
Sudan University of Sciences and

Technology

 College of Engineering

School of Electrical and Nuclear Engineering

 An Elevator control system using

microcontroller

 نظام التحكم فى المصعد بإستخدام مايكروكنترول

A Project Submitted In Partial Fulfillment for the Requirements of

the Degree of B.Sc. (Honor) In Electrical Engineering

Prepared By:

1. Abdullah Abdalmonem Abdullah Mohammed

2. Hamadnallah Gaber Hamadnallah Alasha

3. Mohammed Fadoul Alkreem Ahmed Essoi

4. Mohammed Towfeg Abdulraheim Hassan

Supervised By:

Dr. Awadalla Taifour Ali

November 2020

i

 لآية

 :قال تعالي

 أُوتِيتُمْ وَمَا رَبِّي أَمْرِ مِنْ الرُّوحُ قُلِ الرُّوحِِۖ عَنِ وَيَسْأَلُونَكَ

 ﴾٥٨﴿ إِلَّا قَلِيلًا الْعِلْمِ نَمِ

 (58)الإسراء:

ii

DEDICATION

To our great parents, who never stop giving us themselves

in contless ways.

To our dearest friends, who leads us through the valley of

darkness with light of hope and give us encourage and

support.

To our beloved brothers and sisters who standy by us when

things look bleak.

To all our family , the eymbol of love and giving.

To all the people in our life who touch our heart , we

dedicate this research.

iii

ACKNOWLEDGEMENT

We wish to express our profound gratitude to our

Supervisor Dr. Awadalla Taigour Ali for his valuable

guidance, continues encouragement ,worthwhile

suggestions and constructive ideas throughout this project.

His support, pragmatic analysis and understanding made

this study a success and knowledgeable experience for us.

iv

ABSTRACT

In today`s society technology is growing at an exponential

rate,

and elevator is very common example of technology for

consuming time. An elevator is a platform that can move

up and down in vertical direction by a mechanical mean.

In the past elevators drive mechanism were powered by

stream and water hydraulic piston. In today`s world, there

are intricate governors and switching schemes to control

elevators.

In our project, the arduino microcontroller based elevator

system is constructed to simulate as an actual elevator, and

it‟s designed for multi-storage buildings.

v

 المستخلص

 .

Arduino)

vi

TABLE OF CONTENTS

Title Page No.

 i الآية

DEDICATION ii

ACKNOWLEDGEMENT iii

ABSTRACT iv

 v المستخلص

TABLE OF CONTENTS vi

LIST OF FIGURES viii

LIST OF ABBREVIATIONS ix

CHAPTER ONE

 INTRODUCTION

1.1 Background 1

1.2 Problem Statement 2

1.3 Objectives 2

1.4 Methodology 2

1.5Layout 2

CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction 3

2.2 Microcontroller 4

2.3 Arduino 6

2.4 Seven Segment Display 6

2.5 Stepper Motor 7

2.6 Driver ULN2003a 9

2.7 Elevator’s Work Principle

10

vii

CHAPTER THREE

SYSTEM DESCIPTION AND CONTROL

3.1 Introduction 16

3.2 System Definition 16

3.3 Controller Fow Chart 19

CHAPTER FOUR

SYSTEM IMPLEMENTATION

AND TESTING

4.1 Components Used 21

4.2 The General Hardware Circuit Connection
27

4.3 Software Implementation 30

CHAPTER FIVE

CONCULOTION AND RECOMMENDATIONS

5.1 Conclusion 31

5.2 Recommendations 31

References 32

viii

LIST OF FIGURES

Figure No. Title Page No.

2.1 The microcontroller 5

2.2 Arduino 6

2.3 Seven segment display 7

2.4 Stepper motor 8

2.5 Driver ULN2003a 9

2.6 Device for locking door 11

2.7 Hoistway door interlock 12

2.8 Hoistway door emergency keys 12

2.9 Progressive safety gear 13

3.1 System flow chart 17

3.2 System inputs 18

3.3 Controller flow chart 20

4.1 Arduino Uno 22

4.2 Control circuit simulation 29

4.3 Control circuit 29

4.4 The Model 30

ix

LIST OF ABBREVIATION

I/O In put/Out put

IDE Integrated Development Environment

SSD Seven-Segment Display

PM Permanent Magnet

VR Variable Reluctance

HS Hybrid Synchronous

GND Ground

USB Universal Serial Bus

DC Direct Current

AC Alternating Current

IC Integrated Circuit

PM Permanent Magnet

PCB Printed Circuit Board

LED Light Emitting Diode

PWM Pulse Width Modulation

ICSP In Circuit Serial Programming

FTDI Future Technology Devices Interglobal

BCD Binary Coded Decimal

1

CHAPTER ONE

 INTRODUCTION

1.1 Background

Elevator, is a transport device that is very common nowadays, it used

everyday to move goods or peoples vertically in a high building such as

shopping center, working office, hotel and many more. It is a very useful

device that moves people to the desired floor in the shortest time.

 Elevators began as simple rope or chain hoists. An elevator is essentially a

platform that is either pulled or pushed up by a mechanical means. A modern

day elevator consists of a cab (also called a "cage" or "car") mounted on a

platform within an enclosed space called a shaft or more correctly a hoist

way. In the past elevator drive mechanisms were powered by steam and water

hydraulic pistons.

In the 1800s, with the advent of electricity, the electric motor was integrated

into elevator technology by German inventor Werner von Siemens. By 1903,

this design had evolved into the gearless traction electric elevator, allowing

hundred-plus story buildings to become possible and forever changing the

urban landscape. Multi speed motors replaced the original single-speed

models to help with landing-leveling and smoother overall operation.

Electromagnet technology replaced manual rope-driven switching and

braking. Besides, Push-button controls and various complex signal systems

modernized the elevator even further. Safety improvements have been

continual, including a notable development by Charles Otis.

 Today, there are intricate governors and switching schemes to carefully

control cab speeds in any situation. Buttons have been giving way to keypads.

Virtually all commercial elevators operate automatically and the computer

age has brought the microchip-based capability to operate vast banks of

2

elevators with precise scheduling, maximized efficiency and extreme safety,

{1}.

1.2 Problem Statement

electric elevators being powered and controlled by electromagnetic devices

suffer much problems such as maintenance problems, difficulties inuse, any

changes on software required changes on the hardware and system breaks.

1.3 Objectives

Microcontroller's use increased rapidly, they are cheap and very small in size,

Programming of Microcontrollers is simple hence using Arduino Uno

microcontroller give us advantages such maintenance is not required ,

Changes to be made on the software will not affect the components and

flexibility in use

1.4 Methodology

 Arduino Uno is used as the primary controller. The software for the system

is written by C++, been designed according to the real elevator traffic

management algorithm. The combination of the hardware and software

perform the simulate function of a basic elevator system.

1.5 Layout

This project consist of five chapters, chapteronegives a background, problem

statement, objectives and methodology. Chapter two definesthe elevators

components, types and their working principles. Chapterthreeillustrates the

control system in generally then coverselevator control

system.Chapterfourgives abrief definitionfor the components which used in

this project thendiscuss the project circuits and their analysis. Rather to the

control system block diagram and its parts function and flow chart.

Chapterfivecontains the conclusion and the recommendations.

3

CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

Elevator history begins several hundred years before Christ. The earliest

elevators were called hoists. They were powered by human and animal power,

or sometimes water-driven mechanisms. They were in use as early as the 3rd

century BC.

Modern elevators were developed during the 1800s. These crude elevators

slowly evolved from steam driven to hydraulic power. The first hydraulic

elevators were designed using water pressure as the source of power.

They were used for conveying materials in factories, warehouses and mines.

Hydraulic elevators were often used in European factories. In 1852, Elisha

Graves Otis introduced the first safety contrivance for elevators.

Otis established a company for manufacturing elevators and went on to

dominate the elevator industry. Today the Otis Elevator Factory is the world's

largest manufacturer of vertical transport systems. Revolution in elevator

technology began with the invention of hydraulic and electricity.

Motor technology and control methods evolved rapidly and electricity quickly

became the accepted source of power. The safety and speed of these elevators

were significantly enhanced. The first electric elevator was built by the

German inventor WenerVon Siemens in 1880. In 1889, the first commercially

successful electric elevator was installed. In 1887, an electric elevator with

4

automatic doors that would close off the elevator shaft was patented. This

invention made elevators safer.

Many changes in elevator design and installation was made by the great

advances in electronic systems during World War II.

Space elevators use the same concept of classic elevator. They will be used to

transport people to space station. This concept theoretically can considerably

reduce the cost for putting a person into space.

Today, modern commercial buildings commonly have multiple elevators with

a unified control system. In addition, all modern elevators have special

override controls (to make elevators go directly to a specific floor without

intermediate stops).

There are many usages of elevators in practical application such as:

Passenger service, Freight elevators ,Stage elevators, Vehicle elevators, Boat

elevator, Aircraft elevators, Residential elevator ,Paternoster and Scissor

elevator, {2,3}.

 Elevator Components generally:

The standard elevators will include the following basic components:

Cab, Hoistway, Machine/drive system, Control system and Safety

system.

2.2 Microcontroller

A microcontroller shown in figure 2.1 is a compact integrated circuit designed

to govern a specific operation in an embedded system. A typical

microcontroller includes a processor, memory and Input/Output (I/O)

peripherals on a single chip.

A microcontroller is embedded inside of a system to control a singular

function in a device. It does this by interpreting data it receives from its I/O

https://internetofthingsagenda.techtarget.com/definition/embedded-system
https://searchmobilecomputing.techtarget.com/definition/peripheral

5

peripherals using its central processor. The temporary information that the

microcontroller receives is stored in its data memory, where the processor

accesses it and uses instructions stored in its program memory to decipher and

apply the incoming data. It then uses its I/O peripherals to communicate and

enact the appropriate action.

Microcontrollers are used in a wide array of systems and devices. Devices

often utilize multiple microcontrollers that work together within the device to

handle their respective tasks.For example, a car might have many

microcontrollers that control various individual systems within, such as the

anti-lock braking system, traction control, fuel injection or suspension control.

All the microcontrollers communicate with each other to inform the correct

actions. Some might communicate with a more complex central computer

within the car, and others might only communicate with other

microcontrollers. They send and receive data using their I/O peripherals and

process that data to perform their designated tasks.Following are the most

important facts about Microcontrollers, which causes rapid growth of their

use:

-Microcontrollers are cheap and very small in size, therefore they can be

embedded on any device.

 -Programming of Microcontrollers is simple to learn. It’s not much

complicated.

-We can use simulators on Computers to see the practical results of our

program. Thus we can work on an Embedded project without even buying the

required Components and Chips. Thus we can virtually see the working of our

project or program, {4}.

6

Figure 2.1: Microcontroller

2.3 Arduino

Arduinoshown in Figure 2.2 is an open-source platform used for building

electronics projects. Arduino consists of both a physical programmable circuit

board (often referred to as a microcontroller) and a piece of software, or IDE

(Integrated Development Environment) that runs on your computer, used to

write and upload computer code to the physical board.

The Arduino platform has become quite popular with people just starting out

with electronics, and for good reason. Unlike most previous programmable

circuit boards, the Arduino does not need a separate piece of hardware (called

a programmer) in order to load new code onto the board you can simply use a

USB cable. Additionally, the Arduino IDE uses a simplified version of C++,

making it easier to learn to program. Finally, Arduino provides a standard

form factor that breaks out the functions of the micro-controller into a more

accessible package, {5}.

http://arduino.cc/
http://en.wikipedia.org/wiki/Microcontroller
http://arduino.cc/en/Main/Software

7

Figure 2.2 : Arduino

2.4 Seven Segment Display

A seven-segment display shown in Figure 2.3 is a form of electronic display

device for displaying decimalnumerals that is an alternative to the more

complex dot matrix displays. Seven-segment displays are widely used in

digital clocks, electronic meters, basic calculators, and other electronic

devices that display numerical information, {6}.

Figure 2.3 : 7-segement display

2.5 Stepper Motor

https://en.wikipedia.org/wiki/Display_device
https://en.wikipedia.org/wiki/Display_device
https://en.wikipedia.org/wiki/Decimal
https://en.wikipedia.org/wiki/Decimal
https://en.wikipedia.org/wiki/Dot_matrix_display
https://en.wikipedia.org/wiki/Digital_clock
https://cdn.sparkfun.com/assets/9/1/e/4/8/515b4656ce395f8a38000000.png

8

stepper motor shown in Figure 2.4 is an electromechanical device with ability

to convert electrical pulse into discrete mechanical movements. The shaft of

this motor rotates in a discrete stepincrement when electrical pulses are

applied in a proper sequence. It is a brushless DC electric motor that divides a

full rotation into a number of equal steps. Sizing of the motor depends on its

torque and speed which determines its applications. This motor converts its

train of input pulses into precisely defined increment in the shaft position with

each pulses moving through a particular angle. Stepper motors have multiple

„toothed‟ electromagnets arranged around center gear shaped piece of iron.

An external drive circuit e.g. a microcontroller energizes the motor. To make

the shaft rotate, one electromagnet is given power thus attracting the gear

teeth. When these teeth are aligned to the first electromagnet, they are slightly

offset from the next electromagnet. Thus when the next is turned on and the

first turned off, the gear rotates slightly to align with the next one. The

process is repeated with each rotation called a „step‟ with an integer number

of steps making up a full rotation. Thus motor is turned with precise angle.

This angle through which the motor shaft rotates for each command pulse is

the step angle, {7}.

Figure 2.4 : Stepper Motor

9

Applications of Stepper Motors

This motors find applications in operation controls in computer peripherals,

textile

industries, IC fabrications and robotics. They have advantage since

positioninformation can be obtained by keeping count of pulses sent to the

motor thuseliminating the need for expensive position sensors and feedback

controls. They alsofind application in commercial, military and medical fields

for mixing, cutting striking, metering and blending. However due to their

good control over speed andposition, they are used today in elevators since

have a robust design, no brushes and agood speed control.

Types Of Stepper Motor :

 Permanent Magnet Stepper. PM steppers have rotors that are

constructed with permanent magnets, which interact with the

electromagnets of the stator to create rotation and torque. PM steppers

usually have comparatively low power requirements and can produce

more torque per unit of input power.

 Variable Reluctance Stepper. VR stepper rotors are not built with

permanent magnets. Rather, they are constructed with plain iron and

resemble a gear, with protrusions or “teeth” around the circumference

of the rotor. The teeth lead to VR steppers that have a very high degree

of angular resolution; however, this accuracy usually comes at the

expense of torque.

 Hybrid Synchronous Stepper. HS stepper rotors use the best features of

both PM and VR steppers. The rotor in an HS motor has a permanent

magnet core, while the circumference is built from plain iron and has

teeth. A hybrid synchronous motor, therefore, has both high angular

resolution and high torque.

2.6 Driver ULN2003a

10

The ULN2003 stepper motor driver PCB shown in Figure 2.5 provides a

direct drive interface between your microcontroller and stepper motor. The

PCB provides 4 inputs for connection to your microcontroller, power supply

connection for the stepper motor voltage, and ON/OFF jumper, a direct

connect stepper motor header and 4 LEDs to indicate stepping state.

Figure 2.5 : DRIVER ULN200a

This driver acts as a buffer providing protection for the circuit from high

voltage and taking the current to a definite range.

2.7 Elevator’s Work Principle

The elevator compartment is raised and lowered by a hoist and pulley system

and a moving counterweight .The

elevator is moves smoothly between vertical guide bars: it doesn’t just dangle

stupidly from the rope. The cable that does all the lifting wraps around several

pulleys and the main winding drum. Don’t forget this

elevator was invented before anyone was really using electricity: it was raised

and lowered by hand. At the top of the elevator car, there’s a simple

mechanism made up of spring-loaded arms and pivots. If the main cable

breaks, the springs push out two sturdy bars called “pawls” so they lock into

vertical racks of upward- pointing teeth on either side. This ratchet-like device

clamps the elevator safely in place. Most elevators have an entirely separate

speed-regulating system called a governor, which is a heavy flywheel

with massive mechanical arms built inside it. Normally the arms are held

11

inside the flywheel by hefty springs, but if the lift moves too fast, they fly

outward, pushing a lever mechanism that trips one or more braking systems.

First, they might cut power to the lift motor. If that fails and the lift continues

to accelerate, the arms will fly out even further and trip a second mechanism,

applying the brakes. Some governors are entirely mechanical; others are

electromagnetic, still others use a mixture of mechanical and electronic

components.

The following list describes all the safety components used in electrical

traction elevator safety system:

 Device for locking landing doors (Hoistway Door Interlock).

 Progressive safety gear.

 Over speed governor.

 Buffers.

 Final limit switches.

 Other safety devices and switches.

(a) Devices For Locking Landing Doors:

 It shall not be possible in normal operation to open the landing& door or

any of the panels in the case of a multi panel door unless the car has stopped,

or is on the point of stopping, in the unlocking zone of the door.

the unlocking zone shall not extend more than 5.2 meter above and below the

landing level. the hoistway door locking mechanism provides a means to

mechanically lock each hoistway door and the elevator cannot leave a landing

unless the doors are fully closed and secured.

12

Figure 2.6 : Device for locking door

(b) Hoistway door interlock:

Hoistway door interlock shown in Figure 2.7 with the door been opened are

also are interconnected electrically to prevent operation of the elevator if any

of the elevators hoistway doors are open. hold the doors be forced open, the

interlock circuit will be broken, causing the elevator to immediately stop.

each landing door shall be provided with a locking device satisfying the

previous conditions. This device shall be protected against deliberate misuse.

landing doors shall be capable of being unlocked from the outside with the aid

of key, which fit the unlocking triangle (Hoistway emergency door keys).

13

Fig ure 2.7 : Hoistway Door interlock

Hoistway Emergency Door keys:

 Hoistway emergency door keys shown in figure 2.8 permit the unlocking of

the hoistway door interlock

.

Figure 2.8 : Hoistway Door Emergency Keys

Escutcheon Tube:

 The keyhole on the upper portion of a hoistway door that accepts a hoistway

emergency door key and permits unlocking& of the hoistway door locking&

14

mechanism. these keyholes are usually located at the bottom and top floors,

but may also be on other selected floors or all floors.

Elevator Safety Gear

Elevator safety gear is the part of elevator, which is the safety protection

device for protecting elevator runs safely. Elevator safety gear is operated by

elevator over speed governor, the function is that stops the elevator car and

holds the elevator car at the elevator guide rail in an emergency when the

running speed of elevator car exceeds the set speed by elevator over speed

governor, or elevator suspension rope is in broken or loose situation. Elevator

safety gear provides effective protection for elevator running in safe; usually

it is installed on the elevator car or counterweight frame. In accordance with

the different structure of its brake components, elevator safety gear can be

divided into wedge-shaped block, eccentric gear, and roller. According to stop

distance, it can be divided into instantaneous safety gear and progressive

safety gear.

Figure 2.9 : Progressive Safety Gear

Over Speed Governor:

https://www.elevatorvip.com/tag/elevator-safety-gear/

15

 Over speed governor is one of the safety control components of elevator

safety protection system. When the elevator in running, no matter what the

speed governor in the car or the risk of falling or other situations of safety

protection devices do not work, safety gear speed governor and linkage will

start to work and make the elevator car stop running, to ensure the safety of

the elevator. The speed governor is generally located in the elevator machine

room. According to the requirements of the installation plan, it is generally

installed on the floor of the machine room. However, the speed governor also

can be directly installed on the bearing beam. The specific position of the

speed governor is determined according to the construction drawing and the

position of the car and guide rail after adjustment.

Buffers:

Elevator buffers are one of the most important items of the elevator safety

system. Buffers work to minimize the danger when there is a loss of traction

capability and not enough brake distance in cases such as rope breakage. So,

we can think of the elevator buffer as a part of braking system. Thanks to the

buffer, the cabin does not hit directly in a free fall. In this situation, the role of

the buffers is to prevent the cabin from hitting hard when the cabin or

counterweight is slipping toward the bottom of the shaft. The elevator buffer

can be used in different structures, and can vary according to the elevators

used; i.e., the elevator can be varied according to the number of people it will

carry and its speed. For example, if the elevator car speed is high, energy-

consuming buffers should be used and, if low, energy-conserving buffers

should be used.

16

Final Limit Switches

Final limit switch is One of two mechanically operated switches mounted in

an elevator hoistway, one at the top and one at the bottom, which if activated

by the car, traveling more than a preset distance beyond a terminal landing,

cuts off power to the elevator drive motor. The operation of this switch will

prevent movement of the car by the normal operating devices in both

directions of travel.

17

CHAPTER THREE

SYSTEM DESCIPTION AND CONTROL

3.1 Introduction

The elevator design process involves description of a series of

steps taken to make the logic for the 4 level elevators. Since design depends on

the particular designer‟s interests and objectives, there is no single universally

accepted design procedure thus each engineer has their own twist for how the

process works. However, the most important thing is provision of a solution to

a defined issue; in this case design of the elevator design process involves

description of a series of steps taken to make the logic for the four level logic

for a 4 level elevator. In this particular design, the following assumptions will

be taken as a preference and also to simplify the project and keep it to the scope.

The elevator starts and rests on the last floor of destination whenever there no

more requests to be serviced. This is a one-way elevator thus it operates on a

first come first serve basis ensuring that the first person to make request is

attended to together with those in same direction but on the way of cab

(UPWARD and DOWNWARD). Speed used is constant since floor number is

small (4 levels). This is a sensor less elevator. Though sensors are used in the

case of real life lifts to ensure safety for users. The stepper motor has given it

this ability. v. This elevator accepts multiple requests and destinations while at

rest on a floor.

3.2 System Definition

 The input sends signals to the controller which processes the signal send to

determine the necessary action. The action taken depends on the command

issues at input and also the input signal received from the motor and the cab

i.e. cab level/floor information which determines the necessary action by the

18

controller. Thus all the logic operations are performed by the controller to

enable up and down elevator motion, in order to determine the priorities in

servicing the requests. The motor is connected to the cab through a belt-pulley

system. This ensures movement of the cab to effect the logic operations of the

elevator.

Figure 3.1: Flow Chart

Inputs

 An input here refers to the data sent into the controller through a command

issued

from a particular component device. In this case the commands sent to the

controller are from push buttons described below.

input

controller

motor cab

19

Figure 3.2: System Flow Chart

Motor

The motor i.e. the stepper motor runs depending on the pulses received from

the controller. The number of steps to a particular flow levels are constant.

The motor is coupled to the cab using a belt system to ensure movement up

and down for servicing the floor request. Coupling is done by a belt drive

mechanism.

Cab

This is the part that lifts the passengers up and down the particular flows of

interests. Thus services the requests and destinations of passengers

The Controller

The Controller system is the system responsible for coordinating all aspects of

elevator service such as travel, speed, and accelerating, decelerating, door

opening speed and delay and levelling. It receives the inputs and responds to

them by sending impulses to the motor via drives.

20

 The controller also receives in formation like floor level, position and speed

from the motor and the cab and process and displays the information on

displays.

The controller is Arduino Uno. it acts as the heart of logic control in elevator

system.

It accepts inputs (e.g. button signals) and produces outputs (e.g. elevator cars

moving).

The main aims of the elevator control system:

 Is to bring the elevator cab to the correct floor.

 Is to minimize travel time.

 Is to maximize passenger comfort by providing a smooth ride.

 Is to ensure a safe speed limit for travel.

3.3 Controller Flow Chart

A number of actions are performed in the process to ensure proper

elevator system operation. Below is a flow diagram describing a control

logic design involved in operation of my elevator. The following

points are to be noted about the flowchart representation of logic design

indicated above. The elevator starts operating when the power is

switched on. When under no use the lift rest at the last floor serviced

(last destination floor).

The elevator keeps checking for the requests during the waiting to

ensure fast serving of any request on any particular floor of request.

The cab moves on each level and keeps checking for requests and

destinations in the particular direction i.e. UPWARDS/DOWNWRDS

depending on the direction of travel/motion. The elevator cab keeps

checking the 4th and ground floor to ensure reverse of directions on

those particular floors since they represent the highest and the lowest

floors according to design scope. This ensures safety.

21

Figure 3.3 : Control flow Chart

22

CHAPTER FOUR

SYSTEM IMPLEMENTATION

AND TESTING

4.1 components used

4.1.1 Arduino Uno

 The Arduino Uno as shown in figure 4.1 is a microcontroller board based on

the ATmega328 (datasheet). It has 14 digital input/output pins (of which 6 can

be used as PWM outputs), 6 analog inputs, a 16 MHz crystal oscillator, a USB

connection, a power jack, an ICSP header, and a reset button. It contains

everything needed to support the microcontroller; simply connect it to a

computer with a USB cable or power it with a AC-to-DC adapter or battery to

get started. The Uno differs from all preceding boards in that it does not use the

FTDI USB-to-serial driver chip. Instead, it features the Atmega8U2

programmed as a USB-to-serial converter. "Uno" means one in Italian and is

named to mark the upcoming release of Arduino 1.0. The Uno and version 1.0

will be the reference versions of Arduino, moving forward. The Uno is the latest

in a series of USB Arduino boards, and the reference model for the Arduino

platform; for a comparison with previous versions, {8}.

23

Figure 4.1 : Arduino Uno

Arduino Uno Properties

 Power: The Arduino Uno can be powered via the USB connection or

with an external power supply. The power source is selected

automatically.

External (non-USB) power can come either from an AC-to-DC adapter (wall-

wart) or battery. The adapter can be connected by plugging a 2.1mm center-

positive plug into the board's power jack. Leads from battery can be inserted in

the GND and Vin pin headers of the POWER connector.

The board can operate on an external supply of 6 to 20 volts. If supplied with

less than 7V, however, the 5V pin may supply less than five volts and the board

24

may be unstable. If using more than 12V, the voltage regulator may overheat

and damage the board. The recommended range is 7 to 12 volts.

The power pins are as follows:

- VIN. The input voltage to the Arduino board when it's using an external power

source (as opposed to 5 volts from the USB connection or other regulated

power source). You can supply voltage through this pin, or, if supplying

voltage via the power jack, access it through this pin.

- 5V. The regulated power supply used to power the microcontroller and other

components on the board. This can come either from VIN via an on-board

regulator, or be supplied by USB or another regulated 5V supply.

- 3V3. A 3.3 volt supply generated by the on-board regulator. Maximum current

draw is 50 mA.

- GND. Ground pins 12

• Input and Output: Each of the 14 digital pins on the Uno can be used as

an input or output, using pin Mode(), digital Write(), and digital Read()

functions. They operate at 5 volts. Each pin can provide or receive a

maximum of 40 mA and has an internal pull-up resistor (disconnected by

default) of 20-50 KOhms. In addition, some pins have specialized

functions:

• Serial: 0 (RX) and 1 (TX). Used to receive (RX) and transmit (TX) TTL

serial data. These pins are connected to the corresponding pins of the

ATmega8U2 USB-to-TTL Serial chip .

• External Interrupts: 2 and 3. These pins can be configured to trigger an

interrupt on a low value, a rising or falling edge, or a change in value. See the

attach Interrupt() function for details.

• PWM: 3, 5, 6, 9, 10, and 11. Provide 8-bit PWM output with the Analog

Write() function.

• SPI: 10 (SS), 11 (MOSI), 12 (MISO), 13 (SCK). These pins support SPI

communication, which, although provided by the underlying hardware, is not

25

currently included in the Arduino language.

• LED: 13. There is a built-in LED connected to digital pin 13. When the

pin

is HIGH value, the LED is on, when the pin is LOW, it's off.

The Uno has 6 analog inputs, each of which provide 10 bits of resolution (i.e.

1024

different values). By default, they measure from ground to 5 volts, though is it

possible to change the upper end of their range using the AREF pin and the

analog Reference () function. Additionally, some pins have specialized

functionality:

• I 2C: 4 (SDA) and 5 (SCL). Support I2C (TWI) communication using

the

Wire library.

There are a couple of other pins on the board:

• AREF. Reference voltage for the analog inputs, used with

Analog Reference ().

• Reset. Bring this line LOW to reset the microcontroller, typically used

to

add a reset button to shields which block the one on the board.

 Communication: The Arduino Uno has a number of facilities for

communicating with a computer, another Arduino, or other

microcontrollers. The ATmega328 provides UART TTL (5V) serial

communication, which is available on digital pins 0 (RX) and 1 (TX). An

ATmega8U2 on the board channels this serial communication over USB

and appears as a virtual com port to software on the computer. The '8U2

firmware uses the standard USB COM drivers, and no external driver is

needed. However, on Windows, an *.inf file is required. The Arduino

software includes a serial monitor which allows simple textual data to be

sent to and from the Arduino board. The RX and TX LEDs on the board

will flash when data is being transmitted via the USB-to serial chip and

26

USB connection to the computer (but not for serial communication on

pins 0 and 1). A Software 13 Serial library allows for serial

communication on any of the Uno's digital pins. The ATmega328 also

support I2C (TWI) and SPI communication. The Arduino software

includes a Wire library to simplify use of the I2C bus.

 Programming: The Arduino Uno can be programmed with the Arduino

software

(download). Select "Arduino Uno w/ ATmega328" from the Tools > Board

menu

(according to the microcontroller on your board). For details, see the reference

and

tutorials. The ATmega328 on the Arduino Uno comes pre burned with a

bootloader that allows you to upload new code to it without the use of an

external

hardware programmer. It communicates using the original STK500 protocol

(reference, C header files). You can also bypass the bootloader and program

the

microcontroller through the ICSP (In-Circuit Serial Programming) header; see

these instructions for details. The ATmega8U2 firmware source code is

available.

The ATmega8U2 is loaded with a DFU bootloader, which can be activated by

connecting the solder jumper on the back of the board (near the map of Italy)

and

then resetting the 8U2. You can then use Atmel's FLIP software (Windows) or

the

DFU programmer (Mac OS X and Linux) to load a new firmware. Or you can

use

the ISP header with an external programmer (overwriting the DFU bootloader).

 Automatic Reset: Rather than requiring a physical press of the reset

button before an upload, the Arduino Uno is designed in a way that allows

27

it to be reset by software running on a connected computer. One of the

hardware flow control lines (DTR) of the ATmega8U2 is connected to

the reset line of the ATmega328 via a 100 Nano farad capacitor. When

this line is asserted (taken low), the reset line drops long enough to reset

the chip. The Arduino software uses this capability to allow you to upload

code by simply pressing the upload button in the Arduino environment.

This means that the bootloader can have a shorter timeout, as the lowering

of DTR can be well-coordinated with the start of the upload. This setup

has other implications. When the Uno is connected to either a computer

running Mac OS X or Linux, it resets each time a connection is made to

it from software (via USB). For the following half-second or so, the

bootloader is running on the Uno. While it is programmed to ignore

malformed data (i.e. anything besides an upload of new code), it will

intercept the first few bytes of data sent to the board after a connection is

opened. If a sketch running on the board receives one-time configuration

or other data when it first starts, make sure that the software with which

it communicates waits a second after opening the connection and before

sending this data. The Uno contains a trace that can be cut to disable the

auto reset. The pads on either side of the trace can be soldered together to

re-enable it. It's labeled "RESET-EN". You may also be able to disable

the auto-reset by connecting a 110-ohm resistor from 5V to the reset line.

 Push button switches.

 BCD to seven segment decoder 7447.

 Seven segment display.

 Driver ULN2003a.

 Stepper motor.

4.2 The General Hardware Circuit Connection:

28

 Explaining the connection of the circuit as simulation been made as in Figure

4.3 and the real circuit connection as in Figure 4.4

4.2.1 push buttons to microcontroller

First connection in this circuit is the four push buttons connected to the

microcontroller through ports

· First floor push button is connected to output number 5 (~PD5/T1/OC0B) in

the microcontroller.

· Second floor push button is connected to output number 4(PD4/T0/XCK).

· Third floor push button is connected to output number 3(~PD3/INT1/OC2B).

· Fourth floor push button is connected to output number 2 (PD2/INT0).

4.4 BCD to seven segment decoder 7447 to microcontroller The IC is connected

to the Arduino through the four BCD inputs

· Output number 6 (~PD7/AIN1), and input number 7 (A) in the 7447 decoder.

· Output number 7 (PD7/AIN1), and input number 1 (B) in the 7447 decoder.

· Output number 8 (PB0/ICP1/CLKO), and input number 2 (C) in the 7447

decoder.

· Output number 9 (PB1/OC1A), and input number 6 (D) in the 7447 decoder

· Fourth floor push button is connected to output number 2 (PD2/INT0).

4.4 BCD to seven segment decoder 7447 to microcontroller The IC is connected

to the Arduino through the four BCD inputs

·Output number 6 (~PD7/AIN1),and input number 7 (A) in the 7447 decoder.

· Output number 7 (PD7/AIN1), and input number 1 (B) in the 7447 decoder.

29

· Output number 8 (PB0/ICP1/CLKO), and input number 2 (C) in the 7447

decoder.

· Output number 9 (PB1/OC1A), and input number 6 (D) in the 7447 decoder.

4.2.2 BCD to decoder and display

 In this connection the IC is connected to the seven segment display

through the seven output lines, one line for each LED

segment.

4.2.3 ULN2003a Driver to the microcontroller

 After the microcontroller receives the push button request, it sends control

pulses to the stepper motor through the interface (driver uln2003a), which is

connected to the Arduino through four ports.

· Output number 10 (~PB2/OC1B), to input number 1 (1B) in the uln2003a.

· Output number 11(~PB3/MOSI/OC2A), to input number 2 (2B).

· Output number 12 (PB4/MISO), to input number 3 (3B).

· Output number 13 (PB5/SCK), to input number 4 (4B).

4.2.4 ULN2003a Driver to the stepper motor

The ULN2003a is connected to the stepper motor through the IC`s outputs (1C,

2C, 3C, 4C) and output number 9(COM) is ground. The uln2003a sends

electrical pulses to the stepper motor after it receives the control pulses from

the microcontroller; the stepper motor then converts these electrical pulses into

discrete mechanical movements

30

 Fig4.2 represents the simulation of the control system

Figure 4.2 : Control Circuit Simulation

 Fig4.3 shows the control system implemented by Arduino Uno

Figure 4.3 : control circuit

The model

31

Figure 4.4 shows a prototype design of Elevator Control System

Figure 4.4 : The Model

4.3 Software implementation

The code

 The code is written using C++, it implements the logic designed. The

Arduino Uno receives destination requests from the push buttons to

initiate the logic. The written code was loaded onto Arduino Uno

controller using a USB cable, the different modules are also integrated

allowing for particular response whenever the destination request

commands are issued.

32

CHAPTER FIVE

CONCULOTION AND RECOMMENDATIONS

5.1 Conclusion

Elevator control systems were widely used in most buildings. This thesis was

based on design and implementation of Arduino microcontroller based

elevator control system. In this work, we have designed and implemented a

prototype elevator and its control systems using Arduino microcontroller

based circuit. The elevator is operated by using Step motor.

Before implementation of the system, we have simulated the control circuit. It

was found that the simulation results are satisfactory and practical systems

work very well.

5.2 Recommendations

In the more complex elevator where there are more conditions to test,

calculate and analysis it is better to use one of the well-known control theories

like the fuzzy controlling or use the computer calculation methods.

More advanced security systems can be integrated like the fingerprint, face,

voice, retina or any other kind of biological security system, it could be more

secure but more expensive. The requesting methods can be more various by

adding SMS remote request service or wireless requesting using the internet

for the VIP or special cases The doors can be able to open as an automatic

door for more flexibility and more advance control, but it is more financially

disturbing.

33

References

[1] Robert Beyer, “ Specification Series: Elevators - First Things First ”,

1994.

[2] Lava Computer MFG Inc.,” IEEE 1284: Parallel Ports”, Lava Computer

MFG Inc”, 2002

[3] Sajal K. Das, “Mobile Handset Design‟, John Wiley & Sons”, 2010.

[4] Steven F Barrett, Daniel Pack, Mitchell Thornton, “Atmel AVR

Microcontroller Primer: Programming and Interfacing”, 2007.

[5] Programming Arduino Next Steps: Going Further with Sketches. 2nd Ed.

Simon Monk.McGraw-Hill Education.

 [6] Rogers, Warren O. 1910. Power Plant Signalling System. Power and the

Engineer.

[7] B.L. Theraja, A.K. Theraja ‘A Text Book of Electrical Technology’,

J.Ghand & Company LTD .RAM Nagar, New Delhi ”2005.

[8] Programming Arduino Next Steps: Going Further with Sketches. 2nd Ed.

Simon Monk. McGraw-Hill Education.

34

Appendix

Projram Code

int i=1; // the value represents where elevator stay (fisrt time elevator start in

the first floor

//int btn4=2; // represents the 4 th floor

int btn3=3; // 2 nd floor

int btn2=4; // 3 th floor

int btn1=5; // 1 st floor

int motorPin1=10;

int motorPin2=11;

int motorPin3=12;

int motorPin4=13;

int buttonState=0;

int buttonState2=0;

int buttonState3=0;

int buttonState4=0;

int m1 =8; //

int m2 =9;

int m3 =6;

int m4 =7; //

int ir;

int d1;

int d2;

int d3;

int d4;

void setup() {

Serial.begin(9600);

int delayTime = 50;

// pinMode(btn4,INPUT);

pinMode(btn2,INPUT);

pinMode(btn3,INPUT);

pinMode(btn1,INPUT);

pinMode(m1,OUTPUT);

pinMode(m2,OUTPUT);

pinMode(m3,OUTPUT);

pinMode(m4,OUTPUT);

35

}

void loop() {

// Serial.println("You are on the i st floor");

buttonState = digitalRead(btn1);

buttonState2 = digitalRead(btn2);

buttonState3 = digitalRead(btn3);

//buttonState4 = digitalRead(btn4);

//show(numbers[i]); //write number on the 7 segment display which floor

elevator stays

/*--*/

//3 th floor required codes

if(buttonState3 == HIGH){

while(i<3){

i++;

up();

Serial.print("You are on the ");

Serial.print(i);

Serial.println("floor");

// show(numbers[i]);

}

i=3;

//show(numbers[i]);

//door();

}// end of the buttonState4

//------ end of the 4th floor ------

/*--*/

/*--*/

//start of the 2 td floor codes ----

if(buttonState2==HIGH){

if(i>2){

while(i>2) {

i--;

down();

Serial.print("You are on the ");

Serial.print(i);

Serial.println("floor");

//show(numbers[i]);

 }

}

36

if(i<2){ // person is waiting on the first or second floor. Call the elevater

while(i<2){

i++;

up();

Serial.print("You are on the ");

Serial.print(i);

Serial.println("floor");

// show(numbers[i]);

}

}

i=2; //assign the elevator value to the three

// show(numbers[i]);

delay(1000);

// door();

} // end of the buttonState3

//end of the 3 td floor codes ----

/*--*/

// start of the 1 st floor codes ------

if(buttonState == HIGH){

if(i>1){

while(i>1){

i--;

down();

Serial.print("You are on the ");

Serial.print(i);

Serial.println("floor");

// show(numbers[i]);

}

}

i=1;

// show(numbers[i]);

delay(1000);

// door();

}// end of the buttonState1

//--- end of the first floor codes-----

/*--*/

}

// ------- up function which is for to go up elevator

void up() { // each floor distance where it works to up

37

for(int b=0; b<2000; b++){

// show(numbers[i]);

digitalWrite(motorPin1, LOW);

digitalWrite(motorPin2, LOW);

digitalWrite(motorPin3, LOW);

digitalWrite(motorPin4, HIGH);

delay(3);

digitalWrite(motorPin1, LOW);

digitalWrite(motorPin2, LOW);

digitalWrite(motorPin3, HIGH);

digitalWrite(motorPin4, LOW);

delay(3);

digitalWrite(motorPin1, LOW);

digitalWrite(motorPin2, HIGH);

digitalWrite(motorPin3, LOW);

digitalWrite(motorPin4, LOW);

delay(3);

digitalWrite(motorPin1, HIGH);

digitalWrite(motorPin2, LOW);

digitalWrite(motorPin3, LOW);

digitalWrite(motorPin4, LOW);

delay(3);

}

}

void down() { // each floor distance where it works to down

for(int a=0;a<2000;a++){

// show(numbers[i]);

digitalWrite(motorPin1, HIGH);

digitalWrite(motorPin2, LOW);

digitalWrite(motorPin3, LOW);

digitalWrite(motorPin4, LOW);

delay(3);

digitalWrite(motorPin1, LOW);

digitalWrite(motorPin2, HIGH);

digitalWrite(motorPin3, LOW);

digitalWrite(motorPin4, LOW);

delay(3);

digitalWrite(motorPin1, LOW);

digitalWrite(motorPin2, LOW);

38

digitalWrite(motorPin3, HIGH);

digitalWrite(motorPin4, LOW);

delay(3);

digitalWrite(motorPin1, LOW);

digitalWrite(motorPin2, LOW);

digitalWrite(motorPin3, LOW);

digitalWrite(motorPin4, HIGH);

delay(3);

}

}

	الغلاف الجديد
	لآية
	All Chapter
	Elevator Safety Gear
	Elevator safety gear is the part of elevator, which is the safety protection device for protecting elevator runs safely. Elevator safety gear is operated by elevator over speed governor, the function is that stops the elevator car and holds the elevat...

