قال تعالى: {وَسَخَرَّ لَكُمُ الشَّمْسَ وَالْقَمَرَ دَائِبَيْنِ وَسَخَّرَ لَكُمُ اللَّيْلَ وَالنَّهَارَ } سورة ابراهيم 33 إِن يَشَأُ يُسْكِنِ الرِّيحَ فَيَظْلَلْنَ رَوَاكِدَ عَلَىٰ ظَهْرِهِ إِنَّ فِي ذَلِكَ لَآيَاتٍ

الشوري 33

DEDICATION

To Those Who Gave Us Their Time, Love and Care Our Parents, Our teachers and every one inside Sudan University

To Our New Family 31 Batch

ACKNOWLEDGEMENT

Unlimited prayers for Allah as the number of his creatures might of himself, weight of his throne and the extension of his words. The work on this project has been an inspiring, over exciting, sometimes challenging, but always interesting experience. It has been made possible by many other people who have supported us. We wish to express our profound thanks; gratitude and appreciation to our advisor Dr. Salah Gasim for his guidance during our studies valuable technical editorial advice, suggestion, discussion and guidance were a real support to complete this project.

Also special thanks for every teacher who support us and helped us accomplish this project. We really appreciate their support that is the following project. We really appreciate theirs support works we would like express our deepest appreciation along with our gratitude to our parents, for their unlimited support and their hard work until we complete our marching education and entire this project.

ABSTRACT

Renewable energy is that clean, unpolluted and environmental friendly type of energy which is obtained from natural resources that exist every day and always well as earth exists, such as sun light, wind, hydro, tides and geothermal energy. The term electrification refers to the operation of supplying electricity by one of electricity generation means. Generally this project aims to support national grid with pure renewable amount of electricity. Many electricity generation stations using diesel generators, these generators emit CO2 which is considered as a major damage to the environment. Also these generators have a high operating cost due to the cost of fuel. The project focuses on electrification using PV system technologies. Photovoltaic system is a system that converts direct sunlight into electricity using plates manufactured from silicon, metal and glass called photovoltaic modules. It had been a clear vision that when PV system is connected with grids in different positions grids have different performance and it's also clear that PV system should be connected to the lowest regulation position in order to improve voltage and power drop.

المستخلص

الطاقة المتجددة تعتبر طاقة نظيفة و غير ملوثة وصديقة للبيئة وهي نحصل عليها من مصادر طبيعية يومية غير ناضبة وتدوم بدوام الارض موارد مثل ضوء الشمس و الرياح والطاقة المائية و الطاقة الحرارية من باطن الارض.

عموما هذا المشروع يهدف لدعم الشبكة القومية بالكهرباء من مصادر مستدامة . جل محطات انتاج الطاقة في مدن السودان تستخدم مشقات الوقود الاحفوري الديزل بوجه التحديد الذي يتسبب بالكثير من انبعاثات الكربون التي تخرب البيئة كما ان لها تكلفة تشغيل عالية مقارنة بانظمة التوليد الشمسية.

ينصب اهتمام المشروع بشكل اساسي على استخدام تكنلوجيا التوليد الشمسي بالستخدام مصنعة خصيصا لتحويل ضوء الشمس الى طاقة كهربائية مباشرة.

كان من الواضح خلال دراسة المشكلة انه عند تركيب النظام في مواقع مختلفة من الشبكة فإن أداء الشبكة يختلف كثيرا ولقد وجد انه من الأفضل تركيب النظام مع الموقع الاقل نظامية للجهد ، ففي حين تركيبه اقل نظامية تتحسن نظامية الشبكة الكلية وكذلك الفقد في القدرة.

TABLE OF CONTENTS

Title	Page No
الآية	i
DEDICATION	ii
ACKNOWLEDGEMENT	iii
ABSTRACT	iv
مستخلص	v
TABLE OF CONTENTS	vi
LIST OF FIGURES	Xi
LIST OF TABLES	xiii
LIST OF ABBREVIATIONS	xiv

CHAPTER ONE INTRODUCTION

1.1. Overview	1
1.2 Problem Statement	1
	1
1.3 Aims and Objectives	2
	2
1.4 Methodology	2
1.4 Wedlodology	2
1.5 Project Outline	2
	Δ.
	1

CHAPTER TWO LITERATURE REVIEW

3
3
3
3
4
5
5
6
6
7
8

2.6.3 Cables	8
2.6.4 Maximum Power Point Tracking	8
2.7 Grid Tied Solar Inverter	8
2.7.1 Impact of Connecting PV System to The Grid	9
2.7.1.1 We Will Discuss Three Impacts	9
2.7.1.1.1A. Power Quality Problems/Harmonics	9
2.7.1.1.2 Increased Reactive Power	9
2.7.1.1.3 Islanding Detection	9
2.8 Grounding Systems	9

CHAPTER THREE METHODOLOGY

3.1 Introduction	11
3.2 On grid PV System	11
3.3 System Sizing	12
3.4 Quotation document	12
3.5 Inverter Selection	13
3.5.1 Why multiple inverters	13
3.6 Array sizing	14
3.6.1 Matching the Array to the inverter voltage specification	14
3.6.1.1 Minimum number of modules string	14
3.6.1.2 Maximum number of modules string	16
3.6.2 Matching the Array to Inverter current Rating:	17
3.6.3 Matching the Array to the inverter power rating	18
3.7 Cable Sizing	18
3.7.1 PV Array Cable	19
3.7.2 Ac Cable	19
3.8 Energy Yield	19

3.9 Ac Energy output	20
3.9.1 Solar Irradiation data	21
3.9.2 Effect of orientation and tilt	21
3.9.3 Effect of shadows	21
3.9.4 De-rating module performance	22
3.9.4.1 Manufacturers Output Tolerance	22
3.9.4.2 De-rating due to dirt	22
3.9.4.3 De-rating due temperature	22
3.9.5 Dc energy output from array	23
3.9.6 Dc system losses	23
3.9.7 Inverter efficiency	24
3.9.8 Ac system losses	24
3.10 Specific energy yield	25
3.11 Performance Ratio (PR)	25
3.12 Modified IEEE 9 BUS RADIAL testing grid	26
3.13 PV system Installation	26
3.13.1 Getting Started	27
3.13.1.1 Get an experienced and licensed contractor	27
3.13.2 Choosing between bids	27
3.13.3 Solar PV system Warranty	28
3.13.4 Cost of solar PV system	28
3.13.5 Solar PV system on building	29
3.13.6 Avoid shading in PV modules	29
3.13.7 Structural Safety	29
3.13.8 Mechanical Installation	29
3.13.9 Electrical Installation License	30

3.13.10 Connection to the Power Grid	30
3.13.11 Get Connected to The Power Grid	30
3.13.12 Sale of PV Electricity	30
3.14 Flow Chart	32

CHAPTER FOUR RESULTS AND DISSCUSION

4.1 Introduction	33
4.2 On Grid PV System Design	33
4.2.1 Inverter Sizing:	33
4.2.2 PV Array Sizing	33
4.2.3 Cable Sizing	35
4.2.4 Energy Yield	35
4.2.5 Specific Energy Yield:	36
4.2.6 Performance Ratio	36
4.3.1 I-V Curve	36
4.3.2 P-V Curve	37
4.4 Load Calculations	37
4.5 Result discussion	42

CHAPTER FIVE CONCLUSION AND RECOMMENDATION

5.1 Conclusion	43
5.2 Recommendation	43
5.2.1 Recommended Preventive Maintenance Works	43
References	45

APPENDIX A	46
APPENDIX B	47
B.1 PV Module Specifications	47
Table B.1.Original and de-rated specifications for the JKM275PPe	48
B.2.Inverter Specification	49
Table 5.1: Data load and impedance of modified grid	49
TableB.2.Technical specifications data for inverter:	50

LIST OF FIGURES

Figure	Title	Page
2.1	a complex PV system including batteries, power conditioners, and both DC and AC loads	5
2.2	Schematic representation of a grid-connected PV system.	5
2.3	Schematic representation of a hybrid PV system that has a	5
	diesel generator as alternative electricity source.	
2.4	Illustrating (a) a solar cell, (b) a PV module, (c) a solar panel, and (d) a PV array.	6
2.5	Illustrating (a) a series connection of three solar cells and (c)	7
	Illustrating a parallel connection of three solar cells. (d) I-V	
	curves of solar cells connected in series and parallel.	
2.6	Illustrating (a) string of six solar cells of which one is partially shaded, which (b) has dramatic effects on the I-V curve of this string. (c) Bypass diodes can solve the problem of partial shading.	7
2.7	The components of a typical c-Si PV module.	8
3.1	Flow charge	32
4.1	I-V Curve	36
4.2	P-V Curve	37
4.3	L.F analysis before connecting PV system	37
4.4	L.F analysis after connecting PV system at Bus with highest regulation	39
4.5	L.F analysis after connecting PV system at Bus with lowest regulation	40
4.6	The plot regulations	41

4.7	The plot real power losses	41
4.8	The plot reactive power losses	42

LIST OF TABLES

Table	Title	Page
4.1	shows result of load flow analysis before connecting PV	38
4.2	shows result of load flow analysis after connecting PV at	39
	highest regulation	
4.3	shows result of load flow analysis after connecting PV	40
	system at lowest regulation	
5.1	recommendations on the preventive maintenance	44
B.1	.Original and de-rated specifications for the JKM275PPe	48
5.2	Data load and impedance of modified grid	49
B.2	.Technical specifications data for inverter	50

LIST OF ABBREVIATIONS

PV	Photovoltaic
DC	Direct current
AC	Alternative current
NEC	National Electricity Company
KW	Kilo Watt
MPPT	Maximum Power Point Tracker
KVAR	Kilo Volt – Ampere Reactive
L.F	Load Flow