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Abstract 

We determine the best constants for Gagliardo–Nirenberg inequalities the 

applications to nonlinear diffusions, the first order interpolation inequalities 

with weights, the two subtle convex nonlocal approximations of the bounded 

variation norm, the limiting embedding theorems for Sobolev spaces and the 

BBM formula. We establish Hardy-Lieb-Thirring inequalities for fractional 

Schrödinger operators with the nonlinear ground state representations and sharp 

Hardy inequalities with fractional Hardy-Sobolev-Maz'ya inequality for 

domains. The Caffarelli-Kohn-Nirenberg inequalities with remainder terms, 

sharp constants, existence, nonexistence and fractional order are investigated. 

The symmetry of optimizers of extremal functions in subcritical and fractional 

Caffarelli–Kohn–Nirenberg inequalities are obtained. 
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 الخلاصة
نيرينبيرج وتطبيقات الأنتشار  –تم تحديد الثوابت الأفضل لمتباينات جاجلياردو 

رجحات والتقريبين غير مغير الخطي ومتباينات الأستكمال من الرتبة الأولى مع ال

الموضوعيين المحدبيين الدقيقين لنظم المتغير المحدود ومبرهنات الطمر المنتهي 

 –ليب  –أسيس متباينات هاردي . قمنا بتBBMلفضاءات سوبوليف وصيغة 

ثيرنج لمؤثرات شرودنجر الكسرية مع تمثيلات الحال الأرضية غير الخطية 

ماريه الكسرية  –سوبوليف  –ومتباينات هاردي القاطعة مع متباينات هاردي 

بيرج مع الحدود يننير –كوهن  –للمجالات. قمنا بتقصي متباينات كافاريلي 

والوجود واللاوجود والرتبة الكسرية. تم الحصول على المتبقية والثوابت القاطعة 

كوهن  –التماثل الأمثل والدوال القصوى في الحرج الجزئية ومتباينات كافاريلي 

 بيرج الكسرية.يننير –
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Introduction 

We consider the following inequalities due to Caffarelli, Kohn, and 

Nirenberg [7]: (∫  
ℝ𝑁

|𝑥|−𝑏𝑝|𝑢|𝑝𝑑𝑥)
2

𝑝 ≤ 𝐶𝑎,𝑏 ∫  
ℝ𝑁

|𝑥|−2𝑎|𝛻𝑢|2𝑑𝑥  where, for 

𝑁 ≥  3 , −∞ <  𝑎 <  (𝑁 −  2)/2, 𝑎 ≤  𝑏 ≤  𝑎 +  1 , and 𝑝 =  2𝑁/(𝑁 −

 2 +  2(𝑏 −  𝑎)) . We shall answer some fundamental questions concerning 

these inequalities such as the best embedding constants, the existence and 

nonexistence of extremal functions, and their qualitative properties. We find 

optimal constants of a special class of Gagliardo–Nirenberg type inequalities 

which turns out to interpolate between the classical Sobolev inequality and the 

Gross logarithmic Sobolev inequality.  

We proved some interpolation inequalities between functions and their 

derivatives. We show that the Lieb-Thirring inequalities on moments of 

negative eigenvalues of Schrödinger-like operators remain true, with possibly 

different constants, when the critical Hardy-weight 𝐶|𝑥|−2 is subtracted from 

the Laplace operator. We discuss the Caffarelli–Kohn–Nirenberg inequalities 

with remainder terms 

Inspired by the BBM formula and by work of G. Leoni and D. Spector, 

we analyze the asymptotic behavior of two sequences of convex nonlocal 

functionals (𝛹𝑛(𝑢)) and (𝛷𝑛(𝑢)) which converge formally to the BV-norm of 

𝑢. We give some applications on the limiting embedding theorems for Hardy 

spaces.  

In their simplest form, the Caffarelli-Kohn-Nirenberg inequalities are a 

two parameter family of inequalities. It has been known that there is a region in 

parameter space where the optimizers for the inequalities have broken 

symmetry. It has been shown recently that in the complement of this region the 

optimizers are radially symmetric. The ideas for the proof will be given. We use 

the formalism of the Rényi entropies to establish the symmetry range of 

extremal functions in a family of subcritical Caffarelli–Kohn–Nirenberg 

inequalities. By extremal functions we mean functions that realize the equality 

case in the inequalities, written with optimal constants. The method extends 

recent results on critical Caffarelli–Kohn–Nirenberg inequalities. Using 

heuristics given by a nonlinear diffusion equation, we give a variational proof of 

a symmetry result, by establishing a rigidity theorem: in the symmetry region, 

all positive critical points have radial symmetry and are therefore equal to the 
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unique positive, radial critical point, up to scalings and multiplications. This 

result is sharp.  

We determine the sharp constant in the Hardy inequality for fractional 

Sobolev spaces. To do so, we develop a non-linear and non-local version of the 

ground state representation, which even yields a remainder term. We prove a 

fractional version of the Hardy–Sobolev–Maz’ya inequality for arbitrary 

domains and 𝐿𝑝  norms with 𝑝 ≥  2 . Let 0 < 𝑠 < 1  and 𝑝 > 1  be such that 

𝑝𝑠 <  𝑁. Assume that Ω is a bounded domain containing the origin. Starting 

from the ground state inequality by R. Frank and R. Seiringer in [166] to obtain: 

the Caffarelli–Kohn–Nirenberg type inequalities offractional order: 

We establish improved versions of the Hardy and Caffarelli-Kohn-

Nirenberg inequalities by replacing the standard Dirichlet energy with some 

nonlocal nonconvex functionals which have been involved in estimates for the 

topological degree of continuous maps from a sphere into itself and 

characterizations of Sobolev spaces. 
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Chapter 1 

The Caffarelli-Kohn and Gagliardo–Nirenberg Inequalities and Best Constants 

 

We show that in the Caffarelli, Kohn, and Nirenberg  inequalities while the case 

𝑎 ≥  0 has been studied extensively and a complete solution is known, little has been 

known for the case 𝑎 <  0. Our results for the case 𝑎 <  0 reveal some new phenomena 

which are in striking contrast with those for the case 𝑎 ≥  0. Results for 𝑁 =  1 and 𝑁 =
 2 are also given. We show that the inequalities provide an optimal decay rate (measured 

by entropy methods) of the intermediate asymptotics of solutions to nonlinear diffusion 

equations. 

Section (1.1): Sharp Constants with Existence and Nonexistence and Symmetry of 

Extremal Functions 
In [7], among a much more general family of inequalities, Caffarelli, Kohn, and 

Nirenberg established the following inequalities: For all 𝑢 ∈ ∁0
∞(ℝ𝑁), 

( ∫|𝑥|−𝑏𝑝|𝑢|𝑝𝑑𝑥

2

ℝ𝑁

)

2 𝑝⁄

  ≤ ∁𝑎,𝑏  ∫|𝑥|
−2𝑎|∇𝑢|2𝑑𝑥 

3

ℝ𝑁

                                (1) 

where, for  𝑁 ≥ 3, 

−∞ < 𝑎 <
𝑁 − 2

2
, 𝑎 ≤ 𝑏 ≤ 𝑎 + 1 , 

and 

𝑝 =
2𝑁

𝑁 − 2 + 2(𝑏 − 𝑎)
                                                      (2) 

The cases𝑁 = 2 and  𝑁 = 1 will be treated.  The conditions for these cases are, for 𝑁 = 2,  

−∞ < 𝑎 < 0,   𝑎 < 𝑏 ≤ 𝑎 + 1 , 𝑎𝑛𝑑    𝑝 =
2

𝑏 − 𝑎
,                                 (3) 

and ,for 𝑁 = 1, 

−∞ < 𝑎 < −
1

2
,   𝑎 +

1

2
< 𝑏 ≤ 𝑎 + 1 ,    𝑎𝑛𝑑   𝑝 =

2

−1 + 2(𝑏 − 𝑎)
.                        (4) 

   Let 𝒟𝑎
1,2 (ℝ𝑁) be the completion of ∁0

∞(ℝ𝑁) with respect to the inner product 

(𝑢, 𝜐) = ∫|𝑥|−2𝑎∇𝑢 ∙ ∇𝜐𝑑𝑥.

2

ℝ𝑁

                                                 (5) 

Then we see that (1) holds for 𝑢 ∈ 𝒟𝑎
1,2 (ℝ𝑁). We define  

𝑆(𝑎, 𝑏) =   
inf 1 

𝑢 ∈ 𝒟𝑎
1,2 (ℝ𝑁) 0⁄

 𝐸𝑎,𝑏(𝑢),                                                (6) 

to be the best embedding constants, where  

𝐸𝑎,𝑏(𝑢) =    
∫ |𝑥|−2𝑎|∇𝑢|2𝑑𝑥
1

ℝ𝑁

 (∫ |𝑥|−𝑏𝑝|u|𝑏𝑑𝑥
1

ℝ𝑁
)
2 𝑝⁄

.                                              (7) 

The extremal functions for 𝑆(𝑎, 𝑏)are ground state solutions of the Euler equation 

−𝑑𝑖𝑣(|𝑥|−2𝑎∇𝑢) = |𝑥|−𝑝𝑏𝑢𝑝−1,        𝑢 ≥ 0, 𝑖𝑛 ℝ𝑁 .                                 (8) 
This equation is regarded as a prototype of more general nonlinear degenerate elliptic 

equations from physical phenomena (e.g., [3], [13]). 
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 Note that the Caffarelli-Kohn-Nirenberg inequalities (1) (see also generalizations in 

[20] by Lin) contain the classical Sobolev inequality (𝑎 = 𝑏 = 0)  and the Hardy 

inequality(𝑎 = 0  , 𝑏 = 1) as special cases, which have played important roles in many 

applications by virtue of the complete knowledge about the best constants, extremal 

functions, and their qualitative properties (see e.g., [7], [14], [16], [19]). Thus it is a 

fundamental task to study the best constants, existence (and nonexistence) of extremal 

functions, as well as their qualitative properties in inequality (1) for parameters 𝑎 and 𝑏 in 

the full parameter domain (2). 

Much progress has been made for the parameter region  

0 ≤ 𝑎 <
𝑁 − 2

2
,   𝑎 ≤ 𝑏 ≤ 𝑎 + 1 ,    

(to which we shall refer as the “𝑎-nonnegative region”). In [2], [24], the best constant and 

the minimizers for the Sobolev inequality (𝑎 = 𝑏 = 0) were given by Aubin and Talenti. 

In [19], Lieb considered the casea 𝑎 = 0, 0 < 𝑏 < 1, and gave the best constants and 

explicit minimizers. In [12], Chou and Chu considered the full 𝑎-nonnegative region and 

gave the best constants and explicit minimizers. Also for this 𝑎-nonnegative region, Lions 

in [23] (for 𝑎 = 0) and Wang and Willem (for 𝑎 > 0) in [26] established the compactness 

of all minimizing sequences up to dilations provided𝑎 ≤ 𝑏 < 𝑎 + 1. The symmetry of the 

minimizers has also been studied in [12] and [19]. In fact ,all nonnegative solutions in 

𝒟𝑎
1,2 (ℝ𝑁) for the corresponding Euler equation (8) areradially symmetric(in the case 𝑎 =

𝑏 = 0, they are radial with respect to some point) and explicitly given (see [2], [12], [19], 

[24]). This was established in [12], where a generalization of the moving plane method 

was used (e.g., [6], [11], [15]). 

       On the other hand, it seems that little is known for parameters in the 𝑎- negative 

region  

−∞ < 𝑎 < 0,   𝑎 ≤ 𝑏 ≤ 𝑎 + 1 .    
This also applies to 𝑁 = 1 and 𝑁 = 2, withbin the corresponding intervals (4) and (3). The 

case −1 < 𝑎 < 0 and 𝑏 = 0 was treated recently by Caldiroli and Musina in [8], who 

gave the existence of ground states. We settle some of the fundamental questions 

concerning inequalities (1) with parameters in the 𝑎-negative region, such as the best 

constants, the existence and nonexistence of minimizers, and the symmetry properties of 

minimizers. For the 𝑎-negative region we shall reveal new phenomena that are strikingly 

different from those for the 𝑎-nonnegative region. 

To state the results, let 𝑆𝑃(ℝ
𝑁) be the best embedding constant from 𝐻1(ℝ𝑁) in to 

𝐿𝑃(ℝ𝑁), i.e., 

𝑆𝑃(ℝ
𝑁) =  

inf 1 
𝑢 ∈ 𝐻1(ℝ𝑁) {0}⁄

  
∫ |∇𝑢|2 + 𝑢2𝑑𝑋
1

ℝ𝑁

(∫ |∇𝑢|𝑃𝑑𝑋
1

ℝ𝑁
)
2
𝑃

 .    

In the theorems stated below, we assume 𝑁 ≥ 3. Results for𝑁 = 1 and 𝑁 = 2 will be 

given. 

Our approach to the problem is quite different from that used in the quoted previous 

(see [2], [8], [12], [19], [23], [24], [26]) in which the problem was worked directly in 

𝒟𝑎
1,2 (ℝ𝑁) , and we shall take a detour to convert the problem to an equivalent one defined 

on 𝐻1(ℝ × 𝕊𝑁−1).  While taking advantage of the two formulations, we shall work mainly 

with the equivalent one on  𝐻1(ℝ × 𝕊𝑁−1).  The reformulation enables us to make use of a 

combination of analytical tools such as a compactness argument, rescaling, the 



3 

concentration compactness principle, bifurcation analysis, the moving plane method, etc. 

Moreover, our approach also gives a different proof of inequalities (1). 

We shall introduce a  transformation that transforms our problem in ℝ𝑁  to one on 

the space ℝ × 𝕊𝑁−1  on which we have a family of inequalities corresponding to (1) and 

an Euler equation corresponding to (8). The two problems will be shown to be equivalent, 

and we shall mainly work on the transformed one on ℝ × 𝕊𝑁−1 .The advantage in working 

on the latter is that the equation is an autonomous one and is defined in 𝐻1(ℝ × 𝕊𝑁−1) .  
Radial solutions (as we shall see, the only bound state radial solutions are the ground state 

solutions in the radially symmetric class) will be examined completely and their energy 

levels will be computed so that some comparison arguments can be done later., we show 

Theorem (1.1.7) , first establishing the continuity of 𝑆(𝑎, 𝑏)in(𝑎, 𝑏)and then giving the 

nonexistence result for the case 𝑏 = 𝑎 with a combination of continuity and comparison 

arguments. The existence of a minimizer for the case 𝑎 < 𝑏 < 𝑎 = 1 will be given by 

using a compactness argument; an asymptotic estimate for 𝑆(𝑎, 𝑏) 𝑎 → −∞ will be given 

using a concentration compactness principle. We establish the symmetry-breaking result 

Theorem (1.1.11). First a bifurcation analysis will be done to claim the symmetry breaking 

for 𝑎  away from 0 . For 𝑎  close to 0  it is much subtler, and some continuity and 

comparison arguments will be employed is devoted to establishing the modified inversion 

symmetry (up to a dilation) for all bound state solutions of (8) by using the moving plane 

method. We treat the cases 𝑁 = 1 and 𝑁 = 2. For 𝑁 = 1 we have a complete solution for 

the problem including the identification of all bound state solutions. Finally, we state 

results for a related problem that can be solved using our results for (8), and we also point 

out some related open questions. 

We start by introducing a family of transformations that will transform our original 

problem to one defined on a cylinder ℝ× 𝕊𝑁−1. The two problems will be shown to be 

equivalent in a sense that will be precisely specified. Then some preliminary results on the 

radial solutions will be given. 

To problem (1) and equation (8) on ℝ𝑁mwe shall derive an equivalent minimization 

problem and corresponding Euler equation on ℝ× 𝕊𝑁−1 .We shall use the notation 𝒞 =
ℝ × 𝕊𝑁−1.While working on both problems to take advantage of the two formulations, we 

shall get most of our results on the cylinder 𝒞. For integrals over a domain included in 

𝒞, by 𝑑𝜇 we denote the volume element on 𝒞. Also, by  |∇𝑢|2 we understand 𝑔𝑖𝑗𝑢𝑖𝑢𝑗 and 

(𝑔𝑖𝑗) are the components of the inverse matrix to the metric induced from  ℝ𝑁+1 . For 

points on 𝒞 we use either the notation 𝑦 to identify a point in ℝ𝑁+1 or  (𝑡, 𝜃) to identify a 

point in ℝ × 𝕊𝑁−1 . To 𝑢 , a smooth function with compact support in ℝ𝑁 {0}⁄  , we 

associate 𝜐, 𝑎 smooth  function with compact support on 𝒞, by the transformation 

𝑢(𝑥) = |𝑥|−
𝑁−2−2𝑎

2
Κ 𝜐 (− ln|𝑥|,

𝑥

|𝑥|
).                                              (9) 

Here for 𝑥 ∈ ℝ𝑁 {0}⁄ , with 𝑡 = ln|𝑥|  and 0 = 𝑥 |𝑥|⁄  , we have (𝑡, 𝜃) ∈ 𝒞. 

       Let us denote by 𝐿𝑑
𝑝 (ℝ𝑁) = {𝑢: ∫ |𝑥|−𝑏𝑝|𝑢|𝑝

1

ℝ𝑁
𝑑𝑥 < ∞} the weighted  𝐿𝑝space. We 

need the following lemma. 

Lemma (1.1.1)[1]: For  𝑎 <
𝑁−2

2
,   𝑎 ≤ 𝑏 ≤ 𝑎 + 1 , and 𝑏 =

2𝑁

𝑁−2+2(𝑏−𝑎)
, it holds that   

𝒟𝑎
1,2 (ℝ𝑁) = 𝐶0

∞(ℝ𝑁 {0}⁄ )‖∙‖̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ , 

where ‖∙‖ is the norm in 𝒟𝑎
1,2 (ℝ𝑁) given by(5). Moreover, 𝐿𝑎

𝑝
 (ℝ𝑁)is also given by the 

completion of  𝐶0
∞(ℝ𝑁 {0}⁄ )  under its norm. 
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Proof: By the definition of  𝒟𝑎
1,2 (ℝ𝑁), it suffices to show  

𝐶0
∞(ℝ𝑁 ⊂ 𝐶0

∞(ℝ𝑁 {0}⁄ )‖∙‖  .̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 
Let 𝜌(𝑡) be a cutoff function that is 1 for 𝑡 ≥ 2 and 0 for 0 < 𝑡 ≤ 1. For a fixed 𝑢 ∈
𝐶0
∞(ℝ𝑁), we define 𝑢𝜀(𝑥) = 𝜌(|𝑥| 𝜀)𝑢(𝑥)⁄ ∈ 𝐶0

∞ (ℝ𝑁 {0}⁄ ) . Then it is easy to check that 

|𝑢ℰ − 𝑢| → 0 as 𝜀 → 0 . The second part is similar. 

      Now for 𝑢 ∈ 𝐶0
∞ (ℝ𝑁 {0}⁄ ) , by a direct computation we have 

∫|𝑥|−2𝑎|∇𝑢|2(𝑥)𝑑𝑥 =

3

ℝ𝑁

∫|𝑥|−𝑁 

3

ℝ𝑁

(|∇𝜃𝜐|
2 + (𝜐𝑡 +

𝑁 − 2 − 2𝑎

2
𝜐)

2

)𝑑𝑥;2 

therefore  

∫|𝑥|−2𝑎|∇𝑢|2(𝑥)𝑑𝑥 =

3

ℝ𝑁

 ∫  |∇𝜃𝜐|
2 (𝜐𝑡 +

𝑁 − 2 − 2𝑎

2
𝜐)

2
3

𝒞

𝑑𝜇   

= ∫  |∇𝜃𝜐|
2 + 𝜐𝑡

2 + (
𝑁 − 2 − 2𝑎

2
)
2

𝜐2
3

𝒞

𝑑𝜇.                        

Also,  

∫|𝑥|−𝑏𝑝𝑢𝑝(𝑥)𝑑𝑥 =

3

ℝ𝑁

∫|𝑥|−𝑁𝜐𝑝 𝑑𝑥

3

ℝ𝑁

= ∫𝜐𝑝𝑑𝜇 .

2

𝒞

 

From these and Lemma (1.1.1) we immediately have the following: 

Proposition (1.1.2)[1]: The mapping given in (9) is a Hilbert space isomorphism from  

𝒟𝑎
1,2 (ℝ𝑁) to 𝐻1(𝒞) where the inner product on 𝐻1(𝒞) is 

 (𝜐, 𝑤) = ∫∇𝜐2 ∙ ∇𝑤 + (
𝑁 − 2 − 2𝑎

2
)
2

𝜐 𝑤

3

𝒞

𝑑𝜇. 

     Now we define an energy functional on 𝐻1(𝒞): 
                 

𝐹𝑎,𝑏(𝜐) =
∫  |∇𝜃𝜐|

2 + 𝜐𝑡
2 + (

𝑁 − 2 − 2𝑎
2 )

2

𝜐2
3

𝒞
𝑑𝜇

(∫ |𝜐|𝑝𝑑𝜇
1

𝒞
)
2 𝑝⁄

.                              (10) 

If  𝑢 ∈ 𝒟𝑎
1,2 (ℝ𝑁) and  𝜐 ∈ 𝐻1(𝒞) are related through (9), then 

                                               𝐸𝑎,𝑏(𝜐) = 𝐹𝑎,𝑏(𝜐).  
Moreover, if 𝑢 is a solution of (8), then 𝜐 satisfies 

−𝜐𝑡𝑡 − ∆𝜃𝜐 + (
𝑁 − 2 − 2𝑎

2
)
2

𝜐 = 𝜐𝑝−1,    𝜐 > 0, 𝑜𝑛 𝒞                              (11) 

where 𝑡 = − ln|𝑥| and ∆𝜃 is the Laplace operator on the (𝑁 − 1)-sphere.  

We collect these observations in the following: 

Proposition (1.1.3)[1]: With 𝑎, 𝑏, and 𝑝 satisfying(1), we have 

   (i) If 𝑢 ∈ 𝒟𝑎
1,2  and 𝜐 ∈ 𝐻1(𝒞) are related through (9), then  𝐸𝑎,𝑏(𝑢) = 𝐹𝑎,𝑏(𝜐). 

   (ii) For 𝑆(𝑎, 𝑏) defined in (6), it holds (𝑎, 𝑏) = inf
𝐻1(𝒞) {0}⁄

𝐹𝑎,𝑏 (𝜐). 

   (iii) Solutions of (8) and (11) are in one-to-one correspondence, being   

          related through (9). 
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    In order to study the symmetry property of solutions, we examine the invariance of the 

problem under the transformation (9). As in the case of the 𝑌amabe problem (𝑎 = 𝑏 = 0), 
the group of transformations that leaves problem (8) invariant is noncompact. The group 

of translations in ℝ𝑁 is a symmetry group for (8) only in the case 𝑎 = 𝑏 = 0. On the other 

hand, the dilations 

𝑢𝜏(𝑥) = 𝜏
𝑁−2−2𝑎

2 𝑢(𝜏, 𝑥),      𝜏 > 0 ,                                              (12) 
leave the problem invariant for all 𝑎 and 𝑏; i.e., if 𝑢 is a solution of (8), so is 𝑢𝜏.This still 

holds for𝑁 = 2 and𝑁 = 1, but for 𝑁 = 1 the situation is a bit different and there is a two-

parameter family of dilations (see (44)). The group that leaves (11) invariant, 

corresponding to dilations in ℝ𝑁 , is the group of translations in the 𝑡-direction. If 𝜐 and 𝜐𝜏 

in 𝐻1(𝒞) are related to 𝑢 and 𝑢𝜏  in 𝒟𝑎
1,2(ℝ𝑁) through (9), then 

𝑢𝜏(𝑡, 𝜃) = 𝜐(𝑡 − ln 𝜏, 𝜃). 
Finally, the following modified inversion invariance of (8), 

�̅�(𝑥) = |𝑥|−(𝑁−2−2𝑎)𝑢 (
𝑥

|𝑥|2
),                                                      (13) 

translates on the cylinder to the following obvious symmetry of (11), 

�̅�(𝑡, 𝜃) = 𝜐(−𝑡, 𝜃). 

        Let 𝒟𝑎,𝑅
1,2 (ℝ𝑁) be the subspace of  𝒟𝑎

1,2(ℝ𝑁) consisting of radial functions. Define 

𝑅(𝑎, 𝑏) = 1 inf
𝑢∈ 𝒟𝑎,𝑅

1,2 (ℝ𝑁) {0}⁄
𝐸𝑎,𝑏(𝑢).                                          (14) 

By Proposition (1.1.3)(i) we also have 

 𝑅(𝑎, 𝑏) = 1 inf
𝑢∈ 𝐻𝑅

1(𝒞) {0}⁄
𝐸𝑎,𝑏(𝑢). 

where 𝐻𝑅
1(𝒞) consists of functions independent of 𝜃 . We shall find the exact value of 

𝑅(𝑎, 𝑏) and the exact form of the radial solutions that achieve these constants when 𝑎 ≤
𝑏 < 𝑎 + 1. We remark here that our method applies for the 𝑎-nonnegative region also and 

in fact gives a new approach for the 𝑎-nonnegative region; the results we get agree with 

[12] and [19] in this region. 

        In order to study the radial solutions of (8), we shall need the exact form of particular 

positive solutions for the following nonlinear second-order ODE: 

−𝜐𝑡𝑡 + 𝜆
2𝜐 = 𝜐𝑝−1,        𝜐 < 0 , 𝑖𝑛  ℝ                                           (15) 

𝑤𝑖𝑡ℎ 𝑝 > 2.The problem can be associated to the Hamiltonian system 
𝑑

𝑑𝑡
𝜐 = 𝑤,           

𝑑

𝑑𝑡
𝑤 = 𝜆2𝜐 − 𝜐𝑝−1. 

We have the Hamiltonian 

𝐻(𝜐, 𝑤) =
1

2
𝑤2 −

𝜆2
1

2
𝜐2 +

1

𝑃
𝜐𝑝. 

All solutions correspond to level curves of 𝐻(𝑣,𝑤) . Up to translations,   only one 

homoclinic solution 𝜐 that is on the level  𝐻(𝑣, 𝑤) = 0. The levels below this one will 

give  𝜐 positive, periodic, and bounded away from zero. For the levels above, 𝜐 changes 

sign so we lose positivity. The only positive solutions that are in 𝐻1(ℝ) are translates of 

𝜐(𝑡) = (
𝜆2𝑝

2
)

1
𝑝−2

   (cosh (
𝑝 − 2

2
𝜆𝑡))

−
2

𝑝−2
.                               (16) 

A direct calculation gives that for the 𝜐 above,  
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∫ 𝜐𝑡
2 + 𝜆2𝜐2𝑑𝑡

1

ℝ

(∫ 𝜐𝑝𝑑𝑡
1

ℝ
)
2 𝑝⁄

= 2𝑝
𝜆(𝑝+2) 𝑝⁄

(𝑝 − 2)(𝑝−2) 𝑝⁄
 (
Γ2( 𝑝

𝑝−2
)

Γ( 2𝑝
𝑝−2

)
)

𝑝−2
𝑝

.                               (17) 

Now, when searching for radial solutions, equation (11) becomes 

𝜐𝑡𝑡 − (
𝑁 − 2 − 2𝑎

2
)
2

𝜐 + 𝜐𝑝−1 = 0,      𝜐 > 0 , 𝑜𝑛  ℝ,                    (18) 

which corresponds to equation (15) with 𝜆 =
𝑁−2−2𝑎

2
 . According to (16), the homoclinic 

solutions of (18) are translates of 

𝜐(𝑡) = (
𝑁(𝑁 − 2 − 𝑎2)2

4(𝑁 − 2(1 + 𝑎 − 𝑏))
)

𝑁−2(1+𝑎−𝑏)
4(1+𝑎−𝑏)

 

(cosh
(𝑁 − 2 − 𝑎2)(1 + 𝑎 − 𝑏)2

𝑁 − 2(1 + 𝑎 − 𝑏)
𝑡)

−𝑁−2
(1+𝑎−𝑏)

2(1+𝑎−𝑏)

.                              (19) 

The radial solution in ℝ𝑁 for (8) corresponding to this 𝜐 is 

𝑢(𝑥) = (
𝑁(𝑁 − 2 − 𝑎2)2

𝑁 − 2(1 + 𝑎 − 𝑏)
)

𝑁−2(1+𝑎−𝑏)
4(1+𝑎−𝑏) 1

(1 + |𝑥|
2(𝑁−2−𝑎2) (1+𝑎−𝑏)

𝑁−2(1+𝑎−𝑏) )

𝑁−2(1+𝑎−𝑏)
2(1+𝑎−𝑏)

 .                        (20) 

All radial solutions in ℝ𝑁 for (8) are dilations of this 𝑢 . Note that by substituting in (7) 

𝜆 =
𝑁 − 2 − 2𝑎

2
  𝑎𝑛𝑑   𝑝 =

2𝑁

𝑁 − 2(1 + 𝑎 − 𝑏)
 , 

we estimate the energy of any radial solution in  𝐻1(𝒞), 
𝑅(𝑎, 𝑏) = 𝐸𝑎,𝑏(𝑢) = 𝐹𝑎,𝑏(𝜐), 

𝑅(𝑎, 𝑏) =
𝑁𝜔𝑁−1

2(1+𝑎−𝑏)
𝑁 (𝑁 − 2 − 2𝑎)

2(𝑁−(1−𝑎−𝑏))
𝑁

2
2(1+𝑎−𝑏)

𝑁 (𝑁 − 2(1 + 𝑎 − 𝑏))
𝑁−2(1+𝑎−𝑏)

𝑁 (1 + 𝑎 − 𝑏)
2(1+𝑎−𝑏)

𝑁

 

(
Γ2( 𝑁

2(1+𝑎−𝑝)
)

Γ( 𝑁
1+𝑎−𝑏

)
)

2(1+𝑎−𝑝)
𝑁

.                                             (21) 

Proposition (1.1.4)[1]: Up to a dilation(12), all radial solutions of (8) are explicitly given 

in(20), and 𝑅(𝑎, 𝑏)is given in (21). 

        To prove Theorem (1.1.7)(i), we need a couple of lemmas. 

Lemma (1.1.5)[1]: Let  𝑎0 <
𝑁−2

2
 , 𝑎0 ≤ 𝑏0 ≤ 𝑎0 + 1. Then  

limsup
(𝑎,𝑏)→(𝑎0,𝑏0)

𝑆(𝑎, 𝑏) ≤ 𝑆(𝑎0, 𝑏0). 

      Proof: For any 𝜀 > 0,there is a nonnegative function 𝜐 ∈ 𝐶0
∞(𝒞)   such that 

𝐹𝑎0,𝑏0(𝜐) ≤ 𝑆(𝑎0, 𝑏0) +
𝜀

2
. 

Note that as (𝑎, 𝑏) → (𝑎0, 𝑏0), 𝜐
2(𝑥) → 𝜐𝑝0(𝑥) for all 𝑥 .For any 𝑝 ∈ [2, 2∗],  𝜐𝑝(𝑥) ≤

𝑤(𝑥)  where 𝑤(𝑥) = 𝜐2(𝑥) if 𝜐(𝑥) < 1  and 𝑤(𝑥) = 𝜐2
∗
(𝑥)  if 𝜐(𝑥) ≥ 1. Clearly  𝑤 is 

integrable; therefore by the dominated convergence theorem we have 

 lim
1

(𝑎,𝑏)→(𝑎0,𝑏0)

∫𝜐𝑝𝑑𝜇 = ∫𝜐𝑝0𝑑𝜇 .

1

𝒞

1

𝒞
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From this, and because 𝜆 is continuous in 𝑎 ,we get there is 𝛿 > 0 such that |(𝑎, 𝑏) −
(𝑎0, 𝑏0)| < 𝛿 implies  

𝑆(𝑎, 𝑏) ≤ 𝐹𝑎,𝑏(𝜐) ≤ 𝐹𝑎0,𝑏0 +
𝜀

2
≤ 𝑆(𝑎0, 𝑏0) + 𝜀. 

Let 𝜀 → 0 . 
Lemma (1.1.6)[1]: Let.(𝑝𝑛) ⊂ [2, 2

∗] be 𝑎 sequence convergent to 𝑝. If 𝑎 sequence.(𝑢𝑛) 
is uniformly bounded by 𝑀 in 𝐻1(𝒞) , then  

     (i) if  𝑝 ∈ (2, 2∗), we have  

lim
𝑛→∞ 

∫||𝑢𝑛|
𝑝𝑛 − |𝑢𝑛|

𝑝|

1

𝒞

𝑑𝜇 = 0; 

     (ii) if 𝑝 = 2 or  𝑝 = 2∗, we have  

lim sup
𝑛→∞ 

∫(|𝑢𝑛|
𝑝𝑛 − |𝑢𝑛|

𝑝)

1

𝒞

𝑑𝜇 ≤ 0. 

 Proof: We first prove (i). By the mean value theorem, there are functions 𝜉𝑛 defined  on 

𝒞 with values between 𝑝𝑛 and 𝑝 such that   

∫||𝑢𝑛|
𝑝𝑛 − |𝑢𝑛|

𝑝|

1

𝒞

𝑑𝜇 = ∫|ln|𝑢𝑛||𝑢𝑛|
𝜉𝑛(𝑥) (𝑝𝑛 − 𝑝)|

1

𝒞

𝑑𝜇. 

Since 𝑝 ∈ (2, 2∗) let  𝜀 > 0 such that [𝑝 − 𝜀, 𝑝 + 𝜀 ] ⊂ (2, 2∗) . Let 𝑛𝜀be such that for 𝑛 ≥
𝑛𝜀 we have |𝑝𝑛 − 𝑝| < 𝜀; therefore  

        ∫ ||𝑢𝑛|
𝑝𝑛 − |𝑢𝑛|

𝑝|
1

𝒞
𝑑𝜇 ≤  

             |𝑝𝑛 − 𝑝| (∫ ln|𝑢𝑛||𝑢𝑛|
𝑝+𝜀𝑑𝜇 +

1

|𝑢𝑛|>1
∫ ln

1

|𝑢𝑛|
|𝑢𝑛|

𝑝−𝜀𝑑𝜇
1

0<|𝑢𝑛|<1
). 

The key now is to show that the two integrals on the right-hand side are bounded as  𝑛 →
∞. There is a constant 𝐶 depending only on 𝑝 such that 

ln 𝑢 ≤ 𝐶𝑢2
∗−𝑝−𝜀   for all 𝑢 > 1 

and  

ln
1

𝑢
≤

𝐶

𝑢𝑝−𝜀−2
    for all  0 < 𝑢 < 1. 

With   

𝑆𝑝(𝒞) = inf
𝑢∈𝐻1(𝒞) {0}⁄

∫ |∇𝑢|2 + 𝑢2𝑑𝜇
1

𝒞

(∫ |𝑢|𝑝𝑑𝜇
1

𝒞
)
2 𝑝⁄

 , 

we obtain  

∫ ln|𝑢𝑛|

1

|𝑢𝑛|>1

|𝑢𝑛|
𝑝+𝜀𝑑𝜇 ≤ 𝐶 ∫ |𝑢𝑛|

2∗

1

|𝑢𝑛|>1

𝑑𝜇 ≤ 𝐶 (
𝑀

𝑆2∗(𝒞)
)

2∗

2

. 

We also have that  

∫ ln
1

|𝑢𝑛|

1

0<|𝑢𝑛|<1

|𝑢𝑛|
𝑝−𝜀𝑑𝜇 ≤ 𝐶 ∫ |𝑢𝑛|

2

1

0<|𝑢𝑛|<1

𝑑𝜇 ≤ 𝐶
𝑀

𝑆2(𝒞)
. 

This concludes the proof of (i). 

        For part (ii), we use the same method as above after we make the estimates as 

follows: For 𝑝 = 2, 
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∫|𝑢𝑛|
𝑝𝑛 − |𝑢𝑛|

2

1

𝒞

𝑑𝜇 ≤ ∫ |𝑢𝑛|
𝑝𝑛 − |𝑢𝑛|

2

1

|𝑢𝑛|>1

𝑑𝜇 , 

and for 𝑝 = 2∗, 

∫|𝑢𝑛|
𝑝𝑛 − |𝑢𝑛|

2∗

1

𝒞

𝑑𝜇 ≤ ∫ |𝑢𝑛|
𝑝𝑛 − |𝑢𝑛|

2∗

1

0<|𝑢𝑛|<1

𝑑𝜇 . 

Theorem (1.1.7)[1]: (Best Constants and Nonexistence of Extremal Functions) 

     (i) 𝑆(𝑎, 𝑏) is continuous in the full parameter domain (2). 

    (ii) For 𝑏 = 𝑎 + 1, we have 𝑆(𝑎, 𝑎 + 1) = (
𝑁−2−2𝑎

2
)
2
, and 𝑆(𝑎, 𝑎 − 1)  

           is not achieved. 

    (iii) For 𝑎 < 0 and 𝑏 = 𝑎, we have 𝑆(𝑎, 𝑎) = 𝑆(0,0)(the best 𝑆 obolev    

            constant) , and 𝑆(𝑎, 𝑎) is not achieved. 

 Proof: (i) According to Lemma (1.1.5), it suffices to show that 

lim inf
(𝑎,𝑏)→(𝑎0,𝑏0)

𝑆(𝑎, 𝑏) ≥ 𝑆(𝑎0, 𝑏0). 

Assume there is a sequence (𝑎𝑛, 𝑏𝑛) → (𝑎0, 𝑏0) such that 

lim 
𝑛→∞

𝑆(𝑎𝑛, 𝑏𝑛) < 𝑆(𝑎0, 𝑏0).                                                 (22) 

Then there are  𝜀 > 0 and functions (𝜐𝑛) ⊂ 𝐻
1(𝒞) such that 

∫|𝜐𝑛|
𝑝𝑛𝑑𝜇 = 1

1

𝒞

 

and 

𝑆(𝑎0, 𝑏0) − 𝜀 ≥ 𝐹𝑎𝑛,𝑏𝑛(𝜐𝑛). 

Clearly, (𝜐𝑛) is bounded in 𝐻1(𝒞) . From Lemma (1.1.6), we get 

𝐹𝑎𝑛,𝑏𝑛(𝜐𝑛) + 𝑜(1) ≥ 𝐹𝑎0,𝑏0(𝜐𝑛) ≥ 𝑆(𝑎0, 𝑏0). 

This and (22) give the desired contradiction. 

(ii) Clearly, 𝐹𝑎,𝑎+1(𝜐)((𝑁 − 2 − 2𝑎) 2⁄ )2 for all 𝜐 ∈ 𝐻1(𝒞). On the other hand, one can 

easily construct a sequence . (𝜐𝑛) ⊂ 𝐻
1(𝒞) of radial functions such that   𝐹𝑎,𝑎+1(𝜐𝑛) →

((𝑁 − 2 − 2𝑎) 2⁄ )2 . Therefore, 

𝑆(𝑎, 𝑎 + 1) = (
𝑁 − 2 − 2𝑎

2
)
2

. 

For nonexistence of minimizers, one notes that for 𝜆 ≥ 1, the equation 

−∆𝜐 + 𝜆2𝜐 = 𝜐 

has no nonzero solution in 𝐻1(𝒞). For 0 < 𝜆 < 1, i.e., . (𝑁 − 4)/2 < 𝑎 < (𝑁 − 2)/2 , 

assume that. 𝑆(𝑎, 𝑎 + 1) is achieved by some function 𝜐 ∈ 𝐻1(𝒞) the maximum principle, 

𝜐 > 0 everywhere. Denote by 𝑓(𝑡) the average of  𝜐 on the spheres 𝑡 =const. Then 𝑓 is a 

positive function in 𝐻1(ℝ) and satisfies the ODE 

−𝑓𝑢 + 𝜆
2𝑓 = 𝑓. 

The only nonnegative solution is 𝑓 ≡ 0. Therefore for all < 𝑁−2

2
 , the infimum 𝑆(𝑎, 𝑎 + 1) 

is not achieved. 

(iii) The case 𝑎 = 𝑏 = 0 is well known (the Yamabe problem in ℝ𝑁). In    this case, the 

minimize 𝑆(0,0) is achieved only by functions 
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𝑈𝜇,𝑦(𝑥) = 𝐶
𝜇(𝑁−2) 2⁄

(𝜇2 + |𝑥 − 𝑦|2)(𝑁−2) 2⁄
 ,      𝜇 > 0 ,    𝜆 ∈ ℝ𝑁 . 

Note that for 𝑎 ∈ (−𝑁 2, (𝑁 − 2) 2⁄⁄ ), 𝑈𝜇,𝑦 ∈ 𝒟𝑎
1,2. For 𝑦 ≠ 0 by a direct computation we 

get for 𝑎 ∈ (−𝑁 2, (𝑁 − 2) 2⁄⁄ )  
S(0,0) = lim 

𝜇→0
𝐸𝑎,𝑎(𝑈𝜇,𝑦). 

Due to this fact one concludes that for 𝑎 ∈ (−𝑁 2, (𝑁 − 2) 2⁄⁄ ), 
                                         

(𝑎, 𝑎) ≤ 𝑆(0,0).                                                                       (23) 

On the other hand, by the expression (10), for any 𝜐 ∈
𝐻1(𝒞)

{0},𝐹𝑎,𝑎(𝜐)>𝐹0,0(𝜐)≥𝑆(0,0)
.  Hence, 

𝑆(0,0) = 𝑆(0,0) for all 𝑎 ∈ (−𝑁 2,0⁄ ). Next, we fix 𝑎1 ∈ (−𝑁 2,0⁄ ). For any 𝑎 ≤ −𝑁 2⁄  

fixed and any 𝜀 > 0, there is 𝜐 ∈ 𝐻1(𝒞) such that 

𝐹𝑎1, 𝑏1
(𝜐) ≤ 𝑆(0,0) +

𝜀

2(𝜆(𝑎)2 − 𝜆(𝑎1)
2)(𝜆(𝑎1)

2 − 𝜆(0)2)
,   

where𝜆(𝑎) = 𝑁 − 2 − 2𝑎) 2 .⁄ Together with 𝑆(0,0) ≤ 𝐹0,0(𝜐) ≤ 𝐹𝑎1,𝑎1(𝜐𝑛) we conclude 

∫ 𝜐2𝑑𝜇
1

𝒞

(∫ |𝜐|2
∗1

𝒞
𝑑𝜇)

2 2∗⁄
≤

𝜀

2(𝜆(𝑎)2 − 𝜆(𝑎1)
2
 . 

Then  

𝐹𝑎,𝑎(𝜐) = 𝐹𝑎1,𝑎1(𝜐𝑛) + (𝜆(𝑎)
2 − 𝜆(𝑎1)

2)
∫ 𝜐2𝑑𝜇
1

𝒞

(∫ |𝜐|2
∗1

𝒞
𝑑𝜇)

2 2∗⁄
≤ 𝑆(0,0) + 𝜀. 

That is, 𝑆(𝑎, 𝑎) = 𝑆(0,0) for all 𝑎 ≤ 0. 

          Next we show 𝑆(𝑎, 𝑎) is not achieved for 𝑎 < 0. If the conclusion is not true, for 

some 𝑎 < 0  and 𝜐 ∈ 𝐻1(𝒞)  we get 𝑆(𝑎, 𝑎) = 𝐹𝑎,𝑎(𝜐) . But using  𝐹𝑎,𝑎(𝜐) > 𝐹0,0(𝜐) ≥
𝑆(0,0), we get a contradiction to 𝑆(𝑎, 𝑎) = 𝑆(0,0). 
          We show the existence of a minimizer for 𝑎 < 0 and 𝑎 < 𝑏 < 𝑎 + 1. We also give 

an asymptotic estimate of  𝑆(𝑎, 𝑎) as −𝑎 → ∞, while 𝑏 − 𝑎 ∈ (0,1)  is a fixed constant. 

          We shall need the following lemma. It is analogous to a result on ℝ𝑁  due to P. L. 

Lions [22]. The proof is similar to the proof of lemma in [27].   

Lemma (1.1.8)[1]: Let  𝑟 > 0 and 2 ≤ 𝑞 < 2∗.If  𝑤𝑛 is bounded in 𝐻1(𝒞) and if 

sup
𝑦∈𝒞

∫ |𝑤𝑛|
𝑞𝑑𝜇 → 0

1

𝐵𝑟(𝑦)∩𝒞

 𝑎𝑠 𝑛 → ∞, 

then   𝑤𝑛 → 0 in 𝐿𝑝(𝒞) for 2 < 𝑝 < 2∗. Here 𝐵𝑟(𝑦)  denotes the ball in ℝ𝑁+1  with radius  

𝑟 centered at 𝑦. 

Theorem (1.1.9)[1]: (Best Constants and Existence of Extremal Functions) 

    (i) For 𝑎 < 𝑏 < 𝑎 + 1, 𝑆(𝑎, 𝑏) is always achieved. 

   (ii) For 𝑏 − 𝑎 ∈ (0,1) fixed, as 𝑎 → −∞, 𝑆(𝑎, 𝑏) is strictly increasing,  

         and 

𝑆(𝑎, 𝑏) = (
𝑁 − 2 − 2𝑎2

2
)
2(𝑏−𝑎)

[𝑆𝑝(ℝ
𝑁) + 𝑜(1)]. 

Proof: (i) Let 𝑎 < 0  and 𝑎 < 𝑏 < 𝑎 + 1  be fixed. Consider a minimizing sequence. 

(𝑤𝑛)  ⊂ 𝐻
1(𝒞) such that 
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∫|𝑤𝑛|
𝑝𝑑𝜇 = 1   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥ 1

1

𝒞

 

and  

∫|∇𝑤𝑛|
2 + (

𝑁 − 2 − 𝑎

2
)
2

𝑤𝑛
2𝑑𝜇 → 𝑆(𝑎, 𝑏)  𝑎𝑠  𝑛 → ∞.

1

𝒞

 

According to Lemma (1.1.4), 

𝛿 = lim
𝑛→∞

inf (sup
𝑦∈𝒞

∫ 𝑤𝑛
2𝑑𝜇

2

𝐵𝑟(𝑦)∩𝒞

) > 0. 

Eventually by passing to a subsequence, we may assume there are. (𝑦𝑛) ⊂ 𝒞 and 𝑦0 ∈ 𝒞 

fixed such that the sequence 𝜐𝑛(𝑥) = 𝑤𝑛(𝑥 − 𝑦𝑛) has the property 

∫ |𝜐𝑛|
2𝑑𝜇 >

𝛿

2
.  

1

𝐵𝑟(𝑦0)∩𝒞

 

Clearly, 

∫|𝜐𝑛|
𝑝𝑑𝜇 = 1     𝑓𝑜𝑟 𝑎𝑙𝑙  𝑛 ≥ 1  

1

𝒞

 

and  

∫|∇𝜐𝑛|
2 + (

𝑁 − 2 − 𝑎

2
)
2

𝜐𝑛
2𝑑𝜇 → 𝑆(𝑎, 𝑏)  𝑎𝑠  𝑛 → ∞.

1

𝒞

 

Without loss of generality we can assume 

                                      𝜐𝑛 → 𝜐   weakly in  𝐻1(𝒞), 
                                      𝜐𝑛 → 𝜐   in  𝐿𝑙𝑜𝑐

2 (𝒞), 
                                      𝜐𝑛 → 𝜐   almost everywhere in  𝒞. 
According to the Brezis-Lieb lemma [4], we have 

1 = |𝜐|𝐿𝑝
𝑝
+ lim
𝑛→∞

|𝜐𝑛 − 𝜐|𝐿𝑝
𝑝
. 

Hence 

𝑆(𝑎, 𝑏) = lim
𝑛→∞

∫|∇𝜐𝑛|
2 + (

𝑁 − 2 − 𝑎

2
)
2

𝜐𝑛
2𝑑𝜇

2

𝒞

= ∫|∇𝑣|2
2

𝒞

+ (
𝑁 − 2 − 𝑎

2
) 𝜐2𝑑𝜇

+ lim
𝑛→∞

∫|∇𝜐𝑛 − 𝜐|
2 + (

𝑁 − 2 − 𝑎

2
)
2

(𝜐𝑛 − 𝜐)
2𝑑𝜇

2

𝒞

.

≥ 𝑆(𝑎, 𝑏) (|𝜐|𝐿𝑝
2 + (1 − |𝜐|𝐿𝑝

2 )
2
𝑝). 

Since 𝜐 ≢ 0, we obtain |𝜐|𝐿𝑝 = 1 , and so 
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∫|∇𝜐𝑛|
2 + (

𝑁 − 2 − 𝑎

2
)𝜐2

2

𝑑𝜇

2

𝒞

= 𝑆(𝑎, 𝑏). 

        Let 𝑏 − 𝑎 ∈ (0,1) be fixed so that 𝑝 ∈ (2, 2∗) is also fixed. We shall consider the 

asymptotic behavior of 𝑆(𝑎, 𝑏) 𝑎𝑠 − 𝑎 → ∞. 

   (ii) We use a rescaling argument. Let ℎ𝜆: ℝ
𝑁+1 → ℝ𝑁+1be the scaling map ℎ𝜆(𝑥) = 𝜆𝑥. 

Denote 𝒞𝜆=ℎ𝜆(𝒞)  and for 𝐻1(𝒞),define 𝑢 ∈ 𝐻1(𝒞𝜆)  by 𝑢(𝜆𝑥) = 𝜐(𝑥). For definiteness, 

on 𝐻1(𝒞𝜆) we use the norm ‖𝑢‖2 = ∫ |∇𝑢|2
1

𝒞𝜆
+ |𝑢|2𝑑𝜇. We have  

∫|∇𝜐|2
2

𝒞

+ 𝜆2𝜐2𝑑𝜇 = 𝜆2−𝑁 ∫|∇𝑢|2
2

𝒞𝜆

+ 𝑢2𝑑𝑢 

and  

∫|υ|𝑝
2

𝒞

𝑑𝜇 = 𝜆−𝑁 ∫|u|𝑝
2

𝒞𝜆

𝑑𝑢. 

Therefore, 

𝐹𝑎,𝑏(𝜐) = 𝜆
2(𝑏−𝑎)

∫ |∇𝑢|2
1

𝒞𝜆
+ 𝑢2𝑑𝜇

(∫ |𝑢|𝑝
1

𝒞𝜆
𝑑𝜇)

2
𝑝

 

Now it suffices to show that 

𝐼(𝜆) ≔ inf
𝑢∈𝐻1(𝒞𝜆) {0}⁄

∫ |∇𝑢|2
1

𝒞𝜆
+ 𝑢2𝑑𝜇

(∫ |𝑢|𝑝
1

𝒞𝜆
𝑑𝜇)

2 𝑝⁄
→ 𝑆𝑝(ℝ

𝑁) 

as 𝜆 → ∞. 
      First we have that 

lim
𝜆→∞

sup 𝐼(𝜆) ≤ 𝑆𝑝(ℝ
𝑁)                                                   (24) 

We get this through a cutoff procedure. Let 𝑟 > 0; then for fixed 𝜆 large and 𝑦 ∈ 𝒞𝜆, we 

have a projection  𝜓 = 𝜓𝑦,𝑟,𝜆  from 𝐵𝑟(0) ⊂ ℝ
𝑁2 to  𝜓(𝐵𝑟(0)) ⊂ 𝒞𝜆 defined as follows: 

Identify ℝ𝑁  with the tangent space to 𝒞𝜆 at 𝑦 ∈ 𝒞𝜆, and let 𝜓 to be the projection from 

𝐵𝑟(0) into 𝒞𝜆  along directions parallel to 𝜈𝑦 , the exterior normal to 𝒞𝜆at 𝑦. Then  is a 

diffeomorphism on its image and for fixed 𝑟, the Jacobian matrix of 𝜓 tends uniformly to 

the identity matrix as𝑦 → ∞. 

     Denote by 𝑤 ∈ 𝐻1(ℝ𝑁)  a function with support in 𝐵𝑟(0) ⊂ ℝ
𝑁2  .For  𝑦 ∈ 𝒞𝜆 , let 

𝑢𝜆(𝜓𝑦,𝑟,𝜆(𝑥)) = 𝑤(𝑥) and 0 outside 𝜓𝑦,𝑟,𝜆(𝐵𝑟(0)); then 

∫|∇𝑢𝜆|
2 + 𝑢𝜆

2𝑑𝜇 = ∫|∇𝑤|2
3

ℝ𝑁

2

𝒞𝜆

+ 𝑤2𝑑𝑥 + 𝑜(1)                              (25) 

and 

∫|𝑢𝜆|
𝑝𝑑𝜇 = ∫|𝑤|𝑝

3

ℝ𝑁

2

𝒞𝜆

𝑑𝑥 + 𝑜(1)                                        (26) 

where 𝑜(1) → 0 as 𝜆 → ∞ uniformly in 𝑦. 
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In ℝ𝑁 , it is known that the infimum 𝑆𝑝(ℝ
𝑁) achieved by a positive function 𝑤, radially 

symmetric about some point, which satisfies 

−∆𝑤 + 𝑤 = 𝑤𝑝−1  in   ℝ𝑁 .  
To prove (24), let 𝜀 > 0 and let 𝑟 > 𝑟0 > 0, sufficiently large, so that for a cutoff function  

𝜌(𝑥), which is identically 1 in 𝐵𝑟0(0) and 0 outside 𝐵𝑟(0), we have 

∫ |∇(𝜌𝑤)|2 + (𝜌𝑤)2𝑑𝑥
 

ℝ𝑁

(∫ (𝜌𝑤)𝑝𝑑𝑥
 

ℝ𝑁
)
2
𝑝

< 𝑆𝑝(ℝ
𝑁) +

𝜀

2
. 

Then from (25) and (26), there is 𝜆 large enough such that when we consider  

𝑢(𝑥) = (𝜌𝑤)(𝜓−1(𝑥)) ∈ 𝐻1(𝒞𝜆), 
we get  

∫ |∇𝑢|2 + 𝑢2𝑑𝜇
2

𝒞𝜆

(∫ 𝑢𝑝𝑑𝜇
3

𝒞𝜆
)
2 𝑝⁄

<
∫ |∇(𝜌𝑤)|2 + (𝜌𝑤)2𝑑𝑥
2

ℝ𝑁

(∫ (𝜌𝑤)𝑝𝑑𝑥
2

ℝ𝑁
)
2 𝑝⁄

< 𝑆𝑝(ℝ
𝑁) +

𝜀

2
. 

From the two inequalities we conclude that  

𝐼(𝜆) ≤
∫ |∇𝑢|2 + 𝑢2𝑑𝜇
2

𝒞𝜆

(∫ 𝑢𝑝𝑑𝜇
3

𝒞𝜆
)
2 𝑝⁄

< 𝑆𝑝(ℝ
𝑁) + 𝜀. 

Therefore, 

lim sup
𝜆→∞

𝐼(𝜆) ≤ 𝑆𝑝(ℝ
𝑁) + 𝜀. 

We now prove 

lim inf
𝜆→∞

𝐼(𝜆) ≥ 𝑆𝑝(ℝ
𝑁).                                                        (27) 

If (27) does not hold, there are 𝜀0 > 0 and a sequence  𝜆𝑛 which tends to ∞ such that  

𝐼0: = lim 
𝑛→∞

𝐼(𝜆𝑛) ≤ 𝑆𝑝(ℝ
𝑁) − 𝜀0. 

Then there are functions 𝑢𝑛 ∈ 𝐻
1(𝒞𝜆) ( here 𝒞𝑛 = 𝒞𝜆𝑛 ) such that 

∫|𝑢𝑛|
𝑝𝑑𝜇 = 1   𝑎𝑛𝑑   𝐼(𝜆𝑛) ≤ ∫|∇𝑢𝑛|

2 + 𝑢𝑛
2

2

𝒞𝑛

3

𝒞𝑛

𝑑𝜇 ≤ 𝑆𝑝(ℝ
𝑁) − 𝜀0. 

         Now we need a more detailed concentration-compactness lemma than the one in [22] 

and along the lines in [25]. The result in [25] is for the 𝐻1(ℝ𝑁) setting, but the proof 

carries over to our situation, too. We omit it here. For 𝑟 > 0 and 𝑦𝑛,𝑖 ∈ 𝒞𝑛 , let Ω𝑛,𝑖(𝑟)  be 

𝜓𝑛,𝑖,𝑟,𝜆𝑛(𝐵𝑟(0)). 

Lemma (1.1.10)[1]: Let 𝜆𝑛 → ∞ and 𝑢𝑛 ∈  𝐻
1(𝒞𝑛)  be uniformly bounded (with norm 

given by ‖𝑢‖2 = ∫ |∇𝑢|2 + |𝑢𝑛|
2𝑑𝜇).

2

𝒞𝑛
Assume ∫ |𝑢𝑛|

𝑝0

𝒞𝑛
𝑑𝜇 = 1. Then there is 𝑎  sub 

sequence (still denoted by(𝑢𝑛 )), 𝑎  nonnegative, non increasing sequence  𝛼𝑖  satisfying 

 ∑ 𝛼𝑖
∞
𝑖=1 = 1, and sequences (𝑦𝑛,𝑖)𝑖 ⊂ 𝒞𝑛 associated with each 𝛼𝑖 > 0 satisfying 

lim inf 
𝑛→∞

|𝑦𝑛,𝑖 − 𝑦𝑛,𝑗| = ∞   𝑓𝑜𝑟 𝑎𝑛𝑦 𝑖 ≠ 𝑗                                  (28) 

such that the following property holds: If 𝛼𝑠 > 0 for  some 𝑠 ≥ 1 , then for any 𝜀 >
0 there exist 𝑅 > 0, for all 𝑟 ≥ 𝑅 and all 𝑟 ́ ≥ 𝑅, such that 
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   lim sup
𝑛→∞

∑|𝛼𝑖 − ∫ |𝑢𝑛|
𝑝𝑑𝜇

2

Ω𝑛,𝑖(𝑟)

|   

𝑠

𝑖=1

+ |(1 −∑𝛼𝑖

𝑠

𝑖=1

) − ∫ |𝑢𝑛|
𝑝+1𝑑𝜇

2

𝒞𝑛 ∪𝑖=1
𝑠 Ω𝑛,𝑖(�́�)⁄

|

< 𝜀    (29) 
   In Lemma (1.1.10), fix 𝑠 > 0 with 𝛼𝑠 > 0 such that  

∑𝛼𝑖  > (
𝐼0

𝑆𝑝(ℝ
𝑁)
)

𝑝
2

.                                                 

𝑠

𝑖=1

(30) 

For𝛼𝑠 > 𝜀 > 0 , let 𝑅 > 0 and (𝑦𝑛,𝑖)𝑖 ⊂ 𝒞𝑛 such that for all  𝑟, �́� > 𝑅 ,we have 

 lim1
𝑛→∞

∑|𝛼𝑖 − ∫ |𝑢𝑛|
𝑝𝑑𝜇

2

Ω𝑛,𝑖(𝑟)

|     

𝑠

𝑖=1

       + |(1 −∑𝛼𝑖

𝑠

𝑖=1

) − ∫ |𝑢𝑛|
𝑝+1𝑑𝜇

2

𝒞𝑛 ∪𝑖=1
𝑠 Ω𝑛,𝑖(�́�)⁄

|

< 𝜀 .                                                                                                                            (31) 
We now consider a cutoff function  𝜌 on  ℝ𝑁  that is identically 1  inside 𝐵𝑅(0) and 0 

outside 𝐵2𝑅(0) and |∇𝜌| ≤
2

𝑅
 at any point. For 1 ≤ 𝑖 ≤ 𝑠, define 𝜓 = 𝜓𝑦

𝑛,𝑖,2𝑅,𝜆𝑛
as before, 

and let 𝑤𝑛,𝑖(𝑥) = 𝜌(𝑥)𝑢𝑛(𝜓(𝑥) designate functions with compact support in ℝ𝑁  .By  a 

direct computation, we get 

∫|∇𝑤𝑛,𝑖|
2

2

ℝ𝑁

+𝑤𝑛,𝑖
2 𝑑𝑥 ≤ ∫ |∇𝑢𝑛|

2

2

Ω
𝑛,𝑖(2𝑅)

+ 𝑢𝑛
2𝑑𝜇 + 𝑜(1) +

𝐶

𝑅
 

with 𝐶 independent of  𝑛, 𝜀, and 𝑅, and 𝑜(1) → ∞ as 𝑛 → ∞ . Also, 

∫|𝑤𝑛,𝑖|
𝑝

2

ℝ𝑁

𝑑𝑥 ≥ ∫ |𝑢𝑛|
𝑝

2

Ω
𝑛,𝑖(𝑅)

𝑑𝜇 + 𝑜(1). 

Since  

∫|∇𝑤𝑛,𝑖|
2

2

ℝ𝑁

+𝑤𝑛,𝑖
2 𝑑𝑥 ≥ ( ∫|∇𝑤𝑛,𝑖|

𝑝

2

ℝ𝑁

𝑑𝑥)

2
𝑝

 𝑆𝑝(ℝ
𝑁), 

we obtain 

∫ |∇𝑢𝑛|
2

2

Ω
𝑛,𝑖(2𝑅)

+ 𝑢𝑛
2𝑑𝜇 + 𝑜(1) +

𝐶

𝑅
≥ ( ∫ |𝑢𝑛|

𝑝

2

Ω
𝑛,𝑖(𝑅)

𝑑𝜇 + 𝑜(1))

2
𝑝

 𝑆𝑝(ℝ
𝑁). 

Therefore,  

∫|∇𝑢𝑛|
2

2

𝒞

+ 𝑢𝑛
2𝑑𝜇 ≥ (∑ ∫ |𝑢𝑛|

𝑝

2

Ω
𝑛,𝑖(𝑅)

𝑠

𝑖=1

𝑑𝜇)

2
𝑝

𝑆𝑝(ℝ
𝑁) + 𝑜(1) +

𝑠𝐶

𝑅
. 

Form (31) we get  

∫|∇𝑢𝑛|
2

2

𝒞

+ 𝑢𝑛
2𝑑𝜇 ≥ (∑𝛼𝑖 − 𝜀

𝑠

𝑖=1

)

2
𝑝

𝑆𝑝(ℝ
𝑁) + 𝑜(1) −

𝑠𝐶

𝑅
. 
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Letting  𝑛 → ∞ and  then 𝑅 → ∞ , we obtain 

𝐼0 ≥ (∑𝛼𝑖 − 𝜀

𝑠

𝑖=1

)

2
𝑝

𝑆𝑝(ℝ
𝑁). 

Now, let  𝜀 → 0 to get  

𝐼0 ≥ (∑𝛼𝑖

𝑠

𝑖=1

)

2
𝑝

𝑆𝑝(ℝ
𝑁), 

which contradicts (30). 

     For symmetry breaking, we have Theorem (1.1.11)(i) and (ii). The results of (i) and (ii) 

will be proved using different ideas. For Theorem (1.1.11)(i), the idea is to use bifurcation 

techniques and to show that for certain (𝑎, 𝑏), by perturbing the radial solution 𝜐𝑎𝑣𝑎 given 

in (10), there are directions in which the energy decreases. Since 𝑆(𝑎, 𝑏) is achieved, the 

minimizer cannot be radial. This approach has been used for other problems, for example, 

for bifurcation of positive solutions on annular domains in [21]. On the other hand, for 

Theorem (1.1.11)(ii), we shall employ an idea in [5] by Brezis and Nirenberg (in which 

they studied a problem with a nearly critical exponent on annular domains) to compare the 

radial least energy and  𝑆(𝑎, 𝑏). A continuity argument then gives the conclusion. 

     We first give the proof of Theorem (1.1.11)(i). We work in 𝐻1(𝒞)  here. The 

linearization of (11) at the radial solution 𝜐𝑎 decomposes by separation of variables into 

infinitely many ODEs. Denote by  𝛼𝑘 = 𝑘 (𝑁 − 1 + 𝑘) the  𝑘𝑡ℎ  eigenvalue of −∆𝜃 

on 𝕊𝑁−1  .For  𝑘 ≥ 0, we denote by 𝜇𝑘  and 𝑓𝑘 the first eigenvalue and the corresponding 

(positive) eigenfunction in the eigenvalue problem of 𝜇 , 

−𝑓𝑡𝑡 + 𝜆
2𝑓 + 𝛼𝑘𝑓 − (𝑝 − 1)𝜐𝑎

𝑝−2
𝑓 = 𝜇𝑓. 

     This eigenvalue problem is well defined since 𝜐𝑎(𝑡) → 0 as |𝑡| → ∞. First, we show 

that there area and a function 𝑎 < ℎ(𝑎) < 𝑎 + 1 defined for 𝑎 < 𝑎0 such that 𝑎 < 𝑎0 and 

𝑎 < 𝑏 < ℎ(𝑎) imply 𝜇1 < 0. Indeed, 

𝜇𝑘 = inf
𝑓∈𝐻1(𝒞) {0} ⁄

∫ 𝑓1
2 + 𝜆2𝑓2 + 𝛼𝑘𝑓

2 − (𝑝 − 1)𝜐𝑎
𝑝−1

𝑓2𝑑𝑡
2

ℝ

∫ 𝑓2𝑑𝑡
2

ℝ

. 

We use 𝜐𝑎 as a test function, and since 

∫𝜐𝑎,𝑡
2 +𝜆2

2

𝒞

𝜐𝑎
2𝑑𝜇 = ∫𝜐𝑎

𝑝
𝑑𝜇

2

𝒞

, 

we obtain  

𝜇𝑘 ≤ −(𝑝 − 2)
∫ 𝜐𝑎

𝑝
𝑑𝜇

2

𝒞

∫ 𝜐𝑎
2𝑑𝜇

2

𝒞

+ 𝛼𝑘 .                                                (32) 

Since 𝛼0 = 0 clearly we have  𝜇0 < 0 . We also have 𝛼1 = 𝑁 − 1 , and by a direct 

calculation using (19), (32) gives 

𝜇1 ≤ −
𝑁(1 + 𝑎 − 𝑏)(𝑁 − 2 − 2𝑎)2

(𝑁 − 2(1 + 𝑎 − 𝑏))(𝑁 − (1 + 𝑎 − 𝑏))
+ 𝑁 − 1.                           (33) 

Note that the right-hand side in (33) is negative for 
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𝑎 < 𝑎0 ≔
𝑁 − 2

2
−
𝑁 − 2

2
√
𝑁 − 2

𝑁
                                             (34) 

and  

𝑎 ≤ 𝑏 < ℎ(𝑎) ≔ 1 + 𝑎 −
2𝑁

𝑙(𝑎) + √𝑙2(𝑎) − 8
,                              (35) 

where  

𝑙(𝑎) =
(𝑁 − 2 − 2𝑎)2

𝑁 − 1
+ 3. 

Hence 𝜇1is negative for 𝑎 and 𝑏 in this range. Note also that 𝑎 + 1 − ℎ(𝑎) → 0 as 𝑎 →
−∞ . The 𝑎0  and ℎ(𝑎) above will be shown to have the property stated in Theorem 

(1.1.11)(i). 

     Define 𝑤𝑘 = 𝜙𝑘(𝜃)𝑓𝑘 , where 𝜙𝑘 is an eigenfunction of −Δ𝜃on  𝕊𝑁−1 with eigenvalue 

𝛼𝑘 . (𝜙0(𝜃)) is just a positive constant and 𝜙1(𝜃) is a first harmonic.) We get 

−∆𝑤𝑘 + 𝜆
2𝑤𝑘 − (𝑝 − 1)𝜐𝑎

𝑝−2
𝑤𝑘 = 𝜇𝑘𝑤𝑘 .                                      (36) 

We now have the following: 

Theorem (1.1.11) [1]: (Symmetry Breaking) (i) There is 𝑎0 ≤ 0 and a function  

ℎ(𝑎)defined for 𝑎 ≤ 𝑎0 , satisfying ℎ(𝑎0) = 𝑎0, 𝑎 < ℎ(𝑎) < 𝑎 + 1 for 𝑎 < 𝑎0 , and 𝑎 +
1 − ℎ(𝑎) → 0 as −𝑎 → ∞ such that for any (𝑎, 𝑏) satisfying 𝑎 < 𝑎0 and 𝑎 < 𝑏 < ℎ(𝑎), 
the minimizer for 𝑆(𝑎, 𝑏) is nonradial. 

    (ii) There is an open subset 𝐻 inside the 𝑎-negative region containing the set {(𝑎, 𝑎) ∈
ℝ2: 𝑎 < 0} such that for any(𝑎, 𝑏) ∈ 𝐻 with 𝑎 < 𝑏, the minimize for 𝑆(𝑎, 𝑏) is nonradial. 

Though the minimizers may be nonradial, we still have the following: 

Proof :  

    (i) By the above lemma, for 𝑠  small |𝜐𝑎 + 𝛿(𝑠)𝑤0 + 𝑠𝑤1|𝐿 𝑝 = 1. Then 

(37)shows 𝑆(𝑎, 𝑏) < 𝑅(𝑎, 𝑏). Since 𝑆(𝑎, 𝑏) is achieved, the minimizer is nonradial.  

    (ii): First we note that by a direct computation using (21) we always have for all 𝑎 < 0 

𝑅(𝑎, 𝑎) > 𝑆(𝑎, 𝑎) = 𝑆(0,0). 
We argue that for any𝑎0 < 0, there is 𝜀0 > 0 such that for all |(𝑎, 𝑏) − (𝑎0, 𝑎0)| < 𝜀0 with 

𝑎 < 𝑏 , 𝑆(𝑎, 𝑏) is achieved by a nonradial function. As (𝑎, 𝑏) → (𝑎0, 𝑎0) ,we have that 

𝑅(𝑎, 𝑎) → 𝑅(𝑎0, 𝑎0) > 𝑆(𝑎0, 𝑎0) = 𝑆(0,0). On the other hand, from Theorem (1.1.7)(i) 

we have that 𝑆(𝑎, 𝑏) → 𝑆(𝑎0, 𝑎0)  as(𝑎, 𝑏) → (𝑎0, 𝑎0)  Therefore for any 𝑎0 < 0 , there 

is 𝜀0 > 0 such that 𝑆(𝑎, 𝑏) < 𝑅(𝑎, 𝑏) if |(𝑎, 𝑏) − (𝑎0, 𝑎0) < 𝜀0| with 𝑎 ≤ 𝑏. By Theorem 

(1.1.9)(i), 𝑆(𝑎, 𝑏) is achieved, and due to the strict inequality, the minimizer for 𝑆(𝑎, 𝑏) is 

nonradial.  

Lemma (1.1.12)[1]: For 𝑠 small, there is 𝛿 = 𝛿(𝑠) such that 𝛿(0) = �́�(0) = 0 and  

∫|𝜐𝑎 + 𝛿(𝑠)𝑤0 + 𝑠𝑤1|
𝑝

2

𝒞

𝑑𝜇 = 1. 

If, in addition, (𝑎, 𝑏)is such that 𝜇1 < 0 (which holds for 𝑎 < 𝑎0 and 𝑎 ≤ 𝑏 < ℎ(𝑎), then 

for 𝑠 sufficiently small, 

𝐹(𝜐𝑎 + 𝛿(𝑠)𝑤0 + 𝑠𝑤1) < 𝐹(𝜐𝑎).                                            (37) 
Proof:   Set  
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𝐺(𝛿, 𝑠) = ∫|𝜐𝑎 + 𝛿𝑤0 + 𝑠𝑤1|
𝑝

2

𝒞

𝑑𝜇. 

We have 𝐺(0,0) = 1 and 𝜕𝐺
𝜕𝛿
(0,0) = 𝑝 ∫ 𝜐𝑎

𝑝−12

𝒞
𝑤0𝑑𝜇 > 0, since 𝑤0 > 0. By the implicit 

function theorem, there is an open 𝑠-interval around 0 where 𝛿 = 𝛿(𝑠) differentiable and  

𝐺(𝛿(𝑠), 𝑠) = 1.                                                          (38) 
Furthermore, by a direct computation and 𝜙1(−𝜃) = −𝜙1(𝜃), we have 

𝜕𝐺

𝜕𝑠
(0,0) = 𝑝∫𝜐𝑎

𝑝−1

2

𝒞

𝑤1𝑑𝜇 = 𝑝∫𝜐𝑎
𝑝−1

2

𝒞

𝜙1(𝜃)𝑓1𝑑𝜇 = 0. 

Differentiating (38) we get 
𝜕𝐺

𝜕𝛿
(𝛿(𝑠), 𝑠)�́�(𝑠) +

𝜕𝐺

𝜕𝑠
(𝛿(𝑠), 𝑠) = 0.                                     (39) 

Hence 

𝜕𝐺

𝜕𝛿
(0,0)�́́�(0) +

𝜕2𝐺

𝜕𝑠2
(0,0) = 0. 

We have  

𝜕2𝐺

𝜕𝑠2
(0,0) = 𝑝(𝑝 − 1)∫𝑢𝑎

𝑝−1

2

𝒞

𝑤1
2𝑑𝜇   𝑎𝑛𝑑  

𝜕𝐺

𝜕𝛿
(0,0) = 𝑝∫𝑢𝑎

𝑝−1

2

𝒞

𝑤0𝑑𝜇.                

Thus, 

�́́�(0) =
𝑝(𝑝 − 1)∫ 𝜐𝑎

𝑝−12

𝒞
𝑤1
2𝑑𝜇

𝑝 ∫ 𝜐𝑎
𝑝−12

𝒞
𝑤0𝑑𝜇

. 

Now, 

          𝐹(𝜐𝑎 + 𝛿(𝑠)𝑤0 + 𝑠𝑤1) = 

𝐹(𝜐𝑎) + 𝑠
2∫|∇𝑤1|

2 + 𝜆2𝑤1
2

2

𝒞

𝑑𝜇 + 2𝛿(𝑠)∫∇𝜐𝑎 ∙ ∇𝑤0 + 𝜆
2𝜐𝑎

2

𝒞

𝑤0𝑑𝜇 

+2𝑠∫∇𝜐𝑎 ∙ ∇𝑤1 + 𝜆
2𝜐𝑎

2

𝒞

𝑤1𝑑𝜇 + 𝛿
2(𝑠)∫|∇𝑤0|

2 + 𝜆2𝑤0
2

2

𝒞

𝑑𝜇 

+2𝑠𝛿(𝑠)∫∇𝑤0 ∙ ∇𝑤1 + 𝜆
2𝑤0

2

𝒞

𝑤1𝑑𝜇.                                             

Since 𝜐𝑎 is radial,  

∫∇𝜐𝑎 ∙ ∇𝑤1 + 𝜆
2𝜐𝑎

2

𝒞

𝑤1𝑑𝜇 = ∫𝜐𝑎
𝑝−1

2

𝒞

𝑤1𝑑𝜇 = 0; 

therefore the fourth term is 0. Also, the fifth and the sixth terms are higher order. Hence  

𝐹(𝜐𝑎 + 𝛿(𝑠)𝑤0 + 𝑠𝑤1) = 

𝐹(𝜐𝑎) + 𝑠
2∫|∇𝑤1|

2 + 𝜆2𝑤1
2

2

𝒞

𝑑𝜇 + 2𝛿(𝑠)∫∇𝜐𝑎 ∙ ∇𝑤0 + 𝜆
2𝜐𝑎

2

𝒞

𝑤0𝑑𝜇 + 𝑜(𝑠
2).        

From (36) we get  
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∫|∇𝑤1|
2 + 𝜆2𝑤1

2

2

𝒞

𝑑𝜇 = (𝑝 − 1)∫𝜐𝑎
𝑝−1

2

𝒞

𝑤1
2𝑑𝜇 + 𝜇1∫𝑤1

2

2

𝒞

𝑑𝜇. 

Since 𝜐𝑎 is a solution of (11), we have 

∫∇𝜐𝑎 ∙ ∇𝑤0 + 𝜆
2𝜐𝑎

2

𝒞

𝑤0𝑑𝜇 = ∫𝜐𝑎
𝑝−1

2

𝒞

𝑤0𝑑𝜇. 

Using the equalities above and 

𝛿(𝑠) = −𝑠2
(𝑝 − 1) ∫ 𝜐𝑎

𝑝−22

𝒞
𝑤1
2𝑑𝜇

𝑝 ∫ 𝜐𝑎
𝑝−12

𝒞
𝑤0𝑑𝜇

+ 𝑜(𝑠2), 

we obtain for 𝑠 sufficiently small 

𝐹(𝜐𝑎 + 𝛿(𝑠)𝑤0 + 𝑠𝑤1) = 𝐹(𝜐𝑎) + 𝑠
2𝜇1∫𝑤1

2

2

𝒞

𝑑𝜇 + 𝑜(𝑠2) < 𝐹(𝜐𝑎). 

    We use the moving plane method [15] to show that for 𝑎 ≤ 𝑏 < 𝑎 + 1 any positive 

solution of (11) on the cylinder 𝒞 is symmetric about some 𝑡 = const, so up to a translation 

in the 𝑡 -direction, the solution is even in 𝑡  and satisfies the monotonicity property. 

Together with the discussion , we get that any solution of (8) satisfying  𝑢(𝑥) > 0 for 

𝑥 ∈ ℝ𝑁 {0}⁄  , up to a dilation (12), satisfies the modified inversion symmetry in Theorem 

(1.1.14).Our argument follows closely the method in [11] though we have a differential 

equation defined on a manifold 𝒞, while in [11] equations in ℝ𝑁 were  treated. 

     Let 𝜐 be a positive solution of (11). For 𝜇 < 0 and 𝑥 = (𝑡, 𝜃) ∈ 𝒞, denote 𝑥𝜇 = (2𝜇 −
𝑡, 𝜃) ∈ 𝒞, the reflection of 𝑥 relative to the hyperplane 𝑡 = 𝜇. We let 

𝑤𝜇(𝑥) = 𝜐(𝑥
𝜇) − 𝜐(𝑥), 

a function defined on the region∑ = {(𝑡, 𝜃) ∈ 𝒞: 𝑡 < 𝜇}𝜇 . Clearly, 𝑤(𝑥) = 0 for any 𝑥 ∈

𝑇𝜇 = 𝜕∑ = {(𝑡, 𝜃) ∈ 𝒞: 𝑡 = 𝜇}.𝜇  We have the following : 

Lemma (1.1.13)[1]: There is 𝑅0 > 0 independent of 𝜇 such that if 𝑤𝜇 has a negative local 

minimum at (𝑡0, 𝜃0), then |𝑡0| ≤ 𝑅0. 

Proof: First, by elliptic regularity theory and the fact that 

∫ 𝜐2
∗

2

𝜏≤𝑡≤𝜏+1

𝑑𝜇 → 0       𝑎𝑠 |𝜏| → ∞, 

we have 𝜐(𝑡, 𝜃) → 0 as |𝜏| → ∞. Then we take 𝑅0 to be such that  

𝜐(𝑡, 𝜃) < (
𝜆2

𝑝 − 1
)

1
𝑝−2

 

for all |𝑡0| ≥ 𝑅0. Since 𝜐 is a solution of (11),𝑤𝜇 satisfies 

−Δ𝑤𝜇 + 𝜆
2𝑤𝜇 − 𝑎(𝑥)𝑤𝜇 = 0                                        (40) 

in ∑ ,𝜇  where  

𝑎(𝑥) = (𝑝 − 1)∫ [𝑢(𝑥) + 𝑠(𝑢(𝑥𝜇) − 𝑢(𝑥))]
𝑝−1

1

0

𝑑𝑠. 

Assume 𝑥0 = (𝑡0, 𝜃0) ∈ ∑ 2𝜇 is a minimum such that 𝑤𝜇(𝑥0) < 0 and |𝑡0 > 𝑅0|. Then  
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𝜐(𝑥0
𝜇
) < 𝜐(𝑥0) < (

𝜆2

𝑝 − 1
)

1
𝑝−2

. 

Therefore  

𝑎(𝑥0) < 𝜆
2.                                                         (41) 

Since Δ𝑤𝜇(𝑥0) ≥ 0, we obtain  

𝜆2𝑤𝜇(𝑥0) − 𝑎(𝑥0)𝑤𝜇(𝑥0) ≥ 0, 

which means 𝜆2 ≤ 𝑎(𝑥0) , contradicting (41). 

      We shall need the following: 

Theorem (1.1.14)[1]: (Symmetry Property) For 𝑎 ≤ 𝑏 < 𝑎 + 1, any bound state solution 

𝑢 of (8) in 𝒟𝑎
1,2

 satisfying  𝑢(𝑥) > 0 for  𝑥 ∈ ℝ𝑁 {0}⁄  , possibly after  𝑎 dilation 𝑢(𝑥) →

𝜏(𝑁−2−2𝑎) 2⁄ 𝑢(𝜏𝑥) , satisfies the “modified inversion” symmetry: 

𝑢 (
𝑥

|𝑥|2
) = |𝑥|𝑁−2−2𝑎𝑢(𝑥). 

Moreover, writing  |𝑥| = 𝑒−𝑡 and  𝜃 = 𝑥 |𝑥|⁄  , we have that for fixed 𝜃, 

𝑒−
𝑁−2−2𝑎

2 𝑢(𝑒−𝑡𝜃) 
is even in t and monotonically decreasing in 𝑡 for 𝑡 > 0. 

Proof: Since for 𝑡 → ∞ we have  𝑤𝜇(𝑡, 𝜃) → 0  and 𝑤(𝑥) = 0  for all 𝑥 ∈  𝑇𝜇 , Lemma 

(1.1.13) implies  𝑤𝜇(𝑥) ≥ 0 for 𝑥 ∈ ∑  𝜇 with all 𝜇 ≤ −𝑅0. Let 𝜇0  be the largest 𝜇 with the 

property that  𝑤𝜇 is nonnegative on  ∑  𝜇 . Clearly such  𝜇0 exists since 𝑣(𝑡, 𝜃) → 0 as 𝑡 →

∞. We argue that 

(i)                         𝑤𝜇(𝑥) > 0   for   𝑥 ∈ ∑  𝜇 , 𝜇 < 𝜇0 . 

(ii)                        𝑤𝜇0 ≡ 0   on   ∑  𝜇0 . 

Since  𝑤𝜇 ≥ 0 for all 𝜇 < 𝜇0 , it follows that 𝜐𝑡 ≥ 0 for all 𝑡 < 𝜇0 . To prove (i) , assume 

there is 𝛿 > 0 such that for some (𝑡0, 𝜃0), we have 𝑡0 < 𝜇0 – 𝛿 and 𝑤𝜇0−𝛿(𝑡0, 𝜃0) = 0. By 

the maximum principle it follows that 𝑤𝜇0−𝛿 ≡ 0.  This implies that 𝜐(𝜇0 − 2𝛿, 𝜃0) =

𝜐(𝜇0, 𝜃0). Since 𝜕𝜐 𝜕𝑡⁄ ≥ 0, it follows that  
𝜕𝜐

𝜕𝑡
(𝑡, 𝜃0) = 0    𝑓𝑜𝑟 𝑎𝑙𝑙  𝑡 ∈ [ 𝜇0 − 2𝛿, 𝜇0 ]. 

There fore  
𝜕𝑤𝜇0−2𝛿
𝜕𝑡

( 𝜇0 − 2𝛿, 𝜇0 ) = 0. 

By the Hopf lemma we get 𝑤𝜇0−2𝛿 ≡ 0. Continuing in this fashion, we obtain that 𝜐 is 

independent of 𝑡, which is not possible. Therefore, 𝜕𝑤𝜇 𝜕𝑡⁄ < 0 on 𝑇𝜇 for 𝜇 < 𝜇0 and then 

𝜐𝑡 > 0 on ∑  𝜇 . 

 For (ii), assume  𝑤𝜇0 ≢ 0. By the maximum principle and the Hopf lemma, 𝑤𝜇0 >

0 on  ∑  𝜇0 and 𝜕𝑤𝜇0 𝜕𝑡⁄ < 0 on 𝑇𝜇0. From the definition of  𝜇0, there is a sequence  𝜇𝑘 ↘

𝜇0 and there are point 𝑥𝑘 ∈ ∑  𝜇𝑘 , absolute minima for 𝑤𝜇𝑘 , such that  𝑤𝜇𝑘(𝑥𝑘) < 0. By 

Lemma (1.1.13) we have that 𝑥𝑘 is a bounded sequence; hence (by passing to a 

subsequence) we can assume it converges to some point 𝑥0. It follows that  𝑥0 ∈ 𝑇𝜇0 and 

𝑤𝜇0,𝑡(𝑥0) = 0, which is a contradiction. 

     Eventually after a translation in the 𝑡-direction, we can assume 𝜇0. Therefore 𝜐 is even 

in 𝑡 and monotonically decreasing for 𝑡 > 0. 
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     Translations in 𝑡 on 𝒞 correspond to dilations in ℝ𝑁 ; hence up to a dilation 𝑢(𝑥) →

𝜏
𝑁−2−2𝑎

2 𝑢(𝜏𝑥), positive solutions of (8) have the modified inversion symmetry as given in 

Theorem (1.1.14). 

In one dimension, equation (8) becomes 

−(|𝑥|−2𝑎𝑢 ́ ) ́ = |𝑥|−𝑏𝑝𝑢𝑝−1 ,     𝑢 ≥ 0,    𝑖𝑛 ℝ .                            (42) 
We have a rather complete answer for the problem. In fact, we can identify all solutions of 

(42). We look for solutions 𝜐 that are critical points for the energy in 𝒟𝑎
1,2(ℝ) 

𝐸𝑎,𝑏(𝑢) =
∫ |𝑥|−2𝑎|�́�|2𝑑𝑥
2

ℝ

(∫ |𝑥|−𝑏𝑝|𝑢|𝑝𝑑𝑥
2

ℝ
)
2 𝑝⁄
. 

The parameter range is 

𝑎 < −
1

2
 ,    𝑎 +

1

2
< 𝑏 ≤ 𝑎 + 1,     𝑎𝑛𝑑     𝑝 =

2

−1 + 2(𝑏 − 𝑎)
. 

We first observe that 𝐸𝑎,𝑏(𝑢)is invariant under the following rather nonstandard dilations: 

for (𝜏−, 𝜏+) ∈ (0,∞)
2 

𝑢(𝑥) → 𝑢 𝜏−,𝜏+(𝑥) = {
 𝜏−
− 1+2𝑎

2  𝑢(𝜏−𝑥),    𝑥 < 0,

𝜏+
− 
1+2𝑎
2  𝑢(𝜏+𝑥),    𝑥 > 0,

                               (43) 

That is, dilations can be made independently for 𝑥 < 0 and 𝑥 > 0 so  that  𝐸𝑎,𝑏(𝑢) is still 

invariant. 

      Note that for 𝑁 = 1 the cylinder 𝒞 = ℝ × 𝕊0 = ℝ ∪ ℝ the union of two real lines. We 

denote the two components by 𝒞−and 𝒞+corresponding to ℝ− and ℝ+ in ℝ, respectively. 

The coordinates for 𝒞−and 𝒞+ are 𝑦 = (𝑡, −1) ∈ 𝒞− and 𝑦 = (𝑡, 1) ∈ 𝒞+ . For simplicity, 

we write them as 𝑡1 (for (𝑡, −1)) and 𝑡2 (for (𝑡, 1)). To be more precise, for a function 

𝑤(𝑦)defined on 𝒞+we write 𝑤(𝑦) = 𝑤1(𝑡1) when 𝑦 = 𝑡1 ∈ 𝒞− and 𝑤(𝑦) = 𝑤2(𝑡2) when 

𝑦 = 𝑡2 ∈ 𝒞+. To a function 𝑢 ∈ 𝒟𝑎
1,2(ℝ), we associate a function 𝑤 (corresponding to a 

pair of 𝑤1, 𝑤2) defined on 𝒞 by 

𝑢(𝑥) = (−𝑥)(1+2𝑎) 2⁄ 𝑤1(− ln(−𝑥))      𝑓𝑜𝑟 𝑥 < 0,                         (44) 

𝑢(𝑥) = 𝑥(1+2𝑎) 2⁄ 𝑤2(− ln 𝑥)      𝑓𝑜𝑟 𝑥 > 0, 
and 𝑡1 = − ln|−𝑥| for 𝑥 < 0 and 𝑡2 = − ln 𝑥  for 𝑥 > 0. Then equation (42) is equivalent 

to the system of autonomous equation: for 𝑖 = 1,2,  

−
𝑑2𝑤𝑖

𝑑𝑡𝑖
2 + (

1 + 2𝑎

2
)
2

𝑤𝑖 = |𝑤𝑖|
𝑝−2𝑤𝑖 .                                               (45) 

Critical points of  𝐸𝑎,𝑏(𝑢) on 𝒟𝑎
1,2(ℝ) now correspond to critical points of a new energy 

functional on 𝐻1(𝒞) 

𝐹𝑎,𝑏(𝑤) =
∫ |∇𝑤|2 + (

1 + 2𝑎
2 )

2

|𝑤|2𝑑𝜇
2

𝒞

(∫ |𝑤|𝑝 𝑑𝜇
2

𝒞
)
2 𝑝⁄

,     𝑤 ∈ 𝐻1(𝒞). 

It is easy to see that both integrals in the numerator and the denominator are decoupled as 

two integrals for 𝑤1 and 𝑤2 . Each of the two ODEs of (45) has the zero solution, and 

according to (15) with  𝜆 = −(1 + 2𝑎) 2⁄  the only (positive) homoclinic solutions are 

translates of 
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𝜐(𝑡) = (
(1 + 2𝑎)2

4(1 − 2(1 + 𝑎 − 𝑏))
)

1−2(1+𝑎−𝑏)
4(1+𝑎−𝑏)

(cosh 2
(1 + 2𝑎)(1 + 𝑎 − 𝑏)

1 − 2(1 + 𝑎 − 𝑏)
𝑡)

1−2(1+𝑎−𝑏)
2(1+𝑎−𝑏)

                         (46) 

The minimizers of 𝐹𝑎,𝑏(𝑤)are achieved by 𝑤, for which one of two components 𝑤1  or 

𝑤2 is identically zero and the other is a translate of  𝜐𝑡  given above. According to (17), the 

infimum is 

𝑆(𝑎, 𝑏) =
(−1 − 2𝑎)2(𝑏−𝑎)

22(1+𝑎−𝑏)(−1 + 2(𝑏 − 𝑎))
−1+2(𝑏−𝑎)

(1 + 𝑎 − 𝑏)2(1+𝑎−𝑏)
 

(
Γ2 ( 1

2(1+𝑎−𝑏)
)

Γ( 1
1+𝑎−𝑏)

)

2(1+𝑎−𝑏)

.                                                  (47) 

We observe that as 𝑏 ↘ 𝑎 + 1

2
 , we obtain 𝑆(𝑎, 𝑏) → −1 − 2𝑎. Note that when both 𝑤1and 

𝑤1are nonzero and are (possibly different) translates of 𝜐(𝑡) in (46) we get the energy 

𝐹𝑎,𝑏(𝑤) to be higher 

𝑅(𝑎, 𝑏) = 22(1+𝑎−𝑏)𝑆(𝑎, 𝑏), 
which is the least energy in the radial class. On this energy level, there is a two-parameter 

family of positive solutions according to the two parameters that control by how 

much 𝑤1and 𝑤1 are translated from (46). Correspondingly ,𝑢(𝑥) defined in (44) is a two-

parameter family of solutions for (42), which after a dilation given by (43) for 

some (𝜏−, 𝜏+) ∈ (0,∞)
2 is radial in ℝ.. 

Summarizing all these, we can state the main results for 𝑁 = 1 now. 

Theorem (1.1.15)[1]: (Best Constants and Nonexistence of Extremal Functions)  

   (i) 𝑆(𝑎, 𝑏) is continuous in the full parameter domain. 

 (ii) For 𝑏 = 𝑎 + 1, we have 𝑆(𝑎, 𝑎 + 1) = (
1+2𝑎

2
)
2
 , and 𝑆(𝑎, 𝑎 + 1) is            

      not achieved. 

 (iii) For  𝑏 → (𝑎 +
1

2
)
+

 , we get 𝑆 → (𝑎, 𝑏) − 1 − 2𝑎. 

Theorem (1.1.16)[1]: (Best Constants and Existence of Extremal Functions) For 𝑎 +
1

2
<

𝑏 < 𝑎 + 1, 𝑆(𝑎, 𝑏) is explicitly given in(47), and up to a dilation of the form (43) it is 

achieved at a function of the form(44)with either 𝑤1 = 0 and 𝑤2 given by (46), or vice 

versa. Consequently, the minimizer for 𝑆(𝑎, 𝑏) is never radial 

Theorem (1.1.17)[1]: (Bound State Solutions and Symmetry) Up to a dilation (43), the 

only solution of (42) besides the ground state solutions is of the form of (44) with bothw1 

andw2 given by(46). Consequently, all bound state solutions of (42), possibly after a 

dilation given in(43), satisfy the modified inversion symmetry. 

The Case 𝑁 = 2 

      In this case the parameter range is 

−∞ < 𝑎 < 0,     𝑎 < 𝑏 ≤ 𝑎 + 1,       𝑎𝑛𝑑 𝑝 =
2

𝑏 − 𝑎
. 

With no changes in the proofs for the case 𝑁 ≥ 3, we have the following results. 

Theorem (1.1.18)[1]: (Best Constants and Nonexistence of Extremal Functions)  

   (i) 𝑆(𝑎, 𝑏) is continuous in the full parameter domain. 

   (ii) For 𝑏 = 𝑎 + 1, we have 𝑆(𝑎, 𝑎 + 1) = 𝑎2,and 𝑆(𝑎, 𝑎 + 1) is not  

         achieved. 
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Theorem (1.1.19)[1]: (Best Constants and Existence of Extremal Functions) 

     (i)  For 𝑎 < 𝑏 < 𝑎 + 1 , 𝑆(𝑎, 𝑏) is always achieved. 

    (ii) For 𝑏 − 𝑎 ∈ (0,1) fixed, as 𝑎 → −∞, 𝑆(𝑎, 𝑏) is strictly increasing,  

          and 

𝑆(𝑎, 𝑏) = (−𝑎)2(𝑏−𝑎)[𝑆𝑝(ℝ
2) + 𝑜(1)]. 

    One notes in (34) that for 𝑁 = 2 we have 𝑎0 = 0. Therefore we also have the following: 

Theorem (1.1.20)[1]: (Symmetry Breaking)There is a function ℎ(𝑎) defined for 𝑎 < 0, 

satisfying 𝑎 < ℎ(𝑎) < 𝑎 + 1 for 𝑎 < 0 and 𝑎 = 1 − ℎ(𝑎) → 0 𝑎𝑠 − 𝑎 → ∞, such that for 

any (𝑎, 𝑏) satisfying 𝑎 < 0 and  𝑎 < 𝑏 < ℎ(𝑎), the minimizer for 𝑆(𝑎, 𝑏) is nonradial. 

Theorem (1.1.21)[1]: (Symmetry Property) For 𝑎 < 𝑏 < 𝑎 + 1, the minimizer of 𝑆(𝑎, 𝑏), 
possibly after a dilation 𝑢(𝑥) → 𝜏−𝑎𝑢(𝜏𝑥) , satisfies the modified inversion symmetry: 

𝑢 (
𝑥

|𝑥|2
) = |𝑥|−2𝑎 𝑢(𝑥).1 

we shall consider a related problem that can be solved by using our method and the results. 

For 0 ≤ 𝑎 < (𝑁 − 2) 2⁄  , special cases of the following problem were considered in [23] 

and [26]: 

      For 𝑁 ≥ 3, we consider the following problem: 

−𝑑𝑖𝑣(|𝑥|−2𝑎∇𝑤) + 𝛾|𝑥|−2(1+𝑎)𝑤 = |𝑥|−𝑏𝑝𝑤𝑝−1,   𝑢 ≥ 0,   𝑖𝑛 ℝ𝑁 ,               (48) 
where  

𝑎 <
𝑁 − 2

2
,    𝑎 ≤ 𝑏 < 𝑎 + 1, 𝛾 > −(

𝑁 − 2 − 2𝑎

2
)
2

 ,   

𝑝 =
2𝑁

𝑁 − 2 + 2(𝑏 − 𝑎)
. 

The solutions in 𝒟𝑎
1,2(ℝ𝑁) of this problem are critical points of 

𝐸𝑎,𝑏,𝛾(𝑢) =
∫ |𝑥|−2𝑎|∇𝑢|2 + 𝛾|𝑥|−2(1+𝑎)𝑢2𝑑𝑥
2

ℝ𝑁

(∫ |𝑥|−𝑏𝑝|𝑢|𝑝𝑑𝑥
2

ℝ𝑁
)
2 𝑝⁄

. 

Proposition (1.1.22)[1]: The solutions in 𝒟𝑎
1,2(ℝ𝑁)  of (48) are in one-to-one 

correspondence to solutions in 𝒟�̅�
1,2(ℝ𝑁) of 

−𝑑𝑖𝑣(|𝑥|−2�̅�∇𝑢) = |𝑥|�̅�𝑝 𝑢𝑝−1,   𝑢 ≥ 0, 𝑖𝑛 ℝ𝑁 ,  
where  

�̅� = 𝑎 + 𝜆 − √𝜆2 + 𝛾,    �̅� = 𝑏 + 𝜆 − √𝜆2 + 𝛾,      𝜆 =
𝑁 − 2 − 2𝑎

2
 . 

This correspondence is given by 

𝑢(𝑥) = |𝑥|𝜆−√𝜆
2+𝛾𝑤(𝑥). 

     Direct computations verify the proof, which we omit here. 

     Due to this proposition, we can put equation (48) in the same frame of work as in (8), 

and we can translate all of our results for (8) to get corresponding results for (48). We note 

that even in the 𝑎 -nonnegative region, for 𝛾  sufficiently large the minimizer of  

𝐸𝑎,𝑏,𝛾(𝑢) is nonradial. All of our main theorems are adapted in the obvious way. We leave 

the statements of these results to the reader. 
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Section (1.2): Applications to Nonlinear Diffusions 
For 𝑑 ≥ 3 , Sobolev’s inequality [66] states the existence of a constant 𝐴 >

0 suchthat for any function 𝑢 ∈ 𝐿2𝑑 (𝑑−2)⁄ (ℝ𝑑) with 𝛻𝑢 ∈ 𝐿2(ℝ𝑑), 
‖𝑤‖ 2𝑑

𝑑−2
≤ 𝐴‖∇𝑤‖2.                                        (49) 

Here and in what follows, we define for 𝑞 > 0 

‖υ‖𝑞 = ( ∫|υ|
𝑞𝑑𝑥

2

ℝ𝑑

)

1 𝑞⁄

. 

The value of the optimal constant is known to be 

𝐴 =
1

√𝜋𝑑(𝑑 − 2)
(
Γ(𝑑)

Γ(𝑑 2⁄ )
)
1 𝑑⁄

 

as established by Aubin and Talenti in [32], [24]. This optimal constant is achieved 

precisely by constant multiples of the functions 

𝑤𝜎,�̅�(𝑥) = (
1

𝜎2 + |𝑥 − �̅�|2
)

𝑑−2
2

. 

with 𝜎 > 0, �̅� ∈ ℝ𝑑  . On the other hand, a celebrated logarithmic Sobolev inequality was 

found in 1975 by Gross [49]. In the case of Lebesgue measure it states that all functions 

𝑤 ∈ 𝐻1(ℝ𝑑), 𝑑 ≥ 2 satisfy for any 𝜎 > 0 

∫𝑤2

2

ℝ𝑑

log(𝑤2 ‖𝑤‖2
2⁄ ) 𝑑𝑥 + 𝑑(1 + log(√𝜋 𝜎))‖𝑤‖2

2 ≤ 𝜎2‖∇𝑤‖2
2.     (50) 

The extremals of this inequality (which is not stated here in a scaling invariant form) are 

constant multiples of the Gaussians: 

𝑤(𝑥) = (𝜋𝜎2)−𝑑 4⁄ 𝑒
− 
|𝑥−�̅�|2

2𝜎2
 ,
                                 (51) 

with �̅� ∈ ℝ𝑑 [42], [67]. We will answer the naturally arising question of how these two 

classical inequalities are related. As we will see, these inequalities correspond to limiting 

cases of a one-parameter family of optimal Gagliardo–Nirenberg type inequalities [48], 

[61] which we shall describe next. 

For 𝑝 > 0, we define:  

𝒟𝑝(ℝ𝑑) = {𝑤 ∈ 𝐿1+𝑝(ℝ𝑑): ∇𝑤 ∈ 𝐿2(ℝ𝑑) 𝑎𝑛𝑑 |𝑤|2𝑝 ∈ 𝐿1(ℝ𝑑)}. 
Our first main result states the validity of the following optimal Gagliardo–Nirenberg 

inequality. 

‖𝑤‖2𝑝 ≤ 𝐴‖∇𝑤‖𝑝+1
1−𝜃 ,                                                        (52) 

where  

𝐴 = (
𝑦(𝑝 − 1)2

2𝜋𝑑
)

𝜃
2

(
2𝑦 − 𝑑

2𝑦
)

1
𝑏2

(
Γ(𝑦)

Γ(𝑦 − 𝑑 2⁄ )
)

𝜃
𝑑

, 

with  

𝜃 =
𝑑(𝑝 − 1)

𝑝(𝑑 + 2 − (𝑑 − 2)𝑝
,          𝑦 =

𝑝 + 1

𝑝 − 1
. 

𝐴 is optimal, and (52)is reached with equality if and only ifwis a constant multiple of one 

of the functions 
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𝑤𝜎,�̅�(𝑥) = (
1

𝜎2 + |𝑥 − �̅�|2
)

1
𝑝−1

, 

with 𝜎 > 0 and �̅� ∈ ℝ𝑑 . 
An analogous estimate takes place in the case 0 < 𝑝 < 1. In fact we have the following 

result. 

‖𝑤‖𝑝+1 ≤ 𝐴‖∇𝑤‖2
𝜃‖𝑤‖2𝑝

1−𝜃 ,                             (53) 

where  

𝐴 = (
𝑦(𝑝 − 1)2

2𝜋𝑑
)

𝜃
2

(
2𝑦

2𝑦 + 𝑑
)

1−𝜃
2𝑝

(
Γ(𝑑 2 + 1 + 𝑦⁄ )

Γ(1 + 𝑦)
)

𝜃
𝑑

, 

with 

𝜃 =
𝑑(1 − 𝑝)

(1 + 𝑝)(𝑑 − (𝑑 − 2)𝑝)
,          𝑦 =

𝑝 + 1

1 − 𝑝
 . 

𝐴 is optimal, and (53)is reached with equality by the compactly supported functions 

𝑤𝜎,�̅�(𝑥) = (𝜎
2 + |𝑥 − �̅�|2)+

1
1−𝑝, 

with 𝜎 > 0 and �̅� ∈ ℝ𝑑 . 
     The above results are special cases of Gagliardo–Nirenberg inequalities, which are 

found here in optimal form. Theorem (1.2.3) contains the optimal Sobolev inequality when 

𝑝 =
𝑑

𝑑−1
. Moreover, it provides a direct proof of the Gross–Sobolev inequality with an 

optimal constant as 𝑝 ↓ 1. In fact, taking the logarithm of both sides of inequality (53) for 

any 𝑤 ∈ 𝐻1(ℝ𝑑), we get 

1

𝜃
log (

‖𝑤‖2𝑝
‖𝑤‖𝑝+1

) ≤
1

𝜃
log 𝐴 + log (

‖∇𝑤‖2
‖𝑤‖𝑝+1

). 

Using that 𝜃~
𝑑

4
(𝑝 − 1) as 𝑝 ↓ 1, we get then  

2

𝑑
∫(

𝑤

‖𝑤‖2
)
2

log (
𝑤

‖𝑤‖2
)

2

ℝ𝑑

𝑑𝑥 ≤ lim
𝑝↓1

1

𝜃
log𝐴 + log (

‖∇𝑤‖2
‖𝑤‖2

) . 

Since lim
𝑝↓1

𝐴 = 1, it is enough to compute lim
𝑝↓1

𝐴−1

𝜃
. For that purpose, we choose for 𝐴 the 

extremal function: 

𝑤𝑝(𝑥) = (1 +
𝑝 − 1

2
|𝑥|2)

− 1
𝑝−1

, 

which converges to 

𝑒−
|𝑥|2

2 = 𝑤1(𝑥)    𝑎𝑠 𝑝 ↓ 1. 
Thus 

lim
𝑝↓1

𝐴−1

𝜃
 = − log(

‖∇𝑤1‖2
‖𝑤1‖2

) +
4

𝑑
 lim
𝑝↓1

1

𝑝 − 1
(
‖𝑤𝑝‖2𝑝

‖𝑤𝑝‖𝑝+1

) = 𝐼 + 𝐼𝐼. 

Now,  

𝐼𝐼 =
2

𝑑
∫(

𝑤1
‖𝑤1‖2

)
2

log (
𝑤1

‖𝑤1‖2
)

2

ℝ𝑑

𝑑𝑥 + 𝐼𝐼𝐼 − 𝐼𝑉, 

where  
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𝐼𝐼𝐼 = lim
𝑝↓1

1

𝑝−1
 log (

‖𝑤𝑝‖2𝑝
‖𝑤1‖2𝑝

)     𝑎𝑛𝑑   𝐼𝑉 = lim
𝑝↓1

1

𝑝−1
 log (

‖𝑤𝑝‖𝑝+1
‖𝑤1‖𝑝+1

)  

A straightforward computation yields 

lim
𝑝↓1

1

𝑝 − 1
∫(𝑤𝑝

2𝑝

2

ℝ𝑑

−𝑤1
2𝑝
)𝑑𝑥 = lim

𝑝↓1

1

𝑝 − 1
∫(𝑤𝑝

𝑝+1

2

ℝ𝑑

−𝑤1
𝑝+1

)𝑑𝑥 =
1

4
∫𝑒−|𝑥|

2
|𝑥|4𝑑𝑥.

2

ℝ𝑑

 

It follows that  III−IV= 0, hence  

lim
𝑝↓1

𝐴−1

𝜃
 = −log (

‖∇𝑤1‖2
‖𝑤1‖2

) +
2

𝑑
∫

𝑤1
2

‖𝑤1‖2
2

2

ℝ𝑑

+ log(
𝑤1
2

‖𝑤1‖2
2)𝑑𝑥 

=
1

2
log (

2

𝜋𝑑𝑒
) ,                                                                                

using the facts 

∫𝑒−|𝑥|
2
𝑑𝑥 = 𝜋

𝑑
2

2

ℝ𝑑

    𝑎𝑛𝑑   ∫ 𝑒−|𝑥|
2
|𝑥|2𝑑𝑥 =

𝑑

2
𝜋
𝑑
2 .

2

ℝ𝑑

  

We have then reached the inequality 

∫
𝑤2

‖𝑤‖2
2

2

ℝ𝑑

log (
𝑤2

‖𝑤‖2
2)𝑑𝑥 ≤

𝑑

2
log (

2‖∇𝑤‖2
2

𝜋𝑑𝑒‖𝑤‖2
2),                                    (54) 

for any 𝑤 ∈ 𝐻1(ℝ𝑁) . But this inequality is precisely that obtained from (50), when 

optimizing in 𝜎 > 0. This inequality is the form of the logarithmic Sobolev inequality 

which is invariant under scaling [70], [56]. As a consequence, optimal functions for (54) 

are any of the Gaussians given by (51) with 𝜎 > 0, �̅� ∈ ℝ𝑑 . We may also notice that, as a 

subproduct of the above derivation of (54),this inequality holds with optimal constants. 

See (54). 

     As an application of these optimal inequalities, we will derive some new results for the 

asymptotic behavior of solutions to the Cauchy problem:  

𝑢𝑡 = Δ𝑢
𝑚,      𝑡 > 0,   𝑥 ∈ ℝ𝑑 ,                                                     (55) 

𝑢(0, 𝑥) = 𝑢0(𝑥) ≥ 0,      𝑢0 ∈ 𝐿
1(ℝ𝑑).                                      (56) 

When  𝑚 > 0, 𝑚 ≠ 1, this problem has been extensively studied. The case 𝑚 > 1 is the 

so-called porous medium equation. When 0 < 𝑚 < 1 it is usually referred to as the fast 

diffusion equation . Both for 𝑚 >1 and for 0 < 𝑚 < 1, this problem is known to be well 

posed in weak sense. Moreover, it preserves mass whenever  𝑚 > 𝑑−2

𝑑
 , in the sense that 

∫ 𝑢(𝑥, 𝑡)𝑑𝑥
2

ℝ𝑑
 is constant in 𝑡 > 0. When 𝑑−2

𝑑
< 𝑚 < 1, solutions are regular and positive 

for 𝑡 > 0 [50], but this is no longer true when 𝑚 is below this threshold: for instance, 

finite time vanishing may occur as simple examples show. For 𝑚 > 1, solutions are at 

least Hölder continuous. 

     The qualitative behavior of solutions to these problems has been the subject of a large 

number. Since mass is preserved, it is natural to ask whether a scaling brings the solution 

into a certain universal profile as time goes to infinity. This is the case and the role of the 

limiting profiles is played by an explicit family of self-similar solutions known as the 

Barenblatt–Prattle solutions [34], characterized by the fact that their initial data is a Dirac  

mass. These solutions remain invariant under the scaling  𝑢𝜆(𝑡, 𝑥) = 𝜆
𝑑𝛼𝑢(𝜆𝛼𝑥, 𝜆𝑡) with 
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𝛼 = (2 − 𝑑(1 −𝑚))−1 > 0 , which leaves the equation invariant. They are explicitly 

given by: 

𝑈(𝑡, 𝑥) = 𝑡−𝑑𝛼 ∙ 𝜐∞ (
𝑥

𝑡𝛼
)    𝑤𝑖𝑡ℎ 𝜐∞(𝑥) = (𝜎2 −

𝑚 − 1

2𝑚
|𝑥|2)

+

1
𝑚−1

       ,                   (57) 

provided  𝑚 > 𝑑−2

𝑑
,𝑚 ≠ 1. These solutions have a constant mass uniquely determined by 

the parameter  𝜎. 

     If 𝜎 is chosen so that the mass of 𝑈coincides with that of 𝑢0 , it is known that the 

asymptotic behavior ofuitself is well described by 𝑈 as 𝑡 → +∞. This phenomenon was 

first rigorously described by Friedman and Kamin of 𝑢0 ∈ 𝐿
1(ℝ𝑑) ∩ 𝐿2(ℝ𝑑), both in the 

cases 𝑚 > 1 and (𝑑 − 2)/𝑑 <  𝑚 < 1 [47]. These results have been later improved and 

extended by. Vázquez and Kamin [52], [53]. Also see [69]. Thus far it is well known that 

if  𝑢0 ∈ 𝐿
1(ℝ𝑑) and either  𝑚 > 1 or (𝑑 − 2)/𝑑 <  𝑚 < 1, then 

lim
𝑡→+∞

‖𝑢(𝑡,∙) − 𝑈(𝑡,∙)‖1 = 0,   lim
𝑡→+∞

𝑡𝑑𝛼‖𝑢(𝑡,∙) − 𝑈(𝑡,∙)‖
𝐿∞(ℝ

𝑑) = 0.                 (58) 

On the other hand, for the heat equation (𝑚 = 1), the following fact is classical: 

lim
𝑡→+∞

sup√𝑡 ⋅ ‖𝑢(𝑡,⋅) − 𝑈(𝑡,⋅)‖𝐿1(ℝ𝑑) < +∞, 

with  

𝑈(𝑡, 𝑥) = (2𝜋𝑡)−𝑑 2⁄ ‖𝑢0‖𝐿1(ℝ𝑑)𝑒
|𝑥|2

2𝑡 . 

Our next result extends the above asymptotic behavior to the range 𝑑−2
𝑑
≤ 𝑚 < 2 using an 

appropriate Lyapunov functional. 

    The main tool in deriving the above result turns out to be the optimal inequalities of 

Theorems (1.2.3) and (1.2.4), which are showing. We derive some further consequences of 

independent interest, including the key estimate for the show of Theorem (1.2.12), which 

we carry out.  

The question of optimal constants has been the subject. In the case of critical 

Sobolev injections and scaling invariant inequalities with weights (Hardy– Littlewood–

Sobolev and related inequalities), apart from [32], [24], one has to cite the remarkable 

explicit computation by Lieb [30] and various results based on concentration compactness 

methods [23], but the optimality of the constants in Gagliardo–Nirenberg inequalities (see 

[57] for an estimate) is a long standing question to which we partially answer here. The 

special case of Nash’s inequality [59] has been solved by Carlen and Loss in [43]. This 

case, as well as Moser’s inequality [58], does not enter in the subclass that we consider 

here, but it has the striking property that the minimizers are compactly supported, as in 

Theorem (1.2.2). For more details on the connection between Nash’s inequality and the 

logarithmic Sobolev inequality, see [37], we will establish the validity of Theorems (1.2.3) 

and (1.2.4), and derive some consequences that will be useful for later purposes. First, in 

order to treat the case  𝑝 > 1 of Theorem (1.2.3), we will establish Theorem (1.2.1) (which 

is actually equivalent).  Let us consider the functional: 

𝐺(𝑤) =
1

2
∫|∇𝑤|2
2

ℝ𝑑

𝑑𝑥 +
1

1 + 𝑝
∫|𝑤|1+𝑝
2

ℝ𝑑

𝑑𝑥. 

We define the minimization problem: 

𝐼∞ ≡ inf
𝑤∈𝑋

𝐺(𝑤) 

over the set  𝑋 of all nonnegative functions 𝑤 ∈ 𝒟𝑝(ℝ𝑑) that satisfy the constraint 
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1

2𝑝
∫|𝑤|2𝑝
2

ℝ𝑑

𝑑𝑥 = 𝐽∞,                                                           (59) 

where for convenience we make the choice: 

𝐽∞ ≔
𝜋𝑑 2⁄

2𝑝
(

2𝑝

𝑑 − 𝑝(−2)
)
𝑦+1 (𝑑 − 𝑦 − 1)𝑑

𝑝𝑑 2⁄
 
Γ(𝑦 + 1 − 𝑑 2)⁄

Γ(y + 1)
 

with 𝑦 = (𝑝 + 1)/(𝑝 − 1).The following result characterizes the minimizers of  𝐼∞. 

Theorem (1.2.1)[29]: Assume that 𝑝 > 1 and 𝑝 <
𝑑

𝑑−2
 if 𝑑 ≥ 3.Then  𝐼∞  is achieved . 

Moreover, for any minimize �̅� ∈ 𝑋, there exists �̅� ∈ ℝ𝑑  such that 

�̅�(𝑥) = (
𝑎

𝑏 + |𝑥 − �̅�|2
)

1
𝑝−1

    ∀𝑥 ∈ ℝ𝑑 , 

where  

𝑎 = 2
2𝑝 − 𝑑(𝑝 − 1)

(𝑝 − 1)2
    𝑎𝑛𝑑   𝑏 =

(2𝑝 − 𝑑(𝑝 − 1))
2

𝑝(𝑝 − 1)2
.                           (60) 

Proof: Using Sobolev’s and Hölder’s inequalities, it is immediately verified that  𝐼∞ > 0. 

For each  𝑅 > 0, we set 𝐵𝑅 to be the ball centered at the origin with radius 𝑅 and 𝑋𝑅 =
𝑋 ∩ 𝐻0

1(𝐵𝑅) (here we extend functions of  𝐻0
1 outside of  𝐵𝑅 by 0). Let us consider the 

family of  infima 

𝐼𝑅 = inf
𝑤∈𝑋𝑅

𝐺(𝑤); 

𝐼𝑅 is decreasing with 𝑅 . Besides, by density, lim
𝑅→+∞

𝐼𝑅 =  𝐼∞.  On the other hand, 𝐼𝑅  is 

achieved since 𝑝 <
𝑑

𝑑−2
 by some nonnegative, radially symmetric function 𝑤𝑅 defined on 

𝐵𝑅. The minimize 𝑤𝑅 satisfies on 𝐵𝑅 the equation: 

−Δ𝑤𝑅 +𝑤𝑅
𝑝
= 𝜇𝑅𝑤𝑅

2𝑝−1
, 

where 𝜇𝑅  is a Lagrange multiplier. Let us observe that 

∫|∇𝑤𝑅|
2

2

ℝ𝑑

𝑑𝑥 + ∫|𝑤𝑅|
1+𝑝

2

ℝ𝑑

𝑑𝑥 = 𝜇𝑅 ∫|𝑤𝑅|
2𝑝𝑑𝑥 = 2𝑝𝜇𝑅  𝐽∞

2

ℝ𝑑

. 

Thus 
2𝑝

𝑝 + 1
𝜇𝑅  𝐽∞ ≤ 𝐼𝑅 ≤ 𝑝𝜇𝑅  𝐽∞. 

so that 𝜇𝑅  is uniformly controlled from above and from below as 𝑅 → +∞, and converges 

up to the extraction of a subsequence to some limit 𝜇∞ > 0. Since 𝐼𝑅itself controls the 𝐻1 

norm of 𝑤𝑅over each fixed compact subset of 𝐵𝑅, from the equation satisfied by  𝑤𝑅 and 

standard elliptic estimates, we deduce a uniform control over compacts in 𝐶2,𝛼  norms. 

Passing to a convenient subsequence of 𝑅 → +∞, we may then assume that 𝑤𝑅  converges 

uniformly and in the 𝐶2 sense over compact sets to a radial function 𝑤. We may also 

assume that  𝑤𝑅 → 𝑤 weakly in 𝐿𝑝+1(ℝ𝑑) and  ∇ 𝑤𝑅 → ∇𝑤 weakly in 𝐿2(ℝ𝑑) . Besides, 

since 𝑤𝑅  reaches its maximum at the origin, let us also observe from the equation that we 

get the estimate 

𝐼 ≤  𝜇𝑅𝑤𝑅
𝑝−1(0). 

This relation implies that  𝑤𝑅does not trivialize in the limit. The function  𝑤  is thus a  

positive, radially decreasing solution of 
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−Δ𝑤 +𝑤𝑝 =  𝜇∞𝑤
2𝑝−1. 

in entire ℝ𝑑  ,and 𝑤(|𝑥|) → 0 as |𝑥| →  +∞. Now, since the convergence of  𝑤𝑅  to 𝑤  is 

uniform over compact sets, and 𝑤𝑅  is radially decreasing, we may choose a sufficiently 

large, but fixed number 𝜌such that on 𝜌 < |𝑥| < 𝑅,  𝑤𝑅 satisfies an inequality of the form 

−Δ𝑤 +
1

2
𝑤2 ≤ 0. 

On the other hand, the fact that 𝑝 < 𝑑

𝑑−2
 yields that the function 

 (𝑥)=
𝐶

|𝑥|2 (𝑝−1)⁄

 

satisfies for any sufficiently large choice of 𝐶, 

−Δ𝑤
1

2

𝑝
≥ 0. 

If we make this choice so that  𝑤𝑅(ρ) <  (ρ) for all large 𝑅, then by comparison we 

obtain that  

𝑤𝑅(𝑥) <
𝐶

|𝑥|2 (𝑝−1)⁄
,    |𝑥| > 𝜌. 

Now, if we notice that  2𝑝
𝑝−1

> 𝑑 ,then  

lim
𝑀→+∞

sup
𝑅>𝑀

∫ |𝑤𝑅|
2𝑝

2

𝑀<|𝑥|<𝑅

𝑑𝑥 = 0. 

As a consequence,𝑤𝑅 → 𝑤 strongly in 𝐿2𝑝(ℝ𝑑)  . Hence 𝑤 ∈ 𝑋 and since by weak 

convergence we have 𝐺(𝑤) ≤ 𝐼∞, the existence of a minimize is  guaranteed. 

     The Lagrange multiplier 𝜇∞ is uniquely determined by the system: 

{
 
 
 
 

 
 
 
 1

2
∫|∇𝑤|2 𝑑𝑥

1

𝑝 + 1
∫|𝑤|1+𝑝 𝑑𝑥 = 𝐼∞,

2

ℝ𝑑

2

ℝ𝑑

∫|∇𝑤|2 𝑑𝑥 + ∫|𝑤|1+𝑝 𝑑𝑥 = 2𝑝𝜇∞ 𝐽∞,

2

ℝ𝑑

2

ℝ𝑑

𝑑 − 2

2𝑑
∫|∇𝑤|2 𝑑𝑥

1

𝑝 + 1
∫|𝑤|1+𝑝 𝑑𝑥 = 𝜇∞ 𝐼∞,

2

ℝ𝑑

2

ℝ𝑑

 

which follows respectively from the definition of 𝐼∞, and as a consequence of the equation 

multiplied by𝑤and (𝑥 ⋅ ∇𝑤). The constantµ∞therefore depends only on  𝑚 , 𝜌 and 𝑑. 

     Finally, let us consider any minimize 𝑤  of 𝐺  over  𝑋 . It necessarily satisfies the 

equation 

−Δ𝑤 +𝑤𝑝 =  𝜇∞𝑤
2𝑝−1. 

Ground state solutions of this equation are known to be radial around some point [15]. 

With no loss of generality, we take it to be the origin. On the other hand, there is a unique 

choice of a positive paramenter 𝜆 such that  �̅�(𝑥) = 𝜆2 (𝑝−1)⁄ 𝑤(𝜆𝑥) satisfies 

−Δ�̅� + �̅�𝑝 = �̅�2𝑝−1. 
Invoking uniqueness results of positive solutions by Pucci and Serrin [63] and by Serrin 

and Tang for quasilinear elliptic equations [65], we deduce that the above equation has 

only one positive radial ground state. On the other hand, the function 
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�̅�(𝑥) = (
𝑎

𝑏 + |𝑥|2
)

1
𝑝−1

, 

where the values of 𝑎 and 𝑏 are precisely those given by (60), is an explicit solution, hence 

the unique one. Finally, the fact that 

∫𝑤2𝑝

2

ℝ𝑑

𝑑𝑥 = 𝐽∞ 

determines exactly what the value of 𝜆 is, in fact 𝜆 = 1. This ends to the show of  Theorem 

(1.2.1).  

     Next we will state and show the analogue of Theorem (1.2.1) for the case 0 < 𝑝 < 1. 

We consider now the functional: 

�̃�(𝑤) =
1

2
∫|∇𝑤|2
2

ℝ𝑑

𝑑𝑥 +
1

2𝑝
∫|𝑤|2𝑝
2

ℝ𝑑

𝑑𝑥. 

We shall denote by  

𝐼∞ ≡ inf
  𝑤∈�̃�

�̃� (𝑤) 

the problem of minimizing  �̃�  over the class  �̃�  of all nonnegative functions w𝑤 ∈
𝒟𝑝(ℝ𝑑) that satisfy the constraint 

1

𝑝+1
∫|𝑤|𝑝+1
2

ℝ𝑑

𝑑𝑥 = 𝐽∞, 

where 𝐽∞ is now the number 

𝐽∞ =
𝜋𝑑 2⁄

𝑝 + 1
(

2𝑝

𝑑 − 𝑝(𝑑 − 2)
)
1−𝑦 (𝑑 + 𝑦 − 1)𝑑

𝑝𝑑 2⁄

Γ(1 + y)

Γ(1 + y+d 2⁄ )
 

with  𝑦 = 𝑝+1

1−𝑝
. Then we have the following result 

Theorem(1.2.2)[29]: Assume that 0 < 𝑝 < 1. Then   𝐼∞ is achieved by the radially 

symmetric function 

�̅�(𝑥) = 𝑎
− 

1
1−𝑝(𝑏 − |𝑥|2)+

1
1−𝑝, 

where 𝑎  and 𝑏  are given by(60)as in Theorem (1.2.1). Moreover, if  𝑝 > 1

2
 , for any 

minimize 𝑤, there exists  �̃� ∈ ℝ𝑑 such that 𝑤(𝑥) =  �̃�(𝑥 − �̃� ), ∀𝑥 ∈ ℝ𝑑. 

Proof: The proof goes similarly to that of Theorem (1.2.1). We consider the minimization 

problem on �̃�𝑅 = �̃� ∩ 𝐻1
0 (𝐵𝑅). By compactness, the minimizer is achieved. Moreover, 

using decreasing rearrangements, one finds that this minimizer 𝑤𝑅can be chosen radially 

symmetric and decreasing. It satisfies the equation 

−Δ𝑤𝑅 +𝑤𝑅
2𝑝−1

= 𝜇𝑅𝑤
𝑝, 

within the ball where 𝑤𝑅  is strictly positive (we need to be careful with the fact that 2𝑝 −
1  may be a negative quantity). Exactly the same analysis as above, yields that  𝜇𝑅  is 

uniformly controlled and approaches some positive mumber  𝜇∞ . Moser’s iteration 

provides us with a uniform 𝐿∞ bound derived from the 𝐻1 bound. We should observe at 

this point that the O.D.E. satisfied by 𝑤𝑅  easily gives by itself an upper local estimate 

𝐶(𝑅0
2 − |𝑥|2)+

1 (1−𝑝)⁄
 for some 𝐶 > 0 in case the support corresponds to |𝑥| < 𝑅0 ≤ 𝑅.If 

this is the case for some 𝑅0 > 0, then the minimizer will be unchanged for any 𝑅 > 𝑅0  

and in fact will be the solution of the minimization problem in ℝ𝑑. On the other hand, a 
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straightforward comparison with barriers of that type [44] actually yields that at some 

point the minimizer does get compactly supported in side 𝐵𝑅for all 𝑅 sufficiently large. 

This minimizer is thus a ground state radial solution of 

−Δ𝑤 +𝑤2𝑝−1 =  𝜇∞𝑤
𝑝 

and for the same reason as in the show of Theorem (1.2.1),  𝜇∞ is unique. According to the  

uniqueness results of Pucci and Serrin [63] and Serrin and Tang [65] again, such a radial 

minimizer is unique. A scaling argument (with �̅�(𝑥) = 𝜆1 (𝑝−1)⁄ w(λx)) similar to the one 

employed in the show of Theorem (1.2.1) gives that  𝜇∞ = 1 and 𝑤 is then nothing but the  

explicit solution given in the statement of  Theorem (1.2.2). 

     In case that 2𝑝 − 1 > 0, it is known that all ground states are compactly supported and 

radially symmetric on each component of their supports [44]. We obtain then a complete 

classification of the minimizers as in Theorem (1.2.1). When  2𝑝 − 1 < 0, the question 

arises of whether we do get out of the Euler–Lagrange equation a nice ground state 

solution, and whether such a solution is symmetric. This does not seem to be known. 

    We are now in a position to proceed with the proofs of Theorems (1.2.3) and (1.2.4). 

Theorem (1.2.3)[29]: Let 𝑑 ≥ 2. If  𝑝 > 1, and 𝑝 ≤ 𝑑

𝑑−2
 for 𝑑 ≥ 3, then for any function 

𝑤 ∈ 𝒟𝑝(ℝ𝑑) the following inequality holds: 

Proof :  Let  𝑤 ∈ 𝒟𝑝 satisfy the constraint 

𝐽[𝑤] ≔
1

2𝑝
∫|𝑤(𝑥)|2𝑝
2

ℝ𝑑

𝑑𝑥 = 𝐽∞, 

with  𝐽∞ given in (59). For 𝜆 > 0, we consider the scaled function 

𝑤𝜆(𝑥) = 𝜆
𝑑
2𝑝𝑤(𝜆𝑥), 

which still satisfies 𝐽[𝑤𝜆] = 𝐽∞. Then for each 𝜆 > 0, 

𝐺(𝑤𝜆) =
1

2
∫|∇𝑤|2
2

ℝ𝑑

𝑑𝑥 ∙ 𝜆𝑑 𝑝−(𝑑−2)⁄ +
1

1+𝑝
∫|𝑤|1+𝑝
2

ℝ𝑑

𝑑𝑥 ⋅ 𝜆−𝑑(𝑝−1) 2𝑝⁄ ≥ 𝐼∞. 

Minimizing the left hand side of the above expression in 𝜆 > 0 yields 

𝐶∗[‖∇𝑤‖2
𝜃 ‖𝑤‖𝑝+1

1−𝜃]
𝛿
≥ 𝐼∞, 

where  

𝐶∗ =
1

2
𝜆∗
𝑑 𝑝−(𝑑−2)⁄

+
1

𝑝+1
𝜆∗
−𝑑(𝑝−1) 2𝑝⁄

, 𝜆∗ =
𝑑

𝑑−𝑝(𝑑−2)
 
𝑝−1

𝑝+1
, 

𝛿 = 2𝑝
𝑑+2−(𝑑−2)𝑝

4𝑝−𝑑(𝑝−1)
   𝑎𝑛𝑑   𝜃 =

𝑑(𝑝−1)

𝑝(𝑑+2−𝑝(𝑑−2))
. 

Since ‖𝑤‖2𝑝 = 2𝑝𝐽∞ , we may write:  

‖∇𝑤‖2
𝜃 ‖𝑤‖𝑝+1

1−𝜃 ≥ (
𝐼∞
𝐶∗
)
1 𝛿⁄ ‖𝑤‖2𝑝

(2𝑝𝐽∞)
1 (2𝑝)⁄

. 

Theorem (1.2.4)[29]: Let 𝑑 ≥ 2 and assume that 0 < 𝑝 < 1. Then for any function 𝑤 ∈
𝒟𝑝(ℝ𝑑) the following inequality holds: 

Proof:  It is very similar to the proof of Theorem (1.2.3). For any 𝑤 ∈ 𝒟𝑝 satisfying the 

constraint 

𝐽[𝑤] ≔
1

𝑝 + 1
∫|𝑤(𝑥)|𝑝+1
2

ℝ𝑑

𝑑𝑥 = 𝐽∞ 
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and for any 𝜆 > 0, we consider the scaling 𝑤𝜆(𝑥) = 𝜆
𝑑 (𝑝+1)⁄ 𝑤(𝜆𝑥) , which also satisfies 

𝐽[𝑤𝜆] = 𝐽∞. Using now that �̃�[𝑤𝜆] ≥ 𝐽∞ , we find, after optimizating  on 𝜆 > 0, 

�̃�∗[‖∇𝑤‖2
𝜃 ‖𝑤‖2𝑝

1−𝜃]
�̃�
≥ 𝐼∞, 

where  

�̃� =
1

2
𝜆∗

2𝑑
𝑝+1

−(𝑑−2)

+
1

2𝑝
𝜆∗
−𝑑 

1−𝑝
𝑝+1,    𝜆∗ =

𝑝−1
𝑝
 𝑑

𝑑+2−𝑝(𝑑−2)
 , 

𝛿 =
(1 + 𝑝)(𝑑 − (𝑑 − 2)𝑝)

𝑑 + 1 − 𝑝(𝑑 − 1)
    𝑎𝑛𝑑   𝜃 =

𝑑(1 − 𝑝)

(1 + 𝑝(𝑑 − (𝑑 − 2)𝑝)
. 

Since ‖𝑤‖1+𝑝 = (𝑝 + 1)𝐽∞, we may write: 

‖∇𝑤‖2
𝜃 ‖𝑤‖2𝑝

1−𝜃 ≥ (
𝐼∞

�̃�∗
)

1 �̃�⁄
‖𝑤‖𝑝+1

((𝑝+1)𝐽∞)
1 (𝑝+1)⁄

. 

By homogeneity and invariance under scaling, the above inequality is true for any 𝑤 ∈
𝒟𝑝 , with optimal constant 

𝐴 = ((𝑝+1)𝐽∞)
1 (𝑝+1)⁄ (

�̃�∗
𝐼∞
)

1 �̃�⁄

. 

See [33], [35], [36], [37], [38], [15], [65] [70]. 

Proposition (1.2.5)[29]: Let 𝑑 ≥ 2, 𝜏 > 0 and 𝑝 > 0 be such that 𝑝 ≠ 1 , and  𝑝 ≤ 𝑑

𝑑−2
 if 

𝑑 ≥ 3 .Then, for any function 𝑤 ∈ 𝒟𝑝(ℝ𝑑) , the following inequality holds: 
1

2
𝜏
𝑑
𝑝
−𝑑+2‖∇𝑤‖2

2 +
𝜀

𝑝 + 1
𝜏
−𝑑

𝑝−1
2𝑝 ‖𝑤‖1+𝑝

1+𝑝
−
𝜀

2𝑝
𝐾‖∇𝑤‖2𝑝

𝛿 ≥ 0,             (61) 

where 𝜀 is the sign of (𝑝 − 1), 

𝛿 = 2𝑝
𝑑+2−𝑝(𝑑−2)

4𝑝−𝑑(𝑝−1)
 

and 𝐾 > 0 is an optimal constant. For  𝑝 > 1

2
 , 𝑝 ≠ 1, optimal functions for inequality(61) 

are all given by the family of functions 

𝑥 ↦ 𝜏
− 𝑑
2𝑝 �̅� (

𝑥 − �̅�

𝜏
). 

For 0 < 𝑝 ≤ 1

2
 

, inequality(61)is also achieved by the same family of functions. Here 

�̅�(𝑥) = (
𝑎

𝑏 + 𝜀|𝑥|2
)
+

1
𝑝−1

 

with 𝑎  and 𝑏  given by(60) (in both cases: 𝑝 > 1 and 𝑝 < 1) and 𝐾  is explicitely given 

by(62) (see below). 

Proof: Using the scaling 

𝑤 ↦ 𝜏
− 𝑑
2𝑝 𝑤 (

∙

𝜏
), 

it is clear that (61) holds for any 𝜏 > 0 if and only if it holds at least for one. For 𝑝 > 1, 

we take 𝜏 = 1 and (61) is a direct consequence of the proof of Theorem (1.2.3), with 𝐾 =
𝐶∗ 𝐴

−𝛿 . The case 𝑝 < 1  is slightly more delicate and we proceed as in the proof of 

Theorem (1.2.2).  Let 

𝑤𝜆(𝑥) = 𝜏
− 𝑑
𝑝+1𝑤(𝜆𝑥). 

An optimization on 𝜆 > 0 of the quantity 
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1

2
𝜏
𝑑
𝑝
−𝑑+2‖∇𝑤𝜆‖2

2 +
𝐾

2𝑝
‖𝑤𝜆‖2𝑝

𝛿  

   =
1

2
‖∇𝑤‖2

2 ∙ 𝜏
𝑑
𝑝
−𝑑+2 

𝜆 
2𝑑
𝑝+1

−𝑑+2
+
𝐾

2𝑝
‖𝑤𝜆‖2𝑝

𝛿 ⋅ 𝜆 
𝑑
𝑝−1
𝑝+1

 
𝛿
2𝑝
 
 

shows that it is bounded from below by 

𝐾
1
2
 
4𝑝−𝑑(𝑝−1)
𝑑−𝑝(𝑑−2) (𝐶‖∇𝑤‖2

𝜃 ‖𝑤𝜆‖2𝑝
1−𝜃)

𝑝+1
⋅ 𝜏 

−𝑑
𝑝−1
2𝑝

  
 

for some explicit constant 𝐶 > 0, which using Theorem (1.2.3) again allows to identify 𝐾. 

Remark (1.2.6)[29]: The function �̅� = �̅�𝑎,𝑏 is a (the unique up to a translation if 𝑝 > 1

2
 ) 

nonnegative radial solution of −Δ𝑤 + 𝜀 𝑤𝑝 = 𝜀 𝑤2𝑝−1(on its support if  𝑝 ≤ 1

2
 ), which 

allows us to compute 𝐾 as 

  𝐾 =
1

2𝑝
‖�̅�‖2𝑝

2𝑝−𝛿
 

  =

{
 
 
 

 
 
 1

2𝑝
𝑎

4𝑝
4𝑝−𝑑(𝑝−1) 𝑏−1 (𝜋𝑑 2⁄

Γ ( 2𝑝𝑝−1−
𝑑
2)

Γ ( 2pp−1)
)

2(𝑝−1)
4𝑝−𝑑(𝑝−1)

     𝑖𝑓 𝑝 > 1,

1

2𝑝
𝑎

4𝑝
4𝑝−𝑑(𝑝−1) 𝑏−1 (𝜋𝑑 2⁄

Γ ( 2𝑝𝑝−1−
𝑑
2)

Γ ( 2pp−1)
)

2(𝑝−1)
4𝑝−𝑑(𝑝−1)

     𝑖𝑓 𝑝 > 1,

                   (62) 

As noted in [35], the Gaussian weighted forms of the Poincaré inequality and 

logarithmic Sobolev inequalities may take very simple forms. If we denote by 𝑑µ the 

measure (2𝜋)−𝑑 2⁄ 𝑒|𝑥|
2 2⁄ 𝑑𝑥 , these inequalities are respectively given by: 

∫|𝑓|2
2

ℝ𝑑

𝑑𝜇 − ( ∫|𝑓|2
2

ℝ𝑑

𝑑𝜇)

2

≤ ∫|∇𝑓|2
2

ℝ𝑑

𝑑𝜇   𝑎𝑛𝑑 

∫|𝑓|2
2

ℝ𝑑

log(
|𝑓|2

∫ |𝑓|2
2

ℝ𝑑
𝑑𝜇
)𝑑𝜇−≤ 2 ∫|∇𝑓|2

2

ℝ𝑑

𝑑𝜇 

and a whole family interpolates between both, for 1 ≤ 𝑝 < 2: 

∫|𝑓|2
2

ℝ𝑑

𝑑𝜇 − ( ∫|𝑓|𝑝
2

ℝ𝑑

𝑑𝜇)

2 𝑝⁄

≤ (2 − 𝑝) ∫|∇𝑓|2
2

ℝ𝑑

𝑑𝜇    

(the logarithmic Sobolev inequality appears as the derivative at 𝑝 = 2 ). However 

thisfamily is not optimal (except for 𝑝 = 1 or 𝑝 = 2). Here we will establish a family of 

optimal inequalities, to the price of weights that are slightly more complicated. 

Corollary (1.2.7)[29]: Let 𝑝 > 1 and consider 

𝑤(𝑥) = (
𝑎

𝑏 + |𝑥|2
)

1
𝑝−1

 

with 𝑎 and 𝑏 given by (60). Then for any measurable function 𝑓, 

𝐾

𝑝
( ∫|𝑓|2𝑝

2

ℝ𝑑

𝑤2𝑝𝑑𝑥)

𝛿
2𝑝

− ∫|𝑓|2
2

ℝ𝑑

𝑤2𝑝𝑑𝑥 − ∫(
2

𝑝+1
|𝑓|𝑝+1−|𝑓|2)

2

ℝ𝑑

𝑤𝑝+1𝑑𝑥 ≤ ∫|∇𝑓|2
2

ℝ𝑑

𝑤2𝑑𝑥 



32 

provided all above integrals are well defined. Here 𝐾 is an optimal constant, given by (62), 

and 

𝛿 = 2𝑝
𝑑 + 2 − (𝑑 − 2)𝑝

4𝑝 − 𝑑(𝑝 − 1)
. 

A similar result holds for  𝑝 < 1. 

Proof: It is a straightforward consequence of inequality (61) with 𝜏 = 1 applied to ( 𝑓𝑤 ) 
and of: 

∫|∇(𝑓𝑤)|2
2

ℝ𝑑

𝑑𝑥 = ∫|∇𝑓|2
2

ℝ𝑑

𝑤2𝑑𝑥 − ∫𝑓2
2

ℝ𝑑

wΔw 𝑑𝑥  

together  with Δ𝑤 = 𝑤𝑝 −𝑤2𝑝−1 

     As another straightforward consequence of Proposition (1.2.5), inequality (61) can be 

rewritten for 

𝜐 = 𝑤2𝑝,         𝑚 =
𝑝+1

2𝑝
     𝑎𝑛𝑑 

𝜏
− 1
2𝑝
(4𝑝−𝑑(𝑝−1)

=
𝑑 − 𝑝(𝑑 − 2)

|𝑝2 − 1|
  (𝑓𝑜𝑟  𝑝 <

𝑑

𝑑 − 2
) 

Corollary (1.2.8)[29]:  Let d  ≥ 2 , 𝑚 ≥ 𝑑

𝑑−1
(𝑚 > 1

2
 if 𝑑 = 2)  , 𝑚 ≠ 1  and 𝜐  be a 

nonnegative function such that ∇𝑣𝑚−1 2⁄ ∈ 𝐿2(ℝ𝑑), 𝑥 ↦ |𝑥|2𝜐(𝑥) ∈ 𝐿1(ℝ𝑑) and 

{
𝜐 ∈ 𝐿1(ℝ𝑑)      𝑖𝑓 𝑚 > 1,

𝜐𝑚 ∈ 𝐿1(ℝ𝑑)     𝑖𝑓 𝑚 < 1.
     

Then  

0 ≤ 𝐿[𝜐] − 𝐿[𝜐∞] ≤
1

2
∫𝜐

2

ℝ𝑑

|𝑥 +
𝑚

𝑚−1
∇(𝜐𝑚−1)|

2
𝑑𝑥,                              (63) 

𝑤ℎ𝑒𝑟𝑒  𝐿[𝜐] = ∫(𝜐
|𝑥|2

2
−

1

1 −𝑚
𝜐𝑚)

2

ℝ𝑑

𝑑𝑥 

and  

𝜐𝑚(𝑥) = (𝜎
2 +

1 −𝑚

2𝑚
|𝑥|2)

+

1
𝑚−1

 

with 𝜎 defined in order that 𝑀:=  ‖𝜐‖1 = ‖𝜐∞‖1. This inequality is optimal and becomes 

an equality if and only if  𝜐 = 𝜐∞. 
     Note that by convexity,  𝜐∞.  is the unique minimizer of 𝐿[𝜐]  under the constraint 

‖𝜐‖1 = 𝑀. The constant 𝜎 arising in the expression of 𝜐∞ is explicit: 

𝜎
2−𝑑(1−𝑚)

1−𝑚
=

{
 
 

 
 1

𝑀
(
2𝑚

1 −𝑚
𝜋)

𝑑
2 Γ( 1

1−m
− d

2)

Γ( 1
1−𝑚)

    𝑖𝑓 𝑚 < 1,

1

𝑀
(
2𝑚

1 −𝑚
𝜋)

𝑑
2 Γ( m

m−1)

Γ( 𝑚
𝑚−1

+ 𝑑
2)
    𝑖𝑓 𝑚 > 1.

 

In what follows, we denote by 𝑢(𝑥, 𝑡) the solution of the Cauchy problem (55)–(56). 

We will also denote henceforth 
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𝑀 = ∫𝑢0

2

ℝ𝑑

(𝑥)𝑑𝑥. 

For  𝑚 ≠ 1, let us consider the solution of   �̇� = 𝑅(1−𝑚)𝑑−1, 𝑅(0) = 1: 

𝑅(𝑡) = ((1 + (2 − 𝑑(1 −𝑚)𝑡)
1

2−𝑑(1−𝑚),                                         (64) 

and let 𝜏(𝑡) = log𝑅(𝑡). The function 𝜐(𝑥, 𝜏) defined from 𝑢 by the relation 

𝑢(𝑡, 𝑥) = 𝑅(𝑡)−𝑑 ⋅ 𝜐 (𝜏(𝑡),
𝑥

𝑅(𝑡)
)                                                       (65) 

satisfies the equation 

𝜐𝜏 = ∆(𝜐
𝑚) + ∇ ⋅ (𝑥𝜐)    𝜏 > 0,   𝑥 ∈ ℝ𝑑                                       (66) 

which for 𝑚 = 1 corresponds to the linear Fokker–Planck equation. Let us observe that 

𝑅(𝑡) → +∞ whenever (𝑑 − 2)/𝑑 <  𝑚, which covers our entire range of interest. In (65), 

the 𝐿1 norm is preserved: 

‖𝑢(𝑡,⋅)‖𝐿1(ℝ𝑑) = ‖𝜐(𝜏(𝑡),⋅)‖𝐿1(ℝ𝑑). 

Since 𝑅(0) = 1and 𝜏(0) = 0, the initial data is preserved: 

𝜐(𝜏 = 0, 𝑥) = 𝑢0(𝑥)      ∀𝑥 ∈ ℝ
𝑑 . 

With the same notations as 

𝑡 → +∞,       𝑅(𝑡)~𝑡𝛼,         𝑢∞(𝑡,⋅)~𝑈(𝑡,⋅) 
and, according to (58), the known fact u(𝑡,·) ∼ 𝑈(𝑡,·)  when 𝑑−2 

𝑑
< 𝑚 < 1 or 𝑚 > 1 

readsin these new scales just as: 

𝜐(𝜏, 𝑥) → 𝜐∞(𝑥)       𝑓𝑜𝑟  𝜏 → +∞, 
both uniformly and in the 𝐿1 sense, with the notations of Corollary (1.2.8).  It turns out that 

𝜐 ↦ 𝐿[𝜐] = ∫(𝜐
|𝑥|2

2
−

1

1 −𝑚
𝜐𝑚)

2

ℝ𝑑

𝑑𝑥 

defines a Lyapunov functional for Eq. (65) as we shall see below. The proof of Theorem 

(1.2.12) will be a consequence of Propositions (1.2.9) and (1.2.11) below, and of Corollary 

(1.2.8). 

Proposition (1.2.9)[29]: Assume that 𝑚 > 𝑑+2

2
 and that 𝑢0 is a nonnegative function such 

that (1 + |𝑥|2)𝑢0 and 𝑢0
𝑚 belong to 𝐿1(ℝ𝑑). Let 𝜐 be the solutions of Eq.(66)with initial 

data 𝑢0. Then, with the above notations, 

𝑑

𝑑𝑡
𝐿[𝜐(𝜏,·)] = ∫𝜐(𝜏,·) |𝑥 +

𝑚

𝑚 − 1
∇𝜐(𝜏,·)𝑚−1|

2
2

ℝ𝑑

𝑑𝑥,                       (67) 

lim
𝜏→+∞

𝐿[𝜐(𝜏,·)] = 𝐿[𝜐∞],                                                          (68) 

and if  𝑑−1
𝑑
 ≤ 𝑚 < 1 for d ≥ 3, 1

2
< 𝑚 < 1 if 𝑑 = 2, or 𝑚 > 1,then 

0 ≤ 𝐿[𝜐(𝜏,·)] − 𝐿[𝜐∞] ≤ 𝐿[𝑢∞] − 𝐿[𝜐∞] · 𝑒
−2𝜏     ∀𝜏 > 0.                       (69) 

Proof: Let us assume first that the initial data 𝑢0(𝑥)is smooth and compactly supported in 

say the ball 𝐵(0, 𝜌) for some  𝜌 > 0. Assume that 
𝑑

𝑑 + 2
< 𝑚 < 1. 

The solution is smooth thanks to the results in [50]. Let us consider the function: 

𝑤𝜌(𝑥) = (
1 − 𝑚

2𝑚
)
− 1
1−𝑚

(|𝑥|2 − 𝜌2)−
1

1−𝑚 
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It is easily checked that 𝑤𝜌(𝑥) is a steady state of (66), defined on the region  |𝑥| > 𝜌. 

Since this function takes infinite values on 𝜕𝐵(0, 𝜌), the comparison principle implies that 

𝜐(𝜏, 𝑥) ≤ 𝑤𝜌(𝑥) for all 𝜏 > 0. Hence 

𝜐(𝑥, 𝜏) = 𝑂(|𝑥|−2 (1−𝑚)⁄ ) 

uniformly in 𝜏 > 0. Let us fix a number 𝑅 > 0. Integrations by parts then give 

𝑑

𝑑𝜏
∫ 𝜐

2

𝐵(0,𝑅)

|𝑥|2

2
𝑑𝑥                                                                             

= ∫
|𝑥|2

2
∇

2

𝐵(0,𝑅)

· (∇𝜐𝑚 + 𝑥𝜐)𝑑𝑥                                           

= − ∫ 𝑥

2

𝐵(0,𝑅)

· (∇𝜐𝑚 + 𝑥𝜐)𝑑𝑥 +
𝑅

2
∫ (∇𝜐𝑚 + 𝑥𝜐) · 𝑥�̃�𝑥

2

𝜕𝐵(0,𝑅)

          

= 𝑑 ∫ 𝜐𝑚
2

𝐵(0,𝑅)

𝑑𝑥 − ∫ |𝑥|2
2

𝐵(0,𝑅)

𝜐𝑑𝑥 +
𝑅

2
∫ (∇𝜐𝑚 + 𝑥𝜐) · 𝑥�̃�𝑥

2

𝜕𝐵(0,𝑅)

  

where  �̃�𝑥 is the measure induced by Lebesgue’s measure on 𝜕𝐵(0, 𝑅). Integrating with 

respect to 𝜏,we get: 

∫ (𝜐(𝑥, 𝜏) − 𝑢0(𝑥))

2

𝐵(0,𝑅)

|𝑥|2

2
𝑑                                                                          

= 𝑑∫ ∫ 𝜐𝑚
2

𝐵(0,𝑅)

𝜏

0

(𝑥, 𝑠)𝑑𝑥𝑑𝑠 +
𝑅

2
∫ ∫ (∇𝜐𝑚(𝑥, 𝑠) · 𝑥 + 𝜐(𝑥, 𝑠)𝑅2)

2

𝜕𝐵(0,𝑅)

𝜏

0

�̃�𝑥. 

Now, for fixed 𝜏, the rate of decay of 𝜐(𝑥, 𝜏) implies that, as 𝑅 → +∞, 

𝑅3∫ ∫ 𝜐

2

𝜕𝐵(0,𝑅)

𝜏

0

(𝑥, 𝑠)�̃�𝑥𝑑𝑠 = 𝑂(𝑅𝑑+2−2 (1−𝑚)⁄ ). 

On the other hand, 

𝑅1−𝑑 ∫ ∫𝜐𝑚
𝜏

0

2

𝜕𝐵(0,𝑅)

(𝑥, 𝑠)�̃�𝑥𝑑𝑠 = 𝑂(𝑅−2𝑚 (1−𝑚)⁄ )   𝑎𝑠 𝑅 → +∞, 

which means that 

∫ ∫𝜐𝑚
𝜏

0

2

𝜕𝐵(0,1)

(𝑅𝑧, 𝑠)�̃�𝑥𝑑𝑠 = 𝑂(𝑅
−2𝑚 (1−𝑚)⁄ ). 

Hence along a sequence 𝑅𝑛 → +∞, weget: 

𝜕

𝜕𝑅
∫ ∫𝜐𝑚

𝜏

0

2

𝜕𝐵(0,1)

(𝑅𝑧, 𝑠)�̃�𝑥𝑑𝑠|2𝑅=𝑅𝑛 = 𝑂 (𝑅𝑛
−2𝑚 (1−𝑚)−1⁄ 2

). 

Equivalently 
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𝑅𝑛
−𝑑 ∫ ∫∇𝜐𝑚

𝜏

0

2

𝜕𝐵(0,𝑅𝑛)

(𝑥, 𝑠) · 𝑥 �̃�𝑥𝑑𝑠 = 𝑂 (𝑅𝑛
−2𝑚 (1−𝑚)−1⁄ 2

), 

hence  

𝑅𝑛∫ ∫ ∇𝜐𝑚(𝑥, 𝑠) · 𝑥 �̃�𝑥𝑑𝑠

2

𝜕𝐵(0,𝑅𝑛)

𝜏

0

= 𝑂 (𝑅𝑛
𝑑−2𝑚 (1−𝑚)⁄ 2

). 

The latter term goes to zero as 𝑅𝑛 → +∞ since 𝑚 > 𝑑

𝑑+2
 . We conclude then that  

∫(𝜐(𝑥, 𝜏) − 𝑢0(𝑥))

2

ℝ𝑑

|𝑥|2

2
𝑑 = 𝑑∫ ∫𝜐𝑚(𝑥, 𝑠) 𝑑𝑥𝑑𝑠

2

ℝ𝑑

𝜏

0

. 

Now, a similar argument leads us to 

1

1−𝑚
∫(𝜐𝑚(𝑥, 𝜏) − 𝜐0

𝑚(𝑥))

2

ℝ𝑑

𝑑𝑥∫ ∫(
4𝑚2

(2𝑚 − 1)2
|∇(𝜐𝑚−2 2⁄ )|

2
− 𝑑𝜐𝑚)

2

ℝ𝑑

𝜏

0

𝑑𝑥𝑑𝑠 

We conclude that 𝐿[𝜐(𝜏,·)] is well defined and decreasing according to (67). 

    In the case 𝑚 > 1, the solution has compact support for any 𝜏 > 0 and the computation 

leading to Eq. (67) can be carried out directly. Finally, the requirement that 𝑢0  is smooth 

and compactly supported can be removed by a density argument. The proof of (67) is 

complete. 

    If 𝑑−1
𝑑
≤ 𝑚 < 1 for 𝑑 ≥ 3, 1

2
< 𝑚 < 1 if 𝑑 = 2 or 𝑚 > 1, combining relation (67) with 

estimate (63) of  Corollary (1.2.8), we get the differential inequality: 
𝑑

𝑑𝜏
𝐿[𝜐(𝜏,·)] ≤ −2(𝐿[𝜐(𝜏,·)] − 𝐿[𝜐∞]). 

Since  𝐿[𝜐∞] minimizes 𝐿[𝑤] on 

{𝑤 ∈ 𝐿+
1 (ℝ𝑑): ‖𝑤‖1 = ‖𝑢0‖1}, 

(69) immediately follows. In that case, (68) is trivial. 

    Let us establish (68) when 𝑑

𝑑+2
< 𝑚 <

𝑑−1

𝑑
1  . We have proven that  𝐿  defines a 

Lyapunov functional for Eq. (65). The mass of 𝜐 is finite and preserved in time, 𝐿[𝜐(·, 𝜏)] 
is decreasing and therefore uniformly bounded from above in 𝜏. The quantities 

∫𝜐(𝜏, 𝑥)

2

ℝ𝑑

|𝑥|2𝑑𝑥     𝑎𝑛𝑑 ∫ 𝜐𝑚(𝜏, 𝑥)

2

ℝ𝑑

𝑑𝑥        

are uniformly bounded from above in 𝜏 , because of Hölder’s inequality applied 

to 𝜐𝑚𝜐∞
−𝑚(1−𝑚)

· 𝜐∞
𝑚(1−𝑚)

: 

∫𝜐𝑚
2

𝜔

𝑑𝑥 ≤ [∫𝜐 (𝜎2 +
1 −𝑚

2𝑚
|𝑥|2)

2

𝜔

𝑑𝑥]

𝑚

· [∫ 𝜐∞
𝑚

2

𝜔

𝑑𝑥]

𝑚−1

.                 (70) 

for any domain 𝜔 ⊂ ℝ𝑑 , and because of the definition of  𝐿[𝜐]: 

∫𝜐

2

ℝ𝑑

|𝑥|2

2
𝑑𝑥 −

1

1 −𝑚
[ ∫𝜐 (𝜎2 +

1 −𝑚

2𝑚
|𝑥|2)

2

ℝ𝑑

𝑑𝑥]

𝑚

≤ 𝐿[𝜐]                      (71) 

(with here 𝜔 = ℝ𝑑), thus giving estimates on 
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∫𝜐

2

ℝ𝑑

|𝑥|2

2
𝑑𝑥   𝑎𝑛𝑑  ‖𝜐𝑚‖𝐿1(ℝ𝑑) 

which depend only on 𝑚, 𝑀 and 𝐿[𝜐]. Next we claim that 

∫𝜐𝑚
2

ℝ𝑑

𝑑𝑥 → ∫𝜐∞
𝑚

2

ℝ𝑑

𝑑𝑥   𝑎𝑠 𝜏 → +∞.   

However, we already know that 𝜐𝑚(𝜏,·) → 𝜐∞
𝑚  in  𝐿1 𝑚⁄ (ℝ𝑑). To establish the result it 

suffices to show that 

∫ 𝜐𝑚
2

|𝑥|>𝑅

(𝜏, 𝑥)𝑑𝑥 → 0    𝑎𝑠 𝑅 → +∞, 

uniformly in 𝜏, which is easily achieved by applying (70) with 

𝜔 = {𝑥 ∈ ℝ𝑑: |𝑥| > 𝑅}. 
The latter integral is finite for 𝑚 > 𝑑

𝑑+1
 and goes to 0 as  𝑅 → +∞. Using the decay term 

∫𝜐 |𝑥 +
𝑚

𝑚 − 1
∇𝜐𝑚−1|

2
2

ℝ𝑑

𝑑𝑥                                                                     

=
4𝑚

(2𝑚 − 1)2
∫|∇𝜐𝑚−1 2⁄ |

2
𝑑𝑥

2

ℝ𝑑

+ ∫𝜐|𝑥|2
2

ℝ𝑑

𝑑𝑥      − 2𝑑 ∫𝜐𝑚
2

ℝ𝑑

𝑑𝑥,     

it is clear that at least for a subsequence 𝜏𝑛 → +∞, 

∫|𝑥|2
2

ℝ𝑑

𝜐(𝑥, 𝜏𝑛)𝑑𝑥 → ∫|𝑥|2
2

ℝ𝑑

𝜐∞(𝑥)𝑑𝑥, 

which proves (68). 

    An estimate of the difference between 𝜐 and 𝜐∞ in terms of 𝐿 is given by the following 

result. 

Lemma (1.2.10)[29]: Assume that Ω is a domain in ℝ𝑑 and that 𝑠 is a convex nonnegative 

function on ℝ+ such that 𝑠(1) = 0 and �́�(1) = 0 (.If 𝜇 is a nonnegative measure on Ω and 

if 𝑓 and 𝑔 are nonnegative measurable functions on Ω with respect to 𝜇 ,then 

∫𝑠 (
𝑓

𝑔
)

2

Ω

𝑔𝑑𝜇 ≥
𝐾

max {∫ 𝑓𝑑𝜇
2

Ω
, ∫ 𝑔𝑑𝜇
2

Ω
}
· ‖𝑓 − 𝑔‖𝐿1(Ω,d𝜇)

2 ,                        (72) 

where 𝐾 = 1

2
·min {𝐾1, 𝐾2}, 

𝐾1 = min
𝜂∈]0,1[

�́́� (𝜂)   𝑎𝑛𝑑   𝐾2 = min
𝜃∈]0,1[,   ℎ>0

�́́� (1 + 𝜃ℎ)(1 + ℎ),                  (73) 

provided that all the above integrals are finite. 

Proof: We may assume without loss of generality that 𝑓  and gare strictly positive 

functions. Let us set  ℎ = (𝑓 − 𝑔) 𝑔 ⁄ ,so that 𝑓 /𝑔 = 1 + ℎ. If 𝜔 is any subdomain of  Ω 

and 𝑘 a positive, integrable on 𝜔, function, then Cauchy–Schwarz’s inequality yields: 

∫
|𝑓 − 𝑔|2

𝑘

2

𝜔

𝑑𝜇 ≥
(∫ |𝑓 − 𝑔|𝑑𝜇

2

𝜔
)
2

∫ 𝑘
2

𝜔
𝑑𝜇

.                                             (74) 
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The proof of inequality (72) is based on a Taylor’s expansion of 𝑠(𝑡) around  𝑡 = 1. Since  

𝑠(1) = �́�(1) = 0 , we have 

𝑠 (
𝑓

𝑔
) = 𝑠(1 + ℎ) =

1

2
�́́�(1 + 𝜃ℎ)ℎ2 

for some function 𝑥 ⟼ 𝜃(𝑥) with values in ]0,1[. Thus we need to estimate from below 

the function 

∫ �́́�(1 + 𝜃ℎ)𝑔ℎ2
2

Ω

𝑑𝜇. 

First, we estimate 

∫ �́́�(1 + 𝜃ℎ)𝑔ℎ2

2

𝑓<𝑔

𝑑𝜇 = ∫ �́́�(1 + 𝜃ℎ)
|𝑓 − 𝑔|2

𝑔

2

𝑓<𝑔

𝑑𝜇 ≥ 𝐾1 ∫
|𝑓 − 𝑔|2

𝑔

2

𝑓<𝑔

𝑑𝜇       

according to the definition (73) of  𝐾1 . Using (74) with 

𝜔 = {𝑥 ∈ Ω:  𝑓(𝑥) < 𝑔(𝑥)}      𝑎𝑛𝑑    𝑘 = 𝑔, 
we obtain: 

∫ �́́�(1 + 𝜃ℎ)𝑔ℎ2
2

𝑓<𝑔

𝑑𝜇 ≥ 𝐾1
(∫ |𝑓 − 𝑔|

2

𝑓<𝑔
𝑑𝜇)

2

∫ 𝑔
2

𝑓<𝑔
𝑑𝜇

                                     (75) 

On the other hand, we have: 

∫ �́́�(1 + 𝜃ℎ)𝑔ℎ2
2

𝑓>𝑔

𝑑𝜇 = ∫ �́́�(1 + 𝜃ℎ)(1 + ℎ)
|𝑓 − 𝑔|2

𝑓

2

𝑓>𝑔

𝑑𝜇 ≥ 𝐾2 ∫
|𝑓 − 𝑔|2

𝑓

2

𝑓>𝑔

𝑑𝜇                

using the definition (73) of  𝐾2. Now, using again (74) with 

𝜔 = {𝑥 ∈ Ω:  𝑓(𝑥) > 𝑔(𝑥)}      𝑎𝑛𝑑    𝑘 = 𝑓, 
we get: 

∫ �́́�(1 + 𝜃ℎ)𝑔ℎ2
2

𝑓>𝑔

𝑑𝜇 ≥ 𝐾2
(∫ |𝑓 − 𝑔|

2

𝑓>𝑔
𝑑𝜇)

2

∫ 𝑓
2

𝑓>𝑔
𝑑𝜇

                                     (76) 

Combining (75) and (76), we obtain (72). 

Proposition (1.2.11)[29]: Assume that 𝑑 ≥ 2 .Let 𝜐 is a nonnegative function such that  

𝑥 ↦ (1 + |𝑥|2)𝜐 and 𝜐𝑚 belong to 𝐿1(ℝ𝑑) and consider 𝜐∞ defined as in Corollary(1.2.9). 

   (i) If  𝑑−2 
𝑑
≤ 𝑚 < 1,𝑚 > 1

2
 , then there exists a constant 𝐶 > 0 which   depends only on 

𝑚 , 𝑀 = ∫ 𝜐𝑑𝑥
2

ℝ𝑑
  and  𝐿[𝜐] such that 

𝐶‖𝜐𝑚 − 𝜐∞
𝑚‖

𝐿1(ℝ𝑑)
2 ≤ 𝐿[𝜐] − 𝐿[𝜐∞]. 

   (ii) If  1 < 𝑚 ≤ 2  and 𝑅 = √2𝑚 (𝑚 − 1)𝜎2⁄  , then  

𝐶‖(𝜐 − 𝜐∞)𝜐∞
𝑚−1‖

𝐿1(ℝ𝑑)
2 ≤ 𝐿[𝜐] − 𝐿[𝜐∞]. 

     For the proof of this result, we need a lemma which is a variation of the Csiszár– 

Kullback inequality. We provide a proof for completeness and refer to [45], [54], [31] for 

related results. 

Proof: The result is a direct consequence of Lemma (1.2.10). For  𝑚 < 1, we take: 

𝑠(𝑡) =
𝑚𝑡1 𝑚⁄ − 𝑡

1 −𝑚
+ 1,      𝐾1 = 𝐾2 =

1

𝑚
,    𝑑𝜇(𝑥) = 𝑑𝑥  𝑎𝑛𝑑 
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𝐿[𝜐] = ∫𝑠 (
𝜐𝑚

𝜐∞
𝑚) 𝜐∞

𝑚𝑑𝑥

2

ℝ𝑑

. 

 According to (70) and (71), the quantities     

∫𝜐
|𝑥|2

2
𝑑𝑥

2

ℝ𝑑

     𝑎𝑛𝑑    ‖𝜐𝑚‖
𝐿1(ℝ𝑑)
2  

depend only on 𝑚, 𝑀 and 𝐿[𝜐], which proves the statement on 𝐶. If  1 < 𝑚 < 2, we may 

write: 

|𝑥|2

2
=

𝑚

𝑚 − 1
(𝜎2 − 𝜐∞

𝑚−1) ≤
𝑚

𝑚 − 1
𝜎2    𝑓𝑜𝑟 |𝑥| < √

2𝑚

𝑚 − 1
𝜎, 

∫𝜐𝜐∞
𝑚−1𝑑𝑥 ≤

2

ℝ𝑁

𝑚

𝑚 − 1
𝜎2𝑀 

and apply Lemma (1.2.10) to 

𝐿[𝜐] = ∫𝑠 (
𝜐

𝜐∞
) 𝜐∞𝑑𝜇(𝑥) +

2

ℝ𝑑

 ∫ (𝜐
|𝑥|2

2
+

1

𝑚 − 1
𝜐𝑚)

2

𝐵(0,𝑅)𝑐

𝑑𝑥,      

with  

𝑠(𝑡) =
𝑡𝑚 −𝑚𝑡

𝑚 − 1
+ 1,       𝐾1 = 𝐾2 = 𝑚   𝑎𝑛𝑑    𝑑𝜇(𝑥) = 𝜐∞

𝑚−1(𝑥)𝑑𝑥. 

Theorem (1.2.12)[29]: Assume that the initial datum 𝑢0 is a nonnegative function with 

∫𝑢0(1 + |𝑥|
2)𝑑𝑥 +

2

ℝ𝑑

∫𝑢0
𝑚𝑑𝑥 < +∞.

2

ℝ𝑑

 

If 𝑢 is the solution of (55)–(56), and 𝑈 given by(57) satisfies 

∫𝑈(𝑡, 𝑥)𝑑𝑥 =

2

ℝ𝑑

∫𝑢0𝑑𝑥

2

ℝ𝑑

, 

then the following facts hold. 

   (i) Assume that  𝑑− 1
𝑑
 < 𝑚 < 1 𝑖𝑓𝑑 ≥ 3, and 1

2
< 𝑚 < 1  if 𝑑 = 2.Then 

lim sup
𝑡→+∞

𝑡
1−𝑑(1−𝑚)
2−𝑑(1−𝑚) ‖𝑢𝑚(𝑡,⋅) − 𝑈𝑚(𝑡,⋅)‖𝐿1(ℝ𝑑) < +∞. 

   (ii) Assume that 1 < 𝑚 < 2.Then 

lim sup
𝑡→+∞

𝑡
1+𝑑(1−𝑚)
2+𝑑(1−𝑚) ‖[𝑢(𝑡,⋅) − 𝑈(𝑡,⋅)]𝑈𝑚−1(𝑡,⋅)‖𝐿1(ℝ𝑑) < +∞. 

Proof : Estimate (69), Proposition (1.2.11) and relation (69) yield that for 𝑚 < 1 

𝐶‖𝜐𝑚(⋅, 𝜏) − 𝜐∞
𝑚‖

𝐿1(ℝ𝑑)
2 ≤ (𝐿[𝑢0] − 𝐿[𝜐∞]) ⋅ 𝑒

−2𝜏    ∀𝜏 > 0, 

while for 𝑚 > 1 

𝐶‖𝜐(⋅, 𝜏) − 𝜐∞)𝜐∞
𝑚−1‖

𝐿1(ℝ𝑑)
2 ≤ (𝐿[𝑢0] − 𝐿[𝜐∞]) ⋅ 𝑒

−2𝜏    ∀𝜏 > 0, 

Recalling that in terms of the variable  𝑡, 𝜏 = 𝜏(𝑡) ∼ log 𝑡, and changing variables into the 

original definition of 𝜐 in terms of 𝑢(𝑥, 𝑡), gives us exactly the relations seeked for in 

Theorem (1.2.12) with 𝑈 replaced by 
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𝑢∞(𝑡, 𝑥) = 𝑅(𝑡)
−𝑑𝜐∞ (log𝑅(𝑡),

𝑥

𝑅(𝑡)
) 

and 𝑅  given by (64). A straightforward computation shows that  𝑈  and 𝑢∞  are 

asymptotically equivalent and this concludes the proof .  

     Finally, let us mention that the Lyapunov functional 𝐿[𝜐] had already been exhibited by 

Ralston and Newman in [60], [64]. An alternative approach for getting the decay of 𝐿[𝜐] is 

based on the entropy–entropy dissipation method, which has been used for the heat 

equation in [67], [68], [30] and generalized to nonlinear diffusions in [46], [41] (also see 

[62] by Otto on the gradient flow structure of the porous medium equation), providing 

another proof of inequality (63). More recents developments can be found in [40], [51], 

[55], [39]. See [56] and [33] for relations with Sobolev type inequalities. 
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Chapter 2 

First Order Interpolation and Hardy-Lieb-Thirring Inequalities 

 
We show first order interpolation inequalities with weights. We first establishing a 

Sobolev inequality for such operators. Similar results are true for fractional powers of the 

Laplacian and the Hardy-weight and, in particular, for relativistic Schrödinger operators. 

We also allow for the inclusion of magnetic vector potentials. As an application, we 

extend, for the first time, the proof of stability of relativistic matter with magnetic fields all 

the way up to the critical value of the nuclear charge 𝑍𝛼 =  2/𝜋. 

Section (2.1): Interpolation Inequalities with Weights 
[72] proved certain interpolation inequalities. These are analogous to the standard 

interpolation between functions and their first derivatives in various 𝐿𝑝norms on ℝ𝑛(see 

[73], [61]), but with each term weighted by a power of |𝑥|.  Instances of these inequalities 

have been studied previously [71], [75], [76], but the general case seems to have not yet 

been treated; we present it here, in the belief that such inequalities may show useful in 

other contexts. Lin [74] has generalized these result to include derivatives of any order.  

 For simplicity, we state our theorem for 𝑢 ∈ 𝐶0
∞(ℝ𝑛), the space of smooth functions 

with compact support. Its extension to a more general class of functions is standard. In 

what follows 𝑝, 𝑞, 𝑟; 𝛼, 𝛽, 𝜎; and 𝑎 are fixed real numbers (called parameters) satisfying  

𝑝, 𝑞 ≥ 1,      𝑟 > 0 ,   0 ≤ 𝑎 ≤ 1                                                   (1) 
1

𝑝
+
𝛼

𝑛
,        

1

𝑞
+
𝛽

𝑛
,     

1

𝑟
+
𝛾

𝑛
> 0,                                                 (2) 

where  

𝛾 = 𝑎𝜎 + (1 − 𝑎)𝛽.                                                                      (3) 
Theorem (2.1.1)[7]: There exists 𝑎 positive constant 𝐶 such that the following inequality 

holds for all 𝑢 ∈ 𝐶0
∞(𝑅𝑛)   

||𝑥|𝛾𝑢|𝐿𝑟 ≤ 𝐶||𝑥|
𝛼|𝐷𝑢||

𝐿𝑝
𝑎
||𝑥|𝛽𝑢|

𝐿𝑞
1−𝑎

                                           (4) 

if and only if the following relations hold :  
1

𝑟
+
𝛾

𝑛
= 𝑎 (

1

𝑝
+
𝛼 − 1

𝑛
) + (1 − 𝑎) (

1

𝑞
+
𝛽

𝑛
)                             (5) 

(this is dimensional balance ), 

0 ≤ 𝛼 − 𝜎     if    𝑎 > 0, 
and  

𝛼 − 𝜎 ≤ 1         if  𝑎 > 0    and   
1

𝑝
+
𝛼 − 1

𝑛
=
1

𝑟
+
𝛾

𝑛
 .                                      (6) 

Furthermore, on any compact set in parameter space in which (1),(2), (5) and 0 ≤ 𝛼 −
𝜎 ≤ 1 hold, the constant 𝐶 is bounded.  

 We emphasize the curious fact that one needs the conditions 𝛼 − 𝜎 ≤ 1  only in 

case 𝑎 > 0 and 1 𝑝 + (𝛼 − 1) 𝑛 =  1 𝑟 + 𝛾 𝑛⁄⁄⁄⁄ .  
 The proof  is rather long but elementary. We first verify necessity; then we verify 

the case 𝑛 = 1,   𝜎 = 𝛼 − 1, using among other tools a weighted Hardy-type inequality 

showed by Bradley [71]. The case 𝑛 ≥ 1,   0 ≤ 𝛼 − 𝜎 ≤ 1 is treated next; then finally the 

case 𝛼 − 𝜎 > 1, 1 𝑝 + (𝛼 − 1) 𝑛 ≠ 1 𝑟 + 𝛾 𝑛⁄⁄⁄⁄ .  Since when 𝑎 = 0  there is nothing to 

show, we shall always assume 𝑎 > 0. 
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 Throughout, 𝐶 denotes a constant, depending on the parameters, whose value may 

change from line to line. Although we will not estimate the constants explicitly, it will be 

clear from the arguments that the last assertion of the theorem holds. 

Note first that the inequalities (1) are necessary in order for the norms in (4) to be finite. If 

(4) holds for 𝑢(𝑥) then it holds also for 𝑢(𝜆𝑥, ),   𝜆 > 0. Inserting this in (4) we obtain (5). 

This is merely dimension of  ||𝑥|𝛾𝑢|𝐿𝑟  is 𝛾 + 𝑛 𝑟⁄ , that of ||𝑥|𝛼|𝐷𝑢||
𝐿𝑝

is 𝛼 − 1 + 𝑛 𝑝⁄ , 

etc. 

 Next, for some fixed function 𝜐 ∈ 𝐶0
∞(|𝑥| < 1), 𝜐 ≢ 0, let 𝑢(𝑥) = 𝜐(𝑥 − 𝑥0) with 

|𝑥0| = 𝑅 large. Inserting this in (4) we see that  

                        𝑅𝛾 ≤ 𝐶𝑅𝑎𝛼+(1−𝑎)𝛽 
so that  

                   𝑎𝜎 + (1 − 𝑎)𝛽 ≤ 𝑎𝛼 + (1 − 𝑎)𝛽. 
Hence 𝜎 ≤ 𝛼. Next we show (6). Suppose  

                          
1

𝑝
+
𝛼 − 1

𝑛
=
1

𝑟
+
𝛾

𝑛
 

   =
1

𝑞
+
𝛽

𝑛
     by (5) if 𝑎 < 1.                                                               (7) 

We insert in (4) the function  

 𝑢(𝑥) =

{
 
 

 
 
0                                  𝑓𝑜𝑟 |𝑥| ≥ 1                                           

𝑥−𝛾−𝑛 𝑟⁄   log
1

|𝑥|
      𝑓𝑜𝑟 𝜖 ≤ |𝑥| ≤ 1                                 

𝑥−𝛾−𝑛 𝑟⁄   log
1

𝜖
        𝑓𝑜𝑟  |𝑥| ≤ 𝜖                                          

 

This function is not in 𝐶∞ but it is clear that (4) must also hold for it Straightforward 

calculation  shows that, if 𝜌, 𝜃 polar coordinates, 𝜃 ∈ 𝑆𝑛−1, 

∫ |𝑥|𝛾𝑟
1

𝑅𝑛
|𝑢|𝑟 ≥ 𝐶∫  

1

𝜖<|𝑥| <1

1

𝜌
log𝑟

1

𝜌
𝑑𝜌 ≥ 𝐶 log1+𝑟

1

𝜖
 

Consequently (4) implies  
1

𝑟
+ 1 ≤ 𝑎 (

1

𝑝
+ 1) + (1 − 𝑎) (

1

𝑞
+ 1) 

1

𝑟
≤
𝑎

𝑝
+
1 − 𝑎

𝑞
. 

But according to (3) and (5)  
1

𝑟
=
𝑎

𝑝
+
1 − 𝑎

𝑞
+
𝑎

𝑛
(𝛼 − 1 − 𝜎)                                                          (8) 

Hence 𝛼 − 1 − 𝜎 ≤ 0, i.e. (6) holds. Necessity is showed. 

We present some inequalities which will be useful in what follows. Several of these are 

special cases of (4). 

(I) If 1 ≤ 𝑝 ≤ 𝑟 ,      𝛿 ∈ ℝ, and 𝛼 = 𝛿 + 1 𝑟 + (𝑝 − 1) 𝑝⁄⁄  then for 𝑢 ∈ 𝐶0
∞(ℝ) 

||𝑥|𝛿𝑢|
𝐿𝑟
≤ 𝐶||𝑥|𝛼𝐷𝑢|𝐿𝑝                                                              (9) 

in case either  

              (i) 𝛿 +
1

𝑟
> 0  

              (ii) 𝛿 +
1

𝑟
< 0   and   𝑢(0) = 0. 
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The constant 𝐶  in (9) stays bounded as 𝑝, 𝑟,  and 𝛿  range over any compact subset of 

{1 ≤ 𝑝 ≤ 𝑟,     𝛿𝑟 ≠ −1}.   
 One easily deduces these facts from the weighted Hardy-type inequalities in 

[71].For 𝑟 = 𝑝.  
     (II) Assume (1)-(3) and (5) hold; for any 𝜌 > 0,  let  

𝑅𝜌 = {𝜌 < |𝑥| ≤ 2𝜌}.          If 𝑢 ∈ 𝐶0
∞(ℝ𝑛) and  

𝛿 = 𝛾 +
𝑛

𝑟
− 𝑛                                                            (10) 

then  

∫ |𝑥|𝛾𝑟
1

𝑅𝜌

|𝑢|𝑟

≤ 𝐶 (∫ |𝑥|𝛼𝑝
1

𝑅𝜌

|𝐷𝑢|𝑝)

𝑎𝑟 𝑝⁄

(∫ |𝑥|𝛽𝑞
1

𝑅𝜌

|𝑢|𝑞)

𝑎𝑟 𝑝⁄

+ 𝐶 (∫ |𝑥|𝛿
1

𝑅𝜌

|𝑢|𝑝)

𝑟

      (11) 

with 𝐶 independent of 𝜌. If  ∫ 𝑢 = 0
1

𝑅𝜌
 then the latter term in (11) may be omitted. 

 It suffices to consider 𝜌 = 1, since the general case follows by scaling. Writing 

𝑅1 = 𝑅, we consider first the case that 
1

𝑚
=
𝑎

𝑝
+
1 − 𝑎

𝑞
−
𝑎

𝑛
> 0.                                                           (12) 

Using a standard interpolation inequality ([73], [61]), and writing �̅� = (𝑚𝑒𝑎𝑠 𝑅)−1  ∫ 𝑢
1

𝑅
, 

∫ |𝑢 − �̅�|𝑚
1

𝑅

≤ 𝐶 (∫ |𝐷𝑢|𝑝
1

𝑅

)

𝑎𝑚 𝑝⁄

(∫ |𝑢 − �̅�|𝑞
1

𝑅

)

(1−𝑎)𝑚 𝑞⁄

.                                (13) 

Since 𝛼 − 𝜎 ≥ 0,   𝑟 ≤ 𝑚; applying Holder's inequality to (13) we find  

                       ∫ |𝑢 − �̅�|𝑟
1

𝑅

≤ 𝐶 (∫ |𝑢 − �̅�|𝑚
1

𝑅

)

𝑟 𝑚⁄

 

≤ 𝐶 (∫ |𝐷𝑢|𝑝
1

𝑅

)

𝑎𝑟 𝑝⁄

(∫ |𝑢 − �̅�|𝑞
1

𝑅

)

(1−𝑎)𝑟 𝑞⁄

                                  (14) 

If, on the other hand, (12) fails, then 𝑎 𝑝 + (1 − 𝑎) 𝑞 ≤ 𝑎 𝑛.⁄⁄⁄  It follows that  

  
1

𝑞
>
1

𝑝
−
1

𝑛
;                                                                                     (15) 

and if (15) holds then  

∫ |𝑢 − �̅�|𝑟
1

𝑅

≤ 𝐶 (∫ |𝐷𝑢|𝑝
1

𝑅

)

𝑏𝑟 𝑝⁄

(∫ |𝑢 − �̅�|𝑞
1

𝑅

)

(1−𝑏)𝑟 𝑞⁄

                             (16) 

where  

               𝑏 = 0           𝑖𝑓    𝑟 ≤ 𝑞 

                 𝑏 (
1

𝑞
+
1

𝑛
−
1

𝑝
) =

1

𝑞
−
1

𝑟
        𝑖𝑓     𝑟 ≥ 𝑞, 

and in particular 𝑏 ≤ 𝑎. By Sobolev's inequality and (15), 
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(∫ |𝑢 − �̅�|𝑞
1

𝑅

)

1 𝑞⁄

≤ 𝐶 (∫ |𝐷𝑢|𝑝
1

𝑅

)

1 𝑝⁄

.                                           (17) 

combining (16) and (17) yields (14) once again. Rescaling and multiplying by 𝜌𝛾𝑟 , we 

conclude that if  ∫ 𝑢 = 0
1

𝑅𝜌
 then  

∫ |𝑥|𝛾𝑟
1

𝑅𝜌

|𝑢|𝑟 ≤ 𝐶 (∫ |𝑥|𝛼𝑟|𝐷𝑢|2
1

𝑅𝜌

)

𝑎𝑟 𝑝⁄

(∫ |𝑥|𝛽𝑞|𝑢|𝑞
2

1

𝑅𝜌

)

(1−𝑎)𝑟 𝑞⁄

. 

If �̅� ≠ 0, we note that 

(∫ |𝑢 − �̅�|𝑞
1

𝑅

)

1 𝑞⁄

≤ 𝐶 (∫ |𝑢|𝑞
1

𝑅

)

1 𝑞⁄

. 

Therefore, using (14), 

(∫ |𝑢|𝑟
1

𝑅

)

1 𝑟⁄

≤ (∫ |𝑢 − �̅�|𝑟
1

𝑅

)

1 𝑟⁄

+ (∫ |�̅�|𝑟
1

𝑅

)

1 𝑟⁄

  

≤ 𝐶 (∫ |𝐷𝑢|𝑝
1

𝑅

)

𝑎 𝑝⁄

(∫ |𝑢|𝑞
1

𝑅

)

(1−𝑎) 𝑞⁄

+ 𝐶∫ |𝑢|
1

𝑅

. 

This shows (11) in case 𝜌 = 1, and the general case follows once again by scaling. 

    (III) Suppose (1)-(3) and (5) hold, and 𝜎 = 𝛼 − 1; and suppose further that  

𝑎 > (1 + 𝑞 − 𝑞 𝑝⁄ )−1.                                                              (18) 
Then (4) holds, with constant 𝐶 uniform so long 𝑎𝑠 𝛾𝑟 + 𝑛 stays bounded away from zero.  

Since 𝜎 = 𝛼 − 1 implies 1 𝑟 = 𝑎 𝑝 + (1 − 𝑎) 𝑞,⁄⁄⁄  the condition (18) is equivalent to  

𝑎 > 1 𝑟⁄ .                                                                                  (19) 
we show (4) in this context using radial integration by parts:  

∫ |𝑥|𝛾𝑟
1

𝑅𝜌

|𝑢|𝑟 ≤ 𝐶∫ |𝑥|𝛾𝑟+1
1

𝑅𝜌

|𝑢|𝑟−1|𝐷𝑢|         

≤ 𝐶 ∫(|𝑥|𝛼|𝐷𝑢|)

2

2

(|𝑥|𝛽|𝑢|)
𝑎−1−1

(|𝑥|𝜖|𝑢|𝑟−𝑎
−1
)    

where 𝜖 = 𝛾𝑟 + 1 − 𝛼 + 𝛽 − 𝛽 𝑎 = 𝛾(𝑟 − 𝑎−1⁄ ). By (18) 𝑎−1 − 1 ≤ 𝑞, so 

∫ |𝑥|𝛾𝑟
1

𝑅𝜌

|𝑢|𝑟 ≤ 𝐶||𝑥|𝛼|𝐷𝑢||
𝐿𝑝
||𝑥|𝛽𝑢|

𝐿𝑞
𝑎−1−1

||𝑥|𝜖|𝑢|𝑟−𝑎
−1
|
𝐿𝑘
                                  (20) 

with 𝑘 chosen so that  
1

 𝑝
+
1

𝑞
(𝑎−1 − 1) +

1

𝑘
= 1. 

One checks that 

(𝑟 − 𝑎−1)𝑘 = 𝑟 and 𝜖𝑘 = 𝛾𝑟; 
using this in (20) yields  

||𝑥|𝛾𝑢|𝐿𝑟
𝑎−1 ≤ 𝐶||𝑥|𝛼|𝐷𝑢||

𝐿𝑝
||𝑥|𝛽𝑢|

𝐿𝑞
𝑎−1−1

     

from which (4) follows. 

   (IV) If 𝑡, 𝑟 ≥ 1;  𝛾 + 𝑛 𝑟⁄ , 𝜖 + 𝜖 𝑛 𝑡, 𝛽 + 𝑛 𝑞 > 0;⁄⁄  and 0 ≤ 𝑏 ≤ 1 then  

||𝑥|𝛾𝑢|𝐿𝑟
𝑎−1 ≤ ||𝑥|𝜖𝑢|𝐿𝑟

𝑏 ||𝑥|𝛽𝑢|
𝐿𝑞
1−𝑏

                                                                               (21) 

for 𝑢 ∈ 𝐶0
∞(ℝ𝑛) provided that  
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1

 𝑟
=
𝑏

𝑡
+
1 − 𝑏

𝑞
                                                              (22) 

and  

𝛾 = 𝑏𝜖 + (1 − 𝑏)𝜌.                                                             (23) 
This is an easy consequence of Hodder' s inequality . 

  For notation convenience we set  

||𝑥|𝛼𝐷𝑢|𝐿𝑝
𝑎−1 = 𝐴,    ||𝑥|𝛽𝑢|

𝐿𝑞
𝑎−1

= 𝐵                                          (24)  

we show  

                         ||𝑥|𝛾𝑢|𝐿𝑟
𝑎−1 ≤ 𝐶𝐴𝑎𝐵1−𝑎. 

Throughout, ζ(𝑥)will represent a fixed 𝐶0
∞ function on ℝ𝑛 with the properties  

)25(.10,1,10
2
1  xifxif   

When possible, we shall use (I) to verify the case 𝑎 = 1 and (IV) to interpolate between 

𝑎 = 0 and 𝑎 = 1. Substantial complications arise, however, because (I) does not apply 

when 1 𝑝 + 𝛼 − 1 = 0⁄  (this corresponds to the case 𝛿 + 1 𝑟 = 0⁄  in (9). Note that 𝜎 =
𝛼 − 1 implies  

1

 𝑟
=
𝑎

𝑝
+
1 − 𝑎

𝑞
,     𝛾 = 𝑎(𝛼 − 1) + (1 − 𝑎)𝛽.                                           (26) 

 (i)The case 𝛾 + 1 𝑟 = 1 𝑝 + 𝛼 − 1,⁄⁄           0 ≤ 𝑎 ≤ 1 

By(IV), 

||𝑥|𝛾𝑢|𝐿𝑟 ≤ ||𝑥|
𝛼−1𝑢|𝐿𝑝

𝑎 ||𝑥|𝛽𝑢|
𝐿𝑞
1−𝑎

,                                                                  (27) 

while by (I),  

    ||𝑥|𝛼−1𝑢|𝐿𝑝 ≤ 𝐶||𝑥|
𝛼𝐷𝑢|𝐿𝑝 .                                                                                (28) 

Combining (27) and (28) yields (4) 

 The remainder of  addresses the case 𝛾 + 1 𝑟 ≠ 1 𝑝 + 𝛼 − 1.⁄⁄  

In that event one may rescale 𝑢  so that 𝐴 = 𝐵 = 1;  we henceforth assume such a 

normalization, so that our goal becomes show 

                            ||𝑥|𝛾𝑢|𝐿𝑟
1−𝑎 ≤ 𝐶.  

 (ii)The case 1 𝑝 + 𝛼 − 1 > 0⁄  and bounded away from zero  

The argument used for part (i) applies here, too. Note however that as 1 𝑝 + 𝛼 − 1 → 0,⁄  

the constant in (28) tends to ∞.  
The case 1 𝑝 + 𝛼 − 1 ≈ 0⁄  will be handled in (iii)-(v); part (vi) will treat the case 

1 𝑝 + 𝛼 − 1 < 0⁄  and handled away from zero.  

We choose a real number 𝑣, depending on the parameters, such that 0 < 𝑣 < 1

2
 and  

2𝑣 ≤ 𝛾 +
1

𝑟
,     2𝑣 ≤ 𝛽 +

1

𝑞
≤ (2𝑣)−1.                                                                (29) 

 (iii) The case −𝑣3 ≤ 1 𝑝 + 𝛼 − 1 ≤ 𝑣⁄  and 1 𝑝 < 1 − 𝑣⁄  

Note that 𝑎 and (1 + 𝑞 − 𝑞 𝑝⁄ )−1are bounded away from 1 in this case : 

𝑎 ≤ 1 − 2𝜈2                                                                                   (30) 

(1 + 𝑞 − 𝑞 𝑝⁄ )−1 <
1

1 + 𝜈
.                                                           (31) 

Let 𝜇 = (1 + 2𝜈2)−1, and set 𝑎0 = 𝑎 𝜇⁄ , so that 𝑎 < 𝑎0 ≤ 1 − 4𝜈
4. By (III),  

              ||𝑥|𝛾𝑢|𝐿𝑟
1−𝑎 ≤ 𝐶||𝑥|𝜖𝑢|𝐿𝑟

𝑎0||𝑥|𝛽𝑢|
𝐿𝑞
1−𝑎0

                                          (32) 

where 𝜖 and 𝑡 are determined by  
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1

 𝑡
=
𝜇

𝑝
+
1 − 𝜇

𝑞
 

𝜖 = 𝜇(𝛼 − 1) + (1 − 𝜇)𝛽.   
Moreover we see that  

1

 𝑡
+ 𝜖 = 𝜇 (

1

 𝑝
+ 𝛼 − 1) + (1 − 𝜇) (𝛽 +

1

 𝑞
) ≥ 3𝜈3𝜇 

is bounded away from zero. Since 𝜈 <
1

2
, (31) implies 𝜇(1 + 𝑞 − 𝑞 𝑝⁄ ) > 1; hence by (III) 

||𝑥|𝜖𝑢|𝐿𝑡 ≤ 𝐶𝐴
𝜇𝐵1−𝜇;                                                                    (33) 

substitution of (33) into (32) yields (4). 

 (iv) the case −𝜈3 ≤ 1 𝑝 + 𝛼 − 1 ≤ 𝜈,⁄    1 − 𝜈 ≤ 1 𝑝 ≤ 1, 𝑎 ≥ 𝜈⁄  

We set 𝛿 = 𝛾 + 1 𝑟 − 1,⁄  and note that under the above hypotheses  

𝛼 ≤ 2𝜈 ≤ 𝛿 + 1                                                                         (34) 
and  

𝛿 − 𝛽 ≤
1

q
− 1 − 𝜈2                                                                   (35) 

We assert that  

(∫|𝑥|𝛾𝑟 |𝑢|𝑟)
1 𝑟⁄

≤ 𝐶𝐴𝑎𝐵1−𝑎 + 𝐶∫|𝑥|𝛿 |𝑢|𝑟 .                      (36) 

Indeed, if 𝑅𝑘 = {2
𝑘 < |𝑥| ≤ 2𝑘+1} for any integer 𝑘, then (II) yields  

      ∫ |𝑥|𝛾𝑟
2

𝑅𝑘

|𝑢|𝑟 

≤ 𝐶 (∫ |𝑥|𝛼𝑝
2

𝑅𝑘

|𝐷𝑢|𝑝)

𝑎𝑟 𝑝⁄

(∫ |𝑥|𝛽𝑞
2

𝑅𝑘

|𝑢|𝑞)

(1−𝑎)𝑟 𝑞⁄

+ 𝐶 (∫ |𝑥|𝛿
2

𝑅𝑘

|𝑢|)

𝑟

.        (37) 

We add (37) for 𝐾 ∈ ℤ, using the inequalities  

∑𝑥𝑘
𝑐 𝑦𝑘

𝑑 ≤ (∑𝑥𝑘)
𝑐

(∑𝑦𝑘)
𝑑

,       𝑐 + 𝑑 ≥ 1                                            (38) 

∑𝑥𝑘
𝑐 ≤ (∑𝑥𝑘)

𝑐

,       𝑐 ≥ 1,                                                                            (39) 

valid for 𝑥𝑘, 𝑦𝑘 ,   𝑐, 𝑑 ≥ 0.  Since 𝑎𝑟 𝑝 + (1 − 𝑎)𝑟 𝑞 = 1⁄⁄  and 𝑟 ≥ 1  by (26), these 

inequalities apple and yields (36). 

 Thus we need only show that ∫|𝑥|𝛿 |𝑢| ≤ 𝐶. With  as in (25) we write  

∫|𝑥|𝛿 |𝑢| = ∫|𝑥|𝛿  |𝑢| + ∫|𝑥|𝛿 (1 −  )|𝑢|                                              (40) 

and estimate the two terms separately. Since 𝛿 is bounded away from −1, we may use 

radial integration by part in the first term:  

∫|𝑥|𝛿  |𝑢| ≤ 𝐶∫|𝑥|𝛿+1  |𝐷𝑢| + 𝐶∫|𝑥|𝛿+1 |𝐷 ||𝑢|             

≤ 𝐶 ∫ |𝑥|𝛿+1
1

|𝑥|<1

|𝐷𝑢| + 𝐶∫ |𝑥|𝛿+1
1

1
2
<|𝑥|<1

|𝑢|.     

                       ≤ 𝐶 ∫ |𝑥|𝛿+1
1

|𝑥|<1

|𝐷𝑢| + 𝐶𝐵 

If 𝑝 = 1 then  
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∫ |𝑥|𝛿+1
1

|𝑥|<1

|𝐷𝑢| ≤ 𝐶𝐴                                                        (41) 

since 𝛿 + 1 ≥ 𝛼 by (29).         If 𝑝 > 1 then  

∫ |𝑥|(𝛿+1)
1

|𝑥|<1

|𝐷𝑢| ≤ 𝐴 ∙ (∫ |𝑥|(𝛿+1−𝛼)�́�
1

|𝑥|<1

)

1 �́�⁄

 

where �́� = 𝑝 (𝑝 − 1)⁄ . Since 𝛿 + 1 − 𝛼 ≥ 0, the integral converges; hence (41) holds also 

for 𝑝 > 1. Thus 

∫|𝑥|𝛿  |𝑢| ≤ 𝐶.                                                                                    (42) 

We argue similarly for the second term in (40), but without integrating by parts: 

∫|𝑥|𝛿 (1 −  )|𝑢| ≤ ∫ |𝑥|𝛿
1

|𝑥|>
1
2
 

|𝑢| ≤ 𝐵 (∫ |𝑥|(𝛿−𝛽)�́�
1

|𝑥|>
1
2

)

1 �́�⁄

                   

assuming 𝑞 > 1, and setting �́� = 𝑞 (𝑞 − 1)⁄ .  The last integral converges, by (35), so  

∫|𝑥|𝛿 (1 −  )|𝑢| ≤ 𝐶.                                                                      (43) 

If 𝑞 = 1 we see from (35) that 𝛿 < 𝛽, so  

∫ |𝑥|𝛿
1

|𝑥|>
1
2
 

|𝑢| ≤ 𝐶∫ |𝑥|𝛽
1

|𝑥|>
1
2
 

|𝑢| ≤ 𝐶𝐵,                     

which yields (43) also 𝑞 = 1. We have shown  

∫|𝑥|𝛿 |𝑢| ≤  𝐶,                                                                  

with constant 𝐶 uniform for fixed 𝑣. By (36), the desired result (4) follows. 

 (v) The case −𝜈3 ≤ 1 𝑝 + 𝛼 − 1 ≤ 𝜈,⁄         0 ≤ 𝑎 < 𝜈 

We argue much as in part (iii). Let 𝜖 and 𝑡 satisfy  
1

 𝑡
=
𝜇

𝑝
+
1 − 𝜇

𝑞
,      𝜖 = 𝜇(𝛼 − 1) + (1 − 𝜇)𝛽                   

with 𝜇 =
1

2
, we recall from (32) (with 𝜇 =

1

2
 ) that  

              ||𝑥|𝛾𝑢|𝐿𝑟
1−𝑎 ≤ 𝐶||𝑥|𝜖𝑢|𝐿𝑡

2𝑎||𝑥|𝛽𝑢|
𝐿𝑞
1−2𝑎

.                                                          (44) 

Since 𝜖 + 1 𝑡 ≥⁄
1

2
(2𝜈 − 𝜈3) ≥

1

2
𝜈, we have from cases (iii) and (v) that 

              ||𝑥|𝜖𝑢|𝐿𝑡
1−𝑎 ≤ 𝐶𝐴1 2⁄ 𝐵1 2⁄ .                                                                                (45) 

Combining (44) and (45) yields (4).  

 (vi) The case 1 𝑝 + 𝛼 − 1 < − 𝜈3⁄   

Let �̃�(𝑥0 − 𝑢(0) (𝑥), with   as in (25). Arguing as in parts (i) and (ii), we obtain  

||𝑥|𝛾�̃�|𝐿𝑟 ≤ 𝐶||𝑥|
𝛼𝐷�̃�|𝐿𝑝

𝑎 ||𝑥|𝛽�̃�|
𝐿𝑞
1−𝑎

≤ 𝐶(||𝑥|𝛼𝐷𝑢|𝐿𝑝 + |𝑢(0)|)
𝑎 (||𝑥|𝛽𝑢|

𝐿𝑝
+ |𝑢(0)|)

1−𝑎

≤ 𝐶(1 + |𝑢(0)|). 
Thus to show (4) we need only show that |𝑢(0)| ≤ 𝐶. 
 Now 

𝑢(0) = −∫
𝑑

𝑑𝑥

∞

0

(𝑢 ) 

so that  
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                    |𝑢(0)| ≤ 𝐶∫ |𝐷𝑢|
1

0

+ 𝐶∫ |𝑢|
1

1 2⁄

  

                                ≤ 𝐶 ∫ |𝐷𝑢|
1

0

+ 𝐶.   

If 𝑝 > 1, then  

                          ∫ |𝐷𝑢|
1

0

≤ ||𝑥|𝛼𝐷𝑢|𝐿𝑝 ∙ (∫ |𝑥|−𝛼�́�
1

0

)

1 �́�⁄

 

and the integral on the right converges, because −𝛼�́� ≥ −1 + 𝜈3�́�; hence  

∫ |𝐷𝑢|
1

|𝑥|<1

≤ 𝐶𝐴 ≤ 𝐶.                                                                                        (46) 

If 𝑝 = 1, we still conclude (46), since in that case 𝛼 < 0. Thus we have shown  

|𝑢(0)| ≤ 𝐶.                                                                                                         (47) 
The show of (4) for 𝑛 = 1, 𝜎 = 𝛼 − 1is now complete. 

 Case when 𝑛 ≥ 1, 𝛼 ≥ 𝜎 ≥ 𝛼 − 1  

Note that in this case   
1

𝑟
=
𝑎

𝑝
+
1 − 𝑎

𝑞
+
𝑎(𝛼 − 𝜎 − 1)

𝑛
≤
𝑎

𝑝
+
1 − 𝑎

𝑞
                                             (48) 

We consider 𝑢(𝑥) = 𝑓(|𝑥|), where 𝑓 is smooth on [0,∞) and vanishes for |𝑥| large. For 

integers 𝑘, let 𝑅𝑘 = {2
𝑘 < |𝑥| ≤ 2𝑘+1}; by (II) we have  

∫ |𝑥|𝛾𝑟
1

𝑅𝑘

|𝑢|𝑟                                                                                                                 (49) 

                                ≤ 𝐶 (∫ |𝑥|𝛼𝑝
1

𝑅⋌

|𝐷𝑢|𝑝)

𝑎𝑟 𝑝⁄

(∫ |𝑥|𝛽𝑞
1

𝑅⋌

|𝑢|𝑞)

(1−𝑎)𝑟 𝑞⁄

+ 𝐶 (∫ |𝑥|𝛿
1

𝑅⋌

|𝑢|)

𝑟

 

with 𝛿 = 𝛾 + 𝑛 𝑟 − 𝑛.⁄  Let 𝑠 be defined by  
1

𝑠
=
𝑎

𝑝
+
1 − 𝑎

𝑞
                                                                                            (50) 

so that 1 𝑟⁄ ≤ 1 𝑠 ≤ 1.⁄  By Holder's inequality,  

(∫ |𝑥|𝛿
1

𝑅⋌

|𝑢|)

𝑟

≤ 𝐶 (∫ |𝑥|𝜇𝑠
1

𝑅⋌

|𝑢|𝑠)

𝑟 𝑠⁄

,                                                (51) 

with  

𝜇 = 𝑛 (
1

𝑟
−
1

𝑠
+
𝛾

𝑛
).                                                                                   (52) 

We add (49) for all 𝑘, using (51) and the inequalities (38), to obtain  

(∫ |𝑥|𝛾𝑟
1

ℝ𝑛
|𝑢|𝑟)

1 𝑟⁄

≤ 𝐶𝐴𝑎𝐵1−𝑎 + 𝐶 (∫|𝑥|𝜇𝑠 |𝑥|𝑠)
1 𝑠⁄

.                             (53) 

 

Now,  

 (∫ |𝑥|𝜇𝑠
1

ℝ𝑛
|𝑢|𝑠)

1 𝑠⁄

≤ 𝐶 (∫ 𝜌�̅�𝑠
∞

0

|𝑓|𝑠𝑑𝜌)

1 𝑠⁄

,       �̅� = 𝛾 +
𝑛

𝑟
−
1

𝑠
                      (54) 

while  
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(∫ |𝑥|𝛼𝑝
1

ℝ𝑛
|𝐷𝑢|𝑝)

1 𝑝⁄

≥ 𝐶 (∫ 𝜌�̅�𝑝
∞

0

|𝐷𝑓|𝑝)

1 𝑝⁄

, �̅� = 𝛼 +
𝑛 − 1

𝑝
                   (55) 

and  

(∫ |𝑥|𝛽𝑞
1

ℝ𝑛
|𝑢|𝑞)

1 𝑞⁄

≥ 𝐶 (∫ 𝜌�̅�𝑞
∞

0

|𝑓|𝑞)

1 𝑞⁄

, �̅� = 𝛽 +
𝑛 − 1

𝑞
.                           (56) 

Since  
1

𝑠
+ �̅� = 𝑎 (

1

𝑝
+ �̅� − 1) + (1 − 𝑎) (

1

𝑞
+ �̅�),                                                             

we conclude from that  

||𝑥|�̅�𝑓|𝐿𝑠 ≤ 𝐶||𝑥|
�̅�𝐷𝑓|𝐿𝑝

𝑎 ||𝑥|�̅�𝑓|
𝐿𝑞

1−𝑎
.                                     (57) 

(Strictly speaking, one must first extend 𝑓 to a function on (−∞,∞),  and then apply the 

results . Alternatively, one may simply note that the remain valid for functions on 

[0,∞). )Combining (53)-(57) yields ||𝑥|𝛾𝑢|𝐿𝑟
𝑎 ≤ 𝐶𝐴𝑎𝐵1−𝑎. 

For any 𝑢 ∈ 𝐶0(ℝ
𝑛), let 𝑈: (0,∞) → ℝ𝑛 denote its spherical mean function 

 

   𝑈(𝜌) =  ∫ 𝑢
2

|𝑥|=𝜌

                                                                                   (58) 

and let 𝑢∗ by the associated radial function on ℝ𝑛  

𝑢∗(𝑥) = 𝑈(|𝑥|).                                                                                  (59) 
We have  

 

                                          |𝐷𝑈(𝜌)| ≤ ∫ |𝐷𝑢|,
2

|𝑥|=𝜌

       |𝑈(𝜌)| ≤ ∫ |𝑢|
2

|𝑥|=𝜌

 

so that  

||𝑥|𝛼𝐷𝑢∗|𝐿𝑝
𝑎 ≤ 𝐴,               ||𝑥|𝛽𝐷𝑢∗|

𝐿𝑞
𝑎
                                                 (60) 

also, of course, 𝑢 − 𝑢∗ has mean zero on each sphere |𝑥| = 𝜌. 
Let 𝑅𝑘 = {2

𝑘 < |𝑥| ≤ 2𝑘+1} for integers 𝑘; by (II) we have 

                ∫ |𝑥|𝛾𝑟
1

𝑅𝑘

|𝑢 − 𝑢∗|𝑟

≤ 𝐶 (∫ |𝑥|𝛼𝑝
2

𝑅⋌

|𝐷𝑢 − 𝐷𝑢∗|𝑝)

𝑎𝑟 𝑝⁄

(∫ |𝑥|𝛽𝑞
2

𝑅⋌

|𝑢

− 𝑢∗|𝑞)

(1−𝑎)𝑟 𝑞⁄

                 (61) 

for each 𝑘. We add the inequalities (61), using (38) and (48), to conclude  

||𝑥|𝛾(𝑢 − 𝑢∗)|𝐿𝑟 ≤ 𝐶||𝑥|
𝛼𝐷(𝑢 − 𝑢∗)|𝐿𝑝

𝑎 ||𝑥|𝛽(𝑢 − 𝑢∗)|
𝐿𝑞
1−𝑎

,                               (62) 

whence using ( 60) and (I), 

||𝑥|𝛾𝑢|𝐿𝑟 ≤ 𝐶𝐴
𝑎𝐵1−𝑎 + ||𝑥|𝛾𝑢∗|𝐿𝑟 ≤ 𝐶𝐴

𝑎𝐵1−𝑎.                                         
Case 1 𝑝 + (𝛼 − 1) 𝑛 ≠ 1 𝑟 + 𝛾 𝑛⁄⁄⁄⁄  and 𝜎 < 𝛼 − 1 

Notice that in this case 𝑎 < 1  necessarily. we may assume 𝐴 = 𝐵 = 1,  since this 

normalization may be achieved by scaling. Since (4) has been showed for 𝜎 = 𝛼 − 1, we 

know that  
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||𝑥|𝛿𝑢|
𝐿𝑠
≤ 𝐶,      ||𝑥|𝜖𝑢∗|𝐿𝑡 ≤ 𝐶                                                                    (63) 

provided that 𝛿, 𝑠, 𝜖, and 𝑡 related by  

                                𝛿 = 𝑏𝛼 + (1 − 𝑏)𝛽 

                                
1

𝑠
=
𝑏

𝑝
+
1 − 𝑏

𝑞
−
𝑏

𝑛
 

                              𝜖 = 𝑑(𝛼 − 1) + (1 − 𝑑)𝛽 

       
1

𝑡
=
𝑑

𝑝
+
1 − 𝑑

𝑞
                                                                                                   (64) 

for some choices of  𝑏 and 𝑑, 0 ≤ 𝑏, 𝑑 ≤ 1, and provided that  
𝛿

𝑛
+
1

𝑠
> 0,         

𝜖

𝑛
+
1

𝑡
> 0.                                                                             (65) 

Under certain conditions upon 𝑏 and 𝑑 we shall see that (63) implies a bound for ||𝑥|𝛾𝑢|𝐿𝑟 . 

For  as in (23), we estimate 

(∫|𝑥|𝛾𝑟 |𝑢|𝑟)
1 𝑟⁄

≤ ||𝑥|𝜖𝑢|𝐿𝑡 (∫ |𝑥|(𝛾−𝜖)𝑡𝑟 (𝑡−𝑟)⁄
1

|𝑥|<1

)

1 𝑟−1 𝑡⁄⁄

                    (66) 

and  

(∫|𝑥|𝛾𝑟(1 −  )|𝑢|𝑟)
1 𝑟⁄

≤ ||𝑥|𝛿𝑢|
𝐿𝑠
(∫ |𝑥|(𝛾−𝛿)𝑠𝑟 (𝑠−𝑟)⁄

1

|𝑥|>
1
2

)

1 𝑟−1 𝑠⁄⁄

         (67) 

be Holder's inequality, provided that 
1

𝑡
≤       𝑎𝑛𝑑    

1

𝑠
≤
1

𝑟
.                                                                             (68) 

The integrals on the right in (66) and (67) converge if  
1

𝑡
+
𝜖

𝑛
<
1

𝑟
+
𝛾

𝑛
<
1

𝑠
+
𝛿

𝑛
.                                                                       (69) 

One computes that  

                                         
1

𝑡
+
𝜖

𝑛
= 𝑑 (

1

𝑝
+
𝛼 − 1

𝑛
) + (1 − 𝑑) (

1

𝑞
+
𝛽

𝑛
) 

                                        
1

𝑟
+
𝛾

𝑛
= 𝑎 (

1

𝑝
+
𝛼 − 1

𝑛
) + (1 − 𝑎) (

1

𝑞
+
𝛽

𝑛
) 

                                       
1

𝑠
+
𝛿

𝑛
= 𝑏 (

1

𝑝
+
𝛼 − 1

𝑛
) + (1 − 𝑏) (

1

𝑞
+
𝛽

𝑛
) 

so that (69) holds whenever  

                                      𝑏 < 𝑎 < 𝑑        𝑖𝑓   
1

𝑝
+
𝛼 − 1

𝑛
<
1

𝑞
+
𝛽

𝑛
   

                                      𝑑 < 𝑎 < 𝑏        𝑖𝑓   
1

𝑝
+
𝛼 − 1

𝑛
>
1

𝑞
+
𝛽

𝑛
, 

and (65) holds too if |𝑑 − 𝑎| and |𝑏 − 𝑎| are sufficiently small. One computes furthermore 

that  
1

𝑟
−
1

𝑠
= (𝑎 − 𝑏) (

1

𝑝
−
1

𝑞
−
1

𝑛
) +

𝑎

𝑛
(𝛼 − 𝜎)               

1

𝑟
−
1

𝑡
= (𝑎 − 𝑑) (

1

𝑝
−
1

𝑞
) +

𝑎

𝑛
(𝛼 − 𝜎 − 1);              

since 𝑎 > 0 and 𝜎 < 𝛼 − 1, 
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 0 <
𝑎

𝑛
(𝛼 − 𝜎 − 1) <

𝑎

𝑛
(𝛼 − 𝜎);                                       

therefore if  |𝑏 − 𝑎| and |𝑎 − 𝑑| are small enough (68) will hold as well. For such choices 

of 𝑏 and 𝑑, we use (63), (66), and (67) to conclude  

||𝑥|𝛾𝑢|𝐿𝑟 ≤ 𝐶. 

Section (2.2): Fractional Schrodinger Operators  
 We shall generalize several well known inequalities about the negative spectrum of 

Schrodinger-like operators on ℝ𝑑 . As an application of our results we shall give a proof of 

the ‘stability of relativistic matter’-one which goes further than previous shows by 

permitting the inclusion of magnetic fields for values of the nuclear charge all the way up 

to 𝑍𝛼 = 2 𝜋⁄ , which is the critical value in the absence of a field. 

 There are three main inequalities to which we refer. The first is Hardy’s inequality, 

whose classical form for 𝑑 ≥ 3 is the following. (we shall not be precise about the space 

of functions in question, but will be precise later on.) 

∫ (|∇𝑢(𝑥)|2 −
(𝑑 − 2)2

4|𝑥|2
|u(𝑥)|2)

2

ℝ𝑑
𝑑𝑥 ≥ 0.                                  (70) 

The second is Sobolev’s inequality for 𝑑 ≥ 3, 

∫ |∇𝑢(𝑥)|2𝑑𝑥 ≥ 𝑆2,𝑑 {∫ |𝑢(𝑥)|2𝑑 (𝑑−2)⁄ 𝑑𝑥
2

ℝ𝑑
}

1−2 𝑑⁄2

ℝ𝑑
= 𝑆2,𝑑‖𝑢‖2𝑑 (𝑑−2)⁄

2 .         (71) 

The third is the Lieb-Thirring (LT) inequality [91] for the Schr¨odinger operator 

𝐻 = −∆ − 𝑉 (𝑥). If its negative eigenvalues are denoted by −𝜆1  ≤  𝜆2 ≤ ⋯, and if 𝛾 ≥
 0, then  

∑𝜆𝑗
𝛾

𝑗

≤ 𝐿𝛾,𝑑∫ 𝑉(𝑥)+
𝛾+𝑑 2⁄

𝑑𝑥
2

ℝ𝑑
= 𝐿𝛾,𝑑‖𝑉+‖𝛾+𝑑 2⁄

𝛾+𝑑 2⁄
.                                     (72) 

This holds if and only if 𝛾 ≥
1

2
 when 𝑑 = 1, 𝛾 > 0 when 𝑑 = 2 and 𝛾 ≥ 0 when 𝑑 ≥ 3. 

(Here and in the sequel 𝑡− ≔ max {0, −t} and 𝑡− ≔ max {0, t} denote the negative and 

positive parts of 𝑡.) 
By duality, (71) is equivalent to the fact that the Schrodinger operator 𝐻 = −∆ − 𝑉 , 

with has no negative eigenvalues if  ‖𝑉+‖𝑑 2⁄ ≤ 𝑘𝑉 +
𝑘𝑑

2
≤ 𝑆2,𝑑. On the other hand, (72) 

gives an upper bound to the number of negative eigenvalues in terms of ‖𝑉+‖𝑑 2⁄  when 

𝛾 = 0 and it estimates the magnitude of these eigenvalues when 𝛾 > 0. 
 All three inequalities can be generalized by the inclusion of a magnetic vector 

potential 𝐴 (related to the magnetic field 𝐵 by 𝐵 = curl 𝐴). That is, 𝛻 is replaced by ∇ −
𝑖𝐴(𝑥), and ∆ by (∇ −  𝑖𝐴(𝑥))2 . The sharp constants in (70), (71) remain unchanged while 

the sharp constants in (72) that are independent of A might, in principle, be different from 

the ones for 𝐴 = 0. However, the best constants known so far do not depend on 𝐴. The 

inclusion of 𝐴 is easily done in (70), (71) by using the diamagnetic inequality, but the 

inclusion in (72) is more delicate; one uses the Feynman-Kac path integral formula to 

show that for each 𝑥, 𝑦 ∈ ℝ𝑑 and 𝑡, 𝜏 > 0, the 𝐴-field reduces the magnitude of the heat 

kernel et 𝑒𝑡(∇−𝑖𝐴)
2
 (𝑥, 𝑦)  relative to 𝑒𝑡∆ (𝑥, 𝑦),  and hence reduces the resolvent kernel 

|[−(∇ −  𝑖𝐴)2 +  𝜏 ]  −1(x, y)| relative to [−∆ +  𝜏]−1(𝑥, 𝑦). 
From [80] one can deduce that (70) and (71) can be combined as follows: For 

𝜀 > 0,  
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∫ (|∇𝑢(𝑥)|2 −
(𝑑 − 2)2

4|𝑥|2
|u(𝑥)|2 + |𝑢(𝑥)|2)

2

ℝ𝑑
𝑑𝑥 ≥ �́�2,𝑑,𝜀‖𝑢‖2𝑑 (𝑑−2+𝜀)⁄

2              (73) 

with �́�2,𝑑,𝜀 → 0 as 𝜀 → 0. Note the extra term |𝑢(𝑥)|2 on the left side to account for the 

fact that the left and right sides behave differently under scaling; examples show that it 

really is necessary to have 𝜀 > 0 here. 

In [84], a parallel extension of (72) for the negative eigenvalues – 𝜆𝑗  of the 

Schrodinger operator  𝐻 = −∆ − (𝑑 − 2)2/(4|𝑥|2) − 𝑉 is showed. For  𝛾 > 0 and 𝑑 ≥ 3,  

∑𝜆𝑗
𝛾

𝑗

≤ �́�𝛾,𝑑∫ 𝑉(𝑥)+
𝛾+𝑑 2⁄

𝑑𝑥
2

ℝ𝑑
= �́�𝛾,𝑑‖𝑉+‖𝛾+𝑑 2⁄

𝛾+𝑑 2⁄
,                                (74) 

with �́�𝛾,𝑑 ≥ 𝐿𝛾,𝑑. Note that there is no need for an 𝜀 in (74); the fact that 𝜀 ≠ 0  in (73) is 

reflected here in the fact that 𝛾 >  0 is needed. As before, a magnetic vector potential can 

easily be included in (73), but it does not seem easy to include a magnetic field in (74) by 

the methods in [84]. 

We extend these results in several ways. One extension is to include a magnetic 

field in (74). Another is to consider fractional powers of the (magnetic) Laplacian, i.e., to 

the case in which |∇ − 𝑖𝐴|2 is replaced by |∇ − 𝑖𝐴| 2 s with 0 < 𝑠 < min {1, 𝑑/2} (which 

means that we can now include one- and two-dimensions). This is a significant 

generalization because the operator (−∆)𝑠 is not a differential operator and it is not ‘local’. 

Really different techniques will be needed. We shall use the heat kernel to prove the 

analog of (74), in the manner of [87]. A bound on this kernel, in turn, will be derived from 

a Sobolev-like inequality (the analogue of (73)) by using an analogue of Nash’s inequality, 

as explained in [90]. The appropriate inequalities are naturally formulated in a weighted 

space with measure |𝑥|−𝛽𝑑𝑥 for 𝛽 > 0. Therefore, a pointwise bound on the heat kernel 

for a weighted ‘Hardy’ operator exp{−𝑡|𝑥|𝛼((−∆)𝑠 𝐶𝑠,𝑑  |𝑥|
−2𝑠 1)|𝑥|𝛼 } for appropriate 

𝛼 > 0 will be needed and will not be straightforward to obtain. 

In the dimension most relevant for physics, 𝑑 = 3, the earlier case  𝑠 = 1 may be 

called the non-relativistic case, while the new result for 𝑠 = 1/2  may be called the 

relativistic case. Indeed, the resulting LT inequality, together with some of the 

methodology in [92], yields a new proof of the stability of relativistic matter, which will 

be sketched. The main point, however, is that this new proof allows for an arbitrary 

magnetic vector potential 𝐴 . Since the constant in the relativistic (𝑠 = 1 2⁄ )  Hardy 

inequality that replaces (𝑑 − 2)2 4⁄  is 2/𝜋 (which is the same as the critical value of 𝑍𝛼 in 

the field-free relativistic case), we conclude that we can simultaneously have an arbitrary 

𝐴-field and the critical value of  𝑍𝛼, the nuclear charge times the fine-structure constant. 

Up to now it was not possible to have both an arbitrary field and 𝑍𝛼 = 2/𝜋. Therefore, the 

proof of the analogue of (74) for 𝑠 = 1/2  with an 𝐴-field opens a slightly improved 

perspective on the interaction of matter and radiation. 

∫ |𝑥|−2𝑠|𝑢(𝑥)|2𝑑𝑥 ≤ 𝐶𝑠,𝑑
−1

2

ℝ𝑑
∫ |𝜉|2𝑠|�̂�(𝜉)|2𝑑𝜉,        𝑢 ∈ 𝐶0

∞
2

ℝ𝑑
(ℝ𝑑),                  (75) 

valid for 0 < 2𝑠 < 𝑑. Here 

�̂�(𝜉) ≔ (2𝜋)−𝑑 2⁄ ∫ 𝑢(𝑥)𝑒−𝑖𝜉∙𝑥𝑑𝑥,1         𝜉 ∈ ℝ𝑑 ,
2

ℝ𝑑
 

denotes the Fourier transform of 𝑢. The sharp constant in (76), 
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𝐶𝑠,𝑑 ≔ 22𝑠
Γ2((𝑑 + 2𝑠) 4⁄ )

Γ2((𝑑 − 2𝑠) 4⁄ )
,                                                         (76) 

has been found independently by Herbst [86] and Yafaev [98]. Moreover, it is shown that 

this constant is not achieved in the class of functions for which both sides are finite. In the 

case 0 < 𝑠 <  min  {1, 𝑑/2},  this fact can also be deduced from our ground state 

representation in Proposition (2.2.9), which therefore represents an independent proof of 

(75).  

We denote 𝐷 = −𝑖∇. Consider a magnetic vector potential 𝐴 ∈ 𝐿 𝑙𝑜𝑐
2 (ℝ𝑑 , ℝ𝑑) and 

the self-adjoint operator (𝐷 − 𝐴)2 in 𝐿2(ℝ𝑑).  For 0 < 𝑠 ≤ 1  we define the operator 

|𝐷 − 𝐴|2𝑠: = ((𝐷 − 𝐴)2)𝑠  by the spectral theorem. One form of the diamagnetic 

inequality states that if  0 < 𝑠 ≤ 1 and 𝑢 ∈dom |𝐷 − 𝐴|𝑠 then |𝑢| ∈ 𝐻𝑠(ℝ𝑑) and 

‖(−∆)𝑠 2⁄ |𝑢|‖
2
≤ ‖|𝐷 − 𝐴|𝑠𝑢‖2.                                                      (77) 

Here and in the sequel, ‖ ∙ ‖ = ‖ ∙ ‖2 denotes the 𝐿2 -norm. We refer for more details 

concerning (77). Combining this inequality with the Hardy inequality (75) we find that the 

quadratic form 

ℎ𝑠,𝐴[𝑢] ≔ ‖|𝐷 − 𝐴|𝑠𝑢‖2 − 𝐶𝑠,𝑑‖|𝑥|
−𝑠𝑢‖2                                       (78) 

is non-negative on dom |𝐷 − 𝐴|𝑠 if  0 < 𝑠 < min{1, 𝑑/2}. We use the same notation for 

its closure and denote by 

𝐻𝑠,𝐴 = |𝐷 − 𝐴|
2𝑠 − 𝐶𝑠,𝑑|𝑥|

−2𝑠                             

the corresponding self-adjoint operator in  𝐿2(ℝ𝑑). Our main result is 

Theorem (2.2.11) will be showed. The main ingredient in its proof is a Sobolev-type 

inequality which might be of independent interest and which we shall present. 

 For the case 𝐴 = 0 we shall drop the index 𝐴 from the notation, i.e., 

ℎ𝑠,𝐴[𝑢] = ∫ |𝜉|2𝑠|�̂�(𝜉)|2𝑑𝜉 − 𝐶𝑠,𝑑

2

ℝ𝑑
∫ |𝑥|−2𝑠
2

ℝ𝑑
|𝑢(𝑥)|2𝑑𝑥. 

We denote the closure of this form by the same letter. In particular, its domain dom ℎ𝑠 is 

the closure of 𝐶0
∞(ℝ𝑑)  with respect to the norm (ℎ𝑠 [𝑢] + ‖𝑢‖

2)1 2⁄  . Note that 

𝐻𝑠(ℝ
𝑑) ⊂dom ℎ𝑠 with strict inclusion. In particular, there exist functions 𝑢 ∈ dom ℎ𝑠 for 

which both sides of (75) are infinite. 

Hardy’s inequality (75) implies that ℎ𝑠 is non-negative. The following theorem 

shows that for functions of compact support it even satisfies a Sobolev-type inequality; 

i.e., ℎ𝑠[𝑢] can be bounded from below by an 𝐿𝑞-norm of 𝑢. 
Note that (95) may be written in the scale-invariant form 

‖𝑢‖𝑞 ≤ �́́�𝑞,𝑑,𝑠ℎ𝑠[𝑢]
𝑑
2𝑠
(
1
2
−
1
𝑞
)
‖𝑢‖

𝑑
𝑠
(
1
𝑞
−
1
2∗
)
,                                        (79) 

where �́́�𝑞,𝑑,𝑠 can be expressed explicitly in terms of  �́�𝑞,𝑑,𝑠 . This inequality follows from 

applying (95) to functions of the form 𝑢𝜆(𝑥) =  𝑢(𝜆𝑥) and then optimizing over the choice 

of  𝜆. 

Although the sharp constants in Theorems (2.2.11) and (2.2.6), as well as in 

Corollary (2.2.8), are unknown, explicit upper bounds involving a certain variational 

expression can be deduced from our proof. We do evaluate explicit bounds on the 

constants in Theorem (2.2.6) in the special case 𝑑 = 3, 𝑠 = 1/2,  which is the most 

interesting case from a physical point of view, as will be explained. 

We shall now explain how the inequalities in Theorem (2.2.11) can be used to show  

stability of relativistic matter in the presence of an external magnetic field. The proof 
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works up to and including the critical value 𝑍𝛼 = 2/𝜋, which is a new result and solves a 

problem that has been open for a long time. See [88], [89]. 

We consider 𝑁  electrons of mass 𝑚 ≥ 0 with 𝑞  spin states (𝑞 = 2 for real elec-

trons) and 𝐾  fixed nuclei with (distinct) coordinates 𝑅1, . . . , 𝑅𝑘 ∈ ℝ
3  and charges 

𝑍1, . . . , 𝑍𝑘 > 0. 𝐴 pseudo-relativistic description of the corresponding quantum-mechanical 

system is given by the Hamiltonian 

𝐻𝑁,𝐾 =∑(√(𝐷𝑗 − √𝛼𝐴(𝑥𝑗))
2 +𝑚2 −𝑚)

𝑁

𝑗=1

+ 𝛼𝑉𝑁,𝐾(𝑥1, ⋯ , 𝑥𝑁). 

The Pauli exclusion principle dictates that 𝐻𝑁,𝐾 acts on functions in the anti-symmetric 𝑁 -

fold tensor product of 𝐿2(ℝ3; ℂ𝑞). Here we use units where ℎ = 𝑐 = 1, 𝛼 > 0 is the fine 

structure constant, and 

𝑉𝑁,𝐾(𝑥1,⋯ , 𝑥𝑁) ≔ ∑ |𝑥𝑖 − 𝑥𝑗|
−1

1≤𝑖<𝑗≤𝑁

−∑∑𝑍𝑘

𝐾

𝑘=1

𝑁

𝑗=1

|𝑥𝑗 − 𝑅𝑘|
−1

 

+ ∑ 𝑍𝑘𝑍𝑙|𝑅𝑘 − 𝑅𝑙|
−1.

1≤𝑘<𝑖≤𝑘

 

Stability of matter means that 𝐻𝑁,𝐾 is bounded from below by a constant times (𝑁 +  𝐾), 
independently of the positions 𝑅𝑘 of the nuclei. 

By combining the methods in [92] and our Theorem (2.2.11), one can show the 

following 

Theorem (2.2.1)[77]:(Stability of relativistic matter). There is an 𝛼𝑐 > 0 such that for all 

𝑁,𝐾, 𝑞𝛼 ≤ 𝛼𝑐 and 𝛼 max{𝑍1, … , 𝑍𝐾 ≤ 2 𝜋⁄  one has  

𝐻𝑁,𝐾 ≥ −𝑚𝑁. 
The constant 𝛼𝑐 can be chosen independently of 𝑚,𝐴 and 𝑅1, … , 𝑅𝐾 . 

The constant 𝛼𝑐 in Theorem (2.2.1) depends on the optimal constant in the Hardy-

inequality (108) for 𝑑 = 3 and 𝑠 = 1/2. 𝐴 bound on this constant, in turn, can be obtained 

from our proof in terms of the constant in the Sobolev-Hardy inequalities (91). We do 

derive a bound on the relevant constants in Appendix A, but these bounds are probably far 

from optimal. In particular, the available constants do not yield realistic values of 𝛼𝑐 so 

far. 

We discovered a different proof of the special case of the Hardy-LT inequality 

needed in the proof of  Theorem (2.2.1), namely the case where the potential 𝑉 is constant 

inside the unit ball, and infinite outside. In this special case a substantially improved 

constant can be obtained, and this permits the conclusion that Theorem (2.2.1) holds for 

the physical value of 𝛼, which equals 𝛼 ≈ 1/137. See [85]. 

We briefly outline the proof of Theorem (2.2.1). An examination of the proof in 

[92] shows that there are two places that do not permit the inclusion of a magnetic vector 

potential 𝐴. (Localization of kinetic energy – general form) and (Lower bound to the short-

range energy in a ball). Our Lemma (2.2.16.) is precisely the extension of  to the magnetic 

case. This lemma implies that in [92] holds also in the magnetic case, without change 

except for replacing  |𝐷| 𝑏𝑦 |𝐷 − 𝐴|. 
Our Theorem (2.2.11) can be used instead in [92]. In fact, the left side in [92] is 

bounded from below by 𝑞‖𝜒‖∞
2  times the sum of the negative eigenvalues of  |𝐷 − 𝐴| −

2

𝜋
|𝑥|−1 − 𝐶𝑅−1𝜃𝑅(𝑥), where 𝜃𝑅 denotes the characteristic function of a ball of radius 𝑅. 
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By Theorem (2.2.11), this latter sum is bounded from below by a constant times 𝐶4𝑅−1. 

The resulting bound is of the same form as the right side, except for the constant. It is this 

constant that determines the maximally allowed value of the fine structure constant, 𝛼𝑐 
.The rest of the show remains unchanged. Note that, in particular, the Daubechies 

inequality [81] remains true also in the presence of a magnetic field. 

Before giving the proofs of our main results, we pause to outline the structure. 

   (i) we give the proof of the Sobolev-Hardy inequalities in Theorem (2.2.6)   and 

Corollary (2.2.8). 

   (ii) In the following we show what is customarily called the “ground state 

representation” in Proposition (2.2.9) except that here the “ground state” fails to be an 𝐿2 

function. Such a representation for fractional differential operators does not seem to have 

appeared in the literature before. 

   (iii) we give the proof of our main Theorem (2.2.11) about Hardy-LT inequalities. We 

first consider the non-magnetic case 𝐴 = 0. One of the key ingredients is the ground state 

representation obtained, which allows us to show a certain contraction property of the heat 

kernel in some weighted 𝐿1-spaces. Nash’s argument [90] then allows us to translate the 

Sobolev-Hardy inequalities in Corollary (2.2.8) into point wise bounds on the heat kernel 

in an appropriate weighted 𝐿𝑝-space. These bounds lead to the Hardy-LT inequalities via 

the trace formula in Proposition (2.2.12)  in the spirit of [87]. 

   (iv) Finally, we derive diamagnetic inequalities which will allow us to extend the show  

of Theorem (2.2.11)  to the magnetic case. 

We show Theorem (2.2.6) and Corollary (2.2.8) We start with a short outline of the 

structure of the proof. 

Our proof is based on the fact that we can control the singularity of  𝐻𝑠𝜓 near the 

origin if we know the singularity of 𝜓 at that point (cf. Lemma 2.2.5). Theorem (2.2.6) fol- 

lows by observing that the 𝐿𝑞-norm of a symmetric decreasing function can be bounded 

above by integrating the function against  |𝑥|𝑑(1 𝑞−1)⁄  , see Lemma (2.2.5). Moreover, it is 

enough to restrict one’s attention to symmetric decreasing functions. Corollary (2.2.8) 

follows from Theorem (2.2.6) by an 𝐼𝑀𝑆-type localization argument, see Lemma (2.2.7) 

We present some auxiliary results in the following. The next two contain the shows of  

Theorem (2.2.6) and Corollary (2.2.8), respectively. 

We start with the following integral representation of the operator (−∆)𝑠. 
Lemma (2.2.2)[77]: Let 𝑑 ≥ 1 and 0 < 𝑠 < 1. Then for all 𝑢 ∈ 𝐻𝑠(ℝ𝑑) 

∫ |𝜉|2𝑠|�̂�(𝜉)|2𝑑𝜉 = 𝑎𝑠,𝑑

2

ℝ𝑑
∫ ∫

|𝑢(𝑥) − 𝑢(𝑦)|2

|𝑥 − 𝑦|𝑑+2𝑠

2

ℝ𝑑

2

ℝ𝑑
𝑑𝑥𝑑𝑦,                       (80) 

where  

𝑎𝑠,𝑑 ≔ 22𝑠−1𝜋−𝑑 2⁄
Γ((𝑑 + 2𝑠) 2⁄ )

|Γ(−s)|
.                                         (81) 

Lemma (2.2.2) is well known; we sketch the proof. 

Proof: For fixed y we change coordinates  𝑧 = 𝑥 − 𝑦 and apply Plancherel. Recalling that 

(𝑢(· + 𝑧)) ∧(𝜉) = 𝑒𝑖𝜉·𝑧 �̂�(𝜉) we obtain 

∫∫
|𝑢(𝑥) − 𝑢(𝑦)|2

|𝑥 − 𝑦|𝑑+2𝑠
𝑑𝑥𝑑𝑦 = ∫(∫|𝑧|−𝑑−2𝑠 |𝑒𝑖𝜉·𝑧 − 1|

2
𝑑𝑧) |�̂�(𝜉)|2𝑑𝜉. 

The integral in brackets is of the form  𝑐𝑠,𝑑|𝜉 |
2𝑠, with 
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              𝑐𝑠,𝑑 ≔ ∫ ∫ |𝑒𝑖𝑟𝑤.𝜃 − 1|
2

2

𝕊𝑑−1

∞

0

𝑑𝜃𝑟−2𝑠−1𝑑𝑟            

= 2∫ (|𝕊𝑑−1|
∞

0

− (2𝜋)𝑑 2⁄ 𝑟−(𝑑−2) 2⁄ 𝐽(𝑑−2) 2⁄ (𝑟))𝑟
−2𝑠−1𝑑𝑟.   

Here,  𝐽(𝑑−2) 2⁄   is the Bessel function of the first kind of order (𝑑 − 2)/2 [78]. Recall that  

|𝕊𝑑−1| =  2𝜋𝑑/2/𝛤(𝑑/2). The formula (81) for 𝑐 𝑠,𝑑 = 𝑎𝑠,𝑑
−1  follows now from 

∫ 𝑟−𝑧
∞

0

(𝐽(𝑑−2) 2⁄ (𝑟) − 2
−(𝑑−2) 2⁄ Γ(𝑑 2⁄ )−1𝑟(𝑑−2) 2⁄ )𝑑𝑟 = 2−𝑧

Γ((𝑑 − 2𝑧) 4⁄ )

Γ((𝑑 + 2𝑧) 4⁄ )
 

for 𝑑 2⁄ < 𝑅𝑒 𝑧 < (𝑑 + 4)/2, see [98]. 

Let us recall that |𝑥|−𝛼  is a tempered distribution for 0 < 𝛼 < 𝑑  with Fourier 

transform  

𝑏𝛼(| ⋅ |
−𝛼)∧(𝜉 ) =  𝑏𝑑−𝛼|𝜉 |

−𝑑+𝛼 ,       𝑏𝛼: =  2
𝛼 2⁄ 𝛤(𝛼 2⁄ )                               (82) 

(see, e.g., [90], where another convention for the Fourier transform is used, however). We 

assume now that  𝑠 < 𝑑/2.  Then (−∆)𝑠|𝑥|−𝛼  is an 𝐿𝐿𝑜𝑐
1 -function for  0 < 𝛼 < 𝑑 − 2𝑠 

and 

((−∆)𝑠 − 𝐶𝑠,𝑑|𝑥|
−2𝑠)|𝑥|−𝛼 = Φ𝑠,𝑑(𝛼)|𝑥|

−𝛼−2𝑠,                              (83) 

where 𝐶𝑠,𝑑  is defined in (76) and 

          Φ𝑠,𝑑(𝛼) ≔
𝑏𝛼+2𝑠𝑏𝑑−𝛼
𝑏𝑑−𝛼−2𝑠 𝑏𝛼

− 𝐶𝑠,𝑑    

= 22𝑠 (
Γ((𝛼 + 2𝑠) 2⁄ ) Γ((𝑑 − 𝛼) 2⁄ )

Γ((𝑑 − 𝛼 − 2𝑠) 2⁄ ) Γ(𝛼 2⁄ )

−
Γ2((𝑑 + 2𝑠) 4⁄ )

Γ2((𝑑 − 2𝑠) 4⁄ )
).                          (84) 

Later on we will need the following information about the 𝛼-dependence of Φ𝑠,𝑑 . 
Lemma (2.2.3)[77]:The function Φ𝑠,𝑑  is negative and strictly increasing in (0, (𝑑 −
2𝑠)/2) with Φ𝑠,𝑑 ((𝑑 − 2𝑠)/2) = 0. 
Proof. First one checks that  

lim
𝛼→0

Φ𝑠,𝑑(𝛼) = −𝐶𝑠,𝑑 < 0,         Φ𝑠,𝑑((𝑑 − 2𝑠) 2⁄ ) = 0.                             (85) 

Now we abbreviate 𝛽:= 𝛼/2, 𝑟 ∶= 𝑑/2 and write 

𝑓(𝛽):= 𝛤(𝛽) 𝛤(𝑟 − 𝛽)⁄ ,         𝑔(𝛽) ∶= 𝑓(𝛽 + 𝑠)/𝑓(𝛽), 
so that Φ𝑠,𝑑(𝛼) = 2

2𝑠𝑔(𝛽) − 𝐶𝑠,𝑑. In view of (85) it suffices to verify that 𝑔(𝛽) is strictly 

increasing with respect to 𝛽 ∈ (0, (𝑟 − 𝑠)/2). One finds that 

𝑓′(𝛽)

𝑓(𝛽)
=
𝛤′(𝛽)

𝛤(𝛽)
+
𝛤′(𝑟 − 𝛽)

𝛤(𝑟 − 𝛽)
= 𝜓(𝛽) + 𝜓(𝑟 − 𝛽)                                              (86) 

with 𝜓 = 𝛤′/𝛤 the Digamma function. Hence 

𝑔′(𝛽) = 𝑔(𝛽) (
𝑓′(𝛽 + 𝑠)

𝑓(𝛽 + 𝑠)
−
𝑓′(𝛽)

𝑓(𝛽)
) = 𝑔(𝛽)∫ ℎ(𝑡) 𝑑𝑡

𝛽+𝑠

𝛽

  

where, in view of (86), ℎ(𝑡):= 𝜓′(𝑡) − 𝜓′(𝑟 − 𝑡).  Since 𝜓′  is strictly decreasing (see 

[78]), one has ℎ(𝑡) > 0 for 𝑡 ∈ (0, 𝑟/2). This showes that 𝑔′(𝛽) > 0 for all 𝛽 ∈ (0, (𝑟 −
2𝑠)/2) . In the case 𝛽 ∈ ((𝑟 − 2𝑠)/2, (𝑟 − 𝑠)/2)  one uses in addition the symmetry 

ℎ(𝑡) = −ℎ(𝑟 − 𝑡). 
Our proof of Theorem (2.2.6) is close in spirit to [79] where a remainder term in the 

Sobolev inequality on bounded domains was found .We first exhibit functions  𝜓 ∈dom ℎ𝑠 
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in the form domain which do not lie in the operator domain but for which the singularity 

of the distribution (indeed, function) 𝐻𝑠𝜓 at 𝑥 = 0 can be calculated explicitly 

Lemma (2.2.4)[77]:  Let 0 ≤ 𝜒 ≤ 1 be a smooth function on ℝ+of compact support, with 

𝜒(𝑟) = 1  for 𝑟 ≤ 1 Define 

𝜓𝜆(𝑥) ≔ 𝜒(|𝑥| 𝜆⁄ )|𝑥|−𝛼                                                         (87) 
for 0 < 𝛼 < (𝑑 − 2𝑠)/2 and 𝜆 > 0. Then  𝜓𝜆 ∈dom ℎ𝑠 for 0 < 𝑠 < 1 and, for every 𝜀 >
0 , there exists 𝑎𝜆𝜀 = 𝜆𝜀(𝛼, 𝑑, 𝑠, 𝜒) such that for any 𝜆 ≥ 𝜆𝜀 ,   

(((−∆)2 − 𝐶𝑠,𝑑|𝑥|
−2𝑠)𝜓𝜆) (𝑥) ≤ −(|Φ𝑠,𝑑(𝛼)| − 𝜀)|𝑥|

−𝛼−2𝑠   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝐵,             (88) 

in the sense of distributions. Here, Φ𝑠,𝑑 (α) is given in (84), and 𝐵 denotes the unit ball in 

ℝ𝑑. 

Proof: It is not difficult to show that 𝜓𝜆 ∈ 𝐻
𝑠(ℝ𝑑), which implies that 𝜓𝜆∈dom ℎ𝑠  . 

(Consult the proof of Proposition (2.2.9) for details.) Let 0 ≤ 𝜑 ∈ 𝐶0
∞(𝐵). According to 

(83) one has 

(𝜓𝜆, ((−∆)
𝑠 − 𝐶𝑠,𝑑|𝑥|

−2𝑠)𝜑) = Φ𝑠,𝑑(𝛼)(|𝑥|
−𝛼−2𝑠, 𝜑) − (�̃�𝜆, (−∆)

𝑠𝜑), 

where �̃�𝜆(𝑥):= (1 − 𝜒(|𝑥|/𝜆))|𝑥|
−𝛼  . It follows from Lemma (2.2.2) (with the aid of 

polarization) that 

(�̃�𝜆, (−∆)
𝑠𝜑) = −2𝑎𝑠,𝑑∫∫

�̃�𝜆(𝑦)𝜑(𝑥)

|𝑥 − 𝑦|𝑑+2𝑠
𝑑𝑥𝑑𝑦 ≥ −𝜌(𝜆)∫

𝜑(𝑥)

|𝑥|𝛼+2𝑠
𝑑𝑥,

2

ℝ𝑑
 

with  

𝜌(𝜆) = sup
|𝑥|≤1

2𝑎𝑠,𝑑 |𝑥|
𝛼+2𝑠∫

�̃�𝜆(𝑦)

|𝑥 − 𝑦|𝑑+2𝑠
𝑑𝑦                                                                            

= sup
|𝑥|≤1 𝜆⁄

2𝑎𝑠,𝑑 |𝑥|
𝛼+2𝑠∫

1 − 𝜒(𝑦)

|𝑦|𝛼|𝑥 − 𝑦|𝑑+2𝑠
𝑑𝑦.                                                    (89) 

Note that 𝜌(𝜆) is finite for 𝜆 ≥ 1, and monotone decreasing to 0 as 𝜆 → ∞. Hence, for a 

given 𝜀 > 0 we can choose 𝜆𝜀 such that  𝜌(𝜆𝜀) = 𝜀. Since Φ𝑠,𝑑(𝛼) is negative by Lemma 

(2.2.3) we have established (88). 

Lemma (2.2.5)[77]: Let 1 ≤ 𝑞 < ∞  and 𝑢 ∈ 𝐿𝑞(ℝ𝑑) 𝑎  symmetric decreasing function. 

Then 

‖𝑢‖𝑞 ≤ 𝑞
−1|𝐵|−1 �́�⁄ ∫ 𝑢(𝑥)|𝑥|−𝑑 �́�⁄

2

ℝ𝑑
𝑑𝑥                                       (90) 

where |𝐵| is the volume of the unit ball 𝐵 in ℝ𝑑, and 1/𝑞 + 1/𝑞′ = 1. 
Proof: First note that (90) is true (with equality) if 𝑢 is the characteristic function of a 

centered ball. For general 𝑢  we use the layer cake representation [90], 𝑢(𝑥) =

∫ 𝜒𝑡(𝑥) 𝑑𝑡
∞

0
, where 𝜒𝑡  is the characteristic function of a centered ball of a certain 𝑡 

dependent radius. Then, by Minkowski’s inequality [90], 

             ‖𝑢‖𝑞 ≤ ∫ ‖𝜒𝑡‖𝑞𝑑𝑡 = 𝑞
−1|𝐵|−1 �́�⁄

∞

0

∫ ∫𝜒𝑡(𝑥)|𝑥|
−𝑑 �́�⁄ 𝑑𝑥𝑑𝑡

∞

0

= 𝑞−1|𝐵|−1 �́�⁄ ∫𝑢(𝑥)|𝑥|−𝑑 �́�⁄ 𝑑𝑥  

showing (90) 

Now we give  
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Theorem (2.2.6)[77]: (Local Sobolev-Hardy inequality). Let 0 < 𝑠 < 

min{1, 𝑑 2⁄ }𝑎𝑛𝑑 1 ≤  𝑞 < 2∗ = 2𝑑/(𝑑 − 2𝑠). Then there exists a constant 𝐶𝑞,𝑑,𝑠 > 0 such 

that for any domain Ω ⊂ ℝ𝑑 with finite measure |Ω| one has  

‖𝑢‖𝑞
2 ≤ 𝐶𝑞,𝑑,𝑠 |Ω| 

2(
1
𝑞
−
1
2∗
)
ℎ𝑠 [𝑢], 𝑢 ∈ 𝐶 0

∞(Ω).                                  (91) 

Proof. We may assume Ω to be a ball and u to be a spherically symmetric decreasing 

function. Indeed, passing to the symmetric decreasing rearrangement of 𝑢 leaves the left 

side of (91) invariant while it decreases the right side. The kinetic energy term on the right 

side is decreased by virtue of Riesz’s rearrangement inequality (compare with and 

∫ |𝑢|2 |𝑥|−2𝑠 𝑑𝑥 increases Moreover, by scaling we may assume that Ω = 𝐵, the unit ball. 

Since 𝐵 is bounded, Hölder’s inequality implies that it suffices to show (91) for 

𝑑/(𝑑 − 2𝑠) < 𝑞 < 2𝑑/(𝑑 − 2𝑠). For such 𝑞  let 𝛼:= 𝑑/𝑞′ − 2𝑠  and note that  0 < 𝛼 <
(𝑑 − 2𝑠)/2. It follows from Lemmas (2.2.5) and (2.2.4) that for symmetric decreasing 

functions 𝑢 on 𝐵 

‖𝑢‖𝑞 ≤ 𝑞
−1|𝐵|−1 �́�⁄ ∫ 𝑢(𝑥)|𝑥|−𝑑 �́�⁄ 𝑑𝑥 ≤

2

𝐵

2𝑞−1|𝐵|−1 �́�⁄ |Φ𝑠,𝑑(𝛼)|
−1
|(𝑢, 𝐻𝑠𝜓)|. 

Here 𝜓 = 𝜓𝜆𝜀  is chosen as in Lemma (2.2.4), with 𝜀 = |Φ𝑠,𝑑(𝛼)|/2.  An application 

of Schwarz’s inequality, |(𝑢, 𝐻𝑠𝜓)|
2 ≤ ℎ𝑠 [𝑢]ℎ𝑠[𝜓], concludes the show of (91). 

We shall give an upper bound on the constant appearing in the Sobolev inequality in 

the special case of 𝑑 = 3 and 𝑠 = 1/2, which is the case of interest in the application . 

We will deduce Corollary (2.2.8) from Theorem (2.2.6) by a localization argument. 

For comparison, we recall first the IMS formula in the local case 𝑠 = 1.  If 𝜒0 , . . . , 𝜒𝑛 are 

Lipschitz continuous functions on ℝ𝑑 satisfying ∑ 𝜒𝑗
2 ≡ 1𝑛

𝑗=0  , then  

∫ (|∇𝑢|2 −
(𝑑 − 2)2

4

|𝑢|2

|𝑥|2
)

2

ℝ𝑑
𝑑𝑥

=∑∫ (|∇(𝜒𝑗𝑢)|
2
−
(𝑑 − 2)2

4

|𝜒𝑗𝑢|
2

|𝑥|2
)

2

ℝ𝑑
𝑑𝑥

𝑛

𝑗=0

−∫ ∑|∇𝜒𝑗|
2

𝑛

𝑗=0

2

ℝ𝑑
|𝑢|2𝑑𝑥.       (92) 

The following analogous formula for the non-local case, suggested by Michael Loss, is 

given in [92]. The proof is an immediate consequence of Lemma (2.2.2). For a general 

ization to the magnetic case, see Lemma (2.2.16) below. 

Lemma (2.2.7)[77]:  Let 0 < 𝑠 < min{1, 𝑑/2} and let  𝜒0, . . . , 𝜒𝑛 be Lipschitz continuous 

functions on ℝ𝑑 satisfying ∑ 𝜒𝑗
2 ≡ 1𝑛

𝑗=0 . Then 

ℎ𝑠[𝑢] =∑ℎ𝑠[𝜒𝑗
2𝑢]

𝑛

𝑗=0

− (𝑢, 𝐿𝑢)        𝑢 ∈ 𝐶0
∞(ℝ𝑑),                        (93) 

where 𝐿 is the bounded operator with integral kernel 

𝐿(𝑥, 𝑦) ≔ 𝑎𝑠,𝑑|𝑥 − 𝑦|
−𝑑−2𝑠∑(𝜒𝑗

2(𝑥) − 𝜒𝑗
2(𝑦))

2
.

𝑛

𝑗=0

 

Let us recall the following (non-critical) Sobolev embedding theorem, which is easy 

to show. (Cf., e.g., the proof of [90].) If 𝑠 < 𝑑/2 and 2 ≤ 𝑞 < 2∗ = 2𝑑/(𝑑 − 2𝑠) then  

𝐻𝑠(ℝ𝑑) ⊂ 𝐿𝑞(ℝ𝑑) and 
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‖𝑢‖𝑞
2 ≤ 𝑆𝑞,𝑑,𝑠  (‖(−∆)

𝑠 2⁄ 𝑢‖
2
+ ‖𝑢‖2) ,         𝑢 ∈ 𝐻𝑠(ℝ𝑑).                       (94) 

In combination with the localization Lemma (2.2.7) this allows us to give the 

Corollary (2.2.8)[77]: (Global Sobolev-Hardy inequality). Let 0 < 𝑠 < min {1, 𝑑/2} and 

2 ≤ 𝑞 < 2 ∗ = 2𝑑/(𝑑 − 2𝑠). Then there exists a constant 𝐶′𝑞,𝑑,𝑠 > 0 such that 

‖𝑢‖𝑞
2 ≤ 𝐶′𝑞,𝑑,𝑠 (ℎ𝑠 [𝑢] + ‖𝑢‖

2),         𝑢 ∈ 𝐶0
∞(ℝ𝑑).                            (95) 

Proof. Let  𝜒0 ,  𝜒1 be smooth functions on ℝ𝑑 with 𝜒0
2 + 𝜒1

2 ≡ 1 such that  𝜒0(𝑥) = 0 if  

|𝑥| ≥ 1 and 𝜒1(𝑥) = 0 if  |𝑥| ≤
1

2
. Let  2 ≤ 𝑞 <  2𝑑/(𝑑 − 2𝑠). Then, by Theorem (2.2.6), 

‖𝜒0𝑢‖𝑞
2 ≤ 𝐶𝑞,𝑑,𝑠|𝐵|

2(
1
𝑞
−
1
2∗
)
ℎ𝑠[𝜒0𝑢], 

and by (94)  

        ‖𝜒1𝑢‖𝑞
2 ≤ 𝑆𝑞,𝑑,𝑠 (‖(−∆)

𝑠 2⁄ (𝜒1𝑢)‖
2
+ ‖𝜒1𝑢‖

2)

≤ 𝑆𝑞,𝑑,𝑠(ℎ𝑠[𝜒1𝑢] + (2
2𝑠𝐶𝑠,𝑑 + 1)‖𝜒1𝑢‖

2). 

Hence Corollary (2.2.8) follows from Lemma (2.2.7) noting that 𝐿 is a bounded operator. 

Eq. (83) and Lemma (2.2.3) suggest that the function  |𝑥|−(𝑑−2𝑠)/2 is a ‘generalized 

ground state’ of the operator Hs. Our next goal is to establish a ground state repre- 

sentation. Let us recall the analogous formula in the ‘local’ case 𝑠 = 1. If 𝑑 ≥ 3 and 

𝜐(𝑥) = |𝑥|(𝑑−2) 2⁄ 𝑢(𝑥) then  

∫ (|∇𝑢|2 −
(𝑑 − 2)2

4

|𝑢|2

|𝑥|2
)

2

ℝ𝑑
𝑑𝑥 = ∫ |∇𝜐|2

𝑑𝑥

|𝑥|𝑑−2
.

2

ℝ𝑑
                           (96) 

The corresponding formula in the non-local case 0 < 𝑠 < 1 is more complicated but close 

in spirit. It was derived some years ago by Michael Loss for the relativistic case  𝑠 = 1/2 

and 𝑑 = 3. 
Proposition (2.2.9)[77]: (Ground State Representation). Let 0 < 𝑠 <min{1, 𝑑/2}. If 𝑢 ∈
𝐶0
∞(ℝ𝑑\ {0}) and 𝜐(𝑥) = |𝑥|(𝑑−2𝑠)/2 𝑢(𝑥), then 

ℎ𝑠[𝑢] = 𝑎𝑠,𝑑∫ ∫
|𝜐(𝑥) − 𝜐(𝑦)|2

|𝑥 − 𝑦|𝑑+2𝑠

2

ℝ𝑑

2

ℝ𝑑

𝑑𝑥

|𝑥|(𝑑−2𝑠) 2⁄
𝑑𝑦

|𝑦|(𝑑−2𝑠) 2⁄
,                         (97) 

with 𝑎𝑠,𝑑  given in (81). 

Proof: Let 0 < 𝛼 < (𝑑 − 2𝑠)/2. We shall prove that if 𝑢 ∈ 𝐶0
∞(ℝ𝑑\ {0}) and  𝜐𝛼(𝑥):=

|𝑥|𝛼𝑢(𝑥) then 

                 ∫ |𝜉|2𝑠|𝑢 ̂(𝜉)|2
2

ℝ𝑑
𝑑𝜉 − (𝐶𝑠,𝑑 +Φ𝑠,𝑑(𝛼))∫ |𝑥|−2𝑠|𝑢(𝑥)|2

2

ℝ𝑑
𝑑𝑥

= 𝑎𝑠,𝑑∫ ∫
|𝜐𝛼(𝑥) − 𝜐𝛼(𝑦)|

2

|𝑥 − 𝑦|𝑑+2𝑠

2

ℝ𝑑

2

ℝ𝑑

𝑑𝑥

|𝑥|𝛼
𝑑𝑦

|𝑦|𝛼
.                                                         (98) 

The proposition follows by letting 𝛼 → (𝑑 − 2𝑠)/2. Indeed, the constant in front of the 

second integral on the left side then converges to 𝐶𝑠,𝑑, according to Lemma (2.2.3). By 

splitting the integral into four regions according to the support of  𝑢, it is easy to see that 

the right side is continuous in 𝛼 and converges to the right side of (97). 

For the proof of (98) we can suppose that the support of 𝑢 is in the unit ball. We 

shall first prove the equality for mollified versions of  |𝑥|−𝛼 , namely functions  𝜔𝑛(𝑥) =
|𝑥|−𝛼 𝜒(𝑥/𝑛), where 𝜒 ∈ 𝐶0

∞(ℝ𝑑) with 𝜒(𝑥) = 1 for  |𝑥| ≤ 1. 

Let us first show that 𝜔𝑛 ∈ 𝐻
𝑠(ℝ𝑑) . It is clearly in 𝐿2(ℝ𝑑), hence it suffices to es- 

tablish that  (−∆)𝑠/2𝜔𝑛 ∈ 𝐿
𝑠(ℝ𝑑). According to [90] the Fourier transform of 𝜔𝑛 is given 

by the convolution of   𝜒 ̂ and  |𝜉 |𝛼−𝑑  . Since 𝜒 is assumed to be smooth, �̂� decays faster 
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than any power of  |𝜉 |. It is then easy to see that �̂�𝑛 decays like |𝜉 |𝛼−𝑑  , and hence  

|𝜉 |𝑠 𝜓 ̂ ∈ 𝐿2(ℝ𝑑).  
By polarization in Lemma (2.2.6), we get for any 𝑓 and g in 𝐻2(ℝ𝑑), 

∫ |𝜉 |2𝑠
2

ℝ𝑑
𝑓 ̂(𝜉)̅̅ ̅̅ ̅̅ ̅𝑔 ̂(𝜉)𝑑𝜉

= 𝑎𝑠,𝑑∫∫ (𝑓(𝑥)̅̅ ̅̅ ̅̅ − 𝑓(𝑦)̅̅ ̅̅ ̅̅ )
2

ℝ𝑑×ℝ𝑑
(𝑔(𝑥) − 𝑔(𝑦))

𝑑𝑥𝑑𝑦

|𝑥 − 𝑦|𝑑+2𝑠
.     (99) 

We apply this formula to 𝑔(𝑥) = 𝜔𝑛(𝑥)  and 𝑓(𝑥) = |𝑢(𝑥)|2/𝜔𝑛(𝑥) = |𝑢(𝑥)|
2|𝑥|𝛼 . In 

this case, the right side of (99) is given by 

𝑎𝑠,𝑑∫∫ (|𝑢(𝑥) − 𝑢(𝑦)|2 − |
𝑢(𝑥)

𝜔𝑛(𝑥)
−
𝑢(𝑦)

𝜔𝑛(𝑦)
|

2

𝜔𝑛(𝑥)𝜔𝑛(𝑦))
2

ℝ𝑑×ℝ𝑑

𝑑𝑥𝑑𝑦

|𝑥 − 𝑦|𝑑+2𝑠
 .    (100) 

Note that 𝑢(𝑥)/𝜔𝑛(𝑥) = 𝑢(𝑥)|𝑥|
𝛼 = 𝜐𝛼(𝑥)  is independent of 𝑛 , and is a 𝐶0

∞ function 

since the origin is not in the support of 𝑢 by assumption. By dominated convergence,(100) 

converges to 

𝑎𝑠,𝑑∫∫ (|𝑢(𝑥) − 𝑢(𝑦)|2 − |𝜐𝛼(𝑥) − 𝜐𝛼(𝑦)|
2|𝑥|−𝛼|𝑦|−𝛼)

2

ℝ𝑑×ℝ𝑑

𝑑𝑥𝑑𝑦

|𝑥 − 𝑦|𝑑+2𝑠
       (101) 

as 𝑛 → ∞. The left side of (99) can be written as (compare with (82)) 

(2𝜋)𝑑 2⁄
𝑏𝑑−𝛼
𝑏𝛼

∫∫ |𝜉 |2𝑠
2

ℝ𝑑×ℝ𝑑
𝑓(𝜉)̅̅ ̅̅ ̅̅ 𝑛𝑑𝜒 ̂(𝑛(𝜉 − �́�)|�́�|

𝛼−𝑑
𝑑𝜉𝑑�́�                        (102) 

Since 𝑓 ̂decays faster than polynomially, |  · |2𝑠𝑓 ̂ ∈ 𝐿𝑝(ℝ𝑑) for any 1 ≤ 𝑝 < ∞. Hence its 

convolution with the approximate 𝛿 -function (2𝜋)𝑑/2𝑛𝑑  𝜒 ̂(𝑛 ·)  converges to | · |2𝑠𝑓 ̂ 
strongly in any 𝐿𝑝, for 1 ≤ 𝑝 < ∞ [90]. Therefore, (102) converges to 

𝑏𝑑−𝛼
𝑏𝛼

∫ |𝜉|2𝑠+𝛼−𝑑
2

ℝ𝑑
𝑓 ̂(𝜉)̅̅ ̅̅ ̅̅ ̅𝑑𝜉 =

𝑏𝛼+2𝑠 𝑏𝑑−𝛼
𝑏𝑑−𝛼−2𝑠 𝑏𝛼

∫ |𝑢(𝑥)|2
2

ℝ𝑑
|𝑥|−2𝑠𝑑𝑥.                  (103) 

Here we used (82) again. The equality of (101) and (103) proves (98). 

The proof of our main result in Theorem (2.2.11) We consider here only the non-

magnetic case 𝐴 = 0 , the extension to non-zero 𝐴  will be straightforward given the 

necessary diamagnetic inequalities which we derive in the next. We explain the necessary 

modifications in the proof of Theorem (2.2.11). 

The ground state representation (97) suggests that it is more natural to regard ℎ𝑠 [𝑢] 
as a function of 𝜐  given by 𝜐(𝑥) = |𝑥|(𝑑−2𝑠)/2𝑢(𝑥) . In terms of this function 𝜐 , the  

Sobolev-Hardy inequality in (95) can be formulated in the weighted space with measure 

|𝑥|−𝛽𝑑𝑥, where 𝛽 = 𝑞(𝑑 − 2𝑠)/2. Namely, 

‖𝜐‖
𝐿𝑞(ℝ𝑑,|𝑥|−𝛽𝑑𝑥)
2 ≤ �́�𝑞,𝑑,𝑠(𝜐, 𝐵𝛽𝜐)𝐿𝑞(ℝ𝑑,|𝑥|−𝛽𝑑𝑥)

,                                   (104) 

where 𝐵𝛽is the operator on 𝐿𝑞(ℝ𝑑, |𝑥|−𝛽𝑑𝑥) defined by the quadratic form 

(𝜐, 𝐵𝛽𝜐)𝐿2(ℝ𝑑,|𝑥|−𝛽𝑑𝑥)
= ℎ𝑠[𝑥|

−(𝑑−2𝑠)/2𝜐] + ‖|𝑥|−(𝑑−2𝑠)2𝜐‖
𝐿2(ℝ𝑑,𝑑𝑥)

2
.              (105) 

We suppress the dependence on 𝑠 in 𝐵𝛽 for simplicity. Note that the right side of (105) is 

independent of  . The dependence of 𝐵𝛽  on 𝛽 comes from the measure |𝑥|−𝛽𝑑𝑥 of the 

underlying 𝐿2 space, which is determined by the value of q in the Sobolev inequality (104) 

as 𝛽 = 𝑞(𝑑 − 2𝑠)/2. We emphasize again that the choice of the weight |𝑥|−(𝑑−2𝑠)/2   on 

the right side of (105) is determined by the ground state representation (97). 
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The proof of Theorem (2.2.11) proceeds in the following steps. 

    (i) From the ground state representation (2.2.11), we will deduce that 𝐵𝛽 satisfies the 

Beurling-Deny criteria, which implies that 𝑒−𝑡𝐵𝛽  is a contraction on 𝐿1(ℝ𝑑 , |𝑥|−𝛽𝑑𝑥). 
    (ii) Together with the Sobolev-Hardy inequality (104) this yields a bound on the kernel 

of 𝑒−𝑡𝐵𝛽   via Nash’s method. 

    (iii) This bound on the heat kernel can then be translated into a LT bound in the spirit of  

[87]. 

Let  ℌ𝛽 ∶= 𝐿
2(ℝ𝑑 , |𝑥|−𝛽𝑑𝑥). We assume that  𝑑 − 2𝑠 < 𝛽 < 𝑑, which corresponds 

to 2 < 𝑞 < 2∗ in (104). The quadratic form 

𝑏𝛽[𝜐] ≔ ℎ𝑠[|𝑥|
−(𝑑−2𝑠)/2𝜐] + ‖|𝑥|−(𝑑−2𝑠)2𝜐‖

𝐿2

2
, 

considered in the Hilbert space ℌ𝛽 , is non-negative and closable on 𝐶0
∞(ℝ𝑑\{0}), and 

hence generates a self-adjoint operator 𝐵𝛽  in ℌ𝛽 . 

  We shall deduce some positivity properties of the operator exp (−𝑡𝐵𝛽) . By 

Proposition (2.2.9) the quadratic form 𝑏𝛽  satisfies 

    (i) if 𝜐, 𝑤 ∈ dom 𝑏𝛽  are real-valued then 𝑏𝛽[𝜐 + 𝑖𝑤] = 𝑏𝛽[𝜐]  + 𝑏𝛽[𝑤], 

    (ii) if 𝜐 ∈dom bis real-valued then |𝜐| ∈dom 𝑏𝛽 and 𝑏𝛽[|𝜐|] ≤ 𝑏𝛽[𝜐], 

    (iii) if 𝜐 ∈dom 𝑏𝛽 is non-negative then min(𝜐, 1) ∈ dom 𝑏𝛽 and 𝑏𝛽[min(𝜐, 1)] ≤ 𝑏𝛽[𝜐]. 

By a theorem of Beurling-Deny (see [82] or [94]) this implies that exp(−𝑡𝐵𝛽) is 

positivity-preserving and a contraction in 𝐿1(ℝ𝑑 , |𝑥|−𝛽𝑑𝑥). That is, it maps non-negative 

functions into non-negative functions, and it decreases 𝐿1-norms. 

From the contraction property derived above, we will deduce a point wise bound on 

the heat kernel, i.e., on the kernel of the integral operator exp(−𝑡𝐵𝛽). We emphasize that 

this kernel is defined by 

(exp(−𝑡𝐵𝛽) 𝜐)(𝑥) = ∫ exp(−𝑡𝐵𝛽)
2

ℝ𝑑
(𝑥, 𝑦)𝜐(𝑦)

𝑑𝑦

|𝑦|𝛽
. 

We shall use the Sobolev inequality (104) for this purpose. 

Proposition (2.2.10)[77]: Let 𝑑 − 2𝑠 < 𝛽 < 𝑑. Then exp(−𝑡𝐵𝛽)is an integral operator 

on ℌ𝛽 and its kernel satisfies 

0 ≤ 𝑒𝑥𝑝(−𝑡𝐵𝛽)(𝑥, 𝑦) ≤ 𝐾𝛽,𝑑,𝑠𝑡
−𝑝         𝑡 > 0, 𝑥, 𝑦 ∈ ℝ𝑑 ,                 (106) 

where  𝑝 ∶= 𝛽/(𝛽 − 𝑑 + 2𝑠) . The constant can be chosen to be  𝐾𝛽,𝑑,𝑠: = (p C′q,d,s)
p 

where C′q,d,s is the constant from Corollary (2.2.8)  with 𝑞 ∶= 2𝛽/(𝑑 − 2𝑠). 

Proof: Let 𝜃 ∶= (𝑞 − 2)/(𝑞 − 1) ∈ (0, 1). Then Holder’s inequality and Corollary (2.2.8) 

yield for any 𝜐 ∈ 𝐶0
∞(ℝ𝑑  \ {0} 

‖𝜐‖
𝐿2(ℝ𝑑,|𝑥|−𝛽𝑑𝑥)
2 ≤ ‖𝜐‖

𝐿𝑞(ℝ𝑑,|𝑥|−𝛽𝑑𝑥)
1−𝜃 ‖𝜐‖

𝐿1(ℝ𝑑,|𝑥|−𝛽𝑑𝑥)
𝜃 ≤ �́�q,d,s

(1−𝜃) 2⁄
𝑏𝛽[𝜐]

(1−𝜃) 2⁄ ‖𝜐‖
𝐿1(ℝ𝑑,|𝑥|−𝛽𝑑𝑥)
𝜃 . 

Equivalently, if 𝑝 is as in the proposition, then 

‖𝜐‖
𝐿2(|𝑥|−𝛽𝑑𝑥)
𝜃 ≤ �́�q,d,s 

(1 2⁄
𝑏𝛽[𝜐]

1 2⁄ ‖𝜐‖
𝐿1(|𝑥|−𝛽𝑑𝑥)

1 𝑝⁄
.                                            (107) 

This is a Nash-type inequality in ℝ𝑑dwith measure |𝑥|−𝛽𝑑𝑥. By Nash’s argument (see 

[90] or [82]) this implies that exp(−𝑡𝐵𝛽) is an integral operator with kernel satisfying 

(106), with the constant 𝐾𝛽,𝑑,𝑠  given in the proposition. For the sake of completeness we 

sketch the proof of this claim. 

Theorem (2.2.11)[77]: (Hardy-Lie b-Thirring inequalities). Let 𝛾 > 0 and 0 < 𝑠 <
𝑚𝑖𝑛{1, 𝑑/2}. Then there exists a constant 𝐿𝛾,𝑑,𝑠 > 0 such that for all 𝑉 and 𝐴 
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𝑡𝑟(|𝐷 − 𝐴|2𝑠 − 𝐶𝑠,𝑑|𝑥|
−2𝑠 − 𝑉)

−

𝛾
≤ 𝐿𝛾,𝑑,𝑠∫ 𝑉(𝑥)+

𝛾+𝑑 2𝑠⁄
2

ℝ𝑑
𝑑𝑥.                          (108) 

Proof: Step 1. As a first step, we seek an upper bound on the number of eigenvalues 

below −𝜏 of the operator 𝐻𝑠 − 𝑉, which we denote by 𝑁 (−𝜏,𝐻𝑠 − 𝑉). By the variational 

principle we may assume that 𝑉 ≥ 0. Then the Birman-Schwinger principle (see, e.g., 

[94]) implies that for any increasing non-negative function 𝐹 on (0,∞) 

𝑁 (−1,𝐻𝑠 − 𝑉 ) ≤ 𝐹(1)
−1𝑡𝑟𝐹(𝑉1 2⁄ (𝐻𝑠 + 𝐼)

−1𝑉1 2⁄ ). 

Let 𝑈: 𝐿2(ℝ
𝑑) → ℌ𝛽be the unitary operator which maps 𝑢 ↦ |𝑥|𝛽/2 𝑢. Then 

𝑉1 2⁄ (𝐻𝑠 + 𝐼)
−1𝑉1 2⁄ 𝑈∗𝑊𝛽

1 2⁄ 𝐵𝛽
−1𝑊𝛽

1 2⁄ 𝑈,                                            (109) 

where 𝑊𝛽is the multiplication operator on ℌ𝛽 which multiplies by the function 𝑊𝛽(𝑥) ∶=

|𝑥| 𝛽+2𝑠−𝑑𝑉(𝑥). Therefore 

𝑡𝑟𝐹(𝑉1 2⁄ (𝐻𝑠 + 𝐼)
−1𝑉1 2⁄ ) = 𝑡𝑟ℌ𝛽𝐹(𝑊𝛽

1 2⁄ 𝐵𝛽
−1𝑊𝛽

1 2⁄
).                                (110) 

We need the following trace estimate. 

Proposition (2.2.12)[77]: Let f be a non-negative convex function on [0,∞), growing 

poly-nomially at infinity and vanishing near the origin, and let 

𝐹(𝜆) ≔ ∫ 𝑓(𝜇)
∞

0

𝑒−𝜇 𝜆⁄ 𝜇−1𝑑𝜇,           𝜆 > 0.                                      (111) 

Then for any 𝑑 − 2𝑠 < 𝛽 < 𝑑 and any multiplication operator 𝑊 ≥ 0 

𝑡𝑟ℌ𝛽𝐹(𝑊
1 2⁄ 𝐵𝛽

−1𝑊1 2⁄ ) ≤ ∫ ∫ exp(−𝑡𝐵𝛽)
2

ℝ𝑑

∞

0

(𝑥, 𝑥)𝑓(𝑡𝑊(𝑥))
𝑑𝑥

|𝑥|𝛽
 
𝑑𝑡

𝑡
.              (112) 

Note that the heat kernel exp(−𝑡𝐵𝛽)(𝑥, 𝑦) is well defined on the diagonal 𝑥 = 𝑦 by 

the semigroup property. Namely, exp(−𝑡𝐵𝛽)(𝑥, 𝑥) = ∫|exp(−𝑡𝐵𝛽 2⁄ )(𝑥, 𝑦)|
2
|𝑦|−𝛽 𝑑𝑦.  

For the proof of  Proposition (2.2.12) one follows the proof of the 𝐶𝐿𝑅 bound in [87] (see 

also [97] and [95]). As in the latter Trotter’s product formula can be used in place of path 

integrals.  

We shall now assume that F has the special form (111) in order to apply the trace 

estimate from Proposition (2.2.12). Given 𝑑 − 2𝑠 < 𝛽 < 𝑑  and 𝑝 = 𝛽/(𝛽 − 𝑑 + 2𝑠), 
Proposition (2.2.10) implies that 

              ∫ ∫ exp(−𝑡𝐵𝛽)
2

ℝ𝑑

∞

0

(𝑥, 𝑥)𝑓(𝑡𝑊(𝑥))
𝑑𝑥

|𝑥|𝛽
 
𝑑𝑡

𝑡
             

≤ 𝐾𝛽,𝑑,𝑠∫ ∫ 𝑡−𝑝 𝑓(𝑡𝑊𝛽(𝑥))
2

ℝ𝑑

∞

0

𝑑𝑥

|𝑥|𝛽
 
𝑑𝑡

𝑡

= 𝐾𝛽,𝑑,𝑠 (∫ 𝑊𝛽(𝑥)
𝑝

2

ℝ𝑑

𝑑𝑥

|𝑥|𝛽
)  (∫ 𝑡−𝑝−1

∞

0

𝑓(𝑡)𝑑𝑡). 

Note that 𝑊𝛽(𝑥)
𝑝 = 𝑉(𝑥)𝑝|𝑥|𝛽  . We conclude that for any 𝑑/2𝑠 < 𝑝 < ∞, 

𝑁(−1,𝐻𝑠 − 𝑉) ≤ �́�𝑝,𝑑,𝑠∫ 𝑉
2

ℝ𝑑
(𝑥)+

𝑝
𝑑𝑥,                                          (113) 

where the constant is given by 

�́�𝑝,𝑑,𝑠 = 𝐾𝛽,𝑑,𝑠 inf
𝑓
𝐹(1)−1 (∫ 𝑡−𝑝−1

∞

0

𝑓(𝑡)𝑑𝑡). 
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Here 𝛽 = 𝑝(𝑑 − 2𝑠)/(𝑝 − 1), and the infimum runs over all admissible functions 𝑓 from 

Proposition (2.2.12) In order to obtain an explicit upper bound one may choose 𝑓(𝑥):=
(𝑥 − 𝑎)+ and minimize over 𝑎 > 0. 
       Step 2. Now we use the idea of [91] to deduce (108) from (113). Fix 𝛾 > 0 and 

choose some  𝑑/(2𝑠) < 𝑝 < 𝛾 + 𝑑/(2𝑠). First we note that by scaling we have, for any 

𝜏 > 0, 
𝑁(−𝜏, 𝐻𝑠 − 𝑉) = 𝑁(−1,𝐻𝑠 − 𝑉𝜏) 

where  𝑉𝜏(𝑥):= 𝜏
−1𝑉(𝜏−1/2𝑠 𝑥). In view of (113) this yields 

𝑁(−𝜏, 𝐻𝑠 − 𝑉) ≤ �́�𝑝,𝑑,𝑠 𝜏
−𝑝+

𝑑
2𝑠∫ 𝑉

2

ℝ𝑑
(𝑥)+

𝑝
𝑑𝑥.                              (114) 

Now, for any fixed 0 < 𝜎 < 1, one has by the variational principle 

𝑁(−𝜏,𝐻𝑠 − 𝑉) ≤ 𝑁(−(1 − 𝜎)𝜏 𝐻𝑠 − (𝑉 − 𝜎𝜏)+). 
Hence, by (114), 

𝑡𝑟(𝐻𝑠 − 𝑉)−
𝛾 = ∫ 𝑁(−𝜏, 𝐻𝑠 − 𝑉)

∞

0

𝜏𝛾−1𝑑𝜏

≤ 𝛾�́�𝑝,𝑑,𝑠(1 − 𝜎)
−𝑝+𝑑 2𝑠⁄ ∫ ∫ (𝑉(𝑥) − 𝜎𝜏)+

𝑝
𝑑𝑥

2

ℝ𝑑

∞

0

𝜏𝛾−𝑝+𝑑/2𝑠−1𝑑𝜏. 

We change the order of integration and calculate the 𝜏 -integral first. For fixed 𝑥 ∈ ℝ𝑑 , 

∫ (𝑉(𝑥) − 𝜎𝜏)+
𝑝

∞

0

𝜏𝛾−𝑝+𝑑/2𝑠−1𝑑𝜏 = 𝜎𝛾−𝑝−𝑑/2𝑠−1𝑉(𝑥)+
𝛾+𝑑/2𝑠

𝐵(𝛾 + 𝑑 2𝑠⁄ − 𝑝, 𝑝 + 1). 

Here, 𝐵 denotes the Beta-function 𝐵(𝑎, 𝑏) = 𝛤(𝑎)𝛤(𝑏)/𝛤(𝑎 + 𝑏). Minimization over 𝜎 ∈
(0, 1) and 𝑝 ∈ (𝑑/2𝑠, 𝛾 + 𝑑/2𝑠) yields 

𝑡𝑟(𝐻𝑠 − 𝑉)−
𝛾 ≤ 𝐶𝑑,𝑠(𝛾)∫ 𝑉(𝑥)+

𝛾+
𝑑
2𝑠𝑑𝑥

2

ℝ𝑑
                                            (115) 

with 

  𝐶𝑑,𝑠(𝛾) ≔  min
𝑑 2𝑠<𝑝<𝛾+𝑑 2𝑠⁄⁄

   𝛾𝛾+1�́�𝑝,𝑑,𝑠𝐵(𝛾 + 𝑑 2𝑠⁄ − 𝑝, 𝑝 + 1)            

                                                   × (𝛾 + 𝑑 2𝑠⁄ − 𝑝)−𝛾−𝑑/2𝑠+𝑝(𝑝 − 𝑑 2𝑠⁄ )−𝑝+𝑑/2𝑠    . 
This concludes the proof of Theorem (2.2.11) in the case 𝐴 = 0. 

We prove certain diamagnetic inequalities which allow us to extend the proof of 

Theorem (2.2.11) to the case of non-zero magnetic fields. The main idea is contained in 

Proposition (2.2.13). The following contains some technical refinements we will need. We 

describe the necessary modifications in the proof of Theorem (2.2.11) to include magnetic 

fields. We devoted to the special case 𝑠 = 1. 
We shall assume that 𝐴 ∈ 𝐿𝑙𝑜𝑐

2 (ℝ𝑑; ℝ𝑑) and that 𝑑 ≥ 2. Note that in 𝑑 = 1 any 

magnetic vector potential can be removed by a gauge transformation. In ℌ𝛽 =

𝐿2(ℝ𝑑 , |𝑥|−𝛽𝑑𝑥) consider the quadratic form 

𝑏𝛽,𝐴[𝜐] ≔ ℎ𝑠,𝐴[|𝑥|
−(𝑑−2𝑠) 2⁄ ] + ‖|𝑥|−(𝑑−2𝑠) 2⁄ 𝜐‖

2
,           𝜐 ∈ 𝐶0

∞(ℝ𝑑 {0}⁄ ).         (116) 

We show that 𝑏𝛽,𝐴, is closable and hence defines a self-adjoint operator 𝐵𝛽,𝐴 in ℌ𝛽. Our 

goal is to show that exp(−𝑡𝐵𝛽,𝐴) is an integral operator, whose  kernel satisfies 

|exp(−𝑡𝐵𝛽,𝐴)(𝑥, 𝑦)| ≤ exp(−𝑡𝐵𝛽)(𝑥, 𝑦).                                    (117) 

We consider weighted magnetic operators 𝜔|𝐷 − 𝐴|2𝑠𝜔where 𝐴 ∈ 𝐿𝑙𝑜𝑐 
2 (ℝ𝑑) and 

𝜔 > 0  with 𝜔 +𝜔−1 ∈ 𝐿∞(ℝ𝑑).  This is a self-adjoint operator in  𝐿2(ℝ𝑑)  with form 

domain 𝜔−1 dom |𝐷 − 𝐴|𝑠 . It satisfies the following diamagnetic inequality. 
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Proposition (2.2.13)[77]: (Weighted diamagnetic inequality). Let 𝑑 ≥ 2 and 0 < 𝑠 ≤ 1. 
Assume that 𝐴 ∈ 𝐿𝑙𝑜𝑐 

2 (ℝ𝑑) and that 𝜔 > 0 with 𝜔 +𝜔−1 ∈ 𝐿∞(ℝ𝑑). Then for all  𝑢 ∈
𝐿2(ℝ𝑑) and all 𝑡 ≥ 0 one has 

|exp(−𝑡𝜔|𝐷 − 𝐴|2𝑠𝜔)𝑢| ≤ exp(−𝑡𝜔(−∆)𝑠𝜔)|𝑢|                      (118) 
Proof: First note that the assertion is true in the case 𝜔 ≡ 1, i.e., 

|exp(−𝑡|𝐷 − 𝐴|2𝑠)𝑢| ≤ exp(−𝑡(−∆)𝑠)|𝑢|.                                    (119) 
Indeed, for 𝑠 = 1 this inequality is proved in [96] for all 𝐴 ∈ 𝐿𝑙𝑜𝑐 

2 (ℝ𝑑). The general case 

0 < 𝑠 < 1 follows from the fact that the function 𝜆 ⟼ 𝑒−𝜆
𝑠
 sis completely monotone 

(i.e., its derivatives are alternating in sign) and hence is the Laplace transform of a positive 

measure by Bernstein’s theorem [83]. This reduces the problem to the case 𝑠 = 1. 
Now assume that ω is as in the proposition and write 𝑀𝐴: = 𝜔|𝐷 − 𝐴|

2𝑠𝜔. In view 

of the general relation 

exp(−𝑡𝑀𝐴) = 𝑠 − lim
𝑛→∞

(𝐼 + 𝑛−1 + 𝑡𝑀𝐴)
−𝑛                                     (120) 

it suffices to prove the inequality |(𝑀𝐴 + 𝜏)
−1𝑢| ≤ (𝑀0 + 𝜏)

−1|𝑢| . But since  (𝑀𝐴 +
𝜏)−1 = 𝜔−1(|𝐷 − 𝐴|2𝑠 + 𝑉)−1𝜔−1 with 𝑉:= 𝜏𝜔−2 it suffices to prove |(|𝐷 − 𝐴|2𝑠 +
𝑉)−1𝑢| ≤ (−∆𝑠 + 𝑉)−1 |𝑢|. In view of the relation ‘inverse’ to (120), 

(|𝐷 − 𝐴|2𝑠 + 𝑉)−1 = ∫ exp(−𝑡(|𝐷 − 𝐴|2𝑠 + 𝑉))
∞

0

𝑑𝑡, 

the assertion follows from (119) and Trotter’s product formula. 

In order to prove the desired inequality (117), we have to extend Proposition 

(2.2.13) in two directions. First, we want to use the singular weight 𝜔(𝑥) = |𝑥|𝛼 , 0 < 𝛼 <
𝑠, and second, we want to replace the operator  |𝐷 − 𝐴|2𝑠  by 𝐻𝑠,𝐴 + 𝐼 , i.e., we want to 

subtract the Hardy term. 

Recall that 𝐵𝛽,𝐴 was defined by (116). The main result is the following. 

Proposition (2.2.14)[77]: (Weighted diamagnetic inequality, second version). Let 𝑑 ≥ 2 

and 𝑑 − 2𝑠 < 𝛽 < 𝑑. Assume that 𝐴 ∈ 𝐿𝑙𝑜𝑐
2 (ℝ𝑑). Then for all 𝜐 ∈ ℌ𝛽 one has 

|exp(−𝑡𝐵𝛽,𝐴)𝜐| ≤ exp(−𝑡𝐵𝛽)|𝜐|.                                              (121) 

  It follows from Proposition (2.2.10) that exp(−𝑡𝐵𝛽) is an integral operator that 

maps 𝐿1(ℝ𝑑 , |𝑥|−𝛽𝑑𝑥) to 𝐿∞(ℝ𝑑 , |𝑥|−𝛽𝑑𝑥). Hence (121) implies that the same is true for 

exp(−𝑡𝐵𝛽,𝐴). Moreover, the kernels are related by the inequality (117). 

We will need the following approximation result. 

Lemma (2.2.15)[77]: Let 𝑇𝑛, 𝑇 be closed, densely defined operators in 𝑎 Hilbert space ℌ 

with 𝑇𝑛𝑇𝑛
∗ →  𝑇 𝑇∗in strong resolvent sense. Assume that there is a set 𝒟 ⊂ ⋂dom  𝑇𝑛 ∩

dom T , dense in ℌ, such that 𝑇𝑛𝜑 → 𝑇 𝜑 for all 𝜑 ∈ 𝒟. Then  𝑇𝑛
∗𝑇𝑛 → 𝑇∗𝑇  in strong 

resolvent sense. 

Proof:  For 𝛾 > 0 and 𝜑,𝜓 ∈ 𝒟 one has 

𝛾(𝜑, (𝑇𝑛
∗𝑇𝑛 + 𝛾)

−1𝜓) = (𝜑,𝜓) − (𝑇𝑛𝜑, (𝑇𝑛𝑇𝑛
∗ + 𝛾)−1𝑇𝑛𝜓). 

By assumption the right side converges to (𝜑, 𝜓) − (𝑇𝜑, (𝑇𝑇∗ + 𝛾)−1𝑇𝜓) =
𝛾(𝜑, (𝑇∗𝑇 + 𝛾)−1𝜓), which proves that 𝑇𝑛

∗𝑇𝑛 → 𝑇∗𝑇 in weak resolvent sense. However, 

the latter is the same as in strong resolvent sense, see [93]. 

Proof: Step 1. Consider again the unitary transformation 𝑈: 𝐿2(ℝ𝑑) → ℌ𝛽, which maps 

𝑢 ⟼ |𝑥|𝛽/2𝑢 . Then 

𝑄𝛽,𝐴: = 𝑈
∗𝐵𝛽,𝐴𝑈                                                                        (122) 
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is a self-adjoint operator in the unweighted space 𝐿2(ℝ𝑑), whose quadratic form is given 

by 

𝑞𝛽,𝐴[𝑢] ≔ ℎ𝑠,𝐴[|𝑥|
𝛼𝑢] + ‖|𝑥|𝛼𝑢‖2,      𝛼 = (𝛽 + 2𝑠 − 𝑑) 2⁄ .                       (123) 

Eq. (121) is equivalent to 

|exp(−𝑡 𝑄𝛽,𝐴)𝑢| ≤ exp(−𝑡 𝑄𝛽,0)|𝑢|.                                     (124) 

for 𝑢 ∈ 𝐿2(ℝ𝑑). 
        Step 2. We begin by considering the case where the ‘potential terms’ in the definition 

of  𝑄𝛽,𝐴, are absent. We consider the operator 𝑀𝛽,𝐴 in 𝐿2(ℝ𝑑),  generated by the quadratic 

form ‖|𝐷 − 𝐴|𝑠|𝑥|𝛼𝑢‖2 on 𝐶0
∞(ℝ𝑑\ {0})We shall prove that for all 𝑢 ∈ 𝐿2(ℝ𝑑) one has 

|exp(−𝑡 𝑀𝛽,𝐴)𝑢| ≤ exp(−𝑡 𝑀𝛽,0)|𝑢|.                                        (125) 

Let 𝜔𝑛 be a family of smooth positive functions which decrease monotonically to 

|𝑥|𝛼 and agree with this function outside a ball a radius 𝑛−1 .Similarly, for fixed 𝑛 let 

 𝜔𝑛,𝑚 , be a family of smooth positive and bounded functions which increase 

monotonically to 𝜔𝑛and agree with this function inside a ball a radius 𝑚. 

The operators |𝐷 − 𝐴|𝑠𝜔𝑛 and |𝐷 − 𝐴|𝑠𝜔𝑛,𝑚 ,mare easily seen to be closable on 

𝐶0
∞(ℝ𝑑\{0})  (as in Appendix C) and we denote their closures by 𝑇𝑛  and  𝑇𝑛,𝑚 , 

respectively.One finds that 𝐶0
∞(ℝ𝑑 ⊂ dom 𝑇𝑛

∗  with 𝑇𝑛
∗υ = ωn|D − A|

s υ for υ ∈ 𝐶0
∞(ℝ𝑑) 

, and similarly for 𝑇𝑛,𝑚
∗  . By construction of 𝜔𝑛,𝑚  the operators 𝑇𝑛,𝑚𝑇𝑛,𝑚

∗  are 

monotonically increasing as 𝑚 → ∞ and hence converge in strong resolvent sense to 𝑇𝑛𝑇𝑛
∗ 

by [93]. Noting that 𝑇𝑛,𝑚, 𝜑 → 𝑇𝑛𝜑 for any 𝜑 ∈ 𝐶0
∞(ℝ𝑑\{0}) we conclude from Lemma 

(2.2.15) that  𝑇𝑛,𝑚 
∗ , 𝑇 𝑛,𝑚 → 𝑇𝑛

∗𝑇𝑛 in strong resolvent sense. One checks that 𝑇𝑛,𝑚
∗  coincides 

with the operator 𝜔𝑛,𝑚 |𝐷 − 𝐴|
2𝑠𝜔𝑛,𝑚  and satisfies a diamagnetic inequality by 

Proposition (2.2.13). By the strong  resolvent convergence the diamagnetic inequality is 

also valid for 𝑇𝑛
∗𝑇𝑛. Now we repeat the argument for 𝑛 → ∞ where we have monotone 

convergence from above. We apply [82] noting that 𝐶0
∞(ℝ𝑑  \ {0}) is a form core for all 

the operators involved, and conclude that 𝑇𝑛
∗𝑇𝑛 → 𝑀𝛼,𝐴  in strong resolvent sense. This 

proves the diamagnetic inequality (125). 

     Step 3. Now we use another approximation argument to include the Hardy term. We 

define  𝑅𝛽,𝐴  via the quadratic form ℎ𝑠,𝐴[|𝑥|
𝛼𝑢] on 𝐶0

∞(ℝ𝑑  \ {0}). Moreover, for 𝑛 ∈ ℕ let 

𝑊𝑛(𝑥):=  𝐶𝑠,𝑑min {|𝑥|−2(𝑠−𝛼), 𝑛}. The boundedness of  𝑊𝑛, (125) and Trotter’s product 

formula show that the diamagnetic inequality is valid for  𝑀 𝛽,𝐴 −𝑊𝑛. Since 𝑀𝛽,𝐴 −𝑊𝑛 →

𝑅𝛽,𝐴 in strong resolvent sense again by monotone convergence we find the diamagnetic 

inequality (125) with  𝑀𝛽,𝐴 replaced by 𝑅𝛽,𝐴. 

     Step 4. Finally, we note that 𝑄𝛽,𝐴 = 𝑅𝛽,𝐴 + |𝑥|
2𝛼  in the sense of quadratic forms. 

Moreover, 𝐶0
∞(ℝ𝑑  \ {0})  is a core for both quadratic forms involved. Equation (124) 

follows now from the diamagnetic inequality for 𝑅𝛽,𝐴 by Kato’s strong Trotter product 

formula [93]. 

In the case of non-vanishing magnetic field, the proof of Theorem (2.2.11) is 

essentially identical to the one presented. Although (112) does not necessarily hold with 

𝐵𝛽,𝐴 instead of  𝐵𝛽  , it does hold if  𝐵𝛽 is replaced by 𝐵𝛽,𝐴 on the left side only! I.e., 

𝑡𝑟ℌ𝛽𝐹(𝑊
1 2⁄ 𝐵𝛽,𝐴

−1𝑊1 2⁄ ) ≤ ∫ ∫ exp(−𝑡𝐵𝛽)
2

ℝ𝑑

∞

0

 (𝑥, 𝑥)𝑓(𝑡𝑊(𝑥))
𝑑𝑥

|𝑥|𝛽
𝑑𝑡

𝑡
. 
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For the proof, one uses the diamagnetic inequality (117) before applying Jensen’s 

inequality. This leads to the conclusion that (113) also holds with magnetic fields, i.e.,  

𝑁(−1,𝐻𝑠,𝐴 − 𝑉) ≤ �́�𝑝,𝑑,𝑠∫ V(𝑥)+
𝑝

2

ℝ𝑑
𝑑𝑥,                                              (126) 

with the same (𝐴-independent) constant �́�𝑝,𝑑,𝑠. 

For the remainder of the proof, we note that for any 𝜏 > 0, 

𝑁(−𝜏,𝐻𝑠,𝐴 − 𝑉) = 𝑁(−1,𝐻𝑠,𝐴𝜏 − 𝑉𝜏) 

where 𝑉𝜏(𝑥):= 𝜏
−1𝑉(𝜏−1/2𝑠 𝑥) and 𝐴𝜏(𝑥):= 𝜏

−1/2𝑠𝐴(𝜏−1/2𝑠 𝑥) . The scaling of 𝐴  does 

not have any effect, however, since the constant in (126) is independent of 𝐴.Therefore 

(115) also holds with 𝐻𝑠 replaced by 𝐻𝑠,𝐴 , with same constant 𝐶𝑑,𝑠(𝛾). 
   The special case 𝑠 = 1. As noted, the proof of Theorem (2.2.11) just given works also in 

the case 𝑠 = 1 in dimensions 𝑑 ≥ 3. We briefly comment on the necessary modifications. 

The local Sobolev-Hardy inequalities for 𝑠 = 1 have been proved in [80]. Alterna- 

tively, one can obtain them following our proof. Using the IMS formula (92) one can 

obtain the global Sobolev-Hardy inequalities (73). The rest of the proof goes through 

without change. To verify the Beurling-Deny criteria, one uses the ground-state 

representation (96) instead of Proposition (2.2.9) Note also that the weighted diamagnetic 

inequalities include the case 𝑠 = 1. 
We shall derive an explicit bound on the constants 𝐶𝑞,3,1/2for the Sobolev-Hardy 

inequalities (91) in the case 𝑑 = 3 and  𝑠 = 1/2, which is of interest for our theorem on 

stability of  matter. Let 3/2 < 𝑞 < 3 and 𝛼:= 2 − 3/𝑞. For  𝜆 > 1, let 

𝜌(𝜆) ≔
1 − 𝛼

𝜋𝜆1+𝛼
∫

𝑑𝑟

𝑟(1+𝛼) 2⁄ (𝑟 − 𝜆−2)

∞

1

.                                        (127) 

We will show that  

𝐶𝑞,3,1 2⁄ ≤
𝜋2

3𝑞2
(1 − 𝛼)(3 4𝜋⁄ )4 3⁄ inf

𝜆>1

𝜆2(1−𝛼)

(|Φ1 2,3⁄ (𝛼)|)
+

2 .                                (128) 

We remark that in this special case 

|Φ1 2,3⁄ (𝛼)|
2

𝜋
− (1 − 3 𝑞⁄ ) cos (

𝜋(1 − 3 𝑞⁄ )

2
). 

The estimate (128) is a consequence of  the following two facts. First, we claim that 

lim
 𝛿→0

sup lim
𝜀→0

sup ℎ1 2⁄ [𝜓𝜆
𝜀,𝛿] ≤ 𝜆2(1−𝛼)

𝜋2

3
(1 − 𝛼),                      (129) 

where  𝜓𝜆
𝜀,𝛿(𝑥) = 𝜆−𝛼𝜓𝜀,𝛿(𝑥/𝜆)   and  𝜓𝜀,𝛿 is defined for  𝜀, 𝛿 > 0 by 

𝜓𝜀,𝛿(𝑥) = {

|𝑥|−𝛼                                      𝑓𝑜𝑟 |𝑥| ≤ 1,                                                         

|𝑥|−1 (1 − 𝜀2(|𝑥|)2 − 1)   𝑓𝑜𝑟  1 ≤ |𝑥|2 ≤ 1 + 1 𝜀⁄ ,                                

 0                                             𝑓𝑜𝑟 |𝑥|2 ≥  1 + 1 𝜀⁄  .                                         

(130) 

Note that 𝜓𝜀,𝛿 does not satisfy the smoothness assumption of Lemma (2.2.4), but it can be 

approximated by such functions in ℎ1/2-norm. 

Secondly, we claim that 𝜌𝜀,𝛿
  
in (89) defined with the function 𝜓𝜆 = 𝜓𝜆

𝜀,𝛿
 satisfies 

lim
𝜀→0

𝜌𝜀,𝛿 (𝜆) = 𝜌(𝜆)                                                           (131) 
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uniformly in 𝛿 > 0 and 𝜆 > 1, with 𝜌(𝜆) as in (127). Eq. (128) then follows from these 

two facts, proceeding as in the proof of Theorem (2.2.6). Instead of choosing 𝜆 such that 

𝜌(𝜆)  = |Φ1 2,3⁄ (𝛼)| 2⁄  (we optimize now over the choice of  𝜆. 

For the proof of (129) we consider first an arbitrary radial function 𝜓 and, with a 

slight abuse of notation, we write 𝜓(𝑥) = 𝜓(𝑟)  for 𝑟 = |𝑥|.  Using the ground state 

representation in Proposition (2.2.9), introducing spherical coordinates, and integrating 

over the angles, we have 

ℎ1 2⁄ [𝜓] = 8∫ 𝑑𝑟
∞

0

∫ 𝑑𝑠
∞

0

𝑟𝑠

(𝑟2 − 𝑠2)2
|𝑟𝜓(𝑟) − 𝑠𝜓(𝑠)|2. 

By changing variables 𝑟2 → 𝑟 and 𝑠2 → 𝑠, this yields 

ℎ1 2⁄ [𝜓] = 2∫ 𝑑𝑟
∞

0

∫ 𝑑𝑠
∞

0

1

(𝑟 − 𝑠)2
|√𝑟𝜓(√𝑟) − √𝑠𝜓(√𝑠)|

2
                  (132) 

Now assume that 𝜓 = 𝜓𝜀,𝛿  as in (130). By scaling, if suffices to prove (129) for 𝜆 =
1. We split the integrals in (132) into several parts. First of all, we have 

∫ 𝑑𝑟
1

0

∫ 𝑑𝑠
1

0

1

(𝑟 − 𝑠)2
(𝑟(1−𝛼) 2⁄ − 𝑠(1−𝛼) 2⁄ )

2
                                                               

                                  = 2∫ 𝑑𝑠
1

𝑠𝛼

1

0

∫ 𝑑𝑡
1

0

1

(1 − 𝑡)2
(1 − 𝑡(1−𝛼) 2⁄ )

2
               (133) 

This identity can be obtained by noting that the integral on the left is the same as twice the 

integral over the region 𝑟 ≤ 𝑠 , and then writing 𝑟 = 𝑠𝑡  for 0 ≤ 𝑡 ≤ 1 . Simple 

computations then lead to 

∫ 𝑑𝑡
1

0

1

(1 − 𝑡)2
(1 − 𝑡(1−𝛼) 2⁄ )

2

=
(1 − 𝛼)2

4
∫ 𝑑𝑡
1

0

1

(1 − 𝑡)2
∫ 𝑑𝑠
1

𝑡

𝑠−(1+𝛼) 2⁄ ∫ 𝑑𝑢
1

𝑡

𝑢−(1+𝛼) 2⁄  

      =
(1 − 𝛼)2

2
∫ 𝑑𝑠
1

0

∫ 𝑑𝑢
1

𝑡

(𝑠𝑢)−(1+𝛼) 2⁄ ∫ 𝑑𝑡
𝑠

0

1

(1 − 𝑡)2
               

= (1 − 𝛼)∫ 𝑑𝑠
1

0

1

1 − 𝑠
𝑠(1−𝛼) 2⁄ (1 − 𝑠(1−𝛼) 2⁄ ).         (134) 

We introduce the function 

𝜂(𝜆) = ∫ 𝑑𝑡
∞

0

(
𝑒−𝑡

𝑡
−

𝑒−𝜆𝑡

1 − 𝑒−𝑡
). 

We note that 𝜂(𝜆) = 𝛤′(𝜆)/𝛤(𝜆) is the Digamma-function. It is then easy to see that 

∫ 𝑑𝑠
1

0

1

1 − 𝑠
𝑠(1−𝛼) 2⁄ (1 − 𝑠(1−𝛼) 2⁄ ) = 𝜂(2 − 𝛼) − 𝜂(3 2⁄ − 𝛼 2⁄ ).                  (135) 

Altogether, we conclude that the contribution of 𝑟 ≤ 1 and 𝑠 ≤ 1 to the integral in (132) is 

given by  

4(𝜂(2 − 𝛼) − 𝜂(3 2⁄ − 𝛼 2⁄ )). 
Similarly, we proceed with the other terms. We have 

  lim
𝜀→0

∫ 𝑑𝑟
1

0

∫ 𝑑𝑠
∞

1

1

(𝑟 − 𝑠)2
(𝑟(1−𝛼) 2⁄ − [1 − 𝜀𝛿(𝑠 − 1)𝛿]

+
)
2
                                              

= ∫ 𝑑𝑟
1

0

∫ 𝑑𝑠
∞

1

1

(𝑟 − 𝑠)2
(𝑟(1−𝛼) 2⁄ − 1)

2
= ∫ 𝑑𝑟

1

0

1

1 − 𝑟
(𝑟(1−𝛼) 2⁄ − 1)

2
         (136) 
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Here we have used dominated convergence, noting that the integrand is bounded from 

above by the 𝐿1 function (𝑟 − 𝑠)−2(2(1 − 𝑟(1−𝛼)/2)2 + 2min  {1, (𝑠 − 1)2𝛿}) for 𝜀 ≤ 1 . 

The contribution of this term to (6) (noting that it appears twice) is thus given by 

4(2𝜂(3 2⁄ − 𝛼 2⁄ ) − 𝜂(1) − 𝜂(2 − 𝛼)). 
We are left with calculating 

∫ 𝑑𝑟
1+1 𝜀⁄

1

∫ 𝑑𝑠
1+1 𝜀⁄

1

1

(𝑟 − 𝑠)2
(𝜀𝛿(𝑟 − 1)𝛿 − 𝜀𝛿(𝑠 − 1)𝛿)

2

= ∫ 𝑑𝑟
1

0

∫ 𝑑𝑠
1

0

1

(𝑟 − 𝑠)2
(𝑟𝛿 − 𝑠𝛿)

2
= 2(𝜂(1 + 2𝛿) − 𝜂(1 + 𝛿)). 

The last equality follows by proceeding as in (133)–(135). The last term to evaluate is 

∫ 𝑑𝑟
1+1 𝜀⁄

1

∫ 𝑑𝑠
∞

1+1 𝜀⁄

1

(𝑟 − 𝑠)2
(1 − 𝜀𝛿(𝑟 − 1)𝛿)

2
 

                            = ∫ 𝑑𝑟
1

0

1

1 − 𝑟
(1 − 𝑟𝛿)

2
= 2𝜂(1 + 𝛿) − 𝜂(1) − 𝜂(1 + 2𝛿). 

We have thus shown that 

lim
𝜀→0

ℎ1 2⁄ [𝜓𝜀,𝛿] = 4(𝜂(3 2⁄ − 𝛼 2⁄ ) + 𝜂(1 + 𝛿) − 2𝜂(1)). 

Using concavity of  𝜂, together with 𝜂′(1) = 𝜋2/6, yields the estimate 

lim
𝜀→0

ℎ1 2⁄ [𝜓𝜀,𝛿] ≤
2𝜋2

3
(
1 − 𝛼

2
+ 𝛿). 

We proceed similarly for the calculation of 𝜌𝜀,𝛿. We have 

𝜌𝜀,𝛿(𝜆) =
2

𝜋𝜆1+𝛼
∫

𝑟(1−𝛼) 2⁄

(𝑟 − 𝜆−2)2

1+1 𝜀⁄

1

(1 −
1 − 𝜀𝛿(𝑟 − 1)𝛿

𝑟(1−𝛼) 2⁄
)𝑑𝑟. 

Eq. (131) then follows by dominated convergence and integration by parts. 

We establish the analogue in the general case 𝐴 ≠ 0. As explained. First recall that 

for 𝑠 = 1 and ∑ 𝜒𝑗
2𝑛

𝑗=1 ≡ 1 one has 

∫ |𝐷 − 𝐴𝑢|2
2

ℝ𝑑
𝑑𝑥 =∑ 

𝑛

𝑗=0

∫ |(𝐷 − 𝐴𝑢)(𝜒𝑗𝑢)|
2

2

ℝ𝑑
𝑑𝑥 − ∫ ∑|∇𝜒𝑗|

2
|𝑢|2

𝑛

𝑗=0

2

ℝ𝑑
𝑑𝑥. 

In this case the localization error  ∑  |∇𝜒𝑗|
2𝑛 

𝑗=0  is local and independent of 𝐴. The analogue 

for 𝑠 < 1 is 

Lemma (2.2.16)[77]: Let 𝑑 ≥ 2, 0 < 𝑠 < 1  and 𝐴 ∈ 𝐿𝑙𝑜𝑐
2 (ℝ𝑑) . Then there exists a 

function 𝑘𝐴  on ℝ𝑑 × ℝ𝑑  such that the following holds. If  𝜒0 , . . . , 𝜒𝑛   are Lipschitz 

continuous functions on ℝ𝑑 satisfying ∑ 𝜒𝑗
2𝑛

𝑗=0 ≡ 1, then one has 

‖|𝐷 − 𝐴|𝑠𝑢‖2 =∑‖|𝐷 − 𝐴|𝑠𝜒𝑗 𝑢‖
2

𝑛

𝑗=0

− (𝑢, 𝐿𝐴𝑢),           𝑢 ∈ 𝑑𝑜𝑚|𝐷 − 𝐴|
𝑠,          (137) 

where 𝐿𝐴 is the bounded operator with integral kernel 

𝐿𝐴(𝑥, 𝑦) ≔ 𝑘𝐴(𝑥, 𝑦)∑(𝜒𝑗 (𝑥) − 𝜒𝑗 (𝑦))
2
.

𝑛

𝑗=0

 

Moreover, for  𝑎. 𝑒. 𝑥, 𝑦 ∈ ℝ𝑑 

|𝑘𝐴(𝑥, 𝑦)| ≤ 𝑎𝑠,𝑑|𝑥 − 𝑦|
−𝑑−2𝑠,         𝑎𝑛𝑑 ℎ𝑒𝑛𝑐𝑒       |𝐿𝐴(𝑥, 𝑦)| ≤ 𝐿(𝑥, 𝑦) 

with 𝐿 defined in Lemma (2.2.7). 
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Proof: By the argument of [96] we can choose a form core for |𝐷 − 𝐴|2𝑠  which is 

invariant under multiplication by Lipschitz continuous functions. It suffices to prove (137) 

only for functions 𝑢 from such a core. 

We write 𝑘𝐴(𝑥, 𝑦, 𝑡) ∶=exp(−𝑡|𝐷 − 𝐴|)2𝑠(𝑥, 𝑦) for the heat kernel and find 

      ∑(𝜒𝑗 𝑢, (1 − exp(−𝑡|𝐷 − 𝐴|
2𝑠)𝜒𝑗 𝑢)

𝑛

𝑗=0

= (𝑢, (1 − exp(−𝑡|𝐷 − 𝐴|2𝑠))𝑢)               

+
1

2
∑∫∫𝑘𝐴

𝑛

𝑗=0

(𝑥, 𝑦, 𝑡) (𝜒𝑗(𝑥) − 𝜒𝑗(𝑦))
2
𝑢(𝑥)̅̅ ̅̅ ̅̅  𝑢(𝑦)𝑑𝑥𝑑𝑦. 

Now we divide by t and note that by our assumption on u the left side converges to 

∑ ‖|𝐷 − 𝐴|𝑠𝜒𝑗 𝑢‖
2𝑛

𝑗=0 as 𝑡 → 0 .Similarly the first term on the right side divided by 𝑡 

converges to ‖|𝐷 − 𝐴|𝑠𝑢‖2 . Hence the last term divided by t converges to some 

limit (𝑢 , 𝐿𝐴𝑢) . The diamagnetic inequality (119) yields the bound  |𝑘𝐴(𝑥, 𝑦, 𝑡)| ≤
𝑒𝑥𝑝(−𝑡(−∆)2𝑠)(𝑥, 𝑦). This implies in particular that 𝐿𝐴 is a bounded operator. Now it is 

easy to check that 𝐿𝐴 is an integral operator and that the absolute value of its kernel is 

bounded pointwise by the one of  𝐿. 

The following helps to clarify the role of the kernel 𝑘𝐴. 
Corollary (2.2.17)[77]: Let 𝑢 ∈ dom |𝐷 − 𝐴|2𝑠 and assume that Ω ∶= ℝ𝑑\𝑠𝑢𝑝𝑝 𝑢 ≠ ∅  . 
Then 

(|𝐷 − 𝐴|2𝑠𝑢)(𝑥) = −∫ 𝑘𝐴

2

ℝ𝑑
(𝑥, 𝑦)𝑢(𝑦)𝑑𝑦     𝑓𝑜𝑟 𝑥 ∈ Ω. 

Proof: Let 𝜑 ∈ 𝐶0
∞(Ω) and choose 𝜒0 , 𝜒1  such that  𝜒0 ≡ 1 on supp 𝑢, 𝜒1 ≡ 1 on supp 

𝜑  and 𝜒0
2 + 𝜒1

2 ≡ 1 . By polarization, (137) implies (𝜑, |𝐷 − 𝐴|2𝑠𝑢) = −(𝜑, 𝐿𝐴𝑢) =
−∫𝜑(𝑥)̅̅ ̅̅ ̅̅ 𝑘 𝐴(𝑥, 𝑦)𝑢(𝑦) 𝑑𝑥 𝑑𝑦, whence the assertion. 

Contain some technical details concerning the quadratic form 𝑏𝛽,𝐴 defined in (116). 

In particular, we shall show its closability. Throughout we assume that 𝑑 ≥ 2, 0 < 𝑠 ≤ 1 

and 𝐴 ∈ 𝐿𝑙𝑜𝑐
2 (ℝ𝑑). 

Lemma (2.2.18)[77]: The sets 𝐶0
∞(ℝ𝑑\ {0})  and 𝒟:= {𝑤 ∈dom (𝐷 − 𝐴)2 ∩ 𝐿∞(ℝ𝑑) : 

supp 𝑤 compact in ℝ𝑑\ {0}} are form cores for  |𝐷 − 𝐴|2𝑠. 
Proof: It suffices to prove the statement for 𝑠 = 1. In this case it is proved in [96] that 

𝐶0
∞(ℝ𝑑) and 𝒟∗: = {𝑤 ∈ 𝑑𝑜𝑚(𝐷 − 𝐴)2 ∩ 𝐿∞(ℝ𝑑) : supp 𝑤 compact } are form cores for 

(𝐷 − 𝐴)2. Hence the statement will follow if we can approximate every function in any of 

these two spaces by functions from the same space vanishing in a neighborhood of the 

origin. But for functions u from 𝐶0
∞(ℝ𝑑) or 𝒟∗ both functions 𝐷𝑢  and 𝐴𝑢  are square-

integrable. This reduces the lemma to the case 𝐴 = 0 where it is well-known. 

Now let 𝑑 − 2𝑠 < 𝛽 < 𝑑  and recall that the quadratic form 𝑞𝛽,𝐴  was defined 

in(123). Note that 𝐶0
∞(ℝ𝑑\ {0})  is invariant under the unitary transformation in 

(122).Therefore, closability of 𝑞𝛽,𝐴 and  𝑏𝛽,𝐴  on 𝐶0
∞(ℝ𝑑\ {0}) are equivalent. 

Lemma (2.2.19)[77]: The quadratic form 𝑞𝛽,𝐴, defined in (123), is closable on  𝐶0
∞(ℝ𝑑\

 {0}). 
Proof: It suffices to show closability of the form 𝑟𝛽,𝐴[𝑢] ∶= ℎ𝑠,𝐴[|𝑥|

𝛼𝑢] on 𝐶0
∞(ℝ𝑑\ {0}) 

for 0 < 𝛼 = (𝛽 + 2𝑠 − 𝑑)/2 < 𝑠. 
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Let 𝒟 be as in Lemma (2.2.18) we shall show that the quadratic form 𝑟𝛽,𝐴 on 𝒟 is 

closable and that 𝐶0
∞(ℝ𝑑\ {0})  is dense with respect to (𝑟𝛽,𝐴[𝑤]  + ‖𝑤‖

2)1/2  in the 

closure of  𝒟 with respect to this norm. This implies the assertion. 

Let 𝑤 ∈ 𝒟. Since |𝑥|𝛼  is smooth on supp 𝑤 and dom(𝐷 − 𝐴)2  is invariant under 

multiplication by smooth functions we have  |𝑥|𝛼𝑤 ∈ 𝑑𝑜𝑚(𝐷 − 𝐴)2and hence |𝑥|𝛼𝑤 ∈
𝑑𝑜𝑚 |𝐷 − 𝐴|2𝑠 . Since |𝑥|𝛼w has compact support it follows from Lemma (2.2.16) and 

Corollary (2.2.17) that  |(|𝐷 − 𝐴|2𝑠| · |𝛼𝑤)(𝑥)| ≤ 𝐶(𝑤)|𝑥|−𝑑−2𝑠  for all large |𝑥| . In 

particular,  |𝑥|𝛼|𝐷 − 𝐴|2𝑠|𝑥|𝛼 𝑤 ∈ 𝐿2(ℝ𝑑). Moreover, |𝑥|−2(𝑠−𝛼) 𝑤 ∈ 𝐿2(ℝ𝑑). It follows 

that if 𝑢𝑛 ∈ 𝒟 such that 𝑢𝑛 → 0  in 𝐿2(ℝ𝑑) ., then the bilinear form associated with 

𝑟𝛽,𝐴 satisfies 

𝑟𝛽,𝐴[𝑢𝑛 , 𝜐] = (𝑢𝑛, |𝑥|
𝛼|𝐷 − 𝐴|2𝑠|𝑥|𝛼 𝑤 − 𝐶𝑠,𝑑|𝑥|

−2(𝑠−𝛼)𝑤) → 0 

as 𝑛 → ∞. By standard arguments, this proves that  𝑟𝛽,𝐴 is closable on  𝒟.  

In order to show the density of 𝐶0
∞(ℝ𝑑\ {0})  we let again 𝑤 ∈ 𝒟 . Since 

|𝑥|𝛼𝑤 ∈dom |𝐷 − 𝐴|𝑠  , Lemma (2.2.18) yields a sequence 𝑢𝑛 ∈ 𝐶0
∞(ℝ𝑑\ {0}) such that 

‖|𝐷 − 𝐴|𝑠(𝑢𝑛 − |𝑥|
𝛼𝑤)‖ + ‖𝑢𝑛 − |𝑥|

𝛼𝑤‖ → 0  .Hence, if 𝑤𝑛 ∶= |𝑥|
−𝛼𝑢𝑛 , then 𝑤𝑛 →

𝑤 𝑖𝑛 𝐿2(ℝ𝑑\ 𝐵) and 0 ≤ 𝑟𝛼,𝐴[𝑤𝑛 −𝑤] ≤ ‖|𝐷 − 𝐴|
𝑠|𝑥|𝛼(𝑤𝑛 −𝑤)‖

2 → 0 . Moreover, 

Hardy’s inequality implies also that  ‖|𝑥|−𝑠+𝛼 + (𝑤𝑛 −𝑤)‖ → 0 and hence 𝑤𝑛 → 𝑤  in 

𝐿2(𝐵) . This proves the density of 𝐶0
∞(ℝ𝑑\ {0})   in the closure of 𝒟  with respect to 

(𝑟𝛼,𝐴[𝑤] + ‖𝑤‖
2)1 2⁄ .  

For the sake of completeness we recall here how the Nash inequality (107) and the 

contraction property of exp(−𝑡𝐵𝛽)  imply the heat kernel estimate (106). Let 𝑘(𝑡):=

‖𝑒𝑥𝑝(−𝑡𝐵𝛽)𝜐‖ℌ𝛽

2
. Then 

�́�(𝑡) = −2𝑏𝛽[exp(−𝑡𝐵𝛽)𝜐] ≤ −2�́�𝑞,𝑑,𝑠
−1 𝑘(𝑡)1+1 𝑝⁄ ‖exp(−𝑡𝐵𝛽)𝜐‖

𝐿
1(|𝑥|−𝛽𝑑𝑥)

−2 𝑝⁄

≤ −2�́�𝑞,𝑑,𝑠
−1 𝑘(𝑡)1+1 𝑝⁄ ‖𝜐‖

𝐿
1(|𝑥|−𝛽𝑑𝑥)

−2 𝑝⁄
, 

where we used (107) and the contraction property. Hence 

(𝑘(𝑡)−1/𝑝)
′
≥ 2𝑝−1�́�𝑞,𝑑,𝑠

−1 𝑡‖𝜐‖
𝐿
1(|𝑥|−𝛽𝑑𝑥)

−2 𝑝⁄
 

and, after integration, 

𝑘(𝑡)−1 𝑝⁄ ≥ 2𝑝−1�́�𝑞,𝑑,𝑠
−1 𝑡‖𝜐‖

𝐿
1(|𝑥|−𝛽𝑑𝑥)

−2 𝑝⁄
.     

This means that 

‖𝑒𝑥𝑝(−𝑡𝐵𝛽)𝜐‖ℌ𝛽

2
≤ (𝑝 �́�𝑞,𝑑,𝑠

2 2⁄ )
𝑝
𝑡−𝑝‖𝜐‖

𝐿
1(|𝑥|−𝛽𝑑𝑥)

2 . 

By duality, noting that 𝐵𝛽is self-adjoint in 𝐿2(|𝑥|−𝛽  𝑑𝑥), this also implies 

‖exp(−𝑡𝐵𝛽)𝜐‖
𝐿
∞(|𝑥|−𝛽𝑑𝑥)

2
≤ (𝑝 �́�𝑞,𝑑,𝑠

2 2⁄ )
𝑝
𝑡−𝑝‖𝜐‖ℌ𝛽

2 . 

Finally, by the semi-group property exp(−𝑡𝐵𝛽) = exp(−𝑡𝐵𝛽 2⁄ ) exp(−𝑡𝐵𝛽 2⁄ ) 

‖exp(−𝑡𝐵𝛽)𝜐‖
𝐿
∞(|𝑥|−𝛽𝑑𝑥)

2
≤ (𝑝 �́�𝑞,𝑑,𝑠

2 2⁄ )
2𝑝
(𝑡 2⁄ )−2𝑝

2
‖𝜐‖

𝐿
1(|𝑥|−𝛽𝑑𝑥)

2 . 

This is exactly the estimate (106) with the constant given in Proposition (2.2.10). 

We sketch the argument leading to Proposition (2.2.12). We emphasize that we shall 

ignore several technical details. We assume that 𝑊 is smooth with compact support in 

ℝ𝑑\ {0}, and we put  𝑘(𝑥, 𝑦, 𝑡):= exp(−𝑡𝐵𝛽) (𝑥, 𝑦). We claim that the trace formula 
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𝑡𝑟ℌ𝛽𝐹(𝑊
1 2⁄ 𝐵𝛽

−1𝑊1 2⁄ )

= ∫
𝑑𝑡

𝑑

∞

0

lim
𝑛→∞

∫   ⋯ ∫  ∏𝑘

𝑛

𝑗=1

2

ℝ𝑑

2

ℝ𝑑
(𝑥𝑗 , 𝑥𝑗−1 ,

𝑡

𝑛
) 𝑓 (

𝑡

𝑛
∑𝑊(𝑥𝑗)

𝑛

𝑗=1

)
𝑑𝑥1
|𝑥1|

𝛽
⋯
𝑑𝑥𝑛
|𝑥𝑛|

𝛽
  (138) 

holds true for any non-negative, lower semi-continuous function f vanishing near the 

origin. Here, 𝐹 is related to 𝑓 as in (111). In the integral in (138) we use the convention 

that 𝑥0 = 𝑥𝑛. Indeed, by an approximation argument it suffices to prove this formula for 

𝐹(𝜆) = 𝜆 (1 + 𝛼𝜆)⁄      ,        𝑓(𝑢) = 𝜇 𝑒−𝛼𝜇 , 
where 𝛼 > 0 is a constant. Using the resolvent identity and Trotter’s product formula, one 

easily verifies that 

  𝐹(𝑊1 2⁄ 𝐵𝛽
−1𝑊1 2⁄ ) = 𝑊1 2⁄ (𝐵𝛽 + 𝛼𝑊)

−1
𝑊1 2⁄

= ∫ 𝑊1 2⁄
∞

0

exp(−𝑡(𝐵𝛽 + 𝛼𝑊))𝑊
1 2⁄ 𝑑𝑡 = ∫ lim

𝑛→∞
𝑇𝑛(𝑡)𝑑𝑡

∞

0

 

in this case. Here, 

𝑇𝑛(𝑡) ≔ 𝑊1 2⁄ (exp(−𝑡𝐵𝛽 𝑛⁄ ) exp(−𝑡𝛼𝑊 𝑛⁄ ))
𝑛
𝑊1 2⁄ . 

The latter is an integral operator. We evaluate its trace via integrating its kernel on the 

diagonal. Then we arrive at 

𝑡𝑟ℌ𝛽𝑇𝑛(𝑡) = ∫  ⋯ ∫∏𝑘

𝑛

𝑗=1

(𝑥𝑗 , 𝑥𝑗−1 ,
𝑡

𝑛
)𝑊(𝑥𝑛)𝑒

−
𝛼𝑡
𝑛
∑ 𝑊(𝑥𝑗)𝑗

𝑑𝑥1
|𝑥1|

𝛽
⋯
𝑑𝑥𝑛
|𝑥𝑛|

𝛽
. 

After symmetrization with respect to the variables this leads to 

𝑡𝑟ℌ𝛽𝑇𝑛(𝑡) =
1

𝑡
∫  ⋯ ∫∏𝑘

𝑛

𝑗=1

(𝑥𝑗 , 𝑥𝑗−1 ,
𝑡

𝑛
) 𝑓 (

𝑡

𝑛
∑𝑊(𝑥𝑗)

𝑗

)
𝑑𝑥1
|𝑥1|

𝛽
⋯
𝑑𝑥𝑛
|𝑥𝑛|

𝛽
. 

The claimed formula (138) follows if one interchanges the trace with the 𝑡-integration and 

the 𝑛-limit. 

Now we assume in addition that 𝑓  is convex. Then Jensen’s inequality yields 

∫  ⋯ ∫∏𝑘

𝑛

𝑗=1

(𝑥𝑗 , 𝑥𝑗−1 ,
𝑡

𝑛
) 𝑓 (

𝑡

𝑛
∑𝑊(𝑥𝑗)

𝑗

)
𝑑𝑥1
|𝑥1|

𝛽
⋯
𝑑𝑥𝑛
|𝑥𝑛|

𝛽

≤ ∫  ⋯ ∫∏𝑘

𝑛

𝑗=1

(𝑥𝑗 , 𝑥𝑗−1 ,
𝑡

𝑛
)
1

𝑛
∑𝑓 (𝑡𝑊(𝑥𝑗))

𝑗

𝑑𝑥1
|𝑥1|

𝛽
⋯
𝑑𝑥𝑛
|𝑥𝑛|

𝛽

= ∫  ⋯ ∫∏𝑘

𝑛

𝑗=1

(𝑥𝑗 , 𝑥𝑗−1 ,
𝑡

𝑛
) 𝑓 (𝑡𝑊(𝑥1))

𝑑𝑥1
|𝑥1|

𝛽
⋯
𝑑𝑥𝑛
|𝑥𝑛|

𝛽
 

(Eq. (118) holds also in the magnetic case discussed. Before applying Jensen’s inequality, 

one first has to use the diamagnetic inequality (117) to eliminate the magnetic field in the 

kernel 𝑘, however.) Finally, we use the semigroup property to integrate with respect to the 

variables 𝑥2, . . . , 𝑥𝑛. We find that the latter integral is equal to 

∫ 𝑘(𝑥, 𝑥, 𝑡)
2

ℝ𝑑
𝑓 (𝑡𝑊(𝑥))

𝑑𝑥

|𝑥|𝛽
. 

Plugging this into (138) leads to the estimate (112). 

Details concerning the justification of the above manipulations can be found in [95]. 
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Section (2.3): Caffarelli–Kohn–Nirenberg Inequalities with Remainder 

Terms 

We concerned with Hardy and Hardy–Sobolev type inequalities with remainder 

terms. In particular, we shall focus on the following Hardy–Sobolev type inequalities due 

to [7]. For all 𝑢 ∈ 𝐶0
∞(ℝ𝑛) it holds 

∫ |𝑥|−2𝑎
2

ℝ𝑁
|∇𝑢|2𝑑𝑥 ≥ 𝐶𝑎,𝑏 (∫ |𝑥|−𝑏𝑝

2

ℝ𝑁
|𝑢|𝑝𝑑𝑥)

2
𝑝

,                             (139) 

where  

for 𝑁 ≥ 3: 𝑎 <
𝑁−1

2
, 𝑎 ≤ 𝑏 ≤ 𝑎 + 1, 𝑝 =

2𝑁

𝑁−2+2(𝑏−𝑎)
;

for 𝑁 = 2: 𝑎 < 0 ,   𝑎 < 𝑏 ≤ 𝑎 + 1, 𝑝 =
2

(𝑏−𝑎)
;          

for 𝑁 = 1: 𝑎 < −
1

2
,          𝑎 +

1

2
< 𝑏 ≤ 𝑎 + 1, 𝑝 =

2

−1+2(𝑏−𝑎)
;  }
 
 

 
 

               (140) 

Let 𝐷𝑎
1,2(ℝ𝑛) be the completion of 𝐶0

∞(ℝ𝑛) under the norm 

‖𝑢‖2 = ∫ |𝑥|−2𝑎
2

ℝ𝑁
|∇𝑢|2𝑑𝑥,                                                      (141) 

which is given by the inner product (𝑢, 𝜐) = ∫ |𝑥|−2𝑎
2

ℝ𝑁
∇𝑢 ∙ ∇𝜐𝑑𝑥: Then (139) holds for 

𝑢 ∈ 𝐶𝑎
1,2(ℝ𝑛) . Define the best constant 

𝑆(𝑎, 𝑏) = inf
𝐷𝑎
1,2(ℝ𝑑\{0}

   
∫ |𝑥|−2𝑎
2

ℝ𝑁
|∇𝑢|2𝑑𝑥

(∫ |𝑥|−𝑏𝑝
2

ℝ𝑁
|𝑢|𝑝𝑑𝑥)

2
𝑝

.                             (142) 

Then it is known that 𝑆(𝑎, 𝑎 − 1) = (
𝑁−2−2𝑎

2
)
2
is never achieved and that for 𝑁 ≥ 3,0 ≤

𝑎 <
𝑁−2

2
, 𝑎 ≤ 𝑏 < 𝑎 + 1, 𝑆(𝑎, 𝑏) is achieved only by radial functions (in the case of 𝑎 =

𝑏 = 0, up to a translation in ℝ𝑁), which are given by 

𝐶𝑈𝜆(𝑥) = 𝐶𝜆
𝑁−2
2 𝑈(𝜆𝑥),                                                       (143) 

where 𝐶 ∈ ℝ, 𝜆 > 0 and  

𝑈(𝑥) = 𝑘0(1 + |𝑥|
𝛼)−𝛽 , 𝛼 =

2(𝑁 − 2 − 2𝑎)(1 + 𝑎 − 𝑏)

𝑁 − 2 + 2(𝑏 − 𝑎)
, 𝛽 =

𝑁 − 2 + 2(𝑏 − 𝑎)

2(1 + 𝑎 − 𝑏)
  (144) 

with 𝑘0 being chosen such that ‖𝑈‖𝑎
2 = 𝑆(𝑎, 𝑏) (see [12]). 

To motivate our discussion, let us start with the Hardy inequality for the special  

case 𝑎 = 0, 𝑏 = 1. In this case (139) gives for 𝑁 ≥ 3, 𝑢 ∈ 𝐷1,2 (ℝ𝑁), 

∫ |∇𝑢|2𝑑𝑥
2

ℝ𝑁
≥ (

𝑁 − 2

2
)
2

∫
𝑢2

|𝑥|2

2

ℝ𝑁
𝑑𝑥. 

This inequality still holds for 𝑢 ∈ 𝐻0
1(Ω) for any bounded domain Ω. Using a very delicate 

argument, Brezis and Vazquez first discovered the following improved version of the 

inequality in bounded domains. 

Motivated by and related to the above results, our first result here improves the 

above Theorems (2.3.4) and (2.3.6), and covers the weighted version as well. To avoid 

confusion of notations, we define 

𝐷𝑎
1,2(Ω) = 𝐶0

∞(Ω)̅̅ ̅̅ ̅̅ ̅̅ ̅‖∙‖,                                                        (145) 
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where ‖∙‖ is given in (141). Here Ω is a domain in ℝ𝑁 (not necessarily bounded). Note that 

when Ω is bounded, 𝐷𝑎
1,2(Ω) = 𝐻0

1(Ω). Whenever without confusion, we shall use ‖∙‖ for 

the norm in (141) with a relevant 𝑎 <
𝑁−2

2
 in place and a domain Ω ⊂ ℝ𝑁 in the context. 

The symbol ‖∙‖𝑝 will be used to denote 𝐿𝑝(Ω) norm when Ω is clear. 

We prove Theorems (2.3.3) and (2.3.5). The idea is to use a conformal 

transformation to convert the problem to an equivalent one defined in a domain on a 

cylinder  ℘ = ℝ × 𝑆𝑁−1.This idea has been used in[1]to study the symmetry property of 

extremal functions for the Caffarelli–Kohn–Nirenberg inequalities (139). More precisely, 

to a function 𝑢 ∈ 𝐶0
∞(Ω\{0})  we associate 𝜐 ∈ 𝐶0

∞(Ω̃) by the transformation 

𝑢(𝑥) = |𝑥|
𝑁−2−2𝑎

2 𝜐 (− ln|𝑥|,
𝑥

|𝑥|
),                                          (146) 

where Ω̃ is a domain on ℘ defined by 

(𝑡, 𝜃) = (− ln|𝑥|,
𝑥

|𝑥|
) ∈ Ω̃   ⇔ 𝑥 ∈ Ω                                     (147) 

In [1], it was proved that when Ω = ℝ𝑁, the above transformation defines a Hilbert space 

isomorphism between 𝐷𝑎
1,2(ℝ𝑁)  and 𝐻1(℘)  whose norm is given ‖𝜐‖𝐻1(℘)

2 =

∫ (|∇𝜐|2 +
𝑁−2−2𝑎

2
)

2

℘
𝑑𝜇. 

Using the same computation, we have 

Lemma (2.3.1)[99]: Let 𝑁 ≥ 1, 𝑎 <
𝑁−2

2
, Ω ⊂ ℝ𝑁  𝑎  domain.Then under the 

transformation (146) 

∫ |𝑥|−2𝑎
2

Ω

|∇𝑢|2𝑑𝑥 = ∫ [|∇𝜐|2 + (
𝑁 − 2 − 2𝑎

2
)
2

𝜐2]
2

Ω̃

𝑑𝜇 

and  

∫ |𝑥|−2(𝑎+1)
2

Ω

𝑢2𝑑𝑥 = ∫ |𝜐|2
2

Ω̃

𝑑𝜇. 

Let ℘+(℘−, resp.) denote the domain on ℘ with 𝑡 component positive (negative, resp.). 

Lemma (2.3.2)[99]: Let 𝑁 ≥ 1  and Ω̃  ⊂ ℘+𝑜𝑟 Ω̃  ⊂ ℘− be 𝑎  domain.Then for all 𝜐 ∈

𝐶0
∞(Ω̃), 

∫ |∇𝜐|2
2

Ω̃

𝑑𝜇 ≥
1

4
∫

𝜐2

𝑡2

2

Ω̃

𝑑𝜇.                                                  (148) 

Moreover 
1

4
 is the best constant if [𝐿 ,∞) × 𝑆𝑁−1 ⊂ Ω̃  𝑜𝑟 (−∞ ,−𝐿] × 𝑆𝑁−1 ⊂ Ω̃ for 𝐿 >

0. 
Proof: This is a version of the classical Hardy inequality adapted for the cylinder case. For 

𝜐 ∈ 𝐶0
∞(Ω̃), 

∫
𝜐2(𝑡, 𝜃)

𝑡2

∞

0

𝑑𝑡 = −2∫
𝜐𝜐𝑡
𝑡

∞

0

𝑑𝑡 ≤ (∫
𝜐2

𝑡2

∞

0

𝑑𝑡)

1
2

(∫ 𝜐𝑡
2

∞

0

𝑑𝑡)

1
2

. 

Thus  

∫
𝜐2(𝑡, 𝜃)

𝑡2

∞

0

𝑑𝑡 ≤ 4∫ 𝜐𝑡
2

∞

0

(𝑡, 𝜃)𝑑𝑡. 
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Integrating on 𝑆𝑁−1  gives the result. Since 
1

4
 is the best constant for the classical one-

dimensional Hardy inequality (see[103]), the optimality is proved by considering functions 

depending only on 𝑡. 
Lemma (2.3.2) implies that  if  Ω̃  ⊂ ℘+𝑜𝑟 Ω̃  ⊂ ℘−,  the completion of 

𝐶0
∞(Ω̃) under the norm √∫ |∇𝜐|2𝑑𝜇 

2

Ω̃
 is well defined, even for 𝑁 = 1, and 2. We denote 

this space by 𝐷0
1,2(Ω̃). 

Theorem (2.3.3)[99]: Let 𝑁 ≥ 1, 𝑎 <
𝑁−2

2
.  Assume Ω ⊂⊂ 𝐵𝑅(0) for some 𝑅 > 0.  Then 

there exists  𝐶 = 𝐶(𝑎, Ω) > 0 such that for all 𝑢 ∈ 𝐷𝑎
1,2(Ω), 

‖|𝑥|−𝑎∇𝑢‖2
2 − (

𝑁 − 2 − 2𝑎

2
)
2

‖|𝑥|−(𝑎+1)𝑢‖
2

2
≥ 𝐶 ‖(ln

𝑅

|𝑥|
)
−1

|𝑥|−𝑎∇𝑢‖
2

2

.           (149) 

Moreover, when 0 ∈ Ω  the inequality is sharp in the sense that (ln
𝑅

|𝑥|
)
−1

cannot be 

replaced by 𝑔(𝑥)ln (
𝑅

|𝑥|
)
−1

 with 𝑔 satisfyin |𝑔(𝑥)| → ∞ 𝑎𝑠|𝑥| → 0. 

In the case 𝑎 = 0,   by using Hölder inequality, we see (149) implies Theorem 

(2.3.6). Our approach is quite different from that in [80], [106], in some sense simpler and 

easier to be adapted for the weighted versions. Following the idea used in [1], we convert 

the problem from ℝ𝑁  to one defined on a cylinder ℘ = ℝ × 𝑆𝑁−1.  From there an 

inequality similar to the classical one-dimensional Hardy inequality on (0,∞) is used to 

tackle the technical part of the proof. We also note that while the sharpness of  Theorems 

(2.3.4) and (2.3.6) is open-ended (for 𝑞 <
2𝑁

𝑁−2
 and 𝑞 < 2, respectively), the sharpness in 

Theorem(2.3.3) is close-ended in the sense (ln
𝑅

|𝑥|
)
−1

cannot be replaced by (ln
𝑅

|𝑥|
)
−𝑑

 for 

𝑑 < 1. 

We take Ω ⊂⊂ 𝐵𝑅(0) just to avoid the singularity of  (ln
𝑅

|𝑥|
)
−1

 at |𝑥| = 𝑅. Here we 

are interested in the singularity at zero. In fact, if we take 𝛿 > 0 such that 𝐵𝛿(0) ⊂ Ω, then 

it holds for all 𝑢 ∈ 𝐷𝑎
1,2(Ω), 

‖|𝑥|−𝑎∇𝑢‖𝐿2(Ω)
2 − (

𝑁 − 2 − 2𝑎

2
)
2

‖|𝑥|−(𝑎+1)𝑢‖
𝐿2(Ω)

2
≥ 𝐶‖|𝑥|−𝑎∇𝑢‖𝐿2(Ω\𝐵𝛿(0))

2 ,    

for some 𝐶 > 0. 

Using similar ideas, we give another result of the same spirit, which works for 

bounded domains as well as exterior domains. It also takes into account the singularity of  

ln
𝑅

|𝑥|
 at |𝑥| = 𝑅. 

Theorem (2.3.4)[99]: (Brezis and Vazquez [80]). Let 𝑁 ≥ 3,Ω ⊂ ℝ𝑁  bounded. Then 

there exists 𝐶 = 𝐶(Ω) > 0 such that for all 𝑢 ∈ 𝐻0
1(Ω). 

‖∇𝑢‖2
2 − (

𝑁 − 2

2
)
2

‖|𝑥|−1𝑢‖2
2 ≥ 𝐶‖𝑢‖2

2.                                (150) 

From this result, they deduced that for any 2 ≤ 𝑞 <
2𝑁

𝑁−2
, 

‖∇𝑢‖2
2 − (

𝑁 − 2

2
)
2

‖|𝑥|−1𝑢‖2
2 ≥ 𝐶‖𝑢‖𝑞

2                                  (151) 
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for some 𝐶 = 𝐶(𝑞, Ω) > 0.  and that 𝑞  cannot be replaced by 2
2𝑁

𝑁−2
.  Very recently, 

Vazquez and Zuazua obtained an improved version of this result. 

Proof:  A simple scaling argument shows it suffices to take 𝑅 = 1. Let  𝛾0 = max
 𝑥∈Ω

|𝑥|. 

Then 𝛾0 < 1. By Lemma (2.3.1), under transformation (146), it suffices to show that there 

exists 𝐶 > 0 such that for all 𝜐 ∈ 𝐷0
1,2(Ω̃). 

∫ |∇𝜐|2𝑑𝜇
2

Ω̃

≥ 𝐶∫
1

𝑡2
[|∇θ𝜐|

2 + (𝜐𝑡 +
𝑁 − 2 − 2𝑎

2
𝜐)

2

]
2

Ω̃

𝑑𝜇. 

But by Lemma (2.3.2) 

 ∫
1

𝑡2
[|∇θ𝜐|

2 + (𝜐𝑡 +
𝑁 − 2 − 2𝑎

2
𝜐)

2

]
2

Ω̃

𝑑𝜇 

≤     2
1

(ln 𝛾0)
2
∫ |∇𝜐|2𝑑𝜇
2

Ω̃

+ 2(
𝑁 − 2 − 2𝑎

2
)
2

4∫ 𝜐𝑡
2𝑑𝜇

2

Ω̃

≤ (
2

(ln 𝛾0)
2
+ 2(𝑁 − 2 − 2𝑎)2)∫ |∇𝜐|2𝑑𝜇

2

Ω̃

. 

To show the sharpness part of the theorem, assume 𝑔(𝑥) satisfies |𝑔(𝑥)| → +∞ as |𝑥| →
0. We may assume 

lim
|𝑥|→0

|𝑔(𝑥)|

|ln|𝑥||
= 0. 

Now it suffices to construct  𝜐𝑛 ∈ 𝐷0
1,2(Ω̃) such that 

∫ |∇𝜐𝑛|
2𝑑𝜇

2

Ω̃

∫
|g(e−t)|2

𝑡2
(|∇θ𝜐𝑛|

2 + (
𝜕𝜐𝑛
𝜕𝑡

+
𝑁 − 2 − 2𝑎

2
𝜐𝑛)

2

)𝑑𝜇
2

Ω̃

→ 0,    𝑎𝑠  𝑛 → ∞. 

Let 𝑅𝑛 → ∞,  and 𝜂 be a function defined on [0,∞) such that 𝜂(𝑡) = 1, 0 ≤ 𝑡 ≤ 1, 𝜂(𝑡) =
0, 𝑡 ≥ 2, |�́�(𝑡)| ≤ 2. Define  

𝜐𝑛(𝑡, 𝜃) = 𝜂 (
|𝑡 − 𝑅𝑛|

𝑅𝑛
). 

Then for 𝑛 large, 𝜐𝑛 ∈ 𝐷0
1,2(Ω̃) since Ω̃ contains [𝐿,∞) × 𝑆𝑁−1 for some 𝐿 large. Then, 

        𝐴𝑛 ≔ ∫ |∇𝜐𝑛|
2𝑑𝜇

2

Ω̃

≤ 𝐶∫
1

𝑅𝑛
2
(�́�)2

6𝑅𝑛

2𝑅𝑛

𝑑𝑡 ≤
𝐶

𝑅𝑛
    

𝐵𝑛 ≔ ∫
|g(e−t)|2

𝑡2
[|∇θ𝜐𝑛|

2 + (
𝜕𝜐𝑛
𝜕𝑡

+
𝑁 − 2 − 2𝑎

2
𝜐𝑛)

2

] 𝑑𝜇 
2

Ω̃

≥ 𝐶∫
|g(e−t)|2

𝑡2
((
𝜕𝜐𝑛
𝜕𝑡
)
2

+ (
𝑁 − 2 − 2𝑎

2
)
2

𝜐𝑛
2   

5𝑅𝑛

3𝑅𝑛

+ (𝑁 − 2 − 2𝑎)𝜐𝑛
𝜕𝜐𝑛
𝜕𝑡
)𝑑𝑡. 

Then  

∫
|g(e−t)|2

𝑡2

6𝑅𝑛

3𝑅𝑛

(
𝜕𝜐𝑛
𝜕𝑡
)
2

𝑑𝑡 = 𝑜 (
1

𝑅𝑛
) ,       𝑎𝑠  𝑛 → ∞, 

and choosing 0 < 𝛽 < 1, 
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|∫
|g(e−t)|2

𝑡2

5𝑅𝑛

3𝑅𝑛

𝜐𝑛
𝜕𝜐𝑛
𝜕𝑡

𝑑| ≤ ∫
|g(e−t)|2𝛽

𝑡2𝛽

5𝑅𝑛

3𝑅𝑛

(
𝜕𝜐𝑛
𝜕𝑡
)
2

𝑑𝑡 + ∫
|g(e−t)|2(2−𝛽)

𝑡2(2−𝛽)

5𝑅𝑛

3𝑅𝑛

𝜐𝑛
2𝑑𝑡

= 𝑜 (
1

𝑅𝑛
) + 𝑜(1)∫

|g(e−t)|2

𝑡2

5𝑅𝑛

3𝑅𝑛

𝜐𝑛
2𝑑𝑡. 

Then  

                𝐵𝑛 ≥ 𝐶∫
|g(e−t)|2

𝑡2

5𝑅𝑛

3𝑅𝑛

𝜐𝑛
2𝑑𝑡 − 𝑜 (

1

𝑅𝑛
)                                                                               

≥ 𝐶 ( inf
𝑡≥3𝑅𝑛

|g(e−t)|2) .
1

𝑅𝑛
− 𝑜 (

1

𝑅𝑛
). 

Therefore,  

𝐴𝑛
𝐵𝑛

≤
𝐶𝑅𝑛

−1

𝐶(inf𝑡≥3𝑅𝑛  |g(e
−t)|2)𝑅𝑛

−1 + 𝑜(1)𝑅𝑛
−1
→ 0,       𝑛 → ∞. 

The proof of Theorem (2.3.3) is complete. 

Theorem (2.3.5)[99]: Let 𝑁 ≥ 1, 𝑎 ≤
𝑁−1

2
.  Assume  Ω ⊂ 𝐵𝑅(0) 𝑜𝑟 Ω ⊂ 𝐵𝑅

𝐶(0) =

(ℝ𝑁\𝐵𝑅(0) . Then for all 𝑢 ∈ 𝐷𝑎
1,2(Ω), 

‖|𝑥|−𝑎∇𝑢‖2
2 − (

𝑁 − 2 − 2𝑎

2
)
2

‖|𝑥|−(𝑎+1)𝑢‖
2

2
≥
1

4
‖(ln

𝑅

|𝑥|
)
−1

|𝑥|−(𝑎+1)𝑢‖
2

2

.      (152) 

This inequality is sharp in the sense that (ln
𝑅

|𝑥|
)
−1

cannot be replaced by 𝑔(𝑥) (ln
𝑅

|𝑥|
)
−1

 

with |𝑔(𝑥)| → ∞ as |𝑥| → 0 when 0 ∈ Ω (by 𝑔(𝑥) (ln
𝑅

|𝑥|
)
−1

with  |𝑔(𝑥)| → ∞ as |𝑥| → ∞ 

when  𝐵𝑝
𝐶(0) ⊂ Ω). The best constant 

1

4
 is then also sharp. 

For  𝑎 = 0,  this was proved recently in [100] (see also [102]) under condition Ω ⊂
𝐵𝑒−1𝑅(0) and no estimate on the best constant is given there except for 𝑎 = 0,𝑁 = 2. 

Next, we turn to Hardy–Sobolev type inequalities which correspond to 𝑎 ≤ 𝑏 < 𝑎 +
1 in CKN inequality (139). Recall the norm on  𝐿𝑤

𝑞
(Ω) is defined by 

‖𝑢‖𝑞,𝑤 = sup
𝑆

∫ |𝑢|𝑑𝑥
2

𝑆

|𝑆|
1
�́�

, 

where �́� is the conjugate exponent of 𝑞, 𝑖. 𝑒.
1

𝑞
+

1

�́�
= 1 and  𝑆 ⊂ Ω has a finite measure. 

Theorem (2.3.6)[99]: (Vazquez and Zuazua [106]). Let 𝑁 ≥ 3, and 1 ≤ 𝑞 < 2. Assume Ω 

is bounded. Then there exists  𝐶 = 𝐶(𝑞, Ω) > 0 such that, for all 𝑢 ∈ 𝐻0
1(Ω), 

‖∇𝑢‖2
2 − (

𝑁 − 2

2
)
2

‖|𝑥|−1𝑢‖2
2 ≥ 𝐶‖∇𝑢‖𝑞

2 .                              (153) 

Here 𝑞 cannot be replaced by 2. 

Proof: Again we may assume  𝑅 = 1. Let us assume 𝑎 <
𝑁−2

2
 first. It suffices then to use 

Lemmas (2.3.1) and (2.3.2). 

Since the constant on the right-hand side is 
1

4
, which is independent of 𝑎 <

𝑁−2

2
 ,we 

may send 𝑎 →
𝑁−2

2
 in the inequality. This can be done first for smooth functions, i.e. for all 

𝑢 ∈ 𝐶0
∞(Ω),  with  𝑎 =

𝑁−2

2
, (152) is satisfied . This implies 𝐷𝑎

1,2(Ω) with 𝑎 =
𝑁−2

2
 is well 
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defined and ‖|𝑥|−𝑎∇u‖2 can be taken as its norm. Now a density argument finishes the 

proof for the case  𝑎 =
𝑁−2

2
. 

For the sharpness of the weight, we use the same test functions 𝜐𝑛 as in the proof of 

Theorem (2.3.3). Then it is easy to see 

∫ |∇𝜐𝑛|
2𝑑𝜇

2

Ω̃

∫
| g(e−t)|2

𝑡2
𝑑𝜇 

2

Ω̃

≤
𝐶

(inf𝑡≥𝑅𝑛  |g(e
−t)|2)

→ 0,      𝑎𝑠  𝑛 → ∞. 

Finally, the constant 
1

4
 on the right-hand side is the best constant by Lemma (2.3.2). 

We consider the weighted Hardy–Sobolev inequality (139) on 𝐷𝑎
1,2(ℝ𝑁), 

‖|𝑥|−𝑎∇𝑢‖2
2 − 𝑆(𝑎, 𝑏)‖|𝑥|−𝑏𝑢‖

𝑝

2
≥ 0 

for the parameter range: 𝑁 ≥ 3, 0 < 𝑎 < 
𝑁−2

2
, 𝑎 ≤ 𝑏 < 𝑎 + 1, 𝑝 =  

2𝑁

𝑁−2+2(𝑏−𝑎)
∈ (2, 2∗], 

where 2∗ =
2𝑁

𝑁−2
 . Recall from introduction that the best constant  𝑆(𝑎, 𝑏) is achieved by 

the functions given in (143) and (144). Thus the minimizers for 𝑆(𝑎, 𝑏)  consist of a two 

dimensional manifold  M ⊂ 𝐷𝑎
1,2(ℝ𝑁). Let us define  

𝑑(𝑢,𝑀) = inf  {‖|𝑥|−𝑎∇(𝑢 − 𝐶𝑈𝜆)‖2
2 :   𝐶 ∈ ℝ, 𝜆 > 0}. 

We need the following result first which generalizes the results in [101], [79] for the case 

𝑎 = 0 to the case 𝑎 > 0. 
Lemma (2.3.7)[99]: Let 𝑎 > 0, 𝑎 ≤ 𝑏 < 𝑎 + 1. The first two eigenvalues of (155) are 

given by 𝜆1 = 𝑆(𝑎, 𝑏) and 𝜆2 = (𝑝 − 1)𝑆(𝑎, 𝑏).  The eigenspaces are spanned by 𝑈 and 
𝑑

𝑑𝜆
|
𝜆=1

𝑈𝜆, respectively. 

Proof: It is easy to check that 𝑈  and 
𝑑

𝑑𝜆
|
𝜆=1

𝑈𝜆  are eigenfunctions corresponding to  

𝑆(𝑎, 𝑏) and (𝑝 − 1)𝑆(𝑎, 𝑏), respectively. Then it suffices to show that any eigenfunction 

corresponding to an eigenvalue 𝜆 ≥ (𝑝 − 1)𝑆(𝑎, 𝑏)has to be radial. Let 𝐶Ψ𝑖 , 𝑖 = 0,1,… the 

sequence of spherical harmonics, which are eigenfunctions of the Laplace–Beltrami 

operator on  𝑆𝑁−1 : − ∆ 𝑆𝑁−1  Ψ𝑖 = 𝜎𝑖Ψ𝑖 , 𝜎0 = 0, 𝜎1 = ⋯𝜎𝑁 = 𝑁 − 1,    𝜎𝑁+1 > 𝜎𝑁 .Let 𝑢 

be an eigenfunction corresponding to an eigenvalue 𝜆 ≤ (𝑝 − 1)𝑆(𝑎, 𝑏). We shall show 

for all 𝑖 ≥ 1, 

∫ 𝑢(𝑟, 𝜃)
2

𝑆𝑁−1
Ψ𝑖(𝜃)𝑑𝜃 ≡ 0. 

Let 𝜑𝑖 = ∫ 𝑢(𝑟, 𝜃)
2

𝑆𝑁−1
Ψ𝑖(𝜃)𝑑𝜃. Then we can check 

 div(|𝑥|−2𝑎∇𝜑𝑖) = −2𝑎|𝑥|
−2𝑎−1  

𝜕

𝜕𝑟
𝜑𝑖 + |𝑥|

−2𝑎∆r𝜑𝑖

= ∫ [|𝑥|−2𝑎∆r𝑢(𝑟, 𝜃) − 2𝑎|𝑥|
−2𝑎−1

𝜕𝑢

𝜕𝑟
(𝑟, 𝜃)]

2

𝑆𝑁−1
Ψ𝑖(𝜃)𝑑𝜃   

= ∫ [(div|𝑥|−2𝑎∇𝑢) −
|𝑥|−2𝑎∆𝜃𝑢

𝑟2
]

2

𝑆𝑁−1
Ψ𝑖(𝜃)𝑑𝜃    

= ∫ −𝜆|𝑥|−𝑏𝑝𝑈𝑝−2𝑢
2

𝑆𝑁−1
Ψ𝑖(𝜃)𝑑𝜃 +

𝑟−2𝑎𝜎𝑖
𝑟2

∫ 𝑢
2

𝑆𝑁−1
Ψ𝑖(𝜃)𝑑𝜃

= (𝑟−2𝑎−2𝜎𝑖 − 𝜆𝑟
−𝑏𝑝𝑈𝑝−2)𝜑𝑖 . 

Then for any 𝑅 > 0, 
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0 = ∫ [div(|𝑥|−2𝑎∇𝜑𝑖 )
𝜕𝑈

𝜕𝑟
+ (𝜆𝑟−𝑏𝑝𝑈𝑝−2 − 𝑟−2𝑎−2𝜎𝑖)𝜑𝑖 

𝜕𝑈

𝜕𝑟
]

2

𝐵𝑅(0)

𝑑𝑥. 

The first term can be calculated as follows: 

∫ div(|𝑥|−2𝑎∇𝜑𝑖 )𝑈𝑟

2

𝐵𝑅(0)

𝑑𝑥

= ∫ 𝜑𝑖 div(|𝑥|
−2𝑎∇(𝑈𝑟))

2

𝐵𝑅(0)

𝑑𝑥 − ∫ |𝑥|−2𝑎𝜑𝑖 

2

𝜕𝐵𝑅(0)

〈∇(𝑈𝑟),
𝑥

𝑅
〉 𝑑𝜇

+ ∫ 𝑈𝑟

2

𝜕𝐵𝑅(0)

〈|𝑥|−2𝑎∇𝜑𝑖 (𝑈𝑟),
𝑥

𝑅
〉 𝑑𝜇

= ∫ 𝜑𝑖 div(|𝑥|
−2𝑎∇(𝑈𝑟))

2

𝐵𝑅(0)

𝑑𝑥 + ∫ 𝑅−2𝑎 (𝑈𝑟
𝑑𝜑𝑖 
𝑑𝑟

− 𝑈𝑟𝑟𝜑𝑖 )
2

𝜕𝐵𝑅(0)

𝑑𝜇. 

And using equation −div(|𝑥|−2𝑎∇𝑈) = 𝑆(𝑎, 𝑏)|𝑥|−𝑏𝑝𝑈𝑝−2, we have 

∫ 𝜑𝑖 div(|𝑥|
−2𝑎∇(𝑈𝑟))

2

𝐵𝑅(0)

𝑑𝑥 = ∫ 𝜑𝑖 div (|𝑥|
−2𝑎𝑈𝑟𝑟

𝑥

𝑟
)

2

𝐵𝑅(0)

𝑑𝑥

= ∫ 𝜑𝑖 

2

𝐵𝑅(0)

[𝑁𝑟−2𝑎𝑈𝑟𝑟 + |𝑥|
−2𝑎𝑈𝑟𝑟𝑟 − (2𝑎 + 1)𝑟

−2𝑎−1𝑈𝑟𝑟]𝑑𝑥

= ∫ 𝜑𝑖 

2

𝐵𝑅(0)

[(𝑁 − 2𝑎 − 1)𝑟−2𝑎−1𝑈𝑟𝑟

+ 𝑟−2𝑎
𝑑

𝑑𝑟
(
2𝑎𝑈𝑟
𝑟2

−
𝑁 − 1

𝑟
𝑈𝑟 − 𝑆(𝑎, 𝑏)𝑟

−𝑏𝑝+2𝑎𝑈𝑝−2)] 𝑑𝑥

= ∫ 𝜑𝑖 

2

𝐵𝑅(0)

[(𝑁 − 2𝑎 − 1)𝑟−2𝑎−1𝑈𝑟𝑟

+ 𝑟−2𝑎 (2𝑎
𝑟𝑈𝑟𝑟 − 𝑈𝑟

𝑟2
−
(𝑁 − 1)(𝑟𝑈𝑟𝑟 − 𝑈𝑟)

𝑟2
+(𝑏𝑝 − 2𝑎)𝑆(𝑎, 𝑏)2𝑟

−𝑏𝑝+2𝑎−1𝑈𝑝−2

− 𝑟−𝑏𝑝+2𝑎(𝑝 − 1)𝑆(𝑎, 𝑏)𝑈𝑝−2𝑈𝑟)] 𝑑𝑥 

                   = ∫ 𝜑𝑖

2

𝐵𝑅(0)

𝑟−2𝑎
𝑁 − 1 − 2𝑎

𝑟2
𝑈𝑟 +∫ (𝑏𝑝 − 2𝑎)

2

𝐵𝑅(0)

𝑆(𝑎, 𝑏)𝑟−𝑏𝑝−1𝑈𝑝−1𝜑𝑖

− (𝑝 − 1)𝑆(𝑎, 𝑏)∫ 𝑟−𝑏𝑝𝑈𝑝−2𝑈𝑟𝜑𝑖

2

𝐵𝑅(0)

. 

Putting all these together, we get 

      0 = ∫ 𝑅−2𝑎
2

𝜕𝐵𝑅(0)

(𝑈𝑟
𝑑𝜑𝑖
𝑑𝑟

− 𝑈𝑟𝑟𝜑𝑖)𝑑𝜇 + ∫ 𝜑𝑖 𝑟
−2𝑎−2

2

𝐵𝑅(0)

(𝑁 − 1 − 𝜎𝑖 − 2𝑎)𝑈𝑟𝑑𝑥

+ ∫ (𝑏𝑝 − 2𝑎)𝑆(𝑎, 𝑏)
2

𝐵𝑅(0)

𝑟−𝑏𝑝−1𝑈𝑝−1𝜑𝑖𝑑𝑥

+ (𝜆 − (𝑝 − 1)𝑆(𝑎, 𝑏))∫ 𝑟−𝑏𝑝𝑈𝑝−2𝑈𝑟𝜑𝑖𝑑𝑥
2

𝐵𝑅(0)

. 

Let 𝑅 be  the first zero of 𝜑𝑖 with  𝑅 = +∞ if 𝜑𝑖  is not zero anywhere. Without loss of 

generality assume 𝜑𝑖(𝑟) > 0, , 𝑟 ∈ (0, 𝑅). Then 
𝑑𝜑𝑖
𝑑𝑟
(𝑅) ≤ 0. Thus the first and the forth 
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terms are non-negative and the second and the third are positive unless 𝜑𝑖 ≡ 0 since 𝑏𝑝 −
2𝑎 > 0 for 𝑎 > 0. The proof is finished. 

Lemma (2.3.8)[99]: For any sequence (𝑢𝑛) ⊂ 𝐷𝑎
1,2(ℝ𝑁\𝑀 such that  inf𝑛‖|𝑥|

−𝑎∇𝑢𝑛‖2
2 >

0 and 𝑑(𝑢𝑛, 𝑀) → 0, it holds 

lim
𝑛→∞̅̅ ̅̅ ̅̅ ̅

‖|𝑥|−𝑎∇𝑢𝑛‖2
2 − 𝑆(𝑎, 𝑏)‖|𝑥|−𝑏∇𝑢𝑛‖𝑝

2

𝑑(𝑢𝑛, 𝑀)
≥ 1 −

𝜆2
𝜆3
. 

Proof: First we assume 𝑑(𝑢𝑛, 𝑀)‖|𝑥|
−𝑎∇(𝑢𝑛 − 𝑈)‖2. Since 𝜐𝑛 = 𝑢𝑛 − 𝑈 is orthogonal to 

the tangent space of  M, 

𝑇𝑈𝑀 = span {𝑈,
𝑑

𝑑𝜆
|
𝜆=1

𝑈𝜆}, 

we have by Lemma (2.3.7), 

𝜆3∫|𝑥|
−𝑏𝑝 𝑈𝑝−1𝜐𝑛

2𝑑𝑥 ≤ ‖|𝑥|−𝑎∇𝜐𝑛‖2
2 = 𝑑2(𝑢𝑛, 𝑀). 

Let 𝑑𝑛 = 𝑑(𝑢𝑛, 𝑀). Using the equation −div(|𝑥|−2𝑎∇𝑈) = 𝑆(𝑎, 𝑏)|𝑥|−𝑏𝑝𝑈𝑝−11, we get 

  ∫|𝑥|−𝑏𝑝 |𝑢𝑛|
𝑝𝑑𝑥       

= ∫|𝑥|−𝑏𝑝 𝑈𝑝𝑑𝑥 + 𝑝∫|𝑥|−𝑏𝑝 𝑈𝑝−1𝜐𝑛𝑑𝑥 +
𝑝(𝑝 − 1)

2
∫|𝑥|−𝑏𝑝 𝑈𝑝−2𝜐𝑛

2𝑑𝑥

+ 𝑜(𝑑𝑛
2) = 1 +

𝑝

2

𝜆2
𝑆(𝑎, 𝑏)𝜆3

𝑑𝑛
2 + 𝑜(𝑑𝑛

2). 

Then,  

‖|𝑥|−𝑏𝑢𝑛‖𝑝
2
≤ 1 +

𝜆2
𝜆3

𝑑𝑛
2

𝑆(𝑎, 𝑏)
+ 𝑜(𝑑𝑛

2). 

By ‖|𝑥|−𝑎∇𝑢𝑛‖2
2 = 𝑆(𝑎, 𝑏) + 𝑑𝑛

2 , we have 

‖|𝑥|−𝑎∇𝑢𝑛‖2
2 − 𝑆(𝑎, 𝑏)‖|𝑥|−𝑏𝑢𝑛‖𝑝

2
≥ (1 −

𝜆2
𝜆3
)𝑑𝑛

2 + 𝑜(𝑑𝑛
2). 

For the general case, 𝑑(∇𝑢𝑛,𝑀) = ‖|𝑥|
−𝑎∇(𝑢𝑛 − 𝐶𝑛𝑈𝜆𝑛)‖2

 for some 𝐶𝑛 ∈ ℝ, 𝜆𝑛 > 0. We 

can use the invariance of the inequality by dilations to reduce it to the special case above.  

Theorem (2.3.9)[99]: For 𝑁 ≥ 3, 0 < 𝑎 <
𝑁−2

2
 , 𝑎 ≤ 𝑎 + 1, 𝑝 =

2𝑁

𝑁−2+2(𝑏−𝑎)
 ,  there 

exists 𝐶 = 𝐶(𝑁, 𝑎, 𝑏) such that for all  𝑢 ∈ 𝐷𝑎
1,2(ℝ𝑁), 

‖|𝑥|−𝑎∇𝑢‖2
2 − 𝑆(𝑎, 𝑏)‖|𝑥|−𝑏𝑢‖

𝑝

2
≥ 𝐶𝑑(𝑢,𝑀)2.                             (154) 

We first consider the eigenvalue problem 

{
−div(|𝑥|−𝑎∇𝑢) = 𝜆|𝑥|−𝑏𝑝𝑈𝑝−2𝑢

𝑢 ∈ 𝐷𝑎
1,2(ℝ𝑁)                                  

                                               (155) 

Proof: If the theorem is false, we find  (𝑢𝑛) ⊂ 𝐷𝑎
1,2(ℝ𝑁\𝑀 such that 

‖|𝑥|−𝑎∇𝑢𝑛‖2
2 − 𝑆(𝑎, 𝑏)‖|𝑥|−𝑏𝑢𝑛‖𝑝

2

𝑑(𝑢𝑛, 𝑀)
2

→ 0. 

We may assume ‖|𝑥|−𝑎∇𝑢𝑛‖2
2 = 1 and thus 𝐿 = lim 𝑛→∞ 𝑑(𝑢𝑛, 𝑀) ∈ [0,1]. Then  

‖|𝑥|−𝑏𝑢𝑛‖𝑝
2
→ 𝑆(𝑎, 𝑏)−1. 

By a concentration-compactness argument [23], [26] we can find 𝜆𝑛 > 0, 

𝜆𝑛
𝑁−2−2𝑎

2 𝑢𝑛(𝜆𝑛𝑥) → 𝑀  𝑖𝑛 𝐷𝑎
1,2(ℝ𝑁). 
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This implies 𝐿 = 0, a contradiction to Lemma (2.3.8). 

For 𝑎 = 𝑏 = 0, (156) was proved by Brezis and Lieb [79] (see also [5], and also by 

Bianchi and Egnell with a different proof [101]). For 𝑎 = 0, 0 < 𝑏 < 1, (156) was proved 

by Radulescu et al.[104]. For  𝑎 = 𝑏 = 0,  (157) was proved in [79]. 

The approach to prove Theorem (2.3.10), though follows the idea in[104], [105], but 

improves theirs. Without using Schwarz symmetrization, our approach is easily adapted 

for the weighted versions. The method can be used to establish results like (156) in 

unbounded domains. This partially addresses a question raised by Brezis and Lieb [79]. 

In order to state our results for unbounded domains, let us define for a domain Ω ⊂
ℝ𝑁 , 

𝜆1(Ω) = linf
𝐷0
1,2(Ω)

∫ |∇ 𝑢|2
2

Ω

∫ 𝑢2
2

Ω

. 

We say  Ω satisfies (Ω0) condition if there exists an open cone with its vertex at 0, 𝑉0, such 

that for some  𝑅 > 0, Ω𝐶 ⊃ (𝑉0\𝐵𝑅(0)). We say Ω satisfies (Ω1) condition if there exists 

an open cone at 0, 𝑉0, such that for some 𝑅 > 0, for all  𝑦 ∈ Ω, Ω𝐶 ⊃ (𝑦 + 𝑉0)\𝐵𝑅(𝑦). 

Theorem (2.3.10)[99]: Let 𝑁 ≥ 3, 0 ≤ 𝑎 <
𝑁−2

2
, 𝑎 ≤ 𝑏 < 𝑎 + 1, 𝑝 =

2𝑁

𝑁−2+2(𝑏−𝑎)
. 

Assume Ω ⊂ ℝ𝑁  is bounded. Then there exists  𝐶 = 𝐶(𝑎, 𝑏, Ω)   such that for all 𝑢 ∈

𝐷𝑎
1,2(Ω), 

‖|𝑥|−𝑎∇𝑢‖2
2 − 𝑆(𝑎, 𝑏)‖|𝑥|−𝑏𝑢‖

𝑝

2
≥ 𝐶‖|𝑥|−𝑎𝑢‖ 𝑁

𝑁−2−𝑎
,𝑤

2                  (156) 

and  

‖|𝑥|−𝑎∇𝑢‖2
2 − 𝑆(𝑎, 𝑏)‖|𝑥|−𝑏𝑢‖

𝑝

2
≥ 𝐶‖|𝑥|−𝑎∇𝑢‖ 𝑁

𝑁−1−𝑎
,𝑤

2 .               (157) 

Moreover, the weak norm on the right-hand side cannot be replaced by the strong norm. 

Proof: Assume that (156) is not true. Then there exist (𝑢𝑛) ⊂ 𝐻0
1(Ω) such that 

‖|𝑥|−𝑎∇𝑢𝑛‖2
2 − 𝑆(𝑎, 𝑏)‖|𝑥|−𝑏𝑢𝑛‖𝑝

2

‖|𝑥|−𝑎𝑢𝑛‖ 𝑁
𝑁−2−𝑎

,𝑤

2 → 0. 

We assume ‖|𝑥|−𝑎∇𝑢𝑛‖2
2 = 1 and ‖|𝑥|−𝑎𝑢𝑛‖ 𝑁

𝑁−2−𝑎
,𝑤

2  is bounded by Sobolev’s inequality. 

Then ‖|𝑥|−𝑎∇𝑢𝑛‖2
2 → 𝑆(𝑎, 𝑏)−1. By Theorem (2.3.9), there exist (𝐶𝑛, 𝜆𝑛) → (1,∞) such 

that 

𝑑(𝑢𝑛, 𝑀) = ‖|𝑥|
−𝑎∇(𝑢𝑛 − 𝐶𝑛𝑈𝜆𝑛)‖2

2
→ 0. 

A direct computation shows 

𝑑(𝑢𝑛, 𝑀)
2 ≥ 𝐶𝑛

2∫ |𝑥|−𝑎2|∇ 𝑈𝜆𝑛|
2

2

|𝑥|≥1

𝑑𝑥

= 𝐶𝜆𝑛
𝑁−2−2𝑎∫ 𝑟−2𝑎

∞

1

(1 + (𝜆𝑛𝑟)
2)−2(𝛽+1)(𝜆𝑛𝑟)

2(𝛼−1)𝜆𝑛
2  𝑟𝑁−1𝑑𝑟

= 𝐶∫ 𝑆−2𝑎
∞

𝜆𝑛

(1 + 𝑆𝛼)−2(𝛽+1)𝑆2(𝛼−1)𝑆𝑁−1𝑑𝑆 ≥ 𝐶𝜆𝑛
2𝑎−(𝑁−2)

, 

where 𝐶 > 0 is a constant independent of 𝑛. 
Therefore,  
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                 ‖|𝑥|−𝑎𝑢𝑛‖
𝐿𝑤

𝑁
𝑁−2−𝑎(Ω)

                  

≤ ‖|𝑥|−𝑎(𝑢𝑛 − 𝐶𝑛𝑈𝜆𝑛)‖
𝐿𝑤

𝑁
𝑁−2−𝑎(Ω)

+ ‖|𝑥|−𝑎𝐶𝑛𝑈𝜆𝑛‖
𝐿𝑤

𝑁
𝑁−2−𝑎(Ω)

 

≤ 𝐶‖|𝑥|−𝑎(𝑢𝑛 − 𝐶𝑛𝑈𝜆𝑛)‖
𝐿𝑤

2𝑁
𝑁−2(Ω)

+ ‖𝐶𝑛|𝑥|
−𝑎𝑈𝜆𝑛‖

𝐿𝑤

𝑁
𝑁−2−𝑎(ℝN)         

≤ 𝐶‖|𝑥|−𝑎( 𝑢𝑛 − 𝐶𝑛𝑈𝜆𝑛)‖
𝐿𝑤

2𝑁
𝑁−2(ℝN)

+ 𝐶𝑛𝜆𝑛 ‖|𝑥|
2𝑎−(𝑁−2)

2−𝑎 𝑈‖
𝑁

𝑁−2−2𝑎
,𝑤

≤ 𝐶𝑑(𝑢𝑛, 𝑀) + 𝐶𝑛𝜆𝑛

2𝑎−(𝑁−2)
2 ‖|𝑥|−𝑎𝑈‖ 𝑁

𝑁−2−𝑎
,𝑤
                              

≤ 𝐶𝑑(𝑢𝑛, 𝑀). 
This is a contradiction with Theorem (2.3.9). 

Since, by a direct computation  

‖|𝑥|−𝑎𝐶𝑛∇𝑈𝜆𝑛‖ 𝑁
𝑁−1−𝑎

,𝑤
= 𝐶𝑛𝜆𝑛

2𝑎−(𝑁−2)
2 ‖|𝑥|−𝑎∇𝑈‖ 𝑁

𝑁−1−𝑎
,𝑤
, 

we obtain (157) by a similar argument. 

We devoted to proving Theorems (2.3.15) and (2.3.16).  

When 𝑎 = 𝑏 = 0, the manifold of minimizers for 𝑆(0,0) is a 𝑁 + 2 dimensional, 

given by  

𝑀(0,0) = {𝐶𝑈𝜆(∙ +𝑦)| 𝐶 ∈ ℝ, 𝜆 > 0, 𝑦 ∈ ℝ
2} 

𝑈 is given in (144) with 𝑎 = 𝑏 = 0. 
Lemma (2.3.11)[99]: Let 𝑁 ≥ 3, 𝑎 = 𝑏 = 0.  Assume 𝛺  satisfies condition (𝛺1)  .Then 

there exists 𝐶 = 𝐶(𝛺) > 0, such that as 𝜆 → ∞, 

inf
𝜆∈ 𝛺

‖∇𝑈𝜆(𝑥 + 𝑦)‖𝐿2(𝛺𝐶)
2 ≥ 𝐶𝜆2−𝑁 . 

Proof:  Just note that  |∇𝑈𝜆(𝑥 + 𝑦)| is radial in |𝑥 + 𝑦| and there exists 𝐶 > 0 such that as 

𝜆 → ∞,  
‖∇𝑈𝜆(𝑥)‖𝐿2(𝐵𝑅𝐶(0))

2 ≥ 𝐶𝜆2−𝑁 . 

Similarly, we have 

Lemma (2.3.12)[99]: Let 𝑁 ≥ 3, 0 ≤ 𝑎 <
𝑁−2

2
, 𝑎 ≤ 𝑏 < 𝑎 + 1, 𝑎 + 𝑏 ≠ 0.  Assume 𝛺 

satisfies condition (𝛺0) .Then there exists 𝐶 = 𝐶(𝛺) > 0 such that for 𝑈𝜆 ∈ 𝑀(𝑎, 𝑏) as 

𝜆 → ∞, 
‖|𝑥|−𝑎∇𝑈𝜆‖𝐿2(𝛺𝐶)

2 ≥ 𝐶𝜆2𝑎+2−𝑁 . 

Lemma(2.3.13)[99]: Let 𝑁 ≥ 3, 0 ≤ 𝑎 <
𝑁−2

2
, 𝑎 ≤ 𝑏 < 𝑎 + 1 .Let 𝛺 ⊂ ℝ𝑁 and 

𝑃:𝐷𝑎
1,2(ℝ𝑁) → 𝐷𝑎

1,2(𝛺) be the projection operator. Then for any  𝑈 ∈ 𝑀(𝑎, 𝑏), 0 ≤ 𝑃𝑈 ≤
𝑈 in ℝ𝑁. 

Proof: 𝑃𝑈 is given by 𝑃𝑈 = 𝑈 − 𝜐 where 𝜐 is the solution of  

{ −div
(|𝑥|−2𝑎∇𝜐) = 0        𝑖𝑛 𝛺 ,

 𝜐 = 𝑈                                     𝑜𝑛 𝜕𝛺.
 

Then 𝑃𝑈 satisfies 

{
−div(|𝑥|−2𝑎∇(𝑃𝑈)) = 𝑆(𝑎, 𝑏)|𝑥|−𝑏𝑝 𝑈𝑝−1       𝑖𝑛 𝛺 ,

 𝑃𝑈 = 0                                                                         𝑜𝑛 𝜕𝛺.
 

Then 𝑃(𝑈) ≥ 0 in  𝛺 for otherwise, assume 𝑃(𝑈) < 0 in 𝛺− ⊂ 𝛺 Multiplying the 

equation by 𝑃𝑈 and integrating on 𝛺−, we get 
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∫ |𝑥|−2𝑎
2

𝛺−

|∇(𝑃𝑈)|2 = 𝑆(𝑎, 𝑏)∫ |𝑥|−𝑏𝑝
2

𝛺−

𝑈𝑝−1𝑃(𝑈) ≤ 0, 

which says 𝑃𝑈 ≡ constant in 𝛺−. Then 𝑃𝑈 ≡ 0 in 𝛺−a contradiction. Also 𝜐 satisfies 𝜐 ≥
0 in 𝛺 . Then 𝑃𝑈 ≤ 𝑈. 

Lemma (2.3.14)[99]: Let 𝜆1(𝛺) > 0. Then ∃𝐶 > 0, for all 𝑢 ∈ 𝐷𝑎
1,2(𝛺), 

‖|𝑥|−𝑎𝑢‖𝐿2(𝛺) ≤ 𝐶‖|𝑥|
−𝑎∇𝑢‖𝐿2(𝛺). 

Proof:  Since 𝐷𝑎
1,2(𝛺) = 𝐶0

∞(𝛺\{0})̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ‖2‖𝑎 , we need only consider 𝑢 ∈ 𝐶0
∞(𝛺\{0}). Then 

|𝑥|−𝑎𝑢 ∈ 𝐶0
∞(𝛺\{0}). But for all 𝜐 ∈ 𝐶0

∞(𝛺\{0}), 

∫ 𝜐2
2

𝛺

≤ 𝜆1∫ |∇𝜐|2
2

𝛺

. 

Therefore, using Hardy inequality, 

    ∫ |𝑥|−2𝑎𝑢2
2

𝛺

≤ 𝜆1∫ |∇(|𝑥|−𝑎𝑢)|2
2

𝛺

= 2𝜆1∫ 𝑎2|𝑥|−2(𝑎+1)𝑢2
2

𝛺

+ |𝑥|−2𝑎|∇𝑢|2

≤ 𝐶∫ |𝑥|−2𝑎|∇𝑢|2
2

𝛺

. 

Theorem (2.3.15)[99]: Let 𝑁 = 3,4, 𝛺 ⊂ ℝ2  satisfy (𝛺1)  and 𝜆1(𝛺) > 0.  Then there 

exists 𝐶 = 𝐶(𝛺) > 0 such that for all  𝑢 ∈ 𝐷0
1,2(𝛺) 

‖∇𝑢‖2
2 − 𝑆(0,0)‖𝑢‖2∗

2 ≥ 𝐶‖𝑢‖ 𝑁
𝑁−2

,𝑤

2  

and  

‖∇𝑢‖2
2 − 𝑆(0,0)‖𝑢‖2∗

2 ≥ 𝐶‖∇𝑢‖ 𝑁
𝑁−1

,𝑤

2 . 

Proof: Assume that Theorem (2.3.15) is not true. Then there exist (𝑢𝑛) ⊂ D0
1,2(𝛺) such 

that  
‖∇𝑢𝑛‖2

2 − 𝑆(0,0)‖𝑢𝑛‖2∗
2

‖𝑢𝑛‖ 𝑁
𝑁−2

,𝑤

2 → 0, 𝑛 → ∞. 

We assume ‖∇𝑢𝑛‖2 = 1. If  𝑁 = 4, we have, by assumption, 

‖𝑢𝑛‖ 𝑁
𝑁−2

,𝑤
≤ ‖𝑢𝑛‖ 𝑁

𝑁−2
≤ 𝐶‖∇𝑢𝑛‖2 = 𝐶. 

If 𝑁 = 3, by Hölder inequality and Sobolev inequality, we have 

  ‖𝑢𝑛‖ 𝑁
𝑁−2

,𝑤
≤ ‖∇𝑢𝑛‖ 𝑁

𝑁−2
≤ ‖𝑢𝑛‖2

𝜆‖𝑢𝑛‖2∗
1−𝜆 ≤ 𝐶‖∇𝑢𝑛‖2 = 𝐶.       

Then ‖𝑢𝑛‖2∗
2 → 𝑆−1(0,0). By the proof of Lemma (2.3.1) in [101], there exists (𝐶𝑛, 𝜆𝑛) →

(1,∞) and (𝑦𝑛) ⊂ 𝛺 such that 

𝑑(𝑢𝑛 , 𝑀) = ‖∇(𝑢𝑛 − 𝑈𝑛)‖𝐿2(ℝ𝑁) → 0,     𝑛 → ∞, 

where 𝑈𝑛 = 𝐶𝑛𝑈(𝜆𝑛(. −𝑦𝑛)). By Lemma (2.3.11), 

𝑑(𝑢𝑛 , 𝑀)
2 ≥ ∫ |∇𝑈𝑛|

2
2

𝛺𝐶
𝑑𝑥 ≥ 𝐶𝐶𝑛

2𝜆2−𝑁 . 

Using 𝑃:𝐷0
1,2(ℝ𝑁) → 𝐷0

1,2(𝛺) as the projection operator, we have 

  ‖𝑢𝑛‖ 𝑁
𝑁−2

,𝑤
≤ ‖𝑢𝑛 − 𝑃𝑈𝑛‖ 𝑁

𝑁−2
+   ‖𝑃𝑈𝑛‖ 𝑁

𝑁−2
,𝑤

≤ 𝐶‖∇(𝑢𝑛 − 𝑃𝑈𝑛)‖𝐿2(𝛺) +   ‖𝑃𝑈𝑛‖ 𝑁
𝑁−2

,𝑤

≤ 𝐶‖∇(𝑢𝑛 − 𝑈𝑛)‖𝐿2(ℝ𝑁) +   ‖𝑃𝑈𝑛‖ 𝑁
𝑁−2

,𝑤.
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It follows from Lemma (2.3.13) that 

  ‖𝑃𝑈𝑛‖ 𝑁
𝑁−2

,𝑤
≤ ‖𝑈𝑛‖

𝐿𝑤

𝑁
𝑁−2(ℝ𝑁)

≤ 𝐶𝑛𝜆𝑛

2−𝑁
2 ‖𝑈‖

𝐿𝑤

𝑁
𝑁−2(ℝ𝑁)

. 

Hence  

  ‖𝑢𝑛‖ 𝑁
𝑁−2

,𝑤
≤ 𝐶𝑑(𝑢𝑛 , 𝑀). 

This is a contradiction with the Theorem in [101]. The proof of the second part of 

Theorem (2.3.15) is similar. 

Theorem (2.3.16)[99]: Let 𝑁 ≥ 3,max {0,
𝑁−4

2
} ≤ 𝑎 <

𝑁−2

2
, 𝑎 ≤ 𝑏 < 𝑎 + 1, 𝑎 + 𝑏 ≠

0, 𝑝 =
2𝑁

𝑁−2+2(𝑏−𝑎)
. Assume 𝛺 ⊂ ℝ𝑁  satisfies 𝜆1(𝛺) > 0 

2 and condition (𝛺0). Then there 

exists 𝐶 = 𝐶(𝑎, 𝑏, 𝛺) such that for all 𝑢 ∈ 𝐷𝑎
1,2(𝛺), 

‖|𝑥|−𝑎∇𝑢‖2
2 − 𝑆(𝑎, 𝑏)‖|𝑥|−𝑏𝑢‖

𝑝

2
≥ 𝐶‖|𝑥|−𝑎𝑢‖ 𝑁

𝑁−2−𝑎
,𝑤

2  

and  

‖|𝑥|−𝑎∇𝑢‖2
2 − 𝑆(𝑎, 𝑏)‖|𝑥|−𝑏𝑢‖

𝑝

2
≥ 𝐶‖|𝑥|−𝑎∇𝑢‖ 𝑁

𝑁−1−𝑎
,𝑤

2 . 

Typical domains that satisfy 𝜆1(𝛺) > 0 
2  and (𝛺0)  or (𝛺1)  are strips or sub 

domains of strips. Here by strip we mean domains that are bounded in at least one 

direction. 

          Due to the translation invariance in Theorem(2.3.15), we need the stronger condition 

(𝛺1). 

Proof: Assume that Theorem (2.3.16) is not true. Then there exist (𝑢𝑛) ⊂ 𝐷𝑎
1,2(𝛺) such 

that  

‖|𝑥|−𝑎∇𝑢𝑛‖2
2 − 𝑆(𝑎, 𝑏)‖|𝑥|−𝑏𝑢𝑛‖𝑝

2

‖|𝑥|−𝑎𝑢𝑛‖ 𝑁
𝑁−2−𝑎

,𝑤

2 → 0,        𝑛 → ∞. 

We assume ‖|𝑥|−𝑎∇𝑢𝑛‖2 = 1.Using (139) and Lemma (2.3.14) 8, we obtain 

‖|𝑥|−𝑎𝑢𝑛‖ 𝑁
𝑁−2−2𝑎

,𝑤

2 ≤ ‖|𝑥|−𝑎𝑢𝑛‖ 𝑁
𝑁−2−𝑎

2 ≤ ‖|𝑥|−𝑎𝑢𝑛‖2
𝜆 ‖|𝑥|−𝑎𝑢𝑛‖2∗

1−𝜆 ≤ 𝐶‖|𝑥|−𝑎∇𝑢𝑛‖2
2

= 𝐶. 

Then ‖|𝑥|−𝑏𝑢𝑛‖𝑝
2
→ 𝑆−1(𝑎, 𝑏). By Theorem (2.3.9), there exists (𝐶𝑛, 𝜆𝑛) → (0,∞) such 

that 

𝑑(𝑢𝑛 , 𝑀) =  ‖|𝑥|
−𝑎∇(𝑢𝑛 − 𝐶𝑛𝑈𝜆𝑛)‖𝐿2(ℝ𝑁)

2
→ 0,      𝑛 → ∞. 

By Lemma (2.3.12), 

𝑑(𝑢𝑛 , 𝑀)
2 ≥ 𝐶2

𝑛∫ |𝑥|−𝑎
2

𝛺𝐶
|∇𝑈𝜆𝑛|

2
𝑑𝑥 ≥ 𝐶𝐶𝑛

2𝜆𝑛
2𝑎+2−𝑁 . 

As in the proof of the preceding theorem, we obtain a contradiction with Theorem (2.3.9). 
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Chapter 3 

Two Subtle Convex Nonlocal Approximations and Limiting Embedding 

Theorems 
 

We show that pointwise convergence when 𝑢  is not smooth can be delicate; by 

contrast, 𝛤-convergence to the BV-norm is a robust and very useful mode of convergence. 

We deal with the limiting embedding theorems. 

Section (3.1): The 𝑩𝑽 -Norm 

Ω denotes a smooth bounded open subset of ℝ𝑑(𝑑 ≥ 1). We first recall a formula 

(BBM formula) due to J. Bourgain, H. Brezis, and P. Mironescu [109] (with a refinement 

by J. Davila [118]).Let (𝜌𝑛) be a sequence of radial mollifiers in the sense that 

𝜌𝑛 ∈ 𝐿𝑙𝑜𝑐
1 (0,+∞),        𝜌𝑛 ≥ 0,                                               (1) 

∫ 𝜌𝑛

∞

0

(𝑟)𝑟𝑑−1𝑑𝑟 = 1      ∀𝑛,                                                  (2) 

and  

lim
𝑛→+∞

∫ 𝜌𝑛

∞

𝛿

(𝑟)𝑟𝑑−1𝑑𝑟 = 0      ∀𝛿 > 0.                                        (3) 

Set  

𝐼𝑛(𝑢) = ∫ ∫
|𝑢(𝑥) − 𝑢(𝑦)|

|𝑥 − 𝑦|

2

Ω

2

Ω

𝜌𝑛 (|𝑥 − 𝑦|)𝑑𝑥𝑑𝑦 ≤ +∞,    ∀𝑢 ∈ 𝐿
1(Ω)                (4) 

and  

𝐼(𝑢) = {
𝛾𝑑∫ |∇𝑢|

2

Ω

𝑖𝑓 𝑢 ∈ 𝐵𝑉(Ω),

+∞                         𝑖𝑓 𝑢 ∈ 𝐿1(Ω)\𝐵𝑉(Ω),

                     (5) 

where, for any 𝑒 ∈ 𝕊𝑑−1, 

𝛾𝑑 = ∫ |σ ∙ 𝑒|
2

𝕊𝑑−1
𝑑𝜎 = {

2

𝑑 − 1
|𝕊𝑑−2| 𝑖𝑓𝑑 ≥ 3,

4                     𝑖𝑓𝑑 = 2,
2                    𝑖𝑓𝑑 = 1.

                           (6) 

Then  

lim
𝑛→+∞

𝐼𝑛(𝑢) = 𝐼(𝑢)      ∀𝑢 ∈ 𝐿
1(Ω).                                             (7) 

It has also been established by 𝐴. Ponce [130] that 𝐼𝑛 → 𝐼 as 𝑛 → +∞ in the sense of  𝛤-

convergence in 𝐿1(Ω ). For works related to the BBM formula, see [112], [113], [114], 

[122], [123]. Other functionals converging to the 𝐵𝑉-norm are considered in [110], [115], 

[116], [124], [125], [126], [127], [128], [129]. 

We analyze the asymptotic behavior of sequences of functionals which “resemble” 

𝐼𝑛(𝑢) and converge to 𝐼(𝑢) (at least when 𝑢 is smooth). As we are going to see pointwise 

convergence of  𝐼𝑛(𝑢) when 𝑢 is not smooth can be delicate and depends heavily on the 

specific choice of (𝜌𝑛). By contrast, 𝛤-convergence to 𝐼 is a robust concept which is not 

sensitive to the choice of  (𝜌𝑛). We first consider the sequence (Ψ𝑛) of functionals defined 

by 

Ψ𝑛(𝑢) = (∫ ∫
|𝑢(𝑥) − 𝑢(𝑦)|1+𝜀𝑛

|𝑥 − 𝑦|1+𝜀𝑛

2

Ω

2

Ω

𝜌𝑛 (|𝑥 − 𝑦|)𝑑𝑥𝑑𝑦)

1
1+𝜀𝑛

≤ +∞,    ∀𝑢 ∈ 𝐿1(Ω),      (8) 
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where (𝜀𝑛) → 0+ and (𝜌𝑛) is a sequence of mollifiers as above. 

By choosing a special sequence of (𝜌𝑛),one may greatly improve the conclusion of 

Proposition (3.1.2): 

Proposition (3.1.1)[107]: We have  

Ψ𝑛 → 𝐼 in the sense  of Γ − convergence in 𝐿1(Ω ),     𝑎𝑠 𝑛 → +∞.           (9) 
Motivated by Image Processing (see, e.g., [108], [119], [120] [121], [132]), we set 

𝐸𝑛(𝑢) = ∫ |𝑢 − 𝑓|𝑞
2

Ω

+Ψ𝑛(𝑢)    𝑓𝑜𝑟 𝑢 ∈ 𝐿
𝑞(Ω),                         (10) 

and  

𝐸0(𝑢) = ∫ |𝑢 − 𝑓|𝑞
2

Ω

+ 𝐼(𝑢)    𝑓𝑜𝑟 𝑢 ∈ 𝐿𝑞(Ω),                              (11) 

where 𝑞 > 1 and 𝑓 ∈ 𝐿𝑞(Ω ).  
Proposition (3.1.2)[107]: We have  

lim
𝑛→+∞

Ψ𝑛(𝑢) = 𝐼(𝑢)    ∀𝑢 ∈⋃𝑊1,𝑞(Ω)

𝑞>1

1

                                    (12) 

and  

lim inf
𝑛→+∞

 Ψ𝑛(𝑢) ≥ 𝐼(𝑢)    ∀𝑢 ∈ 𝐿
1(Ω).1                                            (13) 

Proof:  We first establish (13). By Hölder’s inequality, we have for every 𝑢 ∈ 𝐿1(Ω ) 

𝐼𝑛(𝑢) ≤ Ψ𝑛(𝑢) (∫ ∫ 𝜌𝑛 (|𝑥 − 𝑦|)𝑑𝑥𝑑𝑦
2

Ω

2

Ω

)

𝜀𝑛
1+𝜀𝑛

.                      (14) 

From (2), we have 

∫ ∫ 𝜌𝑛 (|𝑥 − 𝑦|)𝑑𝑥𝑑𝑦 
2

Ω

2

Ω

≤ |𝕊𝑑−1||Ω|.                              (15) 

Note that  

                lim
𝑛→+∞

(|𝕊𝑑−1||Ω|)
𝜀𝑛
1+𝜀𝑛 = 1. 

Inserting (7) in (14) yields (13).  

We next establish (12) for 𝑢 ∈ 𝑊1,𝑞(Ω ) with 𝑞 > 1. Assuming 𝑛 sufficiently large 

so that  1 + 𝜀𝑛 < 𝑞, we may write using Hölder’s inequality  

Ψ𝑛(𝑢) ≤ 𝐼𝑛(𝑢)
2𝑎𝐽𝑛,𝑞

𝑏𝑛 ,                                               (16) 

where  

J𝑛,𝑞 = (∫ ∫
|𝑢(𝑥) − 𝑢(𝑦)|𝑞

|𝑥 − 𝑦|𝑞

2

Ω

2

Ω

𝜌𝑛 (|𝑥 − 𝑦|)𝑑𝑥𝑑𝑦)

1 𝑞⁄

,                  (17) 

𝑎𝑛 + 𝑏𝑛 = 1    𝑎𝑛𝑑    𝑎𝑛 =
𝑏𝑛
𝑞
=

1

1 + 𝜀𝑛
,                                           (18) 

i.e.,  

𝑏𝑛 (1 −
1

𝑞
) =

𝜀𝑛
1 + 𝜀𝑛

     𝑎𝑛𝑑   𝑎𝑛 = 1 − 𝑏𝑛.                                 (19) 

From [109], we know that  

J𝑛,𝑞 ≤ 𝐶‖∇𝑢‖𝐿𝑞 ,       with  𝐶 independent of 𝑛.                     (20) 
Combining (16), (19), (20), and using (7), we obtain 

lim sup
𝑛→+∞

Ψ𝑛(𝑢) ≤ 𝐼(𝑢).     
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This proves (12) since we already know (13). 

Proposition (3.1.3)[107]: There exists 𝑎 sequence (𝜌𝑛) and a constant 𝐶 such that 

Ψ𝑛(𝑢) ≤ 𝐶𝐼(𝑢)         ∀𝑛, ∀𝑢 ∈ 𝐿
1(Ω)                                     (21) 

and  

lim
𝑛→+∞

Ψ𝑛(𝑢) = 𝐼(𝑢)    ∀𝑢 ∈ 𝐿
1(Ω)                                          (22) 

The proof of Propositions (3.1.2) and (3.1.3) is presented. By contrast, some 

sequences  (𝜌𝑛 ) may produce pathologies: 

Proof:  The sequence (𝜌𝑛 )  is defined by 

 𝜌𝑛 (𝑡) =
1 + 𝑑 + 𝜀𝑛
𝛿1+𝑑+𝜀𝑛

𝑡1+𝜀𝑛1(0,𝛿𝑛)(𝑡),                                       (23) 

where 1𝐴 denotes the characteristic function of the set 𝐴, and (𝛿𝑛) is a positive sequence 

converging to 0 and satisfying 

lim
𝑛→+∞

𝛿𝑛
𝜀𝑛 = 1;                                                                    (24) 

one may take for example 

𝛿𝑛 = 𝑒
−1 √𝜀𝑛⁄ .                                                                    (25) 

We have  

Ψ𝑛
1+𝜀𝑛(𝑢) =

1 + 𝑑 + 𝜀𝑛

𝛿𝑛
1+𝑑+𝜀𝑛

 ∫ ∫ |𝑢(𝑥) − 𝑢(𝑦)|1+𝜀𝑛
2

Ω

2

Ω
|𝑥−𝑦|<𝛿𝑛                                                  

𝑑𝑥𝑑𝑦                     (26) 

From the Sobolev embedding, we know that 𝐵𝑉(Ω ) ⊂ 𝐿𝑞(Ω ) with 𝑞 = 𝑑/(𝑑 − 1) and 

moreover, 

(∫ ∫ |𝑢(𝑥) − 𝑢(𝑦)|𝑞
2

Ω

2

Ω

𝑑𝑥𝑑𝑦)

1 𝑞⁄

≤ 𝐶𝐼(𝑢)      ∀𝑢 ∈ 𝐿1(Ω).                     (27) 

Applying Holder’s inequality as above, we find 

Ψn(𝑢) ≤ (
1 + 𝑑 + 𝜀𝑛

𝛿𝑛
1+𝑑+𝜀𝑛

2 )

1
1+𝜀𝑛

𝑋𝑛
𝑎𝑛𝑌𝑛

𝑏𝑛 ,                                  (28) 

where  

𝑋𝑛 = ∫ ∫ |𝑢(𝑥) − 𝑢(𝑦)|
2

Ω

2

Ω
|𝑥−𝑦|<𝛿𝑛                                       

𝑑𝑥𝑑𝑦 ,                                   (29) 

  Y𝑛 = ( ∫ ∫ |𝑢(𝑥) − 𝑢(𝑦)|
2

Ω

2

Ω
|𝑥−𝑦|<𝛿𝑛                                       

𝑑𝑥𝑑𝑦)

1 𝑞⁄

,                        (30) 

and 𝑎𝑛  and 𝑏𝑛  are as in (18). From [109] (applied with 𝜌𝑛(𝑡) =
1+𝑑

𝛿𝑛
1+𝑑2

𝑡1(0,𝛿𝑛)(𝑡)),  we 

know that 

  Χ𝑛 ≤ 𝐶𝛿𝑛
1+𝑑2𝐼(𝑢).                                                        (31) 

Moreover, by (7), we have 

lim
𝑛→+∞

1 + 𝑑

𝛿𝑛
1+𝑑2

  Χ𝑛 = 𝐼(𝑢).                                              (32) 

On the other hand, by (27), we obtain 

  Y𝑛 ≤ 𝐶𝐼(𝑢) ≔ 𝑌.                                                          (33) 
Inserting (31) and (33) in (28) gives 
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Ψn(𝑢) ≤ 𝐶
1

𝛿𝑛
𝛼𝑛

2 𝐼(𝑢),                                                 (34) 

where, by (19), 

𝛼𝑛 =
1 + 𝑑 + 𝜀𝑛
1 + 𝜀𝑛

− (1 + 𝑑)𝑎𝑛 =
1 + 𝑑 + 𝜀𝑛
1 + 𝜀𝑛

− (1 + 𝑑) +
(1 + 𝑑)𝑞𝜀𝑛

(𝑞 − 1)(1 + 𝜀𝑛)
 

 

                                               = −
𝜀𝑛𝑑

1 + 𝜀𝑛
+

(1 + 𝑑)𝑞𝜀𝑛
(𝑞 − 1)(1 + 𝜀𝑛)

=
𝜀𝑛𝑑

2

1 + 𝜀𝑛
.      

From (34) and (24), we obtain (21). 

We next prove (22). In view of (13), it suffices to verify that 

lim sup
𝑛→+∞

Ψ𝑛(𝑢) ≤ 𝐼(𝑢)       ∀𝑢 ∈ 𝐿
1(Ω).                                  (35) 

We return to (28) and write 

Ψ𝑛(𝑢) ≤ (
1 + 𝑑 + 𝜀𝑛

𝛿𝑛
1+𝑑+𝜀𝑛

)

1
1+𝜀𝑛

(
𝛿𝑛
𝑑+12

𝑑 + 1
)

𝑎𝑛

(
(1 + 𝑑)𝑋𝑛

𝛿𝑛
1+𝑑2

)

𝑎𝑛

𝑌𝑏𝑛 = 𝛾𝑛𝛿𝑛
−𝛼𝑛 (

(1 + 𝑑)𝑋𝑛

𝛿𝑛
1+𝑑2

)

𝑎𝑛

𝑌𝑏𝑛 , 

where  𝛾𝑛 → 1, 𝑎𝑛 → 1, and 𝑏𝑛 → 0. Using (24) and (32), we conclude that (35) holds. 

We establish Propositions (3.1.4) and (3.1.5) 

Proposition (3.1.4)[107]: Assume 𝑑 = 1. There exists a sequence (𝜌𝑛) and some  𝜐 ∈
𝑊1,1(Ω ) such that 

Ψ𝑛(𝜐) = +∞    ∀𝑛 ≥ 1.                                                        (36) 
Proof : Take  Ω = (−1/2, 1/2) and 𝜌𝑛(𝑡) = 𝜀𝑛𝑡

𝜀𝑛−1 − 1(0,1)(𝑡). Then 

Ψ𝑛
1+𝜀𝑛(𝑢) ≥ 𝜀𝑛∫ 𝑑𝑥

1 2⁄

0

∫
|𝑢(𝑥) − 𝑢(𝑦)|1+𝜀𝑛

|𝑥 − 𝑦|2

0

−1 2⁄

𝑑𝑦. 

If we assume in addition that 𝑢(𝑦) = 0 on (−1/2, 0), we obtain 

Ψ𝑛
1+𝜀𝑛(𝑢) ≥ 𝜀𝑛∫ |𝑢(𝑥)|1+𝜀𝑛 (

1

𝑥
−

1

𝑥 + 1 2⁄
)𝑑𝑥

1 2⁄

0

.                          (37) 

Choosing, for example, 

𝑢(𝑥) = {
|ln 𝑥|−𝛼 𝑜𝑛 0 < 𝑥 < 1 2,⁄

0                 𝑜𝑛 − 1 2,⁄ < 𝑥 ≤ 0,
                              (38) 

with 𝛼 > 0, we see that 𝑢 ∈ 𝑊1,1(Ω ) while the RHS in (37) is +∞ when 𝛼(1 + 𝜀𝑛) ≤ 1; 
we might take, for example, 𝛼 = min𝑛{1/(1 + 𝜀𝑛)}. 
Proposition (3.1.5)[107]: Assume 𝑑 = 1. Given any  𝑀 > 1, there exists a sequence (𝜌𝑛) 
and a constant 𝐶 such that 

Ψ𝑛(𝑢) ≤ 𝐶𝐼(𝑢)     ∀𝑛,∀𝑢 ∈ 𝐿
1(Ω),                                      (39) 

lim
𝑛→+∞

Ψ𝑛(𝑢) = 𝐼(𝑢)    ∀𝑢 ∈ 𝑊
1,1(Ω),                                 (40) 

and, for some nontrivial 𝜐 ∈ 𝐵𝑉(Ω ), 
lim
𝑛→+∞

Ψ𝑛(𝜐) = 𝑀𝐼(𝜐).                                              (41) 

The proofs of Propositions (3.1.4) and (3.1.5) are presented., we return to a general 

sequence (𝜌𝑛) and we establish the following results:  

Proof : Take Ω = (−1, 1) and (𝜌𝑛)  as in (23) (but do not take 𝛿𝑛 as in (24)). Let 

𝜐(𝑥) = {
0            for  𝑥 ∈ (−1,0) ,

1            for 𝑥 ∈ (0,1).  
   

Then   
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Ψ𝑛(𝜐) =
2 + 𝜀𝑛

𝛿𝑛
2+𝜀𝑛

∫ ∫ 𝑑𝑥𝑑𝑦 =
2 + 𝜀𝑛

𝛿𝑛
𝜀𝑛

1

0

1

0

.

𝑥−𝑦<𝛿𝑛                                       

2 

Since 𝐼(𝜐) = 2 (see (5) and (6)), we deduce that 

Ψ𝑛(𝜐) =
2 + 𝜀𝑛

2𝛿𝑛
𝜀𝑛
 𝐼(𝜐). 2.                                                 (42) 

Given  𝑀 > 1, let 𝐴 = ln𝑀 > 0  and 𝛿𝑛 = 𝑒
−𝐴/𝜀𝑛. Then 

lim
𝑛→+∞

Ψ𝑛(𝜐) = 𝑀𝐼(𝜐).    

On the other hand, we have, for every 𝑢 ∈ 𝐵𝑉(Ω ), 

Ψ𝑛(𝑢) ≤
2 + 𝜀𝑛

𝛿𝑛
2+𝜀𝑛

∫ ∫ |𝑢(𝑥) − 𝑢(𝑦)|1+𝜀𝑛
1

0

1

0

𝑑𝑥𝑑𝑦.

|𝑥−𝑦|<𝛿𝑛                                       

2 

As in the proof of  Proposition (3.1.3) (see (34)), we find 

Ψ𝑛(𝑢) ≤ 𝐶
1

𝛿𝑛
𝛼𝑛
𝐼(𝑢), 

Since 𝛿𝑛 = 𝑒
−𝐴/𝜀𝑛 , we deduce that (39) holds. 

In order to obtain (40), we recall (see (12)) that 

lim
𝑛→+∞

Ψ𝑛(�̃�) = 𝐼(�̃�)    ∀�̃� ∈ 𝐶
1( Ω̅ ).                                  (43) 

For 𝑢 ∈ 𝑊1,1(Ω ),  we write 

𝛹𝑛(𝑢) − 𝐼(𝑢) = 𝛹𝑛(𝑢) − Ψ𝑛(�̃�) + Ψ𝑛(�̃�) − 𝐼(�̃�) + 𝐼(�̃�) − 𝐼(𝑢), 
and thus by (39), 

|𝛹𝑛(𝑢) − 𝐼(𝑢)| ≤ 𝐶𝐼(𝑢 − �̃�) + |Ψ𝑛(�̃�) − 𝐼(�̃�)|.                                 (44) 
We conclude that lim 𝑛→+∞ |𝛹𝑛(𝑢) − 𝐼(𝑢)| = 0  using (34) and the density of  𝐶1(Ω̅) in 

𝑊1,1(Ω ). 
We devoted to the proof of  Proposition (3.1.1) and a slightly stronger variant. 

Recall that (see, e.g., [111], [117]), by definition, the sequence (𝛹𝑛)𝛤-converges to 𝛹 

in 𝐿1(Ω ) as 𝑛 → ∞ if the following two properties hold:  

(G1) For every 𝑢 ∈ 𝐿1(Ω)  and for every sequence (𝑢𝑛 ⊂ 𝐿
1(Ω)  such that 𝑢𝑛 → 𝑢  in  

𝐿1(Ω)       
     as 𝑛 → ∞, one has  

Proof (G1): Going back to (14)–(16), we have 

𝐼𝑛(𝑢) ≤ 𝛽𝑛𝛹𝑛(𝑢)     ∀𝑢 ∈ 𝐿
1(Ω),  

where 𝛽𝑛 → 1. Thus 

𝐼𝑛(𝑢𝑛) ≤ 𝛽𝑛𝛹𝑛(𝑢𝑛)     ∀𝑛, 
and since 𝐼𝑛 → 𝐼 in the sense of 𝛤-convergence in 𝐿1(Ω) (see [130] and also [114]), we 

conclude that 

lim inf Ψ𝑛(𝑢𝑛) ≥ 𝐼(𝑢).
𝑛→+∞                                             

     

(G2) For every 𝑢 ∈ 𝐿1(Ω),  there exists a sequence (𝑢𝑛) ⊂ 𝐿
1(Ω)  such that 𝑢𝑛 → 𝑢  in  

𝐿1(Ω)  
      as 𝑛 → ∞, and 

Proof (G2): Given 𝑢 ∈ 𝐵𝑉(Ω ), we will construct a sequence (𝑢𝑛) converging to 𝑢 in 

𝐿1(Ω) such that 

lim sup Ψ𝑛(𝑢𝑛) ≤ 𝐼(𝑢).
𝑛→+∞                                            

     

Let 𝜐𝑘 ∈ 𝐶
1(Ω̅ ) be such that 
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𝜐𝑘 → 𝑢    in   𝐿1(Ω)      and     I(𝜐𝑘) → I(u).                              (45) 
For each  𝑘, let 𝑛𝑘 be such that 

|Ψ𝑛(𝜐𝑘) − 𝐼(𝜐𝑘)| ≤ 1 𝑘⁄         if n > 𝑛𝑘.                                    (46) 
Without loss of generality, one may assume that (𝑛𝑘 ) is an increasing sequence with 

respect to 𝑘. Define 

𝑢𝑛 = 𝜐𝑘     if  𝑛𝑘 < 𝑛 ≤ 𝑛𝑘+1. 
Combining (45) and (46) yields 

                   𝑢𝑛 → 𝑢     in  𝐿1(Ω)     and      lim  Ψ𝑛(𝑢𝑛) = 𝐼(𝑢).
𝑛→+∞                                            

  

In fact, a property stronger than (i) holds. 

Proposition (3.1.6)[107]: For every 𝑢 ∈ 𝐿1(Ω) and for every sequence (𝑢𝑛) ⊂ 𝐿
1(Ω) such 

that 𝑢𝑛 ⇀ 𝑢 weakly in 𝐿1(Ω) as 𝑛 → +∞, one has 

lim inf  Ψ𝑛(𝑢𝑛) ≥ 𝐼(𝑢).
𝑛→+∞                                            

                                                           (47) 

Proof: We adapt a suggestion of E. Stein (personal communication to H. Brezis) described 

in [112]. Let (𝜇𝑘) be a sequence of smooth mollifiers such that 𝜇𝑘 ≥ 0 and supp  𝜇𝑘 ⊂
𝐵1/𝑘 = 𝐵1/𝑘(0) = 𝐵(0, 1/𝑘). Fix 𝐷 an arbitrary smooth open subset of Ω such that �̅� ⊂ Ω 

and let 𝑘0 > 0 be large enough such that 𝐵(𝑥, 1/𝑘0) ⊂⊂ Ω for every 𝑥 ∈ 𝐷. Given 𝜐 ∈
𝐿1(Ω ), define in 𝐷 

𝜐𝑘 = 𝜇𝑘 ∗ 𝜐      for 𝑘 ≥ 𝑘0. 
We have  

∫ ∫
|𝜐𝑘(𝑥) − 𝜐𝑘(𝑦)|

1+𝜀𝑛

|𝑥 − 𝑦|1+𝜀𝑛

2

D

2

D

𝜌𝑛 (|𝑥 − 𝑦|)𝑑𝑥𝑑𝑦

= ∫ ∫
|𝜇𝑘 ∗ 𝜐(𝑥) − 𝜇𝑘 ∗ 𝜐(𝑦)|

1+𝜀𝑛

|𝑥 − 𝑦|1+𝜀𝑛

2

D

2

D

𝜌𝑛 (|𝑥 − 𝑦|)𝑑𝑥𝑑𝑦

= ∫ ∫
|∫ 𝜇𝑘(𝑧)(𝜐(𝑥 − 𝑧) − 𝜐(𝑦 − 𝑧))𝑑𝑧
2

𝐵(0,1 𝑘⁄ )
|
1+𝜀𝑛

|𝑥 − 𝑦|1+𝜀𝑛

2

D

2

D

𝑑𝑥𝑑𝑦

≤ ∫ ∫
|∫ 𝜇𝑘(𝑧)|𝜐(𝑥 − 𝑧) − 𝜐(𝑦 − 𝑧)|

1+𝜀𝑛
2

𝐵(0,1 𝑘⁄ )
|
1+𝜀𝑛

𝑑𝑧

|𝑥 − 𝑦|1+𝜀𝑛

2

D

2

D

𝜌𝑛 (|𝑥 − 𝑦|)𝑑𝑥𝑑𝑦, 

by Hölder’s inequality. A change of variables implies, for 𝑘 ≥ 𝑘0, 

∫ ∫
|𝜐𝑘(𝑥) − 𝜐𝑘(𝑦)|

1+𝜀𝑛

|𝑥 − 𝑦|1+𝜀𝑛

2

D

2

D

𝜌𝑛 (|𝑥 − 𝑦|)𝑑𝑥𝑑𝑦                                                

≤ ∫ ∫
|𝜐(𝑥) − 𝜐(𝑦)|1+𝜀𝑛

|𝑥 − 𝑦|1+𝜀𝑛

2

D

2

D

𝜌𝑛 (|𝑥 − 𝑦|)𝑑𝑥𝑑𝑦.                   (48) 

Applying (48) to  𝜐 = 𝑢𝑛 we find  

∫ ∫
|𝑢𝑘,𝑛(𝑥) − 𝑢𝑘,𝑛(𝑦)|

1+𝜀𝑛

|𝑥 − 𝑦|1+𝜀𝑛

2

D

2

D

𝜌𝑛 (|𝑥 − 𝑦|)𝑑𝑥𝑑𝑦 ≤ 𝛹𝑛
1+𝜀𝑛(𝑢𝑛 ),             (49) 

where 𝑢𝑘,𝑛 = 𝜇𝑘 ∗ 𝑢𝑛 is defined in 𝐷 for every 𝑛 and every 𝑘 ≥ 𝑘0. Since 𝑢𝑛 ⇀ 𝑢 weakly 

in 𝐿1(Ω) we know that for each fixed 𝑘, 
𝑢𝑘,𝑛 → 𝜇𝑘 ∗ 𝑢       strongly in 𝐿

1 as   𝑛 → +∞. 
Passing to the limit in (48) as 𝑛 → +∞ (and fixed 𝑘) and applying Proposition (3.1.1) 

(Property (i)) we find that 
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liminf
𝑛→+∞

∫ ∫
|𝑢𝑘,𝑛(𝑥) − 𝑢𝑘,𝑛(𝑦)|

1+𝜀𝑛

|𝑥 − 𝑦|1+𝜀𝑛

2

𝐷

2

𝐷

𝜌𝑛 (|𝑥 − 𝑦|)𝑑𝑥𝑑𝑦 ≥ 𝛾𝑑∫ |∇(𝜇𝑘 ∗ 𝑢)|
2

𝐷

.         (50) 

Combining (49) and (50) yields 

liminf
𝑛→+∞

 Ψ𝑛(𝑢𝑛) ≥ 𝛾𝑑∫ |∇(𝜇𝑘 ∗ 𝑢)|
2

𝐷

      ∀𝑘 ≥ 𝑘0. 

Letting 𝑘 → +∞, we obtain 

liminf
𝑛→+∞

 Ψ𝑛(𝑢𝑛) ≥ 𝛾𝑑∫ |∇𝑢|
2

𝐷

.  

Since 𝐷 is arbitrary, Proposition (3.1.6) follows. 

Proposition (3.1.7)[107]: For each 𝑛, there exists a unique 𝑢𝑛 ∈ 𝐿
𝑞(Ω) such that 

𝐸𝑛(𝑢𝑛) = min
𝑢∈𝐿𝑞(Ω)

𝐸𝑛(𝑢). 

Let 𝜐 be the unique minimizer of  𝐸0 in 𝐿𝑞(Ω) ∩ 𝐵𝑉(Ω). We have, as 𝑛 → +∞, 
𝑢𝑛 → 𝜐       𝑖𝑛 𝐿𝑞(Ω)  

and  

𝐸𝑛(𝑢𝑛) → 𝐸0(𝜐). 
We investigate similar questions for the sequence (𝛷𝑛) of functionals defined by 

𝛷𝑛(𝑢) = ∫ 𝑑𝑥
2

Ω

[∫
|𝑢(𝑥) − 𝑢(𝑦)|𝑝

|𝑥 − 𝑦|𝑝
𝜌𝑛 (|𝑥 − 𝑦|)𝑑𝑦

2

Ω

]

1 𝑝⁄

≤ +∞,     for  𝑢 ∈ 𝐿1(Ω), 

where 𝑝 > 1. Such functionals were introduced and studied by 𝐺. Leoni and 𝐷. Spector 

[122], [123] (see also [133]); their motivation came by 𝐺 . Gilboa and 𝑆. Osher [120] 

(where 𝑝 = 2) dealing with Image Processing. 

Proof : For each fixed 𝑛, the functional 𝐸𝑛 defined on 𝐿𝑞(Ω) by (10) is convex and lower 

semicontinuous (l.s.c.) for the strong 𝐿𝑞-topology (note that 𝛹𝑛 is l.s.c. by Fatou’s lemma). 

Thus 𝐸𝑛  is alsol.s.c. for the weak 𝐿𝑞 -topology. Since 𝑞 > 1, 𝐿𝑞 is reflexive and 

inf 𝑢∈𝐿𝑞(Ω) 𝐸𝑛(𝑢)  is achieved. Uniqueness of the minimizer follows from strict convexity. 

We next establish the second statement. Since 𝑞 > 1, one may assume that 𝑢𝑛𝑘 ⇀

𝑢0 weakly in 𝐿𝑞(Ω) for some subsequence (𝑢𝑛𝑘). We claim that 

𝑢0 = 𝜐.                                                                  (51) 
By Proposition (3.1.1) (Property (ii)), there exists (𝜐𝑛) ⊂ 𝐿

1(Ω) such that 𝜐𝑛 → 𝜐 in 𝐿1(Ω)  
and 

limsup
𝑛→∞

 Ψ𝑛(𝜐𝑛) ≤ 𝐼(𝜐).                                                      (52) 

Set, for 𝐴 > 0 and 𝑠 ∈ ℝ, 

𝑇𝐴(𝑠) = {
𝑠    if  |𝑠| ≤ 𝐴,
𝐴 if  s > 𝐴,
−𝐴     if  s < −𝐴.

                                              (53) 

We have, since 𝑢𝑛 is a minimizer of  𝐸𝑛,  

𝐸𝑛(𝑢𝑛) ≤ 𝐸𝑛(𝑇𝐴𝜐𝑛) = ∫ |𝑇𝐴𝜐𝑛 − 𝑓|
𝑞

2

Ω

+𝛹𝑛(𝑇𝐴𝜐𝑛) ≤ ∫ |𝑇𝐴𝜐𝑛 − 𝑓|
𝑞

2

Ω

+ 𝛹𝑛(𝜐𝑛).       (54) 

Letting 𝑛 → ∞ and using (52), we derive 

limsup
𝑛→+∞

 E𝑛(𝑢𝑛) ≤ ∫ |𝑇𝐴𝜐 − 𝑓|
𝑞

2

Ω

+ 𝐼(𝜐). 

This implies, by letting 𝐴 → +∞, 
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limsup
𝑛→+∞

 E𝑛(𝑢𝑛) ≤ E0(𝜐).                                               (55) 

On the other hand, we have by Proposition(3.1.6), 

liminf
𝑛𝑘→+∞

 𝛹𝑛𝑘(𝑢𝑛𝑘) ≥ 𝐼(𝜐),                                                 (56) 

and therefore 

E0(𝑢0) ≤ liminf
𝑛𝑘→+∞

 𝐸𝑛𝑘(𝑢𝑛𝑘).                                              (57) 

From (55) and (57), we obtain claim (51). 

Next we write 

∫ |𝑢𝑛 − 𝑓|
𝑞

2

Ω

= E𝑛(𝑢𝑛) −𝛹𝑛(𝑢𝑛).                                 (58) 

Combining (58) with (55) and (56) gives 

limsup
𝑛𝑘→+∞

 ∫ |𝑢𝑛𝑘 − 𝑓|
𝑞

2

Ω

≤ E0(𝜐) − 𝐼(𝜐) = ∫ |𝜐 − 𝑓|𝑞.
2

Ω

                    (59) 

Since we already know that 𝑢𝑛𝑘 ⇀ 𝜐 weakly in 𝐿𝑞(Ω), we deduce from (59) that 𝑢𝑛𝑘 → 𝜐 

strongly in 𝐿𝑞(Ω). The uniqueness of the limit implies that  𝑢𝑛 → 𝜐 strongly in 𝐿𝑞(Ω), so 

that  

liminf
𝑛→+∞

 E𝑛(𝑢𝑛) ≥ ∫ |𝜐 − 𝑓|𝑞
2

Ω

+ 𝐼(𝜐) = E0(𝜐). 

Returning to (55) yields 

lim
𝑛→+∞

 E𝑛(𝑢𝑛) = E0(𝜐). 

Proposition (3.1.8)[107]: Let (𝑢𝑛) be a bounded sequence in 𝐿1(Ω) such that 

sup
𝑛
𝛹𝑛 (𝑢𝑛) < +∞.                                                     (60) 

When 𝑑 = 1, we also assume that for each 𝑛 the function  𝑡 ⟼ 𝜌𝑛(𝑡) is non-increasing. 

Then (𝑢𝑛) is relatively compact in 𝐿1(Ω). 
Proof:  From (14), (15) and (60), we have 

𝐼𝑛(𝑢𝑛) ≤ 𝐶     ∀𝑛. 
We may now invoke a result of  J. Bourgain, H. Brezis, P. Mironescu in [109] when 𝜌𝑛 is 

non-increasing. A. Poncein [131] established that the monotonicity of  𝜌𝑛 is not necessary 

when 𝑑 ≥ 2. 
Motivated by a suggestion of G. Gilboa and S. Osher in [120], G. Leoni and D. 

Spector [122], [123] studied the following functional 

𝛷𝑛(𝑢) = ∫ 𝑑𝑥
2

Ω

[∫
|𝑢(𝑥) − 𝑢(𝑦)|𝑝

|𝑥 − 𝑦|𝑝
𝜌𝑛 (|𝑥 − 𝑦|)𝑑𝑦

2

Ω

]

1 𝑝⁄

≤ +∞,     for  𝑢 ∈ 𝐿1(Ω),     (61) 

where 1 < 𝑝 < +∞  and (𝜌𝑛 ) satisfies (1)–(3). In [123], they established that (𝛷𝑛 ) 

converges to 𝐽 in the sense of  𝛤-convergence in 𝐿1(Ω), where 𝐽 is defined by  

𝐽(𝑢) ≔ {
𝛾𝑝,𝑑  ∫ |∇𝑢|

2

Ω

if 𝑢 ∈ 𝐵𝑉(Ω),                        

+∞                if 𝑢 ∈ 𝐿1(Ω) \ 𝐵𝑉 (Ω).         

                      (62) 

Here, for any 𝑒 ∈ 𝕊𝑑
−1
, 

𝛾𝑝,𝑑 ≔ (∫ |σ ∙ 𝑒|𝑝
2

𝕊𝑑
−1

𝑑𝜎)

1 𝑝⁄

.                                            (63) 

In particular,  
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𝛾𝑝,𝑑 = 2
1 𝑝⁄ .                                                            (64) 

When there is no confusion, we simply write 𝛾 instead of  𝛾𝑝,𝑑. [In fact, G. Leoni and D. 

Spector considered more general functionals involving a second parameter 1 ≤ 𝑞 < +∞ 

and they prove that it 𝛤-converges in 𝐿1(Ω) to∫ |∇𝑢|𝑞
2

Ω
up to a positive constant. Here we 

are concerned only with the most delicate case 𝑞 = 1 which produces the 𝐵𝑉-norm in the 

asymptotic limit.] 

Pointwise convergence of the sequence (𝛷𝑛) turns out to be quite complex and not 

yet fully understood (which confirms again the importance of 𝛤-convergence). Several 

claims in [122] concerning the pointwise convergence of (𝛷𝑛) were not correct as was 

pointed out in [123]. 

We describe various results (both positive and negative) concerning pointwise 

convergence. The case 𝑑 = 1 is of special interest because the situation there is quite 

satisfactory. Our results for the case 𝑑 ≥ 2 are not as complete; see e.g. important open 

problems mentioned. We then present a new proof of 𝛤 -convergence; as we already 

mentioned, this result is due to G. Leoni and 𝐷. Spector, but our proof is simpler. Finally, 

we discuss variational problems similar to (10) (where 𝛹𝑛 is replaced by 𝛷𝑛 ) with roots in 

Image Processing.  

A general result concerning the pointwise convergence of (𝛷𝑛)is the following. 

Proposition (3.1.9)[107]: We have  

lim
𝑛→∞

 𝛷𝑛(𝑢) = 𝐽(𝑢)      ∀𝑢 ∈ 𝑊1,𝑝(Ω)                                    (65) 

and  

liminf
𝑛→∞

 𝛷𝑛(𝑢) ≥ 𝐽(𝑢)      ∀𝑢 ∈ 𝐿1(Ω).                                   (66) 

Proof: The proof is divided into three steps. 

Step 1: Proof of (65) for 𝑢 ∈ 𝐶2(Ω̅). We have 

|𝑢(𝑥) − 𝑢(𝑦) − ∇𝑢(𝑥) ∙ (𝑥 − 𝑦)| ≤ 𝐶|𝑥 − 𝑦|2      ∀𝑥, 𝑦 ∈ Ω, 
for some positive constant 𝐶 independent of 𝑥 and 𝑦. It follows that 

|𝑢(𝑥) − 𝑢(𝑦)| ≤ |∇𝑢(𝑥) ∙ (𝑥 − 𝑦)| + 𝐶|𝑥 − 𝑦|2      ∀𝑥, 𝑦 ∈ Ω                 (67) 
and  

|∇𝑢(𝑥) ∙ (𝑥 − 𝑦)| ≤ |𝑢(𝑥) − 𝑢(𝑦)| + 𝐶|𝑥 − 𝑦|2    ∀𝑥, 𝑦 ∈ Ω.                 (68) 
From (67), we derive that 

(∫
|𝑢(𝑥) − 𝑢(𝑦)|𝑝

|𝑥 − 𝑦|𝑝
𝜌𝑛 (|𝑥 − 𝑦|)𝑑𝑦

2

Ω

)

1 𝑝⁄

≤ (∫
|∇𝑢(𝑥) ∙ (𝑦 − 𝑥)|𝑝

|𝑥 − 𝑦|𝑝
𝜌𝑛 (|𝑥 − 𝑦|)𝑑𝑦

2

Ω

)

1 𝑝⁄

   

≤                                                    +𝐶 (∫ |𝑥 − 𝑦|𝑝𝜌𝑛 (|𝑥 − 𝑦|)𝑑𝑦
2

Ω

)

1 𝑝⁄

     

which implies, by (1) and (3), 

(∫
|𝑢(𝑥) − 𝑢(𝑦)|𝑝

|𝑥 − 𝑦|𝑝
𝜌𝑛 (|𝑥 − 𝑦|)𝑑𝑦

2

Ω

)

1 𝑝⁄

≤ γ|∇𝑢(𝑥)| + 𝑜(1).               (69) 

Here and in what follows in this proof, 𝑜(1) denotes a quantity which converges to 0 

(independently of 𝑥) as 𝑛 → +∞. We derive that 

𝛷𝑛(𝑢) ≤ γ∫ |∇𝑢(𝑥)| + 𝑜(1).
2

Ω

                                             (70) 

For the reverse inequality, we consider an arbitrary open subset 𝐷 of Ω such that �̅� ⊂ Ω. 

For a fixed 𝑥 ∈ 𝐷, using (1), (3) and (68) one can verify as in (69) that 
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γ|∇𝑢(𝑥)| ≤ (∫
|𝑢(𝑥) − 𝑢(𝑦)|𝑝

|𝑥 − 𝑦|𝑝
𝜌𝑛 (|𝑥 − 𝑦|)𝑑𝑦

2

Ω

)

1 𝑝⁄

+ 𝑜(1). 

It follows that 

γ∫ |∇𝑢(𝑥)|𝑑𝑥 ≤ 𝛷𝑛(𝑢) + 𝑜(1).
2

𝐷

                                              (71) 

Combining (70) and (71) yields 

γ∫ |∇𝑢(𝑥)|𝑑𝑥 ≤ liminf
𝑛→+∞

 𝛷𝑛(𝑢) ≤ limsup
𝑛→+∞

 𝛷𝑛(𝑢) ≤
2

𝐷

γ∫ |∇𝑢(𝑥)|𝑑𝑥.
2

Ω

 

The conclusion of Step 1 follows since 𝐷 is arbitrary, 

Step 2: Proof of (66). We follow the same strategy as in the proof of Proposition(3.1.6). 

Let (𝜇𝑘) be a sequence of smooth mollifiers such that 𝜇𝑘 ≥ 0 and supp 𝜇𝑘 ⊂ 𝐵1/𝑘. Fix 𝐷 

an arbitrary smooth open subset of Ω such that �̅� ⊂ Ω and let 𝑘0 > 0 be large enough such 

that 𝐵(𝑥, 1/𝑘0) ⊂⊂ Ω for every 𝑥 ∈ 𝐷. Given 𝑢 ∈ 𝐿1(Ω), define in 𝐷 

𝑢𝑘 = 𝜇𝑘 ∗ 𝑢     for  𝑘 ≥𝑘0. 
We have, for 𝑘 ≥ 𝑘0, 

∫ (∫
|𝑢𝑘(𝑥) − 𝑢𝑘(𝑦)|

𝑝

|𝑥 − 𝑦|𝑝
𝜌𝑛 (|𝑥 − 𝑦|)𝑑𝑦

2

𝐷

)

1 𝑝⁄2

𝐷

𝑑𝑥 ≤ 𝛷𝑛(𝑢)   ∀𝑛.         (72) 

Letting 𝑛 → +∞ (for fixed 𝑘 and fixed 𝐷), we find, using Step 1 on 𝐷, that, for 𝑘 ≥ 𝑘0,   

lim
𝑛→+∞

 ∫ (∫
|𝑢𝑘(𝑥) − 𝑢𝑘(𝑦)|

𝑝

|𝑥 − 𝑦|𝑝
𝜌𝑛 (|𝑥 − 𝑦|)𝑑𝑦

2

𝐷

)

1 𝑝⁄2

𝐷

𝑑𝑥 = γ∫ |∇𝑢𝑘(𝑥)|𝑑𝑥
2

𝐷

. 

We derive from (72) that 

liminf
𝑛→+∞

 𝛷𝑛(𝑢) ≥ γ∫ |∇𝑢𝑘(𝑥)|𝑑𝑥
2

𝐷

,                                       (73) 

for ≥ 𝑘0. Letting 𝑘 → +∞, we obtain 

liminf
𝑛→+∞

 𝛷𝑛(𝑢) ≥ γ∫ |∇𝑢(𝑥)|𝑑𝑥.
2

𝐷

                                        (74) 

We deduce (66) since 𝐷 is arbitrary. 

Step 3: Proof of (65) for 𝑢 ∈ 𝑊1,𝑝(Ω). By Hölder’s inequality, we have  

𝛷𝑛(𝑢) ≤ |Ω|
1−1 𝑝⁄ (∫ ∫

|𝑢(𝑥) − 𝑢(𝑦)|𝑝

|𝑥 − 𝑦|𝑝
𝜌𝑛 (|𝑥 − 𝑦|)𝑑𝑦

2

Ω

2

Ω

𝑑𝑦)

1 𝑝⁄

.            (75) 

We may then invoke a result of [109] to conclude that 

𝛷𝑛(𝑢) ≤ 𝐶‖∇𝑢‖𝐿𝑝(Ω)     ∀𝑢 ∈ 𝑊
1,𝑝(Ω),                           (76) 

with 𝐶 > 0 independent of 𝑛. We next write, using triangle inequality, 

|𝛷𝑛(𝑢) − 𝛷𝑛(�̃�)| ≤ 𝛷𝑛(𝑢 − �̃�) ≤ 𝐶‖∇(𝑢 − �̃�)‖𝐿𝑝(Ω)    ∀𝑢, �̃� ∈ 𝑊
1,𝑝(Ω). 

This implies 

                        |𝛷𝑛(𝑢) − 𝐽(𝑢)|  ≤ |𝛷𝑛(𝑢) − 𝛷𝑛(�̃�)| + |𝛷𝑛(�̃�) − 𝐽(�̃�)| + |𝐽(�̃�) − 𝐽(𝑢)|   
                  ≤ 𝐶‖∇(𝑢 − �̃�)‖𝐿𝑝(Ω)  +  |𝛷𝑛(�̃�) − 𝐽(�̃�)|. 

Using the density of  𝐶2(Ω̅) in 𝑊1,𝑝(Ω), we obtain (65). 

By choosing a special sequence (𝜌𝑛), we may greatly improve the conclusion of 

Proposition (3.1.9). Moreprecisely, let (𝛿𝑛) be a positive sequence converging to 0 and 

define 
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𝜌𝑛(𝑡) =
(𝑝 + 𝑑)

𝛿𝑛
𝑝+𝑑 𝑡𝑝𝟙(0,𝛿𝑛)(𝑡).                                                            (77) 

We have   

The proof of Proposition(3.1.10) relies on the following inequality which is just a 

rescaled version of the standard Sobolev one. Let  𝐵𝑅 be a ball of radius 𝑅, then for any 

𝑝 ∈ [1, 𝑑/(𝑑 − 1)], 

(∫ |𝑢(𝑦) − ∫ 𝑢
2

𝐵𝑅

|

𝑝2

𝐵𝑅

𝑑𝑦)

1 𝑝⁄

≤ 𝐶𝑅𝛼∫ |∇𝑢(𝑧)|
2

𝐵𝑅

𝑑𝑧   ∀𝑢 ∈ 𝐿1(𝐵𝑅),                    (78) 

for some positive constant 𝐶 depending only on 𝑑 and 𝑝,where 𝛼 ∶= (𝑑/𝑝) + 1 − 𝑑 ≥ 0. 

Proposition (3.1.10) [107]: Let 𝑑 ≥ 1 and assume that either 

1 < 𝑝 ≤ 𝑑 (𝑑 − 1)⁄         and  𝑑 ≥ 2,   
or  

1 < 𝑝 < +∞        and  𝑑 = 2,   
and let (𝜌𝑛) be defined by (77). Then 

𝛷𝑛(𝑢) ≤ 𝐶∫ |∇𝑢|
2

Ω

       ∀𝑛, ∀𝑢 ∈ 𝐿1(Ω),                              (79) 

for some positive constant 𝐶 depending only on 𝑑, 𝑝, and Ω , and 

lim
𝑛→+∞

 𝛷𝑛(𝑢) = 𝐽(𝑢)  ∀𝑢 ∈ 𝑊
1,1(Ω).                                    (80) 

On the other hand, there exists some nontrivial 𝜐 ∈ 𝐵𝑉(Ω) such that 

lim
𝑛→+∞

 𝛷𝑛(𝜐) = 𝛼𝑝𝐽(𝜐)     with 𝛼𝑝 > 1.                                  (81) 

Proof:  Since 𝛷𝑛(𝑢) = 𝛷𝑛(𝑢 + 𝑐) for any constant 𝑐, without loss of generality, one may 

assume that∫ 𝑢
2

Ω
= 0. Consider an extension of 𝑢 to ℝ𝑑 which is still denoted by 𝑢 such 

that 

‖𝑢‖𝑊1,1(ℝ𝑑) ≤ 𝐶Ω‖𝑢‖𝑊1,1(Ω) ≤ 𝐶Ω‖∇𝑢‖𝐿1(Ω).                              (82) 

In view of (77), we have 

𝛷𝑛(𝑢) ≤
(𝑝 + 𝑑)1 𝑝⁄

𝛿𝑛
1+𝑑 ∫ (∫ |𝑢(𝑥) − 𝑢(𝑦)|𝑝𝑑𝑦

2

B(𝑥,δn)

)

1 𝑝⁄2

Ω

𝑑𝑥.                  (83) 

We have, for 𝑦 ∈ 𝐵(𝑥, δn), 

|𝑢(𝑥) − 𝑢(𝑦)| ≤ |𝑢(𝑥) − ∫ 𝑢
2

𝐵(𝑥,𝛿𝑛)

| + |𝑢(𝑦) − ∫ 𝑢
2

𝐵(𝑥,𝛿𝑛)

| .                          (84) 

It follows from the triangle inequality that   

             (∫ |𝑢(𝑥) − 𝑢(𝑦)|𝑝𝑑𝑦
2

B(𝑥,δn)

)

1 𝑝⁄

≤ 𝐶𝛿𝑛
𝑑 𝑝⁄

|𝑢(𝑥) − ∫ 𝑢
2

𝐵(𝑥,𝛿𝑛)

| + (∫ |𝑢(𝑦) − ∫ 𝑢
2

𝐵(𝑥,𝛿𝑛)

|

𝑝2

𝐵(𝑥,𝛿𝑛)

𝑑𝑦)

1 𝑝⁄

.       (85) 

Here and in what follows in this proof, 𝐶 denotes a positive constant depending only on 

𝑑, 𝑝, and Ω. Inserting (78) in (85) yields 

(∫ |𝑢(𝑥) − 𝑢(𝑦)|𝑝𝑑𝑦
2

B(𝑥,δ𝑛)
)

1 𝑝⁄

≤ 𝐶𝛿𝑛
𝑑 𝑝⁄

|𝑢(𝑥)−∫ 𝑢
2

𝐵(𝑥,𝛿𝑛)
|+ 𝐶𝛿𝑛

𝛼
∫ |∇𝑢(𝑧)|𝑑𝑧
2

B(𝑥,δn)
.      (86) 

We claim that  
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∫ |𝑢(𝑥) − ∫ 𝑢
2

𝐵(𝑥,𝛿𝑛)

| 𝑑𝑥 ≤ 𝐶𝛿𝑛

2

Ω

∫ |∇𝑢|
2

Ω

                                        (87) 

and  

∫ 𝑑𝑥
2

Ω

∫ |∇𝑢(𝑧)|𝑑𝑧
2

B(𝑥,δ𝑛)

≤ 𝐶𝛿𝑛
𝑑∫ |∇𝑢|.

2

Ω

                                        (88) 

Indeed, we have, for 𝑅 large enough, 

∫ |𝑢(𝑥) − ∫ 𝑢
2

𝐵(𝑥,𝛿𝑛)

| 𝑑𝑥 ≤ 𝐶𝛿𝑛
𝑑−1

2

Ω

∫ ∫ |𝑢(𝑥) − 𝑢(𝑦)|
2

𝐵𝑅

2

𝐵𝑅
|𝑥−𝑦|<𝛿𝑛                                       

𝑑𝑥𝑑𝑦 

                                 ≤ 𝐶𝛿𝑛∫ |∇𝑢| ≤ 𝐶𝛿𝑛

2

𝐵𝑅

∫ |∇𝑢|.
2

Ω

    

by the BBM formula applied to 𝜌𝑛(𝑡) = (𝑑 +  1)𝛿𝑛
−(𝑑+1)

 𝑡 𝟙(0,𝛿𝑛)  and by (79). On the 

other hand, 

∫ ∫ |∇𝑢(𝑧)|𝑑𝑧𝑑𝑥
2

B(𝑥,δ𝑛)

2

Ω

≤ ∫ ∫ |∇𝑢(𝑧)|𝑑𝑧𝑑𝑥 ≤
2

𝐵𝑅

2

𝐵𝑅
|𝑥−𝑧|<𝛿𝑛                                       

𝐶𝛿𝑛
𝑝
∫ |∇𝑢(𝑥)|𝑑𝑥,
2

Ω

 

by (82). Combining (86)–(88) yields 

            ∫ (∫ |𝑢(𝑥) − 𝑢(𝑦)|𝑝𝑑𝑦
2

B(𝑥,δn)

)

1 𝑝⁄

𝑑𝑥 ≤
2

Ω

𝐶𝛿𝑛
1+𝑑 𝑝⁄

∫ |∇𝑢(𝑧)|𝑑𝑧
2

Ω

               (89) 

(recall that 𝛼 + 𝑑 = 1 + 𝑑/𝑝). It follows from (83) that 

𝛷𝑛(𝑢) ≤ 𝐶‖∇𝑢‖𝐿1(Ω); 

which is (79). 

Assertion (80) is deduced from (79) via a density argument as in the proof of 

Proposition (3.1.9). 

It remains to prove (81). For simplicity, take Ω = (−1/2, 1/2) and consider 𝜐(𝑥) =
𝟙(0,1/2)(𝑥). Then, for 𝑛 sufficiently large, 

           𝛷𝑛(𝜐) = 2
(𝑝 + 1)1 𝑝⁄

𝛿𝑛
1 𝑝⁄

∫ (∫ 𝑑𝑦
𝛿𝑛−𝑥

0

)

1 𝑝⁄𝛿𝑛

0

𝑑𝑥 =
2(𝑝 + 1)1 𝑝⁄

𝛿𝑛
1+1 𝑝⁄

∫ (𝛿𝑛 − 𝑥1)
1 𝑝⁄

𝛿𝑛

0

𝑑𝑥

= 2
(𝑝 + 1)1 𝑝⁄

𝛿𝑛
1+1 𝑝⁄

𝛿𝑛
1+1 𝑝⁄

1 + 1 𝑝⁄
=

2𝑝

(𝑝 + 1)1−1 𝑝⁄
> 21 𝑝⁄ = 𝐽(𝜐). 

Indeed, since  𝑝 + 1 < 2𝑝, it follows that (𝑝 + 1)1−1/𝑝 < (2𝑝)1−1/𝑝 and thus 
2𝑝

(𝑝 + 1)1−1 𝑝⁄
> (2𝑝)1/𝑝 > 21 𝑝⁄ . 

We assume that 𝑑 = 1 and Ω = (−1/2, 1/2). 
Proposition (3.1.11)[107]: Assume that (𝜌𝑛) satisfies (1)–(3). Then, for every 𝑞 > 1, we 

have 

𝛷𝑛(𝑢) ≤ 𝐶𝑞‖�́�‖𝐿𝑞(Ω)      ∀𝑢 ∈ 𝑊
1,𝑞(Ω), 

for some positive constant 𝐶𝑞 depending only on 𝑞. Moreover, 

lim
𝑛→+∞

 𝛷𝑛(𝑢) = 𝐽(𝑢)     ∀𝑢 ∈⋃𝑊1,𝑞(Ω)

𝑞>1

. 
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Proof: Since 𝛷𝑛(𝑢) = 𝛷𝑛(𝑢 + 𝑐) for any constant c, without loss of generality, one may 

assume that ∫ 𝑢
2

Ω
= 0. 

Consider an extension of 𝑢 to ℝ which is still denoted by 𝑢, such that 

‖𝑢‖𝑊1,𝑞(ℝ) ≤ 𝐶𝑞  ‖𝑢‖𝑊1,𝑞(Ω) ≤ 𝐶𝑞‖�́�‖𝐿𝑞(Ω).    

Let 𝑀(𝑓 ) denote the maximal function of 𝑓 defined in ℝ, i.e., 

𝑀(𝑓 )(𝑥) ≔ sup
𝑟>0

∫ |𝑓(𝑠)|
𝑥+𝑟

𝑥−𝑟

𝑑𝑠. 

From the definition of 𝛷𝑛, we have 

𝛷𝑛(𝑢) ≤ 𝐶∫ (∫ |𝑀(�́�)(𝑥)|𝑝𝜌𝑛(|𝑥 − 𝑦|)𝑑𝑦
2

Ω

)

1 𝑝⁄

𝑑𝑥 ≤
2

Ω

𝐶 ∫ 𝑀(�́�)(𝑥)𝑑𝑥.
2

Ω

 

The first statement now follows from the fact that ∥ 𝑀(𝑓) ∥𝐿𝑞(ℝ)≤ 𝐶𝑞 ∥ 𝑓 ∥𝐿𝑞(ℝ) since 𝑞 >

1. The second statement is derived from the first statement via a density argument as in the 

proof of Proposition (3.1.9). 

The next result shows that Proposition (3.1.11) is sharp and cannot be extended to 

𝑞 = 1 (for a general sequence (𝜌𝑛)). 

Proposition (3.1.12)[107]: For every 𝑝 >1, there exist a sequence (𝜌𝑛) satisfying (1)–(3) 

and some function 𝜐 ∈ 𝑊1,1(Ω) such that 

𝛷𝑛(𝜐) = +∞     ∀𝑛. 
Proof: Fix 𝛼 > 0 and 𝛽 > 1 such that 

𝛼 + 𝛽 𝑝⁄ < 1.                                                          (90) 
Since 𝑝 > 1 such 𝛼 and 𝛽 exist. Let (𝛿𝑛) be a sequence of positive numbers converging to 

0 and consider 

𝜌𝑛(𝑡) ≔ 𝐴𝑛
1

𝑡|ln 𝑡|𝛽
𝟙(0,𝛿𝑛). 

Here 𝐴𝑛 is chosen in such a way that (3) holds, i.e., 𝐴𝑛 ∫
1

𝑡|ln 𝑡|𝛽
= 1

𝛿𝑛
0

. Set 

                                           𝜐(𝑥) = {
0              if −1 2⁄ < 𝑥 < 0 ,                                         
 |ln 𝑥|−𝛼    if 0 < 𝑥 < 1 2⁄ .                                                  

 

Clearly, 𝜐 ∈ 𝑊1,1(Ω). We have 

           𝛷𝑛(𝜐) = ∫ (∫
|𝜐(𝑥) − 𝜐(𝑦)|𝑝

|𝑥 − 𝑦|𝑝
𝜌𝑛 (|𝑥 − 𝑦|)𝑑𝑦

1 2⁄

−1 2⁄

)

1 𝑝⁄

𝑑𝑥
1 2⁄

−1 2⁄

≥ ∫ 𝐴𝑛
1 𝑝⁄

𝛿𝑛

0

|𝜐(𝑥)| (∫
1

|𝑥 + 𝑦|𝑝
𝜌𝑛 (𝑥 + 𝑦)𝑑𝑦

𝛿𝑛−𝑥

0

)

1 𝑝⁄

𝑑𝑥.                          (91) 

We have, for 0 < 𝑥 < 𝛿𝑛/2, 

∫
1

|𝑥 + 𝑦|𝑝
𝜌𝑛 (𝑥 + 𝑦)𝑑𝑦

𝛿𝑛−𝑥

0

≥ ∫
𝑑𝑡

𝑡𝑝+1|ln 𝑡|𝛽
≥

𝛿𝑛

𝑥

∫
𝑑𝑡

𝑡𝑝+1|ln 𝑡|𝛽
≥

2𝑥

𝑥

𝐶𝑝,𝛽

𝑥𝑝|ln 𝑥|𝛽
; 

and thus 

(∫
1

|𝑥 + 𝑦|𝑝
𝜌𝑛 (𝑥 + 𝑦)𝑑𝑦

𝛿𝑛−𝑥

0

)

1 𝑝⁄

≥
𝐶𝑝,𝛽

𝑥|ln 𝑥|𝛽 𝑝⁄
.                               (92) 

Since, by (90), 

∫
1

𝑥|ln 𝑥|𝛽 𝑝+𝛼⁄

𝛿𝑛 2⁄

0

𝑑𝑥 = +∞, 
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it follows from (91) and (92) that 

  𝛷𝑛(𝜐) = +∞     ∀𝑛. 
We present two “improvements” of (65) concerning the (pointwise) convergence of  

𝛷𝑛(𝑢) to 𝐽(𝑢). In the first one (Proposition (3.1.13) (𝜌𝑛) is a general sequence (satisfying 

(1)–(3)), but the assumption on 𝑢 is quite restrictive: 𝑢 ∈ 𝑊1,𝑞(Ω) with 𝑞 > 𝑞0 where 𝑞0 

is defined in (93). In the second one (Proposition (3.1.15)) there is an additional 

assumption on (𝜌𝑛), but pointwise convergence holds for a large (more natural) class of 

𝑢’𝑠: 𝑢 ∈ 𝑊1,𝑞(Ω ) with 𝑞 > 𝑞1 where 𝑞1 < 𝑞0 is defined in (104). 

Proposition (3.1.13)[107]: Let 𝑝 > 1 and assume that (𝜌𝑛) satisfies (1)–(3). Set 

𝑞0 ≔ 𝑝𝑑 (𝑑 + 𝑝 − 1)⁄ ,                                                 (93) 
so that 1 < 𝑞0 < 𝑝. Then 

𝛷𝑛(𝑢) ≤ 𝐶‖∇𝑢‖𝐿𝑝        ∀𝑢 ∈ 𝑊
1,𝑞(Ω) 𝑤𝑖𝑡ℎ 𝑞 > 𝑞0 ,                       (94) 

for some positive constant 𝐶 = 𝐶𝑝,𝑞,Ω depending only on 𝑝, 𝑞, and Ω. Moreover, 

lim
𝑛→+∞

 𝛷𝑛(𝑢) = 𝐽(𝑢)   ∀𝑢 ∈ 𝑊
1,𝑞(Ω) 𝑤𝑖𝑡ℎ 𝑞 > 𝑞0.                                (95) 

Proof: Since 𝛷𝑛(𝑢) =  𝛷𝑛(𝑢 + 𝑐) for any constant 𝑐, without loss of generality, one may 

assume that ∫ 𝑢
2

Ω
= 0. Consider an extension of 𝑢 to ℝ𝑑 which is still denoted by 𝑢, such 

that 

‖𝑢‖𝑊1,𝑞(ℝ𝑑) ≤ 𝐶𝑞,Ω‖𝑢‖𝑊1,𝑞(Ω) ≤ 𝐶𝑞,Ω‖∇𝑢‖𝐿𝑝(Ω). 

For simplicity of notation, we assume that diam(Ω) ≤ 1/2. Then 

𝛷𝑛(𝑢) ≤ ∫ [∫ ∫
|𝑢(𝑥 + 𝑟𝜎) − 𝑢(𝑥)|

𝑟𝑝

1

0

𝑝

𝜌𝑛

2

𝕊𝑑−1
(𝑟)𝑟𝑑−1𝑑𝑟𝑑𝜎]

1 𝑝⁄

𝑑𝑥.
2

Ω

 

We have 

 |𝑢(𝑥 + 𝑟𝜎) − 𝑢(𝑥)| ≤ |𝑢(𝑥 + 𝑟𝜎) − ∫ 𝑢(𝑥 + 𝑟�́�)𝑑�́�
𝕊𝑑−1

| + |𝑢(𝑥) − ∫ 𝑢(𝑥 + 𝑟�́�)𝑑�́�
𝕊𝑑−1

|   

≤ ∫ |𝑢(𝑥 + 𝑟𝜎) − 𝑢(𝑥 + 𝑟�́�)|𝑑�́� +
𝕊𝑑−1

∫ |𝑢(𝑥) − 𝑢(𝑥 + 𝑟�́�)|𝑑�́�
𝕊𝑑−1

.        

It follows that 

𝛷𝑛(𝑢) ≲ 𝑇1 + 𝑇2,                                                           (96) 
where  

     𝑇1 = ∫ [∫ ∫ ∫ |𝑢(𝑥 + 𝑟𝜎) − 𝑢(𝑥 + 𝑟�́�)|𝑝
2

𝕊𝑑−1

1

𝕊𝑑−1
𝑑�́� 𝑑𝜎𝑝𝜌𝑛

1

0

(𝑟)𝑟𝑑−1−𝑝𝑑𝑟]

1 𝑝⁄

𝑑𝑥
2

Ω

 

and  

        𝑇2 = ∫ [∫ (∫ |𝑢(𝑥) − 𝑢(𝑥 + 𝑟�́�)|
1

𝕊𝑑−1
𝑑�́� )

𝑝𝑝

𝜌𝑛

1

0

(𝑟)𝑟𝑑−1−𝑝𝑑𝑟]

1 𝑝⁄

𝑑𝑥.
2

Ω

 

In this proof the notation 𝑎 ≲  𝑏  means that 𝑎 ≤ 𝐶𝑏  for some positive constant 𝐶 

depending only on 𝑝, 𝑞, and Ω. 
We first estimate 𝑇1. Let 𝐵1 denotes the open unit ball of ℝ𝑑. By (93) we know that 

the trace mapping 𝑢 ⟼ 𝑢|𝜕𝐵1 is continuous from 𝑊1,𝑞0(𝐵1) into 𝐿𝑞(𝜕𝐵1). It follows that 

∫ ∫ |𝑢(𝑥 + 𝑟𝜎) − 𝑢(𝑥 + 𝑟�́�)|𝑝
2

𝕊𝑑−1

1

𝕊𝑑−1
𝑑�́� 𝑑𝜎 ≲ ‖∇𝑢(𝑥 + 𝑟 ∙)‖𝐿𝑞0(𝐵1)

𝑝
≲ 𝑟𝑝𝑀𝑝 𝑞0⁄ (|∇𝑢|𝑞0)(𝑥) 

(recall that  𝑀(𝑓) denotes the maximal function of a function 𝑓 defined in ℝ𝑑). Using (1), 

we derive that 
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𝑇1 ≲ ∫ [∫ 𝑀𝑝 𝑞0⁄ (|∇𝑢|𝑞0)(𝑥)𝜌𝑛

1

0

(𝑟)𝑟𝑑−1𝑑𝑟]

1 𝑝⁄

𝑑𝑥 ≲
2

Ω

∫ 𝑀1 𝑞0⁄ (|∇𝑢|𝑞0)(𝑥)𝑑𝑥.2

1

Ω

     (97) 

Since 𝑞 > 𝑞0 , it follows from the theory of maximal functions that 

∫ 𝑀1 𝑞0⁄ (|∇𝑢|𝑞0)(𝑥)𝑑𝑥 ≲ ‖∇𝑢‖𝐿2(Ω).2

1

Ω

                             (98) 

Combining (97) and (98) yields 

𝑇1 ≲ ‖∇𝑢‖𝐿𝑞(Ω).                                                        (99) 

We next estimate 𝑇2. We have 

∫ |𝑢(𝑥) − 𝑢(𝑥 + 𝑟�́�)|
1

𝕊𝑑−1
𝑑�́� ≤ ∫ ∫ |∇𝑢(𝑥 + 𝑠�́�)|𝑑𝑠𝑑�́�.

𝑟

0

1

𝕊𝑑−1
 

Applying Lemma (3.1.14), we obtain, for 0 < 𝑟 < 1 and ∈ Ω , 

∫ ∫ |∇𝑢(𝑥 + 𝑠�́�)|𝑑𝑠𝑑�́�
𝑟

0

1

𝕊𝑑−1
≤ 𝐶𝑟𝑀(|∇𝑢|)(𝑥).                            (100) 

We derive that 

𝑇2 ≲ ∫ 𝑀(|∇𝑢|)(𝑥)
1

Ω

𝑑𝑥 ≲ ‖∇𝑢‖𝐿𝑞                                      (101) 

by the theory of maximal functions since 𝑞 > 1. Combining (96), (99) and (101) yields 

(94). 

Assertion (95) follows from (94) via a density argument as in the proof of 

Proposition (3.1.9). 

In the proof of  Proposition (3.1.13), we used the following elementary. 

Lemma (3.1.14)[107]: Let 𝑑 ≥ 1, 𝑟 > 0, 𝑥 ∈ ℝ𝑑, and 𝑓 ∈ 𝐿𝑙𝑜𝑐
1 (ℝ𝑑). We have 

∫ ∫ |𝑓(𝑥 + 𝑠𝜎)|𝑑𝑠𝑑𝜎
𝑟

0

1

𝕊𝑑−1
≤ 𝐶𝑑𝑟𝑀(𝑓)(𝑥),                             (102) 

for some positive constant 𝐶𝑑 depending only on 𝑑. 

Proof: Set 𝜑(𝑠) = ∫ |𝑓(𝑥 + 𝑠𝜎)|𝑑𝜎 
𝑟

𝕊𝑑−1
, so that, by the definition of  𝑀(𝑓)(𝑥), we have 

∫ |𝑓(𝑦)|𝑑𝑦 
𝐵𝑟(𝑥)

≤ 𝑀(𝑓)(𝑥)     ∀𝑟 > 0, 

and thus 

𝐻(𝑟) ≔ ∫ 𝜑(𝑠)𝑠𝑑−1𝑑𝑠
𝑟

0

≤ |𝐵1|𝑟
𝑑𝑀(𝑓)(𝑥)    ∀𝑟 > 0.                   (103) 

Then 𝐻′(𝑟) = 𝜑(𝑟)𝑟𝑑−1, so that 

∫ 𝜑(𝑠)𝑑𝑠
𝑟

0

= ∫
𝐻′(𝑠)

𝑠𝑑−1
𝑑𝑠

𝑟

0

=
𝐻(𝑟)

𝑟𝑑−1
+ (𝑑 − 1)∫

𝐻(𝑠)

𝑠𝑑
𝑑𝑠 ≤ 𝐶𝑑𝑟

𝑟

0

𝑀(𝑓)(𝑥) ,    

by (103); which is precisely (102). (The integration by parts can be easily justified by 

approximation.) 

Under the assumption that 𝜌𝑛  is non-increasing for every 𝑛, one can replace the 

condition 𝑞 > 𝑞0 in Proposition (3.1.13) by the weaker condition 𝑞 > 𝑞1 , where 

𝑞1 ≔ max{𝑝𝑑 (𝑝 + 𝑑), 1⁄ },                                           (104) 
so that 1 ≤ 𝑞1 < 𝑞0. It is worth noting that the embedding 𝑊1,𝑞1(Ω) ⊂ 𝐿𝑝(Ω) is sharp and 

therefore 𝑞1 is a natural lower bound for 𝑞. In fact, we prove a slightly more general result: 
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Proposition (3.1.15)[107]: Let 𝑝 > 1 and assume that (𝜌𝑛) satisfies (1)–(3). Suppose in 

addition that there exist 𝛬 > 0  and a sequence of non-increasing functions (�̂�𝑛) ⊂
𝐿𝑙𝑜𝑐
1 (0,+∞) such that 

𝜌𝑛 ≤ �̂�𝑛    and         ∫ �̂�𝑛

∞

0

(𝑡)𝑡𝑑−1𝑑𝑡 ≤ 𝛬    ∀𝑛.                         (105) 

Then  

𝛷𝑛(𝑢) ≤ ‖∇𝑢‖𝐿𝑞      ∀𝑢 ∈ 𝑊
1,𝑞(Ω)  𝑤𝑖𝑡ℎ  𝑞 > 𝑞1,                      (106) 

for some positive constant 𝐶 = 𝐶(𝑝, 𝑞, 𝛬, Ω) depending only on 𝑝, 𝑞, 𝛬, and Ω. Moreover, 

lim
𝑛→+∞

𝛷𝑛(𝑢) = 𝐽(𝑢)   ∀𝑢 ∈ 𝑊
1,𝑞(Ω)  𝑤𝑖𝑡ℎ  𝑞 > 𝑞1.                    (107) 

Proof: For simplicity of notation, we assume that 𝜌𝑛 is non-increasing for all 𝑛 and work 

directly with 𝜌𝑛  instead of  �̂�𝑛 .We first prove (106). As in the proof of Proposition 

(3.1.13), one may assume that ∫ 𝑢
2

Ω
= 0. Consider an extension of 𝑢 to ℝ𝑑 which is still 

denoted by 𝑢 such that 

‖𝑢‖𝑊1,𝑞(ℝ𝑑) ≤ 𝐶𝑞,Ω‖𝑢‖𝑊1,𝑞(Ω) ≤ 𝐶𝑞,Ω‖∇𝑢‖𝐿𝑝(Ω). 

For simplicity of notation, we assume that diam(Ω) ≤ 1/2. Then 

𝛷𝑛(𝑢) ≤ ∫ [∫ ∫
|𝑢(𝑥 + 𝑟𝜎) − 𝑢(𝑥)|

𝑟𝑝

1

0

𝑝

𝜌𝑛

2

𝕊𝑑−1
(𝑟)𝑟𝑑−1𝑑𝑟𝑑𝜎]

1 𝑝⁄

𝑑𝑥.
2

Ω

 

We claim that for a.e. ∈ Ω , 

𝑍(𝑥) = [∫ ∫
|𝑢(𝑥 + 𝑟𝜎) − 𝑢(𝑥)|

𝑟𝑝

1

0

𝑝

𝜌𝑛

2

𝕊𝑑−1
(𝑟)𝑟𝑑−1𝑑𝑟𝑑𝜎]

1 𝑝⁄

             

       ≤ 𝐶𝑀1 𝑞1⁄ (|∇𝑢|𝑞1)(𝑥).                                    (108) 
Here and in what follows, 𝐶 denotes a positive constant depending only on 𝑝, 𝑑, and 𝛬. 

From (108), we deduce (106) via the theory of maximal functions since > 𝑞1 . 

Assertion (107) follows from (106) by density as in the proof of  Proposition  (3.1.9). 

It remains to prove (108). Without loss of generality we establish (108) for 𝑥 = 0. 

The proof relies heavily on two inequalities valid for all 𝑅 > 0: 

[∫ |𝑢(𝜉) − ∫ 𝑢
𝐵𝑅

|

𝑝

𝑑𝜉
𝐵𝑅

]

1 𝑝⁄

≤ 𝐶𝑅𝑀1 𝑞1⁄ (|∇𝑢|𝑞1)(0)                  (109) 

and  

∫ |𝑢(𝜉) − 𝑢(0)|
𝐵𝑅

𝑑𝜉 ≤ 𝐶𝑅𝑀1 𝑞1⁄ (|∇𝑢|𝑞1)(0),                            (110) 

where  𝐵𝑅 = 𝐵𝑅(0). 
Inequality (109) is simply a rescaled version of the Sobolev inequality 

‖𝑢 −∫ 𝑢
𝐵1

‖
𝐿𝑝(𝐵1)

≤ 𝐶|∇𝑢|𝐿𝑞1(𝐵1), 

which implies that 

[∫ |𝑢(𝜉) − ∫ 𝑢
𝐵𝑅

|

𝑝

𝑑𝜉
𝐵𝑅

]

1 𝑝⁄

≤ 𝐶𝑅 [∫ |∇𝑢|𝑞1
𝐵𝑅

]

1 𝑞1⁄

≤ 𝐶𝑅𝑀1 𝑞1⁄ (|∇𝑢|𝑞1)(0). 

To prove (110), we write 
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   ∫ |𝑢(𝜉) − 𝑢(0)|
2

𝐵𝑅

𝑑𝜉 = ∫ ∫ |𝑢(𝑟𝜎) − 𝑢(0)|
2

𝕊𝑑−1

𝑅

0

𝑟𝑑−1𝑑𝑟𝑑𝜎   

                                                    ≤ 𝐶 ∫ 𝑟𝑑−1𝑑𝑟
𝑅

0

∫ ∫ |∇𝑢(𝑠𝜎)|
𝑟

0

𝑅

𝕊𝑑−1
𝑑𝑠𝑑𝜎           

                                                       ≤ 𝐶 ∫ 𝑟𝑑𝑀(|∇𝑢|)(0)
𝑅

0

   𝑏𝑦 𝐿𝑎𝑚𝑚𝑎 (3.1.15). 

Thus 

∫ |𝑢(𝜉) − 𝑢(0)|
2

𝐵𝑅

𝑑𝜉 ≤ 𝐶𝑅𝑀(|∇𝑢|)(0) ≤ 𝐶𝑅𝑀1 𝑞1⁄ (|∇𝑢|𝑞1)(0). 

From (108), we obtain 

𝑍(0)𝑝 =∑∫ ∫ |𝑢(𝑟𝜎) − 𝑢(0)|𝑝
2−𝑖

2−(𝑖+1)

𝑅

𝕊𝑑−1
𝜌𝑛(𝑟)𝑟

𝑑−1−𝑝𝑑𝑟𝑑𝜎 ,

∞

𝑖=0

 

so that 

𝑍(0)𝑝 ≤ 𝐶∑𝜌𝑛(2
−(𝑖+1))2𝑖𝑝∫ ∫ |𝑢(𝑟𝜎) − 𝑢(0)|𝑝

2−𝑖

2−(𝑖+1)

𝑅

𝕊𝑑−1
𝑟𝑑−1𝑑𝑟𝑑𝜎.

∞

𝑖=0

      (111) 

We have 

|𝑢(𝑟𝜎) − 𝑢(0)| ≤ |𝑢(𝑟𝜎) − ∫ 𝑢
𝐵
2−𝑖

| + |∫ 𝑢 − 𝑢(0)
𝐵
2−𝑖

|.                   (112) 

Inserting (112) into (111) yields 

𝑍(0)𝑝 ≤ 𝐶∑(𝑈𝑖 + 𝑉𝑖),

∞

𝑖=0

                                           (113) 

where 

𝑈𝑖 = 𝜌𝑛(2
−(𝑖+1))2𝑖𝑝∫ ∫ |𝑢(𝑟𝜎) − ∫ 𝑢

𝐵
2−𝑖

|

𝑝
2−𝑖

2−(𝑖+1)

𝑅

𝕊𝑑−1
𝑟𝑑−1𝑑𝑟𝑑𝜎  

and  

𝑉𝑖 = 𝜌𝑛(2
−(𝑖+1))2𝑖𝑝∫ ∫ |∫ 𝑢 − 𝑢(0)

𝐵
2−𝑖

|

𝑝
2−𝑖

2−(𝑖+1)

𝑅

𝕊𝑑−1
𝑟𝑑−1𝑑𝑟𝑑𝜎. 

Clearly, 

𝑈𝑖 ≤ 𝜌𝑛(2
−(𝑖+1))2𝑖𝑝∫ ∫ |𝑢(𝑟𝜎) − ∫ 𝑢

𝐵
2−𝑖

|

𝑝
2−𝑖

0

𝑅

𝕊𝑑−1
𝑟𝑑−1𝑑𝑟𝑑𝜎 ≤ 𝜌𝑛(2

−(𝑖+1))2−𝑖𝑑𝐴, (114) 

by (109), where 𝐴 = 𝑀𝑝/𝑞1(|∇𝑢|𝑞1)(0). On the other hand, 

                       𝑉𝑖 ≤ 𝜌𝑛(2
−(𝑖+1))2𝑖𝑝 [∫ |𝑢(𝜉) − 𝑢(0)|𝑑𝜉

𝑅

𝐵
2−𝑖

]

𝑝

2−𝑖𝑑 

          ≤ 𝐶𝜌𝑛(2
−(𝑖+1))2−𝑖𝑑𝐴 𝑏𝑦 (110)                                     (115) 

Combining (113)–(115), we obtain 

𝑍(0)𝑝 ≤ 𝐶∑𝜌𝑛(2
−(𝑖+1))2−𝑖𝑑𝐴 

∞

𝑖=0

. 
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Finally, we observe that 

∫ 𝜌𝑛(𝑟)𝑟
𝑑−1𝑑𝑟 ≥ 

1

0

∑∫ 𝜌𝑛(𝑟)𝑟
𝑑−1𝑑𝑟

2−(𝑖+1)

2−(𝑖+1)
 

∞

𝑖=0

≥ 𝐶∑𝜌𝑛(2
−(𝑖+1))2−𝑖𝑑  

∞

𝑖=0

 

and thus 

𝑍(0)𝑝 ≤ 𝐶𝑀𝑝 𝑞1⁄ (|∇𝑢|𝑞1)(0)∫ 𝜌𝑛(𝑟)𝑟
𝑑−1𝑑𝑟 ≤ 𝐶𝑀𝑝 𝑞1⁄ (|∇𝑢|𝑞1)(0) 

1

0

. 

Remark (3.1.16)[107]: Assume that 𝑑 ≥ 2 and 1 < 𝑝 ≤ 𝑑/(𝑑 − 1), so that 𝑞1 = 1. The 

conclusion of  Proposition (3.1.15) fails in the borderline case 𝑞 = 𝑞1 = 1 . More 

precisely, for every ∈ (1, 𝑑 (𝑑 − 1)]⁄  , there exist a sequence (𝜌𝑛) satisfying (1)–(3) and 

(105), and a function 𝜐 ∈ 𝑊1,1(Ω) such that 𝛷𝑛(𝜐) = +∞ for all 𝑛. The construction is 

similar to the one presented in the proof of  Proposition(3.1.10). Indeed, let Ω = 𝐵1 2⁄ (0). 

Fix 𝛼 > 0 and 𝛽 > 1 such that 

𝛼 + 𝛽 𝑝⁄ < 1.                                                          (116) 
Since 𝑝 > 1 such 𝛼 and 𝛽 exist. Let (𝛿𝑛) be a sequence of positive numbers converging to 

0 and consider 

𝜌𝑛(𝑡) ≔ 𝐴𝑛
1

𝑡𝑑|ln 𝑡|𝛽
𝟙(0,𝛿𝑛). 

Note that the functions 𝑡 ⟼ 𝜌𝑛(𝑡) are non-increasing. Here Anis chosen in such a way 

that (3) holds,i.e., 𝐴𝑛 ∫
𝑑𝑡

𝑡|ln 𝑡|𝛽

𝛿𝑛
0

= 1. Set 

𝑉(𝑥) = 𝜐(𝑥1) ≔ {
0            if −1 2 <⁄ 𝑥1 < 0,
|ln 𝑥1|

−𝛼 if 0 < 𝑥1 < 1 2⁄ , .
 

Clearly, 𝑉 ∈ 𝑊1,1(Ω). We have  

           𝛷𝑛(𝑉) = ∫ (∫
|𝑉(𝑥) − 𝑉(𝑦)|𝑝

|𝑥 − 𝑦|𝑝

2

Ω

𝜌𝑛(|𝑥 − 𝑦|)𝑑𝑦)

1 𝑝⁄2

Ω

𝑑𝑥 

≳ ∫ An
1 p⁄

2

B1 4⁄ (0)
0<𝑥1<𝛿𝑛/4            

(∫
|𝜐(𝑥1) − 𝜐(𝑦1)|

𝑝

|𝑥 − 𝑦|𝑝+𝑑|ln|𝑥 − 𝑦||𝛽
𝑑𝑦

2

|𝑦−𝑥|≤𝛿𝑛

)

1 𝑝⁄

𝑑𝑥. 

Note that, for 0 < 𝑥1 < 𝛿𝑛/4, 

   ∫
|𝜐(𝑥1) − 𝜐(𝑦1)|

𝑝𝑑𝑦

|𝑥 − 𝑦|𝑝+𝑑|ln|𝑥 − 𝑦||𝛽

2

|𝑦−𝑥|≤𝛿𝑛

≳ ∫ An
1 p⁄

2

|𝑦1−𝑥1|≤𝛿𝑛/4
|�́�−�́�|≤𝛿𝑛/4            

|𝜐(𝑥1) − 𝜐(𝑦1)|
𝑝𝑑�́�𝑑𝑦1

(|𝑥1 − 𝑦1|𝑝+𝑑 + |�́� − �́�|𝑝+𝑑)|ln|𝑥1 − 𝑦1||𝛽
.  

                                ≳ ∫  
|𝜐(𝑥1) − 𝜐(𝑦1)|

𝑝𝑑𝑦1
|𝑥1 − 𝑦1|

𝑝+𝑑|ln|𝑥1 − 𝑦1||
𝛽

2

|𝑦1−𝑥1|≤𝛿𝑛/4

 

We derive as in the proof of  Proposition (3.1.12) that 

∫  
|𝜐(𝑥1) − 𝜐(𝑦1)|

𝑝𝑑𝑦

|𝑥 − 𝑦|𝑝+𝑑  |ln|𝑥 − 𝑦||𝛽

2

|𝑦−𝑥|≤𝛿𝑛

 ≳
𝜐(𝑥1)

𝑝

𝑥1
𝑝|ln 𝑥1|

𝛽
. 

It follows that 

𝛷𝑛(𝑉) ≳ ∫ 𝐴𝑛
1 𝑝⁄

2

Ω
0<𝑥1<𝛿𝑛/4            

𝜐(𝑥1)
𝑝

𝑥1|ln 𝑥1|
𝛽 𝑝⁄

𝑑𝑥 = ∫ 𝐴𝑛
1 𝑝⁄

2

Ω
0<𝑥1<𝛿𝑛/4            

1

𝑥1|ln 𝑥1|
𝛼+𝛽 𝑝⁄

𝑑𝑥 = +∞, 

(by (116)). 

Concerning the 𝛤-convergence of 𝛷𝑛, G. Leoni and D. Spector proved in [123]. 

Proposition (3.1.17)[107]: For every 𝑝 > 1 we have 
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𝛷𝑛
𝛤
→𝛷0(∙) ≔ 𝛾∫ |∇ ∙|

2

Ω

      𝑖𝑛 𝐿1(Ω), 

where 𝛾 is given in (63). 

Their proof is quite involved. Here is a simpler proof. 

Proof: For 𝐷 an open subset of Ω such that  �̅� ⊂ Ω , set 

𝛷𝑛(𝑢, 𝐷) = ∫ 𝑑𝑥
2

𝐷

[∫
|𝑢(𝑥) − 𝑢(𝑦)|𝑝

|𝑥 − 𝑦|𝑝

2

𝐷

𝜌𝑛(|𝑥 − 𝑦|)𝑑𝑦]

1 𝑝⁄

    for 𝑢 ∈ 𝐿1(𝐷). 

Let 𝑢 ∈ 𝐿1(Ω) and (𝑢𝑛) ⊂ 𝐿
1(Ω ) be such that  𝑢𝑛 → 𝑢 in 𝐿1(Ω ). We must prove that 

lim
𝑛→∞

inf 𝛷𝑛 (𝑢𝑛) ≥ 𝛾∫ |∇𝑢|
2

Ω

. 

Let (𝜇𝑘) be a sequence of smooth mollifiers such that supp  𝜇𝑘 ⊂ 𝐵1/𝑘. Let 𝐷 be a smooth 

open subset of Ω such that �̅� ⊂ Ω and fix 𝑘0 such that  𝐷 + 𝐵1/𝑘0 ⊂ Ω. We have as in 

(48), for 𝑘 ≥ 𝑘0 , 
𝛷𝑛(𝜇𝑘 ∗ 𝑢𝑛 , 𝐷) ≤ 𝛷𝑛(𝑢𝑛 ).                                              (117) 

Using the fact that 

|𝛷𝑛(𝑢 , 𝐷) − 𝛷𝑛(𝜐, 𝐷)| ≤ 𝐶𝐷‖𝑢 − 𝜐‖𝑊1,∞(𝐷)   ∀𝑢, 𝑛 ∈ 𝑊
1,∞(𝐷), 

we obtain 

|𝛷𝑛(𝜇𝑘 ∗ 𝑢𝑛  , 𝐷) − 𝛷𝑛(𝜇𝑘 ∗ 𝑢, 𝐷)| ≤ 𝐶𝑘,𝐷‖𝑢𝑛 − 𝑢‖𝐿1(Ω). 

Hence 

𝛷𝑛(𝜇𝑘 ∗ 𝑢 , 𝐷) ≤ 𝛷𝑛(𝜇𝑘 ∗ 𝑢𝑛  , 𝐷) + 𝐶𝑘,𝐷‖𝑢𝑛 − 𝑢‖𝐿1(Ω).                      (118) 

Combining (117) and (118) yields 

                             𝛾 ∫ |∇(𝜇
𝑘
∗ 𝑢)| ≤ liminf

𝑛→+∞
 𝛷𝑛 (𝑢𝑛)

2

𝐷

. 

Letting 𝑘 → ∞, we reach 

                   𝛾 ∫ |∇𝑢| ≤ liminf
𝑛→+∞

 𝛷𝑛 (𝑢𝑛)
2

𝐷

. 

Since  𝐷 ⊂⊂ Ω is arbitrary, we derive that 

                        𝛾 ∫ |∇𝑢| ≤ liminf
𝑛→+∞

 𝛷𝑛 (𝑢𝑛)
2

𝐷

. 

We next fix 𝑢 ∈ 𝐵𝑉(Ω) and construct a sequence (𝑢𝑛) converging to 𝑢 in 𝐿1(Ω) such that 

 limsup
𝑛→+∞

 𝛷𝑛 (𝑢𝑛) ≤  𝛾 ∫ |∇𝑢|
2

Ω

. 

Let 𝜐𝑘 ∈ 𝐶
1(Ω̅) be such that 

𝜐𝑘 → 𝑢   in  𝐿1(Ω)  and      ∫ |∇𝜐𝑘|
2

Ω

→ ∫ |∇𝑢|
2

Ω

.                        (119) 

For each  𝑘, let 𝑛𝑘 be such that 

||𝛷𝑛(𝜐𝑘)− 𝛾∫ |∇𝜐𝑘|
2

Ω

| ≤ 1 𝑘⁄      if  𝑛 > 𝑛𝑘 .                           (120) 

Without loss of generality, one may assume that (𝑛𝑘 ) is an increasing sequence with 

respect to 𝑘. Define 

𝑢𝑛 = 𝜐𝑘   if  𝑛𝑘 < 𝑛 ≤ 𝑛𝑘+1. 
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We derive from (119) and (120) that 

𝑢𝑛 → 𝑢   in  𝐿1(Ω)  and      lim
𝑛→+∞

 𝛷𝑛 (𝑢𝑛) = 𝛾∫ |∇𝑢|
2

Ω

. 

The proof is complete. 

Set  

�̂�𝑛(𝑢) ≔ ∫ |𝑢 − 𝑓|𝑞
2

Ω

+𝛷𝑛(𝑢), 

and  

�̂�0(𝑢) ≔ ∫ |𝑢 − 𝑓|𝑞
2

Ω

+ 𝛾∫ |∇𝑢|
2

Ω

, 

where 𝑞 > 1 and 𝑓 ∈ 𝐿𝑞(Ω) is a given function. Motivated by Image Processing, we study 

variational problems related to �̂�𝑛. More precisely, we establish 

Proposition (3.1.18)[107]: For every 𝑛, there exists 𝑎 unique  𝑢𝑛 ∈ 𝐿
𝑞(Ω) such that 

�̂�𝑛(𝑢𝑛) = min
𝑢∈𝐿𝑞(Ω)

�̂�𝑛(𝑢). 

Let 𝑢0 be the unique minimizer ofˆ �̂�0. We have, as  𝑛 → +∞,  
𝑢𝑛 → 𝑢0    in  𝐿

𝑞(Ω) 
and  

                         �̂�𝑛(𝑢𝑛) → �̂�0(𝑢0). 
Proof: The proof  is similar to the one of Proposition (3.1.7). The details are left to the 

reader. 

Section (3.2): 𝑊𝑠,𝑝 When 𝑠 ↑ 1 and Applications  
    This is a follow-up of [109] where we establish that 

lim
𝑠↑1
(1 − 𝑠)∫ ∫

|𝑓(𝑥) − 𝑓(𝑦)|𝑝

|𝑥 − 𝑦|𝑑+𝑠𝑝

2

Ω

1

Ω

𝑑𝑥𝑑𝑦~‖∇𝑓‖𝐿𝑝(Ω),                                   (121) 

for any 𝑝 ∈ [1,∞), where Ω is a smooth bounded domain in ℝ𝑑 , 𝑑 ≥ 1. 
    On the other hand, if  0 < 𝑠 < 1, 𝑝 > 1  and 𝑠𝑝 < 𝑑,  the Sobolev inequality for 

fractional  Sobolev spaces (see e.g. [135]) asserts that 

‖𝑓‖𝑊𝑠,𝑝(Ω)
𝑝

≥ 𝐶(𝑠, 𝑝, 𝑑)‖𝑓 − ⨏𝑓‖
𝐿𝑞(Ω)

                                          (122) 

where  
1

𝑞
=
1

𝑝
−
𝑠

𝑑
.                                                                    (123) 

Here we use the standard semi-norm on 𝑊𝑠,𝑝 

‖𝑓‖𝑊𝑠,𝑝(Ω)
𝑝

= ∫ ∫
|𝑓(𝑥) − 𝑓(𝑦)|𝑝

|𝑥 − 𝑦|𝑑+𝑠𝑝

2

Ω

1

Ω

𝑑𝑥𝑑𝑦.                                   (124) 

When 𝑠 = 1 the analog of (122) is the classical Sobolev inequality 

‖∇𝑓‖𝐿𝑝(Ω)
𝑝

≥ 𝐶(𝑝, 𝑑)‖𝑓 − ⨏𝑓‖
𝐿𝑝

∗
(Ω)

𝑝
                                          (125) 

where  
1

𝑝∗
=
1

𝑝
−
1

𝑑
   𝑎𝑛𝑑  1 ≤ 𝑝 < 𝑑. 

The behaviour of the best constant 𝐶 (𝑝, 𝑑) in (125) as  𝑝 ↑ 𝑑 is known (see e.g. [138], and 

also Remark (3.2.2) below); more precisely one has 

‖∇𝑓‖𝐿𝑝(Ω)
𝑝

≥ 𝐶(𝑑)(𝑝 − 𝑑)𝑝−1‖𝑓 − ⨏𝑓‖
𝐿𝑝

∗
(Ω)

𝑝
.                                          (126) 

Putting together (121), (124) and (126) suggests that (122) holds with  
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𝐶(𝑠, 𝑝, 𝑑) = 𝐶(𝑑) (𝑑 − 𝑠𝑝)𝑝−1 (1 − 𝑠)⁄ ,                                                 (127) 
for all 𝑠 <  1, 𝑠 close to 1 and 𝑠𝑝 < 𝑑. 
     For simplicity we work with  Ω = the unit cube 𝑄 in ℝ𝑑 

Corollary (3.2.1)[134]: For all 0 < 𝜀 ≤ 1 2⁄ , 

|𝐴| | 𝐴2
𝑐 | ≤ (𝐶(𝑑)𝜀 ∫ ∫

𝑑𝑥𝑑𝑦

|𝑥 − 𝑦|𝑑+1−𝜀

2

𝐴2
𝑐

1

𝐴

)

𝑑 (𝑑−1+𝜀)⁄

.                                (128) 

    Note that in the special case 𝑑 = 1, (128) takes the simple form 

|𝐴| | 𝐴2
𝑐 | ≤ (𝐶∗𝜀 ∫ ∫

𝑑𝑥𝑑𝑦

|𝑥 − 𝑦|2−𝜀

2

𝐴2
𝑐

1

𝐴

)

1 𝜀⁄

                                       (129) 

for some absolute constant 𝐶∗. Estimate (129) is sharp as can be easily seen when 𝐴 is an 

interval. 

    The conclusion of Corollary (3.2.1) is related to a result stated in [109] There is 

however an important difference. In [109] the set 𝐴 was fixed (independent of 𝜀) and the 

statement there provides a bound for |𝐴| | 𝐴2
𝑐 | in terms of the limit, as 𝜀 → 0, of the RHS in 

(128). The improved version - which requires a more delicate argument- is used we apply 

Corollary (3.2.1) (with 𝑑 = 1) to give a proof 

of a result announced in [136]. Namely , on  Ω = ( 1,+1) consider the function 

𝜑𝜀(𝑥) = {
 0         for −1 < 𝑥 < 0,
2𝜋𝑥 𝛿⁄ for 0 < 𝑥 < 𝛿,
2𝜋      for 𝛿 < 𝑥 < 1,

 

where   𝛿 = 𝑒−1 𝜀⁄ , 𝜀 > 0 small. 

     Set 𝑢𝜀 = 𝑒
𝑖𝜑𝜀  . It is easy to check (by scaling) that 

        ‖𝑢𝜀‖𝐻1 2⁄ = ‖𝑢𝜀 − 1‖𝐻1 2⁄ ≤ 𝐶 

as  𝜀 → 0 and consequently ‖𝑢𝜀‖𝐻(1−𝜀) 2⁄ ≤ 𝐶   as  𝜀 → 0.  On the other hand, a straight 

forward computation shows that  ‖𝜑𝜀‖𝐻(1−𝜀) 2⁄ ~ 𝜀
−1 2⁄ .   

    The result announced in [136] asserts that any lifting  𝜑𝜀 of  𝑢𝜀 blows up in 𝐻(1−𝜀) 2⁄  (at 

least) in the same rate as  𝜑𝜀: 
Remark (3.2.2)[134]: There are various versions of the Sobolev inequality (125). All 

these forms hold with equivalent constants: 

Form (i): ‖∇𝑓‖𝐿𝑝(𝑄) ≥ 𝐴1‖𝑓 − ⨏ 𝑓𝑄
2 ‖

𝐿𝑞(Q)
   ∀𝑓 ∈ 𝑊1,𝑝(𝑄).  

Form (ii): ‖∇𝑓‖𝐿𝑝(𝑄) ≥ 𝐴2‖𝑓 − ⨏ 𝑓𝑄
2 ‖

𝐿𝑞(Q)
  for all 𝑄-periodic functions 𝑓 ∈ 𝑊𝑙𝑜𝑐

1,𝑝(ℝ𝑑). 

Form (iii): ‖∇𝑓‖𝐿𝑝(ℝ𝑑) ≥ 𝐴3‖𝑓‖𝐿𝑞(ℝ𝑑)   ∀𝑓 ∈ 𝐶0
∞(ℝ𝑑). 

Form (i)⟹ Form (ii): Obvious with 𝐴2 = 𝐴1.  
Form (ii)⟹ Form (i): Given any function 𝑓 ∈ 𝑊1,𝑝(𝑄), it can be extended by reflections 

to a periodic function on a larger cube �̃� so that form (ii) implies Form(i) with 𝐴1  ≥
𝐶 𝐴2 , and 𝐶 depends only on 𝑑. 
Form (i)⟹ Form (iii): By scale invariance, form(i) holds with the same constant 𝐴1 on the 

cube 𝑄𝑅 of side 𝑅. Fix a function  𝑓 ∈ 𝐶0
∞(ℝ𝑑) and let 𝑅 > diam (Supp  ).We have 

‖∇𝑓‖𝐿𝑝(𝑄𝑅) ≥ 𝐴1‖𝑓 − ⨏ 𝑓𝑄𝑅
2 ‖

𝐿𝑞(𝑄𝑅)
. 

As 𝑅 → ∞  we obtain form (iii) with 𝐴3 = 𝐴1. 
Form (iii)⟹ Form (ii): Given a smooth periodic function 𝑓 on ℝ𝑑 , let 𝜌 be a smooth cut-

off function with  𝜌 = 1 on 𝑄 and 𝜌 = 0  outside 2𝑄. Then 
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‖∇(𝜌𝑓)‖𝐿𝑝(ℝ𝑑) ≥ 𝐴3‖𝜌𝑓‖𝐿𝑞(ℝ𝑑) 

and thus 

𝐴3‖𝑓‖𝐿𝑞(𝑄) ≤ 𝐶(‖∇𝑓‖𝐿𝑝(𝑄) + ‖𝑓‖𝐿𝑝(𝑄)) 

where 𝐶 depends only on 𝑑. Replacing 𝑓 by (𝑓 − ⨏ 𝑓𝑄
2 ) and applying Poincare's inequality 

(see e.g. [138]) yields 

𝐴3‖𝑓 − ⨏𝑓‖𝐿𝑞(𝑄) ≤ 𝐶
‖∇𝑓‖𝐿𝑞(𝑄). 

We check easily that the same considerations hold for the fractional Sobolev norms such 

as in (130). The proof of the last implication (Form (iii) ⟹ Form (ii)) involves a Poincare-

type inequality . What we use here is the following 

Fact: Let 1 ≤ 𝑝 < ∞, 1 2⁄  ≤ 𝑠 < 1, then 

(1 − 𝑠)∫ ∫
|𝑓(𝑥) − 𝑓(𝑦)|𝑝

|𝑥 − 𝑦|𝑑+𝑠𝑝

2

Q

1

Q

≥ 𝑐(𝑑)‖𝑓 − ⨏ 𝑓𝑄
2 ‖

𝐿𝑝(𝑄)

𝑝
. 

The proof of this fact is left. It is an adaptation of the argument in the beginning. In (123) 

one uses an obvious lower bound: 

(123) ≥ 𝑐 (∑‖𝑓𝑟‖𝐿𝑝

𝑟

)

𝑝

≥ 𝑐‖𝑓 − ⨏𝑓‖
𝐿𝑝
𝑝
. 

    For the convenience of the reader we have divided the proof of Theorem (3.2.3) into 

several cases. 

Theorem (3.2.3)[134]: Assume 𝑑 ≥ 1, 𝑝 ≥ 1, 1 2 ≤⁄  𝑠 < 1 and 𝑠𝑝 < 1. Then 

∫ ∫
|𝑓(𝑥) − 𝑓(𝑦)|𝑝

|𝑥 − 𝑦|𝑑+𝑠𝑝
𝑑𝑥𝑑𝑦

2

Q

1

Q

≥ 𝐶(𝑑)
(𝑑 − 𝑠𝑝)𝑝−1

1 − 𝑠
‖𝑓 − ⨏𝑓‖

𝐿𝑞(𝑄)

𝑝
            (130) 

where 𝑞 is given by (123) and 𝐶(𝑑) depends only on 𝑑. 
    As can be seen from (130) there are two phenomena that govern the behaviour of the 

constant in (130). As 𝑠 ↑ 1  the constant gets bigger, while as 𝑠 ↑ 𝑑 𝑝⁄  the constant 

deteriorates. This explains why the we consider several cases in the proof. 

    As an application of Theorem (3.2.3) with  𝑝 = 1  and 𝑓 = 𝜒𝐴,  the characteristic 

function of a measurable set 𝐴 ⊂ 𝑄 we easily obtain 

Proof (1): when  𝑝 = 1 and 𝑑 = 1. 
    For simplicity , we work with periodic functions of period 2𝜋  (for non-periodic 

functions see Remark (3.2.2)). All integrals, 𝐿𝑝 norms, etc...., are understood on the 

interval (0, 2𝜋). We must prove that, (with 𝜀 = 1 − 𝑠), for all 𝜀 ∈ (0, 1 2⁄ ], 

𝐶𝜀∫∫
|𝑓(𝑥) − 𝑓(𝑦)|𝑝

|𝑥 − 𝑦|2−𝜀
𝑑𝑥𝑑𝑦 ≥ ‖𝑓 − ⨏𝑓‖

𝐿1 𝜀⁄ .                                             (131) 

Write the left side as 

𝜀 ∫
1

|ℎ|2−𝜀
‖𝑓 − 𝑓ℎ‖1𝑑ℎ ~ 𝜀∑2𝑘(2−𝜀)

𝑘≥0

∫ ‖𝑓 − 𝑓ℎ‖1

2

|ℎ|~2−𝑘
.                       (132) 

For |ℎ|~2−𝑘 

    ‖𝑓 − 𝑓ℎ‖1 ≥ 

    ‖(𝑓 − 𝑓ℎ) ∗ 𝐹𝑁𝑘‖1
= (𝑁𝑘 = 2

𝑘−100, 𝑁𝑘(𝑥) = ∑
𝑁 − |𝑛|

𝑁
𝑒𝑖𝑛𝑥 = Fejer kernel

|𝑛|≤𝑁

) 
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   ‖ ∑
𝑁𝑘 − |𝑛|

𝑁𝑘
𝑓(𝑛)(𝑒𝑖𝑛ℎ − 1)𝑒𝑖𝑛𝑥

|𝑛|<𝑁𝑘

‖

1

~ 

   2−𝑘 ‖ ∑
𝑁𝑘 − |𝑛|

𝑁𝑘
𝑛𝑓(𝑛)𝑒𝑖𝑛𝑥

|𝑛|<𝑁𝑘

‖

1

            (by the choice 𝑜𝑓 𝑁𝑘). 

This last equivalence is justified via a smooth truncation as in the following 

Lemma(3.2.4)[134]: ‖∑ 𝑓(𝑛)(𝑒𝑖𝑛ℎ − 1)𝑒𝑖𝑛𝑥|𝑛|<𝑁 ‖
1
≳

1

𝑁
‖∑ 𝑛𝑓(𝑛)𝑒𝑖𝑛𝑥|𝑛|<𝑁 ‖

1
for |ℎ| <

1

100𝑁
. 

Proof:  Write 

      ‖ ∑ 𝑛𝑓(𝑛)𝑒𝑖𝑛𝑥

|𝑛|<𝑁

‖

1

≤ ‖ ∑ 𝑓(𝑛)(𝑒𝑖𝑛ℎ − 1)𝑒𝑖𝑛𝑥

|𝑛|<𝑁

‖

1

. ‖∑𝜑(
𝑛

𝑁
)

𝑛

𝑒𝑖𝑛ℎ − 1
𝑒𝑖𝑛𝑥‖

1
 

where 0 ≤ 𝜑 ≤ 1 is a smooth function with 

𝜑(𝑡) = {
1 for |𝑡| ≤ 1
0 for |𝑡| ≥ 2

 

We have from assumption 

‖∑𝜑(
𝑛

𝑁
)

𝑛

𝑒𝑖𝑛ℎ − 1
𝑒𝑖𝑛𝑥‖

1
~𝑁 ‖∑𝜑(

𝑛

𝑁
)

𝑛ℎ

𝑒𝑖𝑛ℎ − 1
𝑒𝑖𝑛𝑥‖

1
 

and the second factor remains uniformly bounded. This may be seen by expanding 
𝑦

𝑒𝑖𝑦 − 1
 ~ 

1

𝑖
+ 0(𝑦) 

for  |𝑦| <
1

50
 and using standard multiplier bounds. 

We now return to the proof of  Theorem (3.2.3) (𝑝 = 1, 𝑑 = 1). 
Substitution in (132) gives thus 

𝜀∑ 2−𝜀𝑘

𝑘≥0

‖ ∑
𝑁𝑘 − |𝑛|

𝑁𝑘
𝑛𝑓(𝑛)𝑒𝑖𝑛𝑥

|𝑛|<𝑁𝑘

‖

1

.                                             (133) 

Define 

𝑘0 =
10

𝜀
. 

For 𝑘0 < 𝑘 < 2𝑘0, minorate (using Lemma (3.2.4)) 

‖ ∑
𝑁𝑘 − |𝑛|

𝑁𝑘
𝑛𝑓(𝑛)𝑒𝑖𝑛𝑥

|𝑛|<𝑁𝑘

‖

1

≳ ‖ ∑
𝑁𝑘0 − |𝑛|

𝑁𝑘0
𝑛𝑓(𝑛)𝑒𝑖𝑛𝑥

|𝑛|<𝑁𝑘0

‖

1

 

and therefore 

(133) ≳ ‖ ∑
𝑁𝑘0 − |𝑛|

𝑁𝑘0
𝑛𝑓(𝑛)𝑒𝑖𝑛𝑥

|𝑛|<𝑁𝑘0

‖

1

= ‖ ∑
𝑁𝑘0 − |𝑛|

𝑁𝑘0
𝑛𝑓(𝑛)𝑒𝑖𝑛𝑥

|𝑛|<𝑁𝑘0

‖

𝑊1,1

 

≥ ‖ ∑
𝑁𝑘0 − |𝑛|

𝑁𝑘0
𝑛𝑓(𝑛)𝑒𝑖𝑛𝑥

0<|𝑛|<𝑁𝑘0

‖

∞

.                                                                (134) 

Next write also 
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(133) ≳ 𝜀∑ 2−𝑟

𝑟≥1

∑  

[
𝑟+2
𝜀
]≤𝑘<[

𝑟+3
𝜀
]

‖ ∑
𝑁𝑘 − |𝑛|

𝑁𝑘
𝑛𝑓(𝑛)𝑒𝑖𝑛𝑥

|𝑛|<𝑁𝑘

‖

1

 

≳∑ 2−𝑟

𝑟≥1

‖ ∑
2[
𝑟+1
𝜀
] − |𝑛|

2
[
𝑟+1
𝜀
]

𝑒𝑖𝑛𝑥

|𝑛|<2
[
𝑟+1
𝜀
]

‖

1

.                                            (135) 

Denote for each 𝑟 by 𝜆𝑟 = {𝜆𝑟(𝑛)|𝑛 ∈ ℤ} the following multiplier 

Thus 

𝜆𝑟(𝑛) = 𝜆𝑟(−𝑛) 

‖∑𝜆𝑟(𝑛)𝑒
𝑖𝑛𝑥‖

1
< 𝐶. 

(This multiplier may be reconstructed from Fejer-kernels 𝐹𝑁 with  𝑁 = 2
[
𝑟+1

𝜀
]
, 2
[
𝑟

𝜀
]
, 2
[
𝑟−1

𝜀
]
). 

    Also 

‖ ∑
2[
𝑟+1
𝜀
] − |𝑛|

2
[
𝑟+1
𝜀
]

𝑛𝑓(𝑛)𝑒𝑖𝑛𝑥

|𝑛|<2
[
𝑟+1
𝜀
]

‖

1

≳ 

‖ ∑  

2
[
𝑟−1
𝜀
]
<|𝑛|<2

[
𝑟+1
𝜀
]

𝜆𝑟(𝑛)𝑛𝑓(𝑛)𝑒
𝑖𝑛𝑥‖

1

                                         (136) 

and  

(135) ≳∑ 2−𝑟

𝑟≥1

‖‖ ∑  

2
[
𝑟−1
𝜀
]
<|𝑛|<22

[
𝑟+1
𝜀
]

𝜆𝑟(𝑛)(sign 𝑛)|𝑛| 𝑓(𝑛)𝑒
𝑖𝑛𝑥‖‖

1

.                 (137) 

We claim that for 𝑞 > 2 

‖ ∑  

𝑁1<|𝑛|<𝑁2

 �̂�(𝑛)𝑒𝑖𝑛𝑥‖

𝑞

≤ 𝐶𝑁1
−
1
𝑞
‖ ∑  

𝑁1<|𝑛|<𝑁2

|𝑛|(sign 𝑛) �̂�(𝑛)𝑒𝑖𝑛𝑥‖

1

             (138) 

with the constant 𝐶 independent of 𝑞. 
    Applying (138) with 

𝑞 =
1

𝜀
, �̂�(𝑛) = 𝜆𝑟(𝑛)𝑓(𝑛),     𝑁1 = 2

[𝑟−1
𝜀
], 𝑁2 = 2

[𝑟+1
𝜀
] 

we obtain the minoration 
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(137) ≳∑ 

𝑟≥1

‖ ∑  

2
[
𝑟−1
𝜀
]
<|𝑛|<2

[
𝑟+1
𝜀
]

𝜆𝑟(𝑛) 𝑓(𝑛)𝑒
𝑖𝑛𝑥‖

𝑞

.                              (139) 

 By construction 

∑ 

𝑟≥1

𝜆𝑟(𝑛) = 1  for |𝑛| > 2
[1
𝜀
] . 

Using also minoration (134) together with the triangle-inequality yields 

LHS in (131) ≳ (133) + (138) ≳ ‖∑  

𝑛≠0

 𝑓(𝑛)𝑒𝑖𝑛𝑥‖

𝑞

 

which proves the inequality . 

Proof of (138). 

    Estimate 

‖ ∑  

𝑁1<|𝑛|<𝑁2

 �̂�(𝑛)𝑒𝑖𝑛𝑥‖

𝑞

≤ ‖ ∑  

𝑁1<|𝑛|<𝑁2

|𝑛|−1(sign 𝑛) 𝑒𝑖𝑛𝑥‖

𝑞

‖ ∑  

𝑁1<|𝑛|<𝑁2

|𝑛|(sign 𝑛) �̂�(𝑛)𝑒𝑖𝑛𝑥‖

1

 

where the first factor equals 

‖ ∑  

𝑁1<|𝑛|<𝑁2

1

𝑛
sin 𝑛𝑥 ‖

𝑞

≲                      

‖ ∑  

log𝑁1<𝑘<log𝑁2

|∑  

𝑛~2𝑘

1

𝑛
sin 𝑛𝑥| ‖

𝑞

   (assume 𝑁1, 𝑁2 powers of 2) 

≲ ‖ ∑  

log𝑁1<𝑘<log𝑁2

min(2𝑘|𝑥|, 2−𝑘|𝑛|−1) ‖

𝑞

≲ ‖
1

1 + 𝑁1|𝑥|
 ‖
𝑞

≲ 𝑁1
−1 𝑞⁄

.     (140) 

This proves (138) and completes the proof of  Theorem (3.2.3) when  𝑝 = 1 and 𝑑 = 1. 
Theorem (3.2.5)[134]: Assume 𝑑 ≥ 1, 𝑝 ≥ 1, 1 2 ≤⁄  𝑠 < 1 and 𝑠𝑝 < 1. Then 

∫ ∫
|𝑓(𝑥) − 𝑓(𝑦)|𝑝

|𝑥 − 𝑦|𝑑+𝑠𝑝
𝑑𝑥𝑑𝑦

2

Q

1

Q

≥ 𝐶(𝑑)
(𝑑 − 𝑠𝑝)𝑝−1

1 − 𝑠
‖𝑓 − ∫ 𝑓‖

𝐿𝑞(𝑄)

𝑝
            (141) 

where 𝑞 is given by (123) and 𝐶(𝑑) depends only on 𝑑. 
    As can be seen from (130) there are two phenomena that govern the behaviour of the 

constant in (130). As 𝑠 ↑ 1  the constant gets bigger, while as 𝑠 ↑ 𝑑 𝑝⁄  the constant 

deteriorates. This explains why the we consider several cases in the proof. 

    As an application of  Theorem (3.2.3)  with  𝑝 = 1  and 𝑓 = 𝜒𝐴,  the characteristic 

function of a measurable set 𝐴 ⊂ 𝑄 we easily obtain 

Proof (2): when 𝑝 = 1 and 𝑑 ≥ 2. 
We have to prove that 
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∫∫
|𝑓(𝑥) − 𝑓(𝑦)|

|𝑥 − 𝑦|𝑑+𝑠
𝑑𝑥𝑑𝑦 ≥

𝐶(𝑑)

1 − 𝑠
‖𝑓 − ⨏𝑓‖

𝑞
                                     (142) 

where  𝑞 = 𝑑 (𝑑 − 𝑠)⁄ . We assume 𝑑 = 2. The case 𝑑 > 2 is similar. Write 

 ∫∫
|𝑓(𝑥) − 𝑓(𝑦)|

|𝑥 − 𝑦|𝑑+𝑠
𝑑𝑥𝑑𝑦~∑2𝑘(𝑑+𝑠)

0≤𝑘

∫ ‖𝑓(𝑥 + ℎ) − 𝑓(𝑥 − ℎ)‖1𝑑ℎ
2

|ℎ|~2−𝑘−10
   

≥∑2𝑘(𝑑+𝑠)∫ ‖∑  

𝑛∈ℤ𝑑

𝑓(𝑛)(sin 𝑛. ℎ) 𝑒𝑖𝑛.𝑥‖

1

𝑑ℎ1

2

|ℎ1|~2
−𝑘−10

|ℎ1|~2
−𝑘−10

𝑑ℎ2     (143) 

Let 𝜑 be a smooth function on ℝ s.t. 0 ≤ 𝜑 ≤ 1 and 

𝜑(𝑡) = {
1 for |𝑡| ≤ 1
0 for |𝑡| ≥ 2

                           

As for 𝑑 = 1, consider (radial) multipliers 𝜆0 and 𝜆𝑟 , 𝑟 ≥ 1 

𝜆0(𝑛) = 𝜑 (2
−1
𝜀|𝑛|)                                       

𝜆𝑟(𝑛) = 𝜑 (2
−𝑟+1

𝜀 |𝑛|) − 𝜑 (2−
𝑟
𝜀|𝑛|)                                            (144) 

where  𝜀 = 1 − 𝑠 and 𝜀 ∈ (0, 1 2⁄ ). 
     Hence 

∑𝜆𝑟 (𝑛) = 1                                              

‖𝜆𝑟‖𝑀(𝐿1,𝐿1) ≤ 𝐶          (multiplier norm)                                          (145) 

supp 𝜆0  ⊂ 𝐵 (0, 2
𝑟
𝜀
+1)                                                                    (146) 

supp 𝜆𝑟  ⊂ 𝐵 (0, 2
𝑟+1
𝜀
+1) \𝐵 (0, 2

𝑟
𝜀).                                            (147) 

Write  

(143) ∑ +∑ ∑ .

  𝑟+1
𝜀
<𝑘<𝑟+2

𝜀
𝑟≥11

𝜀
<𝑘<2

𝜀

                                                           (148) 

For  
2

𝜀
> 𝑘 >

1

𝜀
 and  |ℎ| < 2−𝑘−10, (145), (146) permit us to write 

‖∑ 

𝑛

𝑓(𝑛)𝑒𝑖𝑛.𝑥sin 𝑛. ℎ ‖

1

≳ ‖∑ 𝜆0(𝑛)

𝑛

𝑓(𝑛)𝑒𝑖𝑛.𝑥sin 𝑛. ℎ ‖

1

 

                                             ~ ‖∑ 𝜆0(𝑛)

𝑛

(𝑛. ℎ)𝑓(𝑛)𝑒𝑖𝑛.𝑥 ‖

1

 

and thus 

                2𝑘(𝑑+1−𝜀)∫ ‖𝑓(𝑛) (sin 𝑛. ℎ)𝑒𝑖𝑛.𝑥‖
1
𝑑ℎ1𝑑ℎ2

2

|ℎ1|,|ℎ1|~2
−𝑘−10

≳ 

                2𝑘(3+𝜀)8−𝑘 (‖∑ 𝜆0(𝑛)𝑛1
𝑛

𝑓(𝑛)𝑒𝑖𝑛.𝑥 ‖

1

+ ‖∑ 𝜆0(𝑛)𝑛2
𝑛

𝑓(𝑛)𝑒𝑖𝑛.𝑥 ‖

1

) 

                = 2−𝑘𝜀(‖𝜕𝑥1 (∑ 𝜆0(𝑛)

𝑛

𝑓(𝑛)𝑒𝑖𝑛.𝑥) ‖

1

+ ‖𝜕𝑥2( ⋯ ) ‖1)
~ 
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‖∑ 𝜆0(𝑛)

𝑛

𝑓(𝑛)𝑒𝑖𝑛.𝑥  ‖

𝑊1,1

.                                                                                          (149) 

Similarly , for 
𝑟 + 1

𝜀
< 𝑘 <

𝑟 + 2

𝜀
                   

we have 

             2𝑘(𝑑+1−𝜀)∫ ‖∑ 

𝑛

𝑓(𝑛) (sin 𝑛ℎ)𝑒𝑖𝑛.𝑥 ‖

1

≳
2

|ℎ1|,|ℎ1|~2
−𝑘−10

 

2−𝑟 ‖∑ 𝜆𝑟(𝑛)

𝑛

𝑓(𝑛) 𝑒𝑖𝑛.𝑥 ‖

𝑊1,1

.                                                 (150) 

Since in the summation (148), each of the terms (149), (150) appear at least 
1

𝜀
 times, we 

have 

𝜀 ⋅ (143) ≳ ‖∑ 𝜆0(𝑛)

𝑛

𝑓(𝑛) 𝑒𝑖𝑛.𝑥 ‖

𝑊1,1

+∑ 2−𝑟

𝑟

‖∑ 𝜆𝑟(𝑛)

𝑛

𝑓(𝑛) 𝑒𝑖𝑛.𝑥 ‖

𝑊1,1

. (151) 

Write  
2 − 𝑠

2
= 1 − 𝑠 +

𝑠

2
    

and by Holder's inequality 

‖∑ 𝜆𝑟(𝑛)

𝑛

𝑓(𝑛) 𝑒𝑖𝑛.𝑥  ‖
2
2−𝑠

≤ ‖∑ 𝜆𝑟(𝑛)

𝑛

𝑓(𝑛) 𝑒𝑖𝑛.𝑥  ‖

2

𝑠

2

‖∑ 𝜆𝑟(𝑛)

𝑛

𝑓(𝑛) 𝑒𝑖𝑛.𝑥 ‖

1

1−𝑠

.                        (152) 

By the Sobolev embedding theorem (𝑑 = 2) 

‖∑ 𝜆𝑟(𝑛)

𝑛

𝑓(𝑛) 𝑒𝑖𝑛.𝑥  ‖

2

≤ 𝐶 ‖∑ 𝜆𝑟(𝑛)

𝑛

𝑓(𝑛) 𝑒𝑖𝑛.𝑥 ‖

𝑊1,1

.                    (153) 

We estimate the last factor in (152). 

     Recalling (147). 

2
𝑟+1
𝜀
 + 1 > max(|ℎ1|, |ℎ2|) > 2

𝑟
𝜀
 − 1 

if 𝜆𝑟(𝑛) ≠ 0, 𝑟 ≥ 1.  
    Hence, with 𝜑 as above 

𝜆𝑟(𝑛) = 𝜆𝑟(𝑛). (1 − 𝜑)(2
− 
𝑟−1
𝜀
 , 𝑛1) + 𝜆𝑟(𝑛). 𝜑(2

− 
𝑟−1
𝜀
 , 𝑛1). (1 − 𝜑)(2

− 
𝑟−1
𝜀
 , 𝑛2) 

and thus 

     ‖∑ 𝜆𝑟(𝑛)

𝑛

𝑓(𝑛) 𝑒𝑖𝑛.𝑥 ‖

1

 

≤ ‖∑ 𝜆𝑟(𝑛)𝑛1
𝑛

𝑓(𝑛) 𝑒𝑖𝑛.𝑥  ‖

1

‖∑
1

𝑛1
(1 − 𝜑)(2− 

𝑟−1
𝜀
 , 𝑛1)

𝑛

𝑒𝑖𝑛.𝑥 ‖

1
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    +‖∑ 𝜆𝑟(𝑛)𝑛2
𝑛

𝑓(𝑛) 𝑒𝑖𝑛.𝑥 ‖

1

‖∑
1

𝑛2
𝜑(2− 

𝑟−1
𝜀
 , 𝑛1)(1 − 𝜑)(2

− 
𝑟−1
𝜀
 , 𝑛2)

𝑛

𝑒𝑖𝑛.𝑥 ‖

1

≤ 

≤ (‖∑
1

𝑛1
(1 − 𝜑)(2− 

𝑟−1
𝜀
 , 𝑛1)

𝑛1

𝑒𝑖𝑛.𝑥 ‖

𝐿𝑥1
1

+ ‖∑
1

𝑛2
(1 − 𝜑)(2− 

𝑟−1
𝜀
 , 𝑛2)

𝑛2

𝑒𝑖𝑛2𝑥2  ‖

𝐿𝑥2
1

). 

‖∑ 𝜆𝑟(𝑛)

𝑛

𝑓(𝑛) 𝑒𝑖𝑛.𝑥  ‖

𝑊1,1

.                      (154) 

Since (1 − 𝜑) (2− 
𝑟−1
𝜀
 , 𝑛1) = 0 for  |𝑛1| ≤ 2

− 
𝑟−1
𝜀
 , one easily checks that 

‖∑
1

𝑛1
(1 − 𝜑)(2− 

𝑟−1
𝜀
 , 𝑛1)

𝑛1

𝜀𝑒
𝑖𝑛1𝑥1

 ‖

𝐿𝑥1
1

≲ ∑ 2− ℓ < 2− 
𝑟−2
𝜀
 

ℓ≥
𝑟−1
𝜀

.   

Similarly 

‖∑
1

𝑛1
(1 − 𝜑)(2− 

𝑟−1
𝜀
 , 𝑛2)

𝑛2

𝜀𝑒
𝑖𝑛2𝑥2

 ‖

𝐿𝑥2
1

≤ 2− 
𝑟−2
𝜀
 . 

Thus (154) implies that 

‖∑ 𝜆𝑟(𝑛)

𝑛

𝑓(𝑛) 𝑒𝑖𝑛.𝑥 ‖

1

≤ 2− 
𝑟−2
𝜀
 ‖∑ 𝜆𝑟(𝑛)

𝑛

𝑓(𝑛) 𝑒𝑖𝑛.𝑥 ‖

𝑊1,1

.             (155) 

Substitution of (153), (155) in (152) gives 

 

‖∑ 𝜆𝑟(𝑛)

𝑛

𝑓(𝑛) 𝑒𝑖𝑛.𝑥 ‖
2
2−𝑠

≲ 2− 
𝑟−2
𝜀
 (1 − 𝑠)‖∑ 𝜆𝑟(𝑛)

𝑛

𝑓(𝑛) 𝑒𝑖𝑛.𝑥 ‖

𝑊1,1

 

~2− 𝑟 ‖∑ 𝜆𝑟(𝑛)

𝑛

𝑓(𝑛) 𝑒𝑖𝑛.𝑥 ‖

𝑊1,1

.                        (156) 

By (153), (156) 

𝜀. (143) ≳ ‖∑ 𝜆0(𝑛)

𝑛

𝑓(𝑛) 𝑒𝑖𝑛.𝑥  ‖

2

+∑ 

𝑟≥1

‖∑ 𝜆𝑟(𝑛)

𝑛

𝑓(𝑛) 𝑒𝑖𝑛.𝑥  ‖
2
2−𝑠

 

                                   ≥ ‖𝑓 − ⨏𝑓‖ 2
2−𝑠

 

by (144). 

      This proves (142) and completes the proof of  Theorem (3.2.5) when p = 1. 

     We present here some known inequalities used in the proof of  Theorem (3.2.5) when 

𝑝 > 1.  Let {∆𝑗𝑓}𝑗=1,2,⋯  be a Littlewood-Paley decomposition with ∆𝑗𝑓 obtained from a 

Fourier multiplier of the form 𝜑(2−𝑗|𝑛|) − 𝜑(2−𝑗+1|𝑛|)  with 0 ≤ 𝜑 ≤ 1  a smooth  

function satisfying  𝜑(𝑡) = 1 for |𝑡| ≤ 1  and  𝜑(𝑡) = 0 for |𝑡| > 2. 
     Recall the square-function inequality for 1 < 𝑞 < ∞ 
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1

𝐶(𝑞)
‖(∑ |∆𝑗𝑓|

2

𝑛

)

1 2⁄

 ‖

𝑞

≤ ‖𝑓 ‖𝑞 ≤ 𝐶(𝑞)‖(∑ |∆𝑗𝑓|
2

𝑛

)

1 2⁄

 ‖

𝑞

.              (157) 

We will also consider square-functions wrt a martingale filtration. Denote thus {𝔼𝑗} the 

expectation operators wrt  a dyadic partition of  [0, 1]𝑑 and 

∆̃𝑗𝑓 = (𝔼𝑗 − 𝔼𝑗−1)𝑓                                                                         (158) 

the martingale differences. 

     We will use the square-function inequality 

‖𝑓 ‖𝑞 ≤ 𝐶√𝑞 ‖(∑ |∆̃𝑗𝑓|
2

𝑛

)

1 2⁄

 ‖

𝑞

        for  ∞ > 𝑞 ≥ 2                           (159) 

which is precise in terms of the behaviour of  the constant for 𝑞 → ∞  (see [137]). 

Remark (3.2.6)[134]: One should expect (144) also to hold if  ∆̃𝑗is replaced by ∆𝑗 above 

but we will not need this fact. 

     We do use later on the following inequality . 

     Let 

                                       𝑝 < 𝑞 and  𝑠 = 𝑑 (
1

𝑝
−
1

𝑞
) ≥

1

2
. 

Then, for 𝑞 ≥ 2 

‖𝑓 ‖𝑞 ≤ 𝐶√𝑞 [∑ (2𝑘𝑠‖∆𝑘𝑓 ‖𝑝)
2

𝑘

]

1 2⁄

.                                                (160) 

Proof of (144) 

     It follows from (144) that since 𝑞 ≥ 2 

‖𝑓 ‖𝑞 ≤ 𝐶√𝑞 (∑ ‖∆̃𝑗𝑓 ‖𝑞
2

𝑗

)

1 2⁄

                                                  . (161) 

Write 

∆̃𝑗𝑓 =∑ ∆̃𝑗
𝑘≥𝑗

∆𝑘𝑓 +∑ ∆̃𝑗
𝑘>𝑗

∆𝑘𝑓                                               

 ‖∆̃𝑗𝑓 ‖𝑞 ≲∑ 2𝑘−𝑗

𝑘≤𝑗

‖∆𝑘𝑓 ‖𝑞 +∑ 2𝑗𝑠

𝑘>𝑗

‖∆𝑘𝑓 ‖𝑝                        

≲∑ 2𝑘−𝑗

𝑘≤𝑗

(2𝑘𝑠‖∆𝑘𝑓 ‖𝑝) +∑ 2(𝑗−𝑘)𝑠

𝑘>𝑗

(2𝑘𝑠‖∆𝑘𝑓 ‖𝑝).             (162) 

Substitution of (162) in (161) gives 

 ‖𝑓 ‖𝑞 ≤ 𝐶√𝑞 {(∑ (𝑗 − 𝑘)24𝑘−𝑗  (2𝑘𝑠‖∆𝑘𝑓 ‖𝑝)
2

𝑘≤𝑗

)

1 2⁄

                     

+ (∑ (𝑘 − 𝑗)24(𝑗−𝑘)𝑠 (2𝑘𝑠‖∆𝑘𝑓 ‖𝑝)
2

𝑘>𝑗

)

1 2⁄

} 
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≤ 𝐶√𝑞 (∑  (2𝑘𝑠‖∆𝑘𝑓 ‖𝑝)
2

𝑘

)

1 2⁄

.                                               (163) 

Theorem (3.2.7)[134]: Assume 𝑑 ≥ 1, 𝑝 ≥ 1, 1 2 ≤⁄  𝑠 < 1 and 𝑠𝑝 < 1. Then 

∫ ∫
|𝑓(𝑥) − 𝑓(𝑦)|𝑝

|𝑥 − 𝑦|𝑑+𝑠𝑝
𝑑𝑥𝑑𝑦

2

Q

1

Q

≥ 𝐶(𝑑)
(𝑑 − 𝑠𝑝)𝑝−1

1 − 𝑠
‖𝑓 − ⨏𝑓‖

𝐿𝑞(𝑄)

𝑝
            (164) 

where 𝑞 is given by (123) and 𝐶(𝑑) depends only on 𝑑. 
    As can be seen from (130) there are two phenomena that govern the behaviour of the 

constant in (130). As 𝑠 ↑ 1  the constant gets bigger, while as 𝑠 ↑ 𝑑 𝑝⁄  the constant 

deteriorates. This explains why the we consider several cases in the proof. 

    As an application of  Theorem (3.2.3)  with  𝑝 = 1  and 𝑓 = 𝜒𝐴,  the characteristic 

function of a measurable set 𝐴 ⊂ 𝑄 we easily obtain 

Proof (3): when 1 < 𝑝 < 2. 
  Write  

∫∫
|𝑓(𝑥) − 𝑓(𝑦)|𝑝

|𝑥 − 𝑦|𝑑+𝑝𝑠
𝑑𝑥𝑑𝑦~∑2𝑘(𝑑+𝑝𝑠)

𝑘≥0

∫ ‖𝑓(𝑥 + ℎ) − 𝑓(𝑥 − ℎ)‖𝑝
𝑝
𝑑ℎ

2

|ℎ|~2−𝑘−10
                 

≥∑2𝑘(𝑑+𝑝𝑠)

𝑘≥0

∫ ‖∑  

𝑛∈ℤ𝑑

𝑓(𝑛)(sin 𝑛. ℎ) 𝑒𝑖𝑛.𝑥‖

𝑝

𝑝
2

|ℎ|~2−𝑘−10
𝑑ℎ.        (165) 

Following the argument (formula (151)), we get again for 

𝑠 = 𝑑 (
1

𝑝
−
1

𝑞
) , 1 − 𝑠 = 𝜀                                                                           (166) 

𝜀. (165) ≳∑(2−𝑟 ‖∑ 𝜆𝑟(𝑛)

𝑛

𝑓(𝑛) 𝑒𝑖𝑛.𝑥 ‖

𝑊1,1

)

𝑝

𝑟

                                        (167) 

where the multipliers 𝜆𝑟  are defined as before. 

Case: 𝑑 = 1 

       Define 

𝑓𝑟 =∑ 𝜆𝑟(𝑛)

𝑛

𝑓(𝑛) 𝑒𝑖𝑛.𝑥 . 

We will make 2 estimates. 

     First write 

𝑓𝑟 = (∑ 𝑛𝜆𝑟(𝑛)

𝑛

𝑓(𝑛) 𝑒𝑖𝑛.𝑥) ∗ ( ∑  

2
𝑟
𝜀<|𝑛|<2

𝑟+1
𝜀

1

𝑛
 𝑒𝑖𝑛.𝑥) 

implying 

‖𝑓𝑟  ‖𝑞 ≤ ‖𝑓𝑟  ‖𝑊1,𝑝 ‖ ∑  

2
𝑟
𝜀<𝑛<2

𝑟+1
𝜀

1

𝑛
sin 𝑛𝑥‖

(1
�́�
+
1
𝑞
)
−1

                            (168) 

and by estimate (151) 

‖𝑓𝑟  ‖𝑞 ≲ 2
−
𝑟
𝜀
 (
1
�́�
+1
𝑞
)
‖𝑓𝑟  ‖𝑊1,𝑝 = 2−

𝑟
𝜀
 (1−𝑠)‖𝑓𝑟  ‖𝑊1,𝑝 = 2−𝑟‖𝑓𝑟  ‖𝑊1,𝑝 .                      (169) 
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Estimate then 

‖𝑓 ‖𝑞 ≤∑‖𝑓𝑟  ‖𝑞
𝑟

≤ 𝐶∑(2−𝑟‖𝑓𝑟  ‖𝑊1,𝑝)

𝑟

.                                               (170) 

Next apply inequality (168). Observe that 

|∆𝑘𝑓| ≤∑|∆𝑘𝑓𝑟|

𝑟

  

where, by construction, there are, for fixed 𝑘, at most 2 nonvanishing terms. 

    Thus 

‖∆𝑘𝑓‖𝑝
2 ≲∑‖∆𝑘𝑓𝑟‖𝑝

2

𝑟

.                                                                    (171) 

Also, for fixed 𝑟 

∑(2𝑘𝑠‖∆𝑘𝑓𝑟  ‖𝑝)
2

𝑘

=∑4−𝑘𝑠‖∆𝑘𝑓𝑟  ‖𝑊1,𝑝
2

𝑟

≲
1

𝜀
4−𝑟‖𝑓𝑟  ‖𝑊1,𝑝

2 .                          (172) 

Substituting (171), (172) in (168) gives 

‖𝑓 ‖𝑞 ≲ 𝐶√𝑞 [∑∑ (2𝑘𝑠‖∆𝑘𝑓𝑟  ‖𝑝)
2

𝑟𝑘

]

1 2⁄

≤ [𝐶√
𝑞

𝜀
) [∑ (2−𝑟‖𝑓𝑟  ‖𝑊1,𝑝)2

𝑟

]

1 2⁄

       (173) 

which is the second estimate. 

     Interpolation between (170) and (173) implies thus 

‖𝑓 ‖𝑞 ≤ 𝐶 (√
𝑞

𝜀
)
2(1−1

𝑝
)

[∑ (2−𝑟‖𝑓𝑟  ‖𝑊1,𝑝)2

𝑟

]

1 𝑝⁄

.                               (174) 

Recalling (167) and also (166) (which implies that 1 − 𝜀 =
1

𝑝
−

1

𝑞
<

1

𝑝
,  hence 𝜀 > 1 −

1

𝑝
) it 

follows that 

𝜀. (165) ≳ (
1

𝑞
)
𝑝−1

‖𝑓 ‖𝑞
𝑝
                                                   (175) 

which gives the required inequality . 

Case: 𝑑 > 1 

     We will distinguish the further 2 cases 

     Case (i): 0 <
1

𝑝
−

1

𝑑
 is not near 0 

     Case (ii): 
1

𝑝
−

1

𝑑
 is near 0 

     Observe that case (ii) may only happen for 𝑑 = 2 and 𝑝 near 2 (we assumed 1 < 𝑝 <
2). 

Case (i): 

     Define 𝑞1 by 

1 = 𝑑 (
1

𝑝
−
1

𝑞1
)                                                                        (176) 

so that 𝑞 < 𝑞1  and 𝑞1 is bounded from above by assumption. 

     Thus we have the Sobolev inequality 

‖𝑔 ‖𝑞1 ≤ 𝐶‖𝑔‖𝑊1,𝑝 .                                                                     (177) 

Next, we make the obvious adjustment of the argument, (175)-(179). 

     Thus Holder's inequality gives 

‖𝑓𝑟  ‖𝑞 ≤ ‖𝑓𝑟‖𝑞1
1−𝜃‖𝑓𝑟‖𝑞                                                                                      

𝜃 (178) 
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with 
1

𝑞
−
1 − 𝜃

𝑞1
+
𝜃

𝑝
,   ℎ𝑒𝑛𝑐𝑒  𝜃 = 1 − 𝑠 = 𝜀  𝑏𝑦 (166), (176).                

     Hence, by (177) 

‖𝑓𝑟  ‖𝑞 ≤ 𝐶‖𝑓𝑟‖𝑊1,𝑝
1−𝜀 ‖𝑓𝑟‖𝑝  

𝜀 .                                                          (179) 

To estimate ‖𝑓𝑟  ‖𝑝, proceed as in (177). Thus 

‖𝑓𝑟  ‖𝑝 ≲ ‖∑
1

𝑛
 (1 − 𝜑)

𝑛

(2−
𝑟−1
𝜀 𝑛)𝑒𝑖𝑛.𝑥 ‖

𝐿𝑥
1(𝕋)

‖𝑓𝑟  ‖𝑊1,𝑝 ≲ 2− 
𝑟−1
𝜀 ‖𝑓𝑟  ‖𝑊1,𝑝 .         (180) 

Substitution of (180) in (179) gives 

‖𝑓𝑟  ‖𝑞 ≲ 2
− 𝑟‖𝑓𝑟  ‖𝑊1,𝑝 .                                                        (181) 

Substitution of (181) in (167) gives (since 𝑞 is bounded by case (i) hypothesis) 

𝜀. (165) ≳∑‖𝑓𝑟  ‖𝑞
𝑝

𝑟

~∑‖(∑|∆𝑗𝑓𝑟|
2

𝑗

)

1 2⁄

 ‖

𝑞

𝑝

𝑟

                   

                              ≳ ‖(∑|∆𝑗𝑓𝑟|
2

𝑟,𝑗

)

1 2⁄

 ‖

𝑞

𝑝

                  

≳ ‖(∑|∆𝑗𝑓𝑟|
2

𝑗

)

1 2⁄

 ‖

𝑞

𝑝

~‖𝑓‖𝑞   
𝑝
                             (182) 

(the second inequality requires distinction of the cases 𝑞 ≥ 2 and 𝑝 < 𝑞 ≤ 2). 
      (182) gives the required inequality . 

Case (ii): 

     Thus 𝑑 = 2 and 𝑝 is near 2. 

Going back to (167) and applying (165), (168), we obtain 

                           𝜀. (165) ≳∑(2−𝑟‖𝑓𝑟  ‖𝑊1,𝑝)𝑝

𝑟

 

                  ≳ (∑4−𝑟

𝑟

∑‖∆𝑗𝑓𝑟  ‖𝑝
2

𝑗

4𝑗)

𝑝
2

≳ (∑(2𝑠𝑗‖∆𝑗𝑓 ‖𝑝
2
)
2

𝑗

)

𝑝
2

 

≳ 𝑞− 
𝑝
2‖𝑓 ‖𝑞

𝑝
                                                                                             (183) 

where 

𝑞− 
𝑝
2 = (

1

𝑝
−
𝑠

2
)

𝑝
2

~(2 − 𝑝𝑠)𝑝−1                                                                     (184) 

which again gives the required inequality . 

Theorem (3.2.8)[134]: Assume 𝑑 ≥ 1, 𝑝 ≥ 1, 1 2 ≤⁄  𝑠 < 1 and 𝑠𝑝 < 1. Then 

∫ ∫
|𝑓(𝑥) − 𝑓(𝑦)|𝑝

|𝑥 − 𝑦|𝑑+𝑠𝑝
𝑑𝑥𝑑𝑦

2

Q

1

Q

≥ 𝐶(𝑑)
(𝑑 − 𝑠𝑝)𝑝−1

1 − 𝑠
‖𝑓 − ⨏𝑓‖

𝐿𝑞(𝑄)

𝑝
            (185) 

where 𝑞 is given by (123) and 𝐶(𝑑) depends only on 𝑑. 
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    As can be seen from (130) there are two phenomena that govern the behaviour of the 

constant in (130). As 𝑠 ↑ 1  the constant gets bigger, while as 𝑠 ↑ 𝑑 𝑝⁄  the constant 

deteriorates. This explains why the we consider several cases in the proof. 

    As an application of  Theorem (3.2.3)  with  𝑝 = 1  and 𝑓 = 𝜒𝐴,  the characteristic 

function of a measurable set 𝐴 ⊂ 𝑄 we easily obtain  

Proof (4): when 𝑝 ≥ 2. 
From (167), we get now the minoration 

𝜀. (186) ≳∑(2−𝑠𝑗‖∆𝑗 𝑓‖𝑝)
𝑝

𝑗

                                                                        (186) 

which we use to majorize  ‖𝑓‖𝑞 . 
      We have already inequality (168), thus 

‖𝑓‖𝑞 ≤ 𝐶√𝑞 (∑(2−𝑠𝑗‖∆𝑗  𝑓‖𝑝)
2

𝑗

)

1 2⁄

.                                           (187) 

Our aim is to prove that 

‖𝑓‖𝑞 ≤ 𝐶𝑞
1−1

𝑝(∑(2−𝑠𝑗‖∆𝑗  𝑓‖𝑝)
𝑝

𝑗

)

1 2⁄

                                          (188) 

which will give the required inequality together with (186). 

    Using interpolation for 2 ≤ 𝑝 < 𝑑

𝑠
, it clearly suffices to establish (188) for large values 

of 𝑞. To prove (188), we assume 2 ≤ 𝑝 ≤ 4 (other cases may be treated by adaption of the 

argument presented below). Assume further (taking previous comment into account) 

𝑞 ≥ 2𝑝.                                                                                   (189) 
Again by interpolation, (188) will follow from (187) and the inequality 

‖𝑓‖𝑞 ≤ 𝐶𝑞
3
4(∑(2𝑠𝑗‖∆𝑗  𝑓‖𝑝)

4

𝑗

)

1 4⁄

 .                                        (190) 

     We use the notation and start from the martingale square function inequality (188); thus 

‖𝑓‖𝑞 ≤ 𝐶√𝑞‖(∑|∆̃𝑗  𝑓|
2

𝑗

)

1 2⁄

‖

𝑞

.                                               (191) 

Write 

|∆̃𝑗  𝑓| ≤∑|∆̃𝑗  ∆𝑘 𝑓|

𝑘

= ∑|∆̃𝑗  ∆𝑗+𝑚 𝑓|

𝑚∈ℤ

                 

(putting ∆𝑘= 0 for 𝑘 < 0). 

     Writing 

‖(∑|∆̃𝑗  𝑓|
2

𝑗

)

1 2⁄

‖

𝑞

≤ ∑ ‖(∑|∆̃𝑗  ∆𝑗+𝑚 𝑓|
2

𝑗

)

1 2⁄

‖

𝑞
𝑚∈ℤ

                            (192) 

we estimate each summand. 

Fix 𝑚. Write 
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           ‖(∑|∆̃𝑗  ∆𝑗+𝑚 𝑓|
2

𝑗

)

1 2⁄

 ‖

𝑞

4

= ‖(∑|∆̃𝑗  ∆𝑗+𝑚 𝑓|
2

𝑗

)

1 2⁄

‖

𝑞
4

 

≤ 2 ∑ ‖|∆̃𝑗1  ∆𝑗1+𝑚 𝑓|
2
|∆̃𝑗2  ∆𝑗2+𝑚 𝑓|

2
‖
𝑞
4𝑗1 ≤𝑗2

                  (193) 

and  

    ‖|∆̃𝑗1 ∆𝑗1+𝑚 𝑓|
2
|∆̃𝑗2 ∆𝑗2+𝑚 𝑓|

2
‖
𝑞
4

= [∫|∆̃𝑗1  ∆𝑗1+𝑚 𝑓|
𝑞
2 . 𝔼𝑗1 [|∆̃𝑗2  ∆𝑗2+𝑚 𝑓|

𝑞
2]]

4
𝑞

 

                                ≤ ‖∆̃𝑗1 ∆𝑗1+𝑚 𝑓‖𝑞
2
 ‖(𝔼𝑗1 [|∆̃𝑗2  ∆𝑗2+𝑚 𝑓|

𝑞
2])

𝑞
2
‖

𝑞

2

 

                                ≤ 4
𝑑(𝑗2−𝑗1)(

1
𝑝
−2
𝑞
)
‖∆̃𝑗1  ∆𝑗1+𝑚 𝑓‖𝑞

2
 ‖(𝔼𝑗1[|∆̃𝑗2  ∆𝑗2+𝑚 𝑓|

𝑝
])
1 𝑝⁄
‖
𝑞

2

 

≤ 4
𝑑(𝑗2−𝑗1)(

1
𝑝
−2
𝑞
)
4
𝑑𝑗1(

1
𝑝
−2
𝑞
)
‖∆̃𝑗1  ∆𝑗1+𝑚 𝑓‖𝑞

2

 ‖∆̃𝑗2  ∆𝑗2+𝑚 𝑓‖𝑞
2
.                      (194) 

Assume 𝑚 ≤ 0 

     Estimate 

‖∆̃𝑗1  ∆𝑗1+𝑚 𝑓‖𝑞
≲ 2𝑚‖ ∆𝑗1+𝑚 𝑓‖𝑞

≤ 2𝑚2
𝑑(𝑗1+𝑚)(

1
𝑝
−2
𝑞
)
‖ ∆𝑗1+𝑚 𝑓‖𝑝

                      (195) 

‖∆̃𝑗2 ∆𝑗2+𝑚 𝑓‖𝑝
≲ 2𝑚‖ ∆𝑗2+𝑚 𝑓‖𝑝

.                                               (196) 

Substitution of (195), (196) in (194) gives 

4
(1−𝑑(1

𝑝
−1
𝑞
))𝑚+𝑚

4
−𝑑
𝑞
(𝑗2−𝑗1) [2

𝑑(1
𝑝
−1
𝑞
)(𝑗1+𝑚)‖ ∆𝑗1+𝑚 𝑓‖𝑞]

2

 [2
𝑑(1

𝑝
−1
𝑞
)(𝑗2+𝑚)‖ ∆𝑗2+𝑚 𝑓‖𝑝]

2

  (197)  

where 

𝑑 (
1

𝑝
−
1

𝑞
) = 𝑠.                                                  

Summing (193) for 𝑗1 < 𝑗2 and applying Cauchy-Schwartz implies for 𝑚 < 0 

(193) < 4(2−𝑠)𝑚 (∑4
−𝑑
𝑞
ℓ

ℓ≥0

) [∑(2𝑠𝑗‖ ∆𝑗  𝑓‖𝑝)
4

𝑗

] 

≲ 4(2−𝑠)𝑚𝑞 [∑(2𝑠𝑗‖ ∆𝑗  𝑓‖𝑝)
4

𝑗

].                                             (198) 

Assume next 𝑚 > 0. 
     Estimate 

‖∆̃𝑗1  ∆𝑗1+𝑚 𝑓‖𝑞
≲ 2

𝑑𝑗1(
1
𝑝
−1
𝑞
)
‖ ∆𝑗1+𝑚 𝑓‖𝑝

                   

and  

(194) ≤ 4
𝑑(𝑗2−𝑗1)(

1
𝑝
−2
𝑞
)
16

𝑑𝑗1(
1
𝑝
−1
𝑞
)
‖ ∆𝑗1+𝑚 𝑓‖𝑝

2
 ‖ ∆𝑗2+𝑚 𝑓‖𝑝

2
                    

≤ 16𝑚𝑠 4
−(𝑗2−𝑗1)

𝑑
𝑞‖ 2𝑠(𝑗1+𝑚)∆𝑗1+𝑚 𝑓‖𝑝

2
 ‖2𝑠(𝑗2+𝑚) ∆𝑗2+𝑚 𝑓‖𝑝

2
.             (199) 
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Summing over 𝑗1 < 𝑗2  implies that for 𝑚 > 0 

(193) ≲ 16−𝑚𝑞 [∑(2𝑠𝑗‖ ∆𝑗  𝑓‖𝑝)
4

𝑗

].                                            (200) 

Summing (198), (200) in 𝑚 implies that 

(192) ≤ (∑ 2(1−
𝑠
2
)𝑚

𝑚≤0

+ ∑ 2−𝑠𝑚

𝑚>0

)𝑞1 4⁄ [∑(2𝑠𝑗‖ ∆𝑗 𝑓‖𝑝)
4

𝑗

]

1 4⁄

 

≤ 𝑞1 4⁄ [∑(2𝑠𝑗‖ ∆𝑗  𝑓‖𝑝)
4

𝑗

]

1 4⁄

.                                                               (201) 

To bound  ‖𝑓‖𝑞 , apply (191) which introduces an additional 𝑞1 2⁄ -factor. This establishes 

(190) and completes the argument and the proof of  Theorem (3.2.3). 

Lemma (3.2.9)[134]: Let 𝐼 ⊂ ℝ  be an interval and let  𝜓: 𝐼 → ℤ  be any measurable 

function. Then, there is some  𝑘 ∈ ℤ  such that 

|{𝑥 ∈ 𝐼; 𝜓(𝑥) ≠ 𝑘}| ≤ 2(𝐶∗𝜀 ∫ ∫
|𝜓(𝑥) − 𝜓(𝑦)|2

|𝑥 − 𝑦|2−𝜀

0

𝐼

0

𝐼

𝑑𝑥𝑑𝑦)

1 𝜀⁄

 

for all 𝜀 ∈ (0, 1 2⁄ ].  where 𝐶∗ is the absolute constant in Corollary (3.2.1) 

(inequality(195)). 

Proof: After scaling and shifting we may assume that  𝐼 = ( 1,+1). For each 𝑘 ∈ ℤ, set 

𝐴𝑘 = {𝑥 ∈ 𝐼 ;  𝜓(𝑥) < 𝑘}. 
Note that  Ak is nondecreasing,   lim

𝑘→−∞
|𝐴𝑘| = 0 and lim

𝑘→+∞
|𝐴𝑘| = 2.  Thus  there exists  

exists some 𝑘 ∈ ℤ  such that 

|𝐴𝑘| ≤ 1 and  |𝐴𝑘+1| > 1.                                                           (202) 
Applying Corollary (3.2.1) with  𝐴 = 𝐴𝑘   and with  𝐴 = 𝐴𝑘+1 we find (using (202)) 

|𝐴𝑘| ≤ |𝐴𝑘| | 𝐴𝑘1
𝑐 | ≤ (𝐶∗𝜀 ∫ ∫

𝑑𝑥𝑑𝑦

|𝑥 − 𝑦|2−𝜀

1

𝐴𝑘1
𝑐

1

𝐴

)

1 𝜀⁄

                                  (203) 

and  

| 𝐴𝑘+11
𝑐 | ≤ |𝐴𝑘+1| | 𝐴𝑘+11

𝑐 | ≤ (𝐶∗𝜀 ∫ ∫
𝑑𝑥𝑑𝑦

|𝑥 − 𝑦|2−𝜀

1

𝐴𝑘+11
𝑐

1

𝐴𝑘+1

)

1 𝜀⁄

.                        (204) 

On the other hand 

                                   |𝜓(𝑥) − 𝜓(𝑦)| ≥ 1  for  a. e. 𝑥 ∈ 𝐴𝑘  , 𝑦 ∈ 𝐴𝑘1
𝑐  

and  

                               |𝜓(𝑥) − 𝜓(𝑦)| ≥ 1  for  a. e. 𝑥 ∈ 𝐴𝑘+1 , 𝑦 ∈ 𝐴𝑘+11
𝑐  

therefore 

                   |{𝑥 ∈ 𝐼; 𝜓(𝑥) ≠ 𝑘}| = |𝐴𝑘| + | 𝐴𝑘+11
𝑐 |   

                       ≤ 2(𝐶∗𝜀 ∫ ∫
|𝜓(𝑥) − 𝜓(𝑦)|2

|𝑥 − 𝑦|2−𝜀

1

𝐼

1

𝐼

𝑑𝑥𝑑𝑦)

1 𝜀⁄

. 

Lemma (3.2.10)[134]: If  𝛼 > 0;  𝑎 < 𝑏 < 𝑥, 𝐴 ⊂ (𝑎, 𝑏) is measurable, then 

∫
𝑑𝑦

(𝑥 − 𝑦)𝛼

1

(𝑎,𝑏)\𝐴

≥ ∫
𝑑𝑦

(𝑥 − 𝑦)𝛼

𝑏−|𝐴|

𝑎
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and similarly, if  𝑥 < 𝑎 < 𝑏, then 

∫
𝑑𝑦

(𝑦 − 𝑥)𝛼

1

(𝑎,𝑏)\𝐴

≥ ∫
𝑑𝑦

(𝑦 − 𝑥)𝛼

𝑏

𝑎+|𝐴|

.   

The proof of  Lemma (3.2.10) is elementary. 

Theorem (3.2.11)[134]: Let  𝜓𝜀: Ω → ℝ  be any measurable function such that 𝑢𝜀 =
𝑒𝑖𝜓𝜀 .Then 

‖𝜓𝜀‖𝐻(1−𝜀) 2⁄ ≥ 𝑐𝜀−1 2⁄  , ∀𝜀 ∈ (0, 1 2⁄ ), 
for some absolute constant 𝑐 > 0. 
Proof:  Let  𝜓𝜀 : = ( 1,+1) → ℝ  be any measurable function such that 𝑢𝜀 = 𝑒

𝑖𝜓𝜀 . We 

have to prove that for all 𝜀 < 1 2⁄  , 
‖𝜓𝜀‖𝐻(1−𝜀) 2⁄ (Ω) ≥ 𝑐𝜀

−1 2⁄                                                          (205) 

for some absolute constant 𝑐 to be determined. 

     We argue by contradiction and assume that for some 𝜀 < 1 2⁄   
‖𝜓𝜀‖𝐻(1−𝜀) 2⁄ (Ω) < 𝜂𝜀

−1 2⁄ .                                                          (206) 

We will reach a contradiction if  𝜂 is less than some absolute constant. Set 

𝜓 =
1

2𝜋
(𝜓𝜀 − 𝜑𝜀)              

so that 𝜓:Ω → ℝ ;  recall that 𝑢𝜀 = 𝑒
𝑖𝜑𝜀 and the function 𝜑𝜀 is defined by 

                                        𝜑𝜀(𝑥) = {
0       for − 1 < 𝑥 < 0,
 2𝜋𝑥 𝛿⁄ for     0 < 𝑥 < 𝛿,
2𝜋     for     𝛿 < 𝑥 < 1,

 

where  𝛿−1 𝜀⁄ . 
     A straightforward computation (using the fact that 𝜓  takes its values into ℤ) shows that 

|𝜓(𝑥) − 𝜓(𝑦)| ≤ |𝜓𝜀(𝑥) − 𝜓𝜀(𝑦)|   for  𝑎. 𝑒.  𝑥, 𝑦 ∈ (−1,
2𝛿

3
)                  (207) 

and 

|𝜓(𝑥) − 𝜓(𝑦)| ≤ |𝜓𝜀(𝑥) − 𝜓𝜀(𝑦)|   for  𝑎. 𝑒.  𝑥, 𝑦 ∈ (
𝛿

3
, 1).                       (208) 

Applying Lemma (3.2.9) with  𝐼 = (−1,
2𝛿

3
)  and  𝐼 = (

𝛿

3
, 1), together with (206), (207) 

and (208) yields the existence of  ℓ,𝑚 ∈ ℤ such that 

|{𝑥 ∈ (−1,
2𝛿

3
) ;𝜓(𝑥) ≠ ℓ}| ≤ 2(𝐶∗𝜂2)1 𝜀⁄  

and 

|{𝑥 ∈ (𝑥 ∈
𝛿

3
, 1) ; 𝜓(𝑥) ≠ 𝑚}| ≤ 2(𝐶∗𝜂2)1 𝜀⁄ . 

We choose 𝜂 in such a way that 

4(𝐶∗𝜂2)1 𝜀⁄ < 𝛿 3⁄ , for 𝜀 < 1 2⁄ , 
for example 

𝜂2 < 1 4𝑒⁄ 𝐶∗.                                                                        (209) 
It follows that ℓ =  𝑚. Without loss of generality (after adding a constant to 𝜓𝜀)we may 

assume that 

𝜂 = 𝑚 = 0.                                                                               (210) 
Therefore 

𝜓𝜀(𝑥) = 𝜑𝜀(𝑥)for  𝑥 ∈ [(−1,0)\𝐴] ∪ [(𝛿, 1)\𝐵]                                      (211)  
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where  

𝐴 = {𝑥 ∈ (−1,0);  𝜓(𝑥) ≠ 0}                                       
and  

𝐵 = {𝑥 ∈ (𝛿, 1);  𝜓(𝑥) ≠ 0}                                     
with 

|𝐴| < 𝛿 6⁄ , |𝐵| < 𝛿 6⁄ .                                                                        (112) 
From (211) and the definition of  𝜑𝜀 we have 

             𝜀 ∫ ∫
|𝜓𝜀(𝑥) − 𝜓𝜀(𝑦)|

2

|𝑥 − 𝑦|2−𝜀
𝑑𝑥𝑑𝑦

2

Ω

1

Ω

≥ 𝜀∫ 𝑑𝑥
0

−1

∫
|𝜓𝜀(𝑥) − 𝜓𝜀(𝑦)|

2

|𝑥 − 𝑦|2−𝜀
𝑑𝑦

1

0

 

≥ 𝜀∫ 𝑑𝑥
2

(−1,0)\𝐴

∫
|𝜓𝜀(𝑥) − 𝜓𝜀(𝑦)|

2

|𝑥 − 𝑦|2−𝜀
𝑑𝑦

2

(𝛿,1)\𝐵

                                            

                      ≥ 𝜀 ∫ 𝑑𝑥
2

(−1,0)\𝐴

∫
4𝜋2𝑑𝑦

|𝑥 − 𝑦|2−𝜀
𝑑𝑦

2

(𝛿,1)\𝐵

.             

Applying Lemma (3.2.10) and (206) we find 

𝜂2 > 𝜀∫ ∫
|𝜓𝜀(𝑥) − 𝜓𝜀(𝑦)|

2

|𝑥 − 𝑦|2−𝜀
𝑑𝑥𝑑𝑦

2

Ω

1

Ω

≥ 𝜀∫ 𝑑𝑥
−|𝐴|

−1

∫
4𝜋2𝑑𝑦

|𝑥 − 𝑦|2−𝜀

1

𝛿+|𝐵|

                   

≥ 𝜀∫ 𝑑𝑥
−𝛿 6⁄

−1

∫
4𝜋2𝑑𝑦

|𝑥 − 𝑦|2−𝜀

1

𝛿+𝛿 6⁄

= 4𝜋2(1 − 𝑒−1) + 𝑜(1) 

as  𝜀 → 0. We obtain a contradiction for an appropriate choice of  𝜂. 

Let  {ℱ𝑛}𝑛=0,1,2,⋯  be refining finite partitions such that 

# ℱ𝑛 = 𝐾
𝑛                                      

|𝑄| = 𝐾−𝑛  if 𝑄 is an  ℱ𝑛 − atom   

( If  Ω = [0,1]𝑑  , 𝐾 = 2𝑑).  
     Denote 𝔼𝑛 the ℱ𝑛-expectation 

                            ∆𝑛𝑓 = 𝔼𝑛𝑓 − 𝔼𝑛−1𝑓                                 (we used the notation ∆̃𝑛𝑓) 

                            𝑆𝑓 = (∑|∆𝑛𝑓|
2)1 2⁄                                            ( the square function) 

                    |𝑓| ≤ 𝑓∗ = sup|𝔼𝑛𝑓|                                             (the maximal function) 

Proposition (3.2.12)[134]: 

mes [|𝑓| > 𝜆‖𝑆𝑓‖∞] < 𝑒
−𝑐𝜆2          (𝜆 ≥ 1)                                (113) 

where  𝑐 = 𝑐(𝐾) > 0 is a constant. 

Proof: One verifies that there is a constant 𝐴 = 𝐴(𝐾) such that if  𝜑 is ℱ𝑛-measurable and  

𝔼𝑛−1𝜑 = 0,then 

𝔼𝑛−1[𝑒
𝜑−𝐴𝜑2] ≤ 1.                                                                  (214) 

Hence 

𝔼𝑛−1[𝑒
∆𝑛𝑓−𝐴(∆𝑛𝑓)

2𝜑2] ≤ 1                                                           (215) 

and, denoting  𝑆𝑛𝑓 = (∑ |∆𝑚𝑓|
2

𝑚≤𝑛 )1 2⁄ , 

∫𝑒𝔼𝑛𝑓−𝐴(𝑆𝑛𝑓)
2
= ∫𝑒𝔼𝑛−1𝑓−𝐴(𝑆𝑛−1𝑓)

2
𝔼𝑛−1 [𝑒

∆𝑛𝑓−𝐴(∆𝑛𝑓)
22

]                

           ≤ ∫𝑒𝔼𝑛−1 𝑓 − 𝐴(𝑆𝑛−1𝑓)
2       (𝑏𝑦 (215)) 

≤ 1.                                                          
thus  
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∫𝑒𝑓−𝐴(𝑆𝑓)
2
≤ 1.                                                                        (116) 

Assume  ‖𝑆𝑓‖∞ ≤ 1. Applying (116) to 𝑡𝑓 (𝑡 > 0 a parameter), we get 

∫𝑒𝑡𝑓 ≤ 𝑒𝐴𝑡
2
                           

mes [𝑓 > 𝜆] ≤ 𝑒𝐴𝑡
2−𝑡𝜆                               

and for appropriate choice of  𝑡 

mes [𝑓 > 𝜆] < 𝑒−
𝜆2

4𝐴.                            
This proves (213). 

Proposition (3.2.13)[134]: (good- 𝜆 inequality) 

mes [𝑓∗ > 2𝜆, 𝑆𝑓 < 𝜀 𝜆, sup𝔼𝑛−1 [|∆𝑛𝑓|] < 𝜀𝜆]

< 𝑒
− 𝑐

𝜀2  mes [𝑓∗ > 𝜆]    (0 < 𝜀 < 1) (217) 
Proof: This is a standard stopping time argument. 

    Consider a collection of maximal atoms  {𝑄𝛼} ⊂ ⋃ℱ𝑛  s.t. if  𝑄𝛼  is an ℱ𝑛-atom, then 

|𝔼𝑛𝑓| > 𝜆  on 𝑄𝛼.Thus 𝑄𝛼 ∩ 𝑄𝛽 = 𝜙 for  𝛼 ≠ 𝛽. Fix  . From the maximality 

|𝔼𝑛−1𝑓| ≤ 𝜆 on 𝑄𝛼 .                                                                         (218) 
Therefore 

 [𝑓∗ > 2𝜆, 𝑆𝑓 < 𝜀 𝜆, sup𝔼𝑚−1 [|∆𝑚𝑓|] <
1

𝐾
𝜀𝜆] ∩ 𝑄𝛼 ⊂ 

[(𝑓 − 𝔼𝑛𝑓)
∗ > (1 − 𝜀)𝜆, 𝑆𝑓 < 𝜀𝜆, sup𝔼𝑚−1 [|∆𝑚𝑓|] <

1

𝐾
𝜀𝜆] ∩ 𝑄𝛼 =    (219) 

For 𝑚 > 𝑛, denote m the indicator function of the set 

𝑄𝛼 ∩ [( ∑ |∆ℓ𝑓|
2

𝑚−1

ℓ=𝑛+1

)

1 2⁄

< 𝜀𝜆] ∩ [𝔼𝑚−1[|∆𝑚𝑓|] <
1

𝐾
𝜀𝜆] ∩                          

⋂ [|𝔼ℓ𝑓 − 𝔼𝑛𝑓| ≤ (1 − 𝜀)𝜆]

𝑛≤ℓ<𝑚

=      (220). 

Thus  

𝜒𝑚 = 𝔼𝑚−1  𝜒𝑚                      
and  

𝑔 = ∑ 𝜒𝑚

2

𝑚>𝑛

∆𝑚𝑓               

is an {ℱ𝑚|𝑚 ≥ 𝑛}-martingale on 𝑄𝛼. 

      From the definition of  𝜒𝑚, we have clearly 

𝑆(𝑔) = (∑ 𝜒𝑚|∆𝑚𝑓|
2

𝑚−1

𝑚>𝑛

)

1 2⁄

< 𝜀𝜆 + 𝜀𝜆 ≲ 𝜀𝜆                                     (221) 

and  

|𝑔| > (1 − 𝜀)𝜆 on the set (219). 
From Proposition (3.2.12) and (221) 

mes [𝑥 𝜀 𝑄𝛼|  |𝑔| > (1 − 𝜀)𝜆] < 𝑒
− 𝑐

𝜀2  |𝑄𝛼|                                       (222) 
hence 

mes (219) ≲ 𝑒
− 𝑐

𝜀2  |𝑄𝛼|.                                                          (223) 
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Summing (223) over 𝛼  implies 

mes [𝑓∗ > 2𝜆, 𝑆𝑓 < 𝜀 𝜆, sup𝔼𝑚−1 [|∆𝑚𝑓|] <
1

𝐾
𝜀𝜆] < 𝑒

− 𝑐

𝜀2∑|𝑄𝛼| ≤ 𝑒
− 𝑐

𝜀2  mes [𝑓∗ > 𝜆] 

which is (216). 

Proposition (3.2.14)[134]: 

‖𝑓∗‖𝑞 ≤ 𝐶√𝑞 ‖𝑆𝑓‖𝑞    for 𝑞 ≥ 2.                                       (224) 

    We follow essentially [137]. 

Proof:  

‖𝑓∗‖𝑞
𝑞
= 𝑞∫𝜆𝑞−1  mes [𝑓∗ > 𝜆]𝑑𝜆 = 2𝑞𝑞∫𝜆𝑞−1  mes [𝑓∗ > 2𝜆]𝑑𝜆  

   ≤ 2𝑞𝑞∫𝜆𝑞−1  {mes [𝑆𝑓 ≥ 𝜀𝜆] + mes [sup𝔼𝑛−1[|∆𝑛𝑓|] ≥
𝜀

𝐾
𝜆] + 𝑒

− 𝑐

𝜀2  mes [𝑓∗ > 𝜆]}  

< (
2

𝜀
)
𝑞

(‖𝑆𝑓‖𝑞
𝑞
+ 𝐾𝑞‖sup𝔼𝑛−1[|∆𝑛𝑓|]‖𝑞

𝑞
) + 2𝑞𝑒

− 𝑐

𝜀2‖𝑓∗‖𝑞
𝑞
                                          (225) 

Take  
1

𝜀
~√𝑞  so that the last term in (225) is at most 

1

2
‖𝑓∗‖𝑞

𝑞
. Thus 

‖𝑓∗‖𝑞 < 𝐶√𝑞(‖𝑆𝑓‖𝑞 + ‖sup𝔼𝑛−1[|∆𝑛𝑓|]‖𝑞).                                           (226) 

Also 

‖sup𝔼𝑛−1[|∆𝑛𝑓|]‖𝑞 ≤ (∑‖𝔼𝑛−1[|∆𝑛𝑓|]‖𝑞
𝑞

𝑛

)

1 𝑞⁄

 

                       ≤ (∑‖∆𝑛𝑓‖𝑞
𝑞

𝑛

)

1 𝑞⁄

  

   ≤ ‖𝑆𝑓‖𝑞 .                                                               (227) 
and (224) follows from (226), (227). 
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Chapter 4 

Subcritical Caffarelli–Kohn–Nirenberg Inequalities 
 

We show some new symmetry results for the extremals of the Caffarelli-Kohn-

Nirenberg inequalities, in any dimension larger or equal than 2. The condition on the 

parameters is indeed complementary of the condition that determines the region in which 

symmetry breaking holds as a consequence of the linear instability of radial optimal 

functions. Compared to the critical case, the subcritical range requires new tools. The 

Fisher information has to be replaced by Rényi entropy powers, and since some 

invariances are lost, the estimates based on the Emden–Fowler transformation have to be 

modified. 

Section (4.1): On the Symmetry of Extremals 
The Caffarelli-Kohn-Nirenberg inequality (see [7]) in space dimension 𝑁 ≥ 2 , can 

be written as follows, 

(∫
|𝑢|𝑝

|𝑥|𝑏𝑝

2

ℝ𝑁
𝑑𝑥)

2 𝑝⁄

≤ 𝐶𝑎,𝑏
𝑁 ∫

|∇𝑢|2

|𝑥|2𝑎

2

ℝ𝑁
𝑑𝑥   ∀𝑢 ∈ 𝒟𝑎,𝑏                         (1) 

with 𝑎 ≤ 𝑏 ≤ 𝑎 + 1 if 𝑁 ≥ 3 , 𝑎 < 𝑏 ≤ 𝑎 + 1 if  𝑁 = 2 , and 𝑎 ≠ 𝑎𝑐 defined by  

𝑎𝑐 = 𝑎𝑐(𝑁) ≔
𝑁 − 2

2
. 

The exponent, 

𝑝 =
2𝑁

𝑁 − 2 + 2(𝑏 − 𝑎)
 

is determined by scaling considerations. Furthermore, 

𝒟𝑎,𝑏 ≔ {|𝑥|−𝑏𝑢 ∈ 𝐿𝑝(ℝ𝑁 , 𝑑𝑥) ∶  |𝑥|−𝑎|∇𝑢 ∈ 𝐿2(ℝ𝑁 , 𝑑𝑥)|} 

and 𝐶𝑎,𝑏
𝑁  denotes the optimal constant. Typically, inequality (1) is stated with 𝑎 < 𝑎𝑐 (see 

[7]) so that the space 𝒟𝑎,𝑏 is obtained as the completion of  𝐶𝑐
∞(ℝ𝑁) , the space of smooth 

functions in ℝ𝑁  with compact support, with respect to the norm  ‖𝑢‖2 = ‖|𝑥|−𝑏𝑢‖
𝑝

2
+

‖|𝑥|−𝑎∇𝑢‖2
2 .  Actually (1) holds also for > 𝑎𝑐 , but in this case 𝒟𝑎,𝑏 is obtained as the 

completion with respect to ‖ ∙ ‖ of the space {𝑢 ∈ 𝐶𝑐
∞(ℝ𝑁) : supp (𝑢) ⊂ ℝ𝑁\ {0}} that we 

shall denote by 𝐶𝑐
∞(ℝ𝑁\ {0})  . Inequality (1) is sometimes called the Hardy-Sobolev 

inequality, as for 𝑁 > 2 it interpolates between the usual  Sobolev inequality (𝑎 = 0 , 𝑏 =
 0) and the weighted Hardy inequalities (see [1]) corresponding to 𝑏 = 𝑎 + 1. 

For = 𝑎 < 0 , 𝑁 ≥ 3 , equality in (1) is never achieved in 𝒟𝑎,𝑏. For 𝑏 = 𝑎 + 1 and 

≥ 2  , the best constant in (1) is given by 𝐶𝑎,𝑎+1
𝑁 = (𝑁 − 2 − 2 𝑎)2/4  and it is never 

achieved (see [1]). On the contrary, for 𝑎 < 𝑏 < 𝑎 + 1 and ≥ 2 , the best constant in (1) is 

always achieved, say at some function 𝑢 𝑎,𝑏 ∈ 𝒟𝑎,𝑏 that we will call an extremal function. 

However 𝑢 𝑎,𝑏 is not explicitly known unless we have the additional information that it is 

radially symmetric about the origin. In the class of radially symmetric functions, the 

extremals of (1) are all given (see [12], [17], [1]) up to a dilation, by 

𝑢𝑎,𝑏
∗ (𝑥) = κ∗ (1 + |𝑥|

2(𝑁−2−2𝑎)(1+𝑎−𝑏)
𝑁−2(1+𝑎−𝑏) )

𝑁−2(1+𝑎−𝑏)
2(1+𝑎−𝑏)

                               (2) 

for an arbitrary normalization constant κ∗. See [1], [141] for more details and in particular 

for a “modified inversion symmetry” property of extremal functions, based on a 



123 

generalized Kelvin transformation, which relates the parameter  regions 𝑎 < 𝑎𝑐 and  𝑎 >
𝑎𝑐  . 

In the parameter region 0 ≤ 𝑎 < 𝑎𝑐  , 𝑎 ≤ 𝑏 ≤ 𝑎 + 1 , if  𝑁 ≥ 3 , the extremals are 

radially symmetric (see [32], [24], [19] and more specifically [12], [17]); we give a 

simplified proof of the radial symmetry of all extremal functions in this range of 

parameters. Extremals are known to be non radially symmetric for a certain range of 

parameters (𝑎, 𝑏) identified first in [1] and subsequently improved in [142], given by the 

condition 𝑏 < 𝑏 𝐹𝑆 (𝑎) , 𝑎 < 0  (see below). By contrast, few symmetry results are 

available for < 0. For instance, when ≥ 3 , for a fixed 𝑏 ∈ (𝑎, 𝑎 + 1) , radial symmetry of 

the extremals has been proved for a close to 0 (see [146], [145]; also for an earlier but 

slightly less general result). In the particular case = 2 , a symmetry result was proved in 

[141] for 𝑎 in a neigbourhood of  0−, which asymptotically complements the symmetry 

breaking region found in [1], [142], [141], as 𝑎 → 0−. 
In terms of 𝑎 and 𝑏, we first prove that the symmetry region admits the half-line  

𝑏 = 𝑎 + 1 as part of its boundary. 

For completeness, let us state some already known symmetry results. We also 

provide a simplified proof in case  𝑁 ≥ 3 , 𝑎 ≥ 0 . 

Lemma (4.1.1)[140]: If  𝑁 ≥ 3 , 0 ≤ 𝑎 < 𝑎𝑐 and 𝑎 ≤ 𝑏 < 𝑎 + 1 , extremal functions for 

(1) are radially symmetric. If  𝑁 = 2 , for any > 0 , there exists 𝜂 > 0 such that extremal 

functions for (1) are radially symmetric if −𝜂 < 𝑎 < 0 and  −𝜀 𝑎 ≤ 𝑏 < 𝑎 + 1 . 
Proof: The case 𝑁 = 2 has been established in [141]. The result for 𝑁 ≥ 3 is also known; 

see [12], [17]. However, we give here a simpler proof (for 𝑛 ≥ 3 ),which goes as follows. 

Let 𝑢 ∈ 𝐶𝑐
∞(ℝ𝑁\{0})  and consider 𝜐(𝑥) = |𝑥|−𝑎𝑢(𝑥)  for any  𝑥 ∈ ℝ𝑁 . Inequality (1) 

amounts to  

(𝐶𝑎,𝑏
𝑁 )

−1
(∫

|𝜐|𝑝

|𝑥|(𝑏−𝑎)𝑝

2

ℝ𝑁
𝑑𝑥)

2
𝑝

≤ ∫ |∇𝜐 + 𝑎
𝑥

|𝑥|2
𝜐|
22

ℝ𝑁
𝑑𝑥

= ∫ |∇𝜐|2
2

ℝ𝑁
𝑑𝑥 + 𝑎2∫

|𝜐|2

|𝑥|2

2

ℝ𝑁
𝑑𝑥 + 𝑎∫

𝑥

|𝑥|2
∙ ∇(𝜐2)

2

ℝ𝑁
𝑑𝑥. 

Integrating by parts, we find that ∫
𝑥

|𝑥|2
∙ ∇(𝜐2)𝑑𝑥

2

ℝ𝑁
 = −(𝑁 − 2) ∫

|𝜐|2

|𝑥|2
𝑑𝑥.

2

ℝ𝑁
  Hence, radial 

symmetry for the extremal functions of Inequality (1) is equivalent to prove that extremal 

functions for 

(𝐶𝑎,𝑏
𝑁 )

−1
(∫

|𝜐|𝑝

|𝑥|(𝑏−𝑎)𝑝

2

ℝ𝑁
𝑑𝑥)

2
𝑝

+ 𝑎[(𝑁 − 2) − 𝑎]∫
|𝜐|2

|𝑥|2

2

ℝ𝑁
𝑑𝑥 ≤ ∫ |∇𝜐|2

2

ℝ𝑁
𝑑𝑥 

are radially symmetric. Since the coefficient 𝑎 [(𝑁 − 2) − 𝑎] = 𝑎(2𝑎𝑐 − 𝑎) is positive in 

the considered range for 𝑎, the result follows from Schwarz’s symmetrization. Both terms 

of the left hand side (resp. the term of the right hand side) are indeed increased (resp. is 

decreased) by symmetrization, and equality only occurs for radially symmetric decreasing 

functions; see [144] for details. The result can then be extended to 𝒟𝑎,𝑏 by density. 

Notice that the proof is exactly the same for 𝑁 ≥ 3 , 𝑎𝑐 < 𝑎 ≤ 𝑁 − 2 = 2 𝑎𝑐  and 

𝑎 ≤ 𝑏 < 𝑎 + 1 . For  𝑁 = 2 , a result similar to that of  Lemma(4.1.1) has been achieved 

when (2 + 𝜀) 𝑎 ≤ 𝑏 < 𝑎 + 1 , 0 < 𝑎 < 𝜂 . Radial symmetry has also been established for  

𝑁 ≥ 3 , 𝑎 < 0 , |𝑎| small, and  0 < 𝑏 < 𝑎 + 1 , see [105], [146]. 
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It is convenient to formulate the Caffarelli-Kohn-Nirenberg inequality in cylindrical 

variables (see [1]). By means of the Emden-Fowler transformation 

𝑡 = log|𝑥| ,      𝜃 =
𝑥

|𝑥|
 ∈ 𝑆𝑁−1,   𝑤(𝑡, 𝜃) = |𝑥|

𝑁−2−2𝑎
2 𝑢(𝑥),                         (3) 

inequality (1) for 𝑢  is equivalent to a Gagliardo-Nirenberg-Sobolev inequalit y on the 

cylinder 𝐶:= ℝ × 𝑆𝑁−1, that is 

‖𝑤‖𝐿𝑝(𝐶)
2 ≤ 𝐶𝑎,𝑏

𝑁 (‖∇𝑤‖𝐿2(𝐶)
2 + Λ‖𝑤‖𝐿2(𝐶)

2 ),                                    (4) 

for any 𝑤 ∈ 𝐻1(𝐶) , with 

Λ = Λ(𝑁, 𝑎) ≔
1

4
(𝑁 − 2 − 2𝑎)2,       𝑝 =

2𝑁

𝑁 − 2 + 2(𝑏 − 𝑎)
, 

and the same optimal constant  𝐶𝑎,𝑏
𝑁  as in (1). In what follows, we will denote the cylinder 

variable by 𝑦:= (𝑡, 𝜃) ∈ ℝ × 𝑆𝑁−1 = 𝐶.  
We may observe that if (4) holds for  𝑎 < 𝑎𝑐  , it also holds for 𝑎 > 𝑎𝑐 , with same 

extremal functions. Hence, the inequality 

‖𝑤‖𝐿𝑝(𝐶)
2 ≤ 𝐶𝑎,𝑏

𝑁 [ ‖∇𝑤‖𝐿2(𝐶)
2 + Λ(𝑁, 𝑎)‖𝑤‖𝐿2(𝐶)

2  ] 

holds for any 𝑎 ≠ 𝑎𝑐  , 𝑏 ∈ [𝑎, 𝑎 + 1] and 𝑝 = 2 𝑁/(𝑁 − 2 + 2 (𝑏 − 𝑎)) if  𝑁 ≥ 3 ,or any 

𝑎 ≠ 0 =  𝑎𝑐  , 𝑏 ∈ (𝑎, 𝑎 + 1] and 𝑝 = 2/(𝑏 − 𝑎)  if  𝑁 = 2. Now there is no more need to 

make distinctions between the cases 𝑎 < 𝑎𝑐   and 𝑎 > 𝑎𝑐  as it was the case for inequality 

(1), in order to give the correct definition of the functional spaces 𝒟𝑎,𝑏. Moreover, as in 

[141], we may observe that 𝐶𝑎,𝑏
𝑁 = 𝐶�́�,�́�

𝑁  with  𝑎′ = 𝑁 − 2 −  𝑎 = 2 𝑎𝑐 − 𝑎 and  𝑏′ = 𝑏 +

𝑁 − 2 − 2 𝑎 = 𝑏 + 2(𝑎𝑐 − 𝑎) . We shall therefore restrict 𝑎 to (−∞, 𝑎𝑐 ) without loss of 

generality. 

For simplicity, we shall reparametrize {(𝑎, 𝑏 ∈ ℝ𝑁: 𝑎 < 𝑏 < 𝑎 + 1 , 𝑎 < 𝑎𝑐 }  in 

terms of (𝛬, 𝑝) ∈ (0,∞) × (2, 2∗) using the relations 

Λ =
1

4
(𝑁 − 2 − 2𝑎)2 ⟺ 𝑎

𝑁 − 2

2
− √Λ                                         (5) 

and  

𝑝 =
2𝑁

𝑁 − 2 + 2(𝑏 − 𝑎)
   with     {

𝑏 ∈ [𝑎, 𝑎 + 1] if 𝑁 ≥ 3
𝑏 ∈ (𝑎, 𝑎 + 1] if 𝑁 = 2

                     (6) 

⟺ 𝑏 =
𝑁

𝑝
− √Λ    with     {

2 ≤ 𝑝 ≤ 2∗ if 𝑁 ≥ 3
2 ≤ 𝑝 < ∞ if𝑁 = 2

  

so that, with the above rules, the constant 𝐶Λ,𝑏
𝑁 : = 𝐶𝑎,𝑏

𝑁  is such that the minimum of the 

functional 

ℱΛ,𝑝[𝑤] =
‖∇𝑤‖𝐿2(𝐶)

2 + Λ‖𝑤‖𝐿2(𝐶)
2

‖𝑤‖𝐿𝑝(𝐶)
2                                                (7) 

on 𝐻1(𝐶\{0}) takes the value (𝐶Λ,𝑏
𝑁 )

−1
. 

For a given  𝑝 , we are interested in the regime  𝑎 < 𝑎𝑐 , parametrized by 𝛬 > 0. The 

function 

Λ ⟼ (𝑎 =
𝑁 − 2

2
− √Λ , 𝑏 =

𝑁

𝑝
− √Λ) 

parametrizes an open half-line contained in 𝑎 ≤ 𝑏 ≤ 𝑎 + 1 , 𝑎 < 𝑎𝑐  (and therefore parallel 

to the line 𝑏 = 𝑎) in the (𝑎, 𝑏)-plane. As a consequence of  Lemma (4.1.1), we know that 

extremal functions are radially symmetric for 𝛬 > 0 , small enough. On the other hand, the 

region 
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𝑎 < 1,     𝑎 < 𝑏 ≤ 𝑏𝐹𝑆(𝑎) =
𝑁(𝑁 − 2 − 2𝑎)

2√(𝑁 − 2 − 2𝑎)2 + 4(𝑁 − 1)
−
𝑁 − 2 − 2𝑎

2
 

is given in terms of 𝛬 and 𝑝 by the condition 𝛬 > Λ𝐹𝑆(𝑝) where 𝛬 = Λ𝐹𝑆(𝑝) is uniquely 

defined by the condition 

𝑁

𝑝
− √Λ = 𝑏𝐹𝑆(𝑎) =

𝑁√Λ

2√Λ + 𝑁 − 1
− √Λ, 

that gives 

Λ𝐹𝑆(𝑝) ≔
4

𝑝2 − 4
(𝑁 − 1).                                                         (8) 

To interpret this condition in terms of the variational nature of the radial extremal, see 

Proposition (4.1.8)  below. 

We can summarize the above considerations as follows: For given Λ > 0 and  𝑝 ∈
(2, 2∗) , the corresponding extremals of (4) are not radially symmetric if  Λ > Λ𝐹𝑆(𝑝) . As 

a consequence, we can define 

Λ∗(𝑝) ≔ sup  {Λ > 0 ∶  ℱΛ,𝑝  has a radially symmetric minimize r }                (9) 

and observe that 0 < Λ∗(𝑝) ≤ Λ𝐹𝑆(𝑝) for any 𝑝 ∈ (2, 2∗).  
For any Λ > 0 , 𝑝 ∈ (2, 2∗] if  𝑁 ≥ 3, or  𝑝 ∈ (2,∞) if  𝑁 = 2 , the inequality 

(𝐶Λ,𝑝
𝑁 )

−1
‖𝑤‖𝐿𝑝(𝐶)

2 ≤ ‖∇𝑤‖𝐿2(𝐶)
2 + Λ‖𝑤‖𝐿2(𝐶)

2                                  (10) 

is achieved in 𝐻1 ∩ 𝐿𝑝(𝐶) by at least one extremal positive function 𝑤 = 𝑤Λ,𝑝 satisfying 

on 𝐶 the Euler-Lagrange equation 

−∆𝑦𝑤 + Λw = wp−1.                                                      (11) 

For ≥ 2 , we have 

(𝐶Λ,𝑝
𝑁 )

−1
‖𝑤Λ,𝑝‖𝐿𝑝(𝐶)

𝑝−2
= inf

𝑤∈𝐻1(𝐶)\{0}
ℱΛ,𝑝[𝑤]. 

According to [1], by virtue of the properties of the extremal function  𝑤Λ,𝑝  and the 

translation invariance of (10) in the t-variable, we can further assume that 

{

𝑤Λ,𝑝(𝑡, 𝜃) = 𝑤Λ,𝑝(−𝑡, 𝜃) ∀(𝑡, 𝜃) ∈ ℝ × 𝑆𝑁−1 = 𝐶,

(𝑤Λ,𝑝)𝑡
(𝑡, 𝜃) < 0              ∀(𝑡, 𝜃) ∈ (0,+∞) × 𝑆𝑁−1,

max𝐶 𝑤Λ,𝑝 = 𝑤Λ,𝑝(0, 𝜃0). 4

                   (12) 

for some 𝜃0 ∈ 𝑆
𝑁−1. A solution of (11) which does not depend on 𝜃 therefore satisfies on 

ℝ the ODE 

−𝑤𝑡𝑡 + Λw = wp−1. 
Multiplying it by 𝑤𝑡 and integrating with respect to  , we find that 

−
1

2
𝑤𝑡
2 +

Λ

2
𝑤2 =

1

𝑝
𝑤𝑝 + 𝑐 

for some constant  𝑐 ∈ ℝ . Due to the integrability conditions, namely the fact that 𝑤𝑡 and 

w are respectively in 𝐿2(ℝ) and 𝐿2 ∩ 𝐿𝑝(ℝ) , it turns out that  𝑐 = 0 . Since we assume 

that w achieves its maximum at  𝑡 = 0 , this uniquely determines 𝑤(0) > 0 using the 

relation: Λ 𝑤2(0)/2 = 𝑤𝑝(0)/𝑝 . In turn this yields a unique  𝜃-independent solution 𝑤𝛬,𝑝
∗  

defined by 

𝑤𝛬,𝑝
∗ (𝑡) ≔ (

1

2
Λ𝑝)

1
𝑝−2

(cosh (
1

2
√Λ(𝑝 − 2)𝑡))

−
2

𝑝−2
   ∀𝑡 ∈ ℝ.                      (13) 
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Such a solution is an extremal for (4) in the set of functions which are independent of the 

𝜃-variable, and satisfies: 

(𝐶Λ,𝑝
𝑁,∗)

−1
≔ |𝑆𝑁−1|1−2 𝑝⁄ ‖𝑤Λ,𝑝

∗ ‖
𝐿𝑝(ℝ)

𝑝−2
= inf

𝑓∈𝐻1(ℝ)\{0}
ℱΛ,𝑝[𝑓].                        (14) 

where functions on ℝ are considered as 𝜃-independent functions on 𝐶. 

By the coordinate change (3), 𝑤 is independent of 𝜃 if and only if  𝑢 is radially 

symmetric. This change of coordinates also tranforms the function  𝑢𝑎,𝑏
∗  defined in (2) into 

𝑤Λ,𝑝
∗  , with 𝑎 , 𝑏 and p related by (5)-(6) and 

𝜅∗ = (
𝑁(𝑁 − 2 − 2𝑎)2

𝑁 − 2(1 + 𝑎 − 𝑏)
)

𝑁−2(1+𝑎−𝑏)
4(1+𝑎−𝑏)

. 

Lemma (4.1.2)[140]: Let 𝑁 ≥ 2 , 𝑝 ∈ (2, 2∗) . For any  Λ ≠  0 , we have 

(𝐶Λ,𝑝
𝑁 )

−
𝑝
𝑝−2 = ‖𝑤Λ,𝑝‖𝐿𝑝(𝐶)

𝑝
≤ ‖𝑤Λ,𝑝

∗ ‖
𝐿𝑝(𝐶)

𝑝
= 4|𝑆𝑁−1|(2Λ𝑝)

𝑝
𝑝−2

𝑐𝑝

2𝑝√Λ
 

where 𝑐𝑝 is an increasing function of 𝑝 such that 

lim
𝑝→2+

2
2𝑝
𝑝−2√𝑝 − 2 𝑐𝑝 = √2𝜋. 

Proof: Observe that  

‖𝑤Λ,𝑝‖𝐿𝑝(𝐶)
𝑝

= (𝐶Λ,𝑝
𝑁 )

−
𝑝
𝑝−2 = (ℱΛ,𝑝[𝑤Λ,𝑝])

𝑝
𝑝−2 ≤ (ℱΛ,𝑝[𝑤Λ,𝑝

∗ ])
𝑝
𝑝−2 = ‖𝑤Λ,𝑝

∗ ‖
𝐿𝑝(𝐶)

𝑝
 

On the other hand, 

‖𝑤Λ,𝑝
∗ ‖

𝐿𝑝(𝐶)

𝑝
= |𝑆𝑁−1| (

1

2
Λ𝑝)

𝑝
𝑝−2

∫ [cosh(
1

2
√Λ(𝑝 − 2)𝑡)]

−
2𝑝
𝑝−2

∞

−∞

𝑑𝑡

= 2|𝑆𝑁−1| (
1

2
Λ𝑝)

𝑝
𝑝−2

∫
2
2𝑝
𝑝−2𝑒−√Λ 𝑝𝑡

(1 + 𝑒−√Λ(𝑝−1)𝑡 )
2𝑝
𝑝−2

𝑑𝑡
∞

0

= 4|𝑆𝑁−1| (
1

2
Λ𝑝)

𝑝
𝑝−2 2

2𝑝
𝑝−2

2√Λ 𝑝
∫

𝑑𝑠

(1 + 𝑠(𝑝−2) 𝑝⁄  )
2𝑝
𝑝−2

1

0

. 

Hence by setting 

𝑐𝑝 = ∫
𝑑𝑠

(1 + 𝑠(𝑝−2) 𝑝⁄  )
2𝑝
𝑝−2

1

0

, 

we easily check that 𝑐𝑝 is monotonically increasing in 𝑝 . The asymptotic behaviour of 

𝑐𝑝as 𝑝 → 2+  follows from the fact that 𝑐𝑝 can be expressed as  

𝑐𝑝 = 2
−
2𝑝
𝑝−2√𝜋

Γ(𝑥 + 1
2)

Γ(𝑥)
   with   𝑥 =

1

2
+

𝑝

𝑝 − 2
. 

Then we conclude using Sterling’s formula that 𝛤(𝑥 +
1

2
)/𝛤(𝑥) ∼ √𝑥 as 𝑥 → +∞ , which 

completes the proof. 

Theorem (4.1.3)[140]: Let 𝑁 ≥ 2 . For every 𝐴 < 0 , there exists 𝜀 > 0 such that the 

extremals of (1) are radially symmetric if 𝑎 + 1 − 𝜀 < 𝑏 < 𝑎 + 1 and 𝑎 ∈ (𝐴, 0).So they 

are given by 𝑢𝑎,𝑏
∗  defined in (2), up to 𝑎 scalar multiplication and a dilation. 
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We also prove that the regions of symmetry and symmetry breaking are separated 

by a continuous curve, that can be parametrized in terms of  𝑝. In fact, using that 𝑎 , 𝑏 and 

𝑝 satisfy the relation: 

𝑏 = 𝑎 + 1 + 𝑁 (
1

𝑝
−
1

2
) =

𝑁

𝑝
−
𝑁 − 2 − 2𝑎

2
,                                     (15) 

the condition 𝑎 < 𝑏 < 𝑎 + 1 can be expressed in terms of 𝑎 and 𝑝, by requiring that 𝑎 ≠
𝑎𝑐  and 𝑝 ∈ (2, 2∗),  with 2∗: = 2 𝑁/(𝑁 − 2)  if  𝑁 ≥ 3  or 2∗: = +∞  if 𝑁 = 2 . Constant 

values of  𝑝 define lines parallel to 𝑏 = 𝑎 and in particular the line 𝑏 = 𝑎 + 1 coincides 

with 𝑝 = 2. 
Proof: We argue by contradiction. Because of (5), we may suppose that there exist 

sequences (Λ𝑛)𝑛 ∈ℕ and (𝑝𝑛)𝑛 ∈ℕ, with Λ𝑛 > 0, 
lim
𝑛→+∞

Λ𝑛 = Λ ≥ (N − 2)
2 4⁄ ,       lim

𝑛→+∞
𝑝𝑛 = 2+ , 

such that the corresponding global minimizer, 𝑤𝑛: = 𝑤Λ𝑛,𝑝𝑛  satisfies: 

ℱΛ,𝑝[𝑤Λ𝑛,𝑝𝑛] < ℱΛ,𝑝[𝑤Λ𝑛,𝑝𝑛
∗ ] ,   − ∆𝑦𝑤𝑛 + Λ𝑛𝑤𝑛 = 𝑤𝑛

𝑝−1
     in 𝐶, 

together  with (12), for each 𝑛 ∈ 𝑁. In particular, 0 < max𝐶 𝑤𝑛 = 𝑤𝑛(0, 𝜃0), for some 

fixed 𝜃0 ∈ 𝑆
𝑁−1. 

Let us define 𝑐𝑛 > 0 and 𝑊𝑛 as follows: 

𝑐𝑛
2 = (Λ𝑛𝑝𝑛)

𝑝𝑛
2𝑝𝑛−12

𝑝𝑛
𝑝𝑛−2√𝑝𝑛 − 2   𝑎𝑛𝑑  𝑊𝑛 ≔ 𝑐𝑛𝑤𝑛. 

The function 𝑊𝑛 satisfies 

−∆𝑊𝑛 + Λ𝑛𝑊𝑛 = 𝑐𝑛
2−𝑝𝑛𝑊𝑛

𝑝−1
   in  𝐶, 

and  

∫ |∇𝑊𝑛|
2

2

𝐶

𝑑𝑦 + Λ𝑛∫ 𝑊𝑛
2𝑑𝑦 =

2

𝐶

𝑐𝑛
2∫ 𝑤𝑛

𝑝𝑛𝑑𝑦.
2

𝐶

 

Note that lim𝑛→+∞ Λ𝑛 = 0 is possible only if  𝑁 = 2 . In such a case, the conclusion 

follows from (i) in [141]. Hence assume from now on that lim𝑛→+∞ Λ𝑛 = Λ > 0  . By 

definition of 𝑐𝑛  and Lemma (4.1.2), limsup
𝑛→+∞

𝑐𝑛
2 ∫ 𝑤𝑛

𝑝𝑛𝑑𝑦
2

𝐶
≤ |𝑆𝑁−1| √2𝜋 Λ⁄  , so that 

(𝑊𝑛)𝑛∈ℕ  is bounded in 𝐻1(𝐶)  . Moreover, lim
𝑛→+∞

𝑐𝑛
2−𝑝𝑛 = Λ  . Therefore, by elliptic 

regularity, up to subsequences, (𝑊𝑛)𝑛∈ℕ converges weakly in 𝐻1(𝐶)  , and uniformly in 

every compact subset of  𝐶 , towards a function  . Again by definition of 𝑐𝑛 , this function 

satisfies 

−∆𝑊 + Λ𝑊 = Λ𝑊   in  𝐶. 
Hence 𝑊 is constant but also in 𝐻1(𝐶)  , and therefore ≡ 0 . Let 𝜒𝑛 be any component of  

∇𝜃 𝑊𝑛. By differentiating both sides of the equation of  𝑊𝑛 with respect to 𝜃, we know 

that 

−∆𝜒𝑛 + Λ𝑛𝜒𝑛 = (𝑝𝑛 − 1)𝑐𝑛
2−𝑝𝑛𝑊𝑛

𝑝𝑛−2𝜒𝑛      in  𝐶. 
So, multiplying this equation by 𝜒𝑛 and integrating by parts, we get 

0 = ∫ |∇𝜒𝑛|
2𝑑𝑦 + Λ𝑛∫ |𝜒𝑛|

2𝑑𝑦 − (𝑝𝑛 − 1)𝑐𝑛
2−𝑝𝑛

2

𝐶

∫ 𝑊𝑛
𝑝𝑛−2|𝜒𝑛|

2
2

𝐶

2

𝐶

𝑑𝑦 

The function 𝑊𝑛 is bounded by 𝑊𝑛(0, 𝜃0)  and lim
𝑛→+∞

𝑊𝑛(0, 𝜃0) = 0. Since 

∫ ∇𝜃
5

𝑆𝑁−1
 𝑊𝑛(𝑡, 𝜃)𝑑𝜃 = 0 , an expansion of  𝜒𝑛 in spherical harmonics tells us that 
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∫ |∇𝜒𝑛|
2𝑑𝑦 ≥ (𝑁 − 1)∫ |𝜒𝑛|

2𝑑𝑦
2

𝐶

2

𝐶

. 

By collecting these estimates, we get 

0 ≥ (𝑁 − 1 + Λ𝑛 − (𝑝𝑛 − 1)𝑐𝑛
2−𝑝𝑛𝑊𝑛(0, 𝜃0)

𝑝𝑛−2)∫ |𝜒𝑛|
2𝑑𝑦

2

𝐶

. 

Since  lim
𝑛→+∞

Λ𝑛 = Λ  and limsup
𝑛→+∞

(𝑝𝑛 − 1)𝑐𝑛
2−𝑝𝑛𝑊𝑛(0, 𝜃0)

𝑝𝑛−2 ≤ Λ,  for 𝑛  large enough, 

𝜒𝑛 ≡ 0 and 𝑤𝑛 is radially symmetric. 

Theorem (4.1.4)[140]: For all 𝑁 ≥ 2 , there exists 𝑎 continuous function 𝑎∗: (2, 2∗)  →
(−∞, 0) such that lim

𝑝→2∗
𝑎∗(𝑝)  = 0 , lim

𝑝→2+
𝑎∗(𝑝) = −∞  and 

  (i) If (𝑎, 𝑝) ∈ (𝑎∗(𝑝), 𝑎𝐶) × (2, 2
∗) , (1) has only radially symmetric extremals. 

 (ii) If (𝑎, 𝑝) ∈ (−∞, 𝑎∗(𝑝))  × (2, 2∗) , none of the extremals of (1) is radially symmetric. 

On the curve ⟼ (𝑝, 𝑎∗(𝑝))  , radially symmetric and non radially sym-metric 

extremals for (1) may eventually coexist. 

In a refinement of the results of [1], for ≥ 3 , V. Felli and M. Schneider proved in 

[142] that in the region 𝑎 < 𝑏 < 𝑏FS(𝑎),   𝑎 < 0, extremals are non-radially symmetric, 

where 

𝑏𝐹𝑆(𝑎) ≔
𝑁(𝑁 − 2 − 2𝑎)

2√(𝑁 − 2 − 2𝑎)2 + 4(𝑁 − 1)
−
𝑁 − 2 − 2𝑎

2
. 

The proof is based on the linearization of a functional associated to (1) around the radial 

extremal 𝑢𝑎,𝑏
∗ . Above the curve 𝑏 = 𝑏𝐹𝑆(𝑎), all corresponding eigenvalues are positive 

and 𝑢𝑎,𝑏
∗  is a local minimum, while there is at least one negative eigenvalue if  𝑏 < 𝑏𝐹𝑆(𝑎) 

and 𝑢𝑎,𝑏
∗  is then a saddle point. As  𝑎 → −∞ , 𝑏 = 𝑏𝐹𝑆(𝑎) is asymptotically tangent  to  

𝑏 = 𝑎 + 1. But recalling (15), also the function 𝑏∗(𝑝):= 𝑎∗(𝑝) + 1 + 𝑁 (
1

𝑝
−
1

2
) admits 

the same asymptotic behavior as 𝑝 → 2+. Hence, it is natural to conjecture that the curve  

𝑝 ⟼ ( 𝑎∗(𝑝), 𝑏∗(𝑝))  coincides with the curve 𝑎 ⟼ (𝑎, 𝑏𝐹𝑆(𝑎)). 
Proof:  We prove the existence of a function Λ∗ which describes the boundary of the 

symmetry region (see Corollary (4.1.6)). Then we establish the upper semicontinuity of  

𝑝 ⟼ Λ∗(𝑝),  and, using spectral properties, its continuity (see Corollary (4.1.9)), which 

completes the proof of  Theorem (4.1.2). 

If  𝑤 ∈ 𝐻1(𝐶) \{0} , let 𝑤𝜎(𝑡, 𝜃):= 𝑤(𝜎 𝑡, 𝜃) for any 𝜎 > 0 . A simple calculation 

shows that 

ℱ𝜎2Λ ,𝑝(𝑤𝜎) = 𝜎
1+2 𝑝⁄ ℱΛ ,𝑝(𝑤) − 𝜎

−1+2 𝑝⁄ (𝜎2 − 1)
∫ |∇θ𝑤|

2𝑑𝑦
2

𝐶

(∫ |𝑤|𝑝𝑑𝑦
2

𝐶
)
2 𝑝⁄

.                (16) 

As a consequence, we observe that 

(𝐶𝜎2Λ ,𝑝
𝑁,∗ )

−1
= ℱ𝜎2Λ ,𝑝(𝑤𝜎2Λ ,𝑝

∗ ) = 𝜎1+2 𝑝⁄ (𝐶Λ ,𝑝
𝑁,∗)

−1
= 𝜎1+2 𝑝⁄ ℱΛ ,𝑝(𝑤Λ ,𝑝

∗ ).             

Lemma (4.1.5)[140]: If 𝑁 ≥ 2 , Λ > 0 and 𝑝 ∈ (2, 2∗) , the following properties hold. 

(i) If  𝐶Λ,𝑝
𝑁 = 𝐶Λ ,𝑝 

𝑁,∗ , then  𝐶𝜆,𝑝
𝑁 = 𝐶𝜆 ,𝑝 

𝑁,∗  , and 𝑤𝜆,𝑝 = 𝑤𝜆,𝑝
∗ , for any 𝜆 ∈ (0, Λ) . 

(ii) If there is a non radially symmetric extremal function 𝑤Λ,𝑝, then  𝐶𝜆,𝑝
𝑁 > 𝐶𝜆,𝑝 

𝑁,∗  for all 

𝜆 > Λ . 
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Proof: To prove (i), apply (16) with 𝑤𝜎 = 𝑤𝛬,𝑝, 𝜆 = 𝜎
2Λ, 𝜎 < 1  and (𝑡, 𝜃) =

𝑤𝛬,𝑝(𝑡 𝜎⁄ , 𝜃)): 

(𝐶𝜆,𝑝
𝑁 )

−1
= ℱ𝜎2Λ ,𝑝(𝑤Λ,𝑝) = 𝜎

1+
2
𝑝ℱΛ ,𝑝[𝑤] + 𝜎

−1+
2
𝑝(1 − 𝜎2)

∫ |∇θ𝑤|
2𝑑𝑦

2

𝐶

(∫ |𝑤|𝑝𝑑𝑦
2

𝐶
)

2
𝑝

 

≥ 𝜎
1+
2
𝑝(𝐶Λ ,𝑝

𝑁,∗ )
−1
+ 𝜎

−1+
2
𝑝(1 − 𝜎2)

∫ |∇θ𝑤|
2𝑑𝑦

2

𝐶

(∫ |𝑤|𝑝𝑑𝑦
2

𝐶
)

2
𝑝

           

= (𝐶𝜆 ,𝑝
𝑁,∗)

−1
+ 𝜎

−1+
2
𝑝(1 − 𝜎2)

∫ |∇θ𝑤|
2𝑑𝑦

2

𝐶

(∫ |𝑤|𝑝𝑑𝑦
2

𝐶
)

2
𝑝

.                  

By definition,  𝐶𝜆,𝑝
𝑁 ≥ 𝐶𝜆,𝑝 

𝑁,∗ and from the above inequality the first claim follows. 

       Assume that 𝑤Λ,𝑝 is a non radially symmetric extremal function and apply (16) with 

𝑤 = 𝑤Λ,𝑝, 𝑤𝜎(𝑡, 𝜃):= 𝑤(𝜎 𝑡, 𝜃), 𝜆 = 𝜎
2Λ and  𝜎 > 1: 

(𝐶𝜆,𝑝
𝑁 )

−1
≤ ℱ𝜎2Λ ,𝑝(𝑤𝜎) = 𝜎

1+
2
𝑝(𝐶Λ,𝑝

𝑁 )
−1
− 𝜎

−1+
2
𝑝(𝜎2 − 1)

∫ |∇θ𝑤Λ,𝑝|
2
𝑑𝑦

2

𝐶

(∫ |𝑤Λ,𝑝|
𝑝
𝑑𝑦

2

𝐶
)

2
𝑝

≤ 𝜎
1+
2
𝑝(𝐶Λ ,𝑝

𝑁,∗)
−1
− 𝜎

−1+
2
𝑝(𝜎2 − 1)

∫ |∇θ𝑤Λ,𝑝|
2
𝑑𝑦

2

𝐶

(∫ |𝑤Λ,𝑝|
𝑝
𝑑𝑦

2

𝐶
)

2
𝑝

< (𝐶𝜆 ,𝑝
𝑁,∗)

−1
, 

since  ∇θ𝑤Λ,𝑝 ≢ 0 . This proves the second claim with  𝜆 = 𝜎2Λ.   

        Lemma (4.1.5) implies the following properties for the function Λ∗ defined in (9): 

Corollary (4.1.6)[140]: Let 𝑁 ≥ 2 . For all 𝑝 ∈ (2, 2∗), Λ∗(𝑝) ∈ (0, Λ𝐹𝑆(𝑝)] and 

     (i) If  𝜆 ∈ (0, Λ∗(𝑝)), then 𝑤𝜆,𝑝 = 𝑤𝜆,𝑝
∗  and clearly, 𝐶𝜆,𝑝

𝑁 = 𝐶𝜆,𝑝
𝑁,∗. 

    (ii) If  𝜆 = Λ∗(𝑝), then 𝐶𝜆,𝑝
𝑁 = 𝐶𝜆,𝑝

𝑁,∗. 

    (iii) If 𝜆 > Λ∗(𝑝), then 𝐶𝜆,𝑝
𝑁 > 𝐶𝜆,𝑝

𝑁,∗. 

     From the above results, note that Λ∗ can be defined in three other equivalent ways: 

Λ∗(𝑝) = max{Λ > 0 ∶   𝑤𝜆,𝑝 = 𝑤𝜆,𝑝
∗ } = max{Λ > 0 ∶   𝐶𝜆,𝑝

𝑁 = 𝐶𝜆,𝑝
𝑁,∗}

= inf  {Λ > 0 ∶   𝐶𝜆,𝑝
𝑁 > 𝐶𝜆,𝑝

𝑁,∗}. 

     Note also that for 𝑝 ∈ (2, 2∗),  and Λ = Λ∗(𝑝) , the equality 𝐶Λ,𝑝
𝑁 = 𝐶Λ,𝑝

𝑁,∗
 holds, but there 

might be simultaneously a radially symmetric extremal function and a non radially 

symmetric one. 

Lemma (4.1.7)[140]: Let 𝑁 ≥ 2 . The function Λ∗ is upper semicontinuous on (2, 2∗) . 
Proof: Assume by contradiction that for some ∈ (2, 2∗) , there exists a sequence  (𝑝𝑛)𝑛∈ℕ 

such that lim
𝑛→+∞

𝑝𝑛 = 𝑝 and  

Λ∗(𝑝) < liminf
𝑛→+∞

Λ∗(𝑝𝑛) ∶= Λ̅ . 

Let Λ ∈ (Λ∗(𝑝), Λ̅). The functions 𝑤𝛬,𝑝𝑛
∗ are extremal and converge to 𝑤𝛬,𝑝

∗  which is also 

extremal by continuity of 𝐶Λ,𝑝
𝑁  with respect to 𝑝. This contradicts Lemma (4.1.4), (ii). 

On 𝐻1(𝐶) , let us define the quadratic form 
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𝑄[𝜓] ≔ ‖∇𝜓‖𝐿2(𝐶)
2 + Λ‖𝜓‖𝐿2(𝐶)

2 − (𝑝 − 1)∫ |𝑤Λ,𝑝
∗ |

𝑝−2
2

𝐶

|𝜓|2𝑑𝑦 

and consider  𝜇Λ,𝑝
1 : = inf𝑄[𝜓]  where the infimum is taken over the set of all functions 

𝜓 ∈ 𝐻1(𝐶) such that ∫ 𝜓
2

𝑆𝑁−1
(𝑡, 𝜃) 𝑑𝜃 = 0 for 𝑡 ∈ ℝ a.e. and ‖𝜓‖𝐿2(𝐶) = 1 

Proposition (4.1.8)[140]: Let 𝑁 ≥ 2  , Λ > (𝑁 − 2)2/4  and 𝑝 ∈ (2, 2∗)  . Then  𝜇Λ,𝑝
1 =

𝑁 − 1 −
𝑝2−4

4
Λ is positive for any Λ ∈ (0, Λ𝐹𝑆(𝑝)) and it is achieved by the function 

𝜓1(𝑡, 𝜃) = (cosh (
1

2
(𝑝 − 2)√Λ 𝑡))

−𝑝 (𝑝−2)⁄

 𝜑1(𝜃) 

where 𝜑1is any eigenfunction of the Laplace-Beltrami operator on 𝑆𝑁−1 corresponding to 

the eigenvalue 𝑁 − 1 . 

Proof: Let us analyze the quadratic form 𝑄[𝜓] in the space of functions 𝜓 ∈ 𝐻1(𝐶) such 

that ∫ 𝜓
2

𝑆𝑁−1
(𝑡, 𝜃) 𝑑𝜃 = 0 for a.e. 𝑡 ∈ ℝ . To this purpose, we use the spherical harmonics 

expansion of  , 

𝜓(𝑡, 𝜃)∑𝑓𝑘
𝑘∈ℕ

(𝑡)𝜑𝑘(𝜃), 

and we take into account the zero mean average of 𝜓 over 𝑆𝑁−1 to write 

𝑄[𝜓] = ∑(‖�́�𝑘‖𝐿2(ℝ)
2

+ 𝛾𝑘‖𝑓𝑘‖𝐿2(ℝ)
2 − (𝑝 − 1)∫ |𝑤Λ,𝑝

∗ |
𝑝−2

2

ℝ

|𝑓𝑘|
2𝑑𝑡)

+∞

𝑘=1

 

with 𝛾𝑘: = Λ + 𝑘 (𝑘 + 𝑁 − 2) . The minimum is achieved for 𝑘 = 1 and 

𝜇Λ,𝑝
1 = inf (‖�́�‖

𝐿2(ℝ)

2
+ 𝛾1‖𝑓‖𝐿2(ℝ)

2 − (𝑝 − 1)∫ |𝑤Λ,𝑝
∗ |

𝑝−2
2

ℝ

|𝑓|2𝑑𝑡), 

where the infimum is taken over { 𝑓 ∈ 𝐻1(ℝ): ‖𝑓‖𝐿2(ℝ)
2 = 1} . In order to calculate 𝜇Λ,𝑝

1  

and the corresponding extremal function f , we have to solve the ODE 

−𝑓′′ − 𝛽 𝑉 𝑓 =  𝜆 𝑓, 

in 𝐻1(ℝ)  , with 𝛽 = Λ 𝑝(𝑝 − 1)/2  and 𝑉(𝑡):= (cosh(1
2
(𝑝 − 2)√Λ 𝑡))

−2
.Finally, the 

eigenfunction 𝑓(𝑡) = 𝑉 (𝑡) 𝑝/(2(𝑝−2))  corresponds to the first eigenvalue, 𝜆 = −𝑝2Λ/4 . 

See [143], [142] for a more detailed discussion of the above eigenvalue problem.,  

Corollary (4.1.9)[140]: Let 𝑁 ≥ 2  .The function Λ∗  is continuous on (2, 2∗) and 

lim
𝑞→2+

Λ∗(𝑞)  = +∞ . 

Proof: We have to prove that for all 𝑝 ∈ (2, 2∗), for all 𝑝𝑛 ∈ (2, 2
∗) converging to  𝑝 , 

lim
𝑛→+∞

Λ∗(𝑝𝑛) = Λ
∗(𝑝). Taking into account Lemma (4.1.7), assume by contradiction that 

there exists a sequence (𝑝𝑛)𝑛∈𝑁 such that lim
𝑛→+∞

𝑝𝑛 = 𝑝 .  and  lim
𝑛→+∞

Λ∗(𝑝𝑛) = Λ̅ < Λ
∗(𝑝). 

Choose Λ ∈ (Λ∗(𝑝𝑛), Λ
∗(𝑝)) for 𝑛 large. By definition of  Λ∗, the extremals 𝑤𝑛: = 𝑤Λ,𝑝𝑛 >

0  are not radially symmetric for 𝑛  large enough. Now, by (14), the functions 𝑤𝑛  are 

uniformly bounded in 𝐻1(𝐶)  and the functions 𝑤𝑛
𝑝𝑛−1  are also uniformly bounded in 

𝐿𝑝𝑛 (𝑝𝑛−1)⁄ (𝐶),  with 𝑝𝑛 →  𝑝 ∈ (2, 2∗).  Hence, by elliptic regularity and the Sobolv 

embedding, we deduce that 𝑤𝑛  is uniformly bounded in 𝐶𝑙𝑜𝑐
2,𝛼(𝐶)  . So we can find a 

subsequence along which 𝑤𝑛 converges pointwise, and uniformly in every compact subset 

of 𝐶. Since  Λ < Λ∗(𝑝) ,by Corollary(4.1.6),this limit is 𝑤Λ,𝑝 
∗ . Next, for any 𝜀 > 0 take 
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𝑅𝜀 > 0 such that  𝑤Λ,𝑝 
∗ (𝑅) < 𝜀 for all  𝑅 ≥ 𝑅𝜀. By the decay in  | 𝑡|  of 𝑤𝑛 and 𝑤Λ,𝑝 

∗  we 

see that 

‖𝑤𝑛 −𝑤Λ,𝑝 
∗ ‖

𝐿∞(𝐶)
≤ 2‖𝑤𝑛 −𝑤Λ,𝑝 

∗ ‖
𝐿∞(| 𝑡 |≤𝑅𝜀)

+ 2|𝑤Λ,𝑝 
∗ (𝑅𝜀)|, 

and this, together with the uniform local convergence, proves that 𝑤𝑛 converges towards 

𝑤Λ,𝑝 
∗  uniformly in the whole cylinder 𝐶 . 

     Let us now consider one of the components of  ∇𝜃𝑤𝑛 , that we denote by 𝜒𝑛 . Then 

𝜒𝑛 ≢ 0 satisfies 

−∆𝜒𝑛 + Λ𝜒𝑛 = (𝑝𝑛 − 1)𝑤𝑛
𝑝𝑛−2𝜒𝑛     in    𝐶. 

Multiplying the above equation by 𝜒𝑛 and integrating by parts we get 

∫ (|∇𝜒𝑛|
2

2

𝐶

+ Λ|𝜒𝑛|
2 − (𝑝𝑛 − 1)𝑤𝑛

𝑝𝑛−2|𝜒𝑛|
2)𝑑𝑦 = 0. 

By Proposition (4.1.8), since  Λ < Λ∗(𝑝) ≤ Λ𝐹𝑆(𝑝), we have 

∫ (|∇𝜒𝑛|
2

2

𝐶

+ Λ|𝜒𝑛|
2 − (𝑝𝑛 − 1)𝑤Λ,𝑝𝑛 

∗ 𝑤𝑛
𝑝𝑛−2|𝜒𝑛|

2)𝑑𝑦 ≥ 𝜇Λ,𝑝𝑛
1 ‖𝜒𝑛‖𝐿2(𝐶)

2 , 

with liminf
𝑛→+∞

𝜇Λ,𝑝𝑛
1 > 0. This contradicts the fact that  

∫ (|𝑤Λ,𝑝𝑛 
∗ |

𝑝𝑛−2
− |𝑤𝑛|

𝑝𝑛−2)
2

𝐶

|𝜒𝑛|
2𝑑𝑦 = 𝑜 (‖𝜒𝑛‖𝐿2(𝐶)

2 )  𝑎s 𝑛 → +∞, 

which follows by the uniform convergence of  𝑤𝑛  and 𝑤Λ,𝑝𝑛 
∗  towards 𝑤Λ,𝑝 

∗ ,p,since, by 

assumption ‖𝜒𝑛‖𝐿2(𝐶)
2 ≠ 0 for 𝑛 large enough. 

     The limit of Λ∗(𝑞) = +∞ as 𝑞 → 2 +  follows from Theorem (4.1.3). Moreover in 

dimension  𝑁 = 2 we know also the slope of the curve separating the symmetry and the 

symmetry breaking regions near the point (𝑎, 𝑏) = (0, 0),  and as remarked before, it 

coincides with that of the Felli-Schneider curve (𝑎, 𝑏𝐹𝑆(𝑎).  All this motivates our 

conjecture that the functions Λ∗ and Λ𝐹𝑆 coincide over the whole range (2, 2∗). 

Section (4.2): Symmetry of Optimizers 

Symmetries of optimizers in variational problems is a central theme in the calculus 

of variations. Sophisticated methods like rearrangement inequalities, reflection methods 

and moving plane methods belong now to the standard repertoire of any analyst. There are, 

however, examples where these methods cannot be applied. Variational problems that 

depend on parameters very often cannot be treated by such methods, simply because, 

depending on the parameters, the optimizers are symmetric and sometimes not. Famous 

examples are the minimizers of the Ginzburg-Landau functional in superconductivity, 

where, depending on the strength of the quartic interaction the minimizers form a single, 

symmetric vortex or a vortex lattice. Clearly such problems cannot be treated by general 

methods. For certain parameters they ought to work while in others they cannot. Thus, 

rather special techniques, tailored to the problems at hand, have to be developed to prove 

symmetry in the desired regions. 

One class of such examples is given by the Caffarelli-Kohn-Nirenberg inequalities 

[7]. We shall specifically consider the case of the inequality 

∫
|∇𝑤|2

|𝑥|2𝑎

2

ℝ𝑑
𝑑𝑥 ≥ 𝐶𝑎,𝑏

𝑑 (∫
|𝑤|2

|𝑥|𝑏𝑝

2

ℝ𝑑
𝑑𝑥)

2
𝑝

                                           (CKN) 

with  𝑎 ≤ 𝑏 ≤ 𝑎 + 1 if 𝑑 ≥ 3, 𝑎 < 𝑏 ≤ 𝑎 + 1 if 𝑑 = 2 , and 𝑎 < 𝑎𝑐 where 
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𝑎𝑐 ≔
𝑑 − 2

2
 , 𝑝 =

2𝑑

𝑑 − 2 + 2(𝑏 − 𝑎)
. 

The function w is in a suitable function space which contains, for instance, all smooth 

functions with compact support. The constant 𝐶𝑎,𝑏
𝑑  is, by definition, the best possible 

constant. Rotating the function 𝑤 does not change the value of the various expressions in 

(CKN), i.e., the inequality is rotationally invariant. The special case where 𝑎 ≥ 0 has been 

treated (see [150]). Rearrangement inequalities can be used to reduce the problem to the 

set of radial functions, for which the optimality issue can then be solved explicitly. 

For the case where  𝑎 < 0  the problem is much more subtle. Catrina  and Wang [1], 

proved that the optimizers, i.e., the functions that yield equality in (CKN), exist in the 

open strip 𝑎 < 𝑏 < 𝑎 + 1. This result establishes the existence of non-negative solutions 

𝑤 ∈ 𝐿𝑝(ℝ𝑑; |𝑥|−𝑏𝑝𝑑𝑥) of  the equation 

−div(|𝑥|−2𝑎∇𝑤) = |𝑥|−𝑏𝑝𝑤𝑝−1.                                           (17) 
Moreover, Catrina and Wang also showed that, in some region in the (𝑎, 𝑏) plane, the 

rotational symmetry of the optimizers is broken. A more detailed analysis by Felli and 

Schneider [142] shows that the region where the optimizers have a broken symmetry 

contains the set  ℛ𝐹𝑆: = {(𝑎, 𝑏) ∶ 𝑎 < 0 , 𝑏 < 𝑏𝐹𝑆(𝑎)} where 

𝑏𝐹𝑆(𝑎) ≔
𝑑(𝑎𝑐 − 𝑎)

2√(𝑎𝑐 − 𝑎)
2 + 𝑑 − 1

+ 𝑎 − 𝑎𝑐 . 

We call this region ℛ𝐹𝑆 the Felli-Schneider region. 

In [142] more is shown. The optimizers in the radial class can be determined 

explicitly which allows to compute the second variation operator about these solutions. 

The lowest eigenvalue of this operator is strictly negative for (𝑎, 𝑏) ∈ ℛ𝐹𝑆 , equals zero on 

the curve  𝑏 = 𝑏𝐹𝑆(𝑎)  and is strictly positive in the open complement of the Felli-

Schneider region: there, the radial optimizers are stable. Needless to say that positivity of 

the second variation does not imply the radial symmetry of the (global) optimizers for the 

(CKN) inequality. Thus, it is a natural question whether or not the optimizers possess 

rotational symmetry in the complement of  ℛ𝐹𝑆. Let 2∗: =
2 𝑑

𝑑−2
 𝑖𝑓 𝑑 ≥ 3 and  2∗: = ∞ if 

𝑑 = 2. The following theorem is proved in [150]: 

Corollary (4.2.1)[147]: Let 𝑑 ≥ 2, 𝑝 ∈ (2, 2∗). Any non-negative solution  𝜙 ∈ 𝐿𝑝(ℝ ×
𝕊𝑑−1 ; 𝑑𝑧𝑑𝜔) of (20) is, up to translations, of the form  

𝜙Λ(𝑧) = (
2

𝑝Λ
cosh2(𝑝−2

2
√Λ 𝑧))

−
1

𝑝−2
, 

if and only if  

Λ ≤ 4
𝑑 − 1

𝑝2 − 4
. 

In this range, equality in (21) is achieved if and only if 𝜙(𝑧) = 𝜙Λ(𝑧 + 𝑧0) for some 𝑧0 ∈
ℝ. 

To put this result in perspective we compare it with a result in [148]. 

Theorem (4.2.2)[147]: Let 𝑑 ≥ 2, 𝑝 ∈ (2, 2∗). On the sphere 𝕊𝑑 consider the equation 

∆𝑢 + 𝜆𝑢 = 𝑢
𝑝−1 

with 𝜆 > 0. Here ∆ represents the Laplace-Beltrami operator on 𝕊𝑑 . Then the constant 

function 𝑢 ≡ 𝜆1/(𝑝 − 2) is the only non-negative solution if and only if 

𝜆 ≤
𝑑

𝑝 − 2
. 
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Thus, Corollary (4.2.1) can be viewed as an extension of the above mentioned rigidity 

result to the non-compact case of a cylinder. As a special case, this also allows to identify 

the equality case in the interpolation inequality (21) on the cylinder. 

We start by the simple case of the standard Sobolev inequality, explain how to 

recast (CKN) as a Sobolev type inequality in an artificial dimension 𝑛, where 𝑛 is not 

necessarily an integer, and conclude by explaining how the main estimates can be 

produced using a fast diffusion flow. 

Theorem (4.2.3)[147]: Let  𝑑 ≥ 2, 𝑝 ∈ (2, 2∗), 𝑎 < 0  and 𝑏  in the complement of the 

Felli-Schneider region and such that 𝑝 =
2 𝑑

𝑑−2+2 (𝑏−𝑎)
. Then any non-negative solution 𝑤 ∈

𝐿𝑝(ℝ𝑑; |𝑥|−𝑏𝑝𝑑𝑥) of (17) must be of the form 

(𝐴 + 𝐵|𝑥|2𝛼)−
𝑛−2
2  

where 𝐴, 𝐵 are positive constants, 

𝛼 =
(1 + 𝑎 − 𝑏)(𝑎𝑐 − 𝑎)

𝑎𝑐 − 𝑎 + 𝑏
                                                      (18) 

and  

𝑛 =
2𝑝

𝑝 − 2
.                                                                                 (19) 

In particular this holds for the optimizers of (CKN). 

There are some interesting consequences. Using the change of variables 

𝑤(𝑟, 𝜔) = 𝑟𝑎−𝑎𝑐𝜙(log 𝑟, 𝜔), 
equation (17) can be cast in the form 

−𝜕𝑧
2𝜙 − ∆𝜔𝜙 + Λ𝜙 = 𝜙

𝑝−1.                                                     (20) 

Here, 
𝑥

|𝑥|
= 𝜔 ∈ 𝕊𝑑−1, 𝑟 = |𝑥|, 𝑧 = log 𝑟,  ∆𝜔 is the Laplace-Beltrami operator on the 

sphere 𝕊𝑑−1 and  

Λ = (𝑎 − 𝑎𝑐)
2. 

Thus, 𝜙 is a function on the cylinder ℝ × 𝕊𝑑−1. Moreover, as noticed in [1], (CKN) is 

transformed into 

‖𝜕𝑧𝜙‖𝐿2(ℝ×𝕊𝑑−1)
2 + ‖∇𝜔𝜙‖𝐿2(ℝ×𝕊𝑑−1)

2 + Λ‖𝜙‖
𝐿2(ℝ×𝕊𝑑−1)
2 ≥ 𝐶𝑎,𝑏

𝑑 ‖𝜙‖
𝐿2(ℝ×𝕊𝑑−1)
2 .             (21) 

In order to avoid long computations it is best to explain the ideas in a ‘simple’ 

example. For any 𝑑 ≥ 3, the Sobolev inequality 

∫ |∇𝑢|2
2

ℝ𝑑
𝑑𝑥 ≥ 𝐶𝑑 (∫ |𝑢|2

2

ℝ𝑑
𝑑𝑥)

2 𝑝⁄

 ,   with    𝑝 = 2∗ =
2𝑑

𝑑 − 2
                       (22) 

is extremely well understood [32], [19], [24]. Once more 𝐶𝑑 denotes the sharp constant. 

Note that this inequality appears as a special case of (CKN) if one sets 𝑎 = 𝑏 = 0, in 

which case 𝐶𝑑 = 𝐶0,0
𝑑 , . There is equality in (22) if and only if 𝑢 is a translate of the Aubin-

Talenti function 

(𝑐⋆𝜆 +
|𝑥|2

𝜆
)

−(𝑑−2) 2⁄

, 

where 𝑐⋆ and 𝜆 are positive constants. There have been some proofs using flow methods to 

understand this inequality [149], [41]. The flow used for the case at hand is a porous 

medium / fast diffusion flow. It is given by 
𝜕𝜐

𝜕𝑡
= ∆𝜐1−

1
𝑑                                                                       (23) 
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and has the self-similar solutions 

𝜐⋆(𝑥, 𝑡) = (𝑐⋆𝑡 +
|𝑥|2

𝑡
)

−𝑑

. 

This function has slow decay in the 𝑥 variable. The obvious similarity of the expressions 

of the Aubin-Talenti and self-similar functions suggests a reformulation of the Sobolev 

functional by setting 

𝜐 = 𝑢
2𝑑
𝑑−2. 

Let us define a pressure variable 𝛲 by 

𝜐 = 𝛲−𝑑 . 
A short computation shows 

Lemma (4.2.4)[147]: The Sobolev inequality, written in terms of 𝜐 and p, is given by 

𝑎𝑐
2∫ 𝜐

2

ℝ𝑑
|∇𝛲|2𝑑𝑥 ≥ 𝐶𝑑 (∫ 𝜐

2

ℝ𝑑
𝑑𝑥)

𝑑−2
𝑑

.                                      (24) 

Assume now that v satisfies the fast diffusion equation (23). This implies that 𝛲 evolves 

by the equation 
𝜕𝛲

𝜕𝑡
=
𝑑 − 1

𝑑
𝛲∆𝛲 − 𝑑|∇𝛲|2. 

The right side of (24) does not change if 𝜐 evolves via (23). For the left side we have 

Lemma (4.2.5)[147]: Assume that 𝜐 evolves via (23). Then 

𝑑

𝑑𝑡
∫ 𝜐
2

ℝ𝑑
|∇𝛲|2𝑑𝑥 = −2∫ [

1

2
∆|∇𝛲|2 − ∇𝛲 ∙ ∇∆𝛲 −

1

𝑑
(∆𝛲)2]

2

ℝ𝑑
𝛲1−𝑑𝑑𝑥 

                  = −2∫ 𝑇𝑟
2

ℝ𝑑
[𝐻𝛲 −

1

𝑑
(𝑇𝑟𝐻𝛲)  Id 2]

2
𝛲1−𝑑𝑑𝑥 

where 𝐻𝛲 = (∇⨂∇)𝛲 denotes the Hessian matrix of  𝛲. Moreover, 

𝐻𝛲 −
1

𝑑
(𝑇𝑟𝐻𝛲)Id = 0 

if and only if 𝛲(𝑥) = 𝑎 + 𝑏 · 𝑥 + 𝑐|𝑥|2 for some (𝑎, 𝑏, 𝑐) ∈ ℝ × ℝ𝑑 × ℝ. 
The proof is a somewhat longish but straightforward computation. Note, that it is precisely 

the particular choice of  𝜐 and  𝛲 that renders the time derivative in such a simple form. 

To summarize, while the right side of the Sobolev inequality stays fixed the left side 

diminishes under the flow. The idea is to use the fast diffusion flow to drive the functional 

towards its optimal value. Actually we use the fact that if 𝜐 is optimal in (24), or if it is a 

critical point, the functional has to be stationary under the action of the flow, which allows 

to identify 𝛲, hence 𝜐. To exploit this idea for the (CKN) inequality we have to rewrite it 

in the form of a Sobolev type inequality. 

The first step in the proof is to rewrite the problem in a form that resembles the 

Sobolev inequality. If we write 

𝑤(𝑠, 𝜔) = 𝑢(𝑠, 𝜔)    with    𝑠 = 𝑟𝛼 , 
the inequality (CKN) takes the form 

∫ [𝛼2 (
𝜕𝑢

𝜕𝑠
)
2

+
|∇𝜔𝑢|

2

𝑠2
]

2

ℝ+×𝕊
𝑑−1

𝑠𝑛−1𝑑𝑠𝑑𝜔 ≥ 𝐶𝑎,𝑏
𝑑 𝛼1−

2
𝑑 (∫ |𝑢|𝑝

2

ℝ+×𝕊
𝑑−1

𝑠𝑛−1𝑑𝑠𝑑𝜔)

2
𝑝

 

where 𝑑𝜔 denotes the uniform measure on the sphere 𝕊𝑑−1, ∇𝜔 denotes the gradient on 

𝕊𝑑−1 and where 𝛼 and 𝑛 are given by (18) and (19). We shall abbreviate 
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𝐷𝑢 ≔ (𝛼
𝜕𝑢

𝜕𝑠
,
1

𝑠
∇𝜔𝑢) ,          |𝐷𝑢|

2 = 𝛼2 (
𝜕𝑢

𝜕𝑠
)
2

+
|∇𝜔𝑢|

2

𝑠2
. 

Our inequality is therefore equivalent to a Sobolev type inequality and takes the form 

∫ |𝐷𝑢|2𝑑𝜇
2

ℝ+×𝕊
𝑑−1

≥ 𝐶𝑎,𝑏
𝑑 𝛼1−

2
𝑑 (∫ |𝑢|𝑝

2

ℝ+×𝕊
𝑑−1

𝑑𝜇)

2
𝑝

,       with   𝑝 =
2𝑛

𝑛 − 2
.                  (25) 

This inequality generalizes (22). Here the measure 𝑑𝜇 is defined on ℝ+ × 𝕊𝑑−1by 

𝑑𝜇 = 𝑠𝑛−1𝑑𝑠𝑑𝜔. 
As we may consider  𝜐 =  𝑢𝑝 and define a pressure variable 𝛲 such that  𝜐 =  𝛲−𝑛, so that  

𝑢 =  𝛲−(𝑛−2)/2 . With these notations, (25) can be rewritten as 

1

4
(𝑛 − 2)2∫ 𝜐|𝐷𝛲|2𝑑𝜇

2

ℝ+×𝕊
𝑑−1

≥ 𝐶𝑎,𝑏
𝑑 𝛼1−

2
𝑑 (∫ 𝜐

2

ℝ+×𝕊
𝑑−1

𝑑𝜇)

2
𝑝

.                            (26) 

We shall write ∫ 𝑓𝑑𝜇 = ∫ 𝑓𝑑𝜇
2

ℝ𝑑
2

ℝ+×𝕊
𝑑−1  and identify  𝐿𝑝(ℝ+ × 𝕊

𝑑−1;  𝑑𝜇)  with  

𝐿𝑝(ℝ𝑑;  |𝑥|𝑛−𝑑𝑑𝑥) or simply 𝐿𝑝(ℝ𝑑;  𝑑𝜇). 
One should note that 𝑛  is, in general, not an integer and the above inequality 

reduces to Sobolev’s inequality only if  𝑛 = 𝑑. Of particular significance is that the curve 

𝑏 = 𝑏𝐹𝑆(𝑎), 
when represented in the new variables 𝛼 and 𝑛, is given by the equation 𝛼 = 𝛼𝐹𝑆 with 

𝛼𝐹𝑆 ≔ √
𝑑−1

𝑛−1
. 

Thus, for 𝛼 > 𝛼𝐹𝑆 the minimizers are not radial. The equation (17) transforms into the 

equation 

−ℒ 𝑢 = 𝑢𝑝−1,                                                                (27) 
where ℒ is the Laplacian associated with the quadratic form given by the left side of (25), 

i.e., ℒ =  − 𝐷∗ · 𝐷. Theorem (4.2.3) can be reformulated as 

Theorem (4.2.6)[147]: Let 𝑑 ≥ 2, 𝑝 ∈ (2, 2∗), 𝑛 =
2𝑝

𝑝−2
> 𝑑 and 𝛼 ≤ 𝛼𝐹𝑆. Then any non-

negative solution 𝑢 ∈ 𝐿𝑝(ℝ𝑑;  𝑑𝜇) of (27) must be of the form 

(𝐴 + 𝐵|𝑥|2)− 
𝑛−2
2                                                                      (28) 

where 𝐴, 𝐵 are positive constants, and 𝑛 is given by (19). 𝐴𝑠 a special case, equality in 

(26) is achieved if and only if 𝑢 is given by (28). 

Any optimizer in the radial class that is not unstable under small perturbations is in 

fact a global minimizer for the (CKN) inequality. 

We consider the fast diffusion flow 
𝜕𝜐

𝜕𝑡
ℒ 𝜐1−

1
𝑛.                                                                         (29) 

It is easily seen that the flow (29) has the self-similar solutions 

𝜐⋆(𝑡; 𝑠, 𝜔) = 𝑡
−𝑛 (𝑐⋆ +

𝑠2

2(𝑛 − 1)𝛼2𝑡2
)

−𝑛

. 

The basic idea is now quite simple. We consider a non-negative solution 𝑢 ∈
𝐿𝑝(ℝ𝑑;  𝑑𝜇) of (27) and set 𝜐 = 𝑢𝑝. We also consider the pressure variable 𝛲 such that  

𝜐 = 𝛲−𝑛. The first thing to note is that the right side of (26) does not change if we evolve 

𝜐 and hence 𝑢 under the flow (29). Further, if we differentiate the left side of (26) along 

the flow we obtain 
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𝑑

𝑑𝑡
∫ 𝜐 |𝐷𝛲|2𝑑𝜇
2

ℝ+×𝕊
𝑑−1

= −2∫ [
1

2
 ℒ |𝐷𝛲|2 − 𝐷𝛲 ∙ 𝐷ℒ𝛲 −

1

𝑛
(ℒ𝛲)2] 𝑑𝜇.

2

ℝ+×𝕊
𝑑−1

 

On the other hand simple computations show that 

   
1

4
(𝑛 − 2)2

𝑑

𝑑𝑡
(∫ 𝜐 |𝐷𝛲|2𝑑𝜇

2

ℝ+×𝕊
𝑑−1

) |
2

𝑡 = 0
 

 

= −2∫ (ℒ𝑢)𝑢1−𝑝(ℒ𝑢𝑝(𝑛−1) 𝑛⁄ )𝑑𝜇
2

ℝ+×𝕊
𝑑−1

.                               (30) 

when expressed in terms of 𝑢. Now we take  𝜐 = 𝑢𝑝, where 𝑢 is the solution to (27), as 

initial datum for (17). With this choice, the right side in (30) is actually zero. Indeed, by 

multiplying both sides of (27) by 𝑢1−𝑝(ℒ𝑢𝑝(𝑛−1) 𝑛⁄ ) one obtains 

∫ (ℒ𝑢)𝑢1−𝑝(ℒ𝑢𝑝(𝑛−1) 𝑛⁄ )𝑑𝜇 = ∫ 𝑢𝑝−1𝑢1−𝑝(ℒ𝑢𝑝(𝑛−1) 𝑛⁄ )𝑑𝜇 = 0.
2

ℝ+×𝕊
𝑑−1

 
2

ℝ+×𝕊
𝑑−1

 

The interesting point, and the heart of the argument, is that 

0 = ∫ [
1

2
 ℒ |𝐷𝛲|2 − 𝐷𝛲 ∙ 𝐷ℒ𝛲 −

1

𝑛
(ℒ𝛲)2] 𝑑𝜇

2

ℝ+×𝕊
𝑑−1

 

can be written as a sum of non-negative terms precisely when α  𝛼 ≤ 𝛼𝐹𝑆 , and the 

vanishing of these terms shows that 𝑢 must be of the form (𝐴 + 𝐵 𝑠2)−(𝑛−2)/2. In this way 

one obtains a classification of the non-negative solutions of (27) provided they are in 

𝐿𝑝(ℝ𝑑;  𝑑𝜇). To simplify notations, we shall omit the index 𝜔, so that from now on 𝛻 and 

∆ respectively refer to the gradient and to the Laplace-Beltrami operator on 𝕊𝑑−1. With the 

notation′ = 𝜕𝑠 , our identity can be reworked as follows. 

Lemma (4.2.7)[147]: Assume that 𝑑 ≥ 3, 𝑛 > 𝑑  and let 𝛲  be a positive function in 

𝐶3(𝕊𝑑−1). Then 
1

2
 ℒ |𝐷𝛲|2 − 𝐷𝛲 ∙ 𝐷ℒ𝛲 −

1

𝑛
(ℒ𝛲)2

= 𝛼4
𝑛−1

𝑛
[𝛲 −́́

�́�

𝑟
−

∆𝛲

𝛼2(𝑛 − 1)𝑟2
]

2

+
2𝛼2

𝑟2
|∇�́� −

∇𝛲

𝑟
|
2

+
1

𝑟4
[
1

2
∆|∇𝛲|2 − ∇𝛲 ∙ ∇∆𝛲 −

1

𝑛−1
(∆𝛲)2 − (𝑛 − 2)𝛼2|∇𝛲|2]. 

The only term in Lemma (4.2.7) that does not have a sign is the last one. When integrated 

against 𝛲1−𝑛  over 𝕊𝑑−1 , however, this term can be written as a sum of squares. The 

following lemma holds for 𝑑 ≥ 3. For the case 𝑑 = 2 see [150]. 

Lemma (4.2.8)[147]: Assume that 𝑑 ≥ 3 and that 𝛲 is a positive function in 𝐶3(𝕊𝑑−1). 
Then 

∫ [
1

2
∆|∇𝛲|2 − ∇𝛲 ∙ ∇∆𝛲 −

1

𝑛−1
(∆𝛲)2 − (𝑛 − 2)𝛼2|∇𝛲|2]

2

𝕊𝑑−1
𝛲1−𝑛𝑑𝜔

=
(𝑛−2)(𝑑−1)

(𝑛−1)(𝑑−2)
∫ ‖𝐿𝛲 −

3(𝑛−2)(𝑛−𝑑)

2(𝑛−2)(𝑑+1)
𝑀𝛲‖

22

𝕊𝑑−1
𝛲1−𝑛𝑑𝜔

+
𝑛−𝑑

2(𝑑+1)
[
𝑛+3

2
+
3(𝑛−1)(𝑛+1)(𝑑−2)

2(𝑛−2)(𝑑+1)
]∫

|∇𝛲|4

𝛲2

2

𝕊𝑑−1
𝛲1−𝑛𝑑𝜔

+ (𝑛 − 2)[𝛼𝐹𝑆
2 − 𝛼2]∫ |∇𝛲|2

2

𝕊𝑑−1
𝛲1−𝑛𝑑𝜔 



137 

where 𝐿𝛲:= (∇⨂∇)𝛲 −
1

𝑑−1
(∆𝛲)𝑔 and 𝑀𝛲:=

∇𝛲⨂∇𝛲

𝛲
−

1

𝑑−1

|∇𝛲|2

𝛲
𝑔. Here 𝑔 is the standard 

metric on 𝕊𝑑−1 and 𝐿𝛲 denotes the trace free Hessian of 𝛲. 

The key device used for the proof of this lemma is the Bochner-Lichnerowicz-

Weitzenbock formula. If  ℳ  is a compact Riemannian manifold, then for any smooth 

function 𝑓: ℳ → ℝ  we have 
1

2
∆|∇𝑓|2 = ‖𝐻𝑓‖

2
+ Ric(∇𝑓, ∇𝑓) 

where ‖𝐻𝑓‖
2
is the trace of the square of the Hessian of 𝑓 and  Ric(∇𝑓, ∇𝑓) is the Ricci 

curvature tensor contracted against ∇𝑓 ⊗ ∇𝑓 . If  ℳ = 𝕊𝑑−1 ,then Ric(∇𝑓, ∇𝑓) = (𝑑 −
2)|∇𝑓|2. The main point in Lemma (4.2.8) is that, provided 𝛼 ≤ 𝛼𝐹𝑆, all terms are non-

negative. 

It is quite easy to see that the vanishing of these terms entails that 𝛲  can only 

depend on the variable 𝑠 = |𝑥| and must be of the form (28). 

While the formal computations are straightforward there is the perennial issue of the 

boundary terms that occur in all the integration by parts. This is due to the fact that one is 

dealing with solutions of (27) and it is not at all clear that the boundary terms vanish. This 

requires a detailed regularity analysis of the solutions of (27). The task is non-trivial 

because the exponent 𝛲 is critical for the scaling in the 𝑠 variable. See [150]. 

The computations outlined above can be carried over to the case where 𝕊𝑑−1 is 

replaced by a compact Riemannian manifold ℳ of dimension 𝑑 − 1. The results are then 

expressed in terms of the Ricci curvature of the manifold. See [150] for details. 

Section (4.3): Symmetry for Extremal Functions 

With the norms 

‖𝑤‖𝐿𝑞,𝛾(ℝ𝑑) ≔ (∫ |𝑥|𝑞
2

ℝ𝑑
|𝑥|−𝛾𝑑𝑥)

1 𝑞⁄

,      ‖𝑤‖𝐿𝑞(ℝ𝑑) ≔ ‖𝑤‖𝐿𝑞,0(ℝ𝑑), 

let us define 𝐿𝑞,𝛾(ℝ𝑑) as the space of all measurable functions 𝑤 such that ‖𝑤‖𝐿𝑞,𝛾(ℝ𝑑) is 

finite. Our functional framework is a space 𝐻𝛽,𝛾
𝑝
(ℝ𝑑) of functions 𝑤 ∈ 𝐿𝑝+1,𝛾(ℝ𝑑) such 

that ∇𝑤 ∈ 𝐿2,𝛽(ℝ𝑑), which is defined as the completion of the space 𝒟(ℝ𝑑\{0}) of the 

smooth functions on ℝ𝑑 with compact support in ℝ𝑑\{0}, with respect to the norm given 

by ‖𝑤‖2: = (𝑝⋆ − 𝑝)‖𝑤‖𝐿𝑝+1,𝛾(ℝ𝑑)
2 + ‖∇𝑤‖

𝐿2,𝛽(ℝ𝑑)
2 . 

Now consider the family of Caffarelli–Kohn–Nirenberg interpolation inequalities 

given by 

‖𝑤‖𝐿2𝑝,𝛾(ℝ𝑑) ≤ 𝐶𝛽,𝛾,𝑝‖∇𝑤‖𝐿2,𝛽(ℝ𝑑)
𝜗 ‖𝑤‖

𝐿𝑝+1,𝛾(ℝ𝑑)
1−𝜗      ∀𝑤 ∈ 𝐻𝛽,𝛾

𝑝 (ℝ𝑑).                 (31) 

Here the parameters 𝛽, 𝛾 and pare subject to the restrictions 

𝑑 ≥ 2,   𝛾 − 2 < 𝛽 <
𝑑 − 2

𝑑
𝛾,   𝛾 ∈ (−∞,𝑑),   𝑝 ∈ (1, 𝑝⋆]   with    𝑝⋆ ≔

𝑑 − 𝛾

𝑑 − 𝛽 − 2
    (32) 

and the exponent 𝜗 is determined by the scaling invariance, i.e., 

𝜗 =
(𝑑 − 𝛾)(𝑝 − 1)

𝑝(𝑑 + 𝛽 + 2 − 2𝛾 − 𝑝(𝑑 − 𝛽 − 2))
. 

These inequalities have been introduced, among others, by L. Caffarelli, R. Kohn and L. 

Nirenberg in [7]. We observe that 𝜗 = 1 if  𝑝 = 𝑝⋆, a case that has been dealt with in 

[150], and we shall focus on the sub-critical case  𝑝 < 𝑝⋆. Throughout, 𝐶𝛽,𝛾,𝑝 denotes the 
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optimal constant in (31). We shall say that a function  𝑤 ∈ 𝐻𝛽,𝛾
𝑝
(ℝ𝑑)  is an extremal 

function for (31) if equality holds in the inequality. 

Symmetry in (31) means that the equality case is achieved by Aubin–Talenti-type 

functions 

𝑤⋆(𝑥) = (1 + |𝑥|
2+𝛽−𝛾)

−1 (𝑝−1)⁄
     ∀𝑥 ∈ ℝ𝑑 

On the contrary, there is symmetry breaking if this is not the case, because the equality 

case is then achieved by a non-radial extremal function. It has been proved in [155] that 

symmetry breaking holds in (31) if 

𝛾 < 0   and   𝛽𝐹𝑆(𝛾) < 𝛽 <
𝑑 − 2

𝑑
𝛾,                                                  (33) 

where 

𝛽𝐹𝑆(𝛾) ≔ 𝑑 − 2 − √(𝛾 − 𝑑)2 − 4(𝑑 − 1.                  
For completeness, we will give a short proof of this result of the set defined by(33), which 

means that (33) is the sharp condition for symmetry breaking. See Fig (1). 

Theorem (4.3.1)[151]: Assume that (32) holds and that 

𝛽 ≤ 𝛽𝐹𝑆(𝛾)    if  𝛾 < 0.                                                          (34) 
Then the extremal functions for (31) are radially symmetric and, up to a scaling and a 

multiplication by a constant, equal to 𝑤⋆. 
 

 
Fig (1)[151]: 

In dimension 𝑑 = 4, with 𝑝 = 1.2, the grey area corresponds to the cone determined by 

𝑑 − 2 + (𝛾 − 𝑑)/𝑝 ≤ 𝛽 < (𝑑 − 2) 𝛾/𝑑 and  𝛾 ∈ (−∞,𝑑) in (32). The light grey area is 

the region of symmetry, while the dark grey area is the region of symmetry breaking. The 

threshold is determined by the hyperbola (𝑑 − 𝛾)2 − (𝛽 − 𝑑 + 2)2 − 4 (𝑑 − 1) = 0 or, 

equivalently  𝛽 = 𝛽𝐹𝑆(𝛾). Notice that the condition 𝑝 ≤ 𝑝⋆ induces the restriction  𝛽 ≥
𝑑 − 2 + (𝛾 − 𝑑)/𝑝, so that the region of symmetry is bounded. The largest possible cone 

is achieved as 𝑝 → 1 and is limited from below by the condition  𝛽 > 𝛾 − 2. 
The above result is slightly stronger than just characterizing the range of (𝛽, 𝛾) for 

which equality in (31) is achieved by radial functions. Actually our method of proof 

allows us to analyze the symmetry properties not only of extremal functions of (31), but 

also of all positive solutions in 𝐻𝛽,𝛾
𝑝
(ℝ𝑑) of the corresponding Euler–Lagrange equations, 

that is, up to a multiplication by a constant and a dilation, of 
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−div(|𝑥|−𝛽∇𝑤) = |𝑥|−𝛾(𝑤2𝑝−1 −𝑤𝑝)   in   ℝ𝑑\{0}.                                 (35) 
Corollary (4.3.2)[151]: Assume that 𝛼, 𝑛 and 𝑝 are such that 

                                      𝑑 ≥ 2, 𝛼 > 0, 𝑛 > 𝑑 and   𝑝 ∈ (1, 𝑝⋆]. 
Then the inequality 

‖𝜈‖𝐿2𝑝,𝑑−𝑛(ℝ𝑑) ≤ 𝐾𝛼,𝑛,𝑝‖𝐷𝛼𝜈‖𝐿2,𝑑−𝑛(ℝ𝑑)
𝜗 ‖𝜈‖

𝐿𝑝+1,𝑑−𝑛(ℝ𝑑)
1−𝜗    ∀𝜈 ∈ 𝐻𝑑−𝑛,𝑑−𝑛

𝑝 (ℝ𝑑),            (36) 

holds with optimal constant  𝐾𝛼,𝑛,𝑝 = 𝛼
−𝜁  𝐶𝛽,𝛾,𝑝   as above and optimality is achieved 

among radial functions if and only if 

𝛼 ≤ 𝛼𝐹𝑆   with      𝛼𝐹𝑆 ≔ √
𝑑−1

𝑛−1
.                                             (37) 

When symmetry holds, optimal functions are equal, up to a scaling and 𝑎 multiplication by 

𝑎 constant, to 

𝜈⋆(𝑥) ≔ (1 + |𝑥|2)−1 (𝑝−1)⁄     ∀𝑥 ∈ ℝ𝑑 . 
We may notice that neither 𝛼𝐹𝑆  nor 𝛽𝐹𝑆  depend on pand that the curve 𝛼 = 𝛼𝐹𝑆 

determines the same threshold for the symmetry-breaking region as in the critical case  

𝑝 = 𝑝⋆. In the case  𝑝 = 𝑝⋆ , this curve was found by V. Felli and M. Schneider, who 

proved in [142] the linear instability of all radial critical points if 𝛼 > 𝛼𝐹𝑆. When  𝑝 = 𝑝⋆, 
symmetry holds under Condition (37) as was proved in [150]. We extend this last result to 

the subcritical regime 𝑝 ∈ (1, 𝑝⋆). 
The change of variables 𝑠 = 𝑟𝛼 is an important intermediate step, because it allows 

one to recast the problem as a more standard interpolation inequality in which the 

dimension 𝑛  is, however, not necessarily an integer. Actually 𝑛  plays the role of a 

dimension in view of the scaling properties of the inequalities and, with respect to this 

dimension, they are critical if 𝑝 = 𝑝⋆ and sub-critical otherwise. The critical case 𝑝 = 𝑝⋆ 
has been studied in [150] using tools of entropy methods, acritical fast diffusion flow and, 

in particular, a reformulation in terms of a generalized Fisher information. In the 

subcritical range, we shall replace the entropy by a Rényi entropy power as in [163], [161], 

and make use of the corresponding fast diffusion flow. As in [150], the flow is used only 

at the heuristic level in order to produce a well-adapted test function. The core of the 

method is based on the Bakry–Emery computation, also known as the carré du champ 

method, which is well adapted to optimal interpolation inequalities: see for instance [153] 

for a general exposition of the method and [158], [159] for its use in the presence of 

nonlinear flows. Also see [40] for earlier considerations on the Bakry–Emery method  

applied to nonlinear flows and related functional inequalities in unbounded domains. 

However, in non-compact manifolds and in the presence of weights, integrations by parts 

have to be justified. In the critical case, one can rely on an additional invariance to use an 

Emden–Fowler transformation and rewrite the problem as an autonomous equation on a 

cylinder, which simplifies the estimates a lot. Estimates have to be adapted, since after the 

Emden–Fowler transformation, the problem in the cylinder is no longer autonomous.  

We recall the computations that characterize the linear instability of radially 

symmetric minimizers. We expose the strategy for proving symmetry in the subcritical 

regime when there are no weights. We devoted to the Bakry–Emery computation applied 

to Rényi entropy powers, in the presence of weights. This provides a proof of our main 

results, if we admit that no boundary term appears in the integrations by parts. To prove 

this last result, regularity and decay estimates of positive solutions to (35) are established, 

which indeed show that no boundary term has to be taken into account. 
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For completeness, we summarize known results on symmetry breaking for (31). 

Details can be found in [155]. With the notations of  Corollary (4.3.2), let us define the 

functional 

ℊ[𝜈] ≔ 𝜗 log(‖𝐷𝛼𝜈‖𝐿2,𝑑−𝑛(ℝ𝑑)) + (1 − 𝜗) log(‖𝜈‖𝐿𝑝+1,𝑑−𝑛(ℝ𝑑))  

                                                              +logK𝛼,𝑛,𝑝 − log(‖𝜈‖𝐿2𝑝,𝑑−𝑛(ℝ𝑑)) 

obtained by taking the difference of the logarithm of the two terms in (36). Let us define 

𝑑𝜇𝛿: = 𝜇𝛿(𝑥)𝑑𝑥,  where 

𝜇𝛿(𝑥) ≔
1

(1 + |𝑥|2)𝛿
. 

Since 𝜈⋆ as defined in Corollary (4.3.2) is a critical point of  J, a Taylor expansion at order 

𝜀2 shows that 

‖𝐷𝛼𝜈⋆‖𝐿2,𝑑−𝑛(ℝ𝑑)
2 ℊ[𝜈⋆ + 𝜀 𝜇𝛿 2 ⁄ 𝑓] =

1

2
 𝜀2𝜗𝒬[𝑓] + 𝑜( 𝜀2) 

with 𝛿 = 2𝑝

𝑝−1
 and  

𝒬[𝑓] = ∫ |𝐷𝛼𝑓|
2

2

ℝ𝑑
|𝑥|𝑛−𝑑𝑑𝜇𝛿 −

4𝑝𝛼2

𝑝 − 1
∫ |𝑓|2
2

ℝ𝑑
|𝑥|𝑛−𝑑𝑑𝜇𝛿+1. 

The following Hardy–Poincaré inequality has been established in [155]. 

Proposition (4.3.3)[151]: Let 𝑑 ≥ 2, 𝛼 ∈ (0,+∞), 𝑛 > 𝑑 and 𝛿 ≥ 𝑛. Then 

∫ |𝐷𝛼𝑓|
2

2

ℝ𝑑
|𝑥|𝑛−𝑑𝑑𝜇𝛿 ≥ 𝛬∫ |𝑓|2

2

ℝ𝑑
|𝑥|𝑛−𝑑𝑑𝜇𝛿+1                                   (38) 

holds for any 𝑓 ∈ 𝐿2(ℝ𝑑 , |𝑥|𝑛−𝑑𝑑𝜇𝛿+1),  with 𝐷𝛼𝑓 ∈ 𝐿
2(ℝ𝑑 , |𝑥|𝑛−𝑑𝑑𝜇𝛿),  such that 

∫ 𝑓
2

ℝ𝑑
|𝑥|𝑛−𝑑𝑑𝜇𝛿+1 = 0 , with an optimal constant 𝛬 given by 

𝛬 = {
2𝛼2(2𝛿 − 𝑛) if    0 < 𝛼2 ≤

(𝑑−1)𝛿2

𝑛(2𝛿−𝑛)(𝛿−1)
 ,

2𝛼2𝛿𝜂           if    𝛼2 >
(𝑑−1)𝛿2

𝑛(2𝛿−𝑛)(𝛿−1)
 ,        

 

where 𝜂 is the unique positive solution to 

𝜂(𝜂 + 𝑛 − 2) =
𝑑 − 1

𝛼2
. 

Moreover, 𝛬 is achieved by a non-trivial eigenfunction corresponding to the equality in 

(38). If  𝛼2 >
(𝑑−1)𝛿2

𝑛(2𝛿−𝑛)(𝛿−1)
 , the eigenspace is generated by 𝜑𝑖(𝑠, 𝜔) = 𝑠

𝜂𝜔𝑖, with  𝑖 =

1, 2, . . . 𝑑  and the eigenfunctions are not radially symmetric, while in the other case the 

eigenspace is generated by the radially symmetric eigenfunction  𝜑𝑖(𝑠, 𝜔) = 𝑠
2 − 𝑛

2𝛿−𝑛
. 

As a consequence, Q is a nonnegative quadratic form if and only if  
4𝑝𝛼2

𝑝−1
≤ 𝛬 . 

Otherwise, Q takes negative values, and a careful analysis shows that symmetry breaking 

occurs in (31) if 

2𝛼2𝛿𝜂 <
4𝑝𝛼2

𝑝 − 1
   ⟺   𝜂 < 1, 

which means  
𝑑−1

𝛼2
= 𝜂(𝜂 + 𝑛 − 2) < 𝑛 − 1, 

and this is equivalent to 𝛼 > 𝛼𝐹𝑆. 



141 

Before going into the details of the proof, we explain the strategy for the case of the 

Gagliardo–Nirenberg inequalities without weights. There are several ways to compute the 

optimizers, and see [29], [41], [156], [40], [153], [161]. The inequality is of the form 

‖𝑤‖𝐿2𝑝(ℝ𝑑) ≤ 𝐶0,0,𝑝‖∇𝑤‖𝐿2(ℝ𝑑)
𝜗  ‖𝑤‖

𝐿𝑝+1(ℝ𝑑)
1−𝜗     with    1 < 𝑝 <

𝑑

𝑑 − 2
             (39) 

and  

𝜗 =
𝑑(𝑝 − 1)

𝑝(𝑑 + 2 − 𝑝(𝑑 − 2))
.           

It is known through the work in [29] that the optimizers of this inequality are, up to 

multiplications by a constant, scalings and translations, given by 

𝑤⋆(𝑥) = (1 + |𝑥|
2)
−

1
𝑝−1     ∀𝑥 ∈ ℝ𝑑 . 

The idea is to use a version of the carré du champ or Bakry–Emery method 

introduced in [152]: by differentiating a relevant quantity along the flow, we recover the 

inequality in a form that turns out to be sharp. The version of the carré du champ we shall 

use is based on the Rényi entropy powers whose concavity as a function of 𝑡 has been 

studied by M. Costa in [157] in the case of linear diffusions (see [163]). In [165], C. 

Villani observed that the carré du champ method gives a proof of the logarithmic Sobolev 

inequality in the Blachman–Stam form, also known as the Weissler form: see[154], [70]. 

G. Savaré and G. Toscani observed in [163] that the concavity also holds in the nonlinear 

case, which has been used in [161] to give an alternative proof of the Gagliardo–Nirenberg 

inequalities, that we are now going to sketch. 

The first step consists in reformulating the inequality in new variables. We set 

𝑢 = 𝑤2𝑝.           
which is equivalent to 𝑤 = 𝑢𝑚−1/2, and consider the flow given by 

𝜕𝑢

𝜕𝑡
= ∆𝑢𝑚,                                                                  (40) 

where 𝑚 is related to 𝑝 by 

𝑝 =
1

2𝑚 − 1
.       

The inequalities 1 < 𝑝 < 𝑑

𝑑−2
 imply that  

1 −
1

𝑑
< 𝑚 < 1.                                                                    (41) 

For some positive constant  𝜅 > 0, one easily finds that the so-called Barenblatt–Pattle 

functions  

𝑢⋆(𝑡, 𝑥) = 𝜅𝑑𝑡−
𝑑

𝑑 𝑚−𝑑+2 𝑤⋆
2𝑝
(𝜅𝑡−

1
𝑑 𝑚−𝑑+2 𝑥) = (𝑎 + 𝑏|𝑥|2)−

1
1−𝑚 

are self-similar solutions to (40), where 𝑎 = 𝑎(𝑡) and 𝑏 = 𝑏(𝑡) are explicit. Thus, we see 

that 𝑤⋆ = 𝑢⋆
𝑚−1/2

 is an optimizer for (39) for all 𝑡 and it makes sense to rewrite (39)in 

terms of the function 𝑢. Straightforward computations show that (39) can be brought into 

the form 

(∫ 𝑢 𝑑𝑥
2

ℝ𝑑
)

(𝜎+1) 𝑚−1

≤ 𝐶𝐸𝜎−1 𝐼      where     𝜎 =
2

𝑑(1 −𝑚)
− 1                         (42) 

for some constant 𝐶 which does not depend on 𝑢, where  
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𝐸 ≔ ∫ 𝑢𝑚 𝑑𝑥
2

ℝ𝑑
 is a generalized Ralston–Newman entropy, also known in the literature as 

Tsallis entropy, and 

𝐼: = ∫ 𝑢
2

ℝ𝑑
|∇ 𝑃|2𝑑𝑥 

 

is the corresponding generalized Fisher information. Here we have introduced the pressure 

variable 

𝑃 =
𝑚

1 −𝑚
𝑢𝑚−1. 

The Rényi entropy power is defined by 

𝐹 = 𝐸𝜎 

as in [163], [161]. With the above choice of  𝜎, 𝐹 is an affine function of t if  𝑢 = 𝑢⋆. For 

an arbitrary solution to (40), we aim at proving that it is a concave function of 𝑡 and that it 

is affine if and only if 𝑢 = 𝑢⋆. For further references on related issues, see [29], [164]. 

Note that one of the motivations for choosing the variable 𝑃 is that it has a particular 

simple form for the self-similar solutions, namely 

𝑃⋆ =
𝑚

1 −𝑚
(𝑎 + 𝑏|𝑥|2). 

Differentiating E along the flow (40) yields 

�́� = (1 −𝑚)𝐼, 
so that  

�́� = 𝜎(1 −𝑚)𝐺    with   𝐺 = 𝐸𝜎−1 𝐼. 
More complicated is the derivative for the Fisher information: 

𝐼 = −2∫ 𝑢𝑚  [Tr ((Hess𝑃 −
1

𝑑
∆𝑃 I d)

2

) + (𝑚 − 1 +
1

𝑑
) (∆𝑃)2] 𝑑𝑥.

2

ℝ𝑑
 

Here Hess 𝑃 and Id are respectively the Hessian of 𝑃 and the (d × d) identity matrix. The 

computation can be found in [161]. Next we compute the second derivative of the Rényi 

entropy power F  with respect to 𝑡: 

(𝐹) ́́

𝜎𝐸𝜎
= (𝜎 − 1)

�́�2

𝐸2
+
𝐸    ́́

𝐸2
= (𝜎 − 1)(1 −𝑚)2

𝐼2

𝐸2
+ (1 −𝑚)

𝐼  ́

𝐸
=: (1 − 𝑚)ℋ. 

With  𝜎 = 2

𝑑
  1

1−𝑚 
− 1, we obtain 

ℋ = −2 〈 Tr ((Hess 𝑃 −
1

𝑑
∆𝑃 I d)

2

)〉 + (1 −𝑚)(1 − 𝜎)〈(∆𝑃 − 〈∆𝑃〉)2〉,                (43) 

where we have used the notation 

〈𝐴〉 ≔
∫ 𝑢𝑚 𝐴 𝑑𝑥
2

ℝ𝑑

∫ 𝑢𝑚 𝑑𝑥
2

ℝ𝑑

. 

Note that by (41), we have that 𝜎 > 1 and hence we find that 𝐹   ́́ = (𝐸𝜎) ́́ ≤ 0, which also 

means that 𝐺 = 𝐸𝜎−1𝐼  is a non-increasing function. In fact it is strictly decreasing unless 

𝑃 is a polynomial function of order two in 𝑥 and it is easy to see that the expression (43) 

vanishes precisely when 𝑃 is of the form 𝑎 + 𝑏 |𝑥 − 𝑥0|
2, where  𝑎, 𝑏 ∈ ℝ, 𝑥0 ∈ ℝ

𝑑  are 

constants (but 𝑎 and 𝑏 may still depend on 𝑡). 
Thus, while the left side of (42) stays constant along the flow, the right side 

decreases. In [161] it was shown that the right side decreases towards the value given by 
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the self-similar solutions 𝑢⋆  and hence proves (39) in the sharp form. The variational 

equation for the optimizers of (39) is given by 

−∆𝑤 = 𝑎 𝑤2 𝑝−1 − 𝑏𝑤𝑝. 
A straightforward computation shows that this can be written in the form 

2𝑚 𝑢𝑚−2  div(𝑢∇𝑃) + |∇𝑃|2 + 𝑐1𝑢
𝑚−1 = 𝑐2 

for some constants 𝑐1, 𝑐2  whose precise values are explicit. This equation can also be 

interpreted as the variational equation for the sharp constant in (42). Hence, multiplying 

the above equation by ∆𝑢𝑚and integrating yields 

∫ [2𝑚𝑢𝑚−2 div(𝑢∇𝑃) + |∇𝑃|2 ]
2

ℝ𝑑
∆𝑢𝑚𝑑𝑥 + 𝑐1∫ 𝑢𝑚−1 ∆𝑢𝑚 𝑑𝑥 = 𝑐2

2

ℝ𝑑
∫ ∆𝑢𝑚 𝑑𝑥 = 0
2

ℝ𝑑
. 

We recover the fact that, in the flow picture, H is, up to a positive factor, the derivative of G 

and hence vanishes. From the observations made above, we conclude that 𝑃 must be a 

polynomial function of order two in 𝑥. In this fashion, one obtains more than just the 

optimizers, namely a classification of all positive solutions to the variational equation. The 

main technical problem with this method is the justification of the integrations by parts, 

which in the case at hand, without any weight, does not offer great difficulties: see, for 

instance, [40]. This strategy can also be used to treat the problem with weights, which will 

be explained next. Dealing with weights, however, requires some special care, as we shall 

see. 

Let us adapt the above strategy to the case where there are weights in all integrals 

entering into the inequality, that is, let us deal with inequality (36) instead of inequality 

(39). In order to define a new, well-adapted fast diffusion flow, we introduce the diffusion 

operator  𝐿𝛼: = − 𝐷𝛼
∗𝐷𝛼 , which is given in spherical coordinates by 

𝐿𝛼𝑢 = 𝛼
2 (𝑢  ́́ +

𝑛 − 1

𝑠
𝑢   ́ ) +

1

𝑠2
∆𝜔𝑢, 

where ∆𝜔 denotes the Laplace–Betrami operator acting on the (𝑑 − 1)-dimensional sphere 

𝕊𝑑−1 of  the angular variables, and denotes here the derivative with respect to 𝑠. Consider 

the fast diffusion equation 
𝜕𝑢

𝜕𝑡
= 𝐿𝛼𝑢

𝑚                                                                  (44) 

in the subcritical range 1 − 1

𝑛
< 𝑚 = 1 − 1

𝜈
< 1. The exponents 𝑚 in (44) and 𝑝 in (36) 

are related by 

𝑝 =
1

2𝑚 − 1
   ⟺   𝑚 =

𝑝 + 1

2𝑝
 

and 𝜈 is defined by 

𝜈 ≔
1

1 −𝑚
. 

We consider the Fisher information defined as 

𝐼[𝑃]:= ∫ 𝑢|D𝛼𝑃|
2𝑑𝜇

2

ℝ𝑑
   with   𝑃 =

𝑚

1 −𝑚
𝑢𝑚−1   and  𝑑𝜇 = 𝑠𝑛−1𝑑𝑠𝑑𝜔 = 𝑠𝑛−𝑑𝑑𝑥. 

Here 𝑃 is the pressure variable. Our goal is to prove that 𝑃 takes the form +𝑏𝑠2 . It is 

useful to observe that (44) can be rewritten as 
𝜕𝑢

𝜕𝑡
= D𝛼

∗ (𝑢Dα𝑃) 

and, in order to compute 𝑑𝐼
𝑑𝑡

 , we will also use the fact that 𝑃 solves 
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First step: computation of 𝑑𝐼
𝑑𝑡

 

 Let us define 

𝐾[𝑃]:= 𝐴[𝑃] − (1 −𝑚)(𝐿𝛼 𝑃)
2    where   𝐴[𝑃] ≔

1

2
𝐿𝛼|D𝛼𝑃|

2 − D𝛼𝑃 ∙ D𝛼𝐿𝛼 𝑃 

and, on the boundary of the centered ball 𝐵𝑠 of radius 𝑠, the boundary term  

𝑏(𝑠):= ∫ (
𝜕

𝜕𝑠
(𝑃

𝑚
𝑚−1|D𝛼𝑃|

2) − 2(1 −𝑚)𝑃
𝑚
𝑚−1𝑃   ́ 𝐿𝛼 𝑃)

2

𝜕𝐵𝑠

𝑑𝜍                                  

= 𝑠𝑛−1 (∫ (
𝜕

𝜕𝑠
(𝑃

𝑚
𝑚−1|D𝛼𝑃|

2) − 2(1 −𝑚)𝑃
𝑚
𝑚−1𝑃   ́ 𝐿𝛼 𝑃)

2

𝕊𝑑−1
𝑑𝜔) (𝑠), (46) 

where by 𝑑𝜍 = 𝑠𝑛−1 𝑑𝜔 we denote the standard Hausdorff measure on 𝜕𝐵𝑠. 
Lemma (4.3.4)[151]: If 𝑢 solves (44) and if  

lim
𝑠→0+

𝑏(𝑠) = lim
𝑆→+∞

𝑏(𝑆) = 0,                                            (47) 

then , 

𝑑

𝑑𝑡
𝐼[𝑃] = −2∫ 𝐾[𝑃]𝑢𝑚𝑑𝜇

2

ℝ𝑑
.                                               (48) 

Proof: For 0 < 𝑠 < 𝑆 < +∞, let us consider the set 𝐴(𝑠,𝑆): = {𝑥 ∈ ℝ
𝑑: 𝑠 < |𝑥| < 𝑆 }, so 

that 𝜕𝐴(𝑠,𝑆) = 𝜕𝐵𝑠 ∪ 𝜕𝐵𝑆 . Using (44) and (45), we can compute  

          
𝑑

𝑑𝑡
∫ 𝑢|D𝛼𝑃|

2𝑑𝜇
2

𝐴(𝑠 ,𝑆)

 

             = ∫
𝜕𝑢

𝜕𝑡
|D𝛼𝑃|

2𝑑𝜇 + 2
2

𝐴(𝑠 ,𝑆)

∫ 𝑢D𝛼𝑃 ⋅ D𝛼
𝜕𝑃

𝜕𝑡
𝑑𝜇

2

𝐴(𝑠 ,𝑆)

 

            = ∫ 𝐿𝛼(𝑢
𝑚)|D𝛼𝑃|

2𝑑𝜇 + 2
2

𝐴(𝑠 ,𝑆)

∫ 𝑢D𝛼𝑃 ⋅ D𝛼((1 − m)𝑃𝐿𝛼𝑃 − |D𝛼𝑃|
2)𝑑𝜇

2

𝐴(𝑠 ,𝑆)

 

            = ∫ 𝑢𝑚𝐿𝛼|D𝛼𝑃|
2𝑑𝜇 + 2

2

𝐴(𝑠 ,𝑆)

(1 − m)∫ 𝑢𝑃D𝛼𝑃 ⋅ D𝛼𝐿𝛼𝑃𝑑𝜇
2

𝐴(𝑠 ,𝑆)

 

            +2(1 −m)∫ 𝑢D𝛼𝑃 ⋅ D𝛼𝑃𝐿𝛼𝑃𝑑𝜇
2

𝐴(𝑠 ,𝑆)

− 2∫ 𝑢D𝛼𝑃 ⋅ D𝛼|D𝛼𝑃|
2𝑑𝜇

2

𝐴(𝑠 ,𝑆)

 

            +𝛼2∫ ((𝑢𝑚)́|D𝛼𝑃|
2 − 𝑢𝑚

𝜕

𝜕𝑠
(|D𝛼𝑃|

2)) 𝑑𝜍 −
2

𝜕𝐵𝑠

𝛼2∫ ((𝑢𝑚)́|D𝛼𝑃|
2 − 𝑢𝑚

𝜕

𝜕𝑠
(|D𝛼𝑃|

2)) 𝑑𝜍
2

𝜕𝐵𝑠

 

   = −∫ 𝑢𝑚𝐿𝛼|D𝛼𝑃|
2𝑑𝜇 + 2

2

𝐴(𝑠 ,𝑆)

(1 − m)∫ 𝑢𝑃D𝛼𝑃 ∙ D𝛼𝐿𝛼𝑃𝑑𝜇
2

𝐴(𝑠 ,𝑆)

+ 2(1 − m)∫ 𝑢D𝛼𝑃 ⋅ D𝛼𝑃𝐿𝛼𝑃𝑑𝜇
2

𝐴(𝑠 ,𝑆)

 

    +𝛼2∫ ((𝑢𝑚)́|D𝛼𝑃|
2 + 𝑢𝑚

𝜕

𝜕𝑠
(|D𝛼𝑃|

2)) 𝑑𝜍 −
2

𝜕𝐵𝑠

𝛼2∫ ((𝑢𝑚)́|D𝛼𝑃|
2 + 𝑢𝑚

𝜕

𝜕𝑠
(|D𝛼𝑃|

2)) 𝑑𝜍
2

𝜕𝐵𝑠

, 

where the last line is given by an integration by parts, upon exploiting the identity 

𝑢 D𝛼𝑃 = −D𝛼((𝑢
𝑚): 

∫ 𝑢D𝛼𝑃 ⋅ D𝛼|D𝛼𝑃|
2𝑑𝜇

2

𝐴(𝑠 ,𝑆)

= −∫ D𝛼(𝑢
𝑚) ⋅ D𝛼|D𝛼𝑃|

2𝑑𝜇
2

𝐴(𝑠 ,𝑆)

                                       

                                                   = ∫ 𝑢𝑚𝐿𝛼|D𝛼𝑃|
2𝑑𝜇 −

2

𝐴(𝑠 ,𝑆)

𝛼2∫ 𝑢𝑚
𝜕

𝜕𝑠
𝐿𝛼(|D𝛼𝑃|

2)𝑑𝜍
2

𝜕𝐵𝑠

 



145 

      +𝛼2∫ 𝑢𝑚
𝜕

𝜕𝑠
(|D𝛼𝑃|

2)𝑑𝜍.
2

𝜕𝐵𝑠

 

i) Using the definition of  A  [𝑃], we get that  

= −∫ 𝑢𝑚𝐿𝛼|D𝛼𝑃|
2𝑑𝜇 = −2∫ 𝑢𝑚A[𝑃]𝑑𝜇 − 2

2

𝐴(𝑠 ,𝑆)

2

𝐴(𝑠 ,𝑆)

∫ 𝑢𝑚D𝛼𝑃 ⋅ D𝛼𝐿𝛼𝑃𝑑𝜇.
2

𝐴(𝑠 ,𝑆)

     (49) 

ii) Taking advantage again of  𝑢 D𝛼𝑃 = −D𝛼((𝑢
𝑚) , an integration by parts gives 

   ∫ 𝑢 D𝛼𝑃 ⋅ D𝛼𝑃𝐿𝛼𝑃𝑑𝜇 = −
2

𝐴(𝑠 ,𝑆)

∫  D𝛼(𝑢
𝑚) ⋅ D𝛼𝑃𝐿𝛼𝑃𝑑𝜇

2

𝐴(𝑠 ,𝑆)

                                       

                                               = ∫ 𝑢𝑚(𝐿𝛼𝑃)
2𝑑𝜇 +

2

𝐴(𝑠 ,𝑆)

∫ 𝑢𝑚D𝛼𝑃 ⋅ D𝛼𝐿𝛼𝑃𝑑𝜇
2

𝐴(𝑠 ,𝑆)

   

                                       −𝛼2∫ 𝑢𝑚𝑃  ́ 𝐿𝛼𝑃𝑑𝜍
2

𝜕𝐵𝑠

+ 𝛼2∫ 𝑢𝑚𝑃  ́ 𝐿𝛼𝑃𝑑𝜍
2

𝜕𝐵𝑠

 

and, with 𝑢 𝑃 = 𝑚

1−𝑚
 𝑢𝑚 , we find that  

2(1 −𝑚)∫ 𝑢 𝑃D𝛼 ⋅ D𝛼𝑃𝐿𝛼𝑃𝑑𝜇 +
2

𝐴(𝑠 ,𝑆)

2(1 −𝑚)∫ 𝑢 D𝛼𝑃 ⋅ D𝛼𝑃𝐿𝛼𝑃𝑑𝜇
2

𝐴(𝑠 ,𝑆)

         

= 2(1 −𝑚)∫ 𝑢𝑚(𝐿𝛼𝑃)
2𝑑𝜇 + 2

2

𝐴(𝑠 ,𝑆)

∫ 𝑢𝑚 D𝛼𝑃 ⋅ D𝛼𝐿𝛼𝑃𝑑𝜇 
2

𝐴(𝑠 ,𝑆)

                

       −2(1 −𝑚)𝛼2∫ 𝑢𝑚𝑃  ́ 𝐿𝛼𝑃𝑑𝜍
2

𝜕𝐵𝑠

+ 2(1 −𝑚)𝛼2∫ 𝑢𝑚𝑃  ́ 𝐿𝛼𝑃𝑑𝜍
2

𝜕𝐵𝑠

.                  (50) 

Summing (49) and (50), using (46) and passing to the limits as 𝑠 → 0+, 𝑆 → +∞, 
establishes (48). 

Let us define 

𝑘[𝑃]:=
1

2
∆𝜔|∇𝜔𝑃|

2 − ∇𝜔𝑃 ⋅ ∇𝜔∆𝜔𝑃 −
1

𝑛−1
(∆𝜔𝑃)

2 − (𝑛 − 2)𝛼2|∇𝜔𝑃|
2 

and  

𝑅[𝑃]:= 𝐾[𝑃] − (
1

𝑛
− (1 −𝑚)) (𝐿𝛼𝑃)

2. 

We observe that 

𝑅[𝑃]:=
1

2
𝐿𝛼|D𝛼𝑃|

2 − D𝛼𝑃 ⋅ D𝛼𝐿𝛼𝑃 −
1

𝑛
(𝐿𝛼𝑃)

2 

is independent of 𝑚. We recall the result of [150] and give its proof for completeness. 

Lemma (4.3.5)[151]: Let 𝑑 ∈ ℕ, 𝑛 ∈ ℝ such that 𝑛 > 𝑑 ≥ 2, and consider a function 𝑃 ∈
𝐶3(ℝ𝑑\{0}). Then, 

𝑅[𝑃] = 𝛼4 (1 −
1

𝑛
) [�́́� −

�́�

𝑠
−

∆𝜔𝑃

𝛼2(𝑛 − 1)𝑠2
]

2

+
2𝛼2

𝑠2
|∇𝜔�́� −

∇𝜔𝑃

𝑠
|
2

+
𝑘[𝑃]

𝑠4
. 

Proof: By definition of  𝑘[𝑃], we have 

𝑅[𝑃] =
𝛼2

2
[𝛼2�́�2 +

|∇𝜔𝑃|
2

𝑠2
]

2́́

+
𝛼2

2

𝑛 − 1

𝑠
[𝛼2�́�2 +

|∇𝜔𝑃|
2

𝑠2
]

2́
2

                          

       +
1

2𝑠2
∆𝜔 [𝛼

2�́�2 +
|∇𝜔𝑃|

2

𝑠2
] − 𝛼2�́� (𝛼2�́́� + 𝛼2

𝑛 − 1

𝑠
�́� +

∆𝜔𝑃

𝑠2
)
2́
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                 −
1

𝑠2
∇𝜔𝑃 ⋅ ∇𝜔 (𝛼

2�́́� + 𝛼2
𝑛 − 1

𝑠
�́� +

∆𝜔𝑃

𝑠2
) −

1

𝑛
(𝛼2�́́� + 𝛼2

𝑛 − 1

𝑠
�́� +

∆𝜔𝑃

𝑠2
)
2

, 

which can be expanded as 

      R [P]=
𝛼2

2
[2𝛼2P2́́ + 2𝛼2ṔṔ́

́
+ 2

|∇ωṔ|
2
+∇ωP∙∇ωṔ́

S2
− 8

∇ωP∙∇ωṔ

S3
+ 6

|∇ωP|
2

S4
]      

                  +𝛼2
𝑛−1

𝑆
[𝛼2ṔṔ́ +

∇ωP∙∇ωṔ

S2
−
|∇ωP|

2

S3
] +

1

𝑆2
[𝛼2Ṕ∆𝜔Ṕ + 𝛼

2|∇ωṔ|
2
+
∆𝜔|∇ωP|

2

2S2
]  

                  −𝛼2Ṕ (𝛼2Ṕ́
́
+ 𝛼2

𝑛−1

𝑆
Ṕ́ − 𝛼2

𝑛−1

𝑆
Ṕ − 2

∆𝜔P

S3
+
∆𝜔Ṕ

S2
) 

                  −
1

𝑆2
(𝛼2∇ωP ∙ ∇ωṔ́ + 𝛼

2 𝑛−1

𝑆
∇ωP ∙ ∇ωṔ +

∇ωP∙∇ω∆𝜔P

S2
) 

                  −
1

𝑛
[𝛼4P2́́ + 𝛼4

(𝑛−1)2

S2
P2́ +

(∆𝜔P)
2

S4
+ 2𝛼4

𝑛−1

𝑆
ṔṔ́ + 2𝛼2

Ṕ́∆𝜔P

S2
+ 2𝛼2

𝑛−1

𝑆3
Ṕ∆𝜔P]. 

Collecting terms proves the result. 

      Now let us study the quantity 𝑘[𝑃] which appears in the statement of Lemma (4.3.5). 

The following computations are adapted from [158] and [150]. For completeness, we give 

a simplified proof in the special case of the sphere (𝕊𝑑−1, 𝑔) considered as a Riemannian 

manifold with standard metric 𝑔 . We denote by 𝐻𝑓 the Hessianoff, which is seen as 

a (𝑑 − 1) × (𝑑 − 1) matrix, identify its trace with the Laplace–Beltrami operator on 𝕊𝑑−1 

and use the notation ‖𝐴‖2: = 𝐴 ∶ 𝐴 for the sum of the squares of the coefficients of the 

matrix 𝐴. It is convenient to define the trace free Hessian, the tensor 𝑍𝑓 and its trace free 

counterpart respectively by 

𝐿𝑓 ≔ 𝐻𝑓 −
1

𝑑 − 1
(∆𝜔𝑓)𝑔,     𝑍𝑓 ≔

∇𝜔𝑓 ⊗ ∇𝜔
𝑓

   𝑎𝑛𝑑 𝑀𝑓 ≔ 𝑍𝑓 −
1

𝑑 − 1

|∇𝜔𝑓|
2

𝑓
𝑔 

whenever 𝑓 ≠ 0. Elementary computations show that  

‖𝐿𝑓‖2 = ‖𝐻𝑓‖2 −
1

𝑑−1
(∆𝜔𝑓)

2 𝑎𝑛𝑑 ‖𝑀𝑓‖2 = ‖𝑍𝑓‖2 −
1

𝑑−1

|∇𝜔𝑓|
4

𝑓2
=

𝑑−2

𝑑−1
 
|∇𝜔𝑓|

4

𝑓2
 .        (51) 

The Bochner–Lichnerowicz–Weitzenböck formula on 𝕊𝑑−1 takes the simple form 
1

2
∆𝜔(|∇𝜔𝑓|

2) = ‖𝐻𝑓‖2 + ∇𝜔(∆𝜔𝑓) ∙ ∇𝜔𝑓 + (𝑑 − 2)|∇𝜔𝑓|
2                            (52) 

where  the  last  term,  𝑖. 𝑒. Ric(∇𝜔𝑓, ∇𝜔𝑓) = (𝑑 − 2)|∇𝜔𝑓|
2,  accounts  for  the  Ricci  

curvature  tensor  contracted  with ∇𝜔𝑓 ⊗ ∇𝜔𝑓. 

We recall that 𝛼𝐹𝑆: = √
𝑑−1

𝑛−1
 and 𝜈 = 1/(1 −𝑚). Let us introduce the notations 

                   𝛿 ≔
1

𝑑 − 1
−

1

𝑛 − 1
 

and  

                B[𝑃] ≔ ∫ (
1

2
∆𝜔(|∇𝜔𝑃|

2) − ∇𝜔(∆𝜔𝑃) ∙ ∇𝜔𝑃 −
1

𝑛
(∆𝜔𝑃)

2)

1

𝕊𝑑−1

𝑃1−𝜈𝑑𝜔, 

so that  

                            ∫ 𝐾[𝑃]𝑃1−𝜈𝑑𝜔 = 𝐵[𝑃]

1

𝕊𝑑−1

− (𝑛 − 2)𝛼2 ∫ |∇𝜔𝑃
2|

1

𝕊𝑑−1

𝑃1−𝜈𝑑𝜔. 

Lemma (4.3.6)[151]: Assume that 𝑑 ≥ 2 and 1/(1 −𝑚) = 𝜈 > 𝑛 > 𝑑 . There exists a 

positive constant  𝑐(𝑛,𝑚, 𝑑) such that, for any positive function 𝑃 ∈ 𝐶3(𝕊𝑑−1), 
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∫ 𝐾[𝑃]𝑃1−𝜈𝑑𝜔 ≥

1

𝕊𝑑−1

(𝑛 − 2)(𝛼𝐹𝑆
2 − 𝛼2) ∫ |∆𝜔𝑃|

2

1

𝕊𝑑−1

𝑃1−𝜈𝑑𝜔 + 𝑐(𝑛,𝑚, 𝑑) ∫
|∇𝜔𝑃|

4

𝑃2

1

𝕊𝑑−1

𝑃1−𝜈𝑑𝜔. 

Proof:  If 𝑑 = 2, we identify 𝕊1 with [0, 2𝜋)  ∋ 𝜃 and denote by 𝑃𝜃 and 𝑃𝜃𝜃 the first and 

second derivatives of 𝑃 with respect to 𝜃. As in [150], a direct computation shows that 

𝐾[𝑃] =
𝑛− 2

𝑛 − 1
|𝑃𝜃𝜃|

2 − (𝑛 − 2)𝛼2|𝑃𝜃|
2 = (𝑛 − 2)(𝛼𝐹𝑆

2 |𝑃𝜃𝜃|
2 − 𝛼2|𝑃𝜃|

2). 

By the Poincare inequality, we have 

∫|
𝜕

𝜕𝜃
(𝑃

1−𝜈
2 𝑃𝜃)|

2
1

𝕊1

𝑑𝜃 ≥ ∫ |(𝑃
1−𝜈
2 𝑃𝜃)|

2
1

𝕊1

𝑑𝜃.                                            

On the other hand, an integration by parts shows that 

∫𝑃𝜃𝜃

1

𝕊1

|𝑃𝜃|
2

𝑃
𝑃1−𝜈𝑑𝜃 =

1

3
∫
𝜕

𝜕𝜃
(|𝑃𝜃|

2𝑃𝜃)

1

𝕊1

𝑃−𝜈𝑑𝜃 =
𝜈

3
∫
|𝑃𝜃|

4

𝑃2

1

𝕊1

𝑃1−𝜈𝑑𝜃 

and, as a consequence, by expanding the square, we obtain 

∫|
𝜕

𝜕𝜃
(𝑃

1−𝜈
2 𝑃𝜃)|

2
1

𝕊1

𝑑𝜃 = ∫ |𝑃𝜃𝜃 +
1 − 𝜈

2
 
|𝑃𝜃|

2

𝑃
|

2

𝑃1−𝜈𝑑𝜃 = ∫|𝑃𝜃𝜃|
2

1

𝕊1

1

𝕊1

𝑃1−𝜈𝑑𝜃 

−
(𝜈− 1)(𝜈+ 3)

12
∫
|𝑃𝜃|

4

𝑃2

1

𝕊1

𝑃1−𝜈𝑑𝜃. 

The result follows with 𝑐(𝑛,𝑚, 2) = 𝑛−2

𝑛−1
  1
12
 (𝜈 − 1)(𝜈 + 3) = 𝑛−2

𝑛−1
 𝑚 (4−3𝑚)
12 (1−𝑚)2

  from 

∫|𝑃𝜃𝜃|
2

1

𝕊1

𝑃1−𝜈𝑑𝜃 ≥ ∫|𝑃𝜃|
2

1

𝕊1

𝑃1−𝜈𝑑𝜃 +
(𝜈− 1)(𝜈+ 3)

12
∫
|𝑃𝜃|

4

𝑃2

1

𝕊1

𝑃1−𝜈𝑑𝜃. 

      Assume next that 𝑑 ≥ 3. We follow the method of [150]. Applying (52) with 𝑓 = 𝑃 

and multiplying by 𝑃1−𝜈 yields, after an integration on 𝕊𝑑−1, that 𝐵[𝑃] can also be written 

as 

              𝐵[𝑃] = ∫ (‖𝐻𝑃‖2 + (𝑑 − 2)|∇𝜔𝑃|
2 −

1

𝑛−1
(∆𝜔𝑃)

2)𝑃1−𝜈
1

𝕊𝑑−1

𝑑𝜔 

. 

We recall that 𝑛 > 𝑑 ≥ 3 and set 𝑃 = 𝑓𝛽  with 𝛽 = 2

3−𝜈
 . A straightforward computation 

shows that  𝐻𝑓𝛽 = 𝛽𝑓𝛽−1(𝐻𝑓 + (𝛽 − 1)𝑍𝑓)  and hence 

𝐵[𝑃] = 𝛽2 ∫ (‖𝐻𝑓 + (𝛽 − 1)𝑍𝑓‖2 + (𝑑 − 2)|∇𝜔𝑓|
2 −

1

𝑛−1
(𝑇𝑟(𝐻𝑓 + (𝛽 − 1)𝑍𝑓))

2
)

1

𝕊𝑑−1

𝑑𝜔 

                     = 𝛽2 ∫ (‖𝐿𝑓 + (𝛽 − 1)𝑀𝑓‖2 + (𝑑 − 2)|∇𝜔𝑓|
2 + 𝛿(𝑇𝑟(𝐻𝑓 + (𝛽 − 1)𝑍𝑓))

2
)𝑑𝜔.

1

𝕊𝑑−1

 

Using (51), we deduce from 

∫ ∆𝜔 𝑓

1

𝕊𝑑−1

|∇𝜔𝑓|
2

𝑓
𝑑𝜔 = ∫

|∇𝜔𝑓|
4

𝑓2

1

𝕊𝑑−1

𝑑𝜔 − 2 ∫ 𝐻𝑓: 𝑍𝑓𝑑𝜔

1

𝕊𝑑−1

                                            



148 

                                          =
𝑑−1

𝑑−2
∫ ‖𝑀𝑓‖2
1

𝕊𝑑−1

𝑑𝜔 − 2 ∫ 𝐿𝑓: 𝑍𝑓𝑑𝜔 −
2

𝑑−1

1

𝕊𝑑−1

∫ ∆𝜔 𝑓

1

𝕊𝑑−1

|∇𝜔𝑓|
2

𝑓
𝑑𝜔 

that 

            ∫ ∆𝜔 𝑓

1

𝕊𝑑−1

|∇𝜔𝑓|
2

𝑓
𝑑𝜔 =

𝑑−1

𝑑+1
[
𝑑 − 1

𝑑 − 2
∫ ‖𝑀𝑓‖2
1

𝕊𝑑−1

𝑑𝜔 − 2 ∫ 𝐿𝑓: 𝑍𝑓𝑑𝜔

1

𝕊𝑑−1

]  

                                                                               
𝑑−1

𝑑+1
[ ∫

𝑑 − 1

𝑑 − 2
‖𝑀𝑓‖2

1

𝕊𝑑−1

𝑑𝜔 − 2 ∫ 𝐿𝑓:𝑀𝑓𝑑𝜔

1

𝕊𝑑−1

] 

on the one hand, and from (52) integrated on 𝕊𝑑−1 that 

          ∫ (∆𝜔𝑓)
2𝑑𝜔 =

𝑑−1

𝑑−2
∫ ‖𝐿𝑓‖2
1

𝕊𝑑−1

11

𝕊𝑑−1

𝑑𝜔 + (𝑑 − 1) ∫ |∇𝜔𝑓|
2𝑑𝜔

1

𝕊𝑑−1

 

on the other hand. Hence we find that 

∫ (𝑇𝑟(𝐻𝑓 + (𝛽 − 1)𝑍𝑓))2𝑑𝜔 = ∫ ((∆𝜔𝑓)
2 + 2(𝛽− 1)∆𝜔 𝑓

|∇𝜔𝑓|
2

𝑓
+ (𝛽 − 1)2

|∇𝜔𝑓|
4

𝑓
2

)𝑑𝜔

11

𝕊𝑑−1

1

𝕊𝑑−1

 

                                                   =
𝑑−1

𝑑−2
∫ ‖𝐿𝑓‖2
1

𝕊𝑑−1

𝑑𝜔 + (𝑑 − 1) ∫ |∇𝜔𝑓|
2𝑑𝜔

1

𝕊𝑑−1

 

                                                       +2(𝛽 − 1)
𝑑−1

𝑑+1
[ ∫

𝑑 − 1

𝑑 − 2
‖𝑀𝑓‖2

1

𝕊𝑑−1

𝑑𝜔 − 2 ∫ 𝐿𝑓:𝑀𝑓𝑑𝜔

1

𝕊𝑑−1

] 

                                                                                                     +(𝛽 − 1)2
𝑑 − 1

𝑑 − 2
∫ ‖𝑀𝑓‖2
1

𝕊𝑑−1

𝑑𝜔. 

Altogether, we obtain 

B[𝑃] = 𝛽2 ∫(𝑎‖𝐿𝑓‖2 + 2𝑏𝐿𝑓:𝑀𝑓 + 𝑐‖𝑀𝑓‖2)𝑑𝜔 +

1

𝕊𝑑−1

𝛽2(𝑑 − 2 + 𝛿(𝑑 − 1)) ∫ |∇𝜔𝑓|
2

1

𝕊𝑑−1

𝑑𝜔, 

where  

𝑎 = 1 + 𝛿
 𝑑−1

𝑑−2
 ,   𝑏 = (𝛽 − 1) (1 − 2𝛿

 𝑑−1

𝑑+1
)    𝑎𝑛𝑑 𝑐 = (𝛽 − 1)2 (1 + 𝛿

 𝑑−1

𝑑−2
) + 2(𝛽 − 1)

 𝛿(𝑑 − 1)2

(𝑑 + 1)(𝑑 − 2)
. 

A tedious but elementary computation shows that 

B[𝑃] = 𝑎𝛽2 ∫ ‖𝐿𝑓 +
𝑏

𝑎
 𝑀𝑓‖

2

𝑑𝜔(𝑐 −
𝑏2

𝑎
) 𝛽2

1

𝕊𝑑−1

∫‖𝑀𝑓‖2𝑑𝜔 +  𝛽2(𝑛 − 1)𝛼𝐹𝑆
2 + ∫ |∇𝜔𝑓|

2

1

𝕊𝑑−1

𝑑𝜔

1

𝕊𝑑−1

 

can be written in terms of  𝑃 as 

B[𝑃] = ∫ Q [𝑃]𝑃1−𝑣𝑑𝜔 + (𝑛 − 1)𝛼𝐹𝑆
2

1

𝕊𝑑−1

∫ |∇𝜔𝑃|
2

1

𝕊𝑑−1

𝑃1−𝑣𝑑𝜔,                                    

where 

𝑄[𝑃]: = 𝛼𝐹𝑆 
2 𝑛−2

𝑑−2
‖𝐿𝑃 +

3(𝑣−1)(𝑛−𝑑)

(𝑑+1)(𝑛−2)(𝑣−3)
𝑀𝑃‖

2

+
(𝑑−1)(𝑣−1)(𝑛−𝑑)[((4𝑑−5) 𝑛+𝑑−8) 𝑣+9(𝑛−𝑑))]

(𝑑−2)(𝑑+1)2(𝑣−3)2 (𝑛−2)(𝑛−1)
‖𝑀𝑃‖2 
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is positive definite. This concludes the proof in the case  𝑑 ≥ 3  with 𝑐(𝑛,𝑚, 𝑑) =
𝑚(𝑛−𝑑)[4(𝑑+1)(𝑛−2)−9𝑚(𝑛−𝑑)]

(𝑑+1)2(3𝑚−2)2(𝑛−2)(𝑛−1)
. 

       Let us recall that 

𝐾[𝑃] = 𝑅[𝑃] + (
1

𝑛
− (1 −𝑚)) (ℒ𝛼𝑃)

2.                                                    

We can collect the two results of  Lemmas (4.3.5) and (4.3.6) as follows. 

Corollary (4.3.7) [151]:. Let 𝑑 ∈ ℕ, 𝑛 ∈ ℝ  be such that 𝑛 > 𝑑 ≥ 2 , and consider a 

positive function 𝑃 ∈ 𝐶3(ℝ 𝑑 \{0}). If 𝑢  is related to 𝑃  by 𝑃 = 𝑚

1−𝑚
𝑢𝑚−1  for some 𝑚 ∈

(1 − 1

𝑛
 , 1), then there exists a positive constant 𝑐(𝑛,𝑚, 𝑑) such that 

∫𝑅[𝑃]𝑢𝑚
1

ℝ𝑑

𝑑𝜇 ≥ 𝛼4 (1 −
1

𝑛
) ∫ [�́́� −

�́�

𝑠
−

∆𝜔𝑃

𝛼2(𝑛−1)𝑠2
]
2

1

ℝ𝑑

𝑢𝑚𝑑𝜇 + 2𝛼2 ∫ 1

𝑠2

1

ℝ𝑑

|∇𝜔�́� −
∇𝜔𝑃

𝑠
|
2

𝑢𝑚𝑑𝜇 

                                   +(𝑛 − 2)(𝛼𝐹𝑆
2 − 𝛼2) ∫ 1

𝑆4
|∇𝜔𝑃|

2𝑢𝑚

1

ℝ𝑑

𝑑𝜇 + 𝑐(𝑛,𝑚, 𝑑) ∫ 1

𝑆4
|
∇𝜔𝑃

𝑃2
|
2
𝑢𝑚

1

ℝ𝑑

𝑑𝜇. 

  We keep investigating the properties of the flow defined by(44). Let us define the 

entropy as 

                       𝐸 ≔ ∫𝑢𝑚
1

ℝ𝑑

𝑑𝜇 

and observe that 

                        �́� = (1 − 𝑚)𝐼 
if 𝑢 solves(44), after integrating by parts. The fact that boundary terms do not contribute, 

i.e. 

lim
𝑠→0+

∫𝑢𝑚�́�𝑑𝜍

1

𝜕𝐵𝑠

= lim
𝑆→+∞

∫ 𝑢𝑚�́�𝑑𝜍 =

1

𝜕𝐵𝑆

0                                                              (53) 

will be justified: see Proposition (4.3.12). Note that we use both for derivation 𝑤. 𝑟. 𝑡.  𝑡 
and 𝑤. 𝑟. 𝑡.  𝑠, at least when this does not create any ambiguity. We introduce the Renyi 

entropy power 

                      𝐹: = 𝐸𝜎 
for some exponent 𝜎 to be chosen later, and find that �́� = 𝜎(1 −𝑚) 𝐺 where  𝐺:= 𝐸𝜎−1𝐼. 

With 𝐻:= 𝐸−𝜎�́� , by using Lemma (4.3.4), we also find that  𝐸−𝜎 �́́� = 𝜎(1 − 𝑚) 𝐻 

where. 

𝐸2𝐻 = 𝐸2−𝜎�́� =
1

𝜎(1−𝑚)
𝐸2−𝜎�́́� = (1 − 𝑚)(𝜎 − 1)( ∫𝑢|𝐷𝛼𝑃|

2𝑑𝜇 

1

ℝ𝑑

)

2

− 2 ∫𝑢𝑚𝑑𝜇 ∫𝐾[𝑃]𝑢𝑚𝑑𝜇 

1

ℝ𝑑

1

ℝ𝑑

 

     = (1 −𝑚)(𝜎 − 1)( ∫𝑢|𝐷𝛼𝑃|
2𝑑𝜇 

1

ℝ𝑑

)

2

− 2(
1

𝑛
− (1 −𝑚)) ∫𝑢𝑚𝑑𝜇 ∫(ℒ𝛼𝑃)

2𝑢𝑚𝑑𝜇  

1

ℝ𝑑

 

1

ℝ𝑑

 

                    −2 ∫𝑢𝑚𝑑𝜇 ∫𝑅[𝑃]𝑢𝑚𝑑𝜇  

1

ℝ𝑑

 

1

ℝ𝑑
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if  lim
𝑠→0+

𝑏(𝑠) = lim
𝑆→+∞

𝑏(𝑆) = 0. Using 𝑢 𝐷𝛼𝑃 = −𝐷𝛼(𝑢
𝑚), we know that 

  ∫𝑢|𝐷𝛼𝑃|
2𝑑𝜇 

1

ℝ𝑑

= − ∫𝐷𝛼(𝑢
𝑚) ∙ 𝐷𝛼𝑃𝑑𝜇 =

1

ℝ𝑑

∫𝑢𝑚ℒ𝛼𝑃𝑑𝜇  

1

ℝ𝑑

                                          

and so, with the choice 

            𝜎 =
2

𝑛
   

1

1 − 𝑚
− 1, 

we may argue as and get that  

𝐸2𝐻 + (1 −𝑚)(𝜎 − 1)𝐸 ∫𝑢𝑚 |ℒ𝛼𝑃 −
∫ 𝑢|𝐷𝛼𝑃|

2𝑑𝜇 
1

ℝ𝑑

∫ 𝑢𝑚𝑑𝜇 
1

ℝ𝑑

|

2

 𝑑𝜇 + 2𝐸 ∫𝑅[𝑃]𝑢𝑚𝑑𝜇 = 0 

1

ℝ𝑑

1

ℝ𝑑

 

if  lim
𝑠→0+

𝑏(𝑠) = lim
𝑆→+∞

𝑏(𝑆) = 0. So, if 𝛼 ≤ 𝛼𝐹𝑆 and 𝑃 is of class 𝐶3, by Corollary (4.3.7), 

as a function of  𝑡, 𝐹 is concave, that is, 𝐺 = 𝐸σ−1I is non-increasing in t. Formally, 𝐺 

converges towards a minimum, for which necessarily ℒ𝛼𝑃 is a constant and  𝑅[𝑃] = 0, 

which proves that 𝑃(𝑥) = 𝑎 + 𝑏|𝑥|2  for some real constants a and b, according to 

Corollary (4.3.7). Since 2(1−𝜗)
𝜗(𝑝+1)

 = 𝜎 − 1 , the minimization of 𝐺 under the mass constraint 

∫ 𝑢𝑑𝜇 = ∫ 𝑣2𝑝𝑑𝜇 
1

ℝ𝑑
1

ℝ𝑑
 is equivalent to the Caffarelli–Kohn–Nirenberg interpolation 

inequalities (31), since for some constant 𝜅 , 

                 𝐺 = 𝐸𝜎−1𝐼 = 𝜅 ( ∫𝑣𝑝+1𝑑𝜇 

1

ℝ𝑑

)

𝜎−1

∫|𝐷𝛼𝑣|
2𝑑𝜇 

1

ℝ𝑑

 𝑤𝑖𝑡ℎ   𝑣 = 𝑢𝑚−1 2⁄ . 

We emphasize that (44) preserves mass, that is, 𝑑

𝑑𝑡
∫ 𝑣2𝑝𝑑𝜇 
1

ℝ𝑑
 = 𝑑

𝑑𝑡
∫ 𝑢𝑑𝜇 
1

ℝ𝑑
 =

∫ ℒ𝛼𝑢
𝑚𝑑𝜇 

1

ℝ𝑑
 = 0 because, as we shall see in Proposition (4.3.12), no boundary terms 

appear when integrating by parts if v is an extremal function associated with(36). In 

particular, for mass conservation we need 

lim
𝑠→0+

∫  

1

𝜕𝐵𝑠

𝑢�́�𝑑𝜍 = lim
𝑆→+∞

∫  

1

𝜕𝐵𝑆

𝑢�́�𝑑𝜍 = 0.                                                         (54) 

      The above remarks on the monotonicity of 𝐺  and the symmetry properties of its 

minimizers can in fact be extended to the analysis of the symmetry properties of all critical 

points of 𝐺. This is actually the contents of  Theorem (4.3.8). 

Theorem (4.3.8)[151]: Assume that (32) and (34) hold. Then all positive solutions to (35) 

in 𝐻𝛽∙ 𝛾
𝑝
, (ℝ𝑑)  are radially symmetric and, up to a scaling and 𝑎  multiplication by 𝑎 

constant, equal to 𝑤∗. 
      Up to a multiplication by a constant, we know that all non-trivial extremal functions 

for (31) are non-negative solutions to (35). Non-negative solutions to (35) are actually 

positive by the standard Strong Maximum principle. Theorem (4.3.1) is therefore a 

consequence of Theorem (4.3.8). In the particular case when 𝛽 = 0, the condition(23) 

amounts to 𝑑 ≥ 2, 𝛾 ∈ (0, 2), 𝑝 ∈ (1, (𝑑 − 𝛾)/(𝑑 − 2)] , and(31) can be written as 

                  ‖𝑤‖𝐿2𝑝 ,𝛾(ℝ𝑑) ≤ 𝐶0,𝛾,𝑝‖∇𝑤‖𝐿2(ℝ𝑑)
𝜗 ‖𝑤‖

𝐿𝑝+1 ,𝛾(ℝ𝑑)
1−𝜗        ∀𝑤 ∈ 𝐻0 ,𝛾 

𝑝 (ℝ𝑑) . 

In this case, we deduce from Theorem (4.3.1) that symmetry always holds. This is 

consistent with 𝑎 previous result ( 𝛽 = 0 and 𝛾 > 0, close to 0) obtained in [160]. A few 
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other cases were already known. The Caffarelli–Kohn–Nirenberg inequalities that were 

discussed in [150] correspond to the critical case 𝜃 = 1, 𝑝 = 𝑝∗ or, equivalently  𝛽 = 𝑑 −
2 + (𝛾 − 𝑑)/𝑝 . Here by critical we simply mean that ‖𝑤‖𝐿2𝑝 ,𝛾(ℝ𝑑)  scales like 

‖∇𝑤‖𝐿2 ,𝛽(ℝ𝑑) . The limit case 𝛽 = 𝛾 − 2  and 𝑝 = 1 , which is an endpoint for (32), 

corresponds to Hardy-type inequalities: there is no extremal function, but optimality is 

achieved among radial functions: see [140]. The other endpoint is 𝛽 = (𝑑 − 2) 𝛾/𝑑, in 

which case 𝑝∗ = 𝑑/(𝑑 − 2). The results of Theorem (4.3.1) also hold in that case with 

𝑝 = 𝑝∗ = 𝑑/(𝑑 − 2)., up to existence issues: according to [1], either 𝛾 ≥ 0, symmetry 

holds and there exists a symmetric extremal function, or 𝛾 < 0, and then symmetry is 

broken, but there is no optimal function. 

       Inequality (31) can be rewritten as an interpolation inequality with same weights on 

both sides using a change of variables. Here we follow the computations in [155] (also see 

[150], [147]). Written in spherical coordinates for a function 

                 �̃�(𝑟, 𝜔) = 𝑤(𝑥),       with 𝑟 = |𝑥|       and     ω =
𝑥

|𝑥| 
,   

inequality (31) becomes 

(∫  

∞

0

∫  

∞

𝕊𝑑−1

|�̃�|2𝑝 𝑟𝑑−𝛾−1𝑑𝑟𝑑𝜔)

1
2𝑝

  

≤ 𝐶𝛽,𝛾,𝑝 (∫  

∞

0

∫  

∞

𝕊𝑑−1

| ∇�̃�|2 𝑟𝑑−𝛽−1𝑑𝑟𝑑𝜔)

𝜗
2

(∫  

∞

0

∫  

∞

𝕊𝑑−1

|�̃�|𝑝+1 𝑟𝑑−𝛾−1𝑑𝑟𝑑𝜔)

1−𝜗
𝑝+1

, 

where  |∇�̃�|2 = |𝜕�̃�
𝜕𝑟
|
2
+ 1

𝑟2
 |∇ω�̃�|

2 and ∇ω�̃� denotes the gradient of  �̃� with respect to the 

angular variable  𝜔 ∈ 𝕊𝑑−1. Next we consider the change of variables  𝑟 ↦ 𝑠 = 𝑟 𝛼 , 
�̃�(𝑟, 𝜔) = 𝑣(𝑠, 𝜔)      ∀(𝑟, 𝜔) ∈ ℝ+ × 𝕊𝑑−1,                                                     (55) 

where 𝛼 and 𝑛 are two parameters such that 

𝑛 =
𝑑 − 𝛽 − 2

𝛼
+ 2 =

𝑑 − 𝛾

𝛼
. 

Our inequality can therefore be rewritten as 

   (∫  

∞

0

∫  

∞

𝕊𝑑−1

|𝑣|2𝑝 𝑠𝑛−1𝑑𝑠𝑑𝜔)

1
2𝑝

   

          ≤ 𝐾𝛼,𝑛,𝑝 (∫  

∞

0

∫  

∞

𝕊𝑑−1

(𝛼2 |
𝜕𝑣

𝜕𝑠
|
2

+
1

𝑠2
|∇𝜔𝑣|

2)  𝑠𝑛−1𝑑𝑠𝑑𝜔2)

𝜗
2

(∫  

∞

0

∫  

∞

𝕊𝑑−1

|𝑣|𝑝+1 𝑠𝑛−1𝑑𝑠𝑑𝜔)

1−𝜗
𝑝+1

, 

with 

𝐶𝛽,𝛾,𝑝 = 𝛼
𝜁𝐾𝛼,𝑛,𝑝    𝑎𝑛𝑑  𝜁 ≔

𝜗

2
+
1 − 𝜗

𝑝 + 1
−
1

2𝑝
=

(𝛽 + 2 − 𝛾)(𝑝 − 1)

2𝑝(𝑑 + 𝛽 + 2 − 2𝛾 − 𝑝(𝑑 − 𝛽 − 2))
 

Using the notation 

                 𝐷𝛼 𝑣 = (𝛼
𝜕𝑣

𝜕𝑠
 ,
1

𝑠
∇𝜔𝑣) , 

with  
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                   𝛼 = 1 +
𝛽 − 𝛾

2
     𝑎𝑛𝑑   𝑛 = 2 

𝑑 − 𝛾

𝛽 + 2 − 𝛾
 , 

Inequality (31) is equivalent to a Gagliardo–Nirenberg type inequality corresponding to an 

artificial dimension 𝑛 or, to be precise, to a Caffarelli–Kohn–Nirenberg  inequality with 

weight  |𝑥|𝑛−𝑑 in all terms. Notice that 

                    𝑝∗ =
𝑛

𝑛 − 2
. 

Proof: Let 𝑤 be a positive solution to equation (35). As pointed out above, by choosing 

                𝑤(𝑥) = 𝑢𝑚−1 2⁄ (𝑟𝛼 , 𝜔), 

we know that 𝑢 is a critical point of 𝐺 under a mass constraint on ∫ 𝑢𝑑𝑥 
1

ℝ𝑑
, so that we can 

write the corresponding Euler–Lagrange equation as 𝑑𝐺[𝑢]  = 𝐶 , for some constant 𝐶 . 

That is, ∫  
1

ℝ𝑑
𝑑𝐺[𝑢]  · ℒ𝛼𝑢

𝑚𝑑𝜇 = 𝐶 ∫  
1

ℝ𝑑
ℒ𝛼𝑢

𝑚𝑑𝜇 = 0 thanks to (54). Using ℒ𝛼𝑢
𝑚  as a 

test function amounts to apply the flow of (44) to 𝐺 with initial datum 𝑢 and compute the 

derivative with respect to 𝑡 at  𝑡 = 0. This means 

     0 = ∫  

1

ℝ𝑑

𝑑𝐺[𝑢] · ℒ𝛼𝑑𝜇 = 𝐸
𝜎𝐻    

  = −(1 −𝑚)(𝜎 − 1)𝐸𝜎−1 ∫  𝑢𝑚
1

ℝ𝑑

|ℒ𝛼𝑃 −
∫  𝑢|𝐷𝛼𝑃|

2𝑑𝜇
1

ℝ𝑑

∫  𝑢𝑚𝑑𝜇
1

ℝ𝑑

|

2

𝑑𝜇 − 2𝐸𝜎−1 ∫  

1

ℝ𝑑

𝑅[𝑃]𝑢𝑚𝑑𝜇  

if lim
𝑠→0+

𝑏(𝑠) = lim
𝑆→+∞

𝑏(𝑆) = 0 and (53) holds. Here we have used Lemma (4.3.4). We 

emphasize that this proof is purely variational and does not rely on the properties of the 

solutions to (44), although using the flow was very useful to explain our strategy. All we 

need is that no boundary term appears in the integrations by parts. Hence, in order to 

obtain a complete proof, we have to prove that (47), (53) and(54) hold with 𝑏 defined 

by(46), whenever 𝑢 is a critical point of 𝐺 under mass constraint. This will be done in 

Proposition (4.3.12). Using Corollary (4.3.7), we know that 𝑅[𝑃] = 0, ∇𝜔𝑃 = 0 a.e.in ℝ𝑑 

and ℒ𝛼𝑃 =
∫  𝑢|𝐷𝛼𝑃|

2𝑑𝜇
1

ℝ𝑑

∫  𝑢𝑚𝑑𝜇
1

ℝ𝑑

𝑎. 𝑒. 𝑖𝑛 ℝ𝑑 , 𝑤𝑖𝑡ℎ  𝑃 = 𝑚

1−𝑚
 𝑢𝑚−1. We conclude as in [150] that 𝑃 

is an affine function of 𝑠2. 
We prove the regularity and decay estimates on 𝑤 (or on 𝑃 or 𝑢) that are necessary 

to establish the absence of  boundary terms in the integrations  

Lemma(4.3.9)[151]: Let 𝛽, 𝛾 and p satisfy the relations(32). Any positive solution 𝑤 of 

(35) such that 

‖𝑤‖𝐿2𝑝 ,𝛾(ℝ𝑑) + ‖∇𝑤‖𝐿2,𝛽(ℝ𝑑)
𝜗 +‖𝑤‖

𝐿𝑝+1 ,𝛾(ℝ𝑑)
1−𝜗   < +∞.                                      (56) 

is uniformly bounded and tends to 0 at infinity, uniformly in |𝑥|. 
Proof: The strategy of the first part of the proof is similar to the one in [160], which was 

restricted to the case 𝛽 = 0. 
      Let us set 𝛿0: = 2(𝑝∗ − 𝑝).  For any 𝐴 > 0 , we multiply(35) by (𝑤 ∧ 𝐴) 1+𝛿0  and 

integrate by parts (or, equivalently, plug it in the weak formulation of (35)): we point out 

that the latter is indeed an admissible test function since 𝑤 ∈ 𝐻𝛽,𝛾
𝑝 (ℝ𝑑). In that way, by 

letting 𝐴 → +∞, we obtain the identity 
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4(1 + 𝛿0)

(2 + 𝛿0)
∫  |∇𝑤1+𝛿0 2⁄ |

2
|𝑥|−𝛽𝑑𝑥 +

1

ℝ𝑑

∫  𝑤𝑝+1+𝛿0|𝑥|−𝛾𝑑𝑥 =

1

ℝ𝑑

∫  𝑤2𝑝+𝛿0|𝑥|−𝛾𝑑𝑥.

1

ℝ𝑑

 

By applying (31) with 𝑝 = 𝑝∗ (so that 𝜗 = 1) to the function 𝑤 = 𝑤1+𝛿0/2, we deduce that 

‖𝑤‖
𝐿2𝑝+𝛿1 ,𝛾(ℝ𝑑)

2+𝛿0 ≤
(2 + 𝛿0)

2

4(1 + 𝛿0)
𝐶𝛽,𝛾,𝑝∗
2 ‖𝑤‖

𝐿2𝑝+𝛿0 ,𝛾(ℝ𝑑)

2𝑝+𝛿0  

with 2𝑝 + 𝛿1 = 𝑝∗(2 + 𝛿0) . Let us define the sequence {𝛿𝑛}by the induction relation 

𝛿𝑛+1: = 𝑝∗(2 + 𝛿𝑛) − 2 𝑝 for any 𝑛 ∈ ℕ, that is, 

                    𝛿𝑛 = 2
𝑝∗ − 𝑝

𝑝∗ − 1
(𝑝∗

𝑛+1 − 1)  ∀𝑛 ∈ ℕ, 

and take 𝑞𝑛 = 2 𝑝 + 𝛿𝑛. If we repeat the above estimates with 𝛿0 replaced by 𝛿𝑛 and 𝛿1 

replaced by 𝛿𝑛+1, we get 

                    ‖𝑤‖
𝐿𝑞𝑛+1 ,𝛾(ℝ𝑑)

2+𝛿𝑛 ≤
(2 + 𝛿𝑛)

2

4(1 + 𝛿𝑛)
𝐶𝛽,𝛾,𝑝∗
2 ‖𝑤‖

𝐿𝑞𝑛 ,𝛾(ℝ𝑑)

𝑞𝑛 . 

By iterating this estimate, we obtain the estimate 

‖𝑤‖
𝐿𝑞𝑛+1 ,𝛾(ℝ𝑑)

2+𝛿𝑛 ≤ 𝐶𝑛‖𝑤‖𝐿2𝑝∗ ,𝛾(ℝ𝑑)
𝜁𝑛    with   𝜁𝑛 ≔

(𝑝∗ − 1)𝑝∗
𝑛

𝑝 − 1 + (𝑝∗ − 𝑝)𝑝∗
𝑛
,        

where the sequence {𝐶𝑛} is defined by 𝐶0 = 1 and 

                  𝐶𝑛+1
2+𝛿𝑛 =

(2 + 𝛿𝑛)
2

4(1 + 𝛿𝑛)
𝐶𝛽,𝛾,𝑝∗
2 𝐶𝑛

𝑞𝑛    ∀𝑛 ∈ ℕ. 

The sequence {𝐶𝑛} converges to a finite limit 𝐶∞. Letting  𝑛 → ∞ we obtain the uniform 

bound 

         ‖𝑤‖
𝐿∞(ℝ𝑑)

2+𝛿𝑛 ≤ 𝐶∞‖𝑤‖𝐿2𝑝∗ ,𝛾(ℝ𝑑)
𝜁∞ ≤ 𝐶∞ (𝐶𝛽,𝛾,𝑝∗

2 ‖∇𝑤‖
𝐿2,𝛽(ℝ𝑑)
𝜗 )

𝜁∞
≤ 𝐶∞ (𝐶𝛽,𝛾,𝑝∗

2 ‖𝑤‖
𝐿2𝑝,𝛾(ℝ𝑑)

𝑝 )
𝜁∞

 

where 𝜁∞ ≔
𝑝∗−1

𝑝∗−𝑝
= lim

𝑛→+∞
𝜁𝑛. 

      In order to prove that lim 
|𝑥|→∞

𝑤(𝑥) = 0, we can suitably adapt the above strategy. We 

shall do it as follows: we truncate the solution so that the truncated function is supported 

outside of a ball of radius 𝑅0 and apply the iteration scheme. Up to an enlargement of the 

ball, that is, outside of a ball of radius 𝑅∞ = 𝑎 𝑅0 for some fixed numerical constant 𝑎 >
1, we get that ‖𝑤‖𝐿∞(𝐵𝑅∞

𝑐 ) is bounded by the energy localized in 𝐵𝑅0
𝑐 . The conclusion will 

hold by letting 𝑅0 → +∞. Let us give some details. 

      Let 𝜉 ∈ 𝐶∞(ℝ+) be a cut-off function such that 0 ≤ 𝜉 ≤ 1, 𝜉 ≡ 0 in  [0, 1)  and 𝜉 ≡
1 in (2,+∞). Given 𝑅0 ≥ 1, consider the sequence of radii defined by  

                       𝑅𝑛+1 = (1 +
1

𝑛2
)𝑅𝑛   ∀𝑛 ∈ ℕ. 

By taking logarithms, it is immediate to deduce that {𝑅𝑛}is monotone increasing and that 

there exists 𝑎 > 1 such that  

                      𝑅∞ ≔ lim
𝑛→∞

𝑅𝑛 = 𝑎𝑅0. 

Let us then define the sequence of radial cut-off functions {𝜉𝑛} by 

                  𝜉𝑛(𝑥) ≔ 𝜉2 (
|𝑥| − 𝑅𝑛
𝑅𝑛+1 − 𝑅𝑛

+ 1)     ∀𝑥 ∈ ℝ𝑑 . 

Direct computations show that there exists some constant 𝑐 > 0, which is independent of 

𝑛 and 𝑅0, such that 
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                   |∇𝜉𝑛(𝑥)| ≤ 𝑐
𝑛2

𝑅𝑛
𝜒𝐵𝑅𝑛+1\𝐵𝑅𝑛 , |∇𝜉𝑛

1 2⁄ (𝑥)|  

≤ 𝑐
𝑛2

𝑅𝑛
𝜒𝐵𝑅𝑛+1\𝐵𝑅𝑛  ,

|∆𝜉𝑛(𝑥)| ≤ 𝑐
𝑛4

𝑅𝑛
2
𝜒𝐵𝑅𝑛+1\𝐵𝑅𝑛    ∀𝑥 ∈ ℝ

𝑑  .           (57) 

From here on we denote by , �́� , etc. positive constants that are all independent of  𝑛 and  

𝑅0. We now introduce the analogue of the sequence { 𝛿𝑛} above, which we relabel { 𝜎𝑛 } 
to avoid confusion. Namely, we set  𝜎0: = 2 𝑝 − 2 and 𝜎𝑛+1 = 𝑝∗(2 + 𝜎𝑛) − 2, so that 

𝜎𝑛 = 2(𝑝 𝑝∗
𝑛 − 1). If we multiply (35) by  𝜉𝑛𝑤

1+𝜎𝑛  and integrate by parts, we obtain: 

    ∫∇ (𝜉𝑛𝑤
1+𝜎𝑛) ∙ ∇𝑤|𝑥|−𝛽𝑑𝑥 +

1

ℝ𝑑

∫  𝜉𝑛𝑤
𝑝+1+𝜎𝑛|𝑥|−𝛾𝑑𝑥 =

1

ℝ𝑑

∫  𝜉𝑛𝑤
2𝑝+𝜎𝑛|𝑥|−𝛾𝑑𝑥 ,

1

ℝ𝑑

 

whence 

       
4(1+𝜎𝑛)

(2+𝜎𝑛)
2  ∫ 𝜉𝑛 |∇𝑤

1+𝜎𝑛 2⁄ |
2
|𝑥|−𝛽𝑑𝑥 +

1

ℝ𝑑

1

2 + 𝜎𝑛
∫  ∇𝜉𝑛 ∙ ∇𝑤

2+𝜎𝑛|𝑥|−𝛽𝑑𝑥         

1

ℝ𝑑

≤ ∫  𝑤2𝑝+𝜎𝑛|𝑥|−𝛾𝑑𝑥 .

1

𝐵𝑅𝑛
𝑐

 

By integrating by parts the second term in the l.h.s. and combining this estimate with 

∫|∇ (𝜉𝑛
1 2⁄ 𝑤1+𝜎𝑛 2⁄ )|

2
|𝑥|−𝛽𝑑𝑥 ≤ 2

1

ℝ𝑑

∫  𝜉𝑛|∇𝑤
1+𝜎𝑛 2⁄ |

2
|𝑥|−𝛽𝑑𝑥 + 2

1

ℝ𝑑

∫  | ∇𝜉𝑛
1 2⁄ |

2
𝑤2+𝜎𝑛|𝑥|−𝛽𝑑𝑥 ,

1

ℝ𝑑

  

we end up with 

 
2(1+𝜎𝑛)

(2+𝜎𝑛)
2 ∫|∇ (𝜉𝑛

1 2⁄ 𝑤1+𝜎𝑛 2⁄ )|
2
|𝑥|−𝛽𝑑𝑥 −

1

ℝ𝑑

4(1+𝜎𝑛)

(2+𝜎𝑛)
2 ∫| ∇𝜉𝑛

1 2⁄ |
2
 𝑤2+𝜎𝑛|𝑥|−𝛽𝑑𝑥

1

ℝ𝑑

              

                    −
1

2 + 𝜎𝑛
∫  (|𝑥|−𝛽∆𝜉𝑛−𝛽|𝑥|

−𝛽−2𝑥 ∙ ∇𝜉𝑛
2
)𝑤2+𝜎𝑛  𝑑𝑥 ≤

1

ℝ𝑑

∫  𝑤2𝑝+𝜎𝑛|𝑥|−𝛾𝑑𝑥.

1

𝐵𝑅𝑛
𝑐

 

Thanks to (57), we can deduce that 

 

∫|∇ (𝜉𝑛
1 2⁄
𝑤1+𝜎𝑛 2⁄ )|

2
|𝑥|−𝛽𝑑𝑥 ≤

1

ℝ𝑑

∫ (
2c2 + c

Rn
2

n4 +
β c

Rn
n2|𝑥|−1) 𝑤2+𝜎𝑛|𝑥|−𝛽𝑑𝑥

1

𝐵𝑅𝑛+1\𝐵𝑅𝑛

     

+
(2 + 𝜎𝑛)

2

2(1 + 𝜎𝑛)
∫  𝑤2𝑝+𝜎𝑛|𝑥|−𝛾𝑑𝑥.

1

𝐵𝑅𝑛
𝑐

  

In particular, 

∫|∇ (𝜉𝑛
1 2⁄ 𝑤1+𝜎𝑛 2⁄ )|

2
|𝑥|−𝛽𝑑𝑥

1

ℝ𝑑

≤ �́�𝑛4 ∫  𝑤2+𝜎𝑛|𝑥|−𝛽−2𝑑𝑥 +
(2 + 𝜎𝑛)

2

2(1 + 𝜎𝑛)

1

𝐵𝑅𝑛
𝑐

‖𝑤‖∞
2𝑝−2

∫  𝑤2+𝜎𝑛|𝑥|−𝛾𝑑𝑥.

1

𝐵𝑅𝑛
𝑐
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Since (32) implies that 𝛽 + 2 > 𝛾 , by exploiting the explicit expression of 𝜎𝑛  and 

applying(31) with 𝑝 = 𝑝∗ (and 𝜗 = 1) to the function 𝜉𝑛
1 2⁄ 𝑤1+𝜎𝑛 2⁄ , we can rewrite our 

estimate as 

                         ‖𝑤‖
𝐿2+𝜎𝑛+1 , 𝛾 (𝐵𝑅𝑛+1

𝑐 )

2+𝜎𝑛 ≤ �́́�𝑝∗
𝑛‖𝑤‖

𝐿2+𝜎𝑛 𝛾 (𝐵𝑅𝑛
𝑐 )

2+𝜎𝑛 . 

After iterating the scheme and letting 𝑛 → ∞, we end up with 

                         ‖𝑤‖
𝐿∞ (𝐵𝑅∞

𝑐 )

2+𝜎𝑛 ≤ �́́� ́ 𝑝∗
𝑛‖𝑤‖

𝐿2𝑝,𝛾 (𝐵𝑅0
𝑐 )

2+𝜎𝑛 . 

Since  𝑤  is bounded in 𝐿2𝑝 ,𝛾(ℝ𝑑), in order  to prove the claim, it is enough to let 𝑅0 →
+∞. 
Lemma (4.3.10)[151]: Let 𝛽, 𝛾 and 𝑝 satisfy the relations (32). Any positive solution 𝑤 of 

(35) satisfying (56) is such that 𝑤 ∈ 𝐶∞(ℝ𝑑\{0}) and there exist two positive constants, 

𝐶1and 𝐶2with 𝐶1 < 𝐶2, such that for |𝑥| large enough, 

                         𝐶1|𝑥|
(𝛾−2−𝛽) (𝑝−1)⁄ ≤ 𝑤(𝑥) ≤ 𝐶2|𝑥|

(𝛾−2−𝛽) (𝑝−1)⁄ . 
Proof:  By  Lemma (4.3.9)   and  elliptic   bootstrapping  methods  we  know  that  𝑤 ∈

𝐶∞(ℝ𝑑\{0}) . Let us now consider the function ℎ(𝑥) ∶= 𝐶|𝑥|(𝛾−2−𝛽) (𝑝−1)⁄  , which 

satisfies the differential inequality 

                       −div(|𝑥|−𝛽∇ℎ) + (1 − 𝜀)|𝑥|−𝛾ℎ𝑝 ≥ 0    ∀𝑥 ∈ ℝ𝑑\{0}  

for any 𝜀 ∈ (0, 1) and 𝐶  such that 𝐶𝑝−1 >
2−𝛾+𝛽

1−𝜀
 
𝑑−𝛾−𝑝(𝑑−2−𝛽)

(𝑝−1)2
. On the other hand, by 

Lemma (4.3.9) , 𝑤2𝑝−1 is negligible compared to  𝑤𝑝 as  |𝑥| → ∞ and, as a consequence, 

for any 𝜀 > 0 small enough, there is an 𝑅𝜀 > 0 such that  

                       −div(|𝑥|−𝛽∇𝑤) + (1 − 𝜀)|𝑥|−𝛾𝑤𝑝 ≤ 0    if   |𝑥| ≥ 𝑅𝜀 . 

With 𝑞:= (1 − 𝜀) |𝑥|−𝛾   
ℎ𝑝−𝑤𝑝

ℎ−𝑤
 ≥ 0, it follows that 

                       −div(|𝑥|−𝛽∇(h − 𝑤)) + 𝑞(ℎ − 𝑤) ≥ 0    if   |𝑥| ≥ 𝑅𝜀 .  

Hence, for 𝐶 large enough, we know that ℎ(𝑥) ≥ 𝑤(𝑥) for any 𝑥 ∈ ℝ𝑑 such that |𝑥| = 𝑅𝜀, 
and we also have that lim

|𝑥|→+∞
(ℎ(𝑥) − 𝑤(𝑥)) = 0   . Using the Maximum Principle, we 

conclude that 0 ≤ 𝑤(𝑥) ≤ ℎ(𝑥) for any 𝑥 ∈ ℝ𝑑 such that  |𝑥| ≥ 𝑅𝜀. The lower bound uses 

a similar comparison argument. Indeed, since  

                        −div  (|𝑥|−𝛽∇w) + |𝑥|−𝛾𝑤𝑝 ≥ 0    ∀𝑥 ∈ ℝ𝑑\{0} 
and  

                        −div  (|𝑥|−𝛽∇ h) + |𝑥|−𝛾ℎ𝑝 ≤ 0    ∀𝑥 ∈ ℝ𝑑\{0},  

if we choose 𝐶 such that 𝐶𝑝−1 ≤ (2 − 𝛾 + 𝛽)
𝑑−𝛾−𝑝(𝑑−2−𝛽)

(𝑝−1)2
, we easily see that 

𝑤(𝑥) ≥ (min
|𝑥|=1

𝑤(𝑥) ∧ 𝐶) |𝑥|(𝛾−2−𝛽) (𝑝−1)⁄     ∀𝑥 ∈ ℝ𝑑\𝐵1 .      

This concludes the proof. 

We obtain growth and decay estimates, respectively, on the functions 𝑃 and 𝑢 as 

they appear in the proof of Theorem (4.3.8), in order to prove Proposition (4.3.12). We 

also need to estimate their derivatives near the origin and at infinity. Let us start by 

reminding the change of variables (55), which in particular, by Lemma( 4.3.10), implies 

that for some positive constants 𝐶1 and 𝐶2, 

                         𝐶1𝑠
2 (1−𝑝)⁄ ≤ 𝜈(𝑠, 𝜔) ≤ 𝐶2𝑠

2 (1−𝑝)⁄      𝑎𝑠  𝑠 → +∞. 
Then we perform the Emden–Fowler transformation 



156 

𝜈(𝑠, 𝜔) ≤ 𝑠𝑎𝜑 (𝑧, 𝜔)    with 𝑧 = − 𝑙𝑜𝑔 𝑠 ,    𝑎 =
2 − 𝑛

2
 ,                              (58)  

and see that 𝜑 satisfies the equation 

−𝛼2�́́� − ∆𝜔𝜑 + 𝑎
2𝛼2𝜑 = 𝑒((𝑛−2) 𝑝−𝑛)𝑧𝜑2𝑝−1 − 𝑒((𝑛−2) 𝑝−𝑛−2)𝑧 2⁄ 𝜑𝑝 =: ℎ  in   

                                                                C ≔ ℝ × 𝕊d−1   ∋ (𝑧, 𝜔).                                    (59) 
From here on we shall denote by the derivative with respect either to 𝑧 or to 𝑠, depending 

on the argument. By definition of 𝜑 and using Lemma (4.3.10), we obtain that 

                        𝜑 (𝑧, 𝜔)~𝑒
(
2−𝑛
2
 + 

2
 𝑝−1

) 𝑧
    𝑎𝑠 𝑧 → −∞, 

where we say that 𝑓(𝑧, 𝜔) ∼ 𝑔(𝑧, 𝜔)  as 𝑧 → +∞ (resp. z→ −∞ ) if the ratio 𝑓/𝑔  is 

bounded from above and from below by positive constants, independently of 𝜔, and for 𝑧 

(resp. −𝑧) large enough. Concerning 𝑧 → +∞, we first note that Lemma (4.3.9) and (58) 

show that 𝜑(𝑧,𝜔)  ≤ 𝑂(𝑒𝑎𝑧) . The lower bound can be established by a comparison 

argument as in [150], after noticing that  |ℎ(𝑧, 𝜔)| ≤ 𝑂(𝑒 (𝑎−2)𝑧 ). Hence we obtain that  

                        𝜑 (𝑧, 𝜔)~𝑒𝑎 𝑧 = 𝑒
2−𝑛
2
 𝑧    as 𝑧 → +∞.  

Moreover, uniformly in 𝜔, we have that  

                     |ℎ(𝑧, 𝜔)| ≤ 𝑂 (𝑒− 
𝑛+2
2
  𝑧 )     as 𝑧 → +∞,   |ℎ(𝑧, 𝜔)|~𝑒

(
𝑛+2
2
 + 

2𝑝
 𝑝−1

) 𝑧
  as 𝑧 → −∞,  

which in particular implies 

                   |ℎ(𝑧, 𝜔)| = 𝑜(𝜑 (𝑧, 𝜔))    as  𝑧 → +∞  and   |ℎ(𝑧, 𝜔)| ~ 𝜑 (𝑧, 𝜔)  as 𝑧 → −∞.  

Finally, using  [162] on local 𝐶1,𝛿   estimates, as  |𝑧| → +∞ we see that all first derivatives 

of 𝜑 converge to 0 at least with the same rate as 𝜑. Next, [162] provides local 𝑊𝑘+2,2 

estimates which, together with [162], up to choosing 𝑘 large enough, prove that  

        |�́�(𝑧, 𝜔)| , |�́́�(𝑧, 𝜔)|, |∇𝜔𝜑(𝑧, 𝜔)| , |∇𝜔�́�(𝑧, 𝜔)|, |∇𝜔�́́�(𝑧, 𝜔)|, |∆𝜔𝜑(𝑧,𝜔)|    

≤ 𝑂(𝜑 (𝑧, 𝜔)),                              (60) 
uniformly in 𝜔 . Here we denote by ∇𝜔  the differentiation with respect to 𝜔 . As a 

consequence, we have, uniformly in 𝜔, and for  ℓ ∈ {0, 1, 2}, 𝑡 ∈ {0, 1}, 

 |𝜕𝑧
ℓ∇𝜔

𝑡 ℎ(𝑧, 𝜔)| ≤ 𝑂 (𝑒− 
𝑛+2
2
  𝑧 )   as 𝑧 → +∞, |𝜕𝑧

ℓ∇𝜔
𝑡 ℎ(𝑧, 𝜔)| ≤ 𝑂(𝑒

(−
𝑛+2
2
 + 

2𝑝
 𝑝−1

) 𝑧
) 

as 𝑧 → −∞,                     (61) 

|∆𝜔ℎ(𝑧, 𝜔)| ≤ 𝑂 (𝑒
− 
𝑛+2
2
  𝑧 )  as 𝑧 → +∞, |∆𝜔ℎ(𝑧, 𝜔)| ≤ 𝑂(𝑒

(−
𝑛+2
2
 + 

2𝑝
 𝑝−1

) 𝑧
)as 𝑧 → −∞. (62) 

Lemma (4.3.11)[151]: Let 𝛽, 𝛾 and 𝑝 satisfy the relations (32) and assume 𝛼 ≤ 𝛼𝐹𝑆. For 

any positive solution 𝑤  of (35) satisfying (56), the pressure function 𝑃 =
𝑚

1−𝑚
𝑢𝑚−1  is 

such that �́́�, �́�/𝑠, 𝑃/𝑠2, ∇𝜔�́�/𝑠, ∇𝜔𝑃/𝑠
2  and  ℒ𝛼𝑃  are of class 𝐶∞  and bounded as 𝑠 →

+∞. On the other hand, as 𝑠 → 0+ we have 

(i) ∫ |�́�(𝑠, 𝜔)|2
2

𝕊𝑑−1
𝑑𝜔 ≤ 𝑂(1), 

(ii) ∫ |∇𝜔𝑝(𝑠, 𝜔)|
22

𝕊𝑑−1
𝑑𝜔 ≤ 𝑂(𝑠2), 

(iii) ∫ |�́́�(𝑠, 𝜔)|
22

𝕊𝑑−1
𝑑𝜔 ≤ 𝑂(1 𝑠2⁄ ), 

(iv) ∫ |∇𝜔�́�(𝑠, 𝜔) −
1

2
∇𝜔𝑝(𝑠, 𝜔)|

22

𝕊𝑑−1
𝑑𝜔 ≤ 𝑂(1), 

(v) ∫ |
1

s2
∆𝜔𝑝(𝑠, 𝜔)|

22

𝕊𝑑−1
𝑑𝜔 ≤ 𝑂(1 𝑠2⁄ ). 

Proof: By using the change of variables (58), we see that 

                     𝑝(𝑠, 𝜔) =
𝑝+1

𝑝−1
𝑒−

1
2
(𝑛−2) (𝑝−1) 𝑧𝜑1−𝑝(𝑧, 𝜔),     𝑧 = − log 𝑠. 
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From (60) we easily deduce that uniformly in 𝜔, �́́�, �́�/𝑠, 𝑃/𝑠2, ∇𝜔�́�/𝑠, ∇𝜔𝑃/𝑠
2  and ℒ𝛼𝑃 

are of class 𝐶∞ and bounded as 𝑠 → +∞. Moreover, as 𝑠 → 0+, we obtain that 

                |�́�(𝑠, 𝜔)|2  ≤ 𝑂 (
1

𝑠
(
�́�(𝑧, 𝜔)

𝜑(𝑧, 𝜔)
− 𝑎))    and  |

1

s
∇𝜔𝑝(𝑠, 𝜔)|

2

≤ 𝑂(
1

𝑠
(
∇𝜔𝜑(𝑧,𝜔)

𝜑(𝑧, 𝜔)
)) 

are of order at most 1/𝑠 uniformly in 𝜔. Similarly we obtain that 

      |�́́�(𝑠, 𝜔)|  ≤ 𝑂 (
1

𝑠2
(
�́́�(𝑧, 𝜔)

𝜑(𝑧, 𝜔)
− 𝑝

|�́�(𝑧, 𝜔)|2

|𝜑(𝑧, 𝜔)|2
+ (1 − 2𝑎(1 − 𝑝))

�́�(𝑧, 𝜔)

𝜑(𝑧, 𝜔)
+ 𝑎2(1 − 𝑝) − 𝑎)) , 

      |
∇𝜔�́�(𝑠, 𝜔)

𝑠
−
𝑎(1 − 𝑝)

𝑠2
∇𝜔𝑝(𝑠, 𝜔)| ≤  𝑂 (

1

𝑠2
(
∇𝜔�́�(𝑧, 𝜔)

𝜑(𝑧, 𝜔)
−
𝑝�́� (𝑧, 𝜔)∇𝜔𝜑(𝑧, 𝜔)

|𝜑(𝑧, 𝜔)|2
)) , 

      
1

s2
|∆𝜔𝑝(𝑠, 𝜔)|

2 ≤ 𝑂(
1

𝑠2
(
∆𝜔𝜑(𝑧, 𝜔)

𝜑(𝑧, 𝜔)
− 𝑝

|∇𝜔𝜑(𝑧, 𝜔)|
2

|𝜑(𝑧, 𝜔)|2
) ), 

are at most of order 1/𝑠2 uniformly in 𝜔. This shows that |𝑏(𝑠)| ≤ 𝑂 (𝑠𝑛−4) as  𝑠 → 0 + 

and concludes the proof if  4 ≤ 𝑑 < 𝑛.When 𝑑 = 2  or 3  and 𝑛 ≤ 4 , more detailed 

estimates are needed. Properties (i)–(v) amount to prove that 

(i) ∫ |
�́� (𝑧,𝜔)

𝜑(𝑧,𝜔)
− 𝑎|

22

𝕊𝑑−1
𝑑𝜔 ≤ 𝑂(𝑒−2 𝑧), 

(ii) ∫ |
∇𝜔𝜑 (𝑧,𝜔)

𝜑(𝑧,𝜔)
|
22

𝕊𝑑−1
𝑑𝜔 ≤ 𝑂(𝑒−2 𝑧), 

(iii) ∫ |
�́́� (𝑧,𝜔)

𝜑(𝑧,𝜔)
− 𝑝

|�́�(𝑧,𝜔)|2

|𝜑(𝑧,𝜔)|2
+ (1 − 2𝑎(1 − 𝑝))

�́�(𝑧,𝜔)

𝜑(𝑧,𝜔)
+ 𝑎2(1 − 𝑝) − 𝑎|

2
2

𝕊𝑑−1
𝑑𝜔 ≤ 𝑂(𝑒−2 𝑧),  

(iv) ∫ |
∇𝜔�́�(𝑧,𝜔)

𝜑(𝑧,𝜔)
−

𝑝�́� (𝑧,𝜔) ∇𝜔𝜑(𝑧,𝜔)

|𝜑(𝑧,𝜔)|2
|
22

𝕊𝑑−1
𝑑𝜔 ≤ 𝑂(𝑒−2 𝑧),  

(v) ∫ |
∆𝜔𝑝(𝑧,𝜔)

𝜑(𝑧,𝜔)
− 𝑝

|∇𝜔𝜑(𝑧,𝜔)|
2

|𝜑(𝑧,𝜔)|2
|
2

2

𝕊𝑑−1
𝑑𝜔 ≤ 𝑂(𝑒−2 𝑧),  

as   𝑧 → +∞. 
Step 1: Proof of (ii) and (iv). If 𝑤 is a positive solution to (35), then 𝜑  is a positive 

solution to (59). With ℓ ∈ {0, 1, 2}, applying the operator ∇𝜔𝜕𝑧
ℓ 𝜑 to the equation (59) we 

obtain: 

−𝛼2(∇𝜔𝜕𝑧
ℓ 𝜑)́́ − ∇𝜔∆𝜔𝜕𝑧

ℓ 𝜑 + 𝑎2𝛼2∇𝜔𝜕𝑧
ℓ𝜑 = ∇𝜔𝜕𝑧

ℓ ℎ(𝑧, 𝜔)    in C .  
Define 

                    𝜒ℓ(𝑧) ≔
1

2
�́�ℓ(𝑧) = ∫ ∇𝜔𝜕𝑧

ℓ 𝜑
2

𝕊𝑑−1
∇𝜔𝜕𝑧

ℓ �́�𝑑𝜔 

which by(60) converges to 0 as 𝑧 → ±∞. Assume first that 𝜒ℓ is a positive function. After 

multiplying the above equation by ∇𝜔𝜕𝑧
ℓ 𝜑, integrating over  𝕊𝑑−1, integrating by parts 

and using 

                      𝜒ℓ2́ = ∫ ∇𝜔𝜕𝑧
ℓ 𝜑

2

𝕊𝑑−1
∇𝜔𝜕𝑧

ℓ �́�𝑑𝜔  

and  

                       𝜒ℓ  2́́ = ∫ ∇𝜔𝜕𝑧
ℓ 𝜑

2

𝕊𝑑−1
∇𝜔𝜕𝑧

ℓ �́́�𝑑𝜔 +∫ |∇𝜔𝜕𝑧
ℓ �́�|

2
2

𝕊𝑑−1
𝑑𝜔, 

we see that 𝜒ℓ satisfies  
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−𝜒ℓ  2́́ = ∫ |∇𝜔𝜕𝑧
ℓ �́�|

2
𝑑𝜔

2

𝕊𝑑−1

1

𝛼2
(∫ |∆𝜔𝜕𝑧

ℓ 𝜑 |
2
𝑑𝜔 − 𝜆1

2

𝕊𝑑−1
∫ |∇𝜔𝜕𝑧

ℓ 𝜑 |
2
𝑑𝜔

2

𝕊𝑑−1
)                  

+ 2 (𝑎2 +
𝜆1
𝛼2
) 𝜒ℓ =

ℎℓ
𝛼2
 ,         

with  ℎℓ ≔ ∫ ∇𝜔𝜕𝑧
ℓ ℎ

2

𝕊𝑑−1
∇𝜔𝜕𝑧

ℓ 𝜑𝑑𝜔. Then, using ∫ ∇𝜔𝜕𝑧
ℓ 𝜑

2

𝕊𝑑−1
𝑑𝜔 = 0, by the Poincare  

inequality we deduce 

∫ |∆𝜔𝜕𝑧
ℓ 𝜑 |

2
𝑑𝜔 ≥

2

𝕊𝑑−1
𝜆1∫ |∇𝜔𝜕𝑧

ℓ 𝜑 |
2
𝑑𝜔 

2

𝕊𝑑−1
 

as e.g.in [158], where 𝜆1: = 𝑑 − 1. A Cauchy–Schwarz inequality implies that 

−𝜒ℓ  2́́ +
|𝜒ℓ2́ |

2

2𝜒ℓ
+ 2(𝑎2 +

𝜆1
𝛼2
) 𝜒ℓ ≤

|ℎℓ|

𝛼2
. 

The function  𝜁ℓ: = √𝜒ℓ satisfies 

−𝜁ℓ  2́́ + 2 (𝑎2 +
𝜆1
𝛼2
) 𝜁ℓ ≤

|ℎℓ|

2𝛼2𝜁ℓ
.  

By the Cauchy–Schwarz inequality and(61) we infer that |ℎℓ/𝜁ℓ|  = 𝑂(𝑒
(𝑎−2)𝑧) for 𝑧 →

+∞,  and |ℎℓ/𝜁ℓ|  = 𝑂(𝑒
(𝑎+2) (𝑝−1)𝑧⁄ )  for 𝑧 → −∞.  By a simple comparison argument 

based on the Maximum Principle, and using the convergence of  𝜒ℓ to 0 at ±∞, we infer 

that 

𝜁ℓ(𝑧) ≤ −
𝑒−𝜈 𝑧

2𝜈𝛼2
   ∫ 𝑒𝜈𝑡 

𝑧

−∞

|ℎℓ(𝑡)|

𝜁ℓ(𝑧)
𝑑𝑡 −

𝑒𝜈 𝑧

2𝜈𝛼2
∫ 𝑒−𝜈𝑡 
∞

𝑧

|ℎℓ(𝑡)|

𝜁ℓ(𝑧)
𝑑𝑡 

if 𝜈 ≔ √𝑎2 + 𝜆1/𝛼
2. This is enough to deduce that 𝜁ℓ(𝑧)  ≤ 𝑂(𝑒

(𝑎−1)𝑧) as  𝑧 → +∞ after 

observing that the condition 

                    −𝜈 = −√𝑎2 + 𝜆1/𝛼
2  ≤ 𝑎 − 1 

is equivalent to the inequality 𝛼 ≤ 𝛼𝐹𝑆 . Hence we have shown that if 𝜒ℓ  is a positive 

function, then for 𝛼 ≤ 𝛼𝐹𝑆, 

      𝜒ℓ(𝑧) ≤ 𝑂(𝑒
2(𝑎−1)𝑧)    as    𝑧 → +∞ .                                                               (63) 

In the case where 𝜒ℓ   is equal to 0at some points of ℝ, it is enough to do the above 

comparison argument on maximal positivity intervals of 𝜒ℓ to deduce the same asymptotic 

estimate. Finally we observe that 𝜑(𝑧, 𝜔)  ∼ 𝑒 𝑎 𝑧  as    𝑧 → +∞ , which ends the proof of 

(ii) considering the above estimate for 𝜒ℓ when ℓ = 0. Moreover, the same estimate for 

ℓ = 0 together with (ii) and (60) proves (iv). 

Step 2: Proof of (v) . By applying the operator ∆𝜔 to (59), we obtain 

                  −𝛼2(∆𝜔𝜑)
2́́ − ∆𝜔

2 𝜑 + 𝑎2𝛼2∆𝜔𝜑 = ∆𝜔ℎ    as  𝐶 . 
We proceed as in Step 1. With similar notations, by defining 

𝜒3(𝑧) ≔
1

2
∫ |∆𝜔 𝜑 |

2𝑑𝜔 ,
2

𝕊𝑑−1
                                                                       

after multiplying the equation by ∆𝜔 𝜑 and using the fact that  

−∫ ∆𝜔 𝜑∆𝜔
2 𝜑 𝑑𝜔 =

2

𝕊𝑑−1
∫ |∇𝜔∆𝜔

2 𝜑  |2𝑑𝜔 ≥ 𝜆1

2

𝕊𝑑−1
∫ |∆𝜔𝜑  |

2𝑑𝜔
2

𝕊𝑑−1
, 

we obtain 

                       −𝜒3  2́́ +
|𝜒32́ |

2

2𝜒ℓ
+ 2(𝑎2 +

𝜆1
𝛼2
) 𝜒3 ≤

|ℎ3|

𝛼2
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with ℎ3 ≔ ∫ ∆𝜔ℎ ∆𝜔𝜑 𝑑𝜔.
2

𝕊𝑑−1
 Again using the same arguments as above, together with 

(62), we deduce that 

                         𝜒3(𝑧) ≤ 𝑂(𝑒
2(𝑎−1)𝑧)    as   𝑧 → +∞ . 

This ends the proof of (v), using (ii),(60) and noticing again that 𝜑(𝑧, 𝜔) ∼ 𝑒𝑎𝑧 as 𝑧 →
+∞. 
Step 3: Proof of (i) and (iii) . Let us consider a positive solution 𝜑 to (59) and define on 

ℝ the function 

                            𝜑0(𝑧) ≔
1

|𝕊𝑑−1|
∫ 𝜑(𝑧, 𝜔)𝑑𝜔.
2

𝕊𝑑−1
 

By integrating (59) on 𝕊𝑑−1 , we know that 𝜑0 solves 

−𝜑0  2́́ + 𝑎2𝜑0 =
1

𝛼2|𝕊𝑑−1|
∫ ℎ(𝑧, 𝜔)𝑑𝜔 =:
2

𝕊𝑑−1

ℎ0(𝑧)

𝛼2
  ∀𝑧 ∈ ℝ, 

with  

|ℎ0(𝑧)| ≤ 𝑂 (𝑒
− 
𝑛+2
2
𝑧)    as    𝑧 → +∞ ,  |ℎ0(𝑧)|~ 𝑒

− (
𝑛+2
2
+
2𝑝
𝑝−1

) 𝑧
 as    𝑧 → −∞ . 

From the integral representation 

𝜑0(𝑧) = −
𝑒𝑎𝑧

2𝑎 𝛼2
∫ 𝑒−𝑎𝑡
𝑧

−∞

ℎ0(𝑡)𝑑𝑡 −
𝑒−𝑎𝑧

2𝑎 𝛼2
∫ 𝑒𝑎𝑡
∞

𝑧

ℎ0(𝑡)𝑑𝑡,                     

we deduce that as 𝑧 → +∞,𝜑0(𝑧) ∼ 𝑒
𝑎𝑧 and 

                   
𝜑02́ (𝑧) − 𝑎 𝜑0(𝑧)

𝜑(𝑧, 𝜔)
~ 𝑒−2𝑎 𝑧∫ 𝑒𝑎𝑡

∞

𝑧

ℎ0(𝑡)𝑑𝑡 = 𝑂(𝑒
−2𝑧). 

If we define the function (𝑧, 𝜔) ∶= 𝑒−𝑎𝑧 𝜑(𝑧, 𝜔) − 𝜑0(𝑧)  , we may observe that it is 

bounded for 𝑧  positive and, moreover, 

                      
�́�(𝑧, 𝜔)

𝜑(𝑧, 𝜔)
− 𝑎 = 𝑂(𝑒−2𝑧) +

�́�(𝑧, 𝜔)

𝑒−𝑎𝑧𝜑(𝑧,𝜔)
   as    𝑧 → +∞ . 

We recall that 𝑒 −𝑎𝑧 𝜑(𝑧, 𝜔) is bounded away from 0 by a positive constant as 𝑧 → +∞. 
Hence we know that 

|
�́�(𝑧, 𝜔)

𝜑(𝑧, 𝜔)
− 𝑎| ≤ 𝑂(|�́�(𝑧, 𝜔)) + 𝑂(𝑒−2𝑧).                                                          (64) 

By the Poincaré inequality and estimate (63) with  ℓ = 0, we have 

∫ |𝜓|2𝑑𝜔 =
2

𝕊𝑑−1
 𝑒−2𝑎 𝑧∫ |𝜑 − 𝜑0|

2𝑑𝜔 ≤
2

𝕊𝑑−1

𝑒−2𝑎 𝑧

𝜆1
∫ |∇𝜔𝜑|

2𝑑𝜔 ≤
2

𝕊𝑑−1
𝑂(𝑒−2𝑧). 

Moreover, by the estimate (63) with  ℓ = 1, we also obtain 

                     𝑒−2𝑎 𝑧  ∫ |�́� − 𝜑02́ |
2
𝑑𝜔 ≤

2

𝕊𝑑−1

𝑒−2𝑎𝑧

𝜆1
∫ |∇𝜔�́�|

2𝑑𝜔 ≤
2

𝕊𝑑−1
𝑂(𝑒−2𝑧). 

Hence, since �́� = − 𝑎 𝜓 + 𝑒−𝑎𝑧(𝜑 − 𝜑0), the above estimates imply that 

                              ∫ |𝜓|2𝑑𝜔 +
2

𝕊𝑑−1
∫ |�́�|

2
𝑑𝜔 ≤

2

𝕊𝑑−1
𝑂(𝑒−2𝑧). 

which  together with (64) ends the proof of  (i). 

        To prove (iii), we first check that 

�́́�

𝜑
− 𝑝

|�́�|2

|𝜑|2
+ (1 − 2𝑎(1 − 𝑝))

�́�

𝜑
+ 𝑎2(1 − 𝑝) − 𝑎 = 𝑂 (|�́�| + |�́�|

2
+ |�́́�|) + 𝑂(𝑒−2𝑧), 
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and so it remains to prove that ∫ |�́́�|
2
𝑑𝜔 + 

2

𝕊𝑑−1
is of order 𝑂(𝑒−2𝑧). Since  

               �́́� = 𝑎2𝜓 − 2𝑎𝑒−𝑎𝑧( �́� − 𝜑02́ ) + 𝑒
−𝑎𝑧( �́́� − 𝜑0  2́́ ), 

using the above estimates, we have only to estimate the term with the second derivatives. 

This can be done as above by the Poincare inequality, 

𝑒−2𝑎 𝑧  ∫ | �́́� − 𝜑0  2́́ |
2
𝑑𝜔 ≤

2

𝕊𝑑−1

𝑒−2𝑎𝑧

𝜆1
∫ |∇𝜔�́́�|

2
𝑑𝜔 ≤

2

𝕊𝑑−1
𝑂(𝑒−2𝑧),                 

based on the estimate (63) with ℓ = 1. This ends the proof of (iii). 

Proposition (4.3.12)[151] : Under Condition (32), if  𝑤 is a positive solution in 𝐻𝛽,𝛾
𝑝
(ℝ𝑑) 

of  (35), then (47), (53) and (54) hold with bas defined by(46), 𝑢 = 𝜈2𝑝 and 𝜈 given by 

(55). 

      To prove this result, we split the proof in several steps: we will first establish a 

uniform bound and a decay rate for w inspired by [160] in Lemmas( 4.3.9),(4.3.10), and 

then follow the methodology of  [150] in the subsequent Lemma (4.3.11). 

Proof:  It is straightforward to verify that the boundedness of �́́�, �́� 𝑠⁄ , 𝑃 𝑠2⁄ , ∇𝜔�́� 𝑠⁄ , 

∇𝜔𝑃 𝑠2⁄ , ℒ𝛼𝑃 as  𝑠 → +∞  and the integral estimates (i)–(v) as  𝑠 → 0+  from Lemma 

(4.3.11) are enough in order to establish (47), (53) and (54). 
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Chapter 5 

Non-Linear Ground State Representations 

 
We deduce from the sharp Hardy inequality the sharp constant in a Sobolev 

embedding which is optimal in the Lorentz scale. We characterize the cases of equality in 

the rearrangement inequality in fractional Sobolev spaces. The inequality combines the 

fractional Sobolev and the fractional Hardy inequality into a single inequality, while 

keeping the sharp constant in the Hardy inequality. We show improved Hardy inequalities 

for 𝑝 ≥ 2  of the optimal constant in the Hardy inequality, as a consequence of the 

improved Hardy inequality, we obtain that for all 𝑞 < 𝑝 , the inequalities can be 

understood as the fractional extension of the Callarelli–Kohn–Nirenberg inequalities in 

[7]. 

Section (5.1): Sharp Hardy Inequalities  
Hardy’s inequality plays an important role in many questions from mathematical 

physics, spectral theory, analysis of linear and non-linear PDE, harmonic analysis and 

stochastic analysis. It states that 

∫|∇𝑢|𝑝𝑑𝑥 ≥ (
|𝑁 − 𝑝|

𝑝
)

𝑝2

ℝ𝑁

∫
|𝑢(𝑥)|𝑝

|𝑥|𝑝
𝑑𝑥

2

ℝ𝑁

,                                       (1) 

and holds for all 𝑢 ∈ 𝐶0
∞(ℝ𝑁)  if 1 ≤ 𝑝 < 𝑁, and for all 𝑢 ∈ 𝐶0

∞(ℝ𝑁\{0}) if  𝑝 > 𝑁.The 

constant on the right-hand side of (1) is sharp and, for 𝑝 > 1,  not attained in the 

corresponding homogeneous Sobolev spaces  �̇�𝑝
1(ℝ𝑁) and  �̇�𝑝

1(ℝ𝑁\{0}), respectively, 

i.e., the completion of 𝐶0
∞(ℝ𝑁) and 𝐶0

∞(ℝ𝑁\{0} with respect to the left-hand side of (1). If 

𝑝 = 1, equality holds for any symmetric decreasing function. 

We are concerned with the fractional analog of  Hardy’s inequality (1), where the left-

hand side is replaced by 

∫ ∫
|𝑢(𝑥) − 𝑢(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠
𝑑𝑥𝑑𝑦

2

×ℝ𝑁

2

ℝ𝑁

                                                           (2) 

for some 0 < 𝑠 < 1 . By scaling the function |𝑥|−𝑝  on the right-hand side has to be 

replaced by |𝑥|−𝑝𝑠 . For 𝑁 ≥ 1  and 0 < 𝑠 < 1  we consider the homogeneous Sobolev 

spaces ˙ �̇�𝑝
𝑠(ℝ𝑁)  and �̇�𝑝

𝑠(ℝ𝑁\{0}) defined as the completion with respect to (2) of 

𝐶0
∞(ℝ𝑁)  for 1 ≤ 𝑝 < 𝑁/𝑠 and 𝐶0

∞(ℝ𝑁\{0} for 𝑝 > 𝑁/𝑠, respectively. Our main result is 

the optimal constant in the fractional Hardy inequality. 

Theorem (5.1.1)[166]: ( Sharp fractional Hardy inequality). Let  𝑁 ≥ 1 and 0 < 𝑠 < 1. 

Then for all 𝑢 ∈ �̇�𝑝
𝑠(ℝ𝑁) in case 1 ≤ 𝑝 < 𝑁/𝑠,  and for all 𝑢 ∈ �̇�𝑝

𝑠(ℝ𝑁\{0}) in case 𝑝 >

𝑁/𝑠, 

∫ ∫
|𝑢(𝑥) − 𝑢(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠
𝑑𝑥𝑑𝑦

2

×ℝ𝑁

2

ℝ𝑁

≥ 𝐶𝑁,𝑠,𝑝 ∫
|𝑢(𝑥)|𝑝

|𝑥|𝑝𝑠
𝑑𝑥

2

ℝ𝑁

                                    (3) 

with  

𝐶𝑁,𝑠,𝑝 ≔ 2∫𝑟𝑝𝑠−1
1

0

|1 − 𝑟(𝑁−𝑝𝑠) 𝑝⁄ |
𝑝
Φ𝑁,𝑠,𝑝(𝑟)𝑑𝑟,                                       (4) 

and  
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Φ𝑁,𝑠,𝑝(𝑟) ≔ |𝕊𝑁−2| ∫
(1 − 𝑡2)

𝑁−3
2

(1 − 2𝑟𝑡 + 𝑟2)
𝑁+𝑝𝑠
2

1

−1

, 𝑁 ≥ 2, 

Φ1,𝑠,𝑝(𝑟) ≔ (
1

(1 − 𝑟)1+𝑝𝑠
+

1

(1 + 𝑟)1+𝑝𝑠
) , 𝑁 = 1.                             (5) 

The constant C𝑁,𝑠,𝑝 is optimal. If 𝑝 = 1, equality holds iff 𝑢 is proportional to a symmetric 

decreasing function. If 𝑝 > 1, the inequality is strict for any function 0 ≢ 𝑢 ∈  �̇�𝑝
𝑠(ℝ𝑁) or 

�̇�𝑝
𝑠(ℝ𝑁\{0}), respectively. 

For 𝑝 = 1 and, e.g., 𝑁 = 1 or 𝑁 = 3 one finds 

𝐶1,𝑠,1 =
22−𝑠

𝑠
,       𝐶3,𝑠,1 = 4𝜋

21−𝑠

𝑠(𝑠 − 1)
 .    

For general values of 𝑝  and 𝑁  the double integral is easily evaluated numerically or 

estimated analytically (see also (37) and (38) below for different expressions). For 𝑝 = 2 

one can evaluate 𝐶𝑁,𝑠,𝑝 via Fourier transform [77] and obtains the well-known expression 

𝐶𝑁,𝑠,2 = 2𝜋
𝑁 2⁄

Γ((𝑁 + 2𝑠) 4⁄ )2

Γ((𝑁 − 2𝑠) 4⁄ )2
 
Γ((𝑁 + 2𝑠) 2⁄ )

|Γ(−𝑠)|
.                                (6) 

This was first derived by Herbst [86]; see also [171], [178], [98] for different proofs. 

Indeed, Herbst determined the sharp constants in the inequality 

‖(−∆)𝑠 2⁄ 𝑢‖
𝑝

𝑝
≥ �̃�𝑁,𝑠,𝑝 ∫

|𝑢(𝑥)|𝑝

|𝑥|𝑝𝑠
𝑑𝑥

2

ℝ𝑁

                                    (7) 

for arbitrary 1 < 𝑝 < 𝑁/𝑠. For 𝑝 = 2 the left-hand side is well-known to be proportional 

to the left-hand side in (3). For 𝑝 ≠ 2 and 0 < 𝑠 < 1, however, the expression on the left-

hand side is not equivalent to (2). There is a one-sided inequality according to whether 

1 < 𝑝 < 2 or 𝑝 > 2; see, e.g., [188]. In particular, the sharp constant �̃�𝑁,𝑠,1in (7) for 𝑝 =
1 is zero, as opposed to (3). 

We follow the recent work by Bourgain, Brezis, and Mironescu [109], [134] and by 

Maz’ya and Shaposhnikova [182]. Consider the case 𝑁 > 𝑝𝑠, and recall that the Sobolev 

embedding theorem asserts that �̇�𝑝
𝑠(ℝ𝑁) ⊂ 𝐿𝑝∗(ℝ

𝑁) for 𝑝∗ = 𝑁𝑝/(𝑁 − 𝑝𝑠) with 

∫ ∫
|𝑢(𝑥) − 𝑢(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠
𝑑𝑥𝑑𝑦

2

×ℝ𝑁

2

ℝ𝑁

≥ 𝑆𝑁,𝑠,𝑝‖𝑢‖𝑝∗ 
𝑝
,                                  (8) 

see, e.g., [167]. The optimal values of the constants 𝑆𝑁,𝑠,𝑝 are unknown. In [134] Bourgain, 

Brezis, and Mironescu obtained quantitative estimates on the constants 𝑆𝑁,𝑠,𝑝 which reflect 

the correct behavior in the limits 𝑠 → 1or 𝑝 → 𝑁/𝑠 . (They studied the corresponding 

problem for functions on a cube with zero average, but this problem is equivalent to the 

problem on the whole space, see [134] or [182]). The proof in [134] relies on advanced 

tools from harmonic analysis. It was simplified and extended by Maz’ya and 

Shaposhnikova [182] who showed that the sharp constant in (8) satisfies 

𝑆𝑁,𝑠,𝑝 ≥ 𝑐(𝑁, 𝑝)
(𝑁 − 𝑝𝑠)𝑝−1

𝑠(1 − 𝑠)
.                                                      (9) 

The key observation in [182] was that (9) follows from a sufficiently good bound on the 

constant in the fractional Hardy inequality. Maz’ya and Shaposhnikova did not, however, 

determine the optimal constants in this inequality. Their bound 
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𝐶𝑁,𝑠,𝑝 ≥ �̃�(𝑁, 𝑝)
(𝑁 − 𝑝𝑠)𝑝

𝑠(1 − 𝑠)
,                                                      (10) 

which leads to the Bourgain–Brezis–Mironescu result (9), is easily recovered from our 

explicit expression for 𝐶𝑁,𝑠,𝑝. 
    In fact, below we show that our sharp Hardy inequality implies an even stronger result. 

Namely, together with a symmetrization argument it yields a simple proof of the 

embedding 

�̇�𝑝
𝑠(ℝ𝑁) ⊂ 𝐿𝑝∗,𝑝(ℝ

𝑁),      1 ≤ 𝑝 < 𝑁 𝑠⁄ ,   𝑝∗ = 𝑁𝑝 (𝑁 − 𝑝𝑠),⁄                            (11) 

due to Peetre [186]. Here 𝐿𝑝∗,𝑝(ℝ
𝑁) denotes the Lorentz space, the definition of which is 

recalled. Embedding (11) is optimal in the Lorentz scale. Since 𝐿𝑝∗,𝑝(ℝ
𝑁) ⊂ 𝐿𝑝∗(ℝ

𝑁) 
with strict inclusion, (11) is stronger than (8). While we know only of non-sharp proofs of 

(11) via interpolation theory, our Theorem (5.1.13) below gives the optimal constant in 

this embedding and characterizes all optimizers. To do so, we need to characterize the 

optimizers in the rearrangement inequality by Almgren and Lieb for the functional (2), see 

Theorem (5.1.16). For another recent application of Lorentz norms in connection with 

Hardy–Sobolev inequalities see [183]. 

In contrast to the case 𝑝 = 2, there seems to be no way to prove (3) via Fourier 

transform if 𝑝 ≠ 2. Instead, our proof is based on the observation that |𝑥| −(𝑁−𝑝𝑠)/𝑝  is a 

positive solution of the Euler–Lagrange equation associated with (3) (but fails to lie in  

�̇�𝑝
𝑠(ℝ𝑁) or �̇�𝑝

𝑠(ℝ𝑁\{0}) , respectively). Writing 𝑢 = |𝑥|−(𝑁−𝑝𝑠)/𝑝𝜐,  (3) becomes an 

inequality for the unknown function 𝜐. While it is well known and straightforward to 

prove (1) in this way, this approach seems to be new in the fractional case. 

    We automatically yields remainder terms. In particular, for 𝑝 ≥ 2  we obtain the 

following strengthening of (3). 

Theorem (5.1.2)[166]: (Sharp Hardy inequality with remainder). Let 𝑁 ≥ 1, 0 < 𝑠 < 1 

and 𝑝 ≥ 2. Then for all 𝑢 ∈ �̇�𝑝
𝑠(ℝ𝑁) in case 𝑝 < 𝑁/𝑠, and for all 𝑢 ∈ �̇�𝑝

𝑠(ℝ𝑁\{0}) in 

case 𝑝 > 𝑁/𝑠, and 𝜐 = |𝑥|(𝑁−𝑝𝑠)/𝑝𝑢,  

∫ ∫
|𝑢(𝑥) − 𝑢(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠
𝑑𝑥𝑑𝑦

2

×ℝ𝑁

2

ℝ𝑁

− 𝐶𝑁,𝑠,𝑝 ∫
|𝑢(𝑥)|𝑝

|𝑥|𝑝𝑠
𝑑𝑥

2

ℝ𝑁

 

≥ 𝑐𝑝 ∫ ∫
|𝜐(𝑥) − 𝜐(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠
𝑑𝑥

|𝑥|(𝑁−𝑝𝑠) 2⁄
𝑑𝑦

|𝑦|(𝑁−𝑝𝑠) 2⁄

2

×ℝ𝑁

2

ℝ𝑁

          (12) 

where 𝐶𝑁,𝑠,𝑝 is given by (4) and 0 < 𝑐𝑝 ≤ 1 is given by 

𝑐𝑝 ≔ lim
0<𝜏<1 2⁄

((1 − 𝜏)𝑝 − 𝜏𝑝 + 𝑝𝜏𝑝−1).                              (13) 

If 𝑝 = 2, then (12) is an equality with 𝑐2 = 1. 
We refer to the substitution of 𝑢 by 𝜐 = 𝜔−1𝑢 , where ωis a positive solution of the 

Euler– Lagrange equation of the functional under consideration, as ‘ground state 

substitution.’ In the linear and local case, such representations go back at least to Jacobi 

and have numerous applications, among others, in the spectral theory of Laplace and 

Schrödinger operators (see [172], [177] and also [82]), constructive quantum field theory 

(especially in the work by Segal, Nelson, Gross, and Glimm–Jaffe; see, e.g., [175]) and 

Allegretto Piepenbrink theory (developed in particular by Allegretto, Piepenbrink and 

Agmon; see, e.g., [181], [187]). 
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We derive anon-local and non-linear analog of such a representation. Despite all 

these applications, even in the linear case a non-local version of the ground state 

representation has only recently been found [77]. While we were only interested in a 

special case in [77], we show that this formula holds in a much more general setting. 

Moreover,  for 𝑝 > 2 we will find a non-linear analog of this representation formula in the 

form of an inequality. This is the topic where we consider functionals of the form (2) with 

|𝑥 − 𝑦|−𝑁−𝑝𝑠  replaced by an arbitrary symmetric and non-negative, but not necessarily 

translation invariant kernel. 

We derive Hardy inequalities and ground state representations in a general setting 

and we apply this method to prove Theorems (5.1.1) and (5.1.2). W show that Theorem 

(5.1.1) implies the optimal Sobolev embedding (11) by using some facts about 

rearrangement in fractional Sobolev spaces. 

We fix 𝑁 ≥ 1 , 𝑝 ≥ 1  and a non-negative measurable function 𝑘  on ℝ𝑁 ×ℝ𝑁 

satisfying 𝑘(𝑥, 𝑦) = 𝑘(𝑦, 𝑥) for all  𝑥, 𝑦 ∈ ℝ𝑁 . We provide a condition under which a 

Hardy inequality for the functional 

𝐸[𝑢] ≔ ∫ ∫ |𝑢(𝑥) − 𝑢(𝑦)|𝑝
2

×ℝ𝑁

2

ℝ𝑁

𝑘(𝑥, 𝑦)𝑑𝑥𝑑𝑦 

holds. Our assumption is that there exists a positive function 𝜔 satisfying the equation 

2 ∫(𝜔(𝑥) − 𝜔(𝑦))|𝜔(𝑥) − 𝜔(𝑦)|𝑝−2
2

ℝ𝑁

𝑘(𝑥, 𝑦)𝑑𝑦 = 𝑉(𝑥)𝜔(𝑥)𝑝−1               (14) 

for some real-valued function 𝑉on ℝ𝑁 . We emphasize that if  𝑘 is too singular on the 

diagonal (for instance, in our case of primary interest  𝑘(𝑥, 𝑦) = |𝑥 − 𝑦|−𝑁−𝑝𝑠 , 𝑠 > 0) the 

integral on the left-hand side will not be convergent and some regularization of principal 

value type will be needed. We think of 𝜔 as the ‘virtual ground state’ corresponding to the 

energy functional 𝐸[𝑢] − ∫𝑉 |𝑢|𝑝𝑑𝑥. 

     We formulate the precise meaning of (14) as 

Assumption (5.1.3)[166]: Let 𝜔 be a positive, measurable function on ℝ𝑁 . There exists a 

family of measurable functions 𝑘𝜀 , 𝜀 > 0,  on ℝ𝑁 ×ℝ𝑁   satisfying  𝑘𝜀(𝑥, 𝑦) =
𝑘𝜀(𝑦, 𝑥),0 ≤ 𝑘𝜀(𝑥, 𝑦) ≤ 𝑘(𝑥, 𝑦) and 

lim
𝜀→0

𝑘𝜀(𝑥, 𝑦) = 𝑘(𝑥, 𝑦)                                                         (15) 

for a.e. 𝑥, 𝑦 ∈ ℝ𝑁. Moreover, the integrals 

𝑉𝜀(𝑥) ≔ 2𝜔(𝑥)−𝑝+1 ∫(𝜔(𝑥) − 𝜔(𝑦))|𝜔(𝑥) − 𝜔(𝑦)|𝑝−2
2

ℝ𝑁

𝑘𝜀(𝑥, 𝑦)𝑑𝑦               (16) 

are absolutely convergent for a.e. 𝑥, belong to 𝐿1 ,𝐿𝑜𝑐(ℝ
𝑁) and 𝑉:= lim

𝜀→0
𝑉𝜀 exists weakly in 

𝐿1 ,𝐿𝑜𝑐(ℝ
𝑁) i.e., ∫𝑉𝜀  𝑔𝑑𝑥 →∫𝑉𝑔𝑑𝑥 for any bounded 𝑔 with compact support. 

    The following is a general version of  Hardy’s inequality. 

Example (5.1.4)[166]: A typical application of the ground state representation (33) in 

mathematical physics concerns pseudo-relativistic Schrödinger operators √−∆ +𝑚2 + 𝑉0 

with a constant 𝑚 ≥ 0. Indeed, the kinetic energy can be put into the form considered, 

           ∫√|𝜉|2 +𝑚2 |�̂�(𝜉)|2𝑑𝜉 = ∫∫|𝑢(𝑥) − 𝑢(𝑦)|2 𝑘𝑚(|𝑥 − 𝑦|)𝑑𝑥𝑑𝑦                

where  �̂�(𝜉) = (2𝜋)−𝑁/2 ∫ 𝑒−𝑖𝜉.𝑥
2

ℝ𝑁
𝑢(𝑥)𝑑𝑥 is the Fourier transform of 𝑢 and 
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𝑘𝑚(𝑟) = {
(
𝑚

2𝜋
)
(𝑁+1) 2⁄

𝑟−(𝑁+1) 2⁄ 𝐾(𝑁+1) 2⁄  (𝑚𝑟)          if   𝑚 > 0,           

𝜋−(𝑁+1) 2⁄ 2−1Γ((𝑁 + 1) 2⁄ )𝑟−𝑁−1                  if   𝑚 = 0,          
 

with 𝐾𝜈 a Bessel function; see [144]. 

      More generally, one can consider non-negative functions 𝑡 and 𝑘 on ℝ𝑁 related by 

𝑡(𝜉) = 4 ∫𝑘(𝑥)

2

ℝ𝑁

sin2(𝜉 ∙ 𝑥 2⁄ )𝑑𝑥                                                    (17) 

and introduce the self-adjoint operator 𝑇 = 𝑡(𝐷), 𝐷 = −𝑖∇, in 𝐿2(ℝ
𝑁) with quadratic form 

𝐸[𝑢] ≔ ∫𝑡(𝜉)|�̂�(𝜉)|2𝑑𝜉

2

ℝ𝑁

= ∫ ∫ |𝑢(𝑥) − 𝑢(𝑦)|2
2

×ℝ𝑁

2

ℝ𝑁

𝑘(𝑥 − 𝑦)𝑑𝑥𝑑𝑦.              (18) 

The last identity is a consequence of  Plancherel’s identity and (17). We assume that 𝑡 is 

locally bounded and satisfies 𝑡(𝜉) ≤ const |𝜉|2𝑠 for some 0 < 𝑠 < 1 and all large 𝜉 and, 

similarly, that 𝑘(𝑥) is bounded away from the origin and satisfies 𝑘(𝑥) ≤ const |𝑥|−𝑁−2𝑠 
for all small 𝑥. Under these assumptions, 𝐻𝑠(ℝ𝑁) = 𝑊2

𝑠(ℝ𝑁) is contained in the form 

domain of 𝑇 and we can consider the Schrödinger-type operator 𝑇 + 𝑉0 with a real-valued 

function 𝑉0 ∈ 𝐿𝑑/(2𝑠)(ℝ
𝑁) + 𝐿∞(ℝ

𝑁).  Put 𝜆0 =  inf spec (  𝑇 + 𝑉0 ) and assume that a 

positive function 𝜔 satisfies 

(𝑇 + 𝑉0)𝜔 = 𝜆0𝜔 

in the sense of distributions. (Note that we do not require 𝜆0 to be an eigenvalue and 𝜔 an 

eigen-function.) If 𝜔  is Hölder continuous with exponent 𝑠 , then one easily verifies 

Assumption  (5.1.3) and one obtains the ground state representation 

∫𝑡(𝜉)|�̂�(𝜉)|2𝑑𝜉

2

ℝ𝑁

+ ∫𝑉0(𝑥)|𝑢(𝑥)|
2𝑑𝑥

2

ℝ𝑁

− 𝜆0 ∫|𝑢(𝑥)|
2𝑑𝑥

2

ℝ𝑁

 

= ∫∫|𝜐(𝑥) − 𝜐(𝑦)|2𝜔(𝑥)𝑘(𝑥 − 𝑦)𝜔(𝑦)𝑑𝑥𝑑𝑦                                   (19) 

for all 𝑢 in the form domain of  𝑇 and 𝜐 = 𝜔−1𝑢. 

Before proving Propositions (5.1.7) and (5.1.8) we would like to recall their ‘local’ 

analogs. Since these facts are essentially well known we shall ignore some technical 

details. Let 𝑔 be a positive function on ℝ𝑁 and put 

�̂�[𝑢] ≔ ∫𝑔|∇𝑢|𝑝𝑑𝑥

2

ℝ𝑁

 

(with the convention that this is infinite if 𝑢 does not have a distributional derivative or if 

this derivative is not in 𝐿𝑝(ℝ
𝑁 , 𝑔)). Moreover, assume that 𝜔 is a positive weak solution 

of the weighted 𝑝-Laplace equation 

−div (𝑔|∇𝜔|𝑝−2∇𝜔) =𝑉𝜔𝑝−1.                                                 (20) 
We claim that for any 𝑢 with �̂�[𝑢] and ∫𝑉+|u|

𝑝 𝑑𝑥 finite one has 

�̂�[𝑢] ≥ ∫𝑉(𝑥)|𝑢(𝑥)|𝑝𝑑𝑥

2

ℝ𝑁

.                                                       (21) 

This is clearly the analog of (28). To prove (21) we write 𝑢 = 𝜔𝜐 and use the elementary 

convexity inequality 
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|𝑎 + 𝑏|𝑝 ≥ |𝑎|𝑝 + 𝑝|𝑎|𝑝−2𝑅𝑒 �̅� ∙ 𝑏                                             (22) 
for vectors 𝑎, 𝑏 ∈ ℂ𝑁 and 𝑝 ≥ 1. This yields 

�̃�[𝑢] = ∫𝑔|𝜐∇𝜔 + 𝜔∇𝜐|𝑝𝑑𝑥

2

ℝ𝑁

≥ ∫𝑔|𝜐|𝑝|∇𝜔|𝑝𝑑𝑥

2

ℝ𝑁

+ 𝑝 ∫𝑔|∇𝜔|𝑝−2𝜔

2

ℝ𝑁

𝑅𝑒 �̅�|𝜐|𝑝−2 𝛻𝜐 ∙ 𝛻𝜔𝑑𝑥. 

Recognizing the integrand in the last integral as 𝑝−1𝑔𝜔|∇𝜔|𝑝−2∇𝜔 · ∇(|𝜐|𝑝) and 

integrating by parts using (20) we arrive at (21). 

     Next we show that for 𝑝 ≥ 2, (21) can be improved to 

�̃�[𝑢] − ∫𝑉(𝑥)|𝑢(𝑥)|𝑝𝑑𝑥

2

ℝ𝑁

≥ 𝑐𝑝 ∫𝑔𝜔
𝑝|∇𝜐|𝑝𝑑𝑥

2

ℝ𝑁

=: 𝑐𝑝�̃�𝜔[𝜐]                             (23) 

for 𝑢 = 𝜔𝜐 with �̃�[𝑢], ∫ 𝑉+ |𝑢|𝑑𝑥, and  �̃�𝜔[𝜐] finite. This follows by the same argument 

as before if one uses instead of (22) its improvement 

|𝑎 + 𝑏|𝑝 ≥ |𝑎|𝑝 + 𝑝|𝑎|𝑝−2𝑅𝑒 �̅� ∙ 𝑏 + 𝑐𝑝|𝑏|
𝑝                                           (24) 

for 𝑝 ≥ 2. One can show that 𝑐𝑝 given in (24) is the sharp constant in this inequality. 

      Since (24) is an equality for 𝑝 = 2 and 𝑐2 = 1, so is (23). This is the ground state 

representation which is familiar from the spectral theory of differential operators. In the 

case 𝑝 ≥ 2, (23) can be used to derive remainder terms in Hardy’s inequality on domains; 

see, e.g., [170]. 

Remark (5.1.5)[166]: In the case 𝑔 ≡ 1,𝑁 ≠  𝑝,  and with 𝜔(𝑥) = |𝑥|−(𝑁−𝑝)/𝑝  and 

𝜐(𝑥) = |𝑥|(𝑁−𝑝)/𝑝 𝑢(𝑥),  the local Hardy inequality with remainder term yields the 

following improvement of (1), 

∫|∇𝑢|𝑝𝑑𝑥

2

ℝ𝑁

≥ (
|𝑁 − 𝑝|

𝑝
)

𝑝

∫
|𝑢(𝑥)|𝑝

|𝑥|𝑝
𝑑𝑥

2

ℝ𝑁

+ 𝑐𝑝 ∫|∇𝜐|
𝑝

𝑑𝑥

|𝑥|𝑁−𝑝

2

ℝ𝑁

.                    (25) 

The constant 𝑐𝑝 in (25) is sharp for any 𝑝 ≥ 2. For 𝑁 > 𝑝, this can be shown by using a 

trial function of the form 𝑢(𝑥) = |𝑥|−(𝑁−𝑝)/𝑝+𝛼 for |𝑥| ≤ 1 and 𝑢(𝑥) = |𝑥|−(𝑁−𝑝)/𝑝−𝜀for  

|𝑥| ≥ 1,  letting 𝜀 → 0  and choosing 𝛼 = (𝑁 − 𝑝)/(𝑝𝜏)  where 0 < 𝜏 < 1/2  is the 

minimizer in (24). Similarly, for 𝑁 < 𝑝, we choose 𝑢(𝑥) = |𝑥|−(𝑁−𝑝)/𝑝+𝛼 for  |𝑥| ≥ 1 and 

𝑢(𝑥) = |𝑥|−(𝑁−𝑝)/𝑝+𝜀 for |𝑥| ≤ 1. 
Lemma (5.1.6)[166]: Let 𝑝 ≥ 1. Then for all 0 ≤ 𝑡 ≤ 1 and 𝑎 ∈ ℂ one has 

|𝑎 − 𝑡|𝑝 ≥ (1 − 𝑡)𝑝−1(|𝑎|𝑝 − 𝑡).                                       (26) 
For 𝑝 > 1 this inequality is strict unless 𝑎 = 1or 𝑡 = 0. Moreover, if  𝑝 ≥ 2 then for all 

0 ≤ 𝑡 ≤ 1 and all 𝑎 ∈ ℂ one has 

|𝑎 − 𝑡|𝑝 ≥ (1 − 𝑡)𝑝−1(|𝑎|𝑝 − 𝑡) + 𝑐𝑝𝑡
𝑝 2⁄ |𝑎 − 1|𝑝                         (27) 

with 0 < 𝑐𝑝 ≤ 1 given by (24). For 𝑝 = 2, (27) is an equality with 𝑐2 = 1. For 𝑝 > 2, (27) 

is a strict inequality unless 𝑎 = 1or 𝑡 = 0. 
Proof: To prove the first assertion note that for fixed |𝑎| the minimum of the left-hand 

side is clearly achieved for 𝑎 real and positive. Since for |𝑎|𝑝 < 𝑡 the inequality is trivial, 

one may thus assume that  𝑎 ≥ 𝑡1/𝑝 . The assertion then follows from the fact that the 

derivative with respect to 𝑎 of (𝑎 − 𝑡)𝑝/(𝑎𝑝 − 𝑡)2 vanishes only at 𝑎 = 1. 
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      To prove the second assertion, we may assume that  𝑝 > 2, since (27) is an equality if 

𝑝 = 2. We first prove the assertion for real  𝑎. The function 

𝑓(𝑎, 𝑡) ≔
|𝑎 − 𝑡|𝑝 − (1 − 𝑡)𝑝−1(|𝑎|𝑝 − 𝑡)

𝑡𝑝 2⁄ |𝑎 − 1|𝑝
. 

diverges at 𝑎 = 1, and its partial derivative with respect to 𝑎 is given by 

𝜕𝑓

𝜕𝑎
(𝑎, 𝑡) =

𝑝(1 − 𝑡)𝑝−1

𝑡𝑝 2⁄ (𝑎 − 1)|𝑎 − 1|𝑝
(
|𝑎 − 𝑡|𝑝−2(𝑡 − 𝑎)

(1 − 𝑡)𝑝−1
+
|𝑎|𝑝−2𝑎 − 𝑡

1 − 𝑡
). 

For 𝑎 > 1 > 𝑡 this is negative, as follows from the first assertion with 𝑝 replaced by 𝑝 −
1. Hence for all 𝑎 > 1, 

𝑓(𝑎, 𝑡) ≥ 𝑓(+∞, 𝑡) = 𝑡−𝑝 2⁄ (1 − (1 − 𝑡)𝑝−1). 
An elementary calculation shows that the latter function is decreasing for 𝑡 ∈ (0,1). This 

proves that 𝑓(𝑎, 𝑡) ≥ 1 for  𝑎 > 1. 

      Next, we claim that 𝑓  does not attain its minimum in the interior of the region  

{(𝑎, 𝑡) : − ∞ <  𝑎 < 1, 0 < 𝑡 < 1}. To see this, we write the partial derivative of  𝑓 with 

respect tot as 

𝜕𝑓

𝜕𝑡
(𝑎, 𝑡) =

(1 − 𝑡)𝑝−1

2𝑡(𝑝+2) 2⁄ |𝑎 − 1|𝑝
(𝑝(𝑡 + 𝑎)(

|𝑎 − 𝑡|𝑝−2(𝑡 − 𝑎)

(1 − 𝑡)𝑝−1
+
|𝑎|𝑝−2𝑎 − 𝑡

1 − 𝑡
) 

+
𝑡

1 − 𝑡
((|𝑎|𝑝 − 1)(𝑝 − 2) − 𝑎𝑝(|𝑎|𝑝−2 − 1))). 

The first line vanishes in case 𝜕𝑓/𝜕𝑎 = 0. Moreover, it is easy to see that the second line 

is nonzero for 𝑎 ∈ (−∞, 1)\{−1}. In fact, it is positive if  𝑎 ∈ (−∞,−1) and negative if 

𝑎 ∈ (−1,0 ]. If  0 < 𝑎 < 1, it is negative in view of 
𝑎𝑝 − 1

𝑎𝑝−1 − 𝑎
>

𝑝

𝑝 − 2
. 

(The latter inequality holds since the left-hand side is strictly monotone decreasing.) To 

treat 𝑎 = −1 one checks that 𝜕𝑓/𝜕𝑎 (−1, 𝑡) ≠  0 for 0 < 𝑡 < 1. This proves that 𝑓 does 

not attain its minimum in the interior of the region {(𝑎, 𝑡) : − ∞ < 𝑎 < 1,0 < 𝑡 < 1}. 
     Now we examine 𝑓  on the boundary of that region. Similarly as above, we have 

lim
𝑎→−∞

𝑓(𝑎, 𝑡) ≥ 1 uniformly in 𝑡 ∈ (0,1). Moreover,  lim
t→0

𝑓(𝑎, 𝑡) = +∞ uniformly in 𝑎 <

1, and lim
t→1

𝑓(𝑎, 𝑡 = 1) uniformly in 𝑎 ≤ 1 − 𝜀 for all 𝜀 > 0. Finally,  lim
𝑎→1

𝑓(𝑎, 𝑡) = +∞ 

uniformly in 𝑡 ∈ (0,1 − 𝜀) for all 0 < 𝜀 < 1. Thus it remains to study the limit 𝑎 → 1 and 

𝑡 → 1. For given 𝜏 > 0 we let 𝑎 → 1 and 𝑡 → 1 simultaneously with 1 − 𝑡 = 𝜏(1 − 𝑎) 
and find 

lim
𝑎→1

𝑓(𝑎, 1 − 𝜏(1 − 𝑎)) = |1 − 𝜏|𝑝 − 𝜏𝑝 + 𝑝𝜏𝑝−1 ≥ 𝑐𝑝. 

The last inequality follows from the definition of 𝑐𝑝 and the fact that the minimum over 𝜏 

is attained for 𝜏 ∈ (0,1/2). This proves that 𝑓(𝑎, 𝑡) > 𝑐𝑝for all 𝑎 ∈ ℝ\{1} and 0 < 𝑡 < 1. 

      Finally, we assume that 𝑎 is an arbitrary complex number. We write 𝑎 − 𝑡 = 𝑥 + 𝑖𝑦 

with 𝑥 and 𝑦 real and put 𝛽:= |𝑎 − 𝑡|. What we want to prove is that for all 𝛽 ≥ 0 and 

𝑥 ∈ (−𝛽, 𝛽) one has 

(1 − 𝑡)𝑝−1(𝛽2 + 2𝑡𝑥 + 𝑡2)𝑝 2⁄ + 𝑐𝑝𝑡
𝑝 2⁄ (𝛽2 − 2(1 − 𝑡)𝑥 + (1 − 𝑡)2)𝑝 2⁄  

                                                                                           ≤ 𝛽𝑝 + (1 − 𝑡)𝑝−1𝑡. 
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But for fixed 𝛽, the left-hand side is a convex function of 𝑥 in the interval (−𝛽, 𝛽), so its 

maximum will be attained either at 𝑥 = 𝛽 𝑜𝑟 𝑥 = −𝛽, that is, for real values of 𝑎 − 𝑡. This 

reduces the assertion in the complex case to the real case and completes the proof.  

Proposition (5.1.7)[166]: Under Assumption (23), for any 𝑢 with compact support and 

∫𝑉+ |𝑢|
𝑝𝑑𝑥 and finite one has 

𝐸[𝑢] ≥ ∫𝑉(𝑥)

2

ℝ𝑁

|𝑢(𝑥)|𝑝𝑑𝑥.                                                   (28) 

    In applications where additional properties of 𝑘 and 𝑉 are available, the assumption that 

𝑢 has compact support can typically be removed by some limiting argument. It appears 

here because we want to work with the rather minimal Assumption (23). 

    Our next result improves this in the case 𝑝 ≥ 2  by giving an explicit remainder 

estimate. It involves the functional  

𝐸𝜔[𝜐] ≔ ∫ ∫|𝜐(𝑥) − 𝜐(𝑦)|𝑝
2

ℝ𝑁

2

ℝ𝑁×

𝜔(𝑥)
𝑝
2𝑘(𝑥, 𝑦)𝜔(𝑥)

𝑝
2𝑑𝑥𝑑𝑦 

and is a non-linear analog of what is known as ‘ground state representation formula.’ 

Proof : We may assume that  ∫𝑉− |𝑢|
𝑝𝑑𝑥 < ∞ for otherwise there is nothing to prove. 

Replacing 𝑢 by 𝑢 min {1,𝑀|𝑢|−1} and letting 𝑀 → ∞ using monotone convergence, we 

may assume that 𝑢 is bounded. Recall also that 𝑢 is assumed to have compact support. 

    We write 𝑢 = 𝜔𝜐, multiply (17) by |𝜐(𝑥)|𝑝𝜔(𝑥)𝑝 and integrate with respect to 𝑥. After 

symmetrizing with respect to 𝑥 and 𝑦(recall that  𝑘𝜀(𝑥, 𝑦) = 𝑘𝜀(𝑦, 𝑥)) we obtain 

∫ ∫(|𝜐(𝑥)|𝑝
2

ℝ𝑁

2

ℝ𝑁×

𝜔(𝑥) − |𝜐(𝑦)|𝑝𝜔(𝑦))(𝜔(𝑥) − 𝜔(𝑦))|𝜔(𝑥) − 𝜔(𝑦)|𝑝−2𝑘ℰ(𝑥, 𝑦)𝑑𝑥𝑑𝑦 

            = ∫𝑉ℰ

2

ℝ𝑁

(𝑥)|𝑢(𝑥)|𝑝𝑑𝑥. 

We write this as 

∫ ∫Φ𝑢

2

ℝ𝑁

(𝑥, 𝑦)

2

ℝ𝑁×

𝑘ℰ(𝑥, 𝑦)𝑑𝑥 + ∫𝑉ℰ

2

ℝ𝑁

|𝑢|𝑝𝑑𝑥 

= ∫ ∫|𝜔(𝑥) − 𝑢(𝑦)|𝑝𝑘ℰ(𝑥, 𝑦)𝑑𝑥𝑑𝑦

2

ℝ𝑁

2

ℝ𝑁×

                                  (29) 

 

where 

             𝛷𝑢(𝑥, 𝑦) ≔ |𝜔(𝑥)𝜐(𝑥) − 𝜔(𝑦)𝜐(𝑦)|𝑝    

−(𝜔(𝑥)|𝜐(𝑥)|𝑝 −𝜔(𝑦)|𝜐(𝑦)|𝑝)(𝜔(𝑥) − 𝜔(𝑦))|𝜔(𝑥) − 𝜔(𝑦)|𝑝−2.          (30) 
We claim that 𝛷𝑢 ≥ 0 point wise. To see this, we may by symmetry assume that 𝜔(𝑥) ≥
𝜔(𝑦). Putting 𝑡 = 𝜔(𝑦)/𝜔(𝑥), 𝑎 = 𝜐(𝑥)/𝜐(𝑦) and applying (26) we deduce that 𝛷𝑢 ≥ 0. 

    Now we pass to the limit 𝜀 → 0 in (29). Since |𝑢|𝑝 is bounded with compact support 

and𝑉𝜀 → 𝑉weakly in 𝐿1,𝐿𝑜𝑐 ,  the integral containingVεconverges. The other two terms 

converge by dominated convergence since 0 ≤ 𝑘𝜀 ≤ 𝑘, and we obtain 
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∫ ∫𝛷𝑢

2

ℝ𝑁

(𝑥, 𝑦)

2

ℝ𝑁×

𝑘(𝑥, 𝑦)𝑑𝑥 + ∫𝑉

2

ℝ𝑁

|𝑢|𝑝𝑑𝑥 = 𝐸[𝑢].                               (31) 

This implies the assertion since 𝛷𝑢 ≥ 0.  
     We shall prove Propositions(5.1.7) and (5.1.8) after having discussed a typical 

application and having explained their analogs involving derivatives. 

We are mostly interested in the case where 𝑘(𝑥, 𝑦) = |𝑥 − 𝑦|−𝑁−𝑝𝑠which enters in (3). For 

this particular choice of the kernel and for 𝑝 = 2, ground state representation (33) (with 

equality) was proved in [77]. The results for general kernels 𝑘 seem to be new, even in the 

linear case 𝑝 = 2. 
Proposition (5.1.8)[166]: Let 𝑝 ≥ 2. Under Assumption (5.1.3), for any 𝑢 with compact 

support  write 𝑢 = 𝜔𝜐 and assume that 𝐸[𝑢], ∫𝑉+ |𝑢|
𝑝𝑑𝑥, and 𝐸𝜔[𝜐] are finite. Then  

𝐸[𝑢] − ∫𝑉(𝑥)

2

ℝ𝑁

|𝑢(𝑥)|𝑝𝑑𝑥 ≥ 𝑐𝑝𝐸𝜔[𝜐]                                          (32) 

with 𝑐𝑝 from(13).If  𝑝 = 2, then (33) is an equality with 𝑐𝑝 = 1. 

Proof : The proof is similar to that of  Proposition (5.1.7), using (27) instead of  (26). We 

omit the details. 

We fix 𝑁 ≥ 1, 0 < 𝑠 < 1 and 𝑝 ≠  𝑁/𝑠 and abbreviate 

𝛼 ≔ (𝑁 − 𝑝𝑠) 𝑝⁄ . 
We will deduce the sharp Hardy inequality (3) using the general approach with the choice 

𝜔(𝑥) = |𝑥|−𝛼  ,    𝑘(𝑥, 𝑦) = |𝑥 − 𝑦|−𝑁−𝑝𝑠 ,      𝑉(𝑥) = 𝐶𝑁,𝑠,𝑝|𝑥|
−𝑝𝑠 .                  (33) 

    We begin the proof of Theorem (5.1.1) by verifying that 𝜔 solves the Euler–Lagrange 

equation associated with (3). 

 

Lemma (51.9) [166]: One has uniformly for 𝑥 from compacts in ℝ𝑁\{0} 

2 lim
𝜀→0

∫ (𝜔(𝑥) − 𝜔(𝑦))

2

||𝑥|−|𝑦||>𝜀

|𝜔(𝑥) − 𝜔(𝑦)|𝑝−2𝑘(𝑥, 𝑦)𝑑𝑦 =
𝐶𝑁,𝑠,𝑃
|𝑥|𝑝𝑠

𝜔(𝑥)𝑃−1         (34) 

with 𝐶𝑁,𝑠,𝑃 from (4). 

Proof:  First note that it suffices to prove the convergence (34) for a fixed 𝑥 ∈ ℝ𝑁\{0}, 
since the uniformity will then follow by a simple scaling argument. Now the integral on 

the left-hand side of (34) is absolutely convergent for any 𝜀 > 0 and after integrating out 

the angles it can be written as 

𝑟−𝑁+1 ∫
sgn(𝜌𝛼 − 𝑟𝛼)

|𝜌 − 𝑟|2−𝑝(1−𝑠)

2

|𝜌−𝑟|>𝜀

𝜑(𝜌, 𝑟)𝑑𝜌                                (35) 

where 𝑟 = |𝑥|, 

𝜑(𝜌, 𝑟) = |
𝜌−𝛼 − 𝑟−𝛼

𝑟 − 𝜌
|

𝑝−1

∙ {
𝜌𝑁−1 (1 −

𝑟

𝜌
)
1+𝑝𝑠

𝛷 (
𝜌

𝑟
),       if 𝜌 < 𝑟,

𝑟𝑁−1 (1 −
𝑟

𝜌
)
1+𝑝𝑠

𝛷 (
𝑟

𝜌
),      if 𝜌 > 𝑟,

          (36) 

and 𝛷 = 𝛷𝑁,𝑠,𝑝  given in (5). Since 𝑝(1 − 𝑠) > 0, the convergence of the integral in (35) 

for 𝜀 → 0 will follow if we can show that 𝜑(𝜌, 𝑟) is Lipschitz continuous as a function of 
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𝜌 at 𝜌 = 𝑟. For this we only need to prove that (1 − 𝑡)1+𝑝𝑠𝛷(𝑡) and its derivative remain 

bounded as 𝑡 → 1 −. 
    For 𝑁 = 1 this is obvious and hence we restrict ourselves to the case 𝑁 ≥ 2 in the 

following. One can prove the desired property either directly using elementary estimates 

or, as we shall do here, deduce it from properties of special functions. According to [176] 

𝛷(𝑡) = |𝕊𝑁−1|𝐵 (
𝑁 − 1

2
,
1

2
)𝐹 (

𝑁 + 𝑝𝑠

2
 ,
𝑝𝑠 + 2

2
 ,
𝑁

2
; 𝑡2) 

where  𝐹(𝑎, 𝑏, 𝑐; 𝑧)   is a hypergeometric function. If   a+𝑏 − 𝑐 > 1   the both (1 −
𝑧)𝑎+𝑏−𝑐𝐹(𝑎, 𝑏, 𝑐; 𝑧) and its derivative 

𝑑

𝑑𝑧
((1 − 𝑧)𝑎+𝑏−𝑐  𝐹(𝑎, 𝑏, 𝑐; 𝑧)) =

(𝑐 − 𝑎)(𝑐 − 𝑏)

𝑐
(1 − 𝑧)𝑎+𝑏−𝑐  𝐹(𝑎, 𝑏, 𝑐 + 1; 𝑧) 

have a limit as 𝑧 → 1−; see [180]. Since 𝑎 + 𝑏 − 𝑐 = 1 + 𝑝𝑠 > 1 in our situation, one 

easily deduces that (1 − 𝑡)1+𝑝𝑠𝛷(𝑡) and its derivative have a limit as 𝑡 → 1 −. 
    This argument gives (34) with 𝐶𝑁,𝑠,𝑃 replaced by the constant 

�́�𝑁,𝑠,𝑃 ≔ 2 lim
𝜀→0

∫
sgn(𝜌𝛼 − 1)

|𝜌 − 𝑟|2−𝑝(1−𝑠)

2

|𝜌−𝑟|>𝜀

𝜑(𝜌, 1)𝑑𝜌.                              (37) 

To see that this constant coincides with (4), we change variables 𝜌 ↦ 𝜌−1 in the integral 

on (1 + 𝜀,∞). Recalling the properties of 𝜑 we can pass to the limit 𝜀 → 0 and obtain 

�́�𝑁,𝑠,𝑃 = 2(sgn𝛼)∫(𝜌
−𝑝(1−𝑠)𝜑(𝜌−1, 1) − (𝜌, 1))

𝑑𝜌

(1 − 𝜌)2−𝑝(1−𝑠)

1

0

 

= 2∫𝜌𝑝𝑠−1
1

0

|1 − 𝜌𝛼|𝑝𝛷(𝜌)𝑑𝜌,                                          

which is (4) for 𝑁 ≥ 2. The proof for 𝑁 = 1 is similar. 

Remark (5.1.10)[166]: It is possible to express the sharp Hardy constant as an 𝑁 -

dimensional double integral 

𝐶𝑁,𝑠,𝑃 =
|𝑁 − 𝑝𝑠|

𝑝

2

|𝕊𝑁−1|
 ∫ ||𝑥|

−
𝑁−𝑝𝑠
𝑝 − |𝑦|

−
𝑁−𝑝𝑠
𝑝 |

𝑝−12

{|𝑥|<1<|𝑦|}

𝑑𝑥𝑑𝑦

|𝑥 − 𝑦|𝑁+𝑝𝑠
.       (38)  

To see this in the case 𝑁 > 𝑝𝑠 , we multiply the integral in (34) by 𝜒𝐵(𝑥),  the 

characteristic function of the unit ball 𝐵 ⊂ ℝ𝑁 , and integrate with respect to 𝑥 . After 

symmetrizing with respect to the variables 𝑥, yand passing to the limit 𝜀 → 0, we find 

∫ ∫(𝜒𝐵(𝑥) − 𝜒𝐵(𝑦))

2

ℝ𝑁

2

ℝ𝑁×

(𝜔(𝑥) − 𝜔(𝑦))|𝜔(𝑥) − 𝜔(𝑦)|𝑝−2𝑘(𝑥, 𝑦)𝑑𝑥𝑑𝑦   

= 𝐶𝑁,𝑠,𝑃 ∫
𝜔(𝑥)𝑝−1

|𝑥|𝑝𝑠

2

𝐵

𝑑𝑥.                                                                                

Performing the integration on the right-hand side yields (38) for 𝑁 > 𝑝𝑠. In the case 𝑁 <
𝑝𝑠, 
we multiply (34) by 1 − 𝜒𝐵(𝑥) and proc ed similarly. 

    We apply the general approach with 𝑘, 𝜔, 𝑉as in (33) and 
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𝑘𝜀(𝑥, 𝑦) ≔ {
𝑘(𝑥, 𝑦)       if  ||𝑥| − |𝑦|| > 𝜀,

0                  if  ||𝑥| − |𝑦|| ≤ 𝜀,
                                           (39) 

For simplicity, let Q  = �̇�𝑝
𝑠(ℝ𝑁)  if  𝑁 > 𝑝𝑠,  and Q == �̇�𝑝

𝑠(ℝ𝑁\{0})  if  𝑁 < 𝑝𝑠 . In 

Lemma (5.1.19) we have verified that the modification of Assumption (5.1.3) mentioned is 

satisfied forΩ = ℝ𝑁\{0}. Inequalities (3) and (12) for 𝑢 ∈ 𝐶0
∞(ℝ𝑁\{0}) are an immediate 

consequence of  Propositions (5.1.7) and (5.1.8). By density they extend to the 

homogeneous Sobolev space Q. 

     Next we shall prove that for 𝑝 > 1, inequality (3) is strict for all 0 ≢ 𝑢 ∈ Q. (Note that 

for  𝑝 ≥ 2 this is an immediate consequence of (12).) We start from identity (31) which 

was proved for bounded functions 𝑢 with compact support in ℝ𝑁\{0} and with ∫𝑉 |𝑢|𝑝𝑑𝑥 

and ∫∫ |𝑢(𝑥) − 𝑢(𝑦)|𝑝 𝑘(𝑥, 𝑦)𝑑𝑥  finite. By a standard approximation argument, this 

identity extends to any 𝑢 ∈ Q  with 𝛷𝑢 given by (30) and 𝑢 = 𝜔𝜐. 

    Assume that (28) holds with equality for some 𝑢 ∈ Q, and hence also for  |𝑢|. Since 

𝛷|𝑢| is non-negative and 𝑘 is strictly positive, it follows from (31) that 𝛷|𝑢| ≡ 0. Since 

𝑝 > 1 this implies that 𝜔(𝑥)−𝑝|𝑢(𝑥)|𝑝 is a constant (see Lemma (5.1.6)), whence 𝑢 ≡ 0. 

This proves that inequality (28) is strict for any 0 ≢ 𝑢 ∈ Q  if 𝑝 > 1. 
    To prove that the constant 𝐶𝑁,𝑠,𝑃 in (28) is optimal we first assume that 𝑁 > 𝑝𝑠 and use 

a family of trial functions 𝑢𝑛 ∈ �̇�𝑝
𝑠(ℝ𝑁) which approximate the ‘virtual ground state’ 𝜔. 

For any integer 𝑛 ∈ ℕ we divide ℝ𝑁 into three regions, 

𝐼 ≔ {𝑥 ∈ ℝ𝑁: 0 ≤ |𝑥| < 1}, 
𝑀𝑛 ≔ {𝑥 ∈ ℝ𝑁: 1 ≤ |𝑥| < 𝑛},     
𝑂𝑛 ≔ {𝑥 ∈ ℝ𝑁: |𝑥| ≥ 𝑛},           

and define the functions 

𝑢𝑛(𝑥) ≔ {
1 − 𝑛−𝛼             if 𝑥 ∈ 𝐼,     
|𝑥|−𝛼 − 𝑛−𝛼      if 𝑥 ∈ 𝑀𝑛,
0                         if 𝑥 ∈ 𝑂𝑛,

 

These functions belong to 𝑊𝑝
1(ℝ𝑁) and hence also to �̇�𝑝

𝑠(ℝ𝑁). Similarly as in the proof 

of Proposition (5.1.7) we integrate the right-hand side of (34) against 𝑢𝑛(𝑥)  and 

symmetrize with respect to the variables. One easily shows that in the limit 𝜀 → 0 one 

obtains 

∫ ∫(𝑢𝑛(𝑥) − 𝑢𝑛(𝑦))

2

ℝ𝑁

2

ℝ𝑁×

(𝜔(𝑥) − 𝜔(𝑦))|𝜔(𝑥) − 𝜔(𝑦)|𝑝−2𝑘(𝑥, 𝑦)𝑑𝑥𝑑𝑦   

= 𝐶𝑁,𝑠,𝑃 ∫
𝑢𝑛(𝑥)𝜔(𝑥)

𝑝−1

|𝑥|𝑝𝑠

2

ℝ𝑁

𝑑𝑥.                                                                                (40) 

Here we use the same abbreviations as in (33). The left-hand side of (40) can be rewritten 

as 

∫ ∫|𝑢𝑛(𝑥) − 𝑢𝑛(𝑦)|
𝑝

2

ℝ𝑁

2

ℝ𝑁×

𝑘(𝑥, 𝑦)𝑑𝑥𝑑𝑦 + 2ℛ0  

with  
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ℛ0 ≔ ∫ ∫ (1 − 𝜔(𝑦))

2

𝑦∈𝑀𝑛

2

𝑥∈𝐼,

(𝜔(𝑥) − 𝜔(𝑦))
𝑝−1

− (1 − 𝜔(𝑦)𝑝−1)2𝑘(𝑥, 𝑦)𝑑𝑥𝑑𝑦                  

          + ∫ ∫ (𝜔(𝑥) − 𝑛−𝛼)

2

𝑦∈𝑂𝑛

2

𝑥∈𝑀𝑛,

((𝜔(𝑥) − 𝜔(𝑦))
𝑝−1

− (𝜔(𝑥) − 𝑛−𝛼)𝑝−1) 𝑘(𝑥, 𝑦)𝑑𝑥𝑑𝑦 

     + ∫ ∫ (1 − 𝑛−𝛼)

2

𝑦∈𝑂𝑛

2

𝑥∈𝐼,

((𝜔(𝑥) − 𝜔(𝑦))
𝑝−1

− (1 − 𝑛−𝛼)𝑝−1
2
) 𝑘(𝑥, 𝑦)𝑑𝑥𝑑𝑦.             

It follows from the explicit form of 𝜔(𝑥) that the integrands in all three integrals are 

pointwise non-negative, hence 

ℛ0 ≥ 0.                                                                                (41) 
On the other hand, the right-hand side of (40) divided by 𝐶𝑁,𝑠,𝑃 can be rewritten as 

∫
𝑢𝑛
𝑝

|𝑥|𝑝𝑠

2

ℝ𝑁

𝑑𝑥 + ℛ1 +ℛ2 

with  

ℛ1: = ∫(1 − 𝑛−𝛼)

2

𝐼

(−𝜔(𝑥)𝑝−1 − (1 − 𝑛−𝛼)𝑝−1)1
𝑑𝑥

|𝑥|𝑝𝑠
, 

           ℛ2: = ∫(𝜔(𝑥) − 𝑛−𝛼)

2

𝑀𝑛

(𝜔(𝑥)𝑝−1 − (𝜔(𝑥) − 𝑛−𝛼)𝑝−1)1
𝑑𝑥

|𝑥|𝑝𝑠
. 

Again both terms are non-negative and we shall show below that 

ℛ1 +ℛ2 = O (1)     as 𝑛 → ∞.                                                    (42) 

Since obviously ∫𝑢𝑛
𝑝
|𝑥|−𝑝𝑠  𝑑𝑥 → ∞ as 𝑛 → ∞ we conclude from (41) and (42) that 

∫∫ |𝑢𝑛(𝑥) − 𝑢𝑛(𝑦)|
𝑝𝑘(𝑥, 𝑦)𝑑𝑥𝑑𝑦

2

ℝ𝑁×ℝ𝑁

∫ |𝑢𝑛(𝑥)|
𝑝|𝑥|−𝑝𝑠𝑑𝑥

2

ℝ𝑁

                                                 

= 𝐶𝑁,𝑠,𝑃 (1 +
ℛ1 +ℛ2

∫ |𝑢𝑛(𝑥)|
𝑝|𝑥|−𝑝𝑠𝑑𝑥

2

ℝ𝑁

) −
2ℛ0

∫ |𝑢𝑛(𝑥)|
𝑝|𝑥|−𝑝𝑠𝑑𝑥

2

ℝ𝑁

 

  ≤ 𝐶𝑁,𝑠,𝑃(1 + 𝑜(1))                                                                                 
as 𝑛 → ∞. This shows that 𝐶𝑁,𝑠,𝑃 is sharp. 

     It remains to prove (42). Since the integrand in ℛ1  is pointwise bounded by 

𝜔(𝑥)𝑝−1|𝑥|−𝑝𝑠 = |𝑥|𝛼−𝑁 we find that  ℛ1 ≤ ∫ |𝑥|𝛼−𝑁
2

|𝑥|<1
𝑑𝑥 < ∞.To estimate ℛ2 we use 

that 1 − (1 − 𝑡) 𝑝−1 ≤ 𝐶𝑝𝑡   for  0 ≤ 𝑡 ≤ 1 with 𝐶𝑝 = 1for 1 ≤ 𝑝 ≤ 2 and 𝐶𝑝 = 𝑝
−1 for 

𝑝 > 2. Hence the integrand in ℛ2can be bounded according to 

(𝜔(𝑥) − 𝑛−𝛼)(𝜔(𝑥)𝑝−1 − (𝜔(𝑥) − 𝑛−𝛼)𝑝−1) ≤ 𝐶𝑝𝑛
−𝛼𝜔(𝑥)𝑝−1 

and therefore after extending the integral to all |𝑥| < 𝑛 and scaling 𝑥 ↦  𝑥/𝑛 we obtain 

ℛ2 ≤ 𝐶𝑃  ∫ |𝑥|𝛼−𝑁
2

|𝑥|<1
𝑑𝑥 < ∞. This proves (42) 

     The case 𝑁 > 𝑝𝑠 is treated similarly, using a sequence of trial functions of the form 
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𝑢𝑛 ,𝑚(𝑥) ≔ {

0                                         if |𝑥| ≤ 1 𝑛⁄ ,                              
|𝑥|−𝛼 − 𝑛−𝛼                      if 1 𝑛⁄ ≤ |𝑥| ≤ 1,                     

(1 − 𝑛−𝛼)𝜒(|𝑥|/𝑚)        if |𝑥| ≥ 1,                                      
 

where 0 ≤ 𝜒 ≤ 1 is a smooth, compactly supported function with 𝜒(𝑡) = 1 for small 𝑡 
.After letting  𝑚 → ∞, the calculation proceeds along the same lines as above. 

To conclude the proof of Theorem (5.1.1) we need to characterize the minimizers in 

the case 𝑝 = 1. Actually, we present an alternative, simpler proof of inequality (3) in this 

case based on a symmetrization argument. 

     Note that the right-hand side of (3) remains unchanged if 𝑢 is replaced by |𝑢|, whereas 

the left-hand side does not increase. Indeed, it strictly decreases unless uis proportional to 

a non negative function. Moreover, under symmetric decreasing rearrangement the left-

hand side of (3) does not increase (see [168] and also Theorem (5.1.16)), whereas the 

right-hand side does not decrease. Indeed, it strictly increases unless |𝑢| is symmetric 

decreasing (see [144]). This argument shows that any optimizer (provided it exists) will be 

proportional to a symmetric decreasing function. Below we show that (3) holds with 

equality for any symmetric decreasing  𝑢 . By the previous argument this provides an 

alternative proof of Theorem(5.1.1) in the case  𝑝 = 1. 

     A symmetric decreasing function 𝑢 has a layer cake representation 𝑢 = ∫ 𝜒𝑡𝑑𝑡
∞

0
 with 

𝜒𝑡 the characteristic function of a ball centered at the origin with some radius 𝑅(𝑡). In this 

case the integral on the right-hand side of (3) equals 

∫
|𝑢(𝑥)|𝑝𝑠

|𝑥|𝑠

2

ℝ𝑁

𝑑𝑥 =
|𝕊𝑁−1|

𝑁 − 𝑠
∫ 𝑅(𝑡)𝑁−1
∞

0

𝑑𝑡, 

and the integral on the left-hand side equals 

∫ ∫
|𝑢(𝑥) − 𝑢(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠

2

ℝ𝑁

2

ℝ𝑁×

𝑑𝑥𝑑𝑦 = 2 ∬
|∫(𝜒𝑡(𝑥) − 𝜒𝑡(𝑥))|

|𝑥 − 𝑦|𝑁+𝑠

 2

 {|𝑥|<|𝑦|} 

𝑑𝑥𝑑𝑦                 

                                     = 2 ∭ |𝑥 − 𝑦|−𝑁−𝑠
2

{|𝑥|<𝑅(𝑡)<|𝑦|}

𝑑𝑥𝑑𝑦𝑑𝑡 

                                                              = 2 ∬ |𝑥 − 𝑦|−𝑁−𝑠
 2

 {|𝑥|< 𝐼< |𝑦|} 

𝑑𝑥𝑑𝑦∫ 𝑅(𝑡)𝑁−𝑠
∞

0

𝑑𝑡.      

This shows that (3) holds with equality for any symmetric decreasing function. 

      Let 1 ≤ 𝑞 < ∞, 1 ≤ 𝑟 ≤ ∞  and recall that the Lorentz space 𝐿𝑞 ,𝑟(ℝ
𝑁)  consists of 

those measurable functions 𝑢 on ℝ𝑁 for which the following quasinorm is finite, 

‖𝑢‖𝑞,𝑟 ≔ (𝑞∫ 𝜇𝑢(𝑡)
𝑟 𝑞⁄ 𝑡𝑟−1

∞

0

𝑑𝑡)

1 𝑟⁄

if  1 < 𝑟 < ∞,       ‖𝑢‖𝑞,∞ ≔ sup
𝑡>0

𝜇𝑢(𝑡)
1 𝑞⁄ 𝑡 

Here 𝜇𝑢(𝑡): =  {𝑥 ∈ ℝ
𝑁: |𝑢(𝑥)| > 𝑡} denotes the distribution function of 𝑢 . Note that 

𝐿𝑞,𝑞(ℝ
𝑁) = 𝐿𝑞(ℝ

𝑁) and that one has strict inclusions 𝐿𝑞,𝑟(ℝ
𝑁) ⊂ 𝐿𝑞,𝑠(ℝ

𝑁)for  𝑟 < 𝑠. A 

classical result by Peetre [186] states that the standard Sobolev embedding �̇�𝑝
𝑠(ℝ𝑁) ⊂

𝐿𝑝∗(ℝ
𝑁), 𝑝∗ = 𝑁𝑝 (𝑁 − 𝑝𝑠)⁄  for 𝑁 > 𝑝𝑠,  can be improved to �̇�𝑝

𝑠(ℝ𝑁) ⊂ 𝐿𝑝∗,𝑝(ℝ
𝑁) . 
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Peetre’s proof is based on interpolation and requires 𝑝 > 1. We refer to [189] for more 

elementary interpolation arguments, including the case 𝑝 = 1. 
    Here we give a direct proof of this embedding which avoids interpolation. It is based on 

symmetrization  and leads to sharp constants. 

Corollary (5.1.11)[166]: Let 𝑁 ≥ 1, 0 < 𝑠 < 1, 1 ≤ 𝑝 < 𝑁/𝑠  and 𝑝 ≤ 𝑟 ≤ ∞.𝑃𝑢𝑡 𝑝∗ =

𝑁𝑝/(𝑁 − 𝑝𝑠). Then �̇�𝑝
𝑠(ℝ𝑁) ⊂ 𝐿𝑝∗,𝑟(ℝ

𝑁) and 

‖𝑢‖𝑝∗,𝑟 ≤ (
𝑝∗

𝑟
)
1 𝑟⁄

(
𝑝

𝑝∗
)
1 𝑝⁄

(
𝑁

|𝕊𝑁−1|
)
𝑠 𝑁⁄

𝐶𝑁,𝑠,𝑃
−1 𝑝⁄

( ∫ ∫
|𝑢(𝑥) − 𝑢(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠

2

ℝ𝑁

2

ℝ𝑁×

𝑑𝑥𝑑𝑦)

1 𝑝⁄

 (43) 

    Setting 𝑟 = 𝑝∗ in (43) we recover the standard Sobolev inequality (8). Using the 

bound(10) on the constant, we recover the result (9) by Maz’ya and Shaposhnikova. 

    The link between Theorem (5.1.13) and the sharp Hardy inequality (3) is 

Lemma (5.1.12)[166]: Let 0 < 𝑠 ≤ 1  and 1 ≤ 𝑝 < 𝑁/𝑠 . Then for any non-negative, 

symmetric decreasing 𝑢 on ℝ𝑁 

‖𝑢‖𝑝∗,𝑝 = (
𝑁

|𝕊𝑁−1|
)
𝑠 𝑁⁄

( ∫
𝑢𝑝𝑝𝑠

|𝑥|𝑝𝑠

2

ℝ𝑁

𝑑𝑥)

1 𝑝⁄

                                         (44) 

Proof: Introducing 𝑤 = 𝑢𝑝 and  𝜇 = 𝜇𝑤 we can rewrite the left-hand side of (44) as 

‖𝑢‖𝑝∗,𝑝
𝑝

=
𝑝∗

𝑝
∫ 𝜇(𝑡)

𝑝
𝑝∗

∞

0

𝑑𝑡. 

We write 𝑤 = ∫ 𝜒𝑡
∞

0
𝑑𝑡  in its layer cake representation. Here 𝜒𝑡  is the characteristic 

function of {𝑥: 𝑤(𝑥) > 𝑡}, which is a ball of radius (𝑁𝜇(𝑡)/|𝕊𝑁−1|)1/𝑁 . Hence 

∫
𝑤𝑝𝑠

|𝑥|𝑝𝑠

2

ℝ𝑁

𝑑𝑥 = ∫ ( ∫
𝜒𝑡(𝑥)

𝑝𝑠

|𝑥|𝑝𝑠

2

ℝ𝑁

𝑑𝑥)

∞

0

𝑑𝑡 =
𝑁

𝑁−𝑝𝑠
𝑁

𝑁 − 𝑝𝑠
|𝕊𝑁−1|

𝑝𝑠
𝑁 ∫ 𝜇(𝑡)

𝑁−𝑝𝑠
𝑁

∞

0

𝑑𝑡, 

proving (44) . 

Theorem (5.1.13)[166]:(Sharp Sobolev inequality). Let 𝑁 ≥ 1, 0 < 𝑠 < 1, 1 ≤ 𝑝 < 𝑁/𝑠 

and put  𝑝∗ = 𝑁𝑝/(𝑁 − 𝑝𝑠). Then �̇�𝑃
𝑠(ℝ𝑁) ⊂ 𝐿𝑃∗,𝑃(ℝ

𝑁) and 

‖𝑢‖𝑃∗,𝑃 ≤ (
𝑁

|𝕊𝑁−1|
)
𝑠 𝑁⁄

𝐶𝑁,𝑠,𝑃
−1 𝑝⁄

( ∫ ∫
|𝑢(𝑥) − 𝑢(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠

2

ℝ𝑁

2

ℝ𝑁×

𝑑𝑥𝑑𝑦)

1 𝑝⁄

                     (45) 

for any 𝑢 ∈ �̇�𝑃
𝑠(ℝ𝑁) with 𝐶𝑁,𝑠,𝑃  from (4). This constant is optimal. For 𝑝 = 1equality 

holds iff 𝑢 is proportional to a non-negative function 𝜐 such that the level sets{𝜐 > 𝜏} are 

balls for a.e. 𝜏. For 𝑝 > 1 the inequality is strict for any 𝑢 ≢ 0. 
    For 𝑝 = 1 and 𝑢 a characteristic function we obtain 

|Ω|(𝑁−𝑠) 𝑁⁄ ≤
2(𝑁 − 𝑠)

𝑁𝐶𝑁,𝑠,1
(

𝑁

|𝕊𝑁−1|
)
𝑠 𝑁⁄

∫ ∫
𝑑𝑥𝑑𝑦

|𝑥 − 𝑦|𝑁+𝑠

2

ℝ𝑁

2

ℝ𝑁×

,                           (46) 

for any 𝛺 ⊂ ℝ𝑁 of finite measure, with equality iff 𝛺 is a ball. Moreover, using that 

‖𝑢‖𝑞,𝑟 ≤ (
𝑞

𝑟
)
1 𝑟⁄

(
𝑝

𝑞
)
1 𝑝⁄

‖𝑢‖𝑞,𝑝,     𝑝 < 𝑟 
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(which is easily proved using the layer cake representation for 𝜇𝑢
𝑝/𝑞

 and Minkowski’s 

inequality) one obtains 

Proof :  By symmetric decreasing rearrangement it suffices to prove (45) for symmetric 

decreasing 𝑢  (see [168] and also Theorem (5.1.16)), for which it is an immediate 

consequence of Theorem (5.1.1) and Lemma (5.1.12). The sharpness of the constant and 

the non-existence of optimizers for 𝑝 > 1 follows Theorem (5.1.1). For 𝑝 = 1 one uses the 

characterization of equality in the rearrangement inequality in Theorem (5.1.16). 

Remark (5.1.14)[166]: The ‘local’ analog of (45) for 𝑠 = 1 is 

‖𝑢‖𝑝∗,𝑝 ≤ (
𝑁

|𝕊𝑁−1|
)
1 𝑁⁄ 𝑝

𝑁 − 𝑝
( ∫|∇𝑢(𝑥)|𝑝

2

ℝ𝑁

𝑑𝑥)

1 𝑝⁄

                     (47) 

for  𝑁 ≥ 2, 1 ≤ 𝑝 < 𝑁 and 𝑝 ∗ = 𝑁𝑝/(𝑁 − 𝑝). It is due to [185], [186]; the sharp constant 

in this case was found by Alvino [169]. Inequality (47) can be proved in the same way as 

Theorem (5.1.13), with the fractional Hardy inequality (3) replaced by the classical Hardy 

inequality (1). 

     Almgren and Lieb [168] have shown that the norm in 𝑊𝑝
𝑠(ℝ𝑁) does not increase under 

rearrangement. Since we have not found a characterization of the cases of equality in the 

literature, we include a proof. The special case 𝑝 = 1  has been used in the proof of  

Theorem (5.1.13). 

Lemma (5.1.15)[166]: Let 𝐽 be a non-negative, convex function on ℝ with 𝐽(0) = 0 and  

let 𝑘 ∈ 𝐿1(ℝ
𝑁) be a symmetric decreasing function. Then for all non-negative measurable 

𝑢 with 𝐸[𝑢] and |{𝑢 > 𝜏}| finite for all 𝜏 > 0 one has 

𝐸[𝑢] ≥ 𝐸[𝑢∗].                                                                   (48) 
If, in addition, 𝐽 is strictly convex and 𝑘 is strictly decreasing, then equality holds iff 𝑢 is a 

translate of a symmetric decreasing function. If  𝐽(𝑡) = |𝑡|, then equality holds iff the level 

sets {𝑢 > 𝜏} are balls for . 𝑒. 𝜏 > 0. 

     Inequality (48) under the additional assumptions 𝐽(𝑡) = 𝐽(−𝑡) and  ∫ 𝐽(𝑢(𝑥))𝑑𝑥 < ∞ 

is due to Almgren and Lieb [168]. The characterization of cases of equality seems to be 

new. 

Proof: As in [144] we can write 𝐽 = 𝐽+ + 𝐽− with 𝐽+(𝑡) = 𝐽(𝑡) for  𝑡 ≥ 0  and 𝐽+(𝑡) = 0 

for 𝑡 < 0. We decompose 𝐸 = 𝐸+ + 𝐸− accordingly. Below we prove the assertion of the 

lemma with 𝐸 replaced by 𝐸+. The assertion for 𝐸− (and hence for the original 𝐸) follows 

by exchanging the roles of 𝑥  and 𝑦  replacing  𝐽(𝑡) by 𝐽(−𝑡) . Note that this argument 

yields a characterization of cases of equality under the weaker assumption that 𝐽 is strictly 

convex on either  ℝ+ or ℝ−. 

Step 1.We first prove the assertion under the additional assumption that 𝑢 is bounded. 

Since 𝐽+( is convex it has a right derivative 𝐽+, which is non-negative and non-decreasing. 

Writing 𝐽+(𝑡) = ∫ 𝐽+
𝑡

0
(𝜏)𝑑𝜏  one finds 

𝐽+(𝑢(𝑥) − 𝑢(𝑦)) = ∫ 𝐽+(𝑢(𝑥) − 𝜏)

∞

0

𝜒{𝑢≤𝜏}(𝑦)𝑑𝜏, 

and hence by Fubini 

𝐸+[𝑢] = ∫ 𝑒𝜏
+

∞

0

[𝑢]𝑑𝜏                                                           (49) 
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where  

𝑒𝜏
+[𝑢] ≔ ∫ ∫𝐽+(𝑢(𝑥) − 𝜏)𝑘(𝑥 − 𝑦)

2

ℝ𝑁

2

ℝ𝑁×

𝜒{𝑢≤𝜏}(𝑦)𝑑𝑥𝑑𝑦.                           (50)  

Since 𝑢  is bounded and  |{𝑢 > 𝜏}| < ∞  one has ∫ 𝐽+
2

ℝ𝑁
(𝑢(𝑥) − 𝜏)𝑑𝑥 < ∞.  Writing  

𝜒{𝑢≤𝜏} = 1 − 𝜒{𝑢>𝜏} we obtain 

𝑒𝜏
+[𝑢] = ‖𝑘‖1 ∫𝐽+

2

ℝ𝑁

(𝑢(𝑥) − 𝜏)𝑑𝑥 − ∫ ∫𝐽+(𝑢(𝑥) − 𝜏)𝑘(𝑥 − 𝑦)

2

ℝ𝑁

2

ℝ𝑁×

𝜒{𝑢>𝜏}(𝑦)𝑑𝑥𝑑𝑦. (51) 

The first integral on the right-hand side of (51) does not change under rearrangement. 

Moreover, we note that (𝐽+(𝑢 − 𝜏))
∗ = 𝐽+(𝑢

∗ − 𝜏). By Riesz’s rearrangement inequality, 

the double integral on the right-hand side of (51) does not decrease under rearrangement, 

proving 𝑒𝜏
+[𝑢] ≥ 𝑒𝜏

+[𝑢∗] and hence  𝐸+[𝑢] ≥ 𝐸+[𝑢
∗].  

     To characterize the cases of equality assume that 𝑘 is strictly decreasing and 𝐸+[𝑢] =
𝐸+[𝑢

∗] for some bounded 𝑢. Then by (51) 𝑒𝜏
+[𝑢] = 𝑒𝜏

+[𝑢∗] for 𝑎. 𝑒. 𝜏, and by Lieb’s strict 

rearrangement inequality [179] for 𝑎. 𝑒. 𝜏 > 0 there is an 𝑎𝜏 ∈ ℝ
𝑁 such that 𝜒{𝑢<𝜏}(𝑥) =

𝜒{𝑢∗<𝜏}(𝑥 − 𝑎𝜏) and  

𝐽±(𝑢(𝑥) − 𝜏) = 𝐽±(𝑢
∗(𝑥 − 𝑎𝜏) − 𝜏)                                                  (52) 

for a.e. 𝑥. If 𝐽+(𝑡) = 𝑡+ for all 𝑡, this means that {𝑢 > 𝜏} is a ball for a.e. 𝜏 > 0. Now 

assume that  𝐽+  is strictly convex on ℝ+ . Then 𝐽+ is strictly increasing on ℝ+  and we 

conclude that (𝑢(𝑥) − 𝜏)+ = (𝑢
∗(𝑥 − 𝑎𝜏) − 𝜏)+for a.e. 𝜏  and 𝑥 . This is easily seen to 

imply that 𝑎𝜏 is independent of  𝜏, and hence 𝑢 is a translate of a symmetric decreasing 

function. 

Step 2.Now we remove the assumption that 𝑢 is bounded, that is, we claim that (48) holds 

for any non-negative 𝑢 with 𝐸[𝑢] and |{𝑢 > 𝜏}| finite for all 𝜏. To see this, replace 𝑢 by 

𝑢𝑀 =min{𝑢,M} and note that (𝑢𝑀)
∗ = (𝑢∗)𝑀 =: 𝑢𝑀

∗  and 𝐸[𝑢𝑀] ≤ 𝐸[𝑢] . By monotone 

convergence the claim follows easily from  𝐸[𝑢𝑀] ≥ 𝐸[𝑢𝑀
∗ ].  

Step 3.Finally, we characterize the cases of equality for general 𝑢 . Assume that 𝑘  is 

strictly decreasing and 𝐸+[𝑢] = 𝐸+[𝑢
∗] for some non-negative 𝑢 with 𝐸[𝑢] and |{𝑢 > 𝜏}| 

finite for all 𝜏. For any 𝑀 > 0 we decompose 

𝑢 = 𝑢𝑀 + 𝜐𝑀,    𝑢𝑀 ≔ min{ 𝑢,𝑀 }, 
and find  

𝐸+[𝑢] = 𝐸+[𝑢𝑀] + 𝐸+[𝜐𝑀] + ∫ ∫𝐹𝑀

2

ℝ𝑁

2

ℝ𝑁×

(𝜐𝑀(𝑥), 𝑢𝑀(𝑦))𝑘(𝑥 − 𝑦)𝑑𝑥𝑑𝑦            (53) 

with 

𝐹𝑀(𝜐, 𝑢) ≔ 𝐽+(𝜐 + 𝑀 − 𝑢) − 𝐽+(𝜐) − 𝐽+(𝑀 − 𝑢). 
Note that since 𝐽+ is convex with  𝐽+(0) = 0, one has 𝐹𝑀(𝜐, 𝑢) ≥ 0 for 0 ≤ 𝑢 ≤ 𝑀 and 

𝜐 ≥ 0. Hence all three terms on the right-hand side of (53) are non-negative and finite. 

Note that replacing 𝑢 by 𝑢∗ amounts to replacing 𝑢𝑀 and 𝜐𝑀  by 𝑢𝑀
∗ and 𝜐𝑀

∗ , respectively. 

Below we shall prove that the double integral in (53) does not increase if  both 𝑢𝑀 and 𝜐𝑀 

are replaced by 𝑢𝑀
∗  and 𝜐𝑀

∗ . Moreover, by Step 2, 𝐸+[𝜐𝑀] ≥ 𝐸
+[𝜐𝑀

∗ ]. Hence if  𝐸+[𝑢] =
𝐸+[𝑢∗], then  𝐸+[𝑢𝑀] = 𝐸+[𝑢𝑀

∗ ] for all 𝑀 > 0. Using the characterization from Step 1 

one easily concludes that 𝑢 is of the form stated in the lemma. 
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      It suffices to prove that the double integral in (53) does not increase under 

rearrangement. Since 𝐽+  is increasing, we have 𝐽+(𝑡) = ∫ 𝑑𝜇(𝜏)
𝑡

0
  for a non-negative 

measure 𝜇 . Hence 𝐽+(𝑡) = ∫ (𝑡 − 𝜏)+𝑑𝜇(𝜏)
∞

0
 and 

𝐹𝑀(𝜐, 𝑢) = ∫ 𝑓𝑀,𝜏

∞

0

(𝜐, 𝑢)𝑑𝜇(𝜏),                                                                   

      𝑓𝑀,𝜏(𝜐, 𝑢) ≔ (𝜐 +𝑀 − 𝑢 − 𝜏)+ − (𝜐 − 𝜏)+ − (𝑀 − 𝑢 − 𝜏)+. 
Since the integrand is non-negative for 0 ≤ 𝑢 ≤ 𝑀 and 𝜐 ≥ 0, it suffices to prove that for 

all 𝜏 the double integral 

∫ ∫𝑓𝑀,𝜏

2

ℝ𝑁

2

ℝ𝑁×

(𝜐𝑀(𝑥), 𝑢𝑀(𝑦))𝑘(𝑥 − 𝑦)𝑑𝑥𝑑𝑦 

does not increase under rearrangement. We decompose further 𝑓𝑀,𝜏 = 𝑓𝑀,𝜏
(1)
− 𝑓𝑀,𝜏

(2)
 where  

𝑓𝑀,𝜏
(1)
(𝜐):= 𝜐 − (𝜐 − 𝜏)+ and 

𝑓𝑀,𝜏
(2)(𝜐, 𝑢):= 𝜐 − (𝜐 + 𝑀 − 𝑢 − 𝜏)+ + (𝑀 − 𝑢 − 𝜏)+min{ 𝜐 , (𝑢 − 𝑀 + 𝜏)+}. 

Since 𝑓𝑀,𝜏
(1)

 is bounded and the support of  𝜐𝑀 has finite measure, the integral  

∫ ∫𝑓𝑀,𝜏
(1)

2

ℝ𝑁

2

ℝ𝑁×

(𝜐𝑀(𝑥))𝑘(𝑥 − 𝑦)𝑑𝑥𝑑𝑦 = ‖𝑘‖1 ∫ 𝑓𝑀,𝜏
(1)

∞

ℝ𝑁

(𝜐𝑀(𝑥))𝑑𝑥 

is finite and invariant under rearrangement of 𝜐𝑀. Finally, by Fubini we can write 

     ∫ ∫𝑓𝑀,𝜏
(2)

2

ℝ𝑁

2

ℝ𝑁×

(𝜐𝑀(𝑥), 𝑢𝑀(𝑦))𝑘(𝑥 − 𝑦)𝑑𝑥𝑑𝑦                                                

            = ∫ ( ∫ ∫𝜒{𝜐𝑀>𝜏}(𝑥)𝑘(𝑥 − 𝑦)𝜒{(𝑢𝑀−𝑀+𝜏)+>𝑡}

2

ℝ𝑁

(𝑦)

2

ℝ𝑁×

𝑑𝑥𝑑𝑦)

∞

0

𝑑𝑡. 

By Riesz’s rearrangement inequality, this does not decrease under rearrangement, 

completing the proof.  

Theorem (5.1.16)[166]: Let 𝑁 ≥ 1, 0 < 𝑠 < 1, 1 ≤ 𝑝 < 𝑁/𝑠 and 𝑢 ∈ �̇�𝑝
𝑠(ℝ𝑁). Then 

∫ ∫
|𝑢(𝑥) − 𝑢(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠

2

ℝ𝑁

2

ℝ𝑁×

𝑑𝑥𝑑𝑦 ≥ ∫ ∫
|𝑢∗(𝑥) − 𝑢∗(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠

2

ℝ𝑁

2

ℝ𝑁×

𝑑𝑥𝑑𝑦.               (54) 

If  𝑝 = 1, then equality holds iff uis proportional to a non-negative function 𝜐 such that the 

level set {𝜐 > 𝜏} is a ball for 𝑎. 𝑒. 𝜏 > 0.If 𝑝 > 1, then equality holds iff 𝑢 is proportional 

to a translate of a symmetric decreasing function. 

     Though we do not use the ‘only if’ statement for 𝑝 > 1, we have included it since we 

think it is interesting in its own right. It might be compared with the result in the ‘local 

case’, namely, that if equality in ∫ |∇𝑢|𝑝𝑑𝑥 ≥ ∫ |∇𝑢∗|𝑝𝑑𝑥 is attained for a non-negative 𝑢, 

then the level sets of 𝑢  are balls, but 𝑢  is not necessarily a translate of a symmetric 

decreasing function; see [173]. 

     We start by considering a slightly more general situation. For 𝐽 a non-negative, convex 

function on ℝ with  𝐽(0) = 0 and 𝑘 a non-negative function on ℝ𝑁, we let 
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𝐸[𝑢] ≔ ∫ ∫𝐽(𝑢(𝑥) − 𝑢(𝑦))𝑘(𝑥 − 𝑦)

2

ℝ𝑁

2

ℝ𝑁×

𝑑𝑥𝑑𝑦. 

Proof: First note that |𝑢(𝑥) − 𝑢(𝑦)| ≥ ||𝑢(𝑥)| − |𝑢(𝑦)||, and that equality for all 𝑥, 𝑦 

holds iff 𝑢 is proportional to a non-negative function. Hence we can restrict ourselves to 

non-negative functions. Writing as in [168] 

∫ ∫
|𝑢(𝑥) − 𝑢(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠

2

ℝ𝑁

2

ℝ𝑁×

𝑑𝑥𝑑𝑦 =
1

Γ((𝑁 + 𝑝𝑠) 2⁄ )
∫ 𝐼𝛼[𝑢]

∞

0

𝛼(𝑁+𝑝𝑠) 2−1⁄ 𝑑𝛼                (55) 

with  

𝐼𝛼[𝑢] ≔ ∫ ∫|𝑢(𝑥) − 𝑢(𝑦)|𝑝𝑒−𝛼|𝑥−𝑦|
2

2

ℝ𝑁

2

ℝ𝑁×

𝑑𝑥𝑑𝑦, 

the assertion follows from Lemma (5.1.15). 

Section (5.2): Fractional Hardy-Sobolev-Maz'ya Inequality for Domains 
We are concerned here with the fractional Hardy inequality in an arbitrary domain  

Ω ⊆ ℝ𝑁 , which states that if  1 < 𝑝 < ∞  and  0 < 𝑠 < 1 with 𝑝𝑠 > 1, then 

∬
|𝑢(𝑥) − 𝑢(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠
𝑑𝑥𝑑𝑦

1

Ω×Ω

≥ 𝒟𝑁,𝑝,𝑠∫
|𝑢(𝑥)|𝑝

𝑚𝑝𝑠(𝑥)
𝑝𝑠

2

Ω

𝑑𝑥                                 (56) 

for all 𝑢 ∈ 𝑊𝑜
𝑝
𝑠 (Ω), the closure of 𝐶𝑐

∞(Ω) with respect to the left side of (56).The pseudo 

distance 𝑚𝑝𝑠(𝑥)is defined in (59); its most important property for the present discussion is 

that for convex domain we have 𝑚𝑝𝑠(𝑥) ≤ dist(𝑥, Ω𝑐). We denote by 𝒟𝑁,𝑝,𝑠 the sharp 

constant in (56), which was recently found by Loss and Sloane [200] and is explicitly 

given in (67) below. This constant is independent of  and coincides with that on the half 

space which was earlier found in [192], [197]. 

     By the (well-known) Sobolev inequality the  left side of  (56)  dominates an 𝐿𝑞-norm  

of u. Our main result, the fractional HSM inequality, states that the left side of (56), even 

after subtracting the right side, is still strong enough to dominate this 𝐿𝑞-norm.  

We prove Theorem (5.2.8) in the particular case when  Ω = ℝ+
𝑁 = {𝑥 ∈ ℝ𝑁 ∶ 𝑥𝑁 >

0}. Our starting point is the inequality 

∬
|𝑢(𝑥) − 𝑢(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠
𝑑𝑥𝑑𝑦

1

ℝ+
𝑁×ℝ+

𝑁
− 𝒟𝑁,𝑝,𝑠∫

|𝑢(𝑥)|𝑝

𝑥𝑁
𝑝𝑠

2

ℝ+
𝑁

𝑑𝑥 ≥ 𝑐𝑝 𝐽[𝜐],                      (57) 

where 𝑐𝑝  is an explicit, positive constant (for 𝑝 = 2 this is an identity with 𝑐2 = 1), 

𝐽[𝜐]: = ∬
|𝜐(𝑥) − 𝜐(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠
(𝑥𝑁𝑦𝑁)

𝑝𝑠−1𝑑𝑥𝑑𝑦
1

ℝ+
𝑁×ℝ+

𝑁
, 

and 𝜐(𝑥) ∶= 𝑥𝑁
−(𝑝𝑠−1) 𝑝⁄

𝑢(𝑥). This inequality was derived in [197], using the `ground state 

representation' method from [166]. We note that 𝑚𝑝𝑠(𝑥) = 𝑥𝑁 in the case of a half space, 

as a quick computation shows (see also [200]). 

    In order to derive a lower bound on 𝐽 [𝑣] we make use of the bound 

(𝑥𝑁𝑦𝑁)
𝑎 ≥ min{𝑥𝑁

2𝑎, 𝑦𝑁
2𝑎} =2𝑎∫ 𝜒(𝑡,∞)

∞

0

(𝑥𝑁)𝜒(𝑡,∞)(𝑦𝑁)𝑡
2𝑎−1𝑑𝑥 

for 𝑎 > 0. Combining this inequality with the fractional Sobolev inequality (see Lemma 

(5.2.1) below) and Minkowski's  inequality, we can bound 
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𝐽[𝜐] ≥ (𝑝𝑠 − 1)∫ ∬
|𝜐(𝑥) − 𝜐(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠
𝑑𝑥𝑑𝑦 𝑡𝑝𝑠−2𝑑𝑡

1

𝑥𝑁>𝑡,𝑦𝑁>𝑡

∞

0

 

≥ (𝑝𝑠 − 1)𝐶𝑁,𝑝,𝑠∫ (∫ |𝜐(𝑥)|𝑞
2

𝑥𝑁>𝑡

𝑑𝑥)

𝑝 𝑞⁄∞

0

 𝑡𝑝𝑠−2𝑑𝑡 

≥ (𝑝𝑠 − 1)𝐶𝑁,𝑝,𝑠 (∫ |𝜐(𝑥)|𝑞
2

ℝ+
𝑁

(∫  𝑡𝑝𝑠−2𝑑𝑡
𝑥𝑁

0

)

𝑞 𝑝⁄

𝑑𝑥)

𝑞 𝑝⁄

 

= 𝐶𝑁,𝑝,𝑠 (∫ |𝜐(𝑥)|𝑞
2

ℝ+
𝑁

𝑥𝑁
𝑞(𝑝𝑠−1) 𝑝⁄

𝑑𝑥)

𝑝 𝑞⁄

.                                 

Recalling the relation between 𝑢  and 𝜐  we arrive at (66). This completes the proof of  

Theorem (5.2.8) when  Ω = ℝ+
𝑁 . 

    In the previous proof we used the Sobolev inequality on half-spaces for functions which 

do not necessarily vanish on the boundary. For the sake of completeness we include a 

short derivation of this inequality. The precise statement involves the closure �̇�𝑝
𝑠(ℝ+

𝑁) of 

𝐶0
∞(ℝ+

𝑁̅̅ ̅̅ ) with respect to the left side of (56). 

Lemma (5.2.1)[190]: Let 𝑁 ≥ 1, 1 ≤  𝑝 < ∞ and 0 < 𝑠 < 1 with 𝑝𝑠 < 𝑁 . Then there is 

a constant  𝐶𝑁,𝑝,𝑠 > 0 such that 

∬
|𝑢(𝑥) − 𝑢(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠
𝑑𝑥𝑑𝑦

1

ℝ+
𝑁×ℝ+

𝑁
≥ 𝐶𝑁,𝑝,𝑠 (∫ |𝑢(𝑥)|𝑞

2

ℝ+
𝑁

𝑑𝑥)

𝑝 𝑞⁄

 

for all  𝑢 ∈ �̇�𝑝
𝑠(ℝ+

𝑁),  where 𝑞 = 𝑁𝑝 (𝑁 − 𝑝𝑠).⁄  

Proof:  If  �̃� denotes the even extension of 𝑢 to ℝ𝑁, then  

∬
|�̃�(𝑥) − �̃�(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠
𝑑𝑥𝑑𝑦

1

ℝ+
𝑁×ℝ+

𝑁
= 2∬

|𝑢(𝑥) − 𝑢(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠
𝑑𝑥𝑑𝑦

1

ℝ+
𝑁×ℝ+

𝑁
 

                        +2∬
|𝑢(𝑥) − 𝑢(𝑦)|𝑝

(|�́� − �́�|2 + (𝑥𝑁 + 𝑦𝑁)
2)(𝑁+𝑝𝑠) 2⁄

𝑑𝑥𝑑𝑦
1

ℝ+
𝑁×ℝ+

𝑁
 

                                                     ≤ 4∬
|𝑢(𝑥) − 𝑢(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠
𝑑𝑥𝑑𝑦

1

ℝ+
𝑁×ℝ+

𝑁
. 

On the other hand, by the `standard' fractional Sobolev inequality on ℝ𝑁 (see, e.g., [166] 

for explicit constants) the left side is an upper bound on 

𝑆𝑁,𝑝,𝑠 (∫ |�̃�(𝑥)|𝑞𝑑𝑥
2

ℝ𝑁
)

𝑝 𝑞⁄

= 2𝑝 𝑞⁄ 𝑆𝑁,𝑝,𝑠 (∫ |𝑢(𝑥)|𝑞𝑑𝑥
2

ℝ+
𝑁

)

𝑝 𝑞⁄

. 

Remark (5.2.2)[190]: The above proof of the fractional HSM inequality works 

analogously in the local case, that is, to show that 

∫ |∇𝑢|𝑞
2

ℝ+
𝑁

𝑑𝑥 − (
𝑝 − 1

𝑝
)
𝑝

∫
|u|𝑝

𝑥𝑁
𝑝

2

ℝ+
𝑁

𝑑𝑥 ≥ 𝜎𝑁,𝑝,1 (∫ |u|𝑞
2

ℝ+
𝑁

𝑑𝑥)

𝑝 𝑞⁄

, 𝑞 =
𝑁𝑝

𝑁 − 𝑝
,     (58) 

for 𝑢 ∈ �̇� 𝑝
1(ℝ+

𝑁)  when  𝑁 ≥ 3  and  2 ≤ 𝑝 < 𝑁 .  Again, the starting point [166] is to 

bound the left side from below by an explicit constant 𝑐𝑝 > 0 times 

∫ |∇𝜐|𝑝𝑥𝑁
𝑝−1

𝑑𝑥
2

ℝ+
𝑁

 ,         𝜐 = 𝑥𝑁
−(𝑝−1) 𝑝⁄

𝑢. 
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(For 𝑝 = 2, this is an identity with 𝑐2 = 1.) Next, we write 𝑥𝑁
𝑎 = 𝑎 ∫ 𝜒(𝑡,∞)

∞

0
(𝑥𝑁)𝑡

𝑎−1𝑑𝑡 

and use Sobolev's inequality on the half-space {𝑥𝑁 > 𝑡}  together with Minkowski's 

inequality. Note that the sharp constants in this half-space inequality are known explicitly 

(namely, given in terms of the whole-space constants via the reflection method of  Lemma 

(5.2.1)). 

The sharp constant in (58) for 𝑝 = 2 and 𝑁 = 3 was found in [191]. We think it 

would be interesting to investigate this question for the non-local inequality (66) and we 

believe that [202] is a promising step in this direction. 

We show a fractional Hardy- Sobolev- Mażya inequality on the ball 𝐵𝑟 ⊂ ℝ
𝑁 , 𝑁 ≥

2, of radius 𝑟 centered at the origin. The argument follows that from the previous, but is 

more involved.  

This proves Theorem (5.2.8) in the special case  Ω = 𝐵𝑟 and  𝑝 = 2 with 𝑚2𝑠(𝑥) 
replaced by  (𝑟2 − |𝑥|2) 2𝑟⁄ . We note that (𝑟2 − |𝑥|2) 2𝑟⁄ ≤ dist(𝑥, 𝐵𝑟

𝑐) for  𝑥 ∈ 𝐵𝑟 . (As 

an aside we note, however, that it is not always true that (𝑟2 − |𝑥|2) 2𝑟⁄  is greater than 

𝑚2𝑠(𝑥). Indeed, take 𝑥 = 0 and  𝑁 = 2.) 

We also note that Proposition (5.2.3) implies Theorem (5.2.8) for  Ω = ℝ+
𝑁  (and  

𝑝 = 2). Indeed, by translation invariance the proposition implies the inequality also on 

balls 𝐵(𝑎𝑟 , 𝑟)  centered at 𝑎𝑟 =  (0,⋯ , 0, 𝑟).  We have dist (𝑥, 𝐵(𝑎𝑟 , 𝑟)
𝑐) ≤ 

dist(𝑥, (ℝ+
𝑁)𝑐),  and hence the result follows by taking 𝑟 → ∞ . 

Proposition (5.2.3)[190]: Let 𝑁 ≥  2, 𝑝 = 2 and  1
2
< 𝑠 < 1. Then there is a constant  𝑐 =

𝑐(𝑠, 𝑁 ) > 0 such that for every 0 < 𝑟 < 1 and 𝑢 ∈ �̇�2
𝑠(𝐵𝑟), 

∫ ∫
|𝑢(𝑥) − 𝑢(𝑦)|2

|𝑥 − 𝑦|𝑁+2𝑠
𝑑𝑥𝑑𝑦

2

𝐵𝑟

2

𝐵𝑟

−𝒟𝑁,𝑝,𝑠∫
(2𝑟)2𝑠

(𝑟2 − |𝑥|2)2𝑠

2

𝐵𝑟

|𝑢(𝑥)|2𝑑𝑥 

 ≥ 𝑐 (∫ |𝑢(𝑥)|𝑞𝑑𝑥
2

𝐵𝑟

)

2 𝑞⁄

,                                      (59) 

where 𝑞 = 2𝑁 (𝑁   2𝑠)⁄ . 
Proof:  By scaling, we may and do assume that 𝑟 = 1, that is, we consider only the unit 

ball 𝐵1 ⊂ ℝ
𝑁 . We put 𝜐 = 𝑢 𝑤𝑁⁄  with 𝑤𝑁  defined in Lemma (5.2.5). According to that 

lemma, the left side of (59) is bound from below by 

𝐽[𝜐] + 𝑐∫ |𝜐(𝑥)|2𝑤𝑁(𝑥)
2𝑑𝑥

2

𝐵1

,                                               (60) 

( Here we also used that 𝑤𝑁 ≤ 1. ) For  𝑥, 𝑦 ∈ 𝐵1 we have 

𝑤𝑁(𝑥)𝑤𝑁(𝑦) ≥ min{(1 − |𝑥|
2)2𝑠−1 , (1 − |𝑦|2)2𝑠−1}           

                                                     = (2𝑠 − 1)∫ 𝜒(𝑡,1]

1

0

(1 − |𝑥|2)𝜒(𝑡,1](1 − |𝑦|
2)𝑡2𝑠−2𝑑𝑡,          

and therefore, 

     𝐽[𝜐] + 𝑐 ∫ |𝜐(𝑥)|2𝑤𝑁(𝑥)
2𝑑𝑥

2

𝐵1

  

≥ (2𝑠 − 1)∫ (∫ ∫
|𝜐(𝑥) − 𝜐(𝑦)|2

|𝑥 − 𝑦|𝑁+2𝑠
𝑑𝑥𝑑𝑦

2

𝐵√1−𝑡

2

𝐵√1−𝑡

+ 𝑐∫ |𝜐(𝑥)|2𝑑𝑥
2

𝐵√1−𝑡

)
1

0

𝑡2𝑠−2𝑑𝑡.          

The fractional Sobolev inequality [193] and a scaling argument imply that there is 𝑎 �̃� > 0 

such that for all 𝑟 > 0, 
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𝑟2𝑠∫ ∫
|𝜐(𝑥) − 𝜐(𝑦)|2

|𝑥 − 𝑦|𝑁+2𝑠
𝑑𝑥𝑑𝑦

2

𝐵𝑟

2

𝐵𝑟

+ 𝑐∫ |𝜐(𝑥)|2𝑑𝑥
2

𝐵𝑟

≥ �̃�𝑟2𝑠 (∫ |𝜐(𝑥)|𝑞𝑑𝑥
2

𝐵𝑟

)

2 𝑞⁄

. 

Combining the last two relations and applying Minkowski's inequality, we may bound 

                        𝐽[𝜐] + 𝑐 ∫ |𝜐(𝑥)|2𝑤𝑁(𝑥)
2𝑑𝑥

2

𝐵1

 

                         ≥ (2𝑠 − 1)�̃�  ∫ (∫ |𝜐(𝑥)|𝑞𝑑𝑥
2

𝐵√1−𝑡

)

2
𝑞1

0

(√1 − 𝑡)
2𝑠
𝑡2𝑠−2𝑑𝑡 

≥ (1 − 𝑡)𝑠𝑡2𝑠−2𝑑𝑡 (∫ |𝜐(𝑥)|𝑞
2

𝐵1

(∫ (1 − 𝑡)𝑠
1−|𝑥|2

0

𝑡2𝑠−2𝑑𝑡)

𝑞
2

𝑑𝑡)

2
𝑞

.                        (61) 

We observe that  

          ∫ (1 − 𝑡)𝑠𝑡2𝑠−2𝑑𝑡 ≥ 𝐵
1−|𝑥|2

0

(𝑠 + 1,2𝑠 − 1)(1 − |𝑦|2)𝑡2𝑠−2,          

which follows from the fact that 𝑦 ↦ ∫ (1 − 𝑡)𝑠𝑡2𝑠−2𝑑𝑡 ∫ 𝑡2𝑠−2𝑑𝑡
𝑦

0
⁄

𝑦

0
 is decreasing on (0, 

1). This allows us to bound the expression in (61) from below by 

(2𝑠 − 1)𝐵(𝑠 + 1,2𝑠 − 1)�̃� (∫ |𝜐(𝑥)|𝑞(1 − |𝑥|2)(𝑠−1 2⁄ )𝑞
2

𝐵1

𝑑𝑥)

2
𝑞

 

                  = (2𝑠 − 1)𝐵(𝑠 + 1,2𝑠 − 1)�̃� (∫ |𝑢(𝑥)|𝑞
2

𝐵1

𝑑𝑥)

2
𝑞

, 

and we are done. 

      This leaves us with proving Lemma (5.2.1).  

The regional Laplacian (see, e.g., [199]) on an open set  Ω ⊂ ℝ𝑁 is, up to a multi plicative 

constant, given by 

𝐿Ω𝑢(𝑥) = lim
𝜖→0+

∫
𝑢(𝑦) − 𝑢(𝑥)

|𝑥 − 𝑦|𝑁+2𝑠

2

Ω⋂{ |𝑦−𝑥| >𝜖}

𝑑𝑦. 

This operator appears naturally in our context since 

∫ 𝑢(𝑥)̅̅ ̅̅ ̅̅
2

Ω

(𝐿Ω𝑢)(𝑥)𝑑𝑥 = −
1

2
∫ ∫

|𝑢(𝑥) − 𝑢(𝑦)|2

|𝑥 − 𝑦|𝑁+2𝑠
𝑑𝑥𝑑𝑦

2

Ω

2

Ω

. 

Our proof of Lemma (5.2.5) relies on a pointwise estimate for 𝐿𝐵1𝑤𝑁. In dimension 𝑁 = 1 

this can be computed explicitly and we recall from [195] that 

−𝐿(−1,1)𝑤1(𝑥) =
(1 − 𝑥2)

−2𝑠−1
2

2𝑠
(𝐵(𝑠 +

1

2
 , 1 − 𝑠) − (1 − 𝑥)2𝑠 + (1 + 𝑥)2𝑠). 

Hence, by [195], 

−𝐿(−1,1)𝑤1(𝑥) ≥ 𝑐1(1 − 𝑥
2)
−2𝑠−1
2 + 𝑐2(1 − 𝑥

2)
−2𝑠+1
2 ,                            (62) 

where 

𝑐1 =
𝐵(𝑠 + 1

2
 , 1 − 𝑠) − 22𝑠

2𝑠
,      𝑐2 =

22𝑠 − 2

2𝑠
 . 

Lemma (5.2.4)[190]: Let 𝑁 ≥ 2 and let 𝑤𝑁 be as in Lemma (5.2.5). Then 
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−𝐿𝐵1𝑤𝑁(𝑥) ≥
𝑐1
2
∫ |ℎ𝑁|

2𝑠𝑑ℎ ∙
2

𝕊𝑁−1
 (1 − |𝑥|2)−

2𝑠+1
2 +

𝑐2
2
|𝕊𝑁−1| ∙ (1 − |𝑥|2)−

2𝑠−1
2  

Proof: By rotation invariance we may assume that 𝚾 =  (0, 0,⋯ : , 0, 𝑥). With the notation  

𝑝 =
2𝑠−1

2
 we have 

      −𝐿𝐵1𝑤𝑁(𝚾) = 𝑝. 𝜐.∫
(1 − |𝚾|2)𝑝 − (1 − |y|2)𝑝

|𝚾 − 𝑦|𝑁+2𝑠

2

𝐵1

𝑑𝑦  

                   =
1

2
∫ 𝑑ℎ𝑝. 𝜐.
2

𝕊𝑁−1
∫

(1 − |𝑥|2)𝑝 − (1 − |𝑥 + ℎ𝑡|2)𝑝

|𝑡|1+2𝑠

−𝑥ℎ𝑁+√𝑥
2ℎ𝑁

2−𝑥2+1

−𝑥ℎ𝑁−√𝑥
2ℎ𝑁

2−𝑥2+1

𝑑𝑡. 

We calculate the inner principle value integral by changing the variable 𝑡 = − 𝑥ℎ𝑁 +

𝑢√𝑥2ℎ𝑁
2 − 𝑥2 + 1 

          𝑔(𝑥, ℎ) ≔ 𝑝. 𝜐.∫
(1 − |𝑥|2)𝑝 − (1 − |𝑥 + ℎ𝑡|2)𝑝

|𝑡|1+2𝑠

−𝑥ℎ𝑁+√𝑥
2ℎ𝑁

2−𝑥2+1

−𝑥ℎ𝑁−√𝑥
2ℎ𝑁

2−𝑥2+1

𝑑𝑡 

              = 𝑝. 𝜐. ∫
(1 − 𝑥2)𝑝 − (1 − 𝑢2)𝑝(1 − 𝑥2 + 𝑥2ℎ𝑁

2 )𝑝

|−𝑥ℎ𝑁 + 𝑢√𝑥
2ℎ𝑁

2 − 𝑥2 + 1|
1+2𝑠

1

−1

√𝑥2ℎ𝑁
2 − 𝑥2 + 1 𝑑𝑢 

= (1 − 𝑥2 + 𝑥2ℎ𝑁
2 )𝑝−𝑠𝑝. 𝜐.∫   

1−(1−
𝑥2ℎ𝑁

2

1−𝑥2+𝑥2ℎ𝑁
2 )

𝑝

−(1−𝑢2)𝑝

|𝑢−
𝑥ℎ𝑁

√1−𝑥2+𝑥2ℎ𝑁
2
|

1+2𝑠 𝑑𝑢

1

−1

                

  = (1 − 𝑥2 + 𝑥2ℎ𝑁
2 )−1 2⁄ (−𝐿(−1,1)𝑤1) (

𝑥ℎ𝑁

√1 − 𝑥2 + 𝑥2ℎ𝑁
2
)                       

Hence by (62) we have 

𝑔(𝑥, ℎ) ≥ (1 − 𝑥2 + 𝑥2ℎ𝑁
2 )−1 2⁄ (𝑐1 (1 −

𝑥2ℎ𝑁
2

1−𝑥2+𝑥2ℎ𝑁
2 )

2𝑠−1
2

−2𝑠

+ 𝑐2 (1 −
𝑥2ℎ𝑁

2

1−𝑥2+𝑥2ℎ𝑁
2)

2𝑠−1
2

−2𝑠+1

) 

                 = 𝑐1(1 − 𝑥
2 + 𝑥2ℎ𝑁

2 )𝑠(1 − 𝑥2)−
2𝑠+1
2 +𝑐2(1 − 𝑥

2 + 𝑥2ℎ𝑁
2 )𝑠−1(1 − 𝑥2)−

2𝑠−1
2  

                 ≥ 𝑐1|ℎ𝑁|
2𝑠(1 − 𝑥2)−

2𝑠+1
2 ++𝑐2(1 − 𝑥

2)−
2𝑠−1
2 . 

Thus 

           −𝐿𝐵1𝑤𝑁(𝚾) =
1

2
∫ 𝑔(𝑥 , ℎ)
2

𝕊𝑁−1
𝑑ℎ 

                                   ≥
𝑐1
2
∫ |ℎ𝑁|

2𝑠
2

𝕊𝑁−1
𝑑ℎ ∙ (1 − 𝑥2)−

2𝑠+1
2 +

𝑐2
2
|𝕊𝑁−1| ∙ (1 − 𝑥2)−

2𝑠−1
2 , 

and we are done. 

       Finally, we are in position to give the 

Lemma (5.2.5)[190]: Let 𝑁 ≥  2, 1
2
< 𝑠 < 1 and define 𝑤𝑁(𝑥) = (1 − |𝑥|

2)
2𝑠−1

2  for  𝑥 ∈

𝐵1 ⊂ ℝ
𝑁 . Then for all 𝑢 ∈ �̇�2

𝑠(𝐵1) 
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∫ ∫
|𝑢(𝑥) − 𝑢(𝑦)|2

|𝑥 − 𝑦|𝑁+2𝑠
𝑑𝑥𝑑𝑦

2

𝐵1

2

𝐵1

−𝒟𝑁,2,𝑠∫
22𝑠

(1 − |𝑥|2)2𝑠

2

𝐵1

|𝑢(𝑥)|2𝑑𝑥 

     ≥  𝐽[𝜐] + 𝑐∫ |𝜐(𝑥)|2𝑑𝑥
2

𝐵1

,                                  (63) 

where  𝜐 = 𝑢 𝑤𝑁⁄ , 

      𝐽[𝜐] = ∫ ∫ |𝜐(𝑥) − 𝜐(𝑦)|2
𝑤𝑁(𝑥) − 𝑤𝑁(𝑦)

|𝑥 − 𝑦|𝑁+2𝑠
𝑑𝑥𝑑𝑦

2

𝐵1

2

𝐵1

 

and 𝑐 = 𝑠−1(22𝑠−1 − 1)|𝕊𝑁−1| > 0. 
    This inequality is somewhat analogous to (57) in the previous proof. We emphasize, 

however, that there are two terms on the right side of (63) and we will need both of them. 

Accepting this lemma for the moment, we now complete the 

Proof :  We use the ground state representation formula [166], see also [195], 

∫ ∫
|𝑢(𝑥) − 𝑢(𝑦)|2

|𝑥 − 𝑦|𝑁+2𝑠
𝑑𝑥𝑑𝑦

2

𝐵1

2

𝐵1

+ 2∫
𝐿𝑤𝑁(𝑥)

𝑤𝑁(𝑥)

2

𝐵1

|𝑢(𝑥)|2𝑑𝑥 =  𝐽[𝜐] 

with  𝑢 = 𝑤𝑁 𝜐  and  𝐽 as defined in the lemma. The assertion now follows from Lemma 

(5.2.4), which implies that 

−2
𝐿𝑤𝑁(𝑥)

𝑤𝑁(𝑥)
≥ 𝒟𝑁,2,𝑠

22𝑠

(1 − |𝑥|2)2𝑠
+ 𝑐(1 − |𝑥|2)−2𝑠+1 

with 𝑐 = 𝑐2|𝕊
𝑁−1| > 0. Indeed, here we used 22𝑠−1𝒟1,2,𝑠 = 𝑐1  and 

𝒟𝑁,2,𝑠 = 𝒟1,2,𝑠 ∙
1

2
∫ |ℎ𝑁|

2𝑠
2

𝕊𝑁−1
𝑑ℎ. 

as a quick computation shows. 

We shall give a complete proof of Theorem (5.2.8). Our strategy is somewhat 

reminiscent of the proof of the Hardy-Sobolev-Maz'ya inequality in the local case in [196]. 

We use an averaging argument a la Gagliardo-Nirenberg to reduce the multi-dimensional 

case to the one-dimensional case. We describe this reduction and establish inequality. 

The key ingredient in our proof of Theorem (5.2.8) is the following pointwise estimate of 

a function on an interval. 

Lemma (5.2.6)[190]: Let 0 < 𝑠 < 1, 𝑞 ≥  1 and 𝑝 ≥  2 with 𝑝𝑠 > 1. Then there is  𝑎 

 𝑐 = 𝑐(𝑠, 𝑞, 𝑝) < ∞ such that for all  𝑓 ∈ 𝐶𝑐
∞ ( −1, 1) 

 ‖𝑓‖∞
𝑝+𝑞(𝑝𝑠−1)

≤ 

𝑐 (∫ ∫
|𝑓(𝑥) − 𝑓(𝑦)|𝑝

|𝑥 − 𝑦|1+𝑝𝑠
𝑑𝑥𝑑𝑦

1

−1

1

−1

−𝒟1,𝑝,𝑠∫
|𝑓(𝑥)|𝑝

(1 − |𝑥|)𝑝𝑠

1

−1

𝑑𝑥)‖𝑓‖𝑞
𝑞(𝑝𝑠−1)

.           (64) 

Due to the particular form of the exponents this inequality has a scale-invariant form. 

Corollary (5.2.7)[190]: Let 0 < 𝑠 < 1, 𝑞 ≥ 1  and 𝑝 ≥ 2  with 𝑝𝑠 > 1 . Then, with the 

same constant 𝑐 = 𝑐(𝑝, 𝑠, 𝑞) < ∞ 𝑎𝑠 in Lemma (5.2.6), we have for all open sets  Ω ⊆ ℝ 

and all 

 𝑓 ∈ 𝐶𝑐
∞(Ω) 

‖𝑓‖∞
𝑝+𝑞(𝑝𝑠−1)

  

  ≤ 𝑐 (∫ ∫
|𝑓(𝑥) − 𝑓(𝑦)|𝑝

|𝑥 − 𝑦|1+𝑝𝑠
𝑑𝑥𝑑𝑦

1

Ω

1

Ω

−𝒟1,𝑝,𝑠∫
|𝑓(𝑥)|𝑝

𝑑(𝑥)𝑝𝑠

1

Ω

𝑑𝑥)‖𝑓‖𝑞
𝑞(𝑝𝑠−1)

              (65) 

where 𝑑(𝑥) = dist(𝑥, Ω𝑐). 
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Proof: From Lemma (5.2.6), by translation and dilation, we obtain (65) for any interval 

and half-line. The extension to arbitrary open bounded sets is straight forward. 

    We prove Lemma (5.2.6). Now we show how this corollary allows us to deduce our 

main theorem. Taking advantage of an averaging formula of  Loss and Sloane [200] the 

argument is almost the same as in [196], but we reproduce it here to make self-contained. 

Theorem (5.2.8)[190]: Let 𝑁 ≥ 2, 2 ≤ 𝑝 < 1  and 0 < 𝑠 < 1  with 1 <  𝑝𝑠 < 𝑁  . Then 

there is a constant  𝜎𝑁,𝑝,𝑠 > 0  such that 

∫∫
|𝑢(𝑥) − 𝑢(𝑦)|𝑝

|𝑥 − 𝑦|1+𝑝𝑠

2

Ω×Ω

𝑑𝑥𝑑𝑦−𝒟𝑁,𝑝,𝑠∫
|𝑢(𝑥)|𝑝

𝑚𝑝𝑠(𝑥)
𝑝𝑠

1

Ω

𝑑𝑥

≥ 𝜎𝑁,𝑝,𝑠 (∫ |𝑢(𝑥)|𝑞𝑑𝑥
1

Ω

)

𝑝 𝑞⁄

        (66) 

for all open  Ω ⊆ ℝ𝑁 and all 𝑢 ∈ �̇�𝑝
𝑠(Ω), where 𝑞 = 𝑁𝑝 (𝑁 − 𝑝𝑠)⁄ . 

      Inequality (66) has been conjectured in [197] in analogy to the local HSM inequalities    

[201], [170]. Recently, Sloane [202] found a remarkable proof of (66) for 𝑝 = 2 and Ω 

being a half-space. Our result generalizes this to any 𝑝 ≥ 2 and any .We emphasize that 

our constant 𝜎𝑁,𝑝,𝑠  can be chosen independently of . Therefore Theorem (5.2.8) is the 

fractional analog of the main inequality of [196], which treats the local case. 

    We know explain the notation in (66). The sharp constant [200] in (56) is 

𝒟𝑁,𝑝,𝑠 = 2𝜋
𝑁−1
2
Γ(1+𝑝𝑠

2
)

Γ(𝑁+𝑝𝑠
2

)
∫   (1−𝑟(𝑝𝑠−1) 𝑝⁄ )

𝑝
1

0

𝑑𝑟

(1 − 𝑟)1−𝑝𝑠
.                               (67) 

In the special case 𝑝 = 2 we have 

𝒟𝑁,2,𝑠 = 2𝜋
𝑁−1
2
Γ(1+𝑝𝑠

2
)

Γ(𝑁+𝑝𝑠
2

)

𝐵(1+2𝑠
2

,1−𝑠)−22𝑠

22𝑠+1𝑠
= 2𝐾,𝑁,2𝑠 , 

where  𝑘𝑁,2𝑠is the notation used in [192], [200], [195]. We denote 

𝑑𝑤(𝑥) = inf  {|𝑡|: 𝑥 + 𝑡𝑤 ∉ Ω} ,        𝑥 ∈ ℝ𝑁 ,   𝑤 ∈ 𝕊𝑁−1 ,                               (68) 
where 𝕊𝑁−1 = {𝑥 ∈ ℝ𝑁: |𝑥| = 1}   is the (𝑁 −  1)  -dimensional unit sphere. Following 

[200] we set for  𝛼 > 0 

𝑚𝛼(𝑥) = (
2𝜋

𝑁−1
2 Γ(1+𝛼

2
)

Γ(𝑁+𝛼
2

)
)

1
𝛼

(∫   
𝑑𝑤

𝑑𝑤(𝑥)
𝛼

1

𝕊𝑁−1
)

1
𝛼

,                                          (69) 

which is analogous to the pseudo distance 𝑚(𝑥). We recall that for convex domains , we 

have 𝑚 (𝑥) ≤ 𝑑(𝑥), see [200]. 

We present three independent proofs of (66), but only the last one in full generality. 

We use the ground state representation for half-spaces as the starting point. This allows us 

to obtain (66) for half-spaces and any 𝑝 ≥ 2. We derive a fractional Hardy inequality (34) 

for balls with two additional terms, and then deduce (66) in case when 𝑝 = 2 and Ω is a 

ball or a half-space. We extend the method developed in [196] and use results from [198] 

and [200] to prove Theorem (5.2.8) for arbitrary domains. 

Proof: Let  𝑤1, . . . , 𝑤𝑁 be an orthonormal basis in ℝ𝑁. We write 𝑥𝑗for the 𝑗-th coordinate 

of 𝑥 ∈ ℝ𝑁 in this basis, and   �̃�𝑗 = 𝑥 − 𝑥𝑗𝑤𝑗  . By skipping the 𝑗-th coordinate of �̃�𝑗 (which 

is zero), we may regard �̃�𝑗as an element of  ℝ𝑁−1.For a given domain  Ω ⊆ ℝ𝑁 we write 

𝑑𝑗(𝑥) = 𝑑𝑤𝑗(𝑥) = inf  {|𝑡|: 𝑥 + 𝑡𝑤𝑗 ∉ Ω}. 

If  𝑢 ∈ 𝐶𝑐
∞(Ω), then Corollary (5.2.7) yields 
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|𝑢(𝑥)| ≤ 𝐶(𝑔𝑗(�̃�𝑗)ℎ𝑗(�̃�𝑗))
1

𝑝+𝑞(𝑝𝑠−1) 

for any 1 ≤ 𝑗 ≤ 𝑁 , where 

𝑔𝑗(�̃�𝑗) = ∫ 𝑑𝑎∫ 𝑑𝑏
1

�̃�𝑗+𝑏𝑤𝑗∈ Ω

1

�̃�𝑗+𝑎𝑤𝑗∈ Ω

|𝑢(�̃�𝑗 + 𝑎𝑤𝑗) − 𝑢(�̃�𝑗 + 𝑏𝑤𝑗)|
𝑝

|𝑎 − 𝑏|1+𝑝𝑠
 

                                               −𝒟1,𝑝,𝑠∫ 𝑑𝑎
|𝑢(�̃�𝑗 + 𝑎𝑤𝑗)|

𝑝

𝑑𝑗(�̃�𝑗 + 𝑎𝑤𝑗)
𝑝𝑠

1

ℝ

 

and  

                                                 ℎ𝑗(�̃�𝑗) = (∫ 𝑑𝑎|𝑢(�̃�𝑗 + 𝑎𝑤𝑗)|
𝑞

1

ℝ

)

𝑝𝑠−1

. 

Thus  

    

  |𝑢(𝑥)|𝑁 ≤ 𝐶𝑁∏(𝑔𝑗(�̃�𝑗)ℎ𝑗(�̃�𝑗))
1

𝑝+𝑞(𝑝𝑠−1)

𝑁

𝑗=1

. 

We now pick 𝑞 =
𝑝𝑁

𝑁−𝑝𝑠
 and rewrite the previous inequality as 

  |𝑢(𝑥)|𝑞 ≤ 𝐶𝑞∏(𝑔𝑗(�̃�𝑗)ℎ𝑗(�̃�𝑗))
1

𝑝𝑠(𝑁−1)

𝑁

𝑗=1

. 

By a standard argument based on repeated use of  Holder's inequality  we deduce that 

∫ |𝑢(𝑥)|𝑞
1

ℝ𝑁
𝑑𝑥 ≤ 𝐶𝑞∏(∫ 𝑔𝑗(𝑦)

1
𝑝𝑠

1

ℝ𝑁−1
ℎ𝑗(𝑦)

1
𝑝𝑠𝑑𝑦)

1
𝑁−1

𝑁

𝑗=1

. 

We note that 

‖ℎ
𝑗

1
𝑝𝑠−1‖

𝐿1(ℝ𝑁−1)
= ‖𝑢‖

𝐿𝑞(ℝ𝑁)

𝑞
            for 𝑒𝑣𝑒𝑟𝑦  𝑗 = 1,⋯ ,𝑁 

and derive from the Hölder and the arithmetic- geometric mean inequality that 

∏∫ 𝑔𝑗(𝑦)
1
𝑝𝑠

1

ℝ𝑁−1
ℎ𝑗(𝑦)

1
𝑝𝑠𝑑𝑦 ≤

𝑁

𝑗=1

∏‖𝑔𝑗‖1

1
𝑝𝑠 ‖ℎ

𝑗

1
𝑝𝑠−1‖

1

𝑝𝑠−1
𝑝𝑠

𝑁

𝑗=1

= ‖𝑢‖𝑞

𝑞(𝑝𝑠−1)𝑁
𝑝𝑠

∏‖𝑔𝑗‖1

1
𝑝𝑠

𝑁

𝑗=1

 

                       ≤ ‖𝑢‖𝑞

𝑞(𝑝𝑠−1)𝑁
𝑝𝑠

(𝑁−1∑‖𝑔𝑗‖1

𝑁

𝑗=1

)

𝑁
𝑝𝑠

. 

 

To summarize, we have shown that 

‖𝑢‖𝑞
𝑝
≤ 𝐶

𝑝2𝑠(𝑁−1)
𝑁−𝑝𝑠 𝑁−1∑‖𝑔𝑗‖1

𝑁

𝑗=1

.  

We now average this inequality over all choices of the coordinate system 𝑤𝑗. We recall the 

Loss-Sloane formula  

       ∫ ∫
|𝑢(𝑥) − 𝑢(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠
𝑑𝑥𝑑𝑦

1

Ω

1

Ω
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=
1

2
∫ 𝑑𝑤
2

ℝ𝑁−1
∫ 𝑑ℒ𝑤(𝑥)
2

{𝑥:𝑥 .𝑤=𝑜}

∫ 𝑑𝑎∫ 𝑑𝑏
2

𝑥+𝑎𝑤∈ Ω

2

𝑥+𝑎𝑤∈ Ω

|𝑢(𝑥 + 𝑎𝑤) − 𝑢(𝑦 + 𝑏𝑤)|𝑝

|𝑎 − 𝑏|1+𝑝𝑠
, 

where ℒ𝑤  is (𝑁 − 1)-dimensional Lebesgue measure on the hyperplane {𝑥: 𝑥 ∙ 𝑤 = 0}. 
Thus we arrive at 

‖𝑢‖𝑞
𝑝
≤
2𝐶

𝑝2𝑠(𝑁−1)
𝑁−𝑝𝑠

|𝕊𝑁−1|
(∫ ∫

|𝑢(𝑥) − 𝑢(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠
𝑑𝑥𝑑𝑦

1

Ω

1

Ω

 

                                                             −𝒟1,𝑝,𝑠
𝜋
𝑁−1
2 Γ(1+𝑝𝑠

2
)

Γ(𝑁+𝑝𝑠
2

)
∫

|𝑢(𝑥)|𝑝

𝑚𝑝𝑠(𝑥)
𝑝𝑠

1

Ω

𝑑𝑥). 

Recalling the definition of  𝒟𝑁,𝑝,𝑠  we see that this is the inequality claimed in   

Theorem(5.2.8). 

Lemma (5.2.9)[190]: Let 0 < 𝑠 < 1 and 𝑝 ≥ 2 with 𝑝𝑠 > 1. Then 

       ∫ ∫
|𝑓(𝑥) − 𝑓(𝑦)|𝑝

|𝑥 − 𝑦|1+𝑝𝑠
𝑑𝑥𝑑𝑦

1

0

1

0

−𝒟1,𝑝,𝑠∫
|𝑓(𝑥)|𝑝

𝑥𝑝𝑠

1

0

𝑑𝑥   

             ≥ 𝑐𝑝∫ ∫
|𝜐(𝑥) − 𝜐(𝑦)|𝑝

|𝑥 − 𝑦|1+𝑝𝑠
𝑤(𝑥)𝑝 2⁄ 𝑤(𝑦)𝑝 2⁄ 𝑑𝑥𝑑𝑦

1

0

1

0

+∫ 𝑊𝑝,𝑠(𝑥)|𝜐(𝑥)|
𝑝

1

0

𝑤(𝑥)𝑝𝑑𝑥 

for all 𝑓 with 𝑓(0) = 0 (and no boundary condition at 𝑥 = 1). Here  𝑤(𝑥) = 𝑥(𝑝𝑠−1) 𝑝⁄  

and   𝑓 = 𝑤𝜐 . The function 𝑊𝑝,𝑠 is bounded away from zero and satisfies 

𝑊𝑝,𝑠(𝑥) ≈ 𝑥
−(𝑝−1)(𝑝𝑠−1) 𝑝⁄           for 𝑥 ∈ (0,1 2]⁄  

and  

𝑊𝑝,𝑠(𝑥) ≈ {

1                        if 𝑝 − 1 − 𝑝𝑠 > 0 ,
|ln(1 − 𝑥)|        if 𝑝 − 1 − 𝑝𝑠 = 0 ,

(1 − 𝑥)−1−𝑝𝑠+𝑝 if 𝑝 − 1 − 𝑝𝑠 < 0 ,

          for 𝑥 ∈ [1 2 , 1)⁄ . 

Proof:  The general ground state representation [166] reads 

    ∫ ∫
|𝑓(𝑥) − 𝑓(𝑦)|𝑝

|𝑥 − 𝑦|1+𝑝𝑠
𝑑𝑥𝑑𝑦 ≥ ∫ 𝑉(𝑥)|𝑓(𝑥)|𝑝

1

0

1

0

1

0

     

                                                          +𝑐𝑝∫ ∫
|𝜐(𝑥) − 𝜐(𝑦)|𝑝

|𝑥 − 𝑦|1+𝑝𝑠
𝑤(𝑥)𝑝 2⁄ 𝑤(𝑦)𝑝 2⁄ 𝑑𝑥𝑑𝑦

1

0

1

0

 

with  

             𝑉(𝑥) ≔ 2𝑤(𝑥)−𝑝+1∫ (𝑤(𝑥) − 𝑤(𝑦))|𝑤(𝑥) − 𝑤(𝑦)|𝑝−1
1

0

|𝑥 − 𝑦|−1−𝑝𝑠𝑑𝑦 

(understood as principal value integral). We decompose 

𝑉(𝑥) = 2𝑤(𝑥)−𝑝+1∫ (𝑤(𝑥) − 𝑤(𝑦))|𝑤(𝑥) − 𝑤(𝑦)|𝑝−2
∞

0

|𝑥 − 𝑦|−1−𝑝𝑠𝑑𝑦 

                     −2𝑤(𝑥)−𝑝+1∫ (𝑤(𝑥) − 𝑤(𝑦))|𝑤(𝑥) − 𝑤(𝑦)|𝑝−2
∞

1

|𝑥 − 𝑦|−1−𝑝𝑠𝑑𝑦 

 =
−𝒟1,𝑝,𝑠
𝑥𝑝𝑠

+𝑊𝑝,𝑠(𝑥).                                                                                     

(The computation of the first term is in [197].) For  𝑥 ∈ (0, 1),  the second term is positive, 

indeed, 
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𝑊𝑝,𝑠(𝑥) = 2𝑤(𝑥)
−𝑝+1∫ (𝑤(𝑦) − 𝑤(𝑥))

𝑝−1
∞

1

(𝑦 − 𝑥)−1−𝑝𝑠𝑑𝑦.                             

Note that at 𝑥 = 0 

∫ 𝑤(𝑦)𝑝−1
∞

1

𝑦−1−𝑝𝑠𝑑𝑦 = 𝑐𝑝 ,𝑠 < ∞ 

since   𝑝𝑠 − (𝑝 − 1)(𝑝𝑠 − 1) 𝑝 > 0⁄ . Hence 𝑊𝑝,𝑠(𝑥)~2𝑐𝑝,𝑠 𝑥
−(𝑝−1)(𝑝𝑠−1) 𝑝⁄  as 𝑥 → 0. On 

the other hand, at  𝑥 = 1, we have 

∫ (𝑤(𝑦) − 1)𝑝−1
∞

1

(𝑦 − 1)−1−𝑝𝑠𝑑𝑦 = �̃�𝑝 ,𝑠 < ∞         if   𝑝 − 1 − 𝑝𝑠 > 0. 

Hence  𝑊𝑝,𝑠(𝑥) → 2�̃�𝑝,𝑠  as  𝑥 → 1  in that case. In the opposite case, one easily finds that 

for  𝑥 = 1 − 𝜖 , to leading order only 𝑦 's with 𝑦 − 1  of order 𝜖  contribute. Hence 

𝑊𝑝,𝑠(𝑥)~2�̃�𝑝,𝑠 (1 − 𝑥)
−1+𝑝𝑠+𝑝 as 𝑥 → 1  if  𝑝 − 1 − 𝑝𝑠 < 0  and  𝑊𝑝,𝑠(𝑥)~2�̃�𝑝,𝑠|ln(𝑥 −

1)|  if 𝑝 − 1 − 𝑝𝑠 = 0. 

Corollary (5.2.10)[190]: Let 0 < 𝑠 < 1 and 𝑝 ≥ 2 with 𝑝𝑠 > 1. Then 

                 ∫ ∫
|𝑓(𝑥) − 𝑓(𝑦)|𝑝

|𝑥 − 𝑦|1+𝑝𝑠
𝑑𝑥𝑑𝑦

1

−1

1

−1

−𝒟1,𝑝,𝑠∫
|𝑓(𝑥)|𝑝

(1 − |𝑥|)𝑝𝑠

1

−1

𝑑𝑥  

    ≥ 𝑐𝑝 (∫ ∫ +
0

−1

0

−1

∫ ∫ 1
1

0

1

0

)
|𝜐(𝑥) − 𝜐(𝑦)|𝑝

|𝑥 − 𝑦|1+𝑝𝑠
𝑤(𝑥)𝑝 2⁄ 𝑤(𝑦)𝑝 2⁄ 𝑑𝑥𝑑𝑦                          

                                +𝑐𝑝,𝑠∫ |𝜐(𝑥)|𝑝𝑤(𝑥)𝑑𝑥
1

−1

  

for all  𝑓 with 𝑓(− 1) = 𝑓(1) =  0. Here 𝑤(𝑥) = (1 − |𝑥|)(𝑝𝑠−1) 𝑝⁄  𝑎𝑛𝑑 𝑓 = 𝑤𝜐 . 

Proof:  The corollary follows by applying Lemma (5.2.9) to functions 𝑓1(𝑥) =  𝑓(1 + 𝑥) 

and  𝑓2(𝑥) = 𝑓(1 − 𝑥), where 𝑥 ∈ [0,1], and adding resulting inequalities. 

     The second ingredient besides Lemma (5.2.9) in our proof  is the following bound due 

to Garsia, Rodemich and Rumsey [198]. 

Lemma (5.2.11)[190]: Let 𝑝, 𝑠 > 0 with 𝑝𝑠 > 1. Then for any continuous function 𝑓 on 

[𝑎, 𝑏] 

∫ ∫
|𝑓(𝑥) − 𝑓(𝑦)|𝑝

|𝑥 − 𝑦|1+𝑝𝑠
𝑑𝑥𝑑𝑦

𝑏

𝑎

𝑏

𝑎

≥ 𝑐
|𝑓(𝑏) − 𝑓(𝑎)|𝑝

(𝑏 − 𝑎)𝑝𝑠−1
                                  (70) 

with  𝑐 = (𝑝𝑠 − 1)𝑝 (8(𝑝𝑠 + 1))−𝑝 4⁄ . 

Proof:  This follows by taking  Ψ(𝑥) = |𝑥|𝑝 and 𝑝(𝑥) =  |𝑥|𝑠+1 𝑝⁄ 𝑥 + 1 = 𝑝 in [198]. 

Section (5.3): Applications of Caffarelli–Kohn–Nirenberg Type 

Inequalities of Fractional Order  
In [7] proved the following result. 

Theorem (5.3.1)[203]:(Caffarelli–Kohn–Nirenberg). Let 𝑝, 𝑞, 𝑟, 𝛼, 𝛽, 𝜎  and 𝑎  be real 

constants such that  𝑝, 𝑞 ≥ 1, 𝑟 > 0, 0 ≤ 𝑎 ≤ 1, and 
1

𝑝
+
𝛼

𝑁
,
1

𝑞
+
𝛽

𝑁
 ,
1

𝑟
+
𝑚

𝑁
> 0 , 

where  𝑚 = 𝑎𝜎 + (1 − 𝑎)𝛽. Then there exists a positive constant 𝐶 such that for all 𝑢 ∈
𝐶0
∞(ℝ𝑁) we  have 
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‖|𝑥|𝑚 𝑢‖𝐿𝑟(ℝ𝑁) ≤ 𝐶‖|𝑥|
𝛼|∇𝑢|‖𝐿𝑝(ℝ𝑁)

𝛼 ‖|𝑥|𝛽𝑢‖
𝐿𝑞(ℝ𝑁)

1−𝛼
, 

if  and only if the following relations hold: 
1

𝑟
+
𝑚

𝑁
= 𝑎 (

1

𝑝
+
𝛼 − 1

𝑁
) + (1 − 𝛼) (

1

𝑞
+
𝛽

𝑁
) , 

with  

0 ≤ 𝛼 − 𝜎   if  𝑎 > 0 , 
and  

𝛼 − 𝜎 ≤ 1 if  𝑎 > 0   and  
1

𝑟
+
𝑚

𝑁
=
1

𝑝
+
𝛼 − 1

𝑁
. 

This class of inequalities are related to the following local elliptic problem 

−div(|𝑥|−pγ|∇𝑢|p−2∇u) = 0.                                                        (71) 

As a consequence of Theorem (5.3.1), it follows that |𝑥|−γ , with  γ <
𝑁−𝑝

𝑝
, is an 

admissible weight in the sense that if 𝑢 is a weak positive super solution to (71), then it 

satisfies a weak Harnack  inequality. 

There exists a positive constant  𝜅 > 1 such that for all 0 < 𝑞 < 𝜅(𝑝 − 1), 

(∫ 𝑢𝑞(𝑥)|𝑥|−𝑝𝛾𝑑𝑥
1

𝐵2𝜌(𝑥0)

)

1
𝑞

≤ 𝐶 inf
𝐵𝜌(𝑥0)

𝑢, 

where  𝐵2𝜌(𝑥0) ⊂⊂ Ω,  and  𝐶 > 0 depends only on 𝐵. 

    See [212], [215] for a complete discussion and the proof of  the weak Harnack 

inequality. 

     Notice that even the classical Harnack inequality holds for positive solution to (71). 

One of the main tools to get the weak  Harnack inequality is a weighted Sobolev inequality 

that can obtained directly from Theorem (5.3.1). 

      An alternative argument to get the Sobolev inequality is to prove a weighted Hardy 

inequality as it was observed in [217]. 

We follow this approach in order to get a nonlocal version  of the Caffarelli–Kohn–

Nirenberg inequalities. 

       [166] proved the following Hardy inequality stating that for 𝑝 > 1with 𝑠𝑝 < 𝑁 and 

for all  ∅ ∈ 𝐶0
∞(ℝ𝑁), 

∫ ∫
|∅(𝑥) − ∅(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠

2

ℝ𝑁

2

ℝ𝑁
𝑑𝑥𝑑𝑦 ≥ ΛN,p,s∫

|∅(𝑥)|𝑝

|𝑥|𝑝𝑠

1

ℝ𝑁
𝑑𝑥                                 (72) 

where the constant ΛN,p,s is given by 

ΛN,p,s = 2∫|1 − 𝜎
−𝛾|𝑝−2

∞

0

(1 − 𝜎−𝛾)𝜎𝑁−1𝐾(𝜎)                                            (73) 

and 

𝐾(𝜎) = ∫
𝑑𝐻𝑛−1(�́�)

|�́� − 𝜎�́�|𝑁+𝑝𝑠

1

|�́�|=1

. 

ℎ𝑠(𝑢) ≡ ∫ ∫
|𝜐(𝑥) − 𝜐(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠

2

ℝ𝑁

2

ℝ𝑁
𝑑𝑥𝑑𝑦 ≥ ΛN,p,s∫

|𝑢(𝑥)|𝑝

|𝑥|𝑝𝑠

1

ℝ𝑁
𝑑𝑥, 

they proved that for 𝑝 ≥ 2, there exists a positive constant 𝐶 = 𝐶(𝑝, 𝑁, 𝑠) such that for all  

𝑢 ∈ 𝐶0
∞(ℝ𝑁),  if   𝜐 = |𝑥|

𝑁−𝑝𝑠

𝑝
𝑠
𝑢,  it holds 
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ℎ𝑠(𝑢) ≥ 𝐶 ∫ ∫
|𝜐(𝑥) − 𝜐(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠

2

ℝ𝑁

2

ℝ𝑁

𝑑𝑥

|𝑥|
𝑁−𝑝𝑠
2

 
𝑑𝑦

|𝑦|
𝑁−𝑝𝑠
2

.                                      (74) 

The above inequality turns to be equality for  𝑝 = 2  with  𝐶 = 1. 

     As a consequence of  (74), we easily get that ΛN,p,s is never achieved. 

     For  𝑝 = 2,  [205] proved the next result: 

Theorem (5.3.2)[203]: Let 𝑁 ≥ 1, 0 < 𝑠 < 1  and 𝑁 > 2𝑠 . Assume that Ω ⊂ ℝ𝑁  is a 

bounded domain, then for all 1 < 𝑞 < 2, there exists a positive constant 𝐶 = 𝐶(Ω, 𝑞, 𝑁, 𝑠) 
such that for all  𝑢 ∈ 𝐶0

∞(Ω),  

𝑎𝑁,𝑠∫ ∫
|𝑢(𝑥) − 𝑢(𝑦)|2

|𝑥 − 𝑦|𝑁+2𝑠

2

ℝ𝑁

2

ℝ𝑁
𝑑𝑥𝑑𝑦 − ΛN,2,s∫

|𝑢(𝑥)|2

|𝑥|2𝑠

1

ℝ𝑁
𝑑𝑥  

≥ 𝐶(Ω, 𝑞, 𝑁, 𝑠)∫ ∫
|𝑢(𝑥) − 𝑢(𝑦)|2

|𝑥 − 𝑦|𝑁+𝑞𝑠

2

Ω

2

Ω

𝑑𝑥𝑑𝑦 .                                       (75) 

One of the main results of this work is to generalize Theorem (5.3.2) to the case 𝑝 >
2. 

It is clear that the condition imposed on 𝛽 coincides in some sense with definition of 

admissible weight given in [215]. The proof of Theorem (5.3.14) is based on some 

weighted Hardy inequality given below. 

    As a direct application of the previous results, we will consider the problem 

{
𝐿𝑠 ,𝑝𝑢 − 𝜆

|𝑢|𝑝−2𝑢

|𝑥|𝑝𝑠
 = |𝑢|𝑞−1𝑢,          𝑢 > 0  in  Ω,

2      𝑢 = 0                                    in ℝ𝑁\Ω,

                               (76) 

where  

𝐿𝑠 ,𝑝𝑢(𝑥) ≔ 𝑃. 𝑉. ∫
|𝑢(𝑥) − 𝑢(𝑦)|𝑝−2(𝑢(𝑥) − 𝑢(𝑦))

|𝑥 − 𝑦|𝑁+𝑝𝑠

1

ℝ𝑁

𝑑𝑥, 

0 < 𝜆 ≤ Λ𝑁,𝑝,𝑠  and  𝑞 > 0. 
    In the local case, the problem is reduced to 

{−∆𝑝 𝑢 − 𝜆
|𝑢|𝑝−2𝑢

|𝑥|𝑝
 = |𝑢|𝑞−1𝑢,          𝑢 > 0  in  Ω,

2      𝑢 = 0                                    on 𝜕Ω.

                                    (77) 

For 𝑝 = 2,  the authors in [208] proved that if 𝑞 > 𝑞+(2),  then problem (77) has no 

distributional super solution, however, if  𝑞 < 𝑞+(2), there exists a positive super solution, 

with  𝑞+(2) = 1 +
2

𝜃1
, 𝜃1 =

𝑁−2

2
−√Λ𝑁,2 − 𝜆   and  Λ𝑁,2 =

(𝑁−2)2

4
,  the classical  Hardy 

constant. 

    The case 𝑝 ≠ 2 was considered in [204] where the same alternative holds with 𝑞+(𝑝) =

𝑝 − 1 +
𝑝

𝜃𝑝
,  where  𝜃𝑝 is the smallest solution to the equation 

Ξ(𝑠) = (𝑝 − 1)𝑠𝑝 − (𝑁 − 1)𝑠𝑝−1 + 𝜆. 
The fractional case with 𝑝 = 2 was studied in [213] and [206]. They proved the same 

alternative with 𝑞+(2 , 𝑠) = 1 +
2𝑠

𝜃
  where  𝜃 ≡ 𝜃(𝜆, 𝑠, 𝑁) > 0 

    Our goal is to extend the results of [213] and [206] to the case  𝑝 ≠ 2. 
    We prove the main results, namely Theorems (5.312), (5.3.13) and (5.3.14). The starting 

point    
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    The starting point will be the proof of a general version of the Picone inequality. As a 

consequence, we get a weighted version of  the Hardy inequality for a class of “admissible 

weights”. 

     Hence, following closely the arguments used in [205], taking in consideration the 

“weighted” Hardy inequality, we get the proof of Theorem (5.3.12). 

    Once Theorem (5.3.12) proved, we complete the proof of Theorem (5.3.13) using 

suitable Sobolev inequality. 

    At the end, and by using a weighted Hardy inequality, we are able to get a “fractional 

Caffarelli–Kohn–Nirenberg” inequality for admissible weights in ℝ𝑁  and then to proof 

Theorem (5.3.14). 

    We analyze problem (77). We prove the existence of a critical exponent 𝑞+(𝑝 , 𝑠) such 

that if 𝑞 > 𝑞+(𝑝 , 𝑠), then problem (77) has no positive solution in a suitable  sense. To 

show the optimality of the non-existence exponent, we will construct an appropriate super 

solution in the whole space. 

We will use the next elementary inequality, see for instance [166]. 

Lemma (5.3.3)[203]: Assume that 𝑝 > 1, then for all  0 ≤ 𝑡 ≤ 1 and  𝑎 ∈ ℂ, we have 

|𝑎 − 𝑡|𝑝 ≥ (1 − 𝑡)𝑝−1(|𝑎|𝑝 − 𝑡).                                                     (78) 
Proof:  Let us begin with some functional settings that will be used below, we refer to 

[211] and [217] for more details. 

     For  𝑠 ∈ (0, 1) and 𝑝 ≥ 1, we define the fractional Sobolev spaces 𝑊𝑠,𝑝 (Ω), Ω ⊂ ℝ𝑁 , 
by 

𝑊𝑠,𝑝 (Ω) ≡ {𝑢 ∈ 𝐿𝑝(Ω):∫ ∫
|𝑢(𝑥) − 𝑢(𝑦)|2

|𝑥 − 𝑦|𝑁+𝑞𝑠

2

Ω

2

Ω

𝑑𝑥𝑑𝑦 < ∞}. 

It is clear that  𝑊𝑠,𝑝 (Ω)  is a Banach space endowed with the norm 

‖𝑢‖𝑊𝑠,𝑝 (Ω) = ‖𝑢‖𝐿𝑝 (Ω) + (∫ ∫
|𝑢(𝑥) − 𝑢(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠

2

Ω

2

Ω

𝑑𝑥𝑑𝑦)

1
𝑝

. 

    In the same way, we define the space 𝑋0
𝑠,𝑝
(Ω) as the completion of 𝐶0

∞(Ω) with respect 

to the norm of  𝑊𝑠,𝑝 (Ω) . 
    Notice that, if   𝑄 = ℝ𝑁 × ℝ𝑁 \(𝐶Ω × 𝐶Ω), then  

‖𝜙‖𝑋0
𝑠,𝑝
 (Ω)

= (∫ ∫
|𝜙(𝑥) − 𝜙(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠

2

Q

2

Ω

𝑑𝑥𝑑𝑦)

1
𝑝

+ ‖𝜙‖𝐿𝑝 (Ω). 

Using the fractional Sobolev inequality we obtain  𝑋0
𝑠,𝑝(Ω) ⊂ (Ω)𝐿𝑝𝑠

∗

  with continuous 

inclusion, where  𝑝𝑠
∗ =

𝑝𝑁

𝑁−𝑝𝑠
 for 𝑝𝑠 < 𝑁. 

    In the case where Ω is a bounded regular domain, the space 𝑋0
𝑠,𝑝(Ω) can be endowed 

with the equivalent norm 

‖𝜙‖𝑋0
𝑠,𝑝
 (Ω)

= (∫ ∫
|𝜙(𝑥) − 𝜙(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠

2

Q

2

Ω

𝑑𝑥𝑑𝑦)

1
𝑝

. 

    To prove the fractional Caffarelli–Kohn–Nirenberg inequality, we need to define 

fractional Sobolev spaces with weight. More precisely, let  0 < 𝛽 <
𝑁−𝑝𝑠

2
 and  Ω ⊂ ℝ𝑁 

with 0 ∈ Ω, the weighted Sobolev space 𝑋𝑠,𝑝,𝛽(Ω) is defined by 
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𝑊𝑠,𝑝,𝛽  (Ω) ≔ {𝜙 ∈ 𝐿𝑝 (Ω,
𝑑𝑥

|𝑥|2𝛽
) :∫ ∫

|𝜙(𝑥) − 𝜙(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠

2

Ω

2

Ω

𝑑𝑥𝑑𝑦

|𝑥|𝛽|𝑦|𝛽
< +∞}. 

Thus 𝑋𝑠,𝑝,𝛽(Ω) is a Banach space endowed with the norm 

‖𝜙‖
𝑋𝑠,𝑝,𝛽 (Ω)

= (∫
|𝜙(𝑥)|𝑝𝑑𝑥

|𝑥|2𝛽

2

Ω

)

1
𝑝

+ (∫ ∫
|𝜙(𝑥) − 𝜙(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠

2

Ω

2

Ω

𝑑𝑥𝑑𝑦

|𝑥|𝛽|𝑦|𝛽
)

1
𝑝

. 

Now, we define the weighted Sobolev space 𝑋0
𝑠,𝑝,𝛽

 (Ω) as the completion of  𝐶0
∞(Ω)  with 

respect to the previous norm. 

    As in [135], see also [211], we can prove the following extension result. 

Lemma (5.3.4)[203]: Assume that Ω ⊂ ℝ𝑁  is a regular domain, then for all 𝑤 ∈

𝑋𝑠,𝑝,𝛽 (Ω), there exists   �̃� ∈ 𝑋𝑠,𝑝,𝛽(ℝ𝑁) such that   �̃�|Ω = 𝑤 and 

‖�̃�‖
𝑋𝑠,𝑝,𝛽 (ℝ𝑁)

≤ 𝐶‖𝑤‖
𝑋𝑠,𝑝,𝛽 (Ω)

 

where  𝐶 ≡ 𝐶(𝑁, 𝑠, 𝑝, Ω) > 0.  

Lemma (5.3.5)[203]: (Picone inequality). Let 𝑤 ∈ 𝑋0
𝑠,𝑝,𝛽

 (Ω) be such that 𝑤 > 0 in Ω. 

Assume that 𝐿𝑠,𝑝,𝛽 (𝑤) = 𝜈 with  𝜈 ∈ 𝐿𝑙𝑜𝑐
1  (ℝ𝑁) and  𝜈 ≩ 0, then for all  𝑢 ∈ 𝐶0

∞(Ω), we 

have 

1

2
∫ ∫

|𝑢(𝑥) − 𝑢(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠

2

Q

2

Ω

𝑑𝑥𝑑𝑦

|𝑥|𝛽|𝑦|𝛽
≥ 〈𝐿𝑠,𝑝,𝛽𝑤,

|𝑢|𝑝

𝑤𝑝−1
〉. 

Proof: The case 𝛽 = 0 is obtained in [216] if  𝑝 = 2 and in [207]  if  𝑝 ≠ 2. For the reader 

convenience we include some details for the general case 𝛽 ≠ 0. 

      We set  𝜐(𝑥) =
|𝑢(𝑥)|𝑝

|𝑤(𝑥)|𝑝−1
  and  𝑘(𝑥, 𝑦) =

1

|𝑥−𝑦|𝑁+𝑝𝑠 |𝑥|𝛽|𝑦|𝛽
,  then 

〈𝐿𝑠,𝑝,𝛽 (𝑤(𝑥)),𝜐(𝑥)〉 = ∫𝜐(𝑥)

1

Ω

∫|𝑤(𝑥) − 𝑤(𝑦)|𝑝−2(𝑤(𝑥) − 𝑤(𝑦))

1

ℝ𝑁

𝑘(𝑥, 𝑦)𝑑𝑥𝑑𝑦 

= ∫
|𝑢(𝑥)|

𝑝

|𝑤(𝑥)|
𝑝−1

1

Ω

∫|𝑤(𝑥) − 𝑤(𝑦)|𝑝−2(𝑤(𝑥) − 𝑤(𝑦))

1

ℝ𝑁

𝑘(𝑥, 𝑦)𝑑𝑥𝑑𝑦 

Since 𝑘 is symmetric, we obtain that 

〈𝐿𝑠,𝑝,𝛽 (𝑤(𝑥)), 𝜐(𝑥)〉

=
1

2
∫ ∫ (

|𝑢(𝑥)|𝑝

|𝑤(𝑥)|𝑝−1
 −  

2

Q

2

Ω

|𝑢(𝑦)|𝑝

|𝑤(𝑦)|𝑝−1
) |𝑤(𝑥) − 𝑤(𝑦)|𝑝−2(𝑤(𝑥)

− 𝑤(𝑦))𝑘(𝑥, 𝑦)𝑑𝑥𝑑𝑦. 
Let 𝜐1 =

𝑢

𝑤
 ,  then 

〈𝐿𝑠,𝑝,𝛽 (𝑤(𝑥)),𝜐(𝑥)〉

=
1

2
∫ ∫(|𝜐1(𝑥)|

𝑝 𝑤(𝑥) −  

2

Q

2

Ω

|𝜐1(𝑦)|
𝑝 𝑤(𝑦))  |𝑤(𝑥) − 𝑤(𝑦)|𝑝−2(𝑤(𝑥)

− 𝑤(𝑦))𝑘(𝑥, 𝑦)𝑑𝑦𝑑𝑥. 
Define 
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Φ(𝑥, 𝑦) = |𝑢(𝑥) − 𝑢(𝑦)|𝑝

− (|𝜐1(𝑥)|
𝑝 𝑤(𝑥) − |𝜐1(𝑦)|

𝑝 𝑤(𝑦))|𝑤(𝑥) − 𝑤(𝑦)|𝑝−2(𝑤(𝑥) − 𝑤(𝑦)),  
then 

〈𝐿𝑠,𝑝,𝛽 (𝑤(𝑥)),𝜐(𝑥)〉 +
1

2
∫Φ(𝑥, 𝑦)𝑘(𝑥, 𝑦)𝑑𝑦𝑑𝑥

2

Q

=
1

2
∫ ∫|𝑢(𝑥) − 𝑢(𝑦)|𝑝𝑘(𝑥, 𝑦)𝑑𝑦𝑑𝑥 .

 

Q

 

 

 

We claim that  Φ ≥ 0. It is clear that, by a symmetry argument, we can assume that 

𝑤(𝑥) ≥ 𝑤(𝑦).  Let  𝑡 = 𝑤(𝑦)/𝑤(𝑥), 𝑎 = 𝑢(𝑥)/𝑢(𝑦),   then using inequality (78), the 

claim follows at once. Hence we conclude. 

    As a consequence, for  𝛽 = 0,  we have the next comparison principle that extends, to 

the fractional framework, the classical one obtained by Brezis-Kamin in [209]. 

Lemma (5.3.6)[203]: Let Ω be a bounded domain and let 𝑓 be a nonnegative continuous 

function such that  𝑓(𝜎) > 0   if  𝜎 > 0  and  
𝑓(𝜎)

𝜎𝑝−1
  is decreasing. Let  𝑢, 𝜐 ∈𝑊0

𝑠,𝑝
(Ω)  be 

such that  𝑢, 𝜐 > 0  in  Ω  and 

{
𝐿𝑠,𝑝𝑢 ≥ 𝑓(𝑢)   in  Ω ,

𝐿𝑠,𝑝𝜐 ≤ 𝑓(𝜐)   in  Ω ,
 

Then, 𝑢 ≥ 𝜐 in Ω. 

Proof:  Using an approximation argument, taking in consideration that  𝑢, 𝜐 > 0,   we can 

prove that 
𝐿𝑠,𝑝𝑢

𝑢𝑝−1
−
𝐿𝑠,𝑝𝜐

𝜐𝑝−1
≥ (

𝑓(𝑢)

𝑢𝑝−1
−
𝑓(𝜐)

𝜐𝑝−1
).                                             (79) 

We set  𝜉 = (𝜐𝑝 − 𝑢𝑝)+ ,  then 

∫(
𝑓(𝑢)

𝑢𝑝−1
 −
𝑓(𝜐)

𝜐𝑝−1
) 

2

Ω

𝜉𝑑𝑥 ≤ ∫𝜉 (
𝐿𝑠,𝑝𝑢

𝑢𝑝−1
 −
𝐿𝑠,𝑝𝜐

𝜐𝑝−1
)𝑑𝑥.

2

Ω

                           (80) 

Let us analyze each term in the previous inequality. 

     Using the definition of  𝜉 we obtain that (
𝑓(𝑢)

𝑢𝑝−1
 −

𝑓(𝜐)

𝜐𝑝−1
) 𝜉 ≥ 0. On the other hand, we 

have 

                   𝐽 ≡ ∫𝜉 (
𝐿𝑠,𝑝𝑢

𝑢𝑝−1
 –
𝐿𝑠,𝑝𝜐

𝜐𝑝−1
)𝑑𝑥 

2

Ω

 

        =
1

2
∫ ∫

|𝑢(𝑥) − 𝑢(𝑦)|𝑝−2(𝑢(𝑥) − 𝑢(𝑦))

|𝑥 − 𝑦|𝑁+𝑝𝑠

2

Q

2

Ω

  (
𝜉(𝑥)

𝑢𝑝−1(𝑥)
 −

𝜉(𝑦)

𝑢𝑝−1(𝑦)
)𝑑𝑥𝑑𝑦 

−
1

2
∫ ∫

|𝜐(𝑥) − 𝜐(𝑦)|𝑝−2(𝜐(𝑥) − 𝜐(𝑦))

|𝑥 − 𝑦|𝑁+𝑝𝑠

2

Q

2

Ω

  (
𝜉(𝑥)

𝜐𝑝−1(𝑥)
 −

𝜉(𝑦)

𝜐𝑝−1(𝑦)
)𝑑𝑥𝑑𝑦, 

where  𝑄 = ℝ𝑁 ×ℝ𝑁\(𝐶Ω × 𝐶Ω). 
      Notice that 
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                  |𝑢(𝑥) − 𝑢(𝑦)|𝑝−2(𝑢(𝑥) − 𝑢(𝑦))(
𝜉(𝑥)

𝑢𝑝−1(𝑥)
 –

𝜉(𝑦)

𝑢𝑝−1(𝑦)
) = 

|𝑢(𝑥) − 𝑢(𝑦)|𝑝−2(𝑢(𝑥) − 𝑢(𝑦)) (
𝜐𝑝(𝑥)

𝑢𝑝−1(𝑥)
 −

𝜐𝑝(𝑦)

𝑢𝑝−1(𝑦)
) − |𝑢(𝑥) − 𝑢(𝑦)|𝑝. 

In the same way, we obtain that 

     |𝜐(𝑥) − 𝜐(𝑦)|𝑝−2(𝜐(𝑥) − 𝜐(𝑦)) (
𝜉(𝑥)

𝜐𝑝−1(𝑥)
 –

𝜉(𝑦)

𝜐𝑝−1(𝑦)
)

= −|𝜐(𝑥) − 𝜐(𝑦)|𝑝−2(𝜐(𝑥) − 𝜐(𝑦)) (
𝑢𝑝(𝑥)

𝜐𝑝−1(𝑥)
 −

𝑢𝑝(𝑦)

𝜐𝑝−1(𝑦)
)

+ |𝜐(𝑥) − 𝜐(𝑦)|𝑝. 
Thus 

𝐽 =
1

2
∫ ∫

|𝑢(𝑥) − 𝑢(𝑦)|𝑝−2(𝑢(𝑥) − 𝑢(𝑦))

|𝑥 − 𝑦|𝑁+𝑝𝑠

2

Q

2

Ω

  (
𝜐𝑝(𝑥)

𝑢𝑝−1(𝑥)
 −

𝜐𝑝(𝑦)

𝑢𝑝−1(𝑦)
)𝑑𝑥𝑑𝑦 

+
1

2
∫ ∫

|𝜐(𝑥) − 𝜐(𝑦)|𝑝−2(𝜐(𝑥) − 𝜐(𝑦))

|𝑥 − 𝑦|𝑁+𝑝𝑠

2

Q

2

Ω

  (
𝑢𝑝(𝑥)

𝜐𝑝−1(𝑥)
 −

𝑢𝑝(𝑦)

𝜐𝑝−1(𝑦)
)𝑑𝑥𝑑𝑦 

−
1

2
∫ ∫

|𝑢(𝑥) − 𝑢(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠

2

Q

2

Ω

− 
1

2
∫ ∫

|𝜐(𝑥) − 𝜐(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠

2

Q

2

Ω

𝑑𝑥𝑑𝑦                            

= ∫
𝐿𝑝,𝑠(𝑢)

𝑢𝑝−1
 𝜐𝑝𝑑𝑥 + ∫

𝐿𝑝,𝑠(𝜐)

𝜐𝑝−1
 𝑢𝑝𝑑𝑥 −

1

2
∫ ∫

|𝑢(𝑥) − 𝑢(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠
𝑑𝑥𝑑𝑦

2

Q

2

Ω

 

2

Ω

 

2

Ω

 

−
1

2
∫ ∫

|𝜐(𝑥) − 𝜐(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠

2

Q

2

Ω

𝑑𝑥𝑑𝑦.                                                                         

Now, using  Picone’s inequality, we conclude that  𝐽 ≤ 0.  Thus 

(
𝑓(𝑢)

𝑢𝑝−1
 −
𝑓(𝜐)

𝜐𝑝−1
) 𝜉 ≡ 0 

and then  𝜉 = 0 which implies that  𝑢 ≤ 𝜐 in Ω. 

Lemma (5.3.7)[203]:  𝐹𝑖𝑥 0 < 𝛽 <
𝑁−𝑝𝑠

2
 and  let  𝑤(𝑥) = |𝑥|−𝛾   with  0 < 𝛾 <

𝑁−𝑝𝑠−2𝛽

𝑝−1
,  then there exists a positive constant  𝛬(𝛾) > 0 such that 

𝐿𝑠,𝑝,𝛽(𝑤) = 𝛬(𝛾)
𝑤𝑝−1

|𝑥|𝑝𝑠+2𝛽
   𝑎. 𝑒.  in   ℝ𝑁\{0}.                                    (81) 

Proof: We set  𝑟 = |𝑥|  and  𝜌 = |𝑦|,  then  𝑥 = 𝑟�́�, 𝑦 = 𝜌�́� where  |�́�|  = |�́�| = 1. Thus  

𝐿𝑠,𝑝,𝛽(𝑤) =
1

|𝑥|𝛽
∫ |𝑟−𝛾 − 𝜌−𝛾|𝑝−2

+∞

0

(𝑟−𝛾 − 𝜌−𝛾)𝜌𝑁−1

𝜌𝛽𝑟𝑁+𝑝𝑠
( ∫

𝑑𝐻𝑛−1(�́�)

|�́� − 𝜌
𝑟
|
𝑁+𝑝𝑠

2

|�́�|=1

) 𝑑𝜌. 

Let  𝜎 = 𝜌

𝑟
 ,  then  
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𝐿𝑠,𝑝,𝛽(𝑤) =
𝑤𝑝−1

|𝑥|𝑝𝑠+2𝛽
∫ |1 − 𝜎−𝛾|𝑝−2

+∞

0

(1 − 𝜎−𝛾)𝜎𝑁−𝛽−1 ( ∫
𝑑𝐻𝑛−1(�́�)

|�́� − 𝜎�́�|𝑁+𝑝𝑠

2

|�́�|=1

) 𝑑𝜎. 

Defining 

𝐾(𝜎) = ∫
𝑑𝐻𝑛−1(�́�)

|�́� − 𝜎�́�|𝑁+𝑝𝑠

2

|�́�|=1

, 

as in [214], we obtain that 

𝐾(𝜎) = 2
𝜋
𝑁−1
2

Γ
𝑁 − 1
2

∫
1 sin𝑁−2 (𝜃)

(1 − 2𝜎 cos(𝜃) + 𝜎2)
𝑁+𝑝𝑠
2

𝜋

0

𝑑𝜃                                 (82) 

Hence 

𝐿𝑠,𝑝,𝛽(𝑤) =
𝑤𝑝−1

|𝑥|𝑝𝑠+2𝛽
∫ 𝜓(𝜎)𝑑𝜎

+∞

0

, 

with 

𝜓(𝜎) = |1 − 𝜎−𝛾|𝑝−2(1 − 𝜎−𝛾)𝜎𝑁−𝛽−1𝐾(𝜎).                                     (83) 

Define  𝛬(𝛾) ≡ ∫ 𝜓(𝜎) 𝑑𝜎
+∞

0
,  then to finish we just have to show that  0 < 𝛬(𝛾) < ∞. 

     We have 

𝛬(𝛾) = ∫𝜓(𝜎)𝑑𝜎 + ∫ 𝜓(𝜎)𝑑𝜎 =

∞

1

1

0

𝐼1 + 𝐼2. 

Notice that  𝐾 (
1

𝜉
) = 𝜉𝑁+𝑝𝑠 𝐾(𝜉)  for any  𝜉 > 0,  then using the change of variable  𝜉 =

1

𝜎
  

in   𝐼1, there results that 

𝛬(𝛾) = ∫ 𝐾(𝜎)(𝜎𝛾 − 1)𝑝−1(𝜎𝑁−1−𝛽−𝛾(𝑝−1) − 𝜎𝛽+𝑝𝑠−1)𝑑𝜎

+∞

1

.                                (84) 

As 𝜎 → ∞, we have 

𝐾(𝜎)(𝜎𝛾 − 1)𝑝−1(𝜎𝑁−1−𝛽−𝛾(𝑝−1) − 𝜎𝛽+𝑝𝑠−1) ≃ 𝜎−1−𝛽−𝑝𝑠 ∈ 𝐿1(2,∞). 

Now, as, 𝜎 → 1, we have 

𝐾(𝜎)(𝜎𝛾 − 1)𝑝−1(𝜎𝑁−1−𝛽−𝛾(𝑝−1) − 𝜎𝛽+𝑝𝑠−1) ≃ (𝜎 − 1)𝑝−1−𝑝𝑠 ∈ 𝐿1(1,2). 

Therefore, combining the above estimates, we get |𝛬(𝛾)| < ∞.  Now, using the fact that 

0 < 𝛾 <
𝑁−𝑝𝑠−2𝛽

𝑝−1
, from (84), we reach that   𝛬(𝛾) > 0. 

As a conclusion, we have proved that 

𝐿𝑠,𝑝,𝛽(𝑤) = 𝛬(𝛾)
𝑤𝑝−1

|𝑥|𝑝𝑠+2𝛽
     𝑎. 𝑒.  in   ℝ𝑁\{0}. 

Hence the result follows.  

     As a consequence we have the following weighted Hardy inequality. 

Theorem (5.3.8)[203]: Let  𝛽 <
𝑁−𝑝𝑠

2
,  then for all  𝑢 ∈ 𝐶0

∞(ℝ𝑁), we have 

2𝛬(𝛾) ∫
|𝑢(𝑥)|

𝑝

|𝑥|
𝑝𝑠+2𝛽

1

ℝ𝑁

𝑑𝑥 ≤ ∫ ∫
|𝑢(𝑥) − 𝑢(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠

2

ℝ𝑁

2

ℝ𝑁

𝑑𝑥

|𝑥|𝛽
 
𝑑𝑦

|𝑦|𝛽
,                          (85) 
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where 𝛬(𝛾)  is defined in (84). 

Proof:  Let 𝑢 ∈ 𝐶0
∞(ℝ𝑁)  and  𝑤(𝑥) = |𝑥|−𝛾  with   𝛾 <

𝑁−𝑝𝑠−2𝛽

𝑝−1
. By Lemma (5.3.7), we 

have 

𝐿𝑝,𝑠,𝛽(𝑤) = 𝛬(𝛾)
𝑤𝑝−1

|𝑥|𝑝𝑠+2𝛽
. 

It is clear that   
𝑤𝑝−1

|𝑥|𝑝𝑠+2𝛽
∈ 𝐿𝑙𝑜𝑐

1 (ℝ𝑁).  Thus using  Picone inequality in Lemma (5.3.5), it 

follows that 

1

2
∫ ∫

|𝑢(𝑥) − 𝑢(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠

2

ℝ𝑁

2

ℝ𝑁

𝑑𝑥

|𝑥|𝛽
 
𝑑𝑦

|𝑦|𝛽
≥ 〈𝐿𝑝,𝑠,𝛽𝑤 ,

|𝑢|𝑝

𝑤𝑝−1
〉 = 𝛬(𝛾) ∫

|𝑢(𝑥)|
𝑝

|𝑥|
𝑝𝑠+2𝛽

1

ℝ𝑁

𝑑𝑥.    

Thus we conclude. 

Remark (5.3.9)[203]: Let analyze the behavior of the constant 𝛬(𝛾) in inequality (85). 

Recall that, for  𝛾 <
𝑁−𝑝𝑠−2𝛽

𝑝−1
 , 

Λ(𝛾) = ∫ 𝐾(𝜎)(𝜎𝛾 − 1)𝑝−1(𝜎𝑁−1−𝛽−𝛾(𝑝−1) − 𝜎𝛽+𝑝𝑠−1)𝑑𝜎,

+∞

1

 

then  

Λ ́ (𝛾) = (𝑝 − 1)∫ 𝐾(𝜎) log(𝜎) (𝜎𝛾 − 1)𝑝−2(𝜎𝑁−1−𝛽−𝛾(𝑝−1) − 𝜎𝛽+𝑝𝑠+𝛾−1)𝑑𝜎.

+∞

1

 

It is clear that if 𝛾0 =
𝑁−𝛽−𝑝𝑠

𝑝
, then  Λ́(𝛾0) = 0, Λ́(𝛾) > 0  if  𝛾 < 𝛾0  and  �́�(𝛾) < 0 if  

𝛾 > 𝛾0. Thus 

max
{0<𝛾<

𝑁−𝑝𝑠−2𝛽
𝑝

}

Λ(𝛾) = Λ(𝛾0). 

Hence 

∫ ∫
|𝑢(𝑥) − 𝑢(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠

2

ℝ𝑁

2

ℝ𝑁

𝑑𝑥

|𝑥|𝛽
 
𝑑𝑦

|𝑦|𝛽
≥ 2Λ(𝛾0) ∫

|𝑢(𝑥)|𝑝

|𝑥|𝑝𝑠+2𝛽

1

ℝ𝑁

𝑑𝑥.                          (86) 

Notice that  for  𝛽 = 0, then  2Λ(𝛾0) = 2Λ (
𝑁−𝑝𝑠

𝑝
) ≡ Λ𝑁,𝑝,𝑠 given in (73). Therefore, we 

have the next optimality result. 

Theorem (5.3.10) [203]: Define  

Λ𝑁,𝑝,𝑠 = inf
{𝜙∈ 𝐶0

∞(ℝ𝑁)\0}

∫ ∫
|𝜙(𝑥) − 𝜙(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠|𝑥|𝛽|𝑦|𝛽
𝑑𝑥𝑑𝑦

2

ℝ𝑁
2

ℝ𝑁

∫
|𝜙(𝑥)|𝑝

|𝑥|𝑝𝑠+2𝛽
1

ℝ𝑁
𝑑𝑥

, 

then  Λ𝑁,𝑝,𝑠 = 2Λ(𝛾0). 

Proof: From (24), it follows that  Λ𝑁,𝑝,𝑠,𝛾 ≥ 2Λ(𝛾0), hence to conclude we have just to 

prove the reverse inequality. 

    We closely follow the argument used in [166]. 

Let 𝑤0(𝑥) = |𝑥|
−𝛾0 , by Lemma (5.3.7), we have 
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𝐿𝑝,𝑠,𝛽(𝑤0) = Λ(𝛾
0
)
𝑤0
𝑝−12

|𝑥|𝑝𝑠+2𝛽
. 

We set  

𝑀𝑛 = {𝑥 ∈ ℝ
𝑁: 1 ≤ |𝑥| < 𝑛}     and   𝑂𝑛 ={𝑥 ∈ ℝ

𝑁: |𝑥| ≥ 𝑛}, 
and define  

𝑤𝑛 = {
1 − 𝑛−𝛾0                   
|𝑥|−𝛾0 − 𝑛−𝛾0        
0                              

     if    𝑥 ∈ 𝐵1(0),
if    𝑥 ∈ 𝑀𝑛 ,
if   𝑥 ∈ 𝑂𝑛 .

 

By a direct computation, we get easily that  𝑤𝑛 ∈ X0
𝑠,𝑝,𝛽

(ℝ𝑁). 
    Hence 

〈𝐿𝑝,𝑠,𝛽(𝑤0) ,𝑤𝑛〉 = Λ(𝛾0) ∫
𝑤𝑛𝑤0

𝑝−1

|𝑥|
𝑝𝑠+2𝛽

1

ℝ𝑁

𝑑𝑥. 

Thus 

 

∫ ∫
(𝑤𝑛(𝑥) − 𝑤𝑛(𝑦))|𝑤0(𝑥) − 𝑤0(𝑦)|

𝑝−2(𝑤0(𝑥) − 𝑤0(𝑦))

|𝑥 − 𝑦|𝑁+𝑝𝑠|𝑥|𝛽|𝑦|𝛽

2

ℝ𝑁

2

ℝ𝑁

𝑑𝑥𝑑𝑦

= 2Λ(𝛾0) ∫
𝑤𝑛𝑤0

𝑝−1

|𝑥|
𝑝𝑠+2𝛽

1

ℝ𝑁

𝑑𝑥. 

Let analyze each term in the previous identity. As in [166] we obtain that 

∫ ∫
(𝑤𝑛(𝑥) − 𝑤𝑛(𝑦))|𝑤0(𝑥) − 𝑤0(𝑦)|

𝑝−2(𝑤0(𝑥) − 𝑤0(𝑦))

|𝑥 − 𝑦|𝑁+𝑝𝑠|𝑥|𝛽|𝑦|𝛽

2

ℝ𝑁

2

ℝ𝑁

𝑑𝑥𝑑𝑦 

                                 ≥ ∫ ∫
|𝑤𝑛(𝑥) − 𝑤𝑛(𝑦)|

𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠|𝑥|𝛽|𝑦|𝛽

2

ℝ𝑁

2

ℝ𝑁

𝑑𝑥𝑑𝑦. 

On the other hand we have 

∫
𝑤𝑛𝑤0

𝑝−1

|𝑥|
𝑝𝑠+2𝛽

1

ℝ𝑁

𝑑𝑥 = ∫
𝑤𝑛
𝑝

|𝑥|
𝑝𝑠+2𝛽

1

ℝ𝑁

𝑑𝑥 + 𝐼𝑛 + 𝐽𝑛,         

where 

𝐼𝑛 = ∫ (1 − 𝑛−𝛾0) (𝑤0
𝑝−1

− (1 − 𝑛−𝛾0)𝑝−1)

1

𝐵1(0)

𝑑𝑥

|𝑥|
𝑝𝑠+𝛽

,       

and  

     𝐽𝑛 = ∫(𝑤0(𝑥) − 𝑛
−𝛾0) (𝑤0

𝑝−1
− (𝑤0(𝑥) − 𝑛

−𝛾0)𝑝−1)

1

𝑀𝑛

𝑑𝑥

|𝑥|
𝑝𝑠+𝛽

. 

It is clear that  𝐼𝑛 ,  𝐽𝑛 ≥ 0  using a direct computation we can prove that 

𝐼𝑛 + 𝐽𝑛 ≤ 𝐶  for all   𝑛 ≥ 1. 
Thus, combining the above estimates, it holds 
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Λ𝑁,𝑝,𝑠,𝛾 ≤
∫ ∫

|𝑤𝑛(𝑥) − 𝑤𝑛(𝑦)|
𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠|𝑥|𝛽|𝑦|𝛽
𝑑𝑥𝑑𝑦

2

ℝ𝑁
2

ℝ𝑁

∫
|𝑤𝑛(𝑥)|𝑝

|𝑥|𝑝𝑠+𝛽
1

ℝ𝑁
𝑑𝑥

                                                 (87) 

     ≤ 2Λ(𝛾0)(1 +
𝐼𝑛 + 𝐽𝑛

∫
|𝑤𝑛(𝑥)|𝑝

|𝑥|𝑝𝑠+𝛽
1

ℝ𝑁
𝑑𝑥
).                                                      (88) 

Since   ∫
|𝑤𝑛(𝑥)|

𝑝

|𝑥|𝑝𝑠+𝛽
1

ℝ𝑁
𝑑𝑥 ↑ ∞ as  𝑛 → ∞,  then passing to the limit in (87), it follows that 

Λ𝑁,𝑝,𝑠,𝛾 ≤ 2Λ(𝛾0) 

and then the result follows. 

     We need to use a version of the Hardy inequality in bounded domains. 

We have the next result. 

Lemma (5.3.11)[203]: Let Ω be a bounded regular domain such that 0 ∈ Ω, then there 

exists a constant  𝐶 ≡ 𝐶(Ω, 𝑠, 𝑝, 𝑁) > 0 such that for all 𝑢 ∈ 𝐶0
∞(Ω), we have 

𝐶 ∫
|𝑢(𝑥)|𝑝

|𝑥|𝑝𝑠+2𝛽

1

Ω

𝑑𝑥 ≤ ∫∫
|𝑢(𝑥) − 𝑢(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠

2

Ω

2

Ω

𝑑𝑥

|𝑥|𝛽
 
𝑑𝑦

|𝑦|𝛽
.                                     (89) 

Proof:  Fix 𝑢 ∈ 𝐶0
∞(Ω),  and let  �̃�, be the extension of 𝑢 to ℝ𝑁 defined in Lemma (5.3.4). 

Then from Theorem (5.3.8), we get 

2Λ(𝛾) ∫
|�̃�(𝑥)|𝑝

|𝑥|𝑝𝑠+2𝛽

1

ℝ𝑁

𝑑𝑥 ≤ ∫ ∫
|�̃�(𝑥) − �̃�(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠

2

ℝ𝑁

2

ℝ𝑁

𝑑𝑥

|𝑥|𝛽
 
𝑑𝑦

|𝑦|𝛽
≤ ‖�̃�‖

X0
𝑠,𝑝,𝛽 (ℝ𝑁)

𝑝
≤ 𝐶‖𝑢‖

X0
𝑠,𝑝,𝛽 (Ω)
𝑝

. 

Since �̃�|Ω = 𝑢, we conclude that 

                 2Λ(𝛾) ∫
|𝑢(𝑥)|𝑝

|𝑥|𝑝𝑠+2𝛽

1

Ω

𝑑𝑥 ≤ 𝐶‖𝑢‖
X0
𝑠,𝑝,𝛽 (Ω)
𝑝

 

                                             ≤ 𝐶1|‖𝑢‖|
X0
𝑠,𝑝,𝛽(Ω)
𝑝

= 𝐶1 ∫∫
|𝑢(𝑥) − 𝑢(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠

2

Ω

2

Ω

𝑑𝑥

|𝑥|𝛽
 
𝑑𝑦

|𝑦|𝛽
.     

Hence we reach the desired result. 

    Now, we are able to proof  Theorem (5.3.12). 

Theorem (5.3.12)[203]: Let 𝑝 > 2, 0 < 𝑠 < 1 and  𝑁 > 𝑝𝑠 . Assume that  Ω ⊂ ℝ𝑁 is a 

bounded domain, then for all 1 < 𝑞 < 𝑝, there exists a positive constant  𝐶 = 𝐶(Ω, 𝑞, 𝑁, 𝑠)  
such that for all 𝑢 ∈ 𝐶0

∞(Ω),  

∫ ∫
|𝑢(𝑥) − 𝑢(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠

2

ℝ𝑁

2

ℝ𝑁

𝑑𝑥𝑑𝑦 − Λ𝑁,𝑝,𝑠 ∫
|𝑢(𝑥)|𝑝

|𝑥|𝑝𝑠

1

ℝ𝑁

𝑑𝑥 ≥ 𝐶 ∫∫
|𝑢(𝑥) − 𝑢(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠

2

Ω

2

Ω

𝑑𝑥𝑑𝑦.  (90) 

    As a consequence we get the next “fractional” Caffarelli–Kohn–Nirenberg inequality in 

bounded domain. 

Proof:  We follow closely the arguments used in [205]. Let 𝑢 ∈ 𝐶0
∞(Ω), and define  𝛼 =

𝑁−𝑝𝑠

𝑝
,  then 𝑤(𝑥) = |𝑥|−𝛼 and  𝜐(𝑥) =

𝑢(𝑥)

𝑤(𝑥)
. 

    Recall that from the result of [166], we have 
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ℎ𝑛(𝑢) ≥ 𝐶 ∫ ∫
|𝜐(𝑥) − 𝜐(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠

2

ℝ𝑁

2

ℝ𝑁

𝑑𝑥

|𝑥|
𝑁−𝑝𝑠
2

𝑑𝑥

|𝑦|
𝑁−𝑝𝑠
2

.                                         (91) 

Let us analyze the right hand side of the previous inequality. 

    Notice that 

        
|𝜐(𝑥) − 𝜐(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠
𝑤(𝑥)

𝑝
2𝑤(𝑦)

𝑝
2 =

|𝑤(𝑦)𝑢(𝑥) − 𝑤(𝑥)𝑢(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠
 

1

(𝑤(𝑥)𝑤(𝑦))
𝑝
2

=
|(𝑢(𝑥) − 𝑢(𝑦)) −

𝑢(𝑦)
𝑤(𝑦)

(𝑤(𝑥) − 𝑤(𝑦))|
𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠
 (
𝑤(𝑦)

𝑤(𝑥)
)

𝑝
2
= 𝑓1(𝑥, 𝑦). 

In the same way, thanks to the symmetry of  𝑓1(𝑥, 𝑦), it immediately follows that 
|𝜐(𝑥) − 𝜐(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠
(𝑤(𝑥))

𝑝
2(𝑤(𝑦))

𝑝
2

=
|(𝑢(𝑦) − 𝑢(𝑥)) −

𝑢(𝑥)
𝑤(𝑥)

(𝑤(𝑦) − 𝑤(𝑥))|
𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠
 (
𝑤(𝑥)

𝑤(𝑦)
)

𝑝
2

= 𝑓2(𝑥, 𝑦). 

Hence, 

ℎ𝑠(𝑢) ≥
1

2
∫ ∫𝑓1(𝑥, 𝑦)𝑑𝑥𝑑𝑦

2

ℝ𝑁

2

ℝ𝑁

+
1

2
∫ ∫𝑓2(𝑥, 𝑦)𝑑𝑥𝑑𝑦

2

ℝ𝑁

2

ℝ𝑁

. 

Since 𝑓1 and 𝑓2 are positive functions, it follows that 

ℎ𝑠(𝑢) ≥
1

2
∫∫𝑓1(𝑥, 𝑦)𝑑𝑥𝑑𝑦

2

Ω

2

Ω

+
1

2
∫∫𝑓2(𝑥, 𝑦)𝑑𝑥𝑑𝑦.

2

Ω

2

Ω

 

Using the fact that Ω is a bounded domain, we obtain that for all (𝑥, 𝑦) ∈ (Ω × Ω) and 

𝑞 < 𝑝, 
1

|𝑥 − 𝑦|𝑁+𝑝𝑠
≥

𝐶(Ω)

|𝑥 − 𝑦|𝑁+𝑞𝑠
 

and  

𝑄(𝑥, 𝑦) ≡
(𝑤(𝑥) 𝑤(𝑦))

𝑝
2

𝑤(𝑥)𝑝 +  𝑤(𝑦)𝑝
≤ 𝐶. 

Define 

𝐷(𝑥, 𝑦) ≡ (
𝑤(𝑥)

𝑤(𝑦)
)

𝑝
2

+ (
𝑤(𝑦)

𝑤(𝑥)
)

𝑝
2

≡
𝑤(𝑥)𝑝 +𝑤(𝑦)𝑝

(𝑤(𝑥) 𝑤(𝑦))
𝑝
2

, 

then  𝑄(𝑥, 𝑦)𝐷(𝑥, 𝑦) = 1. Thus 

𝑓1(𝑥, 𝑦) ≥ 𝐶(Ω)𝑄(𝑥, 𝑦) (
𝑤(𝑦)

𝑤(𝑥)
)

𝑝
2

× 

[
|𝑢(𝑥) − 𝑢(𝑦)|

|𝑥 − 𝑦|𝑁+𝑞𝑠

𝑝

− 𝑝
|𝑢(𝑥) − 𝑢(𝑦)|

|𝑥 − 𝑦|𝑁+𝑞𝑠

𝑝−2

〈𝑢(𝑥) − 𝑢(𝑦) ,
𝑢(𝑦)

𝑤(𝑦)
 (𝑤(𝑥) − 𝑤(𝑦))〉 
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+𝐶(𝑝)
|
𝑢(𝑦)
𝑤(𝑦)

 (𝑤(𝑥) − 𝑤(𝑦))|
𝑝

|𝑥 − 𝑦|𝑁+𝑞𝑠
2

3
]. 

Hence 

                𝑓1(𝑥, 𝑦) ≥ [𝐶(Ω)𝑄(𝑥, 𝑦) (
𝑤(𝑦)

𝑤(𝑥)
)

𝑝
2

 
|𝑢(𝑥) − 𝑢(𝑦)|

|𝑥 − 𝑦|𝑁+𝑞𝑠

𝑝

] 

                       − [𝑝𝐶(Ω)𝑄(𝑥, 𝑦) (
𝑤(𝑦)

𝑤(𝑥)
)

𝑝
2

 
|𝑢(𝑥) − 𝑢(𝑦)|

|𝑥 − 𝑦|𝑁+𝑞𝑠

𝑝−1

|
𝑢(𝑥)

𝑤(𝑥)
| |(𝑤(𝑥) − 𝑤(𝑦))|]. 

In the same way we reach that 

              𝑓2(𝑥, 𝑦) ≥ [𝐶(Ω)𝑄(𝑥, 𝑦) (
𝑤(𝑥)

𝑤(𝑦)
)

𝑝
2

 
|𝑢(𝑦) − 𝑢(𝑥)|

|𝑥 − 𝑦|𝑁+𝑞𝑠

𝑝

] 

                    − [𝑝𝐶(Ω)𝑄(𝑥, 𝑦) (
𝑤(𝑥)

𝑤(𝑦)
)

𝑝
2

 
|𝑢(𝑥) − 𝑢(𝑦)|

|𝑥 − 𝑦|𝑁+𝑞𝑠

𝑝−1

|
𝑢(𝑥)

𝑤(𝑥)
| |(𝑤(𝑥) − 𝑤(𝑦))|]. 

Therefore, 

ℎ𝑠(𝑢) ≥ 𝐶(Ω) ∫∫𝑄(𝑥, 𝑦) ((
𝑤(𝑦)

𝑤(𝑥)
)

𝑝
2

2

Ω

2

Ω

+ (
𝑤(𝑦)

𝑤(𝑥)
)

𝑝
2

)
|𝑢(𝑢) − 𝑢(𝑦)|

|𝑥 − 𝑦|𝑁+𝑞𝑠

𝑝

𝑑𝑥𝑑𝑦                             

−𝑝𝐶(Ω) ∫∫[𝑄(𝑥, 𝑦) (
𝑤(𝑦)

𝑤(𝑥)
)

𝑝
2 |𝑢(𝑥) − 𝑢(𝑦)|

|𝑥 − 𝑦|𝑁+𝑞𝑠

𝑝−1

|
𝑢(𝑦)

𝑤(𝑦)
| |(𝑤(𝑥) − 𝑤(𝑦))| ]

2

Ω

2

Ω

𝑑𝑥𝑑𝑦         

−𝑝𝐶(Ω) ∫∫[𝑄(𝑥, 𝑦) (
𝑤(𝑥)

𝑤(𝑦)
)

𝑝
2 |𝑢(𝑥) − 𝑢(𝑦)|

|𝑥 − 𝑦|𝑁+𝑞𝑠

𝑝−1

|
𝑢(𝑥)

𝑤(𝑥)
| |(𝑤(𝑥) − 𝑤(𝑦))| ]

2

Ω

2

Ω

𝑑𝑥𝑑𝑦 

Thus 

ℎ𝑠(𝑢) ≥ 𝐶(Ω) ∫∫
|𝑢(𝑥) − 𝑢(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑞𝑠

2

Ω

2

Ω

𝑑𝑥𝑑𝑦                            

−𝐶1(Ω , p) ∫∫(ℎ1(𝑥 , 𝑦) + ℎ2(𝑥 , 𝑦))𝑑𝑥𝑑𝑦 ,

2

Ω

2

Ω

                                  (92) 

with 

ℎ1(𝑥 , 𝑦) = 𝑄(𝑥, 𝑦) (
𝑤(𝑦)

𝑤(𝑥)
)

𝑝
2 |𝑢(𝑥) − 𝑢(𝑦)|

|𝑥 − 𝑦|𝑁+𝑞𝑠

𝑝−1

|
𝑢(𝑦)

𝑤(𝑦)
| |(𝑤(𝑥) − 𝑤(𝑦))|, 

ℎ2(𝑥 , 𝑦) = 𝑄(𝑥, 𝑦) (
𝑤(𝑥)

𝑤(𝑦)
)

𝑝
2 |𝑢(𝑥) − 𝑢(𝑦)|

|𝑥 − 𝑦|𝑁+𝑞𝑠

𝑝−1

|
𝑢(𝑥)

𝑤(𝑥)
| |(𝑤(𝑥) − 𝑤(𝑦))|. 
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Since  ℎ1(𝑥 , 𝑦) and  ℎ2(𝑥 , 𝑦) are  symmetric  functions,  we  just  have  to  estimate 

∫∫ℎ2(𝑥 , 𝑦)𝑑𝑥𝑑𝑦 .

2

Ω

2

Ω

 

Using Young inequality, we get 

∫∫ℎ2(𝑥 , 𝑦)𝑑𝑥𝑑𝑦 ≤ 𝜀

2

Ω

2

   Ω

∫∫
|𝑢(𝑥) − 𝑢(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑞𝑠

2

Ω

2

Ω

𝑑𝑥𝑑𝑦 

                                 +𝐶(𝜀) ∫ ∫𝐺(𝑥 , 𝑦)𝑑𝑥𝑑𝑦 ,

2

Ω

2

   Ω

                                    (93) 

with 

𝐺(𝑥 , 𝑦) = (𝑄(𝑥, 𝑦))
𝑝
(
𝑤(𝑥)

𝑤(𝑦)
)

𝑝2

2

|
𝑢(𝑥)

𝑤(𝑥)
|

𝑝

 
|𝑤(𝑥) − 𝑤(𝑦)|

|𝑥 − 𝑦|𝑁+𝑞𝑠

𝑝

. 

We claim that 

  𝐼 ≡ ∫∫𝐺(𝑥 , 𝑦)𝑑𝑥𝑑𝑦 ≤ 𝐶

2

Ω

2

   Ω

∫ ∫
|𝜐(𝑥) − 𝜐(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠

2

ℝ𝑁

2

ℝ𝑁

 
𝑑𝑥

|𝑥|
𝑁−𝑝𝑠
2

𝑑𝑥

|𝑦|
𝑁−𝑝𝑠
2

.                   

Notice that 

𝐼 ≡ ∫ ∫
(𝑢(𝑥))

𝑝

|𝑥 − 𝑦|𝑁+𝑞𝑠
 

2

Ω

2

   Ω

 
(𝑤(𝑥))

𝑝2−𝑝
|𝑤(𝑥) − 𝑤(𝑦)|𝑝

(𝑤(𝑥)𝑝 +𝑤(𝑦)𝑝)𝑝
𝑑𝑥𝑑𝑦, 

then  

𝐼 = ∫𝑢𝑝
1

Ω

(𝑥) [∫
||𝑥|𝛼 − |𝑦|𝛼|𝑝

(|𝑥|𝛼𝑝 + |𝑦|𝛼𝑝)𝑝

1

Ω

 
|𝑦|𝛼𝑝(𝑝−1)

|𝑥 − 𝑦|𝑁+𝑞𝑠
𝑑𝑦 ]𝑑𝑥. 

To compute the above integral, we closely follow the arguments used in [214]. We set 𝑦 =
𝜌�́�  and  𝑥 = 𝜌�́�  with   |�́�| = |�́�| = 1,  then taking in consideration that Ω ⊂ 𝐵0(𝑅), it 
follows that 

                    𝐼 = ∫𝑢𝑝
1

Ω

(𝑥) [∫
||𝑥|𝛼 − |𝑦|𝛼|𝑝

(|𝑥|𝛼𝑝 + |𝑥|𝛼𝑝)𝑝

1

Ω

 
|𝑦|𝛼𝑝(𝑝−1)

|𝑥 − 𝑦|𝑁+𝑞𝑠
𝑑𝑦 ]𝑑𝑥 

≤ ∫𝑢𝑝
1

Ω

(𝑥) ∫
|𝑟𝛼 − 𝜌𝛼|𝑝𝜌𝛼𝑝(𝑝−1)+𝑁−1

(𝑟𝑝𝛼 − 𝜌𝑝𝛼)𝑝

𝑅

0

 ( ∫
𝑑�́�

|𝜌�́� − 𝑟�́�|𝑁+𝑞𝑠

1

𝕊𝑁−1

)𝑑𝜌𝑑𝑥.   

We set 𝜌 = 𝑟𝜎, then 

𝐼 ≤ ∫
𝑢𝑝(𝑥)

|𝑥|𝑞𝑠

1

Ω

 ∫
|1 − 𝜎𝛼|𝑝𝜎𝛼𝑝(𝑝−1)+𝑁−1

(1 − 𝜎𝛼𝑝)𝑝

𝑅
𝑟

0

 ( ∫
𝑑�́�

|𝜎�́� − �́�|𝑁+𝑞𝑠

1

𝕊𝑁−1

)𝑑𝜌𝑑𝑥 

 = ∫
𝑢𝑝(𝑥)

|𝑥|𝑞𝑠

1

Ω

 ∫
|1 − 𝜎𝛼|𝑝𝜎𝛼𝑝(𝑝−1)+𝑁−1

(1 + 𝜎𝛼𝑝)𝑝

𝑅
𝑟

0

𝐾(𝜎)𝑑𝜎𝑑𝑥 ≤ 𝜇 ∫
𝑢𝑝(𝑥)

|𝑥|𝑞𝑠

1

Ω

𝑑𝑥, 

where 
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𝜇 = ∫
|1 − 𝜎𝛼|𝑝𝜎𝛼𝑝(𝑝−1)+𝑁−1

(1 + 𝜎𝛼𝑝)𝑝

∞

0

𝐾(𝜎)𝑑𝜎 

and 

𝐾(𝜎) = 2
𝜋
𝑁−1
2

Γ(𝑁−1
2
)
 ∫

sin𝑁−1(𝜃)

(1 − 2𝜎 cos 𝜃 + 𝜎2)
𝑁+𝑞𝑠
2

𝜋

0

𝑑𝜃. 

Let us show that 𝜇 < ∞. 
    It is clear that, as 𝜎 → ∞, we have 

|1 − 𝜎𝛼|𝑝𝜎𝛼𝑝(𝑝−1)+𝑁−1

(1 + 𝜎𝛼𝑝)𝑝
𝐾(𝜎) ⋍ 𝜎−1−𝑞𝑠 ∈ 𝐿1(1 ,∞). 

Now, taking in consideration that  𝐾(𝜎) ≤ 𝐶|1 − 𝜎|−1−𝑝𝑠 as  𝑠 → 1, and following the 

same computation as in Lemma (5.3.7), it follows that 

∫
(1 − 𝜎𝛼)𝑝𝜎𝛼𝑝(𝑝−1)+𝑁−1

(1 + 𝜎𝛼𝑝)𝑝

1

0

𝐾(𝜎)𝑑𝜎 < ∞. 

Thus 𝜇 < ∞. 
Hence combining the above estimates, there results that 

𝐼 ≤ 𝐶 ∫
𝑢𝑝(𝑥)

|𝑥|𝑞𝑠

1

Ω

𝑑𝑥.               

Since  𝑢(𝑥) = 𝜐(𝑥)|𝑥|
−(

𝑁−𝑝𝑠

𝑝
)
, then 

𝐼 ≤ 𝐶 ∫
|𝜐(𝑥)|𝑝

|𝑥|𝑁−𝑠(𝑝−𝑞)

1

Ω

𝑑𝑥.             

Let  𝛽0 =
𝑁−𝑝𝑠

2
+
(𝑞−𝑝)𝑠

2
,  then  𝛽0 <

𝑁−𝑝𝑠

2
.  Applying   Lemma (5.3.11), we obtain that 

𝐼 ≤ 𝐶(Ω) ∫∫
|𝜐(𝑥) − 𝜐(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠|𝑥|𝛽0|𝑦|𝛽0

2

Ω

2

Ω

𝑑𝑦𝑑𝑥 

            ≤ 𝐶1(Ω) ∫ ∫
|𝜐(𝑥) − 𝜐(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠|𝑥|
𝑁−𝑝𝑠
2 |𝑦|

𝑁−𝑝𝑠
2

2

Ω

2

Ω

𝑑𝑦𝑑𝑥 

             ≤ 𝐶1(Ω) ∫ ∫
|𝜐(𝑥) − 𝜐(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠|𝑥|
𝑁−𝑝𝑠
2 |𝑦|

𝑁−𝑝𝑠
2

2

ℝ𝑁

2

ℝ𝑁

𝑑𝑦𝑑𝑥. 

Therefore, using again estimate (91), we reach that 

         𝐼 ≤ 𝐶2(Ω) ∫ ∫
|𝜐(𝑥) − 𝜐(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠

2

ℝ𝑁

2

ℝ𝑁

 
𝑑𝑥

|𝑥|
𝑁−𝑝𝑠
2

 
𝑑𝑦

|𝑦|
𝑁−𝑝𝑠
2

 

and the claim follows. 

    As a direct consequence of the above estimates, we have proved that 

∫∫
|𝑢(𝑥) − 𝑢(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑞𝑠

2

Ω

2

Ω

𝑑𝑥𝑑𝑦 ≤ 𝐶3 ∫ ∫
|𝜐(𝑥) − 𝜐(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠

2

ℝ𝑁

2

ℝ𝑁

 
𝑑𝑥

|𝑥|
𝑁−𝑝𝑠
2

 
𝑑𝑦

|𝑦|
𝑁−𝑝𝑠
2

                        (94) 
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Thus 

∫∫
|𝑢(𝑥) − 𝑢(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑞𝑠

2

Ω

2

Ω

𝑑𝑥𝑑𝑦 ≤ 𝐶ℎ𝑠(𝑢), 

and the result follows at once.  

    We are now in position to prove the Theorem (5.3.13). 

Theorem (5.3.13)[203]: Let 𝑝 ≥ 2, 0 < 𝑠 < 1 and  𝑁 > 𝑝𝑠 .  Assume that  Ω ⊂ ℝ𝑁  is  

abounded domain, then for all  1 < 𝑞 < 𝑝,   there exists a positive constant 𝐶 =
𝐶(Ω, 𝑞, 𝑁, 𝑠)such that for all  𝑢 ∈ 𝐶0

∞(Ω), 
 

∫ ∫
|𝑢(𝑥) − 𝑢(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠

2

ℝ𝑁

2

ℝ𝑁

𝑑𝑥

|𝑥|𝛽
 
𝑑𝑦

|𝑦|𝛽
𝑑𝑥𝑑𝑦 ≥ 𝐶 (∫

|𝑢(𝑥)|
𝑝
𝑝𝑠 ,𝑞
∗

|𝑥|
2𝛽

𝑝
𝑝𝑠 ,𝑞
∗

1

Ω

𝑑𝑥)

𝑝
𝑝𝑠 ,𝑞
∗

                             (95) 

where   𝑝𝑠 ,𝑞
∗ =

𝑝𝑁

𝑁−𝑞𝑠
  and  𝛽 =

𝑁−𝑝𝑠

2
. 

    In the case where  Ω = ℝ𝑁 ,to get a natural generalization of  the classical Caffarelli–

Kohn–Nirenberg inequality obtained in [7], we have to consider a class of admissible 

weights in the sense of  [215]. Precisely we obtain the following weighted Sobolev 

inequality. 

Proof:  Recall that  𝛼 =
𝑁−𝑝𝑠

𝑝
.  Since  𝛼𝑝𝑠 ,𝑞

∗ =
𝑁(𝑁−𝑝𝑠)

𝑁−𝑞𝑠
< 𝑁,  it follows that  

∫
|𝑢(𝑥)|𝑝𝑠 ,𝑞

∗

|𝑥|
𝛼𝑝𝑠 ,𝑞

∗
1

Ω
𝑑𝑥 < ∞, for all 𝑢 ∈ 𝐶0

∞(ℝ𝑁). 

To prove (95), we will use estimate (94)and the fractional Sobolev inequality. Fix 𝑢 ∈

𝐶0
∞(Ω) and define 𝑢1(𝑥) =

𝑢(𝑥)

|𝑥|𝛼
.  By (94), we obtain that 

𝐶(Ω) ∫∫
|𝑢1(𝑥) − 𝑢1(𝑦)|

𝑝

|𝑥 − 𝑦|𝑁+𝑞𝑠

2

Ω

2

Ω

𝑑𝑥𝑑𝑦 ≤ ∫ ∫
|𝑢(𝑥) − 𝑢(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠

2

ℝ𝑁

2

ℝ𝑁

 
𝑑𝑥

|𝑥|
𝑁−𝑝𝑠
2

 
𝑑𝑦

|𝑦|
𝑁−𝑝𝑠
2

. 

Now, using Sobolev inequality, there results that 

𝑆(∫|𝑢1(𝑥)|
𝑝𝑠 ,𝑞
∗
𝑑𝑥

2

Ω

)

𝑝
𝑝𝑠 ,𝑞
∗

≤ ∫∫
|𝑢1(𝑥) − 𝑢1(𝑦)|

𝑝

|𝑥 − 𝑦|𝑁+𝑞𝑠

2

Ω

2

Ω

𝑑𝑥𝑑𝑦, 

where  𝑝𝑠 ,𝑞
∗ =

𝑝𝑁

𝑁−𝑞𝑠
.  Hence, substituting 𝑢1 by its value, we get 

(∫
|𝑢(𝑥)|𝑝𝑠 ,𝑞

∗

|𝑥|𝛼𝑝𝑠 ,𝑞
∗

1

Ω

𝑑𝑥)

𝑝
𝑝𝑠 ,𝑞
∗

≤ 𝐶 ∫ ∫
|𝑢(𝑥) − 𝑢(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠

2

ℝ𝑁

2

ℝ𝑁

 
𝑑𝑥

|𝑥|𝛽
 
𝑑𝑦

|𝑦|𝛽
                             (96) 

If we set 𝛽 =
𝑁−𝑝𝑠

2
 = 𝛼 

𝑝

2
, then inequality (96) can be written in the form 

(∫
|𝑢(𝑥)|𝑝𝑠 ,𝑞

∗

|𝑥|
2𝛽
𝑝𝑠 ,𝑞
∗

𝑝

1

Ω

𝑑𝑥)

𝑝
𝑝𝑠 ,𝑞
∗

≤ 𝐶 ∫ ∫
|𝑢(𝑥) − 𝑢(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠

2

ℝ𝑁

2

ℝ𝑁

 
𝑑𝑥

|𝑥|𝛽
 
𝑑𝑦

|𝑦|𝛽
                                    (97) 

    As a consequence, we will prove the fractional Caffarelli–Kohn–Nirenberg inequality 

given in Theorem (5.3.14). 
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Theorem (5.3.14)[203]: Assume that 1 < 𝑝 <
𝑁

𝑠
 and let 0 < 𝛽 <

𝑁−𝑝𝑠

2
, then for all 𝑢 ∈

𝐶0
∞(ℝ𝑁), we have 

∫ ∫
|𝑢(𝑥) − 𝑢(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠

2

ℝ𝑁

2

ℝ𝑁

 
𝑑𝑥

|𝑥|𝛽
 
𝑑𝑦

|𝑦|𝛽
≥ 𝑆(𝛽)( ∫

|𝑢(𝑥)|𝑝𝑠 
∗

|𝑥|
2𝛽
𝑝𝑠 
∗

𝑝

1

ℝ𝑁

𝑑𝑥)

𝑝
𝑝𝑠 
∗

,                      (98) 

where  𝑆(𝛽) > 0. 
Proof:  Let 𝑢 ∈ 𝐶0

∞(ℝ𝑁), without loss of generality, we can assume that 𝑢 ≥ 0. Using the 

fact that 𝛽 <
𝑁−𝑝𝑠

2
, we easily get that  ∫

|𝑢(𝑥)|𝑝𝑠 
∗

|𝑥|
2𝛽
𝑝𝑠 
∗

𝑝

1

ℝ𝑁
𝑑𝑥 ≤ ∞. 

    From now and for simplicity of typing, we denote by 𝐶, 𝐶1, 𝐶2, ⋯   any universal 

constant that does not depend on uand can change from a line to another. 

     We set  �̃�(𝑥) =
𝑢(𝑥)

𝑤1(𝑥)
, where  𝑤1(𝑥) = |𝑥|

2𝛽

𝑝 , then 

( ∫
|𝑢(𝑥)|𝑝𝑠 

∗

|𝑥|
2𝛽
𝑝𝑠 
∗

𝑝

𝑑𝑥

1

ℝ𝑁

)

𝑝
𝑝𝑠 
∗

= ( ∫|�̃�|𝑝𝑠 
∗

1

ℝ𝑁

𝑑𝑥)

𝑝
𝑝𝑠 
∗

.                                                      (99) 

Using  Sobolev inequality, it follows that 

𝑆( ∫|�̃�|𝑝𝑠 
∗

1

ℝ𝑁

𝑑𝑥)

𝑝
𝑝𝑠 
∗

≤ ∫ ∫
|�̃�(𝑥) − �̃�(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠
𝑑𝑥𝑑𝑦.

2

ℝ𝑁

2

ℝ𝑁

                                  (100) 

To get the desired result we just have to show that 

∫ ∫
|�̃�(𝑥) − �̃�(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠
𝑑𝑥𝑑𝑦 ≤ 𝐶

2

ℝ𝑁

2

ℝ𝑁

∫ ∫
|𝑢(𝑥) − 𝑢(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠
𝑑𝑥

|𝑥|𝛽
 
𝑑𝑥

|𝑥|𝛽

2

ℝ𝑁

2

ℝ𝑁

           (101) 

for some positive constant 𝐶. 
    Using the definition of �̃�, we get 

∫ ∫
|𝑢(𝑥) − 𝑢(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠
𝑑𝑥

|𝑥|𝛽
 
𝑑𝑥

|𝑥|𝛽

2

ℝ𝑁

2

ℝ𝑁

= ∫ ∫
|𝑤1(𝑥)�̃�(𝑥) − 𝑤1(𝑦)�̃�(𝑦)|

𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠
𝑑𝑥

𝑤1

𝑝
2(𝑥)

 
𝑑𝑦

𝑤1

𝑝
2(𝑦)

2

ℝ𝑁

2

ℝ𝑁

. 

Notice that 

 
|𝑤1(𝑥)�̃�(𝑥) − 𝑤1(𝑦)�̃�(𝑦)|

𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠
 
1

𝑤1

𝑝
2(𝑥)

  
1

𝑤1

𝑝
2(𝑦)

= 

|�̃�(𝑥) − �̃�(𝑦) − 𝑤1(𝑦)�̃�(𝑦) (
1

𝑤1(𝑥)
−

1
𝑤1(𝑦)

)|
𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠
 (
𝑤1(𝑥)

𝑤1(𝑦)
)

𝑝
2

≡ 𝑓1(𝑥, 𝑦). 

In the same way we have 
|𝑤1(𝑥)�̃�(𝑥) − 𝑤1(𝑦)�̃�(𝑦)|

𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠
 
1

𝑤1

𝑝
2(𝑥)

  
1

𝑤1

𝑝
2(𝑦)

= 
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|(�̃�(𝑥) − �̃�(𝑦))−𝑤1(𝑥)�̃�(𝑥) (
1

𝑤1(𝑦)
−

1
𝑤1(𝑥)

)|
𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠
 (
𝑤1(𝑦)

𝑤1(𝑥)
)

𝑝
2

≡ 𝑓2(𝑥, 𝑦). 

Since 

∫ ∫𝑓1(𝑥, 𝑦)𝑑𝑥𝑑𝑦

2

ℝ𝑁

2

ℝ𝑁

= ∫ ∫𝑓2(𝑥, 𝑦)𝑑𝑥𝑑𝑦

2

ℝ𝑁

2

ℝ𝑁

, 

we get  

∫ ∫
|𝑢(𝑥) − 𝑢(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠
𝑑𝑥

|𝑥|𝛽
 
𝑑𝑥

|𝑥|𝛽

2

ℝ𝑁

2

ℝ𝑁

=
1

2
∫ ∫𝑓1(𝑥, 𝑦)𝑑𝑥𝑑𝑦

2

ℝ𝑁

2

ℝ𝑁

+
1

2
∫ ∫𝑓2(𝑥, 𝑦)𝑑𝑥𝑑𝑦

2

ℝ𝑁

2

ℝ𝑁

. 

Notice that 

𝑓1(𝑥, 𝑦) ≥ (
𝑤1(𝑥)

𝑤1(𝑦)
)

𝑝
2

× 

[ 
|�̃�(𝑥) − �̃�(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠
− 𝑝

|�̃�(𝑥) − �̃�(𝑦)|𝑝−2

|𝑥 − 𝑦|𝑁+𝑝𝑠
〈�̃�(𝑥) − �̃�(𝑦) , 𝑤1(𝑦)�̃�(𝑦) (

1

𝑤1(𝑦)
−

1

𝑤1(𝑦)
)〉 

   +𝐶(𝑝)
|𝑤1(𝑦)�̃�(𝑦) (

1
𝑤1(𝑥)

−
1

𝑤1(𝑦)
)|
𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠
2 ]. 

Hence 

𝑓1(𝑥, 𝑦) ≥ (
𝑤1(𝑥)

𝑤1(𝑦)
)

𝑝
2

× 

[ 
|�̃�(𝑥) − �̃�(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠
− 𝑝

|�̃�(𝑥) − �̃�(𝑦)|𝑝−1

|𝑥 − 𝑦|𝑁+𝑝𝑠
 |𝑤1(𝑦)�̃�(𝑦) (

1

𝑤1(𝑥)
−

1

𝑤1(𝑦)
)|  ]. 

Using Young inequality, we get the existence of  𝐶1, 𝐶2 > 0 such that 

𝑓1(𝑥, 𝑦) ≥ (
𝑤1(𝑥)

𝑤1(𝑦)
)

𝑝
2

× 

[  𝐶1  
|�̃�(𝑥) − �̃�(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠
− 𝐶2

|𝑤1(𝑦)�̃�(𝑦) (
1

𝑤1(𝑥)
−

1
𝑤1(𝑦)

)|
𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠
]. 

In the same way and using that 𝑓1 , 𝑓2 are symmetric functions, it holds 

𝑓2(𝑥, 𝑦) ≥ (
𝑤1(𝑦)

𝑤1(𝑥)
)

𝑝
2

× 

[  𝐶1  
|�̃�(𝑥) − �̃�(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠
− 𝐶2

|𝑤1(𝑥)�̃�(𝑥) (
1

𝑤1(𝑦)
−

1
𝑤1(𝑥)

)|
𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠
]. 

Thus we get the existence of positive constants   𝐶1,  𝐶2,  𝐶3 such that 

∫ ∫
|𝑢(𝑥) − 𝑢(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠
𝑑𝑥

|𝑥|𝛽
 
𝑑𝑥

|𝑥|𝛽

2

ℝ𝑁

2

ℝ𝑁

≥ 
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  𝐶1 ∫ ∫
|�̃�(𝑥) − �̃�(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠

2

ℝ𝑁

2

ℝ𝑁

[(
𝑤1(𝑦)

𝑤1(𝑥)
)

𝑝
2

+ (
𝑤1(𝑥)

𝑤1(𝑦)
)

𝑝
2

] 𝑑𝑥𝑑𝑦 

−  𝐶2 ∫ ∫(
𝑤1(𝑥)

𝑤1(𝑦)
)

𝑝
2

2

ℝ𝑁

2

ℝ𝑁

|𝑤1(𝑦)�̃�(𝑦) (
1

𝑤1(𝑥)
−

1
𝑤1(𝑦)

)|
𝑝

|𝑥 − 𝑦|𝑁+𝑞𝑠
𝑑𝑥𝑑𝑦 

−  𝐶3 ∫ ∫(
𝑤1(𝑦)

𝑤1(𝑥)
)

𝑝
2

2

ℝ𝑁

2

ℝ𝑁

|𝑤1(𝑥)�̃�(𝑥) (
1

𝑤1(𝑦)
−

1
𝑤1(𝑥)

)|
𝑝

|𝑥 − 𝑦|𝑁+𝑞𝑠
𝑑𝑥𝑑𝑦. 

Since 

[(
𝑤1(𝑦)

𝑤1(𝑥)
)

𝑝
2

+ (
𝑤1(𝑥)

𝑤1(𝑦)
)

𝑝
2

]  ≥ 1, 

then  

∫ ∫
|�̃�(𝑥) − �̃�(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠

2

ℝ𝑁

2

ℝ𝑁

𝑑𝑥𝑑𝑦 ≤   𝐶1 ∫ ∫
|𝑢(𝑥) − 𝑢(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠
𝑑𝑥

|𝑥|𝛽
 
𝑑𝑥

|𝑥|𝛽

2

ℝ𝑁

2

ℝ𝑁

 

+ 𝐶2 ∫ ∫(
𝑤1(𝑥)

𝑤1(𝑦)
)

𝑝
2

2

ℝ𝑁

2

ℝ𝑁

|𝑤1(𝑦)�̃�(𝑦) (
1

𝑤1(𝑥)
−

1
𝑤1(𝑦)

)|
𝑝

|𝑥 − 𝑦|𝑁+𝑞𝑠
𝑑𝑥𝑑𝑦                        (102) 

+ 𝐶3 ∫ ∫(
𝑤1(𝑦)

𝑤1(𝑥)
)

𝑝
2

2

ℝ𝑁

2

ℝ𝑁

|𝑤1(𝑥)�̃�(𝑥) (
1

𝑤1(𝑦)
−

1
𝑤1(𝑥)

)|
𝑝

|𝑥 − 𝑦|𝑁+𝑞𝑠
𝑑𝑥𝑑𝑦 .   

We get  

 𝑔1(𝑥, 𝑦) = (
𝑤1(𝑦)

𝑤1(𝑥)
)

𝑝
2 |𝑤1(𝑥)�̃�(𝑥) (

1
𝑤1(𝑦)

−
1

𝑤1(𝑥)
)|
𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠
 

and  

 𝑔2(𝑥, 𝑦) = (
𝑤1(𝑥)

𝑤1(𝑦)
)

𝑝
2 |𝑤1(𝑦)�̃�(𝑦) (

1
𝑤1(𝑥)

−
1

𝑤1(𝑦)
)|
𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠
 

It is clear that 

∫ ∫  𝑔1(𝑥, 𝑦)𝑑𝑥𝑑𝑦

2

ℝ𝑁

2

ℝ𝑁

= ∫ ∫  𝑔2(𝑥, 𝑦)𝑑𝑥𝑑𝑦

2

ℝ𝑁

2

ℝ𝑁

, 

therefore, to get the desired result, we just have to show that 

∫ ∫  𝑔1(𝑥, 𝑦)𝑑𝑥𝑑𝑦

2

ℝ𝑁

2

ℝ𝑁

≤ 𝐶 ∫ ∫
|𝑢(𝑥) − 𝑢(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠
𝑑𝑥

|𝑥|𝛽
 
𝑑𝑥

|𝑥|𝛽

2

ℝ𝑁

2

ℝ𝑁

. 

Going back to the definition of  �̃� and  𝑤1, we reach that 
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 𝑔1(𝑥, 𝑦) =

|𝑢(𝑥)|𝑝 ||𝑥|
2𝛽
𝑝 − |𝑦|

2𝛽
𝑝 |

𝑝

|𝑥|3𝛽|𝑦|𝛽|𝑥 − 𝑦|𝑁+𝑝𝑠
. 

We closely follow the same type of computation as in the proof of  Lemma (5.3.7). 

     We have 

∫ ∫  𝑔1(𝑥, 𝑦)𝑑𝑥𝑑𝑦

2

ℝ𝑁

2

ℝ𝑁

= ∫ ∫

|𝑢(𝑥)|𝑝 ||𝑥|
2𝛽
𝑝 − |𝑦|

2𝛽
𝑝 |

𝑝

|𝑥|3𝛽|𝑦|𝛽|𝑥 − 𝑦|𝑁+𝑝𝑠

2

ℝ𝑁

2

ℝ𝑁

𝑑𝑥𝑑𝑦 

                                             = ∫
|𝑢(𝑥)|𝑝

|𝑥|3𝛽

2

ℝ𝑁

(

 
 
∫

||𝑥|
2𝛽
𝑝 − |𝑦|

2𝛽
𝑝 |

𝑝

|𝑦|𝛽|𝑥 − 𝑦|𝑁+𝑝𝑠

2

ℝ𝑁

𝑑𝑦

)

 
 
𝑑𝑥. 

We set   𝑟 = |𝑥|  and  𝜌 = |𝑦|,  then  𝑥 = 𝑟�́�, 𝑦 = 𝜌�́� with  |�́�| = |�́�| = 1, then 

∫
|𝑢(𝑥)|𝑝

|𝑥|3𝛽

2

ℝ𝑁

(

 
 
∫

||𝑥|
2𝛽
𝑝 − |𝑦|

2𝛽
𝑝 |

𝑝

|𝑦|𝛽|𝑥 − 𝑦|𝑁+𝑝𝑠

2

ℝ𝑁

𝑑𝑦

)

 
 
𝑑𝑥

= ∫
|𝑢(𝑥)|𝑝

|𝑥|3𝛽

2

ℝ𝑁

[∫
|𝑟

2𝛽
𝑝 − 𝜌

2𝛽
𝑝 |
𝑝

𝜌𝑁−1

𝜌𝛽

+∞

0

( ∫
𝑑𝐻𝑛−1(�́�)

|𝑟�́� − 𝜌�́�|𝑁+𝑝𝑠

2

|�́�|=1

𝑑𝑦)𝑑𝜌] 𝑑𝑥. 

Let 𝜎 =
𝜌

𝑟
 , then 

∫
|𝑢(𝑥)|𝑝

|𝑥|3𝛽

2

ℝ𝑁

(

 
 
∫

||𝑥|
2𝛽
𝑝 − |𝑦|

2𝛽
𝑝 |

𝑝

|𝑦|𝛽|𝑥 − 𝑦|𝑁+𝑝𝑠

2

ℝ𝑁

𝑑𝑦

)

 
 
𝑑𝑥

= ∫
|𝑢(𝑥)|𝑝

|𝑥|2𝛽+𝑝𝑠

2

ℝ𝑁

[∫ |1 − 𝜎
2𝛽
𝑝 |
𝑝

𝜎𝑁−1−𝛽𝐾(𝜎)𝑑𝜎

+∞

0

] 𝑑𝑥, 

where 𝐾 is defined in (82). Since 

∫ |1 − 𝜎
2𝛽
𝑝 |
𝑝

𝜎𝑁−1−𝛽𝐾(𝜎)𝑑𝜎

+∞

0

≡ 𝐶3 < ∞, 

it follows that 

∫ ∫  𝑔1(𝑥, 𝑦)𝑑𝑥𝑑𝑦

2

ℝ𝑁

2

ℝ𝑁

= 𝐶3 ∫
|𝑢(𝑥)|𝑝

|𝑥|2𝛽+𝑝𝑠

2

ℝ𝑁

𝑑𝑥. 

Now, using inequality (85), we get 

∫ ∫  𝑔1(𝑥, 𝑦)𝑑𝑥𝑑𝑦

2

ℝ𝑁

2

ℝ𝑁

≤ 𝐶4 ∫ ∫
|𝑢(𝑥) − 𝑢(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠
𝑑𝑥

|𝑥|𝛽
 
𝑑𝑥

|𝑥|𝛽

2

ℝ𝑁

2

ℝ𝑁

.                            (103) 
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Combining (99), (100), (103) and (102), we reach the desired result. 

     In the case where  Ω is a regular bounded domain containing the origin, we have the 

following version of  Theorem (5.3.14). 

Theorem (5.3.15)[203]: Assume that Ω is a regular bounded domain with 0 ∈ Ω, then 

there exists a positive constant  𝐶 ≡ 𝐶(Ω,𝑁, 𝑝, 𝑠, 𝛽) such that for all  𝜙 ∈ 𝐶0
∞(Ω), we have 

∫ ∫
|𝜙(𝑥) − 𝜙(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠
𝑑𝑥

|𝑥|𝛽
 
𝑑𝑥

|𝑥|𝛽

2

ℝ𝑁

2

ℝ𝑁

≥ 𝐶 (∫
|𝜙(𝑥)|𝑝𝑠 

∗

|𝑥|
2𝛽
𝑝𝑠 
∗

𝑝

𝑑𝑥

1

Ω

)

𝑝
𝑝𝑠 
∗

.                      (104) 

Proof:  Let 𝜙 ∈ 𝐶0
∞(Ω) and define �̃�  to be the extension of 𝜙 to ℝ𝑁  given in Lemma 

(5.3.4), then using the fact that Ω is a regular bounded domain, we reach that 

‖�̃�‖
𝑋𝑠,𝑝,𝛽 (ℝ𝑁)

≤ 𝐶1‖𝜙‖𝑋𝑠,𝑝,𝛽 (Ω) ≤ 𝐶1 (∫∫
|𝜙(𝑥) − 𝜙(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠
𝑑𝑥𝑑𝑦

|𝑥|𝛽|𝑦|𝛽
 

2

Ω

2

Ω

)

1

𝑝

. 

Now, applying Theorem (5.3.14) to �̃�, it follows that 

∫ ∫
|�̃�(𝑥) − �̃�(𝑦)|

𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠
𝑑𝑥

|𝑥|𝛽
 
𝑑𝑥

|𝑥|𝛽

2

ℝ𝑁

2

ℝ𝑁

≥ 𝑆(𝛽)( ∫
|�̃�(𝑥)|

𝑝𝑠 
∗

|𝑥|
2𝛽
𝑝𝑠 
∗

𝑝

𝑑𝑥

1

ℝ𝑁

)

𝑝
𝑝𝑠 
∗

. 

Hence combining the above estimates we get the desired result. 

We deal with the next problem 

{
𝐿𝑝,𝑠  𝑢 = 𝜆

𝑢𝑝−1

|𝑥|𝑝𝑠
+ 𝑢𝑞 , 𝑢 > 0  in Ω,

2 𝑢 = 0                   in ℝ𝑁\Ω,

                                        (105) 

where  

𝐿𝑠,𝑝 𝑢 ≔ P. V. ∫
|𝑢(𝑥) − 𝑢(𝑦)|𝑝−2(𝑢(𝑥) − 𝑢(𝑦))

|𝑥 − 𝑦|𝑁+𝑝𝑠
𝑑𝑦,

1

ℝ𝑁

 

and   0 < 𝜆 ≤ Λ𝑁,𝑝,𝑠. 

    In the case where 0 < 𝑞 < 𝑝 − 1,  the existence result follows using variational 

arguments. More precisely we have: 

(i) If  𝜆 < Λ𝑁,𝑝,𝑠,   then the existence of a solution 𝑢  to (105) follows using classical 

minimizing argument. In this case 𝑢 ∈ 𝑊0
𝑠,𝑝
(Ω). 

(ii) If  𝜆 <  Λ𝑁,𝑝,𝑠, the existence result follows using the improved Hardy inequality in 

Theorem (5.3.12). In this case 𝑢 satisfies  ℎ𝑠,Ω(𝑢) < ∞ where ℎ𝑠,Ω is defined by 

ℎ𝑠,Ω(𝑢) ≡ ∫ ∫
|𝑢(𝑥) − 𝑢(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠
𝑑𝑥𝑑𝑦 −  Λ𝑁,𝑝,𝑠 ∫

|𝑢(𝑥)|𝑝

|𝑥|𝑝𝑠

2

Ω

2

ℝ𝑁

2

ℝ𝑁

𝑑𝑥.                (106) 

This clearly implies that 

∫ ∫
|𝑢(𝑥) − 𝑢(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠
𝑑𝑥𝑑𝑦 ≤ ∞

2

ℝ𝑁

2

ℝ𝑁

  for all 𝑞 < 𝑝. 

We deal now with the case 𝑞 > 𝑝 − 1. 
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Define  𝑤(𝑥) = |𝑥|−𝛾  with  0 < 𝛾 <
𝑁−𝑝𝑠

𝑝−1
 , then we have previously obtained that 

𝐿𝑠,Ω(𝑤) = Λ(𝛾)
𝑤𝑝−1

|𝑥|𝑝𝑠
     𝑎. 𝑒.  in ℝ𝑁\{0},  

where  

Λ(𝛾) = ∫ 𝐾(𝜎)(𝜎𝛾 − 1)𝑝−1 (𝜎𝑁−1−𝛾(𝑝−1) − 𝜎𝑝𝑠−1)) 2𝑑𝜎

+∞

1

, 

and  𝐾 is given by (82). Let us begin by proving the next lemma. 

Lemma (5.3.16)[203]: Assume that  0 < 𝜆 < Λ𝑁,𝑝,𝑠,  then there exist  𝛾1, 𝛾2 such that 

0 < 𝛾1 <
𝑁 − 𝑝𝑠

𝑝
< 𝛾2, 

and  Λ(𝛾1) = Λ(𝛾2) = 𝜆. 

Proof: We have   Λ(0) = 0, Λ (
𝑁−𝑝𝑠

𝑝
) = Λ𝑁,𝑝,𝑠 Λ(γ) < 0  if   𝛾 >

𝑁−𝑝𝑠

𝑝−1
  and 

Λ́(𝛾) = ∫ 𝐾(𝜎) log (𝜎)(𝜎𝛾 − 1)𝑝−2 (𝜎𝑁−1−𝛾(𝑝−1) − 𝜎𝑝𝑠+𝛾−1)) 2𝑑𝜎.

+∞

1

 

It is clear that for  𝛾0 =
𝑁−𝑝𝑠

𝑝
, we have  Λ́(𝛾0) = 0, Λ́( 𝛾) > 0 if  𝛾 < 𝛾0 and Λ́(𝛾) < 0 if 

𝛾 > 𝛾0. 

    Hence, since 𝜆 < Λ𝑁,𝑝,𝑠,  we get the existence of 0 < 𝛾1 <
𝑁−𝑝𝑠

𝑝
< 𝛾2

𝑁−𝑝𝑠

𝑝−1
 such that  

Λ(𝛾1) = Λ(𝛾2) = 𝜆. 

Define 𝑞 + (𝑝, 𝑠) = 𝑝 − 1 +
𝑝𝑠

𝛾1
, it is clear that  𝑝𝑠

∗ − 1 < 𝑞 + (𝑝, 𝑠). We have the 

next existence result 

Theorem (5.3.17)[203]: Assume that 𝑞 < 𝑞+(𝑝, 𝑠), then 

(i) If 𝑝 − 1 < 𝑞 < 𝑝𝑠
∗ − 1,  problem (105) has a solution  𝑢. Moreover , 𝑢 ∈ 𝑊0

𝑠,𝑝
(Ω) if 

𝜆 < Λ𝑁,𝑝,𝑠  and  ℎ𝑠,Ω(𝑢) < ∞ if  𝜆 = Λ𝑁,𝑝,𝑠 where  ℎ𝑠,Ω is defined in (106). 

(ii) If  𝑝𝑠
∗ − 1 ≤ 𝑞 < 𝑞+(𝑝, 𝑠), then problem (105) has a positive super solution 𝑢. 

Proof: Let us begin with the case where 𝑝 − 1 < 𝑞 < 𝑝𝑠
∗ − 1.  If  𝜆 < Λ𝑁,𝑝,𝑠, then using 

the Mountain Pass Theorem, see [218], we get a positive solution  𝑢 ∈ 𝑊0
𝑠,𝑝
(Ω).  
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However, if 𝜆 < Λ𝑁,𝑝,𝑠, then using the improved Hardy inequality in Theorem (5.3.12) and 

the Mountain Pass Theorem, we reach a positive solution 𝑢  to problem (105) with  

ℎ𝑠,Ω(𝑢) < ∞. 

     Assume now that 𝑝𝑠
∗ − 1 ≤ 𝑞 < 𝑞+(𝑝, 𝑠)  and  fix  𝜆1 ∈ (𝜆 , Λ𝑁,𝑝,𝑠)  to be chosen later. 

     Let  𝛾1 ∈ (0,
𝑁−𝑝𝑠

𝑝
)  be  such  that  𝛤(𝛾1) = 𝜆1 and set  𝑤(𝑥) = |𝑥|−𝛾1 ,  then 

𝐿𝑠,𝑝(𝑤) = 𝜆1
𝑤𝑝−1

|𝑥|𝑝𝑠
     𝑎. 𝑒. in ℝ𝑁\{0}  

with  
𝑤𝑝−1

|𝑥|𝑝𝑠
∈ 𝐿𝑙𝑜𝑐

1 (ℝ𝑁). Hence 

𝐿𝑠,𝑝(𝑤) = 𝜆
𝑤𝑝−1

|𝑥|𝑝𝑠
+ (𝜆1 − 𝜆)

𝑤𝑝−1

|𝑥|𝑝𝑠
    𝑎. 𝑒. in ℝ𝑁\{0}.  

    Using the fact that 𝑞 < 𝑞+(𝑝, 𝑠),  we can choose 𝜆1 > 𝜆,  very close to 𝜆  such that          

𝛾1(𝑝 − 1) + 𝑝𝑠 > 𝑞𝛾1,  thus, in any bounded domain Ω, we have 

(𝜆1 − 𝜆)
𝑤𝑝−1

|𝑥|𝑝𝑠
≥ 𝐶(Ω)𝑤𝑞 .     

Define  �̂� = 𝐶𝑤, by the previous estimates, we can choose 𝐶(Ω) > 0 such that  �̂� will be 

a supersolution to (105) in  Ω. Hence the result follows.. 

     Now, we show the optimality of the exponent 𝑞+(𝑝, 𝑠). We have the following non 

existence result. 

Lemma (5.3.18)[203]: Let Ω ⊂ ℝ𝑁 be a regular domain such that 0 ∈ Ω. Define 

Λ(Ω) = inf
{𝜙∈𝐶0

∞Ω\0}

∫ ∫
|𝜙(𝑥) − 𝜙(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠
𝑑𝑥𝑑𝑦

2

ℝ𝑁
2

ℝ𝑁

∫
|𝜙(𝑥)|𝑝

|𝑥|𝑝𝑠
𝑑𝑥

2

Ω

, 

then  Λ(Ω) = Λ𝑁,𝑝,𝑠 defined in (73). 

Proof: Recall that 

Λ𝑁,𝑝,𝑠 = inf
{𝜙∈𝐶0

∞(ℝ𝑁)\0}

∫ ∫
|𝜙(𝑥) − 𝜙(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠
𝑑𝑥𝑑𝑦

2

ℝ𝑁
2

ℝ𝑁

∫
|𝜙(𝑥)|𝑝

|𝑥|𝑝𝑠
𝑑𝑥

2

ℝ𝑁

, 

thus  Λ(Ω) ≥ Λ𝑁,𝑝,𝑠.  It is clear that if  Ω1 ⊂ Ω2, t hen  Λ(Ω1)  ≥ Λ(Ω2). 

     Now, using a dilatation argument we can prove that  Λ(𝐵𝑅1(0)) = Λ(𝐵𝑅2(0)) for all  

0 < 𝑅1 < 𝑅2.  Hence we conclude that  Λ(Ω) ≡ Λ̅ does not depend of the domain  Ω. For 

𝜙 ∈ 𝐶0
∞(ℝ𝑁), we set 

𝑄(𝜙) ≡
∫ ∫

|𝜙(𝑥) − 𝜙(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑝𝑠
𝑑𝑥𝑑𝑦

2

ℝ𝑁
2

ℝ𝑁

∫
|𝜙(𝑥)|𝑝

|𝑥|𝑝𝑠
𝑑𝑥

2

ℝ𝑁

. 

Let {𝜙𝑛}𝑛  ⊂ 𝐶0
∞(ℝ𝑁) be such that  𝑄(𝜙𝑛)  → Λ𝑁,𝑝,𝑠. Without loss of generality and using 

a symmetrization argument we can assume that  Supp(𝜙𝑛) ⊂ 𝐵𝑅2(0). It is clear that  

𝑄(𝜙𝑛) ≥ Λ(Supp(𝜙𝑛)) = Λ̅,  thus, as 𝑛 → ∞, it follows that Λ̅ ≤ Λ𝑁,𝑝,𝑠.  As a conclusion 

we reach that  Λ = Λ𝑁,𝑝,𝑠  and the result follows. 

    We need the next lemma. 
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Lemma (5.3.19) [203]: Let Ω be a bounded domain such that 0 ∈ Ω. Assume that  𝑢 ∈

𝑊𝑠,𝑝(ℝ𝑁)  is such that  𝑢 ≥ 0 𝑖𝑛  ℝ𝑁 , 𝑢 > 0 in  Ω and  𝐿𝑁,𝑝,𝑠𝑢 ≩ 𝜆
𝑢𝑝−1

|𝑥|𝑝𝑠
 in  Ω, then there 

exists 𝐶 > 0 such that 𝑢(𝑥)  ≥ 𝐶|𝑥|−𝛾1  in  𝐵𝜂(0) where 𝛾1 is defined in Lemma (5.3.16). 

Proof: Without loss of generality we can assume that  𝐵1(0) ⊂ Ω. 
      Fixed  𝜆 < Λ𝑁,𝑝,𝑠 sand define 

�̃�(𝑥) = {
  |𝑥|−𝛾1 − 1 if |𝑥| < 1,

0             if |𝑥| > 1.
 

It is clear that  �̃� ∈ 𝑊0
𝑠,𝑝
(𝐵1(0)) and 

{
𝐿𝑝,𝑠�̃� = ℎ(𝑥)

�̃�𝑝−1

|𝑥|𝑝𝑠
in   𝐵1(0),

  �̃� = 0                   in ℝ𝑁\𝐵1{0}

                                             (107) 

where  

ℎ(𝑥) = ∫ |1 − 𝜎−�̃�|
𝑝−2

(1 − 𝜎−�̃�)𝐾(𝜎)𝑑𝜎 + (1 − |𝑥|�̃�) ∫ 𝜎𝑁−1
∞

1
|𝑥|

 𝐾(𝜎)𝑑𝜎2.

1
|𝑥|

0

 

Using the definition of   𝛾1, see Lemma (5.3.16), we can prove that  ℎ(𝑥) ≤ 𝜆  for all   𝑥 ∈
𝐵1(0). 

Since 𝐿𝑝,𝑠 𝑢 ≩ 0 and 𝑢 > 0 in Ω, then using the nonlocal weak  Harnack  inequality 

in [210], we get the existence of  𝜀 > 0 such that  𝑢 ≥ 𝜀 in   �̅�1(0). 
     Therefore we obtain that 

{
 
 

 
 𝐿𝑝,𝑠𝑢 ≥ 𝜆

𝑢𝑝−1

|𝑥|𝑝𝑠
in 𝐵1(0),

𝐿𝑝,𝑠�̃� ≤ 𝜆
�̃�𝑝−1

|𝑥|𝑝𝑠
, in 𝐵1(0),

𝑢 ≥ �̃�         in ℝ𝑁\𝐵1(0).

                                                   (108) 

Thus by the comparison principle in Lemma (5.3.6), it follows that   �̃� ≤ 𝑢 which is the 

desired result. 

    We are now in position to prove Theorem (5.3.20). 

Theorem (5.3.20)[203]: Let 𝑞+(𝑝, 𝑠) = 𝑝 − 1 +
𝑝𝑠

𝛾1
.  If  𝑞 > 𝑞+(𝑝, 𝑠),  then the unique 

nonnegative supersolution  𝑢 ∈ 𝑊𝑙𝑜𝑐
𝑠,𝑝
 (Ω)  to problem (105) is 𝑢 ≡ 0. 

     We first prove the next lemma which shows that the Hardy constant is independent of 

the domain. 

Proof:  We argue by contradiction. Assume the existence of  𝑢 ≩ 0  such that  𝑢 ∈
W𝑠,𝑝(ℝ𝑁) and 𝑢  is a supersolution to problem (105) in Ω, then 𝑢 > 0 in Ω. Let  𝜙 ∈
𝐶0
∞ (𝐵𝜂(0))  with  𝐵𝜂(0) ⊂⊂ Ω and  𝜂 > 0 to be chosen later. 

    Using Picone’s inequality in Lemma (5.3.5), it follows that 

‖𝜙‖
𝑋0
𝑠,𝑝
(ℝ𝑁)

𝑝
≥ ∫

𝐿𝑝,𝑠(𝑢)

𝑢𝑝−1

2

𝐵𝜂(0)

|𝜙|𝑝𝑑𝑥. 

Thus  
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‖𝜙‖
𝑋0
𝑠,𝑝
(ℝ𝑁)

𝑝
≥ ∫ 𝑢𝑞−(𝑝−1)

2

𝐵𝜂(0)

|𝜙|𝑝𝑑𝑥. 

Since 𝑞 > 𝑞+(𝑝, 𝑠), we get the existence of  𝜀 > 0 such that 

   (𝛾1 − 𝜀)(𝑞 − (𝑝 − 1)) > 𝑝𝑠 + 𝜌 

for some 𝜌 > 0. Thus, using Lemma (5.3.19), we can choose 𝜂 > 0 such that 

𝑢𝑞−(𝑝−1) ≥ 𝐶|𝑥|−𝑝𝑠−𝜌  in 𝐵𝜂(0). 

Therefore 

‖𝜙‖
𝑋0
𝑠,𝑝
(ℝ𝑁)

𝑝
≥ 𝐶 ∫

|𝜙|𝑝

|𝑢|𝑝𝑠+𝜌

2

𝐵𝜂(0)

𝑑𝑥, 

which is a contradiction with the optimality of the Hardy inequality proved in Lemma 

(5.3.18). 

Hence we conclude. 

Corollary (5.3.21)[239]: (Picone inequality). Let 𝑤 ∈ 𝑋0
1−𝜖,1+𝜖,1+𝜖  (Ω) be such that 𝑤 >

0 in Ω. Assume that 𝐿1−𝜖,1+𝜖,1+𝜖  (𝑤) = 𝜈 with  𝜈 ∈ 𝐿𝑙𝑜𝑐
1  (ℝ𝑁) and  𝜈 ≩ 0, then for all  𝑢 ∈

𝐶0
∞(Ω), we have 

1

2
∫ ∫ ∑ 

𝑛0

|𝑢(𝑥𝑛0) − 𝑢(𝑦𝑛0)|
1+𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+1−𝜖2

2

Q

2

Ω

𝑑𝑥𝑛0𝑑𝑦𝑛0

|𝑥𝑛0|
1+𝜖
|𝑦𝑛0|

1+𝜖 ≥ 〈𝐿1−𝜖,1+𝜖,1+𝜖𝑤,
|𝑢|1+𝜖

𝑤𝜖
〉. 

Proof: The case 𝜖 = −1 is obtained in [216] if  𝜖 = 2 and in [207]  if  𝜖 ≠ 0. For the 

reader convenience we include some details for the general case 𝜖 ≠ −1. 

      We set  𝜐(𝑥𝑛0) =
|𝑢(𝑥𝑛0)|

1+𝜖

|𝑤(𝑥𝑛0)|
𝜖

  and  𝑘(𝑥𝑛0 , 𝑦𝑛0) =
1

|𝑥𝑛0−𝑦𝑛0|
𝑁+1−𝜖2

 |𝑥𝑛0|
1+𝜖

|𝑦𝑛0|
1+𝜖
,  then 

∑ 

𝑛0

〈𝐿1−𝜖,1+𝜖,1+𝜖  (𝑤(𝑥𝑛0)) , 𝜐(𝑥𝑛0)〉

= ∫∑ 

𝑛0

𝜐(𝑥𝑛0)

1

Ω

∫|𝑤(𝑥𝑛0) − 𝑤(𝑦𝑛0)|
𝜖−1

(𝑤(𝑥𝑛0)

1

ℝ𝑁

−𝑤(𝑦𝑛0)) 𝑘(𝑥𝑛0 , 𝑦𝑛0)𝑑𝑥𝑛0𝑑𝑦𝑛0 

= ∫∑ 

𝑛0

|𝑢(𝑥𝑛0)|
1+𝜖

|𝑤(𝑥𝑛0)|
𝜖

1

Ω

∫|𝑤(𝑥𝑛0) − 𝑤(𝑦𝑛0)|
𝜖−1

(𝑤(𝑥𝑛0) − 𝑤(𝑦𝑛0))

1

ℝ𝑁

𝑘(𝑥𝑛0 , 𝑦𝑛0)𝑑𝑥𝑛0𝑑𝑦𝑛0 

Since 𝑘 is symmetric, we obtain that 

∑ 

𝑛0

〈𝐿1−𝜖,1+𝜖,1+𝜖  (𝑤(𝑥𝑛0)) , 𝜐(𝑥𝑛0)〉

=
1

2
∫ ∫ ∑ 

𝑛0

(
|𝑢(𝑥𝑛0)|

1+𝜖

|𝑤(𝑥𝑛0)|
𝜖
 −  

2

Q

2

Ω

|𝑢(𝑦𝑛0)|
1+𝜖

|𝑤(𝑦𝑛0)|
𝜖
) |𝑤(𝑥𝑛0)

− 𝑤(𝑦𝑛0)|
𝜖−1

(𝑤(𝑥𝑛0) − 𝑤(𝑦𝑛0)) 𝑘(𝑥𝑛0 , 𝑦𝑛0)𝑑𝑥𝑛0𝑑𝑦𝑛0 . 

Let 𝜐1 =
𝑢

𝑤
 ,  then 
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∑ 

𝑛0

〈𝐿1−𝜖,1+𝜖,1+𝜖  (𝑤(𝑥𝑛0)) , 𝜐(𝑥𝑛0)〉

=
1

2
∫ ∫∑ 

𝑛0

(|𝜐1(𝑥𝑛0)|
1+𝜖
 𝑤(𝑥𝑛0) −  

2

Q

2

Ω

|𝜐1(𝑦𝑛0)|
1+𝜖
 𝑤(𝑦𝑛0))  |𝑤(𝑥𝑛0)

− 𝑤(𝑦𝑛0)|
𝜖−1

(𝑤(𝑥𝑛0) − 𝑤(𝑦𝑛0)) 𝑘(𝑥𝑛0 , 𝑦𝑛0)𝑑𝑦𝑛0𝑑𝑥𝑛0 . 

Define 

Φ(𝑥𝑛0 , 𝑦𝑛0) =∑ 

𝑛0

|𝑢(𝑥𝑛0) − 𝑢(𝑦𝑛0)|
1+𝜖

−∑ 

𝑛0

(|𝜐1(𝑥𝑛0)|
1+𝜖
 𝑤(𝑥𝑛0)

− |𝜐1(𝑦𝑛0)|
1+𝜖
 𝑤(𝑦𝑛0)) |𝑤(𝑥𝑛0) − 𝑤(𝑦𝑛0)|

𝜖−1
(𝑤(𝑥𝑛0) − 𝑤(𝑦𝑛0)),  

then 

∑ 

𝑛0

〈𝐿1−𝜖,1+𝜖,1+𝜖  (𝑤(𝑥𝑛0)) , 𝜐(𝑥𝑛0)〉 +
1

2
∫∑ 

𝑛0

Φ(𝑥𝑛0 , 𝑦𝑛0)𝑘(𝑥𝑛0 , 𝑦𝑛0)𝑑𝑦𝑛0𝑑𝑥𝑛0

2

Q

=
1

2
∫ ∫∑ 

𝑛0

|𝑢(𝑥𝑛0) − 𝑢(𝑦𝑛0)|
1+𝜖
𝑘(𝑥𝑛0 , 𝑦𝑛0)𝑑𝑦𝑛0𝑑𝑥𝑛0  .

 

Q

 

 

 

We claim that Φ ≥ 0. It is clear that, by a symmetry argument, we can assume that 

𝑤(𝑥𝑛0) ≥ 𝑤(𝑦𝑛0). Let  𝑡 = 𝑤(𝑦𝑛0)/𝑤(𝑥𝑛0), 𝑎 = 𝑢(𝑥𝑛0)/𝑢(𝑦𝑛0),  then using inequality 

(78), the claim follows at once. Hence we conclude. 

Corollary (5.3.22)[239]: Let Ω  be a bounded domain and let 𝑓  be a nonnegative 

continuous function such that  𝑓(𝜎) > 0   if  𝜎 > 0  and  
𝑓(𝜎)

𝜎𝜖
  is decreasing. Let  𝑢, 𝜐 ∈

𝑊0
1−𝜖,1+𝜖(Ω)  be such that  𝑢, 𝜐 > 0  in  Ω  and 

{
𝐿1−𝜖,1+𝜖𝑢 ≥ 𝑓(𝑢)  in  Ω ,

𝐿1−𝜖,1+𝜖𝜐 ≤ 𝑓(𝜐)  in  Ω ,
 

Then, 𝑢 ≥ 𝜐 in Ω. 

Proof:  Using an approximation argument, taking in consideration that  𝑢, 𝜐 > 0,   we can 

prove that 

𝐿1−𝜖,1+𝜖𝑢

𝑢𝜖
−
𝐿1−𝜖,1+𝜖𝜐

𝜐𝜖
≥ (

𝑓(𝑢)

𝑢𝜖
−
𝑓(𝜐)

𝜐𝜖
).                                             (109) 

We set  𝜉 = (𝜐1+𝜖 − 𝑢1+𝜖)+ ,  then 

∫(
𝑓(𝑢)

𝑢𝜖
 −
𝑓(𝜐)

𝜐𝜖
) 

2

Ω

𝜉𝑑𝑥𝑛0 ≤ ∫𝜉 (
𝐿1−𝜖,1+𝜖𝑢

𝑢𝜖
 −
𝐿1−𝜖,1+𝜖𝜐

𝜐𝜖
) 𝑑𝑥𝑛0 .

2

Ω

                           (110) 

Let us analyze each term in the previous inequality. 

     Using the definition of  𝜉 we obtain that (
𝑓(𝑢)

𝑢𝜖
 −

𝑓(𝜐)

𝜐𝜖
) 𝜉 ≥ 0. On the other hand, we 

have 
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                   𝐽 ≡ ∫𝜉 (
𝐿1−𝜖,1+𝜖𝑢

𝑢𝜖
 –
𝐿1−𝜖,1+𝜖𝜐

𝜐𝜖
) 𝑑𝑥𝑛0  

2

Ω

 

        =
1

2
∫ ∫∑ 

𝑛0

|𝑢(𝑥𝑛0) − 𝑢(𝑦𝑛0)|
𝜖−1

(𝑢(𝑥𝑛0) − 𝑢(𝑦𝑛0))

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+1−𝜖2

2

Q

2

Ω

  (
𝜉(𝑥𝑛0)

𝑢𝜖(𝑥𝑛0)
 

−
𝜉(𝑦𝑛0)

𝑢𝜖(𝑦𝑛0)
)𝑑𝑥𝑛0𝑑𝑦𝑛0 

−
1

2
∫ ∫∑ 

𝑛0

|𝜐(𝑥𝑛0) − 𝜐(𝑦𝑛0)|
𝜖−1

(𝜐(𝑥𝑛0) − 𝜐(𝑦𝑛0))

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+1−𝜖2

2

Q

2

Ω

  (
𝜉(𝑥𝑛0)

𝜐𝜖(𝑥𝑛0)
 

−
𝜉(𝑦𝑛0)

𝜐𝜖(𝑦𝑛0)
)𝑑𝑥𝑛0𝑑𝑦𝑛0 , 

where  𝑄 = ℝ𝑁 ×ℝ𝑁\(𝐶Ω × 𝐶Ω). 
      Notice that 

             ∑  

𝑛0

|𝑢(𝑥𝑛0) − 𝑢(𝑦𝑛0)|
𝜖−1

(𝑢(𝑥𝑛0) − 𝑢(𝑦𝑛0)) (
𝜉(𝑥𝑛0)

𝑢𝜖(𝑥𝑛0)
 –
𝜉(𝑦𝑛0)

𝑢𝜖(𝑦𝑛0)
) = 

∑ 

𝑛0

|𝑢(𝑥𝑛0) − 𝑢(𝑦𝑛0)|
𝜖−1

(𝑢(𝑥𝑛0) − 𝑢(𝑦𝑛0))(
𝜐1+𝜖(𝑥𝑛0)

𝑢𝜖(𝑥𝑛0)
 −
𝜐1+𝜖(𝑦𝑛0)

𝑢𝜖(𝑦𝑛0)
)

− |𝑢(𝑥𝑛0) − 𝑢(𝑦𝑛0)|
1+𝜖
. 

In the same way, we obtain that 

∑ 

𝑛0

|𝜐(𝑥𝑛0) − 𝜐(𝑦𝑛0)|
𝜖−1

(𝜐(𝑥𝑛0) − 𝜐(𝑦𝑛0))(
𝜉(𝑥𝑛0)

𝜐𝜖(𝑥𝑛0)
 –
𝜉(𝑦𝑛0)

𝜐𝜖(𝑦𝑛0)
)

= −∑ 

𝑛0

|𝜐(𝑥𝑛0) − 𝜐(𝑦𝑛0)|
𝜖−1

(𝜐(𝑥𝑛0) − 𝜐(𝑦𝑛0)) (
𝑢1+𝜖(𝑥𝑛0)

𝜐𝜖(𝑥𝑛0)
 

−
𝑢1+𝜖(𝑦𝑛0)

𝜐𝜖(𝑦𝑛0)
) +∑ 

𝑛0

|𝜐(𝑥𝑛0) − 𝜐(𝑦𝑛0)|
1+𝜖
. 

Thus 

𝐽 =
1

2
∫ ∫∑ 

𝑛0

|𝑢(𝑥𝑛0) − 𝑢(𝑦𝑛0)|
𝜖−1

(𝑢(𝑥𝑛0) − 𝑢(𝑦𝑛0))

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+1−𝜖2

2

Q

2

Ω

  (
𝜐1+𝜖(𝑥𝑛0)

𝑢𝜖(𝑥𝑛0)
 

−
𝜐1+𝜖(𝑦𝑛0)

𝑢𝜖(𝑦𝑛0)
)𝑑𝑥𝑛0𝑑𝑦𝑛0 

+
1

2
∫ ∫∑ 

𝑛0

|𝜐(𝑥𝑛0) − 𝜐(𝑦𝑛0)|
𝜖−1

(𝜐(𝑥𝑛0) − 𝜐(𝑦𝑛0))

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+1−𝜖2

2

Q

2

Ω

  (
𝑢1+𝜖(𝑥𝑛0)

𝜐𝜖(𝑥𝑛0)
 

−
𝑢1+𝜖(𝑦𝑛0)

𝜐𝜖(𝑦𝑛0)
)𝑑𝑥𝑛0𝑑𝑦𝑛0 
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−
1

2
∫ ∫∑ 

𝑛0

|𝑢(𝑥𝑛0) − 𝑢(𝑦𝑛0)|
1+𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+1−𝜖2

2

Q

2

Ω

− 
1

2
∫ ∫∑ 

𝑛0

|𝜐(𝑥𝑛0) − 𝜐(𝑦𝑛0)|
1+𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+1−𝜖2

2

Q

2

Ω

𝑑𝑥𝑛0𝑑𝑦𝑛0                             

= ∫∑ 

𝑛0

𝐿1+𝜖,1−𝜖(𝑢)

𝑢𝜖
 𝜐1+𝜖𝑑𝑥𝑛0

2

Ω

+ ∫∑ 

𝑛0

𝐿1+𝜖,1−𝜖(𝜐)

𝜐𝜖
 𝑢1+𝜖𝑑𝑥𝑛0

2

Ω

−
1

2
∫ ∫∑ 

𝑛0

|𝑢(𝑥𝑛0) − 𝑢(𝑦𝑛0)|
1+𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+1−𝜖2

𝑑𝑥𝑛0𝑑𝑦𝑛0

2

Q

2

Ω

   

−
1

2
∫ ∫∑ 

𝑛0

|𝜐(𝑥𝑛0) − 𝜐(𝑦𝑛0)|
1+𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+1−𝜖2

2

Q

2

Ω

𝑑𝑥𝑛0𝑑𝑦𝑛0 .                                                                         

Now, using  Picone’s inequality, we conclude that  𝐽 ≤ 0.  Thus 

(
𝑓(𝑢)

𝑢𝜖
 −
𝑓(𝜐)

𝜐𝜖
)𝜉 ≡ 0 

and then  𝜉 = 0 which implies that  𝑢 ≤ 𝜐 in Ω. 

Corollary (5.3.23)[239]:  Fix 0 < 1 + 𝜖 <
𝑁−(1+𝜖)2

2
 and  let  𝑤(𝑥𝑛0) = |𝑥𝑛0|

−𝛾   with  

0 < 𝛾 <
𝑁−(1+𝜖)2−2(1+𝜖)

𝜖
,  then there exists a positive constant  𝛬(𝛾) > 0 such that 

𝐿1+𝜖,1+𝜖,1+𝜖(𝑤) = 𝛬(𝛾)
𝑤𝜖

|𝑥𝑛0|
(1+𝜖)2+2(1+𝜖)

   𝑎. 𝑒.  in   ℝ𝑁\{0}.                                    (111) 

Proof: We set  1 + 𝜖 = |𝑥𝑛0 |  and  𝜌 = |𝑦𝑛0|,  then  𝑥𝑛0 = (1 + 𝜖)�́�𝑛0 , 𝑦𝑛0 = 𝜌𝑦𝑛0́  where  

|�́�𝑛0|  = |�́�𝑛0| = 1. Thus  

𝐿1+𝜖,1+𝜖,1+𝜖(𝑤)

=∑ 

𝑛0

1

|𝑥𝑛0|
1+𝜖∫ |(1 + 𝜖)−𝛾

+∞

0

− 𝜌−𝛾|𝜖−1
((1 + 𝜖)−𝛾 − 𝜌−𝛾)𝜌𝑁−1

𝜌1+𝜖(1 + 𝜖)𝑁+(1+𝜖)
2 ( ∫

𝑑𝐻𝑛−1(�́�𝑛0)

|�́�𝑛0 −
𝜌
1+𝜖|

𝑁+(1+𝜖)2

2

|�́�𝑛0|=1

)𝑑𝜌. 

Let  𝜎 = 𝜌

1+𝜖
 ,  then  
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𝐿1+𝜖,1+𝜖,1+𝜖(𝑤)

=∑ 

𝑛0

𝑤𝜖

|𝑥𝑛0|
(1+𝜖)2+2(1+𝜖)

∫ |1 − 𝜎−𝛾|𝜖−1
+∞

0

(1

− 𝜎−𝛾)𝜎𝑁−𝜖 ( ∫
𝑑𝐻𝑛−1(�́�𝑛0)

|�́�𝑛0 − 𝜎�́�𝑛0|
𝑁+(1+𝜖)2

2

|�́�𝑛0|=1

)𝑑𝜎. 

Defining 

𝐾(𝜎) = ∫ ∑ 

𝑛0

𝑑𝐻𝑛−1(�́�𝑛0)

|�́�𝑛0 − 𝜎�́�𝑛0|
𝑁+(1+𝜖)2

2

|�́�𝑛0|=1

, 

as in [214], we obtain that 

𝐾(𝜎) = 2
𝜋
𝑁−1
2

Γ
𝑁 − 1
2

∫
1 sin𝑁−2 (𝜃)

(1 − 2𝜎 cos(𝜃) + 𝜎2)
𝑁+(1+𝜖)2

2

𝜋

0

𝑑𝜃                                 (112) 

Hence 

𝐿1+𝜖,1+𝜖,1+𝜖(𝑤) =∑ 

𝑛0

𝑤𝜖

|𝑥𝑛0|
(1+𝜖)2+2(1+𝜖)

∫ 𝜓(𝜎)𝑑𝜎

+∞

0

, 

with 

𝜓(𝜎) = |1 − 𝜎−𝛾|𝜖−1(1 − 𝜎−𝛾)𝜎𝑁−𝜖𝐾(𝜎).                                     (113) 

Define  𝛬(𝛾) ≡ ∫ 𝜓(𝜎) 𝑑𝜎
+∞

0
,  then to finish we just have to show that  0 < 𝛬(𝛾) < ∞. 

     We have 

𝛬(𝛾) = ∫𝜓(𝜎)𝑑𝜎 + ∫ 𝜓(𝜎)𝑑𝜎 =

∞

1

1

0

𝐼1 + 𝐼2. 

Notice that  𝐾 (
1

𝜉
) = 𝜉𝑁+(1+𝜖)

2
 𝐾(𝜉)  for any  𝜉 > 0,  then using the change of variable  

𝜉 =
1

𝜎
  in   𝐼1, there results that 

𝛬(𝛾) = ∫ 𝐾(𝜎)(𝜎𝛾 − 1)𝜖(𝜎𝑁−2−𝜖−𝛾(𝜖) − 𝜎𝜖+(1+𝜖)
2
)𝑑𝜎

+∞

1

.                                (114) 

As 𝜎 → ∞, we have 

𝐾(𝜎)(𝜎𝛾 − 1)𝜖(𝜎𝑁−2−𝜖−𝛾(𝜖) − 𝜎𝜖+(1+𝜖)
2
) ≃ 𝜎−2−𝜖−(1+𝜖)

2
∈ 𝐿1(2,∞). 

Now, as, 𝜎 → 1, we have 

𝐾(𝜎)(𝜎𝛾 − 1)𝜖(𝜎𝑁−2−𝜖−𝛾(𝜖) − 𝜎1+3𝜖+𝜖
2
) ≃ (𝜎 − 1)−(1+𝜖+𝜖

2) ∈ 𝐿1(1,2). 

Therefore, combining the above estimates, we get |𝛬(𝛾)| < ∞.  Now, using the fact that 

0 < 𝛾 <
𝑁−(1+𝜖)2−2(1+𝜖)

𝜖
, from (114), we reach that   𝛬(𝛾) > 0. 

As a conclusion, we have proved that 

𝐿1+𝜖,1+𝜖,1+𝜖(𝑤) = 𝛬(𝛾)
𝑤𝜖

|𝑥𝑛0|
(1+𝜖)2+2(1+𝜖)

     𝑎. 𝑒.  in   ℝ𝑁\{0}. 

Hence the result follows.  
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Corollary (5.3.24)[239]: Let  1 + 𝜖 <
𝑁−(1+𝜖)2

2
,  then for all  𝑢 ∈ 𝐶0

∞(ℝ𝑁), we have 

2𝛬(𝛾) ∫∑ 

𝑛0

|𝑢(𝑥𝑛0)|
1+𝜖

|𝑥𝑛0|
(1+𝜖)2+2(1+𝜖)

1

ℝ𝑁

𝑑𝑥𝑛0

≤ ∫ ∫∑ 

𝑛0

|𝑢(𝑥𝑛0) − 𝑢(𝑦𝑛0)|
1+𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+𝜖)2

2

ℝ𝑁

2

ℝ𝑁

𝑑𝑥𝑛0

|𝑥𝑛0|
1+𝜖  

𝑑𝑦𝑛0

|𝑦𝑛0|
1+𝜖 ,                  (115) 

where 𝛬(𝛾)  is defined in (114). 

Proof:  Let 𝑢 ∈ 𝐶0
∞(ℝ𝑁)   and  𝑤(𝑥𝑛0) = |𝑥𝑛0|

−𝛾   with   𝛾 <
𝑁−(1+𝜖)2−2(1+𝜖)

𝜖
. By 

Corollary (5.3.23), we have 

𝐿1+𝜖,1+𝜖,1+𝜖(𝑤) = 𝛬(𝛾)∑ 

𝑛0

𝑤𝜖

|𝑥𝑛0|
(1+𝜖)2+2(1+𝜖)

. 

It is clear that   
𝑤𝜖

|𝑥𝑛0|
(1+𝜖)2+2(1+𝜖)

∈ 𝐿𝑙𝑜𝑐
1 (ℝ𝑁).  Thus using  Picone inequality in Corollary 

(5.3.21), it follows that 

1

2
∫ ∫∑ 

𝑛0

|𝑢(𝑥𝑛0) − 𝑢(𝑦𝑛0)|
1+𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+𝜖)2

2

ℝ𝑁

2

ℝ𝑁

𝑑𝑥𝑛0

|𝑥𝑛0|
1+𝜖  

𝑑𝑦𝑛0

|𝑦𝑛0|
1+𝜖 ≥ 〈𝐿1+𝜖,1+𝜖,1+𝜖𝑤 ,

|𝑢|1+𝜖

𝑤𝜖
〉

= 𝛬(𝛾) ∫∑ 

𝑛0

|𝑢(𝑥𝑛0)|
1+𝜖

|𝑥𝑛0|
(1+𝜖)2+2(1+𝜖)

1

ℝ𝑁

𝑑𝑥𝑛0 .    

Thus we conclude. 

Corollary (5.3.25)[239]: Define  

Λ𝑁,1+𝜖,1+𝜖 = inf
{𝜙∈ 𝐶0

∞(ℝ𝑁)\0}
∑ 

𝑛0

∫ ∫
|𝜙(𝑥𝑛0) − 𝜙(𝑦𝑛0)|

1+𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+𝜖)2

|𝑥𝑛0|
1+𝜖
|𝑦𝑛0|

1+𝜖
𝑑𝑥𝑛0𝑑𝑦𝑛0

2

ℝ𝑁
2

ℝ𝑁

∫
|𝜙(𝑥𝑛0)|

1+𝜖

|𝑥𝑛0|
(1+𝜖)2+2(1+𝜖)

1

ℝ𝑁
𝑑𝑥𝑛0

, 

then  Λ𝑁,1+𝜖,1+𝜖 = 2Λ(𝛾0). 

Proof: From (24), it follows that  Λ𝑁,1+𝜖,1+𝜖,𝛾 ≥ 2Λ(𝛾0), hence to conclude we have just 

to prove the reverse inequality. 

    We closely follow the argument used in [166]. 

Let 𝑤0(𝑥𝑛0) = |𝑥𝑛0|
−𝛾0 , by Corollary (5.3.23), we have 

𝐿1+𝜖,1+𝜖,1+𝜖(𝑤0) = Λ(𝛾0)∑ 

𝑛0

𝑤0
𝜖2

|𝑥𝑛0|
(1+𝜖)2+2(1+𝜖)

. 

We set  

𝑀𝑛 = {𝑥𝑛0 ∈ ℝ
𝑁: 1 ≤ |𝑥𝑛0| < 𝑛}     and   𝑂𝑛 ={𝑥𝑛0 ∈ ℝ

𝑁: |𝑥𝑛0| ≥ 𝑛}, 

and define  

𝑤𝑛 = {

1 − 𝑛−𝛾0                   

|𝑥𝑛0|
−𝛾0

− 𝑛−𝛾0        

0                              

    if    𝑥𝑛0 ∈ 𝐵1(0),

if    𝑥𝑛0 ∈ 𝑀𝑛 ,

if   𝑥𝑛0 ∈ 𝑂𝑛 .
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By a direct computation, we get easily that  𝑤𝑛 ∈ X0
1+𝜖,1+𝜖,1+𝜖(ℝ𝑁). 

    Hence 

〈𝐿1+𝜖,1+𝜖,1+𝜖(𝑤0) , 𝑤𝑛〉 = Λ(𝛾0) ∫∑ 

𝑛0

𝑤𝑛𝑤0
𝜖

|𝑥𝑛0|
(1+𝜖)2+2(1+𝜖)

1

ℝ𝑁

𝑑𝑥𝑛0 . 

Thus 

 

∫ ∫∑ 

𝑛0

(𝑤𝑛(𝑥𝑛0) − 𝑤𝑛(𝑦𝑛0)) |𝑤0(𝑥𝑛0) − 𝑤0(𝑦𝑛0)|
𝜖−1

(𝑤0(𝑥𝑛0) − 𝑤0(𝑦𝑛0))

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+𝜖)2

|𝑥𝑛0|
1+𝜖
|𝑦𝑛0|

1+𝜖

2

ℝ𝑁

2

ℝ𝑁

𝑑𝑥𝑛0𝑑𝑦𝑛0

= 2Λ(𝛾0) ∫∑ 

𝑛0

𝑤𝑛𝑤0
𝜖

|𝑥𝑛0|
(1+𝜖)2+2(1+𝜖)

1

ℝ𝑁

𝑑𝑥𝑛0 . 

Let analyze each term in the previous identity. As in [166] we obtain that 

∫ ∫∑ 

𝑛0

(𝑤𝑛(𝑥𝑛0) − 𝑤𝑛(𝑦𝑛0)) |𝑤0(𝑥𝑛0) − 𝑤0(𝑦𝑛0)|
𝜖−1

(𝑤0(𝑥𝑛0) − 𝑤0(𝑦𝑛0))

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+𝜖)2

|𝑥𝑛0|
1+𝜖
|𝑦𝑛0|

1+𝜖

2

ℝ𝑁

2

ℝ𝑁

𝑑𝑥𝑛0𝑑𝑦𝑛0 

                                 ≥ ∫ ∫∑ 

𝑛0

|𝑤𝑛(𝑥𝑛0) − 𝑤𝑛(𝑦𝑛0)|
1+𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+𝜖)2

|𝑥𝑛0|
1+𝜖
|𝑦𝑛0|

1+𝜖

2

ℝ𝑁

2

ℝ𝑁

𝑑𝑥𝑛0𝑑𝑦𝑛0 . 

On the other hand we have 

∫∑ 

𝑛0

𝑤𝑛𝑤0
𝜖

|𝑥𝑛0|
(1+𝜖)2+2(1+𝜖)

1

ℝ𝑁

𝑑𝑥𝑛0 = ∫∑ 

𝑛0

𝑤𝑛
1+𝜖

|𝑥𝑛0|
(1+𝜖)2+2(1+𝜖)

1

ℝ𝑁

𝑑𝑥𝑛0 + 𝐼𝑛 + 𝐽𝑛,         

where 

𝐼𝑛 = ∫ ∑ 

𝑛0

(1 − 𝑛−𝛾0)(𝑤0
𝜖 − (1 − 𝑛−𝛾0)𝜖)

1

𝐵1(0)

𝑑𝑥𝑛0
|𝑥𝑛0|

(1+𝜖)2+1+𝜖
,       

and  

     𝐽𝑛 = ∫∑ 

𝑛0

(𝑤0(𝑥𝑛0) − 𝑛
−𝛾0)(𝑤0

𝜖 − (𝑤0(𝑥𝑛0) − 𝑛
−𝛾0)𝜖)

1

𝑀𝑛

𝑑𝑥𝑛0
|𝑥𝑛0|

(1+𝜖)2+1+𝜖
. 

It is clear that  𝐼𝑛 ,  𝐽𝑛 ≥ 0  using a direct computation we can prove that 

𝐼𝑛 + 𝐽𝑛 ≤ 𝐶  for all   𝑛 ≥ 1. 
Thus, combining the above estimates, it holds 

Λ𝑁,1+𝜖,1+𝜖,𝛾 ≤∑ 

𝑛0

∫ ∫
|𝑤𝑛(𝑥𝑛0) − 𝑤𝑛(𝑦𝑛0)|

1+𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+𝜖)2

|𝑥𝑛0|
1+𝜖
|𝑦𝑛0|

1+𝜖
𝑑𝑥𝑛0𝑑𝑦𝑛0

2

ℝ𝑁
2

ℝ𝑁

∫
|𝑤𝑛(𝑥𝑛0)|

1+𝜖

|𝑥𝑛0|
(1+𝜖)2+1+𝜖

1

ℝ𝑁
𝑑𝑥𝑛0

       (116) 
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     ≤ 2Λ(𝛾0)

(

 
 
 
1 +

𝐼𝑛 + 𝐽𝑛

∫ ∑  𝑛0

|𝑤𝑛(𝑥𝑛0)|
1+𝜖

|𝑥𝑛0|
(1+𝜖)2+1+𝜖

1

ℝ𝑁
𝑑𝑥𝑛0

)

 
 
 
.                                                      (117) 

Since   ∫ ∑  𝑛0

|𝑤𝑛(𝑥𝑛0)|
1+𝜖

|𝑥𝑛0|
(1+𝜖)2+1+𝜖

1

ℝ𝑁
𝑑𝑥𝑛0  ↑ ∞ as  𝑛 → ∞,  then passing to the limit in (116), it 

follows that 

Λ𝑁,1+𝜖,1+𝜖,𝛾 ≤ 2Λ(𝛾0) 
and then the result follows. 

Corollary (5.3.26)[239]: Let Ω be a bounded regular domain such that 0 ∈ Ω, then there 

exists a constant  𝐶 ≡ 𝐶(Ω, 1 + 𝜖, 1 + 𝜖,𝑁) > 0 such that for all 𝑢 ∈ 𝐶0
∞(Ω), we have 

𝐶 ∫∑ 

𝑛0

|𝑢(𝑥𝑛0)|
1+𝜖

|𝑥𝑛0|
(1+𝜖)2+2(1+𝜖)

1

Ω

𝑑𝑥𝑛0

≤ ∫∫∑ 

𝑛0

|𝑢(𝑥𝑛0) − 𝑢(𝑦𝑛0)|
1+𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+𝜖)2

2

Ω

2

Ω

𝑑𝑥𝑛0

|𝑥𝑛0|
1+𝜖  

𝑑𝑦𝑛0

|𝑦𝑛0|
1+𝜖 .                               (118) 

Proof:  Fix 𝑢 ∈ 𝐶0
∞(Ω),  and let  �̃�, be the extension of 𝑢 to ℝ𝑁 defined in Lemma (5.3.4). 

Then from Corollary (5.3.24), we get 

2Λ(𝛾) ∫∑ 

𝑛0

|�̃�(𝑥𝑛0)|
1+𝜖

|𝑥𝑛0|
(1+𝜖)2+2(1+𝜖)

1

ℝ𝑁

𝑑𝑥𝑛0

≤ ∫ ∫∑ 

𝑛0

|�̃�(𝑥𝑛0) − �̃�(𝑦𝑛0)|
1+𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+𝜖)2

2

ℝ𝑁

2

ℝ𝑁

𝑑𝑥𝑛0

|𝑥𝑛0|
1+𝜖  

𝑑𝑦𝑛0

|𝑦𝑛0|
1+𝜖 ≤ ‖�̃�‖

X0
1+𝜖,1+𝜖,1+𝜖 (ℝ𝑁)

1+𝜖

≤ 𝐶‖𝑢‖
X0
1+𝜖,1+𝜖,1+𝜖 (Ω)
1+𝜖 . 

Since �̃�|Ω = 𝑢, we conclude that 

                 2Λ(𝛾) ∫∑ 

𝑛0

|𝑢(𝑥𝑛0)|
1+𝜖

|𝑥𝑛0|
(1+𝜖)2+2(1+𝜖)

1

Ω

𝑑𝑥𝑛0 ≤ 𝐶‖𝑢‖X0
1+𝜖,1+𝜖,1+𝜖 (Ω)
1+𝜖  

                                             ≤ 𝐶1|‖𝑢‖|X0
1+𝜖,1+𝜖,1+𝜖(Ω)
1+𝜖

= 𝐶1 ∫∫∑ 

𝑛0

|𝑢(𝑥𝑛0) − 𝑢(𝑦𝑛0)|
1+𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+𝜖)2

2

Ω

2

Ω

𝑑𝑥𝑛0

|𝑥𝑛0|
1+𝜖  

𝑑𝑦𝑛0

|𝑦𝑛0|
1+𝜖 .     

Hence we reach the desired result. 

Corollary (5.3.27)[239]: Let 𝜖 > 0 and  𝑁 > (2 + 𝜖)(1 − 𝜖). Assume that  Ω ⊂ ℝ𝑁is a 

bounded domain, then for all 𝜖 > 0,  there exists a positive constant  𝐶 = 𝐶(Ω, 1 +
𝜖,𝑁, 1 − 𝜖)  such that for all 𝑢 ∈ 𝐶0

∞(Ω),  
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∫ ∫∑ 

𝑛0

|𝑢(𝑥𝑛0) − 𝑢(𝑦𝑛0)|
1+2𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+2𝜖)(1−𝜖)

2

ℝ𝑁

2

ℝ𝑁

𝑑𝑥𝑛0𝑑𝑦𝑛0

− Λ𝑁,1+2𝜖,1−𝜖 ∫∑ 

𝑛0

|𝑢(𝑥𝑛0)|
1+2𝜖

|𝑥𝑛0|
(1+2𝜖)(1−𝜖)

1

ℝ𝑁

𝑑𝑥𝑛0

≥ 𝐶 ∫∫∑ 

𝑛0

|𝑢(𝑥𝑛0) − 𝑢(𝑦𝑛0)|
1+2𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+2𝜖)(1−𝜖)

2

Ω

2

Ω

𝑑𝑥𝑛0𝑑𝑦𝑛0 .                       (119) 

    As a consequence we get the next “fractional” Caffarelli–Kohn–Nirenberg inequality in 

bounded domain. 

Proof.  We follow closely the arguments used in [205]. Let 𝑢 ∈ 𝐶0
∞(Ω), and define  𝛼 =

𝑁−(1+𝜖)2

1+𝜖
,  then 𝑤(𝑥𝑛0) = |𝑥𝑛0|

−𝛼 and  𝜐(𝑥𝑛0) =
𝑢(𝑥𝑛0)

𝑤(𝑥𝑛0)
. 

    Recall that from the result of [166], we have 

ℎ𝑛(𝑢) ≥ 𝐶 ∫ ∫∑ 

𝑛0

|𝜐(𝑥𝑛0) − 𝜐(𝑦𝑛0)|
1+𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+𝜖)2

2

ℝ𝑁

2

ℝ𝑁

𝑑𝑥𝑛0

|𝑥𝑛0|
𝑁−(1+𝜖)2

2

𝑑𝑥𝑛0

|𝑦𝑛0|
𝑁−(1+𝜖)2

2

.     (120) 

Let us analyze the right hand side of the previous inequality. 

    Notice that 

∑ 

𝑛0

|𝜐(𝑥𝑛0) − 𝜐(𝑦𝑛0)|
1+𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+𝜖)2

𝑤(𝑥𝑛0)
1+𝜖
2 𝑤(𝑦𝑛0)

1+𝜖
2

=∑ 

𝑛0

|𝑤(𝑦𝑛0)𝑢(𝑥𝑛0) − 𝑤(𝑥𝑛0)𝑢(𝑦𝑛0)|
1+𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+𝜖)2

 
1

(𝑤(𝑥𝑛0)𝑤(𝑦𝑛0))

1+𝜖
2

=∑ 

𝑛0

|(𝑢(𝑥𝑛0) − 𝑢(𝑦𝑛0)) −
𝑢(𝑦𝑛0)

𝑤(𝑦𝑛0)
(𝑤(𝑥𝑛0) − 𝑤(𝑦𝑛0))|

1+𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+𝜖)2

 (
𝑤(𝑦𝑛0)

𝑤(𝑥𝑛0)
)

1+𝜖
2

=∑ 

𝑛0

𝑓1(𝑥𝑛0 , 𝑦𝑛0). 

In the same way, thanks to the symmetry of  𝑓1(𝑥𝑛0 , 𝑦𝑛0), it immediately follows that 

∑ 

𝑛0

|𝜐(𝑥𝑛0) − 𝜐(𝑦𝑛0)|
1+𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+𝜖)2

(𝑤(𝑥𝑛0))
1+𝜖
2
(𝑤(𝑦𝑛0))

1+𝜖
2

=∑ 

𝑛0

|(𝑢(𝑦𝑛0) − 𝑢(𝑥𝑛0)) −
𝑢(𝑥𝑛0)

𝑤(𝑥𝑛0)
(𝑤(𝑦𝑛0) − 𝑤(𝑥𝑛0))|

1+𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+𝜖)2

 (
𝑤(𝑥𝑛0)

𝑤(𝑦𝑛0)
)

1+𝜖
2

=∑ 

𝑛0

𝑓2(𝑥𝑛0 , 𝑦𝑛0). 

Hence, 
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ℎ1+𝜖(𝑢) ≥
1

2
∫ ∫∑ 

𝑛0

𝑓1(𝑥𝑛0 , 𝑦𝑛0)𝑑𝑥𝑛0𝑑𝑦𝑛0

2

ℝ𝑁

2

ℝ𝑁

+
1

2
∫ ∫∑ 

𝑛0

𝑓2(𝑥𝑛0 , 𝑦𝑛0)𝑑𝑥𝑛0𝑑𝑦𝑛0

2

ℝ𝑁

2

ℝ𝑁

. 

Since 𝑓1 and 𝑓2 are positive functions, it follows that 

ℎ1+𝜖(𝑢) ≥
1

2
∫∫∑ 

𝑛0

𝑓1(𝑥𝑛0 , 𝑦𝑛0)𝑑𝑥𝑛0𝑑𝑦𝑛0

2

Ω

2

Ω

+
1

2
∫∫∑ 

𝑛0

𝑓2(𝑥𝑛0 , 𝑦𝑛0)𝑑𝑥𝑛0𝑑𝑦𝑛0 .

2

Ω

2

Ω

 

 
Using the fact that Ω is a bounded domain, we obtain that for all (𝑥𝑛0 , 𝑦𝑛0) ∈ (Ω × Ω) and 

𝜖 > 0, 

∑ 

𝑛0

1

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+2𝜖)(1+𝜖)

≥∑ 

𝑛0

𝐶(Ω)

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+𝜖)2

 

and  

𝑄(𝑥𝑛0 , 𝑦𝑛0) ≡∑ 

𝑛0

(𝑤(𝑥𝑛0) 𝑤(𝑦𝑛0))
1+2𝜖
2

𝑤(𝑥𝑛0)
1+2𝜖

+  𝑤(𝑦𝑛0)
1+2𝜖 ≤ 𝐶. 

Define 

𝐷(𝑥𝑛0 , 𝑦𝑛0) ≡∑ 

𝑛0

(
𝑤(𝑥𝑛0)

𝑤(𝑦𝑛0)
)

1+2𝜖
2

+∑ 

𝑛0

(
𝑤(𝑦𝑛0)

𝑤(𝑥𝑛0)
)

1+2𝜖
2

≡∑ 

𝑛0

𝑤(𝑥𝑛0)
1+2𝜖

+ 𝑤(𝑦𝑛0)
1+2𝜖

(𝑤(𝑥𝑛0) 𝑤(𝑦𝑛0))
1+2𝜖
2

, 

then  𝑄(𝑥𝑛0 , 𝑦𝑛0)𝐷(𝑥𝑛0 , 𝑦𝑛0) = 1. Thus 

𝑓1(𝑥𝑛0 , 𝑦𝑛0) ≥∑ 

𝑛0

𝐶(Ω)𝑄(𝑥𝑛0 , 𝑦𝑛0) (
𝑤(𝑦𝑛0)

𝑤(𝑥𝑛0)
)

1+2𝜖
2

× 

∑ 

𝑛0

[
|𝑢(𝑥𝑛0) − 𝑢(𝑦𝑛0)|

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+𝜖)2

1+2𝜖

− (1

+ 2𝜖)∑ 

𝑛0

|𝑢(𝑥𝑛0) − 𝑢(𝑦𝑛0)|

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+𝜖)2

2𝜖−1

〈𝑢(𝑥𝑛0)

− 𝑢(𝑦𝑛0) ,
𝑢(𝑦𝑛0)

𝑤(𝑦𝑛0)
 (𝑤(𝑥𝑛0) − 𝑤(𝑦𝑛0))〉 

+𝐶(1 + 2𝜖)∑ 

𝑛0

|
𝑢(𝑦𝑛0)

𝑤(𝑦𝑛0)
 (𝑤(𝑥𝑛0) − 𝑤(𝑦𝑛0))|

1+2𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+𝜖)2

2

3
]. 

Hence 
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                𝑓1(𝑥𝑛0 , 𝑦𝑛0) ≥∑ 

𝑛0

[𝐶(Ω)𝑄(𝑥𝑛0 , 𝑦𝑛0) (
𝑤(𝑦𝑛0)

𝑤(𝑥𝑛0)
)

1+2𝜖
2

 
|𝑢(𝑥𝑛0) − 𝑢(𝑦𝑛0)|

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+𝜖)2

1+2𝜖

] 

−∑ 

𝑛0

[(1 + 2𝜖)𝐶(Ω)𝑄(𝑥𝑛0 , 𝑦𝑛0) (
𝑤(𝑦𝑛0)

𝑤(𝑥𝑛0)
)

1+2𝜖
2

 
|𝑢(𝑥𝑛0) − 𝑢(𝑦𝑛0)|

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+𝜖)2

2𝜖

|
𝑢(𝑥𝑛0)

𝑤(𝑥𝑛0)
| |(𝑤(𝑥𝑛0)

− 𝑤(𝑦𝑛0))|]. 

In the same way we reach that 

    𝑓2(𝑥𝑛0 , 𝑦𝑛0) ≥∑ 

𝑛0

[𝐶(Ω)𝑄(𝑥𝑛0 , 𝑦𝑛0) (
𝑤(𝑥𝑛0)

𝑤(𝑦𝑛0)
)

1+2𝜖
2

 
|𝑢(𝑦𝑛0) − 𝑢(𝑥𝑛0)|

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+𝜖)2

1+2𝜖

] 

−∑ 

𝑛0

[(1 + 2𝜖)𝐶(Ω)𝑄(𝑥𝑛0 , 𝑦𝑛0) (
𝑤(𝑥𝑛0)

𝑤(𝑦𝑛0)
)

1+2𝜖
2

 
|𝑢(𝑥𝑛0) − 𝑢(𝑦𝑛0)|

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+𝜖)2

2𝜖

|
𝑢(𝑥𝑛0)

𝑤(𝑥𝑛0)
| |(𝑤(𝑥𝑛0)

− 𝑤(𝑦𝑛0))|]. 

Therefore, 

ℎ1+𝜖(𝑢) ≥ 𝐶(Ω) ∫∫∑ 

𝑛0

𝑄(𝑥𝑛0 , 𝑦𝑛0)((
𝑤(𝑦𝑛0)

𝑤(𝑥𝑛0)
)

1+2𝜖
2

2

Ω

2

Ω

+ (
𝑤(𝑦𝑛0)

𝑤(𝑥𝑛0)
)

1+2𝜖
2

)
|𝑢(𝑢) − 𝑢(𝑦𝑛0)|

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+𝜖)2

1+2𝜖

𝑑𝑥𝑛0𝑑𝑦𝑛0                              

−(1 + 2𝜖)𝐶(Ω) ∫∫∑ 

𝑛0

[𝑄(𝑥𝑛0 , 𝑦𝑛0) (
𝑤(𝑦𝑛0)

𝑤(𝑥𝑛0)
)

1+2𝜖
2 |𝑢(𝑥𝑛0) − 𝑢(𝑦𝑛0)|

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+𝜖)2

2𝜖

|
𝑢(𝑦𝑛0)

𝑤(𝑦𝑛0)
| |(𝑤(𝑥𝑛0)

2

Ω

2

Ω

− 𝑤(𝑦𝑛0))| ] 𝑑𝑥𝑛0𝑑𝑦𝑛0   

−(1 + 2𝜖)𝐶(Ω) ∫∫∑ 

𝑛0

[𝑄(𝑥𝑛0 , 𝑦𝑛0) (
𝑤(𝑥𝑛0)

𝑤(𝑦𝑛0)
)

1+2𝜖
2 |𝑢(𝑥𝑛0) − 𝑢(𝑦𝑛0)|

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+𝜖)2

2𝜖

|
𝑢(𝑥𝑛0)

𝑤(𝑥𝑛0)
| |(𝑤(𝑥𝑛0)

2

Ω

2

Ω

− 𝑤(𝑦𝑛0))| ] 𝑑𝑥𝑛0𝑑𝑦𝑛0 

Thus 

ℎ1+𝜖(𝑢) ≥ 𝐶(Ω) ∫∫∑ 

𝑛0

|𝑢(𝑥𝑛0) − 𝑢(𝑦𝑛0)|
1+2𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+𝜖)2

2

Ω

2

Ω

𝑑𝑥𝑛0𝑑𝑦𝑛0                             
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−𝐶1(Ω , p) ∫∫∑ 

𝑛0

(ℎ1(𝑥𝑛0  , 𝑦𝑛0) + ℎ2(𝑥𝑛0  , 𝑦𝑛0)) 𝑑𝑥𝑛0𝑑𝑦𝑛0  ,

2

Ω

2

Ω

                                  (121) 

with 

ℎ1(𝑥𝑛0  , 𝑦𝑛0)

=∑ 

𝑛0

𝑄(𝑥𝑛0 , 𝑦𝑛0) (
𝑤(𝑦𝑛0)

𝑤(𝑥𝑛0)
)

1+2𝜖
2 |𝑢(𝑥𝑛0) − 𝑢(𝑦𝑛0)|

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+𝜖)2

2𝜖

|
𝑢(𝑦𝑛0)

𝑤(𝑦𝑛0)
| |(𝑤(𝑥𝑛0)

− 𝑤(𝑦𝑛0))|, 

ℎ2(𝑥𝑛0  , 𝑦𝑛0)

=∑ 

𝑛0

𝑄(𝑥𝑛0 , 𝑦𝑛0) (
𝑤(𝑥𝑛0)

𝑤(𝑦𝑛0)
)

1+2𝜖
2 |𝑢(𝑥𝑛0) − 𝑢(𝑦𝑛0)|

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+𝜖)2

2𝜖

|
𝑢(𝑥𝑛0)

𝑤(𝑥𝑛0)
| |(𝑤(𝑥𝑛0)

− 𝑤(𝑦𝑛0))|. 

Since  ℎ1(𝑥𝑛0  , 𝑦𝑛0) and  ℎ2(𝑥𝑛0  , 𝑦𝑛0) are  symmetric  functions,  we  just  have  to  

estimate 

∫∫∑ 

𝑛0

ℎ2(𝑥𝑛0  , 𝑦𝑛0)𝑑𝑥𝑛0𝑑𝑦𝑛0  .

2

Ω

2

Ω

 

Using Young inequality, we get 

∫∫∑ 

𝑛0

ℎ2(𝑥𝑛0 , 𝑦𝑛0)𝑑𝑥𝑛0𝑑𝑦𝑛0  ≤ 𝜀

2

Ω

2

   Ω

∫∫∑ 

𝑛0

|𝑢(𝑥𝑛0) − 𝑢(𝑦𝑛0)|
1+2𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+𝜖)2

2

Ω

2

Ω

𝑑𝑥𝑛0𝑑𝑦𝑛0 

                                 +𝐶(𝜀) ∫ ∫∑ 

𝑛0

𝐺(𝑥𝑛0  , 𝑦𝑛0)𝑑𝑥𝑛0𝑑𝑦𝑛0  ,

2

Ω

2

   Ω

                                    (122) 

with 

𝐺(𝑥𝑛0  , 𝑦𝑛0)

=∑ 

𝑛0

(𝑄(𝑥𝑛0 , 𝑦𝑛0))
1+2𝜖

(
𝑤(𝑥𝑛0)

𝑤(𝑦𝑛0)
)

(1+2𝜖)2

2

|
𝑢(𝑥𝑛0)

𝑤(𝑥𝑛0)
|

1+2𝜖

 
|𝑤(𝑥𝑛0) − 𝑤(𝑦𝑛0)|

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+𝜖)2

1+2𝜖

. 

We claim that 

𝐼 ≡ ∫∫∑ 

𝑛0

𝐺(𝑥𝑛0  , 𝑦𝑛0)𝑑𝑥𝑛0𝑑𝑦𝑛0  

2

Ω

2

   Ω

≤ 𝐶 ∫ ∫∑ 

𝑛0

|𝜐(𝑥𝑛0) − 𝜐(𝑦𝑛0)|
1+2𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+2𝜖)(1+𝜖)

2

ℝ𝑁

2

ℝ𝑁

 
𝑑𝑥𝑛0

|𝑥𝑛0|
𝑁−(1+2𝜖)(1+𝜖)

2

𝑑𝑥𝑛0

|𝑦𝑛0|
𝑁−(1+2𝜖)(1+𝜖)

2

.                   

Notice that 

𝐼 ≡ ∫∫∑ 

𝑛0

(𝑢(𝑥𝑛0))
1+2𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+𝜖)2

 

2

Ω

2

   Ω

 
(𝑤(𝑥𝑛0))

2(𝜖+2𝜖2)

|𝑤(𝑥𝑛0) − 𝑤(𝑦𝑛0)|
1+2𝜖

(𝑤(𝑥𝑛0)
1+2𝜖 +𝑤(𝑦𝑛0)

1+2𝜖)
1+2𝜖 𝑑𝑥𝑛0𝑑𝑦𝑛0 , 
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then  

𝐼 = ∫∑ 

𝑛0

𝑢1+2𝜖

1

Ω

(𝑥𝑛0) [∫
||𝑥𝑛0|

𝛼
− |𝑦𝑛0|

𝛼
|
1+2𝜖

(|𝑥𝑛0|
𝛼1+2𝜖

+ |𝑦𝑛0|
𝛼(1+2𝜖)

)
1+2𝜖

1

Ω

 
|𝑦𝑛0|

𝛼(1+2𝜖)(2𝜖)

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+𝜖)2

𝑑𝑦𝑛0  ] 𝑑𝑥𝑛0 . 

To compute the above integral, we closely follow the arguments used in [214]. We set 

𝑦𝑛0 = 𝜌�́�𝑛0
́  and  𝑥𝑛0 = 𝜌�́�𝑛0  with   |�́�𝑛0| = |�́�𝑛0| = 1,  then taking in consideration that 

Ω ⊂ 𝐵0(𝑅), it follows that 

𝐼 = ∫∑  
𝑛0

𝑢1+2𝜖
1

Ω

(𝑥𝑛0)  [∫
||𝑥𝑛0|

𝛼
− |𝑦

𝑛0
|
𝛼
|
1+2𝜖

(|𝑥𝑛0|
𝛼(1+2𝜖)

+ |𝑥𝑛0|
𝛼(1+2𝜖)

)
1+2𝜖

1

Ω

 
|𝑦
𝑛0
|
𝛼(1+2𝜖)(2𝜖)

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+𝜖)2

𝑑𝑦
𝑛0
 ]𝑑𝑥𝑛0 

≤ ∫∑ 

𝑛0

𝑢1+2𝜖
1

Ω

(𝑥𝑛0) ∫
|(1 + 𝜖)𝛼 − 𝜌𝛼|1+2𝜖𝜌𝛼(1+2𝜖)(2𝜖)+𝑁−1

((1 + 𝜖)(1+2𝜖)𝛼 − 𝜌(1+2𝜖)𝛼)1+2𝜖

𝑅

0

× ( ∫
𝑑�́�𝑛0

|𝜌�́�𝑛0 − (1 + 𝜖)𝑥𝑛0́ |
𝑁+(1+𝜖)2

1

𝕊𝑁−1

)𝑑𝜌𝑑𝑥𝑛0 .   

We set 𝜌 = (1 + 𝜖)𝜎, then 

𝐼 ≤ ∫∑ 

𝑛0

𝑢1+2𝜖(𝑥𝑛0)

|𝑥𝑛0|
(1+𝜖)2

1

Ω

 ∫
|1 − 𝜎𝛼|1+2𝜖𝜎𝛼(1+2𝜖)(2𝜖)+𝑁−1

(1 − 𝜎𝛼(1+2𝜖))1+2𝜖

𝑅
1+𝜖

0

× ( ∫
𝑑�́�𝑛0

|𝜎�́�𝑛0 − �́�𝑛0|
𝑁+(1+𝜖)2

1

𝕊𝑁−1

)𝑑𝜌𝑑𝑥𝑛0 

 = ∫∑ 

𝑛0

𝑢1+2𝜖(𝑥𝑛0)

|𝑥𝑛0|
(1+𝜖)2

1

Ω

 ∫
|1 − 𝜎𝛼|1+2𝜖𝜎𝛼(1+2𝜖)(2𝜖)+𝑁−1

(1 + 𝜎𝛼(1+2𝜖))1+2𝜖

𝑅
1+𝜖

0

𝐾(𝜎)𝑑𝜎𝑑𝑥𝑛0

≤ 𝜇 ∫∑ 

𝑛0

𝑢1+2𝜖(𝑥𝑛0)

|𝑥𝑛0|
(1+𝜖)2

1

Ω

𝑑𝑥𝑛0 , 

where 

𝜇 = ∫
|1 − 𝜎𝛼|1+2𝜖𝜎𝛼(1+2𝜖)(2𝜖)+𝑁−1

(1 + 𝜎𝛼(1+2𝜖))1+2𝜖

∞

0

𝐾(𝜎)𝑑𝜎 

and 

𝐾(𝜎) = 2
𝜋
𝑁−1
2

Γ(𝑁−1
2
)
 ∫

sin𝑁−1(𝜃)

(1 − 2𝜎 cos 𝜃 + 𝜎2)
𝑁+(1+𝜖)2

2

𝜋

0

𝑑𝜃. 

Let us show that 𝜇 < ∞. 
    It is clear that, as 𝜎 → ∞, we have 

|1 − 𝜎𝛼|1+2𝜖𝜎𝛼(1+2𝜖)(2𝜖)+𝑁−1

(1 + 𝜎𝛼(1+2𝜖))1+2𝜖
𝐾(𝜎) ⋍ 𝜎−1−(1+𝜖)

2
∈ 𝐿1(1 ,∞). 
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Now, taking in consideration that  𝐾(𝜎) ≤ 𝐶|1 − 𝜎|−1−(1+2𝜖)(1+𝜖) as  𝜖 → 0,  and 

following the same computation as in Corollary (5.3.23), it follows that 

∫
(1 − 𝜎𝛼)1+2𝜖𝜎𝛼(1+2𝜖)(2𝜖)+𝑁−1

(1 + 𝜎𝛼(1+2𝜖))1+2𝜖

1

0

𝐾(𝜎)𝑑𝜎 < ∞. 

Thus 𝜇 < ∞. 
Hence combining the above estimates, there results that 

𝐼 ≤ 𝐶 ∫∑ 

𝑛0

𝑢1+2𝜖(𝑥𝑛0)

|𝑥𝑛0|
(1+𝜖)2

1

Ω

𝑑𝑥𝑛0 .               

Since  𝑢(𝑥𝑛0) = ∑  𝑛0 𝜐(𝑥𝑛0)|𝑥𝑛0|
−(

𝑁−(1+2𝜖)(1+𝜖)

1+2𝜖
), then 

𝐼 ≤ 𝐶 ∫∑ 

𝑛0

|𝜐(𝑥𝑛0)|
1+2𝜖

|𝑥𝑛0|
𝑁−(1+𝜖)(𝜖)

1

Ω

𝑑𝑥𝑛0 .             

Let  1 + 𝜖 =
𝑁−(1+2𝜖)(1+𝜖)

2
+
(−𝜖)(1+𝜖)

2
,  then  1 + 𝜖 <

𝑁−(1+2𝜖)(1+𝜖)

2
.  Applying   Corollary 

(5.3.26), we obtain that 

𝐼 ≤ 𝐶(Ω) ∫∫∑ 

𝑛0

|𝜐(𝑥𝑛0) − 𝜐(𝑦𝑛0)|
1+2𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+2𝜖)(1+𝜖)

|𝑥𝑛0|
1+𝜖
|𝑦𝑛0|

1+𝜖

2

Ω

2

Ω

𝑑𝑦𝑛0𝑑𝑥𝑛0 

            

≤ 𝐶1(Ω) ∫ ∫∑ 

𝑛0

|𝜐(𝑥𝑛0) − 𝜐(𝑦𝑛0)|
1+2𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+2𝜖)(1+𝜖)

|𝑥𝑛0|
𝑁−(1+2𝜖)(1+𝜖)

2 |𝑦𝑛0|
𝑁−(1+2𝜖)(1+𝜖)

2

2

Ω

2

Ω

𝑑𝑦𝑛0𝑑𝑥𝑛0  

             

≤ 𝐶1(Ω) ∫ ∫∑ 

𝑛0

|𝜐(𝑥𝑛0) − 𝜐(𝑦𝑛0)|
1+2𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+2𝜖)(1+𝜖)

|𝑥𝑛0|
𝑁−(1+2𝜖)(1+𝜖)

2 |𝑦𝑛0|
𝑁−(1+2𝜖)(1+𝜖)

2

2

ℝ𝑁

2

ℝ𝑁

𝑑𝑦𝑛0𝑑𝑥𝑛0 . 

Therefore, using again estimate (120), we reach that 

         𝐼 ≤ 𝐶2(Ω) ∫ ∫∑ 

𝑛0

|𝜐(𝑥𝑛0) − 𝜐(𝑦𝑛0)|
1+2𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+2𝜖)(1+𝜖)

2

ℝ𝑁

2

ℝ𝑁

 
𝑑𝑥𝑛0

|𝑥𝑛0|
𝑁−(1+2𝜖)(1+𝜖)

2

 
𝑑𝑦𝑛0

|𝑦𝑛0|
𝑁−(1+2𝜖)(1+𝜖)

2

 

and the claim follows. 

    As a direct consequence of the above estimates, we have proved that 

∫∫∑ 

𝑛0

|𝑢(𝑥𝑛0) − 𝑢(𝑦𝑛0)|
1+2𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+𝜖)2

2

Ω

2

Ω

𝑑𝑥𝑛0𝑑𝑦𝑛0

≤ 𝐶3 ∫ ∫∑ 

𝑛0

|𝜐(𝑥𝑛0) − 𝜐(𝑦𝑛0)|
1+2𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+2𝜖)(1+𝜖)

2

ℝ𝑁

2

ℝ𝑁

 
𝑑𝑥𝑛0

|𝑥𝑛0|
𝑁−(1+2𝜖)(1+𝜖)

2

 
𝑑𝑦𝑛0

|𝑦𝑛0|
𝑁−(1+2𝜖)(1+𝜖)

2

             (123) 

Thus 

∫∫∑ 

𝑛0

|𝑢(𝑥𝑛0) − 𝑢(𝑦𝑛0)|
1+2𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+𝜖)2

2

Ω

2

Ω

𝑑𝑥𝑛0𝑑𝑦𝑛0 ≤ 𝐶ℎ1+𝜖(𝑢), 
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and the result follows at once.  

Corollary (5.3.28)[239]: Let 𝜖 ≥ 0 and  𝑁 > (2 + 𝜖)(1 − 𝜖).  Assume that  Ω ⊂ ℝ𝑁  is  

abounded domain, then for all  𝜖 > 0,   there exists a positive constant 𝐶 = 𝐶(Ω, 1 +
𝜖,𝑁, 1 − 𝜖)such that for all  𝑢 ∈ 𝐶0

∞(Ω), 
 

∫ ∫∑ 

𝑛0

|𝑢(𝑥𝑛0) − 𝑢(𝑦𝑛0)|
1+2𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+2𝜖)(1−𝜖)

2

ℝ𝑁

2

ℝ𝑁

𝑑𝑥𝑛0

|𝑥𝑛0|
1+𝜖  

𝑑𝑦𝑛0

|𝑦𝑛0|
1+𝜖 𝑑𝑥𝑛0𝑑𝑦𝑛0

≥ 𝐶∑ 

𝑛0

(∫
|𝑢(𝑥𝑛0)|

1+2𝜖
𝑝1−𝜖 ,1+𝜖
∗

|𝑥𝑛0|
2(1+𝜖)

1+2𝜖
𝑝1−𝜖 ,1+𝜖
∗

1

Ω

𝑑𝑥𝑛0)

1+2𝜖
𝑝1−𝜖 ,1+𝜖
∗

                      (124) 

where   𝑝1−𝜖 ,1+𝜖
∗ =

(1+2𝜖)𝑁

𝑁+𝜖2−1
  and  1 + 𝜖 =

𝑁−(1+2𝜖)(1−𝜖)

2
. 

Proof.  Recall that  𝛼 =
𝑁−(1+2𝜖)(1+𝜖)

1+2𝜖
.  Since  𝛼𝑝1+𝜖 ,1+𝜖

∗ =
𝑁(𝑁−(1+2𝜖)(1+𝜖))

𝑁−(1+𝜖)2
< 𝑁,  it 

follows that  ∫ ∑  𝑛0

|𝑢(𝑥𝑛0)|
𝑝1+𝜖 ,1+𝜖
∗

|𝑥𝑛0|
𝛼(1+2𝜖)1+𝜖 ,1+𝜖

∗
1

Ω
𝑑𝑥𝑛0 < ∞, for all 𝑢 ∈ 𝐶0

∞(ℝ𝑁). 

To prove (124), we will use estimate (123)and the fractional Sobolev inequality. Fix 𝑢 ∈

𝐶0
∞(Ω) and define 𝑢1(𝑥𝑛0) = ∑  𝑛0

𝑢(𝑥𝑛0)

|𝑥𝑛0|
𝛼
.  By (123), we obtain that 

𝐶(Ω) ∫∫∑ 

𝑛0

|𝑢1(𝑥𝑛0) − 𝑢1(𝑦𝑛0)|
1+2𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+𝜖)2

2

Ω

2

Ω

𝑑𝑥𝑛0𝑑𝑦𝑛0

≤ ∫ ∫∑ 

𝑛0

|𝑢(𝑥𝑛0) − 𝑢(𝑦𝑛0)|
1+2𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+2𝜖)(1+𝜖)

2

ℝ𝑁

2

ℝ𝑁

 
𝑑𝑥𝑛0

|𝑥𝑛0|
𝑁−(1+2𝜖)(1+𝜖)

2

 
𝑑𝑦𝑛0

|𝑦𝑛0|
𝑁−(1+2𝜖)(1+𝜖)

2

. 

Now, using Sobolev inequality, there results that 

∑ 

𝑛0

𝑆 (∫|𝑢1(𝑥𝑛0)|
𝑝1+𝜖 ,1+𝜖
∗

𝑑𝑥𝑛0

2

Ω

)

1+2𝜖
𝑝1+𝜖 ,1+𝜖
∗

≤ ∫∫∑ 

𝑛0

|𝑢1(𝑥𝑛0) − 𝑢1(𝑦𝑛0)|
1+2𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+𝜖)2

2

Ω

2

Ω

𝑑𝑥𝑛0𝑑𝑦𝑛0 , 

where  𝑝1+𝜖 ,1+𝜖
∗ =

(1+2𝜖)𝑁

𝑁−(1+𝜖)2
.  Hence, substituting 𝑢1 by its value, we get 

∑ 

𝑛0

(∫
|𝑢(𝑥𝑛0)|

𝑝1+𝜖 ,1+𝜖
∗

|𝑥𝑛0|
𝛼(1+2𝜖)1+𝜖 ,1+𝜖

∗

1

Ω

𝑑𝑥𝑛0)

1+2𝜖
𝑝1+𝜖 ,1+𝜖
∗

≤ 𝐶 ∫ ∫∑ 

𝑛0

|𝑢(𝑥𝑛0) − 𝑢(𝑦𝑛0)|
1+2𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+2𝜖)(1+𝜖)

2

ℝ𝑁

2

ℝ𝑁

 
𝑑𝑥𝑛0

|𝑥𝑛0|
1+𝜖  

𝑑𝑦𝑛0

|𝑦𝑛0|
1+𝜖                      (125) 

If we set 1 + 𝜖 =
𝑁−(1+2𝜖)(1+𝜖)

2
 = 𝛼 

1+2𝜖

2
, then inequality (125) can be written in the form 
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∑ 

𝑛0

(∫
|𝑢(𝑥𝑛0)|

𝑝1+𝜖 ,1+𝜖
∗

|𝑥𝑛0|
2(1+𝜖)

𝑝1+𝜖 ,1+𝜖
∗

1+2𝜖

1

Ω

𝑑𝑥𝑛0)

1+2𝜖
𝑝1+𝜖 ,1+𝜖
∗

≤ 𝐶 ∫ ∫∑ 

𝑛0

|𝑢(𝑥𝑛0) − 𝑢(𝑦𝑛0)|
1+2𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+2𝜖)(1+𝜖)

2

ℝ𝑁

2

ℝ𝑁

 
𝑑𝑥𝑛0

|𝑥𝑛0|
1+𝜖  

𝑑𝑦𝑛0

|𝑦𝑛0|
1+𝜖                      (126) 

Corollary (5.3.29)[239]: Assume that 1 < 1 + 𝜖 <
𝑁

1−𝜖
 and let 0 < 1 + 𝜖 <

𝑁+𝜖2−1

2
, then 

for all 𝑢 ∈ 𝐶0
∞(ℝ𝑁), we have 

∫ ∫∑ 

𝑛0

|𝑢(𝑥𝑛0) − 𝑢(𝑦𝑛0)|
1+𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+1−𝜖2

2

ℝ𝑁

2

ℝ𝑁

 
𝑑𝑥𝑛0

|𝑥𝑛0|
1+𝜖  

𝑑𝑦𝑛0

|𝑦𝑛0|
1+𝜖

≥ 𝑆(1 + 𝜖)∑ 

𝑛0

( ∫
|𝑢(𝑥𝑛0)|

𝑝1−𝜖 
∗

|𝑥𝑛0|
2(1+𝜖)

𝑝1−𝜖 
∗

1+𝜖

1

ℝ𝑁

𝑑𝑥𝑛0)

1+𝜖
𝑝1−𝜖 
∗

,                 (127) 

where  𝑆(1 + 𝜖) > 0. 
Proof.  Let 𝑢 ∈ 𝐶0

∞(ℝ𝑁), without loss of generality, we can assume that 𝑢 ≥ 0. Using the 

fact that 1 + 𝜖 <
𝑁−(1+2𝜖)(1+𝜖)

2
, we easily get that  ∫ ∑  𝑛0

|𝑢(𝑥𝑛0)|
𝑝1+𝜖 
∗

|𝑥𝑛0|
2(1+𝜖)

𝑝1+𝜖 
∗

1+2𝜖

1

ℝ𝑁
𝑑𝑥𝑛0 ≤ ∞. 

    From now and for simplicity of typing, we denote by 𝐶, 𝐶1, 𝐶2, ⋯   any universal 

constant that does not depend on uand can change from a line to another. 

     We set  �̃�(𝑥𝑛0) = ∑  𝑛0

𝑢(𝑥𝑛0)

𝑤1(𝑥𝑛0)
, where  𝑤1(𝑥𝑛0) = |𝑥𝑛0|

2(1+𝜖)

1+2𝜖 , then 

∑ 

𝑛0

( ∫
|𝑢(𝑥𝑛0)|

𝑝1+𝜖 
∗

|𝑥𝑛0|
2(1+𝜖)

𝑝1+𝜖 
∗

1+2𝜖

𝑑𝑥𝑛0

1

ℝ𝑁

)

1+2𝜖
𝑝1+𝜖 
∗

=∑ 

𝑛0

( ∫|�̃�|𝑝1+𝜖 
∗

1

ℝ𝑁

𝑑𝑥𝑛0)

1+2𝜖
𝑝1+𝜖 
∗

.         (128) 

Using  Sobolev inequality, it follows that 

∑ 

𝑛0

𝑆( ∫|�̃�|𝑝1+𝜖 
∗

1

ℝ𝑁

𝑑𝑥𝑛0)

1+2𝜖
𝑝1+𝜖 
∗

≤ ∫ ∫∑ 

𝑛0

|�̃�(𝑥𝑛0) − �̃�(𝑦𝑛0)|
1+2𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+2𝜖)(1+𝜖)

𝑑𝑥𝑛0𝑑𝑦𝑛0 .

2

ℝ𝑁

2

ℝ𝑁

(129) 

To get the desired result we just have to show that 

∫ ∫∑ 

𝑛0

|�̃�(𝑥𝑛0) − �̃�(𝑦𝑛0)|
1+2𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+2𝜖)(1+𝜖)

𝑑𝑥𝑛0𝑑𝑦𝑛0

2

ℝ𝑁

2

ℝ𝑁

≤ 𝐶 ∫ ∫∑ 

𝑛0

|𝑢(𝑥𝑛0) − 𝑢(𝑦𝑛0)|
1+2𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+2𝜖)(1+𝜖)

𝑑𝑥𝑛0

|𝑥𝑛0|
1+𝜖  

𝑑𝑥𝑛0

|𝑥𝑛0|
1+𝜖

2

ℝ𝑁

2

ℝ𝑁

                      (130) 

for some positive constant 𝐶. 
    Using the definition of �̃�, we get 
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∫ ∫∑ 

𝑛0

|𝑢(𝑥𝑛0) − 𝑢(𝑦𝑛0)|
1+2𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+2𝜖)(1+𝜖)

𝑑𝑥𝑛0

|𝑥𝑛0|
1+𝜖  

𝑑𝑥𝑛0

|𝑥𝑛0|
1+𝜖

2

ℝ𝑁

2

ℝ𝑁

= ∫ ∫∑ 

𝑛0

|𝑤1(𝑥𝑛0)�̃�(𝑥𝑛0) − 𝑤1(𝑦𝑛0)�̃�(𝑦𝑛0)|
1+2𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+2𝜖)(1+𝜖)

𝑑𝑥𝑛0

𝑤1

1+2𝜖
2 (𝑥𝑛0)

 
𝑑𝑦𝑛0

𝑤1

1+2𝜖
2 (𝑦𝑛0)

2

ℝ𝑁

2

ℝ𝑁

. 

Notice that 

 

∑ 

𝑛0

|𝑤1(𝑥𝑛0)�̃�(𝑥𝑛0) − 𝑤1(𝑦𝑛0)�̃�(𝑦𝑛0)|
1+2𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+2𝜖)(1+𝜖)

 
1

𝑤1

1+2𝜖
2 (𝑥𝑛0)

  
1

𝑤1

1+2𝜖
2 (𝑦𝑛0)

=∑ 

𝑛0

|�̃�(𝑥𝑛0) − �̃�(𝑦𝑛0) − 𝑤1(𝑦𝑛0)�̃�(𝑦𝑛0) (
1

𝑤1(𝑥𝑛0)
−

1

𝑤1(𝑦𝑛0)
)|

1+2𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+2𝜖)(1+𝜖)

 (
𝑤1(𝑥𝑛0)

𝑤1(𝑦𝑛0)
)

1+2𝜖
2

≡∑ 

𝑛0

𝑓1(𝑥𝑛0 , 𝑦𝑛0). 

In the same way we have 

∑ 

𝑛0

|𝑤1(𝑥𝑛0)�̃�(𝑥𝑛0) − 𝑤1(𝑦𝑛0)�̃�(𝑦𝑛0)|
1+2𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+2𝜖)(1+𝜖)

 
1

𝑤1

1+2𝜖
2 (𝑥𝑛0)

  
1

𝑤1

1+2𝜖
2 (𝑦𝑛0)

=∑ 

𝑛0

|(�̃�(𝑥𝑛0) − �̃�(𝑦𝑛0))−𝑤1(𝑥𝑛0)�̃�(𝑥𝑛0) (
1

𝑤1(𝑦𝑛0)
−

1

𝑤1(𝑥𝑛0)
)|

1+2𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+2𝜖)(1+𝜖)

 (
𝑤1(𝑦𝑛0)

𝑤1(𝑥𝑛0)
)

1+2𝜖
2

≡∑ 

𝑛0

𝑓2(𝑥𝑛0 , 𝑦𝑛0). 

Since 

∫ ∫∑ 

𝑛0

𝑓1(𝑥𝑛0 , 𝑦𝑛0)𝑑𝑥𝑛0𝑑𝑦𝑛0

2

ℝ𝑁

2

ℝ𝑁

= ∫ ∫∑ 

𝑛0

𝑓2(𝑥𝑛0 , 𝑦𝑛0)𝑑𝑥𝑛0𝑑𝑦𝑛0

2

ℝ𝑁

2

ℝ𝑁

, 

we get  

∫ ∫∑ 

𝑛0

|𝑢(𝑥𝑛0) − 𝑢(𝑦𝑛0)|
1+2𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+2𝜖)(1+𝜖)

𝑑𝑥𝑛0

|𝑥𝑛0|
1+𝜖  

𝑑𝑥𝑛0

|𝑥𝑛0|
1+𝜖

2

ℝ𝑁

2

ℝ𝑁

=
1

2
∫ ∫∑ 

𝑛0

𝑓1(𝑥𝑛0 , 𝑦𝑛0)𝑑𝑥𝑛0𝑑𝑦𝑛0

2

ℝ𝑁

2

ℝ𝑁

+
1

2
∫ ∫∑ 

𝑛0

𝑓2(𝑥𝑛0 , 𝑦𝑛0)𝑑𝑥𝑛0𝑑𝑦𝑛0

2

ℝ𝑁

2

ℝ𝑁

. 

Notice that 
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𝑓1(𝑥𝑛0 , 𝑦𝑛0) ≥∑ 

𝑛0

(
𝑤1(𝑥𝑛0)

𝑤1(𝑦𝑛0)
)

1+2𝜖
2

[ 
|�̃�(𝑥𝑛0) − �̃�(𝑦𝑛0)|

1+2𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+2𝜖)(1+𝜖)

− (1

+ 2𝜖)
|�̃�(𝑥𝑛0) − �̃�(𝑦𝑛0)|

2𝜖−1

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+2𝜖)(1+𝜖)

〈�̃�(𝑥𝑛0)

− �̃�(𝑦𝑛0) , 𝑤1(𝑦𝑛0)�̃�(𝑦𝑛0) (
1

𝑤1(𝑦𝑛0)
−

1

𝑤1(𝑦𝑛0)
)〉 

   +𝐶(1 + 2𝜖)

|𝑤1(𝑦𝑛0)�̃�(𝑦𝑛0) (
1

𝑤1(𝑥𝑛0)
−

1

𝑤1(𝑦𝑛0)
)|

1+2𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+2𝜖)(1+𝜖)

]. 

Hence 

𝑓1(𝑥𝑛0 , 𝑦𝑛0) ≥∑ 

𝑛0

(
𝑤1(𝑥𝑛0)

𝑤1(𝑦𝑛0)
)

1+2𝜖
2

[ 
|�̃�(𝑥𝑛0) − �̃�(𝑦𝑛0)|

1+2𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+2𝜖)(1+𝜖)

− (1

+ 2𝜖)
|�̃�(𝑥𝑛0) − �̃�(𝑦𝑛0)|

2𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+2𝜖)(1+𝜖)

 |𝑤1(𝑦𝑛0)�̃�(𝑦𝑛0) (
1

𝑤1(𝑥𝑛0)
−

1

𝑤1(𝑦𝑛0)
)|  ]. 

Using Young inequality, we get the existence of  𝐶1, 𝐶2 > 0 such that 

𝑓1(𝑥𝑛0 , 𝑦𝑛0) ≥∑ 

𝑛0

(
𝑤1(𝑥𝑛0)

𝑤1(𝑦𝑛0)
)

1+2𝜖
2

[
 
 
 
 

  𝐶1  
|�̃�(𝑥𝑛0) − �̃�(𝑦𝑛0)|

1+2𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+2𝜖)(1+𝜖)

− 𝐶2

|𝑤1(𝑦𝑛0)�̃�(𝑦𝑛0) (
1

𝑤1(𝑥𝑛0)
−

1

𝑤1(𝑦𝑛0)
)|

1+2𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+2𝜖)(1+𝜖)

]
 
 
 
 

. 

In the same way and using that 𝑓1 , 𝑓2 are symmetric functions, it holds 

𝑓2(𝑥𝑛0 , 𝑦𝑛0) ≥∑ 

𝑛0

(
𝑤1(𝑦𝑛0)

𝑤1(𝑥𝑛0)
)

1+2𝜖
2

[
 
 
 
 

  𝐶1  
|�̃�(𝑥𝑛0) − �̃�(𝑦𝑛0)|

1+2𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+2𝜖)(1+𝜖)

− 𝐶2

|𝑤1(𝑥𝑛0)�̃�(𝑥𝑛0) (
1

𝑤1(𝑦𝑛0)
−

1

𝑤1(𝑥𝑛0)
)|

1+2𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+2𝜖)(1+𝜖)

]
 
 
 
 

. 

Thus we get the existence of positive constants   𝐶1,  𝐶2,  𝐶3 such that 



229 

∫ ∫∑ 

𝑛0

|𝑢(𝑥𝑛0) − 𝑢(𝑦𝑛0)|
1+2𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+2𝜖)(1+𝜖)

𝑑𝑥𝑛0

|𝑥𝑛0|
1+𝜖  

𝑑𝑥𝑛0

|𝑥𝑛0|
1+𝜖

2

ℝ𝑁

2

ℝ𝑁

≥   𝐶1 ∫ ∫∑ 

𝑛0

|�̃�(𝑥𝑛0) − �̃�(𝑦𝑛0)|
1+2𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+2𝜖)(1+𝜖)

2

ℝ𝑁

2

ℝ𝑁

[(
𝑤1(𝑦𝑛0)

𝑤1(𝑥𝑛0)
)

1+2𝜖
2

+ (
𝑤1(𝑥𝑛0)

𝑤1(𝑦𝑛0)
)

1+2𝜖
2

] 𝑑𝑥𝑛0𝑑𝑦𝑛0  

−  𝐶2 ∫ ∫∑ 

𝑛0

(
𝑤1(𝑥𝑛0)

𝑤1(𝑦𝑛0)
)

1+2𝜖
2

2

ℝ𝑁

2

ℝ𝑁

|𝑤1(𝑦𝑛0)�̃�(𝑦𝑛0) (
1

𝑤1(𝑥𝑛0)
−

1

𝑤1(𝑦𝑛0)
)|

1+2𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+𝜖)2

𝑑𝑥𝑛0𝑑𝑦𝑛0  

−  𝐶3 ∫ ∫∑ 

𝑛0

(
𝑤1(𝑦𝑛0)

𝑤1(𝑥𝑛0)
)

1+2𝜖
2

2

ℝ𝑁

2

ℝ𝑁

|𝑤1(𝑥𝑛0)�̃�(𝑥𝑛0) (
1

𝑤1(𝑦𝑛0)
−

1

𝑤1(𝑥𝑛0)
)|

1+2𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+𝜖)2

𝑑𝑥𝑛0𝑑𝑦𝑛0 . 

Since 

∑ 

𝑛0

[(
𝑤1(𝑦𝑛0)

𝑤1(𝑥𝑛0)
)

1+2𝜖
2

+ (
𝑤1(𝑥𝑛0)

𝑤1(𝑦𝑛0)
)

1+2𝜖
2

]  ≥ 1, 

then  

∫ ∫∑ 

𝑛0

|�̃�(𝑥𝑛0) − �̃�(𝑦𝑛0)|
1+2𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+2𝜖)(1+𝜖)

2

ℝ𝑁

2

ℝ𝑁

𝑑𝑥𝑛0𝑑𝑦𝑛0

≤   𝐶1 ∫ ∫∑ 

𝑛0

|𝑢(𝑥𝑛0) − 𝑢(𝑦𝑛0)|
1+2𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+2𝜖)(1+𝜖)

𝑑𝑥𝑛0

|𝑥𝑛0|
1+𝜖  

𝑑𝑥𝑛0

|𝑥𝑛0|
1+𝜖

2

ℝ𝑁

2

ℝ𝑁

 

+ 𝐶2 ∫ ∫∑ 

𝑛0

(
𝑤1(𝑥𝑛0)

𝑤1(𝑦𝑛0)
)

1+2𝜖
2

2

ℝ𝑁

2

ℝ𝑁

×

|𝑤1(𝑦𝑛0)�̃�(𝑦𝑛0) (
1

𝑤1(𝑥𝑛0)
−

1

𝑤1(𝑦𝑛0)
)|

1+2𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+𝜖)2

𝑑𝑥𝑛0𝑑𝑦𝑛0                         (131) 

+ 𝐶3 ∫ ∫∑ 

𝑛0

(
𝑤1(𝑦𝑛0)

𝑤1(𝑥𝑛0)
)

1+2𝜖
2

2

ℝ𝑁

2

ℝ𝑁

|𝑤1(𝑥𝑛0)�̃�(𝑥𝑛0) (
1

𝑤1(𝑦𝑛0)
−

1

𝑤1(𝑥𝑛0)
)|

1+2𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+𝜖)2

𝑑𝑥𝑛0𝑑𝑦𝑛0  .   

We get  
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 𝑔1(𝑥𝑛0, 𝑦𝑛0) =∑ 

𝑛0

(
𝑤1(𝑦𝑛0)

𝑤1(𝑥𝑛0)
)

1+2𝜖
2
|𝑤1(𝑥𝑛0)�̃�(𝑥𝑛0) (

1

𝑤1(𝑦𝑛0)
−

1

𝑤1(𝑥𝑛0)
)|

1+2𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+2𝜖)(1+𝜖)

 

and  

 𝑔2(𝑥𝑛0 , 𝑦𝑛0) =∑ 

𝑛0

(
𝑤1(𝑥𝑛0)

𝑤1(𝑦𝑛0)
)

1+2𝜖
2
|𝑤1(𝑦𝑛0)�̃�(𝑦𝑛0) (

1

𝑤1(𝑥𝑛0)
−

1

𝑤1(𝑦𝑛0)
)|

1+2𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+2𝜖)(1+𝜖)

 

It is clear that 

∫ ∫∑ 

𝑛0

 𝑔1(𝑥𝑛0 , 𝑦𝑛0)𝑑𝑥𝑛0𝑑𝑦𝑛0

2

ℝ𝑁

2

ℝ𝑁

= ∫ ∫∑ 

𝑛0

 𝑔2(𝑥𝑛0 , 𝑦𝑛0)𝑑𝑥𝑛0𝑑𝑦𝑛0

2

ℝ𝑁

2

ℝ𝑁

, 

therefore, to get the desired result, we just have to show that 

∫ ∫∑ 

𝑛0

 𝑔1(𝑥𝑛0 , 𝑦𝑛0)𝑑𝑥𝑛0𝑑𝑦𝑛0

2

ℝ𝑁

2

ℝ𝑁

≤ 𝐶 ∫ ∫∑ 

𝑛0

|𝑢(𝑥𝑛0) − 𝑢(𝑦𝑛0)|
1+2𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+2𝜖)(1+𝜖)

𝑑𝑥𝑛0

|𝑥𝑛0|
1+𝜖  

𝑑𝑥𝑛0

|𝑥𝑛0|
1+𝜖

2

ℝ𝑁

2

ℝ𝑁

. 

Going back to the definition of  �̃� and  𝑤1, we reach that 

 𝑔1(𝑥𝑛0 , 𝑦𝑛0) =∑ 

𝑛0

|𝑢(𝑥𝑛0)|
1+2𝜖

||𝑥𝑛0|
2(1+𝜖)
1+2𝜖 − |𝑦𝑛0|

2(1+𝜖)
1+2𝜖 |

1+2𝜖

|𝑥𝑛0|
3(1+𝜖)

|𝑦𝑛0|
1+𝜖
|𝑥𝑛0 − 𝑦𝑛0|

𝑁+(1+2𝜖)(1+𝜖)
. 

We closely follow the same type of computation as in the proof of  Corollary (5.3.23). 

     We have 

∫ ∫∑ 

𝑛0

 𝑔1(𝑥𝑛0 , 𝑦𝑛0)𝑑𝑥𝑛0𝑑𝑦𝑛0

2

ℝ𝑁

2

ℝ𝑁

= ∫ ∫∑ 

𝑛0

|𝑢(𝑥𝑛0)|
1+2𝜖

||𝑥𝑛0|
2(1+𝜖)
1+2𝜖 − |𝑦𝑛0|

2(1+𝜖)
1+2𝜖 |

1+2𝜖

|𝑥𝑛0|
3(1+𝜖)

|𝑦𝑛0|
1+𝜖
|𝑥𝑛0 − 𝑦𝑛0|

𝑁+(1+2𝜖)(1+𝜖)

2

ℝ𝑁

2

ℝ𝑁

𝑑𝑥𝑛0𝑑𝑦𝑛0 

= ∫∑ 

𝑛0

|𝑢(𝑥𝑛0)|
1+2𝜖

|𝑥𝑛0|
3(1+𝜖)

2

ℝ𝑁

(

 
 
∫

||𝑥𝑛0|
2(1+𝜖)
1+2𝜖 − |𝑦𝑛0|

2(1+𝜖)
1+2𝜖 |

1+2𝜖

|𝑦𝑛0|
1+𝜖
|𝑥𝑛0 − 𝑦𝑛0|

𝑁+(1+2𝜖)(1+𝜖)

2

ℝ𝑁

𝑑𝑦𝑛0

)

 
 
𝑑𝑥𝑛0 . 

We set   1 + 𝜖 = |𝑥𝑛0|  and  𝜌 = |𝑦𝑛0|,  then  𝑥𝑛0 = (1 + 𝜖)�́�𝑛0 , 𝑦𝑛0 = 𝜌�́�𝑛0 with  |�́�𝑛0| =

|�́�𝑛0| = 1, then 
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∫∑ 

𝑛0

|𝑢(𝑥𝑛0)|
1+2𝜖

|𝑥𝑛0|
3(1+𝜖)

2

ℝ𝑁

(

 
 
∫

||𝑥𝑛0|
2(1+𝜖)
1+2𝜖 − |𝑦𝑛0|

2(1+𝜖)
1+2𝜖 |

1+2𝜖

|𝑦𝑛0|
1+𝜖
|𝑥𝑛0 − 𝑦𝑛0|

𝑁+(1+2𝜖)(1+𝜖)

2

ℝ𝑁

𝑑𝑦𝑛0

)

 
 
𝑑𝑥𝑛0

= ∫∑ 

𝑛0

|𝑢(𝑥𝑛0)|
1+2𝜖

|𝑥𝑛0|
3(1+𝜖)

2

ℝ𝑁

[∫
|(1 + 𝜖)

2(1+𝜖)
1+2𝜖 − 𝜌

2(1+𝜖)
1+2𝜖 |

1+2𝜖

𝜌𝑁−1

𝜌1+𝜖

+∞

0

× ( ∫
𝑑𝐻𝑛−1(�́�𝑛0)

|(1 + 𝜖)𝑥𝑛0́ − 𝜌�́�𝑛0|
𝑁+(1+2𝜖)(1+𝜖)

2

|𝑦𝑛0́ |=1

𝑑𝑦𝑛0)𝑑𝜌]𝑑𝑥𝑛0 . 

Let 𝜎 =
𝜌

1+𝜖
 , then 

∫∑ 

𝑛0

|𝑢(𝑥𝑛0)|
1+2𝜖

|𝑥𝑛0|
3(1+𝜖)

2

ℝ𝑁

(

 
 
∫

||𝑥𝑛0|
2(1+𝜖)
1+2𝜖 − |𝑦𝑛0|

2(1+𝜖)
1+2𝜖 |

1+2𝜖

|𝑦𝑛0|
1+𝜖
|𝑥𝑛0 − 𝑦𝑛0|

𝑁+(1+2𝜖)(1+𝜖)

2

ℝ𝑁

𝑑𝑦𝑛0

)

 
 
𝑑𝑥𝑛0

= ∫∑ 

𝑛0

|𝑢(𝑥𝑛0)|
1+2𝜖

|𝑥𝑛0|
2(1+𝜖)+(1+2𝜖)(1+𝜖)

2

ℝ𝑁

[∫ |1

+∞

0

− 𝜎
2(1+𝜖)
1+2𝜖 |

1+2𝜖

𝜎𝑁−2−𝜖𝐾(𝜎)𝑑𝜎]𝑑𝑥𝑛0 , 

where 𝐾 is defined in (112). Since 

∫ |1 − 𝜎
2(1+𝜖)
1+2𝜖 |

1+2𝜖

𝜎𝑁−2−𝜖𝐾(𝜎)𝑑𝜎

+∞

0

≡ 𝐶3 < ∞, 

it follows that 

∫ ∫∑ 

𝑛0

 𝑔1(𝑥𝑛0 , 𝑦𝑛0)𝑑𝑥𝑛0𝑑𝑦𝑛0

2

ℝ𝑁

2

ℝ𝑁

= 𝐶3 ∫∑ 

𝑛0

|𝑢(𝑥𝑛0)|
1+2𝜖

|𝑥𝑛0|
2(1+𝜖)+(1+2𝜖)(1+𝜖)

2

ℝ𝑁

𝑑𝑥𝑛0 . 

Now, using inequality (115), we get 

∫ ∫∑ 

𝑛0

 𝑔1(𝑥𝑛0, 𝑦𝑛0)𝑑𝑥𝑛0𝑑𝑦𝑛0

2

ℝ𝑁

2

ℝ𝑁

≤ 𝐶4 ∫ ∫∑ 

𝑛0

|𝑢(𝑥𝑛0) − 𝑢(𝑦𝑛0)|
1+2𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+2𝜖)(1+𝜖)

𝑑𝑥𝑛0

|𝑥𝑛0|
1+𝜖  

𝑑𝑥𝑛0

|𝑥𝑛0|
1+𝜖

2

ℝ𝑁

2

ℝ𝑁

.               (132) 

Combining (128), (129), (132) and (131), we reach the desired result. 

Corollary (5.3.30)[239]: Assume that Ω is a regular bounded domain with 0 ∈ Ω, then 

there exists a positive constant  𝐶 ≡ 𝐶(Ω,𝑁, 1 + 2𝜖, 1 + 𝜖, 1 + 𝜖) such that for all  𝜙 ∈
𝐶0
∞(Ω), we have 
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∫ ∫∑ 

𝑛0

|𝜙(𝑥𝑛0) − 𝜙(𝑦𝑛0)|
1+2𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+2𝜖)(1+𝜖)

𝑑𝑥𝑛0

|𝑥𝑛0|
1+𝜖  

𝑑𝑥𝑛0

|𝑥𝑛0|
1+𝜖

2

ℝ𝑁

2

ℝ𝑁

≥ 𝐶∑ 

𝑛0

(∫
|𝜙(𝑥𝑛0)|

𝑝1+𝜖 
∗

|𝑥𝑛0|
2(1+𝜖)

𝑝1+𝜖 
∗

1+2𝜖

𝑑𝑥𝑛0

1

Ω

)

1+2𝜖
𝑝1+𝜖 
∗

.                                                               (133) 

Proof:  Let 𝜙 ∈ 𝐶0
∞(Ω) and define �̃�  to be the extension of 𝜙 to ℝ𝑁  given in Lemma 

(5.3.4), then using the fact that Ω is a regular bounded domain, we reach that 

‖�̃�‖
𝑋1+𝜖,1+2𝜖,1+𝜖 (ℝ𝑁)

≤ 𝐶1‖𝜙‖𝑋1+𝜖,1+2𝜖,1+𝜖 (Ω)

≤ 𝐶1∑ 

𝑛0

(∫∫
|𝜙(𝑥𝑛0) − 𝜙(𝑦𝑛0)|

1+2𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+2𝜖)(1+𝜖)

𝑑𝑥𝑛0𝑑𝑦𝑛0

|𝑥𝑛0|
1+𝜖
|𝑦𝑛0|

1+𝜖  

2

Ω

2

Ω

)

1
1+2𝜖

. 

Now, applying Corollary (5.3.29) to �̃�, it follows that 

∫ ∫∑ 

𝑛0

|�̃�(𝑥𝑛0) − �̃�(𝑦𝑛0)|
1+2𝜖

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+(1+2𝜖)(1+𝜖)

𝑑𝑥𝑛0

|𝑥𝑛0|
1+𝜖  

𝑑𝑥𝑛0

|𝑥𝑛0|
1+𝜖

2

ℝ𝑁

2

ℝ𝑁

≥ 𝑆(1 + 𝜖)∑ 

𝑛0

( ∫
|�̃�(𝑥𝑛0)|

𝑝1+𝜖 
∗

|𝑥𝑛0|
2(1+𝜖)

𝑝1+𝜖 
∗

1+2𝜖

𝑑𝑥𝑛0

1

ℝ𝑁

)

1+2𝜖
𝑝1+𝜖 
∗

. 

Hence combining the above estimates we get the desired result. 

Corollary (5.3.31)[239]: Assume that  0 < 𝜆 < Λ𝑁,2(1+𝜖),1+𝜖 ,  then there exist  𝛾1, 𝛾2 such 

that 

0 < 𝛾1 <
𝑁 − 2(1 + 𝜖)2

2(1 + 𝜖)
< 𝛾2, 

and  Λ(𝛾1) = Λ(𝛾2) = 𝜆. 

Proof: We have   Λ(0) = 0, Λ (
𝑁−2(1+𝜖)2

2(1+𝜖)
) = Λ𝑁,2(1+𝜖),1+𝜖  Λ(γ) < 0  if   𝛾 >

𝑁−2(1+𝜖)2

1+2𝜖
  

and 

Λ́(𝛾) = ∫ 𝐾(𝜎) log (𝜎)(𝜎𝛾 − 1)2𝜖  (𝜎𝑁−1−𝛾(1+2𝜖) − 𝜎1+4𝜖+2𝜖
2+𝛾) 2𝑑𝜎.

+∞

1

 

It is clear that for  𝛾0 =
𝑁−2(1+𝜖)2

2(1+𝜖)
, we have  Λ́(𝛾0) = 0, Λ́(𝛾) > 0 if  𝛾 < 𝛾0 and Λ́(𝛾) < 0 

if 𝛾 > 𝛾0. 

    Hence, since 𝜆 < Λ𝑁,2(1+𝜖),1+𝜖 ,  we get the existence of 0 < 𝛾1 <
𝑁−2(1+𝜖)2

2(1+𝜖)
<

𝛾2
𝑁−2(1+𝜖)2

1+2𝜖
 such that  Λ(𝛾1) = Λ(𝛾2) = 𝜆. 
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Define 3(1 + 𝜖), 0 = 𝜖 +
2(1+𝜖)2

𝛾1
,  it is clear that  𝑝1+𝜖

∗ − 1 < 1 + 𝜖 + (2(1 +

𝜖), 1 + 𝜖).  
Corollary (5.3.32)[239]: Assume that 1 + 𝜖 < 𝑞+(2(1 + 𝜖), 1 + 𝜖), then 

(i) If 1 + 2𝜖 < 1 + 𝜖 < 𝑝1+𝜖
∗ − 1,   problem (105) has a solution  𝑢 . Moreover  , 𝑢 ∈

𝑊0
1+𝜖,2(1+𝜖)

(Ω)  if 𝜆 < Λ𝑁,2(1+𝜖),1+𝜖   and  ℎ1+𝜖,Ω(𝑢) < ∞  if  𝜆 = Λ𝑁,2(1+𝜖),1+𝜖  where  

ℎ1+𝜖,Ω is defined in (106). 

(ii) If  𝑝1+𝜖
∗ − 1 ≤ 1 + 𝜖 < 𝑞+(2(1 + 𝜖), 1 + 𝜖), then problem (105) has a positive super 

solution 𝑢. 
Proof: Let us begin with the case where 1 + 2𝜖 < 1 + 𝜖 < 𝑝1+𝜖

∗ − 1.  If  𝜆 <
Λ𝑁,2(1+𝜖),1+𝜖 , then using the Mountain Pass Theorem, see [218], we get a positive solution  

𝑢 ∈ 𝑊0
1+𝜖,2(1+𝜖)

(Ω).   However, if 𝜆 < Λ𝑁,2(1+𝜖),1+𝜖 ,  then using the improved Hardy 

inequality in Corollary (5.3.27) and the Mountain Pass Theorem, we reach a positive 

solution 𝑢 to problem (105) with  ℎ1+𝜖,Ω(𝑢) < ∞. 
     Assume now that 𝑝1+𝜖

∗ − 1 ≤ 1 + 𝜖 < 𝑞+(2(1 + 𝜖), 1 + 𝜖)   and fix  𝜆1 ∈
(𝜆 , Λ𝑁,2(1+𝜖),1+𝜖)  to be chosen later. 

     Let  𝛾1 ∈ (0,
𝑁−2(1+𝜖)2

2(1+𝜖)
)  be  such  that  𝛤(𝛾1) = 𝜆1 and set  𝑤(𝑥𝑛0) = |𝑥𝑛0|

−𝛾1 ,  then 

𝐿1+𝜖,2(1+𝜖)(𝑤) = 𝜆1∑ 

𝑛0

𝑤1+2𝜖

|𝑥𝑛0|
2(1+𝜖)2

     𝑎. 𝑒. in ℝ𝑁\{0}  

with  
𝑤1+2𝜖

|𝑥𝑛0|
2(1+𝜖)2

∈ 𝐿𝑙𝑜𝑐
1 (ℝ𝑁). Hence 

𝐿1+𝜖,2(1+𝜖)(𝑤) = 𝜆∑ 

𝑛0

𝑤1+2𝜖

|𝑥𝑛0|
2(1+𝜖)2

+ (𝜆1 − 𝜆)∑ 

𝑛0

𝑤1+2𝜖

|𝑥𝑛0|
2(1+𝜖)2

    𝑎. 𝑒. in ℝ𝑁\{0}.  

    Using the fact that 1 + 𝜖 < 𝑞+(2(1 + 𝜖), 1 + 𝜖), we can choose 𝜆1 > 𝜆, very close to 𝜆 

such that 𝛾1(1 + 2𝜖) + 2(1 + 𝜖)
2 > (1 + 𝜖)𝛾1,  thus, in any bounded domain Ω, we have 

(𝜆1 − 𝜆)∑ 

𝑛0

𝑤1+2𝜖

|𝑥𝑛0|
2(1+𝜖)2

≥ 𝐶(Ω)𝑤1+𝜖 .     

Define  �̂� = 𝐶𝑤, by the previous estimates, we can choose 𝐶(Ω) > 0 such that  �̂� will be 

a supersolution to (105) in  Ω. Hence the result follows.. 
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Corollary (5.3.34)[239]: Let Ω ⊂ ℝ𝑁 be a regular domain such that 0 ∈ Ω. Define 

Λ(Ω) = inf
{𝜙∈𝐶0

∞Ω\0}
∑ 

𝑛0

∫ ∫
|𝜙(𝑥𝑛0) − 𝜙(𝑦𝑛0)|

2(1+𝜖)

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+2(1+𝜖)2

𝑑𝑥𝑛0𝑑𝑦𝑛0
2

ℝ𝑁
2

ℝ𝑁

∫
|𝜙(𝑥𝑛0)|

2(1+𝜖)

|𝑥𝑛0|
2(1+𝜖)2

𝑑𝑥𝑛0
2

Ω

, 

then  Λ(Ω) = Λ𝑁,2(1+𝜖),1+𝜖 defined in (73). 

Proof: Recall that 

Λ𝑁,2(1+𝜖),1+𝜖 = inf
{𝜙∈𝐶0

∞(ℝ𝑁)\0}
∑ 

𝑛0

∫ ∫
|𝜙(𝑥𝑛0) − 𝜙(𝑦𝑛0)|

2(1+𝜖)

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+2(1+𝜖)2

𝑑𝑥𝑛0𝑑𝑦𝑛0
2

ℝ𝑁
2

ℝ𝑁

∫
|𝜙(𝑥𝑛0)|

2(1+𝜖)

|𝑥𝑛0|
2(1+𝜖)2

𝑑𝑥𝑛0
2

ℝ𝑁

, 

thus  Λ(Ω) ≥ Λ𝑁,2(1+𝜖),1+𝜖 .  It is clear that if  Ω1 ⊂ Ω2, t hen  Λ(Ω1)  ≥ Λ(Ω2). 

     Now, using a dilatation argument we can prove that  Λ(𝐵𝑅1(0)) = Λ(𝐵𝑅2(0)) for all  

0 < 𝑅1 < 𝑅2.  Hence we conclude that  Λ(Ω) ≡ Λ̅ does not depend of the domain  Ω. For 

𝜙 ∈ 𝐶0
∞(ℝ𝑁), we set 

𝑄(𝜙) ≡∑ 

𝑛0

∫ ∫
|𝜙(𝑥𝑛0) − 𝜙(𝑦𝑛0)|

2(1+𝜖)

|𝑥𝑛0 − 𝑦𝑛0|
𝑁+2(1+𝜖)2

𝑑𝑥𝑛0𝑑𝑦𝑛0
2

ℝ𝑁
2

ℝ𝑁

∫
|𝜙(𝑥𝑛0)|

2(1+𝜖)

|𝑥𝑛0|
2(1+𝜖)2

𝑑𝑥𝑛0
2

ℝ𝑁

. 

Let {𝜙𝑛}𝑛  ⊂ 𝐶0
∞(ℝ𝑁) be such that  𝑄(𝜙𝑛)  → Λ𝑁,2(1+𝜖),1+𝜖 . Without loss of generality 

and using a symmetrization argument we can assume that  Supp(𝜙𝑛) ⊂ 𝐵𝑅2(0). It is clear 

that  𝑄(𝜙𝑛) ≥ Λ(Supp(𝜙𝑛)) = Λ̅,  thus, as 𝑛 → ∞, it follows that Λ̅ ≤ Λ𝑁,2(1+𝜖),1+𝜖 .  As a 

conclusion we reach that  Λ = Λ𝑁,2(1+𝜖),1+𝜖  and the result follows. 

Corollary (5.3.35)[239]: Let Ω be a bounded domain such that 0 ∈ Ω. Assume that  𝑢 ∈
𝑊1+𝜖,2(1+𝜖)(ℝ𝑁)   is such that  𝑢 ≥ 0 𝑖𝑛  ℝ𝑁 , 𝑢 > 0  in  Ω  and  𝐿𝑁,2(1+𝜖),1+𝜖𝑢 ≩

𝜆
𝑢1+2𝜖

|𝑥𝑛0|
2(1+𝜖)2

 in  Ω , then there exists 𝐶 > 0  such that 𝑢(𝑥𝑛0)  ≥ 𝐶|𝑥𝑛0|
−𝛾1  in  𝐵1+𝜖(0) 

where 𝛾1 is defined in Corollary (5.3.31). 

Proof: Without loss of generality we can assume that  𝐵1(0) ⊂ Ω. 
      Fixed  𝜆 < Λ𝑁,2(1+𝜖),1+𝜖 sand define 

�̃�(𝑥𝑛0) = {
  |𝑥𝑛0|

−𝛾1 − 1 if |𝑥𝑛0| < 1,

0             if |𝑥𝑛0| > 1.
 

It is clear that  �̃� ∈ 𝑊0
1+𝜖,2(1+𝜖)

(𝐵1(0)) and 

{
𝐿2(1+𝜖),1+𝜖�̃� =∑ 

𝑛0

ℎ(𝑥𝑛0)
�̃�1+2𝜖

|𝑥𝑛0|
2(1+𝜖)2

in   𝐵1(0),

  �̃� = 0                   in ℝ𝑁\𝐵1{0}

                         (134) 

where  
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ℎ(𝑥𝑛0) = ∫ ∑ 

𝑛0

|1 − 𝜎−�̃�|
2𝜖
(1 − 𝜎−�̃�)𝐾(𝜎)𝑑𝜎2

1

|𝑥𝑛0|

0

+∑ 

𝑛0

(1 − |𝑥𝑛0|
�̃�
) ∫ 𝜎𝑁−1

∞

1

|𝑥𝑛0|

 𝐾(𝜎)𝑑𝜎. 

Using the definition of   𝛾1, see Corollary (5.3.31), we can prove that  ℎ(𝑥𝑛0) ≤ 𝜆  for all   

𝑥𝑛0 ∈ 𝐵1(0). 

Since 𝐿2(1+𝜖),1+𝜖  𝑢 ≩ 0 and 𝑢 > 0 in Ω, then using the nonlocal weak  Harnack  

inequality in [210], we get the existence of  𝜀 > 0 such that  𝑢 ≥ 𝜀 in   �̅�1(0). 
     Therefore we obtain that 

{
  
 

  
 𝐿2(1+𝜖),1+𝜖𝑢 ≥ 𝜆∑ 

𝑛0

𝑢1+2𝜖

|𝑥𝑛0|
2(1+𝜖)2

in 𝐵1(0),

𝐿2(1+𝜖),1+𝜖�̃� ≤ 𝜆∑ 

𝑛0

�̃�1+2𝜖

|𝑥𝑛0|
2(1+𝜖)2

, in 𝐵1(0),

𝑢 ≥ �̃�         in ℝ𝑁\𝐵1(0).

                              (135) 

Thus by the comparison principle in Corollary (5.3.22), it follows that   �̃� ≤ 𝑢 which is 

the desired result. 

Corollary (5.3.36)[239]: Let 𝑞+(2(1 + 𝜖), 1 + 𝜖) = 1 + 2𝜖 +
2(1+𝜖)2

𝛾1
.  If  1 + 𝜖 >

𝑞+(2(1 + 𝜖), 1 + 𝜖),  then the unique nonnegative supersolution  𝑢 ∈ 𝑊𝑙𝑜𝑐
1+𝜖,2(1+𝜖)

 (Ω)  to 

problem (105) is 𝑢 ≡ 0. 
Proof.  We argue by contradiction. Assume the existence of  𝑢 ≩ 0  such that  𝑢 ∈
W1+𝜖,2(1+𝜖)(ℝ𝑁) and 𝑢 is a supersolution to problem (105) in Ω, then 𝑢 > 0 in Ω. Let  

𝜙 ∈ 𝐶0
∞ (𝐵1+𝜖(0))  with  𝐵1+𝜖(0) ⊂⊂ Ω and  𝜖 ≥ 0 to be chosen later. 

    Using Picone’s inequality in Corollary (5.3.21), it follows that 

‖𝜙‖
𝑋0
1+𝜖,2(1+𝜖)

(ℝ𝑁)

2(1+𝜖)
≥ ∫ ∑ 

𝑛0

𝐿2(1+𝜖),1+𝜖(𝑢)

𝑢1+2𝜖

2

𝐵1+𝜖(0)

|𝜙|2(1+𝜖)𝑑𝑥𝑛0 . 

Thus  

‖𝜙‖
𝑋0
1+𝜖,2(1+𝜖)

(ℝ𝑁)

2(1+𝜖)
≥ ∫ ∑ 

𝑛0

𝑢−𝜖
2

𝐵1+𝜖(0)

|𝜙|2(1+𝜖)𝑑𝑥𝑛0 . 

Since 1 + 𝜖 > 𝑞+(2(1 + 𝜖), 1 + 𝜖), we get the existence of  𝜀 > 0 such that 

   (𝛾1 − 𝜀)(−𝜖) > 3 + 5𝜖 + 2𝜖
2 

for some 𝜖 ≥ 0. Thus, using Corollary (5.3.35), we can choose 𝜖 ≥ 0 such that 

𝑢−𝜖 ≥ 𝐶∑ 

𝑛0

|𝑥𝑛0|
−(3+5𝜖+2𝜖2)

  in 𝐵1+𝜖(0). 

 

 

 



236 

Therefore 

‖𝜙‖
𝑋0
1+𝜖,2(1+𝜖)

(ℝ𝑁)

2(1+𝜖)
≥ 𝐶 ∫ ∑ 

𝑛0

|𝜙|2(1+𝜖)

|𝑢|3+5𝜖+2𝜖
2

2

𝐵1+𝜖(0)

𝑑𝑥𝑛0 , 

which is a contradiction with the optimality of the Hardy inequality proved in Corollary 

(5.3.34). Hence we conclude.  
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Chapter 6 

Hardy and Fractional Caffarelli-Kohn-Nirenberg Inequalities 
We revise the BBM formula due to J. Bourgain, H. Brezis, and P. Mironescu in 

[203]. We establish a full range of Caffarelli-Kohn-Nirenberg inequalities and their 

variants for fractional Sobolev spaces. 

Section (6.1):  The BBM Formula 

     We first recall the BBM formula due to J. Bourgain, H. Brezis, and P. Mironescu [109], 

see also [112], (with a refinement by J. Davila [118]). Let 𝑑 ≥ 1  be an integer. 

Throughout, (𝜌𝑛) denotes a sequence of radial mollifiers in the sense that 

𝜌𝑛 ∈ 𝐿𝑙𝑜𝑐
1 (0,+∞),    𝜌𝑛 ≥ 0,                                                                (1) 

  ∫ 𝜌𝑛

∞

0

(𝑟)𝑟𝑑−1𝑑𝑟 = 1  ∀𝑛,                                                                (2) 

and  

lim
𝑛→+∞

∫ 𝜌𝑛

∞

𝛿

(𝑟)𝑟𝑑−1𝑑𝑟 = 0      ∀𝛿 > 0.                                                    (3) 

Even though the next assumption is required only for a few results, it is convenient to 

assume that 

𝜌𝑛(𝑟) = 0 for all  𝑟 > 1 , 𝑛 ∈ ℕ.                                                       (4) 
Set, for 𝑝 ≥ 1, 

𝐼𝑛,𝑝(𝑢) = ∫ ∫
|𝑢(𝑥) − 𝑢(𝑦)|𝑝

|𝑥 − 𝑦|𝑝

1

ℝ𝑑

1

ℝ𝑑
𝜌𝑛(|𝑥 − 𝑦|)𝑑𝑥𝑑𝑦 ≤ +∞,   ∀𝑢 ∈ 𝐿𝑙𝑜𝑐

1 (ℝ𝑑).         (5) 

For 𝑢 ∈ 𝐿𝑙𝑜𝑐
1 (ℝ𝑑), define, for 𝑝 > 1, 

𝐼𝑝(𝑢) = {
𝛾𝑑,𝑝∫ |∇𝑢|𝑝

1

ℝ𝑑
if ∇𝑢 ∈ 𝐿𝑝(ℝ𝑑),

+∞ otherewise,

                                              (6) 

and, for 𝑝 = 1, 

𝐼1(𝑢) = {
    𝛾𝑑,1∫ |∇𝑢|

1

ℝ𝑑
if ∇𝑢  is a finite measure,

+∞ otherewise,

                                            (7) 

where, for any 𝑒 ∈ 𝕊𝑑−1  and  𝑝 ≥ 1, 

𝛾𝑑,𝑝 = ∫ |𝜎. 𝑒|𝑝
1

𝕊𝑑−1
𝑑𝜎.                                                          (8) 

In the case 𝑝 = 1, we have 

𝛾𝑑,1 = ∫ |𝜎. 𝑒|𝑝
1

𝕊𝑑−1
𝑑𝜎 = {

2

𝑑 − 1
|𝕊𝑑−1| = 2|𝐵𝑑−1| if  𝑑 ≥ 3,

4 if  𝑑 = 2,
2 if  𝑑 = 1,

                                  (9) 

The  BBM  formula asserts that, for  𝑝 ≥ 1, 
lim
𝑛→+∞

𝐼𝑛,𝑝(𝑢) = 𝐼𝑝(𝑢)       ∀𝑢 ∈ 𝐿𝑙𝑜𝑐
1 (ℝ𝑑).                                            (10) 

Applying (10) with  𝑝 = 1, 𝑢 = 𝕝𝐸   (the characteristic function of a measurable set  𝐸), and 

𝜌𝑛(𝑟) = 𝐶𝑑𝑛
(𝑑+1) 2⁄  𝑟𝑒−𝑛𝑟

2
,  we obtain 
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lim
𝑛→+∞

𝑛(𝑑+1) 2⁄ ∫ ∫ 𝑒−𝑛|𝑥−𝑦|
2

1

𝐸

1

𝐸𝑐
𝑑𝑥𝑑𝑦 = 𝐴𝑑Per(𝐸). 

By comparison the De Giorgi  formula [221], [222] for the perimeter involves a derivative 

and asserts that 

lim
𝑛→+∞

∫ |∇ 𝑊𝑛(𝑥)|
1

ℝ𝑑
𝑑𝑥 = 𝐵𝑑Per(𝐸), 

where  

𝑊𝑛(𝑥) = 𝑛
𝑑 2⁄ ∫ 𝑒−𝑛|𝑥−𝑦|

2
1

𝐸

𝑑𝑦, 

and  𝐴𝑑 , 𝐵𝑑 ,  and 𝐶𝑑 are positive constants depending only on 𝑑. 

      Define, for 𝑝 ≥ 1, 𝑛 ∈ ℕ,  and  𝑢 ∈ 𝐿𝑙𝑜𝑐
1 (ℝ𝑑), 

𝐷𝑛,𝑝(𝑢)(𝑥) ≔ ∫
|𝑢(𝑥) − 𝑢(𝑦)|𝑝

|𝑥 − 𝑦|𝑝

1

ℝ𝑑
𝜌𝑛(|𝑥 − 𝑦|)𝑑𝑦   for a. 𝑒.  𝑥 ∈ ℝ

𝑑 .                 (11) 

Note that, see [109], 

∫ 𝐷𝑛,𝑝(𝑢)(𝑥)𝑑𝑥 ≤
1

ℝ𝑑
𝐶𝑝,𝑑∫ |∇ 𝑢|𝑝

1

ℝ𝑑
(𝑥)𝑑𝑥  for  𝑛 ∈ ℕ, 

and hence 

𝐷𝑛,𝑝(𝑥) < +∞ for a. 𝑒.  𝑥 ∈ ℝ
𝑑                                                                 (12) 

if  𝑝 > 1 and ∇𝑢 ∈ 𝐿𝑝(ℝ𝑑) or 𝑝 = 1 and ∇𝑢 is a finite measure. From the BBM formula, 

we have, for  𝑝 ≥ 1, 

lim
𝑛→+∞

∫ 𝐷𝑛,𝑝(𝑢)(𝑥) =
∞

ℝ𝑑
𝐼𝑝(𝑢)      for 𝑢 ∈ 𝐿𝑙𝑜𝑐

1 (ℝ𝑑). 

On the other hand, an easy computation (see [109]) gives, for  𝑝 ≥ 1, 𝑢 ∈ 𝐶𝑐
1(ℝ𝑑),  and  

𝑥 ∈ ℝ𝑑 , 
lim
𝑛→∞

𝐷𝑛,𝑝(𝑢)(𝑥) = 𝛾𝑑,𝑝|∇𝑢|
𝑝(𝑥). 

We investigate the mode convergence of  𝐷𝑛,𝑝(𝑢)  to 𝛾𝑑,𝑝|∇𝑢|
𝑝as  𝑛 → +∞ for non 

smooth 𝑢. We have following. 

We will use the following elementary lemma (see [107]): 

Lemma (6.1.1)[219]: Let 𝑑 ≥ 1, 𝑟 > 0, 𝑥 ∈ ℝ𝑑  , and 𝑓 ∈ 𝐿𝑙𝑜𝑐
1 (ℝ𝑑) . We have 

∫ ∫ |𝑓(𝑥 + 𝑠𝜎)|
𝑟

0

1

𝕊𝑑−1
𝑑𝑠𝑑𝜎 ≤ 𝐶𝑑𝑟𝑀(𝑓)(𝑥),                                    (13) 

for some positive constant 𝐶𝑑 depending only on 𝑑. 
    Here 𝑀 (𝑓) denotes the maximal function of  𝑓 . We now give the 

Theorem (6.1.2)[219]: Let 𝑑 ≥ 1, 𝑝 ≥ 1, and  𝑢 ∈ 𝑊𝑙𝑜𝑐
1,𝑝(ℝ𝑑). Then 

lim
𝑛→+∞

∫
|𝑢(𝑥 + ℎ) − 𝑢(𝑥) − ∇𝑢(𝑥). ℎ|𝑝

|ℎ|𝑝

1

ℝ𝑑
𝜌𝑛(|ℎ|)𝑑ℎ = for a. 𝑒.  𝑥 ∈ ℝ

𝑑 .       (14) 

Consequently, 

lim
𝑛→+∞

𝐷𝑛,𝑝(𝑢)(𝑥) = 𝛾𝑑,𝑝|∇𝑢|
𝑝(𝑥)   for a. 𝑒.  𝑥 ∈ ℝ𝑑 .                           (15) 

Proof:  We first present the proof for  𝑢 ∈ 𝑊1,𝑝(ℝ𝑑).  We claim that, for all 𝑢 ∈
𝑊1,𝑝(ℝ𝑑), 

𝐷𝑛,𝑝(𝑢)(𝑥) ≤ 𝐶𝑀(|∇𝑢|
𝑝)(𝑥) for a. 𝑒.  𝑥 ∈ ℝ𝑑                                          (16) 
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Here and in what follows, 𝐶 denotes a positive constant depending only on d. We have, for 

𝑎. 𝑒. 𝑥 ∈ ℝ𝑑 , 𝜎 ∈ 𝕊𝑑−1 , and  𝑟 > 0, 

𝑢(𝑥 + 𝑟𝜎) − 𝑢(𝑥) = ∫ ∇𝑢(𝑥 + 𝑠𝜎). 𝜎𝑑𝑠
𝑟

0

. 

Using polar coordinates, Holder's inequality, and Fubini's theorem, we obtain, for 𝑎. 𝑒. 𝑥 ∈
ℝ𝑑 , 

∫
|𝑢(𝑥 + ℎ) − 𝑢(𝑥)|𝑝

|ℎ|𝑝

1

ℝ𝑑
𝜌𝑛(|ℎ|)𝑑ℎ ≤ ∫ 𝜌𝑛(𝑟)𝑟

𝑑−1
1

𝑟
∫ ∫ |∇𝑢(𝑥 + 𝑠𝜎). 𝜎|𝑝

𝑟

0

1

𝕊𝑑−1

∞

0

𝑑𝑠𝑑𝜎𝑑𝑟 

                                                             = ∫ 𝜌𝑛(𝑟)𝑟
𝑑−1

1

𝑟

∞

0

 ∫ |∇𝑢(𝑦)|𝑝|𝑦|1−𝑑
𝑟

𝐵(𝑥,𝑦)

 𝑑𝑦𝑑𝑟.     

Applying Lemma (6.1.1), we obtain (16). 

    The proof of (14) now goes as follows. Set 

    Ω(𝑢) ≔ {𝑥 ∈ ℝ𝑑;  lim sup
 𝑛→+∞

∫
|𝑢(𝑥 + ℎ) − 𝑢(𝑥) − ∇𝑢(𝑥). ℎ|𝑝

|ℎ|𝑝

1

ℝ𝑑
𝜌𝑛(|ℎ|)𝑑ℎ > 𝜀}. 

Note that if  𝑢 ∈ 𝐶𝑐
1(ℝ𝑑) then (14) holds for all 𝑥 ∈ ℝ𝑑  . This implies 

|Ω(𝜐)| = 0  for all  𝜐 ∈ 𝐶𝑐
1(ℝ𝑑). 

It follows that 

Ω(𝜐) = Ω(𝑢 − 𝜐) for all  𝜐 ∈ 𝐶𝑐
1(ℝ𝑑).                                          (17) 

Recall that, see e.g., [188], for 𝑓 ∈ 𝐿1 (ℝ𝑑), we have 

|{𝑥 ∈ ℝ𝑑;𝑀(𝑓)(𝑥) > 𝜀}| ≤
𝐶

𝜀
∫ |𝑓|.
1

ℝ𝑑
                                                     (18) 

Using (16) and (18), we obtain 

|{𝑥 ∈ ℝ𝑑∫
|(𝑢 − 𝜐)(𝑥 + ℎ) − (𝑢 − 𝜐)(𝑥) − ∇(𝑢 − 𝜐)(𝑥). ℎ|𝑝

|ℎ|𝑝

1

ℝ𝑑
𝜌𝑛(|ℎ|)𝑑ℎ > 𝜀}| 

≤
𝐶

𝜀
∫ |∇(𝑢 − 𝜐)(𝑥)|𝑝𝑑𝑥
1

ℝ𝑑
      for all  𝜀 > 0.               (19)  

Combining (17) and (19) yields (14). Assertion (15) follows from (14) by the triangle 

inequality after noting that, for every 𝑉 ∈ ℝ𝑑  , 

∫
|𝑉 ∙ ℎ|𝑝

|ℎ|𝑝

1

ℝ𝑑
𝜌𝑛(|ℎ|)𝑑ℎ = ∫ ∫ |𝑉 ∙ 𝜎|𝑝

𝑟

𝕊𝑑−1

∞1

0

𝜌𝑛(𝑟)𝑟
𝑑−1𝑑𝜎𝑑𝑟 = 𝛾𝑑,𝑝|𝑉|

𝑝. 

    We now turn to the proof in the case  𝑢 ∈ 𝑊𝑙𝑜𝑐
1,𝑝
(ℝ𝑑).  Given  𝑅 > 1,  let  𝜑 ∈ 𝐶𝑐

1(ℝ𝑑).   

be such that  𝜑 = 1 in  𝐵(0, 2𝑅). We have 𝜑𝑢 ∈ 𝑊1,𝑝(ℝ𝑑). Applying the above result to 

𝜑𝑢, we obtain 

lim
𝑛→+∞

𝐷𝑛,𝑝(𝜑𝑢)(𝑥) = 𝛾𝑑,𝑝|∇(𝜑𝑢)|
𝑝(𝑥)   for a. 𝑒.  𝑥 ∈ 𝐵(0, 𝑅). 

Since  𝐷𝑛,𝑝(𝑢)(𝑥) = 𝐷𝑛,𝑝(𝜑𝑢)(𝑥)   for  𝑥 ∈ 𝐵𝑅  by (4) and 𝜑(𝑥)𝑢(𝑥) = 𝑢(𝑥)  in  𝐵𝑅 , it 
follows that 

lim
𝑛→+∞

𝐷𝑛,𝑝(𝑢)(𝑥) = 𝛾𝑑,𝑝|∇(𝑢)|
𝑝(𝑥)   for a. 𝑒.  𝑥 ∈ 𝐵(0, 𝑅). 

Since 𝑅 > 1 is arbitrary, the conclusion follows. follows.  

      Here is a natural  question  related  to  Theorem (6.1.2).  Suppose  for  example that  

𝑢 ∈ 𝑊1,1(ℝ𝑑)   and 𝑢 has compact support. Is it true that for every 1 < 𝑝 < +∞, 
lim
𝑛→+∞

𝐷𝑛,𝑝(𝑢)(𝑥) = 𝛾𝑑,𝑝|∇𝑢|
𝑝(𝑥)   for a. 𝑒.  𝑥 ∈ ℝ𝑑? 
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Surprisingly, the answer is delicate and some  pathologies may occur as seen in our next 

result. 

Theorem (6.1.3)[219]: Let 𝑑 ≥ 1 and  𝑢 ∈ 𝑊𝑙𝑜𝑐
1,1 (ℝ𝑑). We have 

(i) If 𝑑 = 1,  then, for 𝑝 > 1, 
lim
𝑛→+∞

𝐷𝑛,𝑝(𝑢)(𝑥) = 𝛾1,𝑝|�́�|
𝑝(𝑥)   for a. 𝑒.  𝑥 ∈ ℝ.                           (20) 

(ii) If 𝑑 ≥ 2, 𝑝 ≤ 𝑑/(𝑑 − 1), and  𝜌𝑛 is non-increasing, then 

lim
𝑛→+∞

𝐷𝑛,𝑝(𝑢)(𝑥) = 𝛾𝑑,𝑝|∇𝑢|
𝑝(𝑥)   for a. 𝑒.  𝑥 ∈ ℝ𝑑 .                        (21) 

(iii)  If 𝑑 ≥ 2 and 𝑝 > 1, then 

lim inf 
𝑛→+∞

 𝐷𝑛,𝑝(𝑢)(𝑥) ≥ 𝛾𝑑,𝑝|∇𝑢|
𝑝(𝑥)   for a. 𝑒.  𝑥 ∈ ℝ𝑑 .                       (22) 

     Moreover, strict inequality in (22) can occur: 

(v) If 𝑑 ≥ 2, there exist  𝑢 ∈ 𝑊1,1(ℝ𝑑) with compact support, 𝑎 set 𝐴 ⊂ ℝ𝑑  of positive     

measure, and a sequence of non-increasing functions (𝜌𝑛) such that, for every 𝑛 ∈ ℕ, 
 𝐷𝑛,𝑝(𝑢)(𝑥) = +∞   for a. 𝑒.  𝑥 ∈ 𝐴        for all  𝑝 > 𝑑 (𝑑 − 1)⁄ .                       (23) 

Proof: As in the proof of Theorem (6.1.2), one may assume that  𝑢 ∈ 𝑊1,1(ℝ𝑑). We first 

prove (20). Since, for  𝑎. 𝑒. 𝑥 ∈ ℝ and 𝑟 > 0, 

|𝑢(𝑥 + 𝑟) − 𝑢(𝑥)| ≤ ∫ |�́�(𝑠)|𝑑𝑠,
𝑥+𝑟

𝑥

 

we have  

 𝐷𝑛,𝑝(𝑢)
1 𝑝⁄ (𝑥) ≤ 𝐶𝑀 (�́�)(𝑥).   

Assertion (20) now follows as in the proof of Theorem (6.1.2) by noting that, for 𝑢 ∈
𝐶𝑐
1(ℝ), 

lim 
𝑛→+∞

 𝐷𝑛,𝑝(𝑢)(𝑥) = 𝛾1,𝑝|�́�|
𝑝(𝑥)   for  𝑥 ∈ ℝ𝑑 . 

We next turn to the proof of (22). Using polar coordinates, we have, for  𝑎. 𝑒. 𝑥 ∈ ℝ𝑑  , 

 𝐷𝑛,𝑝(𝑢)(𝑥) = ∫ ∫ |∫ ∇𝑢(𝑥 + 𝑡𝑟𝜎) ∙ 𝜎𝑑𝑡
1

0

|

𝑝𝑟

𝕊𝑑−1

∞1

0

𝜌𝑛(𝑟)𝑟
𝑑−1𝑑𝜎𝑑𝑟 

≥ ∫ |∫ ∫ ∇𝑢(𝑥 + 𝑡𝑟𝜎) ∙ 𝜎𝜌𝑛(𝑟)𝑟
𝑑−1𝑑𝑡𝑑𝑟

1

0

∞

0

|

𝑝∞1

𝕊𝑑−1
𝑑𝜎.                 (24) 

We claim that, for 𝑎. 𝑒. 𝜎 ∈ 𝕊𝑑−1 and for 𝑎. 𝑒. 𝑥 ∈ ℝ𝑑 ,  

lim 
𝑛→+∞

∫ ∫ ∇𝑢(𝑥 + 𝑡𝑟𝜎) ∙ 𝜎𝜌𝑛(𝑟)𝑟
𝑑−1𝑑𝑡𝑑𝑟

1

0

∞1

0

= ∇𝑢(𝑥) ∙ 𝜎.                               (25) 

Assuming this and applying Fatou's lemma, we derive from (24) and (25) that, for 𝑎. 𝑒. 𝑥 ∈
ℝ𝑑 , 

lim inf 
𝑛→+∞

 𝐷𝑛,𝑝(𝑢)(𝑥) ≥ 𝛾𝑝,𝑑|∇𝑢|
𝑝(𝑥); 

which is (22). To complete the proof of (22), it  remains  to prove (25). For  𝜐 ∈
𝑊1,1(ℝ𝑑), 𝑥 ∈ ℝ𝑑  ,  and   𝜎 ∈ 𝕊𝑑−1 , set 

 

𝑀(∇𝜐, 𝜎, 𝑥) = sup
𝑟>0

∫ |∇𝜐(𝑥 + 𝑠𝜎) ∙ 𝜎|
𝑟

0

𝑑𝑠.                               (26) 

Given 𝜐 ∈ 𝑊1,1(ℝ𝑑),   and 𝜎 ∈ 𝕊𝑑−1, we claim that for all 𝜀 > 0, there exists a positive 

constant 𝐶 independent of  𝜐, 𝜀 and  𝜎  such that 

|{𝑥 ∈ ℝ𝑑;𝑀(∇𝜐, 𝜎, 𝑥) > 𝜀}| ≤
𝐶

𝜀
∫ |∇𝜐(𝑦)|𝑑𝑦
1

ℝ𝑑
.                               (27) 
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Using Fubini's theorem, we derive from (27) that 

|{𝑥 ∈ ℝ𝑑 × 𝕊𝑑−1 ;𝑀(∇𝜐, 𝜎, 𝑥) > 𝜀}| ≤
𝐶

𝜀
∫ |∇𝜐(𝑦)|𝑑𝑦
1

ℝ𝑑
.                         (28) 

 

Using (28), one can now obtain assertion (25) as in the proof of Theorem (6.1.2) by noting 

that  for all 𝑢 ∈ 𝐶𝑐
1(ℝ𝑑), 

lim2
𝑛→+∞

∫ ∫ ∇𝑢(𝑥 + 𝑡𝑟𝜎) ∙ 𝜎𝜌𝑛(𝑟)𝑟
𝑑−1𝑑𝑡𝑑𝑟

1

0

∞1

0

= ∇𝑢(𝑥) ∙ 𝜎       for all 𝑥 ∈ ℝ𝑑 . 

We next establish (27). For simplicity of notation, we assume that  𝜎 = 𝑒𝑑 ∶=  (0,⋯ , 0, 1). 
We have, by Fubini's theorem, 

|{𝑥 ∈ ℝ𝑑  ;𝑀(∇𝜐, 𝑒𝑑 , 𝑥) > 𝜀}| = ∫ ∫ 𝕝{𝑥∈ℝ𝑑 ;𝑀(∇𝜐,𝑒𝑑,𝑥)>𝜀}

1

ℝ

1

ℝ𝑑−1
𝑑𝑥𝑑𝑑�́�.                (29) 

It follows from the theory of maximal functions (see (18)) that 

∫ ∫ 𝕝{𝑥∈ℝ𝑑 ;𝑀(∇𝜐,𝑒𝑑,𝑥)>𝜀}

1

ℝ

1

ℝ𝑑−1
𝑑𝑥𝑑𝑑�́� ≤

𝐶

𝜀
∫ ∫ |𝜕𝑥𝑑𝜐(�́�, 𝑥𝑑)|

1

ℝ

1

ℝ𝑑−1
𝑑𝑥𝑑𝑑�́�.                       (30) 

Combining (29) and (30) yields 

|{𝑥 ∈ ℝ𝑑  ;𝑀(∇𝜐, 𝑒𝑑 , 𝑥) > 𝜀}| ≤
𝐶

𝜀
∫ |∇𝜐(𝑥)|𝑑𝑥
1

ℝ𝑑
; 

which is (27). The proof of  (22) is complete. 

   We finally establish (23). Let (𝛿𝑛) be a positive sequence converging to 0 such that 

𝛿𝑛 < 1 2⁄  for all 𝑛, and define 

𝜌𝑛(𝑡) = 𝛿𝑛𝑡
𝛿𝑛−1𝕝(0,1)(𝑡).                                                                               (31) 

Set  𝑢(𝑥) = 𝜑(𝑥) ∣ 𝑥 ∣(1−𝑑) ln−2 |𝑥|  for  some  𝜑 ∈ 𝐶𝑐
1(ℝ𝑑) such that 𝜑(𝑥) = 1 for ∣ 𝑥 ∣

 < 2. It is clear that  𝑢 ∈ 𝑊1,1(ℝ𝑑)  and for  𝑥 ∈ ℝ𝑑    with  1/4 < ∣ 𝑥 ∣ < 1/2, 

∫ |𝑢(𝑥) − 𝑢(𝑦)|𝑝
2

|𝑦|<1 8⁄

𝑑𝑦 = +∞ 

since  𝑝 > 𝑑/(𝑑 − 1)  and  𝜌𝑛(∣ 𝑦 − 𝑥 ∣) ≥ 𝛿𝑛(1/8)
𝛿𝑛−1 for  ∣ 𝑦 ∣ < 1/8  and  1/4 < ∣

𝑥 ∣ < 1/2.  It follows  that, for  1/4 < ∣ 𝑥 ∣ < 1/2, 
 𝐷𝑛,𝑝(𝑢)(𝑥) = +∞    ∀𝑛. 

The proof is complete. 

We present two proofs of Proposition  (6.1.4). 

Proposition (6.1.4)[219]: Let  𝑑 ≥ 1, 𝑝 ≥ 1, and  𝑢 ∈ 𝐿𝑙𝑜𝑐
1 (ℝ𝑑)  with  ∇𝑢 ∈ 𝐿𝑝(ℝ𝑑). Then 

lim2
𝑛→+∞

∫ ∫
|𝑢(𝑥 + ℎ) − 𝑢(𝑥) − ∇𝑢(𝑥) ∙ ℎ|𝑝

|ℎ|𝑝

1

ℝ𝑑

1

ℝ𝑑
𝜌𝑛(|ℎ|)𝑑ℎ𝑑𝑥 = 0.          (32) 

Consequently, 

lim 
𝑛→+∞

 𝐷𝑛,𝑝(𝑢) = 𝛾𝑑,𝑝|∇𝑢|
𝑝   in  𝐿1(ℝ𝑑).                                               (33) 

 

First proof : via Theorem (6.1.2). By Theorem (6.1.2), we have 

lim2
𝑛→+∞

 𝐷𝑛,𝑝(𝑢)(𝑥) = 𝛾𝑑,𝑝|∇𝑢(𝑥)|
𝑝   for  𝑒. 𝑎.  𝑥 ∈ ℝ𝑑 .                                   (34) 

On the other hand, by the BBM formula, 

lim2
𝑛→+∞

∫  𝐷𝑛,𝑝(𝑢)(𝑥)𝑑𝑥 = 𝛾𝑑,𝑝

2

ℝ𝑑
∫ |∇𝑢(𝑥)|𝑝𝑑𝑥.
2

ℝ𝑑
                                          (35) 
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Recall that (see e.g., [220]) if  𝑓𝑛(𝑥) → 𝑓(𝑥)  for  𝑎. 𝑒. 𝑥 ∈ ℝ𝑑  , and  ∥ 𝑓𝑛 ∥𝐿1(ℝ𝑑)→

 ∥ 𝑓 ∥𝐿1(ℝ𝑑),  then  𝑓𝑛 → 𝑓  in   𝐿1(ℝ𝑑). We deduce from (34) and (35) that 

 𝐷𝑛,𝑝 → 𝛾𝑑,𝑝|∇𝑢|
𝑝   in 𝐿1(ℝ𝑑)  as  𝑛 → +∞. 

Direct proof:  We have, see [109], 

∫ ∫
|𝑢(𝑥 + ℎ) − 𝑢(𝑥) − ∇𝑢(𝑥) ∙ ℎ|𝑝

|ℎ|𝑝

1

ℝ𝑑

1

ℝ𝑑
𝜌𝑛(|ℎ|)𝑑ℎ𝑑𝑥 ≤ 𝐶𝑝,𝑑∫ |∇𝑢(𝑥)|𝑝

2

ℝ𝑑
 

and,  for  𝜐 ∈ 𝐶𝑐
1 (ℝ𝑑), 

            lim2
𝑛→+∞

 𝐷𝑛,𝑝(𝜐)(𝑥) = 𝛾𝑑,𝑝|∇𝜐(𝑥)|
𝑝   in 𝐿1(ℝ𝑑)  as  𝑛 → +∞. 

The conclusion now follows by a standard approximation argument. 

Let 𝑑 ≥ 1, 𝜇 be a Radon measure defined on ℝ𝑑, and  0 < 𝑅 ≤ +∞. Denote 

𝑀𝑅(𝜇)(𝑥) = sup
0<𝑠<𝑅

|𝜇|(𝐵(𝑥, 𝑠))

|𝐵(𝑥, 𝑠)|
       and   𝑀(𝜇)(𝑥) = 𝑀∞(𝜇)(𝑥). 

Lemma (6.1.5)[219]: Let 𝑑 ≥ 1 , 𝜇 be a positive Radon measure defined in ℝ, and let (-
𝜒𝑘)𝑘≥1 be a sequence of mollifier such that supp 𝜒𝑘 ⊂ 𝐵(0, 1/𝑘) and 0 ≤ 𝜒𝑘 ≤ 𝐶𝑘

𝑑 for 

some positive constant 𝐶 depending only on 𝑑. Set  𝜇𝑘 = 𝜇 ∗ 𝜒𝑘 . We have, for  𝑥 ∈ ℝ𝑑   
and for  𝑟 > 0, 

1

𝑟
∫ |𝑦 − 𝑥|1−𝑑
1

𝐵(𝑥,𝑟)

𝑑𝜇(𝑦) ≤ 𝐶𝑀𝑟(𝜇)(𝑥)                                             (36) 

and, for every 𝑘, 
1

𝑟
∫ |𝑦 − 𝑥|1−𝑑
1

𝐵(𝑥,𝑟)

𝑑𝜇𝑘(𝑦) ≤ 𝐶𝑀(𝜇)(𝑥)                                           (37) 

for some positive constant 𝐶 depending only on 𝑑. 
Proof:  Without loss of generality, one may assume that  𝑥 = 0. We have 

1

𝑟
∫ |𝑦|1−𝑑
1

𝐵(0,𝑟)

𝑑𝜇(𝑦) =
1

𝑟
∑ ∫ |𝑦|1−𝑑

1

𝐵(0,2−𝑚𝑟) 𝐵(0,2−(𝑚+1)𝑟)⁄

∞

𝑚=0

 𝑑𝜇(𝑦)

≤
𝐶

𝑟
∑ 2−𝑚(1−𝑑)𝑟1−𝑑∫ 𝑑𝜇(𝑦)

1

𝐵(0,2−𝑚𝑟) 𝐵(0,2−(𝑚+1)𝑟)⁄

∞

𝑚=0

≤
𝐶

𝑟
∑ 2−𝑚𝑟

∞

𝑚=0

𝑀𝑟(𝜇)(0) = 𝐶𝑀𝑟(𝜇)(0); 

which is (36). 

     We next prove (37). As above, we obtain 

1

𝑟
∫ |𝑦|1−𝑑
1

𝐵(0,𝑟)

𝑑𝜇𝑘(𝑦) ≤
𝐶

𝑟
∑ 2−𝑚(1−𝑑)𝑟1−𝑑∫ 𝑑𝜇𝑘(𝑦)

1

𝐵(0,2−𝑚𝑟) 𝐵(0,2−(𝑚+1)𝑟)⁄

∞

𝑚=0

.            (38) 

We claim that 

∫ 𝑑𝜇𝑘(𝑦)
1

𝐵(0,2−𝑚𝑟) 𝐵(0,2−(𝑚+1)𝑟)⁄

≤ 𝐶 2−𝑚𝑑  𝑟𝑑𝑀(𝜇)(0).                                  (39) 

Combining (38) and (39) yields (37). 

     It remains to prove (38). We have 

∫ 𝑑𝜇𝑘(𝑦)
1

𝐵(0,2−𝑚𝑟) 𝐵(0,2−(𝑚+1)𝑟)⁄

≤ ∫ 𝑑𝜇𝑘(𝑦)
1

𝐵(0,2−𝑚𝑟) 𝐵(0,2−(𝑚+2)𝑟)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅⁄
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= sup
𝜑∈𝐶𝑐(𝐵(0,2

−𝑚𝑟) 𝐵(0,2−(𝑚+2)𝑟)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅⁄ );|𝜑|≤1

∫ 𝜑 𝑑𝜇𝑘

1

ℝ𝑑
.            (40) 

We have  

∫ 𝜑 𝑑𝜇𝑘

1

ℝ𝑑
= ∫ ∫ 𝜑(𝑧)𝜒𝑘(𝑧 − 𝑦)

1

ℝ𝑑

1

ℝ𝑑
𝑑𝑧𝑑𝜇(𝑦).                                  (41) 

If  2−𝑚𝑟 < 1/𝑘, we have, for 𝜑 ∈ 𝐶𝑐(𝐵(0, 2
−𝑚𝑟) 𝐵(0, 2−(𝑚+2)𝑟)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅⁄ ) with |𝜑| ≤ 1, 

∫ ∫ 𝜑(𝑧)𝜒𝑘(𝑧 − 𝑦)
1

ℝ𝑑

1

ℝ𝑑
𝑑𝑧𝑑𝜇(𝑦)

≤ ∫ sup
𝑦
∫ |𝜑(𝑧)|𝜒𝑘(𝑧 − 𝑦)𝑑𝑧 𝑑𝜇(𝑦)
1

ℝ𝑑

2

|𝑦|<2/𝑘

                              

≤ 𝐶(2−𝑚𝑟)𝑑𝑘𝑑∫ 𝑑𝜇(𝑦) ≤ 𝐶2−𝑚𝑑𝑟𝑑
2

|𝑦|<
2
𝑘

𝑀(𝜇)(0).          (42) 

Here we use the fact that supp  𝜒𝑘 ⊂ 𝐵(0, 1/𝑘)  and  0 ≤ 𝜒𝑘 ≤ 𝐶 𝑘
𝑑 . Similarly, if  1/𝑘 <

2−𝑚𝑟, we have , for 𝜑 ∈ 𝐶𝑐(𝐵(0, 2
−𝑚𝑟) 𝐵(0, 2−(𝑚+2)𝑟)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅⁄ ) with |𝜑| ≤ 1, 

 

    ∫ ∫ 𝜑(𝑧)𝜒𝑘(𝑧 − 𝑦)
1

ℝ𝑑

1

ℝ𝑑
𝑑𝑧𝑑𝜇(𝑦) ≤ ∫ sup

𝑦
∫ |𝜑(𝑧)|𝜒𝑘(𝑧 − 𝑦)𝑑𝑧 𝑑𝜇(𝑦)
1

ℝ𝑑

2

|𝑦|<2−𝑚+2𝑟

 

        ≤ ∫ 𝑑𝜇(𝑦) ≤ 𝐶2−𝑚𝑑𝑟𝑑
2

|𝑦|<2−𝑚+2𝑟

𝑀(𝜇)(0).                       (43) 

Combining (40), (41), (42) and (4.8), we obtain (43). The proof is complete. 

      We recall that (see, e.g., [223]) 

lim
𝑟→0

|∇𝑠𝑢|(𝐵(𝑥, 𝑟))

|𝐵(𝑥, 𝑟)|
= 0   for  a. e.  𝑥 ∈ ℝ𝑑 .                                       (44) 

As a consequence of (44), one obtains 

𝑀(|∇𝑠𝑢|)(𝑥) < +∞  for  a. e.  𝑥 ∈ ℝ𝑑 .                                             (45) 
Theorem (6.1.6)[219]: Let 𝑑 ≥ 1 and  𝑢 ∈ 𝐵𝑉𝑙𝑜𝑐(ℝ

𝑑). Then 

lim
𝑛→+∞

∫
|𝑢(𝑥 + ℎ) − 𝑢(𝑥) − ∇𝑎𝑐𝑢(𝑥) ∙ ℎ|

|ℎ|𝑝

1

ℝ𝑑
𝜌𝑛(|ℎ|)𝑑ℎ = 0  for  a. e.  𝑥 ∈ ℝ

𝑑 .          (46) 

Consequently, 

  lim2
𝑛→+∞

 𝐷𝑛,1(𝑢)(𝑥) = 𝛾𝑑,1|∇
𝑎𝑐𝑢|(𝑥)      for  a. e.  𝑥 ∈ ℝ𝑑 .                     (47) 

      Here and in what follows, for  𝑢 ∈ 𝐵𝑉𝑙𝑜𝑐(ℝ
𝑑), we denote ∇𝑎𝑐𝑢 and ∇𝑠𝑢 the absolutely 

continuous part and the singular part of  𝛻𝑢. 
Proof:  As in the proof of  Theorem(6.2.2), one may assume that  𝑢 ∈ 𝐵𝑉(ℝ𝑑). Let 

(𝜒𝑘)𝑘≥1 be a sequence of smooth mollifiers such that supp  𝜒𝑘 ⊂ 𝐵(0, 1/𝑘) and   0 ≤
𝜒𝑘 ≤ 𝐶𝑘

𝑑 . Here and in what follows, 𝐶 denotes a positive constant depending only on 𝑑. 
Set, for 𝑘 ∈ ℕ+, 

𝑢𝑘 = 𝑢 ∗ 𝜒𝑘,    𝑉𝑘
𝑠 = ∇𝑠𝑢 ∗ 𝜒𝑘,       𝑎𝑛𝑑   𝑉𝑘

𝑎𝑐 = ∇𝑎𝑐𝑢 ∗ 𝜒𝑘. 
We have  

        ∫
|𝑢𝑘(𝑥 + ℎ) − 𝑢𝑘(𝑥) − 𝑉𝑘

𝑎𝑐(𝑥) ∙ ℎ|

|ℎ|𝑝

1

ℝ𝑑
𝜌𝑛(|ℎ|)𝑑ℎ 
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= ∫ 𝑟𝑑−1
∞

0

𝜌𝑛(𝑟)∫
|𝑢𝑘(𝑥 + 𝑟𝜎) − 𝑢𝑘(𝑥) − 𝑟𝑉𝑘

𝑎𝑐(𝑥) ∙ 𝜎|

𝑟

1

𝕊𝑑−1
𝑑𝜎𝑑𝑟.             (48) 

Since  

𝑢𝑘(𝑥 + 𝑟𝜎) − 𝑢𝑘(𝑥) − 𝑟𝑉𝑘
𝑎𝑐(𝑥) ∙ 𝜎 = ∫ ∇𝑢𝑘(𝑥 + 𝑠𝜎) ∙ 𝜎

𝑟

0

𝑑𝑠 − 𝑟𝑉𝑘
𝑎𝑐(𝑥) ∙ 𝜎 

and  

∇𝑢𝑘(𝑥) = 𝑉𝑘
𝑠(𝑥) + 𝑉𝑘

𝑎𝑐(𝑥), 
it follows from (48) that 

          ∫
|𝑢𝑘(𝑥 + ℎ) − 𝑢𝑘(𝑥) − 𝑉𝑘

𝑎𝑐(𝑥) ∙ ℎ|

|ℎ|

1

ℝ𝑑
𝜌𝑛(|ℎ|)𝑑ℎ 

            ≤ ∫ 𝑟𝑑−1
∞

0

𝜌𝑛(𝑟)
1

𝑟
𝑑𝑟∫ ∫ |𝑉𝑘

𝑠(𝑥 + 𝑠𝜎)|𝑑𝑠𝑑𝜎.
𝑟

0

∞

𝕊𝑑−1
               

+∫ 𝑟𝑑−1
∞

0

𝜌𝑛(𝑟)
1

𝑟
𝑑𝑟∫ ∫ |𝑉𝑘

𝑎𝑐(𝑥 + 𝑠𝜎) − 𝑉𝑘
𝑎𝑐(𝑥)|𝑑𝑠𝑑𝜎.

𝑟

0

∞

𝕊𝑑−1
        (49) 

We claim that, for  a. e. 𝑥 ∈ ℝ𝑑 , 

           lim2
𝑘→+∞

∫
|𝑢𝑘(𝑥 + ℎ) − 𝑢𝑘(𝑥) − 𝑉𝑘

𝑎𝑐(𝑥) ∙ ℎ|

|ℎ|

1

ℝ𝑑
𝜌𝑛(|ℎ|)𝑑ℎ 

= ∫
|𝑢(𝑥 + ℎ) − 𝑢(𝑥) − ∇𝑎𝑐𝑢(𝑥) ∙ ℎ|

|ℎ|

1

ℝ𝑑
𝜌𝑛(|ℎ|)𝑑ℎ,           (50) 

          lim2
𝑘→+∞

∫ 𝑟𝑑−1
∞

0

𝜌𝑛(𝑟)
1

𝑟
𝑑𝑟∫ ∫ |𝑉𝑘

𝑠(𝑥 + 𝑠𝜎)|𝑑𝑠𝑑𝜎
𝑟

0

∞

𝕊𝑑−1
 

= ∫ 𝑟𝑑−1
∞

0

𝜌𝑛(𝑟)
1

𝑟
𝑑𝑟∫ |∇𝑠𝑢(𝑦)|

∞

𝐵(𝑥,𝑟)

 |𝑦 − 𝑥|1−𝑑  𝑑𝑦,        (51) 

 and  

         lim2
𝑘→+∞

∫ 𝑟𝑑−1
∞

0

𝜌𝑛(𝑟)
1

𝑟
𝑑𝑟∫ ∫ |𝑉𝑘

𝑎𝑐(𝑥 + 𝑠𝜎) − 𝑉𝑘
𝑎𝑐(𝑥)|𝑑𝑠𝑑𝜎

𝑟

0

∞

𝕊𝑑−1
 

= ∫ 𝑟𝑑−1
∞

0

𝜌𝑛(𝑟)
1

𝑟
𝑑𝑟∫ ∫ |∇𝑎𝑐𝑢(𝑥 + 𝑠𝜎) − ∇𝑎𝑐𝑢(𝑥)|𝑑𝑠𝑑𝜎

𝑟

0

∞

𝕊𝑑−1
 .       (52) 

Assuming these claims, we continue the proof. Combining (49), (50), (51), and (52) 

yields, for a. e. 𝑥 ∈ ℝ𝑑 , 

     ∫
|𝑢(𝑥 + ℎ) − 𝑢(𝑥) − ∇𝑎𝑐𝑢(𝑥) ∙ ℎ|

|ℎ|

1

ℝ𝑑
𝜌𝑛(|ℎ|)𝑑ℎ, 

   ≤ ∫ 𝑟𝑑−1
∞

0

𝜌𝑛(𝑟)
1

𝑟
𝑑𝑟∫ |∇𝑠𝑢(𝑦)|

∞

𝐵(𝑥,𝑟)

 |𝑦 − 𝑥|1−𝑑  𝑑𝑦       

+∫ 𝑟𝑑−1
∞

0

𝜌𝑛(𝑟)
1

𝑟
𝑑𝑟∫ ∫ |∇𝑎𝑐𝑢(𝑥 + 𝑠𝜎) − ∇𝑎𝑐𝑢(𝑥)|𝑑𝑠𝑑𝜎

𝑟

0

∞

𝕊𝑑−1
.         (53) 

Hence it suffices to prove that, for  a. e. 𝑥 ∈ ℝ𝑑  , 

  lim2
𝑛→+∞

∫ 𝑟𝑑−1
∞

0

𝜌𝑛(𝑟)
1

𝑟
𝑑𝑟∫ |∇𝑠𝑢(𝑦)|

∞

𝐵(𝑥,𝑟)

 |𝑦 − 𝑥|1−𝑑  𝑑𝑦 = 0                       (54) 

and  

  lim2
𝑛→+∞

∫ 𝑟𝑑−1
∞

0

𝜌𝑛(𝑟)
1

𝑟
𝑑𝑟∫ ∫ |∇𝑎𝑐𝑢(𝑥 + 𝑠𝜎) − ∇𝑎𝑐𝑢(𝑥)|𝑑𝑠𝑑𝜎

𝑟

0

∞

𝕊𝑑−1
= 0.         (55) 
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Note that assertion (55) holds for every  𝑥 ∈ ℝ𝑑   if 𝑢 ∈ 𝐶𝑐
1 (ℝ𝑑)  and, by Lemma (6.1.5), 

∫ 𝑟𝑑−1
∞

0

𝜌𝑛(𝑟)
1

𝑟
𝑑𝑟∫ ∫ |∇𝑎𝑐𝑢(𝑥 + 𝑠𝜎) − ∇𝑎𝑐𝑢(𝑥)|𝑑𝑠𝑑𝜎

𝑟

0

∞

𝕊𝑑−1
≤ 𝐶𝑀(|∇𝑎𝑐𝑢|)(𝑥). 

As in the proof of Theorem (6.1.2), we have, for  a. e. 𝑥 ∈ ℝ𝑑  , 

  lim2
𝑛→+∞

∫ 𝑟𝑑−1
∞

0

𝜌𝑛(𝑟)
1

𝑟
𝑑𝑟∫ ∫ |∇𝑎𝑐𝑢(𝑥 + 𝑠𝜎) − ∇𝑎𝑐𝑢(𝑥)|𝑑𝑠𝑑𝜎

𝑟

0

∞

𝕊𝑑−1
= 0; 

which is (55). 

      We next establish (54). By Lemma (6.1.5), we have 

    
1

𝑟
∫ |∇𝑠𝑢(𝑦)|
∞

𝐵(𝑥,𝑟)

 |𝑦 − 𝑥|1−𝑑  𝑑𝑦 ≤ 𝐶𝑀𝑟(|∇
𝑠𝑢|)(𝑥). 

It follows from (44) that 

  lim2
𝑛→+∞

∫ 𝑟𝑑−1
∞

0

𝜌𝑛(𝑟)
1

𝑟
𝑑𝑟∫ |∇𝑠𝑢(𝑦)|

∞

𝐵(𝑥,𝑟)

 |𝑦 − 𝑥|1−𝑑  𝑑𝑦 = 0   for a. e. 𝑥 ∈ ℝ𝑑;  

which is (54). 

       It remains to prove claims (51), (52), and (53). We begin with claim (51). We have  

              ∫
|𝑢𝑘(𝑥 + ℎ) − 𝑢𝑘(𝑥) − 𝑉𝑘

𝑎𝑐(𝑥) ∙ ℎ|

|ℎ|

1

ℝ𝑑
𝜌𝑛(|ℎ|)𝑑ℎ 

                                   = ∫ 𝜌𝑛(𝑟)𝑟
𝑑−1

1

𝑟
𝑑𝑟

∞

0

∫ |𝑢𝑘(𝑥 + 𝑟𝜎) − 𝑢𝑘(𝑥) − 𝑟𝑉𝑘
𝑎𝑐(𝑥) ∙ 𝜎|

∞

𝕊𝑑−1
𝑑𝜎.  

Using Lemma (6.1.5), we derive from (49) that 
1

𝑟
∫ |𝑢𝑘(𝑥 + 𝑟𝜎) − 𝑢𝑘(𝑥) − 𝑟𝑉𝑘

𝑎𝑐(𝑥) ∙ 𝜎|
∞

𝕊𝑑−1
𝑑𝜎 ≤ 𝐶𝑀(|∇𝑢|)(𝑥). 

Since for  𝑎. 𝑒. 𝑥 ∈ ℝ𝑑 , 

         lim2
𝑘→+∞

1

𝑟
∫ |𝑢𝑘(𝑥 + 𝑟𝜎) − 𝑢𝑘(𝑥) − 𝑟𝑉𝑘

𝑎𝑐(𝑥) ∙ 𝜎|
∞

𝕊𝑑−1
𝑑𝜎 

=
1

𝑟
∫ |𝑢(𝑥 + 𝑟𝜎) − 𝑢(𝑥) − 𝑟∇𝑎𝑐𝑢(𝑥) ∙ 𝜎|
∞

𝕊𝑑−1
𝑑𝜎  for a. e.  𝑟 > 0,            

it follows from the dominated convergence theorem that, for a. e. 𝑥 ∈ ℝ𝑑  , 

        lim2
𝑘→+∞

 ∫
|𝑢𝑘(𝑥 + ℎ) − 𝑢𝑘(𝑥) − 𝑉𝑘

𝑎𝑐(𝑥) ∙ ℎ|

|ℎ|

1

ℝ𝑑
𝜌𝑛(|ℎ|)𝑑ℎ 

= ∫
|𝑢(𝑥 + ℎ) − 𝑢(𝑥) − ∇𝑎𝑐𝑢(𝑥) ∙ ℎ|

|ℎ|

1

ℝ𝑑
𝜌𝑛(|ℎ|)𝑑ℎ;             

which is (50). 

     The proof of (52) follows similarly. We finally establish (51). Fix  𝜏 > 0 (arbitrary). 

We have 

        ∫ 𝑟𝑑−1
∞

0

𝜌𝑛(𝑟)
1

𝑟
𝑑𝑟∫ ∫ |𝑉𝑘

𝑠𝑢(𝑥 + 𝑠𝜎)|𝑑𝑠𝑑𝜎
𝑟

0

∞

𝕊𝑑−1
 

                                                     = ∫ 𝑟𝑑−1
∞

𝜏

𝜌𝑛(𝑟)
1

𝑟
𝑑𝑟∫ |𝑉𝑘

𝑠(𝑦)|
2

𝐵(𝑥,𝑟)/𝐵(𝑥,𝜏)

|𝑦 − 𝑥|1−𝑑𝑑𝑦  

                                          +∫ 𝑟𝑑−1
∞

𝜏

𝜌𝑛(𝑟)
1

𝑟
𝑑𝑟∫ |𝑉𝑘

𝑠(𝑦)|
2

𝐵(𝑥,𝜏)

|𝑦 − 𝑥|1−𝑑𝑑𝑦 
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+∫ 𝑟𝑑−1
𝜏

0

𝜌𝑛(𝑟)
1

𝑟
𝑑𝑟∫ |𝑉𝑘

𝑠(𝑦)|
2

𝐵(𝑥,𝑟)

|𝑦 − 𝑥|1−𝑑𝑑𝑦.           (56) 

We have, for  a. e. 𝑟 > 0,  

  lim2
𝑘→+∞

1

𝑟
∫ |𝑉𝑘

𝑠(𝑦)|
2

𝐵(𝑥,𝑟)/𝐵(𝑥,𝜏)

|𝑦 − 𝑥|1−𝑑𝑑𝑦 =
1

𝑟
∫ |∇𝑠𝑢(𝑦)|
2

𝐵(𝑥,𝑟)/𝐵(𝑥,𝜏)

|𝑦 − 𝑥|1−𝑑𝑑𝑦       

and ,by  Lemma (6.1.5),  

                            
1

𝑟
∫ |𝑉𝑘

𝑠(𝑦)|
2

𝐵(𝑥,𝑟)/𝐵(𝑥,𝜏)

|𝑦 − 𝑥|1−𝑑𝑑𝑦 ≤ 𝐶𝑀(|∇𝑢|)(𝑥). 

It follows from the dominated convergence theorem that 

        lim2
𝑘→+∞

∫ 𝑟𝑑−1
∞

𝜏

𝜌𝑛(𝑟)
1

𝑟
𝑑𝑟∫ |𝑉𝑘

𝑠(𝑦)|
2

𝐵(𝑥,𝑟)/𝐵(𝑥,𝜏)

|𝑦 − 𝑥|1−𝑑𝑑𝑦 

= ∫ 𝑟𝑑−1
∞

𝜏

𝜌𝑛(𝑟)
1

𝑟
𝑑𝑟∫ |∇𝑠𝑢(𝑦)|

2

𝐵(𝑥,𝑟)/𝐵(𝑥,𝜏)

|𝑦 − 𝑥|1−𝑑𝑑𝑦.           (57) 

On the other hand, by Lemma (6.1.5), 

            ∫ 𝑟𝑑−1
∞

𝜏

𝜌𝑛(𝑟)
1

𝑟
𝑑𝑟∫ |𝑉𝑘

𝑠𝑢(𝑦)|
2

𝐵(𝑥,𝜏)

|𝑦 − 𝑥|1−𝑑𝑑𝑦      

≤ 𝐶𝑀(|∇𝑢|)(𝑥)∫ 𝑟𝑑−1
∞

𝜏

𝜌𝑛(𝑟) 𝜏 𝑟⁄ 𝑑𝑟                                        (58) 

and  

∫ 𝑟𝑑−1
𝜏

0

𝜌𝑛(𝑟)
1

𝑟
𝑑𝑟∫ |𝑉𝑘

𝑠(𝑦)|
2

𝐵(𝑥,𝑟)

|𝑦 − 𝑥|1−𝑑𝑑𝑦 ≤ 𝐶𝑀(|∇𝑢|)(𝑥)∫ 𝑟𝑑−1
𝜏

0

𝜌𝑛(𝑟)𝑑𝑟.   (59) 

Since  

   lim2
𝜏→0

(∫ 𝑟𝑑−1
∞

𝜏

𝜌𝑛(𝑟) 𝜏 𝑟⁄ 𝑑𝑟 + ∫ 𝑟𝑑−1
𝜏

0

𝜌𝑛(𝑟)𝑑𝑟) = 0, 

we obtain (51) from (56), (57), (58), and (59). The proof is complete. 

The following result deals with  a converse" of  Proposition (6.1.4). It is due to D. 

Spector in [225] and [133] in the case 𝜌𝑛(𝑟) = 𝑑𝜀𝑛
−𝑑𝕝(0,𝜀𝑛)) for a sequence of  (𝜀𝑛) → 0+  

and to A. Ponce and D. Spector [224] for a general sequence (𝜌𝑛). The  proof  we present 

here is more direct. 

Proposition (6.1.7)[219]: Let 𝑑 ≥ 1 and 𝑢 ∈ 𝐿1(ℝ𝑑). Then 𝑢 ∈ 𝑊1,1(ℝ𝑑) if and only if 

there exists 𝑈 ∈ [𝐿1(ℝ𝑑)]𝑑 such that 

  lim2
𝑛→+∞

∫ ∫
|𝑢(𝑥 + ℎ) − 𝑢(𝑥) − 𝑈(𝑥) ∙ ℎ|

|ℎ|

1

ℝ𝑑

1

ℝ𝑑
𝜌𝑛(|ℎ|)𝑑ℎ𝑑𝑥 = 0.             (60) 

Proof: We already know that (60) holds for 𝑢 ∈ 𝑊1,1(ℝ𝑑) with ∇𝑢 = 𝑈  by Proposition 

(6.1.4). It remains to prove that if (60) holds, then 𝑢 ∈ 𝑊1,1(ℝ𝑑). Let (𝜒𝑘) be a sequence 

of standard mollifiers. Define 

𝑢𝑘 = 𝑢 ∗ 𝜒𝑘       𝑎𝑛𝑑     𝑈𝑘 = 𝑈 ∗ 𝜒𝑘. 
We have  

∫ ∫
|𝑢𝑘(𝑥 + ℎ) − 𝑢𝑘(𝑥) − 𝑈𝑘(𝑥) ∙ ℎ|

|ℎ|

1

ℝ𝑑

1

ℝ𝑑
𝜌𝑛(|ℎ|)𝑑ℎ𝑑𝑥                                                             
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                       = ∫ ∫ |∫ 𝑢(𝑥 + ℎ − 𝑦)𝜒𝑘(𝑦)𝑑𝑦
1

ℝ𝑑

1

ℝ𝑑

1

ℝ𝑑

−∫ 𝑢(𝑥 − 𝑦)𝜒𝑘(𝑦)𝑑𝑦 − ∫ 𝑈(𝑥 − 𝑦) ∙ ℎ𝜒𝑘(𝑦)𝑑𝑦
1

ℝ𝑑

1

ℝ𝑑
| |ℎ|−1𝜌𝑛(|ℎ|)𝑑ℎ𝑑𝑥. 

This implies  

     ∫ ∫
|𝑢𝑘(𝑥 + ℎ) − 𝑢𝑘(𝑥) − 𝑈𝑘(𝑥) ∙ ℎ|

|ℎ|

1

ℝ𝑑

1

ℝ𝑑
𝜌𝑛(|ℎ|)𝑑ℎ𝑑𝑥    

                 ≤ ∫ ∫ ∫
|𝑢(𝑥 + ℎ − 𝑦) − 𝑢(𝑥 − 𝑦) − 𝑈(𝑥 − 𝑦) ∙ ℎ|

|ℎ|

2

ℝ𝑑

1

ℝ𝑑

1

ℝ𝑑
𝜒𝑘(𝑦)𝑑𝑦𝜌𝑛(|ℎ|)𝑑ℎ𝑑𝑥. 

A change of variables given 

     ∫ ∫
|𝑢𝑘(𝑥 + ℎ) − 𝑢𝑘(𝑥) − 𝑈𝑘(𝑥) ∙ ℎ|

|ℎ|

1

ℝ𝑑

1

ℝ𝑑
𝜌𝑛(|ℎ|)𝑑ℎ𝑑𝑥    

≤ ∫ ∫
|𝑢(𝑥 + ℎ) − 𝑢(𝑥) − 𝑈(𝑥) ∙ ℎ|

|ℎ|

1

ℝ𝑑

1

ℝ𝑑
𝜌𝑛(|ℎ|)𝑑ℎ𝑑𝑥.       

We derive from (60) that, for 𝑘 > 0, 

            lim2
𝑛→+∞

∫ ∫
|𝑢𝑘(𝑥 + ℎ) − 𝑢𝑘(𝑥) − 𝑈𝑘(𝑥) ∙ ℎ|

|ℎ|

1

ℝ𝑑

1

ℝ𝑑
𝜌𝑛(|ℎ|)𝑑ℎ𝑑𝑥 = 0.    

Since  𝑢𝑘 is smooth, we obtain 

𝑈𝑘 = ∇𝑢𝑘 . 
As  𝑘 → +∞,𝑢𝑘 → 𝑢  and  𝑈𝑘 → 𝑈  in  𝐿1(ℝ𝑑),  so that  𝑢 ∈ 𝑊1,1 (ℝ𝑑)  and  ∇𝑢 = 𝑈. 
      Most of the above results hold when  ℝ𝑑 is replaced by a smooth bounded domain Ω 

of  ℝ𝑑. Define, for  𝑝 ≥ 1, 𝑛 ∈ ℕ, and  𝑢 ∈ 𝐿𝑙𝑜𝑐
1 (Ω), 

𝐷𝑛,𝑝
Ω (𝑢)(𝑥) ≔ ∫

|𝑢(𝑥) − 𝑢(𝑦)|𝑝

|𝑥 − 𝑦|𝑝

2

Ω

𝜌𝑛(|𝑥 − 𝑦|)𝑑𝑦  for a. e.  𝑥 ∈ Ω.                   (61) 

Here is a typical result: 

Theorem (6.1.8)[219]: Let 𝑑 ≥ 1, 𝑝 ≥ 1  and  𝑢 ∈ 𝑊1,𝑝(Ω). Then 

  lim2
𝑛→+∞

𝐷𝑛,𝑝
Ω (𝑢)(𝑥) = 𝛾𝑑,𝑝|∇𝑢|

𝑝(𝑥)  for a. e.  𝑥 ∈ Ω.                 (62) 

Proof: Let  �̃� be an extension of  𝑢 to ℝ𝑑 such that  �̃� ∈ 𝑊1,𝑝(ℝ𝑑) . Let   𝑤 ⊂⊂ Ω .We 

have, for  𝑥 ∈ 𝑤, 

𝐷𝑛,𝑝
Ω (𝑢)(𝑥) = 𝐷𝑛,𝑝(�̃�)(𝑥) − ∫

|�̃�(𝑥) − �̃�(𝑦)|

|𝑥 − 𝑦|

2

ℝ𝑑∖Ω

𝜌𝑛(|𝑥 − 𝑦|)𝑑𝑦.               (63) 

Applying Theorem (6.1.2) to  �̃�, we have for a. e. 𝑥 ∈ 𝑤,  
  lim2
𝑛→+∞

𝐷𝑛,𝑝(�̃�)(𝑥) = 𝛾𝑑,𝑝|∇�̃�|
𝑝(𝑥) = 𝛾𝑑,𝑝|∇𝑢|

𝑝(𝑥).                   (64) 

Since  𝑤 is arbitrary, it suffices to prove that for a. e. 𝑥 ∈ 𝑤, 

  lim2
𝑛→+∞

∫
|�̃�(𝑥) − �̃�(𝑦)|

|𝑥 − 𝑦|

2

ℝ𝑑∖Ω

𝜌𝑛(|𝑥 − 𝑦|)𝑑𝑦 = 0.                     (65) 

Let  𝜑 ∈ 𝐶1(ℝ𝑑)  be such that  𝜑 = 1 in ℝ𝑑 ∖ Ω  and  𝜑 = 0 in  𝑤. Applying Theorem 

(6.1.2) to  𝜑 �̃�, we obtain,  for  a. e. 𝑥 ∈ 𝑤, 

  lim2
𝑛→+∞

∫
|�̃�(𝑦)|

|𝑥 − 𝑦|

2

ℝ𝑑∖Ω

𝜌𝑛(|𝑥 − 𝑦|)𝑑𝑦 = 0.                            (66) 

On the other hand, for a. e. 𝑥 ∈ 𝑤, 
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  lim2
𝑛→+∞

∫
|�̃�(𝑦)|

|𝑥 − 𝑦|

2

ℝ𝑑∖Ω

𝜌𝑛(|𝑥 − 𝑦|)𝑑𝑦 = |𝑢(𝑥)|  lim2
𝑛→+∞

∫
|1|

|𝑥 − 𝑦|

2

ℝ𝑑∖Ω

𝜌𝑛(|𝑥 − 𝑦|)𝑑𝑦 = 0(67) 

Section (6.2): Hardy and Caffarelli-Kohn-Nirenberrg in Equalities 
     In many branches of mathematical physics, harmonic and stochastic analysis, the 

classical Hardy inequality plays a central role. It states that, if 1 ≤ 𝑝 < 𝑑, 

(
𝑑 − 𝑝

𝑝
)
𝑝

∫
|𝑢|𝑝

|𝑥|𝑝

2

ℝ𝑑
𝑑𝑥 ≤ ∫ |∇𝑢|𝑝

2

ℝ𝑑
𝑑𝑥, 

for every  𝑢 ∈ 𝐶𝑐
1 (ℝ𝑑) with optimal constant which, contrary to the Sobolev inequality, is 

never attained. Another class of relevant inequalities is given by the so called  Caffarelli-

Kohn-Nirenberg inequalities[7], [72]. Let 𝑝 ≥ 1 , 𝑞 ≥ 1 , 𝜏 > 0 , 0 < 𝑎 ≤ 1 , 𝛼, 𝛽, 𝛾 ∈ ℝ   

be such that 
1

𝜏
+
𝛾

𝑑
,     

1

𝑝
+
𝛼

𝑑
,      

1

𝑞
+
𝛽

𝑑
> 0,                                               (68) 

1

𝜏
+
𝛾

𝑑
= 𝑎 (

1

𝑝
+
𝛼 − 1

𝑑
) + (1 − 𝛼) (

1

𝑞
+
𝛽

𝑑
) ,       

and, with  𝛾 =  𝑎𝜎 + (1 − 𝑎)𝛽, 
0 ≤ 𝛼 − 𝜎 

and  

𝛼 − 𝜎 ≤ 1  if      
1

𝜏
+
𝛾

𝑑
=
1

𝑝
+
𝛼 − 1

𝑑
. 

Then, for every 𝑢 ∈ 𝐶𝑐
1 (ℝ𝑑), 

                       ‖|𝑥|𝛾𝑢‖𝐿𝛾(ℝ𝑑) ≤ 𝐶‖|𝑥|
𝛼∇𝑢‖

𝐿𝑝(ℝ𝑑)
𝑎 ‖|𝑥|𝛽𝑢‖

𝐿𝑞(ℝ𝑑)

(1−𝑎)
, 

for some positive constant 𝐶 independent of 𝑢. This inequality has been an object of a 

large amount of improvement and extensions to more general frameworks. 

    In the non-local case, it was shown in [166], [182] that there exists 𝐶 > 0, independent 

of    0 <  𝛿 < 1, such that  

𝐶∫
|𝑢(𝑥)|𝑝

|𝑥|𝑝𝛿

2

ℝ𝑑
𝑑𝑥 ≤ 𝐽𝛿(𝑢),                                                     (69) 

for all 𝑢 ∈ 𝐶𝑐
1 (ℝ𝑑),where  

                  𝐽𝛿(𝑢) ≔ (1 − 𝛿)∫∫
|𝑢(𝑥) − 𝑢(𝑦)|𝑝

|𝑥 − 𝑦|𝑑+𝑝𝛿

2

ℝ2𝑑
𝑑𝑥𝑑𝑦. 

In light of the results of Bourgain, Brezis, and Mironescu [109], [134] and an tenement of  

Davila [118], it holds  

lim
𝛿↘0

 𝐽𝛿(𝑢) =  𝐾𝑑,𝑝∫ |∇𝑢|𝑝
2

ℝ𝑑
𝑑𝑥,    𝑓𝑜𝑟 𝑢 ∈ 𝑊1,𝑝(ℝ𝑑),     𝐾𝑑,𝑝 ≔

1

𝑝
∫ |𝑒 ∙ 𝜎|𝑝
2

𝕊𝑑−1
𝑑𝜎, 

for some 𝑒 ∈ 𝕊𝑑−1, being 𝕊𝑑−1the unit sphere in ℝ𝑑. This allows to recover the classical 

Hardy inequality from (69) by letting  𝛿 ↘ 0 . Various problems related to 𝐽𝛿   are 

considered in [112], [219], [107], [116], [130], [224].The full range of Caffarelli-Kohn-

Nirenberg inequalities and their variants were established in [236] (see [203] for partial 

results in the case 𝑎 = 1). 
    Set, for 𝑝 ≥ 1 , 𝛺  a measurable set of  ℝ𝑑, and 𝑢 ∈ 𝐿𝑙𝑜𝑐

1  (𝛺), 
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 𝐼𝛿(𝑢, 𝛺) ≔ ∫ ∫
𝛿𝑝

|𝑥 − 𝑦|𝑑+𝑝

2

𝛺

2

𝛺

𝑑𝑥𝑑𝑦.

{|𝑢(𝑥)−𝑢(𝑦)|>𝛿}                                                       

2 

In the case, 𝛺 = ℝ𝑑 , we simply denote  𝐼𝛿(𝑢, ℝ
𝑑) by  𝐼𝛿(𝑢).The quantity 𝐼𝛿  with 𝑝 = 𝑑 

has its roots in estimates for the topological degree of continuous maps from a sphere into 

itself in [227], [232]. This also appears in characterizations of Sobolev spaces [110], [228], 

[116], [124], [126] and [115], [228], [116], [125], [128], [127], [234], [235]. It is known 

that for  𝑝 ≥ 1, 

𝑙𝑖𝑚
𝛿↘0

 𝐽𝛿(𝑢) =  𝐾𝑑,𝑝∫ |∇𝑢|𝑝
2

ℝ𝑑
𝑑𝑥,    for 𝑢 ∈ 𝐶𝑐

1 (ℝ𝑑)1,                             (70) 

and, for 𝑝 > 1, 

 𝐼𝛿(𝑢) ≤  𝐶𝑑,𝑝∫ |∇𝑢|𝑝
2

ℝ𝑑
𝑑𝑥,    for  𝑢 ∈ 𝑊1,𝑝(ℝ𝑑),                                 (71) 

for some positive constant  𝐶𝑑,𝑝 independent of  𝑢. 

     We improved versions of the local Hardy and Caffarelli-Kohn-Nirenberg type 

inequalities and their variants which involve nonlinear nonlocal nonconvex energies  

 𝐼𝛿(𝑢) and its related quantities. In what follows for 𝑅 > 0, 𝐵𝑅 denotes the open ball of  

ℝ𝑑 centered at the origin of radius 𝑟. Our rst main result concerning Hardy's inequality is: 

Theorem (6.2.1)[226]: (Improved Caffarelli-Kohn-Nirenberg's inequality for 𝑎 = 1). Let  

𝑑 ≥ 2, 1 < 𝑝 < 𝑑,> 𝜏 > 0, 0 < 𝑟 < 𝑅, and 𝑢 ∈ 𝐿𝑙𝑜𝑐
𝑝
 (ℝ𝑑). Assume that 

1

𝑟
+
𝛾

𝑑
=
1

𝑝
+
𝛼 − 1

𝑑
     𝑎𝑛𝑑    0 ≤ 𝛼 − 𝛾 ≤ 1. 

We have 

i) if  𝑑 −  𝑝 + 𝑝𝛼 > 0 and supp 𝑢 ⊂ 𝐵𝑅 , then 

(∫ |𝑥|𝛾𝜏
2

ℝ𝑑
|𝑢(𝑥)|𝜏𝑑𝑥)

𝑝 𝜏⁄

≤ 𝐶( 𝐼𝛿(𝑢, 𝛼) + 𝑅
𝑑−𝑝+𝑝𝛼𝛿𝑝), 

ii) if  𝑑 −  𝑝 + 𝑝𝛼 < 0 and supp  𝑢 ⊂ ℝ𝑑\𝐵1, then 

(∫ |𝑥|𝛾𝜏
2

ℝ𝑑
|𝑢(𝑥)|𝜏𝑑𝑥)

𝑝 𝜏⁄

≤ 𝐶( 𝐼𝛿(𝑢, 𝛼) + 𝑟
𝑑−𝑝+𝑝𝛼𝛿𝑝), 

iii) if  𝑑 − 𝑝 + 𝑝𝛼 = 0, 𝜏 > 1, and supp 𝑢 ⊂ 𝐵𝑟 , then 

(∫
|𝑥|𝛾𝜏|𝑢(𝑥)|𝜏

ln𝜏(2𝑅 |𝑥|⁄ ) 2
𝑑𝑥

2

ℝ𝑑\𝐵1

)

𝑝 𝜏⁄

≤ 𝐶( 𝐼𝛿(𝑢, 𝛼) + ln(2𝑅 𝑟⁄ ) 𝛿𝑝), 

iv) if  𝑑 − 𝑝 + 𝑝𝛼 = 0, 𝜏 > 1, and supp 𝑢 ⊂ ℝ𝑑\𝐵1, then 

(∫
|𝑥|𝛾𝜏|𝑢(𝑥)|𝜏

  ln𝜏(2|𝑥| 𝑟⁄ ) 2
𝑑𝑥

2

𝐵𝑅

)

𝑝 𝜏⁄

≤ 𝐶( 𝐼𝛿(𝑢, 𝛼) + ln(2𝑅 𝑟⁄ )𝛿𝑝). 

Here 𝐶 denotes a positive constant independent of 𝑢, 𝑟, and 𝑅. 
Proposition (6.2.2)[226]: Let 𝑝 ≥ 1 , 𝑞 ≥ 1, 𝜏 > 0, 0 < 𝑎 ≤ 1, 𝛼, 𝛽, 𝛾 ∈ ℝ be such that 

1

𝜏
+
𝛾

𝑑
= 𝑎 (

1

𝑝
+
𝛼 − 1

𝑑
) + (1 − 𝛼) (

1

𝑞
+
𝛽

𝑑
), 

and, with  𝛾 = 𝑎𝜎 + (1 −  𝑎)𝛽, 
0 ≤ 𝛼 − 𝜎 

and  
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𝛼 − 𝜎 ≤ 1      if        
1

𝜏
+
𝛾

𝑑
=
1

𝑝
+
𝛼 − 1

𝑑
. 

We have, for 𝑢 ∈ 𝐶𝑐
1(ℝ𝑑), 

   I)  if  1 𝜏⁄ + 𝛾 𝑑 > 0⁄ , then 

      (∫ |𝑥|𝛾𝜏
2

ℝ𝑑
|𝑢|𝜏𝑑𝑥)

1 𝜏⁄

≤ 𝐶‖|𝑥|𝛼∇𝑢‖
𝐿𝑝(ℝ𝑑)
𝑎 ‖|𝑥|𝛽𝑢‖

𝐿𝑞(ℝ𝑑)

(1−𝑎)
, 

   II) if  1 𝜏⁄ + 𝛾 𝑑 < 0⁄ ,  and supp 𝑢 ⊂ ℝ𝑑\{0}, then 

      (∫ |𝑥|𝛾𝜏
2

ℝ𝑑
|𝑢|𝜏𝑑𝑥)

1 𝜏⁄

≤ 𝐶‖|𝑥|𝛼∇𝑢‖
𝐿𝑝(ℝ𝑑)
𝑎 ‖|𝑥|𝛽𝑢‖

𝐿𝑞(ℝ𝑑)

(1−𝑎)
, 

Assume in addition that  𝛼 − 𝜎 ≤ 1 and  𝜏 > 1. We  have 

   III) if  1 𝜏⁄ + 𝛾 𝑑 = 0⁄  and supp 𝑢 ⊂ 𝐵𝑅 for some 𝑅 > 0, then 

             (∫
|𝑥|𝛾𝜏

  ln𝜏(2𝑅 |𝑥|⁄ )2
|𝑢|𝜏𝑑𝑥

2

ℝ𝑑
)

1 𝜏⁄

≤ 𝐶‖|𝑥|𝛼∇𝑢‖
𝐿𝑝(ℝ𝑑)
𝑎 ‖|𝑥|𝛽𝑢‖

𝐿𝑞(ℝ𝑑)

(1−𝑎)
, 

   IV)  if  1 𝜏⁄ + 𝛾 𝑑 = 0⁄ and supp 𝑢 ⊂ ℝ𝑑\𝐵𝑅, for some 𝑟 > 0, then 

             (∫
|𝑥|𝛾𝜏

  ln𝜏(2|𝑥| 𝑟⁄ ) 2
|𝑢|𝜏𝑑𝑥

2

ℝ𝑑
)

1 𝜏⁄

≤ 𝐶‖|𝑥|𝛼∇𝑢‖
𝐿𝑝(ℝ𝑑)
𝑎 ‖|𝑥|𝛽𝑢‖

𝐿𝑞(ℝ𝑑)

(1−𝑎)
. 

Here 𝐶 denotes a positive constant independent of  𝑢, 𝑟, and 𝑅. 
    Assertion I) is a slight improvement of the classical Caffarelli-Kohn-Nirenberg. Indeed, 

in the classical setting, Assertion I) is established under the additional assumptions 

1 𝑝⁄ + 𝛼 𝑑⁄ > 0    and     1 𝑞⁄ + 𝛽 𝑑⁄ > 0,   
as mentioned in (68). Assertion II) with  𝑎 = 1 and  𝜏 = 𝑝 was known (see,e.g., [166]). 

Concerning Assertion III) with 𝑎 = 1, this was obtained for 𝑑 = 2 in [229] and [100] and, 

for 𝑑 ≥ 3,  this was established in [100]. Assertion IV) with 𝑎 = 1  might be known; 

however, we cannot find any references for it.  

    The ideas used in the proof of Theorems (6.2.5) and (6.2.1), and their general version 

(Theorem (6.2.10)) are as follows. On one hand, this is based on Poincare's and Sobolev 

inequalities related to  𝐼𝛿(𝑢 , Ω), (see Lemma (6.2.3) and Lemma (6.2.6)). These 

inequalities have their roots in [128]. Using these inequalities, we derive the key estimate 

(see Lemma (6.2.8) and also Lemma (6.2.3)), for an annulus  𝐷 centered at the origin and 

for  𝜆 > 0, 

(∫ |𝑢 − ∫ 𝑢
2

𝜆𝐷

|

𝜏2

𝜆𝐷

𝑑𝑥)

1 𝜏⁄

≤ 𝐶(𝜆𝑝−𝑑  𝐼𝛿(𝑢, 𝜆𝐷) + 𝛿
𝑝)𝑎 𝑝⁄ (∫ |𝑢 − ∫ 𝑢

2

𝜆𝐷

|

𝑞2

𝜆𝐷

𝑑𝑥)

(1−𝛼) 𝑞⁄

(72) 

for some positive constant 𝐶 independent of 𝑢 and 𝜆. On the other hand, decomposing ℝ𝑑 

into annuli  A 𝑘which are defined by  

                                                   A 𝑘: = {𝑥 ∈ ℝ
𝑑: 2𝑘 ≤ |𝑥| < 2𝑘+1},  

and applying (72) to each A 𝑘, we obtain 

                   (∫ |𝑢 − ∫ 𝑢
2

𝐴𝑘

|

𝜏2

𝐴𝑘

𝑑𝑥)

1 𝜏⁄

≤ 𝐶(2−(𝑑−𝑝)𝑘  𝐼𝛿(𝑢, 𝐴𝑘) + 𝛿
𝑝)
𝑎 𝑝⁄

(∫ |𝑢|𝑞
2

𝐴𝑘

)

(1−𝛼) 𝑞⁄

 



251 

Similar idea was used in [7]. Using (72) again in the cases i) and ii), we can derive an 

appropriate estimate for 

2(𝛾𝜏+𝑑)𝑘 |∫ 𝑢
2

𝐴𝑘

|

𝜏

. 

This is the novelty in comparison with the approach in [7]. Combining these two facts, one 

obtains the desired inequalities. The other cases follow similarly. Similar approach is used 

to establish Caffarelli-Kohn-Nirenberg's inequalities for fractional Sobolev spaces in [236] 

We now make some comments on the magnetic Sobolev setting. If  𝐴: ℝ𝑑 → ℝ𝑑 is locally 

bounded and  𝑢:ℝ𝑑 → ℂ ,  we set 

Ψ𝑢(𝑥, 𝑦) ≔ 𝑒
i(𝑥−𝑦)∙𝐴(

𝑥+𝑦
2
)
𝑢(𝑦),          𝑥, 𝑦 ∈ ℝ𝑑 . 

The following diamagnetic inequality holds 

          ‖𝑢(𝑥) − 𝑢(𝑦)‖ ≤ |Ψ𝑢(𝑥, 𝑥) − Ψ𝑢(𝑥, 𝑦)|,       for   e. a. 𝑥, 𝑦 ∈ ℝ
𝑑 . 

In turn, by defining 

𝐼𝛿
𝐴(𝑢, 𝛿) = ∫   ∫

𝛿𝑝|𝑥|𝑝𝛼

|𝑥 − 𝑦|𝑑+𝑝

2

𝛺

2

𝛺

𝑑𝑥𝑑𝑦,                 

{|Ψ𝑢(𝑥,𝑦)−Ψ𝑢(𝑥,𝑥)|>𝛿}                                                                                    

 

we  have, for  𝛼 ∈ ℝ , 

 𝐼𝛿(|𝑢|, 𝛼) ≤ 𝐼𝛿
𝐴(𝑢, 𝛼)      for all  𝛿 > 0. 

Then, the assertions of Theorem (6.2.5) and (6.2.1) keep holding with 𝐼𝛿
𝐴(𝑢, 0) (resp. 

𝐼𝛿
𝐴(𝑢, 𝛼) )) on the right-hand side in place of   𝐼𝛿(𝑢) (resp.  𝐼𝛿(𝑢, 𝛼)). For the sake of 

completeness, see [233] for some recent results about new characterizations of classical 

magnetic Sobolev spaces in the terms of   𝐼𝛿
𝐴(𝑢, 0)  (see  [233], [237], [238] for  the  ones  

related to 𝐽𝛿). 

We prove Theorem (6.2.5)and (6.2.10) and Proposition (6.2.11) which imply Theorem 

(6.2.1) and Proposition (6.2.2). We present versions of  Theorems (6.2.5) and (6.2.10) in a 

bounded domain Ω.  
    We first recall that a straight forward variant of  [128] yields the following 

Lemma (6.2.3)[226]: Let  𝑑 ≥  1, 𝑝 ≥  1 and set 

                                         𝐷 ≔ {𝑥 ∈ ℝ𝑑: 𝑟 < |𝑥| < 𝑅}. 
Then  

∫ |𝑢(𝑥) − ∫ 𝑢
2

𝐷

|

𝑝2

𝐷

𝑑𝑥 ≤ 𝐶𝑟,𝑅( 𝐼𝛿(𝑢, 𝐷) + 𝛿
𝑝),       for all  𝑢 ∈ 𝐿𝑝(𝐷). 

As a consequence, we have, for  𝜆 > 0, 

∫ |𝑢(𝑥) − ∫ 𝑢
2

𝜆𝐷

|

𝑝2

𝜆𝐷

𝑑𝑥 ≤ 𝐶𝑟,𝑅( 𝜆
𝑝−𝑑𝐼𝛿(𝑢, 𝜆𝐷) + 𝛿

𝑝),       for all  𝑢 ∈ 𝐿𝑝(𝜆𝐷),            (73) 

where  𝜆𝐷:= {𝜆𝑥 ∶ 𝑥 ∈ 𝐷}.Here 𝐶𝑟,𝑅 denotes a positive constant independent of  𝑢, 𝛿 and 

𝜆. 
The following elementary inequality will be used several times. 

Lemma (6.2.4)[226]: Let  Λ > 1 and  𝜏 > 1. There exists 𝐶 = 𝐶(Λ, 𝜏 ) > 0, depending 

only on  Λ and 𝜏 such that, for all 1 < 𝑐 < Λ , 

(|𝑥| + |𝑏|)𝜏 ≤ 𝑐|𝑎|𝜏 +
𝐶

(𝑐 − 1)𝜏−1
|𝑏|𝜏,     for all   𝑎, 𝑏 ∈ ℝ.                             (74) 

Proof: Since (74) is clear in the case |𝑏| ≥ |𝑎| and in the case 𝑏 = 0, by rescaling and 

considering  𝑥 = |𝑎| |𝑏|⁄ ,  it suffices to prove, for 𝐶 = 𝐶(Λ, 𝜏)  large enough, that 
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(𝑥 + 1)𝜏 ≤ 𝑐𝑥𝜏 +
𝐶

(𝑐 − 1)𝜏−1
,     for all   𝑥 ≥ 1.                                (75) 

Set  

𝑓(𝑥) = (𝑥 + 1)𝜏 − 𝑐𝑥𝜏 −
𝐶

(𝑐 − 1)𝜏−1
   for  𝑥 > 0 

We have 

 �́�(𝑥) = 𝜏(𝑥 + 1)𝜏−1 − 𝑐𝜏 𝑥𝜏−1   and    �́�(𝑥) = 0 if and only if 𝑥 = 𝑥0 ≔ (𝑐
1
𝜏−1 − 1)

−1
. 

One can check that 

lim
𝑥→+∞

𝑓(𝑥) = −∞,    lim
𝑥→1

𝑓(𝑥) < 0 if  𝐶 = 𝐶(Λ, 𝜏)  is large enough.               (76) 

and  

𝑓(𝑥0) = 𝑐𝑥0
𝜏−1 −

𝐶

(𝑐 − 1)𝜏−1
.                                           (77) 

If  𝑐
1
𝜏−1 > 2 then 𝑥0 < 1 and (75) follows from (76). Otherwise  1 ≤ 𝑠:=  𝑐

1
𝜏−1  ≤ 2. By 

the mean value theorem, we have 

𝑠𝜏−1 − 1 ≤ (𝑠 − 1) max
1≤𝑡≤2

 (𝜏 − 1) 𝑡𝜏−2 for 1 ≤ 𝑠 ≤ 2. 

We derive from (77) that, with 𝐶 = Λ [max
1≤𝑡≤2

(𝜏 − 1)𝑡𝜏−2]
𝜏−1
, 

        𝑓(𝑥0) < 0. 
The conclusion now follows from (76). 

     We now give 

Theorem (6.2.5)[226]: (Improved Hardy inequality). Let 𝑑 ≥ 1, 𝑝 ≥ 1, 0 < 𝑟 < 𝑅,  and  

𝑢 ∈ 𝐿𝑝(ℝ𝑑). We have 

    i) if  1 ≤  𝑝 < 𝑑 and supp  𝑢 ⊂ 𝐵𝑅  , then 

          ∫
|𝑢(𝑥)|𝑝

|𝑥|𝑝

1

ℝ𝑑
𝑑𝑥 ≤ 𝐶(𝐼𝛿(𝑢) + 𝑅

𝑑−𝑝𝛿𝑝), 

    ii) if  𝑝 > 𝑑 and supp 𝑢 ⊂ ℝ𝑑\𝐵𝑟 then 

       ∫
|𝑢(𝑥)|𝑝

|𝑥|𝑝

1

ℝ𝑑
𝑑𝑥 ≤ 𝐶(𝐼𝛿(𝑢) + 𝑟

𝑑−𝑝𝛿𝑝),   

    iii) if  𝑝 = 𝑑 ≥ 2 and supp 𝑢 ⊂ 𝐵𝑅 , then 

                        ∫
|𝑢(𝑥)|𝑑

|𝑥|𝑑   ln𝑑(2𝑅 |𝑥|⁄ )

1

ℝ𝑑\𝐵𝑟 

𝑑𝑥 ≤ 𝐶(𝐼𝛿(𝑢) + ln (2𝑅 𝑟)⁄ 𝛿𝑑),   

    iv) if  𝑝 = 𝑑 ≥ 2 and supp 𝑢 ⊂ ℝ𝑑\𝐵𝑟 , then 

                ∫
|𝑢(𝑥)|𝑑

|𝑥|𝑑   ln𝑑(2|𝑥| 𝑟⁄ )

1

𝐵𝑟 

𝑑𝑥 ≤ 𝐶(𝐼𝛿(𝑢) + ln (2𝑅 𝑟)⁄ 𝛿𝑑), 

where  𝐶 denotes a positive constant depending only on 𝑝 and 𝑑. 
In light of (70), by letting  𝛿 → 0, one obtains variants of i), ii), iii), iv) of Theorem (6.2.5) 

where 

     the RHS is replaced by 𝐶 ∫ |∇𝑢|𝑝
2

ℝ𝑑
𝑑𝑥;  see Proposition (6.2.2) for a more general 

version. By (70) and (71), Theorem (6.2.5) provides improvement of Hardy's inequalities 

in the case 𝑝 > 1. 
     We next discuss an improved version of Caffarelli-Kohn-Nirenberg in the case the 

exponent𝑎 = 1.  The more general case is considered in Theorem (6.2.10) (see also 

Proposition (6.2.11)). Set, for 𝑝 ≥ 1, 𝛼 ∈ ℝ , and  Ω a measurable subset of  ℝ𝑑 , 
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𝐼𝛿(𝑢, Ω, 𝛼) ≔ ∫   ∫         
𝛿𝑝|𝑥|𝑝𝛼

|𝑥 − 𝑦|𝑑+𝑝

2

Ω

2

Ω

𝑑𝑥𝑑𝑦,    for 𝑢 ∈ 𝐿𝑙𝑜𝑐
1  (Ω).               

{|𝑢(𝑥)−𝑢(𝑦)|>𝛿}                                                                                                                                  

 

If  Ω = ℝ𝑑 , we simply denote 𝐼𝛿(𝑢,ℝ
𝑑 , 𝛼)  by 𝐼𝛿(𝑢, 𝛼). We have 

Proof:  Let  𝑚, 𝑛 ∈ ℤ  be such that 

2𝑛−1 ≤ 𝑅 < 2𝑛     and     2𝑚 ≤ 𝑟 < 2𝑚+1. 
It is clear that  𝑛 −𝑚 ≥ 1.  By (73) of Lemma (6.2.3), we have, for all 𝑘 ∈ 𝑍, 

∫ |𝑢(𝑥) − ∫ 𝑢
2

𝐴𝑘

|

𝑝2

𝐴𝑘

𝑑𝑥 ≤ 𝐶(2−(𝑑−𝑝)𝑘  𝐼𝛿(𝑢, 𝐴𝑘) + 𝛿
𝑝). 

Here and in what follows in this proof, 𝐶 denotes a positive constant independent of  𝑘, 𝑢, 
and  𝛿. This implies 

2−𝑝𝑘 ≤ ∫ |𝑢(𝑥) − ∫ 𝑢
2

𝐴𝑘

|

𝑝2

𝐴𝑘

𝑑𝑥 ≤ 𝐶( 𝐼𝛿(𝑢, 𝐴𝑘) + 2
(𝑑−𝑝)𝑘𝛿𝑝). 

It follows that 

2−𝑝𝑘∫ |𝑢(𝑥)|𝑝
2

𝐴𝑘

𝑑𝑥 ≤ 𝐶2(𝑑−𝑝)𝑘 |∫ 𝑢
2

𝐴𝑘

|

𝑝

+ 𝐶( 𝐼𝛿(𝑢, 𝐴𝑘) + 2
(𝑑−𝑝)𝑘𝛿𝑝).         (78) 

Step 1: Proof of i): Summing (78) with respect to 𝑘 from  −∞ to  𝑛, we obtain 

∫
|𝑢(𝑥)|𝑝

|𝑥|𝑝

1

ℝ𝑑 

𝑑𝑥 ≤ 𝐶 ∑ 2(𝑑−𝑝)𝑘
𝑛

𝑘=−∞

 |∫ 𝑢
2

𝐴𝑘

|

𝑝

+ 𝐶 𝐼𝛿(𝑢) + 𝐶2
(𝑑−𝑝)𝑛𝛿𝑛,           (79) 

since  𝑑 > 𝑝. We also have, by (73), for 𝑘 ∈ ℤ,  

|∫ 𝑢 −
2

𝐴𝑘

∫ 𝑢
2

𝐴𝑘+1

|

𝑝

≤ 𝐶(2−(𝑑−𝑝)𝑘  𝐼𝛿(𝑢, 𝐴𝑘 ∪ 𝐴𝑘+1) + 𝛿
𝑝)
1 𝑝⁄
               

This implies 

|∫ 𝑢
2

𝐴𝑘

|

𝑝

≤ |∫ 𝑢
2

𝐴𝑘+1

| + 𝐶(2−(𝑑−𝑝)𝑘 𝐼𝛿(𝑢, 𝐴𝑘 ∪ 𝐴𝑘+1) + 𝛿
𝑝)
1 𝑝⁄
. 

Applying Lemma (6.2.4), we have 

     |∫ 𝑢
2

𝐴𝑘

|

𝑝1

≤
2𝑑−𝑝+1

1 + 2𝑑−𝑝
|∫ 𝑢

2

𝐴𝑘+1

|

𝑝

+ 𝐶(2−(𝑑−𝑝)𝑘  𝐼𝛿(𝑢, 𝐴𝑘 ∪ 𝐴𝑘+1) + 𝛿
𝑝). 

It follows that, with 𝑐 = 2 1 + 2𝑑−𝑝 < 1⁄ , 

2(𝑑−𝑝)𝑘 |∫ 𝑢
2

𝐴𝑘

|

𝑝1

≤ 𝑐2(𝑑−𝑝)(𝑘+1) |∫ 𝑢
2

𝐴𝑘+1

|

𝑝

+ 𝐶( 𝐼𝛿(𝑢, 𝐴𝑘 ∪ 𝐴𝑘+1) + 2
(𝑑−𝑝)𝑘𝛿𝑝). 

We derive that 

∑ 2(𝑑−𝑝)𝑘
𝑛

𝑘=−∞

 |∫ 𝑢
2

𝐴𝑘

|

𝑝

≤ 𝐶 ∑  𝐼𝛿(𝑢, 𝐴𝑘 ∪ 𝐴𝑘+1)

𝑛

𝑘=−∞

+ 𝐶2(𝑑−𝑝)𝑛𝛿𝑝.           (80) 

A combination of (79) and (80) yields 

                 ∫
|𝑢(𝑥)|𝑑

|𝑥|𝑑

1

ℝ𝑑 

𝑑𝑥 ≤ 𝐶𝐼𝛿(𝑢) + 𝐶2
(𝑑−𝑝)𝑛𝛿𝑝, 

The conclusion of i) follows. 

Step 2: Proof of ii): Summing (78) with respect to 𝑘 from 𝑚 to +∞, we obtain 
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∫
|𝑢(𝑥)|𝑝

|𝑥|𝑝

1

ℝ𝑑 

𝑑𝑥 ≤ 𝐶 ∑ 2(𝑑−𝑝)𝑘
+∞

𝑘=𝑚

 |∫ 𝑢
2

𝐴𝑘

|

𝑝

𝐶𝐼𝛿(𝑢) + 𝐶2
(𝑑−𝑝)𝑚𝛿𝑝,                  (81) 

since  𝑝 > 𝑑. We also have, by (73), for 𝑘 ∈ ℤ,  

                 |∫ 𝑢 −
2

𝐴𝑘

∫ 𝑢
2

𝐴𝑘+1

|

𝑝

≤ 𝐶(2−(𝑑−𝑝)𝑘  𝐼𝛿(𝑢, 𝐴𝑘 ∪ 𝐴𝑘+1) + 𝛿
𝑝)
1 𝑝⁄
. 

This implies that 

           |∫ 𝑢
2

𝐴𝑘+1

|

𝑝

≤ |∫ 𝑢
2

𝐴𝑘

| + 𝐶(2−(𝑑−𝑝)𝑘  𝐼𝛿(𝑢, 𝐴𝑘 ∪ 𝐴𝑘+1) + 𝛿
𝑝)
1 𝑝⁄
. 

Applying Lemma (6.2.4), we have 

 

                       |∫ 𝑢
2

𝐴𝑘+1

|

𝑝1

≤
1 + 2𝑑−𝑝

2𝑑−𝑝+1
|∫ 𝑢

2

𝐴𝑘

|

𝑝

+ 𝐶(2−(𝑑−𝑝)𝑘  𝐼𝛿(𝑢, 𝐴𝑘 ∪ 𝐴𝑘+1) + 𝛿
𝑝). 

It follows that, with 𝑐 = (1 + 2(𝑑−𝑝) 2⁄ < 1, 

              2(𝑑−𝑝)(𝑘+1)  |∫ 𝑢
2

𝐴𝑘+1

|

𝑝𝑝

≤ c2(𝑑−𝑝)𝑘 |∫ 𝑢
2

𝐴𝑘

|

p

+ 𝐶( 𝐼𝛿(𝑢, 𝐴𝑘 ∪ 𝐴𝑘+1) + 2
(𝑑−𝑝)𝑘𝛿𝑝). 

We derive that 

∑ 2(𝑑−𝑝)𝑘
+∞

𝑘=𝑚

 |∫ 𝑢
2

𝐴𝑘

|

𝑝

≤ 𝐶𝐼𝛿(𝑢) + 𝐶2
(𝑑−𝑝)𝑚𝛿𝑝.                                 (82) 

A combination of (81) and (82) yields 

                   ∫
|𝑢(𝑥)|𝑝

|𝑥|𝑝

1

ℝ𝑑 

𝑑𝑥 ≤ 𝐶𝐼𝛿(𝑢) + 𝐶2
(𝑑−𝑝)𝑚𝛿𝑝 

The conclusion of ii) follows. 

Step 3: Proof of iii): Let 𝛼 > 0. Summing (78) with respect to 𝑘 from 𝑚 to 𝑛, we obtain 

                 ∫
|𝑢(𝑥)|𝑑

 |𝑥|𝑑  ln𝛼+1(2𝑅 |𝑥|⁄ ) 2

2

{2𝑚<|𝑥|<2𝑛}

𝑑𝑥 

≤ 𝐶 ∑
1

(𝑛 − 𝑘 + 1)𝛼+1

𝑛

𝑘=𝑚

|∫ 𝑢
2

𝐴𝑘

|

𝑝

+ 𝐶𝐼𝛿(𝑢) + 𝐶(𝑛 −𝑚)𝛿
𝑝        (83) 

We also have, by (73), for 𝑘 ∈ ℤ, 

           |∫ 𝑢
2

𝐴𝑘

|

𝑝

≤ |∫ 𝑢
2

𝐴𝑘+1

| + 𝐶( 𝐼𝛿(𝑢, 𝐴𝑘 ∪ 𝐴𝑘+1)
1 𝑑⁄ + 𝛿)                  (84) 

By applying Lemma (6.2.4) with 

             𝑐 =
(𝑛 − 𝑘 + 1)𝛼

(𝑛 − 𝑘 + 1 2⁄ )𝛼
, 

it follows from (84) that, for  𝑚 ≤ 𝑘 ≤ 𝑛, 

                           
1

(𝑛 − 𝑘 + 1)𝛼
|∫ 𝑢

2

𝐴𝑘

|

𝑝

≤
1

(𝑛 − 𝑘 + 1 2⁄ )𝛼
|∫ 𝑢

2

𝐴𝑘+1

|

𝑝

 

+𝐶(𝑛 − 𝑘 + 1)𝑑−1−𝛼( 𝐼𝛿(𝑢, 𝐴𝑘 ∪ 𝐴𝑘+1) + 𝛿
𝑝)           (85) 

We have, 𝑚 ≤ 𝑘 ≤ 𝑛, 
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1

(𝑛 − 𝑘 + 1)𝛼
−

1

(𝑛 − 𝑘 + 3 2⁄ )𝛼
~

1

(𝑛 − 𝑘 + 1)𝛼
.                       (86) 

Taking   𝛼 = 𝑑 − 1 and combining (85) and (86) yield 

            ∑
1

(𝑛 − 𝑘 + 1)𝑑

𝑛

𝑘=𝑚

|∫ 𝑢
2

𝐴𝑘

|

𝑑

≤ 𝐶𝐼𝛿(𝑢) + 𝐶(𝑛 −𝑚)𝛿
𝑑 .                   (87) 

From (83) and (87), we obtain 

                           ∫
|𝑢(𝑥)|𝑑

 |𝑥|𝑑  ln𝛼+1(2𝑅 |𝑥|⁄ ) 2

2

{|𝑥|>2𝑚}

𝑑𝑥 ≤ 𝐶𝐼𝛿(𝑢) + 𝐶(𝑛 −𝑚)𝛿
𝑑 . 

This implies the conclusion of iii). 

Step 4 Proof of  iv ): Let  𝛼 > 0. Summing (78) with respect to 𝑘 from 𝑚 to 𝑛, we obtain 

∫
|𝑢(𝑥)|𝑑

 |𝑥|𝑑  ln𝛼+1(2|𝑥| 𝑅⁄ ) 2

2

{2𝑚<|𝑥|<2𝑛}

𝑑𝑥

≤ ∑
1

(𝑘 −𝑚 + 1)𝛼+1

𝑛

𝑘=𝑚

|∫ 𝑢
2

𝐴𝑘

|

𝑑

𝐶𝐼𝛿(𝑢) + 𝐶𝛿
𝑑                         (88) 

We have, by (73), for 𝑘 ∈ 𝑍, 

           |∫ 𝑢
2

𝐴𝑘+1

|

𝑝

≤ |∫ 𝑢
2

𝐴𝑘

| + 𝐶( 𝐼𝛿(𝑢, 𝐴𝑘 ∪ 𝐴𝑘+1)
1 𝑑⁄ + 𝛿)                       (89) 

By applying Lemma (6.2.4) with 

             𝑐 =
(𝑛 − 𝑘 + 1)𝛼

(𝑛 − 𝑘 + 1 2⁄ )𝛼
, 

it follows from (89) that, for  𝑚 ≤ 𝑘 + 1 ≤ 𝑛, 

1

(𝑘 −𝑚 + 1)𝛼
|∫ 𝑢

2

𝐴𝑘+1

|

𝑑𝑝

≤
1

(𝑘 −𝑚 + 1 2⁄ )𝛼
|∫ 𝑢

2

𝐴𝑘

|

𝑑

                                          

+𝐶(𝑘 −𝑚 + 1)𝑑−1−𝛼( 𝐼𝛿(𝑢, 𝐴𝑘 ∪ 𝐴𝑘+1)
1 𝑑⁄ + 𝛿𝑑).    (90) 

We have,  𝑚 ≤ 𝑘 + 1 ≤ 𝑛, 

   
1

(𝑘 − 𝑚 + 1)𝛼
−

1

(𝑘 −𝑚 + 3 2⁄ )𝛼
~

1

(𝑘 −𝑚 + 1)𝛼+1
.                  (91) 

Taking   𝛼 = 𝑑 − 1 and combining (90) and (91) yield 

 

∑
1

(𝑘 −𝑚 + 1)𝑑

𝑛

𝑘=𝑚

|∫ 𝑢
2

𝐴𝑘

|

𝑑

≤ 𝐶𝐼𝛿(𝑢) + 𝐶(𝑛 −𝑚)𝛿
𝑑 .                 (92) 

From (88) and (92), we obtain 

∫
|𝑢(𝑥)|𝑑

 |𝑥|𝑑  ln𝛼+1(2|𝑥| 𝑅⁄ ) 2

2

{2𝑚<|𝑥|<2𝑛}

𝑑𝑥 ≤ 𝐶𝐼𝛿(𝑢) + 𝐶(𝑛 −𝑚)𝛿
𝑑          

This implies the conclusion of iv ). 

    The proof is complete. 

    In the proof of  Theorem (6.2.1), we use the following result 

Lemma (6.2.6)[226]: Let 1 < 𝑝 < 𝑑,  be a smooth bounded open subset of  ℝ𝑑, and 𝜐 ∈
𝐿𝑝(Ω). We have 

‖𝑢‖
𝐿𝑝

∗
(Ω)

≤ 𝐶Ω(𝐼𝛿(𝑢)
1 𝑝⁄ + ‖𝑢‖𝐿𝑝 + 𝛿), 
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where  𝑝∗: = 𝑑𝑝 (𝑑 − 𝑝)⁄  denotes the Sobolev exponent of 𝑝. 
Proof:  For  𝜏 > 0, let us set  

          Ω𝜏 ≔ {𝑥 ∈ ℝ𝑑:  dist(𝑥, Ω) < 𝜏}. 
Since  is smooth, by [116], there exists  𝜏 > 0 small enough and an extension 𝑈 of  𝑢 in  

Ω𝜏 such that 

𝐼𝛿(𝑈, Ω)      𝑎𝑛𝑑   ‖𝑈‖𝐿𝑝Ω𝜏 ≤ 𝐶‖𝑈‖𝐿𝑝(Ω),                               (93) 

for   0 < 𝛿 < 1. Fix such a  𝜏 . Let 𝜑 ∈ 𝐶1(ℝ𝑑) such that 

supp 𝜑 ⊂ Ω2𝜏 3⁄ ,       𝜑 = 1  in Ω𝜏 3⁄ ,      0 ≤ 𝜑 ≤ 1  in ℝ
𝑑 .             

Define  𝜐 = 𝜑𝑈  in  ℝ𝑑 . We claim that 

𝐼2𝛿(𝜐) ≤ 𝐶 (𝐼𝛿(𝑈, Ω) + ‖𝑢‖𝐿𝑝(Ω)
𝑝 ‖𝑢‖𝐿𝑝).                     (94) 

Indeed, set 

                       𝑓(𝑥, 𝑦) =  
𝛿𝑝

|𝑥 − 𝑦|𝑑+𝑝
𝕝{|𝜐(𝑥)−𝜐(𝑦)|>2𝛿}. 

We estimate   𝐼2𝛿(𝜐). We have 

∫∫ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦
2

Ω×ℝ𝑑
≤ ∫∫ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦

2

Ω𝜏 3⁄ ×Ω𝜏 3⁄

+∫∫ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦
2

Ω𝜏×ℝ
𝑑          

{|𝑥−𝑦|>𝜏 4⁄ }

, 

and, since 𝜏 = 0  in  Ω𝜏\ Ω2𝜏 3⁄ , 

           ∫∫ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦
2

(ℝ𝑑\Ω𝜏)×ℝ
𝑑 

, 

≤ ∫∫ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦
2

(ℝ𝑑\Ω𝜏)×(ℝ
𝑑\Ω𝜏)

+∫∫ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦
2

Ω𝜏×ℝ
𝑑          

{|𝑥−𝑦|>𝜏 4⁄ }

           

     ∫∫ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦
2

(Ω𝜏\Ω𝜏)×ℝ
𝑑 

≤ ∫∫ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦
2

(Ω𝜏\Ω)×(Ω𝜏\Ω) 

 

+∫∫ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦
2

Ω𝜏 3⁄ ×Ω𝜏 3⁄

+∫∫ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦
2

Ω𝜏×ℝ
𝑑          

{|𝑥−𝑦|>𝜏 4⁄ }

.       

It is clear that, by (93), 

∫∫ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦
2

Ω𝜏 3⁄ ×Ω𝜏 3⁄

≤ 𝐶𝐼𝛿(𝑢, Ω),                                             (95) 

by the fact that   𝜑 = 0  in  ℝ𝑑\Ω𝜏  , 

∫∫ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦
2

(ℝ𝑑\Ω𝜏)×(ℝ
𝑑\Ω𝜏)

= 0,                                          (96) 

and, by a straightforward computation, 

∫∫ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦
2

Ω𝜏×ℝ
𝑑          

{|𝑥−𝑦|>𝜏 4⁄ } 

≤ 𝐶𝛿𝑝.                                        (97) 

We have, for  𝑥, 𝑦 ∈ ℝ𝑑 , 

                            𝜐(𝑥) − 𝜐(𝑦) = 𝜑(𝑥)(𝑈(𝑥) − 𝑈(𝑦)) + 𝑈(𝑦)(𝜑(𝑥) − 𝜑(𝑦)). 
It follows that if  |𝜐(𝑥) − 𝜐(𝑦)| > 2𝛿 then either 

                         |𝑈(𝑥) − 𝑈(𝑦)| ≥ |𝜑(𝑥)(𝑈(𝑥) − 𝑈(𝑦))| > 𝛿 

or 
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                         𝐶|𝑈(𝑦)||𝑥 − 𝑦| ≥ |𝑈(𝑦)(𝜑(𝑥) − 𝜑(𝑦))| > 𝛿. 
We thus derive that 

                  ∫∫ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦
2

(Ω𝜏\Ω)×(Ω𝜏\Ω) 

≤ ∫ ∫
𝛿𝑝

|𝑥 − 𝑦|𝑑+𝑝

2

(Ω𝜏\Ω)
2

2

 (Ω𝜏\Ω)                       

      {|𝑈(𝑥)−𝑈(𝑦)|>𝛿}

𝑑𝑥𝑑𝑦 

                                                                         +∫ ∫
𝛿𝑝

|𝑥 − 𝑦|𝑑+𝑝

2

(Ω𝜏\Ω)
2

2

 (Ω𝜏\Ω)                       

      {|𝑥−𝑦|>𝐶𝛿 |𝑈(𝑦)|⁄ }

𝑑𝑥𝑑𝑦. 

A straightforward computation yields 

∫ ∫
𝛿𝑝

|𝑥 − 𝑦|𝑑+𝑝

2

(Ω𝜏\Ω)
2

2

 (Ω𝜏\Ω)                       

      {|𝑥−𝑦|>𝐶𝛿 |𝑈(𝑦)|⁄ }

𝑑𝑥𝑑𝑦 ≤ ∫ 𝑑𝑦
2

Ω𝜏

∫
𝛿𝑝

|𝑥 − 𝑦|𝑑+𝑝

2

{|𝑥−𝑦|>𝐶𝛿 |𝑈(𝑦)|⁄ }

𝑑𝑥 

                                           = 𝐶 ∫ |𝑈(𝑦)|𝑝𝑑𝑦
2

Ω𝜏

. 

Using (93), we deduce from (98) that 

∬ 𝑓(𝑥, 𝑦) = 𝑑𝑥𝑑𝑦 ≤ 𝐶𝐼𝛿

2

(Ω𝜏\Ω)×(Ω𝜏\Ω)

(𝑢, Ω) + 𝐶‖𝑢‖𝐿𝑝(Ω)
𝑝

                         (99) 

A combination of (95), (96), (3.5), and (99) yields Claim (94). By applying [128] and 

using the fact supp  𝜐 ⊂ Ω𝜏  , we have 

‖𝜐‖
𝐿𝑝

∗
(ℝ𝑑)

≤ 𝐶𝐼2𝛿(𝜐)
1 𝑝⁄ + 𝐶𝛿.                                                        (100) 

The conclusion now follows from Claim (94). 

Corollary (6.2.7)[226]: Let  𝑑 ≥ 2, 1 < 𝑝 < 𝑑, 0 < 𝑟 < 𝑅, and  𝜆 > 0, and set 

𝜆𝐷 ≔ {𝜆𝑥 ∈ ℝ𝑑  ∶   𝑟 < |𝑥| < 𝑅}. 
We have, for 1 ≤ 𝑞 ≤ 𝑞∗, 

           (∫ 𝑢
2

𝜆𝐷

|∫ 𝑢(𝑥) −
2

𝜆𝐷

|

𝑞

𝑑𝑥)

1 𝑞⁄

≤ 𝐶𝑟,𝑅(𝜆
𝑝−1𝐼𝛿(𝑢, 𝜆𝐷) + 𝛿

2)1 𝑝⁄ ,    for 𝑢 ∈ 𝐿𝑝(𝜆𝐷), 

where  𝐶𝑟,𝑅  denotes a positive constant independent of  𝑢, 𝛿, and 𝜆. 
    Here is an application of Corollaries (6.2.7) which plays a crucial role in the proof of 

Theorem (6.2.10) below. 

Lemma (6.2.8)[226]: Let 𝑑 ≥ 1, 1 < 𝑝 < 𝑑, 𝑞 ≥ 1, 𝜏 > 0, and 0 ≤ 𝑎 ≤ 1 be such that 
1

𝜏
≥ 𝑎 (

1

𝑝
−
1

𝑑
) +

1 − 𝑎

𝑞
. 

Let  0 < 𝑟 < 𝑅, and  𝜆 > 0 and set 

               𝜆𝐷 ≔ {𝜆𝑥 ∈ ℝ𝑑  ∶   𝑟 < |𝑥| < 𝑅}. 
Then, for  𝑢 ∈ 𝐿1(𝜆𝐷), 

(∫ |𝑢 − ∫ 𝑢
𝜆𝐷

|

𝜏2

𝜆𝐷

𝑑𝑥)

1 𝜏⁄

≤ 𝐶(𝜆𝑝−𝑑𝐼𝛿(𝑢, 𝜆𝐷) + 𝛿
𝑝)𝑎 𝑝⁄ (∫ |𝑢 − ∫ 𝑢

2

𝜆𝐷

|

𝑞2

𝜆𝐷

𝑑𝑥)

(1−𝑎) 𝑞⁄

, 

for some positive constant 𝐶 independent of  𝑢, 𝜆, and 𝛿.  
Proof:  Let 𝜏, 𝜎, 𝑡 > 0, be such that 

            
1

𝜏
≥
𝑎

𝜎
+
1 − 𝑎

𝑡
. 

We have, by a standard interpolation inequality, that 
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     (∫ |𝑢 − ∫ 𝑢
2

𝜆𝐷

|

𝜏2

𝜆𝐷

𝑑𝑥)

1 𝜏⁄

≤ (∫ |𝑢 − ∫ 𝑢
2

𝜆𝐷

|

𝜎2

𝜆𝐷

𝑑𝑥)

𝑎 𝜎⁄

(∫ |𝑢 − ∫ 𝑢
2

𝜆𝐷

|

𝑡2

𝜆𝐷

𝑑𝑥)

(1−𝑎) 𝑡⁄

. 

Applying this inequality with 𝜎 = 𝑝∗ and 𝑡 = 𝑞 and using Corollary (6.2.7), one obtains 

the conclusion. 

Lemma(6.2.9)[226]:(Nirenberg's interpolation inequality).Let  𝑑 ≥ 1, 𝑝 ≥ 1, 𝑞 ≥ 1, 𝜏 ≥
0, and 0 ≤ 𝑎 ≤ 1 be such that 

1

𝜏
≥ 𝑎 (

1

𝑝
−
1

𝑑
) +

1 − 𝑎

𝑞
. 

Let 0 < 𝑟 < 𝑅, and  𝜆 > 0 and set   

                 𝜆𝐷 ≔ {𝜆𝑥 ∈ ℝ𝑑  ∶   𝑟 < |𝑥| < 𝑅}. 
Then, for  𝑢 ∈ 𝐿1(𝜆𝐷), 

             (∫ |𝑢 − ∫ 𝑢
2

𝜆𝐷

|

𝜏2

𝜆𝐷

𝑑𝑥)

1 𝜏⁄

≤ 𝐶‖∇𝑢‖𝐿𝑝(𝜆𝐷)
𝑎 𝐶‖𝑢‖𝐿𝑞(𝜆𝐷)

1−𝑎 , 

for some positive constant 𝐶 independent of  𝑢, 𝜆, and 𝛿 . 

    We prove the following more general version of  Theorem (6.2.1): 

Theorem (6.2.10)[226]: Let 𝑝 ≥ 1, 𝑞 ≥ 1, 𝜏 > 0, 0 < 𝑎 ≤ 1, 𝛼 , 𝛽, 𝛾 ∈ ℝ  be such that 

  
1

𝜏
+
𝛾

𝑑
= 𝑎 (

1

𝑝
+
𝛼 − 1

𝑑
) + (1 − 𝑎) (

1

𝑞
+
𝛽

𝑑
),                       (101) 

and, with  𝛾 = 𝑎𝜎 + (1 − 𝑎)𝛽, 
0 ≤ 𝛼 − 𝜎 ≤ 1. 

Set, for  𝑘 ∈ ℤ , 

𝐼𝛿(𝑘, 𝑢) ≔ {
 𝐼𝛿(𝑢, 𝐴𝑘 ∪ 𝐴𝑘+1, 𝛼) + 2

𝑘(𝛼𝑝+𝑑−𝑝)𝛿𝑝 if  1 < 𝑝 < 𝑑,

‖|𝑥𝛼|∇𝑢‖𝐿𝑝(𝐴𝑘∪𝐴𝑘+1)
𝑝

otherwise.
          (102) 

We have, for  𝑢 ∈ 𝐿𝑙𝑜𝑐
𝑝
 (ℝ𝑑) and 𝑚,𝑛 ∈ ℤ  with  𝑚 < 𝑛, 

i) if  1 𝜏⁄ + = 𝛾 𝑑⁄ > 0 and supp 𝑢 ⊂ 𝐵2𝑛  , then 

                 (∫ |𝑥|𝛾𝜏
2

ℝ𝑑\𝐵2𝑚
2

|𝑢|𝜏𝑑𝑥)

1 𝜏⁄

≤ 𝐶 ( ∑ 𝐼𝛿(𝑘, 𝑢)

𝑛

𝑘=𝑚−1

)

𝑎 𝑝⁄

𝐶‖|𝑥|𝛽𝑢‖
𝐿𝑞(ℝ𝑑)

(1−𝑎)
, 

ii) if  1 𝜏⁄ + = 𝛾 𝑑⁄ < 0 and supp 𝑢 ∈ ℝ𝑑\𝐵2𝑚 , then 

       (∫ |𝑥|𝛾𝜏
2

𝐵2𝑛
2

|𝑢|𝜏𝑑𝑥)

1 𝜏⁄

≤ 𝐶 ( ∑ 𝐼𝛿(𝑘, 𝑢)

𝑛

𝑘=𝑚−1

)

𝑎 𝑝⁄

𝐶‖|𝑥|𝛽𝑢‖
𝐿𝑞(ℝ𝑑)

(1−𝑎)
, 

iii) if  1 𝜏⁄ + 𝛾 𝑑⁄ = 0, 𝜏 > 1, and supp 𝑢 ⊂ 𝐵2𝑛 , then 

            (∫
|𝑥|𝛾𝜏

  ln𝜏(2𝑛+1 |𝑥|⁄ ) 2

2

ℝ𝑑\𝐵2𝑚
2

|𝑥|𝜏𝑑𝑥)

1 𝜏⁄

≤ 𝐶 ( ∑ 𝐼𝛿(𝑘, 𝑢)

𝑛

𝑘=𝑚−1

)

𝑎 𝑝⁄

‖|𝑥|𝛽𝑢‖
𝐿𝑞(ℝ𝑑)

(1−𝑎)
, 

iv) if  1 𝜏⁄ + 𝛾 𝑑⁄ = 0, 𝜏 > 1, and supp 𝑢 ∈ ℝ𝑑\𝐵2𝑚 , then 

            (∫
|𝑥|𝛾𝜏

  ln𝜏(2𝑛+1 |𝑥|⁄ ) 2

2

𝐵2𝑛
2

|𝑥|𝜏𝑑𝑥)

1 𝜏⁄

≤ 𝐶 ( ∑ 𝐼𝛿(𝑘, 𝑢)

𝑛

𝑘=𝑚−1

)

𝑎 𝑝⁄

‖|𝑥|𝛽𝑢‖
𝐿𝑞(ℝ𝑑)

(1−𝑎)
. 

Here 𝐶 denotes a positive constant independent of  𝑢, 𝛿, 𝑘, 𝑛, and 𝑚. 
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Proof: We only present the proof in the case 1 < 𝑝 < 𝑑. The proof for the other case 

follows similarly, however instead of using Lemma (6.2.8), one applies Lemma (6.2.9). 

We now assume that 1 < 𝑝 < 𝑑. Since   𝜎 − 𝛼 ≥ 0 , by Lemma (6.2.8), we have 

(∫ |𝑢 − ∫ 𝑢
2

𝐴𝑘

|

𝜏2

𝐴𝑘

𝑑𝑥)

1 𝜏⁄

≤ 𝐶(2−(𝑑−𝑝)𝑘𝐼𝛿(𝑢, 𝐴𝑘) + 𝛿
𝑝)
𝑎 𝑝⁄

(∫ |𝑢|𝑞
2

𝐴𝑘

)

(1−𝑎) 𝑞⁄

.        (103) 

Using (101), we derive from (103) that 

      ∫ |𝑥|𝛾𝜏
2

𝐴𝑘
2

|𝑢|𝜏𝑑𝑥 

≤ 𝐶2(𝛾𝜏+𝑑)𝑘 |∫ 𝑢
2

𝐴𝑘
2

|

𝜏

+ 𝐶( 𝐼𝛿(𝑢, 𝐴𝑘, 𝛼) + 2
𝑘(𝛼𝑝+𝑑−𝑝)𝛿𝑝)

𝑎𝜏 𝑝⁄
‖|𝑥|𝛽𝑢‖

𝐿𝑞(𝐴𝑘)

(1−𝑎)𝜏
.    (104) 

Step 1: Proof of i). Summing (104) with respect to 𝑘 from 𝑚 to 𝑛, we obtain 

∫  |𝑥|𝛾𝜏
2

{|𝑥|>2𝑚}
2

|𝑢|𝜏𝑑𝑥 ≤ 𝐶 ∑ 2(𝛾𝜏+𝑑)𝑘
𝑛

𝑘=𝑚

|∫ 𝑢
2

𝐴𝑘
2

|

𝜏

       

+𝐶 ∑( 𝐼𝛿(𝑢, 𝐴𝑘 , 𝛼) + 2
𝑘(𝛼𝑝+𝑑−𝑝)𝛿𝑝)

𝑎𝜏 𝑝⁄
𝑛

𝑘=𝑚

‖|𝑥|𝛽𝑢‖
𝐿𝑞(𝐴𝑘)

(1−𝑎)𝜏
.      (105) 

By Lemma (6.2.8), we have 

           |∫ 𝑢
2

𝐴𝑘

|

𝑝

≤ |∫ 𝑢
2

𝐴𝑘+1

| + 𝐶(2−(𝑑−𝑝) 𝐼𝛿(𝑢, 𝐴𝑘 ∪ 𝐴𝑘+1) + 𝛿
𝑝)
𝑎 𝑝⁄

(∫ |𝑢|𝑞
2

𝐴𝑘∪𝐴𝑘+1

)

(1−𝑎)
𝑎

. 

Applying Lemma (6.2.4), we derive that 

                 |∫ 𝑢
2

𝐴𝑘

|

𝜏2

≤
2𝛾𝜏+𝑑+1

1 + 2𝛾𝜏+𝑑
|∫ 𝑢

2

𝐴𝑘+1

|

𝜏

 

+𝐶(2−(𝑑−𝑝)𝑘 𝐼𝛿(𝑢, 𝐴𝑘 ∪ 𝐴𝑘+1) + 𝛿
𝑝)
𝑎 𝑝⁄

(∫ |𝑢|𝑞
2

𝐴𝑘∪𝐴𝑘+1

)

(1−𝑎)
𝑞

. 

It follows that, with  𝑐 = 2 (1 + 2𝛾𝜏+𝑑)⁄ < 1, 

            2(𝛾𝜏+𝑑)𝑘 |∫ 𝑢
2

𝐴𝑘

|

𝜏

≤ 𝑐2(𝛾𝜏+𝑑)(𝑘+1) |∫ 𝑢
2

𝐴𝑘+1

|

𝜏

 

+𝐶( 𝐼𝛿(𝑢, 𝐴𝑘 ∪ 𝐴𝑘+1, 𝛼) + 2
𝑘(𝛼𝑝+𝑑−𝑝)𝛿𝑝)

𝜏𝑎 𝑝⁄
‖|𝑥|𝛽𝑢‖

𝐿𝑞(𝐴𝑘∪𝐴𝑘+1)

(1−𝑎)𝜏
.    

This yields 

∑ 2(𝛾𝜏+𝑑)𝑘
𝑛

𝑘=𝑚

|∫ 𝑢
2

𝐴𝑘
2

|

𝜏

       

≤ 𝐶 ∑( 𝐼𝛿(𝑢, 𝐴𝑘 ∪ 𝐴𝑘+1, 𝛼) + 2
𝑘(𝛼𝑝+𝑑−𝑝)𝛿𝑝)

𝑎𝜏 𝑝⁄
𝑛

𝑘=𝑚

‖|𝑥|𝛽𝑢‖
𝐿𝑞(𝐴𝑘∪𝐴𝑘+1)

(1−𝑎)𝜏
.   (106) 

Combining (105) and (106) yields 

     ∫ |𝑥|𝛾𝜏
2

{|𝑥|>2𝑚}
2

|𝑢|𝜏𝑑𝑥 
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≤ 𝐶 ∑ ( 𝐼𝛿(𝑢, 𝐴𝑘 ∪ 𝐴𝑘+1, 𝛼) + 2
𝑘(𝛼𝑝+𝑑−𝑝)𝛿𝑝)

𝑎𝜏 𝑝⁄
𝑛

𝑘=𝑚−1

‖|𝑥|𝛽𝑢‖
𝐿𝑞(𝐴𝑘∪𝐴𝑘+1)

(1−𝑎)𝜏
.    (107) 

Applying the inequality, for  𝑠 ≥ 0, 𝑡 ≥ 0  with  𝑠 + 𝑡 ≥ 1, and for  𝑥𝑘 ≥ 0  and 𝑦𝑘 ≥ 0, 

∑ 𝑥𝑘
𝑠

𝑛

𝑘=𝑚

𝑦𝑘
𝑡 ≤ 𝐶𝑠,𝑡 (∑ 𝑥𝑘

𝑛

𝑘=𝑚

)

𝑠

(∑ 𝑦𝑘

𝑛

𝑘=𝑚

)

𝑡

, 

to  𝑠 = 𝑎𝜏 𝑝⁄  and  𝑡 = (1 − 𝑎)𝜏 𝑞⁄  , we obtain from (107) that 

∫ |𝑥|𝛾𝜏
2

{|𝑥|>2𝑚}
2

|𝑢|𝜏𝑑𝑥 ≤ 𝐶 (∑  𝐼𝛿(𝑘, 𝑢)

𝑛

𝑘=𝑚

)

𝜏𝑎 𝑝⁄

‖|𝑥|𝛽𝑢‖
𝐿𝑞(ℝ𝑑)

(1−𝑎)𝜏
                       (108) 

since  𝑎 𝑝⁄ + (1 − 𝑎) 𝑞⁄ ≥ 1 𝜏⁄  thanks to the fact  𝛼 − 𝜎 − 1 ≤ 0. 
Step 2: Proof of ii): The proof is in the spirit of the proof of ii) of Theorem (6.2.5).  

Step 3: Proof of iii): Fix  𝜉 > 0. Summing (104) with respect to 𝑘 from 𝑚 to 𝑛, we obtain 

    ∫
1

  ln1+𝜉(𝜏 |𝑥|⁄ ) 2
|𝑥|𝛾𝜏

2

{|𝑥|>2𝑚}
2

|𝑢|𝜏𝑑𝑥 

≤ 𝐶 ∑
1

(𝑛 − 𝑘 + 1)1+𝜉
|∫ 𝑢

2

𝐴𝑘
2

|

𝜏

𝐶 ∑( 𝐼𝛿(𝑢, 𝐴𝑘 , 𝛼)

𝑛

𝑘=𝑚

𝑛

𝑘=𝑚

+ 2𝑘(𝛼𝑝+𝑑−𝑝)𝛿𝑝)
𝑎𝜏 𝑝⁄

‖|𝑥|𝛽𝑢‖
𝐿𝑞(𝐴𝑘)

(1−𝑎)𝜏
.                                    (109) 

By Lemma (6.2.8), we have 

 |∫ 𝑢
2

𝐴𝑘

|

𝑝

≤ |∫ 𝑢
2

𝐴𝑘+1

| + 𝐶(2−(𝑑−𝑝)𝑘 𝐼𝛿(𝑢, 𝐴𝑘 ∪ 𝐴𝑘+1) + 𝛿
𝑝)
𝑎 𝑝⁄

(∫ |𝑢|𝑞
2

𝐴𝑘∪𝐴𝑘+1

)

(1−𝑎)
𝑞

. 

Applying Lemma (6.2.4) with 

𝑐 =
(𝑛 − 𝑘 + 1)𝜉

(𝑛 − 𝑘 + 1 2⁄ )𝜉
, 

we deduce that 

              
1

(𝑛 − 𝑘 + 1)𝜉
|∫ 𝑢

2

𝐴𝑘
2

|

𝜏

≤
1

(𝑛 − 𝑘 + 1 2⁄ )𝜉
|∫ 𝑢

2

𝐴𝑘+1
2

|

𝜏

 

+𝐶(𝑛 − 𝑘 + 1)𝜏−1−𝜉(2−(𝑑−𝑝)𝑘  𝐼𝛿(𝑢, 𝐴𝑘 ∪ 𝐴𝑘+1)

+ 𝛿𝑝)
𝑎𝜏 𝑝⁄

(∫ |𝑢|𝑞
2

𝐴𝑘∪𝐴𝑘+1

)

(1−𝑎)𝜏
𝑞

.                                             (110) 

Recall that, for 𝑘 ≤ 𝑛 and 𝜉 > 0, 
1

(𝑛 − 𝑘 + 1)𝜉
−

1

(𝑛 − 𝑘 + 3 2⁄ )𝜉
~

1

(𝑛 − 𝑘 + 1)𝜉+1
.                (111) 

Taking  𝜉 = 𝜏 − 1, we derive from (110) and (111) that 

∑ 2(𝛾𝜏+𝑑)𝑘
1

(𝑛 − 𝑘 + 1)𝜏
|∫ 𝑢

2

𝐴𝑘
2

|

𝜏

≤ ∑ 𝐶( 𝐼𝛿(𝑘, 𝑢))
𝑎𝜏 𝑝⁄

𝑛

𝑘=𝑚

𝑛

𝑘=𝑚

‖|𝑥|𝛽𝑢‖
𝐿𝑞(𝐴𝑘∪𝐴𝑘+1)

(1−𝑎)𝜏
.     (112) 

Combining (109) and (112), as in (108), we obtain 
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∫
|𝑥|𝛾𝜏

  ln𝜏(2𝑛+1 |𝑥|⁄ ) 2
|𝑢|𝜏

2

{|𝑥|>2𝑚}
2

𝑑𝑥 ≤ 𝐶 (∑  𝐼𝛿(𝑘, 𝑢)

𝑛

𝑘=𝑚

)

𝑎𝜏 𝑝⁄

‖|𝑥|𝛽𝑢‖
𝐿𝑞(ℝ𝑑)

(1−𝑎)𝜏
. 

Step 4: Proof of iv ): The proof is in the spirit of the proof of iv) of Theorem (6.2.5).  

    The proof is complete. 

Proposition (6.2.11)[226]: Let  𝑝 ≥ 1 , 𝑞 ≥ 1, 𝜏 > 0, 0 < 𝑎 < 1, 𝛼 , 𝛽, 𝛾 ∈ ℝ   be such 

that 
1

𝜏
+
𝛾

𝑑
= 𝑎 (

1

𝑝
+
𝛼 − 1

𝑑
) + (1 − 𝑎) (

1

𝑞
+
𝛽

𝑑
), 

and, with  𝛾 =  𝑎𝜎 + (1 + 𝑎)𝛽, 

     𝛼 − 𝜎 > 1        𝑎𝑛𝑑    
1

𝜏
+
𝛾

𝑑
≠
1

𝑝
+
𝛼 − 1

𝑑
. 

We have, for  𝑢 ∈ 𝐶𝑐
1 (ℝ𝑑), 

      i) if  1 𝜏⁄ + 𝛾 𝑑⁄ > 0, then 

              (∫ |𝑥|𝛾𝜏
2

ℝ𝑑

2

|𝑢|𝜏𝑑𝑥)

1 𝜏⁄

≤ 𝐶‖|𝑥|𝛼∇𝑢‖
𝐿𝑝(ℝ𝑑)
𝑎 ‖|𝑥|𝛽𝑢‖

𝐿𝑞(ℝ𝑑)

(1−𝑎)
, 

     ii) if  1 𝜏⁄ + 𝛾 𝑑⁄ < 0 and supp 𝑢 ⊂ ℝ𝑑\ {0}, then 

                    (∫ |𝑥|𝛾𝜏
2

ℝ𝑑

2

|𝑢|𝜏𝑑𝑥)

1 𝜏⁄

≤ 𝐶‖|𝑥|𝛼∇𝑢‖
𝐿𝑝(ℝ𝑑)
𝑎 ‖|𝑥|𝛽𝑢‖

𝐿𝑞(ℝ𝑑)

(1−𝑎)
, 

for some positive constant 𝐶 independent of 𝑢. 
Proof:  The proof is in the spirit of the approach in [7] (see also [236]). Since 

1

𝑝
+
𝛼 − 1

𝑑
≠
1

𝑞
+
𝛽

𝑑
. 

by scaling, one might assume that 

              ‖|𝑥|𝛼∇𝑢‖𝐿𝑝(ℝ𝑑) = 1    and    ‖|𝑥|
𝛽𝑢‖

𝐿𝑞(ℝ𝑑)
= 1. 

Let 0 < 𝑎2 < 1 be such that 

|𝑎2 − 𝑎| is small enough,                                          (113) 
and set 

              
1

𝜏2
=
𝑎2
𝑝
+
1 − 𝑎2
𝑞

     and   𝛾2 = 𝑎2(𝛼 − 1) + (1 − 𝑎2)𝛽. 

We have 
1

𝜏2
+
𝛾2
𝑑
= 𝑎2 (

1

𝑝
+
𝛼 − 1

𝑑
) + (1 − 𝑎2) (

1

𝑞
+
𝛽

𝑑
).                   (114) 

Recall that 
1

𝜏
+
𝛾

𝑑
= 𝑎 (

1

𝑝
+
𝛼 − 1

𝑑
) + (1 − 𝑎) (

1

𝑞
+
𝛽

𝑑
).                         (115) 

Since  𝑎 > 0 and  𝛼 − 𝜎 > 1, it follows from (113) that  
1

𝜏
+
1

𝜏2
= 𝑎(1 − 𝑎2) (

1

𝑝
−
1

𝑞
) +

𝑎

𝑑
(𝛼 − 𝜎 − 1) > 0.            (116) 

We first choose 𝑎2 such that 

𝑎2 < 𝑎     if     
1

𝑝
+
𝛼 − 1

𝑑
<
1

𝑞
+
𝛽

𝑑
,                                       (117) 



262 

𝑎 < 𝑎2     if     
1

𝑝
+
𝛼 − 1

𝑑
>
1

𝑞
+
𝛽

𝑑
.                                      (118) 

Using (113), (117) and (118), we derive from (114), and (115) that 
1

𝜏
+
𝛾

𝑑
<
1

𝜏2
+
𝛾2
𝑑
     and   (

1

𝜏
−
𝛾

𝑑
) (

1

𝜏2
−
𝛾2
𝑑
) > 0.                          (119) 

It follows from (116), (119), and Holder's inequality that 

     ‖|𝑥|𝛾𝑢‖𝐿𝜏(ℝ𝑑\ 𝐵1) ≤ 𝐶‖|𝑥|
𝛾2𝑢‖𝐿𝛾2(ℝ𝑑). 

Applying Theorem (6.2.10), we have 

‖|𝑥|𝛾2𝑢‖𝐿𝜏2(ℝ𝑑) ≤ 𝐶‖|𝑥|
𝛼∇𝑢‖

𝐿𝑝(ℝ𝑑)

𝑎2 ‖|𝑥|𝛽𝑢‖
𝐿𝑞(ℝ𝑑)

(1−𝑎2)
≤ 𝐶, 

which yields 

‖|𝑥|𝛾𝑢‖𝐿𝜏(ℝ𝑑\ 𝐵1) ≤ 𝐶.                                                  (120) 

We next choose  𝑎2 such that 

𝑎 < 𝑎2     if     
1

𝑝
+
𝛼 − 1

𝑑
<
1

𝑞
+
𝛽

𝑑
,                                          (121) 

𝑎2 < 𝑎     if     
1

𝑝
+
𝛼 − 1

𝑑
>
1

𝑞
+
𝛽

𝑑
.                                         (122) 

Using (113), (121) and (122), we derive from (114), and (115) that 
1

𝜏2
+
𝛾2
𝑑
<
1

𝜏
+
𝛾

𝑑
     and   (

1

𝜏
−
𝛾

𝑑
) (

1

𝜏2
+
𝛾2
𝑑
) > 0.                              (123) 

It follows from (116), (123), and Holder's inequality that 

‖|𝑥|𝛾𝑢‖𝐿𝜏(𝐵1) ≤ 𝐶‖|𝑥|
𝛾2𝑢‖𝐿𝜏2(ℝ𝑑). 

Applying Theorem (6.2.10), we have 

‖|𝑥|𝛾2𝑢‖𝐿𝜏2(ℝ𝑑) ≤ 𝐶‖|𝑥|
𝛼∇𝑢‖

𝐿𝑝(ℝ𝑑)

𝑎2 ‖|𝑥|𝛽𝑢‖
𝐿𝑞(ℝ𝑑)

(1−𝑎2)
≤ 𝐶, 

which yields 

‖|𝑥|𝛾𝑢‖𝐿𝜏(ℝ𝑑\ 𝐵1) ≤ 𝐶.                                                           (124) 

The conclusion now follows from (120) and (124). 

Remark (6.2.12)[226]: Using the approach in the proof of [124], one can prove that, for 

𝑝 > 1, 

𝐼𝛿(𝑢, 𝛼) ≤ 𝐶∫ ∫ |𝑥|𝑝𝛼
2

𝕊𝑑−1

2

ℝ𝑑
|ℳ(𝜎, ∇𝑢)(𝑥)|𝑝𝑑𝜎𝑑𝑥,                            (125) 

where 

ℳ(𝜎, ∇𝑢)(𝑥) ≔ sup
𝑟>0

 
1

𝑟
∫ |∇𝑢(𝑥 + 𝑠𝜎) ∙ 𝜎|
𝑟

0

𝑑𝑠. 

We claim that, for  −1 𝑝⁄ < 𝛼 < 1 − 1 𝑝⁄ , it holds 

∫ |𝑥|𝑝𝛼
2

ℝ𝑑
|ℳ(𝜎, ∇𝑢)(𝑥)|𝑝𝑑𝜎𝑑𝑥 ≤ 𝐶∫ |𝑥|𝑝𝛼

2

ℝ𝑑
|∇𝑢(𝑥) ∙ 𝜎|𝑝𝑑𝑥,    𝑓𝑜𝑟 𝑎𝑙𝑙 𝜎 ∈ 𝕊𝑑−1.  (126) 

for some positive constant 𝐶 independent of 𝜎 and 𝑢. Then, combining (125) and (126) 

yields 

𝐼𝛿(𝑢, 𝛼) ≤ 𝐶∫ |𝑥|𝑝𝛼
2

ℝ𝑑
|∇𝑢|𝑝𝑑𝑥.                                         (127) 

For simplicity, we assume that  𝜎 = 𝑒𝑑 = (0,⋯ , 0,1) ∈ ℝ
𝑑 and prove (126). We have, for 

any bounded interval (𝑎, 𝑏) and for any  �́� ∈ ℝ𝑑−1 
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∫ (|�́�| + |𝑠|)𝑝𝛼
𝑏

𝑎

𝑑𝑠 (∫ (|�́�| + |𝑠|)−𝑝𝛼 (𝑝−1)⁄
𝑏

𝑎

𝑑𝑠)

𝑝−1

≤ 𝐶,                 (128) 

for some positive constant 𝐶  independent of (𝑎, 𝑏) and �́�  since  −1 𝑝⁄ < 𝛼 < 1 − 1 𝑝⁄ . 

Applying the theory of maximal functions with weights due to Muckenhoupt  [231] (see 

also [230] , which holds whenever the weight satisfies (128), we obtain 

∫ |𝑥|𝑝𝛼
2

ℝ𝑑
|ℳ(𝑒𝑑, ∇𝑢)(𝑥)|

𝑝𝑑𝑥 ≤ 𝐶∫ ∫ (|�́�| + |𝑥𝑑|)
𝑝𝛼

2

ℝ

2

ℝ𝑑−1
|ℳ(𝑒𝑑 , ∇𝑢)(�́�, 𝑥𝑑)|

𝑝𝑑𝑥𝑑𝑑�́�  

≤ 𝐶∫ ∫ (|�́�| + |𝑥𝑑|)
𝑝𝛼

2

ℝ

2

ℝ𝑑−1
|𝜕𝑥𝑑𝑢(�́�, 𝑥𝑑)|

𝑝
𝑑𝑥𝑑𝑑�́�              

≤ 𝐶∫ |𝑥|𝑝𝛼
2

ℝ𝑑
|∇𝑢|𝑝𝑑𝑥.                                                                

The claim (126) is proved. 

We present some results in the spirit of  Theorems (6.2.5) and (6.2.10) for a smooth 

bounded domain Ω. As a consequence of Theorem (6.2.5) and the extension argument in 

the proof of  Lemma (6.2.6), we obtain 

Proposition (6.2.13)[226]: Let 𝑑 ≥ 1, 1 ≤ 𝑝 ≤ 𝑑, Ω ⋐ 𝐵𝑅 𝑎 smooth open subset of  ℝ𝑑 , 
and 𝑢 ∈ 𝐿𝑝(Ω).We have 

    i) if  1 ≤ 𝑝 < 𝑑, then 

           ∫
|𝑢(𝑥)|𝑝

|𝑥|𝑝
𝑑𝑥

2

Ω

≤ 𝐶Ω (𝐼𝛿(𝑢, Ω) + ‖𝑢‖𝐿𝑝(Ω)
𝑝

+ 𝛿𝑝), 

    ii) if  𝑝 > 𝑑  and supp 𝑢 ⊂ Ω̅ \ 𝐵𝑟 , then  

     ∫
|𝑢(𝑥)|𝑝

|𝑥|𝑝
𝑑𝑥

2

Ω

≤ 𝐶Ω (𝐼𝛿(𝑢, Ω) + ‖𝑢‖𝐿𝑝(Ω)
𝑝

+ 𝑟𝑑−𝑝𝛿𝑝), 

    iii) if  𝑝 = 𝑑 ≥ 2, then 

                     ∫
|𝑢(𝑥)|𝑑

 |𝑥|𝑑  ln𝑑(2𝑅 |𝑥|⁄ ) 2
𝑑𝑥

2

Ω \ 𝐵𝑟

≤ 𝐶Ω (𝐼𝛿(𝑢, Ω) + ‖𝑢‖𝐿𝑝(Ω)
𝑝

+ ln(2𝑅 𝑟⁄ ) 𝛿𝑑), 

    iv) if  𝑝 = 𝑑 ≥ 2 and supp 𝑢 ⊂ Ω \ 𝐵𝑟  , then 

                     ∫
|𝑢(𝑥)|𝑑

 |𝑥|𝑑  ln𝑑(2|𝑥| 𝑟⁄ ) 2
𝑑𝑥

2

Ω ∩ 𝐵𝑅

≤ 𝐶Ω (𝐼𝛿(𝑢, Ω) + ‖𝑢‖𝐿𝑝(Ω)
𝑝

+ ln(2𝑅 𝑟⁄ ) 𝛿𝑑), 

Here 𝐶Ω denotes a positive constant depending only on 𝑝 and Ω. 

    Using Theorem (6.2.1), we derive 

Proposition (6.2.14)[226]: Let  𝑑 ≥ 2, 1 < 𝑝 < 𝑑, 𝑞 ≥ 1, 𝜏 > 0, 0 < 𝑎 ≤ 1, 𝛼, 𝛽 , 𝛾 ∈ ℝ,
0 ∈ Ω ⊂ 𝐵𝑅   𝑎 smooth bounded open subset of  ℝ𝑑 , and 𝑢 ∈ 𝐿𝑝(Ω) be such that 

1

𝜏
+
𝛾

𝑑
= 𝑎 (

1

𝑝
+
𝛼 − 1

𝑑
) + (1 − 𝑎) (

1

𝑞
+
𝛽

𝑑
), 

and, with  and, with  𝛾 = 𝑎𝜎 + (1 − 𝑎)𝛽,  
0 ≤ 𝛼 − 𝜎 ≤ 1. 

We have 

     i) if  1 𝜏⁄ + 𝛾 𝑑⁄ > 0, then  

(∫ |𝑥|𝛾𝜏 |𝑢|𝜏𝑑𝑥
2

Ω

)

1 𝜏⁄

≤ 𝐶 (𝐼𝛿(𝑢, Ω, α) + ‖𝑢‖𝐿𝑝(Ω)
𝑝

+ 𝛿𝑝)
𝑎 𝑝⁄

‖|𝑥|𝛽𝑢‖
𝐿𝑞(Ω)

(1−𝑎)
,         

     ii) if  1 𝜏⁄ + 𝛾 𝑑⁄ < 0 and supp  𝑢 ⊂ Ω \ {0}, then 
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            (∫ |𝑥|𝛾𝜏 |𝑢|𝜏𝑑𝑥
2

Ω

)

1 𝜏⁄

≤ 𝐶 (𝐼𝛿(𝑢, Ω, α) + ‖𝑢‖𝐿𝑝(Ω)
𝑝

+ 𝛿𝑝)
𝑎 𝑝⁄

‖|𝑥|𝛽𝑢‖
𝐿𝑞(Ω)

(1−𝑎)
, 

     iii) if  1 𝜏⁄ + 𝛾 𝑑⁄ = 0  and  𝜏 > 1, then 

 (∫
|𝑥|𝛾𝜏

  ln𝜏(2𝑅 |𝑥|⁄ ) 2
|𝑢|𝜏𝑑𝑥

2

Ω \ 𝐵𝑟

)

1 𝜏⁄

≤ 𝐶 (𝐼𝛿(𝑢, Ω, α) + ‖𝑢‖𝐿𝑝(Ω)
𝑝

+ 𝛿𝑑 ln(2𝑅 𝑟⁄ ))
𝑎 𝑝⁄

‖|𝑥|𝛽𝑢‖
𝐿𝑞(Ω)

(1−𝑎)
, 

     iv) if  1 𝜏⁄ + 𝛾 𝑑⁄ = 0 , 𝜏 > 1,  and supp 𝑢 ⊂ Ω \ 𝐵𝑟 ,  then 

(∫
|𝑥|𝛾𝜏

  ln𝜏(2|𝑥| 𝑟⁄ ) 2
|𝑢|𝜏𝑑𝑥

2

Ω 

)

1 𝜏⁄

≤ 𝐶 (𝐼𝛿(𝑢, Ω, α) + ‖𝑢‖𝐿𝑝(Ω)
𝑝

+ 𝛿𝑑 ln(2𝑅 𝑟⁄ ))
𝑎 𝑝⁄

‖|𝑥|𝛽𝑢‖
𝐿𝑞(Ω)

(1−𝑎)
. 

Here 𝐶 denotes a positive constant independent of  𝑢 and  𝛿. 

Proof: Let  𝜐 be the extension of  𝑢 in ℝ𝑑 as in the proof of Lemma (6.2.6). As in the 

proof of  Lemma (6.2.6), we have, since 0 ∈ Ω, 

                                       𝐼2𝛿(𝜐, α) ≤ 𝐶(𝐼𝛿(𝑢, Ω, α) + ‖𝑢‖𝐿𝑝(Ω)). 

We also have, since 0 ∈ Ω, 

                                         ‖|𝑥|𝛽𝜐‖
𝐿𝑞(ℝ𝑑)

≤ 𝐶‖|𝑥|𝛽𝑢‖
𝐿𝑞    (Ω)

. 

The conclusion now follows from Theorem (6.2.10). 

Corollary (6.2.15)[239]: Let  𝜖 > 0. There exists 𝐶 = 𝐶(1 + 𝜖, 1 + 𝜖 ) > 0, depending 

only on  1 + 2𝜖 and 1 + 𝜖 such that, for all 𝜖 > 0, 

(|𝑥| + |𝑎 + 𝜖|)1+𝜖 ≤ (1 + 𝜖)|𝑎|1+𝜖 +
𝐶

𝜖𝜖
|𝑎 + 𝜖|1+𝜖 ,     for all   𝑎, 𝑎 + 𝜖 ∈ ℝ.     (129) 

Proof: Since (129) is clear in the case |𝑎 + 𝜖| ≥ |𝑎|  and in the case 𝑎 + 𝜖 = 0,  by 

rescaling and considering  𝑥 = |𝑎| |𝑎 + 𝜖|⁄ ,  it suffices to prove, for 𝐶 = 𝐶(1 + 2𝜖, 1 +
𝜖)  large enough, that 

(𝑥 + 1)1+𝜖 ≤ (1 + 𝜖)𝑥1+𝜖 +
𝐶

𝜖𝜖
,     for all   𝑥 ≥ 1.                                (130) 

Set  

𝑓(𝑥) = (𝑥 + 1)1+𝜖 − (1 + 𝜖)𝑥1+𝜖 −
𝐶

𝜖𝜖
   for  𝑥 > 0 

We have 

 �́�(𝑥) = (1 + 𝜖)(𝑥 + 1)𝜖 − (1 + 𝜖)2𝑥𝜖    and    �́�(𝑥) = 0 if and only if 𝑥 = 𝑥0

≔ ((1 + 𝜖)
1
𝜖 − 1)

−1
. 

One can check that 

lim
𝑥→+∞

𝑓(𝑥) = −∞,    lim
𝑥→1

𝑓(𝑥) < 0 if  𝐶

= 𝐶(1 + 2𝜖, 1 + 𝜖)  is large enough.                                                             (131) 
and  

𝑓(𝑥0) = (1 + 𝜖)𝑥0
𝜖 −

𝐶

𝜖𝜖
.                                           (132) 

If  (1 + 𝜖)
1
𝜖 > 2  then 𝑥0 < 1  and (130) follows from (131). Otherwise  1 ≤ 𝑠:=

 (1 + 𝜖)
1
𝜖  ≤ 2. By the mean value theorem, we have 
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𝑠𝜖 − 1 ≤ (𝑠 − 1) max
0≤𝜖≤1

 (𝜖) (1 + 𝜖)𝜖−1 for 1 ≤ 𝑠 ≤ 2. 

We derive from (132) that, with 𝐶 = (1 + 2𝜖) [max
0≤𝜖≤1

(𝜖)(1 + 𝜖)𝜖−1]
𝜖
, 

        𝑓(𝑥0) < 0. 
The conclusion now follows from (131). 

Corollary (6.2.16)[239]: (Improved Hardy inequality). Let 𝜖 ≥ 0, and  𝑢𝑠 ∈ 𝐿
1+𝜖(ℝ1+𝜖). 

We have 

    (i) if  𝜖 ≥ 0 and supp  𝑢𝑠 ⊂ 𝐵1+2𝜖   , then 

  ∫ ∑  

𝑠

|𝑢𝑠(𝑥)|
1+𝜖

|𝑥|1+𝜖

1

ℝ1+2𝜖
𝑑𝑥 ≤ 𝐶∑ 

𝑠

(𝐼𝛿(𝑢𝑠) + (1 + 2𝜖)
𝜖𝛿1+𝜖), 

    (ii) if  𝜖 > 0 and supp 𝑢𝑠 ⊂ ℝ
1+2𝜖\𝐵1+𝜖 then 

∫ ∑ 

𝑠

|𝑢𝑠(𝑥)|
1+2𝜖

|𝑥|1+2𝜖

1

ℝ1+2𝜖
𝑑𝑥 ≤ 𝐶∑ 

𝑠

(𝐼𝛿(𝑢𝑠) + (1 + 𝜖)
−𝜖𝛿1+2𝜖),   

    (iii) if  𝜖 ≥ 0 and supp 𝑢𝑠 ⊂ 𝐵1+2𝜖 , then 

∫ ∑ 

𝑠

|𝑢𝑠(𝑥)|
2+𝜖

|𝑥|2+𝜖   ln2+𝜖(2(1 + 2𝜖) |𝑥|⁄ )

1

ℝ2+𝜖\𝐵1+𝜖 

𝑑𝑥

≤ 𝐶∑ 

𝑠

(𝐼𝛿(𝑢𝑠) + ln (2(1 + 2𝜖) (1 + 𝜖))⁄ 𝛿2+𝜖),   

    (iv) if  𝜖 ≥ 0 and supp 𝑢𝑠 ⊂ ℝ
2+𝜖\𝐵1+𝜖 , then 

∫ ∑ 

𝑠

|𝑢𝑠(𝑥)|
2+𝜖

|𝑥|2+𝜖   ln2+𝜖(2|𝑥| (1 + 𝜖)⁄ )

1

𝐵1+𝜖 

𝑑𝑥

≤ 𝐶∑ 

𝑠

(𝐼𝛿(𝑢𝑠) + ln (2(1 + 2𝜖) (1 + 𝜖))⁄ 𝛿2+𝜖), 

where  𝐶 denotes a positive constant depending only on 2 + 𝜖. 
Proof:  Let  𝑚, 𝑛 ∈ ℤ  be such that 

2𝑛−1 ≤ 1 + 2𝜖 < 2𝑛     and     2𝑚 ≤ 1 + 𝜖 < 2𝑚+1. 
It is clear that  𝑛 −𝑚 ≥ 1.  By (73) of Lemma (6.2.3), we have, for all 𝑘 ∈ 𝑍, 

∫ ∑ 

𝑠

|𝑢𝑠(𝑥) − ∫ 𝑢𝑠

2

𝐴𝑘

|

1+𝜖2

𝐴𝑘

𝑑𝑥 ≤ 𝐶∑ 

𝑠

(2−(𝜖)𝑘  𝐼𝛿(𝑢𝑠, 𝐴𝑘) + 𝛿
1+𝜖). 

Here and in what follows in this proof, 𝐶 denotes a positive constant independent of  𝑘, 𝑢𝑠, 
and  𝛿. This implies 

2−(1+𝜖)𝑘∫ ∑ 

𝑠

|𝑢𝑠(𝑥) − ∫ 𝑢𝑠

2

𝐴𝑘

|

1+𝜖2

𝐴𝑘

𝑑𝑥 ≤ 𝐶∑ 

𝑠

( 𝐼𝛿(𝑢𝑠, 𝐴𝑘) + 2
(𝜖)𝑘𝛿1+𝜖). 

It follows that 

2−(1+𝜖)𝑘∫ ∑ 

𝑠

|𝑢𝑠(𝑥)|
1+𝜖

2

𝐴𝑘

𝑑𝑥

≤ 𝐶2𝜖𝑘∑ 

𝑠

|∫ 𝑢𝑠

2

𝐴𝑘

|

1+𝜖

+ 𝐶∑ 

𝑠

( 𝐼𝛿(𝑢𝑠, 𝐴𝑘) + 2
(𝜖)𝑘𝛿1+𝜖).                      (133) 

Step 1: Proof of i): Summing (133) with respect to 𝑘 from  −∞ to  𝑛, we obtain 
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∫ ∑ 

𝑠

|𝑢𝑠(𝑥)|
1+𝜖

|𝑥|1+𝜖

1

ℝ1+2𝜖 

𝑑𝑥

≤ 𝐶 ∑ 2(𝜖)𝑘
𝑛

𝑘=−∞

∑ 

𝑠

 |∫ 𝑢𝑠

2

𝐴𝑘

|

1+𝜖

+ 𝐶∑ 

𝑠

 𝐼𝛿(𝑢𝑠) + 𝐶2
(𝜖)𝑛𝛿𝑛,                 (134) 

since  𝜖 > 0. We also have, by (73), for 𝑘 ∈ ℤ,  

∑ 

𝑠

|∫ 𝑢𝑠 −
2

𝐴𝑘

∫ 𝑢𝑠

2

𝐴𝑘+1

|

 

≤ 𝐶∑ 

𝑠

(2−(𝜖)𝑘  𝐼𝛿(𝑢𝑠, 𝐴𝑘 ∪ 𝐴𝑘+1) + 𝛿
1+𝜖)

1 1+𝜖⁄
               

This implies 

|∫ ∑ 

𝑠

𝑢𝑠

2

𝐴𝑘

|

 

≤∑ 

𝑠

|∫ 𝑢𝑠

2

𝐴𝑘+1

| + 𝐶∑ 

𝑠

(2−(𝜖)𝑘 𝐼𝛿(𝑢𝑠, 𝐴𝑘 ∪ 𝐴𝑘+1) + 𝛿
1+𝜖)

1 1+𝜖⁄
. 

Applying Corollary (6.2.15), we have 

∑ 

𝑠

 |∫ 𝑢𝑠

2

𝐴𝑘

|

1+𝜖1

≤
21+𝜖

1 + 2𝜖
∑ 

𝑠

|∫ 𝑢𝑠

2

𝐴𝑘+1

|

1+𝜖

+ 𝐶∑ 

𝑠

(2−(𝜖)𝑘  𝐼𝛿(𝑢𝑠, 𝐴𝑘 ∪ 𝐴𝑘+1) + 𝛿
1+𝜖). 

It follows that, with 1 + 𝜖 = 2 1 + 2𝜖 < 1⁄ , 

2𝜖𝑘∑ 

𝑠

 |∫ 𝑢𝑠

2

𝐴𝑘

|

1+𝜖1

≤ (1 + 𝜖)2𝜖(𝑘+1)∑ 

𝑠

|∫ 𝑢𝑠

2

𝐴𝑘+1

|

1+𝜖

+ 𝐶∑ 

𝑠

( 𝐼𝛿(𝑢𝑠, 𝐴𝑘 ∪ 𝐴𝑘+1) + 2
𝜖𝑘𝛿1+𝜖). 

We derive that 

∑ ∑ 

𝑠

2𝜖𝑘
𝑛

𝑘=−∞

 |∫ 𝑢𝑠

2

𝐴𝑘

|

1+𝜖

≤ 𝐶 ∑ ∑ 

𝑠

 𝐼𝛿(𝑢𝑠, 𝐴𝑘 ∪ 𝐴𝑘+1)

𝑛

𝑘=−∞

+ 𝐶2𝜖𝑛𝛿1+𝜖 .           (135) 

A combination of (134) and (135) yields 

∫ ∑ 

𝑠

|
𝑢𝑠(𝑥)

𝑥
|

1+2𝜖1

ℝ1+2𝜖 

𝑑𝑥 ≤ 𝐶∑ 

𝑠

𝐼𝛿(𝑢𝑠) + 𝐶2
𝜖𝑛𝛿1+𝜖 , 

The conclusion of i) follows. 

Step 2: Proof of ii): Summing (133) with respect to 𝑘 from 𝑚 to +∞, we obtain 

∫ ∑ 

𝑠

|
𝑢𝑠(𝑥)

𝑥
|

1+2𝜖1

ℝ1+𝜖 

𝑑𝑥

≤ 𝐶 ∑∑ 

𝑠

2−𝜖𝑘
+∞

𝑘=𝑚

 |∫ 𝑢𝑠

2

𝐴𝑘

|

1+2𝜖

𝐶𝐼𝛿(𝑢𝑠) + 𝐶2
−𝑒𝑚𝛿1+2𝜖 ,                            (136) 

since  𝜖 > 0. We also have, by (73), for 𝑘 ∈ ℤ,  

∑ 

𝑠

|∫ 𝑢𝑠 −
2

𝐴𝑘

∫ 𝑢𝑠

2

𝐴𝑘+1

|

 

≤ 𝐶∑ 

𝑠

(2𝜖𝑘 𝐼𝛿(𝑢𝑠, 𝐴𝑘 ∪ 𝐴𝑘+1) + 𝛿
1+2𝜖)1 1+2𝜖⁄ . 

This implies that 

           |∫ ∑ 

𝑠

𝑢𝑠

2

𝐴𝑘+1

|

 

≤∑ 

𝑠

|∫ 𝑢𝑠

2

𝐴𝑘

| + 𝐶∑ 

𝑠

(2𝜖𝑘 𝐼𝛿(𝑢𝑠, 𝐴𝑘 ∪ 𝐴𝑘+1) + 𝛿
1+2𝜖)1 1+2𝜖⁄ . 
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Applying Corollary (6.2.15), we have 

∑ 

𝑠

 |∫ 𝑢𝑠

2

𝐴𝑘+1

|

1+2𝜖1

≤
1 + 2−𝜖

21−𝜖
∑ 

𝑠

|∫ 𝑢𝑠

2

𝐴𝑘

|

1+2𝜖

+ 𝐶(2𝜖𝑘 𝐼𝛿(𝑢𝑠, 𝐴𝑘 ∪ 𝐴𝑘+1) + 𝛿
1+2𝜖). 

It follows that, with 1 + 𝜖 = (1 + 2−𝜖) 2⁄ < 1, 

2−𝜖(𝑘+1)∑ 

𝑠

 |∫ 𝑢𝑠

2

𝐴𝑘+1

|

1+2𝜖 

≤ (1 + 𝜖)2−𝜖𝑘∑ 

𝑠

|∫ 𝑢𝑠

2

𝐴𝑘

|

1+2𝜖

+ 𝐶∑ 

𝑠

( 𝐼𝛿(𝑢𝑠, 𝐴𝑘 ∪ 𝐴𝑘+1) + 2
−𝜖𝑘𝛿1+2𝜖). 

We derive that 

∑∑ 

𝑠

2−𝜖𝑘
+∞

𝑘=𝑚

 |∫ 𝑢𝑠

2

𝐴𝑘

|

1+2𝜖

≤ 𝐶∑ 

𝑠

𝐼𝛿(𝑢𝑠) + 𝐶2
−𝜖𝑚𝛿1+2𝜖 .                                 (137) 

A combination of (136) and (137) yields 

∫ ∑ 

𝑠

|
𝑢𝑠(𝑥)

𝑥
|

1+2𝜖1

ℝ1+𝜖 

𝑑𝑥 ≤ 𝐶∑ 

𝑠

𝐼𝛿(𝑢𝑠) + 𝐶2
−𝜖𝑚𝛿1+2𝜖 

The conclusion of ii) follows. 

Step 3: Proof of iii): Let 𝛼 > 0. Summing (133) with respect to 𝑘 from 𝑚 to 𝑛, we obtain 

                 ∫ ∑  

𝑠

|𝑢𝑠(𝑥)|
1+𝜖

 |𝑥|1+𝜖  ln2+𝜖(2(1 + 2𝜖) |𝑥|⁄ )  

2

{2𝑚<|𝑥|<2𝑛}

𝑑𝑥 

≤ 𝐶 ∑∑ 

𝑠

1

(𝑛 − 𝑘 + 1)2+𝜖

𝑛

𝑘=𝑚

|∫ 𝑢𝑠

2

𝐴𝑘

|

1+2𝜖

+ 𝐶∑ 

𝑠

𝐼𝛿(𝑢𝑠) + 𝐶(𝑛 −𝑚)𝛿
1+2𝜖         (138) 

We also have, by (73), for 𝑘 ∈ ℤ, 

|∫ ∑ 

𝑠

𝑢𝑠

2

𝐴𝑘

|

 

≤∑ 

𝑠

|∫ 𝑢𝑠

2

𝐴𝑘+1

| + 𝐶∑ 

𝑠

( 𝐼𝛿(𝑢𝑠, 𝐴𝑘 ∪ 𝐴𝑘+1)
1 1+𝜖⁄ + 𝛿)                  (139) 

By applying Corollary (6.2.15) with 

1 =
(1 + 𝜖)𝜖

((1 + 𝜖) 2⁄ )1+𝜖
, 

it follows from (139) that, for  𝜖 ≥ 0, 

                           
1

(𝜖 + 1)1+𝜖
∑ 

𝑠

|∫ 𝑢𝑠

2

𝐴𝑚+𝜖

|

1+2𝜖

≤
1

(𝜖 + 1 2⁄ )1+𝜖
∑ 

𝑠

|∫ 𝑢𝑠

2

𝐴𝑚+𝜖+1

|

1+2𝜖

 

+𝐶(𝜖 + 1)−1∑ 

𝑠

( 𝐼𝛿(𝑢𝑠, 𝐴𝑚+𝜖 ∪ 𝐴𝑚+𝜖+1) + 𝛿
1+2𝜖)           (140) 

We have, 𝜖 ≥ 0, 

         
1

(𝜖 + 1)1+𝜖
−

1

(𝜖 + 3 2⁄ )1+𝜖
~

1

(𝜖 + 1)1+𝜖
.                       (141) 

Taking   𝜖 = 0 and combining (140) and (141) yield 

∑ ∑ 

𝑠

1

(𝜖 + 1)1+𝜖

𝑚+2𝜖

𝜖=0

|∫ 𝑢𝑠

2

𝐴𝑚+𝜖

|

1+𝜖

≤ 𝐶∑ 

𝑠

𝐼𝛿(𝑢𝑠) + 𝐶(2𝜖)𝛿
1+𝜖 .                   (142) 

From (138) and (142), we obtain 
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∫ ∑ 

𝑠

|𝑢𝑠(𝑥)|
1+𝜖

 |𝑥|1+𝜖  ln2+𝜖(2(1 + 2𝜖) |𝑥|⁄ ) 2

2

{|𝑥|>2𝑚}

𝑑𝑥 ≤ 𝐶∑ 

𝑠

𝐼𝛿(𝑢𝑠) + 𝐶(2𝜖)𝛿
1+𝜖 . 

This implies the conclusion of iii). 

Step 4 Proof of  iv ): Let  𝛼 > 0. Summing (133) with respect to 𝑚 + 𝜖 from 𝑚 to 𝑚 +
2𝜖, we obtain 

∫ ∑ 

𝑠

|𝑢𝑠(𝑥)|
1+𝜖

 |𝑥|1+𝜖  ln2+𝜖(2|𝑥| (1 + 2𝜖)⁄ ) 2

2

{2𝑚<|𝑥|<2𝑚+2𝜖}

𝑑𝑥

≤ ∑ ∑ 

𝑠

1

(𝜖 + 1)2+𝜖

𝑚+2𝜖

𝜖=0

|∫ 𝑢𝑠

2

𝐴𝑚+𝜖

|

1+𝜖

𝐶𝐼𝛿(𝑢𝑠) + 𝐶𝛿
1+𝜖                           (143) 

We have, by (73), for 𝑚 + 𝜖 ∈ 𝑍, 

 |∫ ∑ 

𝑠

𝑢𝑠

2

𝐴𝑚+𝜖+1

|

 

≤∑ 

𝑠

|∫ 𝑢𝑠

2

𝐴𝑚+𝜖

| + 𝐶∑ 

𝑠

( 𝐼𝛿(𝑢𝑠, 𝐴𝑚+𝜖 ∪ 𝐴𝑚+𝜖+1)
1 1+𝜖⁄ + 𝛿)           (144) 

By applying Corollary (6.2.15) with 

1 =
1 + 𝜖

((1 + 𝜖) 2⁄ )1+𝜖
, 

it follows from (144) that, for  𝜖 ≥ 0, 

1

(𝜖)1+𝜖
∑ 

𝑠

|∫ 𝑢𝑠

2

𝐴𝑚+𝜖

|

1+𝜖 

≤
1

(𝜖 2⁄ )1+𝜖
∑ 

𝑠

|∫ 𝑢𝑠

2

𝐴𝑚+𝜖−1

|

1+𝜖

                                          

+𝐶(𝜖)−1∑ 

𝑠

( 𝐼𝛿(𝑢𝑠, 𝐴𝑚+𝜖−1 ∪ 𝐴𝑚+𝜖)
1 1+𝜖⁄ + 𝛿1+𝜖).    (145) 

We have,  𝜖 ≥ 0, 

   
1

(𝜖)1+𝜖
−

1

(𝜖 + 2 2⁄ )1+𝜖
~

1

(𝜖)2+𝜖
.                  (146) 

Taking   𝜖 = 0 and combining (145) and (146) yield 

∑
1

(𝜖)1+𝜖

𝑚+2𝜖

𝜖=1

∑ 

𝑠

|∫ 𝑢𝑠

2

𝐴𝑚+𝜖−1

|

1+𝜖

≤ 𝐶∑ 

𝑠

𝐼𝛿(𝑢𝑠) + 𝐶(2𝜖)𝛿
1+𝜖 .                 (147) 

From (143) and (147), we obtain 

∫ ∑ 

𝑠

|𝑢𝑠(𝑥)|
1+𝜖

 |𝑥|1+𝜖  ln2+𝜖(2|𝑥| (1 + 2𝜖)⁄ ) 2

2

{2𝑚<|𝑥|<2𝑚+2𝜖}

𝑑𝑥 ≤ 𝐶∑ 

𝑠

𝐼𝛿(𝑢𝑠) + 𝐶(2𝜖)𝛿
1+𝜖          

This implies the conclusion of iv ). 

    The proof is complete. 

Corollary (6.2.17)[239]: Let 𝜖 > 0,  be a smooth bounded open subset of  ℝ1+2𝜖 , and 

𝜐𝑠  ∈ 𝐿
1+𝜖(Ω). We have 

‖∑ 

𝑠

𝑢𝑠‖

𝐿
(1+2𝜖)(1+𝜖)

𝜖 (Ω)

≤ 𝐶Ω∑ 

𝑠

(𝐼𝛿(𝑢𝑠)
1 1+𝜖⁄ + ‖𝑢𝑠‖𝐿1+𝜖 + 𝛿), 

where  𝜖: = 0 denotes the Sobolev exponent of 1 + 𝜖. 
Proof:  For  𝜖 > 0, let us set  
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          Ω1+𝜖 ≔ {𝑥 ∈ ℝ1+2𝜖:  dist(𝑥, Ω) < 1 + 𝜖}. 
Since  is smooth, by [116], there exists  𝜖 > 0 small enough and an extension 𝑈𝑠 of  𝑢𝑠 in  

Ω1+𝜖 such that 

∑ 

𝑠

𝐼𝛿(𝑈𝑠, Ω) ≤ 𝐶∑ 

𝑠

𝐼𝛿(𝑢𝑠, Ω)      and   ‖∑ 

𝑠

𝑈𝑠‖

𝐿1+𝜖Ω1+𝜖

≤ 𝐶‖𝑢𝑠‖𝐿1+𝜖(Ω),                                                                                                    (148) 

for   0 < 𝛿 < 1. Fix such a  1 + 𝜖 . Let 𝜑 ∈ 𝐶1(ℝ1+2𝜖) such that 

supp 𝜑 ⊂ Ω2(1+𝜖) 3⁄ ,       𝜑 = 1  in Ω(1+𝜖) 3⁄ ,      0 ≤ 𝜑 ≤ 1  in ℝ
1+2𝜖 .             

Define  𝜐𝑠 = 𝜑𝑈𝑠  in  ℝ1+2𝜖 . We claim that 

∑ 

𝑠

𝐼2𝛿(𝜐𝑠) ≤ 𝐶∑ 

𝑠

(𝐼𝛿(𝑈𝑠, Ω) + ‖𝑢𝑠‖𝐿1+𝜖(Ω)
1+𝜖 ‖𝑢𝑠‖𝐿1+𝜖).                     (149) 

Indeed, set 

                       𝑓(𝑥, 𝑦) =  
𝛿1+𝜖

|𝑥 − 𝑦|2+3𝜖
∑ 

𝑠

𝕝{|𝜐𝑠(𝑥)−𝜐𝑠(𝑦)|>2𝛿}. 

We estimate   𝐼2𝛿(𝜐𝑠). We have 

∫∫ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦
2

Ω×ℝ1+2𝜖

≤ ∫∫ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦
2

Ω(1+𝜖) 3⁄ ×Ω(1+𝜖) 3⁄

+∫∫ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦
2

Ω1+𝜖×ℝ
1+2𝜖          

{|𝑥−𝑦|>(1+𝜖) 4⁄ }

, 

and, since 𝜖 = −1  in  Ω1+𝜖\ Ω2(1+𝜖) 3⁄ , 

           ∫∫ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦
2

(ℝ1+2𝜖\Ω1+𝜖)×ℝ
1+2𝜖 

, 

≤ ∫∫ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦
2

(ℝ1+2𝜖\Ω1+𝜖)×(ℝ
1+2𝜖\Ω1+𝜖)

+∫∫ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦
2

Ω1+𝜖×ℝ
1+2𝜖          

{|𝑥−𝑦|>(1+𝜖) 4⁄ }

           

     ∫∫ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦
2

(Ω1+𝜖\Ω1+𝜖)×ℝ
1+2𝜖 

≤ ∫∫ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦
2

(Ω1+𝜖\Ω)×(Ω1+𝜖\Ω) 

 

+∫∫ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦
2

Ω(1+𝜖) 3⁄ ×Ω(1+𝜖) 3⁄

+∫∫ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦
2

Ω1+𝜖×ℝ
1+2𝜖          

{|𝑥−𝑦|>(1+𝜖) 4⁄ }

.       

It is clear that, by (148), 

∫∫ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦
2

Ω(1+𝜖) 3⁄ ×Ω(1+𝜖) 3⁄

≤ 𝐶∑ 

𝑠

𝐼𝛿(𝑢𝑠, Ω),                                             (150) 

by the fact that   𝜑 = 0  in  ℝ1+2𝜖\Ω1+𝜖   , 

∫∫ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦
2

(ℝ1+2𝜖\Ω1+𝜖)×(ℝ
1+2𝜖\Ω1+𝜖)

= 0,                                          (151) 

and, by a straightforward computation, 

∫∫ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦
2

Ω1+𝜖×ℝ
1+2𝜖          

{|𝑥−𝑦|>(1+𝜖) 4⁄ } 

≤ 𝐶𝛿1+𝜖 .                                        (152) 

We have, for  𝑥, 𝑦 ∈ ℝ1+2𝜖 , 



271 

 𝜐𝑠(𝑥) − 𝜐𝑠(𝑦) = 𝜑(𝑥)(𝑈𝑠(𝑥) − 𝑈𝑠(𝑦)) + 𝑈𝑠(𝑦)(𝜑(𝑥) − 𝜑(𝑦)). 
It follows that if  |𝜐𝑠(𝑥) − 𝜐𝑠(𝑦)| > 2𝛿 then either 

∑ 

𝑠

|𝑈𝑠(𝑥) − 𝑈𝑠(𝑦)| ≥∑ 

𝑠

|𝜑(𝑥)(𝑈𝑠(𝑥) − 𝑈𝑠(𝑦))| > 𝛿 

or 

𝐶∑ 

𝑠

|𝑈𝑠(𝑦)||𝑥 − 𝑦| ≥∑ 

𝑠

|𝑈𝑠(𝑦)(𝜑(𝑥) − 𝜑(𝑦))| > 𝛿. 

We thus derive that 

                  ∫∫ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦
2

(Ω1+𝜖\Ω)×(Ω1+𝜖\Ω) 

≤ ∫ ∫ ∑ 

𝑠

𝛿1+𝜖

|𝑥 − 𝑦|2+3𝜖

2

(Ω1+𝜖\Ω)
2

2

 (Ω1+𝜖\Ω)                       

      {|𝑈𝑠(𝑥)−𝑈𝑠(𝑦)|>𝛿}

𝑑𝑥𝑑𝑦 

+∫ ∫ ∑ 

𝑠

𝛿1+𝜖

|𝑥 − 𝑦|2+3𝜖

2

(Ω1+𝜖\Ω)
2

2

 (Ω1+𝜖\Ω)                       

      {|𝑥−𝑦|>𝐶𝛿 |𝑈𝑠(𝑦)|⁄ }

𝑑𝑥𝑑𝑦.        (153) 

A straightforward computation yields 

∫ ∫ ∑ 

𝑠

𝛿1+𝜖

|𝑥 − 𝑦|2+3𝜖

2

(Ω1+𝜖\Ω)
2

2

 (Ω1+𝜖\Ω)                       

      {|𝑥−𝑦|>𝐶𝛿 |𝑈𝑠(𝑦)|⁄ }

𝑑𝑥𝑑𝑦

≤ ∫ 𝑑𝑦
2

Ω1+𝜖

∫ ∑ 

𝑠

𝛿1+𝜖

|𝑥 − 𝑦|2+3𝜖

2

{|𝑥−𝑦|>𝐶𝛿 |𝑈𝑠(𝑦)|⁄ }

𝑑𝑥 

                                           = 𝐶 ∫ ∑ 

𝑠

|𝑈𝑠(𝑦)|
1+𝜖𝑑𝑦

2

Ω1+𝜖

. 

Using (148), we deduce from (153) that 

∬ 𝑓(𝑥, 𝑦) = 𝑑𝑥𝑑𝑦
2

(Ω1+𝜖\Ω)×(Ω1+𝜖\Ω)

≤ 𝐶∑ 

𝑠

𝐼𝛿(𝑢𝑠, Ω) + 𝐶‖𝑢𝑠‖𝐿1+𝜖(Ω)
1+𝜖                          (154) 

A combination of (150), (151), (152), and (154) yields Claim (149). By applying [128] and 

using the fact supp  𝜐𝑠 ⊂ Ω1+𝜖  , we have 

∑ 

𝑠

‖𝜐𝑠‖
𝐿
(1+2𝜖)(1+𝜖)

𝜖 (ℝ1+2𝜖)
≤ 𝐶∑ 

𝑠

𝐼2𝛿(𝜐𝑠)
1
1+𝜖 + 𝐶𝛿.                                   (155) 

The conclusion now follows from Claim (149). 

Corollary (6.2.18)[239]: Let 𝜖 ≥ 0,   and 0 ≤ 𝑎 ≤ 1 be such that 

1 ≥
𝑎𝜖

1 + 2𝜖
+ 1 − 𝑎. 

Let  𝜖 > 0, and  𝜆 > 0 and set 

               𝜆𝐷 ≔ {𝜆𝑥 ∈ ℝ1+2𝜖  ∶   1 + 𝜖 < |𝑥| < 1 + 2𝜖}. 
Then, for  𝑢𝑠 ∈ 𝐿

1(𝜆𝐷), 

∑ 

𝑠

(∫ |𝑢𝑠 −∫ 𝑢𝑠
𝜆𝐷

|

1+𝜖2

𝜆𝐷

𝑑𝑥)

1 1+𝜖⁄

≤ 𝐶∑ 

𝑠

(𝜆−𝜖𝐼𝛿(𝑢𝑠, 𝜆𝐷) + 𝛿
1+𝜖)𝑎 1+𝜖⁄ (∫ |𝑢𝑠 −∫ 𝑢𝑠

2

𝜆𝐷

|

1+𝜖2

𝜆𝐷

𝑑𝑥)

(1−𝑎) 1+𝜖⁄

, 
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for some positive constant 𝐶 independent of  𝑢𝑠, 𝜆, and 𝛿.  
Proof:  Let 1 + 𝜖, 𝜎, 𝜖 > 0, be such that 

            
1

1 + 𝜖
≥
𝑎

𝜎
+
1 − 𝑎

1 + 𝜖
. 

We have, by a standard interpolation inequality, that 

∑ 

𝑠

(∫ |𝑢𝑠 −∫ 𝑢𝑠

2

𝜆𝐷

|

1+𝜖2

𝜆𝐷

𝑑𝑥)

1 1+𝜖⁄

≤∑ 

𝑠

(∫ |𝑢𝑠 −∫ 𝑢𝑠

2

𝜆𝐷

|

𝜎2

𝜆𝐷

𝑑𝑥)

𝑎 𝜎⁄

(∫ |𝑢𝑠 −∫ 𝑢𝑠

2

𝜆𝐷

|

1+𝜖2

𝜆𝐷

𝑑𝑥)

(1−𝑎) (1+𝜖)⁄

. 

Applying this inequality with 𝜎 =
(1+2𝜖)(1+𝜖)

𝜖
 and 𝜖 = 0 and using Corollary (6.2.18), one 

obtains the conclusion. 

Corollary (6.2.19)[239]: Let 𝜖 ≥ 0, 0 < 𝑎 ≤ 1, 𝛼 , 𝛽, 𝛾 ∈ ℝ  be such that 
𝑎 − 𝛼

1 + 𝜖
+
(𝑎 − 𝛽)(𝛼 − 1) − 𝛾

1 + 2𝜖
= 0,                       (156) 

and, with  𝛾 = 𝑎𝜎 + (1 − 𝑎)𝛽, 
0 ≤ 𝛼 − 𝜎 ≤ 1. 

Set, for  𝑘 ∈ ℤ , 

∑ 

𝑠

𝐼𝛿(𝑘, 𝑢𝑠) ≔

{
 
 

 
 ∑ 

𝑠

𝐼𝛿(𝑢𝑠, 𝐴𝑘 ∪ 𝐴𝑘+1, 𝛼) + 2
𝑘(𝛼(1+𝜖)+𝜖)𝛿1+𝜖 if  𝜖 > 0,

∑  

𝑠

‖|𝑥𝛼|∇𝑢𝑠‖𝐿1+𝜖(𝐴𝑘∪𝐴𝑘+1)
1+𝜖 otherwise.

        (157) 

We have, for  𝑢𝑠 ∈ 𝐿loc
1+𝜖  (ℝ1+2𝜖) and 𝑚,𝑛 ∈ ℤ  with  𝑚 < 𝑛, 

i) if  1 1 + 𝜖⁄ + 𝛾 1 + 2𝜖⁄ > 0 and supp 𝑢𝑠 ⊂ 𝐵2𝑛 , then 

∑ 

𝑠

(∫ |𝑥|𝛾(1+𝜖)
2

ℝ1+2𝜖\𝐵2𝑚
2

|𝑢𝑠|
1+𝜖𝑑𝑥)

1 1+𝜖⁄

≤ 𝐶∑ 

𝑠

( ∑ 𝐼𝛿(𝑘, 𝑢𝑠)

𝑛

𝑘=𝑚−1

)

𝑎 1+𝜖⁄

𝐶‖|𝑥|𝛽𝑢𝑠‖𝐿1+𝜖(ℝ1+2𝜖)
(1−𝑎)

, 

ii) if  1 1 + 𝜖⁄ + 𝛾 1 + 2𝜖⁄ < 0 and supp 𝑢𝑠 ∈ ℝ
1+2𝜖\𝐵2𝑚 , then 

∑ 

𝑠

(∫ |𝑥|𝛾(1+𝜖)
2

𝐵2𝑛
2

|𝑢𝑠|
1+𝜖𝑑𝑥)

1 1+𝜖⁄

≤ 𝐶∑ 

𝑠

( ∑ 𝐼𝛿(𝑘, 𝑢𝑠)

𝑛

𝑘=𝑚−1

)

𝑎 1+𝜖⁄

𝐶‖|𝑥|𝛽𝑢𝑠‖𝐿1+𝜖(ℝ1+2𝜖)
(1−𝑎)

, 

iii) if  1 1 + 𝜖⁄ + 𝛾 1 + 2𝜖⁄ = 0, 𝜖 > 0, and supp 𝑢𝑠 ⊂ 𝐵2𝑛 , then 
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∑ 

𝑠

(∫
|𝑥|𝛾(1+𝜖)

  ln1+𝜖(2𝑛+1 |𝑥|⁄ ) 2

2

ℝ1+2𝜖\𝐵2𝑚
2

|𝑥|1+𝜖𝑑𝑥)

1 1+𝜖⁄

≤ 𝐶∑ 

𝑠

( ∑ 𝐼𝛿(𝑘, 𝑢𝑠)

𝑛

𝑘=𝑚−1

)

𝑎 1+𝜖⁄

‖|𝑥|𝛽𝑢𝑠‖𝐿1+𝜖(ℝ1+2𝜖)
(1−𝑎)

, 

iv) if  1 1 + 𝜖⁄ + 𝛾 1 + 2𝜖⁄ = 0, 𝜖 > 0, and supp 𝑢𝑠 ∈ ℝ
1+2𝜖\𝐵2𝑚 , then 

∑ 

𝑠

(∫
|𝑥|𝛾(1+𝜖)

  ln1+𝜖(2𝑛+1 |𝑥|⁄ ) 2

2

𝐵2𝑛
2

|𝑥|1+𝜖𝑑𝑥)

1 1+𝜖⁄

≤ 𝐶∑ 

𝑠

( ∑ 𝐼𝛿(𝑘, 𝑢𝑠)

𝑛

𝑘=𝑚−1

)

𝑎 1+𝜖⁄

‖|𝑥|𝛽𝑢𝑠‖𝐿1+𝜖(ℝ1+2𝜖)
(1−𝑎)

. 

Here 𝐶 denotes a positive constant independent of  𝑢𝑠, 𝛿, 𝑘, 𝑛, and 𝑚. 
Proof: We only present the proof in the case 𝜖 > 0. The proof for the other case follows 

similarly, however instead of using Corollary (6.2.18), one applies Lemma (6.2.9). We 

now assume that 𝜖 > 0. Since   𝜎 − 𝛼 ≥ 0 , by Corollary (6.2.18), we have 

∑ 

𝑠

(∫ |𝑢𝑠 −∫ 𝑢𝑠

2

𝐴𝑘

|

1+𝜖2

𝐴𝑘

𝑑𝑥)

1 1+𝜖⁄

≤ 𝐶∑ 

𝑠

(2−(𝜖)𝑘𝐼𝛿(𝑢𝑠, 𝐴𝑘) + 𝛿
1+𝜖)

𝑎 1+𝜖⁄
(∫ |𝑢𝑠|

1+𝜖
2

𝐴𝑘

)

(1−𝑎) 1+𝜖⁄

.        (158) 

Using (156), we derive from (158) that 

      ∫ ∑ 

𝑠

|𝑥|𝛾(1+𝜖)
2

𝐴𝑘
2

|𝑢𝑠|
1+𝜖𝑑𝑥 

≤ 𝐶2(𝛾(1+𝜖)+1+2𝜖)𝑘∑ 

𝑠

|∫ 𝑢𝑠

2

𝐴𝑘
2

|

1+𝜖

+ 𝐶∑ 

𝑠

( 𝐼𝛿(𝑢𝑠, 𝐴𝑘 , 𝛼) + 2
𝑘(𝛼(1+𝜖)+𝜖)𝛿1+𝜖)

𝑎
‖|𝑥|𝛽𝑢𝑠‖𝐿1+𝜖(𝐴𝑘)

(1−𝑎)(1+𝜖)
.        (159) 

Step 1: Proof of i). Summing (159) with respect to 𝑘 from 𝑚 to 𝑛, we obtain 

∫ ∑ 

𝑠

 |𝑥|𝛾(1+𝜖)
2

{|𝑥|>2𝑚}
2

|𝑢𝑠|
1+𝜖𝑑𝑥 ≤ 𝐶 ∑∑ 

𝑠

2(𝛾(1+𝜖)+1+2𝜖)𝑘
𝑛

𝑘=𝑚

|∫ 𝑢𝑠

2

𝐴𝑘
2

|

1+𝜖

       

+𝐶 ∑∑ 

𝑠

( 𝐼𝛿(𝑢𝑠, 𝐴𝑘 , 𝛼) + 2
𝑘(𝛼(1+𝜖)+𝜖)𝛿1+𝜖)

𝑎
𝑛

𝑘=𝑚

‖|𝑥|𝛽𝑢𝑠‖𝐿1+𝜖(𝐴𝑘)
(1−𝑎)(1+𝜖)

.      (160) 

By Corollary (6.2.18), we have 
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|∫ ∑ 

𝑠

𝑢𝑠

2

𝐴𝑘

|

 

≤∑ 

𝑠

|∫ 𝑢𝑠

2

𝐴𝑘+1

|

+ 𝐶∑ 

𝑠

(2−(𝜖) 𝐼𝛿(𝑢𝑠, 𝐴𝑘 ∪ 𝐴𝑘+1) + 𝛿
1+𝜖)

𝑎 1+𝜖⁄
(∫ |𝑢𝑠|

1+𝜖
2

𝐴𝑘∪𝐴𝑘+1

)

(1−𝑎)
𝑎

. 

Applying Corollary (6.2.15), we derive that 

∑ 

𝑠

|∫ 𝑢𝑠

2

𝐴𝑘

|

1+𝜖2

≤
2𝛾(1+𝜖)+2+2𝜖

1 + 2𝛾(1+𝜖)+1+2𝜖
∑ 

𝑠

|∫ 𝑢𝑠

2

𝐴𝑘+1

|

1+𝜖

 

+𝐶∑ 

𝑠

(2−(𝜖)𝑘  𝐼𝛿(𝑢𝑠, 𝐴𝑘 ∪ 𝐴𝑘+1) + 𝛿
1+𝜖)

𝑎 1+𝜖⁄
(∫ |𝑢𝑠|

1+𝜖
2

𝐴𝑘∪𝐴𝑘+1

)

(1−𝑎)
1+𝜖

. 

It follows that, with  1 + 𝜖 = 2 (1 + 2𝛾(1+𝜖)+1+2𝜖)⁄ < 1, 

2(𝛾(1+𝜖)+1+2𝜖)𝑘∑ 

𝑠

|∫ 𝑢𝑠

2

𝐴𝑘

|

1+𝜖

≤ (1 + 𝜖)2(𝛾(1+𝜖)+1+2𝜖)(𝑘+1)∑ 

𝑠

|∫ 𝑢𝑠

2

𝐴𝑘+1

|

1+𝜖

 

+𝐶∑ 

𝑠

( 𝐼𝛿(𝑢𝑠, 𝐴𝑘 ∪ 𝐴𝑘+1, 𝛼) + 2
𝑘(𝛼(𝜖)+𝜖)𝛿1+𝜖)

𝑎
‖|𝑥|𝛽𝑢𝑠‖𝐿1+𝜖(𝐴𝑘∪𝐴𝑘+1)

(1−𝑎)(1+𝜖)
.    

This yields 

∑∑ 

𝑠

2(𝛾(1+𝜖)+1+2𝜖)𝑘
𝑛

𝑘=𝑚

|∫ 𝑢𝑠

2

𝐴𝑘
2

|

1+𝜖

       

≤ 𝐶 ∑∑ 

𝑠

( 𝐼𝛿(𝑢𝑠, 𝐴𝑘 ∪ 𝐴𝑘+1, 𝛼) + 2
𝑘(𝛼(1+𝜖)+𝜖)𝛿1+𝜖)

𝑎
𝑛

𝑘=𝑚

‖|𝑥|𝛽𝑢𝑠‖𝐿1+𝜖(𝐴𝑘∪𝐴𝑘+1)
(1−𝑎)(1+𝜖)

.   (161) 

Combining (160) and (161) yields 

     ∫ ∑ 

𝑠

|𝑥|𝛾(1+𝜖)
2

{|𝑥|>2𝑚}
2

|𝑢𝑠|
1+𝜖𝑑𝑥 

≤ 𝐶 ∑ ∑ 

𝑠

( 𝐼𝛿(𝑢𝑠, 𝐴𝑘 ∪ 𝐴𝑘+1, 𝛼)

𝑛

𝑘=𝑚−1

+ 2𝑘(𝛼(1+𝜖)+𝜖)𝛿1+𝜖)
𝑎
‖|𝑥|𝛽𝑢𝑠‖𝐿1+𝜖(𝐴𝑘∪𝐴𝑘+1)

(1−𝑎)(1+𝜖)
.                                               (162) 

Applying the inequality, for  𝑠 ≥ 0, 𝜖 ≥ −1  with  𝑠 + 𝜖 ≥ 0, and for  𝑥𝑘 ≥ 0  and 𝑦𝑘 ≥ 0, 

∑ 𝑥𝑘
𝑠

𝑛

𝑘=𝑚

𝑦𝑘
1+𝜖 ≤ 𝐶𝑠,1+𝜖 (∑ 𝑥𝑘

𝑛

𝑘=𝑚

)

𝑠

(∑ 𝑦𝑘

𝑛

𝑘=𝑚

)

1+𝜖

, 

to  𝑠 = 𝑎 and  𝜖 = −𝑎, we obtain from (162) that 
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∫ ∑ 

𝑠

|𝑥|𝛾(1+𝜖)
2

{|𝑥|>2𝑚}
2

|𝑢𝑠|
1+𝜖𝑑𝑥

≤ 𝐶∑ 

𝑠

(∑  𝐼𝛿(𝑘, 𝑢𝑠)

𝑛

𝑘=𝑚

)

𝑎

‖|𝑥|𝛽𝑢𝑠‖𝐿1+𝜖(ℝ1+2𝜖)
(1−𝑎)(1+𝜖)

                                          (163) 

since  𝜖 ≥ 0 thanks to the fact  𝛼 − 𝜎 − 1 ≤ 0. 
Step 2: Proof of ii): The proof is in the spirit of the proof of ii) of Corollary (6.2.16). The 

details are left to the research. 

Step 3: Proof of iii): Fix  𝜉 > 0. Summing (159) with respect to 𝑘 from 𝑚 to 𝑛, we obtain 

    ∫ ∑ 

𝑠

1

  ln1+𝜉(1 + 𝜖 |𝑥|⁄ ) 2
|𝑥|𝛾(1+𝜖)

2

{|𝑥|>2𝑚}
2

|𝑢𝑠|
1+𝜖𝑑𝑥 

≤ 𝐶 ∑∑ 

𝑠

1

(𝑛 − 𝑘 + 1)1+𝜉
|∫ 𝑢𝑠

2

𝐴𝑘
2

|

1+𝜖𝑛

𝑘=𝑚

+ 𝐶 ∑∑ 

𝑠

( 𝐼𝛿(𝑢𝑠, 𝐴𝑘, 𝛼)

𝑛

𝑘=𝑚

+ 2𝑘(𝛼(1+𝜖)+𝜖)𝛿1+𝜖)
𝑎
‖|𝑥|𝛽𝑢𝑠‖𝐿1+𝜖(𝐴𝑘)

(1−𝑎)(1+𝜖)
.                            (164) 

By Corollary (6.2.18), we have 

 |∫ ∑ 

𝑠

𝑢𝑠

2

𝐴𝑘

|

 

≤∑ 

𝑠

|∫ 𝑢𝑠

2

𝐴𝑘+1

|

+ 𝐶∑ 

𝑠

(2−(𝜖)𝑘  𝐼𝛿(𝑢𝑠, 𝐴𝑘 ∪ 𝐴𝑘+1) + 𝛿
1+𝜖)

𝑎 1+𝜖⁄
(∫ |𝑢𝑠|

1+𝜖
2

𝐴𝑘∪𝐴𝑘+1

)

(1−𝑎)
1+𝜖

. 

Applying Corollary (6.2.15) with 

1 + 𝜖 =
(𝑛 − 𝑘 + 1)𝜉

(𝑛 − 𝑘 + 1 2⁄ )𝜉
, 

we deduce that 

              
1

(𝑛 − 𝑘 + 1)𝜉
∑ 

𝑠

|∫ 𝑢𝑠

2

𝐴𝑘
2

|

1+𝜖

≤
1

(𝑛 − 𝑘 + 1 2⁄ )𝜉
∑ 

𝑠

|∫ 𝑢𝑠

2

𝐴𝑘+1
2

|

1+𝜖

 

+𝐶(𝑛 − 𝑘 + 1)𝜖−𝜉∑ 

𝑠

(2−(𝜖)𝑘 𝐼𝛿(𝑢𝑠, 𝐴𝑘 ∪ 𝐴𝑘+1)

+ 𝛿1+𝜖)
𝑎
(∫ |𝑢𝑠|

1+𝜖
2

𝐴𝑘∪𝐴𝑘+1

)

(1−𝑎)

.                                                                (165) 

Recall that, for 𝑘 ≤ 𝑛 and 𝜉 > 0, 
1

(𝑛 − 𝑘 + 1)𝜉
−

1

(𝑛 − 𝑘 + 3 2⁄ )𝜉
~

1

(𝑛 − 𝑘 + 1)𝜉+1
.                (166) 

Taking  𝜉 = 𝜖, we derive from (165) and (166) that 
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∑∑ 

𝑠

2(𝛾(1+𝜖)+1+2𝜖)𝑘
1

(𝑛 − 𝑘 + 1)1+𝜖
|∫ 𝑢𝑠

2

𝐴𝑘
2

|

1+𝜖𝑛

𝑘=𝑚

≤ ∑∑ 

𝑠

𝐶( 𝐼𝛿(𝑘, 𝑢𝑠))
𝑎

𝑛

𝑘=𝑚

‖|𝑥|𝛽𝑢𝑠‖𝐿1+𝜖(𝐴𝑘∪𝐴𝑘+1)
(1−𝑎)(1+𝜖)

.                                       (167) 

Combining (164) and (167), as in (163), we obtain 

∫ ∑ 

𝑠

|𝑥|𝛾(1+𝜖)

  ln1+𝜖(2𝑛+1 |𝑥|⁄ ) 2
|𝑢𝑠|

1+𝜖
2

{|𝑥|>2𝑚}
2

𝑑𝑥

≤ 𝐶∑ 

𝑠

(∑  𝐼𝛿(𝑘, 𝑢𝑠)

𝑛

𝑘=𝑚

)

𝑎

‖|𝑥|𝛽𝑢𝑠‖𝐿1+𝜖(ℝ1+2𝜖)
(1−𝑎)(1+𝜖)

. 

Step 4: Proof of iv ): The proof is in the spirit of the proof of iv) of Corollary (6.2.16).  

    The proof is complete.  

Corollary (6.2.20)[239]: Let  𝜖 ≥ 0 , 0 < 𝑎 < 1, 𝛼 , 𝛽, 𝛾 ∈ ℝ  be such that 
𝑎 − 𝛼

1 + 𝜖
+
(𝑎 − 𝛽)(𝛼 − 1) − 𝛾

1 + 2𝜖
= 0, 

and, with  𝛾 =  𝑎𝜎 + (1 + 𝑎)𝛽, 
     𝛼 − 𝜎 > 1        and    𝛾 ≠ 𝛼 − 1. 

We have, for  𝑢𝑠 ∈ 𝐶1+𝜖
1  (ℝ1+2𝜖), 

      i) if  1 1 + 𝜖⁄ + 𝛾 1 + 2𝜖⁄ > 0, then 

∑ 

𝑠

(∫ |𝑥|𝛾(1+𝜖)
2

ℝ1+2𝜖

2

|𝑢𝑠|
1+𝜖𝑑𝑥)

1 1+𝜖⁄

≤ 𝐶∑ 

𝑠

‖|𝑥|𝛼∇𝑢𝑠‖𝐿1+𝜖(ℝ1+2𝜖)
𝑎 ‖|𝑥|𝛽𝑢𝑠‖𝐿1+𝜖(ℝ1+2𝜖)

(1−𝑎)
, 

     ii) if  1 1 + 𝜖⁄ + 𝛾 1 + 2𝜖⁄ < 0 and supp 𝑢𝑠 ⊂ ℝ
1+2𝜖\ {0}, then 

∑ 

𝑠

(∫ |𝑥|𝛾(1+𝜖)
2

ℝ1+2𝜖

2

|𝑢𝑠|
1+𝜖𝑑𝑥)

1 1+𝜖⁄

≤ 𝐶∑ 

𝑠

‖|𝑥|𝛼∇𝑢𝑠‖𝐿1+𝜖(ℝ1+2𝜖)
𝑎 ‖|𝑥|𝛽𝑢𝑠‖𝐿1+𝜖(ℝ1+2𝜖)

(1−𝑎)
, 

for some positive constant 𝐶 independent of 𝑢𝑠. 
Proof:  The proof is in the spirit of the approach in [7] (see also [236]). Since 

𝛼 − 1 ≠ 𝛽. 
by scaling, one might assume that 

              ∑  

𝑠

‖|𝑥|𝛼∇𝑢𝑠‖𝐿1+𝜖(ℝ1+2𝜖) = 1    and    ∑  

𝑠

‖|𝑥|𝛽𝑢𝑠‖𝐿1+𝜖(ℝ1+2𝜖) = 1. 

Let 0 < 𝑎2 < 1 be such that 

|𝑎2 − 𝑎| is small enough,                                          (168) 
and set 

              
1

(1 + 𝜖)2
=

1

1 + 𝜖
     and   𝛾2 = 𝑎2(𝛼 − 1) + (1 − 𝑎2)𝛽. 

We have 
1

(1 + 𝜖)2
+

𝛾2
1 + 2𝜖

= 𝑎2 (
1

1 + 𝜖
+
𝛼 − 1

1 + 2𝜖
) + (1 − 𝑎2) (

1

1 + 𝜖
+

𝛽

1 + 2𝜖
).                             (169) 

Recall that 
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𝑎 − 𝛼

1 + 𝜖
+
(𝑎 − 𝛽)(𝛼 − 1) − 𝛾

1 + 2𝜖
= 0.                                                    (170) 

Since  𝑎 > 0 and  𝛼 − 𝜎 > 1, it follows from (168) that  
1

1 + 𝜖
+

1

(1 + 𝜖)2
= 𝑎(1 − 𝑎2) (−

𝜖

(1 + 𝜖)(1 + 2𝜖)
) +

𝑎

1 + 2𝜖
(𝛼 − 𝜎 − 1)

> 0.            (171) 
We first choose 𝑎2 such that 

𝑎2 < 𝑎     if     𝛼 − 1 < 𝛽,                                       (172) 
𝑎 < 𝑎2     if     𝛼 − 1 > 𝛽.                                      (173) 

Using (168), (172) and (173), we derive from (169), and (170) that 

𝛾, 𝛼 𝑎𝑛𝑑 𝛽 = −
1 + 2𝜖

1 + 𝜖
.                                                                      (174) 

It follows from (171), (174), and Holder's inequality that 

‖∑ 

𝑠

|𝑥|𝛾𝑢𝑠‖

𝐿1+𝜖(ℝ1+2𝜖\ 𝐵1)

≤ 𝐶∑ 

𝑠

‖|𝑥|𝛾2𝑢𝑠‖𝐿𝛾2(ℝ1+2𝜖). 

Applying Corollary (6.2.19), we have 

‖∑ 

𝑠

|𝑥|𝛾2𝑢𝑠‖

𝐿(1+𝜖)2(ℝ1+2𝜖)

≤ 𝐶∑ 

𝑠

‖|𝑥|𝛼∇𝑢𝑠‖𝐿1+𝜖(ℝ1+2𝜖)
𝑎2 ‖|𝑥|𝛽𝑢𝑠‖𝐿1+𝜖(ℝ1+2𝜖)

(1−𝑎2)
≤ 𝐶, 

which yields 

‖∑ 

𝑠

|𝑥|𝛾𝑢𝑠‖

𝐿1+𝜖(ℝ1+2𝜖\ 𝐵1)

≤ 𝐶.                                                  (175) 

We next choose  𝑎2 such that 

𝑎 < 𝑎2     if     𝛼 − 1 < 𝛽,                                          (176) 
𝑎2 < 𝑎     if     𝛼 − 1 > 𝛽.                                         (177) 

Using (168), (176) and (177), we derive from (169), and (170) that 
1

(1 + 𝜖)2
+

𝛾2
1 + 2𝜖

<
1

1 + 𝜖
+

𝛾

1 + 2𝜖
     and   (

1

1 + 𝜖
−

𝛾

1 + 2𝜖
) (

1

(1 + 𝜖)2
+

𝛾2
1 + 2𝜖

)

> 0.                                                                                                                         (178) 
It follows from (171), (178), and Holder's inequality that 

‖∑ 

𝑠

|𝑥|𝛾𝑢𝑠‖

𝐿1+𝜖(𝐵1)

≤ 𝐶∑ 

𝑠

‖|𝑥|𝛾2𝑢𝑠‖𝐿(1+𝜖)2(ℝ1+2𝜖). 

Applying Corollary (6.2.19), we have 

‖∑ 

𝑠

|𝑥|𝛾2𝑢𝑠‖

𝐿(1+𝜖)2(ℝ1+2𝜖)

≤ 𝐶∑ 

𝑠

‖|𝑥|𝛼∇𝑢𝑠‖𝐿1+𝜖(ℝ1+2𝜖)
𝑎2 ‖|𝑥|𝛽𝑢𝑠‖𝐿1+𝜖(ℝ1+2𝜖)

(1−𝑎2)
≤ 𝐶, 

which yields 

‖∑ 

𝑠

|𝑥|𝛾𝑢𝑠‖

𝐿1+𝜖(ℝ1+2𝜖\ 𝐵1)

≤ 𝐶.                                                           (179) 

The conclusion now follows from (175) and (179). 

Corollary (6.2.21)[239]: Let  𝜖 > 0,   0 < 𝑎 ≤ 1, 𝛼, 𝛽 , 𝛾 ∈ ℝ, 0 ∈ Ω ⊂ 𝐵1+2𝜖   𝑎 smooth 

bounded open subset of  ℝ2+𝜖 , and 𝑢𝑠 ∈ 𝐿
1+𝜖(Ω) be such that 
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𝑎 − 𝛼

1 + 𝜖
+
(𝑎 − 𝛽)(𝛼 − 1) − 𝛾

1 + 2𝜖
= 0, 

and, with  and, with  𝛾 = 𝑎𝜎 + (1 − 𝑎)𝛽,  
0 ≤ 𝛼 − 𝜎 ≤ 1. 

We have 

     i) if  1 1 + 𝜖⁄ + 𝛾 2 + 𝜖⁄ > 0, then  

∑ 

𝑠

(∫ |𝑥|𝛾(1+𝜖) |𝑢𝑠|
1+𝜖𝑑𝑥

2

Ω

)

1 1+𝜖⁄

≤ 𝐶∑ 

𝑠

(𝐼𝛿(𝑢𝑠, Ω, α) + ‖𝑢𝑠‖𝐿1+𝜖(Ω)
1+𝜖 + 𝛿1+𝜖)

𝑎 1+𝜖⁄

‖|𝑥|𝛽𝑢𝑠‖𝐿1+𝜖(Ω)
(1−𝑎)

,         

     ii) if  1 1 + 𝜖⁄ + 𝛾 2 + 𝜖⁄ < 0 and supp  𝑢𝑠 ⊂ Ω \ {0}, then 

∑ 

𝑠

(∫ |𝑥|𝛾(1+𝜖) |𝑢𝑠|
1+𝜖𝑑𝑥

2

Ω

)

1 1+𝜖⁄

≤ 𝐶∑ 

𝑠

(𝐼𝛿(𝑢𝑠, Ω, α) + ‖𝑢𝑠‖𝐿1+𝜖(Ω)
1+𝜖 + 𝛿1+𝜖)

𝑎 1+𝜖⁄

‖|𝑥|𝛽𝑢𝑠‖𝐿1+𝜖(Ω)
(1−𝑎)

, 

     iii) if  1 1 + 𝜖⁄ + 𝛾 2 + 𝜖⁄ = 0  and  𝜖 > 0, then 

∑ 

𝑠

(∫
|𝑥|𝛾(1+𝜖)

  ln1+𝜖(2(1 + 2𝜖) |𝑥|⁄ ) 2
|𝑢𝑠|

1+𝜖𝑑𝑥
2

Ω \ 𝐵1+𝜖

)

1 1+𝜖⁄

≤ 𝐶∑ 

𝑠

(𝐼𝛿(𝑢𝑠, Ω, α) + ‖𝑢𝑠‖𝐿1+𝜖(Ω)
1+𝜖

+ 𝛿2+𝜖 ln(2(1 + 2𝜖) (1 + 𝜖)⁄ ))
𝑎 1+𝜖⁄

‖|𝑥|𝛽𝑢𝑠‖𝐿1+𝜖(Ω)
(1−𝑎)

, 

     iv) if  1 1 + 𝜖⁄ + 𝛾 2 + 𝜖⁄ = 0 , 𝜖 > 0,  and supp 𝑢𝑠 ⊂ Ω \ 𝐵1+𝜖 ,  then 

∑ 

𝑠

(∫
|𝑥|𝛾(1+𝜖)

  ln1+𝜖(2|𝑥| (1 + 𝜖)⁄ ) 2
|𝑢𝑠|

1+𝜖𝑑𝑥
2

Ω 

)

1 1+𝜖⁄

≤ 𝐶∑ 

𝑠

(𝐼𝛿(𝑢𝑠, Ω, α) + ‖𝑢𝑠‖𝐿1+𝜖(Ω)
1+𝜖

+ 𝛿2+𝜖 ln(2(1 + 2𝜖) (1 + 𝜖)⁄ ))
𝑎 1+𝜖⁄

‖|𝑥|𝛽𝑢𝑠‖𝐿1+𝜖(Ω)
(1−𝑎)

. 

Here 𝐶 denotes a positive constant independent of  𝑢𝑠 and  𝛿. 

Proof: Let  𝜐𝑠 be the extension of  𝑢𝑠 in ℝ2+𝜖 as in the proof of Corollary (6.2.17). As in 

the proof of  Corollary (6.2.17), we have, since 0 ∈ Ω, 

∑ 

𝑠

𝐼2𝛿(𝜐𝑠, α) ≤ 𝐶∑ 

𝑠

(𝐼𝛿(𝑢𝑠, Ω, α) + ‖𝑢𝑠‖𝐿1+𝜖(Ω)). 

We also have, since 0 ∈ Ω, 

‖∑ 

𝑠

|𝑥|𝛽𝜐𝑠‖

𝐿1+𝜖(ℝ2+𝜖)

≤ 𝐶∑ 

𝑠

‖|𝑥|𝛽𝑢𝑠‖𝐿1+𝜖    (Ω). 

The conclusion now follows from Corollary (6.2.19). 
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Section (6.3): Inequalities of Fractional Caffarelli-Kohn-Nirenberg  
 For 𝑑 ≥ 1, 𝑝 ≥ 1, 𝑞 ≥ 1, 𝜏 > 0 , 0 ≤ 𝑎 ≤ 1 , 𝛼, 𝛽, 𝛾 ∈ ℝ be such that 

1

𝜏
+
𝛾

𝑑
,    
1

𝑝
+
𝛼

𝑑
,    
1

𝑞
+
𝛽

𝑑
> 0 

and  
1

𝜏
+
𝛾

𝑑
= 𝑎 (

1

𝑝
+
𝛼 − 1

𝑑
) + (1 − 𝑎) (

1

𝑞
+
𝛽

𝑑
). 

In the case 𝑎 > 0, assume in addition that, with 𝛾 = 𝑎𝜎 + (1 − 𝑎)𝛽, 
0 ≤ 𝛼 − 𝜎 

and  

𝛼 − 𝜎 ≤ 1    if    
1

𝜏
+
𝛾

𝑑
=
1

𝑝
+
𝛼 − 1

𝑑
. 

Caffarelli, Kohn, and Nirenberg [182] (see also [72]) proved the following well-known 

inequality 

‖|𝑥|𝛾𝑢‖𝐿𝜏(ℝ𝑑) ≤ 𝐶‖|𝑥|
𝛼∇𝑢‖

𝐿𝑝(ℝ𝑑)
𝑎 ‖|𝑥|𝛽∇𝑢‖

𝐿𝑞(ℝ𝑑)

(1−𝑎)
    for 𝑢 ∈ 𝐶𝑐

1(ℝ𝑑).           (180) 

We extend this family of inequalities to fractional Sobolev spaces 𝑊𝑠,𝑝.In the case 𝑎 =
1, 𝜏 = 𝑝, the corresponding inequality was obtained for 𝛼 = 0 and 𝛾 = −𝑠 in [166], [182] 

and for  𝜏 = 𝑝𝑑/(𝑑 − 𝑠𝑝),−(𝑑 − 𝑠𝑝)/𝑝 < 𝛼 = 𝛾 < 0, and  1 < 𝑝 < 𝑑/𝑠  in [203].    For 

𝑝 > 1, 0 < 𝑠 < 1, 𝛼, 𝛼1, 𝛼2 ∈ ℝ  with 𝛼1 + 𝛼2 = 𝛼,  and Ω  a measurable subset of ℝ𝑑 ,       
set 

|𝑢|
𝑊𝑠,𝑝,𝛼(𝛺)
𝑝

= ∫ ∫
|𝑥|𝛼1𝑝|𝑦|𝛼2𝑝|𝑢(𝑥) − 𝑢(𝑦)|𝑝

|𝑥 − 𝑦|𝑑+𝑝𝑠

1

𝛺

1

𝛺

𝑑𝑥𝑑𝑦 ≤ +∞    for 𝑢 ∈ 𝐿1(𝛺).  

In the case  𝛼1 = 𝛼2 = 𝛼 = 0, we simply denote |𝑢|𝑊𝑠,𝑝,0(𝛺)  by |𝑢|𝑊𝑠,𝑝(𝛺) . 
    Let 𝑑 ≥ 1, 𝑝 > 1, 𝑞 ≥ 1, 𝜏 > 0 , 0 ≤ 𝑎 ≤ 1 , 𝛼, 𝛽, 𝛾 ∈ ℝ be such that 

1

𝜏
+
𝛾

𝑑
= 𝑎 (

1

𝑝
+
𝛼 − 𝑠

𝑑
) + (1 − 𝑎) (

1

𝑞
+
𝛽

𝑑
).                             (181) 

In the case 𝑎 > 0, assume in addition that, with 𝛾 = 𝑎𝜎 + (1 − 𝑎)𝛽, 
0 ≤ 𝛼 − 𝜎                                                                 (182) 

and  

𝛼 − 𝜎 ≤ 𝑠    if    
1

𝜏
+
𝛾

𝑑
=
1

𝑝
+
𝛼 − 𝑠

𝑑
.                                              (183) 

Then, we have 

 

    We first state a variant of Gagliardo-Nirenberg inequality for fractional Sobolev spaces. 

Lemma (6.3.1)[236]: Let 𝑑 ≥ 1, 0 < 𝑠 < 1, 𝑝 > 1, 𝑞 ≥ 1, 𝜏 > 0, and 0 < 𝑎 ≤ 1 be such 

that 
1

𝜏
= 𝑎 (

1

𝑝
−
𝑠

𝑑
) +

1 − 𝑎

𝑞
.                                                       (184) 

We have 

‖𝑢‖𝐿𝜏(ℝ𝑑) ≤ 𝐶|𝑢|𝑊𝑠,𝑝(ℝ𝑑)
𝑎 ‖𝑢‖

𝐿𝑞(ℝ𝑑)

(1−𝑎)
    for 𝑢 ∈ 𝐶𝑐

1(ℝ𝑑), 

for some positive constant 𝐶 independent of 𝑢. 
Proof: The result is essentially known. Here is a short proof of it. We first consider the 

case 1/𝑝 − 𝑠/𝑑 > 0.  Set 𝑝∗: =  𝑝𝑑/(𝑑 − 𝑠𝑝).  We have, by Sobolev’s inequality for 

fractional Sobolev spaces, 
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‖𝑢‖
𝐿𝑝

∗
(ℝ𝑑)

≤ 𝐶|𝑢|
𝑊𝑠,𝑝(ℝ𝑑)
𝑎 . 

In this proof, 𝐶 denotes a positive constant independent of 𝑢. Inequality (185) is now a 

consequence of  Holder’s inequality. We next consider the case 1/𝑝 − 𝑠/𝑑 ≤ 0. Since 

1/𝑝 − 𝑠/𝑑 ≠ 1/𝑞, 
by a change of variables, one can assume that 

                |𝑢|
𝑊𝑠,𝑝(ℝ𝑑)
𝑎 = ‖𝑢‖𝐿𝑞(ℝ𝑑) = 1. 

Since  𝜏 > 𝑞 ≥ 1 by (184), it follows from John-Nirenberg’s inequality that 

                      ‖𝑢‖𝐿𝜏(ℝ𝑑) ≤ 𝐶. 

The proof is complete. 

    The following result is a consequence of Lemma (6.3.1) and is used in the proof of 

Theorem(6.3.3). 

Lemma(6.3.2)[236]: Let 𝑑 ≥ 1, 𝑝 > 1, 0 < 𝑠 < 1, 𝑞 ≥ 1, 𝜏 > 0, and 0 < 𝑎 ≤ 1  be such 

that 
1

𝜏
≥ 𝑎 (

1

𝑝
−
𝑠

𝑑
) +

1 − 𝑎

𝑞
. 

Let 𝜆 > 0 and  0 < 𝑟 < 𝑅 and set 

      𝐷 ≔ {𝑥 ∈ ℝ𝑑: 𝜆𝑟 < |𝑥| < 𝜆𝑅}. 
Then, for 𝑢 ∈ 𝐶1(�̅�), 
 

(∫ |𝑢 − ∫ 𝑢
2

𝐷

|

𝜏2

𝐷

𝑑𝑥)

1 𝜏⁄

≤ 𝐶 (𝜆𝑠𝑝−𝑑|𝑢|𝑊𝑠,𝑝(𝐷)
𝑝

)
𝑎 𝑝⁄

(∫ |𝑢|𝑞𝑑𝑥
2

𝐷

)

(1−𝛼) 𝑞⁄

           (185) 

for some positive constant 𝐶 independent of  𝑢 and 𝜆. 
Proof: By scaling, one can assume that  𝜆 = 1. Let 0 < �́� ≤ 𝑠  and �́� ≥ 𝜏  be such that 

1

�́�
= 𝑎 (

1

𝑝
−
�́�

𝑑
) +

1 − 𝑎

𝑞
. 

From Lemma (6.3.1), we derive that 

                  ‖𝑢 − ∫ 𝑢
2

𝐷

‖
𝐿�́�(𝐷)

≤ 𝐶|𝑢|
𝑊�́�,𝑝(𝐷)
𝑎 ‖𝑢‖𝐿𝑞(𝐷)

1−𝑎 . 

The conclusion now follows from Jensen’s inequality and the fact |𝑢|𝑊�́�,𝑝(𝐷)  ≤

𝐶|𝑢|𝑊𝑠,𝑝(𝐷) . 

    We are ready to give 

Theorem(6.3.3)[236]: Let 𝑑 ≥ 1, 𝑝 > 1, 0 < 𝑠 < 1, 𝑞 ≥ 1, 𝜏 > 0, 0 < 𝑎 ≤ 1, 𝛼1, 𝛼2, 𝛼, 𝛽, 𝛾 ∈

ℝ be such that  𝛼 = 𝛼1 + 𝛼2, and  (181), (182), and (183) hold. We have 

    i) if  1/𝜏 + 𝛾/𝑑 > 0, then  

‖|𝑥|𝛾𝑢‖𝐿𝜏(ℝ𝑑) ≤ 𝐶|𝑢|𝑊𝑠,𝑝,𝛼(ℝ𝑑)
𝑎 ‖|𝑥|𝛽𝑢‖

𝐿𝑞(ℝ𝑑)

(1−𝑎)
       for 𝑢 ∈ 𝐶𝑐

1(ℝ𝑑),  

    ii) if  1/𝜏 + 𝛾/𝑑 < 0, then 

‖|𝑥|𝛾𝑢‖𝐿𝜏(ℝ𝑑) ≤ 𝐶|𝑢|𝑊𝑠,𝑝,𝛼(ℝ𝑑)
𝑎 ‖|𝑥|𝛽𝑢‖

𝐿𝑞(ℝ𝑑)

(1−𝑎)
       for 𝑢 ∈ 𝐶𝑐

1(ℝ𝑑\{0}),  

Assertion ii) was established in [166] for 𝑎 = 1, 𝜏 = 𝑝, 𝛼1 = 𝛼2 = 0, and 𝛾 = −𝑠. 
Note that the conditions 

1

𝑝
+
𝛼

𝑑
,     

1

𝑞
+
𝛽

𝑑
> 0 
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are not required in Theorem (6.3.3). Without these conditions, the RHSs in the estimates 

of Theorem (6.3.3) are finite for 𝑢 ∈ 𝐶𝑐
1(ℝ𝑑).The case 1/𝜏 + 𝛾/𝑑 = 0 will be considered. 

In contrast with the mentioned results on fractional Sobolev spaces where the condition 

𝛼1 = 𝛼2 = 𝛼/2 is used. 

     The idea of the proof is quite elementary and inspired by the work [182]. In the case 

0 ≤ 𝛼 − 𝜎 ≤ 𝑠, the proof uses a variant of Gagliardo-Nirenberg’s interpolation inequality 

for fractional Sobolev spaces (Lemma(6.3.2)) and is as follows. We decompose ℝ𝑑 into 

annuli 𝐴𝑘 defined by 

𝐴𝑘 ≔ {𝑥 ∈ ℝ𝑑: 2𝑘 ≤ |𝑥| < 2𝑘+1}, 
and apply the interpolation inequality to have 

 

(∫ |𝑢 − ∫ 𝑢
2

𝐴𝑘

|

𝜏2

𝐴𝑘

𝑑𝑥)

1 𝜏⁄

≤ 𝐶(2−(𝑑−𝑠𝑝)𝑘|𝑢|𝑊𝑠,𝑝(𝐴𝑘)
𝑎 )

𝑎 𝑝⁄
(∫ |𝑢|𝑞𝑑𝑥

2

𝐴𝑘

)

(1−𝑎) 𝑞⁄

. 

Here and in what follows, we denote 

 

∫ 𝜐 =
1

|𝐷|

2

𝐷

∫ 𝜐𝑑𝑥
2

𝐷

 

for a measurable subset 𝐷  of  ℝ𝑑  and for 𝜐 ∈ 𝐿1(𝐷).Using again the interpolation 

inequality in a slightly different way, we can obtain appropriate estimates for the averages 

and derive the desired conclusion. The proof in the case 𝛼 − 𝜎 > 𝑠 is via interpolation and 

has its roots in [182]. Similar ideas are used in [226] to obtain several improvements of 

(180) in the classical setting. In the case 1 < 𝑝 < 𝑑, 𝛼 = 0, and 𝜎 > −1, one can derive 

(180) using the results in [109], [134]and [182] (see Remark (6.3.4)). 

 We present the proof of  Theorem (6.3.3).We discuss the case 1/𝜏 + 𝛾/𝑑 = 0. 
    We first state a variant of  Gagliardo-Nirenberg inequality for fractional Sobolev spaces. 

Proof (1): In the case 𝛼 − 𝜎 ≤ 𝑠. By Lemma (6.3.2),we have, for 𝑘 ∈ ℤ, 
 

(∫ |𝑢 − ∫ 𝑢
2

𝐴𝑘

|

𝜏2

𝐴𝑘

𝑑𝑥)

1 𝜏⁄

≤ 𝐶 (2−(𝑑−𝑠𝑝)𝑘|𝑢|𝑊𝑠,𝑝(𝐴𝑘)
𝑝

2

𝑎
)
𝑎 𝑝⁄

(∫ |𝑢|𝑞𝑑𝑥
2

𝐴𝑘

)

(1−𝑎) 𝑞⁄

.      (186) 

Using (181), we derive from (186) that 

 

∫ |𝑥|𝛾𝜏|𝑥|𝜏𝑑𝑥
2

𝐴𝑘

≤ 𝐶2−(𝛾𝜏+𝑑)𝑘 |∫ 𝑢
2

𝐴𝑘

|

𝜏

+ 𝐶|𝑢|𝑊𝑠,𝑝,𝛼(𝐴𝑘)
𝑎𝜏 ‖|𝑥|𝛽𝑢‖

𝐿𝑞(𝐴𝑘)

(1−𝑎)𝜏
.            (187) 

Let 𝑚, 𝑛 ∈ ℤ be such that 𝑚 ≤ 𝑛 − 2. Summing (187) with respect to 𝑘 from 𝑚 to 𝑛, we 

obtain 

 

∫ |𝑥|𝛾𝜏|𝑢|𝜏𝑑𝑥
2

{2𝑚<|𝑥|<2𝑛+1}

≤ 𝐶 ∑ 2(𝛾𝜏+𝑑)𝑘
𝑛

𝑘=𝑚

|∫ 𝑢
2

𝐴𝑘

|

𝜏

+ 𝐶 ∑|𝑢|𝑊𝑠,𝑝,𝛼(𝐴𝑘)
𝑎𝜏 ‖|𝑥|𝛽𝑢‖

𝐿𝑞(𝐴𝑘)

(1−𝑎)𝜏
𝑛

𝑘=𝑚

.        (188) 

Step 1: Proof of i). Choose 𝑛 such that 

supp 𝑢 ⊂ 𝐵2𝑛 . 
We have 



281 

|∫ 𝑢
2

𝐴𝑘

−∫ 𝑢
2

𝐴𝑘+1

|

𝜏

≤ 𝐶 (2−(𝑑−𝑠𝑝)𝑘|𝑢|𝑊𝑠,𝑝(𝐴𝑘∪𝐴𝑘+1)
𝑝

2

𝑎
)
𝑎𝜏 𝑝⁄

(∫ |𝑢|𝑞𝑑𝑥
2

(𝐴𝑘∪𝐴𝑘+1)

)

(1−𝑎)𝜏 𝑞⁄

. 

It follows that, with 𝑐 = [(1 + 2𝛾𝜏+𝑑)/2]−1 < 1, 

2(𝛾𝜏+𝑑)𝑘 |∫ 𝑢
2

𝐴𝑘

|

𝜏

≤ 𝑐2(𝛾𝜏+𝑑)(𝑘+1) |∫ 𝑢
2

𝐴𝑘+1

|

𝜏2

+ 𝐶|𝑢|𝑊𝑠,𝑝,𝛼(𝐴𝑘∪𝐴𝑘+1)
𝑎𝜏 ‖|𝑥|𝛽𝑢‖

𝐿𝑞(𝐴𝑘∪𝐴𝑘+1)

(1−𝑎)𝜏
. 

We derive that 

∑ 2(𝛾𝜏+𝑑)𝑘
𝑛

𝑘=𝑚

|∫ 𝑢
2

𝐴𝑘

|

𝜏

≤ 𝐶 ∑|𝑢|𝑊𝑠,𝑝,𝛼(𝐴𝑘∪𝐴𝑘+1)
𝑎𝜏 ‖|𝑥|𝛽𝑢‖

𝐿𝑞(𝐴𝑘∪𝐴𝑘+1)

(1−𝑎)𝜏
𝑛

𝑘=𝑚

.              (189) 

Combining (188) and (189) yields 

         ∫ |𝑥|𝛾𝜏|𝑢|𝜏𝑑𝑥
2

{|𝑥|>2𝑚}

≤ 𝐶 ∑|𝑢|𝑊𝑠,𝑝,𝛼(𝐴𝑘∪𝐴𝑘+1)
𝑎𝜏 ‖|𝑥|𝛽𝑢‖

𝐿𝑞(𝐴𝑘∪𝐴𝑘+1)

(1−𝑎)𝜏
𝑛

𝑘=𝑚

. 

One has, for  𝑠 ≥ 0, 𝑡 ≥ 0 with  𝑠 + 𝑡 ≥ 1, and for  𝑥𝑘 ≥ 0 and 𝑦𝑘 ≥ 0, 

∑ 𝑥𝑘
𝑠

𝑛

𝑘=𝑚

𝑦𝑘
𝑡 ≤ (∑ 𝑥𝑘

𝑛

𝑘=𝑚

)

𝑠

(∑ 𝑦𝑘

𝑛

𝑘=𝑚

)

𝑡

.                                          (190) 

Applying this inequality with  𝑠 = 𝑎𝜏/𝑝 and  𝑡 = (1 − 𝑎)𝜏/𝑞, we obtain that 

∫ |𝑥|𝛾𝜏|𝑢|𝜏𝑑𝑥
2

{|𝑥|>2𝑚}

≤ 𝐶|𝑢|𝑊𝑠,𝑝,𝛼(⋃ 𝐴𝑘
∞
𝑘=𝑚 )

𝑎𝜏 ‖|𝑥|𝛽𝑢‖
𝐿𝑞(⋃ 𝐴𝑘

∞
𝑘=𝑚 )

(1−𝑎)𝜏
,                      (191) 

since  𝑎/𝑝 + (1 − 𝑎)/𝑞 ≥ 1/𝜏 thanks to the fact 𝛼 − 𝜎 − 𝑠 ≤ 0. 
Step 2: Proof of ii). Choose 𝑚 such that 

       supp 𝑢 ∩ 𝐵2𝑚 = ∅. 
We have 

             |∫ 𝑢
2

𝐴𝑘

−∫ 𝑢
2

𝐴𝑘+1

|

𝜏

≤ 𝐶 (2−(𝑑−𝑠𝑝)𝑘|𝑢|𝑊𝑠,𝑝(𝐴𝑘∪𝐴𝑘+1)
𝑝

2

𝑎
)
𝑎𝜏 𝑝⁄

(∫ |𝑢|𝑞
2

(𝐴𝑘∪𝐴𝑘+1)

)

(1−𝑎)𝜏 𝑞⁄

. 

It follows that, with  𝑐 = (1 + 2𝛾𝜏+𝑑)/2 < 1, 

2(𝛾𝜏+𝑑)(𝑘+1) |∫ 𝑢
2

𝐴𝑘+1

|

𝜏

≤ 𝑐2(𝛾𝜏+𝑑)𝑘 |∫ 𝑢
2

𝐴𝑘

|

𝜏2

+ 𝐶|𝑢|𝑊𝑠,𝑝,𝛼(𝐴𝑘∪𝐴𝑘+1)
𝑎𝜏 ‖|𝑥|𝛽𝑢‖

𝐿𝑞(𝐴𝑘∪𝐴𝑘+1)

(1−𝑎)𝜏
. 

We derive that 

∑ 2(𝛾𝜏+𝑑)𝑘
𝑛

𝑘=𝑚

|∫ 𝑢
2

𝐴𝑘

|

𝜏

≤ 𝐶 ∑ |𝑢|
𝑊𝑠,𝑝,𝛼(𝐴𝑘∪𝐴𝑘+1)

𝑎𝜏 ‖|𝑥|𝛽𝑢‖
𝐿𝑞(𝐴𝑘∪𝐴𝑘+1)

(1−𝑎)𝜏
𝑛−1

𝑘=𝑚−1

.           (192) 

Combining (188) and (192) yields 

  ∫ |𝑥|𝛾𝜏|𝑢|𝜏𝑑𝑥
2

{|𝑥|<2𝑛+1}

≤ 𝐶 ∑ |𝑢|
𝑊𝑠,𝑝,𝛼(𝐴𝑘∪𝐴𝑘+1)

𝑎𝜏 ‖|𝑥|𝛽𝑢‖
𝐿𝑞(𝐴𝑘∪𝐴𝑘+1)

(1−𝑎)𝜏
𝑛−1

𝑘=𝑚−1

. 

As in Step 1, we derive from (190) that 

       ∫ |𝑥|𝛾𝜏|𝑢|𝜏𝑑𝑥
2

{|𝑥|<2𝑛+1}

≤ 𝐶|𝑢|𝑊𝑠,𝑝,𝛼(⋃ 𝐴𝑘
𝑛
𝑘=−∞ )

𝑎𝜏 ‖|𝑥|𝛽𝑢‖
𝐿𝑞(⋃ 𝐴𝑘

𝑛
𝑘=−∞ )

(1−𝑎)𝜏
. 

The proof is complete in the case 𝛼 − 𝜎 ≤ 𝑠. 
    We next turn to 

Proof (2): In the case  𝛼 − 𝜎 > 𝑠. We follows the strategy in [182]. Since 
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1

𝑝
+
𝛼 − 𝑠

𝑑
 ≠   

1

𝑞
+
𝛽

𝑑
. 

by scaling, one might assume that 

|𝑢|𝑊𝑠,𝑝,𝛼(ℝ𝑑) = 1   and    ‖𝑢‖𝐿𝑞(ℝ𝑑) = 1. 

It is necessary from (183) that 0 < 𝑎 < 1. Let 0 < 𝑎1, 𝑎2 < 1 (𝑎1, 𝑎2 are close to a and are 

chosen later) and  𝜏1, 𝜏2 > 0  be such that 
1

𝜏1
=
𝑎1
𝑝
−
𝑎1𝑠

𝑑
+
1 − 𝑎1
𝑞

    if    
𝑎

𝑝
−
𝑎𝑠

𝑑
+
1 − 𝑎

𝑞
> 0, 

1

𝜏
>
1

𝜏1
≥
𝑎1
𝑝
−
𝑎1𝑠

𝑑
+
1 − 𝑎1
𝑞

    if    
𝑎

𝑝
−
𝑎𝑠

𝑑
+
1 − 𝑎

𝑞
≤ 0,                        (193) 

and 

     
1

𝜏2
=
𝑎2
𝑝
+
1 − 𝑎2
𝑞

. 

Set  

𝛾1 = 𝑎1𝛼 + (1 − 𝑎1)𝛽      and     𝛾2 = 𝑎2(𝛼 − 𝑠) + (1 − 𝑎2)𝛽.       
We have  

1

𝜏1
+
𝛾1
𝑑
≥ 𝑎1 (

1

𝑝
+
𝛼 − 𝑠

𝑑
) + (1 − 𝑎1) (

1

𝑞
+
𝛽

𝑑
)                                       (194)  

and  
1

𝜏2
+
𝛾2
𝑑
= 𝑎2 (

1

𝑝
+
𝛼 − 𝑠

𝑑
) + (1 − 𝑎2) (

1

𝑞
+
𝛽

𝑑
).                                         (195) 

Recall that 
1

𝜏
+
𝛾

𝑑
= 𝑎 (

1

𝑝
+
𝛼 − 𝑠

𝑑
) + (1 − 𝑎) (

1

𝑞
+
𝛽

𝑑
).                                              (196) 

We now assume that 

|𝑎1 − 𝑎|   and   |𝑎2 − 𝑎| are small enough,                                   (197) 

𝑎1 < 𝑎 < 𝑎2    if      
1

𝑝
+
𝛼 − 𝑠

𝑑
<
1

𝑞
+
𝛽

𝑑
 ,                                       (198) 

𝑎2 < 𝑎 < 𝑎1    if      
1

𝑝
+
𝛼 − 𝑠

𝑑
>
1

𝑞
+
𝛽

𝑑
 .                                       (199) 

Using (197), (198) and (199), we derive from (194), (195), and (196) that 

0 <
1

𝜏2
+
𝛾2
𝑑
<
1

𝜏
+
𝛾

𝑑
<
1

𝜏1
+
𝛾1
𝑑
.                                             (200) 

Since 𝑎 > 0 and 𝛼 − 𝜎 > 𝑠, it follows from (199) that 
1

𝜏
−
1

𝜏2
= (𝑎 − 𝑎2) (

1

𝑝
−
1

𝑞
) +

𝑎

𝑑
(𝛼 − 𝜎 − 𝑠) > 0                                    (201) 

and, if  
𝑎

𝑝
− 

𝑎𝑠

𝑑
+
1−𝑎

𝑞
> 0, 

1

𝜏
−
1

𝜏1
= (𝑎 − 𝑎1) (

1

𝑝
−
𝑠

𝑑
−
1

𝑞
) +

𝑎

𝑑
(𝛼 − 𝜎) > 0.                                    (202) 

Since, by (193), (201), and (202), 

         1 𝜏⁄ > 1 𝜏1⁄  𝑎𝑛𝑑 1 𝜏⁄ > 1 𝜏2⁄ , 
it follows from (200) and Holder’s inequality that 

‖|𝑥|𝛾𝑢‖𝐿𝜏(ℝ𝑑\𝐵1) ≤ 𝐶‖|𝑥|𝛾1𝑢‖𝐿𝜏1(ℝ𝑑)  and     ‖|𝑥|
𝛾𝑢‖𝐿𝜏(𝐵1)  ≤  𝐶‖|𝑥|

𝛾2𝑢‖𝐿𝜏2(ℝ𝑑). 

Applying the previous case, we have 
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              ‖|𝑥|𝛾1𝑢‖𝐿𝜏1(ℝ𝑑)  ≤ 𝐶|𝑢|𝑊𝑠,𝑝,𝛼(ℝ𝑑)

𝑎1  ‖|𝑥|𝛽𝑢‖
𝐿𝑞(ℝ𝑑)

(1−𝑎1)
 ≤  𝐶 

and 

            ‖|𝑥|𝛾2𝑢‖𝐿𝜏2(ℝ𝑑)  ≤ 𝐶|𝑢|𝑊𝑠,𝑝,𝛼(ℝ𝑑)

𝑎2  ‖|𝑥|𝛽𝑢‖
𝐿𝑞(ℝ𝑑)

(1−𝑎2)
 ≤  𝐶. 

The conclusion follows. 

Remark (6.3.4)[236]: In the case  0 < 𝑝 < 𝑑,  one has, for 1/2 < 𝑠 < 1 (see [182]), 

‖𝑢 −∫ 𝑢
2

𝐷

‖
𝐿𝑝

∗
(𝐷)

≤ 𝐶(1 − 𝑠)1 𝑝⁄ |𝑢|𝑊𝑠,𝑝(𝐷). 

The same proof yields, with 𝛼1 = 𝛼2 = 𝛼 = 0, 𝜎 > −𝑠, and  1/𝜏 + 𝛾/𝑑 > 0, 

        ‖|𝑥|𝛾𝑢‖𝐿𝜏(ℝ𝑑) ≤ 𝐶(1 − 𝑠)
𝑎 𝑝⁄ |𝑢|

𝑊𝑠,𝑝(ℝ𝑑)
𝑎 ‖|𝑥|𝛽𝑢‖

𝐿𝑞(ℝ𝑑)

(1−𝑎)
    for 𝑢 ∈ 𝐶𝑐

1(ℝ𝑑).   

Using the results in [109], [134], one knows that 

         lim
𝑠→1

(1 − 𝑠)1 𝑝⁄ |𝑢|𝑊𝑠,𝑝(ℝ𝑑) = 𝐶𝑑,𝑝‖∇𝑢‖𝐿𝑝(ℝ𝑑)   for 𝑢 ∈ 𝐶𝑐
1(ℝ𝑑). 

We then derive that 

         ‖|𝑥|𝛾𝑢‖𝐿𝜏(ℝ𝑑) ≤ 𝐶‖∇𝑢‖𝐿𝑝(ℝ𝑑)
𝑎 ‖|𝑥|𝛽𝑢‖

𝐿𝑞(ℝ𝑑)

(1−𝑎)
    for 𝑢 ∈ 𝐶𝑐

1(ℝ𝑑).   

 

Remark (6.3.5)[236]: In the case 𝛼 − 𝜎 ≤ 𝑠, the proof also shows that if  1/𝜏 + 𝛾/𝑑 >
0,then 

‖|𝑥|𝛾𝑢‖𝐿𝜏(ℝ𝑑\𝐵𝑟) ≤ 𝐶|𝑢|𝑊𝑠,𝑝,𝛼(ℝ𝑑\𝐵𝑟)
𝑎 ‖|𝑥|𝛽𝑢‖

𝐿𝑞(ℝ𝑑\𝐵𝑟)

(1−𝑎)
    for  𝑢 ∈ 𝐶𝑐

1(ℝ𝑑).   

and if  1/𝜏 + 𝛾/𝑑 < 0, then 

                             ‖|𝑥|𝛾𝑢‖𝐿𝜏(𝐵𝑟) ≤ 𝐶|𝑢|𝑊𝑠,𝑝,𝛼(𝐵𝑟)
𝑎 ‖|𝑥|𝛽𝑢‖

𝐿𝑞(𝐵𝑟)

(1−𝑎)
       for  𝑢 ∈ 𝐶𝑐

1(ℝ𝑑\{0}).   

for any  𝑟 > 0. In fact, the proof gives the result with 𝑟 = 2𝑗 with  𝑗 = 𝑚 in the first case 

and 𝑗 = 𝑛 + 1  in the second case. However, a change of variables yields the result 

mentioned here. 

Lemma (6.3.6)[236]: Let  Λ > 1 and 𝜏 > 1.There exists 𝐶 = 𝐶(Λ, 𝜏) > 0, depending only 

on Λ and  𝜏 such that, for all 1 < 𝑐 < Λ, 

(|𝑎| + |𝑏|)𝜏 ≤ 𝑐|𝑎|𝜏 +
𝐶

(𝑐 − 1)𝜏−1
|𝑏|𝜏   for all  𝑎, 𝑏 ∈ ℝ𝑑 . 

Theorem (6.3.7)[236]: Let 𝑑 ≥ 1, 𝑝 > 1, 0 < 𝑠 < 1, 𝑞 ≥ 1, 𝜏 > 1, 0 < 𝑎 ≤ 1, 𝛼1, 𝛼2, 𝛼, 𝛽, 𝛾 ∈

ℝ be such that  𝛼 = 𝛼1, 𝛼2,  (181) holds, and 

0 ≤ 𝑎 − 𝜎 ≤ 𝑠. 
Let 𝑢 ∈ 𝐶𝑐

1(ℝ𝑑), and  0 < 𝑟 < 𝑅. We have 

     i) if  1/𝜏 + 𝛾/𝑑 = 0  and supp 𝑢 ⊂ 𝐵𝑅 , then 

             (∫
|𝑥|𝛾𝜏

2 ln𝜏 (2𝐵 |𝑥|⁄ )
|𝑢|𝜏𝑑𝑥

2

ℝ𝑑
)

1 𝜏⁄

≤ 𝐶|𝑢|
𝑊𝑠,𝑝,𝛼(ℝ𝑑)
𝑎 ‖|𝑥|𝛽𝑢‖

𝐿𝑞(ℝ𝑑)

(1−𝑎)
, 

     ii) if  1/𝜏 + 𝛾/𝑑 = 0 and supp 𝑢 ∩ 𝐵𝑅 = ∅, then 

        (∫
|𝑥|𝛾𝜏

2 ln𝜏 (2|𝑥| 𝑟⁄ )
|𝑢|𝜏𝑑𝑥

2

ℝ𝑑
)

1 𝜏⁄

≤ 𝐶|𝑢|
𝑊𝑠,𝑝,𝛼(ℝ𝑑)
𝑎 ‖|𝑥|𝛽𝑢‖

𝐿𝑞(ℝ𝑑)

(1−𝑎)
, 

Proof: In this proof, we use the notations in the proof of  Theorem (6.3.3). We only prove 

the first assertion. The second assertion follows similarly as in the spirit of the proof of 

Theorem (6.3.3.). Fix  𝜉 > 0. Summing (187) with respect to 𝑘 from 𝑚 to 𝑛, we obtain 
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       ∫
1

2 ln1+𝜉 (𝜏 |𝑥|⁄ )
|𝑥|𝛾𝜏|𝑢|𝜏𝑑𝑥

2

{|𝑥|>2𝑚}

  

 

≤ 𝐶 ∑
1

(𝑛 − 𝑘 + 1)1+𝜉

𝑛

𝑘=𝑚

|∫ 𝑢
2

𝐴𝑘

|

𝜏

+ 𝐶 ∑|𝑢|𝑊𝑠,𝑝,𝛼(𝐴𝑘)
𝑎𝜏 ‖|𝑥|𝛽𝑢‖

𝐿𝑞(𝐴𝑘)

(1−𝑎)𝜏
𝑛

𝑘=𝑚

       . (203) 

By Lemma (6.3.2),we have 

 |∫ 𝑢
2

𝐴𝑘

−∫ 𝑢
2

𝐴𝑘+1

| ≤ 𝐶 (2−(𝑑−𝑠𝑝)𝑘|𝑢|𝑊𝑠,𝑝(𝐴𝑘∪𝐴𝑘+1)
𝑝

2

𝑎
)
𝑎 𝑝⁄

(∫ |𝑢|𝑞
2

(𝐴𝑘∪𝐴𝑘+1)

)

(1−𝑎) 𝑞⁄

 

Applying Lemma (6.3.6) below with  𝑐 = (𝑛 − 𝑘 + 1)𝜉/(𝑛 − 𝑘 + 1/2)𝜉 , we deduce that 

       
1

(𝑛 − 𝑘 + 1)𝜉
 |∫ 𝑢

2

𝐴𝑘

|

𝜏

≤
1

(𝑛 − 𝑘 + 1 2⁄ )𝜉
|∫ 𝑢

2

𝐴𝑘+1

|

𝜏

 

                                    +𝐶(𝑛 − 𝑘 + 1)𝜏−1−𝜉|𝑢|
𝑊𝑠,𝑝,𝛼(𝐴𝑘∪𝐴𝑘+1)

𝑎𝜏 ‖|𝑥|𝛽𝑢‖
𝐿𝑞(𝐴𝑘∪𝐴𝑘+1)

(1−𝑎)𝜏
.       (204) 

We have, for 𝜉 > 0 and 𝑘 ≤ 𝑛, 

            
1

(𝑛 − 𝑘 + 1)𝜉
−

1

(𝑛 − 𝑘 + 3 2⁄ )𝜉
~

1

(𝑛 − 𝑘 + 1)𝜉+1
.                     (205) 

Taking 𝜉 = 𝜏 − 1 > 0, we derive from (204) and (205) that 

∑
1

(𝑛 − 𝑘 + 1)1+𝜉

𝑛

𝑘=𝑚

|∫ 𝑢
2

𝐴𝑘

|

𝜏

+ 𝐶 ∑|𝑢|𝑊𝑠,𝑝,𝛼(𝐴𝑘∪𝐴𝑘+1)
𝑎𝜏 ‖|𝑥|𝛽𝑢‖

𝐿𝑞(𝐴𝑘∪𝐴𝑘+1)

(1−𝑎)𝜏
𝑛

𝑘=𝑚

.        (206) 

Combining (203) and (206), as in (191), we obtain 

             ∫
|𝑥|𝛾𝜏

2 ln1+𝜉 (2𝑛−1 |𝑥|⁄ )
|𝑢|𝜏𝑑𝑥

2

{|𝑥|>2𝑚}

≤ 𝐶 ∑|𝑢|𝑊𝑠,𝑝,𝛼(𝐴𝑘∪𝐴𝑘+1)
𝑎𝜏 ‖|𝑥|𝛽𝑢‖

𝐿𝑞(𝐴𝑘∪𝐴𝑘+1)

(1−𝑎)𝜏
𝑛

𝑘=𝑚

.  

Applying inequality (190) with  𝑠 = 𝑎𝜏/𝑝 and  𝑡 = (1 − 𝑎)𝜏/𝑞, we derive that 

              ∫
|𝑥|𝛾𝜏

2 ln1+𝜉 (2𝑛−1 |𝑥|⁄ )
|𝑢|𝜏𝑑𝑥

2

{|𝑥|>2𝑚}

≤ 𝐶|𝑢|𝑊𝑠,𝑝,𝛼(⋃ 𝐴𝑘
∞
𝑘=𝑚 )

𝑎𝜏 ‖|𝑥|𝛽𝑢‖
𝐿𝑞(⋃ 𝐴𝑘

∞
𝑘=𝑚 )

(1−𝑎)𝜏
 . 

This yields the conclusion. 
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𝐿𝑝 : Lebesgue space 2 

inf             : infimum   2 

𝐻1 : Hardy space 2 

sup            : Supremum 6 

𝐿2 : Hilbert space 22 

𝐿1 : Lebesgue on the real line 25 

𝐿∞ : essential Lebesgue space 25 

max             : maximum   50 

min           : minimum 52 

Loc             : locally  52 

dom             : domain  52 

𝐿𝑞 : Dual of Lebesgue space 52 

𝐻𝑠 : Hardy space 54 

tr            : trace 61 

a. e : Almost Everywhere  68 

supp            : support 68 
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BBM            : J. Boargain – H. Brezis and P. Mironescu 83 
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Ric            : Ricci 137 

𝐿𝑞,𝑟 : space of all measurable functions 137 

Hess            : Hessian 142 

𝐿𝑝+,𝑝 : Lorentz spaces 163 

sgn            : signature 170 

𝐿𝑞,𝑟 : Lorentz spaces 173 

dist            : distance 177 

HSM            : Hardy-Soblev-Maźya 178 

𝑋o
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per            : perimeter 239 
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1,𝑝
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