

كليج الدراسات العليا

Sudan University of Science and Technology

College of Graduate Studies

Optical, Electrical, Magnetic, and Structural Properties of Talha and Hashab Gum Doped with Iodine

الخصائص البصرية والكهربية والمغناطيسية والتركيبية لصمغي الطلح والهشاب الخصائص البصرية والكهربية والمشوب باليود

A Thesis Submitted to Graduate College for Fulfillment for The Requirements of The Degree of Ph.D.

By NUHA HASSAN KINASH OSMAN

Supervisor Dr. Ahmed Elhassan Elfaki Idries

Co-Supervisor Prof. Mubarak Dirar Abdallah

August 2021

الآيسة

﴿ وَيَرَى الَّذِينَ أُوتُوا الْعِلْمَ الَّذِي أُنْزِلَ إِلَيْكَ مِنْ رَبِّكَ هُوَ الْحَقَّ وَيَهْدِي إِلَىٰ صِرَاطِ الْعَزِيزِ الْحَمِيدِ﴾ صدق الله العظيم

سورة *سبا* ۲۶

Dedication

To my parents, my brothers and sisters, my husband and sons: Mohammed and Muzmil. To all who have been enlightening the way of my life, without them I could not be.

Acknowledgment

First of all I should offer my thanks obedience and gratitude to Allah. Most gracious, most merciful from whom I receive guidance and help.

I would also like to extend my sincere and appreciation to my greet supervisor Dr. Ahmed Hassan Al-faki Ahmed & co-supervisor prof. Mubarak Dirar Abdallah for their valuable guidance assistance and help that enable me complete my research, and also thanks Dr. Abdulsakhi Ibrahim.

Very special Thanks to the Staff of the Elgraif Sharg Technological College.

Last but not least, special warm thanks to my family, colleagues and friends, to all of them I extend my thanks and gratitude.

Abstract

The aim of this work is to use Gum in solar cells and electronic circuits by doping it with suitable compounds to act as a semiconductor. This will minimize the cost of electronic circuits and solar cells.

Two cultivars of Gum (Talha and Hashab) were used in this study five samples from Talha Gum and other five samples from Hashab Gum were doped with iodine having concentrations (0.1, 0.2, 0.3, 0.4, 0.5 ppm) by thermo chemical method. The optical properties and band positions were studied using Ultraviolet –Visible (UV-VIS) spectroscopy and Fourier Transform Infrared (FTIR) Spectroscopy. The crystal parameters and the crystal nano sizes were studied using Scanning Electron Microscope (SEM) and X-Ray Diffraction (XRD).

Upon increasing iodine concentration to be (0.1, 0.2, 0.3, 0.4and 0.5 ppm) the Talha nano crystal sizes decrease taking values(98.60, 85.52, 69.28, 60.59, and 53.46 nm) .The Hashab nano crystal sizes decrease also with corresponding values(96.63, 82.98, 76.41, 67.11, and 52.57 nm). The increase of iodine concentrations increases absorption also for both Talha and Hashab .For Talha the increase of iodine concentration decreases the energy gap to take the values (2.364, 2.356, 2.352, 2.345, and 2.339 eV).For Hashab the energy gap increases assuming the values (2.453, 2.467, 2.473, 2.482, and 2.493 eV).The results of FTIR Spectrometer shows the existence of nine chemical bonds in Talha and Hashab.

This explains that Talha Gum properties as semiconductor is better than Hashab Gum since its energy gap is narrower and can become narrower by doping.

المستخلص

يهدف هذا البحث لإستخدام الصمغ في الخلايا الشمسية والدوائر الإلكترونية بتشوبيها بمركبات مناسبة لتعمل كشبه موصل هذا سيقلل تكلفة الدوائر الإلكترونية والخلايا الشمسية.

تم أستخدام صنفين من الصمغ (الطلح والهشاب) فى هذه الدراسة تم تحضير خمسة عينات من صمغ الطلح وخمسة عينات أخري من صمغ الهشاب مشوبة بتراكيز مختلفة من اليود وهى (0.1, 0.2, 0.0, 10.4 والطلح وخمسة عينات أخري من صمغ الهشاب مشوبة بتراكيز مختلفة من اليود وهى (0.1, 0.2, 0.0, 0.4 ومى ومع الروابط المعاد ومع الكيمياء الحرارية. وتمت دراسة الخواص الضوئية للعينات ومواضع الروابط باستخدام مطيافية الأشعة البنفسيجية والأشعة المرئية ومطيافية تحويل فوريية للإشعـة تحت الحمراء.أما المعاملات المعاملات المعاملات البلوريـة والحجم البلوري النانوي فتمت دراستها باستخدام المجهر المجهر الإلكتروني الماسح وجهاز حيود الأشعة السينية.

وهذا يوضح أن خواص صمغ الطلح كشبه موصل أفضل من خواص صمغ الهشاب لأن نطاق طاقته أضيق ويزداد ضيقا بالتشويب.

Table of Content

NO.	Subject	Page No.
	الآية	Ι
	Dedication	II
	Acknowledgment	III
	Abstract	IV
	المستخلص	V
	Table of Content	VI
	List of Tables	IX
	List of Figures	Х
	CHAPTER ONE INTRODUCTION	
1.1	Introduction	1
1.2	Research problem	4
1.3	Aim of the study	4
1.4	Layout of study	4
	CHAPTER TWO THEORETICAL BACKGROUND	
2.1	Introduction	5
2.2	Atomic Structure	5
2.3	Crystal Structure	6
2.4	Optical Properties	7
2.4.1	Absorption	7
2.4.2	Transmission	7
2.4.3	Reflection	8
2.4.4	Absorption Coefficients	9
2.4.5	Determination of Band Gap	10
2.4.6	Refractive Index	10
2.4.7	The Complex Refractive and Dielectric Constant	11
2.5	Magnetic Properties	12
2.5.1	Magnetic Flux Density and Intensity	12
2.2.2	The Biot –Savart Law	13
2.5.3	Amper Law	14
2.5.4	Magnetic Dipole Moment	15
2.5.5	Type of Magnetic Materials	16
2.5.6	Langnevins Theory of Diamagnetic	16
2.5.7	Langnevins Theory of Paramagnetism	17
2.5.8	Quantum Mechanical Expression for Paramagnetism	20
2.6	Electrical Properties	21
2.6.1	Electrical Conductivity	21

2.7 Nanomaterial 23 2.7.1 Source of Nanomaterials 23 2.7.2 Types of Nanomaterials 23 2.8 Nanoparticle 24 2.8.1 Production Techniques 24 2.8.2 Nanoparticle Classification 24 2.8.2 Nanoparticle Classification 24 2.9.1 Types of Gum Arabic 25 2.9.2 Chemical and Physical Properties of Gum Arabic 26 2.10 Iodine 27 2.11 Chemical and Physical Properties of Iodine 27 CHAPTER THREE LITERATURE REVIEW 3.1 Introduction 29 3.3 Effects of x-Irradiation on Some Properties of Gum Arabic to Act as Semiconductor 29 3.4 Investigating the Electric Conductivity, Magnetic Inductivity, and Optical Properties of Gum Arabic Crystals 30 3.5 Assessment of Physical Properties of Gum Arabic from Acacia Senegal Varieties in Baringo District, Kenya 31 3.6 Gum Arabic-Silver Nanoparticles Composite as a Green Anticorrosive Formulation for Steel Corrosion in Strong Acid Media 35 3.7 Dopart Prof	2.6.2	Electrical Permittivity	22
2.7.2Types of Nanomaterials232.8Nanoparticle242.8.1Production Techniques242.8.2Nanoparticle Classification242.8.2Nanoparticle Classification242.9Gum Arabic252.9.1Types of Gum Arabic262.9.2Chemical and Physical Properties of Gum Arabic262.10Iodine272.11Chemical and Physical Properties of Iodine272.11Chemical and Physical Properties of Iodine273.1Introduction293.2Improving the Properties of Gum Arabic to Act as Semiconductor293.3Effects of s-Irradiation on Some Properties of Gum Arabic (Acacia Senegal L)303.4Investigating the Electric Conductivity, Magnetic Inductivity, and Optical Properties of Gum Arabic from Acacia Senegal Varieties in Baringo District, Kenya313.6Gum Arabic-Silver Nanoparticles Composite as a Green Anticorrosive Formulation for Steel Corrosion in Strong Acid Media333.7Dopant Profiling with the Scanning Electron Microscope - A study of Si343.8Classification and Physicochemical Characterization of Mesquite Gum (Prosopis spp.)343.9Electrical Conductivity Behavior of Gum Arabic Biopolymer-Fe ₃ O ₄ Nanocomposites353.10Determination of the Energy Gap of Gum Arabic Doped with Zinc Oxide Using the UV-VIS Technique363.11Covalent Coupling of Gum Arabic onto Super paramagnetic Iron Oxide Nanoparticles for MRI Cell Labeli	2.7		23
2.8 Nanoparticle 24 2.8.1 Production Techniques 24 2.8.2 Nanoparticle Classification 24 2.9 Gum Arabic 25 2.9.1 Types of Gum Arabic 25 2.9.2 Chemical and Physical Properties of Gum Arabic 26 2.10 Iodine 27 2.11 Chemical and Physical Properties of Iodine 27 CHAPTER THREE LITERATURE REVIEW 3.1 Introduction 29 3.2 Improving the Properties of Gum Arabic to Act as Semiconductor 29 3.3 Effects of s-Irradiation on Some Properties of Gum Arabic (Acacia Senegal L) 30 3.4 Investigating the Electric Conductivity, Magnetic Inductivity, and Optical Properties of Gum Arabic Crystals 31 3.5 Assessment of Physical Properties of Gum Arabic Kenya 31 3.6 Gum Arabic-Silver Nanoparticles Composite as a Green Anticorrosive Formulation for Steel Corrosion in Strong Acid Media 37 3.7 Dopant Profiling with the Scanning Electron Microscope - A study of Si 33 3.8 Classification and Physicochemical Characterization of Mesquite Gum (Prosopis spp.) <td>2.7.1</td> <td>Source of Nanomaterials</td> <td>23</td>	2.7.1	Source of Nanomaterials	23
2.8 Nanoparticle 24 2.8.1 Production Techniques 24 2.8.2 Nanoparticle Classification 24 2.8.2 Nanoparticle Classification 24 2.9 Gum Arabic 25 2.9.1 Types of Gum Arabic 26 2.9.2 Chemical and Physical Properties of Gum Arabic 26 2.10 Iodine 27 2.11 Chemical and Physical Properties of Iodine 27 CHAPTER THREE LITERATURE REVIEW 3.1 Introduction 29 3.1 Introductor 29 3.2 Improving the Properties of Gum Arabic to Act as semiconductor 29 3.3 Effects of 3-Irradiation on Some Properties of Gum Arabic (Acacia Senegal L) 30 3.4 Investigating the Electric Conductivity, Magnetic Inductivity, and Optical Properties of Gum Arabic Grystals 31 3.5 Assessment of Physical Properties of Gum Arabic from Acacia Senegal Varieties in Baringo District, Kenya 31 3.6 Gum Arabic-Silver Nanoparticles Composite as a Green Anticorrosive Formulation for Steel Corrosion in Strong Acid Media 32 3.7 Dopant Profiling with the Scanning Elect	2.7.2	Types of Nanomaterials	23
2.8.2Nanoparticle Classification242.9Gum Arabic252.9.1Types of Gum Arabic252.9.2Chemical and Physical Properties of Gum Arabic262.10Iodine272.11Chemical and Physical Properties of Iodine27CHAPTER THREE LITERATURE REVIEW3.1Introduction293.2Improving the Properties of Gum Arabic to Act as Semiconductor293.3Effects of x-Irradiation on Some Properties of Gum Arabic (Acacia Senegal L)293.4Investigating the Electric Conductivity, Magnetic 	2.8	* *	24
2.8.2Nanoparticle Classification242.9Gum Arabic252.9.1Types of Gum Arabic252.9.2Chemical and Physical Properties of Gum Arabic262.10Iodine272.11Chemical and Physical Properties of Iodine27CHAPTER THREE LITERATURE REVIEW3.1Introduction293.2Improving the Properties of Gum Arabic to Act as Semiconductor293.3Effects of x-Irradiation on Some Properties of Gum Arabic (Acacia Senegal L)293.4Investigating the Electric Conductivity, Magnetic 	2.8.1	Production Techniques	24
2.9Gum Arabic252.9.1Types of Gum Arabic252.9.2Chemical and Physical Properties of Gum Arabic262.10Iodine272.11Chemical and Physical Properties of Iodine27CHAPTER THREE LITERATURE REVIEW3.1Introduction293.2Improving the Properties of Gum Arabic to Act as Semiconductor293.3Effects of x-Irradiation on Some Properties of Gum Arabic (Acacia Senegal L)303.4Investigating the Electric Conductivity, Magnetic 	2.8.2		24
2.9.2 Chemical and Physical Properties of Gum Arabic 26 2.10 Iodine 27 2.11 Chemical and Physical Properties of Iodine 27 CHAPTER THREE LITERATURE REVIEW 3.1 Introduction 29 3.2 Improving the Properties of Gum Arabic to Act as Semiconductor 29 3.3 Effects of x-Irradiation on Some Properties of Gum Arabic (Acacia Senegal L) 30 3.4 Investigating the Electric Conductivity, Magnetic Inductivity, and Optical Properties of Gum Arabic Crystals 31 3.5 Assessment of Physical Properties of Gum Arabic from Acacia Senegal Varieties in Baringo District, Kenya 31 3.6 Gum Arabic-Silver Nanoparticles Composite as a Green Anticorrosive Formulation for Steel Corrosion in Strong Acid Media 32 3.7 Dopant Profiling with the Scanning Electron of Mesquite Gum (Prosopis spp.) 34 3.8 Classification and Physicochemical Characterization of Mesquite Gum (Prosopis spp.) 35 3.9 Electrical Conductivity Behavior of Gum Arabic Biopolymer-Fe ₃ O ₄ Nancomposites 35 3.10 Determination of the Energy Gap of Gum Arabic Doped with Zinc Oxide Using the UV-VIS Technique 36 3.11 Covalent Coupling of Gum Arabic onto Super paramagnetic Iron Oxide N	2.9	≜	25
2.10 Iodine 27 2.11 Chemical and Physical Properties of Iodine 27 CHAPTER THREE LITERATURE REVIEW 3.1 Introduction 29 3.2 Improving the Properties of Gum Arabic to Act as Semiconductor 29 3.3 Effects of r-Irradiation on Some Properties of Gum Arabic (Acacia Senegal L) 30 3.4 Investigating the Electric Conductivity, Magnetic Inductivity, and Optical Properties of Gum Arabic Crystals 30 3.5 Assessment of Physical Properties of Gum Arabic from Acacia Senegal Varieties in Baringo District, Kenya 31 3.6 Gum Arabic-Silver Nanoparticles Composite as a Green Anticorrosive Formulation for Steel Corrosion in Strong Acid Media 33 3.7 Dopant Profiling with the Scanning Electron Microscope - A study of Si 33 3.8 Classification and Physicochemical Characterization of Mesquite Gum (Prosopis spp.) 34 3.9 Electrical Conductivity Behavior of Gum Arabic Biopolymer-Fe ₃ O ₄ Nanocomposites 35 3.10 Determination of the Energy Gap of Gum Arabic Doped with Zinc Oxide Using the UV-VIS Technique 35 3.11 Covalent Coupling of Gum Arabic onto Super paramagnetic Iron Oxide Nanoparticles for MRI Cell Labeling: Physicochemical and in Vitro Characterization 36 <td>2.9.1</td> <td>Types of Gum Arabic</td> <td>25</td>	2.9.1	Types of Gum Arabic	25
2.11 Chemical and Physical Properties of Iodine 27 CHAPTER THREE LITERATURE REVIEW 3.1 Introduction 29 3.2 Improving the Properties of Gum Arabic to Act as Semiconductor 29 3.3 Effects of x-Irradiation on Some Properties of Gum Arabic (Acacia Senegal L) 29 3.4 Investigating the Electric Conductivity, Magnetic Inductivity, and Optical Properties of Gum Arabic Crystals 30 3.5 Assessment of Physical Properties of Gum Arabic from Acacia Senegal Varieties in Baringo District, Kenya 31 3.6 Gum Arabic-Silver Nanoparticles Composite as a Green Anticorrosive Formulation for Steel Corrosion in Strong Acid Media 33 3.7 Dopant Profiling with the Scanning Electron Microscope - A study of Si 34 3.8 Classification and Physicochemical Characterization of Mesquite Gum (Prosopis spp.) 34 3.9 Electrical Conductivity Behavior of Gum Arabic Biopolymer-Fe ₃ O ₄ Nanocomposites 35 3.10 Determination of the Energy Gap of Gum Arabic Doped with Zinc Oxide Using the UV-VIS Technique 36 3.11 Covalent Coupling of Gum Arabic onto Super paramagnetic Iron Oxide Nanoparticles for MRI Cell Labeling: Physicochemical and in Vitro Characterization 36	2.9.2	Chemical and Physical Properties of Gum Arabic	26
CHAPTER THREE LITERATURE REVIEW 3.1 Introduction 29 3.2 Improving the Properties of Gum Arabic to Act as Semiconductor 29 3.3 Effects of x-Irradiation on Some Properties of Gum Arabic (Acacia Senegal L) 29 3.4 Investigating the Electric Conductivity, Magnetic Inductivity, and Optical Properties of Gum Arabic Crystals 30 3.5 Assessment of Physical Properties of Gum Arabic from Acacia Senegal Varieties in Baringo District, Kenya 31 3.6 Gum Arabic-Silver Nanoparticles Composite as a Green Anticorrosive Formulation for Steel Corrosion in Strong Acid Media 32 3.7 Dopant Profiling with the Scanning Electron Microscope - A study of Si 34 3.8 Classification and Physicochemical Characterization of Mesquite Gum (Prosopis spp.) 34 3.9 Electrical Conductivity Behavior of Gum Arabic Biopolymer-Fe ₃ O ₄ Nanocomposites 35 3.10 Determination of the Energy Gap of Gum Arabic Doped with Zinc Oxide Using the UV-VIS Technique 36 3.11 Covalent Coupling of Gum Arabic onto Super paramagnetic Iron Oxide Nanoparticles for MRI Cell Labeling: Physicochemical and in Vitro Characterization 36	2.10	Iodine	27
LITERATURE REVIEW3.1Introduction293.2Improving the Properties of Gum Arabic to Act as Semiconductor293.3Effects of x-Irradiation on Some Properties of Gum Arabic (Acacia Senegal L)293.4Investigating the Electric Conductivity, Magnetic Inductivity, and Optical Properties of Gum Arabic Crystals303.5Assessment of Physical Properties of Gum Arabic from Acacia Senegal Varieties in Baringo District, Kenya313.6Gum Arabic-Silver Nanoparticles Composite as a Green Anticorrosive Formulation for Steel Corrosion in Strong Acid Media323.7Dopant Profiling with the Scanning Electron Microscope - A study of Si333.8Classification and Physicochemical Characterization of Mesquite Gum (Prosopis spp.)343.9Electrical Conductivity Behavior of Gum Arabic Biopolymer-Fe ₃ O ₄ Nanocomposites353.10Determination of the Energy Gap of Gum Arabic Doped with Zinc Oxide Using the UV-VIS Technique363.11Covalent Coupling of Gum Arabic onto Super paramagnetic Iron Oxide Nanoparticles for MRI Cell Labeling: Physicochemical and in Vitro Characterization36	2.11	Chemical and Physical Properties of Iodine	27
3.1 Introduction 29 3.2 Improving the Properties of Gum Arabic to Act as Semiconductor 29 3.3 Effects of x-Irradiation on Some Properties of Gum Arabic (Acacia Senegal L) 29 3.4 Investigating the Electric Conductivity, Magnetic Inductivity, and Optical Properties of Gum Arabic Crystals 30 3.5 Assessment of Physical Properties of Gum Arabic from Acacia Senegal Varieties in Baringo District, Kenya 31 3.6 Gum Arabic-Silver Nanoparticles Composite as a Green Anticorrosive Formulation for Steel Corrosion in Strong Acid Media 32 3.7 Dopant Profiling with the Scanning Electron Microscope - A study of Si 34 3.8 Classification and Physicochemical Characterization of Mesquite Gum (Prosopis spp.) 34 3.9 Electrical Conductivity Behavior of Gum Arabic Biopolymer-Fe ₃ O ₄ Nanocomposites 35 3.10 Determination of the Energy Gap of Gum Arabic Doped with Zinc Oxide Using the UV-VIS Technique 35 3.11 Covalent Coupling of Gum Arabic onto Super paramagnetic Iron Oxide Nanoparticles for MRI Cell Labeling: Physicochemical and in Vitro Characterization 36			
3.2 Improving the Properties of Gum Arabic to Act as Semiconductor 29 3.3 Effects of x-Irradiation on Some Properties of Gum Arabic (Acacia Senegal L) 29 3.4 Investigating the Electric Conductivity, Magnetic Inductivity, and Optical Properties of Gum Arabic Crystals 30 3.5 Assessment of Physical Properties of Gum Arabic from Acacia Senegal Varieties in Baringo District, Kenya 31 3.6 Gum Arabic-Silver Nanoparticles Composite as a Green Anticorrosive Formulation for Steel Corrosion in Strong Acid Media 32 3.7 Dopant Profiling with the Scanning Electron Microscope - A study of Si 33 3.8 Classification and Physicochemical Characterization of Mesquite Gum (Prosopis spp.) 34 3.10 Determination of the Energy Gap of Gum Arabic Doped with Zinc Oxide Using the UV-VIS Technique 35 3.11 Covalent Coupling of Gum Arabic onto Super paramagnetic Iron Oxide Nanoparticles for MRI Cell Labeling: Physicochemical and in Vitro Characterization 36		LITERATURE REVIEW	
Semiconductor Semiconductor 3.3 Effects of x-Irradiation on Some Properties of Gum Arabic (Acacia Senegal L) 29 3.4 Investigating the Electric Conductivity, Magnetic Inductivity, and Optical Properties of Gum Arabic Crystals 30 3.5 Assessment of Physical Properties of Gum Arabic from Acacia Senegal Varieties in Baringo District, Kenya 31 3.6 Gum Arabic-Silver Nanoparticles Composite as a Green Anticorrosive Formulation for Steel Corrosion in Strong Acid Media 32 3.7 Dopant Profiling with the Scanning Electron Microscope - A study of Si 33 3.8 Classification and Physicochemical Characterization of Mesquite Gum (Prosopis spp.) 34 3.10 Determination of the Energy Gap of Gum Arabic Doped with Zinc Oxide Using the UV-VIS Technique 35 3.11 Covalent Coupling of Gum Arabic onto Super paramagnetic Iron Oxide Nanoparticles for MRI Cell Labeling: Physicochemical and in Vitro Characterization 36	3.1	Introduction	29
3.3 Effects of x-Irradiation on Some Properties of Gum 29 Arabic (Acacia Senegal L) 3.4 Investigating the Electric Conductivity, Magnetic 30 Inductivity, and Optical Properties of Gum Arabic 30 31 from Acacia Senegal Varieties in Baringo District, 31 from Acacia Senegal Varieties in Baringo District, 32 Green Anticorrosive Formulation for Steel Corrosion 32 in Strong Acid Media 33 3.7 Dopant Profiling with the Scanning Electron 33 Microscope - A study of Si 34 of Mesquite Gum (Prosopis spp.) 35 3.9 Electrical Conductivity Behavior of Gum Arabic 35 Biopolymer-Fe ₃ O ₄ Nanocomposites 35 3.10 Determination of the Energy Gap of Gum Arabic 35 3.10 Determination of the Energy Gap of Gum Arabic 35 Joped with Zinc Oxide Using the UV-VIS Technique 36 Aculat Coupling of Gum Arabic onto Super 36 Aculaterization 36	3.2	Improving the Properties of Gum Arabic to Act as	29
Arabic (Acacia Senegal L)3.4Investigating the Electric Conductivity, Magnetic Inductivity, and Optical Properties of Gum Arabic Crystals303.5Assessment of Physical Properties of Gum Arabic from Acacia Senegal Varieties in Baringo District, Kenya313.6Gum Arabic-Silver Nanoparticles Composite as a Green Anticorrosive Formulation for Steel Corrosion in Strong Acid Media323.7Dopant Profiling with the Scanning Electron Microscope - A study of Si333.8Classification and Physicochemical Characterization of Mesquite Gum (Prosopis spp.)343.9Electrical Conductivity Behavior of Gum Arabic Biopolymer-Fe ₃ O ₄ Nanocomposites353.10Determination of the Energy Gap of Gum Arabic Doped with Zinc Oxide Using the UV-VIS Technique363.11Covalent Coupling of Gum Arabic onto Super paramagnetic Iron Oxide Nanoparticles for MRI Cell Labeling: Physicochemical and in Vitro Characterization36			
3.4 Investigating the Electric Conductivity, Magnetic Inductivity, and Optical Properties of Gum Arabic Crystals 30 3.5 Assessment of Physical Properties of Gum Arabic from Acacia Senegal Varieties in Baringo District, Kenya 31 3.6 Gum Arabic-Silver Nanoparticles Composite as a Green Anticorrosive Formulation for Steel Corrosion in Strong Acid Media 32 3.7 Dopant Profiling with the Scanning Electron Microscope - A study of Si 33 3.8 Classification and Physicochemical Characterization of Mesquite Gum (Prosopis spp.) 34 3.9 Electrical Conductivity Behavior of Gum Arabic Biopolymer-Fe ₃ O ₄ Nanocomposites 35 3.10 Determination of the Energy Gap of Gum Arabic Doped with Zinc Oxide Using the UV-VIS Technique 35 3.11 Covalent Coupling of Gum Arabic onto Super paramagnetic Iron Oxide Nanoparticles for MRI Cell Labeling: Physicochemical and in Vitro Characterization 36	3.3	Effects of x-Irradiation on Some Properties of Gum	29
Inductivity, and Optical Properties of Gum Arabic Crystals3.53.5Assessment of Physical Properties of Gum Arabic from Acacia Senegal Varieties in Baringo District, Kenya313.6Gum Arabic-Silver Nanoparticles Composite as a Green Anticorrosive Formulation for Steel Corrosion in Strong Acid Media323.7Dopant Profiling with the Scanning Electron Microscope - A study of Si333.8Classification and Physicochemical Characterization of Mesquite Gum (Prosopis spp.)343.9Electrical Conductivity Behavior of Gum Arabic Biopolymer-Fe ₃ O ₄ Nanocomposites353.10Determination of the Energy Gap of Gum Arabic Doped with Zinc Oxide Using the UV-VIS Technique363.11Covalent Coupling of Gum Arabic onto Super paramagnetic Iron Oxide Nanoparticles for MRI Cell Labeling: Physicochemical and in Vitro Characterization36		Arabic (Acacia Senegal L)	
Crystals	3.4	Investigating the Electric Conductivity, Magnetic	30
3.5 Assessment of Physical Properties of Gum Arabic from Acacia Senegal Varieties in Baringo District, Kenya 31 3.6 Gum Arabic-Silver Nanoparticles Composite as a Green Anticorrosive Formulation for Steel Corrosion in Strong Acid Media 32 3.7 Dopant Profiling with the Scanning Electron Microscope - A study of Si 33 3.8 Classification and Physicochemical Characterization of Mesquite Gum (Prosopis spp.) 34 3.9 Electrical Conductivity Behavior of Gum Arabic Biopolymer-Fe ₃ O ₄ Nanocomposites 35 3.10 Determination of the Energy Gap of Gum Arabic Doped with Zinc Oxide Using the UV-VIS Technique 36 3.11 Covalent Coupling of Gum Arabic onto Super paramagnetic Iron Oxide Nanoparticles for MRI Cell Labeling: Physicochemical and in Vitro Characterization 36		Inductivity, and Optical Properties of Gum Arabic	
from Acacia Senegal Varieties in Baringo District, Kenyafrom Acacia Senegal Varieties in Baringo District, Kenya3.6Gum Arabic-Silver Nanoparticles Composite as a Green Anticorrosive Formulation for Steel Corrosion in Strong Acid Media323.7Dopant Profiling with the Scanning Electron Microscope - A study of Si333.8Classification and Physicochemical Characterization of Mesquite Gum (Prosopis spp.)343.9Electrical Conductivity Behavior of Gum Arabic Biopolymer-Fe ₃ O ₄ Nanocomposites353.10Determination of the Energy Gap of Gum Arabic Doped with Zinc Oxide Using the UV-VIS Technique363.11Covalent Coupling of Gum Arabic onto Super paramagnetic Iron Oxide Nanoparticles for MRI Cell Labeling: Physicochemical and in Vitro Characterization4		Crystals	
Kenya3.6Gum Arabic-Silver Nanoparticles Composite as a Green Anticorrosive Formulation for Steel Corrosion in Strong Acid Media323.7Dopant Profiling with the Scanning Electron Microscope - A study of Si333.8Classification and Physicochemical Characterization of Mesquite Gum (Prosopis spp.)343.9Electrical Conductivity Behavior of Gum Arabic Biopolymer-Fe ₃ O ₄ Nanocomposites353.10Determination of the Energy Gap of Gum Arabic Doped with Zinc Oxide Using the UV-VIS Technique363.11Covalent Coupling of Gum Arabic onto Super paramagnetic Iron Oxide Nanoparticles for MRI Cell Labeling: Physicochemical and in Vitro Characterization36	3.5	Assessment of Physical Properties of Gum Arabic	31
3.6Gun Arabic-Silver Nanoparticles Composite as a Green Anticorrosive Formulation for Steel Corrosion in Strong Acid Media323.7Dopant Profiling with the Scanning Electron Microscope - A study of Si333.8Classification and Physicochemical Characterization of Mesquite Gum (Prosopis spp.)343.9Electrical Conductivity Behavior of Gum Arabic Biopolymer-Fe ₃ O ₄ Nanocomposites353.10Determination of the Energy Gap of Gum Arabic Doped with Zinc Oxide Using the UV-VIS Technique363.11Covalent Coupling of Gum Arabic onto Super paramagnetic Iron Oxide Nanoparticles for MRI Cell Labeling: Physicochemical and in Vitro Characterization36		from Acacia Senegal Varieties in Baringo District,	
Green Anticorrosive Formulation for Steel Corrosion in Strong Acid Media3.7Dopant Profiling with the Scanning Electron Microscope - A study of Si333.8Classification and Physicochemical Characterization of Mesquite Gum (Prosopis spp.)343.9Electrical Conductivity Behavior of Gum Arabic Biopolymer-Fe ₃ O ₄ Nanocomposites353.10Determination of the Energy Gap of Gum Arabic Doped with Zinc Oxide Using the UV-VIS Technique363.11Covalent Coupling of Gum Arabic onto Super paramagnetic Iron Oxide Nanoparticles for MRI Cell Labeling: Physicochemical and in Vitro Characterization36			
in Strong Acid Media3.7Dopant Profiling with the Scanning Electron Microscope - A study of Si333.8Classification and Physicochemical Characterization of Mesquite Gum (Prosopis spp.)343.9Electrical Conductivity Behavior of Gum Arabic Biopolymer-Fe ₃ O ₄ Nanocomposites353.10Determination of the Energy Gap of Gum Arabic Doped with Zinc Oxide Using the UV-VIS Technique363.11Covalent Coupling of Gum Arabic onto Super paramagnetic Iron Oxide Nanoparticles for MRI Cell Labeling: Physicochemical and in Vitro Characterization36	3.6	1 1	32
3.7Dopant Profiling with the Scanning Electron Microscope - A study of Si333.8Classification and Physicochemical Characterization of Mesquite Gum (Prosopis spp.)343.9Electrical Conductivity Behavior of Gum Arabic Biopolymer-Fe ₃ O ₄ Nanocomposites353.10Determination of the Energy Gap of Gum Arabic Doped with Zinc Oxide Using the UV-VIS Technique353.11Covalent Coupling of Gum Arabic onto Super paramagnetic Iron Oxide Nanoparticles for MRI Cell Labeling: Physicochemical and in Vitro Characterization36			
Microscope - A study of Si3.8Classification and Physicochemical Characterization of Mesquite Gum (Prosopis spp.)343.9Electrical Conductivity Behavior of Gum Arabic Biopolymer-Fe ₃ O ₄ Nanocomposites353.10Determination of the Energy Gap of Gum Arabic Doped with Zinc Oxide Using the UV-VIS Technique353.11Covalent Coupling of Gum Arabic onto Super paramagnetic Iron Oxide Nanoparticles for MRI Cell Labeling: Physicochemical and in Vitro Characterization36			
3.8Classification and Physicochemical Characterization of Mesquite Gum (Prosopis spp.)343.9Electrical Conductivity Behavior of Gum Arabic Biopolymer-Fe3O4 Nanocomposites353.10Determination of the Energy Gap of Gum Arabic Doped with Zinc Oxide Using the UV-VIS Technique353.11Covalent Coupling of Gum Arabic onto Super paramagnetic Iron Oxide Nanoparticles for MRI Cell Labeling: Physicochemical and in Vitro Characterization36	3.7		33
of Mesquite Gum (Prosopis spp.)3.9Electrical Conductivity Behavior of Gum Arabic Biopolymer-Fe3O4 Nanocomposites353.10Determination of the Energy Gap of Gum Arabic Doped with Zinc Oxide Using the UV-VIS Technique353.11Covalent Coupling of Gum Arabic onto Super paramagnetic Iron Oxide Nanoparticles for MRI Cell Labeling: Physicochemical and in Vitro Characterization36			
3.9Electrical Conductivity Behavior of Gum Arabic Biopolymer-Fe3O4 Nanocomposites353.10Determination of the Energy Gap of Gum Arabic Doped with Zinc Oxide Using the UV-VIS Technique353.11Covalent Coupling of Gum Arabic onto Super paramagnetic Iron Oxide Nanoparticles for MRI Cell Labeling: Physicochemical and in Vitro Characterization36	3.8	•	34
Biopolymer-Fe ₃ O ₄ Nanocomposites3.10Biopolymer-Fe ₃ O ₄ Nanocomposites3.10Determination of the Energy Gap of Gum Arabic Doped with Zinc Oxide Using the UV-VIS Technique353.11Covalent Coupling of Gum Arabic onto Super paramagnetic Iron Oxide Nanoparticles for MRI Cell Labeling: Physicochemical and in Vitro Characterization36	• •		
3.10Determination of the Energy Gap of Gum Arabic Doped with Zinc Oxide Using the UV-VIS Technique353.11Covalent Coupling of Gum Arabic onto Super paramagnetic Iron Oxide Nanoparticles for MRI Cell Labeling: Physicochemical and in Vitro Characterization36	3.9	-	35
Doped with Zinc Oxide Using the UV-VIS Technique3.11Covalent Coupling of Gum Arabic onto Super36paramagnetic Iron Oxide Nanoparticles for MRI CellLabeling: Physicochemical and in Vitro4CharacterizationCharacterization36	2.10		25
3.11Covalent Coupling of Gum Arabic onto Super paramagnetic Iron Oxide Nanoparticles for MRI Cell Labeling: Physicochemical and in Vitro Characterization36	3.10	U 1	35
paramagnetic Iron Oxide Nanoparticles for MRI Cell Labeling: Physicochemical and in Vitro Characterization	2 1 1		26
Labeling: Physicochemical and in Vitro Characterization	5.11		30
Characterization			
		Labeling: Physicochemical and in Vitro	
3.12 Preparation, Characterization and Electrical Study of 37		Characterization	
	3.12	Preparation, Characterization and Electrical Study of	37

	Gum Arabic /ZnO Nanocomposites	
	CHAPTER FOUR	
	MATERIAL AND METHOD	
4.1	Introduction	39
4.2	Materials	39
4.2.1	Gum Arabic	39
4.2.2	Iodine	39
4.2.3	Deionize water	39
4.2.4	Methanol(CH ₃ OH)	39
4.2.5	Sulfuric Acid(H ₂ SO ₄)	39
4.3	Methods	39
4.4	Instrument Analysis	40
4.4.1	X-Ray Diffraction(XRD)	40
4.4.2	Ultraviolet–Visible Spectroscopy	41
4.4.3	Fourier Transform Infrared Spectroscopy(FTIR)	42
4.4.4	Scanning Electronic Microscope (SEM)	44
	CHAPTER FIVE	
RESULT	I, DISCUSSIONS, CONCLUSION AND RECOMME	NDATION
5.1	Introduction	46
5.2	Results	46
5.2.1	Gum Arabic Doping by iodine XRD Results	46
5.2.2	Talha Gum Optical Properties Results	52
5.2.3	Hashab Gum Optical Properties Results	57
5.2.4	SEM Talha Gum Arabic Results	62
5.2.5	SEM Hashab Gum Arabic Results	67
5.2.6	FT-IR Talha Gum Arabic Results	72
5.2.6.1	FT-IR Talha Gum Arabic Discussion	75
5.2.7	FT-IR Hashab Gum Arabic Results	77
5.2.7.1	FT-IR Hashab Gum Arabic Discussion	80
5.3	Discussion	81
5.4	Conclusion	82
5.5	Recommendation	83
	References	84

List of Tables

Table caption	Page No.
Table (5.1) some crystallite lattice parameter (c- form , a,b,c,	48

β,α,γ , density ,Xs(nm) and d – spacing) of all samples that	
meade by Gum Arbic (Talha and Hashab)	
Table (5.2) parameters of Talha Gum Arabic Nano samples	76
Table (5.3) parameters of Hashab Gum Arabic Nano samples	80

List of Figures

Name of Figure	Page No.
Figure (2.1) The structure of atom	
Figure (2.2) Unit cells of the three cubic Bravais lattices: (a) simple cubic (SC); (b) body-centered cubic (BCC); (c) face-centered cubic (FCC).	5
Figure (2.3) The Biot-Savart law.	7

	1.4
Figure (2.4) Angular momentum vector of electron producing current	14
Figure (2.5) Plot of Langevins function.	15
Figure (2.6) Paramagnetic susceptibility curve (Curie Law)	19
Figure (2.7) A potential difference applied to a segment of a conductor	20
with a cross-sectional area A and a length L	
Figure (4.1) X-Ray diffract meter (XRD) wavelength 1.54 A°	21
Figure (4.2) Ultraviolet–Visible Spectroscopy	41
Figure (4.3) Basic component in Fourier Transform Infrared Spectrometer	42
Figure (4.4) FTIR Spectroscopy, Satellite Serial No 20010102.	43
Figure (4.5) Scanning Electronic Microscope SEM device manufactured by Shimadzu company–Japan.	44
Figure (5.1) the XRD charts of the five samples Talha Gum Arabic doped by iodine concentrations (0.1, 0.2, 0.3, 0.4 and 0.5) ppm	45
Figure (5.2) the XRD charts of the five samples Hashab Gum Arabic doped by iodine concentrations (01,0.2,0.3,0.4 and 0.5 ppm)	46
Figure (5.3)Dependence of the density of Talha Gum Arabic samples on iodine concentration	47
Figure (5.4)Dependence of the crystallites growth of Talha Gum Arabic samples on iodine concentration	48
Figure (5.5)Dependence of the d- spacing of Talha Gum Arabic samples on iodine concentration	49
Figure (5.6)Dependence of the density of Hashab Gum Arabic samples on iodine concentration	49
Figure (5.7)Dependence of the crystallites growth of Hashab Gum Arabic samples on iodine concentration	50
Figure (5.8)Dependence of the d- spacing of Hashab Gum Arabic samples	50
Figure (5.9) plots the relation of wavelengths vrs absorbance of Talha Gum Arabic doped by iodine having different concentrations	51
Figure (5.10) plots the relation between transmission and wavelengths of five sample that made by Talha Gum doped by iodine having different concentration	52
Figure (5.11)Plots the relation between reflection and wavelengths of five sample that made by Talha Gum doped by iodine in different concentrations	52
Figure (5.12) plots the relation of wavelengths vrs absorption coefficient of Talha Gum Arabic doped by iodine in different concentrations	53
Figure (5.13) plots the relation of wavelengths vrs extinction coefficient of Talha Gum Arabic doped by iodine in different concentrations	53
Figure (5.14) plots the optical energy band gap of Talha Gum doped by iodine in different concentrations	54

Figure (5.15) plots the relation of wavelengths vrs refractive index of	54
Talha Gum Arabic doped by iodine in different concentrations Figure (5, 10) plate the model of encodements and dislocation of encodements.	55
Figure (5.16) plots the relation of wavelengths vrs real dielectric constant	55
of Talha Gum Arabic doped by iodine in different concentrations	~ ~
Figure(5.17) plots the relation of wavelengths vrs imaginary dielectric	55
constant of Talha Gum Arabic doped by iodine in different	
concentrations	
Figure(5.18) plots the relation of wavelengths vrs absorbance of Hashab Gum Arabic doped by iodine in different concentrations	56
Figure(5.19) plots the relation of wavelengths vrs transmission of Hashab	57
Gum Arabic doped by iodine in different concentrations	51
Figure (5.20) plots the relation of wavelengths vrs reflection of Hashab	57
Gum Arabic doped by iodine in different concentrations	57
Figure (5.21) plots the relation of wavelengths vrs absorption coefficient	58
	50
of Hashab Gum Arabic doped by iodine in different concentrations	50
Figure (5.22) plots the relation of wavelengths vrs extinction coefficient	58
of Hashab Gum Arabic doped by iodine in different concentrations	50
Figure (5.23) optical energy band gap of five sample that made by	59
Hashab Gum Arabic doping by iodine in different concentrations	
Figure (5.24) plots the relation of wavelengths vrs refractive index of	59
Hashab Gum Arabic doped by iodine in different concentrations	
Figure (5.25) plots the relation of wavelengths vrs real dielectric constant	60
of Hashab Gum Arabic doped by iodine in different concentrations	
Figure (5.26) plots the relation of wavelengths vrs imaginary dielectric	60
constant of Hashab Gum Arabic doped by iodine in different	
concentrations	
Figure (5.27) SEM images of the Talha Gum Arabic having 0.1 ppm	61
concentration sample	
Figure (5.28) Particle diameter distribution of Talha Gum Arabic having	62
0.1 ppm concentration	
Figure (5.29) SEM images of the Talha Gum Arabic having 0.2 ppm	62
concentration	
Figure (5.30) Particle diameter distribution of Talha Gum Arabic having	63
0.2 ppm concentration	
Figure (5.31) SEM images of the Talha Gum Arabic having 0.3 ppm	63
concentration	
Figure (5.32) Particle diameter distribution of Talha Gum Arabic having	64
0.3 ppm concentration	5.
Figure (5.33) SEM images of the Talha Gum Arabic having 0.4 ppm	64
concentration	Uт
Figure (5.34) Particle diameter distribution of Talha Gum Arabic having	65
rigure (3.54) rature diameter distribution of Tallia Guili Afabic having	05

0.4 ppm concentration	
Figure (5.35) SEM images of the Talha Gum Arabic having 0.5ppm	65
concentration	05
	66
Figure (5.36) Particle diameter distribution of Talha Gum Arabic having	00
0.5 ppm concentration	((
Figure (5.37) SEM images of the Hashab Gum Arabic having 0.1 ppm	66
concentration	
Figure (5.38) Particle diameter distribution of Hashab having Gum Arabic	67
0.1 ppm concentration sample	
Figure (5.39) SEM images of the Hashab Gum Arabic having 0.2 ppm	67
concentration	
Figure (5.40) Particle diameter distribution of Hashab Gum Arabic having	68
0.2 ppm concentration	
Figure (5.41) SEM images of the Hashab Gum Arabic having 0.3 ppm	68
concentration	
Figure (5.42) Particle diameter distribution of Hashab Gum Arabic having	69
0.3 ppm concentration	
Figure (5.43) SEM images of the Hashab Gum Arabic having 0.4 ppm	69
concentration	
Figure (4.44) Particle diameter distribution of Hashab Gum Arabic having	70
0.4 ppm concentration	
Figure (5.45) SEM images of the Hashab Gum Arabic having 0.5 ppm	70
concentration	
Figure (5.46) Particle diameter distribution of Hashab Gum Arabic having	71
0.5 ppm concentration	
Figure (5.47) The FT-IR spectrum of Talha Gum Arabic having 0.1 ppm	71
concentration	
Figure (5.48) The FT-IR spectrum of Talha Gum Arabic having 0.2 ppm	72
concentration	
Figure (5.49) The FT-IR spectrum of Talha Gum Arabic having 0.3 ppm	72
concentration	, _
Figure (5.50) The FT-IR spectrum of Talha Gum Arabic having 0.4 ppm	73
concentration	15
Figure (5.51) The FT-IR spectrum of Talha Gum Arabic having 0.5 ppm	73
concentration	13
	74
Figure (5.52) The FT-IR spectrum of five samples Talha Gum Arabic	/4
having (0.1, 0.2, 0.3, 0.4 and 0.5) ppm concentration	71
Figure (5.53) The FT-IR spectrum of Hashab Gum Arabic having 0.1 ppm	74
concentration	
Figure (5.54) The FT-IR spectrum of Hashab Gum Arabic having 0.2	77
ppm concentration	
Figure (5.55) The FT-IR spectrum of Hashab Gum Arabic having 0.3	77

ppm concentration	
Figure (5.56) The FT-IR spectrum of Hashab Gum Arabic having 0.4	78
ppm concentration	
Figure (5.57) The FT-IR spectrum of Hashab Gum Arabic having 0.5	78
ppm concentration	
Figure (5.58) The FT-IR spectrum of five samples Hashab Gum Arabic	79
having (0.1, 0.2, 0.3, 0.4 and 0.5) ppm concentration	