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Abstract  

Texture analysis studies have been increasingly explored in 

neuroradiology in the recent yeares, as it enabling diseases 

characterization and quantification of disease distribution. The aim of this 

study was to characterize white matter lesions on the brain in MR images 

using texture analysis. This analytical study had been conducted at 

Antalya medical center  in the period from October 2018 to March 2021  

by using study of 1646 brain MR images selected conveniently for 

patients having Glioma, Multiple Sclerosis (MS) and Small Vessels 

Diseases (SVD) , then these imeges entered to interactive data language 

program to extract the textural features from the normal tissues and the 

white matter lesions, then these extracted features entered to statistical 

package social science for analysis. And the results reveal that; the best 

textural features for discrimination of the Glioma from the normal tissues 

in all MR imaging sequences were the mean, entropy, Gray-Level 

Nonuniformity and Run-Length Nonuniformity. While for the MS 

plaques the features were the mean, variance, entropy and Run 

Percentage textural features. Also the best features for differentiation the 

SVD from normal tissues in all MRI sequences were the mean, variance, 

energy, entropy, Gray-Level Nonuniformity and Run Percentage. In 

conclusion texture analysis statistics successfully discriminate the white 

matter lesions from normal brain tissues in all MRI sequences, firstly 

when using the first order statistics on the Glioma, MS and SVD the 

imaging sequence that shows the highest sensitivity in discrimination the 

lesion from normal tissues were T2=98.2%, T1+C=99.3% and 

T1+C=97.5% respectively; and when using the higher order statistics the 

highest sensitivity were in T1+C=93.6%, T1+C=99.3% and T1=97.5% 

correspondingly.       
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 المستخلص

  

 في الصور الاشعاعية للجهاز العصبي  في متزايد بشكل الملمسي تحليل دراسات استخدام تم

 من الهدف انك .ضالكمي للأمراتقديرالو ضامرالا توصيف تتيح إنها حيث ، الأخيرة السنوات

  الرنين المغنطيسي صور في مخال في بي الانسيج ال أمراض توصيف هو الدراسة هذه

 من الفترة في الطبي أنطاليا مركز في التحليلية الدراسة هذه أجريت .الملمسي  تحليلال باستخدام

 تم للدماغ رنين مغنطيسي صورة 1646 من تتكون عينة في ,2021 مارس إلى 2018 أكتوبر

 الدموية الأوعية أمراضو  المتعدد تصلب, الالدبقي ورممن مرضى لديهم  ملائم بشكل اختيارها

 التركيبية السمات لاستخراج التفاعلية البيانات لغة برنامج في الصور هذه إدخال تم ، الصغيرة

 برنامح إلى المستخرجة ئاتالقرا هذه أدخلت ثم ، البيضاء المادة و أمراض الطبيعية الأنسجة من

 التركيبية الميزات أفضل أن النتائجولقد أوضحت   .لتحليلهاالحزمه الاحصائيه للعلوم الاجتماعيه 

 هي المغناطيسيصور الرنين  انواع جميع في الطبيعية الأنسجة من الدبقي الورم بين للتمييز

 لتصلبل بالنسبة بينما. ميل المدى عدم اتساق اتدرج الرامادي و عدم اتساق ، الانتروبيا ، الوسط

 أفضل أن كما. النسبة المئوية للمدى و الانتروبيا ، التباين ، الوسط هي الميزات كانت ، المتعدد

 صور انواع جميع في الطبيعية الأنسجة عن الصغيرة الدموية الأوعية أمراض لتفريق ميزات

 و عدم اتساق اتدرج الرامادي ، الانتروبيا ، الطاقة ، التباين ، المتوسط هي المغناطيسي الرنين

 بي الانسيج ال امراض بين التمييز في النسيج تحليل إحصائيات نجحتاذا  .النسبة المئوية للمدى

 استخدام عند أولاا  ، المغناطيسي بالرنين التصوير تسلسلات جميع في الطبيعية المخ أنسجة من

 الدموية الأوعية أمراض و المتعدد والتصلب الدبقي الورم على الأولى الدرجة إحصائيات

 بين الامراض و التمييز في حساسية أعلى يظهر الذي الرنين المغنطيسينوع صور  , الصغيرة

 ؛ التوالي على T1+C =97,5% و % T2 =98,2%، T1+C=99,3 هو السليمة الأنسجة

 T1+C93,6% ، T1+ C= في حساسية أعلى كانت ، الأعلى الرتبة إحصائيات استخدام وعند

 .التوالي علىT1=97,5% و 99,3%=
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Chapter One 

Introduction 

1.1 Introduction  

The white matter of the brain composed of tracts, which consists of 

bundles of myelinated axons which wrapped in a myelin sheath; a fatty 

substance having a creamy white color (Forbes, 2017). 

There are many potential causes of white matter diseases 

(hyperintensities) including ischemic, inflammatory, demyelinating, 

infectious, metabolic, toxic and malignant (Forbes, 2017). 

Neuroradiology, specially magnetic resonance imaging (MRI) helps in 

the detecting and diagnosis of the brain lesions, as it offers different 

types of images acording to different physical factores and tissue 

characteristics e.g: T1-weighted, T2-weighted and fluid attention 

inversion recovery (FLAIR) sequences, also it provide agood soft tissue 

differentiation and resolution (Forbes, 2017) and (Kornienko and Pronin, 

2008). 

These imaging protocols can be directed to assess the white matter and 

assist in narrowing the differential diagnosis which is wide and depends 

on location, appearance and changes over time, which is detected by the 

Radiologist (Nicolae, 2016).  It also can be evaluated using  Texture 

analysis mothods which enabling disease characterization and 

quantification of disease distribution, these techniques may provide 

information that is not visible to human eye (Alastair, 2002).  

The aim of this theises is to characterize white matter lesions  in MR 

images by using texture analysis, as texture analysis studies have been 

produced more often the recent years on central nerves system lesions as 

it give a quantitative result (Kornienko and Pronin, 2008). 

 

 



2 
 

1.2 Problem of the study: 

Generally in radiology the pathology or any abnormality will be 

diagnosed by the radiologist, as abnormal area depending on their visual 

perception which is subjective and affected by many factors .This 

situation may lead some times not giving an efficient diagnosis for 

diseases that appeares alike in the white matter of the brain. Therefore 

texture analysis can provide second opinion for the radiologist to 

diagnose white matter pathologies, with some confident as well as it will 

draw his attention to the area of interest. 

1.3 Objectives: 

1.3.1 General objective: 

The general objective of this study is to characterize white matter lesions  

in  MR images using texture analysis.  

1.3.2 Specific objectives: 

 To extract texture feature for the white matter and the grey matter 

from MR images using first and higher order statistics.  

 To extract texture feature for each leaion (Glioma, Multiple 

Sclerosis (MS) and Small Vessels Diseases (SVD)) from MR 

images using first and higher order statistics.  

 To classify the extracted feature for each pathology into two 

classes including normal white matter, grey matter and the lesion 

using K-means through Euclidian distance. 

 To generate a classification map from the classified features.  

 To apply linear discriminate analysis to generate model for linear 

classification on MR Images .  

 To calculate the sensitivity and accuracy for each pathology . 

 To use to discriminate analysis in diffrentiation between all 

diseases included on this study on the MR images   .   
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1.4 Significance of the study: 

This study is to highlight the application of image analysis, using image 

processing techniques, in characterizing white matter pathologies on MR 

images, and hence it will facilitate quantitative approach in brain defect. 

 

1.5 Overview of the study: 

This study conisits of five chapters. Chapter one is an introduction as 

well as statement of the problem and study objectives and significance of 

the study.  Chapter two include literature review ,and anatomical 

background and  previous studies. Chapter three deals with the 

methodology, where it provides an outline of material and methods used 

to acquire the data in this study, as well as the method of analysis 

approach. chapter four deal with the results presentaion, and finally 

Chapter five includes discussion of the results, conclusion and 

recommendations followed by references and appendices.  
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Chapter Two 

Literature Review  

2.1 Anatomy: 

Anatomy of the nervous system: 

The divisions of the nervous system can be classified by location or by 

the type of tissue supplied by the nerve cells in the division. The central 

nervous system (CNS) consists of the brain and spinal cord. The 

remaining neural structures, including 12 pairs of cranial nerves, 31 pairs 

of spinal nerves, autonomic nerves, and ganglia, make up the peripheral 

nervous system (PNS). The PNS consists of afferent and efferent 

neurons. Afferent (sensory) neurons conduct impulses from peripheral 

receptors to the CNS. Efferent (motor) neurons conduct impulses away 

from the CNS to the peripheral effectors (Eisenberg and Johnson, 2016). 

The somatic nervous system supplies the striated skeletal muscles, 

whereas the autonomic nervous system supplies smooth muscle, cardiac 

muscle, and glandular epithelial tissue (Eisenberg and Johnson, 2016). 

2.1.1 Neuron: 

Neurons, or nerve cells, are the specialized cells of the nervous system 

that conduct electrical impulses. Each neuron is composed of an axon, a 

cell body, and one or more dendrites (Bontrager, 2014). 

Dendrites are processes that conduct impulses toward the neuron cell 

body. An axon is a process that leads away from the cell body. The 

dendrites and cell bodies make up the gray matter of the brain and spinal 

cord, and the large myelinated axons make up the white matter 

(Bontrager, 2014). 
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Fig (2-1): the Neuron (Eisenberg and Johnson, 2016).  

2.1.2 Cerebral hemispheres: 

The cerebral hemispheres fill the cranial vault above the tentorium 

cerebelli. Right and left hemispheres are connected by the corpus 

callosum and are otherwise partly separated by the median longitudinal 

fissure. The hemispheres consist of cortical grey matter, white matter, 

basal ganglia, thalamus, hypothalamus, pituitary gland and the limbic 

lobe. The lateral ventricles form a cavity within each ventricle 

(Stephanie et al, 2011). 
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Fig (2-2): A section of brain tissue through the cerebral hemispheres 

(Bontrager, 2014). 

 

2.1.2.1 Cerebral cortex: 

The superolateral surface of each cerebral hemisphere has two deep 

sulci; these are: 

The lateral sulcus, also known as the sylvian fissure, which separates the 

frontal and temporal lobes (Stephanie et al, 2011). 

The central sulcus (of Rolando), which passes upwards from the lateral 

sulcus to the superior border of the hemisphere. This separates the 

frontal and parietal lobes (Stephanie et al, 2011). 

The parieto-occipital sulcus on the medial surface of the hemisphere 

separates the parietal and occipital lobes. On the lateral surface of the 

hemispheres there is no complete sulcal separation of the parietal, 

temporal and occipital lobes. The boundary between the parietal and 

temporal lobes lies on a line extended back from the lateral sulcus. The 

boundary separating the parietal and temporal lobes from the occipital 
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lobe is a line between the superior border of the parieto-occipital sulcus 

and the preoccipital notch (Stephanie et al, 2011). 

2.1.2.1.1 Grey Matter Structures: 

The cerebral cortex itself consists of arrays of neurons (estimated to 

number 100 billion, each one communicating synaptically with many 

adjacent neurons in a system of astonishing complexity) which on Nissl 

staining appear to be arranged in layers. The cortex varies from 2 to 5 

mm in thickness (Andreas et al, 2015). 

Isocortex, as described above, has six layers, allocortex has three, with 

mesocortex in between, all layers being numbered from superficial to 

deep. Probably, equal numbers of glial cells are present in the cortex, 

interacting metabolically with neurons and synapses as well as with the 

rich network of cortical capillaries. Precise functions of glial cells are not 

clear-cut, but they are certainly not mere supporting cells. The surface of 

the cortex is formed by a continuous layer of superficial astrocyte foot 

processes with associated basement membrane forming the glia limitans 

to which is applied the pia mater, with a potential subpial space 

intervening (Andreas et al, 2015). 

The cortical mantle over the surface of each hemisphere is folded into a 

series of elevated gyri separated by sulcal clefts. These form the basis of 

the separation into the lobes of the brain, which were originally named 

for the overlying skull bones. The lobar terminology represents a 

convenient though arbitrary system and is largely devoid of onto-genic 

significance. Six lobes in each hemisphere are often described: frontal, 

parietal, occipital, temporal, insula and limbic. With familiarity, patterns 

emerge from the initially bewildering array of brain convolutions 

allowing quite accurate identification of the major subdivisions. The 

inter-hemispheric fissure and Sylvian (or lateral) fissure are immediately 

obvious. The central sulcus is the other main landmark of the hemisphere 
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separating the precentral gyrus (motor) from the postcentral gyrus 

(sensory) and can usually be confidently identified on axial and sagittal 

images. From these landmarks other sulci and gyri can be sequentially 

identified (Andreas et al, 2015). 

The deep grey matter structures principally comprise the basal ganglia, 

amygdala and thalamus. The basal ganglia are part of the extrapyramidal 

system including the caudate nucleus, globus pallidus, putamen, nucleus 

accumbens and substantia nigra. The globus pallidus and caudate are 

linked across the intervening internal capsule by a series of grey matter 

bridges giving a striated appearance, the origin of the term corpus 

striatum for this region (Andreas et al, 2015). 

The thalami are paired large nuclear masses forming most of the lateral 

walls of the third ventricle, above and behind the hypothalamus. They 

often are in contact across the ventricle at the massa intermedia. The 

posterior border, or pulvinar, bulges convexly into the quadrigeminal 

cistern and overlies the medial (visual) and lateral (olfactory) geniculate 

bodies (Andreas et al, 2015). 

2.1.2.2 White Matter: 

The anatomy of the white matter of the brain has generally received little 

attention in the imaging literature, which is surprising given the ubiquity 

of white matter diseases. The medullary core of the brain is formed of 

bundles of axons, supporting glial cells and penetrating blood vessels. Its 

whitish color derives from the fatty myelin sheaths contributed by 

oligodendrocytes (in the periphery myelin sheaths are formed by 

Schwann cells) (Andreas et al, 2015). 

The myelin sheath is produced by oligodendrocytes and is the 

component responsible for the color and the imaging characteristics of 

normal white matter. Myelin has a water content of about 40%, and the 

dry part (60%) is mainly composed of lipids (70%–85%), with a smaller 
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component of proteins (15%– 30%). Spinal cord myelin has an even 

higher lipid-to-protein ratio than the brain. The major lipid components 

of myelin are cerebrosides and lecithin, and the main protein elements of 

myelin are proteolipid protein and myelin basic protein, which are more 

specific to the central nervous system and may serve as antigenic targets 

in autoimmune processes. For the same reason, another important protein 

component is myelin oligodendrocyte glycoprotein, which is involved in 

the formation and maintenance of myelin sheaths and is located in the 

outermost layer of myelin, serving as a potential target for autoimmunity 

(Nicolae et al, 2016). 

2.1.2.2.1 White matter Structures:  

There are three types of fiber within the cerebral hemispheres: 

commissural fibers, which connect corresponding areas of the two 

hemispheres; association (arcuate) fibers, which connect different parts 

of the cortex of the same hemisphere; and projection fibers, which join 

the cortex to lower centers (Ryan et al, 2011). 

2.1.2.2.1.1 Commissural fibers: 

The corpus callosum is a large midline mass of commissural fibers, 

each of which connects corresponding areas of both hemispheres It is 

approximately 10 cm long and becomes progressively thicker towards its 

posterior end Named parts include the following: 

Rostrum – this is the first part, which extends anteriorly from the anterior 

commissure (Ryan et al, 2011).  

Genu – this is the most anterior part where it bends sharply backwards 

Trunk (body) – this is the main mass of fibers extending from the genu 

anteriorly to the splenium posteriorly It lies below the lower free edge of 

the falxcerebri The anterior cerebral vessels run on its superior surface  

Splenium – this is the thickened posterior end (Ryan et al, 2011). 
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In cross-section, fibers from the genu that arch forward to the frontal 

cortex on each side are called forceps minor, and fibers from the 

splenium passing posteriorly to each occipital cortex are called forceps 

major Fibers extending laterally from the body of the corpus callosum 

are called the tapetum These form part of the roof and lateral wall of the 

lateral ventricle (Ryan et al, 2011). 

Anterior commissure: this is a bundle of fibers in the lamina terminalis 

in the anterior wall of the third ventricle. The fibers pass laterally in an 

arc indenting the inferior surface of the globus pallidus. The anterior 

commissure is part of the olfactory system and connects the olfactory 

bulbs, the cortex of the anterior perforated substance and the piriform 

areas (Ryan et al, 2011). 

Habenular commissure: This small commissure is situated above and 

anterior to the pineal body it unites the habenular striae, which are fibers 

from the olfactory center that pass posteriorly along the upper surface of 

each thalamus and unite in a ‘U’ configuration in this commissure (Ryan 

et al, 2011). 

Posterior commissure: This is situated anterior and inferior to the 

pineal body, it connects the superior colliculi, which are concerned with 

light reflexes (Ryan et al, 2011). 

Hippocampal commissure: This is the commissure of the fornix (Ryan 

et al, 2011). 

2.1.2.2.1.2 Projection fibers: 

These fibers join the cerebral cortex to lower centers, Some are afferent 

and some efferent, They are called the internal capsule, where they lie 

lateral to the thalamus and the corona radiata as they fan out between the 

internal capsule and the cerebral cortex (Ryan et al, 2011). 

Internal capsule ;This contains sensory fibers from the thalamus to the 

sensory cortex and motor fibers from the motor cortex to motor nuclei in 
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the brainstem, corticobulbar tracts and, in the spinal cord, the 

corticospinal (pyramidal) tracts In cross-section, the internal capsule has 

an anterior limb between the caudate and lentiform nuclei and a posterior 

limb between the lentiform nucleus and the thalamus, Both limbs meet at 

a right-angle called the genu, The anterior limb is composed mainly of 

frontopontine fibers, The genu and the anterior two-thirds of the 

posterior limb contain motor fibers, The most anterior fibers at the genu 

are those of the head Fibers to the arm, hand, trunk, leg and perineum lie 

progressively more posteriorly, Behind these fibers on the posterior limb 

and on the retro lentiform part of the internal capsule are parietopontine 

and occipitopontine fibers and the sensory fibers More posteriorly are 

the visual fibers that extend towards the occipital pole as the optic 

radiation Most posterior of all are the auditory fibers (Ryan et al, 2011). 

 

Fig (2-3): (A) Axial T2 MRI demonstrates the white matter core of the 

cerebral hemispheres, the centrum semi-ovale (CS). (B) Schematic 

demonstrating the several types of white matter tract: subcortical U-

fibers (u), ascending/ descending tracts (d), association tracts (a) and 

commissural tracts (c) (Andreas et al, 2015). 
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2.1.3 Arterial Supply and venous daring: 

2.1.3.1 Arterial Supply: 

The brain receives arterial blood from two main pair of vessels and their 

branches, the internal carotid arteries and the vertebral arteries. Many 

normal variations of the arterial blood supply exist (Kelley, 2007). 

The Internal Carotid Arteries supply the frontal, parietal, and temporal 

lobes of the brain and orbital structures. These arteries arise from the 

bifurcation of the carotid arteries in the neck. The internal carotid artery 

then turns forward within the cavernous sinus, then up and backward 

through the dura mater, forming an S shape (carotid siphon) before it 

reaches the base of the brain . As the internal carotid artery exits the 

cavernous sinus, it branches into the ophthalmk artery just inferior to the 

anterior clinoid process. The internal carotid artery then runs lateral to 

the optic chiasm and branches into the anterior cerebral artery and the 

larger middle cerebral artery. The anterior cerebral artery and its 

branches supply the anterior frontal lobe and the medial aspect of the 

parietal lobe . The middle cerebral artery is by far the largest of the 

cerebral arteries and is considered a direct continuation of the internal 

carotid artery. The middle cerebral artery gives off many branches, as it 

supplies much of the lateral surface of the cerebrum, insula, and anterior 

and lateral aspects of temporal lobe; nearly all the basal ganglia; and the 

posterior and anterior internal capsule (Kelley, 2007). 

Vertebral Arteries The vertebral arteries begin in the neck at the 

subclavian artery and ascend vertically through the transverse foramina 

of the cervical spine. The vertebral arteries curve around the atlanto-

occipital joints to enter the cranium through the foramen magnum. The 

two vertebral arteries unite ventral to the pons, to form the basilar artery. 

The vertebral and basilar arteries give rise to several pairs of smaller 

arteries that supply the cerebellum, pons, and inferior and medial 
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surfaces of the temporal and occipital lobes. The four major pairs of 

arteries are listed in order from inferior to superior: posterior inferior 

cerebellar, anterior inferior cerebellar, superior cerebellar and posterior 

cerebral. The posterior cerebral arteries can be divided into three major 

segments: precommunicating or peduncular (Pl), ambient (P2), and 

quadrigeminal (P3). The posterior communicating artery forms a 

connection between the posterior cerebral artery and the internal carotid 

artery (Kelley, 2007). 

Circle of Willis: The cerebral arterial circle, or circle of Willis, is a 

critically important anastomosis among the four major arteries (two 

vertebral and two internal carotid) feeding the brain. The circle of Willis 

is formed by the anterior and posterior cerebral, anterior and posterior 

communicating, and the internal carotid arteries. The circle is located 

mainly in the suprasellar cistern at the base of the brain. Many normal 

variations of this circle may occur in individuals. The circle of Willis 

functions as a means of collateral blood flow from one cerebral 

hemisphere to another in the event of blockage (Kelley, 2007). 
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Fig (2-4): the arterial circle of Willis and arteries of the brainstem 

(Stephanie et al, 2011). 

2.1.3.2 Venous Drainage:  

The venous system of the brain and its coverings is composed primarily 

of the dural sinuses, superficial cortical veins, and deep veins of the 

cerebrum. Dural Sinuses: The dural sinuses are very large veins located 

within the dura mater of the brain. All the veins of the head drain into the 

dural sinuses and ultimately into the internal jugular veins of the neck. 

The major dural sinuses include superior and inferior sagittal, straight, 

transverse, sigmoid, cavernous, and petrosal. The superior sagittal sinus 

lies in the medial plane between the falxcerebri and the calvaria. It 
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begins at the crista galli, runs the entire length of the falxcerebri, and 

ends at the internal occipital protuberance of the occipital bone. The 

inferior sagittal sinus, which is much smaller than the superior sagittal 

sinus, runs posteriorly just under the free edge of the falx cerebri the 

inferior sagittal sinusconverges with the great cerebral vein (vein of 

Galen) to form the straight sinus. The straight sinus extends along the 

length of the junction of the falxcerebri and the tentorium cerebelli. The 

junction of the superior sagittal, transverse, and straight sinuses creates 

the large confluence of the sinuses .The transverse sinuses extend from 

the confluence between the attachment of the tentorium and the calvaria. 

As the transverse sinuses pass through the tentorium cerebelli, they 

become the sigmoid sinuses. The S-shaped sigmoid sinuses continue in 

the posterior cranial fossa to join the jugular bulbs of the internal jugular 

veins (Kelley, 2007). 

The cavernous sinuses, located on each side of the sella and body of the 

sphenoid bone. Each cavernous sinus receives blood from the superior 

and inferior ophthalmic veins and communicates with the transverse 

sinuses by way of the petrosal sinuses (Kelley, 2007). 

 

Fig (2-5):  superficial cerebral veins and venous sinuses (Stephanie et al, 

2011). 
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2.2 Physiology of the nervous system 

The basic unit of the nervous system is the neuron, or nerve cell. A 

neuron consists of a cell body and two types of long, threadlike 

extensions. A single axon leads from the nerve cell body, and one or 

more dendrites lead toward it. Axons are insulated by a fatty covering 

called the myelin sheath, which increases the rate of transmission of 

nervous impulses (Eisenberg and Johnson, 2016). 

In involuntary reactions, the impulse conduction route to and from the 

CNS is termed a reflex arc. Voluntary actions are commonly a reaction 

due to stimulation of a combination of sensors. The basic reflex arc 

consists of an afferent, or sensory, neuron, which conducts impulses to 

the CNS from the periphery; and an efferent, or motor, neuron, which 

conducts impulses from the CNS to peripheral effectors (muscles or 

glandular tissue) (Eisenberg and Johnson, 2016). 

Impulses pass from one neuron to another at a junction called the 

synapse. Transmission at the synapse is a chemical reaction in which the 

termini of the axon release a neurotransmitter substance that produces an 

electrical impulse in the dendrites of the next axon. Once the 

neurotransmitter has accomplished its task, its activity rapidly terminates 

so that subsequent impulses pass along this same route (Eisenberg and 

Johnson, 2016). 

The largest part of the brain is the cerebrum, which consists of two 

cerebral hemispheres. The outer portion of the cerebrum, termed the 

cortex, consists of a thin layer of gray matter where the nerve cell bodies 

are concentrated (Eisenberg and Johnson, 2016). 

The inner area consists of white matter, which is composed of the nerve 

fiber tracts (Eisenberg and Johnson, 2016). 

The cerebral cortex is responsible for receiving sensory information from 

all parts of the body and for triggering impulses that govern all motor 
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activity. Just posterior to the central sulcus, the cerebral cortex has 

specialized areas to receive and precisely localize sensory information 

from the PNS. Visual impulses are transmitted to the posterior portion of 

the brain; olfactory (smell) and auditory impulses are received in the 

lateral portions. The primary motor cortex is just anterior to the central 

sulcus. Because efferent motor fibers cross over from one side of the 

body to the other at the level of the medulla and spinal cord, stimulation 

on one side of the cerebral cortex causes contraction of muscles on the 

opposite side of the body. The premotor cortex, which lies anterior to the 

primary motor cortex, controls movements of muscles by stimulating 

groups of muscles that work together (Eisenberg and Johnson, 2016). 

This region also contains the portion of the brain responsible for speech, 

which is usually on the left side in right-handed people. In addition, the 

cerebral cortex is the site of all higher functions, including memory and 

creative thought (Eisenberg and Johnson, 2016). 

The two cerebral hemispheres are connected by a mass of white matter 

called the corpus callosum. These extensive bundles of nerve fibers lie in 

the midline just above the roofs of the lateral ventricles (Eisenberg and 

Johnson, 2016). 

Deep within the white matter are a few islands of gray matter that are 

collectively called the basal ganglia. These structures help control 

position and automatic movements and consist of the caudate nuclei, the 

globus pallidus, and the putamen (Eisenberg and Johnson, 2016). 

 

2.3 Pathology that characterized on this thesis:  

The differential diagnosis of WM lesions is wide and depends on 

location, appearance and changes over time. There are many potential 

causes including ischaemic, inflammatory, demyelinating, metabolic, 

toxic and malignant. Neuroimaging protocols can be targeted to assess 
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the white matter and assist in narrowing the differential diagnosis. White 

matter changes are best seen on both T2-weighted and FLAIR 

sequences. The latter are particularly helpful when assessing WMH that 

lie close to the ventricular margin or the cortex, as nulling of signal from 

cerebrospinal fluid increases lesion conspicuity (Forbes, 2017). 

Interpretation of magnetic resonance imaging of the brain relies on 

knowledge of MRI techniques as well as both the anatomy and 

pathophysiology of the brain and appearances on different MR 

sequences. There are a number of normal white matter appearances that 

can be confused for white matter hyperintensities  (Forbes, 2017). 

White matter appearances change with age and it is important to 

distinguish normal appearances from pathologic findings, to avoid 

patient anxiety and unnecessary investigations (Forbes, 2017). 

2.3.1Glioma: 

The most common primary malignant brain; consist of glial cells 

(supporting connective tissues in the CNS) that still have the ability to 

multiply. They spread by direct extension and can cross from one 

cerebral hemisphere to the other through connecting white matter tracts, 

such as the corpus callosum. Gliomas have a peak incidence in middle 

adult life and are infrequent in persons younger than 30 years of age 

(Eisenberg and Johnson, 2016). 

Glioblastomas are highly malignant lesions that are predominantly 

cerebral, although similar tumors may occur in the brainstem, 

cerebellum, or spinal cord. Astrocytomas (70% of all gliomas) are slow-

growing tumors that have an infiltrative character and can form large 

cavities or pseudocysts (Eisenberg and Johnson, 2016). 

Favored sites are the cerebrum, cerebellum, thalamus, optic chiasm, and 

pons (Eisenberg and Johnson, 2016). 
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Less frequent types of gliomas are ependymoma, medulloblastoma, and 

oligodendrocytoma. Ependymomas most commonly arise from the 

walls of the fourth ventricle, especially in children, and usually from the 

lateral ventricles in adults. Medulloblastomas are rapidly growing 

tumors, disseminating throughout the spinal fluid, which develop in the 

posterior portion of the vermis in children and rarely in the cerebellar 

hemisphere in adults. The tumor tends to spread through the 

subarachnoid space, with metastatic deposits occurring anywhere within 

the brain or spinal column. Oligodendrocytomas are slow-growing 

lesions that usually arise in the cerebrum and have a tendency to calcify 

(Eisenberg and Johnson, 2016). 

On MR images, gliomas typically appear as masses of high signal 

intensity on T2-weighted images. They may be of low intensity or 

isointense on T1-weighted sequences. MR spectroscopy has a typical 

spectral pattern with a strongly increased choline peak, which indicates 

myelin or the breakdown of myelin (the chemical structure that goes into 

making white matter). In MR spectroscopy, a highly elevated choline 

level, a drastically lower level of N- cetylaspartate (a neuronal marker), 

and a drastically lower creatine/phosphocreatine ratio confirm an 

infiltrating glioma. Ependymomas, often partially calcified and cystic, 

have a heterogeneous signal intensity and show enhancement (Eisenberg 

and Johnson, 2016). 

Edema is often seen in the adjacent subcortical white matter. After the 

intravenous injection of contrast material, virtually all gliomas show 

enhancement, with the most malignant lesions tending to be enhanced to 

the greatest degree. In MR spectroscopy, an elevated choline/creatine 

ratio suggests a malignant neoplasm. The most common pattern is an 

irregular ring of contrast enhancement, representing solid vascularized 

tumor, surrounding a central low-density area of necrosis. Contrast 
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enhancement also can appear as patches of increased density distributed 

irregularly throughout a low-density lesion or as rounded nodules of 

increased density within the mass (Eisenberg and Johnson, 2016). 

Therapy depends on the location and histology of the tumor. 

Astrocytomas have a good 5-year survival rate after surgery and 

radiation therapy. For ependymomas of the filum terminale, surgical 

removal provides a favorable prognosis (Eisenberg and Johnson, 2016). 

2.3.2 Multiple Sclerosis: 

Multiple sclerosis is the most common demyelinating disorder; it 

manifests as recurrent attacks of focal neurologic deficits that primarily 

involve the spinal cord, optic nerves, and central white matter of the 

brain. The disease has a peak incidence between 20 and 40 years of age, 

a strong preponderance in women, and a clinical course characterized by 

multiple relapses and remissions. Impairment of nerve conduction 

caused by the degeneration of myelin sheaths leads to such symptoms as 

double vision, nystagmus (involuntary, rapid movement of the eyeball in 

all directions), loss of balance and poor coordination, shaking tremor and 

muscular weakness, difficulty in speaking clearly, and bladder 

dysfunction (Eisenberg and Johnson, 2016). 

MRI is the modality of choice for demonstrating the scattered plaques of 

demyelination that are characteristic of multiple sclerosis. The plaques 

appear as multiple areas of increased signal intensity on T2-weighted 

images; these areas involve primarily the periventricular white matter, 

cerebellum, brainstem, and spinal cord. Lesions involving the opti nerve 

or chiasm require contrast enhancement and fat-suppression imaging 

(which increases the contrast difference between fat and water) to 

improve their detectability (Eisenberg and Johnson, 2016). 

On T1-weighted images, the plaques appear as isointense or hypointense 

lesions that may have a beveled edge. The use of MRI sequences using 
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fluid-attenuated inversion recovery and fast-spin echo as well as MR 

spectroscopy aid in determining the extent of the disease. CT shows old 

inactive disease as well-defined areas of decreased attenuation in the 

deep white matter and periventricular regions. In the acute phase, CT 

performed after intravenous administration of contrast material 

demonstrates a mixture of nonenhancing focal areas of decreased density 

(representing old areas of demyelination) and enhancing regions that 

represent active foci (Eisenberg and Johnson, 2016). 

As the disease progresses and the symptoms increase in severity, 

immunosuppressive agents may help limit the autoimmune attack. 

Antiviral drugs may slow the progress of the disease. To reduce the 

number and severity of attacks, some patients receive subcutaneous 

injections of disease-modifying immunomodulatory agents (interferon-

β).The treatments can only aid in slowing the progress of multiple 

sclerosis; however, there is no cure (Eisenberg and Johnson, 2016). 

2.3.3 Small vessel disease: 

Cerebral small vessel disease (SVD) is a generic term that refers to 

intracranial vascular disease based on various pathological and 

neurological processes, as well as a syndrome referring to different 

clinical manifestations and neuroimaging features caused by the 

structural changes of vascular and brain parenchyma. It's composed of 

several diseases affecting the small arteries, arterioles, venules, and 

capillaries of the brain, and refers to several pathological processes and 

etiologies (Li et al, 2018). 

SVD is thought to result in reduced cerebral blood flow, impaired 

cerebral auto-regulation and increased blood–brain barrier (BBB) 

permeability. However, the molecular mechanisms underlying SVD are 

incompletely understood. In addition, SVD is a leading cause of 
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functional loss, disability and cognitive decline in the elderly (Li et al, 

2018). 

Premature cerebrovascular disease presents as either confluent or highly 

discrete white matter abnormalities. Neuroimaging of SVD primarily 

involves visualizing a white matter hyperintensity without apparent 

cavitation on T2-weighted and FLAIR MRI sequences and brain atrophy 

(Li et al, 2018). 

The ischemic white matter lesions are located more peripherally and 

only very rarely do they involve the corpus callosum, dorsal brainstem or 

cerebellar peduncles. Discrete abnormalities within the ventral pons, 

basal ganglia and thalami that have low T1W and high T2W signal on 

MRI are consistent with small vessel infarcts (Chapman, 2003). 

 

2.4 MRI physics: 

Magnetic resonance imaging it is the function of proton spin density and 

relaxation time (Evert, 2004).  

2.4.1 Physical principal 

MRI image depend on the presence of protons which is electrically 

charged and it rotates around its axis (spinning), this rotation generate a 

magnetic field around each proton (In our body these tiny bar magnets 

(protons) are ordered in such a way that the magnetic forces equalize) 

(Evert, 2004). 

The proton in the hydrogen (has 1 proton and 1 electron) were used to 

generate MRI image because first off all we have a lot of them in the 

human body and secondly the gyro magnetic ratio for Hydrogen is the 

largest; 42.57 MHz/Tesla (Evert, 2004). 

When put the hydrogen protons under the magnet they align with the 

magnetic field. This is happened in two ways, parallel and anti-parallel 
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and process or “wobble” due to the magnetic momentum of the atom 

(Evert, 2004). 

 

               A                                 B 

Fig (2-6): protons under the magnet they align with the magnetic field 

(A) and precess or “wobble”(B) (B0 is the indication for the magnetic 

field of the MRI scanner) (Evert, 2004). 

These protons precess at the Larmor frequency which can be calculated 

from the following equation: 

 

The Larmor frequency is needed to calculate the operating frequency of 

the MRI system (Evert, 2004). 

When protons align with the magnetic field more protons aligned 

parallel or low energy state than there are anti-parallel or high energy 

state and the number of excess protons is proportional with B0 (Evert, 

2004). 

At the end there is a net magnetization (the sum of all tiny magnetic 

fields of each proton) pointing in the same direction as the system’s 

magnetic field (Evert, 2004). 
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2.4.2 The principal of T1, T2 and FLAIR imaging sequences can be 

summarized into: 

2.4.2.1 T1 imaging sequence: 

2.4.2.1.1 T1 recovery: 

T1 recovery is caused by hydrogen nuclei giving up their energy to the 

surrounding environment or molecular lattice. The term recovery refers 

to the recovery of longitudinal magnetization, and T1 relates to the fact 

that it is the primary relaxation process. (It is not the first process that 

occurs). T1 recovery takes 5–10 times longer than T2 decay. This type of 

relaxation is called spin–lattice energy transfer. Energy released by 

spins to the surrounding molecular lattice causes magnetic moments of 

hydrogen nuclei to recover their longitudinal magnetization. According 

to quantum theory, the number of high-energy spins decreases, and the 

number of low-energy spins increases as energy is lost by high-energy 

spins during the relaxation process. The NMV gradually realigns itself in 

the longitudinal plane as the proportion of spin-up and spin-down 

hydrogen nuclei changes (Westbrook and Talbot, 2019). 

The rate of T1 recovery is an exponential process and occurs at different 

rates in different tissues. Longitudinal magnetization is related 

exponentially to recovery time. This means that most longitudinal 

recovery happens at the beginning of the time frame. As time progresses, 

gradually less and less longitudinal recovery occur until the longitudinal 

magnetization is fully recovered. There is a time constant associated with 

this exponential relationship. This is called the T1 recovery time and is 

the time it takes for 63% of the longitudinal magnetization to recover in 

a tissue. The T1 recovery time of a tissue is an intrinsic contrast 

parameter that is inherent to the tissue. The time during which T1 

recovery occurs is the time between one RF excitation pulse and the 
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next. This is the repetition time (TR). The TR therefore determines how 

much T1 recovery occurs in a tissue (Westbrook and Talbot, 2019). 

2.4.2.1.2 T1 contrast: 

The term T1 contrast means that image contrast is derived from 

differences in the T1 recovery times of the tissues rather than any other 

mechanism. T1 contrast is likely to occur if vectors do not fully recover 

their longitudinal magnetization between each RF excitation pulse. It 

therefore increases if the TR is short. If the TR is longer than the 

relaxation times of the tissues, full recovery occurs in all tissues, and, 

therefore, it is not possible to produce an image that demonstrates 

contrast based on the differences in their T1 recovery times (Westbrook 

and Talbot, 2019). 

2.4.2.1.3 T1 weighting 

A T1-weighted image is one where contrast depends predominantly on 

the differences in the T1 recovery times between fat and water (and all 

the tissues with intermediate T1 recovery times) (Westbrook and Talbot, 

2019). 

The TR controls how far each vector recovers before the slice is excited 

by the next RF excitation pulse. To achieve T1 weighting, the TR must 

be short enough so that neither the vector in fat nor the vector in water 

has sufficient time to fully return to B0. If the TR is too long, both the 

vectors in fat and water return to B0 and fully recover their longitudinal 

magnetization. When this occurs, T1 recovery is complete in both 

tissues, and the differences in their T1 recovery times are not 

demonstrated. T1-weighted images are used to show anatomy and 

pathology after administration of a contrast agent. TR controls the 

amount of T1 contrast. For T1 weighting, the TR must be short and the 

TE must also be short (Westbrook and Talbot, 2019). 
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2.4.2.2 T2 imaging sequence: 

2.4.2.2.1 T2 decay: 

T2 decay is caused by the magnetic fields of neighboring hydrogen 

nuclei interacting with each other. The term decay refers to the loss of 

coherent transverse magnetization, and T2 relates to the fact that it is the 

secondary relaxation process. This type of relaxation is termed spin–

spin relaxation and causes dephasing of magnetic moments of the spins. 

Spin–spin relaxation is caused by one spin transferring energy to another 

spin rather than into the lattice. It occurs because hydrogen nuclei are in 

the same environment and experiencing the same B0 field. Magnetic 

moments of all the hydrogen nuclei (spin-up and spin-down) lose phase 

coherence in this way (Westbrook and Talbot, 2019). 

The spin whose magnetic moment is aligned in the same direction as B0 

creates a slightly larger magnetic field than is experienced by the 

neighboring spin. As a result, the precessional frequency of the magnetic 

moment of this spin increases. Conversely, the spin whose magnetic 

moment is aligned in the opposite direction to B0 causes a slightly lower 

magnetic field than is experienced by the other spin; and its precessional 

frequency decreases. These small changes in frequency are sufficient to 

cause dephasing of magnetic moments of the spins (Westbrook and 

Talbot, 2019). 

Spin–spin interaction is inherent to the tissue, but dephasing is also 

caused by inhomogeneities in the B0 field. Inhomogeneities are areas 

within the magnetic field that do not exactly match the external magnetic 

field strength. Some areas have a magnetic field strength slightly less or 

slightly higher than the main magnetic field (Westbrook and Talbot, 

2019). 

If a hydrogen nucleus lies in an area of inhomogeneity with higher field 

strength, the precessional frequency of its magnetic moment increases, 
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i.e. it speeds up. However, if a hydrogen nucleus lies in an area of 

inhomogeneity with lower field strength, the precessional frequency of 

its magnetic moment decreases, i.e. it slows down. This relative 

acceleration and deceleration of magnetic moments due to magnetic field 

inhomogeneities, and differences in the precessional frequency in certain 

tissues, causes immediate dephasing of the magnetic moments of the 

spins. The rate of T2 decay is an exponential process and occurs at 

different rates in different tissues. There is more coherent transverse 

magnetization at the beginning of the time-frame and, as time 

progresses, there is less coherent transverse magnetization until all the 

magnetic moments dephase. There is a time constant associated with this 

exponential relationship. It is called the T2 decay time and is the time it 

takes for 63% of the transverse magnetization to dephase (37% is left in 

phase) in a tissue. The T2 decay time of a tissue is an intrinsic contrast 

parameter that is inherent to the tissue. The time during which this 

occurs is the time between an RF excitation pulse and when signal is 

collected in the receiver coil. The echo time (TE) therefore determines 

how much T2 decay occurs in a tissue when signal is collected 

(Westbrook and Talbot, 2019). 

2.4.2.2.2 T2 contrast: 

The term T2 contrast means that image contrast is derived from 

differences in the T2 decay times of the tissues rather than any other 

mechanism. T2 contrast is likely to occur if vectors dephase and there is 

a difference in coherent transverse magnetization in each tissue. It 

therefore increases if the TE is long. Magnetic moments of the hydrogen 

nuclei dephase at different rates, so if the TE is long, it is possible to 

produce an image that demonstrates differences in their T2 decay times. 

If the TE is short, then little dephasing occurs, and therefore it is not 
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possible to produce images that demonstrate differences in T2 decay 

times of the tissues (Westbrook and Talbot, 2019). 

2.4.2.2.3 T2 weighting: 

A T2-weighted image is one where contrast predominantly depends on 

the differences in the T2 decay times between fat and water (and all the 

tissues with intermediate T2 decay times). The TE controls the amount 

of T2 decay that occurs before signal is received. To achieve T2 

weighting, the TE must be long enough to give the vectors in both fat 

and water time to dephase. If the TE is too short, neither the vector in fat 

nor the vector in water has had time to dephase, and, therefore, the 

differences in their T2 decay times are not demonstrated. T2-weighted 

images are used to image pathology because most pathology has high 

water content and is therefore relatively hyperintense on T2-weighted 

images. TE controls the amount of T2 contrast. For T2 weighting, the TE 

must be long and the TR must also be long (Westbrook and Talbot, 

2019). 

Although T2-weighted images often have a lower SNR than T1-

weighted images (due to the longer TE), the ability to distinguish 

pathology from normal tissue is often much greater because of the high 

signal of pathology compared with low signal of surrounding anatomy, 

i.e. the CNR is higher (Westbrook and Talbot, 2019). 

Contrast agent; the purpose of administering contrast agents is to 

increase CNR between pathology (which enhances) and normal anatomy 

(which does not) (Westbrook and Talbot, 2019). 

2.4.2.3 Mechanism of production fluid attenuated inversion recovery 

(FLAIR) sequence: 

FLAIR is another variation of the inversion recovery sequence. In 

FLAIR, an inversion time corresponding to the recovery of the vector in 

cerebrospinal fluid from full inversion to the transverse plane is selected. 
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This inversion time nulls signal from cerebrospinal fluid because there is 

no longitudinal magnetization present in cerebrospinal fluid. As there is 

no longitudinal component of cerebrospinal fluid when the 90° RF 

excitation pulse is applied, there is no transverse component after 

excitation, and signal from cerebrospinal fluid is nulled. FLAIR is used 

to suppress high cerebrospinal fluid signal in T2 weighted images so that 

the pathology adjacent to cerebrospinal fluid is seen more clearly. An 

inversion time of 1700–2200 ms usually achieves cerebrospinal fluid 

suppression (although this varies slightly at different field strengths and 

is calculated by multiplying the T1 relaxation time of cerebrospinal fluid 

by 0.69) (Westbrook and Talbot, 2019). 

 

2.5 MRI Techniques 

2.5.1 Equipment: 

 Head coil (quadrature or multi-coil array), immobilization pads and 

straps, ear plugs, high-performance gradients for EPI, diffusion and 

perfusion imaging (Westbrook, 2008). 

2.5.2 Patient positioning: 

The patient lies supine on the examination couch with their head within 

the head coil. The head is adjusted so that the inter-pupillary line is 

parallel to the couch and the head is straight. The patient is positioned so 

that the longitudinal alignment light lies in the midline, and the 

horizontal alignment light passes through the nasion. Straps and foam 

pads are used for immobilization (Westbrook, 2008). 

2.5.3 Suggested protocol 

Sagittal SE/FSE/incoherent (spoiled) GRE T1 

Medium slices/gap are prescribed on each side of the longitudinal 

alignment light from one temporal lobe to the other. The area from the 
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foramen magnum to the top of the head is included in the image 

(Westbrook, 2008). 

Axial/oblique SE/FSE PD/T2  

Medium slices/gap are prescribed from the foramen magnum to the 

superior surface of the brain. Slices may be angled so that they are 

parallel to the anterior–posterior commissure axis. This enables precise 

localization of lesions from reference to anatomy atlases (Fig (2-7)). 

Many sites have replaced the PD sequence with FLAIR (Westbrook, 

2008). 

 

Fig (2-7): Sagittal SE T1 weighted midline slice of the brain showing 

slice prescription boundaries and orientation for axial/oblique imaging 

(Westbrook, 2008). 

Coronal SE/FSE PD/T2 

As for Axial PD/T2, except prescribe slices from the cerebellum to the 

frontal lobe (Fig (2-8)) (Westbrook, 2008). 

 

Fig (2-8): Sagittal SE T1 weighted image showing slice prescription 

boundaries and orientation for coronal imaging (Westbrook, 2008). 
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2.5.4 Additional sequences 

Axial/oblique FLAIR/EPI (Fig(2-9)) 

Slice prescription as for Axial/oblique T2. This sequence provides a 

rapid acquisition with suppression of CSF signal. It may be useful when 

examining periventricular or cord lesions such as MS plaques 

(Westbrook, 2008). 

 

Fig (2-9): Axial/oblique FLAIR image of the brain. Periventricular 

abnormalities will have high signal intensity in contrast to the low signal 

of CSF which has been nulled using a long TI (Westbrook, 2008). 

Axial/oblique/Coronal/oblique IR-FSE T2  

Slice prescription as for Axial/oblique/Coronal/oblique FSE T2. 

This sequence often provides images with high contrast between grey 

matter and white matter. A TI selected to null the signal from white 

matter (about 300 ms) can be used to increase the grey/white contrast in 

the hippocampal region. Images may be video-inverted so that white 

matter appears white and the grey matter appears grey. This is 

sometimes useful to increase the conspicuity of white matter lesions, 

which have low signal intensity when using this technique (Westbrook, 

2008). 
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2.7 Texture analysis: 

Texture can be defined as the relationship between the pixels; therefore it 

can pick up the microscopic structures and hence it is superior to visual 

perception which is solely subjective. Texture can be calculate using a 

window of appropriate size that depict the underlined textures using  

features vector that correlated with the classes of interest for successful 

classification and segmentation of the underline textures through a 

suitable classifier (e.g. k-means, linear discriminate analysis, neural 

network, etc…).Texture is an important characteristic for the analysis of 

many types of images. It can be seen in all images from multi spectral 

scanner images obtained from aircraft or satellite platforms (which the 

remote sensing community analyzes) to microscopic images of cell 

cultures or tissue samples (which the biomedical community analyzes). 

Despite its importance and ubiquity in image data, a formal approach or 

precise definition of texture does not exist (Haralick, 1979).  

Image texture, defined as a function of the spatial variation in pixel 

intensities (gray values), is useful in a variety of applications and has 

been a subject of intense study by many researchers. One immediate 

application of image texture is the recognition of image regions using 

texture properties. Texture is the most important visual cue in identifying 

these types of homogeneous regions. This is called texture classification 

(Haralick, 1979). 

Image analysis techniques have played an important role in several 

medical applications. In general, the applications involve the automatic 

extraction of features from the image which is then used for a variety of 

classification tasks, such as distinguishing normal tissue from abnormal 

tissue. Depending upon the particular classification task, the extracted 

features capture morphological properties, color properties, or certain 

textural properties of the image (Clausi et. al., 2002). 
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Texture is a combination of repeated patterns with a regular frequency. 

In visual interpretation texture has several types, for example, smooth, 

fine, coarse etc., which are often used in the classification of forest types. 

Texture analysis can also be defined as the classification or segmentation 

of textural features with respect to the shape of a small element, density 

and direction of regularity. In the case of digital image, it is difficult to 

treat the texture mathematically because texture cannot be standardized 

quantitatively and the data volume is so huge (Clausi et. al., 2002). 

2.7.1 Texture Analysis Types: 

At present; statistical, structural-, transform-, and spectral-based TAs are 

the most common agnostic methods used (Soni et al, 2019). 

2.7.2 .Feature Estimation  

Numerous approaches to the quantification and characterization of image 

texture have been proposed, with most textural features falling under 3 

general categories: syntactic, statistical, and spectral (Kassner, 2010). 

2.7.2.1. Structural texture analysis: 

 Structural (model-based) methods such as fractal analysis provide 

information about the self-symmetry of the objects (Soni et al, 2019). 

2.7.2.2. Statistical Features: 

Statistical based TA depends on the pixel values, distribution, and spatial 

interrelationship in the defined ROI (Soni et al, 2019). 

First-order statistical TA is a histogram representation of image 

intensities in a predefined ROI and calculates mean, median, percentile, 

SD, skewness entropy, uniformity, and kurtosis. Mean is a measure of 

central tendency (average brightness), SD depicts dispersion from the 

mean, skewness reflects asymmetry of the histogram, kurtosis depicts the 

pointedness of the histogram (visual contrast), and entropy reflects the 

irregularity of the imageintensity distribution. The more heterogeneous 

the tumor, the higher the entropy is (Soni et al, 2019). 
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Second-order or higher order statistical TA quantifies the image pattern 

on the basis of the spatial relationship or co-occurrence of the pixel 

value. It consists of several methods, including the 2 most common ones: 

gray-level co-occurrence matrix (GLCM) and gray-level run-length 

matrix (GLRLM). The GLCM measures the frequency of pixel pair 

distribution at a predefined distance,2 usually measured in 4 directions 

(0°, 45°, 90°, and 135°) for 2D and in 13 directions for 3D. GLCM 

features include homogeneity, inverse difference moment (IDM), 

dissimilarity, correlation, energy, and entropy. GLRLM observes the run 

of a specific pixel value over a chosen direction and consists of gray 

level nonuniformity, run-length nonuniformity, short-run emphasis, and 

long-run emphasis. Both GLCM and GLRLM are calculated in different 

directions and averaged to make them rotationally invariant. GLCM may 

be measured over different pixel distances (for example, from 1 to 5), 

and similarly, GLRLM is computed over different run lengths to 

compute different texture features from the same ROI. GLCM and 

GLRLM over short distance and run provide fine texture, and over 

longer distance and run provide coarse texture (Soni et al, 2019). 

The first- and second-order statistical methods are used most commonly. 

First-order statistical methods provide global information, and second-

order statistical methods provide additional information regarding the 

transition among pixel values (Soni et al, 2019). 

2.7.2.3. Spectral Features: 

Spectral methods include wavelet, Gabor, and Fourier transforms and are 

based on transforming the spatial information of the image into spatial 

frequencies. Co-occurrence or run-length features may lack the 

sensitivity to identify larger scale or more coarse changes in spatial 

frequency. Wavelet functions, for example, can be designed to evaluate 

spatial frequencies at multiple scales and have found a natural 
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application to texture analysis. Readers will recognize the close relative 

of the wavelet transform, the Fourier transform, which can identify the 

spatial frequencies present in signal intensity but cannot delineate 

temporal changes in frequency content and presumes that all signals 

reflect a superposition of sinusoids. Sometime localization can be 

imparted to Fourier analysis by means of the windowed or “short-time” 

method, which allows for the Fourier transform to be performed on 

sequential portions of the entire signal intensity, each of a set length or 

“window.” The wavelet transform provides even more flexibility by 

enabling us to trade some degree of spatial-frequency resolution for the 

ability to localize this frequency content in time (Kassner, 2010). 

 

2.8 Previous studies:  

Jing in 2008 enrolled a comparative study the difficulty of using 

magnetic resonance imaging (MRI) to support early diagnosis of 

multiple sclerosis (MS) stems from the subtle pathological changes in 

the central nervous system (CNS). In this study, texture analysis was 

performed on MR images of MS patients and normal controls and a 

combined set of texture features were explored in order to better 

discriminate tissues between MS lesions, normal appearing white matter 

(NAWM) and normal white matter (NWM). Features were extracted 

from gradient matrix, run-length (RL) matrix, gray level co-occurrence 

matrix (GLCM), autoregressive (AR) model and wavelet analysis, and 

were selected based on greatest difference between different tissue types. 

The results of the combined set of texture features were compared with 

our previous results of GLCM-based features alone. The results of this 

study demonstrated that : (1) with the combined set of texture features, 

classification was perfect (100%) between MS lesions and NAWM (or 

NWM), less successful (88.89%) among the three tissue types and worst 
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(58.33%) between NAWM and NWM; (2) compared with GLCM-based 

features, the combined set of texture features were better at 

discriminating MS lesions and NWM, equally good at discriminating 

MS lesions and NAWM and at all three tissue types, but less effective in 

classification between NAWM and NWM. This study suggested that 

texture analysis with the combined set of texture features may be equally 

good or more advantageous than the commonly used GLCM-based 

features alone in discriminating MS lesions and NWM/NAWM and in 

supporting early diagnosis of MS. 

Loizou 2014 on his study he investigates the application of texture 

analysis methods on brain T2-white matter lesions detected with 

magnetic resonance imaging (MRI) for the prognosis of future disability 

in subjects diagnosed with clinical isolated syndrome (CIS) of multiple 

sclerosis (MS).Methods: Brain lesions and normal appearing white 

matter (NAWM) from 38 symptom at untreated subjects diagnosed with 

CIS as well as normal white matter (NWM) from 20 healthy volunteers, 

were manually segmented, by an experienced MS neurologist, on 

transverse T2-weighted images obtained from serial brain MR imaging 

scans (0 and 6—12 months). Addition all clinical information in the 

form of the Expanded Disability Status Scale (EDSS), a scale from0 to 

10, which provides a way of quantifying disability in MS and monitoring 

the changes overtime in the level of disability, were also provided. Shape 

and most importantly different texture features including GLCM and 

laws were then extracted for all above regions, after image intensity 

normalization. Results: The findings showed that: (i) there were 

significant differences for the texture futures extracted between the 

NAWM and lesions at 0 month and between NAWM and lesions at6—

12 months. However, no significant differences were found for all 

texture features extracted when comparing lesions temporally at 0 and 
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6—12 months with the exception of contrast (gray level difference 

statistics-GLDS) and difference entropy (spatial gray level dependence 

matrix-SGLDM); (ii) significant differences were found between NWM 

and NAWM for most of the texture features investigated in this study; 

(iii) there were significant differences found for the lesion. 

Sarah in 2016 the aim of their study was to characterize of MS plaques 

in MR images using texture analysis features which enabling disease 

characterization and quantification of disease, it consisted from 50 MR 

brain images for patient having multiple sclerosis. The results reveal that 

the MS areas were very different from the rest of the tissues on FLAIR 

images with classification accuracy of 91.2% and on T2 images with 

classification accuracy of 89.5 %. And classification between the MS 

plaques and SVD are very different with classifiction accuracy of 100% 

between both of them (no interference) on FLAIR images. And in T2 

and FLAIR images the MS plaques have a mean higher than the grey 

matter and the white matter, also the entropy textural feature on MS and 

normal brain tissues on FLAIR and T2 images has successfully 

differentiate between them on both sequences. While energy had 

discriminate between the MS plaques and brain tissue on FLAIR images 

but on T2 images there is a interference between the MS and white 

matter.  

Qurat in 2010 Studied classification and segmentation of brain tumor 

using texture analysis. Methods: consists of multiple phases. First phase 

consists of texture feature extraction from brain MR images. Second 

phase classify brain images on the bases of these texture feature using 

ensemble base classifier. After classification tumor region is extracted 

from those images which are classified as malignant using two stage 

segmentation process. Segmentation consists of skull removal and tumor 

extraction phases. Quantitative results show that our proposed system 
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performed very efficiently and accurately. We achieved accuracy of 

classification beyond 99%. Segmentation results also show that brain 

tumor region is extracted quite accurately. 

Maria in 2017 studied the application of texture analysis to study small 

Vessel Disease and Blood–Brain Barrier integrity. The aim of his study 

was to evaluate the alternative use of texture analysis for evaluating the 

role of blood–brain barrier (BBB) in small vessel disease (SVD). 

Methods: he used brain magnetic resonance imaging from 204 stroke 

patients, acquired before and 20 min after intravenous gadolinium 

administration. We segmented tissues, white matter hyperintensities 

(WMH) and applied validated visual scores. He measured textural 

features in all tissues pre- and post-contrast and used ANCOVA to 

evaluate the effect of SVD indicators on the pre-/post-contrast change, 

Kruskal–Wallis for significance between patient groups and linear mixed 

models for pre-/post-contrast variations in cerebrospinal fluid (CSF) with 

Fazekas scores. Results: Textural “homogeneity” increase in normal 

tissues with higher presence of SVD indicators was consistently more 

overt than in abnormal tissues. Textural “homogeneity” increased with 

age, basal ganglia perivascular spaces scores (p < 0.01) and SVD scores 

(p < 0.05) and was significantly higher in hypertensive patients (p < 

0.002) and lacu-nar stroke (p = 0.04). Hypertension (74% patients), 

WMH load (median = 1.5 ± 1.6% of intracranial volume), and age (mean 

= 65.6 years, SD = 11.3) predicted the pre/ post-contrast change in 

normal white matter, WMH, and index stroke lesion. CSF signal 

increased with increasing SVD post-contrast. Conclusion: A consistent 

general pattern of increasing textural “homogeneity” with increasing 

SVD and post-contrast change in CSF with increasing WMH suggests 

that texture analysis may be useful for the study of BBB integrity. 
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Doaa in 2003 studied the three dimensional texture analyses in MRI: a 

preliminary evaluation in gliomas the discrimination of tumor 

boundaries from normal tissue, as well as the evaluation of tissue 

heterogeneity and tumor grading often continue to pose a challenge in 

MRI. Although yielding promising results in various fields of medical 

imaging, two- dimensional (2D) texture analysis in MRI has, until now, 

demonstrated a lack of specificity in brain tumor classification. A new 

three-dimensional (3D) approach using Cooccurrence Matrix analysis is 

proposed to increase the sensitivity and specificity of brain tumor 

characterization. A preliminary comparative evaluation of 2D and 3D 

texture analysis was performed on T1-weighted MRI of seven gliomas 

for characterization of solid tumor, necrosis, edema and surrounding 

white matter. With 3D compared to 2D method, a better discrimination is 

obtained between necrosis and solid tumor as well as between edema and 

solid tumor. Using both methods, peritumoral white matter overlaps with 

edema, but is completely separated from far homo-lateral matter. This 

latter shows a complete overlapping with contra-lateral matter. The 3D 

texture analysis approach could provide a new tool for tumor grading 

and treatment follow-up, as well as for surgery or radiation therapy 

planning. 

Tian et al in 2018 in there study regarding radiomics strategy for 

Glioma grading using texture features from multiparametric MRI, 

Patients' ages between LGG and HGG groups were significantly 

different (P < 0.01). For each patient, 420 texture and 90 histogram 

parameters were derived from 10 VOIs of multiparametric MRI. SVM 

models were established using 30 and 28 optimal features for classifying 

LGGs from HGGs and grades III from IV, respectively. The 

accuracies/AUCs were 96.8%/0.987 for classifying LGGs from HGGs, 
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and 98.1%/0.992 for classifying grades III from IV, which were more 

promising than using histogram parameters or using the single sequence 

MRI. In conclusion texture features were more effective for 

noninvasively grading gliomas than histogram parameters. The 

combined application of multiparametric MRI provided a higher grading 

efficiency. Also found that the T1+C were the best single sequence for 

glioma grading in MR texture analysis. 

Ditmer et al in 2018 there studied the diagnostic accuracy of MRI 

texture analysis for grading gliomas, there Results reveals that of a total 

of 94 patients, 14 had low-grade gliomas and 80 had high-grade gliomas. 

Mean, SD, MPP, entropy and kurtosis each showed significant 

differences between glioma grades for different spatial scaling filters. 

Low and high-grade gliomas were best-discriminated using mean of 

2 mm fine texture scale, with a sensitivity and specificity of 93% and 

86% (AUC of 0.90). also and found that using the statistical parameter 

standard deviation at fine texture scale is the best to discriminate the 

gliomas grads with high a sensitivity and specificity on T1+C images. In 

conclusions quantitative measurement of heterogeneity using TA can 

discriminate high versus low-grade gliomas. Radiomic data of texture 

features can provide complementary diagnostic information for gliomas. 

Skogen et al in 2016 in there study about diagnostic performance of 

texture analysis on MRI in grading cerebral gliomas, there results shows 

that LGG and HGG was best discriminated using SD at fine texture 

scale, with a sensitivity and specificity of 93% and 81% (AUC 

0.910, p < 0.0001). The diagnostic ability for MRTA to differentiate 

between the different sub-groups (grade II–IV) was slightly lower but 

still significant. 
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Xie  et al in 2018 in there study regarding textural features of dynamic 

contrast‐enhanced MRI derived model‐free and model‐based parameter 

maps in glioma grading, using Field Strength/Sequence: 3.0T, including 

conventional anatomic sequences and DCE‐MRI sequences (variable flip 

angle T1‐weighted imaging and three‐dimensional gradient echo 

volumetric imaging). There results reveals that both Entropy and IDM of 

Extended Tofts‐ and Patlak‐based vp showed highest area under curve in 

discriminating between grade III and IV gliomas. However, intraclass 

correlation coefficient of these features revealed relatively lower inter‐

observer agreement. No significant correlation was found between 

microvascular density and textural features, compared with a moderate 

correlation found between cellular proliferation index and those features. 
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Chapter Three 

 Materials and Methods  

3.1 Materials:   

3.1.1 Study design: 

This is analytical study of a case control type where normal T1, T2 and 

FLAIR MR images of the brain taken as a reference.    

3.1.2 Study area and duration: 

This study was achieved in Antalya medical center and it was conducted 

from October 2018 to March  2021. 

3.1.3 Study population:  

The  population of this study includes MR images for patients having: 

SVD (ischemic), MS (demyelinating diseases) and Gliomas (tumors) .   

3.1.4 Sample size and type:  

The sample of this study consists of 1646 brain MR images selected 

conveniently from patients with Glioma (295), MS (497), SVD (542), 

(312) normal MR images. 

3.1.4.1 Inclusion criteria:  

Glioma, MS and SVD patients, age >18 years.  

3.1.4.2 Exclusion criteria:  

Patients having two types of lesions at the same time.  

3.1.5 Equipment and software programs used in the study: 

The machine that used was MRI device: 1.5 Tesla, closed system 

(General Electric), head coil. 

RadiAnt . DICOM viewer 32-Bit Version. 

Interactive Data language (IDL Version 6.1 win 32 (x86)) for Windows 

Integrated Development Environment (Classification  features Clicks, 

Classification  features). 

IBM SPSS Statistics, 32-Bit 20.0 Windows Multilingual. 
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3.2 Method of data collection and analysis: 

After that MR image was stored in computer disk they was viewed by 

the Radiant, DICOM viewer in computer, to select the section of image 

that have the lesion on it and then this images uploaded it into the 

computer based software Interactive Data language ( IDL ) where the 

DICOM image converted to TIFF format and the user then clicks on 

areas represents the grey matter, white matter, glioma, MS plaque and 

the SVD . In these areas a window of 3×3 pixel was set and the first and 

higher order statistics were extracted. Including the first order statistics 

(intensity-histogram-based features): Mean, variance, kurtosis, skewness, 

energy and entropy. And higher-order statistics texture features (Short 

Run Emphasis (SRE), Long Run Emphasis (LRE), Gray-Level 

Nonuniformity (GLN), Run-Length Nonuniformity (RLN), Run 

Percentage (RP), Low Gray-Level Run Emphasis (LGRE), High Gray-

Level Run Emphasis (HGRE), Short Run Low Gray-Level Emphasis 

(SRLGE), Short Run High Gray-Level Emphasis (SRHGE), Long Run 

Low Gray-Level Emphasis (LRLGE), Long Run High Gray-Level 

Emphasis (LRHGE).These features are then assigned as classification 

center used to classify the whole image into different classes using the 

Euclidean distance. The algorithm scans the whole image using a 

window of 3×3pixel and a window of 6×6 pixel for computing the first 

and higher order statistics respectivly, and computes the distance ( the 

Euclidean distance ) between the calculated features and the class's 

centers and assigns the window to the class with the lowest distance. 

Then the window interlaced one pixel and the same process stated over 

till the entire image were classified the data concerning grey matter, 

white matter, glioma, MS plaque and the SVD; to form the classification 

map. Also these features was entered into SPSS with its classes to 

generate a classification score using stepwise linear discriminate 
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analysis; to select the most discriminate feature that can be used in the 

classification of white matter pathologies. then scatter plot using 

discriminate function was generated as well as classification accuracy 

and linear discriminate function equation to differentiate between white 

matter pathologies for unseen images. 

3.3 Ethical considerations: 

Ethical approval from Sudan university of science and technology. 

Khartoum state ministry of health research department and from 

hospitals where no patient identification data or individual patient detail 

is published. 

Research purpose and objectives was explained to participant in clear 

simple words. 

Participant has right to voluntary informed consent. 

Participant has the right to withdraw at any time without any deprivation.  

Participant has the right to no harm (privacy and confidentiality by using 

coded questionnaire). 

Participant has the right to benefit from the researcher knowledge and 

skills. 

The data was collected from the PACS and radiology department in their 

rest time without any interruption to their work. 
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Chapter Four 

The Results 

 
Fig (4-1): shows color map in T2 image for Glioma patient  

 

  
                              (A)                                (B) 

Fig (4-2): Scatter plot demonstrate the classification of brain tissues 

using linear discriminate analysis on T1 images for Glioma patients. 

First order features (A) and higher order features (B)    

    
                              (A)                                (B) 

Fig (4-3): Scatter plot demonstrate the classification of brain tissues 

using linear discriminate analysis on T2 images for Glioma patients. 

First order features (A) and higher order features (B)    
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                              (A)                                (B) 

Fig (4-4): Scatter plot demonstrate the classification of brain tissues 

using linear discriminate analysis on FLAIR images for Glioma patients. 

First order features (A) and higher order features (B)    

 

   
                                       (A)               (B) 

Fig (4-5): Scatter plot demonstrate the classification of brain tissues 

using linear discriminate analysis on T1+ C images for Glioma patients. 

First order features (A) and higher order features (B)    

 

 

 

Table 4-1: Cross-tabulation shows the classification results of first order 

features from the classes using linear discriminate analysis on T1 images 

for Glioma patients.  

 Classes 
Predicted Group Membership 

Total 
Grey Matter White Matter Glioma 

Original 

Count 

Grey Matter 1229 2 0 1231 

White Matter 65 940 0 1005 

Glioma 1 11 262 274 

% 

Grey Matter 99.8 .2 .0 100.0 

White Matter 6.5 93.5 .0 100.0 

Glioma .4 4.0 95.6 100.0 

a. 96.9% of original grouped cases correctly classified. 
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Table 4-2: Cross-tabulation shows the classification results of first order 

features from the classes using linear discriminate analysis on T2 images 

for Glioma patients. 

 Classes 
Predicted Group Membership 

Total 
Grey Matter White Matter Glioma 

Original 

Count 

Grey Matter 3291 13 0 3304 

White Matter 24 2723 0 2747 

Glioma 63 0 3515 3578 

% 

Grey Matter 99.6 .4 .0 100.0 

White Matter .9 99.1 .0 100.0 

Glioma 1.8 .0 98.2 100.0 

a. 99.0% of original grouped cases correctly classified. 
 

Table 4-3: Cross-tabulation shows the classification results of first order 

features from the classes using linear discriminate analysis on FLAIR 

images for Glioma patients. 

 Classes 
Predicted Group Membership 

Total 
Grey Matter White Matter Glioma 

Original 

Count 

Grey Matter 5359 44 21 5424 

White Matter 412 3156 0 3568 

Glioma 419 0 2054 2473 

% 

Grey Matter 98.8 .8 .4 100.0 

White Matter 11.5 88.5 .0 100.0 

Glioma 16.9 .0 83.1 100.0 

a. 92.2% of original grouped cases correctly classified. 

 

Table 4-4: Cross-tabulation shows the classification results of first order 

features from the classes using linear discriminate analysis on T1+C 

images for Glioma patients. 

 

 

 

 

 

 

 

 Classes 
Predicted Group Membership 

Total 
Grey Matter White Matter Glioma 

Original 

Count 

Grey Matter 4580 59 0 4639 

White Matter 249 2998 0 3247 

Glioma 138 14 786 938 

% 

Grey Matter 98.7 1.3 .0 100.0 

White Matter 7.7 92.3 .0 100.0 

Glioma 14.7 1.5 83.8 100.0 

a. 94.8% of original grouped cases correctly classified. 
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Table 4-5: Cross-tabulation shows the classification results of higher 

order features from the classes using linear discriminate analysis on T1 

images for Glioma patients.  

 Classes 
Predicted Group Membership 

Total 
Grey Matter White Matter Glioma 

Original 

Count 

Grey Matter 967 187 0 1154 

White Matter 124 951 0 1075 

Glioma 9 27 273 309 

% 

Grey Matter 83.8 16.2 .0 100.0 

White Matter 11.5 88.5 .0 100.0 

Glioma 2.9 8.7 88.3 100.0 

a. 86.3% of original grouped cases correctly classified. 

 

Table 4-6: Cross-tabulation shows the classification results of higher 

order features from the classes using linear discriminate analysis on T2 

images for Glioma patients.  

 Classes 
Predicted Group Membership 

Total 
Grey Matter White Matter Glioma 

Original 

Count 

Grey Matter 3247 219 0 3466 

White Matter 227 2878 0 3105 

Glioma 249 27 2887 3163 

% 

Grey Matter 93.7 6.3 .0 100.0 

White Matter 7.3 92.7 .0 100.0 

Glioma 7.9 .9 91.3 100.0 

a. 92.6% of original grouped cases correctly classified. 

 

Table 4-7: Cross-tabulation shows the classification results of higher 

order features from the classes using linear discriminate analysis on 

FLAIR images for Glioma patients.  

 Classes 
Predicted Group Membership 

Total 
Grey Matter White Matter Glioma 

Original 

Count 

Grey Matter 3700 190 58 3948 

White Matter 446 4571 4 5021 

Glioma 252 342 2606 3200 

% 

Grey Matter 93.7 4.8 1.5 100.0 

White Matter 8.9 91.0 .1 100.0 

Glioma 7.9 10.7 81.4 100.0 

a. 89.4% of original grouped cases correctly classified. 
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Table 4-8: Cross-tabulation shows the classification results of higher 

order features from the classes using linear discriminate analysis on 

T1+C images for Glioma patients.  

 Classes 
Predicted Group Membership 

Total 
Grey Matter White Matter Glioma 

Original 

Count 

Grey Matter 3055 251 0 3306 

White Matter 237 4026 0 4263 

Glioma 97 2 1457 1556 

% 

Grey Matter 92.4 7.6 .0 100.0 

White Matter 5.6 94.4 .0 100.0 

Glioma 6.2 .1 93.6 100.0 

a. 93.6% of original grouped cases correctly classified. 

 

 

 

 
  

Fig (4-6): Error bar plot show the discriminate power of the Mean 

textural feature distribution for the selected classes on T1(A), T2(B), 

FLAIR(C) and T1+C(D) images for Glioma patients 
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Fig (4-7): Error bar plot show the discriminate power of the Variance 

textural feature distribution for the selected classes on T1(A), T2(B), 

FLAIR(C) and T1+C(D) images for Glioma patients 

 
Fig (4-8): Error bar plot show the discriminate power of the Energy 

textural feature distribution for the selected classes on T1 (A), T2(B), 

FLAIR(C) and T1+C(D) images for Glioma patients 
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Fig (4-9): Error bar plot show the discriminate power of the Entropy 

textural feature distribution for the selected classes on T1(A), T2(B), 

FLAIR(C) and T1+C(D) images for Glioma patients 

 

 

Fig (4-10): Error bar plot show the discriminate power of the SRE 

textural feature distribution for the selected classes on T1(A), T2(B), 

FLAIR(C) and T1+C(D) images for Glioma patients 
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Fig (4-11): Error bar plot show the discriminate power of the LRE 

textural feature distribution for the selected classes on T1(A), T2(B), 

FLAIR(C) and T1+C(D) images for Glioma patients 

 

Fig (4-12): Error bar plot show the discriminate power of the GLN 

textural feature distribution for the selected classes on T1(A), T2(B), 

FLAIR(C) and T1+C(D) images for Glioma patients 
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Fig (4-13): Error bar plot show the discriminate power of the RLN 

textural feature distribution for the selected classes on T1(A), T2(B), 

FLAIR(C) and T1+C(D) images for Glioma patients 

 

 
Fig (4-14): Error bar plot show the discriminate power of the RP textural 

feature distribution for the selected classes on T1(A), T2(B), FLAIR(C) 

and T1+C(D) images for Glioma patients 
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Fig (4-15): shows classification map in T1 image for MS patient 
 

 

                              (A)                                (B) 

Fig (4-16): Scatter plot demonstrate the classification of brain tissues 

using linear discriminate analysis on T1 images for MS patients. First 

order features (A) and higher order features (B) 

 
                              (A)                                (B) 

Fig (4-17): Scatter plot demonstrate the classification of brain tissues 

using linear discriminate analysis on T2 images for MS patients. First 

order features (A) and higher order features (B) 
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                              (A)                                (B)  

Fig (4-18): Scatter plot demonstrate the classification of brain tissues 

using linear discriminate analysis on FLAIR images for MS patients. 

First order features (A) and higher order features (B) 

 
                              (A)                                (B)  

Fig (4-19): Scatter plot demonstrate the classification of brain tissues 

using linear discriminate analysis on T1+C images for MS patients. First 

order features (A) and higher order features (B) 

 

Table 4-9: Cross-tabulation shows the classification results of the tissues 

using linear discriminate analysis for first order features on T1 images 

for MS patients.  

Classes 
Predicted Group Membership 

Total 
Grey Matter White Matter MS 

Original 

Count 

Grey Matter 1115 34 0 1149 

White Matter 4 515 25 544 

MS 3 90 511 604 

% 

Grey Matter 97.0 3.0 .0 100.0 

White Matter .7 94.7 4.6 100.0 

MS .5 14.9 84.6 100.0 

a. 93.2% of original grouped cases correctly classified. 
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Table 4-10: Cross-tabulation shows the classification results the tissues 

using linear discriminate analysis for first order features on T2 images 

for MS patients.  

Classes 
Predicted Group Membership 

Total 
Grey Matter White Matter MS 

Original 

Count 

Grey Matter 4223 19 201 4443 

White Matter 37 2980 13 3030 

MS 508 0 2814 3322 

% 

Grey Matter 95.0 .4 4.5 100.0 

White Matter 1.2 98.3 .4 100.0 

MS 15.3 .0 84.7 100.0 

a. 92.8% of original grouped cases correctly classified. 

 

 

 

Table 4-11: Cross-tabulation shows the classification results of first 

order features from the classes using linear discriminate analysis for first 

order features on FLAIR images for MS patients.  

Classes 
Predicted Group Membership 

Total 
Grey Matter White Matter MS 

Original 

Count 

Grey Matter 4325 1 36 4362 

White Matter 733 3554 0 4287 

MS 876 10 3809 4695 

% 

Grey Matter 99.2 .0 .8 100.0 

White Matter 17.1 82.9 .0 100.0 

MS 18.7 .2 81.1 100.0 

a. 87.6% of original grouped cases correctly classified. 

 

Table 4-12: Cross-tabulation shows the classification results of the 

tissues using linear discriminate analysis for first order features on T1+C 

images for MS patients.  

Classes 
Predicted Group Membership 

Total 
Grey Matter White Matter MS 

Original 

Count 

Grey Matter 775 1 81 857 

White Matter 1 472 57 530 

MS 1 2 406 409 

% 

Grey Matter 90.4 .1 9.5 100.0 

White Matter .2 89.1 10.8 100.0 

MS .2 .5 99.3 100.0 

a. 92.0% of original grouped cases correctly classified. 
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Table 4-13: Cross-tabulation shows the classification results of the 

tissues using linear discriminate analysis for higher order features on T1 

images for MS patients.  

Classes 
Predicted Group Membership 

Total 
Grey Matter White Matter MS 

Original 

Count 

Grey Matter 1114 25 1 1140 

White Matter 10 697 22 729 

MS 4 10 596 610 

% 

Grey Matter 97.7 2.2 .1 100.0 

White Matter 1.4 95.6 3.0 100.0 

MS .7 1.6 97.7 100.0 

a. 97.1% of original grouped cases correctly classified. 

 

Table 4-14: Cross-tabulation shows the classification results of the 

tissues using linear discriminate analysis for higher order features on T2 

images for MS patients.  

Classes 
Predicted Group Membership 

Total 
Grey Matter White Matter MS 

Original 

Count 

Grey Matter 3278 23 39 3340 

White Matter 379 3348 3 3730 

MS 514 0 3427 3941 

% 

Grey Matter 98.1 .7 1.2 100.0 

White Matter 10.2 89.8 .1 100.0 

MS 13.0 .0 87.0 100.0 

a. 91.3% of original grouped cases correctly classified. 

 

Table 4-15: Cross-tabulation shows the classification results of the 

tissues using linear discriminate analysis for higher order features on 

FLAIR images for MS patients.  

Classes 
Predicted Group Membership 

Total 
Grey Matter White Matter MS 

Original 

Count 

Grey Matter 3921 204 26 4151 

White Matter 401 3949 4 4354 

MS 446 0 4691 5137 

% 

Grey Matter 94.5 4.9 .6 100.0 

White Matter 9.2 90.7 .1 100.0 

MS 8.7 .0 91.3 100.0 

a. 92.1% of original grouped cases correctly classified. 
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Table 4-16: Cross-tabulation shows the classification results of the 

tissues using linear discriminate analysis for higher order features on 

T1+C images for MS patients.  

Classes 
Predicted Group Membership 

Total 
Grey Matter White Matter MS 

Original 

Count 

Grey Matter 3107 252 93 3452 

White Matter 5 2110 127 2242 

MS 0 13 1845 1858 

% 

Grey Matter 90.0 7.3 2.7 100.0 

White Matter .2 94.1 5.7 100.0 

MS .0 .7 99.3 100.0 

a. 93.5% of original grouped cases correctly classified. 
 

 

 

 

 

 
Fig (4-20): Error bar plot show the discriminate power of the Mean 

textural feature distribution for the selected classes on T1(A), T2(B), 

FLAIR(C) and T1+C(D) images for MS patients 
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Fig (4-21): Error bar plot show the discriminate power of the Variance 

textural feature distribution for the selected classes on T1(A), T2(B), 

FLAIR(C) and T1+C(D) images for MS patients 

 

 
Fig (4-22): Error bar plot show the discriminate power of the Kurtosis 

textural feature distribution for the selected classes on T1(A), T2(B), 

FLAIR(C) and T1+C(D) images for MS patients 
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Fig (4-23): Error bar plot show the discriminate power of the Skewness 

textural feature distribution for the selected classes on T1(A), T2(B), 

FLAIR(C) and T1+C(D) images for MS patients 

 

 
Fig (4-24): Error bar plot show the discriminate power of the Energy 

textural feature distribution for the selected classes on T1(A), T2(B), 

FLAIR(C) and T1+C(D) images for MS patients 
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Fig (4-25): Error bar plot show the discriminate power of the Entropy 

textural feature distribution for the selected classes on T1(A), T2(B), 

FLAIR(C) and T1+C(D) images for MS patients 

 
Fig (4-26): Error bar plot show the discriminate power of the SRE 

textural feature distribution for the selected classes on T1(A), T2(B), 

FLAIR(C) and T1+C(D) images for MS patients 
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Fig (4-27): Error bar plot show the discriminate power of the LRE 

textural feature distribution for the selected classes on T1(A), T2(B), 

FLAIR(C) and T1+C(D) images for MS patients 

 
Fig (4-28): Error bar plot show the discriminate power of the GLN 

textural feature distribution for the selected classes on T1(A), T2(B), 

FLAIR(C) and T1+C(D) images for MS patients 
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Fig (4-29): Error bar plot show the discriminate power of the RLN 

textural feature distribution for the selected classes on T1(A), T2(B), 

FLAIR(C) and T1+C(D) images for MS patients 

 
Fig (4-30): Error bar plot show the discriminate power of the RP textural 

feature distribution for the selected classes on T1(A), T2(B), FLAIR(C) 

and T1+C(D) images for MS patients 
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Fig (4-31): shows classification map in T1 image for SVD patient 

 
                           (A)                                    (B) 

Fig (4-32): Scatter plot demonstrate the classification of brain tissues 

using linear discriminate analysis on T1 images for SVD patients. First 

order features (A) and higher order features (B) 

 
                             (A)                                (B)  

Fig (4-33): Scatter plot demonstrate the classification of brain tissues 

using linear discriminate analysis on T2 images for SVD patients. First 

order features (A) and higher order features (B) 
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                             (A)                                (B) 

Fig (4-34):  Scatter plot demonstrate the classification of brain tissues 

using linear discriminate analysis on FLAIR images for SVD patients. 

First order features (A) and higher order features (B) 

 
                            (A)                                (B) 

Fig (4-35): Scatter plot demonstrate the classification of brain tissues 

using linear discriminate analysis on T1+C images for SVD patients. 

First order features (A) and higher order features (B)  

 

Table 4-17: Cross-tabulation shows the classification results tissues 

using linear discriminate analysis for first order features on T1 images 

for SVD patients.  

Classes 
Predicted Group Membership 

Total 
Grey Matter White Matter SVD 

Original 

Count 

Grey Matter 993 38 0 1031 

White Matter 9 1152 0 1161 

SVD 0 41 917 958 

% 

Grey Matter 96.3 3.7 .0 100.0 

White Matter .8 99.2 .0 100.0 

SVD .0 4.3 95.7 100.0 

a. 97.2% of original grouped cases correctly classified. 
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Table 4-18: Cross-tabulation shows the classification results tissues 

using linear discriminate analysis for first order features on T2 images 

for SVD patients.  

Classes 
Predicted Group Membership 

Total 
Grey Matter White Matter SVD 

Original 

Count 

Grey Matter 3393 0 389 3782 

White Matter 35 2886 25 2946 

SVD 428 1 2519 2948 

% 

Grey Matter 89.7 .0 10.3 100.0 

White Matter 1.2 98.0 .8 100.0 

SVD 14.5 .0 85.4 100.0 

a. 90.9% of original grouped cases correctly classified. 

 

 

Table 4-19: Cross-tabulation shows the classification results tissues 

using linear discriminate analysis for first order features on FLAIR 

images for SVD patients.  

Classes 
Predicted Group Membership 

Total 
Grey Matter White Matter SVD 

Original 

Count 

Grey Matter 4575 20 2 4597 

White Matter 280 2780 0 3060 

SVD 227 5 2388 2620 

% 

Grey Matter 99.5 .4 .0 100.0 

White Matter 9.2 90.8 .0 100.0 

SVD 8.7 .2 91.1 100.0 

a. 94.8% of original grouped cases correctly classified. 

 

Table 4-20: Cross-tabulation shows the classification results tissues 

using linear discriminate analysis for first order features on T1+C images 

for SVD patients.  

Classes 
Predicted Group Membership 

Total 
Grey Matter White Matter SVD 

Original 

Count 

Grey Matter 3632 1 165 3798 

White Matter 273 1097 103 1473 

SVD 39 12 1982 2033 

% 

Grey Matter 95.6 .0 4.3 100.0 

White Matter 18.5 74.5 7.0 100.0 

SVD 1.9 .6 97.5 100.0 

a. 91.9% of original grouped cases correctly classified. 
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Table 4-21: Cross-tabulation shows the classification results tissues 

using linear discriminate analysis for higher order features on T1 images 

for SVD patients.  

Classes 
Predicted Group Membership 

Total 
Grey Matter White Matter SVD 

Original 

Count 

Grey Matter 993 56 0 1049 

White Matter 14 1074 6 1094 

SVD 0 94 977 1071 

% 

Grey Matter 94.7 5.3 .0 100.0 

White Matter 1.3 98.2 .5 100.0 

SVD .0 8.8 91.2 100.0 

a. 94.7% of original grouped cases correctly classified. 

 

Table 4-22: Cross-tabulation shows the classification results tissues 

using linear discriminate analysis for higher order features on T2 images 

for SVD patients.  

Classes 
Predicted Group Membership 

Total 
Grey Matter White Matter SVD 

Original 

Count 

Grey Matter 3301 149 557 4007 

White Matter 118 3281 7 3406 

SVD 632 4 1845 2481 

% 

Grey Matter 82.4 3.7 13.9 100.0 

White Matter 3.5 96.3 .2 100.0 

SVD 25.5 .2 74.4 100.0 

a. 85.2% of original grouped cases correctly classified. 
 

Table 4-23: Cross-tabulation shows the classification results tissues 

using linear discriminate analysis for higher order features on FLAIR 

images for SVD patients.  

Classes 
Predicted Group Membership 

Total 
Grey Matter White Matter SVD 

Original 

Count 

Grey Matter 3336 62 17 3415 

White Matter 151 4022 0 4173 

SVD 159 0 2790 2949 

% 

Grey Matter 97.7 1.8 .5 100.0 

White Matter 3.6 96.4 .0 100.0 

SVD 5.4 .0 94.6 100.0 

a. 96.3% of original grouped cases correctly classified. 
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Table 4-24: Cross-tabulation shows the classification results tissues 

using linear discriminate analysis for higher order features on T1+C 

images for SVD patients.  

Classes 
Predicted Group Membership 

Total 
Grey Matter White Matter SVD 

Original 

Count 

Grey Matter 930 9 37 976 

White Matter 19 817 5 841 

SVD 28 44 309 381 

% 

Grey Matter 95.3 .9 3.8 100.0 

White Matter 2.3 97.1 .6 100.0 

SVD 7.3 11.5 81.1 100.0 

a. 93.5% of original grouped cases correctly classified. 
 

 

 

 

 
Fig (4-36): Error bar plot show the discriminate power of the Mean 

textural feature distribution for the selected classes on T1(A), T2(B), 

FLAIR(C) and T1+C(D) images for SVD patients 
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Fig (4-37): Error bar plot show the discriminate power of the Variance 

textural feature distribution for the selected classes on T1(A), T2(B), 

FLAIR(C) and T1+C(D) images for SVD patients 

 
Fig (4-38): Error bar plot show the discriminate power of the Kurtosis 

textural feature distribution for the selected classes on T1(A), T2(B), 

FLAIR(C) and T1+C(D) images for SVD patients 
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Fig (4-39): Error bar plot show the discriminate power of the Skewness 

textural feature distribution for the selected classes on T1(A), T2(B), 

FLAIR(C) and T1+C(D) images for SVD patients 

 
Fig (4-40): Error bar plot show the discriminate power of the Energy 

textural feature distribution for the selected classes on T1(A), T2(B), 

FLAIR(C) and T1+C(D) images for SVD patients 



71 
 

 
Fig (4-41): Error bar plot show the discriminate power of the Entropy 

textural feature distribution for the selected classes on T1(A), T2(B), 

FLAIR(C) and T1+C(D) images for SVD patients 

 
Fig (4-42): Error bar plot show the discriminate power of the SRE 

textural feature distribution for the selected classes on T1(A), T2(B), 

FLAIR(C) and T1+C(D) images for SVD patients 
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Fig (4-43): Error bar plot show the discriminate power of the LRE 

textural feature distribution for the selected classes on T1(A), T2(B), 

FLAIR(C) and T1+C(D) images for SVD patients 

 
Fig (4-44): Error bar plot show the discriminate power of the GLN 

textural feature distribution for the selected classes on T1(A), T2(B), 

FLAIR(C) and T1+C(D) images for SVD patients 
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Fig (4-45): Error bar plot show the discriminate power of the RLN 

textural feature distribution for the selected classes on T1(A), T2(B), 

FLAIR(C) and T1+C(D) images for SVD patients 

 
Fig (4-46): Error bar plot show the discriminate power of the RP textural 

feature distribution for the selected classes on T1(A), T2(B), FLAIR(C) 

and T1+C(D) images for SVD patients 
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All lesions  

 

 

                                (A)                                (B) 

Fig (4-47): Scatter plots demonstrate the classification of white matter 

lesions using linear discriminate analysis on T1+C MR images for 

patients with Glioma, MS and SVD. First order features (A) and higher 

order features (B)     

Table 4-25: Cross-tabulation shows the classification results of first 

order statistics using linear discriminate analysis on T1+C MR Images 

for patients with Glioma, MS and SVD.  

Classes 

Predicted Group Membership 

Total Grey 

Matter 

White 

Matter 
Glioma MS SVD 

Original 

Grey Matter 89.7 .0 .0 5.4 4.9 100.0 

White Matter .0 87.3 .0 .0 12.7 100.0 

Glioma .0 12.2 87.3 .0 .5 100.0 

MS 2.0 .3 .2 80.3 17.3 100.0 

SVD .0 .0 .0 .0 100.0 100.0 

a. 87.2% of original grouped cases correctly classified. 
 

Table 4-26: Cross-tabulation shows the classification results of Higher 

order statistics using linear discriminate analysis on T1+C MR Images 

for patients with Glioma, MS and SVD.  

Classes 

Predicted Group Membership 

Total Grey 

Matter 

White 

Matter 
Glioma MS SVD 

Original 

Grey Matter 97.5 .0 .1 1.4 1.0 100.0 

White Matter 4.6 93.1 .0 2.3 .0 100.0 

Glioma .0 3.0 96.3 .0 .6 100.0 

MS .7 .0 .0 93.0 6.3 100.0 

SVD .0 .0 .0 .0 100.0 100.0 

a. 96.2% of original grouped cases correctly classified. 
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Fig (4-48): Error bar plot show the discriminate power of the Mean 

textural feature distribution for the selected classes on T1+C MR Images 

for patients with Glioma, MS and SVD. 

 
Fig (4-49): Error bar plot show the discriminate power of the Variance 

textural feature distribution for the selected classes on T1+C MR Images 

for patients with Glioma, MS and SVD. 

 
Fig (4-50): Error bar plot show the discriminate power of the Energy 

textural feature distribution for the selected classes on T1+C MR Images 

for patients with Glioma, MS and SVD. 
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Fig (4-51): Error bar plot show the discriminate power of the Entropy 

textural feature distribution for the selected classes on T1+C MR Images 

for patients with Glioma, MS and SVD. 

 
Fig (4-52): Error bar plot show the discriminate power of the SRE 

textural feature distribution for the selected classes on T1+C MR Images 

for patients with Glioma, MS and SVD. 

 
Fig (4-53): Error bar plot show the discriminate power of the LRE 

textural feature distribution for the selected classes on T1+C MR Images 

for patients with Glioma, MS and SVD. 
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Fig (4-54): Error bar plot show the discriminate power of the GLN 

textural feature distribution for the selected classes on T1+C MR Images 

for patients with Glioma, MS and SVD. 

 
Fig (4-55): Error bar plot show the discriminate power of the RLN 

textural feature distribution for the selected classes on T1+C MR Images 

for patients with Glioma, MS and SVD. 

 
Fig (4-56): Error bar plot show the discriminate power of the RP textural 

feature distribution for the selected classes on T1+C MR Images for 

patients with Glioma, MS and SVD. 
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Fig (4-57): Error bar plot show the discriminate power of the LGRE 

textural feature distribution for the selected classes on T1+C MR Images 

for patients with Glioma, MS and SVD. 

 
Fig (4-58): Error bar plot show the discriminate power of the SRHGE 

textural feature distribution for the selected classes on T1+C MR Images 

for patients with Glioma, MS and SVD. 
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Chapter five 

Discussion, conclusion and recommendation 

5.1. Discussion: 

The main aim of this thesis is to characterize the white matter lesions 

(Glioma, Multiple Sclerosis [MS] and Small Vessels Disease [SVD]) on 

MR images ( T1, T2, FLAIR and T1+C imaging sequences) using 

texture analysis (first order statistics and higher order statistics). In this 

study there is five classes; from each class a six first order statistical 

features (mean, variance, kurtosis, skewness, energy and entropy) and 

eleven higher order statistical features (SRE, LRE, GLN, RLN, RP, 

LGRE, HGRE, SRLGE, SRHGE, LRLGE and LRHGE) were extracted 

to classify the white matter lesions from normal tissues and from each 

other, using linear discriminate analysis. the result of classification 

indicated that  using the first order and the higher order statistical 

features are : firstly for the Glioma it successfully differentiate it from 

the grey matter and white matter of the brain on T1, T2, T1+C and 

FLAIR images, similar to Qurat 2010, as there is no interference 

between the classes centers (blue squares), presented in Fig (4-2) to Fig 

(4-5); with classification accuracy using the first order textural features 

equal 99.0%, 96.9%, 94.8% and 92.2% on T2, T1(agreeing to Doaa, 

2003),T1+C and FLAIR images respectively; and the sensitivity of 

detecting the Glioma in that order equal 98.2%, 95.6%, 83.8% and 

83.1%. While when using the higher order statistical features the highest 

accuracy was on T1+C (corresponding to Tian et al 2018) then T2, 

FLAIR and lastly T1 images (=93.6%, 92.6%, 89.4% and 86.4% 

respectively); and sensitivity = 93.6%, 91.3%, 81.4% and 88.3% 

correspondingly; shown in table (4-1) to table (4-8).  
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Secondly in the MS patient images also effectively distinguish between 

the lesion plaques and the normal tissue in all imaging sequences as 

there is no interference between the classes centers (blue squares), 

presented in Fig (4-16) to Fig (4-19). with classification accuracy when 

using the first order textural features equal 93.2%, 92.8%, 92.0% and 

87.6% on T1,T2,T1+C and FLAIR images respectively; and the 

sensitivity of detecting the MS plaques in that order equal 84.6%, 84.7%, 

99.3% and 81.1%. While when using the higher order statistical features 

the highest accuracy was on T1, T1+C, FLAIR and lastly T2 images 

equal to 97.1%, 93.5%, 92.1% and 91.3% respectively; and sensitivity 

equal to 97.7%, 99.3%, 91.3% and 87.0% respectively; (agreeing to Jing 

2008 and Loizou in 2014) ; presented in table(4-9) to table (4-16). 

Also when using linear discriminate analysis in the classification of the 

features that extracted from the SVD patients images; it successfully 

differentiate the lesion from the normal brain tissues in all MR imaging 

sequences; as there is no interference between the classes centers (blue 

squares), presented on fig (4-32) to Fig (4-35). With accuracy equal to 

97.2%, 94.8%, 91,9 % and 90.9% on T1, FLAIR, T1+C and T2 images 

respectively; and the sensitivity of detecting the SVD in that order equal 

95.7%, 91.1%, 97.5% and 85.4% ; when using the first order features. 

While when using the higher order features the highest accuracy was on 

FLAIR, T1, T1+C and then T2 images equal to 96.3%, 94.7%, 93.5% 

and 85.2% respectively; and sensitivity equal to 94.6%, 91.2%, 81.1% 

and 74.4% respectively; presented in table (4-17) to table (4-24). 

Moreover, a classification map was generate from the classified features 

for all lesions in all MR imaging sequences, shown in the appendices 

(appendix (A-1) to (A-12)). Also presented on fig (4-1), fig (4-15) and 

fig (4-31) for the imaging sequence that had the highest accuracy in each 

lesion.  
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From what listed above the result of discrimination of lesions in the 

T1+C imaging sequence has the highest sensitivity for detecting the 

lesions than the others imaging sequences (appears 4 times); so on this 

study it has been chosen to classify the lesions from each other and the 

result of classification using the first order and the higher order statistical 

features showed that all classes are very different from each other as the 

center of each class (blue square) is away from the other on T1+C 

images, presented on Fig (4-47); with classification accuracy using the 

first order textural features equal 87.2%; and the sensitivity of detecting 

the Glioma, MS and SVD equal 87.3%, 80.3%, 100% respectively, 

shown from table(4-25). While when using the higher order statistical 

features the accuracy was on T1+C equal 96.2%; and sensitivity equal 

96.3%, 93.0% and 100% for the Glioma, MS and SVD correspondingly ( 

agreeing to Theocharakis 2009 and Sarah 2017 but on FLAIR imaging 

sequence), as presented in table (4-25). 

Regarding the T1 imaging sequence, for Glioma patients in part (A) 

from fig (4-6) to fig (4-14); the first order statistical features; the mean 

and the entropy (same as declared by Soni et al 2019), Textural features 

have successfully distinguished between the Glioma and the normal 

tissue; with the Glioma have the highest value and the grey matter 

having the lowest value. Also the skewness differentiates between the 

Glioma and the normal tissue, with the Glioma have the lowest value. 

Although the variance textural feature differentiates between the Glioma 

and the normal tissue, but there is interference between the grey matter 

and the white matter. However energy textural feature shows 

interference between the Glioma and the grey matter. While on the 

higher order statistics the features that successfully discriminate between 

the Glioma and the normal tissue were the SRE, LRE, GLN, RLN and 

RP textural features, with the Glioma having the highest SRE and GLN 
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values, and lowest LRE and RLN values from the normal tissues. While 

LGRE textural features also differentiate between the Glioma and the 

grey matter and the white matter, but the the Glioma shows a wide 

ranging. 

Moreover concerning the T2 imaging sequence for Glioma patients in 

part (B) from fig (4-6) to fig (4-14); the first order statistical features; the 

mean,  the variance and the entropy (same as declared by Soni et al 

2019) textural features have successfully distinguish between the Glioma 

and the normal tissue specially the white matter (the Glioma have the 

highest value while the white matter have the lowest value); also the 

energy feature differentiates between the alioma and the normal tissue, 

with the Glioma having the lowest value than the normal tissues, while 

the kurtosis textural features shows interference between the Glioma and 

the white matter. Additionally on the higher order statistical features the 

SRE, LRE, GLN and RLN textural features successfully differentiate the 

Glioma from the normal tissues; with the Glioma having the highest 

value on SRE and GLN textural features and lowest LRE and RLN 

values; nevertheless there is interference between the grey matter and 

white matter values on SRE, LRE and RLN. However the RP textural 

feature shows interference between the grey matter and the Glioma.     

On FLAIR imaging sequence for the Glioma patients, the first order 

statistical features; mean, variance, skewness, energy and the entropy 

(same as declared by Soni et al 2019), have been successfully 

differentiate between the Glioma and the white matter, with the Glioma 

have the highest mean value and entropy value, but there is interference 

between the Glioma and grey matter in the variance textural feature 

values. While for the higher order statistical features the SRE, GLN, 

HGRE and SRHGE highly discriminate the Glioma from the normal 

tissue, with the Glioma have the highest value in all of them; in addition 
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the LRE and RLN also differentiate the Glioma well, but it have the 

lowest value on them both. Presented on part (C) from fig (4-6) to fig (4-

14). Furthermore on T1+C imaging sequence the first order statistical 

features; the mean and the entropy (same as declared by Soni et al 2019 

and Xie et al 2018) textural features have successfully distinguish 

between the Glioma and the normal tissue; specially the white matter 

(the Glioma have the highest value while the white matter have the 

lowest value); also the energy textural feature differentiate between the 

Glioma and normal tissue, with it having the lowest value; while the 

variance textural feature, it differentiate the Glioma from the normal 

tissue, corresponding to Ditmer et al, 2018 and Skagon et al, 2016  ;  but 

there is interference between the grey matter and the white matter. 

Furthermore concerning the higher order statistical features, the SRE, 

LRE, GLN, RLN, RP and LGRE successfully differentiate the Glioma 

from the normal tissue, with the Glioma having the highest value on 

SRE, GLN, RP and LGRE. But on the LRE, and RLN textural features 

having the lowest values than the normal tissues also there is interference 

between the white matter and the grey matter on SRE, LRE, and RLN 

textural features. Presented on part (D) from fig (4-6) to fig (4-14). 

While regarding the T1 imaging sequence in MS patients, concerning the 

first order statistics; the mean, the variance, the energy and the entropy 

successfully differentiate the MS plaques from the normal tissue, with 

the MS plaques having the highest mean, energy and entropy values than 

the normal tissues, but having the lowest variance textural feature value 

with a wide range and also on this feature there is interference between 

the grey matter and the white matter. Moreover on the higher order 

statistics the; RP, LGRE, HGRE and LRLGE textural features 

effectively differentiate the MS plaques from the normal tissue, the RP 

shows the best discrimination with the MS having the lowest value and 
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the white matter having the highest RP value. While on the SRE, LRE, 

GLN and RLN textural features there is interference between the MS 

plaques and the white matter. Presented on part (A) from fig (4-20) to fig 

(4-30). 

Furthermore on the T2 imaging sequence in MS patients; the first order 

statistics; mean, variance, kurtosis, energy and entropy textural features 

successfully differentiate the MS plaques from the normal tissue, with 

the MS having the highest mean and entropy values and the white matter 

having the lowest values (agreeing with Sarah 2016 in what concerning 

the mean and the entropy but regarding the energy feature energy there 

was interference between the MS and white matter ; the discrimination 

results on the this thesis have different sample size and different classes ( 

on this thesis the classes are the lesion (MS), normal white matter and 

normal grey matter; while on Sarah 2017 the classes were the lesion 

(MS), normal appearance white matter, normal appearance grey matter 

and CSF)). Additionally on the higher order statistics the; SRE, LRE, 

GLN, RLN, RP, HGRE, SRHGE and LRHGE textural features 

successfully differentiate the MS plaques from the normal tissue, with 

the MS having the highest SRE, GLN, RP, HGRE, SRHGE and LRHGE 

values than the normal tissues, with the white matter having the lowest 

GLN, RP, HGRE, SRHGE and LRHGE values; however on the SRE, 

LRE and RLN textural features there is interference between the white 

matter and the grey matter. Presented on part (B) from fig (4-20) to fig 

(4-30). 

While on FLAIR imaging sequence for the MS patients, the first order 

statistical features; mean, variance, kurtosis, skewness and entropy 

textural features have been successfully differentiate between the MS 

plaques and the white matter, with MS having the highest mean, variance 

and entropy values and the white matter having the lowest values 
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(agreeing with Sarah 2017), but in the kurtosis and the skewness; the MS 

have the lowest value and the white matter have the highest value. On 

the other hand the energy textural feature shows good differentiation for 

the grey matter, with it having the highest value, but there is interference 

between the white matter and the MS plaques. While regarding the 

higher order statistical features: the SRE, LRE, GLN, RLN, RP, LRGE, 

HGRE and SRHGE textural features successfully differentiate the MS 

plaques from the normal tissue, with the MS having the highest GLN, 

RP, LRGE, HGRE and SRHGE values and the white matter having the 

lowest values, while on the SRE textural feature there interference the 

grey matter and the white matter. Presented on part (C) from fig (4-20) 

to fig (4-30). 

On T1+C imaging sequence for the MS patients, the first order statistical 

features; mean, variance, kurtosis, skewness, energy and the entropy 

have been successfully differentiate between the MS plaques and the 

normal tissues, with interference between the grey matter and the white 

matter values on kurtosis and energy textural features. Moreover 

regarding the higher order statistical features; the SRE, LRE, GLN, 

RLN, RP, SRLGE and LRHGE textural features effectively differentiate 

the MS plaques from the normal tissue; with the SRE, LRE, RLN and 

RP shows the best differentiation between the MS plaques and the white 

matter. Presented on part (D) from fig (4-20) to fig (4-30).  

In addition on T1 imaging sequence in SVD patients; the first order 

statistical features; mean, variance, energy and the entropy successfully 

differentiate between the SVD and the normal tissues, but there 

interference between the grey matter and the white matter in variance 

and energy features values. However regarding the higher order 

statistics; GLN, RP, LGRE, HGRE, SRLGE, SRHGE, LRLGE and 

LRHGE textural features successfully differentiate the SVD from the 
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normal tissue; and best feature for the differentiation between the SVD 

and the white matter is RP feature, with the SVD having the lowest value 

and the white matter having the highest value. Presented on part (A) 

from fig (4-36) to fig (4-46). Furthermore on T2 imaging sequence in 

SVD patients; all the first order statistical features; mean, variance, 

kurtosis, skewness, energy and the entropy have successfully 

differentiate between the SVD and the normal tissues, also there is no 

interference between the three classes in all features; and the best 

features that differentiate between the SVD and the white matter are; 

mean, skewness and the entropy, with the SVD having the highest value 

and the white matter have the lowest value of mean and the entropy 

while their skewness values are opposite to that. Moreover regarding the 

higher order statistical features; the SRE, LRE, GLN, RLN, RP, HGRE, 

SRLGE, SRHGE and LRLGE textural features successfully differentiate 

the SVD from the normal tissue; and best features to differentiate the 

SVD from the white matter is GLN and  the RP features, with the SVD 

having the highest value and the white matter have the lowest value. 

Presented on part (B) from fig (4-36) to fig (4-46).  

Additionally on FLAIR imaging sequence in SVD patients; about the 

first order statistics; mean, variance, kurtosis, skewness, energy and the 

entropy have successfully discriminate the SVD from the normal tissue; 

with no interference between all classes in all features, and the best 

features that differentiate between the SVD and the white matter are; 

mean, variance, kurtosis, skewness and the entropy textural features. 

Furthermore regarding the higher order statistics; the SRE, LRE, GLN, 

RLN, RP, LRGE, HGRE, SRHGE and LRHGE textural features 

successfully differentiate between the three classes in general; and the 

SVD from the white matter in specific. Presented on part (C) from fig (4-

36) to fig (4-46). 
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Furthermore on T1+C imaging sequence the first order statistical 

features; the mean, variance, skewness, energy and entropy textural 

features have successfully distinguish between the SVD and the normal 

tissue, with the energy feature the best discrimination result between the 

SVD and the white matter (the SVD have the lowest value while the 

white matter have the highest value); also here is no interference 

between the three classes in the previously listed features. In addition 

concerning the higher order statistical features, the SRE, LRE, GLN, 

RLN, RP, LGRE, HGRE, SRHGE, and LRLGE textural features 

successfully differentiate the SVD from the normal tissue, but there is 

interference between the grey matter and the white matter values in SRE, 

LRE, RLN, RP and LGRE textural features. Presented on part (D) from 

fig (4-36) to fig (4-46). 

Finally concerning the discrimination results for all lesions in T1+C 

imaging sequence; the first order statistical features (mean, variance, 

energy and entropy) shows effective differentiation – no interference 

between all classes (Glioma, MS, SVD, grey matter and white matter), 

(corresponding to Sarah 2017 regarding the MS and the SVD in FLAIR 

images); with the Glioma having the highest values in all previously 

listed features and the MS plaques have the lowest value regarding the 

lesions. In addition for the higher order statistical features, the SRE, 

LRE, RLN, RP, LGRE and SRHGE features successfully discriminate 

between the five classes, while the GLN feature shows good 

differentiation between the three lesions, but there is interference 

between the grey matter and the white matter. In case of Glioma the 

GLN, LGRE and SRHGE features are the best for differentiate between 

it and the other lesions; while for the MS the best is the RP feature, and 

for the SVD the best features for distinguish it, are LRE and RLN. 

Presented from fig (4-48) to fig (4-58).                    
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5.2. Conclusion: 

In conclusion the white matter lesions can be diagnosed quantitatively 

from the normal tissues on MR images: 

Firstly the Glioma:  

When using the first order statistics by a*: 

*sensitivity equal to 95.6% on TI images using the following equations: 

Glioma = (20.230×mean) + (.277× variance) + (-

5.500×skewness)+(.206×energy)+ (-2.321×entropy)  -275.570 

White matter = (23.640×mean)+ (-.103× variance)+ (-

5.337×skewness)+(.219×energy)+ (-2.851×entropy) -238.220 

Grey matter = (21.471×mean)+ (-.129× variance) + (-

4.689×skewness)+(.192×energy) + (-2.605×entropy)  -189.823 

*sensitivity equal to 98.2% on T2 images using the following equations: 

Glioma = (19.977×mean) + (-.100× variance) + (1.830× Kurtosis)+( 

.053×energy)+ (-2.363×entropy)  -217.467 

White matter = (13.668×mean)+ (-.053× variance)+ (1.059× 

Kurtosis)+(.061×energy)+ (-1.635×entropy) -98.053 

Grey matter = (17.800×mean)+ (-.067× variance) + (1.781× Kurtosis)+( 

.053×energy) + (-2.123×entropy)  -163.923 

*sensitivity equal to 83.1% on FLAIR images using the following 

equations: 

Glioma = (43.313×mean) + (.456× variance) + (-

1.354×skewness)+(.209×energy) + (-5.206×entropy)  -449.781 

White matter = (39.778×mean)+ (.426× variance)+ (-

1.425×skewness)+(.165×energy)+ (-4.830×entropy)  -351.069 

Grey matter = (43.227×mean)+ (.471× variance) + (-

1.642×skewness)+(.201×energy) + (-5.227×entropy)  -427.022 

*sensitivity equal to 83.8% on T1+C images using the following 

equations: 

Glioma = (33.284×mean) + (.047× variance) +(.265×energy)+ (-

3.955×entropy)  -360.222 

White matter = (31.523×mean)+ (-.013× variance)+ (.259×energy)+ (-

3.796×entropy) -288.834 

Grey matter = (35.007×mean)+ (-.010× variance) + (.298×energy) + (-

4.202×entropy)  -364.053 

When using the higher order statistics by a*: 

*sensitivity equal to 88.3% on T1 images using the following equations: 

Glioma = (91.169× SRE) + (8.573 × LRE) + (.007× GLN) + (83.018× RP) +( -

151.252× LGRE) -108.927 

White matter = (102.659× SRE) + (9.108× LRE) + (.004× GLN) + (85.814× 

RP) +(-273.059× LGRE) -76.855 
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Grey matter = (102.199× SRE) + (9.358×LRE) + (.003× GLN) + (74.818× RP) 

+(-246.055× LGRE) -67.418 

*sensitivity equal to 91.3% on T2 images using the following equations: 

Glioma = (3018.801× SRE) + (-735.729×  LRE) + (.010× GLN) 

+(4323.954×RLN) +  (125.574× RP) -3355.977 

White matter = (3010.589× SRE) + (-734.551×  LRE) + (.006× 

GLN)+(4315.083×RLN)+ (105.704× RP) -3307.723 

Grey matter = (3024.061× SRE) + (-735.840×LRE) + (.008× GLN) 

+(4325.909×RLN) +  (126.052× RP) -3347.503 

*sensitivity equal to 81.4% on FLAIR images using the following 

equations: 

Glioma = (204.564× SRE) + (.008× GLN) + (102.857× RLN)+(71.911× RP) -

181.097 

White matter = (208.547× SRE) + (.005× GLN) + (103.777× RLN)+(73.037× 

RP) -172.733 

Grey matter = (210.897× SRE) + (.007× GLN) + (104.680× RLN)+(83.014× 

RP) -187.687 

*sensitivity equal to 93.6% on T1+C images using the following 

equations: 

Glioma=(94.305× SRE)+(11.117× LRE)+(.009× GLN)+(79.843× RP)+( 

157.989× LGRE)+(-77.437× SRLGE)-112.462 

White matter=(98.729× SRE)+(10.535×  LRE)+(.005× GLN)+(71.341× 

RP)+(-183.077× LGRE)+(-104.702× SRLGE)-68.796 

Grey matter=(99.810× SRE)+(10.712×  LRE)+(.007× GLN)+(79.136× RP)+(-

87.865× LGRE)+(-143.967×SRLGE)-84.798 

Secondly the MS:  

When using the first order statistics by a*: 

*sensitivity equal to 84.6% on T1 images using the following equations: 

MS = (216.462×mean)+(5.340× variance)+(1.242×Kurtosis)+(-

3.900×skewness)+(.318×energy)+(-29.012×entropy) -1339.589 

White matter=(225.128×mean)+(5.762× variance)+(1.681×Kurtosis)+(-

4.625×skewness)+(.287×energy)+(-30.239×entropy) -1412.320 

Grey matter = (225.803×mean)+(5.541× variance)+(1.768×Kurtosis)+(-

4.482×skewness)+(.267×energy)+(-30.401×entropy)  -1390.958 

*sensitivity equal to 84.7% on T2 images using the following equations: 

MS = (44.349×mean)+(.064× variance)+(-1.935× Kurtosis)+(-

1.103×skewness)+(-.022×energy)+(-5.729×entropy) -320.691 

White matter = (37.698×mean)+(.109× variance)+(.233× Kurtosis)+(-

1.113×skewness)+(-.001×energy)+(-4.912×entropy) -221.127 

Grey matter = (44.334×mean)+(.113× variance)+(.413× Kurtosis)+(-

1.267×skewness)+(-.030×energy)+(-5.756×entropy)  -307.783 
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*sensitivity equal to 81.1% on FLAIR images using the following 

equations: 

MS = (77.591×mean)+(.777× variance)+(-.062× Kurtosis)+(-

3.790×skewness)+(.196×energy)+(-9.544×entropy) -718.437 

White matter = (73.887×mean)+(.561× variance)+(.358× Kurtosis)+(-

2.671×skewness)+(.153×energy)+(-9.136×entropy) -620.747 

Grey matter = (78.003×mean)+(.649× variance)+(.287× Kurtosis)+(-

3.256×skewness)+(.204×energy)+(-9.621×entropy)  -708.782 

*sensitivity equal to 99.3% on T1+C images using the following 

equations: 

MS = (411.974×mean)+(2.785×Kurtosis)+(-

4.786×skewness)+(.123×energy)+(-56.858×entropy) -2269.702 

White matter=(398.743×mean)+(1.857×Kurtosis)+(-

5.591×skewness)+(.180×energy)+(-54.966×entropy) -2159.827 

Grey matter = (417.190×mean)+(1.298×Kurtosis)+(-

6.235×skewness)+(.174×energy)+(-57.655×entropy) -2306.445 

When using the higher order statistics by a*: 

*sensitivity equal to 97.7% on T1 images using the following equations: 

MS = (2870.460×SRE)+(-749.270×LRE)+(.028×GLN)+(4310.889×RLN)+( -

11.688× RP)+( 587.433× LGRE)+ (-15639.512× SRLGE)+( .003× 

SRHGE)+(-145.420×LRLGE) -3275.347 

White matter = (2886.286× SRE)+( -744.483× LRE)+( .023× GLN)+( 

4291.633×RLN)+( 16.113× RP)+( 511.892× LGRE)+ (-17429.484× 

SRLGE)+( .002× SRHGE)+( -492.588×LRLGE) -3257.169 

Grey matter = (2885.392× SRE)+(-739.134× LRE)+(.019× GLN)+( 

4264.104×RLN)+( 22.229× RP)+( 455.895× LGRE)+ (-16915.883× 

SRLGE)+( .002× SRHGE)+( -367.678×LRLGE) -3216.130 

*sensitivity equal to 87.0% on T2 images using the following equations: 

MS = (102.304× SRE)+(11.084× LRE)+(.024× GLN)+(91.493× RP)+(-.001× 

SRHGE) -116.777 

White matter = (100.290× SRE)+( 10.729× LRE)+(.014× GLN)+( 66.201× 

RP)+( -.001× SRHGE) -73.049 

Grey matter = (102.700× SRE)+( 11.070× LRE)+(.019× GLN)+( 82.918× 

RP)+(-.001× SRHGE) -95.977 

*sensitivity equal to 91.3% on FLAIR images using the following equations: 

MS = (2649.221× SRE)+(-647.170× LRE)+(.016× 

GLN)+(3787.139×RLN)+(191.383× RP)+(-735.568× LGRE)+( .000× 

SRHGE) -2949.645 

White matter = (2673.342× SRE)+(-648.698× LRE)+(.010× 

GLN)+(3798.084× RLN)+(169.960× RP)+(-992.612× LGRE)+(-.001× 

SRHGE) -2928.918 

Grey matter = (2668.861× SRE)+(-648.500× LRE)+(.014× GLN)+(3797.842× 

RLN)+(183.531× RP)+(-893.456× LGRE)+(-.001× SRHGE) -2950.125 
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*sensitivity equal to 99.3% on T1+C images using the following equations: 

MS = (103.588×SRE)+( 10.786×LRE)+(.010×GLN)+(98.778× RP)+( -

448.397× LGRE)+ (-292.812× SRLGE) -73.765 

White matter = (92.237×SRE)+(10.594×LRE)+(.012×GLN)+(123.059×RP)+(-

493.553× LGRE)+ (-397.402× SRLGE) -83.017 

Grey matter = (83.550×SRE)+(10.286×LRE)+(.015×GLN)+(118.782×RP)+( -

390.567× LGRE)+ (253.881× SRLGE) -91.288 

Finaly the SVD:  

When using the higher order statistics by a*: 

*sensitivity equal to 95.7% on T1 images using the following equations: 

SVD = (120.438×mean)+( 3.317×variance)+( 3.974×Kurtosis)+( 

.158×energy)+( -15.384×entropy) -930.150 

White matter = (123.661×mean)+( 3.297×variance)+( 3.611×Kurtosis)+( 

.139×energy)+( -15.868×entropy) -937.862 

Grey matter = 

(118.223×mean)+(3.048×variance)+(3.054×Kurtosis)+(.126×energy)+(-

15.217×entropy) -838.951 

*sensitivity equal to 85.4% on T2 images using the following equations: 

SVD = (62.645×mean)+( .376×variance)+( 7.156×Kurtosis)+( -

.970×skewness)+(-.049×energy)+(-8.343×entropy) -387.797 

White matter = (56.779×mean)+( .376×variance)+( 7.181×Kurtosis)+( -

.675×skewness)+( -.048×energy)+( -7.589×entropy) -310.561 

Grey matter = (65.258×mean)+( .422×variance)+( 9.233×Kurtosis)+( -

.779×skewness)+( -.086×energy)+( -8.702×entropy) -412.208 

*sensitivity equal to 91.1% on FLAIR images using the following 

equations: 

SVD = (81.718×mean)+(.546×variance)+(-1.323×Kurtosis)+(-

1.530×skewness)+(.207×energy)+(-10.027×entropy)-760.743 

White matter = (77.951×mean)+(.347×variance)+(-.805×Kurtosis)+(-

1.155×skewness)+(.155×energy)+(-9.642×entropy) -643.448 

Grey matter = (83.355×mean)+(.427×variance)+(-1.081×Kurtosis)+(-

1.414×skewness)+(.198×energy)+(-10.277×entropy)- 755.374 

*sensitivity equal to 97.5% on T1+C images using the following 

equations: 

SVD = (110.315×mean)+(.724×variance)+(.384×Kurtosis)+(-

3.272×skewness)+(-.200×energy)+(-13.895×entropy) -866.256 

White matter = (104.717×mean)+(.679×variance)+(.346×Kurtosis)+(-

2.901×skewness)+(-.146×energy)+(-13.192×entropy) -784.611 

Grey matter = (111.955×mean)+(.783×variance)+(.334×Kurtosis)+(-

3.292×skewness)+(-.152×energy)+(-14.070×entropy) -913.428 

When using the higher order statistics by a*: 

*sensitivity equal to 91.2% on T1 images using the following equations: 
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SVD = (89.227× SRE)+( 19.454×LRE)+(.025× GLN)+( 155.459× RP)+( -

887.325× SRLGE)+( .000× SRHGE)+ (-3605.454× LRLGE) -121.426 

White matter = (111.127× SRE)+( 20.854× LRE)+( .021× GLN)+( 173.747× 

RP)+( -2900.165× SRLGE)+( -.001× SRHGE)+ (-3818.665× LRLGE) -

124.415 

Grey matter = (119.578× SRE)+( 19.624× LRE)+( .017× GLN)+( 162.475× 

RP)+( -3142.358× SRLGE)+( -.001× SRHGE)+ (-3250.814× LRLGE) -

110.234 

*sensitivity equal to 74.4% on T2 images using the following equations: 

SVD = (111.437× SRE)+( 16.370×LRE)+(.018× GLN)+( 98.282× RP)+( -

1081.461× SRLGE)+ ( -.001× SRHGE)+ ( -978.342× LRLGE) -105.154 

White matter = (106.403×SRE)+( 14.791×LRE)+(.011× GLN)+( 79.436× 

RP)+( -586.871× SRLGE)+( -.001× SRHGE)+( -769.059× LRLGE) -75.779 

Grey matter = (117.861× SRE)+( 16.393×LRE)+(.015× GLN)+( 101.124× 

RP)+( -2188.334× SRLGE)+( -.001× SRHGE)+( -994.345× LRLGE) -

101.296 

*sensitivity equal to 94.6% on FLAIR images using the following equations: 

SVD = (246.153× SRE)+(.015× GLN)+( 119.320×RLN)+( 128.474× RP)+( -

377.513× LGRE)+( .000× SRHGE) -241.388 

White matter = (271.839× SRE)+(.009× GLN)+( 123.676×RLN)+( 133.602× 

RP)+(-717.558× LGRE)+( -.001× SRHGE) -216.688 

Grey matter = (261.982× SRE)+(.012× GLN)+( 122.237×RLN)+( 136.503× 

RP)+( -571.058× LGRE)+( -.001× SRHGE) -228.981 

*sensitivity equal to 81.1% on T1+C images using the following equations: 

SVD = (2732.658× SRE)+( -681.046×LRE)+(.018× GLN)+( 3954.977× 

RLN)+( 60.110× RP)+( 68.620× LGRE)+( -6899.477× SRLGE)+( -

1105.283× LRLGE) -3007.824 

White matter = (2742.335× SRE)+( -685.688×LRE)+(.023× GLN)+( 3973.990 

× RLN)+( 72.061× RP)+( -74.975× LGRE)+( -4923.496× SRLGE)+( -

851.074× LRLGE) -3049.070 

Grey matter = (2756.913× SRE)+( -681.830×LRE)+(.017× GLN)+( 3956.939× 

RLN)+( 83.682× RP)+( -168.006× LGRE)+( -4957.869× SRLGE)+( -

766.020× LRLGE) -3025.414 
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5.3. Recommendation: 

After conduction of this thesis the researcher recommended that: 

 Large sample can be used to have better overall accuracy using 

representative data set. 

 More specialized researches should be done e.g: In case of glioma 

the classes can be the differentiation between its grades or the 

parts of the tumor itself and the surrounding white matter. While 

on multiple sclerosis the differentiation could be between the 

lesion plaques and the normal appearance white matter.      

 Other type of diseases and feature can use or comparison between 

diseases have the same radiographic appearance. 

 IDL program should be adopted by the radiology department to 

deal with the challenging cases and to have an objective second 

opinion. 

 This study consider as starting point for continues researches in 

this subject are highly recommended.   
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Appendices 

Appendix (A); the color map 

  

    (a)                                                         (b) 

Appendix (A-1): (a) T1 images, (b) color map; for patient with Glioma 

  

(a)                                                         (b) 

Appendix (A-2): (a) T2 images, (b) color map; for patient with Glioma 
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(a)                                                         (b) 

Appendix (A-3): (a) FLAIR images, (b) color map; for patient with 

Glioma 

  

(a)                                                         (b) 

Appendix (A-4): (a) T1+C images, (b) color map; for patient with 

Glioma 
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(a)                                                         (b) 

Appendix (A-5): (a) T1 images, (b) color map; for patient with MS 

  

(a)                                                         (b) 

Appendix (A-6): (a) T2 images, (b) color map; for patient with MS 
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(a)                                                         (b) 

Appendix (A-7): (a) FLAIR images, (b) color map; for patient with MS 

  

(a)                                                         (b) 

Appendix (A-8): (a) T1+C images, (b) color map; for patient with MS 

 

 



102 
 

     

 (a)                                                         (b) 

Appendix (A-9): (a) T1 images, (b) color map; for patient with SVD 

  

(a)                                                         (b) 

Appendix (A-10): (a) T2 images, (b) color map; for patient with SVD 
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(a)                                                 (b) 

Appendix (A-11): (a) FLAIR images, (b) color map; for patient with 

SVD 

  

(a)                                                         (b) 

Appendix (A-12): (a) T1+C images for patient wit, (b) color map; for 

patient with SVD 
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Appendix (B) ethical approval process 

  

Appendix (B-1): the commitment that signed by the researcher 
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 Appendix (B-2) : Ethical consideration in English language   
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Appendix (B-3) : Ethical consideration in Arabic language 
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Appendix (B-4): the acceptance letter from the ministry of health  
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Appendix (B-5): the acceptance letter to Antaly medical center  
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Appendix (C) 

 

Appendix (C-1): classification features clicks program 

 

Appendix (C-2): classification features program (color map) 
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Appendix (D) 

Appendix (D-1): first order statistical features equations, the histogram 

is a column vector h with each entry indexed by the grey level values 

and whose values  is the number of voxels in the region of interest with 

that grey level value. Thus grey level value i appears within the ROI hi 

times. 

1. Mean  

 

2. Variance  

  

3. Skewness  

 
4. Kurtosis  

 
5. Energy  

 
6. Entropy  

 

 

Appendix (D-2): Higher order statistical features equations, Gray level 

values and gray level runs are denoted as keys of rows and columns, 

respectively, of the matrix, hence, the (i, j)-the entry in the matrix 

specifies the number of combinations whose gray level value is i and 

whose run length is j. By convention, we use P to denote a GLRLM, 

then Pij is the (i, j)-the entry of the GLRLM. In addition, we use Nr  to 

denote the set of different run lengths that actually occur in the ROI, and 

Ng the set of different gray levels exist in the ROI. And finally let N  be 
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the number of total pixels in the ROI, then clearly we shall have the 

following ; 

 

1.       

2.  

3.  

4.  

5.  

6.  

7.  

8.  

9.  

10.  

11.  

12.  
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Abstract:  
Background: Texture analysis studies have been produced more often in oncology on the recent years; As it can 

increase the information that we can get from the radio-diagnostic images; here we took Glioma as it 

considered the most common malignant tumor of the brain; The study main concept is to use the texture analysis 

first order features for characterization of the Glioma which will give quantitative approach for the diagnosis. 

Materials and Methods: In this cross sectional analytical study, the data was collected from Antalya medical 
center; it consists of 300 MR images for Glioma patients (50 T1, 100 T2, 100 FLAIR and 50 T1+C) age above 

18years. After the images were selected the introduced to the it into the computer based software Interactive 

Data language ( IDL) to extract the textural features (first order and higher order statistics) for gray matter, 

white matter and the Glioma; then the extracted features were entered to SPSS for analysis.   

Results: For the first order statistics features the T2 weighted images shows the best differentiation of the 

glioma from normal brain tissues among all imaging sequences with accuracy = 99%, farther more the entropy 

texture feature in particular, demonstrated the best differentiation between the Glioma and the rest of classes; 

and it has the highest entropy in all imaging sequences. On the other hand the when using the higher order 

statistical features the MR imaging sequence that show the greatest discrimination accuracy is T1+C imaging 

sequence equal 93.6%, and the best higher order feature for classification of Glioma CLN textural feature 

which discriminates highly all classes in all imaging sequences; with the Glioma having the highest CLN in all 
imaging sequences. 

Conclusion: Glioma were most different from the rest of brain tissues on T2 weighted images than the rest 

imaging sequences and with classification accuracy of 99% and sensitivity equal 98.2% when using first order 

statistical features and it can be diagnosed quantitatively from normal tissue by using the following equation: 

Glioma = (19.977×mean) + (-.100× variance) + (1.830× Kurtosis)+( .053×energy)+ (-2.363×entropy)  -

217.467. 

And when using the higher order statistical features the best discrimination was on T1+C images with accuracy 

= 94.8% and sensitivity equal 93.6% and it can be diagnosed quantitatively from normal tissue by using the 

following equation: 

Glioma=(94.305× SRE)+(11.117× LRE)+(.009× GLN)+(79.843× RP)+( 157.989× LGRE)+(-77.437× 

SRLGE)-112.462 

Key Word:  Texture Analysis; Glioma; Magnetic Resonance Images; First Order Statistics; Higher 
order statistic. 
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--------------------------------------------------------------------------------------------------------------------------------------- 

 

I. Introduction  
 In neuroradiology the magnetic responses (MR) imaging give the best image resolution, soft-tissue 

differentiation and tumor delineation; also provide deferent kinds of images according to many physical factors 

for example: Т1, Т2 relaxation time and proton density of protons in tissue1,2; then radiologists diagnosis this 

images according to their knowledge and experience; texture analysis increases the information that obtained 

from the images as it evaluate and computed the inter-relationships of the pixels3,4; Texture analysis has many 

types on of them is the statistical based method which is depends on the pixel values, distribution, and spatial 

interrelationship in the defined region of interest; and it consist of  First-order statistical texture analysis which  
is a histogram representation of image intensities in a predefined region of interest and calculates mean, 

variance, energy, skewness, entropy, uniformity, and kurtosis; While higher order statistical texture analysis 
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quantifies the image pattern on the basis of the spatial relationship or co-occurrence of the pixel value 5,6. 

Gliomas appears on magnetic resonance images as heterogeneous mass ,as it represent a mixture of solid tumor 

portions, necrosis and surrounding edema; the tumor portion have low signal intensity on T1-weighted images 
and as  high signal intensity on T2/fluid attenuated inversion recovery (FLAIR) weighted images1,7. The aim of 

the study is to characterize Glioma on brain magnetic resonance images using first order statistics texture 

features in Sudan.  

 

II. Material And Methods  
This analytical study of a case control type where normal T1, T2,T1+C and FLAIR MR Images of the 

brain taken as a reference was carried out at Antalya medical center and it was conducted from December 2018 

to December 2020.  

Study Design: Retrospective cross sectional analytical study 
Study Location: At radiology department on Antalya medical center, Khartoum–Sudan. 

Study Duration: December 2018 to December 2020. 

Sample size: it consists of 300 MR images for Glioma patients (50 T1, 100 T2, 100 FLAIR and 50 T1 with 

contrast weighted images (T1+C)) 

Sample size calculation: convenient sample size  

Subjects & selection method: The population of this study includes MR images for patients having Gliomas. 
The MR images were drawn from the picture archiving and communicating system (PACS) of Antalya medical 

center minutely and stored on computed disc the they was viewed by the Radiant, Ant- digital imaging and 

communication in medicine (DICOM) viewer in computer, to select the section of image that have the lesion on 

it and then this images uploaded it into the computer based software Interactive Data language ( IDL ) where the 

DICOM image converted to tagged image file format (TIFF) and the user then clicks on areas represents the 
white matter and lesion plaque. 

Inclusion criteria: 

1. Glioma patients  

2. Either sex 

3. Aged >18 years. 

 

Exclusion criteria:  
1. Patients having pathology other than Glioma.. 

 

Procedure methodology  

The selected  images uploaded it into the computer based software Interactive Data language ( IDL ) 

where the DICOM image converted to TIFF format and the user then clicks on areas represents the white matter, 
gray matter and Glioma  . In these areas a window of 3×3 pixel was set and the first order statistics were 

extracted. Including the first order statistics features: mean, variance, skewness, kurtosis, energy and entropy. 

And a window of 6×6 pixel was set for higher order statistical features extraction which are Short Run Emphasis 

(SRE), Long Run Emphasis (LRE), Gray-Level Nonuniformity (GLN), Run-Length Nonuniformity (RLN), Run 

Percentage (RP), Low GrayLevel Run Emphasis (LGRE), High Gray-Level Run Emphasis (HGRE), Short Run 

Low Gray-Level Emphasis (SRLGE), Short Run High Gray-Level Emphasis (SRHGE), Long Run Low Gray-

Level Emphasis (LRLGE), Long Run High GrayLevel Emphasis (LRHGE),   These features were extracted for 

the predetermine classes (white matter, gray matter and lesion) for all lesion individually; then entered to SPSS 

for analysis.  

 

Statistical analysis  
Data was entered into SPSS version 20 (SPSS Inc., Chicago, IL) to generate a classification score using 

stepwise linear discriminate analysis; to select the most discriminate feature that can be used in the classification 

of white matter pathologies. Fisher exact tests were performed to test for differences in proportions of 

categorical variables between the groups; then scatter plot using discriminate function was generated as well as 

classification accuracy and linear discriminate function equation to differentiate between classes for unseen 

images.  
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III. Result  

  
 (A)   (B) 

Figure no1: Scatter plot demonstrate the classification of brain tissues using linear discriminate analysis on T1 

images for Glioma patients. First order features (A) and higher order features (B)    

 

    
 (A)   (B) 

Figure no2: Scatter plot demonstrate the classification of brain tissues using linear discriminate analysis on T2 

images for Glioma patients. First order features (A) and higher order features (B)   

  

  
 (A)   (B) 

Figure no3: Scatter plot demonstrate the classification of brain tissues using linear discriminate analysis on 

FLAIR images for Glioma patients. First order features (A) and higher order features (B)    
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 (A)   (B) 

Figure no4: Scatter plot demonstrate the classification of brain tissues using linear discriminate analysis on T1+ 

C images for Glioma patients. First order features (A) and higher order features (B)    

 

Table no1: Cross-tabulation shows the classification results of first order statistics using linear discriminate 

analysis on T1 images for Glioma patients.  

Classes 
Predicted Group Membership 

Total 
Grey Matter White Matter Glioma 

Original 

Grey Matter 99.8 .2 .0 100.0 

White Matter 6.5 93.5 .0 100.0 

Glioma .4 4.0 95.6 100.0 

a. 96.9% of original grouped cases correctly classified. 

 

Table no2: Cross-tabulation shows the classification results of first order statistics using linear discriminate 

analysis on T2 images for Glioma patients. 

Classes 
Predicted Group Membership 

Total 
Grey Matter White Matter Glioma 

Original 

Grey Matter 99.6 .4 .0 100.0 

White Matter .9 99.1 .0 100.0 

Glioma 1.8 .0 98.2 100.0 

a. 99.0% of original grouped cases correctly classified. 

 

Table no3: Cross-tabulation shows the classification results of first order statistics using linear discriminate 

analysis on FLAIR images for Glioma patients. 

Classes 
Predicted Group Membership 

Total 
Grey Matter White Matter Glioma 

Original 

Grey Matter 98.8 .8 .4 100.0 

White Matter 11.5 88.5 .0 100.0 

Glioma 16.9 .0 83.1 100.0 

a. 92.2% of original grouped cases correctly classified. 

 

Table no4: Cross-tabulation shows the classification results of first order statistics using linear discriminate 

analysis on T1+C images for Glioma patients. 

Classes 
Predicted Group Membership 

Total 
Grey Matter White Matter Glioma 

Original 

Grey Matter 98.7 1.3 .0 100.0 

White Matter 7.7 92.3 .0 100.0 

Glioma 14.7 1.5 83.8 100.0 

a. 94.8% of original grouped cases correctly classified. 

 

Table no5: Cross-tabulation shows the classification results of higher order statistics using linear discriminate 

analysis on T1 images for Glioma patients.  

Classes 
Predicted Group Membership 

Total 
Grey Matter White Matter Glioma 

Original 

Grey Matter 83.8 16.2 .0 100.0 

White Matter 11.5 88.5 .0 100.0 

Glioma 2.9 8.7 88.3 100.0 

a. 86.3% of original grouped cases correctly classified. 
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Table no6: Cross-tabulation shows the classification results of higher order statistics using linear discriminate 

analysis on T2 images for Glioma patients.  

Classes 
Predicted Group Membership 

Total 
Grey Matter White Matter Glioma 

Original 

Grey Matter 93.7 6.3 .0 100.0 

White Matter 7.3 92.7 .0 100.0 

Glioma 7.9 .9 91.3 100.0 

a. 92.6% of original grouped cases correctly classified. 

 

Table no7: Cross-tabulation shows the classification results of higher order statistics using linear discriminate 

analysis on FLAIR images for Glioma patients.  

Classes 
Predicted Group Membership 

Total 
Grey Matter White Matter Glioma 

Original 

Grey Matter 93.7 4.8 1.5 100.0 

White Matter 8.9 91.0 .1 100.0 

Glioma 7.9 10.7 81.4 100.0 

a. 89.4% of original grouped cases correctly classified. 

 

Table no8: Cross-tabulation shows the classification results tissues using linear discriminate analysis on T1+C 
images for Glioma patients. 

Classes 
Predicted Group Membership 

Total 
Grey Matter White Matter Glioma 

Original 

Grey Matter 92.4 7.6 .0 100.0 

White Matter 5.6 94.4 .0 100.0 

Glioma 6.2 .1 93.6 100.0 

a. 93.6% of original grouped cases correctly classified. 

 

 
 

Fig 5: Error bar plot show the discriminate power of the Mean textural feature distribution for the selected 

classes on T1(A), T2(B), FLAIR(C) and T1+C(D) images for Glioma patients 
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Fig 6: Error bar plot show the discriminate power of the Variance textural feature distribution for the selected 

classes on T1(A), T2(B), FLAIR(C) and T1+C(D) images for Glioma patients 

 
 

 
Fig 7: Error bar plot show the discriminate power of the Energy textural feature distribution for the selected 

classes on T1(A), T2(B), FLAIR(C) and T1+C(D) images for Glioma patients 
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Fig 8: Error bar plot show the discriminate power of the Entropy textural feature distribution for the selected 

classes on T1(A), T2(B), FLAIR(C) and T1+C(D) images for Glioma patients 

 

 

 

Fig 9: Error bar plot show the discriminate power of the SRE textural feature distribution for the selected classes 
on T1(A), T2(B), FLAIR(C) and T1+C(D) images for Glioma patients 
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Fig 10: Error bar plot show the discriminate power of the LRE textural feature distribution for the selected 

classes on T1(A), T2(B), FLAIR(C) and T1+C(D) images for Glioma patients 

 

Fig 11: Error bar plot show the discriminate power of the GLN textural feature distribution for the selected 

classes on T1(A), T2(B), FLAIR(C) and T1+C(D) images for Glioma patients 
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Fig 12: Error bar plot show the discriminate power of the RLN textural feature distribution for the selected 

classes on T1(A), T2(B), FLAIR(C) and T1+C(D) images for Glioma patients 

 

 
Fig 13: Error bar plot show the discriminate power of the RP textural feature distribution for the selected classes 

on T1(A), T2(B), FLAIR(C) and T1+C(D) images for Glioma patients 

 

IV. Discussion  
In this study there were three classes: gray matter, white matter and Glioma; from each one the First 

order statistical features and the higher order statistical features were extracted using IDL program; To classify 

the Glioma from normal brain tissue using linear discriminate analysis. 
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 The result of classification using the first order and the higher order statistical features showed that 

Glioma is very different from the grey matter and white matter of the brain on T1, T2, T1+C and FLAIR images 

presented on Fig1 to Fig4; with classification accuracy using the first order textural features equal 99.0%, 
96.9%, 94.8% and 92.2% on T2,T1,T1+C and FLAIR images respectively; and the sensitivity of detecting the 

Glioma in that order equal 98.2%, 95.6%, 83.8% and 83.1% shown from table1 to table4. While when using the 

higher order statistical features the highest accuracy was on T1+C then T2, FLAIR and lastly T1 images 

(=93.6%, 92.6%, 89.4% and 86.4% respectively); and sensitivity = 93.6%, 91.3%, 81.4% and 88.3% 

correspondingly. Table 5 to Table 8. Furthermore Tian et al also found that the T1+C was the best single 

sequence for glioma grading in MR texture analysis. 

 

Firstly first order statistical features:  

From fig5 when using the mean texture feature; the Glioma has the highest intensity in all imaging 

sequences; fallowed by grey matter then the white matter on T2, FLAIR and T1+C, while on T1 weighted 

images the white matter has higher intensity than the grey matter (as it contain fat). 
Fig6 regarding the variance; Glioma had the highest variance on T2 weighted images fallowed by the 

grey matter and then the white matter; even though on T1 and T1+C have the highest variance, but there is an 

interference between the grey matter and white matter. While on FLAIR images the white matter has the highest 

variance and there is interference between the grey matter and the Glioma. Moreover Ditmer et al perform a 

study about detecting the accuracy grading the gliomas on MRI texture analysis and found that using the 

statistical parameter standard deviation at fine texture scale is the best to discriminate the gliomas grads with 

high a sensitivity and specificity on T1+C images. Also Skogen et al performed texture analysis using first order 

statistics using contrast enhancing MR images and found standard deviation parameters at a fine texture highly 

significant in distinguishing low grad gliomas from high grad gliomas 

From fig7 When using the energy texture feature (contrast); on T2 images the Glioma has the highest 

energy (as a result to the presence of edema); and after the fluid attenuation on FLAIR images the Glioma has 

energy in between the grey matter highest and the white matter lowest than it. While on T1 images the white 
matter has the highest contrast, then then Glioma then the grey matter, and there is interference Glioma and the 

gray matter; after introducing contrast media to the patient on T1+C images the interference has gone; and the 

energy textural feature has discriminate well between the classes (the white matter has the highest energy 

followed grey matter and finally the Glioma which had the lowest energy). 

Regarding the entropy texture feature, it highly differentiate between the Glioma and the rest of classes; 

it has the highest entropy followed by grey matter then the white matter on T2, FLAIR and T1+C images, but on 

T1 weighted images the white matter has entropy greater than the grey matter from fig8. Comparable Xie et al 

perform a study on dynamic contrast enhanced MRI texture analysis for glioma grading and observed that the 

entropy was able to differentiate glioma grades on T1+C images, same as declared by Soni et al that entropy 

values consistently exhibited promising results for differentiating low-grade gliomas from high-grade gliomas. 

The skewness discriminate the Glioma in T1 and FLAIR images; on the T1 images the Glioma had the 
lowest skewness, while on FLAIR images the white matter had lowest skewness than the Glioma and the grey 

matter which had the highest skewness.    

 

Secondly higher order statistical features:       

 SRE highly distinguished between the Glioma from the other classes in all MR imaging sequences and 

had the highest SRE value, followed by the grey matter then the white matter on the T1 and FLAIR images; but 

on the T1+C and T2 images there interference between the grey matter and white matter presented on fig9. 

From fig10 LRG textural feature also differentiate well the Glioma from the remnant classes in all 

imaging sequences and it had the lowest LRG; moreover there is interference between the grey matter and the 

white matter on T2 and T1+C images.  

CLN discriminates highly between all classes in all imaging sequences; and the Glioma had the highest 

CLN in all imaging sequences followed by the grey matter then the white matter on T2, T1+C and FLAIR 
images, but on T1 images followed by the white matter then the grey matter as presented in fig 11. 

From fig 12 regarding RLN textural feature it discriminates the Glioma from the grey matter and the 

white matter in all imaging sequences, and it had the lowest value from all classes in all imaging sequences; but 

on T2 and T1+C images there interference the grey matter and white matter. 

RP firstly for T1 and T1+C images it differentiates well between the Glioma and the rest of the classes, 

and the Glioma had the highest RP in both imaging sequences. While on FLAIR images the grey matter had the 

highest RP then the Glioma and then the white matter which has the lowest RP. Finally on the T2 images the 

white matter had the highest RP and there interference between the Glioma and the grey matter as presented on 

fig13. 
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Finally the LGRE textural feature it differentiate the Glioma from the normal tissue on T1 an T1+C 

images only, and it had the highest LGRE on both sequences, but the Glioma in the T1 images shows wide 

dispersion . 
 

V. Conclusion  
In conclusion Glioma can be diagnosed quantitatively from normal tissue by: 

Firstly on the first order statistics: 

*sensitivity equal to 98.2% on T2 images using the following equations: 

Glioma = (19.977×mean) + (-.100× variance) + (1.830× Kurtosis)+( .053×energy)+ (-2.363×entropy)  -217.467 

White matter = (13.668×mean)+ (-.053× variance)+ (1.059× Kurtosis)+(.061×energy)+ (-1.635×entropy) -

98.053 

Grey matter = (17.800×mean)+ (-.067× variance) + (1.781× Kurtosis)+( .053×energy) + (-2.123×entropy)  -
163.923 

*sensitivity equal to 95.6% on TI images using the following equations: 

Glioma = (20.230×mean) + (.277× variance) + (-5.500×skewness)+(.206×energy)+ (-2.321×entropy)  -275.570 

White matter = (23.640×mean)+ (-.103× variance)+ (-5.337×skewness)+(.219×energy)+ (-2.851×entropy) -

238.220 

Grey matter = (21.471×mean)+ (-.129× variance) + (-4.689×skewness)+(.192×energy) + (-2.605×entropy)  -

189.823 

*sensitivity equal to 83.8% on T1+C images using the following equations: 

Glioma = (33.284×mean) + (.047× variance) +(.265×energy)+ (-3.955×entropy)  -360.222 

White matter = (31.523×mean)+ (-.013× variance)+ (.259×energy)+ (-3.796×entropy) -288.834 

Grey matter = (35.007×mean)+ (-.010× variance) + (.298×energy) + (-4.202×entropy)  -364.053 
*sensitivity equal to 83.1% on FLAIR images using the following equations: 

Glioma = (43.313×mean) + (.456× variance) + (-1.354×skewness)+(.209×energy) + (-5.206×entropy)  -449.781 

White matter = (39.778×mean)+ (.426× variance)+ (-1.425×skewness)+(.165×energy)+ (-4.830×entropy)  -

351.069 

Grey matter = (43.227×mean)+ (.471× variance) + (-1.642×skewness)+(.201×energy) + (-5.227×entropy)  -

427.022 

Secondly on the higher order statistics: 

*sensitivity equal to 93.6% on T1+C images using the following equations: 

Glioma=(94.305× SRE)+(11.117× LRE)+(.009× GLN)+(79.843× RP)+( 157.989× LGRE)+(-77.437× SRLGE)-112.462 

White matter=(98.729× SRE)+(10.535×  LRE)+(.005× GLN)+(71.341× RP)+(-183.077× LGRE)+(-104.702× SRLGE)-

68.796 

Grey matter=(99.810× SRE)+(10.712×  LRE)+(.007× GLN)+(79.136× RP)+(-87.865× LGRE)+(-143.967×SRLGE)-
84.798 

*sensitivity equal to 91.3% on T2 images using the following equations: 

Glioma = (3018.801× SRE) + (-735.729×  LRE) + (.010× GLN) +(4323.954×RLN) +  (125.574× RP) -

3355.977 

White matter = (3010.589× SRE) + (-734.551×  LRE) + (.006× GLN)+(4315.083×RLN)+ (105.704× RP) -

3307.723 

Grey matter = (3024.061× SRE) + (-735.840×LRE) + (.008× GLN) +(4325.909×RLN) +  (126.052× RP) -

3347.503 

*sensitivity equal to 81.4% on FLAIR images using the following equations: 

Glioma = (204.564× SRE) + (.008× GLN) + (102.857× RLN)+(71.911× RP) -181.097 

White matter = (208.547× SRE) + (.005× GLN) + (103.777× RLN)+(73.037× RP) -172.733 
Grey matter = (210.897× SRE) + (.007× GLN) + (104.680× RLN)+(83.014× RP) -187.687 

*sensitivity equal to 88.3% on T1 images using the following equations: 

Glioma = (91.169× SRE) + (8.573 × LRE) + (.007× GLN) + (83.018× RP) +( -151.252× LGRE) -108.927 

White matter = (102.659× SRE) + (9.108× LRE) + (.004× GLN) + (85.814× RP) +(-273.059× LGRE) -76.855 

Grey matter = (102.199× SRE) + (9.358×LRE) + (.003× GLN) + (74.818× RP) +(-246.055× LGRE) -67.418 
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Abstract:  
Background: The lesions that affect white matter of the brain could be duo to a variety of causes this study 

discusses the inflammatory, demyelinating, tumors and lesions found in normal ageing process. The main 

concept of this study was to use the texture analysis mainly first order features for classification an 

identification of these lesions which will give quantitative approach for the differential diagnosis between them. 

Materials and Methods: In this analytical study, the data consist of 98 patients (18MS, 10 SVD and 70 Glioma) 
age above 18years old. After the images were selected then by using function generated by computer based 

software Interactive Data language ( IDL) in order to extract the predetermined features from gray matter, 

white matter, Glioma, MS and SVD lesions; then the extracted features were statistically analyzed.   

Results: The result reveal that the SVD have been differentiated from the rest of the classes by sensitivity equal 

to 100.0% when using both the first and higher order statistics. In general the best first order textural feature 

for distinguishing between all classes was the energy. Farther more the best higher order features for 

differentiation between the three lesions are SRE, LRE, RLN and LGRE on T1+C MR Images. 

Conclusion: Higher order statistics using linear discriminate analysis on T1+C MR Images for patients with 

Glioma, MS and SVD have higher discrimination accuracy (equal to  96.%) and with a sensitivity equal to 
96.3%, 93.0 and 100.0% respectively than first order statistics. 

 Key Word: White Matter; Magnetic Resonance Imaging; Texture Analysis; Glioma; Multiple 

Sclerosis; Small Vessels Disease. 
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I. Introduction  
 The White matter formed of the axons of neurons and conceder the medullary core of the brain; the 

abnormalities that can affect it are varied; in this study Glioma, Multiple Sclerosis (MS) and Small Vessels 

Disease (SVD) ware chosen as type of tumor, demyelinating and vascular respectively1,2. First Gliomas, 

conceders the most common malignant brain tumors, reside of glial cells that still have the ability to multiply; 

they spread by direct extension and can cross from one cerebral hemisphere to the other through connecting 

white matter tracts3. While Multiple sclerosis (MS) is a chronic autoimmune disease that affects the central 

nervous system (primarily involve the spinal cord, optic nerves, and central white matter of the brain); MS 

attacks the myelinated axons, destroying the myelin and the axons to varying degrees (most common 
demyelinating disorder)3,4. More over cerebral small vessel disease (SVD) is a generic term that refers to 

intracranial vascular disease based on various pathological and neurological processes, as well as a syndrome 

referring to different clinical manifestations and neuroimaging features caused by the structural changes of 

vascular and brain parenchyma5. In neuroradiology the magnetic responses imaging give the best image 

resolution and give deferent kinds of images according to many physical factors for example: Т1, Т2 relaxation 

time and proton density of protons in tissue6; then radiologists diagnosis this images according to their 

knowledge and experience; texture analysis increases the information that obtained from the images as it 

evaluate and computed the inter-relationships of the pixels7, 8. The aim of the study is to characterize white 

matter lesions on brain magnetic resonance images using first order statistics texture features in Sudan.  

 

II. Material And Methods  
This analytical study was carried out on Antalya medical center and it was conducted from December 2018 to 

December 2020.  
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Study Design: analytical study 

Study Location: at radiology department on Antalya medical center, Khartoum –Sudan. 

Study Duration: December 2018 to December 2020. 
Sample size: 98 patients. 

Sample size calculation: convenient sample size  

Subjects & selection method: The population of this study includes MR images for patients having: Small 

Vessels Disease (SVD), Multiple Sclerosis plaque (MS) as demyelinating diseases and Gliomas as a tumor. The 

MR images viewed by the Radiant, Ant . DICOM viewer in the computer, to select the section of image that 

have the lesion on it and then this images introduced it into the computer based software Interactive Data 

language ( IDL ) and the user then clicks on areas represents the grey matter, white matter, Glioma, MS and 

SVD lesion plaque. 

Inclusion criteria: 

1. Glioma, MS and SVD patients  

2. Aged >18 years, 

Exclusion criteria:  
1. Patients having two types of lesions at the same time. 

 

Procedure methodology  

The selected  images uploaded it into the computer based software Interactive Data language ( IDL ) and 

the user then clicks on areas represents the white matter, gray matter, Glioma, MS and SVD lesion plaque. In 

these areas a window of 3×3 pixel was set for the first order statistics features extraction, and a window of 6×6 

pixel was set for the higher order features extraction; for the predetermine classes (white matter, gray matter and 

lesions). The first order statistical features included are the mean, variance, kurtosis, skewness, energy and 

entropy. More over the higher order statistical features are: Short Run Emphasis (SRE), Long Run Emphasis 

(LRE), Gray-Level Non-uniformity (GLN), Run-Length Non-uniformity (RLN), Run Percentage (RP), Low 

Gray Level Run Emphasis (LGRE), High Gray-Level Run Emphasis (HGRE), Short Run Low Gray-Level 
Emphasis (SRLGE), Short Run High Gray-Level Emphasis (SRHGE), Long Run Low Gray-Level Emphasis 

(LRLGE), Long Run High Gray Level Emphasis (LRHGE). Then these features were entered to SPSS for 

analysis.  

 

Statistical analysis  

Data was analyzed using SPSS version 20, using stepwise linear discriminate analysis to generate a 

classification score; to select the most discriminate feature that can be used in the classification of the lesions 

from each other. Fisher exact tests were performed to test for differences in proportions of categorical variables 

between the groups; then scatter plot using discriminate function was generated as well as classification 

accuracy and linear discriminate function equation.  

 

III. Result  

 
 (A) (B) 

Figure no1: Scatter plots demonstrate the classification of white matter lesions using linear discriminate 

analysis on T1+C MR images for patients with Glioma, MS and SVD. First order features (A) and higher order 

features (B)    
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Table no1: Cross-tabulation shows the classification results of first order statistics using linear discriminate 

analysis on T1+C MR Images for patients with Glioma, MS and SVD. 

Classes 
Predicted Group Membership Total 

Grey Matter White Matter Glioma MS SVD 

Original 

Grey Matter 89.7 .0 .0 5.4 4.9 100.0 

White Matter .0 87.3 .0 .0 12.7 100.0 

Glioma .0 12.2 87.3 .0 .5 100.0 

MS 2.0 .3 .2 80.3 17.3 100.0 

SVD .0 .0 .0 .0 100.0 100.0 

a. 87.2% of original grouped cases correctly classified. 

 

Table no2: Cross-tabulation shows the classification results of Higher order statistics using linear discriminate 

analysis on T1+C MR Images for patients with Glioma, MS and SVD. 

Classes 
Predicted Group Membership 

Total 
Grey Matter White Matter Glioma MS SVD 

Original 

Grey Matter 97.5 .0 .1 1.4 1.0 100.0 

White Matter 4.6 93.1 .0 2.3 .0 100.0 

Glioma .0 3.0 96.3 .0 .6 100.0 

MS .7 .0 .0 93.0 6.3 100.0 

SVD .0 .0 .0 .0 100.0 100.0 

a. 96.2% of original grouped cases correctly classified. 

 

 
Fig 2: Error bar plot show the discriminate power of the Mean textural feature distribution for the selected 

classes on T1+C MR Images for patients with Glioma, MS and SVD. 

 

 
Fig 3: Error bar plot show the discriminate power of the Variance textural feature distribution for the selected 

classes on T1+C MR Images for patients with Glioma, MS and SVD. 
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Fig 4: Error bar plot show the discriminate power of the Energy textural feature distribution for the selected 

classes on T1+C MR Images for patients with Glioma, MS and SVD. 

 

 
Fig 5: Error bar plot show the discriminate power of the Entropy textural feature distribution for the selected 

classes on T1+C MR Images for patients with Glioma, MS and SVD. 

 

 
Fig 6: Error bar plot show the discriminate power of the SRE textural feature distribution for the selected classes 

on T1+C MR Images for patients with Glioma, MS and SVD. 
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Fig 7: Error bar plot show the discriminate power of the LRE textural feature distribution for the selected 

classes on T1+C MR Images for patients with Glioma, MS and SVD. 

 

 
Fig 8: Error bar plot show the discriminate power of the GLN textural feature distribution for the selected 

classes on T1+C MR Images for patients with Glioma, MS and SVD. 

 

 
Fig 9: Error bar plot show the discriminate power of the RLN textural feature distribution for the selected 

classes on T1+C MR Images for patients with Glioma, MS and SVD. 
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Fig 10: Error bar plot show the discriminate power of the RP textural feature distribution for the selected classes 

on T1+C MR Images for patients with Glioma, MS and SVD. 

 

 
Fig 11: Error bar plot show the discriminate power of the LGRE textural feature distribution for the selected 

classes on T1+C MR Images for patients with Glioma, MS and SVD. 

 

 
Fig 12: Error bar plot show the discriminate power of the SRHGE textural feature distribution for the selected 

classes on T1+C MR Images for patients with Glioma, MS and SVD. 
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IV. Discussion  
The main aim of this study is to characterize white matter lesions (Glioma, Multiple Sclerosis (MS) and 

Small Vassals Disease (SVD)) on contrast enhanced T1waighted images (T1+C). The result of classification 

using the first order and the higher order statistical features showed that all classes are very different from each 

other as the center of each class (blue square) is away from the other on T1+C images presented on Fig1; with 

classification accuracy using the first order textural features equal 87.2%; and the sensitivity of detecting the 

Glioma, MS and SVD equal 87.3%, 80.3%, 100% respectively, shown from table1. While when using the 

higher order statistical features the accuracy was on T1+C equal 96.2%; and sensitivity equal 96.3%, 93.0% and 

100% for the Glioma, MS and SVD correspondingly, as presented in Table 2 

Fig 2 show the excellent discrimination of the mean textural feature between all classes, with the 

Glioma having the highest mean then white matter then SVD followed by MS and the grey matter have the 

lowest value. And when using the variance for discrimination presented on fig 3, it provide a well differentiation 
between the three lesions (Glioma, SVD and MS) with the Glioma having the highest value with showing wide-

ranging; also there is interference between the white matter and the gray matter. 

Regarding the energy textural feature which shows the best differentiation between all classes among 

all first order features, with the white matter having the highest energy followed by the grey matter then the 

Glioma then SVD, finally the MS having the lowest energy, as presented on fig 4. While fig 5 demonstrate that 

the entropy distinguished well between all classes with the Glioma having the highest value then the white 

matter, SVD, MS and the grey matter have the lowest value. 

Fig6 show the result of the discrimination of the SRE textural feature and reveal that the grey matter 

have the highest value the Glioma, white matter, MS and SVD in that order with the lowest value. Also the LRE 

textural feature well differentiate between all classes, with the SVD have the highest value then the MS then the 

white matter followed by the Glioma and the grey matter have the lowest LRE value as presented in fig 7. 
Farther more GLN feature distinguished well between the Glioma, SVD and MS but there was interference 

between the grey matter and the white matter presented at fig 8. 

From fig 9 the RLN feature differentiates well between all classes; with the SVD have the highest RLN 

value then the MS, white matter, Glioma and the grey matter have the lowest value. While regarding the RP 

feature have discriminate well between all classes, with the Glioma having the highest value while the MS 

having the lowest value, as presented at fig 10. Farther more the LGRE textural feature on fig 11 which show 

good differentiation between all classes, also the Glioma having the highest value while the MS having the 

lowest value. 

Finally the SRHGE textural feature at fig 12 show an excellent discrimination between all classes; with 

the Glioma having the highest value then the white matter followed by grey matter then SVD lastly came MS.  

        

 

V. Conclusion  
In conclusion: the best first order textural feature for distinguishing between the classes is the energy, 

also the Glioma have the highest value in all first order statistics used on this study while the MS having the 

lowest vale in all. On the other hand the best higher order features for differentiation between the three lesions 

are SRE, LRE, RLN and LGRE; more over the best features for discrimination of Glioma from the rest are the 

GLN, LGRE and the SRHGE; with it having the highest value in each one of them. In case of MS the finest 

feature that differentiates it from the other lesions is the RP textural feature, as the MS having the lowest RP 

value among all classes. Finally regarding the SVD the best discrimination features are the LRE and the RLN; 

with SVD have the highest value on both. And they can be diagnosed quantitatively from normal tissue by using 
the following equations:        

Firstly on the first order statistics with a sensitivity of Glioma, MS and SVD equal to 87.3%, 80.3% 

and 100.0% respectively on T1+C images using the following equations: 

Gray matter = (30.456×mean)+( .004× variance)+( .212×energy)+ (-3.580×entropy)  -275.748 

White matter = (35.962×mean)+( .004× variance)+( .235×energy)+ (-4.222×entropy) -383.865 

Glioma = (38.472×mean)+( .017× variance)+( .203×energy)+ (-4.502×entropy)  -444.410 

MS = (33.271×mean)+( .002× variance)+( .144×energy)+ (-3.909×entropy) -320.829 

SVD = (34.054×mean)+( .005× variance)+( .184×energy)+ (-4.000×entropy)  -339.144 

Secondly on the higher order statistics with a sensitivity of Glioma, MS and SVD equal to 96.3%, 93.0 

and 100.0% respectively on T1+C images using the following equations: 

Gray matter = (4206.520× SRE) + (-923.092× LRE) + (.003× GLN) + (5584.293× RLN)+ (291.112× RP) +(-
1216.916× LGRE) +(-.001× SRHGE ) -4470.826 

White matter = (4147.347× SRE) + (-917.456× LRE) + (.004× GLN) + (5544.808× RLN)+ (307.985× RP) +(-

1110.208× LGRE) +(-.001× SRHGE ) -4405.856 
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Glioma = (4174.123× SRE) + (-920.189 × LRE) + (.006× GLN) + (5567.667 × RLN)+ (326.898× RP) +(-

1035.968× LGRE) +(-.001× SRHGE ) -4484.550 

MS = (4128.016× SRE) + (-919.006× LRE) + (.002× GLN) + (5550.632 × RLN)+ (258.220× RP) +(-1090.199× 
LGRE) +(-.001× SRHGE ) -4363.774 

SVD = (4211.840× SRE) + (-925.650× LRE) + (.004× GLN) + (5612.975× RLN)+ (320.730× RP) +(-

1157.571× LGRE) +(-.001× SRHGE ) -4540.311 

 

References  
[1]. Grainger RG, Allison DJ, Baert A. Diagnostic radiology: A text book of medical imaging. sixth Editon. Churchill Livinstone. Bruno 

Graça Luis Curvo Semedo Miguel Seco Belarmino Gonçalves Cristina Marques Filipe Caseiro-Alves. 2015. 

[2]. Barkhof F, Scheltens P. Imaging of white matter lesions. Cerebrovascular Diseases. 2002;13(Suppl. 2):21-30. 

[3].  Eisenberg RL, Johnson NM. Comprehensive Radiographic Pathology-E-Book. Elsevier Health Sciences; 2015 Jul 29. 

[4]. Goldenberg MM. Multiple sclerosis review. Pharmacy and Therapeutics. 2012 Mar;37(3):175. 

[5]. Li Q, Yang Y, Reis C, Tao T, Li W, Li X, Zhang JH. Cerebral small vessel disease. Cell transplantation. 2018 Dec;27(12):1711-22. 

[6]. VN, Pronin IN. Diagnostic neuroradiology. 2009 

[7]. Castellano G, Bonilha L, Li LM, Cendes F. Texture analysis of medical images. Clinical radiology. 2004 Dec 1;59(12):1061-9. 

[8].  Kassner A, Thornhill RE. Texture analysis: a review of neurologic MR imaging applications. American Journal of Neuroradiology. 

2010    May 1;31(5):809-16.  

Sarah Suliman Mohammed, et. al. “Characterization of White Matter Lesions on Brain Magnetic 

Resonance Images Using Texture Analysis .” IOSR Journal of Dental and Medical Sciences 

(IOSR-JDMS), 20(03), 2021, pp. 57-64. 

 


	phd final 3-merged
	paper 1
	paper 2



