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Abstract 

In this work we studied Lie groups and Lie algebras. We considered several 

examples of Lie groups and their associated Lie algebras. We treated the 

representation theory of Lie groups and used this theory in the problem of 

classification of some Lie algebras such as semi –simple and solvable Lie 

algebras. Other Lie algebras have also been characterized; we also applied Lie 

algebras to problems in physics 
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 المستخلص

 في ىذا البحث درسنا   سمز لي و جبز لي  تناولنا عذة امثلو لشمز لي

زجب لي المتعلقت بتلك لشمز عالجنا نظزيت التمثيل لشمز لي  

 واستخذمنا ىذه النظزيو في مسالت تصنيف بعض جبز لي كجبز

 شبو بسيط وكذلك   قابليتجبز الحل    كما تم تصنيف

بتطبيق جبز لي علي بعض المسائل في الفيشياء كذلكقمنا.اخز  جبز لي 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



V 
 

Contents  

Dedication------------------------------------------------------------------------I 

Acknowledgments------------------------------------------------------------------II 

Abstract----------------------------------------------------------------------------III 

Abstract (Arabic) ------------------------------------------------------------------IV 

 Contents------------------------------------------------------------------------------V 

Introduction------------------------------------------------------------------------VIII 

Chapter one 

Lie Groups 

(1.1) Definition-----------------------------------------------------------------------1 

(1.2) Examples of Lie Groups-------------------------------------------------------1 

(1.3) Lie Groups, Subgroups, and Cosets-----------------------------------------1 

(1.4) Action of Lie Groups on Manifolds and Representations---------------7 

(1.5) Orbits and Homogeneous Spaces -------------------------------------------8 

(1.6) Left, Right, and Adjoin Action----------------------------------------------11 

(1.7) Classical Groups--------------------------------------------------------------12 

Chapter two 

Lie Algebras 

(2.1)  Definition---------------------------------------------------------------------20 

(2.2) Some Motivation for Lie Algebras------------------------------------------22 

(2.3) Some Low-dimensional Lie Algebras---------------------------------------24 

(2.4) The Lie Algebra of Vector Fields on Manifolds---------------------------24 

(2.5)  The Lie Algebra of Matrix Groups------------------------------------------29 

(2.6) The Free Lie Algebra-----------------------------------------------------------30 

 (2.7) Linear Lie Algebra------------------------------------------------------------33 



VI 
 

(2.8) Representation of Lie Algebra------------------------------------------------34 

(2.9) Lie Algebra of GL (n, R) ------------------------------------------------------35 

(2.10) Definition-----------------------------------------------------------------------36 

(2.11) the Exponential Map----------------------------------------------------------37 

(2.12) Examples of Lie Algebras----------------------------------------------------38 

(2.13) Theorem------------------------------------------------------------------------40 

Chapter Three 

Classification of Lie Algebras 

(3.1) Definition------------------------------------------------------------------------41 

(3.2) The Systemic Classification of Semi-simple Lie Algebras---------------45 

(3.3) Carton Sub Algebra-------------------------------------------------------------45 

(3.4) Nilpotent Lie Algebra----------------------------------------------------------51 

(3.5) Solvable Lie Algebra----------------------------------------------------------53 

(3.6) Semi-simple Lie Algebra-----------------------------------------------------58 

Chapter four 

Symmetries and Lie Algebra 

(4.1) Introduction----------------------------------------------------------------------60 

(4.2) Importance of Symmetries-----------------------------------------------------61 

(4.3) Local one Parameter Point Transformations--------------------------------62 

(4.4) Local one Parameter Point Transformation Groups-----------------------63 

(4.5) Generate Point Symmetries----------------------------------------------------65 

(4.6) Lie Group of the Heat Equation----------------------------------------------71 



VII 
 

(4.7) Theorem--------------------------------------------------------------------------75 

(4.8) Two Dimensional Heat Equation---------------------------------------------77 

(4.9) Determining Equation of Two Dimensional Heat Equation-------------79 

(4.10) Invariant Solution -------------------------------------------------------------83 

Chapter five 

Applications of Lie Algebra 

(5.1) Introduction---------------------------------------------------------------------88 

(5.2) Representation Theory---------------------------------------------------------89 

(5.3) Lie Group------------------------------------------------------------------------92 

(5.4) Lie Algebra---------------------------------------------------------------------100 

(5.5) Physical Application----------------------------------------------------------107 

(5.6) Solvable Lie Algebra Application------------------------------------------111 

 

 

 

 

 

 

 

 

 

  



VIII 
 

Introduction 

The problem before us has origin in the theory of finite continuous groups of 

transformations. The usual method of classification depends on the existence 

or non-existence of invariant subgroups of different types so that we know 

(thanks to the work of killing, Cartan and Weyl) all about simple and semi 

simple groups on the one hand and integrable or solvable groups on the other. 

If the group does not belong to either of these classes we know very little 

about the different types except in the case of groups of comparatively small 

order. In this research we propose to give an outline of a method of 

classification which does not depend so much on the order of the group as it 

does on its genus. Unfortunately the method does not apply or only partially 

applied in good many cases however it may be possible to further refine it so 

as to exclude at least some of the exceptional cases. Another remark the first 

part of what follows applied to finite linear algebras in general and we have 

already applied it some simple cases of linear associative algebras Lie groups 

and their Lie algebras are essential tools in the study of several mathematical 

fields. These include partial differential equations. 

Homogenous spaces, symmetric spaces and differential geometry in general 

we first give a brief introduction to differentiable manifolds and then define 

Lie groups that allow us to study Lie algebra. A Lie group is a space endowed 

with two structures 
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Chapter One 

Lie Groups 

1.1. Definition 

A Lie group G is a differential manifold such that the composition of elements 

of   G As group and the inverse operation are differential this means that: For 

any           is differentiable operation. For       and          the 

composition       is differentiable operation. 

1.2. Examples of Lie Groups   

The basic example of Lie group is of course the general linear group        

of invertible      real matrices, this is an open subset of the vector space of 

all     matrices, and gets its manifold structure accordingly (so that the 

entries of the matrix are coordinates on        . That the multiplication map 

               is differentiable is clear, that the inverse 

map             is follows from Crammers‟ formula for the inverse. 

Occasionally      will come to us as the group of automorphism of an n-

dimensional real vector space, when we want to think of      in this way (e. 

g without choosing a basis for   and there by identifying    with the group of 

matrices).  

We will write it as                  Representation of a Lie group, of 

course, is amorphism from             

1.3. Lie Groups, Subgroups, and Coset 

 1.3.1. Definition  

A Lie group is a set G with two structures:  G is a group and G is a (smooth, 

real) manifold. These structures agree in the following sense: multiplication 

and inversion are smooth maps. 

A morphism of Lie groups is a smooth map which also preserves the group 

operation:  
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In a similar way, one defines complex Lie groups. However, unless specified 

otherwise, „Lie group‟ means a real group. 

1.3.2 .Remark   

The word smooth in the definition above can be understood in different ways: 

      Analytic it turns out that all of them are equivalent: every    Lie 

group has a unique analytic structure. This a highly non-trivial result and we 

are not going to prove it 

1.3.3. Example  

The following are examples of Lie groups 

(1)   , with the group operation given by addition 

(2)          

(3)    {    | |   }   

(4)             
. Many of the groups we will consider will be 

subgroups of         or         

(5)        {         |   ̅          }. Indeed, one can easily 

see that 

      {(
  

  ̅  ̅
)        | |  | |   } 

Writing                     we see that       is 

diffeomorphism to    {  
      

 }     

(6)  In fact, all usual groups of linear algebra, such as 

                                                   are Lie 

groups. This will be proved later 

Note that the definition of a Lie group does not require that G be connected. 

Thus, any finite group is a 0-dimensional Lie group. Since the theory of finite 

groups is complicated enough, it makes sense to separate the finite (or, more 

generally, discrete) part. It can be done as follows 
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1.3.4. Theorem  

   Let  be a Lie group. Denote by   the connected component of unity.  Then 

  is a normal subgroup of   and is a Lie group it self the quotient group 

     is discrete.  

Proof 

We need to show that   is closed under the operations of multiplication and 

inversion since the image of a connected topological space under a  

Continuous map is connected the inversion map   must take    to one 

component of    that which contains                . In a similar way 

one shows that    is closed under multiplication. 

To check that this is a normal subgroup, we must show that if           

    then        . Conjugation by   is continuous and thus will take    to 

some connected component of    since it fixes 1, this component is    

The fact that the quotient is discrete is obvious  

This theorem mostly reduces the study of arbitrary Lie groups to study of 

finite groups and connected Lie groups. In fact, one can go further and reduce 

the study of connected Lie groups to connected simply –connected Lie groups  

1.3.5. Theorem  

If   is a connected Lie group then its universal cover  ̃ has a canonical 

Structure of a Lie group such that the covering map    ̃    is a morphism 

of Lie groups, and  e         as a group. Moreover, in this case      is a 

discrete central subgroup in  ̃ 

Proof 

The proof follows from the following general result of topology: if     are 

connected manifolds (or, more generally, nice enough topological spaces), 

then any continuous map       can be lifted to a map ̃  ̃   ̃. 

Moreover, if we choose         such that        and choose lifting 

 ̃   ̃  ̃   ̃ such that    ̃       ̃     then there is a unique lifting 

 ̃     such that  ̃  ̃   ̃ 

Now Let us choose some element  ̃   ̃ such that  ( ̃)      Then, by  

The above theorem, there is a unique map  ̃  ̃   ̃ which lifts the inversion 

map       and satisfies ̃( ̃)   ̃. In a similar way one constructs the 

multiplication map ̃   ̃   ̃. 
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1.3.6. Definition  

A Lie subgroup   of a Lie group   is a subgroup which is also a sub manifold  

 1.3.7. Remark  

In this definition, the word sub manifold should be understood as imbedded 

sub manifold. In particular, this means that   is locally closed but not 

necessarily closed, as we will show below, it will automatically be closed.   

1.3.8. Theorem  

(1) Any Lie subgroup is closed in   

(2) Any closed subgroup of a Lie group is a Lie subgroup 

Proof 

The proof of the first part is given in definition 1.1. The second part is much 

harder and will not be proved here. The proof uses the technique of Lie 

algebras and can be found 

1.3.9. Corollary 

(1) If   is a connected Lie group and   is a neighborhood of 1, then    

generates . 

(2) Let         be morphism of Lie groups with    connected and 

             is surjective. Then   is surjective 

Proof 

(1) Let   be the subgroup generated by . Then   is open in : for any 

element                 is a neighborhood of         since it is an open 

subset of a manifold, it is a sub manifold, so   is a Lie subgroup. Therefore, 

by theorem 1.1.8 it is closed , and is nonempty, so     

(2)  Given the assumption, the inverse function theorem says that   is 

surjective onto some neighborhood  of     .Since an image of group 

morphism is a subgroup, and   generates       is surjective. 

As in the theory of discrete groups, given a subgroup      we can define 

the notion of cosets and define the coset space     as the set of equivalence 

classes. The following theorem shows that the coset space is actually a 

manifold. 

(1) Let   be a Lie group of dimension           a Lie subgroup of 

dimension     then the coset space     has a natural structure of a manifold 

of dimension     such that the canonical map         is a fiber 
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bundle, with fiber diffeomorphism to . The tangent space at  ̅       is 

given by  ̅   ⁄          . 

(2) If   is a normal Lie subgroup then   ⁄  has a canonical structure of a Lie 

group  

Proof 

Denote by         the canonical map. Let     and  ̅       

  ⁄   Then the set     is a sub manifold in  as it is an image of   under 

diffeomorphism    . Choose a sub manifold      such that   

        is transversal to the manifold                        

(This implies that dim           ). Let     be a sufficiently 

small neighborhood of   in . Then the set    {   ⁄       }is open 

in  (which easily follows from inverse function theorem applied to the 

map      .Consider  ̅        since      ̅     is open,  ̅ is an 

open neighborhood of   ̅in    and the map    ̅ is homeomorphism. This 

gives a local chart for     and at the same time shows that       is a 

fiber bundle with fiber    we leave it to the reader to show that transition 

functions between such charts are smooth and that the smooth structure does 

not depend on the choice of      

This argument also shows that the kernel of the projection          ̅   

   is equal to      . In particular, for     this gives an isomorphism 

  ̅   ⁄           

 

1.3.10. Corollary  

(1) If H is connected, then the set of connected components       

     ⁄    In particular, if       are connected, then so is   

(2) If     are connected, then there is an exact sequence of groups  

     ⁄                    ⁄   { } 
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This corollary follows from more general long exact sequence of homotopy 

groups associated with any fiber bundle. We will later use it to compute 

fundamental groups of classical groups such as        

Finally, there is an analog of the standard homomorphism theorem for Lie 

groups 

1.3.11. Theorem  

Let         be a morphism of Lie groups. Then        is normal Lie 

subgroup in    and   gives rise to an injective morphism       , which 

is an immersion of manifolds. If     is closed, then it is a Lie subgroup 

in       gives an isomorphism of Lie groups        .  The proof of 

this theorem will be given later (see Corollary 3.27) 

Corollary 3.27 

.Let         be a morphism of Lie groups, and 

         the corresponding morphism of Lie algebras Then      is a Lie 

subgroup with Lie algebra  e     and the map       ⁄        immersion if 

and only if   is closed, then we have an isomorphism 

          

Proof .Consider the action of    on    given by                

         Then the stabilizer of      is exactly       , so by the previous 

theorem, it is a Lie group with Lie algebra       

Note that it shows in particular that an image of   is a subgroup in   which is 

an immersed sub manifold, however, it may not be a Lie subgroup as the 

example below shows. Such more general kinds of subgroups are called 

immersed subgroups  

1.3.12. Example  

Let                . Define the map                 

                      where   is some fixed irrational number. Then it is 
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well-known that the image of this map is everywhere dense in   (it is 

sometimes called irrational winding on the torus). 

1.4. Action of Lie Groups on Manifolds and Representations 

The primary reason why Lie groups are so frequently used is that they usually 

appear as groups of symmetry of various geometric objects.  We will show 

several examples. 

1.4.1. Definition  

An action of a Lie group   and a manifold   is an assignment to each     

a diffeomorphism            such that                        

and such that the map                    Is a smooth map   

1.4.2. Example  

(1) The group        (and thus, any it‟s Lie subgroup) acts on    

(2) The group        acts on the sphere       . The group      acts 

on the sphere        . 

Closely related with the notion of group acting on a manifold is the notion of 

representation 

1.4.3. Definition  

A representation of a Lie group   is a vector space   together with group 

morphism                 is finite-dimensional, we also require that the 

map                    be a smooth map, so that   is a morphism 

of Lie groups. 

Morphism between two representations      is a linear map 

       Which commutes with the action of? 

                 

In other words, we assign to every     a linear map 

                                  We will frequently use the shorter 

notation         instead of        in the cases when there is no ambiguity 

about the representation being used   

1.4.4. Remark  

Note that we frequently consider representation on a complex vector space    

even for a real Lie group . 
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Any action of the group  on manifold   gives rise to several representations 

of   on various vector spaces associated with : 

(1) Representation of   on the (infinite-dimensional) space of function 

      defined by 

                    

                                                               

(2) Representation of   on the (infinite-dimensional) space of vector fields 

        defined by  

              (        )  

In a similar way, we define the action of   on the spaces of differential forms 

and other types of tensor fields on   

(3) Assume that     is a stationary point:        for any   . 

Then we have a canonical action of   on the tangent space     given 

by               , and similarly for the spaces  
       

  . 

   1.5. Orbits and Homogeneous Spaces 

Let   act on a manifold . Then for every point     we define its orbit 

by      {         }. 

1.5.1. Lemma  

Let   be a manifold with an action of . Choose a point     and Let  

         {         }. Then   is a Lie subgroup in  , and 

      is an injective immersion       whose image coincides with 

the orbit   . 

Proof  

The fact that the orbit is in bijection with     is obvious. For the proof of the 

fact that   is a closed subgroup, we could just refer to theorem 1.8. However, 

this would not help proving that             is an immersion both of 

these statements are easiest proved using the technique of Lie algebras. 
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1.5.2. Corollary  

The orbit   is an immersed sub manifold in   with tangent space     

       . If    is closed, then       is a diffeomorphism           

   

An important special case is when the action of   is transitive, i.e. when there 

is only one orbit. 

1.5.3. Definition   

A  -homogeneous space is a manifold with a transitive action of   As an 

immediate corollary of corollary 1.3.2, we see that each homogeneous space 

is diffeomorphism to  a coset space   . Combining it with theorem 1.10 we 

get the following results 

1.5.4. Corollary  

Let   be a  -homogeneous space and choose   . Then the map   

       is a fiber bundle over   with fiber        . 

1.5.5. Example  

(1) Consider the action of         on the sphere       . Then it is a 

homogeneous space, so we have a fiber bundle 

                       

(2) Consider the action of       on the sphere        . Then it is a 

homogeneous space, so we have a fiber bundle 

                    

In fact, action of   can be used to define smooth structure on a set. Indeed, if 

  is a set (no smooth structure yet) with a transitive action of a Lie group , 

then   is in bijection with   ,           and thus, by theorem 1.10.   

has  a canonical structure of a manifold of dimension equal to           

1.5.6. Example  

Define a flag in    to be a sequence of subspaces 

{ }                          

Let       be the set of all flags in  . It turns out that       has a canonical 

structure of a smooth manifold which is called the flag manifold (or 
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sometimes flag variety). The easiest way to define it is to note that we have an 

obvious action of the group                . This action is transitive: 

By a change of basis, any flag can be identified with the standard flag 

     { }                               

Where           stands for the subspace spanned by         Thus        

can be identified with the coset 
       

      
                     is the 

group of all invertible upper-triangular matrices. Therefore,    is a manifold 

of dimension equal to    
      

 
 

      

 
 

Finally, we should say a few words about taking the quotient by the action of 

a group. In many cases when we have an action of a group   on a manifold   

one would like to consider the quotient space, i.e. the set of all  -orbits. This 

set is commonly denoted by    .It has a canonical quotient topology. 

However, this space can be very singular, even if   is a Lie group, for 

example, it can be non-Hausdroff. For example, if           acting on the 

set of all     matrices by conjugation, then the set of orbits described by 

Jordan canonical form however, it is well-known that by a small perturbation, 

any matrix can be made diagonalizable. Thus, if     are matrices with the 

same eigenvalues but different Jordan form, then any neighborhood of the 

orbit of   contains points from orbit of   

There are several ways of dealing with this problem. One of them is to impose 

additional requirements on the action, for example assuming that the action is 

proper. In this case it can be shown that    is indeed a Hausdroff topological 

space, and under some additional conditions, it is actually a manifold. 

1.6. Left, Right, and Adjoin Action   

Important examples of group action are the following actions of   on itself: 

Left action:           is defined by          

Right action:        is defined by            

Adjoin action:        is defined by              

One easily sees that left and right actions are transitive; in fact, each of them 

is simply transitive. 

It is also easy to see that the left and right actions commute and that    

    . 
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As mentioned above, each of these actions also defines the action of    on the 

spaces of functions, vector fields, forms, etc. on  . For simplicity, for a 

tangent vector     , we with frequently write just          instead of 

technically more accurate but cumbersome notation      . Similarly, we will 

write    for        . 

Since the ad joint action preserves the identity element   , it also defines 

an action of   on the (finite-dimensional) space   . Slightly abusing the 

notation, we will denote this action also by  

            . 

1.6.1. Definition  

A vector field           is left-invariant if       for every   , and 

right-invariant if       for every   .A vector field is called bi-invariant 

if it is both left and right-invariant. 

In a similar way one defines left, right, and bi-invariant differential forms and 

other tensors. 

1.6.2. Theorem  

The map        (where 1 is the identity element of the group) defines an 

isomorphism of the vector space of left-invariant vector fields on   with the 

vector space   , and similarly for right-invariant vector spaces. 

Proof 

It suffices to prove that every       can be uniquely extended to a left-

invariant vector field on . Let us define the extension by           . 

Then one easily sees that so defined vector field is left-invariant, and     

 . This proves existence of extension, uniqueness is obvious.  

Describing bi-invariant vector fields on   is more complicated: any       

can be uniquely extended to a left-invariant vector field and to a right-

invariant vector field, but these extensions may differ  

1.6.3. Theorem    

The map        defines an isomorphism of the vector space of bi-

invariant vector fields on   with the vector space of invariants of adjoint 

action: 

         {                          } 

The proof of this result is left to the reader. Note also that a similar result 

holds for other types of tensor fields: convector fields, differential forms, etc.  
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1.7. Classical groups 

In this section, we discuss the so-called classical groups, or various subgroups 

of the general linear group which are frequently used in linear algebra. 

Traditionally, the name “classical group” is applied to the following groups: 

-         (Here and below,   is either , which gives a real Lie group, 

or , which gives a complex Lie group) 

-         

-        

-         and more general groups           

-      

-       

-          {                         }. Here        is 

the skew-symmetric bilinear form ∑              
 
    (which, up to a 

change of basis, is the unique non-degenerate skew-symmetric bilinear form 

on     ). Equivalently, one can write                         is the 

standard symmetric bilinear form on    and  

-   (
    

   
) 

 1.7.1. Remark  

There is some ambiguity with the notation for symplectic 

group: the group we denoted           . would be written 

as       . Also, it should be noted that there is a closely 

related compact group of quaternionic unitary transformations  

This group, which is usually denoted simply     , is a 

“compact form” of the group          in the sense we will 

describe  

To avoid confusion, we have not included this group in the list 

of classical groups. 

We have already shown that       and       are Lie groups.  

we will show that each of these groups is a Lie group and will 

find their dimensions.  

Straightforward approach, based on implicit function theorem, 

is hopeless: for example,         is defined by   equations 

in   
, and Finding the rank of this system is not an easy task. 
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We could just refer to the theorem about closed subgroups; 

this would prove that each of them is a Lie group, but would 

give us no other information-not even the dimension of . 

Thus, we will need another approach  

 

Our approach is based on the use of exponential map. Recall 

that for matrices, the exponential map is defined by 

e      ∑
  

  

 

 

 

It is well-known that this power series converges and defines 

an analytic map               , where       is the set of 

all     matrices. In a similar way, we define the logarithmic 

map by  

 

         ∑
         

 
 
  . 

So defined log is an analytic map defined in a neighborhood of         .  

The following theorem summarizes properties of exponential and logarithmic 

maps. Most of the properties are the same as for numbers; however, there are 

also some differences due to the fact that multiplication of matrices is not 

commutative. All of the statements of this theorem apply equally well in real 

and complex cases 

1.7.2. Theorem  

2.     e         e             Whenever they are defined. 

3. e            This means e             e          

4.             e        e     e           

                              In some neighborhood of the identity. 

In particular, for any           e     e                 

           

5.  For                  consider the map            e       . 

    e  (      )  e       e       . In other words, this map is a 

morphism of Lie groups. 
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6. The exponential map agrees with change of basis and transposition 

e                     e       e         

Full proof of this theorem will not be given here; instead, we just give a 

sketch. First two statements are just equalities of formal power series in one 

variable; thus, it suffices to check that they hold for     similarly, the third 

one is an identity of formal power series in two commuting variables, so it 

again follows from well-known equality for     . The fourth follows from 

the third, and the fifth follows from                 and             

Note that group morphism     is frequently called one-parameter 

subgroups in . This is not a quite accurate name, as the image may not be a 

Lie subgroup 

However, the name is so widely used that it is too late to change it. Thus, we 

can reformulate part (4) of the theorem by saying that exp (   ) is one-

parameter subgroup in       . 

How does it help us to study various matrix groups? The key idea is that the 

logarithmic map identifies some neighborhood of the identity in         

with some neighborhood of 0 in a vector space. It turns out that it also does 

the same for all of the classical groups 

1.7.3. Theorem  

For each classical group         , there exists a vector space   

        such that for some neighborhood                 and some 

neighborhood                   the following maps are mutually inverse 

     
   
→      

   
→       

Before proving this theorem, note that it immediately implies the following 

important corollary. 

1.7.4. Corollary  

Each classical group is a Lie group, with tangent space at 

identity       and           

Let us prove this corollary first because it is very easy. Indeed, 

Theorem1.5.3 shows that near    is identified with an open 

set in a vector space. So it is immediate that near     is 

smooth. If            is a neighborhood of 

                              is a neighborhood 

of       thus,   is smooth near . 
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For the second part, consider the differential of the 

exponential map            . Since   is a vector space, 

       and since e             the derivative is the 

identity; thus,           

Proof of theorem 1.7.3 

The proof is case by case; it cannot be any other way, as 

“classical groups” are defined by a list rather than by some 

general definition 

          Immediate from theorem 1.5.2 in this case, 

          is the space of all 

matrices.                         Is close enough to 

identity then  e      for some          The condition 

that           is equivalent to                    

   But it is well-known that           e  (     ) (which 

is easy to see by finding a basis in which   is upper-

triangular), so e              if and only if        . 

Thus, in this case the statement also holds, with   

{               }  

                The group    is defined by     . Then 

     commute. Writing   e         e        (since 

exponential map a grees with transposition), we see that      

also commute, and thus exp         implies 

e     e       e            so      

                               commute, so we can 

reverse the argument to gete             . Thus, in this 

case the theorem also holds, with   {        } the 

space of skew-symmetric matrix 

What about SO (   ) In this case, we should add to the 

condition       (which gives      ) also the 

condition      , which gives          However, this last 

condition is unnecessary, because       Implies that all 

diagonal entries of   are zero. 

So both O (   ) and SO (   ) correspond to the same space 

of matrices  {        }. This might seem confusing 
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until one realizes that SO      is exactly the connected 

component of identity in O     ; thus, neighborhood of 1 in 

O      coincides with the neighborhood of 1in SO     . 

            Similar argument shows that           

       (where      ) and                 

         .Note that in this case,      does not imply that 

  has zeroes on the diagonal: it only implies that the diagonal 

entries are purely imaginary. Thus,       does not follow 

automatically from      , so in this case the tangent 

spaces for            Are different. 

        : Similar argument shows that e      

                    thus, in this case the theorem 

also holds. 

The vector space       is called the Lie algebra of the 

corresponding group   (this will be justified later, when we 

actually define an algebra operation on it). Traditionally the 

Lie algebra is denoted by lower case gothic letters: for 

example, the Lie algebra of group       is denoted by        

The following table summarizes results of the theorem 1. 

In addition, it also contains information about topological 

structure of classical Lie groups. Proofs of them can be found 

in exercises 

                  O

      

SO

      

            SP

       

             
   

 
   

   

    

   

 
   

   

 
   

      
   

 
       

   

          

   

      

 
 

      

 
 
     

   

    
    

         { }    { } { } { } { } 

          
    

    
    

    
    

    
    

  { }   
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For complex classical groups, the Lie algebra and dimension 

are given by the same formula as for real groups. However, 

the topology of complex Lie groups is different and is given in 

the table below. 

                  O      SO      

      { } { }    { } 

        { }       

 

Note that some of the classical groups are not simply-

connected. As was shown in theorem 1.1.5, in this case the 

universal cover has a canonical structure of Lie group. Of 

special importance is the universal cover of SO      which is 

called the spin group and is denoted Spin   ; since 

  (SO     )   , this is a twofold cover 
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Chapter Two 

Lie Algebras 

2.1. Definition 

A Lie algebra   is a vector space over a field F on which a product    , called 

the bracket, is defined with the properties  

(i)            imply             

(ii)                                     

For                           

(iii)                  

(iv)                                                 

Properties (iii) and (iv) are known as skew –symmetry and the Jacobi identity, 

respectively .A Lie algebra is equivalently defined as the tangent space at the 

identify of a Lie group, which is much easier to visualize than. 

2.1.2. Definition  

      The Lie bracket may be defined in various ways; as long as it fulfills the 

conditions of definition (2.1).A linear Lie algebra has matrix elements, where 

the Lie bracket is defined as the commulator. 

          –      Linear Lie algebras are frequently used in quantum 

mechanics. Another common example of Lie algebra is the vector space R
3
 

with the Lie bracket defined as the cross product  

               

The basis of a Lie algebra from the infinitesimal generators of its associated 

Lie group, which are extremely useful in physical applications of finding 

differential symmetries. Let's go ahead and find the infinitesimal generators of 

a Lie group, we begin by finding the tangent vectors at any element in the Lie 

group. 
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For the Lie group action 

                 ̅  ̅  The tangent vector to   ̅   ̅                        where 

(
  ̅

  
) =    ̅  ̅   ,  

  ̅

  
  =    ̅  ̅  

The tangent vector at a point (   ) 

(              )    
d ̅

d 
 

d ̅

d  
       

So, if we Taylor expand, our Lie group action becomes, to first order in ℇ 

 ̅                        

 ̅                         

And our infinitesimal generators   is  

                         .For this to make more sense, let‟s do a simple 

example inspired  

2.1.3. Theorem  

For every Lie algebra         there exists a Lie group G with g isomorphic to 

subalgebra of         for some n  

Combining this proposition (1.4.2) (b) we get  

2.1.4. Example 

     Let   be a Fs-vector space let   (v) be the vector space of linear maps   

define [- , -] on   (v) by 

              –        

Where   is composition of maps? This Lie algebra is known as general linear 

algebra sometime it is convenient to fix a basis and work with matrices rather 

than linear maps – if we do this we get  

2.1.5. Example 

   Let   
 

    be the vector space of all      matrices with entries in f-define 

the Lie bracket by  
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Where    is the product of the matrices  and . As a vector space   
 

    

have as basis the matrix units    for            when calculating with this 

basis the formula                    –         is often useful  

2.2. Some Motivation for Lie Algebras 

 Lie algebras were discovered by sophism Lie (1842 - 1899) while he was 

attempting to classify certain smooth sub group of general linear groups. The 

groups he considered are now called Lie groups. He found that by taking the 

tangent space at identity element of such a group one obtained Lie algebra. 

Question about the group could be reduced to questions about the Lie algebra 

in which form they usually proved more tractable. 

2.2.1. Example  

Let  

         ,(
  
  

)         - 

We give a    matrix , ask when is     ℇ      

If we neglect terms in ℇ2
 we get the statement     ℇ            

            this define the Lie algebra         . 

  We refer to this kind of argument as an argument by naive calculus  

The main disadvantage of the naive approach is that it doesn‟t explain how the 

Lie bracket on        comes from the group multiplication in         . 

For a short explanation of this accessible to those who know a small amount 

about tangent spaces to manifolds. 

2.2.2. Example 

Let           be the group of invertible     matrices with entries in R.  

Let S be an element of         and let  

        {                    } 
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Where   is the transpose of the matrix . Then    ) is a group .The 

associated Lie algebra is  

  
 
      {     

 
                 } 

2.2.3. Example 

Certain subspace of  
 

    turn out to be Lie algebra in their own right  

(i) Let        be the vector subspace of   
 

    consisting of all matrices 

with trace 0.  This is known as the special linear algebra.  

(ii) Let        be a vector subspace of   
 

     consisting of all upper 

triangular matrices. 

(iii) Let       be the vector subspace of        consisting oa all strictly 

upper triangular matrices. 

2.2.4. Definition 

   The center of a Lie algebra L is Z      {                , for all  

    }               we say that X and Y commute so the centre consists of 

those elements which commute with every element of L , so           if and 

only if L is abelian . 

2.2.5. Definition  

   An ideal is particular sub algebra of L . But sub algebra need not be an ideal 

for instance if   =        and L =   
 

    then M is a sub algebra of L but not 

an ideal. Whenever one has a collection of objects (here Lie algebras) one 

should expect to define maps between them the interesting maps are those that 

are structure preserving. 
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2.2.6. Definition 

   Let L and    be algebras. A linear map       is a Lie algebra 

homomorphism if                         for all       objective Lie 

algebra homomorphism is an isomorphism  

2.3. Some low-Dimensional Lie Algebras  

   To get a little more practice at working with Lie algebras we attempt to 

classify Lie algebras of small dimension. Any 1 dimensional Lie algebra is 

abelian, so up to isomorphism, there is just one 1- dimensional Lie algebra 

over any given field. 

2.3.1. Theorem  

    If L is a 2 dimensional non- abelian Lie algebra than L has a basis      

such that           thus up to isomorphism there are exactly two 

 2- dimensional Lie algebras over any given field. 

2.3.2. Theorem  

   Suppose that L is a 3- dimensional Lie algebra such that    is 1- 

dimensional and    is not contained in Z(L). Then L has a basis,      such 

that    is centre and           

2.3.3. Lemma 

   Suppose that L is a3- dimensional Lie algebra such that    is 2- 

dimensional. Then    is algebra If             then ad acts on    as an 

invertible linear transformation. 

2.4. The Lie Algebra of Vector Fields on Manifold  

2.4.1. Definition  

   A vector space L over R is a (real) Lie algebra if in addition to its vector 

space structure it possesses a product that is a map       
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Taking the pair (   ) to the element [   ] of L, which has the following 

properties: 

 (i) It is bilinear over  

                                          

                                       

(ii) It is skew commutative                 

(iii) It satisfies the Jacobi identity  

                                  

2.4.2. Example  

   A vector space V
3 

of dimension 3 over R with the usual vector product of 

vector calculus is Lie algebra. 

2.4.3. Example  

   Let       denote the algebra of  n × n matrices over R with            , 

in general the operator          defined on        being a    

function on a neighborhood of P does not define   , vector field however 

,oddly enough        dose define a vector field          according to 

the prescription . 

                        –        

For if             then    and    are   on a neighborhood of P and 

this prescription determines a linear map of        . 

Therefore if the Leibniz rule holds for   an element of       at each    

. Consider             then f            , for some open set U 

containing  P using the nation       for    the value of    at P we have 

relations . 
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 (    )                                        

  (   )                 (   )                 

So that  

                                                

                 

Finally if F is     on any open set  M then so is (     )  and there 

fore Z is a    vector field on M as claimed. 

We may define the product on M using this fact namely define the 

product of X and Y by  

            –     

2.4.4. Theorem  

M with the product [X, Y] is Lie algebra 

 Proof  

 If α  β   R and         are   vector fields then it is straight to verify that 

                                      . 

Thus [X, Y] is linear in first variable since the skew commutatively [X , Y] 

= -[Y , X] is immediate from the definition we see that linearity in the first 

variable implies linearity in the second there for [X , Y] is bilinear and 

skew commutative . 

There remains the Jacobi identity which follows immediately if we 

evaluate  

                                     

Applied to a   - function F – using the definition,  we obtain  

                          –            
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           –           –          

Permuting cyclically and adding establishes the identity. now we discuss 

the Lie algebra analytically and geometrically we have two Lie algebra 

associated with the tangent space at the identity     G with the bracket 

induce by ad and the left invariant vector fields L(G) with the Lie bracket . 

in this illustration we will demonstrate that they are isomorphic as vector 

spaces. 

Define a map                 by  

                , for all      G and    . 

Because tangent maps are linear, so is V. for all          and       

   we have  

                                          

   (       )                      (      )    

Therefore   is left invariant so V really is a map    

             it is inverse (immediately) give by the map  

                               

N w we discuss T_ e    G ≅ L G  as Lie a  eb as   

To show that      and       , are isomorphic as Lie algebras as well 

vector field , we must show that n the map  

V=           L(G) 

       
           

Define a                , for all         

Since the Lie bracket of vector fields can be described easily in terms of 

flows it might be help full to know what the flows of these vector fields 

look like. 

 



26 
 

2.4.5. Lemma 

   Let       , and      .Then the flows of    through g is the curve   

             Given by            exp (t ) 

Ext (t) 

Proof  

Note that                               

Let t  R then  

       
 

       
  

 

       
            

   
 

       
                

 

       
                  

  
 

        
                    

 

        
            

  
 

        
                   

                                             

2.4.6. Theorem      

    Let     t       then          = [     ] 

Proof   

   Recall that the flow of   at time t  R is the map G     G given by            

. Let g   G, and then using the definition of    , Ad , and the linearity of 

tangent maps O we calculate 

 [      ]    =  
 

        
   ((         ))( ) 

                = 
 

        
   T                    

           

                = 
 

        
   T                             
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               =  
 

        
   T           T              

      = 
 

        
   T                        

 (   )
 

  
            

 (   )                

2.5. The Lie Algebra of Matrix Groups  

     Let us consider (n , k) , as a coordinates we choose the centries of  the 

matrices so that matrix g is parameterize by g =   
  . 

In particular the identity is e =   
  then the left translation as multiplication 

acts is  

          
 

  
  

It is differential is  

       
  

  
      

 

   
    

   
  

The left t invariant vector fields can be obtained from the tangent vector at the 

identity denoted such a vector by  

V =   
  

   
 g=e  

The field Xv corresponding to V is given by acting on V with differential  

  h =             
    

  

   
    

   
   

  

   
       

  

   
  

The component of X at the point is just V interpret end, as a matrix product 

.This give us a very important formula for the Lie bracket. 

Let    and    be two vector fields obtained from tangent vectors V and was 

above. The Lie bracket is new vector field which at point h is given by  
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[     ]h= (       
  

   
        )

 

 

        
  

   
          

  

   
  

   
   

  

   
   

   
    

   
  

   
   

   
  

 

   
    

 (  
   

    
   

 
)

 

   
  

       
 

  
 

2.5.1. Remark  

   In the last line above the square brackets indicate is not the Lie bracket of 

vector fields , but the matrix commentator , (it means that we can identify the 

Lie algebra of GL(n , c) with the components   
  of tangent vector and use the 

usual matrix commentator  as the product which is huge simplification). 

2.6. The Free Lie Algebra  

In    let be two – sided ideal generated by all elements of the form  a , a     

and (a b) c + (b c) a , a , b , c     we set         I and call    the free Lie 

algebra on X any map from X to a Lie algebra L extends to a unique algebra 

homomorphism from    to L . 

We claim that the ideal I defining    is graded .This means that if  

A=∑   is decomposition of an element of I into it is homogenous component, 

then each of the     also belong to I. To prove this, let JCI denote the set of all 

A=∑    with the property that all the homogenous component    belong to I, 

clearly J is a two sided ideal we must show that JCI . For this it is enough to 

prove the corresponding fact for the generating elements clearly if  

 

   ∑          ∑       ∑    
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Then                        

∑  (    )   (    )            

     

 

But also if     ∑    then  

   ∑   
   ∑             

=                       
    

    

So JCI  

The fact I is graded means that    in her it‟s the structure of a graded algebra. 

In the following we will discuss the free associative algebra ASS (X) let    be 

the vector space of all finite formal linear combinations of elements of X 

define  

                 

The tensor algebra of   .Any map of   into an associative algebra A extends 

to a unique linear map from   to A and hence to a unique algebra 

homomorphism from      to A so A    is the free associative algebra on x 

We have the map         and           and hence their composition 

maps x  As  thus give rise to a lie algebra homomorphism 

        

Which determines an associative algebra homomorphism? 

  : U (  )      A    

Both composition     and    are the identity on X and hence , by 

uniqueness , the identity everywhere .we obtain the important result that 

U(  ) and A    are canonically isomorphism  

U (  ) ≅ As   

Now the Poincare – Birkhoff- Witt theorem guarantees that the map   

ξ:         u(  ) is injective ,so under the above isomorphism the map  
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       As  in injective on the other hand by construction the map  

           Induces a subjective Lie sub algebra homomorphism from    into 

the Lie sub algebra of As  generated by . 

So we see that the under the isomorphism  

     U (  ) is mapped isomorphism ally on to the Lie sub algebra of A    

generated by,   Now the map  

    As   , As     

Extends to a unique algebra homomorphism 

∆: As         As   , x    As   

Under the identification this is none other than the map 

                    And hence we conclude that    is the set of 

primitive elements of  

  
   

   
 

 

   
 

      
 

 

   
 
 

As   

  = {w  
    

     
         } 

Under the identification let us know discuss the algebra proof of CBH and 

explicit formulas we recall our constructs above x denotes a set    the free Lie 

algebra on x and As   the free associative algebra on x so that As   may be 

identified with the universal enveloping algebra of     since As   may be 

identified 

With non-commutative polynomials indexed by   we may consider is 

completion    the algebra of formal power series indexed by x – since the free 

Lie algebra L is graded we may also consider it is completion which we shall 

denoted by    finally let m denote the ideal in    generated by . The maps  

Ext: m      1 + m 
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Are well defining by their formal power series and mutual inverse  

Are well defining by their formal power series and mutual inverse 

(There is no convergence issue since every things is within the real m of 

formal power series)  

Furthermore      is abjection of the set of α m satisfying  

∆ α = α    1 + 1   α to the set of all β   1 + m satisfying  

∆ β : β   β 

Now we will discuss abstract version of CBH and it is algebraic proof in 

particular, since the set { β   1 + m\     β   β } forms a group we 

conclude that for any A , B     there exists ac    such that  

Expc = (exp A) (exp B)  

This is abstract version of the Campbell – Baker – Hausdroff formula – ponds 

basically on two algebra facts that the universal enveloping algebra of the Lie 

algebra is the free associative algebra, and that the set of primitive elements in 

the universal enveloping algebra is precisely the original Lie algebra. 

2.7. Linear Lie Algebra 

In algebra a linear Lie algebra is subalgebra of the Lie algebra       

consisting of endomorphism of a vector space V. in other words a linear Lie 

algebra is the image of Lie algebra representation. 

Any Lie algebra is a linear Lie algebra in the sense that there is   always 

faithful representation of g (in fact on a finite dimensional vector space by 

Ado's theorem if g is itself finite dimensional). 

Let V be a finite – dimensional vector space over a field of characteristic zero 

and g subalgebra of       then v is semi- simple as a module over g if and 

only if (i) it is a direct sum of the center and a semi-simple ideal and (ii) the 

elements of the center are diagonalizable cover some extension field. 
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2.8. Representation of Lie Algebra  

We will study representation of the simplest possible Lie algebras   (2, c) 

Recall that this Lie algebra has a basis e, f , h with commutation relations  

[e, f] = h, [h, e] = 2e [h, f] = -2 f 

As we proved easier, this Lie algebra is simple the main idea of the study of 

representation of SL (2, c) is to start by diagonal zing the operator h. 

2.8.1. Definition  

Let V be a representation of SL (2, c). A vector V     is called vector of 

Weight λ, λ    C if it is an eigenvector for h with eigenvalue  

  Hv = λ v   

We denoted by v[λ] c v the subspace of vector of weight λ the following 

lemma plays a key role in the study of representations of SL (2, c)  

2.8.2. Lemma  

a v[λ] c v [λ + 2] 

f v[λ] c v [λ - 2]  

Proof  

Let     V [ ]. Then  

He  = [h, e]   + e h   = 2   +    = (    ) e   

So    [λ + 2] . The proof for F is similar  

2.8.3. Theorem  

Every finite – dimensional representation V of SL (2, C) can be written in the 

form  

            

Where V[λ] is defined in definition, this decomposition is called weight 

decomposition of V.
'
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Proof  

Since every representation of          is completely reducible, it suffices to 

prove this for irreducible, v, so assume that V is irreducible let  

   ∑        Be the sub space  

Spanned by eigen vector of h – by well – known result of linear algebra, 

Eigen vector with different eigen value are linearly independent, so 

  = v[ ]by lemma    is stable under action of set f and h.Thus    is a sub 

representation .since we assume that V is irreducible and     0 (h has at 

least one Eigen vector) we see that     . Our main goal will be 

classification of irreducible representation of         . Let   be a weight of 

V(L ,e , v[ ]   0) which is maximal in the following sense R e    R e   for 

every weight   of V such a weight will be called highest weight of        and 

vectors       -highest weight vectors it is obvious that every finite – 

dimensional representation has at least one – zero highest weight vector. 

2.8.4. Lemma  

Let    C define M to be the infinite – dimensional vector space with basis 

V , V
‟.
  … 

Irreducible representation   can also be described more explicitly, as 

symmetric powers of the usual two- dimensional presentation. 

2.9.Lie Algebra of GL (n, R)  

Consider the Lie group GL (n, R) we have                the set of all 

    real matrices for any T       , the Lie bracket is the commeutator 

that is [A, B] = AB – BA 

To prove this we compute,    the left invariant vector field associated with 

the matrix A   T GL(n ,R)  now on       , we have global coordinate maps 

given by 
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      =    , the ijth entry of the matrices B(n , R)  

(  (   ))( )=      (        also if h   GL(n , R) 

Then (                    

∑       

 

  ∑       

 

    

 

Which implies that? 

      ∑       

 

 

Now if     (       )        
 

  
t(I + t ),. t=0 

So that          
 

  
              

Putting these remarks together we see that  

  (      )  ∑       

 

 ∑          

 

 

We are now in a position to calculate the Lie bracket of the left invariant 

vector fields associated with element of   (R). 

                                 (   )      (   ) 

  (∑       )    (∑       ) (∑                     )    

 ∑          

   

           ∑       

 

 ∑       

 

           

So [A, B] = AB –BA 

2.10. Definitions  

Lie algebra   is a vector space together with a skew-symmetric bilinear map  
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Satisfying the Jacobi identity 

We should take a moment out here to make one important point. Why, you 

might ask, do we define the bracket operation in terms of the relatively 

difficult operations Ad and ad, instead of just defining       to be the 

commutator         is answer is that the composition     of elements of 

Lie algebras is not well defined? Specifically , any time we embed a Lie group 

G in a general linear group GL(V) , we get a corresponding embedding of its 

Lie algebra   in the space        , and can talk about the composition 

           of elements of g in this context , but it must be borne in mind 

that this composition     will depend on the embedding of    , and for that 

matter need not even be an element of    .Only the commutator         is 

always  an element of    , independent of the representation. 

The terminology sometimes heightens the confusion : for example , when we 

speak of embedding a Lie algebra in the algebra       of endomorphism of 

  , the word algebra may mean two very different things 

In general, when we want to refer to the endomorphism of a vector space 

            as a  Lie algebra. 

2.11. The Exponential Map  

The essential ingredient in studying the relationship between a Lie group G 

and its Lie algebra    is the exponential map. This may be defined in very 

straight forward fashion, using the notion of one –parameter subgroups, which 

we study next. 

Suppose that     is any element, viewed simply as a tangent vector to G at 

the identity. For any element    , denoted by        the map of 

manifolds given by multiplication on the left by  .  

Then we can define a vector field    on all of G simply by setting 
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      (  )
 
    

This vector field is clearly invariant under left translation (i.e., it is carried 

into itself under the diffeomorphism             ), and it is not hard to see 

that this gives an identification of   with the space of the all left invariant 

vector fields on   .Under these identification, the bracket operation on the Lie 

algebra   corresponds to Lie bracket of vector fields, indeed, this may be 

adopted as the definition of the Lie algebra associated to a Lie group. 

Given any vector field   on a manifold    and a point   , a basic theorem 

form differential equations allows us to integrate the vector field. 

This given differentiable map      , defined on some open interval I 

containing 0, with       ,whose tangent vector at any point is the vector 

assigned to that point by   i.e., such that  

              

For all    in I . The map   is uniquely characterized by these properties. 

2.12. Examples of Lie Algebras 

We start with the Lie algebras associated to each of the groups .each of these 

groups is given as a subgroup of           , so their Lie algebras will be 

subspaces of 

            

Consider first the special linear group     .If {  } is an arc in      with  

     

And tangent vector  

  
             

Then by definition we have for any basis          of     , 

                        

Taking the derivative and evaluating at t=0 we have by the product rule 
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(               )  

∑                                   _      

The tangent vectors to       are thus all endomorphism of trace 0, 

comparing dimensions we can see that the Lie algebra        is exactly the 

vector space of traceless     matrices. 

  The orthogonal and simplistic cases are somewhat simpler for example, the 

orthogonal group       is defined to be the auto orphism  of an n-

dimensional vector space   preserving  a quadratic form   , so that if  {  } is 

an arc in      with      and   
    we have for every pair of vectors 

       

                      

Taking derivatives, we see that  

           (      )    

For all        this is exactly the condition that describes the orthogonal Lie 

Algebra        . In coordinates, if the quadratic form  is given on   

     as 

              

For some symmetric    matrix , then as we have seen the condition on 

       to be in     is that  

         

Differentiating the condition on a     matrix   to be in the Lie algebra 

       of the orthogonal group is that  

           

 

Nilpotent [i.e.,          whereas under the representation 
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     (
  
  

) 

Not only are the images      neither diagonalizable nor nilpotent, the 

diagonalizable and nilpotent parts of      are not even in the image      of 

the representation. 

If we assume the Lie algebra   is semi-simple, however, the situation is 

radically different. Specifically, we have. 

2.14. Theorem 

(Preservation of Jordan Decomposition) 

 Let   be a semi simple Lie algebra. For any element   , there exist 

             such that for any representation            
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Chapter three 

Classification of Lie Algebras 

There are three important classes of Lie algebras with very different behavior 

solvable Lie algebras, semi-simple Lie algebras and nilpotent Lie algebras. 

3.1.1. Definition 

   Lie algebras g is solvable if there exists a sequence of Lie subalgebra. 

O  ….  g2 g1 g0 = g 

    Such that for all I,     is an ideal in   and that quotient Lie algebra 

        is abelian   

     The standard examples to keep in mind are the Lie algebras of upper 

triangular matrices other examples are we will see include the Heisenberg Lie 

algebra and Boral subalgebra. 

  3.1.2. Definition  

Lie algebra g is semi- simple if it contains no non-zero solvable ideals  

3.1.3. Example  

  SL (n), the Lie algebra of trace-matrices, as well as Lie algebras compact 

simple Lie group (Su (n) so (n),) 

Lie algebra can be decomposed as direct sum: 

            

   Where        is a (unique) maximal solvable ideal (the "radical" of  ) and 

   is semi-simple 

    A more general class are that one of ten wants to consider are Lie algebra 

where red ( ) is rather trivial just the center of . 
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3.1.5. Definition  

   Lie algebra is reductive if red         any reductive Lie algebra is a 

sum. 

          

   Where     is Abelian sub algebra (the center of   note this is not the same 

as            and    is semi-simple. 

3.1.6. Example  

    Reductive Lie algebras included   
 

 and U(n) the  classification of 

complex semi-simple Lie algebras   relies upon the existence in this case of a 

carton sub algebra h which is a maximal total (commutative with semi-simple 

elements) . Subalgebra it is dimension is the rank of the algebra (and the 

corresponding Lie group) all possible choices of h are related by conjugation. 

Note that this fails over other fields     is an ideal in   and the quotient. 

  Lie algebra         is abelian     , the ad joint action of h is used to 

decompose   as:               

When the root space   is the Eigen space of the h action with eigenvalue αh
* 

and   is the set of root α. 

   For any Lie algebra one can define an invariant bilinear form, the killing 

form. 

3.1.7. Definition 

   The killing form for Lie algebra   is defined by  

{X, Y} = tr (ad(x) ad(y)) 

Where ad it‟s the adjoin representation for a complex simple Lie algebra this 

provides a non-degenerate bilinear form. Restricting to the Cartan subalgebra 

h this remains non-degenerate so can be used to define an isomorphism h=h
* 

and thus a non-degenerated bilinear form on h
*
. This is positive definition of 
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non-zero elements of     the sub space of real linear combinations of the roots 

in  . For each α  one gets a reflection map    on h
* 
that takes α  -α 

presving the killing from this generate a finite group of permutation of the 

roots, the Weyl group W (g, h) the set of roots can be decomposed as: 

          , such that: 

n
+ 

=                          

Are (nilpotent) Lie sub algebras with      if       taking?   

b=     

  Gives an important sub algebra of g called a Boral sub algebra (for which n
+  

is the nil potent radical) b is maximal solvable sub algebra, of g the space of 

Boral sub algebras of g can be identified with G\B. the Lie group 

corresponding to b. this is a complex projective variety and will play a crucial 

role in the study of representation theory of G via geometry its often known as 

the "flag variety" since it parameterizes flags on C
n
 in the case . 

     g =SL (n, c), a generalization is the hot ion of paretic "sub algebra". This 

Lie algebra p such that b   p     with corresponding Lie group p. G\P it‟s 

also a complex projective variety. 

    One ends up with the following lists classifies complex simple Lie algebras 

(the sub scripts n give the rank) 

An, n= 1,2, 3… ,SL (n+1, C) 

Bn , n= 2,3,4…,SO (2n +1, C) 

Cn  , n= 2,3,4… ,SP ( 2n +1, C) 

Pn  ,n= 4,5,6…,SO ( 2n ,C) 

  G2   ,F4 , E6,E7 ,E8     corresponding exceptional Lie algebra. 

     In this research we will continually use. A example and consider its 

representations in ideal, so you should become familiar with how things work 

in that case. 
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    We will also cover in some detail later the B and D case, but from the 

perspective of the spin representation. 

     When we discuss the highest weight theory of finite dimensional 

representations well review the story of the Weyl group and how it acts on 

h
*
Lie algebra over other fields. 

     The classification of semi-simple Lie algebras over R is quite a bit more 

complicated. For each semi-simple Lie algebra  there wills multiple non-

isomorphic "real form" these are real Lie algebras     such that: 

               

3.1.8. Example  

    Real forms of SL (2, c) are SL (2,R) real form of SO (n, c) include Lie 

algebras of orthogonal groups for quadratic forms of different signatures SO ( 

p ,q ,R ) for ( p+q =n) . It turns out that there will always be one "compact" 

real from which corresponding to a compact Lie group. We will always using 

this specific real from until later, when we will deal with this just one example 

of different real, with a non-compact Lie groups SL (2, R). 

     It turns out that one can find not just real forms for a complex semi-simple 

Lie algebra, but a Z-form, using a basis for Lie algebra due to chivalry, in 

which all the defining relation of the Lie algebra is have Z coefficients . The 

group of adjoins transformations of the Lie algebra is then an algebraic group 

defined over Z. This means that one can use it to define a group over any 

commutative ring giving for each complex Lie algebra wide range of different 

kinds of groups to study for example         the adjoin group of P GL (2, C). 

and one can construct and study groups like PG L (2, Fq ) where Fq  is finite 

field. 
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3.2. The Systemic Classification of Semi-simple Lie Algebras  

     The simple Lie algebras have been completely classified be Cartan. They 

come into four infinite classes and five exceptional Lie algebras the four 

infinite classes and five are" classical algebras" associated with classical 

groups. 

Carton’s notation Rank Classical notation 

An n≥1 SU( n+1, C) 

Bn n≥1 SO(2n+1, C) 

Cn n≥1 SP(2n, C) 

Dn n≥1 SO(2n, C) 

 

 Here Su (n+1, C) denote the complexification of Lie algebra of Su (n+1), i-e, 

it consists of complex linear combinations of the traceless hermetical     

   matrices. SO (2n, C) and so (2n+1, C) are defined analogously. The Lie 

algebra SP (2n) is the complexification of Lie algebra of the Lie group SP 

(2n). 

     They are also five exceptional Lie algebra denote G2,F4,E6,E7,E8 which 

have dimension 14, 52, 78, 133, and 248 respectively. 

     The rank of the algebra is the dimension of maximal commuting sub 

algebra. 

3.3. Carton Subalgebra   

3.3.1. Definition  

  Let L be a complex semi-simple Lie algebra and H a complex subspace such 

that: 

(i)  If                       

(ii) For all                                  
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(iii) For all                                       

 The condition (i) and (ii) imply that it is maximal commuting subalgebra of 

L. its straight forward to construct sub algebra  satisfying (i) and (ii), by 

induction, but its non-trivial to satisfy (iii). It can be shown (but not here) that 

if L is a complex semi-simple Lie algebra then L has a Cart an subalgebra. 

Cart an sub algebra are not unique, it can be shown that if H1 and H2 are two 

Cartan subalgebra of matrix subalgebra L(G) then there exists some   

                       
   . Hence  the dimension of all Carton sub 

algebras in equal, the dimension of  Cart an sub algebra it‟s called the rank r 

of L. the diagonalizability in condition (iii) together with (i)  is sufficient to 

ensure that if {h1,...,hr} is a basis for H then ad (h1) ,…,ad(hr) can be 

simultaneously diagonalzed. 

3.3.2. Definition  

    Suppose that L is a complexities semi-simple Lie algebra of rank n, and H 

as Carton sub algebra let {h1,…,hn} be a basis for H. then as the ad (hi) can be 

simultaneously diagonal zed it follows that L can be decomposed as: 

    ∑    

   Where the      Are vectors in R
n
 with    {               }  The 

vectors      Are called roots and       Is called root space. At thought is 

not a root we will set L0= H for convenience. 

3.3.3. Lemma 

(i) Lα, Lβ, if        

(ii) The restriction of killing form K to H is non-degenerate. 

(iii) Suppose       are roots. If      is not root then: 

[        C     if  +  is not root then [           
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(iv) If   is a root then SO is, - . 

Proof: 

(i) Suppose      and       

     ) k (      ) = k (      ) +k (            )) 

But k ([            +k(               by associatively of k. Hence 

(       k (          so if       then 

K (          

For all       and       

(ii) Suppose that K restricted to H is degenerate then there exists some     

such that k (V,L)=0 for all    . And if   is a root then by reasoning used in 

(i) it follows that K (V,    )= 0, for all  

      . so it follows that K(V, L) =0, for all     , contradiction with the 

fact that K is non-degenerated on L. so K restricted to H is non-generate. 

Hence the equation             be solved for unique  . 

(iii) Suppose that      and      then from the Jacobi identity 

   *      +   *      +     *         +   

  *     +    *     +         *     + 

Hence if    is a root then this implies that [            

If how ever     is not a root then one must have [         

4\ suppose -  is not a root .suppose     . Then if   is any root       

then by (1) if       then K (         

Similarly also by reasoning in (i) K (   h) =0 for all   . Thus then implies 

that    , so      a contradiction. 
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3.3.4. Corollary 

  If   is a root then [         

Proof: 

   From the reasoning used to prove (iii) in the above lemma if  

      And          then *   [      ]+    

Which implies [           

3.3.5. Lemma  

If  is the root then there exists a unique      such that  

    (     ) 

Proof: 

  As the restriction of K to H is non-degenerate, the equation              

can be solved uniquely for       

Note that as            

3.3.6. Corollary  

   Suppose that   is a root .if            then [X, Y]=  

K(X , Y)    

Proof: 

From the above if follows that [X, Y]    If          then 

                     

 (       )              (    )       

Hence                                  But K restricted to H is 

non-degenerate, so [              as required. 
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3.3.7. Lemma  

  Suppose that   is a root. There exits some       and         such that 

   [      ]     (      )     

Proof: 

Pick some 

                              (      )   . For all 

     . Then       for all roots   and     . Hence        But    

is non-degenerate on L so this implies       , a contradiction. So there 

must exists some                      by reasoning we can 

 (     )     

    Then by the corollary above one finds             next suppose that   

is a root. Consider             By (iii) of lemma it follows that W is an 

invariant sup space of ad     and W is also an invariant sub space of ad    

then: 

   (    )     (  [      ])     *          +    

Where here the trace     denotes the trace restricted to the sub space W. As 

            
     

Then note that: 

   (    )        
         di       

we therefore obtain the equality: 

  
   di      

   ∑             

Note that: 

 (      )   (  [      ]) 
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= [     ]       (  
          ) 

   
    (      ) 

   
    

Hence   
   dim   (      ) ∑                (      )  

         
       for all roots   

this implies that [                      hence                     

   It follows that ad         (    )                          

where the trace is how taken over L. As K is non-degenerate this implies that 

    , a contradiction. Hence               

3.3.8. Proposition 

Suppose     are roots, consider the vectors        for    this sequence 

consist of string of roots for p ≤ n ≤ q for some p\q   Z with p ≤ o ≤ q. 

Moreover 
          

        
 = -(p + q) 

Proof: 

     Consider the space            where the sum is taken over those n. 

such that     is a root then V is an invariant under the adjoin action of the 

su(2) generators        

      As each       is one dimensional it follows that the representation is 

irreducible the elements of V consist of elements of the form: 

                                   

      Hence there exists integers p, q with p ≤ o ≤ q such that      is a root if 

and any if p ≤ n≤ q. Note that if         then  

[      
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=
 

        
(  

 
)        

 
 

        
(  

 
)          

             

        
 

    But the largest and smallest of the possible Eigen values is ±r where 2r   , 

     

  
        

        
       

         

        
    

And hence 
         

        
       as required  

3.4. Nilpotent Lie Algebra  

3.4.1. Definition 

Lie algebra   is said to be nilpotent if it admits filtration. 

                         (3-4-1) 

   By ideals such that: 

[                        

   Such that filtration is called a nilpotent series the condition (3-4-1) to be a 

nilpotent series is that        be in the center of        for          

   Thus nilpotent Lie algebras by successive central extensions 

                    

                    

  In other words the nilpotent Lie algebras from the smallest class containing 

the commutative Lie algebras and closed under contrail extension. The lower 

central series of   is: 

 

              

                                [    ]   
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3.4.2. Proposition 

A  Lie algebra   is nilpotent if and only if it is lower central series terminates 

with zero. 

Proof: 

If the lower central series 

Terminates with zero, then it is a nilpotent series conversely, if  

               is nilpotent series, then      because      is 

commutative                     and so on, until we arrive at 

       Let V be a vector space of dimension and let           

      di       , be a maximal flag in let n(f) be the Lie sub 

algebra of   
 
consisting the element                        for all i the 

lower central series of n(f) has: 

      {    
 

               } 

   For J = 1,…,n. in particular n(f) is nilpotent for example: 

   {(
   
   
   

)}  {(
   
   
   

)}  { } 

Is nilpotent series for     

    An extension of nilpotent algebra is solvable but necessary nilpotent. For 

example    is nilpotent and      is commutative, but   is not nilpotent when 

     

3.4.3. Proposition 

(i) Sub algebras and quotient algebras of nilpotent Lie algebras are 

nilpotent. 

(ii)  A Lie algebra   is nilpotent if  \a is nilpotent for some ideal a 

contained in Z( ). 

(iii)  A nonzero nilpotent Lie algebra has non zero center. 
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Proof: 

(i) The intersection of nilpotent series for   with a Lie algebra h is nilpotent 

series with h, and the image of a nilpotent series for   in a quotient algebra 

g is a nilpotent series for . 

(ii) For any ideal        the inverse image of a nilpotent for  \a becomes a 

nilpotent series for   when extended by 0. 

(iii) If   is nilpotent then the last nonzero term a, in, a nilpotent series for   is 

contained in Z ( ). 

3.4.4. Proposition  

       Let h be a proper Lie algebra of a nilpotent Lie algebra   then     

      

Proof: 

    We use induction on the dimension of . Because g is nilpotent and non-

zero it is center Z ( ) is non-zero.                           Because Z 

( ) normalizes h.            then we can apply induction to the Lie sub 

algebra h\Z ( ) of  \Z (  s). 

3.5. Solvable Lie Algebra 

3.5.1. Definition  

        A Lie algebra   is said to be solvable if it admits a filtration by ideal 

such that                           such a filtration is called a 

solvable series the condition (3.1) to be a solvable series is that the quotient 

        commutative for          thus the solvable Lie algebras are 

exactly those that can be obtained from commutative Lie algebras by 

successive extensions. 
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    In other words the solvable Lie algebras from the smallest class containing 

the commutative Lie algebras and closed under extensions the classic ideal 

[   ] is called the derived algebra of and is denoted    clearly    is 

contained in every ideal a such that     is commutative, and so      is the 

largest commutative quotient of g. write    for the second derived , algebra 

 (  )   
   for the third derived algebra     

  , and so on these are classific 

and the derived series of g is the sequence. 

       
    

     We sometimes write    for    and      for   
  

3.5.2. Proposition 

   Lie algebra  is solvable if and only if its derived series terminates with zero. 

Proof: 

 If the derived series terminates with zero then it is a solvable series 

conversely if               is a solvable series then       

because      is commutative.           Because      is commutative 

and so on until            

   Let v be a vector space of dimension and let: 

                    di        

 Be a maximal flag in. Let b (F) be the Lie sub algebra of   
  consisting of the 

elements x such that          for all i. then  

D (b (F)) = n (F) and so b (F) is solvable for example: 

 

   2.
   
   
   

/3  {(
   
   
   

)}  { } 

   In nilpotent series for     
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3.5.3. Proposition 

Let    be a field containing k. a Lie algebra   over k is a solvable if and only 

if          is solvable. 

Proof: 

Obviously, for any sub algebras h and h
1
 of                

     and so 

under extension of the base field derived series of   maps to that of     

    Note we say that an ideal is solvable if it is solvable as Lie algebra. 

3.5.4. Proposition 

(i) Sub algebras and quotient algebra of solvable Lie algebra are solvable. 

(ii)  A  Lie algebra  it's solvable if it contains an ideal n such that both n and 

g\n are solvable. 

(iii)  Let n be an ideal in Lie algebra , and let h be sub algebra in . if n and h 

is solvable then       is solvable. 

Proof: 

(i) The intersection of solvable series for   with Lie sub algebra is a 

solvable series for h and the image of a solvable series for   in quotient 

algebra  is solvable series for . 

(ii) Because  \n is solvable      for some m. now           which 

is zero of some n. 

(iii) This follows from (ii) because             which is solvable by 

(i). 

3.5.5. Corollary   

Every Lie algebra contains a largest solvable ideal. 
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Proof: 

 Let n be a maximal solvable ideal. If h is also a solvable ideal then      is 

solvable by (iii) and so equals, therefore     the radial r = r( ) of G is the 

largest solved ideals in. The radical of   is classific ideal. 

3.5.6. Lemma    

    For any     matrices         and where 

      ∑        
  

       

Hence                    for any endomorphism x, y of a vector space v, 

and so  

                                                    

             

3.5.7. Theorem  

     Let   be sub algebra of   
   where V is a finite-dimensional vector space a 

field k of characteristic zero then   is solved if            for all 

           

     We first observe that if    is a field containing k , then the theorem is true 

for     
 if and only if it is true for      

  (because   is solvable if and 

only if   is solvable from proposition). 

Therefore we may assume that the field k is finitely generated over 0, hence 

embeddable in c and then that k=c 

We shall show that the condition implies that each         define nilpotent 

endomorphism of V the Engle is theorem will show that       is nilpotent in 

particular solvable and it follows that    is solvable because 
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   Let          and choose a basis of V for which the matrix of x is diagonal  

say dig(         and the matrix of    is strictly upper triangular . we have to  

show that x =0 and for this it suffices to show that 

 ̅             

Where  ̅ is the complex conjugate of a .Note that       
      ̅      

 ̅    

Because  ̅ has matrix dia  ( ̅       ̅ ). By assumption x is a sum of 

commentator [y ,z] and so it suffices to show that  

     ̅                        Form the trivial identity (3.2) we see that it 

suffices to show that 

      ̅                      

This will follow from the hypothesis once we have shown that   ̅       . 

According to  

 ̅                      , for some      

And so   ̅       Because         

3.5.8. Corollary  

  Let V be a finite-dimensional vector space over a field of characteristic zero 

and let   be sub algebra of   
 
 .if g is solvable then            for all 

         . Conversely if                               then   is 

solvable 

If   is solvable then                                  For the 

converse note that the condition implies that       is solvable by .But this 

implies that  is solvable, because 
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3.6. Semi -simple Lie Algebras 

As is clear from the above many of the spaces of the representation theory of 

finite groups that were essential to our approach are no longer valid in the 

context of general Lie algebras and Lie groups. Most obvious of these is 

complete reducibility which we have seen fails for Lie groups, another is the 

vector space be non-diagonalizable, the action of some element of Lie algebra 

may be diagonalizable under one representation and not under another. 

That is the bad news .The good news is that if we just restrict ourselves to 

semi –simple Lie algebras, everything is once more as well behaved as 

possible. For one thing we have complete reducibility again: 

3.6.1. Theorem 

 (Complete Reducibility) Let   be a representation of the semi-simple Lie 

algebra           a subspace invariant under the action of   . 

Then there exists a subspace     complementary to   and invariant 

under . The proof of this basic result will be deferred to Appendix C. The 

other question the diagonalizability of elements a Lie algebra under a 

representation ,requires a little more discussion. Recall first the statement of 

Jordan decomposition: any endomorphism   of a complex vector space   can 

be uniquely written in the form 

        

Where    is diagonalizable    is nilpotent, and the two commute. 

Moreover,           may be expressed as polynomials in   

Now suppose that   is an arbitrary Lie algebra,     any element, and 

         any representation. We have seen that the image      behaves 

with respect to the Jordan decomposition. The answer is that in general, 
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absolutely nothing need be true. For example, just taking      , we see that 

under the representation  

         

Every element is diagonalizable i.e.,          , under the representation 

     (
  
  

) 

Every element is                             

In other words ,if  we think of   as injective and   accordingly as a Lie sub 

algebra of      , the diagonalizable  and nilpotent parts of any element   of 

  are again in   and are independent of the particular representation  . The 

proofs we will give of the last two theorems both involve introducing objects 

that are not essential for the rest of this reference and we therefore relegate 

them to Appendix C. It is worth remarking however that another approach 

was used classically by Hermann Weyl, this is the famous unitary t that not 

only can the action of elements of Lie group or algebra on a vector trick, 

which we will describe briefly 
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Chapter Four 

Symmetries and Lie Algebras 

4.1. Introduction  

In order to understand symmetries of differential equations, it is help full to 

consider symmetries of simpler objects roughly speaking, symmetry of a 

geometrical – object is a transformation whose action leaves the object 

apparently unchanged. For instance, consider the result of rotating an 

equilateral triangle antic lock wise about its centre. After rotation of 2 /3, the 

triangle looks the same as it did before the rotation, so this transformation is 

symmetry rotation of 4   /3 and 2  are also symmetries of the equilateral 

triangle. In fact, rotating by 2  is equivalent to doing nothing, because each 

points its mapped to itself. The transformation mapping each point to itself is 

asymmetry of any geometrical object it is called the trivial symmetry. 

On the other hand, consider a circle; any rotation by angle ξ may be 

represented in Cartesian coordinates as the mapping  

 ξ          c s ξ      ξ      ξ      ξ  

In this case ξis continuous parameter, similar the set of reflection of circle can 

be represented by the mapping. 

                

Followed by arotation  ξ there fore in the case of circle we are examining 

asymmetric group which is not discrete, these kinds of symmetries  are known 

as Lie symmetries, and they form a Lie group Which will be explored in the 

next section symmetries are commonly used to classify geometrical objects. 

There are certain constraints of on symmtries of geometrical objects. Each, 

symmetry has aunique inverse, which is itself is symmetry. The combined 

action of the symmetry and  its inverse up on the objects leaves of coordinates 
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q(t) and q
'
 (t) are soluation of the same set of equations. This explains the 

view of symmetry transformation as mapping  between different soluations of 

the equation of motion motivates an alternative view of symmetry 

transformation, btween different time evolutions of the system, describe in the 

some coordinate frame. This is called an active transformation. It is 

transformation between defferent physical stations, rather than 

atransformation between two different descriptions of the same situation. 

4.2. Importance of Symmetries  

Symmetries are for many reasons a highly important subject to study in 

physics. Symmetries of the fundamental laws of nature tells as something 

basic about the nature that in many cases can be viewed as even more basic 

than the laws themselves. A well –known example is the space time 

symmetries of the special theory of relativity. The Lorentz transformation 

were first detected as symmetries of Max wells equations, but Einstein 

realized that they are more fundamental than being symmetries of equation. 

After him the relativistic symmetries space-time have been the guiding 

principles for formulation of all fundamental laws of nature. 

In the similar may, when extending the laws of the nature in to new realms, in 

particular in elementary particle physics, the study of observes symmetries 

have often been used as a tool in the construction of new theoretical models. 

When systems become complex and detailed description becomes difficult, 

the symmetries may still shine through the complexities as a simplifying 

principle. In the study of the condensed matter physics the identification of 

important symmetries is often used as a guiding principle to obtain a correct 

description of the observed phenomena. 

   In the present case where we focus on the description of mechanical systems 

we have notice the possible use of symmetries as generates new solution s 
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from old solutions of the equations of the motion. There is another important 

effect of symmetries that we will focus on, the connection between 

symmetries and constant of motion. Loosely speaking, to any (continuous) 

symmetry there is associated a conserved quantity. The study of constants of 

the motion is important for the following reasons. These constants may tell us 

something important about time evolution of the system even if we are not 

able to solve the full problem given by equations of motion. The presence of 

constants of motion may simplify the problems since they effectively reduce 

the number of variables of the system.  

In symmetry, at ran for motion is symmetry if it satisfies the following: 

1. The transformation preserves the structure. 

2. The transformation is a diffeomorphism 

3. The transformation maps are object to itself   

4.3. Local One Parameter Point Transformations  

    To begin local one –parameter point transformation, we consider the 

following equation  

 ̅                                                                                                                     (4-1) 

   Be a family of one –parameter   R invertible transformation, of points 

               Into point ̅                 

These are known as one- parameter transformations, and subject to the 

conditions. 

 ̅|      This is       |                                                                           

Equation (4-1) using Taylor expansion in the some , neighborhood   , we 

get  

 ̅      (
  

   
|   )  

  
 

 
(

   

   
 |   )    ℇ                                              (4-3) 

Putting  
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|                                                                                                     

 Reduces the expansion to  

 ̅                                                                                                 

The expression  

 ̅                                                                                                           

Is called a local one –parameter point transformation and the component of 

      are the infinitesimals (4.1). 

4.4. Local One Parameter Point Transformation Groups  

 The set G of transformation  

 ̅       (
  

   
|    )  

  
 

 
(

   

   
 |    )                                       (4.7) 

Becomes a group only when truncated at       

4.4.1. The Group Generator  

The local one – parameter point transformation in equation (4.6) we can 

rewritten in the form  

 ̅              

So  ̅               , an operator                                                        

                                                                                                                      

These implies that  

 ̅  (       )                                                                                                   

An operator (4.9) has the expanded form  

  ∑   
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4.4.2. Prolongation Formulas   

The prolongation is happens when the function         dose not only depend 

on point  alone, but also on the derivatives. When this case is happened then 

we have use the prolonged form of operation G. 

When  

N = 2 with      and       reduces (4.11) 

To 

         
 

  
       

 

  
                                                                  

In the deterring the prolongations, it is convenient to use the operator of total 

differentiation  

  
 

  
   

 

  
    

 

   
                                                                     

Where      
  

  
      

   

   
 

The derivative of the transformation point is  

   
   

   
   Since  

 ̅          ̅                                                                                          

Then  

 ̅  
     

      
                                                                                                

So that  

We can introduce the operator D: 

 ̅  
        

       
                                                                                        

From the (4.16) implies that  

 ̅                                                                                 
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Or    ̅                                                                                                       

With  

                

It expands into  

      (     )                                                                     

The first prolongation of G is  

           
 

  
       

 

  
   

 

   
                                               

For the second prolongation, we have  

 ̅   
          

       
                                                                   

With                 this expands into  

       (        )   (        )           (       

     )                    

The second prolongation of G is  

 | |        
 

  
       

 

  
   

 

   
   

 

    
                   

Most applications movie up to second order, derivatives for this reasonable 

we pause here third order. 

4.5. Generate Point Symmetries  

4.5.1. One Dependent and Two Independent Variables  

Considering the Equation:  

                                                                                                 

In order to generating point symmetries for equation (4.24) we first consider a 

change of variables from     and u to       and   involving an infinitesimal 

parameter . A Taylors expansion in     is 

 ̅              
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 ̅               

                                                                                            

Differentiating (4.25) with respect to   

  ̅

  
|              

  ̅

  
|            , 

  ̅

  
|                                                                                    

The tangent vector field (4.26) is associated with an operator 

   
 

  
  

 

  
  

 

  
                                                                

This operator is called a symmetries generator this leads to the invariance 

condition    

 | |                            |⌈                          ⌉          

Where 

 | | is the second prolongation of G. It is obtained from: 

 | |      
 

 

   
   

 
 

   
    

 
 

    
    

 
 

    
     

 
 

    
            

Where  

  
  

  

  
  

  

  
 [  

  

  
]    

  

  
   

  
  

  

  
  

  

  
 [  

  

  
]    

  

  
   

 

   
  

   

   
  

   

   
 0 

  

  
 

   

   
1    

   

   
   [   

  

  
]      

  

  
    

   
  

   

   
  

   

   
 0 

  

  
 

   

   
1    
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And 

  
  

 
   

    
  

   

    
 0 

  

  
 

   

    
1    0 

  

  
 

   

    
1   

 0  
  

  
 

   

  
1     

  

  
    

  

  
    

4.5.2. One Dependent and Three Independent Variables  

In order to generate point symmetries for equation  

           , we first consider change of variables from      and    to 

         and    involve an infinitesimal parameter  .use Taylor's series in   

near     yields. 

 ̅                 

 ̅                 

 ̅                 

                                                                                 

  ̅

  
|                

  ̅

  
|                

  ̅

  
|                

  ̅

  
|                                                                        

The tangent vector field (4.31) is associated with an operator: 

   
 

  
  

 

  
  

 

  
  

 

  
                                        

Called asymmetry generator this in turn leads to the invariant condition 

 | |  [                        ]|⌈ (                     )  ⌉  
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Where  | |is the second prolongation of G. it is obtained from the formulas: 
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4.5.3. One Dependent and N Independent Variables  

The local one – parameter point transformation  

                              

                                                                       

Acting on       space has generator  

         
 

   
       

 

  
             

The Kth extended infinitesimals are given by   

                  (                       )                                       

And the corresponding Kth extended generator is  

       

 

   
  

 

  
  

 
 

   
     

 
 

   
    

                                                                                                  

4.5.4. Dependent and N Independent Variables   

We consider the case of n independent variables             and m 

dependent variables                       with partial derivatives 

denoted by  

  
 

 
   

   
 The notation  

          
         

        
       

     

Denotes the set of all first order partial derivatives  

  
 

 {      
 

|             } 

      
 

    
     

|              

Denotes the set all partial derivatives of order P point transformations of the 

form  

 ̅          
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Acting on the       dimensional space       has as its    extended 

transformation  

  ̅            

              

(  
  

)    
 

        , 

(      
  

)        

                                         

With                    
    

     
 

The trans for med components of the first order derivatives are determined by  

[
 
 
 
 
 
    

 

    
 

 
 
 

    
 

]
 
 
 
 
 

 

[
 
 
 
 
 
  

 

  
 

 
 
 

  
 

]
 
 
 
 
 

    

[
 
 
 
 
 
    

    

 
 
 

    ]
 
 
 
 
 

 

Where     is the inverse of the matrix 

   [
         

   
         

] 

In term of the total derivatives operator  

   
 

   
   

  

   
     

  

    
           

The transformed components of the higher –order derivatives are determined 

by  
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]
 
 
 
 
 
 

 

The situation where the point transformation (4.39) is a one –parameter group 

of transformation give by 

                                       

                          (       

                                                                                                              

Will have the corresponding generator given by  

         
 

  
         

 

   
                                                

4.6. Lie Group of the Heat Equation 

In this section we consider the symmetry analysis and Lie symmetries of one 

–dimensional and two dimensional heat equation, also we find the invariant 

solutions of certain symmetry generator of heat equations 

4.6.1.One-Dimensional Heat Equation 

Consider the heat equation given by  

                                                                                                   

Let    and   two independent variables, and u a dependent variable The total 

derivatives are given by  

   
 

  
   

 

  
    

 

   
    

 

   
   

 

   
 

  
   

 

  
    

 

   
   

The infinitesimal generator is given by  
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The second prolongation of    is define by 

 | |      
 

 

   
   

 
 

   
    

 
 

    
    

 
 

    
    

 
 

    
           

The coefficients   
    

     
     

     
  are define by 

  
                                              

  
                                              

   
       

                    

                                       

        

   
       

                    

                                       

                    

   
       

                    

                                                 

 

4.6.2. Symmetries of One Dimensional Heat Equation  

The deterring equation is obtained from invariance condition  

(        
 

  
         

 

  
         

 

  
   

 
 

   
   

 
 

   
    

 
 

    

   
 

 

    
    

 
 

    
)                     

Where  

(  
     

 )                   

After substituting   
      

  and         in equation       (4.46) 
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We get                                               

                             

Separate coefficients in (4.47) having the following monomials  

                                                                                          

                                                                                             

                                                                                     

                                                                                    

                                                                                                  

Integrating equation (4.53) with respect to x we get  

                                                                                                     

Substituting T in to (4.50) and integrating with respect to x we obtain  

   
 

 
                                                                                    

Differentiating (4.54) with respect to t we get  

   
 

 
                                                                                     

Substituting    in (4.51) and integrating with respect to x yields  

  
 

 
      

 

 
                                                                     

Substituting f in (4.49) we obtain  

 
 

 
       

 

 
        

 

 
                                                     

Splitting equation (4.57) with respect to the power x we get  

          

         

      
 

 
       

And integrating three equation with respect to respectively yields 
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The infinitesimals 

                                                                              

                                                                  

   
 

 
     

 

 
                                                 

4.6.3. Symmetries  

The equation  

 
 

  
  

 

  
       

 

  
                                                      

The corresponding symmetries are given by  
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4.6.4. Invariant Solutions  

Useful tools of the symmetries groups that conserve the set of all solutions in 

the differential equations admitting these groups .That is the symmetries 

transformation simply permute those integrals curves among themselves. Such 

integral curves are termed invariant solutions. 

4.7. Theorem  

A function F(x , y) is called an invariant of the group G if and only if solving 

the following first – order linear differential equations. 

         
  

  
       

  

  
                                                                         

        
  

  
         

  

  
                                                              

Is the general partial differential equation of invariant surface, with the 

following characteristic equation? 

  

        
 

  

        
 

  

        
                                                                  

For the symmetry equation (  ) characteristic equation is  

   

  
 

  

 
                                                                                                             

Integrating (4.68) we obtain  

       
   

                                                                                                                

Differentiating (4.76) with respect to t and twice with respect to x respectively 

we obtain  

         
   

        
   

  
  

   
                                                                           



74 
 

    
  

   
 

   

       
 

 
  

   

                                                                   

Substituting    and     in (4.43) yields  

      
 

 
                                                                                                    

Hence the solution is  

  
 

    
 

   

                                                                                                            

Finding the invariant solution the symmetries equation      is used since it 

contains         then the invariance condition becomes 

          (
 

 
   

 

 
 )                                                                               

The corresponding characteristic equation are given by  

  

  
 

  

  
 

  

(
 

 
   

 

 
 )  

                                                                                       

By separation of variables and integration the solution of the characteristic 

equation yields two invariant of  

        
 

 
  and   √  

  

  u 

Then the solution of the invariant surface equation (4.81) is given by the 

invariant form  

√  
 

    (
 

 
) 

         
 

√ 
 

  

                                                                                       

Finding the solution: 
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/                                                

Substituting     and      in (4.83) we obtain  

   (
 

 
)

 

  
                                                                                                           

Hence         

Solving the differential equation obtain  

   
 

√ 
        

   

                                                                                              

4.8. Two Dimensional Heat Equations  

Consider two dimensional head equation  

                                                                                                            

The dependent variable is u and independent variable are t , x and  y . 

The infinitesimal generator is given by  

            
 

  
           

 

  
            

 

  

           
 

  
                                                                          

The second prolongation of   is  

 | |    .  
 

 

   
   

 
 

   
    

 
 

    
   

 
 

   
    

 
 

    
    

 
 

    

    
 

 

    
    

 
 

    
    

 
 

    
/ 

With invariance condition  

 | |(          )|(          )                                                             
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That yields  

  
     

     
 |(          )                

Where    
  ,     

   and     
   are substituting in (4.91)  
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4.9. Determining Equation of Two Dimensional Heat Equation  

Considering equation 

  
      

     
                                                                                              

Implies that  
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Compare coefficient of constant and u yields  

            

                                                                                                      

                                                                                                    

                                                                                                   

                                                                                                      

                                                                                                  

                                                                                                          

                                                                                                       

                                                                                                              

                                                                                                               

Integrating (4.102) and (4.103) with respect to x and y respectively getting  
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Substituting T in (4.97) and integrate with respect to y we obtain 

  
 

 
                                                                                               

Differentiating G twice with respect to x and y    

                                                                                               

Differentiating   with respect to   we get  

   
 

 
                                                                                      

Differentiating    with respect to y and substituting in (4.100) and integrate 

with respect to x obtain  

  
 

 
                                                                                                   

 Differentiating      with respect to t and twice with respectively we obtain the 

following equations  

   
 

 
                                                                                                      

                                                                                                      

Differentiating   (4.110) with respect to x and y respectively we obtain the 

following equations  

                                                                                                  

Integrating (4.111) with respect to x and y respectively we obtained  

                                                                                                                

                                                                                                                  

Substituting               in (4.98) and             in (4.99) and integrating 

with respect to x and y respectively we obtains 
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Differentiating       with respect to t and twice with respect to x and y 

respectively we obtain  

    
 

 
       

 

 
       

 

 
           

 

 
                 

                                                                                             

     
 

 
                  

 

 
                                             

Substituting          in (4.96) yields  

 
 

 
      

 

 
      

 

 
           

 

 
                         

 
 

 
                                                                 

Splitting (4.117) we obtains minimal equations  

:                                                                                                                     

:                                                                                                                     

:                                                                                                                      

:                                                                                                                         

                                                                                                                          

Integrating (4.121) , (4.122) and (4.120)  

     
 

 
                                                                                              

                                                                                                               

                                                                                                               

The infinitesimals: 
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Symmetries: 
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4.10. Invariant Solution 

For     
 

  
 , the characteristic condition is giving by 

    
  

  
                                                                                                                  

The characteristic equation is  

  

 
  

  

 
 

  

 
 

  

 
            

This implies that d    , thus the invariant solution        or       , we 

substitute this in the original equation             to get         thus 

       

Similarly for        we have              which implies      

        then the invariant solution because   

 

                                                                                                                         

For    
 

  
 

Similarly we obtain the invariant solution  

                                                                                                                    

For  

  

  
 

  
  

 

  
                                                                                                       

The invariant condition is  

     
  

  
  

  

  
                                                                                                

The characteristic equation is given by  
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Then          

The first invariant          and the second invariant         the 

invariant this solution is        (     ) substituting this solution in the 

original equation obtain  

      (     ) = 0,                                                                         

Thus invariant solution  

                                                                                                              

For         

  
   

 

  
   

 

  
 

 

 
         

  

  
                                        

The invariant condition is given by  

      
  

  
   

  

  
   

  

  
 

 

 
         

  

  
                                            

The characteristic equation is giver by equation  

  

  
  

  

  
 

  

  
 

  
 

 
        

                                                                            

From the equation (4.150)  

  

  
  

  

  
            

Integrating the equation (4.151) leads to 
 

 
                                                   

From the (4.150) we have  

  

  

 
  

 

 
        

                                                                                                          

Integrating (4.153) obtain  
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)  

(
     

  
)
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Differentiating (4.154) with respect to t and twice with respect to x and y 

respectively we obtain  
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)

.
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(
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/                                                   

Substituting          and      in (4.88) yields  
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)
/

                                                                                                                                   

The second order differential equation (4.158) reduces tos 

                                                                                                           

From characteristic equation         (4.150) 

  

  
  

  

  
                                                                                                                    

Integrating (4.160) obtain  

 

 
                                                                                                                        

From (4.150)  

  

  
 

  
 

 
        

                                                                                      

Integrating (4.162) obtain  

       
(          )

                                                                                        

Differentiating (4.163) with respect to x and twice with respect to x and y 

respectively yields  
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Substituting         and     in (4.88) we obtain  
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This reduce to  

                                                                                                

From [14] for two – dimensional Lie algebra spanned by x , y has  invariant  

  √       and         looking for invariant solution in the form 

        when          substituting in (4.88) and multiplying by r the 

result equation because  
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Letting K < 0 , then setting K = -     and       the equation because 

Bessel function n   (  ) of order zero  

                                                                                                          

Where   

         and the invariant solution is given by  

              

Also we can obtain the solution of (4.159) and (4.165) similar to (4.167). 
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Chapter Five 

Applications of Lie Algebra 

5.1. Introduction 

 This chapter introduces basic concepts from representation theory, Lie group, 

Lie algebra, and topology and their applications in physics, particularly, in 

particle physic. The main focus will be on matrix groups, especially the 

special unitary groups and the special orthogonal groups. They play crucial 

roles in particle physics in modeling the symmetries of the subatomic particles 

of the many physical applications the chapter will introduce two concept 

phenomena known 

Here, we define basic concept that will be used later on. Note that the scalar 

field of the vector space will be the complex number, C, unless mentioned 

otherwise. 

5.1.1. Definitions  

 Give a vector space V over field C a norm on V is a function  

           

With the following properties for all      and all        

i.        | |      

ii.                   

iii.               

The particular norm, which we will use in this chapter for a vector       

will be denoted by || ||  and defined as following: 

|| ||  √∑

 

    

|  |  

Whereas the norm of      complex matrix, A, will be defined as following: 
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|| ||  
   ||  ||

     { }|| ||
 

It is not hard to check that these two norms satisfy the three properties 

mentioned above. 

5.1.2. Definitions  

Let V be a vector space will basic  {  }   
   then the symmetric product  

       is defined as  

                          With          the alternating 

product,     is defined as  

                        With           

5.1.3. Definition  

A group is a set G together with an operation,         satisfying four 

requirements known as the group axioms: 

i.                   

ii.                              

iii.       such that               

iv.                       such that               

5.2. Representation theory  

Here, we define representation and its associated concepts and state some 

examples. Before starting, it could be helpful to first understand why the 

concept of representation is important. A representation can be thought of as 

an action of group on a vector space. Such actions can arise naturally in 

mathematics and physics, and it is important to study and understand them. 

For example, consider a differential equation in their –dimensional apace with 

rotational symmetry. If the equation has a rotational symmetry, then the 

solution space will be invariant under rotations. Thus, the solution space will 
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constitute of are presentation of the rotation group so (3). Hence, knowing 

what all the representations of so (3) are, it is easy to narrow down what the 

solution space of the equation will be. In fact, one of the main applications of 

representation is exploiting the system's symmetry. In system with symmetry, 

the set of symmetries form a group, and the representation of this symmetry 

group allows you to use that symmetry to simplify the given system. We will 

see more of these applications, particularly in physics, in the final section.  

5.2.1. Definition  

A representation of a group G on a vector space V is defined as a 

homomorphism              . To each     , the representation map 

assigns a linear map        . A though V is actually the representation 

space, one may, for short, refer to V as the representation of G. 

5.2.2. Definition  

A sub representation of a representation V is a vector subspace w of v, which 

is invariant under G. This means Im (w) = w under the action of each    . 

5.2.3. Definition  

A representation V is called irreducible if there is no proper nonzero invariant 

subspace w of v. that is has no sub representation, except itself and the trivial 

space. 

   Now that the basic concepts are defined, we can look at some examples of 

representation. 

5.2.4. Example  

(Trivial representation) every element     gets mapped to the identify 

mapping between the vector space V and itself. Hence, all elements of G act 

as the identity on all   . 
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5.2.5. Example  

(Standard Representation) If we let G be     , the symmetric group on n 

elements, then G is obviously represented by vector space   ≅     with n 

basis vector. Now, there is one dimensional sub representation W of V 

spanned by sum of the basis vector. The standard representation is n-1 

irreducible representation V/W the equation space. 

5.2.6. Example  

(Dual Representation) Let   be a representation of G on V for V, we can 

define its dual space    =Hom (V, C). We define 

            by 

              For all    .    Is the dual representation . It is easy to 

check that this is actually a representation = let       

And       be their associated mapping in     . Then,  

   
         

  (           )
 

     
       

    
     

  

As we wanted  

5.2.7. Example  

If V, W is representation of G, the direct sum       and the tensor product 

      are also representation, the letter via  

                

For a representation V, the     tensor power     is again a representation of 

G by this rule, and exterior power   (v) and symmetric power sy       are 

sub representation of it. 
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5.3. Lie Group  

Here, we introduce concept of Lie group, which plays crucial role in physics, 

particularly in studies of particle physics. We make a slight detour to 

introduce an application in physics and the necessary concept in topology. 

5.3.1. Definition  

A real Lie group is a group that is also a finite-dimensional real smooth 

manifold, in which the group operations of multiplication and inversion are 

smooth maps smoothness of the group multiplication. 

                  

Means that   is a smooth mapping of the product     into G. 

These two requirement can be combined to the single requirement that the 

mapping. 

           

Be a smooth mapping of     into G. 

As defined above Lie group embodies three different forms of mathematic 

structure. Firstly, it has the group structure. Secondly, the elements of this 

group also form a “topological space“so that is may be described as being a 

special case of a “topological group” .finally, the elements also constitute an 

“analytic manifold”. Consequently, a Lie group may be defined in several 

different (but equivalent) ways, depending on degree of emphasis on its 

various a sepects in particular it can be defined as a topological group with 

certain analytic properties or, alternatively, as  an analytic manifold with 

group properties. But, formulating in these ways would require many set of 

other definitions (such as manifold, smooth mapping, and etc), which may not 

be every important in understanding the applications of lie groups in physic. 
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In fact, we are mainly interested in a particular type of Lie group for problems 

in physic, the matrix Lie group, for which a straight forward definition can be 

give using the general linear group,         

5.3.2. Definition  

The general linear group over the real numbers, denoted by         is the 

group of all     invertible matrices with real number entries. 

We can similarly define it over the complex numbers C denoted by          . 

5.3.3. Definition  

A matrix Lie group is any sub group H of        with the following 

properties. If    is any sequence of matrices in H and    converges to some 

matrix A, then either   , or A is not invertible. A mounts to saying that H 

is a closed subset of        . Thus one can think matrix Lie group as simply 

a closed sub group of        . 

5.3.4. Definition  

Counter examples. An example of a sub group of         in not closed is the 

set of all     invertible matrices whose entries are real and rational number. 

One can easily have a sequence of invertible matrices with rational number 

entries converging to an invertible matrix with some irrational number entries. 

5.3.5. Example  

(The general linear groups,         and       ) the general linear groups 

are themselves matrix Lie groups. Of course,        is a sub group of itself. 

Also, if A is a sequence of matrices in         and A converges, to A, then 

by definition of       , either A is in          or A is not invertible. 

Moreover,         is a subgroup of         and converges to A, then the 

entries of A are, of course, real. Thus, either A is not invertible, or A   

        . 
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5.3.6. Example  

The special linear groups         and         the special linear groups is 

group of     invertible matrices having determent1. Since determent is a 

continuous function, if a sequence    in SL (n, c) converges to A, then A also 

has a determinant 1 and         . 

 

5.3.7. Example  

The orthogonal and special orthogonal group O(n) and       

A     matrix A is orthogonal   if the column vectors that makeup A are 

orthogonal, that is, if  

∑    

 

   
        

Equivalently, A is orthogonal if it preserves inner product, namely if 

〈   〉  〈     〉 

For all       . Another equivalent definition is that A is orthogonal if 

            if       . Since       de   if A is orthogonal, then 

    . Hence, orthogonal matrix must be invertible. Furthermore, if A is an 

orthogonal matrix, then   

〈         〉  〈              〉  〈   〉 

Thus, the inverse is also orthogonal. Also, the product of two orthogonal 

matrices is orthogonal. Therefore, the set of     orthogonal matrices forms 

a group, called orthogonal group and it is a subgroup of        . The limit of 

a sequence of orthogonal matrices is orthogonal since the relation         is 

preserved under limits. Thus O(n) is a matrix Lie group. Similar to        . 

The special orthogonal group, denoted by So(n), is defined as subgroup of 

O(n) whose matrices have determinant 1. Again, this is a matrix Lie group. 
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5.3.8. Remark  

Geometrically speaking, the elements of O (n) are either rotation, or 

combinations of rotations and reflections, while the element of So (n) are just 

the rotations. Due to this geometric nature, the special orthogonal group 

appears frequently in physic problem dealing with rotation symmetry. An 

example of this would be a problem dealing with hydrogen atom potentials, 

which has a spherical symmetry. 

5.3.9. Example   

(The unitary and special unitary groups, U (n) and SU(n)) an     complex 

matrix A is unitary if the column vector of A are orthogonal that is  

∑  ̅  

 

   
        

Similar to an orthogonal matrix, a unitary matrix has to nother equivalent 

definitions. A matrix A is unitary  

i. If it preserves an inner product. 

ii. If             if       (where    is adjoin of A) since de    

     |     |    for all  

Unitary matrices A. This shows unitary matrices are invertible. The same 

argument as for the orthogonal group can used to show that the set of unitary 

matrices from a group, called unitary group        

This is clearly a subgroup of         and since limit of unitary matrices is 

unitary,      is a matrix Lie group. The special unitary group        it is 

easy to see that this is also a matrix Lie group. 

     Here, we take a short detour to cover some needed topics in topology to 

help understand an application of special unitary group,       and special 

orthogonal group,       in physics. 
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5.3.10. Definition  

  A covering space of a space x is space  ̃ together with a map  

   ̃    , satisfying the following condition: there exists an open cover {  } 

of X such that, for each           is a disjoint union of open sets in  ̃ 

likewise, covering group can be defined similarly on topological groups, in 

particular matrix Lie groups. 

5.3.11. Definition  

  A path in topological space X is a continuous function f from unit interval 

         to X 

       

A space X is said to be path –connected if a 

ny two points on X can be joined by a path. The stronger notion, the simple-

connected space X, is if: 

i. X is path-connected 

ii. And every path between two points can be continuously transformed, 

staying within space, into any other such path while preserving two end 

points. 

5.3.12. Definition  

A covering space is a universal covering space if it is simple-connected. The 

name universal cover comes from the property that the universal cover (of the 

space X) covers any connected cover (of the space X), i.e. if the mapping  

   ̅    Is the universal cover of the space X and the mapping    ̃in any 

cover in the space X where  ̃  is connected, then there exists a cover 

map    ̅   ̃ such that       . 

5.3.13. Proposition  

The matrix Lie group       can be identifiedwith the manifold    
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Proof: 

Consider     (
  
  

)        

For              . This is       if  

         And         

Using the inverse matrix formula with         

    (
   

   
) 

Since         , we have  

(
   ̅
  ̅

) 

Where      ̅    ̅    

This is a generic form of element of     . Now, set            

           For                  

Then, it is straight forward to see that  

      ∑   

 

   

   

Where    are Pa uli matrices defined as following? 

   (
  
  

)      (
   
  

)     (
  
   

) 

Now, the previous condition   ̅    ̅    is equivalent to  

  
    

    
    

       .                   . This establishes a 

smooth, invertible map between      and  . 

5.3.14. Remark  

  The Pauli matrices, {  } which are familiar from quantum mechanics, can be 

taken as generators for Lie algebra of      , often with an extra factor of I, in 

physics{   }. 
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5.3.15. Remark  

The point of establishing the correspondence between              is to 

provide an explicit way of seeing that      is simply-connected, since unit 

   (with    ) is simply-connected, in particular,   . 

5.3.16. Proposition  

The special unitary group      is a double-cover of the special orthogonal 

group      . There is 2-1 correspondence                and   is a 

group homomorphism additionally it is a universal cover. 

Proof: 

     Suppose        . Define a 3 x 3 matrix      via  

       
 

 
                 

Where    are Pauli matrices defined earlier. By writing  

      ∑   
 
                  , satisfying 

  
  ∑     

 
      , it is straight forward from here to show that  

       4  
  ∑      

 

   

           ∑       

 

   

    5 

It is clear that if      for         so that  

                                 . More generally, suppose that 

     than we can set    sin     , 

   c s                       . Than the constraint  

  
  ∑     

 

   

                ∑     
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 ⃗              Is a unit vector in     . Then         can be rewritten as 

following  

        c s        ∑ sin    

 

   

            c s          

It is then apparent that  

             

And if  ⃗ is orthogonal to  ⃗ then  

         c s       ∑ sin          

 

   

     

The transformation   is therefore corresponds to a rotation by 2  

In the plane unit normal vector  ⃗ 

It is clean that any non-trivial rotation in       can be written in this way. 

However, the correspondence in not 1-1, but 2-1 .To see this explicitly, it 

requires bit of echoes algebra, so we will skip this part of the proof. The end 

picture will be that      from       will correspond to both U and –U 

from     .  Now, check the group homomorphism,           

          for             . Let us write        by following: (Note that 

we are now using the Einstein notation, where there is implicitly a summation 

over rerated indices). 

             ,              

For                satisfying   
         

        then  

                

Where  

             And                       

Satisfy    
         , it then suffices to evaluate  



98 
 

Directly            (  
      )                    

And compare this with  

              

 [   
                          ][   

          

               ] 

From here, it is again a simple but tedious matter of expanding out two 

expressions in terms of y and w and checking 

                         as required. The final statement about the 

universal over follows straight forward from simple connectedness of  

     .And the definition of universal cover  

5.3.17. Remark  

To quote from W. S. Massey, algebraic topology an induction, “A simple – 

connected space admits no non-trivial converging equivalently speaking, a 

universal cover is unique up to a homomorphism. In linear group (or matrix 

Lie group), in particular, the only cover of simply-connected group is an 

isomorphism, thus, the universal covers are isomorphic. This fact, in addition, 

to the relationship between      and       has a well-known, physical 

outcome, there are particle with only integer or half-integer spins (boons or 

fermions), i.e. there is no 
 

 
 or 

 

 
      spin particles. 

5.4. Lie Algebra  

   Now, we move on to Lie algebras. The concept of Lie algebra can be 

motivated as the tangent space of the associated lie group at the identity, using 

Lie group‟s smooth manifold structure. Install, we can also define Lie algebra, 

using the matrix exponential, which is much more straightforward first, we 

define the matrix exponential. 
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5.4.1. Definition  

Let X be any     complex matrix. We define the exponential of    ,   by 

the usual power series  

   ∑
  

  

 

   

 

5.4.2. Proposition  

For any    complex matrix X, the series above converges. 

The matrix exponential,    is a continuous function of X 

 proof  

Recall that the norm of matrix A is defined as  

||    ||    || ||  

∑ ‖
  

  
‖

 

   

 ∑
‖ ‖ 

  
  ‖ ‖   

 

   

 

Thus, the exponential series converges absolutely. But, given absolute 

convergence, we can take partial sums of the series to form a Cauchy 

sequence. Now, using the fact every Cauchy sequence converges in complete 

space, we now have that the exponential series converges. As for continuity, 

we just have to note that    is continuous of X.  

5.4.3. Proposition  

Let      be arbitrary     complex matrices. Then following are true  

i.      

ii.    is invertible and            

iii.                for all complex number     . 

iv.         , then              . 

v.                Invertible complex matrix, then      
       . 

vi. ||    ||    ||   || . 
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Proof: 

  Point (i) is obvious from the fact that      for all matrices X and      

for all    . Point (ii) and (iii) are special cases of (iv). To verify (iv) we 

simply multiply power series out term by term 

     (  
 

  
  ) .    

  

  
  / 

By collecting the term where the power of X and power of Y add up to m, we 

get  

     ∑ ∑
  

  

 

   

 

   

    

      
 ∑

 

  

 

   

∑
  

        

 

   

       

 

Since we are give XY=YX, we have. 

       ∑
  

        

 

   

       

Substituting this back in to what we had earlier, we get  

     ∑
 

  

 

   

            

For (v) we simply note that               . The proof of (vi) was 

already made from the proof of proposition (3.5.16). 

5.4.4. Definition  

  Let G be a matrix Lie group. Then the Lie algebra of G denoted g, is the set 

of all matrices X such that      is in G for all real number t, together with a 

bracket operation [. , .] :      ,called the Lie bracket, with the following 

properties: 

i. [. , .] is anti-symmetric, i.e. for all                      
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ii. [. , .] is bilinear, i.e. for all      and                   

                                     

iii. [. , .] satisfies the Jacobi identity, i.e. foe all         [       ]  

[       ]  [       ]    

In fact, for a matrix Lie group G, the Lie bracket associated with its Lie 

algebra g is simply given by commentator of matrices, i.e. for all       and 

              is defined by: 

            

And it is easy to check that three properties mentioned above are satisfied. 

5.4.5. Remark  

Physic is are accustomed to considering the map      instead of usual 

    . Thus, in physics lie algebra of G is often defined as set od matrices X 

such that        for all real t. in physics lie algebra is frequently referred to 

as the space of infinitesimal group elements, which actually connects the 

concept of the Lie algebra back to its original definition as the tangent space. 

5.4.6. Example  

(The general linear group) let X be any     complex matrix, then by 

proposition 5.20,     is invertible thus, the Lie algebra of         is the space 

of all      complex matrix. This Lie algebra is donated by        . If X is 

Any                 then    will be invertible and real. On the other hand 

if     is real for all t, then    
 

  
|        will also be real Thus the Lie 

algebra of          is the space of all     real matrices       . 

5.4.7. Proposition  

Let X be      complex matrix. Then  
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Proof: 

  We can divide up the proof into three cases: 

X is diagonalizable, nilpotent, or arbitrary. The reason we can do this is 

because any matrix X can be written in the form X=S+N with diagonalizable, 

nilpotent, and S/V =NS. this following form the Jordan canonical form. Since 

S and N commute. 

          

And we can, then use the results for diagonalizable and nilpotent matrices to 

compute for the arbitrary matrices. 

Case 1: suppose X is diagonalizable. Then, there exists an invertible matrix C 

such that 

   (
    
   
    

)     

Then 

    (
     

   
     

)     

 

Using the proposition 3.20 thus trace     ∑   , and de                

Case 2:  

       Suppose X is nilpotent. If x is nilpotent cannot have any non-zero 

eigenvalues. Thus all the roofs of characteristic polynomial must be zero. 

Hence the Jordan canonical form of x will be strictly upper-triangular. X can 

be written as:   

   (
   
   
   

)     

Hence,    will be upper-triangular with it‟s on the diagonals: 
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    (
   
   
   

)     

Thus, if X is nilpotent, trace (x) =0 and       . 

Case 3: 

   Let X is arbitrary. Then         as described above  

                                              

As we wanted to show 

5.4.8. Example  

(The special linear group) we havede               . Thus if trace X =0, 

then de        foe all real number t. on the other hand, if X is any     

matrix such that de         for all number t, then                for all t, 

this means that (t)(trace x) is an integer multiple of 2   for all t, which is only 

possible if trace x =0. Thus the Lie algebra of         is the space of all 

    real matrices with trace zero denoted          

5.4.9. Example  

(The unitary group) recall that matrix U is unitary if and only if  

      . Thus,     is unitary if and only if  

                    

But by taking adjoins term-by-term, we see that    

           , and so the above  

         . 

Clearly, a sufficient condition is       . On the other hand, if above hold 

for all real t, then by differentiating at t=0, we see that       is necessary 

condition. Thus the Lie algebra of U(n) is the space of all     complex 

matrices X such that       and trace x=0, denoted su(n). 
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5.4.10. Proposition  

 Let G be a matrix Lie group, and X and element of its Lie algebra. Then     

is an element of identity component of G. the identity component of a 

topological group G is the connected component G of G that contains the 

identity element of the group. 

Proof: 

By definition of Lie algebra,     lies in G for all real t. but as t varies from 0 

to 1,     is a continuous path connecting identity to     . 

 5.4.11. Example  

(The orthogonal group) the identity component of      is just        by the 

proposition (3.27) the exponential of a matrix in Lie algebra is automatically 

in the identity component. 

So, the Lie algebra of        is the same as the Lie algebra of     . Now, an 

     real matrix X is orthogonal if and only if         . (Note, here, we 

used     instead of    to not cause confusion with the t for the exponential) 

So, given as      realmatrix X,     is orthogonal if and only if  

                

Or          

Clearly, a sufficient condition for above to hold is that 

        . 

Meanwhile, if above equality holds for all t, then by differentiating at t=0, we 

must have          . Thus the Lie algebra of O(n), as well as So(n), is the 

space of all       real matrices X with  

       , denoted So(n). Note that the condition  
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Forces the diagonal entries of X to be zero, and so explicitly the trace of X are 

zero. 

5.5. Physical Application 

 Here, we look at how the concept introduces earlier have been applied in the 

field of physics, particularly, particle physics 

5.5.1. Is spin and SU (2). 

The simplest case an application in physics can be found in a Lie algebra 

generated from the bilinear products of creation and annihilation operators 

where there are only two quantum states this is often referred to as the “ old 

fashioned “ . Isospin as it was originally conceived for systems of neutrons 

and protons before the discovery of mesons and strange particles. The concept 

of isospin was first introduced by Heisenberg in 1932 to explain the 

symmetries of newly discovered neutrons. Although the proton has appositive 

charge, and neutron is neutral, they are almost identical in other respects such 

as their masses. Hence, the term „nucleon‟ was coined: treating two particles 

as two different states of the same particle, the nucleon in fact , the strength of 

strong interaction. The force which is responsible forming the nucleon of an 

atom-between any pair of nucleons is independent of whether they are 

interacting as protons and nucleons. More precisely, the isospin symmetry is 

given by the invariance of Hamiltonian of the strong interactions under the 

action of Lie group, SU (2). The neutrons and protons are assigned to the 

doublets with spin 
 

 
  representation of SU (2) . 

Let us take a more detailed look in the mathematical for mulation. 

Let     and     be operators for the creation of proton and neutron, 

respectively, and let    and    be the corresponding annihilation operators. 

Now, construct the lie algebra of all possible bilinear products of these 
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operators which do not change the number of partials (strong interaction 

invariance). There are four possible bilinear products  

  
   

     
   

     
      

    

The first operator turns a neutron into a proton, while the second operator 

turns a neutron into a proton. Let us denote the first two operators by    and  

  . Recall, this whole symmetry is based on the idea that the proton and the 

neutron are simple two different states of the same particle : we can treat the 

proton as havening spin-up and the neutron as having spin-down, i.e, 

associating them with doublets (
 

 
) and (

 

 
) , respectively. Which that in mind, 

the notation would seen more natural:    being the raising operator, while T-

being the lowering operator. Now, the last two operators simply annihilate A 

proton or neutron and then ereate them back. These are just the number 

operators which count the number of protons and neutron. Together, they are 

total number operators, which commute which the all the other operators, as 

they do not change the total number. It is therefore convenient to divide the 

set of four operators into a set of three operators plus the total number, or 

baryon number, operator, which commutes with other: 

    
      

    

     
    

 

     
    

   
 

 
(  

      
   )    

 

 
  

Where  

Q is just the total change (since proton has a positive change where as neutron 

has no change).  
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Now, the set of three operators,              satisfy following commutation 

relation, which is exactly like that of angular moment a: 

[         

 

[          

           

This has led to the designation isospin for these operators and to the 

description of rotations in the fictitious isospin space. 

Let us now consider which Lie group is associated with these isospin 

operators. 

By analogy with angular momentum operator, we allow these operators to 

generate infinitesimal transformation such as  

   {             }  

We use the linear combination         because these are not individually 

ttermition (or self-ad joint). 

Note that such a transformation changes a proton or neutron into something 

which is a linear combination of the proton and the neutron state. These 

transformations are thus transformation in a two-dimensional proton neutron 

Hilbert space. The transformation are unitary thus the lie group of unitary 

transformation in a two-dimensional space is generated by the set of four 

operators, however, the unitary transformation generated by the operator B are 

of a trivial nature they are multiplication of any state by a phase factor. Since 

the three isospin operators form a lie group by themselves, the associated 

group is the subgroup of full unitary group in two-dimensional, the space 

unitary group, SU(2). 
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5.5.2. Eight fold way and SU (2)  

As noted before, the above isospin SU (2) symmetry is old fashioned in that it 

does not consider mesons and the “strangeness” a property in particles 

expressed as quantum number, for describing a decay of particles in strong 

and electromagnetic in tractions, which occur in a short amount of time. Thus 

was first introduced by Murray Gell-Mann and Kazuhiko ivijishima to explain 

that certain particles such as the Kasson or certain hyperons were created 

easily in particle collisions, yet decayed much more slowly than expected for 

their large masses. To account for the newly added property (quantum 

number), the Lie group SU(3) was chosen over SU(2) to construct a theory 

which organizes baryons and mesons into octets(thus, the term English fold 

way), where the acutest are the representation of the Lie group. 

  Why this question needed to be asked. I don‟t think we introduce Lie groups 

and algebras property to our students. They are missing from most if not all of 

the basic courses. Except for the orthogonal and possibly the unitary group, 

they are not mentioned much in differential geometry course. They are too 

often introduce to students in a separate Lie group and algebra course, where 

everything is discussed too abstractly and too isolated from other subject for 

my taste. Here is a very fundamental way to ereate interesting Riemannian 

manifolds: let G be a semi-simple lie group let K be its maximal compact 

subgroup, let be a discrete subgroup of G, and from G/K this quotient is called 

the symmetric space attached to G the Riemannian structure come from an 

invariant metric ton G, and so G acts as isometrics on G / K by left 

transformation. If you consider the case G=       you get                

which is naturally identified with the complex upper half. Plane (on which 

      acts via Moby‟s transformation, note that the point i is stabilized 
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precise by        , which is also the hyperbolic, other groups give higher 

dimensional hyperbolic space (         ) gives hyperbolic space  

5.6. Solvable Lie Algebra Application  

I am starting to study lie algebra and when I reached the notion of solvable lie 

algebra, I tried to find concrete applications (in physics for example) and I 

couldn‟t find one. For example, solvable group are very important for the 

insolvability of quantic equation (and by the way, it‟s the only application I 

know of them). In the same manner, can we fine application for solvable lie 

algebras? There are actually lots of applications of solvable Lie algebras, 

especially in the field of enterable systems where the solvability of Hamilton‟s 

equations of motion is frequently related to the integrals of motion of the 

system. 

5.6.1. Examples  

For any Hamiltonian system on     with its standard simplistic structure if 

there are n integrals of motion     , which are functionally independent and 

they from a solvable lie algebra (under the poison bracket). Plus some 

technical can be integrated on the level-set of the integrals by quadrature.  

This is a classic result. See for example perelomov‟s book, P-34, 35 theorem 2 

, the sub sequent example and the references theorem.  

Noether is Theorem 

Consider the variation of the shape of the field without changing the space-

time coordinates which defined as 

         
                                                      (5.1) 

We can also define another type of variation which is closely related, a local 

variation. It is defined as the difference between the fields evaluated in the 

same space-time point but in two different coordinates systems: 
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 ̅          
           .                            (5.2)  

Now consider a continuous space time translation which define as following 

                                                 (5.3) 

Which be proper orthochronous Lorentz transformation or space-time 

Transformation at first order in     ̅      

Write as: 

 ̅          
              

                
     

(    
    )             

     (       )                  

                                                                                                  (5.4)                    

Therefore, we have found the following relation between        and  ̅      

for an infinitesimal transformation of the type (5.3) 

 ̅                                                                                  (5.5) 

If   
            (which is in general the case for scalar field, it is also the 

case for spin or fields under space-time translations) then  

                                                                                          (5.6) 

Thus, in this case, an equivalent way of making a transformation of the type 

(5.3) which acts on the coordinates is by making an opposite transformation 

on the field:  

        
                                                                             (5.7) 
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