

 سم االله الرحمن الرحیمب

Sudan University of Science and Technology
 College of Graduate Studies

Detecting Pulmonary Tuberculosis in Chest X-

Ray Images Using Convolutional Neural Network
 لصدرل السينية الأشعةالسل الرئوي في صور عن كشفال

الإلتفافيةستخدام الشبكات العصبية إب

A Thesis Submitted in partial fulfillment of the requirement for the

M.Sc. Degree in Biomedical Engineering

By:
- Aden Hassan Mergani Elsanosi.

Supervisor:
-Dr. Eltahir Mohammed Hussein.

February 2021

 الأیة

 سم االله الرحمن الرحیمب

بِالْقُرْآنِ مِن قَبْلِ أَن وَلَا تَعْجَلْ ۗ فَتَعَالَى اللَّهُ الْمَلِكُ الْحَقُّ ﴿
 ﴾وَقُل رَّبِّ زِدْنِي عِلْمًاۖ إِلَیْكَ وَحْیُهُ ٰیُقْضَى

)114الأية (- سورة طه
 صدق االله العظيم

I

DEDICATION

 This dissertation is dedicated to my loving parents Hassan and
Ibtisam Elsanosi for holding my hand since day one in life.
Without their tender, guiding, and sometimes over protecting
touch I would have never become who I am today. I will always
appreciate all they have done, especially my mother for her great
efforts to make me always on the top.
To my sisters and brothers Wala, Khalid, Margani, Tamani,
and Ahmed have never left my side and are very special. Thank
you for your everlasting love and warm encouragement throughout
my research.
To my friends, who know me, but love me anyway. Without you I
can never make do in this world.
To my fiancé Anas Abdallah who has been a constant source of
support and encouragement.
Last but not least I am dedicating this to my cousin Saba
Abdulkarim gone forever away from our loving eyes. May Allah
grant you Jannah Firdaws.

Amen.

II

ACKNOWLEDGMENTS

First and foremost, I would like to thank Allah for giving me the
strength and guidance to accomplish this thesis. Without His
guidance, I will certainly not be able to complete this task
successfully.
Would like to thank my thesis supervisor Dr.Eltahir Mohamed
The door to his office was always open whenever I ran into a
trouble spot or had a question about my research or writing, he
steered me in the right direction whenever he thought I needed
it. Many Thanks!
Finally, I must express my very profound gratitude to my
parents and to my [sisters and brothers] for providing me with
unfailing support and continuous encouragement throughout my
years of study and through the process of researching and
writing this thesis. This accomplishment would not have been
possible without them. Thank you.

III

TABLE of CONTENTS
DEDICATION………………………………….……………………….…………I
ACKNOWLEDGMENTS………………………………….……….……………..II
CONTENTS……………………………….…………………………………...... III
LIST OF FIGURES………………………………………………………………..V
LIST OF TABLES………………………………………………………….…....VII
ABSTRACT..……………………………………………………….…………..VIII
 IX.....….…………………………………………………………………… المستخلص

CHAPTER ONE: INTRODUCTION ……………..……………………………....1
1.1 General View.……….…….…………………………………......……………..1
1.2 Problem Statement……………………………..……………………………...1
1.3 The objective ………………………………………..…………………….….1
1.4 Methodology…………………………….……….……….…….…….….…….2
1.5 Thesis layout………………………………………..….……….………….…...2

CHAPTER TWO: LITERATURE REVIEWS.………………………….………....4

CHAPTER THREE: THEORETICAL BACKGROUND ………………..……….8
3.1 Tuberculosis…...……………………………….…………………...…….…8
3.1.1 Types of TB...…………………………..…………….......….……...……...8
3.1.2 Risk Factors for Tuberculosis………………….……..………….………..10
3.1.3 Symptoms of TB..……………..…...……………..……..………………10
3.1.3 Existing methods for TB diagnosis………..………………………....…12
3.1.4 Radiographic impressions of TB..……………………...……..….…...…13
3.2 Artificial Intelligence in Medicine..………………………………..…13
3.2.1 Artificial Neural Network…….………………………………………..…14
3.3 Convolutional Neural Network………………..…………………...……15
3.3.1 Building Blocks of CNN Architecture…………...………………………15
3.3.2 Training a Network ………………………………………………………19
3.4 K-fold Cross Validation……………………………………………………...21
3.5 Transfer Learning……………………………………………………………22
3.6 The Pretrained VGG………………………………………………………..…25

CHAPTER FOUR: The Proposed Model……………….………………………...28
4.1 Overview of the proposed method ………..………………………………..…28
4.2 Dataset Description………………………………………………...………….29

IV

4.3 Image preprocessing………………………………………………………..…29
4.4 Dataset Splitting……………………………………………………………....29
4.5 Proposed Pre-trained Model………………………………………………..…30
4.6 Proposed VGG16 implementation...….…...…………………………………..31
4.7 The typical transfer-learning workflow……………………………..………...35
4.8 Material and Software.……….….…………..……………………..…………37

CHAPTER FIVE: Results and Discussion..………………………………….…...38
5. 1 Performance Evaluation of Classification …………..……………………….38
5.2 Performance Evaluation of image Classification without cross validation …..39
5.3 Performance Evaluation of image Classification with 5 folds cross
validation………………………………………………………………………….45

Chapter Six: Conclusions and Recommendation…………………………………49
6.1Conclusions ………….……………………………..…………………………49
6.2 Recommendation ………………………………….……………………….…49
References………………………………………………………………………...50
Appendix: Model Code…………………………………………...……………….A

V

LIST OF FIGURES

Figure 1.1: Block diagram of the proposed method……...………………………...2
Figure 3.1: WHO maps (c. 2013) showing global TB incidence rates; TB mortality
among HIV positive cases. …………………………………….…………………..9
Figure 3.2: Symptoms and types of PTB and EPTB ...……………………..…….11
Figure 3.3: Example CXRs with manifestations of TB ………...………….…......13
Figure 3.4: General structure of a neural network with two hidden layers…….....15
Figure 3.5: An overview of a convolutional neural network (CNN) architecture and
the training process. ………………….………………………………….………..16
Figure 3.6, a,c: An example of convolution operation with a kernel size of 3×3...17
Figure 3.7: Activation functions commonly applied to neural networks: a rectified
linear unit (ReLU), b sigmoid, and c hyperbolic tangent (tanh)……………..........18
Figure 3.8: An example of max pooling operation with a filter size of 2 × 2…….19
Figure 3.9: Traditional Learning vs Transfer Learning……………………...……23
Figure 3.10: transfer learning and its common ways used in pretrained network...24
Figure 4.1: Block diagram of the proposed method……...……………………….28
Figure 4.2: An example of preprocessed image from image dataset…………….29
Figure 4.3: Dataset splitting……………………………………………………….30
Figure 4.4: The proposed pre-trained model……………………………………...30
Figure 4.5: VGG16 Architecture………………………………………………….31
Figure 4.6: Proposed VGG16 implementation…………………………………....32
Figure 4.7: 5 Folds cross validation…………………………………………….…36
Figure 5.1: plot shows accuracy for training and validation for 10 epochs without
cross validation………..………………………………………….…………….....39
Figure 5.2: plot shows loss for training and validation for 10 epochs without cross
validation…………………………………..……………………………….……..40
Figure 5.3: confusion matrix for image classification without cross validation….40
Figure 5.4: AUC of ROC for image classification without cross validation……...41
Figure 5.5: classification report for image classification without cross validation.42
Figure 5.6: plot shows accuracy for training and validation for 50 epochs without
cross validation……………………………………………………………………42
Figure 5.7: plot shows loss for training and validation for 50 epochs without cross
validation……………………………………………………………………….…42
Figure 5.8: confusion matrix for image classification without cross validation (50
epochs)…………………………………………………………………………,…43

VI

Figure 5.9: AUC of ROC for image classification without cross validation (50
epochs)…………………………………………………………….…………..…..44
Figure 5.10: classification report for image classification without cross validation
(50 epochs)………………………………………………………………………..44
Figure 5.11: plot shows accuracy for training and validation for last 10 epochs with
use of 5 fold cross validation……………………………………………………..45
Figure 5.12: plot shows loss for training and validation for last 10 epochs with use
of 5 fold cross validation……………………………………………………….…45
Figure 5.13: confusion matrix of image classification for 5 folds cross
validation………………………………………………………………………….46
Figure 5.14: AUC of ROC for image Classification for 5 folds cross
validation………………………………………………………………………….47
Figure 5.15: classification reports of image classification for 5 folds cross
validation…………………………………………………………………….……47

VII

LIST OF TABLES

Table 2.1: Summary of literature reviews………………………………………….6
Table 3.1: Main Shortcomings of TB diagnostic tests………………………….12
Table 3.2: VGG ConvNet configuration…...……………………………………..26
Table 5.1: Comparison between the proposed model and some of literature….…48

VIII

ABSTRACT

The main objective of this study is to detect tuberculosis in chest x-ray images

using a convolutional neural network. Tuberculosis (TB) is an infectious disease

that generally attacks the lungs and causes death for millions of people annually.

Chest radiography and deep-learning-based image segmentation techniques can be

utilized for TB diagnostics. Convolutional Neural Networks (CNNs) have shown

advantages in medical image recognition applications as powerful models to

extract informative features from images. The application of CNNs for image

classification has significantly increased prediction accuracy rates. Several

convolutional neural networks (CNNs) such as VGG work by building a pre-

trained model that is easy to set up with minimal preprocessing. It uses libraries

with weights containing millions of images to train the model before application on

the actual data. This process is also called transfer learning. This thesis presents a

ConvNet model that uses VGG16 for classifying CXR images, the ConvNet model

is applied to the chest X-ray (CXR) dataset to identify if the patient has

Tuberculosis (TB), applying such a model bypasses the requirement of building

sophisticated segmentation algorithms which could be time-consuming, require

professional expertise, and are mostly specialized making them inadmissible for

application to other similar problems, the model can achieve accuracy of 92%. The

accuracy obtained is comparable to previous work done on the dataset.

IX

 المستخلص
الدراسة ھو الكشف عن مرض السل في صور الأشعة السینیة للصدر بإستخدام الشبكات الھدف الرئیسي لھذه

 الأشخاصلسل مرض معد یھاجم الرئتین بشكل عام ویتسبب في وفاة الملایین من ا, الالتفافیةالعصبیة

ویمكن استخدام التصویر الشعاعي للصدر وتقنیات تجزئة الصور المستندة إلى التعلم العمیق لتشخیص .سنویاً

مزایا في تطبیقات التعرف على الصور الطبیة كنماذج) CNNs(الالتفافیةأظھرت الشبكات العصبیة .السل

جھزة على تصنیف الصور إلى وقد أدى تطبیق ھذه الأ .من الصور غنیة بالمعلوماتقویة لاستخراج میزات

عن VGGمثل) CNNs(الالتفافیةتعمل العدید من الشبكات العصبیة .زیادة كبیرة في معدلات دقة التنبؤ

یستخدم مكتبات ذات أوزان تحتوي على و .طریق بناء نموذج مدرب مسبقًا یسھل إعداده بأقل معالجة مسبقة

 وتسمى ھذه العملیة أیضاً بنقل .على البیانات الفعلیة من الصور لتدریب النموذج قبل تطبیقھاملایین ال

، یتم تطبیق CXRلتصنیف صور VGG16الذي یستخدم ConvNetتقدم ھذه الأطروحة نموذج .التعلم

لتحدید ما إذا كان المریض مصابًا) CXR(على مجموعة بیانات الأشعة السینیة للصدر ConvNetنموذج

نموذج یتجاوز شرط إنشاء خوارزمیات تجزئة متطورة یمكن أن تستغرق وقتا ن تطبیق ھذا الإ ،) TB(بالسل

طویلا، وتتطلب خبرة مھنیة، وھي متخصصة في معظمھا تجعلھا غیر مقبولة لتطبیقھا على مشاكل أخرى

تم الأعمال السابقة التي في وتماثل الدقة التي تم الحصول علیھا .٪92یمكن للنموذج تحقیق دقة بنسبة .مماثلة

 .إنجازھا على مجموعة البیانات

1

Chapter One

Introduction

1.1 General View
 Tuberculosis (TB) is a global issue that seriously endangers public health. TB is
an airborne ailment discovered by Robert Koch in 1822, and it is caused by
Mycobacterium Tuberculosis (MTB), the causative organism of TB [1]. Depending
on the site which MTB affects TB is categorized into two main types Pulmonary
Tuberculosis (PTB) and Extra Pulmonary Tuberculosis (EPTB) [2].Tuberculosis
disease is more prevalent in developing regions and can affect both males and
females but more prominent in males. In Sudan the average number of admitted
patient in Omdurman teaching hospital (Abu-Anja) is 900 patients per month.
 Pathology is one of the most important means for diagnosing TB in clinical
practice, to confirm TB as the diagnosis, finding specially stained TB bacilli under
a microscope is critical. Because of the very small size and number of bacilli, it is a
time-consuming and strenuous work even for experienced pathologists, and this
strenuosity often leads to low detection rate and false diagnoses, beside pathology
There are different conventional methods for diagnosing tuberculosis having
several shortcomings; the need to find newer prompt methods for disease detection
has been aided by the latest Artificial Intelligence [AI] tools. Convolutional neural
networks (CNN) are one of the important tools that is being used in diagnosis and
evaluation of medical conditions. In this thesis convolutional neural networks are
used to detect pulmonary tuberculosis.

1.2 Problem Statement
Un proper diagnosis of tuberculosis on time is a prominent problem in medical
field. Tuberculosis is curable but needs to be detected early for necessary treatment
to be effective.

1.3 Objective
 The main objective of this study is to detect tuberculosis in chest x-ray images
using convolutional neural network.

2

 The specific objectives are to:
1. develop a convolution neural network (CNN) model.
2. classify chest x-ray image into normal and abnormal.
3. asses the accuracy, sensitivity and specificity of the model.

1.4 Methodology
 The main idea of this research is the designing of CNN model to detect
pulmonary tuberculosis, firstly images are resized, and then divided into training,
validation and testing, then it flows through the model and finally the images are
classified into normal and abnormal TB.

Figure 1.1: Block diagram of the proposed method

1.5 Thesis Layout
 This thesis consists of six chapters, Chapter one is an introduction. The literature
Reviews are presented in chapter two. Some theoretical background related to the

3

study was provided at chapter three, in chapter four the proposed model that was
applied for classification of CXR images is discussed and described, chapter five
introduce the results that were obtained from the applying of the proposed model,
and chapter six provides the conclusions and recommendation of the thesis.

4

Chapter Two

Literature Reviews

Hwang et al [3] proposed for the first time the application of a CNN to
tuberculosis detection the proposal includes the creation of a custom network,
adapting an existing CNN to the specific problem of tuberculosis detection and
recalculating the existing weights. The proposed architecture is a variant of the
AlexNet network with a larger input layer (500x500 pixels), a new convolutional
layer right after the input layer and a new max-pooling layer. The network was
trained using a large private dataset consisting of approximately 10,000 images. In
the case of the network trained with pre-learned weights, the accuracy reached 0.90
and the AUC reached 0.96. The trained model was also applied in the classification
of the Montgomery and Shenzhen datasets where the obtained results are
competitive in most cases. In the Montgomery dataset the accuracy was 0.674 and
the AUC 0.884, whilst in the Shenzhen dataset the accuracy was 0.837 and the
AUC was 0.926.

Chang Liu et al [4] proposed a novel method using Convolutional Neural
Network (CNN) to deal with unbalanced, less-category X-ray images their method
improved the accuracy for classifying multiple TB manifestations by a large
margin. They explored the effectiveness and efficiency of shuffle sampling with
cross-validation in training the network and found its outstanding effect in medical
images classification. They achieved 85.68% classification accuracy in a large TB
image dataset.

Yan Xiong et al [5] built a convolutional neural networks (CNN) model, named
tuberculosis AI (TB-AI), specifically to recognize TB bacillus. The training set
contains 45 samples, including 30 positive cases and 15 negative cases, where
bacilli are labeled by human pathologists. Upon training the neural network model,
201 samples (108 positive cases and 93 negative cases) were collected as test set
and used to examine TB-AI. They compared the diagnosis of TB-AI to the ground
truth result provided by human pathologists, analyzed inconsistencies between AI
and human, and adjusted the protocol accordingly. Trained TB-AI was run on the
test data twice. Examined against the double confirmed diagnosis by pathologists

5

both via microscopes and digital slides, TB-AI achieved 97.94% sensitivity and
83.65% specificity.

In Syeda Meraj et alv [2] four simple Convolutional Neural Networks (CNN)
models such as VGG-16, VGG-19, RestNet50, and GoogLenet were implemented
in identification of TB manifested CXRs. Two public TB image datasets were
utilized to conduct this research. This study was carried out to explore the limit of
accuracies and AUCs acquired by simple and small-scale CNN with complex and
large-scale CNN models. The results achieved from this work were compared with
results of two previous studies. The results indicate that their proposed VGG-16
model has gained highest score overall compared to the models from other two
previous studies.

Pasa et al [6] proposed a simple convolutional neural network optimized for the
problem which is faster and more efficient than previous models but preserves
their accuracy. The visualization capabilities of CNNs have not been fully
investigated by testing saliency maps and gradient class activation maps (grad-
CAM). These visualization techniques help us understand the network and may
also be useful as an approximate visual diagnosis for presentation to radiologists.as
tuberculosis visualization methods, and discussed them from a radiological
perspective. Their model performed accuracy 79.0 % for Montgomery County
(MC), 84.4% for Shenzhen (SH) and 86.2%for combined.

Mustapha Oloko-Oba and Serestina Viriri [7] proposed a Computer-Aided
Detection model using Deep Convolutional Neural Networks to automatically
detect TB from Montgomery County (MC) Tuberculosis radiographs. Their
proposed model performed at 87.1% validation accuracy and evaluated using
confusion matrix and accuracy as metrics.

Ahmed T. Sahlol et al [8] presented a novel hybrid method for efficient
classification of chest X-ray images. First, the features are extracted from chest X-
ray images using MobileNet, a CNN model, which was previously trained on the
ImageNet dataset. Then, to determine which of these features are the most relevant,
we apply the Artificial Ecosystem-based Optimization (AEO) algorithm as a
feature selector. Their method is applied to two public benchmark datasets
(Shenzhen and Dataset 2) and allows them to achieve high performance and

6

reduced computational time. It selected successfully only the best 25 and 19 (for
Shenzhen and Dataset 2, respectively), while improving the classification accuracy
(90.2% for Shenzen dataset and 94.1% for Dataset 2).

Seelwan Sathitratanacheewin et al [9] developed a Deep Convolutional Neural
Network (DCNN) model using a Tuberculosis (TB)-specific chest x-ray (CXR)
dataset of one population (National Library of Medicine Shenzhen No.3 Hospital)
and tested it with non-TB-specific CXR dataset of another population (National
Institute of Health Clinical Centers). In the training and intramural test sets using
the Shenzhen hospital database, the DCCN model exhibited an AUC of 0.9845 and
0.8502 for detecting TB, respectively. However, the AUC of the supervised DCNN
model in the ChestX-ray8 dataset was dramatically dropped to 0.7054. Using the
cut points at 0.90, this suggested 72% sensitivity and 82% specificity in the
Shenzhen dataset.

Table 2.1: Summary of literature reviews
Authors,

Year
Dataset Features /

Parameter
Method Classification

Accuracy
(%)

Area under
the curve

AUC

Sensitivity
(%)

Specificity
(%)

Hwang et
al,2016

Private data ,
Shenzhen(SH)

and Montgomery
County (MC)

CXR Transfer
Learning of
Modified
Alexnet

90
83.7
67.4

0.96
0.926
0.884

- -

Chang Liu et
al,2017

Private data set
from Lima, Peru

CXR CNN 85.68 - - -

Yan Xiong
et al ,2018

Data collected from
the Department of
Pathology, Peking

University Hospital

tissue
samples and
treated by
acid-fast

stain

CNN - - 97.94 83.65

Syeda Meraj
et al ,2019

Shenzhen (SH and
Montgomery
County (MC)

CXR VGG-16
VGG-19
ResNet50

GoogLenet

86.74 ,77.14
84.33 , 77.14
81.92 , 71.42
80.72 , 71.42

92.0 , 75.0
91.0 , 90.0
91.2 ,76.0
88.0 ,75.0

-
-
-
-

-
-
-
-

Pasa et al.
2019

Montgomery
County (MC),

Shenzhen (SH) and
Belarus Dataset

CXR Optimized
CNN

79.0 for MC,
84.4 for SH

and 86.2
for combined

0.811 for
MC,

0.9 for SH
and 0.925

for combined

- -

7

Authors,
Year

Dataset Features /
Parameter

Method Classification
Accuracy

(%)

Area under
the curve

AUC

Sensitivity
(%)

Specificity
(%)

Mustapha
Oloko-Oba

and Serestina
Viriri,2020

Montgomery
County (MC)

CXR DCNN 87.1% - - -

Ahmed T.
Sahlol et al

,2020

Shenzhen (SH),
Dataset 2

CXR DCNN 90.2%
94.1%

- - -

Seelwan
Sathitratanach

eewin et al
,2020

Shenzhen Hospital
Dataset and NIH

ChestX-ray8

CXR DCNN - - 72 82

Previous studies that have been carried out using CNN methodology for the
detection of TB are discussed here; Table 2.1 shows several works of CNN on TB
detection. Most of the authors have used Montgomery County (MC) and Shenzhen
(SH) CXR sets since they are publicly available TB dataset, Based on Table 2.1,
Syeda Meraj et al ,2019 have used both MC and SH datasets, executed on four
CNN models such as VGG-16,VGG-19 ,ResNet50 and GoogLenet a greater
accuracy values achieved when using Shenzhen dataset.
Private Datasets used by Hwang et al, 2016 and Chang Liu et al, 2017 achieved
comparable accuracy results to other studies.

8

Chapter Three

Theoretical Background

3.1 Tuberculosis
 Tuberculosis is an age-old disease. This ancient killer disease has survived for
thousands of years. There are quite a few archaeological evidences, found in
ancient Egypt, pointing to the existence of this disease. Such as pott’s disease
(spinal tuberculosis), found in Egyptian mummies [10], [11]. Furthermore, several
literary documentations reveal the existence of TB, in ancient India, China and
Greece [12], [13]. TB was known by various names, throughout the history. In
ancient Greece, it was called “Phthisis” or “consumption” (because of extreme
weight loss in patients). Tuberculosis (TB) is an airborne ailment discovered by
Robert Koch in 1822, it is caused by Mycobacterium Tuberculosis (MTB), the
causative organism of TB [1].
 According to the (World Health Organization [WHO], 2020), About one-
quarter of the world's population has a TB infection, which means people have
been infected by TB bacteria but are not (yet) ill with the disease and cannot
transmit it., indicating a risk of developing active TB during their lifetime. A total
of 1.4 million people died from TB in 2019 (including 208000 people with HIV).
Worldwide, TB is one of the top 10 causes of death and the leading cause from a
single infectious agent (above HIV/AIDS).
 In 2019, an estimated 10 million people fell ill with tuberculosis (TB)
worldwide. 5.6 million Men, 3.2 million women and 1.2 million children. TB is
present in all countries and age groups. (World Health Organization [WHO] ,
2020). An estimated 60 million lives were saved through TB diagnosis and
treatment between 2000 and 2019.

3.1.1 Types of TB
 Broadly classified, there are two types of tuberculosis infections. Active and
latent in active tuberculosis, the individual who is carrying the organism has active
symptoms and can transmit the infection to other people.
 In latent tuberculosis, the individual carries the bacteria but does not exhibit any
symptoms whatsoever. This is because the immunity fights the infection and is

9

able to suppress it to an extent. Individuals suffering from latent tuberculosis
cannot transmit the illness to others. However, at some point in their life, the
bacteria can get reactivated and the infection can become active tuberculosis [14].

Figure 3.1: WHO maps (c. 2013) showing (Top) global TB incidence rates;

(Bottom) TB mortality among HIV positive cases. [(WHO) Global Tuberculosis
Report 2014]

 If the bacteria affect lungs and its surrounding regions, then it is called as
Pulmonary Tuberculosis (PTB).When the bacteria affects and spreads to other
parts of the body then it is called Extra Pulmonary Tuberculosis (EPTB). Few
types of PTB are primary Tuberculosis pneumonia, cavity Tuberculosis,
Tuberculosis pleurisy, military TB and laryngeal TB [2]. On the other hand, types
of EPTB include Pot’s disease, lymph node disease, Tuberculosis meningitis,

10

adrenal Tuberculosis, Tuberculosis peritonitis, Tuberculosis pericarditis, Osteal
tuberculosis [15, 16].

3.1.2 Risk Factors for Tuberculosis
 Tuberculosis is usually spread from one person to another through droplet
infection. This means that if an individual is carrying the tuberculosis bacteria in
their lungs, by coughing up phlegm that carries the tuberculosis bacteria, they can
spread it from one individual to another. In other words, tuberculosis spreads only
on close contact.
 There are a number of different risk factors that are responsible for the
development of tuberculosis. People who are constantly exposed to those people
who have the bacteria are more prone to picking up the infection. Tuberculosis
generally affects people of the lower socio-economic classes because of lack of
sanitary conditions and closed living spaces.
Individuals who are drug abusers can also pick up tuberculosis. The presence of
the human immunodeficiency virus i.e. HIV is a strong risk factor for tuberculosis
as well.
 Children have poor immunity in their younger age. If they are exposed to
someone to tuberculosis, their weak immune system is unable to fight the bacteria
and they can get infected. Individuals who have cancer have low immunity as well
and are prone to developing tuberculosis. Those who suffer from diabetes also
have altered immunity and may have an inability to fight the tuberculosis bacteria.
Finally, individuals who are taking certain medications that suppress
their immunity are also prone to picking up the tuberculosis infection.

3.1.3 Symptoms of TB
 Although human body may harbor the bacteria that cause tuberculosis (TB), the
immune system usually can prevent the body from becoming sick. For this reason,
doctors make a distinction between:

a) Latent TB
 In this condition, patients have a TB infection, but the bacteria remain in their
body in an inactive state and cause no symptoms. Latent TB, also called inactive
TB or TB infection, isn't contagious. It can turn into active TB, so treatment is

11

important for the person with latent TB and to help control the spread of TB. An
estimated 2 billion people have latent TB.

b) Active TB.
 This condition makes body sick and in most cases can spread to others. It can
occur in the first few weeks after infection with the TB bacteria, or it might occur
years later.
Signs and symptoms of active TB include:

1. Coughing that lasts three or more weeks.
2. Coughing up blood.
3. Chest pain or pain with breathing or coughing.
4. Unintentional weight loss.
5. Fatigue.
6. Fever.
7. Night sweats.
8. Chills.
9. Loss of appetite

 When TB occurs outside lungs, signs and symptoms vary according to the
organs involved. For example, tuberculosis of the spine may give back pain, and
tuberculosis in kidneys might cause blood in urine.
The symptoms of TB and few types of PTB and EPTB are shown in Figure 3.2

Figure 3.2: Symptoms and types of PTB and EPTB [17]

12

3.1.3 Existing methods for TB diagnosis
 A number of tests are employed for TB detection like Polymerase chain
reaction, nucleic acid magnification test and TB interferon gamma release assay.
However all these tests have one of the major drawbacks that they are not specific,
besides they require a lot of time for interpretation of results, and involve invasive
techniques that are tedious to perform, some of the main TB diagnostic tests are
listed below in Table 3.1.
 Current diagnostic techniques such as microscopic sputum examination, TB
chest X-ray, skin test and culture are not only time consuming but also have low
efficacy rates. This has led to an extensive research for the development of new
rapid and accurate diagnostic tools and techniques to achieve higher sensitivity and
specificity to control the disease and reduce the death rates.
As mentioned in table, the existing processes of diagnosing tuberculosis are not
only tedious but also take a long time for analysis.

Table 3.1: Main Shortcomings of TB diagnostic tests [17]

13

3.1.4 Radiographic impressions of TB
 Major radiographic manifestations of active pulmonary TB include the
following, some of which are shown in Figure 3.3:

a) Air space consolidation: lobar opacity, often reported as pneumonia or
pneumonitis.

b) Miliary pattern: Fine granular sandy or seed-like appearance throughout the
entirety of both lungs, reported as diffuse bilateral infiltrates, sometimes
(correctly) referred to as micronodular .

c) Cavity formation: a finding with a detectible radio-dense rim, which may be
continuous or discontinuous, is differentiated from a mass as it has some
central complete or relative radiolucency.

d) Bronchiectasis or enlargement of airways can appear as tubular rings or
cylinders of irregular diameter extending radially from the lung hila, with or
without central radiolucency. [19]

Figure 3.3: Example CXRs with manifestations of TB. CXR A and C in have

infiltrates in both lungs. CXR B is a good example of pleural TB, which is
indicated by the abnormal shape of the costophrenic angle of the right lung.

 In addition to these findings of active disease, classic features of TB exposure
include calcified granulomata and apical pleural thickening.

3.2 Artificial Intelligence in Medicine
 The term “Artificial Intelligence” (AI) was coined by John McCarthy [20]. The
word “AI,” was used for the first time in a workshop organized by McCarty, at
Dartmouth College [21]. AI is an area of computer science. It helps in the
development of computers that can mimic the human-like thought processing,

14

reasoning and self-correction ability [22]. The role of computer technologies is
now increasing in the diagnostic procedures. Artificial intelligence (AI) algorithms
assist in medical field for diagnosing the diseases through clinical signs and
symptoms as well as radiological images of the patient. And it can be implemented
for the diagnosis of TB. The term Artificial Intelligence [AI] is used for systems
which execute certain tasks that would otherwise require human intervention.
Tasks such as decision making, visual perception, speech recognition and
translation of languages can be performed using AI systems. AI can be defined as,
network that replicates the structure and function of the human intelligence.

3.2.1 Artificial Neural Network
 Artificial Neural network is one such AI tool that has been extensively studied in
the field of diagnosis of various diseases. Dr. Robert H. Nielsen, inventor of first
neurocomputer, has defined a neural network as [23]: “… a computing system
made up of a number of simple, highly interconnected processing elements, which
process information by their dynamic state response to external inputs.” An
Artificial neural network (ANN) draws inspiration from our brain or the biological
neural networking system [24].
 A neural network is formed by a series of “neurons” (or “nodes”) that are
organized in layers. Each neuron in a layer is connected with each neuron in the
next layer through a weighted connection. The value of the weight ݓ indicates the
strength of the connection between the ݅௧ neuron in a layer and the ௧݆ neuron in
the next one. The structure of a neural network is formed by an “input” layer, one
or more “hidden” layers, and the “output” layer. The number of neurons in a layer
and the number of layers depends strongly on the complexity of the system
studied. Therefore, the optimal network architecture must be determined. The
general scheme of a typical three-layered ANN architecture is given in Figure 3.4
The neurons in the input layer receive the data and transfer them to neurons in the
first hidden layer through the weighted links. Here, the data are mathematically
processed and the result is transferred to the neurons in the next layer. Ultimately,
the neurons in the last layer provide the network’s output [25]. The ݆௧ neuron in a
hidden layer processes the incoming data () by: (i) Calculating the weighted sum
and adding a “bias” term (ߐ) according to Eq. 1:

	ݐ݁݊ = ∑ x	ݔ
ୀଵ ݆݅ݓ + ݆	ߐ (j=1, 2, 3,…) (1)

15

(ii) Transforming the ݊݁ݐ	 through a suitable mathematical “transfer function”, and
(iii) Transferring the result to neurons in the next layer. Various transfer functions
are available; however, the most commonly used is the sigmoid one:

 F(x) =		 ଵ
ଵା	షೣ

 (2)

Figure 3.4: General structure of a neural network with two hidden layers. The ݓ is

the weight of the connection between the ݅௧ and the ݆௧ node

3.3 Convolutional Neural Network
 Convolutional neural network (CNN), a class of artificial neural networks that
has become dominant in various computer vision tasks, is attracting interest across
a variety of domains, including radiology. CNN is designed to automatically and
adaptively learn spatial hierarchies of features through back propagation by using
multiple building blocks, such as convolution layers, pooling layers, and fully
connected layers.

3.3.1 Building Blocks of CNN Architecture
 The CNN architecture includes several building blocks, such as convolution
layers, pooling layers, and fully connected layers. A typical architecture consists of
repetitions of a stack of several convolution layers and a pooling layer, followed by
one or more fully connected layers. The step where input data are transformed into
output through these layers is called forward propagation (Figure 3.5). Although

16

convolution and pooling operations described in this section are for 2D-CNN,
similar operations can also be performed for three-dimensional (3D)-CNN.

Figure 3.5: An overview of a convolutional neural network (CNN) architecture and

the training process.
Convolution layer
 A convolution layer is a fundamental component of the CNN architecture that
performs feature extraction, which typically Convolution, Convolution is a
specialized type of linear operation used for feature extraction, where a small array
of numbers, called a kernel, is applied across the input, which is an array of
numbers, called a tensor. An element-wise product between each element of the
kernel and the input tensor is calculated at each location of the tensor and summed
to obtain the output value in the corresponding position of the output tensor, called
a feature map (Figure 3.6,a–c). This procedure is repeated applying multiple
kernels to form an arbitrary number of feature maps. Also, each feature map can be
formulated with respect to several input maps. This can be mathematically written
as

∑) = f	ݕ ିଵ⋲ேೕݕ xܯ
 + ܽ

) (3)

 Where ݕ	 depicts the ݆௧ output feature of the ݈௧ layer, f (.) is a nonlinear
function, ܰ is the input map selection, yl−1i refer to the ௧݆ input map of ݈ − 1௧

17

layer, ܯ
 is the kernel for the input i and output map M in the ݈௧ layer, and ܽ

 is
the addictive bias associated with the ݆௧ map output[7].
 The key feature of a convolution operation is weight sharing: kernels are shared
across all the image positions. Weight sharing creates the following characteristics
of convolution operations: (1) letting the local feature patterns extracted by kernels
translation b invariant as kernels travel across all the image positions and detect
learned local patterns, (2) learning spatial hierarchies of feature patterns by
downsampling in conjunction with a pooling operation, resulting in capturing an
increasingly larger field of view, and (3) increasing model efficiency by reducing
the number of parameters to learn in comparison with fully connected neural
networks.

Figure 3.6, a–c: An example of convolution operation with a kernel size of 3 × 3.

Nonlinear Activation Function
 The outputs of a linear operation such as convolution are then passed through a
nonlinear activation function. Although smooth nonlinear functions, such as
sigmoid or hyperbolic tangent (tanh) function, were used previously because they
are mathematical representations of a biological neuron behavior, the most
common nonlinear activation function used presently is the rectified linear unit
(ReLU), which simply computes the function : f(x) = max(0, x) (Figure 3.7) [26,
27, 28–30].
Pooling layer
 A pooling layer provides a typical downsampling operation which reduces the
in-plane dimensionality of the feature maps in order to introduce a translation
invariance to small shifts and distortions, and decrease the number of subsequent

18

learnable parameters. It is of note that there is no learnable parameter in any of the
pooling layers, whereas filter size, stride, and padding are hyperparameters in
pooling operations, similar to convolution operations.

Figure 3.7: Activation functions commonly applied to neural networks: a rectified

linear unit (ReLU), b sigmoid, and c hyperbolic tangent (tanh)

a) Max pooling
 The most popular form of pooling operation is max pooling, which extracts
patches from the input feature maps, outputs the maximum value in each patch,
and discards all the other values (Figure 3.7). A max pooling with a filter of size 2
× 2 with a stride of 2 is commonly used in practice. This downsamples the in-plane
dimension of feature maps by a factor of 2. Unlike height and width, the depth
dimension of feature maps remains unchanged.
The downsampling of MaxPooling is formally written as:

)= f	ݕ ܽ
down(ݕିଵ ܯ	−

)+	 ܽ) (4)

 Where a୨୪ represent the multiplicative bias of every feature output map j that scale
the output back to its initial range, down (.) can be substituted for either avg (.) or
max (.) over an n × n window effectively scaling the input map by n times in
every dimension.
Global average pooling, another pooling operation worth noting is a global average
pooling [31].

b) A global average pooling
 Performs an extreme type of downsampling, where a feature map with size of
height × width is downsampled into a 1 × 1 array by simply taking the average of
all the elements in each feature map, whereas the depth of feature maps is retained.

19

This operation is typically applied only once before the fully connected layers. The
advantages of applying global average pooling are as follows: (1) reduces the
number of learnable parameters and (2) enables the CNN to accept inputs of
variable size.

Figure 3.8: An example of max pooling operation with a filter size of 2 × 2.

Fully Connected Layer
 The output feature maps of the final convolution or pooling layer is typically
flattened, i.e., transformed into a one-dimensional (1D) array of numbers (or
vector), and connected to one or more fully connected layers, also known as dense
layers, in which every input is connected to every output by a learnable weight.
Once the features extracted by the convolution layers and downsampled by the
pooling layers are created, they are mapped by a subset of fully connected layers to
the final outputs of the network, such as the probabilities for each class in
classification tasks. The final fully connected layer typically has the same number
of output nodes as the number of classes. Each fully connected layer is followed by
a nonlinear function, such as ReLU.

3.3.2 Training a Network
 It is a process of finding kernels in convolution layers and weights in fully
connected layers which minimize differences between output predictions and given
ground truth labels on a training dataset. Various training algorithms are available.
However, the most commonly used is back propagation; Backpropagation
algorithm is the method commonly used for training neural networks where loss
function and gradient descent optimization algorithm play essential roles.

20

It is requires the use of two training parameters:
(i) Learning rate.
(ii) Momentum.

 Usually, high values of such parameters lead to unstable learning, and therefore
poor generalization ability of the network. The optimal values of the training
parameters depend upon the complexity of the studied system. In general, the value
of momentum is lower than that of learning rate. In addition, the sum of their
values should be approximately equal to one. [25]
 A model performance under particular kernels and weights is calculated by a
loss function through forward propagation on a training dataset, and learnable
parameters, namely kernels and weights are updated according to the loss value
through an optimization algorithm called backpropagation and gradient descent,
among others (Figure 3.5).
Loss Function
 A loss function, also referred to as a cost function, measures the compatibility
between output predictions of the network through forward propagation and given
ground truth labels. Commonly used loss function for multiclass classification is
cross entropy, whereas mean squared error is typically applied to regression to
continuous values. A type of loss function is one of the hyperparameters and needs
to be determined according to the given tasks.
Overfitting
 It is refers to a situation where a model learns statistical regularities specific to
the training set, i.e., ends up memorizing the irrelevant noise instead of learning the
signal, and, therefore, performs less well on a subsequent new dataset. This is one
of the main challenges in machine learning, as an overfitted model is not
generalizable to never-seen-before data. In that sense, a test set plays a pivotal role
in the proper performance evaluation of machine learning models, as discussed in
the previous section. A model trained on a larger dataset typically generalizes
better, though that is not always attainable in medical imaging. The other solutions
include regularization with dropout or weight decay, batch normalization, and data
augmentation, as well as reducing architectural complexity. Dropout is a recently
introduced regularization technique where randomly selected activations are set to
0 during the training, so that the model becomes less sensitive to specific weights
in the network [32].

21

Dropout
 It is a regularization method that approximates training a large number of neural
networks with different architectures in parallel.
During training, some number of layer outputs are randomly ignored or “dropped
out.” This has the effect of making the layer look-like and be treated-like a layer
with a different number of nodes and connectivity to the prior layer. In effect, each
update to a layer during training is performed with a different “view” of the
configured layer.

3.4 K-fold Cross Validation
 A more expensive and less naïve approach would be to perform K-fold Cross
Validation; there is a parameter ‘k’. This parameter decides how many folds the
dataset is going to be divided. Every fold gets chance to appear in the training set
(k-1) times, which in turn ensures that every observation in the dataset appears in
the dataset, thus enabling the model to learn the underlying data distribution better.
 The value of ‘k’ used is generally between 5 or 10. The value of ‘k’ should not
be too low or too high. If the value of ‘k’ is too low (say k = 2), we will have a
highly biased model. This case is similar to that of splitting the dataset into training
and validation sets, hence the bias will be high and variance low. If the value of ‘k’
is large (say k = n (the number of observations)), then this approach is called Leave
One out CV (LOOCV).). LOOCV means K=N, where N is the number of samples
in dataset. As the number of models trained is maximized, the precision of the
model performance average is maximized too, but so is the cost of training due to
the sheer amount of models that must be trained In this case, bias will be low but
the variance will be high and the model will overfit, resulting in the model to fail in
generalizing over the test set.
 In a binary classification problem, a look at Stratified Cross Validation might be
taken . It extends K-fold Cross Validation by ensuring an equal distribution of the
target classes over the splits. This ensures that classification problem is balanced. It
doesn’t work for multiclass classification due to the way that samples are
distributed.
 The dataset is split into K partitions of equal size. K–1 are used for training,
while one is used for testing. This process is repeated K times, with a different
partition used for testing each time.

22

3.5 Transfer Learning
 In fact, transfer learning is not a concept which just cropped up in the 2010s.
The Neural Information Processing Systems (NIPS) 1995 workshop learning to
Learn: Knowledge Consolidation and Transfer in Inductive Systems are believed
to have provided the initial motivation for research in this field. Since then, terms
such as Learning to Learn, Knowledge Consolidation, and Inductive Transfer have
been used interchangeably with transfer learning. Invariably, different researchers
and academic texts provide definitions from different contexts [33]. In their
famous book, Deep Learning, Goodfellow et al refer to transfer learning in the
context of generalization.
Their definition is as follows:
“Situation where what has been learned in one setting is exploited to improve
generalization in another setting.”
 Thus, the key motivation, especially considering the context of deep learning is
the fact that most models which solve complex problems need a whole lot of data,
and getting vast amounts of labeled data for supervised models can be really
difficult, considering the time and effort it takes to label data points.
 However, getting such a dataset for every domain is tough. Besides, most deep
learning models are very specialized to a particular domain or even a specific task.
While these might be state-of-the-art models, with really high accuracy and beating
all benchmarks, it would be only on very specific datasets and end up suffering a
significant loss in performance when used in a new task which might still be
similar to the one it was trained on.
 This forms the motivation for transfer learning, which goes beyond specific
tasks and domains, and tries to see how to leverage knowledge from pre-trained
models and use it to solve new problems.
Understanding Transfer Learning
 The first thing to remember here is that, transfer learning, is not a new concept
which is very specific to deep learning. There is a stark difference between the
traditional approach of building and training machine learning models, and using a
methodology following transfer learning principles.
 Traditional learning is isolated and occurs purely based on specific tasks, datasets
and training separate isolated models on them. No knowledge is retained which can
be transferred from one model to another. In transfer learning, knowledge

23

(features, weights etc) can be leveraged from previously trained models for
training newer models and even tackle problems like having less data for the newer
task.
 Transfer learning enables to utilize knowledge from previously learned tasks and
apply them to newer, related ones. If there significantly more data for task T1,
learning must be utilized, and generalized this knowledge (features, weights) for
task T2 (which has significantly less data). In the case of problems in the computer
vision domain, certain low-level features, such as edges, shapes, corners and
intensity, can be shared across tasks, and thus enable knowledge transfer among
tasks, Also , knowledge from an existing task acts as an additional input when
learning a new target task[34].

Figure 3.9: Traditional Learning vs Transfer Learning

 Generally, Transfer learning is a common and effective strategy to train a
network on a small dataset, where a network is pretrained on an extremely large
dataset, such as ImageNet, which contains 1.4 million images with 1000 classes,
then reused and applied to the given task of interest. The underlying assumption of
transfer learning is that generic features learned on a large enough dataset can be
shared among seemingly disparate datasets. This portability of learned generic
features is a unique advantage of deep learning that makes itself useful in various
domain tasks with small datasets. At present, many models pretrained on the

24

ImageNet challenge dataset are open to the public and readily accessible, along
with their learned kernels and weights, such as AlexNet [35], VGG [36], ResNet
[37], Inception [38], and DenseNet [39]. In practice, there are two ways to utilize a
pretrained network: fixed feature extraction and fine-tuning (Figure 3.10).
In general, there are two types of transfer learning in the context of deep learning:

1. Transfer learning via feature extraction.
2. Transfer learning via fine-tuning.

Figure 3.10: Transfer learning and its common ways used in pretrained network

 A fixed feature extraction method is a process to remove fully connected layers
from a network pretrained on ImageNet and while maintaining the remaining
network, which consists of a series of convolution and pooling layers, referred to
as the convolutional base, as a fixed feature extractor. In this scenario, any
machine learning classifier, such as random forests and support vector machines,
as well as the usual fully connected layers in CNNs, can be added on top of the
fixed feature extractor, resulting in training limited to the added classifier on a
given dataset of interest.

 A fine-tuning method, is to not only replace fully connected layers of the
pretrained model with a new set of fully connected layers to retrain on a given
dataset, but to fine-tune all or part of the kernels in the pretrained convolutional

25

base by means of backpropagation. All the layers in the convolutional base can be
fine-tuned or, alternatively, some earlier layers can be fixed while fine-tuning the
rest of the deeper layers. This is motivated by the observation that the early-layer
features appear more generic, including features such as edges applicable to a
variety of datasets and tasks, whereas later features progressively become more
specific to a particular dataset or task [40, 41].

3.6 The Pretrained VGG
 VGG is an acronym for the Visual Geometric Group from Oxford University
and VGG-16 is a network with 16 layers proposed by the Visual Geometric Group.
These 16 layers contain the trainable parameters and there are other layers also like
the Max pool layer but those do not contain any trainable parameters. This
architecture was the 1st runner up of the Visual Recognition Challenge of 2014
i.e. ILSVRC-2014 and was developed by Simonyan and Zisserman.
 The VGG research group released a series of the convolution network model
starting from VGG11 to VGG19. The main intention of the VGG group on depth
was to understand how the depth of convolutional networks affects the accuracy of
the models of large-scale image classification and recognition. The minimum
VGG11 has 8 convolutional layers and 3 fully connected layers as compared to the
maximum VGG19 which has 16 convolutional layers and the 3 fully connected
layers. The different variations of VGGs are exactly the same in the last three fully
connected layers. The overall structure includes 5 sets of convolutional layers,
followed by a MaxPool. But the difference is that as the depth increases VGG11 to
VGG19 more and more cascaded convolutional layers are added in the five sets of
convolutional layers.
 The below-shown table (Table3.2) is the overall network configuration of
different models created by VGG that uses the same principle but only varies in
depth [42].

26

Table 3.2: VGG ConvNet configuration [42].

Features of VGG-16 network

1. Input Layer: It accepts color images as an input with the size 224 x 224 and 3

channels i.e. Red, Green, and Blue.

2. Convolution Layer: The images pass through a stack of convolution layers

where every convolution filter has a very small receptive field of 3 x 3 and

stride of 1. Every convolution kernel uses row and column padding so that the

size of input as well as the output feature maps remains the same or in other

words, the resolution after the convolution is performed remains the same.

3. Max pooling: It is performed over a max-pool window of size 2 x 2 with stride

equals to 2, which means here max pool windows are non-overlapping

windows.

27

4. Not every convolution layer is followed by a max pool layer as at some places a

convolution layer is following another convolution layer without the max-pool

layer in between.

5. The first two fully connected layers have 4096 channels each and the third fully

connected layer which is also the output layer have 1000 channels, one for each

category of images in the imagenet database.

6. The hidden layers have ReLU as their activation function.

28

Chapter Four

Proposed Model

4.1 Overview of the proposed method

Figure 4.1: Block diagram of the proposed method

 The process block diagram for the proposed method is shown above in Figure
4.1. chest X-rays images used are taken from Shenzhen dataset; Firstly images are
resized, converted to gray scale, and then they are divided into training, validation
and testing data, images are flowed through the transfer learned pre-trained model
(Figure 4.3), to be classified into normal and abnormal TB, finally the accuracy
and performance of classification is analyzed.

29

4.2 Dataset Description
 The dataset we used is called Shenzhen dataset. The Shenzhen dataset was
collected in collaboration with Shenzhen No.3 People’s Hospital, Guangdong
Medical College, Shenzhen, China. The chest X-rays are from outpatient clinics
and were captured as part of the daily hospital routine within a 1-month period,
mostly in September 2012, using a Philips DR Digital Diagnostic system.
The set contains 662 frontal chest X-rays, of which:
326 are normal cases.
336 are cases with manifestations of TB,
 Including pediatric X-rays AP, the X-rays are provided in PNG format. Their
size can vary but is approximately 3K × 3K pixels. All image file names follow the
same template: CHNCXR_####_X.png, where #### represents a 4-digit numerical
identifier, and X is either 0 for a normal X-ray or 1 for an abnormal X-ray. The
clinical reading for each X-ray is saved in a text file following the same format,
except that the ending “.png” is replaced with “.txt”. Each reading contains the
patient’s age, gender, and abnormality seen in the lung, if any.
Shenzhen dataset free available on internet and it is downloaded from https:
//lhncbc.nlm.nih.gov/LHC-publications/pubs/TuberculosisChestXrayImageData
Sets .html
4.3 Image preprocessing
 Images of Shenzhen dataset were resized to 96 x 96 and it were converted into
gray scale image then it were loaded into python environment using CV2 libraries ,
each image defined by x and y where x is an array of image itself while y is an
indication of its label (either 0 or 1) .

Figure 4.2: An example of preprocessed image from image dataset

4.4 Dataset Splitting
 As dataset classified by CNN need to be trained, validated and tested, chest x-ray
images in dataset will be split into three categories by the percent 70%, 10% and
20 % respectively as follows:

30

464 chest X-rays images for training.
66 chest X-rays images for validation.
132 chest X-rays images for testing.
Training and validation data are combined since cross validation is applied.

Figure 4.3: Dataset splitting

4.5 Proposed Pre-trained Model

Figure 4.4: The proposed pre-trained model

Dataset
 Dataset used for pre-training of vgg16 is ImageNet , ImageNet is a dataset of
over 15 million labeled high-resolution images belonging to roughly 22,000
categories. The images were collected from the web and labeled by human labelers
using Amazon’s Mechanical Turk crowd-sourcing tool. Starting in 2010, as part of
the Pascal Visual Object Challenge, an annual competition called the ImageNet
Large-Scale Visual Recognition Challenge (ILSVRC) has been held. ILSVRC uses
a subset of ImageNet with roughly 1000 images in each of 1000 categories. In all,
there are roughly 1.2 million training images, 50,000 validation images, and
150,000 testing images. ImageNet consists of variable-resolution images.

31

Therefore, the images have been down-sampled to a fixed resolution of 256×256.
Given a rectangular image, the image is rescaled and cropped out the central
256×256 patch from the resulting image.

The Architecture

Figure 4.5: VGG16 Architecture

 Three Fully-Connected (FC) layers follow a stack of convolutional layers (which
has a different depth in different architectures): the first two have 4096 channels
each, the third performs 1000-way ILSVRC classification and thus contains 1000
channels (one for each class). The final layer is the soft-max layer. The
configuration of the fully connected layers is the same in all networks.
 All hidden layers are equipped with the rectification (ReLU) non-linearity. It is
also noted that none of the networks (except for one) contain Local Response
Normalisation (LRN), such normalization does not improve the performance on
the ILSVRC dataset, but leads to increased memory consumption and computation
time.

4.6 Proposed VGG16 implementation
 As mentioned above VGG16 have 13 conv layers and 5 pooling layers. Under
normal circumstances the model usually has 3 fully connected dense layers
followed by a soft-max layer (Figure 4.2). Soft-max layer is used as the final layer
for multiclass prediction. It applies exponential function on all the input coming
from the ConvLayer to obtain the final prediction. The results are normalized by
dividing the output by the sum of all exponentials.
 However, in the proposed model this layer is modified to use sigmoid as there
are only had two outputs. In this study weights from ImageNet are used which in
turn switches off the dense layers as the weights are provided from ImageNet by

32

default. ImageNet [43] is a library containing large scale ontology of images. It is
built on the structure provided by WordNet and contains more than 14 million
images that could be used for classification purposes. This library is provided by
Keras. Activation functions are present between each Conv layer which defines the
output of a neuron given set of inputs. Each Conv layer in VGG16 has Rectified
Linear Unit activation (ReLU).
 ReLu is sometimes chosen over sigmoid for activation as it trains much faster.in
this model there is no normalization done in any of the layers as normalization
does not have any significant impact on the accuracy and only manages to increase
processing time. The Conv layers are labeled conv2d. The image starts with 96 ×
96 with 3 dimensions RGB which then undergoes convolution in 2 hidden layers
having 64 weights. Max-pooling reduces sample size to 48 from 96. This is
followed by two other conv layers having 128 weights. The weights or filters keep
increasing all the way up to 512. Here there are 4 max-pooling layers in between
the conv layers. The total numbers of parameters obtained are 14,714,688. Since
there is no normalization, all parameters are used for training the model.

Figure 4.6: Proposed VGG16 implementation

Calculations involved in getting output size from each layer
The formula involved in calculating the output size from each convolution layer is
given as- [(N-f+ 2P)/S] + 1
Where
N = Input size , f = Filter size
S = Strides , P= padding
Input Layer:

 The size of the input image is 96 x 96.

33

Convolution Layer - 1:
Input size = N = 96
Filter size = f = 3 x 3
No. of filters = 64
Strides = S = 1
Padding = P = 1
Output feature map size = [(96–3+2)/1] + 1 = 96
Output with channels = 96 x 96 x 64

Convolution Layer - 2:
Input size = N = 96
Filter size = f = 3 x 3
No. of filters = 64
Strides = S = 1
Padding = P = 1
Output feature map size = [(96–3+2)/1] + 1 = 96
Output with channels = 96 x 96 x 64

Max-Pooling Layer - 1:
Input size = N = 224
Filter size = f = 2 x 2
Strides = S = 2
Padding = P = 0
Output feature map size = [(96–2+0)/2] + 1 = 48
Output with channels = 48x 48 x 64

Convolution Layer - 3:
Input size = N = 48
Filter size = f = 3 x 3
No. of filters = 128
Strides = S = 1
Padding = P = 1
Output feature map size = [(48–3+2)/1] + 1 = 48
Output with channels = 48x 48 x 64

Convolution Layer - 4:
Input size = N = 48
Filter size = f = 3 x 3
No. of filters = 128

34

Strides = S = 1
Padding = P = 1
Output feature map size = [(48–3+2)/1] + 1 = 48
Output with channels = 48 x 48 x 128

Max-Pooling Layer - 2:
Input size = N = 48
Filter size = f = 2 x 2
Strides = S = 2
Padding = P = 0
Output feature map size = [(48–2+0)/2] + 1 = 24
Output with channels = 24 x 24 x 128

Convolution Layer - 5:
Input size = N = 24
Filter size = f = 3 x 3
No. of filters = 256
Strides = S = 1
Padding = P = 1
Output feature map size = [(24–3+2)/1] + 1 = 24
Output with channels = 24 x 24 x 128

Convolution Layer - 6:
Input size = N = 24
Filter size = f = 3 x 3
No. of filters = 256
Strides = S = 1
Padding = P = 1
Output feature map size = [(24–3+2)/1] + 1 = 24
Output with channels = 24 x 24 x 128

Convolution Layer - 7:
Input size = N = 24
Filter size = f = 3 x 3
No. of filters = 256
Strides = S = 1
Padding = P = 1
Output feature map size = [(24–3+2)/1] + 1 = 24
Output with channels = 24 x 24 x 256

35

Max-Pooling Layer - 3:
Input size = N = 24
Filter size = f = 2 x 2
Strides = S = 2
Padding = P = 0
Output feature map size = [(24–2+0)/2] + 1 = 12
Output with channels = 12 x 12 x 256

Similar calculations will be performed for the rest of the network.

 The results obtained from VGG16 are fitted to another separate conv layer
obtained from conv-2d in Keras. This layer uses a sigmoid as activation function.
Since there are only two outputs in our dataset, sigmoid is the perfect activation
function where values only oscillate between −1 and 1 which reflect the class
labels on shenzhen dataset. A positive value indicates that the patient suffers from
tuberculosis while a negative value indicates that the person does not. This is
followed by the application of Adaptive Moment Estimation (Adam) optimization
to update network weights of the training and also reduce overfitting. Adam
optimizes the results faster than other stochastic gradient descent optimizers
because it is capable of calculating learning rate of each parameter in the model
and also stores the momentum changes. Learning rate and decay of Adam
optimizer were 0.0001, 1e-6 respectively.

4.7 The typical transfer-learning workflow
This leads to how a typical transfer learning workflow can be implemented in
keras:

1. A vgg16 base model is instantiated and pre-trained weights are loaded into
it.

2. All layers are frozen in the base model by setting trainable = False.
3. A new model on top of the output of one (or several) layers are Created from

the base model.
4. New model is trained on new dataset (Shenzhen dataset).

 On the process of training loss function used is Binary Cross-Entropy; it is the
default loss function to use for binary classification problems. It is intended for use
with binary classification where the target values are in the set {0, 1}.

36

 Mathematically, it is the preferred loss function under the inference framework
of maximum likelihood. It is the loss function to be evaluated first and only
changed if there is a good reason. Cross-entropy will calculate a score that
summarizes the average difference between the actual and predicted probability
distributions for predicting class 1. The score is minimized and a perfect cross-
entropy value is 0. Cross-entropy can be specified as the loss function in Keras by
specifying ‘binary_crossentropy‘ when compiling the model.
For validation, k folds cross validation were used, k=5 were used to perform cross
validation by using the algorithm of k-Fold technique:

1. A number of folds – k is picked. Which is 5 in the proposed.
2. The dataset is split into 5 equal (if possible) parts (they are called folds)
3. k – 1 folds will be chosen which will be the training set. The remaining fold

will be the validation set.
4. The model is trained on the training set. On each iteration of cross-

validation, a new model must be trained independently of the model trained
on the previous iteration

5. Validation will be performed on the validation set.
6. The result of the validation is saved.
7. Steps 3 – 6 are repeated 5 times. Each time use the remaining fold as the test

set. In the end, the model should have validated on every fold.
8. The final score will be the average of the results saved on step 6.

Figure 4.7: 5 Folds cross validation

37

4.8 Material and Software
 The proposed model were executed on windows 10 operating system, with 500
GB hard disk, 4GB RAM, its developed in Python version: 3.6.12 64-bit, Spyder
version: 4.1.5 was used as an integrated development environment (IDE), libraries
used in this model were:

1. Keras.
2. Os.
3. Numpy.
4. Pandas.
5. Random.
6. Cv2.
7. Matplotlib.
8. Scikit-learn.

These libraries were downloaded by anaconda navigator and anaconda prompt.

*Note one of the limitations in application of proposed model is hardware
specification

38

Chapter Five

Results and Discussion

5. 1 Performance Evaluation of Classification
A true positive (TP) is one that detects the condition when the condition is
present, label which was predicted positive and is actually positive.
A true negative (TN) result is one that does not detect the condition when the
condition is absent, label which was predicted negative and is actually negative.
A false positive (FP) result is one that detects the condition when the condition is
absent, Label which was predicted as positive but is actually negative.
A false negative (FN) result is one that does not detect the condition when the
condition is present, labels which was predicted as negative, but is actually
positive.
Sensitivity, specificity and accuracy are described in terms of TP, TN, FN and
FP:
Sensitivity (%)(Recall) (True positive rate) It is the ‘Completeness’, ability of the
model to identify all relevant instances measures the ability of a test to detect the
condition when the condition is present,. Thus,

Sensitivity =

(ା)
 x 100

Specificity (%) (True negative rate) measures the ability of a test to correctly
exclude the condition (not detect the condition) when the condition is absent. Thus,

Specificity =

(ା)
 x100

Accuracy (%): is the most intuitive performance measure and it is simply a ratio
of correctly predicted observation to the total observations.

Accuracy =
(ା)

(ା)ା(ା)
 X100

Precision: It is the ‘Exactness’, ability of the model to return only relevant
instances ,Precision is the ratio of correctly predicted positive observations to the
total predicted positive observations.

39

Precision =

(ା)
 x100

F1-Score: F1 Score is the weighted average of Precision and Recall. Used to
indicate a balance between Precision & Recall providing each equal weightage, it
ranges from 0 to 1. F1 Score reaches its best value at 1 (perfect precision & recall)
and worst at 0.

F1-Score =
ଶ∗(୰ୣୡ୧ୱ୧୭୬	∗	ୗୣ୬ୱ୧୲୧୴୧୲୷)	

(୰ୣୡ୧ୱ୧୭୬	 ା	ୗୣ୬ୱ୧୲୧୴୧୲୷)
 x100

Confusion Matrix: Confusion matrix is a performance measurement technique for
machine learning classification, it is a kind of table which helps to know the
performance of the classification model on a set of test data for that true values are
known, in the proposed model confusion matrix is 2x2 since classification is
binary classification.
AUC of ROC curve: Another metric used is the AUC - The area under the
Receiver Operating Characteristic Curve (ROC) rate). A Receiver Operating
Characteristic (ROC) curve plots the true positive rate versus the false positive
rate.
 Area under the ROC curve (AUC) is used to measure performance of proposed
classifier model. A larger AUC value generally means a larger sensitivity and/or
specificity for the same operating point The ROC curves show different possible
operating points depending on the confidence threshold set for the classifier. The
Y-axis indicates the sensitivity (or recall) of a system, and the X-axis indicates the
corresponding false positive rate, which is (1 – specificity).

5.2 Performance Evaluation of image Classification without cross
validation

40

Figure 5.1: Plot shows accuracy for training and validation for 10 epochs without
cross validation

Figure 5.2: Plot shows loss for training and validation for 10 epochs without cross

validation

41

Figure 5.3: Confusion matrix for image classification without cross validation (10
epochs)

From confusion matrix, TP=61, TN=55, FP=10, FN=6.

Sensitivity (Recall) =

(ା)
 x 100 = ଵ

(ଵା)
 x 100= 91.04%

Specificity =

(ା)
 x100 = ହହ

(ହହାଵ)
 x 100 =84.61%

Accuracy =	 (ܶܲ+ܶܰ)
x100 = (ଵାହହ) (ܰܶ+ܲܨ)+(ܰܨ+ܲܶ)

(ଵା)ା(ଵାହହ)
 x 100

 = 87.87%

Precision =

(ା)
 x100 = ଵ

(ଵା ଵ)
 x100 = 85.91%

F1-Score =
ଶ∗(୰ୣୡ୧ୱ୧୭୬	∗	ୗୣ୬ୱ୧୲୧୴୧୲୷)	

(୰ୣୡ୧ୱ୧୭୬	 ା	ୗୣ୬ୱ୧୲୧୴୧୲୷)
 =

ଶ∗(.଼ହଽଵ	∗	.ଽଵସ)	
(.଼ହଽଵ	 ା	.ଽଵସ)

 = 0.88

Figure 5.4: AUC of ROC for image classification without cross validation (10

epochs)

42

Figure 5.5: Classification report for image classification without cross validation

(10 epochs)

Figure 5.6: Plot shows accuracy for training and validation for 50 epochs without

use of cross validation

Figure 5.7: plot shows loss for training and validation for 50 epochs without use of

cross validation

43

Figure 5.8: Confusion matrix for image classification without cross validation (50

epochs)
From confusion matrix, TP=63, TN=59, FP=6, FN=4.

Sensitivity (Recall) =

(ା)
 x 100 = ଷ

(ଷା ସ)
 x 100= 94.02%

Specificity =

(ା)
 x100 = ହଽ

(ହଽା)
 x 100 =90.76%

Accuracy =	 (ܶܲ+ܶܰ)
x100 = (ଷାହଽ) (ܰܶ+ܲܨ)+(ܰܨ+ܲܶ)

(ଷାସ)ା(ାହଽ)
 x 100

 = 92.42%

Precision =

(ା)
 x100 = ଷ

(ଷା)
 x100 = 91.30%

F1-Score =
ଶ∗(୰ୣୡ୧ୱ୧୭୬	∗	ୗୣ୬ୱ୧୲୧୴୧୲୷)	

(୰ୣୡ୧ୱ୧୭୬	 ା	ୗୣ୬ୱ୧୲୧୴୧୲୷)
 =

ଶ∗(.ଽଵଷ	∗	.ଽସଶ)	
(.ଽଵଷ	 ା	.ଽସଶ)

 = 0.9264 ≈ 0.93

44

Figure 5.9: AUC of ROC for image classification without cross validation (50

epochs)

Figure 5.10: Classification report for image classification without cross validation

(50 epochs)

45

5.3 Performance Evaluation of image Classification with 5 folds
cross validation

Figure 5.11: Plot shows accuracy for training and validation for last 10 epochs with

use of 5 fold cross validation

Figure 5.12: Plot shows loss for training and validation for last 10 epochs with use

of 5 fold cross validation

46

Figure 5.13: Confusion matrix of image classification for 5 folds cross validation

From confusion matrix, TP=60, TN=62, FP=3, FN=7.

Sensitivity (Recall) =

(ା)
 x 100 =

(ା)
 x 100= 89.55%

Specificity =

(ା)
 x100 = ଶ

(ଶାଷ)
 x 100 =95.38%

Accuracy =	 (ܶܲ+ܶܰ)
x100 = (ାଶ) (ܰܶ+ܲܨ)+(ܰܨ+ܲܶ)

(ା)ା(ଷାଶ)
 x 100

 = 92.42%

Precision =

(ା)
 x100 =

(ା ସ)
 x100 = 95.23%

F1-Score =
ଶ∗(୰ୣୡ୧ୱ୧୭୬	∗	ୗୣ୬ୱ୧୲୧୴୧୲୷)	

(୰ୣୡ୧ୱ୧୭୬	 ା	ୗୣ୬ୱ୧୲୧୴୧୲୷)
 =

ଶ∗(.ଽହଶଷ	∗	.଼ଽହହ)	
(.ଽହଶଷ	 ା	.଼ଽହହ)

 = 0.9230

47

Figure 5.14: AUC of ROC for image Classification for 5 folds cross validation

Figure 5.15: Classification reports of image classification for 5 folds cross

validation
 The classification report visualizer displays the precision, recall, F1, and support
scores for the model. All of these parameters are defined above except support
which is the number of actual occurrences of the class in the specified dataset.

Although the proposed model gives the same result for accuracy when using of 50
epochs with or without using of cross validation, it gives better result of sensitivity
and specificity without using of cross validation ; therefor the final results that will
be considered is the results of training the proposed model for 50 epochs without
using of cross validation

48

Table 5.1: Comparison between the proposed model and some of literature
reviews

Authors,
Year

Dataset Features /
Parameter

Method Classification
Accuracy

(%)

Area under
the curve

AUC

Sensitivity
(%)

Specificity
(%)

Hwang et
al,2016

Private data ,
Shenzhen(SH)

and Montgomery
County (MC)

CXR Transfer
learning of
Modified
Alexnet

90
83.7
67.4

0.96
0.926
0.884

- -

Syeda Meraj
et al ,2019

Montgomery
County (MC),

Shenzhen (SH) and
Indiana University

chest X-Ray dataset

CXR VGG-16
VGG-19
ResNet50

GoogLenet

86.74
84.33
81.92
80.72

- -
-
-
-

-
-
-
-

Pasa et al.
2019

Montgomery
County (MC),

Shenzhen (SH) and
Belarus Dataset

CXR Optimized
CNN

79.0 for MC,
84.4 for SH

and 86.2
for combined

0.811 for
MC,

0.9 for SH
and 0.925

for combined

- -

Seelwan
Sathitratanach

eewin et al
,2020

Shenzhen Hospital
Dataset and NIH

ChestX-ray8

CXR CNN - - 72 82

The proposed
model ,2021

Shenzhen (SH)
Dataset

CXR Transfer
Learning

(VGG
16 model)

92.42 0.98 94.02 90.76

 Regarding the Shenzhen dataset the proposed model performed an accuracy
reached to 92% compared to Hwang et al with an accuracy of 83.7% and 84.4%
reached by Pasa et al. and when considering the application of VGG-16 Syeda
Meraj et al suggested an accuracy of 86.74% applied in a combined dataset of
Montgomery County (MC), Shenzhen (SH) and Indiana University chest X-Ray
dataset; and by comparing Seelwan Sathitratanacheewin et al Sensitivity 72% and
specificity 82% the proposed model reached to 94.02% and 90.76%, while The
proposed model AUC was 0.98 compared to 0.96,0.926,0.884, 0.811 for MC, 0.9
for SH and 0.925 for combined mentioned in the table above.

49

Chapter Six

Conclusion and Recommendation

6.1 Conclusion
For decades, tuberculosis, a potentially serious infectious lung disease, continues to
be a leading cause of worldwide death. Proven to be conveniently efficient and
cost-effective, chest X-ray (CXR) has become the preliminary medical imaging
tool for detecting TB. Detection model was proposed for tuberculosis, the proposed
model a transfer learning approach with deep Convolutional Neural Networks, and
it presented a ConvNet model that uses VGG16 for classifying CXR images to
identify patients suffering from TB. Previous research on CXR classification
applied complex models for lung segmentation before training the model. The
proposed model shows that VGG16 can use the raw data to classify the results with
comparable accuracy reached to 92%.

6.2 Recommendation
.
 Recommendation would include running the model in:

1. Hardware with higher specification to enable increasing of input image size,
decrease the proposed model running time and train the proposed model
with dataset having greater number of images.

2. Website application and establishing graphical user interface (GUI) link the
model to CXR images entered by users.

50

References

[1] J. F. Murray, “Mycobacterium tuberculosis and the cause of consumption: from
discovery to the fact,” American journal of respiratory and critical care medicine,
2004.
[2] Syeda Shaizadi Meraj, Razali Yaakob, Azreen Azman, Siti Nuralain Mohd
Rum, Azree Shahrel Ahmad Nazri, Artificial Intelligence in Diagnosing
Tuberculosis: A Review,2019.
[3] S. Hwang, H.-E. Kim, J. Jeong, H.-J. Kim, A novel approach for tuberculosis
screening based on deep convolutional neural networks, in: SPIE Medical Imaging,
International Society for Optics and Photonics, 2016.
[4] Chang Liu, Yu Cao, Marlon Alcantara, Benyuan Liu, Maria Brunette, Jesus
Peinado ,Walter Curioso, TX-CNN: Detecting Tuberculosis In Chest X-Ray
Images Using Convolutional Neural Network,2017.
[5] Yan Xiong, Xiaojun Ba, Ao Hou, Kaiwen Zhang, Longsen Chen, Ting Li
,Automatic detection of mycobacterium tuberculosis using artificial
intelligence,2018.
[6] F. Pasa1, V. Golkov, F. Pfeiffer, D. Cremers & D. Pfeiffer, Efficient Deep
Network Architectures for Fast Chest X-Ray Tuberculosis Screening and
Visualization, 2019.
[7] Mustapha Oloko-Oba and Serestina Viriri, Diagnosing Tuberculosis Using
Deep Convovgflutional Neural Network, 2019.
[8] Ahmed T. Sahlol ,Mohamed Abd Elaziz, Amani Tariq Jamal, Robertas
Damaševiˇcius , and Osama Farouk Hassan ,A Novel Method for Detection of
Tuberculosis in Chest Radiographs Using Artificial Ecosystem-Based Optimisation
of Deep Neural Network Features, 2020.
[9] Seelwan Sathitratanacheewin, Panasun Sunanta, Krit Pongpirul, Deep learning
for automated classification of tuberculosis-related chest X-Ray: dataset
distribution shift limits diagnostic performance generalizability, 2020.
[10] B. Herzog et al , “History of tuberculosis,” Respiration, 1998.
[11] T. M. Daniel, “The history of tuberculosis,” Respiratory medicine, 2006.
[12] S. Grzybowski and E. A. Allen, “Tuberculosis: 2. History of the disease in
Canada,” CMAJ: Canadian Medical Association Journal, 1999.

51

[13] K. Kumar, “Spinal tuberculosis, the natural history of the disease,
classifications, and principles of management with a historical perspective,”
European Journal of Orthopaedic Surgery & Traumatology , 2016.
[14] Attaway, S. (2013). Matlab: A Practical Introduction to Programming and
Problem Solving. Amsterdam: Elsevier, CDC Tuberculosis (TB). Disease:
Symptoms and Risk Factors Features CDC, 2019.

 [15] M. Purohit and T. Mustafa, “Laboratory diagnosis of extrapulmonary
tuberculosis (EPTB) in a resource-constrained setting: state of the art, challenges
and the need,” Journal of clinical and diagnostic research: JCDR, vol. 9, 2015.
[16] L. A. Dalvin and W. M. Smith, “Intraocular Manifestations of Mycobacterium
tuberculosis: A Review of the Literature,” Journal of Clinical Tuberculosis and
Other Mycobacterial Diseases, 2017.
[17] M. Häggström, “Medical gallery of Mikael Häggström 2014.Wikiversity
Journal of Medicine 1, 2014.
[18] Payal Dande, Purva Samant , Acquaintance to Artificial Neural Networks and
use of artificial intelligence as a diagnostic tool for tuberculosis: A review,2017
[19] Daley C, Gotway M, Jasmer R. Radiographic manifestations of tuberculosis.
A Primer for Clinicians. San Francisco, CA: Curry International Tuberculosis
Center, 2009.
[20] P. J. Hayes and L. Morgenstern, “On John McCarthy’s 80th birthday, in honor
of his contributions,” AI Magazine, vol. 28, 2007.
[21] B. G. Buchanan, “A (very) brief history of artificial intelligence,” AI
Magazine, vol. 26, 2005.
[22] J. N. Kok, E. Boers, W. A. Kosters, P. Van der Putten, and M. Poel,
“Artificial intelligence: definition, trends, techniques, and cases,” Artif Intell, vol.
1, 2009.
[23] Artificial intelligence - neural networks, Available at: www.tutorialspoint
.com/artificial_intelligence/artificial_intelligence_neural_networks.html.
[24] Al-Shayea QeetharaKadhim, Artificial neural networks in medical diagnosis.
Int J Comp Sci Appl ,2011.
[25]Alberto López-Rodríguez , Eladia M Peña-Méndez , Petr Vaňhara Masaryk
Josef Havel Masaryk Artificial neural networks in medical diagnosis
Article in Journal of Applied Biomedicine, 2013 .
[26] Er O, Temurtas F, Tanrıkulu A., Tuberculosis Disease Diagnosis Using
Artificial Neural Networks, 2008.
[27] LeCun Y, Bengio Y, Hinton G () Deep learning Nature 521: 436–444, 2015.

52

Krizhevsky A, Sutskever I, Hinton GE, ImageNet classification with deep
convolutional neural networks, 2018.
[28] Nair V, Hinton GE, Rectified linear units improve restricted Boltzmann
machines. In: Proceedings of the 27th International Conference on Machine
Learning, 2010.
[29] Ramachandran P, Zoph B, Le QV ,Searching for activation functions, 2017.
[30] Glorot X, Bordes A, Bengio Y, Deep sparse rectifier neural networks. In:
Proceedings of the 14th International Conference on Artificial Intelligence and
Statistics, 2011.
[31] Lin M, Chen Q, Yan S , Network in network, 2013.
[32] Sinno Jialin Pan and Qiang Yang Fellow IEEE, A Survey on Transfer
Learning, 2011.
[33] W. Dai, Q. Yang, G. Xue, and Y. Yu, “Boosting for transfer learning,” in
Proceedings of the 24th International Conference on Machine Learning, Corvalis,
Oregon, USA, 2007.
[34] Hinton GE, Srivastava N, Krizhevsky A, Sutskever I, Salakhutdinov RR
Improving neural networks by preventing co-adaptation of feature detectors, 2012.
[35] Krizhevsky A, Sutskever I, Hinton GE ImageNet classification with deep
convolutional neural networks, 2012.
[36] Simonyan K, Zisserman A Very deep convolutional networks for large-scale
image recognition, 2015.
[37] He K, Zhang X, Ren S, Sun J Deep residual learning for image recognition.
In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
[38] Szegedy C, Liu W, Jia Y et al, Going deeper with convolutions. In: IEEE
Conference on Computer Vision and Pattern Recognition, 2015.
[39] Huang G, Liu Z, van der Maaten L, Weinberger KQ Densely connected
convolutional networks. In: IEEE Conference on Computer Vision and Pattern
Recognition, 2017.
[40] Zeiler MD, Fergus R, Visualizing and understanding convolutional networks.
In: Proceedings of Computer Vision – ECCV, 2014.
[41] Yosinski J, Clune J, Bengio Y, Lipson H, How transferable are features in
deep neural networks, 2014.
[42] Karen Simonyan , Andrew Zisserman, Very Deep Convolutional Networks
For Large-Scale Image Recognition, Conference paper at ICLR 2015.
[43] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
Imagenet: A large-scale hierarchical image database. 2009.

A

Appendix: Model Code

-*- coding: utf-8 -*-

"""

Created on Sat Nov 21 22:37:18 2020

@author: toshiba

"""

General libraries

import os

import numpy as np

import pandas as pd

import random

import cv2

import matplotlib.pyplot as plt

Deep learning libraries

from keras import layers

from keras.models import Model

from keras.optimizers import Adam

from keras.callbacks import ModelCheckpoint, ReduceLROnPlateau,
EarlyStopping

plt.style.use('fivethirtyeight')

B

img_height = 96

img_width = 96

batch_size = 4

no_of_epochs = 10

from keras.applications.vgg16 import VGG16

base_model = VGG16(input_shape = (96, 96, 3), # Shape of our images

include_top = False, # Leave out the last fully connected layer

weights = 'imagenet')

for layer in base_model.layers:

 layer.trainable = False

Flatten the output layer to 1 dimension

x = layers.Flatten()(base_model.output)

Add a fully connected layer with 512 hidden units and ReLU activation

x = layers.Dense(512, activation='relu')(x)

Add a dropout rate of 0.5

x = layers.Dropout(0.5)(x)

Add a final sigmoid layer for classification

x = layers.Dense(1, activation='sigmoid')(x)

C

cnn = Model(inputs=base_model.input, outputs=x)

Creating model and compiling

opt = Adam(lr=0.0001, decay=1e-6)

cnn.compile(optimizer = opt, loss = 'binary_crossentropy', metrics = ['accuracy'])

Callbacks

checkpoint = ModelCheckpoint(filepath='best_weights.hdf5',
save_best_only=True, save_weights_only=True)

lr_reduce= ReduceLROnPlateau(monitor='val_loss', factor=0.3, patience=2,
verbose=2, mode='max')

early_stop = EarlyStopping(monitor='val_loss', min_delta=0.1, patience=1,
mode='min')

from tqdm import tqdm

import matplotlib.pyplot as plt

DATADIR = 'F:/shenzhen splitted/train and val'

data=[]

for img in tqdm(os.listdir(DATADIR)):

 try:

 img_array = cv2.imread(os.path.join(DATADIR,img))

 img_array = cv2.resize(img_array, (img_height, img_width))

 img_array = cv2.cvtColor(img_array, cv2.COLOR_BGR2RGB)

 img_array = img_array.astype(np.float32)/255.

D

 if img[-5]=='0':

 data.append([img_array, 0])

 else:

 data.append([img_array, 1])

 except Exception as e:

 pass

print(len(data))

random.shuffle(data)

for sample in data[:10]:

 print(sample[1])

X = []

y = []

for features,label in data:

 X.append(features)

 y.append(label)

X = np.array(X).reshape(-1, img_width, img_height, 3)

print(X.shape)

#5 Fold Cross Validation

E

k=5

num_validation_samples=66

validation_scores=[]

for fold in range(k):

validation_data=X[num_validation_samples*fold:num_validation_samples*(fold+
1)]

validation_labels=y[num_validation_samples*fold:num_validation_samples*(fold
+1)]

 if fold==0:

 training_data=X[num_validation_samples*(fold+1):]

 training_labels=y[num_validation_samples*(fold+1):]

 else:

 training_data=np.append(X[:num_validation_samples*fold],
X[num_validation_samples*(fold+1):],axis=0)

 training_labels=np.append(y[:num_validation_samples*fold],
y[num_validation_samples*(fold+1):],axis=0)

 cnn.history=
cnn.fit(training_data,training_labels,batch_size=batch_size,epochs=no_of_epochs
,validation_data=(validation_data,validation_labels)) # 50 epochs per model

 validation_score=cnn.evaluate(validation_data,validation_labels)

 validation_scores.append(validation_score[1])

F

#Average Validation Score

print('Average Validation Score: ', np.average(validation_scores)*100,'%')

#Visualize the models accuracy

plt.plot(cnn.history.history['accuracy'])

plt.plot(cnn.history.history['val_accuracy'])

plt.title('Model accuracy')

plt.ylabel('Accuracy')

plt.xlabel('Epoch')

plt.legend(['Train', 'Val'], loc='upper left')

plt.show()

#Visualize the models loss

plt.figure(figsize=(7.3,5))

plt.plot(cnn.history.history['loss'])

plt.plot(cnn.history.history['val_loss'])

plt.title('Model loss')

plt.ylabel('Loss')

plt.xlabel('Epoch')

plt.legend(['Train', 'Val'], loc='upper right')

plt.show()

from tqdm import tqdm

import matplotlib.pyplot as plt

import cv2

DATADIR1 = 'F:/shenzhen splitted/test'

G

data1=[]

for img in tqdm(os.listdir(DATADIR1)):

 try:

 img_array1 = cv2.imread(os.path.join(DATADIR1,img))

 img_array1 = cv2.resize(img_array1, (img_height, img_width))

 img_array1 = cv2.cvtColor(img_array1, cv2.COLOR_BGR2RGB)

 img_array1 = img_array1.astype(np.float32)/255.

 if img[-5]=='0':

 data1.append([img_array1, 0])

 else:

 data1.append([img_array1, 1])

 except Exception as e:

 pass

print(len(data1))

import random

random.shuffle(data1)

for sample in data1[:10]:

 print(sample[1])

X1 = []

y1 = []

H

for features,label in data1:

 X1.append(features)

 y1.append(label)

X1 = np.array(X1).reshape(-1, img_width, img_height, 3)

print(X1.shape)

preds = cnn.predict(X1)

predictions = preds.copy()

predictions[predictions <= 0.5] = 0

predictions[predictions > 0.5] = 1

from sklearn.metrics import classification_report,confusion_matrix

cm = pd.DataFrame(data=confusion_matrix(y1, predictions, labels=[0,
1]),index=["Actual Normal", "Actual tuberculosis"],

columns=["Predicted Normal", "Predicted tuberculosis"])

import seaborn as sns

plt.figure(figsize=(20,20))

sns.heatmap(cm,annot=True,fmt="d")

print(classification_report(y_true=y1,y_pred=predictions,target_names
=['normal','tuberculosis']))

from sklearn.metrics import roc_curve, roc_auc_score

fpr, tpr, _ = roc_curve(y1, preds)

I

fig, ax1 = plt.subplots(1,1, figsize = (5, 5), dpi = 250)

ax1.plot(fpr, tpr, 'b.-', label = 'VGG-Model (AUC:%2.2f)' % roc_auc_score(y1,
preds))

ax1.plot(fpr, fpr, 'k-', label = 'Random Guessing')

ax1.legend(loc = 4)

ax1.set_xlabel('False Positive Rate')

ax1.set_ylabel('True Positive Rate');

fig.savefig('roc.pdf')

