

Sudan University of Science and Technology

College of Engineering

School of Electrical and Nuclear Engineering

Study and Simulate of Generation Protection at Garri 4 Thermal Station

دراسة ومحاكاة حماية التوليد لمحطة قرى 4 الحرارية

A project submitted In partial fulfillment for the requirements of the degree of B.Sc. (honors) Electrical Engineering

Prepared by:

- * Abdulhug Ahmed Abdelkreem Mohamed
- * Mohammed Alkhalifa Ahmed Abdalrahman
- * Al Muez Gamal Husain Mohamed
- * Ahmed Abdullah Alsideeq Mossa

Supervised By:

Ust . Abdelsalam Abdelaziz Abugrain

Nov 2020

بسم الله الرحمن الرحيم

قال تعالى:

ا ث اح کی م

صدق الله العظيم

سورة البقرة)23(

DEDICATION

To our great parents, who never stop giving us themselves in countless ways.

To our dearest friends, who leads us through the valley of darkness with light of hope and give us encourage and support.

To our beloved brothers and sisters who stands by us when things look bleak.

To all our family, the symbol of love and giving .

To all the people in our life who touch our heart, we dedicate this research.

ACKNOWLEDGMENTS

All praise due to Allah the Almighty for granting my strength and health to achieve this accomplishment.

We own our deepest gratitude to our advisor **Ust**. Abdul-Salam Abdul-Aziz First for accepting as a student, then for the support and help he has given our throughout the project.

Finally for what we appreciate the most, that he has given us the feeling that his "door is always open" when we had any kind of problem.

We wish to thank our committee members who were more than generous with their expertise and precious time.

We are grateful and thankful to engineers in **GARRI 4 POWER STATION** for their scientific support and their help.

ABSTRACT

Generators are the most superior unit in power system, it consists of several parts such as stator, rotor and DC excitation system, each one of these parts must be protected from abnormal condition and faults. Several of protection functions and principles must be discussed and understand for strong generator protection schema. Generator protection schemes for GARRI 4 were carried out by collecting by collecting generator and protection data from the station, for analyzing these schemes and their calculations then simulating those using ETAP program and protection relays. Different scenarios of abnormal conditions and faults were created by using ETAP simulation to study and analyses. Same thing is said to protection relay, different current and voltage values were injected to simulate the abnormal conditions in order to display the relay response time.GARRI4 generator protection system were studied and emulate.

المسالمستلخص

يَعْبَر المولد من األجزاء األساسية لنظام الوَدرة الكمربائية. و يَحتوي من عدة أجزاء مثل : العضو الثلبت و العضو الدوار و باألضافة الى إثاره للنيار المستمر.أي جزء من مذه األجزاء معرض لظروف غير طبيعية لذلك يجب حمايته من مذه الظروف واأل عطال لما لما من نأنير سلبي على المولد في العادة تسم حماية المولدات من األ عطال و الظروف الغير طبيعية المسببة لما بواسطة أجزاء من داخل النظام أجزاء اخرى من خارجه نم نحصيل المعلومات المطلوبة للحماية من

محطة قري الحرارية و من ئم نم اجراء بعض الحسابيات على مخططات الحماية و الحصول على زنتانيج شمت هذه الدراسة باستخدام برنامج (ETAP) حيث نم إدخال هذه الزنتانيج في البرنامج و بدوره قام البرنامج بعملية تحليل المحالفاة في البرنامج نم انشاء عدة أحداث غير طبيعية الخيار بيمانات نظام الحماية فتم الحصول على زنتانيج مخلفة لفاستيجابة من نظام الحماية لهذه الظروف

الغيرطبېعية تمت در اسة و محاكماة بيمانات حماية المولد في محطة قري الحرارية.

TABLE OF CONTENTS

Section	Contents	page
	. 11	number
1		l
2	DEDICATION	II
3	ACKNOWLEDGMENT	III
4	ABSTRACT	IV
5	المستخلص	V
6	TABLE OF CONTENTS	VI
7	LIST OF FIGURE	XI
8	LIST OF TABLE	XIV
9	LIST OF ABBRVIATIONS	XIV
CHAPTER ONE INTRODUCTION		
1.1	Background	1
1.2	problem statement	2
1.3	Objectives	2
1.4	Methodology	2
1.5	Thesis lay out	3
	CHAP ER TOW STEAM POWER PLANT EOUIPMENT	
2.1	Introduction	4
2.2	classifications of power plant	4
2.3	Equipment	6
2.3.1	Steam generating equipment	7
2.3.1.1	Boiler	7
2.3.1.2	Boiler furnace	9
2.3.1.3	Superheater	9
2.3.1.4	Economiser	10
2.3.1.5	Air Pre-heater	11
2.3.2	Condenser	12

2.3.3	Steam turbine	12
2.3.4	prime mover	13
2.3.5	Water treatment plant	13
2.3.6	Electrical eguipment	14
2.3.7	Feed water	15
2.3.8	Cooling arrangement	15
2.4	Choice Of Site For Steam Power Stations	15
	CHAPTER THREE	
PRO	DTICTION OF SYNCHRONIOUS GENERATE	CR
3.1	Introduction	17
3.2	Machine Current classification	17
3.3	power system protective equipment	19
3.4	synchronous generator faults	28
3.4.1	External faults	28
3.4.2	thermal overloading	28
3.4.3	unbalanced loading	29
3.4.4	stator winding faults	29
3.4.5	field winding fault	31
3.4.6	Overvoltage	32
3.4.7	other abnormal conditions	33
3.5	generator protection	38
3.5.1	percentage differential protection of alternator stator windings	38
3.5.2	restricted earth-fault protection by differential system	41
3.5.3	overcurrent and earth-fault protection for generator back-up	44

3.5.4	protection against turn-to-turn fault on stator winding	48
3.5.5	rotor earth fault protection	50
3.5.6	rotor temperature alarm	50
3.5.7	negative sequence protection of generators	51
3.5.8	stator heating protection	55
3.5.9	loss of field protection	55
3.5.10	Reverse power protection	56
3.5.11	Over speed protection	58
3.5.12	Field suppression	59
CHAPTER FOUR		
GARRI4 ST	TATION OVERVIEW AND ETAP SIMULATI	ON
4.1	Introduction	61
4.2	Garri -4 power plant generator	62
4.2.1	Specifications of QF-60-2 type turbo generator for Garri -4 power plant	62

4.3	Generator protection scheme	63
4.3.1	Over voltage	63
4.3.2	Under voltage protection	64
4.3.3	Reverse power protection	67
4.3.4	Unbalance loading	68
4.3.5	Under / over frequency and over fluxing protection	70
4.3.6	Loss of excitation protection	71
4.3.7	Generator differential protection	72
4.3.8	Stator earth fault protection	72
4.3.9	Over current protection	73
4.5	Simulation and result	74
4.5.1	The single line diagram simulation	75
4.5.2	ETAP simulation result	75
4.5.2.1	Over voltage protection	76
4.5.2.2	Under voltage protection	76
4. 5.2.3	Loss of field	78
4. 5.2.4	Reverse power protection	78
4. 5.2.5	Unbalanced loading protection	79
4. 5.2.6	Over frequency protection	80
4. 5.2.7	Under frequency protection	81
4. 5.2.8	Over fluxing protection	82
4. 5.2.9	Differential protection	84

4. 5.2.10	Stator earth fault protection	86
4. 5.2.11	Over current protection	87
4. 5.3	Summary	88
	CHAPTER FIVE CONCLUSION	
5.1	Overview	89
5.2	Recommendation	89
	References	91

List of figure

Figure number	Title of figure	page number
2.1	schematic arrangement of Steam Power Station	8
3.1	show relay device	21
3.2	shows relay application	22
3.3	serial communication	25
3.4	LGPG 111 for generator protection	27
3.5	generator protection type	27
3.6	Percentage differential relaying a star connected generator, For phase-phase faults	39
3.7	Percentage differential relay of a delta connected generator, for phase-phase fault	39
3.8	Protection of a direct connected generator	40
3.9	Percentage differential with protection Restricted earth fault relay	42
3.10	Percentage of unprotected winding against phase to ground fault	43
3.11	Back-up protection by overcurrent protection	45
3.12	The generator back-up protection should be the last to operate for external faults	45
3.13	sensitive earth-fault protection of generator transformer unit	46
3.14	100% Stator earth fault protection by signals through neutral	48
3.15	Generator protection against inter-turn faults by residual voltage direction	49

3.16	Schematic diagram of rotor e.f. protection	50
3.17	principle of d.c/a.c injection Earth fault protection	51
3.18	Rotor temperature protection by measuring V/I	51
3.19 (a)	Protection against unbalanced load using negative sequence filter	52
3.19 (b)	Current time characteristics of a static	53
	negative phase sequence relay	
3.20	Circuit showing principle of negative phase-sequence circuit	54
3.21	Loss of field protection	56
3.22	Operating characteristic of reverse power protection	57
3.23	Principle of field suppression (The energy in main field is discharged	60
4.1	Generator-Transformer Unit	62
4.2	Abnormal operation condition	63
4.3	principle of circulating current differential protection	72
4.4	Method of Discrimination by current	74
4.5.1	Single line Diagram of Simulation Circuit	75
4.5.2	Over Voltage action List	76
4.5.3	Over Voltage (Voltage vs. Time) Graph at Bus1	76
4.5.4	Under Voltage Action List	77
4.5.5	Under Voltage (Voltage vs. Time) Graph at Bus1	77
4.5.6	Loss of Field (Generator Reactive Power Vs. Time) Graph	78

4.5.7	Reverse Power action List	78
4.5.8	Reverse Power (Generator Active Power vs. Time) Graph	79
4.5.9	Protection Operation of Un Balanced Loading Fault	79
4.5.10	Negative Sequence Event Recorder	80
4.5.11	Over Frequency Action List	80
4.5.12	Over Voltage (Voltage vs. Time) Graph at Bus1	81
4.5.13	Under Frequency Action list	81
4.5.14	Under Frequency (Frequency vs. Time) Graph at Bus1	82
4.5.15	Over fluxing Action List	82
4.5.16	Over Fluxing (V/F vs. Time) Graph at Bus1	83
4.5.17	Internal fault	84
4.5.18	Differential Protection Event Recorder	84
4.5.19	External Fault	85
4.5.20	Protection Operation of stator Earth Fault	86
4.5.21	Stator Earth Fault Event Recorder	86
4.5.22	Protection operation of Over Current	87
4.5.23	Overcurrent Event Record	88

LIST OF TABLES

2.3	Some abnormal conditions and protection system	37
4.1	Generator reverse power problems	66

LIST OF ABBREVIATION

DC	Direct Current
СТ	Current Transformer
СВ	Circuit Breaker
VT	Voltage Transformer
SCADA	Supervisory control and data acquisition
DFT	Discrete Fourier Transform
DSP	Digital Signal Processor
IDMT	Inverse Definite Minimum Time
SI	Standard Inverse
VI	Very Inverse
EI	Extremely Inverse
O/C	Over Current
E/F	Earth Fault
STG	Steam Turbine Generator
GTG	Gas Turbine Generator
Xd	Synchronous Reactance
X'd	Transient Reactance
Xe	Leakage Reactance
AVR	Automatic Voltage Regulation
ETAP	Electrical Transient Analysis Program