Holly Verse

بسم الله الرحمن الرحيم

قال تعالى

وَمَا أَرْسَلْنَا مِنْ قَبْلِكَ إِلَّا رِجَالًا نُوحِي إِلَيْهِمْ فَاسْأَلُوا أَهْلَ الذِّكْرِ إِنْ كُنْتُمْ لَا تَعْلَمُونَ

حدق الله العظيم

سورة النحل الآية 43

Dedication

This research work is dedicated to: The Soul of my father, my mother, Brothers and Sisters My teachers, my friends

Acknowledgement

First and foremost I would like to send my great gratitude and thanks to my supervisors Dr. Rawia Abdelgani, and Prof. Dr. Mubarak Dirar Abdalla in the Physics Department, College of Science, University of Science and Technology who were generous with time and provided much needed advices, encouragements, and direction. I would like to acknowledge the contribution of. Dr.Abdalsaki Suiman For all time that he was spend in support me, And Dr. Ali Suliman. Also I would like to acknowledge all the friends at College of Science, Sudan University of scince and Technology.

Abstract

In this research two types of carbon nanotubes (CNTs) doping by cobalt oxide and carbon nanotubes doping by titanium dioxide were synthesized by chemical vapour deposition (CVD), the main objective of this research was to synthesize and determine structure, morphology and optical properties of carbon nanotubes doping by cobalt oxide (CoO) and titanium dioxide (TiO₂) at different concentrations. Tenth samples of CNTs were prepared, five samples were doped by cobalt oxide at different concentrations (0.5, 0.75, 1.00, 1.25 and 1.50) and other five were doped by titanium dioxide at different concentrations (0.5, 0.75). 1.00, 1.25 and 1.50) in addition to the reference sample. X-ray diffraction (XRD) was used to obtain crystal structure and lattice parameters of samples, Scanning electron microscope (SEM) analysis was used to study surface morphology of the samples. UV-visible used to evaluate the optical parameters. The increasing on concentration on cobalt oxide and titanium dioxide leads to change structure parameter of carbon nanotubes samples (grain size, d-space, density and miller indices), the crystal types for all samples also changed due to concentration and molecular weight for doping element. For the optical properties the maximum value of absorbance is 1.83 (a.u) for CNTs + CoO (1.5) and the minimum value is 1.002 (a.u) at the same wavelength for reference sample while the maximum value of absorbance is 1.82 (a.u) at wavelength (258) nm for CNTs +TiO_{2 (1.5)} and the minimum value is 0.99 (a.u) at the same wavelength for reference sample. CNTs+CoO and CNTs+TiO₂ when to compare with the reference have same value of reflection 0.2 at different wavelengths in red shift because they have the same value of the polarization in different wavelengths. The optical energy band gap decrease with concentration increase according to atomic level convergence and this confirm with XRD results, the value of Eg for reference samples is 4.298 eV, CNTs+Co(1.50) is 3.613 eV and for CNTs+ TiO₂ (1.50) is 3.333 eV. Finally, the average diameter of CNTs+CoO decreased from 29.736 nm for CNTs+CoO (0.5

molar) to 13.486 for CNTs+CoO (1.5 molar) and for CNTs+TiO₂ decreased from 45.032nm for CNTs+TiO₂ (0.5molar) to 21.951 nm for CNTs+TiO₂ (1.5molar) while the diameter of reference sample is 51.21 nm, cobalt oxide reduced the average diameter of carbon nanotubes more than titanium dioxide.

المستخلص

في هذا البحث تم تحضير نو عين من انابيب الكربون النانوية المطعمة باوكسيد الكوبالت و المطعمة بثاني اكسيد و ذلك عن طريق الترسيب بالبخار الكيميائ (CVD). الهدف الرئسي لهذا البحث هو تحضير وتحديد التركيب والتشكيل والخصائص البصرية وحساب اقطار انابيب الكربون النانوية المطعمة باوكسيد الكوبالت و ثاني اكسيد التيتانيوم بتراكيز مختلفة. تم تحضير عشرة عينات من انابيب الكربون النانوية المطعمة باوكسيد الكوبالت وثاني اكسيد التيتانيوم بتراكيز مختلفة. تم تحضير عشرة عينات من انابيب الكربون النانوية المطعمة باوكسيد الكوبالت مطعمة باي كسيد التركيب والتشكيل والخصائص البصرية وحساب اقطار انابيب الكربون النانوية المطعمة باوكسيد الكوبالت وثاني اكسيد الكيز مختلفة. تم تحضير عشرة عينات من انابيب الكربون النانوية ,خمسة عينات مطعمة باكسيد الكوبالت بتراكيز مختلفة (5.0,7.00). وخمسة عينات اخرى مطعمة بثاني الكسيد التيتانيوم (5.0,0.05). وخمسة عينات المرجعية. وقد تم استخدام حيود الاشعة الحسيد التيتانيوم (5.0,0.05). بالاضافية العينة المرجعية. وقد تم استخدام حيود الاشعة الحسيد التيتانيوم (5.0,0.05). وخمسة عينات كما ماستخدام حيود الاشعة الحسيد التيتانيوم (5.0,0.05). وخمسة العينة المرجعية. وقد تم استخدام حيود الاشعة المريد التيتانيوم (5.0,0.05). والاضافية العينات كما استخدم مطياف الاشعة فوق البنفسجية- السينية للحصول على البنية البلورية ومعاملات الشبيكة البلورية للعينات كذلك استخدم المجهر الالكتروني الدراسة التشكيل السطحي واقطار الانابيب النانوية للعينات كما استخدم مطياف الاشعة فوق البنفسجية- المرئية لدراسة الخصائص البصرية للعينات. وجد ان زيادة تركيز اوكسيد الكوبالت وثاني اكسيد التيتانيوم الدراسة الخصائص البصرية للعينات وجد ان زيادة تركيز اوكسيد الكوبالت وثاني اكسيد التيتانيوم الدراسة التشكيل السلحي واقطار الانابيب الكربون النانوية (حميد الكوبالت وثاني المسيوين المرئية دراسة الخصائص البصرية للعينات. وجد ان زيادة تركيز اوكسيد الكوبالت وثاني المستويات ولدنية المرئية ومعاملا ميلر اكما ادى ذلك الى تغير نوع خلية الوحدة الاساسية لجميع العينات وذلك ما الذرية , الذارية , الكثافة ومعاملا ميلر اكما ادى ذلك الى تغير نوع خلية الوحدة الاساسية لجميع العينات وذلك مالدرية النرية وربان المرئي المرئي المرئي ما مير المما مي مامر ميل اكما ادى ذلك الى تغير يوع خلية الوحدة ال

بالنسبة للخصائص البصرية وجد ان اعلى قيمة للامتصاص هي 1.83 وحدة ذرية عند الطول الموجي 220 نانوميترل(1.5, CNTs+CoO بينما اقل قيمة هي200 وحدة ذرية للعينة المرجعية عند نفس الطول الموجي بينما اعلى قيمة للامتصاص هي , 1.82 وحدة ذرية عند الطول الموجي258 نانومتر ل CNTs+TiO_{2(1.5)} وحدة ذرية العينة المرجعية عند نفس الطول الموجي.

تملك عينات الكربون النانوية المشوبة باوكسيد الكوبالت وثاني اوكسيد التيتانيوم عند مقارنتها بالعينة المرجعية نفس القيمة للانعكاسية 0.2 وحدة ذرية عند اطول موجية مختلفة وبانزياح نحو اللاشعة تحت الحمراء.

وجد ان فجوة نطاق الطاقة الضؤئية تتناقص بزيادة التركيز وذلك لان التركيز يعمل على تفارب المستويات الذرية وهذا يتفق مع نتائج حيود الاشعة السينية قيمة فجوة الطاقة للعينه المرجعية هي 4.298 أ.ف و لـ نانوميترلCNTs+CoO_(1.5) وبينما لـ CNTs+TiO_{2(1.5} هي 3.333 أ.ف.

اخيراً ,وجد ان متوسط قطر انابيب الكربون النانوية يتناقص بزيادة التركيز حيث تناقص من 29.673 نانومتر لـ CNTs+CoO(0.5) و تناقص من 45.032 نانومتر لـ CNTs+CoO(0.5) و تناقص من 45.032 نانومتر لـ CNTs+TiO_{2(0.5)} و تناقص من 20.673 نانومتر لـ CNTs+TiO_{2(0.5)} و تناقص من 20.032 نانومتر المرجعية المرجعية المرجعية المرجعية المرجعية المرجعية و بالتالي لوحظ ان قطر الانابيب النانوية تناقص باضافة او كسيد الكوبالت اكثر من ثاني او كسيد التيتانيوم.

Contents

Holly Verse		Ι
Dedication		II
Acknowledgement		III
	Abstract	IV
Arabic Abstract		VI
	Contents	VII
	CHAPTER ONE	I
	INTRODUCTION	
1.1	Preface	1
1.2	Problem Statement	3
1.3	Objective	3
1.3.1	General objective	3
1.3.2	Specific objectives	3
1.4	Methodology	4
1.5	Literature Review	4
1.6	Thesis Layout	
	CHAPTER TWO	L
	THEORETICAL BACKGROUND	
2.1	Introduction	18
2.3	Type of Carbon Nanotubes	18
2.3.1	Single Wall Carbon Nanotubes (SWCNTs)	18
2.3.2	Multi Wall Carbon Nanotubes (MWCNTs)	19
2.4	Synthesis of Carbon Nanotubes	20
2.4.1	Arc discharge method	20
2.4.2	Laser ablation technique	21
2.4.3	Chemical Vapour Deposition (CVD)	22

2.4.3.2	Plasma enhanced CVD	23
2.4.3.3	Photo-induced CVD	24
2.4.4	Flame pyrolysis	26
2.4.5	Bottom-up approach	27
2.4.6	Ball milling	28
2.5	Properties of Carbon Nanotubes	29
2.5.1	Electrical property	29
2.5.2	Mechanical Properties	30
2.5.3	Thermal Properties	30
2.5.4	Optical Properties	31
2.5.4.1	Absorption	31
2.5.4.2	Absorption coefficients	32
2.5.4.3	Extinction coefficient	32
2.5.4.4	Transmission	33
2.5.4.5	Reflection	33
2.5.4.6	Refractive index	34
2.5.4.7	Optical Energy Band Gap	34
2.5.4.8	Optical conductivity	34
2.5.4.9	Electrical conductivity	35
2.6	Application of carbon nanotubes	35
2.6.1	Medical Application of CNTs	35
2.6.2	Energy Storage	36
2.6.3	Electronic devices	36
2.6.4	Sensors	37
2.7	Crystal structure	37
2.8	Miller Indices	38
2.9	Bravais lattices	38
2.10	Types of Bravais lattices	38

2.10.1	Cubic system	38
2.10.2	Tetragonal system	38
2.10.3	Orthorhombic system	39
2.10.4	Hexagonal system	39
2.10.5	Rhombohedral system	39
2.10.6	Monoclinic system	40
2.10.7	Triclinic system	40
2.11	Spectroscopy	41
2.12	Interaction of light with matter	41
2.12.1	Absorption	41
2.12.2	Transmission	41
2.12.3	Reflection	41
2.12.4	Emission	42
2.13	Cobalt Oxide (CoO)	42
2.14	Titanium dioxide	42
	CHAPTER THREE	
	EXPERIMENTAL	
3.1	Introduction	/3
3.2		45
	Materials	43
3.3	Materials Experimental Tools	43
3.3 3.4	Materials Experimental Tools Characterizations Methods	43 43 43
3.3 3.4 3.4.1	MaterialsExperimental ToolsCharacterizations MethodsFourier Transform Infrared Spectrometer	43 43 43 43 43
3.3 3.4 3.4.1 3.4.2	MaterialsExperimental ToolsCharacterizations MethodsFourier Transform Infrared SpectrometerUV-Visible Spectrometer	43 43 43 43 43 45
3.3 3.4 3.4.1 3.4.2 3.4.3	MaterialsExperimental ToolsCharacterizations MethodsFourier Transform Infrared SpectrometerUV-Visible SpectrometerScanning Electron Microscope (SEM)	43 43 43 43 43 45 46
3.3 3.4 3.4.1 3.4.2 3.4.3 3.4.4	MaterialsExperimental ToolsCharacterizations MethodsFourier Transform Infrared SpectrometerUV-Visible SpectrometerScanning Electron Microscope (SEM)X-ray diffraction (XRD)	43 43 43 43 43 45 46 47
3.3 3.4 3.4.1 3.4.2 3.4.3 3.4.3 3.4.4	MaterialsExperimental ToolsCharacterizations MethodsFourier Transform Infrared SpectrometerUV-Visible SpectrometerScanning Electron Microscope (SEM)X-ray diffraction (XRD)ImageJ software	43 43 43 43 43 45 46 47 49
3.3 3.4 3.4.1 3.4.2 3.4.3 3.4.3 3.4.4 3.5 3.6	MaterialsExperimental ToolsCharacterizations MethodsFourier Transform Infrared SpectrometerUV-Visible SpectrometerScanning Electron Microscope (SEM)X-ray diffraction (XRD)ImageJ softwareOrigin Software	43 43 43 43 43 43 43 43 43 43 45 46 47 49 50

CHAPTER FOUR		
RESULTS, DISCUSSIONS and CONCLUSION		
4.1	Introduction	52
4.2	XRD Results	52
4.3	SEM Results	62
4.4	FTIR results	66
4.5	Optical Results of CNTs doping by CoO and TiO_2 at different concentration (0.5, 1.00 and 1.5) molar	69
4.6	Discussion	84
4.7	Conclusions	86
4.8	Recommendation	86
References		88

List of Tables

4.1	XRD parameters of reference sample	59
4.2	XRD parameters of CNTs+CoO samples	59
4.3	XRD parameters of CNTs+TiO2 samples	60
4.4	Table of Characteristic IR of CNTs + CoO (0.00, 0.5, 0.75,	67
	1.00, 1.25 and 1.50) Molar	
4.5	Table of Characteristic IR of CNTs + TiO2 (0.00, 0.5, 0.75,	68
	1.00,1.25 and 1.50) Molar	

2.1	Single wall carbon nanotubes (SWCNTs)	19
2.2	Multi wall carbon nanotubes (MWCNTs)	19
2.3	Schematic diagram show the Arc discharge method	21
2.4	Schematic diagram of laser ablation apparatus	22
2.5	Schematic diagram of the thermally activated chemical vapor deposition	23
2.6	the schematic diagram of very high frequency-PECVD	24
2.7	Schematic of a PICVD setup	26
2.8	Flame pyrolysis system	27
2.9	Bottom-up approach	28
2.10	Ball milling system	28
2.11	Cubic system	38
2.12	Tetragonal system	39
2.13	Orthorhombic system	39
2.14	Hexagonal system	39
2.15	Rhombohedral system	40
2.16	Monoclinic system	40
2.17	Triclinic system	40
3.1	FTIR spectrometer instrument	41
3.2	schematic diagram of FTIR spectrometer	41
3.3	UV-VIS instrument	45
3.4	Schematic diagram of UV-VIS spectrophotometer	45
3.5	A scanning electron microscope instrument	46
3.6	Schematic diagram of scanning electron microscope	46
3.7	XRD instrument	48
3.8	Schematic diagram of X-ray diffraction (XRD)	48
3.9	Imagej software	50
4.1	XRD spectrum of reference sample	52
4.2	XRD spectrum of CNTs+CoO (0.5)	53
4.3	XRD spectrum of CNTs+CoO(0.75)	53
4.4	XRD spectrum of CNTs+CoO(1.00)	54
4.5	XRD spectrum of CNTs+CoO(1.25)	54
4.6	XRD spectrum of CNTs+CoO(1.50)	55
4.7	XRD spectrum of $CNTs+TiO_2(0.5)$	55
4.8	XRD spectrum of CNTs+TiO ₂ (0.75)	56
4.9	XRD spectrum of $CNTs+TiO_2(1.00)$	56
4.10	XRD spectrum of CNTs+TiO ₂ (1.25)	57
4.11	XRD spectrum of CNTs+TiO ₂ (1.00)	57
4.12	XRD spectrum of reference sample	58
4.13	XRD spectrum of CNTs+CoO	59

List of Figures

4.14	XRD spectrum of CNTs+TiO ₂	60
4.15	SEM for reference CNTs	62
4.16	SEM for CNTs+CoO samples	62
4.17	SEM for CNTs+ TiO ₂ samples	63
4.18	The variation of CNTs average diameter with Cobalt oxide (CoO) concentration	63
4.19	The variation of CNTs average diameter titanium dioxide (TiO_2) with concentration	64
4.20	surface roughness of reference sample	65
4.21	surface roughness of CNTs +CoO samples	66
4.22	surface roughness of CNTs+ TiO ₂ samples	66
4.23	IR spectrum of CNTs +CoO samples	67
4.24	IR spectrum of CNTs+ TiO ₂ samples	68
4.25	The relation between absorbance and wavelengths of CNTs $+CoO (0.5, 0.75, 1.00, 1.25 \text{ and } 1.5) \text{ molar}$	70
4.26	The relation between absorbance and wavelengths of $CNTs+TiO_2$ (0.5, 0.75, 1.00, 1.25 and 1.5) molar	70
4.27	The relation between absorption coefficient and wavelengths of $CNTs + CoO (0.5, 0.75, 1.00, 1.25 and 1.5)$ molar	71
4.28	The relation between absorption coefficient and wavelengths of $CNTs + TiO_2$ (0.5, 0.75, 1.00, 1.25 and 1.5) molar	71
4.29	The relation between extinction coefficient and wavelengths of $CNTs + CoO (0.5, 0.75, 1.00, 1.25 and 1.5)$ molar	72
4.30	The relation between extinction coefficient and wavelengths of CNTs $+TiO_2(0.5, 0.75, 1.00, 1.25 \text{ and } 1.5)$ molar	72
4.31	The relation between transmission and wavelengths of CNTs +CoO (0.5, 0.75, 1.00, 1.25 and 1.5) molar	73
4.32	The relation between transmission and wavelengths of $CNTs + TiO_2$ (0.5, 0.75, 1.00, 1.25 and 1.5) molar	73
4.33	The relation between reflection and wavelengths of CNTs + CoO (0.5, 0.75, 1.00, 1.25 and 1.5) molar	74
4.34	The relation between reflection and wavelengths of CNTs $+$ TiO ₂ (0.5, 0.75, 1.00, 1.25 and 1.5) molar	74
4.35	The relation between refractive index and wavelengths of $CNTs + CoO (0.5, 0.75, 1.00, 1.25 and 1.5) molar$	75
4.36	The relation between refractive index and wavelengths of CNTs + TiO_2 (0.5, 0.75, 1.00, 1.25 and 1.5) molar	75

4.37	The optical energy band gap of $CNTs + CoO (0.5, 0.75, 1.00, 1.25 and 1.5) molar$	76
4.38	The optical energy band gap of $CNTs + TiO_2$ (0.5, 0.75, 1.00, 1.25 and 1.5) molar	76
4.39	The relation between real dielectric constant and wavelengths of $CNTs + CoO (0.5, 0.75, 1.00, 1.25 and 1.5)$ molar	77
4.40	The relation between real dielectric constant and wavelengths of $CNTs + TiO_2$ (0.5, 0.75, 1.00, 1.25 and 1.5) molar	77
4.41	The relation imaginary dielectric constant and wavelengths of $CNTs + CoO (0.5, 0.75, 1.00, 1.25 and 1.5)$	78
4.42	The relation imaginary dielectric constant and wavelengths of $CNTs + TiO_2$ (0.5, 0.75, 1.00, 1.25 and 1.5)	78
4.43	The optical conductivity and wavelengths of $CNTs + CoO$ at (0.5, 0.75, 1.00, 1.25 and 1.5	79
4.44	The optical conductivity and wavelengths of $CNTs + TiO_2$ (0.5, 0.75, 1.00, 1.25 and 1.5)	79
4.45	The electrical conductivity and wavelengths of CNTs + CoO (0.5, 0.75, 1.00, 1.25 and 1.5	80
4.46	The electrical conductivity and wavelengths of CNTs + TiO_2 (0.5, 0.75, 1.00, 1.25 and 1.5	80