifies (1) and (4). Since 

⋃ 𝐶𝑛,𝑘
𝑘𝑛
𝑘=1 = 𝐶𝑛, we deduce that (𝒫𝑛)𝑛≥0verifies (2) and (3). 

Proposition (6.1.11)[367]: Let (𝒫𝑛 = {𝜎𝑢
−1
(𝐶𝑛,𝑘): 𝑢 ∈ 𝐹𝑛, 1 ≤ 𝑘 ≤ 𝐾𝑛 })n≥0 be a nested 

sequence of 𝑟 -𝐾 -𝑅  partitions of 𝑋  with an associated sequence of incidence matrices 

(𝑀𝑛)𝑛≥0. Then 

      (i) (𝑋, 𝜎|𝑋, 𝐺) is an almost 1-1 extension of the odometer  𝑂 = lim
←𝑛

(𝐺/Γ𝑛, 𝜋𝑛), 

      (ii) there is an affine homeomorphism between the set of invariant probability 

measures of (𝑋, 𝜎|𝑋 , 𝐺)  and the inverse limit lim
←𝑛

(∆(𝑘𝑛, |𝐹𝑛|),𝑀𝑛), 

     (iii) the ordered group 𝒢(𝑋, 𝜎|𝑋, 𝐺)   is isomorphic to (𝐻/inf(𝐻), (𝐻/inf(𝐻))+, 𝑢 +
inf(𝐻)), where (𝐻,𝐻+) is given by 

ℤ 
𝑀𝑇

→ ℤ𝑘0
𝑀0
𝑇

→ ℤ𝑘1  
𝑀1
𝑇

→  ℤ𝑘2
𝑀2
𝑇

→ · · · ,  
     where  𝑀 = |𝐹0|(1,· · · , 1) and 𝑢 = [𝑀𝑇 , 0]. 

Proof: (i) For every 𝑥 ∈ 𝑋 and 𝑛 ≥ 0, let  𝜐𝑛(𝑥) ∈ 𝐹𝑛 be such that 𝑥 ∈ 𝜎𝜐𝑛(𝑥)
−1
(𝐶𝑛). The 

map 𝜋: 𝑋 → 𝑂  given by 𝜋(𝑥) = (𝜐𝑛(𝑥)
−1Γ𝑛)𝑛≥1  is well defined, is a factor map and 

verifies  𝜋−1(𝜋(𝑥0)) = {𝑥0}. This shows that (𝑋, 𝜎|𝑋, 𝐺) is an almost 1-1 extension of  𝑂. 

           (ii) It is clear that for any invariant probability measure μ of (𝑋, 𝜎|𝑋, 𝐺) , the 

sequence (𝜇𝑛)𝑛≥0, with   𝜇𝑛 = (𝜇(𝐶𝑛,𝑘) ∶ 1 ≤ 𝑘 ≤ 𝑘𝑛), is an element of the inverse limit 

lim
←𝑛

(∆(𝑘𝑛, |𝐹𝑛|),𝑀𝑛). Conversely, any element ( 𝜇𝑛,𝑘 ∶ 1 ≤ 𝑘 ≤ 𝑘𝑛)𝑚≥0  of such inverse 

limit, defines a probability measure 𝜇 on the 𝜎-algebra generated by (𝒫𝑛)𝑛≥0 , which is 

equal to the Borel 𝜎 -algebra of 𝑋  because (𝒫𝑛)𝑛≥0  spans the topology of 𝑋  and is 

countable. Since the sequence (𝐹𝑛) is Følner, it is standard to check that the measure 𝜇 is 

invariant by the 𝐺-action. 

The function 𝜇 ↦ (𝜇𝑛)𝑛≥0  is thus an affine bijection between ℳ(𝑋, 𝜎|𝑋, 𝐺)  and the 

inverse limit lim
←𝑛

(∆(𝑘𝑛, |𝐹𝑛|),𝑀𝑛). Observe that this function is a homeomorphism with 
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respect to the weak topology in  ℳ(𝑋, 𝜎|𝑋, 𝐺)  and the product topology in the inverse 

limit. 

        (iii) We denote by [𝑘, −1] the class of the element (𝑘,−1) ∈ ℤ × {−1} in 𝐻. 

Let  𝜙:𝐻 → 𝐷𝑚(𝑋, 𝜎|𝑋, 𝐺)  be the function given by 𝜙([𝜐, 𝑛]) = ∑ 𝜐𝑖
𝑘𝑛
𝑘=1 [1𝑐𝑛,𝑘]  , for 

every  𝜐 = (𝜐1,· · · , 𝜐𝑘𝑛) ∈ ℤ𝑘𝑛  and 𝑛 ≥ 0, and 𝜙([𝑘, −1]) = 𝑘1𝑋  for every 𝑘 ∈ ℤ. It is 

easy to check that 𝜙 is a well defined homomorphism of groups that verifies 𝜙(𝐻+) ⊆
𝐷𝑚(𝑋, 𝜎|𝑋, 𝐺)

+ . Since (𝒫𝑛)𝑛≥0  spans the topology of 𝑋 , every function 𝑓 ∈ 𝐶(𝑋, ℤ) 
isconstant on every atom of 𝒫𝑛, for some 𝑛 ≥ 0. This implies that 𝜙 is surjective. Lemma 

(6.1.2) and (2) of Proposition (6.1.11), imply that 𝐾𝑒𝑟(𝜙) =  inf(𝐻). Finally, 𝜙 induces a 

isomorphism �̂�: 𝐻/inf(𝐻) → 𝐷𝑚(𝑋, 𝜎|𝑋, 𝐺)  such that  �̂�((𝐻/inf(𝐻))+) =
𝐷𝑚(𝑋, 𝜎|𝑋, 𝐺)

+. Since [1,−1] = [𝑀𝑇  , 0], we get  𝜙([𝑀𝑇  , 0]) = [1𝑋]. 
We say that a sequence of positive integer matrices (𝑀𝑛)𝑛≥0 is managed by the increasing 

sequence of positive integers (𝑝𝑛)𝑛≥0, if for every 𝑛 ≥ 0 the integer 𝑝𝑛 divides 𝑝𝑛+1, and 

if the matrix 𝑀𝑛 verifies the following properties: 

    (i)  𝑀𝑛 has 𝑘𝑛 ≥ 2 rows and 𝑘𝑛+1 ≥ 2 columns; 

   (ii)  ∑ 𝑀𝑛
𝑘𝑛
𝑘=1 (𝑖, 𝑘) =

𝑝𝑛+1

𝑝𝑛
 , for every 1 ≤ 𝑘 ≤ 𝑘𝑛+1. 

If (𝑀𝑛)𝑛≥0  is a sequence of matrices managed by (𝑝𝑛)𝑛≥0 , then for each 𝑛 ≥ 0 ,  

𝑀𝑛(∆(𝑘𝑛+1, 𝑝𝑛+1)) ⊆ ∆(𝑘𝑛, 𝑝𝑛). 
Observe that the sequences of incidence matrices associated to the nested sequences of 𝑟-

𝐾-𝑅 partitions are managed by (|𝐹𝑛|)𝑛≥0. 
We construct Toeplitz subshifts with nested sequences of 𝑟-𝐾-𝑅 partitions whose 

sequences of incidence matrices are managed. 

       In the rest 𝐺 is an amenable and residually finite group. Let (Γ𝑛)𝑛≥0 be a decreasing 

sequence of finite index normal subgroup of 𝐺 such that ⋂ Γ𝑛𝑛≥0 = {𝑒}, and let (F𝑛)𝑛≥0 be 

a Følner sequence of 𝐺 such that 

    (F1) {𝑒} ⊆ F𝑛 ⊆ F𝑛+1 and F𝑛 is a fundamental domain of 𝐺/Γ𝑛, for every 𝑛 ≥ 0. 

    (F2) 𝐺 = ⋃ F𝑛𝑛≥0  . 
    (F3)  F𝑛 = ⋃ 𝜐F𝑖𝜐∈F𝑛∩Γ𝑖 , for every 𝑛 > 𝑖 ≥ 0. 

Lemma (6.1.7) ensures the existence of a Følner sequence verifying conditions (F1), (F2) 

and(F3). 

For every 𝑛 ≥ 0, we call R𝑛 the set F𝑛 · 𝐹𝑛
−1 ∪ 𝐹𝑛

−1 · F𝑛. This will enable us to define a 

“border” of each domain F𝑛+1. 

Let ∑ be a finite alphabet. For every 𝑛 ≥ 0, let k𝑛 ≥ 3 be an integer. We say that the 

sequence of sets ({𝐵𝑛,1,· · · , 𝐵𝑛,𝑘𝑛})𝑛≥0 where for any 𝑛 ≥ 0, {𝐵𝑛,1,· · · , 𝐵𝑛,𝑘𝑛} ⊆ ∑F𝑛  is a 

collection of different functions, verifies conditions (𝐶1) − (𝐶4)  if it verifies the 

following four conditions for any 𝑛 ≥ 0: 

     (C1)  𝜎𝛾
−1
 (𝐵𝑛+1,𝑘)|𝐹𝑛 ∈ {𝐵𝑛,𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑘𝑛}, for every 𝛾 ∈ F𝑛+1 ∩ Γ𝑛, 1 ≤ 𝑘 ≤ 𝑘𝑛+1. 

     (C2)  𝐵𝑛+1,𝑘)|𝐹𝑛 = 𝐵𝑛,1, for every 1 ≤ 𝑘 ≤ 𝑘𝑛+1. 

     (C3) For any 𝑔 ∈ F𝑛  such that for some 1 ≤  𝑘, 𝑘′ ≤ 𝑘𝑛𝐵𝑛,𝑘(𝑔𝜐) = 𝐵𝑛,𝑘′  (𝜐) for all 

𝜐 ∈ 𝐹𝑛 ∩ 𝑔−1𝐹𝑛, then  𝑔 = 𝑒. 

     (C4) 𝜎−1(𝐵𝑛+1,𝑘)|𝐹𝑛 = 𝐵𝑛,𝑘𝑛  for every 𝛾 ∈ (𝐹𝑛+1 ∩ Γ𝑛) ∩ {𝐹𝑛+1\ 𝐹𝑛+1𝑔
−1} , forsome  

𝑔 ∈ 𝑅𝑛. 

Example (6.1.12)[367]: To illustrate these conditions, let us consider the case 𝐺 = ℤ,∑ =
 {1, 2, 3, 4} and Γ𝑛 = 32(𝑛+1)ℤ for every 𝑛 ≥ 0. The set 
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𝐹𝑛 = {−(
32(𝑛+1) − 1

2
) ,−(

32(𝑛+1) − 1

2
) + 1,… , (

32(𝑛+1) − 1

2
) }                       

is a fundamental domain of  ℤ/Γ𝑛. Furthermore we have 

 

𝐹𝑛 = ⋃ (𝐹𝑛−1
𝜐∈{𝑘32𝑛:−4≤𝑘≤4}

+ 𝜐),               

for every 𝑛 ≥ 1. This shows that sequence (𝐹𝑛)𝑛≥0 satisfies (F1), (F2) and (F3). Now let 

us consider the case where 𝑘𝑛 = 4 for every 𝑛 ≥ 0. We define 𝐵0,𝑘(𝑗) = 𝑘 for Every  𝑗 ∈
𝐹0 and 1 ≤ 𝑘 ≤ 4, and for 𝑛 ≥ 1, 

𝐵𝑛,𝑘|𝐹𝑛−1 = 𝐵𝑛−1,1, 𝐵𝑛,𝑘|𝐹𝑛−1+𝜐 = 𝐵𝑛−1,4 𝑓𝑜𝑟 𝜐 ∈ {−𝑙 · 32𝑛, 𝑙 · 32𝑛: 𝑙 =  3, 4}. 

Thus they verify the conditions (C1) and (C4). We fill the rest of the 𝐵𝑛,𝑘|𝐹𝑛−1+𝜐  with 

𝐵𝑛−1,3 and 𝐵𝑛−1,2 in order that 𝐵𝑛,1,· · · , 𝐵𝑛,4 are different. They satisfy conditions (C2) 

and (C4). The limit in ∑ℤ of the functions 𝐵𝑛,1 is a ℤ -Toeplitz sequence 𝑥. If 𝑋 denotes 

the closure of the orbit of 𝑥, then we prove in the next lemma (in a more general setting) 

that 

 (𝒫𝑛 = {𝜎𝑗  ([𝐵𝑛,𝑘] ∩ 𝑋): 𝑗 ∈ 𝐹𝑛, 1 ≤ 𝑘 ≤ 4})𝑛≥0 

is a sequence of nested Kakutani-Rokhlin partitions of the subshift  𝑋. 

In the next lemma, we show that conditions (C1) and (C2) are sufficient to construct a 

Toeplitz sequence. The technical conditions (C3) (aperiodicity) and (C4) (also known as 

“forcing the border”) will allow to construct a nested sequence of 𝑟-𝐾-𝑅 partitions of 𝑋. 

Lemma (6.1.13)[367]: Let ({𝐵𝑛,1,· · · , 𝐵𝑛,𝑘𝑛})𝑛≥0 be a sequence that verifies conditions 

(C1) (C4).Then: 

   (i) The set ⋂ [𝐵𝑛,1]𝑛≥0  contains only one element 𝑥0 which is 𝑎 Toeplitz sequence. 

  (ii) Let 𝑋 be the orbit closure of x0 with respect to the shift action. For every 𝑛 ≥ 0, 𝑙𝑒𝑡 
 

𝒫𝑛 = {𝜎𝑢
−1
 ([𝐵𝑛,𝑘] ∩ 𝑋): , 1 ≤ 𝑘 ≤ 𝑘𝑛, 𝑢 ∈ 𝐹𝑛}. 

      Then (𝒫𝑛)𝑛≥0 is a sequence of nested 𝑟-𝐾-𝑅 partitions of X. 

Let (𝑀𝑛)𝑛≥0be the sequence of incidence matrices of (𝒫𝑛)𝑛≥0. Thus we have 

  (iii) The Toeplitz subshift (𝑋, 𝜎|𝑋, 𝐺) is an almost 1-1 extension of the odometer 𝑂 =
lim
←𝑛

(𝐺/Γ𝑛, 𝜋𝑛). 

  (v) There is an affine homeomorphism between the set of invariant probability measures 

of (𝑋, 𝜎|𝑋, 𝐺) and the inverse limit lim
←𝑛

(∆(𝑘𝑛, |𝐹𝑛|),𝑀𝑛). 

  (iv) The ordered group 𝒢(𝑋, 𝜎|𝑋, 𝐺)   is isomorphic to (𝐻/inf(𝐻), (𝐻/inf(𝐻))+, 𝑢 +
inf(𝐻)), where (𝐻,𝐻+) is given by 

ℤ 
𝑀𝑇

→ ℤ𝑘0
𝑀0
𝑇

→ ℤ𝑘1  
𝑀1
𝑇

→  ℤ𝑘2
𝑀2
𝑇

→ · · · ,  
        with  𝑀 = |𝐹0|(1,· · · , 1) and 𝑢 = [𝑀𝑇  , 0].. 
Proof: Condition (C2) implies that ⋂ [𝐵𝑛,1]𝑛≥0  is non empty, and since 𝐺 = ⋃ 𝐹𝑛𝑛≥0 , there 

is only one element 𝑥0 in this intersection. Let 𝑋 be the orbit closure of 𝑥0. For every 𝑛 ≥
0 and 1 ≤ 𝑘 ≤ 𝑘𝑛, we denote 𝐶𝑛,𝑘 = [𝐵𝑛,𝑘] ∩ 𝑋. 

Claim: For every 𝑚 > 𝑛 ≥ 0, 1 ≤ 𝑘 ≤ 𝑘𝑚 and  𝛾 ∈ 𝐹𝑚 ∩ Γ𝑛, 

 

𝜎𝛾
−1
 (𝐵𝑚,𝑘)|𝐹𝑛 ∈ {𝐵𝑛,𝑖: 1 ≤ 𝑖 ≤ 𝑘𝑛}.                                                (7)   
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Condition (C1) implies that (7) holds when 𝑛 = 𝑚 − 1 . We will show the claim by 

induction on 𝑛. 

Suppose that for every 1 ≤ 𝑘 ≤ 𝑘𝑚 and  𝛾 ∈ ∩ Γ𝑛+1, 

𝜎𝛾
−1
 (𝐵𝑚,𝑘)|𝐹𝑛+1 ∈ {𝐵𝑛+1,𝑖: 1 ≤ 𝑖 ≤ 𝑘𝑛+1}. 

Let 𝑔 ∈ Γ𝑛 ∩ 𝐹𝑚 . Condition (F3) implies there exist 𝜐 ∈ Γ𝑛+1 ∩ 𝐹𝑚  and 𝑢 ∈ 𝐹𝑛+1  such 

that  𝑔 =  𝜐𝑢. Thus we get 

𝜎𝑔
−1
 (𝐵𝑚,𝑘)|𝐹𝑛+1 = 𝜎𝑔

−1𝜐−1  (𝐵𝑚,𝑘) = 𝜎𝜐
−1
 (𝐵𝑚,𝑘)|𝑢𝐹𝑛 . 

Since  𝑢 ∈ Γ𝑛 ∩ F𝑛+1, condition (F3) implies that  𝑢𝐹𝑛 ⊆ F𝑛+1. Then by hypothesis, there 

exists 1 ≤ 𝑙 ≤ 𝑘𝑛+1 such that 

𝜎𝜐
−1
 (𝐵𝑚,𝑘)|𝑢𝐹𝑛 = 𝐵𝑛+1,𝑙|𝑢𝐹𝑛 , 

which is equal to some 𝐵𝑛,𝑠, by (C1). This shows the claim. 

From (7) we deduce that 𝜎−1(𝑥0)|𝐹𝑛 ∈ {𝐵𝑛,𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑘𝑛}, for every  𝛾 ∈ Γ𝑛. Thus if 𝑔 is 

any element in 𝐺 , and 𝑢 ∈ 𝐹𝑛  and  𝛾 ∈ Γ𝑛  are such that 𝑔 = 𝛾𝑢 , then 𝜎𝑔
−1
(𝑥0) =

𝜎𝑢
−1
(𝜎𝛾

−1
(𝑥0)) ∈ 𝜎𝑢

−1
 (𝐶𝑛,𝑘), for some 1 ≤ 𝑘 ≤ 𝑘𝑛. It follows that 

𝒫𝑛 = {𝜎𝑢
−1
 (𝐶𝑛,𝑘):  1 ≤ 𝑘 ≤ 𝑘𝑛, 𝑢 ∈ 𝐹𝑛} 

is a clopen covering of 𝑋. 

From condition (C2) and (7) we get that  𝜎𝛾
−1
 (𝑥0)|𝐹𝑛−1 = 𝐵𝑛−1,1 for any 𝛾 ∈ Γ𝑛, which 

implies that  𝐹𝑛−1 ⊆ 𝑃𝑒𝑟(𝑥0, Γ𝑛). This shows that 𝑥0 is Toeplitz. 

Now we will show that 𝒫𝑛 is a partition. Suppose that 1 ≤ 𝑘, 𝑙 ≤ 𝑘𝑛 and 𝑢 ∈ 𝐹𝑛 are such 

that  𝜎𝑢
−1
 (𝐶𝑛,𝑘) ∩ 𝐶𝑛,𝑙  ≠  ∅. Then there exist  𝑥 ∈ 𝐶𝑛,𝑘 and  𝑦 ∈ 𝐶𝑛,𝑙 such that 𝜎𝑢

−1
(𝑥) =

𝑦. From this we have  𝑥(𝑢𝜐)  =  𝑦(𝜐) for every 𝜐 ∈ 𝐺. In particular,  𝑥(𝑢𝜐) = 𝑦(𝜐) for 

every 𝜐 ∈ 𝐹𝑛 ∩ 𝑢−1𝐹𝑛, which implies 𝐵𝑛,𝑘(𝑢𝜐) = 𝐵𝑛,𝑙(𝜐) for every 𝜐 ∈ 𝐹𝑛 ∩ 𝑢−1𝐹𝑛. From 

condition (C3) we get 𝑢 = 𝑒 and  𝑘 = 𝑙. This ensures that the set of return times of  𝑥0 to 

⋃ 𝐶𝑛,𝑘
𝑘𝑛
𝑘=1  , i.e. the set  

{𝑔 ∈ 𝐺 ∶ 𝜎𝑔
−1
(𝑥0) ∈ ⋃ 𝐶𝑛,𝑘

𝑘𝑛
𝑘=1 }, is Γ𝑛.  From this it follows that 𝒫𝑛 is a r-K-R partition. 

From (C1) we have that 𝒫𝑛+1 is finer than 𝒫𝑛 and that 𝐶𝑛+1 ⊆ ⋃ 𝐶𝑛,𝑘
𝑘𝑛
𝑘=1 = 𝐶𝑛. By the 

definition of  𝑥0 we have that {𝑥0} = ⋂ 𝐶𝑛𝑛≥0  . 
Now we will show that (𝒫𝑛)𝑛≥0 spans the topology of  𝑋. Since every 𝒫𝑛 is a partition, for 

every 𝑛 ≥ 0 and every 𝑥 ∈ 𝑋 there are unique 𝜐𝑛(𝑥) ∈ 𝐹𝑛 and  1 ≤ 𝑘𝑛(𝑥) ≤ 𝑘𝑛such that 

𝑥 ∈ 𝜎𝜐𝑛(𝑥
−1)(𝑥0) ∈ (𝐶𝑛,𝑘𝑛(𝑥)). 

The collection (𝒫𝑛)𝑛≥0 spans the topology of 𝑋 if and only if (𝜐𝑛(𝑥))𝑛≥0 = (𝜐𝑛(𝑦))𝑛≥0 

and  (𝑘𝑛(𝑥))𝑛≥0 = (𝑘𝑛(𝑦))𝑛≥0 imply  𝑥 = 𝑦. 

Let x, 𝑦 ∈ 𝑋  be two sequences such that 𝜐𝑛(𝑥) =  𝜐𝑛(𝑦) = 𝜐𝑛  and 𝑘𝑛(𝑥) = 𝑘𝑛(𝑦) for 

every 𝑛 ≥ 0. Let  𝑔 ∈ 𝐺 be such that  𝑥(𝑔)  ≠  𝑦(𝑔). 
We have then for any 𝑛 ≥ 0 

𝜎𝜐𝑛 (𝑥)|𝐹𝑛 = 𝜎𝜐𝑛 (𝑦)|𝐹𝑛 ∈ {𝐵𝑛,𝑖: 1 ≤ 𝑖 ≤ 𝑘𝑛}, 

and then 

𝑥|𝜐𝑛−1𝐹𝑛 = 𝑦|𝜐𝑛−1𝐹𝑛 . 

Thus by definition, we get 𝑔 ∉ 𝜐𝑛
−1 𝐹𝑛 for any n. We can take n sufficiently large in order 

that 𝑔 ∈ 𝐹𝑛−1. 
Let  𝛾 ∈ Γ𝑛  and  𝑢 ∈ 𝐹𝑛  such that  𝜐𝑛(𝑥)𝑔 = 𝛾𝑢 . Observe that 𝑢𝑔−1 ∉ 𝐹𝑛 . Indeed, if 

𝑢𝑔−1 ∈ 𝐹𝑛 , then the relation 𝜐𝑛(𝑥) = 𝛾𝑢𝑔−1  implies 𝛾 = 𝑒 , but in that case we get 
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𝜐𝑛(𝑥)𝑔 = 𝑢 ∈ 𝐹𝑛 which is not possible by hypothesis. By the condition (C1), there exists 

an index 1 ≤ 𝑖 ≤ 𝑘𝑛 such that  𝜎𝛾
−1
 (𝜎𝜐𝑛(𝑥))|𝐹𝑛 = 𝐵𝑛,𝑖  and then  

𝑥(𝑔) = 𝜎𝛾
−1
𝜎𝜐𝑛(𝑥)(𝛾−1𝜐𝑛𝑔) =  𝐵𝑛,𝑖(𝑢). 

Let  𝛾′ ∈ Γ𝑛−1 ∩ 𝐹𝑛 and  𝑢′ ∈ F𝑛−1 such that  𝑢 =  𝛾′𝑢′. Since  𝛾′𝑢′𝑔−1 = 𝑢𝑔−1 ∉ 𝐹𝑛, we 

get  𝛾′ ∈ 𝐹𝑛\ 𝐹𝑛𝑔𝑢′
−1 . This implies that  𝛾′ ∈ 𝐹𝑛\ 𝐹𝑛𝑤 , for  𝑤 = 𝑔𝑢′−1 ∈ 𝑅𝑛−1  and 

𝐵𝑛,𝑖(𝑢) = 𝐵𝑛−1,k𝑛−1(𝑢′). by the condition (C4). Thus  𝑥(𝑔) = 𝐵𝑛−1,k𝑛−1(𝑢′). The same 

argument implies that  𝑦(𝑔) = 𝐵𝑛−1,k𝑛−1  (𝑢′) =  𝑥(𝑔) and we obtain a contradiction. This 

shows that  (𝒫𝑛)𝑛≥0 is a sequence of nested r-K-R partitions of 𝑋.  

The point (3), (4) and (5) follows from Propositions (6.1.11). 

The next result shows that, up to telescope a managed sequence of matrices, it is possible 

to obtain a managed sequence of matrices with sufficiently large coefficient to satisfy the 

conditions of Lemma (6.1.13). 

Lemma (6.1.14)[367]: Let (𝑀𝑛)𝑛≥0 be a sequence of matrices managed by (|𝐹𝑛|)𝑛≥0. Let 

𝑘𝑛 be the number of rows of  𝑀𝑛, for every 𝑛 ≥ 0. 

Then there exists an increasing sequence (𝑛𝑖)𝑖≥0 ⊆ ℤ+ such that for every 𝑖 ≥ 0 and every 

1 ≤ 𝑘 ≤ 𝑘𝑛𝑖+1 , 

    (i)  𝑅𝑛𝑖 ⊆ 𝐹𝑛𝑖+1 , 

   (ii) For every 1 ≤ 𝑙 ≤ 𝑘𝑛𝑖 , , 

𝑀𝑛𝑖𝑀𝑛𝑖+1 · · · 𝑀𝑛𝑖+1−1(𝑙, 𝑘) > 1 + |⋃ 𝐹𝑛𝑖+1  \ 𝐹𝑛𝑖+1𝑔
−1|

𝑔∈𝑅𝑛𝑖

 

If in addition there exists a constant 𝐾 > 0 such that  𝑘𝑛+1 ≤  𝐾
|𝐹𝑛+1|

|𝐹𝑛|
  for every 𝑛 ≥ 0, 

then the sequence (𝑛𝑖)𝑖≥0 can be chosen in order that 

   (iii) 𝑘𝑛𝑖+1 < 𝑀𝑛𝑖  · · · 𝑀𝑛𝑖+1−1(𝑙, 𝑘), for every  1 ≤ 𝑖 ≤  𝑘𝑛𝑖 . 

Proof: We define  𝑛0 = 0. Let  𝑖 ≥ 0 and suppose that we have defined 𝑛𝑗 for every 0 ≤

𝑗 ≤ 𝑖. Let  𝑚0 > 𝑛𝑖 be such that for every 𝑚 ≥ 𝑚0, 

 

𝑅𝑛𝑖 ⊆ 𝐹𝑚 .                                

Let 0 < 𝜀 < 1 be such that  𝜀|𝑅𝑛𝑖  | < 1. Since (𝐹𝑛)𝑛≥0 is a Følner sequence, there exists 

𝑚1 > 𝑚0 such that for every 𝑚 ≥ 𝑚1, 

 

|𝐹𝑚\𝐹𝑚𝑔
−1|

|𝐹𝑚|
<

𝜀

|𝐹𝑛𝑖+1|
, for every 𝑔 ∈ 𝑅𝑛𝑖 .                                           (8) 

Since  𝜀|𝑅𝑛𝑖  | < 1, there exists 𝑚2 > 𝑚1 such that for every 𝑚 ≥ 𝑚2, 

1 −
|𝐹𝑛𝑖+1|

|𝐹𝑚|
> 𝜀|𝑅𝑛𝑖  |. 

Then  
|𝐹𝑚|

|𝐹𝑛𝑖+1|
− 1 > 𝜀|𝑅𝑛𝑖  |

|𝐹𝑚|

|𝐹𝑛𝑖+1|
 

Since the matrices 𝑀𝑛 are positive, using induction on m and condition (2) for managed 

sequences, we get 

𝑀𝑛𝑖 · · · 𝑀𝑚−1(𝑙, 𝑗) ≥
|𝐹𝑚|

|𝐹𝑛𝑖+1|
, for every 1 ≤  𝑙 ≤ 𝑘𝑛 , 1 ≤  𝑗 ≤ 𝑘𝑚 
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Combining the last two equations we get 

𝑀𝑛𝑖 · · · 𝑀𝑚−1(𝑙, 𝑗) − 1 > 𝜀|𝑅𝑛𝑖  |
|𝐹𝑚|

|𝐹𝑛𝑖+1|
, 

and from equation (8), we obtain 

𝑀𝑛𝑖 · · · 𝑀𝑚−1(𝑙, 𝑗) − 1 > |𝐹𝑚\𝐹𝑚𝑔
−1||𝑅𝑛𝑖  |, for every 𝑔 ∈ 𝑅𝑛𝑖 , 

which finally implies that 

 

𝑀𝑛𝑖 · · · 𝑀𝑚−1(𝑙, 𝑗) > |⋃ 𝐹𝑚\𝐹𝑚𝑔
−1

𝑔∈𝑅𝑛𝑖
| + 1, for every 1 ≤  𝑙 ≤ 𝑘𝑛 , 1 ≤  𝑗 ≤ 𝑘𝑚.  

Now, suppose there exists 𝐾 > 0 such that  𝑘𝑚+1 ≤
|𝐹𝑚+1|

|𝐹𝑚|
  for every 𝑚 ≥ 0. The property 

(2) for managed sequences of matrices implies 

𝑀𝑛𝑖 · · · 𝑀𝑚(𝑙, 𝑗) ≥
|𝐹𝑚+1|

|𝐹𝑛𝑖+1|
 for every  𝑚 > 𝑛𝑖 . 

Let  𝑚3 > 𝑚2 be such that  𝐾 <
|𝐹𝑚|

|𝐹𝑛𝑖+1|
  for every 𝑚 ≥ 𝑚3. Then for every 𝑚 ≥ 𝑚3 we 

have 

𝑘𝑚+1 ≤ 𝐾
|𝐹𝑚+1|

|𝐹𝑛𝑖|
≤ 𝑀𝑛𝑖 · · · 𝑀𝑚(𝑙, 𝑗) for every 1 ≤  𝑙 ≤ 𝑘𝑛 and 1 ≤  𝑗 ≤ 𝑘𝑚+1. 

By taking 𝑛𝑖+1 ≥ 𝑚3  we get the desired subsequence (𝑛𝑖)𝑖≥0 ⊆ ℤ+ .The following 

proposition shows that given a managed sequence, there exists a sequence of decorations 

verifying conditions (C1)-(C4). The aperiodicity condition (C3) is obtained by decorating 

the center of 𝐹𝑛 in a unique way with respect to other places in 𝐹𝑛. 𝐴 restriction on the 

number of columns of the matrices gives enough choices of coloring to ensure conditions 

(C3) and (C4). 

Proposition (6.1.15)[367]: Let (𝑀𝑛)𝑛≥0  be 𝑎 sequence of matrices which is managed by 

(|𝐹𝑛|)𝑛≥0 .For every 𝑛 ≥ 0, we denote by 𝑘𝑛  the number of rows of  𝑀𝑛 . Suppose in 

addition there exists  𝐾 > 0 such that  𝑘𝑛+1 ≤  𝐾
|𝐹𝑛+1|

|𝐹𝑛|
 ,for every 𝑛 ≥ 0. Then there exists 

a Toeplitz subshift (𝑋, 𝜎|𝑋, 𝐺) verifying the following three conditions: 

    (i) The set of invariant probability measures of (𝑋, 𝜎|𝑋, 𝐺) is affine homeomorphic to  

lim
←𝑛

(△ (𝑘𝑛, |𝐹𝑛|),𝑀𝑛). 

    (ii) The ordered group 𝒢(𝑋, 𝜎|𝑋, 𝐺)  is isomorphic to  (𝐻/inf(𝐻), (𝐻/inf(𝐻))+, 𝑢 +
inf(𝐻)), where (𝐻,𝐻+) is given by 

ℤ 
𝑀𝑇

→ ℤ𝑘0
𝑀0
𝑇

→ ℤ𝑘1  
𝑀1
𝑇

→  ℤ𝑘2
𝑀2
𝑇

→ · · · ,  
      with 𝑀 = |𝐹0|(1,· · · , 1) and 𝑢 = [𝑀𝑇 , 0]. 
   (iii) (𝑋, 𝜎|𝑋, 𝐺) is an almost 1-1 extension of the odometer 𝑂 =  lim

←𝑛
(𝐺/Γ𝑛, π𝑛). 

Proof:  Let  (𝑛𝑖)𝑖≥0 ⊆ ℤ+  be a sequence as in Lemma (6.1.14). Since (𝑀𝑛)𝑛≥0  and the 

sequence (𝑀𝑛𝑖  · · · 𝑀𝑛𝑖+1−1)𝑖≥0  define the same inverse and direct limits, without loss of 

generality we can assume that for every 𝑛 ≥ 0 we have: 

𝑅𝑛 ⊆ 𝐹𝑛+1, 

           𝑀𝑛(𝑖, 𝑘) > 1 + |⋃ 𝐹𝑛+1\𝐹𝑛+1𝑔
−1

𝑔∈𝑅𝑛 | for every 1 ≤  𝑖 ≤ 𝑘𝑛 , 1 ≤ 𝑘 ≤ 𝑘𝑛+1,  

and  

𝑘𝑛+1 < min{𝑀𝑛(𝑖, 𝑗): 1 ≤  𝑖 ≤ 𝑘𝑛 , 1 ≤ 𝑗 ≤ 𝑘𝑛+1}. 
Let  �̃� be the 1 × (𝑘0 + 1)-dimensional matrix given by 
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�̃�(⋅ ,1) = �̃�(⋅ ,2) = 𝑀(⋅ ,1), 
and  �̃�(·, 𝑘 + 1) = 𝑀(·, 𝑘) for every 2 ≤ 𝑘 ≤ 𝑘0 . For every 𝑛 ≥ 0, consider the (𝑘𝑛 +
1) × (𝑘𝑛+1 + 1)-dimensional matrix given by 

�̃�𝑛(⋅ ,1) = �̃�𝑛(⋅ ,2) =

[
 
 
 
 

1
𝑀𝑛(1,1) − 1

𝑀𝑛(2,1)
⋮

𝑀𝑛(𝑘𝑛, 1) ]
 
 
 
 

 

and  

�̃�𝑛(⋅, 𝑘 + 1) =

[
 
 
 
 

1
𝑀𝑛(1, 𝑘) − 1

𝑀𝑛(2, 𝑘)
⋮

𝑀𝑛(𝑘𝑛, 𝑘) ]
 
 
 
 

  for every 2 ≤ 𝑘 ≤ 𝑘𝑛+1. 

Lemma (6.1.3) implies that the dimension groups with unit given by 

ℤ 
𝑀𝑇

→ ℤ𝑘0
𝑀0
𝑇

→ ℤ𝑘1  
𝑀1
𝑇

→  ℤ𝑘2
𝑀2
𝑇

→ · · · ,             
and 

ℤ 
�̃�𝑇

→ ℤ𝑘0+1
�̃�0
𝑇

→ ℤ𝑘1+1  
�̃�1
𝑇

→  ℤ𝑘2+1
�̃�2
𝑇

→ · · · ,              
are isomorphic. 

Thus from Lemma (6.1.2) we get that lim
←𝑛

(∆(𝑘𝑛, |𝐹𝑛|),𝑀𝑛) and lim
←𝑛

(∆(𝑘𝑛 + 1, |𝐹𝑛|), �̃�𝑛) 

are affine homeomorphic. Observe that (�̃�𝑛)≥0 is managed by (|𝐹𝑛|)𝑛≥0 and verifies for 

every 𝑛 ≥ 0: 

           �̃�𝑛(𝑖, 𝑘) ≥ 1 + |⋃ 𝐹𝑛+1\𝐹𝑛+1𝑔
−1

𝑔∈𝑅𝑛 | for every 2 ≤  𝑖 ≤ 𝑘𝑛 + 1 , 1 ≤ 𝑘 ≤

𝑘𝑛+1 + 1,  
and 

3 ≤ 𝑘𝑛+1 +  1 ≤ {min{𝑀𝑛(𝑖, 𝑗): 2 ≤  𝑖 ≤ 𝑘𝑛 + 1, 1 ≤ 𝑗 ≤ 𝑘𝑛+1 + 1}}. 
Thus, by Lemma (6.1.13), to prove the proposition it is enough to find a Toeplitz subshift 

having a sequence of r-K-R-partitions whose sequence of incidence matrices is (�̃�𝑛)≥0. 

For every 𝑛 ≥ 0, we call 𝑙𝑛 and 𝑙𝑛+1 the number of rows and columns of  𝑀𝑛 respectively. 

For every 𝑛 ≥ 0, we will construct a collection of functions 𝐵𝑛,1,· · · , 𝐵𝑛, 𝑙𝑛 ∈ ∑𝐹𝑛 as in 

Lemma (6.1.13), where ∑ = {1,· · · , 𝑙0}. 
For every 1 ≤ 𝑘 ≤ 𝑙0 we define 𝐵0,𝑘 ∈ ∑𝐹𝑛  by  𝐵0,𝑘(𝑔) =  𝑘, for every 𝑔 ∈ 𝐹0 . Observe 

that the collection {𝐵0,1,· · · , 𝐵0,𝑙0} verifies condition (C3). 

Let 𝑛 ≥ 0. Suppose that we have defined  𝐵𝑛,1,· · · , 𝐵𝑛,𝑙𝑛 ∈ ∑𝐹𝑛 verifying condition (C3). 

For 1 ≤ 𝑘 ≤ 𝑙𝑛+1, we define 

𝐵𝑛+1|𝐹𝑛 = 𝐵𝑛,1, 

and 

𝜎𝑠−1𝐵𝑛+1,𝑘|𝐹𝑛
= 𝐵𝑛,𝑙𝑛  for every  s ∈ ⋃ 𝐹𝑛+1\𝐹𝑛+1𝑔−1

𝑔∈𝑅𝑛

∩ Γ𝑛  . 

We fill the rest of the coordinates 𝜐 ∈ 𝐹𝑛+1 ∩ Γ𝑛 in order that 𝜎𝜐
−1
(𝐵𝑛+1,𝑘)|𝐹𝑛

∈ {𝐵𝑛,1,· · ·

 , 𝐵𝑛,𝑙𝑛} and such that 

           |{𝜐 ∈ 𝐹𝑛+1 ∩ Γ𝑛: 𝜎
𝜐−1(𝐵𝑛+1,𝑘)|𝐹𝑛

= 𝐵𝑛,𝑖}| = �̃�𝑛(𝑖, 𝑘), for every 2 ≤  𝑖 ≤ 𝑙𝑛 .   
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Since   �̃�𝑛(1, 𝑘) = 1, if  𝜎𝜐
−1
(𝐵𝑛+1,𝑘)|𝐹𝑛

= 𝐵𝑛,1 then 𝜐 = 𝑒. 

Notice that the number of  𝐵 ∈ ∑𝐹𝑛+1 that we could choose to be equal to 𝐵𝑛+1,𝑘 is at least 

�̃�𝑛(2, 𝑘) + 1, because there are at least �̃�𝑛(2, 𝑘) + 1 free coordinates to be filled with 

�̃�𝑛(2, 𝑘) copies of  𝐵𝑛,2 and one copy of 𝐵𝑛,𝑙𝑛 . Since �̃�𝑛(2, 𝑘) + 1 ≥ 𝑙𝑛+1, the number  of 

columns of �̃�𝑛  which are equal to �̃�𝑛(·, 𝑘)  does not exceed the number of possible 

choices of functions in ∑𝐹𝑛+1 in order that  𝐵𝑛+1,1,· · · , 𝐵𝑛+1,𝑙𝑛+1 are pairwise different. By 

construction, every function 𝐵𝑛+1,𝑘 verifies (C1), (C2) and (C4). Let us assume there are  

𝑔 ∈ 𝐹𝑛+1 and 1 ≤ 𝑘, 𝑘′ ≤ 𝑘𝑛+1 such that  𝐵𝑛+1,𝑘(𝑔𝜐) = 𝐵𝑛+1,𝑘′ (𝜐) for any v where it is 

defined, then by the induction hypothesis, 𝑔 ∈ Γ𝑛 . This implies 𝜎𝑔
−1
(𝐵𝑛+1,𝑘)|𝐹𝑛

=

𝐵𝑛+1,𝑘′|𝐹𝑛
= 𝐵𝑛+1  and then 𝑔 = 𝑒 . This shows that the collection 𝐵𝑛+1,1,· · · , 𝐵𝑛+1,𝑙𝑛+1 

verifies (C3). We conclude applying Lemma (6.1.13). 

For positive integers 𝑛1,· · · , 𝑛𝑘 , we denote by (𝑛1,· · · , 𝑛𝑘)!  the corresponding 

multinomial coefficient. That is, 

(𝑛1,· · · , 𝑛𝑘)! =
(𝑛1 + · · ·  + 𝑛𝑘)! 

𝑛1!  · · ·  𝑛𝑘! 
 

A compact, convex, and metrizable subset 𝐾 of a locally convex real vector space is said 

to be a (metrizable) Choquet simplex, if for each 𝜐 ∈ 𝐾  there is a unique probability 

measure 𝜇 supported on the set of extreme points of 𝐾 such that ∫ 𝑥𝑑𝜇(𝑥)  = 𝜐. 

We show that any metrizable Choquet simplex is affine homeomorphic to the 

inverse limit defined by a managed sequence of matrices satisfying the additional 

restriction on the number of columns. 

      For technical reasons, we have to separate the finite and the infinite dimensional 

cases. 

Lemma (6.1.16)[367]: Let 𝐾 be a finite dimensional metrizable Choquet simplex with 

exactly 𝑑 ≥ 1 extreme points. Let (𝑝𝑛)𝑛≥0 be an increasing sequence of positive integers 

such that  for every 𝑛 ≥ 0 the integer 𝑝𝑛 divides 𝑝𝑛+1, and let  𝑘 ≥ max{2, 𝑑}. Then there 

exist an increasing subsequence (𝑛𝑖)𝑖≥0 of indices and a sequence (𝑀𝑖)𝑖≥0 of square 𝑘-

dimensional matrices which is managed by (𝑝𝑛𝑖)𝑖≥0 such that 𝐾 is affine homeomorphic to 

lim
←𝑛

(△ (𝑘, 𝑝𝑛𝑖  ),𝑀𝑖) . 

Proof: Let  𝑘 ≥ max{3, 𝑑}, we will define the subsequence (𝑛𝑖)𝑖≥0  by induction on 𝑖 
through a condition explained later. For every 𝑖 ≥ 0, we define 𝑀𝑖  the 𝑘 -dimensional 

matrix by 

𝑀(𝑙, 𝑗) = {  

𝑝𝑛𝑖+1
𝑝𝑛𝑖

− 𝑘(𝑘 − 1) if 1 ≤ 𝑙 = 𝑗 ≤ 𝑑                               

𝑘                           if 𝑙 ≠ 𝑗, 1 ≤ 𝑙 ≤ 𝑘 𝑎𝑛𝑑 1 ≤ 𝑗 ≤ 𝑑

𝑀𝑖(𝑙, 𝑑)               if 𝑑 < 𝑗 ≤ 𝑘.                                      

 

 

We always suppose that 𝑛𝑖+1 is sufficiently large in order to have 
𝑝𝑛𝑖+1

𝑝𝑛𝑖
− 𝑘(𝑘 − 1) > 0. 

By the very definition, 𝑀𝑖  is a positive matrix having 𝑘 ≥ 3  rows and columns; 

∑ 𝑀𝑖(𝑙, 𝑗)
𝑘
𝑙=1 =

𝑝𝑛𝑖+1

𝑝𝑛𝑖
 for every 1 ≤ 𝑗 ≤ 𝑘  and the range of  𝑀𝑖  is at most d. Thus the 

convex set  lim
←𝑛

(△ (𝑘, 𝑝𝑛𝑖  ),𝑀𝑖) has at most d extreme points. 
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If it has exactly d extreme points, it is affine homeomorphic to 𝐾. We will choose the 

sequence (𝑝𝑛𝑖)𝑖≥0  in order that  𝑃 = ⋂ 𝑀0 · · · 𝑀𝑖(△ (𝑘, 𝑝𝑛𝑖+1)) 𝑖≥0 has 𝑑 extreme points, 

which implies that lim
←𝑛

(△ (𝑘, 𝑝𝑛𝑖  ),𝑀𝑖) has exactly d extreme points.  

For every 𝑖 ≥ 0, the set 𝑃𝑖 = 𝑀0 · · · 𝑀𝑖(△ (𝑘, 𝑝𝑛𝑖+1)) is the closed convex set generated 

by the vectors 𝜐𝑖,1,· · · , 𝜐𝑖,𝑑, where 

𝜐𝑖,𝑙 =
1

𝑝𝑛𝑖+1
𝑀0 · · · 𝑀𝑖(·, 𝑙), , for every 1 ≤  𝑙 ≤ 𝑑. 

Since every  𝜐𝑖,𝑙 is in △ (𝑘, 𝑝𝑛0)  there exists a sequence (𝑖𝑗)𝑗≥0 such that for every 1 ≤

𝑙 ≤ 𝑑, the sequence (𝜐𝑖𝑗  , 𝑙)𝑗≥0 converges to an element 𝜐𝑙 in △ (𝑘, 𝑝𝑛0)  . Observe that 𝑃 

is the closed convex set generated by 𝜐1,· · · , 𝜐𝑑 . Thus if  𝜐1,· · · , 𝜐𝑑 are linearly 

independent then 𝑃 has 𝑑 extreme points. 

Since for every 1 ≤ 𝑙 ≤ 𝑑 we have ∑
1

𝑝𝑛𝑖+1

𝑘
𝑗=1 𝑀0 · · · 𝑀𝑖(𝑗, 𝑙) =

1

𝑝𝑛0
, there exists a positive 

vector  𝛿𝑙
(𝑖)

= (𝛿1,𝑙
(𝑖)
 ,· · · , 𝛿𝑘,𝑙

(𝑖)
)𝑇 such that ∑ 𝛿𝑗,𝑙

(𝑖)𝑘
𝑗=1  = 1 and such that for each 1 ≤ 𝑗 ≤ 𝑘 

1

𝑝𝑛𝑖+1
𝑀0 · · · 𝑀𝑖(𝑗, 𝑙) = 𝛿𝑗,𝑙

(𝑖) 1

𝑝𝑛0
. 

Thus if 𝐵𝑖 is the matrix given by 

𝐵𝑖(·, 𝑙) = {
𝜐𝑖,𝑙 if 1 ≤ 𝑙 ≤ 𝑑
1

𝑝𝑛0
𝑒𝑙
(𝑘)          if 𝑑 + 1 ≤ 𝑙 ≤ 𝑘., 

then 𝐵𝑖 =  𝐷𝐴𝑖 , where 𝐷 is the 𝑘-dimensional diagonal matrix given by 

𝐷𝑖(𝑙, 𝑙) =
1

𝑝𝑛0
, for every 1 ≤ 𝑙 ≤ 𝑘, 

and  𝐴𝑖 is the 𝑘-dimensional matrix defined by 

𝐴𝑖(·, 𝑙) = {
𝛿𝑙
(𝑖)

if    1 ≤ 𝑙 ≤ 𝑑

𝑒𝑙
(𝑘)

         if    𝑑 + 1 ≤ 𝑙 ≤ 𝑘.
. 

If  lim
𝑗→∞

𝐴𝑗 = 𝐴 is invertible (𝐴 is the 𝑘-dimensional matrix whose columns are the vectors 

lim
𝑗→∞

𝛿
𝑙

(𝑖𝑗)
and the canonical vectors  𝑒𝑑+1

(𝑘)
,· · · , 𝑒𝑘

(𝑘)
 ) , then 𝜐1,· · · , 𝜐𝑙 are linearly 

independent. For this it is enough to show that 𝐴 is strictly diagonally dominant (see the 

Levy-Desplanques Theorem in [387]). 

Now we will define (𝑛𝑖)𝑖≥0  in order  that  𝐴  is strictly diagonally dominant. Let  𝜀 ∈
(0,  1

4
 ). Let  𝑛0 = 0 and  𝑛1 > 𝑛0 such that for every 1 ≤ 𝑙 ≤ 𝑑, 

𝛿𝑙,𝑙
(0)

= 1 −
𝑝𝑛0
𝑝𝑛1

∑ 𝑀0

𝑘

𝑗=1,𝑗≠𝑙

(𝑗, 𝑙) = 1 −
𝑝𝑛0
𝑝𝑛1

𝑘(𝑘 − 1) ≥
3

4
+ 𝜀. 

For 𝑖 ≥ 1 we choose 𝑛𝑖+1 > 𝑛𝑖 in order that 
1

𝑝𝑛𝑖+1
𝑀0 · · · 𝑀𝑖−1(𝑙, 𝑙) < 𝜀

1

𝑝𝑛0𝑘(𝑘 − 1)2𝑖
 , for every 1 ≤ 𝑙 ≤ 𝑑. 

After a standart computation, for every 𝑖 ≥ 1 and 1 ≤ 𝑙 ≤ 𝑑 we get 

 

𝛿𝑙,𝑙
(𝑖)

≥ 𝛿𝑙,𝑙
(𝑖−1)

−
𝑝𝑛0
𝑝𝑛𝑖+1

𝑘(𝑘 − 1)𝑀0 · · · 𝑀𝑖−1(𝑙, 𝑙), 

which implies that 
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𝛿𝑙,𝑙
(𝑖)

≥ 𝛿𝑙,𝑙
(0)

− 𝜀∑
1

2𝑗

𝑗≥1

≥
3

4
. 

It follows that 𝐴(𝑙, 𝑙) ≥
3

4
 for every 1 ≤ 𝑙 ≤ 𝑘, and since the sum of the elements in a 

column of 𝐴 is equal to 1, we deduce that 𝐴 is strictly diagonally dominant. 

       We use the following characterization of infinite dimensional metrizable Choquet 

simplex. 

Lemma (6.1.17)[367]: ([391], Corollary p.186). For every infinite dimensional metrizable 

Choquet simplex 𝐾, there exists a sequence of matrices (𝐴𝑛)𝑛≥1 such that for every 𝑛 ≥ 1 

(i)  𝐴𝑛(△ (𝑛 + 1, 1)) = △ (𝑛, 1), 
(ii) 𝐾 is affine homeomorphic to lim

←𝑛
(△ (𝑛, 1), 𝐴𝑛). 

Our strategy is to approximate the sequence of matrices (𝐴𝑛)𝑛 by a managed sequence. 

Then we show that the associated inverse limits are affine homeomorphic. For this, we 

need the following classical density result, whose proof follows from the fact that every 

non cyclic subgroup of ℝ is dense. 

Lemma (6.1.18)[367]: Let  𝑟 = (𝑟𝑛)𝑛≥0  be a sequence of integers such that 𝑟𝑛 ≥ 2 for 

every 𝑛 ≥ 0. Let 𝐶𝑟 be the subgroup of (ℝ,+) generated by {(𝑟0 · · · 𝑟𝑛)
−1 ∶ 𝑛 ≥ 0}. Then 

(𝐶𝑟)
𝑝 ∩ ∆(𝑝, 1) ∩ { 𝜐 ∈ ℝ𝑝: 𝜐 > 0} 

is dense in △ (𝑝, 1), for every 𝑝 ≥ 2, where (𝐶𝑟)
𝑝 is the Cartesian product ∏ 𝐶𝑟

𝑝
𝑖=1 . 

Lemma (6.1.19)[367]: Let K be an infinite dimensional metrizable Choquet simplex, and 

let (𝑝𝑛)𝑛≥0 be an increasing sequence of positive integers such that for every 𝑛 ≥ 0 the 

integer 𝑝𝑛 divides 𝑝𝑛+1. Then there exist an increasing subsequence (𝑛𝑖)𝑖≥1 of indices and 

a sequence of matrices (𝑀𝑖)𝑖≥1 managed by (𝑝𝑛𝑖)𝑖≥0  such that for every 𝑖 ≥ 0, 

𝑘𝑖+1 ≤ min{𝑀𝑖(𝑙, 𝑘): 1 ≤ 𝑙 ≤ 𝑘𝑖  1 ≤ 𝑘 ≤ 𝑘𝑖+1}, 
and such that 𝐾 is affine homeomorphic to the inverse limit lim

←𝑛
(△ (𝑘𝑖, |𝑝𝑛𝑖|),𝑀𝑖), where 

𝑘𝑖 is the number of rows of 𝑀𝑖, for every 𝑖 ≥ 0. 

Proof: For every 𝑛 ≥ 0, let  𝑟𝑛 ≥ 2 be the integer such that 𝑝𝑛+1 = 𝑝𝑛𝑟𝑛. Let (𝐴𝑛)𝑛≥1 be 

the sequence of matrices given in Lemma (6.1.18). We can assume that 𝐴𝑛 : △
(𝑛 + 3, 1) → △ (𝑛 +  2, 1), for every 𝑛 ≥ 1. Now we define the subsequence (𝑛𝑖)𝑖 by 

induction 

We set 𝑛1 = 0.  
Let 𝑖 ≥ 1 and suppose that we have defined  𝑛𝑖 ≥ 0. We set  𝑟(𝑖) = (𝑟𝑛)𝑛≥𝑛𝑖  . For every 

1 ≤ 𝑗 ≤ 𝑖 + 3 , Lemma (6.1.19) ensures the existence of  𝜐(𝑖,𝑗) ∈ (𝐶𝑟(𝑖)  )
𝑖+2 ∩ △ (𝑖 +

 2, 1) ∩ {𝜐 ∈ ℝ𝑖+2 ∶ 𝜐 > 0} such that 

‖𝜐(𝑖,𝑗) − 𝐴𝑖(⋅, 𝑗)‖1 <
1

2𝑖
.                                                        (9) 

Let 𝐵𝑖 be the matrix given by 

𝐵𝑖(⋅, 𝑗) = 𝜐(𝑖,𝑗), for every 1 ≤ 𝑗 ≤ 𝑖 + 3. 
Observe that (9) implies that 

∑sup{‖𝐴𝑛𝜐 − 𝐵𝑛𝜐‖1: 𝜐 ∈ ∆𝑛+3}

𝑛≥1

< ∞.          

It follows from [373] that 𝐾 is affine homeomorphic  lim
←𝑛

(△ (𝑖 + 2,1), 𝐵𝑖). 

Let  𝑛𝑖+1 > 𝑛𝑖 be such that 𝑟𝑛𝑖 · · · 𝑟𝑛𝑖+1 − 1𝜐(𝑖,𝑗) is an integer vector and such that 𝑟𝑛𝑖 · · ·

 𝑟𝑛𝑖+1 − 1𝜐(𝑖,𝑗) > 𝑖 + 3, for every 1 ≤ 𝑗 ≤ 𝑖 + 3. 
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We define 

𝑀𝑖 =
𝑝𝑛𝑖+1
𝑝𝑛𝑖

𝐵𝑖 . 

Thus  𝑀𝑖 = 𝑃𝑖
−1𝐵𝑖𝑃𝑖+1, where 𝑃𝑖 is the diagonal matrix given by 𝑃𝑖(𝑗, 𝑗) =  𝑝𝑛𝑖 for every 

1 ≤ 𝑗 ≤ 𝑖 + 2 and 𝑖 ≥ 1. This shows that  lim
←𝑛

(△ (𝑖 + 2, 1), 𝐵𝑖) is affine homeomorphic to  

lim
←𝑛

(△ (𝑖 + 2, 𝑝𝑛𝑖), 𝐵𝑖). 

The proof conclude verifying that (𝑀𝑖)𝑖≥0 is managed by  (𝑝𝑛𝑖)𝑖≥0. 

Theorem (6.1.20)[367]: Let 𝐺 be an infinite, countable, amenable and residually finite 

group. For every metrizable Choquet simplex 𝐾  and any 𝐺-odometer 𝑂 , there exists a 

Toeplitz 𝐺- subshift whose set of invariant probability measures is affine homeomorphic 

to 𝐾 and such that it is an almost 1-1 extension of 𝑂. 

Typical examples of the groups 𝐺  involved in this theorem are the finitely generated 

subgroups of upper triangular matrices in 𝐺𝐿(𝑛, ℂ). 
The strategy of Downarowicz in [374], is to construct an affine homeomorphism between 

an arbitrary metrizable Choquet simplex 𝐾  and a subset of the space of invariant 

probability measures of the full shift {0, 1}ℤ. Then he shows it coincides with the space of 

invariant probability measures of a Toeplitz subshift 𝑌 ⊆ {0, 1}ℤ. To do this, he uses the 

structure of metric space of the space of measures. We consider the representation of 𝐾 as 

an inverse limit of finite dimensional simplices with linear transition maps (𝑀𝑛)𝑛. Then 

we use this transition maps to construct Toeplitz 𝐺 -subshifts having sequences of 

Kakutani-Rokhlin partitions with (𝑀𝑛)𝑛 as the associated sequence of incidence matrices. 

Our approach is closer to the strategy used in [384] by Gjerde and Johansen, and deals 

with the combinatorics of Følner sequences. 

We obtain, furthermore some consequences in the orbit equivalence problem. Two 

minimal Cantor systems are (topologically) orbit equivalent, if there exists an orbit-

preserving homeomorphism between their phase spaces. Giordano, Matui, Putnam and 

Skau show in [382] that every minimal ℤ𝑑-action on the Cantor set is orbit equivalent to a 

minimal ℤ -action. It is still unknown if every minimal action of a countable amenable 

group on the Cantor set is orbit equivalent to a ℤ -action. It is clear that the result in [382] 

can not be extended to any countable group. For instance, by using the notion of cost, 

Gaboriau [381] proves that if two free actions of free groups 𝐹𝑛  and 𝐹𝑝  are (even 

measurably) orbit equivalent then their rank are the same i.e. 𝑛 = 𝑝. Another problem is to 

know which are the ℤ -orbit equivalence classes that the ℤ𝑑 -actions (or more general 

group actions) realize. We give a partial answer for this question. As a consequence of  the 

proof of Theorem (6.1.21) we obtain the following result. 

Proof : Let 𝑒𝑥𝑡(𝐾) be the set of extreme points of 𝐾. If 𝑒𝑥𝑡(𝐾) is finite, then the proof is 

direct from Proposition (6.1.15) and Lemma (6.1.17). If 𝑒𝑥𝑡(𝐾)  is infinite, the proof 

follows from Proposition (6.1.15) and Lemma (6.1.20). 

Lemma (6.1.21)[367]: Let 𝑥0 ∈ ∑ℤ  be a Toeplitz sequence and let (𝑋, 𝜎|𝑋, ℤ)  be the 

associated Toeplitz ℤ  -subshift. There exist a period structure (𝑝𝑛)𝑛≥0  of 𝑥0  and a 

sequence of matrices (𝐴𝑛)𝑛≥0  managed by (𝑝𝑛)𝑛≥0  such that the dimension group 

associated to (𝑋, 𝜎|𝑋, ℤ) is isomorphic to 

ℤ 
𝐴0
𝑇

→ ℤ𝑘1
𝐴1
𝑇

→ ℤ𝑘2  
𝐴2
𝑇

→  · · · .  
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Furthermore, if 𝑘𝑛 is the number of rows of 𝐴𝑛 and 𝑟𝑛 =
𝑝𝑛+1
𝑝𝑛

 , then for every 𝑚 > 𝑛 > 0 

and 1 ≤ 𝑘 ≤ 𝑘𝑚, 

                                           |{1 ≤ 𝑘 ≤ 𝑘𝑚: 𝐴𝑛,𝑚−1(⋅, 𝑙) = 𝐴𝑛,𝑚−1(⋅, 𝑘)}|    

≤ (𝐴𝑛,𝑚−1(⋅, 𝑘) − 𝑟𝑛+2 · · · 𝑟𝑚−1,· · ·, 𝐴𝑛,𝑚−1(𝑘𝑛, 𝑘) − 𝑟𝑛+2 · · · 𝑟𝑚−1)!,        

where  𝐴𝑛,𝑚−1 =  𝐴𝑛 · · · 𝐴𝑚−1. 

Proof: In the proof in [384] the authors show there exist a period structure  (𝑝𝑛)𝑛≥1 of 𝑥0 

and a sequence (𝒫𝑛)𝑛≥0 of nested Kakutani-Rokhlin partitions of  (𝑋, 𝜎|𝑋, ℤ)  such that  

𝒫0 = {𝑋} and 𝒫𝑛 = {𝑇𝑗(𝐶𝑛, 𝑘): 0 ≤  𝑗 < 𝑝𝑛, 1 ≤ 𝑘 ≤ 𝑘𝑛}, where 

𝐶𝑛,𝑘 = {𝑥 ∈ 𝑋: 𝑥[0, 𝑝𝑛 − 1] = 𝑤𝑛,𝑘} for every 1 ≤ 𝑘 ≤ 𝑘𝑛, 

with  𝑊𝑛 = {𝑤𝑛,1,· · · , 𝑤𝑛,𝑘𝑛}  the set of the words 𝑤  of 𝑥0  of length 𝑝𝑛  verifying 

𝑤[0, 𝑝𝑛−1 − 1] = 𝑥0[0, 𝑝𝑛−1 − 1], for every 𝑛 ≥ 1 (with  𝑝0 = 1). 

Thus the dimension group with unit associated to (𝑋, 𝜎|𝑋, ℤ)  is isomorphic to 

lim
→𝑛

(ℤ𝑘𝑛 , 𝐴𝑛
𝑇) =ℤ 

𝐴0
𝑇

→ ℤ𝑘1
𝐴1
𝑇

→ ℤ𝑘2  
𝐴2
𝑇

→  · · · , 

where 𝐴𝑛(𝑖, 𝑗) is the number of times that the word 𝑤𝑛,𝑖 appears in the word 𝑤𝑛+1,𝑗  , for 

every 1 ≤  𝑖 ≤ 𝑘𝑛, 1 ≤ 𝑗 ≤ 𝑘𝑛+1 and 𝑛 ≥ 1, and the matrix 𝐴0
𝑇 is the vector in ℤ𝑘1 whose 

coordinates are equal to 𝑝1. 

Since 𝑤𝑛+1,𝑖 ≠  𝑤𝑛+1,𝑗  for 𝑖 ≠ 𝑗 , equal columns of the matrix 𝐴𝑛  produce different 

concatenations of words in 𝑊𝑛. This implies that for every 1 ≤  𝑘 ≤ 𝑘𝑛+1, the number of 

columns of 𝐴𝑛  which are equal to 𝐴𝑛(·, 𝑘)  can not exceed the number of different 

concatenations of 𝑟𝑛  words in 𝑊𝑛  using exactly  𝐴𝑛(𝑗, 𝑘) copies of  𝑤𝑛,𝑗  , for every 1 ≤

𝑗 ≤ 𝑘𝑛. This means that the number of columns which are equal to 𝐴𝑛(·, 𝑘) is smaller or 

equal to (𝐴𝑛(1, 𝑘),· · · , 𝐴𝑛(𝑘𝑛, 𝑘))!. 
Now fix 𝑛 > 0 and take  𝑚 > 𝑛. The coordinate (𝑖, 𝑗) of the matrix 𝐴𝑛,𝑚−1 contains  the 

number of times that the word 𝑤𝑛,𝑖 ∈ 𝑊𝑛 appears in 𝑤𝑚,𝑗 ∈ 𝑊𝑚. Observe that every word 

𝑢 in 𝑊𝑚 is a concatenation of  𝑟𝑛+2 · · ·  𝑟𝑚−1 words in 𝑊𝑛+2. In addition,  each word in 

𝑊𝑛+2 starts with  𝑥0[0,  𝑝𝑛+1 − 1] ∈ 𝑊𝑛+1, which is a word containing every word in 𝑊𝑛 

(we can always assume that the matrices 𝐴𝑛 are positive). Thus there exist  0 ≤ 𝑙1 < · · · <
𝑙𝑟𝑛+1 · · · 𝑟𝑚−1 < 𝑝𝑚  such that 𝑢[𝑙𝑠, 𝑙𝑠  + 𝑝𝑛 − 1]  =  𝑤[𝑙𝑠, 𝑙𝑠  + 𝑝𝑛 − 1] ∈  𝑊𝑛 , for every 

1 ≤ 𝑠 ≤  𝑟𝑛+2 · · ·  𝑟𝑚−1 and 𝑢, 𝑤 ∈ 𝑊𝑚 . 

This implies that the number of all possible concatenations of words in 𝑊𝑛 producing a 

word in 𝑊𝑚,  according to the column 𝑘 of the matrix 𝐴𝑛,𝑚−1 is smaller or equal to 

(𝐴𝑛,𝑚−1(1, 𝑘) − 𝑟𝑛+2 · · · 𝑟𝑚−1,· · ·, 𝐴𝑛,𝑚−1(𝑘𝑛, 𝑘) − 𝑟𝑛+2 · · · 𝑟𝑚−1)! 
Theorem (6.1.22)[367]: Let (𝑋, 𝜎|𝑋, ℤ) be a Toeplitz ℤ -subshift. Then for every 𝑑 ≥ 1  

thereexistsa Toeplitz  ℤ𝑑-subshift which is orbit equivalent to (𝑋, 𝜎|𝑋, ℤ). We devoted to 

introduce the basic definitions. For an amenable discrete group 𝐺  and a decreasing 

sequence of finite index subgroups of 𝐺  with trivial intersection, we construct an 

associated sequence (𝐹𝑛)𝑛≥0 of fundamental domains, so that it is Følner and each 𝐹𝑛+1 is 

tilable by translated copies of 𝐹𝑛 . We construct Kakutani-Rokhlin partitions for 

generalized Toeplitz subshifts, and we use the fundamental domains introduced to 

construct Toeplitz subshifts having sequences of Kakutani-Rokhlin partitions with a 

prescribed sequence of incidence matrices. This construction improves and generalizes 

that one given in [371] for  ℤ𝑑-actions, and moreover, allows to characterize the associated 

ordered group with unit. We give a characterization of any Choquet simplex as an inverse 
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limit defined by sequences of matrices that we use (they are  called ”managed” 

sequences). Finally, we use the previous results to prove Theorems (6.1.20) and (6.1.22). 

Proof : Let 𝑥0 ∈ 𝑋  be a Toeplitz sequence. Let (𝑝𝑛)𝑛≥1  and (𝐴𝑛)𝑛≥0  be the period 

structure of 𝑥0 and the sequence of matrices given by Lemma (6.1.22) respectively. It is 

straightforward to check that Lemma (6.1.21) is also true if we take a subsequence of  

(𝑝𝑛)𝑛≥0 . Thus we can assume that for every 𝑛 ≥ 1, the matrix 𝐴𝑛  has its coordinates 

strictly grater than 1 and that there exist positive integers 𝑟𝑛,1,· · · ,  𝑟𝑛,𝑑 > 1 such that 
𝑝𝑛+1
𝑝𝑛

= 𝑟𝑛 = 𝑟𝑛,1 · · ·  𝑟𝑛,𝑑 . 

Le define 𝑞𝑛+1,𝑖 = 𝑟0,𝑖  · · ·  𝑟𝑛,𝑖  for every 1 ≤ 𝑖 ≤ 𝑑, and Γ𝑛+1 = ∏ 𝑞𝑛+1,𝑖ℤ
𝑑
𝑖=1 , for every 

𝑛 ≥ 0. We have Γ𝑛+1 ⊆ Γ𝑛 , ⋂ Γ𝑛 𝑛≥1  = {0} and | ℤ𝑑/Γ𝑛 | = 𝑝𝑛. Let (𝐹𝑛)𝑛≥0 be a Følner 

sequence associated to (Γ𝑛 )𝑛≥1as in Lemma (6.1.7). We denote 𝑅𝑛 (the set that defines 

”border”). 

Now, we define an increasing sequence (n𝑖 )𝑖≥1 of integers as follows: 

We set  𝑛1 = 1. For  𝑖 ≥ 1, given 𝑛 𝑖we chose 𝑛𝑖+1 > 𝑛𝑖 + 1 such that 

∑
|𝐹𝑛𝑖+1 \𝐹𝑛𝑖+1 − 𝑔|

|𝐹𝑛𝑖+1 |𝑔∈𝑅𝑛𝑖

<
1

|𝐹𝑛𝑖 |𝑟𝑛𝑖 𝑟𝑛𝑖+1 
. 

Thus we have 

 

|𝐹𝑛𝑖+1 |

|𝐹𝑛𝑖 |
− ∑ |𝐹𝑛𝑖+1 \𝐹𝑛𝑖+1 − 𝑔|

𝑔∈𝑅𝑛𝑖

>
|𝐹𝑛𝑖+1 |

|𝐹𝑛𝑖 |
−

|𝐹𝑛𝑖+1 |

|𝐹𝑛𝑖 |𝑟𝑛𝑖 𝑟𝑛𝑖+1 
                                              

                  = 𝑟𝑛𝑖 · · · 𝑟𝑛𝑖+1−1 − 𝑟𝑛𝑖+2 · · · 𝑟𝑛𝑖+1−1  

                          > 𝑟𝑛𝑖 · · · 𝑟𝑛𝑖+1−1 − 𝑘𝑛𝑖 𝑟𝑛𝑖+2 · · · 𝑟𝑛𝑖+1−1  

Let  𝑀0 = 𝐴0 and  𝑀𝑖 = 𝐴𝑛𝑖 · · · 𝐴𝑛𝑖+1−1  be for every 𝑖 ≥ 1. For every 1 ≤ 𝑘 ≤ 𝑘𝑛𝑖+1  we 

get 

𝑀𝑖(𝑘𝑛, 𝑘) − ∑ |𝐹𝑛𝑖+1 \𝐹𝑛𝑖+1 − 𝑔| > 𝑀𝑖(𝑘𝑛, 𝑘) −

𝑔∈𝑅𝑛𝑖

𝑟𝑛𝑖+2 · · · 𝑟𝑛𝑖+1−1 , 

which implies that 

(𝑀𝑖(1, 𝑘),· · ·,𝑀𝑖(𝑘𝑛𝑖 − 1, 𝑘),𝑀𝑖(𝑘𝑛𝑖 , 𝑘) − ∑ |𝐹𝑛𝑖+1 \𝐹𝑛𝑖+1 − 𝑔|

𝑔∈𝑅𝑛𝑖

)! 

is grater than 

(𝑀𝑖(1, 𝑘) − 𝑟𝑛𝑖+2 · · · 𝑟𝑛𝑖+1−1 ,· · ·,𝑀𝑖(𝑘𝑛, 𝑘) − 𝑟𝑛𝑖+2 · · · 𝑟𝑛𝑖+1−1 )!                  

Then from the previous inequality and Lemma (6.1.21) we get that the number of columns 

of 𝑀𝑖 which are equal to 𝑀𝑖(·, 𝑘) is smaller than 

(𝑀𝑖(1, 𝑘),· · ·,𝑀𝑖(𝑘𝑛𝑖 − 1, 𝑘),𝑀𝑖(𝑘𝑛𝑖 , 𝑘) − ∑ |𝐹𝑛𝑖+1 \𝐹𝑛𝑖+1 − 𝑔|

𝑔∈𝑅𝑛𝑖

)! 

As in the proof of Proposition (6.1.15), we define �̃�𝑖 and we call 𝑙𝑖 and 𝑙𝑖+1 the number of 

rows and columns of �̃�𝑖 respectively, for every 𝑖 ≥ 0. According to the notations of the 

proof of Proposition (6.1.15), in our case 𝑀0   corresponds to the matrix 𝑀  and �̃�0 

corresponds to the matrix �̃� . Observe that the bound on the number of columns which are 

equal to 𝑀𝑖(·, 𝑘) (and then to �̃�𝑖(·, 𝑘)) ensures the existence of enough possibilities to fill 
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the coordinates of 𝐹𝑛𝑖  in order to obtain different functions 𝐵𝑖,1  · · · , 𝐵𝑖,𝑙𝑖 ∈ {1,· · · ,  𝑙1}
𝐹𝑛𝑖  

as in the proof of Proposition (6.1.15), for every 𝑖 ≥ 1 (see Remark (6.1.16)). 

Lemma (6.1.13) implies that the Toeplitz  ℤ𝑑-subshift (𝑌, 𝜎|𝑌 ,  ℤ
𝑑) defined from (𝐵𝑖,1,· · ·

 , 𝐵𝑖,𝑙𝑖 )𝑖≥1 has an ordered group 𝒢(𝑌, 𝜎|𝑌 ,  ℤ
𝑑)  isomorphic to (𝐻/inf(𝐻), (𝐻/

inf(𝐻))+, 𝑢 + inf(𝐻)), where (𝐻,𝐻+) is given by 

ℤ 
�̃�0
𝑇

→ ℤ𝑙0
�̃�1
𝑇

→ ℤ𝑙2  
�̃�2
𝑇

→  ℤ𝑙3  
�̃�3
𝑇

→ · · · , 
with  𝑀0 = |𝐹1|(1,· · · , 1) and 𝑢 = [1, 0]. 
Lemma (6.1.3) implies that (𝐻, 𝐻+, 𝑢) is isomorphic to the dimension group with unit 

(𝐽, 𝐽+, 𝑤)associated to (𝑋, 𝜎|𝑋, ℤ) . Thus (𝐽/inf(𝐽), (𝐽/inf(𝐽))+, 𝑤 + inf(𝐽)),  the ordered 

group associated to (𝑋, 𝜎|𝑋, ℤ)., is isomorphic to 𝒢(𝑌, 𝜎|𝑌 ,  ℤ
𝑑). We conclude the proof 

applying Theorem (6.1.14). 

 [392], shows that every minimal Cantor system (𝑌, 𝑇, ℤ)  having an associated 

Bratteli diagram which satisfies the equal path number property, is strong orbit equivalent 

to a Toeplitz subshift (𝑋, 𝜎|𝑋, ℤ). Thus the next result is inmediat. 

Section (6.2): IE Groups and Expansive Algebraic Actions 
Given a (continuous) action of a countable discrete amenable group Γ on a compact 

metrizable space 𝑋 , one has the topological entropy htop(𝑋)  of the action, lying in 

[0, +∞]. Besides being an invariant of the action, the entropy also gives us a lot of 

information about the action itself. Indeed, the intuition about the entropy is that the larger 

the entropy is, themore complicated the action is. Thus it is very natural to ask for the 

relation between entropy properties of the action and the asymptotic behavior of orbits of 

the action, i.e. the asymptotics of 𝜌(𝑠𝑥, 𝑠𝑦) as elements s of Γ go to infinity, where 𝜌 is a 

compatible metric on 𝑋 and  𝑥, 𝑦 ∈ 𝑋. 
     A well-known result in this direction is that of Blanchard et al. [404] in the case of  Γ =
ℤ. They showed that positive entropy implies Li–Yorke chaos.That is, if the ℤ-action is 

generated by a homeomorphism 𝑇: 𝑋 → 𝑋  and htop(𝑋) > 0 , then there exists an 

uncountable subset 𝑍  of 𝑋  such that for any distinct 𝑥, 𝑦  in 𝑍  one has lim 

sup𝑛→+∞ 𝜌(𝑇𝑛𝑥, 𝑇𝑛 𝑦) > 0  and lim inf𝑛→+∞ 𝜌(𝑇𝑛𝑥, 𝑇𝑛 𝑦) = 0.  
We concentrate on the phenomenon lim𝑠→∞ 𝜌(𝑠𝑥, 𝑠 𝑦) = 0  for points under the 

action of a general group Γ. A pair (𝑥, 𝑦) of points in 𝑋 satisfying lim𝑠→∞ 𝜌(𝑠𝑥, 𝑠 𝑦) = 0 

is called asymptotic or homoclinic. In the case Γ = ℤ and the action is generated by a 

homeomorphism 𝑇: 𝑋 → 𝑋 , a pair (𝑥, 𝑦)  of points in 𝑋  satisfying 

lim𝑛→+∞ 𝜌(𝑇𝑛𝑥, 𝑇𝑛 𝑦) = 0 is called positively asymptotic or positively homoclinic. Thus, 

one of the questions we want to address is the relation between htop(𝑋) > 0 and the 

existence of non-diagonal asymptotic pairs. 

     A positive result on this question is that of Blanchard et al. [406]. They showed that in 

the case Γ = ℤ, when htop(𝑋) > 0, there exist non-diagonal positively asymptotic pairs. 

On the other hand, Lind and Schmidt [445] constructed examples of ℤ -actions (actually 

toral automorphisms) which have positive entropy but no non-diagonal asymptotic pairs. 

Thus one has to add further conditions.  

     The condition we are going to add is expansiveness. An action  Γ ↷  𝑋  is called 

expansive if there exists 𝑟 > 0 such that sup𝑠∈Γ 𝜌(𝑠𝑥, 𝑠 𝑦) ≥ 𝑟 for all distinct  𝑥, 𝑦 in 𝑋. 

For example, for any 𝑘 ∈ ℕ  and  𝐴 ∈ 𝑀𝑘(ℤ)  being invertible in 𝑀𝑘(ℤ) , the toral 

automorphism of  ℝ𝑘/ℤ𝑘 = (ℝ/ℤ)𝑘  defined by 𝑥 + ℤ𝑘 ⟼ 𝐴𝑥 + ℤ𝑘 for 𝑥 ∈ ℝ𝑘  is 

expansive if and only if 𝐴 has no eigenvalues with absolute value 1 [474]. Bryant [408] 
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showed that for expansive ℤ -actions, when 𝑋 is infinite, there are non-diagonal positively 

asymptotic pairs. Schmidt showed that when Γ = ℤ𝑑  for some 𝑑 ∈ ℕ, every subshift of 

finite type (which is always expansive) with positive entropy has non-diagonal asymptotic 

pairs [469]. These results lead us to ask the following question: 

Question (6.2.1)[396]: Let a countable discrete amenable group Γ  act on a compact 

metrizable space 𝑋  expansively. If  htop(𝑋) > 0 , then must there be a non-diagonal 

asymptotic pair in 𝑋? 
     Despite all the evidence above, we do not know the answer to Question (6.2.1) even in 

the case Γ = ℤ. One of the main results of this article is that Question (6.2.1) has an 

affirmative answer for algebraic actions of polycyclic-by-finite  groups. 

     Actions of countable discrete groups Γ  on compact (metrizable) groups 𝑋  by 

(continuous) automorphisms are a rich class of dynamical systems, and have drawn much 

attention since the beginning of ergodic theory. Among such actions, the so called 

algebraic actions, meaning that 𝑋  is abelian in which case the action is completely 

determined by the module structure of the Pontryagin dual �̂� of 𝑋 over the integral group 

ring ℤΓ of Γ, is especially important because of the beautiful interplay between dynamics, 

Fourier analysis, and commutative or noncommutative algebra. 

     The ℤ-actions on compact groups by automorphisms are well understood now (cf. 

[444],[455],[476],[477]). After investigation during the last few decades, much  is also 

known for such actions of ℤ𝑑  (cf. [417],[432],[433],[438],[445]–

[448],[465],[468],[470],[472]). The fact that the integral group ring of  ℤ𝑑  is a 

commutative factorialNoetherian ring plays a vital role for such study, as it makes the 

machinery of commutative algebra available. In the last several years, much progress has 

been made towards understanding the algebraic actions of general countable groups Γ (cf. 

[400],[407],[411],[413],[414],[437],[443],[457]). It is somehow surprising that operator 

algebras, especially the group 𝐶∗-algebras or group von Neumann algebras of 𝛤, turn out 

to be important for such a study. 

     Let a countable group Γ act on a compact group 𝑋 by automorphisms, and denote by 𝑒𝑋 

the identity element of 𝑋 . A point  𝑥 ∈ 𝑋 is called homoclinic if the pair (𝑥, 𝑒𝑋 )  is 

asymptotic, i.e.  𝑠𝑥 → 𝑒𝑋 when  Γ ∋  𝑠 → ∞. When Γ is amenable, a point  𝑥 ∈ 𝑋 is called 

𝐼𝐸 if, for any neighborhoods 𝑈1 and 𝑈2 of 𝑥 and  𝑒𝑋 respectively, there exists  𝑐 > 0 such 

that for any sufficiently left invariant nonempty finite set  𝐹 ⊆ Γ one can find some 𝐹′ ⊆
𝐹 with  |𝐹′| ≥ 𝑐|𝐹| being an independence set for (𝑈1, 𝑈2) in the sense that for any map  

𝜎: 𝐹 → {1, 2} one has ⋂ 𝑠 ∈ 𝐹 𝑠−1𝑈𝜎(𝑠) ≠ ∅𝑠∈𝐹′  . The set of all homoclinic points (resp. 

IE points), denoted by ∆(𝑋) (resp. IE(𝑋)), is a 𝛤 -invariant subgroup of  𝑋. It is easy to 

see that ∆(𝑋) describes all the asymptotic pairs of  𝑋 in the sense that a pair (𝑥, 𝑦) of 

points in 𝑋 is asymptotic if and only if  𝑥𝑦−1 lies in ∆(𝑋). A group 𝛤 is called polycyclic-

by-finite [459] if there is a sequence of subgroups Γ = Γ1 ⊳ Γ2 ⊳· · ·⊳ Γ𝑛 = {𝑒Γ} such that 

Γ𝑗/Γ𝑗+1 is finite or cyclic for every  𝑗 = 1, . . . , 𝑛 − 1. The  polycyclic-by-finite groups are 

exactly the virtually solvable groups each of whose subgroups is finitely generated (cf. 

[473]). One of our main results is 

Theorem (6.2.2)[396]: Let Γ  be a polycyclic-by-finite group. Let Γ  act on a compact 

abelian group 𝑋 expansively by automorphisms. Then the following hold: 

   (i) Let 𝐺  be a Γ  -invariant subgroup of ∆(𝑋)   such that 𝐺  and ∆(𝑋)  have the same 

closure. Treat 𝐺  as a discrete abelian group and consider the induced Γ -action on the 

Pontryagin dual �̂�. Then the actions Γ ↷  𝑋 and Γ ↷  �̂� have the same entropy. 
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   (ii) ∆(X) is a dense subgroup of IE(𝑋). 
   (iii) The action has positive entropy if and only if ∆(𝑋) is nontrivial. 

   (iv) The action has completely positive entropy (𝐶𝑃𝐸) with respect to the normalized 

Haar measure of 𝑋 if and only if ∆(𝑋)  is dense in  𝑋. 

     Note that the assertion (iii) of Theorem (6.2.2) answers Question (6.2.1) affirmatively 

for algebraic actions of polycyclic-by-finite groups. In the case Γ = ℤ𝑑 for some 𝑑 ∈ ℕ, 

the assertions (iii) and (iv) are the main results of Lind and Schmidt in [445], and the 

assertion (i) was proved by Einsiedler and Schmidt [415] for  𝐺 = ∆(𝑋). As we mentioned 

above, the work in [415],[445] relies heavily on the machinery of commutative algebra. 

When Γ is nonabelian, we do not have such tools available anymore. Instead, the ℓ1-group 

algebra ℓ1(Γ) and the group von Neumann algebra of Γ play a crucial role. 

Expansive algebraic actions of countable groups, the local entropy theory for 

actions of countable amenable groups on compact groups by automorphisms, and duality 

for algebraic actions of countable amenable groups. Theorem (6.2.2) is the outcome of 

these three parts. 

We give algebraic characterizations for expansiveness of algebraic actions of a 

countable group Γ . Given a matrix  𝐴 ∈ 𝑀𝑘(ℤΓ)  being invertible in  𝑀𝑘(ℓ
1(Γ)) , the 

canonical  Γ  -action on the Pontryagin dual  𝑋𝐴  of the ℤΓ  -module (ℤΓ)𝑘/(ℤΓ)𝑘𝐴  is 

expansive. Dynamically, our characterization says that the expansive algebraic actions of Γ 

are exactly the restriction to closed Γ-invariant subgroups of  𝑋𝐴 for all such 𝐴. 

     The notion of 𝑝-expansiveness is introduced in for algebraic actions of a countable 

group  Γ, for 1 ≤ 𝑝 ≤ +∞. This yields a hierarchy of expansiveness: 𝑞-expansiveness 

implies 𝑝 -expansiveness for  𝑝 < 𝑞  and +∞ -expansiveness is exactly the ordinary 

expansiveness. We show that, for an algebraic action of Γ on  𝑋, if Γ is amenable and �̂� is 

a finitely presented ℤΓ-module, then the action has finite entropy if and only if it is 1-

expansive.This relies on a result of  Elek [418] about the analytic zero divisor conjecture, 

the proof of which uses the group von Neumann algebra of Γ. 

We study the group ∆𝑝(𝑋)  of 𝑝 -homoclinic points for an algebraic action of a 

countable group Γ  and 1 ≤ 𝑝 < +∞ . They are subgroups of  ∆(𝑋) . For expansive 

algebraic actions, using our characterization for such actions, we show that ∆1(𝑋) = ∆(𝑋). 
Gives another application of our characterization for expansive algebraic actions of a 

countable group Γ. We show that various specification properties are equivalent and imply 

that ∆(𝑋) is dense in 𝑋 for such actions.  

     Initiated by Blanchard [402], the local entropy theory for continuous actions of a 

countable amenable group Γ  on compact spaces developed quickly during the last 2 

decades (cf. [403]–[406],[420],[422],[427]–[431]), and has been found to be related to 

combinatorial independence [435],[436], which appeared first in Rosenthal’s [463] work 

on Banach spaces containing ℓ1 . We develop the local entropy theory for actions of a 

countable amenable group Γ on compact groups 𝑋 by  automorphisms in Sects. 7 and 8. It 

turns out that IE(𝑋) determines the local entropy theory and the Pinsker factor for such 

actions. Furthermore, when 𝑋 is abelian, one has  ∆1(𝑋) ⊆ IE(𝑋). In particular, the “if” 

parts of the assertions (iii) and (v) of Theorem(6.2.2) actually hold for all countable 

amenable groups Γ. This also enables us to give a partial answer to a question of  Deninger 

about the Fuglede–Kadison determinant (see Corollary (6.2.52)), which is an application 

to the study of the group von Neumann algebra of Γ. We also show that, for finite entropy 
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actions on compact groups by automorphisms, having CPE is  equivalent to having a 

unique maximal measure. 

     For an algebraic action of a countable group Γ on   𝑋, we treat �̂� and ∆𝑝(𝑋)  as a dual 

pair of discrete abelian groups, with the expectation that the dynamical properties of the Γ 

-actions on  𝑋 and ∆𝑝(𝑋)̂   would be reflected in each other. We discuss the relation of the 

entropy properties for such pairs of actions, for countable amenable groups Γ. It turns out 

that ∆1(𝑋) and ∆2(𝑋) are more closely related to the entropy properties of  Γ ↷ 𝑋 than 

any other  

∆𝑝(𝑋)  or  Δ(𝑋). In particular, when �̂� is a finitely presented ℤΓ-module, the entropy of 

Γ ↷ 𝑋 is bounded below by that for Γ ↷ ∆1(𝑋)̂ .This depends on the equivalence between 

1-expansiveness and finite entropy mentioned above. Actually we establish a general 

result (see Theorem (6.2.70)) stating the relation between ∆1(𝑋)  and the entropy 

properties of Γ ↷ 𝑋, much as the assertions of Theorem (6.2.2). Then Theorem (6.2.2) is 

just a consequence of this result and our characterizations of expansive algebraic actions. 

     In fact Theorem (6.2.2) holds whenever Γ is amenable and ℤΓ is left Noetherian. It is 

known that a polycyclic-by-finite group is amenable and its integral group ring is left 

Noetherian [424]. On the other hand, it is a long standing open question whether ℤΓ is left 

Noetherian implies that Γ is polycyclic-by-finite. 

We set up some notations and recall some basic facts about group rings, algebraic 

actions, entropy theory, and local entropy theory. 

All compact spaces are assumed to bemetrizable and all automorphisms of compact 

groups are assumed to be continuous. For a group 𝐺, we write 𝑒𝐺 for the identity element 

of 𝐺. When 𝐺 is abelian, sometimes we also write 0𝐺 . 
For a unital ring  𝑅, we denote by 𝑅Γ the group ring of Γ with coefficients in 𝑅. It consists 

of finitely supported 𝑅-valued functions  𝑓 on Γ, which we shall write as  ∑ 𝑓𝑠𝑠𝑠∈Γ  . The 

algebraic structure of 𝑅Γ  is defined by (∑ 𝑓𝑠𝑠𝑠∈Γ ) + (∑ g𝑠𝑠𝑠∈Γ ) = ∑ (𝑓𝑠 + g𝑠)𝑠𝑠∈Γ  and  

(∑ 𝑓𝑠𝑠𝑠∈Γ ) (∑ g𝑠𝑠𝑠∈Γ ) = ∑ (∑ 𝑓𝑡𝑡∈Γ𝑠∈Γ g𝑡−1𝑠)𝑠.  
     We denote by ℓ∞(Γ)  the Banach space of all bounded ℝ -valued functionson  Γ , 

equipped with the ℓ∞-norm ‖ · ‖∞ .We also denote by ℓ1(Γ) the Banach algebra of all 

absolutely summable ℝ -valued functions on Γ, equipped with the ℓ1-norm ‖ · ‖1. Note 

that ℓ1(Γ) has a canonical algebra structure extending that of  ℝΓ, and is a Banach algebra. 

We shall write  𝑓 ∈ ℓ1(Γ) as ∑ 𝑓𝑠𝑠𝑠∈Γ . Note that ℓ1(Γ)  has an  involution 𝑓 ↦ 𝑓∗ defined 

by (∑ 𝑓𝑠𝑠𝑠∈Γ )∗ = ∑ 𝑓𝑠𝑠
−1

𝑠∈Γ . 

     For each  𝑘 ∈ ℕ, we endow ℝ𝑘 with the supremum norm ‖ · ‖∞. For each 1 ≤ 𝑝 ≤ +∞, 

we endow  ℓ𝑝(Γ,ℝ𝑘) = (ℓ𝑝(Γ))𝑘  with the ℓ𝑝-norm 

‖(𝑓1, . . . , 𝑓𝑘)‖𝑝 = ‖Γ ∋ 𝑠 ↦ ‖(𝑓1(𝑠), . . . , 𝑓𝑘(𝑠))‖∞‖𝑝
.                                 (10) 

We shall write elements of (ℓ𝑝(Γ))𝑘 as row vectors.  

     The algebraic structures of ℤΓ and ℓ1(Γ) also extend to some other situations naturally. 

For example, (ℝ/ℤ)Γ becomes a right ℤΓ -module naturally. 

     For any  𝑛, 𝑘 ∈ ℕ, we also endow  𝑀𝑛×𝑘(ℓ
1(Γ)) with the norm  

‖(𝑓𝑖,𝑗)1≤𝑖≤𝑛,1≤𝑗≤𝑘‖1 ≔ ∑ ‖𝑓𝑖,𝑗‖1
1≤𝑖≤𝑛,1≤𝑗≤𝑘

. 

The involution of  ℓ1(Γ) also extends naturally to an isometric linear map 𝑀𝑛×𝑘(ℓ
1(Γ)) →

𝑀𝑘×𝑛(ℓ
1(Γ))  by 
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(𝑓𝑖,𝑗)1≤𝑖≤𝑛,1≤𝑗≤𝑘
∗ ≔ (𝑓𝑗,𝑖

∗ )
1≤𝑖≤𝑘,1≤𝑗≤𝑛

. 

To simplify the notation, we shall write  𝑀𝑘(·) for 𝑀𝑘×𝑘(·). Note that 𝑀𝑘(ℓ
1(Γ))   is a 

Banach algebra. 

By an algebraic action of Γ, we mean an action of Γ on a compact abelian group by 

automorphisms. 

     For a locally compact abelian group  𝑋, we denote by �̂� its Pontryagin dual. Then for 

any compact abelian group 𝑋 , there is a natural one-to-one correspondence between 

algebraic actions of Γ on  𝑋  and actions of Γ on �̂�  by automorphisms. There is also a 

natural one-to-one correspondence between the latter and left ℤΓ -module structure on  �̂� . 

Thus, when we have an algebraic action of Γ on  𝑋, we shall talk about the left ℤΓ -module 

�̂� . And when we have a left ℤΓ -module W, we shall treat 𝑊 as a discrete abelian group 

and talk about the algebraic action of Γ on �̂�. 

     Note that for each   𝑘 ∈ ℕ, we may identify the Pontryagin dual (ℤΓ)�̂� of  (ℤΓ)𝑘 with  

((ℝ/ℤ)𝑘)Γ = ((ℝ/ℤ)Γ)𝑘 naturally. Under this identification, the canonical action of Γ on  

(ℤΓ)�̂� is just the left shift action on ((ℝ/ℤ)k)Γ. If  𝐽  is a left  ℤΓ -submodule of (ℤΓ)𝑘, 

then  (ℤΓ)𝑘/𝐽̂  is identified with 

       

          {(𝑥1, . . . , 𝑥𝑘) ∈ ((ℝ/ℤ)Γ)𝑘: 𝑥1g1
∗+. . . +𝑥𝑘g𝑘

∗ = 0(ℝ/ℤ)Γ  ,    for all (g1, . . . , g𝑘) ∈ 𝐽}. 

      We denote by 𝜌 the canonical metric on ℝ/ℤ defined by 

 

𝜌(𝑡 + ℤ, 𝑠 + ℤ) ≔ lim
𝑚∈ℤ

|𝑡 − 𝑠 −𝑚|. 

For  𝑘 ∈ ℕ, we denote by 𝜌∞ the metric on (ℝ/ℤ)Γ defined by 

 

𝜌∞((𝑡1, . . . , 𝑡𝑘), (𝑠1, . . . , 𝑠𝑘)) ≔ max
1≤𝑗≤𝑘

𝜌(𝑡𝑗 , 𝑠𝑗).                                    (11) 

     An action of Γ on a compact space 𝑋 is called expansive if there is a constant  𝑐 > 0 

such that sup𝑠∈Γ 𝜌(𝑠𝑥, 𝑠𝑦) > 𝑐  for all distinct 𝑥, 𝑦 in 𝑋, where 𝜌 is a compatible metric on 

𝑋. It is easy to see that the definition does not depend on the choice of  𝜌. If  �̂� = (ℤΓ)𝑘/𝐽 
for some 𝑘 ∈ ℕ and some left ℤΓ-submodule  𝐽 of (ℤΓ)𝑘  , then the ℤΓ -action on  𝑋 is 

expansive exactly when there exists  𝑐 > 0 such that the only  𝑥 ∈ 𝑋 satisfying 

sup
𝑠∈Γ

𝜌∞(𝑥𝑠, 0(ℝ/ℤ)k) > 𝑐 

is 0𝑋. 
      We shall need the following result [468]. 

Proposition (6.2.3)[396]: Let Γ  act on a compact abelian group X  expansively by 

automorphisms. Then X̂ is a finitely generated left ℤΓ -module. 

See [458],[108] for details on the entropy theory of countable amenable groups. 

Throughout Γ will be a countable amenable group. 

     Let Γ act on a compact space 𝑋 continuously. Fix a compatible metric 𝜌 on  𝑋 and a left 

Følner sequence {𝐹𝑛}𝑛∈ℕ in Γ, i.e. each  𝐹𝑛 is a nonempty finite subset of Γ and |
𝐾𝐹𝑛\𝐹𝑛|

|𝐹𝑛|
→

0 as 𝑛 → ∞ for every finite set  𝐾 ⊆ Γ.  For a finite subset 𝐹 of Γ and  𝜀 > 0, we say that a 

set  𝑍 ⊆ 𝑋  is  (𝜌, 𝐹, 𝜀)-separated if for any distinct  𝑦, 𝑧 ∈ 𝑍 one has max𝑠∈𝐹 𝜌(𝑠𝑦, 𝑠𝑧) >
𝜀 . Denote  by  𝑁𝜌,𝐹,𝜀(𝑋) the maximal cardinality of  (𝜌, 𝐹, 𝜀)-separated subsets of  𝑋.Then 

the topological entropy of the action Γ ↷ 𝑋 is defined as 
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htop(𝑋) = sup
𝜀>0

lim sup
𝑛→∞

log𝑁𝜌,𝐹𝑛,𝜀(𝑋)

|𝐹𝑛|
,                                           (12) 

and does not depend on the choice of the Følner sequence {{𝐹𝑛}𝑛∈ℕ and the metric  𝜌. 

     For a measure-preserving action of Γ on a probability measure space (𝑋, 𝐵𝑋, 𝜇), one 

also has the measure entropy or Kolmogorov–Sinai entropy ℎ𝜇(𝑋) defined. 

     When Γ acts on a compact group 𝑋 by automorphisms, the topological entropy and the 

measure entropy with respect to the normalized Haar measure 𝜇𝑋 on  𝑋 coincide [411]. 

Thus we shall simply denote by ℎ(𝑋) this common value, and refer to it the entropy of the 

action. 

     One has the following Yuzvinskii addition formula [443]:  

Proposition (6.2.4)[396]: Let Γ act on a compact group 𝑋 by automorphisms. Let 𝑌 be a 

closed Γ-invariant normal subgroup of  𝑋. Consider the restriction of the Γ-action to 𝑌 and 

the induced Γ-action on  𝑋/𝑌 . Then 

ℎ(𝑋) = ℎ(𝑌) + ℎ(𝑋/𝑌 ). 
The local entropy theory was initiated by Blanchard [402]. See [420],[422] for a nice 

account for the case Γ = ℤ. In [435],[436] Kerr and the second named author gave a 

systematic combinatorial approach to the local entropy theory for general countable 

amenable groups. Here we follow the terminologies in [435],[436]. Throughout, Γ will be 

a countable amenable group. 

Definition (6.2.5)[396]: Let Γ act on a compact space 𝑋 continuously. For a tuple 𝑨 =
(𝐴1, . . . , 𝐴𝑘) of subsets of 𝑋, we say that a finite set  𝐹 ⊆ Γ is an independence set for 𝑨 if 

for every function 𝜎: 𝐹 → {1, 2, . . . , 𝑘} one has ⋂ 𝑠−1𝑠∈𝐹 𝐴𝜎(𝑠) ≠ ∅.We call a tuple  𝒙 =

(𝑥1, . . . , 𝑥𝑘) ∈ 𝑋𝑘   an  𝐼𝐸-tuple if for every product neighborhood  𝑈1 ×· · ·× 𝑈𝑘  of 𝒙, 

there exist a nonempty finite set 𝐾 ⊆ Γ and 𝑐, 𝜀 > 0 such that for any finite set  𝐹 ⊆ Γ 

with  |𝐾𝐹\𝐹| ≤ 𝜀|𝐹| the tuple 𝑈1,· · ·, 𝑈𝑘  has an independence set 𝐹′ ⊆ 𝐹  with  |𝐹′| ≥
𝑐|𝐹|. We denote the set of 𝐼𝐸-tuples of length 𝑘 by 𝐼𝐸𝑘(𝑋). 
     We need the following properties of IE-tuples [435]. For a continuous action of Γ on a 

compact space 𝑋, we denote by ℳ(𝑋, Γ) the set of Γ -invariant Borel probability measures 

on  𝑋. 

Theorem (6.2.6)[396]: Let Γ act on compact spaces 𝑋 and 𝑌 continuously. Let  𝑘 ∈ ℕ. 

Then the following hold: 

   (i) 𝐼𝐸𝑘(𝑋). is 𝑎 closed Γ -invariant subset of 𝑋𝑘 , for the product Γ -action on 𝑋𝑘 . 

   (ii)  𝐼𝐸2(𝑋) has non-diagonal elements if and only if ℎ(𝑋) > 0. 

   (iii)  𝐼𝐸1(𝑋) is the closure of ⋃ supp(𝜇).𝜇∈ℳ(𝑋,Γ)   

   (iv)  Let  𝜋: 𝑋 → 𝑌  be a Γ -equivariant continuous surjective map. Then (𝜋 ×· · ·×
𝜋)(𝐼𝐸𝑘(𝑋)) = 𝐼𝐸𝑘(𝑌). 
   (v)  𝐼𝐸𝑘(𝑋 × 𝑌 ) = 𝐼𝐸𝑘(𝑋) × 𝐼𝐸𝑘(𝑌 ), where we take the product Γ-action on 𝑋 × 𝑌 , 

and identify (𝑋 × 𝑌)𝑘 with 𝑋𝑘 × 𝑌𝑘 naturally. 

Definition (6.2.7)[396]: Let Γ act on a compact space 𝑋 continuously and let 𝜇 ∈ 𝑀(𝑋, Γ). 
For a tuple  𝑨 =  (𝐴1, . . . , 𝐴𝑘) of subsets of  𝑋 and a subset  𝐷 of 𝑋, we say that a finite set  

𝐹 ⊆ Γ   is an independence set for 𝑨  relative to 𝐷  if for every function  𝜎 ∶ 𝐹 →
{1, 2, . . . , 𝑘} one has 𝐷 ∩ ⋂ 𝑠−1𝑠∈𝐹  𝐴𝜎(𝑠) ≠ ∅ .We call a tuple  𝒙 = (𝑥1, . . . , 𝑥𝑘) ∈ 𝑋𝑘 a 𝜇-

𝐼𝐸-tuple if for every product neighborhood  𝑈1 ×· · ·× 𝑈𝑘 of  𝒙, there exist  𝑐, 𝛿 > 0 such 

that for any nonempty finite set  𝐾 ⊆ Γ and  𝜀 > 0 one can find a nonempty finite set  𝐾 ⊆
Γ with |𝐾𝐹\𝐹| ≤  𝜀|𝐹| such that for every Borel set  𝐷 ⊆ 𝑋 with  𝜇(𝐷) ≥ 1 − 𝛿 the tuple  
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(𝑈1, . . . , 𝑈𝑘) has an independence set   𝐹′ ⊆ 𝐹  relative to 𝐷 with |𝐹′| ≥ 𝑐|𝐹|. We denote 

the set of  𝜇-IE-tuples of length 𝑘 by 𝐼𝐸𝑘
𝜇
(𝑋). 

     We need the following properties of measure IE-tuples [436]: 

Theorem (6.2.8)[396]: Let Γ  act on compact spaces 𝑋  and 𝑌  continuously. Let 𝜇 ∈
ℳ(𝑋, Γ) and 𝜈 ∈ ℳ(𝑌, Γ). Let 𝑘 ∈ ℕ. Then the following hold: 

   (i) 𝐼𝐸𝑘
𝜇
(𝑋) is a closed Γ-invariant subset of  𝑋𝑘 , for the product Γ-action on 𝑋𝑘 . 

   (ii)  𝐼𝐸2
𝜇
(𝑋) has non-diagonal elements if and only if  ℎ𝜇(𝑋) > 0. 

   (iii)  𝐼𝐸1
𝜇
(𝑋) = supp(𝜇). 

   (iv)  Let  𝜋: 𝑋 → 𝑌  be a Γ -equivariant continuous surjective map. Then (𝜋 ×· · ·×

𝜋)(𝐼𝐸𝑘
𝜇
(𝑋)) = 𝐼𝐸𝑘

𝜋∗(𝜇)(𝑌). 

   (v)  𝐼𝐸𝑘
𝜇×𝜈

(𝑋 × 𝑌) = 𝐼𝐸𝑘
𝜇
(𝑋) × 𝐼𝐸𝑘

𝜈(𝑌), where we take the product Γ-action on  𝑋 × 𝑌 , 

and identify (𝑋 × 𝑌)𝑘 with  𝑋𝑘 × 𝑌𝑘 naturally. 

   (vi)  𝐼𝐸𝑘(𝑋) is the closure of  ⋃ 𝐼𝐸𝑘
𝜇
(𝑋)𝜇∈ℳ(𝑋,Γ)  . 

We prove the following algebraic characterizations for expansiveness of algebraic 

actions. Throughout Γ will be a countable  discrete group. For a unital ring  𝑅, a right 𝑅-

module 𝔐 and a left 𝑅-module 𝔑, we denote by 𝔐⊗𝑅 𝔑 the tensor product of 𝔐 and 𝔑 

[397], which is an abelian group. 

Theorem (6.2.9)[396]: Let Γ act on a compact abelian group 𝑋 by automorphisms. Then 

the following are equivalent: 

    (i) the action is expansive; 

   (ii) the left ℤΓ-module �̂� is finitely generated, and if we identify �̂� with (ℤΓ)𝑘/𝐽 for 

some 𝑘 ∈ ℕ and some left ℤΓ-submodule 𝐽 of (ℤΓ)𝑘, then there exists 𝐴 ∈ 𝑀𝑘(ℤΓ) being 

invertible in 𝑀𝑘(ℓ
1(Γ)) such that the rows of 𝐴 are contained in 𝐽 ; 

   (iii) there exist some 𝑘 ∈ ℕ, some left ℤΓ-submodule 𝐽 of (ℤΓ)𝑘 , and some 𝐴 ∈ 𝑀𝑘(ℤΓ)  
being invertible in 𝑀𝑘(ℓ

1(Γ))  such that the left ℤΓ-module �̂� is isomorphic to (ℤΓ)𝑘/𝐽 
and the rows of 𝐴 are contained in 𝐽 ; 
   (iv) the left ℤΓ-module �̂� is finitely generated, and  ℓ1(Γ) ⊗ℤΓ �̂� = {0}. 
     Previously, characterizations of expansiveness for algebraic actions have been obtained 

in various special cases, such as the case Γ = ℤ𝑑 for  𝑑 ∈ ℕ [467], the case Γ is abelian 

[456], the case �̂� = ℤΓ/𝐽  for a finitely generated left ideal 𝐽 of  ℤΓ [414], the case 𝑋 is 

connected and finite-dimensional [401], and the case �̂� = ℤΓ/ℤΓ𝑓   for some  𝑓 ∈ ℤΓ 

[413]. 

     When Γ  is abelian, we have the following characterization of expansive algebraic 

actions. 

Proof: (i)⇒(ii): By Proposition (6.2.3) we know that �̂� is a finitely generated left ℤΓ-

module. 

Identify �̂�with (ℤΓ)𝑘/𝐽 for some 𝑘 ∈ ℕ and some left ℤΓ-submodule 𝐽 of (ℤΓ)𝑘 . Denote 

by Ω the set of finitely generated ℤΓ-submodules of  𝐽. We claim that there exists some 

𝜔 ∈ Ω such that the canonical action of Γ on  (ℤΓ)𝑘/𝜔̂   is expansive. Suppose that this 

fails. Let 𝜔 ∈ Ω. By Lemma (6.2.15) we can find some nonzero 𝑦𝜔 = (𝑦1
𝜔 , . . . , 𝑦𝑘

𝜔) ∈
(ℓ∞(Γ))𝑘 such that  〈𝑦𝜔, 𝑓〉 =  0 for every 𝑓 in a finite generating set 𝑊 of 𝜔, where the 

pairing  〈𝑦𝜔, 𝑓〉 is given by the Eq. (13). Since ω is a left ℤΓ-module, we get  𝑦𝜔𝑓∗ = 0 

for all 𝑓 ∈ 𝑊, and hence 𝑦𝜔𝑓∗ = 0 for all  𝑓 ∈ 𝜔. Replacing  𝑦𝜔 by 𝑠𝑦𝜔 for some 𝑠 ∈ Γ, 

we may assume that ‖𝑦𝑒Γ
𝜔   ‖∞ ≥ ‖ 𝑦𝜔 ‖∞/2 . Replacing 𝑦𝜔 by 𝜆𝑦𝜔 for some  𝜆 ∈ ℝ, we 
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may assume that  ‖𝑦𝑒Γ
𝜔   ‖∞ = 1/2. Then  𝑦𝜔 ∈ ([−1,1]𝑘)Γ . Note that Ω is directed by 

inclusion. Since the space ([−1,1]𝑘)Γ is compact under the product topology, we can take 

a limit point 𝑧 of the net (𝑦𝜔)𝜔∈Ω. Then  𝑧 𝑓∗ = 0 for every  𝑓 ∈ 𝐽 , and hence  𝑃(𝜆𝑧) ∈

(ℤΓ)𝑘/𝐽̂  for every 𝜆 ∈ ℝ, where 𝑃  denotes the canonical map from  (ℓ∞(Γ))𝑘 to ((ℝ/
ℤ)Γ)Γ𝑘 . We also have ‖𝑧eΓ ‖∞ = 1/2, and hence  𝑃(𝜆𝑧) ≠ 0 for all  0 < 𝜆 ≤ 1. This 

contradicts the expansiveness of the canonical action of Γ  on  (ℤΓ)𝑘/𝐽̂ . Thus our 

claimholds. 

     So let  𝑓1, . . . , 𝑓𝑛 ∈ 𝐽 such that the canonical action of Γ on (ℤΓ)𝑘/𝜔̂  is  expansive for  

𝜔 = ℤΓ𝑓1 + · · ·  + ℤΓ𝑓𝑛 . By Lemma (6.2.15) we can find some 𝐴 ∈ 𝑀𝑘(ℤΓ)  being 

invertible in 𝑀𝑘(ℓ
11(Γ)) such that the rows of 𝐴 are contained in 𝜔, and hence in 𝐽 . This 

proves (ii). 

    (i)⇒(iii) is trivial. 

   (iii)⇒(i) can be proved as in the proof of (iv)⇒(i) of Lemma (6.2.15). 

   (iii)⇔(iv) follows from Lemma (6.2.16). 

Corollary (6.2.10)[396]: Suppose that Γ is abelian. Let Γ act on a compact abelian group 

by automorphisms. Then the action is expansive if and only if �̂� is a  finitely generated 

ℤΓ-module and there exists  𝑓 ∈ ℤΓ being invertible in ℓ1(Γ) such that  𝑓�̂� = {0}. 
Proof: Suppose that the action is expansive. By Theorem (6.2.9) we can write the ℤΓ-

module  �̂� as (ℤΓ)𝑘/𝐽 for some 𝑘 ∈ ℕ and some left ℤΓ-submodule 𝐽 of (ℤΓ)𝑘, and find  

𝐴 ∈ 𝑀𝑘(ℤΓ) being invertible in  𝑀𝑘(ℓ
1(Γ))   such that the rows of 𝐴 are contained in 𝐽 . 

     Since Γ  is abelian, ℓ1(Γ)  is a commutative algebra. Thus we can talk about the 

determinant det (𝐵) ∈ ℓ1(Γ) for any 𝐵 ∈ 𝑀𝑘(ℓ
1(Γ)), and 𝐵 is invertible  in 𝑀𝑘(ℓ

1(Γ)) 
exactly when det(𝐵) is invertible in ℓ1(Γ). Furthermore, the formula of  𝐴−1 in terms of 

det(𝐴) and the minors of 𝐴 shows that  𝐴−1  is of the form (det(𝐴))−1𝐵 for some 𝐵 ∈
𝑀𝑘(ℤΓ). 
     For any  𝑏 ∈ (ℤΓ)𝑘, we have 

 

det(𝐴)𝑏 = det(𝐴)𝑏𝐴−1𝐴 = 𝑏(det(𝐴) ⋅ 𝐴−1)𝐴 = 𝑏𝐵𝐴 ∈ 𝐽. 
Thus det(𝐴)�̂� = {0}. This proves the “only if” part. 

     Now suppose that �̂� is a finitely generated ℤΓ-module and there exists 𝑓 ∈ ℤΓ being 

invertible in ℓ1(Γ) such that  𝑓�̂� = {0}. For any ℎ ∈ ℓ1(Γ) and 𝑎 ∈ �̂� we have 

 

ℎ⨂𝑎 = ℎ𝑓−1⨂ 𝑓𝑎 = 0 

in  ℓ1(Γ)⊗ℤΓ �̂�. Thus ℓ1(Γ)⊗ℤΓ �̂� = {0}. By Theorem (6.2.9) the action is expansive. 

This proves the “if” part. 

     From Corollary (6.2.10) we have the following consequence, which can also be 

deduced from [456]. 

Corollary (6.2.11)[396]: Suppose that Γ is abelian. If Γ acts expansively on a compact 

abelian group X by automorphisms and Y is a closed Γ-invariant subgroup of X with  X/Ŷ 

being a finitely generated ℤΓ-module, then the induced Γ-action on  X/Y is expansive. 

Corollary (6.2.12)[396]: Let d ∈ ℕ. If  ℤ𝑑 acts expansively on a compact abelian group X 

by automorphisms and Y is a closed ℤd-invariant subgroup of X, then the induced  ℤ𝑑-

action on  X/Y is expansive. 

     We remark that, based on Corollary (6.2.12), Schmidt also showed that if ℤ𝑑  acts 

expansively on a compact (not necessarily abelian) group 𝑋 by automorphisms and 𝑌 is a 
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closed ℤ𝑑 -invariant normal subgroup of 𝑋 , then the induced ℤ𝑑 -action on 𝑋/𝑌  is 

expansive [468]. 

     Recall that a unital ring 𝑅 is said to be left Noetherian if every left ideal of 𝑅 is finitely 

generated. In general, we have 

Conjecture (6.2.13)[396]: Suppose that Γ is amenable and ℤΓ is left Noetherian. If Γ acts 

expansively on a compact group 𝑋 by automorphisms and 𝑌 is a closed Γ-invariant normal 

subgroup of 𝑋, then the induced Γ-action on 𝑋/𝑌 is expansive. 

     The proof of [468] shows that, in order to prove Conjecture (6.2.13), it suffices to 

consider the case 𝑋 is abelian. 

     We start preparation for the proof of Theorem (6.2.9). We describe first a class of 

expansive algebraic actions, which are analogues of the expansive principal algebraic 

actions studied in [413]. Conditions (ii) and (iii) of Theorem (6.2.9)state that these actions 

are the largest expansive algebraic actions in the sense that every expansive algebraic 

action is the restriction of one of these actions to a closed invariant subgroup. 

Lemma (6.2.14)[396]: Let 𝑘 ∈ ℕ, and  𝐴 ∈ 𝑀𝑘(ℤΓ) be invertible in 𝑀𝑘(ℓ
1(Γ)),. Then the 

canonical action of Γ on  𝑋𝐴𝐴:=   (ℤΓ)𝑘/(ℤΓ)𝑘𝐴  ̂ is expansive. 

Proof:  Let  𝑥 ∈ 𝑋𝐴 be nonzero. Take 𝑦 ∈ ([−1/2, 1/2]𝑘)Γ ⊆ (ℓ∞(Γ))𝑘 with 𝑃(𝑦) = 𝑥, 

where 𝑃  denotes the canonical map (ℓ∞(Γ))𝑘 → ((ℝ/ℤ)𝑘)Γ .Then  𝑦 ≠ 0, and  𝑦𝐴∗ ∈
ℓ∞(Γ, ℤ𝑘). Since 𝐴  is invertible in  𝑀𝑘(ℓ

1(Γ)), so is 𝐴∗ . Thus we have  𝑦𝐴∗ ≠ 0, and 

hence ‖𝑦𝐴∗‖∞ ≥ 1 . Note that ‖𝑦𝐴∗‖∞ ≤ ‖𝑦‖∞ ·  ‖𝐴∗‖1 = ‖𝑦‖∞ ·  ‖𝐴‖1 . Therefore 

‖𝑦‖∞ ≥ ‖𝐴‖1
−1. Then sup𝑠∈Γ 𝜌∞(𝑥𝑠 , 0(ℝ/ℤ)𝑘) ≥ ‖𝐴‖1

−1  , where 𝜌∞  is the metric on 

(ℝ/ℤ)𝑘 defined in (11), and hence the canonical action of Γ on  𝑋𝐴 is expansive. 

    The following lemma is inspired by a question raised by Doug Lind and Klaus Schmidt, 

and uses the technique of [413]. 

Lemma (6.2.15)[396]: Let 𝑘, 𝑛 ∈ ℕ , and  𝐵 ∈ 𝑀𝑛×𝑘(ℤΓ) . Then the following are 

equivalent:  

    (i) the canonical action of Γ on  (ℤΓ)𝑘/(ℤΓ)𝑛 𝐵̂  is expansive; 

   (ii) the linear map 𝜑: (ℓ∞(Γ))𝑘 → (ℓ∞(Γ))𝑛 sending y to 𝑦𝐵∗ is injective;  

   (iii) the linear map 𝜓 ∶ (ℓ1(Γ))𝑛 → (ℓ1(Γ))𝑘 sending  𝑧 to 𝑧𝐵 has dense image; 

   (iv) there exists  𝐴 ∈ 𝑀𝑘(ℤΓ) being invertible in  𝑀𝑘(ℓ
1(Γ)) such that the rows of 𝐴 are 

contained in (ℤΓ)𝑛 𝐵. 

Proof: (i)⇒(ii): Let  𝑦 ∈ (ℓ∞(Γ))𝑘 with  𝑦𝐵∗ = 0. Then  (𝜆𝑦)𝐵∗ = 0 for every 𝜆 ∈ ℝ. If 

we denote by 𝑃  the canonical map (ℓ∞(Γ))𝑘 → ((ℝ/ℤ)𝑘)Γ , then  𝑃(𝜆𝑦) ∈

(ℤΓ)𝑘/(ℤΓ)𝑛 𝐵̂   for every 𝜆 ∈ ℝ. Since the canonical action of Γ on  (ℤΓ)𝑘/(ℤΓ)𝑛̂ 𝐵 is 

expansive, we conclude that 𝑦 = 0. 

     (ii)⇒(iii): Note that we can identify (ℓ∞(Γ))𝑛 𝑎𝑛𝑑 (ℓ∞(Γ))𝑘 with the dual spaces of 

(ℓ1(Γ))𝑛 𝑎𝑛𝑑 (ℓ1(Γ))𝑘  respectively in a canonical way. For instance, for  𝑦 =
(𝑦1, . . . , 𝑦𝑘) ∈ (ℓ∞(Γ))𝑘 and  𝑧 = (𝑧1, . . . , 𝑧𝑘) ∈ (ℓ1(Γ))𝑘, the pairing is given by 

〈𝑦, 𝑧〉 ≔ (𝑦𝑧∗)𝑒Γ = ( ∑ 𝑦𝑗
1≤𝑗≤𝑘

𝑧𝑗
∗)

𝑒Γ

.                                           (13) 

Under such identification 𝜑 is the dual of 𝜓. If the image of 𝜓 is not dense in  (ℓ1(Γ))𝑘 , 

then by the Hahn–Banach theorem we can find some nonzero bounded linear functional y 

on (ℓ1(Γ))𝑘 , vanishing at the image of 𝜓. Since y is an element of (ℓ∞(Γ))𝑘 , this means  

𝑦𝐵∗ = 0, which contradicts (ii). Thus the image of 𝜓 is dense in (ℓ1(Γ))𝑘.  
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     (iii)⇒(iv): Since 𝑀𝑘(ℓ
1(Γ)),.  is a Banach algebra, the set of invertible matrices in  

𝑀𝑘(ℓ
1(Γ)),.   is open. Thus we can find  𝑧 = 𝑧1, . . . , 𝑧𝑘 ∈ (ℓ1(Γ))𝑛 such that the matrix 

(

𝑧1
⋮
𝑧𝑘
) ⋅ 𝐵 

in 𝑀𝑘(ℓ
1(Γ)) is close enough to the identity matrix for being invertible. Since ℚΓ is dense 

in ℓ1(Γ), we may require that  𝑧1, . . . , 𝑧𝑘 ∈ (ℚΓ)𝑛. Then we can find some  𝑁 ∈ ℕ such 

that  𝑁𝑧1, . . . , 𝑁𝑧𝑘 ∈ (ℤΓ)𝑘 . Now we can set 

𝐴 = 𝑁(

𝑧1
⋮
𝑧𝑘
) ⋅ 𝐵.         

     iv)⇒(i): Define 𝑋𝐴 as in Lemma (6.2.14). Then (ℤΓ)𝑘/(ℤΓ)𝑛 𝐵̂ ⊆ 𝑋𝐴 . Since the 

canonical action of Γ  on 𝑋𝐴  is expansive by Lemma (6.2.14), its restriction on  

(ℤΓ)𝑘/(ℤΓ)𝑛 𝐵̂  is also expansive. 

Lemma (6.2.16)[396]: Let  𝑘 ∈ ℕ and 𝐽  be a left ℤΓ-submodule of (ℤΓ)𝑘  . Then the 

following are equivalent: 

    (i) there exists  𝐴 ∈ 𝑀𝑘(ℤΓ being invertible in 𝑀𝑘(ℓ
1(Γ)) such that the rows of A are 

contained in 𝐽 ; 
   (ii)  ℓ1(Γ) ⊗ℤΓ ((ℤΓ)

𝑘/𝐽 ) = {0}; 
   (iii) the left ℓ1(Γ)-module (ℓ1(Γ))𝑘 is generated by 𝐽 .  
Proof :(i)⇒(ii): Write the 𝑗-th row of  𝐴 as g𝑗 . Denote by 𝑒1, . . . , 𝑒𝑘 the standard basis of 

(ℤΓ)𝑘. Let  𝑤 ∈ ℓ1(Γ), 1 ≤ 𝑖 ≤ 𝑘, and  𝑓 ∈ ℤΓ. Then in  ℓ1(Γ) ⊗ℤΓ ((ℤΓ)
𝑘/𝐽 ) we have 

𝑤⊗ (𝑓𝑒𝑖 + 𝐽) = ∑ 𝑤𝑓𝛿𝑖,𝑚
1≤𝑚≤𝑘

⊗ (𝑒𝑚 + 𝐽)                                             

               = ∑ 𝑤𝑓

1≤𝑚≤𝑘

( ∑ (𝐴−1)𝑖,𝑗𝐴𝑗,𝑚
1≤𝑗≤𝑘

)⊗ (𝑒𝑚 + 𝐽) 

         = ∑ 𝑤𝑓(𝐴−1)𝑖,𝑗
1≤𝑗≤𝑘

⊗ ∑ (𝐴𝑗,𝑚
1≤𝑚≤𝑘

𝑒𝑚 + 𝐽) 

= ∑ 𝑤𝑓(𝐴−1)𝑖,𝑗
1≤𝑚≤𝑘

⊗ (g𝑗 + 𝐽) = 0.    

    (ii)⇒(iii): Denote by 𝐽′ the left ℓ1(Γ)-submodule of (ℓ1(Γ))𝑘 generated by 𝐽 . Consider 

the map ℓ1(Γ) × ((ℤΓ)𝑘/𝐽 ) → (ℓ1(Γ))𝑘/𝐽  sending (𝑤, 𝑓 + 𝐽) to  𝑤𝑓 + 𝐽′ . It induces a 

group homomorphism  𝜑 ∶  ℓ1(Γ) ⊗ℤΓ ((ℤΓ)
𝑘/𝐽 ) → (ℓ1(Γ))𝑘/𝐽′  defined by  𝜑(𝑤⊗

( 𝑓 + 𝐽)) = 𝑤𝑓 + 𝐽′   for all  𝑤 ∈ ℓ1(Γ)  and 𝑓 ∈ (ℤΓ)𝑘  . Clearly 𝜑  is surjective. Since 

ℓ1(Γ)⊗ℤΓ ((ℤΓ)
𝑘/𝐽 ) = {0}, we conclude that  (ℓ1(Γ))𝑘/𝐽′ = {0}. That is, (ℓ1(Γ))𝑘 = 𝐽′ 

. 

     (iii)⇒(i): The condition (iii) says that every g ∈ (ℓ1(Γ))𝑘 can be written as 𝑎1 𝑓1 +· · ·
+𝑎𝑛 𝑓𝑛 for some 𝑛 ∈ 𝑁, 𝑎1, . . . , 𝑎𝑛 ∈ ℓ1(Γ), and  𝑓1 , . . ., 𝑓𝑛 ∈ 𝐽 .Taking g to the standard 

basis of the  ℓ1(Γ)-module (ℓ1(Γ))𝑘, we find some 𝐵 ∈ 𝑀𝑘×𝑛 (ℓ
1(Γ)) for some  𝑛 ∈ ℕ, 

and some  𝑓1, . . . , 𝑓𝑛 ∈ 𝐽 such that 𝐵𝐶 is the identity matrix in  𝑀𝑘(ℓ
1(Γ))𝑘, where 

𝐶 = (
𝑓1
⋮
𝑓𝑛

). 
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Since 𝑀𝑘(ℓ
1(Γ)) is a Banach algebra, the set of invertible matrices in 𝑀𝑘(ℓ

1(Γ))  is open. 

Approximating 𝐵  by some  𝐵′ ∈ 𝑀𝑘×𝑛(ℚΓ), we may assume that 𝐵′𝐶  is invertible in  

𝑀𝑘(ℓ
1(Γ))  . Take some suitable 𝑁 ∈ ℕ such that  𝑁𝐵′ ∈ 𝑀𝑘×𝑛(ℤΓ). Then we may set  

𝐴 = (𝑁𝐵′)𝐶. 

We study 𝑝-expansiveness, a weak version of expansiveness. Throughout Γ will be 

a countable discrete group. 

Notation (6.2.17)[396]: Let Γ act on a compact abelian group 𝑋 by automorphisms. For 

every  𝑥 ∈ 𝑋 and  𝜑 ∈ �̂� , we denote by  Ψ𝑥,𝜑 the function on Γ defined by 

 

Ψ𝑥,𝜑(𝑠) = 〈𝑠𝑥, 𝜑〉 − 1,   𝑠 ∈ Γ, 

where 𝕋 denotes the unit circle in ℂ and 〈·,·〉 ∶ 𝑋 × �̂� → 𝕋 denotes the canonical pairing 

between 𝑋 and �̂� . 

Definition (6.2.18)[396]: Let 1 ≤ 𝑝 ≤ +∞. We say that an action of Γ on a compact 

abelian group 𝑋 by automorphisms is 𝑝-expansive if there exist a finite subset 𝑊 of �̂� and  

𝜀 > 0 such that  𝑒𝑋 is the only point 𝑥 in 𝑋 satisfying 

∑‖Ψ𝑥,𝜑‖𝑝
𝜑∈𝑊

< 𝜀.               

     In the following we collect some basic properties of 𝑝-expansiveness. Assertion (iv) 

below justifies our terminology of 𝑝-expansiveness. Recall that for a unital ring 𝑅, a left 

𝑅-module 𝔐 is called finitely presented if 𝔐 = 𝑅𝑘/𝐽 for some 𝑘 ∈ ℕ and some finitely 

generated left 𝑅  submodule 𝐽  of 𝑅𝑘  [439]. If 𝑅  is left Noetherian, then every finitely 

generated left 𝑅-modul is finitely presented [439]. 

Proposition (6.2.19)[396]: Let α be an action of Γ  on a compact abelian group by 

automorphisms. Let 1 ≤ p ≤ +∞. Then the following hold: 

    (i) If 𝛼 is 𝑝-expansive, then it is 𝑞-expansive for all 1 ≤ 𝑞 ≤ 𝑝. 

   (ii) If 𝛼 is 𝑝-expansive, then �̂� is a finitely generated left ℤΓ-module. 

   (iii) If 𝛼 is 𝑝-expansive, then for any finite subset 𝑊 of �̂� generating ℤΓ as a left  ℤΓ-

module, there exists 𝜀 > 0  such that 𝑒𝑋  is the only point 𝑥  in 𝑋  satisfying   

∑ ‖Ψ𝑥,𝜑‖𝑝𝜑∈𝑊 < 𝜀. 

   (iv) 𝛼 is ∞-expansive if and only if it is expansive. 

   (v) Suppose that �̂� is a finitely presented left ℤΓ-module. Write �̂� as (ℤΓ)𝑘/(ℤΓ)𝑛𝐴 for 

some 𝑘, 𝑛 ∈ ℕ and 𝐴 ∈ 𝑀𝑛×𝑘(ℤΓ). Then 𝛼 is 𝑝-expansive if and only if the linear map 

(ℓ𝑝(Γ))𝑘 → (ℓ𝑝(Γ))𝑛 sending a to 𝑎 𝐴∗ is injective. 

Proof: (i) This follows from the fact that for any 𝑓 ∈ ℓ𝑞(Γ) with  ‖ 𝑓 ‖𝑞 ≤ 1, one has 

‖ 𝑓 ‖𝑝
𝑝
≤ ‖ 𝑓 ‖𝑞

𝑞
 when 𝑝 < +∞ and ‖ 𝑓 ‖∞ ≤ ‖ 𝑓 ‖𝑞 when 𝑝 = +∞. 

(ii) Suppose that 𝛼 is 𝑝-expansive. Let 𝑊 and 𝜀 be as in Definition (6.2.18). Denote by 𝐺 

the ℤΓ-submodule of �̂� generated by 𝑊. If  𝑥 ∈ 𝑋 satisfies   〈𝑥, 𝜓〉 = 1 for all  𝜓 ∈ 𝐺, then  

Ψ𝑥,𝜑 = 0 for all  𝜑 ∈ 𝑊 and hence  𝑥 = 𝑒𝑋. By Pontryagin duality we have 𝐺 = �̂� .  

(iii) This follows from the fact that for any  𝑥 ∈ 𝑋,𝜑, 𝜓 ∈ �̂� , and 𝑎, 𝑏 ∈ ℤΓ one has 

 

‖Ψ𝑥,𝑎𝜑+𝑏𝜓‖𝑝
≤ ‖𝑎‖1‖Ψ𝑥,𝜑‖𝑝

+ ‖𝑏‖1‖Ψ𝑥,𝜓‖𝑝
.                                   (14) 

      To prove the assertions (iv) and (v), we observe a general fact first. Suppose that �̂� is a 

finitely generated left ℤΓ-module, and write �̂� as (ℤΓ)𝑘/𝐽 for some  𝑘 ∈ ℕ and some left 
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ℤΓ -submodule 𝐽  of (ℤΓ)𝑘  . For each  𝑥 ∈ 𝑋  denote by  Φ𝑥  the function  𝑠 ⟼
𝜌∞(𝑥𝑠 , 0(ℝ/ℤ)𝑘 ) on Γ, where 𝜌∞  is the canonical metric on (ℝ/ℤ)𝑘  defined in the Eq. 

(11). Denote by 𝑒1, . . . , 𝑒𝑘  the standard basis of (ℤΓ)𝑘 . Set  𝑊 = {𝑒1 +  𝐽, . . . , 𝑒𝑘 + 𝐽}. 
Note that there exists 𝐶 > 0 such that 

𝐶|𝑡| ≤ |𝑒2𝜋𝑖𝑡 − 1| ≤ 𝐶−1|𝑡| 
for all  𝑡 ∈ [−1/2, 1/2]. It follows that there exists 𝐶1 > 0 such that 

𝐶1‖Φ𝑥‖𝑝 ≤ ∑‖Ψ𝑥,𝜑‖𝑝
𝜑∈𝑊

≤ 𝐶1
−1‖Φ𝑥‖𝑝                                                  (15) 

for all  𝑥 ∈ 𝑋. 

    (iv). By the assertion (ii) and Proposition (6.2.3) both ∞ -expansiveness and 

expansiveness imply that �̂� is a finitely generated left ℤΓ-module. Now the assertion (iv) 

follows from the 𝑝 = ∞ case of the inequalities (15) and the assertion (iii). 

     (v). Denote by 𝑃 the canonical map ℓ∞(Γ,ℝ𝑘) → ((ℝ/ℤ)𝑘)Γ. Suppose that the linear 

map (ℓ𝑝(Γ))𝑘 → (ℓ𝑝(Γ))𝑛  sending 𝑎  to  𝑎𝐴∗  is not injective. Take a nonzero 𝑎 ∈
(ℓ𝑝(Γ))𝑘  with  𝑎𝐴∗ = 0 . Then for any 𝜆 ∈ ℝ , one has 𝜆 𝑎𝐴∗ =  0 and hence 𝑃(𝜆𝑎) ∈

𝑋.When  𝜆 → 0, one has ‖Φ𝑃(𝜆 𝑎)‖𝑝
→ 0, andHence   ∑ ‖Φ𝑃(𝜆 𝑎),𝜑‖𝜑∈𝑊 → 0. Since 𝑎 ≠

0, when  |𝜆| is sufficiently small and nonzero, 𝑃(𝜆𝑎) ≠ 𝑒𝑋 . Thus 𝛼 is not 𝑝-expansive. 

This proves the “only if” part. 

     Suppose that 𝛼  is not 𝑝 -expansive. Then we can find a nonzero 𝑥 ∈ 𝑋  such that 

 ‖Φ𝑥‖𝑝 < ‖𝐴‖1
−1 . Take a lift  �̃� of 𝑥 in  ℓ∞(Γ,ℝ𝑘) with  ‖�̃�‖𝑝.Then  �̃� 𝐴∗ ∈ ℓ∞(Γ, ℤ𝑛), 

and 

 

‖�̃� 𝐴∗‖∞ ≤ ‖�̃� 𝐴∗‖𝑝 ≤ ‖�̃� ‖𝑝‖ 𝐴
∗‖1 = ‖Φ𝑥‖𝑝‖ 𝐴‖1 < 1. 

It follows that  �̃� 𝐴∗ = 0. Since  𝑃( �̃�) = 𝑥 is nonzero, �̃� ≠ 0. This proves the “if” part. 

Notation (6.2.20)[396]: For  𝑓 ∈ ℤΓ, we denote by 𝛼 𝑓 the canonical Γ-action on  𝑋𝑓 ∶=

ℤΓ/ℤΓ𝑓̂  .  We also denote by 𝐶0(Γ) the space of 𝐶-valued functions on Γ vanishing at 

infinity. 

     By Proposition (6.2.19).(v), for any  𝑓 ∈ ℤΓ and 1 ≤ 𝑝 ≤ +∞, the action 𝛼 f is 𝑝-

expansive if and only if for any nonzero g ∈ ℓ𝑝(Γ) one has  g 𝑓∗  ≠ 0. The latter is related 

to the analytic zero divisor conjecture and has been studied extensively in [449]–

[453],[462]. 

Example (6.2.21)[396]: Recall that the class of elementary amenable groups is the 

smallest class of groups containing all finite groups and all abelian groups and is closed 

under taking subgroups, quotient groups, extensions, and inductive limits. Suppose that Γ 

is torsion free and elementary amenable. Then for any nonzero  𝑓 ∈ ℂ Γ   and  nonzero  

g ∈ ℓℂ
2 (Γ), one has  g 𝑓 ≠ 0 [449]. Thus 𝛼 f is 2-expansive for every nonzero 𝑓 ∈ ℤΓ. On 

the other hand, by [413], for  𝑓 ∈ ℤΓ, 𝛼 𝑓  is expansive exactly when 𝑓 is invertible in 

ℓ1(Γ). 
Example (6.2.22)[396]: Suppose that 𝑠 ∈ Γ has infinite order. Denote by Γ′ the subgroupΓ 

generated by 𝑠. For any nonzero  𝑓 ∈ ℂ Γ′   and nonzero  g ∈ 𝐶0(Γ), one has  g 𝑓 ≠ 0 

[452].Using the cosets decomposition of Γ, it follows  that for any nonzero  𝑓 ∈ ℂ Γ′ and 

nonzero g ∈ 𝐶0(Γ),, one has  g 𝑓 ≠ 0. Thus, for any nonzero 𝑓 ∈ ℂ Γ′ the action 𝛼𝑓    is 𝑝-

expansive for all 1 ≤ 𝑝 < +∞. Note that  𝑠 − 1 is not invertible in  ℓ1(Γ)., thus  𝛼𝑠−1 is 

not expansive by [413]. 
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Example (6.2.23)[396]: Let  Γ =  ℤ𝑑 for some  𝑑 ∈ ℕ with  𝑑 ≥ 2. One may identify ℤΓ 

with the ring  𝑍[𝑢1
±1 , . . . ,  𝑢𝑑

±1] of Laurent polynomials with integer coefficients in the 

variables  𝑢1, . . . , 𝑢𝑑 . For any nonzero 𝑓 ∈ ℂ Γ and nonzero 𝑔 ∈ ℓ
2𝑑

𝑑−1(Γ), one has  g 𝑓 ≠ 0 

[453]. Thus 𝛼𝑓  is  2-expansive for every nonzero  𝑓 ∈ ℤ Γ . Set  ℎ = 2𝑑 − 1 −

∑ (𝑢𝑗 + 𝑢𝑗
−1) ∈ ℤ Γ𝑑

𝑗=1 . Then  there exists a nonzero g ∈ ℓ∞(Γ) such that gℎ = 0 and  g ∈

ℓ𝑝(Γ)  for all 
2𝑑

𝑑−1
< 𝑝 ≤ +∞ [462]. Thus, for any 

2𝑑

𝑑−1
<  𝑝 ≤ +∞, the action 𝛼ℎ is not 𝑝-

expansive. 

Example (6.2.24)[396]:  Let Γ be a free group with canonical generators  𝑠1, . . . , 𝑠𝑑, for 

𝑑 ≥ 2. For any nonzero  𝑓 ∈ ℂ Γ, one has g 𝑓 ≠ 0  for every nonzero g ∈ ℓℂ
2(Γ) [450]. 

Thus the action 𝛼𝑓  is 2-expansive for every nonzero 𝑓 ∈ ℤ Γ. Endow Γ with the word 

length with respect to 𝑠1, . . . , 𝑠𝑑 . For each  𝑛 ∈ ℤ≥0 denote by 𝜒𝑛 the sum of the elements 

in Γ  with length 𝑛 . Set  g =  ∑ (−1)𝑛(2𝑑 − 1)−𝑛𝜒2𝑛 ∈ ℓ∞(Γ)∞
𝑛=0 . Then  g𝜒1 = 0  and  

g ∈ ℓ𝑝(Γ) for all 2 < 𝑝 ≤ +∞  [453]. Thus, for any  2 < 𝑝 ≤ +∞, the action 𝛼𝜒1 is not 

𝑝-expansive.  

Example (6.2.25)[396]: Let Γ =  ℤ𝑑 for some 𝑑 ∈ ℕ with 𝑑 ≥ 2. Denote by 𝑃 the natural 

projection ℝ𝑑 → (ℝ/ℤ)𝑑 = Γ̂. For each   𝑓 ∈ ℂ Γ, via the pairing between Γ and Γ̂ we may 

think of  𝑓  as a function on Γ̂. Denote by 𝑍( 𝑓 ) the zero set of 𝑓 as a function on Γ̂. For   

𝑓 = ∑ 𝜆𝑠𝑠 ∈ 𝐶Γ𝑠∈Γ  , set  𝑓̅ = ∑ 𝜆𝑠𝑠̅̅ ̅̅
𝑠∈Γ . The set 𝑍( 𝑓)̅ is contained in the image of a finite 

union of hyperplanes in ℝ𝑑  under 𝑃  if and only if g 𝑓 ≠ 0  for all nonzero g ∈ 𝐶0(Γ)  
[453]. Thus, For  𝑓 ∈ ℤ Γ , if  𝑍( 𝑓 )  is contained in the image of a finite union of 

hyperplanes in ℝ𝑑 under 𝑃 (for instance when 𝑍(𝑓) is a finite set), then so is 𝑍( 𝑓∗ ), and 

hence 𝛼𝑓  is 𝑝-expansive for all 1 ≤ 𝑝 < +∞. 

      A finitely generated elementary amenable group either contains a nilpotent subgroup 

with finite index or has a free subsemigroup with two generators [409]. 

 

Example (6.2.26)[396]:Suppose that Γ  has a free subsemigroup generated by two 

elements 𝑠 and  𝑡. Set  𝑓 = ±3 − (1 + 𝑠 − 𝑠2)𝑡 ∈ ℤΓ. Then  𝑓 is not invertible in ℓ1(Γ)  
[443], and thus by [413]  𝛼 𝑓 is not expansive. An argument similar to that in [445] shows 

that for any g ∈ 𝐶0(Γ),  if  g 𝑓∗ = 0, then  g =  0. Thus  𝛼𝑓  is 𝑝-expansive for all 1 ≤

𝑝 < +∞. 
     It is well known that when Γ is amenable, every continuous expansive Γ- action on a 

compact space has finite topological entropy (the case Γ = ℤ is proved in [474]; the proof 

there also works for general countable amenable groups Γ ). Next we show that 1 -

expansiveness and 2 -expansiveness characterize finite entropy for finitely presented 

algebraic actions of countable amenable groups. The definition of entropy is recalled.  

Theorem (6.2.27)[396]: Suppose that _ is amenable. If 𝐴 ∈ 𝑀𝑘(ℂΓ) for some 𝑘 ∈ ℕ and  

𝑎𝐴 = 0 for some nonzero 𝑎 ∈ (ℓℂ
2(Γ))𝑘, then 𝑏𝐴 = 0 for some nonzero 𝑏 ∈ (ℂΓ)𝑘 . 

     We remark that the proof of Theorem (6.2.27) uses the group von Neumann algebra of 

Γ. 

Lemma (6.2.28)[396]: Let K and 𝐹 be nonempty finite subsets of Γ. Then there exists a 

finite subset 𝐹1 of 𝐹 with  
|𝐹1|

|𝐹|
≥

1

2|𝐾|+1
 and ((𝐹1𝐹1

−1)\{𝑒Γ}) ⊆ Γ\𝐾. 
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Proof:  Let 𝐹1  be a maximal subset of 𝐹  subject to the condition that  𝑠′ ∉ 𝐾𝑠 for all 

distinct  𝑠, 𝑠 ∈ 𝐹1. Then  𝐹 ⊆ ({𝑒Γ} ∪ 𝐾 ∪ 𝐾−1)𝐹1. Thus |𝐹| ≤ |{𝑒Γ} ∪ 𝐾 ∪ 𝐾−1| · |𝐹1| ≤
(2|𝐾| + 1)|𝐹1|. 
Lemma (6.2.29)[396]:  Suppose that Γ is amenable. Let Γ act on a compact abelian group 

𝑋  by automorphisms. Suppose that �̂� = (ℤΓ)𝑘/𝐽  for some  𝑘 ∈ ℕ  and  some left ℤΓ-

submodule 𝐽 of (ℤΓ)𝑘  , and that there exists  0 ≠ 𝑎 ∈ (ℝΓ)𝑘  satisfying  𝑎𝑏∗ = 0 for all 

𝑏 ∈ 𝐽 . Then ℎ(𝑋) = +∞. 

Proof: Denote by 𝐾  the support of 𝑎  as a ℝ𝑘 -valued function on Γ. Fix a compatible 

metric 𝜌  on  𝑋 . Denote by 𝑃  the natural projection  ℓ∞(Γ,ℝ𝑘) → ((ℝ/ℤ)𝑘) . Then  

𝑃(𝜆𝑎) ∈ 𝑋  for every  𝜆 ∈ ℝ . If  𝜆1, 𝜆2 ∈ (0, 1/‖𝑎‖∞)  are distinct, then  𝑃(𝜆1𝑎) ≠
𝑃(𝜆2𝑎). 
     Let 𝑀 ∈ ℕ. Take distinct  𝜆1, . . . , 𝜆𝑀 ∈ (0, 1/‖𝑎‖∞). For each 1 ≤ 𝑗 ≤ 𝑀, set 

𝑌𝑗 = {𝑥 ∈ 𝑋 ≔ 𝑥𝑠 = (𝑃(𝜆𝑖𝑎))𝑠   for all  𝑠 ∈ 𝐾}. 

Then the sets 𝑌1, . . . , 𝑌𝑀 are pairwise disjoint closed subsets of 𝑋. Thus we can find 𝜀 > 0 

such that if  𝑥 ∈ 𝑌𝑖 and  𝑦 ∈ 𝑌𝑗 for some 1 ≤ 𝑖 < 𝑗 ≤ 𝑀, then  𝜌(𝑥, 𝑦) > 𝜀. 

     Let 𝐹 be a nonempty finite subset of Γ. By Lemma (6.2.28) we can find a finite subset  

𝐹1 of  𝐹  with  
|𝐹1|

|𝐹|
≥

1

2|𝐾𝐾−1|+1
  and  ((𝐹1𝐹1

−1 )\{𝑒Γ}) ⊆  Γ\𝐾𝐾−1. Then  the sets  𝑠−1𝐾 for  

𝑠 ∈ 𝐹1 are pairwise disjoint. For each  𝜎 ∈ {1, . . . , 𝑀}𝐹1 ,set 

𝑥𝜎 = ∑ 𝑠−1

𝑠∈𝐹1

𝑃(𝜆𝜎(𝑠)𝑎). 

Then 𝑠𝑥𝜎 ∈ 𝑌𝜎(𝑠)  for every  𝑠 ∈ 𝐹1 . Thus the set {𝑥𝜎 ∶ 𝜎 ∈ {1, . . . , 𝑀}𝐹1}  is (𝜌, 𝐹, 𝜀) -

separated. Therefore 

𝑁𝜌,𝐹,𝜀(𝑋) ≥ 𝑀|𝐹1| ≥ 𝑀|𝐹|/(2|𝐾𝐾−1|+1). 

It follows that ℎ(𝑋) ≥
1

2|𝐾𝐾−1|+1
log𝑀. Since 𝑀 is arbitrary, we get ℎ(𝑋) = +∞. 

     The following lemma is well known, and can be proved by a simple volume 

comparison argument (see for example the proof of [461]). 

Lemma (6.2.30)[396]: Let 𝑉  be 𝑎  finite-dimensional normed space over ℝ . Let  𝜀 >

0.Then any 𝜀-separated subset of the unit ball of 𝑉 has cardinality at most (1 + 2

𝜀
)
dim𝑉

 . 

Theorem (6.2.31)[396]: Suppose that Γis amenable. Let 𝛼 be an action of Γ on a compact 

abelian group 𝑋 by automorphisms. Suppose that �̂� is a finitely presented left ℤΓ-module, 

and write �̂� as (ℤΓ)𝑘/(ℤΓ)𝑛𝐴 for some  𝑘, 𝑛 ∈ ℕ and  𝐴 ∈ 𝑀𝑛×𝑘(ℤΓ). Then the following 

are equivalent: 

  (i)   ℎ(𝑋) < +∞. 
  (ii)  𝛼 is 1-expansive. 

  (iii)  𝛼 is 2-expansive. 

  (iv)  The linear map (ℝΓ)𝑘 → (ℝΓ)𝑛 sending 𝑎 to 𝑎𝐴∗ is injective. 

  (v) The additive map (ℤΓ)𝑘 → (ℤΓ)𝑛  sending 𝑎 to 𝑎𝐴∗ is injective. 

     We need some preparation for the proof of Theorem (6.2.31). First we need the 

following result of Elek [418]. He assumed Γ to be finitely generated and 𝑘 = 1, which are 

unnecessary. 

     We are ready to prove Theorem (6.2.31). 

Proof: (i)⇒(iv) follows from Lemma (6.2.29). 
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     (iv)⇒(i): Note that the definitions of (𝜌, 𝐹, 𝜀) -separated sets and 𝑁𝜌,𝐹,𝜀(𝑋)  extend 

directly to any continuous pseudometric  𝜌 on 𝑋. The Eq. (12) holds for any continuous 

pseudometric 𝜌 on 𝑋 which is dynamically generating in the sense that for any distinct 

𝑥, 𝑦 ∈ 𝑋 one has  𝜌(𝑠𝑥, 𝑠𝑦) > 0 for some  𝑠 ∈ Γ  [411] [443]. Recall the canonical metric  

𝜌∞  on (ℝ/ℤ)𝑘defined by the Eq. (11). Define a continuous pseudometric 𝜌′  on 𝑋  by  

𝜌′(𝑥, 𝑦) = 𝜌∞(𝑥𝑒Γ , 𝑦𝑒Γ) for all 𝑥, 𝑦 ∈ 𝑋. Clearly 𝜌′ is dynamically generating. 

     Denote by 𝐾 the union of {𝑒Γ} and the support of 𝐴 as a 𝑀𝑛×𝑘(ℤ)-valued function on Γ. 

Let 𝜀 > 0 and 𝐹 be a nonempty finite subset of Γ. Take a (𝜌′, 𝐹, 𝜀)-separated subset 𝐸 ⊆ 𝑋 

with |𝐸| = 𝑁𝜌 𝐹,𝜀(𝑋). For each  𝑥 ∈ 𝐸 denote by �̃� the element in ([0, 1)𝑘)Γ such that 𝑥 is 

the image of �̃� under the natural map  ([0, 1)𝑘)Γ → ((ℝ/ℤ)𝑘)Γ. Then  �̃� 𝐴∗ ∈ ℓ∞(Γ, ℤ𝑛) 
and ‖�̃� 𝐴∗‖∞  ≤  ‖�̃� ‖∞‖ 𝐴

∗‖1 ≤ ‖𝐴‖1.  
     For a finite subset 𝑊 of Γ, we shall identify (ℝ𝑘)𝑊 and (ℝ𝑛)𝑊 as linear subspaces of  
ℓ∞(Γ,ℝ𝑘) = (ℓ∞(Γ))𝑘  and ℓ∞(Γ,ℝ𝑛)  respectively naturally, and denote by 𝑝𝑤  the 

restriction maps ℓ∞(Γ,ℝ𝑘) → (ℝ𝑘)𝑊 and ℓ∞(Γ,ℝ𝑛) → (ℝ𝑛)𝑊. 

     Set   𝐹′ = {𝑠 ∈ 𝐹: 𝑠−1𝐾 ⊆ 𝐹−1} . We define a map 𝜓:𝐸 → ((ℤ ∩

[−‖𝐴‖1, ‖𝐴‖1])
𝑛)(𝐹

′)−1  Sending  𝑥   to  𝑝(𝐹′)−1( �̃� 𝐴
∗) . Let  𝑎 ∈ ((ℤ ∩ [ −‖𝐴‖1 , 

‖𝐴‖1])
𝑛)(𝐹

′)−1  . We shall give an upper bound for |𝜓−1(𝑎)|.  

     Consider the linear map 𝜉: (ℝ𝑘)𝐹
−1
→ (ℝ𝑛)𝐹

−1
𝐾−1  sending  𝑧 to  𝑧𝐴∗ . By (iv) 𝜉   is 

injective. Thus 

dim ker(𝑝(𝐹′)−1 ∘ 𝜉) ≤ dim((ℝ𝑛)𝐹
−1𝐾−1\(𝐹′)−1) =  𝑛|𝐹−1𝐾−1\(𝐹′)−1|.                           

     For each 𝑥 ∈ 𝐸, set  𝑥′ = 𝑝𝐹−1(  �̃�) ∈ (ℝ𝑘)𝐹
−1

 . Note that �̃� 𝐴∗ = 𝑥′𝐴∗ on (𝐹′)−1. Fix 

𝑦 ∈ 𝜓−1(𝑎) . Then (𝑥′ − 𝑦′)𝐴∗ = 0  on  (𝐹′)−1  for all  𝑥 ∈ 𝜓−1(𝑎) . Thus  𝑥′ − 𝑦′ ∈
𝑘𝑒𝑟(𝑝(𝐹′)−1 ∘ 𝜉) for all  𝑥 ∈ 𝜓−1(𝑎).. Since 𝐸 is  (𝜌′, 𝐹, 𝜀)-separated, we see that the set 

{
𝑥′−𝑦′

2
: 𝑥 ∈ 𝜓−1(𝑎)} is 

ε

2
 -separated under the ℓ∞-norm, and is clearly contained in the unit 

ball of  (ℝ𝑘)𝐹
−1

 with respect to the ℓ∞-norm. By Lemma (6.2.30) we have 

|𝜓−1(𝑎)| ≤ (1 +
4

ε
)
dim ker (𝑝

(𝐹′)
−1∘𝜉)

≤ (1 +
4

ε
)
𝑛|𝐹−1𝐾−1\(𝐹′)−1|

. 

Therefore 

              𝑁𝜌′ 𝐹,𝜀(𝑋) = |𝐸|

≤ (2‖𝐴‖1 + 1)𝑛|𝐹
′| (1 +

4

ε
)
𝑛|𝐹−1𝐾−1\(𝐹′)−1|

                                              

 ≤ (2‖𝐴‖1 + 1)𝑛|𝐹| (1 +
4

ε
)
𝑛|𝐹−1𝐾−1\(𝐹′)−1|

  . 

     When 𝐹 becomes sufficiently left invariant, |𝐹−1𝐾−1\(𝐹′)−1|/|𝐹| becomes arbitrarily 

small. It follows that 

ℎ(𝑋) ≤ 𝑛 log(2‖𝐴‖1 + 1) ≤ +∞. 
     (iv)⇒(iii): Suppose that (iii) fails. By Proposition (6.2.19).(v) we have 𝑎𝐴∗ = 0  for 

some nonzero 𝑎 ∈ (ℓ2(Γ))𝑘. Then  𝑎𝐴∗𝐴 = 0. By Theorem (6.2.27)we have 𝑏𝐴∗𝐴 = 0 for 

some nonzero 𝑏 ∈ (ℂΓ)𝑘 . Replacing 𝑏 by its real part or imaginary part, we may assume 

that  𝑏 ∈ (ℝΓ)𝑘 .Note that for any  𝑤 ∈ (ℓ2(Γ))𝑛 and 𝑤′ ∈ (ℓ2(Γ))𝑘 we have 

 

〈𝑤𝐴, 𝑤′〉 = 〈𝑤,𝑤′𝐴∗〉, 
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where we take (ℓ2(Γ))𝑘 and (ℓ2(Γ))𝑛 as the direct sum of copies of the Hilbert space 

ℓ2(Γ). Thus  〈𝑏𝐴∗ , 𝑏𝐴∗〉 = 〈𝑏𝐴∗𝐴, 𝑏〉 = 0, and hence 𝑏𝐴∗ = 0. Therefore (v) fails. 

   (iii)⇒(ii)⇒(iv) follows from Proposition (6.2.19). 

   (iv)⇒(v) is trivial. 

   (v)⇒(iv): Suppose that (iv) fails. Then 𝑎𝐴∗ = 0 for some nonzero 𝑎 ∈ (ℝΓ)𝑘 .Denote by 

𝐹 (resp. 𝐾) the support of 𝑎 (resp. 𝐴∗) as a ℝ𝑘-valued (resp. 𝑀𝑘×𝑛(ℤ)-valued) function on 

Γ. Consider the equation  𝑏𝐴∗ = 0 for  𝑏 ∈ (ℝ𝐹)𝑘 .One can interpret it as a system of 

integer-coefficients homogeneous linear equations indexed by  𝐹𝐾 × {1, . . . , 𝑛} which has 

variables indexed by 𝐹 × {1, . . . , 𝑘}. These linear equations have a nonzero solution given 

by 𝑎, thus has a nonzero integral solution. Therefore (v) fails. 

We study 𝑝-homoclinic points. Throughout Γ will be a countable discrete group. 

     When Γ acts on a compact group 𝑋  by automorphisms, a point 𝑥 ∈ 𝑋 is said to be 

homoclinic [445] if  𝑠𝑥 → 𝑒𝑋 as  Γ ∋  𝑠 → ∞. The set of all homoclinic points, denoted by 

∆(𝑋), is a Γ-invariant normal subgroup of 𝑋. Note that when 𝑋 is abelian, a point  𝑥 ∈ 𝑋 is 

homoclinic exactly when Ψ𝑥,𝜑 ∈ 𝐶0(Γ) 

for every 𝜑 ∈ �̂�  , where Ψ𝑥,𝜑  and 𝐶0(Γ) are defined in Notations (6.2.17) and (6.2.20) 

respectively. 

Definition (6.2.32)[396]: Let Γ act on a compact abelian group 𝑋 by automorphisms. Let  

1 ≤ 𝑝 < +∞. We say that  𝑥 ∈ 𝑋 is 𝑝-homoclinic if  Ψ𝑥,𝜑 ∈ ℓ𝑝(Γ) for every  𝜑 ∈ �̂� .We 

denote by ∆𝑝(𝑋) the set of all 𝑝-homoclinic points of  𝑋  .We also say  𝑥 ∈ 𝑋   is ∞-

homoclinic if it is homoclinic, and set  ∆∞(𝑋) = ∆(𝑋). 
     The set ∆1(𝑋) was studied in [447],[471] for algebraic ℤ𝑑-actions. We shall see that 

both ∆1(𝑋) and ∆2(𝑋) play important roles in the study of entropy theory for algebraic 

actions. 

Proposition (6.2.33)[396]: Let Γ act on a compact abelian group 𝑋 by automorphisms. 

Let 1 ≤ 𝑝 ≤ +∞. Then the following hold: 

   (i) For any 𝑝 < 𝑞 ≤ +∞, one has  ∆𝑝(𝑋) ⊆ ∆𝑞(𝑋). 
  (ii) ∆𝑝(𝑋) is 𝑎 Γ-invariant subgroup of 𝑋. 

  (iii) If Γ acts on a compact abelian group 𝑌  by automorphisms and Φ: 𝑋 → 𝑌  is a 

continuous Γ-equivariant group homomorphism, then Φ(∆𝑝(𝑋)) ⊆ ∆𝑝(𝑌 ). 
  (iv) If �̂� is a finitely generated left ℤΓ-module and we write �̂� as (ℤΓ)𝑘/𝐽 for some  𝑘 ∈
ℕ and some left ℤΓ-submodule 𝐽 of (ℤΓ)𝑘, then ∆𝑝(𝑋) consists exactly of the elements 

𝑥 ∈ 𝑋 for which the function  𝑠 ↦ 𝜌∞(𝑥𝑠 , 0(ℝ/ℤ)𝑘) on Γ is in ℓ𝑝(Γ) when 𝑝 < +∞ or in 

𝐶0(Γ) when 𝑝 = +∞, where 𝜌∞ is the canonical metric on (ℝ/ℤ)𝑘 defined by (11). 

  (v) If 𝛼 is 𝑝-expansive, then ∆𝑝(𝑋) is countable. 

  (vi) If  ℤΓ is left Noetherian, and 𝛼 is p-expansive, then ∆𝑝(𝑋)is a finitely generated left 

ℤΓ-module. 

Proof: The assertion (i) follows from the facts that ℓ𝑝(Γ) ⊆  𝐶0(Γ) and ℓ𝑝(Γ) ⊆ ℓ𝑞(Γ) 
when 𝑞 < +∞. The assertions (ii) and (iii) are obvious. 

The assertion (iv) follows from the inequalities (14) and (15). 

     Now we prove the assertion (iv). The case 𝑝 = +∞ is [445]. So we may assume  𝑝 <
+∞ . Suppose that 𝛼  is 𝑝 -expansive. By Proposition (6.2.19).(ii) we may write �̂�  as 

(ℤΓ)𝑘/𝐽  for some 𝑘 ∈ ℕ  and some left ℤΓ -submodule 𝐽  of (ℤΓ)𝑘 . Denote by 𝑃  the 

canonical map ℓ∞(Γ,ℝ𝑘) → ((ℝ/ℤ)𝑘)Γ . For each  𝑥 ∈ ∆𝑝(𝑋), by the inequalities (15) we 

can take  �̃�  ∈ ℓ𝑝(Γ,ℝ𝑘)  such that  𝑃(�̃�) = 𝑥 . Since 𝛼  is 𝑝 -expansive, by Proposition 
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(6.2.19).(iii) and the inequalities (15) we can find some 𝜀 > 0 such that if 𝑥, 𝑦 ∈ ∆𝑝(𝑋) are 

distinct, then  ‖�̃� − �̃�‖𝑝 > 𝜀 . As ℓ𝑝(Γ,ℝ𝑘)  is separable under the norm ‖ · ‖𝑝 , any 𝜀 -

separated subset of ℓ𝑝(Γ,ℝ𝑘)  is countable. Therefore ∆𝑝(𝑋)  is countable. 

     To prove the assertion (vi), we need the following two lemmas. 

Lemma (6.2.34)[396]: Let 1 ≤ 𝑝 < +∞. Let Γ act 𝑝-expansively on a compact abelian 

group 𝑋  by automorphisms. Assume that �̂�  is a finitely presented left ℤΓ-module, and 

write �̂� as (ℤΓ)𝑘/(ℤΓ)𝑛𝐴 for some 𝐴 ∈ 𝑀𝑛×𝑘(ℤΓ). Then ∆𝑝(𝑋) is isomorphic to 𝑎  ℤΓ-

submodule of (ℤΓ)𝑛/(ℤΓ)𝑘 𝐴∗. 
Proof: Denote by 𝑃 the canonical map from (ℓ∞(Γ))𝑘 = ℓ∞(Γ,ℝ𝑘) to ((ℝ/ℤ)Γ)𝑘  . For 

each  𝑥 ∈ ∆𝑝(𝑋), by the inequalities (15) we can take �̃� ∈ ℓ𝑝(Γ,ℝ𝑘) such that  𝑃(�̃�) = . 
Then  �̃� 𝐴∗ ∈  ℓ∞(Γ, ℤ𝑛) ∩ ℓ𝑝(Γ,ℝ𝑛) = (ℤΓ)𝑛 .Thus we can define a map 𝜑 ∶ ∆𝑝(𝑋) →
(ℤΓ)𝑛/(ℤΓ)𝑘 𝐴∗ sending 𝑥 to  �̃� 𝐴∗ + (ℤΓ)𝑘 𝐴∗. 
    If  𝑎 ∈ ℓ𝑝(Γ,ℝ𝑘) satisfies  𝑃(𝑎) = 𝑥, then  𝑎 − �̃� ∈ ℓ∞(Γ, ℤ𝑘) ∩ ℓ𝑝(Γ,ℝ𝑘) = (ℤΓ)𝑘  , 

and hence  𝑎𝐴∗ + (ℤΓ)𝑘 𝐴∗ = �̃� 𝐴∗ + (ℤΓ)𝑘 𝐴∗ . It follows easily that 𝜑 is a ℤΓ-module 

homomorphism. 

     Since the action is 𝑝-expansive, by Proposition (6.2.19).(v) the linear map (ℓ𝑝(Γ))𝑘 →
(ℓ𝑝(Γ))𝑛  sending 𝑎  to 𝑎𝐴∗  is injective. If  𝑥 ∈ ker 𝜑, then �̃� 𝐴∗ ∈ (ℤΓ)𝑘 𝐴∗ , and hence  

�̃� ∈ (ℤΓ)𝑘 , which implies that  𝑥 = 𝑃(�̃�) = 𝑒𝑋 .Thus 𝜑 is injective. 

     The next lemma is more than needed for the proof of (vi), but will be useful later. 

Lemma (6.2.35)[396]: Let 𝑘 ∈ ℕ , and  𝐴 ∈ 𝑀𝑘(ℤΓ)  such that the linear map 

𝑇: (ℓ𝑝(Γ))𝑘 → (ℓ𝑝(Γ))𝑘  sending 𝑎 to 𝑎𝐴∗ is invertible for some 1 ≤ 𝑝 < +∞. Set  𝑋𝐴 =

(ℤΓ)𝑘/(ℤΓ)𝑘 𝐴̂  . Then ∆𝑝(𝑋𝐴) =  ∆(𝑋𝐴) = 𝑃(𝑇−1((ℤΓ)𝑘))  is dense in 𝑋𝐴  , where 𝑃 

denotes the canonicalmap from (ℓ∞(Γ))𝑘 = ℓ∞(Γ,ℝ𝑘)  to ((ℝ/ℤ)Γ)𝑘  . Furthermore, 

∆(𝑋𝐴)is isomorphic to (ℤΓ)𝑘/(ℤΓ)𝑘 𝐴∗ as left ℤΓ-modules. 

Proof: From (i) and (iv) of Proposition (6.2.33) we have  ∆(𝑋𝐴) ⊇ ∆𝑝(𝑋𝐴) ⊇
𝑃(𝑇−1 ((ℤΓ)𝑘)).  
Let  𝑥 ∈ ∆(𝑋𝐴). Take  �̃� ∈ ([−1/2, 1/2]𝑘)Γ ⊆ ((ℓ∞((Γ))𝑘   with  𝑃(�̃�) = 𝑥 . Then the 

function  𝑠 ⟼ ‖�̃�𝑠‖∞ on Γ vanishes at infinity. Since  𝐴∗ ∈ 𝑀𝑘(ℤΓ), it follows that the 

function  𝑠 ⟼ ‖(�̃�𝐴∗)𝑠‖∞ on Γ also  vanishes at infinity. As   �̃�𝐴∗ ∈ (ℤ𝑘)Γ, we conclude 

that  𝑇 (�̃�) = �̃� 𝐴∗ ∈ (ℤΓ)𝑘  . Then  �̃� ∈ 𝑇−1 ((ℤΓ)𝑘 ) , and hence  𝑥 ∈
𝑃(𝑇−1((ℤΓ)𝑘)).Therefore  ∆𝑝(𝑋𝐴) = ∆(𝑋𝐴) = 𝑃(𝑇−1((ℤΓ)𝑘)). 
     Take 1 < 𝑞 ≤ +∞ with   𝑝−1 + 𝑞−1 = 1. Note that ℓ𝑞(Γ,ℝ𝑘) can be identified with 

the dual space of  ℓ𝑝(Γ,ℝ𝑘) naturally, as in the Eq. (13). Denote by 𝑇 ∗ the bounded linear 

map ℓ𝑞(Γ,ℝ𝑘)  → ℓ𝑞(Γ,ℝ𝑘)  dual to 𝑇. Let  𝜓 ∈ 𝑋�̂� such that 〈∆(𝑋𝐴), 𝜓〉 = 1. Write 𝜓 as  

𝑎 + (ℤΓ)𝑘 𝐴 for some  𝑎 ∈ (ℤΓ)𝑘. Then 

 

(�̃�((𝑇∗)−1(𝑎))∗)𝑒Γ = (�̃�((𝑇−1)∗(𝑎))∗)𝑒Γ = 〈�̃�, (𝑇−1)∗(𝑎)〉                                 

= 〈𝑇−1(�̃�), 𝑎〉 = (𝑇−1(�̃�)𝑎∗)𝑒Γ ∈ ℤ   

for all  �̃� ∈ (ℤΓ)𝑘 . Replacing �̃� by  𝑠 �̃� for all  𝑠 ∈ Γ , we get �̃�((𝑇∗)−1(𝑎))∗ ∈ ℓ𝑝(Γ,ℝ𝑘) 
for all  �̃� ∈ (ℤΓ)𝑘 . Taking �̃�  to be the canonical basis of (ℤΓ)𝑘 , we get  (𝑇∗)−1𝑎 ∈
ℓ𝑝(Γ,ℝ𝑘). When  𝑞 < +∞, we get (𝑇∗)−1𝑎 ∈ ℓ𝑝(Γ,ℝ𝑘) = (ℤΓ)𝑘 .When 𝑞 = +∞, from 

the surjectivity of 𝑇 we see that 𝐴∗ has a left inverse in 𝑀𝑘(ℓ
1(Γ)) and hence 𝐴 has a right 

inverse in  𝑀𝑘(ℓ
1(Γ)) . Multiplying this right inverse to 𝑎 = 𝑇∗((𝑇∗)−1(𝑎)) =

((𝑇∗)−1(𝑎))𝐴, we conclude that (𝑇∗)−1𝑎 ∈ ℓ1(Γ,ℝ𝑘).Therefore we still have (𝑇∗)−1𝑎 ∈
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ℓ𝑝(ℤΓ)𝑘 . Thus 𝑎 ∈ 𝑇∗((ℤΓ)𝑘)) = (ℤΓ)𝑘 𝐴  and hence  𝜓 = 0𝑋�̂� . By the Pontryagin 

duality ∆(𝑋𝐴) is dense in 𝑋𝐴. 

       Denote 𝜑 by the map (ℤΓ)𝑘 → ∆(𝑋𝐴) sending 𝑎 to 𝑃(𝑇−1 (𝑎)). Clearly 𝜑 is a left ℤΓ-

module homomorphism, and 𝑘𝑒𝑟 𝜑 ⊇ (ℤΓ)𝑘𝐴∗ . If 𝑎 ∈ 𝑘𝑒𝑟 𝜑 , then 𝑇−1 (𝑎) ∈
ℓ∞(Γ, ℤ𝑘) ∩ ℓ∞(Γ,ℝ𝑘) = (ℤΓ)𝑘  and hence 𝑎 ∈ 𝑇((ℤΓ)𝑘) = (ℤΓ)𝑘 𝐴∗ . Therefore 

𝑘𝑒𝑟 𝜑 = (ℤΓ)𝑘 𝐴∗. By the first paragraph of the proof 𝜑 is also surjective. Thus ∆(𝑋𝐴) is 

isomorphic to (ℤΓ)𝑘/ 𝑘𝑒𝑟 𝜑 = (ℤΓ)𝑘/(ℤΓ)𝑘 𝐴∗ as left  ℤΓ-modules.  

      When  𝑝 < +∞ , the assertion (vi) follows from Lemma (6.2.34), Proposition 

(6.2.19).(ii) and the fact that if a unital ring 𝑅  is left Noetherian, then every finitely 

generated left 𝑅 -module is finitely presented [439].When 𝑝 = +∞ , the assertion (vi) 

follows from Proposition(6.2.19).(iv), Theorem (6.2.9) and Lemma (6.2.35). This finishes 

the proof of Proposition (6.2.33). 

Example(6.2.36)[396]: Let Γ, 𝑓  , and 𝑍( 𝑓 )  be as in Example (6.2.25). When 𝑓  is 

irreducible in the factorial ring ℤΓ  and 𝑍(𝑓)  is finite, ∆1(𝑋𝑓 )  is dense in  𝑋𝑓  [447] 

.Denote by  𝑢1, . . . , 𝑢𝑑   the canonical basis of  ℤ𝑑  .The group ∆1(𝑋𝑓 )  was calculated 

explicitly for  𝑓 = 2𝑑 − ∑ (𝑢𝑗  + 𝑢𝑗
−1)𝑑

𝑗=1  in [471] and for  𝑓 = 2 − 𝑢1 − 𝑢2 when 𝑑 = 2 

in [447]. 

     Lind and Schmidt [445] showed that when Γ is finitely generated with sub-exponential 

growth, for any expansive action of Γ on a compact abelian group 𝑋 by automorphisms, 

one has ∆(𝑋) = ∆1(𝑋) . From Theorem (6.2.9), Lemma (6.2.35), and Proposition 

(6.2.33).(i) we conclude that this holds for all Γ: 

Proposition (6.2.37)[396]: Let Γ act on a compact abelian group 𝑋 by automorphisms. 

Suppose that �̂�  is 𝑎  finitely generated left ℤΓ -module. Then there is 𝑎  compatible 

translation-invariant metric 𝜌  on 𝑋  such that ∑ 𝜌(0𝑋 , 𝑠𝑥) < +∞ 𝑠∈Γ  for every  𝑥 ∈
∆1(𝑋). 
Proof: The case Γ is finite is trivial. Thus we may assume that Γ is infinite. Take a finite 

set 𝑊 ⊆ �̂� generating �̂� as a left ℤΓ-module. List the elements of Γ as  𝑠1, 𝑠2, . ..  . Define a 

continuous translation-invariant metric 𝜌 on 𝑋 by  

𝜌(𝑥, 𝑦) =∑ ∑ 2−𝑗
∞

𝜑∈𝑊

∞

𝑗=1

|Ψ𝑥−𝑦,𝜑(𝑠𝑗)| 

for all  𝑥, 𝑦 ∈ 𝑋 , where Ψ𝑥−𝑦,𝜑  is defined in Notation (6.2.17). If we denote by 𝜏  the 

original topology on 𝑋, and by 𝜏′ the topology on 𝑋 induced by 𝜌, then the identity map  

𝜎: (𝑋, 𝜏) → (𝑋, 𝜏′) is continuous. Since (𝑋, 𝜏)  is compact and (𝑋, 𝜏′) is Hausdorff , 𝜎 is a 

homeomorphism. Thus  𝜌 is compatible. For any  𝑥 ∈ ∆1(𝑋), one has 

∑𝜌(0𝑋 , 𝑡𝑥)

∞

𝑡∈Γ

=∑∑ ∑ 2−𝑗
∞

𝜑∈𝑊

∞

𝑗=1

∞

𝑡∈Γ

|Ψ𝑡𝑥,𝜑(𝑠𝑗)|                              

= ∑ ∑2−𝑗
∞

𝑗=1

∞

𝜑∈𝑊

∑|Ψ𝑥,𝜑(𝑠𝑗𝑡)|

∞

𝑡∈Γ

    

= ∑ ∑2−𝑗
∞

𝑗=1

∞

𝜑∈𝑊

‖Ψ𝑥,𝜑‖1
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= ∑‖Ψ𝑥,𝜑‖1

∞

𝜑∈𝑊

< +∞.               

We discuss pairs of algebraic actions. Let 𝐺1 and 𝐺2 be discrete left ℤΓ-modules. Consider 

a map Φ 𝐺1 × 𝐺2 → 𝑇 which is bi-additive in the sense that  

 

Φ(𝜑1 +ψ1, 𝜑2) = Φ(𝜑1, 𝜑2)Φ(ψ1, 𝜑2) 
and  

Φ(𝜑1, 𝜑2 + ψ2) = Φ(𝜑1, 𝜑2)Φ(𝜑1, ψ2) 
for all 𝜑1, ψ2 ∈ 𝐺1 and  𝜑2, ψ2 ∈ 𝐺2, and equivariant in the sense that 

 

Φ(𝑠𝜑1, 𝑠𝜑2) = Φ(𝜑1, 𝜑2) 
for all 𝜑1 ∈ 𝐺1 , 𝜑2 ∈ 𝐺2 , and  𝑠 ∈ Γ  . Then Φ  induces Γ -equivariant group  

homomorphisms  Φ1: 𝐺1 → 𝐺2̂ and  Φ2: 𝐺2 → 𝐺1̂ such that   

 

〈Φ1(𝜑1), 𝜑2〉 = Φ(𝜑1, 𝜑2) = 〈𝜑1, Φ2(𝜑2)〉 
for all 𝜑1 ∈ 𝐺1 and  𝜑2 ∈ 𝜑2. 

Lemma (6.2.38)[396]: Let  𝐺1, 𝐺2, Φ,Φ1, and Φ2 be as above. Then the following hold: 

    (i) Φ1 is injective if and only if Φ2(𝐺2) is dense in  𝐺1̂. 

   (ii) For any 1 ≤ 𝑝 ≤ +∞,Φ1(𝐺1) ⊆ ∆𝑝( 𝐺2̂) if and only if Φ2(𝐺2) ⊆ ∆𝑝( 𝐺1̂). 
Proof: (i) This follows from the Pontryagin duality and the fact that ker Φ1consists of 

exactly those 𝜑1 ∈ 𝐺1 satisfying 〈𝜑1, Φ2(𝐺2)〉 = 1. 
(ii) Let 𝜑1 ∈ 𝐺1 and  𝜑2 ∈ 𝐺2. For each  𝑠 ∈ Γ , we have 

 

ΨΦ2(𝜑2),𝜑1
(𝑠) = 〈𝑠Φ2(𝜑2), 𝜑1〉 − 1                            

= 〈Φ2(𝑠𝜑2), 𝜑1〉 − 1  
= 〈𝑠Φ2, Φ1(𝜑1)〉 − 1 

       = 〈𝜑2, 𝑠
−1, Φ1(𝜑1)〉 − 1  

 = ΨΦ1(𝜑1),𝜑2
(𝑠−1).     

 Thus ΨΦ2(𝜑2),𝜑1
∈ 𝐶0(Γ)  exactly when ΨΦ1(𝜑1),𝜑2

∈ 𝐶0(Γ) , and when 1 ≤ 𝑝 <

+∞,ΨΦ2(𝜑2),𝜑1
∈ ℓ𝑝(Γ)  exactly when  ΨΦ1(𝜑1),𝜑2

∈ ℓ𝑝(Γ).  It follows that Φ1(𝐺1) ⊆

∆𝑝( 𝐺2̂) exactly when  Φ2(𝐺2) ⊆ ∆𝑝(𝐺1̂).  

     The above pairing has been studied by Einsiedler and Schmidt [415],[416] for algebraic 

actions of Γ = ℤ𝑑  with  𝑑 ∈ ℕ on  𝑋 , in the case 𝐺1 = �̂�  and 𝐺2 = ∆(𝑋) . In view of 

Lemma (6.2.38), (𝐺1, 𝐺2) should be thought of as a dual pair, and the dynamic properties 

of the Γ-actions on 𝐺1̂ and 𝐺2̂are reflected in each other. This point of view will play a 

central role. 

Using Theorem (6.2.9), we discuss the relation between various specification 

properties and having dense homoclinic points for expansive algebraic actions. 

Throughout this section Γ will be a countable discrete group. 

     Specification is a strong orbit tracing property. Ruelle [466] studied the extension of the 

notion to ℤ𝑑-actions.We take the definition of various specification properties from [445], 

modified to the general group case. 

Definition (6.2.39)[396]: Let 𝛼 be a continuous Γ-action on a compact space 𝑋. Let 𝜌 be 

a compatible metric on  𝑋. 



243 

   (i) The action 𝛼 has weak specification if there exists, for every 𝜀 > 0, a nonempty 

finite subset 𝐹 of  Γ with the following property: for any finite collection 𝐹1, . . . , 𝐹𝑚 of 

finite subsets of Γ with 

𝐹𝐹𝑖 ∩ 𝐹𝑗 =  ∅ for 1 ≤  𝑖, 𝑗 ≤ 𝑚, 𝑖 ≠  𝑗,                                          (16) 

and for any collection of points  𝑥(1), . . . ,  𝑥(𝑚) in  𝑋, there exists a point 𝑦 ∈ 𝑋 with 

 

𝜌(𝑠𝑥(𝑗), 𝑠𝑦) ≤ 𝜀 for all  𝑠 ∈ 𝐹𝑗  , 1 ≤  𝑗 ≤ 𝑚.                               (17) 

   (ii) The action 𝛼 has strong specification if there exists, for every 𝜀 > 0, a nonempty 

finite subset 𝐹 of Γ with the following property: for any finite collection  𝐹1, . . . , 𝐹𝑚  of 

finite subsets of  Γ satisfying (16) and any subgroup Γ of Γ′with 

 

𝐹𝐹𝑖 ∩ 𝐹𝑗(Γ
′\{𝑒Γ} = ∅ for 1 ≤  𝑖, 𝑗 ≤ 𝑚,                                                (18) 

and for any collection of points 𝑥(1), . . . ,  𝑥(𝑚) in  𝑋, there exists a point 𝑦 ∈ 𝑋 satisfying 

(17) and  𝑠𝑦 = 𝑦 for all  𝑠 ∈ Γ′. 
   (iii) When  𝑋 is a compact group and 𝛼 is by automorphisms  of  𝑋, the action 𝛼 has 

homoclinic specification if there exists, for every 𝜀 > 0, a nonempty finite subset  𝐹 of  Γ 
with the following property: for any finite subset  𝐹1 of  Γ and any  𝑥 ∈  𝑋, there exists  

𝑦 ∈ ∆(𝑋) with 
𝜌(𝑠𝑥, 𝑠𝑦) ≤  𝜀  for all 𝑠 ∈ 𝐹1 , 

 
𝜌(𝑒𝑋 , 𝑠𝑦) ≤ 𝜀  for all  𝑠 ∈ Γ\𝐹𝐹1.        

. 
      The following lemma is a version of [408]. The same argument also appeared in the 

proof of [423]. 

Lemma (6.2.40)[396]: Let 𝛼 be an expansive continuous action of Γ on a compactmetric 

space (𝑋, 𝜌). Let 𝑑 > 0 such that if  𝑥, 𝑦 ∈ 𝑋 satisfy sup𝑠∈Γ 𝜌(𝑠𝑥, 𝑠𝑦) ≤ 𝑑 ,  then  𝑥 = 𝑦. 

Let  𝑥, 𝑦 ∈ 𝑋  satisfy 𝜌(𝑠𝑥, 𝑠𝑦) ≤ 𝑑  for all but finitely many 𝑠 ∈ Γ . Then (𝑥, 𝑦) is an 

asymptotic pair in the sense that  𝜌(𝑠𝑥, 𝑠𝑦) → 0 as  Γ ∋ 𝑠 → ∞. 
Proof: Take a finite subset 𝑊 of Γ such that 𝜌(𝑠𝑥, 𝑠𝑦) ≤ 𝑑 for every 𝑠 ∈ Γ\𝑊. Suppose 

that (𝑥, 𝑦) is not an asymptotic pair. Then there exist 𝜀 > 0 and a sequence of elements 

{𝑠𝑛}𝑛∈ℕ  in Γ such that 𝜌(𝑠𝑛𝑥, 𝑠𝑛 𝑦) ≥ 𝜀 for all 𝑛 ∈ ℕ and for any finite subset  𝐹  of Γ 
one has  𝑠𝑛  ∉ 𝐹 for all sufficiently large 𝑛 ∈ ℕ. Passing to a subsequence of  {𝑠𝑛}𝑛∈ℕ, we 

may assume that 𝑠𝑛𝑥 and 𝑠𝑛 𝑦 converge to 𝑥′ and 𝑦′ in 𝑋 respectively, as  𝑛 → ∞. Then 

𝜌(𝑥, 𝑦) ≥ 𝜀 and  hence  𝑥′ ≠ 𝑦′. 
      Let 𝑠 ∈ Γ . When  𝑛 ∈ ℕ  is sufficiently large, one has 𝑠𝑠𝑛 ∉ 𝑊  and hence  

𝜌(𝑠𝑠𝑛𝑥, 𝑠𝑠𝑛 𝑦) ≤ 𝑑. Letting  𝑛 → ∞, we obtain  𝜌(𝑠𝑥′, 𝑠𝑦′) ≤ 𝑑. By the hypothesis on 𝑑 

we conclude that  𝑥′ = 𝑦′ , which is a contradiction. Therefore (𝑥, 𝑦) is an asymptotic 

pair. 

Theorem (6.2.41)[396]: Let α be an expansive action of Γ on a compact abelian group 𝑋 

by automorphisms. Then the following are equivalent: 

    (i)  𝛼 has weak specification; 

   (ii)  𝛼 has strong specification; 

   (iii) 𝛼 has homoclinic specification. Furthermore, these conditions imply 

   (iv) ∆(𝑋) is dense in 𝑋. 

Proof:  By Theorem (6.2.9)  we may assume that 𝑋 = (ℤΓ)𝑘/𝐽̂  for some 𝑘 ∈ ℕ and some 

left  ℤΓ -submodule 𝐽  of (ℤΓ)𝑘 , and find some  𝐴 ∈ 𝑀𝑘(ℤΓ)  being invertible in  
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𝑀𝑘(ℓ
1(Γ)) such that the rows of 𝐴 are contained in 𝐽 . Denote by 𝑊 the union of  {𝑒Γ} 

and the support of 𝐴∗ as a  𝑀𝑘(ℤ)-valued function on Γ. Recall the canonical metric 𝜌∞ on 

(ℝ/ℤ)𝑘 defined by (11) and the norm ‖ · ‖∞ on  ℓ∞(Γ,ℝ𝑘) defined by (10). Let 𝜌 be a 

compatible metric on  𝑋. 
     (iii)⇒(ii): Let  𝜀 > 0. Then we can find a nonempty finite subset 𝑊1 of and  ‖𝐴‖1

−1 >
𝜀′ > 0 such that if  𝑥, 𝑦 ∈ 𝑋 satisfy max𝑠∈𝑊1

𝜌∞(𝑥𝑠 , 𝑦𝑠)2𝜀
′ , then  𝜌(𝑥, 𝑦) < 𝜀. Take a 

finite subset 𝑊2  of Γ  containing 𝑒Γ  such that ∑ ‖((𝐴 ∗) − 1)𝑠_‖1 < 𝜀′/(2‖𝐴‖1),𝑠∈Γ\𝑊2
−1  

where ‖𝐵‖1 denotes the sum of the absolute values of the entries of 𝐵 for  𝐵 ∈ 𝑀𝑘(ℝ). If  
�̃�, �̃� ∈ ℓ∞ (Γ,ℝ𝑘)  satisfy ‖�̃�‖∞ , ‖�̃�‖∞ ≤ ‖𝐴‖1  and �̃�  and �̃�  are equal on 𝑠𝑊2  for some  

𝑠 ∈ Γ  , then   ‖( �̃�(𝐴∗)−1)𝑠 − ( �̃�(𝐴∗)−1)𝑠‖∞ ≤  𝜀′  .Take  𝛿 > 0  such that if  𝑥, 𝑦 ∈ 𝑋  

satisfy 𝜌(𝑥, 𝑦) ≤ 𝛿,   then  𝜌∞(𝑥𝑒Γ  , 𝑦𝑒Γ) ≤ 𝜀′ 

    By the condition (iii) we can find a finite subset 𝑊3  of  Γ containing 𝑒Γ with the 

following property: for any finite subset  𝐹1 of  Γ and any  𝑥 ∈ 𝑋, there exists  𝑦 ∈ ∆(𝑋) 
with 

 

max
𝑠∈ 𝐹1

𝜌(𝑠𝑥, 𝑠𝑦) ≤ 𝛿 and sup
𝑠∈Γ\𝑊3𝐹1

𝜌(𝑒𝑋 , 𝑠𝑦) ≤ 𝛿. 

By our choice of 𝛿, we then have.  

max
𝑠∈ 𝐹1

−1
𝜌∞(𝑥𝑠, 𝑦𝑠) ≤ 𝜀′ and sup

𝑠∈Γ(𝑊3𝐹1)
−1
𝜌∞(0(ℝ/ℤ)𝑘  , 𝑦𝑠) ≤ 𝜀′. 

 

Now set  𝐹 =  (𝑊1𝑊2𝑊3
−1)(𝑊1𝑊2𝑊3

−1)−1.  

     Let  𝐹1, . . . , 𝐹𝑚  be a finite collection of finite subsets of Γ  satisfying (16), Γ′  be a 

subgroup of Γ  satisfying (18), and  𝑥(1), . . . , 𝑥(𝑚)be points in 𝑋 . Take 𝑦(1), . . . , 𝑦(𝑚) ∈
∆(𝑋) with 

 

max
𝑠∈ 𝐹𝑗

−1𝑊1𝑊2

𝜌∞(𝑥𝑠
(𝑗)
, 𝑦𝑠

(𝑗)
) ≤ 𝜀′ and sup

𝑠∈Γ\(𝐹𝑗
−1𝑊1𝑊2𝑊3

−1)

𝜌∞(0(ℝ/ℤ)𝑘  , 𝑦𝑠
(𝑗)
) ≤ 𝜀′. 

for each 1 ≤ 𝑗 ≤ 𝑚. Denote by 𝑃 the canonical map ℓ∞ (Γ, ℝ𝑘)∞ → ((ℝ/ℤ)𝑘)Γ. For each 

1 ≤ 𝑗 ≤ 𝑚,  take a lift  �̃�(𝑗) and  �̃�(𝑗) for 𝑥(𝑗) and 𝑦(𝑗) in (([−1, 1])𝑘)Γ respectively such 

that 

 

max
𝑠∈ 𝐹𝑗

−1𝑊1𝑊2

‖�̃�𝑠
(𝑗)

− �̃�𝑠
(𝑗)
‖
∞ 
≤ 𝜀′ and sup

𝑠∈Γ\(𝐹𝑗
−1𝑊1𝑊2𝑊3

−1)

‖�̃�𝑠
(𝑗)
‖
∞ 
≤ 𝜀′. 

Then �̃�(𝑗)𝐴∗ belongs to  ℓ∞(Γ, ℤ𝑘). Note that, for any  𝑠 ∈ Γ\(𝑊1𝑊2𝑊3
−1𝑊), one has 

 

‖(�̃�𝑠
(𝑗)
𝐴∗)𝑠‖

∞ 
≤ ‖𝐴∗‖1  ⋅  sup

𝑡∈Γ\(𝐹𝑗
−1𝑊1𝑊2𝑊3

−1)

‖�̃�𝑡
(𝑗)
‖
∞ 
≤ ‖𝐴‖1 ⋅ 𝜀

′ < 1. 

It follows that, as a ℤ𝑘 -valued function on Γ, �̃�(𝑗)𝐴∗  has support contained in 

𝐹𝑗
−1𝑊1𝑊2𝑊3

−1𝑊. We can rewrite (16) and (18) as 

(𝐹𝑖
−1𝑊1𝑊2𝑊3

−1𝑊) ∩ (𝐹𝑗
−1𝑊1𝑊2𝑊3

−1𝑊) = ∅ for 1 ≤  𝑖, 𝑗 ≤  𝑚, 𝑖 ≠ 𝑗, 

and 

(𝐹𝑖
−1𝑊1𝑊2𝑊3

−1𝑊) ∩ (Γ′\{𝑒Γ})(𝐹𝑗
−1𝑊1𝑊2𝑊3

−1𝑊) = ∅ for 1 ≤  𝑖, 𝑗 ≤  𝑚, 

respectively. Thus the elements  𝑠�̃�(𝑗)𝐴∗ of  ℤ𝑘Γ for 𝑠 ∈ Γ′ and 1 ≤ 𝑗 ≤ 𝑚 have pairwise 

disjoint support. Then we have the element  �̃� ∶= ∑ ∑  𝑠�̃�(𝑗)𝐴∗ 𝑚
𝑗=1𝑠∈Γ′  of  ℓ∞(Γ, ℤ𝑘) with 
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‖�̃�‖∞ = max

1≤𝑗≤𝑚
‖�̃�(𝑗)𝐴∗‖

∞ 
≤‖𝐴∗‖1 ⋅ max

1≤𝑗≤𝑚
‖�̃�(𝑗)‖

∞ 
≤‖𝐴‖1 . 

 Set  �̃� =  �̃�(𝐴∗)−1 ∈ ℓ∞ (Γ, ℤ𝑘) and  𝑦 = 𝑃(�̃�) ∈ ((ℝ/ℤ)𝑘𝑘)Γ. 

     We claim that  𝑦 ∈ 𝑋 . For each finite subset 𝐾  of Γ′ , define �̃�𝐾 =
∑ ∑  𝑠�̃�(𝑗)𝐴∗ 𝑚

𝑗=1𝑠∈K , �̃�𝐾 =  �̃�𝐾 (𝐴∗)−1 , and 𝑦𝐾 = 𝑃(�̃�𝐾).  Then  ‖�̃�𝐾‖∞ ≤ ‖𝐴‖1  for 

every 𝐾. For each  𝑠 ∈ Γ , when  𝐾 → Γ′ ,we have  (�̃�𝐾 )𝑠 → �̃�𝑠 and hence  (�̃�𝐾)𝑠 → �̃�𝑠 . 
It follows that, when  𝐾 → Γ′ , 𝑦𝐾 converges to 𝑦. Clearly 𝑦𝐾 = ∑ ∑  𝑠𝑦(𝑗) 𝑚

𝑗=1𝑠∈K ∈ 𝑋 for 

each  𝐾. Therefore  𝑦 ∈ 𝑋. 

     For each  𝑠 ∈ Γ′ , we have  𝑠 �̃� = �̃� and hence  𝑠𝑦 = 𝑦. 

     Fix  1 ≤ 𝑗 ≤ 𝑚. Note that  �̃� and  �̃�(𝑗)𝐴∗ are equal on 𝐹𝑗
−1𝑊1𝑊2𝑊3

−1𝑊 ⊇ 𝐹𝑗
−1𝑊1𝑊2. 

Since   

‖�̃�‖∞ , ‖�̃�
(𝑗)𝐴∗‖

∞ 
≤ ‖𝐴‖1 , by our choice of 𝑊2 we have max𝑠∈𝐹1−1 𝑊1

‖�̃�𝑠 − 𝑦𝑠
( 𝑗 )

‖
∞ 
≤

𝜀′. Thus max𝑠∈𝐹1−1 𝑊1
𝜌∞(𝑦𝑠, 𝑦𝑠

( 𝑗 )
) ≤ 𝜀′, and hence 

max
𝑠∈𝐹𝑗,𝑡 ∈𝑊1

𝜌∞((𝑠𝑦)𝑡 , (𝑠𝑥
(𝑗))

𝑡
) = max

𝑠∈𝐹𝑗
−1𝑊1

𝜌∞ (𝑦𝑠, 𝑥𝑠
(𝑗)
)                                               

                                                     ≤ max
𝑠∈𝐹𝑗

−1𝑊1

𝜌∞(𝑦𝑠, 𝑦𝑠
(𝑗)
) + max

𝑠∈𝐹𝑗
−1𝑊1

𝜌∞ (𝑦𝑠
(𝑗)
, 𝑥𝑠

(𝑗)
) 

 ≤ 2𝜀′.                        
By our choice of 𝑊1 and 𝜀, we get max𝑠∈𝐹𝑗 𝜌(𝑠𝑦, 𝑠𝑥

(𝑗)) < 𝜀  as desired. 

     (ii)⇒(i) and (iii)⇒(iv) are trivial. 

     (i)⇒(iii): By Lemma (6.2.40) there exists  𝜀 > 0 with the following property: if 𝑦 ∈ 𝑋 

satisfies  𝜌(𝑒𝑋 , 𝑠𝑦) ≤ 𝜀′ for all but finitely many 𝑠 ∈ Γ , then  𝑦 ∈ Δ(𝑋).Let 𝜀′ ≥  𝜀 > 0. 

Take 𝐹 as in the definition of weak specification. Replacing 𝐹  by  𝐹 ∪ 𝐹−1 if necessary, 

we may assume that  𝐹 = 𝐹−1. Let  𝐹1 be a finite subset of Γ and  𝑥 ∈ 𝑋. For each finite 

subset  𝐹2 of  Γ\𝐹 𝐹1, by the choice of 𝐹, taking  𝑥(1) = 𝑥 and  𝑥(2) = 𝑒𝑋  we can find  

𝑦𝐹2 ∈ 𝑋  such that max𝑠∈𝐹1 𝜌(𝑠𝑥, 𝑠𝑦𝐹2) < 𝜀 and  max𝑠∈𝐹2 𝜌(𝑠𝑒𝑋, 𝑠𝑦𝐹2) < 𝜀. Note that the 

set of finite subsets of   Γ\𝐹 𝐹1 is partially ordered by inclusion. Take a limit point 𝑦 of the 

net {𝑦𝐹2 }𝐹2 . Then max𝑠∈𝐹1 𝜌(𝑠𝑥, 𝑠𝑦) < 𝜀  and  sup𝑠∈Γ\𝐹 𝐹1 𝜌(𝑠𝑒𝑋 , 𝑠𝑦) ≤ 𝜀 ≤ 𝜀′ .By our 

choice of 𝜀' , we conclude that  𝑦 ∈ Δ(𝑋). 
     We give a new proof of the following result of Lind and Schmidt [445]. 

Theorem (6.2.42)[396]: Suppose that   Γ =  ℤ𝑑 for some 𝑑 ∈ ℕ. Let 𝛼 be an expansive 

action of Γ on a compact abelian group 𝑋 by automorphisms. Then the conditions (i), (ii), 

(iii) and (iv) in Theorem (6.2.41) are all equivalent. 

Proof: We just need to show that (iv)⇒(iii).By Propositions (6.2.3) and (6.2.37), we can 

find a compatible translation-invariantmetric  𝜌 on 𝑋 such that  ∑ 𝜌(0𝑋 , 𝑠𝑥) < +∞𝑠∈Γ   for 

all  𝑥 ∈ ∆(𝑋). 
     Since ℤΓ is Noetherian [441], from Propositions (6.2.19).(iv) and (6.2.33).(vi) we see 

that ∆(𝑋)  is a finitely generated left ℤΓ -module. Take 𝑧1, . . . , 𝑧𝑛  ∈ ∆(𝑋)  such that  

∆(𝑋) = ∑ ℤΓ𝑛
𝑗=1  𝑧𝑗 .  

     By Theorem (6.2. 9) 𝑋 is a closed Γ-invariant subgroup of  𝑋𝐴: = (ℤΓ)𝑘/(ℤΓ)𝑘 ̂ 𝐴 for 

some 𝑘 ∈ ℕ  and some  𝐴 ∈ 𝑀𝑘(ℤΓ)  being invertible in 𝑀𝑘(ℓ
1(Γ)).  Treat ∆(𝑋𝐴)  as a 

discrete abelian group and consider the induced Γ-action on the Pontryagin dual  ∆(𝑋𝐴)̂. 

By Lemmas (6.2.35) and (6.2.14) the Γ-action on  ∆(𝑋𝐴)̂. is expansive. By Corollary 
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(6.2.10) there exists  𝑓 ∈ ℤΓ  being invertible in  ℓ1(Γ)  such that  𝑓∆(𝑋𝐴) = 0 . In 

particular,  𝑓∆(𝑋) = 0. 

     Let  𝜀 > 0. Take a nonempty finite subset 𝑊 of Γ such that   

∑ ∑ 𝜌(0𝑋 , 𝑠𝑧𝑗  ) < 𝜀/(2‖ 𝑓 ‖1). 𝑆𝑒𝑡 𝐹 =  𝑊𝑊−1
𝑠∈Γ\𝑊

𝑛
𝑗=1  . 

      Let 𝐹1 be a finite subset of Γ and  𝑥′ ∈ 𝑋. By the condition (iv) we can take some  𝑥 ∈
∆(𝑋) with  max𝑠∈𝐹1 𝜌(𝑠𝑥′, 𝑠𝑥) < 𝜀/2 . 

     We have  𝑥 = ∑ 𝑎𝑗𝑗 𝑧𝑗 for some  𝑎1, . . . , 𝑎𝑛 ∈ ℤΓ. Note that 𝑎𝑗  𝑓
−1  is in ℓ1(Γ). Let 𝑏𝑗   

be the integral part of  𝑎𝑗  𝑓
−1. That is, 𝑏𝑗 ∈ ℝΓ  has integral coefficients, and 𝑎𝑗  𝑓

−1 − 𝑏𝑗  

has coefficients in [−1/2, 1/2). Then ‖ 𝑏𝑗  ‖1 ≤ 2‖ 𝑎𝑗  𝑓
−1 ‖

1
< +∞, and hence  𝑏𝑗 ∈ ℤΓ. 

Note that  𝑥 = ∑ (𝑎𝑗 − 𝑏𝑗𝑓 )𝑧𝑗𝑗  , and 

 

‖ 𝑎𝑗 − 𝑏𝑗𝑓 ‖∞ ≤ ‖ 𝑎𝑗  𝑓
−1 − 𝑏𝑗  ‖∞ ⋅ ‖ 𝑓 ‖1 ≤ ‖ 𝑓 ‖1. 

Thus, replacing 𝑎𝑗 by 𝑎𝑗 − 𝑏𝑗𝑓 if necessary, we may assume that  _‖ 𝑎𝑗  ‖∞ ≤ ‖ 𝑓 ‖1 for 

all  1 ≤  𝑗 ≤ 𝑛. 

     For each 1 ≤  𝑗 ≤ 𝑛, define  𝑐𝑗 ∈ ℤΓ to be the same as 𝑎𝑗  on 𝐹1
−1𝑊 and 0 outside of  

𝐹1
−1𝑊 . Set  𝑦 = ∑ 𝑐𝑗𝑗 𝑧𝑗 ∈ ∆(𝑋). For each  𝑠 ∈ 𝐹1 , since 𝜌 is translation-invariant, we 

have 

𝜌(𝑠𝑥, 𝑠𝑦) = 𝜌(∑𝑠(𝑎𝑗 − 𝑐𝑗)𝑧𝑗 ,

𝑗

0𝑋)                                                                     

≤∑∑|(𝑠(𝑎𝑗 − 𝑐𝑗))
𝑡
|

𝑡∈Γ𝑗

 𝜌(𝑡𝑧𝑗 , 0𝑋)                                 

                            =∑ ∑ |(𝑎𝑗 − 𝑐𝑗)𝑠−1𝑡|

𝑡∈Γ\W𝑗

 𝜌(𝑡𝑧𝑗 , 0𝑋)  ≤∑ ∑ ‖𝑎𝑗‖∞
𝑡∈Γ\W𝑗

 𝜌(𝑡𝑧𝑗 , 0𝑋) 

                            

≤ ‖𝑓‖1∑ ∑ ‖𝑎𝑗‖∞
𝑡∈Γ\W𝑗

 𝜌(𝑡𝑧𝑗 , 0𝑋) ≤ 𝜀/2,                        

and hence 

𝜌(𝑠𝑥′, 𝑠𝑦) ≤ 𝜌(𝑠𝑥′, 𝑠𝑥) + 𝜌(𝑠𝑥, 𝑥𝑦) ≤ 𝜀/2 

For each  𝑠 ∈ Γ\𝐹𝐹1, noting that  𝑠−1𝑊 ∩ 𝐹1
−1 𝑊 =  ∅, we have 

 

𝜌(𝑠𝑦, 0𝑋) ≤∑∑|(𝑠𝑐𝑗)𝑡|

𝑡∈Γ𝑗

 𝜌(𝑡𝑧𝑗 , 0𝑋)                                                   

=∑ ∑ |(𝑐𝑗)𝑠−1𝑡|

𝑡∈Γ\W𝑗

 𝜌(𝑡𝑧𝑗 , 0𝑋)                         

≤∑ ∑ ‖𝑐𝑗‖∞
𝑡∈Γ\W𝑗

 𝜌(𝑡𝑧𝑗 , 0𝑋)                              

        ≤ ‖𝑓‖1∑ ∑ 𝜌(𝑡𝑧𝑗 , 0𝑋) ≤ 𝜀/2,

𝑡∈Γ\W𝑗

                          

      In general, we have 
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Conjecture (6.2.43)[396]: Suppose that Γ is amenable and  ℤΓ is left Noetherian. Let 𝛼 be 

an expansive action of Γ on a compact abelian group 𝑋   by automorphisms. Then the 

conditions (i), (ii, (iii) and (iv) in Theorem (6.2.41) are all equivalent. 

We study the local entropy theory for Γ-actions on compact groups by automorphisms. 

The basics of local entropy theory are recalled  .Throughout this section Γ  will be a 

countable amenable group, unless specified. 

     For a continuous action of Γ on a compact space 𝑋, we denote by ℳ(𝑋, Γ) the set of all 

Γ-invariant Borel probability measures on  𝑋. For a compact group 𝑋, we denote by 𝜇𝑋  

the normalized Haar measure on  𝑋, and by 𝑒3  the identity element of 𝑋. 

Lemma (6.2.44)[396]: Let Γ act on a compact group 𝑋 by automorphisms, and let 𝜈 ∈
ℳ(𝑋, Γ) . Then the product map 𝑋 × 𝑋 → 𝑋  sending (𝑥, 𝑦)  to 𝑥 𝑦  is a Γ -equivariant 

surjective continuous map, for 𝑋 × 𝑋 equipped with the product action, and sends the Γ-

invariant measures  𝜇𝑋 × 𝜈 and  𝜈 × 𝜇𝑋 to 𝜇𝑋.  
Proof: Denote the product map by 𝜋. Then  𝜋∗(𝜇𝑋 × 𝜈) is a Borel probability measure on 

𝑋. Since 𝜇𝑋  is left-shift invariant, so is  𝜋∗(𝜇𝑋 × 𝜈). Thus 𝜋∗(𝜇𝑋 × 𝜈) = 𝜇𝑋  . Similarly  

𝜋∗(𝜈 × 𝜇𝑋)  = 𝜇𝑋 . The other parts of the lemma are obvious. 

Definition (6.2.45)[396]: Let Γ act on a compact group 𝑋 by automorphisms. We say that 

a point  𝑥 ∈ 𝑋 is an IE-point if (𝑥, 𝑒𝑋 ) ∈ IE2(𝑋).We denote the set of all IE-points by 

IE(𝑋). 
Theorem (6.2.46)[396]: Let Γ act on a compact group 𝑋 by automorphisms. Then the 

following hold: 

   (i) The set 𝐼𝐸(𝑋) is 𝑎 Γ-invariant closed normal subgroup of 𝑋. 

   (ii) For any 𝑘 ∈ ℕ, the set 𝐼𝐸𝑘(𝑋) is 𝑎 Γ-invariant (under the product action of Γ on 𝑋𝑘) 

closed subgroup of the group 𝑋𝑘 , and 

 

𝐼𝐸𝑘(𝑋) = {(𝑥1𝑦, . . . , 𝑥𝑘𝑦): 𝑥1, . . . , 𝑥𝑘 ∈ 𝐼𝐸(𝑋), 𝑦 ∈ 𝑋}                
 

= {(𝑦𝑥1, . . . , 𝑦𝑥𝑘): 𝑥1, . . . , 𝑥𝑘 ∈ 𝐼𝐸(𝑋), 𝑦 ∈ 𝑋}. 
  (iii) For any  𝜈 ∈ ℳ(𝑋, Γ) and  𝑘 ∈ ℕ, one has 𝐼𝐸𝑘

𝜈(𝑋) ⊆ 𝐼𝐸𝑘
𝜇𝑋(𝑋) = 𝐼𝐸𝑘(𝑋). 

  (iv) ℎ(𝑋) > 0 if and only if  𝐼𝐸(𝑋) is nontrivial. 

  (v) Let 𝑌 be a closed Γ-invariant normal subgroup of 𝑋 and denote by q the quotient map 

𝑋 → 𝑋/𝑌 . Consider the induced Γ-action on 𝑋/𝑌 . Then  𝑞(𝐼𝐸(𝑋)) = 𝐼𝐸(𝑋/𝑌 ). 
Proof: Let  𝑘 ∈ ℕ. 
     (i) and (ii). Since supp(𝜇𝑋) = 𝑋, from Theorem (6.2.6).(iii) we have 𝐼𝐸1(𝑋) = 𝑋. It is 

clear from the definition of 𝐼𝐸-tuples that if 1 ≤ 𝑚 < 𝑘 and (𝑥1, . . . , 𝑥𝑚) ∈ 𝐼𝐸𝑚(𝑋), then  

(𝑥1, . . . , 𝑥𝑚, 𝑥𝑚+1, . . . , 𝑥𝑘) ∈ 𝐼𝐸𝑘(𝑋) for 𝑥𝑚+1 = · · · = 𝑥𝑘 = 𝑥1. It follows that the length 

𝑘 diagonal element (𝑥, . . . , 𝑥) is in 𝐼𝐸𝑘(𝑋) for every  𝑥 ∈ 𝑋. In particular, 𝐼𝐸𝑘(𝑋)  contains 

the identity element of the group 𝑋𝑘 . 

     Consider the product action of Γ on  𝑋 × 𝑋. Denote by 𝜋 the product map 𝑋 × 𝑋 → 𝑋, 

and by 𝜋𝑘  its 𝑘-fold (𝑋 × 𝑋)𝑘 → 𝑋𝑘  . Note that 𝜋𝑘  can be  identified with the product 

map of the group  𝑋𝑘 . By Theorem (6.2.6).(v) one has 𝐼𝐸𝑘(𝑋 × 𝑋) = 𝐼𝐸𝑘(𝑋) × 𝐼𝐸𝑘(𝑋). 
From Lemma (6.2.44) and Theorem (6.2.6).(iv), one gets  𝜋𝑘(𝐼𝐸𝑘(𝑋 × 𝑋)) = 𝐼𝐸𝑘(𝑋). 

Thus,  𝐼𝐸𝑘(𝑋) · 𝐼𝐸𝑘(𝑋) = 𝐼𝐸𝑘(𝑋). Also applying Theorem (6.2.6).(iv) to the inverse map 

𝑋 → 𝑋, one get (𝐼𝐸𝑘(𝑋))
−1 = 𝐼𝐸𝑘(𝑋). Therefore  𝐼𝐸𝑘(𝑋) is a subgroup of 𝑋𝑘.  

     By Theorem (6.2.6).(i), the set 𝐼𝐸𝑘(𝑋).  is Γ-invariant and closed. 
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     Since  𝐼𝐸2(𝑋).   is a Γ-invariant closed subgroup of 𝑋2, clearly 𝐼𝐸(𝑋) is a Γ-invariant 

closed subgroup of  𝑋. If  𝑥 ∈ 𝐼𝐸(𝑋) and  𝑦 ∈ 𝑋, then (𝑦, 𝑦), (𝑦−1, 𝑦−1) and  (𝑥, 𝑒𝑋) are 

all in  𝐼𝐸2(𝑋) . ,and hence (𝑦𝑥𝑦−1, 𝑒𝑋) = (𝑦, 𝑦)  · (𝑥, 𝑒𝑋 ) · (𝑦
−1, 𝑦−1) ∈ 𝐼𝐸2(𝑋) 

.Therefore 𝐼𝐸(𝑋) is a normal subgroup of 𝑋. 

     Now we show that  𝐼𝐸𝑘(𝑋) = {(𝑥1𝑦, . . . , 𝑥𝑘  𝑦) ∶ 𝑥1, . . . , 𝑥𝑘 ∈ 𝐼𝐸(𝑋), 𝑦 ∈ 𝑋}.The case 

𝑘 = 1 follows from  𝐼𝐸1(𝑋) = 𝑋. Assume that 𝑘 ≥ 2 .Note that, by the definition of  𝐼𝐸-

tuples,  𝐼𝐸𝑘(𝑋) is closed under taking permutation. If  𝑥1, . . . , 𝑥𝑘 ∈ 𝐼𝐸(𝑋) and  𝑦 ∈ 𝑋, then 

the 𝑘-tuples 

(𝑥1,  𝑒𝑋 , . . . ,  𝑒𝑋), ( 𝑒𝑋 , 𝑥2, . . . ,  𝑒𝑋), . . . , ( 𝑒𝑋 ,  𝑒𝑋 , . . . , 𝑥𝑘) and  (𝑦, . . . , 𝑦) are all in 𝐼𝐸𝑘(𝑋), 
and hence 

 

(𝑥1𝑦, 𝑥2𝑦 , . . . , 𝑥𝑘𝑦) = (𝑥1 ,  𝑒𝑋, . . . ,  𝑒𝑋) ⋅  ( 𝑒𝑋 , 𝑥2 , . . . ,  𝑒𝑋). . . ..                               
× ( 𝑒𝑋 ,  𝑒𝑋 , . . . , 𝑥𝑘) ⋅ (𝑦, . . . , 𝑦)    

is in 𝐼𝐸𝑘(𝑋). 
     Note that, by the definition of 𝐼𝐸 -tuples, if (𝑥1, . . . , 𝑥𝑘) ∈ 𝐼𝐸𝑘(𝑋)  and 1 ≤ 𝑚 ≤
𝑘, then (𝑥1, . . . , 𝑥𝑚) ∈ 𝐼𝐸𝑚(𝑋). Suppose that (𝑦1, . . . , 𝑦𝑘) ∈ 𝐼𝐸𝑘(𝑋). Let  2 ≤  𝑗 ≤ 𝑘. Then 

(𝑦1, 𝑦𝑗) ∈ 𝐼𝐸2(𝑋) , and hence ( 𝑒𝑋 , 𝑦𝑗𝑦1
−1) = (𝑦1, 𝑦𝑗) · (𝑦1

−1 , 𝑦1
−1) ∈ 𝐼𝐸2(𝑋) .Thus 

𝑦𝑗𝑦1
−1 ∈ 𝐼𝐸(𝑋) . Set  𝑥1 =  𝑒𝑋, 𝑥𝑗  = 𝑦𝑗𝑦1

−1  for all  2 ≤ 𝑗 ≤ 𝑘 , and  𝑦 = 𝑦1 . Then 

(𝑦1, . . . , 𝑦𝑘) = (𝑥1𝑦, . . . , 𝑥𝑘𝑦) . This proves 𝐼𝐸𝑘(𝑋) = {(𝑥1𝑦, . . . , 𝑥𝑘  𝑦) ∶ 𝑥1, . . . , 𝑥𝑘 ∈
𝐼𝐸(𝑋), 𝑦 ∈ 𝑋}. Similarly, one has 𝐼𝐸𝑘(𝑋) = {(𝑦𝑥1, . . . , 𝑦𝑥𝑘): 𝑥1, . . . , 𝑥𝑘 ∈ 𝐼𝐸(𝑋), 𝑦 ∈ 𝑋}. 

     (iii). Let  𝜈 ∈ ℳ(𝑋, Γ) . From Theorem (6.2.8).(v) one gets 𝐼𝐸𝑘
𝜇𝑋×𝜈 (𝑋 × 𝑋) =

𝐼𝐸𝑘
𝜇𝑋 (𝑋) × 𝐼𝐸𝑘

𝜈(𝑋) . By Lemma (6.2.44)and Theorem (6.2.8).(iv), one Has  

𝜋𝑘(𝐼𝐸𝑘
𝜇𝑋×𝜈  (𝑋 × 𝑋)) = 𝐼𝐸𝑘

𝜋∗(𝜇𝑋×𝜈)(𝑋) = 𝐼𝐸𝑘
𝜇𝑋(𝑋). Thus, for any 𝒙 ∈ 𝐼𝐸𝑘

𝜇𝑋(𝑋) and  𝒚 ∈

𝐼𝐸𝑘
𝜈(𝑋), one has  𝒙 · 𝒚 ∈ 𝐼𝐸𝑘

𝜇𝑋(𝑋). 

     By Theorem (6.2.8).(iii), we have 𝐼𝐸1
𝜇𝑋(𝑋) = supp(𝜇𝑋) =  𝑋 . It is clear from the 

definition of 𝜇𝑋 -IE-tuples that if  1 ≤ 𝑚 < 𝑘  and (𝑥1, . . . , 𝑥𝑚) ∈ 𝐼𝐸𝑚
𝜇𝑋(𝑋) , then  

(𝑥1, . . . , 𝑥𝑚, 𝑥𝑚+1, . . . , 𝑥𝑘) ∈ 𝐼𝐸𝑘
𝜇𝑋(𝑋) for 𝑥𝑚+1 = · · · =  𝑥𝑘 = 𝑥1. It follows that the length 

k diagonal element (𝑥, . . . , 𝑥) is in  𝐼𝐸𝑘
𝜇𝑋(𝑋) for every 𝑥 ∈ 𝑋 . In particular,   𝐼𝐸𝑘

𝜇𝑋(𝑋) 

contains the identity element 𝑒𝑋𝑘  of 𝑋𝑘.  

     For any 𝒚 ∈ 𝐼𝐸𝑘
𝜈(𝑋),wehave  𝒚 = 𝑒𝑋𝑘 · 𝒚 𝐼𝐸𝑘

𝜇𝑋(𝑋). This proves  𝐼𝐸𝑘
𝜈(𝑋) ⊆ 𝐼𝐸𝑘

𝜇𝑋(𝑋). 

    Now from parts (i) and (vi) of Theorem (6.2.8) we conclude  𝐼𝐸𝑘(𝑋) = 𝐼𝐸𝑘
𝜇𝑋(𝑋). 

   (iv). This follows from Theorem (6.2.6).(ii). 

   (v). By Theorem (6.2.6).(iv) we have (𝑞 × 𝑞)(𝐼𝐸2(𝑋)) = 𝐼𝐸2(𝑋/𝑌 ) . It follows that  

𝑞(𝐼𝐸(𝑋)) ⊆ 𝐼𝐸(𝑋/𝑌 ). Furthermore, for any  𝑧 ∈ 𝐼𝐸(𝑋/𝑌 ), there exists (𝑥, 𝑦) ∈ 𝐼𝐸2(𝑋) 
with  𝑞(𝑥) = 𝑧 and 𝑞(𝑦) =  𝑒𝑋/𝑌. Then 𝑦 ∈ 𝑌 . By Assertion (ii) we have 𝑥𝑦−1 ∈ 𝐼𝐸(𝑋). 
Thus  𝑧 = 𝑞(𝑥𝑦−1) ∈ 𝑞(𝐼𝐸(𝑋)), and hence 𝐼𝐸(𝑋/𝑌 ) ⊆ 𝑞(𝐼𝐸(𝑋)). 
     Under the assumptions of Theorem (6.2.46),Γ has an induced action on  𝑋/𝐼𝐸(𝑋) by 

automorphisms. Under the quotient map  𝑋 → 𝑋/𝐼𝐸(𝑋), 𝑋/𝐼𝐸(𝑋) is a topological factor 

of 𝑋. 

Theorem (6.2.47)[396]: Let Γ act on a compact group 𝑋 by automorphisms. Denote by 𝑞 

the quotient map 𝑋 → 𝑋/𝐼𝐸(𝑋). Then the following hold: 

   (i)  X/IE(X) is the largest topological factor 𝑌 of 𝑋 satisfying htop(𝑌) = 0, in the sense 

that htop(𝑋/𝐼𝐸(𝑋)) = 0 and if 𝑌 is a topological factor of 𝑋 with htop(𝑌 ) = 0, then there 

is a topological factor map 𝑋/𝐼𝐸(𝑋) → 𝑌 such that the diagram 
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                                                                                      𝑌 

commutes. 

   (ii) X/IE(X) is also the largest topological factor 𝑌 of 𝑋 satisfying ℎ𝜋∗ (𝜇𝑋)(𝑌 ) = 0 for  

𝜋 ∶ 𝑋 → 𝑌 denoting the factor map, in the sense that ℎ𝑞∗(𝜇𝑋)(𝑋/𝐼𝐸(𝑋)) = 0 and if 𝑌 is a 

topological factor of 𝑋  with ℎ𝜋∗  (𝜇𝑋)(𝑌) = 0  , then there is a topological factor map 

𝑋/𝐼𝐸(𝑋) → 𝑌 such that the above diagram in (i) commutes.  

Proof: (i). Let (𝑥, 𝑦) ∈ 𝐼𝐸2(𝑋/𝐼𝐸(𝑋)). By Theorem (6.2.6).(iv) we can find ( �̃�, �̃�) ∈
𝐼𝐸2(𝑋) with 𝑞( �̃�) = 𝑥 and  𝑞( �̃�) = 𝑦. By Theorem (6.2.46) we have  �̃� 𝑦−1 ∈ 𝐼𝐸(𝑋). 
Thus  𝑥 = 𝑞( �̃�) = 𝑞( �̃� 𝑦−1)𝑞( �̃�) = 𝑦. Therefore 𝐼𝐸2(𝑋/𝐼𝐸(𝑋)) consists of only 

diagonal elements, and hence by Theorem (6.2.6).(ii) one has htop(𝑋/𝐼𝐸(𝑋)) = 0. 

     Now let 𝑌  be a topological factor of 𝑋 such that htop(𝑌) = 0. Denote by 𝜋 the factor 

map 𝑋 → 𝑌 . To show that there is a topological factor map 𝑋/𝐼𝐸(𝑋) → 𝑌 making the 

diagram in Assertion (i) commute, it suffices to show for any 𝑥′, 𝑦′ ∈ 𝑋 with  𝑞(𝑥′) =
𝑞(𝑦′) one has  𝜋(𝑥′) = 𝜋(𝑦′). 
    Let  𝑥1 ∈ 𝐼𝐸(𝑋) and  𝑦1 ∈ 𝑋. From Theorem (6.2.46) we get (𝑦1, 𝑥1𝑦1) ∈ 𝐼𝐸2(𝑋). By 

Theorem (6.2.6).(iv) we have (𝜋 ×  𝜋)(𝐼𝐸2(𝑋)) = 𝐼𝐸2(𝑌) . Thus (𝜋(𝑦1), 𝜋(𝑥1𝑦1)) ∈
𝐼𝐸2(𝑌 ) . Since htop(𝑌) = 0 , by Theorem (6.2.6).(ii) the set 𝐼𝐸2(𝑌)  consists of only 

diagonal elements. Thus  𝜋(𝑦1) = 𝜋(𝑥1𝑦1) . If 𝑥′, 𝑦′ ∈ 𝑋  and  𝑞(𝑥′) = 𝑞(𝑦′) , then  

𝑥′(𝑦′)−1 ∈ 𝐼𝐸(𝑋) and hence  𝜋(𝑥′) = 𝜋((𝑥′(𝑦′)−1)𝑦′) = 𝜋(𝑦′). 
    (ii). This can be proved using arguments similar to that for Assertion (i), using Theorem 

(6.2.8)instead of Theorem (6.2.6). 

     From Theorem (6.2.47)we get 

Corollary (6.2.48)[396]: Let 𝛤 act on a compact group 𝑋 by automorphisms. Then the 

following are equivalent: 

   (i) 𝐼𝐸(𝑋) = 𝑋. 

   (ii) The only topological factor 𝑌 of 𝑋 with htop(𝑌) = 0 is the trivial fact consisting of 

one point. 

   (iii) The only topological factor 𝑌 of 𝑋 with  ℎ𝜋∗(𝜇𝑋)(𝑌) = 0 for  𝜋 ∶ 𝑋 → 𝑌 denoting the 

factor map is the trivial factor consisting of one point. Next we show that taking the IE 

group is an idempotent operation. 

Lemma (6.2.49)[396]: Let 𝛤 act on a compact group 𝑋 by automorphisms. Let 𝑌 be a 

closed 𝛤-invariant normal subgroup of 𝑋. Then 𝐼𝐸(𝑌) is a normal subgroup of 𝑋. 
Proof: Consider the conjugation map  𝜋 ∶ 𝑋 × 𝑌 → 𝑌 sending (𝑥, 𝑦) to 𝑥𝑦𝑥−1. Clearly 𝜋 

is surjective and 𝛤-equivariant for 𝑋 × 𝑌 equipped with the product action. By (iv) and (v) 

of Theorem (6.2.6) we have (𝜋 × 𝜋)(𝐼𝐸2(𝑋) × 𝐼𝐸2(𝑌 )) = (𝜋 × 𝜋)(𝐼𝐸2(𝑋 × 𝑌 )) =
𝐼𝐸2(𝑌). Let 𝑥 ∈ 𝑋 and  𝑦 ∈ 𝐼𝐸(𝑌 ). Then (𝑥, 𝑥) ∈ 𝐼𝐸2(𝑋) and (𝑦, 𝑒𝑌) ∈ 𝐼𝐸2(𝑌). Thus 

 

(𝑥𝑦𝑥−1, 𝑒𝑌) = (𝑥𝑦𝑥−1, 𝑒𝑥𝑌 𝑥
−1)  = (𝜋 × 𝜋)((𝑥, 𝑥) ×  𝑦, 𝑒𝑌)) ∈ 𝐼𝐸2(𝑌), 

and hence 𝑥𝑦𝑥−1 ∈ 𝐼𝐸(𝑌 ). 
Proposition (6.2.50)[396]: Let Γ  act on a compact group X  by automorphisms. Then 

IE(IE(X)) = IE(X). 
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Proof: By Theorem (6.2.46).(i) and Lemma (6.2.49)the group IE(IE(X)) is closed and 

normal in  𝑋 .By Theorem (6.2.47)we have ℎ(𝑋/𝐼𝐸(𝑋)) = ℎ(𝐼𝐸(𝑋)/𝐼𝐸(𝐼𝐸(𝑋))) = 0 .In 

virtue of Proposition (6.2.4) one has 

 

ℎ(𝑋/𝐼𝐸(𝐼𝐸(𝑋))) = ℎ(𝑋/𝐼𝐸(𝑋)) + ℎ(𝐼𝐸(𝑋)/𝐼𝐸(𝐼𝐸(𝑋))) = 0. 
 

By Theorem (6.2.47) we get 𝐼𝐸(𝐼𝐸(𝑋)) ⊇ 𝐼𝐸(𝑋). Thus 𝐼𝐸(𝐼𝐸(𝑋)) = 𝐼𝐸(𝑋). 
     Now we describe the relation between ∆1(𝑋) and 𝐼𝐸(𝑋) for algebraic actions. 

Theorem (6.2.51)[396]: Let Γ  act on a compact abelian group X  by automorphisms. 

Suppose that  X̂ is a finitely generated left ℤΓ-module. Then ∆1(X) ⊆ IE(X). 
     Before giving the proof of Theorem (6.2.51), we use it to give a partial answer to a 

question of Deninger. For any countable discrete (not necessarily amenable) group Γ, and 

any invertible element  𝑓 in the group von Neumann algebra ℒΓ of Γ, the Fuglede-Kadison 

determinant detℒΓ 𝑓 is defined [419], which is a positive real number. We refer the reader 

to [412],[454] and [443] for background on ℒΓ and detℒΓ 𝑓. Deninger asked [412] if  𝑓 ∈
ℤΓ is invertible in ℓ1(Γ) and has no left inverse in ℤΓ, then whether detℒΓ 𝑓 > 1. This was 

answered affirmatively by Deninger and Schmidt  [413] in the case Γ is residually finite 

and amenable. Now we answer Deninger’s question for all countable amenable groups: 

Corollary (6.2.52)[396]; Suppose that 𝑓 ∈ ℤΓ  is invertible in ℓ1(Γ)  and has no left 

inverse in ℤΓ. Then detℒΓ 𝑓 > 1. 

Proof: Let  𝑋 𝑓  be as in Notation (6.2.20). Since 𝑓  has no left inverse in ℤΓ, the left ℤΓ-

module  ℤΓ/ℤΓ𝑓  is nontrivial, and hence 𝑋 𝑓 consists of more than one point. As  𝑓  is 

invertible in ℓ1(Γ), by Lemma (6.2.35) ∆1(𝑋 𝑓) is dense in  𝑋 𝑓 and hence is nontrivial. In 

virtue of Theorem (6.2.51), 𝐼𝐸(𝑋 𝑓) is nontrivial. By Theorem (6.2.47)one has ℎ(𝑋 𝑓) > 0. 

states that for any g ∈ ℤΓ  being invertible in  ℒΓ , one has ℎ(𝑋g) =  log detℒΓg . As 

invertibility in  ℓ1(Γ)  implies invertibility in  ℒΓ  ,we get log detℒΓ𝑓 =  ℎ(𝑋 𝑓) > 0 . 

Therefore detℒΓ𝑓 > 1. 

     Theorem (6.2.51)follows from Proposition (6.2.37) and the next result, which is 

inspired by the proof of [413]. 

Proposition (6.2.53)[396]: Let Γ act on a compact group 𝑋 by automorphisms. Let 𝑥 ∈ 𝑋 

such that  ∑ 𝜌(𝑠𝑥,  𝑒𝑋) < +∞𝑠∈Γ   for some compatible translation-invariant metric 𝜌 on 𝑋. 
Then  𝑥 ∈ 𝐼𝐸(𝑋). 
Proof: Let 𝑈1and 𝑈0 be neighborhoods of x and 𝑒𝑋 in 𝑋 respectively. Then  there exists 

𝜀 > 0  such that 𝑈1 ⊇ {𝑦 ∈ 𝑋 ∶ 𝜌(𝑦, 𝑥) < 𝜀}  and 𝑈0 ⊇ {𝑦 ∈ 𝑋 ∶ 𝜌(𝑦,  𝑒𝑋) < 𝜀} . Since  

∑  𝜌(𝑠𝑥,  𝑒𝑋) < +∞𝑠∈Γ , we can find a nonempty finite 𝐾  of Γ  such that  

∑  𝜌(𝑠𝑥,  𝑒𝑋) <  𝜀𝑠∈Γ\K . 

     Let  𝐹 be a nonempty finite subset of Γ. By Lemma (6.2.28) there exists  𝐹1 ⊆ 𝐹 With  
|𝐹1|

|𝐹| 
≥

1

2|𝐾|+1
 and ((𝐹1𝐹1

−1)\{𝑒Γ}) ⊆ Γ\𝐾. Say,  𝐹1 = {𝑠1, . . . , 𝑠|𝐹1|}. For each  𝜎 ∈ {0, 1}𝐹1 , 

set 

𝑦𝜎 = (𝑠1
−1𝑥)𝜎(𝑠1)(𝑠2

−1𝑥)𝜎(𝑠1) · · ·  (𝑠|𝐹1|
−1 𝑥)

𝜎(𝑠𝐹1) . 

We claim that 𝑠(𝑦𝜎) ∈ 𝑈𝜎(𝑠) for every  𝑠 ∈ 𝐹1. Let  𝑠 ∈ 𝐹1. Since 𝜌 is translation invariant, 

we have 
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𝜌(𝑤1𝑤2. . . 𝑤𝑘 , 𝑧1𝑧2 · · · 𝑧𝑘) ≤∑𝜌(𝑤𝑖 , 𝑧𝑖)

𝑘

𝑖=1

 

for all 𝑘 ∈ ℕ and 𝑤1, . . . , 𝑤𝑘  , 𝑧1,· · ·, 𝑧𝑘 ∈ 𝑋. Thus 

𝜌 (𝑠(𝑦𝜎), 𝑥
(𝑠1

−1𝑥)
𝜎(𝑠)

) ≤ 𝜌((𝑠𝑠−1𝑥)𝜎(𝑠), 𝑥𝜎(𝑠)) + ∑ 𝜌((𝑠(𝑠′)−1𝑥)𝜎(𝑠
′), 𝑒𝑋)

𝑠′∈𝐹1\{𝑠}

                

= ∑ 𝜌((𝑠(𝑠′)−1𝑥)𝜎(𝑠
′), 𝑒𝑋)

𝑠′∈𝐹1\{𝑠}

.                    

Since 𝑠(𝑠′)−1 ∈ Γ\𝐾 for every  𝑠 ∈ 𝐹1\{𝑠}, we get 

 

𝜌(𝑠(𝑦𝜎), 𝑥
𝜎(𝑠)) ≤ ∑ 𝜌(𝑠′′𝑥, 𝑒𝑋) < 𝜀

𝑠′′∈Γ\𝐾

.                                          

Therefore (𝑦𝜎) ∈ 𝑈𝜎(𝑠) . This proves the claim. Thus  𝐹1  is an independence set for 

(𝑈1, 𝑈0). Then (𝑥, 𝑒𝑋) ∈ 𝐼𝐸2(𝑋) and hence  𝑥 ∈ 𝐼𝐸(𝑋). 
Throughout Γ will be a countable amenable group. 

     Let (𝑋,  𝔅𝑋, 𝜇) be a standard probability space. That is, (𝑋,  𝔅𝑋) is a standard Borel 

space [434] and 𝜇 is a probability measure on  𝔅𝑋. Let Γ act on (𝑋,  𝔅𝑋, 𝜇) via measure-

preserving automorphisms. The P insker algebra of this action, denoted by ∏(𝑋)  or 

∏(𝑋,  𝔅𝑋, 𝜇), is the 𝜎-algebra on 𝑋 consisting of  𝐴 ∈  𝔅𝑋 such that  ℎ𝜇({𝐴, 𝑋\𝐴}) = 0. 

For two sub-𝜎-algebras 𝐵1 and  𝔅1 of   𝔅𝑋 , we write  𝔅1 =  𝔅2 mod 𝜇 if for every  𝐴1 ∈
 𝔅1 there exists  𝐴2 ∈  𝔅2 with   𝜇(𝐴1∆𝐴2) = 0, and vice versa.  

     For a compact space 𝑋 (recall that all compact spaces are assumed to be metrizable), 

we denote by  𝔅𝑋 the 𝜎-algebra of Borel subsets of 𝑋. Note that if 𝑋 is a compact space 

and 𝜇 is a probability measure on  𝔅𝑋, then (𝑋,  𝔅𝑋, 𝜇) is a standard probability space.  

     Recall that we denote by 𝜇𝑋 the normalized Haar measure of a compact group 𝑋. Also 

recall that when Γ acts on a compact space 𝑋 continuously, we denote by ℳ(𝑋, Γ) the set 

of all Γ -invariant Borel probability measures on 𝑋. 

     The following theorem is the main result, saying that 𝐼𝐸(𝑋) determines the 𝑃insker 

algebra with respect to 𝜇𝑋 . 

Theorem (6.2.54)[396]: Let  Γ act on two standard probability spaces (𝑋,  𝔅𝑋, 𝜇𝑋 ) and 

(𝑌,  𝔅𝑌, 𝜇𝑌) via measure-preserving automorphisms. For the product action of Γ on  (𝑋 ×
𝑌,  𝔅𝑋 ×  𝔅𝑌, 𝜇𝑋 × 𝜇𝑌), one has  ∏(𝑋 × 𝑌 ) =  ∏(𝑋) × ∏(𝑌) mod  𝜇𝑋 × 𝜇𝑌.  
Lemma (6.2.55)[396]:  Let Γ  act on a compact group 𝑋  by automorphisms. Let 𝜈 ∈
ℳ(𝑋, Γ). Then  𝑥 · ∏(𝑋,  𝔅𝑋, 𝜇𝑋) ,∏(𝑋,  𝔅𝑋, 𝜇𝑋) · 𝑥 ⊆ ∏(𝑋,  𝔅𝑋, 𝜈) for all 𝑥 ∈ 𝑋. 

Proof: Denote by 𝜋 the product map 𝑋 × 𝑋 → 𝑋 sending (𝑥, 𝑦) to 𝑥𝑦. By Lemma (6.2.44) 

this is a measure-theoretic factor map (𝑋 × 𝑋,  𝔅𝑋 ×  𝔅𝑋, 𝜇𝑋 × 𝜈) → (𝑋,  𝔅𝑋, 𝜇𝑋) .Then  

𝜋−1(∏(𝑋,  𝔅𝑋, 𝜇𝑋)) ⊆  ∏(𝑋 × 𝑋,  𝔅𝑋 ×  𝔅𝑋, 𝜇𝑋 × 𝜈).  Let  𝐴 ∈ ∏(𝑋,  𝔅𝑋, 𝜇𝑋) . By 

Theorem (6.2.54) we can find  𝐵 ∈ ∏(𝑋,  𝔅𝑋, 𝜇𝑋) × ∏(𝑋,  𝔅𝑋, 𝜈)  with  (𝜇𝑋 ×
𝜈)(𝜋−1(𝐴)∆𝐵) = 0. Denote by  𝜒𝜋−1(𝐴) the characteristic function of  𝜋−1(𝐴). Then  

𝜒𝜋−1(𝐴) ∈ 𝐿1(𝑋 × 𝑋,∏(𝑋,  𝔅𝑋, 𝜇𝑋) × ∏(𝑋,  𝔅𝑋, 𝜈) , 𝜇𝑋 × 𝜈) . By the Fubini Theorem 

[464], the function 𝑦 ↦ 𝜒𝜋−1(𝐴)(𝑥, 𝑦) = 𝜒𝐴(𝑥𝑦) = 𝜒𝑥−1  𝐴(𝑦)  is in 

𝐿1(𝑋,∏(𝑋,  𝔅𝑋, 𝜈), 𝜈)  for 𝜇𝑋   almost all  𝑥 ∈ 𝑋 . That is, there exists  𝐸 ∈  𝔅𝑋  with  

𝜇𝑋(𝐸) = 0 such that the function  𝜒𝑥−1  𝐴 is in  𝐿1(𝑋,∏(𝑋,  𝔅𝑋, 𝜈), 𝜈) for every  𝑥 ∈ 𝑋\𝐸. 

     Since supp(𝜇𝑋) = 𝑋, the set  𝑋\𝐸 is dense in  𝑋. Let  𝑥0 ∈ 𝑋. Since 𝑋 is metrizable, 

we can find a sequence {𝑥𝑛}𝑛∈ℕ in 𝑋\𝐸 with  𝑥𝑛 → 𝑥0 as 𝑛 → ∞. For each 𝑛 ∈ ℕ, since 
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the function  𝜒𝑥−1
𝑛    is in  𝐿1(𝑋,∏(𝑋,  𝔅𝑋, 𝜈), 𝜈), we can find some  𝐴𝑛 ∈ ∏(𝑋,  𝔅𝑋, 𝜈) such 

that  𝜈(𝐴𝑛_(𝑥𝑛
−1 𝐴)) = 0. When 𝑛 → ∞, since  𝑥𝑛 → 𝑥0 and 𝜈 is regular [474], we have 

𝜈((𝑥𝑛
−1 𝐴)∆(𝑥0

−1 𝐴)) → 0  and hence 𝜈(𝐴𝑛∆(𝑥0
−1𝐴)) → 0 . Passing to a subsequence of  

{𝑥𝑛}𝑛∈ℕ  if necessary, we may assume that ∑ 𝜈(𝐴𝑛∆(𝑥0
−1𝐴)) < +∞𝑛∈ℕ   . It follows that 

lim𝑘→∞ 𝜈((𝑥0
−1𝐴))∆(⋃ 𝐴𝑛𝑛≥𝑘 )) = 0   and hence 𝜈((𝑥0

−1𝐴)∆(⋂ ⋃ 𝐴𝑛𝑛≥𝑘𝑘∈ℕ )) = 0 . Note 

that if  𝐴′ ∈  𝔅𝑋 satisfies  𝜈(𝐴′) = 0, then  𝐴′ ∈  ∏(𝑋,  𝔅𝑋, 𝜈). Since  ⋂ ⋃ 𝐴𝑛𝑛≥𝑘𝑘∈ℕ   is in 

(𝑋,  𝔅𝑋, 𝜈),we conclude that  𝑥0
−1𝐴 is in  ∏(𝑋,  𝔅𝑋, 𝜈).  This proves  𝑥 · ∏(𝑋,  𝔅𝑋, 𝜇𝑋) ⊆

 ∏(𝑋,  𝔅𝑋, 𝜈) for all  𝑥 ∈ 𝑋. Similarly, one has  ∏(𝑋,  𝔅𝑋, 𝜇𝑋) · 𝑥 ⊆  ∏(𝑋,  𝔅𝑋, 𝜈) for all 

𝑥 ∈ 𝑋. 

Theorem (6.2.56)[396]: Let 𝛤 act on a compact group 𝑋 by automorphisms. Denote by 𝑞 

the quotient map 𝑋 → 𝑋/𝐼𝐸(𝑋). Then the following hold: 

    (i) 𝑞−1( 𝔅𝑋/𝐼𝐸(𝑋)) =  ∏(𝑋,  𝔅𝑋, 𝜇𝑋) mod  𝜇𝑋 .  

   (ii) For any  𝜈 ∈ ℳ(𝑋, 𝛤), one has 𝑞−1( 𝔅𝑋/𝐼𝐸(𝑋)) ⊆  ∏(𝑋,  𝔅𝑋, 𝜇𝑋) ⊆ ∏(𝑋,  𝔅𝑋, 𝜈). 

     We shall need the following result of  Danilenko [410], which was proved first by 

Glasner et al. [421] in the case that the actions of 𝛤 on both (𝑋,  𝔅𝑋, 𝜇𝑋) and (𝑌,  𝔅𝑌, 𝜇𝑌)  
are free and ergodic. Though Danilenko assumed 𝛤 to be infinite in [410], the following 

result holds trivially when 𝛤 is finite, since in such case the Pinsker algebra consists of 

measurable sets with measure 0 or 1 . 

Proof: (i) By Lemma (6.2.55) we have  𝑥 · ∏(𝑋,  𝔅𝑋, 𝜇𝑋) ,∏(𝑋,  𝔅𝑋, 𝜇𝑋) · 𝑥 ⊆
∏(𝑋,  𝔅𝑋, 𝜇𝑋) for all 𝑥 ∈ 𝑋. Thus, by [468], is a closed 𝛤 -invariant normal subgroup 𝑌 of 

𝑋  such that 𝑞1
−1( 𝔅𝑋/𝑌 ) = ∏(𝑋,  𝔅𝑋, 𝜇𝑋) mod  𝜇𝑋 , where 𝑞1  denotes the quotient map 

𝑋 → 𝑋/𝑌 .In particular,  ℎ(𝑞1)∗( 𝜇𝑋)(𝑋/𝑌 ) = 0. By Theorem (6.2.47), there is a surjective 

continuous map  𝑞′ ∶ 𝑋/𝐼𝐸(𝑋) → 𝑋/𝑌  such that 𝑞′ ∘ 𝑞 = 𝑞1 . Clearly 𝑞   is a group 

homomorphism  and hence is open. 

     Every continuous open surjective map between compact metrizable spaces has a Borel 

[398]. Thus we can find a Borel map 𝜓 ∶ 𝑋/𝑌 → 𝑋/𝐼𝐸(𝑋) such that 𝑞′ ∘ 𝜓 is the identity 

map on 𝑋/𝑌  . It is easily verified that the map  𝜙 ∶ 𝑋/𝑌 × ker 𝑞′ → 𝑋/𝐼𝐸(𝑋) sending 

(𝑧, 𝑦)  to 𝜓(𝑧)𝑦  is an isomorphism from the measurable space (𝑋/𝑌 × ker 𝑞′,  𝔅𝑋/𝑌 ×

 𝔅ker 𝑞′)  onto  the measurable space (𝑋/𝐼𝐸(𝑋),  𝔅𝑋/𝐼𝐸(𝑋)) .We claim that  𝜙∗(𝜇𝑋/𝑌 ×

𝜇ker 𝑞′)  is left-translation invariant. Let  𝐴 ∈  𝔅𝑋/𝑌  𝔅ker 𝑞′  and (𝑧1, 𝑦1) ∈ (𝑋/𝑌 ) ×

ker 𝑞′. For each  𝑧 ∈ 𝑋/𝑌 , denote by 𝐴𝑧 the set {𝑦 ∈ ker 𝑞′ ∶ (𝑧, 𝑦) ∈ 𝐴}. Note that 𝐴𝑧 ∈
 𝔅ker 𝑞′ for every  𝑧 ∈ 𝑋/𝑌. For any (𝑧2, 𝑦2) ∈ (𝑋/𝑌 ) × ker 𝑞′, we have 

 

𝜙(𝑧1, 𝑦1)𝜙(𝑧2, 𝑦2) = 𝜙(𝑧1𝑧2, 𝜓(𝑧1𝑧2)
−1𝜓(𝑧1)𝑦1𝜓(𝑧2)𝑦2).                     

Thus, for any 𝑧2 ∈  𝑋/𝑌  , one has (𝜙−1(𝜙(𝑧2, 𝑦1)𝜙(𝐴)))𝑧1𝑧2 =
 𝜓(𝑧1𝑧2)

−1𝜓(𝑧1)𝑦1𝜓(𝑧2)𝐴𝑧2  and hence 𝜇ker 𝑞′((𝜙
−1(𝜙(𝑧1, 𝑦1)𝜙(𝐴)))𝑧1𝑧2) =

𝜇ker 𝑞′(𝐴𝑧2). Therefore, 

(𝜇𝑋/𝑌 × 𝜇ker 𝑞′)(𝜙
−1(𝜙(𝑧1, 𝑦1)𝜙(𝐴))) = ∫ 𝜇ker 𝑞′

2

𝑋/𝑌

((𝜙−1(𝜑(𝑧1, 𝑦1)                             

                                         × 𝜙(𝐴)))𝑧1𝑧2)𝑑𝜇𝑋/𝑌 (𝑧1𝑧2) 

                                           = ∫ 𝜇ker𝑞′

2

𝑋/𝑌

(𝐴𝑧2)𝑑𝜇𝑋/𝑌 (𝑧2) 
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                               = (𝜇𝑋/𝑌 × 𝜇ker 𝑞′)(𝐴). 

This proves our claim. Therefore 𝜙∗(𝜇𝑋/𝑌 × 𝜇ker𝑞′)  =  𝜇𝑋/𝐼𝐸(𝑋) . Also note that the 

measures  (𝑞1)∗(𝜇𝑋 ), (𝑞′)∗𝜇𝑋/𝐼𝐸(𝑋)), and  𝑞∗(𝜇𝑋) are all translation  invariant, and hence 

(𝑞1)∗(𝜇𝑋 ) = (𝑞′)∗𝜇𝑋/𝐼𝐸(𝑋)) = 𝜇𝑋/𝑌  and 𝑞∗(𝜇𝑋) = 𝜇𝑋/𝐼𝐸(𝑋). 

     We claim that 𝑞′ is an isomorphism. Suppose that 𝑞′ is not injective. Then we can find 

disjoint nonempty open subsets 𝑈 and 𝑉 of ker 𝑞′. Since supp(𝜇ker𝑞′)  =  ker 𝑞′, we have 

0 <  𝜇ker𝑞′(𝑈) < 1. By Theorem (6.2.47) we have ℎ𝑞∗(𝜇𝑋)(𝑋/𝐼𝐸(𝑋)) = 0, and hence 

𝑞−1( 𝔅𝑋/𝐼𝐸(𝑋)) ⊆  ∏(𝑋,  𝔅𝑋, 𝜇𝑋 ). Note that  (𝑋/𝑌 ) × 𝑈 ∈  𝔅𝑋/𝑌 ×  𝔅ker 𝑞′ , and hence 

𝜙((𝑋/𝑌 ) × 𝑈) =  𝜓(𝑋/𝑌 )𝑈 is in   𝔅𝑋/𝐼𝐸(𝑋). As  𝑞1
−1 ( 𝔅(𝑋/𝑌 ) = ∏(𝑋,  𝔅𝑋, 𝜇𝑋) mod 𝜇𝑋 

, we can find some 𝐴 ∈  𝔅(𝑋/𝑌 )  with  𝜇𝑋(𝑞1
−1 (𝐴)Δ𝑞−1(𝜓(𝑋/𝑌 )𝑈)) = 0. Then 

𝜇𝑋/𝐼𝐸(𝑋)((𝑞′)
−1(𝐴)Δ(𝜓(𝑋/𝑌 )𝑈)) = 𝑞∗(𝜇𝑋)((𝑞′)

−1(𝐴)Δ(𝜓(𝑋/𝑌 )𝑈))                                

                                             = 𝜇𝑋 (𝑞
−1((𝑞′)−1(𝐴))Δ𝑞−1(𝜓(𝑋/𝑌 )𝑈)) 

                                        =  𝜇𝑋(𝑞1
−1(𝐴)Δ𝑞−1(𝜓(𝑋/𝑌 )𝑈)) =  0.                      (19) 

Note that 

𝜇𝑋/𝐼𝐸(𝑋)(𝜓(𝑋/𝑌 )𝑈) = 𝜙∗(𝜇𝑋/𝑌 × 𝜇ker 𝑞′)(𝜙((𝑋/𝑌 ) × 𝑈))                                  

= 𝜇𝑋/𝑌 (𝑋/𝑌 ) · 𝜇ker 𝑞′(𝑈)                

= 𝜇ker𝑞′(𝑈) > 0,                                

and hence 

𝜇𝑋/𝑌 (𝐴) = 𝑞∗
′(𝜇𝑋/𝐼𝐸(𝑋))(𝐴) =  𝜇𝑋/𝐼𝐸(𝑋)((𝑞′)

−1(𝐴))                                

= 𝜇𝑋/𝐼𝐸(𝑋)(𝜓(𝑋/𝑌 )𝑈) > 0.                                        

Then 

𝜇𝑋/𝐼𝐸(𝑋)((𝑞′)
−1(𝐴) ∩ (𝜓(𝑋/𝑌 )𝑈))                                                           

= 𝜇𝑋/𝐼𝐸(𝑋)((𝜓(𝐴) ker 𝑞′) ∩ (𝜓(𝑋/𝑌 )𝑈))                                        

= 𝜙∗(𝜇𝑋/𝑌 × 𝜇𝑘𝑒𝑟 𝑞′)(𝜙(𝐴 × ker 𝑞′) ∩ 𝜙((𝑋/𝑌 ) × 𝑈))               

= 𝜙∗(𝜇𝑋/𝑌 × 𝜇𝑘𝑒𝑟 𝑞′)(𝜙((𝐴 × ker 𝑞′) ∩ ((𝑋/𝑌 ) × 𝑈))               

= 𝜙∗(𝜇𝑋/𝑌 × 𝜇𝑘𝑒𝑟 𝑞′)(𝜙(𝐴 ×  𝑈))                                                       

= 𝜇𝑋/𝑌 (𝐴) · 𝜇𝑘𝑒𝑟 𝑞′(𝑈)                                                                           

< 𝜇𝑋/𝑌 (𝐴) = 𝜇𝑋/𝐼𝐸(𝑋)(𝜓(𝑋/𝑌 )𝑈),                                                    

contradict to the equality (19). Therefore 𝑞′ is an isomorphism. Then 𝑞−1( 𝔅𝑋/𝐼𝐸(𝑋)) =

(𝑞1)
−1( 𝔅𝑋/𝑌) =  ∏(𝑋,  𝔅𝑋, 𝜇𝑋 ) mod  𝜇𝑋 .  

     (ii). Since ∏(𝑋,  𝔅𝑋, 𝜇𝑋 ) contains all  𝐴 ∈  𝔅𝑋 with  𝜇𝑋 (𝐴) = 0, from the assertion (i) 

we conclude that  𝑞−1( 𝔅𝑋/𝐼𝐸(𝑋)) ⊆ ∏(𝑋,  𝔅𝑋, 𝜇𝑋 ). Taking 𝑥 = 𝑒𝑋  in Lemma (6.2.55), 

we get  ∏(𝑋,  𝔅𝑋, 𝜇𝑋 ) ⊆  ∏(𝑋,  𝔅𝑋, 𝜈). 
      We say that an action of Γ  on a compact group 𝑋  by automorphisms has CPE if 

∏(𝑋,  𝔅𝑋, 𝜇𝑋 ) consists of Borel sets with 𝜇𝑋 -measure 0 or 1. From Theorem (6.2.56) we 

get 

Corollary (6.2.57)[396]: Let 𝛤 act on a compact group 𝑋 by automorphisms. Then 

𝐼𝐸(𝑋) = 𝑋  if and only if the action has CPE. 

     In the case Γ =  ℤ𝑑 for some 𝑑 ∈ ℕ and 𝑋 is abelian, the following corollary was proved 

by Lind et al. [448], [468]. 

Corollary (6.2.58)[396]: Let Γ act on a compact group 𝑋 by automorphisms and let 𝑌 be a 

closed Γ-invariant normal subgroup of 𝑋. Suppose that both the restriction of the action on 

𝑌 and the induced action on 𝑋/𝑌 have 𝐶𝑃𝐸. Then the action itself has 𝐶𝑃𝐸. 
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Proof: By Corollary (6.2.57) we have 𝐼𝐸(𝑌 ) = 𝑌 and  𝐼𝐸(𝑋/𝑌 ) = 𝑋/𝑌, and it suffices to 

show that 𝐼𝐸(𝑋) = 𝑋. From the definition of 𝐼𝐸 tuples we have 𝐼𝐸2(𝑌 ) ⊆ 𝐼𝐸2(𝑋), and 

hence 𝑌 = 𝐼𝐸(𝑌 ) ⊆ 𝐼𝐸(𝑋). By Theorem (6.2.46).(v) one has  𝐼𝐸(𝑋)/𝑌 = 𝐼𝐸(𝑋/𝑌 ) =
 𝑋/𝑌 .Therefore 𝐼𝐸(𝑋) = 𝑋 as desired. 

We discuss when a Γ-action on a compact group by automorphisms has a unique 

maximal measure. 

Theorem (6.2.59)[396]: Let Γ act on a compact group 𝑋 by automorphisms. Consider the 

following conditions: 

   (i) the action has 𝐶𝑃𝐸; 

   (ii) ℎ 𝜈(𝑋) < ℎ𝜇𝑋 (𝑋)  for every  𝜈 ∈ ℳ(𝑋, Γ)  not equal to 𝜇𝑋  .Then (ii)⇒(i). If 

furthermore  ℎ(𝑋) < ∞, then (i)⇔(ii). 

     For the case Γ = ℤ, Theorem (6.2.59)was proved by Berg [399]. Yuzvinski˘ı [476] 

showed that when Γ = ℤ  and the action has finite entropy, the condition (i) is also 

equivalent to that 𝜇𝑋  is ergodic. 

     When Γ = ℤ𝑑 for some 𝑑 ∈ ℕ, Lind et al. [448] proved Theorem (6.2.59) for the case 𝑋 

is abelian, and later Schmidt [468] established the general case. Ledrappier [442] showed 

that, for Γ = ℤ2, the canonical Γ-action on  𝑋 = ℤΓ/�̂� is mixing with respect to 𝜇𝑋  and has 

zero entropy, where  𝐽 = 2ℤΓ + (1 − 𝑢1 − 𝑢2)ℤΓ and 𝑢1, 𝑢2 denote the canonical basis of  

ℤ2. 

      For a standard probability space (𝑋,  𝔅𝑋), we say that two 𝜎-algebras  𝔅1,  𝔅2 ⊆ 𝔅𝑋 

are independent if  𝜇(𝐴 ∩ 𝐵) = 𝜇(𝐴)𝜇(𝐵) for all  𝐴 ∈  𝔅1  and 𝔅 ∈  𝔅2 . We need the 

following result of Danilenko [410] (in the statement of  the condition ℎ𝜇(𝑋) < +∞ is 

missing). 

Theorem (6.2.60)[396]: Let Γ act on a standard probability space (𝑋,  𝔅𝑋, 𝜇) via measure-

preserving automorphisms. Suppose that  ℎ𝜇(𝑋) < +∞. Let  𝔅1  and  𝔅2  be Γ-invariant 

sub-𝜎-algebras of  𝔅𝑋. Then  𝔅1 and  𝔅2 are independent if  and only if ∏(𝑋,  𝔅1, 𝜇) and 

∏(𝑋,  𝔅2, 𝜇) are independent and 

 

ℎ𝜇( 𝔅1 ∨  𝔅2) = ℎ𝜇( 𝔅1) + ℎ𝜇( 𝔅2). 

     We are ready to prove Theorem (6.2.59). 

Proof: Assume that the condition (ii) holds. By Proposition (6.2.4) and Theorem (6.2.47) 

we have 

ℎ(𝑋) = ℎ(𝐼𝐸(𝑋)) + ℎ(𝑋/𝐼𝐸(𝑋)) = ℎ(𝐼𝐸(𝑋)) = ℎ𝜇𝐼𝐸(𝑋)(𝐼𝐸(𝑋)) = ℎ𝜇𝐼𝐸(𝑋)(𝑋). 

Thus  𝜇𝐼𝐸(𝑋) = 𝜇𝑋 , and hence 𝐼𝐸(𝑋) = 𝑋. By Corollary (6.2.57)the condition (i) holds. 

     Now assume that ℎ(𝑋) < ∞ and that the condition (i) holds. Let 𝜈 ∈ ℳ(𝑋, Γ)  with  

ℎ𝜈(𝑋) = ℎ𝜇𝑋 (𝑋). We shall show that 𝜈 = 𝜇𝑋  . Denote by 𝜋1  and 𝜋 the first coordinate 

map  𝑋 × 𝑋 → 𝑋 sending (𝑥, 𝑦) to 𝑥 and the product map 𝑋 × 𝑋 → 𝑋 sending (𝑥, 𝑦) to 𝑥𝑦 

respectively. Set   𝔅1 = 𝜋1
−1( 𝔅𝑋) and   𝔅2 = 𝜋−1( 𝔅𝑋). As  𝑋 is compact metrizable, 

 𝔅𝑋×𝑋 =  𝔅𝑋 ×  𝔅𝑋 . By [399], both  𝔅1  and  𝔅2  are  Γ -invariant sub-𝜎 -algebras of  

 𝔅𝑋×𝑋, and  𝔅1 ∨  𝔅2 =  𝔅𝑋 ×  𝔅𝑋 . The condition (i) says that ∏(𝑋,  𝔅𝑋, 𝜇𝑋 ) consists of 

elements in  𝔅𝑋  with 𝜇𝑋 -measure 0  or 1 . Then ∏(𝑋 × 𝑋,  𝔅1, 𝜇𝑋 × 𝜈) =
 𝜋1

−1(_(𝑋,  𝔅𝑋, 𝜇𝑋 )) consists of elements in   𝔅𝑋×𝑋   with  𝜇𝑋 × 𝜈-measure 0 or 1. Thus 

∏(𝑋 × 𝑋,  𝔅1, 𝜇𝑋 × 𝜈)  and ∏(𝑋 × 𝑋,  𝔅2, 𝜇𝑋 × 𝜈)  are independent under 𝜇𝑋 × 𝜈 . Note 

that 
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ℎ𝜇𝑋×𝜈( 𝔅1 ∨  𝔅2) =  ℎ𝜇𝑋×𝜈( 𝔅𝑋 ×  𝔅𝑋) = ℎ𝜇𝑋( 𝔅𝑋) + ℎ𝜈( 𝔅𝑋) = 2ℎ𝜇𝑋  ( 𝔅𝑋), 

and by Lemma (6.2.44) , 

 

ℎ𝜇𝑋×𝜈( 𝔅1) + ℎ𝜇𝑋×𝜈( 𝔅2) = ℎ𝜇𝑋 ( 𝔅𝑋) + ℎ𝜇𝑋  ( 𝔅𝑋) = 2ℎ𝜇𝑋 ( 𝔅𝑋). 

Thus 

ℎ𝜇𝑋×𝜈( 𝔅1⋁ 𝔅2) = ℎ𝜇𝐺×𝜈( 𝔅1) + ℎ𝜇𝑋×𝜈( 𝔅2). 

By Theorem (6.2.60) we see that  𝔅1  and  𝔅2  are independent with respect to 𝜇𝑋 × 𝜈 . 

From [399] or [468] we conclude that  𝜇𝑋 = 𝜈. 

Throughout Γ will be a countable amenable group. 

     Let Γ act on a compact abelian group 𝑋 by automorphisms, and 1 ≤  𝑝 ≤ +∞.We shall 

treat Δ𝑝(𝑋) and its Γ-invariant subgroups 𝐺 as discrete abelian groups, thus consider the 

induced Γ-action on the Pontryagin dual  Δ𝑝(𝑋)̂   and  �̂�  by automorphisms. The pair 

(�̂�, 𝐺) will be treated as a dual pair. 

     We first give some conditions for ℎ(𝑋)  to be bounded below by  ℎ( Δ𝑝(𝑋)̂ ) . The 

definition of entropy is recalled. 

Lemma (6.2.61)[396]: Let 1 ≤ 𝑝 < +∞. There exists some universal constant 𝐶𝑝 > 0 

such that for any 𝜆 > 1, there is some 𝛿 > 0 so that for any nonempty finite set 𝑌 , any 

positive integer 𝑛 with |𝑌| ≤ 𝛿𝑛, and any 𝑀 ≥ 1 one has 

 

|{𝑥 ∈ ℤ𝑌: ‖𝑥‖𝑝 ≤ 𝑀 · 𝑛1/𝑝}| ≤ 𝐶𝑝𝜆
𝑛𝑀|𝑌|. 

Proof: Let 𝛿 > 0 be a small number less than 𝑒−1 which we shall determine in a moment. 

Let 𝑌 be a nonempty finite set, 𝑛 be a positive integer with |𝑌| ≤ 𝛿𝑛, and 𝑀 ≥ 1. For each 

𝑥 ∈ ℤ𝑌  , denote {𝑧 ∈ ℝ𝑌 ∶ 0 ≤ 𝑧𝑦 − 𝑥𝑦 ≤ 1  for all 𝑦 ∈ 𝑌 }  by 𝐷𝑥  . Denote {𝑥 ∈ ℤ𝑌 ∶

 ‖𝑥‖𝑝 ≤ 𝑀 · 𝑛1/𝑝}  by 𝑆  and denote the union of 𝐷𝑥  for all  𝑥 ∈ 𝑆  by 𝐷𝑆 . Then the 

(Euclidean) volume of 𝐷𝑆 is equal to |𝑆|. Note that for any  𝑧 ∈ 𝐷𝑆, say  𝑧 ∈ 𝐷𝑥 , one has 

 

‖𝑧‖𝑝 ≤ ‖𝑥‖𝑝 + ‖𝑧 − 𝑥‖𝑝 ≤ 𝑀 · 𝑛1/𝑝 + 𝑛1/𝑝 ≤  2𝑀𝑛1/𝑝. 

      A simple calculation shows that the function 𝜍(𝑡) ∶=  (𝑛/𝑡)𝑡/𝑝  is increasing for 0 <

𝑡 ≤  𝑛𝑒−1. The volume of the unit ball of RY under ‖ · ‖𝑝 is  
(2/𝑝)|𝑌|(Γ(1/𝑝))|𝑌|

(|𝑌|/𝑝)Γ(|𝑌 |/𝑝)
, where Γ 

denotes the gamma function. By Stirling’s formula [440] there exists some constant 𝐶′ >

0 such that  Γ(𝑡) ≥ 𝐶√2𝜋𝑡𝑡−1/2𝑒−𝑡 for all  𝑡 ≥ 1/𝑝. Thus the volume of  𝐷𝑆 is no bigger 

than  

(2/𝑝)|𝑌|(Γ(1/𝑝))|𝑌|(2𝑀𝑛1/𝑝)|𝑌|

(|𝑌|/𝑝)Γ(|𝑌 |/𝑝)
≤

(2/𝑝)|𝑌|(Γ(1/𝑝))|𝑌|(2𝑀𝑛1/𝑝)|𝑌|

(|𝑌|/𝑝)𝐶′√2𝜋  (|𝑌|/𝑝)|𝑌|/𝑝−1/2𝑒−|𝑌|/𝑝
                            

 

                   ≤ |𝑌|−1/2𝐶𝑝�̃�
|𝑌|(𝑛/|𝑌|)|𝑌|/𝑝𝑀|𝑌| 

≤ 𝐶𝑝�̃�
|𝑌|𝜍(|𝑌|)𝑀|𝑌|     

                                  ≤ 𝐶𝑝�̃�
𝛿𝑛𝜍(𝛿𝑛)𝑀|𝑌| = 𝐶𝑝�̃�

𝛿𝑛𝛿−𝛿𝑛/𝑝𝑀|𝑌| 

Where  𝐶𝑝 = √𝑝/(2𝜋)/𝐶′ and �̃� = max(4𝑒1/𝑝 𝑝(1−𝑝)/𝑝Γ(1/𝑝), 1). Take 𝛿 >  0 so small 

that �̃�𝛿𝛿−𝛿/𝑝 ≤ 𝜆 . Then the volume of 𝐷𝑆  is no bigger than 𝐶𝑝𝜆
𝑛𝑀|𝑌| . Consequently,  

|𝑆| ≤ 𝐶𝑝𝜆
𝑛𝑀|𝑌|. 
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     Let Γ act on a compact abelian group 𝑋 by automorphisms. For any nonempty finite 

subset 𝐸 of �̂� , the function  𝐹 ↦ log |∑ 𝑠−1𝐸|𝑠∈𝐹   defined on the set of nonempty finite 

subsets of Γsatisfies the conditions of the Ornstein-Weiss lemma [205], thus  
log | ∑ 𝑠−1𝐸|𝑠∈𝐹

|𝐹|
  

converges to some real number c, denoted by  lim𝐹
log | ∑ 𝑠−1𝐸|𝑠∈𝐹

|𝐹|
   , when 𝐹 becomes more 

and more left invariant. That is, for any 𝜀 > 0, there exist a nonempty finite subset 𝐾 of Γ 

and 𝛿 > 0 such that for any nonempty finite subset 𝐹 of Γ satisfying |𝐾𝐹\𝐹| ≤ 𝛿|𝐹| one 

has |
log | ∑ 𝑠−1𝐸|𝑠∈𝐹

|𝐹|
− 𝑐| <  𝜀. We need the following  beautiful result of  Peters [460]: 

Theorem (6.2.62)[396]: Let Γ act on a compact abelian group 𝑋 by automorphisms. Then 

 

ℎ(𝑋) = sup
𝐸

lim
𝐹

log |∑ 𝑠−1𝐸|𝑠∈𝐹

|𝐹|
, 

where 𝐸 ranges over all nonempty finite subsets of  �̂�. 

     In [460], Theorem (6.2.62) was stated and proved only for the case Γ = ℤ, but the proof 

there works for general countable amenable groups. 

Theorem (6.2.63)[396]: Let 𝑘, 𝑛 ∈ ℕ and  𝐴 ∈ 𝑀𝑛×𝑘(ℤΓ). Let 𝑋 be a closed Γ-invariant 

subgroup of  (ℤΓ)𝑘/(ℤΓ)𝑛̂  𝐴  . Let 1 ≤ 𝑝 < +∞ . Suppose that one of the following 

conditions holds: 

    (i) 𝑝 = 1 and the linear map (ℓ𝑝(Γ))𝑘 → (ℓ𝑝(Γ))𝑛 sending a to 𝑎𝐴∗ is injective. 

   (ii) There exists 𝐶 > 0  such that ‖𝑎‖𝑝 ≤ 𝐶‖𝑎𝐴∗‖𝑝  for all 𝑎 ∈ (ℓ𝑝(Γ))𝑘  , where the 

norm ‖ · ‖𝑝 is defined by the Eq. (10). 

Then  

ℎ(𝑋) ≥  ℎ(∆𝑝(𝑋))̂ .                      
     To prove Theorem (6.2.63), we need the following lemma, of which the case 𝑝 = 2 

appeared in [443]. 

Proof: Fix a compatible translation-invariant metric 𝜌 on  𝑋. Denote by 𝐾 the support of 𝐴 

as a 𝑀𝑛×𝑘(ℤ)-valued function on Γ. When Γ  is finite and acts on a compact space 𝑌 

continuously, one has ℎtop(𝑌) = |𝑌|/|Γ|  when 𝑌  is  a finite set and ℎtop(𝑌)| = +∞ 

otherwise. Thus we may assume that Γ is infinite. 

     By Theorem (6.2.62) it suffices to show 

 

lim
𝐹

log |∑ 𝑠−1𝐸|𝑠∈𝐹

|𝐹|
≤ ℎ(𝑋) + 𝛿         

for every nonempty finite subset 𝐸 of ∆𝑝(𝑋) and every 𝛿 > 0. Fix such 𝐸 and 𝛿. Recall 

the canonical metric 𝜌∞ on  (ℝ/ℤ)𝑘 defined in (11). Take 𝜀 > 0 such that for any 𝑥 ∈ 𝑋 

with  𝜌(𝑥, 0𝑋) ≤ 𝜀 one has 𝜌∞(𝑥𝑒Γ𝑒 , 0(ℝ/ℤ)𝑘) ≤ (2‖𝐴‖1)
−1.It suffices to show 

|∑𝑠−1𝐸

𝑠∈𝐹

| ≤ 𝑁𝜌,𝐹,𝜀(𝑋) exp (𝛿|𝐹|) 

for all sufficiently left invariant nonempty finite subsets 𝐹 of 𝛤. 

     Set  𝐸′ = 𝐸 − 𝐸 ⊆ Δ𝑝(𝑋) . Denote by 𝐵𝐹,𝜀  the set of all 𝑥 ∈ 𝑋  satisfying 

max𝑠∈𝐹 𝜌(𝑠𝑥, 0𝑋) ≤ 𝜀.  Take a maximal (𝜌, 𝐹, 𝜀)-separated subset 𝑉𝐹 of  ∑ 𝑠−1𝐸𝑠∈𝐹 . Then 

for any  𝑥 ∈ ∑ 𝑠−1𝐸 𝑠∈𝐹 , since 𝜌 is translation-invariant, one can find some 𝑦 ∈ 𝑉𝐹  with  

𝑥 − 𝑦 ∈ 𝐵𝐹,𝜀. Note that  𝑥 − 𝑦 ∈ ∑ 𝑠−1𝐸′ 𝑠∈𝐹 . It follows that 
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|∑𝑠−1𝐸

𝑠∈𝐹

|  ≤  |𝑉𝐹||𝐵𝐹,𝜀 ∩∑𝑠−1𝐸′

𝑠∈𝐹

| ≤ 𝑁𝜌,𝐹,𝜀(𝑋)|𝐵𝐹,𝜀 ∩∑𝑠−1𝐸′

𝑠∈𝐹

|. 

Thus it suffices to show 

|𝐵𝐹,𝜀 ∩∑𝑠−1𝐸′

𝑠∈𝐹

| ≤ exp(𝛿|𝐹|)                                                             (20) 

for all sufficiently left invariant nonempty finite subsets 𝐹 of 𝛤. 

     Denote by 𝑃 the canonical projection map ℓ∞(𝛤,ℝ𝑘) → ((ℝ/ℤ)𝑘)𝛤. For each  𝑤 ∈ 𝐸, 

take �̃� ∈ ℓ∞(𝛤,ℝ𝑘)  with  𝑃(�̃�) =  𝑤  and ‖�̃�𝑠 ‖∞ = 𝜌∞(𝑤𝑠 , 0(ℝ/ℤ)𝑘)  for all  𝑠 ∈ 𝛤 . 

Since  𝑤 ∈ ∆𝑝(𝑋), by Proposition (6.2.33).(iv) one has  �̃� ∈ ℓ∞(𝛤,ℝ𝑘). Set �̃�  = { �̃� ∶
𝑤 ∈ 𝐸′}. For each  �̃� ∈ �̃� , one has  �̃� 𝐴∗ ∈ ℓ∞(𝛤, ℤ𝑛) ∩ ℓ𝑝(𝛤, ℝ𝑛) =  ℤ𝑛𝛤. Denote by 𝐾1 

the finite subset ⋃ supp�̃�∈�̃� (�̃�𝐴∗) of 𝛤. Note that for any nonempty finite subset 𝐹 of 𝛤 

and any  �̃� ∈ ∑ 𝑠−1𝐸′ 𝑠∈𝐹  , one has  supp(�̃�𝐴∗) ⊆ 𝐹−1𝐾1 . Let  𝐹  be a nonempty finite 

subset of  𝛤 . Let   𝑥 ∈ 𝐵𝐹,𝜀 ∩ ∑ 𝑠−1𝐸′ 𝑠∈𝐹 . Take  𝑥′ ∈ ℓ∞(𝛤,ℝ𝑘) with  𝑃(𝑥) = 𝑥  and  

‖𝑥𝑠
′‖∞ = 𝜌∞(𝑥𝑠 , 0(ℝ/ℤ)𝑘  ) for all 𝑠 ∈ 𝛤  . Since  𝑥 ∈ ∆𝑝(𝑋), by Proposition (6.2.33).(iv) 

one has  𝑥′ ∈ ℓ𝑝(𝛤,ℝ𝑘). Set  𝐹′ ∶= {𝑠 ∈ 𝐹: 𝑠−1𝐾 ⊆ 𝐹−1}. As  𝑥 ∈ 𝐵𝐹,𝜀, by our choice of 𝜀 

one  has  ‖𝑥𝑡
′‖∞ = 𝜌∞(𝑥𝑡 , 0(ℝ/ℤ)𝑘  ) ≤  (2‖𝐴‖1)

−1 for every  𝑡 ∈ 𝐹−1, and hence 

 

‖𝑥′𝐴∗‖∞ ≤ (max
𝑡∈𝐹−1

‖𝑥𝑡
′‖∞)‖𝐴

∗‖1 ≤ 1/2 

for all  𝑠 ∈ (𝐹′)−1. Since  𝑥 ∈ 𝑋, 𝑥′𝐴∗ has integral coefficients. Thus   𝑥′𝐴∗ = 0  on (𝐹′)−1. 
     Since 𝑃(�̃�) =  𝐸′, we can find  �̃� ∈ ∑ 𝑠−1�̃� 𝑠∈𝐹  with  𝑃( �̃�) = 𝑥. Define 𝑥 ∈ ℓ𝑝(𝛤,ℝ𝑘) 
to be the same as 𝑥′ on 𝐹−1 and the same as �̃� on   𝛤\𝐹−1. Then   �̃� 𝐴∗ =  𝑥′𝐴∗ = 0 on  

(𝐹′)−1 . Also,  �̃� 𝐴∗  = �̃� 𝐴∗  on    𝛤\(𝐹−1𝐾−1) , and hence  �̃� 𝐴∗  = �̃� 𝐴∗ = 0  on  𝛤\
(𝐹−1(𝐾1 ∪ 𝐾−1)). Therefore supp(�̃� 𝐴∗) ⊆ (𝐹−1(𝐾1 ∪ 𝐾−1))\(𝐹′)−1. 
     Since  𝑃(�̃�) = 𝑃(𝑥′) = 𝑥 , we have  𝑃(�̃�) = 𝑥 ∈ 𝑋 , and hence �̃� 𝐴∗  has integral 

coefficients. 

     Now we separate two cases. 

   Assume first that the condition (i) holds. Set  𝐷 = ∑ ‖�̃�‖1�̃�∈�̃� . Note that   ‖�̃�‖∞ ≤ 𝐷 

and hence 

‖�̃�‖∞ ≤ max(‖�̃�‖∞, ‖𝑥
′‖∞) ≤ 𝐷 + 1.                  

Thus  

‖�̃� 𝐴∗‖∞ ≤ ‖�̃�‖∞⋅ ‖𝐴‖1 ≤ (𝐷 + 1)‖𝐴‖1.                  

Then the number of possible  �̃� 𝐴∗ is at  most (2(𝐷 + 1)‖𝐴‖1 + 1)𝑛|(𝐹
−1(𝐾1∪𝐾

−1))\(𝐹′)−1|. 

Since    

the map (ℓ1(Γ))𝑘 → (ℓ1(Γ))𝑛 sending 𝑎 to  𝑎 𝐴∗ is injective, the number of possible  �̃� is 

also bounded above by  (2(𝐷 + 1)‖𝐴‖1 + 1)𝑛|(𝐹
−1(𝐾1∪𝐾

−1))\(𝐹′)−1|.  As  𝑃(�̃�) = 𝑥 , we 

obtain 

 

|𝐵𝐹,𝜀 ∩∑𝑠−1𝐸′

𝑠∈𝐹

| ≤ (2(𝐷 + 1)‖𝐴‖1 + 1)𝑛|(𝐹
−1(𝐾1∪𝐾

−1))\(𝐹′)−1|. 

     When 𝐹  is sufficiently left invariant, the right hand side of the above inequality is 

bounded above by exp(𝛿|𝐹|), and hence (20) holds. 
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     Next we assume that the condition (ii) holds. Set  𝐷′ = ∑ ‖�̃�𝐴∗‖1�̃�∈�̃� . Note that   

‖�̃� 𝐴∗‖∞ ≤ 𝐷′, and hence   ‖�̃� ‖𝑝 ≤ 𝐶‖�̃� 𝐴∗‖𝑝 ≤ 𝐶𝐷′|𝐹−1𝐾1|
1/𝑝.Define  𝑥 ∈ ℓ𝑝(Γ,ℝ𝑘) to 

be the same as �̃� on  ((𝐹−1(𝐾1 ∪ 𝐾−1))\(𝐹′)−1)𝐾 and 0 on all other points of Γ. Then  

𝑥 𝐴∗ = �̃� 𝐴∗ on (𝐹−1(𝐾1 ∪ 𝐾−1))\(𝐹′)−1). Note that 

‖�̂� ‖𝑝 ≤ ‖�̃� ‖𝑝 + |((𝐹−1(𝐾1 ∪ 𝐾−1))\(𝐹′)−1𝐾|1/𝑝 

                              ≤ 𝐶𝐷′|𝐹−1𝐾1|
1/𝑝 + |((𝐹−1(𝐾1 ∪ 𝐾−1))\(𝐹′)−1𝐾|1/𝑝. 

Since  �̃� 𝐴∗ has support in (𝐹−1(𝐾1 ∪ 𝐾−1))\(𝐹′)−1, we get 

 

‖�̃� 𝐴∗ ‖𝑝 ≤ ‖�̂� 𝐴∗ ‖𝑝 ≤ ‖𝑥  ‖𝑝‖𝐴
∗‖1                                                                                   

≤ (𝐶𝐷′|𝐹−1𝐾1|
1/𝑝 + |((𝐹−1(𝐾1 ∪ 𝐾−1))\(𝐹′)−1𝐾|1/𝑝)‖𝐴∗‖1  

≤ (2𝐶𝐷′ + 1)‖𝐴‖1|𝐹|
1/𝑝,                                                                    

when 𝐹  is sufficiently left invariant. By Lemma (6.2.61), for any 𝜆 > 1 , when 𝐹  is 

sufficiently left invariant, the number of  𝑦 ∈ ℤ𝑛Γ  with support in (𝐹−1(𝐾1 ∪
𝐾−1))\(𝐹′)−1 and   ‖𝑦 ‖𝑝 ≤ (2𝐶𝐷′ + 1)‖𝐴‖1|𝐹|

1/𝑝 is at most 

𝐶𝑝
𝑛𝜆𝑛|𝐹|((2𝐶𝐷 + 1)‖𝐴‖1)

𝑛|(𝐹−1(𝐾1∪𝐾
−1))\(𝐹′)−1|

.                     

Since Γ is infinite, it follows that when 𝐹 is sufficiently left invariant, the number of 𝑥 𝐴∗ 
is at most exp(𝛿|𝐹|). As in the first case, one concludes that the inequality (20) holds. 

Question (6.2.64)[396]: Could one weaken the conditions (i) and (ii) of Theorem (6.2.63) 

to that the linear map (ℓ𝑝(Γ))𝑘 → (ℓ𝑝(Γ))𝑛 sending 𝑎 to 𝑎 𝐴∗ is injective? 

     From Theorems (6.2.31)and (6.2.63), and Proposition (6.2.19).(iv) we get 

Corollary (6.2.65)[396]: Let Γ act on a compact abelian group 𝑋 by automorphisms such 

that �̂� is a finitely presented left ℤΓ-module. Then 

 

ℎ(𝑋) ≥ ℎ(∆1(𝑋)̂ ). 
    From Theorems (6.2.9) and (6.2.63), we get 
Corollary (6.2.66)[396]: Let Γ  act on a compact abelian group 𝑋  expansively by 

automorphisms. 

Then 

ℎ(𝑋) ≥ ℎ(∆(𝑋)̂). 
 

     Let  𝐴 ∈ 𝑀𝑘(ℤΓ) for some 𝑘 ∈ ℕ. Let 1 < 𝑝, 𝑞 < +∞ with   𝑝−1 + 𝑞−1 = 1. One may 

identify ℓ𝑞(Γ,ℝ𝑘) with the dual space of ℓ𝑝(Γ,ℝ𝑘)  naturally, as using the pairing in (13). 

For the bounded linear map  𝑇: ℓ𝑝(Γ,ℝ𝑘) → ℓ𝑝(Γ,ℝ𝑘) sending 𝑎 to 𝑎 𝐴∗, its dual  𝑇∗ ∶
ℓ𝑞(Γ,ℝ𝑘) → ℓ𝑞(Γ,ℝ𝑘) sends 𝑏 to 𝑏𝐴. Thus 𝑇 is invertible exactly when  𝑇∗ is invertible. 

From Theorem (6.2.63) and Lemma (6.2.35) we get 

Corollary (6.2.67)[396]: Let 𝑘 ∈ ℕ , and 𝐴 ∈ 𝑀𝑘(ℤΓ)  such that the linear map 

(ℓ𝑝(Γ))𝑘 → (ℓ𝑝(Γ))𝑘  sending a to 𝑎 𝐴∗  is invertible for some  1 < 𝑝 < +∞. Set 𝑋𝐴 =

(ℤΓ)𝑘/(ℤΓ)𝑘 ̂ 𝐴  and  𝑋𝐴∗ = (ℤΓ)𝑘/(ℤΓ)𝑘 ̂ 𝐴∗ . Then 

 

ℎ(𝑋𝐴) = ℎ(∆𝑝(𝑋𝐴)̂ ) = ℎ(𝑋𝐴∗). 
       Recall our convention of CPE before Corollary (6.2.57). 

Theorem (6.2.68)[396]: Suppose that ℤΓ  is left Noetherian. Let Γ  act on a compact 

abelian group 𝑌 1-expansively by automorphisms such that ∆1(𝑌) is dense in 𝑌 . Let 𝑋 be 

a closed Γ-invariant subgroup of  𝑌 . Then the following hold: 
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   (i) For anyΓ-invariant subgroup 𝐺 of  ∆1(𝑋) with  �̅� = ∆1(𝑋)̅̅ ̅̅ ̅̅ ̅̅ , one has ℎ(𝑋) = ℎ(�̂�). 
   (ii) ∆1(𝑋)  is a dense subgroup of 𝐼𝐸(𝑋). 
   (iii) The action Γ ↷ 𝑋 has positive entropy if and only if ∆1(𝑋) is nontrivial. 

   (iv) The action Γ ↷ 𝑋 has 𝐶𝑃𝐸 if and only if ∆1(𝑋) is dense in 𝑋. 

Proof: (i). We show first ℎ(𝑌) = ℎ(𝐺1)̂  for any Γ -invariant subgroup 𝐺1  of ∆1(𝑌) 
satisfying 𝐺1 = 𝑌  . Denote by 𝕋 the unit circle in ℂ. The canonical pairing 𝑌 × �̂� → 𝕋 

restricts to a pairing 𝐺1 × �̂� → 𝕋 which is bi-additive and equivariant in the sense defined 

before Lemma (6.2.38). Since 𝐺1  is dense in 𝑌  , by Lemma (6.2.38), the induced Γ -

equivariant group homomorphism  Φ ∶ �̂� → 𝐺1̂ is injective and maps �̂� into ∆1(𝐺1)̂. 
     Since the Γ-action on 𝑌  is 1-expansive, by Proposition (6.2.19).(ii) and Proposition 

(6.2.33).(vi) both �̂�  and ∆1(𝑌)   are finitely generated left ℤΓ-modules. As  ℤΓ  is left 

Noetherian, every left finitely generated ℤΓ-module is Noetherian and finitely presented 

[439]. Thus both �̂� and 𝐺1 are finitely presented left ℤΓ-modules. In virtue of Corollary 

(6.2.65), we have 

 

ℎ(𝑌) ≥ ℎ(∆1(𝑌)̂) ≥ ℎ(𝐺1)̂. 
and 

ℎ(𝐺1)̂ ≥ ℎ (∆1(𝐺1̂)
̂ ) ≥ ℎ(�̂�)̂ = ℎ(𝑌). 

Therefore ℎ(𝑌 ) = ℎ(∆1(𝑌)̂) = ℎ(𝐺1)̂ as desired. 

     Next we show ℎ(𝑋) = ℎ(∆1(𝑋)̂ ). As above, both  �̂� and 𝑌/�̂� are finitely presented left 

ℤΓ-modules.ByProposition (6.2.33).(iii) the quotient map 𝑌 → 𝑌/𝑋 induces an embedding  

∆1(𝑌)/∆1(𝑋) ↪ ∆1(𝑌/𝑋). In virtue of Corollary (6.2.65) we have 

 

ℎ(𝑌) ≥ ℎ(∆1(𝑌)̂),                      
and  

ℎ(𝑌/𝑋) ≥ ℎ(∆1(𝑌/𝑋)̂ ) ≥ ℎ(∆1(𝑌 )/∆1(𝑋)̂  ).                   
From Proposition (6.2.4) we then obtain 
            

              ℎ(𝑌 ) = ℎ(𝑋) + ℎ(𝑌/𝑋) ≥ ℎ(∆1(𝑋)̂ )+ ℎ(∆1(𝑌 )/∆1(𝑋)̂  ) =  ℎ(∆1(𝑌 )). 

From the last paragraph we have ℎ(𝑌 ) = ℎ(∆1(𝑌)̂ ) . Since the 𝛤 -action on 𝑌  is 1 -

expansive and �̂�  is a finitely presented left ℤΓ-module, by Theorem (6.2.31) one has 

ℎ(𝑌) < +∞. Thus we conclude that ℎ(𝑋) = ℎ( ∆1(𝑋)̂ ).  

     Finally we show ℎ(∆1(𝑋)̂ ) = ℎ(�̂�). For this purpose we may assume that  ∆1(𝑋)̅̅ ̅̅ ̅̅ ̅̅ =
�̅� = 𝑋. Since the 𝛤-action on 𝑌 is 1-expansive, its restriction on 𝑋 is also 1-expansive. 

From the first part of the proof we conclude that ℎ(�̂�) = ℎ(𝑋) = ℎ(∆1(𝑋)̂ ). 
    (ii). By Theorem (6.2.51) we have  ∆1(𝑋) ⊆ 𝐼𝐸(𝑋). From Assertion (i) we have 

 

ℎ(𝑌) = ℎ(∆1(𝑌)̂) = ℎ(∆1(𝑋)̅̅ ̅̅ ̅̅ ̅̅ ). 

In the above we have seen that ℎ(𝑋) ≤ ℎ(𝑌) < +∞. Thus, by Proposition (6.2.4) we have 

 

ℎ(𝑋/∆1(𝑋)̅̅ ̅̅ ̅̅ ̅̅ ) = ℎ(𝑋)  −  ℎ(∆1(𝑋)̅̅ ̅̅ ̅̅ ̅̅ ) = 0. 

In virtue of Theorem (6.2.47).(i), we conclude that 𝐼𝐸(𝑋) ⊆ ∆1(𝑋)̅̅ ̅̅ ̅̅ ̅̅ . Therefore 𝐼𝐸(𝑋) =

∆1(𝑋)̅̅ ̅̅ ̅̅ ̅̅ .  
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     The assertion (iii) follows from the assertion (ii) and Theorem (6.2.46).(iv). The 

assertion (iv) follows from the assertion (ii) and Corollary (6.2.57). 

Example (6.2.69)[396]: Let  Γ =  ℤ𝑑  for some 𝑑 ∈ ℕ  with 𝑑 ≥ 2 . Let  𝑓 ∈ ℤΓ  be 

irreducible such that  ℤ(𝑓) (as defined in Example (6.2.25)) is nonempty but finite. For 

instance, one may take f as  2𝑑 − ∑ (𝑢𝑗  + 𝑢𝑗
−1)𝑑

𝑗=1  or  𝑑 − ∑ 𝑢𝑗
𝑑
𝑗=1  for 𝑢1, . . . , 𝑢𝑑 being the 

canonical basis of  ℤ𝑑 . As pointed out in Examples (6.2.25) and (6.2.36), 𝛼 f (as defined 

in Notation (6.2.20)) is 1-expansive and  ∆1(𝑋𝑓 ) is dense in  𝑋𝑓. On the other hand, 𝛼𝑓   is 

not expansive [467]. 

    From Theorems (6.2.9), (6.2.68), parts (i) and (iv) of Proposition (6.2.19), and Lemma 

(6.2.35) we have 

Corollary (6.2.70)[396]: Suppose that ℤΓ  is left Noetherian. Let Γ  act on a compact 

abelian group 𝑋 expansively by automorphisms. Then the following hold: 

    (i) For anyΓ-invariant subgroup 𝐺 of  ∆(𝑋) with �̅� =  ∆(𝑋)̅̅ ̅̅ ̅̅ , one has ℎ(𝑋) = ℎ(�̂�). 
   (ii)  ∆(𝑋) is a dense subgroup of 𝐼𝐸(𝑋). 
   (iii) The action has positive entropy if and only if ∆(𝑋)  is nontrivial. 

   (iv) The action has 𝐶𝑃𝐸 if and only if ∆(𝑋)  is dense in  𝑋. 

       Theorem (6.2.2) follows from Corollary (6.2.70) and the fact that when Γ  is 

polycyclic-by-finite, ℤΓ is left Noetherian [424] [459]. 
 

Section (6.3): Generic Points of Invariant Measures for an Amenable 

Residually Finite Group Actions with the Weak Specification Property 

      Generic points are a powerful tool of ergodic theory, allowing for example to quantify 

the difference between two measures. Recall that for a 𝑇-invariant measure  𝜇, a point 𝑥 is 

generic if its orbit is uniformly distributed, that is, for every continuous real valued 

function 𝑓 defined on the phase space 𝑋 one has 

lim
𝑁→∞

1

𝑁
∑ 𝑓(𝑇𝑚
𝑁−1

𝑛=0

(𝑥)) = ∫𝑓𝑑𝜇.

2

𝑋

 

 

 If a measure is ergodic, then its generic points reflect the most typical behaviour of points 

from the phase space: it follows from the Birkhoff ergodic theorem that they form a set of 

the full measure. On the other hand, non-ergodic measures do not have to have any generic 

points. In fact, there is even a topologically mixing dynamical system with exactly two 

ergodic measures such that no non-ergodic measure has a single generic point (see [485]). 

Moreover, it follows from the ergodic decomposition theorem that even if a non-ergodic 

measure possesses some generic points, they form a measure zero set. Therefore, an 

important question is, under what assumptions every invariant measure has a generic 

point. 

     One of conditions which implies such a phenomenon is specification. This property 

was introduced by Rufus Bowen in [481] to study Axiom A diffeomorphisms. If a 

dynamical system satisfies specification, then we can find a point that traces an arbitrary 

collection of orbit segments, if the time between consecutive segments is large enough. 

Specification implies a very rich dynamics. It is known for instance that it is stronger than 

chain mixing. 

     Interestingly, the class of dynamical systems with this property is very wide and 

contains for example mixing graph maps, mixing sofic shifts (including shifts of finite 
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type) and mixing interval maps. There are also many interesting systems which shows 

specification-like behaviour although they do not have the specification property in the 

sense of Bowen. Therefore many generalizations of this notion have been developed 

[482],[178], [187], [483], [485], [487], [486],[489],[490]. As far as smooth maps are 

considered, specification is closely related to hyperbolicity. 

     A dynamical system given by an iteration of a homeomorphism can be regarded as the 

action of the group of integers on the phase space. The group ℤ is an important example of 

a wide class of amenable residually finite groups. 

     In the literature one can find some specification-like properties for ℤ𝑑-actions or, more 

generally, amenable groups actions. Among them there are for example topological 

Markov shifts, strongly irreducible shifts, semi-strongly irreducible shifts [484] or shifts 

satisfying the uniform filling property [479]. We use the approach introduced in [396] (see 

also [445],[466]). Recently Ren showed in [492] that if we assume that 𝐺 is an amenable 

residually finite group acting on a compact space 𝑋 and the dynamical systems (𝑋, 𝐺) has 

the specification property in this sense, then the simplex of 𝐺-invariant Borel probability 

measures supported at 𝑋 is either trivial (that is consists of only one element) or equal to 

the Poulsen simplex. The latter is a unique (up to an affine homeomorphism) Choquet 

simplex possessing a dense set of extreme points and has many remarkable properties 

[488]. Every Choquet simplex can be embedded into the Poulsen simplex as its face. What 

is more, the set of extreme points of the Poulsen simplex is arcwise connected. The first 

example of such a simplex was given in [494]. The result of Ren is a generalization of the 

first part of Sigmund’s theorem who showed an analogous claim for actions of the group 

of integers which satisfy the specification property. The second part of the Sigmund 

theorem says that in this setting every invariant measure has a generic point. 

     It is known that even ergodic measures not necessarily have generic points with respect 

to any Følner sequence. The Lindenstrauss pointwise ergodic theorem guarantees that this 

is the case if we assume that the Følner sequence is tempered, that is it is growing in a 

certain way that we describe in more details. What is important, every amenable group 

admits a tempered Følner sequence. 

      We prove that every measure invariant for an amenable residually finite group action 

satisfying the weak specification property has a generic point. This extends the theorem of 

Sigmund and completes the result of  Ren. 

     Through (𝑋, 𝜌) is a compact metric space. To simplify notation we assume that the 

diameter of 𝑋 with respect to 𝜌 is equal to 1. An infinite countable group 𝐺 acts on 𝑋 via 

homeomorphisms. We denote by |𝐴| the cardinality of the set  𝐴 . Given 𝐴, 𝐵 ⊂ 𝐺  we 

define 

 

𝐴𝐵 = {𝑎𝑏 ∶ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} and 𝐴−1 = {𝑎−1 ∶ 𝑎 ∈ 𝐴}. 
Moreover, we denote by 𝐴∆𝐵 the symmetric difference of 𝐴 and 𝐵. Let Fin(𝐺) denote the 

family of finite, non-empty subsets of 𝐺. A fundamental domain of a finite index subgroup 

𝐻 of a group 𝐺 is a set 𝐹 such that for every g ∈ 𝐺 we have  |𝐻𝑔 ∩ 𝐹| = 1. By |𝐺 ∶ 𝐻| we 

denote the index of a subgroup 𝐻. 
     We say that the group 𝐺 is amenable, if it admits a Følner sequence, that is a sequence 

(𝐹𝑛)𝑛∈ℕ ⊂ 𝐹in(𝐺) such that 
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lim
𝑛→∞

|𝑔𝐹𝑛∆𝐹𝑛|

|𝐹𝑛|
  = 0  for every 𝑔 ∈ 𝐺.                

Note that every subsequence of a Følner sequence is Følner itself. It is known that every 

countable abelian group (in particular ℤ𝑑 with 𝑑 ∈ ℕ) is amenable. 

     A countable group is residually finite if there exists a nested sequence of finite index 

normal subgroups which intersect trivially. Such a sequence is called askeleton of the 

group. A classical example of a residually finite group is  ℤ𝑑. 

     For 𝑥 ∈ 𝑋 and 𝐹 ∈ Fin(𝐺) let 

𝑚(𝑥, 𝐹𝑛) ∶=
1

|𝐹𝑛|
∑ �̂�(𝑓𝑥),

𝑓∈𝐹𝑛

  

where �̂�(𝑧) is a probability measure supported at 𝑧. Let ℳ(𝑋) be the family of all Borel 

probability measures on 𝑋 . We equip ℳ(𝑋)   with the Prokhorov metric 𝐷:ℳ(𝑋) ×
ℳ(𝑋) → ℝ+ defined as 

             D(μ, ν)  = inf {𝜀 > 0 :fore very Borel set 𝐵 ⊂ 𝑋 one has 𝜇(𝐵) ≤ 𝜈(𝐵𝜀) + 𝜀}, 
where 𝐵𝜀 = {𝑦 ∈ 𝑋 :there exists 𝑥 ∈ 𝐵 such that  𝜌(𝑥, 𝑦) < 𝜀}. It is known that this metric 

gives the weak∗ topology on ℳ(𝑋)  (see [491]), that is a topology such that a sequence 

(𝜇𝑛)𝑛∈ℕ ⊂ℳ(𝑋) converges to 𝜇 ∈ ℳ(𝑋) if and only if for every continuous function 

𝑓: 𝑋 → ℝ one has 

∫𝑓𝑑𝜇𝑛

2

𝑋

 → ∫𝑓𝑑𝜇

2

𝑋

 . 

     In particular, (ℳ(𝑋), 𝐷) is a compact metric space. Moreover, the following property of 

the Prokhorov metric is easy to be verified (see also [485]).  

Lemma (6.3.1)[478]: Assume that 𝑥, 𝑧 ∈ 𝑋  and 𝐹 ∈ Fin (𝐺)  satisfy 𝜌(𝑔𝑥, 𝑔𝑧) < 𝜀  for 

some 𝜀 > 0 and all 𝑔 ∈ 𝐹. Then 

𝐷(𝑚(𝑥, 𝐹),𝑚(𝑧, 𝐹)) ≤ 𝜀. 
      A dynamical system (𝑋, 𝐺)  has the weak specification property if for every 𝜀 > 0 

there exists 𝑍 = 𝑍(𝜀) ∈ Fin (𝐺)  such that for any 𝑚 ∈ ℕ  and 𝐹1, . . . ,  𝐹𝑚 ∈ Fin (𝐺) 
satisfying 𝑍𝐹𝑖 ∩ 𝐹𝑗 = ∅ for all 1 ≤ 𝑖 = 𝑗 ≤ 𝑚 and for all 𝑥1, . . . , 𝑥𝑚 ∈ 𝑋 there exists 𝑧 ∈

𝑋 such that for every 1 ≤ 𝑖 ≤ 𝑚 and 𝑔 ∈ 𝐹𝑖 one has 𝜌(𝑔𝑥𝑖 , 𝑔𝑧) ≤ 𝜀. 

     A Borel probability measure 𝜇 is 𝐺-invariant if for every 𝑔 ∈ 𝐺 and every measurable 

set 𝐴  one has 𝜇(𝑔−1𝐴) = 𝜇(𝐴) . Let ℳ𝐺(𝑋)  be the simplex of Borel probability 𝐺 -

invariant measures. Amenability of 𝐺 implies that ℳ𝐺(𝑋)  is nonempty. 𝐴 measure 𝜇 ∈
ℳ𝐺(𝑋) is ergodic if every 𝐺-invariant measurable set is either of zero or full 𝜇-measure. 

We denote by ℳ𝐺
𝑒(𝑋) the family of all 𝐺-invariant Borel probability ergodic measures. It 

is known that ℳ𝐺
𝑒(𝑋)  is equal to the set of extreme points of ℳ𝐺(𝑋). In particular it 

follows from the Krein-Milman theorem that 

conv̅̅ ̅̅ ̅̅ ℳ𝐺
𝑒(𝑋)   = ℳ𝐺(𝑋) 

and so every invariant measure can be approximated by finite convex combinations of 

ergodic measures. 

      A point 𝑥 ∈ 𝑋 is generic for 𝜇 ∈ ℳ𝐺(𝑋)  with respect to a Følner sequence (𝐹𝑛)𝑛∈ℕ if 

𝑚(𝑥, 𝐹𝑛) → 𝜇 as 𝑛 → ∞ with respect to the weak∗topology. It is worth to mention that 

even for ℤ action ergodic  measures do not need to have generic points with respect to any 

Følner sequence. However, if we choose it in a suitable way, they do. In particular, 

Lindenstrauss in [194] proved the following theorem: 



263 

Theorem (6.3.2)[478]: Let (𝐹𝑛)𝑛∈ℕ ⊂Fin(𝐺) be a Følner sequence such that there exists 

𝐶 > 0 satisfying for every 𝑛 ∈ ℕ the inequality  

|⋃𝐹𝑘
−1

𝑘≤𝑛

 𝐹𝑛+1 | ≤ 𝐶 · |𝐹𝑛+1| . 

Then every 𝐺 -invariant ergodic measure has a generic point with respect to (𝐹𝑛)𝑛∈ℕ . 

Moreover, every Følner sequence has a subsequence satisfying this property. 

     Following Shulman we call a Følner sequence with the above property tempered. Note 

that it follows from Theorem (6.3.2) that every amenable group has a tempered Følner 

sequence. 

     Cortez and Petite in [367] proved the following (note that the formulation of Lemma 

(6.3.4) in [367] is slightly different from ours as the authors consider right Følner 

sequences while we use left ones). 

Lemma (6.3.3)[478]: Let 𝐺 be an amenable residually finite group and let (𝐻𝑛)𝑛∈ℕ be its 

skeleton. There exists a Følner sequence (𝐹𝑛)𝑛∈ℕ such that 

    (i) 𝐹𝑛 ⊂ 𝐹𝑛+1, 
   (ii) 𝐺 = ⋃ 𝐹𝑛𝑛∈ℕ , 

   (iii) 𝐹𝑛+1 = ∐ 𝐹𝑛𝜐 𝜐∈𝐹𝑛+1∩𝐻𝑛 for every 𝑛 ∈ ℕ,  

   (iv) 𝐹𝑛 is 𝑎 fundamental domain of 𝐺/𝐻𝑛 for every 𝑛 ∈ ℕ.  

      Note that a subsequence of a skeleton 𝐺 is a skeleton of 𝐺 and a subsequence of a 

Følner sequence satisfying the above properties will fulfill them with respect to some 

skeleton of 𝐺. Therefore it follows from Theorem(6.3.2) that every amenable residually 

finite group has a tempered Følner sequence satisfying the above. We fix a countable 

amenable residually finite group 𝐺 , its skeleton ( 𝐻𝑛)𝑛∈ℕ  and a Følner sequence 

(𝐹𝑛)𝑛∈ℕwhich satisfies the conditions (i), (ii) and (iii) of Lemma(6.3.3). To avoid some 

uninteresting complications we assume also that for every 𝑛 ∈ ℕ one has 𝐹𝑛 ⊂ 𝐹𝑛+1 and 

that (|𝐹𝑛+1\ 𝐹𝑛|))𝑛∈ℕ and (|𝐹𝑛+1/ 𝐹𝑛|))𝑛∈ℕ are increasing sequences. 

Lemma (6.3.4)[478]:  Let 𝛼1, . . . , 𝛼𝑘, 𝛽1, . . . , 𝛽𝑘 ∈ [0, 1]  be positive numbers such that 

∑ 𝛼𝑖 = ∑ 𝛽𝑖 = 1𝑘
𝑖=1

𝑘
𝑖=1   . If  𝜇1, . . . , 𝜇𝑘, 𝜈1, . . . , 𝜈𝑘 ∈ ℳ(𝑋), then 

 

𝐷 (∑𝛼𝑖𝜇𝑖

𝑘

𝑖=1

,∑𝛽𝑖

𝑘

𝑖=1

𝜈𝑖)  ≤
1

2
 ∑ |𝛼𝑖  −  𝛽𝑖| + max

1≤𝑖≤𝑘
{𝐷(𝜇𝑖 , 𝜈𝑖)} 

𝑘

𝑖=1

 . 

 

Proof: Let  𝒦 = { 𝑗 ∈ {1, . . . , 𝑘} ∶ 𝛼𝑗 > 𝛽𝑗}. We can assume without loss of generality 

that 

 

∑|𝛼𝑗 − 𝛽𝑗|

𝑘

𝑗∈𝒦

 ≤
1

2
 ∑|𝛼𝑖 − 𝛽𝑖|,

𝑘

𝑗=1

 

as the proof in the other case is analogous. Fix a Borel set 𝐵. One has 𝜇𝑗(𝐵) ≤ 𝜈𝑗(𝐵
𝛿) +

 𝛿 for  𝑗 =  1, . . . , 𝑘 and hence 

∑𝛼𝑗𝜇𝑗

𝑘

𝑗=1

(𝐵) ≤∑𝛼𝑗  𝜈𝑗

𝑘

𝑗=1

(𝐵𝛿) + 𝛿                                    
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≤∑𝛽𝑗𝜈𝑗

𝑘

𝑗=1

(𝐵𝛿+∑ |𝛼𝑗− 𝛽𝑗|𝑗∈𝒦 ) + 𝛿∑ |𝛼𝑗 − 𝛽𝑗|

𝑘

𝑗∈𝒦

 

        ≤∑𝛽𝑗𝜈𝑗

𝑘

𝑗=1

(𝐵
𝛿+

1

2∑ |𝛼𝑗− 𝛽𝑗|
𝑘
𝑗=1 ) + 𝛿 +

1

2
∑|𝛼𝑗 − 𝛽𝑗|

𝑘

𝑗∈1

. 

This completes the proof. 

Lemma (6.3.5)[478]: Let 𝜀 ∈ (0, 1/2) and 𝑀,𝑁 ∈ ℕ satisfy 𝑁(1 − 𝜀) ≤ 𝑀 ≤ 𝑁(1 + 𝜀). 

Denote  𝑚 = max{𝑀,𝑁}. Choose 𝑤1, . . . , 𝑤𝑚, 𝑧1, . . . , 𝑧𝑚 ∈ 𝑋  such that 𝜌(𝑤𝑖 , 𝑧𝑖) < 𝜀  for 

every 1 ≤  𝑖 ≤ 𝑚 and define  

𝜇 =
1

𝑀
∑�̂�𝑤𝑖

𝑀

𝑖=1

and 𝜈 =
1

𝑁
∑�̂�𝑧𝑖

𝑁

𝑖=1

. 

Then  𝐷(𝜇, 𝜈) ≤ 2𝜀. 

Proof: Fix a Borel set 𝐵. We have 

𝜇(𝐵) =
1

𝑀
 |{1 ≤ 𝑖 ≤ 𝑀 ∶ 𝑤𝑖 ∈ 𝐵}| ≤

𝑁

𝑀
·
1

𝑁
 |{1 ≤  𝑖 ≤ 𝑀 ∶  𝑧𝑖 ∈ 𝐵𝜀}| ≤                

                                                                    ≤ 𝜈(𝐵2𝜀) +
𝜀

1−𝜀
≤ 𝜈(𝐵2𝜀) + 2𝜀. 

Since 𝐵 is arbitrary we get the claim. 

Lemma (6.3.6)[478]: 𝐹𝑖𝑥 𝜇 ∈ ℳ𝐺(𝑋). Let (𝜀𝑚)𝑚∈ℕ and (𝓏𝑛)𝑛∈ℕ ⊂ 𝑋 be such that 𝜀𝑚  ↘
0  as 𝑚 ↗ ∞  and for every 𝑚 ∈ ℕ  there exits 𝑁 ∈ ℕ  such that for all 𝑛 ≥ 𝑁  one has 

𝐷(𝑚(𝓏𝑛, 𝐹𝑚), 𝜇) ≤ 𝜀𝑚. Then any accumulation point of the sequence (𝑧𝑛)𝑛∈ℕ is generic 

for  𝜇. 

Proof: Let 𝓏 ∈ 𝑋 be such that 𝓏𝑛𝑘 →  𝓏 for some 𝑛𝑘  ↗ ∞ . Fix 𝜀 > 0. Choose 𝑚 ∈ ℕ in 

such a way that 𝜀𝑚 < 𝜀/2. Pick 𝛿 > 0 such that for all 𝑥, 𝑦 ∈ 𝑋 satisfying 𝜌(𝑥, 𝑦) < 𝛿 one 

has 𝜌(𝑓𝑥, 𝑓𝑦) < 𝜀/2  for all  𝑓 ∈ 𝐹𝑚 . It follows from Lemma (6.3.1) that then also 

𝐷(𝑚(𝑥, 𝐹𝑚),𝑚(𝑦, 𝐹𝑚)) ≤ 𝜀/2 . Choose 𝑁 ∈ ℕ  such that for all 𝑛 ≥ 𝑁  one has 

𝐷(𝑚(𝓏𝑛,  𝐹𝑚), 𝜇) < 𝜀𝑚 . Let 𝑘 ∈ ℕ be such that 𝑛𝑘 ≥ 𝑁 and  𝜌(𝓏𝑛, 𝓏𝑛𝑘) < 𝛿 . Using the 

triangle inequality we get that 

 

𝐷(𝑚(𝓏,  𝐹𝑚), 𝜇) ≤ 𝐷(𝑚(𝓏,  𝐹𝑚),𝑚(𝓏𝑛𝑘 ,  𝐹𝑚)) + 𝐷(𝑚(𝓏𝑛𝑘 ,  𝐹𝑚), 𝜇) < 𝜀/2 + 𝜀/2 = 𝜀. 

Since 𝜀 is arbitrary the proof is completed. 

Theorem (6.3.7)[478]: For every measure 𝜇 ∈ ℳ𝐺(𝑋) there exists a point 𝑥 ∈ 𝑋 which is 

generic for 𝜇 with respect to (𝐹𝑖)𝑖∈ℕ. 

Proof: Fix  𝜇 ∈ ℳ𝐺(𝑋). It follows from the Krein–Milman theorem that 

𝜇 = lim
𝑛→∞

∑
𝑝𝑖
(𝑛)

𝑞𝑖
(𝑛)

𝑛

𝑖=1

 𝜈𝑖
(𝑛)

 

for some 𝑝𝑖
(𝑛)

∈ ℕ ∪ {0}, 𝑞𝑖
(𝑛)

∈ ℕ  and 𝜈𝑖
(𝑛)

∈ ℳ𝐺
𝑒(𝑋) . To simplify notation denote for 

every 𝑛 ∈ ℕ 

𝜈𝑛 ≔∑
𝑝𝑖
(𝑛)

𝑞𝑖
(𝑛)

𝑛

𝑖=1

𝜈𝑖
(𝑛)
. 

Passing to a subsequence if necessary we can assume additionally that for every 𝑛 ∈  𝑁 

one has 
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𝐷(𝜈𝑛, 𝜇) <
1

2𝑛
.                                                                (21) 

We will construct an increasing sequence (𝐾(𝑛))𝑛=0
∞ ⊂ ℕ ∪ {0} and a sequence of points 

(𝓏𝑛)𝑛=0
∞ ⊂ 𝑋 such that: 

(I)  for every 𝑛 ∈ ℕ ∪ {0}, 𝑠 < 𝑛 and  𝐾(𝑠 − 1) ≤ 𝑚 < 𝐾(𝑠) one has 

(𝐷(𝑚(𝓏𝑛,  𝐹𝑚), 𝜇) ≤
1

2𝑠−4
 , 

(II) for every 𝑛 ∈ ℕ ∪ {0} and 𝐾(𝑛 − 1) ≤ 𝑙 < 𝐾(𝑛) the following inequality is satisfied: 

 

𝐷(𝑚(𝓏𝑛, 𝐹𝑙), 𝜇) ≤
1

2𝑠−3
 .                                                     (22) 

Define 

𝐴(𝑛) =∏𝑞𝑖
(𝑛)

𝑛

𝑖=1

 and 𝐵(𝑛, 𝑖) =  
𝑝𝑖
(𝑛)

𝑞𝑖
(𝑛)

·  𝐴(𝑛) for  𝑛 ∈ ℕ, 1 ≤  𝑖 ≤ 𝑛. 

Note that 𝐴(𝑛), 𝐵(𝑛, 𝑖) ∈ ℕ and 

𝜈𝑛 =
1

𝐴(𝑛)
∑ 𝐵(𝑛, 𝑖)

𝑛

𝑖=1

𝜈𝑖
(𝑛)
. 

Therefore it follows from (22) and Lemma (6.3.4) that for every 𝑚 ≥ 𝑀(𝑛) one has 

𝐷(∑
𝐵(𝑛, 𝑖)

𝐴(𝑛)

𝑛

𝑖=1

𝑚(𝑥𝑖
(𝑛)
, 𝐹𝑚) , 𝜈𝑛) <

1

2𝑛+3
.                               (23) 

      For every 𝑛 ∈ ℕ  let 𝑍𝑛 ∈  Fin (𝐺)  be provided from the definition of the weak 

specification property for 𝜀𝑛 = 1/2𝑛+2 . Let 𝑃(𝑛) ≥ 𝑀(𝑛)  be such that for every 𝑝 ≥
𝑃(𝑛) one has 

 

|𝑍𝑛 ∪ 𝑍𝑛
−1𝐹𝑝∆𝐹𝑝|

𝐹𝑝
≤

1

2𝑛+3
.                                                  (24) 

Pick 𝓏0 ∈ 𝑋  in an arbitrary way and put 𝐾(0) = 0 . Choose a sequence (𝐾(𝑛))𝑛∈ℕ 

growing fast enough so that the following conditions are satisfied: 

   (i) 𝐾(𝑛) ≥ 𝑚𝑎𝑥 {𝑃(𝑛 + 1) + 1,𝐾(𝑛 − 1)},  
  (ii) |𝐹𝐾(𝑛−1)+1\ 𝐹𝐾(𝑛−1)| ≥  2𝑛+4𝐴(𝑛) · |𝐹𝑃(𝑛)|,  

  (iii) 
|𝐹𝐾(𝑛)+1 \ 𝐹𝐾(𝑛)|

|𝐹𝐾(𝑛)|
 ≥ 2𝑛+3. 

Fix 𝑛 ≥ 1. Let 𝐾(𝑛 − 1) ≤ 𝑙 < 𝐾(𝑛). Note that  𝐹𝑙  \ 𝐹𝑙−1 consists of  𝑐𝑙 ∶= |𝐻𝑃(𝑛) ∶ 𝐻𝑙| −

 |𝐻𝑃(𝑛) ∶  𝐻𝑙−1|  disjoint shifted copies of  𝐹𝑃(𝑛). Denote them by 

 

𝑇1
(𝑙)

= 𝐹𝑃(𝑛)𝑔1
(𝑙)
  , . . . , 𝑇𝑐𝑙

(𝑙)
= 𝐹𝑃(𝑛)𝑔𝑐𝑙

(𝑙)
 . 

Call this family 𝒫𝑙  and divide it into 𝐴(𝑛) subfamilies 𝒫1
(𝑙)
  , . . . , 𝒫𝐴(𝑛)

(𝑙)
 with almost the 

same cardinality , that is in such a way that for every  1 ≤  𝑖 ≤  𝐴(𝑛) one has  

 
𝑐𝑙

𝐴(𝑛)
+ 1 ≥ |𝒫𝑖

(𝑙)
| ≥

𝑐𝑙
𝐴(𝑛)

− 1.                                             (25) 
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Obviously, |𝒫𝑙| = 𝑐𝑙. For every 1 ≤ 𝑖 ≤ 𝐴(𝑛) let  𝜋(𝑖) = 𝑥𝑘
(𝑛)

 , where 1 ≤  𝑘 ≤ 𝑛 is such 

that 

∑𝐵(𝑛, 𝑗) 

𝑘−1

𝑗=1

< 𝑖 ≤∑𝐵(𝑛, 𝑗).

𝑘

𝑗=1

   

     Note that for every 1 ≤  𝑘 ≤  𝑛 one has |𝜋−1(𝑥𝑘 
(𝑛)
)| = 𝐵(𝑛, 𝑘). Put also ∏(𝑇) = 𝜋(𝑖) 

for every ∈ 𝒫𝑖
(𝑙)

 .  For all 𝐾(𝑛 − 1) ≤ 𝑙 < 𝐾(𝑛) and 1 ≤  𝑗 ≤  𝑐𝑙 define 

𝑆𝑗
(𝑙)

= (𝑇𝑗
(𝑙)
 \ ⋃ 𝑍𝑛𝑇𝑖

(𝑙)

𝑖≠𝑗,𝑖≤𝑐𝑙

 ) \ (𝑍𝑛𝐹𝑙−1 ∪ 𝑍𝑛
−1𝐹𝑙−1) . 

We need the following lemma. 

Lemma (6.3.8)[478]: The family 

 

                                                       𝛯 = 𝐹𝐾(𝑛−1)−1 ∪ {𝑆𝑗
(𝑙)
: 𝐾(𝑛 − 1) ≤ 𝑙 < 𝐾(𝑛), 1 ≤  𝑗 ≤ 𝑐𝑙} 

satisfies the condition from the definition of the weak specification property for 𝜀 =
1/2𝑛+2. 

Proof: Pick 𝜉1,  𝜉2 ∈ 𝛯 such that 𝜉1 ≠  𝜉2. We should show that 𝑍𝑛𝜉1 ∩ 𝜉2 = ∅. We divide 

reasoning into cases: 

(i) Assume that 𝜉1 = 𝐹𝐾(𝑛−1)−1 or   𝜉2 = 𝐹𝐾(𝑛−1)−1. If  𝜉1 = 𝐹𝐾(𝑛−1)−1, then 

 𝜉2 = (𝑇𝑗
(𝑙)
 \ ⋃ 𝑍𝑛𝑇𝑖

(𝑙)

𝑖≠𝑗,𝑖≤𝑐𝑙

 ) \ (𝑍𝑛𝐹𝑙−1 ∪ 𝑍𝑛
−1𝐹𝑙−1) 

for some 𝐾(𝑛 − 1) ≤ 𝑙 < 𝐾(𝑛) and 1 ≤  𝑗 ≤ 𝑐𝑙. This means that 𝑍𝑛𝜉1 = 𝑍𝑛𝐹𝐾(𝑛−1)−1 ⊂

𝑍𝑛𝐹𝑙−1 is disjoint from  𝜉2. Analogous reasoning shows that if  𝜉2 = 𝐹𝐾(𝑛−1)−1 then for 

arbitrary 𝜉1 one has  𝑍𝑛𝜉1 ∩ 𝜉2 = ∅. 
(ii) If 

 𝜉1 = (𝑇𝑗1
(𝑙)
 \ ⋃ 𝑍𝑛𝑇𝑖

(𝑙)

𝑖≠𝑗1,𝑖≤𝑐𝑙

 ) \ (𝑍𝑛𝐹𝑙−1 ∪ 𝑍𝑛
−1𝐹𝑙−1) 

and 

 𝜉2 = (𝑇𝑗2
(𝑙)
 \ ⋃ 𝑍𝑛𝑇𝑖

(𝑙)

𝑖≠𝑗2,𝑖≤𝑐𝑙

 ) \ (𝑍𝑛𝐹𝑙−1 ∪ 𝑍𝑛
−1𝐹𝑙−1) 

for some 𝐾(𝑛 − 1) ≤ 𝑙 < 𝐾(𝑛) and 1 ≤  𝑗1, 𝑗2 ≤ 𝑐𝑙 , 𝑗1 ≠ 𝑗2, then the claim is obvious. 

(iii) Assume that 

        𝜉1 = (𝑇𝑗1
(𝑙1) \ ⋃ 𝑍𝑛𝑇𝑖

(𝑙1)

𝑖≠𝑗1,𝑖≤𝑐𝑙1

 ) \ (𝑍𝑛𝐹𝑙1−1 ∪ 𝑍𝑛
−1𝐹𝑙1−1) 

and 

      𝜉2 = (𝑇𝑗2
(𝑙2) \ ⋃ 𝑍𝑛𝑇𝑖

(𝑙2)

𝑖≠𝑗2,𝑖≤𝑐𝑙2

 ) \ (𝑍𝑛𝐹𝑙2−1 ∪ 𝑍𝑛
−1𝐹𝑙2−1) 
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for some 𝐾(𝑛 − 1) ≤ 𝑙1, 𝑙2 < 𝐾(𝑛), 𝑙1 ≠ 𝑙2, 1 ≤  𝑗1 ≤ 𝑐𝑙1  , and 1 ≤  𝑗2 ≤ 𝑐𝑙2 . If  𝑙1 > 𝑙2, 

then 𝑍𝑛 𝜉1 ⊂ 𝑍𝑛𝐹𝑙1 ⊂ 𝑍𝑛𝐹𝑙2−1 and hence 𝑍𝑛 𝜉1 ∩  𝜉2 = ∅. Similarly we can show that the 

claim holds if   𝑙1 < 𝑙2. 

This shows that the lemma holds. 

     Let 𝑧𝑛 ∈ 𝑋 be a point such that: 

  (i)  𝜌(𝑔𝑧𝑛, 𝑔𝑧𝑛−1) <
1

2𝑛+2
 for every 𝑔 ∈ 𝐹𝐾(𝑛−1)−1,  

 (ii)  𝜌 (𝑔𝑧𝑛, 𝑔(𝑔𝑖
(𝑙)
)−1∏(𝑇𝑖

(𝑙)
 )) <

1

2𝑛+2
  for all  𝐾(𝑛 − 1)  ≤  𝑙 < 𝐾(𝑛), 1 ≤  𝑖 ≤  𝑐𝑙 , 

and 𝑔 ∈  𝑆𝑖
(𝑙)
 .  

We will show that the sequences (𝐾(𝑛))𝑛=0
∞  and (𝑧𝑛)𝑛=0

∞  satisfy requested conditions. The 

claim for 𝑛 = 0 is easy to verify (in fact, there is nothing to show here). Fix 𝑛 ≥ 1. We 

need the following lemma, which follows from Lemma (6.3.4) and (6.3.5). 

Lemma (6.3.9)[478]: For every 𝐾(𝑛 − 1) ≤ 𝑙 < 𝐾(𝑛) one has 

 

𝐷(
1

𝑐𝑙
∑ 𝑚(Π(𝑇), 𝐹𝑃(𝑛)  )

𝑇∈ 𝒫𝑙

 ,∑
𝐵(𝑛, 𝑖) 

𝐴(𝑛)

𝑛

𝑖=1

𝑚  (𝑥𝑖
(𝑛)
 , 𝐹𝑃(𝑛)))  ≤

1

2𝑛+4
  .                    (26) 

Proof: Fix 𝐾(𝑛 − 1) ≤  𝑙 < 𝐾(𝑛) . Note that both of the above measures are linear 

combinations of the Dirac deltas supported at points from the set 
  

𝑓𝑥𝑖
(𝑛)
: 1 ≤ 𝑖 ≤  𝑛, 𝑓 ∈ 𝐹𝑃(𝑛). 

For 1 ≤ 𝑖 ≤ 𝑛  and 𝑓 ∈ 𝐹𝑃(𝑛)  let  𝛼𝑓𝑖 , , 𝛽𝑓,𝑖  denote the coefficients with which �̂�
𝑓𝑥𝑖

(𝑛) 

appear in 

1

𝑐𝑙
∑ 𝑚(Π(𝑇), 𝐹𝑃(𝑛)  )

𝑇∈ 𝒫𝑙

 and∑
𝐵(𝑛, 𝑖) 

𝐴(𝑛)

𝑛

𝑖=1

𝑚  (𝑥𝑖
(𝑛)
 , 𝐹𝑃(𝑛)), 

respectively. Fix 1 ≤  i ≤ n and  𝑓 ∈ 𝐹𝑃(𝑛). Clearly 

𝛼𝑓,𝑖 =
|Π−1𝑥𝑖

(𝑛)
|

𝑐𝑙|𝐹𝑃(𝑛)|
 and  𝛽𝑓,𝑖  =

𝐵(𝑛, 𝑖) 

𝐴(𝑛) ⋅ |𝐹𝑃(𝑛)|
. 

Note also that it follows from (25) that 

𝐵(𝑛, 𝑖) 

|𝐹𝑃(𝑛)|
⋅ (

1

𝐴(𝑛)
−
1

𝑐𝑙
) ≤

|Π−1𝑥𝑖
(𝑛)
|

𝑐𝑙|𝐹𝑃(𝑛)|
≤
𝐵(𝑛, 𝑖)

|𝐹𝑃(𝑛)|
⋅ (

1

𝐴(𝑛)
−
1

𝑐𝑙
) . 

Hence 

|𝛼𝑓,𝑖 − 𝛽𝑓,𝑖|  ≤
𝐵(𝑛, 𝑖)

𝑐𝑙|𝐹𝑃(𝑛)|
 . 

Therefore using (ii) we get that 

∑ |𝛼𝑓,𝑖 − 𝛽𝑓,𝑖|

1≤𝑖 ≤𝑛 ,𝑓∈𝐹𝑃(𝑛)1

≤
𝐴(𝑛)

𝑐𝑙
=
𝐴(𝑛)|𝐹𝑃(𝑛)|

|𝐹𝑙\𝐹𝑙−1|
≤

𝐴(𝑛)|𝐹𝑃(𝑛)|

|𝐹𝐾(𝑛−1)−1\𝐹𝐾(𝑛−1)|
≤

1

2𝑛+3
.      

Hence it follows from Lemma (6.3.4) that the claim holds. 

       Lemma (6.3.9), the triangle inequality and (23) yield to: 
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𝐷(
1

𝑐𝑙
∑ 𝑚(Π(𝑇), 𝐹𝑃(𝑛) ), 𝜈𝑛
𝑇∈ 𝒫𝑙

) ≤                                                                                      (27) 

≤ 𝐷(
1

𝑐𝑙
∑ 𝑚(Π(𝑇), 𝐹𝑃(𝑛)  )

𝑇∈ 𝒫𝑙

 ,∑
𝐵(𝑛, 𝑖)

𝐴(𝑛)

𝑛

𝑖=1

𝑚  (𝑥𝑖
(𝑛)
 , 𝐹𝑃(𝑛))) +                       

+𝐷(∑
𝐵(𝑛, 𝑖)

𝐴(𝑛)

𝑛

𝑖=1

𝑚  (𝑥𝑖
(𝑛)
 , 𝐹𝑃(𝑛)) , 𝜈𝑛)  ≤

1

2𝑛+4
+

1

2𝑛+3
<

1

2𝑛+2
.               

What is more, condition (ii), Lemma (6.3.1) and Lemma (6.3.4) imply that 

 

𝐷(
∑ |𝑆𝑖

(𝑙)
 |𝑚  (𝑧𝑛, 𝑆𝑖

(𝑙)
)

𝑐𝑙
𝑖=1

∑ |𝑆𝑖
(𝑙)
|

𝑐𝑙
𝑖=1

 ,
∑ |𝑆𝑖

(𝑙)
 |𝑚  ( (𝑔𝑖

(𝑙)
)−1Π((𝑇𝑖

(𝑙)
) , 𝑆𝑖

(𝑙)
)

𝑐𝑙
𝑖=1

∑ |𝑆𝑖
(𝑙)
|

𝑐𝑙
𝑖=1

) ≤
1

2𝑛+2
.    (28) 

Moreover, condition (24) gives that 

|∐𝑇𝑖
(𝑙)

𝑐𝑙

𝑖=1

| ≥ |∐𝑆𝑖
(𝑙)

𝑐𝑙

𝑖=1

| ≥ (1 −
1

2𝑛+3
) |∐𝑇𝑖

(𝑙)

𝑐𝑙

𝑖=1

| −
|𝐹𝑙−1|

2𝑛+3
≥ (1 −

1

2𝑛+2
) · |∐𝑇𝑖

(𝑙)

𝑐𝑙

𝑖=1

|. 

Hence, (28) and Lemma (6.3.5) give that 

𝐷(
∑ |𝑇𝑖

(𝑙)
 |𝑚 (𝑧𝑛, 𝑇𝑖

(𝑙)
)

𝑐𝑙
𝑖=1

∑ |𝑇𝑖
(𝑙)
|

𝑐𝑙
𝑖=1

 ,
∑ |𝑇𝑖

(𝑙)
 |𝑚 ( 𝑔𝑖

(𝑙)
)−1Π((𝑇𝑖

(𝑙)
) , 𝑇𝑖

(𝑙)
)

𝑐𝑙
𝑖=1

∑ |𝑇𝑖
(𝑙)
|

𝑐𝑙
𝑖=1

)                 

(29) 

≤ 𝐷(
∑ |𝑇𝑖

(𝑙)
 |𝑚 (𝑧𝑛, 𝑇𝑖

(𝑙)
)

𝑐𝑙
𝑖=1

∑ |𝑇𝑖
(𝑙)
|

𝑐𝑙
𝑖=1

 ,
∑ |𝑆𝑖

(𝑙)
 |𝑚 (𝑧𝑛, 𝑆𝑖

(𝑙)
)

𝑐𝑙
𝑖=1

∑ |𝑆𝑖
(𝑙)
|

𝑐𝑙
𝑖=1

) +                                                  

+𝐷(
∑ |𝑆𝑖

(𝑙)
 |𝑚 (𝑧𝑛, 𝑆𝑖

(𝑙)
 )

𝑐𝑙
𝑖=1

∑ |𝑆𝑖
(𝑙)
 |

𝑐𝑙
𝑖=1

 ,
∑ |𝑆𝑖

(𝑙)
|𝑚 ( (𝑔𝑖

(𝑙)
)−1Π(𝑇𝑖

(𝑙)
) , 𝑆𝑖

(𝑙)
 )

𝑐𝑙
𝑖=1

∑ |𝑆𝑖
(𝑙)
|

𝑐𝑙
𝑖=1

) +                  

. 

+𝐷(
∑ |𝑆𝑖

(𝑙)
 |𝑚 ( (𝑔𝑖

(𝑙)
)−1Π(𝑇𝑖

(𝑙)
) , 𝑆𝑖

(𝑙)
 )

𝑐𝑙
𝑖=1

∑ |𝑆𝑖
(𝑙)
 |

𝑐𝑙
𝑖=1

 ,
∑ |𝑇𝑖

(𝑙)
 |𝑚 ( (𝑔𝑖

(𝑙)
)−1Π(𝑇𝑖

(𝑙)
) , 𝑇𝑖

(𝑙)
)

𝑐𝑙
𝑖=1

∑ |𝑇𝑖
(𝑙)
|

𝑐𝑙
𝑖=1

) 

≤ 

≤
2

2𝑛+2
+

1

2𝑛+2
+

2

2𝑛+2
<

1

2𝑛−1
.                                               

Note also that 

∑ |𝑇𝑖
(𝑙)
|𝑚 (𝑧𝑛, 𝑇𝑖

(𝑙)
 )

𝑐𝑙
𝑖=1

∑ |𝑇𝑖
(𝑙)
 |

𝑐𝑙
𝑖=1

= 𝑚(𝑧𝑛, 𝐹𝑙\𝐹𝑙−1).                    

Moreover, one has: 

                          
∑ |𝑇𝑖

(𝑙)
 |𝑚 ( (𝑔𝑖

(𝑙)
)−1Π(𝑇𝑖

(𝑙)
) , 𝑇𝑖

(𝑙)
)

𝑐𝑙
𝑖=1

∑ |𝑇𝑖
(𝑙)
|

𝑐𝑙
𝑖=1

=
1

𝑐𝑙
∑ 𝑚(Π(𝑇), 𝐹𝑃(𝑛))

𝑇∈𝒫𝑙

. 
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Therefore conditions (21), (27) and (29) give that 

 

𝐷(𝑚(𝑧𝑛,  𝐹𝑙\ 𝐹𝑙−1), 𝜇) ≤                                                                                                         (30) 
 

≤ 𝐷(
∑ |𝑇𝑖

(𝑙)
 |𝑚 ( (𝑧𝑛, 𝑇𝑖

(𝑙)
)

𝑐𝑙
𝑖=1

∑ |𝑇𝑖
(𝑙)
|

𝑐𝑙
𝑖=1

 ,
∑ |𝑇𝑖

(𝑙)
|𝑚 ( (𝑔𝑖

(𝑙)
)−1Π(𝑇𝑖

(𝑙)
) , 𝑇𝑖

(𝑙)
)

𝑐𝑙
𝑖=1

∑ |𝑇𝑖
(𝑙)
|

𝑐𝑙
𝑖=1

) + 

         +𝐷(
1

𝑐𝑙
∑ 𝑚(Π(𝑇), 𝐹𝑃(𝑛) ), 𝜈𝑛
𝑇∈ 𝒫𝑙

) + 𝐷(𝜈𝑛, 𝜇) <
2

2𝑛−1
+

1

2𝑛+2
+

2

2𝑛
<

1

2𝑛−2
. 

What is more, 𝑐 gives that 

                    
| 𝐹𝑙\𝐹𝑙−1|

|𝐹𝑙−1|
≥
| 𝐹𝐾(𝑛−1)−1\ 𝐹𝐾(𝑛−1)|

| 𝐹𝐾(𝑛−1)|
≥ 2𝑛+2 

and hence as a consequence of Lemma (6.3.5) we get that 

𝐷(𝑚(𝑧𝑛,  𝐹𝑙),𝑚(𝑧𝑛,  𝐹𝑙\ 𝐹𝑙−1)) ≤
1

2𝑛+1
 .                      

Using the above inequality and (30) we obtain that 

 

      𝐷(𝑚(𝑧𝑛,  𝐹𝑙), 𝜇) ≤ 𝐷(𝑚(𝑧𝑛,  𝐹𝑙),𝑚(𝑧𝑛,  𝐹𝑙\ 𝐹𝑙−1)) + 𝐷(𝑚(𝑧𝑛,  𝐹𝑙\ 𝐹𝑙−1), 𝜇)) ≤             

≤
1

2𝑛+1
+

1

2𝑛−2
≤

1

2𝑛−3
.                                                                                                    (31) 

 

This shows (II). Note also that condition (i)  and Lemma (6.3.1) imply that for every 𝑠 <
𝑛 and 𝐾(𝑠 − 1) ≤ 𝑚 < 𝐾(𝑠) one has 

 

𝐷(𝑚(𝑧𝑛,  𝐹𝑚), 𝜇) ≤ 𝐷(𝑚(𝑧𝑛,  𝐹𝑚),𝑚(𝑧𝑠,  𝐹𝑚)) + 𝐷(𝑚(𝑧𝑠, 𝐹𝑚), 𝜇) ≤                  

≤ ∑
1

2𝑖+3
+

1

2𝑠−3
≤

2

2𝑠+2
+

1

2𝑠−3
<

1

2𝑠−4

𝑛−1

𝑖=𝑠

,                                                              (32) 

which proves (I).  

Corollary (6.3.10)[495]:  Let 𝛼1
𝑟 , . . . , 𝛼𝑘

𝑟 , 𝛽1
𝑟 , . . . , 𝛽𝑘

𝑟 ∈ [0, 1] be positive numbers such that 

∑ ∑  𝑟 𝛼𝑖
𝑟 = ∑ ∑  𝑟 𝛽𝑖

𝑟 = 1𝑘
𝑖=1

𝑘
𝑖=1   . If  𝜇1

𝑟 , . . . , 𝜇𝑘
𝑟 , 𝜈1

𝑟 , . . . , 𝜈𝑘
𝑟 ∈ ℳ(𝑋), then 

 

∑ 

𝑟

𝐷 (∑𝛼𝑖
𝑟𝜇𝑖

𝑟

𝑘

𝑖=1

,∑𝛽𝑖
𝑟

𝑘

𝑖=1

𝜈𝑖
𝑟)  ≤

1

2
 ∑∑ 

𝑟

|𝛼𝑖
𝑟  −  𝛽𝑖

𝑟| + max
1≤𝑖≤𝑘

∑ 

𝑟

{𝐷(𝜇𝑖
𝑟 , 𝜈𝑖

𝑟)} 

𝑘

𝑖=1

 . 

 

Proof: Let  𝒦 = { 𝑗 ∈ {1, . . . , 𝑘} ∶ 𝛼𝑗
𝑟 > 𝛽𝑗

𝑟}. We can assume without loss of generality 

that 

∑∑ 

𝑟

|𝛼𝑗
𝑟 − 𝛽𝑗

𝑟|

𝑘

𝑗∈𝒦

 ≤
1

2
 ∑∑ 

𝑟

|𝛼𝑖
𝑟 − 𝛽𝑖

𝑟|,

𝑘

𝑗=1

 

as the proof in the other case is analogous. Fix a Borel set 𝐴 + 𝜖. One has ∑  𝑟 𝜇𝑗
𝑟(𝐴 +

𝜖) ≤ ∑  𝑟 𝜈𝑗
𝑟((𝐴 + 𝜖)𝛿) +  𝛿 for  𝑗 =  1, . . . , 𝑘 and hence 
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∑∑ 

𝑟

𝛼𝑗
𝑟𝜇𝑗

𝑟

𝑘

𝑗=1

(𝐴 + 𝜖) ≤∑∑ 

𝑟

𝛼𝑗
𝑟  𝜈𝑗

𝑟

𝑘

𝑗=1

((𝐴 + 𝜖)𝛿) + 𝛿                                    

≤∑∑ 

𝑟

𝛽𝑗
𝑟𝜈𝑗

𝑟

𝑘

𝑗=1

((𝐴 + 𝜖)𝛿+∑ |𝛼𝑗
𝑟− 𝛽𝑗

𝑟|𝑗∈𝒦 ) + 𝛿∑∑ 

𝑟

|𝛼𝑗
𝑟 − 𝛽𝑗

𝑟|

𝑘

𝑗∈𝒦

 

        ≤∑∑ 

𝑟

𝛽𝑗
𝑟𝜈𝑗

𝑟

𝑘

𝑗=1

((𝐴 + 𝜖)
𝛿+

1

2∑ |𝛼𝑗
𝑟− 𝛽𝑗

𝑟|𝑘
𝑗=1 ) + 𝛿 +

1

2
∑∑ 

𝑟

|𝛼𝑗
𝑟 − 𝛽𝑗

𝑟|

𝑘

𝑗∈1

. 

This completes the proof. 

Corollary (6.3.11)[495]: Let 𝜀 ∈ (0, 1/2) and 𝑀,𝑁 ∈ ℕ satisfy 𝑁(1 − 𝜀) ≤ 𝑀 ≤ 𝑁(1 +
𝜀) . Denote  𝑚 = max{𝑀,𝑁} . Choose 𝑤1

𝑟 , . . . , 𝑤𝑚
𝑟 , 𝑧1

𝑟, . . . , 𝑧𝑚
𝑟 ∈ 𝑋  such that 

∑  𝑟 𝜌(𝑤𝑖
𝑟 , 𝑧𝑖

𝑟) < 𝜀 for every 1 ≤  𝑖 ≤ 𝑚 and define  

𝜇 =
1

𝑀
∑∑ 

𝑟

�̂�𝑤𝑖
𝑟

𝑀

𝑖=1

and 𝜈 =
1

𝑁
∑∑ 

𝑟

�̂�𝑧𝑖
𝑟

𝑁

𝑖=1

. 

Then  𝐷(𝜇, 𝜈) ≤ 2𝜀. 

Proof: Fix a Borel set 𝐴 + 𝜖. We have 

𝜇(𝐴 + 𝜖) =
1

𝑀
 |{1 ≤ 𝑖 ≤ 𝑀 ∶ 𝑤𝑖

𝑟 ∈ 𝐴 + 𝜖}| ≤
𝑁

𝑀
·
1

𝑁
 |{1 ≤  𝑖 ≤ 𝑀 ∶  𝑧𝑖

𝑟 ∈ (𝐴 + 𝜖)𝜀}|

≤                

                                                                    ≤ 𝜈((𝐴 + 𝜖)2𝜀) +
𝜀

1−𝜀
≤ 𝜈((𝐴 + 𝜖)2𝜀) + 2𝜀. 

Since 𝐴 + 𝜖 is arbitrary we get the claim. 

Corollary (6.3.12)[495]: Fix 𝜇 ∈ ℳ𝐺(𝑋). Let (𝜀𝑚)𝑚∈ℕ  and (𝑧𝑛
𝑟)𝑟,𝑛∈ℕ ⊂ 𝑋 be such that 

𝜀𝑚  ↘ 0 as 𝑚 ↗ ∞ and for every 𝑚 ∈ ℕ there exits 𝑁 ∈ ℕ such that for all 𝑛 ≥ 𝑁 one has 

∑ 𝐷𝑟 (𝑚(𝑧𝑛
𝑟 , 𝐹𝑚

𝑟), 𝜇) ≤ 𝜀𝑚 . Then any accumulation point of the sequence (𝑧𝑛
𝑟)𝑟,𝑛∈ℕ  is 

generic for  𝜇. 

Proof: Let 𝑧𝑟 ∈ 𝑋 be such that 𝑧𝑛𝑘
𝑟 → 𝑧𝑟 for some 𝑛𝑘  ↗ ∞ . Fix 𝜀 > 0. Choose 𝑚 ∈ ℕ in 

such a way that 𝜀𝑚 < 𝜀/2. Pick 𝛿 > 0 such that for all 𝑥, 𝑦 ∈ 𝑋 satisfying 𝜌(𝑥, 𝑦) < 𝛿 one 

has ∑  𝑟 𝜌(𝑓𝑟𝑥, 𝑓𝑟𝑦) < 𝜀/2  for all 𝑓𝑟 ∈ 𝐹𝑚
𝑟 . It follows from Lemma 1 that then also 

∑  𝑟 𝐷(𝑚(𝑥, 𝐹𝑚
𝑟),𝑚(𝑦, 𝐹𝑚

𝑟)) ≤ 𝜀/2 . Choose 𝑁 ∈ ℕ  such that for all 𝑛 ≥ 𝑁  one has 

∑  𝑟 𝐷(𝑚(𝑧𝑛
𝑟 , 𝐹𝑚

𝑟), 𝜇) < 𝜀𝑚 . Let 𝑘 ∈ ℕ  be such that 𝑛𝑘 ≥ 𝑁  and  ∑  𝑟 𝜌(𝑧𝑛
𝑟 , 𝑧𝑛𝑘

𝑟 ) < 𝛿 . 

Using the triangle inequality we get that 

 

∑ 

𝑟

𝐷(𝑚(𝑧𝑟 , 𝐹𝑚
𝑟), 𝜇) ≤∑ 

𝑟

𝐷(𝑚(𝑧𝑟, 𝐹𝑚
𝑟),𝑚(𝑧𝑛𝑘

𝑟 , 𝐹𝑚
𝑟)) +∑ 

𝑟

𝐷(𝑚(𝑧𝑛𝑘
𝑟 , 𝐹𝑚

𝑟), 𝜇)

< 𝜀/2 + 𝜀/2 = 𝜀. 
Since 𝜀 is arbitrary the proof is completed. 

Corollary (6.3.13)[495]: For every measure 𝜇 ∈ ℳ𝐺(𝑋) there exists a point 𝑥 ∈ 𝑋 which 

is generic for 𝜇 with respect to (𝐹𝑖
𝑟)𝑟,𝑖∈ℕ. 

Proof: Fix  𝜇 ∈ ℳ𝐺(𝑋). It follows from the Krein–Milman theorem that 

𝜇 = lim
𝑛→∞

∑∑ 

𝑟

𝑝𝑖
(𝑛)

𝑞𝑖
(𝑛)

𝑛

𝑖=1

 𝜈𝑖
𝑟(𝑛)
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for some 𝑝𝑖
(𝑛)

∈ ℕ ∪ {0}, 𝑞𝑖
(𝑛)

∈ ℕ and 𝜈𝑖
𝑟(𝑛)

∈ ℳ𝐺
𝑒(𝑋). To simplify notation denote for 

every 𝑛 ∈ ℕ 

𝜈𝑛
𝑟 ≔∑∑ 

𝑟

𝑝𝑖
(𝑛)

𝑞𝑖
(𝑛)

𝑛

𝑖=1

𝜈𝑖
𝑟(𝑛)

. 

Passing to a subsequence if necessary we can assume additionally that for every 𝑛 ∈  𝑁 

one has 

∑ 

𝑟

𝐷(𝜈𝑛
𝑟 , 𝜇) <

1

2𝑛
.                                                                (33) 

We will construct an increasing sequence (𝐾(𝑛))𝑛=0
∞ ⊂ ℕ ∪ {0} and a sequence of points 

(𝑧𝑛
𝑟)𝑟,𝑛=0

∞ ⊂ 𝑋 such that: 

(I)  for every 𝑛 ∈ ℕ ∪ {0}, 𝑠 < 𝑛 and  𝐾(𝑠 − 1) ≤ 𝑚 < 𝐾(𝑠) one has 

∑ 

𝑟

(𝐷(𝑚(𝑧𝑛
𝑟 , 𝐹𝑚

𝑟), 𝜇) ≤
1

2𝑠−4
 , 

 
Fig. 2[478]. Our choices of Følner sets 

(II) for every 𝑛 ∈ ℕ ∪ {0} and 𝐾(𝑛 − 1) ≤ 𝑙 < 𝐾(𝑛) the following inequality is satisfied: 

 

∑ 

𝑟

𝐷(𝑚(𝑧𝑛
𝑟 , 𝐹𝑙

𝑟), 𝜇) ≤
1

2𝑠−3
 .                                                     (34) 

Define 

𝐴(𝑛) = ∏ 𝑞𝑖
(𝑛)𝑛

𝑖=1  and (𝐴 + 𝜖)(𝑛, 𝑖) =  
𝑝𝑖
(𝑛)

𝑞𝑖
(𝑛) ·  𝐴(𝑛) for  𝑛 ∈ ℕ, 1 ≤  𝑖 ≤ 𝑛.  

𝐹𝑙
𝑟 

𝐹𝑙−1
𝑟  

𝐹𝑃(𝑛)
𝑟  

𝐹𝐾(𝑛−1)
𝑟  

𝑇((𝑙))
𝑖
= 𝐹𝑃(𝑛)

𝑟 𝑔𝑖
(𝑙)

 

𝐹𝑙
𝑟 
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Note that 𝐴(𝑛), (𝐴 + 𝜖)(𝑛, 𝑖) ∈ ℕ and 

𝜈𝑛
𝑟 =

1

𝐴(𝑛)
∑∑ 

𝑟

(𝐴 + 𝜖)(𝑛, 𝑖)

𝑛

𝑖=1

𝜈𝑖
𝑟(𝑛)

. 

Therefore it follows from (34) and Corollary (6.3.10) that for every 𝑚 ≥ 𝑀(𝑛) one has 

∑ 

𝑟

𝐷 (∑
(𝐴 + 𝜖)(𝑛, 𝑖)

𝐴(𝑛)

𝑛

𝑖=1

𝑚(𝑥𝑖
(𝑛)
, 𝐹𝑚

𝑟) , 𝜈𝑛
𝑟) <

1

2𝑛+3
.                               (35) 

      For every 𝑛 ∈ ℕ  let 𝑍𝑛 ∈  Fin (𝐺)  be provided from the definition of the weak 

specification property for 𝜀𝑛 = 1/2𝑛+2 . Let 𝑃(𝑛) ≥ 𝑀(𝑛)  be such that for every 𝑝 ≥
𝑃(𝑛) one has 

 

∑ 

𝑟

|𝑍𝑛 ∪ 𝑍𝑛
−1𝐹𝑝

𝑟∆𝐹𝑝
𝑟|

𝐹𝑝
𝑟

≤
1

2𝑛+3
.                                                  (36) 

Pick 𝑧0
𝑟 ∈ 𝑋  in an arbitrary way and put 𝐾(0) = 0 . Choose a sequence (𝐾(𝑛))𝑛∈ℕ 

growing fast enough so that the following conditions are satisfied: 

   (i) 𝐾(𝑛) ≥ 𝑚𝑎𝑥 {𝑃(𝑛 + 1) + 1,𝐾(𝑛 − 1)},  

  (ii) ∑  𝑟 |𝐹𝐾(𝑛−1)+1
𝑟 \ 𝐹𝐾(𝑛−1)

𝑟 | ≥ ∑  𝑟 2𝑛+4𝐴(𝑛) · |𝐹𝑃(𝑛)
𝑟 |,  

  (iii) ∑  𝑟
|𝐹𝐾(𝑛)+1

𝑟  \ 𝐹𝐾(𝑛)
𝑟 |

|𝐹𝐾(𝑛)
𝑟 |

 ≥ 2𝑛+3. 

Fix 𝑛 ≥ 1 . Let 𝐾(𝑛 − 1) ≤ 𝑙 < 𝐾(𝑛) . Note that  𝐹𝑙
𝑟  \ 𝐹𝑙−1

𝑟  consists of  𝑐𝑙 ∶= |𝐻𝑃(𝑛) ∶

𝐻𝑙| − |𝐻𝑃(𝑛) ∶  𝐻𝑙−1|  disjoint shifted copies of  𝐹𝑃(𝑛)
𝑟 . Denote them by 

 

𝑇1
(𝑙)

=∑ 

𝑟

𝐹𝑃(𝑛)
𝑟 (𝑔𝑟)1

(𝑙)
  , . . . , 𝑇𝑐𝑙

(𝑙)
=∑ 

𝑟

𝐹𝑃(𝑛)
𝑟 (𝑔𝑟)𝑐𝑙

(𝑙)
 . 

Call this family 𝒫𝑙  and divide it into 𝐴(𝑛) subfamilies 𝒫1
(𝑙)
  , . . . , 𝒫𝐴(𝑛)

(𝑙)
 with almost the 

same cardinality , that is in such a way that for every  1 ≤  𝑖 ≤  𝐴(𝑛) one has  

 
𝑐𝑙

𝐴(𝑛)
+ 1 ≥ |𝒫𝑖

(𝑙)
| ≥

𝑐𝑙
𝐴(𝑛)

− 1.                                             (37) 

Obviously, |𝒫𝑙| = 𝑐𝑙. For every 1 ≤ 𝑖 ≤ 𝐴(𝑛) let  𝜋(𝑖) = 𝑥𝑘
(𝑛)

 , where 1 ≤  𝑘 ≤ 𝑛 is such 

that 

∑(𝐴+ 𝜖)(𝑛, 𝑗) 

𝑘−1

𝑗=1

< 𝑖 ≤∑(𝐴 + 𝜖)(𝑛, 𝑗).

𝑘

𝑗=1

   

     Note that for every 1 ≤  𝑘 ≤  𝑛  one has | 𝜋−1(𝑥𝑘 
(𝑛)
)| = (𝐴 + 𝜖)(𝑛, 𝑘) . Put also 

∏(𝑇) = 𝜋(𝑖) for every ∈ 𝒫𝑖
(𝑙)

 .  For all 𝐾(𝑛 − 1) ≤ 𝑙 < 𝐾(𝑛) and 1 ≤  𝑗 ≤  𝑐𝑙 define 

𝑆𝑗
(𝑙)

=∑ 

𝑟

(𝑇𝑗
(𝑙)
 \ ⋃ 𝑍𝑛𝑇𝑖

(𝑙)

𝑖≠𝑗,𝑖≤𝑐𝑙

 ) \ (𝑍𝑛𝐹𝑙−1
𝑟 ∪ 𝑍𝑛

−1𝐹𝑙−1
𝑟 ) . 

Corollary (6.3.14)[495]: The family 
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𝛯 =∑ 

𝑟

𝐹𝐾(𝑛−1)−1
𝑟 ∪ {𝑆𝑗

(𝑙)
: 𝐾(𝑛 − 1) ≤ 𝑙 < 𝐾(𝑛), 1 ≤  𝑗 ≤ 𝑐𝑙} 

satisfies the condition from the definition of the weak specification property for 𝜀 =
1/2𝑛+2. 

Proof: Pick 𝜉1,  𝜉2 ∈ 𝛯 such that 𝜉1 ≠  𝜉2. We should show that 𝑍𝑛𝜉1 ∩ 𝜉2 = ∅. We divide 

reasoning into cases: 

(i) Assume that 𝜉1 = ∑  𝑟 𝐹𝐾(𝑛−1)−1
𝑟  or   𝜉2 = ∑  𝑟 𝐹𝐾(𝑛−1)−1

𝑟 . If  𝜉1 = ∑  𝑟 𝐹𝐾(𝑛−1)−1
𝑟 , then 

 𝜉2 =∑ 

𝑟

(𝑇𝑗
(𝑙)
 \ ⋃ 𝑍𝑛𝑇𝑖

(𝑙)

𝑖≠𝑗,𝑖≤𝑐𝑙

 ) \ (𝑍𝑛𝐹𝑙−1
𝑟 ∪ 𝑍𝑛

−1𝐹𝑙−1
𝑟 ) 

for some 𝐾(𝑛 − 1) ≤ 𝑙 < 𝐾(𝑛)  and 1 ≤  𝑗 ≤ 𝑐𝑙 . This means that 𝑍𝑛𝜉1 =
∑  𝑟 𝑍𝑛𝐹𝐾(𝑛−1)−1

𝑟 ⊂ 𝑍𝑛𝐹𝑙−1
𝑟  is disjoint from  𝜉2. Analogous reasoning shows that if  𝜉2 =

𝐹𝐾(𝑛−1)−1
𝑟  then for arbitrary 𝜉1 one has  𝑍𝑛𝜉1 ∩ 𝜉2 = ∅. 

(ii) If 

 𝜉1 =∑ 

𝑟

(𝑇𝑗1
(𝑙)
 \ ⋃ 𝑍𝑛𝑇𝑖

(𝑙)

𝑖≠𝑗1,𝑖≤𝑐𝑙

 ) \ (𝑍𝑛𝐹𝑙−1
𝑟 ∪ 𝑍𝑛

−1𝐹𝑙−1
𝑟 ) 

and 

 𝜉2 =∑ 

𝑟

(𝑇𝑗2
(𝑙)
 \ ⋃ 𝑍𝑛𝑇𝑖

(𝑙)

𝑖≠𝑗2,𝑖≤𝑐𝑙

 ) \ (𝑍𝑛𝐹𝑙−1
𝑟 ∪ 𝑍𝑛

−1𝐹𝑙−1
𝑟 ) 

for some 𝐾(𝑛 − 1) ≤ 𝑙 < 𝐾(𝑛) and 1 ≤  𝑗1, 𝑗2 ≤ 𝑐𝑙 , 𝑗1 ≠ 𝑗2, then the claim is obvious. 

(iii) Assume that 

        𝜉1 =∑ 

𝑟

(𝑇𝑗1
(𝑙1) \ ⋃ 𝑍𝑛𝑇𝑖

(𝑙1)

𝑖≠𝑗1,𝑖≤𝑐𝑙1

 ) \ (𝑍𝑛𝐹𝑙1−1
𝑟 ∪ 𝑍𝑛

−1𝐹𝑙1−1
𝑟 ) 

and 

      𝜉2 =∑ 

𝑟

(𝑇𝑗2
(𝑙2) \ ⋃ 𝑍𝑛𝑇𝑖

(𝑙2)

𝑖≠𝑗2,𝑖≤𝑐𝑙2

 ) \ (𝑍𝑛𝐹𝑙2−1
𝑟 ∪ 𝑍𝑛

−1𝐹𝑙2−1
𝑟 ) 

for some 𝐾(𝑛 − 1) ≤ 𝑙1, 𝑙2 < 𝐾(𝑛), 𝑙1 ≠ 𝑙2, 1 ≤  𝑗1 ≤ 𝑐𝑙1  , and 1 ≤  𝑗2 ≤ 𝑐𝑙2 . If  𝑙1 > 𝑙2, 

then 𝑍𝑛 𝜉1 ⊂ 𝑍𝑛𝐹𝑙1
𝑟 ⊂ 𝑍𝑛𝐹𝑙2−1

𝑟  and hence 𝑍𝑛 𝜉1 ∩  𝜉2 = ∅. Similarly we can show that the 

claim holds if   𝑙1 < 𝑙2. 

 This shows that the Corollary holds 

Corollary (6.3.15)[495]: For every 𝐾(𝑛 − 1) ≤ 𝑙 < 𝐾(𝑛) one has 

 

∑ 

𝑟

𝐷(
1

𝑐𝑙
∑ 𝑚(Π(𝑇), 𝐹𝑃(𝑛)

𝑟   )

𝑇∈ 𝒫𝑙

 ,∑
(𝐴 + 𝜖)(𝑛, 𝑖) 

𝐴(𝑛)

𝑛

𝑖=1

𝑚  (𝑥𝑖
(𝑛)
 , 𝐹𝑃(𝑛)

𝑟 ))  ≤
1

2𝑛+4
  .    (38) 

Proof: Fix 𝐾(𝑛 − 1) ≤  𝑙 < 𝐾(𝑛) . Note that both of the above measures are linear 

combinations of the Dirac deltas supported at points from the set 
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∑ 

𝑟

{𝑓𝑟𝑥𝑖
(𝑛)
: 1 ≤ 𝑖 ≤  𝑛, 𝑓𝑟 ∈ 𝐹𝑃(𝑛)

𝑟 }. 

For 1 ≤ 𝑖 ≤ 𝑛  and 𝑓𝑟 ∈ 𝐹𝑃(𝑛)
𝑟  let  𝛼𝑓𝑟𝑖

𝑟 , , 𝛽𝑓𝑟,𝑖
𝑟  denote the coefficients with which �̂�

𝑓𝑟𝑥𝑖
(𝑛) 

appear in 

1

𝑐𝑙
∑ ∑ 

𝑟

𝑚(Π(𝑇), 𝐹𝑃(𝑛)
𝑟   )

𝑇∈ 𝒫𝑙

 and∑∑ 

𝑟

(𝐴 + 𝜖)(𝑛, 𝑖) 

𝐴(𝑛)

𝑛

𝑖=1

𝑚  (𝑥𝑖
(𝑛)
 , 𝐹𝑃(𝑛)

𝑟 ), 

respectively. Fix 1 ≤  i ≤ n and  𝑓𝑟 ∈ 𝐹𝑃(𝑛)
𝑟 . Clearly 

𝛼𝑓𝑟,𝑖
𝑟 =∑ 

𝑟

|Π−1𝑥𝑖
(𝑛)
|

𝑐𝑙|𝐹𝑃(𝑛)
𝑟 |

 and  𝛽𝑓𝑟,𝑖
𝑟  =∑ 

𝑟

(𝐴 + 𝜖)(𝑛, 𝑖) 

𝐴(𝑛) ⋅ |𝐹𝑃(𝑛)
𝑟 |

. 

Note also that it follows from (37) that 

∑ 

𝑟

(𝐴 + 𝜖)(𝑛, 𝑖) 

|𝐹𝑃(𝑛)
𝑟 |

⋅ (
1

𝐴(𝑛)
−
1

𝑐𝑙
) ≤∑ 

𝑟

|Π−1𝑥𝑖
(𝑛)
|

𝑐𝑙|𝐹𝑃(𝑛)
𝑟 |

≤∑ 

𝑟

(𝐴 + 𝜖)(𝑛, 𝑖)

|𝐹𝑃(𝑛)
𝑟 |

⋅ (
1

𝐴(𝑛)
−
1

𝑐𝑙
) . 

Hence 

∑ 

𝑟

|𝛼𝑓𝑟,𝑖
𝑟 − 𝛽𝑓𝑟,𝑖

𝑟 |  ≤ ∑ 

𝑟

(𝐴 + 𝜖)(𝑛, 𝑖)

𝑐𝑙|𝐹𝑃(𝑛)
𝑟 |

 . 

Therefore using (ii) we get that 

∑ ∑ 

𝑟

|𝛼𝑓𝑟,𝑖
𝑟 − 𝛽𝑓𝑟,𝑖

𝑟 |

1≤𝑖 ≤𝑛 ,𝑓𝑟∈𝐹𝑃(𝑛)
𝑟

1

≤
𝐴(𝑛)

𝑐𝑙
=∑ 

𝑟

𝐴(𝑛)|𝐹𝑃(𝑛)
𝑟 |

|𝐹𝑙
𝑟\𝐹𝑙−1

𝑟 |
≤∑ 

𝑟

𝐴(𝑛)|𝐹𝑃(𝑛)
𝑟 |

|𝐹𝐾(𝑛−1)−1
𝑟 \𝐹𝐾(𝑛−1)

𝑟 |

≤
1

2𝑛+3
.      

Hence it follows from Corollary (6.3.10) that the claim holds. 

       Corollary (6.3.15), the triangle inequality and (35) yield to: 

∑ 

𝑟

𝐷(
1

𝑐𝑙
∑ 𝑚(Π(𝑇), 𝐹𝑃(𝑛)

𝑟  ), 𝜈𝑛
𝑟

𝑇∈ 𝒫𝑙

) ≤                                                              (39) 

≤∑ 

𝑟

𝐷(
1

𝑐𝑙
∑ 𝑚(Π(𝑇), 𝐹𝑃(𝑛)

𝑟   )

𝑇∈ 𝒫𝑙

 ,∑
(𝐴 + 𝜖)(𝑛, 𝑖)

𝐴(𝑛)

𝑛

𝑖=1

𝑚  (𝑥𝑖
(𝑛)
 , 𝐹𝑃(𝑛)

𝑟 )) +                       

+∑ 

𝑟

𝐷 (∑
(𝐴 + 𝜖)(𝑛, 𝑖)

𝐴(𝑛)

𝑛

𝑖=1

𝑚  (𝑥𝑖
(𝑛)
 , 𝐹𝑃(𝑛)

𝑟 ) , 𝜈𝑛
𝑟)  ≤

1

2𝑛+4
+

1

2𝑛+3
<

1

2𝑛+2
.               

What is more, condition (ii), Lemma (6.3.1) and Corollary (6.3.10) imply that 

 

∑ 

𝑟

𝐷(
∑ |𝑆𝑖

(𝑙)
 |𝑚  (𝑧𝑛

𝑟 , 𝑆𝑖
(𝑙)
)

𝑐𝑙
𝑖=1

∑ |𝑆𝑖
(𝑙)
|

𝑐𝑙
𝑖=1

 ,
∑ |𝑆𝑖

(𝑙)
 |𝑚  ( ((𝑔𝑟)𝑖

(𝑙)
)−1Π((𝑇𝑖

(𝑙)
) , 𝑆𝑖

(𝑙)
)

𝑐𝑙
𝑖=1

∑ |𝑆𝑖
(𝑙)
|

𝑐𝑙
𝑖=1

)  

≤
1

2𝑛+2
.                                                                                                                     (40) 

Moreover, condition (36) gives that 
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|∐𝑇𝑖
(𝑙)

𝑐𝑙

𝑖=1

| ≥ |∐𝑆𝑖
(𝑙)

𝑐𝑙

𝑖=1

| ≥ (1 −
1

2𝑛+3
) |∐𝑇𝑖

(𝑙)

𝑐𝑙

𝑖=1

| −∑ 

𝑟

|𝐹𝑙−1
𝑟 |

2𝑛+3
≥ (1 −

1

2𝑛+2
) · |∐𝑇𝑖

(𝑙)

𝑐𝑙

𝑖=1

|. 

Hence, (40) and Corollary (6.3.11) give that 

∑ 

𝑟

𝐷(
∑ |𝑇𝑖

(𝑙)
 |𝑚 (𝑧𝑛

𝑟 , 𝑇𝑖
(𝑙)
)

𝑐𝑙
𝑖=1

∑ |𝑇𝑖
(𝑙)
|

𝑐𝑙
𝑖=1

 ,
∑ |𝑇𝑖

(𝑙)
 |𝑚 ( (𝑔𝑟)𝑖

(𝑙)
)−1Π((𝑇𝑖

(𝑙)
) , 𝑇𝑖

(𝑙)
)

𝑐𝑙
𝑖=1

∑ |𝑇𝑖
(𝑙)
|

𝑐𝑙
𝑖=1

)          (41) 

≤∑ 

𝑟

𝐷(
∑ |𝑇𝑖

(𝑙)
 |𝑚 (𝑧𝑛

𝑟 , 𝑇𝑖
(𝑙)
)

𝑐𝑙
𝑖=1

∑ |𝑇𝑖
(𝑙)
|

𝑐𝑙
𝑖=1

 ,
∑ |𝑆𝑖

(𝑙)
 |𝑚 (𝑧𝑛

𝑟 , 𝑆𝑖
(𝑙)
)

𝑐𝑙
𝑖=1

∑ |𝑆𝑖
(𝑙)
|

𝑐𝑙
𝑖=1

)

+                                                  

+∑ 

𝑟

𝐷(
∑ |𝑆𝑖

(𝑙)
 |𝑚 (𝑧𝑛

𝑟 , 𝑆𝑖
(𝑙)
 )

𝑐𝑙
𝑖=1

∑ |𝑆𝑖
(𝑙)
 |

𝑐𝑙
𝑖=1

 ,
∑ |𝑆𝑖

(𝑙)
|𝑚 ( ((𝑔𝑟)𝑖

(𝑙)
)−1Π(𝑇𝑖

(𝑙)
) , 𝑆𝑖

(𝑙)
 )

𝑐𝑙
𝑖=1

∑ |𝑆𝑖
(𝑙)
|

𝑐𝑙
𝑖=1

)

+                  
. 

+∑ 

𝑟

𝐷 (
∑ |𝑆𝑖

(𝑙) |𝑚 ( ((𝑔𝑟)𝑖
(𝑙))−1Π(𝑇𝑖

(𝑙)), 𝑆𝑖
(𝑙) )

𝑐𝑙
𝑖=1

∑ |𝑆𝑖
(𝑙) |

𝑐𝑙
𝑖=1

 ,
∑ |𝑇𝑖

(𝑙) |𝑚 ( (𝑔𝑖
(𝑙))−1Π(𝑇𝑖

(𝑙)), 𝑇𝑖
(𝑙))

𝑐𝑙
𝑖=1

∑ |𝑇𝑖
(𝑙)|

𝑐𝑙
𝑖=1

)  

≤
2

2𝑛+2
+

1

2𝑛+2
+

2

2𝑛+2
<

1

2𝑛−1
.                                               

Note also that 

∑ 

𝑟

∑ |𝑇𝑖
(𝑙)
|𝑚 (𝑧𝑛

𝑟 , 𝑇𝑖
(𝑙)
 )

𝑐𝑙
𝑖=1

∑ |𝑇𝑖
(𝑙)
 |

𝑐𝑙
𝑖=1

=∑ 

𝑟

𝑚(𝑧𝑛
𝑟, 𝐹𝑙

𝑟\𝐹𝑙−1
𝑟 ).                    

Moreover, one has: 

   
∑ ∑  𝑟 |𝑇𝑖

(𝑙)
 |𝑚 ( ((𝑔𝑟)𝑖

(𝑙)
)
−1
Π(𝑇𝑖

(𝑙)
) , 𝑇𝑖

(𝑙)
)

𝑐𝑙
𝑖=1

∑ |𝑇𝑖
(𝑙)
|

𝑐𝑙
𝑖=1

=
1

𝑐𝑙
∑ ∑ 

𝑟

𝑚(Π(𝑇), 𝐹𝑃(𝑛)
𝑟 )

𝑇∈𝒫𝑙

. 

Therefore conditions (33), (39) and (41) give that 

 

∑ 

𝑟

𝐷(𝑚(𝑧𝑛
𝑟, 𝐹𝑙

𝑟\𝐹𝑙−1
𝑟 ), 𝜇) ≤                                                                (42) 

 

≤∑ 

𝑟

𝐷(
∑ |𝑇𝑖

(𝑙)
 |𝑚 ( (𝑧𝑛

𝑟 , 𝑇𝑖
(𝑙)
)

𝑐𝑙
𝑖=1

∑ |𝑇𝑖
(𝑙)
|

𝑐𝑙
𝑖=1

 ,
∑ |𝑇𝑖

(𝑙)
|𝑚 ( ((𝑔𝑟)𝑖

(𝑙)
)
−1
Π(𝑇𝑖

(𝑙)
) , 𝑇𝑖

(𝑙)
)

𝑐𝑙
𝑖=1

∑ |𝑇𝑖
(𝑙)
|

𝑐𝑙
𝑖=1

)+ 

+∑ 

𝑟

𝐷(
1

𝑐𝑙
∑ 𝑚(Π(𝑇), 𝐹𝑃(𝑛)

𝑟  ), 𝜈𝑛
𝑟

𝑇∈ 𝒫𝑙

) +∑ 

𝑟

𝐷(𝜈𝑛
𝑟 , 𝜇) <

2

2𝑛−1
+

1

2𝑛+2
+

2

2𝑛
<

1

2𝑛−2
. 

What is more, 𝑐 gives that 

∑ 

𝑟

|𝐹𝑙
𝑟\𝐹𝑙−1

𝑟 |

|𝐹𝑙−1
𝑟 |

≥∑ 

𝑟

|𝐹𝐾(𝑛−1)−1
𝑟 \𝐹𝐾(𝑛−1)

𝑟 |

|𝐹𝐾(𝑛−1)
𝑟 |

≥ 2𝑛+2 



276 

and hence as a consequence of Corollary (6.3.11) we get that 

∑ 

𝑟

𝐷(𝑚(𝑧𝑛
𝑟 , 𝐹𝑙

𝑟),𝑚(𝑧𝑛
𝑟, 𝐹𝑙

𝑟\ 𝐹𝑙−1
𝑟 )) ≤

1

2𝑛+1
 .                      

Using the above inequality and (42) we obtain that 

 

∑ 

𝑟

𝐷(𝑚(𝑧𝑛
𝑟 , 𝐹𝑙

𝑟), 𝜇)

≤∑ 

𝑟

𝐷(𝑚(𝑧𝑛
𝑟 , 𝐹𝑙

𝑟),𝑚(𝑧𝑛
𝑟, 𝐹𝑙

𝑟\ 𝐹𝑙−1
𝑟 )) +∑ 

𝑟

𝐷(𝑚(𝑧𝑛
𝑟, 𝐹𝑙

𝑟\ 𝐹𝑙−1
𝑟 ), 𝜇)) 

≤
1

2𝑛+1
+

1

2𝑛−2
≤

1

2𝑛−3
.                                                                                                    (43) 

 

This shows (II). Note also that condition (i)  and Lemma (6.3.1) imply that for every 𝑠 <
𝑛 and 𝐾(𝑠 − 1) ≤ 𝑚 < 𝐾(𝑠) one has 

 

∑ 

𝑟

𝐷(𝑚(𝑧𝑛
𝑟 , 𝐹𝑚

𝑟), 𝜇) ≤ 𝐷(𝑚(𝑧𝑛
𝑟, 𝐹𝑚

𝑟),𝑚(𝑧𝑠
𝑟 , 𝐹𝑚

𝑟)) + 𝐷(𝑚(𝑧𝑠
𝑟 , 𝐹𝑚

𝑟), 𝜇) 

≤ ∑
1

2𝑖+3
+

1

2𝑠−3
≤

2

2𝑠+2
+

1

2𝑠−3
<

1

2𝑠−4

𝑛−1

𝑖=𝑠

,                                                              (44) 

which proves (I). This finishes the proof of the Corollary.  
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List of Symbols 

Symbol Page 

Aut : Automorphism  1 

dim : dimension  2 

tr : trace 2 

⨂ : Tensor product 2 

𝐿2 : Hilbert Space  17 

𝐿∞ : Essential Lebesgue space 18 

Ker : Kernel 20 

Card : Cardinality 26 

sp : spectrum 26 

sup : Supremum 30 

Im : Imagrrary 33 

Rep : Representation 38 

Corr : Correspond 38 

Mor : Morphism 39 

⨁ : Orthogonal sum 41 

Hom : Homomorphism 41 

End : Endomorphism 48 

min : minimum 57 

cls : closed linear space 57 

PWG : Peter-Weyl-Galois 57 

can : canonical 57 

Vect : Vector 64 

proj : projective 64 

diag : diagonal 65 

inf : infimum   73 

per : period  74 

max : maximal   81 

n. f. s : normal semi finite faithful   89 

sect : sector 93 

alg : algebraic   94 

ind : indomorphism  98 

ℓ2 : Hilbert space of sequences  101 

ℓ∞ : Essential Hilbert space of sequences 101 

conv : convex 104 

co : closure  118 

Irr : Irreducible 122 

pro : property 165 

pic : picard 173 

Homeo : Homeomorphism   173 

cut : cuter  185 

ext : extreme  225 

top : topological 227 

CPE : completely positive entropy 229 
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ℓ1 : Bemalli space  230 

det : determinant 235 

ℓ𝑝 : Lebesgue space 239 

ℓ𝑞 : Dual of Lebesgue space 244 

Mod : Modular 255 

supp : support 260 

Fin : Finite 265 

 

 

  



279 

References 

[1] Magnus B. Landstad, Algebras of Spherical Functions Associated with Covariant 

Systems over Compact Group, Math. Scand. 47 (1980), 137—449. 

[2] J. F. Aarnes, On the continuity ofautomorphic representations of groups, Comm. 

Math. Phys. 7 (1968), 332—336. 

[3] J. Bratteli, Crossed products of UHF algebras by product type actions, Duke Math. 

J. 46 (1979), 123. 

[4] J. Dixmîer, Les C*, algèbres et leurs représentations, (Cahier Scientifiques 25), 

Gauthier Villars, Paris, 1969. 

[5] s. Dopplicher, D. Kastler and D. W. Robinson, Covariance algebras in field theory 

and statistical mechanics, Comm. Math. Phys. 3 (1966), 128. 

[6] J. M. G. Fell, Induced representations and Banach *aalgebraic bundles, Lecture 

Notes in Mathematics no. 582, Springer-Verlag, Berlin a Heidelberg - New York, 

1977. 

[7] R. Godement, A theory of spherical functions, I, Trans. Amer. Math. Soc. 73 

(1952), 496—556. 

[8] E. Hewitt and K. A. Ross, Abstract Harmonic analysis, II (Grundlehren Math. 

Wissensch. I 52), SpringereVerlag, Berlin - Heidelberg - New York, 1970. 

[9] R. Heegh-Krohn, M. B. Landstad and E. St  ّ rrner, Compact ergodic groups of 

automorphisms, Preprint, Univ. of Oslo, I 980. 

[10] A. Kishimoto and H. Takai, Some remarks on C*adynamical systems with a 

compact abelian group, &ru. 

[11] M. B. Landstad, Covariant systems over a compact group, Preprint, Univ. of 

Trondheim, 1974. 

[12] I. H. Leptin, Darstellung verailgemeinerter 1 aalgebren II, in Lectures on operator 

algebras, Lecture Notes in Mathematics no. 247, SpringereVerlag, Berlin - 

Heidelberg - New York, 1972. 

[13] G. W. Mackey, Infinite dimensional group representations, Bull. Amer. Math. Soc. 

69 (1963), 628 686. 

[14] M. A. Rieffel, Induced representations of C*aalgebras, Advances in Math. 13 

(1974), 176257. 

[15] M. A. Rieffel, Monta equivalence for C*algebras and W*ealgebras, J. Pure Appi. 

Algebra 5 (1974), 51-96. 

[16] J. Rosenberg, Appendix to O. Bràtteli’s paper on “Crossed products of UHF 

algebras”, Duke Math. J. 46 (1979), 25 26. 

[17] M. Takesaki, Covariant representations of C*a1gebras and their locally compact 

automorphism groups, Acta Math. I 19 (1967), 273-303. 

[18] M. Takesaki, A liminal crossed product of a uniformly hyperfinite C*’algebra by a 

compact abelian automorphism group. J. Functional Anal. 7 (1971), 140—146. 

[19] C. Peligrad, Locally compact group actions on C∗-algebras and compact subgroups, 

J. Funct. Anal. 76 (1988) 126–139. 

[20] W. B. ARVESON, On groups of automorphisms of operator algebras, J. Funct. 

Anal. 15 (1974), 217-243. 

[21] A. CONNES, Une classification des facteurs de type III, Ann. Sci. l&Cole Norm. 

Sup. 6 (1973). 133-252. 

[22] A. CONNESA ND M. TAKESAKI, The flow of wights on factors of type III, 

TGhoku Math. J. 29 (1977), 473-575. 



280 

[23] J. CUNTZ AND G. K. PEDERSENE, quivalence and traces on C*-algebras, J. 

Funct. Anal. 33 (1979), 135-164. 

[24] J. DIXMIER, “Les C*-algebras et leurs reprtsentations,” Gauhier-Villars, Paris, 

1964. 

[25] E. G. EFFROSO, rder ideals in a C*-algebra and its dual, Duke Math. J. 30 (1963), 

391-412. 

[26] G. A. ELLIOTT, Some simple C*-algebras constructed as crossed products with 

discrete outer automorphism groups, Publ. Rex Inst. Math. Sci. 16 (1980), 299-311. 

[27] E. C. GOOTMAN, On certain properties of crossed products, Proc. Sympos. Pure 

Math. 38 (1982), 31 l-323. 

[28] E. C. G~OTMANA ND J. ROSENBERGT, The structure of crossed product C*-

algebras: A proof of the generalized Effros-Hahn conjecture, Invent. Math. 52 

(1979), 283-298. 

[29] E. HEWI~ AND K. A. Ross, “Abstract Harmonic Analysis,” Vol. I, Springer-

Verlag, Berlin, 1963. 

[30] A. KISHIMOTO AND H. TAKAI, On the invariant T(a) in C*-dynamical systems, 

‘IXzoku Math. J. 30 (1978), 83-94. 

[31] M. B. LANDSTAD, Algebras of spherical functions associated with covariant 

systems over a compact group, Math. Stand. 47 (1980), 137-149. 

[32] D. OLESEN, G. K. PEDERSEN, AND E. STBRMER, Compact abelian groups of 

automorphisms of simple C*-algebras, Invent. Math. 39 (1977) 55-64. 

[33] D. OLE~EN AND G. K. PEDERSEN, Applications of the Connes spectrum to C*-

dynamical systems, J. Funct. Anal. 30 (1978), 179-197. 

[34] D. OLE~EN AND G. K. PEDERSEN, Applications of the Connes spectrum to C*-

dynamical systems, II, J. Funct. Anal. 36 (1980), 18-32. 

[35] G. K. PEDERSEN, “C*-Algebras and Their Automorphism Groups,” Academic 

Press, New York, 1979. 

[36] N. C. PHILLIPS, “K-Theoretic Freeness of Actions of Finite Groups on C*-

Algebras,” Thesis, University of California, Berkeley, 19841985. 

[37] M. A. RIEFFXLU, nitary representations of group extensions: An algebraic 

approach to the theory of Mackey and Blattner, Adu. in Math. Suppl. Ser. 4 (1979) 

364-386. 

[38] M. A. RIEFFEL, Actions of finite groups of C*-algebras, Math. Stand. 47 (1980), 

1577176. 

[39] G. WARNER, “Harmonic Analysis on Semisimple Lie Groups I,” Springer-Verlag, 

Berlin, 1972. 

[40] A. A. KIRILLOV, “Elements of the Theory of Representations,” Springer-Verlag, 

Berlin, 1976. 

[41] O. Bratteli, G.A. Elliott, D.E. Evans, A. Kishimoto, Quasi-product actions of a 

compact abelian group on a C∗-algebra, Tohoku Math. J. 41 (1989) 133–161. 

[42] S. ALBEVERIO AND R. HΘEGH-KROHN, Ergodic actions by compact groups on 

von Neumann algebras, Math. Z. 174(1980), 1-17. 

[43] H. ARAKI, 'R. HAAG, D. KASTLER AND M. TAKESAKI, Extension of KMS 

states and chemical potential, Comm. Math. Phys. 53 (1977), 97-134. 

[44] O. BRATTELI, G. A. ELLIOTT AND D. W. ROBINSON, Strong topological 

transitivity and C*-dynamical systems, J. Math. Soc. Japan 37 (1985), 115-133. 



281 

[45] O. BRATTELI AND P. E. T. JΘRGENSEN, Derivations commuting with abelian 

gauge actions on lattice 

[46] O. BRATTELI, A. KISHIMOTO AND D. W. ROBINSON, Embedding product 

type actions into C*-dynamical systems, J. Funct. Anal., 75 (1987), 188-210. 

[47] L. G. BROWN, Properly outer automorphisms of C*-algebras, to appear. 

[48] J. DIXMIER, Les algebres d'operateurs dans Γespace hilbertien (Algebres de von 

Neumann), Gauthier-Villars, Paris, 1957. 

[49] J. DIXMIER, Les C*-algebres et leurs representations, Gauthier-Villars, Paris, 

1964. 

[50] S. DOPLICHER AND J. E. ROBERTS, Compact Lie groups associated with 

endomorphisms of C*-algebras, Bull. Amer. Math. Soc. 11 (1984), 333-338. 

[51] S. DOPLICHER AND J. E% ROBERTS, Duals of compact Lie groups realized in 

the Cuntz algebras and their actions on C*-algebras, preprint. 

[52] S. DOPLICHER AND J. E. ROBERTS, A remark on compact automorphism 

groups on C*-algebras, J. Funct. Anal. 66 (1986), 67-72. 

[53] G. A. ELLIOTT, Automorphisms determined by multipliers on ideals of a C*-

algebra, J. Funct. Anal. 23 (1976), 1-10. 

[54] D. E. EVANS AND A. KISHIMOTO, Duality for automorphisms on a compact C*-

dynamical system, Ergodic Theory and Dynamical Systems 8 (1988), 173-189. 

[55] R. V. KADISON AND J. R. RINGROSE, Derivations and automorphisms of 

operator algebras, Comm. Math. Phys. 4 (1967), 32-63. 

[56] A. KISHIMOTO, Outer automorphisms and reduced crossed products of simple C*-

algebras, Comm. Math. Phys. 81 (1981), 429^35. 

[57] A. KISHIMOTO, Freely acting automorphisms of C*-algebras, Yokohama Math. J. 

30 (1982), 39-47. 

[58] A. KISHIMOTO, Automorphisms and covariant irreducible representations, 

Yokohama Math. J. 31 (1983), 159-168. 

[59] A. KISHIMOTO, One-parameter automorphism groups of C*-algebras, in: 

Geometric Methods in Operator Algebras, H. Araki and E. G. Effros eds, Pitman 

Research Notes in Mathematics series 123 (1986), 312-325. 

[60] R. LONGO AND C. PELIGRAD, Noncommutative topological dynamics and 

compact actions on C*-algebras, J. Funct. Anal. 58 (1984), 157-174. 

[61] Y. NAKAGAMI AND M. TAKESAKI, Duality for Crossed Products of von 

Neumann Algebras, Lecture Notes in Mathematics 731, Springer-Verlag, Berlin, 

1979. 

[62] D. OLESEN, Inner automorphisms of simple C*-algebras, Comm. Math. Phys. 44 

(1975), 175-190. 

[63] D. OLESEN AND G. K. PEDERSEN, Applications of the Connes spectrum to C*-

dynamical systems, III, J. Funct. Anal. 45 (1982), 357-390. 

[64] D. OLESEN, G. K. PEDERSEN AND M. TAKESAKI, Ergodic actions of compact 

abelian groups, J. Operator Theory 4 (1980), 201-218. 

[65] G. K. PEDERSEN, Measure theory for C*-algebras II, Math. Scand. 22 (1966), 63-

74. 

[66] G. K. PEDERSEN, Approximating derivations on ideals of a C*-algebra, 

Inventiones Math. 45 (1978), 299-305. 

[67] J. E. ROBERTS, Cross products of von Neumann algebras by group duals, 

Symposia Math. 20 (1976), 



282 

[68] R. J. Archbold and J. S. Spielberg, Topologically free actions and ideals in discrete 

C*- dynamical systems, Proc. Edinburgh Math. Soc. (2) 37(1994), 119–124. 

[69] D. Archey, Crossed product C*-algebras by finite group actions with the tracial 

Rokhlin property, in preparation. 

[70] D. Archey, Crossed product C*-algebras by finite group actions with the projection 

free tracial Rokhlin property, in preparation. 

[71] M. F. Atiyah, K-Theory, W. A. Benjamin, New York, Amsterdam, 1967. 

[72] M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-

Wesley, Reading MA, Menlo Park CA, London, Amsterdam, Don Mills ON, 

Sydney, 1969. 

[73] M. F. Atiyah and G. B. Segal, Equivariant K-theory and completion, J. Differential 

Geometry 3(1969), 1–18. 

[74] B. Blackadar, Symmetries of the CAR algebra, Ann. Math. (2) 131(1990), 589–623. 

[75] O. Bratteli and A. Kishimoto, Noncommutative spheres. III. Irrational rotations, 

Commun. Math. Physics 147(1992), 605–624. 

[76] A. Connes, Sur la classification des facteurs de type II , C. R. Acad. Sci. Paris S´er. 

A 281(1975), 13–15. 

[77] S. Echterhoff, W. L¨uck, N. C. Phillips, and S.Walters, The structure of crossed 

products of irrational rotation algebras by finite subgroups of SL2(Z), preprint 

(arXiv: math.OA/0609784). 

[78] G. A. Elliott, A classification of certain simple C*-algebras, pages 373–385 in: 

Quantum and Non-Commutative Analysis, H. Araki etc. (eds.), Kluwer, Dordrecht, 

1993. 

[79] T. Fack and O. Marechal, Sur la classification des sym´etries des C*-alg`ebres 

UHF, Canad. J. Math. 31(1979), 496–523. 

[80] E. C. Gootman and A. J. Lazar, Spectra for infinite tensor product type actions of 

compact groups, Canad. J. Math. 48(1996), 330–342. 

[81] E. C. Gootman, A. J. Lazar, and C. Peligrad, Spectra for compact group actions, J. 

Operator Theory 31(1994), 381–399. 

[82] P. Green, C*-algebras of transformation groups with smooth orbit space, Pacific J. 

Math. 72(1977), 71–97. 

[83] P. Green, The structure of imprimitivity algebras, J. Funct. Anal. 36(1980), 88–104. 

[84] D. Handelman and W. Rossmann, Product type actions of finite and compact 

groups, Indiana Univ. Math. J. 33(1984), 479–509. 

[85] D. Handelman and W. Rossmann, Actions of compact groups on AF C*-algebras, 

Illinois J. Math. 29(1985), 51–95. 

[86] R. H. Herman and V. F. R. Jones, Period two automorphisms of UHF C*-algebras, 

J. Funct. Anal. 45(1982), 169–176. 

[87] R. H. Herman and V. F. R. Jones, Models of finite group actions, Math. Scand. 

52(1983), 312–320. 

[88] I. Hirshberg and W. Winter, Rokhlin actions and self-absorbing C*-algebras, Pacific 

J. Math. 233(2007), 125–143. 

[89] M. Izumi, The Rohlin property for automorphisms of C*-algebras, pages 191–206 

in: Mathematical Physics in Mathematics and Physics (Siena, 2000), Fields Inst. 

Commun. vol. 30, Amer. Math. Soc., Providence RI, 2001. 

[90] M. Izumi, Finite group actions on C*-algebras with the Rohlin property. I , Duke 

Math. J. 122(2004), 233–280. 



283 

[91] M. Izumi, Finite group actions on C*-algebras with the Rohlin property. II , Adv. 

Math. 184(2004), 119–160. 

[92] J. A. Jeong and H. Osaka, Extremally rich C*-crossed products and the cancellation 

property, J. Austral. Math. Soc. (Series A) 64(1998), 285–301. 

[93] X. Jiang and H. Su, On a simple unital projectionless C*-algebra, Amer. J. Math. 

121(1999), 359–413. 

[94] V. F. R. Jones, Actions of finite groups on the hyperfinite type II1 factor, Mem. 

Amer. Math. Soc. 28(1990), no. 237. 

[95] A. Kishimoto, Simple crossed products of C*-algebras by locally compact abelian 

groups, Yokohama Math. J. 28(1980), 69–85. 

[96] A. Kishimoto, Actions of finite groups on certain inductive limit C*-algebras, 

International J. Math. 1(1990), 267–292. 

[97] A. Kishimoto, A Rohlin property for one-parameter automorphism groups, Comm. 

Math. Phys. 179(1996), 599–622. 

[98] A. Kishimoto, Unbounded derivations in AT algebras, J. Funct. Anal. 160(1998), 

270–311. 

[99] H. Lin, Tracially AF C*-algebras, Trans. Amer. Math. Soc. 353(2001), 693–722. 

[100] H. Lin, The tracial topological rank of C*-algebras, Proc. London Math. Soc. 

83(2001), 199–234. 

[101] H. Lin and H. Osaka, The Rokhlin property and the tracial topological rank, J. 

Funct. Anal. 218(2005), 475–494. 

[102] H. Lin and H. Su, Classification of direct limits of generalized Toeplitz algebras, 

Pacific J. Math. 181(1997), 89–140. 

[103] K. Matsumoto and J. Tomiyama, Outer automorphisms on Cuntz algebras, Bull. 

London Math. Soc. 25(1993), 64–66. 

[104] H. Nakamura, The Rohlin property for Z2-actions on UHF algebras, J. Math. Soc. 

Japan 51(1999), 583–612 

[105] H. Nakamura, Aperiodic automorphisms of nuclear purely infinite simple C*-

algebras, Ergod. Th. Dynam. Sys. 20(2000), 1749–1765. 

[106] H. Nakamura, Aperiodic automorphisms of certain simple C*-algebras, pages 145–

157 in: Operator Algebras and Applications (Adv. Stud. Pure Math. vol. 38), Math. 

Soc. Japan, Tokyo, 2004. 

[107] A. Ocneanu, Actions of Discrete Amenable Groups on von Neumann Algebras, 

Springer-Verlag Lecture Notes in Math. no. 1138, Springer-Verlag, Berlin, 1985. 

[108] D. S. Ornstein and B. Weiss, Entropy and isomorphism theorems for actions of 

amenable groups, J. Analyse Math. 48(1987), 1–141. 

[109] H. Osaka and N. C. Phillips, Stable and real rank for crossed products by 

automorphisms with the tracial Rokhlin property, Ergod. Th. Dynam. Sys. 

26(2006), 1579–1621. 

[110] H. Osaka and N. C. Phillips, Furstenberg transformations on irrational rotation 

algebras, Ergod. Th. Dynam. Sys. 26(2006), 1623–1651. 

[111] H. Osaka and N. C. Phillips, Crossed products by finite group actions with the 

Rokhlin property, preprint (arXiv: math.OA/0609782). 

[112] H. Osaka and N. C. Phillips, Crossed products of simple C*-algebras with tracial 

rank one by actions with the tracial Rokhlin property, in preparation. 

[113] R. S. Palais, On the existence of slices for actions of non-compact Lie groups, Ann. 

of Math. (2) 73(1961), 295–323. 



284 

[114] C. Pasnicu and N. C. Phillips, in preparation. 

[115] N. C. Phillips, K-theoretic freeness of finite group actions on C*-algebras, pages 

227–243 in: Group Actions on Rings, S. Montgomery (ed.), Contemporary 

Mathematics vol. 43, Amer. Math. Soc., Providence RI, 1985. 

[116] N. C. Phillips, Equivariant K-Theory and Freeness of Group Actions on C*-

Algebras, Springer-Verlag Lecture Notes in Math. no. 1274, Springer-Verlag, 

Berlin, Heidelberg, New York, London, Paris, Tokyo, 1987. 

[117] N. C. Phillips, The tracial Rokhlin property for actions of finite groups on C*-

algebras, preprint (arXiv: arXiv:0704.3651v3[math.OA]). 

[118] N. C. Phillips, Every simple higher dimensional noncommutative torus is an AT 

algebra, preprint (arXiv: math.OA/0609783). 

[119] N. C. Phillips, Finite cyclic group actions with the tracial Rokhlin property, Trans. 

Amer. Math. Soc., to appear. 

[120] N. C. Phillips and M. G. Viola, A simple separable exact C*-algebra not anti-

isomorphic to itself , in preparation. 

[121] M. A. Rieffel, Morita equivalence for operator algebras, pages 285–298 in: Operator 

Algebras and Applications, (R. V. Kadison (ed.)), Proceedings of Symposia in Pure 

Mathematics 38(1982), part 1. 

[122] M. A. Rieffel, Applications of strong Morita equivalence to transformation group 

C*-algebras, pages 299–310 in: Operator Algebras and Applications, (R. V. 

Kadison (ed.)), Proceedings of Symposia in Pure Mathematics 38(1982), part 1. 

[123] M. A. Rieffel, Proper actions of groups on C*-algebras, pages 141–182 in: 

Mappings of operator algebras (Philadelphia, PA, 1988), Progress in Mathematics 

vol. 84, Birkh¨auser Boston, Boston MA, 1990. 

[124] C. Schochet, Topological methods for C*-algebras II: geometric resolutions and the 

K¨unneth formula, Pacific J. Math. 98(1982), 443–458. 

[125] G. Segal, The representation ring of a compact Lie group, Inst. Hautes ´Etudes Sci. 

Publ. Math. 34(1968), 113–128. 

[126] G. Segal, Equivariant K-theory, Inst. Hautes ´Etudes Sci. Publ. Math. 34(1968), 

129–151. 

[127] A. Sierakowski, The ideal structure of reduced crossed products, preprint 

(arXiv:0804.3772v1[math.OA]). 

[128] H. Su, K-theoretic classification for certain inductive limit actions on real rank zero 

C*-algebras, Trans. Amer. Math. Soc. 348(1996), 4199–4230. 

[129] Y. Watatani, Index for C*-subalgebras, Mem. Amer. Math. Soc. 83(1990), no. 424. 

[130] S. Neshveyev. Duality theory for nonergodic actions. M¨unster Journal of 

Mathematics, 7(2):414–437, 2013. 

[131] B. Abadie, S. Eilers and R. Exel, Morita equivalence for crossed products by Hilbert 

C∗-bimodules, Trans. Amer. Math. Soc. 350 (1998), no. 8, 3043–3054. 

[132] J. Bichon, A. De Rijdt and S. Vaes, Ergodic coactions with large multiplicity and 

monoidal equivalence of quantum groups, Comm. Math. Phys. 262 (2006), no. 3, 

703–728. 

[133] De Commer K. and Yamashita M., A construction of finite index C∗-algebra 

inclusions from free actions of compact quantum groups. Publ. Res. Inst. Math. Sci. 

49 (2013) 709–735. 



285 

[134] K. D. Commer and M. Yamashita. Tannka-Krein duality for compact quantum 

homogeneous spaces. 1. General theory. Theory and Applications of Categories, 

28(31):1099–1138, 2013. 

[135] K. De Commer and M. Yamashita, Tannaka-Krein duality for compact quantum 

homogeneous spaces. II. Classification of quantum homogeneous spaces for 

quantum SU(2), preprint arXiv:1212.3413v2[math.OA]. 

[136] A. De Rijdt and N. Vander Vennet, Actions of monoidally equivalent compact 

quantum groups and applications to probabilistic boundaries, Ann. Inst. Fourier 

(Grenoble) 60 (2010), no. 1, 169–216. 

[137] J.M.G. Fell and R.S. Doran, Representations of ∗-algebras, locally compact groups, 

and Banach ∗-algebraic bundles. Vol. 2, Pure and Applied Mathematics, 126, 

Academic Press, Inc., Boston, MA, 1988. 

[138] N.J. Fowler, Discrete product systems of Hilbert bimodules, Pacific J. Math. 204 

(2002), no. 2, 335–375. 

[139] E.C. Lance, Hilbert C∗-modules. A toolkit for operator algebraists, London 

Mathematical Society Lecture Note Series, 210, Cambridge University Press, 

Cambridge, 1995. 

[140] S. Neshveyev and L. Tuset, Hopf algebra equivariant cyclic cohomology, K-theory 

and index formulas, K-Theory 31 (2004), no. 4, 357–378. 

[141] S. Neshveyev and L. Tuset, Deformation of C∗-algebras by cocycles on locally 

compact quantum groups, preprint arXiv:1301.4897[math.OA]. 

[142] S. Neshveyev and L. Tuset. Compact quantum groups and their representation 

categories, volume 20 of Cours Sp´ecialis´es[Specialized Courses]. Soci´et´e 

Math´ematique de France, Paris, 2013. 

[143] C. Pinzari and J.E. Roberts, A duality theorem for ergodic actions of compact 

quantum groups on C∗-algebras, Comm. Math. Phys. 277 (2008), no. 2, 385–421. 

[144] R. Vergnioux, KK-th´eorie ´equivariante et op´erateur de Julg-Valette pour les 

groupes quantiques, PhD thesis, Universit´e Paris Diderot – Paris 7, 2002. 

[145] C. Voigt, The Baum-Connes conjecture for free orthogonal quantum groups, Adv. 

Math. 227 (2011), no. 5, 1873–1913. 

[146] S.L. Woronowicz, Tannaka-Krein duality for compact matrix pseudogroups. 

Twisted SU(N) groups, Invent. Math. 93 (1988), 35–76. 

[147] M. Yamashita, Deformation of algebras associated to group cocycles, preprint 

arXiv:1107.2512v1[math.OA]. 

[148] P. F. Baum, K. D. Commer, and P. M. Hajac. Free actions of compact quantum 

groups on unital C∗-algebras. preprint, arXiv:1304.2812v3, Feb. 2015. 

[149] Artin M., Grothendieck A. and Verdier J.-L., Th´eorie des Topos et Cohomologie 

´etale des Sch´emas, Springer Lecture Notes in Math. 269, 1972. 

[150] Atiyah M. F. and Hirzebruch F., Riemann-Roch theorems for differentiable 

manifolds. Bull. Amer. Math. Soc. 65 (1959) 276–281. 

[151] Atiyah M. F. and Hirzebruch F., Vector bundles and homogeneous spaces. 

Differential geometry. Proceedings of the Symposium in Pure Mathematics, Vol. 

III, American Mathematical Society, Providence, R.I., 7–38, 1961. 

[152] Baum P. F. and Hajac P. M., Local proof of algebraic characterization of free 

actions. SIGMA 10 (2014), 060, 7 pages. 

[153] Beggs E. J. and Brzezi´nski T., An explicit formula for a strong connection. Applied 

Categorical Structures 16 (2008) 57–63. 



286 

[154] Brzezi´nski T. and Hajac P. M., The Chern-Galois character. C. R. Acad. Sci. Paris, 

Ser. I 338 (2004) 113–116. 

[155] Brzezi´nski T. and Hajac P. M., Galois-type extensions and equivariant projectivity. 

In: Quantum Symmetry in Noncommutative Geometry, P. M. Hajac (ed.), Eur. 

Math. Soc. Publ. House, to appear. 

[156] Connes A., Noncommutative Geometry, Academic Press, San Diego, CA, 1994, 

661 pages, ISBN 0-12-185860-X. 

[157] Da ֒browski L., Hadfield T. and Hajac P. M., Equivariant join and fusion of 

noncommutative algebras. SIGMA 11 (2015), 082, 7 pages. 

[158] Da ֒browski L., Hajac P. M. and Siniscalco P., Explicit Hopf-Galois description of 

SLe2i_3(2)-induced Frobenius homomorphisms. Enlarged Proceedings of the ISI 

GUCCIA Workshop on quantum groups, non commutative geometry and 

fundamental physical interactions, D. Kastler, M. Rosso, T. Schucker (eds.), 

Commack, New York, Nova Science Pub., Inc., 279–298, 1999. 

[159] Demazure M. and Gabriel P., Groupes Alg´ebriques I, North Holland, Amsterdam, 

1970. 

[160] Dupr´e M. J. and Gillette R. M., Banach bundles, Banach modules and 

automorphisms of C∗-algebras. Research Notes in Math. 92, Pitman Advanced Pub. 

Program, 1983. 

[161] Ellwood D. A., A new characterisation of principal actions. J. Funct. Anal. 173 

(2000) 49–60. 

[162] Hajac P. M., Strong connections on quantum principal bundles. Comm. Math. Phys. 

182 (1996) 579–617. 

[163] Hajac P. M., Kr¨ahmer U., Matthes R. and Zieli´nski B., Piecewise principal 

comodule algebras. J. Noncommut. Geom. 5 (2011) 591–614. 

[164] Hajac P. M., Matthes R. and Szyma´nski W., Chern numbers for two families of 

noncommutative Hopf fibrations. C. R. Acad. Sci. Paris, Ser. I 336 (2003) 925–930. 

[165] Kasparov G. G., Equivariant KK-theory and the Novikov conjecture. Inv. Math. 91 

(1988) 147–201. 

[166] Maes A. and Van Daele A., Notes on compact quantum groups. Nieuw Arch. Wisk. 

16 (1998) 73–112. 

[167] Podle´s P., Symmetries of quantum spaces. Subgroups and quotient spaces of 

quantum SU(2) and SO(3) groups. Comm. Math. Phys. 170 (1995) 1–20. 

[168] Rieffel M. A., Continuous fields of C∗-algebras coming from group cocycles and 

actions. Math. Ann. 283 (1989) 631–643. 

[169] Schauenburg P., Bialgebras over noncommutative rings and a structure theorem for 

Hopf bimodules. Applied Categorical Structures 6 (1998) 193–222. 

[170] Schauenburg P., Hopf-Galois and Bi-Galois extensions. Galois theory, Hopf 

algebras, and semiabelian categories, Fields Inst. Comm. 43, AMS 2004, 469–515. 

[171] Schauenburg P. and Schneider H.-J., On generalized Hopf Galois extensions. J. Pure 

Appl. Algebra 202 (2005) 168–194. 

[172] Schneider H.-J., Principal homogeneous spaces for arbitrary Hopf algebras. Israel J. 

of Math. 72 (1990) 167–195. 

[173] So ltan P. M., On actions of compact quantum groups. Illinois Journal of 

Mathematics 55 (2011) 953–962. 

[174] Swan R. G., Vector bundles and projective modules. Trans. Amer. Math. Soc. 105 

(1962) 264–277. 



287 

[175] Ulbrich K.-H., Fibre functors of finite-dimensional comodules. Manuscripta Math. 

65 (1989) 39–46. 

[176] Woronowicz S. L., Compact matrix pseudogroups. Comm. Math. Phys. 111 (1987) 

613–665. 

[177] Woronowicz S. L., Compact quantum groups. Sym´etries quantiques (Les Houches, 

1995), 845–884, North-Holland, Amsterdam, 1998. 

[178] M. Dateyama, Invariant measures for homeomorphisms with weak specification, 

Tokyo J. Math., 4 (1981), 389-397. 

[179] N. Aoki, M. Dateyama and M. Komuro, Solenoidal automorphisms with 

sPecifications, Monatsh. Math., 93 (1982), 79-110. 

[180] N. AOKI, Zero-dimensional automorphisms having a dense orbit, J. Math. Soc. 

Japan., 33 (1981), 693-700. 

[181] P. BILLINGSLEy, Convergence of Probability Measures, John Wiley &Sons, New 

York, 1968. 

[182] R. BOWEN, Equilibrium States and Axiom A, Lecture Notes in Math., 47O, 

Springer, Berlin-Heiderberg-New York, 1975. 

[183] M. DENKER, C. GRILENBERGER and K. SIGMUND, Ergodic Theory on 

Compact Space8, Lecture Notes in Math., 527, Springer, Berlin-Heiderberg-New 

York, 1976. 

[184] K. R. PARTHASARATHY, On the category of ergodic measure8, Illinois J. Math., 

5 (1961), 648-656. 

[185] K. SIGMUND, Generic properties of invariant measures for axiom-A-

diffeomorphisms, Invent. Math., 11 (1970), 99-109. 

[186] K. SIGMUND, On dynamical systems with the specification property, Trans. Amer. 

Math. Soc., 19O (1974), 285-299. 

[187] M. Dateyama, The almost weak specification property for ergodic group 

automorphisms of abelian groups, J. Math. Soc. Japan 42(2) (1990) 341–351. 

[188] N. Aoki, A simple proof of Bernoullicity of ergodic automorphisms on compact 

abelian groups, Israel J. Math., 38 (1981), 189-198. 

[189] N. Aoki, Zero-dimensional automorphisms with sPecification, Monatsh. Math., 95 

(1983), 1-17. 

[190] M. Dateyama, Invariant measures for homeomorphisms with almost weak 

specification, Lecture Notes in Math., 1021, Springer, 1983, pp. 93-96. 

[191] B. Marcus, A note on periodic points for ergodic toral automorphisms, Monatsh. 

Math., 89 (1980), 121-129. 

[192] J. Miles and K. Thomas, Generalized torus are Bernoulli, Studies in Ergodic Theory 

and Probability, vol. 2, Academic Press, New York, 1978, pp. 231-249. 

[193] L. Pontrjagin, Topological Groups, Gordon&Breach, New York-London-Paris, 

1966. 

[194] Elon Lindenstrauss, Pointwise theorems for amenable groups, Invent. Math. 146(2) 

(2001) 259–295. 

[195] J. Bourgain, Pointwise ergodic theorems for arithmetic sets (Appendix: The return 

time theorem jointly with H. Furstenberg, Y. Katznelson, D. Ornstein), Publ. Math. 

I.H.E.S. 1989, 69, pp 5–45 

[196] A.P. Calderon, A general ergodic theorem, Annals of Mathematics, 1953, vol 58, 

no. 1, pp 182–191 



288 

[197] W.R. Emerson, The pointwise ergodic theorem for amenable groups, American 

Journal of Mathematics, 1974, vol. 96, no. 3, pp 472–478 

[198] W.R. Emerson, F.P. Greenleaf, Groups structure and the pointwise ergodic theorem 

for connected amenable groups, Advances in Math., 1974, vol. 14, pp 153–172 

[199] G.A. Freiman, Structure theory of set addition, Asterisque, 1999, 258, pp 1–33 

[200] M. Gromov, Groups of polynomial growth and expanding maps, Publ. Math. 

I.H.E.S. 1981, 53, pp 53–73 

[201] A. del Junco, J. Rosenblatt , Counterexamples in ergodic theory and number theory, 

Math. Ann. 1979, 245, pp 185–197 

[202] V. Kaimanovich, A.Vershik, Random walks on discrete groups: boundery and 

entropy, Ann. Prob. 1983, vol. 11 no. 3, pp 457–490 

[203] J. Kieffer, A generalized Shannon-McMillan theorem for the action of an amenable 

group on a probability space, Ann. Prob. 1975, vol. 3, pp 1031–1037 

[204] E. Lindenstrauss, Pointwise theorems for amenable groups (research 

announcement), Electronic Research Announcements of the AMS, 1999, vol. 5, pp 

82–90 

[205] E. Lindenstrauss, B.Weiss, Mean topological dimension, Israel J. of Math. 2000, 

115, pp 1–24 

[206] M. Nathanson, Additive number theory — inverse problems and the geometry of 

sumsets, GTM #165, 1996, Springer-Verlag, New York 

[207] J.M. Ollagnier, Ergodic theory and statistical mechanics, LNM#1115, 1980, 

Springer-Verlag, New York 

[208] D. Ornstein, B. Weiss, The Shannon-McMillan-Breiman theorem for a class of 

amenable groups, Israel Journal of Mathematics, 1983, vol. 44, No. 1, pp 53–60 

[209] D. Ornstein, B.Weiss, The Shannon-McMillan-Breiman theorem for countable 

partitions, unpublished, c. 1985, 4 pages 

[210] D. Ornstein, B. Weiss, Subsequence ergodic theorems for amenable groups, Israel 

Journal of Mathematics, 1992, vol. 79, pp 113–127 

[211] A. Paterson, Amenability,Mathematical Surveys andMonographs 29, 1988, 

American Mathematical Society, Providence, Rhode Island 

[212] K. Petersen, Ergodic theory, 1983, Cambridge studies in advanced mathematics 2, 

Cambridge University Press, Cambridge, UK 

[213] I. Ruzsa, An analog of Freiman’s theorem in groups, Structure theory of set 

addition, Astérisque 1999, 258, xv, pp 323–326 

[214] D. Rudolph, Fundamentals of Measurable Dynamics — Ergodic theory on 

Lebesgue spaces, 1990, Oxford University Press, Oxford, Great Britain 

[215] A. Shulman, Maximal ergodic theorems on groups, Dep. Lit. NIINTI, No.2184, 

1988 

[216] A. Schulman, A. Tempelman, Pointwise ergodic theorems for isometric 

representations, preprint 

[217] A. Tempelman, Ergodic theorems for general dynamic systems, Dokl. Akad. Nauk 

SSSR, 1967, vol. 176, no. 4, pp 790–793 (English translation: Soviet Math. Dokl., 

1967, vol. 8, no. 5, pp 1213–1216) 

[218] A. Tempelman, Ergodic theorems for group actions, informational and 

thermodynamical aspects, 1992, Kluwer Academic Publishers, Dordrecht, The 

Netherlands 



289 

[219] M. Izumi, R. Longo and S. Popa, A Galois correspondence for compact groups of 

automorphisms of von Neumann algebras with a generalization to Kac algebras, J. 

Funct. Anal. 155 (1998), no. 1, 25–63. 

[220] M. W. Binder, Induced factor representations of discrete groups and their types, J. 

Funct. Anal. 115 (1993), 294_312. 

[221] S. Baaj and G. Skandalis, Unitaries multiplicatifs et dualite_ pour les produits 

croise_s de C*-algebres, Ann. Sci. E_c. Norm. Sup. 26 (1993), 425_488. 

[222] A. Connes, On spatial theory of von Neumann algebras, J. Funct. Anal. 35 (1980), 

153_164. 

[223] A. Connes, ``Non-commutative Geometry,'' Academic Press, San Diego, 1994. 

[224] H. Choda, A Galois correspondence in a von Neumann algebra, To^hoku Math. J. 

30 (1978), 491_504. 

[225] A. Connes and M. Takesaki, The flow of weights of on factors of type III, To^hoku 

Math. J. 29 (1977), 473_575. 

[226] M.-C. David, Paragroup d'Adrian Ocneanu et algebra de Kac, Pacific J. Math. 172 

(1996), 331_363. 

[227] S. Doplicher and J. E. Roberts, Why there is a field algebra with a compact gauge 

group describing the superselection structure in particle physics, Commun. Math. 

Phys. 131 (1990), 51_107. 

[228] M. Enock and R. Nest, Irreducible inclusions of factors and multiplicative unitaries, 

J. Funct. Anal. 137 (1996), 466_543. 

[229] M. Enock and J.-M. Schwartz, ``Kac Algebras and Duality of Locally Compact 

Groups,'' Springer-Verlag, Berlin_New York, 1992. 

[230] F. Goodman, P. de la Harpe, and V. Jones, ``Coxeter graphs and towers of 

algebras,'' MSRI Publications, Vol. 14, Springer-Verlag, Berlin_New York, 1989. 

[231] U. Haagerup, Operator valued weights in von Neumann algebras, I, J. Funct. Anal. 

32 (1979), 175_206. 

[232] U. Haagerup, Operator valued weights in von Neumann algebras, II, J. Funct. Anal. 

33 (1979), 339_361. 

[233] T. Hamachi and H. Kosaki, Orbitral factor map, Ergodic Theory Dynam. Systems 

13 (1993), 515_532. 

[234] U. Haagerup and E. Sto% rmer, Subfactors of a factor of type III* which contain a 

maximal centralizer, Internat. J. Math. 6 (1995), 273_277. 

[235] F. Hiai, Minimizing indices of conditional expectations on a subfactor, Publ. RIMS, 

Kyoto Univ. 24 (1988), 673_678. 

[236] R. Hermann and A. Ocneanu, Index theory and Galois theory for infinite index 

inclusions of factors, C.R. Acad. Sci. Paris 309 (1989), 923_927. 

[237] M. Izumi, Application of fusion rules to classification of subfactors, Publ. Res. Inst. 

Math. Sci. 27 (1991), 953_994. 

[238] M. Izumi, Subalgebras of infinite C*-algebras with finite Watatani indices; II. 

Cuntz-Krieger algebras, Duke J. Math., to appear. 

[239] V. Jones, Index for subfactors, Invent. Math. 72 (1983), 1_25. 

[240] A. Kishimoto, Remarks on compact automorphism groups of a certain von 

Neumann algebra, Publ. Res. Inst. Math. Sci. 13 (1977), 573_581. 

[241] H. Kosaki, Extension of Jones theory on index to arbitrary factors, J. Funct. Anal. 

66 (1986), 123_140. 



290 

[242] H. Kosaki, Characterization of crossed product (properly infinite case), Pacific J. 

Math. 137 (1989), 159_167. 

[243] H. Kosaki and R. Longo, A remark on the minimal index of subfactors, J. Funct. 

Anal. 107 (1992), 458_470. 

[244] H. Kosaki and S. Yamagami, Irreducible bimodules associated with crossed product 

algebras, Internat. J. Math. 3 (1992), 661_676. 

[245] G. I. Kac and V. G. Pljutkin, Finite ring groups, Trans. Moscow Math. Soc. (1966), 

251_294; translated from Trudy Moskov. Mat. Obhch. 15 (1966), 224_261. 

[246] R. Longo, Index of subfactors and statistics of quantum fields I, Commun. Math. 

Phys. 126 (1989), 217_247. 

[247] R. Longo, Index of subfactors and statistics of quantum fields, II, Commun. Math. 

Phys. 130 (1990), 285_309. 

[248] R. Longo, Simple injective subfactors, Adv. Math. 63 (1987), 152_171. 

[249] R. Longo, Minimal index and braided subfactors, J. Funct. Anal. 109 (1992), 

98_112. 

[250] Y. Nakagami, Essential spectrum 1(;) of a dual action on a von Neumann algebra, 

Pacific J. Math. 70 (1977), 437_478. 

[251] N. Nakamura and Z. Takeda, A Galois theory for finite factors, Proc. Japan Acad. 

36 (1960), 258_260. 

[252] Y. Nakagami and M. Takesaki, ``Duality for Crossed Product of von Neumann 

Algebras,'' Lecture Notes in Math., Vol. 731, Springer-Verlag, Berlin_New York, 

1979. 

[253] A. Ocneanu, Quantized group string algebra and Galois theory for algebra, in 

``Operator Algebras and Applications, Vol. 2 (Warwick, 1987),'' London Math. Soc. 

Lect. Note Series, Vol. 136, pp. 119_172, Cambridge Univ. Press, 1988. 

[254] S. Popa, Classification of amenable subfactors of type II, Acta Math. 172 (1994), 

352_445. 

[255] R. T Powers, An index theory for semigroups of *-endomorphisms of B(H) and type 

II1 factors, Canad. J. Math. 40 (1988), 86_114. 

[256] R. T. Powers and G. L. Price, Cocycle conjugacy classes of shift on the hyperfinite 

II1 factor, J. Funct. Anal. 121 (1994), 275_295. 

[257] M. Pimsner and S. Popa, Entropy and index for subfactors, Ann. Sci. E_ cole Norm. 

Sup. 4 (1986), 57_106. 

[258] M. Pimsner and S. Popa, Iterating basic construction, Trans. Amer. Math. Soc. 210 

(1988), 127_133. 

[259] S_ . Stra_ tila_ , ``Modular Theory in Operator Algebras,'' Editura Stiintifica, 

Bucharest, 1981. 

[260] J. E. Roberts, Cross product of von Neumann algebras by group duals, Sympos. 

Math. XX (1976). 

[261] J. E. Roberts, Spontaneously broken gauge symmetries and superselection rules, in 

``Proc. of School of Mathematical Physics, Universita' di Camerino,'' 1974. 

[262] N. Suzuki, Crossed product of rings of operators, To^hoku Math. J. 11 (1960), 

113_124. 

[263] W. Szyman_ ski, Finite index subfactors and Hopf algebra crossed products, Proc. 

Amer. Math. Soc. 120 (1994), 519_528. 

[264] S. Yamagami, Modular theory for bimodules, J. Funct. Anal. 125 (1994), 327_357. 

[265] S. Yamagami, On Ocneanu's characterization of crossed products, preprint. 



291 

[266] R. Tomatsu, A Galois correspondence for compact quantum group actions, J. Reine 

Angew. Math. 633 (2009) 165–182. 

[267] M. Enock, Sous-facteurs interme´diaires et groupes quantiques mesure´s, J. Oper. 

Th. 42 (1999), no. 2, 305–330. 

[268] F. Hiai, Minimizing indices of conditional expectations onto a subfactor, Publ. Res. 

Inst. Math. Sci. 24 (1988), no. 4, 673–678. 

[269] J. Kustermans and S. Vaes, Locally compact quantum groups in the von Neumann 

algebraic setting, Math. Scand. 92 (2003), no. 1, 68–92. 

[270] M. Nakamura and Z. Takeda, On some elementary properties of the crossed 

products of von Neumann algebras, Proc. Japan Acad. 34 (1958), 489–494. 

[271] P. Podles´, Quantum spheres, Lett. Math. Phys. 14 (1987), no. 3, 193–202. 

[272] M. Takesaki, Conditional expectations in von Neumann algebras, J. Funct. Anal. 9 

(1972), 306–321. 

[273] M. Takesaki, Duality for crossed products and the structure of von Neumann 

algebras of type III, Acta Math. 131 (1973), 249–310. 

[274] R. Tomatsu, Compact quantum ergodic systems, J. Funct. Anal. 254 (2008), no. 1, 

1–83. 

[275] R. Tomatsu, A characterization of right coideals of quotient type and its application 

to classification of Poisson boundaries, Comm. Math. Phys. 275 (2007), no. 1, 271–

296. 

[276] Y. Ueda, A minimal action of the compact quantum group Suqn on a full factor, J. 

Math. Soc. Japan 51 (1999), no. 2, 449–461. 

[277] S. Vaes, The unitary implementation of a locally compact quantum group action, J. 

Funct. Anal. 180 (2001), no. 2, 426–480. 

[278] S.L. Woronowicz, Twisted SU(2) group. An example of a noncommutative 

differential calculus, Publ. RIMS, Kyoto Univ. 23(1) (1987) 117–181. 

[279] T. Yamanouchi, On dominancy of minimal actions of compact Kac algebras and 

certain automorphisms in Aut  ّ A=Aaق, Math. Scand. 84 (1999), no. 2, 297–319. 

[280] Costel Peligrad, A Galois correspondence for compact group actions on C∗-

algebras, Journal of Functional Analysis 261 (2011) 1227–1235. 

[281] D. Avitzour, Noncommutative topological dynamics I, Trans. Amer. Math. Soc. 282 

(1984) 109–119. 

[282] R. Dumitru, C. Peligrad, Compact quantum group actions on C∗-algebras and 

invariant derivations, Proc. Amer. Math. Soc. 135 (2007) 3977–3984. 

[283] A. Kishimoto, Remarks on compact automorphism group of a certain von Neumann 

algebra, Publ. Res. Inst. Math. Sci. 13 (1977) 573–581. 

[284] M.B. Landstad, Algebras of spherical functions associated with a covariant system 

over a compact group, Math. Scand. 47 (1980) 137–149. 

[285] C. Peligrad, Compact actions commuting with ergodic actions and applications to 

crossed products, Trans. Amer. Math. Soc. 331 (1992) 825–836. 

[286] J.E. Roberts, Cross products of a von Neumann algebra by group duals, Symposia 

Math. 20 (1976) 335–363. 

[287] M. Takesaki, Fourier analysis of compact automorphism groups (an application of 

Tannaka duality theorem), Coll. Internat. CNRS 274 (1979). 

[288] K. Schwieger, S. Wagner, Free actions of compact quantum groups on C∗-algebras, 

Part III, arXiv:1701.05895v1[math.OA], 20 Jan 2017. 



292 

[289] T. Banica. Fusion rules for representations of compact quantum groups. 

Expositiones Mathematicae. International Journal, 17:313–337, 1999. 

[290] J. Bichon, A. D. Rijdt, and S. Vaes. Ergodic coactions with large multiplicity and 

monodial equivalence of quantum groups. Communications in Mathematical 

Physics, 262:703–728, 2006. 

[291] K. D. Commer. Actions of compact quantum groups. preprint arXiv:160400159, 

2016. 

[292] A. Connes and G. Landi. Noncommutative manifolds, the instanton algebra and 

isospectral deformations. Communications in Mathematical Physics, 221(1):141–

159, 2001. 

[293] S. Echterhoff, R. Nest, and H. Oyono-Oyono. Principal non-commutative torus 

bundles. Proceedings of the London Mathematical Society, 99(1):1–31, 2009. 

[294] O. Gabriel. Fixed points of compact quantum groups actions on Cuntz algebras. 

Annales Henri Poincar´e, 15(5):1013–1036, 2014. 

[295] G. Landi and W. van Suijlekom. Principal fibrations from noncommutative spheres. 

Communications in Mathematical Physics, 260(1):203–225, 2005. 

[296] K. Schwieger and S. Wagner. Free actions of compact groups on C∗-algebras, Part 

I. preprint, arXiv:1505.00688v2, May 2015. 

[297] K. Schwieger and S. Wagner. Free actions of compact groups on C∗-algebras, Part 

II. Accepted for publication in J. Noncommut. Geom. arXiv:1508.07904v2, May 

2015. 

[298] T. Timmermann. An Invitation to Quantum Groups and Duality. EMS Textbooks in 

Mathematics. European Mathematical Society (EMS), Z¨urich, 2008. From Hopf 

algebras to multiplicative unitaries and beyond. 

[299] S. Wagner. Free group actions from the viewpoint of dynamical systems. M¨unster 

J. Math., 5(1):73–97, 2012. 

[300] A. Wassermann. Ergodic actions of compact groups an operator algebras. II. 

Classification of full multiplicity ergodic actions. Canadian Journal of Mathematics, 

40(6):1482–1527, 1988. 

[301] A. Wassermann. Ergodic actions of compact groups on operator algebras. III. 

Classification for SU(2). Inventiones Mathematicae, 93(2):309–354, 1988. 

[302] A. Wassermann. Ergodic actions of compact groups on operator algebras. I. General 

theory. Annals of Mathematics. Second Series, 130(2):273–319, 1989. 

[303] S. L. Woronowicz. Compact matrix pseudogrooups. Communications in 

Mathematical Physics, 111:613–665, 1987. 

[304] Kay Schwiegera, Stefan Wagnerb,∗, Part I, Free actions of compact Abelian groups 

onC∗-algebras, Advances in Mathematics 317 (2017) 224–266. 

[305] E. Álvarez, L. Álvarez-Gaumé, J.L.F. Barbón, Y. Lozano, Some global aspects of 

duality in string theory, Nuclear Phys. B 415 (1994) 71–100. 

[306] B. Ammann, The Dirac operator on collapsing S1-bundles, Sem. Th. Spec. Geom 

Inst. Fourier Grenoble 16 (1998) 33–42. 

[307] B. Ammann, C. Bär, The Dirac operator on nilmanifolds and collapsing circle 

bundles, Ann. Global Anal. Geom. 16(3) (1998) 221–253. 

[308] P. Baum, P. Hajac, R. Matthes, W. Szymanski, Non-commutative geometry 

approach to principal and associated bundles, in: Quantum Symmetry in 

Noncommutative Geometry, 2017, in press, arXiv:math/0701033[math.DG], 8 Jan. 

2007. 



293 

[309] P. Bertozzini, R. Conti, W. Lewkeeratiyutkul, Non-commutative geometry, 

categories and quantum physics, in: “Contributions in Mathematics and 

Applications II” Special Volume, East-West J. Math. 2007 (2008) 213–259. 

[310] B. Blackadar, K-Theory for Operator Algebras, Math. Sci. Res. Inst. Publ., 

Springer, New York, 1998. 

[311] L.G. Brown, P. Green, M.A. Rieffel, Stable isomorphism and strong Morita 

equivalence of C∗-algebras, Pacific J. Math. 71(2) (1977). 

[312] H. Bursztyn, A. Weinstein, Picard groups in Poisson geometry, Mosc. Math. J. 4(2) 

(2004) 39–66. 

[313] T. Buscher, Asymmetry of the string back ground field equations, Phys. Lett. B 194 

(1987) 59–62. 

[314] L. Dabrowski, A. Sitarz, Noncommutative circle bundles and new Dirac operators, 

Comm. Math. Phys. 318 (2013) 111–130. 

[315] L. Dabrowski, A. Sitarz, A. Zucca, Dirac operators on noncommutative principal 

circle bundles, Int. J. Geom. Methods Mod. Phys. 11 (2014) 1450012. 

[316] R. Douglas, C∗-Algebra Extensions and K-Homology, Ann. of Math. Stud., vol.95, 

Princeton, Princeton, NJ, 1980. 

[317] S. Echterhoff, S. Kaliszewski, J. Quigg, I. Raeburn, A categorical approach to 

imprimitivity theorems for C∗-dynamical systems, in: Memoirs of the American 

Mathematical Society, 2006. 

[318] D.A. Ellwood, A new characterization of principal actions, J. Funct. Anal. 173 

(2000) 49–60. 

[319] P.M. Hajac, Lecture notes on noncommutative geometry and quantum groups, in: 

Piotr M. Hajac (Ed.), Lecture Notes, 

http://www.mimuw.edu.pl/~pwit/toknotes/toknotes.pdf. 

[320] K. Hannabuss, V. Mathai, Noncommutative principal torus bundles via 

parametrised strict defor-mation quantization, Proc. Sympos. Pure Math. 81 (2010) 

133–148. 

[321] K.H. Hofmann, S.A. Morris, The Structure of Compact Groups, 2nd revised and 

augmented edition, de Gruyter Studies in Mathematics, vol.25, Cambridge 

University Press, 2006. 

[322] D. Husemoller, Fibre Bundles, Graduate Texts in Mathematics, vol.20, Springer-

Verlag, New York, 1975. 

[323] S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, Interscience 

Tracts in Pure and Appl. Math., vol.1, Wiley, 1963. 

[324] K. Kodaka, Picard groups of irrational rotation C∗-algebras, Proc. Lond. Math. Soc. 

(2) 56 (1997) 179–188. 

[325] S. Lentner, J. Priel, A Double Coset Decomposition of the Brauer Picard Group of 

the Repre-sentation Category of a Finite Group, ZMP-HH 15/9 Hamburger, 

Beiträge zur Mathematik Nr. 539. 

[326] S. Mac Lane, Homology, Classics in Mathematics, Springer-Verlag, 1995. 

[327] V. Mathai, J. Rosenberg, T-duality for torus bundles with H-fluxes via 

noncommutative topology, Comm. Math. Phys. 253(3) (2005) 705–721. 

[328] V. Mathai, J. Rosenberg, T-duality for torus bundles with H-fluxes via 

noncommutative topology. II. The high-dimensional case and the T-duality group, 

Adv. Theor. Math. Phys. 10(1) (2006) 123–158. 



294 

[329] K.-H. Neeb, Non-Abelian extensions of infinite-dimensional Lie-groups, Ann. Inst. 

Fourier 57 (2007) 209–271. 

[330] K.-H. Neeb, On the classification of rational quantum tori and the structure of their 

automorphism groups, Canad. Math. Bull. 51 (2008) 261–282. 

[331] K.-H. Neeb, Differential Topology of Fiber Bundles, Lecture Notes, Darmstadt, 

2008. 

[332] I. Raeburn, D.P. Williams, Morita Equivalence and Continuous-Trace C∗-Algebras, 

Mathematical Surveys and Monographs, vol.60, Amer. Math. Soc., 1998. 

[333] M. Rørdam, Stable C∗-algebras, in: Operator Algebras and Applications, in: 

Advanced Studies in Pure Mathematics, vol.38, 2004, pp.177–199. 

[334] K. Schwieger, S. Wagner, Towards a fundamental group of noncommutative spaces, 

2016, in prepa-ration. 

[335] W. Szymański, Quantum lens spaces and principal actions on graph C∗-algebras, 

arXiv:math/0209400v1[math.QA], 29 Sep. 2003. 

[336] T. Tom Dieck, Topologie, 2, de Gruyter, Auflage, 2000. 

[337] S. Wagner, A geometric approach to noncommutative principal bundles, PhD-

Thesis arXiv:1108.0311v1[math.DG], 1 Aug. 2011. 

[338] S. Wagner, Trivial noncommutative principal torus bundles, in: Noncommutative 

Harmonic Anal-ysis, in: Banach Center Publ., vol.96, 2012, pp.299–317. 

[339] S. Wagner, A geometric approach to noncommutative principal torus bundles, Proc. 

Lond. Math. Soc. 106(6) (2013) 1179–1222. 

[340] S. Wagner, On noncommutative principal bundles with finite Abelian structure 

group, J. Noncom-mut. Geom. 8 (2014) 987–1022. 

[341] C. Wahl, Index theory for actions of compact Lie groups on C∗-algebras, J. 

Operator Theory 63(1) (2012) 216–242. 

[342] A. Wassermann, Ergodic actions of compact groups on operator algebras II: 

classification of full multiplicity ergodic actions, Canad. J. Math. XL(6) (1988) 

1482–1527. 

[343] Atiyah M.F., Hirzebruch F., Analytic cycles on complex manifolds. Topology 1 

(1962) 25-45. 

[344] Baum P.F., Lectures on K-theory, (based on lectures by F. Hirzebruch), Algebraic 

Topology, ed. J. F. Adams, London Math Soc. Lecture Notes Series 4, 223–238, 

Cambridge University Press, Cambridge, 1972. 

[345] Blanchard E., Kirchberg E., Global Glimm halving for C_-bundles, J. Operator 

Theory 52 (2) (2004), 385–420. 

[346] Bratteli O., Elliott G.A., Evans D.E., Kishimoto A., Noncommutative spheres. I. 

Internat. J. Math. 2 (1991) 139–166. 

[347] Bratteli O., Elliott G.A., Evans D.E., Kishimoto A., Noncommutative spheres. II. 

Rational rotations. J. Operator Theory 27 (1992) 53–85. 

[348] Brzezi´nski T., Hajac P.M., Matthes R., Szyma´nski W., The Chern character and 

Fredholm index for principal extensions of noncommutative algebras. In progress. 

Preliminary version available at http://www.fuw.edu.pl/epmh. 

[349] Calow D., Matthes R., Connections on locally trivial quantum principal fibre 

bundles. J. Geom. Phys. 41 (2002) 114–165. 

[350] Connes A., Dubois-Violette M., Noncommutative finite-dimensional manifolds. I. 

Spherical manifolds and related examples. Comm. Math. Phys. 230 (2002) 539–

579. 



295 

[351] Connes A., Dubois-Violette M., Moduli space and structure of noncommutative 3-

spheres. Lett. Math. Phys. 66 (2003) 91–121. 

[352] Dabrowski L., The garden of quantum spheres. Noncommutative geometry and 

quantum groups (Warsaw, 2001), 37–48, Banach Center Publ., 61, Polish Acad. 

Sci., Warsaw, 2003. 

[353] Dabrowski L., Hajac P. M., Noncommutative join construction. 

[354] Fell J.M., A Hausdorff topology for the closed subsets of a locally compact non-

Hausdorff space, Proc. Amer. Math. Soc. 13 (1962), 472–476. 

[355] Gleason, A. M., Spaces with a compact Lie group of transformations, Proc. Amer. 

Math. Soc. 1 (1950), 35-43. 

[356] Hajac P.M., Matthes R., Szyma´nski W., A locally trivial quantum Hopf fib\ration. 

To appear in Algebras Representation Theory. 

[357] Karoubi M., K-theory. An introduction. Grundlehren der Mathematischen 

Wissenschaften, Band 226. Springer-Verlag, Berlin-New York, 1978. 

[358] Klimek S., Lesniewski A., A two-parameter quantum deformation of the unit disc. 

J. Funct. Anal. 115 (1993) 1–23. 

[359] Matsumoto K., Non-commutative three-dimensional spheres, Japan J. Math. 17 

(1991) 333–356. 

[360] Michael E., Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 

152–182. 

[361] Naber G.L., Topology, geometry, and gauge fields. Foundations. Texts in Applied 

Mathematics, 25, Springer-Verlag, New York, 1997. 

[362] Pedersen, G.K.: Pullback and pushout constructions in C*-algebra theory, J. Funct. 

Anal. 167 (1999) 243-344. 

[363] Rieffel M.A., Noncommutative tori—a case study of noncommutative differentiable 

manifolds. Geometric and topological invariants of elliptic operators (Brunswick, 

ME, 1988), 191–211, Contemp. Math., 105, Amer. Math. Soc., Providence, RI, 

1990. 

[364] Rieffel M.A., K-groups of C_-algebras deformed by actions of Rd. J. Funct. Anal. 

116 (1993) 199–214. 

[365] Takesaki M., Theory of operator algebras I, Springer-Verlag, New York Heidelberg 

Berlin, 1979. 

[366] Wegge-Olsen N.E., K-theory and C_-algebras. A friendly approach. Oxford Science 

Publications. The Clarendon Press, Oxford University Press, New York, 1993. 

[367] María Isabel Cortez, Samuel Petite, Invariant measures and orbit equivalence for 

generalized Toeplitz subshifts, Groups Geom. Dyn. 8(4) (2014) 1007–1045. 

[368] Auslander, Joseph. Minimal flows and their extensions. North-Holland Mathematics 

Studies, 153. Notas de Matem´atica[Mathematical Notes]122. North-Holland 

Publishing Co., Amsterdam, 1988. 

[369] T. Ceccherini-Silberstein, and M. Coornaert Cellular automata and groups. Springer 

Monographs in Mathematics. Springer-Verlag, Berlin 2010. 

[370] M.I. Cortez, Zd-Toeplitz arrays. Discrete Contin. Dyn. Syst. 15 (2006), no. 3, 859-

881. 

[371] M. I. Cortez, Realization of a Choquet simplex as the set of invariant probability 

measures of a tiling system. Ergodic Theory Dynam. Systems 26 (2006), no. 5, 

1417–1441 



296 

[372] M.I. Cortez, and S. Petite, G-odometers and their almost one-to-one extensions. J. 

Lond. Math. Soc. (2) 78 (2008), no. 1, 1-20. 

[373] M.I. Cortez, and J. Rivera-Letelier, Choquet simplices as spaces of invariant 

probability measures on post-critical sets. Ann. Inst. H. Poincar´e Anal. Non 

Lin´eaire 27 (2010), no. 1, 95-115. 

[374] T. Downarowicz, The Choquet simplex of invariant measures for minimal flows. 

Israel J. Math. 74 (1991), no. 2-3, 241–256 

[375] T. Downarowicz, Survey of odometers and Toeplitz flows. Algebraic and 

Topological Dynamics (Kolyada, Manin, Ward eds), Contemporary Math., 385 

(2005), 7–38 

[376] T. Downarowicz, The royal couple conceals their mutual relationship: a 

noncoalescent Toeplitz flow.Israel J. Math. 97 (1997), 239-251. 

[377] F. Durand, Combinatorics on Bratteli diagrams and dynamical systems. 

Combinatorics, automata and number theory, 324372, Encyclopedia Math. Appl., 

135, Cambridge Univ. Press, Cambridge, 2010 

[378] F. Durand, B. Host, and C. Skau, Substitutional dynamical systems, Bratteli 

diagrams and dimension groups. Ergodic Theory Dynam. Systems 19 (1999), no. 4, 

953-993. 

[379] E. G. Effros, Dimensions and C∗-algebras. in in CBMS Regional Conference Series 

in Mathematics, 46. Conference Board of the Mathematical Sciences, Washington, 

D.C., 1981. 

[380] T. Downarowicz, and Y. Lacroix. Almost 1−1 extensions of Furstenberg-Weiss type 

and applications to Toeplitz flows, Studia Math. (2) 130 (1998), 149–170. 

[381] D. Gaboriau. Coˆut des relations d’´equivalence et des groupes. Invent. Math., 139 

(2000), (1) , 41–98. 

[382] T. Giordano, H. Matui, I. F. Putnam, and C. Skau, Orbit equivalence for Cantor 

minimal Zd systems. Invent. Math. 179 (2010), no. 1, 119–158 

[383] T. Giordano,I. F. Putnam,and C. Skau, Topological orbit equivalence and C*-

crossed products. J. Reine Angew. Math. 469 (1995), 51–111. 

[384] R. Gjerde, O. Johansen. Bratteli-Vershik models for Cantor minimal systems: 

applications to Toeplitz flows, Ergodic Theory & Dynam. Systems (6) 20 (2000), 

1687–1710. 

[385] K. R. Goodearl, Partially ordered abelian groups with interpolation. Mathematical 

Surveys and Monographs, 20. American Mathematical Society, Providence, RI, 

1986. 

[386] R.H. Herman, I.F. Putnam, and C.F. Skau. Ordered Bratteli diagrams, dimension 

groups and topological dynamics. Internat. J. Math. 3 (1992), no. 6, 827–864. 

[387] R. A. Horn, C. B. Johnson. Matrix analysis. Cambridge University Press, 

Cambridge, 1985. 

[388] K. Jacobs, and M. Keane. 0 − 1-sequences of Toeplitz type, Z. 

Wahrscheinlichkeitstheorie und Verw. Gebiete 13 1969 123–131. 

[389] F. Krieger Sous-d´ecalages de Toeplitz sur les groupes moyennables 

r´esiduellement finis J. Lond. Math. Soc. (2) 75 (2007), no. 2, 447–462. 

[390] F. Krieger Toeplitz subshifts and odometers for residually finite groups. ´Ecole de 

th´eorie ergodique Yves Lacroix, Pierre Liardet, Jean-Paul Thouvenot, ´eds. 

S´eminaires et Congr`es 20 (2010), 147-161. 



297 

[391] A. Lazar, and J. Lindenstrauss, Banach spaces whose duals are spaces and their 

representing matrices. Acta Math. 126 (1971), 165-193. 

[392] F. Sugisaki, Toeplitz flows, ordered Bratteli diagrams and strong orbit equivalence. 

Ergodic Theory Dynam. Systems 21 (2001), no. 6, 1867–1881. 

[393] B. Weiss, Monotileable amenable groups. Amer. Math. Soc. Transl. Ser. 2, 202, 

(2001), 257262. 

[394] S. Williams. Toeplitz minimal flows which are not uniquely ergodic, Z. 

Wahrscheinlichkeitstheorie und Verw. Gebiete (1) 67 (1984), 95–107. 

[395] Departamento de Matem´atica y Ciencia de la Computaci´on, Universidad de 

Santiago de Chile, Av. Libertador Bernardo O’Higgins 3363, Santiago, Chile. 

Laboratoire Ami´enois de Math´ematique Fondamentale et appliqu´ee, CNRS 

U.M.R. 6140, Universit´e de Picardie Jules Verne, 33 rue SaintLeu 8039 Amiens 

Cedex 1 France. E-mail address: maria.cortez@usach.cl, samuel.petite@u-

picardie.fr 

[396] Nhan-Phu Chung, Hanfeng Li, Homoclinic groups, IE groups, and expansive 

algebraic actions, Invent. Math. 199(3) (2015) 805–858. 

[397] Anderson, F.W., Fuller, K.R.: Rings and categories of modules. Graduate Texts in 

Mathematics, 2nd edn. Springer, New York (1992) 

[398] Arveson,W.: An invitation to C∗-algebras. Graduate Texts inMathematics. Springer, 

New York (1976) 

[399] Berg, K.R.: Convolution of invariant measures, maximal entropy. Math. Syst. 

Theory 3, 146–150 (1969) 

[400] Bergelson, V., Gorodnik, A.: Ergodicity and mixing of non-commuting 

epimorphisms. Proc. Lond. Math. Soc. (3) 95(2), 329–359 (2007) 

[401] Bhattacharya, S.: Expansiveness of algebraic actions on connected groups. Trans. 

Am. Math. Soc. 356(12), 4687–4700 (2004) 

[402] Blanchard, F.: A disjointness theorem involving topological entropy. Bull. Soc. 

Math. Fr. 121(4), 465–478 (1993) 

[403] Blanchard, F.,Glasner, E., Host,B.:Avariation on the variational principle and 

applications to entropy pairs. Ergod. Theory Dyn. Syst. 17(1), 29–43 (1997) 

[404] Blanchard, F., Glasner, E., Kolyada, S., Maass, A.: On Li–Yorke pairs. J. Reine 

Angew. Math. 547, 51–68 (2002) 

[405] Blanchard, F.,Host, B.,Maass, A.,Martinez, S., Rudolph, D.J.: Entropy pairs for 

ameasure. Ergod. Theory Dyn. Syst. 15(4), 621–632 (1995) 

[406] Blanchard, F., Host, B., Ruette, S.: Asymptotic pairs in positive-entropy systems. 

Ergod. Theory Dyn. Syst. 22(3), 671–686 (2002) 

[407] Bowen, L.: Entropy for expansive algebraic actions of residually finite groups. 

Ergod. Theory Dyn. Syst. 31(3), 703–718 (2011) 

[408] Bryant, B.F.: On expansive homeomorphisms. Pac. J. Math. 10, 1163–1167 (1960) 

[409] Chou, C.: Elementary amenable groups. Ill. J. Math. 24(3), 396–407 (1980) 

[410] Danilenko, A.I.: Entropy theory from the orbital point of view.Mon. Math. 134(2), 

121–141 (2001) 

[411] Deninger, C.: Fuglede–Kadison determinants and entropy for actions of discrete 

amenable groups. J. Am. Math. Soc. 19, 737–758 (2006) 

[412] Deninger, C.: Mahler measures and Fuglede–Kadison determinants. Münster J. 

Math. 2, 45–63 (2009) 

mailto:samuel.petite@u-picardie.fr
mailto:samuel.petite@u-picardie.fr


298 

[413] Deninger, C., Schmidt, K.: Expansive algebraic actions of discrete residually finite 

amenable groups and their entropy. Ergod. Theory Dyn. Syst. 27, 769–786 (2007) 

[414] Einsiedler, M., Rindler, H.: Algebraic actions of the discrete Heisenberg group and 

other non-abelian groups. Aequ. Math. 62(1–2), 117–135 (2001) 

[415] Einsiedler, M., Schmidt, K.: The adjoint action of an expansive algebraic Zd -

action. Mon. Math. 135(3), 203–220 (2002) 

[416] Einsiedler, M., Schmidt, K.: Irreducibility, homoclinic points and adjoint actions of 

algebraic Zd -actions of rank one. In: Dynamics and Randomness (Santiago, 2000), 

pp. 95–124. Kluwer Academic Publications, Dordrecht (2002) 

[417] Einsiedler,M.,Ward, T.: Entropy geometry and disjointness for zero-dimensional 

algebraic actions. J. Reine Angew. Math. 584, 195–214 (2005) 

[418] Elek, G.: On the analytic zero divisor conjecture of Linnell. Bull. Lond. Math. Soc. 

35(2), 236–238 (2003) 

[419] Fuglede, B.,Kadison, R.V.: Determinant theory in finite factors. Ann. Math. (2) 55, 

520–530 (1952) 

[420] Glasner, E.: Ergodic theory via joinings. American Mathematical Society, 

Providence (2003) 

[421] Glasner, E., Thouvenot, J.-P.,Weiss, B.: Entropy theory without a past. Ergod. 

Theory DynSyst. 20(5), 1355–1370 (2000) 

[422] Glasner, E., Ye, X.: Local entropy theory. Ergod. Theory Dyn. Syst. 29(2), 321–356 

(2009) 

[423] Gottschalk,W.H., Hedlund, G.A.: Topological dynamics. American Mathematical 

Society Colloquium Publications, American Mathematical Society, Providence 

(1955) 

[424] Hall, P.: Finiteness conditions for soluble groups. Proc. Lond. Math. Soc. (3) 4, 

419–436 (1954) 

[425] Herz, C.: The theory of p-spaces with an application to convolution operators. 

Trans. Am. Math. Soc. 154, 69–82 (1971) 

[426] Herz, C.: Harmonic synthesis for subgroups. Ann. Inst. Fourier (Grenoble) 23(3), 

91–123 (1973) 

[427] Huang, W., Li, S.M., Shao, S., Ye, X.: Null systems and sequence entropy pairs. 

Ergod. Theory Dyn. Syst. 23(5), 1505–1523 (2003) 

[428] Huang,W.,Maass, A., Romagnoli, P.P., Ye, X.: Entropy pairs and a local Abramov 

formula for a measure theoretical entropy of open covers. Ergod. Theory Dyn. Syst. 

24(4), 1127–1153 (2004) 

[429] Huang,W., Ye, X.: A local variational relation and applications. Isr. J.Math. 151, 

237–279 (2006) 

[430] Huang,W.,Ye, X.:Combinatorial lemmas and applications to dynamics.Adv.Math. 

220(6), 1689–1716 (2009) 

[431] Huang, W., Ye, X., Zhang, G.: Local entropy theory for a countable discrete 

amenable group action. J. Funct. Anal. 261(4), 1028–1082 (2011) 

[432] Katok, A., Katok, S., Schmidt, K.: Rigidity of measurable structure for Zd -actions 

by automorphisms of a torus. Comment. Math. Helv. 77(4), 718–745 (2002) 

[433] Katok, A., Spatzier, R.J.: Invariant measures for higher-rank hyperbolic abelian 

actions. Ergod. Theory Dyn. Syst. 16(4), 751–778 (1996) 

[434] Kechris, A.S.: Classical descriptive set theory. Graduate Texts in Mathematics. 

Springer, New York (1995) 



299 

[435] Kerr, D., Li, H.: Independence in topological and C∗-dynamics. Math. Ann. 338(4), 

869–926 (2007) 

[436] Kerr, D., Li, H.: Combinatorial independence in measurable dynamics. J. Funct. 

Anal. 256(5), 1341–1386 (2009) 

[437] Kerr, D., Li, H.: Entropy and the variational principle for actions of sofic groups. 

Invent. Math. 186(3), 501–558 (2011) 

[438] Kitchens,B., Schmidt,K.: Isomorphism rigidity of irreducible algebraicZd -actions. 

Invent. Math. 142(3), 559–577 (2000) 

[439] Lam, T.Y.: Lectures on modules and rings. Graduate Texts in Mathematics. 

Springer, New York (1999) 

[440] Lang, S.: Complex analysis. Graduate Texts in Mathematics, 4th edn. Springer, 

New York (1999) 

[441] Lang, S.: Algebra. Revised third edition. Graduate Texts in Mathematics. Springer, 

New York (2002) 

[442] Ledrappier, F.: Un champ markovien peut être d’entropie nulle et mélangeant. C. R. 

Acad. Sci. Paris Sér. A B 287(7), A561–A563 (1978) 

[443] Li, H.: Compact group automorphisms, addition formulas and Fuglede–Kadison 

determinants. Ann. Math. (2) 176(1), 303–347 (2012) 

[444] Lind, D.: The structure of skew products with ergodic group automorphisms. Isr. J. 

Math. 28(3), 205–248 (1977) 

[445] Lind, D., Schmidt, K.: Homoclinic points of algebraic Zd -actions. J. Am. Math. 

Soc. 12(4), 953–980 (1999) 

[446] Lind, D., Schmidt,K.: Symbolic and algebraic dynamical systems. In: Handbook of 

dynamical systems, vol. 1A, pp. 765–812. North-Holland, Amsterdam (2002) 

[447] Lind, D., Schmidt,K.,Verbitskiy, E.: Entropy and growth rate of periodic points of 

algebraic Zd -actions. In: Dynamical numbers: interplay between dynamical 

systems and number theory, pp. 195–211, Contemporary Mathematics, vol. 532. 

American Mathematical Society, Providence, RI (2010) 

[448] Lind, D., Schmidt, K., Ward, T.: Mahler measure and entropy for commuting 

automorphisms of compact groups. Invent. Math. 101, 593–629 (1990) 

[449] Linnell, P.A.: Zero divisors and group von Neumann algebras. Pac. J. Math. 149(2), 

349–363 (1991) 

[450] Linnell, P.A.: Zero divisors and L2(G). C. R. Acad. Sci. Paris Sér. I Math. 315(1), 

49–53 (1992) 

[451] Linnell, P.A.: Division rings and group von Neumann algebras. Forum Math. 5(6), 

561–576 (1993) 

[452] Linnell, P.A.: Analytic versions of the zero divisor conjecture. In: Geometry and 

cohomology in group theory (Durham, 1994), Lecture Notes Series, vol. 252, pp. 

209–248. London Mathematical Society, Cambridge University Press, Cambridge 

(1998) 

[453] Linnell, P.A., Puls, M.J.: Zero divisors and L p(G), II. N. Y. J. Math. 7, 49–58 

(2001). (electronic) 

[454] Lück, W.: L2-Invariants: theory and applications to geometry and K-theory. 

Springer, Berlin (2002) 

[455] Miles, G., Thomas, R.K.: Generalized torus automorphisms are Bernoullian. In: 

Studies in probability and ergodic theory, Advances in Math. Suppl. Stud., vol. 2, 

pp. 231–249 Academic Press, New York (1978) 



300 

[456] Miles, R.: Expansive algebraic actions of countable abelian groups. Mon. Math. 

147(2), 155–164 (2006) 

[457] Miles, R.,Ward, T.: Orbit-counting for nilpotent group shifts. Proc. Am.Math. Soc. 

137(4), 1499–1507 (2009) 

[458] Moulin Ollagnier, J.: Ergodic theory and statistical mechanics. Lecture Notes in 

Mathematics. Springer, Berlin (1985) 

[459] Passman, D.S.: The algebraic structure of group rings. Pure and Applied 

Mathematics. Wiley, New York (1977) 

[460] Peters, J.: Entropy on discrete abelian groups. Adv. Math. 33(1), 1–13 (1979) 

[461] Pisier, G.: The volume of convex bodies and Banach space geometry. Cambridge 

Tracts in Mathematics. Cambridge University Press, Cambridge (1989) 

[462] Puls, M.J.: Zero divisors and L p(G). Proc. Am. Math. Soc. 126(3), 721–728 (1998) 

[463] Rosenthal, H.P.: A characterization of Banach spaces containing l1. Proc. Natl. 

Acad. Sci. USA 71, 2411–2413 (1974) 

[464] Rudin,W.: Real and complex analysis, 3rd edn. McGraw-Hill Book Co., New York 

(1987) 

[465] Rudolph, D.J., Schmidt, K.: Almost block independence and Bernoullicity of Zd –

actions by automorphisms of compact abelian groups. Invent. Math. 120(3), 455–

488 (1995) 

[466] Ruelle, D.: Statistical mechanics on a compact set with Zv action satisfying 

expansiveness and specification. Trans. Am. Math. Soc. 187, 237–251 (1973) 

[467] Schmidt, K.: Automorphisms of compact abelian groups and affine varieties. Proc. 

Lond. Math. Soc. (3) 61(3), 480–496 (1990) 

[468] Schmidt, K.: Dynamical systems of algebraic origin. Progress inMathematics. 

Birkhäuser, Basel (1995) 

[469] Schmidt, K.: The cohomology of higher-dimensional shifts of finite type. Pac. J. 

Math. 170(1), 237–269 (1995) 

[470] Schmidt,K.: The dynamics of algebraicZd -actions. In: European Congress 

ofMathematics, vol. I (Barcelona, 2000), pp. 543–553, Progr. Math., 201, 

Birkhäuser, Basel (2001) 

[471] Schmidt, K., Verbitskiy, E.: Abelian sandpiles and the harmonic model. Commun. 

Math. Phys. 292(3), 721–759 (2009) 

[472] Schmidt,K.,Ward, T.: Mixing automorphisms of compact groups and a theorem of 

Schlickewei. Invent. Math. 111(1), 69–76 (1993) 

[473] Segal, D.: Polycyclic groups. Cambridge Tracts in Mathematics. Cambridge 

University Press, Cambridge (1983) 

[474] Walters, A.: An introduction to ergodic theory. Graduate Texts in Mathematics. 

Springer, New York (1982) 

[475] Wang, X.: Volumes of generalized unit balls. Math. Mag. 78(5), 390–395 (2005) 

[476] Yuzvinski˘ı, S.A.: Metric properties of the endomorphisms of compact groups. 

(Russian). Izv. Akad. Nauk SSSR Ser. Mat. 29, 1295–1328 (1965)[Translated in 

Amer. Math. Soc. Transl. (2) 66, 63–98 (1968)] 

[477] Yuzvinski˘ı, S.A.: Computing the entropy of a group of endomorphisms. (Russian) 

Sibirsk. Mat. ˆ Z. 8, 230–239 (1967)[Translated in Siberian Math. J. 8, 172–178 

(1967)] 



301 

[478] Martha Łącka, Generic points of invariant measures for an amenable residually 

finite group actions with the weak specification property, J. Math.Anal.Appl. ••• 

(••••) •••–•••. 

[479] W. Bauer, K. Sigmund, Topological dynamics of transformations induced on the 

space of probability measures, Monatsh. Math. 79 (1975) 81–92. 

[480] Patrick Billingsley, Convergence of Probability Measures, second edition, Wiley 

Ser. Probab. Stat., A Wiley-Interscience Publication, John Wiley & Sons, Inc., New 

York, 1999. 

[481] R. Bowen, Periodic points and measures for axiom Adiffeomorphisms, Trans. 

Amer. Math. Soc. 154 (1971) 377–397. 

[482] V. Climenhaga, D.J. Thompson, Intrinsic ergodicity beyond specification: β-shifts, 

S-gap shifts, and their factors, Israel J. Math. 192(2) (2012) 785–817. 

[483] Yiwei Dong, Xueting Tian, Xiaoping Yuan, Ergodic properties of systems with 

asymptotic average shadowing property, J. Math. Anal. Appl. 432(1) (2015) 53–73. 

[484] Francesca Fiorenzi, Semi-strongly irreducible shifts, Adv. in Appl. Math. 32(3) 

(2004) 421–438. 

[485] K. Gelfert, D. Kwietniak, On density of ergodic measures and generic points, 

Ergodic Theory Dynam. Systems (2017), http://dx.doi.org/10.1017/etds.2016.97, in 

press. 

[486] D. Kwietniak, M. Łącka, P. Oprocha, A panorama of specification-like properties 

and their consequences, in: Dynamics and Numbers, in: Contemp. Math., vol.669, 

2016, pp.155–186. 

[487] D. Kwietniak, M. Łącka, P. Oprocha, Generic points for dynamical systems with 

average shadowing, Monatsh. Math. (2017), http://dx.doi.org/10.1007/s00605-016-

1002-1, in press. 

[488] J. Lindenstrauss, G. Olsen, Y. Sternfeld, The Poulsen simplex, Ann. Inst. Fourier 

(Grenoble) 28(1) (1978) 91–114, vi. 

[489] C.-E. Pfister, W.G. Sullivan, Large deviations estimates for dynamical systems 

without the specification property. Appli-cations to the β-shifts, Nonlinearity 18(1) 

(2005) 237–261. 

[490] C.-E. Pfister, W.G. Sullivan, On the topological entropy of saturated sets, Ergodic 

Theory Dynam. Systems 27(3) (2007) 929–956. 

[491] Yu.V. Prohorov, Convergence of random processes and limit theorems in 

probability theory, Teor. Veroyatn. Primen. 1 (1956) 177–238. 

[492] X. Ren, Periodic measures are dense in invariant measures for residually finite 

amenable group actions with specification, arXiv e-prints, September 2015. 

[493] K. Sigmund, On minimal centers of attraction and generic points, J. Reine Angew. 

Math. 295 (1977) 72–79. 

[494] Ebbe Thue Poulsen, A simplex with dense extreme points, Ann. Inst. Fourier 

(Grenoble) 11 (1961) 83. 

[495] Shawgy Hussein and Gafar Ibrahim, Galois Correspondence for Free Actions of 

Compact Abelian Groups on 𝐶∗-Algebras and Generic Points of Invariant Measures, 

Ph.D. Thesis Sudan University of Science and Technology, Sudan (2021). 


