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Abstract 

 We introduces commutator estimates for interpolation scales with 

holomorphic structure and give a new and contractive spectral triples 

over the space of connections and study for crossed products. We show 

the noncommutative solenoids and their projective modules and deal 

with Gromov-Hausdorff propinquity and find the spectral triples for 

noncommutative solenoidal spaces from self-coverings. A description 

of certain homological properties with twisting of Schatten classes and 

non-commutative 𝐿𝑝-spaces are obtained. The derivations of 𝜏-

measurable operators and on symmetric quasi-Banach ideals of 

compact operators with continuous derivations in algebras of locally 

measurable operators are inner are studied. The structure of derivations 

and on various algebras of measurable operators for type I and with 

values in ideals of semifinite von Neumann algebras are constructed. 
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 الخلاصة
 

قمنا بادخال تقديرات المبدل لأجل مقاييس الأستكمال مع البناء التحليلي واعطينا 
وق فضاء الاتصالات والضرب الاتجاهي. تم توضيح الثلاثي الطيفي الجديد والأنكماش ف

-موفوتم التعامل مع تقارب قرو الملفات اللولبية غير التبديلية ودراسة مقاسات اسقاطاتها 
ف وأوجدنا الثلاثيات الطيفية لأجل فضاءات الملف اللولبي غير التبديلي من هاوسدور 

ن ينة مع إلتواء عائلات شاتتماثلة معمالذاتية. تم الحصول على وصف خصائص -الغطاءات
وعلى مثاليات  𝜏-لمؤثرات المقيسيةغير التبديلية. تمت دراسة الاشتقاقات  𝐿𝑝-وفضاءات

رات المقيسية مؤثالاشتقاقات المستمرة في جبريات  باناخ المتماثلة لمؤثرات التراص مع-شبه
مقيسة  متنوعة لمؤثرات الموضعية والتى هي داخلة. تم أنشاء بناء الاشتقاقات وعلى جبريات

 ومع قيماً في مثاليات جبريات فون نيومان شبه المنتهية. 𝐼لأجل النوع 
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Introduction 

It is well known that all derivations on a 𝐶∗-algebra are continuous and that 

all derivations on a von Neumann algebra are inner. We some quantitative 

estimates for nonlinear commutators under the complex interpolation methods 

and more general interpolation scales with holomorphic structures.  

A new construction of a semifinite spectral triple on an algebra of 

holonomy loops is presented. For 𝑝 be prime. A noncommutative 𝑝-solenoid is 

the 𝐶∗-algebra of ℤ [
1

𝑝
] × ℤ [

1

𝑝
] twisted by a multiplier of that group, where ℤ [

1

𝑝
] 

is the additive subgroup of the field ℚ of rational numbers whose denominators 

are powers of 𝑝. We survey our classification of these 𝐶∗-algebras up to *-

isomorphism in terms of the multipliers on ℤ [
1

𝑝
] × ℤ [

1

𝑝
], using techniques from 

noncommutative topology. Our work relies in part on writing these C∗- algebras 

as direct limits of rotation algebras, i.e. twisted group 𝐶∗-algebras of the group 

ℤ2, thereby providing a mean for computing the 𝐾-theory of the noncommutative 

solenoids, as well as the range of the trace on the 𝐾0 groups.  

Given a von Neumann algebra 𝑀 denote by 𝑆(𝑀) and 𝐿𝑆(𝑀) respectively 

the algebras of all measurable and locally measurable operators affiliated with 𝑀. 

For a faithful normal semi-finite trace 𝜏 on 𝑀 let 𝑆(𝑀, 𝜏) be the algebra of all τ -

measurable operators from 𝑆(𝑀). We give a complete description of all 

derivations on the above algebras of operators in the case of type I von Neumann 

algebra 𝑀. We show that any derivation of the ∗-algebra 𝐿𝑆(𝑀) of all locally 

measurable operators affiliated with a properly infinite von Neumann algebra 𝑀 

is continuous with respect to the local measure topology 𝑡(𝑀).  

An extension of 𝑍 by 𝑌 is a short exact sequence of quasi-Banach modules 

and homomorphisms 0 → 𝑌 → 𝑋 → 𝑍 → 0. When properly organized all these 

extensions constitute a linear space denoted by Ext𝐵(𝑍, 𝑌), where 𝐵 is the 

underlying (Banach) algebra. We compute the spaces of extensions for the 

Schatten classes when they are regarded in its natural (left) module structure over 

𝐵 = 𝐵(𝐻), the algebra of all operators on the ground Hilbert space. We make the 

first steps into the study of extensions (“twisted sums”) of noncommutative 𝐿𝑝 -

spaces regarded as Banach modules over the underlying von Neumann algebra 

𝑀. Our approach combines Kalton’s description of extensions by centralizers 

(these are certain maps which are, in general, neither linear nor bounded) with a 

general principle, due to Rochberg and Weiss, saying that whenever one finds a 
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given Banach space 𝑌 as an intermediate space in a (complex) interpolation scale, 

one automatically gets a self-extension 0 → 𝑌 → 𝑋 →  𝑌 → 0.  

Connes showed that spectral triples encode (noncommutative) metric 

information. Further, Connes and Moscovici in their metric bundle construction 

showed that, as with the Takesaki duality theorem, forming a crossed product 

spectral triple can substantially simplify the structure. Bellissard, Marcolli and 

Reihani (among other things) studied in depth metric notions for spectral triples 

and crossed product spectral triples for 𝑍-actions, with applications in number 

theory and coding theory. In the work of Connes and Moscovici, crossed products 

involving groups of diffeomorphisms and even of etale groupoids are required. 

We show that noncommutative solenoids are limits, in the sense of the Gromov-

Hausdorff propinquity, of quantum tori. Examples of noncommutative self-

coverings are described, and spectral triples on the base space are extended to 

spectral triples on the inductive family of coverings, in such a way that the 

covering projections are locally isometric. Such triples are shown to converge, in 

a suitable sense, to a semifinite spectral triple on the direct limit of the tower of 

coverings, which we call noncommutative solenoidal space. Some of the self-

coverings described here are given by the inclusion of the fixed point algebra in 

a 𝐶∗-algebra acted upon by a finite abelian group.  

Let 𝐼, 𝐽 be symmetric quasi-Banach ideals of compact operators on an 

infinite-dimensional complex Hilbert space 𝐻, let 𝐽 ∶  𝐼 be the space of multipliers 

from 𝐼 to 𝐽. Obviously, ideals 𝐼 and 𝐽 are quasi-Banach algebras and it is clear 

that ideal 𝐽 is a bimodule for 𝐼. We show that every derivation acting on the ∗-

algebra 𝐿𝑆(𝑀) of all locally measurable operators affiliated with a von Neumann 

algebra 𝑀 is necessarily inner provided that it is continuous with respect to the 

local measure topology. For 𝑀 be a semifinite von Neumann algebra with a 

faithful semifinite normal trace 𝜏 and let 𝐴 be an arbitrary 𝐶∗-subalgebra of 𝑀. 

Assume that 𝐸 is a fully symmetric function space on (0,∞) having Fatou 

property and order continuous norm and 𝐸(𝑀, 𝜏) is the corresponding symmetric 

operator space. We prove that every derivation 𝛿 ∶  𝐴 →  𝐸(𝑀, 𝜏) ∶=  𝐸(𝑀, 𝜏) ∩

𝑀 is inner, strengthening earlier results by Kaftal and Weiss [294]. 
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Chapter 1 

Derivations and Commutator Estimates 

 

 We provide some extensions of the results to the algebra of 𝜏-measurable operators 

affiliated with a von Neumann algebra equipped with a faithful semifinite normal trace 𝜏. 
We also investigate the spectral behaviour of bounded linear operators under some kinds of 

interpolation methods. 

Section (1.1): τ-Measurable Operators 

For 𝐴 be an algebra. A derivation on 𝐴 is a linear map 𝐷:𝐴 → 𝐴 such that 𝐷(𝑥𝑦) =
𝑥𝐷(𝑦) + 𝐷(𝑥)𝑦 for all 𝑥, 𝑦 ∈ 𝐴. A derivation on 𝐴 is said to be inner if there exists an 𝑎 ∈
𝐴 such that 𝐷(𝑥) = 𝑎𝑥 − 𝑥𝑎 for every 𝑥 ∈ 𝐴. The study of derivations on 𝐶∗-algebras is 

well developed ([29], [13] and [30]). It is known that all derivations on a 𝐶∗-algebra are 

continuous ([29], Lemma 4.1.3) and that all derivations on a von Neumann algebra are inner 

([29], Theorem 4.1.6). 

The study of non-commutative integration, initiated by Segal in [31], brought about 

some interesting classes of ∗-algebras consisting of unbounded operators affiliated with a 

von Neumann algebra. Of special importance here is the ∗-algebra of measurable operators 

affiliated with a von Neumann algebra. Several other notions of measurability have arisen 

since Segal published. Of special importance to us is the ∗-algebra �̃� of 𝜏-measurable 

operators affiliated with a (semifinite) von Neumann algebra 𝑀 equipped with a faithful 

semifinite normal trace 𝜏. Equipped with the topology of convergence in measure, �̃� is a 

complete metrizable topological ∗-algebra. 

All of this naturally leads to questions about derivations on �̃�. We ask whether 

derivations on �̃� are continuous and inner. These questions have recently been answered in 

the negative in [7] and [8], namely that if 𝑀 is commutative and the projection lattice of 𝑀 

is not atomic, then �̃� admits at least one discontinuous (hence non-inner) derivation. 

We show that if the projection lattice of 𝑀 is atomic, then all derivations on �̃� are 

continuous. Conversely, we show that if M is a finite type 𝐼 von Neumann algebra and all 

derivations on �̃� are continuous, then the projection lattice of 𝑀 is atomic. 

We also consider the problem as to when all continuous derivations on �̃� are inner. 

This problem is still open and Sh. A. Ayupov et al. have made some progress on this problem 

in [2]. We show that if the range of a derivation on �̃� is contained inside a non-commutative 

𝐿𝑝-space, then it is inner. 

Throughout, 𝑀 denotes a (semifinite) von Neumann algebra equipped with a faithful 

semifinite normal trace 𝜏 on a Hilbert space 𝐻. 

Throughout, 𝒟(𝑥) denotes the domain of an unbounded operator 𝑥. The notation 

𝒰(𝑀) denotes the set of closed densely defined operators affiliated with 𝑀. If 𝑀 is finite, 

then 𝒰(𝑀) is a ∗-algebra ([12]). The ∗-algebra of measurable operators affiliated with a von 

Neumann algebra 𝑀, as defined in [31], will be denoted by 𝑆(𝑀). If 𝑀 is commutative, then 

𝑀 ≅ 𝐿∞(𝑋, 𝛴, 𝜇) and 𝑆(𝑀) ≅ 𝐿0(𝑋, 𝛴, 𝜇) for some localizable measure space (𝑋, 𝛴, 𝜇) 
([31]). 

The projection lattice of a von Neumann algebra 𝑀 is denoted by 𝑀𝑝. We denote the 

centre of 𝑀 by 𝑍(𝑀). 
Definition (1.1.1)[1]: ([19], Definition 2.1) Let 𝐸 be a subspace of 𝐻. We say that 𝐸 is 𝜏-

dense in 𝐻 if for every 𝛿 > 0, there exists a projection 𝑝 ∈ 𝑀 such that 𝑝𝐻 ⊂ 𝐸 and 𝜏(1 −
𝑝) < 𝛿. 
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An unbounded operator 𝑥 is said to be 𝜏-measurable if 𝑥 ∈ 𝒰(𝑀) and 𝐷(𝑥) is 𝜏-dense in 𝐻. 

The set of 𝜏-measurable operators affiliated with 𝑀 will be denoted by �̃�. 

Proposition (1.1.2)[1]: ([19], 𝑝. 271; [31], Corollary 4.1) If 𝜏(1) <∞, then �̃� = 𝒰(𝑀). 
For any finite von Neumann algebra 𝑀, one has 𝑆(𝑀) = 𝒰(𝑀). 
Let 𝜖, 𝛿 > 0 and let �̃�(𝜖, 𝛿) denote the set {𝑥 ∈ �̃�: there is a 𝑝 ∈ 𝑀𝑝 such that 𝑝𝐻 ⊂

𝐷(𝑥), ‖𝑥𝑝‖ ≤ 𝜖, 𝜏(1 − 𝑝) < 𝛿}.  
The sets {�̃�(𝜖, 𝛿): 𝜖, 𝛿 > 0} form a system of basic neighbourhoods of zero for a 

topology 𝛾𝑐𝑚 on �̃�, called the topology of convergence in measure on �̃� ([19], p. 272). 

Furthermore, �̃� is a ∗-algebra under strong sum, strong product, scalar multiplication and 

ordinary adjunction (the strong sum (resp. strong product) of unbounded operators 𝑥 and 𝑦 

is defined to be 𝑥 + 𝑦̅̅ ̅̅ ̅̅ ̅ (resp. 𝑥𝑦̅̅ ̅), where 𝑥 denotes the closure of the operator 𝑥). When 

equipped with the topology of convergence in measure, �̃� is a complete metrizable 

topological ∗-algebra ([19], p. 272). Lastly, 𝑀 is dense in �̃� with respect to the topology of 

convergence in measure ([19], 𝑝. 272). 

If 𝑥, 𝑦 ∈ �̃�, we will write 𝑥 + 𝑦 and 𝑥𝑦 to mean the strong sum and strong product 

respectively of 𝑥 and 𝑦. 

Example (1.1.3)[1]: ([36]) Let 𝑀 be a commutative von Neumann algebra. Then 𝑀 ≅
𝐿∞(𝑋, 𝛴, 𝜇) for some localizable measure space (𝑋, 𝛴, 𝜇), and 𝑀 is equipped with the trace 

defined by 𝜏(𝑓) = (∫  𝑓 𝑑𝜇
𝑋

 for all (almost everywhere) positive 𝑓 ∈  𝐿∞(𝑋, 𝛴, 𝜇). The 

topologies of convergence in measure on 𝐿∞(𝑋, 𝛴, 𝜇) and �̅�∞(𝑋, 𝛴, 𝜇) are the restrictions of 

the topology of convergence in measure on 𝐿0(𝑋, 𝛴, 𝜇) to 𝐿∞(𝑋, 𝛴, 𝜇) and �̅�∞(𝑋, 𝛴, 𝜇) 
respectively. By taking completions, we find that �̃� is topologically ∗-isomorphic to 

�̅�∞(𝑋, 𝛴, 𝜇). 
Theorem (1.1.4)[1]: ([32], Theorem 2.3(i)) Let 𝑝 ∈ 𝑀𝑝 and 𝜏𝑝 = 𝜏|(𝑝𝑀𝑝)+. Then 𝜏𝑝 is a 

faithful semifinite normal trace on 𝑝𝑀𝑝. Furthermore, 𝑝𝑀�̃� = 𝑝�̃�𝑝, where 𝑝𝑀�̃� is the 

algebra of 𝜏𝑝-measurable operators affiliated with 𝑝𝑀𝑝. 

Proposition (1.1.5)[1]: ([32], Examples 2.2(3)) The following statements are equivalent. 

(i) �̃� = 𝑀. 

(ii) inf {𝜏(𝑝) ∶ 0 ≠ 𝑝 ∈ 𝑀𝑝} > 0. 

(iii) The topology of convergence in measure coincides with the norm topology. 

Let 𝑥 ∈ �̃�. The generalized singular function ([19], Definition 2.1) of 𝑥, denoted by 

𝜇𝑡(𝑥), is defined by 

𝜇𝑡(𝑥) = inf {‖𝑥𝑝‖: 𝑝 ∈ 𝑀𝑝, 𝑝𝐻 ⊂ 𝐷(𝑥), 𝑎𝑛𝑑 𝜏(1 − 𝑝) ≤ 𝑡}, 𝑡 > 0. 

Proposition (1.1.6)[1]: ([19], Lemma 2.5) Let 𝑥, 𝑦, 𝑧 ∈ �̃�. The following statements hold 

for every 𝑡 > 0. 

(i) 𝜇𝑡(𝑥𝑦𝑧)  ≤ ‖𝑥‖𝜇𝑡(𝑦)‖𝑧‖, where the cases ‖𝑥‖ =∞ and ‖𝑧‖ =∞ are allowed. 

(ii) 𝜇𝑡(𝑥
∗) = 𝜇𝑡(𝑥). 

Theorem (1.1.7)[1]: ([37], Theorem 2.1) Let 𝐼 be a 𝛾𝑐𝑚-closed two-sided ideal of �̃�. Then 

𝐼 ∩ 𝑀 is a norm closed two-sided ideal of 𝑀 and 𝐼 = 𝐼 ∩ 𝑀̅̅ ̅̅ ̅̅ ̅𝛾𝑐𝑚. 

An atom of 𝑀 is a nonzero projection in 𝑀 having no nonzero proper subprojections in 𝑀. 

We say that 𝑀𝑝 is atomic if for every nonzero 𝑝 ∈ 𝑀𝑝, there exists an atom 𝑞 ∈ 𝑀𝑝 such 

that 𝑞 ≤ 𝑝.  

For 0 < 𝑝 <∞, we define 𝐿𝑝(𝑀, 𝜏) to be the set of all 𝑥 ∈ �̃� such that 
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‖𝑥‖𝑝 = (∫ 𝜇𝑡(𝑥)
𝑝 𝑑𝑡

∞

0

)

1
𝑝

< ∞ 

(a special case of [16], Definition 4.1). In addition, we put 𝐿∞(𝑀, 𝜏) = 𝑀 and denote by 

‖∙‖∞ the usual operator norm defined on 𝑀. It is well known that 𝐿𝑝(𝑀, 𝜏) is a Banach space 

under ‖∙‖𝑝 whenever 1 ≤ 𝑝 ≤∞ ([16], Theorem 4.5). Also, whenever 1 ≤ 𝑝 ≤∞
, 𝐿∞(𝑀, 𝜏) is a Banach 𝑀-module ([38], Proposition 2.5). If 1 < 𝑝 <∞, then 𝐿𝑝 is reflexive 

(this is a special case of [17], Corollary 5.16). The proof of the following lemma follows 

directly from Proposition (1.1.6). 

Lemma (1.1.8)[1]: Let 1 ≤ 𝑝 <∞ and let 𝑢 ∈ 𝑀 be a unitary operator. Then ‖𝑢∗𝑥𝑢‖𝑝 =

‖𝑥‖𝑝 for every 𝑥 ∈ 𝐿𝑝(𝑀, 𝜏). 

There are other definitions of non-commutative 𝐿𝑝-spaces which we will not discuss, see 

[19], 𝑝. 271, and [38]. These definitions are equivalent to the one given above. 

The separating space 𝑆(𝐷) of a derivation 𝐷 on �̃� is defined to be the set  {𝑦 ∈ �̃�: 
there is a sequence (𝑥𝑛) in �̃� such that 𝑥𝑛 → 0 and 𝐷(𝑥𝑛) → 𝑦} with respect to the topology 

of convergence in measure on �̃�. Since �̃� is a complete metrizable topological ∗-algebra in 

the topology of convergence in measure, the closed graph theorem tells us that 𝐷 is 𝛾𝑐𝑚 −
𝛾𝑐𝑚 continuous if and only if 𝑆(𝐷) = {0}. 

Every derivation on a 𝐶∗-algebra is continuous and that every derivation on a von 

Neumann algebra is inner. The following result demonstrates that these results do not carry 

over to algebras of measurable operators. 

Theorem (1.1.9)[1]: (A.F. Ber, V.I. Chilin and F.A. Sukochev). ([7], Theorem 3, and [8], 

Theorem 3.4) Let 𝑀 be a commutative von Neumann algebra. Then 𝑆(𝑀) admits a nonzero 

derivation if and only if 𝑀𝑝 is not atomic. 

Every commutative von Neumann algebra is finite, the following corollary follows 

from Proposition (1.1.2) and Theorem (1.1.9). 

Corollary (1.1.10)[1]: Let 𝑀 be a commutative von Neumann algebra with a faithful finite 

normal trace. Then �̃� admits a nonzero derivation if and only if 𝑀𝑝 is not atomic. 

Note that if 𝑀 is commutative, then a derivation on �̃� is 𝛾𝑐𝑚 − 𝛾𝑐𝑚 continuous if and 

only if it is zero ([2], p. 11).  

Using Theorem (1.1.9) and the fact that every finite type I von Neumann algebra is a 

direct sum of finite matrix algebras over commutative von Neumann algebras ([29], 

Theorems 2.3.2 and 2.3.3), one can prove the following result. 

Theorem (1.1.11)[1]: ([9], Theorem 5) If 𝑀 is a finite type 𝐼 von Neumann algebra and 

every derivation 𝐷: 𝑆(𝑀) → 𝑆(𝑀) is inner, then 𝑀𝑝 is atomic. 

The following corollary is an immediate consequence of Proposition (1.1.2) and Theorem 

(1.1.11). 

Corollary (1.1.12)[1]: Let 𝑀 be a type 𝐼 von Neumann algebra with a faithful finite normal 

trace 𝜏. If every derivation 𝐷: �̃� → �̃� is inner, then 𝑀𝑝 is atomic. 

Our next result was motivated by Corollary (1.1.10) and the remark immediately thereafter. 

Theorem (1.1.13)[1] (see[35]): If 𝑀𝑝 is atomic, then all derivations on �̃� are 𝛾𝑐𝑚 − 𝛾𝑐𝑚 

continuous. 

Proof. Let 𝐷 be a derivation on �̃� and 𝑞 an atomic projection in 𝑀. Let 𝑦 ∈ 𝑆(𝐷). Then 

there exists a sequence 𝑥𝑛 in �̃� with 𝑥𝑛 → 0 (𝛾𝑐𝑚) and 𝐷(𝑥𝑛) → 𝑦 (𝛾𝑐𝑚). Therefore 

𝐷(𝑞𝑥𝑛𝑞) = 𝑞𝐷(𝑥𝑛𝑞) + 𝐷(𝑞)𝑥𝑛𝑞 = 𝑞𝑥𝑛𝐷(𝑞) + 𝑞𝐷(𝑥𝑛)𝑞 + 𝐷(𝑞)𝑥𝑛𝑞 → 𝑞𝑦𝑞 (𝛾𝑐𝑚). 
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By Theorem (1.1.4), it follows that 𝑞 �̃�𝑞 = 𝑞𝑀�̃�. Since 𝑞 is an atomic projection, 𝑞𝑀𝑞 =
ℂ𝑞. 

We show that 𝑞𝑀𝑞 = 𝑞𝑀�̃�. Since 𝑞 is an atomic projection, it is the only nonzero projection 

in 𝑞𝑀𝑞. Hence 

inf {𝜏(𝑝): 𝑝 a nonzero projection in 𝑞𝑀𝑞} = 𝜏(𝑞) > 0, 
since 𝑞 ≠ 0 and the trace 𝜏 is faithful. Therefore, by Proposition (1.1.5), 𝑞𝑀𝑞 = 𝑞𝑀�̃�. 

Thus 𝑞�̃�𝑞 = 𝑞𝑀�̃� = 𝑞𝑀𝑞 = ℂ𝑞. Since 𝑥𝑛 → 0 (𝛾𝑐𝑚), 𝑞𝑥𝑛𝑞 → 0 (𝛾𝑐𝑚). 
Since 𝑞�̃�𝑞 is finite-dimensional, 𝐷|𝑞�̃�𝑞 is 𝛾𝑐𝑚 − 𝛾𝑐𝑚 continuous, implying that 

𝐷(𝑞𝑥𝑛𝑞) → 0 (𝛾𝑐𝑚). Recall that 𝐷(𝑞𝑥𝑛𝑞) →  𝑞𝑦𝑞 (𝛾𝑐𝑚). Therefore 𝑞𝑦𝑞 = 0. This is true 

for every atomic projection 𝑞 in 𝑀 and for every 𝑦 ∈ 𝑆(𝐷). 
We show next that 𝑆(𝐷) has no atomic projections of 𝑀. Suppose that 𝑆(𝐷) has at 

least one atomic projection 𝑞0 of 𝑀. Then, from what we have proved above, 𝑞0𝑞0𝑞0 = 0, 

i.e., 𝑞0 = 0. This is a contradiction since 𝑞0 = 0. Therefore 𝑆(𝐷) has no atomic projections 

of 𝑀. 

For a contradiction, let us assume that 𝑆(𝐷) ≠ {0}. By Theorem (1.1.7), and the fact 

that 𝑆(𝐷) is a 𝛾𝑐𝑚-closed two-sided ideal of �̃�, it follows that 𝑆(𝐷) ∩ 𝑀 is a norm closed 

two-sided ideal of 𝑀. Furthermore, 𝑆(𝐷) ∩ 𝑀 ≠ {0} since, by Theorem (1.1.7), 

𝑆(𝐷) ∩ 𝑀̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝛾𝑐𝑚 = 𝑆(𝐷) ≠ {0}.  
Therefore 𝑆(𝐷) ∩ 𝑀 has at least one nonzero projection 𝑝. Since 𝑀𝑝 is atomic, there exists 

an atomic projection 𝑞0 of 𝑀 such that 0 < 𝑞0 ≤ 𝑝. So 𝑞0 = 𝑞0𝑝 ∈ 𝑆(𝐷) ∩ 𝑀 because 𝑞0 ∈
𝑀, 𝑝 is in 𝑆(𝐷), and 𝑆(𝐷) ∩ 𝑀 is a two-sided ideal of 𝑀. This is a contradiction since 𝑆(𝐷) 
has no atomic projections of 𝑀. Hence 𝑆(𝐷) = {0}, and so 𝐷 is 𝛾𝑐𝑚 − 𝛾𝑐𝑚 continuous.  

In light of Corollary (1.1.10) and the remark thereafter, it would be interesting to 

know if the converse of Theorem (1.1.13) holds. We now solve this problem in the 

affirmative for finite type 𝐼 von Neumann algebras, thereby extending Corollary (1.1.12). 

For this, we need the following four lemmas. The proof of [9], Theorem 5 (i.e., Theorem 

3.3), relies strongly on [12], which itself depends on the fact that 𝑆(𝑀) is a regular algebra 

whenever 𝑀 is finite. 

In general, �̃� is not regular even if 𝑀 is commutative: A finite von Neumann algebra 

𝑀 can be enlarged to a regular algebra 𝒰(𝑀), the algebra of closed densely defined 

operators affiliated with 𝑀. By [11], p. 211, 𝒰(𝑀) is also the smallest regular algebra to 

contain 𝑀, in the sense that the only regular subalgebra of 𝒰(𝑀) to contain 𝑀 is 𝒰(𝑀) 
itself. Thus, if 𝑀 is commutative and �̃� ≠ 𝒰(𝑀), then �̃� is not regular. 

Lemma (1.1.14)[1]: Let 𝑝 be a central projection of 𝑀 and 𝐷 a derivation on 𝑝𝑀�̃�. Then 𝐷 

can be extended to a derivation �̅� on �̃�. 

Proof. Let �̅�(𝑥) = 𝐷(𝑝𝑥𝑝) for every 𝑥 ∈ �̃�. Since 𝑝 is a central projection, 𝐷(𝑝) = 0. 

Using this, it is easily verified that �̅� is a derivation on �̃� extending 𝐷.  
For 𝑝 ∈ 𝑀𝑝, we denote by 𝑐(𝑝) the least central projection majorizing 𝑝, and we call 𝑐(𝑝) 

the central support of 𝑝. If 𝑝, 𝑞 ∈ 𝑀𝑝, then 𝑞𝑥𝑝 = 0 for every 𝑥 ∈ 𝑀 if and only if 

𝑐(𝑝)𝑐(𝑞) = 0 ([33], Corollary V.1.7). This is needed in the proof of the following known 

result, which we give for completeness. 

Lemma (1.1.15)[1]: ([21], Theorem 2.1) If 𝑞 is an atom in a von Neumann algebra 𝑀, then 

the central support 𝑐(𝑞) of 𝑞 is an atom in 𝑍(𝑀). 
Proof. Let 𝑝 be a central projection of 𝑀 such that 0 < 𝑝 ≤ 𝑐(𝑞). Then 𝑞𝑝 ∈ 𝑀𝑝 and 𝑞𝑝 ≤

𝑞. Since 𝑞 is an atom, it follows that 𝑞𝑝 = 0 or 𝑞𝑝 = 𝑞. 
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We show that 𝑞𝑝 ≠ 0, so suppose that 𝑞𝑝 = 0. Then 𝑞𝑥𝑝 = 𝑞𝑝𝑥 = 0 for every 𝑥 ∈ 𝑀, and 

so 𝑐(𝑞)𝑐(𝑝) = 0, i.e., 𝑝𝑐(𝑞) = 𝑐(𝑞)𝑝 = 0. Since 𝑝 ≤ 𝑐(𝑞), it follows that 𝑝 = 0. This is a 

contradiction since 0 ≠ 𝑝. Thus 𝑞𝑝 ≠ 0. 

Therefore 𝑞𝑝 = 𝑞, implying that 𝑞 = 𝑞𝑝 ≤ 𝑝. Hence 𝑐(𝑞) ≤ 𝑝, since 𝑝 is a central 

projection majorizing 𝑞, and thus 𝑐(𝑞) = 𝑝, implying that 𝑐(𝑞) is an atom in 𝑍(𝑀). 
Lemma (1.1.16)[1]: Let (𝑝𝛼) be a family of central orthogonal projections in 𝑀 such that 

 ∑ 𝑝𝛼𝛼 = 1. If (𝑝𝛼𝑀𝑝𝛼)𝑝 is atomic for every 𝛼, then 𝑀𝑝 is atomic. 

Proof. Suppose (𝑝𝛼𝑀𝑝𝛼)𝑝 is atomic for every 𝛼. Let 0 < 𝑝 ∈ 𝑀𝑝. Since 𝑝𝛼 is a central 

projection for every 𝛼, it follows that 𝑝𝑝𝛼 ∈ 𝑀𝑝 for every 𝛼. By  hypothesis,  ∑ 𝑝𝛼𝛼 = 1, 

and so  ∑ 𝑝𝑝𝛼𝛼 = 𝑝. Since 𝑝 ≠ 0, we have that 𝑝𝑝𝛼 ≠ 0 for some 𝛼. It is easily verified 

that 𝑝 ≥ 𝑝𝑝𝛼  and that 𝑝𝑝𝛼 ≤ 𝑝𝛼. Therefore, 𝑝𝑝𝛼 is a projection in 𝑝𝛼𝑀𝑝𝛼 and, by 

hypothesis, there exists an atom 𝑞𝛼 in 𝑝𝛼𝑀𝑝𝛼  such that 𝑝 ≥ 𝑝𝑝𝛼 ≥ 𝑞𝛼. Clearly, 𝑞𝛼 is also 

an atom in 𝑀. This completes the proof. 

For the next lemma, we recall the notion of a direct sum of von Neumann algebras 

([15], 𝑝𝑝. 20–21). For each 𝛼, let 𝐴𝛼  be a von Neumann algebra on the Hilbert space 𝐻𝛼, 

and let ‖∙‖𝛼 denote the norm on 𝐴𝛼. If 𝑥𝛼 ∈ 𝐴𝛼 for each 𝛼, and 𝑠𝑢𝑝𝛼‖𝑥𝛼‖𝛼 <∞, define a 

bounded linear operator 𝑥 on the direct sum 𝐻 of the family of Hilbert spaces (𝐻𝛼) by 

𝑥(𝜉)  =  (𝑥𝛼(𝜉𝛼)), where 𝜉 = (𝜉𝛼) ∈ 𝐻. The direct sum 𝐴 of the von Neumann algebras 

𝐴𝛼 is defined to be the set of all such operators 𝑥, and we write 𝐴 = ⊕𝛼 𝐴𝛼 . It can be verified 

that 𝐴 is a von Neumann algebra on 𝐻 with coordinate-wise operations, and norm 𝑥 ⟼
𝑠𝑢𝑝𝛼‖𝑥𝛼‖𝛼. 

Lemma (1.1.17)[1]: Let 𝑀 = 𝐴 ⊗̅̅̅  ℬ(𝐻), where 𝐴 is a commutative von Neumann algebra 

and 𝐻 a finite-dimensional Hilbert space (so 𝑀 is a type 𝐼 von Neumann algebra). If 𝐴𝑝 is 

atomic, so is 𝑀𝑝. 

Proof. Since 𝐴 is commutative and 𝐴𝑝 is atomic, 𝐴 ≅ 𝐿∞(𝑋, 𝛴, 𝜇) for some localizable 

atomic measure space (𝑋, 𝛴, 𝜇). Therefore we can find a disjoint family of atoms (𝐴𝜆 ∶ 𝜆 ∈
𝛬) satisfying 𝑋 = ∪ 𝐴𝜆. Recall that measurable functions on atoms are constant. Hence 𝐴 ≅
𝑙∞(𝛬), where 𝑙∞(𝛬) is the space of all bounded nets in ℂ indexed by 𝛬. Hence, by [15], 𝑝. 

29,  

𝑀 = 𝐴 ⊗̅̅̅  𝐵(𝐻) ≅ 𝑙∞(𝛬) ⊗̅̅̅ 𝐵(𝐻) = ⊕𝛼∈𝛬 (ℂ𝛼 ⊗̅̅̅ 𝐵(𝐻)) ≅⊕𝛼∈𝛬 𝐵(𝐻𝛼), 
where 𝐻𝛼 = 𝐻 and ℂ𝛼 = ℂ for every 𝛼 ∈ 𝛬. Every (𝐵(𝐻𝛼))𝑝 is atomic, and one can find a 

family of central orthogonal projections (𝑝𝛼) in 𝑀 such that ∑ 𝑝𝛼𝛼 = 1 and 𝑝𝛼𝑀𝑝𝛼 ≅
𝐵(𝐻𝛼), namely 𝑝𝛼 = 1𝛼, where 1𝛼 denotes the identity operator on 𝐻𝛼, for every 𝛼 ∈  𝛬. 

By Lemma (1.1.16), 𝑀𝑝 is atomic. 

If 𝑀 is a finite von Neumann algebra, then 𝑀 can be imbedded into the maximal ring 

of right quotients 𝑄𝑀 of 𝑀 ([12]). Furthermore,  𝒰(𝑀) ≅ 𝑄𝑀([12]). Therefore, if 𝐴 and 𝐵 

are ∗-isomorphic finite von Neumann algebras, then 𝒰(𝐴) ≅ 𝒰(𝐵). In particular, if 𝐴 and 

𝐵 are equipped with faithful finite normal traces, then �̅� = 𝒰(𝐴) ≅ 𝒰(𝐵) = �̅�. This is 

needed in the proof of our next proposition. 

If 𝐴 is a von Neumann algebra with a faithful finite normal trace, then 𝑀𝑛(𝐴)̃ = 𝑀𝑛(�̅�) for 

every 𝑛 ∈ 𝑁 ([12], Lemma 2). Let (𝑎𝑖,𝑗
𝑚  ) be a sequence in 𝑀𝑛(�̅�) and (𝑎𝑖,𝑗) ∈ 𝑀𝑛(�̅�). Then 

(𝑎𝑖,𝑗
𝑚 ) → (𝑎𝑖,𝑗) in measure as 𝑚 →∞ if and only if 𝑎𝑖,𝑗

𝑚 → 𝑎𝑖,𝑗 as 𝑚 →∞ for every 𝑖, 𝑗 (this 

is an immediate consequence of [18], Lemma 2.1). 

The proof of the following proposition is a slight modification of the proof [9], Theorem 5, 

and we give the proof for completeness. It is a special case of Theorem (1.1.20). 
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Proposition (1.1.18)[1]: Suppose that 𝑀 is a type 𝐼 von Neumann algebra with a faithful 

finite normal trace. If all derivations on �̃� are 𝛾𝑐𝑚 − 𝛾𝑐𝑚 continuous, then 𝑀𝑝 is atomic. 

Proof. Since 𝑀 is a finite type 𝐼 von Neumann algebra, there exists a sequence of central 

projections (𝑝𝑛) such that 𝑀 = ⊕𝑛=1
∞ 𝑝𝑛𝑀𝑝𝑛, and 𝑝𝑛𝑀𝑝𝑛 ≅ 𝑀𝑘𝑛(𝐴𝑛), where 𝐴𝑛 is a 

commutative von Neumann algebra for every 𝑛 ([29], Theorems 2.3.2 and 2.3.3), and the 

𝑘𝑛 are integers. Assume that 𝑀𝑝 is not atomic. Then, by Lemmas (1.1.16) and (1.1.17), it 

follows that (𝐴𝑟)𝑝 is not atomic for some 𝑟 ∈ ℕ. By Corollary (1.1.10), there exists a 

derivation 𝛿 on 𝐴�̃� which is not 𝛾𝑐𝑚 − 𝛾𝑐𝑚 continuous. 

We show that there exists a derivation 𝐷𝑟 on 𝑀𝑘𝑟(𝐴𝑟)
̃ = 𝑀𝑘𝑟(𝐴�̃�) which is not 𝛾𝑐𝑚 −

𝛾𝑐𝑚 continuous. Define 𝐷𝑟 to be the linear map defined by 𝐷((𝑎𝑖,𝑗)) = (𝛿(𝑎𝑖,𝑗)) for every 

(𝑎𝑖,𝑗) ∈ 𝑀𝑘𝑟(𝐴�̃�). It is easily verified that 𝐷𝑟 is a derivation. Since 𝛿 is not 𝛾𝑐𝑚 − 𝛾𝑐𝑚 

continuous, there exists a sequence (𝑎𝑚) in 𝐴�̃� such that 𝑎𝑚 → 0 in measure and 𝛿(𝑎𝑚) 
does not converge to zero in measure. Let (𝑎𝑖,𝑗

𝑚 ) be the sequence in 𝑀𝑘𝑟(𝐴𝑟) defined as 

𝑎𝑖,𝑗
𝑚 = 𝑎𝑚 for every 𝑚 and for all 𝑖, 𝑗. By the preceding remarks, (𝑎𝑖,𝑗

𝑚 ) → (𝑏𝑖,𝑗) as 𝑚 → ∞, 

where 𝑏𝑖,𝑗 = 0 for all 𝑖, 𝑗. Also, by the preceding remarks, 𝐷𝑟((𝑎𝑖,𝑗
𝑚)) = (𝛿(𝑎𝑖,𝑗

𝑚)) does not 

converge to 𝐷𝑟((𝑏𝑖,𝑗)) = (𝛿(𝑏𝑖,𝑗)) in measure. Therefore, 𝐷𝑟 is not 𝛾𝑐𝑚 − 𝛾𝑐𝑚 continuous.  

Since 𝑝𝑟𝑀𝑝𝑟 ≅ 𝑀𝑘𝑟(𝐴𝑟) and the traces of 𝑝𝑟𝑀𝑝𝑟  and 𝑀𝑘𝑟(𝐴𝑟) are finite, it follows that the 

algebra 𝑀𝑘𝑟(𝐴�̃�) = 𝑀𝑘𝑟(𝐴𝑟)
̃  is isomorphic to 𝑝𝑟𝑀𝑝𝑟̃ , and this isomorphism is also 𝛾𝑐𝑚 −

𝛾𝑐𝑚 bicontinuous (this follows from [25], Proposition 4.7). Therefore, the derivation 𝐷𝑟 can 

be identified with a derivation on 𝑝𝑟𝑀𝑝𝑟̃  which is not 𝛾𝑐𝑚 − 𝛾𝑐𝑚 continuous. By Lemma 

(1.1.14), 𝐷𝑟 can be extended to a derivation 𝐷 on �̃�. It follows that 𝐷 is not 𝛾𝑐𝑚 − 𝛾𝑐𝑚 

continuous. This contradicts the hypothesis, implying that 𝑀𝑝 is atomic. 

The following proposition is the first part of the proof of Theorem (1.1.20). 

Proposition (1.1.19)[1]: Let 𝑀 be a finite type 𝐼 von Neumann algebra. If all derivations 

on �̃� are 𝛾𝑐𝑚 − 𝛾𝑐𝑚 continuous, then (𝑍(𝑀))𝑝 is atomic. 

Proof. Suppose that 𝑀 is a finite type 𝐼 von Neumann algebra such that all derivations on 

�̃� are 𝛾𝑐𝑚 − 𝛾𝑐𝑚 continuous. Since 𝑀 is a finite von Neumann algebra, 𝜏|𝑍(𝑀) is semifinite 

([15], Proposition 10, 𝑝. 12). 

Let 𝑞 be nonzero central projection such that 𝜏(𝑞) <∞. Let 𝐷 be a derivation on 

𝑞𝑀�̃�. By Lemma (1.1.14), 𝐷 can be extended to a derivation �̅� on �̃�. By hypothesis, �̅� is 

𝛾𝑐𝑚 − 𝛾𝑐𝑚 continuous, and thus, 𝐷 is 𝛾𝑐𝑚 − 𝛾𝑐𝑚 continuous. Since 𝑞𝑀𝑞 is a type 𝐼 von 

Neumann algebra (on the Hilbert space 𝑞𝐻) with finite trace, it follows from Proposition 

(1.1.19) that (𝑞𝑀𝑞)𝑝 is atomic. Therefore there exists an atom 𝑞0 in 𝑞𝑀𝑞 such that 𝑞 ≥ 𝑞0. 

It is clear that 𝑞0 is also an atom in 𝑀.  

Let 𝑝 ∈ 𝑍(𝑀)𝑝. Using again the fact that 𝜏|𝑍(𝑀) is semifinite, it follows that there exists a 

nonzero 𝑝1 ∈ 𝑍(𝑀)𝑝 such that 𝜏(𝑝1) <∞ and 𝑝 ≥ 𝑝1. By the previous paragraph, there is 

an atom 𝑝2 in 𝑀 such that 𝑝1 ≥ 𝑝2. Hence every central projection majorizes an atom of 𝑀. 

By Lemma (1.1.15), 𝑐(𝑝2) is an atom in 𝑍(𝑀). Since 𝑝 ∈ 𝑍(𝑀)𝑝, it follows that 𝑝 ≥ 𝑐(𝑝2). 

Thus 𝑍(𝑀)𝑝 is atomic. 

 Theorem (1.1.20)[1]: Let 𝑀 be a finite type 𝐼 von Neumann algebra. If all derivations on 

�̃� are 𝛾𝑐𝑚 − 𝛾𝑐𝑚 continuous, then 𝑀𝑝 is atomic. 

Proof. Since 𝑀 is a finite type 𝐼 von Neumann algebra, we can write 𝑀 ≅⊕𝑛=1
∞ 𝑀𝑛, where 

every𝑀𝑛 is a type 𝐼𝑛 algebra such that 𝑀𝑛 ≅ 𝑍(𝑀𝑛) ⊗̅̅̅ 𝐵(𝐻𝑛), where 𝐻𝑛 is a finite-



7 

dimensional Hilbert space for each 𝑛 ([29], Theorems 2.3.2 and 2.3.3). To be more precise, 

one can find a sequence of central projections (𝑝𝑛) in 𝑀 such that, for every n, 𝑀𝑛 ≅
𝑝𝑛𝑀𝑝𝑛 and  ∑ 𝑝𝑛

∞
𝑛=1 = 1. By Theorem (1.1.4), 𝑀�̃� = 𝑝𝑛 �̃�𝑝𝑛 for every 𝑛. 

Consider now a fixed 𝑛 and let 𝐷𝑛 be a derivation on 𝑀�̃�. It follows from Lemma (1.1.14) 

that 𝐷𝑛 can be extended to a derivation 𝐷𝑛̅̅̅̅  on �̃�. By hypothesis, 𝐷𝑛̅̅̅̅  is 𝛾𝑐𝑚 − 𝛾𝑐𝑚 

continuous, and so the same holds for 𝐷𝑛. Hence all derivations on 𝑀�̃� are 𝛾𝑐𝑚 − 𝛾𝑐𝑚 

continuous. This holds for every 𝑛. By Proposition (1.1.19), 𝑍(𝑀𝑛)𝑝 is atomic for every 𝑛. 

It is an immediate consequence of Lemma (1.1.20), and the fact that 𝑀𝑛 ≅ 𝑍(𝑀𝑛) ⊗̅̅̅ 𝐵(𝐻) 
for every 𝑛, that every (𝑀𝑛)𝑝 is atomic. Finally, by Lemma (1.1.16), 𝑀𝑝 is atomic. 

The following example demonstrates that the converse of Theorem (1.1.13) does in general 

not hold. 

Example (1.1.21)[1]: Let 𝐴 = 𝐿∞([0, 1]),𝐻 an infinite-dimensional Hilbert space, and 

𝑀 = 𝐴 ⊗̅̅̅ 𝐵(𝐻). Then 𝑀 is a type 𝐼∞ von Neumann algebra. 

Now 

𝑍(𝑀) = 𝑍(𝐴 ⊗̅̅̅ 𝐵(𝐻)) = 𝑍(𝐴) ⊗̅̅̅ 𝑍(𝐵(𝐻)) = 𝐴 ⊗̅̅̅ ℂ1 ≅ 𝐴 = 𝐿∞([0, 1]). 
Therefore 𝑍(𝑀) has no atoms. Therefore, by Lemma (1.1.15), 𝑀 has no atoms, implying 

that 𝑀𝑝 is not atomic. Recently, 𝐹. 𝐴. Sukochev, 𝐴. 𝐹. Ber and 𝐵. de Pagter proved that all 

derivations on �̃� are 𝛾𝑐𝑚 − 𝛾𝑐𝑚 continuous ([10]). This result has also been proved in [4]. 

We have already seen that derivations on 𝑀 ̃need not be continuous and not inner. Therefore, 

the following problem presents itself. 

Lemma (1.1.22)[1]: ([6]) If 𝐷 is a 𝛾𝑐𝑚 − 𝛾𝑐𝑚 continuous derivation on �̃� such that 𝐷(𝑀) ⊂
𝑀, then there exists 𝑎 ∈ 𝑀 such that 𝐷(𝑥) = 𝑎𝑥 − 𝑥𝑎 for all 𝑥 ∈ �̃�, i.e., 𝐷 is inner. 

Proof. Let 𝐷 be a derivation as in the hypothesis. Then, since 𝐷(𝑀) ⊂ 𝑀, there exists 𝑎 ∈
𝑀 such that 𝐷(𝑥) = 𝑎𝑥 − 𝑥𝑎 for every 𝑥 ∈ 𝑀 ([29], Theorem 4.1.6). 

Since 𝐷 is continuous and 𝑀 is dense in �̃�, it follows that 𝐷(𝑥) = 𝑎𝑥 − 𝑥𝑎 for every 

𝑥 ∈ �̃�, i.e., 𝐷 is inner.  

Derivations on �̃� have recently also been studied in [3] and [4]. 

Proposition (1.1.23)[1]: Let 𝐷: �̃� → �̃� be a derivation. If 𝐷|𝑀 is 𝛾𝑐𝑚 − 𝛾𝑐𝑚 continuous, 

then 𝐷 is 𝛾𝑐𝑚 − 𝛾𝑐𝑚 continuous. 

Proof. Every derivation on a ∗-algebra 𝐴 can be written as a linear combination of two ∗-

derivations ([13], p. 229). Therefore, we may assume without loss of generality that 𝐷 is a 

∗-derivation. It suffices to show that 𝑆(𝐷) = {0}. Let 𝑦 ∈ 𝑆(𝐷). Then there is a sequence 

(𝑥𝑛) in �̃� such that 𝑥𝑛 → 0 (𝛾𝑐𝑚) and 𝐷(𝑥𝑛) → 𝑦 (𝛾𝑐𝑚). Since 𝑥𝑛(1 + 𝑥𝑛
∗𝑥𝑛)

−1 is 

affiliated with 𝑀 for every 𝑛, it follows that 𝑥𝑛(1 + 𝑥𝑛
∗𝑥𝑛)

−1 ∈ 𝑀 for every 𝑛. Since 

inversion is continuous on �̃� in the measure topology ([34]) and 1 + 𝑥𝑛
∗𝑥𝑛 → 1(𝛾𝑐𝑚), it is 

immediate that 𝑥𝑛(1 + 𝑥𝑛
∗𝑥𝑛)

−1 → 0 (𝛾𝑐𝑚). Observe that 

𝐷(𝑥𝑛(1 + 𝑥𝑛
∗𝑥𝑛)

−1) = 𝑥𝑛𝐷((1 + 𝑥𝑛
∗𝑥𝑛)

−1) + 𝐷(𝑥𝑛)(1 + 𝑥𝑛
∗𝑥𝑛)

−1, 
and 

0 = 𝐷(1) = 𝐷((1 + 𝑥𝑛
∗𝑥𝑛)(1 + 𝑥𝑛

∗𝑥𝑛)
−1) 

= (1 + 𝑥𝑛
∗𝑥𝑛)𝐷((1 + 𝑥𝑛

∗𝑥𝑛)
−1) + 𝐷(1 + 𝑥𝑛

∗𝑥𝑛)(1 + 𝑥𝑛
∗𝑥𝑛)

−1. 
Therefore 

(1 + 𝑥𝑛
∗𝑥𝑛)𝐷((1 + 𝑥𝑛

∗𝑥𝑛)
−1) = −𝐷(1 + 𝑥𝑛

∗𝑥𝑛)(1 + 𝑥𝑛
∗𝑥𝑛)

−1,  
implying that 

𝐷((1 + 𝑥𝑛
∗𝑥𝑛)

−1) = −(1 + 𝑥𝑛
∗𝑥𝑛)

−1𝐷(1 + 𝑥𝑛
∗𝑥𝑛)(1 + 𝑥𝑛

∗𝑥𝑛)
−1 

= −(1 + 𝑥𝑛
∗𝑥𝑛)

−1𝐷(𝑥𝑛
∗𝑥𝑛)(1 + 𝑥𝑛

∗𝑥𝑛)
−1 
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= −(1 + 𝑥𝑛
∗𝑥𝑛)

−1(𝑥𝑛
∗𝐷(𝑥𝑛) + 𝐷(𝑥𝑛)

∗𝑥𝑛)(1 + 𝑥𝑛
∗𝑥𝑛)

−1 
→ −1−1(0. 𝑦 + 𝑦 ∗ .0)1−1(𝛾𝑐𝑚) 

=  0 
by continuity of inversion. Hence 𝐷(𝑥𝑛(1 + 𝑥𝑛

∗𝑥𝑛)
−1) → 𝑦 (𝛾𝑐𝑚). Let 𝑦𝑛 = 𝑥𝑛(1 +

𝑥𝑛
∗𝑥𝑛)

−1 for every 𝑛. Then (𝑦𝑛) is a sequence in 𝑀 such that 𝑦𝑛 → 0 (𝛾𝑐𝑚) and 𝐷(𝑦𝑛) →
𝑦 (𝛾𝑐𝑚). By hypothesis, 𝑦 = 0, implying that 𝑆(𝐷) = {0}. 
In what follows, we will need the following result. 

Theorem (1.1.24)[1]: (Ryll-Nardzewski fixed point theorem). ([26], 𝑝. 444) Suppose that 

𝑋 is a locally convex Hausdorff space and ∅ ≠ 𝐾 ⊂ 𝑋 a weakly compact convex subset of 

𝑋. Let ℱ:𝐾 → 𝐾 be a non-contracting semigroup of weakly continuous affine maps (here, 

non-contracting means that for every 𝑥, 𝑦 ∈ 𝐾 with 𝑥 ≠ 𝑦, there exists a seminorm 𝑝 such 

that 𝑖𝑛𝑓𝜙∈ℱ  𝑝(𝜙(𝑥) − 𝜙(𝑦)) > 0). Then there exists 𝑥 ∈ 𝐾 such that 𝑥 is a fixed point of 

ℱ. 

The proof of the next result is similar to that of [22], Lemma 4.1, and [20], Theorem 1. 

Recall from the notion of the non-commutative 𝐿𝑝-spaces 𝐿𝑝(𝑀, 𝜏), 0 < 𝑝 <∞, and that 

every 𝐿𝑝(𝑀, 𝜏), 𝑝 ≥ 1, is a Banach 𝑀-module with the norm ‖∙‖𝑝 as defined. 

Theorem (1.1.25)[1]: Let 𝐷 be a derivation on �̃� such that 𝐷(�̃�) ⊂ 𝐿𝑝(𝑀, 𝜏) for some 1 <

𝑝 < ∞. Then there exists an 𝑎 ∈ 𝐿𝑝(𝑀, 𝜏) such that 𝐷(𝑥) = 𝑎𝑥 − 𝑥𝑎 for every 𝑥 ∈ �̃�. 

Proof. We denote the unitary group of 𝑀 by 𝑀𝑢. Let 𝐾 = {𝑢∗𝐷(𝑢): 𝑢 ∈ 𝑀𝑢} and ℒ be the 

𝜎(𝐿𝑝, (𝐿𝑝))-closed convex hull of 𝐾 (here 𝐿𝑝 = 𝐿𝑝(𝑀, 𝜏)). Let 𝐷𝑏 = 𝐷|𝑀. Then 𝐷𝑏 is a 

derivation on 𝑀 into 𝐿𝑝. By [27], Theorem 2, 𝐷𝑏 is norm-norm continuous. 

Therefore ℒ is a bounded subset of (the Banach space) 𝐿𝑝: ‖𝑢
∗𝐷(𝑢)‖𝑝 ≤

‖𝑢∗‖‖𝐷(𝑢)‖𝑝 = ‖𝐷(𝑢)‖𝑝. Now 𝑀𝑢 is a norm bounded subset of 𝑀. Since 𝐷𝑏 is (norm-

norm) continuous, {𝐷(𝑢): 𝑢 ∈ 𝑀𝑢} is a norm bounded subset of 𝐿𝑝. So 

𝑠𝑢𝑝𝑢∈𝑀𝑢
‖𝐷(𝑢)‖𝑝  <∞. Hence 𝑠𝑢𝑝𝑢∈𝑀𝑢

‖𝑢∗𝐷(𝑢)‖𝑝 <∞, meaning that 𝐾, and thus ℒ, is 

a norm bounded subset of 𝐿𝑝. 

Since 𝐿𝑝 is reflexive, it follows from the Banach-𝐴laoglu theorem that ℒ is 𝜎(𝐿𝑝, (𝐿𝑝)
∗)-

compact. For each 𝑢 ∈ 𝑀𝑢, define the affine map 𝐴𝑢(𝑥) = 𝑢∗𝑥𝑢 + 𝑢∗𝐷(𝑢) for all 𝑥 ∈ 𝐿𝑝. 

Since 𝐿𝑝 is a Banach 𝑀-module, 𝐴𝑢(𝐿𝑝) ⊂ 𝐿𝑝 for every 𝑢 ∈ 𝑀𝑢. Since ‖𝑢∗𝑥𝑢‖𝑝 = ‖𝑥‖𝑝 

for every 𝑢 ∈ 𝑀𝑢 and every 𝑥 ∈ 𝐿𝑝 (Lemma 1.1.7), it follows easily that 𝐴𝑢: 𝐿𝑝 → 𝐿𝑝 is 

norm continuous for every 𝑢 ∈ 𝑀𝑢. 𝐴 Standard result tells us that 𝐴𝑢 is 𝜎(𝐿𝑝, (𝐿𝑝)
∗)-

continuous for every 𝑢 ∈ 𝑀𝑢. 

Let 𝑢, 𝑣 ∈ 𝑀𝑢. Then an easy computation shows that 𝐴𝑣(𝑢
∗𝐷(𝑢)) = (𝑢𝑣)∗𝐷(𝑢𝑣). 

Now 𝑢𝑣 ∈ 𝑀𝑢. Thus 𝐴𝑣(𝐾) ⊂ 𝐾. Therefore, since 𝐴𝑣 is 𝜎(𝐿𝑝, (𝐿𝑝)
∗)-continuous, 𝐴𝑣(ℒ) ⊂

ℒ. Since 𝐴𝑢𝐴𝑣(𝑥) = 𝐴𝑢𝑣(𝑥) for every 𝑥 ∈ 𝐿𝑝, it follows that {𝐴𝑢: 𝑢 ∈ 𝑀𝑢} is a semigroup. 

Now let 𝑥, 𝑦 ∈ ℒ with 𝑥 ≠ 𝑦. Then, by Lemma (1.1.8), 

‖𝐴𝑢(𝑥) − 𝐴𝑢(𝑦)‖𝑝 = ‖𝑢∗𝑥𝑢 + 𝑢∗𝐷(𝑢) − 𝑢∗𝑦𝑢 − 𝑢∗𝐷(𝑢)‖𝑝 = ‖𝑢∗𝑥𝑢 − 𝑢∗𝑦𝑢‖𝑝
= ‖𝑢∗(𝑥 − 𝑦)𝑢‖𝑝 = ‖𝑥 − 𝑦‖𝑝 

for all 𝑢 ∈ 𝑀𝑢 and for all 1 < 𝑝 <∞. Therefore 

𝑖𝑛𝑓𝑢∈𝑀𝑢
‖𝐴𝑢(𝑥) − 𝐴𝑢(𝑦)‖𝑝 > 0 

for every 1 < 𝑝 <∞. Hence {𝐴𝑢: 𝑢 ∈ 𝑀𝑢} is non-contracting. By the Ryll-Nardzewski 

fixed point theorem, there exists 𝑎0 ∈ ℒ such that 𝐴𝑢(𝑎0) = 𝑎0 for every 𝑢 ∈ 𝑀𝑢. Therefore 

𝑢∗𝑎0𝑢 + 𝑢∗𝐷(𝑢) = 𝑎0 for every 𝑢 ∈ 𝑀𝑢. Let 𝑎 = −𝑎0. 

It follows that 𝐷(𝑢) = 𝑎𝑢 − 𝑢𝑎 for every 𝑢 ∈ 𝑀𝑢. 
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Let 𝑥 ∈ 𝑀. Then it is well known that 𝑥 = ∑ 𝜆𝑖𝑢𝑖
4
𝑖=1 , where 𝜆𝑖 ∈ ℂ and 𝑢𝑖 ∈ 𝑀𝑢 for 

all 1 ≤ 𝑖 ≤ 4. Once again, an easy calculation shows that 𝐷(𝑥) = 𝑎𝑥 − 𝑥𝑎. This holds for 

every 𝑥 ∈ 𝑀. Thus 𝐷|𝑀 is 𝛾𝑐𝑚 − 𝛾𝑐𝑚 continuous. 

By Proposition (1.1.23), 𝐷 is 𝛾𝑐𝑚 − 𝛾𝑐𝑚 continuous. Therefore, since 𝑀 is dense in 

�̃� with respect to the measure topology, it follows that 𝐷(𝑥) = 𝑎𝑥 − 𝑥𝑎 for every 𝑥 ∈ �̃�, 

implying that 𝐷 is inner. 

In the proof of [29], Theorem 4.1.6, a similar argument was used for the case where 

𝑀 is a countably decomposable finite von Neumann algebra: Sakai introduced the maps 

𝑇𝑢(𝑥) = 𝑢𝑥𝑢∗ + 𝐷(𝑢)𝑢∗ for all 𝑥 ∈ 𝑀 and for all 𝑢 ∈ 𝑀𝑢. He showed, by using Zorn’s 

Lemma, instead of the Ryll-Nardzewski fixed point theorem, that the maps 𝑇𝑢 have a fixed 

point. 

Section (1.2): Interpolation Scales with Holomorphic Structure 

In 1983, Rochberg and Weiss [54] studied the behaviour of the commutators for 

bounded linear operators and some derivation operators, which are usually unbounded and 

nonlinear, under the complex interpolation methods. The similar results for then real 

interpolation methods were obtained by Jawerth et al. [50] in 1985. Recently, Cwikel et al. 

constructed a general interpolation method with holomorphic structure in [47]. This new 

setting includes the classical real and complex methods, and even the so called ± methods 

given by Peetre and Gustavsson as special cases. The main idea behind this approach is to 

give a unified treatment on several different interpolation methods currently in use and the 

corresponding commutator estimates. 

For a Banach couple �̅� = (𝑋0, 𝑋1), let [�̅�]𝜃 be the complex interpolation space with 

parameter 𝜃 ∈ (0,1) in the sense of Calderón. If 𝑇:∑ �̅� → ∑ �̅� is a linear operator whose 

restrictions to both 𝑋0 and 𝑋1 are bounded, then many properties of 𝑇 can be inherited to 

the interpolation space [�̅�]𝜃 and can vary with 𝜃. The main topic is to investigate how the 

interpolation norms of commutators depend explicitly on 𝜃. We present such norm estimates 

for commutators and some applications on operator inequalities. We formulate the similar 

quantitative commutator estimates for the above-mentioned general interpolation methods 

with holomorphic structure by using the mixed reiteration. We devoted to some related 

results concerning the spectral behaviour of bounded linear operators under interpolation. 

The notations ⊆ and = between Banach spaces stand for continuous inclusion and 

isomorphic equivalence, respectively. For complex Banach spaces 𝑋 and 𝑌, we denote by 

ℬ(𝑋, 𝑌) the Banach space of all bounded linear operators from 𝑋 to 𝑌. For two Banach 

couples �̅� and �̅�, we denote by ℬ(�̅�, �̅�) the Banach space of all bounded linear operators 𝑇 

from �̅� to �̅� with ‖𝑇‖𝑗 = ‖𝑇‖𝑋𝑗,𝑋𝑗(𝑗 = 0,1). The space ℬ(�̅�, �̅�) is equipped with the norm 

‖𝑇‖�̅�,�̅� = ‖𝑇0‖0 ∨ ‖𝑇1‖1. We simply write ℬ(𝑋) = ℬ(𝑋, 𝑋) and ℬ(�̅�) = ℬ(�̅�, �̅�). See [44] 

for the further information concerning interpolation theory. 

For a Banach couple �̅� = (𝑋0, 𝑋1) on the strip 𝑺 = {𝑧 ∈ 𝑪|0 ≤ Re 𝑧 ≤ 1}, let 

𝒜𝑏(𝑺, �̅�) be the Banach space of all continuous functions 𝑓: 𝑺 → ∑ �̅�, where f is analytic 

in the interior of 𝑺 and, for 𝑗 = 0,1, the function 𝑡 ↦ 𝑓(𝑗 + 𝑖𝑡) is boundedly continuous 

from 𝑹 to 𝑋𝑗. This space is equipped with the norm 

‖𝑓‖∞ = max
𝑗=0,1

{sup
𝑡∈𝑹

‖𝑓(𝑗 + 𝑖𝑡)‖𝑗} 

for 𝑓 ∈ 𝒜𝑏(𝑺, �̅�). Given 𝜃 ∈ (0,1), the complex interpolation space [�̅�]𝜃 is defined by 

[�̅�]𝜃 = {𝑥 ∈ ∑�̅�|𝑥 = 𝑓(𝜃),  𝑓 ∈ 𝒜𝑏(𝑺, �̅�)} 
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with the norm ‖𝑥‖𝜃 = inf{‖𝑓‖𝜃|𝑥 = 𝑓(𝜃)}. In what follows, we will use different variants 

of the complex interpolation in different situations. 

Let 𝐶opt > 1 be a fixed constant. For each 𝑥 ∈ [�̅�]𝜃, select an analytic function 𝑓𝑥 ∈

𝒜𝑏(𝑺, �̅�) with 𝑥 = 𝑓𝑥(𝜃) and 

𝑓𝑥(𝜃) ≤ 𝐶opt‖𝑥‖𝜃 . 

Define the derivation operator Ω on [�̅�]𝜃 by 

Ω(𝑥) = Ω�̅�(𝑥) = 𝑓𝑥
’(𝜃). 

It was shown in [54] that, if 𝑇 ∈ ℬ(�̅�, �̅�) for Banach couples �̅� and �̅�, then the commutato 

[𝑇, Ω] = 𝑇Ω�̅� − Ω�̅�𝑇 

is a bounded nonlinear operator from [�̅�]𝜃 to [�̅�]𝜃. We present now a norm estimate for this 

commutator depending more explicitly on the numerical index 𝜃. For 𝑡0, 𝑡1 > 0, let 

𝜌𝜃,1(𝑡0, 𝑡1) = 𝑡0
1−𝜃𝑡1

𝜃 (√1 + (
sin 𝜋𝜃

𝜋
log |

𝑡1
𝑡0
|)
2

+
sin𝜋𝜃

𝜋
log |

𝑡1
𝑡0
|). 

Proposition (1.2.1)[39]: With the preceding assumptions, we have 
sin 𝜋𝜃

𝜋
‖𝑇Ω�̅�(𝑥) − Ω�̅�(𝑇𝑥)‖𝜃 ≤ 𝐶opt𝜌𝜃,1(‖𝑇‖𝜃 , ‖𝑇‖1)‖𝑥‖𝜃 

for all 𝑥 ∈ [�̅�]𝜃. 

Proof. We consider a variant of the space [�̅�]𝜃 on the unit disk 

𝑫 = {𝑧 ∈ 𝑪||𝑧| ≤ 1}. 
Let 

𝐼0
𝜃 = [−𝜋(1 − 𝜃), 𝜋(1 − 𝜃)),   𝐼1

𝜃 = [𝜋(1 − 𝜃), 𝜋(1 + 𝜃)). 

We denote by 𝒜𝜃(𝑫, �̅�) the Banach space of all functions 𝑓:𝑫 → ∑ �̅�, where 𝑓 is analytic 

in the interior of 𝑫 and the function 𝑡 ↦ 𝑓(𝑒𝑖𝑡) is continuous from 𝐼𝑗
𝜃 to 𝑋𝑗(𝑗 = 0,1), with 

the norm 

‖𝑓‖𝒜𝜃
= max

𝑗=0,1
sup {‖𝑓(𝑒𝑖𝑡)‖

𝑗
|𝑡 ∈ 𝐼𝑗

𝜃} . 

Let now 

[�̅�]𝐷𝜃 = {𝑥 ∈ ∑�̅�|𝑥 = 𝑓(0)  for some  𝑓 ∈ 𝒜𝜃(𝑫, �̅�)} 
with the norm ‖𝑥‖𝐷𝜃 = inf{‖𝑓‖𝒜𝜃

|𝑥 = 𝑓(0)}. According to [48], 

[�̅�]𝐷𝜃 = [�̅�]𝜃 

isometrically via the conformal mapping 𝑚𝜃: 𝑺 → 𝑫, for which 

𝑚𝜃(𝑧) =
exp(𝑖𝜋(𝑧 − 𝜃)) − 1

exp(−𝑖𝜋𝜃) − exp(𝑖𝜋𝑧)
  𝑓𝑜𝑟  𝑧 ∈ 𝑺. 

For each 𝑥 ∈ [�̅�]𝐷𝜃, we may choose 𝑓𝑥 ∈ 𝒜𝜃(𝑫, �̅�) with |𝑥 = 𝑓𝑥(0) and 

‖𝑓𝑥‖𝒜𝜃
≤ 𝐶opt‖𝑥‖𝜃 . 

Thus, 

Ω�̅�(𝑥) = (𝑓𝑥 ∘ 𝑚𝜃)
’(𝜃) = 𝑓𝑥

’(0)𝑚𝜃
’ (𝜃) = −

𝜋

2 sin 𝜋𝜃
𝑓𝑥
’(0), 

and 𝑇𝑓𝑥(0) − 𝑓𝑇𝑥(0) = 𝑥 − 𝑥 = 0. Let ‖𝑇‖𝑗(𝑗 = 0,1). By [48], ∃𝜙 ∈ 𝐻∞(𝑫) such that 

𝜙(0) = 1, 𝜙’(0) =
sin 𝜋𝜃

𝜋
log(𝑀1 𝑀0⁄ ), 

and 
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‖𝜙‖∞ = √1 + (
sin 𝜋𝜃

𝜋
log(𝑀1 𝑀0⁄ ))

2

+
sin𝜋𝜃

𝜋
|log(𝑀1 𝑀0⁄ )|. 

We choose 𝜓 ∈ 𝐻∞(𝑫), for which 

𝜓(0) = 1, 𝜓’(0) =
sin 𝜋𝜃

𝜋
log(𝑀1 𝑀0⁄ ), 

and 

|exp (−𝜓(𝑒𝑖𝑡))| = (𝑀1 𝑀0⁄ )𝑗−𝜃   for  𝑡 ∈ 𝐼𝑗
𝜃(𝑗 = 0,1). 

Let ℎ𝑥 = 𝜙exp(−𝜓)𝑓𝑥, then ℎ𝑥 ∈ 𝒜𝑏(𝑺, �̅�) with 

ℎ𝑥(0) = 𝑓𝑥(0) = 𝑥  and  ℎ𝑥
’ (0) = 𝑓𝑥

’(0) = −
2 sin 𝜋𝜃

𝜋
Ω�̅�(𝑥), 

Moreover, 

‖ℎ𝑥(𝑒
𝑖𝑡)‖

𝑗
≤ (𝑀1 𝑀0⁄ )𝑗−𝜃‖𝜙‖∞‖𝑓𝑥(𝑒

𝑖𝑡)‖
𝑗
 

for 𝑗 = 0,1 and for 𝑡 ∈ 𝐼𝑗
𝜃. We define now 

𝑔(𝑧) =
𝑇ℎ𝑥(𝑧) − 𝑓𝑇𝑥(𝑧)

𝑧
  𝑓𝑜𝑟  𝑧 ∈ 𝑫\{0}, 

ana 

𝑔(0) = 𝑇ℎ𝑥
’ (0) − 𝑓𝑇𝑥

’ (0) = −
2 sin 𝜋𝜃

𝜋
(𝑇Ω�̅�(𝑥) − Ω�̅�(𝑇𝑥)). 

Then 𝑔 ∈ 𝒜𝜃(𝑫, �̅�) such that 

‖𝑔(𝑒𝑖𝑡)‖
𝑗
≤ ‖𝑇ℎ𝑥(𝑒

𝑖𝑡)‖
𝑗
+ ‖𝑓𝑇𝑥(𝑒

𝑖𝑡)‖
𝑗
≤ (𝑀0

1−𝜃𝑀1
𝜃‖𝜙‖∞‖𝑓𝑥‖∞ + ‖𝑓𝑇𝑥‖∞

) 

for 𝑡 ∈ 𝐼𝑗
𝜃(𝑗 = 0,1). This, together with (1), (3), (4) and [44], implies that 

sin 𝜋𝜃

𝜋
‖𝑇Ω�̅�(𝑥) − Ω�̅�(𝑇𝑥)‖𝜃 ≤

1

2
‖𝑔‖𝒜𝜃

≤ 𝐶opt ⋅ 𝜌𝜃,1(‖𝑇‖0, ‖𝑇‖1)‖𝑥‖𝜃 , 

which completes the proof. 

     We consider now the completely bounded linear maps on operator spaces. A (concrete) 

operator space 𝐸 on a Hilbert space 𝐻 is a subspace of ℬ(𝐻). For an arbitrary positive 

integer 𝑛, let 𝑀𝑛(𝐸) be the Banach space of all 𝑛 × 𝑛 matrices with entries in 𝐸 with the 

norm introduced by the natural inclusion 

𝑀𝑛(𝐸) ⊆ 𝑀𝑛(ℬ(𝐻)) = ℬ(𝐻𝑛). 
The operator space 𝐸 has a matrical structure with these norms on 𝑀𝑛(𝐸). Given a linear 

operator between two operator spaces 𝑇: 𝐸 → 𝐹, we define 𝑇𝑛:𝑀𝑛(𝐸) → 𝑀𝑛(𝐹) by 

𝑇𝑛((𝑥𝑖𝑗)) = (𝑇(𝑥𝑖𝑗)) 

for all (𝑥𝑖𝑗)𝑖,𝑗=1
𝑛 ∈ 𝑀𝑛(𝐸). Themap 𝑇 is called completely bounded (𝑐. 𝑏. for short) if 

‖𝑇‖𝑐𝑏 = sup{‖𝑇𝑛‖|𝑛 = 1,2,…} < ∞. 
The space of all 𝑐. 𝑏. maps from 𝐸 to 𝐹 is denoted by 𝒞ℬ(𝐸, 𝐹), which is also an operator 

space with matrix norms defined by 

𝑀𝑛(𝒞ℬ(𝐸, 𝐹)) = 𝒞ℬ(𝐸,𝑀𝑛(𝐹)) 
for all 𝑛 ≥ 1. Let �̅� = (𝐸0, 𝐸1) be a Banach couple of operator spaces. We equip the 

complex interpolation space [�̅�]𝜃 with the matrical structure by defining 

𝑀𝑛([�̅�]𝜃) = [𝑀𝑛(𝐸0),𝑀𝑛(𝐸1)]𝜃 

for each 𝑛 ≥ 1. See [53] for details. We have 
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Proposition (1.2.2)[39]: For Banach couples of �̅� = (𝐸0, 𝐸1) and �̅� = (𝐹0, 𝐹1) of operator 

spaces, let Ω be the derivation operator, and let 𝑇:∑�̅� → ∑�̅� be 𝑎𝑐. 𝑏. map such that 𝑇: 𝐸𝑗 →

𝐹𝑗 is 𝑐. 𝑏. with the 𝑐. 𝑏. norm ‖𝑇‖𝑐𝑏𝑗(𝑗 = 0,1). Then 

sin 𝜋𝜃

𝜋
‖𝑇Ω�̅�(𝑥) − Ω�̅�(𝑇𝑥)‖𝑀𝑛([�̅�]𝜃) ≤ 𝐶opt𝜌𝜃,1(‖𝑇‖𝑐𝑏0, ‖𝑇‖𝑐𝑏1)‖𝑥‖𝑀𝑛([�̅�]𝜃) 

for all 𝑛 ≥ 1 and all 𝑥 ∈ 𝑀𝑛([�̅�]𝜃). 
     The next result concerns with the commutator estimates for bounded bilinear operators 

under the complex interpolation. Let �̅�, �̅� and �̅� be Banach couples, and let 𝑇 be a bounded 

bilinear operator from �̅� × �̅� to �̅� with 

‖𝑇‖𝑗 = ‖𝑇‖𝑋𝑗,𝑌𝑗 = sup {
‖𝑇(𝑥, 𝑦)‖𝑍𝑗
‖𝑥‖𝑋𝑗‖𝑦‖𝑌𝑗

| 𝑥 ≠ 0 in 𝑋𝑗 , 𝑦 ≠ 0 in 𝑌𝑗} < ∞ 

for 𝑗 = 0,1. We improve the estimate given in [43] as follows. 

Proposition (1.2.3)[39]: Let Ω be the derivation operator. We have 
sin 𝜋𝜃

𝜋
‖𝑇(Ω�̅�(𝑥), 𝑦) + 𝑇(𝑥, Ω�̅�(𝑦)) − Ω𝑍𝑇(𝑥, 𝑦)‖𝜃 ≤ 𝐶opt𝜌𝜃,1(‖𝑇‖0, ‖𝑇‖1)‖𝑥‖𝜃‖𝑦‖𝜃 

for all 𝑥 ∈ [�̅�]𝜃 and 𝑦 ∈ [�̅�]𝜃. 

Proof. For any 𝑥 ∈ [�̅�]𝐷𝜃 and 𝑦 ∈ [�̅�]𝐷𝜃, we choose 𝑓𝑥 ∈ 𝒜𝜃(𝑫, �̅�) with 

𝑥 = 𝑓𝑥(0) and  ‖𝑓𝑥‖𝒜𝜃
≤ 𝐶opt‖𝑥‖𝜃, 

and choose 𝑓𝑦 ∈ 𝒜𝜃(𝑫, �̅�) with 

𝑦 = 𝑓𝑦(0) and  ‖𝑓𝑦‖𝒜𝜃
≤ 𝐶opt‖𝑦‖𝜃 . 

Let ℎ𝑥 ∈ 𝒜𝜃(𝑫, �̅�) and ℎ𝑦 ∈ 𝒜𝜃(𝑫, �̅�) be as in the proof of Proposition (1.2.1). We define 

now 

𝑔(𝑧) =
𝑇 (ℎ𝑥(𝑧), ℎ𝑦(𝑧)) − 𝑓𝑇(𝑥,𝑦)(𝑧)

𝑧
  for  𝑧 ∈ 𝑫\{0}, 

and 

𝑔(0) = 𝑇(ℎ𝑥
’ (0), ℎ𝑦(0)) + 𝑇(ℎ𝑥(0), ℎ𝑦

’ (0)) − 𝑓𝑇(𝑥,𝑦)
’ (0)

= −
2 sin 𝜋𝜃

𝜋
(𝑇(Ω�̅�𝑥, 𝑦) + 𝑇(𝑥, Ω�̅�𝑦) − Ω𝑍𝑇(𝑥, 𝑦)). 

Observe that 

‖𝑇(𝑥, 𝑦)‖𝜃 ≤ ‖𝑇‖0
1−𝜃‖𝑇‖1

𝜃‖𝑥‖𝜃‖𝑦‖𝜃 

by [44]. We can obtain 
sin 𝜋𝜃

𝜋
‖𝑇(Ω�̅�(𝑥), 𝑦) + 𝑇(𝑥, Ω�̅�(𝑦)) − Ω𝑍𝑇(𝑥, 𝑦)‖𝜃 ≤

1

2
‖𝑔‖𝒜𝜃

≤ 𝐶opt𝜌𝜃,1(‖𝑇‖0, ‖𝑇‖1)‖𝑥‖𝜃‖𝑦‖𝜃 

in a similar way for the proof of Proposition (1.2.1). 

    As applications of Propositions (1.2.1) and (1.2.3), we can show the following operator 

inequalities. 

Proposition (1.2.4)[39]: Let 𝐻 be a Hilbert space, and let 𝐴, 𝐵 ∈ ℬ(𝐻) be invertible positive 

operators. If 0 < 𝜃 < 1, then the inequality 
sin 𝜋𝜃

𝜋
‖𝑇(log𝐴) − (log𝐵)𝑇‖ ≤ 𝜌𝜃,1(‖𝐵

−𝜃𝑇𝐴𝜃‖, ‖𝐵1−𝜃𝑇𝐴𝜃−1‖) 

holds for all 𝑇 ∈ ℬ(𝐻). 
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Proof. For the positive operator 𝐴, let 𝐻𝐴 be the Hilbert space 𝐻 equipped with the norm 

‖𝑥‖𝐴 = ‖𝐴𝑥‖ for all 𝑥 ∈ 𝐻, and let �̅�𝐴 = (𝐻,𝐻𝐴).Moreover, for 0 < 𝜃 < 1, we define 𝐻𝐴𝜃  

to be the Hilbert space 𝐻 equipped with the norm ‖𝑥‖𝜃 = ‖𝐴𝜃𝑥‖ for all 𝑥 ∈ 𝐻. Thus, 

‖�̅�𝐴‖𝜃 = 𝐻𝐴𝜃 

with equal norms. For 𝑥 ∈ 𝐻𝐴𝜃  and 𝑧 ∈ 𝑺, let 𝑓𝑥(𝑧) = 𝐴𝜃−𝑧𝑥. Then 𝑓𝑥 ∈ 𝒜𝑏(𝑺, �̅�𝐴) with 

𝑥 = 𝑓𝑥(𝜃). Moreover, 

‖𝑓𝑥‖∞ ≔ sup{‖𝑓𝑥(𝑖𝑡)‖ ∨ ‖𝑓𝑥(1 + 𝑖𝑡)‖𝐻𝐴|𝑡 ∈ 𝑹} = ‖𝐴𝜃𝑥‖ = ‖𝑥‖𝜃 . 

Thus, we may choose 

Ω�̅�𝐴
(𝑥) = 𝑓𝑥

’(𝜃) = −(log𝐴)𝑥. 

By Proposition (1.2.1), we have 
sin 𝜋𝜃

𝜋
‖𝑇(log𝐴) − (log𝐵)𝑇‖𝐻

𝐴𝜃
,𝐻

𝐵𝜃
≤ 𝜌𝜃,1(‖𝑇‖, ‖𝑇‖𝐻𝐴,𝐻𝐵) 

for all 𝑇 ∈ ℬ(𝐻). This implies the required inequality by replacing 𝑇 with 𝐵−𝜃𝑇𝐴𝜃. 

     Let ℳ be a semifinite von Neumann algebra acting on a Hilbert space 𝐻 with a normal 

faithful semifinite trace 𝜏 and the identity 1. The densely-defined closed linear operator 𝑥 

on 𝐻 is said to be affiliated with ℳ if 𝑥𝑢 = 𝑢𝑥 for all unitary operators u commuting with 

ℳ. The operator 𝑥 is said to be 𝜏-measurable if, for each 𝜖 > 0, there is a project e in ℳ 

for which 𝑒(𝐻) is included in the domain of 𝑥 and 𝜏(1 − 𝑒) < 𝜖. We denote by ℳ̃ the space 

of all 𝜏-measurable operators affliated with ℳ, which is a complete Hausdorff topological 

∗-algebra equipped with the measure topology [52]. For 𝑥 ∈ ℳ̃ and 𝑡 > 0, the 

corresponding singular number is defined by 

𝜇𝑡(𝑥) = inf{‖𝑥𝑒‖ℳ|𝑒 is a projection e in ℳ with 𝜏(1 − 𝑒) ≤ 𝑡 }. 
It is known that, if 𝑥 ∈ ℳ̃ is positive, then 

𝜏(𝑥) = ∫ 𝜇𝑡(𝑥)𝑑𝑡

∞

0

. 

For 1 < 𝑝 < ∞, let 𝐿𝑝(ℳ) = 𝐿𝑝(ℳ, 𝜏) be the non-commutative 𝐿𝑝-space consisting of all 

𝑥 ∈ ℳ̃ for which 

‖𝑥‖𝑝 = 𝜏(|𝑥|𝑝)1 𝑝⁄ = (∫ 𝜇𝑡(|𝑥|
𝑝)𝑑𝑡

∞

0

)

1 𝑝⁄

. 

In addition, 𝐿∞(ℳ) = ℳ equipped with the usual operator norm. We formulate now the 

non-commutative analogue of Hölder’s inequality, which is a generalization of [43]. 

Proposition (1.2.5)[39]: Let 1 < 𝑝, 𝑝’ < ∞ with 1 𝑝⁄ + 1 𝑝’⁄ = 1. If 𝑥 ∈ 𝐿𝑝(ℳ) and 𝑦 ∈

𝐿𝑝
’
(ℳ), then 

sin(𝜋 𝑝’⁄ )

𝜋
𝜏(|𝑝𝑥𝑦 log(|𝑥| ‖𝑥‖𝑝⁄ ) − 𝑝’𝑥𝑦 log(|𝑦| ‖𝑦‖𝑝’⁄ )|) ≤ ‖𝑥‖𝑝‖𝑦‖𝑝’ . 

Proof. Let 𝜃 = 1 𝑝’⁄ . Then 

[𝐿1(ℳ), 𝐿∞(ℳ)]𝜃 = 𝐿𝑝(ℳ)  and  [𝐿∞(ℳ), 𝐿1(ℳ)]𝜃 = 𝐿𝑝
’
(ℳ) 

isometric ally. We set �̅� = (𝐿1(ℳ), 𝐿∞(ℳ)) and �̅� = (𝐿∞(ℳ), 𝐿1(ℳ)). For 𝑥 ∈ 𝐿𝑝(ℳ), 
if we choose 

𝑓𝑥(𝑥) = 𝑥(|𝑥| ‖𝑥‖𝑝⁄ )𝑝(𝜃−𝑧), 

then 𝑓𝑥 ∈ 𝒜𝑏(𝑺, �̅�) with 𝑥 = 𝑓𝑥(𝜃) and ‖𝑓𝑥‖∞ = ‖𝑥‖𝑝. Now we have 

Ω�̅�(𝑥) = 𝑓𝑥
’(𝜃) = −𝑝𝑥 log(|𝑥| ‖𝑥‖𝑝⁄ ). 



14 

Similarly, if 𝑦 ∈ 𝐿𝑝
’
(ℳ), then 

Ω�̅�(𝑦) = −𝑝’𝑦 log(|𝑦| ‖𝑦‖𝑝’⁄ ). 

We define now a bounded bilinear operator 𝑇: �̅� × �̅� → (𝐿1(ℳ), 𝐿1(ℳ)) by 

𝑇(𝑥, 𝑦) = 𝑥𝑦. 
Then ‖𝑇‖0 = ‖𝑇‖1 = 1. By applying Proposition (1.2.3) on this operator, we obtain 

sin 𝜋𝜃

𝜋
𝜏(|𝑝𝑥𝑦 log(|𝑥| ‖𝑥‖𝑝⁄ ) − 𝑝’𝑥𝑦 log(|𝑦| ‖𝑦‖𝑝’⁄ )|) ≤ ‖𝑥‖𝑝‖𝑦‖𝑝’ 

for all 𝑥 ∈ 𝐿𝑝(ℳ) and 𝑦 ∈ 𝐿𝑝
’
(ℳ). 

   As introduced in [47], we consider 𝐁𝐚𝐧, the class of all complex Banach spaces, and the 

exact pseudolattice Φ:𝐁𝐚𝐧 → 𝐁𝐚𝐧 in the sense that, for each 𝑋 ∈ 𝐁𝐚𝐧,Φ(𝑋) consists of 

𝑋-valued sequences (𝑥𝑣)𝑣∈𝒁 satisfying 

‖𝑥𝑘‖𝑋 ≤ ‖(𝑥𝑣)𝑣‖Φ(𝑋)  when 𝑘 ∈ 𝒁; 

for each closed subspace 𝑌 of 𝑋,Φ(𝑌) is a closed subspace of Φ(𝑋); and, for all 𝑋, 𝑌 ∈
𝐁𝐚𝐧, for all T ∈ B(X, Y ), and for all (𝑥𝑣)𝑣 ∈ Φ(𝑋), the estimate 

‖(𝑇𝑥𝑣)𝑣‖Φ(𝑌) ≤ ‖𝑇‖𝑋.𝑌‖(𝑥𝑣)𝑣‖Φ(𝑋) 

holds. For a given pair of exact pseudolattices Φ̅ = {Φ0, Φ1} and for each Banach couple 

�̅� = (𝑋0, 𝑋1), we denote by 𝒥(Φ̅, �̅�) the space of all ∆�̅�-valued sequences (𝑥𝑣)𝑣∈𝒁, for 

which (𝑒𝑗𝑣𝑥𝑣)𝑣 ∈ Φ𝑗(𝑋𝑗)(𝑗 = 0,1), with the norm 

‖(𝑥𝑣)𝑣‖𝒥 = max
𝑗=0,1

‖(𝑒𝑗𝑣𝑥𝑣)𝑣‖Φ𝑗(𝑋𝑗)
. 

    We assume that Φ̅ = {Φ0, Φ1} is a fixed pair of exact pseudolattices which is Laurent 

compatible and admits differentiation in the sense of [47]. 

    For a fixed 𝑠 ∈ 𝑨 = {𝑧 ∈ 𝑪|1 < |𝑧| < 𝑒}, we define the following space 

�̅�Φ̅,𝑠 = {𝑥 =∑𝑠𝑣𝑥𝑣
𝑣

| (𝑥𝑣)𝑣 ∈ 𝒥(Φ̅, �̅�)} 

as in [47] with the natural quotient norm 

‖𝑥‖Φ̅,𝑠 = inf {‖(𝑥𝑣)𝑣‖𝒥 |𝑥 =∑𝑠𝑣𝑥𝑣
𝑣

}. 

According to [47], �̅�Φ̅,𝑠 is an interpolation space for the Banach couple 𝑋 such that 

‖𝑇‖�̅�Φ̅,𝑠,�̅�Φ̅,𝑠
≤ ‖𝑇‖0 ∨ ‖𝑇‖1 

 

for all Banach couples �̅�, �̅�, and for all 𝑇 ∈ ℬ(�̅�, �̅�). Furthermore, if we identify each 

sequence (𝑥𝑣)𝑣 ∈ 𝒥(Φ̅, �̅�) with the function 𝑓(𝑧) = ∑ 𝑧𝑣𝑥𝑣𝑣  for 𝑧 ∈ 𝑨, then 𝒥(Φ̅, �̅�) can 

be considered as the space consisting of all analytic functions 𝑓: 𝐴 → ∑�̅�, for which 

(𝑒𝑗𝑣𝑥𝑣)𝑣 ∈ Φ𝑗(𝑋𝑗)(𝑗 = 0,1), with the norm given in (6). Consequently, the interpolation 

space �̅�Φ̅,𝑠 consists of all 𝑥 ∈ ∑�̅� such that 𝑥 = 𝑓(𝑠) for some analytic function 𝑓 on 𝑨 

given above. 

     According to [47], we can introduce an equivalent version of the space �̅�Φ̅,𝑠. For 𝑠 ∈ 𝑨 

fixed, let 𝒦𝑠(Φ̅, �̅�) be the space of all pairs of ∑�̅�-valued sequences 𝑥 ’ = ((𝑥0,𝑣)𝑣, (𝑥1,𝑣)𝑣) 

such that (𝑒𝑗𝑣𝑥𝑗,𝑣)𝑣 ∈ Φ𝑗(𝑋𝑗)(𝑗 = 0,1), and 𝜅(�̅�) = 𝑥0,0 + 𝑥1,0 = 𝑠𝑣(𝑥0,𝑣 + 𝑥1,𝑣) for each 

𝑣 ∈ 𝒁. This space is normed by 
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‖�̅�‖𝒦𝑠
= ‖(𝑥0,𝑣)𝑣‖Φ0(𝑋0)

+ ‖(𝑒𝑣𝑥1,𝑣)𝑣‖Φ1(𝑋1)
. 

Let now �̅�Φ̅,𝑠;𝒦  be the space of all 𝑥 ∈ ∑�̅�, which can be represented by 𝑥 = 𝜅(�̅�) for some 

�̅� ∈ 𝒦𝑠(Φ̅, �̅�), with the seminorm 

‖𝑥‖Φ̅,𝑠;𝒦 = inf{‖�̅�‖𝒦𝑠
|�̅� ∈ 𝒦𝑠(Φ̅, �̅�), 𝑥 = 𝜅(�̅�)}. 

Let 𝑆 denote the left shift operator on two-sided (vector valued) sequences given in [47] by 

𝑆((𝑥𝑣)𝑣∈𝒁) = (𝑥𝑣+1)𝑣∈𝒁. 
Then 𝑆−1 is the right shift operator given by 𝑆−1((𝑥𝑣)𝑣) = (𝑥𝑣−1)𝑣. If S is isometric on 

Φ𝑗(𝑋𝑗)(𝑗 = 0,1), then 𝑆 is also isometric on �̅�Φ̅,𝑠. In this case, 

‖𝑇‖�̅�Φ̅,𝑠,�̅�Φ̅,𝑠
≤ 𝑒‖𝑇‖0

1−𝜃‖𝑇‖1
𝜃 

for all 𝑇 ∈ ℬ(�̅�, �̅�), where 𝜃 = log|𝑠|, by [47]. Moreover, the following equivalence 

�̅�Φ̅,𝑠 = �̅�Φ̅,𝑠;𝒦 

holds true by [47]. 

   For suitable choices of pseudolattice pairs, we can recover the classical interpolation 

methods. Let 𝑋 be a Banach space.We denote by 𝑙𝑝(𝑋) the space of all 𝑋-valued sequences 
(𝑥𝑣)𝑣∈𝒁 for 1 ≤ 𝑝 < ∞, for which 

‖(𝑥𝑣)𝑣‖𝑙𝑝(𝑋) = (∑‖𝑥𝑣‖𝑋
𝑝

𝑣

)

1 𝑝⁄

; 

denote by 𝐹𝐶(𝑋) the space of all 𝑋-valued sequences (𝑥𝑣)𝑣∈𝑵 such that, for some 

continuous function 𝑓: 𝑻 = [0,2𝜋] → 𝑋 and for all 𝑣 ∈ 𝑵, 

𝑥𝑣 =
1

2𝜋
∫ 𝑒−𝑖𝑣𝑡𝑓(𝑡)𝑑𝑡

2𝜋

0

 

with the norm 

‖(𝑥𝑣)𝑣‖𝐹𝐶(𝑋) = sup
𝑡∈𝑻

‖𝑓(𝑡)‖𝑋, 

and denote by 𝑈𝐶(𝑋) (resp. 𝑊𝑈𝐶(𝑋)) the space of all 𝑋-valued sequences (𝑥𝑣)𝑣 such that 

the series ∑ 𝑥𝑣𝑣  is unconditionally (resp. weakly unconditionally) convergent in 𝑋 with the 

norm 

‖(𝑥𝑣)𝑣‖𝑈𝐶(𝑋) sup {‖∑𝜖𝑣𝑥𝑣
𝑣∈𝑭

‖ |𝑭 is a finite subset of 𝒁, 𝜖𝑣 = ±1} 

(resp. ‖(𝑥𝑣)𝑣‖𝑊𝑈𝐶(𝑋) = sup{‖∑ 𝜖𝑣𝑥𝑣𝑣 ‖|𝜖𝑣 = ±1}). For the pseudolattices Φ = 𝑙𝑝, 𝐹𝐶, 𝑈𝐶 

and 𝑊𝑈𝐶, the left shift opertor 𝑆 given in (7) and the rotation operators 𝑅𝑡 , 𝑡 ∈ 𝑹, on two-

sided (vector valued) sequences given by 

𝑅𝑡((𝑥𝑣)𝑣∈𝒁) = (𝑒𝑖𝑡𝑣𝑥𝑣)𝑣∈𝒁 

are isometric on Φ(𝑋) for all Banach spaces 𝑋. Let now 𝑙�̅� = (𝑙𝑝, 𝑙𝑝), 𝐹𝐶̅̅̅̅ = (𝐹𝐶, 𝐹𝐶), 𝑈𝐶̅̅ ̅̅ =
(𝑈𝐶,𝑈𝐶) and 𝑊𝑈𝐶̅̅ ̅̅ ̅̅ ̅ = (𝑊𝑈𝐶,𝑊𝑈𝐶) be the corresponding pairs of pseudolattices. For 

those pairs,wemay assume that 𝑠 = 𝑒𝜃 for some 𝜃 ∈ (0,1). It is known that, for all Banach 

couples �̅�, the spaces �̅�𝑙𝑝̅̅ ̅,𝑠, �̅�𝐹𝐶̅̅ ̅̅ ,𝑠, �̅�𝑈𝐶̅̅ ̅̅ ,𝑠 and �̅�𝑊𝑈𝐶̅̅ ̅̅ ̅̅ ̅,𝑠 are equivalent to the real interpolation 

space [�̅�]𝜃,𝑝, the complex interpolation space [�̅�]𝜃, the Peetre±interpolation space 〈�̅�〉𝜃, and 

its Gustavsson–Peetre variant 〈�̅�, 𝜃〉, respectively. 
     We formulate now the following mixed reiteration. 
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Proposition (1.2.6)[39]: Assume that the left shift operator S and the rotation operators 𝑅𝑡 

are isometric on Φ𝑗(𝑋𝑗)(𝑗 = 0,1) for all 𝑡 ∈ 𝑹. Let 𝑠0, 𝑠1, 𝑠, 𝜏 ∈ (1, 𝑒) and 𝛼 ∈ (0,1) such 

that 𝑠 = 𝑠0
1−𝛼𝑠1

𝛼 and 𝜏 = 𝑒𝛼. Then 

�̅�Φ̅,𝑠 = (�̅�Φ̅,𝑠0 , �̅�Φ̅,𝑠1)𝐹𝐶̅̅ ̅̅ ,𝜏
. 

Proof. Let 

𝑋 = (�̅�Φ̅,𝑠0 , �̅�Φ̅,𝑠1)𝐹𝐶̅̅ ̅̅ ,𝜏
  and 𝑌 = (�̅�Φ̅,𝑠0;𝒦 , �̅�Φ̅,𝑠1;𝒦)𝐹𝐶̅̅ ̅̅ ,𝜏

. 

It is enough to show that �̅�Φ̅,𝑠 ⊆ 𝑋 and 𝑌 ⊆ �̅�Φ̅,𝑠;𝒦. 

First assume that 𝑥 ∈ �̅�Φ̅,𝑠 and 𝜖 > 0 such that 𝑥 = ∑ 𝑠𝑣𝑥𝑣𝑣  for some (𝑥𝑣)𝑣 ∈ 𝒥(Φ̅, �̅�) with 

‖(𝑥𝑣)𝑣‖𝒥 ≤ ‖𝑥‖Φ̅,𝑠 + 𝜖. Set 𝜃𝑗 = log 𝑠𝑗(𝑗 = 0,1), and let 

𝑓(𝑧) =∑𝑠0
𝑣𝑧𝑣(𝜃1−𝜃0)𝑥𝑣

𝑣

  for 𝑧 ∈ 𝑨. 

Then 𝑓 is an analytic function on 𝑨 with 𝑥 = 𝑓(𝜏). Moreover, for each 𝑡 ∈ 𝑻 and for 𝑗 =
0,1, 

𝑓(𝑒𝑗+𝑖𝑡) =∑𝑒(𝑗+𝑖𝑡)𝑣(𝜃1−𝜃0)𝑠0
𝑣𝑥𝑣

𝑣

= 𝑓(𝑧) =∑𝑒𝑖𝑡𝑣(𝜃1−𝜃0)𝑠𝑗
𝑣𝑥𝑣

𝑣

. 

Let 𝑓𝑗(𝑡) = 𝑓(𝑒𝑗+𝑖𝑡)(𝑗 = 0,1), and 𝑦𝑣(𝑡) = 𝑒𝑖𝑡𝑣(𝜃1−𝜃0)𝑥𝑣 for 𝜈 ∈ 𝒁. Then 

𝑓𝑗(𝑡) =∑𝑠𝑗
𝑣𝑦𝑣(𝑡) ∈ �̅�Φ̅,𝑠𝑗

𝑣

  for 𝑡 ∈ 𝑻, 

and 𝑓𝑗: 𝑻 → �̅�Φ̅,𝑠𝑗 is continuous (𝑗 = 0,1). It follows that 

‖𝑥‖𝑋 ≤ max
𝑗=0,1

sup
𝑡∈𝑻

‖𝑓𝑗(𝑡)‖Φ̅,𝑠𝑗
≤ sup

𝑡∈𝑻
‖(𝑦𝑣(𝑡))𝑣‖𝒥 = sup

𝑡∈𝑻
‖𝑅𝑡(𝜃1−𝜃0)((𝑥𝑣))‖𝒥

≤ ‖(𝑥𝑣)𝑣‖𝒥

≤ ‖𝑥‖Φ̅,𝑠 + 𝜖, 

and hence 𝑥 ∈ 𝑋 with ‖𝑥‖𝑋 ≤ ‖𝑥‖Φ̅,𝑠 by letting 𝜖 → 0. 

     Conversely, let 𝑌𝑗 ⊆ �̅�Φ̅,𝑠𝑗;𝒦(𝑗 = 0,1) and �̅� = (𝑌0, 𝑌1). For 𝑥 ∈ 𝑌 and 𝜖 > 0, there exists 

an analytic function 𝑔: 𝑨 → ∑�̅� such that 𝑥 = 𝑔(𝜏), 𝑡 ↦ 𝑔(𝑒𝑗+𝑖𝑡) is a continuous function 

from 𝑻 to 𝑌𝑗(𝑗 = 0,1), and 

sup
𝑡∈𝑻

‖𝑔(𝑒𝑗+𝑖𝑡)‖
𝑌𝑗
≤ ‖𝑥‖𝑌 + 𝜖  (𝑗 = 0,1). 

Morover, there exists a Lebesgue measurable function. �̅�𝑗 = (𝑥𝑗,0,𝑣(𝑡), 𝑥𝑗,1,𝑣(𝑡))(𝑗 = 0,1) 

from 𝑻 to 𝒦𝑠(Φ̅, �̅�) such that, for each 𝑡 ∈ 𝑻, 

𝑔(𝑒𝑗+𝑖𝑡) = 𝜅(�̅�𝑗(𝑡)) = 𝑠𝑗
𝑣(𝑥𝑗,0,𝑣(𝑡) + 𝑥𝑗,1,𝑣(𝑡)), 𝑣 ∈ 𝒁, 

with ‖�̅�𝑗(𝑡)‖𝒦𝑠𝑗

≤ ‖𝑔(𝑒𝑗+𝑖𝑡)‖
𝑌𝑗
+ 𝜖(𝑗 = 0,1). For each 𝑣 ∈ 𝒁 and 𝑣 ∈ 𝑨, let 

ℎ𝑣(𝑧) = (𝑠1 𝑠0⁄ )(𝛼−log 𝑧)𝑣𝑔(𝑧) = 𝑒(𝛼−log 𝑧)(𝜃1−𝜃0)𝑣𝑔(𝑧). 
Then 𝑥 = ℎ𝑣(𝜏). By the Cauchy integral formula, we obtain 

𝑥 =
1

2𝜋
∫ ℎ𝑣(𝑒

𝑖𝑡)
𝑒𝑖𝑡𝑑𝑡

𝜏 − 𝑒𝑖𝑡

2𝜋

0

+
1

2𝜋
∫ ℎ𝑣(𝑒

1+𝑖𝑡)
𝑒𝑖𝑡𝑑𝑡

𝑒1+𝑖𝑡 − 𝜏

2𝜋

0

 

= 𝑠𝑣 (
1

2𝜋
∫ 𝑒𝑖𝑣𝑡(𝜃0−𝜃1)(𝑥0,0,𝑣(𝑡) + 𝑥0,1,𝑣(𝑡))

𝑒𝑖𝑡𝑑𝑡

𝜏 − 𝑒𝑖𝑡

2𝜋

0

+
1

2𝜋
∫ 𝑒𝑖𝑣𝑡(𝜃0−𝜃1)(𝑥1,0,𝑣(𝑡) + 𝑥1,1,𝑣(𝑡))

𝑒𝑖𝑡𝑑𝑡

𝑒1+𝑖𝑡 − 𝜏

2𝜋

0

). 
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For 𝑗 = 0,1, let 

𝑦𝑗,𝑣 =
1

2𝜋
∫ 𝑒𝑖𝑣𝑡(𝜃0−𝜃1)𝑥0,𝑗,𝑣(𝑡)

𝑒𝑖𝑡𝑑𝑡

𝜏 − 𝑒𝑖𝑡

2𝜋

0

+
1

2𝜋
∫ 𝑒𝑖𝑣𝑡(𝜃0−𝜃1)𝑥1,𝑗,𝑣(𝑡)

𝑒𝑖𝑡𝑑𝑡

𝑒1+𝑖𝑡 − 𝜏

2𝜋

0

, 

and let �̅� = ((𝑦0,𝑣)𝑣, (𝑦1,𝑣)𝑣). Then �̅� ∈ 𝒦(Φ̅, �̅�) with 𝑥 = 𝜅(�̅�) and 

‖�̅�‖𝒦𝑠
= ‖(𝑦0,𝑣)𝑣‖Φ0(𝑋0)

+ ‖(𝑒𝑣𝑦1,𝑣)𝑣‖Φ1(𝑋1)

≤
1

2𝜋
∫ ‖�̅�0(𝑡)‖𝒦𝑠0

𝑑𝑡

|𝜏 − 𝑒𝑖𝑡|

2𝜋

0

+
1

2𝜋
∫ ‖�̅�0(𝑡)‖𝒦𝑠1

𝑑𝑡

|𝑒1+𝑖𝑡 − 𝜏|

2𝜋

0

≤ 𝑐(‖𝑥‖𝑌 + 2𝜖), 
where 𝑐 = (𝜏 − 1)−1 ∨ (𝑒 − 𝜏)−1. Therefore, 𝑥 ∈ �̅�Φ̅,𝑠;𝒦  with 

‖𝑥‖Φ̅,𝑠;𝒦 ≤ 𝑐‖𝑥‖𝑌 

by letting 𝜖 → 0. 

      Now we turn our attention to the derivation operator Ω�̅� associated with the interpolation 

space �̅�Φ̅,𝑠 as given in [47]. Let us fix a constant 𝐶opt > 1, a Laurent compatible pair of 

exact pseudolattices Φ̅, and a point 𝑠 ∈ 𝑨. For each Banach couple �̅� and each 𝑥 ∈ �̅�Φ̅,𝑠, let 

Ω̅�̅�(𝑥) denote the set of all elements 𝑥 ’ ∈ ∑�̅� of the form 𝑥 ’ = ∑ 𝑣𝑠𝑣−1𝑥𝑣𝑣  for all choices 

of the sequences (𝑥𝑣)𝑣 in 𝒥(Φ̅, �̅�) for which 𝑥 = ∑ 𝑠𝑣−1𝑥𝑣𝑣  and 

‖(𝑥𝑣)𝑣‖𝒥(Φ̅,�̅�) ≤ 𝐶opt‖𝑥‖�̅�Φ̅,𝑠
. 

We choose some element Ω�̅�(𝑥) ∈ Ω̃. Observe that the operator Ω�̅� is equivalent to that for 

the complex interpolation space [�̅�]𝐹𝐶̅̅ ̅̅ ,𝑒𝜃. According to [47], for Banach couples �̅� and �̅�, 

for 𝑇 ∈ ℬ(�̅�, �̅�), and for 𝑥 ∈ �̅�Φ̅,𝑠, we have 

𝑇Ω�̅�(𝑥) − Ω�̅�(𝑇𝑥) ∈ �̅�Φ̅,𝑠 
satisfying 

‖𝑇Ω�̅�(𝑥) − Ω�̅�(𝑇𝑥)‖�̅�Φ̅,𝑠
≤ �̃�‖𝑇‖�̅�,�̅�‖𝑥‖�̅�Φ̅,𝑠

 

for some positive constant �̃� not depending on 𝑥 and 𝑇. In case that the left shift operator 𝑆 

is isometric on Φ𝑗(�̅�𝑗)(𝑗 = 0,1), it is possible to give an alternative version of the estimate 

in (11) depending even more explicitly on 𝜃 = log|𝑠|. As mentioned in [47], the factor 

‖𝑇‖�̅�,�̅� can be replaced by 

‖𝑇‖0
1−𝜃‖𝑇‖1

𝜃(1 + 𝑒(‖𝑇‖1 ‖𝑇‖0⁄ )𝜃)
1−𝜃

(1 + 𝑒(‖𝑇‖0 ‖𝑇‖1⁄ )1−𝜃)
𝜃
. 

We have the following result for commutator estimates. 

Proposition (1.2.7)[39]: Assume that the left shift operator 𝑆 and the rotation operators 𝑅𝑡 

are isometric on Φ𝑗(�̅�𝑗)(𝑗 = 0,1) for all 𝑡 ∈ 𝑹. Then 

‖𝑇Ω�̅�(𝑥) − Ω�̅�(𝑇𝑥)‖�̅�Φ̅,𝑠
≤ �̃�𝜌𝜃,1(‖𝑇‖0, ‖𝑇‖1)‖𝑥‖�̅�Φ̅,𝑠

 

for some positive constant �̃� not depending on 𝑥 and 𝑇, where 𝜃 = log|𝑠|. 
Proof. Without loss of generality,wemay assume that 𝑠 ∈ (1, 𝑒) with 𝜃 = log 𝑠 ≤ 1 2⁄ , and 

choose now 𝜃0, 𝜃1 ∈ (0,1) with 

𝜃0 < 𝜃 < 1 2⁄ < 1 − 𝜃0 = 𝜃1. 

Let 𝑠𝑗 = 𝑒𝑗
𝜃(𝑗 = 0,1). Then 𝑠 = 𝑠0

1−𝛼𝑠1
𝛼 for some 𝛼 ∈ (0,1) Thus, 

𝛼 =
𝜃 − 𝜃0
1 − 2𝜃0

≤ 𝜃 ≤
1

2
 

and hence 
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0 ≤ (𝜃1 − 𝜃0) sin 𝜋𝛼 ≤ sin𝜋𝛼 ≤ sin𝜋𝜃. 
Let �̅� = (𝑉0, 𝑉1) with 𝑉𝑗 = �̅�Φ̅,𝑠𝑗  and �̅� = (𝑊0,𝑊1) with 𝑊𝑗 = �̅�Φ̅,𝑠𝑗(𝑗 = 0,1). According 

to Proposition (1.2.6), 

𝑋 = �̅�Φ̅,𝑠 = �̅�𝐹𝐶̅̅ ̅̅ .𝜏 = 𝑉  and  𝑌 = �̅�Φ̅,𝑠 = �̅�𝐹𝐶̅̅ ̅̅ .𝜏 = 𝑊, 

where 𝜏 = 𝑒𝛼. For any 𝑥 ∈ �̅�Φ̅,𝑠, we choose (𝑥𝑣)𝑣 ∈ 𝒥(Φ̅, �̅�) for which 𝑥 =
∑ 𝑠𝑣𝑥𝑣, ‖(𝑥𝑣)𝑣‖𝒥(Φ̅,�̅�)𝑣 ≤ ‖𝑥‖�̅�Φ̅,𝑠

, and 

Ω�̅�(𝑥) =∑𝑠𝑣𝑥𝑣
𝑣

. 

Let 

𝑓(𝑧) =∑𝑠0
𝑣𝑧𝑣(𝜃1−𝜃0)𝑥𝑣

𝑣

  for 𝑧 ∈ 𝑨 

as in the proof of Proposition (1.2.6). Then 𝑓 is an analytic function on 𝑨 with 

𝑥 = 𝑓(𝜏) and  ‖𝑓(𝑗 + 𝑖𝑡)‖𝑌𝑗 ≤ ‖(𝑥𝑣)𝑣‖𝒥(Φ̅,�̅�) (𝑗 = 0,1) 

for all 𝑡 ∈ 𝑹. Thus, 

Ω𝑉(𝑥) = 𝑓 ’(𝜏) = (𝜃1 − 𝜃0)∑𝑣𝑠0
𝑣𝜏𝑣(𝜃1−𝜃0)𝑥𝑣

𝑣

= (𝜃1 − 𝜃0)Ω�̅�(𝑥), 

and similarly Ω�̅�(𝑇𝑥) = (𝜃1 − 𝜃0)Ω�̅�(𝑇𝑥). Combining these equalities with Proposition 

(1.2.6), we have 

‖𝑇Ω�̅�(𝑥) − Ω�̅�(𝑇𝑥)‖𝑌 ≤ 𝐶1‖𝑇Ω𝑉(𝑥) − Ω�̅�(𝑇𝑥)‖𝑊 ≤ 𝐶2𝜌𝛼,1(‖𝑇‖𝑉0,𝑊0
, ‖𝑇‖𝑉1,𝑊1

)‖𝑥‖𝑊, 

where 𝐶1 and 𝐶1 are positive constants not depending on x and 𝑇. Therefore, 

‖𝑇Ω�̅�(𝑥) − Ω�̅�(𝑇𝑥)‖𝑌 ≤ �̃�𝜌0,1(‖𝑇‖0, ‖𝑇‖1)‖𝑥‖𝑋 

for some positive constant �̃� not depending on 𝑥 and 𝑇. 

     These results can be easily extended to the analytic interpolation methods by using the 

mixed reiteration formulated. We present them here without proof. In Propositions (1.2.8)–

(1.2.10), we always assume that the left shift operator S and the rotation operators 𝑅𝑡 are 

isometric on Φ𝑗(𝑋𝑗)(𝑗 = 0,1) for all 𝑡 ∈ 𝑹. We first study the stability of compactness and 

extend [46] to the analytic interpolation. 

Proposition (1.2.8)[39]: Let 𝑇 ∈ ℬ(�̅�, �̅�). If 𝑇: �̅�Φ̅,𝑠 → �̅�Φ̅,𝑠 is compact for some 𝑠 ∈ (1, 𝑒), 

then 𝑇: �̅�Φ̅,𝑢 → �̅�Φ̅,𝑢 is compact for each 𝑢 ∈ (1, 𝑒). 
    The next result is about the local uniqueness-of-resolvent property which is a 

generalization of [41]. 

Proposition (1.2.9)[39]: Let 𝑇 ∈ ℬ(�̅�) and let 𝑠 ∈ (1, 𝑒). If T is invertible on �̅�Φ̅,𝑠 with the 

inverse 𝑇𝑠
−1, then there exists 𝜖 > 0 such that, for all 𝑢 ∈ (1, 𝑒) with |𝑢 − 𝑠| ∈ 𝜖, 𝑇 is also 

invertible on �̅�Φ̅,𝑢 with the inverse 𝑇𝑢
−1 satisfying 

𝑇𝑢
−1𝑥 = 𝑇𝑠

−1𝑥 

for 𝑥 ∈ ∆�̅�. 

  For a Banach space 𝑋, and for 𝑇 ∈ ℬ(𝑋), we denote by 𝑆𝑝(𝑇, 𝑋), 𝑟(𝑇, 𝑋) and 𝑟𝑒(𝑇, 𝑋) the 

spectrum, the spectral radius and the essential spectral radius of 𝑇 on 𝑋, respectively. By 

[40], we have 

𝑟(𝑇, �̅�Φ̅,𝑠) ≤ 𝑟(𝑇, 𝑋0)
1−𝜃𝑟(𝑇, 𝑋1)

𝜃 , 

and, ∆�̅� is dense in �̅�Φ̅,𝑠, 

𝑟𝑒(𝑇, �̅�Φ̅,𝑠) ≤ 𝑟𝑒(𝑇, 𝑋0)
1−𝜃𝑟𝑒(𝑇, 𝑋1)

𝜃 . 
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We adapt the proof of [55] to our situation and obtain the continuity of spectral radius and 

essential spectral radius for a single operator. 

Proposition (1.2.10)[39]: If 𝑇 ∈ ℬ(�̅�), then the mappings 

𝑠 ↦ 𝑟(𝑇, �̅�Φ̅,𝑠)  and  𝑠 ↦ 𝑟𝑒(𝑇, �̅�Φ̅,𝑠) 
are continuous for 𝑠 ∈ (1, 𝑒). 
     For 𝑠 ∈ 𝑨, for 𝑛 = 1,2,…, and for an exact pseudolattice pair Φ̅, we may define spaces 

�̅�
Φ̅,𝑠

(±𝑛)
 associated with the nth derivative at 𝑠 ∈ 𝑨 in the following way: 

�̅�
Φ̅,𝑠

(𝑛)
= {𝑥 ∈ ∑�̅�|𝑥 = 𝑓(𝑛)(𝑠), 𝑓 ∈ 𝒥(Φ̅, �̅�)} 

with the norm ‖𝑥‖Φ̅,𝑠(𝑛) = inf{‖𝑓‖𝒥|𝑥 = 𝑓(𝑛)(𝑠)}, and 

�̅�
Φ̅,𝑠

(−𝑛)
= {𝑥 ∈ ∑�̅�|𝑥 = 𝑓(𝑛)(𝑠), 𝑓 ∈ 𝒥(Φ̅, �̅�), 𝑓(𝑘)(𝑠) = 0 for 1 ≤ 𝑘 ≤ 𝑛} 

with the norm 

‖𝑥‖Φ̅,𝑠(−𝑛) = inf{‖𝑓‖𝒥|𝑥 = 𝑓(𝑠) and 𝑓(𝑘)(𝑠) = 0 for 1 ≤ 𝑘 ≤ 𝑛}. 

Spaces �̅�
Φ̅,𝑠

(𝑛)
 and �̅�

Φ̅,𝑠

(−1)
 are defined by [47]. These spaces arise naturally when the 

commutators of the derivation mappings Ω�̅� given are concerned at least for 𝑛 = 1. In fact, 

by [47], �̅�(−1) and �̅�(1) are domain and range spaces of Ω�̅�, respectively. For the sake of 

completeness, we write 

�̅�
Φ̅,𝑠

(0)
= �̅�Φ̅,𝑠. 

It is easy to show that �̅�
Φ̅,𝑠

(±𝑛)
 are interpolation spaces for the Banach couple �̅�. In particular, 

for Φ̅ = 𝐹𝐶̅̅̅̅  and 𝑠 ∈ (1, 𝑒) with 𝜃 = log 𝑠, we have 

�̅�
Φ̅,𝑠

(±𝑛)
= [�̅�]𝜃(±𝑛), 

which are systematically studied in [48]. The following result is an extension of [45], [48] 

and [49]. 

Proposition (1.2.11)[39]: Assume that the left shift operator S and the rotation operators 𝑅𝑡 

are isometric on Φ𝑗(𝑋𝑗)(𝑗 = 0,1) for all 𝑡 ∈ 𝑹. 

(i) Let 𝑠1, 𝑠0, 𝑠, 𝜏 ∈ (1, 𝑒) and 𝛼 ∈ (0,1) such that 𝑠 = 𝑠0
1−𝛼𝑠1

𝛼 and 𝜏 = 𝑒𝛼. Then 

�̅�
Φ̅,𝑠

(±1)
= (�̅�Φ̅,𝑠0

(±1)
, �̅�

Φ̅,𝑠1

(±1)
)
𝐹𝐶̅̅ ̅̅ ,𝜏

. 

(ii) Let 𝑇 ∈ ℬ(�̅�) and let 𝑠 ∈ (1, 𝑒). Then 

𝑆𝑝 (𝑇, �̅�Φ̅,𝑠
(±1)

) ⊆ 𝑆𝑝(𝑇, �̅�Φ̅,𝑠). 

Proof. As in the proof of Proposition (1.2.7), we set �̅� = (�̅�Φ̅,𝑠0 , �̅�Φ̅,𝑠0). Then �̅�𝐹𝐶̅̅ ̅̅ ,𝜏 = �̅�Φ̅,𝑠 

and 

Ω�̅� = (𝜃1 − 𝜃0)Ω�̅�. 
Consequently, Ω�̅� and Ω�̅� have the same domain and range spaces, which implies that 

�̅�
Φ̅,𝑠

(±1)
= (�̅�Φ̅,𝑠0

(±1)
, �̅�

Φ̅,𝑠1

(±1)
)
𝐹𝐶̅̅ ̅̅ ,𝜏

. 

The inclusion 

𝑆𝑝 (𝑇, �̅�Φ̅,𝑠
(±1)

) ⊆ 𝑆𝑝(𝑇, �̅�Φ̅,𝑠) 

follows by this reiteration result and Proposition (1.2.9) in a similar way for the proof of 

[49]. 

    Let us recall the concept of distance between closed subspaces of a given Banach space 

𝑋. For two closed subspaces 𝑉0 and 𝑉1 of 𝑋, we define the distance between 𝑉0 and 𝑉1 by 
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𝑑(𝑉0, 𝑉1) = max
𝑗=0,1

sup {𝑑(𝑣𝑗 , 𝑉1−𝑗)|𝑣𝑗 ∈ 𝑉𝑗 , ‖𝑣𝑗‖𝑋 ≤ 1} , 

where 𝑑(𝑣𝑗 , 𝑉1−𝑗) is the distance between the point 𝑣𝑗 and the set 𝑉1−𝑗(𝑗 = 0,1). We also 

denote 

𝑑(𝑋 𝑉0⁄ , 𝑋 𝑉1⁄ ) = 𝑑(𝑉0, 𝑉1) 

as the distance between the reduced quotient spaces. If �⃗� = (𝑇1, 𝑇2, … , 𝑇𝑚) is an 𝑚-tuple of 

commuting operators in B(X), then �⃗�  induces m-tuples �⃗� 𝑗 of commuting operators in 

ℬ(𝑋 𝑉𝑗⁄ )(𝑗 = 0,1). According to [47] and [51], there exists a constant c depending on s such 

that 

𝑑(�̅�Φ̅,𝑠, �̅�Φ̅,𝑢) ≤ 𝑐|𝑠 − 𝑢|, 

for all 𝑢 ∈ 𝑨 and for all Banach couples �̅�. This estimate can be extended to spaces �̅�
Φ̅,𝑠

(±𝑛)
. 

Lemma (1.2.12)[39]: If 𝑠, 𝑢 ∈ (1, 𝑒), then 

𝑑 (�̅�Φ̅,𝑠
(±𝑛)

, �̅�
Φ̅,𝑢

(±𝑛)
) ≤ 𝑐|𝑠 − 𝑢|. 

where 

𝑐 =
1

𝑑(𝑠, 𝜕𝑨)
∑ (1 +

1

𝑑(𝑠, 𝜕𝑨)
)
𝑘𝑛−1

𝑘=0

. 

Proof. Fix an arbitrary 𝑓 ∈ 𝒥(Φ̅, �̅�) with 𝑓(𝑠) = 0 and ‖𝑓‖𝒥 ≤ 1. We define 𝑔 ∈ 𝒥(Φ̅, �̅�) 
by 𝑔(𝑧) = 0 and 

𝑔(𝑧) = (
𝑧 − 𝑢

𝑧 − 𝑠
)
𝑛

𝑓(𝑧) 𝑓𝑜𝑟 𝑧 ≠ 𝑠, 

Then 𝑔(𝑢) = 𝑔’(𝑢) = ⋯ = 𝑔(𝑛)(𝑢) = 0. Observe that, for 𝑧 ≠ 𝑠, 

𝑔(𝑧) − 𝑓(𝑧) = ((
𝑧 − 𝑢

𝑧 − 𝑠
)
𝑛

− 1)𝑓(𝑧) =
𝑠 − 𝑢

𝑧 − 𝑠
∑(1 +

𝑠 − 𝑢

𝑧 − 𝑠
)
𝑘

𝑓(𝑧)

𝑛−1

𝑘=0

. 

which implies that 

‖𝑔 − 𝑓‖𝒥 ≤
|𝑠 − 𝑢|

𝑑(𝑠, 𝜕𝑨)
∑ (1 +

1

𝑑(𝑠, 𝜕𝑨)
)
𝑘𝑛−1

𝑘=0

. 

This shows that 

𝑑 (�̅�Φ̅,𝑠
(𝑛)
, �̅�

Φ̅,𝑢

(𝑛)
) ≤ 𝑐|𝑠 − 𝑢|. 

The inequality 

𝑑 (�̅�Φ̅,𝑠
(−𝑛)

, �̅�
Φ̅,𝑢

(−𝑛)
) ≤ 𝑐|𝑠 − 𝑢| 

can be obtained by assuming 𝑓 ’(𝑠) = ⋯ = 𝑓(𝑛)(𝑠) = 0 additionally. 

     See [56], [57] for the spectral theory for several commuting operators developed by 

Taylor in 1970. For an m-tuple of commuting operators �⃗� = (𝑇1, 𝑇2, … , 𝑇𝑚) in ℬ(𝑋), let 

𝐻𝑘(�⃗� , 𝑋) be the corresponding homology modules. If �⃗�  is a semi-Fredholm 𝑚-tuple, then 

the index of �⃗�  is defined by 

ind(�⃗� , 𝑋) = ∑(−1)𝑘
𝑚+1

𝑘=1

dim(�⃗� , 𝑋). 
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If ind(�⃗� , 𝑋) ≠ ±∞, then 𝐾(�⃗� , 𝑋) is a Fredholm complex, and hence �⃗�  is a Fredholm 𝑚-

tuple. Let 𝑆𝑝(�⃗� , 𝑋) and 𝑆𝑝𝑒(�⃗�
 , 𝑋) be the Taylor spectrum and the Taylor essential spectrum 

of �⃗�  on 𝑋, respectively. By combining [40] and [42] with Lemma (1.2.12), we obtain 

Proposition (1.2.13)[39]: Let �⃗� = (𝑇1, 𝑇2, … , 𝑇𝑚) be an 𝑚-tuple of commuting operators in 

ℬ(�̅�), and let 𝑠, 𝑢 ∈ (1, 𝑒). 

(i) If �⃗�  is semi-Fredholm on �̅�
Φ̅,𝑠

(±𝑛)
, then there exists 𝜖 > 0 such that, whenever 

|𝑢 − 𝑠| < 𝜖, �⃗�  is also semi-Fredholm on �̅�
Φ̅,𝑢

(±𝑛)
 satisfying 

dim𝐻𝑘 (�⃗� , �̅�Φ̅,𝑢
(±𝑛)

) ≤ dim𝐻𝑘 (�⃗� , �̅�Φ̅,𝑠
(±𝑛)

)   𝑓𝑜𝑟  1 ≤ 𝑘 ≤ 𝑚, 

and 

ind (�⃗� , �̅�Φ̅,𝑢
(±𝑛)

) = ind (�⃗� , �̅�Φ̅,𝑠
(±𝑛)

). 

In particular, if �⃗�  is exact on �̅�
Φ̅,𝑠

(±𝑛)
, then �⃗�  is also exact on �̅�

Φ̅,𝑢

(±𝑛)
. 

(ii)  The mappings 𝜃 ↦ 𝑆𝑝 (𝑇, �̅�Φ̅,𝑒𝜃
(±1)

) and 𝜃 ↦ 𝑆𝑝𝑒 (𝑇, �̅�Φ̅,𝑒𝜃
(±1)

) from the interval (0,1) 

to the set of all compact subsets of 𝑪𝑛 are upper semicontinuous.  
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Chapter 2 

New Spectral Triple and Noncommutative Solenoids 

 

We show that the construction is canonically associated to quantum gravity and is an 

alternative version of the spectral triple presented in [41]. We establish a necessary and 

sufficient condition for the simplicity of the noncommutative solenoids. Then, using the 

computation of the trace on 𝐾0, we discuss two different ways of constructing projective 

modules over the noncommutative solenoids. 

Section (2.1): A Space of Connections 

[61], [62] commenced a programme of combining Connes noncommutative geometry 

with quantum gravity. This programme is motivated by the formulation of the Standard 

Model coupled to gravity in terms of noncommutative geometry, see [66]. A spectral triple, 

and the classical action is obtained via a spectral action principle natural to noncommutative 

geometry. The fact that the classical Standard Model is so readily translated into the 

language of noncommutative geometry raises the question wether there exist a 

corresponding translation of the quantization procedure of QFT. Since noncommutative 

geometry is essentially gravitational such a translation would presumable involve quantum 

gravity. 

We successfully constructed a semifinite spectral triple over a space of connections 

[59], [60]. The spectral triple involves an algebra of holonomy loops and the interaction 

between the Dirac type operator and the algebra reproduces the Poisson structure of General 

Relativity when formulated in Ashtekar variables [64]. The associated Hilbert space 

corresponds, up to a discrete symmetry group, to the Hilbert space of diffeomorphism 

invariant states known from Loop Quantum Gravity [67]. 

We construct a new semifinite spectral triple which differs from the triple constructed 

in [59], [60] through the form of the Dirac type operator. The operator presented is 

significantly simpler and thus possible more suitable for actual spectral computations. The 

construction of the operator is based on a reparameterization of the space of connections, 

such that the structure maps are deleting copies of the structure group. Hence the spectral 

triple can be constructed by writing a Dirac operator on each copy of the structure group. 

Whereas the reparameterized Dirac operator is simpler than the one in [61], [62], its 

interaction with the algebra of loops becomes more complicated. 

Johannes Aastrup was funded by the German Research Foundation (DFG) within the 

research project Geometrische Strukturen in der Mathematik (SFB 478). 

We recall from [60] how we constructed the completion of spaces of connections. The 

construction is a variant of the Ashtekar-Lewandowski construction, see [63]. The setup is 

a manifold 𝑀 an a trivial 𝐺-principal fiber bundle over 𝑀, where 𝐺 is a compact connected 

Lie group. Denote by 𝒜 the space of smooth 𝐺-connections. We start with a system 𝒮 of 

graphs on 𝑀. The system has to be dense and directed according to the definitions 2.1.6 and 

2.1.7 in [60]. The specific examples we have in mind are the following two: 

Example (2.1.1)[58]: Let 𝒯 be a triangulation of 𝑀. We let Γ0 be the graph consisting of all 

the edges in this triangulation. Strictly speaking this is not a graph if the manifold is not 

compact, but in this case we can consider Γ0 as a system of graphs instead. Let 𝒯𝑛 be the 

triangulation obtained by barycentric subdividing each of the simplices in 𝒯 𝑛 times. The 

graph Γ𝑛 is the graph consisting of the edges of 𝒯𝑛. In this way we get a directed and dense 

system 𝒮∆ = {Γ𝑛} of graphs. 
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Example (2.1.2)[58]: Let Γ0 be a finite, 𝑑-dimensional lattice and let Γ1 be the lattice 

obtained by subdividing each cell in Γ0 into 2𝑑 cells, see figure 1. Correspondingly, let Γ𝑖 
be the lattice obtained by repeating 𝑖 such subdivisions of Γ0. In this way we get a directed 

and dense system 𝒮□ = {Γ𝑛} of graphs. 

     We will for simplicity assume that the system 𝒮 we are dealing with is of 

 
Figure (1)[58]: Repeated subdivisions of a lattice 

the form 𝒮 = {𝑆𝑛}𝑛 ∈ ℕ, where 𝑆𝑛 are finite graphs and 𝑆𝑛 ⊂ 𝑆𝑛+1. Also we assume the 

edges to be oriented and we assume the embeddings 𝑆𝑛 ⊂ 𝑆𝑛+1 to preserve the orientation. 

This is clearly the case in Example (2.1.1) and (2.1.2). 

   We define 

𝒜𝑛 = 𝐺𝑒(𝑆𝑛), 
where 𝑒(𝑆𝑛) denotes the number of edges in 𝑆𝑛. In other words we have just associated to 

each edge a copy of 𝐺. We think of 𝒜𝑛 as 𝒜 restricted to 𝑆𝑛; namely for each connection 

we associate to each edge in 𝑆𝑛 the holonomy of the connection along the edge, which is 

just an element of 𝐺. 

   There are natural maps 

𝑃𝑛,𝑛+1:𝒜𝑛+1 → 𝒜𝑛 

defined in the following way: If an edge 𝑒𝑖 ∈ 𝑆𝑛 is the composition 𝑒𝑖1𝑒𝑖2…𝑒𝑖𝑘, where 

𝑒𝑖1 , 𝑒𝑖2 , … , 𝑒𝑖𝑘 ∈ 𝑆𝑛+1 then (𝑔𝑖1 , … , 𝑔𝑖𝑘) gets mapped to 𝑔𝑖1 , … , 𝑔𝑖𝑘 in the 𝑖’component of 

𝒜𝑛. If 𝑒𝑙 ∈ 𝑆𝑛 is not the subdivision of any edges in 𝑆𝑛 the map 𝑃𝑛,𝑛+1 just forgets the 𝑖’s 

component in 𝒜𝑛+1. See Figure (2). 

Given these maps we can define 

�̅�𝒮 = lim
←
𝒜𝑛. 

Since 𝒜𝑛 has a natural compact Hausdorff topology, and the maps 𝑃𝑛,𝑛+1 are continuous, 

�̅�𝒮 has a natural compact Hausdorff topology. 

A smooth connection ∇ gives rise to an element in �̅�𝒮 by 

∇→ (𝐻 𝑜𝑙(𝑒1, ∇), … ,𝐻 𝑜𝑙(𝑒𝑒(𝑆𝑛), ∇)) ∈ 𝒜𝑛, 
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Figure (2)[58]: The structure map of one subdivision 

where 𝐻 𝑜𝑙(𝑒𝑖 , ∇) denotes the holonomy of ∇ along 𝑒𝑖. 
We therefore get a map from 𝒜 to �̅�𝒮. This map a dense embedding, see [60]. 

We assume that edges from 𝑆𝑛 get subdivided into to two in 𝑆𝑛+1. This is clearly the 

case in Example (2.1.1) and (2.1.2). Therefore for a single edge, the projective system looks 

like 

𝐺 ← 𝐺2 ← 𝐺4 ← ⋯𝐺2𝑛 ← 𝐺2𝑛+1 ← ⋯ 

with structure maps 

𝑃𝑛,𝑛+1(𝑔1, … , 𝑔2𝑛+1) = (𝑔1𝑔2, … , 𝑔2𝑛+1−1𝑔2𝑛+1). 
We will from now on focus on the case of a single edge, since the general case is basically 

just more notation. 

Like in [60] we define the coordinate transformation 

Θ𝑛:𝒜𝑛 = 𝐺2𝑛 → 𝐺2𝑛 

by 

Θ𝑛(𝑔1, … , 𝑔2𝑛) = (𝑔1𝑔2, … , 𝑔2𝑛 , 𝑔2𝑔3…𝑔2𝑛 , … , 𝑔2𝑛−1𝑔2𝑛 , 𝑔2𝑛). 

It is easy to see that Θ𝑛 preserves the Haar measure on 𝐺2𝑛. The inverse of Θ𝑛 is given by 

Θ𝑛
−1(𝑔1, … , 𝑔2𝑛) = (𝑔1𝑔2

−1, 𝑔2𝑔3
−1, … 𝑔2𝑛−1𝑔2𝑛

−1, 𝑔2𝑛). 
The important feature of the coordinate change is the following: 

Θ𝑛 (𝑃𝑛,𝑛+1(Θ𝑛
−1)) (𝑔1, … , 𝑔2𝑛+1) = (𝑔1, 𝑔3, … , 𝑔2𝑛+1−1). 

We will from now on use Θ to identify 𝒜 with a projective system of the form 

𝐺 ← 𝐺2 ← 𝐺4 ← ⋯𝐺2𝑛 ← 𝐺2𝑛+1 ← ⋯ 
with structure maps 

𝑃𝑛,𝑛+1(𝑔1, … , 𝑔2𝑛+1) = (𝑔1𝑔3, … , 𝑔2𝑛+1−1). 
Hence the structure maps has been simplified significantly. 

    This way of writting the projective system can be seen in the following way: 

The edge is divided into 2𝑛 smaller edges. The coordinate 𝑔1 corresponds to holonomy 

along the entire edge. The coordinate 𝑔2 corresponds to the holonomy along the entire edge 

minus the first of the 2𝑛 edges. The coordinate 𝑔3 corresponds to the holonomy along the 

entire edge minus the first two of the 2𝑛 edges and so on and so fort. See Figure (3). 

   We now choose a left and right invariant metric 〈⋅,⋅〉 on 𝐺. We will consider a metric on 

𝑇∗𝐺. We will equip 𝑇∗𝒜𝑛 = 𝑇∗𝐺2𝑛 with the product metric and denote it by 〈⋅,⋅〉𝑛. Note 

that 

〈𝑃𝑛,𝑛+1
∗ (𝑣), 𝑃𝑛,𝑛+1

∗ (𝑢)〉, 
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and hence the family of metrics 〈⋅,⋅〉𝑛 descends to a metric on 𝑇∗�̅�𝒮 = lim𝑛 𝑇
∗𝒜𝑛, which 

we will also denote by 〈⋅,⋅〉. 

  Denote by 𝐿2(𝒜𝑛, 𝐶𝑙(𝑇
∗𝒜𝑛)) the Hilbert space 𝐿2 (𝐺2𝑛 , 𝐶𝑙(𝑇∗𝐺2𝑛)), where 𝐶𝑙(𝑇∗𝐺2𝑛) 

is the Clifford bundle with respect 〈⋅,⋅〉𝑛, and 𝐺2𝑛 is equipped with 

 
Figure (3)[58]: The new parameterization 

the Haar mass. Because of (1), and because the Haar mass of 𝐺2𝑛 is one, the map 𝑃𝑛,𝑛+1
∗  

defines a Hilbert space embedding of 

𝑃𝑛,𝑛+1
∗ : 𝐿2(𝒜𝑛, 𝐶𝑙(𝑇

∗𝒜𝑛)) → 𝐿2(𝒜𝑛+1, 𝐶𝑙(𝑇
∗𝒜𝑛+1)). 

We can thus define 

𝐿2 (�̅�𝒮 , 𝐶𝑙(𝑇∗�̅�𝒮)) = lim
→
𝐿2(𝒜𝑛, 𝐶𝑙(𝑇

∗𝒜𝑛)). 

We want to construct a spectral triple related to �̅�𝒮. Let 𝑣 be a vertex in 𝒮 and assume that 

𝐺 is represented as matrices. 𝐴 loop 𝐿 in 𝒮 with base point 𝑣 define a matrix valued function 

ℎ𝐿 over �̅�𝒮 via 

ℎ𝐿(∇) = 𝐻 𝑜𝑙(𝐿, ∇), ∇∈ �̅�𝒮 . 
Definition (2.1.3). The algebra 𝐵𝑣 of holonomy loops based in 𝑣 is the ∗-algebra generated 

by the ℎ𝐿’s, where 𝐿 is running through all the loops in 𝒮 based in 𝑣. 

Since the representation of 𝐺 is unitary ℎ𝐿 are bounded functions and therefore defines 

bounded operators on 𝐿2(�̅�𝒮 ,𝑀𝑁), where 𝑀𝑁 are the 𝑁 ×𝑀 matrices in which 𝐺 is 

represented. In particular ℬ𝑣 can be completed to a 𝐶∗-algebra. 

   We want to construct a spectral triple for ℬ𝑣. Since ℬ𝑣 is an algebra of functions over �̅�𝒮, 

we will do this by constructing a Dirac type operator on �̅�𝒮. To be more precise the operator 

will act on 𝐿2 (�̅�𝒮 , 𝐶𝑙(𝑇∗�̅�𝒮)). 

  Let 𝑔 be the Lie algebra of 𝐺. We choose an orthonormal basis {𝑒𝑖} for 𝑔 with respect to 

〈⋅,⋅〉. We also denote by {𝑒𝑖} the corresponding left translated vectorfields. On 𝐺 define the 

bare Dirac type operator by 

𝐷𝑏(𝜉) =∑𝑒𝑖 ⋅ 𝑑𝑒𝑖𝜉

𝑖

, 𝜉 ∈ 𝐿2(𝐺, 𝐶𝑙(𝑇𝐺)), 

where 𝑑𝑒𝑖 means deriving with respect to 𝑒𝑖 in the trivialization given by {𝑒𝑖}, and · means 

Clifford multiplication. 
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  On 𝐺2𝑛 we define the operator 𝐷𝑛,𝑗 acting on 𝐿2(𝐺2𝑛 , 𝐶𝑙(𝑇𝐺2𝑛)) simply as 𝐷𝑏 acting on 

the 𝑗’es copy of 𝐺. Since 〈⋅,⋅〉𝑛 identifies 𝑇𝐺2𝑛 with 𝑇∗𝐺2𝑛, we can consider 𝐷𝑛,𝑗 as an 

operator acting on 𝐿2(𝒜𝑛, 𝐶𝑙(𝑇
∗𝒜𝑛)). 

   Note that given a Dirac type operator 𝐷 acting on 𝐿2(𝒜𝑛−1, 𝐶𝑙(𝑇
∗𝒜𝑛−1)) we can define 

an operator 𝐸𝑛(𝐷) acting on 𝐿2(𝒜𝑛, 𝐶𝑙(𝑇
∗𝒜𝑛)) simply by letting it act on the odd variables 

of 𝒜𝑛 = 𝐺2𝑛. 

Definition (2.1.4). Let {𝑎𝑗,𝑘}
𝑗∈ℕ0,1≤𝑘≤2

𝑗−1 (with the odd convention that 2−1 = 1) be a 

sequence of non zero real numbers. The 𝑛’th Dirac type operator operator is defined 

inductively via 𝐷0 = 𝐷𝑏 and 

𝐷𝑛 = 𝐸𝑛(𝐷𝑛−1) +∑𝑎𝑛,𝑘𝐷𝑛,2𝑘
𝑘

. 

By construction it is clear that 

𝑃𝑛,𝑛+1
∗ (𝐷𝑛(𝜉)) = 𝐷𝑛+1(𝑃𝑛,𝑛+1

∗ (𝜉)). 
Proposition (2.1.5). The family of operators {𝐷𝑛} descends to a densely defined essentially 

self adjoint operator 𝐷 on 𝐿2 (�̅�𝒮 , 𝐶𝑙(𝑇∗�̅�𝒮)). 

Proof. By (2) it follows that {𝐷𝑛} descends to a densely defined operator 𝐷 on 

𝐿2 (�̅�𝒮 , 𝐶𝑙(𝑇∗�̅�𝒮)). The operators 𝐷𝑛 are formally self adjoint elliptic differential operators 

on compact manifolds, and hence orthonormal diagonalizable. Because of (2) we can find a 

orthonormal basis for 𝐿2 (�̅�𝒮 , 𝐶𝑙(𝑇∗�̅�𝒮)) diagonalizing 𝐷 with real eigenvalues. In 

particular 𝐷 is essentially self adjoint. 

Proposition (2.1.6). The commutator [ℎ𝐿, 𝐷] is bounded for all ℎ𝐿 ∈ ℬ𝑣 . 

   Proof. A given loop 𝐿 belongs to 𝒮𝑛 for some 𝑛. Therefore the action of ℎ𝐿 on 

𝐿2 (�̅�𝒮 ,𝑀𝑁⨂𝐶𝑙(𝑇
∗�̅�𝒮)) depends only, by construction of the coordinate change, of the 

coppies of 𝐺 arising at the 𝑛’level. Therefore [ℎ𝐿, 𝐷] = [ℎ𝐿, 𝐷𝑛]. On the other hand [ℎ𝐿, 𝐷𝑛] 
is an order zero operator on a compact manifold, and hence bounded. 

We will assume that 𝐺 has the property that the kernel of the bare Dirac type operator is 

𝐶𝑙(𝑔), where 𝐶𝑙(𝑔) is understood as 𝐶𝐿(𝑇𝐺) generated by left invariant vectorfields. For 

𝑈(1) this is trivial, and the computation in the appendix of [60] shows that this is also the 

case for 𝑆𝑈(2), which is the example of most interest. We do not know if all compact Lie 

groups possesses this property. 

    One of the crucial demands of being a unital spectral triple is that the Dirac operator 

should have compact resolvent. This is however clearly not the case for 𝐷, since it has 

infinite dimensional kernel. We will however see that we have a semifinite spectral triple. 

For a semifinite spectral triple one replaces the compact resolvent condition with the 

condition that 
1

𝐷2 + 1
 

is compact with respect to a certain trace, i.e. the trace should be thought of as integrating 

out the infinite degeneracy in the spectrum of 𝐷. 

  The following definition first appeared in [65]. 

Definition (2.1.7). Let 𝒩 be a semifinite von Neumann algebra with a semifinite trace 𝜏. 

Let 𝒦𝜏 be the 𝜏-compact operators. A semifinite spectral triple (ℬ,ℋ, 𝐷) is a ∗-subalgebra 
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ℬ of 𝒩, a representation of 𝒩 on the Hilbert space ℋ and an unbounded densely defined 

self adjoint operator 𝐷 on ℋ affiliated with 𝒩 satisfying 

(i) 𝑏(𝜆 − 𝐷)−1 ∈ 𝒦𝜏 for all 𝑏 ∈ ℬ and 𝜆 ∉ ℝ.. 

(ii) [𝑏, 𝐷] is densely defined and extends to a bounded operator. 

  We will now prove that 

(ℬ𝑣 , 𝐿
2 (�̅�𝒮 , 𝑀𝑁⨂𝐶𝑙(𝑇

∗�̅�𝒮)) , 𝐷), 

is a semifinite spectral triple. We therefore need to specify a semifinite von Neumann 

algebra 𝒩 with a semifinite trace 𝜏. 

We can use {𝑒𝑖} to trivialize 𝑇∗𝐺. Doing this in each copy of 𝐺 we can also trivialize 𝑇∗𝒜𝑛. 

Hence we can factorize 

𝐿2 (�̅�𝒮 , 𝑀𝑁⨂𝐶𝑙(𝑇
∗�̅�𝒮)) = 𝐿2(�̅�𝒮)⨂𝑀𝑁⨂𝐶𝑙(𝑇𝑖𝑑

∗ �̅�𝒮), 

where 

𝐶𝑙(𝑇𝑖𝑑
∗ �̅�𝒮) = lim

𝑛
𝐶𝑙(𝑇𝑖𝑑

∗ 𝒜𝑛). 

Since the problem arises from the infinite dimensionality of 𝐶𝑙(𝑇𝑖𝑑
∗ �̅�𝒮) we will take the 

algebra 

𝒩 = ℬ (𝐿2(�̅�𝒮))⨂𝑀𝑁⨂𝐶, 

where C is the following von Neumann algebra acting on 𝐶𝑙(𝑇𝑖𝑑
∗ �̅�𝒮): 

• We write 

𝑇𝑖𝑑
∗ 𝒜𝑛+1 = 𝑇𝑖𝑑

∗ 𝒜𝑛⨂𝑉𝑛,𝑛+1, 
and 

𝐶𝑙(𝑇𝑖𝑑
∗ 𝒜𝑛+1) = 𝐶𝑙(𝑇𝑖𝑑

∗ 𝒜𝑛)⨂̂𝐶𝑙(𝑉𝑛,𝑛+1), 
then, with abuse of notation, 

𝑃𝑛,𝑛+1
∗ : 𝐶𝑙(𝑇𝑖𝑑

∗ 𝒜𝑛) → 𝐶𝑙(𝑇𝑖𝑑
∗ 𝒜𝑛+1) 

is given by 

𝑃𝑛,𝑛+1
∗ (𝑣) = 𝑣⨂1𝐶𝑙(𝑉𝑛,𝑛+1). 

Define 𝐶 as the weak closure of the 𝐶∗-algebra 

𝐵 = lim
→
𝐶𝑙(𝑇𝑖𝑑

∗ 𝒜𝑛) 

with respect to the representation on 𝐶𝑙(𝑇𝑖𝑑
∗ �̅�𝒮). 

We denote by 𝑃𝑛
∗ the natural map from 𝐶𝑙(𝑇𝑖𝑑

∗ 𝒜𝑛) to 𝐵. 

Note that 𝐵 is a UHF-algebra. Since the dimension of the Clifford algebra is a power of 2 

when 𝑛 ≥ 1, 𝐵, is the CAR-algebra and has a normalized trace. This trace can be described 

in the following way: 𝐶𝑙(𝑇𝑖𝑑
∗ 𝒜𝑛) is a matrix algebra, and hence has a normalized trace 𝜏𝑛. 

By definition of the normalized trace we have 

𝜏𝑛+1 ∘ 𝑃𝑛,𝑛+1
∗ = 𝜏𝑛. 

Thus {𝜏𝑛} descends to a trace 𝜏 on 𝐵. In particular 𝜏(1) = 1. This remedies the defect that 

𝐶𝑙(𝑇𝑖𝑑
∗ �̅�𝒮) is infinite dimensional. 

   Note that the action of 𝐵 on 𝐶𝑙(𝑇𝑖𝑑
∗ �̅�𝒮) is just the GNS-representation of 𝐵 with respect 

to the normalized trace on 𝐵. Therefore 𝐶 is the hyperfinite 𝐼𝐼1 factor, and 𝜏 extends to a 

finite trace on 𝐶. 

    Tensoring with the ordinary operator trace 𝑡𝑟 on ℬ(𝐿2(�̅�𝒮)⨂𝑀𝑁) we obtain a semifinite 

trace 𝑇𝑟 on 𝒩. 

Theorem (2.1.8). The triple 

(ℬ𝑣 , 𝐿
2 (�̅�𝒮 , 𝑀𝑁⨂𝐶𝑙(𝑇

∗�̅�𝒮)) , 𝐷) 
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is a semifinite spectral triple with respect to (𝒩, 𝑇𝑟) when 𝑎𝑗,𝑘 → ∞. 

Proof. Clearly ℬ𝑣 ⊂ 𝒩. Also by proposition 4.0.4, the commutators 

[ℎ𝐿, 𝐷] 
are bounded. We therefore only need to check that 𝐷 is affiliated with 𝒩 and that 𝐷 has 𝑇𝑟-

compact resolvent. 

Let 𝑃𝑛,𝜆 be the spectral projection of 𝐷𝑛 corresponding to the eigenvalue 𝜆. To this 

projection we associate a projection 𝑃𝑛,𝜆
∞  in 𝒩 in the following way: 

The embedding of 𝐿2(𝒜𝑛) → 𝐿2(�̅�𝒮) induces an embedding 

𝐼𝑛: ℬ(𝐿
2(𝒜𝑛)⨂𝑀𝑁) → ℬ(𝐿2(�̅�𝒮)⨂𝑀𝑁). 

Define 𝑃𝑛,𝜆
∞ = (𝐼𝑛⨂𝑃𝑛

∗)(𝑃𝑛,𝜆), where 𝑃𝑛
∗: 𝐶𝑙(𝑇𝑖𝑑

∗ 𝒜𝑛) → 𝐵 is the natural map. 

Suppose 𝜉 is an eigenvector for 𝐷𝑛 with eigenvalue 𝜆. Since 

𝐷𝑛+1(𝑣) = 0, 𝑣 ∈ 𝐶𝑙(𝑉𝑛,𝑛+1). 

we see that 𝑃𝑛,𝑛+1(𝜉)⨂𝑣 is an eigenvector for 𝐷𝑛+1. This shows that 𝑃𝑛,𝜆
∞  is a subprojection 

of 𝑃𝜆, the spectral projection of 𝐷 corresponding to the eigenvalue 𝜆. 

Since 𝑃𝑛,𝜆
∞ ↗ 𝑃𝜆 weakly, 𝑃𝜆 ∈ 𝒩, and hence 𝐷 is affiliated to 𝒩. 

By the assumption on the bare Dirac type operator and since 𝑎𝑗,𝑘 → ∞ the only new 

eigenvectors with eigenvalues in a given bounded set introduced by going from 𝐷𝑛 to 𝐷𝑛+1 

will from a certain step be of the form 𝑃𝑛,𝑛+1
∗ (𝜉)⨂𝑣, where 𝜉 is an eigenvector of 𝐷𝑛 with 

eigenvalue in the bounded set and 𝑣 ∈ 𝐶𝑙(𝑉𝑛,𝑛+1). Thus in every bounded set of ℝ there are 

only finitely many eigenvalues of 𝐷 and the associated spectral projections are finite with 

respect to 𝑇𝑟. 

The present construction of the spectral triple is based on the reparameterization of �̅�𝒮 into 

a projective system of the form 

𝐺 ← 𝐺2 ← 𝐺4 ← ⋯𝐺2𝑛 ← 𝐺2𝑛+1 ← ⋯ 

with structure maps 

𝑃𝑛,𝑛+1(𝑔1, … , 𝑔2𝑛+1) = (𝑔1𝑔3, … , 𝑔2𝑛+1−1). 
The Dirac operator we have constructed is just a weighted sum of Dirac operators on each 

of the copies of 𝐺. 

   The reparameterization we have chosen is unique. The reparameterization relies on a 

choice of labeling of the new degrees of freedom which are generated by going from step 𝑛 

to step 𝑛 + 1. Another choice of labeling is indicated in figure 4. The labeling can in general 

be done in many different ways, where each choice of labeling gives rise to different spectral 

triples. At the end one would expect some symmetry condition singling out the spectral 

triple which might be relevant in physics. 

    The spectral triple constructed by means of the reparameterization differs from the one 

constructed in [60]. The spectral analysis of the one constructed in [60] appears to be more 

complicated than the reparameterized ones. However the original Dirac type operator 

appears to be more natural since it is more symmetrical. This is related to the interaction 

between the Dirac type operators with the loop algebra. In fact, the interaction of 



29 

 
Figure (4)[58]: A different reparameterization 

the algebra with the reparameterized Dirac type operator seems to be less natural due to an 

asymmetry which arises through the reparameterization. For example a loop 𝐿 running 

through the first half of an edge, see figure 5, has in the reparameterization the action of the 

form 

(𝐿𝜉)(… , 𝑔1, 𝑔2, … ) = ⋯𝑔2
−1𝑔1…𝜉(… , 𝑔1, 𝑔2, … ), 

whereas a loop running through the second half of the edge has an action of the form 

(𝐿𝜉)(… , 𝑔1, 𝑔2, … ) = ⋯𝑔1…𝜉(… , 𝑔1, 𝑔2, … ). 
Therefore the construction has a build in asymmetry. It remains to be clarified whether any 

of these different Dirac type operators are singled out by some arguments of symmetry 

related to physical principles. 

 
Figure (5)[58]: Loop running through first half of an edge 

Section (2.2): The Projective Modules 

Twisted group algebras and transformation group 𝐶∗-algebras have been studied since 

the early 1960’s [76] and provide a rich source of examples and problems in 𝐶∗-algebra 

theory. Much progress has been made in studying such 𝐶∗-algebras when the groups 

involved are finitely generated (or compactly generated, in the case of Lie groups). Even 

when 𝐺 = ℤ𝑛, these 𝐶∗-algebras give a rich class of examples which have driven much 

development in 𝐶∗-algebra theory, including the foundation of noncommutative geometry 

by Connes [70], the extensive study of the geometry of quantum tori by Rieffel [82], [84], 

[85], [86], the expansion of the classification problem from AF to AT algebras by G. Elliott 

and D. Evans [72], and many more (L. Baggett and A. Kleppner [69], and S. Echterhoff and 

J. Rosenberg [71]). 

We present the work on twisted group 𝐶∗-algebras of the Cartesian square of the 

discrete group ℤ [
1

𝑝
] of 𝑝-adic rationals, i.e. the additive subgroup of ℚ whose elements have 

denominators given by powers of a fixed 𝑝 ∈ ℕ, 𝑝 ≥ 1. The Pontryagin duals of these 

groups are the p-solenoid, thereby motivating our terminology in calling these 𝐶∗-algebras 

noncommutative solenoids. We review our computation of the 𝐾-groups of these 𝐶∗-
algebras, derived in their full technicality in [78], and which in and of itself involves an 

intriguing problem in the theory of Abelian group extensions. We were also able to compute 

the range of the trace on the 𝐾0-groups, and use this knowledge to classify these 𝐶∗-algebras 

up to ∗-isomorphism, in [78], and these facts are summarized in a brief survey of [78]. 
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We concern with the open problem of classifying noncommutative solenoids up to 

Morita equivalence. We demonstrate a method of constructing an equivalence bimodule 

between two noncommutative solenoids using methods due to 𝑀. Rieffel [84], and will note 

how this method has relationships to the theory of wavelet frames. 

     

We provide a survey of the main results proven in [78] concerning the computation 

of the 𝐾-theory of noncommutative solenoids and its application to their classification up to 

∗-isomorphism. An interesting connection between the 𝐾-theory of noncommutative 

solenoids and the 𝑝-adic integers is unearthed, and in particular, we prove that the range of 

the 𝐾0 functor on the class of all noncommutative solenoids is fully described by all Abelian 

extensions of the group of 𝑝-adic rationals by ℤ. These interesting matters are the subject, 

whereas we start with the basic objects of our study. 

     We shall fix, an arbitrary 𝑝 ∈ ℕ with 𝑝 > 1. We have the following groups: 

Definition (2.2.1)[68]: Let 𝑝 ∈ ℕ, 𝑝 > 1. The group ℤ [
1

𝑝
] of 𝑝-adic rationals is the inductive 

limit of the sequence of groups: 

ℤ
𝑧↦𝑝𝑧
→   ℤ

𝑧↦𝑝𝑧
→   ℤ

𝑧↦𝑝𝑧
→   ℤ

𝑧↦𝑝𝑧
→   ⋯ 

which is explicitly given as the group: 

ℤ [
1

𝑝
] = {

𝑧

𝑝𝑘
∈ ℚ: 𝑧 ∈ ℤ, 𝑘 ∈ ℕ} 

endowed with the discrete topology. 

    From the description of ℤ [
1

𝑝
] as an injective limit, we obtain the following result by 

functoriality of the Pontryagin duality. We denote by 𝕋 the unit circle {𝑧 ∈ ℂ: |𝑧| = 1} in 

the field ℂ of complex numbers. 

Proposition (2.2.2)[68]: Let 𝑝 ∈ ℕ, 𝑝 > 1. The Pontryagin dual of the group ℤ [
1

𝑝
] is the 𝑝-

solenoid group, given by: 

℘𝑝 = {(𝑧𝑛)𝑛∈ℕ ∈ 𝕋ℕ: ∀𝑛∈ ℕ 𝑧𝑛+1
𝑝

= 𝑧𝑛}, 

endowed with the induced topology from the injection ℘𝑝 ↪ 𝕋ℕ. The dual pairing between 

ℚ𝑁 and ℘𝑁 is given by: 

〈
𝑞

𝑝𝑘
, (𝑧𝑛)𝑛∈ℕ〉 = 𝑧𝑘

𝑞
, 

where 
𝑞

𝑝𝑘
∈ ℤ [

1

𝑝
] and (𝑧𝑛)𝑛∈ℕ ∈ ℘𝑝. 

    We study in [78] the following 𝐶∗-algebras. 

Definition (2.2.3)[68]: A noncommutative solenoid is a 𝐶∗-algebra of the form 

𝐶∗ (ℤ [
1

𝑝
] × ℤ [

1

𝑝
] , 𝜎), 

where p is a natural number greater or equal to 2 and σ is a multiplier of the group ℤ [
1

𝑝
] ×

ℤ [
1

𝑝
]. 

     The first matter to attend in the study of these 𝐶∗-algebras is to describe all the multipliers 

of the group ℤ [
1

𝑝
] × ℤ [

1

𝑝
] up to equivalence, where our multipliers are 𝕋-valued unless 

otherwise specified, with 𝕋 the unit circle in ℂ. Note that the group ℤ [
1

𝑝
] has no nontrivial 

multiplier, so our noncommutative solenoids are the natural object to consider. 
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      Using [76], we compute in [78] the group 𝐻2 (ℤ [
1

𝑝
] × ℤ [

1

𝑝
] , 𝕋) of 𝕋-valued multipliers 

of ℤ [
1

𝑝
] × ℤ [

1

𝑝
] up to equivalence, as follows: 

Theorem (2.2.4)[68]: [78] Let 𝑝 ∈ ℕ, 𝑝 > 1. Let: 

Ξ𝑝 = {(𝛼𝑛): 𝛼0 ∈ [0,1) ∧ (∀𝑛∈ ℕ ∃𝑘 ∈ {0,… ,𝑁 − 1} 𝑝𝛼𝑛+1 = 𝛼𝑛 + 𝑘)} 
which is a group for the pointwise addition modulo one. There exists a group isomorphism 

𝜌:𝐻2 (ℤ [
1

𝑝
] × ℤ [

1

𝑝
] , 𝕋) → Ξ𝑝 such that if 𝜎:𝐻2 (ℤ [

1

𝑝
] × ℤ [

1

𝑝
] , 𝕋) and 𝛼 = 𝜌(𝜎), and if 𝑓 

is a multiplier of class 𝜎, then 𝑓 is cohomologous to: 

Ψ𝛼: ((
𝑞1
𝑝𝑘1

,
𝑞2
𝑝𝑘2

) , (
𝑞3
𝑝𝑘3

,
𝑞4
𝑝𝑘4

)) ⟼ exp(2𝑖𝜋𝛼(𝑘1+𝑘4)𝑞1𝑞4). 

For any 𝑝 ∈ ℕ, 𝑝 > 1, the groups Ξ𝑝 and ℘𝑝 are obviously isomorphic as topological 

groups; yet it is easier to perform our computations in the additive group Ξ𝑝 in what follows. 

Thus, as a topological group, 𝐻2 (ℤ [
1

𝑝
] × ℤ [

1

𝑝
] , 𝕋) is isomorphic to ℘𝑝. We observe that a 

corollary of Theorem (2.2.4) is that Ψ𝛼 and Ψ𝛽 are cohomologous if and only if 𝛼 = 𝛽 ∈

Ξ𝑝. The proof of Theorem (2.2.4) involves the standard calculations for cohomology classes 

of multipliers on discrete Abelian groups, due to 𝐴. Kleppner, generalizing results of 

Backhouse and Bradley. 

    With this understanding of the multipliers of ℤ [
1

𝑝
] × ℤ [

1

𝑝
], we thus propose to classify the 

noncommutative solenoids 𝐶∗ (ℤ [
1

𝑝
] × ℤ [

1

𝑝
] , 𝜎). We start by recalling [88] that for any 

multiplier σ of a discrete group Γ, the 𝐶∗-algebra 𝐶∗(Γ, 𝜎) is the 𝐶∗-completion of the 

involutive Banach algebra (ℓ1(Γ),∗𝜎 ,⋅
∗), where the twisted convolution ∗𝜎 is given for any 

𝑓1, 𝑓2 ∈ ℓ1(Γ) by 

𝑓1 ∗𝜎 𝑓2: 𝛾 ∈ Γ ⟼ ∑ 𝑓1(𝛾1)𝑓2(𝛾 − 𝛾1)𝜎(𝛾1, 𝛾 − 𝛾1)

𝛾1∈Γ

, 

while the adjoint operation is given by: 

𝑓1
∗: 𝛾 ∈ Γ ⟼ 𝜎(𝛾,−𝛾)𝑓1(−𝛾)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 

The 𝐶∗-algebra 𝐶∗(Γ, 𝜎) is then shown to be the universal 𝐶∗-algebra generated by a family 

(𝑊𝛾)𝛾∈Γ of unitaries such that 𝑊𝛾𝑊𝛿 = 𝜎(𝛾, 𝛿)𝑊𝛾𝛿 for any 𝛾, 𝛿 ∈ Γ [88]. We shall 

henceforth refer to these generating unitaries as the canonical unitaries of 𝐶∗(Γ, 𝜎). 
      One checks easily that if σ and η are two cohomologous multipliers of the discrete group 

Γ, then 𝐶∗(Γ, 𝜎) and 𝐶∗(Γ, 𝜂) are ∗-isomorphic [88]. Thus, by Theorem (2.2.4), we shall 

restrict our attention to multipliers of ℤ [
1

𝑝
] × ℤ [

1

𝑝
] of the form Ψ𝛼 with 𝛼 ∈ Ξ𝑝. With this in 

mind, we introduce the following notation: 

Notation (2.2.5)[68]: For any 𝑝 ∈ ℕ, 𝑝 > 1 and for any 𝛼 ∈ Ξ𝑝, the 𝐶∗-algebra 

𝐶∗ (ℤ [
1

𝑝
] × ℤ [

1

𝑝
] , Ψ𝛼), with Ψ𝛼 defined in Theorem (2.2.4), is denoted by Å𝛼

℘
. 

Noncommutative solenoids, defined in Definition (2.2.3) as twisted group algebras of 

ℤ [
1

𝑝
] × ℤ [

1

𝑝
], also have a presentation as transformation group 𝐶∗-algebras, in a manner 

similar to the situation with rotation 𝐶∗-algebras: 
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Proposition (2.2.6)[68]: [78] Let 𝑝 ∈ ℕ, 𝑝 > 1 and 𝛼 ∈ Ξ𝑝. Let 𝜃𝛼 be the action of ℤ [
1

𝑝
] on 

℘𝑝 defined for all 
𝑞

𝑝𝑘
∈ ℤ [

1

𝑝
] and for all (𝑧𝑛)𝑛∈ℕ ∈ ℘𝑝 by: 

𝜃 𝑞

𝑝𝑘

𝛼 ((𝑧𝑛)𝑛∈ℕ) = (𝑒(2𝑖𝜋𝛼(𝑘+𝑛)𝑞)𝑧𝑛)
𝑛∈ℕ

. 

The 𝐶∗-crossed-product 𝐶(℘𝑝) ⋊𝜃𝛼 ℤ [
1

𝑝
] is ∗-isomorphic to Å𝛼

℘
.  

Whichever way one decides to study them, there are longstanding methods in place to 

determine whether or not these 𝐶∗ algebras are simple. For now, we concentrate on methods 

from the theory of twisted group 𝐶∗-algebras. 

    In [78], we thus characterize when the symmetrizer group of the multipliers of ℤ [
1

𝑝
] ×

ℤ [
1

𝑝
] given by Theorem (2.2.4) is non-trivial: 

Theorem (2.2.7)[68]: [78] Let 𝑝 ∈ ℕ, 𝑝 > 1. Let 𝛼 ∈ Ξ𝑝. Denote by Ψ𝛼 the multiplier 

defined in Theorem (2.2.4). The following are equivalent: 

(i) the symmetrizer group 𝑆Ψ𝛼
 is non-trivial, 

(ii) the sequence α has finite range, i.e. the set {𝛼𝑗: 𝑗 ∈ ℕ} is finite, 

(iii) there exists 𝑘 ∈ ℕ such that (𝑝𝑘 − 1)𝛼0 ∈ ℤ, 

(iv) the sequence 𝛼 is periodic, 

(v) there exists a positive integer 𝑏 ∈ ℕ such that: 

𝑆Ψ𝛼
= 𝑏ℤ [

1

𝑝
] × ℤ [

1

𝑝
] = {(𝑏𝑟1, 𝑏𝑟2), (𝑟1, 𝑟2) ∈ ℤ [

1

𝑝
] × ℤ [

1

𝑝
]}. 

Theorem (2.2.8), when applied to noncommutative solenoids via Theorem (2.2.7), allows 

us to conclude: 

Theorem (2.2.8)[68]: [78] Let 𝑝 ∈ ℕ, 𝑝 > 1 and 𝛼 ∈ Ξ𝑝. Then the following are equivalent: 

(i) the noncommutative solenoid Å𝛼
℘

 is simple, 

(ii) the set {𝛼𝑗: 𝑗 ∈ ℕ} is infinite, 

(iii) for every 𝑘 ∈ ℕ, we have (𝑝𝑘 − 1)𝛼0 ∉ ℤ. 

   In particular, if 𝛼 ∈ Ξ𝑝 is chosen with at least one irrational entry, then by definition of 

Ξ𝑝, all entries of α are irrational, and by Theorem (2.2.8), the noncommutative solenoid Å𝛼
℘

 

is simple. We observe that, even if 𝛼 ∈ Ξ𝑝 only has rational entries, the noncommutative 

solenoid may yet be simple — as long as 𝛼 has infinite range. We called this situation the 

aperiodic rational case in [78]. 

Example (2.2.9)[68]: (Aperiodic rational case). Let 𝑝 = 7, and consider 𝛼 ∈ Ξ7 given by 

𝛼 = (
2

7
,
2

49
,
2

343
,

2

2401
,⋯) = (

2

7𝑛
)
𝑛∈ℤ

. 

    Note that 𝛼𝑗 ∈ ℚ for all 𝑗 ∈ ℕ, yet Theorem (2.2.8) tells us that the noncommutative 

solenoid Å𝛼
℘

 is simple! 

    The following is an example where the symmetrizer subgroup is non-trivial, so that the 

corresponding 𝐶∗-algebra is not simple. 

Example (2.2.10)[68]: (Periodic rational case). Let 𝑝 = 5, and consider 𝛼 ∈ Ξ5 given by 

𝛼 = (
1

62
,
25

62
,
5

62
,
1

62
,⋯). 
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Theorem (2.2.7) shows that the symmetrizer group of the multiplier Ψ𝛼 of (ℤ [
1

5
])

2
 given 

by Theorem (2.2.4) is: 

𝑆𝛼 = {(
62𝑗1
5𝑘

,
62𝑗2
5𝑘

) ∈ ℚ: 𝑗1, 𝑗2 ∈ ℤ, 𝑘 ∈ ℕ}. 

Hence the noncommutative solenoid Å𝛼
℘

 is not simple by Theorem (2.2.8). 

     We conclude with the following result about the existence of traces on noncommutative 

solenoids, which follows from [75], since the Pontryagin dual ℘𝑝 ×℘𝑝 of ℤ [
1

𝑝
] × ℤ [

1

𝑝
] acts 

ergodically on Å𝛼
℘

 for any 𝛼 ∈ Ξ𝑝 via the dual action: 

Theorem (2.2.11)[68]: [78] Let 𝑝 ∈ ℕ, 𝑝 > 1 and 𝛼 ∈ Ξ𝑝. There exists at least one tracial 

state on the noncommutative solenoid Å𝛼
℘

. Moreover, this tracial state is unique if, and only 

if 𝛼 is not periodic. 

     Moreover, since noncommutative solenoids carry an ergodic action of the compact 

groups ℘𝑝, if one chooses any continuous length function on ℘𝑝, then one may employ the 

results found in [86] to equip noncommutative solenoids with quantum compact metric 

spaces structures and, use [87] and [77] to obtain various results on continuity for the 

quantum Gromov-Hausdorff distance of the family of noncommutative solenoids as the 

multiplier and the length functions are left to vary. We shall focus our attention on the 

noncommutative topology of our noncommutative solenoids, rather than their metric 

properties. 

    In [78], we provide a full description of noncommutative solenoids as bundles of matrix 

algebras over the space ℘𝑝
2 , while in contrast, in [78], we note that for α with at least (and 

thus all) irrational entry, the noncommutative solenoid Å𝛼
℘

 is an inductive limit of circle 

algebras (i.e. AT), with eal rank zero. Both these results follow from writing 

noncommutative solenoids as inductive limits of quantum tori, which is the starting point. 

      Noncommutative solenoids are classified by their 𝐾-theory; more precisely by their 𝐾0 

groups and the range of the traces on 𝐾0. The main content in [78] is the computation of the 

𝐾-theory of noncommutative solenoids and its application to their classification up to ∗-

isomorphism. 

    The starting point of this computation is the identification of noncommutative solenoids 

as inductive limits of sequences of noncommutative tori. A noncommutative torus is a 

twisted group 𝐶∗-algebra for ℤ𝑑, with 𝑑 ∈ ℕ, 𝑑 > 1 [82]. In particular, for 𝑑 = 2, we have 

the following description of noncommutative tori. Any multiplier of ℤ2 is cohomologous to 

one of the form: 

𝜎𝜃: ((
𝑧1
𝑧2
) , (

𝑦1
𝑦2
)) ⟼ exp(2𝑖𝜋𝜃𝑧1𝑦2). 

for some 𝜃 ∈ [0,1). Consequently, for a given 𝜃 ∈ [0,1), the 𝐶∗-algebra 𝐶∗(ℤ2, 𝜎𝜃) is the 

universal 𝐶∗-algebra generated by two unitaries 𝑈, 𝑉 such that: 

𝑈𝑉 = 𝑒2𝑖𝜋𝜃𝑉𝑈. 
Notation (2.2.12)[68]: The noncommutative torus 𝐶∗(ℤ2, 𝜎𝜃), for 𝜃 ∈ [0,1), is denoted by 

𝐴𝜃. Moreover, the two canonical generators of 𝐴𝜃 (i.e. the unitaries corresponding to 

(1,0), (0,1) ∈ ℤ2), are denoted by 𝑈𝜃 and 𝑉𝜃, so that 𝑈𝜃𝑉𝜃 = 𝑒2𝑖𝜋𝜃𝑉𝜃𝑈𝜃. 

     For any 𝜃 ∈ [0,1), the noncommutative torus 𝐴𝜃 is ∗-isomorphic to the crossedproduct 

𝐶∗-algebra for the action of ℤ on the circle 𝕋 generated by the rotation of angle 2𝑖𝜋𝜃, and 
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thus 𝐴𝜃 is also known as the rotation algebra for the rotation of angle 𝜃 — a name by which 

it was originally known. 

     The following question naturally arises: since 𝐴𝜃 is a twisted ℤ2 algebra, and ℤ [
1

𝑝
] ×

ℤ [
1

𝑝
] can be realized as a direct limit group built from embeddings of ℤ2 into itself, is it 

possible to build our noncommutative solenoids Å𝛼
℘

 as a direct limits of rotation algebras? 

The answer is positive, and this observation provides much structural information regarding 

noncommutative solenoids. 

Theorem (2.2.13)[68]: [78] Let 𝑝 ∈ ℕ, 𝑝 > 1 and 𝛼 ∈ Ξ𝑝. For all 𝑛 ∈ ℕ, let 𝜑𝑛 be the 

unique ∗-morphism from 𝐴𝛼2𝑛 into 𝐴𝛼2𝑛+2 given by: 

{
𝑈𝛼2𝑛 ⟼𝑈𝛼2𝑛+2

𝑝

𝑉𝛼2𝑛 ⟼𝑉𝛼2𝑛
𝑝  

Then: 

𝐴𝛼0
𝛼0
→ 𝐴𝛼2

𝛼1
→ 𝐴𝛼4

𝛼2
→ ⋯ 

converges to the noncommutative solenoid Å𝛼
℘

. Moreover, if (𝑊𝑟1,𝑟2)(𝑟1,𝑟2)∈ℤ[
1

𝑝
]×ℤ[

1

𝑝
]
 is the 

family of canonical unitary generators of Å𝛼
℘

, then, for all 𝑛 ∈ ℕ, the rotation algebra 𝐴𝛼2𝑛 

embeds in Å𝛼
℘

 via the unique extension of the map: 

{

𝑈𝛼2𝑛 ⟼𝑊
(
1
𝑝𝑛

,0)

𝑉𝛼2𝑛 ⟼𝑊
(0,

1
𝑝𝑛

)

 

to a ∗-morphism, given by the universal property of rotation algebras; one checks that this 

embeddings, indeed, commute with the maps 𝜑𝑛. 

      Our choice of terminology for noncommutative solenoids is inspired, in part, by 

Theorem (2.2.13), and the well established terminology of noncommutative torus for 

rotation algebras. As we shall now see, our study of noncommutative solenoids is firmly set 

within the framework of noncommutative topology. 

      The main result from [78] under survey and the previous one is the computation of the 

𝐾-theory of noncommutative solenoid and its application to their classification. An 

interesting connection between the work on noncommutative solenoid and classifications of 

Abelian extensions of ℤ [
1

𝑝
] by ℤ, which in turn are classified by means of the group of 𝑝-

adic integers, emerges as a consequence of our computation. We shall present this result 

now, starting with some reminders about the 𝑝-adic integers and Abelian extensions of ℤ [
1

𝑝
], 

see [78] for the involved proof leading to it. 

    We define the group of 𝑝-adic integer simply as the set of sequences valued in 

{0,… , 𝑝 − 1} with the appropriate operation, but our choice of definition will make our 

exposition clearer. We note that we have a natural embedding of ℤ as 

a subgroup of ℤ𝑝 by sending 𝑧 ∈ ℤ to the sequence (𝑧 mod𝑝𝑘)𝐾∈ℕ. We shall henceforth 

identify ℤ with its image in ℤ𝑝 when no confusion may arise. 

      We can associate, to any 𝑝-adic integer, a Schur multiplier of ℤ [
1

𝑝
], i.e. a map 𝜉𝑗: ℤ [

1

𝑝
] ×

ℤ [
1

𝑝
] → ℤ which satisfies the (additive) 2-cocycle identity, in the 

following manner: 
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Theorem (2.2.14)[68]: [78] Let 𝑝 ∈ ℕ, 𝑝 > 1 and let 𝐽 = (𝐽𝑘)𝑘∈ℕ ∈ ℤ𝑝. Define the map 

𝜉𝐽: ℤ [
1

𝑝
] × ℤ [

1

𝑝
] → ℤ by setting, for any 

𝑞1

𝑝𝑘1
,
𝑞2

𝑝𝑘2
∈ ℤ [

1

𝑝
]: 

𝜉𝐽 (
𝑞1
𝑝𝑘1

,
𝑞2
𝑝𝑘2

) =

{
 
 

 
 −

𝑞1
𝑝𝑘1

(𝐽𝑘2 − 𝐽𝑘1)  𝑖𝑓 𝑘2 > 𝑘1,

−
𝑞2
𝑝𝑘2

(𝐽𝑘1 − 𝐽𝑘2)  𝑖𝑓 𝑘1 > 𝑘2,

𝑞

𝑝𝑟
(𝐽𝑘2 − 𝐽𝑘1)  𝑖𝑓 𝑘1 = 𝑘2,   𝑤𝑖𝑡ℎ 

𝑞

𝑝𝑟
=

𝑞1
𝑝𝑘1

+
𝑞2
𝑝𝑘2

,

 

where all fractions are written in their reduced form, i.e. such that the exponent of 𝑝 at the 

denominator is minimal (this form is unique). Then: 

(a) 𝜉𝐽 is a Schur multiplier of ℤ [
1

𝑝
] [78]. 

(b) For any 𝐽, 𝐾 ∈ ℤ𝑝, the Schur multipliers 𝜉𝐽 and 𝜉𝐾 are cohomologous if, and only if 

𝐽 − 𝐾 ∈ ℤ [78]. 

(c) Any Schur multiplier of ℤ [
1

𝑝
] is cohomologous to 𝜉𝐽 for some 𝐽 ∈ ℤ𝑝 [78]. 

In particular, Ext (ℤ [
1

𝑝
] , ℤ) is isomorphic to ℤ𝑝 ℤ⁄ . 

Schur multipliers provide us with a mean to describe and classify Abelian extensions of 

ℤ [
1

𝑝
] by ℤ𝑝. The interest in Theorem (2.2.14) lies in the remarkable observation that the 𝐾0 

groups of noncommutative solenoids are exactly given by these extensions: 

Theorem (2.2.15)[68]: [78] Let 𝑝 ∈ ℕ, 𝑝 > 1 and let 𝛼 = (𝛼𝑘)𝑘∈ℕ ∈ Ξ𝑝. For any 𝑘 ∈ ℕ, 

define 𝐽𝑘 = 𝑝𝑘𝛼𝑘 − 𝛼0, and note that by construction, 𝐽 ∈ ℤ𝑝. Let 𝜉𝐽 be the Schur multiplier 

of ℤ [
1

𝑝
] defined in Theorem (2.2.14), and let 𝒬𝐽 be the group with underlying set ℤ × ℤ [

1

𝑝
] 

and operation: 

(𝑧1, 𝑟1) ⊞ (𝑧2, 𝑟2) = (𝑧1 + 𝑧2 + 𝜉𝐽(𝑟1, 𝑟2), 𝑟1 + 𝑟2) 

for all (𝑧1, 𝑟1), (𝑧2, 𝑟2) ∈ ℤ × ℤ [
1

𝑝
]. By construction, 𝒬𝐽 is an Abelian extension of ℤ [

1

𝑝
] by 

ℤ given by the Schur multiplier 𝜉𝐽. 
Then: 

𝐾0(Å𝛼
℘
) = 𝒬𝐽 

and, moreover, all tracial states of Å𝛼
℘

 lift to a single trace 𝜏 on 𝐾0(Å𝛼
℘
), characterized by: 

𝜏: (1,0) ↦ 1 𝑎𝑛𝑑 (0,
1

𝑝𝑘
) ↦ 𝛼𝑘. 

Furthermore, we have: 

𝐾1(Å𝛼
℘
) = ℤ [

1

𝑝
] × ℤ [

1

𝑝
]. 

We observe, in particular, that given any Abelian extension of ℤ [
1

𝑝
] by ℤ, one can find, by 

Theorem (2.2.14), a Schur multiplier of ℤ [
1

𝑝
] of the form 𝜉𝐽 for some 𝐽 ∈ ℤ𝑝, and, up to an 

arbitrary choice of 𝛼0 ∈ [0,1), one may form the sequence 𝛼 = (
𝛼0+𝐽𝑘

𝑝𝑘
)
𝑘∈ℕ

, and check that 

𝛼 ∈ Ξ𝑝; thus all possible Abelian extensions, and only Abelian extensions of ℤ [
1

𝑝
] by ℤ are 

given as 𝐾0 groups of noncommutative solenoids. With this observation, the 𝐾0 groups of 
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noncommutative solenoids are uniquely described by a 𝑝-adic integer modulo an integer, 

and the information contained in the pair (𝐾0(Å𝛼
℘
), 𝜏) of the 𝐾0 group of a noncommutative 

solenoid and its trace, is contained in the pair (𝐽, 𝛼0) with 𝐽 ∈ ℤ𝑝 ℤ⁄  as defined in Theorem 

(2.2.15). 

Theorem (2.2.16)[68]: [78] Let 𝑝, 𝑞 be two prime numbers and let 𝛼 ∈ Ξ𝑝 and 𝛽 ∈ Ξ 𝑞. 

Then the following are equivalent: 

(i)  The noncommutative solenoids Å𝛼
℘

 and Å𝛽
℘

 are ∗-isomorphic, 

(ii)  𝑝 = 𝑞 and a truncated subsequence of 𝛼 is a truncated subsequence of 𝛽 or 
(1 − 𝛽𝑘)𝑘∈ℕ. 

Theorem (2.2.16) is given in greater generality in [78], where 𝑝, 𝑞 are not assumed prime; 

the second assertion of the Theorem must however be phrased in a more convoluted manner: 

essentially, 𝑝 and 𝑞 must have the same set of prime factors, and there is an embedding of 

Ξ𝑝 and Ξ𝑞 in a larger group Ξ, whose elements are still sequences in [0, 1), such that the 

images of 𝛼 and 𝛽 for these embeddings are sub-sequences of a single element of Ξ. 

 We conclude with an element of the computation of the 𝐾0 groups in Theorem (2.2.15). 

Given 𝛾 = (0,
1

𝑝𝑘
) ∈ 𝐾0(Å𝛼

℘
), if 𝛼0 is irrational, then there exists a Rieffel-Powers 

projection in 𝐴𝛼2𝑘 whose image in Å𝛼
℘

 for the embedding given by Theorem (2.2.13) has 𝐾0 

class the element 𝛾, whose trace is thus naturally given by Theorem (2.2.15). Much work is 

needed, however, to identify the range of 𝐾0 as the set of all Abelian extensions of ℤ [
1

𝑝
] by 

ℤ, and parametrize these, in turn, by ℤ𝑝 ℤ⁄ , as we have shown. 

    We now turn to the question of the structure of the category of modules over 

noncommutative solenoids. We show how to apply some constructions of equivalence 

bimodules to the case of noncommutative solenoids as a first step toward solving the still 

open problem of Morita equivalence for noncommutative solenoids. 

     Projective modules for rotation algebras and higher dimensional noncommutative tori 

were studied by M. Rieffel ([84]). F. Luef has extended this work to build modules with a 

dense subspace of functions coming from modulation spaces (e.g., Feichtinger’s algebra) 

with nice properties ([79], [80]). One approach to building projective modules over 

noncommutative solenoids is to build the projective modules from the “inside out”. 

   We first make some straightforward observations in this direction. We recall that, by 

Notation (2.2.5), for any 𝑝 ∈ ℕ, 𝑝 > 1, and for any 𝛼 ∈ Ξ𝑝, where Ξ𝑝 is defined in Theorem 

(2.2.4), the 𝐶∗-algebra 𝐶∗ (ℤ [
1

𝑝
] × ℤ [

1

𝑝
] , Ψ𝛼), where the multiplier Ψ𝛼 was defined in 

Theorem (2.2.4), is denoted by Å𝛼
℘

. We will work with 𝑝 a prime number. Last, we also 

recall that by Notation (2.2.12), the rotation algebra for the rotation of angle 𝜃 ∈ [0,1) is 

denoted by 𝐴𝜃, while its canonical unitary generators are denoted by 𝑈𝜃 and 𝑉𝜃, so that 

𝑈𝜃𝑉𝜃 = 𝑒2𝑖𝜋𝜃𝑉𝜃𝑈𝜃. 

    Theorem (2.2.15) describes the 𝐾0 groups of noncommutative solenoids, and, among 

other conclusions, state that there always exists a unique trace on the 𝐾0 of any 

noncommutative solenoid, lifted from any tracial state on the 𝐶∗-algebra itself. We state: 

Proposition (2.2.17)[68]: Let 𝑝 be a prime number, and fix 𝛼 ∈ Ξ𝑝, with 𝛼0 ∉ ℚ. Let 𝛾 =

𝑧 + 𝑞𝛼𝑁 for some 𝑧, 𝑞 ∈ ℤ and 𝑁 ∈ ℕ, with 𝛾 > 0. Then there is a left projective module 
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over Å𝛼
℘

 whose 𝐾0 class has trace 𝛾, or equivalently, whose 𝐾0 class is given by (𝑧,
𝑞

𝑝𝑘
) ∈

ℤ × ℤ [
1

𝑝
]. 

Proof. 𝛾 is the image of some class in 𝐾0(Å𝛼
℘
) for the trace on this group. Now, since 

𝛼𝑁+1 = 𝑝𝛼𝑁 + 𝑗 for some 𝑗 ∈ ℤ by definition of Ξ𝛼, we may as well assume 𝑁 is even. As 

𝐾0(Å𝛼
℘
) is the inductive limit of 𝐾0(𝐴𝛼𝑁)𝑘∈2ℕ

 by Theorem (2.2.13), 𝛾 is the trace of an 

element of 𝐾0(𝐴𝛼𝑁)), where 𝐴𝛼𝑁 is identified as a subalgebra of Å𝛼
℘

 (again using Theorem 

(2.2.13). By [82], there is a projection 𝑃𝛾 in 𝐴𝛼𝑁 whose 𝐾0 class has trace 𝛾, and it is then 

easy to check that the left projective module 𝑃Å𝛼
℘

 over Å𝛼
℘

 fulfills our proposition. 

    So, for example, with the notations of the proof of Proposition (2.2.17), if 𝑃𝛾 is a 

projection in 𝐴𝛼𝑛 ⊂ Å𝛼
℘

 with trace 𝛾 ∈ (0, 1), one can construct the equivalence bimodule 

Å𝛼
℘
− Å𝛼

℘
𝑃𝛾 − 𝑃𝛾Å𝛼

℘
𝑃𝛾. 

From this realization, not much about the structure of 𝑃𝛾Å𝛼
℘
𝑃𝛾 can be seen, although it is 

possible to write this 𝐶∗-algebra as a direct limit of rotation algebras. Let us now discuss 

this matter. 

  Suppose we have two directed sequences of 𝐶∗-algebras: 

𝐴0
𝜑0
→ 𝐴1

𝜑1
→ 𝐴2

𝜑2
→ … 

and 

𝐵0
𝜓0
→ 𝐵1

𝜓1
→ 𝐵2

𝜓2
→ … 

Suppose further that for each 𝑛 ∈ ℕ there is an equivalence bimodule 𝑋𝑛 between 𝐴𝑛 and 

𝐵𝑛 

𝐴𝑛 − 𝑋𝑛 − 𝐵𝑛, 
and that the (𝑋𝑛)𝑛∈ℕ form a directed system, in the following sense: there exists a direct 

system of module monomorphisms 

𝑋0
𝑖0
→𝑋1

𝑖1
→𝑋2

𝑖2
→… 

satisfying, for all 𝑓, 𝑔 ∈ 𝑋𝑛 and 𝑏 ∈ 𝐵𝑛:  

〈𝑖𝑛(𝑓), 𝑖𝑛(𝑔)〉𝐵𝑛+1 = 𝜓𝑛(〈𝑓, 𝑔〉𝐵𝑛) 

and 

𝑖𝑛(𝑓) = 𝑖𝑛(𝑓) ⋅ 𝜓𝑛(𝑏), 
with analogous but symmetric equalities holding for the 𝑋𝑛 viewed as left-𝐴𝑛 modules. 

   Now let 𝒜 be the direct limit of (𝐴𝑛)𝑛∈ℕ, ℬ be the direct limit of (𝐵𝑛)𝑛∈ℕ and 𝜒 be the 

direct limit of (𝑋𝑛)𝑛∈ℕ (completed in the natural 𝐶∗-module norm). Then 𝜒 is an 𝒜 −ℬ 

bimodule. If one further assumes that the algebra of adjointable operators on 𝜒 viewed as a 

𝒜 −ℬ bimodule, ℒ(𝜒), can be obtained via an appropriate limiting process from the 

sequence of adjointable operators {ℒ(𝑋𝑛)}𝑛=1
∞  ( where each 𝑋𝑛 is a 𝐴𝑛 − 𝐵𝑛 bimodule), then 

in addition one has that 𝜒 is a strong Morita equivalence bimodule between 𝒜 and ℬ. 

   So suppose that 𝛾 ∈ (0,1) is as in the statement of Proposition (2.2.17), for some 𝛼 ∈ Ξ𝑝 

not equal to zero, and suppose that we know that there is a positive integer 𝑁 and a projection 

𝑃𝛾 in 𝐴𝛼𝑁 whose 𝐾0 class has trace 𝛾. Again, without loss of generality, we assume that 𝑁 

is even. Then setting 

𝐴𝑛 = 𝐴𝛼𝑁+2𝑛 , 𝑋𝑛 = 𝐴𝛼𝑁+2𝑛𝑃𝛾,   and   𝐵𝑛 = 𝑃𝛾𝐴𝛼𝑁+2𝑛𝑃𝛾, 

all of the conditions in the above paragraphs hold a priori, since Å𝛼
℘

 is a direct limit of the 

𝐴𝛼𝑁+2𝑛, so that certainly ℬ = 𝑃𝛾Å𝛼
℘
𝑃𝛾 is a direct limit of the 𝑃𝛾𝐴𝛼𝑁+2𝑛𝑃𝛾, and 𝜒 = Å𝛼

℘
𝑃𝛾 can 
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be expressed as a direct limit of the 𝑋𝑛 = 𝐴𝛼𝑁+2𝑛𝑃𝛾, again by construction, with the desired 

conditions on the adjointable operators satisfied by construction. 

      We discuss very simple examples, to show how the directed system of bimodules is 

constructed. 

Example (2.2.18)[68]: Fix an irrational 𝛼0 ∈ [0,1), let 𝑝 = 2, and consider 𝛼 ∈ Ξ2 given 

by 

𝛼 = (𝛼0, 𝛼1 =
𝛼0
2
, 𝛼2 =

𝛼0
4
,… , 𝛼𝑛 =

𝛼𝑛
2𝑛

, … , ), 

Consider 𝐴𝛼0 ∈ 𝐴𝛼0 ⊂ 𝐴𝛼1 a projection of trace 𝛼0 = 2𝛼1. The bimodule 

𝐴𝛼0 − 𝐴𝛼0 ⋅ 𝑃𝛼0 − 𝑃𝛼0𝐴𝛼0𝑃𝛼0 

is equivalent to Rieffel’s bimodule 

𝐴𝛼0 − 𝐶𝑐(ℝ)̅̅ ̅̅ ̅̅ ̅̅ − 𝐴 1
𝛼0

= 𝐵0. 

Let 𝛽0 =
1

𝛼0
. Rieffel’s theory, specifically Theorem 1.1 of [83], again shows there is a 

bimodule 

𝐴𝛼2 − 𝐴𝛼2 ⋅ 𝑃𝛼0 − 𝑃𝛼0𝐴𝛼2𝑃𝛼0 

is the same as 

𝐴𝛼2 − 𝐴𝛼2 ⋅ 𝑃4𝛼2 − 𝑃4𝛼2𝐴𝛼2𝑃4𝛼4 

which is equivalent to Rieffel’s bimodule 

𝐴𝛼2 − 𝐶𝑐(ℝ × 𝐹4)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 𝐶(𝕋 × 𝐹4) ⋊𝜏1 ℤ = 𝐵1, 

where 𝐹4 = ℤ 4ℤ⁄ , and the action of ℤ on 𝕋 × 𝐹4 is given by multiples of (
𝛽2

4
, [1]𝐹4), for 

𝛽2 =
1

𝛼2
, i.e. multiples of (

1

𝛼2
, [1]𝐹4]), i.e. multiples of (𝛽0, [1]𝐹4). 

  At the 𝑛𝑡ℎ stage, using Theorem 1.1 of [83] again, we see that 

𝐴𝛼2𝑛 − 𝐴𝛼2𝑛 ⋅ 𝑃𝛼0 − 𝑃𝛼0𝐴𝛼2𝑛𝑃𝛼0 

is the same as 

𝐴𝛼2𝑛 − 𝐴𝛼2𝑛 ⋅ 𝑃2𝑛𝛼𝑛 − 𝑃2𝑛𝛼𝑛𝐴𝛼𝑛𝑃2𝑛𝛼𝑛 

which is equivalent to 

𝐴𝛼𝑛 − 𝐶𝑐(ℝ × 𝐹4𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝐶(𝕋 × 𝐹4𝑛) ⋊𝜏𝑛 ℤ = 𝐵𝑛, 

where the action of ℤ on 𝕋 × 𝐹4𝑛  is given by multiples of (
𝛽2𝑛

4𝑛
, [1]𝐹4𝑛), for 𝛽2𝑛 =

1

𝛼2𝑛
=

4𝑛

𝛼0
, 

i.e. multiples of (
1

𝛼2
, [1]𝐹4𝑛), i.e. multiples of (𝛽0, [1]𝐹4𝑛), for 𝐹4𝑛 = ℤ 4𝑛ℤ⁄ . 

    From calculating the embeddings, we see that for 𝛼 = (𝛼0,
𝛼0

2
, … ,

𝛼

2𝑛
, … ) ∈ Ξ2, we have 

that 

𝒜𝛼
𝒮  

is strongly Morita equivalent to a direct limit ℬ of the 𝐵𝑛. The structure of ℬ is not clear in 

this description, although each 𝐵𝑛 is seen to be a variant of a rotation algebra. As expected, 

one calculates 

𝑡𝑟 (𝐾0(𝒜𝛼
𝒮)) = 𝛼0 ⋅ 𝑡𝑟(𝐾0(ℬ)). 

Under certain conditions, one can construct equivalence bimodules for Å𝛼
℘

 (𝛼 ∈ Ξ𝑝, 𝑝 prime) 

by using a construction of M. Rieffel [84]. The idea is to first embed Γ = ℤ [
1

𝑝
] × ℤ [

1

𝑝
] as a 

co-compact ‘lattice’ in a larger group 𝑀, and the quotient group 𝑀 Γ⁄  will be exactly the 

solenoid ℘𝑝.  
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     We start with a brief description of the field of p-adic numbers, with p prime. 

Algebraically, the field ℚ𝑝 is the field of fraction of the ring of 𝑝-adic integers ℤ𝑝 — we 

introduce ℤ𝑝 as a group, though there is a natural multiplication on ℤ𝑝 turning it into a ring. 

A more analytic approach is to consider ℚ𝑝 as the completion of the field 𝑄 for the p-adic 

metric 𝑑𝑝, defined by 𝑑𝑝(𝑟, 𝑟
’) = |𝑟 − 𝑟 ’|

𝑝
 for any 𝑟, 𝑟 ’ ∈ ℚ, where |⋅|𝑝 is the 𝑝-adic norm 

defined by: 

|𝑟| = {
𝑝−𝑛  if 𝑟 ≠ 0 and where 𝑟 = 𝑝𝑛

𝑎

𝑏
 with 𝑎, 𝑏 are both relatively prime with 𝑝,

0  if  𝑟 = 0.
 

If we endow ℚ with the metric 𝑑𝑝, then series of the form: 

∑𝑎𝑗𝑝
𝑗

∞

𝑗=𝑘

 

will converge, for any 𝑘 ∈ ℤ and 𝑎𝑗 ∈ {0,… , 𝑝 − 1} for all 𝑗 = 𝑘,…. This is the 𝑝-adic 

expansion of a 𝑝-adic number. One may easily check that addition and multiplication on ℚ 

are uniformly continuous for 𝑑𝑝 and thus extend uniquely to ℚ𝑝 to give it the structure of a 

field. Moreover, one may check that the group ℤ𝑝 of padic integer defined in ℚ𝑝 as the 

group of 𝑝-adic numbers of the form ∑ 𝑎𝑗𝑝
𝑗∞

𝑗=0  with 𝑎𝑗 ∈ {0,… , 𝑝 − 1} for all 𝑗 ∈ ℕ. Now, 

with this embedding, one could also check that ℤ𝑝 is indeed a subring of ℚ𝑝 whose field of 

fractions is ℚ𝑝 (i.e. ℚ𝑝 is the smallest field containing ℤ𝑝 as a subring) and thus, both 

constructions described. Last, the quotient of the (additive) group ℚ𝑝 by its subgroup ℤ𝑝 is 

the Prüfer 𝑝-group ℤ(𝑝∞) = {𝑧 ∈ 𝕋: ∃𝑛 ∈ ℕ   𝑧(𝑝
𝑛) = 1}. 

    Since ℚ𝑝 is a metric completion of ℚ and ℤ [
1

𝑝
] is a subgroup of ℚ, we shall identify, ℤ [

1

𝑝
] 

as a subgroup of ℚ𝑝 with no further mention. We now define a few group homomorphisms 

to construct a short exact sequence at the core of our construction. 

   Let 𝜔:ℝ → ℘𝑝 be the standard “winding line” defined for any 𝑡 ∈ ℝ by: 

𝜔(𝑡) = (𝑒2𝜋𝑖𝑡 , 𝑒
2𝜋𝑖

𝑡
𝑝, 𝑒

2𝜋𝑖
𝑡
𝑝2 , … , 𝑒

2𝜋𝑖
𝑡
𝑝𝑛 , … ). 

Let 𝛾 ∈ ℚ𝑝 and write 𝛾 = ∑ 𝑎𝑗𝑝
𝑗∞

𝑗=𝑘  for a (unique) family (𝑎𝑗)𝑗=𝑘,… of elements in 

{0,… , 𝑝 − 1}. We define the sequence 𝜁(𝛾) by setting for all 𝑗 ∈ ℕ: 

𝜁𝑗(𝛾) = 𝑒
2𝜋𝑖(∑

𝑎𝑚
𝑝𝑗−𝑘

𝑗
𝑚=𝑘 )

 

with the convention that ∑ …𝑘𝑗  is zero if 𝑘 < 𝑗. 

    We thus may define the map 

Π: {
ℚ𝑝 × ℝ⟶ ℘𝑝

𝛾 ⟼ Π(γ, t) = 𝜁𝑗(𝛾) ⋅ 𝜔(𝑡).
 

If we set 

𝜄: {
ℤ [
1

𝑝
] → ℚ𝑝 × ℝ

𝑟 ⟼ 𝜄(𝑟) = (𝑟,−𝑟),

 

then one checks that the following is an exact sequence: 

1 ⟶ ℤ[
1

𝑝
]

𝜄
→ℚ𝑝 ×ℝ

Π
→℘𝑝 → 1 
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It follows that there is an exact sequence 

1 ⟶ ℤ[
1

𝑝
] × ℤ [

1

𝑝
] → [ℚ𝑝 × ℝ] × [ℚ𝑝 ×ℝ] → ℘𝑝 ×℘𝑝 → 1. 

Indeed, we will show later that it is possible to perturb the embeddings of the different terms 

in ℤ [
1

𝑝
] × ℤ [

1

𝑝
] by elements of ℚ𝑝\{0} and ℝ\{0} to obtain a family of different embeddings 

of ℤ [
1

𝑝
] × ℤ [

1

𝑝
] into [ℚ𝑝 ×ℝ]

2
. 

   We now observe that 𝑀 = ℚ𝑝 × ℝ is self-dual.  

Notation (2.2.19)[68]: The Pontryagin dual of a locally compact group 𝐺 is denoted by �̂�. 

The dual pairing between a group and its dual is denoted by 〈⋅,⋅〉: 𝐺 × �̂� → 𝕋. 

    Let us show that 𝑀 ≅ �̂�. To every 𝑥 ∈ ℚ𝑝, we can associate the character 

𝜒𝑥: 𝑞 ∈ ℚ𝑝 ↦ 𝑒2𝑖𝜋𝑖{𝑥⋅𝑞} 

where {𝑥 ⋅ 𝑞}𝑝 is the fractional part of the product 𝑥 ⋅ 𝑞 in ℚ𝑝, i.e. it is the sum of the terms 

involving the negative powers of 𝑝 in the 𝑝-adic expansion of 𝑥 ⋅ 𝑞. The map 𝑥 ∈ ℚ𝑝 ↦

𝜒𝑥 ∈ 𝑄�̂� is an isomorphism of topological group. Similarly, every character of ℝ is of the 

form 𝜒𝑥: 𝑡 ∈ ℝ ↦ 𝑒2𝑖𝜋𝑟𝑡 for some 𝑟 ∈ ℝ. Therefore every character of 𝑀 is given by 

𝜒(𝑥,𝑟): (𝑞, 𝑡) ∈ ℚ𝑝 × ℝ⟼ 𝜒𝑥(𝑞)𝜒𝑟(𝑡) 

for some (𝑥, 𝑟) ∈ ℚ𝑝 × ℝ (see [74]) for further details on characters of specific locally 

compact abelian groups). It is possible to check that the map (𝑥, 𝑟) ↦ 𝜒(𝑥,𝑟) is a group 

isomorphism between 𝑀 and �̂�, so that 𝑀 = ℚ𝑝 ×ℝ is indeed self-dual. 

We write Γ = ℤ [
1

𝑝
] × ℤ [

1

𝑝
] where 𝑝 is some prime number, and now let 𝑀 =

[ℚ𝑝 ×ℝ]. We have shown that 𝑀 is self-dual, since both ℚ𝑝 and ℝ are self-dual. Now 

suppose there is an embedding 𝜄 ∶ Γ → 𝑀 × �̂�. Let the image 𝜄(Γ) be denoted by 𝐷. In the 

case we are considering, 𝐷 is a discrete co-compact subgroup of 𝑀 × �̂�. Following the 

method of M. Rieffel [84], the Heisenberg multiplier 𝜂: (𝑀 × �̂�) × (𝑀 × �̂�) → 𝕋 is 

defined by: 

𝜂((𝑚, 𝑠), (𝑛, 𝑡)) = 〈𝑚, 𝑡〉, (𝑚, 𝑠), (𝑛, 𝑡) ∈ 𝑀 × �̂�. 
(We note we use the Greek letter ‘𝜂’ rather than Rieffel’s ‘𝛽’, because we have used ‘𝛽’ 

elsewhere. Following Rieffel, the symmetrized version of 𝜂 is denoted by the letter 𝜌, and 

is the multiplier defined by: 

𝜌((𝑚, 𝑠), (𝑛, 𝑡)) = 𝜂((𝑚, 𝑠), (𝑛, 𝑡))𝜂((𝑛, 𝑡), (𝑚, 𝑠))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , (𝑚, 𝑠), (𝑛, 𝑡) ∈ 𝑀 × �̂�. 

M. Rieffel [84] has shown that 𝐶𝐶(𝑀) can be given the structure of a left 𝐶∗(𝐷, 𝜂) module, 

as follows. One first constructs an 𝜂-representation of 𝑀 × �̂� on 𝐿2(𝑀), defined as 𝜋, where 

𝜋(𝑚,𝑠)(𝑓)(𝑛) = 〈𝑛, 𝑠〉𝑓(𝑛 +𝑚), (𝑚, 𝑠) ∈ 𝑀 × �̂�, 𝑛 ∈ 𝑀. 

When the representation π is restricted to 𝐷, we still have a projective η-representation of 

𝐷, on 𝐿2(𝑀), and its integrated form gives 𝐶𝐶(𝑀) the structure of a left 𝐶∗(𝐷, 𝜂) module, 

i.e. for Φ ∈ 𝐶𝐶(𝐷, 𝜂), 𝑓 ∈ 𝐶𝐶(𝑀), 

𝜋(Φ) ⋅ 𝑓(𝑛) = ∑ Φ((𝑑, 𝜒))𝜋(𝑑,𝜒)(𝑓)(𝑛)

(𝑑,𝜒)∈𝐷

= ∑ Φ((𝑑, 𝜒))〈𝑛, 𝜒〉𝑓(𝑛 + 𝑑)

(𝑑,𝜒)∈𝐷

. 

There is also a 𝐶𝐶(𝐷, 𝜂) valued inner product defined on 𝐶𝐶(𝑀) given by: 

〈𝑓, 𝑔〉𝐶𝐶(𝐷,𝜂) = ∫ 𝑓(𝑛)𝜋(𝑑,𝜒)(𝑔)(𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑑𝑛
 

𝑀

= ∫ 𝑓(𝑛)〈𝑛, 𝜒〉𝑔(𝑛 + 𝑑)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑑𝑛
 

𝑀

. 

Moreover, Rieffel has shown that setting 
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𝐷⊥ = {(𝑛, 𝑡) ∈ 𝑀 × �̂�:∀(𝑚, 𝑠) ∈ 𝐷  𝜌((𝑚, 𝑠), (𝑛, 𝑡)) = 1}, 

𝐶𝐶(𝑀) has the structure of a right 𝐶∗(𝐷⊥, �̅�) module. Here the right module structure is 

given for all 𝑓 ∈ 𝐶𝐶(𝑀), Ω ∈ 𝐶𝐶(𝐷
⊥) and 𝑛 ∈ 𝑀 by: 

𝑓 ⋅ Ω(𝑛) = ∑ 𝜋(𝑐,𝜉)
∗ (𝑓)(𝑛)Ω(𝑐, 𝜉)

(𝑐,𝜉)∈𝐷⊥

, 

and the 𝐶𝐶(𝐷
⊥, �̅�)-valued inner product is given by 

〈𝑓, 𝑔〉𝐶𝐶(𝐷⊥,�̅�)(𝑐, 𝜉) = ∫ 𝑓(𝑛)̅̅ ̅̅ ̅̅ 𝜋(𝑐,𝜉)(𝑔)(𝑛)𝑑𝑛
 

𝑀

= ∫ 𝑓(𝑛)̅̅ ̅̅ ̅̅ 〈𝑛, 𝜉〉𝑔(𝑛 + 𝑐)𝑑𝑛
 

𝑀

, 

where 𝑓, 𝑔 ∈ 𝐶𝐶(𝑀),Ω ∈ 𝐶𝐶(𝐷
⊥, �̅�), and (𝑐, 𝜉) ∈ 𝐷⊥. 

    Moreover, Rieffel shows in [84] that 𝐶∗(𝐷, 𝜂) and 𝐶∗(𝐷⊥, �̅�) are strongly Morita 

equivalent, with the equivalence bimodule being the completion of 𝐶𝐶(𝑀) in the norm 

defined by the above inner products. 

      In order to construct explicit bimodules, we first define the multiplier η more precisely, 

and then discuss different embeddings of ℤ [
1

𝑝
] × ℤ [

1

𝑝
] into 𝑀 × �̂�. 

  In the case examined here, the Heisenberg multiplier 𝜂: [ℚ𝑝 ×ℝ]
2
× [ℚ𝑝 ×ℝ]

2
→ 𝕋 is 

given by: 

Definition (2.2.20)[68]: The Heisenberg multiplier 𝜂: [ℚ𝑝 ×ℝ]
2
× [ℚ𝑝 ×ℝ]

2
→ 𝕋 is 

defined by 

𝜂[((𝑞1, 𝑟1), (𝑞2, 𝑟2)), ((𝑞3, 𝑟3), (𝑞4, 𝑟4))] = 𝑒2𝜋𝑖𝑟1𝑟4𝑒2𝜋𝑖{𝑞1𝑞4}𝑝 , 

where {𝑞1𝑞4}𝑝 is the fractional part of the product 𝑞1 ⋅ 𝑞4, i.e. the sum of the terms involving 

the negative powers of 𝑝 in the 𝑝-adic expansion of 𝑞1𝑞4. 

   The following embeddings of ℤ [
1

𝑝
] × ℤ [

1

𝑝
] in [ℚ𝑝 × ℝ]

2
 will prove interesting: 

Definition (2.2.21)[68]: For 𝜃 ∈ ℝ, 𝜃 ≠ 0, we define 𝜄𝜃: ℤ [
1

𝑝
] × ℤ [

1

𝑝
] → [ℚ𝑝 ×ℝ]

2
 by 

𝜄𝜃(𝑟1, 𝑟2) = [(𝑟1, 𝜃 ⋅ 𝑟1), (𝑟2, 𝑟2)]. 
We examine the structure of the multiplier 𝜂 more precisely and then discuss different 

embeddings of ℤ [
1

𝑝
] × ℤ [

1

𝑝
] into [ℚ𝑝 ×ℝ]

2
 and their influence on the different equivalence 

bimodules they allow us to construct. 

    We start by observing that for 𝑟1, 𝑟2, 𝑟3, 𝑟4 ∈ ℤ [
1

𝑝
]: 

𝜂(𝜄𝜃(𝑟1, 𝑟2), 𝜄𝜃(𝑟3, 𝑟4)) = 𝑒2𝜋𝑖{𝑟1𝑟4}𝑝𝑒2𝜋𝑖𝑟1𝑟4 = 𝑒2𝜋𝑖𝑟1𝑟4𝑒2𝜋𝑖𝜃𝑟1𝑟4 = 𝑒2𝜋𝑖(𝜃+1)𝑟1𝑟4 . 

(Here we used the fact that for 𝑟𝑖 , 𝑟𝑗 ∈ ℤ(
1

𝑝
) , {𝑟𝑖𝑟𝑗}𝑝 ≡ 𝑟𝑖𝑟𝑗modulo ℤ.) 

     One checks that setting 𝐷𝜃 = 𝜄𝜃 (ℤ [
1

𝑝
] × ℤ [

1

𝑝
]), the 𝐶∗-algebra 𝐶∗(𝐷𝜃 , 𝜂) is exactly ∗-

isomorphic to the noncommutative solenoid Å𝛼
℘

 for 

𝛼 = (𝜃 + 1,
𝜃 + 1

𝑝
,⋯ ,

𝜃 + 1

𝑝𝑛
) = (

𝜃 + 1

𝑝𝑛
)
𝑛∈ℕ

. 

    For this particular embedding of ℤ [
1

𝑝
] × ℤ [

1

𝑝
] as the discrete subgroup 𝐷 inside 𝑀 × �̂�, 

we calculate that 

𝐷𝜃
⊥ = {(𝑟1, −

𝑟1
𝜃
) , (𝑟1, −𝑟2): 𝑟1, 𝑟2 ∈ ℤ [

1

𝑝
]}. 

Moreover, 
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�̅� ([(𝑟1, −
𝑟1
𝜃
) , (𝑟2, −𝑟2)] , [(𝑟3, −

𝑟3
𝜃
) , (𝑟4, −𝑟4)]) = 𝑒

−2𝜋𝑖(
1
𝜃
+1)𝑟1𝑟4 . 

It is evident that 𝐶∗(𝐷𝜃
⊥, 𝜂) is also a non-commutative solenoid Å𝛽

℘
 where 𝛽 =

(1 −
𝜃+1

𝑝𝑛𝜃
)
𝑛∈ℕ

. 

  Note that for 

𝛼 = (𝜃 + 1,
𝜃 + 1

𝑝
,⋯ ,

𝜃 + 1

𝑝𝑛
, ⋯ ), 

and 

𝛽 = (1 −
𝜃 + 1

𝑝𝑛𝜃
)
𝑛∈ℕ

, 

we have 

𝜃 ⋅ 𝜏 (𝐾0(Å𝛼
℘
)) = 𝜏 (𝐾0 (Å𝛽

℘
)) 

with the notations of Theorem (2.2.15). Thus in this case we do see the desired relationship 

mentioned: the range of the trace on the 𝐾0 groups of the two 𝐶∗-algebras are related via 

multiplication by a positive constant. 

    We can now generalize our construction above as follows. 

Definition (2.2.22)[68]: For any 𝑥 ∈ ℚ𝑝\{0}, and any 𝜃 ∈ ℝ\{0}, there is an embedding 

𝜄𝑥,𝜃: ℤ [
1

𝑝
] × ℤ [

1

𝑝
] → [ℚ𝑝 × ℝ]

2
 

defined for all 𝑟1, 𝑟2 ∈ ℤ(
1

𝑝
) by 

𝜄𝑥,𝜃(𝑟1, 𝑟2) = [(𝑥 ⋅ 𝑟1, 𝜃 ⋅ 𝑟1), (𝑟2, 𝑟2)]. 

Then, we shall prove that for all 𝛼 ∈ Ξ𝑝 there exists 𝑥 ∈ ℚ𝑝\{0} and 𝜃 ∈ ℝ\{0} such that, 

by setting 

𝐷𝑥,𝜃 = 𝜄𝑥,𝜃 (ℤ [
1

𝑝
] × ℤ [

1

𝑝
]) 

the twisted group 𝐶∗-algebra 𝐶∗(𝐷, 𝜂) is ∗-isomorphic to Å𝛼
℘

. 

    As a first step, we prove: 

Lemma (2.2.23)[68]: Let p be prime, and let 𝑀 = ℚ𝑝 ×ℝ. Let (𝑥, 𝜃) ∈ [ℚ𝑝\{0}] ×

[ℝ\{0}], and define 𝜄𝑥,𝜃: ℤ [
1

𝑝
] × ℤ [

1

𝑝
] → [ℚ𝑝 ×ℝ]

2
≅ 𝑀 × �̅� by: 

𝜄𝑥,𝜃(𝑟1, 𝑟2) = [(𝑥 ⋅ 𝑟1, 𝜃 ⋅ 𝑟1), (𝑟2, 𝑟2)]  𝑓𝑜𝑟 𝑎𝑙𝑙  𝑟1, 𝑟2 ∈ ℤ(
1

𝑝
). 

Let 𝜂 denote the Heisenberg cocycle defined on [𝑀 × �̂�]
2
 and let 

𝐷 = 𝜄𝑥,𝜃 (ℤ [
1

𝑝
] × ℤ [

1

𝑝
]). 

Then 

𝐷𝑥,𝜃
⊥ = {[(𝑡1, −𝑡1), (𝑥

−1𝑡2, −
𝑡2
𝜃
)] : 𝑡1, 𝑡2 ∈ ℤ [

1

𝑝
]}. 

Proof. By definition, 
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𝐷𝑥,𝜃
⊥ = {[(𝑞1, 𝑠1), (𝑞2, 𝑠2)]: ∀𝑟1, 𝑟2 ∈ ℤ [

1

𝑝
]   𝜌([𝜄𝑥,𝜃(𝑟1, 𝑟2)], [(𝑞1, 𝑠1), (𝑞2, 𝑠2)]) = 1}

= {[(𝑞1, 𝑠1), (𝑞2, 𝑠2)]: ∀𝑟1, 𝑟2

∈ ℤ [
1

𝑝
]  𝜌([(𝑥 ⋅ 𝑟1, 𝜃 ⋅ 𝑟1), (𝑟2, 𝑟2)], [(𝑞1, 𝑠1), (𝑞2, 𝑠2)]) = 1}

= {[(𝑞1, 𝑠1), (𝑞2, 𝑠2)]: ∀𝑟1, 𝑟2 ∈ ℤ [
1

𝑝
]  𝑒2𝜋𝑖𝜃𝑟1𝑠2𝑒2𝜋𝑖{𝑥⋅𝑟1𝑞2}𝑝𝑒2𝜋𝑖𝑠1𝑟2𝑒2𝜋𝑖{𝑞1𝑟2}𝑝̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

= 1}. 

Now if 𝑟2 = 0, and 𝑟1 = 𝑝𝑛, for any 𝑛 ∈ ℤ, this implies 

∀𝑛 ∈ ℤ 𝑒2𝜋𝑖𝜃𝑝
𝑛𝑠2𝑒2𝜋𝑖{𝑥⋅𝑝

𝑛𝑞2}𝑝 = 1, 

so that if we choose 𝑠2 = −
𝑡2

𝜃
 for some 𝑡2 ∈ ℤ [

1

𝑝
] ⊆ ℝ, we need 𝑞2 = 𝑥−1𝑡2. 

Likewise, if we take 𝑟1 = 1, and 𝑟2 = 𝑝𝑛, for any 𝑛 ∈ ℤ, we need (𝑞1, 𝑠1) such that 

∀𝑛 ∈ ℤ 𝑒2𝜋𝑖𝑠1𝑝
𝑛
𝑒2𝜋𝑖{𝑞1𝑝

𝑛}𝑝 = 1. 

Again fixing 𝑞1 = 𝑡1 ∈ ℤ [
1

𝑝
], this forces 𝑠1 = −𝑡1. Thus 

𝐷𝑥,𝜃
⊥ = {[(𝑡1, −𝑡1), (𝑥

−1𝑡2, −
𝑡2
𝜃
)] : 𝑡1, 𝑡2 ∈ ℤ [

1

𝑝
]}, 

as we desired to show. 

One thus sees that the two 𝐶∗-algebras 𝐶∗(𝐷𝑥,𝜃 , 𝜂) and 𝐶∗(𝐷𝑥,𝜃
⊥ , �̅�) are strongly Morita 

equivalent (but not isomorphic, in general), and also the proof of this lemma shows that 

𝐶∗(𝐷𝑥,𝜃
⊥ , �̅�) is a noncommutative solenoid. 

    We can use Lemma (2.2.23) to prove the following Theorem: 

Theorem (2.2.24)[68]: Let p be prime, and let 𝛼 = (𝛼𝑖)𝑖∈ℕ ∈ Ξ𝑝, with 𝛼0 ∈ (0,1). Then 

there exists (𝑥, 𝜃) ∈ [ℚ𝑝\{0}] × [ℝ\{0}] with 𝐶∗(𝐷𝑥,𝜃 , 𝜂) isomorphic to the noncom-

mutative solenoid Å𝛼
℘

, where 𝐷𝑥,𝜃 = 𝜄𝑥,𝜃 (ℤ [
1

𝑝
] × ℤ [

1

𝑝
]). Moreover, the method of Rieffel 

produces an equivalence bimodule between Å𝛼
℘

 and another unital 𝐶∗-algebra ℬ, and 𝐵 is 

itself isomorphic to a noncommutative solenoid. 

Proof. By definition of Ξ𝑝, for all 𝑗 ∈ ℕ there exists 𝑏𝑗 ∈ {0, … , 𝑝 − 1} such that 𝑝𝛼𝑗+1 =

𝛼𝑗 + 𝑏𝑗. We construct an element of the 𝑝-adic integers, 𝑥 = ∑ 𝑏𝑗𝑝
𝑗∞

𝑗=0 ∈ ℤ𝑝 ⊂ ℚ𝑝. Let 𝜃 =

𝛼0, and now consider for this specific x and this specific θ the 𝐶∗-algebra 𝐶∗(𝐷𝑥,𝜃 , 𝜂). By 

Definition (2.2.22), 𝜄𝑥,𝜃(𝑟1, 𝑟2) = [(𝑥 ⋅ 𝑟1, 𝜃 ⋅ 𝑟1), (𝑟2, 𝑟2)], for 𝑟1, 𝑟2 ∈ ℤ [
1

𝑝
]. Then 

𝜂 (𝜄𝑥,𝜃(𝑟1, 𝑟2), 𝜄𝑥,𝜃(𝑟3, 𝑟4)) = 𝜂([(𝑥 ⋅ 𝑟1, 𝜃 ⋅ 𝑟1), (𝑟2, 𝑟2)], [(𝑥 ⋅ 𝑟3, 𝜃 ⋅ 𝑟3), (𝑟4, 𝑟4)])

= 𝑒2𝜋𝑖𝑟1𝑟4𝑒2𝜋𝑖{𝑥𝑟1𝑟4}𝑝 , 𝑟1, 𝑟2, 𝑟3, 𝑟4 ∈ ℤ [
1

𝑝
], 

and, setting 𝑟𝑖 =
𝑗𝑖

𝑝𝑘𝑖
, 1 ≤ 𝑖 ≤ 4, and setting 𝜃 = 𝛼0, we obtain 

𝜂 (𝜄𝑥,𝛼0 (
𝑗1
𝑝𝑘1

,
𝑗2
𝑝𝑘2

) , 𝜄𝑥,𝛼0 (
𝑗3
𝑝𝑘3

,
𝑗4
𝑝𝑘4

)) = 𝑒2𝜋𝑖𝑟1𝑟4𝑒
2𝜋𝑖{𝑥

𝑗1𝑗4
𝑝𝑘1+𝑘4

}
𝑝 

for all 
𝑗1
𝑝𝑘1

,
𝑗2
𝑝𝑘2

,
𝑗3
𝑝𝑘3

,
𝑗4
𝑝𝑘4

∈ ℤ [
1

𝑝
]. 
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We now note that the relation 𝑝𝛼𝑗+1 = 𝛼𝑗 + 𝑏𝑗 , 𝑏𝑗 ∈ {0, … , 𝑝 − 1} allows us to prove 

inductively that 

∀𝑛 ≥ 1  𝛼𝑛 =
𝛼0 + ∑ 𝑏𝑗𝑝

𝑗𝑛−1
𝑗=0

𝑝𝑛
. 

By Theorem (2.2.4), the multiplier Ψ𝛼 on ℤ [
1

𝑝
] × ℤ [

1

𝑝
] is defined by: 

Ψ𝛼 ((
𝑗1
𝑝𝑘1

,
𝑗2
𝑝𝑘2

) , (
𝑗3
𝑝𝑘3

,
𝑗4
𝑝𝑘4

)) = 𝑒2𝜋𝑖(𝛼(𝑘1+𝑘4)𝑗1𝑗4)

= 𝑒
2𝜋𝑖

𝛼0𝑗1𝑗4
𝑝𝑘1+𝑘4𝑒

2𝜋𝑖(∑ 𝑏𝑗𝑝
𝑗𝑗1𝑗4

𝑘1+𝑘4−1
𝑗=0 ) 𝑝𝑘1+𝑘2⁄

. 

A 𝑝-adic calculation now shows that for 
𝑗1

𝑝𝑘1
 and 

𝑗4

𝑝𝑘4
∈ ℤ [

1

𝑝
] and 𝑥 = ∑ 𝑏𝑗𝑝

𝑗∞
𝑗=0 ∈ ℤ𝑝, we 

have {𝑥
𝑗1𝑗4

𝑝𝑘1+𝑘4
}
𝑝
= (∑ 𝑏𝑗𝑝

𝑗𝑗1𝑗4
𝑘1+𝑘4−1
𝑗=0 ) ⋅

𝑗1𝑗4

𝑝𝑘1+𝑘2
 modulo ℤ, so that 

𝑒
2𝜋𝑖{𝑥

𝑗1𝑗4
𝑝𝑘1+𝑘4

}
𝑝 = 𝑒

2𝜋𝑖(∑ 𝑏𝑗𝑝
𝑗𝑗1𝑗4

𝑘1+𝑘4−1
𝑗=0 ) 𝑝𝑘1+𝑘2⁄

. 
We thus obtain 

𝜂 (𝜄𝑥,𝜃(𝑟1, 𝑟2), 𝜄𝑥,𝜃(𝑟3, 𝑟4)) = Ψ𝛼((𝑟1, 𝑟2), (𝑟3, 𝑟4)) 

for all 𝑟1, 𝑟2, 𝑟3, 𝑟4 ∈ ℤ [
1

𝑝
],as desired. 

   To prove the final statement of the Theorem, we use Lemma (2.2.23). We have shown Å𝛼
℘

 

is isomorphic to 𝐶∗(𝐷𝑥,𝜃 , 𝜂), and the discussion prior to the statement of Lemma (2.2.23) 

shows that 𝐶∗(𝐷𝑥,𝜃 , 𝜂) is stronglyMorita equivalent to 𝐶∗(𝐷𝑥,𝜃
⊥ , �̅�) = ℬ. But the proof of 

Lemma (2.2.23) gives that 𝐷𝑥,𝜃
⊥  is isomorphic to ℤ [

1

𝑝
] × ℤ [

1

𝑝
], so that 𝐶∗(𝐷𝑥,𝜃

⊥ , �̅�) = ℬ is a 

noncommutative solenoid, as we desired to show.   



45 

Chapter 3 

Structure and Continuity of Derivations 

 

We show that if 𝑀 is of type 𝐼∞ then every derivation on 𝐿𝑆(𝑀) (resp. 𝑆(𝑀) and 

𝑆(𝑀, 𝜏)) is inner. Building an extension of a derivation 𝛿 ∶  𝑀 →  𝐿𝑆(𝑀) up to a derivation 

from 𝐿𝑆(𝑀) into 𝐿𝑆(𝑀), it is further established that any derivation from M into 𝐿𝑆(𝑀) is 

𝑡(𝑀)-continuous. 

Section (3.1): Various Algebras of Measurable Operators for Type I von Neumann 

Algebras 

Derivations on unbounded operator algebras, in particular on various algebras of 

measurable operators affiliated with von Neumann algebras, appear to be a very attractive 

special case of the general theory of unbounded derivations on operator algebras. The 

present continues the series of [89], [2] devoted to the study and a description of derivations 

on the algebra 𝐿𝑆(𝑀) of locally measurable operators with respect to a von Neumann 

algebra 𝑀 and on various subalgebras of 𝐿𝑆(𝑀). 
  For 𝐴 be an algebra over the complex number. 𝐴 linear operator 𝐷:𝐴 → 𝐴 is called a 

derivation if it satisfies the identity 𝐷(𝑥𝑦) = 𝐷(𝑥)𝑦 + 𝑥𝐷(𝑦) for all 𝑥, 𝑦 ∈ 𝐴 (Leibniz rule). 

Each element 𝑎 ∈ 𝐴 defines a derivation 𝐷𝑎 on 𝐴 given as 𝐷𝑎(𝑥) = 𝑎𝑥 − 𝑥𝑎, 𝑥 ∈ 𝐴. Such 

derivations 𝐷𝑎 are said to be inner derivations. If the element a implementing the derivation 

𝐷𝑎 on 𝐴, belongs to a larger algebra 𝐵, containing 𝐴 (as a proper ideal as usual) then 𝐷𝑎 is 

called a spatial derivation. 

   In the particular case where 𝐴 is commutative, inner derivations are identically zero, i.e. 

trivial. One of the main problems in the theory of derivations is automatic innerness or 

spatialness of derivations and the existence of noninner derivations (in particular, nontrivial 

derivations on commutative algebras). 

   On this way A.F. Ber, F.A. Sukochev, V.I. Chilin [90] obtained necessary and sufficient 

conditions for the existence of nontrivial derivations on commutative regular algebras. In 

particular they have proved that the algebra 𝐿0(0,1) of all (classes of equivalence of) 

complex measurable functions on the interval (0,1) admits nontrivial derivations. 

Independently A.G. Kusraev [99] by means of Boolean-valued analysis has established 

necessary and sufficient conditions for the existence of nontrivial derivations and 

automorphisms on universally complete complex 𝑓-algebras. In particular he has also 

proved the existence of nontrivial derivations and automorphisms on 𝐿0(0,1). It is clear that 

these derivations are discontinuous in the measure topology, and therefore they are neither 

inner nor spatial. It seems that the existence of such pathological example of derivations 

deeply depends on the commutativity of the underlying von Neumann algebra 𝑀. In this 

connection the study of the above problems in the noncommutative case [89], [2], by 

considering derivations on the algebra 𝐿𝑆(𝑀) of all locally measurable operators with 

respect to a semi-finite von Neumann algebra 𝑀 and on various subalgebras of 𝐿𝑆(𝑀). 
Recently another approach to similar problems in the framework of type I 𝐴𝑊 ∗-algebras 

has been outlined in [93]. 

   The main result of [2] states that if 𝑀 is a type I von Neumann algebra, then every 

derivation 𝐷 on LS(M) which is identically zero on the center 𝑍 of the von Neumann algebra 

𝑀 (i.e. which is 𝑍-linear) is automatically inner, i.e. 𝐷(𝑥) = 𝑎𝑥 − 𝑥𝑎 for an appropriate 𝑎 ∈
𝐿𝑆(𝑀). In [2] we also gave a construction of noninner derivations 𝐷𝛿 on the algebra 𝐿𝑆(𝑀) 
for type 𝐼fin von Neumann algebra 𝑀 with nonatomic center 𝑍, where 𝛿 is a nontrivial 
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derivation on the algebra 𝐿𝑆(𝑍) (i.e. on the center of 𝐿𝑆(𝑀)) which is isomorphic with the 

algebra 𝐿0(Ω,∑, 𝜇) of all measurable functions on a nonatomic measure space (Ω,∑, 𝜇). 
      The main idea of the mentioned construction is the following. 

Let 𝐴 be a commutative algebra and let 𝑀𝑛(𝐴) be the algebra of 𝑛 × 𝑛 matrices over 𝐴. If 

𝑒𝑖,𝑗 , 𝑖, 𝑗 = 1, 𝑛̅̅ ̅̅ ̅, are the matrix units in 𝑀𝑛(𝐴), then each element 𝑥 ∈ 𝑀𝑛(𝐴) has the form 

𝑥 = ∑ 𝜆𝑖𝑗𝑒𝑖𝑗 , 𝜆𝑖,𝑗 ∈ 𝐴, 𝑖, 𝑗 = 1, 𝑛̅̅ ̅̅ ̅.

𝑛

𝑖,𝑗=1

 

Let 𝛿: 𝐴 → 𝐴 be a derivation. Setting 

𝐷𝛿 = (∑ 𝜆𝑖𝑗𝑒𝑖𝑗

𝑛

𝑖,𝑗=1

) = ∑ 𝛿(𝜆𝑖𝑗)𝑒𝑖𝑗

𝑛

𝑖,𝑗=1

 

we obtain a well-defined linear operator 𝐷𝛿 on the algebra 𝑀𝑛(𝐴). Moreover 𝐷𝛿 is a 

derivation on the algebra 𝑀𝑛(𝐴) and its restriction onto the center of the algebra 𝑀𝑛(𝐴) 
coincides with the given 𝛿. 

     In [89] we have proved spatialness of all derivations on the noncommutative Arens 

algebra 𝐿𝜔(𝑀, 𝜏) associated with an arbitrary von Neumann algebra 𝑀 and a faithful normal 

semi-finite trace 𝜏. Moreover if the trace 𝜏 is finite then every derivation on 𝐿𝜔(𝑀, 𝜏) is 

inner. 

We give a complete description of all derivations on the algebra 𝐿𝑆(𝑀) of all locally 

measurable operators affiliated with a type I von Neumann algebra 𝑀, and also on its 

subalgebras 𝑆(𝑀)—of measurable operators and 𝑆(𝑀, 𝜏) of 𝜏-measurable operators, where 

𝜏 is a faithful normal semi-finite trace on 𝑀. We prove that the above mentioned 

construction of derivations 𝐷𝛿 from [2] gives the general form of pathological derivations 

on these algebras and these exist only in the type 𝐼fin case, while for type 𝐼∞ von Neumann 

algebras 𝑀 all derivations on 𝐿𝑆(𝑀), 𝑆(𝑀) and 𝑆(𝑀, 𝜏) are inner. We prove that an arbitrary 

derivation 𝐷 on each of these algebras can be uniquely decomposed into the sum 𝐷 = 𝐷𝑎 +
𝐷𝛿 where the derivation 𝐷𝑎 is inner (for 𝐿𝑆(𝑀), 𝑆(𝑀) and 𝑆(𝑀, 𝜏)) while the derivation 𝐷𝛿 

is constructed in the above mentioned manner from a nontrivial derivation 𝛿 on the center 

of the corresponding algebra. 

We give necessary definition and preliminaries from the theory of measurable 

operators, Hilbert–Kaplansky modules and also prove some key results concerning the 

structure of the algebra of locally measurable operators affiliated with a type I von Neumann 

algebra. 

We describe derivations on the algebra 𝐿𝑆(𝑀) of all locally measurable operators for 

a type I von Neumann algebra 𝑀. 

We devoted to derivation respectively on the algebra 𝑆(𝑀) of all measurable 

operators and on the algebra 𝑆(𝑀, 𝜏) of all 𝜏-measurable operators with respect to 𝑀, where 

𝑀 is a type I von Neumann algebra and 𝜏 is a faithful normal semi-finite trace on 𝑀. 

    Finally, contains an application of the above results to the description of the first 

cohomology group for the considered algebras. 

    Let 𝐻 be a complex Hilbert space and let 𝐵(𝐻) be the algebra of all bounded linear 

operators on 𝐻. Consider a von Neumann algebra 𝑀 in 𝐵(𝐻) with the operator norm ‖⋅‖𝑀. 

Denote by 𝑃(𝑀) the lattice of projections in 𝑀. 

   A linear subspace 𝒟 in 𝐻 is said to be affiliated with 𝑀 (denoted as 𝒟𝜂𝑀), if 𝑢(𝒟) ⊂ 𝒟 

for every unitary u from the commutant 
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𝑀’ = {𝑦 ∈ 𝐵(𝐻): 𝑥𝑦 = 𝑦𝑥, ∀𝑥 ∈ 𝑀} 
of the von Neumann algebra 𝑀. 

    A linear operator 𝑥 on 𝐻 with the domain 𝒟(𝑥) is said to be affiliated with 𝑀 (denoted 

as 𝑥𝜂𝑀) if 𝒟(𝑥)𝜂𝑀 and 𝑢(𝑢(𝜉)) = 𝑥(𝑢(𝜉)) for all 𝜉 ∈ 𝒟(𝑥). 
    A linear subspace 𝒟 in 𝐻 is said to be strongly dense in 𝐻 with respect to the von 

Neumann algebra 𝑀, if 

(i) 𝒟𝜂𝑀; 

(ii) there exists a sequence of projections {𝑝𝑛}𝑛=1
∞  in 𝑃(𝑀) such that 𝑝𝑛 ↑ 𝟏, 𝑝𝑛(𝐻) ⊂ 𝒟 and 

𝑝𝑛
⊥ = 𝟏 − 𝑝𝑛 is finite in 𝑀 for all 𝑛 ∈ ℕ, where 𝟏 is the identity in 𝑀. 

    A closed linear operator x acting in the Hilbert space 𝐻 is said to be measurable with 

respect to the von Neumann algebra 𝑀, if 𝑥𝜂𝑀 and 𝒟(𝑥) is strongly dense in 𝐻. Denote by 

𝑆(𝑀) the set of all measurable operators with respect to 𝑀. 

    A closed linear operator x in 𝐻 is said to be locally measurable with respect to the von 

Neumann algebra 𝑀, if 𝑥𝜂𝑀 and there exists a sequence {𝑧𝑛}𝑛=1
∞  of central projections in 

𝑀 such that 𝑧𝑛 ↑ 𝟏 and 𝑧𝑛𝑥 ∈ 𝑆(𝑀) for all 𝑛 ∈ ℕ. 

    It is well known [100] that the set 𝐿𝑆(𝑀) of all locally measurable operators with respect 

to 𝑀 is a unital ∗-algebra when equipped with the algebraic operations of strong addition 

and multiplication and taking the adjoint of an operator. 

   Let 𝜏 be a faithful normal semi-finite trace on 𝑀. We recall that a closed linear operator 𝑥 

is said to be τ -measurable with respect to the von Neumann algebra 𝑀, if 𝑥𝜂𝑀 and 𝒟(𝑥) is 

𝜏-dense in 𝐻, i.e. 𝒟(𝑥)𝜂𝑀 and given 𝜀 > 0 there exists a projection 𝑝 ∈ 𝑀 such that 𝑝(𝐻) ⊂
𝒟(𝑥) and 𝜏(𝑝⊥)𝜀. The set 𝑆(𝑀, 𝜏) of all 𝜏-measurable operators with respect to 𝑀 is a solid 

∗-subalgebra in 𝑆(𝑀) (see [101]). 

    Consider the topology 𝑡𝜏 of convergence in measure or measure topology on 𝑆(𝑀, 𝜏), 
which is defined by the following neighborhoods of zero: 

𝑉(𝜀, 𝛿) = {𝑥 ∈ 𝑆(𝑀, 𝜏): ∃𝑒 ∈ 𝑃(𝑀), 𝜏(𝑒⊥) ≤ 𝛿, 𝑥𝑒 ∈ 𝑀,   ‖𝑥𝑒‖𝑀 ≤ 𝜀}, 
where 𝜀, 𝛿 are positive numbers. 

   It is well known [101] that 𝑆(𝑀, 𝜏) equipped with the measure topology is a complete 

metrizable topological ∗-algebra. 

   Note that if the trace 𝜏 is a finite then 

𝑆(𝑀, 𝜏) = 𝑆(𝑀) = 𝐿𝑆(𝑀). 
The following result describes one of the most important properties of the algebra 𝐿𝑆(𝑀) 
(see [100], [102]). 

Proposition (3.1.1)[3]: Suppose that the von Neumann algebra 𝑀 is the 𝐶∗-product of the 

von Neumann algebras 𝑀𝑖 , 𝑖 ∈ 𝐼, where 𝐼 is an arbitrary set of indices, i.e. 

𝑀 = ⨁
𝑖∈𝐼

𝑀𝑖 = {{𝑥𝑖}𝑖∈𝐼: 𝑥𝑖 ∈ 𝑀𝑖 , 𝑖 ∈ 𝐼, sup
𝑖∈𝐼

‖𝑥𝑖‖𝑀𝑖
< ∞} 

with coordinate-wise algebraic operations and involution and with the 𝐶∗-norm 

‖{𝑥𝑖}𝑖∈𝐼‖𝑀 = sup𝑖∈𝐼‖𝑥𝑖‖𝑀𝑖
. Then the algebra 𝐿𝑆(𝑀) is ∗-isomorphic to the algebra 

∏ 𝐿𝑆(𝑀𝑖)𝑖∈𝐼  (with the coordinate-wise operations and involution), i.e. 

𝐿𝑆(𝑀) ≅∏𝐿𝑆(𝑀𝑖)

𝑖∈𝐼

 

(≅ denoting ∗-isomorphism of algebras). In particular, if 𝑀 is a finite, then 

𝑆(𝑀) ≅∏𝑆(𝑀𝑖)

𝑖∈𝐼

. 
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     It should be noted that similar isomorphisms are not valid in general for the algebras 

𝑆(𝑀), 𝑆(𝑀, 𝜏) (see [100]). 

    Proposition (3.1.1) implies that given any family {𝑧𝑖}𝑖∈𝐼 of mutually orthogonal central 

projections in 𝑀 with ⋁ 𝑧𝑖 = 𝟏𝑖∈𝐼  and a family of elements {𝑥𝑖}𝑖∈𝐼 in 𝐿𝑆(𝑀) there exists a 

unique element 𝑥 ∈ 𝐿𝑆(𝑀) such that 𝑧𝑖𝑥 = 𝑧𝑖𝑥𝑖 for all 𝑖 ∈ 𝐼. This element is denoted by 

𝑥 = ∑ 𝑧𝑖𝑥𝑖𝑖∈𝐼 . 

We shall prove several crucial results concerning the properties of algebras of 

measurable operators for type I von Neumann algebras. In particular we present an 

alternative and shorter proof of the statement that the algebra of locally measurable operators 

in this case is isomorphic to the algebra of bounded operators acting on a Hilbert–Kaplansky 

module (cf. [2]). 

     It is well known [31] that every commutative von Neumann algebra 𝑀 is ∗-isomorphic 

to the algebra 𝐿∞(Ω) = 𝐿∞(Ω,∑, 𝜇) of all (classes of equivalence of) complex essentially 

bounded measurable functions on a measure space (Ω,∑, 𝜇) and in this case 𝐿𝑆(𝑀) =
𝑆(𝑀) ≅ 𝐿0(Ω), where 𝐿0(Ω) = 𝐿0(Ω,∑, 𝜇) the algebra of all (classes of equivalence of) 

complex measurable functions on (Ω,∑, 𝜇). 
    Further we shall need the description of the centers of the algebras 𝑆(𝑀) and 𝑆(𝑀, 𝜏) for 

type I von Neumann algebras. 

     It should be noted, that if 𝑀 is a finite von Neumann algebra with a faithful normal semi-

finite trace 𝜏, then the restriction 𝜏𝑍 of the trace 𝜏 onto the center 𝑍 of 𝑀 is also semi-finite. 

    Indeed by [33] 𝑀 admits the canonical center valued trace 𝑇:𝑀 → 𝑍. It is known that 

𝑇(𝑥) = 𝑐𝑜̅̅ ̅{𝑢𝑥𝑢∗, 𝑢 ∈ 𝑈} ∩ 𝑍, where 𝑐𝑜̅̅ ̅{𝑢𝑥𝑢∗, 𝑢 ∈ 𝑈} denotes the norm closure in 𝑀 of the 

convex hull of the set {𝑢𝑥𝑢∗, 𝑢 ∈ 𝑈} and 𝑈 is the set of all unitaries from 𝑀. Therefore given 

any finite trace 𝜌 (since it is norm-continuous and linear on 𝑀) one has 𝜌(𝑇𝑥) = 𝜌(𝑥) for 

all 𝑥 ∈ 𝑀. Given a normal semi-finite trace 𝜏 on 𝑀 there exists a monotone increasing net 

{𝑒𝛼} of projection in 𝑀 with 𝜏(𝑒𝛼) < ∞ and 𝑒𝛼 ↑ 𝟏. The trace 𝜌𝛼(𝑥) = 𝜏(𝑒𝛼𝑥), 𝑥 ≥ 0, 𝑥 ∈
𝑀, is finite for any 𝛼 and therefore for all 𝑥 ∈ 𝑀, 𝑥 ≥ 0, we have 𝜏(𝑇𝑥) = lim𝛼 𝜏(𝑒𝛼𝑇𝑥) =
lim𝛼 𝜏(𝑒𝛼𝑥) = 𝜏(𝑥). Now given any projection 𝑧 ∈ 𝑍 there exists a non-zero projection 𝑝 ∈
𝑀 such that 𝑝 ≤ 𝑧 and 𝜏(𝑝) < ∞. Consider the element 𝑇(𝑝) ∈ 𝑍. From properties of 𝑇 it 

follows that 𝑇(𝑝) is a non-zero positive element in 𝑍 with 𝜏(𝑇(𝑝))𝜏(𝑝) < ∞ and 𝑇(𝑝) ≤
𝑇(𝑧) = 𝑧. By the spectral theorem there exists a nonzero projection 𝑧0 in 𝑍 such that 𝑧0 ≤

𝜆𝑇(𝑝) for an appropriate positive number 𝜆. Therefore 𝜏(𝑧0) ≤ 𝜏(𝜆𝑇(𝑝)) = 𝜆𝜏(𝑝) < ∞ 

and 𝑧0𝜆𝑧, i.e. 𝑧0 ≤ 𝑧, and thus the restriction of 𝜏 onto 𝑍 is also semi-finite. 

Proposition (3.1.2)[3]: If 𝑀 is finite von Neumann algebra of type I with the center 𝑍 and 

a faithful normal semi-finite trace 𝜏, then 𝑍(𝑆(𝑀)) = 𝑆(𝑍) and 𝑍(𝑆(𝑀, 𝜏)) = 𝑆(𝑍, 𝜏𝑍), 
where 𝜏𝑍 is the restriction of the trace 𝜏 on 𝑍. 

Proof. Given 𝑥 ∈ 𝑆(𝑍) take a sequence of orthogonal projections {𝑧𝑛} in 𝑍 such that 𝑧𝑛𝑥 ∈
𝑍 for all 𝑛. Since 𝑀 is finite, one has that 𝐿𝑆(𝑀) = 𝑆(𝑀) and therefore 𝑥 =
∑ 𝑧𝑛𝑥 ∈ 𝐿𝑆(𝑀)𝑛 = 𝑆(𝑀), i.e. 𝑥 ∈ 𝑍(𝑆(𝑀)). 

   Conversely, let 𝑥 ∈ 𝑍(𝑆(𝑀)), 𝑥 ≥ 0 and let 𝑥 = ∫ 𝜆𝑑𝜆
∞

0
 be it spectral resolution. Put 𝑧1 =

𝑒1 and 𝑧𝑘 = 𝑒𝑘 − 𝑒𝑘−1, 𝑘 ≥ 2. Then {𝑧𝑘} is a family of mutually orthogonal central 

projections with ⋁ 𝑧𝑘𝑘 = 1. It is clear that 𝑧𝑘𝑥 ∈ 𝑍 for all 𝑘. Therefore 𝑥 = ∑ 𝑧𝑛𝑥 ∈ 𝑆(𝑍)𝑛 , 

and thus 𝑍(𝑆(𝑀)) = 𝑆(𝑍). In a similar way we obtain that 𝑍(𝑆(𝑀, 𝜏)) = 𝑆(𝑍, 𝜏𝑍). The 

proof is complete. 

     Recall that 𝑀 is a type 𝐼∞ if 𝑀 is of type I and does not have non-zero finite central 

projections. 
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Proposition (3.1.3)[3]: Let 𝑀 be a type 𝐼∞ von Neumann algebra with the center 𝑍. Then 

the centers of the algebras 𝑆(𝑀) and 𝑆(𝑀, 𝜏) coincide with 𝑍. 

Proof. Suppose that 𝑧 ∈ 𝑆(𝑀), 𝑧 ≥ 0, is a central element and let 𝑧 = ∫ 𝜆𝑑𝑒𝜆
∞

0
 be its 

spectral resolution. Then 𝑒𝜆 ∈ 𝑍 for all 𝜆 > 0. Assume that 𝑒𝑛
⊥ ≠ 0 for all 𝑛 ∈ ℕ. Since 𝑀 

is of type 𝐼∞, 𝑍 does not contain non-zero finite projections. Thus 𝑒𝑛
⊥ is infinite for all 𝑛 ∈

ℕ, which contradicts the condition 𝑧 ∈ 𝑆(𝑀). Therefore there exists 𝑛0 ∈ ℕ such that 𝑒𝑛
⊥ =

0 for all 𝑛 ≥ 𝑛0, i.e. 𝑧 ≤ 𝑛0𝟏. This means that 𝑧 ∈ 𝑍, i.e. 𝑍(𝑆(𝑀)) = 𝑍. Similarly 

𝑍(𝑆(𝑀, 𝜏)) = 𝑍. The proof is complete. 

    Let 𝑀 be a von Neumann algebra of type 𝐼𝑛(𝑛 ∈ ℕ) with the center 𝑍. Then M is ∗-

isomorphic to the algebra 𝑀𝑛(𝑍) of 𝑛 × 𝑛 matrices over 𝑍 (see [29]). 

    In this case the algebras 𝑆(𝑀, 𝜏) and 𝑆(𝑀) can be described in the following way. 

Proposition (3.1.4)[3]: Let 𝑀 be a von Neumann algebra of type 𝐼𝑛 , 𝑛 ∈ ℕ, with a faithful 

normal semi-finite trace τ and let 𝑍(𝑆(𝑀, 𝜏)) denote the center of the algebra 𝑆(𝑀, 𝜏). Then 

𝑆(𝑀, 𝜏) ≅ 𝑀𝑛(𝑍(𝑆(𝑀, 𝜏))). 

Proof. Let {𝑒𝑖𝑗: 𝑖, 𝑗 ∈ 1, 𝑛̅̅ ̅̅ ̅} be matrix units in 𝑀𝑛(𝑍). Consider the ∗-subalgebra in 𝑆(𝑀, 𝜏) 

generated by the set 

𝑍(𝑆(𝑀, 𝜏)) ∪ {𝑒𝑖𝑗: 𝑖, 𝑗 ∈ 1, 𝑛̅̅ ̅̅ ̅}. 

This ∗-subalgebra consists of elements of the form 

∑ 𝜆𝑖𝑗𝑒𝑖𝑗 , 𝜆𝑖,𝑗 ∈ 𝑍(𝑆(𝑀, 𝜏)), 𝑖, 𝑗 = 1, 𝑛̅̅ ̅̅ ̅

𝑛

𝑖,𝑗=1

 

and it is ∗-isomorphic with 𝑀𝑛(𝑍(𝑆(𝑀, 𝜏))) ⊆ 𝑆(𝑀, 𝜏). Since 𝑀 is 𝑡𝜏-dense in 𝑆(𝑀, 𝜏), it 
is sufficient to show that the subalgebra 𝑀𝑛(𝑍(𝑆(𝑀, 𝜏))) is closed in 𝑆(𝑀, 𝜏) with respect 

to the topology 𝑡𝜏. The center 𝑍(𝑆(𝑀, 𝜏)) is 𝑡𝜏-closed in 𝑆(𝑀, 𝜏) and therefore the 

subalgebra 

𝑒11𝑍(𝑆(𝑀, 𝜏))𝑒11 = 𝑍(𝑆(𝑀, 𝜏))𝑒11, 
is also 𝑡𝜏-closed in 𝑆(𝑀, 𝜏). 

      Consider a sequence 𝑥𝑚 = ∑ 𝜆𝑖𝑗
(𝑚)

𝑒𝑖𝑗
𝑛
𝑖,𝑗=1  in 𝑀𝑛(𝑍(𝑆(𝑀, 𝜏))) such that 𝑥𝑚 → 𝑥 ∈

𝑆(𝑀, 𝜏) in the topology 𝑡𝜏. Fixing 𝑘, 𝑙 ∈ 1, 𝑛̅̅ ̅̅ ̅ we have that 𝑒1𝑘𝑥𝑚𝑒𝑙1 → 𝑒1𝑘𝑥𝑒𝑙1. Since 

𝑒1𝑘𝑥𝑚𝑒𝑙1 = 𝜆𝑘𝑙
(𝑚)

𝑒11 one has 𝜆𝑘𝑙
(𝑚)

𝑒11 → 𝑒1𝑘𝑥𝑒𝑙1. The 𝑡𝜏-closedness of 𝑍(𝑆(𝑀, 𝜏))𝑒11 in 

𝑆(𝑀, 𝜏) implies that 

𝜆𝑘𝑙
(𝑚)

𝑒11 → 𝜆𝑘𝑙𝑒11 

for an appropriate 𝜆𝑘𝑙 ∈ 𝑍(𝑆(𝑀, 𝜏)). Multiplying (2) by ek1 from the left side and by 𝑒𝑙1 

from the right-hand side we obtain that 𝜆𝑘𝑙
(𝑚)

𝑒𝑘𝑙 → 𝜆𝑘𝑙𝑒𝑘𝑙. Therefore 𝑥𝑚 → ∑ 𝜆𝑖𝑗𝑒𝑖,𝑗
𝑛
𝑖,𝑗=1  and 

thus 𝑥 = ∑ 𝜆𝑖𝑗𝑒𝑖,𝑗
𝑛
𝑖,𝑗=1 . This implies that 𝑆(𝑀, 𝜏) ≅ 𝑀𝑛(𝑍(𝑆(𝑀, 𝜏))). The proof is complete. 

Proposition (3.1.5)[3]: Let 𝑀 be a von Neumann algebra of type 𝐼𝑛, 𝑛 ∈ ℕ, and let 𝑍(𝑆(𝑀)) 
denote the center of 𝑆(𝑀). Then 𝑆(𝑀) ≅ 𝑀𝑛(𝑍(𝑆(𝑀, 𝜏))). 
Proof. Let 𝜏 be a faithful normal semi-finite trace on 𝑀 and consider a family {𝑧𝛼} of 

mutually orthogonal central projections in 𝑀 with ⋁ 𝑧𝛼 = 𝟏𝛼  and such that 𝜏𝛼 = 𝜏|𝑧𝛼𝑀 is 

finite for every 𝛼 (such family exists because 𝑀 is of type 𝐼𝑛, 𝑛 < ∞). Then 

𝑀 = ⊕
𝛼
𝑧𝛼𝑀. 

Since each trace 𝜏𝛼 is finite one has 

𝑆(𝑧𝛼𝑀) = 𝑆(𝑧𝛼𝑀, 𝜏𝛼) = 𝑀𝑛(𝑍(𝑆(𝑧𝛼𝑀, 𝜏𝛼))) = 𝑀𝑛(𝑍(𝑆(𝑧𝛼𝑀))), 
i.e. 
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𝑆(𝑧𝛼𝑀) = 𝑀𝑛(𝑍(𝑆(𝑧𝛼𝑀))). 
This and Proposition (3.1.1) imply that 

𝑆(𝑀) ≅∏𝑆(𝑧𝛼𝑀)

𝛼

=∏𝑀𝑛 (𝑍(𝑆(𝑧𝛼𝑀)))

𝛼

= 𝑀𝑛 (∏(𝑧𝛼𝑍(𝑆(𝑀)))

𝛼

)

= 𝑀𝑛 (𝑍(𝑆(𝑀))), 

i.e. 

𝑆(𝑀) ≅ 𝑀𝑛(𝑍(𝑆(𝑀))). 
The proof is complete. 

    The last proposition enables us to obtain the following important property of the algebra 

𝐿𝑆(𝑀) in the case of type I von Neumann algebra 𝑀. 

Proposition (3.1.6)[3]: Let 𝑀 be a type I von Neumann algebra. Then for any element 𝑥 ∈
𝐿𝑆(𝑀) there exists a countable family of mutually orthogonal central projections {𝑧𝑘}𝑘∈ℕ 

in 𝑀 such that ⋁ 𝑧𝑘 = 𝟏𝑘  and 𝑧𝑘𝑥 ∈ 𝑀 for all 𝑘. 

Proof. Case 1. The algebra 𝑀 has type 𝐼𝑛, 𝑛 ∈ ℕ. In this case 𝐿𝑆(𝑀) = 𝑆(𝑀) and 

Proposition (3.1.5) implies that 𝑆(𝑀) ≅ 𝑀𝑛(𝑍(𝑆(𝑀))). Consider 𝑥 = ∑ 𝜆𝑖𝑗𝑒𝑖,𝑗
𝑛
𝑖,𝑗=1 ∈

𝑀𝑛(𝑍(𝑆(𝑀))). Put 𝑐 = ⋁ |𝜆𝑖𝑗|
𝑛
𝑖,𝑗=1 . Then 𝑐 ∈ 𝑍(𝑆(𝑀)) and if 𝑐 = ∫ 𝜆𝑑𝜆

∞

0
 is its spectral 

resolution, put 𝑧1 = 𝑒1 and 𝑧𝑘 = 𝑒𝑘 − 𝑒𝑘−1, 𝑘 ≥ 2. Then {𝑧𝑘} is the family of mutually 

orthogonal central projections with ⋁ 𝑧𝑘 = 𝟏𝑘  and by definition 𝑧𝑘𝑐 ∈ 𝑍 for all 𝑘. Therefore 

𝑧𝑘|𝜆𝑖𝑗| ∈ 𝑍 for every 𝑘 ∈ ℕ, 1 ≤ 𝑖, 𝑗 ≤ 𝑛. Thus 𝑧𝑘𝑥 ∈ 𝑀 for all 𝑘. 

    Case 2. 𝑀 is a finite von Neumann algebra of type I. Then there exists a family 

{𝑞𝑛}𝑛∈𝐹 , 𝐹 ⊆ ℕ, of central projections from 𝑀 with sup𝑛∈𝐹 𝑞𝑛 = 𝟏 such that the algebra 𝑀 

is ∗-isomorphic with the 𝐶∗-product of von Neumann algebras 𝑞𝑛𝑀 of type 𝐼𝑛 respectively, 

𝑛 ∈ 𝐹, i.e. 

𝑀 ≅ ⊕
𝑛∈𝐹

𝑞𝑛𝑀. 

By Proposition (3.1.1) we have that 

𝑆(𝑀) ≅∏𝑆(𝑞𝑛𝑀)

𝑛∈𝐹

. 

Take 𝑥 = {𝑥𝑛}𝑛∈𝐹 ∈ ∏ 𝑆(𝑞𝑛𝑀)𝑛∈𝐹 . The case 1 implies that for every 𝑛 ∈ 𝐹 there exists a 

family {𝑥𝑛,𝑚} of mutually orthogonal central projections with ⋁ 𝑧𝑛,𝑚𝑛 = 𝑞𝑛 and 𝑧𝑛,𝑚𝑧𝑛 ∈
𝑞𝑛𝑀 for all 𝑚 ∈ ℕ. 

   In this case we have the countable family {𝑧𝑛,𝑘}(𝑛,𝑘)∈𝐹×ℕ of mutually orthogonal central 

projections with ⋁ 𝑧𝑛,𝑘(𝑛,𝑘)∈𝐹×ℕ = 𝟏 and 𝑧𝑛,𝑘𝑥 ∈ 𝑀 for all (𝑛, 𝑘) ∈ 𝐹 × ℕ. 

Case 3. M is an arbitrary von Neumann algebra of type I and 𝑥 ∈ 𝑆(𝑀). Without loss of 

generality we may assume that 𝑥 ≥ 0. 

Let 𝑥 = ∫ 𝜆𝑑𝜆
∞

0
 be the spectral resolution of 𝑥. Since 𝑥 ∈ 𝑆(𝑀) by the definition there exists 

𝜆0 > 0 such that 𝑒𝜆0
⊥  is a finite projection. Thus 𝑒𝜆0

⊥𝑀𝑒𝜆0
⊥  is a finite von Neumann algebra of 

type I and 𝑥𝑒𝜆0
⊥ ∈ 𝑆(𝑒𝜆0

⊥𝑀𝑒𝜆0
⊥ ). From the case 2 we have that there exists a family of mutually 

orthogonal projections {𝑧𝑚
’ }

𝑚∈ℕ
 in 𝑒𝜆0

⊥𝑀𝑒𝜆0
⊥  such that ⋁ 𝑧𝑚

’
𝑚≥1 = 𝑒𝜆0

⊥  and 𝑧𝑚
’ 𝑥𝑒𝜆0

⊥ ∈

𝑒𝜆0
⊥𝑀𝑒𝜆0

⊥  for all 𝑚 ∈ ℕ. Each central projection 𝑧 ’ in 𝑒𝜆0
⊥𝑀𝑒𝜆0

⊥  has the form 𝑧 ’ = 𝑒𝜆0
⊥ 𝑧𝑒𝜆0

⊥  for 

an appropriate central projection 𝑧 ∈ 𝑀. Moreover passing if necessary to 𝑧(𝑒𝜆0
⊥ )𝑧 one may 

chose 𝑧 with 𝑧 ≤ 𝑧(𝑒𝜆0
⊥ ), where 𝑧(𝑒𝜆0

⊥ ) is the central cover of the projection 𝑒𝜆0
⊥  in 𝑀. Let 
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𝑧𝑚
’ = 𝑒𝜆0

⊥ 𝑧𝑚𝑒𝜆0
⊥ , 𝑚 ∈ ℕ. Mutually orthogonality of the family {𝑧𝑚

’ } then implies the similar 

property of the corresponding {𝑧𝑚}. Denote 𝑧0 = 𝑧(𝑒𝜆0
⊥ )⊥. Then ⋁ 𝑧𝑚 = 𝟏𝑚≥0  and 

𝑧0𝑥 = 𝑧0𝑥𝑒𝜆0 + 𝑧0𝑥𝑒𝜆0
⊥ = 𝑧0𝑥𝑒𝜆0 ∈ 𝑀, 

𝑧𝑚𝑥 = 𝑧𝑚𝑥𝑒𝜆0 + 𝑧𝑚𝑥𝑒𝜆0
⊥ = 𝑧𝑚𝑥𝑒𝜆0 + 𝑧𝑚

’ 𝑥𝑒𝜆0
⊥ ∈ 𝑀 

for all 𝑚 ∈ ℕ, i.e. 𝑧𝑚𝑥 ∈ 𝑀 for all 𝑚 ≥ 0. 

   Case 4. The general case, i.e. M is a type I von Neumann algebra and 𝑥 ∈ 𝐿𝑆(𝑀). By the 

definition there exists a sequence {𝑓𝑛}𝑚∈ℕ of mutually orthogonal central projection with 

⋁ 𝑓𝑛 = 𝟏𝑛  and 𝑓𝑛𝑥 ∈ 𝑆(𝑀) for all 𝑛 ∈ ℕ. Then the case 3 implies that for each 𝑛 ∈ ℕ there 

exists a sequence {𝑧𝑛,𝑚} of mutually orthogonal central projections with ⋁ 𝑧𝑛,𝑚 = 𝑓𝑛𝑚  and 

𝑧𝑛,𝑚𝑥𝑛 ∈ 𝑓𝑛𝑀 for all 𝑚 ∈ ℕ. 

    Now we have that {𝑧𝑛,𝑘}(𝑛,𝑘)∈ℕ×ℕ is a countable family of mutually orthogonal central 

projections with ⋁ 𝑧𝑛,𝑘(𝑛,𝑘)∈ℕ×ℕ = 𝟏 and 𝑧𝑛,𝑘𝑥 ∈ 𝑀 for all (𝑛, 𝑘) ∈ ℕ × ℕ. The proof is 

complete. 

      Now let us recall some notions and results from the theory of Hilbert–Kaplansky 

modules. 

 Let (Ω,∑, 𝜇) be a measure space and let 𝐻 be a Hilbert space. A map 𝑠: Ω → 𝐻 is said to 

be simple, if 𝑠(𝜔) = ∑ 𝜒𝐴𝑘(𝜔)𝑐𝑘
𝑛
𝑘=1 , where 𝐴𝑘 ∈ ∑, 𝐴𝑖 ∩ 𝐴𝑗 = ∅, 𝑖 ≠ 𝑗, 𝑐𝑘 ∈ 𝐻. A map 

𝑢:Ω → 𝐻 is said to be measurable, if for any 𝐴 ∈ ∑ with 𝜇(𝐴) < ∞ there is a sequence (𝑠𝑛) 
of simple maps such that ‖𝑠𝑛(𝜔) − 𝑢(𝜔)‖ → 0 almost everywhere on A. 

   Let ℒ(Ω,𝐻) be the set of all measurable maps from Ω into 𝐻, and let 𝐿0(Ω,𝐻) denote the 

space of all equivalence classes with respect to the equality almost everywhere. Denote by 

�̂� the equivalence class from 𝐿0(Ω,𝐻) which contains the measurable map 𝑢 ∈ ℒ(Ω,𝐻). 
Further we shall identify the element 𝑢 ∈ ℒ(Ω,𝐻) and the class �̂�. Note that the function 

𝜔 → ‖𝑢(𝜔)‖ is measurable for any 𝑢 ∈ ℒ(Ω,𝐻). The equivalence class containing the 

function ‖𝑢(𝜔)‖ is denoted by ‖�̂�‖. For �̂�, �̂� ∈ 𝐿0(Ω,𝐻), 𝜆 ∈ 𝐿0(Ω) put �̂� + �̂� =

𝑢(𝜔) + 𝑣(𝜔)̂ ,𝜆�̂� = 𝜆(𝜔)𝑢(𝜔)̂ . Equipped with the 𝐿0(Ω)-valued inner product 

〈𝑥, 𝑦〉 = 〈𝑥(𝜔), 𝑦(𝜔)〉𝐻, 
where 〈⋅,⋅〉𝐻 in the inner product in 𝐻, 𝐿0(Ω,𝐻) becomes a Hilbert–Kaplansky module over 

𝐿0(Ω). The space 

𝐿∞(Ω,𝐻) = {𝑥 ∈ 𝐿0(Ω,𝐻): 〈𝑥, 𝑥〉 ∈ 𝐿∞(Ω)} 
is a Hilbert–Kaplansky module over 𝐿∞(Ω). 
It should be noted that 𝐿∞(Ω,𝐻) is a Banach space with respect to the norm ‖𝑥‖∞ =

‖(𝑥, 𝑥)
1

2‖
𝐿∞(Ω)

. 

        Let us show that if dim𝐻 = 𝛼 then the Hilbert–Kaplansky module 𝐿∞(Ω,𝐻) is 𝛼-

homogeneous. 

   Indeed, let {𝜑𝑖}𝑖∈𝐽 be an orthonormal basis in H with the cardinality α, and consider the 

equivalence class �̂�𝑖 from 𝐿∞(Ω,𝐻) containing the constant vector-function 

𝜔 ∈ Ω → 𝜑𝑖 . 
From the definition of the inner-product it is clear that 

〈�̂�𝑖 , �̂�𝑗〉 = 𝛿𝑖𝑗𝟏, 

where 𝛿𝑖𝑗 is the Kroenecker symbol, 𝟏 is the identity from 𝐿∞(Ω). 

Let us show that if 𝑦 ∈ 𝐿∞(Ω, 𝐻) and 〈�̂�𝑖 , 𝑦〉 = 0 for all 𝑖 ∈ 𝐽 then 𝑦 = 0. Put 
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𝑆𝑝{�̂�𝑖} = {∑𝜆𝑘�̂�𝑖𝑘

𝑛

𝑘=1

: 𝜆𝑘 ∈ 𝐿∞(Ω), 𝑖𝑘 ∈ 𝐽, 𝑘 = 1, 𝑛̅̅ ̅̅ ̅, 𝑛 ∈ ℕ}. 

Since the set of elements of the form ∑ 𝑡𝑘𝜑𝑖𝑘
𝑛
𝑘=1 , where 𝑡𝑘 ∈ ℂ, 𝑖𝑘 ∈ 𝐽, 𝑘 = 1, 𝑛̅̅ ̅̅ ̅, 𝑛 ∈ ℕ, is 

norm dense in 𝐻, we have that inf{‖𝜓 − 𝑦‖:𝜓 ∈ 𝑆𝑝{�̂�𝑖}} = 0, for each fixed 𝑦 ∈ 𝐿∞(Ω,𝐻). 
The set 𝑆𝑝{�̂�𝑖} is an 𝐿∞(Ω)-submodule in 𝐿∞(Ω,𝐻), and by [92] there exists a sequence 

{𝜓𝑘} in 𝑆𝑝{�̂�𝑖} such that ‖𝜓𝑘 − 𝑦‖ ↓ 0, i.e. the set 𝑆𝑝{�̂�𝑖} is (𝑏𝑜)-dence in 𝐿∞(Ω,𝐻). 
   Now let 𝑦 ∈ 𝐿∞(Ω,𝐻) be such an element that 〈�̂�𝑖 , 𝑦〉 = 0 for all 𝑖 ∈ 𝐽. Then 〈𝜉, 𝑦〉 = 0 

for all 𝜉 ∈ 𝑆𝑝{�̂�𝑖}. Since the set 𝑆𝑝{�̂�𝑖} is (𝑏𝑜)-dense in 𝐿∞(Ω,𝐻), we have that 〈𝜉, 𝑦〉 = 0 

for all 𝜉 ∈ 𝐿∞(Ω,𝐻). In particular 〈𝑦, 𝑦〉 = 0, i.e. 𝑦 = 0. 

    Therefore {�̂�𝑖}𝑖∈𝐽 is an orthogonal basis in 𝐿∞(Ω,𝐻) with the cardinality 𝛼, i.e. 𝐿∞(Ω,𝐻) 

is 𝛼-homogeneous, where 𝛼 = dim𝐻. 

   Denote by 𝐵(𝐿0(Ω,𝐻)) the algebra of all 𝐿0(Ω)-bounded 𝐿0(Ω)-linear operators on 

𝐿0(Ω,𝐻) and by 𝐵(𝐿∞(Ω,𝐻))—the algebra of all 𝐿∞(Ω)-bounded 𝐿∞(Ω)-linear operators 

on 𝐿∞(Ω,𝐻). 

  In [91] it was proved that 𝐵(𝐿0(Ω,𝐻)) is a 𝐶∗-algebra over 𝐿0(Ω). 
  Put 

𝐵(𝐿0(Ω,𝐻)𝑏) = {𝑥 ∈ 𝐵(𝐿0(Ω,𝐻)): ‖𝑥‖ ∈ 𝐿∞(Ω)}. 
Note that the correspondence 

𝑥 ↦ 𝑥|𝐿∞(Ω,𝐻) 

gives a ∗-isomorphism between the ∗-algebras 𝐵(𝐿0(Ω,𝐻)𝑏) and 𝐵(𝐿∞(Ω,𝐻)). We further 

shall identify 𝐵(𝐿0(Ω,𝐻)𝑏) with 𝐵(𝐿∞(Ω,𝐻)), i.e. the operator x from 𝐵(𝐿0(Ω,𝐻)𝑏) is 

identified with its restriction 𝑥|𝐿∞(Ω,𝐻). 

Since 𝐿∞(Ω,𝐻) is a Hilbert–Kaplansky module over 𝐿∞(Ω), [95] implies that 𝐵(𝐿∞(Ω,𝐻)) 
is an 𝐴𝑊∗-algebra of type I and its center is ∗-isomorphic with 𝐿∞(Ω). If 𝛼 = dim𝐻, then 

𝐿∞(Ω,𝐻) is 𝛼-homogeneous and by [95] the algebra 𝐵(𝐿∞(Ω,𝐻)) has the type 𝐼𝛼. The 

center 𝑍 (𝐵(𝐿∞(Ω,𝐻))) of this 𝐴𝑊∗-algebra coincides with the von Neumann algebra 

𝐿∞(Ω) and thus by [96] 𝐵(𝐿∞(Ω,𝐻)) is also a von Neumann algebra. Thus for dim𝐻 = 𝛼 

we have that 𝐵(𝐿∞(Ω,𝐻)) is a von Neumann algebra of type 𝐼𝛼. 

   Now let 𝑀 be a homogeneous von Neumann algebra of type 𝐼𝛼 with the center 𝐿∞(Ω). 
Since two von Neumann algebras of the same type 𝐼𝛼 with isomorphic center are mutually 

∗-isomorphic, it follows that the algebra 𝑀 is ∗-isomorphic to the algebra 𝐵(𝐿∞(Ω,𝐻)), 
where dim𝐻 = 𝛼. 

   It is well known [33] that given any type I von Neumann algebra 𝑀, there exists a 

(cardinalindexed) system of central orthogonal projections (𝑞𝛼)𝛼∈𝐽 ⊂ 𝒫(𝑀) with 

∑ 𝑞𝛼𝛼∈𝐽 = 𝟏 such that 𝑞𝛼𝑀 is a homogeneous von Neumann algebra of type 𝐼𝛼, i.e. 𝑞𝛼𝑀 ≅

𝐵(𝐿∞(Ω𝛼 , 𝐻𝛼)) with dim𝐻 = 𝛼, and the algebra 𝑀 is ∗-isomorphic to the 𝐶∗-product of 

the algebras 𝑀𝛼, i.e. 

𝑀 ≅ ⊕
𝛼∈𝐽

𝑀𝛼 

Note that if 𝐿∞(Ω) is the center of M then 𝑞𝛼𝐿
∞(Ω) ≅ 𝐿∞(Ω𝛼) for an appropriate Ω𝛼 , 𝛼 ∈

𝐽. Therefore 

𝐿∞(Ω) ≅ ⊕
𝛼∈𝐽

𝐿∞(Ω𝛼) 
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The product 

⊕
𝛼∈𝐽

𝐿∞(Ω𝛼 , 𝐻𝛼) 

equipped with coordinate-wise algebraic operations and inner product becomes a Hilbert–

Kaplansky module over 𝐿∞(Ω𝛼). The product 

⊕
𝛼∈𝐽

𝐵(𝐿∞(Ω𝛼 , 𝐻𝛼)) 

equipped with coordinate-wise algebraic operations and involution becomes a ∗-algebra and 

moreover 

⊕
𝛼∈𝐽

𝐵(𝐿∞(Ω𝛼 , 𝐻𝛼)) ≅ 𝐵 ( ⨁
𝛼∈𝐽

𝐿∞(Ω𝛼 , 𝐻𝛼)). 

Indeed, take 𝑥 ∈ 𝐵(⨁𝛼∈𝐽 𝐿
∞(Ω𝛼 , 𝐻𝛼)). For each α define the operator xα on 𝐿∞(Ω𝛼 , 𝐻𝛼) 

by 

𝑥𝛼(𝜑𝛼) = 𝑞𝛼𝑥(𝜑𝛼), 𝜑𝛼 ∈ 𝐿∞(Ω𝛼 , 𝐻𝛼). 
Then 

{𝑥𝛼} ∈ ⊕
𝛼∈𝐽

𝐵(𝐿∞(Ω𝛼 , 𝐻𝛼)) 

and the correspondence 

𝑥 ↦ {𝑥𝛼} 

gives a ∗-homomorphism from 𝐵(⨁𝛼∈𝐽 𝐿
∞(Ω𝛼 , 𝐻𝛼)) into ⨁𝛼∈𝐽 𝐵(𝐿

∞(Ω𝛼 , 𝐻𝛼)). 
   Conversely, consider 

{𝑥𝛼} ∈ ⊕
𝛼∈𝐽

𝐵(𝐿∞(Ω𝛼 , 𝐻𝛼)). 

Define the operator 𝑥 on ⨁𝛼∈𝐽 𝐿
∞(Ω𝛼 , 𝐻𝛼) by 

𝑥({𝜑𝛼}) = {𝑥𝛼(𝜑𝛼)}, {𝜑𝛼} ∈ ⨁
𝛼∈𝐽

𝐿∞(Ω𝛼 , 𝐻𝛼). 

Then 𝑥 ∈ 𝐵(⨁𝛼∈𝐽 𝐿
∞(Ω𝛼 , 𝐻𝛼)) and therefore 

𝑀 ≅ ⊕
𝛼∈𝐽

𝐵(𝐿∞(Ω𝛼 , 𝐻𝛼)) ≅ 𝐵 ( ⨁
𝛼∈𝐽

𝐿∞(Ω𝛼 , 𝐻𝛼)). 

The direct product 

∏𝐿0(Ω𝛼 , 𝐻𝛼)

𝛼∈𝐽

 

equipped with the coordinate-wise algebraic operations and inner product forms a Hilbert–

Kaplansky module over 𝐿0(Ω) ≅ ∏ 𝐿0(Ω𝛼)𝛼∈𝐽 . 

   The proof of the following proposition in [2] has a small gap, therefore here we shall give 

an alternative proof for this result. 

Proposition (3.1.7)[3]: If von Neumann algebra 𝑀 is ∗-isomorphic with 

𝐵(⨁𝛼∈𝐽 𝐿
∞(Ω𝛼 , 𝐻𝛼)) then the algebra 𝐿𝑆(𝑀) is ∗-isomorphic with 𝐵(∏ 𝐿0(Ω𝛼 , 𝐻𝛼)𝛼∈𝐽 ). 

Proof. Let Φ be a ∗-isomorphism between 𝑀 and 𝐵(⨁𝛼∈𝐽 𝐿
∞(Ω𝛼 , 𝐻𝛼)). Take 𝑥 ∈

𝐵(∏ 𝐿0(Ω𝛼 , 𝐻𝛼)𝛼∈𝐽 ) and let ‖𝑥‖ be its 𝐿0(Ω)-valued norm. Consider a family of mutually 

orthogonal projections {𝑧𝑛}𝑛∈ℕ in 𝐿∞(Ω) with ⋁𝑧𝑛 = 𝟏 such that 𝑧𝑛‖𝑥‖ ∈ 𝐿∞(Ω) for all 

𝑛 ∈ ℕ. Then 𝑧𝑛𝑥 ∈ 𝑀 for all 𝑛 ∈ ℕ and ∑ 𝑧𝑛Φ(𝑧𝑛𝑥)𝑛 ∈ 𝐿𝑆(𝑀). Put 

𝜓: 𝑥 →∑𝑧𝑛Φ(𝑧𝑛𝑥)

𝑛

. 

It is clear that ψ is a well-defined ∗-homomorphism from 𝐵(∏ 𝐿0(Ω𝛼 , 𝐻𝛼)𝛼∈𝐽 ) into 𝐿𝑆(𝑀). 

Since given any element 𝑥 ∈ 𝐿𝑆(𝑀) there exists a sequence of mutually orthogonal central 

projections {𝑧𝑛} in 𝑀 such that 𝑧𝑛𝑥 ∈ 𝑀 for all 𝑛 ∈ ℕ (Proposition 3.1.6) and 𝑥 = ∑ 𝑧𝑛𝑥𝑛 , 
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this implies that 𝜓 is a ∗-isomorphism between 𝐿𝑆(𝑀) and 𝐵(∏ 𝐿0(Ω𝛼 , 𝐻𝛼)𝛼∈𝐽 ). The proof 

is complete. 

   It is known [91] that 𝐵(∏ 𝐿0(Ω𝛼 , 𝐻𝛼)𝛼∈𝐽 ) is a 𝐶∗-algebra over 𝐿0(Ω) and therefore there 

exists a map ‖⋅‖: 𝐿𝑆(𝑀) → 𝐿0(Ω) such that for all 𝑥, 𝑦 ∈ 𝐿𝑆(𝑀), 𝜆 ∈ 𝐿0(Ω) one has 

‖𝑥‖ ≥ 0, ‖𝑥‖ = 0  ⇔   𝑥 = 0; 
‖𝜆𝑥‖ = |𝜆|‖𝑥‖; 

‖𝑥 + 𝑦‖ ≤ ‖𝑥‖ + ‖𝑦‖; 
‖𝑥𝑦‖ ≤ ‖𝑥‖‖𝑦‖; 
‖𝑥𝑥∗‖ = ‖𝑥‖2. 

This map ‖⋅‖: 𝐿𝑆(𝑀) → 𝐿0(Ω) is called the center-valued norm on 𝐿𝑆(𝑀). 
We shall give a complete description of derivations on the algebra 𝐿𝑆(𝑀) of all 

locally measurable operators affiliated with a type I von Neumann algebra 𝑀. It is clear that 

if a derivation 𝐷 on 𝐿𝑆(𝑀) is inner then it is 𝑍-linear, i.e. 𝐷(𝜆𝑥) = 𝜆𝐷(𝑥) for all 𝜆 ∈ 𝑍, 𝑥 ∈
𝐿𝑆(𝑀), where 𝑍 is the center of the von Neumann algebra 𝑀. The following main result of 

[2] asserts that the converse is also true. 

Theorem (3.1.8)[3]: Let 𝑀 be a type I von Neumann algebra with the center 𝑍. Then every 

𝑍-linear derivation 𝐷 on the algebra 𝐿𝑆(𝑀) is inner. 

Proof. (See [2].) 

We are now in position to consider arbitrary (non-𝑍-linear, in general) derivations on 

𝐿𝑆(𝑀). The following simple but important remark is crucial in our further considerations. 

Lemma (3.1.9)[3]: Let 𝑀 be a homogenous von Neumann algebra of type 𝐼𝑛, 𝑛 ∈ ℕ. Every 

derivation 𝐷 on the algebra 𝐿𝑆(𝑀) can be uniquely represented as a sum 

𝐷 = 𝐷𝑎 + 𝐷𝛿 , 
where 𝐷𝑎 is an inner derivation implemented by an element 𝑎 ∈ 𝐿𝑆(𝑀) while 𝐷𝛿 is the 

derivation of the form (1) generated by a derivation 𝛿 on the center of 𝐿𝑆(𝑀) identified with 

𝑆(𝑍). 
Proof. Let 𝐷 be an arbitrary derivation on the algebra 𝐿𝑆(𝑀) ≅ 𝑀𝑛(𝑆(𝑍)). Consider its 

restriction 𝛿 onto the center 𝑆(𝑍) of this algebra, and let 𝐷𝛿 be the derivation on the algebra 

𝑀𝑛(𝑆(𝑍)) constructed as in (1). Put 𝐷1 = 𝐷 − 𝐷𝛿. Given any 𝜆 ∈ 𝑆(𝑍) we have 

𝐷1(𝜆) = 𝐷(𝜆) − 𝐷𝛿(𝜆) = 𝐷(𝜆) − 𝐷(𝜆) = 0, 
i.e. 𝐷1 is identically zero on 𝑆(𝑍). Therefore 𝐷1 is 𝑍-linear and by Theorem (3.1.8) we 

obtain that 𝐷1 is inner derivation and thus 𝐷1 = 𝐷𝑎 for an appropriate 𝑎 ∈ 𝑀𝑛(𝑆(𝑍)). 
Therefore 𝐷 = 𝐷𝑎 + 𝐷𝛿. 

   Suppose that 

𝐷 = 𝐷𝑎1 + 𝐷𝛿1 = 𝐷𝑎2 + 𝐷𝛿2 . 

Then 𝐷𝑎1 − 𝐷𝑎2 = 𝐷𝛿2 − 𝐷𝛿1. Since 𝐷𝑎1 − 𝐷𝑎2 is identically zero on the center of the 

algebra 𝑀𝑛(𝑆(𝑍)) this implies that 𝐷𝛿2 − 𝐷𝛿1 is also identically zero on the center of 

𝑀𝑛(𝑆(𝑍)). This means that 𝛿1 = 𝛿2, and therefore 𝐷𝑎1 = 𝐷𝑎2, i.e. the decomposition of 𝐷 

is unique. The proof is complete. 

      Now let 𝑀 be an arbitrary finite von Neumann algebra of type I with the center 𝑍. There 

exists a family {𝑧𝑛}𝑛∈𝐹 , 𝐹 ⊆ ℕ, of central projections from 𝑀 with sup𝑛∈𝐹 𝑧𝑛 = 𝟏 such that 

the algebra 𝑀 is ∗-isomorphic with the 𝐶∗-product of von Neumann algebras 𝑧𝑛𝑀 of type 

𝐼𝑛 respectively, 𝑛 ∈ 𝐹, i.e. 

𝑀 ≅ ⊕
𝑛∈𝐹

𝑧𝑛𝑀. 

By Proposition( 3.1.1) we have that 
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𝐿𝑆(𝑀) ≅∏𝐿𝑆(𝑧𝑛𝑀)

𝑛∈𝐹

. 

Suppose that 𝐷 is a derivation on 𝐿𝑆(𝑀), and δ is its restriction onto its center 𝑆(𝑍). Since 

𝛿 maps each 𝑧𝑛𝑆(𝑍) ≅ 𝑍(𝐿𝑆(𝑧𝑛𝑀)) into itself, 𝛿 generates a derivation 𝛿𝑛 on 𝑧𝑛𝑆(𝑍) for 

each 𝑛 ∈ 𝐹. 

    Let 𝐷𝛿𝑛 be the derivation on the matrix algebra 𝑀𝑛(𝑧𝑛𝑍(𝐿𝑆(𝑀))) ≅ 𝐿𝑆(𝑧𝑛𝑀) defined 

as in (1). Put 

𝐷𝛿({𝑥𝑛}𝑛∈𝐹) = {𝐷𝛿𝑛(𝑥𝑛)}, {𝑥𝑛}𝑛∈𝐹 ∈ 𝐿𝑆(𝑀). 

Then the map 𝐷𝛿 is a derivation on 𝐿𝑆(𝑀). 
   Now Lemma (3.1.9) implies the following result: 

Lemma (3.1.10)[3]: Let 𝑀 be a finite von Neumann algebra of type I. Each derivation 𝐷 

on the algebra 𝐿𝑆(𝑀) can be uniquely represented in the form 

𝐷 = 𝐷𝑎 + 𝐷𝛿 , 
where 𝐷𝑎 is an inner derivation implemented by an element 𝑎 ∈ 𝐿𝑆(𝑀), and 𝐷𝛿 is a 

derivation given as (3). 

     In order to consider the case of type 𝐼∞ von Neumann algebra we need some auxiliary 

results concerning derivations on the algebra 𝐿0(Ω) = 𝐿(Ω,∑, 𝜇). 
    Recall that a net {𝜆𝛼} in  𝐿0(Ω)(𝑜)-converges to 𝜆 ∈ 𝐿0(Ω) if there exists a net {𝜉𝛼} 
monotone decreasing to zero such that |𝜆𝛼 − 𝜆| ≤ 𝜉𝛼 for all 𝛼. 

    Denote by ∇ the complete Boolean algebra of all idempotents from 𝐿0(Ω), i.e. ∇=
{�̃�𝐴: 𝐴 ∈ ∑}, where �̃�𝐴 is the element from 𝐿0(Ω) which contains the characteristic function 

of the set 𝐴. A partition of the unit in ∇ is a family (𝜋𝛼) of orthogonal idempotents from ∇ 

such that ⋁ 𝜋𝛼𝛼 = 𝟏. 

Lemma (3.1.11)[3]: Any derivation 𝛿 on the algebra 𝐿0(Ω) commutes with the mixing 

operation on 𝐿0(Ω), i.e. 

𝛿 (∑𝜋𝛼𝜆𝛼
𝛼

) =∑𝜋𝛼𝛿(𝜆𝛼)

𝛼

 

for an arbitrary family (𝜆𝛼) ⊂ 𝐿0(Ω) and any partition {𝜋𝛼} of the unit in ∇. 

Proof. Consider a family {𝜆𝛼} in 𝐿0(Ω) and a partition of the unit {𝜋𝛼} in ∇⊂ 𝐿0(Ω). Since 

𝛿(𝜋) = 0 for any idempotent 𝜋 ∈ ∇, we have 𝛿(𝜋𝛼) = 0 for all α and thus 𝛿(𝜋𝛼𝜆) =
𝜋𝛼𝛿(𝜆) for any 𝜆 ∈ 𝐿0(Ω). Therefore for each 𝜋𝛼0  from the given partition of the unit we 

have 

𝜋𝛼0𝛿 (∑𝜋𝛼𝜆𝛼
𝛼

) = 𝛿 (𝜋𝛼0 ∑𝜋𝛼𝜆𝛼
𝛼

) = 𝛿(𝜋𝛼0𝜆𝛼0) = 𝜋𝛼0𝛿(𝜆𝛼0). 

By taking the sum over all 𝛼0 we obtain 

𝛿 (∑𝜋𝛼𝜆𝛼
𝛼

) =∑𝜋𝛼𝛿(𝜆𝛼)

𝛼

. 

The proof is complete. 

   Recall [97] that a subset 𝐾 ⊂ 𝐿0(Ω) is called cyclic, if ∑ 𝜋𝛼𝑢𝛼𝛼∈𝐽 ∈ 𝐾 for each family 

(𝑢𝛼)𝛼∈𝐽 ⊂ 𝐾 and for any partition of the unit (𝜋𝛼)𝛼∈𝐽 in ∇. 

    We need the following technical result. 

Lemma (3.1.12)[3]: Let 𝐴 be a cyclic subset in 𝐿0(Ω). If the set 𝜋𝐴 is unbounded above for 

each non-zero 𝜋 ∈ ∇, then given any 𝑛 ∈ ℕ there exists 𝜆𝑛 ∈ 𝐴 such that 𝜆𝑛 ≥ 𝑛𝟏. 
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Proof. For fixed 𝑛 ∈ ℕ and an arbitrary 𝜆 ∈ 𝐴 denote 

𝜋𝜆 =⋁{𝑞 ∈ ∇: 𝑞𝜆 ≥ 𝑞𝑛}. 

Then 

𝜋𝜆𝜆 ≥ 𝜋𝜆𝑛 

and 

𝜋𝜆
⊥𝜆 ≤ 𝜋𝜆

⊥𝑛, 
Put 

𝜋0 =⋁{𝜋𝜆: 𝜆 ∈ 𝐴}. 

Since 

𝜋0
⊥ =⋀{𝜋𝜆

⊥: 𝜆 ∈ 𝐴} 

from (5) we obtain 

𝜋0
⊥𝜆 ≤ 𝜋0

⊥𝑛 

for all 𝜆 ∈ 𝐴, i.e. 𝜋0
⊥𝐴 is bounded above. By the assumption of lemma 𝜋0

⊥ = 0, i.e. 

𝜋0 =⋁{𝜋𝜆: 𝜆 ∈ 𝐴} = 𝟏. 

By [103] there exists a partition of unit {𝜋𝑖} in ∇ such that for any 𝜋𝑖 there exists 𝜆𝑖 ∈ 𝐴 

with 𝜋𝑖 ≤ 𝜋𝜆𝑖 . Put 𝜆𝑛 = ∑ 𝜋𝑖𝜆𝑖𝑖 . Since 𝐴 is a cyclic we have 𝜆𝑛 ∈ 𝐴. From (4) one has 

𝜋𝜆𝑖𝜆𝑖 ≥ 𝜋𝜆𝑖𝑛 for all 𝑖. Thus 𝜋𝑖𝜆𝑖 ≥ 𝜋𝑖𝑛 for all 𝑖, therefore 𝜆𝑛 ≥ 𝑛𝟏. The proof is complete. 

   Given an arbitrary derivation 𝛿 on 𝐿0 the element 

𝑧𝛿 = inf{𝜋 ∈ ∇: 𝜋𝛿 = 𝛿} 
is called the support of the derivation 𝛿. 

Lemma (3.1.13)[3]: Given any nontrivial derivation 𝛿: 𝐿0(Ω) → 𝐿0(Ω) there exist a 

sequence {𝜆𝑛}𝑛=1
∞  in 𝐿∞(Ω) with |𝜆𝑛| ≤ 𝟏, 𝑛 ∈ ℕ such that 

|𝛿(𝜆𝑛)| ≥ 𝑛𝑧𝛿 

for all 𝑛 ∈ ℕ. 

Proof. Considering if necessary the algebra 𝑧𝛿𝐿
0(Ω) instead 𝐿0(Ω) and the derivation 𝑧𝛿𝛿 

instead 𝛿, we may assume that 𝑧𝛿 = 𝟏. 

     Put 𝐴 = {𝛿(𝜆): 𝜆 ∈ 𝐿0(Ω), |𝜆| ≤ 𝟏} and let us prove that for any non-zero 𝜋 ∈ ∇ the set 

𝜋𝐴 is unbounded from above. Suppose that the set 𝜋{𝛿(𝜆): 𝜆 ∈ 𝐿0(Ω), |𝜆| ≤ 𝟏} is order 

bounded in 𝐿0(Ω) for some 𝜋 ∈ ∇, 𝜋 ≠ 0. Then 𝜋𝛿 maps any uniformly convergent 

sequence in 𝐿∞(Ω) to an (𝑜)-convergent sequence in 𝐿0(Ω). The algebra 𝐿∞(Ω) coincides 

with the uniform closure of the linear span of idempotents from ∇. Since 𝜋𝛿 is identically 

zero on ∇ it follows that 𝜋𝛿 ≡ 0 on 𝐿∞(Ω). Since 𝛿 commutes with the mixing operation 

and every element 𝜆 ∈ 𝐿0(Ω) can be represented as 𝜆 = ∑ 𝜋𝛼𝜆𝛼𝛼 , where {𝜆𝛼} ⊂ 𝐿∞(Ω), 
and {𝜋𝛼} is a partition of unit in ∇, we have 𝛿(𝜆) = 𝛿(∑ 𝜋𝛼𝜆𝛼𝛼 ) = ∑ 𝜋𝛼𝛿(𝜆𝛼)𝛼 = 0, i.e. 

πδ ≡ 0 on 𝐿0(Ω). This is contradicts with 𝑧𝛿 = 𝟏. This contradiction shows that the set 

𝜋{𝛿(𝜆): 𝜆 ∈ 𝐿0(Ω), |𝜆| ≤ 𝟏} is not order bounded in 𝐿0(Ω) for all 𝜋 ∈ ∇, 𝜋 ≠ 0. Further, 

since 𝛿 commutes with the mixing operations and the set {𝜆: 𝜆 ∈ 𝐿0, |𝜆| ≤ 𝟏} is cyclic, the 

set {𝛿(𝜆): 𝜆 ∈ 𝐿0(Ω), |𝜆| ≤ 𝟏} is also cyclic. By Lemma (3.1.11) there exist a sequence 

{𝜆𝑛}𝑛=1
∞  in 𝐿∞(Ω) with |𝜆𝑛| ≤ 𝟏 such that |𝜆𝑛| ≥ 𝑛𝟏, 𝑛 ∈ ℕ. The proof is complete. 

     Now we are in position to consider derivations on the algebra of locally measurable 

operators for type 𝐼∞ von Neumann algebras. 

Theorem (3.1.14)[3]: If 𝑀 is a type 𝐼∞ von Neumann algebra, then any derivation on the 

algebra 𝐿𝑆(𝑀) is inner. 
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Proof. Since 𝑀 is of type 𝐼∞ there exists a sequence of mutually orthogonal and mutually 

equivalent abelian projections {𝑝𝑛}𝑛=1
∞  in 𝑀 with the central cover 1 (i.e. faithful 

projections). 

   For any bounded sequence Λ = {𝜆𝑘} in 𝑍 define an operator 𝑥Λ by 

𝑥Λ = ∑𝜆𝑘𝑝𝑘

∞

𝑘=1

. 

Then 

𝑥Λ𝑝𝑛 = 𝑝𝑛𝑥Λ = 𝜆𝑛𝑝𝑛. 
Let 𝐷 be a derivation on 𝐿𝑆(𝑀), and let 𝛿 be its restriction onto the center of 𝐿𝑆(𝑀), 
identified with 𝐿0(Ω). 
Take any 𝜆 ∈ 𝐿0(Ω) and 𝑛 ∈ ℕ. From the identity 

𝐷(𝜆𝑝𝑛) = 𝐷(𝜆)𝑝𝑛 + 𝜆𝐷(𝑝𝑛) 
multiplying it by 𝑝𝑛 from both sides we obtain 

𝑝𝑛𝐷(𝜆𝑝𝑛)𝑝𝑛 = 𝑝𝑛𝐷(𝜆)𝑝𝑛 + 𝜆𝑝𝑛𝐷(𝑝𝑛)𝑝𝑛. 
Since 𝑝𝑛 is a projection, one has that 𝑝𝑛𝐷(𝑝𝑛)𝑝𝑛 = 0, and since 𝐷(𝜆) = 𝛿(𝜆) ∈ 𝐿0(Ω), we 

have 

𝑝𝑛𝐷(𝜆𝑝𝑛)𝑝𝑛 = 𝛿(𝜆)𝑝𝑛. 
Now from the identity 

𝐷(𝑥Λ𝑝𝑛) = 𝐷(𝑥Λ)𝑝𝑛 + 𝑥Λ𝐷(𝑝𝑛), 
in view of (6) one has similarly 

𝑝𝑛𝐷(𝜆𝑛𝑝𝑛)𝑝𝑛 = 𝑝𝑛𝐷(𝑥Λ)𝑝𝑛 + 𝜆𝑛𝑝𝑛𝐷(𝑝𝑛)𝑝𝑛, 
i.e. 

𝑝𝑛𝐷(𝜆𝑛𝑝𝑛)𝑝𝑛 = 𝑝𝑛𝐷(𝑥Λ)𝑝𝑛. 
Eqs. (7) and (8) imply 

𝑝𝑛𝐷(𝑥Λ)𝑝𝑛 = 𝛿(𝜆𝑛)𝑝𝑛. 
Further for the center-valued norm ‖⋅‖ on 𝐿𝑆(𝑀) we have: 

‖𝑝𝑛𝐷(𝑥Λ)𝑝𝑛‖ ≤ ‖𝑝𝑛‖‖𝐷(𝑥Λ)‖‖𝑝𝑛‖ = ‖𝐷(𝑥Λ)‖ 

and 

‖𝛿(𝜆𝑛)𝑝𝑛‖ = |𝛿(𝜆𝑛)|. 
Therefore 

‖𝐷(𝑥Λ)‖ ≥ |𝛿(𝜆𝑛)| 
for any bounded sequence Λ = {𝜆𝑛} in 𝑍. 

   If we suppose that 𝛿 ≠ 0 then 𝜋 = 𝑧𝛿 ≠ 0. By Lemma (3.1.12) there exists a bounded 

sequence Λ = {𝜆𝑛} in 𝑍 such that 

|𝛿(𝜆𝑛)| ≥ 𝑛𝜋 

for any 𝑛 ∈ ℕ. Thus 

‖𝐷(𝑥Λ)‖ ≥ 𝑛𝜋 

for all 𝑛 ∈ ℕ, i.e. 𝜋 = 0—that is a contradiction. Therefore 𝛿 ≡ 0, i.e. 𝐷 is identically zero 

on the center of 𝐿𝑆(𝑀), and therefore it is 𝑍-linear. By Theorem (3.1.8) 𝐷 is inner. The 

proof is complete. 

    We shall now consider derivations on the algebra 𝐿𝑆(𝑀) of locally measurable operators 

with respect to an arbitrary type I von Neumann algebra 𝑀. 

   Let 𝑀 be a type I von Neumann algebra. There exists a central projection 𝑧0 ∈ 𝑀 such 

that 

(a) 𝑧0𝑀 is a finite von Neumann algebra; 

(b) 𝑧0
⊥𝑀 is a von Neumann algebra of type 𝐼∞. 
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  Consider a derivation 𝐷 on 𝐿𝑆(𝑀) and let 𝛿 be its restriction onto its center 𝑍(𝑆). By 

Theorem (3.1.14) 𝑧0
⊥𝐷 is inner and thus we have 𝑧0

⊥𝛿 ≡ 0, i.e. 𝛿 = 𝑧0𝛿. 

   Let 𝐷𝛿 be the derivation on 𝑧0𝐿𝑆(𝑀) defined as in (3) and consider its extension 𝐷𝛿 on 

𝐿𝑆(𝑀) = 𝑧0𝐿𝑆(𝑀)⨁𝑧0
⊥𝐿𝑆(𝑀) which is defined as 

𝐷𝛿(𝑥1 + 𝑥2) ≔ 𝐷𝛿(𝑥1), 𝑥1 ∈ 𝑧0𝐿𝑆(𝑀), 𝑥2 ∈ 𝑧0
⊥𝐿𝑆(𝑀). 

The following theorem gives the general form of derivations on the algebra 𝐿𝑆(𝑀). 
Theorem (3.1.15)[3]: Let 𝑀 be a type I von Neumann algebra. Each derivation 𝐷 on 𝐿𝑆(𝑀) 
can be uniquely represented in the form 

𝐷 = 𝐷𝑎 + 𝐷𝛿 

where 𝐷𝑎 is an inner derivation implemented by an element 𝑎 ∈ 𝐿𝑆(𝑀), and 𝐷𝛿 is a 

derivation of the form (9), generated by a derivation δ on the center of 𝐿𝑆(𝑀). 
Proof. It immediately follows from Lemma (3.1.10) and Theorem (3.1.14). 

We describe derivations on the algebra 𝑆(𝑀) of measurable operators affiliated with 

a type I von Neumann algebra 𝑀. 

     Let 𝑀 be a type I von Neumann algebra and let 𝒜 be an arbitrary subalgebra of 𝐿𝑆(𝑀) 
containing 𝑀. Consider a derivation 𝐷:𝒜 → 𝐿𝑆(𝑀) and let us show that 𝐷 can be extended 

to a derivation �̃� on the whole 𝐿𝑆(𝑀). 
        Since 𝑀 is a type I, for an arbitrary element 𝑥 ∈ 𝐿𝑆(𝑀) there exists a sequence {𝑧𝑛} of 

mutually orthogonal central projections with ⋁ 𝑧𝑛𝑛∈ℕ = 𝟏 and 𝑧𝑛𝑥 ∈ 𝑀 for all 𝑛 ∈ ℕ. Set 

�̃�(𝑥) =∑𝑧𝑛𝐷(𝑧𝑛𝑥)

𝑛≥1

. 

Since every derivation 𝐷:𝒜 → 𝐿𝑆(𝑀) is identically zero on central projections of 𝑀, the 

equality (10) gives a well-defined derivation �̃�: 𝐿𝑆(𝑀) → 𝐿𝑆(𝑀) which coincides with 𝐷 

on 𝒜. 

   In particular, if 𝐷 is Z-linear on 𝒜, then �̃� is also 𝑍-linear and by Theorem (3.1.8) the 

derivation �̃� is inner on 𝐿𝑆(𝑀) and therefore 𝐷 is a spatial derivation on 𝒜, i.e. there exists 

an element 𝑎 ∈ 𝐿𝑆(𝑀) such that 

𝐷(𝑥) = 𝑎𝑥 − 𝑥𝑎 

for all 𝑥 ∈ 𝒜. 

   Therefore we obtain the following 

Theorem (3.1.16)[3]: Let 𝑀 be a type I von Neumann algebra with the center 𝑍, and let 𝒜 

be an arbitrary subalgebra in 𝐿𝑆(𝑀) containing 𝑀. Then any 𝑍-linear derivation 𝐷:𝒜 →
𝐿𝑆(𝑀) is spatial and implemented by an element of 𝐿𝑆(𝑀). 
Corollary (3.1.17)[3]: Let 𝑀 be a type I von Neumann algebra with the center 𝑍 and let 𝐷 

be a 𝑍-linear derivation on 𝑆(𝑀) or 𝑆(𝑀, 𝜏). Then 𝐷 is spatial and implemented by an 

element of 𝐿𝑆(𝑀). 
     We are now in position to improve the last result by showing that in fact such derivations 

on 𝑆(𝑀) and 𝑆(𝑀, 𝜏) are inner. 

   Let us start by the consideration of the type 𝐼∞ case. 

Let 𝑀 be a type 𝐼∞ von Neumann algebra with the center Z identified with the algebra 𝐿∞(Ω) 
and let ∇ be the Boolean algebra of projection from 𝐿∞(Ω). 
     Denote by 𝑆𝑡(∇) the set of all elements 𝜆 ∈ 𝐿0(Ω) of the form 𝜆 = ∑ 𝜋𝛼𝑡𝛼𝛼 , where {𝜋𝛼} 
is a partition of the unit in ∇, and {𝑡𝛼} ⊂ ℝ (so-called step-functions). 

   Suppose that 𝑎 ∈ 𝐿𝑆(𝑀), 𝑎 = 𝑎∗ and consider the spectral family {𝑒𝜆}𝜆∈ℝ of the operator 

𝑎. For 𝜆 ∈ 𝑆𝑡(∇), 𝜆 = ∑ 𝜋𝛼𝑡𝛼𝛼  put 𝑒𝜆 = ∑ 𝜋𝛼𝑒𝑡𝛼𝛼 . 
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    Denote by 𝑃∞(𝑀) the family of all faithful projections 𝑝 from 𝑀 such that 𝑝𝑀𝑝 is of type 

𝐼∞. 

   Set 

Λ− = {𝜆 ∈ 𝑆𝑡(∇): 𝑒𝜆 ∈ 𝑃∞(𝑀)} 
and 

Λ+ = {𝜆 ∈ 𝑆𝑡(∇): 𝑒𝜆
⊥ ∈ 𝑃∞(𝑀)}. 

Lemma (3.1.18)[3]: 

(a) Λ− ≠ ∅ and Λ+ ≠ ∅; 

(b) the set Λ+ (resp. Λ−) is bounded from above (resp. from below); 

(c) if 𝜆+ = supΛ+ (resp. 𝜆− = inf Λ−) then 𝜆 ∈ Λ+ (resp. 𝜆 ∈ Λ−) for all 𝜆 ∈ 𝑆𝑡(∇) with 

𝜆 + 𝜀𝟏 ≤ 𝜆+ (resp. 𝜆 − 𝜀𝟏 ≥ 𝜆−) for some 𝜀 > 0; 

(d) if 𝜆+ ∈ 𝐿∞(Ω) and 𝜆− ∈ 𝐿∞(Ω), then 𝑎 ∈ 𝑆(𝑀). 
Proof. (a) Take a sequence of projections {𝑧𝑛} from ∇ such that 𝑧𝑛𝑎 ∈ 𝑀 for all 𝑛 ∈ ℕ. 

Then for 𝑡𝑛 < ‖𝑧𝑛𝑎‖𝑀 we have 𝑧𝑛𝑒𝑡𝑛 = 0 or 𝑧𝑛𝑒𝑡𝑛
⊥ = 𝑧𝑛 for all 𝑛 ∈ ℕ. Therefore for 𝜆 =

∑𝑧𝑛𝑡𝑛 one 

has 𝑒𝜆
⊥ = ∑𝑧𝑛𝑒𝑡𝑛

⊥ = ∑𝑧𝑛 = 𝟏, i.e. 𝜆 ∈ Λ+ and hence Λ+ ≠ ∅. Similarly Λ− ≠ ∅. 

(b) Suppose that the element 𝜆 = ∑𝜋𝛼𝜆𝛼 ∈ 𝑆𝑡(∇), satisfies the condition 𝜋0𝜆 ≥ 𝜋0‖𝑎‖ +
𝜀𝜋0 for an appropriate non-zero 𝜋0 ∈ ∇, where ‖⋅‖ is the center-valued norm on 𝐿𝑆(𝑀). 
Without loss of generality we may assume that 𝜋0 = 𝜋𝛼 for some 𝛼, i.e. 𝜋𝛼𝑡𝛼 ≥ 𝜋𝛼‖𝑎‖ +
𝜀𝜋𝛼. Then 𝑡𝛼 ≥ ‖𝜋𝛼𝑎‖𝑀 + 𝜀 and therefore 𝜋𝛼𝑒𝑡𝛼 = 𝜋𝛼𝟏, i.e. 𝜋𝛼𝑒𝑡𝛼

⊥ = 0. Since 𝜋𝛼𝑒𝑡𝛼
⊥ = 0, 

we have 𝑧(𝑒𝑡𝛼
⊥ ) = 𝟏 and so 𝜆 ∉ Λ+. Therefore Λ+ is bounded from above by the element 

‖𝑎‖. Similarly the set Λ− is bounded from below by the element −‖𝑎‖. 

  (c) Put 

𝜆+ = supΛ+ 
and 

𝜆− = supΛ−. 
Take an element 𝜆 ∈ 𝑆𝑡(∇) such that 𝜆 + 𝜀𝟏 ≤ 𝜆+, where 𝜀 > 0. Suppose that 𝑒𝜆

⊥ ∉ 𝑃∞(𝑀). 

Then 𝜋0𝑒𝜆
⊥𝑀𝑒𝜆

⊥ is a finite von Neumann algebra for some non-zero 𝜋0 ∈ ∇. Without loss of 

generality we may assume that 𝜋0 = 𝜋𝛼 for some 𝛼, i.e. 𝜋𝛼𝑒𝑡𝛼
⊥  is a finite projection. Then 

𝜋𝛼𝑒𝑡
⊥ is finite for all 𝑡 > 𝑡𝛼. This means that 𝜋𝛼𝜆+ ≤ 𝜋𝛼𝑡𝛼. 

    On the other hand multiplying by 𝜋𝛼 the unequality 𝜆 + 𝜀𝟏 ≤ 𝜆+ we obtain that 𝜋𝛼𝑡𝛼 +
𝜋𝛼𝜀 ≤ 𝜋𝛼𝜆+. Therefore 𝜋𝛼𝜀 ≤ 0. This contradiction implies that 𝜆 ∈ Λ+ for all 𝜆 ∈ 𝑆𝑡(∇) 
with 𝜆 + 𝜀𝟏 ≤ 𝜆+. 

(d) Let 𝜆+, 𝜆− ∈ 𝐿∞(Ω). Take a number 𝑛 ∈ ℕ such that 𝜆+ ≤ 𝑛𝟏 and 𝜆− ≥ −𝑛𝟏. Take a 

largest element 𝜋 ∈ ∇ such that 𝜋𝑒𝑛+1
⊥  is a finite projection and 𝜋⊥𝑒𝑛+1

⊥  is an infinite 

projection. For 𝜆’ ∈ Λ+ put 𝜆″ = 𝜋𝜆’ + 𝜋⊥(𝑛 + 1). Then 𝜆″ ∈ Λ+ and therefore 𝜆″ ≤ 𝜆+. 

Hence 𝜋⊥𝜆″ ≤ 𝜋⊥𝜆+, i.e 𝜋⊥(𝑛 + 1) ≤ 𝜋⊥𝜆+. That contradicts the inequality 𝜆𝑛 ≤ 𝑛𝟏. 

Therefore 𝜋 = 𝟏, i.e. 𝑒𝑛+1
⊥  is a finite projection. Similarly 𝑒−(𝑛+1)

⊥  is a finite projection. 

Therefore 𝑎 ∈ 𝑆(𝑀). The proof is complete. 

Lemma (3.1.19)[3]: If 𝑀 is a type 𝐼∞ von Neumann algebra then every derivation 𝐷:𝑀 →
𝑆(𝑀) has the form 

𝐷(𝑥) = 𝑎𝑥 − 𝑥𝑎, 𝑥 ∈ 𝑀, 
for an appropriate 𝑎 ∈ 𝑆(𝑀). 
Proof. By 𝐷 maps the center 𝑍 of 𝑀 into the center of 𝑆(𝑀) which coincides with 𝑍 by 

Proposition (3.1.3), i.e. we obtain a derivation 𝐷 on commutative von Neumann algebra 𝑍. 
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Therefore 𝐷|𝑍 = 0. Thus 𝐷(𝜆𝑥) = 𝐷(𝜆)𝑥 + 𝜆𝐷(𝑥) = 𝜆𝐷(𝑥) for all 𝜆 ∈ 𝑍, i.e. 𝐷 is 𝑍-

linear. 

     By Theorem (3.1.16) there exists an element 𝑎 ∈ 𝐿𝑆(𝑀) such that 𝐷(𝑥) = 𝑎𝑥 − 𝑥𝑎 for 

all 𝑥 ∈ 𝑀. 

  Let us prove that one can choose the element 𝑎 from 𝑆(𝑀). 
  For 𝑥 ∈ 𝑀 we have 

(𝑎 + 𝑎∗)𝑥 − 𝑥(𝑎 + 𝑎∗) = (𝑎𝑥 − 𝑥𝑎) − (𝑎𝑥∗ − 𝑥∗𝑎)∗ = 𝐷(𝑥) − 𝐷(𝑥∗)∗ ∈ 𝑆(𝑀) 
and 

(𝑎 − 𝑎∗)𝑥 − 𝑥(𝑎 − 𝑎∗) = 𝐷(𝑥) + 𝐷(𝑥∗)∗ ∈ 𝑆(𝑀). 
This means that the elements 𝑎 + 𝑎∗ and 𝑎 − 𝑎∗ implement derivations from 𝑀 into 𝑆(𝑀). 

Since 𝑎 =
𝑎+𝑎∗

2
+ 𝑖

𝑎−𝑎∗

2𝑖
, it is sufficient to consider the case where a is a self-adjoint element. 

     Consider the elements 𝜆+, 𝜆− ∈ 𝐿0 defined in Lemma (3.1.18) (c) and let us prove that 

𝜆+, 𝜆− ∈ 𝐿∞(Ω). Lemma (3.1.18) (c) implies that there exists an element 𝜆1 ∈ Λ− such that 

−
1

4
≤ 𝜆− − 𝜆1 ≤ −

1

8
. Since 𝐷(𝑥) = (𝑎 − 𝜆1)𝑥 − 𝑥(𝑎 − 𝜆1), replacing 𝑎 by 𝑎 − 𝜆1, we 

may assume that −
1

4
≤ 𝜆− ≤ −

1

8
. Then 𝑒𝜀 ∈ 𝑃∞(𝑀) for all 𝜀 < −

1

8
 and 𝑒𝜀 is a finite for all 

𝜀 < −
1

4
. In particular (𝑒

−
1

16

− 𝑒
−
1

2

)𝑀 (𝑒
−

1

16

− 𝑒
−
1

2

) is of type 𝐼∞, and moreover 𝜆+ ≥ −
1

2
. 

    Suppose that 𝜆+ ∉ 𝐿∞(Ω). Since 𝜆+ ≥ −
1

2
, we have that 𝜆+ is unbounded from above 

and thus passing if necessary to the subalgebra 𝑧𝑀, where z is a non-zero central projection 

in 𝑀 with 𝑧𝜆+ ≥ 𝑧, we may assume without loss of generality that 𝜆+ ≥ 𝟏. 

    First let us consider the particular case where M is of type 𝐼ℵ0, where ℵ0 is the countable 

cardinal number. Take an element 𝜆0 ∈ 𝑆𝑡(∇) such that 𝜆+ −
1

2
≤ 𝜆0 ≤ 𝜆+ −

1

4
. By Lemma 

(3.1.18) (c) we have 𝑒𝜆0
⊥ ∈ 𝑃∞(𝑀). Since algebras 𝑒𝜆0

⊥𝑀𝑒𝜆0
⊥  and (𝑒

−
1

16

− 𝑒
−
1

2

)𝑀 (𝑒
−

1

16

−

𝑒
−
1

2

) are algebras of type 𝐼ℵ0, then there exists a sequences of pairwise equivalent and 

pairwise orthogonal abelian projections {𝑓𝑘}𝑘∈ℕ and {𝑔𝑘}𝑘∈ℕ such that ⋁𝑓𝑘 = 𝑒𝜆0
⊥ , ⋁ 𝑔𝑘 =

𝑒
−

1

16

− 𝑒
−
1

2

. Since 𝑧(𝑒𝜆0
⊥ ) = 𝑧 (𝑒

−
1

16

− 𝑒
−
1

2

) = 𝟏, then 𝑧(𝑓𝑘) = 𝑧(𝑔𝑘) = 𝟏 for all 𝑘, and 

therefore 𝑓𝑘~𝑔𝑘 for all 𝑘. Thus the projections 𝑝1 = 𝑒𝜆0
⊥  and 𝑝2 = 𝑒

−
1

16

− 𝑒
−
1

2

 are equivalent. 

From 𝜆0𝑒𝜆0
⊥ ≤ 𝑎𝑒𝜆0

⊥  it follows that 𝜆0𝑝1 ≤ 𝑝1𝑎𝑝1. Since 𝑝1𝑀𝑝1 is of type 𝐼ℵ0, the center of 

the algebra 𝑆(𝑝1𝑀𝑝1) coincides with the center of the algebra 𝑝1𝑀𝑝1 (Proposition 3.1.3). 

Due to the fact that 𝜆0 ∉ 𝐿∞(Ω) and 𝑧(𝑝1) = 𝟏, we see that 𝜆0𝑝1 is an unbounded linear 

operator from 𝐿𝑆(𝑝1𝑀𝑝1)\𝑆(𝑝1𝑀𝑝1). Therefore 𝑎𝑝1 = 𝑝1𝑎𝑝1 ∉ 𝑆(𝑝1𝑀𝑝1). 
    Let 𝑢 be a partial isometry in 𝑀 such that 𝑢𝑢∗ = 𝑝1, 𝑢

∗𝑢 = 𝑝2. Put 𝑝 = 𝑝1 + 𝑝2. Consider 

the derivation 𝐷1 from 𝑝𝑀𝑝 into 𝑝𝑆(𝑀)𝑝 = 𝑆(𝑝𝑀𝑝) defined as 

𝐷1(𝑥) = 𝑝𝐷(𝑥)𝑝, 𝑥 ∈ 𝑝𝑀𝑝. 
This derivation is implemented by the element 𝑎𝑝 = 𝑝𝑎𝑝, i.e. 

𝐷1(𝑥) = 𝑎𝑝𝑥 − 𝑥𝑎𝑝, 𝑥 ∈ 𝑝𝑀𝑝. 

Since 𝑝2 = 𝑒
−

1

16

− 𝑒
−
1

2

 then −
1

2
𝑒
−
1

2

≤ (𝑒
−

1

16

− 𝑒
−
1

2

)𝑎 (𝑒
−

1

16

− 𝑒
−
1

2

) ≤ −
1

16
𝑒
−

1

16

. Therefore 

𝑎𝑝2 = 𝑝𝑀𝑝, the element 𝑏 = 𝑎𝑝1 = 𝑎𝑝 − 𝑎𝑝2 implements a derivation  

𝐷2 from 𝑝𝑀𝑝 into 𝑆(𝑝𝑀𝑝). 
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    Since 𝐷2(𝑢 + 𝑢∗) = 𝑏(𝑢 + 𝑢∗) − (𝑢 + 𝑢∗)𝑏, it follows that 𝑏(𝑢 + 𝑢∗) − (𝑢 + 𝑢∗)𝑏 ∈
𝑆(𝑀). From 𝑢𝑝1 = 𝑝1𝑢

∗ = 0 it follows that 𝑏𝑢 − 𝑢∗𝑏 ∈ 𝑆(𝑀). Multiplying this by 𝑢 from 

the left side we obtain 𝑢𝑏𝑢 − 𝑢𝑢∗𝑏 ∈ 𝑆(𝑀). From , 𝑢𝑏 = 0, 𝑢𝑢∗ = 𝑝1, it follows that 𝑝1𝑏 ∈
𝑆(𝑀), i.e. 𝑎𝑝1 ∈ 𝑆(𝑀). This contradicts the above relation 𝑎𝑝1 ∉ 𝑆(𝑀). The contradiction 

shows that 𝜆+ ∈ 𝐿∞(Ω). Now Lemma (3.1.18) (d) implies that 𝑎 ∈ 𝑆(𝑀). 
    Let us consider the case of general type 𝐼∞ von Neumann algebra 𝑀. Take an element 

𝜆0 ∈ 𝑆𝑡(∇) such that 𝜆+ −
1

2
≤ 𝜆0 ≤ 𝜆+ −

1

4
. Lemma (3.1.18)(c) implies that 𝑒𝜆0

⊥ ∈ 𝑃∞(𝑀). 

Consider projections 𝑝1 and 𝑝2 with the central cover 1 such that 𝑝1 ≤ 𝑒𝜆0
⊥ , 𝑝2 ≤ 𝑒1

4

 and such 

that 𝑝𝑖𝑀𝑝𝑖 are of type 𝐼ℵ0 , 𝑖 = 1,2. Put 𝑝 = 𝑝1 + 𝑝2. Consider the derivation 𝐷𝑝 from 𝑝𝑀𝑝 

into 𝑝𝑆(𝑀)𝑝 = 𝑆(𝑝𝑀𝑝) defined as 

𝐷𝑝(𝑥) = 𝑝𝐷(𝑥)𝑝, 𝑥 ∈ 𝑝𝑀𝑝. 

Since 𝑝𝑀𝑝 is of type 𝐼ℵ0 the above case implies that 𝑝𝑎𝑝 ∈ 𝑆(𝑀) and therefore 𝑝1𝑎𝑝1 ∈

𝑆(𝑀). On the other hand 𝜆0𝑝1 ≤ 𝑝1𝑎𝑝1 and 𝜆0𝑝1 ∉ 𝑆(𝑀). From this contradiction it follows 

that 𝜆+ ∈ 𝐿∞(Ω). By Lemma (3.1.18) (d) we obtain that 𝑎 ∈ 𝑆(𝑀). The proof is complete. 

   We obtain 

Lemma (3.1.20)[3]: Let 𝑀 be a type I von Neumann algebra with the center 𝑍. Then every 

𝑍-linear derivation 𝐷 on the algebra 𝑆(𝑀) is inner. In particular, if 𝑀 is a type 𝐼∞ then every 

derivation on 𝑆(𝑀) is inner. 

     Now let 𝑀 be an arbitrary type I von Neumann algebra and let 𝑧0 be the central projection 

in 𝑀 such that 𝑧0𝑀 is a finite von Neumann algebra and 𝑧0
⊥𝑀 is a von Neumann algebra of 

type 𝐼∞. Consider a derivation 𝐷 on 𝑆(𝑀) and let 𝛿 be its restriction onto its center 𝑍(𝑆). 
By Lemma (3.1.20) the derivation  𝑧0

⊥𝐷 is inner and thus we have  𝑧0
⊥𝛿 ≡ 0, i.e. 𝛿 = 𝑧0𝛿. 

   Since 𝑧0𝑀 is a finite type I von Neumann algebra, we have that 𝑧0𝐿𝑆(𝑀) = 𝑧0𝑆(𝑀). Let 

𝐷𝛿 be the derivation on 𝑧0𝑆(𝑀) = 𝑧0𝐿𝑆(𝑀) defined as in (3). 

    Finally Lemmas (3.1.10) and (3.1.20) imply the following. 

Theorem (3.1.21)[3]: Let 𝑀 be a type I von Neumann algebra. Then every derivation 𝐷 on 

the algebra 𝑆(𝑀) can be uniquely represented in the form 

𝐷 = 𝐷𝑎 + 𝐷𝛿 , 
where 𝐷𝑎 is inner and implemented by an element 𝑎 ∈ 𝑆(𝑀) and 𝐷𝛿 is the derivation of the 

form (3) generated by a derivation 𝛿 on the center of 𝑆(𝑀). 
We present a general form of derivations on the algebra 𝑆(𝑀, 𝜏) of 𝜏-measurable 

operators affiliated with a type I von Neumann algebra 𝑀 and a faithful normal semi-finite 

trace 𝜏. 

Theorem (3.1.22)[3]: Let 𝑀 be a type I von Neumann algebra with the center 𝑍 and a 

faithful normal semi-finite trace 𝜏. Then every 𝑍-linear derivation 𝐷 on the algebra 𝑆(𝑀, 𝜏) 
is inner. In particular, if 𝑀 is a type 𝐼∞ then every derivation on 𝑆(𝑀, 𝜏) is inner. 

Proof. By Theorem (3.1.16) 𝐷(𝑥) = 𝑎𝑥 − 𝑥𝑎 for some 𝑎 ∈ 𝐿𝑆(𝑀) and all 𝑥 ∈ 𝑆(𝑀, 𝜏). Let 

us show that the element a can be chosen from the algebra 𝑆(𝑀, 𝜏). As in Lemma (3.1.18) 

we may assume that 𝑎 = 𝑎∗. 
   Case 1. 𝑀 is a homogeneous type 𝐼𝑛, 𝑛 ∈ ℕ von Neumann algebra. Then 𝐿𝑆(𝑀) =

𝑆(𝑀) ≅ 𝑀𝑛(𝐿
0(Ω)). By [98] a ∗-isomorphism between 𝑆(𝑀) and 𝑀𝑛(𝐿

0(Ω)) can be a 

chosen such that the element a can be represented as 𝑎 = ∑ 𝜆𝑖𝑒𝑖,𝑖
𝑛
𝑖=1 , where 𝜆𝑖 = 𝜆�̅� ∈

𝐿0(Ω), 𝑖 = 1, 𝑛̅̅ ̅̅ ̅, 𝜆1 ≥ ⋯ ≥ 𝜆𝑛. 

     Put 𝑢 = ∑ 𝑒𝑗,𝑛−𝑗+1
𝑛
𝑗=1 . Then 
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𝐷𝑎(𝑢) = 𝑎𝑢 − 𝑢𝑎 =∑(𝜆𝑖 − 𝜆𝑛−𝑖+1)𝑒𝑗,𝑛−𝑗+1

𝑛

𝑖=1

 

and 

𝐷𝑎(𝑢)
∗ =∑(𝜆𝑖 − 𝜆𝑛−𝑖+1)𝑒𝑛−𝑗+1,𝑖

𝑛

𝑖=1

. 

Therefore 𝐷𝑎(𝑢)
∗𝐷𝑎(𝑢) = ∑ (𝜆𝑖 − 𝜆𝑛−𝑖+1)

2𝑒𝑖,𝑖
𝑛
𝑖=1 , and thus |𝐷𝑎(𝑢)| = ∑ |𝜆𝑖 −

𝑛
𝑖=1

𝜆𝑛−𝑖+1|𝑒𝑖,𝑖, Since 𝜆1 ≥ ⋯ ≥ 𝜆𝑛, we have 

|𝜆𝑖 − 𝜆𝑛−𝑖+1| ≥ |𝜆𝑖 − 𝜆
[
𝑛+1
2

]
| 

for all 𝑖 = 1, 𝑛̅̅ ̅̅ ̅. 

      Denote 𝑏 = ∑ |𝜆𝑖 − 𝜆
[
𝑛+1

2
]
| 𝑒𝑖,𝑖

𝑛
𝑖=1 . From (11) we obtain that |𝐷𝑎(𝑢)| ≥ 𝑏, and thus 𝑏 ∈

𝑆(𝑀, 𝜏). 

     Put 𝑣 = ∑ 𝑒𝑖,𝑖
[
𝑛+1

2
]

𝑖=1
− ∑ 𝑒𝑗,𝑗

𝑛

𝑗=[
𝑛+1

2
]

. Then 𝑣𝑏 = 𝑎 − 𝜆
[
𝑛+1

2
]
𝟏 and 𝑣𝑏 ∈ 𝑆(𝑀, 𝜏). Therefore 

𝑎 − 𝜆
[
𝑛+1

2
]
𝟏 ∈ 𝑆(𝑀, 𝜏) and this element also implements the derivation 𝐷𝑎. 

    Case 2. Let 𝑀 be a finite type I von Neumann algebra. Then 

𝐿𝑆(𝑀) = 𝑆(𝑀) ≅ 𝑀𝑛(𝐿
0(Ω)), 

where 𝐹 ⊆ ℕ. Therefore 𝑎 = {𝑎𝑛}, where 𝑎𝑛 = ∑ 𝜆𝑖
(𝑛)
𝑒𝑖,𝑖
(𝑛)
, 𝜆1

(𝑛)𝑛
𝑖=1 ≥ ⋯ ,≥ 𝜆𝑛

(𝑛)
, 𝜆𝑖

(𝑛)
∈

𝐿0(Ω) and 𝑒𝑖,𝑗
(𝑛)

 are the matrix units in 𝑀𝑛(𝐿
0(Ω)), 𝑖, 𝑗 = 1, 𝑛̅̅ ̅̅ ̅, 𝑛 ∈ 𝐹. 

   For each 𝑛 ∈ 𝐹 consider the following elements in 𝑀𝑛(𝐿
0(Ω)) 

𝑏𝑛 =∑|𝜆𝑖
(𝑛)

− 𝜆
[
𝑛+1
2

]

(𝑛)
| 𝑒𝑖,𝑖

(𝑛)

𝑛

𝑖=1

 

and 

𝑣𝑛 = ∑ 𝑒𝑖,𝑖
(𝑛)

[
𝑛+1
2

]

𝑖=1

− ∑ 𝑒𝑗,𝑗
(𝑛)

𝑛

𝑗=[
𝑛+1
2

]

. 

Set 𝑏 = {𝑏𝑛}𝑛∈𝐹 and 𝑣 = {𝑣𝑛}𝑛∈𝐹 . Consider the element 

𝜆 = {𝜆
[
𝑛+1
2

]
}
𝑛∈𝐹

∈ 𝐿0(Ω) ≅∏𝐿0(Ω𝑛)

𝑛∈𝐹

. 

Similar to the case 1 we obtain that 𝑎 − 𝜆𝟏 = 𝑣𝑏 ∈ 𝑆(𝑀, 𝜏). 
   Case 3. 𝑀 is a type 𝐼∞ von Neumann algebra. Since 𝑆(𝑀, 𝜏) ⊆ 𝑆(𝑀) by Lemma (3.1.18) 

there exists an element 𝑎 ∈ 𝑆(𝑀) such that 𝐷(𝑥) = 𝑎𝑥 − 𝑥𝑎 for all 𝑥 ∈ 𝑀. Let us show that 

𝑎 can be picked from the algebra 𝑆(𝑀, 𝜏). Since 𝑎 ∈ 𝑆(𝑀, 𝜏), there exists 𝜆 ∈ ℝ, 𝜆 > 0 such 

that 𝑓 = 𝑒−𝜆 ∨ 𝑒𝜆
⊥ is a finite projection. 

    Suppose that 𝑧0 ∈ 𝑍 is a central projection such that 𝑧0𝑔𝑀𝑔 is a finite von Neumann 

algebra, where 𝑔 = 𝑒𝜆
⊥ ∧ 𝑒𝜆 = 𝑒𝜆 − 𝑒−𝜆. 𝑧0𝟏 = 𝑧0𝑓 + 𝑧0𝑔 is a finite projection and thus 

𝑧0 = 0. Therefore 𝑔𝑀𝑔 is a type 𝐼∞ von Neumann algebra, in particular 𝑧(𝑔) = 𝟏. There 

exists a central projection 𝑧 in 𝑀 such that 𝑧𝑓 ≼ 𝑧𝑔 and 𝑧⊥𝑓 ≽ 𝑧⊥𝑔. Since 𝑔𝑀𝑔 is a type 

𝐼∞ von Neumann algebra, we have that 𝑧⊥𝑔 = 0. From 𝑧(𝑔) =  𝟏 one has 𝑧⊥ = 0 and 

therefore 𝑓 ≼ 𝑔. This means that there exists 𝑞 ≤ 𝑔 such that 𝑞~𝑓. Let u be a partial 
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isometry in 𝑀 such that 𝑢𝑢∗ = 𝑞, 𝑢∗𝑢 = 𝑓. Similar to Lemma (3.1.19) we obtain that 

𝑢𝑎𝑓𝑢 − 𝑢𝑢∗𝑎𝑓 ∈ 𝑆(𝑀, 𝜏) and 𝑎𝑓 = 𝑎(𝑒−𝜆 ∨ 𝑒𝜆
⊥) ∈ 𝑆(𝑀, 𝜏). Therefore 𝑎 ∈ 𝑆(𝑀, 𝜏). The 

proof is complete. 

    Let 𝑁 be a commutative von Neumann algebra, then 𝑁 ≅ 𝐿∞(Ω) for an appropriate 

measure space (Ω,∑, 𝜇). It has been proved in [90], [99] that the algebra 𝐿𝑆(𝑁) = 𝑆(𝑁) ≅
𝐿0(Ω) admits nontrivial derivations if and only if the measure space (Ω,∑, 𝜇) is not atomic. 

    Let 𝜏 be a faithful normal semi-finite trace on the commutative von Neumann algebra 𝑁 

and suppose that the Boolean algebra 𝑃(𝑁) of projections is not atomic. This means that 

there exists a projection 𝑧 ∈ 𝑁 with 𝜏(𝑧) < ∞ such that the Boolean algebra of projection 

in 𝑧𝑁 is continuous (i.e. has no atom). Since 𝑧𝑆(𝑁, 𝜏) = 𝑧𝑆(𝑁) = 𝑆(𝑧𝑁), the algebra 

𝑧𝑆(𝑁, 𝜏) admits a nontrivial derivation 𝛿. Putting 

𝛿0(𝑥) = 𝛿(𝑧𝑥), 𝑥 ∈ 𝑆(𝑁, 𝜏), 
we obtain a nontrivial derivation 𝛿0 on the algebra 𝑆(𝑁, 𝜏). Therefore, we have that if a 

commutative von Neumann algebra 𝑁 has a nonatomic Boolean algebra of projections then 

the algebra 𝑆(𝑁, 𝜏) admits a non-zero derivation. 

Lemma (3.1.23)[3]: If 𝑁 is a commutative von Neumann algebra with a faithful normal 

semi-finite trace 𝜏 and δ is a derivation on 𝑆(𝑁, 𝜏) then 𝜏(𝑧𝛿) < ∞, where 𝑧𝛿 is the support 

of the derivation 𝛿. 

Proof. Suppose the opposite, i.e. 𝜏(𝑧𝛿) = ∞. Then there exists a sequence of mutually 

orthogonal projections 𝑧𝑛 ∈ 𝑁, 𝑛 = 1,2,…, with 𝑧𝑛 ≤ 𝑧𝛿 , 1 ≤ 𝜏(𝑧𝑛) < ∞. For 𝑧 = sup𝑛 𝑧𝑛 

we have 𝜏(𝑧) = ∞. Since 𝜏(𝑧𝑛) < ∞ for all 𝑛 = 1,2,…, it follows that 𝑧𝑛𝑆(𝑁, 𝜏) =
𝑧𝑛𝑆(𝑁) = 𝑆(𝑧𝑛𝑁). Define a derivation 𝛿𝑛: 𝑆(𝑧𝑛𝑁) → 𝑆(𝑧𝑛𝑁) by 

𝛿𝑛(𝑥) = 𝑧𝑛𝛿(𝑥), 𝑥 ∈ 𝑆(𝑧𝑛𝑁). 
Since 𝑧𝛿𝑛 = 𝑧𝑛, Lemma (3.1.11) implies that for each 𝑛 ∈ ℕ there exists an element 𝜆𝑛 ∈

𝑧𝑛𝑁 such that |𝜆𝑛| ≤ 𝑧𝑛 and |𝛿𝑛(𝜆𝑛)| ≥ 𝑛𝑧𝑛. 

Put 𝜆 = ∑ 𝜆𝑛𝑛≥1 . Then |𝜆| ≤ ∑ 𝑧𝑛 ≤ 𝟏𝑛≥1  and therefore 𝜆 ∈ 𝑆(𝑁, 𝜏). On the other hand 

|𝛿(𝜆)| = |𝛿 (∑𝜆𝑛
𝑛≥1

)| = |𝛿 (∑𝑧𝑛𝜆𝑛
𝑛≥1

)| = |∑𝑧𝑛𝛿(𝜆𝑛)

𝑛≥1

| =∑|𝛿𝑛(𝜆𝑛)|

𝑛≥1

≥∑𝑛𝑧𝑛
𝑛≥1

, 

i.e. |𝛿(𝜆)| ≥ ∑ 𝑛𝑧𝑛𝑛≥1 . But 𝜏(𝑧𝑛) ≥ 1 for all 𝑛 ∈ ℕ, i.e. ∑ 𝑛𝑧𝑛𝑛≥1 ∉ 𝑆(𝑁, 𝜏). Therefore 

𝛿(𝜆) ∉ 𝑆(𝑁, 𝜏). The contradiction shows that 𝜏(𝑧𝛿) < ∞. The proof is complete. 

   Let 𝑀 be a homogeneous von Neumann algebra of type 𝐼𝑛, 𝑛 ∈ ℕ, with the center Z and a 

faithful normal semi-finite trace 𝜏. Then the algebra 𝑀 is ∗-isomorphic with the algebra 

𝑀𝑛(𝑍) of all 𝑛 × 𝑛- matrices over 𝑍, and the algebra 𝑆(𝑀, 𝜏) is ∗-isomorphic with the 

algebra 𝑀𝑛(𝑆(𝑍, 𝜏𝑍)) of all 𝑛 × 𝑛 matrices over 𝑆(𝑍, 𝜏𝑍), where 𝜏𝑍 is the restriction of the 

trace 𝜏 onto the center 𝑍. 

    Now let 𝑀 be an arbitrary finite von Neumann algebra of type I with the center 𝑍 and let 

{𝑧𝑛}𝑛∈𝐹 , 𝐹 ⊆ ℕ, be a family of central projections from 𝑀 with sup𝑛∈𝐹 𝑧𝑛 = 𝟏 such that the 

algebra 𝑀 is ∗-isomorphic with the 𝐶∗-product of von Neumann algebras 𝑧𝑛𝑀 of type In 

respectively, 𝑛 ∈ 𝐹, i.e. 

𝑀 ≅ ⨁
𝑛∈𝐹

𝑧𝑛𝑀. 

In this case we have that 

𝑆(𝑀, 𝜏) ⊆∏𝑆(𝑧𝑛𝑀, 𝜏𝑛)

𝑛∈𝐹

, 

where 𝜏𝑛 is the restriction of the trace τ onto 𝑧𝑛𝑀,𝑛 ∈ 𝐹. 
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   Suppose that 𝐷 is a derivation on 𝑆(𝑀, 𝜏), and let 𝛿 be its restriction onto the center 

𝑆(𝑍, 𝜏𝑍). Since 𝛿 maps each 𝑧𝑛𝑆(𝑍, 𝜏𝑍) ≅ 𝑍(𝑆(𝑧𝑛𝑀, 𝜏𝑛)) into itself, δ generates a 

derivation 𝛿𝑛 on 𝑧𝑛𝑆(𝑍, 𝜏𝑍) for each 𝑛 ∈ 𝐹. 

   Let 𝐷𝛿𝑛 be the derivation on the matrix algebra 𝑀𝑛 (𝑧𝑛𝑍(𝑆(𝑀, 𝜏))) ≅ 𝑆(𝑧𝑛𝑀, 𝜏𝑛) defined 

as in (1). Put 

𝐷𝛿({𝑥𝑛}𝑛∈𝐹) = {𝐷𝛿𝑛(𝑥𝑛)}, {𝑥𝑛}𝑛∈𝐹 ∈ 𝑆(𝑀, 𝜏). 

By Lemma (3.1.23) 𝜏(𝑧𝛿) < ∞, thus 

𝑧𝛿𝑆(𝑀, 𝜏) = 𝑧𝛿𝑆(𝑀) ≅ 𝑧𝛿∏𝑆(𝑧𝑛𝑀)

𝑛∈𝐹

= 𝑧𝛿∏𝑆(𝑧𝑛𝑀, 𝜏𝑛)

𝑛∈𝐹

, 

and therefore {𝐷𝛿𝑛(𝑥𝑛)} ∈ 𝑧𝛿𝑆(𝑀, 𝜏) for all {𝑥𝑛}𝑛∈𝐹 ∈ 𝑆(𝑀, 𝜏). Hence we obtain that the 

map 𝐷𝛿 is a derivation on 𝑆(𝑀, 𝜏). 
   Similar to Lemma (3.1.10) one can prove the following. 

Lemma (3.1.24)[3]: Let 𝑀 be a finite von Neumann algebra of type I with a faithful normal 

semi-finite trace τ. Each derivation 𝐷 on the algebra 𝑆(𝑀, 𝜏) can be uniquely represented in 

the form 

𝐷 = 𝐷𝑎 + 𝐷𝛿 , 
where 𝐷𝑎 is an inner derivation implemented by an element 𝑎 ∈ 𝑆(𝑀, 𝜏), and 𝐷𝛿 is a 

derivation given as (10). 

    Finally Theorem (3.1.22) and Lemma (3.1.24) imply the following. 

Theorem (3.1.25)[3]: Let 𝑀 be a type I von Neumann algebra with a faithful normal semi-

finite trace 𝜏. Then every derivation 𝐷 on the algebra 𝑆(𝑀, 𝜏) can be uniquely represented 

in the form 

𝐷 = 𝐷𝑎 + 𝐷𝛿 , 
where 𝐷𝑎 is inner and implemented by an element 𝑎 ∈ 𝑆(𝑀, 𝜏) and 𝐷𝛿 is the derivation of 

the form (12) generated by a derivation 𝛿 on the center of 𝑆(𝑀, 𝜏). 
     If we consider the measure topology 𝑡𝜏 on the algebra 𝑆(𝑀, 𝜏) then it is clear that every 

non-zero derivation of the form 𝐷𝛿 is discontinuous in 𝑡𝜏. Therefore the above Theorem 

(3.1.25) implies 

Corollary (3.1.26)[3]: Let 𝑀 be a type I von Neumann algebra with a faithful normal semi-

finite trace 𝜏. A derivation 𝐷 on the algebra 𝑆(𝑀, 𝜏) is inner if and only if it is continuous 

in the measure topology. 

     Let 𝐴 be an algebra. Denote by 𝐷𝑒𝑟(𝐴) the space of all derivations (in fact it is a Lie 

algebra with respect to the commutator), and denote by ln𝐷𝑒𝑟(𝐴) the subspace of all inner 

derivations on 𝐴 (it is a Lie ideal in 𝐷𝑒𝑟(𝐴)). 
    The factor-space 𝐻1(𝐴) = 𝐷𝑒𝑟(𝐴)\ ln𝐷𝑒𝑟(𝐴) is called the first (Hochschild) 

cohomology group of the algebra 𝐴 (see [14]). It is clear that 𝐻1(𝐴) measures how much 

the space of all derivations on 𝐴 differs from the space on inner derivations. 

   The following result shows that the first cohomology groups of the algebras 𝐿𝑆(𝑀), 𝑆(𝑀) 
and 𝑆(𝑀, 𝜏) are completely determined by the corresponding cohomology groups of their 

centers (cf. [90]). 

Theorem (3.1.27)[3]: Let 𝑀 be a type I von Neumann algebra with the center 𝑍 and a 

faithful normal semi-finite trace 𝜏. Suppose that 𝑧0 is a central projection such that 𝑧0𝑀 is 

a finite von Neumann algebra, and 𝑧0
⊥𝑀 is of type 𝐼∞. Then 

(a) 𝐻1(𝐿𝑆(𝑀)) = 𝐻1(𝑆(𝑀)) ≅ 𝐻1(𝑆(𝑧0𝑍)); 

(b) 𝐻1(𝑆(𝑀, 𝜏)) ≅ 𝐻1(𝑆(𝑧0𝑍, 𝜏0)), where 𝜏0 is the restriction of 𝜏 onto 𝑧0𝑍. 
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Proof. It immediately follows from Theorems (3.1.15), (3.1.21) and (3.1.25).  

Corollary (3.1.28)[3]: Let 𝑀 be a type I von Neumann algebra with the center 𝑍 and a 

faithful normal semi-finite trace 𝜏. Consider the topological algebra 𝑆(𝑀, 𝜏) equipped with 

the measure topology. Then 𝐻𝑐
1(𝑆(𝑀, 𝜏)) = {0}. 

       

Section (3.2): Algebras of Locally Measurable Operators 

The theory of derivations of various classes of Banach ∗-algebras (e.g. 𝐶∗, 𝐴𝑊∗ and 

𝑊∗-algebras) is very well developed (see, for example, [13], [29], [30]). It is well known 

that every derivation of a 𝐶∗-algebra is norm continuous and every derivation of a 𝐴𝑊∗-

algebra (in particular, of a 𝑊∗-algebra) is inner [115], [29]. The development of the theory 

of noncommutative integration, initiated by 𝐼. Segal’s [31] prompted the introduction of 

numerous non-trivial ∗-algebras of unbounded operators, which, in a certain sense, are close 

to 𝐴𝑊∗ and 𝑊∗-algebras. The main interest here is represented by the ∗-algebra 𝐿𝑆(𝑀) 
(respectively, 𝑆(𝑀)) of all locally measurable (respectively, measurable) operators, 

affiliated with a 𝑊∗-algebra (or with a 𝐴𝑊∗-algebra) 𝑀 and also by the ∗-algebra 𝑆(𝑀, 𝜏) 
of all 𝜏-measurable operators from 𝑆(𝑀), where 𝜏 is a faithful normal semifinite trace on 𝑀 

[52], [117]. The importance of the algebra 𝐿𝑆(𝑀) for the theory of unbounded derivations 

on von Neumann algebras may be seen from the following classical example. Consider the 

algebra 𝑀 = 𝐿∞(0,∞) equipped with the semifinite trace given by Lebesgue integration 

and consider (a partially defined) derivation 𝛿 = 𝑑/𝑑𝑡 on 𝑀. 𝐴 simple argument shows that 

the algebra 𝐿𝑆(𝑀), which in this case coincides with the space of all measurable complex 

functions on (0,∞) is the only natural receptacle of 𝛿. Similar examples can be produced 

in much more sophisticated circumstances and clearly indicate that the algebra 𝐿𝑆(𝑀) is the 

most suitable object for studying unbounded derivations on a given von Neumann algebra 

𝑀. However, the study of derivations in the setting of 𝐿𝑆(𝑀) has been greatly impeded by 

the fact that it is not a Banach algebra (it is not even a Frechet algebra or locally convex 

algebra when endowed with its natural topology). An additional difficulty (especially, in 

comparison with rather well studied algebras 𝑆(𝑀, 𝛿)) is represented by the lack of 

developed analytical techniques in 𝐿𝑆(𝑀). In [2], [105], [106], [107], [108] meaningful 

attempts have been made to study the structure of derivations on such algebras. Of particular 

interest is the problem of identifying the class of von Neumann algebras, for which any 

derivation of the ∗-algebra 𝐿𝑆(𝑀) is inner. In the setting of commutative 𝑊∗-algebras 

(respectively, commutative 𝐴𝑊∗-algebras) this problem is fully resolved in [107] 

(respectively, in [112]). In the setting of von Neumann algebras of type 𝐼, a thorough 

treatment of this problem may be found in [2] and [106]. In [2], [107] contain examples of 

non-inner derivations of the ∗-algebra 𝐿𝑆(𝑀), which are not continuous with respect to the 

topology 𝑡(𝑀) of local convergence in measure on 𝐿𝑆(𝑀). The latter topology is the only 

topology considered on algebras 𝐿𝑆(𝑀) to date, it may be also viewed as a noncommutative 

generalization of the classical topology of convergence in measure on the sets of finite 

measure in the case when 𝑀 is given by the algebra 𝐿∞(Ω, Σ, 𝜇), where (Ω, Σ, 𝜇) is a 𝜎-finite 

measure space (in this case the algebra 𝐿𝑆(𝑀) coincides with the algebra of all measurable 

complex functions on ). It is shown in [2] that in the special case when 𝑀 is a properly 

infinite von Neumann algebra of type 𝐼, every derivation of 𝐿𝑆(𝑀) is continuous with 

respect to the local measure topology 𝑡(𝑀). Moreover, all such derivations are inner. Using 

a completely different technique, a similar result was also obtained in [106] under the 

additional assumption that the predual space 𝑀∗ to 𝑀 is separable. It is of interest to observe 
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that an analogue of this result (that is the continuity of an arbitrary derivation of 

(𝐿𝑆(𝑀), 𝑡(𝑀))) also holds for any von Neumann algebra 𝑀 of type 𝐼𝐼𝐼 [105]. In [105] the 

following problem is formulated. Let 𝑀 be a von Neumann algebra of type 𝐼𝐼 and let 𝜏 be a 

faithful, normal, semifinite trace on 𝑀. Is any derivation of a ∗-algebra 𝑆(𝑀, 𝜏) equipped 

with the (classical) measure topology generated by the trace necessarily continuous? In 

[108] this problem is solved affirmatively for a properly infinite algebra 𝑀. In view of the 

example we mentioned above, a natural problem (analogous to Problem 3 from [105]) is 

whether any derivation in a ∗-algebra 𝐿𝑆(𝑀) is necessarily continuous with respect to the 

topology 𝑡(𝑀), where 𝑀 is a properly infinite von Neumann algebra of type 𝐼𝐼. The main 

results provide an affirmative solution to this problem. In fact, we establish a much stronger 

result that any derivation 𝛿: 𝐴 ⟶ 𝐿𝑆(𝑀), where 𝐴 is any subalgebra in 𝐿𝑆(𝑀) containing 

the algebra 𝑀, is necessarily continuous with respect to the topology 𝑡(𝑀). The proof 

proceeds in two stages. Firstly, we establish the 𝑡(𝑀)-continuity of any derivation 

𝛿: 𝐿𝑆(𝑀) ⟶ 𝐿𝑆(𝑀) for a properly infinite von Neumann algebra 𝑀. A special construction 

of extension of a derivation 𝛿: 𝑀 ⟶ 𝐿𝑆(𝑀) up to a derivation defined on the whole algebra 

𝐿𝑆(𝑀) is given (here 𝑀 is actually an arbitrary von Neumann algebra). We also hope that 

our approach to unbounded derivations on 𝑀 as well as techniques developed for dealing 

with locally measurable operators and the topology of local convergence in measure are of 

interest in their own right and may be used elsewhere. 

See von Neumann algebra theory [29], [33] and theory of locally measurable operators from 

[113], [117], [118]. 

For 𝐻 be a Hilbert space, let 𝐵(𝐻) be the ∗-algebra of all bounded linear operators on 

𝐻, and let 1 be the identity operator on 𝐻. Given a von Neumann algebra 𝑀 acting on 𝐻, 

denote by 𝑍(𝑀) the center of 𝑀 and by 𝑃(𝑀) = {𝑝 ∈ 𝑀: 𝑝 = 𝑝2 = 𝑝∗} the lattice of all 

projections in 𝑀. Let 𝑃𝑓𝑖𝑛(𝑀) be the set of all finite projections in 𝑀. Denote by 𝜏𝑠𝑜 the 

strong operator topology on 𝐵(𝐻), that is the locally convex topology generated by the 

family of seminorms 𝑝𝜉(𝑥) = ‖𝑥𝜉‖𝐻, 𝜉 ∈ 𝐻, where ‖ · ‖𝐻 is the Hilbert norm on 𝐻. 

A linear operator 𝑥:𝔇(𝑥) → 𝐻, where the domain 𝔇(𝑥) of 𝑥 is a linear subspace of 

𝐻, is said to be affiliated with 𝑀 if 𝑦𝑥 ⊆ 𝑥𝑦 for all 𝑦 from the commutant 𝑀’ of algebra 𝑀. 

A densely-defined closed linear operator 𝑥 (possibly unbounded) affiliated with 𝑀 is 

said to be measurable with respect to 𝑀 if there exists a sequence {𝑝𝑛}𝑛=1
∞ ⊂ 𝑃(𝑀) such 

that 𝑝𝑛 ↑ 1, 𝑝𝑛(𝐻) ⊂ 𝔇(𝑥) and 𝑝𝑛
⊥ = 1 − 𝑝𝑛 ∈ 𝑃𝑓𝑖𝑛(𝑀) for every 𝑛 ∈ ℕ, where ℕ is the set 

of all natural numbers. Let us denote by 𝑆(𝑀) the set of all measurable operators. 

Let 𝑥, 𝑦 ∈ 𝑆(𝑀). It is well known that 𝑥 + 𝑦, 𝑥𝑦 and 𝑥∗ are densely-defined and preclosed 

operators. The closures 𝑥 + 𝑦̅̅ ̅̅ ̅̅ ̅ (strong sum), 𝑥𝑦̅̅ ̅ (strong product) and 𝑥∗ are also measurable, 

and equipped with this operations (see [31]) 𝑆(𝑀) is a unital ∗-algebra over the field ℂ of 

complex numbers. It is clear that 𝑀 is a ∗-subalgebra of 𝑆(𝑀). 
𝐴 densely-defined linear operator 𝑥 affiliated with 𝑀 is called locally measurable with 

respect to 𝑀 if there is a sequence {𝑧𝑛}𝑛=1
∞  of central projections in 𝑀 such that 𝑧𝑛 ↑ 1 and 

𝑧𝑛𝑥 ∈ 𝑆(𝑀) for all 𝑛 ∈ ℕ. 

The set 𝐿𝑆(𝑀) of all locally measurable operators (with respect to 𝑀) is a unital ∗-algebra 

over the field ℂ with respect to the same algebraic operations as in 𝑆(𝑀) [118] and 𝑆(𝑀) is 

a ∗-subalgebra of 𝐿𝑆(𝑀). If 𝑀 is finite, or if 𝑑𝑖𝑚(𝑍(𝑀)) <∞, the algebras 𝑆(𝑀) and 

𝐿𝑆(𝑀) coincide [113]. If von Neumann algebra 𝑀 is of type 𝐼𝐼𝐼 and 𝑑𝑖𝑚(𝑍(𝑀)) =∞, then 

𝑆(𝑀) = 𝑀 and 𝐿𝑆(𝑀) ≠ 𝑀[113].  
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For every subset 𝐸 ⊂ 𝐿𝑆(𝑀), the sets of all self-adjoint (resp., positive) operators in 

𝐸 will be denoted by 𝐸ℎ (resp. 𝐸+). The partial order in 𝐿𝑆(𝑀) is defined by its cone 𝐿𝑆+(𝑀) 
and is denoted by ≤. 

We shall need the following important property of the ∗-algebra 𝐿𝑆(𝑀). Let {𝑧𝑖}𝑖∈𝐼 
be a family of pairwise orthogonal non-zero central projections from 𝑀 with 𝑠𝑢𝑝𝑖∈𝐼 𝑧𝑖 = 1, 

where 𝐼 is an arbitrary set of indices (in this case, the family {𝑧𝑖}𝑖∈𝐼 is called a central 

decomposition of the unity 1). Consider the ∗-algebra ∏ 𝐿𝑆(𝑧𝑖𝑀)𝑖∈𝐼  with the coordinate-

wise operations and involution and set 

𝜙: 𝐿𝑆(𝑀) →∏𝐿𝑆(𝑧𝑖𝑀)

𝑖∈𝐼

, 𝜙(𝑥):= {𝑧𝑖𝑥}𝑖∈𝐼 . 

Proposition (3.2.1)[104]: [113],[102]. The mapping 𝜙 is a ∗-isomorphism from 𝐿𝑆(𝑀) onto 

∏ 𝐿𝑆(𝑧𝑖𝑀)𝑖∈𝐼 .  

Observe that the analogue of Proposition (3.2.1) for the ∗-algebra 𝑆(𝑀) does not hold in 

general [113]. 

Proposition (3.2.1) implies that given any central decomposition {𝑧𝑖}𝑖∈𝐼 of the unity and any 

family of elements {𝑥𝑖}𝑖∈𝐼 in 𝐿𝑆(𝑀), there exists a unique element 𝑥 ∈ 𝐿𝑆(𝑀) such that 

𝑧𝑖𝑥 = 𝑧𝑖𝑥𝑖 for all 𝑖 ∈ 𝐼. This element is denoted by 𝑥 = ∑ 𝑧𝑖𝑥𝑖𝑖∈𝐼 .  

It is shown in [114] that if 𝑀 is of type 𝐼 or 𝐼𝐼𝐼, then for any 𝑥 ∈ 𝐿𝑆(𝑀) there exists a 

countable central decomposition of unity {𝑧𝑛}𝑛=1
∞ , such that 𝑥 = ∑ 𝑧𝑛𝑥

∞
𝑛=1  and 𝑧𝑛𝑥 ∈ 𝑀 for 

all 𝑛 ∈ ℕ. 

Let 𝑥 be a closed operator with dense domain 𝔇(𝑥) in 𝐻, let 𝑥 = 𝑢|𝑥| be the polar 

decomposition of the operator 𝑥, where |𝑥| = (𝑥∗𝑥)
1

2 and 𝑢 is a partial isometry in 𝐵(𝐻) 
such that 𝑢∗𝑢 is the right support 𝑟(𝑥) of 𝑥. It is known that 𝑥 ∈ 𝐿𝑆(𝑀) (respectively, 𝑥 ∈
𝑆(𝑀)) if and only if |𝑥| ∈ 𝐿𝑆(𝑀) (respectively, |𝑥| ∈ 𝑆(𝑀)) and 𝑢 ∈ 𝑀 [113]. If 𝑥 is a self-

adjoint operator affiliated with 𝑀, then the spectral family of projections {𝐸𝜆(𝑥)}𝜆∈𝑅 for 𝑥 

belongs to 𝑀 [113]. 𝐴 locally measurable operator 𝑥 is measurable if and only if 𝐸𝜆
⊥(|𝑥|) ∈

𝑃𝑓𝑖𝑛(𝑀) for some 𝜆 > 0 [113]. 

Let us now recall the definition of the local measure topology. First let 𝑀 be a commutative 

von Neumann algebra. Then 𝑀 is ∗-isomorphic to the ∗-algebra 𝐿∞(Ω, Σ, 𝜇) of all essentially 

bounded measurable complex-valued functions defined on a measure space (Ω, Σ, 𝜇) with 

the measure 𝜇 satisfying the direct sum property (we identify functions that are equal almost 

everywhere) (see e.g. [33]). The direct sum property of a measure μ means that the Boolean 

algebra of all projections of the ∗-algebra 𝐿∞(Ω, Σ, 𝜇) is order complete, and for any non-

zero 𝑝 ∈ 𝑃(𝑀) there exists a non-zero projection 𝑞 ≤ 𝑝 such that 𝜇(𝑞) <∞. The direct 

sum property of a measure 𝜇 is equivalent to the fact that the functional 𝜏(𝑓):= ∫ 𝑓 𝑑𝜇
Ω

 is 

a semi-finite normal faithful trace on the algebra 𝐿∞(Ω, 𝜎, 𝜇).  
Consider the ∗-algebra 𝐿𝑆(𝑀) = 𝑆(𝑀) = 𝐿0(Ω, Σ, 𝜇) of all measurable almost everywhere 

finite complex-valued functions defined on (Ω, Σ, 𝜇) (functions that are equal almost 

everywhere are identified). 

On 𝐿0(Ω, Σ, 𝜇), define the local measure topology 𝑡(𝐿∞(Ω)), that is, the Hausdorff vector 

topology, whose base of neighborhoods of zero is given by 𝑊(𝐵, 𝜀, 𝛿) ∶= {𝑓 ∈ 𝐿0(Ω, Σ, 𝜇) ∶
 there exists a set 𝐸 ∈ Σ such that 

𝐸 ⊆ 𝐵, 𝜇(𝐵\𝐸) ≤ 𝛿, 𝑓𝜒𝐸 ∈ 𝐿∞(Ω, Σ, 𝜇), ‖𝑓𝜒𝐸‖𝐿∞(𝛺,𝛴,𝜇) ≤ 𝜀}, 

where 𝜀, 𝛿 > 0, 𝐵 ∈ Σ, 𝜇(𝐵) <∞, and 
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𝜒(𝜔) = {
1, 𝜔 ∈ 𝐸,
0 , 𝜔 ∉ 𝐸.

 

Convergence of a net {𝑓𝛼} to 𝑓 in the topology 𝑡(𝐿∞(Ω)), denoted by 𝑓𝛼
𝑡(𝐿∞(Ω))
→      𝑓, means 

that 𝑓𝛼𝜒𝐵 ⟶ 𝑓𝜒𝐵 in measure 𝜇 for any 𝐵 ∈ Σ with 𝜇(𝐵) <∞. Note, that the topology 

𝑡(𝐿∞(Ω)) does not change if the measure 𝜇 is replaced with an equivalent measure [118]. 

Now let 𝑀 be an arbitrary von Neumann algebra and let 𝜑 be a ∗-isomorphism from 𝑍(𝑀) 
onto the ∗-algebra 𝐿∞(𝛺, 𝛴, 𝜇), where 𝜇 is a measure satisfying the direct sum property. 

Denote by 𝐿+(𝛺, 𝛴,𝑚) the set of all measurable real-valued functions defined on (𝛺, 𝛴, 𝜇) 
and taking values in the extended half-line [0,∞] (functions that are equal almost 

everywhere are identified). It was shown in [31] that there exists a mapping 

𝐷: 𝑃(𝑀) → 𝐿+(𝛺, 𝛴, 𝜇) 
that possesses the following properties: 

(D1) 𝐷(𝑝) ∈ 𝐿+
0 (𝛺, 𝛴, 𝜇) ⟺ 𝑝 ∈ 𝑃𝑓𝑖𝑛(𝑀); 

(D2) 𝐷(𝑝 ∨ 𝑞) = 𝐷(𝑝) + 𝐷(𝑞) if 𝑝𝑞 = 0; 
(D3) 𝐷(𝑢∗𝑢) = 𝐷(𝑢𝑢∗) for any partial isometry 𝑢 ∈ 𝑀; 
(D4) 𝐷(𝑧𝑝) = 𝜑(𝑧)𝐷(𝑝) for any 𝑧 ∈ 𝑃(𝑍(𝑀)) and 𝑝 ∈ 𝑃(𝑀); 
(D5) if 𝑝𝛼 , 𝑝 ∈ 𝑃(𝑀), 𝛼 ∈ 𝐴 and 𝑝𝛼 ↑ 𝑝, then 𝐷(𝑝) = 𝑠𝑢𝑝𝛼∈𝐴𝐷(𝑝𝛼). 
𝐴 mapping 𝐷: 𝑃(𝑀) → 𝐿+(Ω, Σ, 𝜇) that satisfies properties (D1)—(D5) is called a 

dimension function on 𝑃(𝑀). 
𝐴 dimension function 𝐷 also has the following properties [31]:  

(D6) if 𝑝𝑛 ∈ 𝑃(𝑀), 𝑛 ∈ ℕ, then 𝐷(𝑠𝑢𝑝𝑛≥1 𝑝𝑛) ≤ ∑ 𝐷(𝑝𝑛)
∞
𝑛=1 , in addition, when 𝑝𝑛𝑝𝑚 =

0, 𝑛 ≠ 𝑚, the equality holds; 

(D7) if 𝑝𝑛 ∈ 𝑃𝑓𝑖𝑛(𝑀), 𝑛 ∈ ℕ, 𝑝𝑛 ↓ 0, then 𝐷(𝑝𝑛) → 0 almost everywhere. 

For arbitrary scalars 𝜀, 𝛿 > 0 and a set 𝐵 ∈ Σ, 𝜇(𝐵) <∞, we set 

 𝑉(𝐵, 𝜀, 𝛿):= {𝑥 ∈ 𝐿𝑆(𝑀) ∶ there exist 𝑝 ∈ 𝑃(𝑀), 𝑧 ∈ 𝑃(𝑍(𝑀)), 
such that 𝑥𝑝 ∈ 𝑀, ‖𝑥𝑝‖𝑀 ≤ 𝜀, 𝜑(𝑧⊥) ∈ 𝑊(𝐵, 𝜀, 𝛿), 𝐷(𝑧𝑝⊥) ≤ 𝜀𝜑(𝑧)}, where ‖ · ‖𝑀 is the 

𝐶∗-norm on 𝑀.  

It was shown in [118] that the system of sets 

{𝑥 + 𝑉(𝐵, 𝜀, 𝛿): 𝑥 ∈ 𝐿𝑆(𝑀), 𝜀, 𝛿 > 0, 𝐵 ∈ Σ, 𝜇(𝐵) <∞} 
defines a Hausdorff vector topology 𝑡(𝑀) on 𝐿𝑆(𝑀) such that the sets {𝑥 +
𝑉(𝐵, 𝜀, 𝛿)}, 𝜀, 𝛿 > 0, 𝐵 ∈ Σ, 𝜇(𝐵) <∞ form a neighborhood base of an operator 𝑥 ∈
𝐿𝑆(𝑀). It is known that (𝐿𝑆(𝑀), 𝑡(𝑀)) is a complete topological ∗-algebra, and the 

topology 𝑡(𝑀) does not depend on a choice of dimension function 𝐷 and on the choice of 

∗-isomorphism 𝜑 (see e.g. [113], [118]). 

The topology 𝑡(𝑀) on 𝐿𝑆(𝑀) is called the local measure topology (or the topology 

of convergence locally in measure). Note, that in case when 𝑀 = 𝐵(𝐻) the equality 

𝐿𝑆(𝑀) = 𝑀 holds [113] and the topology 𝑡(𝑀) coincides with the uniform topology, 

generated by the 𝐶∗-norm ‖ · ‖𝐵(𝐻). 

We will need the following criterion for convergence of nets from 𝐿𝑆(𝑀) with respect to 

this topology. 

Proposition (3.2.2)[104]: ([113]). (i). 𝐴 net {𝑝𝛼}𝛼∈𝐴 ⊂ 𝑃(𝑀) converges to zero with respect 

to the topology 𝑡(𝑀) if and only if there is a net {𝑧𝛼}𝛼∈𝐴 ⊂ 𝑃(𝑍(𝑀)) such that 𝑧𝛼𝑝𝛼 ∈

𝑃𝑓𝑖𝑛(𝑀) for all 𝛼 ∈ 𝐴, 𝜑(𝑧𝛼
⊥)

𝑡(𝐿∞(Ω))
→      0, and 𝐷(𝑧𝛼𝑝𝛼)

𝑡(𝐿∞(𝛺))
→      0, where 𝑡(𝐿∞(Ω)) is the 

local measure topology on 𝐿0(Ω, Σ, 𝜇), and 𝜑 is a ∗-isomorphism of 𝑍(𝑀) onto 𝐿∞(Ω, Σ, 𝜇). 
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(ii). 𝐴 net {𝑥𝛼}𝛼∈𝐴 ⊂ 𝐿𝑆(𝑀) converges to zero with respect to the topology 𝑡(𝑀) if and 

only if 𝐸𝜆
⊥(|𝑥𝛼|)

𝑡(𝑀)
→  0 for every 𝜆 > 0, where {𝐸𝜆(|𝑥𝛼|)} is the spectral projection family 

for the operator |𝑥𝛼|. 
Proposition (3.2.3)[104]: If 𝑥𝛼 ∈  𝐿𝑆(𝑀), 0 ≠ 𝑧 ∈ 𝑃(𝑍(𝑀)), then 

𝑧𝑥𝛼
𝑡(𝑀)
→  0 ⟺ 𝑧𝑥𝛼

𝑡(𝑧𝑀)
→   0. 

Proof. Fix a ∗-isomorphism 𝜑: 𝑍(𝑀) → 𝐿∞(Ω, Σ, 𝜇) and 0 ≠ 𝑧 ∈ 𝑃(𝑍(𝑀)). Let 𝐸 ∈ Σ be 

such that 𝜑(𝑧) = 𝜒𝐸. Define the mapping 

𝜓: 𝑍(𝑧𝑀) = 𝑧𝑍(𝑀) → 𝐿∞(𝐸, Σ𝐸 , 𝜇|𝐸) 
by setting 

𝜓(𝑧𝑎) = 𝜑(𝑧𝑎)|𝐸 , 𝑓𝑜𝑟 𝑎 ∈ 𝑍(𝑀). 
Here, Σ𝐸: = {𝐴 ∩ 𝐸: 𝐴 ∈ Σ} and 𝜇|𝐸 is the restriction of 𝜇 to Σ𝐸. 

It is clear that   is a ∗-isomorphism. Now define 𝐷𝑧: 𝑃(𝑧𝑀) → 𝐿+(𝐸, Σ𝐸 , 𝜇|𝐸) by setting 

𝐷𝑧(𝑞) = 𝐷(𝑞)|𝐸 for 𝑞 ∈ 𝑃(𝑧𝑀). It is straightforward that 𝐷𝑧 is a dimension function on 

𝑃(𝑧𝑀). 
Let {𝑞𝛼}𝛼∈𝐴 ⊂ 𝑃(𝑧𝑀). We claim 

𝑞𝛼
𝑡(𝑀)
→  0 ⟺ 𝑞𝛼

𝑡(𝑧𝑀)
→   0. 

To see the claim, assume that the first convergence holds and observe that by Proposition 

(3.2.2)(i), there exists a net {𝑧𝛼}𝛼∈𝐴 ⊂ 𝑃(𝑍(𝑀)) such that 𝑧𝛼𝑞𝛼 ∈ 𝑃𝑓𝑖𝑛(𝑀) for any 𝛼 ∈

𝐴,𝜑(𝑧𝛼
⊥)

𝑡(𝐿∞(Ω))
→      0, and 𝐷(𝑧𝛼𝑞𝛼)

𝑡(𝐿∞(Ω))
→      0. The projection 𝑟𝛼 = 𝑧𝑧𝛼 belongs to the center 

𝑍(𝑧𝑀) of the von Neumann algebra 𝑧𝑀, and 𝑟𝛼𝑞𝛼 = 𝑧𝛼𝑞𝛼 is a finite projection in 𝑧𝑀 for 

each 𝛼 ∈ 𝐴. Also 

 𝜓(𝑧 − 𝑟𝛼) = 𝜓(𝑧(1 − 𝑧𝛼)) = 𝜑(𝑧𝑧𝛼
⊥)|𝐸 = 𝜑(𝑧)𝜑(𝑧𝛼

⊥)|𝐸
𝑡(𝐿∞(𝐸))
→     0, 

where 𝑡(𝐿∞(𝐸)) is the local measure topology on 𝐿0(𝐸, Σ𝐸 , 𝜇|𝐸), and 

𝐷𝑧(𝑟𝛼𝑞𝛼) = 𝐷𝑧(𝑧𝛼𝑞𝛼) = 𝐷(𝑧𝛼𝑞𝛼)|𝐸
𝑡(𝐿∞(𝐸))
→     0. 

Hence, by Proposition (3.2.2) (i) we get that 𝑞
𝑡(𝑧𝑀)
→   0. 

We will show now that the convergence 𝑞𝛼
𝑡(𝑧𝑀)
→   0 for {𝑞𝛼}𝛼∈𝐴 ⊂ 𝑃(𝑧𝑀) implies the 

convergence 𝑞𝛼
𝑡(𝑀)
→  0. 

Let {𝑟𝛼}𝛼∈𝐴 be a net in 𝑃(𝑍(𝑧𝑀)) such that 𝑟𝛼𝑞𝛼 ∈ 𝑃𝑓𝑖𝑛(𝑧𝑀) for every 𝛼 ∈  𝐴, 

𝜓(𝑧 − 𝑟𝛼)
𝑡(𝐿∞(𝐸))
→     0 

and 

𝐷𝑧(𝑟𝛼𝑞𝛼)
𝑡(𝐿∞(𝐸))
→     0. 

Put 𝑧𝛼 = 𝑧⊥ + 𝑟𝛼. Then 𝑧𝛼 ∈ 𝑃(𝑍(𝑀)) and 𝑧𝛼𝑞𝛼 = 𝑟𝛼𝑞𝛼 ∈ 𝑃𝑓𝑖𝑛(𝑀). 

Since 𝑧𝛼
⊥ = 𝑧(1 − 𝑟𝛼), we have 𝜑(𝑧𝛼

⊥) = 𝜒𝐸𝜑(𝑧𝛼
⊥) and 

𝜑(𝑧𝛼
⊥)|𝐸 = 𝜒𝐸𝜑(𝑧(1 − 𝑟𝛼))|𝐸 = 𝜒𝐸𝜓(𝑧 − 𝑟𝛼)

𝑡(𝐿∞(𝐸))
→     0. 

Also 

𝐷(𝑧𝛼𝑞𝛼) = 𝐷(𝑧𝑟𝛼𝑞𝛼) = 𝜒𝐸𝐷(𝑟𝛼𝑞𝛼), 

and so 𝐷(𝑧𝛼𝑞𝛼)
𝑡(𝐿∞(Ω))
→      0, since 𝐷(𝑟𝛼𝑞𝛼)|𝐸 = 𝐷𝑧(𝑟𝛼𝑞𝛼)

𝑡(𝐿∞(𝐸))
→     0. Again appealing to 

Proposition (3.2.2)(i), we conclude that 𝑞𝛼
𝑡(𝑀)
→  0. 
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Now let {𝑥𝛼} ⊂ 𝐿𝑆(𝑧𝑀) and 𝑥𝛼
𝑡(𝑀)
→  0. By Proposition (3.2.2) (ii), we have that 

𝐸𝜆
⊥(|𝑥𝛼|)

𝑡(𝑀)
→  0 for any 𝜆 > 0, where {𝐸𝜆(|𝑥𝛼|)} is the spectral family for |𝑥𝛼|. Denote by 

{𝐸𝜆
𝑧(|𝑥𝛼|)} the family of spectral projections for |𝑥𝛼| in 𝐿𝑆(𝑧𝑀), 𝜆 > 0. It is clear that 

𝐸𝜆(|𝑥𝛼|) = 𝑧⊥ + 𝐸𝜆
𝑧(|𝑥𝛼|) and 𝐸𝜆

⊥(|𝑥𝛼|) = 𝑧 − 𝐸𝜆
𝑧(|𝑥𝛼|) for all 𝜆 > 0. It follows from 

above that 𝑧 − 𝐸𝜆
𝑧(|𝑥𝛼|)

𝑡(𝑧𝑀)
→   0 for all 𝜆 > 0. Hence, by Proposition (3.2.2)(ii), it follows 

that 𝑥𝛼
𝑡(𝑧𝑀)
→   0.  

The proof of the implication 𝑥𝛼
𝑡(𝑧𝑀)
→   0 ⟹ 𝑥𝛼

𝑡(𝑀)
→  0 is similar and therefore omitted. 

The lattice 𝑃(𝑀) is said to have a countable type, if every family of non-zero pairwise 

orthogonal projections in 𝑃(𝑀) is, at most, countable. 𝐴 von Neumann algebra is said to be 

𝜎-finite, if the lattice 𝑃(𝑀) has a countable type. It is shown in [31] that a finite von 

Neumann algebra 𝑀 is 𝜎-finite, provided that the lattice 𝑃(𝑍(𝑀)) of central projections has 

a countable type. 
If 𝑀 is a commutative von Neumann algebra and 𝑃(𝑀) has a countable type, then 𝑀 is ∗-

isomorphic to a ∗-algebra 𝐿∞(Ω, Σ, 𝜇) with 𝜇(Ω) <∞. In this case, the topology 𝑡(𝐿∞(Ω)) 
is metrizable and has a base of neighborhoods of 0 consisting of the sets 𝑊(, 1/𝑛, 1/𝑛), 𝑛 ∈

ℕ. In addition, 𝑓𝑛
𝑡(𝐿∞(Ω))
→      0 ⇔ 𝑓𝑛 ⟶ 0 in measure 𝜇, where 𝑓𝑛, 𝑓 ∈ 𝐿0(Ω, Σ, 𝜇) = 𝐿𝑆(𝑀). 

Let 𝑀 be a commutative von Neumann algebra such that 𝑃(𝑀) does not have a countable 

type. Denote by 𝜑 a ∗-isomorphism from 𝑀on 𝐿∞(Ω, Σ, 𝜇), where 𝜇 is a measure with the 

direct sum property. 

Due to the latter property, there exists a family {𝑧𝑖}𝑖∈𝐼 of non-zero pairwise orthogonal 

projections from 𝑃(𝑀), such that 𝑠𝑢𝑝𝑖∈𝐼 𝑧𝑖 = 1 and 𝜇(𝜑(𝑧𝑖)) <∞ for all 𝑖 ∈ 𝐼, in 

particular, 𝑃(𝑧𝑖𝑍(𝑀)) has a countable type. Select 𝐴𝑖 ∈ Σ so that 𝜑(𝑧𝑖) = 𝜒𝐴𝑖 and set 

Σ𝐴𝑖 = {𝐴 ∩ 𝐴𝑖 ∶ 𝐴 ∈ Σ}, 𝜇𝑖(𝐴 ∩ 𝐴𝑖) = 𝜇(𝐴 ∩ 𝐴𝑖), 𝑖 ∈ 𝐼. 

Let 𝑡(𝐿∞(𝐴𝑖)) be the local measure topology on 𝐿0(𝐴𝑖 , Σ𝐴𝑖 , 𝜇𝑖). Since 𝜇𝑖(𝐴𝑖) <∞, we see 

that the topology 𝑡(𝐿∞(𝐴𝑖)) coincides with the topology of convergence in measure 𝜇𝑖 in 

𝐿0(𝐴𝑖 , Σ𝐴𝑖 , 𝜇𝑖). 

Proposition (3.2.4)[104]: For a net {𝑓𝛼}𝛼∈𝐴 and 𝑓 from 𝐿0(Ω, Σ, 𝜇) the following conditions 

are equivalent: 

(i). 𝑓𝛼
𝑡(𝐿∞(Ω))
→      𝑓; 

(ii). 𝑓𝛼𝜒𝐴𝑖
𝑡(𝐿∞(𝐴𝑖))
→      𝑓𝛼𝐴𝑖  for all 𝑖 ∈ 𝐼. 

Proof. The implication (i) ⇒ (ii) follows from the definitions of topologies 𝑡(𝐿∞(Ω)) and 

𝑡(𝐿∞(𝐴𝑖)). 
(ii) ⇒ (i). It is sufficient to consider the case when 𝑓 = 0. 

Consider the set Γ of all finite subsets 𝛾 from 𝐼 and order it with respect to inclusion. 

Consider an increasing net 𝜒𝐷𝛾 ↑ 𝜒Ω in 𝐿ℎ
0 (Ω, Σ, 𝜇), where 𝐷𝛾 = ⋃ 𝐴𝑖𝑖∈𝛾 , 𝛾 ∈ Γ. Take an 

arbitrary neighborhood of zero 𝑈 (in the topology (𝐿∞(Ω)) ) and select 𝑊(𝐵, 𝜀, 𝛿) in such 

a way that 𝑊(𝐵, 𝜀, 𝛿) +𝑊(𝐵, 𝜀, 𝛿) ⊂ 𝑈. Since 𝜇(𝐵 ∩ 𝐷𝜆) ↑ 𝜇(𝐵) <∞, we can locate such 

𝛾0 ∈ Γ that 𝜇(𝐵 \ 𝐷𝛾0) ≤ 𝛿. Hence, 𝑓𝛼𝜒Ω\𝐷𝛾0 ∈ 𝑊(𝐵, 𝜀, 𝛿) for all 𝛼 ∈ 𝐴. 

Since 𝑓𝛼𝜒𝐴𝑖
𝑡(𝐿∞(𝐴𝑖))
→      0 for all 𝑖 ∈ 0 and 0 is a finite set, it follows 𝑓𝛼𝜒𝐷𝛾0 =

∑ 𝑓𝛼𝜒𝐴𝑖𝑖∈𝛾0

𝑡(𝐿∞(Ω))
→      0.  
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Thus, there exists such 𝛼0 ∈ 𝐴 that 𝑓𝛼𝜒𝐷𝛾0 ∈ 𝑊(𝐵, 𝜀, 𝛿) for all 𝛼 ≥ 𝛼0. 

In particular, 

𝑓𝛼 = 𝑓𝛼𝜒𝐷𝛾0 + 𝑓𝛼𝜒Ω\𝐷𝛾0 ∈ 𝑊(𝐵, 𝜀, 𝛿) +𝑊(𝐵, 𝜀, 𝛿) ⊂ 𝑈, ∀𝛼 ≥ 𝛼0, 

which implies the convergence 𝑓𝛼
𝑡(𝐿∞(Ω))
→      0.  

Let us now establish a variant of Proposition (3.2.4) for an arbitrary von Neumann 

algebra 𝑀. 

Let 𝜑 be a ∗-isomorphism from 𝑍(𝑀) onto 𝐿∞(Ω, Σ, 𝜇) and let {𝑧𝑖}𝑖∈𝐼 be a central 

decomposition of the unity. As before, we denote Γ the directed set of all finite subsets from 

𝐼. For every 𝛾 ∈ Γ we set 𝑧(𝛾) = ∑ 𝑧𝑖𝑖∈𝛾 . 

Since 𝜑(𝑧𝑖) = 𝜒𝐴𝑖 for some 𝐴𝑖 ∈ Σ, we see that 𝜑(𝑧(𝛾)) = 𝜒𝐷𝛾  , where 𝐷𝛾 = ⋃ 𝐴𝑖𝑖∈𝛾 , and, 

in addition, 𝑧(𝛾) ↑ 1 which implies 𝑧(𝛾)
 𝑡(𝑀)
→   1 (see Proposition (3.2.2) (i) for 𝑝𝛼 = 𝑧𝛼

⊥). As 

it the proof of Proposition (3.2.4) for a given 𝑉(𝐵, 𝜀, 𝛿) we choose 𝛾0 ∈ Γ such that 𝑥(1 −

𝑧(𝛾0)) ∈ 𝑉(𝐵, 𝜀, 𝛿) for every 𝑥 ∈ 𝐿𝑆(𝑀). If 𝑥𝛼 ∈ 𝐿𝑆(𝑀) and 𝑥𝛼𝑧𝑖
𝑡(𝑧𝑖𝑀)
→    0 for all 𝑖 ∈ 𝐼, then 

by Proposition (3.2.3), we have 𝑥𝛼𝑧𝑖
𝑡(𝑀)
→  0 for all 𝑖 ∈ 𝐼, and so 𝑥𝛼𝑧

(𝛾0) = ∑ 𝑥𝛼𝑧𝑖𝑖∈𝛾0

𝑡(𝑀)
→  0. 

Hence, there exists such 𝛼0 ∈ 𝐴 that 𝑥𝛼𝑧
(𝛾0) ∈ 𝑉(𝐵, 𝜀, 𝛿) for all 𝛼 ≥ 𝛼0. This means that 

𝑥𝛼 = 𝑥𝛼𝑧
(𝛾0) + 𝑥𝛼(1 − 𝑧(𝛾0)) ∈ 𝑉(𝐵, 𝜀, 𝛿) + 𝑉(𝐵, 𝜀, 𝛿) ⊂ 𝑉(𝐵, 2𝜀, 2𝛿). 

The argument above justifies the following result. 

Proposition (3.2.5)[104]: Let 𝑀 be an arbitrary von Neumann algebra, 𝑥𝛼 , 𝑥 ∈ 𝐿𝑆(𝑀), 0 ≠
𝑧𝑖 ∈ 𝑃(𝑍(𝑀)), 𝑧𝑖𝑧𝑗 = 0 when 𝑖 ≠ 𝑗, 𝑠𝑢𝑝𝑖∈𝐼 𝑧𝑖 = 1. The following conditions are equivalent: 

(i). 𝑥𝛼
𝑡(𝑀)
→  𝑥; 

(ii). 𝑧𝑖𝑥𝛼
𝑡(𝑧𝑖𝑀)
→    𝑧𝑖𝑥 for any 𝑖 ∈ 𝐼. 

Corollary (3.2.6)[104]: Let 𝑀 and let {𝑧𝑖}𝑖∈𝐼 satisfy the same assumptions of Proposition 

(3.2.5), and let 𝑇: 𝐿𝑆(𝑀) → 𝐿𝑆(𝑀) be a linear operator such that 𝑇(𝑧𝑖𝑥) = 𝑧𝑖𝑇(𝑥) for all 

𝑥 ∈ 𝐿𝑆(𝑀), 𝑖 ∈ 𝐼. The following conditions are equivalent: 

(i). The mapping 𝑇: (𝐿𝑆(𝑀), 𝑡(𝑀)) → (𝐿𝑆(𝑀), 𝑡(𝑀)) is continuous; 

(ii). The mapping 𝑇𝑧𝑖: (𝐿𝑆(𝑧𝑖𝑀), 𝑡(𝑧𝑖𝑀)) → (𝐿𝑆(𝑧𝑖𝑀), 𝑡(𝑧𝑖𝑀)) is continuous for every 𝑖 ∈
𝐼. 

Let 𝑀 be an arbitrary von Neumann algebra, let 𝐴 be a subalgebra in 𝐿𝑆(𝑀). 𝐴 linear 

mapping 𝛿: 𝐴 → 𝐿𝑆(𝑀) is called a derivation on 𝐴 with values in 𝐿𝑆(𝑀), if 𝛿(𝑥𝑦) =
𝛿(𝑥)𝑦 + 𝑥𝛿(𝑦) for all 𝑥, 𝑦 ∈ 𝐴. 

Each element 𝑎 ∈  𝐴 defines a derivation 𝛿𝑎(𝑥):= 𝑎𝑥 − 𝑥𝑎 on 𝐴 with values in 𝐴. 

Derivations 𝛿𝑎, 𝑎 ∈ 𝐴 are said to be inner derivations on 𝐴. Since the operation of 

multiplication is continuous with respect to the topology 𝑡(𝑀), it immediately follows that 

any inner derivation of 𝐴 is continuous with respect to the topology 𝑡(𝑀). 
We list a few properties of derivations on 𝐴 which we shall need below. 

Lemma (3.2.7)[104]: If 𝑃(𝑍(𝑀)) ⊂ 𝐴, 𝛿 is a derivation on 𝐴 and 𝑧 ∈ 𝑃(𝑍(𝑀)), then 

𝛿(𝑧) = 0 and 𝛿(𝑧𝑥) = 𝑧𝛿(𝑥) for all 𝑥 ∈ 𝐴. 

Proof. We have that 𝛿(𝑧) = 𝛿(𝑧2) = 𝛿(𝑧)𝑧 + 𝑧𝛿(𝑧) = 2𝑧𝛿(𝑧). Hence, 𝑧𝛿(𝑧) =
 𝑧(2𝑧𝛿(𝑧)) = 2𝑧𝛿(𝑧), that is 𝑧𝛿(𝑧) = 0. Therefore, we have 𝛿(𝑧) = 0. In particular, 

𝛿(𝑧𝑥) = 𝛿(𝑧)𝑥 + 𝑧𝛿(𝑥) = 𝑧𝛿(𝑥).  
Let 𝐴 be an ∗-subalgebra in 𝐿𝑆(𝑀), let 𝛿 be a derivation on 𝐴 with values in 𝐿𝑆(𝑀). Let us 

define a mapping 

𝛿∗: 𝐴 → 𝐿𝑆(𝑀), 
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by setting 𝛿∗(𝑥) = (𝛿(𝑥∗))∗, 𝑥 ∈ 𝐴. 𝐴 direct verification shows that 𝛿∗ is also a derivation 

on 𝐴. 

𝐴 derivation 𝛿 on 𝐴 is said to be self-adjoint, if 𝛿 = 𝛿∗. Every derivation 𝛿 on 𝐴 can be 

represented in the form 𝛿 = 𝑅𝑒(𝛿) + 𝑖𝐼𝑚(𝛿), where 𝑅𝑒(𝛿) = (𝛿 + 𝛿∗)/2, 𝐼𝑚(𝛿) = (𝛿 −
𝛿∗)/2𝑖 are self-adjoint derivations on 𝐴. 

Since (𝐿𝑆(𝑀), 𝑡(𝑀)) is a topological ∗-algebra, the following result holds. 

Lemma (3.2.8)[104]: A derivation 𝛿: 𝐴 → 𝐿𝑆(𝑀) is continuous with respect to the topology 

𝑡(𝑀) if and only if the self-adjoint derivations 𝑅𝑒(𝛿) and 𝐼𝑚(𝛿) are continuous with respect 

to that topology. 

As we already stated , in the special case, when 𝑀 is a properly infinite von Neumann 

algebra of type 𝐼 or von Neumann algebra of type 𝐼𝐼𝐼, any derivation of the algebra 𝐿𝑆(𝑀) 
is continuous with respect to the topology 𝑡(𝑀) [105]. The next theorem extends this result 

to an arbitrary properly infinite von Neumann algebra. 

Theorem (3.2.9)[104]: If 𝑀 properly infinite von Neumann algebras, then any derivation 

𝛿: 𝐿𝑆(𝑀) → 𝐿𝑆(𝑀) is continuous with respect to the topology 𝑡(𝑀) of local convergence 

in measure. 

Proof. By Lemma (3.2.8), we may assume that 𝛿∗ = 𝛿. Since 𝑍(𝑀) is a commutative von 

Neumann algebra, there exists a system {𝑧𝑖}, 𝑖 ∈ 𝐼 of non-zero pairwise orthogonal 

projections from 𝑍(𝑀) such that 𝑠𝑢𝑝𝑖∈𝐼𝑧𝑖 = 1 and the Boolean algebra 𝑃(𝑧𝑖𝑍(𝑀)) has a 

countable type for all 𝑖 ∈  𝐼. By Lemma (3.2.7) we have that 𝛿(𝑧𝑖𝑥) = 𝑧𝑖𝛿(𝑥) for all 𝑥 ∈
𝐿𝑆(𝑀), 𝑖 ∈ 𝐼. Therefore, by Corollary (3.2.6), it is sufficient to prove that each derivation 

𝛿𝑧𝑖  is 𝑡(𝑧𝑖𝑀)-continuous, 𝑖 ∈ 𝐼. Thus, we may assume without loss of generality that the 

Boolean algebra 𝑃(𝑍(𝑀)) has a countable type. 

In this case the topology 𝑡(𝑀) is metrizable, and the sets 𝑉(Ω, 1/𝑛, 1/𝑛), 𝑛 ∈ ℕ form 

a countable base of neighborhoods of 0; in particular, (𝐿𝑆(𝑀), 𝑡(𝑀)) is an 𝐹-space. 

Therefore it is sufficient to show that the graph of the linear operator 𝛿 is a closed set. 

Arguing by a contradiction, let us assume that the graph of 𝛿 is not closed. This means 

that there exists a sequence {𝑥𝑛} ⊂ 𝐿𝑆(𝑀), such that 𝑥𝑛
𝑡(𝑀)
→  0 and 𝛿(𝑥𝑛)

𝑡(𝑀)
→  𝑥 ≠ 0. 

Recalling that (𝐿𝑆(𝑀), 𝑡(𝑀)) is a topological ∗-algebra and that 𝛿 = 𝛿∗, we may assume 

that 𝑥 = 𝑥∗, 𝑥𝑛 = 𝑥𝑛
∗  for all 𝑛 ∈ ℕ. In this case, 𝑥 = 𝑥+ − 𝑥−, where 𝑥+, 𝑥− ∈ 𝐿𝑆+(𝑀) are 

respectively the positive and negative parts of 𝑥. Without loss of generality, we shall also 

assume that 𝑥+ ≠ 0, otherwise, instead of the sequence {𝑥𝑛} we consider the sequence 

{−𝑥𝑛}. Let us select scalars 0 < 𝜆1 < 𝜆2 so that the projection 
𝑝:= 𝐸𝜆2(𝑥) − 𝐸𝜆1(𝑥) 

does not vanish. We have that 0 < 𝜆1𝑝 ≤ 𝑝𝑥𝑝 = 𝑝𝑥 ≤ 𝜆2𝑝 and ‖𝑝𝑥‖𝑀 ≤ 𝜆2. Replacing, if 

necessary, 𝑥𝑛 on 𝑥𝑛/𝜆1, we may assume that 

𝑝𝑥𝑝 ≥ 𝑝.                        (1) 

By the assumption, 𝑀 is a properly infinite von Neumann algebra and therefore, there exist 

pairwise orthogonal projections {𝑝𝑚
(1)
}
𝑚=1

∞
⊂ 𝑃(𝑀), such that 𝑠𝑢𝑝𝑚≥1 𝑝𝑚

(1)
= 1 and 𝑝𝑚

(1)
∼

1 for all 𝑚 ∈ ℕ, in particular, 𝑝 ≼ 𝑝𝑚
(1)

. Here, the notation 𝑝 ∼ 𝑞 denotes the equivalence of 

projections 𝑝, 𝑞 ∈ 𝑃(𝑀), and the notation 𝑝 ≼ 𝑞 means that there exists a projection 𝑒 ≤
𝑞 such that 𝑝 ∼ 𝑒. In course of the proof of our main result we shall frequently use the 

following well-known fact: if 𝑝 ∼ 𝑞 and 𝑧 ∈ 𝑃(𝑍(𝑀)) then 𝑝𝑧 ∼ 𝑞𝑧. 
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For every 𝑚 ∈ ℕ we select a projection 𝑝𝑚 ≤ 𝑝𝑚
(1)

, for which 𝑝𝑚 ∼ 𝑝 and denote by 𝑣𝑚 a 

partial isometry from 𝑀 such that 𝑣𝑚
∗ 𝑣𝑚 = 𝑝, 𝑣𝑚𝑣𝑚

∗ = 𝑝𝑚. Clearly, we have 𝑝𝑚𝑝𝑘 = 0 

whenever 𝑚 ≠ 𝑘 and the projection 

𝑝0: = 𝑠𝑢𝑝𝑚≥1𝑝𝑚                                                         (2) 

is infinite as the supremum of pairwise orthogonal and equivalent projections. Taking into 

account that 

𝑝𝑚 = 𝑣𝑚𝑝
𝑣∗

𝑚

(1)
≤
𝑣𝑚𝑝𝑥𝑝𝑣𝑚

∗ = 𝑣𝑚𝑥𝑣𝑚
∗ ∈ 𝑝𝑚𝑀𝑝𝑚 , 

and 

‖𝑣𝑚𝑥𝑣𝑚
∗ ‖𝑀 = ‖𝑣𝑚𝑝𝑥𝑝𝑣𝑚

∗ ‖𝑀 ≤ ‖𝑝𝑥𝑝‖𝑀 ≤ 𝜆2, 
we see that the series ∑ 𝑣𝑚𝑥𝑣𝑚

∗∞
𝑚=1  converges with respect to the topology 𝜏𝑠𝑜 to some 

operator 𝑦 ∈ 𝑀 satisfying 

‖𝑦‖𝑀 = 𝑠𝑢𝑝𝑚≥1‖𝑣𝑚𝑥𝑣𝑚
∗ ‖𝑀 ≤ ‖𝑝𝑥𝑝‖𝑀, and 𝑦 ≥ 𝑝0.                     (3)                 

In what follows, we shall assume that the central support 𝑐(𝑝0) of the projection 𝑝0 is equal 

to 1 (otherwise, we replace the algebra 𝑀 with the algebra 𝑐(𝑝0)𝑀). 
Let 𝜑 be a ∗-isomorphism from 𝑍(𝑀) onto 𝐿∞(Ω, Σ, 𝜇). By the assumption, the 

Boolean algebra 𝑃(𝑍(𝑀)) has a countable type, and so we may assume that 𝜇(Ω) =

∫ 1𝐿∞(𝛺)𝑑𝜇Ω
= 1, where 1𝐿∞(𝛺) is the identity of the ∗-algebra 𝐿∞(Ω, Σ, 𝜇). In this case, the 

countable base of neighborhoods of 0 in the topology 𝑡(𝑀) is formed by the sets 

𝑉(Ω, 1/𝑛, 1/𝑛), 𝑛 ∈ ℕ. 

Recalling that we have 𝑥𝑛
𝑡(𝑀)
→  0 and 𝛿(𝑥𝑛)

𝑡(𝑀)
→  𝑥, we obtain  

𝑣𝑚𝑥𝑛𝑣𝑚
∗
𝑡(𝑀)
→  0, 𝛿(𝑣𝑚)𝑥𝑛𝑣𝑚

∗
𝑡(𝑀)
→  0, 𝑣𝑚𝛿(𝑥𝑛)𝑣𝑚

∗
𝑡(𝑀)
→  𝑣𝑚𝑥𝑣𝑚

∗  
when 𝑛 →∞ for every fixed 𝑚 ∈ ℕ. 

Fix 𝑘 ∈ ℕ, and using the convergence 𝑣𝑚𝑥𝑛𝑣𝑚
∗
𝑡(𝑀)
→  0 for 𝑛 → 0, for each 𝑚 ∈ ℕ select an 

index 𝑛1(𝑚, 𝑘) and projections 𝑞𝑚,𝑛
(1)

∈ 𝑃(𝑀), 𝑧𝑚,𝑛
(1)

∈ 𝑃(𝑍(𝑀)), such that 

‖𝑣𝑚𝑥𝑛𝑣𝑚
∗ 𝑞𝑚,𝑛

(1)
‖
𝑀
≤ 2−𝑚(𝑘 + 1)−1; 

∫𝜑(1 − 𝑧𝑚,𝑛
(1)

)𝑑𝜇 
Ω

≤ 3−12−𝑚−𝑘−1 

and 

𝐷(𝑧𝑚,𝑛
(1)

(1 − 𝑞𝑚,𝑛
(1)

)) ≤ 3−12−𝑚−𝑘−1𝜑(𝑧𝑚,𝑛
(1)

) 

for all 𝑛 ≥ 𝑛1(𝑚, 𝑘). 

Similarly, using the convergence 𝛿(𝑣𝑚)𝑥𝑛𝑣𝑚
∗
𝑡(𝑀)
→  0 (respectively, 𝑣𝑚𝛿(𝑥𝑛)𝑣𝑚

∗

𝑡(𝑀)
→  𝑣𝑚𝑥𝑣𝑚

∗ ) for 𝑛 →∞, for each 𝑚 ∈ ℕ select indexes 𝑛2(𝑚, 𝑘) and 𝑛3(𝑚, 𝑘) and 

projections 𝑞𝑚,𝑛
(2)

, 𝑞𝑚,𝑛
(3)

∈ 𝑃(𝑀), 𝑧𝑚,𝑛
(2)

, 𝑧𝑚,𝑛
(3)

∈ 𝑃(𝑍(𝑀)), such that 

‖𝛿(𝑣)𝑥𝑛𝑣𝑚
∗ 𝑞𝑚,𝑛

(2)
‖
𝑀
≤ (3(𝑘 + 1)2𝑚)−1  

(respectively, ‖(𝑣𝑚𝛿(𝑥𝑛)𝑣𝑚
∗ − 𝑣𝑚𝑥𝑣𝑚

∗ )𝑞𝑚,𝑛
(3)

‖
𝑀
≤ (3(𝑘 + 1)2𝑚)−1); 

∫𝜑(1 − 𝑧𝑚,𝑛
(𝑖)

)𝑑𝜇
Ω

≤ 3−12−𝑚−𝑘−1 

and 𝐷(1 − 𝑞𝑚,𝑛
(𝑖)

) ≤ 3−12−𝑚−𝑘−1𝜑(𝑧𝑚,𝑛
(𝑖)

), 𝑖 = 2, 3, for all 𝑛 ≥ 𝑛2(𝑚, 𝑘) (respectively, 𝑛 ≥

𝑛3(𝑚, 𝑘)). 
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Set 𝑛(𝑚, 𝑘) = 𝑚𝑎𝑥𝑖=1,2,3 𝑛𝑖(𝑚, 𝑘), 𝑧𝑚 = 𝑖𝑛𝑓𝑖=1,2,3 𝑧𝑚,𝑛(𝑚,𝑘)
(𝑖)

, 𝑞𝑚 = 𝑖𝑛𝑓𝑖=1,2,3𝑞𝑚,𝑛(𝑚,𝑘)
(𝑖)

. 

Due to the selection of projections 𝑞𝑚 ∈ 𝑃(𝑀), 𝑧𝑚 ∈ 𝑃(𝑍(𝑀)) and indexes 𝑛(𝑚, 𝑘), we 

have that for each 𝑚 ∈ ℕ inequalities hold 

(𝐴1) ‖𝑣𝑚𝑥𝑛(𝑚,𝑘)𝑣𝑚
∗ 𝑞𝑚‖𝑀

≤ 2−𝑚(𝑘 + 1)−1; 

(𝐴2) ‖𝛿(𝑣𝑚)𝑥𝑛(𝑚,𝑘)𝑣𝑚
∗ 𝑞𝑚‖𝑀

≤ (3(𝑘 + 1)2𝑚)−1; 

(𝐴3) ‖𝑞𝑚(𝑣𝑚𝛿(𝑥𝑛(𝑚,𝑘))𝑣𝑚
∗ − 𝑣𝑚𝑥𝑣𝑚

∗ )‖
𝑀
≤ (3(𝑘 + 1)2𝑚)−1; 

(𝐴4) 𝐷(𝑧𝑚(1 − 𝑞𝑚))
(𝐷6)
≤

 𝐷(𝑧𝑚(1 − 𝑞𝑚,𝑛(𝑚,𝑘)
(𝑖)

)) ≤ 2−𝑚−𝑘−1𝜑(𝑧𝑚); 

(𝐴5) 1 − ∫ 𝜑(𝑧𝑚)𝑑𝜇Ω
= ∫ 𝜑(1 − 𝑧𝑚)𝑑𝜇Ω

≤ 

≤∑ ∫ 𝜑(1 − 𝑧𝑚,𝑛(𝑚,𝑘)
(𝑖)

)𝑑𝜇 
Ω

3

𝑖=1
≤ 2−𝑚−𝑘−1. 

Fix 𝑚1, 𝑚2 ∈ ℕ with 𝑚1 < 𝑚2 and set 

𝑞𝑚1,𝑚2
: = 𝑖𝑛𝑓𝑚1<𝑚≤𝑚2

𝑞𝑚, 𝑧𝑚1,𝑚2
: = 𝑖𝑛𝑓𝑚1<𝑚≤𝑚2

𝑧𝑚. 

Since (1 − 𝑧𝑚1,𝑚2
) = 𝑠𝑢𝑝𝑚1<𝑚≤𝑚2

(1 − 𝑧𝑚) and (1 − 𝑞𝑚1,𝑚2
) = 𝑠𝑢𝑝𝑚1<𝑚≤𝑚2

(1 − 𝑞𝑚), 

it follows that 𝜑(1 − 𝑧𝑚1,𝑚2
) =  𝑠𝑢𝑝𝑚1<𝑚≤𝑚2

𝜑(1 − 𝑧𝑚) and 𝜑(1 − 𝑞𝑚1,𝑚2
) =

𝑠𝑢𝑝𝑚1<𝑚≤𝑚2
𝜑(1 − 𝑞𝑚), and therefore 

1 − ∫𝜑(𝑧𝑚1,𝑚2
)𝑑𝜇

Ω

= 𝜑(1 − 𝑧𝑚1,𝑚2
)𝑑𝜇 ≤ 𝜑(1 − 𝑧𝑚)𝑑𝜇

(𝐴5)
≤

2−𝑚1−𝑘−1;       (4) 

(𝑧𝑚1,𝑚2
(1 − 𝑞𝑚1,𝑚2

))
(𝐷6)
≤

∑ 𝐷(𝑧𝑚1,𝑚2
(1 − 𝑞𝑚))

𝑚2

𝑚=𝑚1+1

(𝐴4)
≤

2−𝑚1−𝑘−1𝜑(𝑧𝑚1,𝑚2
)     (5) 

 
and 

‖ ∑ (𝑣𝑚𝑥𝑛(𝑚,𝑘)𝑣𝑚
∗ )𝑞𝑚1,𝑚2

𝑚2

𝑚=𝑚1+1

‖

𝑀

≤ ∑ ‖(𝑣𝑚𝑥𝑛(𝑚,𝑘)𝑣𝑚
∗ )𝑞𝑚‖𝑀

𝑚2

𝑚=𝑚1+1

(𝐴1)
≤

2𝑚1(𝑘 + 1)−1.              (6) 

Inequalities (4)-(6) mean that the sequence 

𝑆𝑙,𝑘 = ∑ 𝑣𝑚𝑥𝑛(𝑚,𝑘)𝑣𝑚
∗

𝑙

𝑚=1

, 𝑙 ≥ 1  

is a Cauchy sequence in the F-space (𝐿𝑆(𝑀, 𝑡(𝑀))) for each fixed 𝑘 ∈ ℕ. Consequently, 

there exists 𝑦𝑘 ∈ 𝐿𝑆(𝑀) such that 𝑆𝑙,𝑘
𝑡(𝑀)
→  𝑦𝑘 for 𝑙 →∞, i.e. the series 

𝑦𝑘 = ∑ 𝑣𝑚𝑥𝑛(𝑚,𝑘)𝑣𝑚
∗

∞

𝑚=1

                                                           (7) 

converges in 𝐿𝑆(𝑀) with respect to the topology 𝑡(𝑀). Since the involution is continuous 

in topology 𝑡(𝑀) and 𝑆𝑙,𝑘
∗ = 𝑆𝑙,𝑘, we conclude 𝑦𝑘 = 𝑦𝑘

∗ . 

Setting 

                                      𝑟𝑚 ≔ 𝑝𝑚 ∧ 𝑞𝑚, 𝑚 ∈ ℕ,                                                     (8) 

and using the relation 𝑧𝑚(𝑝𝑚 − 𝑝𝑚 ∧ 𝑞𝑚) ∼ 𝑧𝑚(𝑝𝑚 ∨ 𝑞𝑚 − 𝑞𝑚) ( see e.g. [33]) we have 
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𝐷(𝑧𝑚(𝑝𝑚 − 𝑟𝑚)) = 𝐷(𝑧𝑚(𝑝𝑚 − 𝑝𝑚 ∧ 𝑞𝑚))
(𝐷3)
=

 𝐷(𝑧𝑚(𝑝𝑚 ∨ 𝑞𝑚 − 𝑞𝑚)) 

≤ 𝐷(𝑧𝑚(1 − 𝑞𝑚))
(𝐴4)
≤

2−𝑚−𝑘−1𝜑(𝑧𝑚).                       (9) 

Setting 

                           𝑞0
(𝑘)
: = 𝑠𝑢𝑝𝑚≥1𝑟𝑚, 𝑧0

(𝑘)
: = 𝑖𝑛𝑓𝑚≥1𝑧𝑚,                                (10) 

we have (see (2), (3) and (8)) 

                                   𝑦 ≥ 𝑝0 ≥ 𝑞0
(𝑘)
, 𝑘 ∈ ℕ.                                                           (11) 

From (4) it follows that 

1 − ∫𝜑(𝑧0
(𝑘)
)𝑑𝜇

Ω

 = ∫𝜑(1 − 𝑧0
(𝑘)
)𝑑𝜇 

Ω

≤ 2−𝑘−1.           (12) 

Since 𝑝𝑚𝑝𝑗 = 0,𝑚 ≠ 𝑗, and 𝑟𝑚 ≤ 𝑝𝑚 (see (8)) we obtain 𝑝0 − 𝑞0
(𝑘)

= 𝑠𝑢𝑝𝑚≥1(𝑝𝑚 − 𝑟𝑚) 

and hence, by (9), 

𝐷(𝑧0
(𝑘)
(𝑝0 − 𝑞0

(𝑘)
))
(𝐷6)
=

∑ 𝐷(𝑧0
(𝑘)
(𝑝𝑚 − 𝑟𝑚))

∞

𝑚=1

(9)
≤
2−𝑘−1𝜑(𝑧0

(𝑘)
).                         (13) 

Due to (8), we have 𝑝𝑚𝑞0
(𝑘)

= 𝑟𝑚𝑞0
(𝑘)

= 𝑟𝑚 = 𝑟𝑚𝑞𝑚 for all 𝑚 ∈ ℕ. 

Hence, 

𝑣𝑚𝑥𝑛(𝑚,𝑘)𝑣𝑚
∗ 𝑞0

(𝑘)
= 𝑣𝑚𝑥𝑛(𝑚,𝑘)𝑣𝑚

∗ 𝑝𝑚𝑞0
(𝑘)

= 𝑣𝑚𝑥𝑛(𝑚,𝑘)𝑣𝑚
∗ 𝑟𝑚 

and 

‖𝑦𝑘𝑞0
(𝑘)
‖
𝑀
= ‖(∑ 𝑣𝑚𝑥𝑛(𝑚,𝑘)𝑣𝑚

∗

∞

𝑚=1

)𝑞0
(𝑘)
‖

𝑀

= 

= ‖∑ 𝑣𝑚𝑥𝑛(𝑚,𝑘)𝑣𝑚
∗

∞

𝑚=1

𝑞0
(𝑘)
‖

𝑀

≤ 𝑠𝑢𝑝𝑚≥1‖𝑣𝑚𝑥𝑛(𝑚,𝑘)𝑣𝑚
∗ 𝑟𝑚‖𝑀

 

                ≤ 𝑠𝑢𝑝𝑚≥1‖𝑣𝑚𝑥𝑛(𝑚,𝑘)𝑣𝑚
∗ 𝑞𝑚‖𝑀

(𝐴1)
≤

(𝑘 + 1)−1.          (14) 

Using the properties of the derivation 𝛿 and equalities 𝑝𝑛𝑣𝑛 = 𝑣𝑛, 𝑣𝑛
∗ = 𝑣𝑛

∗ 𝑝𝑛 and (8), (10), 

we have 

𝑞0
(𝑘)
𝛿(𝑣𝑚𝑥𝑛(𝑚,𝑘)𝑣𝑚

∗ )𝑞0
(𝑘)

= 𝑞0
(𝑘)
((𝛿(𝑣𝑚𝑥𝑛(𝑚.𝑘)𝑣𝑚

∗ ) − 𝑣𝑚𝑥𝑣𝑚
∗ ) + 𝑣𝑚𝑥𝑣𝑚

∗ )𝑞0
(𝑘)

 

= (𝑞0
(𝑘)
𝛿(𝑣𝑚)𝑥𝑛(𝑚,𝑘)𝑣𝑚

∗ 𝑞0
(𝑘)

+ 𝑞0
(𝑘)
𝑣𝑚𝑥𝑛(𝑚,𝑘)𝛿(𝑣𝑚

∗ )𝑞0
(𝑘)
) 

+𝑞0
(𝑘)
(𝑣𝑚𝛿(𝑥𝑛(𝑚,𝑘))𝑣𝑚

∗ − 𝑣𝑚𝑥𝑣𝑚
∗ )𝑞0

(𝑘)
+ 𝑞0

(𝑘)
(𝑣𝑚𝑥𝑣𝑚

∗ )𝑞0
(𝑘)

 

= 𝑞0
(𝑘)
𝛿(𝑣𝑚)𝑥𝑛(𝑚,𝑘)𝑣𝑚

∗ 𝑞𝑚𝑟𝑚 + 𝑟𝑚𝑞𝑚𝑣𝑚𝑥𝑛(𝑚,𝑘)𝛿(𝑣𝑚
∗ )𝑞0

(𝑘)
 

+𝑟𝑚𝑞𝑚(𝑣𝑚𝛿(𝑥𝑛(𝑚,𝑘))𝑣𝑚
∗ − 𝑣𝑚𝑥𝑣𝑚

∗ )𝑞𝑚𝑟𝑚 + 𝑞0
(𝑘)
(𝑣𝑚𝑥𝑣𝑚

∗ )𝑞0
(𝑘)
. 

Consider the following formal series suggested by the preceding 

∑ 𝑞0
(𝑘)
𝛿(𝑣𝑚)𝑥𝑛(𝑚,𝑘)𝑣𝑚

∗ 𝑞𝑚𝑟𝑚

∞

𝑚=1

;                                (15) 

∑ 𝑟𝑚𝑞𝑚𝑣𝑚𝑥𝑛(𝑚,𝑘)𝛿(𝑣𝑚
∗ )𝑞0

(𝑘)

∞

𝑚=1

 ;                                   (16) 

∑ 𝑟𝑚𝑞𝑚(𝑣𝑚𝛿(𝑥𝑛(𝑚,𝑘))𝑣𝑚
∗ − 𝑣𝑚𝑥𝑣𝑚

∗ )𝑞𝑚𝑟𝑚

∞

𝑚=1

;                       (17) 
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∑ 𝑞0
(𝑘)
(𝑣𝑚𝑥𝑛(𝑚,𝑘)𝑣𝑚

∗ )𝑞0
(𝑘)

∞

𝑚=1

 .                                                  (18) 

By the condition (𝐴2) the first series (15) and the second series (16) converge with respect 

to the norm ‖. ‖𝑀 to some elements 𝑎, 𝑏 ∈ 𝑀 respectively and ‖𝑎‖𝑀 ≤ (3(𝑘 + 1))−1 and 

‖𝑏‖𝑀 ≤ (3(𝑘 + 1))−1. 

Similarly, by the condition (𝐴3), the third series (17) also converges with respect to the 

norm ‖. ‖𝑀 to some element 𝑐 ∈ 𝑀, satisfying ‖𝑐‖𝑀 ≤ (3(𝑘 + 1))−1. Finally, since 𝑦 =
∑ 𝑣𝑚𝑥𝑣𝑚

∗∞
𝑚=1  (the convergence of the latter series is taken in the 𝜏𝑠𝑜 topology), we see that 

the fourth series (18) converges with respect to the topology 𝜏𝑠𝑜 to some element 𝑞0
(𝑘)
𝑦𝑞0

(𝑘)
 

. Hence, the series 

∑ 𝑞0
(𝑘)
𝛿(𝑣𝑚𝑥𝑛(𝑚,𝑘)𝑣𝑚

∗ )𝑞0
(𝑘)

∞

𝑚=1

                                         (19) 

converges with respect to the topology 𝜏𝑠𝑜 to some element 𝑎𝑘 ∈ 𝑀, and, in addition, we 

have 

‖𝑎𝑘 − 𝑞0
(𝑘)
𝑦𝑞0

(𝑘)
‖
𝑀
≤ (𝑘 + 1)−1.                                  (20) 

We shall show that 

                          𝑎𝑘 = 𝑞0
(𝑘)
𝛿(𝑦𝑘)𝑞0

(𝑘)
,                                                                (21) 

where 𝑦𝑘 = 𝑣𝑚𝑥𝑛(𝑚,𝑘)𝑣𝑚
∗  (the convergence of the latter series is taken in the 𝑡(𝑀)-topology 

(see (7)). Using (10) for any 𝑚1, 𝑚2 ∈ ℕ we have 

𝑟𝑚1
𝑞0
(𝑘)
𝛿(𝑦𝑘)𝑞0

(𝑘)
𝑟𝑚2

 = 𝛿(𝑟𝑚1
𝑞0
(𝑘)
𝑦𝑘)𝑞0

(𝑘)
𝑟𝑚2

− 𝛿(𝑟𝑚1
𝑞0
(𝑘)
)𝑦𝑘𝑞0

(𝑘)
𝑟𝑚2

 

= 𝛿(𝑟𝑚1
𝑣𝑚1

𝑥𝑛(𝑚1,𝑘)𝑣𝑚1

∗ )𝑟𝑚2
− 𝛿(𝑟𝑚1

)𝑣𝑚2
𝑥𝑛(𝑚2,𝑘)𝑣𝑚2

∗ 𝑟𝑚2
. 

Since the series  ∑ 𝑞0
(𝑘)
𝛿(𝑣𝑚𝑥𝑛(𝑚,𝑘)𝑣𝑚

∗ )𝑞0
(𝑘)∞

𝑚=1  converges with respect to the topology 𝜏𝑠𝑜 

(see (19)), it follows that the series 

∑ 𝑟𝑚1
(𝑞0

(𝑘)
𝛿(𝑣𝑚𝑥𝑛(𝑚,𝑘)𝑣𝑚

∗ )𝑞0
(𝑘)
)𝑟𝑚2

∞

𝑚=1

 

also converges with respect to this topology ([116]), in addition, the following equalities 

hold 

𝑟𝑚1
𝑎𝑘𝑟𝑚2

= 𝑟𝑚1
(𝑞0

(𝑘)
𝛿(𝑣𝑚𝑥𝑛(𝑚,𝑘)𝑣𝑚

∗ )𝑞0
(𝑘)
)𝑟𝑚2

 

(10)
=

∑ 𝑟𝑚1
𝛿(𝑣𝑚𝑥𝑛(𝑚,𝑘)𝑣𝑚

∗ )𝑟𝑚2

∞

𝑚=1

 

= ∑(𝛿(𝑟𝑚1
𝑣𝑚𝑥𝑛(𝑚,𝑘)𝑣𝑚

∗ )𝑟𝑚2
− 𝛿(𝑟𝑚1

)𝑣𝑚𝑥𝑛(𝑚,𝑘)𝑣𝑚
∗ 𝑟𝑚2

)

∞

𝑚=1

 

(8)
=
𝛿(𝑟𝑚1

𝑣𝑚1
𝑥𝑛(𝑚1,𝑘)𝑣𝑚1

∗ )𝑟𝑚2
− 𝛿(𝑟𝑚1

)𝑣𝑚2
𝑥𝑛(𝑚2,𝑘)𝑣𝑚2

∗ 𝑟𝑚2
, 

which guarantees 

𝑟𝑚1
𝑞0
(𝑘)
𝛿(𝑦𝑘)𝑞0

(𝑘)
𝑟𝑚2

= 𝑟𝑚1
𝑎𝑘𝑟𝑚2

.                      (22) 

Since 

𝑟𝑚1
(𝛿(𝑦𝑘) − 𝑎𝑘)𝑟𝑚

(22)
=

0, 
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we see that for the right support 𝑟(𝑟𝑚1
(𝛿(𝑦𝑘) − 𝑎𝑘)) of the operator 𝑟𝑚1

(𝛿(𝑦𝑘)  − 𝑎𝑘) 

satisfies the inequality 

𝑟(𝑟𝑚1
(𝛿(𝑦𝑘) − 𝑎𝑘)) ≤ 1 − 𝑟𝑚, 𝑚 ∈ ℕ,  

and therefore 

𝑟(𝑟𝑚1
(𝛿(𝑦𝑘) − 𝑎𝑘)) ≤ 𝑖𝑛𝑓𝑚≥1(1 − 𝑟𝑚)

(10)
=

 1 − 𝑞0
(𝑘)
. 

Consequently, 𝑟𝑚1
(𝛿(𝑦𝑘) − 𝑎𝑘)𝑞0

(𝑘)
= 0 for all 𝑚1 ∈ ℕ. 

Similarly, using the left support of the operator (𝛿(𝑦𝑘) − 𝑎𝑘)𝑞0
(𝑘)

, we claim that 

𝑞0
(𝑘)
(𝛿(𝑦𝑘) − 𝑎𝑘)𝑞0

(𝑘)
= 0. 

Since 𝑞0
(𝑘)
𝑎𝑘𝑞0

(𝑘)
= 𝑎𝑘, the equality (21) holds. 

Thus, the inequality (20) can be restated as follows 

‖𝑞0
(𝑘)
(𝛿(𝑦𝑘) − 𝑦)𝑞0

(𝑘)
‖
𝑀
≤ (𝑘 + 1)−1.                                       (23) 

It follows from the inequalities (3) and (23), that 

                     ‖(𝑘 + 1)𝑞0
(𝑘)
𝑦𝑘‖

𝑀
= ‖(𝑘 + 1)𝑦𝑘𝑞0

(𝑘)
‖
𝑀
≤ 1                                (24) 

and 

            ‖𝑞0
(𝑘)
𝛿((𝑘 + 1)𝑦𝑘)𝑞0

(𝑘)
− (𝑘 + 1)𝑞0

(𝑘)
𝑦𝑞0

(𝑘)
‖
𝑀
≤ 1.                                 (25) 

Due to (25), and taking into account (11), we obtain 

(𝑘 + 1)𝑞0
(𝑘)

− 𝑞0
(𝑘)
𝛿((𝑘 + 1)𝑦𝑘)𝑞0

(𝑘)
 ≤ (𝑘 + 1)𝑞0

(𝑘)
𝑦𝑞0

(𝑘)
− 𝑞0

(𝑘)
𝛿((𝑘 + 1)𝑦𝑘)𝑞0

(𝑘)

≤ 𝑞0
(𝑘)
, 

that is 

                         𝑘𝑞0
(𝑘)

≤ 𝑞0
(𝑘)
𝛿((𝑘 + 1)𝑦𝑘)𝑞0

(𝑘)
.                                                         (26) 

Let us now consider the projections 

                      𝑞0: = 𝑖𝑛𝑓𝑘≥1𝑞0
(𝑘)
, 𝑧0: = 𝑖𝑛𝑓𝑘≥1𝑧0

(𝑘)
.                                                        (27) 

Using (11), (27) we have that 𝑝0 − 𝑞0 = 𝑠𝑢𝑝𝑘≥1(𝑝0 − 𝑞0
(𝑘)
). Therefore, combining (13) and 

(27), we obtain 

𝐷(𝑧0(𝑝0 − 𝑞0))

= 𝐷(𝑠𝑢𝑝𝑘≥1(𝑧0(𝑝0 − 𝑞0
(𝑘)
)))

(𝐷6)
≤

∑𝐷(𝑧0(𝑝0 − 𝑞0
(𝑘)
))

∞

𝑘=1

(13)
≤

𝜑(𝑧0),     (28) 

that is the projection 𝑧0(𝑝0 − 𝑞0) is finite (see (D1)). Moreover, due to inequalities (24) 

(respectively, (26)), we have 

                 ‖(𝑘 + 1)𝑞0𝑦𝑘‖𝑀 = ‖(𝑘 + 1)𝑦𝑘𝑞0‖𝑀 ≤ 1, 𝑘 ∈ ℕ                                              (29) 

(respectively, 

                                𝑘𝑞0 ≤ 𝑞0𝛿((𝑘 + 1)𝑦𝑘)𝑞0, 𝑘 ∈ ℕ. )                                                       (30) 

Since 𝜑 is a ∗-isomorphism from 𝑍(𝑀) onto 𝐿∞(Ω, Σ, 𝜇), by (12), we have that 

∫𝜑(1 − 𝑧0)𝑑𝜇
Ω

= ∫𝑠𝑢𝑝𝑘≥1𝜑(1 − 𝑧0
(𝑘)
)𝑑𝜇

Ω

 ≤ ∑∫𝜑(1 − 𝑧0
(𝑘)
)𝑑𝜇

Ω

∞

𝑘=1

(12)
≤

2−1, 

in particular, 𝑧0 ≠ 0. Since 1 = 𝑐(𝑝0) and 𝑐(𝑝0𝑧0) = 𝑐(𝑝0)𝑧0 = 𝑧0 ≠ 0, we have 𝑧0𝑝0 ≠
0, and therefore there exists such 𝑛 ∈ ℕ that 𝑧0𝑝𝑛 ≠ 0 (see (2)). Since 𝑧0𝑝𝑛 ∼ 𝑧0𝑝𝑚, we 

have 𝑧0𝑝𝑚 ≠ 0 for all 𝑚 ∈ ℕ. Hence, 𝑧0𝑝0 is an infinite projection. Since the projection 

𝑧0(𝑝0 − 𝑞0) is finite (see (28)), we see that the projection 𝑧0𝑞0 must be infinite. By [23], 

there exists a central projection 
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0 ≠ 𝑒0 ∈ 𝑃(𝑍(𝑀)), 𝑒0 ≤ 𝑧0, 
such that 𝑒0𝑞0 is properly infinite, in particular, there exist pairwise orthogonal projections 

                                        𝑒𝑛 ≤ 𝑒0𝑞0, 𝑒𝑛 ∼ 𝑒0𝑞0                                                                  (31) 

for all 𝑛 ∈ ℕ (see, for example, [29]). In addition, 

∫𝜑(𝑐(𝑞0)𝑒0) 𝑑𝜇
Ω

≠ 0.                                                  (32) 

For every 𝑛 ∈ ℕ the operator 

𝑏𝑛: = 𝛿(𝑒𝑛)𝑒𝑛 

is locally measurable, and therefore there exists such a sequence {𝑧𝑚
(𝑛)
} ⊂ 𝑃(𝑍(𝑀)) that 

𝑧𝑚
(𝑛)

↑ 1 when 𝑚 →∞ and 𝑧𝑚
(𝑛)
𝑏𝑛 ∈ 𝑆(𝑀) for all 𝑚 ∈ ℕ. Since 𝜑(𝑧𝑚

(𝑛)
) ↑ 𝜑(1) = 1𝐿∞(Ω) 

it follows that ∫ 𝜑(𝑧𝑚
(𝑛)
)𝑑𝜇

Ω
↑ 𝜇(1𝐿∞(Ω)) = 1 when 𝑚 →∞, and therefore, by (32), for 

every 𝑛 ∈ ℕ there exists such a projection 𝑧(𝑛) ∈ 𝑃(𝑍(𝑀)), that 𝑧(𝑛)𝑏𝑛 ∈ 𝑆(𝑀) and 

1 − 2−𝑛−1∫𝜑(𝑐(𝑞0)𝑒0)𝑑𝜇
Ω

< ∫𝜑(𝑧(𝑛))𝑑𝜇
Ω

.                           (33) 

Consider the central projection 

𝑔0: = 𝑖𝑛𝑓𝑛≥1𝑧
(𝑛). 

Since 𝑧(𝑛)𝑏𝑛 ∈ 𝑆(𝑀), 𝑔0 = 𝑔0𝑧
(𝑛) we have that 𝑔0𝑏𝑛 ∈ 𝑆(𝑀) for all 𝑛 ∈ ℕ. Due to (33) we 

have 

1 − ∫𝜑(𝑔0)𝑑𝜇
Ω

= ∫𝜑(1 − 𝑔0)𝑑𝜇
Ω

= ∫𝑠𝑢𝑝 𝜑(1 − 𝑧(𝑛))𝑑𝜇
Ω

≤ 

∑∫𝜑(1 − 𝑧(𝑛))𝑑𝜇
Ω

∞

𝑛=1

= ∑(1 −∫𝜑(𝑧(𝑛))𝑑𝜇
Ω

)

∞

𝑛=1

≤ 2−1∫𝜑(𝑐(𝑞0)𝑒0)𝑑𝜇
Ω

. 

Consequently, 1 − 2−1 ∫ 𝜑(𝑐(𝑞0)𝑒0)𝑑𝜇𝛺
≤ ∫ 𝜑(𝑔0)𝑑𝜇𝛺

, and therefore 

1 + 2−1 ∫ 𝜑(𝑐(𝑞0)𝑒0)𝑑𝜇𝛺
≤ ∫ 𝜑(𝑔0)𝑑𝜇𝛺

+ 2−1 ∫ 𝜑(𝑐(𝑞0)𝑒0)𝑑𝜇𝛺
.                        (34) 

From (32) and inequality (34), it follows that 2−1 ∫ 𝜑(𝑔0𝑐(𝑞0)𝑒0)𝑑𝜇𝛺
>  0, i.e. 

𝑔0𝑐(𝑞0)𝑒0 ≠ 0 and so 𝑔0𝑒0𝑞0 ≠ 0. Since 𝑒0𝑞0 is a properly infinite projection it follows 

that 𝑔0𝑒0𝑞0 is a properly infinite projection. From the relationship 𝑔0𝑒𝑛
(31)
~

𝑔0𝑒0𝑞0, we see 

that the projection 𝑔0𝑒𝑛 is also properly infinite for all 𝑛 ∈ ℕ. Since 

𝑐(𝑔0𝑒𝑛) = 𝑔0𝑐(𝑒𝑛)
(31)
≤

𝑞0𝑐(𝑞0𝑒0) = 𝑔0𝑐(𝑞0)𝑒0, 

it follows that 𝑧𝑒𝑛 is also properly infinite projection for every 0 ≠ 𝑧 ∈ 𝑃(𝑍(𝑀)) with 𝑧 ≤
𝑔0𝑐(𝑞0)𝑒0. Indeed, if 𝑧’ ∈  𝑃(𝑍(𝑀)) and 𝑧’𝑧𝑒𝑛 ≠ 0, then 0 ≠ 𝑧’𝑧𝑒𝑛 = (𝑧’𝑧𝑐(𝑞0)𝑒0)𝑔0𝑒𝑛, 

and therefore, since the projection 𝑔0𝑒𝑛 is properly infinite, we have (𝑧’𝑧𝑐(𝑞0)𝑒0)𝑔0𝑒𝑛 ∉
𝑃𝑓𝑖𝑛(𝑀). Consequently, the projection 𝑧𝑒𝑛 is also properly infinite. 

Passing, if necessary to the algebra 𝑔0𝑐(𝑞0)𝑒0𝑀, we may assume that 𝑔0𝑐(𝑞0)𝑒0 = 1. In 

this case, we also may assume that 𝑏𝑛 ∈ 𝑆(𝑀), 𝑒𝑛 ∼ 𝑞0, 𝑐(𝑒𝑛) = 1 and 𝑧𝑒𝑛 is a properly 

infinite projection for every non-zero 

𝑧 ∈ 𝑃(𝑍(𝑀)). 
The assumption 𝑏𝑛 ∈ 𝑆(𝑀) means that for every fixed 𝑛 ∈ ℕ there exists such a sequence 

{𝑝𝑚
(𝑛)
}𝑚=1
∞ ⊂ 𝑃𝑓𝑖𝑛(𝑀), that 𝑝𝑚

(𝑛)
↓ 0 when 𝑚 →∞ and 𝑏𝑛(1 − 𝑝𝑚

(𝑛)
) ∈ 𝑀 for all 𝑚 ∈ ℕ. 

Since 𝐷(𝑝𝑚
(𝑛)
) ∈ 𝐿0(Ω, Σ, 𝜇) and 𝐷(𝑝𝑚

(𝑛)
) ↓ 0 (see (D7)), it follows that {𝐷(𝑝𝑚

(𝑛)
)}𝑛=1
∞  

converges in measure 𝜇 to zero. Consequently, we may select a central projection 𝑓𝑛 and a 
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finite projection 𝑠𝑛 = 𝑝𝑚𝑛

(𝑛)
∈ 𝑃𝑓𝑖𝑛(𝑀) as to guarantee 𝐷(𝑓𝑛𝑠𝑛) < 2−𝑛𝜑(𝑓𝑛), 1 − 2−𝑛−1 <

∫𝜑(𝑓𝑛)𝑑𝜇 and 

                               𝑓𝑛𝑏𝑛(1 − 𝑠𝑛) ∈ 𝑀                                                 (35) 

for all 𝑛 ∈ ℕ. 

Setting 

𝑓:= 𝑖𝑛𝑓𝑛≥1𝑓𝑛, 𝑠: = 𝑠𝑢𝑝𝑛≥1𝑠𝑛, 
we have that 

1/2 < ∫𝜑(𝑓)𝑑𝜇 , 𝐷(𝑓𝑠)
(𝐷6)
≤

∑𝐷(𝑓𝑠𝑛)

∞

𝑛=1

≤ 𝜑(𝑓). 

This means that 𝑓 ≠ 0 and 𝑓𝑠 ∈ 𝑃𝑓𝑖𝑛(𝑀) (see (D1)). In addition, since 𝑓 ≤ 𝑓𝑛, (1 − 𝑠) ≤

(1 − 𝑠𝑛) from (35) it follows that 𝑓𝑏𝑛(1 − 𝑠) ∈ 𝑀 for all 𝑛 ∈ ℕ. 

Consider the projections 𝑡 = 𝑓(1 − 𝑠) and 𝑔𝑛 = 𝑓(𝑒𝑛 ∧ (1 − 𝑠)), 𝑛 ∈ ℕ. 

Clearly (see (31)), 

                          𝑔𝑛 ≤ 𝑓𝑒𝑛 ≤ 𝑞0, 𝑏𝑛𝑔𝑛 ∈ 𝑀, 𝑔𝑛 ≤ 𝑡                                                 (36) 

for all 𝑛 ∈ ℕ, and also 

𝑓𝑒𝑛 − 𝑔𝑛 = 𝑓(𝑒𝑛 − 𝑒𝑛 ∧ (1 − 𝑠)) ∼ 𝑓(𝑒𝑛 ∨ (1 − 𝑠) − (1 − 𝑠)) ≤ 𝑓𝑠, 
that is 𝑓𝑒𝑛 − 𝑔𝑛 ∈ 𝑃𝑓𝑖𝑛(𝑀). Hence, for every non-zero central projection 𝑧 ≤ 𝑓, we have 

that the projection 𝑧𝑒𝑛 − 𝑧𝑔𝑛 is finite. Since the projection 𝑧𝑒𝑛 is infinite, the projection 

𝑧𝑔𝑛 is also infinite, i.e. 

                                       𝑧𝑔𝑛 ∉ 𝑃𝑓𝑖𝑛(𝑀)                                                               (37) 

for any 0 ≠ 𝑧 ∈ 𝑃(𝑍(𝑀)) and 𝑛 ∈ ℕ. 

Since 𝑏𝑛𝑡 = 𝑓𝑏𝑛(1 − 𝑠) ∈ 𝑀, we see that there exists such an increasing sequence {𝑙𝑛} ⊂
ℕ that 𝑙𝑛 > 𝑛 + 2‖𝑏𝑛𝑡‖𝑀 for all 𝑛 ∈ ℕ. 

Appealing to the inequalities (29), (36) and taking into account the equality 𝑏𝑛 = 𝛿(𝑒𝑛)𝑒𝑛, 

we deduce 

‖𝑔𝑛(𝑙𝑛 + 1)𝑦𝑙𝑛𝛿(𝑒𝑛)𝑒𝑛𝑔𝑛‖𝑀
≤ ‖𝑔𝑛(𝑙𝑛 + 1)𝑦𝑙𝑛‖𝑀

‖𝛿(𝑒𝑛)𝑒𝑛𝑔𝑛‖𝑀 

≤ ‖𝑞0(𝑙𝑛 + 1)𝑦𝑙𝑛‖𝑀
‖𝛿(𝑒𝑛)𝑒𝑛𝑡‖𝑀 < (𝑙𝑛 − 𝑛)/2. 

Hence, 

      ‖𝑔𝑛𝑒𝑛𝛿(𝑒𝑛)(𝑙𝑛 + 1)𝑦𝑙𝑛𝑔𝑛 + 𝑔𝑛(𝑙𝑛 + 1)𝑦𝑙𝑛𝛿(𝑒𝑛)𝑒𝑛𝑔𝑛‖𝑀
≤ 𝑙𝑛 − 𝑛.                        (38) 

For every 𝑥 = 𝑥∗ ∈ 𝑀 the inequalities −‖𝑥‖𝑀1 ≤ 𝑥 ≤ ‖𝑥‖𝑀1 holds, in particular, 

−𝑔𝑛‖𝑥‖𝑀 ≤ 𝑞𝑛𝑥𝑞𝑛 ≤ 𝑔𝑛‖𝑥‖𝑀. Hence, inequality (38) implies that 

       𝑔𝑛𝑒𝑛𝛿(𝑒𝑛)(𝑙𝑛 + 1)𝑦𝑙𝑛𝑔𝑛 + 𝑔𝑛(𝑙𝑛 + 1)𝑦𝑙𝑛𝛿(𝑒𝑛)𝑒𝑛𝑔𝑛 ≥ (𝑛 − 𝑙𝑛)𝑔𝑛.                      (39) 

Since 𝑒𝑛𝑒𝑚 = 0 whenever 𝑛 ≠ 𝑚, we see (due to inequalities (29) and (36)) that the series 

∑ 𝑒𝑛(𝑙𝑛 + 1)𝑦𝑙𝑛𝑒𝑛
∞
𝑛=1  converges with respect to the topology 𝜏𝑠𝑜 to a self-adjoint operator 

ℎ0 ∈ 𝑀, satisfying 

‖ℎ0‖𝑀 ≤ 𝑠𝑢𝑝𝑛≥1‖𝑒𝑛(𝑙𝑛 + 1)𝑦𝑙𝑛𝑒𝑛‖𝑀
≤ 1. 

Again appealing to the inequalities (30), (36) and (39), we infer that 

𝑛𝑔𝑛 = 𝑙𝑛𝑔𝑛 + (𝑛 − 𝑙𝑛)𝑔𝑛 
≤ 𝑔𝑛(𝑙𝑛 + 1)𝛿(𝑦𝑙𝑛)𝑔𝑛 + 𝑔𝑛𝑒𝑛𝛿(𝑒𝑛)(𝑙𝑛 + 1)𝑦𝑙𝑛𝑔𝑛 + 𝑔𝑛(𝑙𝑛 + 1)𝑦𝑙𝑛𝛿(𝑒𝑛)𝑒𝑛𝑔𝑛 

= (𝑙𝑛 + 1)(𝑔𝑛𝛿(𝑦𝑙𝑛)𝑔𝑛 + 𝑔𝑛𝑒𝑛𝛿(𝑒𝑛)𝑦𝑙𝑛𝑔𝑛 + 𝑔𝑛𝑦𝑙𝑛𝛿(𝑒𝑛)𝑒𝑛𝑔𝑛) 

= (𝑙𝑛 + 1)𝑔𝑛𝛿(𝑒𝑛𝑦𝑙𝑛𝑒𝑛)𝑔𝑛 

= 𝛿(𝑔𝑛𝑒𝑛(𝑙𝑛 + 1)𝑦𝑙𝑛𝑒𝑛)𝑔𝑛 − 𝛿(𝑔𝑛)𝑒𝑛(𝑙𝑛 + 1)𝑦𝑙𝑛𝑒𝑛𝑔𝑛 

= 𝛿(𝑔𝑛ℎ0)𝑔𝑛 − 𝛿(𝑔𝑛)ℎ0𝑔𝑛 = 𝑔𝑛𝛿(ℎ0)𝑔𝑛. 
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Thus, 

𝑛𝑔𝑛 ≤ 𝑔𝑛𝛿(ℎ0)𝑔0                                                                     (40) 

for every 𝑛 ∈ ℕ. 

Set 𝑔𝑛
(0)

= 𝑔𝑛 ∧ 𝐸𝑛−1(𝛿(ℎ0)), 𝑛 ∈ ℕ, where {𝐸𝜆(𝛿(ℎ0))} is the spectral family of 

projections for self-adjoint operator 𝛿(ℎ0). For every 𝑛 ∈ ℕ we have 

𝑛𝑔𝑛
(0)

= 𝑛𝑔𝑛
(0)
𝑔𝑛𝑔𝑛

(0)(40)
≤

𝑔𝑛
(0)
(𝑔𝑛𝛿(ℎ0)𝑔𝑛)𝑔𝑛

(0)
 

= 𝑔𝑛
(0)
𝛿(ℎ0)𝑔𝑛

(0)
= 𝑔𝑛

(0)
𝐸𝑛−1(𝛿(ℎ0))𝛿(ℎ0)𝑔𝑛

(0)
 

≤ 𝑔𝑛
(0)
(𝑛 − 1)𝐸𝑛−1(𝛿(ℎ0))𝑔𝑛

(0)
= (𝑛 − 1)𝑔𝑛

(0)
. 

Hence, 𝑔𝑛 ∧ 𝐸𝑛−1(𝛿(ℎ0)) = 𝑔𝑛
(0)

= 0 which implies 

𝑔𝑛 = 𝑔𝑛 − 𝑔𝑛 ∧ 𝐸𝑛−1(𝛿(ℎ0)) ∼ 𝑔𝑛 ∨ 𝐸𝑛−1(𝛿(ℎ0)) − 𝐸𝑛−1(𝛿(ℎ0))  ≤ 1 − 𝐸𝑛−1(𝛿(ℎ0)), 
i.e. 𝑔𝑛 ≼ 1 − 𝐸𝑛−1(𝛿(ℎ0)). 

Then 𝑔𝑛
(36)
≤

𝑓𝑔𝑛 ≼ 𝑓(1 − 𝐸𝑛−1(𝛿(ℎ0))), and therefore 

                    𝐷(𝑔𝑛)
(𝐷3)
≤

 𝐷(𝑓(1 − 𝐸𝑛−1(𝛿(ℎ0))))                                  (41) 

for all 𝑛 ∈ ℕ. 

Since |𝑓𝛿(ℎ0)| ∈ 𝐿𝑆(𝑀), we see that there exists such a non-zero central projection 𝑓0 ≤ 𝑓, 
that |𝑓0𝛿(ℎ0)| ∈ 𝑆ℎ(𝑀). Hence, we may find such 𝜆0 > 0, that (𝑓0 − 𝐸𝜆(|𝑓0𝛿(ℎ0)|)) ∈
𝑃𝑓𝑖𝑛(𝑀) for all 𝜆 ≥ 𝜆0 ([113]), that is 𝐷(𝑓0(1 − 𝐸𝜆(|𝑓0𝛿(ℎ0)|))) ∈ 𝐿+

0 (Ω, Σ, 𝜇) when 𝜆 >

𝜆0. 

Since 𝑓0(1 − 𝐸𝜆(|𝑓0𝛿(ℎ0)|)) = 𝑓0(1 − 𝐸𝜆(|𝛿(ℎ0)|)), we infer from (41) that 

𝐷(𝑓0𝑔𝑛) ∈ 𝐿+
0 (Ω, Σ, 𝜇) 

for all 𝑛 ≥ 𝜆0 + 1 which contradicts with the property (D1) in the definition of the 

dimension function 𝐷, since 𝑓0𝑔𝑛 is an infinite projection (see (37)). 

Hence, our assumption that the derivation 𝛿 fails to be continuous in (𝐿𝑆(𝑀), 𝑡(𝑀)) has led 

to a contradiction.  

Observe that in the special case of properly infinite von Neumann algebras of type 𝐼 or 𝐼𝐼𝐼 , 
Theorem (3.2.9) gives a new proof of the results concerning the continuity of a derivation 

of (𝐿𝑆(𝑀), 𝑡(𝑀)) established earlier in [2], [105], [106]. 

The construction of extension of any derivation, acting on a von Neumann algebra 𝑀 

with values in 𝐿𝑆(𝑀), up to a derivation from 𝐿𝑆(𝑀) into 𝐿𝑆(𝑀) is given. Using this 

extension and Theorem 3.3 it is established that in case the of a properly infinite von 

Neumann algebra 𝑀, any derivation 𝛿: 𝐴 → 𝐿𝑆(𝑀) from a subalgebra 𝐴 satisfying 𝑀 ⊂
𝐴 ⊂ 𝐿𝑆(𝑀) is continuous with respect to the local measure topology. 

Let 𝑀 be an arbitrary von Neumann algebra and let {𝑧𝑛}𝑛=1
∞  be a sequence of central 

projections from 𝑀, such that 𝑧𝑛 ↑ 1. 𝐴 sequence {𝑥𝑛}𝑛=1
∞  is called consistent with the 

sequence {𝑧𝑛}𝑛=1
∞ , if for any 𝑛,𝑚 ∈ ℕ the equality 𝑥𝑚𝑧𝑛 = 𝑥𝑛𝑧𝑛 holds for 𝑛 < 𝑚. 

Proposition (3.2.10)[104]: Let {𝑥𝑛}𝑛=1
∞ ⊂ 𝐿𝑆(𝑀) (respectively, {𝑦𝑛}𝑛=1

∞ ⊂ 𝐿𝑆(𝑀)) be a 

sequence consistent with the sequence {𝑧𝑛}𝑛=1
∞ ⊂ 𝑃(𝑍(𝑀)) (respectively, with the 

sequence {𝑧𝑛
’ }
𝑛=1

∞
⊂ 𝑃(𝑍(𝑀))), 𝑧𝑛 ↑ 1(𝑧𝑛

’ ↑ 1). 

Then 

(i). There exists a unique 𝑥 ∈ 𝐿𝑆(𝑀), such that 𝑥𝑧𝑛 = 𝑥𝑛𝑧𝑛 for all 𝑛 ∈ ℕ, in addition, 𝑥𝑛
𝑡(𝑀)
→  𝑥; 

(ii). If 𝑥𝑛𝑧𝑛𝑧𝑚
’ = 𝑦𝑚𝑧𝑛𝑧𝑚

’  for all 𝑛,𝑚 ∈ ℕ, then (𝑥𝑛𝑧𝑛 − 𝑦𝑛𝑧𝑛
’ )

𝑡(𝑀)
→  0 for 𝑛 →∞. 
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Proof. (i). Consider a neighborhood 𝑉(𝐵, 𝜀, 𝛿) of zero in topology 𝑡(𝑀), where 𝜀, 𝛿 >
0, 𝐵 ∈ Σ, 𝜇(𝐵) <∞ (see the definition of topology 𝑡(𝑀)). Since 𝑧𝑛

⊥ = (1 − 𝑧𝑛) ↓ 0, it 

follows that 𝜑(𝑧𝑛
⊥) ∈ 𝑊(𝐵, 𝜀, 𝛿) for 𝑛 ≥ 𝑛(𝐵, 𝜀, 𝛿). Taking 𝑥 ∈ 𝐿𝑆(𝑀), 𝑞𝑛 = 𝑧𝑛, we have 

(𝑥𝑧𝑛
⊥)𝑞𝑛 = 0,𝐷(𝑧𝑛

⊥ 𝑞𝑛) = 0, i.e. 𝑥𝑧𝑛
⊥ ∈  𝑉(𝐵, 𝜀, 𝛿) for all 𝑥 ∈ 𝐿𝑆(𝑀), 𝑛 ≥ 𝑛(𝐵, 𝜀, 𝛿). For 

𝑚 >  𝑛, we have 

𝑥𝑚𝑧𝑚 − 𝑥𝑛𝑧𝑛 = 𝑥𝑚𝑧𝑚 − 𝑥𝑚𝑧𝑛 = 𝑥𝑚(𝑧𝑚 − 𝑧𝑛) = 𝑥𝑚𝑧𝑚𝑧𝑛
⊥ ∈ 𝑉(𝐵, 𝜀, 𝛿) 

for all 𝑛 ≥ 𝑛(𝐵, 𝜀, 𝛿). It means that {𝑥𝑛𝑧𝑛}𝑛=1
∞  is a Cauchy sequence in (𝐿𝑆(𝑀), 𝑡(𝑀)). 

Consequently, there exists 𝑥 ∈ 𝐿𝑆(𝑀) such that 𝑥𝑛𝑧𝑛
𝑡(𝑀)
→  𝑥. 

Since 𝑥𝑛𝑧𝑛
⊥ ∈ 𝑉(𝐵, 𝜀, 𝛿) for all 𝑛 ≥ 𝑛(𝐵, 𝜀, 𝛿), it follows that 𝑥𝑛𝑧𝑛

⊥
𝑡(𝑀)
→  0, and therefore 

𝑥𝑛 = 𝑥𝑛𝑧𝑛 + 𝑥𝑛𝑧𝑛
⊥
𝑡(𝑀)
→  𝑥. Fixing 𝑘 ∈ ℕ, for 𝑛 > 𝑘 we have 𝑥𝑘𝑧𝑘 = 𝑥𝑛𝑧𝑘

𝑡(𝑀)
→  𝑥𝑧𝑘 for 𝑛 →

∞, i.e. 𝑥𝑧𝑘 = 𝑥𝑘𝑧𝑘 for all 𝑘 ∈ ℕ. 

If 𝑎 ∈ 𝐿𝑆(𝑀) and 𝑎𝑧𝑛 = 𝑥𝑛𝑧𝑛 = 𝑥𝑧𝑛 for all 𝑛 ∈ ℕ, then 0 = (𝑎 − 𝑥)𝑧𝑛
𝑡(𝑀)
→  (𝑎 − 𝑥), i.e. 

𝑎 = 𝑥. 

(ii). If 𝑥𝑚𝑧𝑚𝑧𝑛
’⊥

𝑡(𝑀)
→  0 for 𝑛 →∞, 𝑦𝑛𝑧𝑛

’  𝑧𝑚
⊥

𝑡(𝑀)
→  0 for 𝑚 →∞, and 𝑥𝑛𝑧𝑛 − 𝑥𝑚𝑧𝑚

𝑡(𝑀)
→  0 for 

𝑛,𝑚 →  ∞, then 

𝑥𝑛𝑧𝑛 − 𝑦𝑛𝑧𝑛
’ = 𝑥𝑛𝑧𝑛 − 𝑥𝑚𝑧𝑚 + 𝑥𝑚𝑧𝑚𝑧𝑛

’ + 𝑥𝑚𝑧𝑚𝑧𝑛
’⊥ − 𝑦𝑛𝑧𝑛

’  
= (𝑥𝑛𝑧𝑛 − 𝑥𝑚𝑧𝑚) + 𝑦𝑛𝑧𝑚𝑧𝑛

’ + 𝑥𝑚𝑧𝑚𝑧𝑛
’⊥ − 𝑦𝑛𝑧𝑛

’ = 

= (𝑥𝑛𝑧𝑛 − 𝑥𝑚𝑧𝑚) − 𝑦𝑛𝑧𝑛
’ 𝑧𝑚

⊥ + 𝑥𝑚𝑧𝑚𝑧𝑛
’⊥

𝑡(𝑀)
→  0 

for 𝑛,𝑚 →∞.  

Now, we consider a derivation 𝛿 from 𝑆(𝑀) into 𝐿𝑆(𝑀) and construct an extension 

𝛿 from 𝐿𝑆(𝑀) into 𝐿𝑆(𝑀). Recall that for an arbitrary operator 𝑥 ∈  𝐿𝑆(𝑀) there exists a 

sequence {𝑧𝑛}𝑛=1
∞ ⊂ 𝑃(𝑍(𝑀)) such that 𝑧𝑛 ↑ 1 and 𝑥𝑧𝑛 ∈  𝑆(𝑀) for all 𝑛 ∈ ℕ. 

Since 𝛿(𝑥𝑧𝑛)𝑧𝑚 = 𝛿(𝑥𝑧𝑛𝑧𝑚) (see Lemma (3.2.7)), the sequence {𝛿(𝑥𝑧𝑛)}𝑛=1
∞  is 

consistent with the sequence {𝑧𝑛}𝑛=1
∞ . By Proposition (3.2.10)(i), there exists a unique 

𝑦(𝑥) ∈ 𝐿𝑆(𝑀) such that 𝛿(𝑥𝑧𝑛)
𝑡(𝑀)
→  𝑦(𝑥) (notation: 𝑦(𝑥) = 𝑡(𝑀) − lim

𝑛→∞
𝛿(𝑥𝑧𝑛) ). Set 

𝛿(𝑥) = 𝑦(𝑥). According to Proposition (3.2.10) (ii), the definition of operator 𝛿(𝑥) does 

not depend on a choice of a sequence {𝑧𝑛}𝑛=1
∞ ⊂ 𝑃(𝑍(𝑀)), for which 𝑧𝑛 ↑ 1 and 𝑥𝑧𝑛 ∈

𝑆(𝑀), 𝑛 ∈ ℕ. If 𝑥 ∈ 𝑆(𝑀), then, taking 𝑧𝑛 = 1, 𝑛 ∈ ℕ, we obtain 𝛿(𝑥) = 𝛿(𝑥). 
Proposition (3.2.11)[104]: The mapping 𝛿 is a unique derivation from 𝐿𝑆(𝑀) into 𝐿𝑆(𝑀) 
such that 𝛿(𝑥) = 𝛿(𝑥) for all 𝑥 ∈ 𝑆(𝑀). 
Proof. Let 𝑥, 𝑦 ∈ 𝐿𝑆(𝑀), and let 𝑧𝑛, 𝑝𝑛 ∈ 𝑃(𝑍(𝑀)) be such that 𝑧𝑛 ↑ 1, 𝑝𝑛 ↑ 1, 𝑥𝑧𝑛, 𝑦𝑝𝑛 ∈
𝑆(𝑀), 𝑛 ∈ ℕ. Observing that  

𝑧𝑛𝑝𝑛 ∈ 𝑃(𝑍(𝑀)), (𝑧𝑛𝑝𝑛) ↑ 1, 𝑥𝑧𝑛𝑝𝑛, 𝑦𝑧𝑛𝑝𝑛, (𝑥 + 𝑦)𝑧𝑛𝑝𝑛 ∈ 𝑆(𝑀), 𝑛 ∈ ℕ, 
we have 

𝛿(𝑥 + 𝑦) = 𝑡(𝑀) − lim
𝑛→∞

𝛿((𝑥 + 𝑦)𝑧𝑛𝑝𝑛) 

= (𝑡(𝑀) − lim
𝑛→∞

𝛿(𝑥𝑧𝑛𝑝𝑛)) + (𝑡(𝑀) − lim
𝑛→∞

𝛿(𝑦𝑧𝑛𝑝𝑛)) 

= 𝛿(𝑥) + 𝛿(𝑦). 
Similarly, 𝛿(𝜆𝑥) = 𝜆𝛿(𝑥), 𝜆 ∈ ℂ. Further, using convergences 

𝑥𝑧𝑛
𝑡(𝑀)
→  𝑥, 𝑦𝑝𝑛

𝑡(𝑀)
→  𝑦, 𝛿(𝑥𝑧𝑛)

𝑡(𝑀)
→  𝛿(𝑥), 𝛿(𝑦𝑝𝑛)

𝑡(𝑀)
→  𝛿(𝑦) 

and the inclusion 𝑥𝑦𝑧𝑛𝑝𝑛 ∈ 𝑆(𝑀), 𝑛 ∈ ℕ, we have 

𝛿(𝑥𝑦) = 𝑡(𝑀) − lim
𝑛→∞

𝛿(𝑥𝑦𝑧𝑛𝑝𝑛) = 𝑡(𝑀) − lim
𝑛→∞

𝛿((𝑥𝑧𝑛)(𝑦𝑝𝑛)) 
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= 𝑡(𝑀) − lim
𝑛→∞

(𝛿(𝑥𝑧𝑛)𝑦𝑝𝑛 + 𝑥𝑧𝑛𝛿(𝑦𝑛𝑝𝑛)) = 𝛿(𝑥)𝑦 + 𝑥𝛿(𝑦). 

Consequently, 𝛿: 𝐿𝑆(𝑀) → 𝐿𝑆(𝑀) is a derivation, in addition, 𝛿(𝑥) = 𝛿(𝑥) for all 𝑥 ∈
𝑆(𝑀). 
Assume that 𝛿1: 𝐿𝑆(𝑀) → 𝐿𝑆(𝑀) is also a derivation for which 𝛿1(𝑥) = 𝛿(𝑥) for all 𝑥 ∈

𝑆(𝑀). Let us show that 𝛿 = 𝛿1. 

If 𝑥 ∈ 𝐿𝑆(𝑀), 𝑧𝑛 ↑ 1, 𝑥𝑧𝑛 ∈ 𝑆(𝑀), 𝑛 ∈ ℕ, then, by Lemma (3.2.7) and Proposition (3.2.10) 

(i), we obtain 

𝛿(𝑥) = 𝑡(𝑀) − lim
𝑛→∞

𝛿(𝑥𝑧𝑛) = 𝑡(𝑀) − 𝑙𝑖𝑚
𝑛→∞

𝛿1(𝑥𝑧𝑛) 

= 𝑡(𝑀) − 𝑙𝑖𝑚
𝑛→∞

𝛿1(𝑥) 𝑧𝑛 = 𝛿1(𝑥). 

Now, we give the construction of extension of a derivation 𝛿:𝑀 → 𝐿𝑆(𝑀) up to a derivation 

�̂�: 𝑆(𝑀) → 𝐿𝑆(𝑀). For each 𝑥 ∈ 𝐿𝑆(𝑀) set 𝑠(𝑥):= 𝑙(𝑥) ∨ 𝑟(𝑥), where 𝑙(𝑥) is the left and 

𝑟(𝑥) is the right support of 𝑥. If 𝑥 = 𝑢|𝑥| is a polar decomposition of 𝑥 ∈ 𝐿𝑆(𝑁), then 𝑢 ∈
𝑀 [113] and, due to equalities 𝑙(𝑥) = 𝑢𝑢∗, 𝑟(𝑥) = 𝑢∗𝑢, we have 𝑙(𝑥) ∼ 𝑟(𝑥). We need the 

following lemma. 

Lemma (3.2.12)[104]: If 𝐷 is a dimension function of a von Neumann algebra 𝑀, then for 

any derivation 𝛿 from 𝑀 into 𝐿𝑆(𝑀) the following inequality 
𝐷(𝑠(𝛿(𝑥))) ≤ 3𝐷(𝑠(𝑥)) 

holds for all 𝑥 ∈ 𝑀. 

Proof. For 𝑥 ∈ 𝑀 we have 

𝑙(𝛿(𝑥)𝑠(𝑥)) ∼ 𝑟(𝛿(𝑥)𝑠(𝑥)) ≤ 𝑠(𝑥), 
𝑟(𝑥𝛿(𝑠(𝑥))) ∼ 𝑙(𝑥𝛿(𝑠(𝑥))) = 𝑙(𝑠(𝑥)𝑥𝛿(𝑠(𝑥))) ≤ 𝑠(𝑥), 

i.e. 

𝑙(𝛿(𝑥)𝑠(𝑥)) ≼ 𝑠(𝑥) 
and 

𝑟(𝑥𝛿(𝑠(𝑥))) ≼ 𝑠(𝑥), 
that implies the inequalities (see (D2), (D3)) 

𝐷(𝑙(𝛿(𝑥)𝑠(𝑥))) ≤ 𝐷(𝑠(𝑥)), 𝐷(𝑟(𝑥𝛿(𝑠(𝑥)))) ≤ 𝐷(𝑠(𝑥)). 
Since 

𝛿(𝑥) = 𝛿(𝑥𝑠(𝑥)) = 𝛿(𝑥)𝑠(𝑥) + 𝑥𝛿(𝑠(𝑥)), 
we have 

𝑠(𝛿(𝑥)) = 𝑠(𝛿(𝑥)𝑠(𝑥) + 𝑥𝛿(𝑠(𝑥))) ≤ 𝑠(𝑥) ∨ 𝑙(𝛿(𝑥)𝑠(𝑥)) ∨ 𝑟(𝑥𝛿(𝑠(𝑥))). 
Due to (D6), we have 

𝐷(𝑠(𝛿(𝑥))) ≤ 𝐷(𝑠(𝑥)) + 𝐷(𝑙(𝛿(𝑥)𝑠(𝑥))) + 𝐷(𝑟(𝑥𝛿(𝑠(𝑥)))) ≤ 3𝐷(𝑠(𝑥)). 
As in the definition of the topology 𝑡(𝑀), denote by 𝜑 a ∗-isomorphism from 𝑍(𝑀) onto 

the ∗-algebra 𝐿∞(Ω, Σ, 𝜇), where 𝜇 is a measure satisfying the direct sum property. By 

Proposition (3.2.2)(i), the convergence of the sequence of projections 𝑝𝑛
𝑡(𝑀)
→  0 is equivalent 

to existence of a sequence {𝑧𝑛} ⊂ 𝑃(𝑍(𝑀)) such that 𝑧𝑛𝑝𝑛 ∈ 𝑃𝑓𝑖𝑛(𝑀) for all 𝑛, 𝜑(𝑧𝑛
⊥)

𝑡(𝐿∞(Ω))
→      0 and 𝐷(𝑧𝑛𝑝𝑛)

𝑡(𝐿∞(Ω))
→      0. 

Lemma (3.2.13)[104]: If {𝑥𝑛}𝑛=1
∞ ⊂ 𝐿𝑆(𝑀), 𝑠(𝑥𝑛) ∈ 𝑃𝑓𝑖𝑛(𝑀), 𝐷(𝑠(𝑥𝑛))

𝑡(𝐿∞(Ω))
→      0, then 𝑥𝑛

𝑡(𝑀)
→  0. 

Proof. Taking 𝑧𝑛 = 1 for all 𝑛 ∈ ℕ, we have 

𝑧𝑛𝑠(𝑥𝑛) ∈ 𝑃𝑓𝑖𝑛(𝑀),𝜑(𝑧𝑛
⊥) = 0, 𝑛 ∈ ℕ, 

and 
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𝐷(𝑧𝑛𝑠(𝑥𝑛)) = 𝐷(𝑠(𝑥𝑛))
𝑡(𝐿∞(Ω))
→      0. 

Consequently, 𝑠(𝑥𝑛)
𝑡(𝑀)
→  0 (see Proposition 2.2(i)). 

Since 𝐸𝜆
⊥(|𝑥𝑛|) ≤ 𝑠(𝑥𝑛) for all 𝜆 > 0, 𝑛 ∈ ℕ, it follows 𝐸𝜆

⊥(|𝑥𝛼|)
𝑡(𝑀)
→  0, and therefore 𝑥𝑛

𝑡(𝑀)
→  0 .  

If 𝑝𝑛 ∈ 𝑃𝑓𝑖𝑛(𝑀) and 𝑝𝑛 ↓ 0, then 𝐷(𝑝𝑛) ∈ 𝐿+
0 (Ω, Σ, 𝜇) (see (D1)) and 𝐷(𝑝𝑛) ↓ 0 (see (D2) 

and D(7)), in particular, 𝐷(𝑝𝑛)
𝑡(𝐿∞(Ω))
→      0. Hence, Lemma (3.2.13) implies the following 

Corollary (3.2.14)[104]: If {𝑝𝑛}𝑛=1
∞ ⊂ 𝑃𝑓𝑖𝑛(𝑀), 𝑝𝑛 ↓ 0, then 𝑝𝑛

𝑡(𝑀)
→  0. 

Lemma(3.2.15)[104]: Let 𝑥 ∈ 𝑆(𝑀), 𝑝𝑛, 𝑞𝑛 ∈ 𝑃(𝑀), 𝑝𝑛 ↑ 1, 𝑞𝑛 ↑ 1, 𝑥𝑝𝑛, 𝑥𝑞𝑛 ∈

𝑀, 𝑝𝑛
⊥, 𝑞𝑛

⊥ ∈  𝑃𝑓𝑖𝑛(𝑀), 𝑛 ∈ ℕ. If 𝛿:𝑀 → 𝐿𝑆(𝑀) is a derivation, then there exists �̂�(𝑥) ∈

 𝐿𝑆(𝑀), such that 

𝑡(𝑀) − lim
𝑛→∞

𝛿(𝑥𝑝𝑛) = �̂�(𝑥) = 𝑡(𝑀) − lim
𝑛→∞

𝛿(𝑥𝑞𝑛) . 

Proof. For 𝑛 < 𝑚 we have 

𝑙(𝑥(𝑝𝑚 − 𝑝𝑛)) ∼ 𝑟(𝑥(𝑝𝑚 − 𝑝𝑛)) ≤ 𝑝𝑚 − 𝑝𝑛, 
and therefore, applying Lemma (3.2.12) and properties (D2), (D3), we obtain 

𝐷(𝑠(𝛿(𝑥𝑝𝑚 − 𝑥𝑝𝑛))) = 𝐷(𝑠(𝛿(𝑥(𝑝𝑚 − 𝑝𝑛)))) ≤ 3𝐷(𝑠(𝑥(𝑝𝑚 − 𝑝𝑛)))
≤ 3𝐷(𝑙(𝑥(𝑝𝑚 − 𝑝𝑛)) ∨ (𝑝𝑚 − 𝑝𝑛)) ≤ 6𝐷(𝑝𝑚 − 𝑝𝑛) ≤ 6𝐷(𝑝𝑛

⊥). 
Since 𝐷(𝑝𝑛

⊥) ∈ 𝐿+
0 (Ω, Σ, 𝜇) (see (D1)) and 𝐷(𝑝𝑛

⊥) ↓ 0 (see (D7)) it follows that 𝐷(𝑝𝑛
⊥)

𝑡(𝐿∞(Ω))
→      0 (see (D7)). Hence, 

𝐷(𝑠(𝛿(𝑥𝑝𝑚) − 𝛿(𝑥𝑝𝑛)))
𝑡(𝐿∞(Ω))
→      0 

for 𝑛,𝑚 →  ∞. By Lemma (3.2.13), we have that (𝛿(𝑥𝑝𝑚) − 𝛿(𝑥𝑝𝑛))
𝑡(𝑀)
→  0 for 𝑛,𝑚 →

∞, i.e. {𝛿(𝑥𝑝𝑛)}𝑛=1
∞  is a Cauchy sequence in (𝐿𝑆(𝑀), 𝑡(𝑀)). 

Consequently, there exists �̂�(𝑥) ∈ 𝐿𝑆(𝑀), such that 

𝑡(𝑀) − lim
𝑛→∞

𝛿(𝑥𝑝𝑛) = �̂�(𝑥). 

Let us show that 𝑡(𝑀) − 𝑙𝑖𝑚
𝑛→∞

𝛿(𝑥𝑞𝑛) = �̂�(𝑥). 

For each 𝑛 ∈ ℕ we have 

(𝑝𝑛 − 𝑞𝑛)((𝑝𝑛 − 𝑝𝑛 ∧ 𝑞𝑛) ∨ (𝑞𝑛 − 𝑝𝑛 ∧ 𝑞𝑛)) = 
= ((𝑝𝑛 − 𝑝𝑛 ∧ 𝑞𝑛) − (𝑞𝑛 − 𝑝𝑛 ∧ 𝑞𝑛))((𝑝𝑛 − 𝑝𝑛 ∧ 𝑞𝑛) ∨ (𝑞𝑛 − 𝑝𝑛 ∧ 𝑞𝑛)) 

= (𝑝𝑛 − 𝑝𝑛 ∧ 𝑞𝑛) − (𝑞𝑛 − 𝑝𝑛 ∧ 𝑞𝑛) = 𝑝𝑛 − 𝑞𝑛. 
Hence, 

𝑟(𝑝𝑛 − 𝑞𝑛) ≤ ((𝑝𝑛 − 𝑝𝑛 ∧ 𝑞𝑛) ∨ (𝑞𝑛 − 𝑝𝑛 ∧ 𝑞𝑛)). 
Since 

𝑟(𝑥(𝑝𝑛 − 𝑞𝑛)) ≤ 𝑟(𝑝𝑛 − 𝑞𝑛) 
and 

𝑙(𝑥(𝑝𝑛 − 𝑞𝑛)) ∼ 𝑟(𝑥(𝑝𝑛 − 𝑞𝑛)), 
it follows 

𝐷(𝑠(𝑥(𝑝𝑛 − 𝑞𝑛))) = 𝐷(𝑙(𝑥(𝑝𝑛 − 𝑞𝑛)) ∨ 𝑟(𝑥(𝑝𝑛 − 𝑞𝑛))) 
(𝐷6)
≤

𝐷(𝑙(𝑥(𝑝𝑛 − 𝑞𝑛))) + 𝐷(𝑟(𝑥(𝑝𝑛 − 𝑞𝑛))) = 2𝐷(𝑟(𝑥(𝑝𝑛 − 𝑞𝑛))) 

(𝐷6)
≤

2𝐷(𝑝𝑛 − 𝑝𝑛 ∧ 𝑞𝑛) + 2𝐷(𝑞𝑛 − 𝑝𝑛 ∧ 𝑞𝑛) ≤ 4𝐷(1 − 𝑝𝑛 ∧ 𝑞𝑛) 

= 4𝐷(𝑝𝑛
⊥ ∨ 𝑞𝑛

⊥) ≤ 4(𝐷(𝑝𝑛
⊥) + 𝐷(𝑞𝑛

⊥)). 
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Since (see Lemma (3.2.12)) 

𝐷(𝑠(𝛿(𝑥𝑝𝑛) − 𝛿(𝑥𝑞𝑛))) = 𝐷(𝑠(𝛿(𝑥(𝑝𝑛 − 𝑞𝑛))))  ≤ 3𝐷(𝑠(𝑥(𝑝𝑛 − 𝑞𝑛))), 
we have 

𝐷(𝑠(𝛿(𝑥𝑝𝑛) − 𝛿(𝑥𝑞𝑛))) ≤ 12(𝐷(𝑝𝑛
⊥) + 𝐷(𝑞𝑛

⊥)) ↓ 0. 
By Lemma (3.2.13), we obtain 

𝑡(𝑀) − lim
𝑛→∞

𝛿(𝑥𝑞𝑛) = 𝑡(𝑀) − 𝑙𝑖𝑚
𝑛→∞

𝛿(𝑥𝑝𝑛) = �̂�(𝑥). 

Now, equipped with Lemma (3.2.15), we may extend any derivation 𝛿:𝑀 → 𝐿𝑆(𝑀) up to a 

derivation �̂� from 𝑆(𝑀) into 𝐿𝑆(𝑀). 
For each 𝑥 ∈ 𝑆(𝑀) there exists a sequence {𝑝𝑛} ∈ 𝑃(𝑀), such that 𝑝𝑛 ↑ 1, 𝑝𝑛

⊥ ∈

 𝑃𝑓𝑖𝑛(𝑀), 𝑥𝑝𝑛 ∈ 𝑀 for all 𝑛 ∈ ℕ. By Lemma (3.2.12), there exists �̂�(𝑥) ∈ 𝐿𝑆(𝑀), such that 

𝑡(𝑀) − lim
𝑛→∞

𝛿(𝑥𝑝𝑛) = �̂�(𝑥). In addition, the definition of �̂�(𝑥) does not depend on a choice 

of sequence {𝑝𝑛}𝑛≥1 satisfying the above mentioned property, in particular, �̂�(𝑥) = 𝛿(𝑥) 
for all 𝑥 ∈ 𝑀 (in this case, 𝑝𝑛 = 1, 𝑛 ∈ ℕ). 

Proposition (3.2.16)[104]: The mapping �̂� is a unique derivation from 𝑆(𝑀) into 𝐿𝑆(𝑀), 

such that �̂�(𝑥) = 𝛿(𝑥) for all 𝑥 ∈ 𝑀. 

Proof. For 𝑥, 𝑦 ∈ 𝑆(𝑀) select 𝑝𝑛, 𝑞𝑛 ∈ 𝑃(𝑀), 𝑛 ∈ ℕ, such that 

𝑝𝑛 ↑ 1, 𝑞𝑛 ↑ 1, 𝑝𝑛
⊥ , 𝑞𝑛

⊥ ∈ 𝑃𝑓𝑖𝑛(𝑀), 𝑥𝑝𝑛, 𝑦𝑞𝑛 ∈ 𝑀 

for all 𝑛 ∈ ℕ. The sequence of projections 𝑒𝑛 = 𝑝𝑛 ∧ 𝑞𝑛 is increasing, and, in addition, 

𝑥𝑒𝑛 = 𝑥𝑝𝑛𝑒𝑛 ∈ 𝑀, 𝑦𝑒𝑛 = 𝑦𝑞𝑛𝑒𝑛 ∈ 𝑀, 
𝑒𝑛
⊥ = 𝑝𝑛

⊥ ∨ 𝑞𝑛
⊥ ∈ 𝑃𝑓𝑖𝑛(𝑀), 𝐷(𝑒𝑛

⊥) ≤ 𝐷(𝑝𝑛
⊥) + 𝐷(𝑞𝑛

⊥) ↓ 0. 

The last estimate implies the convergence 𝑒𝑛
⊥ ↓ 0 (see (D7)), or 𝑒𝑛 ↑ 1. 

By Lemma (3.2.15), we have 

�̂�(𝑥 + 𝑦) = 𝑡(𝑀) − lim
𝑛→∞

𝛿((𝑥 + 𝑦)𝑒𝑛) = 

= (𝑡(𝑀) − lim
𝑛→∞

𝛿(𝑥𝑒𝑛)) + (𝑡(𝑀) − lim
𝑛→∞

𝛿(𝑦𝑒𝑛)) =  �̂�(𝑥) + �̂�(𝑦). 

Similarly, �̂�(𝜆𝑥) = 𝜆�̂�(𝑥) for all 𝜆 ∈ ℂ.  

Let us show that �̂�(𝑥𝑦) = �̂�(𝑥)𝑦 + 𝑥�̂�(𝑦), 𝑥, 𝑦 ∈ 𝑆(𝑀). 
Due to polar decomposition 𝑦 = 𝑢|𝑦|, 𝑢∗𝑢 = 𝑟(𝑦), we have 𝑦𝑛 = 𝑦𝐸𝑛(|𝑦|) ∈ 𝑀 for all 𝑛 ∈
ℕ. Set 

𝑔𝑛 = 1 − 𝑟(𝐸𝑛
⊥(|𝑥|)𝑦𝑛), 𝑠𝑛 = 𝑔𝑛 ∧ 𝐸𝑛(|𝑦|). 

Since 

𝑔𝑛
⊥ = 𝑟(𝐸𝑛

⊥(|𝑥|)𝑦𝑛) ∼ 𝑙(𝐸𝑛
⊥ (|𝑥|)𝑦𝑛) ≤ 𝐸𝑛

⊥(|𝑥|), 
we obtain 

𝑔𝑛
⊥ ≼ 𝐸𝑛

⊥(|𝑥|). 
Since 𝑥 ∈ 𝑆(𝑀), there exists 𝑛0 ∈ ℕ such that 𝐸𝑛

⊥ (|𝑥|) ∈ 𝑃𝑓𝑖𝑛(𝑀) for all 𝑛 ≥ 𝑛0, and 

therefore 𝑔𝑛
⊥ ∈ 𝑃𝑓𝑖𝑛(𝑀) for all 𝑛 ≥ 𝑛0. The equality 

𝑦𝑛𝑔𝑛 = 𝐸𝑛(|𝑥|)𝑦𝑛𝑔𝑛 + 𝐸𝑛
⊥ (|𝑥|)𝑦𝑛𝑔𝑛 = 𝐸𝑛(|𝑥|)𝑦𝑛𝑔𝑛 

implies that 

𝐸𝑛+1
⊥ (|𝑥|)𝑦𝑛+1𝑠𝑛 = 𝐸𝑛+1

⊥ (|𝑥|)𝐸𝑛
⊥(|𝑥|𝑦𝑛+1𝐸𝑛(|𝑦|))𝑠𝑛 = 

= 𝐸𝑛+1
⊥ + 1(|𝑥|)(𝐸𝑛

⊥(|𝑥|)𝑦𝑛𝐸𝑛(|𝑦|))𝑠𝑛 = 
= 𝐸𝑛+1

⊥ (|𝑥|)(𝐸𝑛
⊥(|𝑥|)𝑦𝑛𝑠𝑛) = 𝐸𝑛+1

⊥ (|𝑥|)(𝐸𝑛
⊥(|𝑥|)𝑦𝑛𝑔𝑛)𝑠𝑛 = 0, 

in particular, 

𝑠𝑛 ≤ 1 − 𝑟(𝐸𝑛+1
⊥ (|𝑥|)𝑦𝑛+1) = 𝑔𝑛+1 
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for all 𝑛 ∈ ℕ. From here and from the inequalities 𝑠𝑛 ≤ 𝐸𝑛(|𝑦|) ≤ 𝐸𝑛+1(|𝑦|) it follows that 

𝑠𝑛 ≤ 𝑠𝑛+1. 

Since 𝑦 ∈ 𝑆(𝑀), we have 𝐸𝑛
⊥(|𝑦|) ∈ 𝑃𝑓𝑖𝑛(𝑀) for 𝑛 ≥ 𝑛1 for some 𝑛1 ≥ 𝑛0. Hence, 

𝑠𝑛
⊥ = 𝑔𝑛

⊥ ∨ 𝐸𝑛
⊥(|𝑦|) ∈ 𝑃𝑓𝑖𝑛(𝑀) 

for 𝑛 ≥ 𝑛1 and 

𝐷(𝑠𝑛
⊥) ≤ 𝐷(𝑔𝑛

⊥) + 𝐷(𝐸𝑛
⊥(|𝑦|)) ≤ (𝐷(𝐸𝑛

⊥(|𝑥|)) + 𝐷(𝐸𝑛
⊥(|𝑦|))) ↓ 0, 

i.e. 𝑠𝑛
⊥ ↓ 0 or 𝑠𝑛 ↑ 1. 

Using Corollary (4.2.14), Lemma (3.2.15), the inclusions 𝑥𝐸𝑛(|𝑥|) ∈ 𝑀, 𝑦𝐸𝑛(|𝑦|) ∈ 𝑀 and 

equalities 

𝑥𝑦𝑠𝑛 = 𝑥𝑦𝐸𝑛(|𝑦𝑛|)𝑠𝑛 = 𝑥𝑦𝑛𝑠𝑛 = 𝑥𝑦𝑛𝑔𝑛𝑠𝑛 = 
= 𝑥𝐸𝑛(|𝑥|)𝑦𝑛𝑞𝑛𝑠𝑛 = 𝑥𝐸𝑛(|𝑥|)𝑦𝐸𝑛(|𝑦|)𝑠𝑛, 

we obtain 

�̂�(𝑥𝑦) = 𝑡(𝑀) − lim
𝑛→∞

𝛿(𝑥𝑦𝑠𝑛) = 𝑡(𝑀) − lim
𝑛→∞

𝛿(𝑥𝐸𝑛(|𝑥|)𝑦𝐸𝑛(|𝑦|𝑠𝑛)) = 

= 𝑡(𝑀) − lim
𝑛→∞

(𝛿(𝑥𝐸𝑛(|𝑥|))𝑦𝑠𝑛 + 𝑥𝐸𝑛(|𝑥|)𝛿(𝑦𝑠𝑛)) = 

= (𝑡(𝑀) − lim
𝑛→∞

𝛿(𝑥𝐸𝑛(|𝑥|))) · (𝑡(𝑀) − lim
𝑛→∞

𝑦𝑠𝑛) + 

+(𝑡(𝑀) − lim
𝑛→∞

𝑥𝐸𝑛(|𝑥|)) · (𝑡(𝑀)  − lim
𝑛→∞

𝛿(𝑦𝑠𝑛)) = �̂�(𝑥)𝑦 + 𝑥�̂�(𝑦). 

Consequently, �̂�: 𝑆(𝑀) → 𝐿𝑆(𝑀) is a derivation, such that �̂�(𝑥) = 𝛿(𝑥) for all 𝑥 ∈ 𝑀.  

Let 𝛿1: 𝑆(𝑀) → 𝐿𝑆(𝑀) also be a derivation, for which 𝛿1(𝑥) = 𝛿(𝑥) for all 𝑥 ∈ 𝑀. If 𝑥 ∈
𝑆(𝑀), then 𝐸𝑛(|𝑥|) ↑ 1, 𝑥𝐸𝑛(|𝑥|) ∈ 𝑀, 𝑛 ∈ ℕ, 𝐸𝑛

⊥(|𝑥|) ∈ 𝑃𝑓𝑖𝑛(𝑀) for all 𝑛 ≥ 𝑛3 for some 

𝑛3 ∈ ℕ. 

Hence, 𝐸𝑛(|𝑥|)
𝑡(𝑀)
→  1 (see Corollary 3.2.14). Since (𝐿𝑆(𝑀), 𝑡(𝑀)) is a topological algebra, 

it follows that 

𝛿1(𝑥) = 𝑡(𝑀) − lim
𝑛→∞

𝛿1(𝑥)𝐸𝑛(|𝑥|) = 

= (𝑡(𝑀) − lim
𝑛→∞

𝛿1(𝑥𝐸𝑛(|𝑥|))) − (𝑡(𝑀) − lim
𝑛→∞

𝑥𝛿1(𝐸𝑛(|𝑥𝑛|))) = 

= (𝑡(𝑀) − 𝑙𝑖𝑚
𝑛→∞

𝛿(𝑥𝐸𝑛(|𝑥|))) − (𝑡(𝑀) − 𝑙𝑖𝑚
𝑛→∞

𝑥𝛿(𝐸𝑛(|𝑥𝑛|))) = 

= �̂�(𝑥) − 𝑥(𝑡(𝑀) − 𝑙𝑖𝑚
𝑛→∞

𝛿(𝐸𝑛(|𝑥𝑛|))). 

Since 𝛿(1) = 0, 𝑠(𝑥) = 𝑠(−𝑥) for 𝑥 ∈ 𝐿𝑆(𝑀), it follows via Lemma (3.2.12), that 

𝐷(𝑠(𝛿(𝐸𝑛(|𝑥|))))  = 𝐷(𝑠(𝛿(−𝐸𝑛(|𝑥|))))  = 
= 𝐷(𝑠(𝛿(1 − 𝐸𝑛(|𝑥|)))) ≤ 3𝐷(𝐸𝑛

⊥(|𝑥|)) ↓ 0. 

By Lemma (3.2.13), we obtain 𝛿(𝐸𝑛(|𝑥|))
𝑡(𝑀)
→  0, that implies the equality 𝛿1(𝑥) = �̂�(𝑥).  

Propositions (3.2.11) and (3.2.16) imply the following theorem. 

Theorem (3.2.17)[104]: Let 𝐴 be a subalgebra of 𝐿𝑆(𝑀),𝑀 ⊂ 𝐴 and let 𝛿: 𝐴 → 𝐿𝑆(𝑀) be 

a derivation. Then there exists a unique derivation 𝛿𝐴: 𝐿𝑆(𝑀) → 𝐿𝑆(𝑀) such that 𝛿𝐴(𝑥) =
𝛿(𝑥) for all 𝑥 ∈ 𝐴. 

Proof. Since 𝑀 ⊂ 𝐴, the restriction 𝛿0 of the derivation 𝛿 on 𝑀 is a well-defined derivation 

from 𝑀 into 𝐿𝑆(𝑀). Hence, by Propositions (3.2.11) and (3.2.16), the mapping 𝛿𝐴 = �̂̃� is a 

unique derivation from 𝐿𝑆(𝑀) into 𝐿𝑆(𝑀) such that 𝛿𝐴(𝑥) = 𝛿0(𝑥) for all 𝑥 ∈ 𝑀. Let us 

show that 𝛿𝐴(𝑎) = 𝛿(𝑎) for every 𝑎 ∈ 𝐴. If 𝑎 ∈ 𝐴, then there exists a sequence {𝑧𝑛}𝑛=1
∞ ⊂

𝑃(𝑍(𝑀)), such that 𝑧𝑛 ↑ 1 and 𝑎𝑧𝑛 ∈ 𝑆(𝑀), 𝑛 ∈ ℕ. Since 𝑧𝑛
𝑡(𝑀)
→  1 (see Proposition 

(3.2.10)(i)), we have, by Lemma (3.2.7), 
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𝛿𝐴(𝑎) = 𝑡(𝑀) − lim
𝑛→∞

𝛿𝐴(𝑎) 𝑧𝑛 = 𝑡(𝑀) − lim
𝑛→∞

𝛿𝐴(𝑎𝑧𝑛) , 

and, similarly,𝛿(𝑎) = 𝑡(𝑀) − 𝑙𝑖𝑚
𝑛→∞

𝛿(𝑎𝑧𝑛). 

Using the equality 𝛿𝐴(𝑥) =  𝛿0(𝑥) = 𝛿(𝑥) for each 𝑥 ∈ 𝑀, and following the proof of 

uniqueness of the derivation �̂� from Proposition (3.2.16), we obtain 𝛿𝐴(𝑎𝑧𝑛) =  𝛿(𝑎𝑧𝑛) for 

all 𝑛 ∈ ℕ, that implies the equality 𝛿𝐴(𝑎) = 𝛿(𝑎).  
The following corollary immediately follows from Theorems (3.2.9) and (3.2.17).  

Corollary (3.2.18)[104]: Let 𝑀 be a properly infinite von Neumann algebra, 𝐴 is a 

subalgebra in 𝐿𝑆(𝑀) and 𝑀 ⊂ 𝐴. Then any derivation 𝛿: 𝐴 → 𝐿𝑆(𝑀) is continuous with 

respect to the local measure topology 𝑡(𝑀). 
In particular, Corollary (3.2.18) implies that for a properly infinite von Neumann algebra 𝑀 

any derivation 𝛿: 𝑆(𝑀) → 𝑆(𝑀) is 𝑡(𝑀)-continuous. Note, that in case, when 𝑀 is of type 

𝐼∞, any derivation of 𝑆(𝑀) is inner [105], and therefore is automatically continuous with 

respect to the topology 𝑡(𝑀). 
Let 𝑀 be a semifinite von Neumann algebra acting on Hilbert space 𝐻, 𝜏 be a faithful 

normal semifinite trace on 𝑀. An operator 𝑥 ∈ 𝑆(𝑀) with domain 𝐷(𝑥) is called 𝜏-

measurable if for any 𝜀 > 0 there exists a projection 𝑝 ∈ 𝑃(𝑀) such that 𝑝(𝐻) ⊂ 𝔇(𝑥) and 

𝜏(𝑝⊥) <∞. 

The set 𝑆(𝑀, 𝜏) of all 𝜏-measurable operators is a ∗-subalgebra of 𝑆(𝑀) such that 𝑀 ⊂
𝑆(𝑀, 𝜏). If the trace 𝜏 is finite, then 𝑆(𝑀, 𝜏) = 𝑆(𝑀). The algebra 𝑆(𝑀, 𝜏) is a 

noncommutative version of the algebra of all measurable complex functions 𝑓 defined on 

(Ω, Σ, 𝜇), for which 𝜇({|𝑓| > 𝜆}) → 0 for 𝜆 →∞. For each 𝑥 ∈ 𝑆(𝑀, 𝜏) it is possible to 

define the generalized singular value function 

𝜇𝑡(𝑥) = inf {𝜆 > 0: 𝜏(𝐸𝜆
⊥(|𝑥|) < 𝑡} = inf {‖𝑥(1 − 𝑒)‖𝑀: 𝑒 ∈ 𝑃(𝑀), 𝜏(𝑒) < 𝑡}, 

which allows to define and study a noncommutative version of rearrangement invariant 

function spaces. For the theory of the latter spaces, See [16], [111]. 

Let 𝑡𝜏 be the measure topology [52] on 𝑆(𝑀, 𝜏), whose base of neighborhoods of zero is 

given by 𝑈(𝜀, 𝛿) = {𝑥 ∈ 𝑆(𝑀, 𝜏): ∃𝑝 ∈ 𝑃(𝑀), 𝜏(𝑝⊥) ≤ 𝛿, 𝑥𝑝 ∈ 𝑀, ‖𝑥𝑝‖𝑀 ≤ 𝜀}, 𝜀 >
0, 𝛿 > 0. 
The pair (𝑆(𝑀, 𝜏), 𝑡𝜏) is a complete metrizable topological ∗-algebra. 

Here, the topology 𝑡𝜏 majorizes the topology 𝑡(𝑀) on 𝑆(𝑀, 𝜏) and, if 𝜏 is a finite trace, the 

topologies 𝑡𝜏 and 𝑡(𝑀) coincide [113]. 

However, if 𝜏(1) =∞, then on (𝑆(𝑀, 𝜏), 𝑡𝜏) topologies 𝑡𝜏 and 𝑡(𝑀) do not coincide in 

general [109]. For example, when 𝑀 = 𝐿∞(Ω, Σ, 𝜇), 𝜏(𝑓) = ∫ 𝑓𝑑𝜇
Ω

, 𝑓 ∈  𝐿+
∞(Ω), where 𝜇 

is a 𝜎-finite measure, 𝜇(Ω) =∞, the topology 𝑡𝜏 in 𝑆(𝐿∞(Ω), 𝜏) coincide with the topology 

of convergence in measure 𝜇, and the topology 𝑡(𝐿∞(Ω)) is the topology of convergence 

locally in measure 𝜇, in particular, if 𝐴𝑛 ∈ Σ, 𝜇(𝐴𝑛) =∞, 𝑛 ∈ ℕ and 𝜒𝐴𝑛 ↓ 0, then 𝜒𝐴𝑛
𝑡(𝐿∞(Ω))
→      0, whereas 𝜒𝐴𝑛   

𝑡𝜏
↛
    0. See the detailed comparison of topologies 𝑡𝜏 and 𝑡(𝑀) in 

[109]. 

It is proved in [108] that in a properly infinite von Neumann algebra 𝑀 any derivation 

𝛿: 𝑆(𝑀, 𝜏) → 𝑆(𝑀, 𝜏) is continuous with respect to the topology 𝑡𝜏. Corollary (3.2.18) 

implies that, in this case, derivation 𝛿 ∶ 𝑆(𝑀, 𝜏) → 𝑆(𝑀, 𝜏) is continuous with respect to the 

topology 𝑡(𝑀) too. 

Now, we give an application of Theorem (3.2.17) to derivations defined on absolutely solid 

∗-subalgebras of the algebra 𝐿𝑆(𝑀). 
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Recall [106], that a ∗-subalgebra 𝐴 of 𝐿𝑆(𝑀) is called absolutely solid if conditions 𝑥 ∈
𝐿𝑆(𝑀), 𝑦 ∈ 𝐴, |𝑥| ≤ |𝑦| imply that 𝑥 ∈ 𝐴. In [106] it is proved that, if 𝛿 is a derivation on 

absolutely solid ∗-subalgebra 𝐴 ⊃ 𝑀 and 𝛿(𝑥) =  [𝑤, 𝑥] for all 𝑥 ∈ 𝐴 and some 𝑤 ∈
𝐿𝑆(𝑀), then there exists 𝑤1 ∈ 𝐴, such that 𝛿(𝑥) = [𝑤1, 𝑥] for all 𝑥 ∈ 𝐴, i.e. the derivation 

𝛿 is inner on the ∗-subalgebra 𝐴. This observation and Theorem (3.2.17) yield our final 

result 

Corollary (3.2.19)[104]: Suppose that all derivations on the algebra 𝐿𝑆(𝑀) are inner and 

let 𝐴 ⊃ 𝑀 be an absolutely solid ∗-subalgebra of 𝐿𝑆(𝑀). Then all derivations on 𝐴 are inner. 

In particular, any derivation on the algebras 𝑆(𝑀) and 𝑆(𝑀, 𝜏) are inner. 

The result of Corollary (3.2.19) extends and generalizes [105] and [106]. Note, that the 

conditions of Corollary (3.2.19) hold, in particular, for properly infinite von Neumann 

algebras, which do not have direct summand of type 𝐼𝐼∞ [2], [105], [106].  

Corollary (3.2.20)[301]: If 𝑥𝛼 ∈  𝐿𝑆(𝑀), 0 ≠ 𝑥 + 2𝜖 ∈ 𝑃(𝑍(𝑀)), then 

(𝑥 + 2𝜖)𝑥𝛼
𝑡(𝑀)
→  0 ⟺ (𝑥 + 2𝜖)𝑥𝛼

𝑡((𝑥+2𝜖)𝑀)
→        0. 

Proof. Fix a ∗-isomorphism 𝜑: 𝑍(𝑀) → 𝐿∞(Ω, Σ, 𝜇) and 0 ≠ 𝑥 + 2𝜖 ∈ 𝑃(𝑍(𝑀)). Let 𝐸 ∈
Σ be such that 𝜑(𝑥 + 2𝜖) = 𝜒𝐸. Define the mapping 

𝜓: 𝑍((𝑥 + 2𝜖)𝑀) = (𝑥 + 2𝜖)𝑍(𝑀) → 𝐿∞(𝐸, Σ𝐸 , 𝜇|𝐸) 
by setting 

𝜓((𝑥 + 2𝜖)𝑎) = 𝜑((𝑥 + 2𝜖)𝑎)|𝐸 , 𝑓𝑜𝑟 𝑎 ∈ 𝑍(𝑀). 
Here, Σ𝐸: = {𝐴 ∩ 𝐸: 𝐴 ∈ Σ} and 𝜇|𝐸 is the restriction of 𝜇 to Σ𝐸. 

It is clear that 𝜓 is a ∗-isomorphism. Now define 𝐷𝑥+2𝜖: 𝑃((𝑥 + 2𝜖)𝑀) → 𝐿+(𝐸, Σ𝐸 , 𝜇|𝐸) 
by setting 𝐷𝑥+2𝜖(𝑞) = 𝐷(𝑞)|𝐸 for 𝑞 ∈ 𝑃((𝑥 + 2𝜖)𝑀). It is straightforward that 𝐷𝑥+2𝜖 is a 

dimension function on 𝑃((𝑥 + 2𝜖)𝑀). 
Let {𝑞𝛼}𝛼∈𝐴 ⊂ 𝑃((𝑥 + 2𝜖)𝑀). We claim 

𝑞𝛼
𝑡(𝑀)
→  0 ⟺ 𝑞𝛼

𝑡((𝑥+2𝜖)𝑀)
→        0. 

To see the claim, assume that the first convergence holds and observe that by Proposition 

(3.2.2)(i), there exists a net {𝑥𝛼 + 2𝜖}𝛼∈𝐴 ⊂ 𝑃(𝑍(𝑀)) such that (𝑥𝛼 + 2𝜖)𝑞𝛼 ∈ 𝑃𝑓𝑖𝑛(𝑀) for 

any 𝛼 ∈ 𝐴,𝜑((𝑥𝛼
 + 2𝜖)⊥)

𝑡(𝐿∞(Ω))
→      0, and 𝐷((𝑥𝛼 + 2𝜖)𝑞𝛼)

𝑡(𝐿∞(Ω))
→      0. The projection 𝑟𝛼 =

(𝑥 + 2𝜖)(𝑥𝛼 + 2𝜖) belongs to the center 𝑍((𝑥 + 2𝜖)𝑀) of the von Neumann algebra (𝑥 +
2𝜖)𝑀, and 𝑟𝛼𝑞𝛼 = (𝑥𝛼 + 2𝜖)𝑞𝛼 is a finite projection in (𝑥 + 2𝜖)𝑀 for each 𝛼 ∈ 𝐴. Also 

𝜓(𝑥 + 2𝜖 − 𝑟𝛼) = 𝜓((𝑥 + 2𝜖)(1 − (𝑥𝛼 + 2𝜖))) = 𝜑((𝑥 + 2𝜖)(𝑥𝛼
 + 2𝜖)⊥)|𝐸

= 𝜑(𝑥 + 2𝜖)𝜑((𝑥𝛼
 + 2𝜖)⊥)|𝐸

𝑡(𝐿∞(𝐸))
→     0, 

where 𝑡(𝐿∞(𝐸)) is the local measure topology on 𝐿0(𝐸, Σ𝐸 , 𝜇|𝐸), and 

𝐷𝑥+2𝜖(𝑟𝛼𝑞𝛼) = 𝐷𝑥+2𝜖((𝑥𝛼 + 2𝜖)𝑞𝛼) = 𝐷((𝑥𝛼 + 2𝜖)𝑞𝛼)|𝐸
𝑡(𝐿∞(𝐸))
→     0. 

Hence, by Proposition (3.2.2) (i) we get that 𝑞
𝑡((𝑥+2𝜖)𝑀)
→        0. 

We will show now that the convergence 𝑞𝛼
𝑡((𝑥+2𝜖)𝑀)
→        0 for {𝑞𝛼}𝛼∈𝐴 ⊂ 𝑃((𝑥 + 2𝜖)𝑀) 

implies the convergence 𝑞𝛼
𝑡(𝑀)
→  0. 

Let {𝑟𝛼}𝛼∈𝐴 be a net in 𝑃(𝑍((𝑥 + 2𝜖)𝑀)) such that 𝑟𝛼𝑞𝛼 ∈ 𝑃𝑓𝑖𝑛((𝑥 + 2𝜖)𝑀) for every 𝛼 ∈

 𝐴, 

𝜓(𝑥 + 2𝜖 − 𝑟𝛼)
𝑡(𝐿∞(𝐸))
→     0 

and 

𝐷𝑥+2𝜖(𝑟𝛼𝑞𝛼)
𝑡(𝐿∞(𝐸))
→     0. 
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Put (𝑥𝛼 + 2𝜖) = (𝑥 + 2𝜖)⊥ + 𝑟𝛼. Then (𝑥𝛼 + 2𝜖) ∈ 𝑃(𝑍(𝑀)) and (𝑥𝛼 + 2𝜖)𝑞𝛼 = 𝑟𝛼𝑞𝛼 ∈
𝑃𝑓𝑖𝑛(𝑀). 

Since (𝑥𝛼
 + 2𝜖)⊥ = (𝑥 + 2𝜖)(1 − 𝑟𝛼), we have 𝜑((𝑥𝛼

 + 2𝜖)⊥) = 𝜒𝐸𝜑((𝑥𝛼
 + 2𝜖)⊥) and 

𝜑((𝑥𝛼
 + 2𝜖)⊥)|𝐸 = 𝜒𝐸𝜑((𝑥 + 2𝜖)(1 − 𝑟𝛼))|𝐸 = 𝜒𝐸𝜓(𝑥 + 2𝜖 − 𝑟𝛼)

𝑡(𝐿∞(𝐸))
→     0. 

Also 

𝐷((𝑥𝛼 + 2𝜖)𝑞𝛼) = 𝐷((𝑥 + 2𝜖)𝑟𝛼𝑞𝛼) = 𝜒𝐸𝐷(𝑟𝛼𝑞𝛼), 

and so 𝐷((𝑥𝛼 + 2𝜖)𝑞𝛼)
𝑡(𝐿∞(Ω))
→      0, since 𝐷(𝑟𝛼𝑞𝛼)|𝐸 = 𝐷𝑥+2𝜖(𝑟𝛼𝑞𝛼)

𝑡(𝐿∞(𝐸))
→     0. Again 

appealing to Proposition (3.2.2)(i), we conclude that 𝑞𝛼
𝑡(𝑀)
→  0. 

Now let {𝑥𝛼} ⊂ 𝐿𝑆((𝑥 + 2𝜖)𝑀) and 𝑥𝛼
𝑡(𝑀)
→  0. By Proposition (3.2.2) (ii), we have 

that 𝐸𝜆
⊥(|𝑥𝛼|)

𝑡(𝑀)
→  0 for any 𝜆 > 0, where {𝐸𝜆(|𝑥𝛼|)} is the spectral family for |𝑥𝛼|. Denote 

by {𝐸𝜆
𝑥+2𝜖(|𝑥𝛼|)} the family of spectral projections for |𝑥𝛼| in 𝐿𝑆((𝑥 + 2𝜖)𝑀), 𝜆 > 0. It is 

clear that 𝐸𝜆(|𝑥𝛼|) = (𝑥 + 2𝜖)⊥ + 𝐸𝜆
𝑥+2𝜖(|𝑥𝛼|) and 𝐸𝜆

⊥(|𝑥𝛼|) = 𝑥 + 2𝜖 − 𝐸𝜆
𝑥+2𝜖(|𝑥𝛼|) for 

all 𝜆 > 0. It follows from above that 𝑥 + 2𝜖 − 𝐸𝜆
𝑥+2𝜖(|𝑥𝛼|)

𝑡((𝑥+2𝜖)𝑀)
→        0 for all 𝜆 > 0. 

Hence, by Proposition (3.2.2)(ii), it follows that 𝑥𝛼
𝑡((𝑥+2𝜖)𝑀)
→        0.  

The proof of the implication 𝑥𝛼
𝑡((𝑥+2𝜖)𝑀)
→        0 ⟹ 𝑥𝛼

𝑡(𝑀)
→  0 is similar and therefore 

omitted. 

Corollary (3.2.21)[301]: (See [104]) For a net {𝑓𝛼}𝛼∈𝐴 and 𝑓 from 𝐿0(Ω, Σ, 𝜇) the following 

conditions are equivalent: 

(i). 𝑓𝛼
𝑡(𝐿∞(Ω))
→      𝑓; 

(ii). 𝑓𝛼𝜒𝐴𝑖
𝑡(𝐿∞(𝐴𝑖))
→      𝑓𝛼𝐴𝑖  for all 𝑖 ∈ 𝐼. 

Proof. The implication (i) ⇒ (ii) follows from the definitions of topologies 𝑡(𝐿∞(Ω)) and 

𝑡(𝐿∞(𝐴𝑖)). 
(ii) ⇒ (i). It is sufficient to consider the case when 𝑓 = 0. 

Consider the set Γ of all finite subsets 𝛾 from 𝐼 and order it with respect to inclusion. 

Consider an increasing net 𝜒𝐷𝛾 ↑ 𝜒Ω in 𝐿ℎ
0 (Ω, Σ, 𝜇), where 𝐷𝛾 = ⋃ 𝐴𝑖𝑖∈𝛾 , 𝛾 ∈ Γ. Take an 

arbitrary neighborhood of zero 𝑈 (in the topology (𝐿∞(Ω)) ) and select 𝑊(𝐵, 𝜀, 𝛿) in such 

a way that 𝑊(𝐵, 𝜀, 𝛿) +𝑊(𝐵, 𝜀, 𝛿) ⊂ 𝑈. Since 𝜇(𝐵 ∩ 𝐷𝜆) ↑ 𝜇(𝐵) <∞, we can locate such 

𝛾0 ∈ Γ that 𝜇(𝐵 \ 𝐷𝛾0) ≤ 𝛿. Hence, 𝑓𝛼𝜒Ω\𝐷𝛾0 ∈ 𝑊(𝐵, 𝜀, 𝛿) for all 𝛼 ∈ 𝐴. 

Since 𝑓𝛼𝜒𝐴𝑖
𝑡(𝐿∞(𝐴𝑖))
→      0 for all 𝑖 ∈ 0 and 0 is a finite set, it follows 𝑓𝛼𝜒𝐷𝛾0 =

∑ 𝑓𝛼𝜒𝐴𝑖𝑖∈𝛾0

𝑡(𝐿∞(Ω))
→      0.  

Thus, there exists such 𝛼0 ∈ 𝐴 that 𝑓𝛼𝜒𝐷𝛾0 ∈ 𝑊(𝐵, 𝜀, 𝛿) for all 𝛼 ≥ 𝛼0. 

In particular, 

𝑓𝛼 = 𝑓𝛼𝜒𝐷𝛾0 + 𝑓𝛼𝜒Ω\𝐷𝛾0 ∈ 𝑊(𝐵, 𝜀, 𝛿) +𝑊(𝐵, 𝜀, 𝛿) ⊂ 𝑈, ∀𝛼 ≥ 𝛼0, 

which implies the convergence 𝑓𝛼
𝑡(𝐿∞(Ω))
→      0.  

Corollary (3.2.22)[301]: If 𝑃(𝑍(𝑀)) ⊂ 𝐴, 𝛿 is a derivation on 𝐴 and (𝑥 + 2𝜖) ∈ 𝑃(𝑍(𝑀)), 
then 𝛿(𝑥 + 2𝜖) = 0 and 𝛿((𝑥 + 2𝜖)𝑥) = (𝑥 + 2𝜖)𝛿(𝑥) for all 𝑥 ∈ 𝐴. 

Proof. We have that 𝛿(𝑥 + 2𝜖) = 𝛿((𝑥 + 2𝜖)2) = 𝛿(𝑥 + 2𝜖)(𝑥 + 2𝜖) + (𝑥 + 2𝜖)𝛿(𝑥 +
2𝜖) = 2(𝑥 + 2𝜖)𝛿(𝑥 + 2𝜖). Hence, (𝑥 + 2𝜖)𝛿(𝑥 + 2𝜖) =  (𝑥 + 2𝜖)(2(𝑥 + 2𝜖)𝛿(𝑥 +
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2𝜖)) = 2(𝑥 + 2𝜖)𝛿(𝑥 + 2𝜖), that is (𝑥 + 2𝜖)𝛿(𝑥 + 2𝜖) = 0. Therefore, we have 𝛿(𝑥 +
2𝜖) = 0. In particular, 𝛿((𝑥 + 2𝜖)𝑥) = 𝛿(𝑥 + 2𝜖)𝑥 + (𝑥 + 2𝜖)𝛿(𝑥) = (𝑥 + 2𝜖)𝛿(𝑥).  
Corollary (3.2.23)[301]: If 𝑀 properly infinite von Neumann algebras, then any derivation 

𝛿: 𝐿𝑆(𝑀) → 𝐿𝑆(𝑀) is continuous with respect to the topology 𝑡(𝑀) of local convergence 

in measure. 

Proof. By Lemma (3.2.8), we may assume that 𝛿∗ = 𝛿. Since 𝑍(𝑀) is a commutative von 

Neumann algebra, there exists a system {𝑥𝑖 + 2𝜖}, 𝑖 ∈ 𝐼 of non-zero pairwise orthogonal 

projections from 𝑍(𝑀) such that sup𝑖∈𝐼𝑥𝑖 + 2𝜖 = 1 and the Boolean algebra 𝑃((𝑥𝑖 +
2𝜖)𝑍(𝑀)) has a countable type for all 𝑖 ∈  𝐼. By Corollary (3.2.22) we have that 𝛿((𝑥𝑖 +
2𝜖)𝑥) = (𝑥𝑖 + 2𝜖)𝛿(𝑥) for all 𝑥 ∈ 𝐿𝑆(𝑀), 𝑖 ∈ 𝐼. Therefore, by Corollary 2.8, it is sufficient 

to prove that each derivation 𝛿𝑥𝑖+2𝜖  is 𝑡((𝑥𝑖 + 2𝜖)𝑀)-continuous, 𝑖 ∈ 𝐼. Thus, we may 

assume without loss of generality that the Boolean algebra 𝑃(𝑍(𝑀)) has a countable type. 

In this case the topology 𝑡(𝑀) is metrizable, and the sets 𝑉(Ω, 1/𝑛, 1/𝑛), 𝑛 ∈ ℕ form 

a countable base of neighborhoods of 0; in particular, (𝐿𝑆(𝑀), 𝑡(𝑀)) is an 𝐹-space. 

Therefore it is sufficient to show that the graph of the linear operator 𝛿 is a closed set. 

Arguing by a contradiction, let us assume that the graph of 𝛿 is not closed. This means 

that there exists a sequence {𝑥𝑛} ⊂ 𝐿𝑆(𝑀), such that 𝑥𝑛
𝑡(𝑀)
→  0 and 𝛿(𝑥𝑛)

𝑡(𝑀)
→  𝑥 ≠ 0. 

Recalling that (𝐿𝑆(𝑀), 𝑡(𝑀)) is a topological ∗-algebra and that 𝛿 = 𝛿∗, we may assume 

that 𝑥 = 𝑥∗, 𝑥𝑛 = 𝑥𝑛
∗  for all 𝑛 ∈ ℕ. In this case, 𝑥 = 𝑥+ − 𝑥−, where 𝑥+, 𝑥− ∈ 𝐿𝑆+(𝑀) are 

respectively the positive and negative parts of 𝑥. Without loss of generality, we shall also 

assume that 𝑥+ ≠ 0, otherwise, instead of the sequence {𝑥𝑛} we consider the sequence 

{−𝑥𝑛}. Let us select scalars 0 < 𝜆1 < 𝜆2 so that the projection 
𝑞 + 𝜖:= 𝐸𝜆2(𝑥) − 𝐸𝜆1(𝑥) 

does not vanish. We have that 0 < 𝜆1(𝑞 + 𝜖) ≤ (𝑞 + 𝜖)𝑥(𝑞 + 𝜖) = (𝑞 + 𝜖)𝑥 ≤ 𝜆2(𝑞 + 𝜖) 
and ‖(𝑞 + 𝜖)𝑥‖𝑀 ≤ 𝜆2. Replacing, if necessary, 𝑥𝑛 on 𝑥𝑛/𝜆1, we may assume that 

(𝑞 + 𝜖)𝑥(𝑞 + 𝜖) ≥ (𝑞 + 𝜖).                                                                        (42) 
By the assumption, 𝑀 is a properly infinite von Neumann algebra and therefore, there 

exist pairwise orthogonal projections {(𝑞𝑚 + 𝜖) 
(1)}

𝑚=1

∞
⊂ 𝑃(𝑀), such that sup𝑚≥1 (𝑞𝑚 +

𝜖) 
(1) = 1 and (𝑞𝑚 + 𝜖) 

(1) ∼ 1 for all 𝑚 ∈ ℕ, in particular, 𝑞 + 𝜖 ≼ (𝑞𝑚 + 𝜖) 
(1). Here, the 

notation 𝑞 + 𝜖 ∼ 𝑞 denotes the equivalence of projections 𝑞 + 𝜖, 𝑞 ∈ 𝑃(𝑀), and the notation 

𝜖 ≼ 0 means that there exists a projection 𝑒 ≤ 𝑞 such that 𝑞 + 𝜖 ∼ 𝑒. In course of the proof 

of our main result we shall frequently use the following well-known fact: if 𝜖 ∼ 0 and (𝑥 +
2𝜖) ∈ 𝑃(𝑍(𝑀)) then (𝑞 + 𝜖)(𝑥 + 2𝜖) ∼ 𝑞(𝑥 + 2𝜖). 

For every 𝑚 ∈ ℕ we select a projection 𝑞𝑚 + 𝜖 ≤ (𝑞𝑚 + 𝜖) 
(1), for which 𝑞𝑚 ∼ 𝑞 and 

denote by 𝑣𝑚 a partial isometry from 𝑀 such that 𝑣𝑚
∗ 𝑣𝑚 = 𝑞 + 𝜖, 𝑣𝑚𝑣𝑚

∗ = 𝑞𝑚 + 𝜖. Clearly, 

we have (𝑞𝑚 + 𝜖)(𝑞𝑘 + 𝜖) = 0 whenever 𝑚 ≠ 𝑘 and the projection 

𝑞0 + 𝜖:= sup𝑚≥1𝑞𝑚 + 𝜖                                                                         (43) 
is infinite as the supremum of pairwise orthogonal and equivalent projections. Taking into 

account that 

𝑞𝑚 + 𝜖 = 𝑣𝑚(𝑞 + 𝜖)𝑣
∗

𝑚

(1)
≤
𝑣𝑚(𝑞 + 𝜖)𝑥(𝑞 + 𝜖)𝑣𝑚

∗ = 𝑣𝑚𝑥𝑣𝑚
∗ ∈ (𝑞𝑚 + 𝜖)𝑀(𝑞𝑚 + 𝜖), 

and 

‖𝑣𝑚𝑥𝑣𝑚
∗ ‖𝑀 = ‖𝑣𝑚(𝑞 + 𝜖)𝑥(𝑞 + 𝜖)𝑣𝑚

∗ ‖𝑀 ≤ ‖(𝑞 + 𝜖)𝑥(𝑞 + 𝜖)‖𝑀 ≤ 𝜆2, 
we see that the series ∑ 𝑣𝑚𝑥𝑣𝑚

∗∞
𝑚=1  converges with respect to the topology 𝜏𝑠𝑜 to some 

operator 𝑥 + 𝜖 ∈ 𝑀 satisfying 
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‖𝑥 + 𝜖‖𝑀 = 𝑠𝑢𝑝𝑚≥1‖𝑣𝑚𝑥𝑣𝑚
∗ ‖𝑀 ≤ ‖(𝑞 + 𝜖)𝑥(𝑞 + 𝜖)‖𝑀, and 𝑥 ≥ 𝑞0.                             

(44)                 

In what follows, we shall assume that the central support 𝑐(𝑞0 + 𝜖) of the projection 𝑞0 + 𝜖 

is equal to 1 (otherwise, we replace the algebra 𝑀 with the algebra 𝑐(𝑞0 + 𝜖)𝑀). 
Let 𝜑 be a ∗-isomorphism from 𝑍(𝑀) onto 𝐿∞(Ω, Σ, 𝜇). By the assumption, the 

Boolean algebra 𝑃(𝑍(𝑀)) has a countable type, and so we may assume that 𝜇(Ω) =

∫ 1𝐿∞(𝛺)𝑑𝜇Ω
= 1, where 1𝐿∞(𝛺) is the identity of the ∗-algebra 𝐿∞(Ω, Σ, 𝜇). In this case, the 

countable base of neighborhoods of 0 in the topology 𝑡(𝑀) is formed by the sets 

𝑉(Ω, 1/𝑛, 1/𝑛), 𝑛 ∈ ℕ. 

Recalling that we have 𝑥𝑛
𝑡(𝑀)
→  0 and 𝛿(𝑥𝑛)

𝑡(𝑀)
→  𝑥, we obtain  

𝑣𝑚𝑥𝑛𝑣𝑚
∗
𝑡(𝑀)
→  0, 𝛿(𝑣𝑚)𝑥𝑛𝑣𝑚

∗
𝑡(𝑀)
→  0, 𝑣𝑚𝛿(𝑥𝑛)𝑣𝑚

∗
𝑡(𝑀)
→  𝑣𝑚𝑥𝑣𝑚

∗  
when 𝑛 →∞ for every fixed 𝑚 ∈ ℕ. 

Fix 𝑘 ∈ ℕ, and using the convergence 𝑣𝑚𝑥𝑛𝑣𝑚
∗
𝑡(𝑀)
→  0 for 𝑛 → 0, for each 𝑚 ∈ ℕ 

select an index 𝑛1(𝑚, 𝑘) and projections 𝑞𝑚,𝑛
(1)

∈ 𝑃(𝑀), (𝑥𝑚,𝑛
 + 2𝜖)

(1)
∈ 𝑃(𝑍(𝑀)), such 

that 

‖𝑣𝑚𝑥𝑛𝑣𝑚
∗ 𝑞𝑚,𝑛

(1)
‖
𝑀
≤ 2−𝑚(𝑘 + 1)−1; 

∫𝜑(1 − (𝑥𝑚,𝑛
 + 2𝜖)

(1)
)𝑑𝜇 

Ω

≤ 3−12−𝑚−𝑘−1 

and 

𝐷((𝑥𝑚,𝑛
 + 2𝜖)

(1)
(1 − 𝑞𝑚,𝑛

(1)
)) ≤ 3−12−𝑚−𝑘−1𝜑 ((𝑥𝑚,𝑛

 + 2𝜖)
(1)
) 

for all 𝑛 ≥ 𝑛1(𝑚, 𝑘). 

Similarly, using the convergence 𝛿(𝑣𝑚)𝑥𝑛𝑣𝑚
∗
𝑡(𝑀)
→  0 (respectively, 𝑣𝑚𝛿(𝑥𝑛)𝑣𝑚

∗

𝑡(𝑀)
→  𝑣𝑚𝑥𝑣𝑚

∗ ) for 𝑛 →∞, for each 𝑚 ∈ ℕ select indexes 𝑛2(𝑚, 𝑘) and 𝑛3(𝑚, 𝑘) and 

projections 𝑞𝑚,𝑛
(2)

, 𝑞𝑚,𝑛
(3)

∈ 𝑃(𝑀), (𝑥𝑚,𝑛
 + 2𝜖)

(2)
, (𝑥𝑚,𝑛

 + 2𝜖)
(3)

∈ 𝑃(𝑍(𝑀)), such that 

‖𝛿(𝑣𝑚)𝑥𝑛𝑣𝑚
∗ 𝑞𝑚,𝑛

(2)
‖
𝑀
≤ (3(𝑘 + 1)2𝑚)−1  

(respectively, ‖(𝑣𝑚𝛿(𝑥𝑛)𝑣𝑚
∗ − 𝑣𝑚𝑥𝑣𝑚

∗ )𝑞𝑚,𝑛
(3)

‖
𝑀
≤ (3(𝑘 + 1)2𝑚)−1); 

∫𝜑(1 − (𝑥𝑚,𝑛
 + 2𝜖)

(𝑖)
)𝑑𝜇

Ω

≤ 3−12−𝑚−𝑘−1 

and 𝐷(1 − 𝑞𝑚,𝑛
(𝑖)

) ≤ 3−12−𝑚−𝑘−1𝜑((𝑥𝑚,𝑛
 + 2𝜖)

(𝑖)
), 𝑖 = 2, 3, for all 𝑛 ≥ 𝑛2(𝑚, 𝑘) 

(respectively, 𝑛 ≥ 𝑛3(𝑚, 𝑘)). 

Set 𝑛(𝑚, 𝑘) = 𝑚𝑎𝑥𝑖=1,2,3 𝑛𝑖(𝑚, 𝑘), 𝑥𝑚 + 2𝜖 = 𝑖𝑛𝑓𝑖=1,2,3 (𝑥𝑚,𝑛
 + 2𝜖)

(𝑖)
, 𝑞𝑚 =

𝑖𝑛𝑓𝑖=1,2,3𝑞𝑚,𝑛(𝑚,𝑘)
(𝑖)

. Due to the selection of projections 𝑞𝑚 ∈ 𝑃(𝑀), 𝑥𝑚 + 2𝜖 ∈ 𝑃(𝑍(𝑀)) 

and indexes 𝑛(𝑚, 𝑘), we have that for each 𝑚 ∈ ℕ inequalities hold 

(𝐴1) ‖𝑣𝑚𝑥𝑛(𝑚,𝑘)𝑣𝑚
∗ 𝑞𝑚‖𝑀

≤ 2−𝑚(𝑘 + 1)−1; 

(𝐴2) ‖𝛿(𝑣𝑚)𝑥𝑛(𝑚,𝑘)𝑣𝑚
∗ 𝑞𝑚‖𝑀

≤ (3(𝑘 + 1)2𝑚)−1; 

(𝐴3) ‖𝑞𝑚(𝑣𝑚𝛿(𝑥𝑛(𝑚,𝑘))𝑣𝑚
∗ − 𝑣𝑚𝑥𝑣𝑚

∗ )‖
𝑀
≤ (3(𝑘 + 1)2𝑚)−1; 

(𝐴4) 𝐷((𝑥𝑚 + 2𝜖)(1 − 𝑞𝑚))
(𝐷6)
≤

 𝐷((𝑥𝑚 + 2𝜖)(1 − 𝑞𝑚,𝑛(𝑚,𝑘)
(𝑖)

)) ≤ 2−𝑚−𝑘−1𝜑(𝑥𝑚 +

2𝜖); 
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(𝐴5) 1 − ∫ 𝜑(𝑥𝑚 + 2𝜖)𝑑𝜇
Ω

= ∫ 𝜑(1 − (𝑥𝑚 + 2𝜖))𝑑𝜇
Ω

≤ ∑ ∫ 𝜑(1 − (𝑥𝑚,𝑛(𝑚,𝑘)
 +

Ω
3
𝑖=1

2𝜖)
(𝑖)
)𝑑𝜇 ≤ 2−𝑚−𝑘−1. 

Fix 𝑚1, 𝑚2 ∈ ℕ with 𝑚1 < 𝑚2 and set 

𝑞𝑚1,𝑚2
: = 𝑖𝑛𝑓𝑚1<𝑚≤𝑚2

𝑞𝑚, 𝑥𝑚1,𝑚2
+ 2𝜖:= 𝑖𝑛𝑓𝑚1<𝑚≤𝑚2

(𝑥𝑚 + 2𝜖). 

Since (1 − (𝑥𝑚1,𝑚2
+ 2𝜖)) = 𝑠𝑢𝑝𝑚1<𝑚≤𝑚2

(1 − (𝑥𝑚 + 2𝜖)) and (1 − 𝑞𝑚1,𝑚2
) =

𝑠𝑢𝑝𝑚1<𝑚≤𝑚2
(1 − 𝑞𝑚), it follows that 𝜑(1 − (𝑥𝑚1,𝑚2

+ 2𝜖)) =  𝑠𝑢𝑝𝑚1<𝑚≤𝑚2
𝜑(1 −

(𝑥𝑚 + 2𝜖)) and 𝜑(1 − 𝑞𝑚1,𝑚2
) = 𝑠𝑢𝑝𝑚1<𝑚≤𝑚2

𝜑(1 − 𝑞𝑚), and therefore 

1 − ∫𝜑(𝑥𝑚1,𝑚2
+ 2𝜖)𝑑𝜇

Ω

= 𝜑 (1 − (𝑥𝑚1,𝑚2
+ 2𝜖))𝑑𝜇

≤ 𝜑(1 − (𝑥𝑚 + 2𝜖))𝑑𝜇
(𝐴5)
≤

2−𝑚1−𝑘−1;                                               (45) 

((𝑥𝑚1,𝑚2
+ 2𝜖)(1 − 𝑞𝑚1,𝑚2

))
(𝐷6)
≤

∑ 𝐷((𝑥𝑚1,𝑚2

𝑚2

𝑚=𝑚1+1

+ 2𝜖)(1 − 𝑞𝑚))
(𝐴4)
≤

2−𝑚1−𝑘−1𝜑(𝑥𝑚1,𝑚2
+ 2𝜖)                    (46) 

and 

‖ ∑ (𝑣𝑚𝑥𝑛(𝑚,𝑘)𝑣𝑚
∗ )𝑞𝑚1,𝑚2

𝑚2

𝑚=𝑚1+1

‖

𝑀

≤ ∑ ‖(𝑣𝑚𝑥𝑛(𝑚,𝑘)𝑣𝑚
∗ )𝑞𝑚‖𝑀

𝑚2

𝑚=𝑚1+1

(𝐴1)
≤

2𝑚1(𝑘 + 1)−1.                       (47) 

Inequalities (45)-(47) mean that the sequence 

𝑆𝑙,𝑘 = ∑ 𝑣𝑚𝑥𝑛(𝑚,𝑘)𝑣𝑚
∗

𝑙

𝑚=1

, 𝑙 ≥ 1  

is a Cauchy sequence in the F-space (𝐿𝑆(𝑀, 𝑡(𝑀))) for each fixed 𝑘 ∈ ℕ. Consequently, 

there exists 𝑥𝑘 + 𝜖 ∈ 𝐿𝑆(𝑀) such that 𝑆𝑙,𝑘
𝑡(𝑀)
→  𝑥𝑘 + 𝜖 for 𝑙 →∞, i.e. the series 

𝑥𝑘 + 𝜖 = ∑ 𝑣𝑚𝑥𝑛(𝑚,𝑘)𝑣𝑚
∗

∞

𝑚=1

                                                                 (48) 

converges in 𝐿𝑆(𝑀) with respect to the topology 𝑡(𝑀). Since the involution is continuous 

in topology 𝑡(𝑀) and 𝑆𝑙,𝑘
∗ = 𝑆𝑙,𝑘, we conclude 𝑥𝑘 + 𝜖 = (𝑥𝑘

 + 𝜖)∗. 
Setting 

𝑟𝑚 ≔ (𝑞𝑚 + 𝜖) ∧ 𝑞𝑚, 𝑚 ∈ ℕ,                                                           (49) 
and using the relation (𝑥𝑚 + 2𝜖)((𝑞𝑚 + 𝜖) − (𝑞𝑚 + 𝜖) ∧ 𝑞𝑚) ∼ (𝑥𝑚 + 2𝜖)((𝑞𝑚 + 𝜖) ∨
𝑞𝑚 − 𝑞𝑚) ( see e.g. [33]) we have 

𝐷((𝑥𝑚 + 2𝜖)((𝑞𝑚 + 𝜖) − 𝑟𝑚))

= 𝐷((𝑥𝑚 + 2𝜖)((𝑞𝑚 + 𝜖) − (𝑞𝑚 + 𝜖) ∧ 𝑞𝑚))
(𝐷3)
=

 𝐷((𝑥𝑚 + 2𝜖)((𝑞𝑚 + 𝜖)

∨ 𝑞𝑚 − 𝑞𝑚)) 

≤ 𝐷((𝑥𝑚 + 2𝜖)(1 − 𝑞𝑚))
(𝐴4)
≤

2−𝑚−𝑘−1𝜑(𝑥𝑚 + 2𝜖).                                        (50) 

Setting 



92 

𝑞0
(𝑘)
: = 𝑠𝑢𝑝𝑚≥1𝑟𝑚, (𝑥0

 + 2𝜖)(𝑘): = 𝑖𝑛𝑓𝑚≥1(𝑥𝑚 + 2𝜖),                                   (51) 
we have (see (43), (44) and (49)) 

𝑥 + 𝜖 ≥ 𝑞0 + 𝜖 ≥ 𝑞0
(𝑘)
, 𝑘 ∈ ℕ.                                                                 (52) 

From (45) it follows that 

1 − ∫𝜑((𝑥0
 + 2𝜖)(𝑘))𝑑𝜇

Ω

 = ∫𝜑(1 − (𝑥0
 + 2𝜖)(𝑘))𝑑𝜇 

Ω

≤ 2−𝑘−1.                                 (53) 

Since (𝑞𝑚 + 𝜖)(𝑞𝑗 + 𝜖) = 0,𝑚 ≠ 𝑗, and 𝑟𝑚 ≤ (𝑞𝑚 + 𝜖) (see (49)) we obtain (𝑞0 +

𝜖) − 𝑞0
(𝑘)

= 𝑠𝑢𝑝𝑚≥1((𝑞𝑚 + 𝜖) − 𝑟𝑚) and hence, by (50), 

𝐷((𝑥0
 + 2𝜖)(𝑘)(𝑞0 + 𝜖

− 𝑞0
(𝑘)
))
(𝐷6)
=

∑ 𝐷((𝑥0
 + 2𝜖)(𝑘)(𝑞𝑚 + 𝜖

∞

𝑚=1

− 𝑟𝑚))
(50)
≤

2−𝑘−1𝜑((𝑥0
 + 2𝜖)(𝑘)).                                             (54) 

Due to (49), we have (𝑞𝑚 + 𝜖)𝑞0
(𝑘)

= 𝑟𝑚𝑞0
(𝑘)

= 𝑟𝑚 = 𝑟𝑚𝑞𝑚 for all 𝑚 ∈ ℕ. 

Hence, 

𝑣𝑚𝑥𝑛(𝑚,𝑘)𝑣𝑚
∗ 𝑞0

(𝑘)
= 𝑣𝑚𝑥𝑛(𝑚,𝑘)𝑣𝑚

∗ (𝑞𝑚 + 𝜖)𝑞0
(𝑘)

= 𝑣𝑚𝑥𝑛(𝑚,𝑘)𝑣𝑚
∗ 𝑟𝑚 

and 

‖(𝑥𝑘 + 𝜖)𝑞0
(𝑘)
‖
𝑀
= ‖(∑ 𝑣𝑚𝑥𝑛(𝑚,𝑘)𝑣𝑚

∗

∞

𝑚=1

)𝑞0
(𝑘)
‖

𝑀

= ‖∑ 𝑣𝑚𝑥𝑛(𝑚,𝑘)𝑣𝑚
∗

∞

𝑚=1

𝑞0
(𝑘)
‖

𝑀

≤ 𝑠𝑢𝑝𝑚≥1‖𝑣𝑚𝑥𝑛(𝑚,𝑘)𝑣𝑚
∗ 𝑟𝑚‖𝑀

 

≤ 𝑠𝑢𝑝𝑚≥1‖𝑣𝑚𝑥𝑛(𝑚,𝑘)𝑣𝑚
∗ 𝑞𝑚‖𝑀

(𝐴1)
≤

(𝑘 + 1)−1.                                    (55) 

Using the properties of the derivation 𝛿 and equalities (𝑞𝑛 + 𝜖)𝑣𝑛 = 𝑣𝑛, 𝑣𝑛
∗ =

𝑣𝑛
∗ (𝑞𝑛 + 𝜖) and  (49), (51), we have 

𝑞0
(𝑘)
𝛿(𝑣𝑚𝑥𝑛(𝑚,𝑘)𝑣𝑚

∗ )𝑞0
(𝑘)

= 𝑞0
(𝑘)
((𝛿(𝑣𝑚𝑥𝑛(𝑚.𝑘)𝑣𝑚

∗ ) − 𝑣𝑚𝑥𝑣𝑚
∗ ) + 𝑣𝑚𝑥𝑣𝑚

∗ )𝑞0
(𝑘)

= (𝑞0
(𝑘)
𝛿(𝑣𝑚)𝑥𝑛(𝑚,𝑘)𝑣𝑚

∗ 𝑞0
(𝑘)

+ 𝑞0
(𝑘)
𝑣𝑚𝑥𝑛(𝑚,𝑘)𝛿(𝑣𝑚

∗ )𝑞0
(𝑘)
)

+ 𝑞0
(𝑘)
(𝑣𝑚𝛿(𝑥𝑛(𝑚,𝑘))𝑣𝑚

∗ − 𝑣𝑚𝑥𝑣𝑚
∗ )𝑞0

(𝑘)
+ 𝑞0

(𝑘)
(𝑣𝑚𝑥𝑣𝑚

∗ )𝑞0
(𝑘)

= 𝑞0
(𝑘)
𝛿(𝑣𝑚)𝑥𝑛(𝑚,𝑘)𝑣𝑚

∗ 𝑞𝑚𝑟𝑚 + 𝑟𝑚𝑞𝑚𝑣𝑚𝑥𝑛(𝑚,𝑘)𝛿(𝑣𝑚
∗ )𝑞0

(𝑘)

+ 𝑟𝑚𝑞𝑚(𝑣𝑚𝛿(𝑥𝑛(𝑚,𝑘))𝑣𝑚
∗ − 𝑣𝑚𝑥𝑣𝑚

∗ )𝑞𝑚𝑟𝑚 + 𝑞0
(𝑘)
(𝑣𝑚𝑥𝑣𝑚

∗ )𝑞0
(𝑘)
. 

Consider the following formal series suggested by the preceding 

∑ 𝑞0
(𝑘)
𝛿(𝑣𝑚)𝑥𝑛(𝑚,𝑘)𝑣𝑚

∗ 𝑞𝑚𝑟𝑚

∞

𝑚=1

;                                                                        (56) 

∑ 𝑟𝑚𝑞𝑚𝑣𝑚𝑥𝑛(𝑚,𝑘)𝛿(𝑣𝑚
∗ )𝑞0

(𝑘)

∞

𝑚=1

 ;                                                                        (57) 

∑ 𝑟𝑚𝑞𝑚(𝑣𝑚𝛿(𝑥𝑛(𝑚,𝑘))𝑣𝑚
∗ − 𝑣𝑚𝑥𝑣𝑚

∗ )𝑞𝑚𝑟𝑚

∞

𝑚=1

;                                                (58) 

∑ 𝑞0
(𝑘)
(𝑣𝑚𝑥𝑛(𝑚,𝑘)𝑣𝑚

∗ )𝑞0
(𝑘)

∞

𝑚=1

 .                                                                             (59) 
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By the condition (𝐴2) the first series (56) and the second series (57) converge with respect 

to the norm ‖. ‖𝑀 to some elements 𝑎, 𝑏 ∈ 𝑀 respectively and ‖𝑎‖𝑀 ≤ (3(𝑘 + 1))−1 and 

‖𝑏‖𝑀 ≤ (3(𝑘 + 1))−1. 

Similarly, by the condition (𝐴3), the third series (58) also converges with respect to 

the norm ‖. ‖𝑀 to some element 𝑐 ∈ 𝑀, satisfying ‖𝑐‖𝑀 ≤ (3(𝑘 + 1))−1. Finally, since 𝑥 +
𝜖 = ∑ 𝑣𝑚𝑥𝑣𝑚

∗∞
𝑚=1  (the convergence of the latter series is taken in the 𝜏𝑠𝑜 topology), we see 

that the fourth series (59) converges with respect to the topology 𝜏𝑠𝑜 to some element 

𝑞0
(𝑘)
(𝑥 + 𝜖)𝑞0

(𝑘)
 . Hence, the series 

∑ 𝑞0
(𝑘)
𝛿(𝑣𝑚𝑥𝑛(𝑚,𝑘)𝑣𝑚

∗ )𝑞0
(𝑘)

∞

𝑚=1

                                            (60) 

converges with respect to the topology 𝜏𝑠𝑜 to some element 𝑎𝑘 ∈ 𝑀, and, in addition, we 

have 

                    ‖𝑎𝑘 − 𝑞0
(𝑘)
(𝑥 + 𝜖)𝑞0

(𝑘)
‖
𝑀
≤ (𝑘 + 1)−1.                                     (61) 

We shall show that 

𝑎𝑘 = 𝑞0
(𝑘)
𝛿(𝑥𝑘 + 𝜖)𝑞0

(𝑘)
,                                                      (62) 

where 𝑥𝑘 + 𝜖 = 𝑣𝑚𝑥𝑛(𝑚,𝑘)𝑣𝑚
∗  (the convergence of the latter series is taken in the 𝑡(𝑀)-

topology (see (48)). Using (51) for any 𝑚1, 𝑚2 ∈ ℕ we have 

𝑟𝑚1
𝑞0
(𝑘)
𝛿(𝑥𝑘 + 𝜖)𝑞0

(𝑘)
𝑟𝑚2

 = 𝛿(𝑟𝑚1
𝑞0
(𝑘)
(𝑥𝑘 + 𝜖))𝑞0

(𝑘)
𝑟𝑚2

− 𝛿(𝑟𝑚1
𝑞0
(𝑘)
)(𝑥𝑘 + 𝜖)𝑞0

(𝑘)
𝑟𝑚2

= 𝛿(𝑟𝑚1
𝑣𝑚1

𝑥𝑛(𝑚1,𝑘)𝑣𝑚1

∗ )𝑟𝑚2
− 𝛿(𝑟𝑚1

)𝑣𝑚2
𝑥𝑛(𝑚2,𝑘)𝑣𝑚2

∗ 𝑟𝑚2
. 

Since the series  ∑ 𝑞0
(𝑘)
𝛿(𝑣𝑚𝑥𝑛(𝑚,𝑘)𝑣𝑚

∗ )𝑞0
(𝑘)∞

𝑚=1  converges with respect to the topology 𝜏𝑠𝑜 

(see 19), it follows that the series 

∑ 𝑟𝑚1
(𝑞0

(𝑘)
𝛿(𝑣𝑚𝑥𝑛(𝑚,𝑘)𝑣𝑚

∗ )𝑞0
(𝑘)
)𝑟𝑚2

∞

𝑚=1

 

also converges with respect to this topology ([116]), in addition, the following equalities 

hold 

𝑟𝑚1
𝑎𝑘𝑟𝑚2

= 𝑟𝑚1
(𝑞0

(𝑘)
𝛿(𝑣𝑚𝑥𝑛(𝑚,𝑘)𝑣𝑚

∗ )𝑞0
(𝑘)
)𝑟𝑚2

(51)
=

∑ 𝑟𝑚1
𝛿(𝑣𝑚𝑥𝑛(𝑚,𝑘)𝑣𝑚

∗ )𝑟𝑚2

∞

𝑚=1

= ∑(𝛿(𝑟𝑚1
𝑣𝑚𝑥𝑛(𝑚,𝑘)𝑣𝑚

∗ )𝑟𝑚2
− 𝛿(𝑟𝑚1

)𝑣𝑚𝑥𝑛(𝑚,𝑘)𝑣𝑚
∗ 𝑟𝑚2

)

∞

𝑚=1

 

       
(49)
=

𝛿(𝑟𝑚1
𝑣𝑚1

𝑥𝑛(𝑚1,𝑘)𝑣𝑚1

∗ )𝑟𝑚2
− 𝛿(𝑟𝑚1

)𝑣𝑚2
𝑥𝑛(𝑚2,𝑘)𝑣𝑚2

∗ 𝑟𝑚2
, 

which guarantees 

𝑟𝑚1
𝑞0
(𝑘)
𝛿(𝑥𝑘 + 𝜖)𝑞0

(𝑘)
𝑟𝑚2

= 𝑟𝑚1
𝑎𝑘𝑟𝑚2

.                                              (63) 

Since 

𝑟𝑚1
(𝛿(𝑥𝑘 + 𝜖) − 𝑎𝑘)𝑟𝑚

(63)
=

0, 

we see that for the right support 𝑟(𝑟𝑚1
(𝛿(𝑥𝑘 + 𝜖) − 𝑎𝑘)) of the operator 𝑟𝑚1

(𝛿(𝑥𝑘 + 𝜖) −

𝑎𝑘) satisfies the inequality 

𝑟(𝑟𝑚1
(𝛿(𝑥𝑘 + 𝜖) − 𝑎𝑘)) ≤ 1 − 𝑟𝑚, 𝑚 ∈ ℕ,  

and therefore 

𝑟(𝑟𝑚1
(𝛿(𝑥𝑘 + 𝜖) − 𝑎𝑘)) ≤ 𝑖𝑛𝑓𝑚≥1(1 − 𝑟𝑚)

(51)
=

 1 − 𝑞0
(𝑘)
. 
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Consequently, 𝑟𝑚1
(𝛿(𝑥𝑘 + 𝜖) − 𝑎𝑘)𝑞0

(𝑘)
= 0 for all 𝑚1 ∈ ℕ. 

Similarly, using the left support of the operator (𝛿(𝑥𝑘 + 𝜖) − 𝑎𝑘)𝑞0
(𝑘)

, we claim that 

𝑞0
(𝑘)
(𝛿(𝑥𝑘 + 𝜖) − 𝑎𝑘)𝑞0

(𝑘)
= 0. 

Since 𝑞0
(𝑘)
𝑎𝑘𝑞0

(𝑘)
= 𝑎𝑘, the equality (62) holds. 

Thus, the inequality (61) can be restated as follows 

‖𝑞0
(𝑘)
(𝛿(𝑥𝑘 + 𝜖) − (𝑥 + 𝜖))𝑞0

(𝑘)
‖
𝑀
≤ (𝑘 + 1)−1.                                (64) 

It follows from the inequalities (44) and (64), that 

‖(𝑘 + 1)𝑞0
(𝑘)
(𝑥𝑘 + 𝜖)‖

𝑀
= ‖(𝑘 + 1)(𝑥𝑘 + 𝜖)𝑞0

(𝑘)
‖
𝑀
≤ 1                         (65) 

and 

‖𝑞0
(𝑘)
𝛿((𝑘 + 1)(𝑥𝑘 + 𝜖))𝑞0

(𝑘)
− (𝑘 + 1)𝑞0

(𝑘)
(𝑥 + 𝜖)𝑞0

(𝑘)
‖
𝑀
≤ 1.                      (66) 

Due to (66), and taking into account (52), we obtain 

(𝑘 + 1)𝑞0
(𝑘)

− 𝑞0
(𝑘)
𝛿((𝑘 + 1)(𝑥𝑘 + 𝜖))𝑞0

(𝑘)
 

≤ (𝑘 + 1)𝑞0
(𝑘)
(𝑥 + 𝜖)𝑞0

(𝑘)
− 𝑞0

(𝑘)
𝛿((𝑘 + 1)(𝑥𝑘 + 𝜖))𝑞0

(𝑘)
≤ 𝑞0

(𝑘)
, 

that is 

𝑘𝑞0
(𝑘)

≤ 𝑞0
(𝑘)
𝛿((𝑘 + 1)(𝑥𝑘 + 𝜖))𝑞0

(𝑘)
.                                               (67) 

Let us now consider the projections 

𝑞0: = 𝑖𝑛𝑓𝑘≥1𝑞0
(𝑘)
, (𝑥0 + 2𝜖):= 𝑖𝑛𝑓𝑘≥1(𝑥0

 + 2𝜖)(𝑘).                                  (68) 

Using (52), (68) we have that 𝜖 = 𝑠𝑢𝑝𝑘≥1(𝑞0 + 𝜖 − 𝑞0
(𝑘)
). Therefore, combining (54) and 

(68), we obtain 

𝐷((𝑥0 + 2𝜖)(𝜖))

= 𝐷 (𝑠𝑢𝑝𝑘≥1 ((𝑥0 + 2𝜖) (𝑞0 + 𝜖 − 𝑞0
(𝑘)
)))

(𝐷6)
≤

∑𝐷((𝑥0

∞

𝑘=1

+ 2𝜖) (𝑞𝑚 + 𝜖 − 𝑞0
(𝑘)
))
(54)
≤

𝜑(𝑥0 + 2𝜖),                                            (69) 

that is the projection (𝑥0 + 2𝜖)(𝜖) is finite (see (D1)). Moreover, due to inequalities (65) 

(respectively, (67)), we have 

‖(𝑘 + 1)𝑞0(𝑥𝑘 + 𝜖)‖𝑀 = ‖(𝑘 + 1)(𝑥𝑘 + 𝜖)𝑞0‖𝑀 ≤ 1, 𝑘 ∈ ℕ                            (70) 
(respectively, 

𝑘𝑞0 ≤ 𝑞0𝛿((𝑘 + 1)(𝑥𝑘 + 𝜖))𝑞0, 𝑘 ∈ ℕ. )                                 (71) 
Since 𝜑 is a ∗-isomorphism from 𝑍(𝑀) onto 𝐿∞(Ω, Σ, 𝜇), by (53), we have that 

∫𝜑(1 − (𝑥0 + 2𝜖))𝑑𝜇
Ω

= ∫𝑠𝑢𝑝𝑘≥1𝜑(1 − (𝑥0
 + 2𝜖)(𝑘))𝑑𝜇

Ω

 

≤ ∑∫𝜑(1 − (𝑥0
 + 2𝜖)(𝑘))𝑑𝜇

Ω

∞

𝑘=1

(53)
≤

2−1, 

in particular, 𝑥0 + 2𝜖 ≠ 0. Since 1 = 𝑐(𝑞0 + 𝜖) and 𝑐((𝑞0 + 𝜖)(𝑥0 + 2𝜖)) = 𝑐(𝑞0 +
𝜖)(𝑥0 + 2𝜖) = 𝑥0 + 2𝜖 ≠ 0, we have (𝑥0 + 2𝜖)(𝑞0 + 𝜖) ≠ 0, and therefore there exists 

such 𝑛 ∈ ℕ that (𝑥0 + 2𝜖)(𝑞𝑛 + 𝜖) ≠ 0 (see (43)). Since (𝑥0 + 2𝜖)(𝑞𝑛 + 𝜖) ∼ (𝑥0 +
2𝜖)(𝑞𝑚 + 𝜖), we have (𝑥0 + 2𝜖)(𝑞𝑚 + 𝜖) ≠ 0 for all 𝑚 ∈ ℕ. Hence, (𝑥0 + 2𝜖)(𝑞0 + 𝜖) is 

an infinite projection. Since the projection (𝑥0 + 2𝜖)(𝜖) is finite (see (69)), we see that the 

projection (𝑥0 + 2𝜖)𝑞0 must be infinite. By [23], there exists a central projection 

0 ≠ 𝑒0 ∈ 𝑃(𝑍(𝑀)), 𝑒0 ≤ 𝑥0 + 2𝜖, 
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such that 𝑒0𝑞0 is properly infinite, in particular, there exist pairwise orthogonal projections 

𝑒𝑛 ≤ 𝑒0𝑞0, 𝑒𝑛 ∼ 𝑒0𝑞0                                                             (72) 
for all 𝑛 ∈ ℕ (see, for example, [29]). In addition, 

∫𝜑(𝑐(𝑞0)𝑒0) 𝑑𝜇
Ω

≠ 0.                                                            (73) 

For every 𝑛 ∈ ℕ the operator 

𝑏𝑛: = 𝛿(𝑒𝑛)𝑒𝑛 
is locally measurable, and therefore there exists such a sequence {(𝑥𝑚

 + 2𝜖)(𝑛)} ⊂
𝑃(𝑍(𝑀)) that (𝑥𝑚

 + 2𝜖)(𝑛) ↑ 1 when 𝑚 →∞ and (𝑥𝑚
 + 2𝜖)(𝑛)𝑏𝑛 ∈ 𝑆(𝑀) for all 𝑚 ∈ ℕ. 

Since 𝜑((𝑥𝑚
 + 2𝜖)(𝑛)) ↑ 𝜑(1) = 1𝐿∞(Ω) it follows that ∫ 𝜑((𝑥𝑚

 + 2𝜖)(𝑛))𝑑𝜇
Ω

↑

𝜇(1𝐿∞(Ω)) = 1 when 𝑚 →∞, and therefore, by (73), for every 𝑛 ∈ ℕ there exists such a 

projection (𝑥 + 2𝜖)(𝑛) ∈ 𝑃(𝑍(𝑀)), that (𝑥 + 2𝜖)(𝑛)𝑏𝑛 ∈ 𝑆(𝑀) and 

1 − 2−𝑛−1∫𝜑(𝑐(𝑞0)𝑒0)𝑑𝜇
Ω

< ∫𝜑((𝑥 + 2𝜖)(𝑛))𝑑𝜇
Ω

.                        (74) 

Consider the central projection 

𝑔0: = 𝑖𝑛𝑓𝑛≥1(𝑥 + 2𝜖)(𝑛). 
Since (𝑥 + 2𝜖)(𝑛)𝑏𝑛 ∈ 𝑆(𝑀), 𝑔0 = 𝑔0(𝑥 + 2𝜖)(𝑛) we have that 𝑔0𝑏𝑛 ∈ 𝑆(𝑀) for all 𝑛 ∈ ℕ. 

Due to (74) we have 

1 − ∫𝜑(𝑔0)𝑑𝜇
Ω

= ∫𝜑(1 − 𝑔0)𝑑𝜇
Ω

= ∫𝑠𝑢𝑝 𝜑(1 − (𝑥 + 2𝜖)(𝑛))𝑑𝜇
Ω

≤ ∑∫𝜑(1 − (𝑥 + 2𝜖)(𝑛))𝑑𝜇
Ω

∞

𝑛=1

= ∑(1 −∫𝜑((𝑥 + 2𝜖)(𝑛))𝑑𝜇
Ω

)

∞

𝑛=1

≤ 2−1∫𝜑(𝑐(𝑞0)𝑒0)𝑑𝜇
Ω

. 

Consequently, 1 − 2−1 ∫ 𝜑(𝑐(𝑞0)𝑒0)𝑑𝜇𝛺
≤ ∫ 𝜑(𝑔0)𝑑𝜇𝛺

, and therefore 

1 + 2−1∫𝜑(𝑐(𝑞0)𝑒0)𝑑𝜇
𝛺

≤ ∫𝜑(𝑔0)𝑑𝜇
𝛺

+ 2−1∫𝜑(𝑐(𝑞0)𝑒0)𝑑𝜇
𝛺

.          (75) 

From (73) and inequality (75), it follows that 2−1 ∫ 𝜑(𝑔0𝑐(𝑞0)𝑒0)𝑑𝜇𝛺
>  0, i.e. 

𝑔0𝑐(𝑞0)𝑒0 ≠ 0 and so 𝑔0𝑒0𝑞0 ≠ 0. Since 𝑒0𝑞0 is a properly infinite projection it follows 

that 𝑔0𝑒0𝑞0 is a properly infinite projection. From the relationship 𝑔0𝑒𝑛
(72)
~

𝑔0𝑒0𝑞0, we see 

that the projection 𝑔0𝑒𝑛 is also properly infinite for all 𝑛 ∈ ℕ. Since 

𝑐(𝑔0𝑒𝑛) = 𝑔0𝑐(𝑒𝑛)
(72)
≤

𝑞0𝑐(𝑞0𝑒0) = 𝑔0𝑐(𝑞0)𝑒0, 

it follows that (𝑥 + 2𝜖)𝑒𝑛 is also properly infinite projection for every 0 ≠ (𝑥 + 2𝜖) ∈
𝑃(𝑍(𝑀)) with 𝑥 + 2𝜖 ≤ 𝑔0𝑐(𝑞0)𝑒0. Indeed, if (𝑥 + 2𝜖)’ ∈  𝑃(𝑍(𝑀)) and (𝑥 + 2𝜖)’(𝑥 +
2𝜖)𝑒𝑛 ≠ 0, then 0 ≠ (𝑥 + 2𝜖)’(𝑥 + 2𝜖)𝑒𝑛 = ((𝑥 + 2𝜖)’(𝑥 + 2𝜖)𝑐(𝑞0)𝑒0)𝑔0𝑒𝑛, and 

therefore, since the projection 𝑔0𝑒𝑛 is properly infinite, we have ((𝑥 + 2𝜖)’(𝑥 +
2𝜖)𝑐(𝑞0)𝑒0)𝑔0𝑒𝑛 ∉ 𝑃𝑓𝑖𝑛(𝑀). Consequently, the projection (𝑥 + 2𝜖)𝑒𝑛 is also properly 

infinite. 

Passing, if necessary to the algebra 𝑔0𝑐(𝑞0)𝑒0𝑀, we may assume that 𝑔0𝑐(𝑞0)𝑒0 =
1. In this case, we also may assume that 𝑏𝑛 ∈ 𝑆(𝑀), 𝑒𝑛 ∼ 𝑞0, 𝑐(𝑒𝑛) = 1 and (𝑥 + 2𝜖)𝑒𝑛 is 

a properly infinite projection for every non-zero (𝑥 + 2𝜖) ∈ 𝑃(𝑍(𝑀)). 
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The assumption 𝑏𝑛 ∈ 𝑆(𝑀) means that for every fixed 𝑛 ∈ ℕ there exists such a 

sequence {(𝑞𝑚 + 𝜖) 
(𝑛)}𝑚=1

∞ ⊂ 𝑃𝑓𝑖𝑛(𝑀), that (𝑞𝑚 + 𝜖) 
(𝑛) ↓ 0 when 𝑚 →∞ and 𝑏𝑛(1 −

 (𝑞𝑚 + 𝜖) 
(𝑛)) ∈ 𝑀 for all 𝑚 ∈ ℕ. Since 𝐷((𝑞𝑚 + 𝜖) 

(𝑛)) ∈ 𝐿0(Ω, Σ, 𝜇) and 𝐷((𝑞𝑚 +
𝜖) 

(𝑛)) ↓ 0 (see (D7)), it follows that {𝐷((𝑞𝑚 + 𝜖) 
(𝑛))}𝑛=1

∞  converges in measure 𝜇 to zero. 

Consequently, we may select a central projection 𝑓𝑛 and a finite projection 𝑠𝑛 =

(𝑞𝑚𝑛

 + 𝜖)
(𝑛)

∈ 𝑃𝑓𝑖𝑛(𝑀) as to guarantee 𝐷(𝑓𝑛𝑠𝑛) < 2−𝑛𝜑(𝑓𝑛), 1 − 2−𝑛−1 < ∫𝜑(𝑓𝑛)𝑑𝜇 

and 

                               𝑓𝑛𝑏𝑛(1 − 𝑠𝑛) ∈ 𝑀                                                               (76) 
for all 𝑛 ∈ ℕ. 

Setting 

𝑓:= 𝑖𝑛𝑓𝑛≥1𝑓𝑛, 𝑠: = 𝑠𝑢𝑝𝑛≥1𝑠𝑛, 
we have that 

1/2 < ∫𝜑(𝑓)𝑑𝜇 , 𝐷(𝑓𝑠)
(𝐷6)
≤

∑𝐷(𝑓𝑠𝑛)

∞

𝑛=1

≤ 𝜑(𝑓). 

This means that 𝑓 ≠ 0 and 𝑓𝑠 ∈ 𝑃𝑓𝑖𝑛(𝑀) (see (D1)). In addition, since 𝑓 ≤ 𝑓𝑛, (1 − 𝑠) ≤

(1 − 𝑠𝑛) from (76) it follows that 𝑓𝑏𝑛(1 − 𝑠) ∈ 𝑀 for all 𝑛 ∈ ℕ. 

Consider the projections 𝑡 = 𝑓(1 − 𝑠) and 𝑔𝑛 = 𝑓(𝑒𝑛 ∧ (1 − 𝑠)), 𝑛 ∈ ℕ. 

Clearly (see (72)), 

𝑔𝑛 ≤ 𝑓𝑒𝑛 ≤ 𝑞0, 𝑏𝑛𝑔𝑛 ∈ 𝑀, 𝑔𝑛 ≤ 𝑡                                     (77) 
for all 𝑛 ∈ ℕ, and also 

𝑓𝑒𝑛 − 𝑔𝑛 = 𝑓(𝑒𝑛 − 𝑒𝑛 ∧ (1 − 𝑠)) ∼ 𝑓(𝑒𝑛 ∨ (1 − 𝑠) − (1 − 𝑠)) ≤ 𝑓𝑠, 
that is 𝑓𝑒𝑛 − 𝑔𝑛 ∈ 𝑃𝑓𝑖𝑛(𝑀). Hence, for every non-zero central projection 𝑥 + 2𝜖 ≤ 𝑓, we 

have that the projection (𝑥 + 2𝜖)𝑒𝑛 − (𝑥 + 2𝜖)𝑔𝑛 is finite. Since the projection (𝑥 + 2𝜖)𝑒𝑛 

is infinite, the projection (𝑥 + 2𝜖)𝑔𝑛 is also infinite, i.e. 

(𝑥 + 2𝜖)𝑔𝑛 ∉ 𝑃𝑓𝑖𝑛(𝑀)                                                                (78) 

for any 0 ≠ (𝑥 + 2𝜖) ∈ 𝑃(𝑍(𝑀)) and 𝑛 ∈ ℕ. 

Since 𝑏𝑛𝑡 = 𝑓𝑏𝑛(1 − 𝑠) ∈ 𝑀, we see that there exists such an increasing sequence 

{𝑙𝑛} ⊂ ℕ that 𝑙𝑛 > 𝑛 + 2‖𝑏𝑛𝑡‖𝑀 for all 𝑛 ∈ ℕ. 

Appealing to the inequalities (70), (77) and taking into account the equality 𝑏𝑛 =
𝛿(𝑒𝑛)𝑒𝑛, we deduce 

‖𝑔𝑛(𝑙𝑛 + 1)(𝑥𝑙𝑛 + 𝜖)𝛿(𝑒𝑛)𝑒𝑛𝑔𝑛‖𝑀
≤ ‖𝑔𝑛(𝑙𝑛 + 1)(𝑥𝑙𝑛 + 𝜖)‖

𝑀
‖𝛿(𝑒𝑛)𝑒𝑛𝑔𝑛‖𝑀

≤ ‖𝑞0(𝑙𝑛 + 1)(𝑥𝑙𝑛 + 𝜖)‖
𝑀
‖𝛿(𝑒𝑛)𝑒𝑛𝑡‖𝑀 < (𝑙𝑛 − 𝑛)/2. 

Hence, 

      ‖𝑔𝑛𝑒𝑛𝛿(𝑒𝑛)(𝑙𝑛 + 1)(𝑥𝑙𝑛 + 𝜖)𝑔𝑛 + 𝑔𝑛(𝑙𝑛 + 1)(𝑥𝑙𝑛 + 𝜖)𝛿(𝑒𝑛)𝑒𝑛𝑔𝑛‖𝑀
≤ 𝑙𝑛 −

𝑛.    (79) 
For every 𝑥 = 𝑥∗ ∈ 𝑀 the inequalities −‖𝑥‖𝑀1 ≤ 𝑥 ≤ ‖𝑥‖𝑀1 holds, in particular, 

−𝑔𝑛‖𝑥‖𝑀 ≤ 𝑞𝑛𝑥𝑞𝑛 ≤ 𝑔𝑛‖𝑥‖𝑀. Hence, inequality (79) implies that 

𝑔𝑛𝑒𝑛𝛿(𝑒𝑛)(𝑙𝑛 + 1)(𝑥𝑙𝑛 + 𝜖)𝑔𝑛 + 𝑔𝑛(𝑙𝑛 + 1)(𝑥𝑙𝑛 + 𝜖)𝛿(𝑒𝑛)𝑒𝑛𝑔𝑛 ≥ (𝑛 − 𝑙𝑛)𝑔𝑛.      (80) 

Since 𝑒𝑛𝑒𝑚 = 0 whenever 𝑛 ≠ 𝑚, we see (due to inequalities (70) and (77)) that the 

series ∑ 𝑒𝑛(𝑙𝑛 + 1)(𝑥𝑙𝑛 + 𝜖)𝑒𝑛
∞
𝑛=1  converges with respect to the topology 𝜏𝑠𝑜 to a self-

adjoint operator ℎ0 ∈ 𝑀, satisfying 

‖ℎ0‖𝑀 ≤ 𝑠𝑢𝑝𝑛≥1‖𝑒𝑛(𝑙𝑛 + 1)(𝑥𝑙𝑛 + 𝜖)𝑒𝑛‖𝑀
≤ 1. 

Again appealing to the inequalities (71), (77) and (80), we infer that 
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𝑛𝑔𝑛 = 𝑙𝑛𝑔𝑛 + (𝑛 − 𝑙𝑛)𝑔𝑛
≤ 𝑔𝑛(𝑙𝑛 + 1)𝛿(𝑥𝑙𝑛 + 𝜖)𝑔𝑛 + 𝑔𝑛𝑒𝑛𝛿(𝑒𝑛)(𝑙𝑛 + 1)(𝑥𝑙𝑛 + 𝜖)𝑔𝑛 + 𝑔𝑛(𝑙𝑛
+ 1)(𝑥𝑙𝑛 + 𝜖)𝛿(𝑒𝑛)𝑒𝑛𝑔𝑛
= (𝑙𝑛 + 1)(𝑔𝑛𝛿(𝑥𝑙𝑛 + 𝜖)𝑔𝑛 + 𝑔𝑛𝑒𝑛𝛿(𝑒𝑛)(𝑥𝑙𝑛 + 𝜖)𝑔𝑛 + 𝑔𝑛(𝑥𝑙𝑛
+ 𝜖)𝛿(𝑒𝑛)𝑒𝑛𝑔𝑛) = (𝑙𝑛 + 1)𝑔𝑛𝛿(𝑒𝑛(𝑥𝑙𝑛 + 𝜖)𝑒𝑛)𝑔𝑛
= 𝛿(𝑔𝑛𝑒𝑛(𝑙𝑛 + 1)(𝑥𝑙𝑛 + 𝜖)𝑒𝑛)𝑔𝑛 − 𝛿(𝑔𝑛)𝑒𝑛(𝑙𝑛 + 1)(𝑥𝑙𝑛 + 𝜖)𝑒𝑛𝑔𝑛
= 𝛿(𝑔𝑛ℎ0)𝑔𝑛 − 𝛿(𝑔𝑛)ℎ0𝑔𝑛 = 𝑔𝑛𝛿(ℎ0)𝑔𝑛. 

Thus, 

𝑛𝑔𝑛 ≤ 𝑔𝑛𝛿(ℎ0)𝑔0                                                   (81) 
for every 𝑛 ∈ ℕ. 

Set 𝑔𝑛
(0)

= 𝑔𝑛 ∧ 𝐸𝑛−1(𝛿(ℎ0)), 𝑛 ∈ ℕ, where {𝐸𝜆(𝛿(ℎ0))} is the spectral family of 

projections for self-adjoint operator 𝛿(ℎ0). For every 𝑛 ∈ ℕ we have 

𝑛𝑔𝑛
(0)

= 𝑛𝑔𝑛
(0)
𝑔𝑛𝑔𝑛

(0)(81)
≤

𝑔𝑛
(0)
(𝑔𝑛𝛿(ℎ0)𝑔𝑛)𝑔𝑛

(0)
= 𝑔𝑛

(0)
𝛿(ℎ0)𝑔𝑛

(0)

= 𝑔𝑛
(0)
𝐸𝑛−1(𝛿(ℎ0))𝛿(ℎ0)𝑔𝑛

(0)
≤ 𝑔𝑛

(0)
(𝑛 − 1)𝐸𝑛−1(𝛿(ℎ0))𝑔𝑛

(0)

= (𝑛 − 1)𝑔𝑛
(0)
. 

Hence, 𝑔𝑛 ∧ 𝐸𝑛−1(𝛿(ℎ0)) = 𝑔𝑛
(0)

= 0 which implies 

𝑔𝑛 = 𝑔𝑛 − 𝑔𝑛 ∧ 𝐸𝑛−1(𝛿(ℎ0)) ∼ 𝑔𝑛 ∨ 𝐸𝑛−1(𝛿(ℎ0)) − 𝐸𝑛−1(𝛿(ℎ0))  ≤ 1 − 𝐸𝑛−1(𝛿(ℎ0)), 
i.e. 𝑔𝑛 ≼ 1 − 𝐸𝑛−1(𝛿(ℎ0)). 

Then 𝑔𝑛
(77)
≤

𝑓𝑔𝑛 ≼ 𝑓(1 − 𝐸𝑛−1(𝛿(ℎ0))), and therefore 

                    𝐷(𝑔𝑛)
(𝐷3)
≤

 𝐷(𝑓(1 − 𝐸𝑛−1(𝛿(ℎ0))))                                         (82) 

for all 𝑛 ∈ ℕ. 

Since |𝑓𝛿(ℎ0)| ∈ 𝐿𝑆(𝑀), we see that there exists such a non-zero central projection 

𝑓0 ≤ 𝑓, that |𝑓0𝛿(ℎ0)| ∈ 𝑆ℎ(𝑀). Hence, we may find such 𝜆0 > 0, that (𝑓0 −
𝐸𝜆(|𝑓0𝛿(ℎ0)|)) ∈ 𝑃𝑓𝑖𝑛(𝑀) for all 𝜆 ≥ 𝜆0 ([113]), that is 𝐷(𝑓0(1 − 𝐸𝜆(|𝑓0𝛿(ℎ0)|))) ∈

𝐿+
0 (Ω, Σ, 𝜇) when 𝜆 > 𝜆0. 

Since 𝑓0(1 − 𝐸𝜆(|𝑓0𝛿(ℎ0)|)) = 𝑓0(1 − 𝐸𝜆(|𝛿(ℎ0)|)), we infer from (82) that 

𝐷(𝑓0𝑔𝑛) ∈ 𝐿+
0 (Ω, Σ, 𝜇) 

for all 𝑛 ≥ 𝜆0 + 1 which contradicts with the property (D1) in the definition of the 

dimension function 𝐷, since 𝑓0𝑔𝑛 is an infinite projection (see (78)). 

Hence, our assumption that the derivation 𝛿 fails to be continuous in (𝐿𝑆(𝑀), 𝑡(𝑀)) 
has led to a contradiction.  

Corollary (3.2.24)[301]: (See [104]) Let {𝑥𝑛}𝑛=1
∞ ⊂ 𝐿𝑆(𝑀) (respectively, {𝑥𝑛 + 𝜖}𝑛=1

∞ ⊂

𝐿𝑆(𝑀)) be a sequence consistent with the sequence {𝑥𝑛 + 2𝜖}𝑛=1
∞ ⊂ 𝑃(𝑍(𝑀)) 

(respectively, with the sequence {(𝑥𝑛
 + 2𝜖)’}

𝑛=1

∞
⊂ 𝑃(𝑍(𝑀))), (𝑥𝑛 + 2𝜖) ↑ 1((𝑥𝑛

 + 2𝜖)’ ↑

1). 
Then 

(i). There exists a unique 𝑥 ∈ 𝐿𝑆(𝑀), such that 𝑥(𝑥𝑛 + 2𝜖) = 𝑥𝑛(𝑥𝑛 + 2𝜖) for all 𝑛 ∈ ℕ, 

in addition, 𝑥𝑛
𝑡(𝑀)
→  𝑥; 

(ii). If 𝑥𝑛(𝑥𝑛 + 2𝜖)(𝑥𝑚
 + 2𝜖)’ = (𝑥𝑚 + 𝜖)(𝑥𝑛 + 2𝜖)(𝑥𝑚

 + 2𝜖)’ for all 𝑛,𝑚 ∈ ℕ, then 

(𝑥𝑛(𝑥𝑛 + 2𝜖) − (𝑥𝑛 + 𝜖)(𝑥𝑛
 + 2𝜖)’)

𝑡(𝑀)
→  0 for 𝑛 → ∞. 
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Proof. (i). Consider a neighborhood 𝑉(𝐵, 𝜀, 𝛿) of zero in topology 𝑡(𝑀), where 𝜀, 𝛿 >
0, 𝐵 ∈ Σ, 𝜇(𝐵) <∞ (see the definition of topology 𝑡(𝑀)). Since (𝑥𝑛

 + 2𝜖)⊥ = (1 − (𝑥𝑛 +
2𝜖)) ↓ 0, it follows that 𝜑((𝑥𝑛

 + 2𝜖)⊥) ∈ 𝑊(𝐵, 𝜀, 𝛿) for 𝑛 ≥ 𝑛(𝐵, 𝜀, 𝛿). Taking 𝑥 ∈
𝐿𝑆(𝑀), 𝑞𝑛 = (𝑥𝑛 + 2𝜖), we have (𝑥(𝑥𝑛

 + 2𝜖)⊥)𝑞𝑛 = 0,𝐷((𝑥𝑛
 + 2𝜖)⊥ 𝑞𝑛) = 0, i.e. 

𝑥(𝑥𝑛
 + 2𝜖)⊥ ∈  𝑉(𝐵, 𝜀, 𝛿) for all 𝑥 ∈ 𝐿𝑆(𝑀), 𝑛 ≥ 𝑛(𝐵, 𝜀, 𝛿). For 𝑚 >  𝑛, we have 

𝑥𝑚(𝑥𝑚 + 2𝜖) − 𝑥𝑛(𝑥𝑛 + 2𝜖) = 𝑥𝑚(𝑥𝑚 + 2𝜖) − 𝑥𝑚(𝑥𝑛 + 2𝜖) = 𝑥𝑚(𝑥𝑚 − 𝑥𝑛)
= 𝑥𝑚(𝑥𝑚 + 2𝜖)(𝑥𝑛

 + 2𝜖)⊥ ∈ 𝑉(𝐵, 𝜀, 𝛿) 
for all 𝑛 ≥ 𝑛(𝐵, 𝜀, 𝛿). It means that {𝑥𝑛(𝑥𝑛 + 2𝜖)}𝑛=1

∞  is a Cauchy sequence in 

(𝐿𝑆(𝑀), 𝑡(𝑀)). Consequently, there exists 𝑥 ∈ 𝐿𝑆(𝑀) such that 𝑥𝑛(𝑥𝑛 + 2𝜖)
𝑡(𝑀)
→  𝑥. 

Since 𝑥𝑛(𝑥𝑛
 + 2𝜖)⊥ ∈ 𝑉(𝐵, 𝜀, 𝛿) for all 𝑛 ≥ 𝑛(𝐵, 𝜀, 𝛿), it follows that 𝑥𝑛(𝑥𝑛

 + 2𝜖)⊥
𝑡(𝑀)
→  0, 

and therefore 𝑥𝑛 = 𝑥𝑛(𝑥𝑛 + 2𝜖) + 𝑥𝑛(𝑥𝑛
 + 2𝜖)⊥

𝑡(𝑀)
→  𝑥. Fixing 𝑘 ∈ ℕ, for 𝑛 > 𝑘 we have 

𝑥𝑘(𝑥𝑘 + 2𝜖) = 𝑥𝑛(𝑥𝑘 + 2𝜖)
𝑡(𝑀)
→  𝑥(𝑥𝑘 + 2𝜖) for 𝑛 →∞, i.e. 𝑥(𝑥𝑘 + 2𝜖) = 𝑥𝑘(𝑥𝑘 + 2𝜖) 

for all 𝑘 ∈ ℕ. 

If 𝑎 ∈ 𝐿𝑆(𝑀) and 𝑎(𝑥𝑛 + 2𝜖) = 𝑥𝑛(𝑥𝑛 + 2𝜖) = 𝑥(𝑥𝑛 + 2𝜖) for all 𝑛 ∈ ℕ, then 0 = (𝑎 −

𝑥)(𝑥𝑛 + 2𝜖)
𝑡(𝑀)
→  (𝑎 − 𝑥), i.e. 𝑎 = 𝑥. 

(ii). If 𝑥𝑚(𝑥𝑚 + 2𝜖)(𝑥𝑛
 + 2𝜖)’⊥

𝑡(𝑀)
→  0 for 𝑛 → ∞, (𝑥𝑛 + 𝜖)(𝑥𝑛

 + 2𝜖)’(𝑥𝑚
 + 2𝜖)⊥

𝑡(𝑀)
→  0 

for 𝑚 →∞, and 𝑥𝑛(𝑥𝑛 + 2𝜖) − 𝑥𝑚(𝑥𝑚 + 2𝜖)
𝑡(𝑀)
→  0 for 𝑛,𝑚 →  ∞, then 

𝑥𝑛(𝑥𝑛 + 2𝜖) − (𝑥𝑛 + 𝜖)(𝑥𝑛
 + 2𝜖)’

= 𝑥𝑛(𝑥𝑛 + 2𝜖) − 𝑥𝑚(𝑥𝑚 + 2𝜖) + 𝑥𝑚(𝑥𝑚 + 2𝜖)(𝑥𝑛
 + 2𝜖)’ + 𝑥𝑚(𝑥𝑚

+ 2𝜖)(𝑥𝑛
 + 2𝜖)’⊥ − (𝑥𝑛 + 𝜖)(𝑥𝑛

 + 2𝜖)’

= (𝑥𝑛(𝑥𝑛 + 2𝜖) − 𝑥𝑚(𝑥𝑚 + 2𝜖)) + (𝑥𝑛 + 𝜖)(𝑥𝑚 + 2𝜖)(𝑥𝑛
 + 2𝜖)’ + 𝑥𝑚(𝑥𝑚

+ 2𝜖)(𝑥𝑛
 + 2𝜖)’⊥ − (𝑥𝑛 + 𝜖)(𝑥𝑛

 + 2𝜖)’

= (𝑥𝑛(𝑥𝑛 + 2𝜖) − 𝑥𝑚(𝑥𝑚 + 2𝜖)) − (𝑥𝑛 + 𝜖)(𝑥𝑛
 + 2𝜖)’(𝑥𝑚

 + 2𝜖)⊥

+ 𝑥𝑚(𝑥𝑚 + 2𝜖)(𝑥𝑛
 + 2𝜖)’⊥

𝑡(𝑀)
→  0 

for 𝑛,𝑚 →∞.  

Corollary (3.2.25)[301]: (See [104]) The mapping 𝛿 is a unique derivation from 𝐿𝑆(𝑀) 
into 𝐿𝑆(𝑀) such that 𝛿(𝑥) = 𝛿(𝑥) for all 𝑥 ∈ 𝑆(𝑀). 
Proof. Let 𝑥, 𝑥 + 𝜖 ∈ 𝐿𝑆(𝑀), and let (𝑥𝑛 + 2𝜖), (𝑞𝑛 + 𝜖) ∈ 𝑃(𝑍(𝑀)) be such that (𝑥𝑛 +
2𝜖) ↑ 1, (𝑞𝑛 + 𝜖) ↑ 1, 𝑥(𝑥𝑛 + 2𝜖), (𝑥 + 𝜖)(𝑞𝑛 + 𝜖) ∈ 𝑆(𝑀), 𝑛 ∈ ℕ. Observing that  

(𝑥𝑛 + 2𝜖)(𝑞𝑛 + 𝜖) ∈ 𝑃(𝑍(𝑀)), ((𝑥𝑛 + 2𝜖)(𝑞𝑛 + 𝜖))
↑ 1, 𝑥(𝑥𝑛 + 2𝜖)(𝑞𝑛 + 𝜖), (𝑥 + 𝜖)(𝑥𝑛 + 2𝜖)(𝑞𝑛 + 𝜖), (2𝑥 + 𝜖)(𝑥𝑛 + 2𝜖)(𝑞𝑛
+ 𝜖) ∈ 𝑆(𝑀), 𝑛 ∈ ℕ, 

we have 

𝛿(2𝑥 + 𝜖) = 𝑡(𝑀) − lim
𝑛→∞

𝛿((2𝑥 + 𝜖)(𝑥𝑛 + 2𝜖)(𝑞𝑛 + 𝜖))

= (𝑡(𝑀) − lim
𝑛→∞

𝛿(𝑥(𝑥𝑛 + 2𝜖)(𝑞𝑛 + 𝜖)))

+ (𝑡(𝑀) − lim
𝑛→∞

𝛿((𝑥 + 𝜖)(𝑥𝑛 + 2𝜖)(𝑞𝑛 + 𝜖))) = 𝛿(𝑥) + 𝛿(𝑥 + 𝜖). 

Similarly, 𝛿(𝜆𝑥) = 𝜆𝛿(𝑥), 𝜆 ∈ ℂ. Further, using convergences 

𝑥(𝑥𝑛 + 2𝜖)
𝑡(𝑀)
→  𝑥, (𝑥 + 𝜖)(𝑞𝑛 + 𝜖)

𝑡(𝑀)
→  𝑥 + 𝜖, 𝛿(𝑥(𝑥𝑛 + 2𝜖))

𝑡(𝑀)
→  𝛿(𝑥),

𝛿((𝑥 + 𝜖)(𝑞𝑛 + 𝜖))
𝑡(𝑀)
→  𝛿(𝑥 + 𝜖) 

and the inclusion 𝑥(𝑥 + 𝜖)(𝑥𝑛 + 2𝜖)(𝑞𝑛 + 𝜖) ∈ 𝑆(𝑀), 𝑛 ∈ ℕ, we have 
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𝛿(𝑥(𝑥 + 𝜖)) = 𝑡(𝑀) − lim
𝑛→∞

𝛿(𝑥(𝑥 + 𝜖)(𝑥𝑛 + 2𝜖)(𝑞𝑛 + 𝜖))

= 𝑡(𝑀) − lim
𝑛→∞

𝛿 ((𝑥(𝑥𝑛 + 2𝜖))((𝑥 + 𝜖)(𝑞𝑛 + 𝜖)))

= 𝑡(𝑀)

− lim
𝑛→∞

(𝛿(𝑥(𝑥𝑛 + 2𝜖))(𝑥 + 𝜖)(𝑞𝑛 + 𝜖) + 𝑥(𝑥𝑛 + 2𝜖)𝛿((𝑥𝑛 + 𝜖)(𝑞𝑛 + 𝜖)))

= 𝛿(𝑥)(𝑥 + 𝜖) + 𝑥𝛿(𝑥 + 𝜖). 
Consequently, 𝛿: 𝐿𝑆(𝑀) → 𝐿𝑆(𝑀) is a derivation, in addition, 𝛿(𝑥) = 𝛿(𝑥) for all 𝑥 ∈
𝑆(𝑀). 
Assume that 𝛿1: 𝐿𝑆(𝑀) → 𝐿𝑆(𝑀) is also a derivation for which 𝛿1(𝑥) = 𝛿(𝑥) for all 𝑥 ∈

𝑆(𝑀). Let us show that 𝛿 = 𝛿1. 

If 𝑥 ∈ 𝐿𝑆(𝑀), (𝑥𝑛 + 2𝜖) ↑ 1, 𝑥(𝑥𝑛 + 2𝜖) ∈ 𝑆(𝑀), 𝑛 ∈ ℕ, then, by Corollary (3.2.22) 

and Corollary (3.2.24) (i), we obtain 

𝛿(𝑥) = 𝑡(𝑀) − lim
𝑛→∞

𝛿(𝑥(𝑥𝑛 + 2𝜖)) = 𝑡(𝑀) − 𝑙𝑖𝑚
𝑛→∞

𝛿1(𝑥(𝑥𝑛 + 2𝜖))

= 𝑡(𝑀) − 𝑙𝑖𝑚
𝑛→∞

𝛿1(𝑥) (𝑥𝑛 + 2𝜖) = 𝛿1(𝑥). 

Corollary (3.2.26)[301]: If 𝐷 is a dimension function of a von Neumann algebra 𝑀, then 

for any derivation 𝛿 from 𝑀 into 𝐿𝑆(𝑀) the following inequality 
𝐷(𝑠(𝛿(𝑥))) ≤ 3𝐷(𝑠(𝑥)) 

holds for all 𝑥 ∈ 𝑀. 

Proof. For 𝑥 ∈ 𝑀 we have 

𝑙(𝛿(𝑥)𝑠(𝑥)) ∼ 𝑟(𝛿(𝑥)𝑠(𝑥)) ≤ 𝑠(𝑥), 
𝑟(𝑥𝛿(𝑠(𝑥))) ∼ 𝑙(𝑥𝛿(𝑠(𝑥))) = 𝑙(𝑠(𝑥)𝑥𝛿(𝑠(𝑥))) ≤ 𝑠(𝑥), 

i.e. 

𝑙(𝛿(𝑥)𝑠(𝑥)) ≼ 𝑠(𝑥) 
and 

𝑟(𝑥𝛿(𝑠(𝑥))) ≼ 𝑠(𝑥), 
that implies the inequalities (see (D2), (D3)) 

𝐷(𝑙(𝛿(𝑥)𝑠(𝑥))) ≤ 𝐷(𝑠(𝑥)), 𝐷(𝑟(𝑥𝛿(𝑠(𝑥)))) ≤ 𝐷(𝑠(𝑥)). 
Since 

𝛿(𝑥) = 𝛿(𝑥𝑠(𝑥)) = 𝛿(𝑥)𝑠(𝑥) + 𝑥𝛿(𝑠(𝑥)), 
we have 

𝑠(𝛿(𝑥)) = 𝑠(𝛿(𝑥)𝑠(𝑥) + 𝑥𝛿(𝑠(𝑥))) ≤ 𝑠(𝑥) ∨ 𝑙(𝛿(𝑥)𝑠(𝑥)) ∨ 𝑟(𝑥𝛿(𝑠(𝑥))). 
Due to (D6), we have 

𝐷(𝑠(𝛿(𝑥))) ≤ 𝐷(𝑠(𝑥)) + 𝐷(𝑙(𝛿(𝑥)𝑠(𝑥))) + 𝐷(𝑟(𝑥𝛿(𝑠(𝑥)))) ≤ 3𝐷(𝑠(𝑥)). 
Corollary (3.2.27)[301]: (See [104]) If {𝑥𝑛}𝑛=1

∞ ⊂ 𝐿𝑆(𝑀), 𝑠(𝑥𝑛) ∈ 𝑃𝑓𝑖𝑛(𝑀),𝐷(𝑠(𝑥𝑛))
𝑡(𝐿∞(Ω))
→      0, then 𝑥𝑛

𝑡(𝑀)
→  0. 

Proof. Taking 𝑥𝑛 + 2𝜖 = 1 for all 𝑛 ∈ ℕ, we have 

(𝑥𝑛 + 2𝜖)𝑠(𝑥𝑛) ∈ 𝑃𝑓𝑖𝑛(𝑀), 𝜑(𝑥𝑛
 + 2𝜖)⊥ = 0, 𝑛 ∈ ℕ, 

and 

𝐷((𝑥𝑛 + 2𝜖)𝑠(𝑥𝑛)) = 𝐷(𝑠(𝑥𝑛))
𝑡(𝐿∞(Ω))
→      0. 

Consequently, 𝑠(𝑥𝑛)
𝑡(𝑀)
→  0 (see Proposition (3.2.2)(i)). 

Since 𝐸𝜆
⊥(|𝑥𝑛|) ≤ 𝑠(𝑥𝑛) for all 𝜆 > 0, 𝑛 ∈ ℕ, it follows 𝐸𝜆

⊥(|𝑥𝛼|)
𝑡(𝑀)
→  0, and 

therefore 𝑥𝑛
𝑡(𝑀)
→  0 .  



100 

Corollary (3.2.28)[301]: (See [104]) Let 𝑥 ∈ 𝑆(𝑀), (𝑞𝑛 + 𝜖), 𝑞𝑛 ∈ 𝑃(𝑀), (𝑞𝑛 + 𝜖) ↑
1, 𝑞𝑛 ↑ 1, 𝑥(𝑞𝑛 + 𝜖), 𝑥𝑞𝑛 ∈ 𝑀, (𝑞𝑛

 + 𝜖)⊥, 𝑞𝑛
⊥ ∈  𝑃𝑓𝑖𝑛(𝑀), 𝑛 ∈ ℕ. If 𝛿:𝑀 → 𝐿𝑆(𝑀) is a 

derivation, then there exists �̂�(𝑥) ∈  𝐿𝑆(𝑀), such that 

𝑡(𝑀) − lim
𝑛→∞

𝛿(𝑥(𝑞𝑛 + 𝜖)) = �̂�(𝑥) = 𝑡(𝑀) − lim
𝑛→∞

𝛿(𝑥𝑞𝑛) . 

Proof. For 𝑛 < 𝑚 we have 

𝑙(𝑥(𝑞𝑚 − 𝑞𝑛))  ∼ 𝑟(𝑥(𝑞𝑚 − 𝑞𝑛)) ≤ 𝑞𝑚 − 𝑞𝑛, 
and therefore, applying Corollary (3.2.26) and properties (D2), (D3), we obtain 

𝐷(𝑠(𝛿(𝑥𝑞𝑚 − 𝑥𝑞𝑛))) = 𝐷(𝑠(𝛿(𝑥(𝑞𝑚 − 𝑞𝑛)))) ≤ 3𝐷(𝑠(𝑥(𝑞𝑚 − 𝑞𝑛)))
≤ 3𝐷(𝑙(𝑥(𝑞𝑚 − 𝑞𝑛)) ∨ (𝑞𝑚 − 𝑞𝑛)) ≤ 6𝐷(𝑞𝑚 − 𝑞𝑛) ≤ 6𝐷((𝑞𝑛

 + 𝜖)⊥). 
Since 𝐷((𝑞𝑛

 + 𝜖)⊥) ∈ 𝐿+
0 (Ω, Σ, 𝜇) (see (D1)) and 𝐷((𝑞𝑛

 + 𝜖)⊥) ↓ 0 (see (D7)) it follows 

that 𝐷((𝑞𝑛
 + 𝜖)⊥)

𝑡(𝐿∞(Ω))
→      0 (see (D7)). Hence, 

𝐷(𝑠(𝛿(𝑥(𝑞𝑚 + 𝜖)) − 𝛿(𝑥(𝑞𝑛 + 𝜖))))
𝑡(𝐿∞(Ω))
→      0 

for 𝑛,𝑚 →  ∞. By Corollary (3.2.27), we have that (𝛿(𝑥(𝑞𝑚 + 𝜖)) − 𝛿(𝑥(𝑞𝑛 + 𝜖)))
𝑡(𝑀)
→  0 

for 𝑛,𝑚 →∞, i.e. {𝛿(𝑥(𝑞𝑛 + 𝜖))}𝑛=1
∞  is a Cauchy sequence in (𝐿𝑆(𝑀), 𝑡(𝑀)). 

Consequently, there exists �̂�(𝑥) ∈ 𝐿𝑆(𝑀), such that 

𝑡(𝑀) − lim
𝑛→∞

𝛿(𝑥(𝑞𝑛 + 𝜖)) = �̂�(𝑥). 

Let us show that 𝑡(𝑀) − 𝑙𝑖𝑚
𝑛→∞

𝛿(𝑥𝑞𝑛) = �̂�(𝑥). 

For each 𝑛 ∈ ℕ we have 

𝜖(((𝑞𝑛 + 𝜖) − ((𝑞𝑛 + 𝜖)) ∧ 𝑞𝑛) ∨ (𝑞𝑛 − (𝑞𝑛 + 𝜖) ∧ 𝑞𝑛))
= (((𝑞𝑛 + 𝜖) − (𝑞𝑛 + 𝜖) ∧ 𝑞𝑛) − (𝑞𝑛 − (𝑞𝑛 + 𝜖) ∧ 𝑞𝑛))(((𝑞𝑛 + 𝜖) − (𝑞𝑛
+ 𝜖) ∧ 𝑞𝑛) ∨ (𝑞𝑛 − (𝑞𝑛 + 𝜖) ∧ 𝑞𝑛))
= ((𝑞𝑛 + 𝜖) − (𝑞𝑛 + 𝜖) ∧ 𝑞𝑛) − (𝑞𝑛 − (𝑞𝑛 + 𝜖) ∧ 𝑞𝑛) = 𝜖. 

Hence, 

𝑟𝜖 ≤ (((𝑞𝑛 + 𝜖) − (𝑞𝑛 + 𝜖) ∧ 𝑞𝑛) ∨ (𝑞𝑛 − (𝑞𝑛 + 𝜖) ∧ 𝑞𝑛)). 
Since 

𝑟(𝑥((𝑞𝑛 + 𝜖) − 𝑞𝑛)) ≤ 𝑟𝜖 
and 

𝑙(𝑥(𝜖)) ∼ 𝑟(𝑥(𝜖)), 
it follows 

𝐷(𝑠(𝑥(𝜖))) = 𝐷(𝑙(𝑥(𝜖)) ∨ 𝑟(𝑥(𝜖)))
(𝐷6)
≤

𝐷(𝑙(𝑥(𝜖)) + 𝐷(𝑟(𝑥(𝜖))) = 2𝐷(𝑟(𝑥(𝜖))) 

(𝐷6)
≤

2𝐷((𝑞𝑛 + 𝜖) − (𝑞𝑛 + 𝜖) ∧ 𝑞𝑛) + 2𝐷(𝑞𝑛 − (𝑞𝑛 + 𝜖) ∧ 𝑞𝑛)

≤ 4𝐷(1 − (𝑞𝑛 + 𝜖) ∧ 𝑞𝑛) 
= 4𝐷((𝑞𝑛

 + 𝜖)⊥ ∨ 𝑞𝑛
⊥) ≤ 4(𝐷((𝑞𝑛

 + 𝜖)⊥) + 𝐷(𝑞𝑛
⊥)). 

Since (see Corollary (3.2.26)) 

𝐷(𝑠(𝛿(𝑥(𝑞𝑛 + 𝜖)) − 𝛿(𝑥𝑞𝑛))) = 𝐷(𝑠(𝛿(𝑥(𝜖))))  ≤ 3𝐷(𝑠(𝑥(𝜖))), 
we have 

𝐷(𝑠(𝛿(𝑥(𝑞𝑛 + 𝜖)) − 𝛿(𝑥𝑞𝑛))) ≤ 12(𝐷((𝑞𝑛
 + 𝜖)⊥) + 𝐷(𝑞𝑛

⊥)) ↓ 0. 
By Corollary (3.2.27), we obtain 

𝑡(𝑀) − lim
𝑛→∞

𝛿(𝑥𝑞𝑛) = 𝑡(𝑀) − 𝑙𝑖𝑚
𝑛→∞

𝛿(𝑥(𝑞𝑛 + 𝜖)) = �̂�(𝑥). 

Corollary (3.2.29)[301]: (See [104]) The mapping �̂� is a unique derivation from 𝑆(𝑀) into 

𝐿𝑆(𝑀), such that �̂�(𝑥) = 𝛿(𝑥) for all 𝑥 ∈ 𝑀. 
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Proof. For 𝑥, 𝑥 + 𝜖 ∈ 𝑆(𝑀) select (𝑞𝑛 + 𝜖), 𝑞𝑛 ∈ 𝑃(𝑀), 𝑛 ∈ ℕ, such that 

(𝑞𝑛 + 𝜖) ↑ 1, 𝑞𝑛 ↑ 1, (𝑞𝑛
 + 𝜖)⊥ , 𝑞𝑛

⊥ ∈ 𝑃𝑓𝑖𝑛(𝑀), 𝑥(𝑞𝑛 + 𝜖), (𝑥 + 𝜖)𝑞𝑛 ∈ 𝑀 

for all 𝑛 ∈ ℕ. The sequence of projections 𝑒𝑛 = (𝑞𝑛 + 𝜖) ∧ 𝑞𝑛 is increasing, and, in 

addition, 

𝑥𝑒𝑛 = 𝑥(𝑞𝑛 + 𝜖)𝑒𝑛 ∈ 𝑀, (𝑥 + 𝜖)𝑒𝑛 = (𝑥 + 𝜖)𝑞𝑛𝑒𝑛 ∈ 𝑀, 
𝑒𝑛
⊥ = (𝑞𝑛

 + 𝜖)⊥ ∨ 𝑞𝑛
⊥ ∈ 𝑃𝑓𝑖𝑛(𝑀), 𝐷(𝑒𝑛

⊥) ≤ 𝐷((𝑞𝑛
 + 𝜖)⊥) + 𝐷(𝑞𝑛

⊥) ↓ 0. 

The last estimate implies the convergence 𝑒𝑛
⊥ ↓ 0 (see (D7)), or 𝑒𝑛 ↑ 1. 

By Corollary (3.2.28), we have 

�̂�(2𝑥 + 𝜖) = 𝑡(𝑀) − lim
𝑛→∞

𝛿((2𝑥 + 𝜖)𝑒𝑛)

= (𝑡(𝑀) − lim
𝑛→∞

𝛿(𝑥𝑒𝑛)) + (𝑡(𝑀) − lim
𝑛→∞

𝛿((𝑥 + 𝜖)𝑒𝑛))

=  �̂�(𝑥) + �̂�(𝑥 + 𝜖). 
Similarly, �̂�(𝜆𝑥) = 𝜆�̂�(𝑥) for all 𝜆 ∈ ℂ.  

Let us show that �̂�(𝑥(𝑥 + 𝜖)) = �̂�(𝑥)(𝑥 + 𝜖) + 𝑥�̂�(𝑥 + 𝜖), 𝑥, 𝑥 + 𝜖 ∈ 𝑆(𝑀). 
Due to polar decomposition 𝑥 + 𝜖 = 𝑢|𝑥 + 𝜖|, 𝑢∗𝑢 = 𝑟(𝑥 + 𝜖), we have 𝑥𝑛 + 𝜖 = (𝑥 +
𝜖)𝐸𝑛(|𝑥 + 𝜖|) ∈ 𝑀 for all 𝑛 ∈ ℕ. Set 

𝑔𝑛 = 1 − 𝑟(𝐸𝑛
⊥(|𝑥|)(𝑥𝑛 + 𝜖)), 𝑠𝑛 = 𝑔𝑛 ∧ 𝐸𝑛(|𝑥 + 𝜖|). 

Since 

𝑔𝑛
⊥ = 𝑟(𝐸𝑛

⊥(|𝑥|)(𝑥𝑛 + 𝜖)) ∼ 𝑙(𝐸𝑛
⊥ (|𝑥|)(𝑥𝑛 + 𝜖)) ≤ 𝐸𝑛

⊥(|𝑥|), 
we obtain 

𝑔𝑛
⊥ ≼ 𝐸𝑛

⊥(|𝑥|). 
Since 𝑥 ∈ 𝑆(𝑀), there exists 𝑛0 ∈ ℕ such that 𝐸𝑛

⊥ (|𝑥|) ∈ 𝑃𝑓𝑖𝑛(𝑀) for all 𝑛 ≥ 𝑛0, and 

therefore 𝑔𝑛
⊥ ∈ 𝑃𝑓𝑖𝑛(𝑀) for all 𝑛 ≥ 𝑛0. The equality 

(𝑥𝑛 + 𝜖)𝑔𝑛 = 𝐸𝑛(|𝑥|)(𝑥𝑛 + 𝜖)𝑔𝑛 + 𝐸𝑛
⊥ (|𝑥|)(𝑥𝑛 + 𝜖)𝑔𝑛 = 𝐸𝑛(|𝑥|)(𝑥𝑛 + 𝜖)𝑔𝑛 

implies that 

𝐸𝑛+1
⊥ (|𝑥|)(𝑥𝑛+1 + 𝜖)𝑠𝑛 = 𝐸𝑛+1

⊥ (|𝑥|)𝐸𝑛
⊥(|𝑥|(𝑥𝑛+1 + 𝜖)𝐸𝑛(|𝑥 + 𝜖|))𝑠𝑛

= 𝐸𝑛+1
⊥ + 1(|𝑥|)(𝐸𝑛

⊥(|𝑥|)(𝑥𝑛 + 𝜖)𝐸𝑛(|𝑥 + 𝜖|))𝑠𝑛
= 𝐸𝑛+1

⊥ (|𝑥|)(𝐸𝑛
⊥(|𝑥|)(𝑥𝑛 + 𝜖)𝑠𝑛) = 𝐸𝑛+1

⊥ (|𝑥|)(𝐸𝑛
⊥(|𝑥|)(𝑥𝑛 + 𝜖)𝑔𝑛)𝑠𝑛 = 0, 

in particular, 

𝑠𝑛 ≤ 1 − 𝑟(𝐸𝑛+1
⊥ (|𝑥|)(𝑥𝑛+1 + 𝜖)) = 𝑔𝑛+1 

for all 𝑛 ∈ ℕ. From here and from the inequalities 𝑠𝑛 ≤ 𝐸𝑛(|𝑥 + 𝜖|) ≤ 𝐸𝑛+1(|𝑥 + 𝜖|) it 

follows that 𝑠𝑛 ≤ 𝑠𝑛+1. 

Since 𝑥 + 𝜖 ∈ 𝑆(𝑀), we have 𝐸𝑛
⊥(|𝑥 + 𝜖|) ∈ 𝑃𝑓𝑖𝑛(𝑀) for 𝑛 ≥ 𝑛1 for some 𝑛1 ≥ 𝑛0. 

Hence, 

𝑠𝑛
⊥ = 𝑔𝑛

⊥ ∨ 𝐸𝑛
⊥(|𝑥 + 𝜖|) ∈ 𝑃𝑓𝑖𝑛(𝑀) 

for 𝑛 ≥ 𝑛1 and 

𝐷(𝑠𝑛
⊥) ≤ 𝐷(𝑔𝑛

⊥) + 𝐷(𝐸𝑛
⊥(|𝑥 + 𝜖|)) ≤ (𝐷(𝐸𝑛

⊥(|𝑥|)) + 𝐷(𝐸𝑛
⊥(|𝑥 + 𝜖|))) ↓ 0, 

i.e. 𝑠𝑛
⊥ ↓ 0 or 𝑠𝑛 ↑ 1. 

Using Corollary (3.2.14), Corollary (3.2.28), the inclusions 𝑥𝐸𝑛(|𝑥|) ∈ 𝑀, (𝑥 +
𝜖)𝐸𝑛(|𝑥 + 𝜖|) ∈ 𝑀 and equalities 

𝑥(𝑥 + 𝜖)𝑠𝑛 = 𝑥(𝑥 + 𝜖)𝐸𝑛(|𝑥𝑛 + 𝜖|)𝑠𝑛 = 𝑥(𝑥𝑛 + 𝜖)𝑠𝑛 = 𝑥(𝑥𝑛 + 𝜖)𝑔𝑛𝑠𝑛
= 𝑥𝐸𝑛(|𝑥|)(𝑥𝑛 + 𝜖)𝑞𝑛𝑠𝑛 = 𝑥𝐸𝑛(|𝑥|)(𝑥 + 𝜖)𝐸𝑛(|𝑥 + 𝜖|)𝑠𝑛, 

we obtain 
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�̂�(𝑥(𝑥 + 𝜖)) = 𝑡(𝑀) − lim
𝑛→∞

𝛿(𝑥(𝑥 + 𝜖)𝑠𝑛)

= 𝑡(𝑀) − lim
𝑛→∞

𝛿(𝑥𝐸𝑛(|𝑥|)(𝑥 + 𝜖)𝐸𝑛(|𝑥 + 𝜖|𝑠𝑛))

= 𝑡(𝑀) − lim
𝑛→∞

(𝛿(𝑥𝐸𝑛(|𝑥|))(𝑥 + 𝜖)𝑠𝑛 + 𝑥𝐸𝑛(|𝑥|)𝛿((𝑥 + 𝜖)𝑠𝑛))

= (𝑡(𝑀) − lim
𝑛→∞

𝛿(𝑥𝐸𝑛(|𝑥|))) · (𝑡(𝑀) − lim
𝑛→∞

(𝑥 + 𝜖)𝑠𝑛)

+ (𝑡(𝑀) − lim
𝑛→∞

𝑥𝐸𝑛(|𝑥|)) · (𝑡(𝑀) − lim
𝑛→∞

𝛿((𝑥 + 𝜖)𝑠𝑛))

= �̂�(𝑥)(𝑥 + 𝜖) + 𝑥�̂�(𝑥 + 𝜖). 
Consequently, �̂�: 𝑆(𝑀) → 𝐿𝑆(𝑀) is a derivation, such that �̂�(𝑥) = 𝛿(𝑥) for all 𝑥 ∈ 𝑀.  

Let 𝛿1: 𝑆(𝑀) → 𝐿𝑆(𝑀) also be a derivation, for which 𝛿1(𝑥) = 𝛿(𝑥) for all 𝑥 ∈ 𝑀. If 𝑥 ∈
𝑆(𝑀), then 𝐸𝑛(|𝑥|) ↑ 1, 𝑥𝐸𝑛(|𝑥|) ∈ 𝑀, 𝑛 ∈ ℕ, 𝐸𝑛

⊥(|𝑥|) ∈ 𝑃𝑓𝑖𝑛(𝑀) for all 𝑛 ≥ 𝑛3 for some 

𝑛3 ∈ ℕ. 

Hence, 𝐸𝑛(|𝑥|)
𝑡(𝑀)
→  1 (see Corollary (3.2.14)). Since (𝐿𝑆(𝑀), 𝑡(𝑀)) is a topological 

algebra, it follows that 

𝛿1(𝑥) = 𝑡(𝑀) − lim
𝑛→∞

𝛿1(𝑥)𝐸𝑛(|𝑥|)

= (𝑡(𝑀) − lim
𝑛→∞

𝛿1(𝑥𝐸𝑛(|𝑥|))) − (𝑡(𝑀) − lim
𝑛→∞

𝑥𝛿1(𝐸𝑛(|𝑥𝑛|)))

= (𝑡(𝑀) − 𝑙𝑖𝑚
𝑛→∞

𝛿(𝑥𝐸𝑛(|𝑥|))) − (𝑡(𝑀) − 𝑙𝑖𝑚
𝑛→∞

𝑥𝛿(𝐸𝑛(|𝑥𝑛|)))

= �̂�(𝑥) − 𝑥(𝑡(𝑀) − 𝑙𝑖𝑚
𝑛→∞

𝛿(𝐸𝑛(|𝑥𝑛|))). 

Since 𝛿(1) = 0, 𝑠(𝑥) = 𝑠(−𝑥) for 𝑥 ∈ 𝐿𝑆(𝑀), it follows via Corollary (3.2.26), that 

𝐷(𝑠(𝛿(𝐸𝑛(|𝑥|))))  = 𝐷(𝑠(𝛿(−𝐸𝑛(|𝑥|))))  = 𝐷(𝑠(𝛿(1 − 𝐸𝑛(|𝑥|)))) ≤ 3𝐷(𝐸𝑛
⊥(|𝑥|)) ↓ 0. 

By Corollary (3.2.26), we obtain 𝛿(𝐸𝑛(|𝑥|))
𝑡(𝑀)
→  0, that implies the equality 𝛿1(𝑥) =

�̂�(𝑥).  
Corollary (3.2.30)[301]: Let 𝐴 be a subalgebra of 𝐿𝑆(𝑀),𝑀 ⊂ 𝐴 and let 𝛿: 𝐴 → 𝐿𝑆(𝑀) be 

a derivation. Then there exists a unique derivation 𝛿𝐴: 𝐿𝑆(𝑀) → 𝐿𝑆(𝑀) such that 𝛿𝐴(𝑥) =
𝛿(𝑥) for all 𝑥 ∈ 𝐴. 

Proof. Since 𝑀 ⊂ 𝐴, the restriction 𝛿0 of the derivation 𝛿 on 𝑀 is a well-defined derivation 

from 𝑀 into 𝐿𝑆(𝑀). Hence, by Propositions (3.2.25) and (3.2.29), the mapping 𝛿𝐴 = �̂̃� is a 

unique derivation from 𝐿𝑆(𝑀) into 𝐿𝑆(𝑀) such that 𝛿𝐴(𝑥) = 𝛿0(𝑥) for all 𝑥 ∈ 𝑀. Let us 

show that 𝛿𝐴(𝑎) = 𝛿(𝑎) for every 𝑎 ∈ 𝐴. If 𝑎 ∈ 𝐴, then there exists a sequence 

{𝑥𝑛 + 2𝜖}𝑛=1
∞ ⊂ 𝑃(𝑍(𝑀)), such that (𝑥𝑛 + 2𝜖) ↑ 1 and 𝑎(𝑥𝑛 + 2𝜖) ∈ 𝑆(𝑀), 𝑛 ∈ ℕ. Since 

𝑥𝑛 + 2𝜖
𝑡(𝑀)
→  1 (see Corollary (3.2.24)(i)), we have, by Corollary (3.2.22), 

𝛿𝐴(𝑎) = 𝑡(𝑀) − lim
𝑛→∞

𝛿𝐴(𝑎) (𝑥𝑛 + 2𝜖) = 𝑡(𝑀) − lim
𝑛→∞

𝛿𝐴(𝑎(𝑥𝑛 + 2𝜖)) , 

and, similarly,𝛿(𝑎) = 𝑡(𝑀) − 𝑙𝑖𝑚
𝑛→∞

𝛿(𝑎(𝑥𝑛 + 2𝜖)). 

Using the equality 𝛿𝐴(𝑥) =  𝛿0(𝑥) = 𝛿(𝑥) for each 𝑥 ∈ 𝑀, and following the proof 

of uniqueness of the derivation �̂� from Corollary (3.2.29), we obtain 𝛿𝐴(𝑎(𝑥𝑛 + 2𝜖)) =
 𝛿(𝑎(𝑥𝑛 + 2𝜖)) for all 𝑛 ∈ ℕ, that implies the equality 𝛿𝐴(𝑎) = 𝛿(𝑎).   
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Chapter 4 

Twisting and Schatten Classes 

 

We show that the results can be summarized as follows: Ext𝐵(𝑆
𝑝 , 𝑆𝑞) =

{

0     if 0 <  𝑞 <  𝑝 ≤  ∞ 𝑜𝑟 𝑝 =  𝑞 =  ∞,

 Ext𝐶(𝑆
1 , 𝐶)        if 𝑞 =  𝑝 is finite,                   

 Ext𝐶(𝐻)          if 0 <  𝑝 <  𝑞 ≤  ∞                  
. In the first case, every extension 0 → 𝑆𝑞 →

𝑋 → 𝑆𝑝 → 0 splits and so 𝑋 =  𝑆𝑞 ⊕ 𝑆𝑝 . In the second case, every self-extension of S p 

arises (and gives rise) to a minimal extension of 𝑆1 in the quasi-Banach category, that is, a 

short exact sequence 0 → 𝐶 → 𝑀 → 𝑆1 → 0. In the third case, each extension corresponds 

to a “twisted Hilbert space”, that is, a short exact sequence 0 → 𝐻 → 𝑇 → 𝐻 → 0. We show 

that Kalton twisting of Schatten classes is strictly singular as 𝐵(𝐻)-modules. We also 

identify the dual construction. For semifinite algebras, considering 𝐿𝑝 = 𝐿𝑝(𝑀, 𝜏) as an 

interpolation space between 𝑀 and its predual 𝑀∗ one arrives at a certain self-extension of 

𝐿𝑝 that is a kind of noncommutative Kalton-Peck space and carries a natural bimodule 

structure. Some interesting properties of these spaces are presented. For general algebras, 

including those of type III, the interpolation mechanism produces two (rather than one) 

extensions of one sided modules, one of left-modules and the other of right-modules. 

Whether or not one may find (nontrivial) self-extensions of bimodules in all cases is left 

open. 

Section (4.1): Certain Homological Properties 

For 𝑍 and 𝑌 be quasi-Banach modules over a fixed Banach algebra 𝐴. An extension 

(of 𝑍 by 𝑌) is a short exact sequences of (quasi-) Banach modules and homomorphisms 

0 ⟶ 𝑌 ⟶ 𝑋 ⟶ 𝑍 ⟶ 0. 
Less technically we may think of 𝑋 as a module containing 𝑌 as a closed submodule in such 

a way that 𝑋/𝑌 is (isomorphic to) 𝑍. The extension is said to be trivial (or to split) if 𝑌 is 

complemented in 𝑋 through a homomorphism. 

When properly classified and organized the extensions of Z by Y constitute a linear space 

denoted by 𝐸𝑥𝑡𝐴(𝑍, 𝑌 ). 
While the homomorphisms between a given couple of modules display the most basic links 

between them, extensions reect much more subtle connections, often in a encrypted or 

disguised form. 

We study extensions between Schatten classes when these are regarded as modules 

over 𝐵 = 𝐵(ℋ), the algebra of all (linear, bounded) operators on the underlying Hilbert 

space ℋ. 

Thus we are concerned with short exact sequences of (say left) 𝐵-modules 

                                       0 ⟶ 𝑆𝑞 ⟶ 𝑋 ⟶ 𝑆𝑝 ⟶ 0.                                                      (1) 

Our main results can be summarized as follows, according to the relative position between 

𝑝 and 𝑞: 

𝐸𝑥𝑡𝐵(𝑆
𝑝, 𝑆𝑞) = {

0           𝑖𝑓 0 < 𝑞 < 𝑝 ≤ ∞ 𝑜𝑟 𝑝 = 𝑞 = ∞,

𝐸𝑥𝑡ℂ(𝑆
1; ℂ)                     𝑖𝑓 𝑞 = 𝑝 𝑖𝑠 𝑓𝑖𝑛𝑖𝑡𝑒,

𝐸𝑥𝑡ℂ(ℋ)                           𝑖𝑓 0 < 𝑝 < 𝑞 ≤ ∞.

 

(𝑆∞ is the ideal of compact operators, with the operator norm.) In the first case every 

extension is trivial and we have 𝑋 = 𝑆𝑝 ⊕𝑆𝑞. In the second case we see that 𝐸𝑥𝑡𝐵(𝑆
𝑝) 

does not depend on 𝑝 ∈ (0,∞) and, in fact, each self-extension of 𝑆𝑝 corresponds to a 

minimal extension of 𝑆1, that is, an exact sequence of quasi-Banach spaces and operators 
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0 ⟶ ℂ⟶ 𝑀 ⟶ 𝑆1 ⟶ 0. 

Notice that such an extension is nontrivial precisely when 𝑀 is not locally convex, despite 

the fact that both 𝑆1 and ℂ are. In the third case, each extension of 𝑆𝑝 by 𝑆𝑞 gives rise to 

(and arises from) a “twisted Hilbert space”, that is, a short exact sequence of Banach spaces 

and operators 
0 ⟶ ℋ ⟶ 𝑇 ⟶ℋ ⟶ 0 

which arises as its “spatial part”. By the well-known projection property of Hilbert spaces 

such an extension is (non-) trivial if and only if 𝑇 is (not) isomorphic to a Hilbert space. 

It is remarkable that the results are so cleanly connected with the early “three space” 

problems. See [140], [125], [120], [137] or [138] for basic information on the topic. 

The study of the modular structure of noncommutative 𝐿𝑝 spaces built over a general 

von Neumann algebra 𝑀 goes back to their inception. However, the computation of the 

spaces of homomorphisms, which plays a role, see [132]. 

Not much is known about the corresponding spaces of extensions 𝐸𝑥𝑡𝑀(𝐿
𝑝, 𝐿𝑞) for general 

𝑀. By following ideas of Kalton [136] it is proved in [124] that 𝐸𝑥𝑡𝑀(𝐿
𝑝) ≠  0 for every 

(infinite-dimensional) 𝑀 and other related results. 

The approach also originates in Kalton's work. Indeed, the idea of representing extensions 

by centralizers is already in [134]. Even if the connection between centralizers and 

extensions is deliberately neglected in both [135] and [136], the should be considered as the 

first serious studies on self-extensions of the Schatten classes within the category of quasi-

Banach bimodules over 𝐵. 

The commutative situation is settled in [122] with quite different techniques. Considering 

the usual Lebesgue spaces 𝐿𝑝 = 𝐿𝑝(𝜇) for an arbitrary measure 𝜇 as 𝐿∞-modules with 

“pointwise” multiplication we have 𝐸𝑥𝑡𝐿∞(𝐿
𝑞 , 𝐿𝑝) = 0 when 𝑝 ≠ 𝑞 and 𝐸𝑥𝑡𝐿∞(𝐿

𝑝) =
𝐸𝑥𝑡𝐿∞(𝐿

1) for every 𝑝 ∈ (0,1). The preceding identity had been proved by Kalton in [134] 

for 𝑝 ∈ (1,∞). 
Some consider a more restrictive notion of extension by requiring the splitting in the (quasi-

) Banach category. This leads to the study of the amenability of the underlying algebra, a 

major theme in homology of Banach algebras [129]. Although we will not pursue this point 

here, the results imply that if (1) splits as an extension of quasi-Banach spaces, then so it 

does as an extension of quasi-Banach modules over 𝐵, a result which is easy to prove when 

𝑞 ≥ 1. 

We consider modules on the left unless otherwise stated. Let 𝐴 be a Banach algebra that 

for all purposes will be a 𝐶∗-algebra. 𝐴 quasi-normed module over 𝐴 is a quasi-normed 

space 𝑋 together with a jointly continuous outer multiplication 𝐴 × 𝑋 → 𝑋 satisfying the 

traditional algebraic requirements. If the underlying space is complete (that is, a quasi-

Banach space) we speak of a quasi-Banach module. Given quasi-normed modules 𝑋 and 𝑌, 

a homomorphism 𝑢: 𝑋 → 𝑌 is an operator such that 𝑢(𝑎𝑥) = 𝑎𝑢(𝑥) for all 𝑎 ∈ 𝐴 and 𝑥 ∈
𝑋. Operators and homomorphisms are assumed to be continuous unless otherwise stated. If 

no continuity is assumed, we speak of linear maps and morphisms. We use 𝐻𝑜𝑚𝐴(𝑋, 𝑌) for 

the space of homomorphisms and ℳ𝐴(𝑋, 𝑌 ) for the morphisms. If there is no possible 

confusion about the underlying algebra 𝐴, we omit the subscript. 

Quasi-normed right modules and bimodules and their homomorphisms are defined in the 

obvious way. 

In general, 𝐻𝑜𝑚𝐴(𝑋, 𝑌 ) carries no module structure. However, if 𝑋 is a bimodule 

instead of a mere left module, then 𝐻𝑜𝑚𝐴(𝑋, 𝑌) can be given a structure of left module 
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letting (𝑎ℎ)(𝑥) = ℎ(𝑥𝑎), where ℎ ∈ 𝐻𝑜𝑚𝐴(𝑋, 𝑌 ), 𝑥 ∈ 𝑋, 𝑎 ∈ 𝐴. Similarly, if 𝑌 is a 

bimodule, then the multiplication ℎ𝑎(𝑥) = ℎ(𝑥)𝑎 makes 𝐻𝑜𝑚𝐴(𝑋, 𝑌 ) into a right module. 

These structures are functorial in the obvious sense.  

An extension of 𝑍 by 𝑌 is a short exact sequence of quasi-Banach modules and 

homomorphisms 

                             0 ⟶ 𝑌
    𝜄    
→  𝑋

   𝜋   
→   𝑍 ⟶ 0.                                                    (2) 

The open mapping theorem guarantees that 𝜄 embeds 𝑌 as a closed submodule of 𝑋 in such 

a way that the corresponding quotient is isomorphic to 𝑍. Two extensions 0 ⟶ 𝑌 ⟶ 𝑋𝑖 ⟶
𝑍 ⟶ 0 (𝑖 = 1,2) are said to be equivalent if there exists a homomorphism u making 

commutative the diagram 
0 ⟶ 𝑌 ⟶ 𝑋1 ⟶ 𝑍 ⟶ 0

 ∥        ↓ 𝑢      ∥  
0 ⟶ 𝑌 ⟶ 𝑋2 ⟶ 𝑍 ⟶ 0

 

By the five-lemma [130], and the open mapping theorem, 𝑢 must be an isomorphism. We 

say that (2) splits if it is equivalent to the trivial sequence 0 ⟶ 𝑌 ⟶ 𝑌⨁ 𝑍 ⟶ 𝑍 ⟶ 0. This 

just means that 𝑌 is a complemented submodule of 𝑋, that is, there is a homomorphism 𝑋 ⟶
𝑌 which is a left inverse for the inclusion 𝜄: 𝑌 ⟶ 𝑋; equivalently, there is a homomorphism 

𝑍 ⟶ 𝑋 which is a right inverse for the quotient 𝜋 ∶ 𝑋 ⟶ 𝑍. 

Given quasi-Banach modules 𝑌 and 𝑍, we denote by 𝐸𝑥𝑡𝐴(𝑍, 𝑌 ) the set of all possible 

module extensions (2) modulo equivalence. When 𝑌 = 𝑍 we just write 𝐸𝑥𝑡𝐴(𝑍). By using 

pull-back and pushout constructions, it can be proved (see [123] for the details in the 𝐹-

space setting) that 𝐸𝑥𝑡𝐴(𝑍, 𝑌) carries a “natural” linear structure (without topology) in such 

a way that trivial extensions correspond to 0. (The usual approach using injective or 

projective representations completely fails dealing with quasi-Banach modules since there 

are neither injective nor projective objects.) Thus, 𝐸𝑥𝑡𝐴(𝑍, 𝑌) = 0 means “every extension 

0 → 𝑌 → 𝑋 → 𝑍 → 0 splits”. 

Taking 𝐴 as the ground field one recovers extensions in the quasi-Banach space setting. 

Definition (4.1.1)[119]: (Kalton). Let 𝑍 and 𝑌 be quasi-normed modules over the Banach 

algebra 𝐴 and let �̃� be another module containing 𝑌 in the purely algebraic sense. 𝐴 

centralizer from 𝑍 to 𝑌 with ambient space �̃� is a homogeneous mapping  Ω: 𝑍 ⟶ �̃� having 

the following properties. 

(a) It is quasi-linear, that is, there is a constant 𝑄 so that if 𝑓, 𝑔 ∈ 𝑍, then Ω(𝑓 + 𝑔) − Ω(𝑓) −
Ω(𝑔) ∈ 𝑌 and ‖Ω(𝑓 + 𝑔) − Ω(𝑓) − Ω(𝑔)‖𝑌 ≤ 𝑄(‖𝑓‖𝑍 + ‖𝑔‖𝑧). 
(b) There is a constant 𝐶 so that if 𝑎 ∈ 𝐴 and 𝑓 ∈ 𝑍, then Ω(𝑎𝑓) − 𝑎Ω(𝑓) ∈ 𝑌 and 

‖Ω(𝑎𝑓) − 𝑎Ω(𝑓)‖𝑌 ≤ 𝐶‖𝑎‖𝐴‖𝑓‖𝑍. 
We denote by 𝑄[Ω] the least constant for which (a) holds and by 𝐶[Ω] the least constant for 

which (b) holds. We refer to the number Δ[Ω] = max {𝑄[Ω], 𝐶[Ω]} as the centralizer 

constant of Ω. 

We now indicate the connection between centralizers and extensions. Let 𝑍 and 𝑌 be quasi-

Banach modules. Suppose Ω ∶ 𝑍0 → �̃� is a centralizer from 𝑍0 to 𝑌, where 𝑍0 is a dense 

submodule of 𝑍.Then 

𝑌 ⊕Ω 𝑍0 = {(𝑔, 𝑓) ∈ �̃� × 𝑍0: 𝑔 − Ω𝑓 ∈ 𝑌} 
is a linear subspace of  �̃� × 𝑍0 and the functional ‖(𝑔, 𝑓)‖Ω = ‖𝑔 − Ω𝑓‖𝑦 + ‖𝑓‖𝑍 is a 

quasi-norm on it. Moreover, the map 𝜄 ∶ 𝑌 → 𝑌⨁Ω𝑍0 sending 𝑔 to (𝑔, 0) preserves the 

quasi-norm, while the map  𝜋: 𝑌⨁Ω𝑍0 ⟶ 𝑍0 given as 𝜋(𝑔, 𝑓) = 𝑓 is open, so that we have 

a short exact sequence of quasi-normed spaces and relatively open operators 



106 

                             0 ⟶ 𝑌
    𝜄    
→  𝑌⨁Ω𝑍0

   𝜋   
→  𝑍0 ⟶ 0                                                   (3) 

Actually only quasi-linearity (a) is necessary here. The estimate in (b) implies that the 

multiplication a (𝑔, 𝑓) = (𝑎𝑔, 𝑎𝑓) makes 𝑌⨁Ω𝑍0 into a quasi-normed module over 𝐴 in 

such a way that the arrows in (3) become homomorphisms. Indeed, 

‖𝑎(𝑔, 𝑓)‖Ω = ‖𝑎𝑔 − Ω(𝑎𝑓)‖𝑌 + ‖𝑎𝑓‖𝑍  = ‖𝑎𝑔 − Ω𝑎𝑓 + 𝑎𝑓 − Ω(𝑎𝑓)‖𝑌 + ‖𝑎𝑓‖𝑍
≤ 𝑀‖𝑎‖𝐴‖(𝑔, 𝑓)‖Ω. 

Let 𝑋Ω be the completion of 𝑌⨁Ω𝑍0. This is a quasi-Banach module and there is a unique 

homomorphism 𝑋Ω → 𝑍 extending the quotient in (3) we still denote 𝜋. We have a 

commutative diagram 

                         

0 ⟶ 𝑌 ⟶ 𝑌 ⨁Ω𝑍0 ⟶ 𝑍0 ⟶ 0
∥              ↓               ↓  

0 ⟶  𝑦 ⟶  𝑋Ω   
   𝜋   
→    𝑍 ⟶ 0

                                                      (4) 

in which the vertical arrows are inclusions and the horizontal rows are exact. We will always 

refer to the lower row in this diagram as the extension (of 𝑍 by 𝑌) induced by Ω. 

It is easily seen that two centralizers Ω and Φ (acting between the same sets, say 𝑍0 and �̃� ) 
induce equivalent extensions if and only if there is a morphism ℎ: 𝑍0 → �̃� such that 

‖Ω(𝑓) − Φ(𝑓) − ℎ(𝑓)‖𝑌 ≤ 𝐾‖𝑓‖𝑍. We write Ω~Φ in this case and Ω ≈ Φ if the preceding 

inequality holds for ℎ = 0. In particular  Ω induces a trivial extension if and only if 

‖Ω(𝑓) − ℎ(𝑓)‖𝑌 ≤ 𝐾‖𝑓‖𝑍 for some morphism ℎ: 𝑍0 → �̃� (that is, 𝑑𝑖𝑠𝑡(Ω, ℎ) < ∞). In this 

case we say that Ω is a trivial centralizer. 

We now move to the concrete modules we shall deal with. For 𝑝 ∈ (0,∞), let ℓ𝑝 

denote quasi-Banach space of (complex) sequences (𝑡𝑛) for which the quasi-norm |(𝑡𝑛)|𝑝 =

(∑ |𝑡𝑛|
𝑝

𝑛 )1/𝑝 is finite.  

Let 𝑓 be a compact operator on the Hilbert space ℋ. The singular numbers of 𝑓 are the 

sequence of eigenvalues of |𝑓| = (𝑓∗𝑓)1/2 arranged in decreasing order and counting 

multiplicity. The Schatten class 𝑆𝑝 consists of those operators on ℋ whose singular numbers 

(𝑠𝑛(𝑓)) are in ℓ𝑝. It is a quasi-Banach space under the quasi-norm ‖𝑓‖𝑝 = |(𝑠𝑛(𝑓))|𝑝. Each 

𝑓 ∈ 𝑆𝑝 has an expansion 𝑓 =  ∑ 𝑠𝑛𝑥𝑛𝑛 ⊗𝑦𝑛, where (𝑠𝑛) are its singular numbers and (𝑥𝑛) 
and (𝑦𝑛) are orthonormal sequences in ℋ. This is called an Schmidt representation of 𝑓. 𝑆𝑝 

is a quasi-Banach bimodule over 𝐵 in the obvious way: given 𝑓 ∈ 𝑆𝑝 and 𝑎, 𝑏 ∈ 𝐵 one has 

𝑎𝑓𝑏 ∈ 𝑆𝑝 and ‖𝑎𝑓𝑏‖𝑝 ≤ ‖𝑎‖𝐵‖𝑓‖𝑝‖𝑏‖𝐵. The submodule of finite rank operators is 

denoted by 𝑆0
𝑝
 . The structure of homomorphisms between Schatten classes is fairly simple. 

Indeed, one has 

                𝐻𝑜𝑚𝐵(𝑆
𝑝, 𝑆𝑞) = {

𝑆𝑟     𝑖𝑓 0 < 𝑞 < 𝑝 < ∞,𝑤ℎ𝑒𝑟𝑒 𝑝−1 + 𝑟−1 = 𝑞−1;
𝐵                                                                        𝑖𝑓 𝑝 ≤ 𝑞.

           (5) 

This should be understood as follows: each operator 𝑔 in the left-hand side defines a 

homomorphism 𝛾: 𝑆𝑝 → 𝑆𝑞 by multiplication on the right 𝛾(𝑓) = 𝑓𝑔. Moreover, the norm 

of 𝑔 in in the corresponding space equals ‖𝛾 ∶  𝑆𝑝 → 𝑆𝑞‖ and every homomorphism arises 

in this way. All this can be seen in Simon [147]. 

It will be convenient at some places to consider right module structures. We indicate this 

just by putting the (algebra) subscript on the right. Thus, for instance, 𝐻𝑜𝑚(𝑍, 𝑌)𝐴 is the 

space of  homomorphisms of right modules from 𝑍 to 𝑌, which are assumed to be (quasi-

normed) right modules over 𝐴. The meaning of ℳ(𝑍, 𝑌 )𝐴, 𝐸𝑥𝑡(𝑍, 𝑌)𝐴 or “right centralizer” 

should be clear. 



107 

The right module structure of Schatten classes is “isomorphic” to the left one throughout the 

involution: 𝑓𝑎 = (𝑎∗𝑓∗)∗. Thus, for instance, if 𝑢: 𝑆𝑝 → 𝐵 is a morphism of left 

(respectively, right) modules, then we obtain a morphism of right (respectively, left) 

modules thus: 𝑓 ⟼ (𝑢(𝑓∗))∗. The same formula can be used to exchange left and right 

homomorphisms, centralizers, and the like. We will use this fact without further mention. 

Lemma (4.1.2)[119]: (a) 𝔉 is a projective 𝐵-module in the pure algebraic sense: if 𝑋 is any 

algebraic 𝐵-module and 𝜋: 𝑋 → 𝔉 is a surjective morphism, then there is another morphism 

𝑠: 𝔉 → 𝑋 such that 𝜋 ∘ 𝑠 = 𝐼𝔉. 

(b) ℳ(𝔉,𝐵)𝐵 = 𝐿(ℋ) in the sense that for every morphism of right modules 𝛼 ∶ 𝔉 → 𝐵 

there is a unique linear endomorphism ℓ of ℋ such that 𝛼(𝑓) =  (ℓ ∘ 𝑓∗)∗ for every 𝑓 ∈ 𝔉. 

(c) Similarly, ℳ𝐵(𝔉, 𝐵) = 𝐿(ℋ) in the sense that for every morphism of left modules 

𝛼: 𝔉 → 𝐵 there i𝑠𝑞 𝑎 unique linear endomorphism ℓ of ℋ such that 𝛼(𝑓) = (ℓ ∘ 𝑓∗)∗ for 

every 𝑓 ∈ 𝔉. 

(d) Let ℓ ∶ 𝔉 → ℂ be a linear map such that for each fixed 𝑦 ∈ ℋ one has ℓ(𝑥⨂𝑦) → 0 as 

𝑥 → 0 in ℋ. Then there is a linear endomorphism 𝐿 of ℋ such that ℓ(𝑓) = 𝑡𝑟(𝐿 ∘ 𝑓) for all 

𝑥, 𝑦 ∈ ℋ. 

Proof. (a) Of course, 𝐵 is a projective 𝐵-module. ℋ is a 𝐵-module under the obvious action 

(𝑎, ℎ) ⟼ 𝑎(ℎ). Fix any norm one 𝜂 ∈ ℋ. Then the map 𝜂⨂−∶ ℋ → 𝐵 given by ℎ ⟼ 𝜂⨂ℎ 

is an injective (homo)morphism. The evaluation map𝛿𝜂: 𝐵 → ℋ given by 𝛿𝜂(𝑢) =

𝑢(𝜂) provides a left inverse (homo)morphism for 𝜂⨂ −. Being a direct factor in 𝐵,ℋ is 

projective too. 

On the other hand, 𝔉 = ℋ’⨂ℋ (as bimodules). If 𝐼 is a Hamel basis for ℋ’, we have ℋ ’ =
⊕𝐼 ℂ as linear spaces. Combining, we have 

𝔉 = ℋ ’⨂ℋ ≃ (⊕𝐼 ℂ)⨂ℋ =⊕𝐼 (ℂ⨂ℋ) =⊕𝐼 ℋ, 
as (left) modules, and a direct sum of projective modules is again projective. 

(b) is very easy. Take 𝑥, 𝑦 ∈ ℋ, with ‖𝑥‖ = 1. Then 𝛼(𝑥 ⊗ 𝑦) = 𝛼((𝑥 ⊗ 𝑦)(𝑥 ⊗ 𝑥)) =
(𝛼(𝑥 ⊗ 𝑦))(𝑥 ⊗ 𝑥). Hence there is 𝑧 = 𝑧(𝑥, 𝑦) ∈ ℋ such that 𝛼(𝑥⨂𝑦) = 𝑥⨂𝑧. It is easily 

seen that 𝑧 does not depend on the first variable while it depends linearly on the second one. 

Thus the rule ℓ(𝑦) = 𝑧 is an endomorphism of ℋ. Quite clearly one has 𝛼(𝑓) = ℓ ∘ 𝑓 when 

𝑓 has rank one and the same is true for every 𝑓 ∈ 𝔉. 

(c) is just the left version of (b). 

(d) Fix 𝑦 ∈ ℋ. The hypothesis implies that 𝑥 ⟼ ℓ(𝑥⨂𝑦) is a continuous, conjugate-linear 

functional on ℋ and by Riesz representation theorem there is 𝑧 ∈ ℋ such that ℓ(𝑥⨂𝑦) =
⟨𝑧|𝑥⟩. 
Putting 𝑧 = 𝐿(𝑦) we obtain a transformation of ℋ which is easily seen to be linear. And 

since ℓ(𝑥⨂𝑦) = ⟨𝐿(𝑦)|𝑥⟩ = 𝑡𝑟(𝑥⨂𝐿(𝑦)) = 𝑡𝑟(𝐿 ∘ (𝑥⨂𝑦)) we are done. 

Corollary (4.1.3)[119]: Up to equivalence, every extension of 𝑆𝑝 by an arbitrary quasi-

Banach module 𝑌 comes from a centralizer Ω: 𝑆0
𝑝
→ 𝑌. 

Proof. Let 0 ⟶ 𝑌 ⟶ 𝑋
   𝜋   
→  𝑆𝑝 ⟶ 0 be an extension of quasi-Banach modules over 𝐵. 

With no serious loss of generality we may assume 𝑌 = 𝑘𝑒𝑟 𝜋. Putting 𝑋0 = 𝜋−1(𝑆0
𝑝
) we 

have the following commutative diagram 

0 ⟶ 𝑌 ⟶ 𝑋0 ⟶ 𝑆0
𝑝
⟶ 0

∥         ↓            ↓ 

0 ⟶  𝑌 ⟶ 𝑋
   𝜋   
→   𝑆𝑝 ⟶ 0
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where the vertical arrows are plain inclusions. We shall show there is a centralizer  Ω: 𝑆0
𝑝
→

𝑌 and an isomorphism of quasi-normed normed modules 𝑢 making commutative the 

diagram 

0 ⟶ 𝑌 ⟶ 𝑌⊕Ω 𝑆0
𝑝
⟶ 𝑆0

𝑝
⟶ 0

∥             𝑢 ↓            ∥

0 ⟶  𝑌 ⟶   𝑋0  
   𝜋   
→    𝑆0

𝑝
  ⟶  0

 

This obviously implies that 𝑢 extends to an isomorphism between 𝑋Ω and 𝑋 fitting in the 

corresponding diagram. 

The identification of Ω is as follows. Let 𝑏: 𝑆𝑝 ⟶ 𝑋 be a homogeneous bounded of the 

quotient map 𝜋: 𝑋 → 𝑆𝑝, that is, a map satisfying 𝜋 ∘ 𝑏 = 𝐼𝑆𝑝  and ‖𝑏(𝑓)‖𝑀 ≤ 𝑀‖𝑓‖𝑝 for 

some 𝑀 independent on 𝑓 ∈ 𝑆𝑝. Such exists because 𝜋 is open. Notice, moreover, that 

𝑏(𝑓) ∈ 𝑋0 if 𝑓 ∈ 𝑆0
𝑝
. 

Now we use Lemma (4.1.2)(a) to get a morphism 𝑠: 𝑆0
𝑝
→ 𝑋0 such that 𝜋 ∘ 𝑠 = 𝐼𝑆0

𝑝 and we 

set Ω(𝑓) = 𝑏(𝑓) − 𝑠(𝑓) for ∈ 𝑆0
𝑝
 . Clearly, 𝜋(Ω(𝑓)) = 𝜋(𝑏(𝑓)) − 𝜋(𝑠(𝑓)) = 0 and so Ω 

takes values in 𝑌. 

That Ω is a centralizer is nearly trivial: given 𝑓, 𝑔 ∈ 𝑆0
𝑝
 and 𝑎 ∈ 𝐵 one has 

‖Ω(𝑓 + 𝑔) − Ω𝑓 − Ω𝑔‖𝑌 = ‖𝑏(𝑓 + 𝑔) − 𝑏(𝑓) − 𝑏(𝑔)‖𝑋 ≤ 𝑀(‖𝑓‖𝑝 + ‖𝑔‖𝑝), 
‖Ω(𝑎𝑓) − 𝑎Ωf‖𝑌 = ‖𝑏(𝑎𝑓) − 𝑎𝑏(𝑓)‖𝑋 ≤ 𝑀‖𝑎‖𝐵‖𝑓‖𝑝. 

We define 𝑢: 𝑌 ⊕Ω 𝑆0
𝑝
→ 𝑋0 by 𝑢(𝑦, 𝑓) = 𝑦 + 𝑠(𝑓). This is a homomorphism in view of 

the bound 

‖𝑢(𝑦, 𝑓)‖𝑋 = ‖𝑦 + 𝑠(𝑓)‖𝑋 ≤ 𝑀(‖𝑦 − 𝑏(𝑓) + 𝑠(𝑓)‖𝑋 + ‖𝑏(𝑓)‖𝑋)
≤ 𝑀(‖𝑦 − Ω𝑓‖𝑋 + ‖𝑓‖𝑝) ≤ 𝑀‖(𝑦, 𝑓)‖Ω. 

The inverse of 𝑢 is given by 𝑣(𝑥) = (𝑥 − 𝑠(𝜋(𝑥)), 𝜋(𝑥)) for 𝑥 ∈ 𝑋0. It is continuous since 

‖𝑣(𝑥)‖Ω = ‖𝑥 − 𝑠(𝜋(𝑥)) − Ω(𝜋(𝑥))‖
𝑌
+ ‖𝜋(𝑥)‖𝑝 = ‖𝑥 − 𝑏(𝜋(𝑥))‖𝑌 + ‖𝜋(𝑥)‖𝑝

≤ 𝑀‖𝑥‖𝑋. 
This completes the proof. 

We prove that 𝐸𝑥𝑡𝐵(𝑆
𝑝, 𝑆𝑞) = 0 when 0 < 𝑝 < 𝑞 < ∞. We will imagine, what we 

prove is that every centralizer 𝑆0
𝑝
→ 𝑆𝑞 is trivial. First we need to break a given centralizer 

into “small pieces” without losing the relevant information it encodes. 

Let Φ:𝑆0
𝑝
→ 𝑆𝑞 be a centralizer and e a finite rank projection. Then we can define a 

centralizer Φ𝑒: 𝑆
𝑝 → 𝑆𝑞 by the formula Φ𝑒(𝑓) = Φ(𝑓𝑒). Of course, Φ𝑒 is trivial. Indeed 

taking 𝑔 = Φ(𝑒) we have 

‖Φ𝑒(𝑓) − 𝑓𝑔‖𝑞 = ‖Φ(𝑓𝑒) − 𝑓Φ(𝑒)‖𝑞 ≤ 𝐶[Φ]‖𝑓‖𝐵‖𝑒‖𝑝 ≤ 𝐶[Φ] 𝑟𝑘(𝑒)1/𝑝‖𝑓‖𝑝, 

where 𝑟𝑘(𝑒) is the dimension of the image of 𝑒. 

Lemma (4.1.4)[119]: Let Φ: 𝑆0
𝑝
→ 𝑆𝑞 be a centralizer, with 𝑞 finite. Then 

𝑑𝑖𝑠𝑡 (Φ,ℳ𝐵(𝑆0
𝑝
, 𝑆𝑞)) = 𝑠𝑢𝑝𝑒𝑑𝑖𝑠𝑡(Φ𝑒,ℳ𝐵(𝑆

𝑝, 𝑆𝑞)), 

where 𝑒 runs over all finite rank projections in 𝐵. 

Proof. That 𝑑𝑖𝑠𝑡(Φ,ℳ𝐵(𝑆0
𝑝
, 𝑆𝑞)) ≥ 𝑑𝑖𝑠𝑡(Φ𝑒,ℳ𝐵(𝑆

𝑝, 𝑆𝑞)) for every e is obvious. Let us 

prove the other inequality. Let 𝐷 be a constant such that for every 𝑒 there is a morphism 𝜙𝑒 

so that  

‖Φ𝑒𝑓 − 𝜙𝑒(𝑓)‖𝑞 ≤ 𝐷‖𝑓‖𝑝            (𝑓 ∈ 𝑆𝑝). 

Let 𝒰 be an ultrafilter refining the Frechet filter on the set of finite rank projections in 𝐵. 

We define a mapping 𝜙 ∶ 𝑆0
𝑝
→ 𝑆𝑞 by the formula 
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                                               𝜙(𝑓) = lim
𝒰
𝜙𝑒(𝑓𝑒)                                                 (6) 

where the limit is taken in the WOT. The definition makes sense because for each 𝑓 ∈ 𝑆0
𝑝
 

one has 𝑓𝑒 = 𝑒 for sufficiently large 𝑒. For these projections we have ‖Φ(𝑓) − 𝜙𝑒(𝑓)‖𝑞 ≤

𝐷‖𝑓‖𝑝 and thus the net (𝜙𝑒(𝑓𝑒))𝑒 is (essentially) bounded in 𝑆𝑞 and so in 𝐵. As bounded 

subsets of 𝐵 are relatively compact in the WOT we see that (6) defines a map from 𝑆0
𝑝
 to B. 

But ‖∙‖𝑞is lower semicontinuous with respect to the restriction of the WOT to 𝑆𝑞 (see [126]) 

and so 

‖Φ(𝑓) − 𝜙(𝑓)‖𝑞 ≤ lim
𝒰
𝑖𝑛𝑓 ‖Φ(𝑓) − 𝜙𝑒(𝑓)‖𝑞 ≤ 𝐷‖𝑓‖𝑝        (𝑓 ∈ 𝑆0

𝑝
). 

In particular 𝜙(𝑓) belongs to 𝑆𝑞. Finally that 𝜙 is a morphism follows from the fact that, 

for fixed 𝑎 ∈ 𝐵, the map 𝑏 ⟼ 𝑎𝑏 is WOT-continuous on bounded sets of 𝐵. 

The sought-after result reads as follows. 

The proof uses a simple ultraproduct technique, but requires some noncommutative 

gadgetry.  

Let 𝑋 be a quasi-Banach space, 𝐼 an index set and 𝒰 a countably incomplete ultrafilter on 𝐼. 
Let ℓ∞(𝐼, 𝑋) be the space of bounded families of 𝑋 indexed by 𝐼 (furnished with the sup 

quasi-norm) and let 𝑁𝒰 be the (closed) subspace of those 𝑥 ∈ ℓ∞(𝐼, 𝑋) such that ‖𝑥𝑖‖𝑋 →
0 along 𝒰. The ultrapower of 𝑋 with respect to 𝒰 is the quotient space ℓ∞(𝐼, 𝑋)/𝑁𝒰 with 

the quotient quasi-norm. The class of the family (𝑥𝑖) in 𝑋𝒰 is denoted by [(𝑥𝑖)]. Notice that 

if the quasi-norm of 𝑋 is continuous one can compute the quasi-norm in 𝑋𝒰 by the formula 

‖[(𝑥𝑖)]‖ = lim
𝒰
‖𝑥𝑖‖𝑋 . Clearly, if 𝐴 is a Banach algebra, then so is 𝐴𝒰 when equipped with 

the coordinatewise product [(𝑎𝑖)][(𝑏𝑖)] = [(𝑎𝑖𝑏𝑖)]. If besides 𝑋 is a quasi-Banach module 

over 𝐴, then the multiplication [(𝑎𝑖)][(𝑥𝑖)] = [(𝑎𝑖𝑥𝑖)] makes 𝑋𝒰 into a quasi-Banach 

module over 𝐴𝒰. 

What we need to prove Theorem (4.1.12) is the following. 

Lemma (4.1.5)[119]: Let 𝑝, 𝑞, 𝑟 ∈ (0,∞) satisfy 𝑞−1 = 𝑝−1 + 𝑟−1. If 𝛾: 𝑆𝒰
𝑝
→ 𝑆𝒰

𝑞
 is a 

homomorphism of (left) modules over 𝐵𝒰, then there is bounded family (𝑔𝑖) in 𝑆𝑟 such that 

𝛾[(𝑓𝑖)] = [(𝑓𝑖𝑔𝑖)] whenever (𝑓𝑖) is bounded in 𝑆𝑝. 

Proof. This can be obtained as a combination of results by Raynaud, and Junge and 

Sherman. Let us explain how.  

(i) There is a general construction, due to Haagerup, that associates to a given von Neumann 

algebra 𝑀 the so-called (Haagerup, non-commutative) 𝐿𝑝 spaces 𝐿𝑝(𝑀) for 0 < 𝑝 ≤ ∞. 

These spaces consist of certain (densely defined, closable, but in general discontinuous) 

operators acting on a common suitable Hilbert space which is related to 𝑀 in a highly 

nontrivial way and 𝑀 itself can be identified with 𝐿∞(𝑀), as von Neumann algebras. As it 

happens this provides the following generalization of Holder inequality: suppose 𝑝, 𝑞, 𝑟 ∈
(0,∞] are such that 𝑞−1 = 𝑝−1 + 𝑟−1; if 𝑓 ∈ 𝐿𝑝(𝑀) and 𝑔 ∈ 𝐿𝑟(𝑀), then 𝑓𝑔 ∈ 𝐿𝑞(𝑀) and 

‖𝑓𝑔‖𝑞 ≤ ‖𝑓‖𝑝‖𝑔‖𝑟, where the subscript indicates the quasi-norm of the corresponding 

Haagerup space. Letting 𝑝 = ∞ or 𝑟 = ∞ one gets the module structures over 𝐿∞(𝑀). See 

[128], [142], [144]. 

(ii) After that it is clear that that every 𝑔 ∈ 𝐿𝑟(𝑀) gives rise to a homomorphism (of left 

𝐿∞(𝑀)-modules) 𝛾 ∶ 𝐿𝑝(𝑀) → 𝐿𝑞(𝑀) by multiplication: 𝛾(𝑓) = 𝑓𝑔. Moreover, 

‖𝛾: 𝐿𝑝(𝑀) → 𝐿𝑞(𝑀)‖ = ‖𝑔‖𝑟. Junge and Sherman proved in [132] that all such 

homomorphisms arise in this way, which is crucial for us. 

(iii) The Haagerup spaces do not form any “scale”. Indeed, by the very definition, one has 

𝐿𝑞(𝑀) ∩ 𝐿𝑞(𝑀) = 0 unless 𝑝 = 𝑞. In particular, 𝐿𝑝(𝐵) (the Haagerup 𝐿𝑝 space 
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corresponding to the choice 𝑀 = 𝐵) cannot be the same as ‘our’ 𝑆𝑝. Nevertheless there is a 

system of isometric bimodule isomorphisms 𝜄𝑝 ∶ 𝑆
𝑝 → 𝐿𝑝(𝐵) which are compatible with the 

product maps in the sense that 𝜄𝑞(𝑓𝑔) = 𝜄𝑝(𝑓)𝜄𝑟(𝑔) whenever 𝑓 ∈ 𝑆𝑝 and 𝑔 ∈ 𝑆𝑞 with 

𝑞−1 = 𝑝−1 + 𝑟−1. 
The obvious consequence of this is that a map 𝑢: 𝑆𝑝 → 𝑆𝑞 is a homomorphisms of 𝐵-

modules if and only if 𝜄𝑞 ∘ 𝑢 ∘ 𝜄𝑝
−1: 𝐿𝑝(𝐵) → 𝐿𝑞(𝐵) is a homomorphism of 𝐿∞(𝐵)-modules. 

Therefore replacing Schatten classes by Haagerup spaces and 𝐵 by 𝐿∞(𝐵) does not alter the 

Lemma. 

(iv) Raynaud proved in [143] that given a von Neumann algebra 𝑀 and a countably 

incomplete ultrafilter 𝒰 one can represent the ultrapowers of the whole family of Haagerup 

spaces 𝐿𝑝(𝑀) (for finite 𝑝) as the Haagerup spaces associated to some von Neumann algebra 

independent on 𝑝. Precisely: there is a von Neumann algebra 𝑁 containing 𝐿∞(𝑀)𝒰 and a 

system of surjective isometries 𝜅𝑝: 𝐿
𝑝(𝑀)𝒰 → 𝐿𝑝(𝑁) for 0 < 𝑝 < ∞ compatible with the 

product maps in the following sense: 𝑝, 𝑞, 𝑟 ∈ (0,∞) are such that 𝑞−1 = 𝑝−1 + 𝑟−1 and 

(𝑓𝑖) and (𝑔𝑖) are bounded families in 𝐿𝑝(𝑀) and 𝐿𝑟(𝑀), respectively, then 

(𝜅𝑝[(𝑓𝑖)])(𝜅𝑟[(𝑔𝑖)]) = 𝜅𝑞[(𝑓𝑖𝑔𝑖)], 

where the product in the left-hand side refers to spaces over 𝑁 and those in the right-hand 

side to 𝑀. 

(v) Therefore we can regard 𝐿𝑝(𝑀)𝒰 as a module over 𝑁 and every homomorphism of 𝑁-

modules 𝛾: 𝐿𝑝(𝑀)𝒰 → 𝐿𝑞(𝑀)𝒰 can be represented as 𝛾[(𝑓𝑖)] = [(𝑓𝑖𝑔𝑖)], where (𝑔𝑖) is a 

bounded family in 𝐿𝑟(𝑀). 
(vi) The proof of the Lemma will be complete if we show that every homomorphism of 

𝐿∞(𝑀)𝒰-modules 𝛾: 𝐿𝑝(𝑀)𝒰 → 𝐿𝑞(𝑀)𝒰 is automatically a homomorphism of 𝑁-modules. 

And this is so because on one hand 𝐿∞(𝑀)𝒰 is dense in 𝑁 in the strong operator topology 

induced by the (module) action on 𝐿2(𝑁) and, on the other hand, the restriction to bounded 

subsets of 𝑁 of the strong operator topology induced by the action on 𝐿𝑝(𝑁) does not depend 

on 0 < 𝑝 < ∞ (see [132]). 

Theorem (4.1.6)[119]: Given 0 < 𝑞 < 𝑝 < ∞, there is a constant 𝐾 = 𝐾(𝑝, 𝑞) so that, for 

every centralizer Ω: 𝑆0
𝑝
→ 𝑆𝑞 there is a morphism 𝜔: 𝑆0

𝑝
→ 𝑆𝑞  satisfying ‖Ω(𝑓) −

𝜔(𝑓)‖𝑞 ≤ 𝐾∆[Ω]‖𝑓‖𝑝 for every 𝑓 ∈ 𝑆0
𝑝
. 

Proof. Assuming the contrary there is a sequence of centralizers Ω𝑛: 𝑆0
𝑝
→ 𝑆𝑞 with ∆[Ω𝑛] ≤

1 and 𝑑𝑖𝑠𝑡(Ω𝑛,ℳ𝐵(𝑆0
𝑝
, 𝑆𝑞))  → ∞. In view of Lemma (4.1.4) we may and do assume that 

for each n there is a finite rank projection 𝑒𝑛 ∈ 𝐵 such that Ω𝑛(𝑓) = Ω𝑛(𝑓𝑒𝑛) for all 𝑓 ∈
𝑆0
𝑝
 . Thus we may assume Ω𝑛 defined on the whole of 𝑆𝑝 and also that 

𝑑𝑖𝑠𝑡(Ω𝑛,ℳ𝐵(𝑆
𝑝, 𝑆𝑞)) is finite for every 𝑛. 

For each 𝑛 we take a morphism 𝜙𝑛: 𝑆
𝑝 → 𝑆𝑞 such that 

𝛿𝑛 = 𝑑𝑖𝑠𝑡(Ω𝑛, 𝜙𝑛) ≤ 𝑑𝑖𝑠𝑡(Ω𝑛,ℳ𝐵(𝑆
𝑝, 𝑆𝑞)) + 1/𝑛.  

Of course,𝛿𝑛 → 1 as 𝑛 → ∞. Put 

𝑣𝑛 =
Ω𝑛 − 𝜙𝑛

𝛿𝑛
, 

so that 𝑣𝑛 is a homogeneous mapping from 𝑆𝑝 to 𝑆𝑝 with ‖𝑣𝑛: 𝑆
𝑝 → 𝑆𝑞‖ ≤ 1 and ∆[𝑣𝑛] ≤

𝛿𝑛
−1∆[Ω] → 0as 𝑛 → ∞. 

Let 𝒰 be a free ultrafilter on the integers and consider the corresponding ultrapowers 𝑆𝒰
𝑝
 and 

𝑆𝒰
𝑞

. 

We can use the (probably nonlinear) maps 𝑣𝑛 to define 𝑣: 𝑆𝒰
𝑝
→ 𝑆𝒰

𝑞
 by 
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𝑣[(𝑓𝑛)] = [(𝑣𝑛(𝑓𝑛))]. 

Let us check that 𝑣 is well defined. First, suppose [(𝑓𝑛)] = 0, that is, ‖𝑓𝑛‖𝑝 → 0 along 𝒰. 

As ‖𝑣𝑛(𝑓𝑛)‖𝑞 ≤ ‖𝑓𝑛‖𝑝 we have [(𝑣𝑛(𝑓𝑛))] = 0. Suppose now [(𝑓𝑛)] = [(𝑔𝑛)]. We must 

prove that [(𝑣𝑛(𝑓𝑛))] = [(𝑣𝑛(𝑔𝑛))]. But 

lim
𝒰
‖𝑣𝑛(𝑓𝑛) − 𝑣𝑛(𝑔𝑛)‖𝑞 = 𝑙𝑖𝑚

𝒰
‖𝑣𝑛(𝑓𝑛) − 𝑣𝑛(𝑔𝑛) − 𝑣𝑛(𝑓𝑛 − 𝑔𝑛)‖𝑞

≤ lim
𝒰
𝑄[𝑣𝑛](‖𝑔𝑛‖𝑝 + ‖𝑓𝑛 − 𝑔𝑛‖𝑝) = 0 

and the definition of 𝑣 makes sense. Now it is nearly obvious that 𝑣 is a continuous 

homomorphism of 𝐵𝒰-modules. By Lemma (4.1.5) there is a bounded sequence (𝑢𝑛) in 𝑆𝑟 

representing 𝑣 in the sense that 𝑣[(𝑓𝑛)] = [(𝑓𝑛𝑢𝑛)] whenever (𝑓𝑛) is a bounded sequence in 

𝑆𝑝, where 𝑟−1 + 𝑝−1 = 𝑞−1. This implies that 𝑑𝑖𝑠𝑡(𝑣𝑛, 𝑢𝑛) → 0 along 𝒰. In particular, for 

every 𝜀 > 0, the set 𝑆 = {𝑛 ∈ ℕ: 0 < 𝑑𝑖𝑠𝑡(𝛿𝑛
−1(Ω𝑛 − 𝜙𝑛), 𝑢𝑛) < 𝜀} belongs to 𝒰 and it 

contains infinitely many indices 𝑛. For these 𝑛 we get  

𝑑𝑖𝑠𝑡(Ω𝑛, 𝜙𝑛 + 𝛿𝑛𝑢𝑛) < 𝜀𝛿𝑛 < 2𝜀𝑑𝑖𝑠𝑡(Ω𝑛,ℳ𝐵(𝑆
𝑝, 𝑆𝑞)), 

in striking contradiction with our choice of 𝜙𝑛.  

Corollary (4.1.7)[119]: 𝐸𝑥𝑡𝐵(𝑆
𝑝, 𝑆𝑞) = 0 for 0 < 𝑞 < 𝑝 ≤ ∞. 

Proof. Corollary (4.1.3) and Theorem (4.1.6). For 𝑝 = ∞ use Lemma (4.1.4).  

Once we know that Ext vanishes at certain couples, it is easy to use the functor Hom 

to compare different spaces of extensions. Let us begin with the covariant case. Suppose we 

are given an extension of modules 

0 → 𝑌 
𝜄
→𝑋

𝜋
→  𝑍 →  0.                                                   (7) 

If 𝐸 is another module we can apply 𝐻𝑜𝑚(𝐸,−) to get an exact sequence (of linear spaces) 

0 ⟶ 𝐻𝑜𝑚(𝐸, 𝑌 )
   𝜄∘  
→   𝐻𝑜𝑚(𝐸, 𝑋)

   𝜋∘  
→  𝐻𝑜𝑚(𝐸, 𝑍)

   𝛼   
→  𝐸𝑥𝑡(𝐸, 𝑌) ⟶ ⋯         (8)           

Notice that 𝜄∘ is just the functorial image of 𝜄, and similarly with 𝜋∘. The connecting map 𝛼 

sends a given homomorphism 𝜙 into the (class of the) lower extension in the pull-back 

diagram 

0 ⟶ 𝑌
      𝜄      
→    𝑋

      𝜋    
→   𝑍 ⟶ 0

    ∥            ↑           ↑ 𝜙 
0 ⟶  𝑌 ⟶ 𝑃𝐵 ⟶ 𝐸 ⟶  0

 

Thus, if 𝐸𝑥𝑡(𝐸, 𝑌) vanishes, then (8) represents an extension of 𝐻𝑜𝑚(𝐸, 𝑍) by 𝐻𝑜𝑚(𝐸, 𝑌). 
If, besides, 𝐸 is a bimodule, then (8) is an extension of (left) modules. All this can be seen 

in [123]. 

In a similar vein, if we apply 𝐻𝑜𝑚(−, 𝐸) to (7) we obtain 

0 ⟶ 𝐻𝑜𝑚(𝑍, 𝐸)
   𝜋∘  
→  𝐻𝑜𝑚(𝑋, 𝐸)  

   𝜄∘   
→  𝐻𝑜𝑚(𝑌, 𝐸)

   𝛽  
→  𝐸𝑥𝑡(𝑍, 𝐸) ⟶ ⋯            (9)         

Here, 𝛽 sends a given homomorphism 𝜙: 𝑌 → 𝐸 into the (class of the) lower row of the 

push-out diagram 

0 ⟶ 𝑌
    𝜄   
→  𝑋 ⟶ 𝑍 ⟶ 0

 𝜙 ↓           ↓        ∥        
0 ⟶ 𝐸 ⟶ 𝑃𝑂 ⟶ 𝑍 ⟶ 0

 

Hence, if 𝐸𝑥𝑡(𝑍, 𝐸) vanishes, then (9) is an extension of 𝐻𝑜𝑚(𝑌, 𝐸) by 𝐻𝑜𝑚(𝑍, 𝐸) which 

lives in the category of right modules provided 𝐸 is a bimodule. 

Theorem (4.1.8)[119]: Let 0 < 𝑟 < 𝑝1 ≤ 𝑝2 < ∞ be fixed. Then 𝐻𝑜𝑚𝐵(−, 𝑆
𝑟) defines an 

isomorphism from 𝐸𝑥𝑡𝐵(𝑆
𝑝1 , 𝑆𝑝2) onto 𝐸𝑥𝑡(𝑆𝑞2 , 𝑆𝑞1)𝐵, where 𝑞𝑖

−1 + 𝑝𝑖
−1 = 𝑟−1 for 𝑖 =

1,2. Similarly, 𝐻𝑜𝑚(−, 𝑆𝑟)𝐵 is an isomorphism from 𝐸𝑥𝑡(𝑆𝑝1 , 𝑆𝑝2)𝐵 onto 𝐸𝑥𝑡𝐵(𝑆
𝑞2, 𝑆𝑞1). 
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Proof. Suppose we are given an extension of left modules 0 ⟶ 𝑆𝑝2 ⟶ 𝑋 ⟶ 𝑆𝑝1 ⟶ 0. 

Applying 𝐻𝑜𝑚𝐵(−, 𝑆
𝑟) we get 

0 ⟶ 𝐻𝑜𝑚𝐵(𝑆
𝑝1 , 𝑆𝑟) ⟶ 𝐻𝑜𝑚𝐵(𝑋, 𝑆

𝑟) ⟶ 𝐻𝑜𝑚𝐵(𝑆
𝑝2 , 𝑆𝑟) ⟶ 𝐸𝑥𝑡𝐵(𝑆

𝑝1 , 𝑆𝑟)
⟶ ⋯  (10) 

But 𝐸𝑥𝑡𝐵(𝑆
𝑝1, 𝑆𝑟) = 0, so the above diagram is in fact an extension of 𝐻𝑜𝑚(𝑆𝑝2 , 𝑆𝑟) =

𝑆𝑞2 by 𝐻𝑜𝑚𝐵(𝑆
𝑝1 , 𝑆𝑟) = 𝑆𝑞1 in the category of right modules over 𝐵. It is pretty obvious 

that this procedure preserves equivalences and so it defines a mapping 

𝐻𝑜𝑚(−, 𝑆𝑟)𝐵: 𝐸𝑥𝑡𝐵(𝑆
𝑝1 , 𝑆𝑝2) ⟶ 𝐸𝑥𝑡(𝑆𝑞2 , 𝑆𝑞1)𝐵. 

To see that it is indeed an isomorphism, consider now 𝐻𝑜𝑚(−, 𝑆𝑟)𝐵 as a map from 

𝐸𝑥𝑡(𝑆𝑞2, 𝑆𝑞1)𝐵 to 𝐸𝑥𝑡𝐵(𝑆
𝑝1 , 𝑆𝑝2)  −take into account that 𝑟 < 𝑞2 − and let us check that 

the two maps are inverse to each other. Indeed, if we apply 𝐻𝑜𝑚(−, 𝑆𝑟)𝐵 to (10), we obtain 

another extension 

0 → 𝐻𝑜𝑚(𝐻𝑜𝑚𝐵(𝑆
𝑝2 , 𝑆𝑟), 𝑆𝑟)𝐵 → 𝐻𝑜𝑚(𝐻𝑜𝑚𝐵(𝑋, 𝑆

𝑟), 𝑆𝑟)𝐵
→ 𝐻𝑜𝑚(𝐻𝑜𝑚𝐵(𝑆

𝑝1𝑆𝑟), 𝑆𝑟)𝐵 → 0. 
But after the identification 𝑆𝑝𝑖 = 𝐻𝑜𝑚(𝐻𝑜𝑚𝐵(𝑆

𝑝𝑖 , 𝑆𝑟), 𝑆𝑟)𝐵 this extension is equivalent to 

the starting one since the diagram 
𝑆𝑝2                 ⟶           𝑋                              ⟶                   𝑆𝑝1

∥                                      ↓ 𝛿                                                    ∥
𝐻𝑜𝑚(𝐻𝑜𝑚(𝑆𝑝2, 𝑆𝑟), 𝑆𝑟)𝐵 ⟶𝐻𝑜𝑚(𝐻𝑜𝑚(𝑋, 𝑆𝑟), 𝑆𝑟)𝐵 ⟶𝐻𝑜𝑚(𝐻𝑜𝑚(𝑆𝑝1 , 𝑆𝑟), 𝑆𝑟)𝐵

 

is commutative − the middle arrow is the obvious evaluation homomorphism given by 

𝛿(𝑥)(𝜙) = 𝜙(𝑥).  
Theorem (4.1.9)[119]: Let 0 < 𝑝1 ≤ 𝑝2 < 𝑠 < ∞ be fixed. Then 

𝐻𝑜𝑚(𝑆𝑠, −): 𝐸𝑥𝑡(𝑆𝑝1, 𝑆𝑝2) ⟶ 𝐸𝑥𝑡(𝑆𝑞1 , 𝑆𝑞2) is an isomorphism, where 𝑠−1 + 𝑞𝑖
−1 = 𝑝𝑖

−1 

for 𝑖 = 1,2. 

Proof. (Absence of subscript indicates left module structure.) This can be proved in several 

ways. 

Perhaps the simplest one is checking that if 𝑟−1 + 𝑠−1 = 𝑡−1, then one has 𝐻𝑜𝑚(−, 𝑆𝑟) ∘
𝐻𝑜𝑚(𝑆𝑠, −) = 𝐻𝑜𝑚(−, 𝑆𝑡) at 𝐸𝑥𝑡(𝑆𝑝1, 𝑆𝑝2), that is, the composition 

𝐸𝑥𝑡(𝑆𝑝1 , 𝑆𝑝2)
𝐻𝑜𝑚(𝑆𝑠,−)
→       𝐸𝑥𝑡(𝑆𝑞1 , 𝑆𝑞2)

 𝐻𝑜𝑚(−,𝑆𝑟)
→       𝐸𝑥𝑡(𝑆ℓ2 , 𝑆ℓ1)𝐵 

agrees with 𝐻𝑜𝑚(−, 𝑆𝑡): 𝐸𝑥𝑡(𝑆𝑝1 , 𝑆𝑝2) ⟶ 𝐸𝑥𝑡(𝑆ℓ2 , 𝑆ℓ1)𝐵, where ℓ𝑖
−1 + 𝑝𝑖

−1 = 𝑡−1 for 

𝑖 = 1, 2. 

Incidentally this will show that 𝐻𝑜𝑚(𝑆𝑠, −) = 𝐻𝑜𝑚(−, 𝑆𝑟)𝐵 ∘ 𝐻𝑜𝑚(− , 𝑆
𝑡) since 

𝐻𝑜𝑚(−, 𝑆𝑟)𝐵 is the inverse of 𝐻𝑜𝑚𝐵(−, 𝑆
𝑟). See the proof of Theorem (4.1.8). 

Recall that 𝑆𝑟 = 𝐻𝑜𝑚(𝑆𝑠, 𝑆𝑡), so that the composition 𝐻𝑜𝑚(−, 𝑆𝑟) ∘ 𝐻𝑜𝑚(𝑆𝑠, −) agrees 

with 𝐻𝑜𝑚(𝐻𝑜𝑚(𝑆𝑠, −), 𝐻𝑜𝑚(𝑆𝑠, 𝑆𝑡)). 
To each quasi-Banach left 𝐵-module 𝑀 we attach the homomorphism of right modules 

−∘: 𝐻𝑜𝑚(𝑀, 𝑆
𝑡) ⟶ 𝐻𝑜𝑚(𝐻𝑜𝑚(𝑆𝑠,𝑀), 𝐻𝑜𝑚(𝑆𝑠, 𝑆𝑡)) 

sending a given homomorphism 𝑢: 𝑀 ⟶ 𝑆𝑡 into the transformation 𝑢∘ ∶ 𝐻𝑜𝑚(𝑆
𝑠,𝑀) ⟶

𝐻𝑜𝑚(𝑆𝑠, 𝑆𝑡) defined by 𝑢∘(𝑣) = 𝑢 ∘ 𝑣. 

This is in fact a natural transformation from 𝐻𝑜𝑚(−, 𝑆𝑡) to 

𝐻𝑜𝑚(𝐻𝑜𝑚(𝑆𝑠, −), 𝐻𝑜𝑚(𝑆𝑠, 𝑆𝑡)) meaning that for every homomorphism of (left) modules 

𝛼:𝑀 → 𝑁 the following diagram is commutative 

𝐻𝑜𝑚(𝑀, 𝑆𝑡)
   −∘      
→    𝐻𝑜𝑚(𝐻𝑜𝑚(𝑆𝑠, 𝑀), 𝐻𝑜𝑚(𝑆𝑠, 𝑆𝑡))

𝛼∘ ↑                                             ↑ (𝛼∘)
∘                    

𝐻𝑜𝑚(𝑁, 𝑆𝑡)
    −∘    
→   𝐻𝑜𝑚(𝐻𝑜𝑚(𝑆𝑠, 𝑁), 𝐻𝑜𝑚(𝑆𝑠, 𝑆𝑡))
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The point is that the preceding natural transformation behaves as a natural equivalence at 

𝑆𝑝1 and 𝑆𝑝2 and so it induces an isomorphism at 𝐸𝑥𝑡(𝑆𝑝1 , 𝑆𝑝2). Indeed, if we are given an 

extension 

0 ⟶ 𝑆𝑝2
    𝜄     
→  𝑋

    𝜋   
→  𝑆𝑝1 ⟶ 0 

and we apply 𝐻𝑜𝑚(−, 𝑆𝑡) on one hand and 𝐻𝑜𝑚(𝐻𝑜𝑚(𝑆𝑠, −),𝐻𝑜𝑚(𝑆𝑠, 𝑆𝑡)) =
𝐻𝑜𝑚(𝐻𝑜𝑚(𝑆𝑠, −), 𝑆𝑟) on the other we have the commutative diagram 

𝐻𝑜𝑚(𝑆𝑝1 , 𝑆𝑡)       
    𝜄∘   
→     𝐻𝑜𝑚(𝑋, 𝑆𝑡)     

    𝜋∘   
→       𝐻𝑜𝑚(𝑆𝑝2, 𝑆𝑡)

−∘↓                                  −∘↓                                     −∘↓      

𝐻𝑜𝑚(𝐻𝑜𝑚(𝑆𝑠, 𝑆𝑝1), 𝑆𝑟)
(𝜄∘)

∘  
→    𝐻𝑜𝑚(𝐻𝑜𝑚(𝑆𝑠, 𝑋), 𝑆𝑟)

(𝜋∘)
∘

→   𝐻𝑜𝑚(𝐻𝑜𝑚(𝑆𝑠, 𝑆𝑝2), 𝑆𝑟)

 

where the rows are extensions. Now, the left and right vertical arrows are isomorphisms 

(they are the identity after identifying both 𝐻𝑜𝑚(𝑆𝑝𝑖 , 𝑆𝑡) and 𝐻𝑜𝑚(𝐻𝑜𝑚(𝑆𝑠, 𝑆𝑝𝑖), 𝑆𝑟) with 

𝑆ℓ𝑖 for 𝑖 = 1,2) and so is the middle one. 

We take a look at the actions of 𝐻𝑜𝑚(−, 𝑆𝑟) and 𝐻𝑜𝑚(𝑆𝑠, −) on centralizers. To 

take advantage of the extra simplification provided by Lemma (4.1.2) (b) we shall work with 

right centralizers. 

Fix numbers 0 < 𝑟 < 𝑝1 ≤ 𝑝2 ≤ ∞ and let Ω: 𝑆0
𝑝1 ⟶ 𝑆𝑝2 be a right centralizer − 

note we are allowing 𝑝2 = ∞ here. Given 𝑔 ∈ 𝐻𝑜𝑚(𝑆𝑝2 , 𝑆𝑟)𝐵 = 𝑆𝑞2 (isometric 

isomorphism of bimodules), we consider the mapping 𝑓 ∈ 𝑆0
𝑝1 ⟼ 𝑔(Ω𝑓) ∈ 𝑆𝑟. Clearly, 

this is a right centralizer with constant at most ‖𝑔‖𝑞2∆[Ω] and since 𝑟 < 𝑝1 there is a 

morphism 𝜙𝑔 ∈ ℳ(𝑆0
𝑝1, 𝑆𝑟)

𝐵
=ℳ(𝔉,𝐵)𝐵 such that ‖Ω(𝑓)𝑔 + 𝜙𝑔(𝑓)‖𝑟

≤

𝑀∆[Ω]‖𝑓‖𝑝1‖𝑔‖𝑞2  . By Lemma (4.1.2) there is ℓ ∈ 𝐿(ℋ) that implements 𝜙𝑔 in the sense 

that 𝜙𝑔(𝑓) = ℓ ∘  𝑓 and we can define a mapping Φ: 𝑆𝑞2 → 𝐿(ℋ) just taking Φ(𝑔) = ℓ. Of 

course this can be done homogeneously and we have the estimate 

‖𝑔(Ω𝑓) + (Φ𝑔)𝑓‖𝑟 ≤ 𝑀∆[Ω]‖𝑔‖𝑞2‖𝑓‖𝑝1(𝑓 ∈ 𝑆0
𝑝1 , 𝑔 ∈ 𝑆𝑞2).        (11) 

Obviously, 𝑆𝑞1 is a left submodule of 𝐿(ℋ). That Φ is a left centralizer from 𝑆𝑞2 to 𝑆𝑞1 

now follows from (11), taking into account that for ℓ ∈ 𝐿(ℋ) one has ‖ℓ‖𝑞1 =

‖ℓ∘: 𝑆
𝑝1 ⟶ 𝑆𝑟‖ = ‖ℓ∘: 𝑆𝑝

𝑝1 ⟶ 𝑆𝑟‖, where ℓ∘(𝑓) = ℓ ∘ 𝑓.  

Let 𝑋Ω denote the completion of 𝑆𝑝2 ⊕Ω 𝑆0
𝑝1  . It is possible to identify 𝐻𝑜𝑚(𝑋Ω, 𝑆

𝑟)𝐵 and 

𝑆𝑞1 ⊕Φ 𝑆𝑞2 as follows: for (ℎ, 𝑔) ∈ 𝑆𝑞1 ⊕Φ 𝑆𝑞2  (hence ℎ − Φ𝑔 ∈ 𝑆𝑞1) and (𝑓 ’, 𝑓) ∈

𝑆𝑝2 ⊕Ω 𝑆0
𝑝1  , we put 

(ℎ, 𝑔)(𝑓 ’, 𝑓) = ℎ𝑓 + 𝑔𝑓 ’. 
One then has 

‖ℎ𝑓 + 𝑔𝑓’‖𝑟 = ‖ℎ𝑓 − (Φ𝑔)𝑓 + (Φ𝑔)𝑓 + 𝑔Ω𝑓 − 𝑔Ω𝑓 + 𝑔𝑓’‖𝑟

≤ 𝑀(‖ℎ − Φ𝑔‖𝑞1‖𝑓‖𝑝1 + ‖𝑔‖𝑞2‖𝑓‖𝑝1 + ‖𝑔‖𝑞2‖𝑓
’ − Ω𝑓‖

𝑝2
)

≤  𝑀 (‖(ℎ, 𝑔)‖Φ‖(𝑓
’, 𝑓)‖

Ω
) , 

and since 𝑆𝑝2 ⊕Ω 𝑆0
𝑝1 is a dense submodule of 𝑋Ω we see that 𝑆𝑞1⨁Φ𝑆

𝑞2 embeds in 

𝐻𝑜𝑚(𝑋Ω, 𝑆
𝑟)𝐵 = 𝐻𝑜𝑚(𝑆𝑝2⨁Ω𝑆0

𝑝1, 𝑆𝑟)𝐵. That embedding is onto (and open) in view of the 

commutativity of the diagram 
0     ⟶          𝑆𝑞1      ⟶        𝑆𝑞1 ⊕Φ 𝑆𝑞2         ⟶     𝑆𝑞2        ⟶   0

      ∥                               ↓                                     ∥
0 ⟶ 𝐻𝑜𝑚(𝑆𝑝1 , 𝑆𝑟)𝐵 ⟶𝐻𝑜𝑚(𝑋Ω, 𝑆

𝑟)𝐵 ⟶𝐻𝑜𝑚(𝑆𝑝2, 𝑆𝑟)𝐵 ⟶ 0
 

whose rows are exact. 
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We next turn our attention to the covariant case. We fix 0 < 𝑝1 ≤ 𝑝2 < 𝑠 and for 𝑖 = 1,2, 

we put 𝑞𝑖
−1 + 𝑠−1 = 𝑝𝑖

−1 so that 𝐻𝑜𝑚(𝑆𝑠, 𝑆𝑝𝑖)𝐵 = 𝑆𝑞𝑖  in the obvious way. As before, we 

consider a right centralizer Ω: 𝑆0
𝑝1 → 𝑆𝑝2. 

Given 𝑔 ∈ 𝑆𝑞1 we consider the map ∈ 𝑆0
𝑠 ⟼Ω(𝑔𝑓) ∈ 𝑆𝑝2 . This is again a right centralizer, 

with constant at most ‖𝑔‖𝑞1𝐶[Ω]. As 𝑠 > 𝑝2, there is a linear map 𝜓 on ℋ such that 

‖Ω(𝑔𝑓) − 𝜓∘(𝑓)‖𝑝2 ≤ 𝑀∆[Ω]‖𝑔‖𝑞1‖𝑓‖𝑠. Taking Ψ(𝑔) = 𝜓  homogeneously we get a 

mapping Ψ: 𝑆𝑞1 → 𝐿(ℋ) such that 

‖Ω(𝑔𝑓) − (Ψ𝑔)𝑓‖𝑝2 ≤ 𝑀∆[Ω]‖𝑔‖𝑞2‖𝑓‖𝑠, (𝑔 ∈ 𝑆𝑞2 , 𝑓 ∈ 𝑆0
𝑠).             (12) 

Let us verify that Ψ is a right centralizer from 𝑆𝑞1 to 𝑆𝑞2  . Take 𝑔, 𝑔’ ∈ 𝑆𝑞1 and 𝑎 ∈ 𝐵 and 

recall that for ℓ ∈ 𝐿(ℋ) one has ‖ℓ‖𝑞2 = ‖ℓ∘ ∶ 𝑆0
𝑠 → 𝑆𝑝2‖. For 𝑓 ∈ 𝑆0

𝑠  we have on account 

of (12): 

‖(Ψ(𝑔 + 𝑔’) − Ψ𝑔 −Ψ𝑔’)𝑓‖
𝑝2

≤ ‖(Ω(𝑔𝑓 + 𝑔’𝑓) − Ω(𝑔𝑓) − (𝑔’𝑓)‖
𝑝2
+𝑀(‖𝑔 + 𝑔’‖𝑞2 + ‖𝑔‖𝑞2  

+ ‖𝑔’‖𝑞2)‖𝑓‖𝑠 

≤ 𝑄[Ω](‖𝑔𝑓‖𝑝1 + ‖𝑔’𝑓‖
𝑝1
) + 𝑀(‖𝑔‖𝑞2 + ‖𝑔’‖𝑞2)‖𝑓‖𝑠 

≤ 𝑀(‖𝑔‖𝑞2 + ‖𝑔’‖𝑞2)‖𝑓‖𝑠 

The estimate ‖Ψ(𝑔𝑎) − (Ψ𝑔)𝑎‖𝑞2 ≤ 𝑀𝐶[Ω]‖𝑔‖𝑞2‖𝑎‖𝐵 is even easier and we leave it to 

the reader. As before, 𝑆𝑞1⨁Ψ𝑆
𝑞2 is isomorphic to 𝐻𝑜𝑚(𝑆𝑠, 𝑋Ω)𝐵 (as quasi-Banach right 

modules), where 𝑋Ω is the completion of 𝑆𝑝2 ⊕Ω 𝑆0
𝑝1 . Indeed, take (ℎ, 𝑔) ∈ 𝑆𝑞1 ⊕Ψ 𝑆𝑞2. 

Given 𝑓 ∈ 𝑆0
𝑠 we define 

(ℎ, 𝑔)(𝑓) = (ℎ𝑓, 𝑔𝑓). 
The definition is correct because 𝑓 has finite rank and thus ℎ𝑓 is bounded even if ℎ is not. 

Moreover (ℎ𝑓, 𝑔𝑓) falls in 𝑆𝑝2⨁Ω𝑆0
𝑝1 and we have 

‖(ℎ𝑓, 𝑔𝑓)‖Ω = ‖ℎ𝑓 − Ω(𝑔𝑓)‖𝑝2 + ‖𝑔𝑓‖𝑝1
≤ ‖ℎ𝑓 − Ω(𝑔𝑓) + (Ψ𝑔)𝑓 − (Ψ&𝑔)𝑓‖𝑝2 + ‖𝑔𝑓‖𝑝1
≤ 𝑀(‖ℎ − Ψ𝑔‖𝑞2 + ‖𝑔‖𝑞1)‖𝑓‖𝑠.  

This shows that 𝑆𝑞1⨁Ψ𝑆
𝑞2 embeds into 𝐻𝑜𝑚(𝑆𝑠, 𝑋Ω)𝐵 = 𝐻𝑜𝑚(𝑆0

𝑠, 𝑋Ω)𝐵. Finally, the 

commutative diagram 
0     ⟶   𝑆𝑞2     ⟶         𝑆𝑞2⨁Ψ𝑆

𝑞1          ⟶      𝑆𝑞1          ⟶     0
∥                               ↓                                ∥

0 ⟶ 𝐻𝑜𝑚(𝑆𝑠, 𝑆𝑝2)𝐵 ⟶𝐻𝑜𝑚(𝑆𝑠, 𝑋Ω)𝐵 ⟶𝐻𝑜𝑚(𝑆𝑠, 𝑆𝑝1)𝐵 ⟶ 0
 

provides the required isomorphism. 

We focus on a different kind of transformation. 

Proposition (4.1.10)[119]: Let Ψ:𝑆0
𝑞1 → 𝑆𝑞2 be a right-centralizer, with 0 < 𝑞1 ≤ 𝑞2 ≤ ∞. 

Take 0 < 𝑠 < 1 and let 𝑝𝑖be given by the identity 𝑝𝑖
−1  =  𝑞𝑖

−1  + 𝑠−1 for 𝑖 =   1,2. We 

define a mapping  Ψ(𝑠): 𝑆0
𝑝1 → 𝑆𝑝2   by 

Ψ(𝑠)(ℎ)  = Ψ(𝑢|ℎ|𝑝1/𝑞1)|ℎ|𝑝1/𝑠, 

where 𝑢|ℎ| is the polar decomposition of ℎ. Then Ψ(𝑠) is a right-centralizer. 

Moreover, 𝛹(𝑠) is bounded if and only if Ψ is bounded. 

Proof. Actually one can take 𝛹(𝑠)(ℎ) = (Ψ𝑓)𝑔 provided ℎ =  𝑓𝑔, with 𝑀‖ℎ‖𝑝1 ≤

 ‖𝑓‖𝑞1‖𝑔‖𝑠. 

We will show that 𝛹(𝑠) can be obtained as (𝐻𝑜𝑚(Ψ, 𝑆𝜏)𝐵, 𝑆
𝑡) for suitable 𝑟 and 𝑡. We pick 

any 𝑟 <  𝑞1 and then we take t so that 𝑡−1 = 𝑠−1  +  𝑟−1. Applying 𝐻𝑜𝑚(−, 𝑆𝑟)𝐵 to Ψ we 
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get a mapΦ ∶  𝑆ℓ2  → 𝐿(ℋ) which is a left-centralizer from 𝑆ℓ2  𝑡𝑜 𝑆ℓ1  , where ℓ𝑖
−1  +

 𝑞𝑖
−1  =  𝑟−1 and satisfying an estimate 

‖𝑔(𝛹𝑓) + (𝛷𝑔)𝑓‖𝑟   ≤ 𝑀‖𝑔‖ℓ2‖𝑓‖𝑞1  , (𝑔 ∈  𝑆
ℓ2  , 𝑓 ∈  𝑆0

𝑞1  ).    (13)      

Now we apply 𝐻𝑜𝑚𝐵(−, 𝑆
𝑡) to Φ as follows (notice that 𝑆𝑝𝑖 = 𝐻𝑜𝑚𝐵(𝑆

ℓ1 , 𝑆𝑡) for = 1,2 ; 

in particular 𝑡 < ℓ2). For each ℎ ∈ 𝑆𝑝1 we consider the map 𝑔 ∈ 𝑆ℓ2 ⟼ (Φ𝑔)ℎ ∈ 𝐿(ℋ). 
This is a left-centralizer from 𝑆ℓ2 to 𝑆𝑡 having constant proportional to ‖ℎ‖𝑝1 . Therefore 

there is Λ(ℎ) ∈ ℳ𝐵(𝑆
ℓ2 , 𝐿(ℋ)) such that 

‖𝑔(Λℎ)(𝑔) + (Φ𝑔)ℎ‖𝑡 ≤ 𝑀‖ℎ‖𝑝1‖𝑔‖ℓ2,      (ℎ ∈ 𝑆𝑝1 , 𝑔 ∈ 𝑆ℓ2).      (14)                   

Even if we know no representation for arbitrary morphisms in ℳ𝐵(𝑆
ℓ2 , 𝐿(ℋ)) we claim 

that we may take Λ(ℎ)(𝑔) = 𝑔(Ω𝑓)𝑘 provided ℎ = 𝑓𝑘 is the factorization appearing in the 

statement of the theorem. Indeed, by (13), 

‖𝑔(Ω𝑓)𝑘 + (Φ𝑔)ℎ‖𝑡 ≤ 𝑀‖𝑔‖ℓ2‖𝑓‖𝑞1‖𝑘‖𝑠 ≤ 2𝑀‖𝑔‖ℓ2‖ℎ‖𝑝1 

and we are done. The last statement obviously follows from the estimate (11). 

As we mentioned, 𝐸𝑥𝑡𝐵(𝑆
𝑝) is essentially independent on 𝑝 ∈ (0,1). Of course this 

follows from Theorem (4.1.9): indeed, if 𝑝 < 𝑞 < 1, then 𝐻𝑜𝑚𝐵(𝑆
𝑠, −): 𝐸𝑥𝑡𝐵(𝑆

𝑝) →
𝐸𝑥𝑡𝐵(𝑆

𝑞) is an isomorphism provided 𝑠 is given by 𝑝−1 = 𝑞−1 + 𝑠1. Let us record here the 

(right) centralizer version of this fact. 

Corollary (4.1.11)[119]: Let the numbers 𝑝, 𝑞, 𝑠 ∈ (0,∞) satisfy 𝑝−1 = 𝑞−1 + 𝑠−1. Given 

a right centralizer Ψ:𝑆0
𝑞
→ 𝑆𝑞, we define Ψ(𝑠): 𝑆0

𝑝
→ 𝑆𝑝 by Ψ(𝑠)(𝑓) = (𝑢|𝑓|𝑝/𝑞)|𝑓|𝑝/𝑠, 

where 𝑢|𝑓| is the polar decomposition of 𝑓. Then Ψ(𝑠) is a right centralizer and every right 

centralizer on 𝑆0
𝑝
 is at finite distance from one obtained in this way.  

Proof. Everything but the last part is a particular case of the preceding Proposition. Please 

note that 𝑞 < ∞ is required here, while 𝑞2 = ∞ was allowed in Proposition (4.1.10). 

Let Ω be a right centralizer on 𝑆0
𝑝
 and let Ψ be any centralizer obtained by applying 

𝐻𝑜𝑚(𝑆𝑠, −)𝐵 to Ω. According to (12) we have ‖Ω(𝑔𝑓) − (Ψ𝑔)𝑓‖𝑝 ≤ 𝑀‖𝑔‖𝑞‖𝑓‖𝑠 for 𝑔 ∈

𝑆𝑞2 and 𝑓 ∈ 𝑆0
𝑠, from where is follows that Ω ≈ Ψ(𝑠). 

We describe the extensions of 𝑆𝑝 by 𝑆𝑞, with 0 < 𝑝 < 𝑞 ≤ ∞, by means of the so-

called twisted Hilbert spaces. These are self-extensions of ℋ in the category of (quasi-) 

Banach spaces, that is, short exact sequences of (quasi-) Banach spaces and operators 

0 ⟶ ℋ ⟶ 𝑇 ⟶ℋ ⟶ 0.                                              (15) 

As a matter of fact, the middle space 𝑇 must be (isomorphic to) a Banach space [133]. 

Moreover, 𝑇 is itself isomorphic to a Hilbert space if and only if (15) splits. The existence 

of nontrivial twisted Hilbert spaces was first established by Enflo, Lindenstrauss, and Pisier 

[127]. Later on Kalton and Peck [139] constructed fairly concrete examples, among them 

the nowadays famous Kalton-Peck space 𝑍2. 

As it is well-known, twisted Hilbert spaces are in correspondence with quasi-linear 

maps on ℋ, that is, homogeneous maps 𝜙:ℋ → ℋ satisfying an estimate of the form 

‖𝜙(𝑥 + 𝑦) − 𝜙(𝑥) − 𝜙(𝑦)‖ℋ ≤ 𝑄(‖𝑥‖ℋ + ‖𝑥‖ℋ)       (𝑥, 𝑦 ∈ ℋ). 
(We can replace the target space by a larger ambient space, or consider 𝜙 defined only on 

some dense subspace, or both. However, as linear spaces are free modules over the ground 

field, this is unnecessary to elaborate the theory.) See [120], [125], [137], [138]. 

Theorem (4.1.12)[119]: Let 𝜙 be a quasi-linear map on ℋ. We define a map �̃� on 𝔉 as 

follows. For each 𝑓 ∈ 𝔉 we choose a Schmidt expansion 𝑓 = ∑ 𝑠𝑛𝑥𝑛𝑛 ⨂𝑦𝑛 

(homogeneously) and we put 
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�̃�(𝑓) =∑𝑠𝑛𝑥𝑛
𝑛

⊗ (𝑦𝑛).                                               (16) 

Then �̃�: 𝑆0
𝑝
→ 𝑆𝑞 defines a right-centralizer whenever 0 < 𝑝 < 𝑞 ≤ ∞. Moreover, if 

Φ: 𝑆0
𝑝
→ 𝑆𝑞 is a right-centralizer, then Φ ≈ �̃� for some quasi-linear 𝜙, where �̃� has the form 

given by (16). 

Proof. “Homogeneously” means that if 𝑓 = ∑ 𝑠𝑛𝑥𝑛𝑛 ⊗𝑦𝑛 is the Schmidt expansion 

attached to 𝑓 and 𝜆 ∈ ℂ is not zero, then the expansion for 𝜆𝑓 is ∑ |𝜆|𝑠𝑛𝑥𝑛𝑛 ⨂ |𝜆|−1𝜆𝑦𝑛. 

This makes �̃� homogeneous. 

Let us beging by checking the first part when 𝑞 = ∞ so that 𝑆𝑞 = 𝐾, the ideal of compact 

operators on ℋ. To this end, recall that an operator 𝑢: 𝑋 → 𝑌 acting between (quasi-) Banach 

spaces is said to be 𝑝-nuclear (0 < 𝑝 < 1) if it admits a representation as 

                            𝑢 = 𝑡𝑛𝑥𝑛
’ ⨂𝑦𝑛,         (𝑥𝑛

’ ∈ 𝑋 ’, 𝑦𝑛 ∈ 𝑌)                                                 (17) 

with ‖𝑥𝑛
’ ‖ = ‖𝑦𝑛‖ = 1 and (𝑡𝑛) in ℓ𝑝. The class of all 𝑝-nuclear operators 𝑋 → 𝑌 is denoted 

by 𝔑𝑝(𝑋, 𝑌 ). The 𝑝-nuclear norm of 𝑢 is then defined as the infimum of the (quasi-) norm 

in ℓ𝑝 of the sequences (𝑡𝑛) that can arise in (17). Notice that 𝑆𝑝 = 𝔑𝑝(ℋ), with equal 

(quasi-) norms. 

Now, let 

                                 0 ⟶ 𝑌
    𝜄   
→  𝑋

   𝜋  
→  𝑍 ⟶ 0                                                                 (18) 

be an extension of quasi-Banach spaces and 𝑈 another quasi-Banach space. Without loss of 

generality we assume 𝑌 = 𝑘𝑒𝑟𝜋. If we fix 0 < 𝑝 < ∞ and we apply 𝔑𝑝(𝑈,−) to the 

quotient map 𝜋: 𝑋 → 𝑍 we obtain the operator 𝜋∘: 𝔑
𝑝(𝑈, 𝑋) ⟶ 𝔑𝑝(𝑈, 𝑍) which is easily 

seen to be open. 

Observe that 𝑘𝑒𝑟 𝜋∘ consists of certain 𝑌-valued compact operators. Moreover, if 𝑢 ∈
𝑘𝑒𝑟 𝜋∘, then 

‖𝑢:𝑈 ⟶ 𝑌‖ = ‖𝑢:𝑈 ⟶ 𝑋‖ ≤ ‖𝑢‖𝔑𝑝(𝑈,𝑋), 

so that the embedding 𝑘𝑒𝑟 𝜋∘ → 𝐾(𝑈, 𝑌) is continuous and we may form the push-out 

diagram 

               
0 ⟶ 𝑘𝑒𝑟𝜋∘ ⟶𝔑𝑝(𝑈, 𝑋)

  𝜋∘  
→  𝔑𝑝(𝑈, 𝑍) ⟶ 0

↓                    ↓                        ∥
0 ⟶  𝐾(𝑈, 𝑌) ⟶  𝑃𝑂 ⟶  𝔑𝑝(𝑈, 𝑌)  ⟶  0

                                              (19) 

We recall that if we are given an arbitrary push-out diagram of quasi-Banach spaces and 

operators 

                          
0 ⟶ 𝑘𝑒𝑟𝜛 ⟶ 𝐴

  𝜛  
→  𝐶 ⟶ 0

 𝑠 ↓              ↓         ∥    
0 ⟶ 𝐷 ⟶   𝑃𝑂 ⟶  𝐶 ⟶ 0

                                                          (20) 

then, a quasi-linear map associated to the lower row can be constructed as follows: if 𝑏: 𝐶 ⟶
𝐴 is a (homogeneous) bounded selection for the quotient 𝜛:𝐴 → 𝐶 and ℓ: 𝐶 → 𝐴 a linear 

(surely unbounded) selection, then the difference 𝑏 − ℓ: 𝐶 → 𝑘𝑒𝑟 𝜛 is associated to the 

upper extension in (20) and so 𝜎 = 𝑠 ∘ (𝑏 − ℓ): 𝐶 → 𝐷 is the desired quasi-linear map. See 

[123] for the missing details. 

This applies to the diagram (19) as follows. Suppose 𝑋 = 𝑌⨁𝜙𝑍 arises from the quasi-linear 

map 𝜙: 𝑍 → 𝑌 and that 𝜙 = 𝛽 − 𝜆, with 𝛽: 𝑍 → 𝑋 homogeneous and bounded and 𝜆: 𝑍 →
𝑋 linear. Then, if 𝑢 ∈ 𝔑𝑝(𝑈, 𝑍) has finite rank and we choose (homogeneously) an 
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expansion 𝑢 = ∑ 𝑢𝑛
’ ⨂𝑧𝑛𝑛  with finitely many summands and ‖𝑢‖𝑝 ≥ (1 +

𝜀)(∑‖𝑢𝑛
’ ‖

𝑝
‖𝑧𝑛‖

𝑝)1/𝑝 we may define 

𝐵(𝑢) =∑𝑢𝑢
’

𝑛

⨂𝛽(𝑧𝑛)     𝑎𝑛𝑑    Λ(𝑢) =∑𝑢𝑛
’

𝑛

⨂𝜆(𝑧𝑛). 

Then 𝐵 is homogeneous and bounded, Λ = 𝐼𝑈’⨂𝜆 is linear and, therefore, we can define a 

quasi-linear map �̃�:𝔑𝑝(𝑈, 𝑍) → 𝐾(𝑈, 𝑌) taking 

�̃�(𝑢) = 𝐵(𝑢) − Λ(𝑢) =∑𝑢𝑛
’

𝑛

⨂(𝑧𝑛),                               (21) 

at least when 𝑢 has finite rank. Notice, moreover, that if 𝑢 = ∑ 𝑣𝑚
’ ⨂𝜁𝑚𝑚  is another 

representation with ‖𝑢‖𝑝 ≥ (1 + 𝜀)(∑‖𝑣𝑚
’ ‖

𝑝
‖𝜁𝑚‖

𝑝)1/𝑝, then 

‖�̃�(𝑢) −∑𝑣𝑚
’

𝑚

⨂𝜙(𝜁𝑚)‖

𝔑𝑝(𝑈,𝑋)

= ‖∑𝑢𝑛
’

𝑛

⨂𝛽(𝑧𝑛) −∑𝑣𝑚
’

𝑚

⨂𝛽(𝜁𝑚)‖

𝔑𝑝(𝑈,𝑋)

 

≤ 2(1 + 𝜀)2
1
𝑝
−1
‖𝛽‖‖𝑢‖𝔑𝑝(𝑈,𝑍) 

(with the factor 2
1

𝑝
−1

 deleted if 𝑝 ≥ 1). Hence �̃� is essentially independent on the chosen 

representation of 𝑢.  

Going back to the Schatten classes, consider the case where the starting extension (18) is 

the self-extension induced by 𝜙, and we take 𝑈 = ℋ so that (19) becomes 

                          
0 ⟶ 𝑘𝑒𝑟 𝜋∘ ⟶𝔑𝑝(ℋ,𝑋)

   𝜋∘  
→  𝑆𝑝 ⟶ 0

     ↓                   ↓                    ∥   
0  ⟶    𝐾   ⟶     𝑃𝑂    ⟶  𝑆𝑝   ⟶   0

                               (22) 

The preceding diagram lives in the category of quasi-Banach right modules over 𝐵 (the 

multiplication in 𝔑𝑝(ℋ,𝑋) given by composition on the right) and, according to (21) the 

map 𝜙: 𝑆0
𝑝
→ 𝐾 given by �̃�(𝑢) = ∑ 𝑡𝑛𝑥𝑛⨂(𝑦𝑛) is a right-centralizer inducing its lower 

row. Here, 𝑢 = ∑ 𝑡𝑛𝑥𝑛⨂𝑦𝑛 is the Schmidt-expansion appearing in the statement of the 

Theorem and 𝑋 = ℋ⨁𝜙ℋ. 

Notice that �̃� is essentially independent on the prescribed representations since any other 

choice yields a centralizer 𝑆0
𝑝
→ 𝐾 at finite distance from �̃�. 

Next we prove that the map �̃� is still a right-centralizer when regarded as a map from 𝑆0
𝑝
 to 

𝑆𝑞. 

To this end we consider 𝑝 and 𝑞 fixed and take 𝑟 so that 𝑝−1 = 𝑞−1 + 𝑟−1. We already 

know that �̃�: 𝑆0
𝑟 → 𝐾 is a centralizer. We introduce a second choice of the Schmidt 

expansions on 𝑆𝑟 as follows. 

Given a normalized ℎ ∈ 𝑆𝑟 set 𝑓 = |ℎ|𝑟/𝑝, so that if 𝑢 is the phase of ℎ, then ℎ = 𝑢𝑓𝑝/𝑟, 

with 𝑓 normalized in 𝑆𝑝. Now, if 𝑢𝑓 = ∑ 𝑠𝑛𝑥𝑛𝑛 ⨂𝑦𝑛 is the prescribed representation, we 

have 

ℎ =∑𝑠𝑛
𝑝 𝑟⁄

𝑥𝑛
𝑛

⨂𝑦𝑛 

and we can define a map Γ: 𝑆0
𝑟 → 𝐾 by the formula Γ(ℎ) = ∑ 𝑠𝑛

𝑝/𝑟
𝑥𝑛𝑛 ⨂𝜙(𝑦𝑛). This is in 

fact a centralizer and we even know that Γ ≈ �̃�. 

Let us activate Proposition (4.1.10) with 𝑠 = 𝑞 and Ψ = Γ to conclude that if 𝑢|𝑓| is the 

polar decomposition of 𝑓 ∈ 𝑆0
𝑝
 , then the formula 
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Γ(𝑞)(𝑓) = Φ(𝑢|𝑓|𝑝/𝑟)|𝑓|𝑝/𝑞  
defines a centralizer from 𝑆0

𝑝
 to 𝑆𝑞. But Γ(𝑞)agrees with our old friend �̃�. Indeed, if 𝑓 =

∑ 𝑠𝑛𝑥𝑛𝑛 ⊗𝑦𝑛 is the prescribed representation of 𝑓, then Γ(𝑢|𝑓|𝑝/𝑟) = ∑ 𝑠𝑛
𝑝/𝑞

𝑥𝑛𝑛 ⨂𝜙(𝑦𝑛) 

and since |𝑓|𝑝/𝑞 = ∑ 𝑠𝑛
𝑝/𝑞

𝑥𝑛𝑛 ⨂𝑥𝑛 and 𝑝(𝑟−1 + 𝑞−1) = 1 we have 

Γ(𝑞)(𝑓) = (∑𝑠𝑛

𝑝
𝑟𝑥𝑛

𝑛

⨂𝜙(𝑦𝑛))(∑𝑠𝑛

𝑝
𝑞
𝑥𝑛

𝑛

⨂𝑥𝑛) =∑𝑠𝑛𝑥𝑛
𝑛

⨂𝜙(𝑦𝑛) = �̃�(𝑓). 

This completes the proof of the first part. 

We finally prove the ‘moreover’ part. Let Φ: 𝑆0
𝑝
→ 𝑆𝑞 be a right-centralizer for which we 

may assume (and do) that Φ(𝑓𝑒) = Φ(𝑓)𝑒 for every 𝑓 ∈ 𝑆0
𝑝
 and every projection 𝑒 ∈ 𝐵. 

Here, 𝑝, 𝑞 ∈ (0,∞] are arbitrary; in particular we are not assuming 𝑝 < 𝑞. Fixing a norm 

one 𝜂 ∈ ℋ, we see that Φ(𝜂 ⊗ 𝑦) = 𝜂 ⊗𝜙 for some 𝜙 ∈ 𝐻 depending on 𝑦 (and 𝜂). 

Taking 𝜙 = 𝜙𝜂(𝑦) we obtain a self-map on ℋ which is easily seen to be quasi-linear. Let 

𝜁 be another normalized vector in ℋ and define 𝜙𝜁by the identity Φ(𝜁⨂𝑦) = 𝜁⨂𝜙𝜁(𝑦). 

Let 𝑢 ∈ 𝐵 be an isometry of ℋ sending 𝜁 to 𝜂, so that (𝜂⨂𝑦)𝑢 = 𝑢∗(𝜂)⨂𝑦 = 𝜁⨂𝑦. One 

has 

‖𝜙𝜁(𝑦) − 𝜙𝜂(𝑦)‖ = ‖𝜂⨂(𝜙𝜁(𝑦) − 𝜙𝜂(𝑦))‖𝑞
 = ‖Φ((𝜂⨂𝑦)𝑢) − (Φ(𝜂⨂𝑦)𝑢)‖

𝑞

≤ 𝐶[Φ]‖𝜂‖‖𝑦‖‖𝑢‖𝐵 ≤ 𝑀‖𝑦‖. 
Therefore,𝜙𝜂 ≈ 𝜙𝜁 and so there is a quasi-linear map 𝜙 on ℋ that could be properly called 

the spatial part of Φ and satisfies 

                    ‖Φ(𝑥⨂𝑦) − 𝑥⨂𝜙(𝑦)‖𝑞 ≤ 𝑀‖𝑥‖‖𝑦‖      (𝑥, 𝑦 ∈ ℋ).                (23) 

We want to see that when 0 < 𝑝 < 𝑞 ≤ ∞ one has Φ ≈ �̃� as long as (23) holds true. Clearly, 

we may and so assume that Φ(𝑥⨂𝑦) = 𝑥⨂𝜙(𝑦) for all 𝑥, 𝑦 ∈ ℋ and we must prove that if 

𝑓 = ∑ 𝑡𝑛𝑥𝑛𝑛 ⨂𝑦𝑛 is a Schmidt representation, then 

‖Φ(𝑓) −∑𝑡𝑛𝑥𝑛
𝑛

⨂𝜙(𝑦𝑛)‖

𝑞

≤ 𝑀‖𝑓‖𝑝                             (24) 

for some constant 𝑀 depending only on Φ, 𝑝 and 𝑞. 

Assume first 𝑝 < 1. Then (𝑥𝑛 ⊗𝑦𝑛) is (isometrically) equivalent to the unit basis of ℓ𝑝 and 

since 𝑆𝑞 is an 𝑚-Banach space for 𝑚 = 𝑚𝑖𝑛(1, 𝑞) the bound (24) follows from an inequality 

due to Kalton [133] − indeed one may take 

𝑀 = (∑(
2

𝑘
)
𝑚/𝑝∞

𝑘=1

)

1/𝑝

𝑄[Φ]. 

Now, if 𝑝 ≥ 1 we can use Proposition (4.1.10) to lower Φ to a centralizer defined on 𝑆1/2, 

say. So, take 𝑠 such that 𝑝−1 + 𝑠−1 = 2 and let 𝑞’ be given by 1/𝑞’ =  𝑝−1 + 𝑠−1. We know 

from Proposition (4.1.10) that the map Φ(𝑠): 𝑆0
1/2

→ 𝑆𝑞
’
 defined by 

Φ(𝑠)(ℎ) = Φ(𝑢|ℎ|
1
2𝑝)|ℎ|

1
2𝑠 

is a right-centralizer. Here, 𝑢|ℎ| is the polar decomposition of ℎ. Notice that for ‖𝑥‖ =
‖𝑦‖ = 1, the polar decomposition of 𝑥 ⊗ 𝑦 is (𝑥⨂𝑦)(𝑥⨂𝑥) and since (𝑥⨂𝑥)𝑡 = 𝑥⨂𝑥 for 

all 𝑡 > 0 we have 

Φ(𝑠)(𝑥⨂𝑦) = (Φ(𝑥⨂𝑦))(𝑥⨂𝑥) = (𝑥⨂𝜙(𝑦))(𝑥⨂𝑥) = 𝑥⨂𝜙(𝑦) 
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and Φ(𝑠) ≈ �̃� on 𝑆1/2. On the other hand we know that �̃�(𝑠) ≈ �̃� on 𝑆0
1/2

 and thus, Φ(𝑠) −

�̃�(𝑠) ≈ (Φ − �̃�)(𝑠) is bounded as a map from 𝑆0
1/2

 to 𝑆𝑞
’
. The ‘moreover’ part of Proposition 

(4.1.10) now yields Φ ≈ �̃� on 𝑆0
𝑝
. 

Recall that a (complex) quasi-Banach space 𝑍 is said to be a 𝐾-space if every minimal 

extension (of quasi-Banach spaces) 0 → ℂ → 𝑋 → 𝑍 → 0 splits. Equivalently, if for every 

dense subspace 𝑍0 of 𝑍 and every quasi-linear map 𝜑: 𝑍0 → ℂ there is a linear map ℓ: 𝑍0 →
ℂ such that dist(𝜑, ℓ) < ∞. The main examples of 𝐾-spaces were supplied by Kalton and 

coworkers: it turns out that ℓ𝑝 (or 𝐿𝑝) is a 𝐾-space if and only if 𝑝 ∈ (0,∞] is different from 

1. See [145], [133], [146], [141]. In contrast to the commutative situation, one has: 

Theorem (4.1.13)[119]: 𝑆𝑝 is a 𝐾-space for no 𝑝 ∈ (0,1). 
Proof. Let𝜙 be quasi-linear on ℋand �̃� ∶ 𝑆0

𝑝
→ 𝑆1 the right centralizer given by Theorem 

(4.1.12). 

Composing with 𝑡𝑟: 𝑆1 → ℂ we get a quasi-linear function 𝜑: 𝑆0
𝑝
→ ℂ such that 

𝜑(𝑥⨂𝑦) = 𝑡𝑟(�̃�(𝑥⨂𝑦)) = 𝑡𝑟(𝑥⨂𝜙(𝑦)) = ⟨𝜙(𝑦)|𝑥⟩. 
Suppose there is a linearℓ: 𝑆0

𝑝
→ ℂ at fiinite distance from 𝜑. As 𝜑(𝑥 ⊗ 𝑦) → 0 for fixed 𝑦 

when 𝑥 → 0 in ℋ we see that ℓ(𝑥⨂𝑦) → 0 for fixed y when 𝑥 → 0 in ℋ and by Lemma 

(4.1.2)(d) there is a  

linear map 𝐿 on ℋ such that ℓ(𝑥⨂𝑦) = ⟨𝐿(𝑦)|𝑥⟩. This obviously implies 𝑑𝑖𝑠𝑡(𝜙, 𝐿) < ∞. 

Starting with a non-trivial 𝜙 we get a non-trivial, minimal extension of 𝑆𝑝. 

Of course 𝑆1 is not a 𝐾-space as it contains a complemented subspace isomorphic to ℓ1, 

while 𝑆𝑝 is a 𝐾-space for 𝑝 ∈ (1,∞), as all 𝐵-convex spaces are. 

We finally add a result which partially answers a question raised by Kalton and 

Montgomery-Smith at the end of the survey [138]. 

Proposition (4.1.14)[119]: Let Φ: 𝑆0
2 → 𝐿(ℋ) be a left centralizer from 𝑆0

2 to 𝑆2. Then the 

function 𝜑: 𝑆0
1 → ℂ given by 

                              𝜑(𝑓) = 𝑡𝑟(𝑢|𝑓|1/2Φ(|𝑓|1/2))                                               (25) 

is quasi-linear, where 𝑢|𝑓| is the polar decomposition of 𝑓. Every quasi-linear (complex) 

function on 𝑆0
1 is at finite distance from one arising in this way. 

Proof. Let us see the first part assuming that Φ takes values in 𝑆2. An specialization (𝑞1 =
𝑞2 = 𝑠 = 2) of the obvious left version of Proposition (4.1.10) shows that the 

mapΦ(2): 𝑆0
2 → 𝑆1 defined by Φ(2)(𝑓) = 𝑢|𝑓|1/2Φ(|𝑓|1/2) is a centralizer, hence a quasi-

linear map. Since the trace is bounded and linear on 𝑆1, the composition 𝜑 = 𝑡𝑟 ∘ Φ(2) is 

quasi-linear, too. 

In any case, we know from Corollary (4.1.3) that there is a centralizer Ψ:𝑆0
2 → 𝑆2 that 

induces an extension equivalent to that induced by Φ. Hence there exist a morphism α: 𝑆0
2 →

𝐿(ℋ) and a bounded homogeneous map 𝑏: 𝑆0
2 → 𝑆2 such that Φ = Ψ+ 𝛼 + 𝑏. We have 

𝜑(𝑓) = 𝑡𝑟(𝑢|𝑓|1 2⁄ (|𝑓|1/2)) +  𝑡𝑟(𝑢|𝑓|1/2𝛼(|𝑓|1/2)) + 𝑡𝑟(𝑢|𝑓|1/2𝑏(|𝑓|1/2)). 
We have just proved that the first summand in the right-hand side of the preceding equality 

is a quasi-linear function of 𝑓. The second one is linear since 𝑢|𝑓|1/2𝛼(|𝑓|1/2) =
𝛼(𝑢|𝑓|1/2|𝑓|1/2) = 𝛼(𝑓). The third one is clearly bounded. Thus 𝜑 is itself quasi-linear. 

As for the second one, let 𝜙: 𝑆0
1 → ℂ be quasi-linear. Consider the map 𝑆0

2 × 𝑆0
2 → ℂ sending 

(𝑓, 𝑔) into 𝜙(𝑓𝑔). For fixed 𝑔 ∈ 𝑆0
2 , the function 𝑓 ⟼ 𝜙(𝑓𝑔) is quasi-linear on 𝑆0

2 , with 

constant at most ‖𝑔‖2𝑄[𝜙]. But 𝑆2 is a 𝐾-space and so there is a linear map ℓ𝑔: 𝑆0
2 → ℂ 

(depending on 𝑔) such that 
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                           |𝜙(𝑓𝑔) − ℓ𝑔(𝑓)| ≤ 𝐾‖𝑔‖2𝑄[𝜙]‖𝑓‖2                                                  (26) 

where 𝐾 ≤ 37 is the “𝐾-space constant” of 𝑆2. 

Next we want to see that ℓ(𝑓) = 𝑡𝑟(𝐿 ∘ 𝑓) = 𝑡𝑟(𝑓𝐿) for some 𝐿 ∈ 𝐿(ℋ). According to 

Lemma (4.1.2)(d) it suffices to check that for each fixed 𝑦 ∈ ℋ one has ℓ(𝑥⨂𝑦) → 0 as 

𝑥 → 0 in ℋ. As (26) must hold, it suffices to verify that for fixed 𝑔 ∈ 𝑆0
2 and 𝑦 ∈ ℋ one 

has 

                                  𝜙((𝑥⨂𝑦)𝑔) → 0      (𝑥 → 0).                                                   (27) 

Write 𝑔 = ∑ 𝑡𝑛𝑥𝑛
𝑚
𝑛=1 ⨂𝑦𝑛. Then 

(𝑥⨂𝑦)𝑔 = 𝑔∗(𝑥)⨂𝑦 = 𝑡𝑛⟨𝑥|𝑦𝑛⟩𝑥𝑛⨂𝑦. 
As 𝜙 is quasi-linear we have the estimate (see [133]) 

|𝜙((𝑥⨂𝑦)𝑔) −∑𝑡𝑛⟨𝑥|𝑦𝑛⟩

𝑚

𝑛=1

𝜙(𝑥𝑛⨂𝑦)| ≤ ∑|𝑛𝑡𝑛⟨𝑥|𝑦𝑛⟩|‖𝑥𝑛‖‖𝑦‖

𝑚

𝑛=1

  

and (27) follows. 

To sum up, there is homogeneous map Φ: 𝑆0
2  → 𝐿(ℋ) such that 

                       |𝜙(𝑓𝑔) − 𝑡𝑟(𝑓Φ(𝑔))| ≤ 𝑀‖𝑓‖2‖𝑔‖2     (𝑓, 𝑔 ∈ 𝑆0
2).                       (28) 

Clearly,𝜙 ≈ 𝜑, where 𝜑 is given by (25). It only remains to check that Φ is a centralizer. 

Take 𝑔, 𝑓 ∈ 𝑆0
2 , 𝑎 ∈ 𝐵. We have: 

|𝜙(𝑓(𝑎𝑔)) − 𝑡𝑟(𝑓Φ(𝑎𝑔))| ≤ 𝑀‖𝑓‖2‖𝑎𝑔‖2 

|𝜙((𝑓𝑎)𝑔) − 𝑡𝑟(𝑓𝑎Φ(𝑔))| ≤ 𝑀‖𝑓𝑎‖2‖𝑔‖2, 
so 

‖Φ(𝑎𝑔) − 𝑎Φ(𝑔)‖2 = 𝑠𝑢𝑝‖𝑓‖2≤1|𝑡𝑟(𝑓(Φ(𝑎𝑔) − 𝑎Φ(𝑔))| ≤ 𝑀‖𝑎‖𝐵‖𝑔‖2 

and we are done.  

A bicentralizer is just a left centralizer which is also a right centralizer. This amounts 

to modifying Definition (4.1.1) by requiring 𝑍, 𝑌 and �̃� to be bimodules and replacing the 

estimate in (b) by 

‖Ω(𝑎𝑓𝑏) − 𝑎Ω(𝑓)𝑏‖𝑌  ≤ 𝐶2‖𝑎‖𝐴‖𝑓‖𝑍‖𝑏‖𝐴         (𝑎, 𝑏 ∈ 𝐴, 𝑓 ∈ 𝑍). 
Bicentralizers on Schatten classes are the subject of [135] and [136]. It can be proved that 

every extension of quasi-Banach B-bimodules 0 → 𝑆𝑞 → 𝑋 → 𝑆𝑝 → 0 arises from a 

bicentralizer Ω: 𝑆0
𝑝
→ 𝑆𝑞 although we will refrain from entering into the details here. We 

draw some consequences of the results proved so far. 

Theorem (4.1.15)[119]: Let Ω: 𝑆0
𝑝
→ 𝑆𝑞 be a bicentralizer, with 𝑝 ≠ 𝑞. Then there is 𝑡 ∈ ℂ 

such that ‖Ω(𝑓) − 𝑡𝑓‖𝑞 ≤ 𝐷‖𝑓‖𝑝 for some constant 𝐷 independent on 𝑓 ∈ 𝑆0
𝑝
. 

Proof. Case 𝑞 < 𝑝. If  Ω: 𝑆𝑝 → 𝑆𝑞 is a bicentralizer, with 𝑞 finite for which we may assume 

it preserves both left and right supports, then given a finite rank projection 𝑒 ∈ 𝐵 we have 

that Ω maps 𝑒𝑆𝑝𝑒 to 𝑒𝑆𝑞𝑒, as a bicentralizer over 𝑒𝐵𝑒. Proceeding as in Lemma (4.1.4) we 

see that the distance from Ω to the space of bimodule morphisms 𝑆0
𝑝
→ 𝑆𝑞 equals 𝑠𝑢𝑝𝑒𝛿𝑒, 

where 𝛿𝑒 is the distance from Φ: 𝑒𝑆𝑝𝑒 → 𝑒𝑆𝑝𝑒 to the corresponding space of bimodule 

homomorphisms over the corner algebra 𝑒𝐵𝑒 (they all given by multiplication by some 

constant) and 𝑒 runs over all finite rank projections in 𝐵. After that one should consider the 

obvious version of Lemma (4.1.5) for bimodules using ultraproducts (instead of 

ultrapowers) of the families (𝑒𝑆𝑝𝑒)𝑒, (𝑒𝑆
𝑞𝑒)𝑒 and the corresponding ultraproduct algebra 

(𝑒𝐵𝑒)𝒰. The remainder of the proof of Theorem (4.1.6) goes undisturbed to get the desired 

conclusion. 
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In case 𝑞 > 𝑝, as Ω is a right-centralizer, we know from Theorem (4.1.12) that there is a 

quasi-linear map 𝜙 on ℋ such that ‖Ω(𝑥⨂𝑦) − 𝑥⨂𝜙(𝑦)‖𝑞 ≤ 𝑀‖𝑥‖‖𝑦‖ for some 𝑀 

independent on 𝑥, 𝑦 ∈ ℋ. But Ω is also a left centralizer and so ‖Ω(𝑎(𝑥⨂𝑦)) −

𝑎Ω(𝑥⨂𝑦)‖
𝑞
≤ 𝑀‖𝑥‖‖𝑦‖, which yields 

‖𝑥⨂𝜙(𝑎𝑦) − 𝑥⨂𝑎𝜙(𝑦)‖𝑞 = ‖𝑥‖‖𝜙(𝑎𝑦) − 𝑎𝜙(𝑦)‖

≤ 𝑀‖𝑎‖𝐵‖𝑥‖‖𝑦‖ (𝑎 ∈ 𝐵, 𝑥, 𝑦 ∈ ℋ). 
As {𝑎𝑦: ‖𝑎‖𝐵 ≤ 1} is the ball of radius ‖𝑦‖ in ℋ we see that 𝜙 is bounded and so is Ω.  

As for “self-bicentralizers” on 𝑆𝑝, we have the following extension of a result by Kalton. 

Theorem (4.1.16)[119]: Let 𝜙: ℓ0
𝑝
→ ℓ𝑝 be a symmetric centralizer over ℓ∞, with 𝑝 ∈

(0,1). Define a self map on 𝑆0
𝑝
 as follows. Given 𝑓 ∈ 𝑆0

𝑝
 choose a Schmidt expansion 𝑓 =

∑ 𝑠𝑛𝑥𝑛𝑛 ⨂𝑦𝑛. Let (𝑡𝑛) = 𝜙((𝑠𝑛)) and put Φ𝑓 = ∑ 𝑡𝑛𝑥𝑛𝑛 ⨂𝑦𝑛. Then Φ: 𝑆0
𝑝
→ 𝑆𝑝 is a 

bicentralizer. Moreover, every bicentralizer is at finite distance from one obtained in this 

way. 

Proof. Symmetric means that there is a constant 𝑀 such that |𝜙(𝑓 ∘ 𝜎) − 𝜙(𝑓) ∘ 𝜎|𝑝  ≤

𝑀|𝑓|𝑝 for every 𝑓 ∈ ℓ0
𝑝
 whenever 𝜎 is a bijection of ℕ. 

The proof is based on the following four facts: 

(i) The statement holds for 𝑝 > 1 as proved by Kalton in [136]. 

(ii) Corollary (4.1.11) is true replacing right centralizer by bicentralizer everywhere. 

(iii) The commutative version of Corollary (4.1.11) holds: let 𝑝, 𝑞, 𝑠 ∈ (0,∞) satisfy 𝑝−1 =
𝑞−1 + 𝑠−1 and let 𝜔: ℓ0

𝑝
→ ℓ𝑞 be a centralizer over ℓ∞, where ℓ0

𝑞
 stands for the finitely 

supported sequences in ℓ𝑞. Define 𝜔(𝑠) ∶ ℓ0
𝑝
→ ℓ𝑝 taking𝜔(𝑠)(𝑓) = 𝜔(𝑢|𝑓|𝑝/𝑞)𝑓𝑝/𝑠, where 

𝑢 is the signum of 𝑓. Then 𝜔(𝑠) is a centralizer and every centralizer on ℓ0
𝑝
 is at finite 

distance from one obtained in this way. 

(iv) Referring to the preceding statement, 𝜔(𝑠) is symmetric if and only if 𝜔 is. 

Now, let 𝜙 be a symmetric ℓ∞-centralizer on ℓ0
𝑝
, where 𝑝 ≤ 1. By (iii) and (iv), there is a 

symmetric centralizer 𝜔 on ℓ0
2 such that 𝜙 ≈ 𝜔(𝑠), where 𝑝−1 = 2−1 + 𝑠−1 and we may 

assume 𝜙 = 𝜔(𝑠). Applying (i) to 𝜔 we can extend it to a 𝐵-bicentralizer Ω ∶ 𝑆0
2 → 𝑆2 just 

taking 

Ω(𝑓) =∑𝑡𝑛𝑥𝑛⨂𝑦𝑛
𝑛

, 

where  𝑠𝑛𝑥𝑛⨂𝑦𝑛 is the prescribed Schmidt expansion of 𝑓 and 𝜔((𝑠𝑛)) = (𝑡𝑛). Finally, 

applying Corollary (4.1.11) to  Ω with 𝑞 = 2 one realizes that Φ = Ω(𝑠) from where it 

follows that Φ is a bicentralizer. 

The “moreover” part follows from the case 𝑝 = 2 and the “moreover” part of Corollary 

(4.1.11).   

Section (4.2): Twisting Schatten Classes 

Nigel J. Kalton proved in [136] that it is possible to twist the Schatten classes, 

meaning that there exists a 𝐵(𝐻)-module, namely 𝛩𝑝, containing a non-complemented copy 

of 𝑆𝑝–the corresponding Schatten class–such that the quotient is again 𝑆𝑝. Although not 

explicitly stated in this way, [136] contains this fact and much more. For example, the same 

theorem contains the statement that every bicentralizer on the Schatten classes arises as a 

derivation, which is a very deep result. The proof of all these facts requires heavy machinery, 

of course. A natural question about 𝛩𝑝 is to identify its dual. The answer is implicit in the 

works of Kalton by juxtaposition of [136] and some results in [134]. So, one may conclude 
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that 𝛩𝑝
∗ = 𝛩𝑞 for conjugated 𝑝, 𝑞 although, as far as we know, it has never been explicitly 

stated. However, the necessary proofs to conclude it are not easy to follow. To find the 

precise form of the duality, one needs to go inside the proof of [139] and combine it again 

with [136]. We provide a direct computation of the dual so one can skip hard proofs and see 

explicitly how duality is working. A second comment related to this construction is whether 

𝛩𝑝 is an extremal twisting. Precisely, is the natural quotient map 𝛩𝑝 → 𝑆𝑝 strictly singular? 

Recall that an operator is said to be strictly singular if it is never an isomorphism when 

restricted to an infinite dimensional subspace. This is equivalent to saying that the 

corresponding bicentralizer is never trivial when restricted to an infinite dimensional 

subspace. We show that 𝛩𝑝 is extremal in the category of 𝐵(𝐻)-modules. That  is, the 

quotient 𝑚𝑎𝑝 𝛩𝑝 → 𝑆𝑝 is not an isomorphism when restricted to an infinite dimensional 

𝐵(𝐻)-submodule, say 𝑉 , if and only if 

max{𝑟𝑘(𝑇): 𝑇 ∈ 𝑉 } = +∞, 
where, by 𝑟𝑘 (𝑇), we denote the rank of 𝑇. As far as we know, this result is new. Thus, the 

aim is to simplify and clarify a couple of points–duality and singularity–for Kalton twisting 

of Schatten classes. Let us sketch briefly the main definitions necessary. 

Definition (4.2.1)[149]: Let 𝑍 and 𝑌 be quasi-normed modules over the Banach algebra 𝐴, 

and let �̃� be another module containing 𝑌 in the purely algebraic sense. 𝐴 bicentralizer from 

𝑍 to 𝑌 with ambient space �̃� is a homogeneous mapping 𝛺: 𝑍 → �̃� having the following 

properties. 

(a) It is quasi-linear, that is, there is a constant 𝑄 so that if 𝑓, 𝑔 ∈ 𝑍, then 𝛺(𝑓 + 𝑔) −
𝛺(𝑓) − 𝛺(𝑔) ∈ 𝑌 and ∥ 𝛺(𝑓 + 𝑔) − 𝛺(𝑓) − 𝛺(𝑔) ∥𝑌 ≤ 𝑄(∥ 𝑓 ∥𝑍+ ∥ 𝑔 ∥𝑍). 
(b) There is a constant 𝐶 so that if 𝑎, 𝑏 ∈ 𝐴 and 𝑓 ∈ 𝑍. Then 𝛺(𝑎𝑓𝑏) − 𝑎𝛺(𝑓)𝑏 ∈  𝑌 and 

∥ 𝛺(𝑎𝑓𝑏) − 𝑎𝛺(𝑓)𝑏 ∥𝑌 ≤ 𝐶 ∥ 𝑎 ∥𝐴∥ 𝑓 ∥𝑍∥ 𝑏 ∥𝐴. 
We now indicate the connection between bicentralizers and extensions. Let 𝑍 and 𝑌 be 

quasi-Banach modules and 𝛺: 𝑍 → �̃� is a bicentralizer from 𝑍 to  . Then 

𝑌 ⊕Ω 𝑍 = {(𝑔, 𝑓) ∈ �̃� × 𝑍: 𝑔 − 𝛺𝑓 ∈ 𝑌 } 
is a linear subspace of �̃� × 𝑍, and the functional ∥ (𝑔, 𝑓) ∥Ω = ∥ 𝑔 − 𝛺𝑓 ∥𝑌+∥ 𝑓 ∥𝑍 is a 

quasi-norm on it. Moreover, the map 𝑖: 𝑌 → 𝑌 ⊕Ω 𝑍 sending 𝑔 to (𝑔, 0) preserves the quasi-

norm, while the map 𝑝: 𝑌 ⊕Ω  𝑍 → 𝑍 given as 𝑝(𝑔, 𝑓) = 𝑓 is open, so that we have a short 

exact sequence of quasi-normed spaces: 

0 ⟶  𝑌 
   𝑖   
→  𝑌 ⊕Ω  𝑍

   𝑝   
→   𝑍 ⟶  0 

with relatively open maps. This already implies that 𝑌 ⊕Ω 𝑍 is complete, i.e., a quasi-

Banach space. Actually, only quasi-linearity (a) is necessary here. The estimate in (b) 

implies that the multiplication  𝑎(𝑔, 𝑓)𝑏 = (𝑎𝑔𝑏, 𝑎𝑓𝑏) makes 𝑌 ⊕Ω 𝑍 into a quasi-Banach 

bimodule over 𝐴 in such a way that the arrows in the exact sequence become 

homomorphisms. We say that 𝛺 induces a trivial extension if and only if ∥ 𝛺(𝑓) −
ℎ(𝑓) ∥𝑌 ≤ 𝐾 ∥ 𝑓 ∥𝑍 for some morphism ℎ: 𝑍 → �̃� . In this case, we say that 𝛺 is a trivial 

bicentralizer. In particular, if ℎ is a morphism of 𝐴-modules, we say that 𝛺 is a 𝐴-trivial 

bicentralizer. In our setting, both notions agree. The following lemma is known to specialists 

in twisted sums: 

Lemma (4.2.2)[149]: If 𝑎 bicentralizer 𝛺 from 𝑆𝑝 to 𝑆𝑝 with 1 < 𝑝 <∞ (and ambient space 

𝐵(𝐻)) is trivial, then it is 𝐵(𝐻)-trivial. 

Details of the proof can be found in [119]. 
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Kalton twisting of Schatten classes is done by constructing a nontrivial bicentralizer. 

The precise one, called Kalton bicentralizer and denoted by 𝛺𝑝: 𝑆𝑝 → 𝐵(𝐻), is defined as 

follows: given an operator 𝑇 ∈ 𝑆𝑝 with spectral form 𝑇 = 𝛴𝑎𝑖(𝑇)𝑓𝑖 ⊗𝑒𝑖 , 

𝛺𝑝(𝑇):=∑𝑎𝑖(𝑇)  𝑙𝑜𝑔 (
∥ 𝑇 ∥𝑆𝑝
𝑎𝑖(𝑇)

) 𝑓𝑖 ⊗𝑒𝑖 . 

We are ready to prove the singularity of the Kalton bicentralizer: 

Proposition (4.2.3)[149]: Let 𝑉 be a 𝐵(𝐻)-submodule of 𝑆𝑝 for 1 < 𝑝 <∞. 

The following conditions are equivalent: 

(i) The restriction of 𝛺𝑝 to 𝑉 is not trivial. 

(ii) 𝑚𝑎𝑥{𝑟𝑘 (𝑇): 𝑇 ∈ 𝑉 } = +∞. 

Proof. We prove (ii) implies (i): Let 𝑇 ∈ 𝑉 be a norm one operator with spectral 

representation 𝑇 = ∑ 𝑎𝑖(𝑇)𝑓𝑖
𝑁
𝑖=1 ⊗𝑒𝑖. It is possible to find for every 𝑖 an operator 𝑃𝑖 ∈

𝐵(𝐻) that 𝑃𝑖(𝑇) = 𝑓𝑖 ⊗𝑒𝑖. Assume that (i) does not hold and pick, by Lemma (4.2.2), a 

morphism of 𝐵(𝐻)-modules 𝛬: 𝑉 → 𝑆𝑝 such that ∥ 𝛺𝑝 − 𝛬 ∥ ≤ 𝐾. Since 𝛺𝑝(𝑓𝑖 ⊗𝑒𝑖) = 0, 

then ∥ 𝛬(𝑓𝑖 ⊗𝑒𝑖) ∥ ≤ 𝐾 and, since 𝛬 is a morphism of 𝐵(𝐻)-modules, 𝛬(𝑓𝑖 ⊗ 𝑒𝑖) = 𝜑𝑖 ⊗
𝑒𝑖.  
Claim A. 

𝔼‖𝛬(∑𝑟𝑖𝑓𝑖

𝑁

𝑖=1

⊗𝑒𝑖)‖

𝑆𝑝

=  𝔼‖∑𝑟𝑖𝜑𝑖

𝑁

𝑖=1

⊗𝑒𝑖‖

𝑆𝑝

≤ 𝐶𝐾𝑁1/𝑝 

holds for 1 ≤ 𝑝 <∞ where 𝐶 is a universal constant depending at most on 𝑝. 

Once the claim is proved we will find that, on the other hand, 

𝔼‖𝛺𝑝 (∑𝑟𝑖𝑓𝑖

𝑁

𝑖=1

⊗𝑒𝑖)‖

𝑆𝑝

(𝑎)
=
 𝔼‖𝑙𝑜𝑔𝑁1/𝑝∑𝑟𝑖𝑓𝑖 ⊗𝑒𝑖

𝑁

𝑖=1

‖

𝑆𝑝

 

(𝑏)
=
 𝑁1/𝑝 𝑙𝑜𝑔𝑁1/𝑝 

making ∥ 𝛺𝑝 − 𝛬 ∥ < +∞ impossible for all 𝑇 ∈ 𝑉 if (ii) holds. To check the last equalities 

(a) and (b) displayed above, notice that for any 𝑡 ∈ [0, 1] the operator 𝑇𝑡 = ∑ 𝑟𝑖(𝑡)𝑓𝑖 ⊗𝑒𝑖
𝑁
𝑖=1  

is a diagonal operator. Since 𝑟𝑖(𝑡) = ±1, it follows that {±1𝑓𝑖} is still an orthonormal basis. 

Thus, 𝑎𝑖(𝑇𝑡) = 1, and consequently, ∥ 𝑇𝑡 ∥𝑝 =  𝑁1/𝑝. And now, one just needs to apply the 

definition of 𝛺𝑝 to every 𝑇𝑡 to obtain 

𝛺𝑝(𝑇𝑡) =∑𝑎𝑖(𝑇𝑡)  𝑙𝑜𝑔 (
∥ 𝑇𝑡 ∥

𝑎𝑖(𝑇𝑡)
) 𝑟𝑖(𝑡)𝑓𝑖 ⊗𝑒𝑖 

=∑𝑙𝑜𝑔𝑁1/𝑝𝑟𝑖(𝑡)𝑓𝑖 ⊗𝑒𝑖 . 

Finally, one just needs to integrate to obtain equality (a). Equality (b) is immediate by the 

definition of norm in 𝑆𝑝. We are ready to prove Claim 𝐴. 

Proof. Consider 𝜑𝑖 = ∑ 𝑎𝑖𝑗𝑒𝑗𝑗  , and thus  ∑ 𝜑𝑖 ⊗𝑒𝑖
𝑁
𝑖=1 = ∑ 𝑎𝑖𝑗𝑒𝑗 ⊗𝑒𝑖𝑖𝑗 . We know that 

(∑𝑎𝑖𝑗
2

𝑗

)

1/2

= ‖∑𝑎𝑖𝑗𝑒𝑗 ⊗𝑒𝑖
𝑗

‖ = ‖𝛬(𝑓𝑖 ⊗𝑒𝑖)‖ ≤ 𝐾. 

Then, to prove Claim 𝐴, it is enough to show that 



124 

𝔼‖∑𝑎𝑖𝑗𝑟𝑖𝑒𝑗 ⊗𝑒𝑖
𝑖𝑗

‖

𝑆𝑝

≤ 𝐶(∑‖∑𝑎𝑖𝑗𝑒𝑗 ⊗𝑒𝑖
𝑗

‖

𝑆𝑝

𝑝
𝑁

𝑖=1

)

1/𝑝

 

for 1 ≤ 𝑝 <∞ and some universal constant 𝐶 depending at most on 𝑝.  

For 1 ≤ 𝑝 ≤ 2, the result follows by noting that the corresponding 𝑆𝑝 has type 𝑝, so we just 

have to deal with the case 2 ≤ 𝑝 <∞. We need a tool slightly better than the type, namely, 

the noncommutative version of the Khintchine inequality for Schatten classes. More 

precisely, in [153], it was proved that, for 2 ≤ 𝑝 <∞, the following holds: 

(∗∗)                 𝔼‖∑ 𝑟𝑖𝐴𝑖
𝑁
𝑖=1 ‖

𝑆𝑝
≈ ‖(∑ 𝐴𝑖

∗𝐴𝑖
𝑁
𝑖=1 )

1/2
‖
𝑆𝑝
+ ‖(∑ 𝐴𝑖𝐴𝑖

∗𝑁
𝑛=1 )1/2‖

𝑆𝑝
. 

In our case, set 𝐴𝑖: = ∑ 𝑎𝑖𝑗𝑒𝑗 ⊗𝑒𝑖𝑗 . It is clear, since 𝐴𝑖 is a row matrix, that 𝐴𝑖
∗𝐴𝑖 = 𝐴𝑖𝐴𝑖

∗ =

∑ 𝑎𝑖𝑗
2 𝑒𝑖 ⊗𝑒𝑖𝑗  and 

(∑𝑎𝑖𝑗
2

𝑗

)

1/2

= ∥ 𝐴𝑖 ∥𝑆𝑝≤ 𝐾. 

Then the right side of (∗∗) turns into 

2‖(∑𝐴𝑖
∗𝐴𝑖

𝑁

𝑖=1

)

1/2

‖

𝑆𝑝

= 2‖(∑(∑𝑎𝑖𝑗
2

𝑗

)𝑒𝑖 ⊗𝑒𝑖

𝑁

𝑖=1

)

1/2

‖

𝑆𝑝

 

= 2‖∑(∑𝑎𝑖𝑗
2

𝑗

)

1/2

𝑒𝑖 ⊗𝑒𝑖

𝑁

𝑖=1

‖

𝑆𝑝

 

= 2‖∑ ∥ 𝐴𝑖 ∥ 𝑒𝑖 ⊗𝑒𝑖

𝑁

𝑖=1

‖

𝑆𝑝

 

= 2(∑ ∥ 𝐴𝑖 ∥
𝑝

𝑁

𝑖=1

)

1/𝑝

≤ 2𝐾𝑁1/𝑝, 

and Claim 𝐴 is proved. To prove (i) implies (ii); assume (ii) does not hold and pick 𝑇 ∈ 𝑉 

of finite rank. We claim now that the least constant 𝑐(𝑇) making 

∥ 𝛺𝑝(𝑇) ∥𝑝 ≤ 𝑐(𝑇) ∥ 𝑇 ∥𝑝 

is exactly 𝑐(𝑇) = 𝑙𝑜𝑔(𝑟𝑘 (𝑇)1/𝑝), and thus, since (ii) does not hold, 

𝑠𝑢𝑝𝑇∈𝑉𝑐(𝑇) <∞. 
This last result means that 𝛺𝑝|𝑉 is trivial, and the proof is done. So we just need to prove 

our claim.  

This claim can be found in [150] under a more general form. Let us reproduce the 

argument for the sake of completeness. First, observe that 𝛺𝑝 is a homogeneous map in the 

sense 

𝛺𝑝(𝜆𝑇) = 𝜆𝛺𝑝(𝑇) 

with 𝜆 ∈ 𝕂 and 𝑇 ∈ 𝑆𝑝. To prove it, notice that, by writing 𝑇 ∈ 𝑆𝑝 in spectral form and using 

a similar argument as in the previous proof for the orthonormal basis, one has: 𝑎𝑖(𝜆𝑇) =
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|𝜆|𝑎𝑖(𝑇). Now by putting the definition of 𝛺𝑝(𝜆𝑇) and comparing it with 𝜆𝛺𝑝(𝑇), it follows 

that 𝛺𝑝 is homogeneous. Thus, since the expression ∥ 𝛺𝑝(𝑇) ∥𝑝 ≤ 𝑐(𝑇) ∥ 𝑇 ∥𝑝 is 

homogeneous, one may assume that 𝑇 = 𝑎𝑖(𝑇)𝑓𝑖 ⊗𝑒𝑖  is norm one, i.e.,  ∑ 𝑎𝑖(𝑇)
𝑝𝑁

𝑖=1 = 1. 

It only remains to prove the following. 

Claim B. 

sup {(∑|𝑎𝑖|
𝑝 (−𝑙𝑜𝑔 |𝑎𝑖|)

𝑝

𝑁

𝑖=1

)

1/𝑝

:∑ |𝑎𝑖|
𝑝

𝑁

𝑖=1

=  1} =  𝑙𝑜𝑔𝑁1/𝑝, 

where 1 < 𝑝 <∞. 

Proof. To compute the supremum, we use Lagrange’s multiplier theorem. Thus, we write 

𝛬(𝑎𝑖 , 𝜆) =∑|𝑎𝑖|
𝑝 (−𝑙𝑜𝑔 |𝑎𝑖|)

𝑝

𝑁

𝑖=1

 +  𝜆 (1 −∑|𝑎𝑖|
𝑝

𝑁

𝑖=1

) . 

There is no loss of generality to assume that 0 < 𝑎𝑖 < 1 for all 𝑖. From 𝑑𝛬/𝑑𝑎𝑖 =  0, we 

get (−𝑙𝑜𝑔 𝑎𝑖)
𝑝 − (−𝑙𝑜𝑔 𝑎𝑖)

𝑝−1 = 𝜆. It is routine to check that the function 𝜓(𝑎):=
(−𝑙𝑜𝑔 𝑎)𝑝 − (−𝑙𝑜𝑔 𝑎)𝑝−1 is injective, and thus 𝑎𝑖 = 𝑎𝑖 ’  for 𝑖, 𝑖’ ∈ {1, . . . , 𝑁}. 

Consequently, it must be 𝑎𝑖 = 𝑁−1/𝑝 for 𝑖 = 1, . . . , 𝑁 and Claim 𝐵 is proved.  

This result is, in a sense, optimal. It was proven by Kalton and Peck that the map 𝛺𝑝 from 

ℓ𝑝 to ℓ𝑝 (with ambient space ℓ∞) is singular for 1 < 𝑝 <∞, which means that its restriction 

to any infinite dimensional subspace is not trivial. 

We make the analogue proof of [139]. The crucial step in the proof is the following 

trivial inequality.  

Lemma (4.2.4)[149]: The following expression holds: 

|𝑡𝑠 (𝑙𝑜𝑔
|𝑡|

|𝑠|𝑝−1
)| ≤

𝑝 −  1

𝑒
(|𝑡|𝑞 + |𝑠|𝑝), 

for 1 = 1/𝑝 + 1/𝑞 and 1 < 𝑝, 𝑞 <∞. 

This lemma corresponds to the case 𝑛 = 1 of [139]. 

Theorem (4.2.5)[149]: There exists an isomorphism 𝜑 making the following diagram 

commute: 

0 ⟶ 𝑆𝑞  
    𝑗   
→     𝛩𝑞   

    𝑞   
→   𝑆𝑞  ⟶   0 ≡  

1

1 − 𝑝
𝛺𝑞 ,

           ↓ 𝑡𝑟         ↓ 𝜑              ↓ 𝑡𝑟                                   

0 ⟶ (𝑆𝑝)
∗    𝑗

∗  
→  (Θ𝑝)

∗    𝑞
∗   

→   (𝑆𝑝)
∗
⟶ 0 ≡ (Ω𝑝)

∗
,

 

where 𝑡𝑟 denotes trace duality and 1 = 1/𝑝 + 1/𝑞 for 1 < 𝑝, 𝑞 <∞. 

Proof. Let us denote by 𝔉 the space of finite rank operators acting between a Hilbert space 

and by 𝔉𝑟 when endowed with the corresponding 𝑆𝑟 norm. Given 𝑇 ∈ 𝔉 with spectral 

decomposition 𝑇 = ∑𝑎𝑖(𝑇)𝑒𝑖 ⊗𝑓𝑖, let us write by simplicity: 

𝛺𝑝(𝑇) =∑𝑎𝑖(𝑇)  𝑙𝑜𝑔 (
∥ 𝑇 ∥𝑆𝑝
𝑎𝑖(𝑇)

) 𝑒𝑖 ⊗𝑓𝑖 , 

𝛺𝑞(𝑇) =
1

1 − 𝑝
∑𝑎𝑖(𝑇) 𝑙𝑜𝑔 (

∥ 𝑇 ∥𝑆𝑝
𝑎𝑖(𝑇)

) 𝑒𝑖 ⊗𝑓𝑖 . 

We define the map 𝜑: 𝔉𝑞 ⊕Ω𝑞(𝑇)  𝔉𝑞 → 𝛩𝑝
∗ by the formula 

(𝜑(𝑆, 𝑇)) (𝑉,𝑊) =  𝑡𝑟 (𝑆𝑊) + 𝑡𝑟 (𝑇𝑉 ). 
Let us rewrite the expression above as: 
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(∗)           𝑡𝑟(𝑆𝑊) + 𝑡𝑟 (𝑇𝑉 ) = 𝑡𝑟 (𝑇(𝑉 − 𝛺𝑝(𝑊))) + 𝑡𝑟 (𝑇𝛺𝑝(𝑊)) 

+𝑡𝑟 (𝛺𝑞(𝑇)𝑊) + 𝑡𝑟 ((𝑆 − 𝛺𝑞(𝑇))𝑊). 

Setting 𝑇 = ∑𝑎𝑖(𝑇)𝑒𝑖 ⊗𝑓𝑖  and 𝑊 = ∑𝑎𝑗(𝑊)𝑢𝑗 ⊗𝑣𝑗  , we easily get 

𝑇𝛺𝑝(𝑊) =∑𝑎𝑗(𝑊)𝑎𝑖(𝑇)  𝑙𝑜𝑔 (
∥ 𝑊 ∥𝑆𝑝
𝑎𝑗(𝑊)

) (𝑒𝑖|𝑣𝑗)𝑢𝑗 ⊗𝑓𝑖 ,  

𝛺𝑞(𝑇)𝑊 =
1

1 − 𝑝
∑𝑎𝑗(𝑊)𝑎𝑖(𝑇)  𝑙𝑜𝑔 (

∥ 𝑇 ∥𝑆𝑝
𝑎𝑖(𝑇)

) (𝑒𝑖|𝑣𝑗)𝑢𝑗 ⊗𝑓𝑖 , 

𝑡𝑟 (𝑇𝛺𝑝(𝑊)) =∑𝑎𝑗(𝑊)𝑎𝑖(𝑇)  𝑙𝑜𝑔 (
∥ 𝑊 ∥𝑆𝑝
𝑎𝑗(𝑊)

) (𝑒𝑖|𝑣𝑗)(𝑓𝑖|𝑢𝑗), 

𝑡𝑟(𝛺𝑞(𝑇)𝑊) =
1

1 − 𝑝
∑𝑎𝑗(𝑊)𝑎𝑖(𝑇)  𝑙𝑜𝑔 (

∥ 𝑇 ∥𝑆𝑝
𝑎𝑖(𝑇)

) (𝑒𝑖|𝑣𝑗)(𝑓𝑖|𝑢𝑗). 

We need to prove that expression (∗) is bounded. To this end, we write 

|𝑡𝑟 (𝑆𝑊) + 𝑡𝑟 (𝑇𝑉 )| ≤ |𝑡𝑟 (𝑇(𝑉 − 𝛺𝑝(𝑊)))| + |𝑡𝑟 (𝑇𝛺𝑝(𝑊)) 

+𝑡𝑟 (𝛺𝑞(𝑇)𝑊)| + |𝑡𝑟 ((𝑆 − 𝛺𝑞(𝑇))𝑊)|. 

The quantities |𝑡𝑟(𝑇(𝑉 − 𝛺𝑝(𝑊)))| and |𝑡𝑟((𝑆 − 𝛺𝑞(𝑇))𝑊)| can be easily bounded. 

Assume for a moment that 

                     |𝑡𝑟(𝑇𝛺𝑝(𝑊)) + 𝑡𝑟 (𝛺𝑞(𝑇)𝑊)| ≤ ∥ 𝑊 ∥∥ 𝑇 ∥.                   (29) 

Then observe 

|𝑡𝑟(𝑆𝑊) + 𝑡𝑟 (𝑇𝑉 )| ≤ |𝑡𝑟(𝑇(𝑉 − 𝛺𝑝(𝑊)))| + |𝑡𝑟 (𝑇𝛺𝑝(𝑊)) 

+𝑡𝑟 (𝛺𝑞(𝑇)𝑊)| + |𝑡𝑟((𝑆 − 𝛺𝑞(𝑇))𝑊)| 

≤ ∥ (𝑉 − 𝛺𝑝(𝑊) ∥𝑆𝑝∥ 𝑇 ∥𝑆𝑝+∥ 𝑊 ∥𝑆𝑝∥ 𝑇 ∥𝑆𝑝  

+ ∥ 𝑊 ∥S𝑞∥ (𝑆 − 𝛺𝑞(𝑇) ∥S𝑝 

≤ ∥ (𝑆, 𝑇) ∥Θ𝑞∥ (𝑉,𝑊) ∥Θ𝑝 . 

Therefore, the expression (∗) defines a bounded operator. So all the rest is to convince us 

that the bound (29) holds for arbitrary 𝑇,𝑊 ∈ 𝔉. To this end, we may bound the left side of 

expression (29) by: 

(∗∗) = |∑𝑎𝑗(𝑊)𝑎𝑖(𝑇)(𝑒𝑖|𝑣𝑗)(𝑓𝑖|𝑢𝑗)  𝑙𝑜𝑔 (
∥ 𝑊 ∥𝑆𝑝
𝑎𝑗(𝑊)

)

+
1

1 − 𝑝
∑𝑎𝑗(𝑊)𝑎𝑖(𝑇) (𝑒𝑖|𝑣𝑗)(𝑓𝑖|𝑢𝑗) 𝑙𝑜𝑔 (

∥ 𝑇 ∥𝑆𝑝
𝑎𝑖(𝑇)

)| 

               = |∑𝑎𝑗(𝑊)𝑎𝑖(𝑇) (𝑒𝑖|𝑣𝑗)(𝑓𝑖|𝑢𝑗) 𝑙𝑜𝑔 (
∥𝑊∥𝑆𝑝

𝑎𝑗(𝑊)
(
𝑎𝑖(𝑇)

∥𝑇∥𝑆𝑝
)
1 𝑝−1⁄

)| 

=
1

𝑝 − 1
|∑𝑎𝑗(𝑊)𝑎𝑖(𝑇) (𝑒𝑖|𝑣𝑗)(𝑓𝑖|𝑢𝑗)  × 𝑙𝑜𝑔 ((

∥ 𝑊 ∥𝑆𝑝
𝑎𝑗(𝑊)

)

𝑝−1
𝑎𝑖(𝑇)

∥ 𝑇 ∥𝑆𝑝
)| 

≤
1

𝑝 − 1
∑|𝑎𝑗(𝑊)𝑎𝑖(𝑇)(𝑒𝑖|𝑣𝑗)(𝑓𝑖|𝑢𝑗) × 𝑙𝑜𝑔 ((

∥ 𝑊 ∥𝑆𝑝
𝑎𝑗(𝑊)

)

𝑝−1
𝑎𝑖(𝑇)

∥ 𝑇 ∥𝑆𝑝
)|

𝑖,𝑗

 

≤
1

𝑝 − 1
(∑|𝑐𝑖,𝑗  ||(𝑒𝑖|𝑣𝑗)|

2

𝑖,𝑗

)

1/2

(∑|𝑐𝑖,𝑗  ||(𝑓𝑖|𝑢𝑗)|
2

𝑖,𝑗

)

1/2

, 

where 
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𝑐𝑖,𝑗 ∶=  𝑎𝑗(𝑊)𝑎𝑖(𝑇) 𝑙𝑜𝑔 ((
∥ 𝑊 ∥𝑆𝑝
𝑎𝑗(𝑊)

)

𝑝−1
𝑎𝑖(𝑇)

∥ 𝑇 ∥𝑆𝑝
) . 

Now recall that, by Lemma (4.2.4), 

𝑐𝑖,𝑗 ≤ 
𝑝 −  1

𝑒
∥ 𝑊 ∥∥ 𝑇 ∥ (

𝑎𝑖(𝑇)
𝑞

∥ 𝑇 ∥𝑞
+
𝑎𝑗(𝑊)𝑝

∥ 𝑊 ∥𝑝
) . 

Thus, we find that the last expression (∗∗) is bounded by 

∥ 𝑊 ∥∥ 𝑇 ∥
𝑝 − 1
𝑒

𝑝 − 1
(∑(

𝑎𝑖(𝑇)
𝑞

∥ 𝑇 ∥𝑞
+
𝑎𝑗(𝑊)𝑝

∥ 𝑊 ∥𝑝
) |(𝑒𝑖|𝑣𝑗)|

2

𝑖,𝑗

)

1/2

 

(∑(
𝑎𝑖(𝑇)

𝑞

∥ 𝑇 ∥𝑞
+
𝑎𝑗(𝑊)𝑝

∥ 𝑊 ∥𝑝
) |(𝑓𝑖|𝑢𝑗)|

2

𝑖,𝑗

)

1/2

. 

To finish, let us observe the following upper bounds for the last expression: 

∥ 𝑊 ∥∥ 𝑇 ∥

𝑒
(∑

𝑎𝑖(𝑇)
𝑞

∥ 𝑇 ∥𝑞
|(𝑒𝑖|𝑣𝑗)|

2

𝑖,𝑗

 +∑
𝑎𝑗(𝑊)𝑝

∥ 𝑊 ∥𝑝
|(𝑒𝑖|𝑣𝑗)|

2

𝑖,𝑗

)

1/2

 

(∑
𝑎𝑖(𝑇)

𝑞

∥ 𝑇 ∥𝑞
|(𝑓𝑖|𝑢𝑗)|

2

𝑖,𝑗

 +∑
𝑎𝑗(𝑊)𝑝

∥ 𝑊 ∥𝑝
|(𝑓𝑖|𝑢𝑗)|

2

𝑖,𝑗

)

1/2

 

≤
∥ 𝑊 ∥∥ 𝑇 ∥

𝑒
(∑

𝑎𝑖(𝑇)
𝑞

∥ 𝑇 ∥𝑞
∑|(𝑒𝑖|𝑣𝑗)|

2

𝑗𝑖

 +∑
𝑎𝑗(𝑊)𝑝

∥ 𝑊 ∥𝑝
∑|(𝑒𝑖|𝑣𝑗)|

2

𝑖𝑗

)

1/2

 

(∑
𝑎𝑖(𝑇)

𝑞

∥ 𝑇 ∥𝑞
∑|(𝑓𝑖|𝑢𝑗)|

2

𝑗𝑖

 +∑
𝑎𝑗(𝑊)𝑝

∥ 𝑊 ∥𝑝
∑|(𝑓𝑖|𝑢𝑗)|

2

𝑖𝑗

)

1/2

 

≤
∥ 𝑊 ∥∥ 𝑇 ∥

𝑒
(∑

𝑎𝑖(𝑇)
𝑞

∥ 𝑇 ∥𝑞
𝑖

 +∑
𝑎𝑗(𝑊)𝑝

∥ 𝑊 ∥𝑝
𝑗

) =
2

𝑒
∥ 𝑊 ∥∥ 𝑇 ∥. 

This last result means that 𝜑 is bounded and can be extended to a bounded map. Clearly, 𝜑 

makes the diagram of Theorem (4.2.5) commute so, by the 3-lemma, [125], it is an 

isomorphism.  

Corollary (4.2.6)[149]: 𝛩𝑝
∗ is isomorphic to 𝛩𝑞 for 1/𝑝 + 1/𝑞 = 1. 

Section (4.3): Non-Commutative 𝑳𝒑 Spaces 

We make the first steps into the study of extensions of noncommutative 𝐿𝑝-spaces. 

An extension (of 𝑍 by 𝑌) is a short exact sequence of Banach spaces and (linear, continuous) 

operators 

                                  0 ⟶ 𝑌 ⟶ 𝑋 ⟶ 𝑍 ⟶ 0.                                                (30) 

This essentially means that 𝑋 contains 𝑌 as a closed subspace so that the 

corresponding quotient is (isomorphic to) 𝑍. 

We believe that the convenient setting in studying extensions of 𝐿𝑝-spaces is not that 

of Banach spaces, but that of Banach modules over the underlying von Neumann algebra 

𝑀. Accordingly, one should require the arrows in (30) to be homomorphisms. 
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It is remarkable and perhaps a little ironic that, while the study of the module structure 

of general 𝐿𝑝-spaces goes back to its inception, the only where one can find some relevant 

information about extensions, namely [151] and [136], deliberately neglected this point.  

We deal with the tracial (semifinite) case. It is shown that whenever one has a 

reasonably “symmetric” self-extension of the commutative 𝐿𝑝 (the usual Lebesgue space of 

𝑝-integrable functions on the line) one can get a similar self-extension 

0 ⟶ 𝐿𝑝(𝑀, 𝜏 ) ⟶ 𝑋 ⟶ 𝐿𝑝(𝑀, 𝜏 ) ⟶ 0 
of bimodules over any semifinite von Neumann algebra 𝑀, equipped with a trace 𝜏.  

Our approach combines Kalton’s description of extensions by centralizers (these are certain 

maps which are, in general, neither linear nor bounded) with a general principle, due to 

Rochberg and Weiss that we can express by saying that whenever one finds a given Banach 

space 𝑌 as an intermediate space in a (complex) interpolation scale, one automatically gets 

a self-extension 0 → 𝑌 → 𝑋 → 𝑌 → 0. 

Thus for instance, considering 𝐿𝑝(𝑀, 𝜏 ) as an interpolation space between 𝑀 and its predual 

𝑀∗ one arrives at a certain self-extension of 𝐿𝑝(𝑀, 𝜏 ) that we regard as a kind of 

noncommutative Kalton-Peck space. Some interesting properties of these spaces are 

presented. 

We consider 𝐿𝑝-spaces over general (but 𝜎-finite) algebras, including those of type 

III. In this case the interpolation trick still works but produces two (rather than one) 

extensions of one sided modules, one of left-modules and the other of right-modules. 

Whether or not one can find (nontrivial) self-extensions of bimodules in all cases is left 

open. 

For 𝐴 be a Banach algebra. 𝐴 quasi-Banach (left) moduFlore over 𝐴 is a quasi-Banach 

space 𝑋 together with a jointly continuous outer multiplication 𝐴 × 𝑋 → 𝑋 satisfying the 

traditional algebraic requirements. 

An extension of 𝑍 by 𝑌 is a short exact sequence of quasi-Banach modules and 

homomorphisms 

                                       0 ⟶ 𝑌
    𝑖   
→  𝑋

   𝜋   
→  𝑍 ⟶ 0.                                             (31) 

The open mapping theorem guarantees that 𝚤 embeds 𝑌 as a closed submodule of 𝑋 in such 

a way that the corresponding quotient is isomorphic to 𝑍. Two extensions 0 → 𝑌 → 𝑋𝑖 →
𝑍 → 0 (𝑖 = 1, 2) are said to be equivalent if there exists a homomorphism u making 

commutative the diagram 

0 ⟶ 𝑌 ⟶ 𝑋1 ⟶ 𝑍 ⟶ 0  
∥         ↓ 𝑢    ∥    

0 ⟶ 𝑌 ⟶ 𝑋2 ⟶ 𝑍 ⟶ 0 
By the five-lemma [130], and the open mapping theorem, 𝑢 must be an isomorphism. We 

say that (31) splits if it is equivalent to the trivial sequence 0 → 𝑌 → 𝑌⊕ 𝑍 → 𝑍 → 0. This 

just means that 𝑌 is a complemented submodule of 𝑋, that is, there is a homomorphism 𝑋 →
𝑌 which is a left inverse for the inclusion 𝑌 → 𝑋; equivalently, there is a homomorphism 

𝑍 → 𝑋 which is a right inverse for the quotient 𝑋 → 𝑍. 

Operators and homomorphisms are assumed to be continuous. Otherwise we speak of linear 

maps and “morphisms”. 

Taking 𝐴 = ℂ one recovers extensions in the Banach space setting. 

Every extension of (quasi-) Banach modules is also an extension of (quasi-) Banach spaces. 

Clearly, if an extension of modules is trivial, then so is the underlying extension of (quasi-) 

Banach spaces. Simple examples show that the converse is not true in general. 𝐴 Banach 
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algebra 𝐴 is amenable if every extension of Banach modules (31) in which 𝑌 is a dual 

module splits as long as it splits an extension of Banach spaces. This is not the original 

definition but an equivalent condition. The original definition reads as follows: 𝐴 is 

amenable if every continuous derivation from 𝐴 into a dual bimodule is inner. Here 

“derivation” means “operator satisfying Leibniz’s rule” and has nothing to do with the 

derivations appearing. 

Every Banach space is a quasi-Banach space and it is possible that the middle space 𝑋 in 

(31) is only a quasi-Banach space even if both 𝑍 and 𝑌 are Banach spaces (see [152]). This 

will never occur, among other things because 𝑋 will invariably be a quotient of certain 

Banach space of holomorphic functions. Anyway, Kalton proved in [133] that if 𝑍 has 

nontrivial type 𝑝 > 1 and 𝑌 is a Banach space, then 𝑋 must be locally convex and so 

isomorphic to a Banach space. In particular, any quasi-norm giving the topology of 𝑋 must 

be equivalent to a norm, and hence to the convex envelope norm. If 𝑍 is super-reflexive the 

proof is quite simple; see [121]. 

We introduce the main tool in the study of extensions. 

Definition (4.3.1)[154]: Let 𝑍 and 𝑌 be quasi-normed modules over the Banach algebra 𝐴 

and let �̃� be another module containing 𝑌 in the purely algebraic sense. 𝐴 centralizer from 

𝑍 to 𝑌 with ambient space �̃� is a ℂ-homogeneous mapping  Ω: 𝑍 → �̃� having the following 

properties. 

(a) It is quasi-linear, that is, there is a constant 𝑄 so that if 𝑓, 𝑔 ∈ 𝑍, then Ω(𝑓 +  𝑔) − (𝑓) −
(𝑔) ∈ 𝑌 and ‖Ω(𝑓 + 𝑔) − Ω(𝑓) − Ω(𝑔)‖𝑌 ≤ 𝑄(‖𝑓‖𝑧 + ‖𝑔‖𝑧). 
(b) There is a constant 𝐶 so that if 𝑎 ∈ 𝐴 and 𝑓 ∈ 𝑍, then Ω(𝑎𝑓) − 𝑎Ω(𝑓) ∈ 𝑌 and 

‖Ω(𝑎𝑓) − 𝑎Ω(𝑓)‖𝑌 ≤ 𝐶‖𝑎‖𝐴‖𝑓‖𝑧. 

We denote by 𝑄[Ω] the least constant for which (𝑎) holds and by 𝐶[Ω] the least constant 

for which (𝑏) holds. 

We now indicate the connection between centralizers and extensions. Let 𝑍 and 𝑌 be quasi-

Banach modules and Ω: 𝑍 → �̃� is a centralizer from 𝑍 to 𝑌. Then 

𝑌 ⊕Ω 𝑍 = {(𝑔, 𝑓) ∈ �̃� × 𝑍: 𝑔 − Ω𝑓 ∈ 𝑌} 
is a linear subspace of �̃� × 𝑍 and ‖(𝑔, 𝑓)‖Ω = ‖𝑔 − Ω𝑓‖𝑌 + ‖𝑓‖𝑧 is a quasi-norm on it 

(here is the only point where the assumption about the homogeneity of Ω is used). Moreover, 

the map 𝚤: 𝑌 → 𝑌 ⊕Ω 𝑍 sending 𝑔 to (𝑔, 0) preserves the quasi-norm, while the map 

𝜋: 𝑌 ⊕Ω 𝑍 → 𝑍 given as 𝜋(𝑔, 𝑓) = 𝑓 is open, so that we have a short exact sequence of 

quasi-normed spaces 

0 ⟶ 𝑌
 𝜄 
→ 𝑌⊕Ω 𝑍

   𝜋   
→  𝑍 ⟶ 0                                     (32) 

with relatively open maps. This already implies that 𝑌 ⊕Ω 𝑍 is complete, i.e., a quasi-

Banach space. Actually only the quasi-linearity of Ω is necessary here. The estimate in (𝑏) 
implies that the multiplication 𝑎(𝑔, 𝑓) = (𝑎𝑔, 𝑎𝑓) makes 𝑌 ⊕Ω 𝑍 into a quasi-Banach 

module over 𝐴 in such a way that the arrows in (32) become homomorphisms. Indeed, 

‖𝑎(𝑔, 𝑓)‖Ω = ‖𝑎𝑔 − Ω(𝑎𝑓)‖𝑌 + ‖𝑎𝑓‖𝑍 = ‖𝑎𝑔 − 𝑎Ω𝑓 + 𝑎Ω𝑓 − Ω(𝑎𝑓)‖𝑌 + ‖𝑎𝑓‖𝑍
≤ 𝑀‖𝑎‖𝐴‖(𝑔, 𝑓)‖Ω. 

We will always refer to Diagram 3 as the extension (of 𝑍 by 𝑌) induced by Ω. 

It is easily seen that two centralizers Ω and Φ (acting between the same sets, say 𝑍 and �̃�) 

induce equivalent extensions if and only if there is a morphism ℎ: 𝑍 → �̃� such that 

‖Ω(𝑓) − Φ(𝑓) − ℎ(𝑓)‖𝑌 ≤ 𝐾‖𝑓‖𝑍. If the preceding inequality holds for ℎ = 0 we say that 

Ω and Φ are equivalent and we write Ω ≈ Φ. In particular Ω induces a trivial extension if 
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and only if  ‖Ω(𝑓) − ℎ(𝑓)‖𝑌 ≤ 𝐾‖𝑓‖𝑍 for some morphism ℎ: 𝑍 → �̃� . In this case we say 

that 𝛺 is a trivial centralizer. 

The corresponding definitions for right modules and  bimodules are obvious. Thus, for 

instance, we define bicentralizers from 𝑍 to 𝑌 (which are now assumed to be Banach 

bimodules over the Banach algebra 𝐴) by requiring �̃� to be also a bimodule and replacing 

the estimate in Definition (4.3.1)(𝑏) by 

‖Ω(𝑎𝑧𝑏) − 𝑎Ω(𝑧)𝑏‖𝑌 ≤ 𝐶‖𝑎‖𝐴‖𝑓‖𝑍‖𝑏‖𝐴              (𝑎, 𝑏 ∈ 𝐴, 𝑧 ∈ 𝑍). 
We insist that we are interested in the case of Banach spaces here, so one can assume 𝑍 and 

𝑌 to be Banach spaces. However, the Ribe function ‖∙‖Ω will be only a quasi-norm on 

𝑌 ⊕Ω 𝑍, even if it is equivalent to a true norm. See the paragraph closing and [125]. 

The push-out construction appears naturally when one considers two operators 

defined on the same space. Given operators 𝛼: 𝑌 → 𝐴 and 𝛽: 𝑌 → 𝐵, the associated push-

out diagram is 

                                   

𝑌
    𝛼   
→  𝐴

𝛽 ↓        ↓ 𝛽’

𝐵
    𝛼’   
→   𝑃𝑂

                                                                (33) 

Here, the push-out space 𝑃𝑂 = 𝑃𝑂(𝛼, 𝛽) is the quotient of the direct sum 𝐴⊕𝐵 (with the 

sum norm, say) by 𝑆, the closure of the subspace {(𝛼𝑦,−𝛽𝑦): 𝑦 ∈ 𝑌}. The map 𝛼’ is given 

by the inclusion of 𝐵 into 𝐴⊕𝐵 followed by the natural quotient map 𝐴⊕𝐵 → (𝐴⊕
𝐵)/𝑆, so that 𝛼’(𝑏) = (0, 𝑏) + 𝑆 and, analogously, 𝛽’(𝑎) = (𝑎, 0) + 𝑆. 

The diagram (iv) is commutative: 𝛽’𝛼 = 𝛼 ’𝛽. Moreover, it is “minimal” in the sense of 

having the following universal property: if 𝛽’’ ∶ 𝐴 → 𝐶 and 𝛼’’: 𝐵 → 𝐶 are operators such 

that 𝛽’’𝛼 = 𝛼’’𝛽, then there is a unique operator 𝛾: 𝑃𝑂 → 𝐶 such that 𝛼’’ = 𝛾𝛼’ and 𝛽’’ =
𝛾𝛽’. Clearly, 𝛾((𝑎, 𝑏) + 𝑆) = 𝛽’’(𝑎) + 𝛼’’(𝑏) and one has ‖𝛾‖ ≤ max {‖𝛼’’‖, ‖𝛽’’‖}.  
Suppose we are given an extension (31) and an operator 𝑡: 𝑌 → 𝐵. Consider the push-out of 

the couple (𝚤, 𝑡) and draw the corresponding arrows: 

0 ⟶ 𝑌
    𝜄    
→  𝑋 ⟶ 𝑍 ⟶ 0

𝑡 ↓          ↓ 𝑡’          

𝐵
    𝜄’   
→  𝑃𝑂         

 

Clearly, 𝚤’ is an isomorphic embedding. Now, the operator 𝜋: 𝑋 → 𝑍 and the null operator 

𝑛: 𝐵 → 𝑍 satisfy the identity 𝜋𝚤 = 𝑛𝑡 = 0, and the universal property of push-outs gives a 

unique operator �̅� ∶ 𝑃𝑂 → 𝑍 making the following diagram commutative: 

                         

0 ⟶  𝑌 
    𝑖    
→  𝑋

    𝜋   
→  𝑍 ⟶ 0

𝑡 ↓          ↓            ∥  

0 ⟶ 𝐵
    𝜄    
→  𝑃𝑂

   �̅�   
→  𝑍 ⟶ 0

                                                      (34) 

Or else, just take �̅�((𝑥, 𝑏) + 𝑆) = 𝜋(𝑥), check commutativity, and discard everything but 

the definition of 𝑃𝑂. Elementary considerations show that the lower sequence in the 

preceding diagram is exact. That sequence will we referred to as the push-out sequence. The 

universal property of push-out diagrams yields: 

Lemma (4.3.2)[154]: With the above notations, the push-out sequence splits if and only if 

t extends to 𝑋, that is, there is an operator 𝑇: 𝑋 → 𝐵 such that 𝑇𝚤 = 𝑡. 
These lines explain the main connection between interpolation and twisted sums we 

use throughout. See [54], [158], [138], [136], [156]. Let (𝑋0, 𝑋1) be a compatible couple of 

complex Banach spaces. This means that both 𝑋0 and 𝑋1 are embedded into a third 
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topological vector space 𝑊 and so it makes sense to consider its sum Σ = 𝑋0 + 𝑋1 = {𝑤 ∈
𝑊: 𝑤 = 𝑥0 + 𝑥1} which we furnish with the norm ‖𝑤‖Σ =  inf {‖𝑥0‖0 + ‖𝑥1‖ ∶ 𝑤 = 𝑥0 +
𝑥1} as well as the intersection Δ = 𝑋0 ∩ 𝑋1 with the norm ‖𝑥‖Δ = max {‖𝑥‖0, ‖𝑥‖}. We 

attach a certain space of analytic functions to (𝑋0, 𝑋1) as follows. 

Let 𝕊 denote the closed strip 𝕊 = {𝑧 ∈ ℂ: 0 ≤ ℜ𝑧 ≤ 1}, and 𝕊∘ its interior. We denote by 

𝒢 = 𝒢(𝑋0, 𝑋1) the space of functions 𝑔: 𝕊 → Σ satisfying the following conditions: 

(i) 𝑔 is ‖∙‖Σ-bounded ; 

(ii) 𝑔 is  ‖∙‖Σ-continuous on 𝕊 and ‖∙‖Σ-analytic on 𝕊∘; 
(iii) 𝑔(𝑖𝑡) ∈ 𝑋0, 𝑔(𝑖𝑡 + 1) ∈ 𝑋1 for each 𝑡 ∈ ℝ; 

(iv) the map 𝑡 ⟼ 𝑔(𝑖𝑡) is ‖∙‖0-bounded and ‖∙‖0-continuous on ℝ; 

(v) the map 𝑡 ⟼ 𝑔(𝑖𝑡 + 1) is ‖∙‖1-bounded and ‖∙‖1-continuous on ℝ. 

Then 𝒢 is a Banach space under the norm ‖𝑔‖𝒢 = sup {‖𝑔(𝑗 + 𝑖𝑡)‖𝑗: 𝑗 = 0, 1; 𝑡 ∈  ℝ}. 

For 𝜃 ∈ [0, 1], define the interpolation space 𝑋𝜃 = [𝑋0, 𝑋1] = {𝑥 ∈ Σ ∶ 𝑥 = 𝑔(𝜃) for some 

𝑔 ∈ 𝒢} with the norm ‖𝑥‖𝜃 = inf {‖𝑔‖𝒢 ∶ 𝑥 = 𝑔(𝜃)}. We remark that [𝑋0, 𝑋1]𝜃 is the 

quotient of 𝒢 by 𝑘𝑒𝑟 𝛿𝜃, the closed subspace of functions vanishing at 𝜃, and so it is a 

Banach space.  

The basic result is the following. 

Lemma (4.3.3)[154]: With the above notations, the derivative 𝛿𝜃
; : 𝒢 → Σ is bounded from 

𝑘𝑒𝑟 𝛿𝜃 onto 𝑋𝜃 for 0 < 𝜃 < 1. 

Proof. For a fixed 𝜃 ∈]0, 1[, let 𝜑 be a conformal map of 𝕊° onto the open unit disc sending 

𝜃 to 0, for instance that given by 

𝜑(𝑧) =
𝑒𝑥𝑝(𝑖𝜋𝑧) − 𝑒𝑥𝑝(𝑖𝜋𝜃)

𝑒𝑥𝑝(𝑖𝜋𝑧) − 𝑒𝑥𝑝(−𝑖𝜋𝜃)
              for 𝑧 ∈ 𝕊.                   (35) 

If 𝑔 ∈ 𝒢 vanishes at 𝜃, then one has 𝑔 = 𝜑ℎ, with ℎ ∈ 𝒢 and ‖ℎ‖𝒢 = ‖𝑔‖𝒢. Therefore, 

𝑔’(𝜃) = 𝜑(𝜃)ℎ(𝜃), so 𝑔’(𝜃) ∈ 𝑋𝜃 and 

‖𝑔’(𝜃)‖𝑋𝜃 = |𝜑’(𝜃)|‖ℎ(𝜃)‖𝑋𝜃 ≤ |𝜙’(𝜃)|‖ℎ‖𝒢 = |𝜙’(𝜃)|‖𝑔‖𝒢 . 

Hence ‖𝛿𝜃
’ : 𝑘𝑒𝑟 𝛿𝜃 → 𝑋𝜃‖ ≤ |𝜑’(𝜃)|. Notice that |𝜑’(𝜃)| = 𝜋/(2 𝑠𝑖𝑛(𝜋𝜃)) when 𝜑 is 

given by (35). 

Let us see that 𝛿𝜃
’  maps 𝑘𝑒𝑟 𝛿𝜃 onto 𝑋𝜃. Take 𝑥 ∈ 𝑋𝜃, with ‖𝑥‖𝜃 = 1 and choose 𝑔 ∈ 𝒢 so 

that 𝑔(𝜃) = 𝑥, with ‖𝑔‖𝒢 ≤ 1 + 𝜖. Then ℎ = 𝜑𝑔 belongs to 𝑘𝑒𝑟 𝛿𝜃 and ℎ’(𝜃) = 𝜑’(𝜃)𝑥. 

In this way, for each 𝜃 ∈]0, 1[ we have a push-out diagram 

𝑘𝑒𝑟 𝛿𝜃 ⟶ 𝒢 
  𝛿𝜃   
→  𝑋𝜃

𝛿𝜃
’ ↓         ↓             ∥

𝑋𝜃 ⟶ 𝑃𝑂 ⟶   𝑋𝜃

                                            (36) 

whose lower row is a self extension of 𝑋𝜃. The derivation associated with the preceding 

diagram is the map Ω: 𝑋𝜃 → Σ obtained as follows: given 𝑥 ∈ 𝑋𝜃 we choose 𝑔 = 𝑔𝑥 ∈ 𝒢 

(homogeneously) such that 𝑥 = 𝑔(𝜃) and ‖𝑔‖𝒢 ≤ (1 +  𝜖)‖𝑥‖𝑋𝜃 for small 𝜖 > 0 and we 

set Ω(𝑥) = 𝑔’(𝜃) ∈ Σ. (Note that (𝑥) lies in 𝑋𝜃 at least for 𝑥 ∈ Δ = 𝑋0 ∩ 𝑋1.) 

Homogeneously means that if 𝑔 is the function attached to 𝑥 and 𝜆 is a complex number, 

then the function attached to 𝜆𝑥 is 𝜆𝑔 – this makes Ω ∶ 𝑋𝜃 → Σ homogeneous. 

Needless to say, the map Ω depends on the choice of 𝑔. However, if Ω̃(𝑥) is obtained as the 

derivative (at 𝜃) of another �̃� ∈ 𝒢 such that �̃�(𝜃) = 𝑥 and ‖�̃�‖𝒢 ≤  𝑀‖𝑥‖, then �̃� −

𝑔 vanishes at 𝜃, so  

‖Ω̃(𝑥) − Ω(𝑥)‖
𝑋𝜃

= ‖𝛿𝜃
’ (�̃� − 𝑔)‖

𝑋𝜃
≤ ‖𝛿𝜃

’ : 𝑘𝑒𝑟 𝛿𝜃 → 𝑋𝜃‖(𝑀 + 1 + 𝜖)‖𝑥‖𝑋𝜃 , 
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and thus Ω̃ ≈ Ω. 

Lemma (4.3.4)[154]: The just defined map Ω is quasi-linear on 𝑋𝜃. The extension induced 

by  is (equivalent to) the push-out sequence in (36). 

Proof. That Ω is quasi-linear is straightforward from Lemma (4.3.3). 

As for the second part, look at the basic Diagram 7. Consider the map (𝛿𝜃
’ , 𝛿𝜃) 𝒢 →

𝑋𝜃 ⊕Ω 𝑋𝜃 given by (𝛿𝜃
’ , 𝛿𝜃)(𝑓) = (𝑓’(𝜃), 𝑓(𝜃)). Notice that (𝑓’(𝜃), 𝑓(𝜃))  belongs to 

𝑋𝜃 ⊕Ω 𝑋𝜃  for every 𝑓 ∈ 𝒢. Indeed, letting 𝑥 = 𝑓(𝜃) we have 𝑓’(𝜃) − Ω(𝑓(𝜃)) = 𝛿𝜃
’ (𝑓 −

𝑔𝑥) ∈ 𝑋𝜃. Moreover, 

‖(𝑓’(𝜃), 𝑓(𝜃))‖Ω = ‖𝛿𝜃
’ (𝑓 − 𝑔𝑥)‖𝜃 +

‖𝑓(𝜃)‖𝜃 ≤ 𝑀‖𝑓‖𝒢 . 

There is an obvious map 𝚤: 𝑋𝜃 → 𝑋𝜃 ⊕Ω 𝑋𝜃 sending 𝑥 to (𝑥, 0). If 𝑓 ∈ 𝑘𝑒𝑟 𝛿𝜃 one has 

(𝛿𝜃
’ , 𝛿𝜃)(𝑓) = (𝑓’(𝜃), 0) = 𝚤𝛿𝜃

’ (𝑓) 
and the universal property of the push-out construction yields an operator 𝑢 making 

commutative the following diagram 

𝑘𝑒𝑟 𝛿𝜃     ⟶ 𝒢
  𝛿𝜃   
→        𝑋𝜃

𝛿𝜃
’ ↓             ↓                 ∥

𝑋𝜃      ⟶ 𝑃𝑂   ⟶     𝑋𝜃

 

∥                  ↓                  ∥ 
𝑋𝜃 ⟶ 𝑋𝜃⨁Ω𝑋𝜃 ⟶ 𝑋𝜃  

This completes the proof.  

The preceding argument is closely related to the observation, due to Rochberg and Weiss 

[54], that 𝑋𝜃 ⊕Ω 𝑋𝜃 = 𝒢/(𝑘𝑒𝑟 𝛿𝜃 ∩ 𝑘𝑒𝑟 𝛿𝜃
’ ) = {(𝑓’(𝜃), 𝑓(𝜃)) ∶ 𝑓 ∈ 𝒢}, where the third 

space carries the obvious (infimum) norm. 

An important feature of the derivation process is that if we start with a couple (𝑋0, 𝑋1) 
of Banach modules over an algebra 𝐴 (this terminology should be self-explanatory by now), 

then the diagram (36) lives in the category of Banach modules and Ω is a centralizer over 𝐴. 

We introduce the spaces of measurable functions we shall use along. Our default 

measure space is the half line ℝ+ = (0,∞). We write 𝔅 for the algebra of Borel sets of ℝ+ 

and we denote by 𝜆 the Lebesgue measure on 𝔅. 

Let 𝐿0 be the space of all (Borel) measurable functions 𝑓: ℝ+ → ℂ equipped with the 

topology of convergence in measure on sets of finite measure. Here we apply the usual 

convention of identifying functions agreeing almost everywhere. According to 

Lindenstrauss and Tzafriri [163], a Kothe space on ℝ+ is a linear subspace 𝑋 of 𝐿0 consisting 

of locally integrable functions, equipped with a monotone norm (if 𝑓 ∈  𝑋 and |𝑔| ≤
|𝑓| almost everywhere, then 𝑔 ∈ 𝑋 and ‖𝑔‖𝑋 ≤ ‖𝑓‖𝑋) rendering it complete and containing 

the characteristic function of each Borel set of finite measure. 𝐴 symmetric space is a Kothe 

space 𝑋 satisfying: 

(a) If |𝑓| and |𝑔| have the same distribution and 𝑓 ∈ 𝑋, then 𝑔 ∈ 𝑋 and ‖𝑔‖𝑋 = ‖𝑓‖𝑋. 

(b) The Fatou property: if (𝑓𝑛) is an increasing sequence of nonnegative functions of 𝑋 

converging almost everywhere to 𝑓 and 𝑠𝑢𝑝𝑛 ‖𝑓𝑛‖𝑋 <∞, then 𝑓 ∈ 𝑋 and ‖𝑓‖𝑋 =
𝑙𝑖𝑚𝑛 ‖𝑓𝑛‖𝑋.  

If 𝑢 is a measure-preserving automorphism of ℝ+, then the mapping 𝑓 ⟼ 𝑢∘(𝑓) =
𝑓 ∘ 𝑢 defines an isometry on every symmetric space. We have included the Fatou property 

in the definition to avoid any difficulty when dealing with spaces of operators. The present 

definition guarantees that our symmetric spaces are both “fully symmetric” (in the sense of 

[159]) and “rearrangement invariant” in the sense of [163] and [160]; anyway see cite [111] 
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for a discussion and related results. If 𝑋 is a symmetric space, then 𝐿∞ ∩ 𝐿1 ⊂ 𝑋 ⊂ 𝐿∞ + 𝐿1 

and the inclusion are continuous; see [160] for a proof. 

It is clear from the definition that every Kothe space 𝑋 is an 𝐿∞-module under “pointwise” 

multiplication which turns out to be a submodule of 𝐿0. Let Φ:𝑋 → 𝐿0 be an 𝐿∞-centralizer 

on 𝑋. Then Φ is said to be: 

• Real if it takes real functions to real functions. 

• Symmetric if (𝑋 is symmetric and) there is a constant 𝑆 so that, whenever 𝑢 is a measure-

preserving automorphism of ℝ+ one has ‖Φ(𝑢∘𝑓) − 𝑢∘(Φ𝑓)‖𝑋 ≤  𝑆‖𝑓‖𝑋. 

• Lazy if, whenever 𝒜 is a 𝜎-subalgebra of 𝔅 and 𝑓 ∈ 𝑋 is 𝒜 -measurable, Φ(𝑓) is 𝒜 -

measurable. 

Observe that Φ is lazy if and only if, for every 𝑓 ∈ 𝑋, the function Φ(𝑓) is measurable with 

respect to the 𝜎-algebra generated by 𝑓, namely 𝒜(𝑓) = {𝑓−1(𝐴): 𝐴 is a Borel subset of ℂ}. 
Also, if Φ is lazy and 𝑓 = ∑ 𝑡𝑘1𝐴𝑘

∞
𝑘=1  is a function taking only countably many values (𝜎-

simple from now on), one has Φ(𝑓) = ∑ 𝑠𝑘1𝐴𝑘
∞
𝑘=1  for certain sequence of scalars (𝑠𝑘). 

Important examples of centralizers are given as follows (see [134]). Let 𝜑 ∶ ℝ2 → ℂ be a 

Lipschitz function. Then the map 𝐿𝑝 → 𝐿0 given by 

𝑓 ⟼ 𝑓𝜑 (𝑙𝑜𝑔
|𝑓|

‖𝑓‖𝑝
, 𝑙𝑜𝑔 𝑟𝑓).                                   (37) 

is a (symmetric) centralizer on 𝐿𝑝 which is real when 𝜑 is real-valued. Here 𝑟𝑓 is the so 

called rank-function of 𝑓 ∈ 𝐿0 defined by 

𝑟𝑓(𝑡) = 𝜆{𝑠 ∈ ℝ+: |𝑓(𝑠)| > |𝑓(𝑡)| 𝑜𝑟 𝑠 ≤ 𝑡 𝑎𝑛𝑑 |𝑓(𝑠)| = |𝑓(𝑡)|}, 

which arises in real interpolation (cf. [50]). 

For what is concerned, the crucial result on 𝐿∞-centralizers is the following. 

Theorem (4.3.5)[154]: (Kalton [136], Theorem 7.6). There is a (finite) constant 𝐾 so that 

whenever 1 < 𝑝 ≤ 2 and 𝑋 is a 𝑝-convex and 𝑞-concave Kothe function space with 𝑝−1 +
𝑞−1 = 1 and Φ is a real centralizer on 𝑋 with 𝐶[Φ] < 200/𝑞 then there is a pair of Kothe 

function spaces (𝑋0, 𝑋1) so that 𝑋 = [𝑋0, 𝑋1]1/2 (with equivalent norms) and if Ω:𝑋 → 𝐿0 

is the corresponding derivation, then ‖Φ(𝑓) − Ω(𝑓)‖ ≤ 𝐾‖𝑓‖ for 𝑓 ∈ 𝑋. In particular Φ ≈
Ω . 
If Φ is symmetric, then 𝑋0 and 𝑋1 can be taken to be symmetric. 

We see some useful consequences. 

Lemma (4.3.6)[154]: Let 𝑝 ∈ (1,∞). 
(a) Every centralizer on 𝐿𝑝 is equivalent to a linear combination of two derivations. 

(b) Every symmetric centralizer on 𝐿𝑝 is equivalent to a lazy centralizer.  

(c) Every symmetric centralizer on 𝐿𝑝 takes values in 𝐿1 + 𝐿∞. 

Proof. (a) It is obvious from Theorem (4.3.5) that if Φ is a real centralizer on 𝐿𝑝 then 𝑐Φ is 

equivalent to a derivation for 𝑐 > 0 sufficiently small, hence Φ is equivalent to a constant 

multiple of a derivation. If Φ is any (symmetric) centralizer on 𝐿𝑝, then letting Φ1(𝑓) =
ℜΦ(ℜ(𝑓)) + 𝑖ℜΦ(ℑ(𝑓)) and Φ2(𝑓) = ℑΦ(ℜ(𝑓)) − 𝑖ℑΦ(ℑ(𝑓)) one has Φ ≈ Φ1 + 𝑖Φ2 

with Φ1 and Φ2 real (symmetric) centralizers and the result follows. 

(b) Let Φ be a symmetric centralizer on 𝐿𝑝, where 1 < 𝑝 <∞. We shall prove that Φ 

“almost commutes” with every conditional expectation operator in the following sense: 

there is a constant 𝐶 such that for every 𝜎-algebra 𝒜 ⊂ 𝔅 and every 𝑓 ∈ 𝐿𝑝, one has 

                                      ‖𝐸𝒜Φ𝑓 −Φ(𝐸𝒜(𝑓))‖
𝐿𝑝
≤ 𝐶‖𝑓‖𝐿𝑝 ,                                           (38) 
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where 𝐸𝒜 is the conditional expectation operator; see [163] for the definition. After that the 

result follows just considering the mapping 𝑓 ⟼ 𝐸𝒜(𝑓)(Φ𝑓) which gives a (necessarily 

symmetric) lazy centralizer equivalent to _. By (a) we may assume that Φ is a derivation, so 

that there are a couple of symmetric spaces 𝑋0, 𝑋1 so that [𝑋0, 𝑋1]1
2

= 𝐿𝑝 with equivalent 

norms and Φ(𝑓) = 𝐺𝑓
’ (

1

2
), where 𝐺𝑓 ∈ 𝒢(𝑋0, 𝑋1) is such that 𝐺𝑓 (

1

2
) = 𝑓 and 

‖𝐺𝑓‖𝒢(𝑋0,𝑋1)
≤ 𝑀‖𝑓‖𝐿𝑝 for some constant 𝑀 independent on 𝑓. Since 𝐿∞ + 𝐿1 contains 

both 𝑋0 and 𝑋1, it also contains its sum, so Φ(𝑓) ∈ 𝐿∞ + 𝐿1 and 𝐸𝒜Φ𝑓 is correctly defined. 

On the other hand, if 𝒜 ⊂ 𝔅 is a 𝜎-algebra, 𝐸𝒜 is a contractive projection on every 

symmetric space (see [163]), hence if 𝑔 = 𝒢(𝑋0, 𝑋1), then 𝐸𝒜 ∘ 𝑔 also belongs to 𝒢(𝑋0, 𝑋1) 

and ‖𝐸𝒜 ∘ 𝑔‖ ≤ ‖𝑔‖. 

Now, if 𝑓 ∈ 𝐿𝑝 and 𝒜 ⊂ 𝔅 is a 𝜎-algebra, letting ℎ = 𝐸𝒜(𝑓) we consider the functions 

𝐺𝑓 and 𝐺ℎ. Then 𝐸𝒜 ∘ 𝐺𝑓 − 𝐺ℎ vanishes at 𝑧 =
1

2
 , so 

‖𝐸𝒜Φ𝑓 −Φ(𝐸𝒜(𝑓))‖
𝐿𝑝
= ‖𝛿1/2

’ 𝐸𝒜 ∘ 𝐺𝑓 − 𝐺ℎ‖ ≤ 𝑀‖𝛿1/2
’ ‖‖𝑓‖𝐿𝑝 . 

This proves (b) and (c) for derivations and the general case follows from (a). 

We depend on the Spectral theorem that we now recall, mainly to fix notations. See 

[116] for a complete exposition. Let ℋ be a Hilbert space. 𝐴 closed and densely defined 

operator 𝑥: 𝐷(𝑥) → ℋ is self-adjoint when 𝐷(𝑥) = 𝐷(𝑥∗) and 𝑥∗ = 𝑥. 

For every self-adjoint 𝑥 there exists a unique “spectral measure” 𝑒𝑥:𝔅(ℝ) →  𝐵(ℋ) (this 

means that 𝑒𝑥(𝐵) is an orthogonal projection for each Borel 𝐵 and that 𝑒𝑥(∙) is 𝜎-additive 

with respect to the strong operator topology of 𝐵(ℋ) such that 

𝑥 = ∫𝜆𝑑𝑒𝑥(𝜆)
ℝ

. 

If 𝑥 is a closed, densely defined operator, then 𝑥∗𝑥 is self-adjoint (and, actually, positive). 

The modulus of 𝑥 is then defined as 

|𝑥| = (𝑥∗𝑥)1/2 = ∫ 𝜆1/2𝑑𝑒(𝑥
∗𝑥)(𝜆)

ℝ+

. 

One has the “polar decomposition” 𝑥 = 𝑢|𝑥|, where 𝑢 is a partial isometry which is ofted 

called the phase of 𝑥.  

Let 𝑀 be a semifinite von Neumann algebra with a faithful, normal, semifinite (fns) trace  , 

acting on ℋ. 𝐴 closed densely defined operator on ℋ is affiliated with 𝑀 if its spectral 

projections (that is, the projections 𝑒(𝑥
∗𝑥)(𝐵) for 𝐵 ∈ 𝔅(ℝ)) belong to 𝑀.𝐴 closed, densely 

defined operator 𝑥 affiliated with 𝑀 is called 𝜏 -measurable if, for any 𝜖 > 0, there exists a 

projection 𝑒 ∈ 𝑀 such that 𝑒ℋ ⊂ 𝐷(𝑥) and 𝜏(1 − 𝑒) ≤ 𝜖. We denote the set of all 𝜏 -

measurable operators affiliated with a von Neumann algebra 𝑀 by �̃�. The so called measure 

topology on �̃� is the least linear topology containing the sets   

{𝑥 ∈ �̃�: there exists a projection 𝑒 ∈ 𝑀 such that 𝜏 (1 − 𝑒) < 𝜀, 𝑥𝑒 ∈ 𝑀 and ‖𝑥𝑒‖ < 𝜀}, 
with 𝜀 > 0. Endowed with measure topology, strong sum, strong product and adjoint 

operation as involution, �̃� becomes a topological *-algebra (see [52], [157] for basic 

information). The trace τ has a natural extension to �̃�+. 

We define 𝐿𝑝(𝑀, 𝜏 ) as the space of all 𝜏 -measurable operators x such that 𝜏 (|𝑥|𝑝) <∞, 

with norm ‖𝑥‖𝑝 = (𝜏 (|𝑥|𝑝))1/𝑝. 
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More general spaces of operators can be introduced as follows [159], [164], [111]. Let 𝑥 be 

a measurable operator, so that 𝜏(𝑒|𝑥|(𝜆,∞)) is finite for some 𝜆 > 0. The generalized 

singular value function of 𝑥 is the function 𝜇(𝑥):ℝ+ → [0,∞] given by 

𝜇(𝑥)(𝑡) = inf {𝜆 > 0 ∶ 𝜏(𝑒|𝑥|(𝜆,∞)) ≤ 𝑡}. 
Now, if 𝑋 is a symmetric function space, the corresponding “symmetric operator space” is 

𝑋(𝑀, 𝜏 ) = {𝑥 ∈ �̃�: 𝜇(𝑥) ∈ 𝑋}, 𝑤𝑖𝑡ℎ ‖𝑥‖ = ‖𝜇(𝑥)‖𝑋. 
An important feature of these spaces is that they are bimodules over 𝑀 with the obvious 

outer multiplications. 

In order to state the main result, let us consider a self-adjoint 𝑦 ∈ �̃� and let 𝑀𝑦 be the 

(von Neumann) subalgebra of 𝑀 generated by the spectral projections of 𝑦. By general 

representation results one can construct a *-homomorphism 𝜉:𝑀𝑦 → 𝐿∞ preserving the 

trace, that is, such that 𝜏(𝑎) = ∫ 𝜉(𝑎)𝑑𝜆
∞

0
 for every nonnegative 𝑎 ∈ 𝑀𝑦. 𝐴 simple proof of 

this fact appears in [165] (note that “our” 𝜉 is the inverse of the map that Pisier and 𝑋𝑢 call 

𝑆). 𝐴 different proof for finite (von Neumann) algebras can be seen in [166] (the argument 

works for semifinite algebras as well). For a more general result, see [159]. 

If �̃�𝑦 denotes the closure of 𝑀𝑦 in �̃�, then 𝜉 extends to a continuous *-homomorphism 

�̃�𝑦 → 𝐿0 that we denote again by 𝜉. Clearly, 𝜉(𝑀𝑦) = 𝐿∞(ℝ+,𝒜 , 𝜆), where 𝒜 is a 𝜎-

subalgebra of 𝔅. It follows that for every 𝒜 -measurable 𝑓 ∈ 𝐿1 there is 𝑧 ∈ �̃�𝑦 (actually 

in 𝐿1(𝑀, 𝜏 )) such that 𝑓 = 𝜉(𝑧) and so 𝜉−1(𝑓) is correctly defined if 𝑓 ∈ 𝐿1 + 𝐿∞ is 𝒜 -

measurable. Besides, 𝜉 preserves every “symmetric” norm in the following sense: if 𝑋 is a 

symmetric function space on ℝ+ and 𝑓 ∈ 𝑋 is 𝒜 -measurable, then there is 𝑥 ∈ �̃�𝑦 such 

that 𝜉(𝑥) = 𝑓 and ‖𝑥‖𝑋(𝑀,𝜏) = ‖𝑓‖𝑋. This is obvious since 𝜇(𝑥) and 𝑓 have the same 

distribution. 

The following result and its proof are modeled on [136]:  

Theorem (4.3.7)[154]: Let Φ be a lazy, symmetric 𝐿∞-centralizer on 𝐿𝑝, where 1 < 𝑝 <
∞. Given a semifinite von Neumann algebra (𝑀, 𝜏 ) we define a mapping Φ𝜏: 𝐿

𝑝(𝑀, 𝜏 ) →
�̃� as follows: For each 𝑥 ∈ 𝐿𝑝(𝑀, 𝜏 ) we choose a trace preserving *-homomorphism 

𝜉: �̃�|𝑥| → 𝐿0 (depending only on 𝑀|𝑥|) as before and we set 

Φ𝜏(𝑥) = 𝑢 ∙ 𝜉−1(Φ(𝜉(|𝑥|))),                                                      (39) 
where 𝑥 = 𝑢|𝑥| is the polar decomposition. Φ𝜏 is an 𝑀-bicentralizer on 𝐿𝑝(𝑀, 𝜏 ) and all 

mappings defined in this way are equivalent, independently of the choice of 𝜉. 

Proof. First of all observe that the definition of  Φ𝜏 makes sense since Φ(𝜉(|𝑥|)) belongs 

to 𝐿∞ + 𝐿1 and it is measurable with respect to the 𝜎-algebra generated by 𝜉(|𝑥|) and so 

𝜉−1Φ(𝜉(|𝑥|)) is well defined. Also, note that since 𝑀|𝜆𝑥| = 𝑀|𝑥| for each nonzero 𝜆 ∈ ℂ and 

𝜉 depends only on its domain algebra the resulting map Φ𝜏 is homogeneous. 

Let us prove that Φ𝜏 is a bicentralizer assuming that Φ is a derivation. Precisely, we are 

assuming there is a couple of symmetric Kothe spaces on ℝ+ such that 𝐿𝑝 = [𝑋0, 𝑋1]
1/2, 

with equivalent norms in such a way that, for each 𝑓 ∈ 𝐿𝑝 one has Φ(𝑓) = 𝑔’(
1

2
), where 𝑔 ∈

𝒢(𝑋0, 𝑋1) satisfies 𝑔(
1

2
) = 𝑓 and ‖𝑔‖𝒢 ≤ 𝐾‖𝑓‖𝑝. 

Set 𝑋 = [𝑋0, 𝑋1]1/2, with the natural norm. This is a symmetric Kothe space on ℝ+. The 

key point is that the formula 

[𝑋0(𝑀, 𝜏 ), 𝑋1(𝑀, 𝜏 )]1
2

= 𝑋(𝑀, 𝜏 )                                                   (40) 

holds for all semifinite algebras (𝑀, 𝜏 ) –see [159] and [165]. 
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Of course 𝑋(𝑀, 𝜏 ) = 𝐿𝑝(𝑀, 𝜏 ), up to equivalence of norms and we may consider the 

corresponding derivation on 𝐿𝑝(𝑀, 𝜏 ). That is, given 𝑥 ∈ 𝐿𝑝(𝑀, 𝜏 ) we choose 𝐺𝑥 ∈

𝒢(𝑋0(𝑀, 𝜏 ), 𝑋1(𝑀, 𝜏 )) such that 𝐺𝑥(
1

2
) = 𝑥 and ‖𝐺𝑥‖𝒢 ≤ (1 + 𝜖)‖𝑥‖𝑋(𝑀,𝜏) ≤ 𝐾‖𝑥‖𝑝 and 

then we put 

Ω(𝑥) = 𝛿1/2
’ 𝐺𝑥 ∈ �̃�. 

The fact that such an Ω turns out to be an 𝑀-bicentralizer on 𝐿𝑝(𝑀, 𝜏 ) should be obvious 

by now, but let us record the proof for future reference. Take 𝑥 ∈ 𝑋(𝑀, 𝜏 ) and 𝑎, 𝑏 ∈ 𝑀 

(that we regard as constant functions on 𝑆). We have 𝐺𝑎𝑥𝑏 − 𝑎𝐺𝑥𝑏 ∈ 𝑘𝑒𝑟 𝛿1/2 by the very 

definition. Moreover, 

‖𝐺𝑎𝑥𝑏 − 𝑎𝐺𝑥𝑏‖𝒢 ≤ ‖𝐺𝑎𝑥𝑏‖𝒢 + ‖𝑎𝐺𝑥𝑏‖𝒢 ≤ 2(1 + 𝜖)‖𝑎‖‖𝑥‖𝑋(𝑀,𝜏)‖𝑏‖, 

so 

‖Ω(𝑎𝑥𝑏) − 𝑎Ω(𝑥)𝑏‖𝑋(𝑀,𝜏) = ‖𝛿1/2
’ (𝐺𝑎𝑥𝑏 − 𝑎𝐺𝑥𝑏)‖𝑋(𝑀,𝜏)

 

≤ ‖𝛿1/2
’   𝑘𝑒𝑟 𝛿1/2 → 𝑋(𝑀, 𝜏)‖2(1 + 𝜖)‖𝑎‖‖𝑥‖𝑋(𝑀,𝜏)‖𝑏‖ 

≤ (1 + 𝜖)𝜋‖𝑎‖‖𝑥‖𝑋(𝑀,𝜏)‖𝑏‖. 

Thus, to complete the proof that the formula (10) defines a bicentralizer on 𝐿𝑝(𝑀, 𝜏 ), it 

suffices to see that one can choose the functions 𝐺𝑥 in such a way that 𝐺𝑥
’ (
1

2
) = Φ𝜏. 

So, pick a normalized 𝑥 ∈ 𝐿𝑝(𝑀, 𝜏) and put 𝑓 = 𝜉(|𝑥|). Then 𝑓 is normalized in 𝐿𝑝 and we 

have Φ(𝑓) = 𝛿1/2
’ 𝑔 where 𝑔 ∈ 𝒢(𝑋0, 𝑋1) is the corresponding extremal–recall that we are 

assuming that Φ is itself a derivation.  

We claim that the mapping 𝐺: 𝕊 → �̃� given by 𝐺(𝑧) = 𝑢 ∙ 𝜉−1𝐸𝒜(𝑔(𝑧)) is allowable for 

𝑥. We have 

𝐺(
1

2
) = 𝑢 ∙ 𝜉−1𝐸𝒜(𝑔(

1

2
)) = 𝑢 ∙ 𝜉−1𝐸(𝑓) = 𝑢𝜉−1𝑓 = 𝑢|𝑥| = 𝑥. 

That 𝐺 belongs to 𝒢(𝑋0(𝑀, 𝜏 ), 𝑋1(𝑀, 𝜏 )) is obvious since 𝐸𝒜 is contractive on 𝑋0 and 𝑋1 

(hence on 𝑋0 + 𝑋1) and 𝜉 preserves all symmetric norms: actually the norm of 𝐺 in 

𝒢(𝑋0(𝑀, 𝜏 ), 𝑋1(𝑀, 𝜏 )) cannot exceed that of 𝑔 in 𝒢(𝑋0, 𝑋1). 
Finally, applying the chain rule and taking into account that Φ is lazy, 

𝐺 ’ (
1

2
) = 𝑢 ⋅ 𝜉−1𝐸𝒜 (𝑔’ (

1

2
)) = 𝑢 ∙ 𝜉−1𝐸𝒜(Φ(𝑓)) = 𝑢𝜉−1Φ(𝑓)  = 𝑢𝜉−1Φ(𝜉(|𝑥|))

= Φ𝜏(𝑥). 
And so Φ𝜏 is a bicentralizer. 

To complete the proof (still under the assumption that Φ is a derivation) we must prove that 

Φ𝜏 is essentially independent of the family of *-homomorphisms 𝜉. Indeed, if 𝜉1: �̃�|𝑥| → 𝐿0 

is another trace-preserving *-homomorphism and 𝒜1 ⊂ 𝔅 is the corresponding 𝜎-algebra, 

letting 𝑓1 = 𝜉1(|𝑥|) and taking any allowable 𝑔1 ∈ 𝒢(𝑋0, 𝑋1) so that 𝑔1(
1

2
) = 𝑓1 with 𝑔1 ≤

(1 + 𝜀)‖𝑓1‖𝑋 = ‖𝑥‖𝑋(𝑀,𝜏) we have that if  

𝐺1(𝑧) = 𝑢 ∙ 𝜉1
−1 𝐸𝒜1(𝑔1(𝑧))        (𝑧 ∈ 𝕊), 

then 𝐺1 belongs to 𝒢(𝑋0(𝑀, 𝜏 ), 𝑋1(𝑀, 𝜏 )), is allowable for 𝑥 and 𝐺1
’ (
1

2
) = 𝑢 ∙

𝜉1
−1Φ(𝜉1(|𝑥|)) and since 𝛿1/2

’  is bounded from 𝑘𝑒𝑟 𝛿1/2 to 𝑋(𝑀, 𝜏 ) (see Lemma (4.3.3)) 

we have that 𝐺1
’ (
1

2
) − 𝐺’(

1

2
) falls in 𝑋(𝑀, 𝜏) and 

‖𝑢𝜉1
−1Φ(𝜉1(|𝑥|)) − 𝑢𝜉−1Φ(𝜉(|𝑥|))‖𝑋(𝑀,𝜏) = ‖𝛿1/2

’ (𝐺1 − 𝐺)‖ ≤ 𝑀‖𝑥‖𝑋(𝑀,𝜏). 

This completes the proof when Φ is a derivation–or a linear combination of derivations. 
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To finish, observe that if Ψ and Φ are two equivalent lazy centralizers on 𝐿𝑝, then the maps 

Ψ𝜏 and Φ𝜏 are equivalent on 𝐿𝑝(𝑀, 𝜏 )–at least if the “prescribed” family of *-

homomorphisms 𝑥 ⟼ 𝜉 is fixed. Indeed, if 𝑥 ∈ 𝐿𝑝(𝑀, 𝜏 ), then 

‖Ψ𝜏(𝑥) − Φ𝜏(𝑥)‖𝐿𝑝(𝑀,𝜏) = ‖𝑢𝜉−1(Ψ(𝜉(|𝑥|) − Φ(𝜉(|𝑥|))‖ ≤ ‖Ψ −Φ‖‖(𝜉(|𝑥|))‖

≤ 𝑀‖𝑥‖. 
Now, the result follows from Lemma (4.3.6). 

 The action of Φ𝜏 on 𝜎-elementary operators if quite simple. Here, a 𝜎-elementary operator 

is one of the form 𝑥 = ∑ 𝜆𝑘𝑒𝑘
∞
𝑘=1 , with 𝑒𝑘 disjoint projections and 𝜆𝑘 ∈ ℂ. Indeed, for such 

an 𝑥 we have |𝑥| = ∑ |𝜆𝑘|𝑒𝑘
∞
𝑘=1  and 𝑢 = ∑ 𝑢𝑘𝑒𝑘

∞
𝑘=1 , where 𝑢𝑘 is the signum of 𝜆𝑘. Hence, 

if 𝜉: �̃�|𝑥| → 𝐿0 is any trace-preserving *-homomorphism, then 𝑓 = 𝜉(|𝑥|) = ∑ |𝜆𝑘|1𝐴𝑘
∞
𝑘=1  , 

where (𝐴𝑘) is a sequence of disjoint Borel sets of ℝ+ and 𝜉(𝑒𝑘) = 1𝐴𝑘  for every 𝑘 ∈ ℕ. 

Now, as Φ is lazy, we have Φ(𝑓) =  ∑ 𝑠𝑘1𝐴𝑘
∞
𝑘=1  for some sequence (𝑠𝑘) and 

Φ𝜏(𝑥) = 𝑢𝜉−1 (∑𝑠𝑘1𝐴𝑘

∞

𝑘=1

) = ∑𝑢𝑘𝑠𝑘𝑒𝑘

∞

𝑘=1

. 

The following result applies to many centralizers appearing in nature. In particular, it applies 

to the centralizers given by (37) when 𝜑 depends only on the first variable, by just taking 

𝜙(𝑡) = 𝑡𝜑(𝑙𝑜𝑔 𝑡) for 𝑡 ∈ ℝ+.  

Corollary (4.3.8)[154]: Let Φ be a centralizer on 𝐿𝑝, where 1 < 𝑝 <∞. Suppose there is 

a Borel function 𝜑: ℝ+ → ℂ such that Φ(𝑓) = 𝜙 ∘ 𝑓 for every 𝑓 ≥ 0 normalized in 𝐿𝑝. 

Then, for every semifinite von Neumann algebra (𝑀, 𝜏 ), the map 𝑥 ⟼ ‖𝑥‖𝑝𝑢𝜙(|𝑥|/‖𝑥‖𝑝) 

is an 𝑀-bicentralizer on 𝐿𝑝(𝑀, 𝜏 ). 
Proof. It is obvious that Φ is both symmetric and lazy. In view of Theorem (4.3.7) it suffices 

to check thatΦ𝜏(𝑥) = 𝜙(𝑥) for 𝑥 positive and normalized in 𝐿𝑝(𝑀, 𝜏 ). Let 𝜉 be the 

prescribed trace-preserving *-homomorphism. Since Φ𝜏(𝑥) = 𝜉−1(𝜉(𝑥)) = 𝜉−1(𝜙 ∘
(𝜉(𝑥)) the proof will be complete if we show that 𝜙 ∘ (𝜉(𝑥) = 𝜉(𝜑(𝑥)), where 𝜙(𝑥) is 

given by the functional calculus: 

                          𝜙(𝑥) = ∫ 𝜙(𝜆)𝑑𝑒𝑥(𝜆)
∞

0
, where 𝑥 = ∫ 𝜆𝑑𝑒𝑥(𝜆)

∞

0
. 

Let us consider 𝐿∞ as a von Neumann algebra with trace 𝜆 (to be true, the trace of 𝑎 ∈ 𝐿∞ 

is ∫ 𝑎𝑑𝜆
ℝ+ ) acting by multiplication on 𝐿2 and let �̃�∞ be the space of 𝜆-measurable operators 

(affiliated with 𝐿∞). Set 𝑓 = 𝜉(𝑥) which we may now regard also as a self-adjoint operator 

in �̃�∞. Then, if 

𝑓 = ∫ 𝜆𝑑𝑒𝑓(𝜆)
∞

0

 

is the spectral representation it is obvious that 𝜉𝑒𝑥 = 𝑒𝑓 in the sense that for every 𝐵 ∈ 𝔅 

one has 𝜉(𝐵) = 𝑒𝑓(𝐵). Moreover, 𝑒𝑓(𝐵) can be identified with 1𝐵 ∘ 𝑓 = 1𝑓−1(𝐵) and so 

𝜉(𝜙(𝑥)) = 𝜉 (∫ 𝜙(𝜆)𝑑𝑒𝑥(𝜆)
∞

0

) = ∫ 𝜙(𝜆)𝑑𝜉𝑒𝑥(𝜆)
∞

0

= ∫ 𝜙(𝜆)𝑑𝑒𝑓(𝜆)
∞

0

= 𝜙 ∘ 𝑓, 

and we are done. 

We discuss the simplest case of self-extensions, namely that one obtains out from the 

identity [𝑀, 𝐿1(𝑀, 𝜏)]𝜃 = 𝐿𝑝(𝑀, 𝜏 ) at 𝜃 = 1/𝑝. In order to simplify the computation of 

extremals we introduce a larger space of holomorphic functions as follows. We consider 

both 𝑀 and 𝐿1(𝑀, 𝜏 ) as subspaces of �̃� and we set ∆= 𝑀 ∩ 𝐿1(𝑀, 𝜏 ) and Σ = 𝑀 +
𝐿1(𝑀, 𝜏 ). Let ℋ = ℋ(𝑀, 𝜏 ) be the space of functions ℎ: 𝕊 → Σ satisfying the following 

conditions: 
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(i) ℎ is ‖∙‖Σ-bounded. 

(ii) For each 𝑥 ∈ Δ the function 𝑧 ⟼ 𝜏(𝑥ℎ(𝑧)) is continuous on 𝕊 and analytic on 𝕊∘. 
(iii) ℎ(𝑖𝑡) ∈ 𝑀, ℎ(𝑖𝑡 + 1) ∈ 𝐿1(𝜏 ) for each 𝑡 ∈ ℝ; 

(iv) the map 𝑡 ⟼ ℎ(𝑖𝑡) is ‖∙‖∞-bounded and 𝜎(𝑀, 𝐿1(𝜏 ))-continuous on ℝ; 

(v) the map 𝑡 ⟼ ℎ(𝑖𝑡 + 1) is ‖∙‖1-bounded and ‖∙‖1-continuous on ℝ. 

We equip ℋ with the norm ‖ℎ‖ℋ = sup {‖ℎ(𝑖𝑡)‖𝑀, ‖ℎ(𝑖𝑡 + 1)‖1 ∶ 𝑡 ∈ ℝ}}. Note that the 

elements of ℋ are in fact ‖∙‖Σ-analytic on 𝕊∘. 
Letting 𝜃 = 1/𝑝 ∈ (0, 1) we have that 𝛿𝜃 maps ℋ onto 𝐿𝑝(𝜏) (without increasing the norm) 

and replacing 𝒢 by ℋ everywhere in the proof of Lemma (4.3.3) we see that the restriction  

of 𝛿𝜃
’  to 𝑘𝑒𝑟 𝛿𝜃 is a bounded operator onto 𝐿𝑝(𝜏) and we can form the push-out diagram 

𝑘𝑒𝑟 𝛿𝜃 ⟶ℋ
  𝛿𝜃   
→  𝐿𝑝(𝜏)

𝛿𝜃
’ ↓           ↓                   ∥

𝐿𝑝(𝜏) ⟶ 𝑃𝑂 ⟶ 𝐿𝑝(𝜏 )

                                                             (41) 

Please note that the above diagram lives in the category of bimodules over M. Also, as ℋ 

contains the Calderon space 𝒢 it is really easy to see that this new push-out extension is in 

fact the same one gets by using 𝒢. 

Let us compute the extremals associated to the quotient 𝛿𝜃:ℋ → 𝐿𝑝(𝜏). Suppose 𝑓 ∈ 𝐿𝑝(𝜏) 
is a positive operator with ‖𝑓‖𝑝 = 1. It is easily seen that the function ℎ(𝑧) = 𝑓𝑝𝑧 belongs 

to ℋ (although it is not in 𝒢 in general) and also that ‖ℎ‖ℋ = 1. Of course, ℎ’(𝜃) =
𝑝𝑓 𝑙𝑜𝑔 𝑓 and thus, the derivation associated to Diagram 12 is given by 

Ω𝑝(𝑓) = 𝑝𝑓 𝑙𝑜𝑔(|𝑓|/‖𝑓‖𝑝)       (𝑓 ∈ 𝐿𝑝(𝜏)).                             (42) 

Let us denote the corresponding twisted sum 𝐿𝑝(𝜏) ⊕Ω𝑝
𝐿𝑝(𝜏) by 𝑍𝑝(𝜏). Our immediate 

aim is to prove the following. 

Theorem (4.3.9)[154]: 𝑍𝑝(𝑀, 𝜏 ) is a nontrivial self extension of 𝐿𝑝(𝑀, 𝜏 ) as long as 𝑀 is 

infinite dimensional and 1 < 𝑝 <∞. 

Proof. Needless to say 𝑍𝑝(𝑀, 𝜏 ) is a bimodule extension over 𝑀. We shall prove that it 

doesn’t split even as an extension of Banach spaces. As M is infinite dimensional there is a 

sequence (𝑒𝑖) of mutually orthogonal projections having finite trace. Let 𝐴 be the von 

Neumann subalgebra of 𝑀 spanned by these projections. Notice that we may consider �̃� as 

a *-subalgebra of �̃� and 𝐿𝑝(𝐴, 𝜏 ) as a subspace of 𝐿𝑝(𝑀, 𝜏 ). 
Clearly, p maps 𝐿𝑝(𝐴, 𝜏 ) to �̃� as an 𝐴-centralizer and we have a commutative diagram of 

inclusions 
𝐿𝑝(𝐴, 𝜏 ) ⟶ 𝐿𝑝(𝐴, 𝜏 ) ⊕Ω𝑝

𝐿𝑝(𝐴, 𝜏 )  ⟶ 𝐿𝑝(𝐴, 𝜏 )

↓                       ↓                                           ↓
𝐿𝑝(𝑀, 𝜏 )   ⟶  𝑍𝑝(𝑀, 𝜏 )      ⟶         𝐿𝑝(𝑀, 𝜏 )

 

On the other hand, the “conditional expectation” given by 

𝐸𝐴(𝑓) =∑
𝜏(𝑓𝑒𝑖)

𝜏(𝑒𝑖)
𝑒𝑖

𝑖

 

is a contractive projection on 𝐿𝑝(𝑀, 𝜏 ) whose range is 𝐿𝑝(𝐴, 𝜏 ). The immediate 

consequence of all this is that if the lower extension of the preceding diagram splits, then so 

does the upper one. 

Let us check that this is not the case. As 𝐴 is amenable (it is isometrically *-isomorphic to 

the algebra ℓ
∞

) and 𝐿𝑝(𝐴, 𝜏 ) is a dual bimodule (it is isometrically isomorphic to ℓ
 𝑝

, which 
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is reflexive) we have that the upper row in the above diagram splits as an extension of 

Banach spaces if and only if it splits as an extension of Banach 𝐴-modules. And this  

happens if and only if there is a morphism 𝜙: 𝐿𝑝(𝐴, 𝜏 ) → �̃� approximating Ω𝑝in the sense 

that 

‖Ω𝑝(𝑓) − 𝜙(𝑓)‖
𝑝
≤ 𝛿‖𝑓‖𝑝                                                   (43) 

for some constant 𝛿 and every 𝑓 ∈ 𝐿𝑝(𝐴, 𝜏 ). It is clear that every morphism 𝜙: 𝐿𝑝(𝐴, 𝜏 ) →
�̃� has the form 𝜙(∑ (𝑡𝑖𝑒𝑖)𝑖 ) = ∑ 𝜙𝑖𝑡𝑖𝑒𝑖𝑖  for some sequence of complex numbers (𝜙𝑖). 
Taking 𝑓 = 𝑒𝑖 in (43) we see that |𝜙𝑖 + 𝑙𝑜𝑔 𝜏 (𝑒𝑖)| ≤ 𝛿. It follows that if (43) holds for 

some 𝜙 = (𝜙𝑖) then it must hold for 𝜙𝑖 = −𝑙𝑜𝑔 𝜏 (𝑒𝑖), possibly doubling the value of 𝛿. 

Fix 𝑛 ∈ ℕ and take 𝑓 = 𝑡𝑖𝑒𝑖 normalized in 𝐿𝑝(𝜏) in such a way that the nonzero summands 

in the norm of 𝑓 agree: 

𝑓 =∑(𝑛𝜏(𝑒𝑖))
−1/𝑝

𝑛

𝑖=1

𝑒𝑖 . 

For this 𝑓 and 𝜙𝑖 = −𝑙𝑜𝑔 𝜏 (𝑒𝑖) we have 𝑝(𝑓) − 𝜙(𝑓) = −𝑙𝑜𝑔(𝑛)𝑓, so ‖Ω𝑝(𝑓) −

𝜙(𝑓)‖
𝑝
= 𝑙𝑜𝑔(𝑛), which makes impossible the estimate in (43). 

We extend Kalton-Peck duality results in [139] to all semifinite algebras by showing 

that for every trace 𝜏 the dual space of 𝑍𝑝(𝑀, 𝜏 ) is isomorphic to 𝑍𝑞(𝑀, 𝜏 ), where p and q 

are conjugate exponents, that is, 𝑝−1 + 𝑞−1 = 1. (see [149] for the particular case of 

Schatten classes). In order to achieve a sharp adjustment of the parameters, let us agree that, 

given 𝑝 ∈ (1,∞) and a Lipschitz function 𝜑:ℝ → ℂ, the associated Kalton-Peck centralizer 

Φ𝑝 ∶ 𝐿
𝑝(𝑀, 𝜏) → �̃� is defined by Φ𝑝(𝑓) = 𝑓𝜑(𝑝 𝑙𝑜𝑔(|𝑓|/‖𝑓‖𝑝) and the corresponding 

Kalton-Peck space is 𝑍𝑝
𝜑
(𝑀, 𝜏 ) = 𝐿𝑝(𝜏) ⊕Φ𝑝

𝐿𝑝(𝜏). This is coherent with (42), where 𝜑 is 

the identity on ℝ. 

Theorem (4.3.10)[154]: Let 𝑝 and 𝑞 be conjugate exponents, 𝜑 a Lipschitz function, and 𝜏 

be a trace. Then 𝑍𝑞
𝜑
(𝜏) is isomorphic to the conjugate of 𝑍𝑝

𝜑
(𝜏) under the pairing 

           〈(𝑥, 𝑦), (𝑣, 𝑤)〉 = 𝜏(𝑥𝑤 − 𝑦𝑣)       ((𝑥, 𝑦) ∈ 𝑍𝑞
𝜑
(𝜏), (𝑣, 𝑤) ∈ 𝑍𝑝

𝜑
(𝜏))         (44) 

Proof. The proof depends on the following elementary inequality: given 𝑠, 𝑡 ∈ ℂ one has 

|𝑡𝑠 (𝑙𝑜𝑔
|𝑡|𝑞

|𝑠|𝑝
)| ≤

𝑝

𝑒
(|𝑡|𝑞 + |𝑠|𝑝) .                                        (45) 

This is (a rewording of) the case 𝑛 = 1 of [139] that Kalton and Peck use in the proof of 

[139]. Let us see that the pairing is continuous. To this end write 

𝑥𝑤 − 𝑦𝑣 = (𝑥 − Φ𝑞(𝑦))𝑤 + Φ𝑞(𝑦)𝑤 − 𝑦(𝑣 − Φ𝑝(𝑤)) − 𝑦Φ𝑝(𝑤). 

As ‖(𝑥 − Φ𝑝(𝑦))𝑤‖1 ≤ ‖𝑥 − Φ𝑞‖𝑞
‖𝑤‖𝑝 and, similarly, ‖𝑦(𝑣 − Φ𝑝(𝑤))‖1 ≤

‖𝑦‖𝑞‖𝑣 −

 Φ𝑝(𝑤)‖𝑝it suffices to obtain an estimate of the form 

                              |𝜏(Φ𝑞(𝑦)𝑤 − 𝑦Φ𝑝(𝑤))| ≤ 𝑀‖𝑦‖𝑞‖𝑤‖𝑝.                                  (46) 

First, let us assume 𝑦 and 𝑤 are 𝜎-elementary operators with ‖𝑦‖𝑞 = ‖𝑤‖𝑝 = 1 and 

representations 𝑦 = ∑ 𝑡𝑖𝑦𝑖 and 𝑤 = ∑𝑠𝑗𝑤𝑗 converging in 𝐿𝑞(𝜏) and 𝐿𝑝(𝜏), respectively.  

We may assume with no loss of generality that ∑ 𝑦𝑖𝑖 = ∑ 𝑤𝑗𝑗 = 1𝑀 (summation in the 

𝜎(𝑀,𝑀∗) topology). We have 
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Φ𝑞(𝑦)𝑤 − 𝑦Φ𝑝(𝑤)

= (∑𝑡𝑖𝜑(𝑞 log|𝑡𝑖|)𝑦𝑖
𝑖

)(∑𝑠𝑗𝑤𝑗
𝑗

) − (∑𝑡𝑖𝑦𝑖
𝑖

)(∑𝑠𝑗𝜑(𝑝𝑙𝑜𝑔 |𝑠𝑗|)𝑤𝑗
𝑗

) 

=∑𝑡𝑖𝑠𝑗
𝑖,𝑗

(𝜑(𝑙𝑜𝑔 |𝑡𝑖|
𝑞) − 𝜑(𝑙𝑜𝑔 |𝑠𝑗|

𝑝))𝑦𝑖𝑤𝑗 . 

Applying (45) and taking into account that the product of any two projections has positive 

trace we can estimate the left-hand of (46) as follows: 

|𝜏 (Φ𝑞(𝑦)𝑤 − 𝑦Φ𝑝𝑤)| ≤∑|𝑡𝑖||𝑠𝑗||𝜑(𝑙𝑜𝑔 |𝑡𝑖|
𝑞)

𝑖,𝑗

− 𝜑(𝑙𝑜𝑔 |𝑠𝑗|
𝑝)|𝜏(𝑦𝑖𝑤𝑗) 

≤ 𝐿𝜑∑|𝑡𝑖||𝑠𝑗|

𝑖,𝑗

|𝑙𝑜𝑔
|𝑡𝑖|

𝑞

|𝑠𝑗|
𝑝
| 𝜏(𝑦𝑖𝑤𝑗) 

≤ 𝐿𝜑∑
𝑝

𝑒
(|𝑡𝑖|

𝑞 + |𝑠𝑗|
𝑝)

𝑖,𝑗

𝜏(𝑦𝑖𝑤𝑗) 

=
𝑝

𝑒
𝐿𝜑 (∑|𝑡𝑖|

𝑞

𝑖

(∑𝜏(𝑦𝑖𝑤𝑗)

𝑗

) +∑|𝑠𝑗|
𝑝

𝑗

(∑𝜏(𝑦𝑖𝑤𝑗)

𝑗

)) 

=
𝑝

𝑒
𝐿𝜑 (∑|𝑡𝑖|

𝑞𝜏(𝑦𝑖)

𝑖

+∑|𝑠𝑗|
𝑝𝜏 (𝑤𝑗)

𝑗

) 

=
2𝑝𝐿𝜑

𝑒
, 

where 𝐿𝜑 denotes the Lipschitz constant of 𝜑. Assuming for instance that 1 < 𝑝 ≤ 2, by 

homogeneity 

|𝜏(Φ𝑞(𝑦)𝑤 − 𝑦Φ𝑝(𝑤))| ≤ 2𝐿𝜑‖𝑦‖𝑞‖𝑤‖𝑝,                                (47) 

whenever 𝑦 and 𝑤 are 𝜎-elementary operators. Now, suppose 𝑦 and 𝑤 are self-adjoint. It is 

easy to find a sequences of 𝜎-elementary operators (𝑦𝑛) and (𝑤𝑛) such that the numerical 

sequences 

‖𝑦𝑛 − 𝑦‖𝑞 , ‖Φ𝑞𝑦𝑛 −Φ𝑞𝑦‖𝑞 ,
‖𝑤𝑛 −𝑤‖𝑝, ‖Φ𝑝𝑤𝑛 −Φ𝑝𝑤‖𝑝 

are all convergent to zero. This implies that 

‖(Φ𝑞(𝑦)𝑤 − 𝑦Φ𝑝(𝑤)) − (Φ𝑞(𝑦𝑛)𝑤𝑛 − 𝑦𝑛Φ𝑝(𝑤𝑛))‖1 → 0 

and so (47) holds when 𝑦 and 𝑤 are self-adjoint. Next, if 𝑦 ∈ 𝐿𝑝(𝑀, 𝜏 ) and 𝑤 ∈ 𝐿𝑝(𝑀, 𝜏 ) 
is self-adjoint, we can write 𝑦 = 𝑦1 + 𝑖𝑦2, with each 𝑦𝑖  self-adjoint and since Φ𝑞 is quasi-

linear 

one has ‖Φ𝑞(𝑦) − Φ𝑞(𝑦1) − 𝑖Φ𝑞(𝑦2)‖𝑞 ≤ 𝑄[Φ𝑞](‖𝑦1‖𝑞 + ‖𝑦2‖𝑞) ≤ 2𝑄[Φ𝑞]‖𝑦‖𝑞  and 

|𝜏(Φ𝑞(𝑦)𝑤 − 𝑦Φ𝑞𝑤)|  

= |𝜏((Φ𝑞𝑦 − Φ𝑞𝑦1 − 𝑖Φ𝑞𝑦2)𝑤 + (Φ𝑞𝑦1 + 𝑖Φ𝑞𝑦2)𝑤 − (𝑦1 + 𝑖𝑦2)Φ𝑝(𝑤))| 

≤ 2𝑄[Φ𝑞]‖𝑦‖𝑞‖𝑤‖𝑝 + 2𝐿𝜑(‖𝑦1‖𝑞 + ‖𝑦2‖𝑞)‖𝑤‖𝑝 

≤ (2𝑄[Φ𝑞] + 4𝐿𝜑)‖𝑦‖𝑞‖𝑤‖𝑝. 

Finally, writing 𝑤 = 𝑤1 + 𝑖𝑤2 with each 𝑤𝑖 self-adjoint and using the quasilinearity of Φ𝑝 

one arrives to (46), where 𝑀 depends on 𝑝, 𝑞 and 𝐿𝜑 , but not on 𝑓 or 𝑔. 
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Therefore, going back to (44) we have 

|𝜏(𝑥𝑤 − 𝑦𝑣)| = |𝜏((𝑥 − Φ𝑞(𝑦))𝑤 + Φ𝑞(𝑦)𝑤 − 𝑦(𝑣 − Φ𝑝(𝑤)) − 𝑦Φ𝑝(𝑤))| 

≤ ‖(𝑣 − Φ𝑝(𝑤)‖𝑝
‖𝑦‖𝑞 +𝑀‖𝑤‖𝑝‖𝑦‖𝑞 + ‖𝑤‖𝑝‖(𝑥 − Φ𝑞(𝑦)‖𝑞 

≤ (𝑀 + 1)‖(𝑥, 𝑦)‖Φ𝑞
‖(𝑣, 𝑤)‖Φ𝑝

. 

The remainder of the proof is quite easy: we have just seen that the map 𝑢: 𝑍𝑞
𝜑
(𝜏) →

(𝑍𝑝
𝜑
(𝜏))∗ given by (𝑢(𝑥, 𝑦))(𝑣, 𝑤) = 𝜏 (𝑥𝑤 − 𝑦𝑣) is bounded. On the other hand, the 

following diagram is commutative: 

𝐿𝑞(𝜏) ⟶ 𝑍𝑞
𝜑
(𝜏) ⟶ 𝐿𝑞(𝜏) 

∥                ↓ 𝑢           ↓ −1

𝐿𝑞(𝜏)∗ ⟶ (𝑍𝑞
𝜑
(𝜏))

∗
⟶ 𝐿𝑞(𝜏)∗

 

Here, the lower row is the adjoint (in the Banach space sense) of the extension induced by 

Φ𝑝. It follows that 𝑢 is one-to-one, onto, and open. 

Theorem (4.3.9) cannot be extended to arbitrary centralizers. Actually, the following 

example shows that the behavior of Φ𝜏 may depend strongly on the trace 𝜏. 

Example (4.3.11)[154]: For each ± and 𝑝 ∈ (1,∞), consider the centralizer on 𝐿𝑝(ℝ+) 
given by Φ±(𝑓) = 𝑓(𝚤±(𝑙𝑜𝑔(|𝑓|/‖𝑓‖𝑝))), where 𝚤+(𝑡) = max {0, 𝑡} and 𝚤−(𝑡) = min {0, 𝑡} 
Then, with the notation of Theorem (4.3.7): 

(a) Φ± is nontrivial on 𝐿𝑝(ℝ+). 
(b) If 𝜏 is bounded away from zero on the projections of 𝑀 then Φ𝜏

+ is trivial on 𝐿𝑝(𝑀, 𝜏 ), 
while Φ𝜏

− is nontrivial as long as 𝑀 is infinite-dimensional. 

(c) If 𝜏(1𝑀) <∞ then Φ𝜏
− is trivial on 𝐿𝑝(𝑀, 𝜏 ), while Φ𝜏

+ is nontrivial as long as 𝑀 is 

infinite-dimensional. 

Proof. Let Ψ: 𝐿𝑝 → 𝐿0 be any centralizer. Let (𝐴𝑖) be a sequence of disjoint measurable 

sets, with finite and positive measure and let 𝒜 be the least 𝜎-algebra of Borel sets 

containing every 𝐴𝑖. Then, if Ψ maps 𝐿𝑝(ℝ+,𝒜 , 𝜆) to 𝐿0(ℝ+,𝒜 , 𝜆), in particular if Ψ is 

lazy, then it defines an 𝐿∞(ℝ+,𝒜 , 𝜆) centralizer on 𝐿𝑝(ℝ+, 𝒜 , 𝜆). Moreover, if  Ψ is 

trivial on 𝐿𝑝(ℝ+,𝒜 , 𝜆) (as a quasi-linear map), then it is also trivial as an 𝐿∞(ℝ+, 𝒜 , 𝜆) 
centralizer.  

(a) To check that Φ+ is nontrivial on 𝐿𝑝(ℝ+) just take a sequence (𝐴𝑖) with |𝐴𝑖| = 2−𝑖. To 

check that Φ− is nontrivial, take 𝐴𝑖 with |𝐴𝑖| = 1 for all 𝑖 ∈ ℕ. 

(b) We may assume 𝜏(𝑒) ≥ 1 for every projection 𝑒 ∈ 𝑀. Pick a positive, 𝜎-elementary 𝑓 

normalized in 𝐿𝑝(𝜏) so that 𝑓 = ∑ 𝑓𝑖𝑒𝑖
∞
𝑛=1 , with 𝑓𝑖 ≥ 0 and 𝑒𝑖 disjoint projections. 

Obviously 𝑓𝑖 ≤ 1 for every 𝑖 and so Φ+(𝑓) = 0. It follows that Φ+ is bounded on 𝐿𝑝(𝜏). 
As  Φ𝜏

+ +Φ𝜏
− = Ω𝑝 and Φ+ is trivial we see that Φ− must be nontrivial since Ω𝑝is nontrivial 

unless 𝑀 is finite-dimensional. 

(c) We may assume 𝜏(1𝑀) = 1. Take a positive, normalized 𝑓 ∈ 𝐿𝑝(𝑀, 𝜏 ) and write 𝑓 =

∫ 𝜆𝑑𝑒(𝜆)
∞

0
 to be its spectral resolution. Set 𝑔 = ∫ 𝜆𝑑𝑒(𝜆)

1

0
 and ℎ = ∫ 𝜆𝑑𝑒(𝜆)

∞

1+
. One has 

‖Φ𝜏
−(𝑓) − Φ𝜏

−(𝑔) − Φ𝜏
−(ℎ)‖𝑝 ≤ 𝑄[Φ𝜏

−](‖𝑔‖𝑝 + ‖ℎ‖𝑝) ≤ 2𝑄[Φ𝜏
−]. 

Obviously, Φ𝜏
−(ℎ) = 0, while 𝑔 ∈ 𝑀, with ‖𝑔‖∞ ≤ 1. Hence 

‖Φ𝜏
−(𝑔) − 𝑔Φ𝜏

−(1𝑀)‖𝑝 ≤ 𝐶[Φ𝜏
−]‖𝑔‖∞‖1‖𝑝 ≤ 𝐶[Φ𝜏

−]. 

But  Φ𝜏
−(1𝑀) = 0 and so ‖Φ𝜏

− (𝑓)‖𝑝 ≤ 2𝑄[Φ𝜏
−] + 𝐶[Φ𝜏

−]. 

The centralizers Φ𝜏
− appearing in Theorem (4.3.7) have the property that, if 𝑥 ∈

𝐿𝑝(𝑀, 𝜏 ) is self-adjoint, then 𝑥 and Φ𝜏(𝑥) commute. This is not by accident. Indeed, 

suppose that   Ψ: 𝐿𝑝(𝑀, 𝜏 ) → �̃� is any bicentralizer and that 𝑥 is selfadjoint. Let 𝐴 be 
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a maximal abelian self-adjoint subalgebra containing the spectral projections of 𝑥, so that 

𝑎𝑥 = 𝑥𝑎 for every 𝑎 ∈ 𝐴. Then 

‖𝑎Ψ𝑥 − (Ψ𝑥)𝑎‖𝑝 = ‖𝑎Ψ𝑥 −Ψ(𝑎𝑥) + Ψ(𝑥𝑎) − (Ψ𝑥)𝑎‖𝑝 ≤ 2𝐶[Ψ]‖𝑎‖‖𝑥‖, 

and ‖Ψ(𝑥) − 𝑢(Ψ𝑥)𝑢∗‖ ≤ 𝑀‖𝑥‖ for every unitary 𝑢 ∈ 𝐴. Averaging the difference 

Ψ(𝑥) − 𝑢(Ψ𝑥)𝑢∗ over the unitary group of 𝐴 one obtains an element 𝐵(𝑥) ∈ 𝐿𝑝(𝑀, 𝜏 ) such 

that ‖𝐵(𝑥)‖𝑝 ≤ 𝑀‖𝑥‖𝑝 and such that Ψ(𝑥) − 𝐵(𝑥) commutes with 𝐴. Thus, if we define 

Ψ̃(𝑥) = Ψ(𝑥) − 𝐵(𝑥) we get a centralizer with the additional property that 𝑥 is self-adjoint, 

then Ψ̃(𝑥) commutes with (the spectral projections of) 𝑥. 
One may wonder what is the role of the symmetry of the starting centralizer Φ in Theorem 

(4.3.7). In general one cannot expect to get bicentralizers out from arbitrary centralizers, as 

shown by Kalton in [136]. And this is so because, if 𝑀 is large enough, the bimodule 

structure of 𝐿𝑝(𝑀, 𝜏 ) already encodes the “symmetric” structure of its “commutative” 

subspaces. Actually even the definition of 𝑋(𝑀, 𝜏) requires the symmetry of the function 

space 𝑋. To explain this, let us consider the following situation. Let ℋ = ℓ
2
 be the standard 

Hilbert space of 2-summable sequences 𝑓:ℕ → ℂ and consider the algebra 𝐵(ℋ) of all 

bounded operators on ℋ, with the usual trace. Then the corresponding 𝐿𝑝 spaces are just the 

Schatten classes 𝑆𝑝. 

Each bounded sequence 𝑏 ∈ ℓ
∞
 induces a multiplication operator 𝑀𝑏(𝑓) = 𝑏 ∙ 𝑓, which is 

“diagonal” with respect to the unit basis of ℋ. 

It is clear from the preceding remark that if Ψ is any bicentralizer on 𝑆𝑝, then one may 

assume that Ψ(𝑥) is “diagonal” whenever 𝑥 is so. Since diagonal operators in 𝑆𝑝 correspond 

with multiplication operators by a sequence in ℓ
 𝑝
 we see that Ψ gives rise to a mapping 𝜓 

(actually an ℓ
∞

-centralizer) on ℓ
 𝑝

 defined by Ψ(𝑀𝑓) = 𝑀𝜓(𝑓).   

Let us see that 𝜓 must be symmetric. Indeed, let 𝑢 be a permutation of ℕ and consider the 

isometry of ℋ given by 𝑈(ℎ) = ℎ ∘ 𝑢. Then 𝑈∗ = 𝑈−1 is given by ℎ ⟼ ℎ ∘ 𝑢−1. Note that 

if 𝑏 ∈ ℓ
∞

, then 𝑈𝑀𝑏𝑈
∗ = 𝑀𝑏∘𝑢 since for ℎ ∈ ℋ 

𝑈𝑀𝑏𝑈
∗(ℎ) = 𝑈(𝑀𝑏(ℎ ∘ 𝑢

−1)) = 𝑈(𝑏 ∙ (ℎ ∘ 𝑢−1)) = (𝑏 ∘ 𝑢) ∙ ℎ = 𝑀𝑏∘𝑢(ℎ). 
Thus, if 𝑓 ∈ ℓ

𝑝
, and taking 𝑏 = 𝜓(𝑓), we have 

‖𝜓(𝑓 ∘ 𝑢) − (𝜓(𝑓)) ∘ 𝑢‖ℓ𝑝 = ‖𝑀𝜓(𝑓∘𝑢) −𝑀(𝜓(𝑓)) ∘ 𝑢‖
𝑆𝑝

= ‖Ψ(𝑀𝑓∘𝑢) − 𝑈Φ(𝑀𝑓)𝑈
∗‖

𝑆𝑝
 

= ‖𝑈Ψ(𝑀𝑓)𝑈
∗ − 𝑈Φ(𝑀𝑓)𝑈

∗‖
𝑆𝑝
≤ 𝐶[Ψ]‖𝑀𝑓‖𝑆𝑝

= 𝐶[Ψ]‖𝑓‖ℓ𝑝 

and 𝜓 is symmetric. 

We face the problem of twisting arbitrary 𝐿𝑝 spaces, including those built over type 

III von Neumann algebras. There are several constructions of these 𝐿𝑝 spaces, none of them 

elementary. All provide bimodule structures on the resulting spaces that turn out to be 

equivalent at the end. 

It is natural to ask for (nontrivial) self-extensions of 𝐿𝑝(𝑀) in the category of Banach 

bimodules over 𝑀. Unfortunately we have been unable to construct such objects; 

nevertheless we can still use the interpolation trick to obtain self extensions as (one-sided) 

modules. In this regard the most suited representation of 𝐿𝑝 spaces is one due to Kosaki. 

For the sake of clarity, we can restrict here to 𝜎-finite algebras so that we can take 

functionals from 𝑀∗. So, let 𝑀 be a von Neumann algebra and 𝜙 ∈ 𝑀∗ a faithful positive 

functional. (We don’t normalize 𝜙 because the restriction of a state to a direct summand is 

not a state; see Lemma (4.3.12)(b) below.) We “include” 𝑀 into 𝑀∗ just taking 𝑎 ∈ 𝑀 ⟼
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𝑎𝜙 ∈ 𝑀∗ thus starting the interpolation procedure with Σ = 𝑀∗ as “ambient” space and Δ =
𝑀𝜙, to which the norm and 𝜎(𝑀,𝑀∗) topology are transferred without further mention. 

Then, the Kosaki (left) version of the space 𝐿𝑝(𝑀) is defined as 

𝐿𝑝(𝜙) = 𝐿𝑝(𝑀,𝜙) = [𝑀𝜙,𝑀∗]𝜃 , (𝜃 = 1/𝑝). 
We emphasize we are referring to Kosaki’s construction [162], [144], [165] and not to that 

of Terp [167], [168]. Recall that 𝑀∗ is an 𝑀-bimodule with product given by 

〈𝑎𝜓𝑏, 𝑥〉 = 〈𝜓, 𝑏𝑥𝑎〉            (𝜓 ∈ 𝑀∗;  𝑎, 𝑏, 𝑥 ∈ 𝑀). 
The inclusion ∙ 𝜙:𝑀 → 𝑀∗ is, however, only a left-homomorphism: (𝑏𝑎) ∙ 𝜙 = 𝑏(𝑎𝜙). 
Asking for a two-sided homomorphism means that one should also have 

(𝑎𝑏) ∙ 𝜙 = 𝑎𝑏𝜙 = 𝑎𝜙𝑏 = (𝑎𝜙) ∙ 𝑏. 
In particular (take 𝑎 = 1) 𝑏𝜙 = 𝜙𝑏 for all 𝑏 ∈ 𝑀, which happens if and only if 𝜙 is a trace. 

Let 𝒢 = 𝒢(𝑀,𝜙) denote the Calderon space associated to the couple (𝑀𝜙,𝑀∗) and 

put 𝒢0 = 𝒢(𝑀,𝜙)0 = {𝑔 ∈ 𝒢: 𝑔(𝜃) = 0}, where 𝜃 = 1/𝑝 is fixed. These are left 𝑀-

modules in the obvious way and so are the quotients 𝐿𝑝(𝑀,𝜙) = 𝒢/𝒢0. Plug and play to get 

the push-out diagram 

                                 
𝒢0 = 𝑘𝑒𝑟 𝛿𝜃 ⟶ 𝒢

  𝛿𝜃   
→  𝐿𝑝(𝑀,𝜙)

𝛿𝜃
’ ↓               ↓                   ∥

𝐿𝑝(𝑀,𝜙) ⟶ 𝑃𝑂 ⟶ 𝐿𝑝(𝑀,𝜙)

                                    (48) 

(where 𝜃 = 1/𝑝) and observe that every arrow here is a homomorphism of left 𝑀-modules. 

Let us denote by 𝑍𝑝(𝑀,𝜙) or 𝑍𝑝(𝜙) the push-out space in the preceding diagram. This is 

coherent with the notation used in the tracial case. 

We have mentioned that there is also a right action of 𝑀 on 𝐿𝑝(𝑀,𝜙) which is compatible 

with the given left action and makes 𝐿𝑝(𝑀, 𝜙) into a bimodule. All known descriptions of 

that action are quite heavy and depend on Tomita-Takesaki theory. That action is in general 

incompatible with the arrows in the preceding diagram. 

Now, we are confronted with the problem of deciding whether the lower extension in 

Diagram 19 is trivial or not. The pattern followed in the proof of Theorem (4.3.9)cannot be 

used now because we have only a left multiplication in 𝑍𝑝(𝑀, 𝜙). 

Suppose we are given two von Neumann algebras 𝑀 and 𝑁 with distinguished faithful 

normal states 𝜙 and 𝜓. If 𝑢∞:𝑀 → 𝑁 and 𝑢1:𝑀∗ → 𝑁∗ are operators making the square 

𝑀
  𝑢∞  
→   𝑁

∙ 𝜙 ↓            ↓∙ 𝜓 

𝑀∗

  𝑢1   
→  𝑁∗

 

commutative, then interpolation yields operators 𝑢𝑝: 𝐿
𝑝(𝑀, 𝜙) → 𝐿𝑝(𝑁,𝜓) for each 𝑝 ∈ (1,

∞). 
Lemma (4.3.12)[154]: Let 𝑀 be a von Neumann algebra with a faithful positive normal 

functional 𝜙. Let 𝑁 be a subalgebra of 𝑀 equipped with the restriction of 𝜙. Suppose either 

(a) 𝑁 is a von Neumann subalgebra of 𝑀 and there is a normal conditional expectation 

𝜀:𝑀 → 𝑁 leaving 𝜙 invariant; or 

(b) 𝑁 is a von Neumann algebra, and a direct summand in 𝑀. 

Then, for each 𝑝 ∈ [1,∞], there are homomorphisms of 𝑁-modules 𝚤𝑝 ∶ 𝐿
𝑝(𝑁, 𝜙|𝑁) →

𝐿𝑝(𝑀,𝜙) and 𝜀𝑝: 𝐿
𝑝(𝑀, 𝜏 ) → 𝐿𝑝(𝑁, 𝜙|𝑁) such that 𝜀𝑝 ∘ 𝚤𝑝 is the identity on 𝐿𝑝(𝑁, 𝜙|𝑁). 

Proof. (a) We have assembled the hypotheses in order to guarantee the commutativity of 

the diagram 
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𝑁
       𝑖        
→     𝑀

      𝜀     
→   𝑁

∙ 𝜙|𝑁 ↓       ∙ 𝜙 ↓             ↓∙ 𝜙|𝑁

𝑁∗
     𝜀∗   
→   𝑀∗

     𝑖∗   
→   𝑁 ∗

                                          (49) 

Here, 𝚤: 𝑁 → 𝑀 the inclusion map and the subscript indicates preadjoint (in the Banach 

space sense), in particular 𝚤∗ is plain restriction.  

Indeed, for 𝑎 ∈ 𝑁, one has 𝜀∗(𝑎𝜙) =  𝑎𝜀∗(𝜙) = 𝑎𝜙, so the left square commutes. As for 

the right one, taking 𝑎 ∈ 𝑁, 𝑏 ∈ 𝑀 we have 

〈𝜀(𝑏)𝜙, 𝑎〉 = 〈𝜙, 𝑎𝜀(𝑏)〉 = 〈𝜙, 𝜀(𝑎𝑏)〉 = 〈𝜙, 𝑎𝑏〉 = 〈𝑏𝜙, 𝑎〉. 
Notice, moreover, that 𝜀 ∘ 𝚤 is the identity on 𝑁, while 𝚤∗ ∘ 𝜀∗ is the identity on 𝑁∗. Therefore, 

interpolating (𝚤, 𝜀∗) we get operators 𝚤𝑝: 𝐿
𝑝(𝑁, 𝜙|𝑁 → 𝐿𝑝(𝑀,𝜙) for 1 ≤ 𝑝 ≤∞, while 

(𝜀, 𝚤∗) gives operators 𝜀𝑝: 𝐿
𝑝(𝑀,𝜙) → 𝐿𝑝(𝑁, 𝜙|𝑁). And since 𝜀𝑝 ∘ 𝚤𝑝 is the identity on 

𝐿𝑝(𝑁, 𝜙|𝑁) we are done. 

(b) In this case we can use the same diagram, just replacing 𝜀 by the projection 𝑃:𝑀 → 𝑁 

given by 𝑃(𝑎) = 𝑒𝑎𝑒, where 𝑒 is the unit of 𝑁. Then 𝑃∗: 𝑁∗ → 𝑀∗ is given by 〈𝑃∗(𝜓), 𝑏〉 =
〈𝜓, 𝑒𝑏𝑒〉. 
The following step is the result we are looking for. 

Lemma (4.3.13)[154]: With the same hypotheses as in Lemma (4.3.12), 𝑍𝑝(𝑁, 𝜙|𝑁) is a 

complemented subspace of 𝑍𝑝(𝑀, 𝜙) for every 1 < 𝑝 <∞. 

Proof. We write the proof assuming (a). The other case requires only minor modifications 

that are left to the reader. Let us begin with the embedding of 𝑃𝑂(𝑁) = 𝑍𝑝(𝑁, 𝜙|𝑁) into 

𝑃𝑂(𝑀) = 𝑍𝑝(𝑀,𝜙). Consider the diagram 

 
Here, (𝜀∗)∘ sends a given function 𝑓: 𝕊 → 𝑁∗ to the composition 𝜀∗ ∘ 𝑓: 𝕊 → 𝑁∗ → 𝑀∗ and 

the mappings from 𝐿𝑝(𝑁) to 𝐿𝑝(𝑀) are all given by 𝚤𝑝. It is not hard to check that this is a 

commutative diagram. Therefore, we can insert an operator 𝜅: 𝑃𝑂(𝑁) → 𝑃𝑂(𝑀) making 

the resulting diagram commutative because of the universal property of the push-out square 
𝒢(𝑁,𝜙|𝑁)0 ⟶ 𝒢(𝑁, 𝜙|𝑁)

𝛿𝜃
’ ↓                        ↓      

𝐿𝑝(𝑁) ⟶  𝑃𝑂(𝑁)

 

A similar argument shows the existence of an operator 𝜋: 𝑃𝑂(𝑀) → 𝑃𝑂(𝑁) making 

commutative the diagram 
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The arrows from 𝐿𝑝(𝑀) to 𝐿𝑝(𝑁) are now given by 𝜀𝑝. Putting together the two preceding 

diagrams it is easily seen that 𝜋 ∘ 𝜅 is the identity on 𝑃𝑂(𝑁). 
Here is the main result about the twisting of Kosaki’s 𝐿𝑝. As we shall see later 𝑍𝑝(𝑀,𝜙) 

doesn’t depend on 𝜙 and so the conclusion of the following theorem holds for any 𝜙. 

Theorem (4.3.14)[154]: Let 𝑀 be an infinite dimensional von Neumann algebra. There is 

a faithful normal state 𝜙 for which the lower extension of the push-out diagram 

𝑘𝑒𝑟 𝛿𝜃 ⟶ 𝒢(𝑀,𝜙)
   𝛿𝜃   
→   𝐿𝑝(𝑀,𝜙)

𝛿𝜃
’ ↓                ↓                   ∥     

𝐿𝑝(𝑀,𝜙) ⟶ 𝑃𝑂 ⟶ 𝐿𝑝(𝑀, 𝜙)

 

is nontrivial. 

Proof. The idea of the proof is to choose 𝜙 in such a way that its “centralizer subalgebra” 

𝑀𝜙 = {𝑎 ∈ 𝑀: 𝑎𝜙 = 𝜙𝑎} 
is infinite dimensional. After that we proceed as follows. By [155], there is a normal 

conditional expectation 𝜀:𝑀 → 𝑀𝜙 leaving 𝜙 invariant: 𝜙 = 𝜙|𝑀𝜙 ∘ 𝜀. Actually 𝜀 is 

unique, by [155]. 

Apply now Lemma (4.3.13) to embed 𝑃𝑂(𝑀𝜙, 𝜙) as a complemented subspace (in fact as 

a “complemented subextension”) of 𝑃𝑂(𝑀,𝜙) and please note that the restriction of 𝜙 to 

𝑀𝜙 is a (finite) trace by the very definition of 𝑀𝜙. 

The nonsplitting of 𝑃𝑂(𝑀𝜙, 𝜙) is nothing but a particular case of Theorem (4.3.9) as for a 

finite trace 𝜏 one has 𝑀 ⊂ 𝐿1(𝜏) and, after identifying 𝐿1(𝜏) with 𝑀∗, the inclusion agrees 

with Kosaki’s left method. 

In order to find out the required 𝜙, let us decompose 𝑀 = 𝑁⊕ℒ, with 𝑁 semifinite and ℒ 

without direct summands of type 𝐼 (This can be done in several ways: for instance,  taking 

𝑁 as the semifinite part and ℒ as the type III part of 𝑀, or taking 𝑁 as the discrete part and 

ℒ as the continuous part, see [155].) 

By Lemma (4.3.13) we have an isomorphism 𝑃𝑂(𝑀, 𝜙) = 𝑃𝑂(𝑁, 𝜙|𝑁) ⊕
𝑃𝑂(ℒ, 𝜙|ℒ) and we can consider the two cases separately. 

(a) First, assume 𝑀 has no direct summand of type 𝐼 (so that it is either type II or III). Then, 

if 𝜓 is any faithful normal state on 𝑀, there is a faithful normal state φ (in the closure of 

the orbit of 𝜓 under the inner automorphisms of 𝑀) whose centralizer subalgebra 𝑀𝜙 is of 

type 𝐼𝐼1 ([161]) and we are done. 

(b) Now, suppose 𝑀 semifinite and let us see that any 𝜙 works. Let 𝜏 be a (𝑓𝑛𝑠) trace on 

𝑀 and let us identify 𝑀∗with 𝐿1(𝜏) so that we may consider 𝜙 as a 𝜏 -measurable operator 

on the ground Hilbert space. If 𝜙 is elementary, let us write it as 𝜙 = ∑ 𝑡𝑖𝑒𝑖
𝑛
𝑖=1 , where the 

𝑒𝑖 are mutually orthogonal projections in 𝑀. Letting 𝑀𝑖 = 𝑒𝑖𝑀𝑒𝑖  we see that ⊕𝑖 𝑀𝑖  is an 

infinite dimensional subalgebra of 𝑀𝜙, which is enough. Otherwise 𝜙 has infinite spectrum 

and its spectral projections already generate an infinite dimensional subalgebra of 𝑀𝜙. 
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We now give a description of the dual of 𝑍𝑝(𝑀,𝜙) for general 𝑀. To this end we 

consider the right embedding of 𝑀 into 𝑀∗ given by 𝑎 ⟼ 𝜙𝑎 which is a homomorphism of 

right modules and the new couple (𝜙𝑀,𝑀∗). The former couple using the left embedding is 

denoted by (𝑀𝜙,𝑀∗). The right version of Kosaki 𝐿𝑝is 

𝐿𝑝(𝑀,𝜙)𝑟 = [𝜙𝑀,𝑀∗]1/𝑝 = [𝑀∗, 𝜙𝑀]1−1/𝑝. 

Let us define 𝑍𝑝(𝑀,𝜙)
𝑟 as the push-out space (actually right module on 𝑀) in the ubiquitous 

diagram 

𝑘𝑒𝑟 𝛿𝜃 ⟶ 𝒢(𝑀,𝜙)𝑟
    𝛿𝜃    
→   𝐿𝑝(𝑀,𝜙)𝑟

𝛿𝜃
’ ↓                    ↓                          ∥       

𝐿𝑝(𝑀, 𝜙)𝑟 ⟶ 𝑃𝑂 ⟶ 𝐿𝑝(𝑀, 𝜙)𝑟
                                      (50) 

where 𝜃 = 1/𝑝 and 𝒢(𝑀, 𝜙)𝑟 is the Calderon space associated to the couple (𝜙𝑀,𝑀∗). 
We want to see that if 𝑝, 𝑞 ∈ (1,∞) are conjugate exponents, then the conjugate of 

𝑍𝑝(𝑀,𝜙)
ℓ (our former 𝑍𝑝(𝑀,𝜙)) is well isomorphic to 𝑍𝑞(𝑀,𝜙)

𝑟. 

Consider the couples (𝑀𝜙,𝑀∗) and (𝑀∗, 𝜙𝑀) (not (𝜙𝑀,𝑀∗)!). Then 

Δℓ = ∆(𝑀𝜙,𝑀∗) = 𝑀𝜙              𝑎𝑛𝑑       Δ𝑟 = Δ(𝑀∗, 𝜙𝑀) = 𝜙𝑀. 
Both 𝑀𝜙 and 𝜙𝑀 are dense in 𝑀∗ since 𝜙 is faithful. Define a bilinear form 𝛽: Δℓ × Δ𝑟 → ℂ 

by 𝛽(𝑎𝜙,𝜙𝑏) = 𝜙(𝑏𝑎). The key point in that 

𝛽(𝑎𝜙,𝜙𝑏)  = 〈𝑎𝜙, 𝑏〉 = 〈𝑎, 𝜙𝑏〉, 
where the brackets refer to the dual pairing between 𝑀∗ and 𝑀. (Notice, moreover, that 𝛽 is 

balanced in the sense that 𝛽(𝑐𝑓, 𝑔) = 𝛽(𝑓, 𝑔𝑐) for 𝑓 ∈ Δℓ, 𝑔 ∈ Δ𝑟 and 𝑐 ∈ 𝑀.) 

Then 𝛽 is bounded both at 𝜃 = 0 and 𝜃 = 1. Indeed, for 𝜃 = 0 one has 

|𝜙(𝑏𝑎)| ≤ ‖𝑎‖𝑀‖𝜙𝑏‖𝑀∗
.  

Similarly, when 𝜃 = 1, 

|𝜙(𝑏𝑎)| ≤ ‖𝑎𝜙‖𝑀∗
‖𝑏‖𝑀. 

By bilinear interpolation [44] 𝛽 extends to a bounded bilinear form on 𝐿𝑝(𝑀,𝜙)ℓ ×

𝐿𝑞(𝑀,𝜙)𝑟 = [𝑀𝜙,𝑀∗]𝜃
ℓ × [𝑀∗, 𝜙𝑀]𝜃

𝑟  which provides the dual pairing between 𝐿𝑝(𝑀,𝜙)ℓ 
and 𝐿𝑞(𝑀,𝜙)𝑟  (see [162] or [144]). Let us call 𝛽 to that extension. 

For 1 < 𝑝 <∞, let Ω𝑝
ℓ : 𝐿𝑝(𝑀,𝜙) → 𝑀∗ be the derivation associated to the identity 

[𝑀𝜙,𝑀∗]1/𝑝
ℓ  = 𝐿𝑝(𝑀, 𝜙) and Ω𝑝

𝑟 : 𝐿𝑝(𝑀,𝜙)𝑟 → 𝑀∗ that associated to [𝜙𝑀,𝑀∗]1/𝑝
ℓ =

𝐿𝑝(𝑀,𝜙)𝑟. Note that if 𝜃 = 1/𝑝, then the derivation associated to [𝑀∗, 𝜙𝑀]𝜃
𝑟 =

 𝐿𝑞(𝑀,𝜙)𝑟  is just −Ω𝑞
𝑟  . Proposition 1.3 in [39] yields 

|𝛽(Ω𝑝
ℓ (𝑓), 𝑔) − 𝛽(𝑓, Ω𝑞

𝑟(𝑔))| ≤
𝜋

𝑠𝑖𝑛(𝜋𝜃)
‖𝑓‖𝑝‖𝑔‖𝑞 

at least when 𝑓 ∈ 𝑀𝜙 and 𝑔 ∈ 𝜙𝑀. The following result is implicit in [54]. 

Theorem (4.3.15)[154]: Given conjugate exponents 𝑝, 𝑞 ∈ (1,∞), the dual of 

𝑍𝑝(𝑀, 𝜙)
ℓ = 𝐿𝑝(𝑀,𝜙)ℓ ⊕Ω𝑝

ℓ 𝐿𝑝(𝑀, 𝜙)ℓ 

is isomorphic to 

−𝑍𝑞(𝑀, 𝜙)
𝑟 = 𝐿𝑞(𝑀,𝜙)𝑟 ⊕−𝛺𝑞

𝑟 𝐿𝑞(𝑀, 𝜙)𝑟 . 

More precisely, there is an isomorphism of right Banach modules over 𝑀 making 

commutative the following diagram 

             

(𝐿𝑝(𝑀,𝜙)ℓ)∗
     𝜋∗    
→         (𝑍𝑝(𝑀,𝜙)

ℓ)∗
      𝑖∗    
→    (𝐿𝑝(𝑀,𝜙)ℓ)∗

∥                                         ↑ 𝑢                                     ∥      
𝐿𝑞(𝑀, 𝜙)𝑟 ⟶ 𝐿𝑞(𝑀, 𝜙)𝑟 ⊕−Ω𝑞

𝑟 𝐿𝑞(𝑀, 𝜙)𝑟 ⟶ 𝐿𝑞(𝑀, 𝜙)𝑟
                  (51) 
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Proof. Put 

                (𝑢(𝑔’, 𝑔))(𝑓’, 𝑓) = 𝛽(𝑓, 𝑔’) + 𝛽(𝑓’, 𝑔)        (𝑔 ∈ Δ𝑟 , 𝑓 ∈ Δℓ).    (52) 

We have 

|𝛽(𝑓, 𝑔’) + 𝛽(𝑓’, 𝑔)|  
= |𝛽(𝑓, 𝑔’ + Ω𝑞

𝑟(𝑔)) − 𝛽(𝑓, Ω𝑞
𝑟(𝑔)) + 𝛽(𝑓’ − Ω𝑝

ℓ (𝑓), 𝑔)  + 𝛽(𝛺𝑝
ℓ(𝑓), 𝑔)| 

≤ ‖𝑓‖𝑝‖𝑔
’ + 𝛺𝑞

𝑟(𝑔)‖
𝑞
+ ‖𝑓 ’ − 𝛺𝑝

ℓ(𝑓)‖
𝑝
‖𝑔‖𝑞 +

𝜋

𝑠𝑖𝑛(𝜋 𝑝⁄ )
‖𝑓‖𝑝‖𝑔‖𝑞 

≤
𝜋

𝑠𝑖𝑛(𝜋 𝑝⁄ )
‖(𝑔’, 𝑔)‖−𝛺𝑞𝑟‖(𝑓’, 𝑓)‖𝛺𝑝ℓ . 

As ∆ℓ is dense in 𝐿𝑝(𝑀,𝜙)ℓ, we see that 𝐿𝑝(𝑀, 𝜙)ℓ ⊕𝛺𝑝
ℓ Δℓ is dense in 𝑍𝑝(𝑀,𝜙)

ℓ and so 

(52) shows that 𝑢(𝑔’, 𝑔) acts, as a bounded linear functional on 𝑍𝑝(𝑀,𝜙)
ℓ, with 

‖𝑢(𝑔’, 𝑔): 𝑍𝑝(𝑀,𝜙)
ℓ → ℂ‖ ≤ 𝑀‖(𝑔’, 𝑔)‖

−𝛺𝑞
𝑟 , 

at least when 𝑔 is in ∆𝑟. This defines an operator making the following diagram commute: 

                    

(𝐿𝑝(𝑀,𝜙)ℓ)∗
     𝜋∗    
→      (𝑍𝑝(𝑀,𝜙)

ℓ)∗
      𝑖∗    
→    (𝐿𝑝(𝑀, 𝜙)ℓ)∗

∥                            ↑ 𝑢                                      ∥      
𝐿𝑞(𝑀, 𝜙)𝑟     ⟶ 𝐿𝑞(𝑀, 𝜙)𝑟 ⊕−𝛺𝑞

𝑟 ∆𝑟   ⟶   ∆𝑟
                       (53) 

and where Δ𝑟is treated as a submodule of 𝐿𝑞(𝑀, 𝜙)𝑟. By density 𝑢 extends to an operator 

that we still call 𝑢 fitting in (51). The five-lemma and the open mapping theorem guarantee 

that 𝑢 is a linear homeomorphism. It remains to check it is also a homomorphism of right 

𝑀-modules. But for 𝑔 ∈ ∆𝑟 and 𝑓 ∈ ∆ℓ one has 

𝑢((𝑔’, 𝑔)𝑎)(𝑓’, 𝑓) = (𝑢(𝑔’𝑎, 𝑔𝑎))(𝑓’, 𝑓) = 𝛽(𝑓, 𝑔’𝑎) + 𝛽(𝑓’, 𝑔𝑎) 
= 𝛽(𝑎𝑓, 𝑔’) +  𝛽(𝑎𝑓’, 𝑔) = 𝑢(𝑔’, 𝑔)(𝑎𝑓’, 𝑎𝑓) = (𝑢(𝑔’, 𝑔)𝑎)(𝑓’, 𝑓). 

This completes the proof.  

We prove the extension 𝐿𝑝(𝑀,𝜙) →  𝑍𝑝(𝑀,𝜙 ) → 𝐿𝑝(𝑀,𝜙) is essentially 

independent on the reference state 𝜙 in the following precise sense. 

Proposition (4.3.16)[154]: Let 𝜙0 and 𝜙1 be faithful normal states on 𝑀 and 𝑝 ∈ (1,∞). 
Then there is a commutative diagram 

𝐿𝑝(𝑀,𝜙0) ⟶ 𝑍𝑝(𝑀, 𝜙0) ⟶ 𝐿𝑝(𝑀,𝜙0)

𝛼 ↓                            ↓                            ↓ 𝛼
𝐿𝑝(𝑀,𝜙1) ⟶ 𝑍𝑝(𝑀,𝜙1) ⟶ 𝐿𝑝(𝑀,𝜙1)

 

in which the vertical arrows are isomorphisms of left 𝑀-modules. 

Proof. The proof is based on an idea explained and discarded by Kosaki in [162]. We remark 

that our proof provides a very natural isometry between 𝐿𝑝 spaces based on two different 

states. 

It will be convenient to consider two more spaces of analytic functions. The first one is the 

obvious adaptation of the space ℋ appearing to the nontracial setting. So, given a faithful 

state 𝜙 ∈ 𝑀∗, we consider the couple (𝑀𝜙,𝑀∗), and the space ℋ = ℋ(𝑀,𝜙) of bounded 

functions 𝐻: 𝕊 → 𝑀∗ such that: 

(i) 𝐻 is continuous on 𝕊 and analytic on 𝕊∘ with respect to 𝜎(𝑀∗,𝑀). 
(ii) 𝐻(𝑖𝑡) ∈ 𝑀𝜙 for every 𝑡 ∈ ℝ. The function 𝑡 ∈ ℝ ⟼ 𝐻(𝑖𝑡) ∈ 𝑀𝜙 is 𝑀-bounded and 

𝜎(𝑀,𝑀∗)-continuous. 

(iii) The function 𝑡 ∈ 𝜙 ⟼ 𝐻(1 + 𝑖𝑡) ∈ 𝑀∗ is continuous in the norm of 𝑀∗. 

As one may expect we furnish ℋ with the norm ‖𝐻‖ℋ = 𝑠𝑢𝑝𝑡(‖𝐻(𝑖𝑡)‖𝑀, ‖𝐻(1 + 𝑖𝑡)‖𝑀∗
). 

Of course, ℋ is larger than 𝒢. The second space we shall denote by ℱ = ℱ(𝑀,𝜙) is the 
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space of those 𝑓 ∈ 𝒢(𝑀,𝜙) satisfying the additional condition that 𝑓(𝑖𝑡) → 0 in 𝑀 = 𝑀𝜙 

as |𝑡| →∞ and 𝑓(1 + 𝑖𝑡) → 0 in 𝑀∗ as |𝑡| →∞. Moreover the complex method of 

interpolation, applied to the couple (𝑀,𝑀∗), leads to the same scale using ℱ, 𝒢 or ℋ: 

[𝑀,𝑀∗]𝜃
ℱ = [𝑀,𝑀∗]𝜃

𝒢
= [𝑀,𝑀∗]𝜃

ℋ = 𝐿𝑝(𝑀, 𝜙)      (𝜃 = 1/𝑝)  

with identical norms. This is very easy to check, once we know that 𝐿𝑝(𝑀, 𝜙) is reflexive 

and agrees with the dual of the right space 𝐿𝑞(𝑀,𝜙)𝑟, where 𝑞 is the conjugate exponent of 

𝑝. As Lemma (4.3.3) is true (with the same proof) replacing 𝒢 by ℱ or by ℋ we see that the 

lower extension in Diagram 19 does not vary after replacing 𝒢 by ℱ or by ℋ. 

We shall use the following notations: 

ℱ0(𝑀, 𝜙) = {𝐹 ∈ ℱ(𝑀, 𝜙): 𝐹(𝜃) = 0}, 
ℱ1(𝑀,𝜙) = {𝐹 ∈ ℱ(𝑀,𝜙): 𝐹(𝜃) = 𝐹’(𝜃) = 0} 

and similarly for 𝒢 and ℋ. As we mentioned after Lemma (4.3.4) one has isomorphisms 

𝑍𝑝(𝑀,𝜙) =
ℱ(𝑀,𝜙)

ℱ1(𝑀,𝜙)
=

𝒢(𝑀,𝜙)

𝒢1(𝑀, 𝜙)
=

ℋ(𝑀,𝜙)

ℋ1(𝑀, 𝜙)
. 

It is important to realize how these quotient spaces arise as self-extensions of 𝐿𝑝 =
𝐿𝑝(𝑀,𝜙). We describe the details for the smaller space ℱ; replacing it by 𝒢 or ℋ makes no 

difference. Recall that we have ℱ1 ⊂ ℱ0 ⊂ ℱ and therefore an exact sequence 

0 ⟶ ℱ0/ℱ1
     ℐ      
→   ℱ/ℱ1

   𝜛   
→   ℱ/ℱ0 ⟶ 0 

where ℐ and 𝜛 are the obvious maps. This becomes a self-extension of 𝐿𝑝 after identifying 

ℱ/ℱ0 with 𝐿𝑝 through the (factorization) of the evaluation map 𝛿𝜃: ℱ → 𝐿𝑝 at 𝜃 = 1/𝑝, 

while the identification of ℱ0/ℱ1 with 𝐿𝑝 is provided by the (factorization) of the derivative 

𝛿𝜃
’ : ℱ0 → 𝐿𝑝 (at 𝜃 = 1/𝑝) which is an isomorphism of left modules over 𝑀. 

We conclude these prolegomena with the following observation. Let ℰ(𝑀,𝜙) denote the 

subspace of those 𝐹 ∈ ℱ(𝑀,𝜙) having the form 𝐹(𝑧) = 𝑓(𝑧)𝜙, where 𝑓: 𝕊 → 𝑀 is 

continuous and analytic on the interior. It turns out that ℰ(𝑀,𝜙) is dense in ℱ(𝑀,𝜙). 
Indeed, the set of functions having the form 𝐹(𝑧) = 𝑓(𝑧)𝜙, with 

𝑓(𝑧) = 𝑒𝑥𝑝(𝜆𝑧2)∑exp(𝜆𝑖𝑧)𝑎𝑖

𝑛

𝑖=1

     (𝜆, 𝜆𝑖 ∈ ℝ, 𝑎𝑖 ∈ 𝑀) 

is already a dense subspace of ℱ(𝑀, 𝜙). See [44]. 

Let 𝜑 ∶ 𝕊 → 𝔻 be the function given by (35). Replacing 𝒢 by ℱ everywhere in the 

proof of Lemma (4.3.3) we see that ℱ0 = 𝜑ℱ in the sense that the multiplication operator 

𝑓 ⟼ 𝜑𝑓 is an isomorphism between ℱ and ℱ0. Similarly, 𝑓 ⟼ 𝜑2𝑓 is an isomorphism 

between ℱ and ℱ1. It follows that ℰ ∩ ℱ0 and ℰ ∩ ℱ1 are dense in ℱ0 and in ℱ1, respectively. 

Now we need a bit of (relative) modular theory see [162] or [144]. We fix two faithful 

states 𝜙0, 𝜙1 ∈ 𝑀∗ and we consider the Connes-Radon-Nikodym cocycle of 𝜙0 relative to 

𝜙1: 

(𝐷𝜙0; 𝐷𝜙1)𝑡 = Δ𝜙0𝜑1

𝑖𝑡 𝛥𝜙0

−𝑖𝑡 (𝑡 ∈ 𝑅). 

As it happens, 𝑡 ⟼ (𝐷𝜙0; 𝐷𝜙1)𝑡 is a strongly continuous path of unitaries in 𝑀 and so 

𝑡 ⟼ (𝐷𝜙0; 𝐷𝜙1)𝑡𝜙1                                                                       (54) 

defines a continuous function from ℝ to 𝑀∗. Now the point is that (54) extends to a function 

from the horizontal strip −𝑖𝕊 = {𝑧 ∈ ℂ ∶ −1 ≤ ℑ(𝑧) ≤ 0} to 𝑀∗ we may denote by 

(𝐷𝜙0; 𝐷𝜙1)(·)𝜙1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ having the following properties: 

(a) For each 𝑥 ∈ 𝑀, the function 𝑧 ⟼ 〈(𝐷𝜙0; 𝐷𝜙1)(𝑧)𝜙1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑥〉 is continuous on −𝑖𝕊 and 

analytic on 𝑖𝕊∘. 
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(b) (𝐷𝜙0; 𝐷𝜙1)(−𝑖+𝑡)𝜙1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝜙0(𝐷𝜙0; 𝐷𝜙1)𝑡 for every real 𝑡. 

We are going to define an isometric embedding of modules 𝐼: ℱ(𝑀,𝜙0) →  ℋ(𝑀,𝜙1). 
First, for 𝐹 ∈ ℰ(𝑀, 𝜙0), we put 

(𝐼𝐹)(𝑧) = 𝑓(𝑧)(𝐷𝜙0; 𝐷𝜙1)(−𝑖𝑧)𝜙1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  (𝐹(𝑧) = 𝑓(𝑧)𝜙0, 𝑧 ∈ 𝕊).                   (55) 

We observe that for such an 𝐹 one has ‖𝐹‖ℱ = max {‖𝑓(𝑖𝑡)‖𝑀, ‖𝑓(1 + 𝑖𝑡)𝜙0‖𝑀∗
∶ 𝑡 ∈ ℝ}. 

Let us check that 𝐼𝐹 ∈ ℋ(𝑀,𝜙1). That 𝐼𝐹 satisfies (30) is obvious from (a). Regarding the 

values of 𝐼𝐹 on the boundary of 𝕊 we have for real 𝑡: 
                                       (𝐼𝐹)(𝑖𝑡) = 𝑓(𝑖𝑡)(𝐷𝜙0; 𝐷𝜙1)𝑡𝜙1                                                    (56) 

which certainly falls in 𝑀𝜙1 since (𝐷𝜙0; 𝐷𝜙1)𝑡 is unitary and, besides, 

‖𝑓(𝑖𝑡)(𝐷𝜙0; 𝐷𝜙1)𝑡‖𝑀 = ‖𝑓(𝑖𝑡)‖𝑀. Moreover, the function 𝑡 ∈ ℝ ⟼
𝑓(𝑖𝑡)(𝐷𝜙0; 𝐷𝜙1)𝑡 ∈ 𝑀 is 𝜎(𝑀,𝑀∗) continuous since 𝑡 ∈ ℝ ⟼ 𝑓(𝑖𝑡) ∈ 𝑀 is continuous 

for the norm and 𝑡 ∈ ℝ ⟼ (𝐷𝜙0; 𝐷𝜙1)𝑡 ∈ 𝑀 is strongly (hence 𝜎(𝑀,𝑀∗)) continuous. So 

(31) holds as well. 

On the other hand, 

(𝐼𝐹)(1 + 𝑖𝑡) = 𝑓(1 + 𝑖𝑡)(𝐷𝜙0; 𝐷𝜙1)(−𝑖+𝑡)𝜙1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑓(1 + 𝑖𝑡)𝜙0(𝐷𝜙0; 𝐷𝜙1)𝑡 , 

so ‖(𝐼𝐹)(1 + 𝑖𝑡)‖𝑀∗
= ‖𝑓(1 + 𝑖𝑡)𝜙0(𝐷𝜙0; 𝐷𝜙1)𝑡‖𝑀∗

= ‖𝑓(1 + 𝑖𝑡)𝜙0‖𝑀∗
 and (𝐼𝐹)(1 +

𝑖𝑡) is continuous in t for the norm topology of 𝑀∗. Finally, that 𝐼𝐹 is 𝑀∗ bounded on the 

whole 𝕊 now follows by interpolation, using (56). Hence 𝐼𝐹 belongs to ℋ(𝑀,𝜙1) and, 

moreover, the norm of 𝐼𝐹 in ℋ(𝑀,𝜙1) and the norm of 𝐹 in ℱ(𝑀,𝜙0) coincide. 

By density, 𝐼 extends to an isometric homomorphism of left 𝑀-modules from ℱ(𝑀,𝜙0) into 

ℋ(𝑀,𝜙1) that we call again 𝐼. 
Now we observe that 𝐼 maps ℱ0(𝑀,𝜙0) into ℋ0(𝑀, 𝜙1). Indeed, it is obvious from 

(55) that 𝐼𝐹 vanishes at 𝜃 if 𝐹 ∈ ℰ vanishes at 𝜃 and for arbitrary 𝐹 the result follows by a 

density argument, taking into account that ℋ0(𝑀,𝜙1) is closed in ℋ(𝑀,𝜙1). In particular, 

𝐼 induces a contractive homomorphism from 𝐿𝑝(𝑀,𝜙0) to 𝐿
𝑝(𝑀,𝜙1). 

Similarly, 𝐼 maps ℱ1(𝑀, 𝜙0) into ℋ1(𝑀, 𝜙1). Indeed, for 𝐹 ∈ ℰ(𝑀, 𝜙0) one has 

(𝐼𝐹)’(𝑧) = 𝑓’(𝑧)(𝐷𝜙0; 𝐷𝜙1)(−𝑖𝑧)𝜙1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ +  𝑓(𝑧)
𝑑

𝑑𝑧
(𝐷𝜙0; 𝐷𝜙1)(−𝑖𝑧)𝜙1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝐹(𝑧)  = 𝑓(𝑧)𝜙0). 

Thus, if 𝐹(𝜃) = 𝐹’(𝜃) = 0 then 𝑓(𝜃) = 𝑓’(𝜃) = 0 and therefore (𝐼𝐹)(𝜃) = (𝐼𝐹)’(𝜃) = 0 

and we proceed as before for general 𝐹. 

Therefore we have a commutative diagram 

 
The arrows in the preceding Diagram can be described as follows. First, all arrows in the 

upper face going from left to right are the obvious ones. All arrows in the upper face going 

from spaces based on 𝜙0 to spaces based on 𝜙1 are induced by 𝐼. 
All vertical arrows are given by (factorization of) evaluations at 𝜃 = 1/𝑝, as indicated 

in the diagram. They are all isomorphisms of left modules over 𝑀. Thus, for instance 
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(𝛿𝜃
’ , 𝛿𝜃):ℋ(𝜙1)/ℋ1 → 𝑍𝑝(𝑀,𝜙1) takes (the class of) 𝐻 ∈ ℋ(𝑀,𝜙1) into the pair 

(𝐻’(𝜃),𝐻(𝜃)) ∈ 𝑍𝑝(𝑀, 𝜙1) and so on. 

The arrows lying in the bottom face are mere “shadows” of the corresponding arrows 

in the top face. It is really easy to see that all arrows in the bottom face going from left to 

right act as expected. Let us identify the arrows of the bottom face going from objects based 

on 𝜙0 to objects based on 𝜙1. We begin with 𝛼. Suppose 𝑥 ∈ 𝐿𝑝(𝜙0) has the form 𝑥 = 𝑎𝜙0, 

with 𝑎 ∈ 𝑀. Let 𝜀: 𝕊 → ℂ be an analytic function such that 𝜀(𝜃) = 1 and 𝜀(∞) = 0. Letting 

𝐹(𝑧) = 𝜀(𝑧)𝑎𝜙0 we have (𝐼𝐹)(𝑧) = 𝜀(𝑧)𝑎(𝐷𝜙0; 𝐷𝜙1)(−𝑖𝑧)𝜙1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and so 𝛼(𝑎𝜙0) =

(𝐼𝐹)(𝜃) =  𝑎(𝐷𝜙0; 𝐷𝜙1)(−𝑖𝜃)𝜙1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 

In order to identify 𝛽 we take again 𝑥 = 𝑎𝜙0 and we “jump” to ℱ0 taking 𝐹(𝑧) =
(𝜑’(𝜃))−1𝜀(𝑧)𝜑(𝑧)𝑎𝜙0, where 𝜑 is the function defined by (35). Note that 

𝜑’(𝜃) =
𝜋

2

exp (𝑖𝜋𝜃)

𝑠𝑖𝑛(𝜋𝜃) 
≠ 0. 

One has 

𝐹’(𝜃) =
(𝜀𝜑)’(𝜃)

𝜑’(𝜃)
𝑎𝜙0 = 𝑎𝜙0. 

Hence 𝛽(𝑎𝜙0) = (𝐼𝐹)’(𝜃), where (𝐼𝐹)(𝑧) = (𝜑’(𝜃))−1𝜀(𝑧)𝜑(𝑧)𝑎(𝐷𝜙0; 𝐷𝜙1)(−𝑖𝑧)𝜙1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and 

so by Leibniz’s rule 

𝛽(𝑎𝜙0) = (𝐼𝐹)’(𝜃) = 𝑎(𝐷𝜙0; 𝐷𝜙1)(−𝑖𝜃)𝜙1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝛼(𝑎𝜙0). 

Finally, the same argument shows that 

𝛾(𝑏𝜙0, 𝑎𝜙0) = (𝑏(𝐷𝜙0; 𝐷𝜙1)(−𝑖𝜃)𝜙1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑎(𝐷𝜙0; 𝐷𝜙1)(−𝑖𝜃)𝜙1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ .  

To complete the proof we have to prove that 𝛼 is an isomorphism – that 𝛾 is an isomorphism 

then follows from the five-lemma. This is not automatic because 𝐼: ℱ(𝜙0) → ℋ(𝜙1) is not 

surjective. 

Anyway, reversing the roles of 𝜙0 and 𝜙1 we know that there is a homomorphism of left 𝑀 

modules 𝜔: 𝐿𝑝(𝑀,𝜙1) → 𝐿𝑝(𝑀, 𝜙0) such that 

𝜔(𝑥) = 𝑎((𝐷𝜙0; 𝐷𝜙1)(−𝑖𝜃)𝜙0
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )         (𝑥 = 𝑎𝜙1 ∈ 𝐿𝑝(𝜙1)). 

We will prove that 𝛼 and 𝜔 are inverse of each other. 

To this end, let us say that 𝑎 ∈ 𝑀 is “analytic” if the map 

𝑡 ∈ ℝ ⟼ 𝑎(𝐷𝜙0; 𝐷𝜙1)𝑡 ∈ 𝑀 
extends to an entire function we shall denote by 𝑎(𝐷𝜙0; 𝐷𝜙1)(∙)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . This is a “left” version of 

the usual definition; see, e.g., [162]. Let 𝐴 denote the set of “analytic” operators in 𝑀. It is 

not hard to see that the 𝒜 is 𝜎-weak (= 𝜎(𝑀,𝑀∗)) dense in 𝑀 and so the set 𝒜𝜙0 =
{𝑎𝜙0: 𝑎 ∈ 𝒜} is dense in 𝐿𝑝(𝜙0). Thus the proof will be complete if we show that 

𝜔(𝛼(𝑎𝜙0)) = 𝑎𝜙0 for 𝑎 ∈ 𝒜. But for such an 𝑎 we have 

𝛼(𝑎𝜙0) = (𝑎(𝐷𝜙0; 𝐷𝜙1)(−𝑖𝜃)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) ∙ 𝜙1  = 𝑎 ∙ ((𝐷𝜙0; 𝐷𝜙1)(−𝑖𝜃)𝜙1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) 

by the uniqueness of analytic continuation. Therefore, as 𝑎(𝐷𝜙0; 𝐷𝜙1)(−𝑖𝜃)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  belongs to 𝑀, 

𝜔(𝛼(𝑎𝜙0)) = 𝜔((𝑎(𝐷𝜙0; 𝐷𝜙1)(−𝑖𝜃)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )  ∙ 𝜙1)

= (𝑎(𝐷𝜙0; 𝐷𝜙1)(−𝑖𝜃)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) ∙ ((𝐷𝜙1; 𝐷𝜙0)(−𝑖𝜃)𝜙0
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) = 𝑎𝜙0, 

again by the uniqueness of analytic continuation, taking into account that (𝐷𝜙0; 𝐷𝜙1)𝑡 =
((𝐷𝜙1; 𝐷𝜙0)𝑡)

∗ = ((𝐷𝜙1; 𝐷𝜙0)𝑡)
−1 for 𝑡 ∈ ℝ.  
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Chapter 5 

Contractive Spectral and Noncommutative Solenoids with Spectral Triples 

 

We develops part of the Bellissard-Marcolli-Reihani theory for a general discrete 

group action, and in particular, introduces coaction spectral triples and their associated 

metric notions. The isometric condition is replaced by the contractive condition. We show 

that noncommutative solenoids can be approximated by finite dimensional quantum 

compact metric spaces, and that they form a continuous family of quantum compact metric 

spaces over the space of multipliers of the solenoid, properly metrized. In all the examples 

treated here, the noncommutative solenoidal spaces have the same metric dimension and 

volume as on the base space, but are not quantum compact metric spaces, namely the 

pseudo-metric induced by the spectral triple does not produce the 𝑤𝑒𝑎𝑘∗ topology on the 

state space. 

Section (5.1): Triples for Crossed Products 

Throughout, 𝑋 = (𝐴,ℋ,𝐷) will be a spectral triple in the sense of Connes ([172], 

[173]). This can be defined as follows. First, 𝐴 is a 𝐶∗-algebra, which we will always assume 

to be unital, equipped with a faithful (non-degenerate) representation 𝜋 on a Hilbert space 

ℋ, and second, 𝐷 is a (usually unbounded) self-adjoint operator on ℋ with compact 

resolvent. Third, we require that the set 𝐶1(𝑋) of a’s in 𝐴 for which 𝜋(𝑎)𝐷𝑜𝑚(𝐷) ⊂
𝐷𝑜𝑚(𝐷)1 and ‖[𝐷, 𝜋(𝑎)]‖ <∞ is dense in 𝐴. (The operator [𝐷, 𝜋(𝑎)] is at this stage, of 

course, only defined on 𝐷𝑜𝑚 𝐷, but since the latter is dense in ℋ and [𝐷, 𝜋(𝑎)] is bounded, 

it extends by continuity to an element of 𝐵(ℋ) with the same norm, and so can be regarded 

as actually belonging to 𝐵(ℋ).) We will sometimes regard 𝐴 as a subalgebra of 𝐵(ℋ) and 

omit reference to the 𝜋. 

In his development of noncommutative geometry, Connes showed that spectral triples 

not only give a context for 𝐾-homology and cyclic cohomology . Particularly notable was 

his observation (e.g. [173]) that for a compact spin manifold  𝑀, one can recover, among 

other things, the (geodesic) distance 𝑑 on 𝑀 from the canonical spectral triple (𝐶(𝑀),ℋ, 𝐷) 
where ([190],[198]) ℋ is the Hilbert space of 𝐿2-spinors on 𝑀 and 𝐷 is the (self-adjoint) 

Dirac operator of 𝑀. This recovery is achieved by considering the space of Lipschitz 

functions 𝒜 on 𝑀. Indeed, each 𝑎 ∈ 𝒜 can be regarded as a multiplication operator on ℋ, 

and the commutator [𝐷, 𝑎] is densely defined and extends to a bounded linear operator on 

ℋ. The distance function 𝑑 on 𝑀 is then determined for 𝑝, 𝑞 ∈ 𝑀 by: 

                    𝑑(𝑝, 𝑞) = 𝑠𝑢𝑝{|𝑎(𝑝) − 𝑎(𝑞)|: |‖[𝐷, 𝑎]‖| ≤ 1}.                           (1) 

In particular, the right-hand side of (1) determines a metric for the topology of 𝑀. We can, 

think of points of 𝑀 as states on the 𝐶∗-algebra 𝐶(𝑀), and Connes pointed out that, more 

generally, if we replace 𝑎(𝑝) − 𝑎(𝑞) by 𝜙(𝑎) − 𝜓(𝑎) above, we can extend the metric 𝑑 to 

a metric (also denoted 𝑑) on the state space 𝑆(𝐶(𝑀)) (i.e. the set of probability measures on 

𝑀) of 𝐶(𝑀). Further, the metric topology of d on the state space is just the weak*-topology. 

This approach is motivation for replacing the special spectral triple (𝐶(𝑀),ℋ, 𝐷) by an 

arbitrary spectral triple 𝑋 = (𝐴,ℋ, 𝐷), and this gives a pseudo-metric 𝑑𝑋, or simply 𝑑, on 

𝑆(𝐴). Following [171], we will refer to 𝑑 as the Connes pseudo-metric. So for 𝜙,𝜓 ∈ 𝑆(𝐴), 
                𝑑(𝜙,𝜓) = 𝑠𝑢𝑝{|𝜙(𝑎) − 𝜓(𝑎)|: 𝑎 ∈ 𝐶1(𝑋), ‖[𝐷, 𝑎]‖ ≤ 1}.                   (2) 

Two natural questions arise. (See the discussion in [171].) First, when is 𝑑 actually a metric 

on 𝑆(𝐴)? Referring to (2), we see that obstacles to this are (1) the degeneracy of the 

representation 𝜋 of 𝐴 on ℋ, and (2) there are non-trivial a’s (i.e. a’s that are not multiples 

of the identity) in the metric commutant ({𝑎 ∈  𝐶1(𝑋): [𝐷, 𝑎] = 0}) of 𝐷. In fact ([192], 
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[86], [194]) non-degeneracy for 𝜋 and triviality of the metric commutant are necessary and 

sufficient conditions for 𝑑 to be a metric. The second question was raised and studied by 

Rieffel: given that 𝑑 is 𝑎 metric on 𝑆(𝐴), when does its metric topology coincide with the 

weak*-topology? The answer in the unital case ([192], [86], [195], [191]) is that the two 

topologies coincide if and only if the image of the Lipschitz ball has compact closure in 

𝐴/ℂ1. The corresponding result for the non-unital case was given by Latremoliere ([189]). 

The main inspiration for the present is the recent work on spectral triples for group actions 

on the 𝐶∗-algebra 𝐴 by Bellissard, Marcolli and Reihani ([171]), in particular in the case 

when the group is ℤ (so that only a single automorphism of 𝐴 is involved). For an ordinary 

metric space, there are a number of geometric notions associated with an action of a group 

on the space by homeomorphisms. These include, in particular, the familiar notions of quasi-

isometric, equicontinuous and isometric. It is shown in [171] that there are corresponding 

notions in the noncommutative case, i.e. for spectral triples. 

These noncommutative versions are used in a central theme of the investigations of 

[171], viz. given a spectral triple 𝑋 = (𝐴,ℋ,𝐷) where 𝐴 supports an action α of ℤ by 

automorphisms, how to define a dual spectral triple 𝑌 on the (reduced) crossed product 𝐶∗-
algebra 𝐴 ⋊𝛼,𝑟 ℤ. ([171], write 𝑌 = 𝑋 ⋊𝛼 ℤ and call it the regular representation of the 

metric dynamical system (𝑋, 𝛼).) Motivation for such a study is that taking an appropriate 

dual action can greatly simply the study of the original spectral triple. 𝐴 remarkable example 

of how an appropriate crossed product can simplify the study of the original is in the von 

Neumann algebra category, where the Takesaki duality theorem (e.g. [33]) says (among 

other things) that taking the crossed product of a von Neumann algebra for the action of the 

modular automorphism group (corresponding to a faithful normal state) transforms a type 

𝐼𝐼𝐼 factor into a type 𝐼𝐼∞ von Neumann algebra. (The 𝐶∗-algebra version of this is given by 

the Imai-Takai duality theorem ([182], [188], [179]) which in its general form, uses the dual 

coaction - in particular, 𝐺 does not have to be abelian.) 𝐴 philosophically similar, but 

geometrical, situation arose in the work of Connes and Moscovici ([174]) in the context of 

diffeomorphism invariant geometry. There, one needs to consider the crossed product 

𝐶0(𝑊) ⋊ Γ where 𝑊 is a compact Riemannian manifold and Γ a subgroup of 𝐷𝑖𝑓𝑓(𝑊). In 

general, the action preserves no structure at all, in particular, no Riemannian metric is 

invariant under the action. However, if we replace 𝑊 by the metric bundle 𝒲 over 𝑊, 

whose fiber over 𝑤 ∈ 𝑊 is the space of Euclidean metrics on the tangent space 𝑇𝑥𝑊 then 

there is an invariant metric on 𝒲 invariant under the natural action of Γ, and the shift from 

𝑊 to 𝒲 corresponds to the shift from the type 𝐼𝐼𝐼 situation to one of type 𝐼𝐼 as above. (See 

[171] for a detailed description of the construction of the metric bundle.) 

Among a number of results [171], show the following (for a ℤ-action 𝛼 on 𝐴). Given 

that 𝑋 is equicontinuous, there exists a natural “dual” spectral triple 𝑌 for the reduced 

crossed product 𝐴 ⋊𝛼,𝑟 ℤ, where 

𝑌 = (𝐴 ⋊𝛼,𝑟  ℤ, 𝐾 ⊗ ℂ2, �̂�). 

Here, 𝐾 is the space of sequences ℓ2(ℤ,ℋ) = ℋ⊗ ℓ2(ℤ), and �̂� is given by a diagonal 

operator whose entry over 𝑛 ∈ ℤ is the 2 × 2 matrix with zero diagonal entries and off-

diagonal entries 𝐷 ∓ 𝚤𝑛. One considers the dual action of ℤ̂ = 𝕋 on 𝐴 ⋊𝛼,𝑟 ℤ. Further results 

in [171] are: 

(i) 𝑌 is isometric; 
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(ii) if 𝑋 is such that the metric commutant is trivial and the image of the Lipschitz ball has 

compact closure in 𝐴/ℂ1, then the Connes metrics induced on the state space of 𝐴 by both 

𝑋, 𝑌 are equivalent (and give the weak* topology of 𝐴); 

(iii) if 𝑋 is not equicontinuous but is quasi-isometric, it can effectively be replaced by a 

spectral triple that is equicontinuous (using a “metric bundle” construction inspired by that 

of Connes-Moscovici above). 

A number of interesting examples illustrating the theory is given.  

These results involve, actions by the group ℤ. However, it is desirable to extend them 

to actions by general discrete groups. We saw this above in the discussion of the metric 

bundle, where the group acting could be any subgroup of 𝐷𝑖𝑓𝑓(𝑊). More generally, in 

further work of Connes and Moscovici ([175]), allowing for local rather than just global 

diffeomorphisms, one needs to consider the case where the transformation group is replaced 

by an etale groupoid. We will prove the general version of (i) for a discrete group acting on 

𝐴. While there is, of course, much more to be done to extend to this general context the other 

results in [171], even in the case of (i) alone, there are, as we shall see, questions that first 

have to be resolved. 

We now define the two geometrical notions that we will require for an action 𝛼 of a 

discrete group on a spectral triple 𝑋 = (𝐴,ℋ,𝐷). First, we say that 𝑋 is pointwise bounded 

if the set  

𝐶𝑏
1(𝐺, 𝑋) = {𝑎 ∈ 𝐶1(𝑋): 𝛼𝑔(𝑎) ∈ 𝐶1(𝑋) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑔 ∈ 𝐺 𝑎𝑛𝑑 𝑠𝑢𝑝𝑔∈𝐺  ‖[𝐷, 𝛼𝑔(𝑎)]‖ <∞} 

is dense in 𝐴 (or equivalently dense in 𝐶1(𝑋)). This is weaker than the “equicontinuous” 

condition used in [171]: there, 𝑋 is equicontinuous if 𝐶𝑏
1(𝐺, 𝑋) = 𝐶1(𝑋). The motivation 

for the terminology “pointwise bounded” is that for each appropriate “point” 𝑎 ∈ 𝐴, the 

maps 𝑔 → [𝐷, 𝛼𝑔(𝑎)] are uniformly bounded, so that the set of “functions” 𝑎 →

[𝐷, 𝛼𝑔(𝑎)](𝑔 ∈ 𝐺) is pointwise bounded. We can think of this condition as corresponding 

to the “pointwise bounded” condition in the classical Arzelela-Ascoli theorem (cf. the use 

of equicontinuity in the noncommutative Arzela-Ascoli theorem, [171]). Pointwise 

boundedness is a natural condition to require. (Indeed, the density of 𝐶1(𝑋) in 𝐴 in the 

spectral triple definition is just pointwise bound-edness for the trivial group action.) It is 

surely a weaker condition than equicontinuity, but unfortunately I do not have an example 

where pointwise boundedness holds but equicontinuity does not. As in [171], 𝑋 will be 

called isometric if 𝐶1(𝑋) = 𝐶𝑏
1(𝐺, 𝑋) and 

‖[𝐷, 𝛼𝑔(𝑎)]‖ = ‖[𝐷, 𝑎]‖ 

for all 𝑎 ∈ 𝐶1(𝑋), 𝑔 ∈ 𝐺. 

One problem that arises when trying to prove a version of (i) for a general discrete 

group acting on 𝐴 is how to define �̂�. What should we put in place of the ∓𝑛? However, 𝑛 

can be recognized as coming from the usual word metric on the group ℤ, and so for a general 

finitely generated, infinite group 𝐺, we need to replace 𝑛 by 𝑐(𝑔) where c is the word metric 

on 𝐺 associated with a symmetric generating subset of 𝐺. In fact, such a word metric is 

naturally associated ([172]) with a spectral triple (𝐶𝑟
∗(𝐺), ℓ2(𝐺),𝑀𝑐), where 𝑀𝑐 is the 

multiplication operator by 𝑐 on ℓ2(𝐺), 𝐶𝑟
∗(𝐺) is the reduced 𝐶∗-algebra of 𝐺, and �̂� gives 

the unbounded Fredholm operator determining the Kasparov  product of 𝐾-homology 

classes in the unbounded Fredholm picture ([170], [186], [173]). 

𝐴 second problem is that in the ℤ case, the group was abelian, and we had the dual group 𝕋 

available to act on the crossed product. This is no longer the case for general 𝐺. Instead, as 

in the Imai-Takai duality theorem, we have to consider the dual coaction 
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�̂�: 𝐴 ⋊𝛼,𝑟 𝐺 → (𝐴 ⋊𝛼,𝑟 𝐺)⊗ 𝐶𝑟
∗(𝐺) 

where for 𝐹 ∈ 𝐶𝑐(𝐺, 𝐴), 
                               �̂�(𝐹) = �̃�(𝐹(𝑠))�̃�𝑠 ⊗𝜆𝑠.                                                (3) 

Here, �̂� is continuous for the 𝐴 ⋊𝛼,𝑟 𝐺 norm restricted to 𝐶𝑐(𝐺, 𝐴), and so extends by 

continuity to the whole of ⋊𝛼,𝑟 𝐺. Since, in the situation, 𝐺 will be discrete, the integrals 

involved are just summations, but we will stay with the familiar integral notations. (This 

may also prove useful if the result can be extended to general 𝐺.) Further, (�̃�, �̃�) is the 

covariant representation giving the regular representation of ⋊𝛼,𝑟  𝐺 as realized on ℋ⊗

ℓ2(𝐺) = ℓ2(𝐺,ℋ), and 𝜆 is the left regular representation of 𝐺 on ℓ2(𝐺). As we will see, 

the dual spectral triple associated with 𝑋 = (𝐴,ℋ,𝐷) will be the triple 𝑌 =
(𝐴 ⋊𝛼,𝑟 𝐺,ℋ ⊗ ℓ2(𝐺) ⊗ ℂ2, �̂� ). In the abelian case, the dual coaction reduces to the 

familiar action of the dual group on the crossed product. 

We need geometric definitions of metric notions (such as “isometry”) for coactions 

just as we had for actions. It is not immediately clear what they should be. However, it is 

reasonable to think that if we dualize the coaction in some sense, then we should have 

something like an action (though not necessarily of a group). Let 𝑃𝑟(𝐺) be the state space 

of 𝐶𝑟
∗(𝐺). This is a subsemigroup of (𝐶𝑟

∗(𝐺))∗, which is an ideal in the Fourier-Stieltjes 

algebra 𝐵(𝐺) of 𝐺. (The multiplication is just pointwise multiplication on 𝐺 when we regard 

the elements 𝜙 of 𝑃𝑟(𝐺) as functions on 𝐺 by setting 𝜙(𝑠) = 𝜙(𝜆𝑠).) It is this semigroup 

that we want acting in place of the group 𝐺. For a general 𝐶∗-algebra 𝐵 with a coaction 

𝛿: 𝐵 → 𝐵⊗ 𝐶𝑟
∗(𝐺), the action 𝛽 of 𝑃𝑟(𝐺) on 𝐵 is given by slicing by 𝜙 ∈ 𝑃𝑟(𝐺): so for 𝑏 ∈

𝐵, 𝛽𝜙(𝑏) = 𝑆𝜙(𝛿(𝑏)). 

When 𝐺 is abelian, so that we are dealing with the dual action in place of the dual 

coaction, the dual action on the crossed product is just 𝛽 restricted to the characters of 𝐺, 

the set of extreme points of 𝑃𝑟(𝐺). The isometric condition makes good sense in this case 

since under the dual action, each character acts by multiplication as a unitary on ℓ2(𝐺). 
However, when we extend this action to convex combinations in 𝑃𝑟(𝐺) of these characters, 

this is no longer the case. Instead we need to replace the isometric condition by the 

contractive one. In the case of a spectral triple 𝑌 = (𝐵,𝐾, 𝐷’) - and we have in mind 

primarily the dual spectral triple - for which a coaction on 𝐵 is given, the idea is that 𝑌 is 

contractive if the set 

{𝑏 ∈ 𝐶1(𝑌): ‖[�̂�, 𝛽𝜙(𝑏)]‖ ≤ ‖[�̂�, 𝑏]‖ <∞ 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜙 ∈ 𝑃𝑟(𝐺)} 

is dense in 𝐵 (or equivalently dense in 𝐶1(𝑌 )). 
The main result (Theorem (5.1.2)) states that if 𝑋 is a pointwise bounded spectral 

triple, then the dual spectral triple 𝑌 is contractive for the dual coaction. 

As is well-known, some care has to be exercised with unbounded operators on a Hilbert 

space because of their partially defined domains. In particular, it gives a proof that the 

operator �̂� used in the dual spectral triple really is a self-adjoint operator with compact 

resolvent. We have tried to incorporate into a simple account of the material, as self-

contained as possible, that we need from the theory of reduced crossed products and 

coactions. In particular, substantial simplifications result because, we only deal with the 

reduced case, the group 𝐺 is discrete and the 𝐶∗-algebras involved unital. (For a short, 

informative exposition (with proofs) of the general theory for full and reduced crossed 

products and coactions, Appendix 𝐴 of the memoir [179] by Echterhoff, Kaliszewski, Quigg 

and Raeburn is recommended.) 

I am grateful to Kamran Reihani for helpful conversations. 
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For 𝐺 be a discrete group. 𝐴 length function on 𝐺 is a function 𝑐: 𝐺 → ℝ satisfying: 

for every 𝑠 ∈ 𝐺, 

𝑠𝑢𝑝𝑡∈𝐺|𝑐(𝑡) − 𝑐(𝑠𝑡)| <∞                                   (4) 

and |𝑐(𝑡)| →∞ as 𝑡 →∞. In particular, it is assumed that 𝐺 is countably infinite. 

The most important example of a length function is that of the word length function on 𝐺 

(e.g. [180], [172]). Suppose that 𝐺 is infinite and finitely generated, and let 𝑆 be a finite, 

symmetric set of generators for 𝐺. For 𝑡 ∈ 𝐺, let 𝑐(𝑡) be the word norm associated with 𝑆, 

i.e. 𝑐(𝑡) is smallest integer 𝑛 such that 𝑡 can be written as a product of 𝑛 elements of 𝑆. Then 

(as is easy to check) 𝑐 is indeed a length function. 

We now establish notation for reduced crossed products for a locally compact group 𝐺. (In 

our case, of course, 𝐺 is discrete.) Let 𝐴 be a unitary 𝐶∗-algebra and (𝐴, 𝐺, 𝛼) be a dynamical 

system; so 𝛼: 𝐺 → 𝐴𝑢𝑡 𝐴 is  a homomorphism which is pointwise norm continuous. Then 

(e.g. [193]) 𝐶𝑐(𝐺, 𝐴) is a convolution normed algebra under the 𝐿1-norm, and with product 

and involution given by: 

𝑓 ∗ 𝑔(𝑡) = ∫𝑓(𝑠)𝛼𝑠(𝑔(𝑠
−1𝑡))𝑑𝜆(𝑠)   𝑓∗(𝑡) = ∆(𝑡)−1𝛼𝑡(𝑓(𝑡

−1)∗). 

The completion 𝐿1(𝐺, 𝐴) of 𝐶𝑐(𝐺, 𝐴) is then a Banach algebra, and the full crossed product 

𝐴 ⋊𝛼 𝐺 is defined to be the enveloping 𝐶∗-algebra of 𝐿1(𝐺, 𝐴). The (non-degenerate) 

representations of 𝐴 ⋊𝛼 𝐺 are determined by the covariant representations (𝜋, 𝑢) on a 

Hilbert space 𝐾 of (𝐴, 𝐺, 𝛼), i.e. a pair for which 𝜋 is a representation of 𝐴 and 𝑢 a unitary 

representation of 𝐺 on the same Hilbert space 𝐾 and for which 𝜋(𝛼𝑡(𝑎)) = 𝑢𝑡𝜋(𝑎)𝑢𝑡
∗ for 

all 𝑎 ∈ 𝐴, 𝑡 ∈ 𝐺. Such a covariant representation determines the corresponding 

representation 𝜋 × 𝑢 of 𝐴 ⋊𝛼 𝐺 by defining 

𝜋 × 𝑢(𝐹) = ∫𝜋(𝐹(𝑠))𝑢𝑠 𝑑𝜆(𝑠).                                      (5) 

In the present day study of crossed products and coactions, it is, for categorical reasons, 

usually desirable to work in the full setting because of the good universal properties. (See 

[179] for a discussion of the pros and cons of using the full or reduced theories.) However, 

since we are concerned with spectral triples and such a triple involves an explicit Hilbert 

space, we will work with the reduced crossed product (as was the case in the early work on 

the subject, e.g. [182], [188]). 

The reduced crossed product of 𝐺 and 𝐴 will denoted by 𝐴 ⋊𝛼,𝑟 𝐺. It is a homomorphic 

image of the full crossed product and can be constructed as follows. Let 𝜋: 𝐴 → 𝐵(ℋ) be a 

faithful, non-degenerate representation of 𝐴 on a Hilbert space ℋ. Then (e.g. [193]) there 

are a representation �̃� of 𝐴 on 𝐿2(𝐺,ℋ) and a homomorphism �̃� ∶ 𝐺 → 𝑈(𝐵(𝐿2(𝐺,ℋ))) 
defined by: 

�̃�(𝑎)𝜉(𝑡) = 𝜋(𝛼𝑡
−1(𝑎))𝜉(𝑡),   �̃�𝑠𝜉(𝑡) = 𝜉(𝑠−1𝑡) 

for 𝜉 ∈ 𝐿2(𝐺,ℋ). Let 𝜆 be the left regular representation of 𝐺 on 𝐿2(𝐺): 𝜆𝑠𝑓(𝑡) =
𝑓(𝑠−1𝑡). ) The pair (�̃�, �̃�) is a covariant representation of (𝐴, 𝐺, 𝛼) and hence determines a 

representation �̂� = �̃� × �̃� of 𝐴 ⋊𝛼 𝐺. From (5), for 𝐹 ∈  𝐶𝑐(𝐺, 𝐴), 𝜉 ∈ 𝐿2(𝐺,ℋ), 

�̂�(𝐹)𝜉(𝑡) = ∫ �̃�(𝐹(𝑠))( 𝜆�̃�𝜉)(𝑡) = 𝜋(𝛼𝑡−1(𝐹(𝑠)))𝜉(𝑠
−1𝑡).                          (6) 

The image of this representation is the reduced crossed product 𝐴 ⋊𝛼,𝑟 𝐺, realized spatially 

on 𝐿2(𝐺,ℋ). As is customary, for notational simplicity, we sometimes identify 𝐹 ∈
𝐶𝑐(𝐺, 𝐴) with its image �̂�(𝐹). 
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If 𝐺 is abelian, then (e.g. [188], [179]) there is an action of the dual group �̂� on 

𝐴 ⋊𝛼,𝑟 𝐺 called the dual action. This action is defined by: for 𝛾 ∈ �̂� and 𝐹 ∈ 𝐶𝑐(𝐺, 𝐴), we 

take �̂�𝛾𝐹(𝑠) = 𝛾(𝑠)𝐹(𝑠). The map �̂�𝛾 extends by continuity to give an automorphism on 

𝐴 ⋊𝛼,𝑟  𝐺, and  (𝐴 ⋊𝛼,𝑟 𝐺, �̂�, �̂�) is a 𝐶∗-dynamical system. (Often, authors define the dual 

action using the complex conjugate of 𝛾(𝑠), i.e. �̂�𝐹(𝑠) = 𝛾(𝑠)̅̅ ̅̅ ̅̅ 𝐹(𝑠), and (cf. [199]) either 

choice is fine, depending on how we identify elements in the dual group with actual 

functions on the group. However, in the study of coactions, it is more convenient to use the 

�̂�𝐹(𝑠) = 𝛾(𝑠)𝐹(𝑠) version for the dual action.) 

In the non-abelian case, the dual group is no longer relevant for duality purposes, and 

instead one replaces the dual action in the abelian case by the dual coaction. The definition 

of coaction which we now give is for the case where 𝐺 is discrete and the 𝐶∗-algebra 𝐵 

unital, the general case being more involved (in particular, requiring the use of multiplier 

algebras). So let 𝐵 be a unital 𝐶∗-algebra, and 𝑖𝑑𝐵 be the identity map on 𝐵 and 𝑖𝑑𝐺 the 

identity map on 𝐶𝑟
∗(𝐺). Let 𝛿𝐺: 𝐶𝑟

∗(𝐺) → 𝐶𝑟
∗(𝐺) ⊗ 𝐶𝑟

∗(𝐺) be the homomorphism 

determined by: 𝛿𝐺(𝜆𝑠) = 𝜆𝑠 ⊗𝜆𝑠. (This extends continuously to 𝐶𝑟
∗(𝐺) since (e.g. [177] or 

[179]) 𝜆 ⊗ 𝜆 is weakly contained in 𝜆.) 𝐴 (reduced) coaction for 𝐵 (with respect to 𝐺) is a 

unital injective homomorphism 𝛿: 𝐵 → 𝐵⊗ 𝐶𝑟
∗(𝐺) that satisfies the coaction identity: 

(𝛿 ⊗ 𝑖𝑑𝐺) ∘ 𝛿 = (𝑖𝑑𝐵 ⊗𝛿𝐺) ∘ 𝛿. 
Of course, if (as will be in our case) 𝐵 is a 𝐶∗-subalgebra of 𝐵(𝐾) (𝐾 a Hilbert space) then 

𝐵 ⊗ 𝐶𝑟
∗(𝐺) ⊂ 𝐵(ℓ2(𝐺, 𝐾)) so that 𝛿 will also be an injective homomorphism into 

𝐵(ℓ2(𝐺, 𝐾)). (Coactions are also required to be non-degenerate (e.g.[188]) - this condition 

is always satisfied by the dual coaction, the only coaction with which we will be concerned, 

and so we will not define non-degeneracy here.) 

Of particular importance is the dual coaction �̂� for 𝐴 ⋊𝛼,𝑟  𝐺, defined in (3). It is easily 

checked that �̂� satisfies the coaction identity. If 𝐺 is abelian, then the dual action and the 

dual coaction are effectively the same, the relation between them being given by: (1⊗ 1⊗
𝜎𝜒)(�̂�(𝐹)) = 𝛼𝜒(𝐹) where 𝜎𝜒 is the state on 𝐶𝑟

∗(𝐺) ≅  𝐶0(�̂�) associated with point 

evaluation at 𝜒: 𝜎𝜒(𝜆𝑠) = 𝜒(𝑠). (We will return to this more generally, and for this, as we 

will see, it is helpful to use slice maps (below).)  

First, let 𝑃𝑟(𝐺) be the state space of 𝐶𝑟
∗(𝐺). Since 𝐶𝑟

∗(𝐺) is unital, 𝑃𝑟(𝐺) is a weak* compact, 

convex subset of 𝐵𝑟(𝐺) = 𝐶𝑟
∗(𝐺)∗. (𝐴 brief discussion of 𝐵𝑟(𝐺) is given on [188].) The 

canonical embedding of 𝐵𝑟(𝐺) into 𝐵(𝐺) = 𝐶∗(𝐺)∗ (itself coming from the canonical 

homomorphism from 𝐶∗(𝐺) onto 𝐶𝑟
∗(𝐺)) identifies the Banach space 𝐵𝑟(𝐺) with a subspace 

of 𝐵(𝐺), the Fourier-Stieltjes algebra of 𝐺, and 𝑃𝑟(𝐺) with a weak*-compact convex subset 

of the state space 𝑃(𝐺) of 𝐶∗(𝐺). Now regard 𝐵(𝐺) as a space of functions on 𝐺, where, for 

𝜙 ∈ 𝐵(𝐺), 𝜙(𝑠) = 𝜙(𝜆𝑠
𝑢), where 𝑠 → 𝜆𝑠

𝑢 is the canonical homomorphism from 𝐺 into the 

unitary group of 𝐶∗(𝐺).Then 𝐵𝑟(𝐺) is a (normed closed) ideal in 𝐵(𝐺) and 𝑃𝑟(𝐺) is a 

subsemigroup of 𝑃(𝐺). As a function on 𝐺, 𝜙 ∈ 𝐵𝑟(𝐺) is given by: 𝜙(𝑠) = 𝜙(𝜆𝑠), and since 

𝛿𝐺(𝑠) = 𝜆𝑠 ⊗𝜆𝑠, the product on 𝐵𝑟(𝐺) can be defined by: 𝜙𝜓 = (𝜙⊗𝜓) ∘ 𝛿𝐺. In order 

to associate an action of 𝐵𝑟(𝐺) - and hence of 𝑃𝑟(𝐺) - on 𝐵 for  a coaction with respect to 

𝐺, we use slice maps (e.g. [187], [179]). (As commented in [179], slicing in tensor products 

is one of the basic tools in the theory of coactions.) 

If 𝐴1, 𝐴2 are 𝐶∗-algebras realized on Hilbert spaces ℋ1,ℋ2, let 𝐴1 ⊙𝐴2 be the span of 

simple tensors 𝑎1 ⊗𝑎2 in 𝐵(ℋ1 ⊗ℋ2) (𝑎𝑖 ∈ 𝐴𝑖). The closure of 𝐴1 ⊙𝐴2 is the spatial 

tensor product 𝐴1 ⊗𝐴2 of 𝐴1 and 𝐴2. If 𝜙 ∈ 𝐴2
∗ , then the slice map 𝑆𝜙: 𝐴1 ⊗𝐴2 → 𝐴1 is a 

well-defined bounded linear map of norm ‖𝜙‖ and is determined by its value on 𝐴1 ⊙𝐴2: 
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𝑆𝜙(𝑎1 ⊙𝑎2) = 𝑎1𝜙(𝑎2). 

Next for 𝑐 ∈ 𝐴1 ⊗𝐴2, the map 𝜙 → 𝑆𝜙(𝑐) is weak*-norm continuous on bounded subsets 

of 𝐴2
∗ . To show this, let 𝜙𝑛 → 𝜙 weak* in a bounded subset of 𝐴2

∗ . Trivially, 𝑆𝜙𝑛(𝑎 ⊗ 𝑏) =

𝜙𝑛(𝑏)𝑎 → 𝜙(𝑏)𝑎 = 𝜙(𝑎 ⊗ 𝑏) in norm for every simple tensor 𝑎 ⊗ 𝑏. Hence this result is 

also true for elements in the span 𝐶 of such tensors in 𝐴1 ⊗𝐴2. 𝐴 “uniform convergence” 

type argument, using the density of 𝐶 in 𝐴1 ⊗𝐴2 and the norm boundedness of {𝑆𝜙𝑛}, then 

gives the result. 

Given a coaction 𝛿: 𝐵 → 𝐵 ⊗ 𝐶𝑟
∗ (𝐺), the (left) action 𝛽 of 𝐵𝑟(𝐺) on 𝐵 is defined by: 

𝛽𝜙(𝑏) = 𝜙. 𝑏 where 

𝜙. 𝑏 = 𝑆𝜙(𝛿(𝑏)).                                           (7) 

To check that this is an action, we have to show (among other things) that 𝜙. (𝜓. 𝑏) =
(𝜙𝜓).b, i.e. 𝑆𝜙(𝛿(𝑆𝜓(𝛿(𝑏)))) = 𝑆𝜙𝜓(𝛿(𝑏)). This amounts to showing that for 𝑏 ∈ 𝐵, 

𝑆𝜙(𝛿(𝑆𝜓(𝛿(𝑏)))) = 𝑆𝜙⊗𝜓((1⊗ 𝛿𝐺)(𝛿(𝑏))) = 𝑆𝜙⊗𝜓((𝛿 ⊗ 1)(𝛿(𝑏))) 

(using the coaction identity). It is simple to prove this by approximating 𝛿(𝑏) by a finite 

sum of simple tensors ∑𝑏𝑖 ⊗ 𝑠𝑖 (𝑏𝑖 ∈ 𝐵, 𝑠𝑖 ∈ 𝐺) then similarly, each 𝛿(𝑏𝑖) by a finite sum 

∑𝑏𝑖𝑗 ⊗𝑠𝑖𝑗 . The remaining verifications that 𝐵 is a left Banach 𝐵𝑟(𝐺)-module are easy. 

We saw above that every coaction on a 𝐶∗-algebra 𝐵 gives rise to an action 𝜙 → 𝛽𝜙 of 

the semigroup 𝑃 = 𝑃𝑟(𝐺) on 𝐵. In the case which concerns us, viz. where 𝛿 is the dual 

coaction for an action 𝛼 of 𝐺 on a 𝐶∗-algebra 𝐴, the action 𝛽 of 𝐵𝑟(𝐺) on 𝐵 = 𝐴 ⋊𝛼,𝑟 𝐺 ⊂

𝐵(ℋ⊗ ℓ2(𝐺)) is easy to calculate, and fits in well with the familiar dual action for the 

commutative case. 

Indeed (cf. [188]) for 𝐹 ∈ 𝐶𝑐(𝐺, 𝐴), 

𝛽𝜙𝐹 = 𝑆𝜙(∫ �̃�(𝐹(𝑠))�̃�𝑠 ⊗𝜆𝑠) = ∫ �̃�(𝜙(𝑠)𝐹(𝑠))�̃�𝑠                 (8) 

so that 𝛽𝜙𝐹 is just pointwise multiplication by 𝜙 on 𝐶𝑐(𝐺, 𝐴), exactly the same as what 

happens in the abelian case with the characters of 𝐺. In that case, 𝐶𝑟
∗(𝐺) = 𝐶0(�̂�), so that 

𝐵𝑟(𝐺) = 𝑀(�̂�), and 𝑃 is just the set of probability measures on �̂�. The extreme points of 𝑃 

are just the characters of 𝐺, and restricting the action of 𝑃 to these gives the dual action of 

�̂� on 𝐴 ⋊𝛼,𝑟 𝐺. Of course, when 𝐺 is not abelian, the extreme points of 𝑃 are the pure states 

on 𝐶𝑟
∗(𝐺) which are usually not characters. There is no advantage in restricting the action of 

𝑃 to the pure states, and by doing that, we also lose the semigroup structure of 𝑃. For these 

reasons, for general 𝐺, we use the action of 𝑃 on 𝐴 ⋊𝛼,𝑟 𝐺. 

Now let 𝑐 be a length function on 𝐺, and 𝑀𝑐 be the multiplication operator by 𝑐 on 

ℓ2(𝐺): so (𝑀𝑐𝜉)(𝑡) = 𝑐(𝑡)𝜉(𝑡) defined for the subspace 𝐷 of elements 𝜉 ∈ ℓ2(𝐺) for which 

∑ 𝑐(𝑡)2 |𝜉(𝑡)|2𝑡∈𝐺 <∞. Then ([23]) 𝑀𝑐 is an unbounded self-adjoint operator on ℓ2(𝐺) 
with domain 𝐷. Further, 𝐶𝑐(𝐺) ⊂ ℓ2(𝐺) is a core for 𝑀𝑐. Also, since each 𝑐(𝑡) is an integer 

and |𝑐(𝑡)| →∞, the operator (𝑀𝑐 −  𝚤)−1 is compact, so that 𝑀𝑐 has compact resolvent. Let 

𝑍 = (𝐶𝑟
∗(𝐺), ℓ2(𝐺),𝑀𝑐). For each 𝑠 ∈ 𝐺 let 𝑚𝑠 = 𝑠𝑢𝑝𝑡∈𝐺|𝑐(𝑡) − 𝑐(𝑠−1𝑡)| <∞ (by (2.1)) 

. Let 𝐵 be the space of functions 𝑓 ∈ ℓ1(𝐺) for which 𝑚𝑓 ∈ ℓ1(𝐺) where (𝑚𝑓)(𝑠) =
𝑚𝑠𝑓(𝑠), and let 𝜋𝑟 be the left regular representation of 𝐶𝑟

∗(𝐺). Then 𝐶𝑐(𝐺) ⊂ 𝐵 ↪ 𝐶𝑟
∗(𝐺), 

so that 𝐵 is a dense subspace of 𝐶𝑟
∗(𝐺). Then for 𝑓 ∈ 𝐵 and 𝜉 ∈ 𝐷, 

|[𝑀𝑐 , 𝜋𝑟(𝑓)]𝜉(𝑡)| = |∑[𝑐(𝑡) − 𝑐(𝑠−1𝑡)]𝑓(𝑠)𝜉(𝑠−1𝑡)

𝑠∈𝐺

| ≤∑ 𝑚𝑠|𝑓(𝑠)| |𝜉| (𝑠
−1𝑡)

𝑠∈𝐺

= (|𝑚𝑓| ∗ |𝜉|)(𝑡). 
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So 
‖[𝑀𝑐 , 𝜋𝑟(𝑓)]𝜉‖2 ≤ ‖𝑚𝑓‖1‖𝜉‖2                                       (9) 

from which it follows that 𝑓 ∈ 𝐶1(𝑍) and that 𝑍 is a spectral triple. 

So we now have two spectral triples 𝑋 = (𝐴,ℋ, 𝐷) and 𝑍 = (𝐶𝑟
∗(𝐺), ℓ2(𝐺),𝑀𝑐). In 

particular, both 𝐷,𝑀𝑐 are self-adjoint operators with compact resolvent, and so by 

Proposition (5.1.4) with 𝐾 = ℋ⊗ ℓ2(𝐺), the operator �̂� on ℋ⊗ℓ2(𝐺) ⊗ ℂ2, where 

                               �̂� = [
0 �̂�_

�̂�+ 0
]                                                                       (10) 

is self-adjoint with compact resolvent, where �̂�∓ = 𝐷⊗ 1∓ 𝚤 ⊗𝑀𝑐. Again from 

Proposition (5.1.4), the domain of 𝐷𝑜𝑚 �̂�∓ is �̂� and 𝐷𝑜𝑚 �̂� = �̂�2 = �̂� ⊕ �̂� where �̂�. 

We will show that if 𝑋 is pointwise bounded (for the 𝐺-action), then the triple 

(𝐴 ⋊𝛼,𝑟 𝐺,ℋ ⊗ ℓ2(𝐺) ⊗ ℂ2, �̂�) is in fact a spectral triple, which we will call the dual 

spectral triple for 𝑋. Further, 𝑌 will be shown to be contractive for the dual coaction. 

Let 𝑋 = (𝐴,ℋ,𝐷) be a spectral triple. It is obvious from the definition of 𝐶1(𝑋) and 

the Leibniz formula that 𝐶1(𝑋) is a subalgebra of 𝐴. (In fact ([171]) 𝐶1(𝑋) is a Banach *-

algebra invariant under the holomorphic functional calculus where the Banach algebra norm 

is given by: ‖𝑎‖1 = ‖𝑎‖ + ‖[𝐷, 𝑎]‖.)  

Let 𝐺 be a locally compact group and 𝛼 as above be an action of 𝐺 on 𝐴 (i.e. a strongly 

continuous homomorphism 𝛼 of 𝐺 into the *-automorphism group 𝐴𝑢𝑡(𝐴) of 𝐴). [171], 

define three noncommutative geometric properties with respect to the group action on 𝐴. 

The names given are those used in the “commutative” case of a group action on a locally 

compact metric space. Let 𝐶1(𝐺, 𝑋) be the set of 𝑎 ∈ 𝐴 such that 𝛼𝑡(𝑎) ∈ 𝐶1(𝑋) for all 𝑡 ∈
𝐺 and the map 𝑡 → [𝐷, 𝛼𝑡(𝑎)] is norm continuous. Note that taking 𝑡 = 𝑒 in this definition 

gives that 𝐶1(𝐺, 𝑋) ⊂ 𝐶1(𝑋). Now define 𝐶𝑏
1 (𝐺, 𝑋) to be the set of a’s in 𝐶1(𝐺, 𝑋) such 

that 𝑠𝑢𝑝𝑡 ‖[𝐷, 𝛼𝑡(𝑎)]‖ <∞. Note that if 𝑎 ∈ 𝐶𝑏
1(𝐺, 𝑋) then so also is every 𝛼𝑡(𝑎). Then 𝑋 

is called quasi-isometric if 𝐶1(𝐺, 𝑋) = 𝐶1(𝑋). The spectral triple 𝑋 is called equicontinuous 

if 𝐶𝑏
1(𝐺, 𝑋) = 𝐶1(𝑋). Last, it is called isometric if it is quasi-isometric and for all 𝑎 ∈ 𝐶1(𝑋) 

and all 𝑡 ∈ 𝐺, we have ‖[𝐷, 𝛼𝑡(𝑎)]‖ =  ‖[𝐷, 𝑎]‖. (In particular, 𝑋 is equicontinuous if it is 

isometric.) The condition that we will be concerned is similar to that of equicontinuity but 

not quite so strong. We will call 𝑋 pointwise bounded if 𝐶𝑏
1 (𝐺, 𝑋) is dense in 𝐶1(𝑋) (and 

hence by the spectral triple requirement, dense in 𝐴.) 

We now turn to the corresponding definitions for a coaction 𝛿: 𝐵 → 𝐵⊗ 𝐶𝑟
∗(𝐺) of a unital 

𝐶∗-algebra 𝐵 instead of an action of 𝐺 on 𝐴. So let 𝑌 = (𝐵,𝐾, 𝐷’) be a spectral triple. Then 

(7) associated with 𝛿 is the semigroup action 𝜙 → 𝛽𝜙 of 𝑃 = 𝑃𝑟(𝐺) on 𝐵. Then, similar to 

the definitions for an action, we define 𝐶1(𝑃, 𝑌 ) to be the set of 𝑏’s in 𝐶1(𝑌) such that for 

all 𝜙 ∈ 𝑃, 𝛽𝜙(𝑏) ∈ 𝐶1(𝑌) and the map 𝜙 → [𝐷’, 𝛽𝜙(𝑏)] is weak*-norm continuous. Next 

𝐶𝑏
1(𝑃, 𝑌) is defined to be the set of 𝑏’s in 𝐶1(𝑃, 𝑌) such that 𝑠𝑢𝑝𝜙∈𝑃‖[𝐷, 𝛽𝜙(𝑏)]‖ <∞. As 

in the group action case, we say that 𝑌 is quasi-isometric if 𝐶1(𝑃, 𝑌) = 𝐶1(𝑌). The spectral 

triple 𝑌 is called equicontinuous if 𝐶𝑏
1(𝑃, 𝑌) = 𝐶1(𝑌). We replace the isometric condition 

of the action case by the contractive condition: 𝑌 is called contractive if 

𝐶𝑐𝑜𝑛𝑡𝑟
1 (𝑃, 𝑌) = {𝑏 ∈ 𝐵: ‖[𝐷’, 𝛽𝜙(𝑏)]‖ ≤ ‖[�̂�, 𝑏]‖ <∞ 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜙 ∈ 𝑃𝑟(𝐺)} 

is dense in 𝐵. (For justification of this definition (and as we will see later), for abelian 

discrete 𝐺, the isometric condition for the dual action is equivalent to the contractive 

condition for the dual coaction.) Last, the spectral triple 𝑌 is called pointwise bounded if 

𝐶𝑏
1(𝑃, 𝑌) is dense in 𝐶1(𝑌) (and hence dense in 𝐵). 
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We will only have occasion to use pointwise boundedness for group actions and the 

contractive condition for coactions. As in the previous, 𝑋 will be the spectral triple (𝐴,ℋ, 𝐷) 
and 𝑌 the triple (𝐴 ⋊𝛼,𝑟 𝐺, ℓ

2(𝐺,ℋ)⊗ ℂ2, �̂�). 
Proposition (5.1.1)[169]: Suppose that 𝑋 is pointwise bounded. Then 𝑌 is a spectral triple. 

Proof. We only need to show that 𝐶1(𝑌) is dense in 𝐵, since 𝑌 satisfies all the other 

requirements for a spectral triple. Since 𝑋 is pointwise bounded,  𝐶𝑏
1(𝐺, 𝑋) is dense in 𝐴. 

Now let 𝐶 be the space of functions 𝐹: 𝐺 → 𝐶𝑏
1(𝐺, 𝑋) that vanish outside a finite subset of 

𝐺. It is obvious that 𝐶 is dense in ℓ1(𝐺, 𝐴) and hence its image, also denoted 𝐶, is dense in 

𝐴 ⋊𝛼,𝑟 𝐺. It is sufficient, then, to show that 𝐶 ⊂ 𝐶1(𝑌). Let ℰ = 𝐷𝑜𝑚 𝐷 ⊙ 𝐶𝑐(𝐺) ⊂ ℋ⊗
ℓ2(𝐺). Note that since 𝐺 is discrete, ℰ = 𝐶𝑐(𝐺, 𝐷𝑜𝑚 𝐷) and that ℰ is invariant under both 

𝐷⊗ 1 and 1⊗𝑀𝑐. Since 𝐷𝑜𝑚 𝐷 and 𝐶𝑐(𝐺) are respectively cores for 𝐷,𝑀𝑐, it follows by 

Proposition (5.1.4) that ℰ2 is a core for �̂�. Next we claim that for 𝐹 ∈ 𝐶, we have 

                                        �̂�(𝐹)ℰ ⊂ ℰ.                                                                               (11) 

To see this, let 𝜉 ∈ ℰ. Then �̂�(𝐹)𝜉(𝑡) = ∫𝜋(𝛼𝑡−1(𝐹(𝑠))�̃�𝑠𝜉(𝑡). Now for each 𝑠, �̃�𝑠𝜉 ∈ ℰ 

and since each 𝐹(𝑠) ∈ 𝐶𝑏
1(𝐺, 𝑋), so also does every 𝛼𝑡−1(𝐹(𝑠)), in particular, it belongs to 

𝐶1(𝑋) and so preserves the domain of 𝐷. So the map 𝐹𝑠  given by 𝑡 → 𝜋(𝛼𝑡−1(𝐹(𝑠))�̃�𝑠𝜉(𝑡) 
sends 𝐺 into 𝐷𝑜𝑚 𝐷. Further, 𝐹𝑠 has finite support since 𝜉 has and so 𝐹𝑠 ∈ ℰ. Since 𝐹 

vanishes off a finite subset of 𝐺, �̂�(𝐹)𝜉 is a finite sum of 𝐹𝑠’s and so �̂�(𝐹) maps ℰ into ℰ 

giving (11). It also follows that the commutators [𝐷 ⊗ 1, 𝐹], [1⊗𝑀𝑐] are operators on ℰ, 

and we now calculate them. (Recall that, when convenient, we identify 𝐹 with �̂�(𝐹). ) 
First we claim that for 𝜉 ∈ ℰ, 𝑡 ∈ 𝐺, 

([𝐷 ⊗ 1, 𝐹]𝜉)(𝑡) = ∫[𝐷, 𝜋(𝛼𝑡−1(𝐹(𝑠))]𝜉(𝑠
−1𝑡).                           (12) 

For, recalling that �̂�(𝐹) is a finite sum of 𝐹𝑠’s, 

[𝐷 ⊗ 1, 𝐹]𝜉(𝑡) = ((𝐷 ⊗ 1)�̂�(𝐹)𝜉)(𝑡) − (�̂�(𝐹)(𝐷 ⊗ 1)𝜉)(𝑡) 

= (𝐷 ⊗ 1)∫𝜋(𝛼𝑡−1(𝐹(𝑠))�̃�𝑠𝜉(𝑡) − ∫𝜋(𝛼𝑡−1(𝐹(𝑠)))�̃�𝑠((𝐷 ⊗ 1)𝜉)(𝑡) 

= ∫𝐷(𝜋(𝛼𝑡−1(𝐹(𝑠))))𝜉(𝑠
−1(𝑡)  − ∫𝜋(𝛼𝑡−1(𝐹(𝑠))𝐷(𝜉(𝑠

−1𝑡)) 

= ∫[𝐷, 𝜋(𝛼𝑡−1(𝐹(𝑠))]𝜉(𝑠
−1𝑡) . 

Next, we show that 

[1⊗𝑀𝑐 , 𝐹]𝜉(𝑡) = ∫𝜋(𝛼𝑡−1(𝐹(𝑠)))[𝑐(𝑡) − 𝑐(𝑠−1𝑡)]𝜉(𝑠−1𝑡).                (13) 

For 

[1 ⊗𝑀𝑐 , �̂�(𝐹)]𝜉(𝑡)  = 𝑐(𝑡)∫𝜋(𝛼𝑡−1(𝐹(𝑠)))�̃�𝑠𝜉(𝑡) − ∫𝜋(𝛼𝑡−1(𝐹(𝑠)))�̃�𝑠(𝑐𝜉)(𝑡) 

= ∫𝜋(𝛼𝑡−1(𝐹(𝑠)))[𝑐(𝑡) − 𝑐(𝑠−1𝑡)]𝜉(𝑠−1𝑡) . 

We now want to show that each of the commutators in (12), (13) is a bounded map on ℰ. 

For the first of these, suppose that 𝑎 ∈ 𝐶𝑏
1(𝐺, 𝑋), 𝑓 ∈ 𝐶𝑐(𝐺) and take 𝐹 = 𝑎 ⊗ 𝑓 ∈ 𝐶. Then 

               ‖[𝐷 ⊗ 1, 𝐹]‖ ≤ (𝑠𝑢𝑝𝑡‖[𝐷, 𝛼𝑡−1(𝑎)]‖)‖𝑓‖1.                           (14) 

For let 𝑀 = 𝑠𝑢𝑝𝑡 ‖[𝐷, 𝛼𝑡−1(𝑎)]‖ and 𝜉, 𝜂 ∈ ℰ . Then 𝑀 <∞ since 𝑎 ∈ 𝐶𝑏
1(𝐺, 𝑋), and by 

(12), 

|〈[𝐷 ⊗  1, 𝐹]𝜉, 𝜂〉| = |∬〈[𝐷, 𝜋(𝛼𝑡−1(𝑓(𝑠)𝑎))]𝜉(𝑠
−1𝑡), 𝜂(𝑡)〉 𝑑𝑠 𝑑𝑡| 
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≤∬|〈[𝐷, 𝜋(𝛼𝑡−1(𝑎))]𝜉(𝑠
−1𝑡), 𝜂(𝑡)〉||𝑓(𝑠)| 𝑑𝑠 𝑑𝑡 

≤∬|𝑓(𝑠)|𝑀‖𝜉(𝑠−1𝑡)‖‖𝜂(𝑡)‖𝑑𝑠 𝑑𝑡 

≤ ∫𝑀|𝑓(𝑠)| (∫‖ 𝜉(𝑠−1𝑡)‖2 𝑑𝑡)1/2(∫‖𝜂(𝑡)‖2𝑑𝑡)1/2𝑑𝑠 ≤ 𝑀‖𝑓‖1‖𝜉‖‖𝜂‖ 

giving (14). 

Since every 𝐹 ∈ 𝐶 is a linear combination of terms of the form 𝑎 ⊗ 𝑓, it follows that for 

general 𝐹 ∈ 𝐶, [𝐷 ⊗ 1, 𝐹] is a bounded operator on ℰ. The boundedness of the second 

commutator on ℰ follows similarly using (13) since for each 𝑠, 𝑠𝑢𝑝𝑡|𝑐(𝑡) − 𝑐(𝑠−1𝑡)| <∞
 by (4) and 𝑓(𝑠) ≠ 0 for only finitely many 𝑠. Precisely, 

‖[1⊗𝑀𝑐 , 𝑎 ⊗ 𝑓]‖ ≤ ‖𝑎‖‖𝑓‖1sup {𝑐(𝑡) − 𝑐(𝑠−1𝑡: 𝑓(𝑠) ≠ 0, 𝑡 ∈ 𝐺}. 
So for 𝐹 ∈ 𝐶, the commutators 

[𝐷 ⊗ 1 ± 𝚤1⊗𝑀𝑐 , 𝐹] = [𝐷 ⊗ 1,𝐹] ± 𝚤[1⊗𝑀𝑐 , 𝐹] 
are bounded operators on ℰ. Let 𝐹’ =  𝐹 ⊕ 𝐹, a diagonal operator on ℓ2(𝐺,ℋ)⊗ ℂ2. Then 

the commutator [�̂� , 𝐹’] has zero diagonal and off-diagonal entries [𝐷 ⊗ 1 ± 𝚤1⊗ 𝑐, 𝐹], 
and is as well a bounded operator on ℰ ⊕ ℰ. Now apply (11) and Proposition (5.1.3) to 

conclude that 𝐹’ ∈ 𝐶1(𝑌 ), and that 𝑌 is a spectral triple. The next theorem is the main result. 

(Note that if 𝐺 is discrete and finitely generated, then we can take c to be any word length 

function on 𝐺.) 

Theorem (5.1.2)[169]: Let 𝐴 be a unital 𝐶∗-algebra, 𝑋 = (𝐴,ℋ,𝐷) a spectral triple, 𝐺 a 

discrete countably infinite group with length function c and (𝐴, 𝐺, 𝛼) be a 𝐶∗-dynamical 

system. Suppose that 𝑋 is pointwise bounded for 𝐺. Then the dual spectral triple 𝑌 =
(𝐴 ⋊𝛼,𝑟  𝐺, ℓ

2(𝐺,ℋ) ⊗ ℂ2, �̂�) is contractive for the dual coaction 𝛿: 𝐴 ⋊𝛼,𝑟 𝐺 →
(𝐴 ⋊𝛼,𝑟  𝐺) ⊗ 𝐶𝑟

∗(𝐺). 
Proof. By Proposition (5.1.1), 𝑌 is a spectral triple. It remains to show that 𝑌 is contractive. 

It is sufficient to show that 𝐶 = 𝐶𝑐(𝐺, 𝐶𝑏
1(𝐺, 𝑋) (which we used in the previous proof) is a 

subspace of 𝐶𝑐𝑜𝑛𝑡𝑟
1 (𝑃, 𝑌 ). First, 𝐶 is 𝑃-invariant. 

This is trivial, since if 𝐹 ∈ 𝐶, i.e. the map 𝐹: 𝐺 → 𝐶𝑏
1(𝐺, 𝑋) has finite support, so also does 

𝛽𝜙𝐹 (since 𝛽𝜙𝐹(𝑠)  = 𝜙(𝑠)𝐹(𝑠)). It remains to show that  

‖[𝐷, 𝛽𝜙(𝐹)]‖ ≤ ‖[𝐷, 𝐹]‖ 

and that the map 𝜙 → [𝐷, 𝛽𝜙(𝐹)] is weak*-norm continuous. 

To this end, define ([182], [188]) the unitary 𝑊 on ℓ2(𝐺 × 𝐺,ℋ) by: 

𝑊𝜁(𝑠, 𝑡) = 𝜁(𝑠, 𝑠−1𝑡). 
Then 𝑊∗𝜁(𝑠, 𝑡) = 𝜁(𝑠, 𝑠𝑡) and trivially, 𝑊 is unitary. We shall also use 𝑊 for the case ℋ =
ℂ. For 𝑡 ∈ 𝐺, 𝜁 ∈ ℓ2(𝐺 × 𝐺,ℋ), 𝜁𝑡 ∈ ℓ2(𝐺,ℋ) is given by: 𝜁𝑡(𝑠) =  𝜁(𝑠, 𝑡). 
Let 𝛿 be the dual coaction on 𝐵. Then for 𝐹 ∈ 𝐶𝑐(𝐺, 𝐴), 

𝑊(𝐹 ⊗ 1)𝑊∗𝜁(𝑣, 𝑡) = (𝐹 ⊗ 1)𝑊∗𝜁(𝑣, 𝑣−1𝑡) = 𝐹((𝑊∗𝜁)𝑣−1𝑡)(𝑣) 

= ∫𝜋(𝛼𝑣−1(𝐹(𝑠))(𝑊
∗𝜁)𝑣−1𝑡(𝑠

−1𝑣) 𝑑𝑠 

= ∫𝜋(𝛼𝑣−1(𝐹(𝑠))(𝑊
∗𝜁)(𝑠−1𝑣, 𝑣−1𝑡) 𝑑𝑠 

= ∫𝜋(𝛼𝑣−1(𝐹(𝑠))𝜁(𝑠
−1𝑣, 𝑠−1𝑡) 𝑑𝑠 = 𝛿(𝐹) 

using the formula (6). It follows by continuity that for 𝑤 ∈ 𝐴 ⋊𝛼,𝑟 𝐺, 

                                       𝑊(𝑤⊗ 1)𝑊∗ = 𝛿(𝑤).                                      (15) 
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So we can extend 𝛿 to a homomorphism, also denoted 𝛿: 𝐵(ℓ2(𝐺,ℋ)) → 𝐵(ℓ2(𝐺 ×
𝐺,ℋ)), by defining 

                                          𝛿(𝑇) = 𝑊(𝑇 ⊗ 1)𝑊∗.                                        (16) 
We want to extend it to certain unbounded operators associated with �̂�, specifically, the 

unbounded operators 𝐷⊗ 1 and 1⊗𝑀𝑐  on 𝐵(ℓ2(𝐺,ℋ)). To this end, let 𝑍 = ℰ ⊙ 𝐶𝑐(𝐺). 
Then 𝑍 is a dense subspace of ℓ2(𝐺 × 𝐺,ℋ) that is invariant under both 𝑊,𝑊∗. Also, 𝑍 is 

invariant for �̂�(𝐹) ⊗ 1,𝐷 ⊗ 1⊗ 1 and 1⊗𝑀𝑐 ⊗1 because of the corresponding 

properties for �̂�(𝐹), 𝐷 ⊗ 1, 1⊗𝑀𝑐 for ℰ. 

We now claim that on 𝑍 and conjugating with 𝑊 as in (15) to define 𝛿 on 𝐷⊗ 1, 1⊗𝑀𝑐, 

                  𝛿(𝐷 ⊗ 1) = 𝐷⊗ 1⊗ 1, 𝛿(1⊗𝑀𝑐) = 1⊗𝑀𝑐 ⊗1.   (17) 

These follow since, for a simple tensor 𝜁 = ℎ ⊗ 𝜉, where ℎ ∈ 𝐷𝑜𝑚 𝐷 and 𝜉 ∈ 𝐶𝑐(𝐺 × 𝐺) ∈
𝑍, 

(𝑊(𝐷 ⊗ 1⊗ 1)𝑊∗𝜁)(𝑠, 𝑡) = ((𝐷 ⊗ 1⊗ 1)𝑊∗𝜂)(𝑠, 𝑠−1𝑡) 
= 𝐷(ℎ)(𝑊∗𝜂)(𝑠, 𝑠−1𝑡) = ((𝐷 ⊗ 1⊗ 1)𝜁)(𝑠, 𝑡), 

and 

(𝑊(1⊗𝑀𝑐 ⊗1)𝑊∗𝜁)(𝑠, 𝑡) = ((1⊗𝑀𝑐 ⊗1)𝑊∗𝜁)(𝑠, 𝑠−1𝑡) 
= ℎ𝑐(𝑠)(𝑊∗𝐹)(𝑠, 𝑠−1𝑡) = ((1⊗𝑀𝑐 ⊗1)𝜁)(𝑠, 𝑡).  

We will use use the notation �̂�± for 𝐷 ⊗ 1 ± 𝚤1⊗𝑀𝑐. To prove the contractive property 

for 𝑌, we recall that for 𝐹 ∈ 𝐶, the operator matrices [�̂�, (𝛽𝜙 ⊕𝛽𝜙)(𝐹 ⊕ 𝐹)] are off-

diagonal, and considering their entries, it is sufficient to prove that 

            ‖[�̂�±, 𝛽𝜙𝐹]‖ ≤ ‖[�̂�±, 𝐹]‖.                                                   (18) 

and establish the continuity of the maps 𝜙 → [�̂�±, 𝛽𝜙𝐹]. 

From (17) and (16), 

𝛿([�̂�±, 𝐹]) = [𝛿(𝐷 ⊗ 1) ± 𝚤𝛿(1⊗𝑀𝑐), 𝛿(𝐹)] 

= [(𝐷 ⊗ 1 ± 𝚤1⊗𝑀𝑐) ⊗ 1,∫ �̂�(𝐹(𝑠)) �̂�𝑠 ⊗𝜆𝑠]  = ∫([�̂�±, �̂�(𝐹(𝑠)) �̂�𝑠)] ⊗ 𝜆𝑠 . 

Of particular significance, this gives that 𝛿([�̂�±, 𝐹]) belongs to 𝐵(ℋ⊗ ℓ2(𝐺))⊗ 𝐶𝑟
∗(𝐺) 

and we can then use slice maps. Precisely, if 𝜙 ∈ 𝑃, then 

𝑆𝜙(𝛿([�̂�±, 𝐹])) = 𝑆𝜙(∫([�̂�±, �̂�(𝐹(𝑠)) 𝜆�̂�)]  ⊗ 𝜆𝑠) 

= ∫([�̂�±, �̂�(𝐹(𝑠)) 𝜆�̂�)]𝜙(𝑠) = ∫([�̂�±, �̂�(𝜙(𝑠)𝐹(𝑠)) 𝜆�̂�)] = [�̂�±, 𝛽𝜙𝐹]. 

The continuity of the maps 𝜙 → [�̂�±, 𝛽𝜙𝐹] now follows from the corresponding continuity 

property for slice maps. (18) also follows using ‖𝑆𝜙‖ ≤ ‖𝜙‖ = 1 and the fact that 𝛿 is a 

homomorphism (and so norm decreasing). 

We now discuss how the theorem above simplifies when 𝐺 is abelian. The case where 

𝐺 = ℤ was examined in detail in [171], which relates equicontinuity for 𝑋 to the isometric 

condition for 𝑌. Suppose that 𝑋 is pointwise bounded. Then we know that 𝑌 is contractive. 

Let 𝜒 ∈ �̂� ⊂ 𝑃. Then for 𝐹 ∈ 𝐶, 

‖[�̂�±, 𝐹]‖ = ‖[�̂�±, 𝛽𝜒−1𝛽𝜙𝐹]‖ ≤ ‖[�̂�±, 𝛽𝜒𝐹]‖ ≤ ‖[�̂�±, 𝐹]‖ 

so that 𝑌 is isometric, at least with respect to 𝐹 ∈ 𝐶. However, because 𝐺 is abelian, there 

is a nice formula for �̂�(𝛽𝜒𝐹). As is easily proved (and well-known) 

�̂�(𝛽𝜒𝐹) = (1⊗𝑀𝜒)�̂�(𝐹)(1⊗𝑀𝜒)
−1 

where 𝑀𝜒 is the unitary on ℓ2(𝐺) given by: 𝑓 →  𝜒𝑓 (pointwise multiplication). It is left to 

the reader to check that for all 𝑏 ∈ 𝐶1(𝑌), [�̂�±, 𝛽𝜒(𝑏)] = (1⊗ 𝑀𝜒)[�̂�±, 𝑏](1⊗𝑀𝜒)
−1 
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and that we get the isometry condition for all 𝑏 ∈ 𝐶1(𝑌). This generalizes part of [171], 

extending from ℤ to general abelian 𝐺 and using the weaker pointwise boundedness 

condition  in place of equicontinuity. Incidentally, going in the other direction, the isometry 

condition for �̂� gives the contractive property for 𝑃. Indeed, con-tractivity for 𝜙 ∈ 𝑐𝑜 �̂� ⊂
𝑃 follows trivially, and by weak*-norm continuity, the contractive inequality follows for all 

𝜙 ∈ 𝑃 (= 𝑐𝑜 �̂�̅̅ ̅̅ ̅̅ ). 
Lastly, from the above, in the abelian case, a stronger version of Theorem (5.1.2) holds, in 

which the contractive condition holds for all 𝑏 ∈ 𝐶1(𝑌) and not just for 𝑏 ∈ 𝐶 as in Theorem 

(5.1.2). We do not know if this stronger version also holds for the non-abelian case. 

We briefly recall some basic information about unbounded operators on a Hilbert 

space (e.g. [23], [33], [185], [197], [178].) 

Let 𝐷 be an unbounded linear operator on a Hilbert space ℋ with domain 𝐷𝑜𝑚 𝐷. The 

operator 𝐷 is called closed if its graph 𝒢(𝐷) is closed in ℋ ×ℋ. It is called preclosed if the 

closure of 𝒢(𝐷) is itself the graph of a linear operator �̅�. In particular, in that case, �̅� is a 

closed operator, the minimal closed operator that restricts to 𝐷. If 𝐷 is closed, a subspace ℰ 

of 𝐷𝑜𝑚 𝐷 is called a core for 𝐷 if the graph of 𝐷 restricted to ℰ is dense in 𝒢(𝐷). (In 

particular, ℰ is dense in 𝐷𝑜𝑚 𝐷.) We will require the following simple and (no doubt) well 

known result; we give the proof. 

Proposition (5.1.3)[169]: Let 𝐷 be a closed operator on the Hilbert space ℋ. Let ℰ be a 

core for 𝐷 and 𝐷ℰ be the restriction of 𝐷 to ℰ. Suppose that 𝑇 ∈ 𝐵(ℋ) is such that 𝑇ℰ ⊂ ℰ 

and the commutator operator [𝐷ℰ , 𝑇] on ℰ is bounded. Let [𝐷, 𝑇] be the continuous extension 

of [𝐷ℰ , 𝑇] to 𝐷𝑜𝑚 𝐷. Then 𝑇(𝐷𝑜𝑚 𝐷) ⊂ 𝐷𝑜𝑚 𝐷 and the commutator [𝐷, 𝑇] on 𝐷𝑜𝑚 𝐷 is 

bounded. 

Proof. Let 𝜉 ∈ 𝐷𝑜𝑚 𝐷. Since ℰ is a core for 𝐷, there exists a sequence {𝜉𝑛} in ℰ such 

that 𝜉𝑛 → 𝜉,𝐷(𝜉𝑛) → 𝐷𝜉. Then 𝑇𝜉𝑛 ∈ ℰ, 𝑇𝜉𝑛 → 𝑇𝜉 and 𝐷(𝑇𝜉𝑛) = 𝑇𝐷𝜉𝑛 + [𝐷, 𝑇]𝜉𝑛 →
𝑇𝐷𝜉 + [𝐷, 𝑇]𝜉. So 𝑇𝜉 ∈ 𝐷𝑜𝑚 𝐷.  

Now let 𝐷 have dense domain. Its adjoint 𝐷∗ has as its domain the set of 𝜂 ∈ ℋ for which 

there is a 𝜁 (which will be unique) such that for all 𝜉 ∈ 𝐷𝑜𝑚 𝐷, 〈𝐷𝜉, 𝜂〉 = 〈𝜉, 𝜁〉, and for 

such an 𝜂, 𝐷∗𝜂 is defined to be 𝜁. 

The unbounded operator 𝐷∗ is always closed, and 𝐷 is called self-adjoint if 𝐷 = 𝐷∗. In 

particular, such a 𝐷 is closed. If 𝐷 is self-adjoint, then (e.g. [197], [23]) (𝐷 ± 𝚤1) is a one-

to-one map from 𝐷𝑜𝑚 𝐷 onto ℋ, and its inverse (𝐷 ± 𝚤𝐼)−1 is bounded. 

We will have to consider tensor products of unbounded operators. Let 𝐷1, . . . , 𝐷𝑛 be densely 

defined closed operators on Hilbert spaces 𝐻1, . . . , 𝐻𝑛. 

Then the tensor product 𝐷1 ⊙· · ·⊙ 𝐷𝑛 is defined in the obvious way on the algebraic tensor 

product 𝐷𝑜𝑚 𝐷1 ⊙ · · · ⊙ 𝐷𝑜𝑚 𝐷𝑛. This operator is pre-closed, and its closure is denoted 

by 𝐷1 ⊗ · · · ⊗ 𝐷𝑛. The algebraic tensor product of cores for the 𝐷𝑖 is a core for 𝐷 ([33]). 

If the  𝐷𝑖’s are self-adjoint then ([33]) 𝐷1 ⊗ · · · ⊗ 𝐷𝑛 is also self-adjoint. 

We next describe some of the basic properties of a self-adjoint unbounded operator 

𝐷 on a Hilbert space ℋ with compact resolvent ([185]). Having a compact resolvent means 

that for some 𝜁 ∈ ℂ, the map (𝐷 − 𝜁): 𝐷𝑜𝑚(𝐷) → ℋ is one to one and onto, and the 

resolvent 𝑅(𝜁) = (𝐷 − 𝜁)−1 ∶ ℋ → 𝐷𝑜𝑚 𝐷 ⊂ ℋ is a compact linear operator. Then 

([185]) since 𝐷 is closed (as it is self-adjoint), the compact resolvent property ensures the 

remarkable facts that the entire spectrum of 𝐷 consists of isolated eigenvalues {𝜆𝑘} with 

finite-dimensional eigenspaces 𝐸𝑘, and for every complex number 𝜆 which is not an 

eigenvalue of 𝐷,𝑅(𝜆) is compact. Further ([185]) all the 𝜆𝑘’s are real, and ([185]) for 𝜁 not 
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in the spectrum of 𝐷, the eigenvalues of 𝑅(𝜁) are of the form (𝜆𝑘 −  𝜁)−1 and have the same 

set of mutually orthogonal eigenspaces 𝐸𝑘 and eigenprojections 𝑃𝑘 as 𝐷. Further, 𝑅(𝜁) =
∑ (𝜆𝑘 − 𝜁)−1𝑃𝑘𝑘  in the norm topology. In particular, since by compactness, (𝜆𝑘 − 𝜁)−1 →
0, we have |𝜆𝑘| →∞. By the spectral theorem for self-adjoint compact operators, ∑ 𝑃𝑘𝑘 =
1 in the strong operator topology. From these facts we can determine 𝐷𝑜𝑚 𝐷. In fact, 

𝐷𝑜𝑚 𝐷 is the subspace of all vectors 𝜉 of the form  ∑ 𝜉𝑘𝑘  where 𝜉𝑘 = 𝑃𝑘𝜉 ∈ 𝐸𝑘  and 

∑ ‖𝜉𝑘‖
2

𝑘 <∞, ∑ 𝜆𝑘
2‖𝜉𝑘‖

2
𝑘 <∞, and for such an 𝜉, 𝐷(∑ 𝜉𝑘𝑘 ) = ∑ 𝜆𝑘𝜉𝑘𝑘 . So we can write 

𝐷 = ∑ 𝜆𝑘𝑃𝑘𝑘  on 𝐷𝑜𝑚 𝐷, convergence being in the strong operator topology. Conversely 

given real 𝜆𝑘 with |𝜆𝑘| →∞ and a family 𝐸𝑘 of mutually orthogonal finite dimensional 

subspaces of ℋ with associated orthogonal projections 𝑃𝑘 and ∑ 𝑃𝑘𝑘 = 1, then 𝐷 =
∑ 𝜆𝑘𝑃𝑘𝑘  defines a self-adjoint operator on ℋ with compact resolvent. To show this, it is 

obvious that 𝐷 is densely defined, and it is simple to check from the definition that if 𝜂 ∈
𝐷𝑜𝑚 𝐷∗, then 𝜂 ∈ 𝐷𝑜𝑚 𝐷 and 𝐷 is self-adjoint. Using the facts that |𝜆𝑘| →∞ and that the 

𝑃𝑘 form a complete orthonormal set of projections, one shows that (𝐷 − 𝚤)−1 is a compact 

normal operator. So 𝐷 is self-adjoint with compact resolvent as claimed. 

The following proposition gives the information that we will need about the operator 

�̂�. (We note, by the way, that in the general Hilbert 𝐶∗-module context, Kaad and Lesch 

([183], [184]) give general conditions that ensure self-adjointness and regularity for a class 

of two-by-two matrix operators that include �̂� below.) 

Proposition (5.1.4)[169]: Let 𝐷1, 𝐷2 be self-adjoint unbounded operators with compact 

resolvents on the Hilbert spaces ℋ1, ℋ2, 𝐾 =  ℋ1 ⊗ℋ2 and (as above) 𝐷1 ⊗1, 1⊗ 𝐷2, 

be the closures of the operators 𝐷1 ⊙1, 1⊙ 𝐷2. Define operators 𝐷’, �̂� on 𝐾⊗ ℂ2 = 𝐾2 

by: 

(𝐴.1)                𝐷’ = [
 0 𝐷1 ⊙1− 𝚤1⊙𝐷2

𝐷1 ⊙1+ 𝚤1⊙𝐷2 0
] 

and 

(𝐴.2)                   �̂� = [
0 𝐷1 ⊗1− 𝚤1⊗𝐷2

𝐷1 ⊗1+ 𝚤1⊗𝐷2 0
]. 

Then �̂� is a self-adjoint unbounded operator on 𝐾2 and is the closure of 𝐷’. 
Further, if ℰ1, ℰ2 are cores for 𝐷1, 𝐷2, then ℰ2, where ℰ = ℰ1 ⊙ℰ2, is a core for �̂�. 

Proof. By the preceding, the operators 𝐷1 ⊗1 and 1⊗𝐷2 are self-adjoint and 𝑉 =
𝐷𝑜𝑚 𝐷1 ⊙𝐷𝑜𝑚 𝐷2 is a core for both. Since  

𝑉 = (𝐷𝑜𝑚 𝐷1 ⊙ℋ2) ∩ (ℋ1 ⊙𝐷𝑜𝑚 𝐷2)  = 𝐷𝑜𝑚(𝐷1 ⊙1) ∩ 𝐷𝑜𝑚(1⊙ 𝐷2), 
it follows that 𝐷𝑜𝑚𝐷’ = 𝑉2 = 𝑉⊕𝑉 . We now adapt the approach of [171]. 

In the above notation, we can write 𝐷1 = ∑ 𝜆𝑘𝑃𝑘, 𝐷2𝑘 = ∑ 𝜇𝑟𝑄𝑟𝑟 , where the eigenspaces 

for 𝐷1, 𝐷2 associated with 𝜆𝑘, 𝜇𝑟 are 𝐸𝑘, 𝐹𝑟. Of course, these are also the ranges of the 

projections 𝑃𝑘, 𝑄𝑟 . Let 𝐸𝑘,𝑟 = 𝐸𝑘 ⊗𝐹𝑟. Then 𝐸𝑘,𝑟
2  is an eigenspace for the operator 𝐷’, and 

the restriction 𝐷𝑘,𝑟
’  of 𝐷’ to 𝐸𝑘,𝑟

2  is the 2 × 2 matrix (
0 (𝜆𝑘−𝑖𝜇𝑟)𝐼

(𝜆𝑘+𝑖𝜇𝑟)𝐼 0
) where 𝐼 is the 

identity operator on 𝐸𝑘,𝑟. An elementary calculation shows that the eigenvalues of 𝐷𝑘,𝑟
’  are 

±√𝜆𝑘
2 + 𝜇𝑟

2 . Let 𝜆 be any one of these eigenvalues, and suppose that 𝜆 ≠ 0. Then the 

eigenspace for 𝜆 is 

𝐸𝑘,𝑟
𝜆 = {(𝜉, 𝜂)’ ∈ 𝐸𝑘,𝑟

2 : 𝜆𝜉 = (𝜆𝑘 − 𝚤𝜇𝑟)𝜂}. 

Since 𝐷𝑘,𝑟
’  is self-adjoint, 𝐸𝑘,𝑟

2 = 𝐸𝑘,𝑟
𝜆 ⊕𝐸𝑘,𝑟

−𝜆 (orthogonal direct sum). Let 𝑃𝜆,𝑘𝑟 ∶ 𝐾
2 → 𝐸𝑘,𝑟

𝜆  

be the orthogonal projection. So (𝑃𝑘 ⊗𝑄𝑟) ⊗ 1 = 𝑃𝜆,𝑘,𝑟 ⊕𝑃−𝜆,𝑘,𝑟. If 𝜆 = 0, then 𝐷𝑘,𝑟
’ =
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0, and trivially 𝐸𝑘,𝑟
𝜆 = 𝐸𝑘,𝑟

2  and (𝑃𝑘 ⊗𝑄𝑟) ⊗ 1 = 𝑃𝜆,𝑘,𝑟. Then {𝑃𝜆,𝑘,𝑟} (𝜆
2 = 𝜆𝑘

2 + 𝜇𝑟
2) is a 

complete orthonormal family of projections on 𝐾2 = ⊕𝜆,𝑘,𝑟 (𝐸𝑘,𝑟
𝜆 )2 (since {(𝑃𝑘 ⊗𝑄𝑟) ⊗

1} is) and |𝜆| →∞ as 𝑘2 + 𝑟2 →∞. 

Let 𝐿 be the self-adjoint operator with compact resolvent associated above with the 

𝜆’s and 𝑃𝜆,𝑘,𝑟: so 𝐷𝑜𝑚 𝐿 is the space of [𝜉, 𝜂]’ = {[𝜉𝜆,𝑘,𝑟 , 𝜂𝜆,𝑘,𝑟]’} in 𝐾2 for which 

∑𝜆[𝜉𝜆,𝑘,𝑟 , 𝜂𝜆,𝑘,𝑟]’ ∈ 𝐾2, and for such an [𝜉, 𝜂]’, 𝐿[𝜉, 𝜂]’ = ∑𝜆[𝜉𝜆,𝑘,𝑟 , 𝜂𝜆,𝑘,𝑟]’. Let 𝑊 be the 

space of 𝜉 ∈ 𝐷𝑜𝑚 𝐿 for which 𝜉𝜆,𝑘,𝑟 = 0 except for a finite number of triples (𝜆, 𝑘, 𝑟). (So 

W is just the linear span of ∪𝑘,𝑟 𝐸𝑘,𝑟
2  in 𝐾2.) It is left to the reader to check that 𝐿, 𝐷’, �̂� 

coincide on 𝑊, and that 𝑊 is dense in 𝐾2, and is a core for 𝐿, �̂� and 𝐷’. So the closure of 𝐷’ 
is 𝐿. It remains to show that �̂� = 𝐿. 
To this end, we first determine the domain of �̂�. First, a core for 𝐷1 ⊙1 is the space of all 

linear combinations of elements of the form 𝜉𝑘,𝑟 ∈ 𝐸𝑘,𝑟 over 𝑘, 𝑟. Since by definition, 𝐷1 ⊗
1 is the closure of 𝐷1 ⊙1, its domain is the space of elements 𝜉 ∈ 𝐾 such that ∑𝜆𝑘𝜉𝑘,𝑟 ∈ 𝐾 

and (𝐷1 ⊗1)(𝜉) = ∑𝜆𝑘𝜉𝑘,𝑟. Similarly, the domain of 1⊗𝐷2 is the space of elements 𝜂 ∈

𝐾 such that ∑𝜇𝑟𝜂𝑘,𝑟 ∈ 𝐾 and (1⊗ 𝐷2)(𝜂) = ∑𝜇𝑟𝜂𝑘,𝑟. Hence the domain of 𝐷1 ⊗1∓
𝚤1⊗ 𝐷2 is the space 

                            �̂� = {𝜉 ∈ 𝐾:  𝑏𝑜𝑡ℎ  𝜆𝑘𝜉𝑘,𝑟 , 𝜇𝑟𝜉𝑘,𝑟 ∈ 𝐾}.                         (19) 

Obviously, if 𝜉 ∈ 𝐾, then 𝜉 ∈ �̂� if and only if (𝜆𝑘 ∓ 𝚤𝜇𝑟)𝜉𝑘,𝑟 ∈ 𝐾, since that amounts to 

saying that ∑(𝜆𝑘
2 + 𝜇𝑟

2) ‖𝜉𝑘,𝑟‖
2
<∞. The domain of �̂� is then �̂�2, and this is the same as 

𝐷𝑜𝑚 𝐿. Indeed, ∑ (𝜆𝑘
2 + 𝜇𝑟

2)𝑘,𝑟 ‖[𝜉𝑘,𝑟 , 𝜂𝑘,𝑟]’‖
2
= ∑ (𝜆𝑘

2 + 𝜇𝑟
2)𝑘,𝑟 (‖𝜉𝑘,𝑟‖

2
+ ‖𝜂𝑘,𝑟‖

2
) =

∑𝜆2 ‖[𝜉𝜆,𝑘,𝑟 , 𝜂𝜆,𝑘,𝑟]’‖
2
. Since both �̂�, 𝐿 coincide on every 𝐸𝑘,𝑟

2 , they are the same on their 

domain �̂�2. 

Now let ℰ𝑖 be cores for 𝐷𝑖 and ℰ = ℰ1 ⊙ℰ2. Then trivially, ℰ2 ⊂ 𝐷𝑜𝑚 �̂�. Since �̂�2 is the 

domain of �̂� , we just have to show that each pair (𝜁, 𝐷’𝜁), where 𝜁 = [𝜉𝑘 ⊗𝜂𝑟 , 𝜉𝑘
’ ⊗𝜂𝑟

’ ]’ 

with 𝜉𝑘 , 𝜉𝑘
’ ∈ 𝐸𝑘, 𝜂𝑟 , 𝜂𝑟

’ ∈ 𝐹𝑟 , is in the closure of the graph of �̂� restricted to ℰ2. To prove 

this, we need only show that (𝜉𝑘 ⊗𝜂𝑟 , 𝐷1𝜉𝑘 ⊗ 𝜂𝑟 ∓ 𝚤𝜉𝑘 ⊗𝐷2𝜂𝑟) is in the closure of the 

graph of 𝐷1 ⊙1∓ 𝚤1⊙𝐷2 restricted to ℰ. This follows since there are sequences 

{𝑣𝑛}, {𝑤𝑛} in ℰ1, ℰ2 such that (𝑣𝑛, 𝐷1𝑣𝑛) → (𝜉𝑘, 𝐷1𝜉𝑘) = (𝜉𝑘, 𝜆𝑘𝜉𝑘) and (𝑤𝑛, 𝐷2𝑤𝑛) →
(𝜂𝑟 , 𝐷2𝜂𝑟) = (𝜂𝑟 , 𝜇𝑟𝜂𝑟).  
Section (5.2): The Gromov-Hausdorff Propinquity 

The quantum Gromov-Hausdorff propinquity, introduced by [213], [210], is a 

distance on quantum compact metric spaces which extends the topology of the Gromov-

Hausdorff distance [205], [204]. Quantum metric spaces are generalization of Lipschitz 

algebras [220] first discussed by Connes [172] and formalized by Rieffel [86]. The 

propinquity strengthens Rieffel’s quantum Gromov-Hausdorff distance [87] to be well-

adapted to the 𝐶∗-algebraic framework, in particular by making ∗-isomorphism a necessary 

condition for distance zero [211]. The propinquity thus allows us to address questions from 

mathematical physics, such as the problem of finite dimensional approximations of quantum 

space times [202], [215], [203], [219], [216]. Matricial approximations of physical theory 

motivates our project, which requires, at this early stage, the study of many different 

examples of quantum spaces. 

Recently, the quantum tori form a continuous family for the propinquity, and admit 

finite dimensional approximations via so-called fuzzy tori [207]. Together with the work on 

𝐴𝐹 algebras done in [201], explores the connection between our geometric approach to 
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limits of 𝐶∗-algebras and the now well studied approach via inductive limits, which itself 

played a role is quantum statistical mechanics [2]. We thus bring noncommutative solenoids, 

studied by [78], [68], [214], and which are inductive limits of quantum tori, into the realm 

of noncommutative metric geometry. Our techniques apply to more general inductive limits 

on which projective limits of compact metrizable groups act ergodically. Noncommutative 

solenoids are interesting examples since they also are 𝐶∗-crossed products, whose metric 

structures are still a challenge to understand. Irrational noncommutative solenoids [78] are 

non-type 𝐼 𝐶∗-algebras, and many are even simple, thus they are examples of quantum 

spaces which are far from commutative.  

We show that noncommutative solenoids are limits, for the quantum Gromov-

Hausdorff propinquity, of quantum tori. As corollaries, we then show that the map from the 

solenoid group to the family of noncommutative solenoids is continuous for the quantum 

propinquity, and that noncommutative solenoids are limits of fuzzy tori, namely 𝐶∗-crossed 

products of finite cyclic groups acting on themselves by translation. As noncommutative 

solenoids have nontrivial 𝐾1 group [78], they are not 𝐴𝐹 algebras, so our proof that they are 

limits of finite dimensional 𝐶∗-algebras illustrates the difference and potential usefulness of 

our metric geometric approach. Moreover, noncommutative solenoids’ connection with 

wavelet theory [214] means that our result is a first step in what could be a metric approach 

to wavelet theory, by means of finite dimensional approximations. Last, metric 

approximations may prove a useful tool in the study of modules over non-commutative 

solenoids, initiated in [68], [214], as recent research in noncommutative metric geometry is 

concerned in part with the category of modules over quantum metric spaces [218] 

Noncommutative solenoids, introduced in [78] and studied further in [68], [214], are the 

twisted group 𝐶∗-algebras of the Cartesian square of the subgroups of 𝑄 consisting of the 𝑝-

adic rationals for some 𝑝 ∈ ℕ\ {0, 1}. We begin with the classification of the multipliers of 

these groups. 

Theorem-Definition (5.2.1)[200]: ([78]). Let 𝑝 ∈ ℕ \ {0, 1}. The inductive limit of: 

ℤ
𝑘⟼𝑝𝑘
→    ℤ

𝑘⟼𝑝𝑘
→    ℤ

𝑘⟼𝑝𝑘
→     · · · 

is the group of 𝑝-adic rational numbers: 

ℤ [
1

𝑝
] = {

𝑞

𝑝𝑘
: 𝑞 ∈ ℤ, 𝑘 ∈ ℕ} . 

The Pontryagin dual of ℤ [
1

𝑝
] is the solenoid group: 

𝑆𝑝 = lim
⟵

𝕋
𝑧⟼𝑧𝑝

←    𝕋
𝑧⟼𝑧𝑝

←   𝕋
𝑧⟼𝑧𝑝

←   ⋯ = {(𝑧𝑛)𝑛∈ℕ ∈ 𝕋ℕ: ∀𝑛 ∈ ℕ 𝑧𝑛+1
𝑝

= 𝑧𝑛}, 

where the dual pairing is given, for all 𝑞 ∈ ℤ, 𝑘 ∈ ℕ, and (𝑧𝑛)𝑛∈ℕ ∈ 𝑆𝑝, by 〈
𝑞

𝑝𝑘
, (𝑧𝑛)𝑛∈ℕ〉 =

𝑧𝑘
𝑞
. 

For any 𝜃 = (𝜃𝑛)𝑛∈ℕ ∈ 𝑆𝑝, and for all 𝑞1, 𝑞2, 𝑞3, 𝑞4 ∈ ℤ and 𝑘1, 𝑘2, 𝑘3, 𝑘4 ∈ ℕ, we define: 

Ψ𝜃: ((
𝑞1
𝑝𝑘1

,
𝑞2
𝑝𝑘2

) , (
𝑞3
𝑝𝑘3

,
𝑞4

𝑝𝑘4
)) = 𝜃𝑘1+𝑘4

𝑞1𝑞4 . 

For any multiplier f of ℤ [
1

𝑝
] × ℤ [

1

𝑝
] , there exists a unique 𝜃 ∈ 𝑆𝑝 such that 𝑓 is 

cohomologous to  Ψ𝜃. 

Thus, formally, noncommutative solenoids are defined by: 
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Definition (5.2.2)[200]: 𝐴 noncommutative solenoid 𝔖𝜃, for some 𝜃 ∈ 𝑆𝑝, is the twisted 

group 𝐶∗-algebra 𝐶∗ (ℤ [
1

𝑝
] × ℤ [

1

𝑝
] , Ψ𝜃). 

We compute the 𝐾-theory of noncommutative solenoids in [78] in terms of the multipliers 

of ℤ [
1

𝑝
] × ℤ [

1

𝑝
], identified with elements on the solenoid via Theorem- Definition (5.2.1); 

we then classify noncommutative solenoids up to their multiplier.  

As the compact group 𝑆𝑝
2 acts on 𝔖𝜃 for any 𝜃 ∈ 𝑆𝑝 via the dual action, any continuous 

length function on 𝑆𝑝
2 induces a quantum metric structure on 𝔖𝜃, as de-scribed in [86]. 𝐴 

quantum metric structure is given by a noncommutative analogue of the Lipschitz seminorm 

as follows: 

Notation (5.2.3)[200]: If 𝔄 is a 𝐶∗-algebra with unit, then the norm on 𝔄 is denoted by 

‖ · ‖𝔄, while the unit of 𝔄 is denoted by 1𝔄. The state space of 𝔄 is denoted by 𝑆(𝔄), and 

the subspace of self-adjoint elements in A is denoted by 𝔰𝔞(𝔄). 
Definition (5.2.4)[200]: ([86], [195], [213]). 𝐴 pair (𝔄, 𝐿) is a Leibniz quantum compact 

metric space when 𝔄 is a unital 𝐶∗-algebra and 𝐿 is a seminorm defined on some dense 

Jordan-Lie subalgebra 𝑑𝑜𝑚(𝐿) of the space of self-adjoint elements 𝔰𝔞(𝔄) of 𝔄, called a 

Lip-norm, such that: 

(i) {𝑎 ∈ 𝔰𝔞(𝔄): 𝐿(𝑎) = 0} = ℝ1𝔄, 

(ii) max {𝐿 (
𝑎𝑏+𝑏𝑎

2
) , 𝐿 (

𝑎𝑏−𝑏𝑎

2𝑖
) ≤  ‖𝑎‖𝔄𝐿(𝑏) + ‖𝑏‖𝔄𝐿(𝑎), 

(iii) the Monge-Kantorovich metric 𝑚𝑘𝐿 dual to 𝐿 on 𝑆(𝔄) by setting, for all 

𝜑,𝜓 ∈ 𝑆(𝔄) by 𝑚𝑘𝐿(𝜑, 𝜓) = 𝑠𝑢𝑝 {|𝜑(𝑎) − 𝜓(𝑎)|: 𝑎 ∈ 𝑑𝑜𝑚(𝐿), 𝐿(𝑎) ≤ 1} 
induces the weak* topology on 𝑆(𝔄), 
(iv) 𝐿 is lower semi-continuous with respect to ‖ · ‖𝔄. 

Classical examples of Lip-norms are given by the Lipschitz seminorms on the 𝐶∗- algebras 

of ℂ-valued continuous functions on compact metric spaces. An important source of 

noncommutative example is given by: 

Theorem-Definition (5.2.5)[200]: ([86]). Let 𝛼 be a strongly continuous action by ∗- 

automorphisms of a compact group 𝐺 on a unital 𝐶∗-algebra 𝔄 and let ℓ be a continuous 

length function on 𝐺. For all 𝑎 ∈ 𝔰𝔞 (𝔄), we define: 

𝐿𝛼,ℓ(𝑎) = sup {
‖𝑎 − 𝛼𝑔(𝑎)‖𝔄

ℓ(𝑔)
: 𝑔 ∈ 𝔊, 𝑔 𝑖𝑠 𝑛𝑜𝑡 𝑡ℎ𝑒 𝑢𝑛𝑖𝑡 𝑜𝑓 𝐺} . 

Then 𝐿𝛼,ℓ is a Lip-norm on 𝔄 if and only if 𝛼 is ergodic, i.e. {𝑎 ∈ 𝔄 ∶ ∀𝑔 ∈ 𝐺 𝛼𝑔(𝑎) =
𝑎} = ℂ1𝔄. We note that 𝐿𝛼,ℓ is always lower semi-continuous. 

Theorem (5.2.5) is thus, in particular, applicable to any dual action on the twisted group 𝐶∗-
algebra of some discrete Abelian group, such as noncommutative solenoids or quantum tori. 

We continue the study of the geometry of classes of quantum compact metric spaces under 

noncommutative analogues of the Gromov-Hausdorff distance,  with the perspective that 

such a new geometric approach to the study of 𝐶∗-algebras may prove useful in 

mathematical physics and 𝐶∗-algebra theory. Our focus is a noncommutative analogue of 

the Gromov-Hausdorff distance devised by the first author [213] as an answer to many early 

challenges in this program, and whose construction begins with a particular mean to relate 

two Leibniz quantum compact metric spaces via an object akin to a correspondence. 

Definition (5.2.6)[200]: A bridge from a unital 𝐶∗-algebra 𝔄 to a unital 𝐶∗-algebra 𝔅 is a 

quadruple (𝔇,𝜔, 𝜋𝔄, 𝜋𝔅) where: 

(i) 𝔇 is a unital 𝐶∗-algebra, 
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(ii) the element 𝜔, called the pivot of the bridge, satisfies 𝜔 ∈ 𝔇 and 𝑆1(𝔇|𝜔) ≠ ∅, where: 

𝑆1(𝔇|𝜔) = {𝜑 ∈ 𝑆(𝔇) ∶ 𝜑((1 − 𝜔∗𝜔)) = 𝜑((1 − 𝜔𝜔∗)) = 0}  
is called the 1-level set of 𝜔, 

(iii) 𝜋𝔄: 𝔄 ↪ 𝔇 and 𝜋𝔅: 𝔅 ↪ 𝔇 are unital ∗-monomorphisms. 

There always exists a bridge between any two arbitrary Leibniz quantum compact metric 

spaces [213]. The quantum propinquity is computed from a numerical quantity called the 

length of a bridge. We will denote the Hausdorff (pseudo)distance associated with a 

(pseudo)metric d by 𝐻𝑎𝑢𝑠𝑑[206]. 

First introduced in [213], the length of a bridge is computed from two numbers, the height 

and the reach of a bridge. The height of a bridge assesses the error we make by replacing 

the state spaces of the Leibniz quantum compact metric spaces with the image of the 1-level 

set of the pivot of the bridge, using the ambient Monge-Kantorovich metric. 

Definition (5.2.7)[200]: Let (𝔄, 𝐿𝔄) and (𝔅, 𝐿𝔅) be two Leibniz quantum compact metric 

spaces. The height 𝜍(𝛾|𝐿𝔄, 𝐿𝔅) of a bridge 𝛾 = (𝔇,𝜔, 𝜋𝔄, 𝜋𝔅) from 𝔄 to 𝔅, and with respect 

to 𝐿𝔄 and 𝐿𝔅, is given by: 

max {𝐻𝑎𝑢𝑠 𝑚𝑘𝐿𝔄
(𝑆(𝔄), {𝜑 ∘  𝜋𝔄: 𝜑 ∈ 𝑆1(𝔇|𝜔)}),𝐻𝑎𝑢𝑠 𝑚𝑘𝐿𝔅

(𝑆(𝔅), {𝜑 ∈ 𝜋𝔅: 𝜑 

∈  𝑆1(𝔇|𝜔)})} . 

The second quantity measures how far apart the images of the balls for the Lip-norms are in 

𝔄⊕𝔅; to do so, they use a seminorm on 𝔄⊕𝔅 built using the bridge: 

Definition (5.2.8)[200]: ([213]). Let 𝔄 and 𝔅 be two unital 𝐶∗-algebras. The bridge semi-

norm 𝑏𝑛𝜆 (·) of a bridge 𝛾 = (𝔇,𝜔, 𝜋𝔄, 𝜋𝔅) from 𝔄 to 𝔅 is the seminorm defined on 𝔄⊕
𝔅 by 𝑏𝑛𝜆 (𝑎, 𝑏) = ‖𝜋𝔄(𝑎)𝜔 − 𝜔𝜋𝔅(𝑏)‖𝔇 for all (𝑎, 𝑏) ∈ 𝔄⊕𝔅. 

We implicitly identify 𝔄 with 𝔄⊕ {0} and 𝔅 with {0} ⊕𝔅 in 𝔄⊕𝔅 in the next definition, 

for any two spaces 𝔄 and 𝔅. 

Definition (5.2.9)[200]: ([213]). Let (𝔄, 𝐿𝔄) and (𝔅, 𝐿𝔅) be two Leibniz quantum compact 

metric spaces. The reach 𝜚 (𝛾|𝐿𝔄, 𝐿𝔅) of a bridge 𝛾 = (𝔇,𝜔, 𝜋𝔄, 𝜋𝔅) from 𝔄 to 𝔅, and with 

respect to 𝐿𝔄 and 𝐿𝔅, is given by: 

𝐻𝑎𝑢𝑠𝑏𝑛𝜆(·) ({𝑎 ∈ 𝔰𝔞 (𝔄) ∶ 𝐿𝔄(𝑎)  ≤ 1} , {𝑏 ∈ 𝔰𝔞 (𝔅): 𝐿𝔅(𝑏) ≤ 1}). 

We thus choose a natural synthetic quantity to summarize the information given by the 

height and the reach of a bridge: 

Definition (5.2.10)[200]: ([213]). Let (𝔄, 𝐿𝔄) and (𝔅, 𝐿𝔅) be two Leibniz quantum compact 

metric spaces. The length 𝜆 (𝛾|𝐿𝔄, 𝐿𝔅) of a bridge 𝛾 = (𝔇,𝜔, 𝜋𝔄, 𝜋𝔅) from 𝔄 to 𝔅, and 

with respect to 𝐿𝔄 and 𝐿𝔅, is given by 𝑚𝑎𝑥 {𝜍(𝛾|𝐿𝔄, 𝐿𝔅), 𝜚(𝛾|𝐿𝔄, 𝐿𝔅)} . 
The quantum Gromov-Hausdorff propinquity is constructed from bridges, though the 

construction requires some care. We refer to [213] for the construction. 

Theorem-Definition (5.2.11)[200]: ([213]). Let ℒ be the class of all Leibniz quantum com-

pact metric spaces. There exists a class function Λ from ℒ × ℒ to [0,∞) ⊆ ℝ such that: 

(i) for any (𝔄, 𝐿𝔄), (𝔅, 𝐿𝔅) ∈ ℒ we have: 

0 ≤ Λ((𝔄, 𝐿𝔄), (𝔅, 𝐿𝔅)) ≤  𝑚𝑎𝑥 {𝑑𝑖𝑎𝑚(𝑆(𝔄),𝑚𝑘𝐿𝔄), 𝑑𝑖𝑎𝑚(𝑆(𝔅),𝑚𝑘𝐿𝔅)} ,  

(ii) for any (𝔄, 𝐿𝔄), (𝔅, 𝐿𝔅) ∈ ℒ we have: 

Λ((𝔄, 𝐿𝔄), (𝔅, 𝐿𝔅)) = Λ((𝔅, 𝐿𝔅), (𝔄, 𝐿𝔄)), 
(iii) for any (𝔄, 𝐿𝔄), (𝔅, 𝐿𝔅), (ℭ, 𝐿ℭ) ∈ ℒ we have: 

Λ((𝔄, 𝐿𝔄), (ℭ, 𝐿ℭ))  ≤ Λ((𝔄, 𝐿𝔄), (𝔅, 𝐿𝔅)) +  Λ((𝔅, 𝐿𝔅), (ℭ, 𝐿ℭ)), 
(iv) for all (𝔄, 𝐿𝔄), (𝔅, 𝐿𝔅) ∈ ℒ and for any bridge 𝛾 from 𝔄 to 𝔅, we have 

Λ((𝔄, 𝐿𝔄), (𝔅, 𝐿𝔅))  ≤ 𝜆 (𝛾|𝐿𝔄, 𝐿𝔅), 
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(v) for any (𝔄, 𝐿𝔄), (𝔅, 𝐿𝔅) ∈ ℒ, we have 𝛬((𝔄, 𝐿𝔄), (𝔅, 𝐿𝔅)) =  0 if and only if (𝔄, 𝐿𝔄) 
and (𝔅, 𝐿𝔅) are isometrically isomorphic, i.e. if and only if there exists a ∗-isomorphism 

𝜋:𝔄 → 𝔅 with 𝐿𝔅  ∘  𝜋 = 𝐿𝔄, or equivalently there exists 𝑎 ∗-isomorphism 𝜋:𝔄 → 𝔅 whose 

dual map 𝜋∗ is an isometry from (𝑆(𝔅),𝑚𝑘𝐿𝔅) into (𝑆(𝔄),𝑚𝑘𝐿𝔄), 

(vi) if Ξ is a class function from ℒ × ℒ to [0,∞) which satisfies Properties (ii), (iii) and (iv) 

above, then Ξ((𝔄, 𝐿𝔄), (𝔅, 𝐿𝔅))  ≤ 𝛬((𝔄, 𝐿𝔄), (𝔅, 𝐿𝔅)) for all (𝔄, 𝐿𝔄) and (𝔅, 𝐿𝔅) in ℒ, 

(vii) the topology induced by Λ on the class of classical metric spaces agrees with the 

topology induced by the Gromov-Hausdorff distance. 

The study of finite dimensional approximations of quantum compact metric spaces for the 

quantum propinquity is an important topic in noncommutative metric geometry, with results 

about the quantum tori [77], [207], spheres [217], [218], and 𝐴𝐹 algebras [201]. It is in 

general technically very difficult to construct natural approximations, while their existence 

is only known under certain certain quantum topological properties (pseudo-diagonality) 

[212]. Moreover, quantum tori have been an important test case for our theory, with work 

on the continuity of the family of quantum tori [207], and perturbations of metrics for curved 

quantum tori [209]. See [211] for a survey of the theory of quantum compact metric spaces 

and the Gromov-Hausdorff propinquity. 

All our results are valid for the dual Gromov-Hausdorff propinquity [210], [208] and 

therefore for Rieffel’s quantum Gromov-Hausdorff distance [87]. 

The first step in obtaining our results about noncommutative solenoids consists in 

constructing a natural metric on the countable product  ∏ 𝐺𝑛𝑛∈ℕ  of a sequence (𝐺𝑛)𝑛∈ℕ of 

compact metrizable groups. Our metric is inspired by a standard construction of metrics on 

the Cantor set, and is motivated by the desire to have the sequence of subgroups 

 (∏ 𝐺𝑛𝑛>𝑁 )𝑁∈ℕ converge to the trivial group for the induced Hausdorff distance. This latter 

property will be the key to our computation of estimates on the propinquity later on. Our 

metrics are constructed from length functions. We recall that ℓ is a length function on a 

group 𝐺 with unit 𝑒 when: 

(i) for any 𝑥 ∈ 𝐺, the length ℓ(𝑥) is 0 if and only if 𝑥 = 𝑒, 

(ii) ℓ(𝑥) = ℓ(𝑥−1) for all 𝑥 ∈ 𝐺, 

(iii) ℓ(𝑥𝑦) ≤ ℓ(𝑥) + ℓ(𝑦) for all 𝑥, 𝑦 ∈ 𝐺. 

Hypothesis (5.2.12)[200]: Let (𝐺𝑛)𝑛∈ℕ be a sequence of compact metrizable groups, and 

for each 𝑛 ∈ ℕ let ℓ𝑛 be a continuous length function on 𝐺𝑛. Let𝑀 ≥ 𝑑𝑖𝑎𝑚(𝐺0, ℓ0). 
Let: 

𝔾 =∏𝐺𝑛
𝑛∈ℕ

= {(𝑔𝑛)𝑛∈ℕ ∶ ∀𝑛 ∈ ℕ     𝑔𝑛 ∈ 𝐺𝑛} ,  

endowed with the product topology. With the pointwise operations, 𝔾 is a compact group. 

We denote the unit of 𝔾 by 1 and, by abuse of notation, we also denote the unit of 𝐺𝑛 by 1 

for all 𝑛 ∈ ℕ. 

Definition (5.2.13)[200]: Let Hypothesis (5.2.12) be given. We define the length function 

ℓ∞ on 𝔾 by setting, for any 𝑔 = (𝑔𝑛)𝑛∈ℕ in 𝔾: 

ℓ∞(𝑔) = inf {𝜀 > 0 ∶ ∀𝑛 ∈ ℕ 𝑛 <
𝑀

𝜀
⟹ ℓ𝑛(𝑔𝑛) ≤ 𝜀}. 

The basic properties of the metric are given by: 

Proposition (5.2.14)[200]: Assume Hypothesis (5.2.12). The  length function ℓ∞ on 𝔾 =
∏ 𝐺𝑛𝑛∈ℕ  from Definition (5.2.13) is continuous for the product topology on the compact 
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group 𝔾, and thus metrizes this topology. Moreover, if for all 𝑁 ∈ ℕ, we set 𝔾(𝑁) =
{(𝑔𝑛)𝑛∈ℕ ∈ 𝔾 ∶ ∀𝑗 ∈ {0, . . . , 𝑁}   𝑔𝑗 = 1} , then 𝔾(𝑁) is a closed subgroup of 𝔾 and: 

                              𝑑𝑖𝑎𝑚(𝔾(𝑁), ℓ∞) ≤
𝑀

𝑁+1
,                                           (20) 

and thus in particular, if 1 ∈ 𝔾 is the unit of 𝔾: 

                            lim
𝑁→∞

𝐻𝑎𝑢𝑠ℓ∞ (𝔾
(𝑁), {1}) = 0.                                         (21) 

Proof. We easily note that 𝑑𝑖𝑎𝑚(𝔾, ℓ∞)  ≤  𝑑𝑖𝑎𝑚(𝐺0, ℓ0). Indeed, if 𝑔 = (𝑔𝑛)𝑛∈𝔾 ∈ 𝔾 

then for 𝑛 = 0 < 1 =
𝑀

𝑑𝑖𝑎𝑚(𝐺0,ℓ0)
 we have ℓ0(𝑔0)  ≤  𝑑𝑖𝑎𝑚(𝐺0, ℓ0). So by definition, 

ℓ∞(𝑔) ≤  𝑑𝑖𝑎𝑚(𝐺0, ℓ0). 

Now, let 𝑁 ∈ ℕ. We observe that if 𝑔 = (𝑔𝑛)𝑛∈ℕ ∈ 𝔾(𝑁), then for all 𝑛 ≤ 𝑁 <
𝑀

𝑀

𝑁+1
 we 

have ℓ𝑛(𝑔𝑛) = 0 ≤
𝑀

𝑁+1
 . Thus, ℓ∞(𝑧) ≤

𝑀

𝑁+1
 . 

This proves both Expressions (20) and (21). 

Assume now that (𝑔𝑚)𝑚∈ℕ converges in 𝔾 to some 𝑔, i.e. converges pointwise. 

Let 𝜀 > 0. Let 𝑁 = ⌊
𝑀

𝜀
⌋. For each 𝑗 ∈ {0, . . . , 𝑁}, there exists 𝐾𝑗 ∈ ℕ such that for all 𝑚 ≥

𝐾𝑗, we have ℓ𝑗(𝑔𝑗
𝑚𝑔𝑗

−1) ≤ 𝜀, by pointwise convergence. Let 𝐾 =  max {𝐾𝑗: 𝑗 ∈ {0, . . . , 𝑁}}. 

Then by construction, for all 𝑚 ≥ 𝐾, we have, for all 𝑛 <
𝑀

𝜀
 , that ℓ𝑛(𝑔𝑛

𝑚 𝑔𝑗
−1) ≤ 𝜀, so 

ℓ∞(𝑔
𝑚𝑔−1) ≤ 𝜀. Thus ℓ∞ is continuous and induces a weaker topology on 𝔾 than the 

topology of pointwise convergence. 

Assume now that ℓ∞((𝑔𝑛)𝑛∈ℕ) = 0. Fix 𝑘 ∈ ℕ. Let 𝑁 > 𝑘. Then ℓ∞((𝑔𝑛)𝑛∈ℕ) ≤
𝑀

𝑁+1
 . 

Thus by definition, ℓ𝑘(𝑔𝑘) ≤
𝑀

𝑁+1
 for all 𝑁 > 𝑘. Thus ℓ𝑘(𝑔𝑘) = 0 for all 𝑘 ∈ ℕ and thus 

𝑔𝑘 is the unit of 𝐺𝑘 for all 𝑘 ∈ ℕ. 

Thus the topology induced by ℓ∞ is Hausdorff, and thus, as the product topology on 

𝔊𝑁 is compact by Tychonoff theorem, ℓ∞ induces the product topology on 𝔊𝑁. This could 

also be easily verified directly.  

We shall apply Definition (5.2.13) and Proposition (5.2.14) to projective limits, and thus we 

record the following corollary. We note that all our projective sequences of groups involve 

only epimorphisms. 

Corollary (5.2.15)[200]: Let 𝐺0  
   𝜌0 
←  𝐺1

  𝜌1  
←  𝐺2

  𝜌2 
←   · · ·= (𝐺𝑛, 𝜌𝑛)𝑛∈ℕ be a projective 

sequence of compact metrizable groups, and let ℓ𝑛 be a continuous length function on 𝐺𝑛 

for all 𝑛 ∈ ℕ. Let 𝑀 ≥ 𝑑𝑖𝑎𝑚(𝐺0, ℓ0). Let: 

𝐺 = lim
⟵
(𝐺𝑛, 𝜌𝑛)𝑛∈ℕ = {(𝑔𝑛)𝑛∈ℕ ∈∏𝐺𝑛

𝑛∈ℕ

∶ ∀𝑛 ∈ ℕ   𝑔𝑛 = 𝜌𝑛(𝑔𝑛+1)} . 

The restriction to 𝐺 of the length function ℓ∞ on ∏ 𝐺𝑛𝑛∈ℕ  from Definition (5.2.13) metrizes 

the projective topology on 𝐺; moreover if 𝐺𝑁 = 𝐺 ∩ 𝔾(𝑁) for all 𝑁 ∈ ℕ, then 

𝐻𝑎𝑢𝑠ℓ∞(𝐺𝑁 , {1}) ≤
𝑀

𝑁+1
 with 1 ∈ 𝐺 the unit of 𝐺. 

Proof. This is all straightforward as 𝐺 is a closed subgroup of 𝔾. 

We begin our study of quantum metrics on inductive limits with the observation that the 

proof of [211] includes the following fact, which will be of great use to us in view of 

Corollary (5.2.15): 

Lemma (5.2.16)[200]: Let 𝐺 be a compact metrizable group, 𝐻 ⊆ 𝐺 be a normal closed 

subgroup, ℓ a continuous length function on 𝐺 and 𝔄 𝑎 unital 𝐶∗-algebra endowed with a 
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strongly continuous ergodic action 𝛼 of 𝐺. Let 𝐾 =  𝐺/𝐻 and let ℓ𝐾 be the continuous 

length function ℓ𝐾: 𝑘 ∈ 𝐾 ⟼  inf {ℓ(𝑔): 𝑔 ∈ 𝑘𝐻} where 𝑘𝐻, for any 𝑘 ∈ 𝐾, is the coset 

associated with 𝑘. 

Let 𝔄𝐾 = {𝑎 ∈ 𝔄 ∶ ∀𝑔 ∈ 𝐻𝛼𝑔(𝑎) = 𝑎} be the fixed point 𝐶∗-subalgebra of 𝔄 for the action 

𝛼 of 𝐾 on 𝔄. Note that 𝛼 induces an ergodic, strongly continuous action 𝛽 of 𝐾 on 𝔄𝐾. 

Using Theorem (1.5), Let 𝐿 be the Lip-norm on 𝔄 given by the action 𝛼 of 𝐺 and the length 

function ℓ, and let 𝐿𝐾 be the Lip-norm on 𝔄𝐾 given by the action 𝛽 of 𝐾 and the length 

function ℓ𝐾. Then: 

Λ((𝔄, 𝐿), (𝔄𝐾 , 𝐿𝐾)) ≤ 𝑑𝑖𝑎𝑚(𝐻, ℓ). 
Proof. We first note that since 𝐻 is closed, ℓ𝐾 is easily checked to be a length function on 

𝐾. Moreover, if 𝜋: 𝐺 ↠ 𝐾 is the canonical surjection, then the trivial inequality ℓ𝐾(𝜋(𝑔))  ≤
ℓ(𝑔) for all 𝑔 ∈ 𝐺 proves that ℓ𝐾 is continuous on 𝐾 since 𝑔 ∈ 𝐺 ⟼ ℓ𝐾(𝜋(𝑔)) is 1-

Lipschitz, by characterization of continuity for the final topology on 𝐾. 

Let 𝜇 be the Haar probability measure on 𝐻. For all 𝑎 ∈ 𝔄, we define: 

𝔼(𝑎) = ∫𝛼𝑔(𝑎) 𝑑𝜇(𝑔)
𝐻

. 

𝐴 standard argument shows that 𝔼 is a unital conditional expectation on 𝔄 with range 𝔄𝐾. 

In particular, 𝔼 maps 𝔰𝔞(𝔄) onto 𝔰𝔞(𝔄𝐾). 
Moreover, we note that since 𝐻 is normal, we have 𝑔𝐻 = 𝐻𝑔 for all 𝑔 ∈ 𝐺, and thus: 

𝐿𝐾(𝔼(𝑎)) = sup {
‖𝛼𝑔(∫ 𝛼ℎ(𝑎)𝑑𝜇(ℎ)

𝐻
) − ∫ 𝛼ℎ(𝑎)𝑑𝜇(ℎ)

𝐻
‖
𝔄

ℓ(𝑔)
: 𝑔 ∈ 𝐺 \ {1}} 

= 𝑠𝑢𝑝{
‖∫ 𝛼ℎ(𝑎)𝑑𝜇(ℎ)

𝑔𝐻
− ∫ 𝛼ℎ(𝑎)𝑑𝜇(ℎ)

𝐻
‖
𝔄

ℓ(𝑔)
: 𝑔 ∈ 𝐺 \ {1}} 

= 𝑠𝑢𝑝

{
 

 ‖∫ 𝛼ℎ(𝑎)𝑑𝜇(ℎ)
𝐻𝑔

− ∫ 𝛼ℎ(𝑎)𝑑𝜇(ℎ)
𝐻

‖
𝔄

ℓ(𝑔)
: 𝑔 ∈ 𝐺  {1}

}
 

 
 

≤ 𝑠𝑢𝑝 {
∫ ‖𝛼ℎ𝑔(𝑎) − 𝛼ℎ(𝑎)𝑑𝜇(ℎ)‖

𝔄𝐻

ℓ(𝑔)
: 𝑔 ∈ 𝐺 \ {1}} 

= 𝑠𝑢𝑝 {
‖𝑎 − 𝛼𝑔(𝑎)‖𝔄

ℓ(𝑔)
: 𝑔 ∈ 𝐺 \ {1}} =  𝐿(𝑎).  

Hence 𝔼 is a weak contraction from (𝔄, 𝐿) onto (𝔄𝐾 , 𝐿𝐾). 
Let now 𝑖𝑑 be the identity operator on 𝔄 and 𝜗:𝔄𝐾 ↪ 𝔄 be the canonical inclusion map. 

We thus define a bridge 𝛾 = (𝔄, 1𝔄, 𝜗, 𝑖𝑑) from 𝔄𝐾 to 𝔄, whose height is null since its pivot 

is 1𝔄. We are thus left to compute the reach of 𝛾. 

To begin with, if 𝑎 ∈ 𝔰𝔞 (𝔄𝐾) with 𝐿𝐾(𝑎) ≤ 1, then an immediate computation proves that 

𝐿(𝑎) = 𝐿𝐾(𝑎) ≤ 1 and thus ‖𝑎1𝔄 − 1𝔄𝑎‖𝔄 = 0. 

Now let 𝑎 ∈ 𝔰𝔞(𝔄) with 𝐿(𝑎) ≤ 1. Then 𝐿𝐾(𝔼(𝑎))  ≤  1, and we have: 

‖𝑎 − 𝔼(𝑎)‖𝔄 = ‖∫ 𝛼ℎ(𝑎) − 𝑎 𝑑𝜇(ℎ)
𝐻

‖
𝔄

 since 𝜇 probability measure, 

≤ ∫‖𝛼ℎ(𝑎) − 𝑎‖
𝔄
 𝑑𝜇(ℎ)

𝐻

 

≤ ∫ ℓ(ℎ)𝐿(𝑎) 𝑑𝜇(ℎ)
𝐻

 



171 

≤ ∫𝑑𝑖𝑎𝑚(𝐻, ℓ) 𝑑𝜇(ℎ)
𝐻

 =  𝑑𝑖𝑎𝑚(𝐻, ℓ). 

Thus, the reach, and hence the length of 𝛾 is no more than 𝑑𝑖𝑎𝑚(𝐻, ℓ), which, by Theorem-

Definition (5.2.11), concludes our proof for our lemma.  

We prove one of the main results. 

Theorem (5.2.17)[200]: Let 𝐺0
   𝜌0  
←  𝐺1

  𝜌1  
←  𝐺2

  𝜌2  
←   ⋯ = (𝐺𝑛, 𝜌𝑛)𝑛∈ℕ be a projective 

sequence of compact metrizable groups, and for each 𝑛 ∈ ℕ, let ℓ𝑛 be a continuous length 

function on 𝐺𝑛. Let 𝔄 be a unital 𝐶∗-algebra endowed with a strongly continuous action 𝛼 

of 𝐺 = lim
⟵
(𝐺𝑛, 𝜌𝑛)𝑛∈ℕ. Let𝜚𝑛: 𝐺 ↠ 𝐺𝑛 be the canonical surjection for all 𝑛 ∈ ℕ. 

We endow 𝐺 with the continuous length function ℓ∞ from Definition (5.2.13) for some 𝑀 ≥
 𝑑𝑖𝑎𝑚(𝐺0, ℓ0). 
For all 𝑁 ∈ ℕ, let: 

𝐺(𝑁) = 𝑘𝑒𝑟𝜚𝑁 = {(𝑔𝑛)𝑛∈ℕ ∈ 𝐺: ∀𝑛 ∈ {0, . . . , 𝑁 − 1}  𝑔𝑛 = 1} ⊴ 𝐺 
and let 𝔄𝑁 be the fixed point 𝐶∗-subalgebra of 𝛼 restricted to 𝐺(𝑁). We denote by 𝛼𝑛 the 

action of 𝐺𝑛 induced by 𝛼 on 𝔄𝑛 for all 𝑛 ∈ ℕ. 

Moreover, for all 𝑛 ∈ ℕ and 𝑔 ∈ 𝐺𝑛 we set: 

ℓ∞
𝑛
(𝑔) = inf {ℓ∞(ℎ): 𝜚𝑛(ℎ) = 𝑔} . 

If, for some 𝑛 ∈ ℕ, the action of 𝐺𝑛 induced by 𝛼 on 𝔄𝑛 is ergodic, then: 

(i) 𝛼 is ergodic on 𝔄 and 𝛼𝑛 is ergodic on 𝔄𝑛 for all 𝑛 ∈ ℕ 

(ii) If 𝐿 is the Lip-norm induced by 𝛼 and ℓ∞ on 𝔄 and 𝐿𝑛 is the Lip-norm induced by 𝛼𝑛 

and ℓ∞
𝑛

 on 𝔄𝑛 using Theorem (5.2.5), then for all 𝑛 ∈ ℕ: 

                                           Λ((𝔄, 𝐿), (𝔄𝑛, 𝐿𝑛)) ≤
𝑀

𝑛+1
 

and thus: lim
𝑛→∞

Λ((𝔄, 𝐿), (𝔄𝑛, 𝐿𝑛)) = 0. 

Proof. For any given 𝑛 ∈ ℕ, the group 𝐺𝑛 is isomorphic to 𝐺/𝐺(𝑛) and we are in the setting 

of Lemma (5.2.16) — in particular, ℓ∞
𝑛

 is a continuous length function on 𝐺𝑛 and 𝛼𝑛 is a 

well-defined action. 

We note that by construction, for all 𝑛 ∈ ℕ: 

         {𝑎 ∈ 𝔄𝑛: ∀𝑔 ∈ 𝐺𝑛  𝛼𝑛
𝑔(𝑎) = 𝑎} = {𝑎 ∈ 𝔄𝑛: ∀𝑔 ∈ 𝐺 𝛼𝑔(𝑎) = 𝑎} .           (22) 

Let us now assume that the action 𝛼𝑛 is ergodic for some 𝑛 ∈ ℕ. Let 𝑎 ∈ 𝔄 such that for all 

𝑔 ∈ 𝐺 we have 𝛼𝑔(𝑎) = 𝑎. Then 𝑎 ∈ 𝔄𝑛 in particular, since a is invariant by the action of 

𝛼 restricted to 𝐺(𝑛). Moreover, a is invariant by the action 𝛼𝑛 by Expression (22) and thus 

𝑎 ∈ 𝔄1𝔄. Thus 𝛼 is ergodic. This, in turn, proves that for all 𝑛 ∈ ℕ, the action 𝛼𝑛 is ergodic 

by Expression (22). 

Thus, 𝐿 and 𝐿𝑛 are now well-defined. By Lemma (5.2.16) and Corollary (5.2.15), we obtain: 

Λ((𝔄, 𝐿), (𝔄𝑛, 𝐿𝑛)) ≤
𝑀

𝑛 + 1
 . 

This concludes our proof.  

Theorem (5.2.17) involves an ergodic action of a projective limit of compact groups on a 

unital 𝐶∗-algebra and one may wonder when such actions exist. The following theorem 

proves that one may obtain such actions on inductive limits, under reasonable compatibility 

conditions. Thus the next theorem provides us with a mean to construct Leibniz Lip-norms 

on inductive limits of certain Leibniz quantum compact metric spaces. 

Theorem (5.2.18)[200]: Let 𝐺0
  𝜌0 
←  𝐺1

 𝜌1 
←  𝐺2

  𝜌2 
←  ⋯ = (𝐺𝑛, 𝜌𝑛)𝑛∈ℕ be a projective 

sequence of compact groups. Let: 
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𝐺 = {(𝑔𝑛)𝑛∈ℕ ∈∏𝐺𝑛
𝑛∈ℕ

∶ ∀𝑛 ∈ ℕ 𝜌𝑛(𝑔𝑛+1) = 𝑔𝑛} , 

noting that 𝐺 = lim
⟵
(𝐺𝑛, 𝜌𝑛)𝑛∈ℕ. 

Let 𝔄0  
 𝜑0  
→  𝔄1  

𝜑1
→ 𝔄2

  𝜑2  
→   · · · = (𝔄𝑛, 𝜑𝑛)𝑛∈ℕ be an inductive sequence of unital 𝐶∗-

algebras where, for all 𝑛 ∈ ℕ, we assume: 

(i) 𝜑𝑛 is a ∗-monomorphism, 

(ii) there exists an ergodic action αn of 𝐺𝑛 on 𝔄𝑛, 

(iii) for all 𝑔 = (𝑔𝑛)𝑛∈ℕ ∈ 𝐺 we have: 

                    𝜑𝑛 ∘  𝛼𝑛
𝑔𝑛 = 𝛼𝑛+1

𝑔𝑛+1 ∘ 𝜑𝑛.                                           (23) 
We denote by 𝔄 the inductive limit of (𝔄𝑛, 𝜑𝑛)𝑛∈ℕ. 

Then there exists an ergodic strongly continuous action 𝛼 of 𝐺 = lim
⟵
(𝐺𝑛, 𝑛)𝑛∈ℕ on 𝔄. 

Proof. For all (𝑎𝑛)𝑛∈ℕ ∈ ∏ 𝔄𝑛𝑛∈ℕ , we set ‖(𝑎𝑛)‖∞ = lim 𝑠𝑢𝑝𝑛→∞ ‖𝑎𝑛‖𝔄𝑛, which defined 

a 𝐶∗-seminorm on ∏ 𝔄𝑛𝑛∈ℕ . The quotient of ∏ 𝔄𝑛∈ℕ 𝑛
 by {𝑎 ∈ ∏ 𝔄𝑛𝑛∈ℕ ∶ ‖𝑎‖∞ = 0}, 

endowed with the quotient seminorm of  ‖·‖∞, which we still denote by ‖ · ‖∞, is a 𝐶∗-
algebra, which we denote by lim  𝑠𝑢𝑝𝑛→∞ 𝔄𝑛. Let 𝜋 be the canonical surjection from 

∏ 𝔄𝑛𝑛∈ℕ  onto lim 𝑠𝑢𝑝𝑛→∞ 𝔄𝑛. 

Up to a ∗-isomorphism, 𝔄 = lim
⟶
(𝔄𝑛, 𝜑𝑛)  is the completion of the image by 𝜋 of the set: 

𝔄∞ = {(𝑎𝑛)𝑛∈ℕ ∶ ∃𝑁 ∈ ℕ ∀𝑛 > 𝑁    𝑎𝑛 = 𝜑𝑛−1 ∘ . . .∘  𝜑𝑁(𝑎𝑁)} , 
in lim  𝑠𝑢𝑝𝑛→∞ 𝔄𝑛. 

We begin with a useful observation. Let 𝑎 = (𝑎𝑛)𝑛∈ℕ and 𝑏 = (𝑏𝑛)𝑛∈ℕ in 𝔄𝑛 with 

‖𝑎 − 𝑏‖∞ = 0. Let 𝑁 ∈ ℕ such that, for all 𝑛 > ℕ, we have 𝑎𝑛+1 = 𝜑𝑛(𝑎𝑛) and 𝑏𝑛+1 =
𝜑𝑛(𝑏𝑛): note that by definition, such a number 𝑁 exists. If ‖𝑎𝑁 − 𝑏𝑁‖𝔄 > 𝜀 for some 𝜀 >
0, then since 𝜑𝑛 is a ∗-monomorphism for all 𝑛 ∈ ℕ, it is an isometry,  and thus 

lim  𝑠𝑢𝑝𝑛⟶∞‖𝑎𝑛 − 𝑏𝑛‖𝔄𝑛 ≥ 𝜀, which is a contradiction. Hence, for all 𝑛 ≥ 𝑁 we have 

‖𝑎𝑛 − 𝑏𝑛‖𝔄𝑛  = 0. Informally, if two sequences in 𝔄∞ describe the same element of 𝔄, then 

their predictable tails are in fact equal. 

We now define the action of 𝐺 on 𝔄. For 𝑔 = (𝑔𝑛)𝑛∈ℕ ∈ 𝐺 and (𝑎𝑛)𝑛∈ℕ ∈ 𝔄∞, we set 

𝛼𝑔((𝑎𝑛)𝑛∈ℕ) = (𝛼𝑔𝑛(𝑎𝑛))𝑛∈ℕ, which is a ∗-morphism of norm 1. Condition (23) ensures 

that 𝛼𝑔 maps 𝔄∞ to itself. It induces an action of 𝐺 on 𝜋(𝔄) by norm 1 ∗-automorphisms 

in the obvious manner, and thus extends to 𝔄 by continuity (we use the same notation for 

this extension). It is easy to check that 𝛼 is an action of 𝐺 on 𝔄. 

Let 𝑎 ∈ 𝜋(𝔄∞) such that 𝛼𝑔(𝑎) = 𝑎 for all 𝑔 ∈ 𝐺. Let (𝑎𝑛)𝑛∈ℕ ∈ 𝔄∞ with 𝜋((𝑎𝑛)𝑛∈ℕ) =
𝑎. Let 𝑁 ∈ ℕ such that for all 𝑛 ≥ 𝑁, we have 𝑎𝑛+1 = 𝜑𝑛(𝑎𝑛). 
By definition of the action 𝛼, we have for all 𝑔 = (𝑔𝑛)𝑛∈ℕ ∈ 𝐺 that 𝛼𝑔(𝑎) =

(𝛼𝑛
𝑔𝑛(𝑎𝑛))𝑛∈ℕ, and we note that: 

                    𝛼𝑛+1
𝑔𝑛+1  (𝑎𝑛+1) = 𝛼𝑛+1

𝑔𝑛+1  (𝜑𝑛(𝑎𝑛)) = 𝜑𝑛(𝛼𝑛
𝑔𝑛(𝑎)) ,  

by Condition (23). Thus by our earlier observation, we conclude that 𝛼𝑁
𝑔𝑁(𝑎𝑁)  = 𝑎𝑁 for all 

𝑔 ∈ 𝐺. Thus, as 𝜌𝑁 is surjective, and 𝛼𝑁 is ergodic, we conclude that 𝑎𝑁 = 𝜆1𝔄𝑁 . Thus for 

all 𝑛 ≥ 𝑁 we have 𝑎𝑛 = 𝜑𝑛 ∘· · ·∘ 𝜑𝑁(𝜆1𝔄𝑁). Consequently, 𝑎 ∈ ℂ1𝔄 by definition. 

Now, let 𝜇 be the Haar probabilitymeasure on 𝐺 and define 𝔼(𝑎) = ∫ 𝛼𝑔(𝑎) 𝑑𝜇(𝑔)
𝐺

 for all 

𝑎 ∈ 𝔄. It is straightforward to check that 𝔼(𝑎) is invariant by 𝛼 for all 𝑎 ∈ 𝔄. 

Let 𝑎 ∈ 𝔄 such that 𝛼𝑔(𝑎) = 𝑎 for all 𝑔 ∈ 𝐺. Thus 𝔼(𝑎) = 𝑎. Let 𝜀 > 0. There exists 𝑎𝜀 ∈

𝔄∞ such that ‖𝑎 − 𝑎𝜀‖𝔄  ≤
𝜀

2
 . Now: 
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‖𝔼(𝑎) − 𝔼(𝑎𝜀)‖𝔄 = ‖𝔼(𝑎 − 𝑎𝜀)‖𝔄 ≤ ‖𝑎 − 𝑎𝜀‖𝔄  ≤
𝜀

2
. 

and yet 𝔼(𝑎𝜀) ∈ ℂ1𝔄 since 𝐺 is ergodic on 𝔄∞. Thus, as 𝜀 > 0 is arbitrary, 𝔼(𝑎) lies in the 

closure of ℂ1𝔄, i.e. in ℂ1𝔄, and thus 𝛼 is ergodic. 

Finally, again let 𝑎 ∈ 𝔄 and 𝜀 > 0, and let 𝑎𝜀 ∈ 𝜋(𝔄∞) such that ‖𝑎 − 𝑎𝜀‖𝔄 ≤
𝜀

3
 . 

Let (𝑎𝑛)𝑛∈ℕ ∈ 𝔄∞ such that 𝜋((𝑎𝑛)𝑛∈ℕ) = 𝑎𝜀. There exists 𝑁 ∈ ℕ such that 𝜑𝑛(𝑎𝑛) =
𝑎𝑛+1 for all 𝑛 ≥ 𝑁. Since 𝛼𝑁 is strongly continuous, there exists a neighborhood 𝑉 of 1 ∈

𝐺𝑁 such that ‖𝛼𝑁
𝑔
(𝑎𝑁) − 𝑎𝑁‖𝔄𝑁

<
𝜀

3
  for all ∈ 𝑉 . Let 𝑊 = 𝜌𝑁

−1 (𝑉 ) which is an open 

neighborhood of 1 ∈ 𝐺. Then since 𝜑𝑛 is an isometry for all 𝑛 ∈ ℕ, we have for all 𝑔 =
(𝑔𝑛)∈ℕ ∈ 𝑊: 

‖𝛼𝑛
𝑔𝑛  (𝑎𝑛) − 𝑎𝑛‖𝔄𝑛

= ‖𝛼𝑁
𝑔𝑁(𝑎𝑁) − 𝑎𝑁‖𝔄𝑁

≤
𝜀

3
. 

Thus for all 𝑔 ∈ 𝑊 we have: 

‖𝑎 − 𝛼𝑔(𝑎)‖𝔄  ≤ ‖𝑎 − 𝑎𝜀‖𝔄 + ‖𝑎𝜀 − 𝛼𝑔(𝑎𝜀)‖𝔄 + ‖𝛼𝑔(𝑎𝜀 − 𝑎)‖ ≤ 𝜀. 
Thus 𝛼 is strongly continuous.  

Thus, Theorem (5.2.18) can provide ergodic, strongly continuous actions on certain 

inductive limits, which then fit Theorem (5.2.17) and provide us with convergence of certain 

Leibniz quantum compact metric spaces to inductive limit 𝐶∗-algebras: 

Corollary (5.2.19)[200]: We assume the same assumptions as Theorem (5.2.18). Moreover, 

for each 𝑛 ∈ ℕ, let ℓ𝑛 be a continuous length function on 𝐺𝑛. Let ℓ∞ and, for all 𝑛 ∈ ℕ, let 

ℓ∞
𝑛

 be given as in Theorem (5.2.17), for some 𝑀 ≥  𝑑𝑖𝑎𝑚(𝐺0, ℓ0). 
We denote by 𝔄 the inductive limit of (𝔄𝑛, 𝜑𝑛)𝑛∈ℕ. 

Let 𝛼 be the action of 𝐺 on 𝔄 constructed in Theorem (5.2.17). For all 𝑛 ∈ ℕ, let 𝔅𝑛 is the 

fixed point 𝐶∗-subalgebra of the restriction of 𝛼 to 𝑘𝑒𝑟 𝜌𝑛, let 𝐿𝑛 be the Lip-norm defined 

from the restriction of 𝛼 to 𝐺𝑛 on 𝔅𝑛 using the length function ℓ∞
𝑛

. If 𝐿 is the Lip-norm on 

𝔄 induced by 𝛼 and ℓ∞ via Theorem (5.2.5) then: 

lim
𝑛→∞

𝛬((𝔄, 𝐿), (𝔅𝑛, 𝐿𝑛)) = 0. 

Proof. Apply Theorem (5.2.16) to Theorem (5.2.18). 

We apply the work to the noncommutative solenoids. We begin by setting our 

framework. We begin with some notation. 

Notation (5.2.20)[200]: For any 𝜃 ∈ 𝑆𝑝, the noncommutative solenoid 𝔖𝜃 is, by Definition 

(5.2.2), the universal 𝐶∗-algebra generated by unitaries 𝑊𝑥,𝑦 with 𝑥, 𝑦 ∈ ℤ [
1

𝑝
] × ℤ [

1

𝑝
], 

subject to the relations: 𝑊𝑥,𝑦𝑊𝑥’,𝑦’ = Ψ𝜃((𝑥, 𝑦), (𝑥’ , 𝑦’))𝑊𝑥+𝑥’,𝑦+𝑦’ . 

By functoriality of the twisted group 𝐶∗-algebra construction, we note that non-commutative 

solenoids are inductive limits of quantum tori. All the quantum tori are rotation 𝐶∗-algebras, 

and we shall employ a slightly unusual notation, which will make our presentation clearer: 

Notation (5.2.21)[200]: The rotation 𝐶∗-algebra 𝔄𝜃, for 𝜃 ∈ 𝕋, is the 𝐶∗-algebra generated 

by two unitaries 𝑈𝜃 and 𝑉𝜃  which is universal for the relation 𝑉𝑈 = 𝜃𝑈𝑉. 

Theorem (5.2.22)[200]: ([78]). Let 𝑝 ∈ ℕ \ {0} and 𝜃 ∈ 𝑆𝑝. For each 𝑛 ∈ ℕ, we define the 

𝑚𝑎𝑝 Θ𝑛 ∶ 𝔄𝜃2𝑛 → 𝔄𝜃2𝑛+2 as the unique ∗-monomorphism such that: 

                 Θ𝑛(𝑈𝜃2𝑛) = 𝑈𝜃2𝑛+2
𝑝

   and Θ𝑛(𝑉𝜃2𝑛) = 𝑉𝜃2𝑛+2
𝑝

. 

Then: 

𝔖𝜃 = lim
⟶
(𝔄𝜃2𝑛 , 𝛩𝑛)𝑛∈ℕ . 

Moreover, the canonical injection 𝜌𝑛 from 𝔄𝜃2𝑛 into 𝔖𝜃 is given by extending the map: 
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                                        𝑈𝜃2𝑛 ⟼𝑊 1

𝑝𝑛
,0
  and  𝑉𝜃2𝑛 ⟼ 𝑊

0,
1

𝑝𝑛
. 

Theorem (5.2.23)[200]: Let 𝜃 ∈ 𝑆𝑝 and ℓ a continuous length function on 𝕋2. We let ℓ∞ 

be the length function of  Definition (5.2.13) on 𝑆𝑝
2 for 𝑀 = 𝑑𝑖𝑎𝑚(𝕋2, ℓ). For all 𝑛 ∈ ℕ and 

all 𝑧 ∈ 𝕋2, let: 

ℓ∞
𝑛
(𝑧) = inf{ℓ∞(𝜔):𝜔 ∈ 𝑆𝑝

2, 𝜔 = (𝑧𝑝
𝑛
, 𝑧𝑝

𝑛−1
, . . . , 𝑧, . . . )}.   

Then ℓ∞
𝑛

 is a continuous length function on 𝕋2. Let 𝐿𝑛 be the Lip-norm on the quantum 

torus 𝔄𝜃2𝑛 defined by ℓ∞
𝑛

, the dual action of 𝕋2 on 𝔄𝜃2𝑛, and Theorem- Definition (5.2.5). 

Let 𝐿 be the Lip-norm on 𝔖𝜃 defined by the dual action 𝛼 of 𝑆𝑝
2 and the length ℓ∞ via 

Theorem-Definition (5.2.5). 

We then have, for all 𝑛 ∈ ℕ: 

Λ∗((𝔄𝜃, 𝐿), (𝔄𝜃2𝑛 , 𝐿𝑛)) ≤
𝑑𝑖𝑎𝑚(𝕋2, ℓ)

𝑛 + 1
. 

In particular: 

lim
𝑛→∞

𝛬∗((𝔖𝜃 , 𝐿) , (𝔄𝜃2𝑛 , 𝐿𝑛)) = 0. 

Proof. Let 𝑁 ∈ ℕ and let 𝑆𝑝,𝑁 = {(𝑧𝑛)𝑛∈ℕ: ∀𝑛 ≤ 𝑁 𝑧𝑛 = 1} . If 𝔾 = 𝑆𝑝
2 then 

𝑆𝑝,𝑁
2 = 𝔾(𝑁) using the notation of Theorem (5.2.17). 

The quotient 𝑆𝑝/𝑆𝑝,𝑁 is given by: 

{(𝑧𝑛)0≤𝑛≤𝑁 ∈ 𝕋𝑁+1: ∀𝑛 ∈ {0, . . . , 𝑁} 𝑧𝑛+1
𝑝

= 𝑧𝑛}. 

The map 𝑧 ∈ 𝕋 ⟼ (𝑧𝑝
𝑁
, 𝑧𝑝

𝑁−1
, . . . , 𝑧) is an isomorphism from 𝕋 onto 𝑆𝑝/𝑆𝑝,𝑁. 

Moreover, the dual of 𝑆𝑝/𝑆𝑝,𝑁 is isomorphic to the subgroup: 

𝑍𝑁 = {
𝑞

𝑝𝑘
: 𝑘 ∈ {0, . . . , 𝑁}} 

of ℤ [
1

𝑝
]; this subgroup is trivially isomorphic to ℤ via the map 𝑧 ∈ ℤ ⟼

𝑧

𝑝𝑁
 . In fact, this 

isomorphism is also (up to changing the codomain to make it a monomor-phism) the 

canonical injection of the 𝑁𝑡ℎ copy of ℤ to ℤ [
1

𝑝
], with range 𝑍𝑁 ⊲ ℤ [

1

𝑝
], when writing 

ℤ [
1

𝑝
] as the inductive limit of ℤ

𝑘⟼𝑝𝑘
→     ℤ

𝑘⟼𝑝𝑘
→     · · · . 

By Theorem (5.2.17), it is thus sufficient, to conclude, that we identify the fixed point 𝐶∗-
subalgebra of 𝔖𝜃 for the subgroup 𝑆𝑝,𝑁

2 . 

Let 𝜇 be the Haar probability measure on 𝑆𝑝
2. As in the proof of Lemma (5.2.16), We define 

the conditional expectation 𝔼𝑁 of 𝔖𝜃 by setting for all 𝑎 ∈ 𝔖𝜃: 

𝔼𝑁(𝑎) = ∫ 𝛼𝑔(𝑎) 𝑑𝜇(𝑔)
𝑆𝑝,𝑁
2

. 

Let (𝑧, 𝑦) ∈ 𝑆𝑝
2, and 𝑞1, 𝑞2 ∈ ℤ, 𝑘1, 𝑘2 ∈ ℕ. By Theorem-Definition (5.2.1) and by definition 

of the dual action 𝛼 of 𝑆𝑝
2 on 𝔖𝜃, we compute: 

𝛼𝑧,𝑦 (𝑊 𝑞1
𝑝𝑘1

,
𝑞2
𝑝𝑘2

) = 𝑧𝑘1
𝑞1𝑦𝑘2

𝑞2𝑊 𝑞1
𝑝𝑘1

,
𝑞2
𝑝𝑘2

. 

Thus, if (𝑧, 𝑦) ∈ 𝑆𝑝,𝑁
2  then 𝛼𝑧,𝑦 (𝑊 𝑞1

𝑝𝑘1
,
𝑞2

𝑝𝑘2

) = 𝑊 𝑞1

𝑝𝑘1
,
𝑞2

𝑝𝑘2

 for all 
𝑞1

𝑝𝑘1
,
𝑞2

𝑝𝑘2
∈ 𝑍𝑁. 

On the other hand, 𝔼𝑁 (𝑊 𝑞1

𝑝𝑘1
,
𝑞2

𝑝𝑘2

) = 0 for all 
𝑞1

𝑝𝑘1
,
𝑞2

𝑝𝑘2
∉ 𝑍𝑁. 
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Thus the range of 𝔼𝑁, which is the fixed point 𝐶∗-subalgebra for 𝑆𝑝,𝑁
2 , is the 𝐶∗-subalgebra 

of 𝔖𝜃 generated by: 

{𝑊 1

𝑝𝑘1
,
1

𝑝𝑘2

:
𝑞1
𝑝𝑘1

,
𝑞2
𝑝𝑘2

∈ 𝑍𝑁}.  

Now, by definition: 

𝑊 1

𝑝𝑘1
,
1

𝑝𝑘2

= Ψ𝜃 ((
𝑞1
𝑝𝑘1

, 0) , (0,
𝑞2
𝑝𝑘2

))

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

(𝑊 1
𝑝𝑁

,0
)

𝑞1𝑘1𝑝

(𝑊
0,

1
𝑝𝑁
)

𝑞2𝑘2𝑝

 . 

Thus, the range of 𝔼𝑁 is the 𝐶∗-subalgebra of 𝔖𝜃 generated by 𝑊 1

𝑝𝑁
,0
,𝑊

0,
1

𝑝𝑁
. 

By Theorem (5.2.22), the range of 𝔼𝑁 is the image of 𝔄𝜃2𝑛 in 𝔖𝜃 via the canonical injection 

𝜌𝑁 defined in Theorem (5.2.22). Now, note that 𝜌𝑁 is an isometry from 𝐿𝑁 to the Lip-norm 

𝐿𝑆𝑝,𝑁2  defined by Theorem (5.2.5), the restriction of the dual action 𝛼 to 𝑆𝑝,𝑁
2 , acting on 

𝔼𝑁(𝔖𝜃) (as in Lemma (5.2.16)). Thus: 

Λ((𝔼𝑁(𝔖𝜃), 𝐿𝑆𝑝,𝑁2 ), (𝔄𝜃2𝑛 , 𝐿𝑁)) = 0. 

By Theorem (5.2.17), we thus conclude: 

Λ((𝔖𝜃 , 𝐿), (𝔄𝜃2𝑁 , 𝐿𝑁)) = Λ((𝔖𝜃 , 𝐿), (𝔼𝑁(𝔖𝜃), 𝐿𝑆𝑝,𝑁2 )) 

≤  𝑑𝑖𝑎𝑚(𝔖𝑝,𝑁2 , ℓ∞) 

                                                    ≤
𝑑𝑖𝑎𝑚(𝕋2,ℓ)

𝑁+1
  by Corollary (5.2.15). 

This completes our proof.  

We note that since convergence for the quantum propinquity implies convergence in the 

sense of the Gromov-Hausdorff distance for classical metric spaces, we have proven that 

(𝕋2, ℓ∞
𝑛
)𝑛∈ℕ converges to 𝑆𝑝

2 in the Gromov-Hausdorff distance, using the notations of 

Theorem (5.2.23). 

We begin with the immediate observation that, since quantum tori are limits of fuzzy tori 

for the quantum propinquity, so are the noncommutative solenoids. 

Corollary (5.2.24)[200]: Let 𝑝 ∈ ℕ\{0} and 𝜃 ∈ 𝑆𝑝. Fix a continuous length function ℓ on 

𝕋2 and let ℓ∞ be the induced length function on 𝑆𝑝
2 given in Definition (5.2.13). 

There exists a sequence (𝜔𝑛)𝑛∈ℕ  ∈ 𝕋𝑁 and a sequence (𝑘𝑛)𝑛∈ℕ in ℕ𝑁 with lim
𝑛→∞

𝑘𝑛 =∞

, lim
𝑛→∞

 |𝜃2𝑛 −𝜔𝑛| = 0, and 𝜔𝑛
𝑘𝑛 = 1 for all 𝑛 ∈ ℕ, such that: 

lim
𝑛→∞

Λ ((𝐶∗(ℤ𝑘𝑛
2 , 𝜎𝑛), 𝐿𝑛), (𝔖𝜃 , 𝐿)) = 0 

where ℤ𝑘 = 𝑍/𝑘ℤ, Ln and 𝐿 are the Lip-norms given by Theorem (5.2.5) for the dual 

actions, respectively, of the groups of 𝑘𝑛 roots of unit and the solenoid group 𝑆𝑝, and: 

𝜎𝑛: ((𝑧1, 𝑧2), (𝑦1, 𝑦2)) ∈ ℤ𝑘𝑛
2 × ℤ𝑘𝑛

2 ⟼ exp (2𝑖𝜋𝜔𝑛(𝑧1𝑦2 − 𝑧2𝑦1)). 

Proof. This follows from a standard diagonal argument using Theorem (5.2.23) and [207].  

Quantum tori form a continuous family for the quantum propinquity, and together 

with Theorem (5.2.23), we thus can prove: 

Theorem (5.2.25)[200]: Let ℓ be a continuous length function on 𝕋2. For each 𝜃 ∈ 𝑆𝑝, let 

𝐿𝜃 be the Lip-norm defined by Theorem (5.2.5) for the dual action of 𝑆𝑝
2 on 𝔖𝜃 and the 

continuous length function ℓ∞ of Definition (5.2.13). 

The function 𝜃 ∈ 𝑆𝑝 ⟼ (𝔖𝜃 , 𝐿𝜃) is continuous from 𝑆𝑝 to the class of Leibniz quantum 

compact metric spaces endowed with the quantum Gromov-Hausdorff propinquity.  
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Proof. Fix some continuous length function 𝑚 on 𝕋. This length function need not be related 

to ℓ. Its purpose is simply to provide us with a metric 𝜆𝑚 for the topology of 𝑆𝑝. 

Let 𝜀 > 0. Let 𝑁 ∈ ℕ be chosen so that 
𝑑𝑖𝑎𝑚(𝕋2,ℓ)

𝑁+1
≤

𝜀

3
 . By Theorem (5.2.23), for all 𝜃 ∈ 𝑆𝑝, 

we have: 

Λ∗((𝔖𝜃 , 𝐿), (𝔄𝜃2𝑁 , 𝐿))  ≤
𝜀

3
. 

By [207], there exists 𝛿 > 0 such that, for all 𝜔, 𝜂 ∈ [0, 1) with 𝑚(𝜔𝜂−1) ≤ 𝛿, we have 

Λ∗((𝔖𝜔, 𝐿), (𝔄𝜂, 𝐿)) ≤
𝜀

3
. 

Let 𝜍 = min {𝛿,
𝑑𝑖𝑎𝑚(𝕋,𝑚)

𝑁+1
}. Let 𝜃, 𝜉 ∈ 𝑆𝑝 with 𝜆𝑚(𝜃, 𝜉) ≤ 𝜍. By definition of 𝜆𝑚, we have 

𝑚(𝜃2𝑛𝜉2𝑛
−1) ≤ 𝛿. Consequently: 

Λ((𝔖𝜃 , 𝐿𝜃), (𝔖𝜃 , 𝐿𝜉))

≤ Λ((𝔖𝜃 , 𝐿𝜃), (𝔄𝜃2𝑁 , 𝐿)) + Λ((𝔄𝜃2𝑁 , 𝐿), (𝔄𝜉2𝑁 , 𝐿))  

+  Λ((𝔄𝜉2𝑁 , 𝐿), (𝔖𝜉 , 𝐿𝜉))  ≤ 𝜀, 

which concludes our theorem.  

Section (5.3): Noncommutative Solenoidal Spaces from Self-Coverings 

Given a noncommutative self-covering consisting of a 𝐶∗-algebra with a unital 

injective endomorphism (𝒜, 𝛼), we study the possibility of extending a spectral triple on 

𝒜to a spectral triple on the inductive limit 𝐶∗-algebra, where, as in [238], the inductive 

family associated with the endomorphism 𝛼 is 

𝒜0

𝛼
→𝒜1

𝛼
→𝒜2

𝛼
→𝒜3 . . .,                                                (24) 

all the 𝒜𝑛 being isomorphic to 𝒜. The algebra 𝒜𝑛 may be considered as the 𝑛-th covering 

of the algebra 𝒜0 w.r.t. the endomorphism 𝛼. As a remarkable byproduct, all the spectral 

triples we construct on the inductive limit 𝐶∗-algebra are semifinite spectral triples. 

Let us recall that the first notion of type II noncommutative geometry appeared in 

[237], where semifinite Fredholm modules were introduced, a notion then generalized in 

[230], see also [231], with that of semifinite unbounded Fredholm module. The latter is 

essentially the same definition as that of von Neumann spectral triples of [225], where some 

previous constructions [224], [234], [248], [243] were reinterpreted as examples of such 

concept. In the same period, [245] considered semifinite spectral triples for graph algebras 

and posed the problem of exhibiting more examples of the kind, which was done in [246] 

using 𝑘-graph algebras and in [58] inspired by quantum gravity. Further examples have been 

considered in [229], [250]. In the cases we analyze, it is possible to construct natural spectral 

triples on the 𝐶∗-algebras 𝒜𝑛 of the inductive family, which converge, in a suitable sense, 

to a triple on the inductive limit, and the latter triple is indeed semifinite. 

The leading idea is that of producing geometries on each of the noncom-mutative 

coverings 𝒜𝑛 which are locally isomorphic to the geometry on the original noncommutative 

space 𝒜. This means in particular that the covering projections should be local isometries 

or, in algebraic terms, that the noncommutative metrics given by the Lip-norms associated 

with the Dirac operators via 𝐿𝑛(𝑎) = ‖[𝐷𝑛, 𝑎]‖ (cf. [235], [195]) should be compatible with 

the inductive maps, i.e. 𝐿𝑛+1(𝛼(𝑎)) = 𝐿𝑛(𝑎), 𝑎 ∈ 𝒜𝑛. In one case, this property will be 

weakened to the existence of a finite limit for the sequences 𝐿𝑛+𝑝(𝛼
𝑝(𝑎)), 𝑎 ∈ 𝒜𝑛. 

The above request produces two related effects. On the one hand, the noncom-

mutative coverings are metrically larger and larger, so that their radii diverge to infinity, and 

the inductive limit is topologically compact (the 𝐶∗-algebra has a unit) but not totally 

bounded (the metric on the state space does not induce the weak*-topology). On the other 
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hand, the spectrum of the Dirac operator becomes more and more dense in the real line, so 

that the resolvent of the limiting Dirac operator cannot be compact, being indeed 𝜏-compact 

w.r.t. a suitable trace, and thus producing a semifinite spectral triple on the inductive limit. 

Pursuing this idea means also that we see the elements of the inductive family in a 

more geometric way, namely as distinct (though isomorphic) algebras of “functions” on 

noncommutative coverings, and the inductive maps as embeddings of a sub-algebra into an 

algebra of “less periodic” functions. In this sense the inductive limit is a noncommutative 

version of the solenoidal spaces in [244], see also the noncommutative solenoids in [68], 

[200]. 

We devoted to the study of noncommutative regular (self-) coverings with finite 

abelian group, namely in particular of a 𝐶∗-algebra 𝒜1 acted upon by a finite abelian group 

Γ whose fixed point algebra 𝒜0 is isomorphic to 𝒜1. 𝐴 further property, which we call 

regularity, requires that the eigenspaces of 𝒜1 w.r.t. the action of Γ contain invertible 

elements. This turns out to imply that 𝒜1 can be seen as a subalgebra of a matrix algebra on 

𝒜0, and in this way the algebras 𝒜𝑛 forming the inductive family described above are 

naturally embedded into 𝒜0 ⊗𝑀𝑟(ℂ)
⊗𝑛, 𝑟 = |Γ|. The resulting embedding of the 

inductive limit into 𝒜0 ⊗𝑈𝐻𝐹(𝑟∞) provides the semifinite environment for the spectral 

triple on the inductive limit. The regularity assumption also implies that the “can” map is an 

isomorphism, namely the regularity property of the covering according to [226]. 

We study coverings of the torus and generalizations to noncommutative tori and to 

crossed products with ℤ𝑛, based on a non-degenerate integer-valued matrix 𝐵. This implies 

in particular that the regularity property holds and the invertible elements in the eigenspaces 

of the action Γ can be chosen in terms of the exact sequence 

                      0 → ℤ𝑝 → (𝐵𝑇)−1ℤ𝑝 → (𝐵𝑇)−1ℤ𝑝/ℤ𝑝 → 0,                           (25) 

cf. equation (25). The choice of a particular plays no role in the definition of the Dirac 

operator and of the Lip-norm on the 𝑛-th covering quantum spaces, however such enters the 

formulas for the identification of the covering algebras as algebras of matrices on the base 

algebra. It turns out that choosing “minimal” and requiring the matrix 𝐵 to be purely 

expanding guarantees a suitable convergence of the Dirac operators on the 𝑛-th covering to 

a Dirac operator on the inductive limit. 

As mentioned above, the first example of regular covering is described, and is indeed a 

classical covering, namely the self-covering of the 𝑝-torus ℝ𝑝/ℤ𝑝 given by a non-degenerate 

matrix 𝐵 ∈ 𝑀𝑝(ℤ). We assume 𝑑𝑒𝑡𝐵 ≠ ±1 to avoid the automorphism case. The covering 

map is the projection ℝ𝑝/𝐵ℤ𝑝 → ℝ𝑝/ℤ𝑝, the group of deck transformations being Γ =
ℤ𝑝/𝐵ℤ𝑝. The corresponding embedding for the algebras is 𝐶(ℝ𝑝/ℤ𝑝) ↪ 𝐶(ℝ𝑝/𝐵ℤ𝑝), the 

group ℤ𝑝/𝐵ℤ𝑝 acts on the larger algebra having the smaller as fixed point algebra. As 

mentioned before, the algebras 𝒜𝑛, consisting of continuous functions on the 𝑛-th covering, 

can be represented as matrices on 𝒜0, namely embed into 𝒜0 ⊗𝑀𝑟(𝐶)
⊗𝑛. Endowing the 

𝑛-th covering with the pullback of the metric on the base space makes the covering 

projections locally isometric. The corresponding Dirac operator on 𝒜𝑛 is formally identical 

to that on 𝒜0; when 𝒜𝑛 is described as a sub-algebra of 𝒜0 ⊗𝑀𝑟(𝐶)
⊗𝑛, the Dirac operator 

𝐷𝑛 is affiliated to 𝐵(ℋ)⊗𝑀𝑟(𝐶)
⊗𝑛, ℋ being the Hilbert space of the spectral triple on 

𝒜0. 

When 𝑛 →∞, 𝐴∞ ⊂ 𝒜0 ⊗𝑈𝐻𝐹(𝑟∞) ⊂ ℬ(ℋ)⊗ℛ, where ℛ is the unique 

injective type 𝐼𝐼1 factor obtained as the weak closure of the UHF algebra in the GNS 

representation of the unital trace. Moreover, with a suitable choice in (25) and under the 
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assumption that the matrix 𝐵 is purely expanding, the sequence 𝐷𝑛 converges to an operator 

𝐷∞ affiliated with ℬ(ℋ)⊗  ℛ. The triple (𝒜∞, ℬ(ℋ)⊗ℛ,𝐷∞) turns out to be a 

semifinite spectral triple and the metric dimension, given by the abscissa of convergence 

𝑑∞ of the zeta function 𝜏((1 + 𝐷∞
2 )𝑠/2), and the noncommutative volume, given by the 

residue in 𝑑∞ of the zeta function, coincide with the corresponding quantities for the base 

torus. We contain the extension of the results for the torus to the case of rational 

noncommutative 2-tori 𝐴𝜗 , 𝜗 = 𝑝/𝑞. In this case we get a self-covering if 𝑑𝑒𝑡𝐵 ≡ 1 𝑚𝑜𝑑 𝑞. 

With this proviso, for 𝐵 purely expanding, we get a semifinite spectral triple on the inductive 

limit, and the metric dimension and the noncommutative volume are the same as those of 

the base torus. 

The third example of noncommutative regular self-coverings with finite abelian group 

is treated, where we consider the covering 𝒵 ⋊𝜌 ℤ
𝑝 ↪ 𝒵 ⋊𝜌 (𝐵

𝑇)−1ℤ𝑝, 𝐵 ∈ 𝑀𝑝(ℤ) with 

𝑑𝑒𝑡𝐵 ∉ {0,±1} as above. The action of ℤ𝑝/𝐵ℤ𝑝 by translation on 𝐶(ℝ𝑝/𝐵ℤ𝑝) induces an 

action on 𝒵 ⋊𝜌 (𝐵
𝑇)−1ℤ𝑝 whose fixed point algebra is 𝒵 ⋊𝜌 ℤ

𝑝. We get a self-covering if 

the actions 𝑔 ∈ ℤ𝑝 → 𝜌𝑔 ∈ 𝐴𝑢𝑡(𝒵) and 𝑔 ∈ ℤ𝑝 → 𝜌(𝐵𝑇)−1𝑔 ∈ 𝐴𝑢𝑡(𝒵) are conjugate by an 

automorphism 𝛽 of 𝒵. Under this assumption the 𝐶∗-algebras 𝒜𝑛 are all isomorphic and 

may be  described as 𝒵 ⋊ (𝐵𝑇)−𝑛ℤ𝑝, with the action defined in terms of the action of ℤ𝑝 

and the automorphism 𝛽. 

The study of the extension of a spectral triple on a 𝐶∗-algebra to a triple on crossed 

products was initiated in [171] and then pursued in [241], [169]. Such extension requires a 

choice of a (proper, translation bounded, matrix-valued) length function on the group. We 

assume 𝒵 is endowed with a spectral triple, and use the mentioned results to extend such 

triple to the algebras 𝒜𝑛, with a suitable choice of a length function on (𝐵𝑇)−𝑛ℤ𝑝. However 

a further assumption is required in order to prove that the covering projection is locally 

isometric. 

The same results as in the previous hold for the spectral triple on the inductive limit 

𝐶∗-algebra. 

The subsequent contains the analysis of an example of covering which is not given 

by an action of a finite abelian group. It consists of a UHF algebra with the shift 

endomorphism, the spectral triple being the one described in [233]. In this case the 𝐶∗-
algebras 𝒜𝑛 are naturally given by tensoring 𝒜0 with ℳ(ℂ)⊗𝑛, and we choose the Dirac 

operators to have the same form as that on 𝒜0. However in this way local isometricity is 

not exactly satisfied, while, as mentioned above, the sequence 𝐿𝑛+𝑝(𝛼
𝑝(𝑎)) converges 

when 𝑛 →∞, for 𝑎 in a suitable dense sub-algebra of 𝒜𝑛. We obtain a semifinite spectral 

triple on the inductive limit 𝐶∗-algebra with the same metric dimension and noncommutative 

volume of the base space. 

We deal with the metric properties induced by the limit spectral triple on the inductive 

limit 𝐶∗-algebra. We show that, in all the examples considered, the radii of the algebras 𝒜𝑛 

diverge, giving rise to a non totally bounded noncommutative space. As explained before, 

this is a consequence of the fact that the covering projections are locally isometric. 

We compare our results with those in [200], where the direct limits of 

noncommutative tori, called noncommutative solenoids, are seen as twisted group 𝐶∗-
algebras acted upon by the solenoid group. It is shown there that the inductive sequence of 

noncommutative tori converges in the quantum Gromov-Hausdorff metric (and in the 

Gromov-Hausdorff propinquity) to the noncommutative solenoid, when the latter is 

endowed with a Lip-norm given by a suitable choice of the length function on the solenoid 



179 

group (cf. [86]). It turns out that our seminorm on the inductive limit is also induced, 𝑎 𝑙𝑎 

Rieffel, by a length function on the solenoid group, but our function is infinite on some 

elements, thus giving rise to a non totally bounded space. It would be interesting to know if 

also our sequence of quantum compact metric spaces tends to the direct limit w.r.t. some 

kind of (pointed) quantum Gromov-Hausdorff convergence. 

We mention in conclusion that a motivation for the study of spectral triples for direct limits 

is the attempt to extend the constructions in [171], [241], [169] to the case of a crossed 

product by a single endomorphism, that is, to the case of self-covering. The corresponding 

results are contained in [222]. An example of self-covering with ramification and the study 

of the corresponding crossed product is contained in [223]. 

We describe a spectral decomposition of an algebra in terms of an action of a finite 

abelian group. For more details and a general theory the interested reader is referred to [193]. 

For ℬ be a 𝐶∗-algebra and Γ be a finite abelian group which acts on ℬ (we denote the action 

by 𝛾). Let 

ℬ𝑘: = {𝑏 ∈ ℬ 𝑠. 𝑡. 𝛾𝑔(𝑏) = 〈𝑘, 𝑔〉𝑏   ∀𝑔 ∈ Γ}, 𝑘 ∈ Γ̂. 

Proposition (5.3.1)[221]: With the above notation, 

(i) ℬℎℬ𝑘 ⊂ ℬℎ𝑘; in particular each ℬ𝑘 is an 𝒜-bimodule, where 𝒜 is the fixed point 

subalgebra, 

(ii) if 𝑏𝑘 ∈ ℬ𝑘 is invertible, then 𝑏𝑘
−1, 𝑏𝑘

∗ ∈ ℬ𝑘−1  , 
(iii) each 𝑏 ∈ ℬ may be written as ∑ 𝑏𝑘𝑘∈�̂�  with 𝑏𝑘 ∈ ℬ𝑘 . 

Before proving this proposition we recall that by the Schur orthogonality relations, [247], 

given Γ a finite abelian group, Γ̂ its dual, 

∑〈𝑘, 𝑔〉

𝑘∈�̂�

= 𝛿𝑔,𝑒 ·  |Γ|     ∀𝑔 ∈ Γ.                         (26) 

Proof. The first two properties follow by definition. Let us set 

𝑏𝑘 ≡ 𝐸𝑘(𝑏) ≝
1

|Γ|
∑〈𝑘−1, 𝑔〉

𝑔∈𝛤

𝛾𝑔(𝑏). 

Then, by (26), 

∑𝑏𝑘
𝑘∈�̂�

=
1

|Γ|
∑∑〈𝑘−1, 𝑔〉

𝑔

𝛾𝑔(𝑏)

𝑘

=
1

|Γ|
|Γ|𝛿𝑔,𝑒𝛾𝑔(𝑏) = 𝑏. 

Finally, 𝑏𝑘 belongs to ℬ𝑘 since, for any 𝑔 ∈ Γ, 

𝛾𝑔(𝑏𝑘) =
1

|Γ|
∑〈𝑘−1, ℎ〉

ℎ∈𝛤

𝛾𝑔𝛾ℎ(𝑏) = 〈𝑘−1, 𝑔−1〉
1

|Γ|
∑〈𝑘−1, ℎ〉

ℎ∈𝛤

𝛾ℎ(𝑏) = 〈𝑘, 𝑔〉𝑏𝑘.   

Definition (5.3.2)[221]: A finite (noncommutative) covering with abelian group is an 

inclusion of (unital) 𝐶∗-algebras 𝒜 ⊂ ℬ together with an action of a finite abelian group Γ 

on ℬ such that 𝒜 = ℬΓ. We will say that ℬ is a covering of 𝒜 with deck transformations 

given by the group Γ. 

Let us denote by 𝑀Γ̂(ℬ) the algebra of matrices, whose entries belong to ℬ and are indexed 

by elements of Γ̂ . Then, to any 𝑏 ∈ ℬ, we can associate the matrix �̃�(𝑏) ∈ 𝑀Γ̂(ℬ) with the 

following entries 

�̃�(𝑏)ℎ𝑘 = 𝑏ℎ−𝑘, ℎ, 𝑘 ∈ Γ̂. 
By the definition of 𝑏𝑘 the following formula easily follows 

                                             �̃�(𝑏)�̃�(𝑏’)  = �̃�(𝑏𝑏’).                                       (27) 

The following definition is motivated by Theorem (5.3.8) below. 
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Definition (5.3.3)[221]: We say that the finite covering 𝒜 ⊂ ℬ w.r.t. Γ is regular if each ℬ𝑘 

has an element which is unitary in ℬ, namely we may choose a map 𝜎: Γ̂ → ℬ such that 

𝜎(𝑘) ∈ 𝑈(ℬ) ∩ ℬ𝑘 , with 𝜎(𝑒) = 𝐼. 
Theorem (5.3.4)[221]: Under the regularity hypothesis, the algebra ℬ is isomorphic to a 

subalgebra of matrices with coefficients in 𝒜, i.e. we have an embedding 

                                            ℬ ↪ 𝒜⊗𝑀Γ̂(ℂ).                                             (28) 

Proof. It is easy to show that 𝑀(𝑏∗)𝑗𝑘 = (𝑀(𝑏)𝑘𝑗)
∗, ∀𝑏 ∈ ℬ, 𝑗, 𝑘 ∈ Γ̂. That the product is 

preserved, namely 

𝑀(𝑏𝑏’)ℎ𝑘 =∑𝑀(𝑏)ℎ𝑗𝑀(𝑏’)𝑗𝑘
𝑗

 

follows easily from (28).  

We are mainly interested in self-coverings, namely when there exists an isomorphism 

𝜙:ℬ → 𝒜 or, equivalently, 𝒜 is the image of ℬ under a unital endomorphism 𝛼 = 𝑗 ∘ 𝜙, 

where 𝑗 is the embedding of 𝒜 in ℬ. 

Theorem (5.3.5)[221]: Given a (noncommutative) regular self-covering with abelian group 

Γ, we may construct an inductive family 𝒜𝑖 associated with the endomorphism 𝛼 as in [238]. 

Then, setting 𝑟 = |Γ̂| = |Γ|, we have the following embedding: 

lim
→
𝒜𝑖 ↪ 𝒜⊗𝑈𝐻𝐹(𝑟∞). 

Proof. By applying Theorem (5.3.4) 𝑗 times, we get an embedding of 𝒜𝑗 into 𝒜⊗ 𝑀𝑟
⊗𝑗
 . 

The result immediately follows. 

The following example shows that the regularity property in Definition (5.3.3) is not always 

satisfied. 

Example (5.3.6)[221]: Let ℬ = 𝑀3(ℂ), Γ = ℤ2 = {0, 1}. We have the following action 𝛾 

on ℬ: 𝛾0 = 𝑖𝑑, 𝛾1 = 𝑎𝑑(𝐽), where 

𝐽 = (
1 0 0
0 −1 0
0 0 −1

) . 

Therefore 

ℬ0 = 𝒜 = ℬΓ = {𝑥 ∈ ℬ: 𝑥 = (
𝑎 0 0
0 𝑏 𝑐
0 𝑑 𝑒

)} , ℬ1 = {𝑥 ∈ ℬ: 𝑥 = (
0 𝑎 𝑏
𝑐 0 0
𝑑 0 0

)} . 

Hence ℬ1 has no invertible elements. 

Proposition (5.3.7)[221]: Consider a (noncommutative) regular self-covering 𝒜 ⊂ ℬ with 

abelian group Γ. 

(i) 𝐴 representation 𝜋 of 𝒜 on a Hilbert space 𝐻 produces a representation �̃� of ℬ on 𝐻⊗
ℂ𝑟 , 𝑟 = |Γ̂|, given by �̃�(𝑏):= [𝜋(𝑀(𝑏)ℎ𝑘)]ℎ,𝑘∈�̂� ∈ 𝑀Γ̂(ℬ(𝐻)) = ℬ(𝐻 ⊗ ℂ𝑟), ∀𝑏 ∈ ℬ. 

(ii) If the representation of 𝒜 is induced by a state 𝜑 via the 𝐺𝑁𝑆 mechanism, the 

corresponding representation of ℬ on 𝐻⊗ℂ𝑟 is a 𝐺𝑁𝑆 representation induced by the state 

�̃�, where �̃�(𝑏) = 𝜑 ∘ 𝐸Γ, and 𝐸Γ is the conditional expectation from ℬ to 𝒜. Moreover, the 

map 
ℬ → 𝒜⊗ℂ𝑟

𝑏 ↦ (𝑎𝑗)𝑗∈�̂�
, 𝑎𝑗 = 𝜎(𝑗)−1𝑏𝑗                                   (29) 

extends to an isomorphism of the Hilbert spaces 𝐿2(ℬ, �̃�) and 𝐿2(𝒜,𝜑) ⊗ ℂ𝑟.  

Proof. (i) It is a simple computation. 

(ii) Denoting by 𝜉𝜑the 𝐺𝑁𝑆 vector in 𝐻, we set 𝜉𝜑 to be the vector 𝜉𝜑 in He and 0 in the 

other summands. It is cyclic, because 
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�̃�(𝑏)𝜉𝜑 =⊕𝑘∈�̂� 𝜎(𝑘)
−1𝑏𝑘𝜉𝜑 . 

Since 𝜉𝜑 is cyclic for 𝒜, {𝜎(𝑘)−1𝑏𝑘𝜉𝜑: 𝑏𝑘 ∈ ℬ𝑘} is dense in 𝐻. It induces the state �̃�, since 

(𝜉𝜑 , �̃�(𝑏)𝜉𝜑) = (𝜉𝜑 , 𝑏𝑒𝜉𝜑) = 𝜑(
1

|Γ|
∑𝛾𝑔(𝑏)

𝑔∈𝛤

) =  𝜑 ∘ 𝐸Γ(𝑏). 

The isomorphism in (29) follows by the GNS theorem. 

We discuss the relation between our definition of (noncommutative) finite regular 

covering and the classical notion of regular covering. As a byproduct of an analysis on 

actions of compact quantum groups, it was proved in [226] that a finite covering is regular 

iff the “can” map is an isomorphism. More precisely, if 𝑋 and 𝑌 are compact Hausdorff 

spaces and 𝜋: 𝑋 → 𝑌 is a covering map with finite group of deck transformations Γ, 𝑋 is a 

regular covering of 𝑌 if and only if the canonical map 

𝑐𝑎𝑛: 𝐶(𝑋)⊗𝐶(𝑌) 𝐶(𝑋) → 𝐶(𝑋)⊗ 𝐶(Γ) 

𝑓1 ⊗𝑓2 → (𝑓1 ⊗1)𝛿(𝑓2), 
is an isomorphism of 𝐶∗-algebras, where 𝛿𝑓 = 𝛾𝑔−1(𝑓) ⊗ 𝜒𝑔, 𝛾𝑔: Γ → 𝐴𝑢𝑡(𝐶(𝑋)) and 𝜒𝑔 

denote the action induced by Γ and the characteristic function on elements of Γ, respectively. 

The map can for classical coverings makes perfect sense in our case too 

𝑐𝑎𝑛: ℬ ⊗𝒜 ℬ → ℬ⊗ 𝐶(Γ), 
where can(𝑥 ⊗ 𝑦) = (𝑥 ⊗ 1)𝛿(𝑦) and 𝛿(𝑦) =  ∑ 𝛾𝑔−1(𝑦) ⊗ 𝜒𝑔𝑔∈𝛤 . In our framework, 

however, the canonical map is no longer a morphism of 𝐶∗-algebras, it is a morphism of 

(ℬ −𝒜)-bimodules. In fact, this map clearly commutes with the left action of ℬ. Moreover, 

the right action 𝒜 commutes with can since 𝛿|𝒜 = 𝑖𝑑. The following theorem shows that, 

under the regularity property of Definition (5.3.3), the can map is an isomorphism, that is, 

the regularity property according to [226]. 

Theorem (5.3.8)[221]: Under the above hypotheses, the map can : ℬ ⊗𝒜 ℬ → ℬ⊗ 𝐶(Γ) 
is an isomorphism of (ℬ −𝒜)-bimodules.  

Proof. The group Γ × Γ clearly acts on ℬ ⊗𝒜 ℬ, the eigenspaces being (ℬ ⊗𝒜 ℬ)𝑗,𝑘 =

{𝜎(𝑗)𝑎 ⊗ 𝜎(𝑘): 𝑎 ∈ 𝒜}, (𝑗, 𝑘) ∈ Γ̂ × Γ̂. Therefore the elements of ℬ ⊗𝒜 ℬ can be written 

as 

𝓏 = ∑ 𝜎(𝑗)𝑎𝑗,𝑘
𝑗,𝑘∈�̂�

⊗𝜎(𝑘)       𝑎𝑗,𝑘 ∈ 𝒜. 

Suppose that can(𝓏) = 0. We want to prove that 𝓏 = 0. Using the fact that ℬ is the direct 

sum of its eigenspaces we get 

𝑐𝑎𝑛(𝓏) = ∑ ∑ 〈𝑔−1, 𝑘〉

𝑗,𝑘∈�̂�

𝜎(𝑗)𝑎𝑗,𝑘𝜎(𝑘)⊗ 𝜒𝑔
𝑔∈𝛤

= 0 

⇒ ∑ 〈𝑔−1, 𝑘〉

𝑗,𝑘∈�̂�

𝜎(𝑗)𝑎𝑗,𝑘𝜎(𝑘) = 0   ∀𝑔 ∈ Γ, 

where 𝑎𝑗,𝑘 ∈ 𝒜. Now we show that any 𝑎𝑗,𝑘  is zero. In fact, multiplying by 〈𝑔, ℓ〉 and 

summing over 𝑔 ∈ Γ, we get 

0 = ∑〈𝑔, ℓ〉
𝑔∈𝛤

∑ 〈𝑔−1, 𝑘〉𝜎(𝑗)𝑎𝑗,𝑘𝜎(𝑘)

𝑗,𝑘∈�̂�

= ∑ 〈𝑔, ℓ𝑘−1〉

𝑗,𝑘∈�̂�

𝜎(𝑗)𝑎𝑗,𝑘𝜎(𝑘)  

= |Γ|∑𝜎(𝑗)𝑎𝑗,𝑘𝜎(𝑘)

𝑗∈�̂�

, 
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which implies that 𝑎𝑗,𝑘 = 0 for all 𝑗, 𝑘 ∈ Γ̂, so that 𝓏 = 0. 

Consider  ∑ 𝑏(𝑔)⊗ 𝜒𝑔𝑔∈𝛤 , we want to show that it can be obtained as can(𝓏) for some 𝓏 ∈

ℬ ⊗𝒜 ℬ. By the above computations, it suffices to solve the following equation, for any ℓ
∈ Γ̂, 

∑〈𝑔, ℓ〉𝑏(𝑔)
𝑔∈𝛤

= ∑〈𝑔, ℓ〉
𝑔∈𝛤

∑ 〈𝑔−1, 𝑘〉𝜎(𝑗)𝑎𝑗,𝑘𝜎(𝑘)

𝑗,𝑘∈�̂�

, 

which, using (26), may be rewritten as 

∑〈𝑔, ℓ〉𝑏(𝑔)𝜎(𝑘)−1

𝑔∈𝛤

= |Γ|∑𝜎(𝑗)𝑎𝑗,𝑘
𝑗∈�̂�

. 

Since each 𝑏(𝑔) is given, the cofficients 𝑎𝑗,𝑘 can be uniquely determined using again the 

decomposition of ℬ in its eigenspaces. 

We consider the 𝑝-torus 𝕋𝑝 = ℝ𝑝/ℤ𝑝 endowed with the usual metric, inherited from 

ℝ𝑝. On this Riemannian manifold we have the Levi-Civita connection 𝛻𝐿𝐶 = 𝑑 and we can 

define the Dirac operator acting on the Hilbert space ℂ2
[𝑝/2]

⊗𝐿2(𝕋𝑝, 𝑑𝑚) 

𝐷 = −𝑖∑𝜀𝑎 ⊗𝜕𝑎
𝑝

𝑎=1

, 

where 𝜀𝑎 = (𝜀𝑎)∗ ∈ 𝑀2[𝑝/2](ℂ) furnish a representation of the Clifford algebra for the 𝑝-

torus (see [190] for more details on Dirac operators). Therefore, we have the following 

spectral triple 

(𝐶1(𝕋𝑝), ℂ2
[𝑝/2]

⊗𝐿2(𝕋𝑝, 𝑑𝑚), 𝐷 = −𝑖∑𝜀𝑎 ⊗𝜕𝑎
𝑝

𝑎=1

). 

Consider an integer-valued matrix 𝐵 ∈ 𝑀𝑝(ℤ) with |𝑑𝑒𝑡(𝐵)| = : 𝑟 > 1. This defines 

a covering of 𝕋𝑝 as follows. Let us set 𝕋1 = ℝ𝑝/𝐵ℤ𝑝 seen as a covering space of 𝕋0: = 𝕋𝑝. 

Clearly ℤ𝑝 acts on 𝕋1 by translations, the subgroup 𝐵ℤ𝑝 acting trivially by definition, 

namely we have an action of ℤ𝐵: = ℤ/𝐵ℤ𝑝 on 𝕋1, which is simply the group of deck 

trasformations for the covering. We denote this action by 𝛾. We are now in the situation 

described, with 𝒜 = 𝐶(𝕋0) the fixed point algebra of ℬ = 𝐶(𝕋1) under the action of ℤ𝐵. 

These algebras can be endowed with the following states, respectively 

𝜏0(𝑓) = ∫ 𝑓𝑑𝑚
𝕋0

, 𝑓 ∈ 𝒜, 

𝜏1(𝑓) =      
1

|𝑑𝑒𝑡(𝐵)|
∫ 𝑓𝑑𝑚
𝕋1

, 𝑓 ∈ ℬ, 

where 𝑑𝑚 is Haar measure. 

Proposition (5.3.9)[221]: The 𝐺𝑁𝑆 representation 𝜋1: ℬ → 𝐵(𝐿2(ℬ, 𝜏1)) =
𝐵(𝐿2(𝕋1, 𝑑𝑚)) is unitarily equivalent to the representation �̃�0 obtained by 𝜋0:𝒜 →
𝐵(𝐿2(𝒜, 𝜏0)) = 𝐵(𝐿2(𝕋0, 𝑑𝑚)) according to Proposition (5.3.7). 

Proof. By the GNS theorem it is enough to check that 𝜏1 = 𝜏0 ∘ 𝐸, where 𝐸 denotes the 

conditional expectation from ℬ to 𝒜. This follows from the following observation on the 

associated measures: they are both probability measures that are traslation invariant, by the 

results on Haar measures the claim follows. 

In order to apply the results, we need to choose unitaries in the eigenspaces ℬ𝑘 , 𝑘 ∈
𝑐ℤ�̂�, namely a map 𝜎: 𝑔 ∈ 𝑐ℤ�̂� → 𝒰(ℬ) ∩ ℬ𝑔. 
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With 𝕋0 = ℝ𝑝/ℤ𝑝, 𝕋1  = ℝ𝑝/𝐵ℤ𝑝, ℤ𝐵 = ℤ𝑝/𝐵ℤ𝑝 as above, set 𝐴 = (𝐵𝑇)−1, 〈𝑥, 𝑦〉 =

𝑒𝑥𝑝(2𝜋𝑖 ∑  𝑥𝑎𝑦𝑎
𝑝
𝑎=1 ), 𝑥, 𝑦 ∈ ℝ𝑝. 

Lemma (5.3.10)[221]: With the above notation 

(i) The cardinality |ℤ𝐵| of ℤ𝐵 is equal to 𝑟, 

(ii) the following duality relations hold: �̂�0 = (ℝ𝑝/ℤ𝑝)̂ = ℤ𝑝, �̂�1 = (ℝ𝑝/𝐵ℤ𝑝)̂ =

𝐴ℤ𝑝, ℤ�̂� = (ℤ𝑝/𝐵ℤ𝑝)̂ = 𝐴ℤ𝑝/ℤ𝑝. 
In particular, the duality 〈𝑧, 𝑔〉, 𝑔 ∈ 𝕋1, 𝓏 ∈ 𝐴ℤ𝑝 induces the duality 〈𝑘, 𝑔〉𝜊, 
𝑔 ∈ ℤ𝐵, 𝑘 ∈ ℤ�̂�, namely if 𝑔 ∈ ℤ𝐵 ⊂ 𝕋1, 〈𝓏, 𝑔〉 = 〈�̇�, 𝑔〉𝜊, where �̇� denotes the 

class of 𝓏 in ℤ�̂�. For this reason we drop the subscript o in the following.  

Proof. The proofs of the claims are all elementary. We only make some comments on the 

first one. It is well known that each finite abelian group is the direct sum of cyclic groups 

and that the order of these groups can be obtained with the following procedure. Let 𝐷 =
𝑆𝐵𝑇 the Smith normal form of 𝐵, where 𝑆, 𝑇 ∈ 𝐺𝐿(𝑝, ℤ) and 𝐷 = 𝑑𝑖𝑎𝑔(𝑑1,· · ·  𝑑𝑝) > 0. 

Therefore, we have that ℤ𝐵 = ℤ𝑝/𝐵ℤ𝑝 ≅ ℤ𝑝/𝐷ℤ𝑝. As 𝐵 is invertible, so is 𝐷 and all the 

diagonal elements are non-zero. Thus, ℤ𝐵 = ℤ𝑑1 ⊕ . . .⊕ ℤ𝑑𝑝 and |ℤ𝐵| = 𝑑1 · . . .· 𝑑𝑝 =

𝑑𝑒𝑡(𝐷) = ±𝑑𝑒𝑡(𝐵). 
Let us consider the short exact sequence of groups 

                                    0 ⟶ ℤ𝑝 ⟶  𝐴ℤ𝑝 ⟶ ℤ�̂� ⟶ 0.                                  (30) 

Such central extension 𝐴ℤ𝑝of  ℤ�̂� via ℤ𝑝 can be described either with a section 𝑠: ℤ�̂� → 𝐴ℤ𝑝 

or via a ℤ𝑝-valued 2-cocycle 𝜔(𝑘, 𝑘’) = 𝑠(𝑘) + 𝑠(𝑘’) − 𝑠(𝑘 + 𝑘’), see e.g. [228]. We 

choose the unique such that, for any 𝑘 ∈ ℤ�̂�, 𝑠(𝑘) ∈ [0, 1)𝑝. 

Remark (5.3.11)[221]: The mentioned choice of the section s will play a role only later. 

For the moment, we only note that it implies 𝑠(0) = 0, hence 𝜔(𝑘, 0) = 0 = 𝜔(0, 𝑘). 
The covering we are studying is indeed regular according to Definition (5.3.3), since we 

may construct the map 𝜎 as follows: 

𝜎(𝑘)(𝑡) ∶= 〈𝑠(𝑘), 𝑡〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ,       𝑘 ∈ ℤ�̂�, 𝑡 ∈ 𝕋1.                          (31) 

Given the integer-valued matrix 𝐵 ∈ 𝑀𝑝(ℤ) as above, if 𝕋𝑝 is identified with ℝ𝑝/ℤ𝑝, then 

there is an associated self-covering 𝜋: 𝑡 ∈ 𝕋𝑝 ⟼𝐵𝑡 ∈ 𝕋𝑝. We denote by 𝛼 the induced 

endomorphism of 𝐶(𝕋𝑝), i.e. 𝛼(𝑓)(𝑡) = 𝑓(𝐵𝑡). Then we consider the inductive limit 𝒜∞ =
lim 
→ 𝒜𝑛 described in (24), where 𝒜𝑛 = 𝒜 for any 𝑛. 

In the next pages it will be convenient to consider the following isomorphic inductive 

family: 𝒜𝑛 consists of continuous 𝐵𝑛ℤ𝑝-periodic functions on ℝ𝑝, and the embedding is 

the inclusion. In this way 𝒜∞ may be identified with a generalized solenoid 𝐶∗-algebra (cf. 

[244], [68]). 

Since 𝕋𝑛 = ℝ𝑝/𝐵𝑛ℤ𝑝 is a covering space of 𝕋0: = 𝕋𝑝, the formula of the Dirac operator 

on 𝕋𝑛 doesn’t change. Therefore, we will consider the following spectral triple 

(𝐶1(𝕋𝑛), ℂ
2[𝑝/2] ⊗𝐿2(𝕋𝑛,

1

𝑟𝑛
𝑑𝑚), 𝐷 = −𝑖∑𝜀𝑎 ⊗𝜕𝑎

𝑝

𝑎=1

). 

We describe the spectral triple on 𝕋𝑛 in terms of the spectral triple on 𝕋0. Consider 

the short exact sequences of groups 

                            0 ⟶ 𝐵𝑛ℤ𝑝 ⟶𝐵𝑛−1ℤ𝑝 ⟶ ℤ𝐵 ⟶ 0,                                 (32) 

                             0 ⟶ 𝐴𝑛−1ℤ𝑝 ⟶ 𝐴𝑛ℤ𝑝 ⟶ ℤ�̂� ⟶ 0,                                (33) 

where ℤ𝐵 is now identified with the finite group in (32), hence is a subgroup of 𝕋𝑛. The 

central extension 𝐴𝑛ℤ𝑝 of ℤ�̂� via 𝐴𝑛−1ℤ𝑝 can be described either with a section 𝑠𝑛: ℤ�̂� →
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𝐴𝑛ℤ𝑝 or via a 𝐴𝑛−1ℤ𝑝-valued 2-cocycle 𝜔𝑛(𝑘, 𝑘’) = 𝑠𝑛(𝑘) + 𝑠𝑛(𝑘’) − 𝑠𝑛(𝑘 + 𝑘’), see e.g. 

[228]. We choose the unique such that, for any 𝑘 ∈ ℤ�̂�, 𝑠𝑛(𝑘) ∈ 𝐴𝑛−1[0, 1)𝑝, and observe 

that this is the same as choosing 𝑠𝑛(𝑘) = 𝐴𝑛−1𝑠1(𝑘). In the same way, the second extension 

𝐵𝑛−1ℤ𝑝 of ℤ𝐵 via 𝐵𝑛ℤ𝑝 can be described either with a section �̂�𝑛: ℤ𝐵 → 𝐵𝑛−1ℤ𝑝 or via a 

𝐵𝑛ℤ𝑝-valued 2-cocycle �̂�𝑛(𝑘, 𝑘’) = �̂�𝑛(𝑘) + �̂�𝑛(𝑘’) − �̂�𝑛(𝑘 + 𝑘’). We choose the unique 

such that, for any 𝑘 ∈ ℤ𝐵, �̂�𝑛(𝑘) ∈ 𝐵𝑛[0, 1)𝑝. The following result holds 

Proposition (5.3.12)[221]: Any function 𝜉 on 𝕋𝑖 can be decomposed as 𝜉 = ∑ 𝜉𝑘𝑘∈𝑍�̂�
, 

where 

𝜉𝑘(𝑡) ≡ 𝐸𝑘(𝜉)(𝑡) =
1

𝑟
∑ 〈−𝑘, 𝑔〉𝜉(𝑡 − 𝑔)

𝑔∈ℤ𝐵

, 𝑡 ∈ 𝕋𝑖 = ℝ𝑝/𝐵𝑖ℤ𝑝. 

Moreover, this correspondence gives rise to unitary operators 

𝑣𝑖: 𝐿
2(𝕋𝑖 , 𝑑𝑚/𝑟

𝑖) → ∑ 𝐿2(𝕋𝑖−1, 𝑑𝑚/𝑟
𝑖−1)

⊕

𝑘∈𝑍�̂�

= 𝐿2(𝕋𝑖−1, 𝑑𝑚/𝑟
𝑖−1) ⊗ ℂ𝑟 

𝜉 ↦       ∑ 𝜎(𝑘)−1𝜉𝑘

⊕

𝑘∈𝑍�̂�

 . 

The multiplication operator by the element 𝑓 ∈ 𝒜𝑖 is mapped to the matrix 𝑀𝑟(𝑓) acting 

on 𝐿2(𝕋𝑖−1, 𝑑𝑚/𝑟
𝑖−1) ⊗ ℂ𝑟 given by 

𝑀𝑟(𝑓)𝑗,𝑘(𝑡) = 〈𝑠(𝑗) − 𝑠(𝑘), 𝑡〉𝑓𝑗−𝑘(𝑡), 𝑗, 𝑘 ∈ ℤ�̂�. 

In particular, when 𝑓 is 𝐵𝑖−1ℤ-periodic, namely it is a function on 𝕋𝑖−1, then 𝑀𝑟(𝑓)𝑗,𝑘(𝑡) =

𝑓(𝑡)𝛿𝑗,𝑘 , i.e. a function 𝑓 on 𝕋𝑖−1 embeds into ℬ(𝐿2(𝕋𝑖−1, 𝑑𝑚/𝑟
𝑖−1)) ⊗ 𝑀𝑟(ℂ)𝑎𝑠 𝑓 ⊗ 𝐼. 

Proof. The statement follows from the analysis of Proposition (5.3.7), in particular here 

𝑏𝑘 = 𝜉𝑘 , 𝑀(𝑏) = 𝑀𝑟(𝑓). 

Theorem (5.3.13)[221]: The Dirac operator 𝐷𝑛 acting on ℂ2
[𝑝/2]

⊗𝐿2(𝕋𝑛,
1

𝑟𝑛
 𝑑𝑚) gives 

rise to an operator, which we denote by �̂�𝑛, when the Hilbert space is identified with the 

Hilbert space ℂ2
[𝑝/2]

⊗𝐿2(𝕋0, 𝑑𝑚)⊗ (ℂ𝑟)⊗𝑛 as above. The Dirac operator �̂�𝑛 has the 

following form: 

�̂�𝑛 = 𝑉𝑛𝐷𝑛𝑉𝑛
∗ = 𝐷0 ⊗ 𝐼 − 2𝜋∑𝜀𝑎

𝑝

𝑎=1

⊗ 𝐼 ⊗ (∑𝐼⊗ℎ−1 ⊗𝑑𝑖𝑎𝑔(𝑠ℎ(·)
𝑎) ⊗ 𝐼⊗𝑛−ℎ

𝑛

ℎ=1

), 

where 𝑑𝑖𝑎𝑔(𝑠ℎ(·)
𝑎)𝑗,𝑘 = 𝛿𝑗,𝑘𝑠𝑗(𝑘)

𝑎 for 𝑗, 𝑘 ∈ ℤ�̂�, the unitary operator 𝑉𝑛: 

ℂ2
[𝑝/2]

⊗𝐿2(𝕋2,
1

𝑟𝑛
𝑑𝑚) → ℂ2

[𝑝/2]
⊗𝐿2(𝕋0, 𝑑𝑚)⊗ (ℂ𝑟)⊗𝑛 is defined as 𝑉𝑛: = 𝐼 ⊗

[(𝑣𝑛⨂⊗𝑗=1
𝑛−1 𝐼) ∘ (𝑣𝑛⨂⊗𝑗=1

𝑛−2  𝐼) ∘ · · · ∘ 𝑣𝑛]. Moreover, we have the following spectral 

triple 

(ℒ𝑛: = 𝐶1(𝕋𝑛), ℂ
2[𝑝/2] ⊗𝐿2(𝕋0, 𝑑𝑚)⊗ (ℂ𝑟)⊗𝑛, �̂�𝑛).   

Proof. First of all we prove the formula for 𝑛 = 1. We give a formula for 𝐷1 acting on 

ℂ2
[𝑝/2]

⊗𝐿2(𝕋1,
1

𝑟
 𝑑𝑚) ≅ ℂ2

[𝑝/2]
⊗𝐿2(𝕋0, 𝑑𝑚)⊗ ℂ𝑟. Let us denote by {𝜂𝑘}𝑘∈𝑍�̂�  a 𝑟-tuple 

of vectors in ℂ2
[𝑝/2]

⊗𝐿2(𝕋0, 𝑑𝑚), so that 𝜉:= ∑ 𝜎(𝑘)𝜂𝑘𝑘∈ℤ�̂�
 is an element in ℂ2

[𝑝/2]
⊗

𝐿2(𝕋1,
1

𝑟
 𝑑𝑚), and 𝐸𝑘(𝜉) = 𝜎(𝑘)𝜂𝑘, 𝑘 ∈ ℤ�̂�. Then, for any 𝑡 ∈ 𝕋1, we get 
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�̂�1 (∑ 𝜂𝑘(𝑡)

⨁

𝑘∈𝑍�̂�

) = 𝑉1𝐷1𝑉1
∗(∑ 𝜂𝑘(𝑡)

⨁

𝑘∈𝑍�̂�

) 

=∑
1

𝑟
〈𝑠(𝑗), 𝑡〉

⨁

𝑗∈𝑍�̂�

∑ 〈−𝑗, 𝑔〉𝐷
𝑔∈𝑍�̂�

(∑ 〈𝑠(𝑘), −𝑡 + 𝑔〉𝜂𝑘(𝑡 − 𝑔)
𝑘∈𝑍�̂�

) 

=∑ ∑
1

𝑟
〈𝑠(𝑗), 𝑡〉

𝑘∈𝑍�̂�

⨁

𝑗∈𝑍�̂�

∑ 〈𝑘 − 𝑗, 𝑔〉𝐷
𝑔∈𝑍�̂�

(〈𝑠(𝑘), −𝑡〉𝜂𝑘(𝑡)) 

=∑ 〈𝑠(𝑘), 𝑡〉𝐷(〈𝑠(𝑘), −𝑡〉𝜂𝑘(𝑡))
⨁

𝑘∈ℤ�̂�

 

= −𝑖∑∑ 〈𝑠(𝑘), 𝑡〉𝜀𝑎𝜕𝑎(〈𝑠(𝑘), −𝑡〉𝜂𝑘(𝑡))
⨁

𝑘∈ℤ�̂�

𝑝

𝑎=1

 

= −𝑖∑∑ 𝜀𝑎(−2𝜋𝑖𝑠(𝑘)𝑎𝜂𝑘(𝑡) + 𝜕𝑎𝜂𝑘(𝑡))
⨁

𝑘∈ℤ�̂�

𝑝

𝑎=1

 

= ∑(−2𝜋𝜀𝑎 ⊗ 𝐼 ⊗ 𝑑𝑖𝑎𝑔(𝑠(𝑘)𝑎)𝑘∈ℤ�̂� − 𝑖𝜀𝑎 ⊗𝜕𝑎 ⊗ 𝐼)

𝑝

𝑎=1

∑ 𝜂𝑘(𝑡)
⨁

𝑘∈ℤ�̂�

. 

The formula for 𝑛 > 1 can be obtained by iterating the above procedure. 

We construct a spectral triple for the inductive limit 
lim 
→ 𝒜𝑛. We begin with some 

preliminary results. 𝐴 matrix 𝐵 ∈ 𝑀𝑝(ℤ) is called purely expanding if, for all vectors 𝑣 ≠

0, we have that ‖𝐵𝑛𝑣‖ goes to infinity. 

Proposition (5.3.14)[221]:  𝐴ssume 𝑑𝑒𝑡𝐵 ≠ 0, 𝐴 = (𝐵𝑇)−1. Then the following are 

equivalent: 

(i) 𝐵 is purely expanding, 

(ii) ‖𝐴𝑛‖ → 0, 

(iii) the spectral radius 𝑠𝑝𝑟(𝐴) < 1, 

(iv) ∑ ‖𝐴𝑛‖𝑛≥0 <∞. 
Proof. (i) ⇔ (ii) Consider a vector 𝑤 = 𝐵𝑛𝑣/‖𝐵𝑛𝑣‖, then, from the identity 

‖𝐵𝑛𝑤‖ =
‖𝑣‖

‖𝐵𝑛𝑣‖
, 

we deduce that (i) is equivalent to ‖𝐵−𝑛𝑣‖ → 0, for all 𝑣 ≠ 0. The latter is equivalent to (ii) 

by the identity (𝐴𝑛𝑣, 𝑢) = (𝑣, 𝐵−𝑛𝑢), for any vectors 𝑢, 𝑣. (ii) ⇒ (iii) We argue by 

contradiction. Let 𝜆 ∈ 𝑠𝑝(𝐴) have modulus |𝜆| ≥ 1, and consider an associated eigenvector 

𝑣 ≠ 0. Then, we have that ‖𝐴𝑛𝑣‖ = |𝜆|𝑛‖𝑣‖ ↛ 0. 

(iii) ⇒ (iv) Let 𝐴 = 𝐶−1(𝐷 + 𝑁)𝐶 be the Jordan decomposition of 𝐴, where 𝐷 is the 

diagonal part, and 𝑁 the nilpotent one. Then 

‖(𝐷 +  𝑁)𝑛‖ = ‖∑(
𝑛
𝑗)𝐷

𝑛−𝑗𝑁𝑗

𝑝−1

𝑗=0

‖ ≤ ∑(
𝑛
𝑗) ‖𝐷

𝑛−𝑗‖

𝑝−1

𝑗=0

 

= ∑(
𝑛
𝑗) 𝑠𝑝𝑟(𝐴)

𝑛−𝑗

𝑝−1

𝑗=0

≤ 𝑠𝑝𝑟(𝐴)𝑛 (∑𝑛𝑗𝑠𝑝𝑟(𝐴)−𝑗
𝑝−1

𝑗=0

)                     (34) 
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= 𝑠𝑝𝑟(𝐴)𝑛
(𝑛/𝑠𝑝𝑟(𝐴))𝑝 − 1

𝑛/𝑠𝑝𝑟(𝐴) − 1
<

𝑛𝑝

𝑛 − 1
𝑠𝑝𝑟(𝐴)𝑛−𝑝, 

where we used 𝑁𝑝 = 0, ‖𝑁𝑗‖ ≤ 1, ‖𝐷‖ = 𝑠𝑝𝑟(𝐴), so that the series ∑ ‖𝐴𝑛‖𝑛≥0  converges. 

(iv) ⇒ (ii) is obvious. 

Theorem (5.3.15)[221]: Assume now that 𝐵 is purely expanding and consider the 𝐶∗-
algebras 𝒜𝑛 = 𝐶(ℝ𝑝/𝐵𝑛ℤ𝑝), which embed into 𝑀 (ℂ)⊗ ℬ(𝐿2(𝕋0, 𝑑𝑚))⊗𝑀𝑟𝑛(𝐶), 

and the Dirac operators �̂�𝑛 ∈̂ ℬ(ℋ0) ⊗ 𝑈𝐻𝐹(𝑟∞), where ℋ0: = ℂ2
[𝑝/2]

⊗𝐿2(𝕋0, 𝑑𝑚). As 

a consequence, 𝒜∞ embeds in the injective limit 
lim 
→ ℬ(ℋ0) ⊗𝑀𝑟𝑛(ℂ) = ℬ(ℋ0)⊗ 𝑈𝐻𝐹(𝑟∞) 

hence in ℬ(ℋ0)⊗ ℛ, where ℛ is the injective type 𝐼𝐼1 factor. Moreover, the operator �̂�∞ 

has the following form: 

�̂�∞ = 𝐷0 ⊗ 𝐼 − 2𝜋∑𝜀𝑎
𝑝

𝑎=1

⊗ 𝐼 ⊗ (∑𝐼⊗ℎ−1 ⊗𝑑𝑖𝑎𝑔(𝑠ℎ(·)
𝑎)

∞

ℎ=1

) . 

In particular, �̂�∞ is affiliated to ℬ(ℋ0) ⊗ ℛ = ℳ and has the form 𝐷0 ⊗ 𝐼 + 𝐶, with 𝐶 =
𝐶∗ ∈ ℬ(ℋ0)⊗ 𝑈𝐻𝐹(𝑟∞) ⊂ ℬ(ℋ0) ⊗ ℛ =ℳ. 

Proof. The formula and the fact that �̂�∞ is affiliated to ℳ follow from what has already 

been proved and the following argument. We posed 𝑠𝑛(𝑘) ∈ 𝐴𝑛−1[0, 1)𝑝, therefore 

max
𝑘∈ℤ�̂� 

‖𝑠𝑛(𝑘)‖ ≤ 𝑠𝑢𝑝𝑥∈[0,1)𝑝  ‖𝐴
𝑛−1𝑥‖ ≤ ‖𝐴𝑛−1‖√𝑝. 

As a consequence, for any 𝑎 ∈ {1, . . . , 𝑝}, 

‖𝑑𝑖𝑎𝑔(𝑠𝑛(𝑘)𝑎)𝑘∈ℤ�̂�‖ = max
𝑘∈ℤ�̂�

|𝑠𝑛(𝑘)𝑎| ≤ max
𝑘∈ℤ�̂�

‖𝑠𝑛(𝑘)‖ ≤ ‖𝐴𝑛−1‖√𝑝.   

Recalling that �̂�∞ = 𝐷0 ⊗ 𝐼 + 𝐶, with 𝐶 = 2𝜋∑ 𝜀𝑎
𝑝
𝑎=1 ⊗ 𝐼 ⊗ (∑ 𝐼⊗ℎ−1∞

ℎ=1 ⊗

𝑑𝑖𝑎𝑔(𝑠ℎ(𝑘)
𝑎)), we get, by Proposition (5.3.14) and the estimate above, that 𝐶 is bounded 

and belongs to 𝑀2[𝑝/2](ℂ)⊗ ℂ⊗𝑈𝐻𝐹(𝑟∞), while 𝐷0 ∈̂ ℬ(ℋ0). 
Theorem (5.3.16)[221]: Let {(𝒜𝑛, 𝜑𝑛): 𝑛 ∈ ℕ ∪ {0}} be an inductive system, with 𝒜𝑛 ≅
𝒜0, and 𝜑𝑛:𝒜𝑛 ↪ 𝒜𝑛+1 is the inclusion, for all 𝑛 ∈ ℕ. Suppose that, for any 𝑛 ∈ 𝑁 ∪ {0}, 
there exists a spectral triple (ℒ𝑛,ℋ𝑛, �̂�𝑛) on 𝒜𝑛, with 

ℋ𝑛 = ℋ0 ⊗ (ℂ𝑟)⊗𝑛, �̂�𝑛 = 𝐷0 ⊗ 𝐼 + 𝐶𝑛, 𝐶𝑛 ∈ ℬ(ℋ0)⊗𝑀𝑟(ℂ)
⊗𝑛 ⊂ ℬ(ℋ0) ⊗

 𝑈𝐻𝐹(𝑟∞) is a self-adjoint sequence converging to 𝐶 ∈ ℬ(ℋ0)⊗ 𝑈𝐻𝐹(𝑟∞), and �̂�∞ =
𝐷0 ⊗ 𝐼 + 𝐶. Let 𝑑 be the abscissa of convergence of 𝜁𝐷0 and suppose that 

𝑟𝑒𝑠𝑠=𝑑(𝜏(𝐷0
2 + 1)−𝑠/2) exists and is finite. Let ℒ∞: = ∪𝑛=0

∞ ℒ𝑛. Then (ℒ∞, ℬ(ℋ0) ⊗
ℛ,ℋ0 ⊗𝐿2(ℛ, 𝜏), �̂�∞) is a finitely summable, semifinite, spectral triple, with the same 

Hausdorff dimension of (ℒ0,ℋ0, 𝐷0). Moreover, the volume of this noncommutative 

manifold coincides with the volume of (ℒ0,ℋ0, 𝐷0), namely the Dixmier trace 𝜏𝜔 of 

(�̂�∞
2 + 1)−𝑑/2 coincides with that of (𝐷0

2 + 1)−𝑑/2 (hence does not depend on 𝜔) and may 

be written as: 

𝜏𝜔((�̂�∞
2 + 1)−𝑑/2) = lim

𝑡→∞

1

𝑙𝑜𝑔 𝑡
∫ (𝜇(𝐷02+1)−1/2(𝑠))

𝑑
𝑑𝑠

𝑡

0

. 

Proof. As for the commutator condition, we observe that for each 𝑓 ∈ ℒ𝑛 we have that 

[�̂�∞, 𝑓] is bounded since [�̂�𝑛, 𝑓] is bounded. 

We now show that �̂�∞ has 𝜏-compact resolvent, where 𝜏 is the unique f.n.s. 

trace on ℬ(ℋ0) ⊗ ℛ. Indeed, on a finite factor, any bounded operator has 𝜏-finite rank, 

hence is 𝜏-compact. Therefore, since 𝐷0 has compact resolvent in ℬ(ℋ0), 𝐷0 ⊗ 𝐼 has 𝜏-



187 

compact resolvent in ℬ(ℋ0)⊗ ℛ. We have (𝐷0 ⊗ 𝐼 + 𝐶 + 𝑖)−1 = [𝐼 + (𝐷0 ⊗ 𝐼 +
𝑖)−1𝐶]−1(𝐷0 ⊗ 𝐼 + 𝑖)−1 = (𝐷0 ⊗ 𝐼 + 𝑖)−1[𝐼 + 𝐶(𝐷0 ⊗ 𝐼 + 𝑖)−1]−1, where 𝐼 + 𝐶(𝐷0 ⊗
𝐼 + 𝑖)−1 and 𝐼 + (𝐷0 ⊗ 𝐼 + 𝑖)−1𝐶 have trivial kernel and cokernel. Indeed 𝑅𝑎𝑛(𝐼 +
(𝐷0 ⊗ 𝐼 + 𝑖)−1𝐶)⊥  = 𝑘𝑒𝑟(𝐼 + 𝐶(𝐷0 ⊗ 𝐼 − 𝑖)−1), and (𝐼 + 𝐶(𝐷0 ⊗ 𝐼 ± 𝑖)−1)𝑥 = 0 

means (𝐶 + 𝐷0 ⊗  𝐼)𝑦 = ∓𝑖𝑦 with 𝑦 = (𝐷0 ⊗  𝐼 ± 𝑖)−1𝑥, which is impossible since 𝐶 +
𝐷0 ⊗ 𝐼 is self-adjoint. Moreover, 𝑘𝑒𝑟(𝐼 + (𝐷0 ⊗ 𝐼 + 𝑖)−1𝐶) is trivial. 
In fact, (𝐼 + (𝐷0 ⊗ 𝐼 ± 𝑖)−1𝐶)𝑥 = 0 implies that (𝐷0 ⊗ 𝐼 + 𝐶)𝑥 = ∓𝑖𝑥 which is 

impossible because 𝐷0 ⊗ 𝐼 + 𝐶 is self adjoint. Therefore 𝐼 + 𝐶(𝐷0 ⊗ 𝐼 + 𝑖)−1 has bounded 

inverse, hence 𝐷0 ⊗ 𝐼 + 𝐶 has 𝜏-compact resolvent. 

Since 𝐷0 has spectral dimension 𝑑, 𝑟𝑒𝑠𝑠=𝑑(𝜏(𝐷0
2 + 1)−𝑠/2) exists and is finite. Then, 

applying Proposition 𝐴.4, in the appendix, we get 𝑟𝑒𝑠𝑠=𝑑(𝜏(𝐷0
2 + 1)) = 𝑟𝑒𝑠𝑠=𝑑(𝜏(𝐷∞

0 +
1)−𝑠/2). The result follows by [232], Thm 4.11. 

Corollary (5.3.17)[221]: Let (ℒ𝑛,ℋ𝑛, �̂�𝑛) be the spectral triple on 𝕋𝑛 constructed in 

Theorem (5.3.15), and let us set ℒ∞: = ∪𝑛=0
∞ ℒ𝑛,ℳ∞: = ℬ(ℋ0) ⊗ ℛ,ℋ∞: = ℋ0 ⊗

 𝐿2(ℛ, 𝜏). Then (ℒ∞,ℳ∞,ℋ∞, �̂�∞) is a finitely summable, semifinite, spectral triple, with 

Hausdorff dimension p. Moreover, the Dixmier trace 𝜏𝜔 of (�̂�0
2 + 1)−𝑝/2 coincides with 

that of (𝐷0
2 + 1)−𝑝/2 (hence does not depend on 𝜔)  

and may be written as: 

𝜏𝜔((�̂�∞
2 + 1)−𝑝/2) = lim

𝑡→∞

1

𝑙𝑜𝑔 𝑡
∫ (𝜇(𝐷02+1)−1/2(𝑠))

𝑝
𝑑𝑠

𝑡

0

. 

Proof. By construction, ℒ∞ is a dense ∗-subalgebra of the 𝐶∗-algebra 𝒜∞ ⊂ ℳ∞. The thesis 

follows from Theorem (5.3.16) and the above results. 

Let 𝐴𝜗 be the noncommutative torus generated by 𝑈, 𝑉 with 𝑈𝑉 =  𝑒2𝜋𝑖𝜗𝑉𝑈, 𝜗 ∈

[0, 1). Given a matrix 𝐵 ∈ 𝑀2(ℤ), 𝑑𝑒𝑡𝐵 ≠ 0,𝐵 = (
𝑎 𝑏
𝑐 𝑑

), we may consider the 𝐶∗-

subalgebra 𝐴𝜗
𝐵 generated by the elements 

                                              𝑈1 = 𝑈𝑎𝑉𝑏 ,      𝑉1 = 𝑈𝑐𝑉𝑑 .                                (40) 

We may set 𝑊(𝑛):= 𝑈𝑛1𝑉𝑛2 with 𝑛 ∈ ℤ2. By using the commutation relation between 𝑈 

and 𝑉, it is easy to see that 

𝑊(𝑚)𝑊(𝑛) = 𝑒−2𝜋𝑖𝜃𝑚2𝑛1 , 

𝑊(𝑛)𝑘 = 𝑒−𝜋𝑖𝜃𝑘(𝑘−1)𝑛1𝑛2𝑊(𝑘𝑛),    ∀𝑘 ∈ ℤ.                     (41) 

Lemma (5.3.18)[221]: 

(i) 𝐴𝜗
𝐵 = 𝐴𝜗 ⟺ 𝑟 = |𝑑𝑒𝑡𝐵| = 1. 

(ii) 𝐴𝜗
𝐵 ≅ 𝐴𝜗’  , where 𝜗’ = 𝑟𝜗. 

(iii) 𝐴𝜗
𝐵 ≅ 𝐴𝜗 iff 𝑟 ≡𝑞± 1. 

Proof. (i)(⇐) By using equation (41) it can be shown that the generators of (𝐴𝜗
𝐵)𝐵

−1
 are 

𝑈2 = 𝑒𝜋𝑖𝜗𝑏𝑑(1−𝑎+𝑐) 𝑑𝑒𝑡𝐵𝑈, 
𝑉2 = 𝑒𝜋𝑖𝜗𝑎𝑐(1+𝑏−𝑑) 𝑑𝑒𝑡𝐵𝑉. 

Hence 𝐴𝜗 = (𝐴𝜗
𝐵)𝐵

−1
⊂ 𝐴𝜗

𝐵 ⊂ 𝐴𝜗 , namely these algebras coincide. 

(ii) We compute the commutation relations for 𝑈1 and 𝑉1, getting 𝑈1𝑉1 = 𝑒2𝜋𝑖 𝑑𝑒𝑡𝐵𝜗𝑉1𝑈1. 

Since 𝐴𝑑𝑒𝑡𝐵𝜗 ≅ 𝐴𝑟𝜗 , the statement follows. 

(iii) We have 𝐴𝜗 ≅ 𝐴𝜗’ ⇔ 𝜗 ± 𝜗’ ∈ ℤ ⇔ (𝑟 ± 1)𝜗 ∈ ℤ. This means in particular that 𝜗 =
𝑝/𝑞, for some relatively prime 𝑝, 𝑞 ∈ ℕ, and 𝑟 ≡𝑞± 1. 

(i)(⇒) Finally, we observe that 𝐴𝜗 = 𝐴𝜗
𝐵 ⇒ 𝐴𝜗 ≅ 𝐴𝜗’  . We show that 𝐴𝜗

𝐵  is a proper 

subalgebra of 𝐴𝜗 when 𝑟 ≠ ±1, thus completing the proof of (𝑖).  
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On the one hand, the previous Lemma shows that, setting 𝜗𝑛 = 𝑟−𝑛𝜗, the algebras 𝐴𝜗𝑛 form 

an inductive family, where 𝐴𝜗𝑘−1 can be identified with the subalgebra 𝐴𝜗𝑘
𝐵 of 𝐴𝜗𝑘 . The 

inductive limit is a noncommutative solenoid according to [68], [200]. 

On the other hand, since we are mainly concerned with selfcoverings, we will, in the 

following, consider only the rational case 𝜗 = 𝑝/𝑞, with 𝑟 ≡𝑞± 1. Possibly replacing 𝐵 

with −𝐵, this is the same as assuming 𝑑𝑒𝑡𝐵 ≡𝑞 1. 

We give a description of the rational rotation algebra making small modifications to 

the description of 𝐴𝜃 , 𝜃 = 𝑝/𝑞 ∈ ℚ, seen in [227]. Consider the following matrices 

(𝑈0)ℎ𝑘 = 𝛿ℎ,𝑘𝑒
2𝜋𝑖(𝑘−1)𝜃 , (𝑉0)ℎ𝑘 = 𝛿ℎ+1,𝑘 + 𝛿ℎ,𝑞𝛿𝑘,1 ∈ 𝑀𝑞(ℂ) 

and 

𝐽 = (
0 1
−1 0

) ∈ 𝑀2(ℂ). 

We have that 𝑈0𝑉0 = 𝑒2𝜋𝑖𝜃𝑉0𝑈0. Let 𝑛 = (𝑛1, 𝑛2) ∈ ℤ2 and set 𝑊0(𝑛) ≝

𝑈0
𝑛1  𝑉0

𝑛2 , �̃�𝑛(𝑓)(𝑡): = 𝑎𝑑(𝑊0(𝐽𝑛))[𝑓(𝑡 − 𝑛)] = 𝑉0
𝑛1𝑈0

−𝑛2𝑓(𝑡 − 𝑛)𝑈0
𝑛2𝑉0

−𝑛1. Since 

formula (41) holds whenever two operators satisfy the commutation relation 𝑈𝑉 =
𝑒2𝜋𝑖𝜃𝑉𝑈, the following formula holds 

𝑊0(𝑛)
𝑘 = 𝑒−𝜋𝑖𝜃𝑘(𝑘−1)𝑛1𝑛2𝑊0(𝑘𝑛)        ∀𝑘 ∈ ℤ.                           (42) 

We have the following description of 𝐴𝜃 (cf. [227]) 

𝐴𝜃 = {𝑓 ∈ 𝐶(ℝ2,𝑀𝑞(ℂ)): 𝑓 = �̃�𝑛(𝑓), 𝑛 ∈ ℤ2}. 
This algebra comes with a natural trace 

𝜏(𝑓):=
1

𝑞
∫ 𝑡𝑟(𝑓(𝑡))𝑑𝑡
𝕋0

, 

where we are considering the Haar measure on 𝕋0 and 𝑡𝑟(𝐴) = ∑ 𝑎𝑖𝑖𝑖 . We observe that the 

function 𝑡𝑟(𝑓(𝑡)) is ℤ2-periodic. The generators of the algebra are 

𝑈(𝑡1, 𝑡2) = 𝑒2𝜋𝑖𝜃𝑡1𝑈0, 
𝑉(𝑡1, 𝑡2) = 𝑒2𝜋𝑖𝜃𝑡2𝑉0. 

They satisfy the following commutation relation 

𝑈(𝑡)𝛼𝑉(𝑡)𝛽 = 𝑒2𝜋𝑖𝜃𝛼𝛽𝑉(𝑡)𝛽𝑈(𝑡)𝛼 , 𝛼, 𝛽 ∈ ℤ.  
We set 𝑊(𝑛, 𝑡) = 𝑈(𝑡)𝑛1𝑉(𝑡)𝑛1  , ∀𝑡 ∈ ℝ𝑛, 𝑛 ∈ ℤ2, and note that 

𝑊(𝑚, 𝑡)𝑊(𝑛, 𝑡) = 𝑒2𝑖𝜋𝜃(𝑚,𝐽𝑛)𝑊(𝑛, 𝑡)𝑊(𝑚, 𝑡), 
𝑈(𝑡) = 𝑊((1, 0), 𝑡), 
𝑉(𝑡) = 𝑊((0, 1), 𝑡). 

We observe that �̃�𝑛(𝑓)(𝑡) = 𝑎𝑑(𝑊(𝐽𝑛, 𝑡))[𝑓(𝑡 − 𝑛)], ∀𝑡 ∈ ℝ2, 𝑛 ∈ ℤ2. 

Define 

ℒ𝜃: = {∑𝑎𝑟𝑠𝑈
𝑟𝑉𝑠

𝑟,𝑠

: (𝑎𝑟𝑠) ∈ 𝑆(ℤ2)} , 

where 𝑆(ℤ2) is the set of rapidly decreasing sequences. It is clear that the derivations 𝜕1 and 

𝜕2, defined as follows on the generators, extend to ℒ𝜃 

𝜕1(𝑈
ℎ𝑉𝑘) = 2𝜋𝑖ℎ𝑈ℎ𝑉𝑘 

𝜕2(𝑈
ℎ𝑉𝑘) = 2𝜋𝑖𝑘𝑈ℎ𝑉𝑘. 

Moreover, the above derivations extend to densely defined derivations both on 

𝐴𝜃 and 𝐿2(𝐴𝜃 , 𝜏). 
We still denote these extensions with the same symbols. We may consider the following 

spectral triple (see [236], or section 12.3 in [240]): 
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(ℒ𝜃 , ℂ
2 ⊗𝐿2(𝐴𝜃 , 𝜏), 𝐷 = −𝑖(𝜀1 ⊗𝜕1 + 𝜀2 ⊗𝜕2)), 

where 𝜀1, 𝜀2 denote the Pauli matrices. In order to fix the notation we recall that the Pauli 

matrices are self-adjoint, in particular they satisfy the condition (𝜀𝑘)2 = 𝐼, 𝑘 = 1, 2. 
Let 𝐴 =̇ 𝐴𝜃 be a rational rotation algebra, 𝜗 = 𝑝/𝑞, 𝐵 ∈ 𝑀2(ℤ) be a matrix such that 

𝑑𝑒𝑡𝐵 ≡𝑞 1, 𝑟: = |𝑑𝑒𝑡𝐵| > 1, and set 𝐶𝐵 = (
𝑑 −𝑐
−𝑏 𝑎

) the cofactor matrix of 𝐵, and 𝐴 =

(𝐵𝑇)−1. Then a self-covering of 𝒜 may be constructed in analogy with the construction for 

the classical torus. Consider the 𝐶∗-algebra 

ℬ:= {𝑓 ∈ 𝐶(ℝ2, 𝑀𝑞(ℂ)) ∶ 𝑓 = �̃�𝐵𝑛(𝑓), 𝑛 ∈ ℤ2}. 

This algebra is generated by the elements 

𝑈ℬ(𝑡) = 𝑒𝜋𝑖𝜗𝑏𝑑(1−𝑎+𝑐)𝑒2𝜋𝑖𝜃〈𝐴𝑒1,𝑡〉𝑊0(𝐶𝐵𝑒1),

𝑉ℬ(𝑡) = 𝑒𝜋𝑖𝜗𝑎𝑐(1+𝑏−𝑑)𝑒2𝜋𝑖𝜃〈𝐴𝑒2,𝑡〉𝑊0(𝐶𝐵𝑒2),
    𝑒1 = (

1
0
) , 𝑒2 = (

0
1
),      (43)  

and can be endowed with a natural trace 

𝜏1(𝑓) ≔
1

𝑞|𝑑𝑒𝑡𝐵|
∫ 𝑡𝑟(𝑓(𝑡))𝑑𝑡
𝕋1

, 𝑓 ∈ ℬ. 

The action �̃� of ℤ2 on ℬ, being trivial when restricted to 𝐵ℤ2, induces an action of ℤ𝐵. 

Proposition (5.3.19)[221]: The 𝐺𝑁𝑆 representation 𝜋1: ℬ → 𝐵(𝐿2(ℬ, 𝜏1)) is unitarily 

equivalent to the representation obtained by 𝜋0:𝒜 → 𝐵(𝐿2(𝒜, 𝜏)) according to Proposition 

(5.3.7). 

Proof. It is enough to prove that 𝜏1 = 𝜏0 ∘ 𝐸, where 𝐸 is the conditional expectation from 

ℬ to 𝒜. We have that 

𝜏0[𝐸(𝑓)] =
1

𝑞
∫ 𝑡𝑟[𝐸(𝑓)(𝑡)]
𝕋0

=
1

𝑞𝑟
∫ ∑ 𝑡𝑟[𝛾𝑛(𝑓)(𝑡)]

𝑛∈ℤ𝐵
𝕋0

=
1

𝑞𝑟
∫ ∑ 𝑡𝑟[(𝑓)(𝑡 − 𝑛)]

𝑛∈ℤ𝐵
𝕋0

=
1

𝑞𝑟
∫ 𝑡𝑟[𝑓(𝑡)]
𝕋1

= 𝜏1(𝑓). 

Given the integer-valued matrix 𝐵 ∈ 𝑀2(ℤ) as above, there is an associated 

endomorphism 𝛼: 𝐴𝜃 → 𝐴𝜃 defined by 𝛼(𝑓)(𝑡) = 𝑓(𝐵𝑡). Then, we consider the inductive 

limit 𝒜∞ =
lim 
→ 𝒜𝑛 described in (0.1), where 𝒜𝑛 = 𝒜 for any 𝑛. 

It will be convenient to consider the following isomorphic inductive family: 𝒜𝑛 

consists of continuous 𝐵𝑘ℤ2-invariant matrix-valued functions on ℝ𝑛, i.e 

𝒜𝑘: = {𝑓 ∈ 𝐶(ℝ2, 𝑀𝑞(ℂ)) ∶ 𝑓 = �̃�𝐵𝑘𝑛(𝑓), 𝑛 ∈ ℤ2}, 
with trace 

𝜏𝑘(𝑓) =
1

𝑞|𝑑𝑒𝑡𝐵𝑘|
∫ 𝑡𝑟(𝑓(𝑡))𝑑𝑡
𝕋𝑘

, 

and the embedding is unital inclusion 𝛼𝑘+1,𝑘:𝒜𝑘 ↪ 𝒜𝑘+1. In particular, 𝒜0 = 𝒜, and 

𝒜1 = ℬ. This means that 𝒜∞ may considered as a generalized solenoid 𝐶∗-algebra (cf. 

[244], [68]). 

On the 𝑛-th noncommutative covering 𝒜𝑛, the formula of the Dirac operator doesn’t change 

and we can consider the following spectral triple 

(𝐿𝜃
(𝑛)
, ℂ2 ⊗𝐿2(𝒜𝑛, 𝜏), 𝐷 =  −𝑖(𝜀1 ⊗𝜕1 + 𝜀2 ⊗𝜕2)). 

We describe the spectral triple on 𝒜𝑛 in terms of the spectral triple on 𝒜0 = 𝐴𝜃. 

We will consider the two central extensions (32) and (33) (case 𝑝 = 2) with the associated  

𝑠𝑛: ℤ�̂� → 𝐴𝑛ℤ2 and �̂�𝑛: ℤ𝐵 → 𝐵𝑛−1ℤ2 defined earlier. 

The following result holds: 
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Theorem (5.3.20)[221]: Any 𝑏 in 𝒜𝑖 can be decomposed as 𝑏 = ∑ 𝑏𝑘𝑘∈ℤ�̂�
, where 

𝑏𝑘(𝑡) =
1

𝑟
∑ 〈−𝑘, 𝑔〉

𝑔∈ℤ𝐵

𝛾𝑔(𝑏(𝑡)) ∈ (𝒜𝑖)𝑘.                      (44) 

Let 𝑢𝑔 be the unitary operator on 𝐿2(𝒜𝑖 , 𝜏𝑖) implementing the automorphism 𝛾𝑔. Then, any 

𝜉 ∈ 𝐿2(𝒜𝑖 , 𝜏𝑖) can be decomposed as 𝜉 = ∑ 𝜉𝑘𝑘∈ℤ�̂�
, where 

𝜉𝑘(𝑡) =
1

𝑟
∑ 〈−𝑘, 𝑔〉𝑢𝑔
𝑔∈ℤ𝐵

(𝜉(𝑡)).                           (45) 

Moreover, this correspondence gives rise to unitary operators 𝑣𝑖: 𝐿
2(𝒜𝑖 , 𝜏𝑖) →

 𝐿2(𝒜𝑖−1, 𝜏𝑖−1) ⊗ ℂ𝑟 defined by 𝑣𝑖(𝜉) = {𝜎(𝑘)−1𝜉𝑘}𝑘∈ℤ�̂�. The multiplication operator by 

an element f on 𝒜𝑖 is mapped to the matrix 𝑀𝑟(𝑓) acting on 𝐿2(𝒜𝑖−1, 𝜏𝑖−1) ⊗ ℂ𝑟 given by 

𝑀𝑟(𝑓)ℎ,𝑘(𝑡) = 〈𝑠(𝑘) − 𝑠(ℎ),−𝑡〉𝑓ℎ−𝑘(𝑡), 𝑡 ∈ ℝ2, ℎ, 𝑘 ∈ ℤ�̂�. 

Theorem (5.3.21)[221]: Set ℋ0 ∶= ℂ2 ⊗𝐿2(𝒜0, 𝜏0). Then the Dirac operator 𝐷𝑛 acting on 

ℂ2 ⊗𝐿2(𝒜𝑛, 𝜏𝑛) gives rise to the operator �̂�𝑛 when the Hilbert space is identified with 

ℋ0 ⊗ (ℂ𝑟)⊗𝑛 as above. Moreover, the Dirac operator �̂�𝑛 has the following form: 

�̂�𝑛: = 𝑉𝑛𝐷𝑛𝑉𝑛
∗

= 𝐷0 ⊗ 𝐼 − 2𝜋∑𝜀𝑎
2

𝑎=1

⊗ 𝐼 ⊗(∑𝐼⊗𝑗−1

𝑛

𝑗=1

⊗𝑑𝑖𝑎𝑔(𝑠𝑗(𝑘)
𝑎)𝑘∈ℤ�̂� ⊗ 𝐼⊗𝑛−𝑗) , 

where 𝑉𝑛: ℂ
2 ⊗𝐿2(𝒜𝑛, 𝜏𝑛) → ℋ0 ⊗ (ℂ𝑟)⊗𝑛 is defined as 𝑉𝑛: = 𝐼 ⊗ [(𝑣1 ⊗𝑗=1

𝑛−1 𝐼) ∘

(𝑣2 ⊗𝑗=1
𝑛−2 𝐼) ∘ · · · ∘ 𝑣𝑛].  

Proof. We prove the formula for 𝑛 = 1, the case 𝑛 > 1 can be obtained by iterating the 

procedure. Let us denote by {𝜂𝑘}𝑘∈ℤ�̂� an element in ℂ2 ⊗𝐿2(𝒜0, 𝜏0). 

𝑉1𝐷1𝑉1
∗ (∑ 𝜂𝑘(𝑡)

⨁

𝑘∈ℤ�̂�

) = 𝑉1𝐷1 (∑ 〈𝑠(𝑘),−𝑡〉𝜂𝑘(𝑡)

𝑘∈ℤ�̂�

) 

=∑ 〈𝑠(𝑗), 𝑡〉
⨁

𝑗∈ℤ�̂�

1

𝑟
∑ 〈−𝑗, 𝑔〉𝑢𝑔
𝑔∈ℤ𝐵

(∑ 𝐷(〈𝑠(𝑘), −𝑡〉𝜂𝑘(𝑡))

𝑘∈ℤ�̂�

) 

(𝑎)
=

∑ ∑〈𝑠(𝑗), 𝑡〉
1

𝑟
𝑘∈ℤ�̂�

⨁

𝑗∈ℤ�̂�

∑〈−𝑗, 𝑔〉𝐷(〈𝑠(𝑘), −𝑡 + 𝑔〉𝜂𝑘(𝑡))

𝑔∈ℤ𝐵

 

=∑ ∑〈𝑠(𝑗), 𝑡〉
1

𝑟
𝑘∈ℤ�̂�

⨁

𝑗∈ℤ�̂�

∑〈𝑘 − 𝑗, 𝑔〉𝐷(〈𝑠(𝑘),−𝑡〉𝜂𝑘(𝑡))

𝑔∈ℤ𝐵

 

=∑ 〈𝑠(𝑘), 𝑡〉
⨁

𝑘∈ℤ�̂�

𝐷(〈𝑠(𝑘), −𝑡〉𝜂𝑘(𝑡)) 

= −𝑖∑ 〈𝑠(𝑘), 𝑡〉
⨁

𝑘∈ℤ�̂�

∑〈𝑠(𝑘),−𝑡〉

2

𝑎=1

𝜀𝑎(−2𝜋𝑖𝑠(𝑘)𝑎𝜂𝑘(𝑡) + 𝜕𝑎𝜂𝑘(𝑡)) 

= (−𝑖∑𝜀𝑎
2

𝑎=1

⊗𝜕𝑎 ⊗  𝐼 − 2𝜋∑𝜀𝑎
2

𝑎=1

⊗ 𝐼⊗ 𝑑𝑖𝑎𝑔(𝑠(𝑘)𝑎)𝑘∈ℤ�̂�)∑ 𝜂𝑘(𝑡)
⨁

𝑘∈ℤ�̂�

, 

where in (𝑎) we used the facts that 𝑢𝑔 ∘ 𝐷 = 𝐷 ∘ 𝑢𝑔 , and 𝑢𝑔 ≡ 𝑖𝑑 on ℂ2 ⊗𝐿2(𝒜0, 𝜏0). 
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Proposition (5.3.22)[221]: The 𝐶∗-algebra 𝒜𝑛 embeds into ℬ(ℋ0)⊗ℳ𝑟𝑛(ℂ). As a 

consequence, 𝒜∞ embeds into the injective limit 
lim 
→ ℬ(ℋ0)⊗ℳ𝑟𝑛(ℂ) = ℬ(ℋ0) ⊗ 𝑈𝐻𝐹(𝑟∞) 

hence in ℬ(ℋ0)⊗ ℛ, where ℛ is the injective type 𝐼𝐼1 factor. 

Theorem (5.3.23)[221]: Assume that 𝐵 is purely expanding and that 𝑑𝑒𝑡(𝐵) ≡𝑞 1. Let us 

set ℒ∞ = ∪𝑛 ℒ𝜃
(𝑛)
,ℳ = ℬ(ℋ0) ⊗ ℛ, and define 

�̂�∞: = 𝐷0 ⊗ 𝐼 − 2𝜋∑𝜀𝑎
2

𝑎=1

⊗ 𝐼 ⊗(∑𝐼⊗𝑗−1

∞

𝑗=1

⊗𝑑𝑖𝑎𝑔(𝑠𝑗(𝑘)
𝑎)𝑘∈𝑍�̂�) . 

Then (ℒ,ℳ,ℋ0 ⊗𝐿2(ℛ, 𝜏), �̂�∞) is a finitely summable, semifinite, spectral triple, with 

Hausdorff dimension 2. Moreover, the Dixmier trace 𝜏𝜔 of (�̂�∞
2 + 1)−1 coincides with that 

of (𝐷0
2 + 1)−1 (hence does not depend on the generalized limit 𝜔) and may be written as: 

𝜏𝜔((�̂�∞
2 + 1)−1) = lim

𝑡→∞

1

𝑙𝑜𝑔 𝑡
∫ (𝜇(𝐷02+1)−1/2(𝑠))

2
𝑑𝑠

𝑡

0

.  

Proof. The formula for �̂�∞ follows from what has already been proved. We want to prove 

that �̂�∞ is of the form 𝐷0 ⊗ 𝐼 + 𝐶, with 𝐶 = −2𝜋∑ 𝜀𝑎2
𝑎=1 ⊗ 𝐼⊗ 

(∑𝐼⊗𝑗−1

∞

𝑗=1

 ⊗ 𝑑𝑖𝑎𝑔(𝑠𝑗(𝑘)
𝑎)) ∈ ℬ(ℋ0)⊗ ℛ 𝑎𝑛𝑑 �̂�∞ ∈̂ ℬ(ℋ0)⊗ ℛ. 

By construction, ℒ∞ is a dense ∗-subalgebra of the 𝐶∗-algebra 𝒜∞ ⊂ ℳ. We now prove 

that �̂�∞ is affiliated to ℳ. We posed 𝑠𝑛(𝑘) ∈ 𝐴𝑛−1[0, 1)2, therefore 

max
𝑘∈ℤ̂𝐵

‖𝑠𝑛(𝑘)‖ ≤ 𝑠𝑢𝑝𝑥∈[0,1)2  ‖𝐴
𝑛−1𝑥‖ ≤ ‖𝐴𝑛−1‖√2. 

As a consequence, for 𝑎 = 1, 2, 𝑗 ∈ ℕ, 

‖𝑑𝑖𝑎𝑔(𝑠𝑗(𝑘)
𝑎)‖ = max

𝑘∈ℤ̂𝐵
|𝑠𝑗(𝑘)

𝑎| ≤ max
𝑘∈ℤ̂𝐵

‖𝑠𝑗(𝑘)‖ ≤ ‖𝐴𝑗−1‖√2. 

By Proposition (5.3.14) and the estimate above, we get that 𝐶 is bounded and belongs to 

𝑀2(ℂ)⊗ ℂ⊗𝑈𝐻𝐹(𝑟∞), while 𝐷0 ⊗ 𝐼 ∈̂ ℬ(ℋ0)⊗ ℂ. 

The thesis follows from Theorem (5.3.16) and what we have seen above. 

The algebra and the noncommutative covering 

Let 𝐵 ∈ 𝑀𝑝(ℤ), with 𝑟 = |𝑑𝑒𝑡(𝐵)| > 1, and set 𝐴 = (𝐵𝑇)−1. Consider a finitely 

summable spectral triple (ℒ𝒵 ,ℋ, 𝐷) on the 𝐶∗-algebra 𝒵 and assume the following: 

(a) there is an action 𝜌: 𝐺1 = 𝐴ℤ𝑝 → 𝐴𝑢𝑡(𝒵); 

(b) 𝑠𝑢𝑝𝑔∈𝐺1‖[𝐷, 𝜌𝑔(𝑎)]‖ <∞, for any 𝑎 ∈ ℒ𝒵. 

Assuming, for simplicity, that 𝒵 ⊂ ℬ(ℋ), recall that the crossed product 𝒜𝐺1 = 𝒵 ⋊𝜌 𝐺1 

is the 𝐶∗-subalgebra of ℬ(ℋ⊗ ℓ
2
(𝐺1)) generated by 𝜋𝐺1(𝒵) and 𝑈ℎ , ℎ ∈ 𝐺1, where 

(𝜋𝐺1(𝓏)𝜉)(𝑔):= 𝜌𝑔
−1(𝓏)𝜉(𝑔), 

(𝑈ℎ𝜉)(𝑔):= 𝜉(𝑔 − ℎ), 𝓏 ∈ 𝒵, 𝑔, ℎ ∈ 𝐺1, 𝜉 ∈ ℓ
2
(𝐺1;ℋ) ≅ ℋ⊗ ℓ

2
(𝐺1). 

Set 𝐺0 = ℤ𝑝 ⊂ 𝐺1. The embedding 𝒵 ⋊𝜌  𝐺0 ⊂ 𝒵 ⋊𝜌  𝐺1 is a finite covering with respect to 

the action 𝛾: ℤ𝐵 → 𝐴𝑢𝑡(𝒵 ⋊𝜌 𝐺1) defined as 

𝛾𝑗 (∑ 𝑎𝑔𝑈𝑔
𝑔∈𝐺1

) = ∑〈�̂�(𝑗), 𝑔〉𝑎𝑔𝑈𝑔
𝑔∈𝐺1

, 𝑗 ∈ ℤ𝐵, 

where �̂�: ℤ𝐵 → ℤ𝑝 of the short exact sequence 
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0 → 𝐵ℤ𝑝 → ℤ𝑝 → ℤ𝐵 → 0. 
In fact, the fixed point algebra of this action is 𝒜𝐺0: = 𝒵 ⋊𝑝 𝐺0.  

Define the map ℓ: ℤ𝑝 → 𝑀2⌈𝑝/2⌉(ℂ) as ℓ(𝑚):=  ∑ 𝑚𝜇𝜀𝜇+1
(𝑝+1)𝑝

𝜇=1  , where {𝜀𝑖
(𝑝+1)

}𝑖=1
𝑝+1

 

denote the generators of the Clifford algebra ℂ𝑙(ℝ𝑝+1), and 𝑚 ∈ ℤ𝑝. 
Theorem (5.3.24)[221]: The following triple is a spectral triple for the crossed product 

𝒜𝐺0 = 𝒵 ⋊𝜌 𝐺0 

(ℒ0 = 𝐶𝑐(ℤ
𝑝, 𝒵),ℋ0 = ℋ⊗ℂ2

⌈𝑝/2⌉
⊗ ℓ

2
(ℤ𝑝), 𝐷0  = 𝐷 ⊗ 𝜀1

(𝑝+1)
⊗ 𝐼 + 𝐼 ⊗𝑀ℓ). 

where 𝐶𝑐(ℤ
𝑝, 𝒵):= { ∑ 𝜋𝐺1(𝓏𝑔)𝑔∈ℤ𝑝 𝑈𝑔: 𝓏𝑔 ∈ ℒ𝒵 , 𝓏𝑔 ≠ 0 for finitely many 𝑔 ∈ ℤ𝑝}, and 

𝑀ℓ is the operator of multiplication by the generalized length functionℓ(cf. [240]). If the 

Hausdorff dimension 𝑑(ℒ𝒵 ,ℋ, 𝐷) = 𝑑, then 𝑑(ℒ0,ℋ0, 𝐷0) = 𝑑 + 𝑝. 
Proof. The triple in the statement is indeed an iterated spectral triple in the sense of [241], 

sec. 2.4. Equivalently, ℓ(𝑔) is a proper translation bounded matrixvalued function (cf. 

[241]). For the sake of completeness we sketch the proof of the statement. For the bounded 

commutator property it is enough to show that the commutators with 𝜋𝐺0(𝓏), 𝓏 ∈ ℒ𝓏 , and 

with 𝑈ℎ , ℎ ∈ 𝐺0 are bounded. The norm of the first is bounded by 𝑠𝑢𝑝𝑔∈𝐺0‖[𝐷, 𝜌𝑔(𝑎)]‖, 

which is finite for any 𝑎 ∈ ℒ𝓏, the norm of the second is bounded by ‖ℓ(ℎ)‖. We then 

explicitly compute the eigenvalues of 𝐷0
2: they are given by 𝜆2 + ‖𝑔‖2

2, with 𝜆 belong to the 

sequence of eigenvalues of 𝐷 and 𝑔 ∈ ℤ𝑝. The compact resolvent property follows. The 

formula for the dimension can be obtained as in [241]. 

In a similar way we define the following spectral triple for the crossed product 𝒜𝐺1 =

𝒵 ⋊𝜌 𝐺1 

(ℒ1 = 𝐶𝑐(𝐺1, 𝒵),ℋ𝐺1 = ℋ⊗ℂ2
⌈𝑝/2⌉

⊗ ℓ
2
(𝐺1), 𝐷1  = 𝐷 ⊗ 𝜀1

(𝑝+1)
⊗ 𝐼 + 𝐼 ⊗𝑀ℓ1). 

where ℓ1: 𝐺1 = 𝐴ℤ𝑝 → 𝑀2⌈𝑝/2⌉(ℂ) is defined as ℓ1(𝑔):= 𝑔𝜇𝜀𝜇+1
(𝑝+1)

 , 𝑔 ∈ 𝐺1. 

In order to show that the covering is regular according to Definition (5.3.3), we need 

to define a map 𝜎 which takes values in the spectral subspaces of 𝛾. Consider the 𝑠: ℤ�̂� →
𝐴ℤ𝑝 defined for the short exact sequence (30). Define 𝜎: ℤ�̂� → 𝒰(𝒵 ⋊𝜌 𝐴ℤ

𝑝) as 

                                                   𝜎(𝑘) = 𝑈𝑠(𝑘).                                                (46)  

We observe that 𝑈𝑠(𝑘) ∈ (𝒵 ⋊𝜌 𝐴ℤ
𝑝)𝑘, 𝑘 ∈ ℤ�̂�. 

We first consider the crossed-product 𝐶∗-algebras 𝒜𝐺0  and 𝒜𝐺1  as acting on the Hilbert 

spaces ℋ⊗ℂ2
⌈𝑝/2⌉

⊗ ℓ
2
(𝐺0) and ℋ⊗ℂ2

⌈𝑝/2⌉
⊗ ℓ

2
(𝐺1). A short exact sequence of groups 

can be described either via a section 𝑠: ℤ�̂� → 𝐺1 or a 2-cocycle 𝜔:ℤ�̂� × ℤ�̂� → 𝐺0, 𝜔(𝑗, 𝑘) =
𝑠(𝑗) + 𝑠(𝑘) − 𝑠(𝑗 + 𝑘), where 𝐺1/𝐺0 = ℤ�̂�. Since 𝐺1 is a central extension of ℤ�̂� by 𝐺0, 

the group 𝐺1 may be identified with (𝐺0, ℤ�̂�), with 𝑔 ∈ 𝐺1 identified with (𝑔 − 𝑠 ∘
𝑝(𝑔), 𝑝(𝑔)), 𝑝(𝑔) denoting the projection of g to ℤ�̂�. The multiplication rule is given by 

(𝑎, 𝑏) · (𝑎’, 𝑏’) = (𝑎 + 𝑎’ −𝜔(𝑏, 𝑏’), 𝑏 + 𝑏’), [228]. The above choice of the section 𝑠 

implies that in particular 𝑠(0) = 0, hence 𝜔(0, 𝑔) = 𝜔(𝑔, 0) = 0. 
Consider the unitary operator 

 𝑉: 𝜉 ∈ ℓ
2
(𝐺1;ℋ ⊗ ℂ2

⌈
𝑝
2
⌉

) → 𝑉𝜉 ∈ ℓ
2
(𝐺0 ×

𝐺1
𝐺0

;ℋ ⊗ ℂ2
⌈
𝑝
2
⌉

) (𝑉𝜉)(𝑚, 𝑗)

≔ 𝜉(𝑚 +  𝑠(𝑗)), 𝑚 ∈ 𝐺0𝑗 ∈ 𝐺1/𝐺0 .                                             (47) 

Proposition (5.3.25)[221]: The representation 𝜋𝐺1: 𝒵 ⋊𝜌 𝐺1 → ℓ
2
(𝐺1;ℋ ⊗ ℂ2

⌈𝑝/2⌉
) is 

unitarily equivalent, through, to the representation obtained by 𝜋𝐺0 : 𝒵 ⋊𝜌 𝐺0 →

 ℓ
2
(𝐺0;ℋ ⊗ ℂ2

⌈𝑝/2⌉
)  according to Proposition (5.3.7). 
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Proof. Since 𝒜𝐺1is generated by 𝜋𝐺1(𝓏), 𝓏 ∈ 𝒵, and 𝑈ℎ , ℎ ∈ 𝐺1, it is enough to prove the 

statement for the generators. Observe that, for any 𝓏 ∈ 𝒵,𝑚, 𝑛 ∈ 𝐺0, 𝑗, 𝑘 ∈ 𝐺1/𝐺0, 𝜂 ∈

ℓ
2
(𝐺0 × 𝐺1/𝐺0;ℋ ⊗ ℂ2

⌈𝑝/2⌉
), we have 

(𝑉 𝜋𝐺1(𝓏)𝑉
∗𝜂)(𝑛, 𝑘) = (𝜋𝐺1(𝓏)𝑉

∗𝜂)(𝑛 + 𝑠(𝑘))  = (𝜌𝑛+𝑠(𝑘)
−1 (𝓏)𝑉∗𝜂)(𝑛 + 𝑠(𝑘)) 

= 𝜌𝑛+𝑠(𝑘)
−1 (𝓏)𝜂(𝑛, 𝑘), 

(𝑉𝑈𝑚+𝑠(𝑗)𝑉
∗𝜂)(𝑛, 𝑘) = (𝑈𝑚+𝑠(𝑗)𝑉

∗𝜂)(𝑛 + 𝑠(𝑘) = (𝑉∗𝜂)(𝑛 − 𝑚 + 𝑠(𝑘) − 𝑠(𝑗)) 

= 𝜂(𝑛 −𝑚 −𝜔(𝑗, 𝑘 − 𝑗), 𝑘 − 𝑗) . 

In order to obtain the representation of these operators in 𝑀𝐺1/𝐺0(ℬ(ℓ
2
(𝐺0;ℋ ⊗ ℂ2

⌈𝑝/2⌉
)), 

choose any 𝜑,𝜓 ∈ ℓ
2
(𝐺0;ℋ ⊗ ℂ2

⌈𝑝/2⌉
), and denote by {𝑒𝑗}𝑗∈𝐺1/𝐺0  the canonical basis of 

ℓ
2
(𝐺1/𝐺0), so that, for any 𝑗, 𝑘 ∈  𝐺1/𝐺0, we get 

〈𝜑, (𝑉𝜋𝐺1(𝓏)𝑉
∗)𝑗𝑘𝜓〉 = 〈𝜑 ⊗ 𝑒𝑗 , 𝑉𝜋𝐺1(𝓏)𝑉

∗(𝜓⊗ 𝑒𝑘)〉 

= ∑ ∑ 𝑒𝑗(𝑖)𝑒𝑘(𝑖)〈𝜑(𝑛), 𝜌𝑛+𝑠(𝑖)
−1 (𝓏)𝜉(𝑛)〉

𝑛∈𝐺0𝑖∈𝐺1/𝐺0

 

= 𝛿𝑗𝑘 ∑〈𝜑(𝑛), (𝜋𝐺0(𝜌𝑠(𝑗)
−1 (𝓏))𝜉)(𝑛)〉

𝑛∈𝐺0

, 

which implies that (𝑉𝜋𝐺1(𝓏)𝑉
∗)𝑗𝑘 = 𝛿𝑗𝑘𝜋𝐺0(𝜌𝑠(𝑗)

−1 (𝓏)); analogously, for 𝑚 ∈ 𝐺0 ℓ ∈

𝐺1/𝐺0, 
〈𝜑, (𝑉𝑈𝑚+𝑠(ℓ)𝑉

∗)𝑗𝑘𝜓〉 = 〈𝜑 ⊗ 𝑒𝑗 , 𝑉𝑈𝑚+𝑠(ℓ)𝑉
∗(𝜓⊗ 𝑒𝑘)〉 

= ∑ ∑ 𝑒𝑗(𝑖)𝑒𝑘(𝑖 − ℓ)〈𝜑(𝑛), 𝜓(𝑛 −𝑚 −𝜔(ℓ, 𝑖 − ℓ)〉
𝑛∈𝐺0𝑖∈𝐺1/𝐺0

 

= 𝛿𝑘,𝑗−ℓ ∑〈𝜑(𝑛), 𝜓(𝑛 −𝑚 − 𝜔(ℓ, 𝑗 − ℓ)〉
𝑛∈𝐺0

, 

which implies that (𝑉𝑈𝑚+𝑠(ℓ)𝑉
∗)𝑗𝑘 = 𝛿𝑘,𝑗−ℓ𝑈𝑚+𝜔(ℓ,𝑘). On the other hand, 

𝑀(𝜋𝐺1(𝓏))𝑗𝑘 = 𝑈𝑠(𝑗)
∗ 𝐸𝑗−𝑘(𝜋𝐺1(𝓏))𝑈𝑠(𝑘) = 𝛿𝑗𝑘𝑈𝑠(𝑗)

∗ 𝜋𝐺1(𝓏)𝑈𝑠(𝑘), 

so that 

〈𝜑,𝑀(𝜋𝐺1(𝓏))𝑗𝑘𝜓〉 = 𝛿𝑗𝑘〈𝜑 ⊗ 𝑒𝑗 , 𝑈𝑠(𝑗)
∗ 𝜋𝐺1(𝓏)𝑈𝑠(𝑘)(𝜓⊗ 𝑒𝑘)〉 

= 𝛿𝑗,𝑘〈𝜑 ⊗ 𝑒𝑗 , 𝜋𝐺1(𝜌−𝑠(𝑗)(𝓏))(𝜓⊗ 𝑒𝑘)〉 

= 𝛿𝑗𝑘 ∑ ∑ 𝑒𝑗(𝑖)𝑒𝑘(𝑖)〈𝜑(𝑛), 𝜌𝑛
−1(𝜌𝑠(𝑗)

−1 (𝓏))𝜓(𝑛)〉

𝑛∈𝐺0𝑖∈𝐺1/𝐺0

 

= 𝛿𝑗,𝑘 ∑〈𝜑(𝑛), (𝜋𝐺0(𝜌𝑠(𝑗)
−1 (𝓏))𝜓)(𝑛)〉

𝑛∈𝐺0

, 

which implies that 𝑀(𝜋𝐺1(𝓏))𝑗𝑘 = 𝛿𝑗𝑘𝜋𝐺1(𝜌𝑠(𝑗)
−1 (𝓏)). Finally, 

𝑀(𝑈𝑚+𝑠(ℓ))𝑗𝑘 = 𝑈𝑠(𝑗)
∗ 𝐸𝑗−𝑘(𝑈𝑚+𝑠(ℓ))𝑈𝑠(𝑘) =

1

𝑟
∑ 〈𝑘 −  𝑗, 𝑔〉

𝑔∈ℤ𝐵

𝑈𝑠(𝑗)
∗ 𝛾𝑔(𝑈𝑚+𝑠(ℓ))𝑈𝑠(𝑘) 

=
1

𝑟
∑ 〈𝑘 −  𝑗, 𝑔〉

𝑔∈ℤ𝐵

〈�̂�(𝑔),𝑚 + 𝑠(ℓ)〉𝑈𝑠(𝑗)
∗ 𝑈𝑚+𝑠(ℓ)𝑈𝑠(𝑘) 

=
1

𝑟
∑ 〈𝑘 − 𝑗 + ℓ, 𝑔〉
𝑔∈ℤ𝐵

𝑈𝑚+𝑠(ℓ)+𝑠(𝑘)−𝑠(𝑗) = 𝛿𝑘,𝑗−ℓ𝑈𝑚+𝜔(ℓ,𝑗−ℓ), 

which ends the proof. 

Corollary (5.3.26)[221]: The following diagram commutes: 
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𝒜𝐺0                        ⟶                                       𝒜𝐺1

↓                             ↻                                           ↓ 

ℬ(ℋ⊗ ℂ2
⌈𝑝/2⌉

⊗ ℓ
2
(𝐺0))     ⟶  ℬ(ℋ⊗ℂ2

⌈𝑝/2⌉
⊗ ℓ

2
(𝐺0))⊗𝑀𝑟(ℂ)

   (48) 

where vertical arrows are the representations, the elements of 𝒜𝐺1  being identified with 

matrices as in the previous Proposition, and the horizontal arrows are given by the 

monomorphisms 𝑎 → 𝑀𝑎, (𝑀𝑎)𝑗,𝑘 = 𝛿𝑗,𝑘𝑈𝑠(𝑗)
∗ 𝑎𝑈𝑠(𝑗), both for 𝑎 ∈ 𝒜𝐺0

 and for 𝑎 ∈

ℬ(ℋ⊗ ℓ
2
(𝐺0)).  

So far we have defined a finite noncommutative covering. In order to obtain a self-covering, 

ℬ has to be isomorphic to 𝒜, and we have to make further assumptions. Suppose that there 

exists an automorphism 𝛽 ∈ 𝐴𝑢𝑡(𝒵) such that 

                                    𝛽 ∘ 𝜌𝐴𝑔 ∘ 𝛽
−1 = 𝜌𝑔 ,      𝑔 ∈ ℤ𝑝;                                   (49) 

The following result tells us that the above algebras yield a noncommutative self-covering. 

Proposition (5.3.27)[221]: ([199]) Under the above hypotheses, the sub-algebra 𝒜𝐺0 =

𝒵 ⋊ 𝐺0 ⊂ 𝒜𝐺1  is isomorphic to 𝒜𝐺1  , the isomorphism being given by 

𝛼: ∑ 𝑎𝑔𝑈𝐴𝑔
𝑔∈ℤ𝑝

∈ 𝒜𝐺1 ⟼ ∑ 𝛽(𝑎𝑔)𝑈𝑔
𝑔∈ℤ𝑝

∈ 𝒜𝐺0 . 

The map 𝛼 may also be seen as an endomorphism of 𝒜𝐺1 . 

As above, given an integer-valued matrix 𝐵 ∈ 𝑀𝑝(ℤ) we may define an 

endomorphism 𝛼: 𝒜𝐺1 → 𝒜𝐺1  . Then, we may describe the inductive limit 𝒜∞ =
lim 
→ 𝒜𝑛 

where 𝒜𝑛 = 𝒜𝐺𝑛 , 𝐺𝑛 = 𝐴𝑛ℤ𝑝, and the embedding is the inclusion. Endow 𝐺𝑛 with the 

length function ℓ𝑛: 𝐺𝑛 → 𝑀2⌈𝑝/2⌉(ℂ) defined as ℓ𝑛(𝑔):= ∑ 𝑔𝜇𝜀𝜇+1
(𝑝+1)𝑝

𝜇=1 , 𝑔 =

 (𝑔1, . . . , 𝑔𝑝) ∈ 𝐺𝑛 (ℓ𝑛 is indeed a proper translation bounded matrix-valued function, 

[241]). Let us observe that 𝐺𝑛 ⊂ 𝐺𝑛+1 and that |𝐺𝑛/𝐺𝑛−1| = |𝑑𝑒𝑡𝐵| = : 𝑟. 

Let us define the action 𝜌(𝑛) of 𝐺𝑛 on 𝒵 as follows: 

𝜌𝐴𝑛𝑔
(𝑛)

= 𝛽−𝑛 ∘ 𝜌𝑔 ∘  𝛽
𝑛, 𝑔 ∈ 𝐺0. 

Lemma (5.3.28)[221]: For any 𝑚 < 𝑛, 𝑔 ∈ 𝐺𝑚, we have that 𝜌𝑔
(𝑛)

= 𝜌𝑔
(𝑚)

 , namely the 

family {𝜌(𝑛)}𝑛∈ℕ  defines an action 𝜌 of ∪𝑛 𝐺𝑛. 

Proof. From equation (49), we have 

𝜌𝑔
(𝑚+1)

= 𝛽−(𝑚+1) ∘ 𝜌𝐴−𝑚−1𝑔 ∘ 𝛽
𝑚+1 = 𝛽−𝑚 ∘ 𝜌𝐴−𝑚𝑔  ∘ 𝛽

𝑚 = 𝜌𝑔
(𝑚)

, 𝑔 ∈ 𝐺𝑚. 

The thesis follows. 

Suppose that 

𝑠𝑢𝑝𝑔∈𝐺𝑛  ‖[𝐷, 𝜌𝑔
(𝑛)
(𝑎)]‖ <∞, 

for any 𝑎 ∈ ℒ𝑛 ∶= 𝐶𝑐(𝐺𝑛, 𝒵). Then, the algebra 𝒜𝐺𝑛 has a natural spectral triple 

(ℒ𝑛,ℋ ⊗ ℂ2
⌈
𝑝
2
⌉

 

Theorem (5.3.29)[221]: Set ℋ0: = ℋ⊗ℂ2
⌈𝑝/2⌉

⊗ ℓ
2
(𝐺0). Then the Dirac operator 𝐷𝑛 

acting on ℋ⊗ℂ2
⌈𝑝/2⌉

⊗ ℓ
2
(𝐺𝑛) gives rise to the operator �̂�𝑛 when the Hilbert space is 

identified with ℋ0 ⊗⊗𝑖=1
𝑛 ℓ

2
(𝐺𝑖/𝐺𝑖−1) as above, where 𝐺𝑖/𝐺𝑖−1 ≅ ℤ�̂�. The Dirac operator 

�̂�𝑛 has the following form: 

�̂�𝑛: = 𝑉𝑛𝐷𝑛𝑉𝑛
∗ = 𝐷0 ⊗ 𝐼⊗𝑛 + 𝐶𝑛, 
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with 𝐶𝑛 ∈ ℬ(ℋ0) ⊗𝑀𝑟(ℂ)
⊗𝑛 defined, for 𝜂 ∈ ℓ

2
(𝐺0 × 𝐺1/𝐺0 ×. . .× 𝐺𝑛/𝐺𝑛−1;ℋ ⊗

ℂ2
⌈𝑝/2⌉

), as 

(𝐶𝑛𝜂)(𝑚, 𝑗1, . . . , 𝑗𝑛): = ∑(𝐼 ⊗ ℓℎ(𝑠ℎ(𝑗ℎ)))

𝑛

ℎ=1

(𝜂(𝑚, 𝑗1, . . . , 𝑗𝑛)), 

and 𝑉𝑛:ℋ ⊗ ℂ2
⌈𝑝/2⌉

⊗ ℓ
2
(𝐺𝑛) → ℋ0 ⊗⊗𝑗=1

𝑛 ℓ
2
(𝐺𝑗/𝐺𝑗−1) given by 𝑉𝑛: = (𝑣1 ⊗

⊗𝑗=1
𝑛−1 𝐼) ∘ (𝑣2 ⊗⊗𝑗=1

𝑛−2 𝐼) ∘ · · · ∘ 𝑣𝑛. 

Proof. For simplicity, we prove the case 𝑛 = 1, the case 𝑛 > 1 can be proved by iterating 

the procedure. For any 𝜂 ∈ ℋ ⊗ℂ2
⌈𝑝/2⌉

⊗ ℓ
2
(𝐺0)⊗ ℓ

2
(𝐺1/𝐺0) ≅ ℓ

2
(𝐺0 × (𝐺1/

𝐺0);ℋ ⊗ ℂ2
⌈𝑝/2⌉

), we get, for 𝑚 ∈ 𝐺0, 𝑗 ∈ 𝐺1/𝐺0, 

(𝑉1𝐷1𝑉1
∗𝜂)(𝑚, 𝑗) = (𝐷1𝑉1

∗𝜂)(𝑚 + 𝑠(𝑗)) 

= (𝐷 ⊗ 𝜀1
(𝑝+1)

)(𝑉1
∗𝜂)(𝑚 + 𝑠(𝑗)) + (𝐼 ⊗ ℓ1(𝑚 + 𝑠(𝑗)))(𝑉1

∗𝜂)(𝑚 + 𝑠(𝑗)) 

= (𝐷⊗ 𝜀1
(𝑝+1)

)(𝜂(𝑚, 𝑗)) + (𝐼 ⊗ ℓ1(𝑚 + 𝑠(𝑗)))(𝜂(𝑚, 𝑗)) 

= (𝐷⊗ 𝜀1
(𝑝+1)

+ 𝐼 ⊗ ℓ1(𝑚))(𝜂(𝑚, 𝑗)) + (𝐼 ⊗ ℓ1(𝑠(𝑗)))(𝜂(𝑚, 𝑗)) 
= (𝐷0𝜂)(𝑚, 𝑗) + (𝐶1𝜂)(𝑚, 𝑗), 

where (𝐶1𝜂)(𝑚, 𝑗): = (𝐼 ⊗ ℓ1(𝑠(𝑗)))(𝜂(𝑚, 𝑗)) belongs to 𝐼 ⊗ ℬ(ℂ2
⌈𝑝/2⌉

⊗ ℓ
2
(𝐺0 × 𝐺1/

𝐺0)). We stress that (𝐶1𝜂)(𝑚, 𝑗) dos not depend on m because ℓ1 is a linear map.  
For any 𝑛 ∈ ℕ0 and 𝑥 ∈ ℒ𝑛, set 𝐿𝐷𝑛(𝑥):=  ‖[𝐷𝑛, 𝑥]‖. An immediate consequence of the 

previous result is that, under a suitable assumption, these seminorms are compatible. 

Corollary (5.3.30)[221]: Suppose that 

‖[𝐷0, 𝐴𝑑(𝑈𝑔)(𝑥)]‖ = ‖[𝐷0, 𝑥]‖       ∀𝑥 ∈ ∪𝑛 ℒ𝑛 , ∀𝑔 ∈ ∪𝑛 𝐺𝑛. 

Then for any positive integer m, we have that 

𝐿𝐷𝑚+1
(𝑥) = 𝐿𝐷𝑚(𝑥)    ∀𝑥 ∈ ℒ𝑚. 

Proof. We give the proof for 𝑚 = 0. As the elements in 𝒜1 may be seen as matrices with 

entries in 𝒜0 acting on ℓ
2
(𝐺1/𝐺0;ℋ0).𝒜0 itself is then embedded in 𝒜1 as diagonal 

matrices, the matrix 𝑀(𝑥) associated with 𝑥 ∈ 𝒜0 being 𝑀(𝑥)𝑘𝑘 = (𝜎(𝑘)∗𝑥𝜎(𝑘))𝑘𝑘 =
(𝑈−𝑠(𝑘)𝑥𝑈𝑠(𝑘))𝑘𝑘 = (𝜌−𝑠(𝑘)(𝑥))𝑘𝑘, where the action 𝜌 has been naturally extended to 𝒜0. 

𝐷0 ⊗ 𝐼 may as well be identified with the diagonal matrix (𝐷0 ⊗ 𝐼)𝑘𝑘 = 𝐷0, therefore their 

commutator is the diagonal matrix ([𝐷0, 𝜌−𝑠(𝑘)(𝑥)])𝑘𝑘. As for the commutator with the 

second term of �̂�1, let us describe the Hilbert space as ℓ
2
(𝐺1/𝐺0; (ℋ ⊗ ℓ

2
(𝐺0))  ⊗ ℂ2

⌈𝑝/2⌉
). 

Then both 𝑥 and 𝐶1 act as diagonal matrices, whose entries 𝑗𝑗 are 𝜌−𝑠(𝑗)(𝑥) ⊗ 𝐼 for the first 

operator and 𝐼 ⊗ ℓ1(𝑠(𝑗)) for the second, showing that the corresponding commutator 

vanishes. The thesis now follows by the assumption. 

We describe the Dirac operator on 𝒜∞. 

Theorem (5.3.31)[221]: Assume 𝐵 is purely expanding, set ℋ0: = ℋ⊗ℂ2
⌈𝑝/2⌉

⊗

ℓ
2
(𝐺0), ℒ = ∪𝑛 ℒ𝑛,ℳ = ℬ(ℋ0)⊗ ℛ, and define the Dirac operator �̂�∞ as follows: 

�̂�∞: = 𝐷0 ⊗ 𝐼𝑈𝐻𝐹 + 𝐶, 
where 𝐶 = lim𝐶𝑛 ,   𝐶𝑛 = 𝐶𝑛

∗ ∈ ℬ(ℋ0)  ⊗ 𝑈𝐻𝐹(𝑟∞). Then (ℒ,ℳ,ℋ0 ⊗𝐿2(ℛ, 𝜏), �̂�∞) is 

a finitely summable, semifinite, spectral triple, with the same Hausdorff dimension of 

(ℒ0,ℋ0, 𝐷0) (which we denote by 𝑑). Moreover, the Dixmier trace 𝜏𝜔of (�̂�∞
2 + 1)−𝑑/2 

coincides with that of (𝐷0
2 + 1)−𝑑/2 (hence does not depend on the generalized limit 𝜔) and 

may be written as: 
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𝜏𝜔((�̂�∞
2 + 1)−𝑑/2) = lim

𝑡→∞

1

log 𝑡
∫ (𝜇(𝐷02+1)−1/2  (𝑠))

𝑑
𝑑𝑠

𝑡

0

. 

Proof. The Dirac operator �̂�∞ is of the form 𝐷0 ⊗ 𝐼 + 𝐶. First of all, we prove that 

�̂�∞ ∈̂ ℬ(ℋ0) ⊗ ℛ by showing that 𝐶 ∈ ℬ(ℋ0) ⊗ ℛ. This claim and the formula follow 

from what has already been proved and the following argument.  

Since we posed 𝑠𝑛(𝑘) ∈ 𝐴𝑛−1[0, 1)𝑝, by using the properties of the Clifford algebra and the 

linearity of ℓ𝑛, we get 

‖ℓ𝑛 (∑(𝑠ℎ(𝑗ℎ))

𝑛

ℎ=1

)‖ = ‖∑ ℓ𝑛(𝑠ℎ(𝑗ℎ))

𝑛

ℎ=1

‖ = ‖∑𝑠ℎ(𝑗ℎ)

𝑛

ℎ=1

‖ 

≤ ∑‖𝑠ℎ(𝑗ℎ))‖

𝑛

ℎ=1

≤ √𝑝∑‖𝐴ℎ−1‖

𝑛

ℎ=1

, 

so that 

‖𝐶𝑛‖ = ‖ℓ𝑛 (∑(𝑠ℎ(𝑗ℎ))

𝑛

ℎ=1

)‖ ≤ √𝑝∑‖𝐴ℎ−1‖

𝑛

ℎ=1

. 

As �̂�∞ = 𝐷0 ⊗ 𝐼 + 𝐶, we get, by Proposition (5.3.14) and the estimate above, that 𝐶 is 

bounded and belongs to ℬ(ℋ0) ⊗ 𝑈𝐻𝐹(𝑟∞), while 𝐷0 ∈̂ ℬ(ℋ0). 
Moreover, by construction, ℒ is a dense ∗-subalgebra of the 𝐶∗-algebra 𝒜∞ ⊂ ℳ. 

The thesis follows from Theorem (5.3.16) and the above results. 
We want to consider the 𝐶∗-algebra 𝑈𝐻𝐹(𝑟∞). This algebra is defined as the 

inductive limit of the following sequence of finite dimensional matrix algebras: 

𝑀0 = 𝑀𝑟(ℂ) 
𝑀𝑛 = 𝑀𝑛−1 ⊗𝑀𝑟(ℂ)        𝑛 ≥ 1, 

with maps 𝜙𝑖𝑗: 𝑀𝑗 → 𝑀𝑖 given by 𝜙𝑖𝑗  (𝑎𝑖) = 𝑎𝑖 ⊗1. We denote by 𝒜 the 𝑈𝐻𝐹(𝑟∞) 𝐶∗-

algebra and set 𝑀−1 = ℂ1𝒜 in the inductive limit defining the above algebra. The 𝐶∗-
algebra 𝒜 has a unique normalized trace that we denote by 𝜏. 

Now we follow [233]. Consider the projection 𝑃𝑛: 𝐿
2(𝒜, 𝜏) →  𝐿2(𝑀𝑛, 𝑇𝑟), where 

𝑇𝑟: 𝑀𝑟(ℂ) → 𝑀𝑟(ℂ) is the normalized trace, and define 

𝑄𝑛 = 𝑃𝑛 − 𝑃𝑛−1, 𝑛 ≥ 0, 
𝐸(𝑥) = 𝜏(𝑥)1𝒜  . 

Lemma (5.3.32)[221]: The projection 𝑄𝑛: 𝐿
2(𝒜, 𝜏) → 𝐿2(𝑀𝑛, 𝜏) ⊖ 𝐿2(𝑀𝑛−1, 𝑇𝑟) (𝑛 ≥ 0) 

is given by 

𝑄𝑛(𝑥0 ⊗ · · · ⊗ 𝑥𝑛 ⊗ · · · )  = 𝑥0 ⊗· · · ⊗ 𝑥𝑛−1 ⊗ [𝑥𝑛 − 𝑇𝑟(𝑥𝑛)1𝑀𝑑(ℂ)]𝜏(𝑥𝑛+1 ⊗ · · · ), 

where 𝑇𝑟: 𝑀𝑟(ℂ) → ℂ is the normalized trace. 

Proof. The proof follows from direct computations. 

For any 𝑠 > 1, Christensen and Ivan ([233]) defined the following spectral triple for the 

algebra 𝑈𝐻𝐹(𝑟∞) ≝ 𝒜 

(ℒ, 𝐿2(𝒜, 𝜏), 𝐷0 =∑𝑟𝑛𝑠𝑄𝑛
𝑛≥0

) 

where ℒ is the algebra consisting of the elements of 𝒜 with bounded commutator with 𝐷0. 

It was proved that for any such value of the parameter 𝑠, this spectral triple induces a metric 

which defines a topology equivalent to the weak*-topology on the state space ([233]). 
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Introduce the endomorphism of 𝒜 given by the right shift, 𝛼(𝑥) = 1⊗ 𝑥. Then, according 

to [238], we may consider the inductive limit 𝒜∞ =
lim 
→ 𝒜𝑛 with 𝒜𝑛 = 𝒜 as described in 

(𝑖). We have the following isomorphic inductive family: 𝒜𝑖 is defined as 

𝒜0 = 𝒜, 
𝒜𝑛 = 𝑀𝑟(ℂ)

⊗𝑛 ⊗𝒜0, 

𝒜∞ =
lim 
→ 𝒜𝑖 

and the embedding is the inclusion. 

We want to stress that this case cannot be described within the framework considered. In 

fact, it would be necessary to exhibit a finite abelian group that acts trivially on 1𝑀𝑟(ℂ) ⊗

⊗𝑖=1
∞ 𝑀𝑟(ℂ) and that has no fixed elements in 𝑀𝑟(ℂ)⊗ 1⊗𝑡=1

∞ 𝑀𝑟(ℂ)
. However, since all the 

automorphisms of 𝑀𝑟(ℂ) are inner, there cannot be any such group. 

Each algebra 𝒜𝑝 has a natural Dirac operator (the one considered earlier) 

(ℒ𝑝, 𝐻 = 𝐿2(𝒜𝑝, 𝜏), 𝐷𝑝 = ∑ 𝑟𝑛𝑠𝑄𝑛
𝑛≥−𝑝

), 

where ℒ𝑝 is the algebra formed of the elements of 𝒜𝑝 with bounded commutator. 

We are going to describe the Dirac operator on the first covering.  
Lemma (5.3.33)[221]: Let 𝜉1 ⊗𝜉∞ ∈ 𝐿2(𝒜, 𝜏), 𝜉1 ∈ 𝑀𝑟(ℂ), we have that 

𝑄𝑛(𝜉1 ⊗𝜉∞) = {
(1⊗ 𝑄𝑛−1)(𝜉1 ⊗𝜉∞) 𝑖𝑓 𝑛 > 0
(𝐹 ⊗ 𝑄𝑛−1)(𝜉1 ⊗𝜉∞) 𝑖𝑓 𝑛 = 0,

 

where 𝐹: 𝑀𝑟(ℂ) → 𝑀𝑟(ℂ)
∘ is defined by 𝐹(𝑥) = 𝑥 − 𝑡𝑟(𝑥), and 𝑀𝑟(ℂ)

∘ are the matrices 

with trace 0. 

Proposition (5.3.34)[221]: The following relation holds: 

𝐷1 = 𝑟−𝑠𝐹 ⊗ 𝐸 + 𝐼 ⊗ 𝐷0. 
Proof. Let 𝑒𝑖𝑗 ⊗𝑥 ∈ 𝒟(𝐷1) ⊂ 𝐿2(𝒜1, 𝜏). We have that 

𝐷1(𝑒𝑖𝑗 ⊗𝑥) = ∑ 𝑟𝑛𝑠𝑄𝑛(𝑒𝑖𝑗 ⊗𝑥)

𝑛≥−1

= 

= 𝑟−𝑠𝐹𝑒𝑖𝑗 ⊗𝐸𝑥 +∑𝑟𝑛𝑠𝑒𝑖𝑗
𝑛≥0

⊗ (𝑄𝑛𝑥) = 

= [𝑟−𝑠𝐹 ⊗ 𝐸 + 𝐼 ⊗𝐷0](𝑒𝑖𝑗 ⊗𝑥). 

The thesis follows by linearity. 

The spectral triple on 𝒜𝑛 and the inductive limit spectral triple. 

We will consider the Dirac operators on 𝒜𝑛 and 𝒜∞. 

Theorem (5.3.35)[221]: The Dirac operator 𝐷𝑛 has the following form 

𝐷𝑛 = 𝐼⊗𝑛 ⊗𝐷0 +∑𝑟−𝑠𝑘𝐼𝑟
𝑛−𝑘

𝑛

𝑘=1

⊗𝐹⊗𝐸.                     (50) 

Proof. Let 𝑥 ∈ 𝒟(𝐷𝑛) ⊂ 𝐿2(𝒜𝑛, 𝜏). We have that 

𝐷𝑛𝑥 =∑𝑟(𝑘−𝑛)𝑠𝑄𝑘𝑥

𝑘≥0

=∑𝑟(𝑘−𝑛)𝑠

𝑘≥0

(𝐼⊗𝑘 ⊗𝐹⊗𝐸)𝑥 

= ∑𝑟(𝑘−𝑛)𝑠
𝑛−1

𝑘=0

(𝐼⊗𝑘 ⊗𝐹⊗𝐸)𝑥 +∑𝑟(𝑘−𝑛)𝑠

𝑘≥𝑛

(𝐼⊗𝑘 ⊗𝐹⊗𝐸)𝑥 
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= ∑𝑟−𝑠ℎ
𝑛

ℎ=1

(𝐼⊗𝑘 ⊗𝐹⊗𝐸)𝑥 + (𝐼⊗𝑛 ⊗𝐷0)𝑥. 

Corollary (5.3.36)[221]: The Dirac operator 𝐷∞ has the following form 

𝐷∞ = 𝐼−∞,−1 ⊗𝐷0 +∑𝑟−𝑠ℎ
∞

𝑘=1

𝐼−∞,−𝑘−1 ⊗𝐹⊗𝐸,                         (51) 

where 𝐼−∞,𝑘 is the identity on the factors with indices in [−∞, 𝑘].  

Theorem (5.3.37)[221]: Set ℒ = ∪𝑛 ℒ𝑛,ℳ = ℛ⊗ℬ(𝐿2(𝒜9, 𝜏)). Then the triple 

(ℒ,ℳ, 𝐿2(ℛ, 𝜏) ⊗ 𝐿2(𝒜9, 𝜏), 𝐷∞) is a finitely summable, semifinite, spectral triple, with 

Hausdorff dimension 
2

𝑠
 . Moreover, the Dixmier trace 𝜏𝜔 of (𝐷∞

2 + 1)−1/𝑠 coincides with 

that of (𝐷0
2 +  1)−1/𝑠 (hence does not depend on 𝜔) and may be written as: 

𝜏𝜔((𝐷∞
2 + 1)−1/𝑠) = lim

𝑡→∞

1

log 𝑡
∫ (𝜇(𝐷02+1)−1/2(𝑠))

2
𝑠
𝑑𝑠

1

0

. 

Proof. By construction, ℒ is a dense ∗-subalgebra of the 𝐶∗-algebra 𝒜∞ ⊂ ℳ. Since 𝐷∞ =
𝐼−∞,−1 ⊗𝐷0 + 𝐶, where 𝐶 ∈ ℛ ⊗ 𝐼,𝐷∞ is affiliated to ℳ. 

The thesis follows from Theorem (5.3.21) and what we have seen above. 

First of all, we recall some definitions. Let (ℒ, 𝐻, 𝐷) be a spectral triple over a unital 

𝐶∗-algebra 𝒜. Then we can define the following pseudometric on the state space 

𝜌𝐷(𝜙, 𝜓) = 𝑠𝑢𝑝{|𝜙(𝑥) − 𝜓(𝑥)|: 𝑥 ∈ 𝒜, 𝐿𝐷(𝑥) ≤ 1}, 𝜙, 𝜓 ∈ 𝑆(𝒜), 
where 𝐿𝐷(𝑥) is the seminorm ‖[𝐷, 𝑥]‖. 

We have the following result proved by Rieffel. 

Theorem (5.3.38)[221]: ([86]) The pseudo-metric 𝜌𝐷 induces a topology equivalent to the 

weak*-topology if and only if the ball 

𝐵𝐿𝐷: = {𝑥 ∈ 𝒜: 𝐿𝐷(𝑥) ≤ 1}. 

is totally bounded in the quotient space 𝒜/ℂ1 

If the above condition is satisfied, the seminorm 𝐿𝐷 is said a Lip-norm on 𝒜. 

In our examples we determined a semifinite spectral triple on 𝒜∞. Our aim is to prove that 

the seminorm 𝐿�̃�∞, restricted to 𝒜𝑛, is a Lip-norm equivalent to 𝐿𝐷𝑛 , for any 𝑛, while it is 

not a Lip-norm on the whole inductive limit 𝐴∞. Therefore, the pair (𝒜∞, 𝐿�̂�∞) is not a 

quantum compact metric space, whilst 𝒜∞ is topologically compact (i.e. it is a unital 𝐶∗-
algebra). 

Theorem (5.3.39)[221]: Consider the Dirac operators �̂�∞ determined. Then the sequence 

of the normic radii of the balls 𝐵𝐿𝐷𝑛  diverges. In particular, the seminorm 𝐿�̂�∞ on the 

inductive limit is not Lipschitz. 

Proof. Our aim is to show that 𝐵𝐿�̂�∞
 is unbounded. Actually, we will exhibit a sequence in 

𝐵𝐿�̂�∞
 with constant seminorm and diverging quotient norm, which means that it is an 

unbounded set in 
lim 
→ 𝒜𝑘/ℂ. 

In the first place we consider the cases of the commutative and noncommutative torus. The 

noncommutative rational torus has centre isomorphic to the algebra of continuous functions 

on the torus. Thus, it is enough to exhibit a sequence only in the case of the torus. 

Consider the following sequence 

𝑥𝑘 = 𝑒2𝜋𝑖(𝐴𝑘𝑒1, 𝑡) 
where 𝐴:= (𝐵𝑇)−1. 
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Each 𝑥𝑘 ∈ 𝐶(𝕋𝑘) ⊂ 𝑙𝑖𝑚𝑖𝐶(𝕋𝑖). We have that 

[𝐷𝑘 , 𝑥𝑘] =∑𝜀𝑎[𝜕𝑎 , 𝑥𝑘]

𝑎

≤∑[𝜕𝑎, 𝑥𝑘]

𝑎

 

=∑𝜕𝑎(𝑥𝑘)

𝑎

=∑2𝜋𝑖(𝐴𝑘𝑒1, 𝑒𝑎)𝑥𝑘
𝑎

 

≤ 2𝑝𝜋‖𝐴𝑘𝑒1‖ ≤ 2𝑝𝜋‖𝐴𝑘‖ → 0 
where we used Proposition (5.3.14). 

Consider the sequence 𝑦𝑘: = 𝑥𝑘/‖[𝐷𝑘, 𝑥𝑘]‖. This sequence has constant seminorm 𝐿�̂�∞ ≡

𝐿𝐷𝑘  . Since each element 𝑥𝑘 has spectrum 𝕋, then the quotient norm of 𝑥𝑘 is equal to ‖𝑥𝑘‖ 

and thus the sequence {𝑦𝑘} is unbounded. 

We now consider the case of the crossed products. With the same notations as above, 

consider the following sequence 

𝑥𝑘 = 𝑈𝐴𝑘𝑒1  

Each 𝑥𝑘 ∈ 𝒜𝑘 ⊂
lim 
→ 𝒜𝑖. We have that 

‖[𝐷𝑘, 𝑥𝑘]‖ = ‖[𝑀ℓ𝑘 , 𝑈𝐴𝑘𝑒1]‖ ≤ 𝑠𝑢𝑝𝑔|ℓ𝑘(𝑔) − ℓ𝑘(𝑔 − 𝐴𝑘𝑒1)| ≤ ‖𝐴𝑘𝑒1‖  ≤ ‖𝐴𝑘‖ → 0. 

Since 𝑠𝑝(𝑥𝑘) = 𝕋, again the sequence 𝑦𝑘: = 𝑥𝑘/‖[𝐷𝑘, 𝑥𝑘]‖ has constant seminorm 𝐿�̂�∞ ≡

 𝐿𝐷𝑘  and increasing quotient norm. 

Finally we take care of the UHF-algebra. Consider any matrix 𝑏 ∈ (𝑀𝑟(ℂ) \ℂ𝐼) ⊂
 𝑈𝐻𝐹(𝑟∞). We define the following sequence 

𝑥𝑛 = 𝐼[−∞,−𝑛−1] ⊗𝑏⊗ 𝐼[−𝑛+1,+∞], 

where with the above symbol we mean that the matrix 𝑏 is in the position – 𝑛 inside an 

infinite bilateral product where each factor is labelled by an integer. 

𝐴 quick computation shows that 

[𝑄𝑘 , 𝑥𝑛] = {

0                                                                                                                𝑖𝑓 𝑘 > −𝑛
𝑖𝑑−∞,𝑘−1 ⊗ (𝑏𝑇𝑟(·) − 𝑇𝑟(𝑏 ·))⊗ 𝜏                                                 𝑖𝑓 𝑘 = −𝑛

𝑖𝑑−∞,𝑘−1 ⊗𝐹⊗ (⊗𝑖=𝑘+1
−𝑛−1 𝑇𝑟(·)) ⊗ (𝑇𝑟(𝑏 ·) − 𝑏𝑇𝑟(·))⊗ 𝜏 𝑖𝑓 𝑘 < −𝑛.

 

This means that [𝐷∞, 𝑥𝑛] = ∑ 𝑟𝑘𝑠[𝑄𝑘, 𝑥𝑛]𝑘≤−𝑛 . 

We observe that each 𝑥𝑛 has non-zero seminorm. In fact, 

‖[𝐷∞, 𝑥𝑛]‖ = 𝑠𝑢𝑝‖𝜉‖=1 ‖[𝐷∞, 𝑥𝑛]𝜉‖ 

≥ ‖[𝐷∞, 𝑥𝑛]𝑥𝑛
∗‖ 

= 𝑟−𝑛𝑠‖𝑇𝑟(𝑏𝑏∗) − 𝑏𝑇𝑟(𝑏∗)‖ > 0  
where in the last line we used that [𝑄𝑘 , 𝑥𝑛]𝑥𝑛

∗ = 0 for all 𝑘 ≠ −𝑛. Moreover, we have that 

‖[𝐷∞, 𝑥𝑛]‖ ≤ 2‖𝑏‖(∑ 𝑟𝑘𝑠

𝑘≤−𝑛

) = 2‖𝑏‖
𝑟𝑠−𝑛𝑠

1 − 𝑟𝑠
 

which tends to zero as 𝑛 goes to infinity. 

The sequence 𝑦𝑘: = 𝑥𝑘/‖[𝐷∞, 𝑥𝑘]‖ has bounded seminorm 𝐿�̂�∞  and increasing quotient 

norm. 

We end this proof with an explanation of the second part of the statement of this Theorem. 

First of all, we observe that if the sequence of the normic radii of the balls 𝐵𝐿𝐷𝑛  diverges, 

then 𝐵𝐿�̂�∞
 contains an unbounded subset with unbounded quotient norm. Therefore, since a 

compact subset is bounded, the ball 𝐵𝐿�̂�∞
 cannot be compact. 
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In ([200]) Latremoliere and Packer studied the metric structure of noncommutative 

solenoids, namely of the inductive limits of quantum tori. In particular, they considered 

noncommutative tori as quantum compact metric spaces and proved that their inductive 

limits, seen as quantum compact metric spaces, are also limits in the sense of Gromov-

Hausdorff propinquity (hence quantum Gromov-Hausdorff) of the inductive families. In our 

setting the inductive limit of the quantum tori is no longer a quantum compact metric space. 

The different result is a consequence of the different metric structure considered. 

Latremoliere and Packer described the inductive limit as a twisted group 𝐶∗-algebra on 

which there is an ergodic action of 𝐺∞ ∶=
lim 
← 𝕋, and according to Rieffel ([86]) a continuous 

length function on 𝐺∞ gives rise to a Lip-seminorm. In our setting the seminorm may also 

be described in the same way, however the corresponding length function is unbounded, 

thus not continuous. We give an explicit description of this situation in a particular example. 

Example (5.3.40)[221]: Consider the two-dimensional rational rotation algebra 𝐴𝜃, with 

𝜃 = 1/3. With the former notation, set 

𝐵 = (
2 0
0 2

) , 

and define the morphism 𝛼: 𝐴𝜃 → 𝐴𝜃 by 𝛼(𝑈) = 𝑈2, 𝛼(𝑉 ) = 𝑉2. Now we may consider 

the inductive limit 
lim 
→ ℬ𝑛 where ℬ𝑛 = 𝐴𝜃 (see (0.1)). We observe that this case also fits in 

the setting of Latremoliere and Packer (see [200]). Then, there exists a length function that 

induces the seminorm 𝐿�̂�∞. 

Proof. Consider the standard length function on the circle 𝑙(𝑒2𝜋𝑖𝑡):= |𝑡| for 𝑡 ∈
(−1/2, 1/2]. There is an induced length function on 𝕋2, namely ℓ0(𝓏1, 𝓏2) ∶=
𝑚𝑎𝑥{𝑙(𝓏1), 𝑙(𝓏2)}. We define the following length function ℓ(𝑔):=  𝑠𝑢𝑝𝑛 2

𝑛ℓ0(𝑔𝑛) on the 

direct product ∏𝕋2, thus by restriction also on the projective limit 𝐺∞: =
lim 
← 𝕋 (with respect 

to the projection 𝜋 ≡ 𝛼∗: 𝕋2 → 𝕋2, 𝜋((𝓏1, 𝓏2)) = (2𝓏1, 2𝓏2)). For any 𝜙 ∈ ℝ2 we define 

the following action on 𝐴𝜃: �̃�𝜙(𝑓)(𝑡) ∶= 𝑓(𝑡 + 3𝜙). Since 𝜃 = 1/3, �̃� is the identity on 𝐴𝜃 

when 𝜙 ∈ ℤ2, hence there is an induced action of 𝕋2 = ℝ2/ℤ2 on 𝐴𝜃. We denote this action 

with 𝜌. There is a naturally induced action 𝜌∞ of the group  ∏ 𝕋2∞
𝑖=0  on ∏ 𝐴𝜃

∞
𝑖=0  given by 

𝜌𝑔
∞(𝑓0, 𝑓1, . . . ):= (𝜌𝑔0(𝑓0), 𝜌𝑔1(𝑓1), . . . ) for any 𝑔 ∈ ∏ 𝕋2∞

𝑖=0  and any (𝑓0, 𝑓1, . . . ) ∈

∏ 𝐴𝜃
∞
𝑖=0 . We now check that the restriction of this action to 𝐺∞ gives rise to an action on 

lim 
→ 𝐴𝜃. It is enough to prove the claim on the algebraic inductive limit alg−

lim 
→ 𝐴𝜃. Let 

(𝑓0, 𝑓1, . . . ) ∈ 𝑎𝑙𝑔 −
lim 
→ 𝐴𝜃. By definition there exists 𝑛 ∈ ℕ such that 𝑓𝑛+𝑖 = 𝛼𝑖(𝑓𝑛) for all 

𝑖 ∈ ℕ. For any 𝑔 ∈ 𝐺∞, we have that 

𝜌𝑔𝑛+𝑖(𝑓𝑛+𝑖) = 𝜌𝑔𝑛+𝑖(𝛼
𝑖(𝑓𝑛)) = 𝛼𝑖(𝜌𝜋𝑛(𝑔𝑛+𝑖)(𝑓𝑛)) = 𝛼𝑖(𝜌𝑔𝑛(𝑓𝑛)). 

For any 𝑔 ∈ 𝐺∞ and any 𝑋 ∈
lim 
→ 𝐴𝜃 we define the following seminorm 

𝐿𝜌∞,ℓ (𝑋):= 𝑠𝑢𝑝𝑔∈𝐺∞
‖𝜌𝑔

∞(𝑋) − 𝑋‖

ℓ(𝑔)
. 

Any element 𝑓𝑛 ∈ ℬ𝑛 embeds into 
lim 
→ 𝐴𝜃 as 𝑋 = (0,… ,0⏟  

𝑛

, 𝑓𝑛, 𝛼(𝑓𝑛), 𝛼
2(𝑓𝑛) . . . ). 

We have that 

𝐿𝜌∞,ℓ(𝑋) = 𝑠𝑢𝑝𝑔∈𝐺∞
‖𝜌𝑔

∞(𝑋) − 𝑋‖

ℓ(𝑔)
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= 𝑠𝑢𝑝𝑔∈𝐺∞ lim
𝑖
sup

‖𝛼𝑖(𝑓𝑛)(𝓏 + 3𝑔𝑛+𝑖) − 𝛼𝑖(𝑓)(𝓏)‖

ℓ(𝑔)
  

= 𝑠𝑢𝑝𝑔∈𝐺∞
𝑓𝑛(𝓏 + 3𝑔𝑛) − 𝑓𝑛(𝓏)

ℓ0(𝑔𝑛)

ℓ0(𝑔𝑛)

ℓ(𝑔)
 

= (𝑠𝑢𝑝𝑔𝑛
‖𝑓𝑛(𝓏 + 3𝑔𝑛) − 𝑓𝑛(𝓏)‖

ℓ0(𝑔𝑛)
) (𝑠𝑢𝑝𝑔∈𝐺∞

ℓ0(𝑔𝑛)

ℓ(𝑔)
) 

=
𝐿0(𝑓)

2𝑛
, 

where the last two equalities hold because, for any 𝑔𝑛 ∈ 𝕋2, we may find a sequence 𝑔 =
{𝑔𝑖} such that ℓ(𝑔) = 2𝑛ℓ0(𝑔𝑛) (if 𝑔𝑛 = 𝑒2𝜋𝑖𝑡 for 𝑡 ∈  (−1/2, 1/2] consider 𝑔𝑛+𝑘 =

𝑒2𝜋𝑖𝑡/2
𝑘
) and 𝐿0 is the Lipschitz seminorm 𝑠𝑢𝑝ℎ∈𝕋2

‖𝑓(𝑧+ℎ)−𝑓(𝑧)‖

ℓ0(ℎ)
 , which is equivalent to 

𝐿𝐷0 (see [86]). Denote by 𝜑𝑛: ℬ𝑛  = 𝐴𝜃 → 𝒜𝑛 the natural isomorphism given by 

𝜑𝑛(𝑊(𝑚, 𝑡)):= 𝑒2𝜋𝑖𝜃(2
−𝑛𝑚,𝑡)𝑊0(2

𝑛𝑚) (cf. (43)) and consider the following seminorm on 

ℬ𝑛: 𝐿𝑛(𝑥) ∶= 𝐿𝐷(𝜑𝑛(𝑥)) = ‖[𝐷𝑛, 𝜑𝑛(𝑥)]‖. Since the seminorm 𝐿𝐷 is expressed in terms of 

the norm of some linear combinations of the two derivatives, one has that 𝐿𝑛(𝑥) =
2−𝑛𝐿0(𝑥). Therefore, the former computation leads to 𝐿𝜌∞,ℓ = 𝐿𝑛, when restricted to ℬ𝑛. 

Let (ℳ, 𝜏) be a von Neumann algebra with a f.n.s. trace, 𝑇 ∈̂ ℳ a self-adjoint 

operator. We use the notation 𝑒𝑇(Ω) for the spectral projection of 𝑇 relative to the 

measurable set Ω ⊂ ℝ, and 𝜆𝑇(𝑡): = 𝜏(𝑒|𝑇|[𝑡, +∞)), 𝜇𝑇(𝑡):= inf {𝑠: 𝜆𝑇(𝑠) ≤ 𝑡}, for a 𝜏-

compact operator 𝑇. 

Lemma (5.3.41)[221]: Let (ℳ, 𝜏) be a von Neumann algebra with a f.n.s. trace, 𝑇 ∈̂ ℳ a 

self-adjoint operator, such that Λ𝑇(𝑠):= 𝜏(𝑒𝑇(−𝑠, 𝑠)) <∞ for any 𝑠 > 0. Then 

(i)  Λ𝑇(𝑠) = sup {𝜏(𝑒): ‖𝑇𝑒‖ < 𝑠, 𝑒 ∈ 𝑃𝑟𝑜𝑗(ℳ)}, 𝑠 > 0, 
(ii) if 𝐶 ∈ ℳ𝑠𝑎, and 𝑐:= ‖𝐶‖, then 𝜏(𝑒𝑇 + 𝐶(−𝑠, 𝑠)) <∞ for any 𝑠 ≥ 0, and Λ𝑇+𝐶(𝑠) ≤
Λ𝑇(𝑠 + 𝑐), 
(iii) if 𝑒𝑇({0}) = 0, 𝑇−1 is 𝜏-compact and Λ𝑇(𝑠) = 𝜆|𝑇|−1(𝑠

−1), 𝑠 > 0. 

Proof. (i) Indeed, 

𝑎:= 𝜏(𝑒𝑇(−𝑠, 𝑠)) = sup {𝜏(𝑒𝑇(−𝜎, 𝜎)): 0 ≤ 𝜎 < 𝑠} ≤ sup {𝜏(𝑒): ‖𝑇𝑒‖ < 𝑠}. 
Assume, by contradiction, there is 𝑒 ∈ 𝑃𝑟𝑜𝑗(ℳ) such that 𝜏(𝑒) > 𝑎 and ‖𝑇𝑒‖ < 𝑠. For 𝜉 ∈
𝑒ℋ ∩ 𝑒|𝑇|[𝑠,∞)ℋ, ‖𝜉‖ = 1, we have (𝜉, 𝑇∗𝑇𝜉) < 𝑠2 and (𝜉, 𝑇∗𝑇𝜉) ≤  𝑠2, namely 𝑒 ∧

𝑒|𝑇|[𝑠,∞) = {0}. As a consequence, 

𝑒|𝑇|[𝑠,∞) = 𝑒|𝑇|[𝑠,∞) − 𝑒 ∧ 𝑒|𝑇|[𝑠,∞) ∼ 𝑒 ∨ 𝑒|𝑇|[𝑠,∞) − 𝑒 ≤ 𝐼 − 𝑒 

where ∼ stands for Murray - von Neumann equivalence. Passing to the orthogonal 

complements we get 𝑎 = 𝜏(𝑒𝑇(−𝑠, 𝑠)) ≥ 𝜏(𝑒) > 𝑎, which is absurd. 

(ii) Set Ω𝑇,𝑠 = {𝑒 ∈ 𝑃𝑟𝑜𝑗(ℳ): ‖𝑇𝑒‖ < 𝑠}; since ‖𝑇𝑒‖ ≤ ‖(𝑇 + 𝐶)𝑒‖ + 𝑐, we have that 

Ω𝑇+𝐶,𝑠 ⊆ Ω𝑇,𝑠+𝑐, . The thesis follows from (i). 

(iii) 𝐴 straightforward computation shows that 𝑒|𝑇|−1(𝑠, +∞) = 𝑒𝑇(−1/𝑠, 1/𝑠). Therefore 

𝑇−1 is 𝜏-compact [239] and the equality follows. 

Lemma (5.3.42)[221]: Let (ℳ, 𝜏) be a von Neumann algebra with a f.n.s. trace, 𝑇 ∈̂ ℳ a 

positive self-adjoint operator 𝑇, with 𝜏-compact resolvent, 𝑑, 𝑡 > 0. Then, the following are 

equivalent 

(i) exists 𝑟𝑒𝑠𝑠=𝑑  𝜏(𝑇
−𝑠𝑒𝑇[𝑡, +∞)) = 𝛼 ∈ ℝ, 

(ii) exists 𝑟𝑒𝑠𝑠=𝑑  𝜏((𝑇
2 + 1)−𝑠/2) = 𝛼 ∈ ℝ. 

Proof. Let us first observe that 
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𝜏(𝑇−𝑠𝑒𝑇[𝑡, +∞)) = ∫ 𝜆−𝑠𝑑𝜏(𝑒𝑇(0, 𝜆))
∞

𝑡

,                              (52) 

𝜏 ((𝑇2 + 1)−
𝑠
2) = ∫ (𝜆2 + 1)−

𝑠
2𝑑𝜏(𝑒𝑇(0, 𝜆))

∞

0

,                      (53) 

and 

(𝑡2 + 1)−𝑠/2 ≤ (𝜆2 + 1)−
𝑠
2 ≤ 1, ∀𝜆 ∈ [0, 𝑡], 

𝑡𝑠(1 + 𝑡2)−𝑠/2𝜆−𝑠 ≤ (𝜆2 + 1)−
𝑠
2 ≤ 𝜆−𝑠, ∀𝜆 ∈ [𝑡, +∞),  

therefore the finiteness of any of the two residues in the statement implies the finiteness of 

the two integrals (52), (53) above for any 𝑠 > 𝑑. Then, 

|𝜏(𝑇−𝑠𝑒𝑇[𝑡, +∞)) − 𝜏((𝑇2 + 1)−𝑠/2)|  

= |∫ 𝜆−𝑠𝑑𝜏(𝑒𝑇(0, 𝜆))
∞

𝑡

−∫ (𝜆2 + 1)−𝑠/2𝑑𝜏(𝑒𝑇(0, 𝜆))
∞

0

| 

≤ ∫ (𝜆2 + 1)−
𝑠
2𝑑𝜏(𝑒𝑇(0, 𝜆))

𝑡

0

+
𝑠

2
∫ 𝜆−𝑠−2𝑑𝜏(𝑒𝑇(0, 𝜆))
∞

𝑡

, 

where the inequality follows by 

𝜆−𝑠 − (𝜆2 + 1)−𝑠/2 = 𝜆−𝑠[1 − (1 +
1

𝜆2
 )−𝑠/2] ≤

𝑠

2
𝜆−𝑠−2, 

which, in turn, follows by 

𝑔(𝑥) = 1 − (1 + 𝑥)−𝑠/2 ≤ 𝑠𝑢𝑝𝜉∈[0,𝑥]𝑔’(𝜉)𝑥 =
𝑠

2
𝑥, 𝑓𝑜𝑟 𝑥 ≥ 0 

Finally, taking the limit for 𝑠 → 𝑑+, we get 

lim
𝑠→𝑑+

|𝜏(𝑇−𝑠𝑒𝑇[𝑡, +∞)) − 𝜏((𝑇2 + 1)−𝑠/2)| ≤ 𝜏(𝑒𝑇(0, 𝑡)) +
𝑑

2
∫ 𝜆−(𝑑+2)𝑑𝜏(𝑒𝑇(0, 𝜆))
∞

𝑡

<∞, 
where the last integral is (52) with 𝑠 = 𝑑 + 2, hence is finite, and we have proven the thesis. 

Lemma (5.3.43)[221]: Let (ℳ, 𝜏) be a von Neumann algebra with a f.s.n. trace, 𝑇 a self-

adjoint operator affiliated with M with bounded compact inverse, 𝐶 ∈ ℳ𝑠𝑎 such that 𝑇 + 𝐶 

has bounded inverse. Then, the following are equivalent 

(i) exists 𝑟𝑒𝑠𝑠=𝑑  𝜏(|𝑇 |
−𝑠) = 𝛼 ∈ ℝ, 

(ii) exists 𝑟𝑒𝑠𝑠=𝑑𝜏(|𝑇 + 𝐶|−𝑠) = 𝛼 ∈ ℝ. 

Proof. It is enough to prove that (𝑖) ⟹ (𝑖𝑖). Set 𝑐:= ‖𝐶‖. From Lemma A.1, we get 

Λ𝑇+𝐶(𝑠) ≤ Λ𝑇(𝑠 + 𝑐) for every 𝑠 > 0, hence 𝜆|𝑇+𝐶|−1(𝑠) ≤ 𝜆|𝑇|−1 (
𝑠

1+𝑐𝑠
). 

Then, for 0 < 𝜗 < 1, 

𝜇|𝑇+𝐶|−1(𝑡) = inf {𝑠 ≥ 0: 𝜆|𝑇+𝐶|−1(𝑠) ≤ 𝑡} 

≤ inf {𝑠 ≥ 0: 𝜆|𝑇|−1 (
𝑠

1 + 𝑐𝑠
) ≤ 𝑡} 

= inf {
ℎ

1 − 𝑐ℎ
≥ 0: 𝜆|𝑇|−1(ℎ) ≤ 𝑡} 

= inf {
ℎ

1 − 𝑐ℎ
: 0 ≤ ℎ < 𝑐−1, 𝜆|𝑇|−1(ℎ) ≤ 𝑡} 

≤ inf {
ℎ

1 − 𝑐ℎ
: 0 ≤ ℎ ≤ 𝜗𝑐−1, 𝜆|𝑇|−1(ℎ) ≤ 𝑡} 

≤ (1 − 𝜗)−1inf {ℎ ∶ 0 ≤ ℎ ≤ 𝜗𝑐−1, 𝜆|𝑇|−1(ℎ) ≤ 𝑡} 
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= {
(1 − 𝜗)−1 inf{ℎ ≥ 0: 𝜆|𝑇|−1(ℎ) ≤ 𝑡} , 𝑖𝑓 𝜆|𝑇|−1(𝑐

−1𝜗) ≤ 𝑡,

+∞,                                                                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
 

= {
(1 −  𝜗)−1𝜇|𝑇|−1(𝑡), 𝑖𝑓 𝜆|𝑇|−1(𝑐

−1𝜗) ≤ 𝑡,

+∞,                                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

As a consequence, 

𝜏(|𝑇 + 𝐶|−𝑠) = ∫ 𝜇|𝑇+𝐶|−1(𝑡)
𝑠𝑑𝑡

∞

0

 

≤ ∫ 𝜇|𝑇+𝐶|−1(𝑡)
𝑠𝑑𝑡

𝜆|𝑇|−1(𝑐
−1𝜗)

0

+∫ (1 − 𝜗)−𝑠𝜇|𝑇|−1(𝑡)
𝑠𝑑𝑡

+∞

𝜆|𝑇|−1(𝑐
−1𝜗)

 

= ∫ (𝜇|𝑇+𝐶|−1(𝑡)
𝑠

𝜆|𝑇|−1(𝑐
−1𝜗)

0

− (1 − 𝜗)−𝑠𝜇|𝑇|−1(𝑡)
𝑠)𝑑𝑡 + (1 −  𝜗)−1𝜏(|𝑇 |−𝑠) 

≤ (‖(𝑇 + 𝐶)−1‖𝑠 + (1 − 𝜗)−𝑠‖𝑇−1‖𝑠)𝜆𝑇−1(𝑐
−1𝜗) + (1 − 𝜗)−𝑠𝜏(|𝑇|−𝑠) <∞. 

Passing to the residues, we get lim 𝑠𝑢𝑝𝑠→𝑑+(𝑠 − 𝑑)𝜏(|𝑇 + 𝐶|−𝑠) ≤ (1 −
𝜗)−𝑑𝑟𝑒𝑠𝑠=𝑑𝜏(|𝑇|

−𝑠), hence, by the arbitrariness of 𝜗, 𝑙𝑖𝑚 𝑠𝑢𝑝𝑠→𝑑+(𝑠 − 𝑝)𝜏(|𝑇 + 𝐶|−𝑠) ≤
𝑟𝑒𝑠𝑠=𝑑𝜏(|𝑇|

−𝑠). 
Exchanging 𝑇 with 𝑇 + 𝐶 we get 𝑟𝑒𝑠𝑠=𝑑𝜏(|𝑇|

−𝑠) ≤ 𝑙𝑖𝑚 𝑠𝑢𝑝𝑠→𝑑+(𝑠 − 𝑝)𝜏(|𝑇 + 𝐶|−𝑠), 
hence the thesis. 

Proposition (5.3.44)[221]: Let (ℳ, 𝜏) be a von Neumann algebra with a f.n.s. trace, 𝑇 a 

self-adjoint operator affiliated with ℳ with compact resolvent, 𝐶 ∈ ℳ𝑠𝑎. 

Then, the following are equivalent 

(i) exists 𝑟𝑒𝑠𝑠=𝑑𝜏((𝑇
2 + 1)−𝑠/2) = 𝛼 ∈ ℝ, 

(ii) exists 𝑟𝑒𝑠𝑠=𝑑𝜏((𝑇 + 𝐶)2 + 1)−𝑠/2) = 𝛼 ∈ ℝ. 

In particular, the abscissas of convergence coincide. 

Proof. By Lemma (5.3.42), the thesis may be rewritten as 

∃ 𝑟𝑒𝑠𝑠=𝑑𝜏 (|𝑇|
−𝑠𝑒|𝑇|[𝑡, +∞)) = 𝛼 ∈ ℝ ⟺ ∃ 𝑟𝑒𝑠𝑠=𝑑𝜏 (|𝑇 + 𝐶|−𝑠𝑒|𝑇+𝐶|[𝑡, +∞)) = 𝛼.   

Since the operator 

𝐶’:= (𝑇 +  𝐶)𝑒|𝑇+𝐶|[𝑡, +∞) − 𝑇𝑒|𝑇|[𝑡, +∞) 

= (𝑇 + 𝐶)𝑒|𝑇+𝐶|[0,+∞) − 𝑇𝑒|𝑇|[0,+∞) − (𝑇 + 𝐶)𝑒|𝑇+𝐶|[0, 𝑡) + 𝑇𝑒|𝑇|[0, 𝑡) 

= 𝐶 − (𝑇 + 𝐶)𝑒|𝑇+𝐶|[0, 𝑡) + 𝑇𝑒|𝑇|[0, 𝑡) 

is bounded and self-adjoint, we may apply Lemma (5.3.43) to the operators (𝑇 +
𝐶)𝑒|𝑇+𝐶|[𝑡, +∞) and 𝑇𝑒|𝑇|[𝑡, +∞), proving the Proposition.   
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Chapter 6 

Continuous Derivations and Derivations with Values 

 

 We study the set of all derivations from 𝐼 into 𝐽. We show that any such derivation is 

automatically continuous and there exists an operator 𝑎 ∈  𝐽 ∶  𝐼 such that 𝛿(·) =  [𝑎,·], 
moreover ‖𝑎 +  𝛼𝟙 ‖𝐵(𝐻) ≤ ‖𝛿‖𝐼→𝐽 ≤  2𝐶‖𝑎‖𝐽:𝐼 for some complex number 𝛼, where 𝐶 is 

the modulus of concavity of the quasi-norm ‖·‖𝐽 and 𝟙 is the identity operator on 𝐻. In the 

special case, when 𝐼 =  𝐽 =  𝐾(𝐻) is a symmetric Banach ideal of compact operators on H 

our result yields the classical fact that any derivation 𝛿 on 𝐾(𝐻) may be written as 𝛿(·)  =
 [𝑎,·], where a is some bounded operator on H and ‖𝑎‖𝐵(𝐻) ≤ ‖𝛿‖𝐼→𝐼  ≤ 2‖𝑎‖𝐵(𝐻). We 

show that every derivation on 𝐿𝑆(𝑀) is inner provided that 𝑀 is a properly infinite von 

Neumann algebra. Furthermore, any derivation on an arbitrary von Neumann algebra 𝑀 

with values in a Banach 𝑀-bimodule of locally measurable operators is inner. In the case 

when 𝑀 is a semifinite non-finite factor, we show that our assumptions on 𝐸(0,∞) are 

sharp. 

Section (6.1): Symmetric Quasi-Banach Ideals of Compact Operators 

For 𝐼 , 𝐽 be ideals of compact operators on an infinite-dimensional complex Hilbert 

space H. Obviously, 𝐽 is an 𝐼-module and we can consider the set Der(𝐼, 𝐽) of all 

derivations δ ∶  𝐼 → 𝐽. Consider two closely related questions (here, ℬ(H) is the set of all 

bounded linear operators on H): 

Question (6.1.1)[251]: Let 𝐼 ∈ Der(𝐼, 𝐽). Does there exist a bounded operator 𝑎 ∈
 ℬ(H) such that 𝛿(𝑥) = [𝑎, 𝑥] for every x ∈ 𝐼? 

Question (6.1.2)[251]: What is the set D(𝐼, 𝐽) = {𝑎 ∈ ℬ(H): [𝑎, 𝑥] ∈ 𝐽, ∀𝑥 ∈ 𝐼}? 

The second question was completely answered by Hoffman in [252], who also coined the 

term 𝐽-essential commutant of 𝐼 for the set 𝐷(𝐼, 𝐽). We completely answer the first question 

in the setting when the ideals 𝐼, 𝐽 are symmetric quasi-Banach. In this setting, it is also 

natural to ask. 

Question (6.1.3)[251]: Let 𝛿 ∈  𝐷𝑒𝑟(𝐼, 𝐽). Is it continuous? 

Of course, if 𝛿 ∈ 𝐷𝑒𝑟(𝐼, 𝐽) is such that 𝛿(𝑥) = [𝑎, 𝑥] for some 𝑎 ∈ ℬ(𝐻) (that is when 𝛿 is 

implemented by the operator 𝑎), then 𝛿 is a continuous mapping from (𝐼, ∥∙∥𝐼) to (𝐽, ∥∙∥𝐽), 
that is a positive answer to Question (6.1.1) implies also a positive answer to Question 

(6.1.3). However, we are establishing a positive answer to Question (6.1.1) via firstly 

answering Question (6.1.3) in positive. Both these results (Theorems (6.1.12) and (6.1.13)). 

We also provide a detailed discussion of the 𝐽-essential commutant of 𝐼. 
It is also instructive to outline a connection between Questions (6.1.1) and (6.1.3) with some 

classical results. It is well known [29] that every derivation on a 𝐶∗-algebra is norm 

continuous. In fact, this also easily follows from the following  well-known fact [29] that 

every derivation on a 𝐶∗-algebra 𝑀 ⊂ ℬ(𝐻) is given by a reduction of an inner derivation 

on a von Neumann algebra �̅�𝑤𝑜 (the weak closure of 𝑀 in the 𝐶∗-algebra ℬ(𝐻)). The latter 

result [29], in the setting when 𝑀 is a 𝐶∗-algebra 𝐾(𝐻) of all compact operators on 𝐻 states 

that for every derivation 𝛿 on 𝑀 there exists an operator 𝑎 ∈ ℬ(𝐻) such that 𝛿(𝑥) = [𝑎, 𝑥] 
for every 𝑥 ∈ 𝐾(𝐻), in addition, ∥ 𝑎 ∥ℬ(𝐻)≤ ∥ 𝛿 ∥𝑀→𝑀. The ideal 𝐾(𝐻) equipped with the 

uniform norm is an element from the class of so-called symmetric Banach operator ideals 

in ℬ(𝐻) and evidently this example also suggests the statements of Questions (6.1.1) and 

(6.1.3). In the case of Schatten ideals 𝐶𝑝(𝐻) = {𝑥 ∈ 𝐾(𝐻) ∶ ∥ 𝑥 ∥𝑝 = 𝑡𝑟(|𝑥|𝑝)
1

𝑝  <∞}, 



205 

where |𝑥| = (𝑥∗𝑥)
1

2, 1 ≤ 𝑝 <∞, somewhat similar problems concerning derivations from 

𝐶𝑝(𝐻) into 𝐶𝑟(𝐻) were also considered in the work by Kissin and Shulman [253]. In 

particular, it is shown in [253] that every closed ∗-derivation 𝛿 from 𝐶𝑝(𝐻) into 𝐶𝑟(𝐻) is 

implemented by a symmetric operator 𝑆, in addition the domain 𝐷(𝛿) of 𝛿 is dense ∗-

subalgebra in 𝐶𝑝(𝐻). In our case, we have 𝐷(𝛿) = 𝐶𝑝 and it follows from our results that 

the derivation 𝛿 is necessarily continuous and implemented by an operator 𝑎 ∈ ℬ(𝐻). 
It is also worth to mention that Hoffman’s results in [252] were an extension of earlier results 

by Calkin [254] who considered the case when 𝐼 = ℬ(𝐻). Recently, Calkin’s and 

Hoffman’s results were extended to the setting of general von Neumann algebras in [5,6] 

and, in the special setting when 𝐼 =  𝐽, Questions (6.1.1) and (6.1.3) were also discussed in 

[257]. However, our methods are quite different from all the approaches applied in [252], 

[253], [254], [255], [256]. 

As a corollary of solving Questions (6.1.1) and (6.1.3), in Theorem (6.1.17) we present a 

description of all derivations 𝛿 acting from a symmetric quasi-Banach ideal 𝐼 into a 

symmetric quasi-Banach ideal 𝐽. Indeed, every such derivation 𝛿 is an inner derivation 

𝛿(∙) = 𝛿𝑎(∙) = [𝑎,∙], where a is some operator from 𝐽-dual space 𝐽 ∶  𝐼 of 𝐼. Recall that 

𝐷(𝐼, 𝐽) = 𝐽 ∶  𝐼 + ℂ1[252], where 1 is the identity operator in ℬ(𝐻). Theorem (6.1.17) gives 

a complete answer to Question (6.1.2). In particular, using the equality 𝐶𝑟: 𝐶𝑝 = 𝐶𝑞 , 0 <

𝑟 < 𝑝 <∞,
1

𝑞
=

1

𝑟
−

1

𝑝
, we recover Hoffman’s result that any derivation 𝛿: 𝐶𝑝 → 𝐶𝑟 has a 

form 𝛿 = 𝛿𝑎 for some 𝑎 ∈ 𝐶𝑞. If 0 < 𝑝 ≤ 𝑟 <∞, then 𝐷(𝐶𝑝, 𝐶𝑟) = ℬ(𝐻). 

When 𝐼, 𝐽 are arbitrary symmetric quasi-Banach ideals of compact operators and 𝐼 ⊆ 𝐽, then 

𝐽: 𝐼 = ℬ(𝐻), and, in this case, a linear operator 𝛿: 𝐼 → 𝐽 is a derivation if and only if 𝛿 = 𝛿𝑎 

for some 𝑎 ∈ ℬ(𝐻). However, if 𝐼 ⊈ 𝐽, then to obtain a complete description of 𝐽-essential 

commutant of 𝐼 we need a procedure of finding 𝐽: 𝐼. 
We use the classical Calkin’s correspondence between two-sided ideals 𝐼 of compact 

operators and rearrangement invariant solid sequence subspaces 𝐸𝐼 of the space 𝑐0 of null 

sequences. The meaning of this correspondence is the following. Take a compact operator 

𝑥 ∈ 𝐼 and consider a sequence of eigenvalues {𝜆𝑛(𝑥)}𝑛=1
∞ ∈ 𝑐0. For each sequence 𝜉 =

{𝜉𝑛} ∈ 𝑐0, let 𝜉∗ = {𝜉𝑛
∗}𝑛=1
∞  denote a decreasing rearrangement of the sequence |𝜉 | =

{|𝜉𝑛|}𝑛=1
∞ . The set 

𝐸𝐼: = {{𝜉𝑛}𝑛=1
∞ ∈ 𝑐0: {𝜉𝑛

∗}𝑛=1
∗ = {𝜆𝑛

∗  (|𝑥|)}𝑛=1
∞  for some 𝑥 ∈ 𝐼}, 

is a solid linear subspace in the Banach lattice 𝑐0. In addition, the space 𝐸𝐼 is rearrangement 

invariant, that is if 𝜂 ∈ 𝑐0, 𝜉 ∈ 𝐸𝐼 , 𝜂 ∗ = 𝜉∗, then 𝜂 ∈ 𝐸𝐼. Conversely, if 𝐸 is a rearrangement 

invariant solid sequence subspace in 𝑐0, then 

𝐶𝐸 = {𝑥 ∈ 𝐾(𝐻): {𝜆𝑛(|𝑥|)}𝑛=1
∞ ∈ 𝐸} 

is a two-sided ideal of compact operators from ℬ(𝐻). 
For the proof of the following theorem see Calkin’s original, [254], and to Simon’s book, 

[258]. 

Theorem (6.1.4)[251]: The correspondence 𝐼 ↔ 𝐸𝐼 is a bijection between rearrangement 

invariant solid spaces in 𝑐0 and two-sided ideals of compact operators. 

In [111] this correspondence has been extended to symmetric quasi-Banach (Banach) 

ideals and 𝑝-convex symmetric quasi-Banach (Banach) sequence spaces. We use the 

notation ∥∙∥ℬ(𝐻) and ∥∙∥∞ to denote the uniform norm on ℬ(𝐻) and on 𝑙∞ respectively. 
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Recall, that a two-sided ideal 𝐼 of compact operators from 𝐵(𝐻) is said to be symmetric 

quasi-Banach (Banach) ideal if it is equipped with a complete quasi-norm (respectively, 

norm) ∥∙∥𝐼 such that 

∥ 𝑎𝑥𝑏 ∥𝐼≤∥ 𝑎 ∥ℬ(𝐻)∥ 𝑥 ∥𝐼∥ 𝑏 ∥ℬ(𝐻), 𝑥 ∈ 𝐼, 𝑎, 𝑏 ∈ ℬ(𝐻). 

A symmetric quasi-Banach (Banach) sequence space 𝐸 ⊂ 𝑐0 is a rearrangement invariant 

solid sequence space equipped with a complete quasi-norm (respectively, norm) ∥∙∥𝐸 such 

that ∥ 𝜂 ∥𝐸  ≤ ∥ 𝜉 ∥𝐸 for every 𝜉 ∈ 𝐸 and 𝜂 ∈ 𝑐0 such that 𝜂∗ ≤ 𝜉∗. 
It is clear that if (𝐼, ∥∙∥𝐼) is a symmetric quasi-Banach ideal of compact operators, 𝑥 ∈ 𝐼 and 

𝑦 ∈ 𝐾(𝐻) is such that {𝜆𝑛
∗  (|𝑦|)}𝑛=1

∞ ≤ {𝜆𝑛
∗ (|𝑥|)}𝑛=1

∞ , then 𝑦 ∈ 𝐼 and ∥ 𝑦 ∥𝐼 ≤ ∥ 𝑥 ∥𝐼. In 

Theorem (6.1.22) we show that if 𝐸𝐼 is a rearrangement invariant solid space in 𝑐0 

corresponding to symmetric quasi-Banach ideal 𝐼, then setting ∥ 𝜉 ∥𝐸𝐼: = ∥ 𝑥 ∥𝐼 (where 𝑥 ∈

𝐼 is such that 𝜉∗  = {𝜆𝑛
∗  (|𝑥|)}𝑛=1

∞ ) we obtain that (𝐸𝐼 , ∥∙∥𝐸𝐼  ) is a symmetric quasi-Banach 

sequence space. The converse implication is much harder [111]. 

Theorem (6.1.5)[251]: If (𝐸, ∥∙∥𝐸  ) is a symmetric Banach (respectively, 𝑝-convex 

symmetric quasi-Banach) sequence space in 𝑐0, then 𝐶𝐸 equipped with the norm 

∥ 𝑥 ∥𝐶𝐸: = ∥ {𝜆𝑛
∗ (|𝑥|)}𝑛=1

∞ ∥𝐸  

is 𝑎 symmetric Banach (respectively, 𝑝-convex quasi-Banach) ideal of compact operators 

from ℬ(𝐻). 
In [259] it was shown that for 𝐽 = 𝐶1 is the trace class and an arbitrary two-sided ideal 

𝐼 with 𝐶1 ⊂ 𝐼 ⊂ 𝐾(𝐻) the 𝐶1-dual space (also sometimes called the Köthe dual) 𝐼×: = 𝐶1 ∶
𝐼 of 𝐼 is precisely an ideal corresponding to symmetric sequence space 𝑙1 : 𝐸𝐼, where 𝑙1: 𝐸𝐼 
is 𝑙1-dual space of 𝐸𝐼. If 𝐼 is a symmetric Banach ideal of compact operators, then 𝐶1-dual 

space 𝐼× is symmetric Banach ideal of compact operator and norms on 𝐶1: 𝐼 and 𝐶𝑙1:𝐸𝐼are 

equal [17]. We extend these results to arbitrary symmetric quasi-Banach ideals 𝐼, 𝐽 of 

compact operators with 𝐼 ⊈  𝐽, that allows to describe completely all derivations from one 

symmetric quasi-Banach ideal to another. In addition, we use the technique of 𝐽-dual spaces 

in order to obtain the estimation ∥ 𝛿𝑎 ∥𝐼→𝐽≤ 2 ∥ 𝑎 ∥𝐽:𝐼 for an arbitrary derivation 𝛿 =

𝛿𝑎: 𝐼 → 𝐽, 𝑎 ∈ 𝐽: 𝐼. 
Let 𝐻 be an infinite-dimensional Hilbert space over the field ℂ of complex numbers 

and ℬ(𝐻) be the 𝐶∗-algebra of all bounded linear operators on 𝐻. Set 

ℬℎ(𝐻) = {𝑥 ∈ ℬ(𝐻): 𝑥∗ = 𝑥}, 
ℬ+(𝐻) = {𝑥 ∈ ℬℎ(𝐻): ∀𝜑 ∈ 𝐻 (𝑥(𝜑), 𝜑) ≥ 0}, 

𝒫(𝐻) = {𝑝 ∈ ℬ(𝐻): 𝑝 = 𝑝2 = 𝑝∗}. 
It is well known [23] that 𝐵+(𝐻) is a proper cone in ℬℎ(𝐻) and with the partial order given 

by 𝑥 ≤ 𝑦 ⇔ 𝑦 − 𝑥 ∈ ℬ+(𝐻) the set ℬℎ(𝐻) is a partially ordered vector space over the field 

ℝ of real numbers, satisfying 𝑦∗𝑥𝑦 ≥ 0 for all 𝑦 ∈ ℬ(𝐻), 𝑥 ∈ ℬ+(𝐻). Note, that 

−∥ 𝑥 ∥ℬ(𝐻) 1 ≤ 𝑥 ≤∥ 𝑥 ∥ℬ(𝐻) 1 for all 𝑥 ∈ ℬℎ(𝐻), where 1 is the identity operator on 𝐻. It 

is known (see e.g. [23]) that every operator 𝑥 in ℬℎ(𝐻) can be uniquely written as follows: 

𝑥 = 𝑥+ − 𝑥−, where 𝑥+, 𝑥−  ∈ ℬ+(𝐻) and 𝑥+𝑥− = 0. In addition, every operator 𝑥 ∈ ℬ(𝐻) 
can be represented as 𝑥 = 𝑢|𝑥| (the polar decomposition of the operator 𝑥), where |𝑥| =

(𝑥∗𝑥)
1

2 and 𝑢 is a partial isometry in ℬ(𝐻) such that 𝑢∗𝑢 is the right support of 𝑥 [116]. 

We need the following. 

Proposition (6.1.6)[251]: ([113]). If 𝑥, 𝑦 ∈ ℬ+(𝐻), 𝑥 ≤ 𝑦, then there exists an operator 𝑎 ∈
ℬ(𝐻) such that ∥ 𝑎 ∥ℬ(𝐻)≤ 1 and 𝑥 = 𝑎∗𝑦𝑎. 
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Let 𝐾(𝐻) be a two-sided ideal in ℬ(𝐻) of all compact operators and 𝑥 ∈ 𝐾(𝐻). The 

eigenvalues {𝜆𝑛(|𝑥|)}𝑛=1
∞  of the operator |𝑥| arranged in decreasing order and repeated 

according to algebraic multiplicity are called singular values of the operator 𝑥, i.e. 𝑠𝑛(𝑥) =
𝜆𝑛(|𝑥|), 𝑛 ∈ ℕ, where 𝜆1(|𝑥|) ≥  𝜆2(|𝑥|) ≥ ⋯ and ℕ is the set of all natural numbers. We 

need the following properties of singular values. 

Proposition (6.1.7)[251]: ([260]). 

(a) 𝑠𝑛(𝑥) = 𝑠𝑛(𝑥
∗), 𝑠𝑛(𝛼𝑥) = |𝛼|𝑠𝑛(𝑥) for all 𝑥 ∈ 𝐾(𝐻), 𝛼 ∈ ℂ; 

(b) 𝑠𝑛(𝑥𝑏) ≤ 𝑠𝑛(𝑥) ∥ 𝑏 ∥ℬ(𝐻), 𝑠𝑛(𝑏𝑥) ≤ 𝑠𝑛(𝑥) ∥ 𝑏 ∥ℬ(𝐻)for all 𝑥 ∈ 𝐾(𝐻), 𝑏 ∈ ℬ(𝐻). 

Let ℱ(𝐻) be a two-sided ideal in ℬ(𝐻) of all operators with finite range and let I be an 

arbitrary proper two-sided ideal in ℬ(𝐻). Then 𝐼 is a ∗-ideal [23] and the following inclusion 

holds: ℱ(𝐻) ⊆ 𝐼 [23], in particular, I contains all finite-dimensional projections from 𝒫(𝐻). 
If 𝐻 is a separable Hilbert space, then the inclusion 𝐼 ⊆ 𝐾(𝐻) also holds [254]. If, however, 

𝐻 is not separable, then for proper two-sided ideals in ℬ(𝐻) we have the following 

proposition. 

Proposition (6.1.8)[251]: ([259]). 

(i) 𝐷 = {𝑥 ∈ ℬ(𝐻): 𝑥(𝐻) is separable} is a proper two-sided ideal in ℬ(𝐻), in addition 

𝐾(𝐻) ⊂ 𝒟; 

(ii) If 𝐼 is an ideal in ℬ(𝐻), then either 𝐼 ⊆ 𝐾(𝐻) or 𝒟 ⊆ 𝐼. 
Let 𝑋 be a linear space over the field ℂ. 𝐴 function ∥∙∥ from 𝑋 to ℝ is a quasi-norm, if for 

all 𝑥, 𝑦 ∈ 𝑋, 𝛼 ∈ ℂ the following properties hold: 

(a) ∥ 𝑥 ∥≥ 0, ∥ 𝑥 ∥ = 0 ⇔ 𝑥 = 0; 

(b) ∥ 𝛼𝑥 ∥ = |𝛼| ∥ 𝑥 ∥; 

(c) ∥ 𝑥 + 𝑦 ∥≤  𝐶(∥ 𝑥 ∥ +∥ 𝑦 ∥), 𝐶 ≥ 1. 

The couple (𝑋, ∥∙∥) is called a quasi-normed space and the least of all constants 𝐶 

satisfying the inequality (c) above is called the modulus of concavity of the quasi-norm      ∥
∙∥. 

It is known (see [137]) that for each quasi-norm ∥∙∥ on 𝑋 there exists an equivalent 𝑝-

additive quasinorm ||| ∙ |||, that is a quasi-norm ||| ∙ ||| on 𝑋 satisfying the following 

property of 𝑝-additivity: |||𝑥 + 𝑦|||𝑝 ≤ |||𝑥|||𝑝 + |||𝑦|||𝑝, where 𝑝 is such that 𝐶 = 2
1

𝑝
−1

, 

in particular, 0 < 𝑝 ≤ 1 since 𝐶 ≥  1. In this case, the function 𝑑: 𝑋2 → ℝ defined by 

𝑑(𝑥, 𝑦):= |||𝑥 − 𝑦|||𝑝, 𝑥, 𝑦 ∈ 𝑋 is an invariant metric on 𝑋, and in the topology 𝜏𝑑, 

generated by the metric 𝑑, the linear space 𝑋 is a topological vector space. If (𝑋, 𝑑) is a 

complete metric space, then (𝑋, ∥∙∥) is called a quasi-Banach space and the quasi-norm ∥∙∥ 

is a complete quasi-norm; in this case, (𝑋, 𝜏𝑑) is an 𝐹 -space.  

Proposition (6.1.9)[251]: Let (𝑋, ∥∙∥) be a quasi-Banach space with the modulus of 

concavity 𝐶, let ||| ∙ ||| be a 𝑝-additive quasi-norm equivalent to the quasi-norm ∥∙∥, 𝐶 =

2
1

𝑝
−1
 . If 𝑥𝑛 ∈ 𝑋, 𝑛 ≥ 1 and  ∑ |||𝑥𝑛|||

𝑝∞
𝑛=1 <∞, then the series ∑ 𝑥𝑛

∞
𝑛=1  converges in (𝑋, ∥

∙∥), i.e. there exists 𝑥 ∈ 𝑋 such that ‖𝑥 − ∑ 𝑥𝑛
𝑘
𝑛=1 ‖ → 0 for 𝑘 →∞. 

Proof. For partial sums 𝑆𝑘 = ∑ 𝑥𝑛
𝑘
𝑛=1  we have 

𝑑(𝑆𝑘+𝑙 , 𝑆𝑘) = |||𝑆𝑘+𝑙 − 𝑆𝑘|||
𝑝 = ||| ∑ 𝑥𝑛

𝑘+𝑙
𝑛=𝑙+1 |||𝑝  ≤ ∑ ‖𝑥𝑛‖

𝑝𝑘+𝑙
𝑛=𝑙+1 → 0 for 𝑘, 𝑙 →∞, 

i.e. {𝑆𝑘}𝑘=1
∞  is a Cauchy sequence in (𝑋, 𝑑). Since the metric space (𝑋, 𝑑) is complete, there 

exists 𝑥 ∈ 𝑋 such that 𝑑(𝑆𝑘, 𝑥) = |||𝑆𝑘 − 𝑥|||𝑝 → 0 for 𝑘 →∞. Since quasi-norms ∥∙∥ and 

||| ∙ ||| are equivalent we have that ∥ 𝑆𝑘 − 𝑥 ∥→ 0 for 𝑘 →∞. 

Let (𝑋, ∥∙∥𝑋), (𝑌, ∥∙∥𝑌) be quasi-normed spaces and let ℬ(𝑋, 𝑌) be the linear space of all 

bounded linear mappings 𝑇: 𝑋 → 𝑌. For each 𝑇 ∈ ℬ(𝑋, 𝑌) set ∥ 𝑇 ∥ℬ(𝑋,𝑌)=  𝑠𝑢𝑝{∥ 𝑇𝑥 ∥𝑌∶
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 ∥ 𝑥 ∥≤ 1}. As in the case of normed spaces, the set ℬ(𝑋, 𝑌) coincides with the set of all 

continuous linear mappings from 𝑋 into 𝑌, moreover, the function ∥∙∥ℬ(𝑋,𝑌)∶ ℬ(𝑋, 𝑌) → ℝ is 

a quasi-norm on ℬ(𝑋, 𝑌) whose modulus of concavity, does not exceed the modulus of 

concavity of the quasi-norm ∥∙∥𝑌 [137]. Furthermore, ∥ 𝑇𝑥 ∥𝑌≤∥ 𝑇 ∥ℬ(𝑋,𝑌)∥ 𝑥 ∥𝑋 for all 𝑇 ∈

ℬ(𝑋, 𝑌) and 𝑥 ∈ 𝑋. 

Proposition (6.1.10)[251]: If (𝑌, ∥∙∥𝑌 ) is a quasi-Banach space, then (ℬ(𝑋, 𝑌), ∥∙∥ℬ(𝑋,𝑌) is 

a quasi-Banach space too. 

Proof. Since ∥∙∥𝑌 is a quasi-norm on 𝑌, there exists a p-additive quasi-norm ||| ∙ |||𝑌 

equivalent to ∥∙∥𝑌 , i.e. 𝛼1|||𝑦|||𝑌  ≤∥ 𝑦 ∥𝑌≤ 𝛽1|||𝑦|||𝑌 for all 𝑦 ∈ 𝑌 and some constants 

𝛼1, 𝛽1 > 0. Similarly, there exists a q-additive quasi-norm ||| ∙ |||ℬ(𝑋,𝑌) equivalent to the 

quasi-norm ∥∙∥ℬ(𝑋,𝑌), i.e. 𝛼2|||𝑇 |||ℬ(𝑋,𝑌) ≤∥ 𝑇 ∥ℬ(𝑋,𝑌)≤ 𝛽2|||𝑇 |||ℬ(𝑋,𝑌) for all 𝑇 ∈ ℬ(𝑋, 𝑌) 

and some 𝛼2, 𝛽2 > 0, 0 < 𝑝, 𝑞 ≤ 1. 

Let {𝑇𝑛}𝑛=1
∞  be a Cauchy sequence in (ℬ(𝑋, 𝑌), 𝑑), where 𝑑(𝑇 , 𝑆) = |||𝑇 −

𝑆|||ℬ(𝑋,𝑌)
𝑞

, 𝑇 , 𝑆 ∈ ℬ(𝑋, 𝑌). Fix 𝜀 > 0 and select a positive integer 𝑛(𝜀) such that 

|||𝑇𝑛 − 𝑇𝑚|||ℬ(𝑋,𝑌)
𝑞

< 𝜀𝑞 for all 𝑛,𝑚 > 𝑛(𝜀). For every 𝑥 ∈ 𝑋 we have 

|||𝑇𝑛𝑥 − 𝑇𝑚𝑥|||𝑌
𝑝
≤

1

𝛼1
𝑝 ∥ 𝑇𝑛𝑥 − 𝑇𝑚𝑥 ∥𝑌

𝑝
≤

1

𝛼1
𝑝 ∥ 𝑇𝑛 − 𝑇𝑚 ∥ℬ(𝑋,𝑌)

𝑝
∥ 𝑥 ∥𝑋

𝑝
 

≤ (
𝛽2
𝛼1 

)
𝑝

|||𝑇𝑛 − 𝑇𝑚|||
ℬ(𝑋,𝑌)

𝑝
∥ 𝑥 ∥𝑋

𝑝
 < (

𝛽2
𝛼1
)
𝑝

∥ 𝑥 ∥𝑋
𝑝
𝜀𝑝 𝑓𝑜𝑟 𝑛,𝑚 ≥ 𝑛(𝜀). 

Thus, {𝑇𝑛𝑥}𝑛=1
∞  is a Cauchy sequence in (𝑌, 𝑑𝑌), where 𝑑𝑌(𝑥, 𝑦) = |||𝑥 − 𝑦|||𝑌

𝑝
 . Since the 

metric space (𝑌, 𝑑𝑌) is complete, there exists 𝑇(𝑥) ∈ 𝑌 such that |||𝑇𝑛(𝑥) − 𝑇(𝑥)|||𝑌
𝑝
→ 0 

for 𝑛 →∞. The verification that 𝑇 ∈ ℬ(𝑋, 𝑌) and |||𝑇𝑛 − 𝑇|||ℬ(𝑋,𝑌)
𝑞

→ 0 for 𝑛 →∞ is 

routine and is therefore omitted. 

Let 𝐼 be a nonzero two-sided ideal in ℬ(𝐻). 
A quasi-norm ∥∙∥𝐼∶ 𝐼 → ℝ is called symmetric quasi-norm if 

(a) ∥ 𝑎𝑥𝑏 ∥𝐼≤∥ 𝑎 ∥ℬ(𝐻)∥ 𝑥 ∥𝐼∥ 𝑏 ∥ℬ(𝐻) for all 𝑥 ∈ 𝐼, 𝑎, 𝑏 ∈ ℬ(𝐻); 

(b) ∥ 𝑝 ∥𝐼 = 1 for any one-dimensional projection 𝑝 ∈ 𝐼. 
Proposition (6.1.11)[251]: (Compare [260]). Let ∥∙∥𝐼 be a symmetric quasi-norm on a two-

sided ideal 𝐼. Then 

(a) ∥ 𝑥 ∥𝐼= ∥ 𝑥
∗ ∥𝐼= |𝑥|𝐼 for all 𝑥 ∈ 𝐼; 

(b) If 𝑥 ∈ 𝐼 ⊂ 𝐾(𝐻), 𝑦 ∈ 𝐾(𝐻), 𝑠𝑛(𝑦) ≤ 𝑠𝑛(𝑥), 𝑛 =  1, 2, . .. , then 𝑦 ∈ 𝐼 and ∥ 𝑦 ∥𝐼≤
∥ 𝑥 ∥𝐼; 
(c) If 𝐼 ⊂ 𝐾(𝐻), then ∥ 𝑥 ∥ℬ(𝐻)≤∥ 𝑥 ∥𝐼 for all 𝑥 ∈ 𝐼. 

Proof. (a) Let 𝑥 = 𝑢|𝑥| be the polar decomposition of the operator 𝑥. Then ∥ 𝑥 ∥𝐼=
 ∥ 𝑢|𝑥| ∥𝐼≤ |𝑥|𝐼. Since 𝑢∗𝑥 = |𝑥|, the Inequality |𝑥|𝐼 ≤∥ 𝑥 ∥𝐼 holds and so |𝑥|𝐼 = ∥ 𝑥 ∥𝐼. 
Using the equalities 𝑥∗ = |𝑥|𝑢∗, 𝑥∗𝑢 = |𝑥| in the same manner, we obtain that |𝑥|𝐼 =
 ∥ 𝑥∗ ∥𝐼. 
(b) Since 𝑥, 𝑦 are compact operators and 𝑠𝑛(𝑦) ≤  𝑠𝑛(𝑥) we have 𝑠𝑛(𝑦) =  𝛼𝑛𝑠𝑛(𝑥), where 

0 ≤ 𝛼𝑛 ≤ 1, 𝑛 ∈ ℕ. By the Hilbert–Schmidt theorem, there exists an orthogonal system of 

eigenvectors {𝜑𝑛}𝑛=1
∞  for the operator |𝑦| such that 

|𝑦|(𝜑) = ∑ 𝑠𝑛(𝑦)𝑐𝑛𝜑𝑛
∞
𝑛=1 , where 𝑐𝑛 = (𝜑,𝜑𝑛), 𝜑 ∈ 𝐻. Since 𝑠𝑛(𝑦) = 𝛼𝑛𝑠𝑛(𝑥), it follows 

that 𝑐𝑎𝑟𝑑{𝜑𝑛} ≤ 𝑐𝑎𝑟𝑑{𝜓𝑛}, where {𝜓𝑛}𝑛=1
∞  is an orthogonal system of eigenvectors for the 

operator |𝑥|. Thus, there exists a unitary operator 𝑢 ∈ ℬ(𝐻) such that 𝑢(𝜓𝑛) = 𝜑𝑛, in 

addition, 𝑢|𝑥|𝑢−1 ≥ |𝑦|. 
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By Proposition (6.1.6), there exists an operator 𝑎 ∈ ℬ(𝐻) with ∥ 𝑎 ∥ℬ(𝐻)≤ 1 such that |𝑦| =

𝑎∗𝑢|𝑥|𝑢−1𝑎. Consequently, |𝑦| ∈ 𝐼 and |𝑦|𝐼 ≤ |𝑥|𝐼, thus 𝑦 ∈ 𝐼 and ∥ 𝑦 ∥𝐼≤∥ 𝑥 ∥𝐼. 
(c) Let 𝑦(∙) = 𝑠1(𝑥)(∙, 𝜑)𝜑, where 𝜑 is an arbitrary vector in 𝐻 with ∥ 𝜑 ∥𝐻= 1. Whereas 

𝑠𝑛(𝑦) ≤ 𝑠𝑛(𝑥), we have ∥ 𝑥 ∥ℬ(𝐻) = 𝑠1(𝑥) = ∥ 𝑦 ∥ℬ(𝐻)= ∥ 𝑦 ∥𝐼≤∥ 𝑥 ∥𝐼 (see (b)).  

𝐴 two-sided ideal 𝐼 of compact operators from ℬ(𝐻) is called a symmetric quasi-Banach 

(respectively, Banach) ideal, if 𝐼 is equipped with a complete symmetric quasi-norm 

(respectively, norm). 

Let 𝐼, 𝐽 be two-sided ideals of compact operators from ℬ(𝐻). 𝐴 linear mapping 𝛿: 𝐼 → 𝐽 is 

called a derivation, if 𝛿(𝑥𝑦) = 𝛿(𝑥)𝑦 + 𝑥𝛿(𝑦) for all 𝑥, 𝑦 ∈ 𝐼. If, in addition, 𝛿(𝑥∗) =
(𝛿(𝑥))∗ for all 𝑥 ∈ 𝐼, then 𝛿 is called a ∗-derivation. Denote by 

𝐷𝑒𝑟(𝐼, 𝐽) the linear space of all derivations from 𝐼 into 𝐽. 

For each derivation 𝛿: 𝐼 → 𝐽 define the mappings 𝛿𝑅𝑒(𝑥):=
𝛿(𝑥)+𝛿(𝑥∗)∗

2
 and 𝛿𝐼𝑚(𝑥):=

𝛿(𝑥)−𝛿(𝑥∗)∗

2𝑖
 , 𝑥 ∈ 𝐼. It is easy to see that 𝛿𝑅𝑒 and 𝛿𝐼𝑚 are ∗-derivations from 𝐼 into 𝐽, moreover 

𝛿 = 𝛿𝑅𝑒 + 𝑖𝛿𝐼𝑚. 

If 𝑎 ∈ ℬ(𝐻), then the mapping 𝛿𝑎: ℬ(𝐻) → ℬ(𝐻) given by 𝛿𝑎(𝑥):= [𝑎, 𝑥] = 𝑎𝑥 − 𝑥𝑎, 𝑥 ∈
ℬ(𝐻), is a derivation. 

Derivations of this type are called inner. When 𝐼 is a two-sided ideal in ℬ(𝐻), then 𝛿𝑎(𝐼) ⊂
𝐼 for all 𝑎 ∈ ℬ(𝐻). If 𝐽 is also a two-sided ideal in ℬ(𝐻) and 𝑎 ∈ 𝐽, then 𝛿𝑎(𝐼) ⊂ 𝐼 ∩ 𝐽. 

The following theorem gives a positive answer to Question (6.1.3). 

Theorem (6.1.12)[251]: Let 𝐼, 𝐽 be symmetric quasi-Banach ideals of compact operators 

from ℬ(𝐻) and 𝛿 is a derivation from 𝐼 into 𝐽. Then 𝛿 is a continuous mapping from 𝐼 into 

𝐽, i.e. 𝛿 ∈ ℬ(𝐼, 𝐽). 
Proof. Without loss of generality we may assume that 𝛿 is a ∗-derivation. The spaces 

(𝐼, ∥∙∥𝐼), (𝐽, ∥∙∥𝐽) are 𝐹 -spaces, and therefore it is sufficient to prove that the graph of 𝛿 is 

closed. Suppose a contrary, that is there exists a sequence {𝑥𝑛}𝑛=1
∞ ⊂ 𝐼 such that ∥∙∥𝐼−

 lim
𝑛→∞

𝑥𝑛 = 0 and ∥∙∥𝐽− lim
𝑛→∞

𝛿(𝑥𝑛) = 𝑥 ≠ 0. 

Since 𝑥𝑛 = 𝑅𝑒𝑥𝑛 + 𝑖𝐼𝑚𝑥𝑛 for all 𝑛 ∈ ℕ, where 𝑅𝑒𝑥𝑛 =
𝑥𝑛+𝑥𝑛

∗

2
 , 𝐼𝑚𝑥𝑛 =

𝑥𝑛−𝑥𝑛
∗

2
 , and 

∥ 𝑥𝑛 ∥𝐼→  0, ∥ 𝑥𝑛
∗ ∥𝐼= ∥ 𝑥𝑛 ∥𝐼→ 0, we have 

∥ 𝑅𝑒𝑥𝑛 ∥𝐼= ‖
𝑥𝑛 + 𝑥𝑛

∗

2
‖
𝐼
≤
𝐶(∥ 𝑥𝑛 ∥𝐼+∥ 𝑥𝑛

∗ ∥𝐼)

2
→  0 

and 

∥ 𝐼𝑚𝑥𝑛 ∥𝐼 = ‖
𝑥𝑛 − 𝑥𝑛

∗

2
‖
𝐼
≤
𝐶(∥ 𝑥𝑛 ∥𝐼+ ∥ 𝑥𝑛

∗ ∥𝐼)

2
→ 0, 

where 𝐶 is the modulus of concavity of the quasi-norm ∥∙∥𝐼. Consequently, we may assume 

that 𝑥𝑛
∗ = 𝑥𝑛 for all 𝑛 ∈ ℕ. In this case, from the relationships 

𝑥
∥∙∥𝐽
← 𝛿(𝑥𝑛) = 𝛿(𝑥𝑛

∗) = 𝛿(𝑥𝑛)
∗
∥∙∥𝐽
→ 𝑥∗, 

we obtain 𝑥 = 𝑥∗. 
Writing 𝑥 = 𝑥+ − 𝑥−, where 𝑥+, 𝑥− ≥ 0 and 𝑥+𝑥− = 0, we may assume that 𝑥+ ≠ 0, 

otherwise we consider the sequence {−𝑥𝑛}𝑛=1
∞ . Since 𝑥+ is a nonzero positive compact 

operator, 𝜆 = ∥ 𝑥+ ∥ℬ(𝐻) is an eigenvalue of 𝑥+ corresponding to a finite-dimensional 

eigensubspace. Let 𝑞 be a projection onto this subspace. 

Fix an arbitrary non-zero vector 𝜑 ∈ 𝑞(𝐻) and consider the projection 𝑝 onto the one-

dimensional subspace spanned by 𝜑. Combining the inequality 𝑝 ≤ 𝑞 with the equality 
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𝑞𝑥+𝑞 = 𝜆𝑞, we obtain 𝑝𝑥𝑝 = 𝑝𝑞𝑥𝑞𝑝 = 𝜆𝑝𝑞𝑝 = 𝜆𝑝. Replacing, if necessary, the sequence 

{𝑥𝑛}𝑛=1
∞  with the sequence {

𝑥𝑛

𝜆
}𝑛=1
∞ , we may assume 

𝑝𝑥𝑝 = 𝑝.                                                       (1) 

Since 𝑝 is one-dimensional, it follows that 𝑝𝑎𝑝 = 𝛼𝑝, 𝛼 ∈ 𝐶 for any operator 𝑎 ∈ ℬ(𝐻), in 

particular, 𝑝𝑥𝑛𝑝 = 𝛼𝑛𝑝, therefore |𝛼𝑛| = ∥ 𝑝𝑥𝑛𝑝 ∥𝐼 → 0 for 𝑛 →∞. Writing 

∥ 𝛿(𝑝)𝑥𝑛𝑝 ∥𝐽≤∥ 𝛿(𝑝) ∥𝐽∥ 𝑥𝑛𝑝 ∥ℬ(𝐻)≤ ∥ 𝛿(𝑝) ∥𝐽∥ 𝑥𝑛 ∥ℬ(𝐻)≤ ∥ 𝛿(𝑝) ∥𝐽∥ 𝑥𝑛 ∥𝐼 , 

we infer ∥ 𝛿(𝑝)𝑥𝑛𝑝 ∥𝐽 → 0 and ∥ 𝑝𝑥𝑛𝛿(𝑝) ∥𝐽= ∥ (𝛿(𝑝)𝑥𝑛𝑝)
∗ ∥𝐽 → 0. 

Since 𝑝𝑥𝑝 𝑝=  
(1)

 ∈ 𝐽, we have 

∥ 𝛿(𝑝𝑥𝑛𝑝) − 𝑝𝑥𝑝 ∥𝐽= ∥ 𝛿(𝑝)𝑥𝑛𝑝 + 𝑝𝛿(𝑥𝑛)𝑝 + 𝑝𝑥𝑛𝛿(𝑝) − 𝑝𝑥𝑝 ∥𝐽 

≤ 𝐶1 ∥ 𝛿(𝑝)𝑥𝑛𝑝 + 𝑝𝑥𝑛𝛿(𝑝) ∥𝐽 + 𝐶1 ∥ 𝑝𝛿(𝑥𝑛)𝑝 − 𝑝𝑥𝑝 ∥𝐽 

≤ 𝐶1
2 ∥ 𝛿(𝑝)𝑥𝑛𝑝 ∥𝐽+ 𝐶1

2 ∥ 𝑝𝑥𝑛𝛿(𝑝) ∥𝐽 + 𝐶1 ∥ 𝑝𝛿(𝑥𝑛)𝑝 − 𝑝𝑥𝑝 ∥𝐽→ 0, 

where 𝐶1 is the modulus of concavity of the quasi-norm ∥∙∥𝐽, i.e. 𝛿(𝑝𝑥𝑛𝑝)
∥∙∥𝐽
→  𝑝𝑥𝑝. Hence 

𝑝   =
(1)
 𝑝𝑥𝑝 = ∥∙∥𝐽 − lim

𝑛→∞
𝛿(𝑝𝑥𝑛𝑝) = ∥∙∥ − lim

𝑛→∞
𝛿(𝛼𝑛𝑝) = ∥∙∥𝐽− lim

𝑛→∞
𝛼𝑛𝛿(𝑝) = 0, 

which is a contradiction, since 𝑝 ≠ 0. 

Consequently, 𝛿 is a continuous mapping from (𝐼, ∥∙∥𝐼) into (𝐽, ∥∙∥𝐽). 
Note, that in [257] a version of Theorem (6.1.12) is obtained for the case of an 

arbitrary symmetric Banach ideal 𝐼 = 𝐽 of 𝜏 -compact operators in a von Neumann algebra 

𝑀 equipped with a semi-finite normal faithful trace 𝜏 . 

The following theorem gives a positive answer to Question (6.1.1). 

Theorem (6.1.13)[251]: If 𝐼, 𝐽 are symmetric quasi-Banach ideals of compact operators 

from ℬ(𝐻), then for every derivation 𝛿: 𝐼 → 𝐽 there exists an operator 𝑎 ∈ ℬ(𝐻) such that 

𝛿(∙) = 𝛿𝑎(∙) = [𝑎,∙], in addition, ∥ 𝑎 ∥ℬ(𝐻)≤ ∥ 𝛿 ∥ℬ(𝐼,𝐽). 

Proof. Fix an arbitrary vector 𝜑0 ∈ 𝐻 with ∥ 𝜑0 ∥𝐻= 1 and consider projection 𝑝0(∙):= (∙
, 𝜑0)𝜑0 onto one-dimensional subspace spanned by 𝜑0. Obviously, 𝑝0 ∈ 𝐼 ∩ 𝐽. 
Let 𝑥 ∈ 𝐼, 𝑥(𝜑0) = 0 and 𝜑 ∈ 𝐻. Since 

𝑥𝑝0(𝜑) = 𝑥(𝑝0(𝜑)) = 𝑥((𝜑, 𝜑0)𝜑0) = (𝜑, 𝜑0)𝑥(𝜑0) = 0, 
it follows that 𝑥𝑝0 = 0, and so 𝛿(𝑥𝑝0)(𝜑0) = 0. Consequently, the linear operator 

𝑎(𝑧(𝜑0)) = 𝛿(𝑧𝑝0)(𝜑0) is correctly defined on the linear subspace 𝐿:= {𝑧(𝜑0) ∶  𝑧 ∈ 𝐼} ⊂
𝐻. 𝐼𝑓 𝜑 ∈  𝐻, 𝑧(∙) = (∙, 𝜑0)𝜑, then 𝑧 ∈ 𝐼 and 𝑧(𝜑0) = 𝜑, which implies 𝐿 = 𝐻. For 

arbitrary 𝑧 ∈ ℬ(𝐻), 𝜑 ∈  𝐻, we have 

|𝑧𝑝0|
2(𝜑) = (𝑝0𝑧

∗𝑧𝑝0)(𝜑) = (𝑝0𝑧
∗𝑧)((𝜑, 𝜑0)𝜑0) = (𝜑, 𝜑0)𝑝0(𝑧

∗𝑧(𝜑0)) 
= (𝑧𝜑0, 𝑧𝜑0)(𝜑, 𝜑)𝜑0  = (𝑧𝜑0, 𝑧𝜑0)𝑝0(𝜑) = ∥ 𝑧(𝜑0) ∥𝐻

2 𝑝0(𝜑), 
in particular, ∥ 𝑧𝑝0 ∥ℬ(𝐻)= ‖|𝑧𝑝0|‖ℬ(𝐻) = ‖∥ 𝑧(𝜑0) ∥𝐻 𝑝0‖ℬ(𝐻) = ∥ 𝑧(𝜑0) ∥𝐻. Applying 

this observation together with Theorem (6.1.12) guaranteeing ∥ 𝛿(𝑥) ∥𝐽≤∥ 𝛿 ∥ℬ(𝐼,𝐽)∥ 𝑥 ∥𝐼 

for all 𝑥 ∈ 𝐼, we have 

∥ 𝑎(𝑥(𝜑0)) ∥𝐻 = ∥ 𝛿(𝑥𝑝0)(𝜑0) ∥𝐻 = ∥ 𝛿(𝑥𝑝0)𝑝0 ∥ℬ(𝐻)≤ ∥ 𝛿(𝑥𝑝0) ∥ℬ(𝐻)∥ 𝑝0 ∥ℬ(𝐻) 

≤∥ 𝛿(𝑥𝑝0) ∥𝐽≤∥ 𝛿 ∥ℬ(𝐼,𝐽)∥ 𝑥𝑝0 ∥𝐼 

≤∥ 𝛿 ∥ℬ(𝐼,𝐽)∥ 𝑝0 ∥𝐼∥ 𝑥𝑝0 ∥ℬ(𝐻)= ∥ 𝛿 ∥ℬ(𝐼,𝐽)∥ 𝑥(𝜑0) ∥𝐻 . 

This shows that a is a bounded operator on 𝐻 and ∥ 𝑎 ∥ℬ(𝐻)≤∥ 𝛿 ∥ℬ(𝐼,𝐽). 

Finally, for all 𝑥, 𝑧 ∈ 𝐼 we have 

[𝑎, 𝑥](𝑧(𝜑0)) = 𝑎𝑥(𝑧(𝜑0)  −  𝑥𝑎(𝑧(𝜑0)) = 𝑎(𝑥𝑧(𝜑0)) − 𝑥𝑎(𝑧(𝜑0)) 
= 𝛿(𝑥𝑧𝑝0)(𝜑0) − 𝑥𝛿(𝑧𝑝0)(𝜑0) = 𝛿(𝑥)𝑧𝑝0(𝜑0) = 𝛿(𝑥)𝑧(𝜑0) 

and since 𝐿 = 𝐻, it follows 𝛿(∙) = [𝑎,∙] = 𝛿𝑎(∙). 
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Let 𝐼, 𝐽 be arbitrary two-sided ideals in ℬ(𝐻). The set 

𝐷(𝐼, 𝐽) = {𝑎 ∈ ℬ(𝐻): 𝑎𝑥 − 𝑥𝑎 ∈ 𝐽, ∀𝑥 ∈ 𝐼} 
is called the 𝐽-essential commutant of 𝐼, and the set 

𝐽: 𝐼 = {𝑎 ∈ 𝐵(𝐻): 𝑎𝑥 ∈ 𝐽, ∀𝑥 ∈ 𝐼} 
is called the 𝐽-dual space of 𝐼. It is clear that 𝐽: 𝐼 is a two-sided ideal in ℬ(𝐻). Hence 𝐽: 𝐼 is 

a ∗-ideal, and therefore 𝑥𝑎 ∈ 𝐽 for all 𝑥 ∈ 𝐼, 𝑎 ∈ 𝐽: 𝐼. If 𝐼 ⊈ 𝐽, then 1 ∉ 𝐽 ∶ 𝐼, 𝑖. 𝑒. 𝐽: 𝐼 ≠
ℬ(𝐻), and so 𝐽: 𝐼 is a proper ideal in ℬ(𝐻). However, in case when 𝐼 ⊆ 𝐽 we have 𝐽: 𝐼 =
ℬ(𝐻), in particular, 𝐶𝑟: 𝐶𝑝 = ℬ(𝐻) for all 0 < 𝑝 ≤ 𝑟, where 𝐶𝑝 = {𝑥 ∈ 𝐾(𝐻) : ∥ 𝑥 ∥𝑝=

(𝑡𝑟(|𝑥|𝑝))

1

𝑝
 <∞} is the Schatten ideal of compact operators from ℬ(𝐻), 0 < 𝑝 <∞, 𝑡𝑟 is 

the standard trace on ℬ+(𝐻). 
Proposition (6.1.14)[251]: If 𝐼, 𝐽 are proper two-sided ideals of compact operators in ℬ(𝐻) 
and 𝐼 ⊈ 𝐽, then 𝐽 ∶ 𝐼 ⊂ 𝐾(𝐻). 
Proof. Since 𝐼 ⊈  𝐽, 𝐽: 𝐼 is a proper two-sided ideal in ℬ(𝐻). If 𝐻 is a separable Hilbert space, 

then 𝐽: 𝐼 ⊂ 𝐾(𝐻) [254]. Suppose that 𝐻 is not separable and 𝐽: 𝐼 ⊈ 𝐾(𝐻). By Proposition 

(6.1.8), the proper two-sided ideal 𝐷 = {𝑥 ∈ ℬ(𝐻) ∶  𝑥(𝐻) is separable } ⊂ 𝐽 ∶  𝐼. Since 𝐼 ⊈
 𝐽 there exists a positive compact operator 𝑎 ∈ 𝐼 \ 𝐽. Since 𝑎 ∈ 𝐷, we have that 𝐿:= 𝑎(𝐻) is 

separable. Let 𝑝 ∈ 𝑃(𝐻) be the orthogonal projection onto 𝐿. Since 𝑎 ∉  𝐽, it follows that 𝐿 

is infinite-dimensional subspace. Indeed, if it were not the case, then a would be a finite rank 

operator and automatically belonging to 𝑎 ∈ 𝐽. Therefore 𝑝 ∈ 𝐷 \𝐾(𝐻) ⊂ 𝐽: 𝐼, in addition, 

0 ≠ 𝑎 = 𝑝𝑎𝑝 ∈ (𝑝𝐼𝑝) \ (𝑝𝐽𝑝), 𝑖. 𝑒. 𝑝𝐼𝑝 ⊈  𝑝𝐽𝑝. Since 𝐿 is a separable Hilbert space, we 

have (𝑝𝐽𝑝): (𝑝𝐼𝑝) ⊂ 𝐾(𝐿). 
Let 𝑦 ∈ 𝑝𝐼𝑝, i.e. 𝑦 = 𝑝𝑦’𝑝 for some 𝑦’ ∈ 𝐼. Since 𝑝 ∈ 𝐷 ⊂ 𝐽: 𝐼 we have 𝑝𝑦’ ∈ 𝐽, hence, 

𝑝(𝑝𝑦’)𝑝 ∈ 𝑝𝐽𝑝. Consequently, 𝑝 ∈ (𝑝𝐽𝑝): (𝑝𝐼𝑝), i.e. 𝑝 is a compact operator in 𝐿, which is 

a contradiction. Thus, 𝐽: 𝐼 ⊂ 𝐾(𝐻).  
For arbitrary two-sided ideals 𝐼, 𝐽 in ℬ(𝐻) we denote by 𝑑(𝐼, 𝐽) the set of all derivations 𝛿 

from ℬ(𝐻) into ℬ(𝐻) such that 𝛿(𝐼) ⊂ 𝐽. To characterize the set 𝑑(𝐼, 𝐽) we need the 

following theorem. 

Theorem (6.1.15)[251]: ([252]). 𝐷(𝐼, 𝐽) = 𝐽: 𝐼 + ℂ1.   

It should be noted that Theorem (6.1.14) holds for arbitrary von Neumann algebras, i.e. for 

any two-sided ideals 𝐼, 𝐽 in von Neumann algebra 𝑀 we have 𝐷(𝐼, 𝐽) = 𝐽: 𝐼 +  𝑍(𝑀), where 

𝑍(𝑀) is the center of 𝑀 [255]. 

Proposition (6.1.16)[251]: 𝑑(𝐼, 𝐽) = {𝛿𝑎: 𝑎 ∈ 𝐷(𝐼, 𝐽)} = {𝛿𝑎: 𝑎 ∈ 𝐽: 𝐼}. 
Proof. Let 𝛿 ∈ 𝑑(𝐼, 𝐽). Since 𝛿 is a derivation from ℬ(𝐻) into ℬ(𝐻) there exists an operator 

𝑎 ∈ ℬ(𝐻) such that 𝛿 = 𝛿𝑎. If 𝑥 ∈ 𝐼, then [𝑎, 𝑥] = 𝛿(𝑥) ∈ 𝐽, i.e. 𝑎 ∈  𝐷(𝐼, 𝐽). Using 

Theorem (6.1.15), we have that 𝑎 = 𝑏 + 𝛼1, where 𝑏 ∈ 𝐽: 𝐼, 𝛼 ∈ ℂ, and therefore 𝛿 = 𝛿𝑎 =
𝛿𝑏. 

Further, let 𝛿𝑎(∙) = [𝑎,∙] be the inner derivation on ℬ(𝐻) generated by an operator 𝑎 ∈ 𝐽: 𝐼. 
For all 𝑥 ∈ 𝐼 we have 𝛿𝑎(𝑥) = [𝑎, 𝑥] = 𝑎𝑥 − 𝑥𝑎 ∈ 𝐽. Consequently, 𝛿𝑎 ∈ 𝑑(𝐼, 𝐽).  
Now, let 𝐼, 𝐽 be arbitrary symmetric quasi-Banach ideals of compact operators from ℬ(𝐻). 
According to Theorem (6.1.13), for each derivation 𝛿 ∈ 𝐷𝑒𝑟(𝐼, 𝐽) there exists an operator 

𝑎 ∈ ℬ(𝐻) such that 𝛿(𝑥) = 𝛿𝑎(𝑥) = [𝑎, 𝑥] for all 𝑥 ∈ 𝐼. Since 𝛿(𝐼) ⊂ 𝐽 we have [𝑎, 𝑥] ∈ 𝐽 
for all 𝑥 ∈ 𝐼, i.e. 𝑎 ∈ 𝐷(𝐼, 𝐽). Hence, 𝛿𝑎 ∈ 𝑑(𝐼, 𝐽) see Proposition (6.1.16). On the other 

hand, if 𝑎 ∈ 𝐽: 𝐼, then 𝛿𝑎 ∈ 𝑑(𝐼, 𝐽) (see Proposition (6.1.16)), in particular, 𝛿𝑎(𝐼) ⊂ 𝐽. 
Hence, in view of Proposition (6.1.16) and Theorem (6.1.13), the following theorem holds. 
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Theorem (6.1.17)[251]: For arbitrary symmetric quasi-Banach ideals 𝐼, 𝐽 of compact 

operators in ℬ(𝐻) each derivation 𝛿: 𝐼 → 𝐽 has 𝑎 form 𝛿 = 𝛿𝑎 for some 𝑎 ∈ 𝐽: 𝐼, in addition 

∥ 𝑎 + 𝛼1 ∥ℬ(𝐻)≤∥ 𝛿𝑎 ∥ℬ(𝐼,𝐽) for some 𝛼 ∈ ℂ. Conversely, if 𝑎 ∈ 𝐽: 𝐼 then the restriction of 

the derivation 𝛿𝑎 on 𝐼 is a derivation from 𝐼 into 𝐽. 

If 0 < 𝑟 < 𝑝 <∞, then we have 𝐶𝑟: 𝐶𝑝 = 𝐶𝑞, where 
1

𝑞
=

1

𝑟
−

1

𝑝
 [252]. Therefore, the 

following corollary follows immediately from Theorem (6.1.17). 

Corollary (6.1.18)[251]: If 0 < 𝑝 ≤  𝑟 <∞, then the mapping 𝛿: 𝐶𝑝 → 𝐶𝑟 is a derivation 

if and only if 𝛿 = 𝛿𝑎 for some 𝑎 ∈ ℬ(𝐻). If 0 < 𝑟 < 𝑝 <∞, then the mapping 𝛿: 𝐶𝑝 → 𝐶𝑟 

is a derivation if and only if 𝛿 = 𝛿𝑎 for some 𝑎 ∈ 𝐶𝑞, where 
1

𝑞
=

1

𝑟
−

1

𝑝
. 

We show that any symmetric quasi-Banach ideal (𝐼, ∥∙∥𝐼) of compact operators 

from ℬ(𝐻) has a form of 𝐼 = 𝐶𝐸𝐼  with the quasi-norm ∥∙∥𝐼 = ∥∙∥𝐶𝐸𝐼
 for a special symmetric 

quasi-Banach sequence space (𝐸𝐼 , ∥∙∥𝐸𝐼  ) in 𝑐0 constructed by I with the help of Calkin 

correspondence. The equality 𝐽: 𝐼 = 𝐶𝐸𝐽:𝐸𝐼  established provides a full description of all 

derivations 𝛿 ∈ 𝐷𝑒𝑟(𝐼, 𝐽) in terms of 𝐸𝐽-dual space 𝐸𝐽: 𝐸𝐼 of 𝐸𝐼 of symmetric quasi-Banach 

sequence spaces 𝐸𝐼 and 𝐸𝐽 in 𝑐0. 

A quasi-Banach lattice 𝐸 is a vector lattice with a complete quasi-norm ∥∙∥𝐸 , such that 

∥ 𝑎 ∥𝐸≤  ∥ 𝑏 ∥𝐸  whenever 𝑎, 𝑏 ∈ 𝐸 and |𝑎| ≤ |𝑏|. In this case, ‖|𝑎|‖𝐸 =∥ 𝑎 ∥𝐸 for all 𝑎 ∈
𝐸 and the lattice operations 𝑎 ∨ 𝑏 and 𝑎 ∧ 𝑏 are continuous in the topology 𝜏𝑑, generated by 

the metric 𝑑(𝑎, 𝑏) = |||𝑎 − 𝑏|||𝐸
𝑝

, where ||| ∙ |||𝐸 is a 𝑝-additive quasi-norm equivalent to 

the quasi-norm ∥∙∥𝐸. 

Consequently, the set 𝐸+ = {𝑎 ∈ 𝐸: 𝑎 ≥ 0} is closed in (𝐸, 𝜏𝑑). Thus, for any increasing 

sequence {𝑎𝑘}𝑘=1
∞ ⊂ 𝐸 converging in the topology 𝜏𝑑 to some 𝑎 ∈ 𝐸, we have 𝑎 =

𝑠𝑢𝑝𝑘≥1 𝑎𝑘 [261]. 

A sequence {𝑎𝑛}𝑛=1
∞  from a vector lattice 𝐸 is said to be (𝑟)-convergent to 𝑎 ∈ 𝐸 

(notation: 𝑎𝑛
(𝑟)
→ 𝑎) with the regulator 𝑏 ∈ 𝐸+, if and only if there exists a sequence of 

positive numbers 𝜀𝑛 ↓ 0 such that |𝑎𝑛 − 𝑎| ≤ 𝜀𝑛𝑏 for all 𝑛 ∈ ℕ (see [262].) 

Observe, that in any quasi-Banach lattice (𝐸, ∥∙∥𝐸  ) it follows from 𝑎𝑛
(𝑟)
→ 𝑎, 𝑎𝑛, 𝑎 ∈ 𝐸 that 

∥ 𝑎𝑛 − 𝑎 ∥𝐸  → 0. 

The following proposition is a quasi-Banach version of the well-known criterion of 

sequential convergence in Banach lattices. 

Proposition (6.1.19)[251]: (Compare [262]). Let (𝐸, ∥∙∥𝐸  ) be a quasi-Banach lattice, 

𝑎, 𝑎𝑛 ∈ 𝐸. The following conditions are equivalent: 

(i) ∥ 𝑎𝑛 − 𝑎 ∥𝐸  → 0 for 𝑛 →∞; 

(ii) for any subsequence 𝑎𝑛𝑘 there exists a subsequence anks such that 𝑎𝑛𝑘𝑠
(𝑟)
→ 𝑎. 

Proof. Without loss of generality we may assume that 𝑎 = 0. 

(i) ⇒ (ii) For an equivalent 𝑝-additive quasi-norm ||| ∙ |||𝐸  we have ||||𝑎𝑛||||𝐸 →  0 for 𝑛 →
∞. Hence, we may choose an increasing sequence of positive integers 𝑛1 < 𝑛2 < ⋯ <

𝑛𝑘 < ⋯ such that ||||𝑎𝑛𝑘||||
𝑝  ≤

1

𝑘3
 . The estimate 

∑|||𝑘
1
𝑝 |𝑎𝑛𝑘||||

𝑝

∞

𝑘=1

= ∑𝑘||||𝑎𝑛𝑘||||
𝑝

∞

𝑘=1

≤ ∑
1

𝑘2

∞

𝑘=1

<∞, 
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shows that the series  ∑ 𝑘
1

𝑝|𝑎𝑛𝑘|
∞
𝑘=1  converges in (𝐸, ∥∙∥𝐸) to some 𝑏 ∈ 𝐸+ (see Proposition 

(6.1.20)) and therefore there exists 𝑏 = 𝑠𝑢𝑝𝑛≥1∑ 𝑘
1

𝑝|𝑎𝑛𝑘|
𝑛
𝑘=1  such that we also have 

𝑘
1

𝑝|𝑎𝑛𝑘| ≤ 𝑏 for all 𝑘 ∈ ℕ. In particular, |𝑎𝑛𝑘| ≤ 𝑘
−
1

𝑝𝑏, which immediately  

implies 𝑎𝑛𝑘
(𝑟)
→ 0. The same reasoning may be repeated for any subsequence {𝑎𝑛𝑘}𝑘=1

∞ . 

The proof of the implication (ii) ⇒ (i) is the verbatim repetition of the analogous result 

for Banach lattices [262]. 

Let 𝑚 be the Lebesgue measure on the semi-axis (0,∞), let 𝐿1(0,∞) be the Banach space 

of all integrable functions on (0,∞) with the norm ∥ 𝑓 ∥1: = ∫  |𝑓 |𝑑𝑚
∞

0
 and let 𝐿∞(0,∞) 

be the Banach space of all essentially bounded measurable functions on (0,∞) with the 

norm ∥ 𝑓 ∥∞∶= 𝑒𝑠𝑠𝑠𝑢𝑝{|𝑓 (𝑡)| ∶ 0 < 𝑡 <∞}). For each 𝑓 ∈ 𝐿1(0,∞) + 𝐿∞(0,∞) we 

define the decreasing rearrangement 𝑓∗ of f by setting 

𝑓∗(𝑡): = inf {𝑠 > 0: 𝑚({|𝑓 | > 𝑠})  ≤ 𝑡}, 𝑡 > 0. 
The function 𝑓∗(𝑡) is equimeasurable with |𝑓 |, in particular, 𝑓∗ ∈ 𝐿1(0,∞) + 𝐿∞(0,∞) 
and 𝑓∗(𝑡) is non-increasing and right-continuous. 

We need the following properties of decreasing rearrangements (see [263]). 

Proposition (6.1.20)[251]: Let 𝑓, 𝑔 ∈ 𝐿1(0,∞) + 𝐿∞(0,∞). We have 

(i) if |𝑓| ≤ |𝑔|, then 𝑓∗ ≤ 𝑔∗; 
(ii) (𝛼𝑓)∗ = |𝛼|𝑓∗ for all 𝛼 ∈ ℝ; 

(iii) if 𝑓 ∈ 𝐿∞(0,∞), then (𝑓𝑔)∗  ≤∥ 𝑓 ∥∞ 𝑔∗; 
(iv) (𝑓 + 𝑔)∗(𝑡 + 𝑠)  ≤  𝑓∗(𝑡) + 𝑔∗(𝑠); 
(v) if 𝑓𝑔 ∈ 𝐿1(0,∞) + 𝐿∞(0,∞), then (𝑓𝑔)∗(𝑡 + 𝑠) ≤ 𝑓∗(𝑡)𝑔∗(𝑠). 
Let 𝑙∞ be the Banach lattice of all bounded real-valued sequences 𝜉: = {𝜉𝑛}𝑛=1

∞  equipped 

with the norm ∥ 𝜉 ∥∞= 𝑠𝑢𝑝𝑛≥1 |𝜉𝑛|. For each 𝜉 = {𝜉𝑛}𝑛=1
∞ ∈ 𝑙∞ the function 𝑓𝜉(𝑡): =

 ∑ 𝜉𝑛𝜒[𝑛−1,𝑛)(𝑡)
∞
𝑛=1 , 𝑡 > 0 is contained in 𝐿∞(0,∞). For the decreasing rearrangement 𝑓𝜉

∗, 

we obviously have 𝑓𝜉
∗(𝑡) = ∑ 𝜉𝑛

∗  𝜒[𝑛−1,𝑛)(𝑡)
∞
𝑛=1 , 𝑡 > 0, where 𝜉∗ ∶= {𝜉𝑛

∗}𝑛=1
∞  is a 

decreasing sequence of nonnegative numbers with |𝜉1
∗| = 𝑠𝑢𝑝𝑛≥1|𝜉𝑛|, which, in case when 

𝜉 ∈ 𝑐0, coincides with the decreasing rearrangement of the sequence {|𝜉𝑛|}𝑛=1
∞ . By 

Proposition (6.1.20)(i), (ii) we have 𝜉∗ ≤ 𝜂∗ for 𝜉 , 𝜂 ∈ 𝑙∞ with |𝜉 | ≤ |𝜂|, and (𝛼𝜉)∗ =
|𝛼|𝜉∗, 𝛼 ∈ ℝ. 

A linear subspace {0} ≠ 𝐸 ⊂ 𝑙∞ is said to be solid rearrangement-invariant, if for 

every 𝜂 ∈ 𝐸 and every 𝜉 ∈ 𝑙∞ the assumption 𝜉∗ ≤ 𝜂∗ implies that 𝜉 ∈ 𝐸. Every solid 

rearrangement-invariant space 𝐸 contains the space 𝑐00 of all finitely supported sequences 

from 𝑐0. If 𝐸 contains an element {𝜉𝑛}𝑛=1
∞ ∉ 𝑐0, then 𝐸 = 𝑙∞. Thus, for any solid 

rearrangement-invariant space 𝐸 ≠ 𝑙∞ the embeddings 𝑐00 ⊂ 𝐸 ⊂ 𝑐0 hold. 

A solid rearrangement-invariant space 𝐸 equipped with a complete quasi-norm 

(norm) ∥∙∥𝐸 is called symmetric quasi-Banach (Banach) sequence space, if 

(a) ∥ 𝜉 ∥𝐸≤ ∥ 𝜂 ∥𝐸 , provided 𝜉∗ ≤ 𝜂∗, 𝜉 , 𝜂 ∈ 𝐸; 

(b) ∥ {1, 0, 0, . . . } ∥𝐸  = 1. 

The inequality ∥ 𝑎𝜉 ∥𝐸≤ ∥ 𝑎 ∥∞∥ 𝜉 ∥𝐸 for all 𝑎 ∈ 𝑙∞, 𝜉 ∈ 𝐸 immediately follows from 

Proposition(6.1.20)(iii). In particular, if 𝐸 = 𝑙∞, then the norm ∥∙∥𝐸 is equivalent to ∥∙∥∞; 

for example, this is the case for any Lorentz space (𝑙𝜓, ∥∙∥𝜓), where 𝜓: [0,∞) → ℝ is an 

arbitrary nonnegative increasing concave function with the properties 𝜓(0) = 0,𝜓(+0) ≠
0, lim

𝑡→∞
𝜓(𝑡)  <∞(see details in [263]). 
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The spaces (𝑐0, ∥∙∥∞), (𝑙𝑝, ∥ ∙ ∥𝑝), 1 ≤ 𝑝 <∞(respectively, (𝑙𝑝, ∥∙∥𝑝) for 0 < 𝑝 < 1), 

where 

𝑙𝑝 = {{𝜉𝑛}𝑛=1
∞ ∈ 𝑐0 : ∥ {𝜉𝑛} ∥𝑝 = (∑ |𝜉𝑛|

𝑝

∞

𝑛=1

)

1
𝑝

<∞} 

are examples of the classical symmetric Banach (respectively, quasi-Banach) sequence 

spaces in 𝑐0. 

Let (𝐸, ∥∙∥𝐸) be a symmetric quasi-Banach sequence space. For every 𝜉 = {𝜉𝑛}𝑛=1
∞ ∈

𝐸,𝑚 ∈ ℕ, we set 

𝜎𝑚(𝜉) = (𝜉1, … , 𝜉1,⏟    
𝑚 𝑡𝑖𝑚𝑒𝑠

𝜉2, … , 𝜉2⏟      
𝑚 𝑡𝑖𝑚𝑒𝑠

, . . . ), 

𝜂(1) = (𝜉1, 0, . . . , 0⏟    
𝑚−1 𝑡𝑖𝑚𝑒𝑠

, 𝜉2, 0,… , 0⏟    
𝑚−1 𝑡𝑖𝑚𝑒𝑠

, . . . ), 

𝜂(2) = (0, 𝜉1, 0, . . . , 0⏟    
𝑚−2 𝑡𝑖𝑚𝑒𝑠

, 0, 𝜉2, 0, … , 0⏟    
𝑚−2 𝑡𝑖𝑚𝑒𝑠

, . . . ), 

⋯ , 
𝜂(𝑚) = ( 0, . . . , 0⏟    

𝑚−1 𝑡𝑖𝑚𝑒𝑠

, 𝜉1, 0, … , 0⏟    
𝑚−1 𝑡𝑖𝑚𝑒𝑠

, 𝜉2, . . . ).  

Since (𝜂(1))∗ = (𝜂(2))∗ = ⋯ = (𝜂(𝑚))∗ = 𝜉∗ ∈ 𝐸, it follows 𝜂(1), . . . , 𝜂(𝑚) ∈ 𝐸. 

Consequently, 𝜎𝑚(𝜉 ) = 𝜂(1) + 𝜂(2) +⋯+ 𝜂(𝑚) ∈ 𝐸, i.e. 𝜎𝑚 is a linear operator from 𝐸 

into 𝐸. In addition, we have 

∥ 𝜎𝑚(𝜉 ) ∥𝐸= ∥ 𝜂
(1) + 𝜂(2) +⋯+ 𝜂(𝑚) ∥𝐸≤ 𝐶(∥ 𝜂(1) ∥𝐸+ ∥ 𝜂

(2) + 𝜂(3) +⋯+ 𝜂(𝑚) ∥𝐸) 
≤ 𝐶(∥ 𝜂(1) ∥𝐸+ 𝐶(∥ 𝜂(2) ∥𝐸+∥ 𝜂

(3) +⋯+ 𝜂(𝑚) ∥𝐸))
≤ (𝐶 + 𝐶2 +⋯+ 𝐶𝑚−1 + 𝐶𝑚−1) ∥ 𝜉 ∥𝐸  , 

where 𝐶 is the modulus of concavity of the quasi-norm ∥∙∥𝐸 , in particular ∥ 𝜎𝑚 ∥ℬ(𝐸,𝐸)≤

𝐶 + 𝐶2 +⋯+ 𝐶𝑚−2 + 2𝐶𝑚−1 for all 𝑚 ∈ ℕ. 

Proposition (6.1.21)[251]: The inequalities 

(𝜉 + 𝜂)∗ ≤ 𝜎2(𝜉
∗ + 𝜂∗), (𝜉𝜂)∗  ≤ 𝜎2(𝜉

∗𝜂∗) 
hold for all 𝜉 = {𝜉𝑛}𝑛=1

∞ , 𝜂 = {𝜂𝑛}𝑛=1
∞ ∈ 𝑙∞. 

Proof. Since 𝑓𝜉+𝜂(𝑡) = ∑ (𝜉𝑛 + 𝜂𝑛)𝜒[𝑛−1,𝑛)(𝑡)
∞
𝑛=1 = 𝑓𝜉(𝑡) + 𝑓𝜂(𝑡), 𝑡 > 0, we have by 

Proposition (6.1.20) (iv) that 

∑(𝜉𝑛 + 𝜂𝑛)
∗𝜒[𝑛−1,𝑛)(2𝑡)

∞

𝑛=1

 = 𝑓𝜉+𝜂
∗ (2𝑡) = (𝑓𝜉 + 𝑓𝜂)

∗(2𝑡) 

≤ 𝑓𝜉
∗(𝑡) + 𝑓𝜂

∗(𝑡) = ∑(𝜉𝑛
∗ + 𝜂𝑛

∗ )𝜒[𝑛−1,𝑛)(𝑡)

∞

𝑛=1

= (𝜎2(𝜉
∗ + 𝜂∗))𝑛𝜒[𝑛−1,𝑛)(2𝑡) 

for all 𝑡 > 0, where {(𝜎2(𝜉
∗ + 𝜂∗))𝑛}𝑛=1

∞ = 𝜎2(𝜉
∗ + 𝜂∗). In other words, (𝜉 + 𝜂)∗ ≤

𝜎2(𝜉
∗ + 𝜂∗). The proof of the inequality (𝜉𝜂)∗  ≤  𝜎2(𝜉

∗𝜂∗) is very similar (one needs to 

use Proposition (6.1.20)(v)) and is therefore omitted. 

For a symmetric quasi-Banach sequence space (𝐸, ∥∙∥𝐸), we set 

𝐶𝐸: = {𝑥 ∈ 𝐾(𝐻): {𝑠𝑛(𝑥)}𝑛=1
∞ ∈ 𝐸}, ∥ 𝑥 ∥𝐶𝐸: = ∥ 𝑠𝑛(𝑥) ∥𝐸  , 𝑥 ∈ 𝐶𝐸 . 

If 𝐸 = 𝑙𝑝 (respectively, 𝐸 = 𝑐0) then 𝐶𝑙𝑝 = 𝐶𝑝, ∥∙∥𝐶𝑙𝑝=∥∙∥𝐶𝑝  , 0 < 𝑝 <∞ (respectively, 

𝐶𝑐0 = 𝐾(𝐻), ∥∙∥𝐶𝑐0= ∥∙∥ℬ(𝐻)). 

A quasi-Banach vector sublattice (𝐸, ∥∙∥𝐸) in 𝑙∞ is said to be 𝑝-convex, 0 < 𝑝 <∞, if there 

is a constant 𝑀, so that 
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‖(∑|𝑥𝑖|
𝑝

𝑛

𝑖=1

)

1
𝑝

‖

𝐸

≤  𝑀 (∑ ∥ 𝑥𝑖 ∥𝐸
𝑝

𝑛

𝑖=1

)

1
𝑝

                             (2) 

for every finite collection {𝑥𝑖}𝑖=1
𝑛 ⊂ 𝐸, 𝑛 ∈ ℕ. 

If the estimate (2) holds for elements from a symmetric quasi-Banach ideal (𝐼, ∥∙∥𝐼) of 

compact operators from ℬ(𝐻), then the ideal (𝐼, ∥∙∥𝐼) is said to be 𝑝-convex. As already 

stated in Theorem (6.1.5), for every symmetric Banach (respectively, symmetric 𝑝-convex 

quasi-Banach, 0 < 𝑝 <∞) sequence space 𝐸 in 𝑐0 the couple (𝐶𝐸 , ∥∙∥𝐶𝐸) is a symmetric 

Banach (respectively, 𝑝-convex symmetric quasi-Banach) ideal of compact operators in 

ℬ(𝐻). 
Thus, for every symmetric Banach (𝑝-convex quasi-Banach) sequence space (𝐸, ∥∙∥𝐸) the 

corresponding symmetric Banach (𝑝-convex quasi-Banach) ideal (𝐶𝐸 , ∥∙∥𝐶𝐸) of compact 

operators from ℬ(𝐻) is naturally constructed. This extends the classical Calkin 

correspondence [254]. 

Conversely, if (𝐼, ∥∙∥𝐼) is a symmetric quasi-Banach ideal (𝐼, ∥∙∥𝐼) of compact operators 

from ℬ(𝐻), then it is of the form 𝐶𝐸𝐼  with ∥∙∥𝐼= ∥∙∥𝐶𝐸𝐼
 for the corresponding symmetric 

quasi-Banach sequence space (𝐸𝐼 , ∥ 𝜉 ∥𝐸𝐼). The definition of the latter space is given below. 

Denote by 𝐸𝐼 the set of all 𝜉 ∈ 𝑐0, for which there exists some 𝑥 ∈ 𝐼, such that 𝜉∗ =
{𝑠𝑛(𝑥)}𝑛=1

∞ . For 𝜉 ∈ 𝐸𝐼 with 𝜉∗ = {𝑠𝑛(𝑥)}𝑛=1
∞ , 𝑥 ∈ 𝐼 set ∥ 𝜉 ∥𝐸𝐼= ∥ 𝑥 ∥𝐼. 

Fix an orthonormal set {𝑒𝑛}𝑛=1
∞  in 𝐻 and for every 𝜉 = {𝜉𝑛}𝑛=1

∞ ∈ 𝑐0 consider the diagonal 

operator 𝑥𝜉 ∈ 𝐾(𝐻) defined as follows 

𝑥𝜉(𝜑) = ∑𝜉𝑛𝑐𝑛(𝜑)𝑒𝑛

∞

𝑛=1

, 

where 𝑐𝑛(𝜑) = (𝜑, 𝑒𝑛), 𝜑 ∈ 𝐻. If 𝜉 ∈ 𝐸𝐼, then 𝜉∗ = {𝑠𝑛(𝑥)}𝑛=1
∞  for some 𝑥 ∈ 𝐼, and due to 

equalities {𝑠𝑛(𝑥𝜉∗)}𝑛=1
∞ = {𝜉𝑛

∗} = {𝑠𝑛(𝑥)}𝑛=1
∞  we have 𝑥𝜉∗ ∈ 𝐼 and ∥ 𝑥𝜉∗ ∥𝐼 = ∥ 𝑥 ∥𝐼 =

 ∥ 𝜉 ∥𝐸𝐼 (see Proposition (6.1.11)(b)). Moreover, since {𝑠𝑛(𝑥𝜉)}𝑛=1
∞ = {𝑠𝑛(𝑥𝜉∗)}𝑛=1

∞  and 

𝑥𝜉∗ ∈ 𝐼, it follows that 𝑥𝜉 ∈ 𝐼 and ∥ 𝜉 ∥𝐸𝐼= ∥ 𝑥𝜉 ∥𝐼. Thus, a sequence 𝜉 ∈ 𝑐0 is contained in 

𝐸𝐼, if and only if operators 𝑥𝜉  and 𝑥𝜉∗ are in 𝐼, in addition, ∥ 𝜉 ∥𝐸𝐼= ∥ 𝑥𝜉∗ ∥𝐼= ∥ 𝑥𝜉 ∥𝐼. In 

particular, if 𝜂 ∈ 𝑐0, 𝜉 ∈  𝐸𝐼 , 𝜂
∗ ≤ 𝜉∗, then 𝜂 ∈ 𝐸𝐼 and ∥ 𝜂 ∥𝐸𝐼≤ ∥ 𝜉 ∥𝐸𝐼  . 

Theorem (6.1.22)[251]: For any symmetric quasi-Banach ideal 𝐼 of compact operators from 

ℬ(𝐻) the couple (𝐸𝐼 , ∥∙∥𝐸𝐼) is a symmetric quasi-Banach sequence space in 𝑐0 with the 

modulus of concavity which does not exceed the modulus of concavity of the quasinorm 

∥∙∥𝐼, in addition, 𝐶𝐸𝐼 = 𝐼 and ∥∙∥𝐶𝐸𝐼
= ∥∙∥𝐼.  

Proof. If 𝜉 , 𝜂 ∈ 𝐸𝐼 , then 𝑥𝜉 , 𝑥𝜂 ∈ 𝐼, hence 𝑥𝜉 + 𝑥𝜂 ∈ 𝐼. Since 

(𝑥𝜉 + 𝑥𝜂)(𝜑) = ∑𝜉𝑛𝑐𝑛(𝜑)𝑒𝑛

∞

𝑛=1

+∑𝜂𝑛𝑐𝑛(𝜑)𝑒𝑛

∞

𝑛=1

= ∑(𝜉𝑛 + 𝜂𝑛)𝑐𝑛(𝜑)𝑒𝑛

∞

𝑛=1

 = 𝑥𝜉+𝜂(𝜑),

𝜑 ∈ 𝐻, 
we have 𝑥𝜉+𝜂 ∈ 𝐼. Consequently, 𝜉 + 𝜂 ∈ 𝐸𝐼, moreover, 

∥ 𝜉 + 𝜂 ∥𝐸𝐼=  ∥ 𝑥𝜉+𝜂 ∥𝐼 = ∥ 𝑥𝜉 + 𝑥𝜂 ∥𝐼≤ 𝐶(∥ 𝑥𝜉 ∥𝐼+ ∥ 𝑥𝜂 ∥𝐼) = 𝐶(∥ 𝜉 ∥𝐸𝐼+∥ 𝜂 ∥𝐸𝐼), 

where 𝐶 is the modulus of concavity of the quasi-norm ∥∙∥𝐼. 
Now, let 𝜉 ∈ 𝐸𝐼 , 𝛼 ∈ ℝ. Since 
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𝑥𝛼𝜉(𝜑) = ∑𝛼𝜉𝑛𝑐𝑛(𝜑)𝑒𝑛

∞

𝑛=1

=  𝛼𝑥𝜉(𝜑), 𝜑 ∈ 𝐻, 

we have 𝛼𝜉 ∈ 𝐸𝐼 and ∥ 𝛼𝜉 ∥𝐸𝐼= ∥ 𝑥𝛼𝜉 ∥𝐼 = ∥ 𝛼𝑥𝜉 ∥𝐼 = |𝛼| ∥ 𝑥𝜉 ∥ = |𝛼| ∥ 𝜉 ∥𝐸𝐼  . 

It is easy to see that ∥ 𝜉 ∥𝐸𝐼≥  0 and ∥ 𝜉 ∥𝐸𝐼= 0 ⇔ 𝜉 = 0. 

Hence, 𝐸𝐼 is a solid rearrangement-invariant subspace in 𝑐0 and ∥∙∥𝐸𝐼  is a quasi-norm on 𝐸𝐼. 

Let us show that (𝐸𝐼 , ∥∙∥𝐸𝐼) is a quasi-Banach space. Let ||| ∙ |||𝐼 (respectively, ||| ∙ |||𝐸𝐼  ) be 

a 𝑝-additive (respectively, 𝑞-additive) quasi-norm equivalent to the quasi-norm ∥∙∥𝐼 
(respectively, ∥∙∥𝐸𝐼  ), 0 < 𝑝, 𝑞 ≤ 1. 

Let 𝜉(𝑘) = {𝜉𝑛
(𝑘)
}𝑛=1
∞ ∈ 𝐸𝐼 and |||𝜉(𝑘) − 𝜉(𝑚)||| → 0 for 𝑘,𝑚 →∞. Then ∥ 𝑥𝜉(𝑘) −

 𝑥𝜉 (𝑚) ∥𝐼 → 0 and |||𝑥𝜉 (𝑘) − 𝑥𝜉 (𝑚) |||𝐼
𝑝
→ 0 for 𝑘,𝑚 →∞, i.e. 𝑥𝜉 (𝑘) is a Cauchy sequence 

in (𝐼, 𝑑𝐼), where 𝑑𝐼(𝑥, 𝑦) = |||𝑥 − 𝑦|||𝐼
𝑝
. Since (𝐼, 𝑑𝐼) is a complete metric space, there 

exists an operator 𝑥 ∈ 𝐼 such that |||𝑥𝜉(𝑘) − 𝑥|||𝐼
𝑝
→ 0 for 𝑘 →∞. If pn is the one-

dimensional projection onto subspace spanned by 𝑒𝑛, then 

𝜉(𝑘)𝑝𝑛 = 𝑝𝑛𝑥𝜉𝑛
(𝑘)𝑝𝑛

∥∙∥𝐼  
→  𝑝𝑛𝑥𝑝𝑛 ≔ 𝜆𝑛𝑝𝑛, 

0 = 𝑝𝑛𝑥𝜉𝑛
(𝑘)
𝑝𝑚 → 𝑝𝑛𝑥𝑝𝑚, 𝑛 ≠ 𝑚. 

Hence, 𝑥 is also a diagonal operator, i.e. = 𝑥𝜉  , where 𝜉 = {𝜆𝑛}𝑛=1
∞ . Since 𝑥 ∈ 𝐼 we have 

𝜉 ∈ 𝐸𝐼, moreover, ∥ 𝜉(𝑘) − 𝜉 ∥𝐸𝐼= ∥ 𝑥𝜉(𝑘) − 𝑥𝜉 ∥𝜉  → 0 for 𝑘 →∞. 

Consequently, (𝐸𝐼 , ∥∙∥𝐸𝐼) is a symmetric quasi-Banach sequence space in 𝑐0. 

Now, let us show that 𝐶𝐸𝐼 = 𝐼 and ∥ 𝑥 ∥𝐶𝐸𝐼
= ∥ 𝑥 ∥𝐼 for all 𝑥 ∈ 𝐼. Let ∈ 𝐶𝐸𝐼  , i.e. 

{𝑠𝑛(𝑥)}𝑛=1
∞ ∈ 𝐸𝐼. Hence, there exists an operator 𝑦 ∈ 𝐼, such that 𝑠𝑛(𝑥) =  𝑠𝑛(𝑦), 𝑛 ∈ ℕ. 

Consequently, 𝑥 ∈ 𝐼, moreover, ∥ 𝑥 ∥𝐼= ∥ {𝑠𝑛(𝑥)}𝑛=1
∞ ∥𝐸𝐼= ∥ 𝑥 ∥𝐶𝐸𝐼

 . Conversely, if 𝑥 ∈ 𝐼, 

then {𝑠𝑛(𝑥)}𝑛=1
∞ ∈ 𝐸𝐼 and therefore 𝑥 ∈ 𝐶𝐸𝐼  .  

The definition of symmetric Banach (𝑝-convex quasi-Banach) ideal (𝐶𝐸 , ∥∙∥𝐶𝐸) of compact 

operators from ℬ(𝐻) jointly with Theorem (6.1.22) implies the following corollary: 

Corollary (6.1.23)[251]: Let (𝐸, ∥∙∥𝐸) be a symmetric Banach (𝑝-convex quasi-Banach) 

sequence space from 𝑐0. Then 𝐸𝐶𝐸 = 𝐸 and ∥∙∥𝐸𝐶𝐸
= ∥∙∥𝐸. 

Proof. If 𝜉 ∈ 𝐸, then 𝑥𝜉∗ ∈ 𝐶𝐸 , and due to the equality {𝑠𝑛(𝑥𝜉∗)}𝑛=1
∞ = 𝜉∗, we have 𝜉 ∈ 𝐸𝐶𝐸  

and ∥ 𝜉 ∥𝐸𝐶𝐸
= ∥ 𝑥𝜉∗ ∥𝐶𝐸= ∥ 𝜉

∗ ∥𝐸  =∥ 𝜉 ∥𝐸  . The converse inclusion 𝐸𝐶𝐸 ⊂ 𝐸 may be proven 

similarly. 

Let 𝐺, 𝐹 be solid rearrangement-invariant spaces in 𝑐0. It is easy to see that 𝐺 and 𝐹 are 

ideals in the algebra 𝑙∞, in particular, it follows from the assumptions |𝜉| ≤ |𝜂|, 𝜉 ∈ 𝑙∞, 𝜂 ∈
𝐺 that 𝜉 ∈ 𝐺, i.e. 𝐺 and 𝐹 are solid linear subspaces in 𝑙∞. We define 𝐹 -dual space 𝐹: 𝐺 of 

𝐺 by setting 

𝐹: 𝐺 = {𝜉 ∈ 𝑙∞: 𝜉𝜂 ∈ 𝐹, ∀𝜂 ∈ 𝐺}. 
It is clear that 𝐹: 𝐺 is an ideal in 𝑙∞ containing 𝑐00. If ⊂ 𝐹 , then 𝐹: 𝐺 = 𝑙∞, in 

particular, 𝑙∞: 𝐺 = 𝑙∞ for any solid rearrangement-invariant space 𝐺. However, if 𝐺 ⊈ 𝐹 , 
then 𝐹: 𝐺 ≠  𝑙∞. 

Proposition (6.1.24)[251]: If 𝐹: 𝐺 ≠ 𝑙∞, then 𝐹: 𝐺 ⊂ 𝑐0. 

Proof. Suppose that there exists 𝜉 = {𝜉𝑛}𝑛=1
∞ ∈ (𝐹: 𝐺), 𝜉 ∉ 𝑐0. Let 𝛼𝑛 = 𝑠𝑖𝑔𝑛𝜉𝑛, 𝑛 ∈

ℕ, 𝜂 = {𝜂𝑛}𝑛=1
∞ ∈ 𝐺. Obviously, {𝛼𝑛𝜂𝑛}𝑛=1

∞ ∈ 𝐺 and hence, |𝜉|𝜂 = {𝜉𝑛𝛼𝑛𝜂𝑛}𝑛=1
∞ ∈ 𝐹 for 

all 𝜂 ∈ 𝐺, that is |𝜉| ∈ (𝐹: 𝐺), and, in addition, |𝜉 | ∉ 𝑐0. This implies that there exists a 
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subsequence 0 ≠ |𝜉𝑛𝑘| → 𝛼 > 0 for 𝑘 →∞. Consider a sequence 𝜁 = {𝜁𝑘}𝑘=1
∞  from 𝑙∞ \ 𝑐0 

such that 𝜁𝑘 = |𝜉𝑛𝑘| and show that 𝜁 ∈ 𝐹: 𝐺. 

For every 𝜂 = {𝜂𝑛}𝑛=1
∞ ∈ 𝐺 define the sequence 𝑎𝜂 = {𝑎𝑛}𝑛=1

∞  such that 𝑎𝑛𝑘 = 𝜂𝑘 and 𝑎𝑛 =

0, if 𝑛 ≠ 𝑛𝑘 , 𝑘 ∈ ℕ. Since 𝑎𝜂
∗ = 𝜂∗, we have 𝑎𝜂 ∈ 𝐺, and therefore 𝜁𝜂 = {|𝜉𝑛𝑘|𝜂𝑘}𝑘=1

∞ =

{|𝜉𝑛|𝑎𝑛}𝑛=1
∞ = |𝜉 |𝑎𝜂 ∈ 𝐹 for all 𝜂 ∈ 𝐺. Consequently, 𝜁 = {𝜁𝑛}𝑛=1

∞ ∈ 𝐹: 𝐺, moreover, 

𝜁𝑛 ≥ 𝛽 for some 𝛽 > 0 and all 𝑛 ∈ ℕ. Since 𝐹: 𝐺 is an ideal in 𝑙∞, it follows that 𝐹: 𝐺 is a 

solid linear subspace in 𝑙∞, containing the sequence {𝜁𝑛}𝑛=1
∞  with 𝜁𝑛 ≥  𝛽 > 0, 𝑛 ∈ ℕ, that 

implies 𝐹: 𝐺 = 𝑙∞.  

Proposition (6.1.25)[251]: If 𝐹: 𝐺 ≠ 𝑙∞, then 𝐹: 𝐺 = {𝜉 ∈ 𝑐0: 𝜉
∗𝜂∗ ∈ 𝐹, ∀𝜂 ∈ 𝐺}. 

Proof. By Proposition (6.1.24), we have that 𝐹: 𝐺 ⊂ 𝑐0. Let 𝜉 = {𝜉𝑛}𝑛=1
∞ ∈ 𝑐0 and 𝜉∗𝜂∗ ∈

𝐹 for all 𝜂 ∈ 𝐺. Due to Proposition (6.1.21), we have (𝜉𝜂)∗ ≤ 𝜎2(𝜉
∗𝜂∗) ∈ 𝐹, i.e. (𝜉𝜂)∗ ∈ 𝐹 

. Since 𝐹 is a symmetric sequence space, it follows that 𝜉𝜂 ∈ 𝐹 for all 𝜂 ∈  𝐺, i.e. 𝜉 ∈ 𝐹: 𝐺. 

Conversely, suppose that 𝜉 = {𝜉𝑛}𝑛=1
∞ ∈ 𝐹: 𝐺. Let 𝛼𝑛 = 𝑠𝑖𝑔𝑛𝜉𝑛, 𝜂 = {𝜂𝑛}𝑛=1

∞ ∈  𝐺. Then 

{𝛼𝑛𝜂𝑛}𝑛=1
∞ ∈ 𝐺, and therefore |𝜉|𝜂 = {𝜉𝑛𝛼𝑛𝜂𝑛}𝑛=1

∞ ∈ 𝐹 for all 𝜂 ∈ 𝐺, i.e. |𝜉| ∈ 𝐹: 𝐺 ⊂ 𝑐0. 

Since |𝜉 | = {|𝜉𝑛|}𝑛=1
∞ ∈ 𝑐0, there exists a bijection of the set ℕ of natural numbers, such 

that 𝜉∗ = |𝜉𝜋(𝑛)|. For linear bijective mapping 𝑈𝜋: 𝑙∞ → 𝑙∞ defined by 𝑈𝜋({𝜂𝑛}𝑛=1
∞ ) =

{𝜂𝜋(𝑛)}𝑛=1
∞  we have 𝑈𝜋(𝜂𝜁) = 𝑈𝜋(𝜂)𝑈𝜋 (𝜁), (𝑈𝜋(𝜁))

∗
= 𝜁∗, (𝑈𝜋

−1(𝜁 ))∗ = 𝜁∗ for all 𝜁 ∈

𝑙∞, in particular, 𝑈𝜋(𝐸) = 𝐸 for any solid rearrangement-invariant space 𝐸 ⊂ 𝑙∞. 

Consequently, for all 𝜂 ∈ 𝐺 we have 𝜉∗𝜂∗ = 𝑈𝜋 (|𝜉 |)𝑈𝜋(𝑈𝜋
−1(𝜂∗)) =  𝑈𝜋(|𝜉 |𝑈𝜋

−1(𝜂∗)) ∈
𝐹 . 
Propositions (6.1.24) and (6.1.25) imply the following corollary. 

Corollary (6.1.26)[251]: 𝐹: 𝐺 is a solid rearrangement-invariant space, moreover, if 𝐹: 𝐺 ≠
𝑙∞, then 𝑐00 ⊂ 𝐹:𝐺 ⊂ 𝑐0. 

Proof. The definition of 𝐹: 𝐺 immediately implies that 𝐹: 𝐺 is an ideal in 𝑙∞ and 𝑐00 ⊂ 𝐹:𝐺. 
If 𝐹: 𝐺 ≠  𝑙∞, then, due to Proposition (6.1.24), we have 𝐹: 𝐺 ⊂ 𝑐0. 

In the case when 𝐹: 𝐺 ≠ 𝑙∞, we have for any 𝜉 ∈ 𝑐0, 𝜂 ∈ 𝐹: 𝐺, 𝜉∗ ≤ 𝜂∗, 𝜁 ∈ 𝐺 that 

𝜉∗𝜁∗ ≤ 𝜂∗𝜁∗ ∈ 𝐹 (see Proposition (6.1.25)). Consequently, 𝜉∗𝜁∗ ∈ 𝐹 for any 𝜁 ∈ 𝐺, which 

implies the inclusion 𝜉 ∈ 𝐹: 𝐺. 

We need some complementary properties of singular values of compact operators. For every 

operator 𝑥 ∈ ℬ(𝐻) define the decreasing rearrangement 𝜇(𝑥, 𝑡) of 𝑥 by setting 

𝜇(𝑥, 𝑡) = inf{𝑠 > 0: 𝑡𝑟(|𝑥| > 𝑠) ≤  𝑡} , 𝑡 > 0 
(see e.g. [19]). If 𝑥 ∈ 𝐾(𝐻), then 

𝜇(𝑥, 𝑡) = ∑ 𝑠𝑛(𝑥)𝜒[𝑛−1,𝑛)(𝑡)

∞

𝑛=1

= 𝑓{𝑠𝑛(𝑥)}𝑛=1∞
∗ (𝑡). 

In [19] it is established that for every 𝑥, 𝑦 ∈ ℬ(𝐻) the inequalities 

𝜇(𝑥 + 𝑦, 𝑡 + 𝑠) ≤  𝜇(𝑥, 𝑡) + 𝜇(𝑦, 𝑠), 
𝜇(𝑥𝑦, 𝑡 + 𝑠)  ≤  𝜇(𝑥, 𝑡)𝜇(𝑦, 𝑠) 

hold, in particular, if 𝑥, 𝑦 ∈ 𝐾(𝐻), then 

                      {𝑠𝑛(𝑥 + 𝑦)}𝑛=1
∞  ≤  𝜎2({𝑠𝑛(𝑥) + 𝑠𝑛(𝑦)}𝑛=1

∞ ),                                 (3) 

                      {𝑠𝑛(𝑥𝑦)}𝑛=1
∞ ≤ 𝜎2({𝑠𝑛(𝑥)𝑠𝑛(𝑦)}𝑛=1

∞ ).                                            (4) 

Let 𝐼, 𝐽 be symmetric quasi-Banach ideals of compact operators from ℬ(𝐻) and 𝐼 ⊈ 𝐽. In 

this case, 𝐽: 𝐼 ⊂ 𝐾(𝐻) see Proposition (6.1.14) and 𝐸𝐼 ⊈ 𝐸𝐽 (see Theorem (6.1.22)), 

therefore 𝐸𝐽: 𝐸𝐼 ⊂ 𝑐0 see Proposition (6.1.24). The following proposition establishes that the 

set of operators belonging to the 𝐽-dual space 𝐽: 𝐼 of 𝐼 coincides with the set 
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𝐶𝐸𝐽:𝐸𝐼 = {𝑥 ∈ 𝐾(𝐻): {𝑠𝑛(𝑥)}𝑛=1
∞ ∈ 𝐸𝐽: 𝐸𝐼}. 

Proposition (6.1.27)[251]: 𝐽: 𝐼 = 𝐶𝐸𝐽:𝐸𝐼 . 

Proof. Let 𝑎 ∈ 𝐽: 𝐼. We claim that 𝑎 ∈ 𝐶𝐸𝐽:𝐸𝐼  , i.e. 𝜉 = {𝑠𝑛(𝑎)}𝑛=1
∞ ∈ 𝐸𝐽: 𝐸𝐼. For any 

sequence 𝜂 ∈ 𝐸𝐼 consider operators 𝑥𝜉  and 𝑥𝜂∗. Since 𝑥𝜉 ∈ 𝐽: 𝐼, 𝑥𝜂∗ ∈ 𝐼, we have 𝑥𝜉𝑥𝜂∗ ∈ 𝐽. 

On the other hand, 𝑥𝜉𝑥𝜂∗(𝜑) = ∥∙∥𝐻 − lim
𝑛→∞

(∑ 𝑠𝑛(𝑎)𝑐𝑘 (𝑥𝜂∗(𝜑)) 𝑒𝑘
𝑛
𝑘=1 ) =

𝑠𝑛(𝑎)𝜂𝑛
∗ 𝑐𝑛(𝜑)𝑒𝑛 = 𝑥𝜉𝜂∗(𝜑) for all 𝜑 ∈ 𝐻. Thus 𝑥𝜉𝜂∗ ∈ 𝐽, 𝑖. 𝑒. 𝜉𝜂∗ ∈ 𝐸𝐽. Consequently, 

{𝑠𝑛(𝑎)}𝑛=1
∞ ∈ 𝐸𝐽: 𝐸𝐼 see Proposition (6.1.25) yielding our claim . 

Conversely, let ∈ 𝐶𝐸𝐽:𝐸𝐼 , i.e. {𝑠𝑛(𝑎)}𝑛=1
∞ ∈ 𝐸𝐽: 𝐸𝐼. Due to (4), for all 𝑥 ∈ 𝐼 we have 

{𝑠𝑛(𝑎𝑥)}𝑛=1
∞ ≤ 𝜎2({𝑠𝑛(𝑎)𝑠𝑛(𝑥)}𝑛=1

∞ ). Since {𝑠𝑛(𝑎)𝑠𝑛(𝑥)}𝑛=1
∞ ∈ 𝐸𝐽, it follows that 

𝜎2({𝑠𝑛(𝑎)𝑠𝑛(𝑥)}𝑛=1
∞ ) ∈ 𝐸𝐽, and therefore {𝑠𝑛(𝑎𝑥)}𝑛=1

∞ ∈ 𝐸𝐽, i.e. 𝑎𝑥 ∈ 𝐽. Consequently, 𝑎 ∈

𝐽: 𝐼. 
Let 𝐼, 𝐽 be symmetric quasi-Banach ideals of compact operators from ℬ(𝐻), 𝐼 ⊈ 𝐽 and 𝐽: 𝐼 
be the 𝐽-dual space of 𝐼. For any 𝑎 ∈ 𝐽: 𝐼 define a linear mapping 𝑇𝑎: 𝐼 → 𝐽 by setting 

𝑇𝑎(𝑥) = 𝑎𝑥, 𝑥 ∈ 𝐼. 
Proposition (6.1.28)[251]: 𝑇𝑎 is a continuous linear mapping from 𝐼 into 𝐽 for every 𝑎 ∈
𝐽: 𝐼. 
Proof. Let 𝑎 ∈ 𝐽: 𝐼, 𝜉 = {𝑠𝑛(𝑎)}𝑛=1

∞ , 𝑥𝑘 ∈ 𝐼 and ∥ 𝑥𝑘 ∥𝐼 → 0 for 𝑘 →∞. Then 𝜉(𝑘) =

{𝑠𝑛(𝑥𝑘)}𝑛=1
∞ ∈ 𝐸𝐼 and ∥ 𝜉(𝑘) ∥𝐸𝐼→ 0. By Proposition (6.1.19), for every subsequence 

{𝜉(𝑘𝑙)}𝑙=1
∞  there exists a subsequence {𝜉(𝑘𝑙𝑠)}𝑠=1

∞  such that 𝜉(𝑘𝑙𝑠)
 (𝑟) 
→  0 for 𝑠 →∞, i.e. there 

exist 0 ≤ 𝜂 ∈ 𝐸𝐼 and a sequence {𝜀𝑠}𝑠=1
∞  of positive numbers decreasing to zero such that 

|𝜉(𝑘𝑙𝑠)| ≤ 𝜀𝑠𝜂. Since 𝑎 ∈ 𝐽: 𝐼, we have 𝜉 ∈ 𝐸𝐽 ∶ 𝐸𝐼 (see Proposition (6.1.27)), and therefore 

𝜁 = 𝜉𝜂 ∈ 𝐸𝐽, in addition, 𝜁 ≥ 0. Since |𝜉𝜉(𝑘𝑙𝑠)| ≤  𝜀𝑠𝜁 , it follows that 𝜉 𝜉(𝑘𝑙𝑠)
  (𝑟) 
→  0. By 

Proposition (6.1.19), we have ∥ 𝜉𝜉(𝑘) ∥𝐸𝐽→ 0. Consequently, 

∥ 𝑎𝑥𝑘 ∥𝐽= ∥ {𝑠𝑛(𝑎𝑥𝑘)} ∥𝐸𝐽≤ ∥ 𝜎2(𝜉 𝜉
(𝑘)) ∥𝐸𝐽≤ 2𝐶 ∥ 𝜉 𝜉(𝑘) ∥𝐸𝐽→  0 for 𝑘 →∞. 

By Proposition (6.1.28), 𝑇𝑎 is a bounded linear operator from 𝐼 into 𝐽, therefore 

∥ 𝑇𝑎 ∥ℬ(𝐼,𝐽) = sup {∥ 𝑇𝑎(𝑥) ∥𝐽∶ ∥ 𝑥 ∥𝐼≤ 1} = 𝑠𝑢𝑝{∥ 𝑎𝑥 ∥𝐽∶ ∥ 𝑥 ∥𝐼≤ 1} <∞, i.e. for all 𝑎 ∈

𝐽: 𝐼 the quantity 

∥ 𝑎 ∥𝐽:𝐼∶= sup {∥ 𝑎𝑥 ∥𝐽 : 𝑥 ∈ 𝐼, ∥ 𝑥 ∥𝐼 ≤ 1} 
is well-defined. 

Theorem (6.1.29)[251]: Let 𝐼, 𝐽 be symmetric quasi-Banach ideals of compact operators in 

ℬ(𝐻) such that 𝐼 ⊈ 𝐽. Then (𝐽: 𝐼, ∥∙∥𝐽:𝐼) is a symmetric quasi-Banach ideal of compact 

operators whose modulus of concavity does not exceed the modulus of concavity of the 

quasi-norm ∥∙∥𝐽, in addition, ∥ 𝑎𝑥 ∥𝐽≤ ∥ 𝑎 ∥𝐽:𝐼∥ 𝑥 ∥𝐼 for all 𝑎 ∈ 𝐽: 𝐼, 𝑥 ∈ 𝐼. 

Proof. Since ∥ ∙∥ℬ(𝐼,𝐽) is a quasi-norm with the modulus of concavity which does not exceed 

the modulus of concavity of the quasi-norm ∥∙∥𝐽, we see that ∥∙∥𝐽:𝐼 is a quasi-norm on 𝐽: 𝐼 
with the modulus of concavity which does not exceed the modulus of concavity of the quasi-

norm ∥∙∥𝐽. 

If 𝑦 ∈ ℬ(𝐻), 𝑎 ∈ 𝐽: 𝐼, then 

∥ 𝑦𝑎 ∥𝐽:𝐼= sup {∥ (𝑦𝑎)𝑥 ∥𝐽∶ 𝑥 ∈ 𝐼, ∥ 𝑥 ∥𝐼≤ 1} 

≤ sup {∥ 𝑦 ∥ℬ(𝐻)∥ 𝑎𝑥 ∥𝐽∶ 𝑥 ∈ 𝐼, ∥ 𝑥 ∥𝐼≤ 1} =  ∥ 𝑦 ∥ℬ(𝐻)∥ 𝑎 ∥𝐽:𝐼 . 
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Since 𝑦𝑥 ∈ 𝐼 for all 𝑥 ∈ 𝐼 and ∥ 𝑦𝑥 ∥𝐼≤∥ 𝑦 ∥ℬ(𝐻)∥ 𝑥 ∥𝐼 then for 𝑦 ≠ 0 and ∥ 𝑥 ∥𝐼 ≤ 1 we 

have ‖
𝑦𝑥

∥𝑦∥ℬ(𝐻)
‖
𝐼

≤ 1. Hence, 

∥ 𝑎𝑦 ∥𝐽:𝐼= sup {∥ 𝑎(𝑦𝑥) ∥𝐽∶ 𝑥 ∈ 𝐼, ∥ 𝑥 ∥𝐼≤ 1} 

= ∥ 𝑦 ∥ℬ(𝐻) sup {‖𝑎 (
𝑦𝑥

∥ 𝑦 ∥ℬ(𝐻)
)‖

𝐽

: 𝑥 ∈ 𝐼, ∥ 𝑥 ∥𝐼≤ 1} 

≤ ∥ 𝑦 ∥ℬ(𝐻) sup {∥ 𝑎𝑥 ∥𝐽∶ 𝑥 ∈ 𝐼, ∥ 𝑥 ∥𝐼≤ 1} = ∥ 𝑦 ∥ℬ(𝐻)∥ 𝑎 ∥𝐼:𝐽. 

If 𝑝 is a one-dimensional projection from ℬ(𝐻), then 𝑝 ∈ 𝐼, ∥ 𝑝 ∥𝐼 = 1, and so 

∥ 𝑝 ∥𝐽:𝐼= sup{∥ 𝑝𝑥 ∥𝐽∶ 𝑥 ∈ 𝐼, ∥ 𝑥 ∥𝐼≤  1} ≥ ∥ 𝑝 ∥𝐽= 1. 

On the other hand, for 𝑥 ∈ 𝐼 with ∥ 𝑥 ∥𝐼 ≤ 1 we have ∥ 𝑥 ∥ℬ(𝐻)≤ 1 (see Proposition 

(6.1.11)(c)), and therefore 

∥ 𝑝𝑥 ∥𝐽= ∥ 𝑝(𝑝𝑥) ∥𝐽≤ ∥ 𝑝𝑥 ∥ℬ(𝐻)∥ 𝑝 ∥𝐽≤ 1. 

Consequently, ∥ 𝑝 ∥𝐽:𝐼= 1. 

Thus, ∥∙∥𝐽:𝐼 is a symmetric quasi-norm on the two-sided ideal 𝐽: 𝐼. The inequality ∥ 𝑎𝑥 ∥𝐽≤

 ∥ 𝑎 ∥𝐽:𝐼∥ 𝑥 ∥𝐼 immediately follows from the definition of ∥∙∥𝐽:𝐼. 

Let us show that (𝐽: 𝐼, ∥∙∥𝐽:𝐼) is a quasi-Banach space. 

Denote by ||| ∙ |||𝐽 (respectively ||| ∙ |||𝐽:𝐼) a 𝑝-additive (respectively, 𝑞-additive) quasi-

norm on 𝐽 (respectively, on 𝐽: 𝐼) which is equivalent to the quasi-norm ∥∙∥𝐽 (respectively, 

∥∙∥𝐽:𝐼), where 0 < 𝑝, 𝑞 ≤ 1. In particular, we have 𝛼1|||𝑥|||𝐽  ≤ ∥ 𝑥 ∥𝐽≤ 𝛽1|||𝑥|||𝐽 and 

𝛼2|||𝑎|||𝐽:𝐼  ≤ ∥ 𝑎 ∥𝐽:𝐼 ≤  𝛽2|||𝑎|||𝐽:𝐼 for all 𝑥 ∈ 𝐽, 𝑎 ∈ 𝐽: 𝐼 and some constants 

𝛼1, 𝛼2, 𝛽1, 𝛽2 > 0. 

Let 𝑑𝐽(𝑥, 𝑦) = |||𝑥 − 𝑦|||𝐽
𝑝
, 𝑑𝐽:𝐼(𝑎, 𝑏) = |||𝑎 − 𝑏|||𝐽:𝐼

𝑞
 be metrics on 𝐽 and 𝐽: 𝐼 respectively. 

Let {𝑎𝑛}𝑛=1
∞  be a Cauchy sequence in (𝐽: 𝐼, 𝑑𝐽:𝐼), i.e. |||𝑎𝑛 − 𝑎𝑚|||𝐽:𝐼

𝑞
≤ 𝜀𝑞 for all 𝑛,𝑚 >

𝑛(𝜀), 𝜀 > 0, thus 

|||𝑎𝑛𝑥 − 𝑎𝑚𝑥|||𝐽  ≤
1

𝛼1
∥ 𝑎𝑛𝑥 − 𝑎𝑚𝑥 ∥𝐽 ≤

1

𝛼1
∥ 𝑎𝑛 − 𝑎𝑚 ∥𝐽:𝐼∥ 𝑥 ∥𝐼 

                             ≤
𝛽2

𝛼1
|||𝑎𝑛 − 𝑎𝑛|||

𝐽:𝐼
∥ 𝑥 ∥𝐼 ≤

𝛽2

𝛼1
𝜀 ∥ 𝑥 ∥𝐼                              (5) 

for all 𝑥 ∈ 𝐼, 𝑛,𝑚 > 𝑛(𝜀). Consequently, the sequence {𝑎𝑛𝑥}𝑛=1
∞  is a Cauchy sequence in 

(𝐽, 𝑑𝐽), 𝑥 ∈ 𝐼. Since the metric space (𝐽, 𝑑𝐽) is complete, there exists an operator 𝑧(𝑥) ∈ 𝐽 

such that |||𝑎𝑛𝑥 − 𝑧(𝑥)|||𝐽
𝑝
→ 0 for 𝑛 →∞. Since 

∥ 𝑎𝑛𝑥 − 𝑧(𝑥) ∥ℬ(𝐻) ≤ ∥ 𝑎𝑛𝑥 − 𝑧(𝑥) ∥𝐽 ≤  𝛽1|||𝑎𝑛𝑥 − 𝑧(𝑥)|||𝐽, 

it follows that ∥ 𝑎𝑛𝑥 − 𝑧(𝑥) ∥ℬ(𝐻) → 0.  

Since 
∥ 𝑎𝑛 − 𝑎𝑚 ∥ℬ(𝐻)≤ ∥ 𝑎𝑛 − 𝑎𝑚 ∥𝐽:𝐼≤ 𝛽2|||𝑎𝑛 − 𝑎𝑚|||𝐽:𝐼 → 0 

for 𝑛,𝑚 →∞, there exists 𝑎 ∈ ℬ(𝐻) such that ∥ 𝑎𝑛 − 𝑎 ∥ℬ(𝐻)→ 0 for 𝑛 →∞. For an 

arbitrary 𝑥 ∈ 𝐼, we have 

∥ 𝑎𝑛𝑥 − 𝑎𝑥 ∥ℬ(𝐻) ≤ ∥ 𝑎𝑛 − 𝑎 ∥ℬ(𝐻)∥ 𝑥 ∥𝐼→ 0 for 𝑛 →∞. 

Thus, 𝑎𝑥 = 𝑧(𝑥) for all 𝑥 ∈ 𝐼. Since 𝑧(𝑥) ∈ 𝐽 for all 𝑥 ∈ 𝐼, it follows that 𝑎 ∈ 𝐽: 𝐼, moreover, 

due to (5), ∥ 𝑎𝑛𝑥 − 𝑎𝑥 ∥𝐽≤
𝛽1𝛽2

𝛼1
𝜀 ∥ 𝑥 ∥𝐼 for 𝑛 ≥ 𝑛(𝜀) and for all 𝑥 ∈ 𝐼. Consequently, 

|||𝑎𝑛 − 𝑎|||𝐽:𝐼  ≤
1

𝛼2
∥ 𝑎𝑛 − 𝑎 ∥𝐽:𝐼=

1

𝛼2
𝑠𝑢𝑝{∥ 𝑎𝑛𝑥 − 𝑎𝑥 ∥𝐽∶ 𝑥 ∈ 𝐼, ∥ 𝑥 ∥𝐽 ≤  1} ≤

𝛽1𝛽2
𝛼1𝛼2

𝜀 
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for 𝑛 ≥ 𝑛(𝜀), i.e. |||𝑎𝑛 − 𝑎|||𝐽:𝐼 → 0. Thus, the metric space (𝐽: 𝐼, 𝑑𝐽:𝐼) is complete, i.e. 

(𝐽: 𝐼, ∥∙∥𝐽:𝐼) is a quasi-Banach space.  

Remark (6.1.30)[251]: Since the quasi-norms ∥∙∥𝐽 and ∥∙∥𝐽:𝐼 are symmetric, for all 𝑎 ∈ 𝐽: 𝐼 
the relations 

∥ 𝑎 ∥𝐽:𝐼= ∥ 𝑎
∗ ∥𝐽:𝐼= sup {∥ 𝑎∗𝑥 ∥𝐽∶ 𝑥 ∈ 𝐼, ∥ 𝑥 ∥𝐼≤ 1} 

= sup {∥ 𝑥∗𝑎 ∥𝐽∶ 𝑥 ∈ 𝐼, ∥ 𝑥 ∥𝐼 ≤ 1} = sup {∥ 𝑥𝑎 ∥𝐽∶ 𝑥 ∈ 𝐼, ∥ 𝑥 ∥𝐼 ≤ 1} 

hold, i.e. for any 𝑎 ∈ 𝐽: 𝐼 we have 

                                        ∥ 𝑎 ∥𝐽:𝐼= sup {∥ 𝑥𝑎 ∥𝐼∶ 𝑥 ∈ 𝐼, ∥ 𝑥 ∥𝐼 ≤ 1}.                          (6) 

When 𝐼 ⊆ 𝐽 we have 𝐽: 𝐼 = ℬ(𝐻) and for any 𝑎 ∈ 𝐽: 𝐼 the mapping 𝑇𝑎(𝑥) = 𝑎𝑥 is a bounded 

linear operator from 𝐼 into 𝐽. As in the proof of Theorem (6.1.29) we may establish that 

∥ 𝑎 ∥𝐽:𝐼= sup {∥ 𝑎𝑥 ∥𝐽: 𝑥 ∈ 𝐼, ∥ 𝑥 ∥𝐼 ≤ 1} is a complete symmetric quasi-norm on 𝐽: 𝐼. In 

addition, in case 𝐼 = 𝐽 we have 

∥ 𝑎 ∥𝐼:𝐼= sup {∥ 𝑎𝑥 ∥𝐼∶ 𝑥 ∈ 𝐼, ∥ 𝑥 ∥𝐼 ≤ 1} 

≤ sup{∥ 𝑎 ∥ℬ(𝐻)∥ 𝑥 ∥𝐼∶ 𝑥 ∈ 𝐼, ∥ 𝑥 ∥𝐼 ≤ 1} ≤ ∥ 𝑎 ∥ℬ(𝐻), 

i.e. 

                                        ∥ 𝑎 ∥𝐼:𝐼≤ ∥ 𝑎 ∥ℬ(𝐻) for all 𝑎 ∈ 𝐼: 𝐼.                               (7) 

Thus, the norm ∥∙∥ℬ(𝐻) and the quasi-norm ∥∙∥𝐼:𝐼 are equivalent. 

Now, let 𝐺 and 𝐹 be arbitrary symmetric quasi-Banach sequence spaces in 𝑙∞. For every 

𝜉 ∈ 𝐹: 𝐺 set 

∥ 𝜉 ∥𝐹∶𝐺  =  sup {∥ 𝜉𝜂 ∥𝐹∶ 𝜂 ∈ 𝐺, ∥ 𝜂 ∥𝐺≤ 1}. 
The following theorem is a ‘‘commutative’’ version of Theorem (6.1.29). 

Theorem (6.1.31)[251]: If 𝐺 ⊈ 𝐹 , then (𝐹: 𝐺, ∥∙∥𝐹∶𝐺) is a symmetric quasi-Banach 

sequence space in 𝑐0 with the modulus of concavity, which does not exceed the modulus of 

concavity of the quasi-norm ∥∙∥𝐹 , in addition, ∥ 𝜉𝜂 ∥𝐹≤ ∥ 𝜉 ∥𝐹:𝐺∥ 𝜂 ∥𝐺 for all 𝜉 ∈ 𝐹: 𝐺, 𝜂 ∈
𝐺. 

Proof. Since 𝐺 ⊈  𝐹 , it follows that 𝐹 ≠ 𝑙∞, 𝐹: 𝐺 ≠  𝑙∞, and therefore, according to 

Corollary(6.1.26), 𝐹: 𝐺 is a solid rearrangement invariant space and 𝐹: 𝐺 ⊂ 𝑐0. 

As in the proof of Theorem (6.1.29) it is established that ∥∙∥𝐹∶𝐺 is a complete quasi-norm on 

𝐹: 𝐺 with the modulus of concavity which does not exceed the modulus of concavity of the 

quasi-norm ∥∙∥𝐹 . 

If 𝜉, 𝜂 ∈ 𝐹: 𝐺 and 𝜉∗ ≤ 𝜂∗, then 𝜉∗ = 𝑎𝜂∗ for some 𝑎 ∈ 𝑙∞ with ∥ 𝑎 ∥∞≤ 1. Hence, 

∥ 𝜉∗ ∥𝐹∶𝐺  = ∥ 𝑎𝜂
∗ ∥𝐹∶𝐺= sup {∥ 𝑎𝜂∗𝜁 ∥𝐹∶ 𝜁 ∈ 𝐺, ∥ 𝜁 ∥𝐺≤ 1} 

≤ ∥ 𝑎 ∥∞  sup {∥ 𝜂∗𝜁 ∥𝐹∶ 𝜁 ∈ 𝐺, ∥ 𝜁 ∥𝐺≤ 1}  ≤∥ 𝜂∗ ∥𝐹∶𝐺 . 
Let us show that ∥ 𝜉 ∥𝐹∶𝐺= ∥ 𝜉

∗ ∥𝐹∶𝐺 for all 𝜉 = {𝜉𝑛}𝑛=1
∞ ∈ 𝐹: 𝐺. Since 𝜉 ∈ 𝑐0 there exists a 

bijection 𝜋: ℕ → ℕ such that 𝑈𝜋(𝜉 ):= {𝜉𝜋(𝑛)}𝑛=1
∞ = {𝜉𝑛

∗}𝑛=1
∞ = 𝜉∗. It is clear that the 

mapping 𝑈𝜋: 𝑙∞ → 𝑙∞ defined by the equality 𝑈𝜋(𝜂) = 𝑈𝜋({𝜂𝑛}𝑛=1
∞ ) = {𝜂𝜋(𝑛)}𝑛=1

∞ , 𝜂 =

{𝜂𝑛}𝑛=1
∞ ∈ 𝑙∞, is a linear bijective mapping, such that 𝑈𝜋(𝜂𝜁 ) = 𝑈𝜋(𝜂)𝑈𝜋(𝜁 ), 𝜂, 𝜁 ∈ 𝑙∞. In 

addition, 𝑈𝜋(𝐺) = 𝐺,𝑈𝜋(𝐹 ) = 𝐹 , and ∥ 𝑈𝜋(𝜂) ∥𝐺  = ∥ 𝜂 ∥𝐺 , ∥ 𝑈𝜋(𝜁 ) ∥𝐹  = ∥ 𝜁 ∥𝐹  for all 

𝜂 ∈ 𝐺, 𝜁 ∈ 𝐹. 

Since 𝑈𝜋(𝜉 ) = 𝜉∗, we have 

∥ 𝜉∗ ∥𝐹∶𝐺=  sup {∥ 𝑈𝜋(𝜉)𝜂 ∥𝐹∶ 𝜂 ∈ 𝐺, ∥ 𝜂 ∥𝐺≤ 1} = sup {∥ 𝑈𝜋(𝜉𝑈𝜋
−1 (𝜂)) ∥𝐹∶ 𝜂 

∈  𝐺, ∥ 𝜂 ∥𝐺≤  1} 
= sup {∥ 𝜉𝑈𝜋

−1(𝜂) ∥𝐹∶  𝜂 ∈ 𝐺, ∥ 𝜂 ∥𝐺≤ 1} = sup {∥ 𝜉 𝜁 ∥𝐹: 𝑈𝜋(𝜁 ) ∈ 𝐺, ∥ 𝑈𝜋(𝜁 ) ∥𝐺≤ 1} 
= 𝑠𝑢𝑝{∥ 𝜉 𝜁 ∥𝐹∶ 𝜁 ∈ 𝐺, ∥ 𝜁 ∥𝐺  ≤  1}  = ∥ 𝜉 ∥𝐹∶𝐺 . 

Thus, from 𝜉 , 𝜂 ∈ 𝐹: 𝐺, 𝜉∗ ≤ 𝜂∗ it follows that 
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∥ 𝜉 ∥𝐹∶𝐺= ∥ 𝜉
∗ ∥𝐹∶𝐺  ≤ ∥ 𝜂

∗ ∥𝐹∶𝐺  = ∥ 𝜂 ∥𝐹∶𝐺 .  
The equality ∥ 𝜉 ∥𝐹∶𝐺= 1 is established similarly to the equality ∥ 𝑝 ∥𝐽:𝐼= 1, where 𝑝 is a 

one-dimensional projection from ℬ(𝐻) (see the proof of Theorem (6.1.29)). 

Consequently, (𝐹: 𝐺, ∥∙∥𝐹∶𝐺) is a symmetric quasi-Banach sequence space in 𝑐0. The 

inequality ∥ 𝜉𝜂 ∥𝐹≤ ∥ 𝜉 ∥𝐹∶𝐺∥ 𝜂 ∥𝐺  immediately follows from the definition of ∥∙∥𝐹∶𝐺.  

Let 𝐼, 𝐽 be symmetric quasi-Banach ideals of compact operators from ℬ(𝐻), 𝐼 ⊈  𝐽. By 

Proposition (6.1.27), : 𝐼 = 𝐶𝐸𝐽:𝐸𝐼  , i.e. 𝐶𝐸𝐽:𝐸𝐼  is a two-sided ideal of compact operators from 

ℬ(𝐻). For every 𝑎 ∈ 𝐶𝐸𝐽:𝐸𝐼  we set 

∥ 𝑎 ∥𝐶𝐸𝐽:𝐸𝐼
: = ∥ {𝑠𝑛(𝑎)} ∥𝐸𝐽:𝐸𝐼  . 

Proposition (6.1.32)[251]: ∥∙∥𝐶𝐸𝐽:𝐸𝐼
 is a symmetric quasi-norm on 𝐶𝐸𝐽:𝐸𝐼 . 

Proof. Obviously, ∥ 𝑎 ∥𝐶𝐸𝐽:𝐸𝐼
 ≥ 0 for all 𝑎 ∈ 𝐶𝐸𝐽:𝐸𝐼 and ∥ 𝑎 ∥𝐶𝐸𝐽:𝐸𝐼

= 0 ⇔ 𝑎 = 0. If 𝑎, 𝑏 ∈

𝐶𝐸𝐽:𝐸𝐼  , 𝜆 ∈ ℂ, then 

∥ 𝜆𝑎 ∥𝐶𝐸𝐽:𝐸𝐼
= ∥ {𝑠𝑛(𝜆𝑎)}𝑛=1

∞ ∥𝐸𝐽:𝐸𝐼= |𝜆| ∥ 𝑎 ∥𝐸𝐽:𝐸𝐼  

and 

∥ 𝑎 + 𝑏 ∥𝐶𝐸𝐽:𝐸𝐼
= ∥ {𝑠𝑛(𝑎 + 𝑏)} ∥𝐸𝐽:𝐸𝐼    ≤  

(3)
∥ 𝜎2({𝑠𝑛(𝑎) + 𝑠𝑛(𝑏)}) ∥𝐸𝐽:𝐸𝐼  

≤ 2𝐶 ∥ {𝑠𝑛(𝑎)} + {𝑠𝑛(𝑏)} ∥𝐸𝐽:𝐸𝐼  

≤  2𝐶2(∥ {𝑠𝑛(𝑎)} ∥𝐸𝐽:𝐸𝐼+∥ {𝑠𝑛(𝑏)} ∥𝐸𝐽:𝐸𝐼) 

= 2𝐶2(∥ 𝑎 ∥𝐶𝐸𝐽:𝐸𝐼
+ ∥ 𝑏 ∥𝐶𝐸𝐽:𝐸𝐼

). 

Hence, ∥∙∥𝐶𝐸𝐽:𝐸𝐼
 is a quasi-norm on 𝐶𝐸𝐽:𝐸𝐼  and the modulus of concavity of ∥∙∥𝐶𝐸𝐽:𝐸𝐼

 does not 

exceed 2𝐶2, where 𝐶 is the modulus of concavity of the quasi-norm ∥∙∥𝐸𝐽. 

Since 𝑠𝑛(𝑥𝑎𝑦) ≤ ∥ 𝑥 ∥ℬ(𝐻)∥ 𝑦 ∥ℬ(𝐻) 𝑠𝑛(𝑎) for all 𝑎 ∈ 𝐾(𝐻), 𝑥, 𝑦 ∈ ℬ(𝐻), 𝑛 ∈ ℕ (see 

Proposition (6.1.7)), it follows  

∥ 𝑥𝑎𝑦 ∥𝐶𝐸𝐽:𝐸𝐼
= ∥ {𝑠𝑛(𝑥𝑎𝑦)} ∥𝐸𝐽:𝐸𝐼≤ ∥ 𝑥 ∥ℬ(𝐻)∥ 𝑦 ∥ℬ(𝐻)∥ 𝑎 ∥𝐶𝐸𝐽:𝐸𝐼

. 

It is clear that ∥ 𝑝 ∥𝐶𝐸𝐽:𝐸𝐼
= 1 for every one-dimensional projection 𝑝. 

Thus, ∥∙∥𝐶𝐸𝐽:𝐸𝐼
 is a symmetric quasi-norm on 𝐶𝐸𝐽:𝐸𝐼  . 

Theorem (6.1.33)[251]: Let 𝐼, 𝐽 be symmetric quasi-Banach ideals of compact operators 

from ℬ(𝐻) and 𝐼 ⊈ 𝐽. Then 

(i) 𝐸𝐽:𝐼 = 𝐸𝐽: 𝐸𝐼 and ∥∙∥𝐸𝐽:𝐸𝐼  ≤ ∥∙∥𝐸𝐽:𝐼≤ 2𝐶 ∥∙∥𝐸𝐽:𝐸𝐼  , where 𝐶 is the modulus of concavity of 

the quasi-norm ∥∙∥𝐽; 

(ii) 𝐽: 𝐼 = 𝐶𝐸𝐽:𝐸𝐼  and ∥∙∥𝐶𝐸𝐽:𝐸𝐼
 ≤ ∥∙∥𝐽:𝐼 ≤  2𝐶 ∥∙∥𝐶𝐸𝐽:𝐸𝐼

 , where 𝐶 is the modulus of concavity 

of the quasi-norm ∥∙∥𝐸𝐽  . 

Proof. If 𝜉 = 𝜉∗ ∈ 𝐸𝐽:𝐼 , then 𝑥𝜉 ∈ 𝐽: 𝐼 see Theorem (6.1.22). Hence, for every 𝜂 = 𝜂∗ ∈ 𝐸𝐼 

we have 𝑥𝜂 ∈ 𝐼 and 𝑥𝜉𝜂 = 𝑥𝜉  𝑥𝜂 ∈ 𝐽, i.e. 𝜉𝜂 ∈ 𝐸𝐽. Therefore, due to Proposition (6.1.25), 

𝜉 ∈ 𝐸𝐽: 𝐸𝐼 , in addition, 

∥ 𝜉 ∥𝐸𝐽:𝐼= ∥ 𝑥𝜉 ∥𝐽:𝐼 = sup {∥ 𝑥𝜉𝑦 ∥𝐽∶ 𝑦 ∈ 𝐼, ∥ 𝑦 ∥𝐽≤ 1} 

≥ sup {∥ 𝑥𝜉  𝑥𝜂 ∥𝐽∶ 𝜂 ∈ 𝐸𝐼 , ∥ 𝜂 ∥𝐸𝐼≤ 1} 

= 𝑠𝑢𝑝{∥ 𝑥𝜉𝜂 ∥𝐽∶ 𝜂 ∈ 𝐸𝐼 , ∥ 𝜂 ∥𝐸𝐼≤ 1} 

= sup {∥ 𝜉𝜂 ∥𝐸𝐼 : 𝜂 ∈ 𝐸𝐼 , ∥ 𝜂 ∥𝐸𝐼  ≤ 1} = ∥ 𝜉 ∥𝐸𝐽:𝐸𝐼 . 
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Conversely, if 𝜉 = 𝜉∗ ∈ 𝐸𝐽: 𝐸𝐼, then 𝑥𝜉 ∈ 𝐶𝐸𝐽:𝐸𝐼 = 𝐽: 𝐼 (see Proposition (6.1.27)), and so 𝜉 ∈

𝐸𝐽:𝐼. Moreover, 

∥ 𝜉 ∥𝐸𝐽:𝐼= ∥ 𝑥𝜉 ∥𝐽:𝐼= sup {∥ 𝑥𝜉  𝑦 ∥𝐽∶ 𝑦 ∈ 𝐼, ∥ 𝑦 ∥𝐼≤ 1} 

= sup {∥ 𝑥{𝑠𝑛(𝑥𝜉 𝑦)} ∥𝐽∶ 𝑦 ∈ 𝐼, ∥ 𝑦 ∥𝐼 ≤  1} 

(4)
≤
 sup {∥ 𝑥𝜎2({𝜉 𝑠𝑛(𝑦)}) ∥𝐽∶ 𝑦 ∈ 𝐼, ∥ 𝑦 ∥𝐼≤ 1} 

≤ 2𝐶 𝑠𝑢𝑝{∥ 𝜉 {𝑠𝑛(𝑦)} ∥𝐸𝐽 : 𝑦 ∈ 𝐼, ∥ 𝑦 ∥𝐼≤ 1} 

≤ 2𝐶 sup{∥ 𝜉𝜂 ∥𝐸𝐽 : 𝜂 ∈ 𝐸𝐼 , ∥ 𝜂 ∥𝐸𝐼≤  1} = 2𝐶 ∥ 𝜉 ∥𝐸𝐽:𝐸𝐼  .  

Thus, 𝐸𝐽:𝐼 = 𝐸𝐽: 𝐸𝐼 and ∥ 𝜉 ∥𝐸𝐽:𝐸𝐼≤ ∥ 𝜉 ∥𝐸𝐽:𝐼≤ 2𝐶 ∥ 𝜉 ∥𝐸𝐽:𝐸𝐼  for all 𝜉 ∈ 𝐸𝐽:𝐼. 

(ii) The equality 𝐽: 𝐼 = 𝐶𝐸𝐽:𝐸𝐼  is proven in Proposition (6.1.27). For an arbitrary 𝑎 ∈ 𝐽: 𝐼 we 

have 

∥ 𝑎 ∥𝐶𝐸𝐽:𝐸𝐼
= ∥ {𝑠𝑛(𝑎)} ∥𝐸𝐽:𝐸𝐼= sup{∥ {𝑠𝑛(𝑎)}𝜂 ∥𝐸𝐽 : 𝜂 ∈ 𝐸𝐼 , ∥ 𝜂 ∥𝐸𝐼≤ 1}

= sup{∥ 𝑥{𝑠𝑛(𝑎)}𝑥𝜂 ∥𝐽∶ 𝑥𝜂 ∈ 𝐼, ∥ 𝑥𝜂 ∥𝐼 ≤ 1}

≤ sup{∥ 𝑥{𝑠𝑛(𝑎)}𝑦 ∥𝐽∶ 𝑦 ∈ 𝐼, ∥ 𝑦 ∥𝐼 ≤ 1} = ∥ 𝑥{𝑠𝑛(𝑎)} ∥𝐽:𝐼= ∥ 𝑎 ∥𝐽:𝐼 . 

On the other hand, 

∥ 𝑎 ∥𝐽:𝐼= sup{∥ 𝑎𝑦 ∥𝐽∶ 𝑦 ∈ 𝐼, ∥ 𝑦 ∥𝐼  ≤  1} = sup{∥ {𝑠𝑛(𝑎𝑦)}𝑛=1
∞ ∥𝐸𝐽 : 𝑦 ∈ 𝐼, ∥ 𝑦 ∥𝐼≤ 1} 

(4)
≤
 sup {∥ 𝜎2({𝑠𝑛(𝑎)𝑠𝑛(𝑦)}𝑛=1

∞ ) ∥𝐸𝐽 : 𝑦 ∈ 𝐼, ∥ 𝑦 ∥𝐼 ≤ 1} 

= 2𝐶 sup {∥ {𝑠𝑛(𝑎)𝑠𝑛(𝑦)} ∥𝐸𝐽 : 𝑦 ∈ 𝐼, ∥ 𝑦 ∥𝐼 ≤ 1} 

= 2𝐶 ∥ {𝑠𝑛(𝑎)} ∥𝐸𝐽:𝐸𝐼= 2𝐶 ∥ 𝑎 ∥𝐶𝐸𝐽:𝐸𝐼
. 

 Since (𝐽 ∶  𝐼, ∥∙∥𝐽:𝐼) is a quasi-Banach space (see Theorem (6.1.29)) and quasi-norms ∥∙∥𝐽:𝐼 

and ∥∙∥𝐶𝐸𝐽:𝐸𝐼
 are equivalent (see Theorem (6.1.33)(ii)), we have the following corollary. 

Corollary (6.1.34)[251]: For any symmetric quasi-Banach ideals 𝐼, 𝐽 of compact operators 

from ℬ(𝐻), 𝐼 ⊈  𝐽, the couple (𝐶𝐸𝐽:𝐸𝐼  , ∥∙∥𝐶𝐸𝐽:𝐸𝐼
) is a symmetric quasi-Banach ideal of 

compact operators from ℬ(𝐻). 
The following theorem gives the full description of the set 𝐷𝑒𝑟(𝐼, 𝐽). 
Theorem (6.1.35)[251]: (i) Let 𝐼 and 𝐽 be symmetric quasi-Banach ideals of compact 

operators from ℬ(𝐻), 𝐼 ⊈ 𝐽. Then any derivation 𝛿 from 𝐼 into 𝐽 has a form 𝛿 = 𝛿𝑎 for some 

𝑎 ∈ 𝐶𝐸𝐽:𝐸𝐼 and ∥ 𝑎 + 𝛼1 ∥ℬ(𝐻) ≤ ∥ 𝛿𝑎 ∥ℬ(𝐼,𝐽) for some 𝛼 ∈ 𝐶. Conversely, if ∈ 𝐶𝐸𝐽:𝐸𝐼  , then 

the restriction of 𝛿𝑎 on 𝐼 is a derivation from 𝐼 into 𝐽. In addition, ∥ 𝛿𝑎 ∥ℬ(𝐼,𝐽) ≤  2𝐶 ∥ 𝑎 ∥𝐽:𝐼, 

where 𝐶 is the modulus of concavity of the quasi-norm ∥∙∥𝐽; 

(ii) Let 𝐺 and 𝐹 be symmetric Banach (respectively, 𝐹 is a 𝑝-convex, 𝐺 is a 𝑞-convex quasi-

Banach with 0 < 𝑝, 𝑞 <∞) sequence spaces in 𝑐0 and 𝐺 ⊈ 𝐹 . Then any derivation 𝛿: 𝐶𝐺 →
𝐶𝐹 has a form 𝛿 = 𝛿𝑎 for some 𝑎 ∈ 𝐶𝐹:𝐺 and ∥ 𝑎 + 𝛼1 ∥ℬ(𝐻)≤ ∥ 𝛿𝑎 ∥ℬ(𝐶𝐺,𝐶𝐹) for some 𝛼 ∈

𝐶. Conversely, if 𝑎 ∈ 𝐶𝐺:𝐹 , then the restriction of 𝛿𝑎 on 𝐶𝐺 is a derivation from 𝐶𝐺  into 𝐶𝐹. 

In addition, ∥ 𝛿𝑎 ∥ℬ(𝐶𝐺,𝐶𝐹)≤ 2𝐶 ∥ 𝑎 ∥𝐶𝐹:𝐶𝐺  , where 𝐶 is the modulus of concavity of the 

quasi-norm ∥∙∥𝐶𝐹. 

Proof. (i) By Theorem (6.1.17), any derivation 𝛿 ∶  𝐼 →  𝐽 has a form 𝛿 = 𝛿𝑎 for some 𝑎 ∈
𝐽: 𝐼, in addition ∥ 𝑎 + 𝛼1 ∥ℬ(𝐻) ≤ ∥ 𝛿𝑎 ∥ℬ(𝐼,𝐽) for some 𝛼 ∈ 𝐶. Since 𝐽: 𝐼 =  𝐶𝐸𝐽:𝐸𝐼  (see 

Theorem (6.1.33)), we have 𝑎 ∈ 𝐶𝐸𝐽:𝐸𝐼. 

Conversely, if ∈ 𝐶𝐸𝐽:𝐸𝐼  , then 𝑎 ∈ 𝐽: 𝐼, and, according to Theorem (6.1.17), 𝛿𝑎(𝐼) ⊂ 𝐽. 
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Moreover, 

∥ 𝛿𝑎 ∥ℬ(𝐼,𝐽)=  sup {∥ 𝛿𝑎(𝑥) ∥𝐽∶ 𝑥 ∈ 𝐼, ∥ 𝑥 ∥𝐼≤ 1} 

= sup {∥ 𝑎𝑥 − 𝑥𝑎 ∥𝐽: 𝑥 ∈  𝐼, ∥ 𝑥 ∥𝐼≤ 1} 

≤  sup {𝐶(∥ 𝑎𝑥 ∥𝐽 + ∥ 𝑥𝑎 ∥𝐽): 𝑥 ∈  𝐼, ∥ 𝑥 ∥𝐼≤ 1} 

                         
(6)
=
 2𝐶 sup {∥ 𝑎𝑥 ∥𝐽∶ 𝑥 ∈ 𝐼, ∥ 𝑥 ∥𝐼  ≤ 1} = 2𝐶 ∥ 𝑎 ∥𝐽:𝐼 .              (8) 

Item (ii) follows from (i) and Theorems (6.1.5) and (6.1.33). The inequality ∥ 𝛿𝑎 ∥ℬ(𝐶𝐺,𝐶𝐹)≤

2𝐶 ∥ 𝑎 ∥𝐶𝐺:𝐶𝐹 is proven in the same manner. 

We illustrate Theorem (6.1.35) with an example drawn from the theory of Lorentz and 

Marcinkiewicz sequence spaces. Let 𝜔 = {𝜔𝑛}𝑛=1
∞  be a decreasing weight sequence of 

positive numbers. Letting 𝑊(𝑗)  =  ∑ 𝑤𝑛
𝑗
𝑛=1 , 𝑗 ∈ ℕ, we shall assume that 𝑊(∞) =

 ∑ 𝑤𝑛
∞
𝑛=1 =∞. 

The Lorentz sequence space 𝑙𝜔
𝑝
, 1 ≤  𝑝 <  ∞, consists of all sequences 𝜉 =  {𝜉𝑛}𝑛=1

∞ ∈ 𝑐0 

such that 

∥ 𝜉 ∥𝑙𝜔
𝑝= (∑(𝜉𝑛

∗  )𝑝𝑤𝑛

∞

𝑛=1

)

1
𝑝

<  ∞.  

The Lorentz (Marcinkiewicz) sequence space 𝑚𝑊
𝑝
, 1 ≤ 𝑝 <∞, is the space of all sequences 

𝜉 = {𝜉𝑛}𝑛=1
∞  ∈ 𝑐0 satisfying 

∥ 𝜉 ∥𝑚𝑊
𝑝 = 𝑠𝑢𝑝𝑘≥1 (

∑ (𝜉𝑛
∗)𝑝𝑘

𝑛=1

𝑊𝑘
)

1
𝑝

<∞. 

It is well known (see e.g. [264] and [265]) that (𝑙𝜔
𝑝
, ∥∙∥𝑙𝜔

𝑝 ) and (𝑚𝑊
𝑝
, ∥∙∥𝑚𝑊

𝑝 ) are symmetric 

Banach sequence spaces in 𝑐0. 

Hence, (𝐶𝑙𝜔
𝑝 , ∥∙∥𝐶

𝑙𝜔
𝑝 ) and (𝐶𝑚𝑊

𝑝 , ∥∙∥𝐶
𝑚𝑊
𝑝 ) are symmetric Banach ideals of compact operators 

Theorem (6.1.5). Since 𝑙1: 𝑙𝜔 = 𝑚𝑊
1  (see e.g. [264]) it follows that 𝑙𝑝 ∶ 𝑙𝜔

𝑝
= 𝑚𝑊

𝑝
 for every 

1 ≤ 𝑝 <∞ [265]. By Theorem (6.1.33), 𝐶𝑝: 𝐶𝑙𝜔
𝑝 = 𝐶𝑚𝑊

𝑝  and ∥ 𝑎 ∥𝐶𝑝:𝐶𝑙𝜔
𝑝≤ 2 ∥ 𝑎 ∥𝐶

𝑚𝑊
𝑝  for 

all 𝑎 ∈ 𝐶𝑝: 𝐶𝑙𝜔
𝑝 . From Theorem (6.1.35) (ii), we obtain the following example significantly 

extending similar results from [252]. 

Corollary (6.1.36)[251]: A linear mapping 𝛿: 𝐶𝑙𝜔
𝑝 → 𝐶𝑝, 1 ≤ 𝑝 <∞is a derivation if and 

only if 𝛿 = 𝛿𝑎 for some 𝑎 ∈ 𝐶𝑚𝑊
𝑝 , in addition, ∥ 𝛿 ∥ℬ(𝐶

𝑙𝜔
𝑝 ,𝐶𝑝) ≤ 2 ∥ 𝑎 ∥𝐶𝑝:𝐶𝑙𝜔

𝑝≤ 4 ∥ 𝑎 ∥𝐶
𝑚𝑊
𝑝 . 

In conclusion, note that, by Theorem (6.1.13), (8), any derivation 𝛿 from a symmetric quasi-

Banach ideal I into a symmetric quasi-Banach ideal 𝐽, such that 𝐼 ⊆ 𝐽, has a form 𝛿 = 𝛿𝑎 

for some 𝑎 ∈ ℬ(𝐻) and, in addition, ∥ 𝑎 ∥ℬ(𝐻)≤ ∥ 𝛿𝑎 ∥ℬ(𝐼,𝐽)≤ 2𝐶 ∥ 𝑎 ∥𝐽:𝐼, where 𝐶 is the 

modulus of concavity of the quasi-norm ∥∙∥𝐽. Moreover, for the case when 𝐼 = 𝐽 we have 

∥ 𝑎 ∥ℬ(𝐻)≤ ∥ 𝛿𝑎 ∥ℬ(𝐼,𝐽)≤ 2𝐶 ∥ 𝑎 ∥ℬ(𝐻), where 𝐶 is the modulus of concavity of the quasi-

norm ∥∙∥𝐼 (see (7)). This complements results from [257]. 

Section (6.2): Algebras of Locally Measurable Operators are Inner 

We first recall an important result due to Ringrose [27] that any derivation acting on 

a 𝐶∗-algebra 𝑀 with values in a Banach 𝑀-bimodule is automatically norm-continuous, 

which extends the classical result of Sakai [29] that every derivation of a 𝐶∗-algebra is norm-

continuous. In the special case when 𝑀 is an 𝐴𝑊∗-algebra (in particular, a 𝑊∗-algebra), 

these results are strongly linked with another classical fact that every derivation on 𝑀 is 
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inner [115], [29]. The objects of study are analogues of these classical results in numerous 

topological ∗-algebras of unbounded operators, which by their algebraic and order–
topological structure are still somewhat close to 𝐶∗,𝑊∗ and 𝐴𝑊∗-algebras, but which are 

neither Banach, nor even locally convex. The algebras which we study are of prime 

importance for the theory of non-commutative integration, initiated by Segal’s [31]. 

Let 𝑀 be a 𝑊∗-algebra. There are three fundamentally important ∗-algebras of 

‘measurable’ operators affiliated with 𝑀, which may be thought of as far reaching 

generalizations of the algebra of all measurable functions on an arbitrary measure space (the 

latter situation can be made precise when 𝑀 is commutative). The first two algebras, 

𝐿𝑆(𝑀) and 𝑆(𝑀) of all locally measurable and, respectively, of all measurable operators are 

defined for every 𝑀, the third algebra, 𝑆(𝑀, 𝜏), of all 𝜏-measurable operators from 𝑆(𝑀) is 

defined for a semifinite 𝑀 equipped with a faithful normal semifinite trace 𝜏 (see [52], [117], 

[31], [118]). All 𝑀-bimodules of interest (such as non-commutative 𝐿𝑝-spaces, or more 

generally non-commutative symmetric spaces associated with 𝑀) in non-commutative 

integration theory and/or in (semifinite version of) noncommutative geometry are solid 

subspaces in these algebras [278], [33]. We study derivations on such algebras and in such 

bimodules. The main technical impediment in this study is the fact that  all these three ∗-

algebras are not even locally convex algebras [279] and this fact renders all rich techniques 

developed for such study in Banach algebras (see, for example, [14]). 

We detailed discussion of our main results, we would like to recall  a slightly larger picture, 

indicating other areas of study of algebras of unbounded  operators to which our results are 

immediately applicable or relevant. In particular, there is a direct connection between our 

algebras of measurable operators and extended 𝑊∗-algebras (briefly, 𝐸𝑊∗-algebras) 

introduced in [276] and generalized 𝐵∗-algebras (briefly, 𝐺𝐵∗-algebras) (introduced in [268] 

for locally convex case and further generalized in [275]). The bounded part 𝐴(𝐵0) of every 

𝐺𝐵∗-algebra 𝐴 is a 𝐶∗-algebra [275] and the algebra 𝐴 is a topological bimodule over 𝐴(𝐵0). 
In the case when 𝐴 is an 𝐸𝑊∗-algebra, its bounded part is a 𝑊∗-algebra. It is natural to ask 

whether results similar to Ringrose and Sakai–Kadison theorems hold for 𝐺𝐵∗ and 𝐸𝑊∗-

algebras. Some particular results in this direction may be found in [89], [267], [271], [22], 

[277]. 

Due to the characterization of 𝐸𝑊∗-algebras given in [273], we know that every such 

algebra 𝐴 with the bounded part 𝐴𝑏 = 𝑀 is in fact a solid ∗-subalgebra in the ∗-algebra 

𝐿𝑆(𝑀), in particular, the algebra 𝐿𝑆(𝑀) is the largest 𝐸𝑊∗-algebra in the class of all 𝐸𝑊∗-

algebras with the bounded part coinciding with 𝑀. In addition, every 𝐸𝑊∗-algebra 𝐴 with 

the bounded part 𝐴𝑏 = 𝑀 is a topological ∗-algebra of unbounded operators with respect to 

the nonlocally convex topology 𝑡(𝑀), the so-called local measure topology on 𝐿𝑆(𝑀). The 

preceding comment brings in focus the main theme and its connection with our article [270], 

where we proved that each derivation 𝛿:𝑀 → 𝐴 extends up to a derivation from 𝐿𝑆(𝑀) into 

𝐿𝑆(𝑀). In this respect, the problem of 𝑡(𝑀)-continuity of a given derivation from a von 

Neumann algebra 𝑀 with values in 𝐸𝑊∗-algebra 𝐴 with the bounded part 𝐴𝑏 = 𝑀 and 

related question whether 𝛿 is inner can be reduced to the similar questions stated for 

extension of 𝛿 up to a derivation on 𝐿𝑆(𝑀). 
In the setting of commutative 𝑊∗-algebras these problem are fully resolved in [107]. 

In the setting of von Neumann algebras of type 𝐼, a thorough treatment of this problem may 

be found in [2], [106]. In [2], [107] contain examples of non-inner derivations on the ∗-

algebra 𝐿𝑆(𝑀), which are not continuous with respect to the topology 𝑡(𝑀) of convergence 
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locally in measure on 𝐿𝑆(𝑀). On the other hand, it is shown in [2] that in the special case 

when 𝑀 is a properly infinite von Neumann algebra of type 𝐼, every derivation of 𝐿𝑆(𝑀) is 

continuous with respect to the local measure topology 𝑡(𝑀). Using a completely different 

technique, a similar result was also obtained in [106] under the additional assumption that 

the predual space 𝑀∗ to 𝑀 is separable. It is of interest to observe that an analogue of this 

result (that is the continuity of an arbitrary derivation on (𝐿𝑆(𝑀), 𝑡(𝑀))) also holds for any 

von Neumann algebra 𝑀 of type III [105]. In [105], the following problem is formulated 

(Problem 3): Let 𝑀 be a von Neumann algebra of type 𝐼𝐼 and let 𝜏 be a faithful normal 

semifinite trace on 𝑀. Is any derivation on the ∗-algebra 𝑆(𝑀, 𝜏) equipped with the measure 

topology 𝑡𝜏 necessarily continuous? In [108], this problem is solved affirmatively for 

properly infinite algebras 𝑀. In view of the example we mentioned above, a natural problem 

(similar to Problem 3 from [105]) is whether any derivation on the ∗-algebra 𝐿𝑆(𝑀) is 

necessarily continuous with respect to the topology 𝑡(𝑀), where 𝑀 is a properly infinite 

von Neumann algebra of type 𝐼𝐼. 𝐴 positive solution of this problem may be found in [270], 

where it is established that any derivation 𝛿: 𝐴 → 𝐿𝑆(𝑀) is 𝑡(𝑀)-continuous, where 𝑀 is a 

properly infinite von Neumann algebra, 𝐴 is arbitrary 𝐸𝑊∗-subalgebra in 𝐿𝑆(𝑀) with 𝐴𝑏 =
𝑀. This result naturally suggests that 𝛿 is actually inner.  

For von Neumann algebras of type 𝐼 and 𝐼𝐼𝐼 this problem is solved in [2], [105]. It is proved 

that for every 𝑡(𝑀)-continuous derivation 𝛿 acting on the algebra 𝐿𝑆(𝑀) there exists 𝑎 ∈
𝐿𝑆(𝑀), such that 𝛿(𝑥) = 𝑎𝑥 − 𝑥𝑎 = [𝑎, 𝑥] for all 𝑥 ∈  𝐿𝑆(𝑀), that is the derivation 𝛿 is 

inner. As a corollary, we obtain complete resolution of similar questions for 𝐸𝑊∗-algebras. 

The proof proceeds in several stages. We introduce and study the properties of so-

called 𝜆-systems for a self-adjoint derivation 𝛿: 𝐿𝑆(𝑀) → 𝐿𝑆(𝑀). After that we supply the 

proof of the main result (Theorem (6.2.19)) showing that every 𝑡(𝑀)-continuous derivation 

𝛿: 𝐿𝑆(𝑀) → 𝐿𝑆(𝑀) is necessarily inner. In particular, in view of the result of [270], this 

implies that for a properly infinite von Neumann algebra 𝑀 every derivation on 𝐿𝑆(𝑀) is 

inner. We give quick applications of Theorem (6.2.19) for 𝑡(𝑀)-continuous derivations 

acting on an 𝐸𝑊∗-algebra 𝐴 with the bounded part 𝐴𝑏 = 𝑀. We consider the class of 

Banach 𝑀-bimodules of locally measurable operators ℰ ⊂ 𝐿𝑆(𝑀). This class contains all 

non-commutative symmetric spaces. We contain our second main result, Theorem (6.2.32), 

showing that every derivation 𝛿 from a von Neumann algebra 𝑀 with values in a Banach 

𝑀-bimodule ℰ is inner, that is, it has the form 𝛿(𝑥) = [𝑑, 𝑥] = 𝛿𝑑(𝑥)for all 𝑥 ∈ 𝑀 and some 

𝑑 ∈ ℰ. In particular, 𝛿 is a continuous derivation from (𝑀, ‖ · ‖𝑀) into (ℰ, ‖·‖ℰ). In 

addition, the operator 𝑑 ∈ ℰ may be chosen so that ‖𝑑‖ℰ ≤ 2‖𝛿‖𝑀→ℰ. 
We use terminology and notation from the von Neumann algebra theory [23], [29], [33] and 

the theory of locally measurable operators from [113], [117], [118]. 

Let 𝐻 be a Hilbert space, let 𝐵(𝐻) be the ∗-algebra of all bounded linear operators on 

𝐻, and let 𝟏 be the identity operator on 𝐻. Given a von Neumann algebra 𝑀 acting on 𝐻, 

denote by 𝑍(𝑀) the centre of 𝑀 and by 𝑃(𝑀) = {𝑝 ∈ 𝑀: 𝑝 = 𝑝2 = 𝑝∗} the lattice of all 

projections in 𝑀. 

Recall that two projections 𝑒, 𝑓 ∈ 𝑃(𝑀) are called equivalent (notation: 𝑒 ∼ 𝑓) if there 

exists a partial isometry 𝑢 ∈ 𝑀 such that 𝑢∗𝑢 = 𝑒 and 𝑢𝑢∗ = 𝑓. For projections 𝑒, 𝑓 ∈ 𝑃(𝑀) 
notation 𝑒 ≼ 𝑓 means that there exists a projection 𝑞 ∈ 𝑃(𝑀) such that 𝑒 ∼ 𝑞 ≤ 𝑓. 𝐴 

projection 0 ≠ 𝑝 ∈ 𝑃(𝑀) is called finite if the conditions 𝑞 ≤ 𝑝, 𝑞 ∼ 𝑝 imply that 𝑞 = 𝑝. 

Denote by 𝑃𝑓𝑖𝑛(𝑀) the set of all finite projections in 𝑀. 
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𝐴 linear operator 𝑥:𝔇(𝑥) → 𝐻, where the domain 𝔇(𝑥) of 𝑥 is a linear subspace of 𝐻, is 

said to be affiliated with 𝑀 if 𝑦𝑥 ⊆ 𝑥𝑦 for all 𝑦 from the commutant 𝑀’ of the algebra 𝑀. 

A densely defined closed linear operator x (possibly unbounded) affiliated with M is said to 

be measurable with respect to 𝑀 if there exists a sequence {𝑝𝑛}𝑛=1
∞ ⊂ 𝑃(𝑀) such that 𝑝𝑛 ↑

𝟏, 𝑝𝑛(𝐻) ⊂ 𝔇(𝑥) and 𝑝𝑛
⊥ = 𝟏 − 𝑝𝑛 ∈ 𝑃𝑓𝑖𝑛(𝑀) for every 𝑛 ∈ ℕ, where ℕ is the set of all 

natural numbers. Let us denote by 𝑆(𝑀) the set of all measurable operators. 

Let 𝑥, 𝑦 ∈ 𝑆(𝑀). It is well known that 𝑥 + 𝑦 and 𝑥𝑦 are densely defined and preclosed 

operators. Moreover, the closures 𝑥 + 𝑦̅̅ ̅̅ ̅̅ ̅ (strong sum), 𝑥𝑦̅̅ ̅ (strong product) and 𝑥∗ are also 

measurable, and equipped with these operations (see [31]) 𝑆(𝑀) is a unital ∗-algebra over 

the field ℂ of complex numbers. It is clear that 𝑀 is a ∗-subalgebra of 𝑆(𝑀). 
A densely defined linear operator 𝑥 affiliated with 𝑀 is called locally measurable with 

respect to 𝑀 if there is a sequence {𝑧𝑛}𝑛=1
∞  of central projections in 𝑀 such that 𝑧𝑛 ↑

𝟏, 𝑧𝑛(𝐻) ⊂ 𝔇(𝑥) and 𝑥𝑧𝑛 ∈ 𝑆(𝑀) for all 𝑛 ∈ ℕ. 

The set 𝐿𝑆(𝑀) of all locally measurable operators (with respect to 𝑀) is a unital ∗-algebra 

over the field ℂ with respect to the same algebraic operations as in 𝑆(𝑀) [118] and 𝑆(𝑀) is 

a ∗-subalgebra of 𝐿𝑆(𝑀). For every operator 𝑥 ∈ 𝐿𝑆(𝑀) the left support 𝑙(𝑥) and the right 

support 𝑟(𝑥) are always equivalent [113], in addition, 𝑟(|𝑥|) =  𝑟(𝑥) = 𝑙(𝑥∗), where |𝑥| =
(𝑥∗𝑥)1/2. 

If 𝑀 is finite, or if 𝑑𝑖𝑚(𝑍(𝑀)) <∞, the algebras 𝑆(𝑀) and 𝐿𝑆(𝑀) coincide [113]. 

If a von Neumann algebra 𝑀 is of type III and dim (𝑍(𝑀)) =∞, then 𝑆(𝑀) = 𝑀 and 

𝐿𝑆(𝑀) ≠ 𝑀 [113]. 

For every 𝑥 ∈ 𝑆(𝑍(𝑀)), there exists a sequence {𝑧𝑛}𝑛=1
∞ ⊂ 𝑃(𝑍(𝑀)) such that 𝑧𝑛 ↑ 𝟏 and 

𝑥𝑧𝑛 ∈ 𝑀 for all 𝑛 ∈ ℕ. This means that 𝑥 ∈ 𝐿𝑆(𝑀). Hence, 𝑆(𝑍(𝑀)) is a ∗-subalgebra of 

𝐿𝑆(𝑀) and 𝑆(𝑍(𝑀)) coincides with the centre of the ∗-algebra 𝐿𝑆(𝑀). 
For every subset 𝐸 ⊂ 𝐿𝑆(𝑀), the sets of all self-adjoint (respectively, positive) operators in 

𝐸 is denoted by 𝐸ℎ (respectively, 𝐸+). The partial order in 𝐿𝑆(𝑀) is defined by its cone 

𝐿𝑆+(𝑀) and is denoted by ≤.  

Let {𝑧𝑖}𝑖∈𝐼 be a family of pairwise orthogonal non-zero central projections from 𝑀 with 

⋁ 𝑧𝑖𝑖∈𝐼 =  𝟏, where 𝐼 is an arbitrary set of indexes (in this case, the family {𝑧𝑖}𝑖∈𝐼 is called a 

central decomposition of the unity 𝟏). Consider the ∗-algebra  ∏ 𝐿𝑆(𝑧𝑖𝑀)𝑖∈𝐼  with the 

coordinate-wise operations and involution and for every 𝑥 ∈ 𝐿𝑆(𝑀) set 

𝜙(𝑥):= {𝑧𝑖𝑥}𝑖∈𝐼 . 
In [102], it is proved that the mapping 𝜙 is a ∗-isomorphism from the ∗-algebra 𝐿𝑆(𝑀) onto 

∏ 𝐿𝑆(𝑧𝑖𝑀)𝑖∈𝐼 . From here immediately follows: 

Proposition (6.2.1)[266]: Given any central decomposition {𝑧𝑖}𝑖∈𝐼 of the unity 𝟏 and any 

family of elements {𝑥𝑖}𝑖∈𝐼 in 𝐿𝑆(𝑀) there exists a unique element 𝑥 ∈ 𝐿𝑆(𝑀) such that 

𝑧𝑖𝑥 = 𝑧𝑖𝑥𝑖 for all 𝑖 ∈ 𝐼. 
Let 𝑥 be a closed operator with the dense domain 𝔇(𝑥) in 𝐻, let 𝑥 = 𝑢|𝑥| be the polar 

decomposition of the operator 𝑥, where 𝑢 is a partial isometry in 𝐵(𝐻) such that 𝑢∗𝑢 is the 

right support 𝑟(𝑥) of 𝑥. It is known that 𝑥 ∈ 𝐿𝑆(𝑀) (respectively, 𝑥 ∈ 𝑆(𝑀)) if and only if 

|𝑥| ∈ 𝐿𝑆(𝑀) (respectively, |𝑥| ∈ 𝑆(𝑀)) and 𝑢 ∈ 𝑀 [113]. 

Let 𝜑𝜆(𝑡) = 𝜒(−∞,𝜆](𝑡) be the real-valued function on (−∞, +∞) for which 𝜑𝜆(𝑡) = 1, if 

𝑡 ≤ 𝜆 and 𝜑𝜆(𝑡) = 0, if 𝑡 > 𝜆. For every self-adjoint operator 𝑥 affiliated with 𝑀 the 

spectral family of projections 𝐸𝜆(𝑥) = 𝜑𝜑(𝑥), 𝜆 ∈ ℝ, of 𝑥 belongs to 𝑀 [113]. 𝐴 locally 

measurable operator 𝑥 is measurable if and only if 𝐸𝜆
⊥ (|𝑥|) ∈ 𝑃𝑓𝑖𝑛(𝑀) for some 𝜆 >

0 [113]. 
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We recall the definition of the local measure topology. Firstly, let 𝑀 be a commutative von 

Neumann algebra. Then 𝑀 is ∗-isomorphic to the ∗-algebra 𝐿∞(𝛺, 𝛴, 𝜇) of all essentially 

bounded measurable complex-valued functions defined on a measure space (𝛺, 𝛴, 𝜇) with 

the measure 𝜇 satisfying the direct sum property (we identify functions that are equal almost 

everywhere) (see [33]). The direct sum property of the measure 𝜇 means that the Boolean 

algebra of all projections of the ∗-algebra 𝐿∞(𝛺, 𝛴, 𝜇) is order complete, and for any non-

zero 𝑝 ∈ 𝑃(𝑀) there exists a non-zero projection 𝑞 ≤  𝑝 such that 𝜇(𝑞) <∞. The direct 

sum property of the measure 𝜇 is equivalent to the fact that the functional 𝜏(𝑓):= ∫ 𝑓 𝑑𝜇
Ω

 

is a semi-finite normal faithful trace on the algebra 𝐿∞(𝛺, 𝛴, 𝜇). 
Consider the ∗-algebra 𝐿𝑆(𝑀) = 𝑆(𝑀) = 𝐿0(𝛺, 𝛴, 𝜇) of all measurable almost everywhere 

finite complex-valued functions defined on (𝛺, 𝛴, 𝜇) (functions that are equal almost 

everywhere are identified). Define on 𝐿0(𝛺, 𝛴, 𝜇) the local measure topology 𝑡(𝐿∞(𝛺)), that 

is, the Hausdorff vector topology, whose base of neighbourhoods of zero is given by 

𝑊(𝐵, 𝜀, 𝛿) ∶= {𝑓 ∈ 𝐿0(𝛺, 𝛴, 𝜇): 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑎 𝑠𝑒𝑡 𝐸 ∈  𝛴 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 
𝐸 ⊆ 𝐵, 𝜇(𝐵 \ 𝐸)  ≤ 𝛿, 𝑓𝜒𝐸 ∈ 𝐿∞(𝛺, 𝛴, 𝜇), ‖𝑓𝜒𝐸‖𝐿∞(𝛺,𝛴,𝜇) ≤ 𝜀}, 

where 𝜀, 𝛿 > 0, 𝐵 ∈ 𝛴, 𝜇(𝐵) <∞, 𝜒(𝜔) = 1,𝜔 ∈ 𝐸 and 𝜒(𝜔) = 0, when 𝜔 ∉ 𝐸. 

Convergence of a net {𝑓𝛼} to 𝑓 in the topology 𝑡(𝐿∞(𝛺)), denoted by 𝑓𝛼
𝑡(𝐿∞(𝛺))
→      𝑓, means 

that 𝑓𝛼𝜒𝐵 → 𝑓𝜒𝐵 in measure 𝜇 for every 𝐵 ∈ 𝛴 with 𝜇(𝐵) <∞. Note, that the topology 

𝑡(𝐿∞(𝛺)) does not change if the measure 𝜇 is replaced with an equivalent measure [118]. 

Now let 𝑀 be an arbitrary von Neumann algebra and let 𝜑 be a ∗-isomorphism from 𝑍(𝑀) 
onto the ∗-algebra 𝐿∞(𝛺, 𝛴, 𝜇), where 𝜇 is a measure satisfying the direct sum property. 

Denote by 𝐿+(𝛺, 𝛴,𝑚) the set of all measurable real-valued functions defined on (𝛺, 𝛴, 𝜇) 
and taking values in the extended half-line [0,∞] (functions that are equal almost 

everywhere are identified). It was shown in [31] that there exists a mapping 

𝐷:𝑃(𝑀) ⟶ 𝐿+(𝛺, 𝛴, 𝜇)  
that possesses the following properties. 

(D1) A projection 𝑝 ∈ 𝑀 is finite if and only if 𝐷(𝑝) ∈ 𝐿+
0 (𝛺, 𝛴, 𝜇). 

(D2) If 𝑝𝑞 = 0, then 𝐷(𝑝 ∨ 𝑞) = 𝐷(𝑝) + 𝐷(𝑞). 
(D3) If 𝑢 ∈ 𝑀 is a partial isometry, then 𝐷(𝑢∗𝑢) = 𝐷(𝑢𝑢∗). 
(D4) If 𝑧 ∈ 𝑃(𝑍(𝑀)) and 𝑝 ∈ 𝑃(𝑀), then 𝐷(𝑧𝑝) = 𝜑(𝑧)𝐷(𝑝). 
(D5) If 𝑝𝛼 , 𝑝 ∈ 𝑃(𝑀), 𝛼 ∈ 𝐴 and 𝑝𝛼 ↑ 𝑝, then 𝐷(𝑝) = ⋁ 𝐷(𝑝𝛼)𝛼∈𝐴 . 

A mapping 𝐷:𝑃(𝑀) → 𝐿+(𝛺, 𝛴, 𝜇) satisfying properties (𝐷1)—(𝐷5) is called dimension 

function on 𝑃(𝑀). 
The dimension function 𝐷 also has the following properties [31]. 

(𝐷6) If 𝑝𝑛 ∈ 𝑃(𝑀), 𝑛 ∈ ℕ, then 𝐷(⋁ 𝑝𝑛𝑛≥1 ) ≤ ∑ 𝐷(𝑝𝑛)
∞
𝑛=1 , in addition, when 𝑝𝑛𝑝𝑚 =

0, 𝑛 ≠  𝑚, the equality holds. 
(D7) If 𝑝𝑛 ∈ 𝑃𝑓𝑖𝑛(𝑀), 𝑛 ∈ ℕ, 𝑝𝑛 ↓ 0, then 𝐷(𝑝𝑛) → 0 almost everywhere. 

For arbitrary scalars 𝜀, 𝛿 > 0 and a set 𝐵 ∈ 𝛴, 𝜇(𝐵) <∞, we set 

𝑉(𝐵, 𝜀, 𝛿):= {𝑥 ∈ 𝐿𝑆(𝑀) : there exist 𝑝 ∈ 𝑃(𝑀), 𝑧 ∈ 𝑃(𝑍(𝑀)), such that 𝑥𝑝 ∈ 𝑀, 
                  ‖𝑥𝑝‖𝑀 ≤ 𝜀, 𝜑(𝑧⊥) ∈ 𝑊(𝐵, 𝜀, 𝛿), 𝐷(𝑧𝑝⊥) ≤ 𝜀𝜑(𝑧)},                     (9) 

where ‖·‖𝑀 is the 𝐶∗-norm on 𝑀. 

It was shown in [118] that the system of sets 

{𝑥 + 𝑉 (𝐵, 𝜀, 𝛿): 𝑥 ∈ 𝐿𝑆(𝑀), 𝜀, 𝛿 > 0, 𝐵 ∈ 𝛴, 𝜇(𝐵) <∞} 
defines a Hausdorff vector topology 𝑡(𝑀) on 𝐿𝑆(𝑀) such that the sets {𝑥 +
𝑉(𝐵, 𝜀, 𝛿)}, 𝜀, 𝛿 > 0, 𝐵 ∈ 𝛴, 𝜇(𝐵) <∞ form a neighbourhood base of an operator 𝑥 ∈
𝐿𝑆(𝑀). It is known that (𝐿𝑆(𝑀), 𝑡(𝑀)) is a complete topological ∗-algebra, and the 
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topology 𝑡(𝑀) does not depend on a choice of dimension function 𝐷 and on a choice of ∗-

isomorphism 𝜑 (see [113], [118]). 

The topology 𝑡(𝑀) on 𝐿𝑆(𝑀) is called the local measure topology (or the topology 

of convergence locally in measure). Note, that in case when 𝑀 = 𝐵(𝐻) the equality 

𝐿𝑆(𝑀) = 𝑀 holds [113] and the topology 𝑡(𝑀) coincides with the uniform topology, 

generated by the 𝐶∗-norm  ‖·‖𝐵(𝐻). 
We will need the following criterion for convergence of nets with respect to this topology. 

Proposition (6.2.2)[266]: [113]. (i) 𝐴 net {𝑝𝛼}𝛼∈𝐴 ⊂ 𝑃(𝑀) converges to zero with respect 

to the topology 𝑡(𝑀) if and only if there is a net {𝑧𝛼}𝛼∈𝐴 ⊂ 𝑃(𝑟𝑍(𝑀)) such that 𝑧𝛼𝑝𝛼 ∈

𝑃𝑓𝑖𝑛(𝑀) for all 𝛼 ∈ 𝐴, 𝜙(𝑧𝛼
⊥)  

𝑡(𝐿∞(𝛺))
→      0, and 𝐷(𝑧𝛼𝑝𝛼)

𝑡(𝐿∞(𝛺))
→      0, where 𝑡(𝐿∞(𝛺)) is the 

local measure topology on 𝐿0(𝛺, 𝛴, 𝜇) and 𝜑 is a ∗-isomorphism of 𝑍(𝑀) onto 𝐿∞(𝛺, 𝛴, 𝜇). 
(ii) 𝐴 net {𝑥𝛼}𝛼∈𝐴 ⊂ 𝐿𝑆(𝑀) converges to zero with respect to the topology 𝑡(𝑀) if and only 

if 𝐸𝜆
⊥(|𝑥𝛼|)  

𝑡(𝑀)
→   0 for every 𝜆 > 0, where 𝐸𝜆

⊥(|𝑥𝛼|) is the spectral family for the operator 

|𝑥𝛼|. 
Since the involution is continuous in the topology 𝑡(𝑀), the set 𝐿𝑆ℎ(𝑀) is closed in 

(𝐿𝑆(𝑀), 𝑡(𝑀)). The cone 𝐿𝑆+(𝑀) of positive elements is also closed in (𝐿𝑆(𝑀), 𝑡(𝑀)) 
[118]. 

Using Proposition (6.2.2), the following is established: 

Proposition (6.2.3)[266]: [270]. If 𝑥𝛼 ∈ 𝐿𝑆(𝑀), 0 ≠  𝑧 ∈ 𝑃(𝑍(𝑀)), then 

𝑧𝑥𝛼
𝑡(𝑀)
→   0 ⟺ 𝑧𝑥𝛼

𝑡(𝑧𝑀)
→    0.  

Moreover, from Proposition (6.2.2) , it immediately follows that: 

Corollary (6.2.4)[266]: If {𝑧𝛼}𝛼∈𝐴 ⊂ 𝑃(𝑍(𝑀)) and 𝑧𝛼 ↓ 0 then 𝑧𝛼
𝑡(𝑀)
→  0. 

Let us mention the following important property of the topology 𝑡(𝑀). 
Proposition (6.2.5)[266]: The von Neumann algebra 𝑀 is everywhere dense in 

(𝐿𝑆(𝑀), 𝑡(𝑀)). 
Proof. If 𝑥 ∈ 𝐿𝑆(𝑀), then there exists a sequence {𝑧𝑛}𝑛=1

∞ ⊂ 𝑃(𝑍(𝑀)) such that 

𝑧𝑛 ↑ 𝟏 and 𝑥𝑧𝑛 ∈ 𝑆(𝑀) for all 𝑛 ∈ ℕ. By Corollary (6.2.4), 𝑧𝑛
𝑡(𝑀)
→  𝟏, and therefore 

𝑥𝑧𝑛
𝑡(𝑀)
→  𝑥. Consequently, the algebra 𝑆(𝑀) is everywhere dense in (𝐿𝑆(𝑀), 𝑡(𝑀)). 

Now let 𝑥 ∈ 𝑆(𝑀). Then there exists a sequence {𝑝𝑛}𝑛=1
∞ ⊂ 𝑃(𝑀) such that 𝑝𝑛 ↑ 𝟏, 𝑝𝑛

⊥ ∈

𝑃𝑓𝑖𝑛(𝑀) and 𝑥𝑝𝑛 ∈ 𝑀 for any 𝑛 ∈ ℕ. According to (D7), we have that 𝐷(𝑝𝑛
⊥)  

𝑡(𝐿∞(𝛺))
→      0, 

therefore, Proposition (6.2.2)(i) implies the convergence 𝑝𝑛
𝑡(𝑀)
→  𝟏 (we set 𝑧𝑛 = 𝟏). Then 

𝑥𝑝𝑛
𝑡(𝑀)
→  𝑥. It means that the algebra 𝑀 is everywhere dense in the algebra 𝑆(𝑀) with respect 

to the topology 𝑡(𝑀). Thus, the von Neumann algebra 𝑀 is everywhere dense in 

(𝐿𝑆(𝑀), 𝑡(𝑀)). 
The lattice 𝑃(𝑀) is said to have a countable type if every family of non-zero pairwise 

orthogonal projections in 𝑃(𝑀) is, at most, countable. A von Neumann algebra is said to be 

𝜎-finite if the lattice 𝑃(𝑀) has a countable type. It is shown in [31] that a finite von 

Neumann algebra 𝑀 is 𝜎-finite, provided that the lattice 𝑃(𝑍(𝑀)) of central projections has 

a countable type. 

If 𝑀 is a commutative von Neumann algebra and 𝑃(𝑀) has a countable type, then 𝑀 is ∗-

isomorphic to the ∗-algebra 𝐿∞(𝛺, 𝛴, 𝜇) with 𝜇(𝛺) <∞. In this case, the topology 

𝑡(𝐿∞(𝛺)) is metrizable and has a base of neighbourhoods of zero consisting of the sets 
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𝑊(𝛺, 1/𝑛, 1/𝑛), 𝑛 ∈ 𝑁. In addition, 𝑓𝑛
𝑡(𝐿∞(𝛺))
→      0 ⇔ 𝑓𝑛 → 0 in measure 𝜇, where 𝑓𝑛, 𝑓 ∈

𝐿0(𝛺, 𝛴, 𝜇) = 𝐿𝑆(𝑀). 
We need another basis of neighbourhoods of zero in topology 𝑡(𝑀) in the case when the 

algebra 𝑍(𝑀) is 𝜎-finite. If 𝜑 is a ∗-isomorphism from 𝑍(𝑀) onto 𝐿∞(𝛺, 𝛴, 𝜇), 𝜇(𝛺) <∞, 

then 𝜏(𝑥) =  ∫ 𝜑(𝑥) 𝑑𝜇
Ω

 is a faithful normal finite trace on 𝑍(𝑀). For arbitrary positive 

scalars 𝜀, 𝛽 and 𝛾, we set 

                          𝑉(𝜀, 𝛽, 𝛾):= {𝑥 ∈ 𝐿𝑆(𝑀) : there exist 𝑝 ∈ 𝑃(𝑀), 𝑧 ∈ 𝑃(𝑍(𝑀)), 
                        such that 𝑥𝑝 ∈ 𝑀, ‖𝑥𝑝‖𝑀 𝜀, 𝜏 (𝑧

⊥) 𝛽, 𝐷(𝑧𝑝⊥) ≤ 𝛾𝜑(𝑧)}.          (10) 

Proposition (6.2.6)[266]: If the centre 𝑍(𝑀) of the von Neumann algebra 𝑀 is a 𝜎-finite 

algebra, then the system of sets given by (10) forms a basis of neighbourhoods of zero in 

the topology 𝑡(𝑀). 
Proof. Let 𝑉(𝛺, 𝜀, 𝛿) be a neighbourhood of zero of the form (10). If 𝑥 ∈  𝑉(𝜀, 𝛿, 𝜀), then 

there exist 𝑝 ∈ 𝑃(𝑀), 𝑧 ∈ 𝑃(𝑍(𝑀)), such that 𝑥𝑝 ∈ 𝑀, ‖𝑥𝑝‖𝑀  ≤ 𝜀, ∫ 𝜑(𝑧⊥)𝑑𝜇
Ω

≤ 𝛿 and 

𝐷(𝑧𝑝⊥) ≤ 𝜀𝜑(𝑧). The inequality ∫ 𝜑(𝑧⊥)𝑑𝜇 
Ω

≤ 𝛿 means that 𝜑(𝑧⊥) ∈ 𝑊(𝛺, 𝜀, 𝛿). Hence, 

𝑥 ∈ 𝑉(𝛺, 𝜀, 𝛿), that implies the inclusion 𝑉(𝜀, 𝛿, 𝜀) ⊂ 𝑉(𝛺, 𝜀, 𝛿). 
If 𝑥 ∈ 𝑉(𝛺, 𝜀, 𝛿), then there exist 𝑝 ∈ 𝑃(𝑀), 𝑧 ∈ 𝑃(𝑍(𝑀)), such that ‖𝑥𝑝‖𝑀 ≤ 𝜀,𝜙(𝑧⊥) ∈
𝑊(𝛺, 𝜀, 𝛿) and 𝐷(𝑧𝑝⊥) ≤ 𝜀𝜑(𝑧). The inclusion 𝜑(𝑧⊥) ∈ 𝑊(𝛺, 𝜀, 𝛿) means that there exists  

𝐸 ∈ 𝛴, such that 𝜇(𝛺 \ 𝐸) ≤ 𝛿 and 0 ≤ 𝜑(𝑧⊥)𝜒𝐸 ≤ 𝜀. If 0 < 𝜀 < 1, then 𝜙(𝑧⊥)𝜒𝐸 = 0, 

that is 𝜑(𝑧⊥) ≤ 𝜒Ω\𝐸, and therefore 𝜏(𝑧⊥) ≤ 𝛿, hence 𝑥 ∈  𝑉(𝜀, 𝛿, 𝜀). 
Let 𝑀 be an arbitrary von Neumann algebra, let 𝐴 be a subalgebra in 𝐿𝑆(𝑀). 𝐴 linear 

mapping 𝛿: 𝐴 → 𝐿𝑆(𝑀) is called a derivation on 𝐴 with values in 𝐿𝑆(𝑀), if 𝛿(𝑥𝑦) =
𝛿(𝑥)𝑦 + 𝑥𝛿(𝑦) for all 𝑥, 𝑦 ∈ 𝐴. Each element 𝑎 ∈ 𝐴 defines a derivation 𝛿𝑎(𝑥):= [𝑎, 𝑥] =
𝑎𝑥 − 𝑥𝑎 on 𝐴 with values in 𝐴. The derivations 𝛿𝑎, 𝑎 ∈ 𝐴, are said to be inner derivations 

on 𝐴. 

We list a few properties of derivations on 𝐴 which we shall need below. 

Lemma (6.2.7)[266]: If 𝑃(𝑍(𝑀)) ⊂ 𝐴, 𝛿 is a derivation on 𝐴 and 𝑧 ∈ 𝑃(𝑍(𝑀)), then 

𝛿(𝑧) = 0 and 𝛿(𝑧𝑥) = 𝑧𝛿(𝑥) for all 𝑥 ∈ 𝐴. 

Proof. We have that 𝛿(𝑧) = 𝛿(𝑧2) = 𝛿(𝑧)𝑧 + 𝑧𝛿(𝑧) = 2𝑧𝛿(𝑧). Hence, 𝑧𝛿(𝑧) =
𝑧(2𝑧𝛿(𝑧)) = 2𝑧𝛿(𝑧), that is 𝑧𝛿(𝑧) = 0. Therefore, we have 𝛿(𝑧) = 0. In particular, 

𝛿(𝑧𝑥) = 𝛿(𝑧)𝑥 + 𝑧𝛿(𝑥) = 𝑧𝛿(𝑥). 
Lemma (6.2.7) immediately implies the following: 

Corollary (6.2.8)[266]: If 𝑧 ∈ 𝑃(𝑍(𝑀)) ⊂ 𝐴 and 𝛿 is a derivation on 𝐴, then 𝛿(𝑧𝐴) ⊂ 𝑧𝐴 

and the restriction 𝛿(𝑧) of the derivation 𝛿 to 𝑧𝐴 is a derivation on 𝑧𝐴, in addition, if 𝛿 is 

𝑡(𝑀)-continuous, then 𝛿(𝑧) is 𝑡(𝑧𝑀)-continuous. 

Proof. The inclusion 𝛿(𝑧𝐴) ⊂ 𝑧𝐴 holds. Moreover, the linear mapping 𝛿(𝑧): 𝑧𝐴 → 𝑧𝐴 has 

the following property: 

𝛿(𝑧)((𝑧𝑥)(𝑧𝑦)) = 𝛿(𝑧𝑥)𝑧𝑦 + 𝑧𝑥𝛿(𝑧𝑦) = 𝛿(𝑧)(𝑧𝑥)𝑧𝑦 + 𝑧𝑥𝛿(𝑧)(𝑧𝑦) 
for all 𝑥, 𝑦 ∈ 𝐴. 

If 𝑥𝛼 , 𝑥 ∈ 𝑧𝐴, 𝑥𝛼
𝑡(𝑧𝑀)
→   𝑥, then 𝑥𝛼

𝑡(𝑀)
→  𝑥 Proposition (6.2.8), and therefore 𝛿(𝑧)(𝑥𝛼) =

𝑧𝛿(𝑥𝛼)
𝑡(𝑀)
→   𝑧𝛿(𝑥) = 𝛿(𝑧)(𝑥), that implies the convergence 𝛿(𝑧)(𝑥𝛼)

𝑡(𝑧𝑀)
→   𝛿(𝑧)(𝑥) 

Proposition (6.2.3). 

Let 𝐴 be a subalgebra in 𝐿𝑆(𝑀), 0 ≠ 𝑒 ∈ 𝑃(𝑀) ∩ 𝐴, let 𝛿 be a derivation on 𝐴 and let 𝛿(𝑒) 

be a linear mapping from 𝑒𝐴𝑒 into 𝑒𝐴𝑒 defined by the equality 𝛿(𝑒)(𝑥) = 𝑒𝛿(𝑥)𝑒, 𝑥 ∈
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𝑒𝐴𝑒 ⊂ 𝐴. If 𝑒 = 𝑧 ∈ 𝑃(𝑍(𝑀)), then 𝛿(𝑒) coincides with the restriction 𝛿(𝑧) of the derivation 

𝛿 to 𝑧𝐴 = 𝑧𝐴𝑧. 

Lemma (6.2.9)[266]: 𝛿(𝑒) is a derivation on 𝑒𝐴𝑒. 

Proof. If 𝑥, 𝑦 ∈ 𝑒𝐴𝑒, then 𝑥, 𝑦 ∈ 𝐴 and 

𝛿(𝑒)(𝑥𝑦) = 𝑒(𝛿(𝑥)𝑦)𝑒 + 𝑒(𝑥𝛿(𝑦))𝑒 

= (𝑒𝛿(𝑥)𝑒)(𝑒𝑦𝑒) + (𝑒𝑥𝑒)(𝑒𝛿(𝑦)𝑒) = 𝛿(𝑒)(𝑥)𝑦 + 𝑥𝛿(𝑒)(𝑦).  
Let 𝐴 be a ∗-subalgebra in 𝐿𝑆(𝑀), let 𝛿 be a derivation on 𝐴 with values in 𝐿𝑆(𝑀). Let us 

define a mapping 

𝛿∗: 𝐴 → 𝐿𝑆(𝑀), 
by setting 𝛿∗(𝑥) = (𝛿(𝑥∗))∗, 𝑥 ∈ 𝐴. 𝐴 direct verification shows that 𝛿∗ is also a derivation 

on 𝐴. 

𝐴 derivation 𝛿 on 𝐴 is said to be self-adjoint, if 𝛿 = 𝛿∗. Every derivation 𝛿 on 𝐴 can be 

represented in the form 𝛿 = 𝑅𝑒(𝛿) + 𝑖 𝐼𝑚(𝛿), where 𝑅𝑒(𝛿) = (𝛿 + 𝛿∗)/2, 𝐼𝑚(𝛿) = (𝛿 −
𝛿∗)/2𝑖 are self-adjoint derivations on 𝐴. 

Since (𝐿𝑆(𝑀), 𝑡(𝑀)) is a topological ∗-algebra, the following result holds. 

Lemma (6.2.10)[266]: If 𝐴 is a ∗-subalgebra in 𝐿𝑆(𝑀), then a derivation 𝛿: 𝐴 → 𝐿𝑆(𝑀) is 

continuous with respect to the topology 𝑡(𝑀) if and only if the self-adjoint derivations 

𝑅𝑒(𝛿) and 𝐼𝑚(𝛿) are continuous with respect to this topology. 

The following lemma shows that a derivation 𝛿 on a ∗-subalgebra of 𝐿𝑆(𝑀) is inner if and 

only if the derivations 𝑅𝑒(𝛿) and 𝐼𝑚(𝛿) are inner. 

Lemma (6.2.11)[266]: Let 𝐴 be a ∗-subalgebra in 𝐿𝑆(𝑀). 𝐴 derivation 𝛿: 𝐴 → 𝐴 is inner 

derivation on 𝐴 if and only if 𝑅𝑒(𝛿) and 𝐼𝑚(𝛿) are inner derivations. 

The proof of the lemma immediately follows from the decomposition of every element 𝑎 ∈
𝐴 in the form 𝑎 = 𝑅𝑒(𝑎) + 𝑖 𝐼𝑚(𝑎), where 𝑅𝑒(𝑎) = (𝑎 + 𝑎∗)/2, 𝐼𝑚(𝑎) = (𝑎 − 𝑎∗)/2𝑖. 
Lemma (6.2.12)[266]: Let 𝐴 and 𝛿 be the same as in Corollary (6.2.8) and let {𝑧𝑖}𝑖∈𝐼 be a 

central decomposition of the unity 𝟏. If 𝛿(𝑧𝑖) = 𝛿𝑑𝑖 , 𝑑𝑖 ∈ 𝑧𝑖𝐴 is an inner derivation on 𝑧𝑖𝐴 

for every 𝑖 ∈ 𝐼, then there exists an operator 𝑑 ∈ 𝐿𝑆(𝑀), such that 𝛿(𝑥) = [𝑑, 𝑥] for all 𝑥 ∈
𝐴 and 𝑧𝑖𝑑 = 𝑑𝑖 for every 𝑖 ∈ 𝐼. 
Proof. Since {𝑧𝑖}𝑖∈𝐼 is a central decomposition of the unity 𝟏, 𝑑𝑖 ∈ 𝑧𝑖𝐴 ⊂ 𝑧𝑖𝐿𝑆(𝑀), by 

Proposition (6.2.1) there exists 𝑑 ∈ 𝐿𝑆(𝑀), such that 𝑧𝑖𝑑 = 𝑑𝑖 for every 𝑖 ∈ 𝐼. Using 

Lemma (6.2.7) and the equalities 𝛿(𝑧𝑖)(𝑥) = [𝑑𝑖 , 𝑥], 𝑥 ∈ 𝑧𝑖𝐴, 𝑖 ∈ 𝐼 we have that for all 𝑦 ∈
𝐴, 𝑖 ∈ 𝐼 the equalities 

𝑧𝑖𝛿(𝑦) = 𝛿(𝑧𝑖)(𝑧𝑖𝑦) = [𝑑𝑖 , 𝑧𝑖𝑦] = [𝑧𝑖𝑑, 𝑧𝑖𝑦] = 𝑧𝑖[𝑑, 𝑦] 
hold. Since  ⋁ 𝑧𝑖𝑖∈𝐼 = 𝟏 it follows that 𝛿(𝑦) = [𝑑, 𝑦]. 
We need the following technical lemma. 

Lemma (6.2.13)[266]: Let 𝛿 be a derivation on a subalgebra 𝐴 of 𝐿𝑆(𝑀) and 𝑃(𝑀) ⊂ 𝐴. If 

𝑝, 𝑞 ∈ 𝑃(𝑀) and 𝑝𝛿(𝑞)𝑝 ≥ 𝜆𝑝 for some 𝜆 > 0, then 

𝑟(𝑞𝑝)𝛿(𝑙(𝑞𝑝))𝑟(𝑞𝑝) ≥ 𝜆𝑟(𝑞𝑝). 
Proof. Set 𝑒 = 𝑙(𝑞𝑝) and 𝑓 = 𝑟(𝑞𝑝). It is clear that 𝑒𝑞 = 𝑒 and 𝑝𝑓 = 𝑓. In addition, 𝑒 =
𝑟((𝑞𝑝)∗) = 𝑟(𝑝𝑞) and 𝑓 = 𝑙((𝑞𝑝)∗) = 𝑙(𝑝𝑞). 
Since 

𝑒𝑓 = (𝑒𝑞)(𝑝𝑓) = 𝑒(𝑞𝑝)𝑓 = 𝑙(𝑞𝑝)𝑞𝑝𝑟(𝑞𝑝) = 𝑞𝑝 = (𝑞𝑝)𝑓 = 𝑞(𝑝𝑓) = 𝑞𝑓,  
we have 

𝑓𝑒 = (𝑒𝑓)∗ = (𝑞𝑓)∗ = 𝑓𝑞 
and 

𝑓𝛿(𝑒)𝑓 = 𝑓(𝑓𝛿(𝑒))𝑓 = 𝑓𝛿(𝑓𝑒)𝑓 − 𝑓(𝛿(𝑓)𝑒)𝑓 
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= 𝑓𝛿(𝑓𝑞)𝑓 − 𝑓𝛿(𝑓)𝑞𝑓 = 𝑓𝛿(𝑓)𝑞𝑓 + 𝑓(𝑓𝛿(𝑞))𝑓 − 𝑓𝛿(𝑓)𝑞𝑓 
= 𝑓𝛿(𝑞)𝑓 = 𝑓(𝑝𝛿(𝑞)𝑝)𝑓 ≥ 𝜆𝑓𝑝𝑓 = 𝜆𝑓. 

For every 𝑥 ∈ 𝐿𝑆(𝑀), we set 𝑠(𝑥) = 𝑙(𝑥) ∨ 𝑟(𝑥), where 𝑙(𝑥) and 𝑟(𝑥) are the left and right 

supports of 𝑥, respectively. 

Let 𝑀ℎ,1 = {𝑥 ∈ 𝑀ℎ: ‖𝑥‖𝑀 ≤ 1}. We are now prepared to introduce the main technical tool. 

Definition (6.2.14)[266]: Fix a positive number 𝜆 and a self-adjoint derivation 𝛿: 𝐿𝑆(𝑀) →
𝐿𝑆(𝑀). The set of pairs 𝑆 = {(𝑝𝑗 , 𝑥𝑗) ∈ 𝑃(𝑀) ×𝑀ℎ,1: 𝑝𝑗 ≠ 0, 𝑗 ∈ 𝐽} is called a 𝜆-system 

(for the derivation 𝛿), if 
(i) (𝑝𝑗 ∨ 𝑠(𝑥𝑗))(𝑝𝑖 ∨ 𝑠(𝑥𝑖)) = 0 and (𝑝𝑗 ∨ 𝑠(𝑥𝑗))𝑠(𝛿(𝑝𝑖)) = 0 for 𝑗 ≠ 𝑖, 𝑗, 𝑖 ∈ 𝐽; 

(ii) 𝑠(𝑥𝑗) ∼ 𝑝𝑗  for all 𝑗 ∈ 𝐽; 

(iii) 𝑝𝑗𝛿(𝑥𝑗)𝑝𝑗 ≥ 𝜆𝑝𝑗 for all 𝑗 ∈ 𝐽. 

The projection  ⋁ (𝑝𝑗 ∨ 𝑠(𝑥𝑗)𝑗∈𝐽 ∨ 𝑠(𝛿(𝑝𝑗)) ∨ 𝑠(𝛿(𝑝𝑗 ∨ 𝑠(𝑥𝑗)))) is called the support of the 

𝜆-system 𝑆 and is denoted by 𝑠(𝑆). If 𝜆-system 𝑆 is empty, then we set 𝑠(𝑆) = 0. 

𝐴 𝜆-system is said to be maximal if it is not contained in any larger 𝜆-system. The role which 

is played by the notions introduced above in our study of derivations becomes clearer from 

the following result. Recall that the (reduced) derivation 𝛿(𝑔) is introduced in Lemma 

(6.2.9). 

Theorem (6.2.15)[266]: Let 𝑆 = {(𝑝𝑗 , 𝑥𝑗)}𝑗∈𝐽 be the maximal 𝜆-system for a self-adjoint 

derivation 𝛿: 𝐿𝑆(𝑀) → 𝐿𝑆(𝑀), 𝑔 =  𝑠(𝑆)⊥ and 𝛿(𝑔)(𝑥) = 𝑔𝛿(𝑥)𝑔, 𝑥 ∈ 𝑔𝐿𝑆(𝑀)𝑔. Then 

                                               𝛿(𝑔)(𝑔𝑀𝑔) ⊂ 𝑔𝑀𝑔.                                                          (11) 

Proof. Let us first prove that 

                                         𝛿(𝑔)(𝑞) ⊂ 𝑔𝑀𝑔 and ‖𝛿(𝑔)(𝑞)‖
𝑀
 ≤  𝜆                                      

(12) 

for any projection 𝑞 ∈ 𝑃(𝑔𝑀𝑔). Since 𝛿∗ = 𝛿, it follows that 𝛿(𝑞) ∈ 𝐿𝑆ℎ(𝑀) and therefore 

𝛿(𝑔)(𝑞) ∈ 𝐿𝑆ℎ(𝑔𝑀𝑔). Let 𝛿(𝑔)(𝑞)  ≠ 0 and let 𝑝 be the spectral projection for 𝛿(𝑔)(𝑞) 

corresponding to the interval (𝜆, +∞). It is clear that 𝑝 ≤ 𝑠(𝛿(𝑔)(𝑞)) ≤ 𝑔. 

Suppose that 𝑝 ≠ 0, then 

                                            0 ≠ 𝜆𝑝 ≤ 𝑝𝛿(𝑔)(𝑞)𝑝 = 𝑝𝛿(𝑞)𝑝.                                              
(13) 

Since 

0 ≠ 𝑝𝛿(𝑞)𝑝 = 𝛿(𝑝𝑞)𝑝 − 𝛿(𝑝)𝑞𝑝 = 𝛿(𝑝𝑞)𝑝 − 𝛿(𝑝)(𝑝𝑞)∗, 
it follows that 𝑞𝑝 = (𝑝𝑞)∗ ≠ 0. Consequently, 

                                       𝑒 = 𝑙(𝑞𝑝) ≠ 0   and   𝑓 = 𝑟(𝑞𝑝) ≠  0, 
in addition, 𝑒 ∼ 𝑓. Since 𝑔 = 𝑠(𝑆)⊥, from the inequalities 𝑓 ≤ 𝑝 ≤ 𝑔 and 𝑒 ≤ 𝑞 ≤ 𝑔 it 

follows that 

                                         (𝑓 ∨ 𝑒) (𝑝𝑗 ∨ 𝑠(𝑥𝑗)) = 0, (𝑓 ∨ 𝑒)𝑠(𝛿(𝑝𝑗)) = 0  

and 

(𝑝𝑗 ∨ 𝑠(𝑥𝑗))𝛿(𝑓) = 𝛿((𝑝𝑗 ∨ 𝑠(𝑥𝑗))𝑓) − 𝛿(𝑝𝑗 ∨ 𝑠(𝑥𝑗))𝑓 = 0 

for all 𝑗 ∈ 𝐽. Moreover, according to (13) and Lemma (6.2.13) we have that 𝑓𝛿(𝑒)𝑓 ≤ 𝜆𝑓. 

Thus, the system 𝑆 ∪ {(𝑓, 𝑒)} is a 𝜆-system, that contradicts to the maximality of the 𝜆-

system 𝑆. Consequently, 𝑝 = 0, which implies the inequality 𝛿(𝑔)(𝑞) ≤ 𝜆𝟏. Similarly, for 

projection (𝑔 − 𝑞) ≤  𝑔, we obtain that 

𝑔(𝛿(𝑔 −  𝑞))𝑔 = 𝛿(𝑔)(𝑔 − 𝑞) ≤ 𝜆𝟏. 
By Lemma (6.2.9), 𝑔𝛿(𝑔)𝑔 = 0, and therefore −𝑔𝛿(𝑞)𝑔 ≤ 𝜆𝟏. Thus, 
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−𝜆𝟏 ≤  𝑔𝛿(𝑞)𝑔 ≤ 𝜆𝟏, 

that is 𝛿(𝑔)(𝑞) ∈ 𝑔𝑀𝑔 and ‖𝛿(𝑔)(𝑞)‖
𝑀
≤ 𝜆. 

Now, suppose that the inclusion (11) false, that is there exists an element 𝑥 ∈ 𝑀ℎ,1 ∩ (𝑔𝑀𝑔), 

such that 𝛿(𝑔)(𝑥) ∈ 𝐿𝑆ℎ(𝑀) \ 𝑔𝑀𝑔. It means that the spectral projection 𝑟 =
𝐸−3𝜆(𝛿(𝑔)(𝑥)) (or 𝑟 = 𝐸−3𝜆(𝛿(𝑔)(𝑥))) for 𝛿(𝑔)(𝑥) corresponding to the interval (3𝜆, +∞
) (respectively, (−∞, −3𝜆)), is not equal to zero. Replacing, if necessary, 𝑥 by −𝑥, we may 

assume that 𝑟 = 𝐸3𝜆
⊥ (𝛿(𝑔)(𝑥)) ≠ 0. It is clear that 𝑟 ≤ 𝑠(𝛿(𝑔)(𝑥)) ≤ 𝑔 and 

                                            0 < 3𝜆𝑟 ≤ 𝑟𝛿(𝑔)(𝑥)𝑟 = 𝑟𝛿(𝑥)𝑟.                                              
(14) 

By (12), we have that ‖𝛿(𝑔)(𝑟)‖
𝑀
≤ 𝜆, and therefore the inclusion 𝑥 ∈ 𝑀ℎ,1 ∩ 𝑔𝑀𝑔 and the 

equality 

𝑟𝛿(𝑟)𝑥𝑟 +  𝑟𝑥𝛿(𝑟)𝑟 =  𝑟𝑔𝛿(𝑟)𝑔𝑥𝑟 +  𝑟𝑥𝑔𝛿(𝑟)𝑔𝑟 
imply that 

‖𝑟𝛿(𝑟)𝑥𝑟 + 𝑟𝑥𝛿(𝑟)𝑟‖𝑀 ≤ 2𝜆. 
Consequently, 

− 2𝜆𝑟 ≤ 𝑟𝛿(𝑟)𝑥𝑟 + 𝑟𝑥𝛿(𝑟)𝑟 ≤ 2𝜆𝑟.                                          (15) 

Using (14) and (15) for 𝑦 = 𝑟𝑥𝑟, we obtain that 

           𝑟𝛿(𝑦)𝑟 = 𝑟𝛿(𝑟𝑥𝑟)𝑟 = 𝑟𝛿(𝑟)𝑥𝑟 + 𝑟𝛿(𝑥)𝑟 + 𝑟𝑥𝛿(𝑟)𝑟 ≥ 𝜆𝑟 > 0,             (16) 

in particular, 𝑦 ≠ 0 and 𝑞 = 𝑠(𝑦) ≠ 0. Let us show that the collection 𝑆 ∪ {(𝑞, 𝑦)} forms a 

𝜆-system. Since 𝑞 ≤ 𝑟 ≤ 𝑔, from (16) it follows that 𝑞𝛿(𝑦)𝑞 ≥ 𝜆𝑞, in addition 

(𝑞 ∨ 𝑠(𝑦))(𝑝𝑗 ∨ 𝑠(𝑥𝑗)) = 0 = 𝑞(𝑝𝑗 ∨ 𝑠(𝑥𝑗)), 𝑞𝛿(𝑝𝑗) = 0 

and 

(𝑝𝑗 ∨ 𝑠(𝑥𝑗))𝛿(𝑞) = 𝛿((𝑝𝑗 ∨ 𝑠(𝑥𝑗))𝑞) − 𝛿(𝑝𝑗 ∨ 𝑠(𝑥𝑗))𝑞 = 0 

for all 𝑗 ∈ 𝐽. It means that the set 𝑆 ∪ {(𝑞, 𝑦)} is a 𝜆-system, that contradicts to the 

maximality of the 𝜆-system 𝑆. From obtained contradiction follows the validity of inclusion 

(11). 

The main result is given in Theorem (6.2.18). We need two simple technical lemmas 

for its proof. 

Lemma (6.2.16)[266]: If {𝑥𝑗}𝑗∈𝐽 ⊂ 𝑀ℎ,1, 𝑥𝑖𝑥𝑗 = 0, 𝑖 ≠ 𝑗, 𝑖, 𝑗 ∈ 𝐽, then there exists a unique 

element 𝑥 ∈ 𝑀ℎ,1, denoted by  ∑ 𝑥𝑗𝑗∈𝐽  , such that 𝑥𝑠(𝑥𝑗) = 𝑥𝑗 for all 𝑗 ∈ 𝐽 and  ⋁ 𝑠(𝑥𝑗)𝑗∈𝐽 =

𝑠(𝑥). 
Proof. Denote by 𝐴 the commutative von Neumann subalgebra of 𝑀, containing the family 

{𝑥𝑗}𝑗∈𝐽 . Since 𝐴ℎ is an order complete vector lattice, {𝑥𝑗}𝑗∈𝐽is the family of pairwise disjoint 

element of 𝐴ℎ and |𝑥𝑗| ≤ 𝟏 ∈ 𝐴 for all 𝑗 ∈ 𝐽, it follows that there exists a unique element 𝑥 

of 𝐴ℎ such that |𝑥| ≤ 𝟏, 𝑥𝑠(𝑥𝑗) = 𝑥𝑗  and 𝑠(𝑥) = ⋁ 𝑠(𝑥𝑗)𝑗∈𝐽 . 

Let 𝑦 be another element of 𝑀ℎ,1, such that 𝑦𝑠(𝑥𝑗) = 𝑥𝑗 for all 𝑗 ∈ 𝐽 and  ⋁ 𝑠(𝑥𝑗)𝑗∈𝐽 = 𝑠(𝑦). 

Then (𝑥 − 𝑦)𝑠(𝑥𝑗) = 𝑥𝑗 − 𝑥𝑗 = 0 for any 𝑗 ∈ 𝐽. Therefore, 𝑠(𝑥) = ⋁ 𝑠(𝑥𝑗)𝑗∈𝐽 ≤ (𝑟(𝑥 −

𝑦))⊥ and then 

𝑥 − 𝑦 = 𝑥𝑠(𝑥) − 𝑦𝑠(𝑦) = 𝑥𝑠(𝑥) − 𝑦𝑠(𝑥) = (𝑥 − 𝑦)𝑠(𝑥) = 0. 
Lemma (6.2.17)[266]: Let 𝑥 ∈  𝐿𝑆ℎ(𝑀), 𝑝, 𝑞 ∈ 𝑃(𝑀), 𝜌, 𝜆 ∈ ℝ, 𝜌 < 𝜆, 

𝑝𝑥𝑝 ≤ 𝜌𝑝                                                        (17) 

and 

𝑞𝑥𝑞 ≥ 𝜆𝑞.                                                        (18) 

Then 𝑝 ≼ 𝑞⊥and 𝑞 ≼ 𝑝⊥. 
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Proof. Set 𝑟 = 𝑝 ∧ 𝑞. Multiplying both parts on both sides of inequalities (17) and (18) by 

𝑟, we obtain that 

𝜆𝑟 ≤ 𝑟𝑥𝑟 ≤ 𝜌𝑟, 
that is possible if 𝑟 = 0 only. Therefore, 𝑝 = 𝑝 − 𝑝 ∧ 𝑞 ∼ 𝑝 ∨ 𝑞 − 𝑞 ≤ 𝑞⊥, that is 𝑝 ≼ 𝑞⊥. 

Similarly, 𝑞 ≼ 𝑝⊥. 

Now, we are prepared to estimate the dimension function of the support of a 𝜆-system from 

the above. 

Theorem (6.2.18)[266]: Let 𝑆 = {(𝑝𝑗 , 𝑥𝑗)}𝑗∈𝐽 be a 𝜆-system for a self-adjoint derivation 𝛿: 

𝐿𝑆(𝑀) → 𝐿𝑆(𝑀), let 𝐷 be a dimension function on 𝑃(𝑀). Then 

𝐷(𝑠(𝑆)) ≤ 8𝐷

(

 
 
𝐸𝜌
⊥(𝛿(∑𝑥𝑗

𝑗∈𝐽

))

)

 
 
 for any 𝜌 < 𝜆.                      (19) 

Proof. Set 𝑥 = ∑ 𝑥𝑗𝑗∈𝐽  (see Lemma (6.2.16)) and 𝑝 = ⋁ 𝑝𝑗𝑗∈𝐽  . The following inequality is 

our main technical tool. It may be thought of as ‘glueing’ of the inequalities given in 

Definition (6.2.14)(iii). We claim that 

𝑝𝛿(𝑥)𝑝 ≥  𝜆𝑝.                                                    (20) 

To prove the claim, we note firstly that (𝑝𝑗 ∨ 𝑠(𝑥𝑗))(𝑝𝑖 ∨ 𝑠(𝑥𝑖)) = 0 and (𝑝𝑗 ∨

𝑠(𝑥𝑗))𝑠(𝛿(𝑝𝑖)) = 0 for 𝑖 ≠ 𝑗 imply that 𝑥𝑖𝑝𝑗 = 𝑥𝑖𝑠(𝑥𝑖)𝑝𝑗 = 0 and 𝑥𝑖𝛿(𝑝𝑗) =

𝑥𝑖𝑠(𝑥𝑖)𝑠(𝛿(𝑝𝑗))𝛿(𝑝𝑗) = 0 for 𝑖 ≠  𝑗. Therefore, 

𝛿(𝑥𝑖)𝑝𝑗 = 𝛿(𝑥𝑖𝑝𝑗) − 𝑥𝑖𝛿(𝑝𝑗) = 0, 

that implies the equality 

𝑠(𝛿(𝑥𝑖))𝑝𝑗 = 0 𝑓𝑜𝑟 𝑖 = 𝑗. 

From here and from the equality 𝑝 = ⋁ 𝑝𝑗𝑗∈𝐽  it follows that 

𝑠(𝛿(𝑥𝑖))𝑝 = 𝑠(𝛿(𝑥𝑖))𝑝𝑖 . 
Thus, 

𝛿(𝑥𝑖)𝑝 = 𝛿(𝑥𝑖)𝑠(𝛿(𝑥𝑖))𝑝 = 𝛿(𝑥𝑖)𝑝𝑖 .                            (21) 

By Lemma (6.2.16), we have that 

                           𝑝𝑖𝑥 = 𝑝𝑖𝑠(𝑥)𝑥 = (𝑝𝑖 ⋁ 𝑠(𝑥𝑗)𝑗∈𝐽 )𝑥 = 𝑝𝑖𝑠(𝑥𝑖)𝑥 = 𝑝𝑖𝑥𝑖                (22) 

and 

                                  𝑥𝑖𝑝 = 𝑥𝑖(𝑠(𝑥𝑖)⋁ 𝑝𝑗𝑗∈𝐽 ) = 𝑥𝑖(𝑠(𝑥𝑖)𝑝𝑖) = 𝑥𝑖𝑝𝑖 .                             (23) 

Similarly, 

𝛿(𝑝𝑖)𝑥𝑝 = 𝛿(𝑝𝑖) (𝑠(𝛿(𝑝𝑖))⋁𝑠(𝑥𝑗)

𝑗∈𝐽

)𝑥𝑝 

                                 = 𝛿(𝑝𝑖)𝑠(𝑥𝑖)𝑥𝑝 = 𝛿(𝑝𝑖)𝑥𝑖𝑝 = 𝛿(𝑝𝑖)𝑥𝑖𝑝𝑖 .                      (24) 

By (21)–(23), we obtain 

𝛿(𝑝𝑖𝑥)𝑝 = 𝛿(𝑝𝑖𝑥𝑖)𝑝 = 𝛿(𝑝𝑖)𝑥𝑖𝑝 + 𝑝𝑖𝛿(𝑥𝑖)𝑝 
= 𝛿(𝑝𝑖)𝑥𝑖𝑝𝑖 + 𝑝𝑖𝛿(𝑥𝑖)𝑝𝑖 = 𝛿(𝑝𝑖𝑥𝑖)𝑝𝑖 , 

that by (24) implies the equalities 

𝑝𝑖(𝑝𝛿(𝑥)𝑝) = 𝑝𝑖𝛿(𝑥)𝑝 = 𝛿(𝑝𝑖𝑥)𝑝 − 𝛿(𝑝𝑖)𝑥𝑝 
= 𝛿(𝑝𝑖𝑥𝑖)𝑝𝑖 − 𝛿(𝑝𝑖)𝑥𝑖𝑝𝑖 = 𝑝𝑖𝛿(𝑥𝑖)𝑝𝑖 . 

Hence, 

                                                𝑝𝑖(𝑝𝛿(𝑥)𝑝) = 𝑝𝑖𝛿(𝑥𝑖)𝑝𝑖 ,                                                       (25)                                                  
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in particular, the projection 𝑝𝑖 commutes with the operator 𝑝𝛿(𝑥)𝑝. Set 𝑦 = 𝑝𝛿(𝑥)𝑝 − 𝜆𝑝 

and by 𝑦− = (|𝑦| − 𝑦)/2 denote the negative part of the operator 𝑦. Since 𝑝𝑖𝑦 = 𝑦𝑝𝑖 (see 

(25)) and 𝑝𝑖𝛿(𝑥𝑖)𝑝𝑖 ≥ 𝜆𝑝𝑖  (see Definition (6.2.14)(iii)), it follows that 

𝑦 − 𝑝𝑖 = 𝑝𝑖𝑦− = (𝑝𝑖(𝑝𝛿(𝑥)𝑝 − 𝜆𝑝))−     =
(25)

(𝑝𝑖𝛿(𝑥𝑖)𝑝𝑖 − 𝜆𝑝𝑖)− = 0       (26) 

for all 𝑖 ∈ 𝐽. From equalities (26) and 𝑝 = ⋁ 𝑝𝑗𝑗∈𝐽  by [113], it follows that 

(𝑝𝑦𝑝)− =  𝑝(𝑝𝛿(𝑥)𝑝 − 𝜆𝑝) − 𝑝 = 𝑝𝑦 − 𝑝 = 0.            (27) 

Therefore, 

𝑝𝑦𝑝 = (𝑝𝑦𝑝)+ − (𝑝𝑦𝑝)−     =
(27)

 (𝑝𝑦𝑝)+ ≥ 0, 
which implies inequality (20). 

Having established our claim, the rest is an easy application of the properties of the 

dimension function 𝐷. 

Fix a real number 𝜌 < 𝜆 and set 𝑞 = 𝐸𝜌(𝛿(𝑥)). By Lemma (6.2.17), we obtain 

𝑝 ≼ 𝑞⊥.                                                                       (28) 

For every fixed 𝑗 ∈ 𝐽 we have that 

𝛿(𝑝𝑗) = 𝛿(𝑝𝑗
2) = 𝛿(𝑝𝑗)𝑝𝑗 + 𝑝𝑗𝛿(𝑝𝑗) = 𝛿(𝑝𝑗)𝑝𝑗 + (𝛿(𝑝𝑗)𝑝𝑗)

∗ 

and therefore 

𝑠(𝛿(𝑝𝑗)) ≤ 𝑙(𝛿(𝑝𝑗)𝑝𝑗) ∨ 𝑝𝑗 ,  

that implies 

                                       𝐷(𝑠(𝛿(𝑝𝑗))) ≤ 𝐷(𝑙(𝛿(𝑝𝑗)𝑝𝑗)) + 𝐷(𝑝𝑗).                                   

(29) 

Since 𝑙(𝛿(𝑝𝑗)𝑝𝑗) ∼ 𝑟(𝛿(𝑝𝑗)𝑝𝑗) ≤ 𝑝𝑗 , by (29) we have 

                                           𝐷(𝑠(𝛿(𝑝𝑗))) ≤ 2𝐷(𝑝𝑗)                                                          (30) 

for all 𝑗 ∈ 𝐽. Similarly, 

𝐷(𝑠(𝛿(𝑝𝑗 ∨ 𝑠(𝑥𝑗)))) ≤ 2𝐷(𝑝𝑗 ∨ 𝑠(𝑥𝑗)), 

and in view of the equivalence 𝑝𝑗 ∼ 𝑠(𝑥𝑗) (see the definition of 𝜆-system), we obtain 

                                          𝐷(𝑠(𝛿(𝑝𝑗 ∨ 𝑠(𝑥𝑗)))) ≤ 4𝐷(𝑝𝑗).                                             (31) 

Denote by 𝐴 the directed set of all finite subsets of 𝐽 ordered by inclusion and for every 𝛼 ∈
𝐴 set 

𝑒𝛼: =⋁(𝑝𝑗 ∨ 𝑠(𝑥𝑗) ∨ 𝑠(𝛿(𝑝𝑗))

𝑗∈𝛼

∨ 𝑠(𝛿(𝑝𝑗 ∨ 𝑠(𝑥𝑗)))). 

From properties (𝐷2) and (𝐷3) of the dimension function 𝐷 and from inequalities (28), (30) 

and (31) we have that 

𝐷(𝑒𝛼) ≤∑𝐷(𝑝𝑗 ∨ 𝑠(𝑥𝑗) ∨ 𝑠(𝛿(𝑝𝑗))

𝑗∈𝛼

∨ 𝑠(𝛿(𝑝𝑗 ∨ 𝑠(𝑥𝑗)))) 

≤∑(𝐷(𝑝𝑗) + 𝐷(𝑠(𝑥𝑗)) + 𝐷(𝑠(𝛿(𝑝𝑗)))

𝑗∈𝛼

+ 𝐷(𝑠(𝛿(𝑝𝑗 ∨ 𝑠(𝑥𝑗))))) 

≤ 8∑𝐷(𝑝𝑗)

𝑗∈𝛼

= 8𝐷(∑𝑝𝑗
𝑗∈𝛼

) ≤ 8𝐷(𝑝) ≤ 8𝐷(𝑞⊥). 

Since 𝑒𝛼 ↑ 𝑠(𝑆) the last inequality and property (𝐷6) of the dimension function D imply 

that 

𝐷(𝑠(𝑆)) = 𝐷 (⋁𝑒𝛼
𝛼∈𝐴

) =⋁𝐷(𝑒𝛼)

𝛼∈𝐴

≤ 8𝐷(𝑞⊥). 
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Let 𝑀 be an arbitrary von Neumann algebra and let 𝛿𝑎(𝑥) = [𝑎, 𝑥] be an inner 

derivation on 𝐿𝑆(𝑀), 𝑎 ∈ 𝐿𝑆(𝑀). Since (𝐿𝑆(𝑀), 𝑡(𝑀)) is a topological ∗-algebra, every 

derivation 𝛿𝑎 is continuous with respect to the topology 𝑡(𝑀). 
The main result establishes the converse implication. 

Theorem (6.2.19)[266]: Every derivation on the ∗-algebra 𝐿𝑆(𝑀) continuous with respect 

to the topology 𝑡(𝑀) is necessarily inner. 

Proof. Let 𝛿 be an arbitrary derivation on the ∗-algebra 𝐿𝑆(𝑀) and let 𝛿 be continuous with 

respect to the topology 𝑡(𝑀). By Lemmas (6.2.10) and (6.2.11), we may assume that 𝛿 is a 

self-adjoint derivation. 

Choose a central decomposition {𝑧𝑖}𝑖∈𝐼 of the unity 𝟏, such that every Boolean algebra 

𝑧𝑖𝑃(𝑍(𝑀)) has a countable type, 𝑖 ∈ 𝐼. By Corollary (6.2.8) the restriction 𝛿(𝑧𝑖) of the 

derivation 𝛿 to 𝑧𝑖𝐿𝑆(𝑀) = 𝐿𝑆(𝑧𝑖𝑀) is a 𝑡(𝑧𝑖𝑀)-continuous derivation on 𝐿𝑆(𝑧𝑖𝑀). If every 

derivation 𝛿(𝑧𝑖), 𝑖 ∈ 𝐼 is inner, then, by Lemma (6.2.12), the derivation 𝛿 is inner too. Thus, 

in the proof of Theorem (6.2.19) we may assume that the centre 𝑍(𝑀) of the von Neumann 

algebra 𝑀 is 𝜎-finite algebra. In this case, there exists a faithful normal finite trace 𝜏(𝑥) =

∫𝜑(𝑥) 𝑑𝜇 on 𝑍(𝑀) and the vector topology 𝑡(𝑀) has the basis of neighbourhoods of zero 

consists of the sets 𝑉(𝜀, 𝛽, 𝛾) given by (10) (see Proposition (6.2.6)). Since the derivation 𝛿 

is 𝑡(𝑀)-continuous, for arbitrary 𝜀, 𝛽, 𝛾 > 0 there exist 𝜀1, 𝛽1, 𝛾1 > 0, such that 

𝛿(𝑉(𝜀1, 𝛽1, 𝛾1)) ⊂ 𝑉(𝜀, 𝛽, 𝛾). It is clear that 

𝑀1: = {𝑥 ∈ 𝑀: ‖𝑥‖𝑀 ≤ 1} ⊂ 𝑉(1, 𝛽1, 𝛾1) = 𝜀1
−1𝑉(𝜀1, 𝛽1, 𝛾1), 

and therefore 

𝛿(𝑀1) ⊂ 𝜀1
−1𝑉(𝜀, 𝛽, 𝛾) = 𝑉 (𝜀/𝜀1, 𝛽, 𝛾). 

Hence, for the 𝑡(𝑀)-continuous self-adjoint derivation 𝛿: 𝐿𝑆(𝑀) → 𝐿𝑆(𝑀) and for arbitrary 

positive numbers 𝛽 and 𝛾 there exists a number 𝛥(𝛽, 𝛾), such that 

                                         𝛿(𝑀1) ⊂ 𝑉(𝛥(𝛽, 𝛾), 𝛽, 𝛾).                                              (32) 

Let 𝐷,𝜑, 𝜏 be the same as in the definition of the set 𝑉(𝜀, 𝛽, 𝛾) from (10). Fix an arbitrary 

2𝛥(𝛽, 𝛾)-system 𝑆 = {(𝑝𝑗 , 𝑥𝑗)}𝑗∈𝐽 for the derivation 𝛿 and show that there exists a central 

projection 𝑧 ∈ 𝑃(𝑍(𝑀)), such that 

                                    𝜏(𝑧⊥) ≤ 𝛽 and 𝐷(𝑧𝑠(𝑆)) ≤ 8𝛾𝜑(𝑧).                                  (33) 

If 𝑆 is empty, then 𝑠(𝑆) = 0 and, in this case, relations (33) hold for 𝑧 = 𝟏. Now, let 𝑆 =
{(𝑝𝑗 , 𝑥𝑗)}𝑗∈𝐽 be non-empty 2𝛥(𝛽, 𝛾)-system. By Lemma (6.2.16), there exists 𝑥 = 𝑥𝑗 ∈

𝑀ℎ,1. From (32) it follows that 𝛿(𝑥) ∈ 𝑉(𝛥(𝛽, 𝛾), 𝛽, 𝛾) for all 𝛽, 𝛾 > 0. Therefore, there 

exist projections 𝑧 ∈ 𝑃(𝑍(𝑀)) and 𝑞 ∈ 𝑃(𝑀), such that 

         𝜏(𝑧⊥) ≤ 𝛽, 𝛿(𝑥)𝑞 ∈ 𝑀, ‖𝛿(𝑥)𝑞‖𝑀 ≤ 𝛥(𝛽, 𝛾) and 𝐷(𝑧𝑞⊥) ≤ 𝛾𝜑(𝑧).           (34) 

Since 𝑥 = 𝑥∗ and 𝛿 = 𝛿∗, it follows that 𝛿(𝑥) = (𝛿(𝑥))∗ and, by (34), we have 

                               − 𝛥(𝛽, 𝛾)𝑞 ≤ 𝑞𝛿(𝑥)𝑞 ≤ 𝛥(𝛽, 𝛾)𝑞.                                           (35) 

Set 𝜌 =
3

2
· 𝛥(𝛽, 𝛾). Using inequalities (35) and 

𝜌𝐸𝜌
⊥(𝛿(𝑥)) ≤ 𝐸𝜌

⊥(𝛿(𝑥))𝛿(𝑥)𝐸𝜌
⊥(𝛿(𝑥)), 

we obtain that 𝐸𝜌
⊥(𝛿(𝑥)) ≤ 𝑞⊥ (Lemma (6.2.17)). Consequently, 𝑧𝐸𝜌

⊥(𝛿(𝑥)) ≤ 𝑧𝑞⊥ and, by 

(19) and (34), we have that 

𝐷(𝑧𝑠(𝑆))     =  
(𝐷4)

= 𝜑(𝑧)𝐷(𝑠(𝑆))    =  
(19)

 8𝜑(𝑧)𝐷(𝐸𝜌
⊥(𝛿(𝑥))) 

   =  
(𝐷4)

 8𝐷(𝑧𝐸𝜌
⊥(𝛿(𝑥)))        ≤  

(𝐷2),(𝐷3)
8𝐷(𝑧𝑞⊥)     ≤    

(34)
8𝛾𝜑(𝑧), 

that is (33) holds. 

For every 𝑛 ∈ ℕ choose the maximal (possible, empty) 2𝛥(2−𝑛, 2−𝑛)-system 𝑆𝑛 for the 

derivation 𝛿. Set 𝑞𝑛
’ = 𝑠(𝑆𝑛)

⊥. By Theorem (6.2.15), we have that 
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                                         𝛿(𝑞𝑛
’ )(𝑞𝑛

’ 𝑀𝑞𝑛
’ ) ⊂ 𝑞𝑛

’ 𝑀𝑞𝑛
’                                                  (36) 

for all 𝑛 ∈ ℕ. Moreover, in view of (33), there exists a projection 𝑧𝑛
’ ∈ 𝑃(𝑍(𝑀)), such that 

                                  𝜏(𝑧𝑛
’⊥) ≤ 2−𝑛 and 𝐷(𝑧𝑛

’ 𝑞𝑛
’⊥) ≤ 2−𝑛+3𝜑(𝑧𝑛

’ ).                          (37) 

We set 𝑞𝑛: = ⋀ 𝑞𝑘
’∞

𝑘=𝑛+1  and 𝑧𝑛: = ⋀ 𝑧𝑘
’∞

𝑘=𝑛+1  and consider the derivation 𝛿(𝑞𝑛) on 

𝑞𝑛𝐿𝑆(𝑀)𝑞𝑛. We shall show that 

𝛿(𝑞𝑛)(𝑞𝑛𝑀𝑞𝑛) ⊂ 𝑞𝑛𝑀𝑞𝑛. 
Clearly, the sequences {𝑞𝑛} and {𝑧𝑛} are increasing and, in addition, 

𝜏(𝑧𝑛
⊥) ≤ 𝜏 ( ⋁ 𝑧𝑛

’⊥

𝑘≥𝑛+1

) ≤ ∑ 𝜏(𝑧𝑛
’⊥)

𝑘≥𝑛+1

    =  
(37)

∑ 2−𝑘

𝑘≥𝑛+1

= 2−𝑛   (38) 

and 

𝐷(𝑧𝑛𝑞𝑛
⊥) = 𝜑(𝑧𝑛)𝐷 ( ⋁ 𝑧𝑛𝑞𝑘

’⊥

𝑘≥𝑛+1

) 

≤ 𝜑(𝑧𝑛)𝐷 ( ⋁ 𝑧𝑘
’ 𝑞𝑘

’⊥

𝑘≥𝑛+1

)     ≤  
(𝐷6)

𝜑(𝑧𝑛) ∑ 𝐷(𝑧𝑘
’ 𝑞𝑘

’⊥)

𝑘≥𝑛+1

 

     ≤  
(37)

𝜑(𝑧𝑛) ∑ 2−𝑘+3𝜙(𝑧𝑘
’ )

𝑘≥𝑛+1

= ∑ 2−𝑘+3𝜑(𝑧𝑛𝑧𝑘
’ )

𝑘≥𝑛+1

                  (39) 

= ∑ 2−𝑘+3𝜑(𝑧𝑛)

𝑘≥𝑛+1

= 2−𝑛+3𝜑(𝑧𝑛). 

If 𝑥 ∈ 𝑞𝑛𝑀𝑞𝑛, then 𝑥 ∈ 𝑞𝑛+1
’ 𝑀𝑞𝑛+1

’  and therefore, by (36), 

𝛿(𝑞𝑛)(𝑥) = 𝑞𝑛𝛿(𝑥)𝑞𝑛 = 𝑞𝑛𝑞𝑛+1
’ 𝛿(𝑥)𝑞𝑛+1

’ 𝑞𝑛 

= 𝑞𝑛𝛿
(𝑞𝑛+1

’ )(𝑥)𝑞𝑛 ∈ 𝑞𝑛𝑞𝑛+1
’ 𝑀𝑞𝑛+1

’ 𝑞𝑛 = 𝑞𝑛𝑀𝑞𝑛. 
Hence, the restriction 𝛿(𝑞𝑛)|𝑞𝑛𝑀𝑞𝑛 of the derivation 𝛿(𝑞𝑛) to 𝑞𝑛𝑀𝑞𝑛 is a derivation on the 

von Neumann algebra 𝑞𝑛𝑀𝑞𝑛. By Sakai Theorem [29], there exists an element 𝑐𝑛 ∈ 𝑞𝑛𝑀𝑞𝑛, 

such that 𝛿(𝑞𝑛)(𝑥) = [𝑐𝑛, 𝑥] for all 𝑥 ∈ 𝑞𝑛𝑀𝑞𝑛. 

Now, we replace the sequence {𝑐𝑛} with a sequence {𝑑𝑛}, which is somewhat similar to a 

sequence of ‘martingale differences’. More precisely, we shall construct a sequence {𝑑𝑛} of 

𝑀, such that 

𝑞𝑛𝑑𝑚𝑞𝑛 = 𝑑𝑛 for all 𝑛 ≤ 𝑚, 
                                            𝛿(𝑞𝑛)(𝑥) = [𝑑𝑛, 𝑥] for all 𝑥 ∈ 𝑞𝑛𝑀𝑞𝑛.                                    

(40) 

Set 𝑑1 = 𝑐1 and assume that elements 𝑑1, . . . , 𝑑𝑛 are already constructed. Since 

𝛿(𝑞𝑛)(𝑞𝑛𝑥𝑞𝑛) = 𝑞𝑛𝛿
(𝑞𝑛+1)(𝑞𝑛𝑥𝑞𝑛)𝑞𝑛, it follows that 

[𝑑𝑛, 𝑞𝑛𝑥𝑞𝑛] = 𝑞𝑛[𝑐𝑛+1, 𝑞𝑛𝑥𝑞𝑛]𝑞𝑛 = [𝑞𝑛𝑐𝑛+1𝑞𝑛, 𝑞𝑛𝑥𝑞𝑛] 
for any 𝑥 ∈ 𝑀. Consequently, the element 𝑑𝑛 − 𝑞𝑛𝑐𝑛+1𝑞𝑛 is contained in the centre of 

algebra 𝑞𝑛𝑀𝑞𝑛. By [274] there exists an element 𝑧 of the centre of algebra 𝑞𝑛+1𝑀𝑞𝑛+1, 

such that 𝑑𝑛 − 𝑞𝑛𝑐𝑛+1𝑞𝑛 = 𝑧𝑞𝑛. Set 𝑑𝑛+1 = 𝑐𝑛+1 + 𝑧. It is clear that 

                         𝛿(𝑞𝑛+1)|𝑞𝑛+1𝑀𝑞𝑛+1(𝑥) = [𝑐𝑛+1, 𝑥] = [𝑑𝑛+1, 𝑥]                         (41) 

for all 𝑥 ∈ 𝑞𝑛+1𝑀𝑞𝑛+1, in addition, 

𝑑𝑛+1 ∈ 𝑞𝑛+1𝑀𝑞𝑛+1 𝑎𝑛𝑑 𝑞𝑛𝑑𝑛+1𝑞𝑛 = 𝑞𝑛𝑐𝑛+1𝑞𝑛 + 𝑧𝑞𝑛 = 𝑑𝑛 
for every 𝑛 ∈ ℕ. Moreover, for 𝑘 ∈ ℕ, 𝑘 < 𝑛 + 1 the equalities 

𝑞𝑘𝑑𝑛+1𝑞𝑘 = 𝑞𝑘𝑞𝑛𝑑𝑛+1𝑞𝑛𝑞𝑘 = 𝑞𝑘𝑑𝑛𝑞𝑘 = · · · = 𝑞𝑘𝑑𝑘+1𝑞𝑘 = 𝑑𝑘             (42) 

hold. 

Thus we have constructed the sequence {𝑑𝑛} of elements of 𝑀 which has property (40). 
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By [272], the topology 𝑡(𝑀) induces on 𝑞𝑛𝐿𝑆(𝑀)𝑞𝑛 = 𝐿𝑆(𝑞𝑛𝑀𝑞𝑛) the topology 

𝑡(𝑞𝑛𝑀𝑞𝑛), and therefore the derivation 𝛿(𝑞𝑛) is continuous on (𝐿𝑆(𝑞𝑛𝑀𝑞𝑛), 𝑡(𝑞𝑛𝑀𝑞𝑛)). 
By Proposition (6.2.5), we have that 𝑞𝑛𝑀𝑞𝑛𝑡(𝑞𝑛𝑀𝑞𝑛) = 𝐿𝑆(𝑞𝑛𝑀𝑞𝑛). Consequently, the 

equality 𝛿(𝑞𝑛)(𝑥) = [𝑑𝑛, 𝑥] holds for all 𝑥 ∈  𝐿𝑆(𝑞𝑛𝑀𝑞𝑛). 
Our next objective is to show that the sequence {𝑑𝑛} is a Cauchy sequence in 

(𝐿𝑆(𝑀), 𝑡(𝑀)). If 𝑛,𝑚 ∈ ℕ, 𝑛 < 𝑚, then 

𝑑𝑚 − 𝑑𝑛     =  
(40)

𝑞𝑚𝑑𝑚𝑞𝑚 − 𝑞𝑛𝑑𝑚𝑞𝑛 = (𝑞𝑚 − 𝑞𝑛)𝑑𝑚𝑞𝑚 + 𝑞𝑛𝑑𝑚(𝑞𝑚 − 𝑞𝑛).  
Since 

𝑟((𝑞𝑚 − 𝑞𝑛)𝑑𝑚𝑞𝑚) ∼ 𝑙((𝑞𝑚 − 𝑞𝑛)𝑑𝑚𝑞𝑚) ≤ 𝑞𝑛
⊥, 

it follows that 

𝐷(𝑧𝑛𝑟(𝑑𝑚 − 𝑑𝑛)) ≤  𝐷(𝑧𝑛𝑟((𝑞𝑚 − 𝑞𝑛)𝑑𝑚𝑞𝑚) ∨ 𝑧𝑛𝑞𝑛
⊥) 

≤ 2𝐷(𝑧𝑛𝑞𝑛
⊥)   ≤  

(39)
2−𝑛+4𝜑(𝑧𝑛). 

From here, by taking 𝑝 = 𝑟(𝑑𝑚 − 𝑑𝑛)
⊥ in view of (10) and (38), we obtain 

𝑑𝑚 − 𝑑𝑛 ∈ 𝑉(0, 2−𝑛, 2−𝑛+4) ⊂ 𝑉(1/𝑛, 2−𝑛, 2−𝑛+4). 
It means that {𝑑𝑛} is a Cauchy sequence in (𝐿𝑆(𝑀), 𝑡(𝑀)), and therefore, since the space 

(𝐿𝑆(𝑀), 𝑡(𝑀)) is complete there exists 𝑑 ∈ 𝐿𝑆(𝑀), such that 𝑑𝑛
𝑡(𝑀)
→  𝑑. 

Finally, let us show that 𝛿(𝑥) = [𝑑, 𝑥] for all 𝑥 ∈ 𝐿𝑆(𝑀). By (38) and (39) we have that 

𝑞𝑛
⊥ ∈ 𝑉(0, 2−𝑛, 2−𝑛+3) for all 𝑛 ∈ ℕ, and therefore 𝑞𝑛

⊥
𝑡(𝑀)
→  0. Consequently, 𝑞𝑛

𝑡(𝑀)
→   𝟏 and 

for every 𝑥 ∈ 𝐿𝑆(𝑀) we have that 𝑞𝑛𝑥𝑞𝑛
𝑡(𝑀)
→  𝑥. We just need to use the 𝑡(𝑀)-continuity 

of the derivation 𝛿, which implies the following: 

𝛿(𝑥) = 𝑡(𝑀) − lim
𝑛→∞

(𝑞𝑛𝛿(𝑞𝑛𝑥𝑞𝑛)𝑞𝑛) = 𝑡(𝑀) − 𝑙𝑖𝑚 𝛿𝑞𝑛
𝑛→∞

(𝑞𝑛𝑥𝑞𝑛) 

= 𝑡(𝑀) − lim
𝑛→∞

[𝑑𝑛, 𝑞𝑛𝑥𝑞𝑛] = [𝑡(𝑀) − lim
𝑛→∞

𝑑𝑛, 𝑡(𝑀)  − lim
𝑛→∞

𝑞𝑛𝑥𝑞𝑛] = [𝑑, 𝑥]. 

A combination of Theorem (6.2.19) with results from [270] yields the full description of all 

derivations on the ∗-algebra 𝐿𝑆(𝑀) in case when 𝑀 is a properly infinite von Neumann 

algebra. This result significantly strengthens earlier results from [2], [106]. 

Corollary (6.2.20)[266]: If 𝑀 is a properly infinite von Neumann algebra, then every 

derivation on the ∗-algebra 𝐿𝑆(𝑀) is inner. 

Proof. By [270] every derivation 𝛿: 𝐿𝑆(𝑀) → 𝐿𝑆(𝑀) is 𝑡(𝑀)-continuous. Consequently, 

by Theorem (6.2.19), there exists 𝑑 ∈ 𝐿𝑆(𝑀), such that 𝛿(𝑥) = [𝑑, 𝑥] for all 𝑥 ∈ 𝐿𝑆(𝑀). 
We give applications of Theorem (6.2.19) and Corollary (6.2.20) to the description 

of continuous derivations on 𝐸𝑊∗-algebras. The class of 𝐸𝑊∗-algebras (extended 𝑊∗-

algebras) was introduced in [276] for the purpose of description of ∗-algebras of unbounded 

closed operators, which are ‘similar’ to 𝑊∗-algebras by their algebraic and order properties. 

Let 𝐴 be a set of closed, densely defined operators on the Hilbert space 𝐻 which is a ∗-

algebra under strong sum, strong product, scalar multiplication and the usual adjoint of 

operators. The set 𝐴 is said to be 𝐸𝑊∗-algebra [276] if the following conditions hold: 

(i) (𝟏 + 𝑥∗𝑥)−1 ∈ 𝐴 for every 𝑥 ∈ 𝐴; 

(ii) the subalgebra 𝐴𝑏 of bounded operators in 𝐴 is a 𝑊∗-algebra. 

The meaningful connection between 𝐸𝑊∗-algebras 𝐴 and solid subalgebras of 𝐿𝑆(𝐴𝑏) is 

given in [273]. Recall [106], that a ∗-subalgebra 𝐴 of 𝐿𝑆(𝑀) is called solid if conditions 𝑥 ∈
𝐿𝑆(𝑀), 𝑦 ∈ 𝐴, |𝑥| ≤ |𝑦| imply that 𝑥 ∈ 𝐴. It is clear that every solid ∗-subalgebra 𝐴 in 

𝐿𝑆(𝑀) with 𝑀 ⊂ 𝐴 is an 𝐸𝑊∗-algebra and 𝐴𝑏 = 𝑀. The converse implication is given in 

[273], where it is established that every 𝐸𝑊∗-algebra 𝐴 with the bounded part 𝐴𝑏 = 𝑀 is a 
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solid ∗-subalgebra in the ∗-algebra 𝐿𝑆(𝑀), that is 𝐿𝑆(𝑀) is the greatest 𝐸𝑊∗-algebra of all 

𝐸𝑊∗-algebras with the bounded part coinciding with 𝑀. 

In the case when the bounded part 𝐴𝑏 of an 𝐸𝑊∗-algebra 𝐴 is a properly infinite 𝑊∗-algebra 

we have that any derivation 𝛿: 𝐴 → 𝐿𝑆(𝐴𝑏) is continuous with respect to the local measure 

topology 𝑡(𝐴𝑏) [270]. 

Now, let 𝐴𝑏 be an arbitrary 𝑊∗-algebra and let 𝛿: 𝐴 → 𝐴 be a 𝑡(𝐴𝑏)-continuous derivation. 

Since 𝐴𝑏 ⊂  𝐴, 𝐴𝑏 is everywhere dense in (𝐿𝑆(𝐴𝑏), 𝑡(𝐴𝑏)) (Proposition (6.2.5)) and 

(𝐿𝑆(𝐴𝑏), 𝑡(𝐴𝑏)) is a topological ∗-algebra, there exists a unique 𝑡(𝐴𝑏)-continuous 

derivation �̂�: 𝐿𝑆(𝐴𝑏) → 𝐿𝑆(𝐴𝑏) such that �̂�(𝑥) = 𝛿(𝑥) for all 𝑥 ∈ 𝐴. By Theorem (6.2.19), 

the derivation �̂� is inner. In [106] it is proved that, if 𝛿 is a derivation on a solid ∗-subalgebra 

𝐴 ⊃ 𝑀 and 𝛿(𝑥) = [𝑤, 𝑥] for all 𝑥 ∈ 𝐴 and some 𝑤 ∈ 𝐿𝑆(𝑀), then there exists an element 

𝑤1 ∈ 𝐴, such that 𝛿(𝑥) =  [𝑤1, 𝑥] for all 𝑥 ∈ 𝐴, that is the derivation 𝛿 on the ∗-subalgebra 

𝐴 is inner. 

Thus the following result holds. 

Theorem (6.2.21)[266]: (i) Every 𝑡(𝐴𝑏)-continuous derivation on a 𝐸𝑊∗-algebra 𝐴 is 

inner. 

(ii) If the bounded part 𝐴𝑏 of an 𝐸𝑊∗-algebra 𝐴 is a properly infinite 𝑊∗-algebra, then every 

derivation on 𝐴 is inner. 

We specialize the result given in Theorem (6.2.21) to the algebra of 𝜏-measurable 

operators. 

Let 𝑀 be a semifinite von Neumann algebra acting on the Hilbert space 𝐻 and let 𝜏 

be a faithful normal semifinite trace on 𝑀. An operator 𝑥 ∈ 𝑆(𝑀) with the domain 𝔇(𝑥) is 

called 𝜏-measurable if for any 𝜀 > 0 there exists a projection 𝑝 ∈ 𝑃(𝑀) such that 𝑝(𝐻) ⊂
𝔇(𝑥) and 𝜏 (𝑝⊥) < 𝜀. 

The set 𝑆(𝑀, 𝜏) of all 𝜏-measurable operators is a solid ∗-subalgebra of 𝐿𝑆(𝑀) such that 

𝑀 ⊂ 𝑆(𝑀, 𝜏) ⊂ 𝑆(𝑀). If the trace 𝜏 is finite, then 𝑆(𝑀, 𝜏) = 𝑆(𝑀). The algebra 𝑆(𝑀, 𝜏) is 

a non-commutative version of the algebra of all measurable complex functions 𝑓 defined on 

(𝛺, 𝛴, 𝜇), for which 𝜇({|𝑓| > 𝜆}) → 0 as 𝜆 →∞. 

Let 𝑡𝜏 be the measure topology [52] on 𝑆(𝑀, 𝜏) whose base of neighbourhoods of zero is 

given by  

                             𝑈(𝜀, 𝛿) = {𝑥 ∈ 𝑆(𝑀, 𝜏) ∶ there exists a projection 𝑝 ∈ 𝑃(𝑀), 
                            such that 𝜏(𝑝⊥) ≤ 𝛿, 𝑥𝑝 ∈ 𝑀, ‖𝑥𝑝‖𝑀  ≤ 𝜀}, 𝜀 > 0, 𝛿 > 0. 
The pair (𝑆(𝑀, 𝜏), 𝑡𝜏) is a complete metrizable topological ∗-algebra. Here, the topology 𝑡𝜏 

majorizes the topology 𝑡(𝑀) on 𝑆(𝑀, 𝜏) and, if the trace 𝜏 is finite, the topologies 𝑡𝜏 and 

𝑡(𝑀) coincide [113]. Denote by 𝑡(𝑀, 𝜏) the topology on 𝑆(𝑀, 𝜏) induced by the topology 

𝑡(𝑀). It is not true in general that, if the topologies 𝑡𝜏 and 𝑡(𝑀, 𝜏) are the same, then the 

von Neumann algebra 𝑀 is finite. Indeed, if 𝑀 = 𝐵(𝐻), 𝑑𝑖𝑚(𝐻) =∞, 𝜏 = 𝑡𝑟 is the 

canonical trace on 𝐵(𝐻), then 𝐿𝑆(𝑀)  =  𝑆(𝑀)  =  𝑆(𝑀, 𝜏)  = 𝑀, and the two topologies 

𝑡𝜏 and 𝑡(𝑀) coincide with the uniform topology on 𝐵(𝐻). 
At the same time, if 𝑀 is a finite von Neumann algebra with a faithful normal semifinite 

trace 𝜏 and 𝑡𝜏 = 𝑡(𝑀, 𝜏), then necessarily 𝜏(𝟏) <∞ [272]. 

It is shown in [269] that every 𝑡𝜏 -continuous derivation on 𝑆(𝑀, 𝜏) is inner. In addition, if 

𝑀 is a properly infinite von Neumann algebra, then every derivation on 𝑆(𝑀, 𝜏) is 𝑡𝜏–

continuous [108]. Thus, in view of Theorem (6.2.21) we obtain the following strengthening 

of earlier results from [2], [106].  
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Corollary (6.2.22)[266]: Let 𝑀 be a semifinite von Neumann algebra, let 𝜏 be a faithful 

normal semifinite trace on 𝑀, let 𝛿 be a derivation on 𝑆(𝑀, 𝜏). Then the following conditions 

are equivalent: 

(i) 𝛿 is 𝑡(𝑀)-continuous; 

(ii) 𝛿 is 𝑡𝜏 -continuous; 

(iii) 𝛿 is inner. 

In addition, if 𝑀 is a properly infinite von Neumann algebra then every derivation on 

𝑆(𝑀, 𝜏) is inner. 

We give one more application of Theorem (6.2.19) to derivations with values in 

Banach 𝑀-bimodules of locally measurable operators. 

Let 𝑀 be a von Neumann algebra. A linear subspace ℰ of 𝐿𝑆(𝑀), is called an 𝑀-bimodule 

of locally measurable operators if 𝑢𝑥𝑣 ∈ ℰ whenever 𝑥 ∈ ℰ and 𝑢, 𝑣 ∈ 𝑀. If ℰ is an 𝑀-

bimodule of locally measurable operators, 𝑥 ∈ ℰ and 𝑥 = 𝑣|𝑥| is the polar decomposition 

of the operator 𝑥, then |𝑥| = 𝑣∗𝑥 ∈ 𝐸 and 𝑥∗ = |𝑥|𝑣∗ ∈ ℰ. In addition, we have  

                                      if |𝑎| ≤ |𝑏|, 𝑏 ∈ ℰ, 𝑎 ∈ 𝐿𝑆(𝑀) then 𝑎 ∈ ℰ.                         (43) 

Property (43) of an 𝑀-bimodule of locally measurable operators follows from the following 

proposition: 

Proposition (6.2.23)[266]: Let 𝑀 be a von Neumann algebra acting in a Hilbert space 𝐻, 

and let 𝑎, 𝑏 ∈ 𝐿𝑆(𝑀), 0 ≤ 𝑎 ≤ 𝑏. Then 𝑎1/2 = 𝑐𝑏1/2 for some 𝑐 ∈ 𝑠(𝑏)𝑀𝑠(𝑏), ‖𝑐‖𝑀  ≤ 1, 

in particular, 𝑎 = 𝑐𝑏𝑐∗. In addition, if 𝑐1 ∈ 𝑀 and 𝑎1/2 = 𝑐1𝑏
1/2, then 𝑠(𝑏) · 𝑐1 · 𝑠(𝑏) = 𝑐. 

Proof. Let us first show that 𝑠(𝑎) ≤ 𝑠(𝑏). Since 

0 ≤ (𝟏 − 𝑠(𝑏))𝑎(𝟏 − 𝑠(𝑏)) ≤ (𝟏 − 𝑠(𝑏))𝑏(𝟏 − 𝑠(𝑏)) = 0, 
if follows that (𝟏 − 𝑠(𝑏))𝑎1/2 = 0, which implies the equality (𝟏 − 𝑠(𝑏))𝑎 = 0, that is, 

𝑠(𝑏)𝑎 = 𝑎 = 𝑎∗ = 𝑎∗𝑠(𝑏) = 𝑎𝑠(𝑏). Consequently, 𝑠(𝑎) ≤ 𝑠(𝑏). 
Thus, passing if necessary to the reduced algebra 𝑠(𝑏)𝑀𝑠(𝑏), we may assume that 𝑠(𝑏) =
𝟏. For every 𝑛 ∈ ℕ denote by 𝑝𝑛 the spectral projection for the operator 𝑏 corresponding to 

the interval [1/𝑛, 𝑛]. Since 𝑝𝑛 ↑ 𝑠(𝑏) = 𝟏 it follows that the linear subspace 𝐻0 =

⋃ 𝑝𝑛𝐻
∞
𝑛=1  is dense in 𝐻 and 𝐻0 ⊂ 𝔇(𝑏) ∩ 𝔇(𝑏1/2). Furthermore, according to the 

inequalities 0 ≤ 𝑝𝑛𝑎𝑝𝑛 ≤ 𝑝𝑛𝑏𝑝𝑛 ≤ 𝑛𝑝𝑛 we have that 𝑎1/2𝑝𝑛 ∈ 𝑀 and ‖𝑎1/2𝑝𝑛‖𝑀 ≤ √𝑛 

for all 𝑛 ∈ ℕ. In particular, 𝐻0 ⊂ 𝔇(𝑎1/2). 
Since 𝑏1/2𝑝𝑛 ≤ 𝑛1/2𝑝𝑛 and 𝑏1/2(𝑝𝑛𝐻) = 𝑝𝑛𝑏

1/2(𝑝𝑛𝐻) ⊂ 𝑝𝑛𝐻 for all 𝑛 ∈ ℕ we have 

𝑏1/2(𝐻0) ⊂ 𝐻0. Consequently, it is possible to define a linear mapping 𝑑: 𝑏1/2(𝐻0) → 𝐻 by 

setting 𝑑(𝑏1/2𝜉) = 𝑎1/2𝜉, 𝜉 ∈ 𝐻0. The definition of the operator d is correct since the 

equality 𝑏1/2𝜉 = 0 and the inequality 

‖𝑎1/2𝜉‖
𝐻

2
= (𝑎1/2𝜉, 𝑎1/2𝜉) = (𝑎𝜉, 𝜉) ≤ (𝑏𝜉, 𝜉) = ‖𝑏1/2𝜉‖

𝐻

2
 

imply that 𝑎1/2𝜉 = 0. 

In addition, for every 𝜉 ∈ 𝐻0, we have 

‖𝑑(𝑏1/2𝜉)‖
𝐻

2
= ‖𝑎1/2𝜉‖

𝐻

2
≤ ‖𝑏1/2𝜉‖

𝐻

2
, 

that is 𝑑 is a continuous linear operator on 𝑏1/2(𝐻0) and ‖𝑑‖𝑏1/2(𝐻0)→𝐻 ≤ 1.  

Since 𝑛−1𝑝𝑛 ≤ 𝑏𝑝𝑛 ≤ 𝑛𝑝𝑛, by Proposition [113], we have 𝑛−1/2𝑝𝑛 ≤ 𝑏1/2𝑝𝑛 ≤ 𝑛1/2𝑝𝑛. 

Therefore, the restriction of the operator 𝑏1/2 to 𝑝𝑛(𝐻0) has inverse bounded operator 𝑏𝑛, 

in addition 𝑛−1/2𝑝𝑛 ≤ 𝑏𝑛𝑝𝑛 ≤ 𝑛1/2𝑝𝑛. Hence, 𝑏1/2(𝑝𝑛𝐻) = 𝑝𝑛𝐻, that implies the equality 

𝑏1/2(𝐻0) = 𝐻0. 
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Thus, the operator 𝑑 uniquely extends to the Hilbert space 𝐻 up to a bounded linear operator 

𝑐, moreover, ‖𝑐‖𝐵(𝐻) ≤ 1 and 𝑐𝑏1/2𝜉 = 𝑎1/2𝜉 for all 𝜉 ∈ 𝐻0. 

If 𝑢 is a unitary operator from the commutant 𝑀’, then 𝑢(𝑝𝑛𝐻) = 𝑝𝑛𝐻 for all 𝑛 ∈ ℕ and 

therefore 𝑢(𝐻0) = 𝐻0. If 𝜂 ∈ 𝐻0, then 𝜂 = 𝑏1/2𝜉 for some 𝜉 ∈ 𝐻0 and 

𝑢−1𝑐𝑢𝜂 = 𝑢−1𝑐𝑢𝑏1/2𝜉 = 𝑢−1𝑐𝑏1/2𝑢𝜉 
= 𝑢−1𝑎1/2𝑢𝜉 = 𝑢−1𝑢𝑎1/2𝜉 = 𝑎1/2𝜉 = 𝑐𝑏1/2𝜉 = 𝑐𝜂. 

Consequently, 𝑢−1𝑐𝑢 = 𝑐, that implies the inclusion 𝑐 ∈ 𝑀. 

Since 𝑝𝑛𝑐𝑏
1/2𝑝𝑛 = 𝑝𝑛𝑎

1/2𝑝𝑛 for all 𝑛 ∈ ℕ and 𝑝𝑛 ↑ 𝟏, by Proposition [113] we have 

𝑐𝑏1/2 = 𝑎1/2. 

If 𝑐1 ∈ 𝑀 and 𝑐1𝑏
1/2 = 𝑎1/2, then the operators 𝑐1 and 𝑐 coincide on the everywhere dense 

subspace 𝐻0 and therefore 𝑐1 =  𝑐. 

If 𝑠(𝑏) = 𝟏, 𝑐1 ∈ 𝑀 and 𝑐1𝑏
1/2 = 𝑎1/2, then, using equalities 

𝑎1/2𝑠(𝑏) = 𝑠(𝑏)𝑎1/2 = 𝑎1/2 
and 

𝑏1/2𝑠(𝑏) = 𝑠(𝑏)𝑏1/2 = 𝑏1/2, 
we obtain (𝑠(𝑏)𝑐1𝑠(𝑏))𝑏

1/2 = 𝑎1/2. Uniqueness of the operator 𝑐 in the reduced algebra 

𝑠(𝑏)𝑀𝑠(𝑏) implies that 𝑠(𝑏) · 𝑐1 ·  𝑠(𝑏) = 𝑐. 
Let ℰ be an 𝑀-bimodule of locally measurable operators. 𝐴 linear mapping 𝛿:𝑀 → ℰ is 

called a derivation, if 𝛿(𝑎𝑏) = 𝛿(𝑎)𝑏 + 𝑎𝛿(𝑏) for all 𝑎, 𝑏 ∈ 𝑀. 𝐴 derivation 𝛿:𝑀 → ℰ is 

called inner, if there exists an element 𝑑 ∈ ℰ, such that 𝛿(𝑥) = [𝑑, 𝑥] = 𝑑𝑥 − 𝑥𝑑 for all 𝑥 ∈
𝑀. 

We recall the following result. 

Theorem (6.2.24)[266]: [255]. Let 𝑀 be a von Neumann algebra and 𝑎 ∈ 𝐿𝑆ℎ(𝑀). Then 

there exist a self-adjoint operator c in the centre of the ∗-algebra 𝐿𝑆(𝑀) and a family {𝑢𝜀}𝜀>0 

of unitary operators from 𝑀 such that 

                                      |[𝑎, 𝑢𝜀]| ≥ (1 − 𝜀)|𝑎 − 𝑐|.                                                 (44) 

The following theorem shows that every derivation 𝛿:𝑀 → ℰ is inner, provided that 𝑀 is a 

properly infinite von Neumann algebra. In this special case, we are in a position to 

significantly strengthen Ringrose Theorem [27] by omitting the assumption that ℰ is a 

Banach 𝑀-bimodule. 

Theorem (6.2.25)[266]: Let 𝑀 be a properly infinite von Neumann algebra and let ℰ be an 

𝑀 bimodule of locally measurable operators. Then any derivation 𝛿:𝑀 → ℰ is inner. 

Proof. By [270], there exists a derivation  𝛿: 𝐿𝑆(𝑀) →  𝐿𝑆(𝑀), such that 𝛿(𝑥) = 𝛿(𝑥) for 

all 𝑥 ∈ 𝑀. By Corollary (6.2.20), there exists an element 𝑎 ∈  𝐿𝑆(𝑀), such that 𝛿(𝑥) =
 [𝑎, 𝑥] for all 𝑥 ∈ 𝐿𝑆(𝑀). It is clear that [𝑎,𝑀] = 𝛿(𝑀) = 𝛿(𝑀) ⊂ ℰ. 

Let 𝑎1 = 𝑅𝑒(𝑎), 𝑎2 = 𝐼𝑚(𝑎). Since [𝑎∗, 𝑥] = −[𝑎, 𝑥∗]∗  ∈ ℰ for any 𝑥 ∈ 𝑀, it follows that 

[𝑎1, 𝑥] = [𝑎 + 𝑎∗, 𝑥]/2 ∈ ℰ and [𝑎2, 𝑥] = [𝑎 − 𝑎∗, 𝑥]/2𝑖 ∈ ℰ for all 𝑥 ∈ 𝑀. 

 Taking 𝜀 =
1

2
 in (44), we obtain that there exist 𝑐1, 𝑐2 ∈ 𝑍ℎ(𝐿𝑆(𝑀)) and unitary operators 

𝑢1, 𝑢2 ∈ 𝑀 such that 

2|[𝑎𝑖 , 𝑢𝑖]| ≥ |𝑎𝑖 − 𝑐𝑖|, 𝑖 = 1, 2. 
Since [𝑎𝑖 , 𝑢𝑖] ∈ ℰ and ℰ is an 𝑀-bimodule we have that 𝑑𝑖: = 𝑎𝑖 − 𝑐𝑖 ∈ ℰ, 𝑖 = 1,2 (see (43)). 

Therefore, 𝑑 = 𝑑1 + 𝑖𝑑2 ∈ ℰ. Since 𝑐1 and 𝑐2 are central elements from 𝐿𝑆(𝑀) it follows 

that 𝛿(𝑥) = [𝑎, 𝑥] = [𝑑, 𝑥] for all 𝑥 ∈ 𝑀. 

Let 𝑀 be a von Neumann algebra. If an 𝑀-bimodule of locally measurable operators ℰ is 

equipped with a norm ‖· ‖ℰ, satisfying 
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‖𝑢𝑥𝑣‖ℰ ≤ ‖𝑢‖𝑀‖𝑣‖𝑀‖𝑥‖𝜀, 𝑥 ∈ ℰ, 𝑢, 𝑣 ∈ 𝑀,                                 (45) 

then ℰ is called a normed 𝑀-bimodule of locally measurable operators. If, in addition, the 

pair (ℰ, ‖·‖ℰ) is a Banach space, then ℰ is called a Banach 𝑀-bimodule of locally 

measurable operators. 

It is easy to see that the norm ‖ · ‖ℰ on a normed 𝑀-bimodule of locally measurable 

operators ℰ satisfies the following properties: 

                                      ‖|𝑎|‖ℰ = ‖𝑎∗‖ℰ = ‖𝑎‖ℰ  for any 𝑎 ∈ ℰ;                      (46) 

                                     ‖𝑎‖ℰ ≤ ‖𝑏‖ℰ for any 𝑎, 𝑏 ∈ ℰ, 0 ≤ 𝑎 ≤ 𝑏.                   (47) 

                 If 𝑞 ∈ ℰ ∩ 𝑃(𝑀), 𝑝 ∈ 𝑃(𝑀), 𝑝 ≼ 𝑞, then 𝑝 ∈ ℰ and ‖𝑝‖ℰ ≤ ‖𝑞‖ℰ  , 
                                  in particular, if 𝑝 ∼ 𝑞, then ‖𝑝‖ℰ = ‖𝑞‖ℰ  .                      (48) 

Proposition (6.2.26)[266]: If {𝑝𝑘}𝑘=1
𝑛 ⊂ 𝑃(𝑀) ∩ ℰ, 𝑛 ∈ ℕ, then  

⋁𝑝𝑛

𝑛

𝑘=1

∈ ℰ and ‖⋁ 𝑝𝑛
𝑛

𝑘=1
‖
ℰ

≤∑ ‖𝑝𝑘‖ℰ
𝑛

𝑘=1
 .                (49) 

Proof. If 𝑝, 𝑞 ∈ 𝑃(𝑀) ∩ ℰ, then 𝑝 ∨ 𝑞 − 𝑝 ∼ 𝑞 − 𝑝 ∧ 𝑞 ≤ 𝑞, and therefore, 𝑝 ∨ 𝑞 −  𝑝 ∈ ℰ 

and ‖𝑝 ∨ 𝑞 − 𝑝‖ℰ  ≤ ‖𝑞‖ℰ (see (48)). Hence, 𝑝 ∨ 𝑞 = (𝑝 ∨ 𝑞 − 𝑝) + 𝑝 ∈ ℰ and 

‖𝑝 ∨ 𝑞‖ℰ − ‖𝑝‖ℰ ≤ ‖𝑝 ∨ 𝑞 − 𝑝‖ℰ ≤ ‖𝑞‖ℰ  . 
For an arbitrary finite set {𝑝𝑘}𝑘=1

𝑛 ⊂ 𝑃(𝑀) ∩ ℰ the assertion is proved via mathematical 

induction. 

We devoted to another strengthening of Ringrose Theorem. In Theorem (6.2.32), we 

show that any derivation on a von Neumann algebra 𝑀 with values in a Banach 𝑀-bimodule 

is inner. 

In Lemmas (6.2.28)–(6.2.31), we assume that 𝜏 is a faithful normal finite trace on a finite 

von Neumann algebra 𝑀 and (ℰ, ‖·‖ℰ) is a Banach 𝑀-bimodule of locally measurable 

operators in 𝐿𝑆(𝑀). In this case, 𝐿𝑆(𝑀) = 𝑆(𝑀) = 𝑆(𝑀, 𝜏), 𝑡(𝑀) = 𝑡𝜏 and (𝐿𝑆(𝑀), 𝑡(𝑀)) 
is an 𝐹-space. Later we need the following: 

Proposition (6.2.27)[266]:  [113]. Let 𝑀 be a von Neumann algebra with a faithful normal 

finite trace 𝜏 and {𝑝𝑛}𝑛=1
∞ ⊂ 𝑃(𝑀). Then 

𝑝𝑛
𝑡(𝑀)
→  0 ⇔ 𝜏(𝑝𝑛) ⟶ 0. 

Lemma (6.2.28)[266]: If {𝑝𝑛}𝑛=1
∞ ⊂ 𝑃(𝑀) ∩ ℰ and the series ∑ ‖𝑝𝑛‖ℰ

∞
𝑛=1  converges, then 

p = ⋁ 𝑝𝑛
∞
𝑛=1 ∈ ℰ and ‖𝑝‖ℰ ≤ ∑ ‖𝑝𝑛‖ℰ

∞
𝑛=1 . 

Proof. Set 𝑞𝑛 = ⋁ 𝑝𝑘
𝑛
𝑘=1 . By (49), we have 𝑞𝑛 ∈ ℰ and ‖𝑞𝑛‖ℰ ≤ ∑ ‖𝑝𝑘‖ℰ

𝑛
𝑘=1 . 

Let 𝑛,𝑚 ∈ ℕ, 𝑛 < 𝑚. By (48) and (49), we have that 

‖𝑞𝑚 − 𝑞𝑛‖ℰ = ‖𝑞𝑛 ∨ ⋁ 𝑝𝑘

𝑚

𝑘=𝑛+1

− 𝑞𝑘‖

ℰ

 

= ‖ ⋁ 𝑝𝑘

𝑚

𝑘=𝑛+1

− 𝑞𝑛 ∧ ⋁ 𝑝𝑘

𝑚

𝑘=𝑛+1

‖

ℰ

≤ ‖ ⋁ 𝑝𝑘

𝑚

𝑘=𝑛+1

‖

ℰ

≤ ∑ ‖𝑝𝑘‖ℰ

𝑚

𝑘=𝑛+1

. 

Consequently, {𝑞𝑛} is a Cauchy sequence in (ℰ, ‖·‖ℰ), and therefore there exists 𝑞 ∈ ℰ, such 

that ‖𝑞𝑛 − 𝑞‖ℰ → 0, in addition ‖𝑞‖ℰ ≤ ∑ ‖𝑝𝑛‖ℰ
𝑚
𝑘=𝑛+1 . 

Since 

‖𝑞𝑝 − 𝑞𝑛‖ℰ = ‖𝑞𝑝 − 𝑞𝑛𝑝‖ℰ ≤ ‖𝑝‖𝑀‖𝑞 − 𝑞𝑛‖ℰ  , 
it follows that 𝑞𝑝 = 𝑞 = 𝑞∗ = 𝑝𝑞. Hence, 𝑠(𝑝 − 𝑞) ≤ 𝑝. Fix 𝑛0 ∈ ℕ, then for 𝑛 > 𝑛0, we 

have 

‖𝑞𝑛0𝑞 − 𝑞𝑛0‖ℰ
= ‖𝑞𝑛0𝑞 − 𝑞𝑛0𝑞𝑛‖ℰ
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≤ ‖𝑞𝑛0‖𝑀
‖𝑞 − 𝑞𝑛‖ℰ ≤ ‖𝑞 − 𝑞𝑛‖ℰ  . 

Passing to the limit for 𝑛 →∞, we obtain 𝑞𝑛0𝑞 = 𝑞𝑛0  . Therefore, 𝑞𝑛(𝑝 − 𝑞)𝑞𝑛 = 0  for all 

𝑛 ∈ ℕ. The inequality 𝑠(𝑝 − 𝑞) ≤ 𝑝 and the convergence 𝑞𝑛 ↑ 𝑝 by [113] imply that 𝑞 = 𝑝. 

The following lemma shows that a Banach bimodule (ℰ, ‖·‖ℰ) of locally measurable 

operator is continuously embedded into (𝐿𝑆(𝑀), 𝑡(𝑀)). 

Lemma (6.2.29)[266]: If {𝑎𝑛}𝑛=1
∞ ⊂ ℰ and ‖𝑎𝑛‖ℰ → 0, then 𝑎𝑛

𝑡(𝑀)
→  0. 

Proof. Let us show firstly that every convergent to zero in the norm ‖·‖ℰ sequence of 

projections from ℰ has a subsequence convergent to zero in the topology 𝑡(𝑀). Consider a 

sequence {𝑝𝑛}𝑛=1
∞ ∈ 𝑃(𝑀) ∩ ℰ, such that ‖𝑝𝑛‖ℰ → 0. Choose a subsequence {𝑝𝑛𝑘}𝑘=1

∞ so 

that ‖𝑝𝑛𝑘‖ℰ
≤ 2−𝑘 . By Lemma (6.2.28), for the sequence of projections 𝑞𝑘 = ⋁ 𝑝𝑛𝑙𝑙≤𝑘+1  , 

we have 𝑞𝑘 ∈ ℇ and ‖𝑞𝑘‖ℇ ≤ 2−𝑘. If 𝑞 = ⋀ 𝑞𝑘𝑘≥1 , then 𝑞 ∈ ℰ and ‖𝑞‖ℰ ≤ ‖𝑞𝑘‖ℰ ≤ 2−𝑘 for 

all 𝑘 ∈ ℕ, that implies 𝑞 = 0. Consequently, 𝑞𝑘 ↓ 0, and therefore 𝜏(𝑞𝑘) ↓ 0. 
Since 𝑝𝑛𝑘+1 ≤ 𝑞𝑘 for all 𝑘 ∈ ℕ we have 𝜏 (𝑝𝑛𝑘) → 0. By Proposition (6.2.27), we infer the 

convergence 𝑝𝑛𝑘
𝑡(𝑀)
→  0. 

Now, let us show that every sequence {𝑝𝑛}𝑛=1
∞ ∈ 𝑃(𝑀) ∩ ℰ convergent to zero in the 

norm‖ · ‖ℰ  automatically converges to zero in the topology 𝑡(𝑀). Otherwise, there exists a 

subsequence {𝑝𝑛𝑘}𝑘=1
∞  and a 𝑡(𝑀)-neighborhood 𝑈 of zero, which does not contain 

{𝑝𝑛𝑘}𝑘=1
∞ . 

From the above, there exists a subsequence {𝑝𝑛𝑘𝑠}𝑠=1
∞  converging to zero in the topology 

𝑡(𝑀), that contradicts to the relation 𝑝𝑛𝑘𝑠 ∉ 𝑈. 

Now, let {𝑎𝑛}𝑛=1
∞ ⊂ ℰ and ‖𝑎𝑛‖ℰ → 0. For every 𝜆 > 0 the inequality 𝜆𝐸𝜆

⊥(|𝑎𝑛|) ≤

|𝑎𝑛|𝐸𝜆
⊥(|𝑎𝑛|) ≤ |𝑎𝑛| imply that 

‖𝐸𝜆
⊥(|𝑎𝑛|)‖ℰ     ≤  

(47)
𝜆−1‖|𝑎𝑛|‖ℰ    =   

(46)
𝜆−1‖𝑎𝑛‖ℰ ⟶ 0.  

By the preceding argument, we have that 𝐸𝜆
⊥(|𝑎𝑛|) ⟶ 0. Finally, by Proposition (6.2.2)(ii), 

we obtain 𝑎𝑛
𝑡 (𝑀) 
→   0. 

Lemma (6.2.30)[266]: If {𝑎𝑛}𝑛=1
∞ ⊂ 𝐿𝑆(𝑀) and 𝑎𝑛

𝑡(𝑀)
→  0, then there exists a sequence 

{𝑎𝑛𝑘}𝑘=1
∞  such that 𝑎𝑛𝑘 = 𝑏𝑘 + 𝑐𝑘, where 𝑏𝑘 ∈ 𝑀, 𝑐𝑘 ∈ 𝐿𝑆(𝑀), 𝑘 ∈ ℕ, ‖𝑏𝑘‖𝑀 → 0 and 

𝑠(|𝑐𝑘|)
𝑡(𝑀)
→  0 for 𝑠 →∞. 

Proof. Since (𝐿𝑆(𝑀), 𝑡(𝑀)) is an 𝐹-space there exists a countable basis {𝑈𝑘}𝑘=1
∞  of 

neighbourhoods of zero of the topology 𝑡(𝑀). 

By Proposition (6.2.2)(ii), we have 𝐸𝜆
⊥(|𝑎𝑛|)

𝑡(𝑀)
→   0 for every 𝜆 > 0. Therefore, there exists 

a sequence (𝑎𝑛𝑘)𝑘≥1 such that 𝐸1/𝑘
⊥ (|𝑎𝑛𝑘|)  ∈ 𝑈𝑘 for all 𝑘 ∈ ℕ. Set 𝑏𝑘 = 𝑎𝑛𝑘𝐸1/𝑘(|𝑎𝑛𝑘|) 

and 𝑐𝑘 = 𝑎𝑛𝑘𝐸1/𝑘
⊥ (|𝑎𝑛𝑘|). It is clear that 𝑏𝑘 ∈ 𝑀 and ‖𝑏𝑘‖𝑀 ≤ 1/𝑘. Since 

|𝑐𝑘| = (𝑐𝑘
∗𝑐𝑘)

1 𝑘⁄ = (𝐸1/𝑘
⊥ (|𝑎𝑛𝑘|)|𝑎𝑛𝑘|

2
𝐸1/𝑘
⊥ (|𝑎𝑛𝑘|))

1/2 

= 𝐸1/𝑘
⊥ (|𝑎𝑛𝑘|)|𝑎𝑛𝑘|𝐸1/𝑘

⊥ (|𝑎𝑛𝑘|) = |𝑎𝑛𝑘|𝐸1/𝑘
⊥ (|𝑎𝑛𝑘|), 

it follows that 

𝑠(|𝑐𝑘|) ≤ 𝐸1/𝑘
⊥ (|𝑎𝑛𝑘|) ∈ 𝑈𝑘. 

Since {𝑈𝑘}𝑘=1
∞  is a basis of neighbourhoods of zero of the topology 𝑡(𝑀), we have 

𝐸1/𝑘
⊥ (|𝑎𝑛𝑘|)

𝑡(𝑀)
→  0, which, in its turn, guarantees the convergence 𝜏(𝐸1/𝑘

⊥ (|𝑎𝑛𝑘|)) → 0 
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Proposition (6.2.27). From the inequality 𝜏(𝑠(|𝑐𝑘|)) ≤ 𝜏 (𝐸1/𝑘
⊥ (|𝑎𝑛𝑘|)) and Proposition 

(6.2.27), we obtain 𝑠(|𝑐𝑘|)
𝑡(𝑀)
→  0. 

Lemma (6.2.31)[266]: Let 𝑀 be a von Neumann algebra with faithful normal finite trace 𝜏 

and let (ℰ, ‖· ‖ℰ) be a Banach 𝑀-bimodule. Every derivation 𝛿: 𝐿𝑆(𝑀) → 𝐿𝑆(𝑀) with 

𝛿(𝑀) ⊂ ℰ is 𝑡(𝑀)-continuous. 

Proof. Since (𝐿𝑆(𝑀), 𝑡(𝑀)) is an 𝐹-space it is sufficient to show that the graph of the linear 

operator 𝛿 is closed. 

Suppose that the graph of the operator 𝛿 is not closed. Then there exists a sequence 

{𝑎𝑛}𝑛=1
∞ ⊂ 𝐿𝑆(𝑀) and 0 ≠ 𝑏 ∈ 𝐿𝑆(𝑀) such that 𝑎𝑛

𝑡(𝑀)
→  0 and 𝛿(𝑎𝑛)

𝑡(𝑀)
→  𝑏. 

By Lemma (6.2.30) and passing, if necessary, to a subsequence, we may assume that 𝑎𝑛 =

𝑏𝑛 + 𝑐𝑛, where 𝑏𝑛 ∈ 𝑀, 𝑐𝑛 ∈ 𝐿𝑆(𝑀), 𝑛 ∈ ℕ, ‖𝑏𝑛‖𝑀 → 0 and 𝑠(|𝑐𝑛|)
𝑡(𝑀)
→  0 for 𝑛 →∞. 

Since the restriction 𝛿|𝑀 of the derivation 𝛿 to the von Neumann algebra 𝑀 is a derivation 

from 𝑀 into the Banach 𝑀-bimodule ℰ, by Ringrose Theorem [27], we have ‖𝛿(𝑏𝑛)‖ℰ →
0. 

Lemma (6.2.29) now implies that 𝛿(𝑏𝑛)
𝑡(𝑀)
→  0. 

From the equalities 

𝛿(𝑐𝑛) = 𝛿(𝑐𝑛𝑠(|𝑐𝑛|)) = 𝛿(𝑐𝑛)𝑠(|𝑐𝑛|) + 𝑐𝑛𝛿(𝑠(|𝑐𝑛|)) 
we have that 

𝑠(𝛿(𝑐𝑛)) ≤ 𝑙(𝛿(𝑐𝑛)𝑠(|𝑐𝑛|)) ∨ 𝑟(𝛿(𝑐𝑛)𝑠(|𝑐𝑛|)) ∨ 𝑙(𝑐𝑛𝛿(𝑠(|𝑐𝑛|)))  ∨ 𝑟(𝑐𝑛𝛿(𝑠(|𝑐𝑛|))). 
Since 

𝑙(𝑐𝑛) ∼ 𝑟(𝑐𝑛) = 𝑠(|𝑐𝑛|), 𝑙(𝛿(𝑐𝑛)𝑠(|𝑐𝑛|)) ∼ 𝑟(𝛿(𝑐𝑛)𝑠(|𝑐𝑛|)) ≤ 𝑠(|𝑐𝑛|), 
                               𝑟(𝑐𝑛𝛿(𝑠(|𝑐𝑛|))) ∼ 𝑙(𝑐𝑛𝛿(𝑠(|𝑐𝑛|))) ≤ 𝑙(𝑐𝑛) ≼ 𝑠(|𝑐𝑛|),  
it follows that 

𝜏(𝑠(𝛿(𝑐𝑛))) ≤ 4𝜏(𝑠(|𝑐𝑛|)). 
By Proposition (6.2.28), 𝜏(𝑠(|𝑐𝑛|)) → 0, and therefore 𝜏(𝑠(𝛿(𝑐𝑛))) → 0 and 

𝜏(𝑠(|𝛿(𝑐𝑛)|)) → 0, that implies the convergence 𝜏(𝐸𝜆
⊥ (|𝛿(𝑐𝑛)|)) → 0 for every 𝜆 > 0. 

Hence by Propositions (6.2.2)(ii) and (6.2.27), we obtain 𝛿(𝑐𝑛)  
𝑡(𝑀)
→  0. 

Thus, 𝛿(𝑎𝑛) = 𝛿(𝑏𝑛) + 𝛿(𝑐𝑛)
𝑡(𝑀)
→  0. The latter convergence contradicts to the inequality 

𝑏 ≠ 0. Consequently, 𝛿 is 𝑡(𝑀)-continuous. 

Now, we present the main result. 

Theorem (6.2.32)[266]: Let 𝑀 be an arbitrary von Neumann algebra and let ℰ be a Banach 

𝑀-bimodule of locally measurable operators. Then any derivation 𝛿:𝑀 → ℰ is inner. In 

addition, there exists 𝑑 ∈ ℰ such that 𝛿(𝑥) = [𝑑, 𝑥] for all 𝑥 ∈ 𝑀 and ‖𝑑‖ℰ ≤ 2‖𝛿‖𝑀→ℰ. If 

𝛿∗ = 𝛿 or 𝛿∗ = −𝛿 then d may be chosen so that ‖𝑑‖ℰ ≤ ‖𝛿‖𝑀→ℰ . 

Proof. By [270], there exists a derivation 𝛿̅: 𝐿𝑆(𝑀) → 𝐿𝑆(𝑀) such that 𝛿̅(𝑥) = 𝛿(𝑥) for all 

𝑥 ∈ 𝑀. 

Choose a central decomposition {𝑧∞, 𝑧𝑖}𝑗∈𝐽 of the unity 𝟏 such that 𝑀𝑧∞ is a properly 

infinite von Neumann algebra and on every von Neumann algebra 𝑀𝑧𝑗  there exists a faithful 

normal finite trace. By [270], the derivation 𝛿̅(𝑧∞): = 𝛿̅|𝐿𝑆(𝑀𝑧∞): 𝐿𝑆(𝑀𝑧∞) → 𝐿𝑆(𝑀𝑧∞) is 

𝑡(𝑀𝑧∞)-continuous. Lemma (6.2.31) implies that every derivation 𝛿̅(𝑧𝑗): =
𝛿̅|𝐿𝑆(𝑀𝑧𝑗): 𝐿𝑆(𝑀𝑧𝑗) → 𝐿𝑆(𝑀𝑧𝑗) is also 𝑡(𝑀𝑧𝑗)-continuous for all 𝑗 ∈ 𝐽. Therefore, by [270], 

the derivation 𝛿̅ is 𝑡(𝑀)-continuous. By Theorem (6.2.19) the derivation 𝛿 is inner. 
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Repeating the proof of Theorem (6.2.25), we obtain that there exists an element 𝑑 ∈ ℰ such 

that 𝛿(𝑥) = [𝑑, 𝑥] for all 𝑥 ∈ 𝑀. 

Now, suppose that 𝛿∗ = 𝛿. In this case, [𝑑 + 𝑑∗, 𝑥] = [𝑑, 𝑥] − [𝑑, 𝑥∗]∗ = 𝛿(𝑥)  −
(𝛿(𝑥∗))∗ = 𝛿(𝑥) − 𝛿∗(𝑥) = 0 for any 𝑥 ∈ 𝑀. Consequently, the operator 𝑅𝑒(𝑑) = (𝑑 +
𝑑∗)/2 commutes with every elements from 𝑀, hence, by Proposition (6.2.5), 𝑅𝑒(𝑑) is a 

central element in the algebra 𝐿𝑆(𝑀). Therefore, we may assume that 𝛿(𝑥) = [𝑑, 𝑥], 𝑥 ∈ 𝑀, 

where 𝑑 = 𝑖𝑎, 𝑎 ∈ ℰℎ. 

By Theorem (6.2.24), there exist 𝑐 = 𝑐∗ from the centre of the algebra 𝐿𝑆(𝑀) and a family 

{𝑢𝜀}𝜀>0 of unitary operators from 𝑀 such that 

|[𝑎, 𝑢𝜀]| ≤ (1 − 𝜀)|𝑎 − 𝑐|. 

For 𝑏 = 𝑖𝑎 − 𝑖𝑐 and 𝜀 =
1

2
, we have 

|𝑏| = |𝑎 − 𝑐| ≤ 2|[𝑎, 𝑢1/2]| = 2|[−𝑖𝑑, 𝑢1/2]| = 2|[𝑑, 𝑢1/2]| ∈ ℰ. 

Consequently, 𝑏 ∈ ℰ (see (43)), moreover, 

𝛿(𝑥) = [𝑑, 𝑥] = [𝑖𝑎, 𝑥] = [𝑏, 𝑥] 
for all 𝑥 ∈ 𝑀. Since 

(1 − 𝜀)|𝑏| = (1 − 𝜀)|𝑎 − 𝑐|    ≤  
(44)

|[𝑎, 𝑢𝜀]| = |[𝑑, 𝑢𝜀]| = |𝛿(𝑢𝜀)|, 
it follows that 

(1 − 𝜀)‖𝑏‖ℰ      ≤  
(47)‖𝛿(𝑢𝜀)‖ℰ ≤ ‖𝛿‖𝑀→ℰ  

for all 𝜀 > 0, that implies the inequality ‖𝑏‖ℰ  ≤ ‖𝛿‖𝑀→ℰ. 

If 𝛿∗ = −𝛿, then taking 𝐼𝑚(𝑑) instead of 𝑅𝑒(𝑑) and repeating the preceding argument, we 

obtain that 𝛿(𝑥) = [𝑏, 𝑥], where 𝑏 ∈ ℰ and ‖𝑏‖ℰ  ≤ ‖𝛿‖𝑀→ℰ. 

Now, suppose that 𝛿 ≠ 𝛿∗ and 𝛿 ≠ −𝛿∗. Equality (46) implies that 

‖𝛿∗‖𝑀→ℰ = sup {‖𝛿(𝑥∗)∗‖ℰ: ‖𝑥‖𝑀 ≤ 1} 
= sup {‖𝛿(𝑥)‖ℰ: ‖𝑥‖𝑀 ≤ 1} =  ‖𝛿‖𝑀→ℰ . 

Consequently, 

‖𝑅𝑒(𝛿)‖𝑀→ℰ = 2−1‖𝛿 + 𝛿∗‖𝑀→ℰ ≤ ‖𝛿‖𝑀→ℰ . 
Similarly, ‖𝐼𝑚(𝛿)‖𝑀→ℰ ≤ ‖𝛿‖𝑀→ℰ . Since (𝑅𝑒(𝛿))∗  = 𝑅𝑒(𝛿), (𝐼𝑚(𝛿))∗ =  𝐼𝑚(𝛿), there 

exist 𝑑1, 𝑑2 ∈ 𝐸, such that 𝑅𝑒(𝛿)(𝑥) = [𝑑1, 𝑥], 𝐼𝑚(𝛿)(𝑥) = [𝑑2, 𝑥] for all 𝑥 ∈ 𝑀 and 

‖𝑑𝑖‖ℰ  ≤ ‖𝛿‖𝑀→ℰ , 𝑖 = 1, 2. Taking 𝑑 = 𝑑1 +  𝑖𝑑2, we have that 𝑑 ∈ ℰ, 𝛿(𝑥) = (𝑅𝑒(𝛿) +
𝑖 · 𝐼𝑚(𝛿))(𝑥) = [𝑑1, 𝑥] + 𝑖[𝑑2, 𝑥] = [𝑑, 𝑥] for all 𝑥 ∈ 𝑀, in addition ‖𝑑‖ℰ ≤ 2‖𝛿‖𝑀→ℰ. 

Theorem (6.2.32) strengthens [257], where Banach 𝑀-bimodule was assumed to be 

separable or reflexive. 

One of the important classes of Banach 𝑀-bimodules of locally measurable operators is 

given by non-commutative symmetric spaces. 

Let 𝑀 be a semifinite von Neumann algebra and 𝜏 be a faithful normal semifinite trace on 

𝑀. Let 𝑆(𝑀, 𝜏) be the ∗-algebra of all 𝜏-measurable operators affiliated with 𝑀. 

For each 𝑥 ∈ 𝑆(𝑀, 𝜏), it is possible to define the generalized singular value function 𝑡 ⟼
𝜇(𝑡, 𝑥), 𝑡 > 0 given by 

𝜇(𝑡, 𝑥):= inf {𝜆 > 0 ∶ 𝜏 (𝐸𝜆
⊥(|𝑥|)) ≤ 𝑡} 

= inf {‖𝑥(𝟏 −  𝑒)‖𝑀 ∶ 𝑒 ∈  𝑃(𝑀), 𝜏(𝑒) ≤ 𝑡}. 
The latter notion is the main technical tool in the theory of non-commutative symmetric 

spaces [16], [111], [278]. 

Let 𝐸 be a linear subspace in 𝑆(𝑀, 𝜏) equipped with a Banach norm ‖·‖ℰ satisfying 

the following condition: 

             if 𝑥 ∈ 𝑆(𝑀, 𝜏), 𝑦 ∈ ℰ and 𝜇(𝑥) ≤ 𝜇(𝑦) then 𝑥 ∈ ℰ and ‖𝑥‖ℰ  ≤ ‖𝑦‖ℰ . 
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In this case, the pair (ℰ, ‖· ‖ℰ) is called a symmetric space of measurable operators. Every 

symmetric spaces of measurable operators is a Banach 𝑀-bimodule [16], and therefore 

Theorem (6.2.32) implies the following: 

Corollary (6.2.33)[266]: Let (ℰ, ‖ ·  ‖ℰ) be a symmetric spaces of measurable operators, 

affiliated with a semifinite von Neumann algebra 𝑀 and with a faithful semifinite normal 

trace 𝜏 . Then any derivation 𝛿:𝑀 → ℰ is continuous and there exists 𝑑 ∈ ℰ such 

that 𝛿(𝑥) = [𝑑, 𝑥] for all 𝑥 ∈ 𝑀 and ‖𝑑‖ℰ ≤ 2‖𝛿‖𝑀→ℰ. 

Corollary (6.2.34)[301]: The von Neumann algebra 𝑀𝑚 is everywhere dense in 

(𝐿𝑆(𝑀𝑚), 𝑡(𝑀𝑚)). 
Proof. If 𝑥𝑚 ∈ 𝐿𝑆(𝑀𝑚), then there exists a sequence {𝑧𝑛

𝑚}𝑚,𝑛=1
∞ ⊂ 𝑃(𝑍(𝑀𝑚)) such that 

𝑧𝑛
𝑚 ↑ 1 and 𝑥𝑚𝑧𝑛

𝑚 ∈ 𝑆(𝑀𝑚) for all 𝑛 ∈ ℕ. By Corollary (6.2.4), 𝑧𝑛
𝑚

𝑡(𝑀𝑚)
→   1, and therefore 

𝑥𝑚𝑧𝑛
𝑚

𝑡(𝑀𝑚)
→   𝑥𝑚. Consequently, the algebra 𝑆(𝑀𝑚) is everywhere dense in 

(𝐿𝑆(𝑀𝑚), 𝑡(𝑀𝑚)). 
Now let 𝑥𝑚 ∈ 𝑆(𝑀𝑚). Then there exists a sequence {𝑝𝑛}𝑛=1

∞ ⊂ 𝑃(𝑀𝑚) such that 𝑝𝑛 ↑
1, 𝑝𝑛

⊥ ∈ 𝑃𝑓𝑖𝑛(𝑀𝑚) and 𝑥𝑚𝑝𝑛 ∈ 𝑀𝑚 for any 𝑛 ∈ ℕ. According to (D7), we have that 𝐷(𝑝𝑛
⊥)  

𝑡(𝐿∞(𝛺))
→      0, therefore, Proposition (6.2.2)(i) implies the convergence 𝑝𝑛

𝑡(𝑀𝑚)
→   1 (we set 𝑧𝑛

𝑚 =

1). Then 𝑥𝑚𝑝𝑛
𝑡(𝑀𝑚)
→   𝑥𝑚. It means that the algebra 𝑀𝑚 is everywhere dense in the algebra 

𝑆(𝑀𝑚) with respect to the topology 𝑡(𝑀𝑚). Thus, the von Neumann algebra 𝑀𝑚 is 

everywhere dense in (𝐿𝑆(𝑀𝑚), 𝑡(𝑀𝑚)). 
Corollary (6.2.35)[301]: If the centre 𝑍(𝑀𝑚) of the von Neumann algebra 𝑀𝑚 is a 𝜎-finite 

algebra, then the system of sets given by (10) forms a basis of neighbourhoods of zero in 

the topology 𝑡(𝑀𝑚). 
Proof. Let 𝑉(𝛺, 𝜀, 𝛿) be a neighbourhood of zero of the form (10). If 𝑥𝑚 ∈  𝑉(𝜀, 𝛿, 𝜀), then 

there exist 𝑝 ∈ 𝑃(𝑀𝑚), 𝑧
𝑚 ∈ 𝑃(𝑍(𝑀𝑚)), such that 𝑥𝑚𝑝 ∈ 𝑀𝑚, ‖𝑥

𝑚𝑝‖𝑀𝑚
 ≤

𝜀, ∫ 𝜑(𝑧𝑚⊥)𝑑𝜇
Ω

≤ 𝛿 and 𝐷(𝑧𝑚𝑝⊥) ≤ 𝜀𝜑(𝑧𝑚). The inequality ∫ 𝜑(𝑧𝑚⊥)𝑑𝜇 
Ω

≤ 𝛿 means 

that 𝜑(𝑧𝑚⊥) ∈ 𝑊(𝛺, 𝜀, 𝛿). Hence, 𝑥𝑚 ∈ 𝑉(𝛺, 𝜀, 𝛿), that implies the inclusion 𝑉(𝜀, 𝛿, 𝜀) ⊂
𝑉(𝛺, 𝜀, 𝛿). 
If 𝑥𝑚 ∈ 𝑉(𝛺, 𝜀, 𝛿), then there exist 𝑝 ∈ 𝑃(𝑀𝑚), 𝑧

𝑚 ∈ 𝑃(𝑍(𝑀𝑚)), such that ‖𝑥𝑚𝑝‖𝑀𝑚
≤

𝜀,𝜙(𝑧𝑚⊥) ∈ 𝑊(𝛺, 𝜀, 𝛿) and 𝐷(𝑧𝑚𝑝⊥) ≤ 𝜀𝜑(𝑧𝑚). The inclusion 𝜑(𝑧𝑚⊥) ∈
𝑊(𝛺, 𝜀, 𝛿) means that there exists  

𝐸 ∈ 𝛴, such that 𝜇(𝛺 \ 𝐸) ≤ 𝛿 and 0 ≤ 𝜑(𝑧𝑚⊥)𝜒𝐸 ≤ 𝜀. If 0 < 𝜀 < 1, then 𝜙(𝑧𝑚⊥)𝜒𝐸 =

0, that is 𝜑(𝑧𝑚⊥) ≤ 𝜒Ω\𝐸, and therefore 𝜏(𝑧𝑚⊥) ≤ 𝛿, hence 𝑥𝑚 ∈  𝑉(𝜀, 𝛿, 𝜀). 
Corollary (6.2.36)[301]: If 𝑃(𝑍(𝑀𝑚)) ⊂ 𝐴, 𝛿 is a derivation on 𝐴 and 𝑧𝑚 ∈ 𝑃(𝑍(𝑀𝑚)), 
then 𝛿(𝑧𝑚) = 0 and 𝛿(𝑧𝑚𝑥𝑚) = 𝑧𝑚𝛿(𝑥𝑚) for all 𝑥𝑚 ∈ 𝐴. 

Proof. We have that 𝛿(𝑧𝑚) = 𝛿(𝑧2𝑚) = 𝛿(𝑧𝑚)𝑧𝑚 + 𝑧𝑚𝛿(𝑧𝑚) = 2𝑧𝑚𝛿(𝑧𝑚). Hence, 

𝑧𝑚𝛿(𝑧𝑚) = 𝑧𝑚(2𝑧𝑚𝛿(𝑧𝑚)) = 2𝑧𝑚𝛿(𝑧𝑚), that is 𝑧𝑚𝛿(𝑧𝑚) = 0. Therefore, we have 

𝛿(𝑧𝑚) = 0. In particular, 𝛿(𝑧𝑚𝑥𝑚) = 𝛿(𝑧𝑚)𝑥𝑚 + 𝑧𝑚𝛿(𝑥𝑚) = 𝑧𝑚𝛿(𝑥𝑚). 
Corollary (6.2.37)[301]: If 𝑧𝑚 ∈ 𝑃(𝑍(𝑀𝑚)) ⊂ 𝐴 and 𝛿 is a derivation on 𝐴, then 

𝛿(𝑧𝑚𝐴) ⊂ 𝑧𝑚𝐴 and the restriction 𝛿(𝑧𝑚) of the derivation 𝛿 to 𝑧𝑚𝐴 is a derivation on 

𝑧𝑚𝐴, in addition, if 𝛿 is 𝑡(𝑀𝑚)-continuous, then 𝛿(𝑧𝑚) is 𝑡(𝑧𝑚𝑀𝑚)-continuous. 

Proof. The inclusion 𝛿(𝑧𝑚𝐴) ⊂ 𝑧𝑚𝐴 holds. Moreover, the linear mapping 𝛿(𝑧
𝑚): 𝑧𝑚𝐴 →

𝑧𝑚𝐴 has the following property: 
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𝛿(𝑧
𝑚)((𝑧𝑚𝑥𝑚)(𝑧𝑚𝑦𝑚)) = 𝛿(𝑧𝑚𝑥𝑚)𝑧𝑚𝑦𝑚 + 𝑧𝑚𝑥𝑚𝛿(𝑧𝑚𝑦𝑚)

= 𝛿(𝑧
𝑚)(𝑧𝑚𝑥𝑚)𝑧𝑚𝑦𝑚 + 𝑧𝑚𝑥𝑚𝛿(𝑧

𝑚)(𝑧𝑚𝑦𝑚) 
for all 𝑥𝑚, 𝑦𝑚 ∈ 𝐴. 

If 𝑥𝛼
𝑚, 𝑥𝑚 ∈ 𝑧𝑚𝐴, 𝑥𝛼

𝑚
𝑡(𝑧𝑚𝑀𝑚)
→      𝑥𝑚, then 𝑥𝛼

𝑚
𝑡(𝑀𝑚)
→   𝑥𝑚 Proposition (6.2.8), and therefore 

𝛿(𝑧
𝑚)(𝑥𝛼

𝑚) = 𝑧𝑚𝛿(𝑥𝛼
𝑚)

𝑡(𝑀𝑚)
→    𝑧𝑚𝛿(𝑥𝑚) = 𝛿(𝑧

𝑚)(𝑥𝑚), that implies the convergence 

𝛿(𝑧
𝑚)(𝑥𝛼

𝑚)
𝑡(𝑧𝑚𝑀𝑚)
→      𝛿(𝑧𝑚)(𝑥𝑚) Proposition (6.2.3). 

Corollary (6.2.38)[301]: 𝛿(𝑒) is a derivation on 𝑒𝐴𝑒. 

Proof. If 𝑥𝑚, 𝑦𝑚 ∈ 𝑒𝐴𝑒, then 𝑥𝑚, 𝑦𝑚 ∈ 𝐴 and 

𝛿(𝑒)(𝑥𝑚𝑦𝑚) = 𝑒(𝛿(𝑥𝑚)𝑦𝑚)𝑒 + 𝑒(𝑥𝑚𝛿(𝑦𝑚))𝑒

= (𝑒𝛿(𝑥𝑚)𝑒)(𝑒𝑦𝑚𝑒) + (𝑒𝑥𝑚𝑒)(𝑒𝛿(𝑦𝑚)𝑒) = 𝛿(𝑒)(𝑥𝑚)𝑦𝑚 + 𝑥𝑚𝛿(𝑒)(𝑦𝑚).  
Corollary (6.2.39)[301]: Let 𝐴 and 𝛿 be the same as in Corollary (6.2.37) and let {𝑧𝑖

𝑚}𝑚,𝑖∈𝐼 

be a central decomposition of the unity 𝟏. If 𝛿(𝑧𝑖
𝑚) = 𝛿(𝑑𝑚)𝑖 , (𝑑𝑚)𝑖 ∈ 𝑧𝑖

𝑚𝐴 is an inner 

derivation on 𝑧𝑖
𝑚𝐴 for every 𝑖 ∈ 𝐼, then there exists an operator 𝑑𝑚 ∈ 𝐿𝑆(𝑀𝑚), such that 

𝛿(𝑥𝑚) = [𝑑𝑚, 𝑥
𝑚] for all 𝑥𝑚 ∈ 𝐴 and 𝑧𝑖

𝑚𝑑𝑚 = (𝑑𝑚)𝑖 for every 𝑖 ∈ 𝐼. 
Proof. Since {𝑧𝑖

𝑚}𝑚,𝑖∈𝐼 is a central decomposition of the unity 𝟏, (𝑑𝑚)𝑖 ∈ 𝑧𝑖
𝑚𝐴 ⊂

𝑧𝑖
𝑚𝐿𝑆(𝑀𝑚), by Proposition (6.2.1) there exists 𝑑𝑚 ∈ 𝐿𝑆(𝑀𝑚), such that 𝑧𝑖

𝑚𝑑𝑚 = (𝑑𝑚)𝑖 for 

every 𝑖 ∈ 𝐼. Using Corollary (6.2.36) and the equalities 𝛿(𝑧𝑖
𝑚)(𝑥𝑚) = [(𝑑𝑚)𝑖 , 𝑥

𝑚], 𝑥𝑚 ∈
𝑧𝑖
𝑚𝐴,𝑚, 𝑖 ∈ 𝐼 we have that for all 𝑦𝑚 ∈ 𝐴,  the equalities 

𝑧𝑖
𝑚𝛿(𝑦𝑚) = 𝛿(𝑧𝑖

𝑚)(𝑧𝑖
𝑚𝑦𝑚) = [(𝑑𝑚)𝑖, 𝑧𝑖

𝑚𝑦𝑚] = [𝑧𝑖
𝑚𝑑𝑚, 𝑧𝑖

𝑚𝑦𝑚] = 𝑧𝑖
𝑚[𝑑𝑚, 𝑦

𝑚] 
hold. Since  ⋁ 𝑧𝑖

𝑚
𝑖∈𝐼 = 𝟏 it follows that 𝛿(𝑦𝑚) = [𝑑𝑚, 𝑦

𝑚]. 
Corollary (6.2.40)[301]: Let 𝛿 be a derivation on a subalgebra 𝐴 of 𝐿𝑆(𝑀𝑚) and 𝑃(𝑀𝑚) ⊂
𝐴. If 𝑝, 𝑞 ∈ 𝑃(𝑀𝑚) and 𝑝𝛿(𝑞)𝑝 ≥ 𝜆𝑚𝑝 for some 𝜆𝑚 > 0, then 

𝑟(𝑞𝑝)𝛿(𝑙(𝑞𝑝))𝑟(𝑞𝑝) ≥ 𝜆𝑚𝑟(𝑞𝑝). 
Proof. Set 𝑒 = 𝑙(𝑞𝑝) and 𝑓 = 𝑟(𝑞𝑝). It is clear that 𝑒𝑞 = 𝑒 and 𝑝𝑓 = 𝑓. In addition, 𝑒 =
𝑟((𝑞𝑝)∗) = 𝑟(𝑝𝑞) and 𝑓 = 𝑙((𝑞𝑝)∗) = 𝑙(𝑝𝑞). 
Since 

𝑒𝑓 = (𝑒𝑞)(𝑝𝑓) = 𝑒(𝑞𝑝)𝑓 = 𝑙(𝑞𝑝)𝑞𝑝𝑟(𝑞𝑝) = 𝑞𝑝 = (𝑞𝑝)𝑓 = 𝑞(𝑝𝑓) = 𝑞𝑓,  
we have 

𝑓𝑒 = (𝑒𝑓)∗ = (𝑞𝑓)∗ = 𝑓𝑞 
and 

𝑓𝛿(𝑒)𝑓 = 𝑓(𝑓𝛿(𝑒))𝑓 = 𝑓𝛿(𝑓𝑒)𝑓 − 𝑓(𝛿(𝑓)𝑒)𝑓 = 𝑓𝛿(𝑓𝑞)𝑓 − 𝑓𝛿(𝑓)𝑞𝑓
= 𝑓𝛿(𝑓)𝑞𝑓 + 𝑓(𝑓𝛿(𝑞))𝑓 − 𝑓𝛿(𝑓)𝑞𝑓 = 𝑓𝛿(𝑞)𝑓 = 𝑓(𝑝𝛿(𝑞)𝑝)𝑓 ≥ 𝜆𝑚𝑓𝑝𝑓
= 𝜆𝑚𝑓. 

Corollary (6.2.41)[301]: Let 𝑆 = {(𝑝𝑗 , 𝑥𝑗
𝑚)}𝑗∈𝐽 be the maximal 𝜆𝑚-system for a self-

adjoint derivation 𝛿: 𝐿𝑆(𝑀𝑚) → 𝐿𝑆(𝑀𝑚), 𝑔 =  𝑠(𝑆)⊥ and 𝛿(𝑔)(𝑥𝑚) = 𝑔𝛿(𝑥𝑚)𝑔, 𝑥𝑚 ∈
𝑔𝐿𝑆(𝑀𝑚)𝑔. Then 

𝛿(𝑔)(𝑔𝑀𝑚𝑔) ⊂ 𝑔𝑀𝑚𝑔.                                                                                    (50) 
Proof. Let us first prove that 

𝛿(𝑔)(𝑞) ⊂ 𝑔𝑀𝑚𝑔 and ‖𝛿(𝑔)(𝑞)‖
𝑀𝑚

 ≤  𝜆𝑚                      (51) 

for any projection 𝑞 ∈ 𝑃(𝑔𝑀𝑚𝑔). Since 𝛿∗ = 𝛿, it follows that 𝛿(𝑞) ∈ 𝐿𝑆ℎ𝑚(𝑀𝑚) and 

therefore 𝛿(𝑔)(𝑞) ∈ 𝐿𝑆ℎ𝑚(𝑔𝑀𝑚𝑔). Let 𝛿(𝑔)(𝑞)  ≠ 0 and let 𝑝 be the spectral projection 

for 𝛿(𝑔)(𝑞) corresponding to the interval (𝜆𝑚, +∞). It is clear that 𝑝 ≤ 𝑠(𝛿(𝑔)(𝑞)) ≤ 𝑔. 

Suppose that 𝑝 ≠ 0, then 
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0 ≠ 𝜆𝑚𝑝 ≤ 𝑝𝛿(𝑔)(𝑞)𝑝 = 𝑝𝛿(𝑞)𝑝.                                      (52) 

Since 

0 ≠ 𝑝𝛿(𝑞)𝑝 = 𝛿(𝑝𝑞)𝑝 − 𝛿(𝑝)𝑞𝑝 = 𝛿(𝑝𝑞)𝑝 − 𝛿(𝑝)(𝑝𝑞)∗, 
it follows that 𝑞𝑝 = (𝑝𝑞)∗ ≠ 0. Consequently, 

                                       𝑒 = 𝑙(𝑞𝑝) ≠ 0   and   𝑓 = 𝑟(𝑞𝑝) ≠  0, 
in addition, 𝑒 ∼ 𝑓. Since 𝑔 = 𝑠(𝑆)⊥, from the inequalities 𝑓 ≤ 𝑝 ≤ 𝑔 and 𝑒 ≤ 𝑞 ≤ 𝑔 it 

follows that 

                                         (𝑓 ∨ 𝑒) (𝑝𝑗 ∨ 𝑠(𝑥𝑗
𝑚)) = 0, (𝑓 ∨ 𝑒)𝑠(𝛿(𝑝𝑗)) = 0  

and 

(𝑝𝑗 ∨ 𝑠(𝑥𝑗
𝑚))𝛿(𝑓) = 𝛿((𝑝𝑗 ∨ 𝑠(𝑥𝑗

𝑚))𝑓) − 𝛿(𝑝𝑗 ∨ 𝑠(𝑥𝑗
𝑚))𝑓 = 0 

for all 𝑗 ∈ 𝐽. Moreover, according to (52) and Corollary (6.2.40) we have that 𝑓𝛿(𝑒)𝑓 ≤
𝜆𝑚𝑓. Thus, the system 𝑆 ∪ {(𝑓, 𝑒)} is a 𝜆𝑚-system, that contradicts to the maximality of the 

𝜆𝑚-system 𝑆. Consequently, 𝑝 = 0, which implies the inequality 𝛿(𝑔)(𝑞) ≤ 𝜆𝑚𝟏. Similarly, 

for projection (𝑔 − 𝑞) ≤  𝑔, we obtain that 

𝑔(𝛿(𝑔 −  𝑞))𝑔 = 𝛿(𝑔)(𝑔 − 𝑞) ≤ 𝜆𝑚𝟏. 
By Corollary (6.2.38), 𝑔𝛿(𝑔)𝑔 = 0, and therefore −𝑔𝛿(𝑞)𝑔 ≤ 𝜆𝑚𝟏. Thus, 

−𝜆𝑚𝟏 ≤  𝑔𝛿(𝑞)𝑔 ≤ 𝜆𝑚𝟏, 

that is 𝛿(𝑔)(𝑞) ∈ 𝑔𝑀𝑚𝑔 and ‖𝛿(𝑔)(𝑞)‖
𝑀𝑚

≤ 𝜆𝑚. 

Now, suppose that the inclusion (50) false, that is there exists an element 𝑥𝑚 ∈ (𝑀𝑚)ℎ𝑚,1 ∩

(𝑔𝑀𝑚𝑔), such that 𝛿(𝑔)(𝑥𝑚) ∈ 𝐿𝑆ℎ𝑚(𝑀𝑚) \ 𝑔𝑀𝑚𝑔. It means that the spectral projection 

𝑟 = 𝐸−3𝜆𝑚(𝛿(𝑔)(𝑥
𝑚)) (or 𝑟 = 𝐸−3𝜆𝑚(𝛿(𝑔)(𝑥

𝑚))) for 𝛿(𝑔)(𝑥𝑚) corresponding to the 

interval (3𝜆𝑚, +∞) (respectively, (−∞, −3𝜆𝑚)), is not equal to zero. Replacing, if 

necessary, 𝑥𝑚 by −𝑥𝑚, we may assume that 𝑟 = 𝐸3𝜆𝑚
⊥ (𝛿(𝑔)(𝑥𝑚)) ≠ 0. It is clear that 𝑟 ≤

𝑠(𝛿(𝑔)(𝑥𝑚)) ≤ 𝑔 and 

0 < 3𝜆𝑚𝑟 ≤ 𝑟𝛿(𝑔)(𝑥𝑚)𝑟 = 𝑟𝛿(𝑥𝑚)𝑟.                                               (53) 

By (51), we have that ‖𝛿(𝑔)(𝑟)‖
𝑀𝑚

≤ 𝜆𝑚, and therefore the inclusion 𝑥𝑚 ∈ (𝑀𝑚)ℎ𝑚,1 ∩

𝑔𝑀𝑚𝑔 and the equality 

𝑟𝛿(𝑟)𝑥𝑚𝑟 +  𝑟𝑥𝑚𝛿(𝑟)𝑟 =  𝑟𝑔𝛿(𝑟)𝑔𝑥𝑚𝑟 +  𝑟𝑥𝑚𝑔𝛿(𝑟)𝑔𝑟 
imply that 

‖𝑟𝛿(𝑟)𝑥𝑚𝑟 + 𝑟𝑥𝑚𝛿(𝑟)𝑟‖𝑀𝑚
≤ 2𝜆𝑚. 

Consequently, 

− 2𝜆𝑚𝑟 ≤ 𝑟𝛿(𝑟)𝑥𝑚𝑟 + 𝑟𝑥𝑚𝛿(𝑟)𝑟 ≤ 2𝜆𝑚𝑟.                              (54) 

Using (53) and (54) for 𝑦𝑚 = 𝑟𝑥𝑚𝑟, we obtain that 

𝑟𝛿(𝑦𝑚)𝑟 = 𝑟𝛿(𝑟𝑥𝑚𝑟)𝑟 = 𝑟𝛿(𝑟)𝑥𝑚𝑟 + 𝑟𝛿(𝑥𝑚)𝑟 + 𝑟𝑥𝑚𝛿(𝑟)𝑟 ≥ 𝜆𝑚𝑟 > 0,      (55) 

in particular, 𝑦𝑚  ≠ 0 and 𝑞 = 𝑠(𝑦𝑚) ≠ 0. Let us show that the collection 𝑆 ∪ {(𝑞, 𝑦𝑚)} 
forms a 𝜆𝑚-system. Since 𝑞 ≤ 𝑟 ≤ 𝑔, from (55) it follows that 𝑞𝛿(𝑦𝑚)𝑞 ≥ 𝜆𝑚𝑞, in addition 

(𝑞 ∨ 𝑠(𝑦𝑚))(𝑝𝑗 ∨ 𝑠(𝑥𝑗
𝑚)) = 0 = 𝑞(𝑝𝑗 ∨ 𝑠(𝑥𝑗

𝑚)), 𝑞𝛿(𝑝𝑗) = 0 

and 

(𝑝𝑗 ∨ 𝑠(𝑥𝑗
𝑚))𝛿(𝑞) = 𝛿((𝑝𝑗 ∨ 𝑠(𝑥𝑗

𝑚))𝑞) − 𝛿(𝑝𝑗 ∨ 𝑠(𝑥𝑗
𝑚))𝑞 = 0 

for all 𝑗 ∈ 𝐽. It means that the set 𝑆 ∪ {(𝑞, 𝑦𝑚)} is a 𝜆𝑚-system, that contradicts to the 

maximality of the 𝜆𝑚-system 𝑆. From obtained contradiction follows the validity of 

inclusion (50). 
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Corollary (6.2.42)[301]: If {𝑥𝑗
𝑚}𝑚,𝑗∈𝐽 ⊂ (𝑀𝑚)ℎ𝑚,1, 𝑥𝑖

𝑚𝑥𝑗
𝑚 = 0, 𝑖 ≠ 𝑗, 𝑖, 𝑗 ∈ 𝐽, then there 

exists a unique element 𝑥𝑚 ∈ (𝑀𝑚)ℎ𝑚,1, denoted by  ∑ 𝑥𝑗
𝑚

 𝑗∈𝐽  , such that 𝑥𝑚𝑠(𝑥𝑗
𝑚) = 𝑥𝑗

𝑚 

for all 𝑗 ∈ 𝐽 and  ⋁ 𝑠(𝑥𝑗
𝑚)𝑗∈𝐽 = 𝑠(𝑥𝑚). 

Proof. Denote by 𝐴 the commutative von Neumann subalgebra of 𝑀𝑚, containing the family 

{𝑥𝑗
𝑚}𝑚,𝑗∈𝐽 . Since 𝐴ℎ𝑚 is an order complete vector lattice, {𝑥𝑗

𝑚}𝑚,𝑗∈𝐽is the family of pairwise 

disjoint element of 𝐴ℎ𝑚 and |𝑥𝑗
𝑚| ≤ 𝟏 ∈ 𝐴 for all 𝑗 ∈ 𝐽, it follows that there exists a unique 

element 𝑥𝑚 of 𝐴ℎ𝑚 such that |𝑥𝑚| ≤ 𝟏, 𝑥𝑚𝑠(𝑥𝑗
𝑚) = 𝑥𝑗

𝑚 and 𝑠(𝑥𝑚) = ⋁ 𝑠(𝑥𝑗
𝑚)𝑗∈𝐽 . 

Let 𝑦𝑚 be another element of (𝑀𝑚)ℎ𝑚,1, such that 𝑦𝑚𝑠(𝑥𝑗
𝑚) = 𝑥𝑗

𝑚 for all 𝑗 ∈ 𝐽 and 

 ⋁ 𝑠(𝑥𝑗
𝑚)𝑗∈𝐽 = 𝑠(𝑦𝑚). Then (𝑥𝑚 − 𝑦𝑚)𝑠(𝑥𝑗

𝑚) = 𝑥𝑗
𝑚 − 𝑥𝑗

𝑚 = 0 for any 𝑗 ∈ 𝐽. Therefore, 

𝑠(𝑥𝑚) = ⋁ 𝑠(𝑥𝑗
𝑚)𝑗∈𝐽 ≤ (𝑟(𝑥𝑚 − 𝑦𝑚))⊥ and then 

𝑥𝑚 − 𝑦𝑚 = 𝑥𝑚𝑠(𝑥𝑚) − 𝑦𝑚𝑠(𝑦𝑚) = 𝑥𝑚𝑠(𝑥𝑚) − 𝑦𝑚𝑠(𝑥𝑚) = (𝑥𝑚 − 𝑦𝑚)𝑠(𝑥𝑚) = 0. 
Corollary (6.2.43)[301]: Let 𝑥𝑚 ∈  𝐿𝑆ℎ𝑚(𝑀𝑚), 𝑝, 𝑞 ∈ 𝑃(𝑀𝑚), 𝜌𝑚, 𝜆𝑚 ∈ ℝ, 𝜌𝑚 < 𝜆𝑚, 

𝑝𝑥𝑚𝑝 ≤ 𝜌𝑚𝑝                                                 (56) 

and 

𝑞𝑥𝑚𝑞 ≥ 𝜆𝑚𝑞.                                                  (57) 

Then 𝑝 ≼ 𝑞⊥and 𝑞 ≼ 𝑝⊥. 

Proof. Set 𝑟 = 𝑝 ∧ 𝑞. Multiplying both parts on both sides of inequalities (56) and (57) by 

𝑟, we obtain that 

𝜆𝑚𝑟 ≤ 𝑟𝑥𝑚𝑟 ≤ 𝜌𝑚𝑟, 
that is possible if 𝑟 = 0 only. Therefore, 𝑝 = 𝑝 − 𝑝 ∧ 𝑞 ∼ 𝑝 ∨ 𝑞 − 𝑞 ≤ 𝑞⊥, that is 𝑝 ≼ 𝑞⊥. 

Similarly, 𝑞 ≼ 𝑝⊥. 

Corollary (6.2.44)[301]: Let 𝑆 = {(𝑝𝑗 , 𝑥𝑗
𝑚)}𝑚,𝑗∈𝐽 be a 𝜆𝑚-system for a self-adjoint 

derivation 𝛿: 
𝐿𝑆(𝑀𝑚) → 𝐿𝑆(𝑀𝑚), let 𝐷 be a dimension function on 𝑃(𝑀𝑚). Then 

𝐷(𝑠(𝑆)) ≤ 8𝐷

(

 
 
𝐸𝜌𝑚
⊥ (𝛿(∑𝑥𝑗

𝑚

𝑗∈𝐽

))

)

 
 
 for any 𝜌𝑚 < 𝜆𝑚.                           (58) 

Proof. Set 𝑥𝑚 = ∑ 𝑥𝑗
𝑚

𝑗∈𝐽  see Corollary (6.2.42) and 𝑝 = ⋁ 𝑝𝑗𝑗∈𝐽  . The following inequality 

is our main technical tool. It may be thought of as ‘glueing’ of the inequalities given in 

Definition (6.2.14)(iii). We claim that 

𝑝𝛿(𝑥𝑚)𝑝 ≥  𝜆𝑚𝑝.                                                         (59) 

To prove the claim, we note firstly that (𝑝𝑗 ∨ 𝑠(𝑥𝑗
𝑚))(𝑝𝑖 ∨ 𝑠(𝑥𝑖

𝑚)) = 0 and (𝑝𝑗 ∨

𝑠(𝑥𝑗
𝑚))𝑠(𝛿(𝑝𝑖)) = 0 for 𝑖 ≠ 𝑗 imply that 𝑥𝑖

𝑚𝑝𝑗 = 𝑥𝑖
𝑚𝑠(𝑥𝑖

𝑚)𝑝𝑗 = 0 and 𝑥𝑖
𝑚𝛿(𝑝𝑗) =

𝑥𝑖
𝑚𝑠(𝑥𝑖

𝑚)𝑠(𝛿(𝑝𝑗))𝛿(𝑝𝑗) = 0 for 𝑖 ≠  𝑗. Therefore, 

𝛿(𝑥𝑖
𝑚)𝑝𝑗 = 𝛿(𝑥𝑖

𝑚𝑝𝑗) − 𝑥𝑖
𝑚𝛿(𝑝𝑗) = 0, 

that implies the equality 

𝑠(𝛿(𝑥𝑖
𝑚))𝑝𝑗 = 0 𝑓𝑜𝑟 𝑖 = 𝑗. 

From here and from the equality 𝑝 = ⋁ 𝑝𝑗𝑗∈𝐽  it follows that 

𝑠(𝛿(𝑥𝑖
𝑚))𝑝 = 𝑠(𝛿(𝑥𝑖

𝑚))𝑝𝑖 . 
Thus, 

𝛿(𝑥𝑖
𝑚)𝑝 = 𝛿(𝑥𝑖

𝑚)𝑠(𝛿(𝑥𝑖
𝑚))𝑝 = 𝛿(𝑥𝑖

𝑚)𝑝𝑖 .                                                      (60) 
By Corollary (6.2.42), we have that 
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𝑝𝑖𝑥
𝑚 = 𝑝𝑖𝑠(𝑥

𝑚)𝑥𝑚 = (𝑝𝑖⋁ 𝑠(𝑥𝑗
𝑚)

𝑗∈𝐽
)𝑥𝑚 = 𝑝𝑖𝑠(𝑥𝑖

𝑚)𝑥𝑚 = 𝑝𝑖𝑥𝑖
𝑚         (61) 

and 

𝑥𝑖
𝑚𝑝 = 𝑥𝑖

𝑚 (𝑠(𝑥𝑖
𝑚)⋁ 𝑝𝑗

𝑗∈𝐽
) = 𝑥𝑖

𝑚(𝑠(𝑥𝑖
𝑚)𝑝𝑖) = 𝑥𝑖

𝑚𝑝𝑖 .                        (62) 

Similarly, 

𝛿(𝑝𝑖)𝑥
𝑚𝑝 = 𝛿(𝑝𝑖)(𝑠(𝛿(𝑝𝑖))⋁𝑠(𝑥𝑗

𝑚)

𝑗∈𝐽

)𝑥𝑚𝑝 = 𝛿(𝑝𝑖)𝑠(𝑥𝑖
𝑚)𝑥𝑚𝑝 = 𝛿(𝑝𝑖)𝑥𝑖

𝑚𝑝

= 𝛿(𝑝𝑖)𝑥𝑖
𝑚𝑝𝑖 .                                                                                                           (63) 

By (60)–(62), we obtain 

𝛿(𝑝𝑖𝑥
𝑚)𝑝 = 𝛿(𝑝𝑖𝑥𝑖

𝑚)𝑝 = 𝛿(𝑝𝑖)𝑥𝑖
𝑚𝑝 + 𝑝𝑖𝛿(𝑥𝑖

𝑚)𝑝 
= 𝛿(𝑝𝑖)𝑥𝑖

𝑚𝑝𝑖 + 𝑝𝑖𝛿(𝑥𝑖
𝑚)𝑝𝑖 = 𝛿(𝑝𝑖𝑥𝑖

𝑚)𝑝𝑖 , 
that by (63) implies the equalities 

𝑝𝑖(𝑝𝛿(𝑥
𝑚)𝑝) = 𝑝𝑖𝛿(𝑥

𝑚)𝑝 = 𝛿(𝑝𝑖𝑥
𝑚)𝑝 − 𝛿(𝑝𝑖)𝑥

𝑚𝑝 = 𝛿(𝑝𝑖𝑥𝑖
𝑚)𝑝𝑖 − 𝛿(𝑝𝑖)𝑥𝑖

𝑚𝑝𝑖
= 𝑝𝑖𝛿(𝑥𝑖

𝑚)𝑝𝑖 . 
Hence, 

𝑝𝑖(𝑝𝛿(𝑥
𝑚)𝑝) = 𝑝𝑖𝛿(𝑥𝑖

𝑚)𝑝𝑖 ,                                                    (64) 

in particular, the projection 𝑝𝑖 commutes with the operator 𝑝𝛿(𝑥𝑚)𝑝. Set 𝑦𝑚 = 𝑝𝛿(𝑥𝑚)𝑝 −
𝜆𝑚𝑝 and by 𝑦𝑚− = (|𝑦𝑚| − 𝑦𝑚)/2 denote the negative part of the operator 𝑦𝑚. Since 

𝑝𝑖𝑦
𝑚 = 𝑦𝑚𝑝𝑖 (see (64)) and 𝑝𝑖𝛿(𝑥𝑖

𝑚)𝑝𝑖 ≥ 𝜆𝑚𝑝𝑖  (see Definition )6.2.13((iii)), it follows that 

𝑦𝑚 − 𝑝𝑖 = 𝑝𝑖𝑦
𝑚− = (𝑝𝑖(𝑝𝛿(𝑥

𝑚)𝑝 − 𝜆𝑚𝑝))−     =
(64)

(𝑝𝑖𝛿(𝑥𝑖
𝑚)𝑝𝑖 − 𝜆𝑚𝑝𝑖)− = 0    (65) 

for all 𝑖 ∈ 𝐽. From equalities (65) and 𝑝 = ⋁ 𝑝𝑗𝑗∈𝐽  by [113], it follows that 

(𝑝𝑦𝑚𝑝)− =  𝑝(𝑝𝛿(𝑥𝑚)𝑝 − 𝜆𝑚𝑝) − 𝑝 = 𝑝𝑦𝑚 − 𝑝 = 0.                (66) 

Therefore, 

𝑝𝑦𝑚𝑝 = (𝑝𝑦𝑚𝑝)+ − (𝑝𝑦𝑚𝑝)−     =
(66)

 (𝑝𝑦𝑚𝑝)+ ≥ 0, 
which implies inequality (59). 

Having established our claim, the rest is an easy application of the properties of the 

dimension function 𝐷. 

Fix a real number 𝜌𝑚 < 𝜆𝑚 and set 𝑞 = 𝐸𝜌𝑚(𝛿(𝑥
𝑚)). By Corollary (6.2.43), we obtain 

                                                           𝑝 ≼ 𝑞⊥.                                                                                      
(67) 

For every fixed 𝑗 ∈ 𝐽 we have that 

𝛿(𝑝𝑗) = 𝛿(𝑝𝑗
2) = 𝛿(𝑝𝑗)𝑝𝑗 + 𝑝𝑗𝛿(𝑝𝑗) = 𝛿(𝑝𝑗)𝑝𝑗 + (𝛿(𝑝𝑗)𝑝𝑗)

∗ 

and therefore 

𝑠(𝛿(𝑝𝑗)) ≤ 𝑙(𝛿(𝑝𝑗)𝑝𝑗) ∨ 𝑝𝑗 ,  

that implies 

𝐷(𝑠(𝛿(𝑝𝑗))) ≤ 𝐷(𝑙(𝛿(𝑝𝑗)𝑝𝑗)) + 𝐷(𝑝𝑗).                                           (68) 

Since 𝑙(𝛿(𝑝𝑗)𝑝𝑗) ∼ 𝑟(𝛿(𝑝𝑗)𝑝𝑗) ≤ 𝑝𝑗 , by (68) we have 

𝐷(𝑠(𝛿(𝑝𝑗))) ≤ 2𝐷(𝑝𝑗)                                                (69) 

for all 𝑗 ∈ 𝐽. Similarly, 

𝐷(𝑠(𝛿(𝑝𝑗 ∨ 𝑠(𝑥𝑗
𝑚)))) ≤ 2𝐷(𝑝𝑗 ∨ 𝑠(𝑥𝑗

𝑚)), 

and in view of the equivalence 𝑝𝑗 ∼ 𝑠(𝑥𝑗
𝑚) (see the definition of 𝜆𝑚-system), we obtain 

𝐷(𝑠(𝛿(𝑝𝑗 ∨ 𝑠(𝑥𝑗
𝑚)))) ≤ 4𝐷(𝑝𝑗).                                         (70) 
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Denote by 𝐴 the directed set of all finite subsets of 𝐽 ordered by inclusion and for every 𝛼 ∈
𝐴 set 

𝑒𝛼: =⋁(𝑝𝑗 ∨ 𝑠(𝑥𝑗
𝑚) ∨ 𝑠(𝛿(𝑝𝑗))

𝑗∈𝛼

∨ 𝑠(𝛿(𝑝𝑗 ∨ 𝑠(𝑥𝑗
𝑚)))). 

From properties (𝐷2) and (𝐷3) of the dimension function 𝐷 and from inequalities (67), (69) 

and (70) we have that 

𝐷(𝑒𝛼) ≤∑𝐷(𝑝𝑗 ∨ 𝑠(𝑥𝑗
𝑚) ∨ 𝑠(𝛿(𝑝𝑗))

𝑗∈𝛼

∨ 𝑠(𝛿(𝑝𝑗 ∨ 𝑠(𝑥𝑗
𝑚)))) 

≤∑(𝐷(𝑝𝑗) + 𝐷(𝑠(𝑥𝑗
𝑚)) + 𝐷(𝑠(𝛿(𝑝𝑗)))

𝑗∈𝛼

+ 𝐷(𝑠(𝛿(𝑝𝑗 ∨ 𝑠(𝑥𝑗
𝑚))))) 

≤ 8∑𝐷(𝑝𝑗)

𝑗∈𝛼

= 8𝐷(∑𝑝𝑗
𝑗∈𝛼

) ≤ 8𝐷(𝑝) ≤ 8𝐷(𝑞⊥). 

Since 𝑒𝛼 ↑ 𝑠(𝑆) the last inequality and property (𝐷6) of the dimension function D imply 

that 

𝐷(𝑠(𝑆)) = 𝐷 (⋁𝑒𝛼
𝛼∈𝐴

) =⋁𝐷(𝑒𝛼)

𝛼∈𝐴

≤ 8𝐷(𝑞⊥). 

Corollary (6.2.45)[301]: Every derivation on the ∗-algebra 𝐿𝑆(𝑀𝑚) continuous with 

respect to the topology 𝑡(𝑀𝑚) is necessarily inner. 

Proof. Let 𝛿 be an arbitrary derivation on the ∗-algebra 𝐿𝑆(𝑀𝑚) and let 𝛿 be continuous 

with respect to the topology 𝑡(𝑀𝑚). By Lemmas 3.4 and 3.5, we may assume that 𝛿 is a 

self-adjoint derivation. 

Choose a central decomposition {𝑧𝑖
𝑚}𝑚,𝑖∈𝐼 of the unity 𝟏, such that every Boolean algebra 

𝑧𝑖
𝑚𝑃(𝑍(𝑀𝑚)) has a countable type, 𝑖 ∈ 𝐼. By Corollary (6.2.37) the restriction 𝛿(𝑧𝑖

𝑚) of the 

derivation 𝛿 to 𝑧𝑖
𝑚𝐿𝑆(𝑀𝑚) = 𝐿𝑆(𝑧𝑖

𝑚𝑀𝑚) is a 𝑡(𝑧𝑖
𝑚𝑀𝑚)-continuous derivation on 

𝐿𝑆(𝑧𝑖
𝑚𝑀𝑚). If every derivation 𝛿(𝑧𝑖

𝑚), 𝑖 ∈ 𝐼 is inner, then, by Corollary (6.2.39), the 

derivation 𝛿 is inner too. Thus, in the proof of Corollary (6.2.45) we may assume that the 

centre 𝑍(𝑀𝑚) of the von Neumann algebra 𝑀𝑚 is 𝜎-finite algebra. In this case, there exists 

a faithful normal finite trace 𝜏(𝑥𝑚) = ∫𝜑(𝑥𝑚) 𝑑𝜇 on 𝑍(𝑀𝑚) and the vector topology 

𝑡(𝑀𝑚) has the basis of neighbourhoods of zero consists of the sets 𝑉(𝜀, 𝛽, 𝛾) given by (10) 

(see Corollary (6.2.35)). Since the derivation 𝛿 is 𝑡(𝑀𝑚)-continuous, for arbitrary 𝜀, 𝛽, 𝛾 >
0 there exist 𝜀1, 𝛽1, 𝛾1 > 0, such that 𝛿(𝑉(𝜀1, 𝛽1, 𝛾1)) ⊂ 𝑉(𝜀, 𝛽, 𝛾). It is clear that 

(𝑀𝑚)1: = {𝑥𝑚 ∈ 𝑀𝑚: ‖𝑥
𝑚‖𝑀𝑚

≤ 1} ⊂ 𝑉(1, 𝛽1, 𝛾1) = 𝜀1
−1𝑉(𝜀1, 𝛽1, 𝛾1), 

and therefore 

𝛿((𝑀𝑚)1) ⊂ 𝜀1
−1𝑉(𝜀, 𝛽, 𝛾) = 𝑉 (𝜀/𝜀1, 𝛽, 𝛾). 

Hence, for the 𝑡(𝑀𝑚)-continuous self-adjoint derivation 𝛿: 𝐿𝑆(𝑀𝑚) → 𝐿𝑆(𝑀𝑚) and for 

arbitrary positive numbers 𝛽 and 𝛾 there exists a number 𝛥(𝛽, 𝛾), such that 

𝛿((𝑀𝑚)1) ⊂ 𝑉(𝛥(𝛽, 𝛾), 𝛽, 𝛾).                                                          (71) 

Let 𝐷,𝜑, 𝜏 be the same as in the definition of the set 𝑉(𝜀, 𝛽, 𝛾) from (10). Fix an arbitrary 

2𝛥(𝛽, 𝛾)-system 𝑆 = {(𝑝𝑗 , 𝑥𝑗
𝑚)}𝑗∈𝐽 for the derivation 𝛿 and show that there exists a central 

projection 𝑧𝑚 ∈ 𝑃(𝑍(𝑀𝑚)), such that 

𝜏(𝑧𝑚⊥) ≤ 𝛽 and 𝐷(𝑧𝑚𝑠(𝑆)) ≤ 8𝛾𝜑(𝑧𝑚).                                                (72) 
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If 𝑆 is empty, then 𝑠(𝑆) = 0 and, in this case, relations (72) hold for 𝑧𝑚 = 𝟏. Now, let 𝑆 =
{(𝑝𝑗 , 𝑥𝑗

𝑚)}𝑚,𝑗∈𝐽 be non-empty 2𝛥(𝛽, 𝛾)-system. By Corollary (6.2.42), there exists 𝑥𝑚 =

𝑥𝑗
𝑚 ∈ (𝑀𝑚)ℎ𝑚,1. From (71) it follows that 𝛿(𝑥𝑚) ∈ 𝑉(𝛥(𝛽, 𝛾), 𝛽, 𝛾) for all 𝛽, 𝛾 > 0. 

Therefore, there exist projections 𝑧𝑚 ∈ 𝑃(𝑍(𝑀𝑚)) and 𝑞 ∈ 𝑃(𝑀𝑚), such that 

𝜏(𝑧𝑚⊥) ≤ 𝛽, 𝛿(𝑥𝑚)𝑞 ∈ 𝑀𝑚, ‖𝛿(𝑥
𝑚)𝑞‖𝑀𝑚

≤ 𝛥(𝛽, 𝛾) and 𝐷(𝑧𝑚𝑞⊥) ≤ 𝛾𝜑(𝑧𝑚).  (73) 

Since 𝑥𝑚 = 𝑥𝑚∗
 and 𝛿 = 𝛿∗, it follows that 𝛿(𝑥𝑚) = (𝛿(𝑥𝑚))∗ and, by (73), we have 

− 𝛥(𝛽, 𝛾)𝑞 ≤ 𝑞𝛿(𝑥𝑚)𝑞 ≤ 𝛥(𝛽, 𝛾)𝑞.                                        (74) 

Set 𝜌𝑚 =
3

2
· 𝛥(𝛽, 𝛾). Using inequalities (74) and 

𝜌𝑚𝐸𝜌𝑚
⊥ (𝛿(𝑥𝑚)) ≤ 𝐸𝜌𝑚

⊥ (𝛿(𝑥𝑚))𝛿(𝑥𝑚)𝐸𝜌𝑚
⊥ (𝛿(𝑥𝑚)), 

we obtain that 𝐸𝜌𝑚
⊥ (𝛿(𝑥𝑚)) ≤ 𝑞⊥. Consequently, 𝑧𝑚𝐸𝜌𝑚

⊥ (𝛿(𝑥𝑚)) ≤ 𝑧𝑚𝑞⊥ and, by (58) and 

(73), we have that 

𝐷(𝑧𝑚𝑠(𝑆))     =  
(𝐷4)

= 𝜑(𝑧𝑚)𝐷(𝑠(𝑆))    =  
(58)

 8𝜑(𝑧𝑚)𝐷(𝐸𝜌𝑚
⊥ (𝛿(𝑥𝑚))) 

   =  
(𝐷4)

 8𝐷(𝑧𝑚𝐸𝜌𝑚
⊥ (𝛿(𝑥𝑚)))        ≤  

(𝐷2),(𝐷3)
8𝐷(𝑧𝑚𝑞⊥)     ≤    

(73)
8𝛾𝜑(𝑧𝑚), 

that is (72) holds. 

For every 𝑛 ∈ ℕ choose the maximal (possible, empty) 2𝛥(2−𝑛, 2−𝑛)-system 𝑆𝑛 for the 

derivation 𝛿. Set 𝑞𝑛
’ = 𝑠(𝑆𝑛)

⊥. By Corollary (6.2.41), we have that 

𝛿(𝑞𝑛
’ )(𝑞𝑛

’ 𝑀𝑚𝑞𝑛
’ ) ⊂ 𝑞𝑛

’ 𝑀𝑚𝑞𝑛
’                                         (75) 

for all 𝑛 ∈ ℕ. Moreover, in view of (72), there exists a projection 𝑧𝑛
𝑚’ ∈ 𝑃(𝑍(𝑀𝑚)), such 

that 

𝜏(𝑧𝑛
𝑚’⊥) ≤ 2−𝑛 and 𝐷(𝑧𝑛

𝑚’𝑞𝑛
’⊥) ≤ 2−𝑛+3𝜑(𝑧𝑛

𝑚’).                                       (76) 

We set 𝑞𝑛: = ⋀ 𝑞𝑘
’∞

𝑘=𝑛+1  and 𝑧𝑛
𝑚: = ⋀ 𝑧𝑘

𝑚’∞
𝑘=𝑛+1  and consider the derivation 𝛿(𝑞𝑛) on 

𝑞𝑛𝐿𝑆(𝑀𝑚)𝑞𝑛. We shall show that 

𝛿(𝑞𝑛)(𝑞𝑛𝑀𝑚𝑞𝑛) ⊂ 𝑞𝑛𝑀𝑚𝑞𝑛. 
Clearly, the sequences {𝑞𝑛} and {𝑧𝑛

𝑚} are increasing and, in addition, 

𝜏(𝑧𝑚𝑛
⊥) ≤ 𝜏 ( ⋁ 𝑧𝑛

𝑚’⊥

𝑘≥𝑛+1

) ≤ ∑ 𝜏(𝑧𝑛
𝑚’⊥)

𝑘≥𝑛+1

    =  
(76)

∑ 2−𝑘

𝑘≥𝑛+1

= 2−𝑛   (77) 

and 

𝐷(𝑧𝑛
𝑚𝑞𝑛

⊥) = 𝜑(𝑧𝑛
𝑚)𝐷 ( ⋁ 𝑧𝑛

𝑚𝑞𝑘
’⊥

𝑘≥𝑛+1

) 

≤ 𝜑(𝑧𝑛
𝑚)𝐷 ( ⋁ 𝑧𝑘

𝑚’𝑞𝑘
’⊥

𝑘≥𝑛+1

)     ≤  
(𝐷6)

𝜑(𝑧𝑛
𝑚) ∑ 𝐷(𝑧𝑘

𝑚’𝑞𝑘
’⊥)

𝑘≥𝑛+1

 

     ≤  
(76)

𝜑(𝑧𝑛
𝑚) ∑ 2−𝑘+3𝜙(𝑧𝑘

𝑚’)

𝑘≥𝑛+1

= ∑ 2−𝑘+3𝜑(𝑧𝑛
𝑚𝑧𝑘

𝑚’)

𝑘≥𝑛+1

                                (78) 

= ∑ 2−𝑘+3𝜑(𝑧𝑛
𝑚)

𝑘≥𝑛+1

= 2−𝑛+3𝜑(𝑧𝑛
𝑚). 

If 𝑥𝑚 ∈ 𝑞𝑛𝑀𝑚𝑞𝑛, then 𝑥𝑚 ∈ 𝑞𝑛+1
’ 𝑀𝑚𝑞𝑛+1

’  and therefore, by (75), 

𝛿(𝑞𝑛)(𝑥𝑚) = 𝑞𝑛𝛿(𝑥
𝑚)𝑞𝑛 = 𝑞𝑛𝑞𝑛+1

’ 𝛿(𝑥𝑚)𝑞𝑛+1
’ 𝑞𝑛 = 𝑞𝑛𝛿

(𝑞𝑛+1
’ )(𝑥𝑚)𝑞𝑛

∈ 𝑞𝑛𝑞𝑛+1
’ 𝑀𝑚𝑞𝑛+1

’ 𝑞𝑛 = 𝑞𝑛𝑀𝑚𝑞𝑛. 
Hence, the restriction 𝛿(𝑞𝑛)|𝑞𝑛𝑀𝑚𝑞𝑛 of the derivation 𝛿(𝑞𝑛) to 𝑞𝑛𝑀𝑚𝑞𝑛 is a derivation on the 

von Neumann algebra 𝑞𝑛𝑀𝑚𝑞𝑛. By Sakai Theorem [29], there exists an element (𝑐𝑚)𝑛 ∈
𝑞𝑛𝑀𝑚𝑞𝑛, such that 𝛿(𝑞𝑛)(𝑥

𝑚) = [(𝑐𝑚)𝑛, 𝑥
𝑚] for all 𝑥𝑚 ∈ 𝑞𝑛𝑀𝑚𝑞𝑛. 
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Now, we replace the sequence {(𝑐𝑚)𝑛} with a sequence {(𝑑𝑚)𝑛}, which is somewhat similar 

to a sequence of ‘martingale differences’. More precisely, we shall construct a sequence 

{(𝑑𝑚)𝑛} of 𝑀𝑚, such that 

                                            𝑞𝑛(𝑑𝑚)𝑚𝑞𝑛 = (𝑑𝑚)𝑛 for all 𝑛 ≤ 𝑚, 

𝛿(𝑞𝑛)(𝑥𝑚) = [(𝑑𝑚)𝑛, 𝑥
𝑚] for all 𝑥𝑚 ∈ 𝑞𝑛𝑀𝑚𝑞𝑛.                               (79) 

Set (𝑑𝑚)1 = (𝑐𝑚)1 and assume that elements (𝑑𝑚)1, . . . , (𝑑𝑚)𝑛 are already constructed. 

Since 𝛿(𝑞𝑛)(𝑞𝑛𝑥
𝑚𝑞𝑛) = 𝑞𝑛𝛿

(𝑞𝑛+1)(𝑞𝑛𝑥
𝑚𝑞𝑛)𝑞𝑛, it follows that 

[(𝑑𝑚)𝑛, 𝑞𝑛𝑥
𝑚𝑞𝑛] = 𝑞𝑛[(𝑐𝑚)𝑛+1, 𝑞𝑛𝑥

𝑚𝑞𝑛]𝑞𝑛 = [𝑞𝑛(𝑐𝑚)𝑛+1𝑞𝑛, 𝑞𝑛𝑥
𝑚𝑞𝑛] 

for any 𝑥𝑚 ∈ 𝑀𝑚. Consequently, the element (𝑑𝑚)𝑛 − 𝑞𝑛(𝑐𝑚)𝑛+1𝑞𝑛 is contained in the 

centre of algebra 𝑞𝑛𝑀𝑚𝑞𝑛. By [274] there exists an element 𝑧𝑚 of the centre of algebra 

𝑞𝑛+1𝑀𝑚𝑞𝑛+1, such that (𝑑𝑚)𝑛 − 𝑞𝑛(𝑐𝑚)𝑛+1𝑞𝑛 = 𝑧𝑚𝑞𝑛. Set (𝑑𝑚)𝑛+1 = (𝑐𝑚)𝑛+1 + 𝑧𝑚. It 
is clear that 

𝛿(𝑞𝑛+1)|𝑞𝑛+1𝑀𝑚𝑞𝑛+1(𝑥
𝑚) = [(𝑐𝑚)𝑛+1, 𝑥

𝑚] = [(𝑑𝑚)𝑛+1, 𝑥
𝑚]                  (80) 

for all 𝑥𝑚 ∈ 𝑞𝑛+1𝑀𝑚𝑞𝑛+1, in addition, 

(𝑑𝑚)𝑛+1 ∈ 𝑞𝑛+1𝑀𝑚𝑞𝑛+1 and 𝑞𝑛(𝑑𝑚)𝑛+1𝑞𝑛 = 𝑞𝑛(𝑐𝑚)𝑛+1𝑞𝑛 + 𝑧𝑚𝑞𝑛 = (𝑑𝑚)𝑛 
for every 𝑛 ∈ ℕ. Moreover, for 𝑘 ∈ ℕ, 𝑘 < 𝑛 + 1 the equalities 

𝑞𝑘(𝑑𝑚)𝑛+1𝑞𝑘 = 𝑞𝑘𝑞𝑛(𝑑𝑚)𝑛+1𝑞𝑛𝑞𝑘 = 𝑞𝑘(𝑑𝑚)𝑛𝑞𝑘 = · · · = 𝑞𝑘(𝑑𝑚)𝑘+1𝑞𝑘
= (𝑑𝑚)𝑘                                                                                                              (81) 

hold. 

Thus we have constructed the sequence {(𝑑𝑚)𝑛} of elements of 𝑀𝑚 which has 

property (79). 

By [272], the topology 𝑡(𝑀𝑚) induces on 𝑞𝑛𝐿𝑆(𝑀𝑚)𝑞𝑛 = 𝐿𝑆(𝑞𝑛𝑀𝑚𝑞𝑛) the 

topology 𝑡(𝑞𝑛𝑀𝑚𝑞𝑛), and therefore the derivation 𝛿(𝑞𝑛) is continuous on 

(𝐿𝑆(𝑞𝑛𝑀𝑚𝑞𝑛), 𝑡(𝑞𝑛𝑀𝑚𝑞𝑛)). By Corollary (6.2.34), we have that 𝑞𝑛𝑀𝑚𝑞𝑛𝑡(𝑞𝑛𝑀𝑚𝑞𝑛) =

𝐿𝑆(𝑞𝑛𝑀𝑚𝑞𝑛). Consequently, the equality 𝛿(𝑞𝑛)(𝑥𝑚) = [(𝑑𝑚)𝑛, 𝑥
𝑚] holds for all 𝑥𝑚 ∈

 𝐿𝑆(𝑞𝑛𝑀𝑚𝑞𝑛). 
Our next objective is to show that the sequence {(𝑑𝑚)𝑛} is a Cauchy sequence in 

(𝐿𝑆(𝑀𝑚), 𝑡(𝑀𝑚)). If 𝑛,𝑚 ∈ ℕ, 𝑛 < 𝑚, then 

(𝑑𝑚)𝑚 − (𝑑𝑚)𝑛     =  
(4.9)

𝑞𝑚(𝑑𝑚)𝑚𝑞𝑚 − 𝑞𝑛(𝑑𝑚)𝑚𝑞𝑛
= (𝑞𝑚 − 𝑞𝑛)(𝑑𝑚)𝑚𝑞𝑚 + 𝑞𝑛(𝑑𝑚)𝑚(𝑞𝑚 − 𝑞𝑛).  

Since 

𝑟((𝑞𝑚 − 𝑞𝑛)(𝑑𝑚)𝑚𝑞𝑚) ∼ 𝑙((𝑞𝑚 − 𝑞𝑛)(𝑑𝑚)𝑚𝑞𝑚) ≤ 𝑞𝑛
⊥, 

it follows that 

𝐷(𝑧𝑛
𝑚𝑟((𝑑𝑚)𝑚 − (𝑑𝑚)𝑛)) ≤  𝐷(𝑧𝑛

𝑚𝑟((𝑞𝑚 − 𝑞𝑛)(𝑑𝑚)𝑚𝑞𝑚) ∨ 𝑧𝑛
𝑚𝑞𝑛

⊥) 

≤ 2𝐷(𝑧𝑛
𝑚𝑞𝑛

⊥)   ≤  
(78)

2−𝑛+4𝜑(𝑧𝑛
𝑚). 

From here, by taking 𝑝 = 𝑟((𝑑𝑚)𝑚 − (𝑑𝑚)𝑛)
⊥ in view of (10) and (77), we obtain 

(𝑑𝑚)𝑚 − (𝑑𝑚)𝑛 ∈ 𝑉(0, 2−𝑛, 2−𝑛+4) ⊂ 𝑉(1/𝑛, 2−𝑛, 2−𝑛+4). 
It means that {(𝑑𝑚)𝑛} is a Cauchy sequence in (𝐿𝑆(𝑀𝑚), 𝑡(𝑀𝑚)), and therefore, since the 

space (𝐿𝑆(𝑀𝑚), 𝑡(𝑀𝑚)) is complete there exists 𝑑𝑚 ∈ 𝐿𝑆(𝑀𝑚), such that (𝑑𝑚)𝑛
𝑡(𝑀𝑚)
→   𝑑𝑚. 

Finally, let us show that 𝛿(𝑥𝑚) = [𝑑𝑚, 𝑥
𝑚] for all 𝑥𝑚 ∈ 𝐿𝑆(𝑀𝑚). By (77) and (78) we have 

that 𝑞𝑛
⊥ ∈ 𝑉(0, 2−𝑛, 2−𝑛+3) for all 𝑛 ∈ ℕ, and therefore 𝑞𝑛

⊥
𝑡(𝑀𝑚)
→   0. Consequently, 𝑞𝑛

𝑡(𝑀𝑚)
→    𝟏 and for every 𝑥𝑚 ∈ 𝐿𝑆(𝑀𝑚) we have that 𝑞𝑛𝑥

𝑚𝑞𝑛
𝑡(𝑀𝑚)
→   𝑥𝑚. We just need to use 

the 𝑡(𝑀𝑚)-continuity of the derivation 𝛿, which implies the following: 

𝛿(𝑥𝑚) = 𝑡(𝑀𝑚) − lim
𝑛→∞

(𝑞𝑛𝛿(𝑞𝑛𝑥
𝑚𝑞𝑛)𝑞𝑛) = 𝑡(𝑀𝑚) − 𝑙𝑖𝑚 𝛿𝑞𝑛

𝑛→∞
(𝑞𝑛𝑥

𝑚𝑞𝑛) 
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= 𝑡(𝑀𝑚) − lim
𝑛→∞

[(𝑑𝑚)𝑛, 𝑞𝑛𝑥
𝑚𝑞𝑛] = [𝑡(𝑀𝑚) − lim

𝑛→∞
(𝑑𝑚)𝑛, 𝑡(𝑀𝑚)  − lim

𝑛→∞
𝑞𝑛𝑥

𝑚𝑞𝑛] 

= [𝑑𝑚, 𝑥
𝑚]. 

Corollary (6.2.46)[301]: If 𝑀𝑚 is a properly infinite von Neumann algebra, then every 

derivation on the ∗-algebra 𝐿𝑆(𝑀𝑚) is inner. 

Proof. By [270] every derivation 𝛿: 𝐿𝑆(𝑀𝑚) → 𝐿𝑆(𝑀𝑚) is 𝑡(𝑀𝑚)-continuous. 

Consequently, by Corollary (6.2.45), there exists 𝑑𝑚 ∈ 𝐿𝑆(𝑀𝑚), such that 𝛿(𝑥𝑚) =
[𝑑𝑚, 𝑥

𝑚] for all 𝑥𝑚 ∈ 𝐿𝑆(𝑀𝑚). 
Corollary (6.2.47)[301]: Let 𝑀𝑚 be a von Neumann algebra acting in a Hilbert space 𝐻, 

and let 𝑎𝑚 , 𝑏𝑚 ∈ 𝐿𝑆(𝑀𝑚), 0 ≤ 𝑎𝑚  ≤ 𝑏𝑚. Then 𝑎𝑚

1

2 = 𝑐𝑚𝑏𝑚

1

2  for some 𝑐𝑚 ∈

𝑠(𝑏𝑚)𝑀𝑚𝑠(𝑏𝑚), ‖𝑐𝑚‖𝑀𝑚
 ≤ 1, in particular, 𝑎𝑚 = 𝑐𝑚𝑏𝑚𝑐𝑚

∗ . In addition, if (𝑐𝑚)1 ∈ 𝑀𝑚 

and 𝑎𝑚

1

2 = (𝑐𝑚)1𝑏𝑚

1

2 , then 𝑠(𝑏𝑚) · (𝑐𝑚)1 · 𝑠(𝑏𝑚) = 𝑐𝑚. 

Proof. Let us first show that 𝑠(𝑎𝑚) ≤ 𝑠(𝑏𝑚). Since 

0 ≤ (𝟏 − 𝑠(𝑏𝑚))𝑎𝑚(𝟏 − 𝑠(𝑏𝑚)) ≤ (𝟏 − 𝑠(𝑏𝑚))𝑏𝑚(𝟏 − 𝑠(𝑏𝑚)) = 0, 

if follows that (𝟏 − 𝑠(𝑏𝑚))𝑎𝑚

1

2 = 0, which implies the equality (𝟏 − 𝑠(𝑏𝑚))𝑎𝑚 = 0, that 

is, 𝑠(𝑏𝑚)𝑎𝑚 = 𝑎𝑚 = 𝑎𝑚
∗ = 𝑎𝑚

∗ 𝑠(𝑏𝑚) = 𝑎𝑚𝑠(𝑏𝑚). Consequently, 𝑠(𝑎𝑚) ≤ 𝑠(𝑏𝑚). 
Thus, passing if necessary to the reduced algebra 𝑠(𝑏𝑚)𝑀𝑚𝑠(𝑏𝑚), we may assume that 

𝑠(𝑏𝑚) = 𝟏. For every 𝑛 ∈ ℕ denote by 𝑝𝑛 the spectral projection for the operator 𝑏𝑚 

corresponding to the interval [1/𝑛, 𝑛]. Since 𝑝𝑛 ↑ 𝑠(𝑏𝑚) = 𝟏 it follows that the linear 

subspace 𝐻0 = ⋃ 𝑝𝑛𝐻
∞
𝑛=1  is dense in 𝐻 and 𝐻0 ⊂ 𝔇(𝑏𝑚) ∩ 𝔇(𝑏𝑚

1

2 ). Furthermore, 

according to the inequalities 0 ≤ 𝑝𝑛𝑎𝑚𝑝𝑛 ≤ 𝑝𝑛𝑏𝑚𝑝𝑛 ≤ 𝑛𝑝𝑛 we have that 𝑎𝑚

1

2 𝑝𝑛 ∈ 𝑀𝑚 and 

‖𝑎𝑚

1

2 𝑝𝑛‖
𝑀𝑚

≤ √𝑛 for all 𝑛 ∈ ℕ. In particular, 𝐻0 ⊂ 𝔇(𝑎𝑚

1

2 ). 

Since 𝑏𝑚

1

2 𝑝𝑛 ≤ 𝑛1/2𝑝𝑛 and 𝑏𝑚

1

2 (𝑝𝑛𝐻) = 𝑝𝑛𝑏𝑚
1/2

(𝑝𝑛𝐻) ⊂ 𝑝𝑛𝐻 for all 𝑛 ∈ ℕ we have 

𝑏𝑚

1

2 (𝐻0) ⊂ 𝐻0. Consequently, it is possible to define a linear mapping 𝑑𝑚: 𝑏𝑚

1

2 (𝐻0) → 𝐻 by 

setting 𝑑𝑚(𝑏𝑚

1

2 𝜉) = 𝑎𝑚

1

2 𝜉, 𝜉 ∈ 𝐻0. The definition of the operator d is correct since the 

equality 𝑏𝑚

1

2 𝜉 = 0 and the inequality 

‖𝑎𝑚

1
2 𝜉‖

𝐻

2

= (𝑎𝑚

1
2 𝜉, 𝑎𝑚

1
2 𝜉) = (𝑎𝑚𝜉, 𝜉) ≤ (𝑏𝑚𝜉, 𝜉) = ‖𝑏𝑚

1
2 𝜉‖

𝐻

2

 

imply that 𝑎𝑚

1

2 𝜉 = 0. 

In addition, for every 𝜉 ∈ 𝐻0, we have 

‖𝑑𝑚(𝑏𝑚

1
2 𝜉)‖

𝐻

2

= ‖𝑎𝑚

1
2 𝜉‖

𝐻

2

≤ ‖𝑏𝑚

1
2 𝜉‖

𝐻

2

, 

that is 𝑑𝑚 is a continuous linear operator on 𝑏𝑚

1

2 (𝐻0) and ‖𝑑𝑚‖
𝑏𝑚

1
2 (𝐻0)→𝐻

≤ 1.  

Since 𝑛−1𝑝𝑛 ≤ 𝑏𝑚𝑝𝑛 ≤ 𝑛𝑝𝑛, by Proposition [113], we have 𝑛−1/2𝑝𝑛 ≤ 𝑏𝑚

1

2 𝑝𝑛 ≤ 𝑛1/2𝑝𝑛. 
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Therefore, the restriction of the operator 𝑏𝑚

1

2  to 𝑝𝑛(𝐻0) has inverse bounded operator (𝑏𝑚)𝑛, 

in addition 𝑛−1/2𝑝𝑛 ≤ (𝑏𝑚)𝑛𝑝𝑛 ≤ 𝑛1/2𝑝𝑛. Hence, 𝑏𝑚

1

2 (𝑝𝑛𝐻) = 𝑝𝑛𝐻, that implies the 

equality 𝑏𝑚

1

2 (𝐻0) = 𝐻0. 

Thus, the operator 𝑑𝑚 uniquely extends to the Hilbert space 𝐻 up to a bounded linear 

operator 𝑐𝑚, moreover, ‖𝑐𝑚‖𝐵(𝐻) ≤ 1 and 𝑐𝑚𝑏𝑚

1

2 𝜉 = 𝑎𝑚

1

2 𝜉 for all 𝜉 ∈ 𝐻0. 

If 𝑢 is a unitary operator from the commutant 𝑀𝑚
’ , then 𝑢(𝑝𝑛𝐻) = 𝑝𝑛𝐻 for all 𝑛 ∈ ℕ and 

therefore 𝑢(𝐻0) = 𝐻0. If 𝜂 ∈ 𝐻0, then 𝜂 = 𝑏𝑚

1

2 𝜉 for some 𝜉 ∈ 𝐻0 and 

𝑢−1𝑐𝑚𝑢𝜂 = 𝑢−1𝑐𝑚𝑢𝑏𝑚

1
2 𝜉 = 𝑢−1𝑐𝑚𝑏𝑚

1
2 𝑢𝜉 

= 𝑢−1𝑎𝑚

1
2 𝑢𝜉 = 𝑢−1𝑢𝑎𝑚

1
2 𝜉 = 𝑎𝑚

1
2 𝜉 = 𝑐𝑚𝑏𝑚

1
2 𝜉 = 𝑐𝑚𝜂. 

Consequently, 𝑢−1𝑐𝑚𝑢 = 𝑐𝑚, that implies the inclusion 𝑐𝑚 ∈ 𝑀𝑚. 

Since 𝑝𝑛𝑐𝑚𝑏𝑚

1

2 𝑝𝑛 = 𝑝𝑛𝑎𝑚

1

2 𝑝𝑛 for all 𝑛 ∈ ℕ and 𝑝𝑛 ↑ 𝟏, by Proposition [113] we have 

𝑐𝑚𝑏𝑚

1

2 = 𝑎𝑚

1

2 . 

If (𝑐𝑚)1 ∈ 𝑀𝑚 and (𝑐𝑚)1𝑏𝑚

1

2 = 𝑎𝑚

1

2 , then the operators (𝑐𝑚)1 and 𝑐𝑚 coincide on the 

everywhere dense subspace 𝐻0 and therefore (𝑐𝑚)1 = 𝑐𝑚. 

If 𝑠(𝑏𝑚) = 𝟏, (𝑐𝑚)1 ∈ 𝑀𝑚 and (𝑐𝑚)1𝑏𝑚

1

2 = 𝑎𝑚

1

2 , then, using equalities 

𝑎𝑚

1
2 𝑠(𝑏𝑚) = 𝑠(𝑏𝑚)𝑎𝑚

1
2 = 𝑎m

1
2  

and 

𝑏𝑚

1
2 𝑠(𝑏𝑚) = 𝑠(𝑏𝑚)𝑏𝑚

1
2 = 𝑏𝑚

1
2 , 

we obtain (𝑠(𝑏𝑚)(𝑐𝑚)1𝑠(𝑏𝑚))𝑏𝑚

1

2 = 𝑎𝑚

1

2 . Uniqueness of the operator 𝑐𝑚 in the reduced 

algebra 𝑠(𝑏𝑚)𝑀𝑚𝑠(𝑏𝑚) implies that 𝑠(𝑏𝑚) · (𝑐𝑚)1 ·  𝑠(𝑏𝑚) = 𝑐𝑚. 
Corollary (6.2.48)[301]: Let 𝑀𝑚 be a properly infinite von Neumann algebra and let ℰ be 

an 𝑀𝑚 bimodule of locally measurable operators. Then any derivation 𝛿:𝑀𝑚 → ℰ is inner. 

Proof. By [270], there exists a derivation  𝛿: 𝐿𝑆(𝑀𝑚) →  𝐿𝑆(𝑀𝑚), such that 𝛿(𝑥𝑚) =
𝛿(𝑥𝑚) for all 𝑥𝑚 ∈ 𝑀𝑚. By Corollary (6.2.46), there exists an element 𝑎𝑚 ∈  𝐿𝑆(𝑀𝑚), such 

that 𝛿(𝑥𝑚) =  [𝑎𝑚, 𝑥
𝑚] for all 𝑥𝑚 ∈ 𝐿𝑆(𝑀𝑚). It is clear that [𝑎𝑚, 𝑀𝑚] = 𝛿(𝑀𝑚) =

𝛿(𝑀𝑚) ⊂ ℰ. 

Let (𝑎𝑚)1 = 𝑅𝑒(𝑎𝑚), (𝑎𝑚)2 = 𝐼𝑚(𝑎𝑚). Since [𝑎𝑚
∗ , 𝑥𝑚] = −[𝑎𝑚, 𝑥

𝑚∗]∗  ∈ ℰ for 

any 𝑥𝑚 ∈ 𝑀𝑚, it follows that [(𝑎𝑚)1, 𝑥
𝑚] = [𝑎𝑚 + 𝑎𝑚

∗ , 𝑥𝑚]/2 ∈ ℰ and [(𝑎𝑚)2, 𝑥
𝑚] =

[𝑎𝑚 − 𝑎𝑚
∗ , 𝑥𝑚]/2𝑖 ∈ ℰ for all 𝑥𝑚 ∈ 𝑀𝑚. 

 Taking 𝜀 =
1

2
 in (44), we obtain that there exist (𝑐𝑚)1, (𝑐𝑚)2 ∈ 𝑍ℎ𝑚(𝐿𝑆(𝑀𝑚)) and unitary 

operators 𝑢1, 𝑢2 ∈ 𝑀𝑚 such that 

2|[(𝑎𝑚)𝑖 , 𝑢𝑖]| ≥ |(𝑎𝑚)𝑖 − (𝑐𝑚)𝑖|, 𝑖 = 1, 2. 
Since [(𝑎𝑚)𝑖 , 𝑢𝑖] ∈ ℰ and ℰ is an 𝑀𝑚-bimodule we have that (𝑑𝑚)𝑖: = (𝑎𝑚)𝑖 − (𝑐𝑚)𝑖 ∈
ℰ, 𝑖 = 1,2 (see (43)). Therefore, 𝑑𝑚 = (𝑑𝑚)1 + 𝑖(𝑑𝑚)2 ∈ ℰ. Since (𝑐𝑚)1 and (𝑐𝑚)2 are 

central elements from 𝐿𝑆(𝑀𝑚) it follows that 𝛿(𝑥𝑚) = [𝑎𝑚, 𝑥
𝑚] = [𝑑𝑚, 𝑥

𝑚] for all 𝑥𝑚 ∈
𝑀𝑚. 
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Corollary (6.2.49)[301]: If {𝑝𝑘}𝑘=1
𝑛 ⊂ 𝑃(𝑀𝑚) ∩ ℰ, 𝑛 ∈ ℕ, then  

⋁𝑝𝑛

𝑛

𝑘=1

∈ ℰ and ‖⋁ 𝑝𝑛
𝑛

𝑘=1
‖
ℰ

≤∑ ‖𝑝𝑘‖ℰ
𝑛

𝑘=1
 .                                       (82) 

Proof. If 𝑝, 𝑞 ∈ 𝑃(𝑀𝑚) ∩ ℰ, then 𝑝 ∨ 𝑞 − 𝑝 ∼ 𝑞 − 𝑝 ∧ 𝑞 ≤ 𝑞, and therefore, 𝑝 ∨ 𝑞 −  𝑝 ∈
ℰ and ‖𝑝 ∨ 𝑞 − 𝑝‖ℰ  ≤ ‖𝑞‖ℰ (see (48)). Hence, 𝑝 ∨ 𝑞 = (𝑝 ∨ 𝑞 − 𝑝) + 𝑝 ∈ ℰ and 

‖𝑝 ∨ 𝑞‖ℰ − ‖𝑝‖ℰ ≤ ‖𝑝 ∨ 𝑞 − 𝑝‖ℰ ≤ ‖𝑞‖ℰ  . 
For an arbitrary finite set {𝑝𝑘}𝑘=1

𝑛 ⊂ 𝑃(𝑀𝑚) ∩ ℰ the assertion is proved via 

mathematical induction. 

Corollary (6.2.50)[301]: If {𝑝𝑛}𝑛=1
∞ ⊂ 𝑃(𝑀𝑚) ∩ ℰ and the series ∑ ‖𝑝𝑛‖ℰ

∞
𝑛=1  converges, 

then p = ⋁ 𝑝𝑛
∞
𝑛=1 ∈ ℰ and ‖𝑝‖ℰ ≤ ∑ ‖𝑝𝑛‖ℰ

∞
𝑛=1 . 

Proof. Set 𝑞𝑛 = ⋁ 𝑝𝑘
𝑛
𝑘=1 . By (82), we have 𝑞𝑛 ∈ ℰ and ‖𝑞𝑛‖ℰ ≤ ∑ ‖𝑝𝑘‖ℰ

𝑛
𝑘=1 . 

Let 𝑛,𝑚 ∈ ℕ, 𝑛 < 𝑚. By (48) and (82), we have that 

‖𝑞𝑚 − 𝑞𝑛‖ℰ = ‖𝑞𝑛 ∨ ⋁ 𝑝𝑘

𝑚

𝑘=𝑛+1

− 𝑞𝑘‖

ℰ

 

= ‖ ⋁ 𝑝𝑘

𝑚

𝑘=𝑛+1

− 𝑞𝑛 ∧ ⋁ 𝑝𝑘

𝑚

𝑘=𝑛+1

‖

ℰ

≤ ‖ ⋁ 𝑝𝑘

𝑚

𝑘=𝑛+1

‖

ℰ

≤ ∑ ‖𝑝𝑘‖ℰ

𝑚

𝑘=𝑛+1

. 

Consequently, {𝑞𝑛} is a Cauchy sequence in (ℰ, ‖·‖ℰ), and therefore there exists 𝑞 ∈ ℰ, such 

that ‖𝑞𝑛 − 𝑞‖ℰ → 0, in addition ‖𝑞‖ℰ ≤ ∑ ‖𝑝𝑛‖ℰ
𝑚
𝑘=𝑛+1 . 

Since 

‖𝑞𝑝 − 𝑞𝑛‖ℰ = ‖𝑞𝑝 − 𝑞𝑛𝑝‖ℰ ≤ ‖𝑝‖𝑀𝑚
‖𝑞 − 𝑞𝑛‖ℰ  , 

it follows that 𝑞𝑝 = 𝑞 = 𝑞∗ = 𝑝𝑞. Hence, 𝑠(𝑝 − 𝑞) ≤ 𝑝. Fix 𝑛0 ∈ ℕ, then for 𝑛 > 𝑛0, we 

have 

‖𝑞𝑛0𝑞 − 𝑞𝑛0‖ℰ
= ‖𝑞𝑛0𝑞 − 𝑞𝑛0𝑞𝑛‖ℰ

 

≤ ‖𝑞𝑛0‖𝑀𝑚
‖𝑞 − 𝑞𝑛‖ℰ ≤ ‖𝑞 − 𝑞𝑛‖ℰ  . 

Passing to the limit for 𝑛 →∞, we obtain 𝑞𝑛0𝑞 = 𝑞𝑛0  . Therefore, 𝑞𝑛(𝑝 − 𝑞)𝑞𝑛 = 0  for all 

𝑛 ∈ ℕ. The inequality 𝑠(𝑝 − 𝑞) ≤ 𝑝 and the convergence 𝑞𝑛 ↑ 𝑝 by [113] imply that 𝑞 = 𝑝. 

Corollary (6.2.51)[301]: If {(𝑎𝑚)𝑛}𝑚,𝑛=1
∞ ⊂ ℰ and ‖(𝑎𝑚)𝑛‖ℰ → 0, then (𝑎𝑚)𝑛

𝑡(𝑀𝑚)
→   0. 

Proof. Let us show firstly that every convergent to zero in the norm ‖·‖ℰ sequence of 

projections from ℰ has a subsequence convergent to zero in the topology 𝑡(𝑀𝑚). Consider 

a sequence {𝑝𝑛}𝑛=1
∞ ∈ 𝑃(𝑀𝑚) ∩ ℰ, such that ‖𝑝𝑛‖ℰ → 0. Choose a subsequence {𝑝𝑛𝑘}𝑘=1

∞ so 

that ‖𝑝𝑛𝑘‖ℰ
≤ 2−𝑘 . By Corollary (6.2.50), for the sequence of projections 𝑞𝑘 = ⋁ 𝑝𝑛𝑙𝑙≤𝑘+1  , 

we have 𝑞𝑘 ∈ ℇ and ‖𝑞𝑘‖ℇ ≤ 2−𝑘. If 𝑞 = ⋀ 𝑞𝑘𝑘≥1 , then 𝑞 ∈ ℰ and ‖𝑞‖ℰ ≤ ‖𝑞𝑘‖ℰ ≤ 2−𝑘 for 

all 𝑘 ∈ ℕ, that implies 𝑞 = 0. Consequently, 𝑞𝑘 ↓ 0, and therefore 𝜏(𝑞𝑘) ↓ 0. 
Since 𝑝𝑛𝑘+1 ≤ 𝑞𝑘 for all 𝑘 ∈ ℕ we have 𝜏 (𝑝𝑛𝑘) → 0. By Proposition (6.2.27), we infer the 

convergence 𝑝𝑛𝑘
𝑡(𝑀𝑚)
→   0. 

Now, let us show that every sequence {𝑝𝑛}𝑛=1
∞ ∈ 𝑃(𝑀𝑚) ∩ ℰ convergent to zero in the 

norm‖ · ‖ℰ  automatically converges to zero in the topology 𝑡(𝑀𝑚). Otherwise, there exists 

a subsequence {𝑝𝑛𝑘}𝑘=1
∞  and a 𝑡(𝑀𝑚)-neighborhood 𝑈 of zero, which does not contain 

{𝑝𝑛𝑘}𝑘=1
∞ . 
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From the above, there exists a subsequence {𝑝𝑛𝑘𝑠}𝑠=1
∞  converging to zero in the topology 

𝑡(𝑀𝑚), that contradicts to the relation 𝑝𝑛𝑘𝑠 ∉ 𝑈. 

Now, let {(𝑎𝑚)𝑛}𝑚,𝑛=1
∞ ⊂ ℰ and ‖(𝑎𝑚)𝑛‖ℰ → 0. For every 𝜆𝑚 > 0 the inequality 

𝜆𝑚𝐸𝜆𝑚
⊥ (|(𝑎𝑚)𝑛|) ≤ |(𝑎𝑚)𝑛|𝐸𝜆𝑚

⊥ (|(𝑎𝑚)𝑛|) ≤ |(𝑎𝑚)𝑛| imply that 

‖𝐸𝜆𝑚
⊥ (|(𝑎𝑚)𝑛|)‖ℰ

    ≤  
(47)

𝜆𝑚
−1‖|(𝑎𝑚)𝑛|‖ℰ    =   

(46)
𝜆𝑚
−1‖(𝑎𝑚)𝑛‖ℰ ⟶ 0.  

By the preceding argument, we have that 𝐸𝜆𝑚
⊥ (|(𝑎𝑚)𝑛|) ⟶ 0. Finally, by Proposition 

(6.2.2)(ii), we obtain (𝑎𝑚)𝑛
𝑡 (𝑀𝑚) 
→    0. 

Corollary (6.2.52)[301]: If {(𝑎𝑚)𝑛}𝑚,𝑛=1
∞ ⊂ 𝐿𝑆(𝑀𝑚) and (𝑎𝑚)𝑛

𝑡(𝑀𝑚)
→   0, then there exists 

a sequence {(𝑎𝑚)𝑛𝑘}𝑚,𝑘=1
∞  such that (𝑎𝑚)𝑛𝑘 = (𝑏𝑚)𝑘 + (𝑐𝑚)𝑘, where (𝑏𝑚)𝑘 ∈

𝑀𝑚, (𝑐𝑚)𝑘 ∈ 𝐿𝑆(𝑀𝑚), 𝑘 ∈ ℕ, ‖(𝑏𝑚)𝑘‖𝑀𝑚
→ 0 and 𝑠(|(𝑐𝑚)𝑘|)

𝑡(𝑀𝑚)
→   0 for 𝑠 →∞. 

Proof. Since (𝐿𝑆(𝑀𝑚), 𝑡(𝑀𝑚)) is an 𝐹-space there exists a countable basis {𝑈𝑘}𝑘=1
∞  of 

neighbourhoods of zero of the topology 𝑡(𝑀𝑚). 

By Proposition (6.2.2)(ii), we have 𝐸𝜆𝑚
⊥ (|(𝑎𝑚)𝑛|)

𝑡(𝑀𝑚)
→    0 for every 𝜆𝑚 > 0. Therefore, 

there exists a sequence ((𝑎𝑚)𝑛𝑘)𝑚,𝑘≥1 such that 𝐸1/𝑘
⊥ (|(𝑎𝑚)𝑛𝑘|)  ∈ 𝑈𝑘 for all 𝑘 ∈ ℕ. Set 

(𝑏𝑚)𝑘 = (𝑎𝑚)𝑛𝑘𝐸1/𝑘(|(𝑎𝑚)𝑛𝑘|) and (𝑐𝑚)𝑘 = (𝑎𝑚)𝑛𝑘𝐸1/𝑘
⊥ (|(𝑎𝑚)𝑛𝑘|). It is clear that 

(𝑏𝑚)𝑘 ∈ 𝑀𝑚 and ‖(𝑏𝑚)𝑘‖𝑀𝑚
≤ 1/𝑘. Since 

|(𝑐𝑚)𝑘| = ((𝑐𝑚)𝑘
∗ (𝑐𝑚)𝑘)

1 𝑘⁄ = (𝐸1/𝑘
⊥ (|(𝑎𝑚)𝑛𝑘|)|(𝑎𝑚)𝑛𝑘|

2
𝐸1/𝑘
⊥ (|(𝑎𝑚)𝑛𝑘|))

1/2 

= 𝐸1/𝑘
⊥ (|(𝑎𝑚)𝑛𝑘|)|(𝑎𝑚)𝑛𝑘|𝐸1/𝑘

⊥ (|(𝑎𝑚)𝑛𝑘|) = |(𝑎𝑚)𝑛𝑘|𝐸1/𝑘
⊥ (|(𝑎𝑚)𝑛𝑘|), 

it follows that 

𝑠(|(𝑐𝑚)𝑘|) ≤ 𝐸1/𝑘
⊥ (|(𝑎𝑚)𝑛𝑘|) ∈ 𝑈𝑘. 

Since {𝑈𝑘}𝑘=1
∞  is a basis of neighbourhoods of zero of the topology 𝑡(𝑀𝑚), we have 

𝐸1/𝑘
⊥ (|(𝑎𝑚)𝑛𝑘|)

𝑡(𝑀𝑚)
→   0, which, in its turn, guarantees the convergence 

𝜏(𝐸1/𝑘
⊥ (|(𝑎𝑚)𝑛𝑘|)) → 0 Proposition (6.2.27). From the inequality 𝜏(𝑠(|(𝑐𝑚)𝑘|)) ≤

𝜏 (𝐸1/𝑘
⊥ (|(𝑎𝑚)𝑛𝑘|)) and Proposition (6.2.27), we obtain 𝑠(|(𝑐𝑚)𝑘|)

𝑡(𝑀𝑚)
→   0. 

Corollary (6.2.53)[301]:Let 𝑀𝑚 be a von Neumann algebra with faithful normal finite trace 

𝜏 and let (ℰ, ‖· ‖ℰ) be a Banach 𝑀𝑚-bimodule. Every derivation 𝛿: 𝐿𝑆(𝑀𝑚) → 𝐿𝑆(𝑀𝑚) 
with 𝛿(𝑀𝑚) ⊂ ℰ is 𝑡(𝑀𝑚)-continuous. 

Proof. Since (𝐿𝑆(𝑀𝑚), 𝑡(𝑀𝑚)) is an 𝐹-space it is sufficient to show that the graph of the 

linear operator 𝛿 is closed. 

Suppose that the graph of the operator 𝛿 is not closed. Then there exists a sequence 

{(𝑎𝑚)𝑛}𝑚,𝑛=1
∞ ⊂ 𝐿𝑆(𝑀𝑚) and 0 ≠ 𝑏𝑚 ∈ 𝐿𝑆(𝑀𝑚) such that (𝑎𝑚)𝑛

𝑡(𝑀𝑚)
→   0 and 𝛿((𝑎𝑚)𝑛)

𝑡(𝑀𝑚)
→   𝑏𝑚. 

By Corollary (6.2.52) and passing, if necessary, to a subsequence, we may assume that 

(𝑎𝑚)𝑛 = (𝑏𝑚)𝑛 + (𝑐𝑚)𝑛, where (𝑏𝑚)𝑛 ∈ 𝑀𝑚, (𝑐𝑚)𝑛 ∈ 𝐿𝑆(𝑀𝑚), 𝑛 ∈ ℕ, ‖(𝑏𝑚)𝑛‖𝑀𝑚
→ 0 

and 𝑠(|(𝑐𝑚)𝑛|)
𝑡(𝑀𝑚)
→   0 for 𝑛 →∞. 

Since the restriction 𝛿|𝑀𝑚
 of the derivation 𝛿 to the von Neumann algebra 𝑀𝑚 is a derivation 

from 𝑀𝑚 into the Banach 𝑀𝑚 bimodule ℰ, by Ringrose Theorem [27], we have 
‖𝛿((𝑏𝑚)𝑛)‖ℰ → 0. 
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Corollary (6.2.51) now implies that 𝛿((𝑏𝑚)𝑛)
𝑡(𝑀𝑚)
→   0. 

From the equalities 

𝛿((𝑐𝑚)𝑛) = 𝛿((𝑐𝑚)𝑛𝑠(|(𝑐𝑚)𝑛|)) = 𝛿((𝑐𝑚)𝑛)𝑠(|(𝑐𝑚)𝑛|) + (𝑐𝑚)𝑛𝛿(𝑠(|(𝑐𝑚)𝑛|)) 
we have that 

𝑠(𝛿((𝑐𝑚)𝑛))
≤ 𝑙(𝛿((𝑐𝑚)𝑛)𝑠(|(𝑐𝑚)𝑛|)) ∨ 𝑟(𝛿((𝑐𝑚)𝑛)𝑠(|(𝑐𝑚)𝑛|))
∨ 𝑙((𝑐𝑚)𝑛𝛿(𝑠(|(𝑐𝑚)𝑛|)))  ∨ 𝑟((𝑐𝑚)𝑛𝛿(𝑠(|(𝑐𝑚)𝑛|))). 

Since 

𝑙((𝑐𝑚)𝑛) ∼ 𝑟((𝑐𝑚)𝑛) = 𝑠(|(𝑐𝑚)𝑛|), 𝑙(𝛿((𝑐𝑚)𝑛)𝑠(|(𝑐𝑚)𝑛|)) ∼ 𝑟(𝛿((𝑐𝑚)𝑛)𝑠(|(𝑐𝑚)𝑛|))
≤ 𝑠(|(𝑐𝑚)𝑛|), 

                               𝑟((𝑐𝑚)𝑛𝛿(𝑠(|(𝑐𝑚)𝑛|))) ∼ 𝑙((𝑐𝑚)𝑛𝛿(𝑠(|(𝑐𝑚)𝑛|))) ≤ 𝑙((𝑐𝑚)𝑛) ≼
𝑠(|(𝑐𝑚)𝑛|),  
it follows that 

𝜏(𝑠(𝛿((𝑐𝑚)𝑛))) ≤ 4𝜏(𝑠(|(𝑐𝑚)𝑛|)). 
By Proposition (6.2.28), 𝜏(𝑠(|(𝑐𝑚)𝑛|)) → 0, and therefore 𝜏(𝑠(𝛿((𝑐𝑚)𝑛))) → 0 and 

𝜏(𝑠(|𝛿((𝑐𝑚)𝑛)|)) → 0, that implies the convergence 𝜏(𝐸𝜆𝑚
⊥  (|𝛿((𝑐𝑚)𝑛)|)) → 0 for every 

𝜆𝑚 > 0. Hence by Propositions (6.2.2)(ii) and (6.2.27), we obtain 𝛿((𝑐𝑚)𝑛)  
𝑡(𝑀𝑚)
→   0. 

Thus, 𝛿((𝑎𝑚)𝑛) = 𝛿((𝑏𝑚)𝑛) + 𝛿((𝑐𝑚)𝑛)
𝑡(𝑀𝑚)
→   0. The latter convergence 

contradicts to the inequality 𝑏𝑚 ≠ 0. Consequently, 𝛿 is 𝑡(𝑀𝑚)-continuous. 

Corollary (6.2.54)[301]: Let 𝑀𝑚 be an arbitrary von Neumann algebra and let ℰ be a 

Banach 𝑀𝑚-bimodule of locally measurable operators. Then any derivation 𝛿:𝑀𝑚 → ℰ is 

inner. In addition, there exists 𝑑𝑚 ∈ ℰ such that 𝛿(𝑥𝑚) = [𝑑𝑚, 𝑥
𝑚] for all 𝑥𝑚 ∈ 𝑀𝑚 and 

‖𝑑𝑚‖ℰ ≤ 2‖𝛿‖𝑀𝑚→ℰ . If 𝛿∗ = 𝛿 or 𝛿∗ = −𝛿 then 𝑑𝑚 may be chosen so that ‖𝑑𝑚‖ℰ ≤

‖𝛿‖𝑀𝑚→ℰ. 

Proof. By [270], there exists a derivation 𝛿̅: 𝐿𝑆(𝑀𝑚) → 𝐿𝑆(𝑀𝑚) such that 𝛿̅(𝑥𝑚) = 𝛿(𝑥𝑚) 
for all 𝑥𝑚 ∈ 𝑀𝑚. 

Choose a central decomposition {𝑧∞
𝑚, 𝑧𝑖

𝑚}𝑚,𝑗∈𝐽 of the unity 𝟏 such that 𝑀𝑚𝑧∞
𝑚 is a 

properly infinite von Neumann algebra and on every von Neumann algebra 𝑀𝑚𝑧𝑗
𝑚 there 

exists a faithful normal finite trace. By [270], the derivation 𝛿̅(𝑧∞
𝑚): =

𝛿̅|𝐿𝑆(𝑀𝑚𝑧∞
𝑚): 𝐿𝑆(𝑀𝑚𝑧∞

𝑚) → 𝐿𝑆(𝑀𝑚𝑧∞
𝑚) is 𝑡(𝑀𝑚𝑧∞

𝑚)-continuous. Corollary (6.2.53) implies 

that every derivation 𝛿̅(𝑧𝑗
𝑚): = 𝛿̅|𝐿𝑆(𝑀𝑚𝑧𝑗

𝑚): 𝐿𝑆(𝑀𝑚𝑧𝑗
𝑚) → 𝐿𝑆(𝑀𝑚𝑧𝑗

𝑚) is also 𝑡(𝑀𝑚𝑧𝑗
𝑚)-

continuous for all 𝑗 ∈ 𝐽. Therefore, by [270], the derivation 𝛿̅ is 𝑡(𝑀𝑚)-continuous. By 

Corollary (6.2.45) the derivation 𝛿 is inner. Repeating the proof of Corollary (6.2.48), we 

obtain that there exists an element 𝑑𝑚 ∈ ℰ such that 𝛿(𝑥𝑚) = [𝑑𝑚, 𝑥
𝑚] for all 𝑥𝑚 ∈ 𝑀𝑚. 

Now, suppose that 𝛿∗ = 𝛿. In this case, [𝑑𝑚 + 𝑑𝑚
∗ , 𝑥𝑚] = [𝑑𝑚, 𝑥

𝑚] − [𝑑𝑚, 𝑥
𝑚∗]∗ =

𝛿(𝑥𝑚)  − (𝛿(𝑥𝑚
∗))

∗
= 𝛿(𝑥𝑚) − 𝛿∗(𝑥𝑚) = 0 for any 𝑥𝑚 ∈ 𝑀𝑚. Consequently, the 

operator 𝑅𝑒(𝑑𝑚) = (𝑑𝑚 + 𝑑𝑚
∗ )/2 commutes with every elements from 𝑀𝑚, hence, by 

Corollary (6.2.34), 𝑅𝑒(𝑑𝑚) is a central element in the algebra 𝐿𝑆(𝑀𝑚). Therefore, we may 

assume that 𝛿(𝑥𝑚) = [𝑑𝑚, 𝑥
𝑚], 𝑥𝑚 ∈ 𝑀𝑚, where 𝑑𝑚 = 𝑖𝑎𝑚, 𝑎𝑚 ∈ ℰℎ𝑚. 

By Theorem (6.2.24), there exist 𝑐𝑚 = 𝑐𝑚
∗  from the centre of the algebra 𝐿𝑆(𝑀𝑚) and a 

family {𝑢𝜀}𝜀>0 of unitary operators from 𝑀𝑚 such that 

|[𝑎𝑚, 𝑢𝜀]| ≤ (1 − 𝜀)|𝑎𝑚 − 𝑐𝑚|. 

For 𝑏𝑚 = 𝑖𝑎𝑚 − 𝑖𝑐𝑚 and 𝜀 =
1

2
, we have 
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|𝑏𝑚| = |𝑎𝑚 − 𝑐𝑚| ≤ 2|[𝑎𝑚, 𝑢1/2]| = 2|[−𝑖𝑑𝑚, 𝑢1/2]| = 2|[𝑑𝑚, 𝑢1/2]| ∈ ℰ. 

Consequently, 𝑏𝑚 ∈ ℰ (see (43)), moreover, 

𝛿(𝑥𝑚) = [𝑑𝑚, 𝑥
𝑚] = [𝑖𝑎𝑚, 𝑥

𝑚] = [𝑏𝑚, 𝑥
𝑚] 

for all 𝑥𝑚 ∈ 𝑀𝑚. Since 

(1 − 𝜀)|𝑏𝑚| = (1 − 𝜀)|𝑎𝑚 − 𝑐𝑚|    ≤  
(44)

|[𝑎𝑚, 𝑢𝜀]| = |[𝑑𝑚, 𝑢𝜀]| = |𝛿(𝑢𝜀)|, 
it follows that 

(1 − 𝜀)‖𝑏𝑚‖ℰ      ≤  
(47)‖𝛿(𝑢𝜀)‖ℰ ≤ ‖𝛿‖𝑀𝑚→ℰ  

for all 𝜀 > 0, that implies the inequality ‖𝑏𝑚‖ℰ  ≤ ‖𝛿‖𝑀𝑚→ℰ. 

If 𝛿∗ = −𝛿, then taking 𝐼𝑚(𝑑𝑚) instead of 𝑅𝑒(𝑑𝑚) and repeating the preceding argument, 

we obtain that 𝛿(𝑥𝑚) = [𝑏𝑚, 𝑥
𝑚], where 𝑏𝑚 ∈ ℰ and ‖𝑏𝑚‖ℰ  ≤ ‖𝛿‖𝑀𝑚→ℰ. 

Now, suppose that 𝛿 ≠ 𝛿∗ and 𝛿 ≠ −𝛿∗. Equality (46) implies that 

‖𝛿∗‖𝑀𝑚→ℰ = sup {‖𝛿(𝑥𝑚∗)∗‖ℰ: ‖𝑥
𝑚‖𝑀𝑚

≤ 1} 

= sup {‖𝛿(𝑥𝑚)‖ℰ: ‖𝑥
𝑚‖𝑀𝑚

≤ 1} =  ‖𝛿‖𝑀𝑚→ℰ . 

Consequently, 

‖𝑅𝑒(𝛿)‖𝑀𝑚→ℰ = 2−1‖𝛿 + 𝛿∗‖𝑀𝑚→ℰ ≤ ‖𝛿‖𝑀𝑚→ℰ . 

Similarly, ‖𝐼𝑚(𝛿)‖𝑀𝑚→ℰ ≤ ‖𝛿‖𝑀𝑚→ℰ . Since (𝑅𝑒(𝛿))∗  = 𝑅𝑒(𝛿), (𝐼𝑚(𝛿))∗ =  𝐼𝑚(𝛿), 

there exist (𝑑𝑚)1, (𝑑𝑚)2 ∈ 𝐸, such that 𝑅𝑒(𝛿)(𝑥𝑚) = [(𝑑𝑚)1, 𝑥
𝑚], 𝐼𝑚(𝛿)(𝑥𝑚) =

[(𝑑𝑚)2, 𝑥
𝑚] for all 𝑥𝑚 ∈ 𝑀𝑚 and ‖(𝑑𝑚)𝑖‖ℰ  ≤ ‖𝛿‖𝑀𝑚→ℰ , 𝑖 = 1, 2. Taking 𝑑𝑚 = (𝑑𝑚)1 +

 𝑖(𝑑𝑚)2, we have that 𝑑𝑚 ∈ ℰ, 𝛿(𝑥𝑚) = (𝑅𝑒(𝛿) + 𝑖 · 𝐼𝑚(𝛿))(𝑥𝑚) = [(𝑑𝑚)1, 𝑥
𝑚] +

𝑖[(𝑑𝑚)2, 𝑥
𝑚] = [𝑑𝑚, 𝑥

𝑚] for all 𝑥𝑚 ∈ 𝑀𝑚, in addition ‖𝑑𝑚‖ℰ ≤ 2‖𝛿‖𝑀𝑚→ℰ. 

Section (6.3): Ideals of Semifinite von Neumann Algebras 

For 𝑁 be a von Neumann algebra and let 𝐽 be an 𝑁-bimodule. 𝐴 derivation 𝛿:𝑁 → 𝐽 
is a linear mapping satisfying 𝛿(𝑋𝑌) = 𝛿(𝑋)𝑌 + 𝑋𝛿(𝑌), 𝑋, 𝑌 ∈ 𝑁. In particular, if  𝐾 ∈ 𝐽, 
then 𝛿𝐾(𝑋):= 𝐾𝑋 − 𝑋𝐾 is a derivation. Such derivations implemented by elements in 𝐽 are 

called inner. One of the classical problems in operator algebra theory is the question whether 

every derivation from 𝑁 into 𝐽 is automatically inner. The classical result in this direction is 

that in the special case, when the 𝑁-bimodule 𝐽 coincides withalgebra 𝑁, every derivation 

𝛿:𝑁 → 𝑁 is necessarily inner [29], [30]. At the same time, when one considers more general 

𝑁-bimodules, there are examples of non-inner derivations from 𝑁 into some ideals of a von 

Neumann algebra 𝑀 with 𝑁 ⊂ 𝑀 (see [297]). 

Johnson and Parrott[293]considered the special case, when the larger algebra 𝑀 

coincides with the algebra 𝐵(𝐻) of all bounded linear operators on a Hilbert space 𝐻 and 

the bimodule 𝐽 is the ideal 𝐾(𝐻)of all compact operators on 𝐻. The authors proved that if 

𝑁 is an abelian von Neumman subalgebra of 𝑀, then every derivation 𝛿 from 𝑁to 𝐾(𝐻) is 

automatically inner. As an easy consequence, they were also able to treat the case when 𝑁 

has no certain type 𝐼𝐼1factors as direct summands. The remaining case, when 𝑁 is a von 

Neumann algebra of type 𝐼𝐼1was later resolved by Popa in[296]. 

Motivated by [293], derivations relative to semifinite von Neumann algebras have 

been widely investigated (see [270],[3], [297], [294] and [285]). Accompanied with the 

rapid development of the theory of symmetrically normed spaces (see [111], [278], [17], 

[298]), interesting results concerning derivations with values in symmetrically (quasi-

)normed spaces are also established in[282], [251], [257], [256], [255]. 

In [294], Kaftal and Weiss studied the derivation problem in the setting when 𝑀 is an 

arbitrary semifinite von Neumann algebra with a semifinite faithful normal trace 𝜏 and 𝑁is 

a unital abelian or properly infinite von Neumann subalgebra of 𝑀. Under this hypothesis, 
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it is proved in [294] that every derivation 𝛿:𝑁 → ℒ𝑝(𝑀, 𝜏):= ℒ𝑝(𝑀, 𝜏) ∩ 𝑀, 1 ≤ 𝑝 < ∞, 

is inner, where 𝐿𝑝(𝑀, 𝜏) is the noncommutative 𝐿𝑝-space relative to 𝜏 (see [142]). However, 

the question whether every derivation from an arbitrary von Neumann subalgebra 𝑁of 𝑀 

into ℒ𝑝(𝑀, 𝜏), 1 ≤ 𝑝 < ∞, is inner was left unresolved. Our main objective is to answer this 

question in the affirmative. Furthermore, rather than just studying derivations with values 

in ℒ𝑝(𝑀, 𝜏), 1 ≤ 𝑝 < ∞, we prove that every derivation from an arbitrary 𝐶∗-subalgebra 

𝐴of 𝑀 into ideal 𝐸(𝑀, 𝜏) ∩ 𝑀 is inner, whenever 𝐸(𝑀, 𝜏) is the symmetric operator space 

corresponding to a fully symmetric function space 𝐸(0,∞)on (0,∞)having Fatou property 

and order continuous norm, extending earlier results by Kaftal and Weiss [294]. In Theorem 

(6.3.8), we demonstrate the sharpness of our assumptions on 𝐸(0,∞). 
We denote symmetric space (of possible unbounded operators) on 𝑀by (𝐸(𝑀, 𝜏),

‖·‖𝐸), while the corresponding ideal in 𝑀 by ℰ(𝑀, 𝜏) = 𝐸(𝑀, 𝜏) ∩ 𝑀. The latter ideal is 

equipped with the norm ‖ ·‖𝐸, however no assumption on completeness of ℰ(𝑀, 𝜏) with 

respect to ‖ ·‖𝐸is imposed.  

We recall main notions of the theory of noncommutative integration and introduce 

some properties of generalized singular values. 

In what follows, 𝐻 is a Hilbert space and 𝐵(𝐻) is the ∗-algebra of all bounded linear 

operators on 𝐻 equipped with uniform norm ‖·‖∞, and 𝟏is the identity operator on 𝐻. Let 

𝑀 be a von Neumann algebra on 𝐻. For details on von Neumann algebra theory, see [274], 

[23], [52] or [33]. General facts concerning measurable operators may be found in [52], 

[31](see also [299] and [289]).  

A linear operator 𝑋:𝔇(𝑋) → 𝐻, where the domain 𝔇(𝑋) of 𝑋 is a linear subspace of 

𝐻, is said to be affiliated with 𝑀 if 𝑌𝑋 ⊆ 𝑋𝑌for all 𝑌 ∈ 𝑀’, where 𝑀’ is the commutant of 

𝑀. 𝐴 linear operator 𝑋:𝔇(𝑋) → 𝐻 is termed measurable with respect to 𝑀 if 𝑋 is closed, 

densely defined, affiliated with 𝑀 and there exists a sequence {𝑃𝑛}𝑛=1
∞ in the logic of all 

projections of 𝑀,𝑃(𝑀), such that 𝑃𝑛 ↑ 𝟏, 𝑃𝑛(𝐻) ⊆ 𝔇(𝑋)and 𝟏 − 𝑃𝑛 is a finite projection 

(with respect to 𝑀) for all 𝑛. It should be noted that the condition 𝑃𝑛(𝐻) ⊆ 𝔇 (𝑋) implies 

that 𝑋𝑃𝑛 ∈ 𝑀. The collection of all measurable operators with respect to 𝑀 is denoted by 

𝑆(𝑀), which is a unital ∗-algebra with respect to strong sums and products (denoted simply 

by 𝑋 + 𝑌 and 𝑋𝑌 for all 𝑋, 𝑌 ∈ 𝑆(𝑀)). 
For 𝑋 be a self-adjoint operator affiliated with 𝑀. We denote its spectral measure by 

{𝑒𝑋}. It is well known that if 𝑋 is a closed operator affiliated with 𝑀 with the polar 

decomposition 𝑋 = 𝑈|𝑋|, then 𝑈 ∈ 𝑀 and 𝐸 ∈ 𝑀 for all projections 𝐸 ∈ {𝑒|𝑋|}. Moreover, 

𝑋 ∈ 𝑆(𝑀) if and only if 𝑋 is closed, densely defined, affiliated with 𝑀 and 𝑒|𝑋|(𝜆,∞) is a 

finite projection for some 𝜆 > 0. It follows immediately that in the case when 𝑀 is a von 

Neumann algebra of type 𝐼𝐼𝐼 or a type 𝐼 factor, we have 𝑆(𝑀) = 𝑀. For type 𝐼𝐼 von 

Neumann algebras, this is no longer true. 

We would not consider type 𝐼𝐼𝐼 von Neumann algebra. From now on, let 𝑀 be an 

arbitrary semifinite von Neumann algebra equipped with a faithful normal semifinite trace 

𝜏. An operator 𝑋 ∈ 𝑆(𝑀)is called 𝜏-measurable if there exists a sequence {𝑃𝑛}𝑛=1
∞ in 𝑃(𝑀) 

such that 𝑃𝑛 ↑ 𝟏, 𝑃𝑛(𝐻) ⊆ 𝔇 (𝑋) and 𝜏(𝟏 − 𝑃𝑛) < ∞ for all 𝑛. The collection 𝑆(𝑀, 𝜏) of all 

𝜏-measurable operators is a unital ∗-subalgebra of 𝑆(𝑀) denoted by 𝑆(𝑀, 𝜏). It is well 

known that a linear operator 𝑋 belongs to 𝑆(𝑀, 𝜏) if and only if 𝑋 ∈ 𝑆(𝑀) and there exists 

𝜆 > 0 such that 𝜏(𝑒|𝑋|(𝜆,∞)) < ∞. Alternatively, an unbounded operator 𝑋 affiliated with 

𝑀 is 𝜏-measurable (see [239]) if and only if  
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𝜏 (𝑒|𝑋|(𝑛,∞)) → 0, 𝑛 → ∞. 

We also recall the definition of the measure topology 𝑡𝜏 on the algebra 𝑆(𝑀, 𝜏). For every 

𝜀, 𝛿 > 0, we define the set  

𝑉(𝜀, 𝛿) =  {𝑋 ∈  𝑆(𝑀, 𝜏): ∃𝑃 ∈ 𝑃(𝑀) such that ‖𝑋(𝟏 − 𝑃)‖ ≤ 𝜀, 𝜏 (𝑃) ≤ 𝛿}.  
The linear topology generated by the sets 𝑉(𝜀, 𝛿), 𝜀, 𝛿 > 0, is called the measure 

topology 𝑡𝜏 on 𝑆(𝑀, 𝜏) [289], [239], [52]. It is well known that the algebra 𝑆(𝑀, 𝜏) equipped 

with the measure topology is a complete metrizable topological algebra [52](see also [113]). 

𝐴 sequence {𝑋𝑛}𝑛=1
∞ ⊂ 𝑆(𝑀, 𝜏) converges to zero with respect to measure topology 𝑡𝜏 if and 

only if 𝜏( 𝑒|𝑋𝑛|(𝜀,∞)) → 0as 𝑛 → ∞ for all 𝜀 > 0 [289]. 

Another important vector topology on 𝑆(𝑀, 𝜏) is the local measure topology. For 

convenience we denote by 𝑃𝑓(𝑀)the collection of all 𝜏-finite projections in 𝑀, that is the 

set of all 𝐸 ∈ 𝑃(𝑀) satisfying 𝜏(𝐸) < ∞. 𝐴 neighborhoodbase for this topology is given by 

the sets 𝑉(𝜀, 𝛿;  𝐸), 𝜀, 𝛿 > 0, 𝐸 ∈ 𝑃𝑓(𝑀), where  

𝑉(𝜀, 𝛿; 𝐸) = {𝑋 ∈ 𝑆(𝑀, 𝜏) ∶ 𝐸𝑋𝐸 ∈ 𝑉(𝜀, 𝛿)}. 
Obviously, local measure topology is weaker than measure topology[288]. We note here, 

that the local measure topology used differs from the local measure topology defined in e.g. 

[270], [266]. 

Definition (6.3.1)[280]: Let a semifinite von Neumann algebra 𝑀 be equipped with a 

faithful normal semi-finite trace 𝜏 and let 𝑋 ∈ 𝑆(𝑀, 𝜏). The generalized singular value 

function 𝜇(𝑋): 𝑡 → 𝜇(𝑡;  𝑋) of the operator 𝑋 is defined by setting 

                  𝜇(𝑠; 𝑋) = inf {‖𝑋𝑃‖ ∶ 𝑃 = 𝑃∗ ∈ 𝑀 is a projection, 𝜏(𝟏 − 𝑃) ≤ 𝑠}. 
An equivalent definition in terms of the distribution function of the operator 𝑋 is the 

following. For every self-adjoint operator 𝑋 ∈ 𝑆(𝑀, 𝜏), setting  

𝑑𝑋(𝑡) = 𝜏 (𝑒𝑋(𝑡,∞)), 𝑡 > 0, 
we have (see e.g. [239]) 

𝜇(𝑡; 𝑋) = inf {𝑠 ≥ 0: 𝑑|𝑋|(𝑠) ≤ 𝑡}.                           (83) 

Consider the algebra 𝑀 = 𝐿∞(0,∞) of all Lebesgue measurable essentially bounded 

functions on (0,∞). The algebra 𝑀 can be seen as an abelian von Neumann algebra acting 

via multiplication on the Hilbert space 𝐻 = 𝐿2(0,∞), with the trace given by integration 

with respect to Lebesgue measure 𝑚. It is easy to see that the algebra of all 𝜏-measurable 

operators affiliated with 𝑀 can be identified with the subalgebra 𝑆(0,∞) of the algebra of 

Lebesgue measurable functions 𝐿0(0,∞) which consists of all functions 𝑥 such that 

𝑚({|𝑥| > 𝑠}) is finite for some 𝑠 > 0. It should also be pointed out that the generalized 

singular value function 𝜇(𝑥) is precisely the decreasing rearrangement 𝜇(𝑥) of the function 

𝑥 (see e.g. [263]) defined by 

                                        𝜇(𝑡;  𝑥) = inf {𝑠 ≥ 0 ∶ 𝑚({|𝑥| ≥ 𝑠}) ≤ 𝑡}.  
If 𝑀 = 𝐵(𝐻) (respectively, 𝑙∞) and 𝜏 is the standard trace 𝑇𝑟 (respectively, the counting 

measure on ℕ), then it is not difficult to see that 𝑆(𝑀) = 𝑆(𝑀, 𝜏) = 𝑀. In this case, for 𝑋 ∈
𝑆(𝑀, 𝜏) we have 

𝜇(𝑛; 𝑋) =  𝜇(𝑡; 𝑋), 𝑡 ∈ [𝑛, 𝑛 + 1), 𝑛 ≥ 0.   
The sequence {𝜇(𝑛;  𝑋)}𝑛≥0 is just the sequence of singular values of the operator 𝑋. 

Definition (6.3.2)[280]: 𝐴 linear subspace 𝐸 of 𝑆(𝑀, 𝜏) equipped with a complete norm 

 ‖·‖𝐸, is called symmetric space (of 𝜏-measurable operators) if 𝑋 ∈ 𝑆(𝑀, 𝜏), 𝑌 ∈ 𝐸 and 

𝜇(𝑋) ≤ 𝜇(𝑌) imply that 𝑋 ∈ 𝐸 and ‖𝑋‖𝐸 ≤ ‖𝑌‖𝐸. 
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It is well-known that any symmetric space 𝐸 is a normed 𝑀-bimodule, that is 𝐴𝑋𝐵 ∈ 𝐸 for 

any 𝑋 ∈ 𝐸, 𝐴, 𝐵 ∈ 𝑀 and ‖𝐴𝑋𝐵‖𝐸 ≤ ‖𝐴‖∞‖𝐵‖∞‖𝑋‖𝐸. 

If 𝑋, 𝑌 ∈ 𝑆(𝑀, 𝜏), then 𝑋is said to be submajorized by 𝑌, denoted by 𝑋 ≺≺ 𝑌, if  

 ∫ 𝜇(𝑠; 𝑋)𝑑𝑠
𝑡

0

≤ ∫  𝜇(𝑠;  𝑌 )𝑑𝑠
𝑡

0

 

for all 𝑡 ≥ 0. 𝐴 linear subspace 𝐸of 𝑆(𝑀, 𝜏) equipped with a complete norm  ‖·‖𝐸, is called 

fully symmetric space(of 𝜏-measurable operators) if 𝑋 ∈ 𝑆(𝑀, 𝜏), 𝑌 ∈ 𝐸 and 𝑋 ≺≺ 𝑌 imply 

that 𝑋 ∈ 𝐸 and ‖𝑋‖𝐸 ≤ ‖𝑌‖𝐸. 

A symmetric space 𝐸 ⊂ 𝑆(𝑀, 𝜏) is said to have the Fatou property if for every 

upwards directed net {𝑋𝛽} in 𝐸+, satisfying 𝑠𝑢𝑝𝛽‖𝑋𝛽‖𝐸
< ∞, there exists an element 𝑋 ∈

𝐸+ such that 𝑋𝛽 ↑ 𝑋 in 𝐸 and ‖𝑋‖𝐸 = 𝑠𝑢𝑝𝛽‖𝑋𝛽‖𝐸
. Examples such as Schatten–von 

Neumann operator ideals, Lorentz operator ideals, Orlicz operator ideals, etc. all have 

symmetric norms which have Fatou property. 

If 𝐸 ⊂ 𝑆(𝑀, 𝜏) is a symmetric space, then the norm  ‖·‖𝐸is called order continuous if 
‖𝑋𝛼‖𝐸 → 0 whenever {𝑋𝛼} is downwards directed net in 𝐸+ satisfying 𝑋𝛼 ↓ 0. 

The so-called Köthe dual is identified with an important part of the dual space. If 𝐸 ⊂
𝑆(𝑀, 𝜏) is a symmetric space, then the Köthe dual 𝐸× of 𝐸 is defined by setting  

𝐸× = {𝑋 ∈ 𝑆(𝑀, 𝜏): 𝑠𝑢𝑝 ‖𝑌‖𝐸≤1,𝑌∈𝐸  𝜏(|𝑋𝑌 |) < ∞}. 

A wide class of symmetric operator spaces associated with the von Neumman algebra 𝑀 

can be constructed from concrete symmetric function spaces studied extensively in e.g. 

[263]. Let (𝐸(0,∞), ‖·‖𝐸(0,∞)) be a symmetric function space on the semi-axis (0,∞). 

Then the pair  

𝐸(𝑀, 𝜏) = {𝑋 ∈ 𝑆(𝑀, 𝜏): 𝜇(𝑋) ∈ 𝐸(0,∞)}, ‖𝑋‖𝐸(𝑀,𝜏): = ‖𝜇(𝑋)‖𝐸(0,∞)   

is a symmetric space on 𝑀 [111](see also [278]). For convenience, we denote  ‖·‖𝐸(𝑀,𝜏) by 

‖ · ‖𝐸. Many properties of symmetric spaces, such as reflexivity, Fatou property, order 

continuity of the norm as well as Köthe duality carry over from the commutative symmetric 

function space 𝐸(0,∞) to its noncommutative counterpart 𝐸(𝑀, 𝜏) (see e.g. [288]). 

We introduce two classical examples of symmetric spaces. 

The symmetric space of 𝜏-compact operators is the symmetric space associated to the 

algebra of functions from 𝑆(0,∞) vanishing at infinity (see [278]), that is, 

𝑆0(𝑀, 𝜏) = {𝐴 ∈ 𝑆(𝑀, 𝜏): 𝜇(∞,𝐴) = 0}. 
The ideal 𝑆0(𝑀, 𝜏):= 𝑆0(𝑀, 𝜏) ∩ 𝑀 of all 𝜏-compact bounded operatorscan be described as 

the closure in the norm  ‖·‖∞of the linear span of all 𝜏-finite projections. 

The noncommutative 𝐿𝑝-space 𝐿𝑝(𝑀, 𝜏), 𝑝 ≥ 1, is the symmetric space corresponding to 

the classical 𝐿𝑝-space of functions 𝐿𝑝(0,∞), that is  

𝐿𝑝(𝑀, 𝜏) = {𝑋 ∈ 𝑆(𝑀, 𝜏) ∶ 𝜇(𝑋) ∈ 𝐿𝑝(0,∞)}. 

This space can be also described as the space of all 𝜏-measurable operators 𝑋 such that 

𝜏(|𝑋|𝑝) < ∞. It is well-known [288] that for all 1 ≤ 𝑝 < ∞, the symmetric space 𝐿𝑝(𝑀, 𝜏) 

is fully symmetric, has Fatou property and order continuous norm. In addition, for 1 < 𝑝 <
∞the space 𝐿𝑝(𝑀, 𝜏) is reflexive [142]. 

Let 𝑀 be a semifinite von Neumann algebra equipped with a faithful normal 

semifinite trace 𝜏, and let 𝐴 be a 𝐶∗-subalgebra of 𝑀. 

Before we proceed to the study of derivations with values in symmetric ideals in 𝑀, 

we consider derivations with values in reflexive symmetric operator spaces (of possibly 
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unbounded operators) affiliated with 𝑀. These typesof questions were considered in e.g. 

[266], [292], [257], [1]. 

The approach is based on Ryll-Nardzewski’s fixed point theorem, which was suggested in 

[293](see [291]due to Hoover). 

The following result (see [292], [257], [1]for some similar results) enables us to extend [294] 

to the case when 𝐴 is an arbitrary 𝐶∗-subalgebra. We note that, for every reflexive symmetric 

function space 𝐸(0,∞), the corresponding operator space 𝐸(𝑀, 𝜏) is also reflexive (see [17], 

see also [288]). We always use the term “weakly” to refer the weak topology of the Banach 

space (𝐸(𝑀, 𝜏), ‖·‖𝐸). 
Theorem (6.3.3)[280]: Let 𝐴 be a unital 𝐶∗-subalgebra of 𝑀 and let 𝐸(𝑀, 𝜏) be a reflexive 

symmetric space. Then, for every derivation 𝛿: 𝐴 → 𝐸(𝑀, 𝜏), there exists a 𝑇 ∈ 𝐸(𝑀, 𝜏) 

such that 𝛿 = 𝛿𝑇 and ‖𝑇‖𝐸 ≤ ‖𝛿‖𝐴→𝐸. Moreover, 𝑇 ∈ 𝑐𝑜{𝛿(𝑈)𝑈∗: 𝑈 ∈ 𝒰(𝐴)}̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅‖·‖𝐸 , where 

𝑐𝑜(𝑆) denotes the convex hull of a set 𝑆.  

Proof. By Ringrose’s theorem [27], the derivation 𝛿: (𝐴, ‖·‖∞) → (𝐸(𝑀, 𝜏), ‖·‖𝐸) is 

bounded. Let us define the sets 𝐾00: = {𝛿(𝑈)𝑈∗: 𝑈 ∈ 𝒰(𝐴)}  ⊂ 𝐸(𝑀, 𝜏) and 𝐾0: =
𝑐𝑜(𝐾00). It is clear that 𝐾00, and therefore 𝐾0, lie in the ball of radius ‖𝛿‖𝐴→𝐸 in 𝐸(𝑀, 𝜏). 

We set 𝐾:= 𝐾0̅̅ ̅
‖·‖𝐸. Then, 𝐾 is weakly closed in 𝐸(𝑀, 𝜏). Since 𝐸(𝑀, 𝜏) is reflexive, 𝐾 is a 

convex weakly compact subset of 𝐸(𝑀, 𝜏), contained in the ball of radius ‖𝛿‖𝐴→𝐸 .  

For every 𝑈 ∈ 𝒰(𝐴), we have 𝛿(𝑈) ∈ 𝐸(𝑀, 𝜏), and therefore we can define the mapping 

𝛼𝑈: 𝐸(𝑀, 𝜏) ⟶ 𝐸(𝑀, 𝜏), by setting  

𝛼𝑈(𝑋) ∶= 𝑈𝑋𝑈∗ + 𝛿(𝑈)𝑈∗. 
For every 𝑈, 𝑉 ∈ 𝒰(𝐴), we have 

𝛼𝑈(𝛼𝑉(𝑋)) = 𝑈𝑉𝑋𝑉∗𝑈∗ + 𝑈𝛿(𝑉 )𝑉∗𝑈∗ + 𝛿(𝑈)𝑈∗  
= (𝑈𝑉 )𝑋(𝑈𝑉 )∗ + 𝑈𝛿(𝑉 )𝑉∗𝑈∗ + 𝛿(𝑈)𝑉 𝑉∗𝑈∗  
= (𝑈𝑉)𝑋(𝑈𝑉)∗ + 𝛿(𝑈𝑉)(𝑈𝑉)∗ = 𝛼𝑈𝑉(𝑋). 

In addition, the equality 𝛿(𝟏) = 𝛿(𝟏𝟐) = 2𝛿(𝟏) implies that 𝛿(𝟏) = 0, and therefore 

𝛼1(𝑋) = 𝑋, 𝑋 ∈ 𝐸(𝑀, 𝜏). Thus, 𝛼 is an action of the group 𝒰(𝐴) on 𝐸(𝑀, 𝜏). 
We claim that the set 𝐾 is invariant with respect to 𝛼. Since 𝛿(𝑈)𝑈∗ = 𝛼𝑈(0), it follows 

that 𝐾00 is an orbit of 0 with respect to 𝛼, and therefore, is an invariant subset with respect 

to 𝛼. In addition, for any positive scalars 𝑠 and 𝑡 with 𝑠 + 𝑡 = 1, we have  

𝛼𝑈(𝑠𝑋 + 𝑡𝑌 ) = 𝑠𝑈𝑋𝑈∗ + 𝑡𝑈𝑌𝑈∗ + (𝑠 + 𝑡)𝛿(𝑈)𝑈∗ 
𝑠𝛼𝑈(𝑋) + 𝑡𝛼𝑈(𝑌 ), 𝑋, 𝑌 ∈ 𝐸(𝑀, 𝜏). 

Hence, for every 𝑈 ∈ 𝒰(𝐴) the mapping 𝛼𝑈is affine, which implies that 𝐾0 = 𝑐𝑜(𝐾00) is 

also an invariant subset with respect to 𝛼. Now, the equality 𝛼𝑈(𝑋) − 𝛼𝑈(𝑌) = 𝑈(𝑋 −
𝑌)𝑈∗, 𝑋, 𝑌 ∈ 𝐸(𝑀, 𝜏) implies that every 𝛼𝑈, 𝑈 ∈ 𝒰(𝐴), is a distance preserving isometry on 

𝐸(𝑀, 𝜏). Hence, 𝐾 is an invariant subset with respect to 𝛼. 

Furthermore, the fact that 𝛼𝑈 is an isometry implies that the family {𝛼𝑈: 𝑈 ∈ 𝒰(𝐴)} 
is a noncontracting family of affine mappings. Clearly, 𝛼𝑈is weakly continuous for every 

𝑈 ∈ 𝒰(𝐴). Thus, the set 𝐾 and the family {𝛼𝑈: 𝑈 ∈ 𝒰(𝐴)} satisfy the assumptions of Ryll-

Nardzewski’s fixed point theorem [284]. Hence, there exists a point 𝑇 ∈ 𝐾 fixed with 

respect to 𝛼, that is, we have 𝑇 = 𝛼𝑈(𝑇) = 𝑈𝑇𝑈∗ + 𝛿(𝑈)𝑈∗ for every 𝑈 ∈ 𝒰(𝐴) and 𝑇 ∈
𝐾 (and therefore ‖𝑇‖𝐸 ≤ ‖𝛿‖𝐴→𝐸). Hence, 𝑇𝑈 = 𝑈𝑇 + 𝛿(𝑈) for every 𝑈 ∈ 𝒰(𝐴). Thus, 

𝛿(𝑈) = [𝑇, 𝑈] for every 𝑈 ∈ 𝒰(𝐴). Since every element 𝑋 ∈ 𝐴 is a linear combination of 

four elements from 𝒰(𝐴), we obtain that 𝛿 = 𝛿𝑇on 𝐴. 

Since 𝐿𝑝(𝑀, 𝜏) is reflexive when 𝑝 > 1, the above theorem together with [281] 

implies the following result, which is also an easy corollary of [281].  
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Corollary (6.3.4)[280]: Let 𝐴be a unital 𝐶∗-subalgebra of 𝑀 and 𝛿: 𝐴 → 𝐿𝑝(𝑀, 𝜏), 𝑝 ≥ 1, 

be a derivation. Then, there exists an element 𝑇 ∈ 𝐿𝑝(𝑀, 𝜏) such that 𝛿 = 𝛿𝑇 and ‖𝑇‖𝐿𝑝 ≤

‖𝛿‖𝐴→𝐿𝑝.  

Proposition (6.3.5)[280]: Let 𝐴be a 𝐶∗-subalgebra of 𝑀 and let 𝐸(𝑀, 𝜏) be a reflexive 

symmetric space affiliated with 𝑀. Then, for every derivation 𝛿: 𝐴 → 𝐸(𝑀, 𝜏), there exists 

an element 𝑇 ∈ ℰ(𝑀, 𝜏) such that 𝛿 = 𝛿𝑇with ‖𝑇‖𝐸 ≤ ‖𝛿‖𝐴→𝐸 and ‖𝑇‖𝐸 ≤ ‖𝛿‖𝐴→𝑀. 

Proof. We firstly consider the case when 𝐴 is unital. 

Since 𝐸(𝑀, 𝜏) is reflexive, Theorem (6.3.3) implies that there exists a 𝑇 ∈ 𝐸(𝑀, 𝜏) such that 

𝛿 = 𝛿𝑇 and ‖𝑇‖𝐸 ≤ ‖𝛿‖𝐴→𝐸. Therefore, it remains to show that 𝑇 ∈ 𝑀 and ‖𝑇‖∞ ≤
‖𝛿‖𝐴→𝑀. 

By Ringrose’s theorem [27], we have that 𝛿: (𝐴, ‖·‖∞) → (𝑀, ‖·‖∞) is a bounded 

mapping. Hence, 𝐾0: = 𝑐𝑜{𝛿(𝑈)𝑈∗: 𝑈 ∈ 𝒰(𝐴)} lies in the ball of radius ‖𝛿‖𝐴→𝑀 in 𝑀. By 

Theorem (6.3.3), we have 𝑇 ∈ 𝐾0̅̅ ̅
‖·‖𝐸. Let {𝑋0} ⊂ 𝐾0 be such that ‖𝑇 − 𝑋𝑛‖𝐸 ⟶ 0. By 

[288], we have 𝑋𝑛 ⟶ 𝑇in local measure topology. Since 𝑀 has Fatou property (see [288]), 

it follows from [287] that the closed ball in (𝑀, ‖·‖𝑀)with radius ‖𝛿‖𝐴→𝑀 is closed with 

respect to the local measure topology. Noticing that ‖𝑋𝑛‖𝑀 ≤ ‖𝛿‖𝐴→𝑀 and 𝑋𝑛 ⟶ 𝑇in local 

measure topology, we conclude that 𝑇 ∈ 𝑀with ‖𝑇‖∞ ≤ 𝛿𝐴→𝑀.   

Next, if 𝐴 does not contain the identity of 𝑀, we let 𝐴1: = 𝐴 + ℂ𝟏 and define 𝛿1: 𝐴1 →
ℰ(𝑀, 𝜏) by 𝛿1(𝑎 + 𝛼𝟏) = 𝛿(𝑎), 𝑎 ∈ 𝐴 and 𝛼 ∈ ℂ. It is clear that 𝛿1is a derivation from a 

unital 𝐶∗-subalgebra 𝐴1into ℰ(𝑀, 𝜏). Hence, the assertion follows from the one proved 

above. 

In the main result, Theorem(6.3.6) below, we extend the result of Proposition(6.3.5) 

to a wider class of symmetric ideals in 𝑀. To this end we recall the notation of 𝑝-

convexification of a symmetric space of 𝜏-measurable operators. 

Let 𝐸(0,∞) be a symmetric function space on (0,∞) and let (𝐸(𝑀, 𝜏), ‖·‖𝐸) be the 

corresponding noncommutative operator space. Following the notation introduced in [300], 

for 1 < 𝑝 < ∞, we set 

𝐸(𝑀, 𝜏)(𝑝) = {𝑋 ∈ 𝑆(𝑀, 𝜏) ∶ |𝑋|𝑝 ∈ 𝐸},      ‖𝑋‖𝐸(𝑝) = ‖|𝑋|𝑝‖𝐸
1/𝑝

 . 

It is well-known (see e.g. [286]) that 𝐸(𝑝)(𝑀, 𝜏)  = 𝐸(𝑀, 𝜏)(𝑝), where 𝐸(𝑝)(𝑀, 𝜏) is 

the symmetric space corresponding to the 𝑝-convexification 𝐸(𝑝)(0,∞) of the symmetric 

function space 𝐸(0,∞). 
The next theorem is the main result, which substantially extends [294]. The prototype 

of the proof of the following theorem for the case of Schatten ideals 𝐿𝑝(𝐻) when 𝐻 is 

separable can be found in[291]. This theorem generalizes [294] in two directions. Firstly, 

instead of imposing additional condition on the von Neumann subalgebra 𝐴, we can consider 

the case, when 𝐴 is an arbitrary 𝐶∗-algebra. Secondly, we have extended significantly the 

class of symmetric ideals associated with 𝑀 for which the result is applicable. 

Theorem (6.3.6)[280]: Let 𝐴be a 𝐶∗-subalgebra of 𝑀 and let 𝐸 be a fully symmetric 

function space on (0,∞) having Fatou property and order continuous norm. Then every 

derivation 𝛿: 𝐴 → ℰ(𝑀, 𝜏) is inner, that is there exists an element 𝑇 ∈ ℰ(𝑀, 𝜏) such that 𝛿 =
𝛿𝑇 with ‖𝑇‖∞ ≤ ‖𝛿‖𝐴→𝑀 and ‖𝑇‖𝐸 ≤ ‖𝛿‖𝐴→𝑀. 

Proof. Without loss of generality, we may assume that ‖𝛿‖𝐴→𝑀 ≤ 1. 

Since ℰ(𝑀, 𝜏) ⊂ 𝑀, it follows that |𝑋|𝑞 is a bounded operator for every 𝑋 ∈ ℰ(𝑀, 𝜏) and 

𝑞 ≥ 0. Therefore, for 𝑝 ≥ 𝑝’ ≥ 1and every 𝑋 ∈ 𝐸(𝑝’)(𝑀, 𝜏) we have that  

|𝑋|𝑝 = |𝑋|𝑝’ ·  |𝑋|𝑝−𝑝’ ∈ ℰ(𝑀, 𝜏), 
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that is 𝑋 ∈ ℰ(𝑝)(𝑀, 𝜏). Thus, 

ℰ(𝑝
’)(𝑀, 𝜏) ⊂  ℰ(𝑝)(𝑀, 𝜏),     𝑝 ≥  𝑝’ ≥  1.                            (84) 

In particular, from inclusion (84) we have that ℰ(𝑀, 𝜏) ⊂ ℰ(𝑝)(𝑀, 𝜏) for every 𝑝 > 1. Hence 

the derivation 𝛿 can be considered as a derivation defined on 𝐴 with values in the symmetric 

ideal ℰ(𝑝)(𝑀, 𝜏). By [159], every ℰ(𝑝)(𝑀, 𝜏)is reflexive and therefore, it follows from 

Proposition(6.3.5) that there exists a 𝑇𝑝 ∈ ℰ(𝑝)(𝑀, 𝜏) such that 𝛿 = 𝛿𝑇𝑝on 𝐴with ‖𝑇𝑝‖∞ ≤

‖𝛿‖𝐴→𝑀 and ‖𝑇𝑝‖𝐸(𝑝) ≤
‖𝛿‖𝐴→𝐸(𝑝). 

We note that for 𝑝, 𝑝’ > 1 with 𝑝 ≥ 𝑝’, inclusions 𝑇𝑝’ ∈ ℰ(𝑝
’)(𝑀, 𝜏) and (84) imply that 𝑇𝑝’ ∈

ℰ(𝑝)(𝑀, 𝜏). Moreover, since ‖𝑇𝑝’‖∞ ≤ ‖𝛿‖𝐴→𝑀 ≤ 1, we have that  

‖𝑇𝑝’‖𝐸(𝑝)
𝑝

= ‖|𝑇𝑝’|
𝑝‖

𝐸
≤ ‖|𝑇𝑝’|

𝑝’‖
𝐸
·  ‖|𝑇𝑝’|

𝑝−𝑝’‖
∞

 

 ≤ ‖𝑇𝑝’‖
𝐸
(𝑝’)

𝑝’

≤ ‖𝛿‖ 𝐴→𝐸(𝑝’)
𝑝’

= 𝑠𝑢𝑝 𝑋∈𝐴,‖𝑋‖∞=1 ‖|𝛿(𝑋)|
𝑝’‖

𝐸
 

                          ≤ 𝑠𝑢𝑝𝑋∈𝐴,‖𝑋‖∞=1‖𝛿(𝑋)‖𝐸 ·  ‖𝛿(𝑋)‖∞
𝑝’−1

                                 (85)  

                            ≤ 𝑠𝑢𝑝𝑋∈𝐴,‖𝑋‖∞=1‖𝛿(𝑋)‖𝐸  · ‖ 𝛿 ‖𝐴→𝑀
𝑝’−1

 ≤  ‖𝛿‖𝐴→𝐸 .   

We define 𝑀:= {𝑇
1+

1

𝑚

}
𝑚∈ℕ

. Since 1 +
1

𝑚
≤ 2,𝑚 ∈ ℕ, inclusion (84)implies that 𝑀 ⊂

ℰ(2)(𝑀, 𝜏). Now, let us construct inductively a subsequence {𝑇𝑛,𝑚}𝑚of 𝑀 for every 𝑛 ≥ 1 

such that 

(i) for every fixed 𝑛 ≥ 1, 𝑇𝑛,𝑚 ⊂ 𝐸(1+
1

𝑛
)(𝑀, 𝜏),𝑚 ∈ ℕ and 𝑇𝑛,𝑚 → 𝑆𝑛 ∈ 𝐸

(1+
1

𝑛
)
(𝑀, 𝜏) as 

𝑚 → ∞ in the weak topology of 𝐸(1+
1

𝑛
)(𝑀, 𝜏) with ‖𝑆𝑛‖

𝐸
(1+

1
𝑛
)

1+
1

𝑛 ≤ ‖𝛿‖𝐴→𝐸. 

(ii) {𝑇𝑛+1,𝑚}𝑚 ⊂ {𝑇𝑛,𝑚}𝑚for every 𝑛 ≥ 1. 

Let 𝑀1,0: = 𝑀 ⊂ 𝐸(2)(𝑀, 𝜏) and 𝑀1: = 𝑐𝑜(𝑀1,0)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅‖·‖𝐸(2) . Since 𝑀1 is a convex bounded 

norm-closed subset of the reflexive space 𝐸(2)(𝑀, 𝜏), it follows that 𝑀1is a convex weakly 

compact subset of 𝐸(2)(𝑀, 𝜏). Hence, by the Eberlein–Smulian Theorem [290], there is a 

subsequence {𝑇1,𝑚} of 𝑀1,0 converging to an element 𝑆1 ∈ 𝑀1 ⊂ 𝐸(2)(𝑀, 𝜏) in the weak 

topology of 𝐸(2)(𝑀, 𝜏). Since 𝑆1 ∈ 𝑀1 and 𝑀1is the  ‖·‖𝐸(2)-norm closure of 𝑐𝑜(𝑀1,0), 

inequality (85)implies that ‖𝑆1‖𝐸(2)
2 ≤ ‖𝛿‖𝐴→𝐸. 

Assume that the construction up to 𝑛 − 1, 𝑛 ≥ 2, is completed. We let 𝑀𝑛,0 = {𝑇𝑛−1,𝑚}𝑚 ∩

{𝑇
1+

1

𝑚

:𝑚 ≥ 𝑛,𝑚 ∈ ℕ} ⊂ 𝐸
(1+

1

𝑛
)
(𝑀, 𝜏). Note, that this intersection is non-empty (and 

infinite) as the elements of {𝑇𝑛−1,𝑚}𝑚 are chosen from the sequence {𝑇
1+

1

𝑚

}
𝑚∈ℕ

. We set 

𝑀𝑛: = 𝑐𝑜(𝑀𝑛,0)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
‖·‖

𝐸
(1+

1
𝑛
) . Then, 𝑀𝑛 is a convex weakly compact subset of 𝐸(1+

1

𝑛
)(𝑀, 𝜏). 

Then, by the Eberlein–Smulian Theorem, there is a subsequence {𝑇𝑛,𝑚}𝑚 of 𝑀𝑛,0 

converging to an element 𝑆𝑛 ∈ 𝑀𝑛 ⊂ 𝐸(1+
1

𝑛
)(𝑀, 𝜏) in the weak topology of 𝐸(1+

1

𝑛
)(𝑀, 𝜏) , 

in particular, ‖𝑆𝑛‖
𝐸
(1+

1
𝑛
)

1+
1

𝑛 ≤ ‖𝛿‖𝐴→𝐸, which completes the induction. 

Now, we show that every 𝑆𝑛belongs to 𝑀. For every 𝑛 ≥ 1, there is a sequence 

{𝑋𝑛,𝑚} ⊂ 𝑐𝑜(𝑀𝑛,0) such that ‖𝑋𝑛,𝑚 − 𝑆𝑛‖
𝐸
(1+

1
𝑛
)
→ 0 as 𝑚 → ∞. Hence, by [288], we have 
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𝑋𝑛,𝑚 → 𝑆𝑛 as 𝑚 → ∞ in local measure topology. It follows from [287] that the closed ball 

of radius ‖𝛿‖𝐴→𝑀 of (𝑀, ‖·‖∞) is closed with respect to the local measure topology. Since 

𝑐𝑜(𝑀𝑛,0) lies in the closed ball of radius ‖𝛿‖𝐴→𝑀of (𝑀, ‖·‖∞), it follows that 𝑆𝑛 ∈ 𝑀 and 

‖𝑆𝑛‖∞ ≤ ‖𝛿‖𝐴→𝑀.  

We claim that all of the 𝑆𝑛 are the same. Since 𝑆𝑛 and 𝑆𝑛+1are 𝜏-compact operators, the 

operator 𝑆𝑛 − 𝑆𝑛+1 is also 𝜏-compact. Let 𝑆𝑛 − 𝑆𝑛+1 = 𝑈|𝑆𝑛 − 𝑆𝑛+1| be the polar 

decomposition. Then, for any 𝜀 > 0, 𝑒|𝑆𝑛−𝑆𝑛+1|(𝜀,∞) is a 𝜏-finite projection. Hence, by 

[288] we have that 𝑒|𝑆𝑛−𝑆𝑛+1|(𝜀,∞) ∈ 𝐸(1+
1

𝑛
)(𝑀, 𝜏)× for every 𝑛 ∈ ℕ. Since the Köthe dual 

space 𝐸(1+
1

𝑛
)(𝑀, 𝜏)× can be identified with a subspace of the Banach dual, conditions (i) and 

(ii) imply that  

𝜏 (𝑆𝑛𝑒
|𝑆𝑛−𝑆𝑛+1|(𝜀,∞)𝑈∗) 

(𝑖)
=

lim
𝑚→∞

𝜏 (𝑇𝑛,𝑚𝑒
|𝑆𝑛−𝑆𝑛+1|(𝜀,∞)𝑈∗)  

(𝑖𝑖)
=

 lim
𝑚→∞

𝜏 (𝑇𝑛+1,𝑚𝑒
|𝑆𝑛−𝑆𝑛+1|(𝜀,∞)𝑈∗)   

(𝑖)
=
𝜏 (𝑆𝑛+1𝑒

|𝑆𝑛−𝑆𝑛+1|(𝜀,∞)𝑈∗)  

and therefore 

𝜏 (|𝑆𝑛 − 𝑆𝑛+1|𝑒
|𝑆𝑛−𝑆𝑛+1|(𝜀,∞)) = 𝜏(𝑈∗(𝑆𝑛 − 𝑆𝑛+1)𝑒

|𝑆𝑛−𝑆𝑛+1|(𝜀,∞)) = 0  
for any 𝜀 > 0, which implies that 𝑆𝑛 = 𝑆𝑛+1. In what follows we denote 𝑆𝑛 by 𝑇. In 

particular, we have ‖𝑇‖∞ ≤ ‖𝛿‖𝐴→𝑀 and ‖𝑇‖
𝐸(𝑝)
𝑝

≤ ‖𝛿‖𝐴→𝐸 for every 𝑝 ∈ (1, 2]. 

Next, we claim that 𝛿 = 𝛿𝑇. Consider ℰ(𝑀, 𝜏) as a subspace of 𝐸(2)(𝑀, 𝜏). For every 𝑋 ∈
𝐴, 𝛿𝑇𝑝(𝑋) = 𝛿(𝑋) for every 𝑝 > 1. By condition (i) above, we have 𝑇1,𝑚 → 𝑇 in the weak 

topology of 𝐸(2)(𝑀, 𝜏). Thus, for every 𝑓 ∈ (𝐸(2)(𝑀, 𝜏))∗  and 𝑋 ∈ 𝐴, we have 𝑓(𝑇1,𝑚𝑋) →

𝑓(𝑇𝑋) and 𝑓(𝑋𝑇1,𝑚) → 𝑓(𝑋𝑇) as 𝑚 → ∞, which implies that 𝑓(𝛿𝑇1,𝑚(𝑋)) → 𝑓(𝛿𝑇(𝑋)) as 

𝑚 → ∞. That is, 𝛿𝑇1,𝑚(𝑋) → 𝛿𝑇(𝑋) in the weak topology of 𝐸(2)(𝑀, 𝜏) as 𝑚 → ∞. On the 

other hand, every 𝛿𝑇1,𝑚(𝑋),𝑚 ∈ ℕ, is equal to 𝛿(𝑋), and therefore, we conclude that 

𝛿(𝑋) = 𝛿𝑇1,𝑚(𝑋) = 𝛿𝑇(𝑋) for every 𝑚, and therefore 𝛿 = 𝛿𝑇 on 𝐴. 

By the construction of 𝑇, we have that 𝑇 ∈∩𝑝>1 𝐸
(𝑝)(𝑀, 𝜏) and ‖|𝑇|𝑝‖𝐸 = ‖𝑇‖

𝐸(𝑝)
𝑝

≤

‖𝛿‖𝐴→𝐸 for every 𝑝 ∈ (1, 2].Since ‖𝑇‖∞ ≤ ‖𝛿‖𝐴→𝑀 ≤ 1, we have |𝑇|𝑝 ↑ |𝑇|as 𝑝 ↓ 1. 

Since (𝐸(𝑀, 𝜏), ‖·‖𝐸) has Fatou property, we have 𝑇 ∈ 𝐸(𝑀, 𝜏) with ‖𝑇‖𝐸 ≤ ‖𝛿‖𝐴→𝐸, 

which completes our proof.  

It is well-known, that the space 𝐿𝑝(0,∞)is fully symmetric and has Fatou property and order 

continuous norm. Therefore, as an immediate corollary of Theorem (6.3.6), we obtain the 

following result extending the earlier results by Kaftal and Weiss [294], which were proved 

there under restrictive conditions that 𝐴 is either an abelian or properly infinite von 

Neumann subalgebra, to the case when 𝐴 is an arbitrary 𝐶∗-subalgebra of 𝑀. 

Corollary (6.3.7)[280]: Let 𝐴be a 𝐶∗-subalgebra of 𝑀 and let 𝛿: 𝐴 → ℒ𝑝(𝑀, 𝜏), 𝑝 ≥ 1, be 

a derivation. Then, there exists an element 𝑇 ∈ ℒ𝑝(𝑀, 𝜏) such that 𝛿 = 𝛿𝑇and ‖𝑇‖𝑝 ≤

‖𝛿‖𝐴→ℒ𝑝.  

Theorem (6.3.8)[280]: Let 𝑀 be a semifinite non-finite factor. If 𝐸0(𝑀, 𝜏) ≠ 𝐸(𝑀, 𝜏) and 

𝐸(𝑀, 𝜏) ∩ 𝑀 ≠ 𝑀, then we can always find a non-inner derivation from a 𝐶∗-subalgebra of 

𝑀 into 𝐸0(𝑀, 𝜏) ∩ 𝑀. 

Proof. Since 𝐸(𝑀, 𝜏) ∩ 𝑀 ≠ 𝑀, every operator in 𝐸(𝑀, 𝜏) ∩ 𝑀 is 𝜏-compact. Since 

𝐸0(𝑀, 𝜏) ≠ 𝐸(𝑀, 𝜏), there exists 𝑇 ∈ 𝐸(𝑀, 𝜏) \𝐸0(𝑀, 𝜏) with 𝑇 ∈ 𝑀. We claim that 𝛿𝑇 is a 
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non-inner derivation from some 𝐶∗-subalgebra of 𝑀 into 𝐸0(𝑀, 𝜏) ∩ 𝑀. Consider 𝛿𝑇  acting 

on 𝑆0(𝑀, 𝜏). For every 𝑋 ∈ 𝑆0(𝑀, 𝜏), 𝑒
|𝑋|(𝜀,∞) is 𝜏-finite for every 𝜀 > 0. Thus,  

‖𝑇𝑋 −  𝑇𝑋𝑒|𝑋|(𝜀,∞)‖
𝐸
≤ ‖𝑇𝑋𝑒|𝑋|(0, 𝜀]‖

𝐸
≤ 𝜀‖𝑇‖𝐸  

implies that 𝑇𝑋 ∈ 𝐸0(𝑀, 𝜏). Similarly, 𝑋𝑇 ∈ 𝐸0(𝑀, 𝜏) and therefore 𝛿𝑇(𝑆0(𝑀, 𝜏)) ⊂
𝐸0(𝑀, 𝜏). Moreover, 𝑇 ∈ 𝑀 and 𝑆0(𝑀, 𝜏) ⊂ 𝑀 imply that 𝛿𝑇(𝑆0(𝑀, 𝜏)) ⊂ 𝐸0(𝑀, 𝜏) ∩ 𝑀. 

Finally, if there exists an operator 𝐾 ∈ 𝐸0(𝑀, 𝜏)  ∩ 𝑀 such that 𝛿𝑇 = 𝛿𝐾, then 𝑇 − 𝐾 ∈
𝑆0(𝑀, 𝜏)’. For every 𝐵 ∈ 𝑆0(𝑀, 𝜏) and 𝐴 ∈ 𝑆0(𝑀, 𝜏)’, we have 𝐵𝐴 = 𝐵𝐴. Then, noticing 

that 𝑀 is the weak operator closure of 𝑆0(𝑀, 𝜏) (see e.g. [278]), we have 𝐵𝐴 = 𝐴𝐵 for every 

𝐵 ∈ 𝑀 and 𝐴 ∈ 𝑆0(𝑀, 𝜏)’and therefore 𝑆0(𝑀, 𝜏)’ ⊂ 𝑀’. Since 𝑀’ ⊂ 𝑆0(𝑀, 𝜏)’, we have 

𝑆0(𝑀, 𝜏)’ = 𝑀’. However, 𝑀 is a factor and therefore 𝑇 − 𝐾 ∈ ℂ𝟏. Noticing that 𝑇and 𝐾are 

𝜏-compact, we have 𝑇 = 𝐾, which is a contradiction.   
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𝐿0: The space of all measurable functions 118 

𝐷𝑜𝑚: domain 132 
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