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Abstract  

             Mathematical control theory is a branch of mathematics having as one 

of its main aims the establishment of a sound mathematical foundation for the 

control techniques employed in several different fields of applications, 

including engineering, economy, biology and so forth. The systems arising from 

these applied sciences are modeled using different types of mathematical 

formalism, primarily involving ordinary differential equations, or partial 

differential equations or functional differential equations. Optimal control 

theory-which is playing an increasingly important role in the design of modern 

systems-has as its objective the maximization or the minimization. In this 

research we consider a mathematical model of mosquito and insecticide, fish 

harvesting.The aim of these models is first, reduce the amount of mosquitoes in 

the ponds and swamps because Mosquitos are the main cause of malaria 

disease.We used the optimal spray strategies to minimize amount of mosquito.  

Second increase the profit to the maximum extent of the harvest during a 

specific time period. We used the strategies optimal control to maximize the 

profit of fish harvesting. We work optimal control framework by applying the 

Pontryagin's maximum principle. A characterization of the optimal control via 

adjoint variables was established. We obtained an optimality system that we 

sought to solve numerically by used MATLAB program. 
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 الخلاصة

نظرية التحكم الرياضي ىي فرع من فروع            

الرياضيات التي تيدف إلى إنشاء أساس رياضي سميم لتقنيات 

العديد من المجالات التطبيقية   التحكم المستخدمة في

. تم وما الى ذلك عمم الأحياء المختمفة،اليندسة،الاقتصاد،

تصميم الأنظمة الناشئة عن ىذه العموم التطبيقية باستخدام 

الرياضية ، والتي تتضمن في  المعادلاتأنواع مختمفة من 

المقام الأول المعادلات التفاضمية العادية ، أو المعادلات 

 .داليةالتفاضمية الجزئية أو المعادلات التفاضمية ال

ا ا -تيدف نظرية التحكم الأمثل            لتي تمعب دورً

إلى التعظيم  -متزايد الأىمية في تصميم الأنظمة الحديثة 

ا لمبعوض  ا رياضيً أو التقميل. في ىذا البحث نعتبر نموذجً

والمبيدات الحشرية وحصاد الأسماك ، واليدف من ىذه 

النماذج ىو أولاً تقميل كمية البعوض في البرك والمستنقعات 

مرض الملاريا ، وقد لأن البعوض ىو السبب الرئيسي ل

الأمثل لتقميل كمية البعوض.  التحكماستخدمنا استراتيجيات 

ثانياً زيادة الربح إلى أقصى حد لمحصاد خلال فترة زمنية 

محددة. استخدمنا استراتيجيات التحكم الأمثل لتعظيم أرباح 

من خلال  لثمالاتحكم الإطار  فى حصاد الأسماك. نحن نعمل

بونترياجن الأقصى. تم إنشاء توصيف لمتحكم   تطبيق مبدأ

الأمثل عبر المتغيرات المجاورة. لقد حصمنا عمى نظام أمثل 

ا باستخدام برنام  .ج الماتلابسعينا إلى حمو عدديً
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Introduction 

             Mathematics has always benefited from its involvement with 

developing sciences. Each successive interaction revitalizes and enhances the 

field. Biomedical science is clearly the premier science of the foreseeable 

future. For the continuing health of their subject, mathematicians must become 

involved with biology. With the example of how mathematics has benefited 

from and influenced physics, it is clear that if mathematicians do not become 

involved in the biosciences they will simply not be a part of what are likely to 

be the most important and exciting scientific discoveries of all time. 

             Mathematical biology is a fast-growing, well-recognized, albeit not 

clearly defined, subject and is, to my mind, the most exciting modern 

application of mathematics. The increasing use of mathematics in biology is 

inevitable as biology becomes more quantitative. The complexity of the 

biological sciences makes interdisciplinary involvement essential. For the 

mathematician, biology opens up new and exciting branches, while for the 

biologist, mathematical modeling offers another research tool commensurate 

with a new powerful laboratory technique but only if used appropriately and its 

limitations recognized. However, the use of esoteric mathematics arrogantly 

applied to biological problems by mathematicians who know little about the real 

biology, together with unsubstantiated claims as to how important such theories 

are, do little to promote the interdisciplinary involvement which is so essential. 

                A control system is an arrangement of physical components 

connected or relate in such a manner to command direct, or regulate itself or 

anther system. Control systems are classified into two general categories is open 

loop and closed loop system. Control system may have more than one input or 

output. Often all input and output are well defining by the system description. 

But sometimes they are not. To solve control systems problem, we must put the 
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specification or description of the system configuration and its components into 

a form amenable to analysis or design. Three basic representations (model) of 

components and system are used extensively in the study of control systems is 

Mathematical models, block diagrams and signal flow graphs. 

            The calculus of variations a branch of mathematics that is extremely 

useful in solving optimization problems is the calculus of variations. A huge 

amount of problems in the calculus of variations have their origin in physics 

where one has to minimize the energy associated to the problem under 

consideration.  

              Optimal control theory is about controlling the given system in some 

‘best’ way. The optimal control strategy will depend on what is defined as the 

best way. This is usually specified in terms of a performance index functional. 

The maximum principle is stated as a general assertion involving terms that are 

not yet precisely defined, and without a detailed specification of technical 

assumptions., where the terms are precisely defined and the appropriate 

technical requirements are completely specified, is stated for problems where all 

the basic objects-the dynamics, the Lagrangian and the cost functions for the 

switching’s and the end-point constraints-are differentiable along the reference 

arc. We introduce optimal control theory for discrete-time systems. We begins 

with unconstrained optimization of a cost function and then generalizeto 

optimization with equality constraints. 

            MATLAB is needed to run the provided programs, it is certainly not 

needed to solve optimal control problems in general. Any mathematical 

programming language, such as FORTRAN or C++, is capable of the 

calculations needed. For each problem, there is a user-friendly interface that will 

guide you through. Each lab consists of two different MATLAB programs, lab 
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.m and code .m. For example, there are two programs associated with Lab 1, 

lab1.m and code1.m. 

               At the end of this research we presented a reducing and maximizing 

model, the reduction model represented by mosquitoes and insecticide, and the 

reduction model represented in fish harvesting. 
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Chapter 1 

Introduction and Basic Concept 

1.1 Introduction 

              Mathematical control theory is a branch of mathematics having as one of 

its main aims the establishment of a sound mathematical foundation for the control 

Techniques employed in several different fields of applications, including 

engineering, economy, biology and so forth. The systems arising from these 

applied Sciences are modeled using different types of mathematical formalism, 

primarily involving ordinary differential equations, or partial differential equations 

or functional differential equations. Optimal control theory-which is playing an 

increasingly important role in the design of modern systems-has as its objective the 

maximization of the return from, or the minimization of the cost of, the operation 

of physical, social, and economic processes.  

                A control system is an arrangement of physical components connected or 

relate in such a manner to command direct, or regulate itself or anther system. 

Control systems are classified into two general categories is open loop and closed 

loop system. Control system may have more than one input or output. Often all 

input and output are well defining by the system description. But sometimes they 

are not. To solve control systems problem, we must put the specification or 

description of the system configuration and its components into a form amenable 

to analysis or design. Three basic representations (model) of components and 

system are used extensively in the study of control systems is mathematical 

models, block diagrams and signal flow graphs. 
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              We talk about the basic concepts for state model of linear system, mean 

value, concave and convex function and maximum and minima. The primary 

components of a dynamic mathematical model correspond to the molecular species 

involved in the system (which are represented in the corresponding interaction 

diagram). The abundance of each species is assigned to a state variable within the 

model. The collection of all of these state variables is called the state of the system. 

It provides a complete description of the system‘s condition at any given time. The 

model‘s dynamic behavior is the time-course for the collection of state variables. 

Besides variables of state, models also include parameters, whose values are fixed. 

Model parameters characterize interactions among system components and with 

the environment.  

1.2 Control System: 

Definition (1.2.1) 

A system is an arrangement, set or collection of things connected or related in such 

a manner as to form an entirety or whole. 

A system is an arrangement of physical components connected or related in such a 

manner as to from and/or act entire unit. 

 The word control is usually taken to mean regulate, direct or command. 

Definition (1.2.2) 

A control system is an arrangement of physical components connected or relate in 

such a manner to command direct, or regulate itself or anther system. 

In most abs track sense it is possible to consider every physical object a control 

system.  

Examples of control systems: 

Control systems abound in our environment .but before exemplifying this, we 

define to terms: input and output, which help in identifying, delineating or defining 

a control system. 
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The input is the stimulus excitation or command applied to a control system 

typically from an external energy source usually in order to produce a specified 

response from the control system. 

The output is the actual response obtained from a control system it may or may 

not be equal to the specified response implied by the input. 

Input and output can have many different forms. Input, for example, may be 

physical variables or more abstract quantities such as reference set point, or desired 

values for the output of the control system. 

The purpose of the control system usually identifies or defines the output and 

input. If the output and input are given it is possible to identify delineate or define 

the nature of the system components. 

             Control system may have more than one input or output. Often all input 

and output are well defining by the system description. But sometimes they are not. 

For example an atmospheric electrical storm may intermittently interfere with 

radio reception, producing an unwanted output from a loudspeaker in the form of 

static. This ―noise‖ output is part of the total output as define above, but for the 

purpose of simply identifying a system, spurious input producing undesirable 

output are not normally considered as inputs and outputs when the system is 

examined in detail. 

The terms input and output also may be used in the description of any type of 

system, whether or not it is a control system, and a control system may be part of a 

larger system, in which case it is called a subsystem or control subsystem, and its 

inputs and outputs may then internal variable of the larger system.  

Example (1.2.1) 

An electric switch is manufacture control system, controlling the flew of 

electricity. By definition the apparatus or person flipping the switch is not a part of 

this control system. 
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Flipping the switch on off may be considered as the input that is, the input can be 

in one of two states, on or off. The output is flow or no flow (two states) of 

electricity. The electric is one of the most rudimentary control systems. 

1.3 Open Loop and Closed Loop Control Systems: 

Control systems are classified into two general categories: 

Open loop and closed loop system the distinction is determined by the control 

action, that quantity responsible for activating the system to produce the output. 

The term control action is classical in the control system literature, but word action 

in this expression does not always directly imply change, motion, or activity for 

example, the control action in a system designed to have an object hit a target is 

usually the distance between the object and target distance, as such is not an action, 

but action (motion) is implied have, because the goal of such a control system is to 

reduce this distance to zero. 

Definition (1.3.1) 

An open loop control system is one in which the control action is independent of 

the output. 

Definition (1.3.2) a closed loop control system is one in which the control action is 

somehow dependent on the output. 

Two outstanding features of open loop control system are: 

1- Their ability to perform accurately is determined by their calibration. To 

calibrate means to establish or reestablish the input- output relation to obtain 

desired system accuracy.  

2- They are not usually troubled with problems of instability a concept to be 

subsequently discussed in detail. 

Definition (1.3.3) 

Feedback is that property of closed loop system which permits the output (or some 

other controller ) to be compared witch the input to the system (or an input to some 



 

5 
 

other internally situated component or subsystem ) so that the appropriate control 

action may be formed as some function of the output and input. 

More generally, feedback is said to exist in a system when a closed sequence of 

cause –and- effect relations exists between system variable. 

Characteristics of feedback 

The presence of feedback typically imparts the following to a system. 

1- Increased accuracy. 

2- Tendency toward oscillation or in stability. 

3- Reduced sensitive of the ratio of output to input to variation in system 

parameters and other Characteristics E- Reduced effects of external disturbances or 

noise. 

4- Increased band width  

The bandwidth of a system is a frequency response measure of how well the 

system responds to (or filters) variation or frequencies the input signal. 

1.4 Analog and Digital Control Systems: 

The signals in a control system are typically function of some independent 

variable, usually time, denoted. 

Definition (1.4.1) 

A signal dependent on a continuous of variable of t is called a continuous data 

signal or (less frequently) an analog signal. 

Definition (1.4.2) 

A signal defined at, or of interest at, only discrete (distinct) instants of the 

independent variable t (up on which it depends) is called a discrete time- a discrete 

data, a sampled data, or digital signal. 

We remark that is a somewhat more specialized term, particularly in other contexts 

is as a synonym here because it is the convention in the control system literature. 
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Control system can be classified according to the types of signals they process: 

Continuous- time(analog), discrete- time (digital) or a combination of both 

(hybrid). 

Definition (1.4.3) 

Continuous- time control systems also called continuous data control systems, or 

analog control systems contain or process only continuous time (analog) signals 

and components. 

Definition (1.4.4) 

Discrete- time control system also called discrete data control systems, or sampled 

data control systems, have discrete – time signals or component at one or more 

points is the system, we note that discrete- time control system can have 

continuous- time signals , that is, they can be hybrid. 

The distinguishing factor is that discrete- time or digital control system must 

include at least one discrete- data signals. Also, digital control system, particularly 

of sampled- data type, often have both open- loop and closed loop modes of 

operation.  

1.5 Control System Models or Representation:  

To solve control systems problem, we must put the specification or description of 

the system configuration and its components into a form amenable to analysis or 

design.  

Three basic representations (model) of components and system are used 

extensively in the study of control systems: 

1- Mathematical models in the form of differential equation, difference 

equation, and/or other mathematical relation for example, Laplace 

transforms. 

2- Block diagrams. 

3- Signal flow graphs. 
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1.5.1 Transfer Function: 

            In control theory , function called transfer function are commonly used 

to characterize the input – output relationships of components or systems that 

can be described by linear, time invariant ,differential equation, we begin by 

define transfer function and follow with a derivation of the transfer function of 

a differential equation system.  

         The transfer function of a linear, time – invariant differential equation 

system is defined as the ratio of the Laplace transform of the output (response 

function) to the Laplace transform of the input (driving function) under the 

assumption that all initial conditions are zero. 

          Consider the linear time – invariant system defined by the following 

differential equation: 

 

   
     

           
     

     
     

           
     

Where y is the output of the system and x is the input. The transfer function of this 

system is ratio of the Laplace transformed output to the Laplace transformation 

input when all initial condition are zero, or  

         Transfer function = 
         

        
                       

1.5.2 Block Diagram: 

A block diagram is a shorthand pictorial representation of the cause and effect 

relationship between the input and output of a physical system  

The simplest form of the block diagram is single block with one input and one 

output. 
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                Input       output 

 

Figure 1.1 

The operation of addition and subtraction have a special representation the block 

becomes a small circle called a summing point with the appropriate plus or minus 

sign  associated with the arrows entering the circle the output is the algebraic sum 

of the inputs any number enter a summing point for examples 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 

 

The basic configuration of a simple closed-loop (feedback) control system with a 

single input and a single output (abbreviated SISO) is illustrated in Figure 1.3 for 

system with continuous signals only  

 

X      + x+y+z 

+ 

y 

Z 

+ 

X      + X  + y 

+ 

y 

X      + X  - y 

- 
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Figure 1.3 Basic Control systems 

The plant (or process or controlled system) is the system, subsystem process or 

object controlled by the feedback control system. 

The controlled output C is the output variable of the plant. Under the control of 

the feedback control system. 

The forward path is the transmission path from the summing point to the 

controlled output C. 

The feed forward (control) elements are the components of the forward path that 

generate the control signal u or m applied to the plant. Note feed forward elements 

typically include controller(s), compensator(s) or equalization and/or amplifiers. 

The control signal u (or manipulated variable m) is output signal of the feed 

forward elements applied as input to the plant. 

The feedback bath is the transmission path from the controlled output c back to 

the summing point. 

The feedback elements establish the function relationship between the controlled 

output c and the primary feedback signal B. note feedback element typically 

include sensor of the controlled output, compensators  and/or controller elements.  
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The Reference input R is one external signal applied to the feedback control 

system. Usually at the first summing point, in order to command a specified action 

of the plant.it usually represents ideal (or desired) plant output behavior. 

The primary feedback signal B is function of the controller output C 

algebraically summed with the reference input R to obtain the actuating 

(error)signal E , that is R + B=E  

Note: an open-loop system has no primary feedback signal. 

The actuating(or Error) Signal is the reference input signal R puls or minus the 

primary feedback signal B. the control action is generated by the actuating 

(error)signal in a feedback control system(see definitions open – loop and closed 

loop control system) note: in an open-loop system, which has feedback the 

actuating signal is equal to R. 

Negative feedback: means the summing point is asubtractor, that is E=R-B 

Positive feedback: means the summing point is an adder, that is E=R+B 

1.5.3 Signal flow graphs: 

Block diagrams are adequate for the representation of the interrelationships of 

controlled and input variables. However, for a system with reasonably complex 

interrelationships, the block diagram reduction procedure is cumbersome and often 

quite difficult to complete. An alternative method for determining the relationship 

between system variables has been developed by Mason.  The advantage of the 

line path method, called the signal-flow graph method, is the availability of a flow 

graph gain formula, which provides the relation between system variables without 

requiring any reduction procedure or manipulation of the flow graph. The 

transition from a block diagram representation to a directed line segment 
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representation is easy to accomplish by reconsidering the systems of the previous 

section.  

A signal-flow graph is a diagram consisting of nodes that are connected by several 

directed branches and is a graphical representation of a set of linear relations. 

Signal-flow graphs are particularly useful for feedback control systems because 

feedback theory is primarily concerned with the flow and processing of signals in 

systems. The basic element of a signal-flow graph is a unidirectional path segment 

called a branch, which relates the dependency of an input and an output variable 

in a manner equivalent to a block of a block diagram. Therefore, the branch 

relating the output      of a DC motor to the field voltage       is shown Figure 

1.4.The input and output points or junctions are called nodes, is shown in Figure 

1.5. The relation between each variable is written next to the directional arrow. All 

branches leaving a node will pass the nodal signal to the output node of each 

branch (unidirectional).The summation of all signals entering a node is equal to the 

node variable. A path is a branch or a continuous sequence of branches that can be 

traversed from one signal (node) to another signal (node). A loop is a closed path 

that originates and terminates on the same node, with no node being met twice 

along the path. Two loops are said to be nontouching if they do not have a 

common node. Two touching loops share one or more common nodes. Therefore, 

considering Figure 1.5 again, we obtain 

 

 

 

                                   Figure 1.4 signal - flow graph of the DC motor 

 



 

12 
 

 

                 Figure 1.5 signal – flow graph of interconnected system 

                                                                                           (1.5.1) 

and 

                                                                                           (1.5.2) 

The flow graph is simply a pictorial method of writing a system of algebraic 

equations that indicates the interdependencies of the variables. As another 

example, consider the following set of simultaneous algebraic equations 

                                                                                                 (1.5.3) 

                                                                                                 (1.5.4) 

The two input variables are    and   , and the output variables are    and   . A 

signal- flow graph representing equations (1.5.3) and (1.5.4) is shown in Figure1.6. 

 

Figure 1.6 signal- Flow graphs of two algebraic equations 

Equations (1.3) and (1.4) may be rewritten as 

                                                               (1.5.5) 
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                                                           (1.5.6) 

The simultaneous solution of equations (1.5.5) and (1.5.6) using Cramer's rule 

results in the solutions 

       
               

                     
 

     

 
   

   

 
                                                (1.5.7) 

       
               

                     
 

     

 
   

   

 
                                                (1.5.8) 

The denominator of the solution is the determinant A of the set of equations and is 

rewritten as 

                                                       (1.5.9) 

In this case, the denominator is equal to 1 minus each self-loop    ,    , and 

       plus the product of the two no touching loops     and    . The loops     

and        are touching, as are     and       . 

The numerator for    with the input    is 1 times  —    , which is the value of   

excluding terms that touch the path 1 from         . Therefore the numerator from 

   to    is simply     because the path through     touches all the loops. The 

numerator for    is symmetrical to that of     In general, the linear dependence     

between the independent variable    (often called the input variable) and a 

dependent variable     is given by Mason's signal-flow gain formula  

                                         
∑        

 
                                                            (1.5.10) 

 

                   = gain of kth path from variable    to variable    

                   = determinant of the graph, 

                  =  cofactor of the path     , 
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and the summation is taken over all possible k paths from    to   . The path gain or 

transmittance      is defined as the product of the gains of the branches of the path, 

traversed in the direction of the arrows with no node encountered more than once. 

The cofactor      is the determinant with the loops touching the kth path removed. 

The determinant   is 

    ∑   
 
    ∑        

           
 ∑               

           

        (1.5.11) 

Where    equals the value of the qth. Loop transmittance. Therefore the rule for 

evaluating   in terms of loops               is 

               = 1 — (sum of all different loop gains) + (sum of the gain products of all 

combinations of two nontouching loops) — (sum of the gain products of all 

combinations of three nontouching loops) +……….. 

        The gain formula is often used to relate the output variable Y(s) to the input 

Variable R(s) and is given in somewhat simplified form as 

 

  
∑      

 
                                                         (1.5.12) 

Where     

                           ⁄ . 

 

1.6 Properties of Controller: 

Consider a control system shown in the Figure 1.3 which includes a controller. 

1.6.1Error The Error detectors compare the feedback signal     with the 

reference input      to generate an error. 
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This gives absolute indication of an error the range of the measured variable      

Thus span            

The Hence error can be expressed as  

   
   

         
     

Where       error as % of span  

Example (1.6.1) 

The range of measured variable for ascertains control system is 2 mv to 12 mv and 

a set point 7 mv. Find the error as percent of span when the measured variable is 

6.5 mv. 

Solution  

                                                

   
   

         
    =

     

    
        

1.6.2 Variable Range 

    In practical systems, the controlled variable has a range of values within which 

the control is required to be maintained. This range specified as the maximum and 

minimum values allowed for the controlled variable. It can be specified as some 

nominal values and plus minus tolerance allowed about this value such range is 

important for the design of controllers. 

 

 



 

16 
 

1.6.3 Controller Output Range 

  Similar to the controller variable a range is associated with a controlled output 

variable and minimum values. But often the controller output is expressed as a 

percentage where minimum controller output is 0% and maximum controller out is 

100% but 0% controller output does not mean, zero output. 

For example it is necessary of the system that a steam flow corresponding to (
 

 
)
  

 

opening of the values should be minimum. 

Thus 0% controller output in such case corresponds to the (
 

 
)
  

opening of the 

value. 

The controller output as a percent of full scale when the output changes within the 

specified range is expressed as  

  
      

         
×100 

Where 

  Controller output as a percent of full scale  

  Value of the output  

     Maximum value of controlling variable  

     Minimum value of controlling variable  

1.6.4 Control Lag 

The control system can have large as associate with it, the control lag is the time 

required by the process and controller loop to make the necessary changes to 
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obtain the output at its set point the control lag t must be compared with the 

process lag while designing the controllers for example. In a process value is 

required to be open or closed for corresponding the output variable physically the 

of opening. Or closing of the value is very slow and is the part of the process lag. 

In such a case there is no point in designing a fast controller than the process lag. 

1.6.5 Dead Zone 

Many a times a dead zone is associated with a process control loop the time 

corresponding to dead zone is called dead time. The elapsed between the instant 

when error occurs and instant when first corrective action occurs is called dead 

time .Nothing happens the error occurs this part is also called dead hand the effect 

of such dead time must be considered while the design of the controllers.  

1.7 Classification of Controllers: 

The classification of the controllers is based on the response of the controllers and 

mode of response of the controller for example. In a simple temperature control of 

a room the heater is to be controlled it should be switched on or off by the 

controller when temperature crosses its set point. Such an operation and the mode 

of operation is called discontinuous mode of controller but in some process control 

systems simple on/off decision is not sufficient for example controlling the steam 

slow by opening or closing the value in such case a smooth opening or closing of 

value is necessary. The controller in such a case is said to be operating in a 

continuous mode thus the controllers are basically classified ad discontinuous 

controllers. The discontinuous mode controllers are further classified as ON, OFF 

controllers and multi position controllers. The continuous mode controllers are 

further classified as derivative controllers. Some continuous mode controllers can 

be combined to obtain composite controller mode. 
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For example of such composite controllers are PI, PD and PID controllers. The 

most of the controllers are placed in the forward path of control system. But in 

some cases input to the controller is controlled though a feedback path. The 

example of such a controller is rate feedback controller. 

1.8 Continuous Controller Mode 

In the discontinuous controller mode the output of the controller is discontinuous 

and not smoothly varying. But in the continuous controller output smoothly 

proportional of the error or proportional to some form of the error. 

Depending upon which form of the error is used as the input to the controller to 

product the continuous controller output these controllers are classified as 

Proportional control mode, Integral control mode and derivative control mode  

1.9 State Model of Linear System: 

1-State: 

The state of adynamic system is defined a minimal set of variables such that the 

knowledge of these variables at      together with the knowledge of the input for 

    ,completely determines the behaviour of the system for     . 

2-State variables: 

 The variable involved in determining the state of adynamic system x(t) are called 

the state variable.                      are nothing but the state variables these 

are normaly the energy storing elemnts contained in the system. 

3-State vector: 

 The ―n‖ state variable necessary to describe the complete behaviour of the system 

can be considered as ―n‖component of avector X(t) called the state vector at time 

―t‖. the state vector X(t) is vector sum of all the state variable. 
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4-State space: 

 The space whose co-ordinate exes are nothing but the ―n‖ state variables with time 

as the implicit variable is called the state space. 

5-State trajectory: 

It is the locus of the tips of the state vectors,with as the implicit variable.Consider 

multiple input multiple output (MIMO) nth order system as shown in the figure 

Number of inputs = m                                                             Number of outputs = p             

 

Figure 1.7 
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      All are Colum vector having order                 respectively.For 

such a system, the state variable representation can be arranged in the form of ―n‖ 

first order differential equation  

   

  
   

                              

   

  
   

                              

                                         :                                                                       : 
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       Where    f   = [

  
  
 
  

] is the functional operator. 

Integrating the above equation  

             ∫                             
 

  

 

Where i=1,2,……..,n 

             Thus ―n‖ state variable and hence state vector at any time ―t‖ can be 

determined uniquely. 

             Any ―n‖ dimensional time invariant system has state equations in the 

functional form as 

            

While output of such system are dependent on the state of system and instaneous  

input. 

           Functional output equation can be written as, 

            

Where ―g‖ is functional operator 

For time variant system, the same equation can be written as, 

           ……… state equation 

           .......... Output equation 
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          The functional equation can be expressed interms of linear combination of 

system state and the input as, 

                                           

                                           

:                                                                                                     :                                                                                                     

                                           

              For the linear time invariant systems, the coefficients              are 

constant. Thus all the equation can be written in vector matrix form as, 

                   

Where 

            X(t) = state vector matrix of order      

            U(t) = input vector matrix order     . 

             A = system matrix or evolution matrix of order    . 

             B = Input matrix or control matrix of order    . 

          Similarly the output variable at time t can be expressed as the linear 

combination of the input variable and state variable at time t as, 

                                              

                                              

:                                                                                               : 
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          For the linear time invariant system the coefficient             are constants. 

Thus all the output equation can be written in vector matrix form as, 

                   

Where  

            Y(t) = output vector matrix of order    . 

              C = output matrix or observation matrix of order    . 

               D = direct transmission matrix of order    . 

  The two vector equation together is called the state model of the linear system. 

                  ……state equation 

                  ……output equation 

This is state model of system. 

            For linear time – variant systems, the matrices A,B,C and D are also time 

dependent. 

Thus,                                                        

                       

1.9.1 State model of single input single output system: 

            Consider a single input single output system. i.e m = 1 and p = 1. But its 

order is ―n‖ hence n state variable are required to define state of the system. In 

such a case, the state model is 
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Where     A =     matrix , B =     matrix 

                C =     matrix  , D constant 

and          U(t) = single scalar input variable. 

1.10 Basic Features of Dynamic Mathematical Models 

1.10.1 State variables and model parameters 

            The primary components of a dynamic mathematical model correspond to 

the molecular species involved in the system (which are represented in the 

corresponding interaction diagram). The abundance of each species is assigned to a 

state variable within the model. The collection of all of these state variables is 

called the state of the system. It provides a complete description of the system‘s 

condition at any given time. The model‘s dynamic behaviour is the time-course for 

the collection of state variables. Besides variables of state, models also include 

parameters, whose values are fixed. Model parameters characterize interactions 

among system components and with the environment. Examples of model 

parameters are: association constants, maximal expression rates, degradation rates, 

and buffered molecular concentrations. A change in the value of a model parameter 

corresponds to a change in an environmental conditions or in the system itself. 

Consequently, model parameter are typically held at constant values during 

simulation; these values can be varied to explore system behaviour under 

perturbations or in altered environments (e.g. under different experimental 

conditions). For any given model, the distinction between state variables and 
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model parameters is clearcut. However, this distinction depends on the model‘s 

context and on the time-scale over which simulations run. 

1.10.2 Steady-state behaviour and transient behaviour 

Simulations of dynamic models represent time-varying system behaviour. Models 

of biological processes almost always arrive, in the long run, at steady behaviours. 

Most commonly, models exhibit a persistent operating state, called a steady state; 

some systems display sustained oscillations. The time-course that leads from the 

initial state to the long-time (or asymptotic) behavior is referred to as the transient. 

In some cases, we will focus on transient behaviour, as it reflects the immediate 

response of a system to perturbation. In other cases, our analysis will concern only 

the steady-state behavior, as it reflects the prevailing condition of the system over 

significant stretches of time. 

1.10.3 Linearity and nonlinearity 

            A relationship is called linear if it is a direct proportionality. For example, 

the variables x and y are linearly related by the equation x = k y, where k is a fixed 

constant. Linearity allows for effortless extrapolation: a doubling of x leads to a 

doubling of y, regardless of their values. Linear relationships involving more than 

two variables are similarly transparent, e.g.               . A dynamic 

mathematical model is called linear if all interactions among its components are 

linear relationships. This is a highly restrictive condition, and consequently linear 

models display only a limited range of behaviours. Any relationship that is not 

linear is referred to (unsurprisingly) as nonlinear. Nonlinear relations need not 

follow any specific pattern, and so are difficult to address with any generality. 

The nonlinearities that appear most often in biochemical and genetic interactions 

are saturations, in which one variable increases with another at a diminishing rate, 

so that the dependent variable tends to a limiting, or asymptotic value. Two kinds 

of saturating relationships that we will encounter repeatedly are shown in       
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Figure 1.8. Panel A shows a hyperbolic saturation, in which the rate of increase of 

y declines continuously as the value of x increases. Panel B shows a sigmoidal 

saturation, in which y initially grows very slowly with x, then passes through a 

phase of rapid growth before saturating as the rate of growth drops. 

 

Figure 1.8 Common nonlinear relationships in cell biological processes. A. 

Hyperbolic saturation. As x increases, y also increases, but at an ever-diminishing 

rate. The value of y thus approaches a limiting, or asymptotic, value. B. Sigmoidal 

nonlinearity. The values of y show a slow rate of increase for small values of x, 

followed by a rapid ‗switch-like‘ rise toward the limiting value. 

1.10.4 Global and local behaviour 

Nonlinear dynamic models exhibit a wide range of behaviours. In most cases, a 

detailed analysis of the overall, global, behaviour of such models would be 

overwhelming. Instead, attention can be focused on specific aspects of system 

behaviour. In particular, by limiting our attention to the behaviour near particular 

operating points, we can take advantage of the fact that, over small domains, 

nonlinearities can always be approximated by linear relationships (e.g. a tangent 

line approximation to a curve). This local approximation allows one to apply linear 

analysis tools in this limited purview. Intuition might suggest that this approach is 

too handicapped to be of much use. However, the global behaviour of systems is 

often tightly constrained by their behavior around a handful of nominal operating 

points; local analysis at these points can then provide comprehensive insight into 
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global behaviour. Local approximations are of particular use in biological 

modelling because self-regulating (e.g. homeostatic) systems spend much of their 

time operating around specific nominal conditions. 

1.10.5 Deterministic models and stochastic models 

          The notion of determinism reproducibility of behaviouris a foundation for 

much of scientific investigation. A mathematical model is called deterministic if its 

behaviour is exactly reproducible. Although the behaviour of a deterministic model 

is dependent on a specified set of conditions, no other forces have any influence, so 

that repeated simulations under the same conditions are always in perfect 

agreement. (To make an experimental analogy, they are perfect replicates.)  

          In contrast, stochastic models allow for randomness in their behaviour. The 

behaviour of a stochastic model is influenced both by specified conditions and by 

unpredictable forces. Repeated stochastic simulations thus yield distinct samples of 

system behaviour. 

Deterministic models are far more tractable than stochastic models, for both 

simulation and model analysis. Our focus will be on deterministic models. 

1.11 Mean-Value Theorems: 

If f (x) is continuous on an interval         , then there exists a number   , such 

that 

     ∫    ̅    
 

 
   ̅                       ̅                                  (1.11.1) 

Recalling Fundamental Theorem of Integral Calculus  

∫        ∫                  
 

 

 

 
 and 

  

  
           , one can    

rewrite (1.11.1) 

       
           

   
     ̅                     ̅                                        (1.11.2) 
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          Expression (1.11.2) is the mean-value theorem of differential calculus, while 

(1.11.1) is the mean-value theorem of integral calculus. 

          Mean-value theorem (1.11.2) has an interesting geometric interpretation. The 

left side is the slope of the hypotenuse of the right triangle ABC in Figure 1.9, with 

base of length b - a and height F(b) – F(a). Then (1.11.2) indicates that there is at 

least one point, say x, at which the curve F(x) has the same slope as the hypotenuse 

AB of the triangle joining the end points. 

          In (1.11.2), x is strictly between a and b. The mean-value theorem can be 

used to show that 

                                                                                 (1.11.3) 

 a = b or else F´´(r) = 0 for some r strictly between a and b 

 

 

Figure 1.9 

 

This is clear from the graph. Algebraically, if a = b, the result is immediate. So 

suppose a < b. By the mean-value theorem, there is a number q, a < q < b, such that 

                     

Combining this with the hypothesis of (3) gives 

                     

Again, by the mean-value theorem, there is a number r, a < r < q, such that 

                        



 

28 
 

and therefore 

                    

Since a < q < b, F"(r) = 0, as was to be shown. The case of a > b is analogous. 

         Any curve can be approximated arbitrarily well in the neighborhood of a 

point by a polynomial of sufficiently high order, according to 

Taylor's Theorem. If the function f(x) and its first n - 1 derivatives are continuous 

in the interval a < x < b and its nth derivative for each x, a < x < b exists, then for 

a < x0 < b, the Taylor series expansion of f(x) about the point x0 is 

                               
∑       

  
           

  
                                     (1.11.4) 

Where    
   

   
        

      
     ̅ 

  
            ̅    ̅     

This Taylor series expansion of f(x) extends (2). We call Rn+1 the remainder and (n 

- l)th the order of the approximation obtained by deleting Rn+1  The special case (2) 

gives the zero order approximation and R1 = (b — a)f'(x). The first order 

approximation is 

                                   a straight line through            with 

slope f'(x0). The second order approximation gives a quadratic approximation to the 

curve at the point x0  deleting the remainder in (4) gives an nth degree polynomial 

approximation to f(x). 

The mean-value theorem for a function of two variables, F(x, y), is developed as 

follows. For points (x, y) and (x0, y0) in the domain of F, let h = x — x0 and  

k = y — y0. Define the function 

                                                                                              (1.11.5) 

of the single variable t on the interval        Then 

                          

But from (2), 

                        ̅               ̅     ̅                                     (1.11.6) 
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Differentiating (5) with respect to t gives 

                                                                                                (1.11.7) 

where Fx and Fy are evaluated at             . Combining (5)-(7) gives the 

mean-value theorem for a function of two variables: 

                          ̅  ̅            ̅  ̅                       (1.11.8) 

For some        where     ̅            ̅   . 

     The Taylor series expansion or generalized mean-value theorem (3) can 

likewise be extended to a function of two variables. Let            and 

             Then 

                       (       )                                                    (1.11.9) 

Where                               . On the right side of (9), F, Fx, and 

Fy are evaluated at x0, y0 and the second partial derivatives in R2 are evaluated at 

some point between x, y and x0, y0. Expanding further, we get 

         (       )  (
     

 
         

     

 
)                   (1.11.10) 

 

where F and its partial derivatives on the right side are all evaluated at ( x0 > y0) 

and R3 is the remainder. 

More generally, the first order Taylor series expansion of a function F(x1. . . , xn) of 

n variables about the point x° = (x°,. . . , x°) is 

                                 ∑        
 
                                    (1.11.11) 

Where 

   (
 

 
*∑∑    
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On the right side of (11), F and Fi, are evaluated at x° and the Fij are evaluated at 

some point between x and x
0
. The second order expansion is  

              ∑      
 
   (

 

 
)∑ ∑     

 
   

 
                           (1.11.12) 

where F and its first and second partial derivatives Fi, Fij on the right are all 

evaluated at x
0
, and  R3 is the remainder term. The series can be expanded to as 

many terms as desired. 

1.12 Concave and Convex Functions 

          A function f (x) is said to be concave on the interval           if for all 

          and for any               

                                                                             (1.12.1) 

A weighted average of the values of the function at any two points is no greater 

than the value of the function at the same weighted average of the arguments. If the 

inequality in (1.12.1) is strong, then the function f ( x ) is said to be strictly 

concave. The chord joining any two points on the graph of a concave function is 

not above the graph. If the function is strictly concave, the chord is strictly below 

the graph. Linear functions are concave, but not strictly concave 

 (see Figure 1.10). 

 

Figure 1.10 
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A function f (x) is said to be convex if the inequality in (1.12.1) is reversed. It is 

strictly convex if the reversed inequality is strong. For example,               is 

a strictly concave function, whereas               is strictly convex. These 

functions illustrate the general principle that if     f (x) is a concave function, then -

f(x) is a convex function. 

            Concave functions have several important properties. First, a concave 

function f (x) is continuous on any open interval a < x < b on which it is defined. 

Second, if f is concave and differentiable, 

               
                          

                                (1.12.2) 

The slope of the line joining two points on its graph is less than the slope of the 

tangent line at its left endpoint and greater than the slope of its tangent line on its 

right endpoint (see Figure 1.10). For a convex function, the inequalities in (1.12.2) 

are reversed. Third, the second derivative of a twice differentiable concave 

function is nonpositive. To see this, use (1.11.4) to write 

                                      
      ̅                         (1.12.3) 

for some  ̅ where      ̅    . But from (1.12.2) or Figure 1.10, it is apparent 

that the left side of (1.12.2) is nonpositive. Therefore, the right side of (1.12.3) 

must also be nonpositive. Since        
  is positive, f"(x) must be nonpositive. 

Further, 

 Since (3) holds for any         , f"(x) < 0 for all a < x < b. Similarly, the 

second derivative of a convex function is nonnegative. 

          The condition f"(x) < 0 for all x in the domain is both necessary and 

sufficient for a twice differentiable function f to be concave. If f"(x) < 0, then f is 

strictly concave. The converse of this, however, is not true. The function 
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               appears to be strictly concave when plotted but, f"(O) = 0. Despite 

this possibility, we assume that           for strictly concave functions. The 

reader should keep in mind the possibility of exceptional points. 

             The definition of a concave function of two variables f(x, y) is a direct 

extension of the definition (1): 

                                                          (1.12.4) 

for all 0 < t < 1 and any pair of points                in the domain of f. The 

extension of (2) is 

                                                                (1.12.5) 

which holds for a differentiable concave function of two variables at any pair of 

points in its domain. Inequalities (1.12.4) and (1.12.5) are reversed for a convex 

function. to find the analog of the sign condition on the second derivative, write the 

counterpart to (1.12.3), employing (1.11..9). 

 Let        and        . Then, 

                                        

                                     (1.12.6) 

where the second partial derivatives are evaluated at an appropriate point         

between         and        . The left side of (6) is nonpositive by (5), and 

therefore, the quadratic form on the right side must be nonpositive as well. (A 

quadratic form is a function of the form              ∑ ∑        
 
   

 
    where 

                            if       add and subtract       
      and collect 

terms to write the right side of (1.12.6) equivalently 

    (  
    

   
)
 

 
(          

 )  

   
                                                (1.12.7) 

Since (1.12.7) must hold for any choice of h and k, including k = 0, it follows that 

                                                                                (1.12.8) 
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In addition, (1.12.7) must hold in case                  so in view of (1.12.8), we 

must have 

                                                      
                                                    (1.12.9) 

Thus, if f(x, y) is concave and if       , then (1.12.8) and (1.12.9) hold. Note that 

(1.12.8) and (1.12.9) together imply that 

                                                            (1.12.10) 

In case         , one can conduct the argument under the supposition that       

       , to conclude that (1.12.9) and (1.12.10) hold. These conditions are 

sufficient for concavity. If the inequalities are strict, f is strictly concave. If f(x, y) 

is a convex function, then       ,        , and (1.12.9) holds as well. 

            A function                 is concave if 

                                                                            (1.12.11) 

for all           and any pair of points        
        

          
        

   in 

the domain of f. The extension of (1.12.2) may be stated that if              is 

concave and differentiable, then 

                             ∑ (  
    

 ) 
                                              (1.12.12) 

where x
*
 and x

0
 are any two points in the domain of f. And, letting  

     
    

            , 

               ∑       
   

    
 

 
∑ ∑        

 
   

 
                                (1.12.13) 

by the Taylor series expansion (1.11.11), where the second partial derivatives are 

evaluated at an appropriate point x between x
*
 and x

0
. Since the left side of 

(1.12.13) is nonpositive by (1.12.12), the quadratic form on the right of (1.12.13) 

must be nonpositive. 

     To state an equivalent condition for the quadratic form in hi on the right of 

(1.12.13) to be nonpositive, we need some definitions. The coefficient matrix of 

second partial derivatives of a function f, 
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  [

               
               
                               
               

], 

is called a Hessian matrix of f. The quadratic form on the right on (1.12.13) can be 

written 

                                                    (1.12.14) 

Where                 , and h
T
 is the transpose of h. The quadratic form     is 

said to be negative semidefinite if (1.12.14) holds for all h. (It is negative definite 

if (1.12.14) holds with strict inequality for all      .) Equivalently, we say that 

the Hessian matrix H is negative semi definite if      is negative semidefinite. 

The matrix is negative semidefinite if its principal minors alternate in sign, 

beginning with negative: 

            |
         
         

|       |

             
             
             

|         

     | |                        (1.12.15) 

The last principal minor, namely the determinant of H itself, may be zero. (If H is 

negative definite, then the principal minors alternate in sign and none may be 

zero.) It is clear from (1.12.12) and (1.12.13) that H is negative semi definite for 

all x if f  is concave 

     If               is twice continuously differentiable and convex, then the sign 

in (1.12.12) is reversed, and thus the Hessian must be positive semidefinite. The 

matrix H is positive semidefinite if all its principal minors are positive, except 

possibly | | which may be zero. It is positive semidefinite if and only If f is 

convex. 

The notion of concavity has been generalized in several ways. A function 

              is said to be quasiconcave is 
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                                                             (1.12.16) 

for any       in the domain of f and for all          . Equivalently, 

             is quasiconcave if and only if the set 

   {         } 

Is convex for every number a. A function g is quasiconvex if    is quasiconcave. 

Every concave function is quasiconcave, but a quasiconcave function need not be 

concave, nor even continuous. 

1.13 Maxima and Minima: 

The weierstrass theorem assures us that a continuous function assumes a maximum 

and a minimum on a closed bounded domain. If the hypotheses are not satisfied, 

then there may be no maximum and/or minimum. For instance,                

has no maximum on           since the interval is not closed, the function 

attains values arbitrarily close to 4, but the value 4 is not achieved on the interval. 

The function                is not continuous on            and has no 

maximum on that interval, it becomes arbitrarily large as x approaches zero from 

the right. The maximum may occur on the interior of the domain or at a boundary 

point. It may be attained at just one or at several points in the domain. 

If             for all x near x
*
 that is, for all x such that               

for some     then x
*
 is said to provide a strict local maximum. If             

for all x in the domain of f, then x
*
 provides a strict global maximum. Local and 

global minima are defined analogously. Suppose f ( x ) is twice continuously 

differentiable and attains its maximum at x
*
 on a < x < b. From the mean-value 

theorem 

               ̅                                         (1.13.1) 
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for some   x  between x and x
*
. Since x

*
 maximizes f, the left side of (1) must be 

nonpositive and therefore the right side as well. Thus        when        , and 

       when       . Since f
*
 is continuous, we conclude that 

                                                              (1.13.2) 

Furthermore, from Taylor's theorem 

                                    ̅                          (1.13.3) 

for some   x  between x and x
*
.Since (1.13.2) holds and x

*
 is maximizing, the left 

side of (3) is nonpositive. This implies 

                                                        (1.13.4) 

Thus, conditions (1.13.2) and (1.13.4) are necessary for a point x
*
 to maximize a 

twice continuously differentiable function f ( x ) on the interior of its domain. At    

a local maximum, the function is stationary (1.13.2) and locally concave (1.13.4). 

Further, if x
*
 satisfies (1.13.2) and also 

                                                                (1.13.5) 

for all x near x
*
, i.e.,              , then it follows from (1.13.3) that 

           . Therefore, (1.13.2) and (1.13.5) are sufficient conditions for a point 

x
*
 to provide a local maximum. 

Similar arguments show that necessary conditions for a local minimum are (1.13.2) 

and                                                                                                         (1.13.6) 

Sufficient conditions for a local minimum are (1.13.2) and 

                                                                            (1.13.7) 

for all x near x
*
. 

      To find the maximum of a function of one variable, one compares the values of 

the function at each of the local maxima and at the boundary points of the domain, 

if any, and selects the largest. If the function is strictly concave over its entire 

domain (globally strictly concave), the maximizing point will be unique. 
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      In Figure 1.11, the boundary point x = g maximizes the function f ( x ) over 

         . Points b and d are local maxima and satisfy (1.13.2) and (1.13.4). 

Points c and e are local minima, satisfying (1.13.2) and (1.13.6). 

 

Figure 1.11 

For a twice continuously differentiable function f(x, y) of two variables, one can 

repeat the above arguments. Let x
*
, y

*
 provide an interior maximum. Mean-value 

theorem (1.11..8) gives 

                          ̅  ̅            ̅  ̅                          (1.13.8) 

for some        between x
*
, y

*
 and x, y. Since x

*
, y

*
 is maximizing, the left side is 

nonpositive for all x, y. Taking y = y
*
, we find that x – x

*
 and fx  must have opposite 

signs for any x, so that 

 fx = 0. Similarly, fy = 0. Thus, it is necessary for f to be stationary at x
*
, y

*
: 

    
                   

                                        (1.13.9) 

From the Taylor expansion (1.11.9), 

                     
           

      

                                                       (1.13.10) 

where h = x – x
*
, k = y – y

*
, and the second partial derivatives on the right are 

evaluated at some point between x, y and x
*
, y

*
. But, since x

*
, y

*
 is maximizing and 

since (9) holds, the left side of (1.13.10) must be nonpositive, so the right side must 

be as well. As shown in (3.6)-(3.10), at x
*
, y

*
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           |
           
           

|                                            (1.13.11) 

Thus, (1.13.9) and (1.13.11), local stationarity and local concavity, are necessary 

for a local maximum at x
*
, y

*
. Similarly, one shows that local stationarity (1.13.9) 

and local convexity, 

                     
                                                (1.13.12) 

are necessary for a local minimum at x
*
, y

*
. Sufficient conditions for a local 

optimum are (1.13.9) and strong inequalities in (1.13.11) (maximum) or (1.13.12) 

(minimum) for all x, y near x
*
, y

*
. 

            To find the minimum of a function f(x, y), one compares the values of the 

function at each of the local maxima and along the boundary of the domain and 

selects the largest value. If f(x, y) is strictly concave throughout its domain, then a 

local maximum will be the global maximum. 

            The way is clear to show that if          
        

   maximizes the twice 

continuously differentiable function             on the interior of its domain, 

then 

    
                                                   (1.13.13) 

Furthermore, let                 and         
  Then, by Taylor's 

theorem (1.11.11) we have 

                ∑       
    

 

 
 ∑ ∑        

 
   

 
   

 
                       (1.13.14) 

where the second partial derivatives on the right are evaluated at some point 

between x and x
*
. Since x

*
 is maximizing and since (1.13.13) holds, the quadratic 

form on the right must be nonpositive, that is, negative semidefinite. Thus, the 

principal minors of the Hessian matrix of f must alternate in sign, starting with 

negative (review (1.12.15)). And if the quadratic form in (1.13.14) is negative 

definite at x
*
 and (1.13.13) holds, then x

*
 provides a local maximum. 
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               Analogously, necessary conditions for a minimum of f are stationarity 

(1.13.13) and local convexity, that is, positive semidefmiteness of the Hessian. 

Positive definiteness of the Hessian and stationarity are sufficient conditions for a 

local minimum. 
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Chapter 2 

Calculus of Variations 

2.1 Introduction 

Calculus of variations or variational calculus deals with finding the optimum 

(maximum or minimum) value of a functional. Variational calculus that originated 

around 1696 became an independent mathematical discipline after the fundamental 

discoveries of L. Euler (1709-1783), whom we can claim with good reason as the 

founder of calculus of variations. 

We start with some basic definitions and a simple variational problem of 

extremizing a functional. We then incorporate the plant as a conditional 

optimization problem and discuss various types of problems based on the boundary 

conditions. We briefly mention both the Lagrangian and Hamiltonian formalisms 

for optimization.  

2.2 Basic Concepts 

2.2.1 Function and Functional 

We discuss some fundamental concepts associated with functionals along 

side with those of functions. 

(a) Function: A variable x is a function of a variable quantity t, (writ ten as 

           )), if to every value of t over a certain range of t there corresponds a 

value x; i.e., we have a correspondence: to a number t there corresponds a number 

x. Note that here t need not be always time but any independent variable. 
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Example (2.2.1) 

           Consider 

            

Forn                 and so on.  Other functions are  

                        
    

   

Next we consider the definition of a functional based on that of a function. 

 (b) Functional: A variable quantity J is a functional dependent on a function f (x), 

written as J = J (f (x) ), if to each function f (x), there corresponds a value J, i.e., 

we have a correspondence: to the function f (x) there corresponds a number J. 

Functional depends on several functions. 

Example (2.2.2) 

                 Let                  then  

       ∫        ∫           
 

 

 

 

 

 

   
 

 
 

is the area under the curve x(t). If v(t) is the velocity of a vehicle, then 

       ∫       
  

  

 

is the path traversed by the vehicle. Thus, here x(t) and v(t) are functions of t, and J 

is a functional of x(t) or v(t). 

2.2.2 Increment 

We consider here increment of a function and a functional. 

(a) Increment of a Function: In order to consider optimal values of a function, we 

need the definition of an increment [38, 39, 40]. 

Definition (2.2.1)  

The increment of the function f, denoted by Δf, is defined as 
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It is easy to see from the definition that Δ f depends on both the independent 

variable t and the increment of the independent variable Δ t, and hence strictly 

speaking, we need to write the increment of a function as Δ f (t, Δ t).  

Example (2.2.3) 

If                     
  

find the increment of the function f ( t) . 

Solution: The increment Δ f becomes 

                

                
         

  

         
          

                       
    

         

                              
       

          

(b) Increment of a Functional: Now we are ready to define the increment of a 

functional. 

Definition (2.2.2) the increment of the functional J, denoted by Δ J, is defined as 

    (          )         

Here       is called the variation of the function x(t). Since the increment of a 

functional is dependent upon the function x(t) and its variation      , strictly 

speaking, we need to write the increment as               . 

Example (2.2.4) 

Find the increment of the functional 

  ∫             
  

  

 

Solution: The increment of J is given by 

    (          )          

 ∫                
  

  

      ∫             
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 ∫                      
  

  

      

2.2.3 Differential and Variation 

Here, we consider the differential of a function and the variation of a functional. 

(a) Differential of a Function: Let us define at a point t
*
 the increment of the 

function J as  

                  

By expanding          in a Taylor series about t
*
, we get 

         (
  

  
*
 
   

 

  
(
   

   
)
 

               

Neglecting the higher order terms in    

   (
  

  
*
 
               

Here, df is called the differential of f at the point t
*
.        is the derivative or  slope 

of f at t
*
. In other words, the differential df is the first order approximation to 

increment   . Figure 2.1 shows the relation between increment, differential and 

derivative. 

 

Figure 2.1 increment Δf, differential df, and Derivative   of a function f(t) 
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Example (2.2.5) 

Let               . Find the increment and the derivative of the function f( t). 

Solution 

 By definition, the increment Δf is 

                

                         

                              

          

         

Here                            

(b) Variation of a Functional: Consider the increment of a functional 

    (          )         

Expanding  (          ) in a Taylor series, we get 

    (    )  
  

  
      

 

  

   

   
(     )

 
    (    ) 

 
  

  
      

 

  

   

   
(     )

 
   

           

Where 

   
  

  
                    

 

  

   

   
(     )

 
 

are called the first variation (or simply the variation) and the second variation of 

the functional J, respectively. The variation     of a functional J is the linear (or 

first order approximate) part (in      ) of the increment   . Figure 2.2 shows the 

relation between increment and the first variation of a functional. 
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Figure 2.2 Increment    and the first variation    of the function J 

Example (2.2.6) 

Given the functional 

 (    )  ∫                   
  

  

 

evaluate the variation of the functional. 

Solution: First, we form the increment and then extract the variation as the first 

order approximation. Thus 

    (          )   (    ) 

 ∫    (          )
 

  

  

  (          )                           

 ∫              (     )
 

  

  

           

Considering only the first order terms, we get the (first) variation as 

  (          )  ∫       
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2.3 Optimum of a Function and a Functional 

We give some definitions for optimum or extremum (maximum or minimum) of a 

function and a functional [39, 38, 41]. The variation plays the same role in 

determining optimal value of a functional as the differential does in finding 

extremal or optimal value of a function. 

Definition (2.3.1) 

Optimum of a Function: A function f (t) is said to have a relative optimum at the 

point t
*
 if there is a positive parameter   such that for all points t in a domain D that 

satisfy|    |   , the increment of f(t) has the same sign (positive or negative). 

           In other words, if 

                

 

Figure 2.3 (a) Minimum (b) Maximum of a function f(t) 
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then,       is a relative local minimum. On the other hand, if 

                

then,       is a relative local maximum. If the previous relations are valid for 

arbitrarily large  , then,       is said to have a global absolute optimum. Figure 2.3 

illustrates the (a) minimum and (b) maximum of a function. 

               It is well known that the necessary condition for optimum of a function is 

that the (first) differential vanishes, i.e., df = 0. The sufficient condition 

     1. for minimum is that the second differential is positive, i.e.,      . 

     2. for maximum is that the second differential is negative, i.e.,      . 

If      , it corresponds to a stationary (or inflection) point. 

Definition (2.3.2)  

Optimum of a Functional: A functional J is said to have a relative optimum at x
*
 

if there is a positive   such that for all
 
functions x in a domain Ω which satisfy  

|    |    , the increment of J has
 
the same sign. 

In other words, if 

                

then       is a relative minimum. On the other hand, if 

                 

then,       is a relative maximum. If the above relations are satisfied for arbitrarily 

large   , then,       is a global absolute optimum. 

                Analogous to finding extremum or optimal values for functions, in 

variational problems concerning functionals, the result is that the variation must be 

zero on, an optimal curve. Let us now state the result in the form of a theorem, 

known as fundamental theorem of the calculus of variations, the proof of which 

can be found in any book on calculus of variations [39, 38, 41]. 
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Theorem (2.3.1) 

For       to be a candidate for an optimum, the (first) variation of J must be zero 

on      , i.e.,   (           )    for all admissible values of      . 

This is a necessary condition. As a sufficient condition for minimum, the second 

variation      , and for maximum      . 

2.4 The Basic Variational Problem 

2.4.1 Fixed-End Time and Fixed-End State System 

We address a fixed-end time and fixed-end state problem, where both the initial 

time and state and the final time and state are fixed or given a priori. Let x (t) be a 

scalar function with continuous first derivatives and the vector case can be 

similarly dealt with. The problem is to find the optimal function       for which 

the functional 

 (    )  ∫                 
  
  

                                  (2.4.1) 

has a relative optimum. It is assumed that the integrand V has continuous first and 

second partial derivatives w.r.t. all its arguments; t0 and tf are fixed (or given a 

priori) and the end points are fixed, i.e., 

             (    )                                          (2.4.2) 

We already know from Theorem 2.3.1 that the necessary condition for an optimum 

is that the variation of a functional vanishes. Hence, in our attempt to find the 

optimum of x(t), we first define the increment for J, obtain its variation and finally 

apply the fundamental theorem of the calculus of variations (Theorem 2.1). 

     Thus, the various steps involved in finding the optimal solution to the fixed-end 

time and fixed-end state system are first listed and then discussed in detail. 

• Step 1: Assumption of an optimum 

• Step 2: Variations and increment 

• Step 3: First variation 
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• Step 4: Fundamental Theorem 

• Step 5: Fundamental Lemma 

• Step 6: Euler-Lagrange Equation 

• Step 1: Assumption of an optimum: Let us assume that x
*
(t) is the optimum 

attained for the function x(t). Take some admissible function  

                  close to x
*
(t), where        is the variation of x

*
(t) as 

shown in Figure 2.4. The function xa(t) should also satisfy the boundary conditions 

(2.4.2) and hence it is necessary that 

          (  )                                             (2.4.3) 

 

 

Figure 2.4 Fixed End Time and Fixed End State System 

 

• Step 2: Variations and Increment: Let us first define the increment as 

  (           )                                                 
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 ∫                                
  

  

 

 ∫                    
  
  

                   (2.4.4) 

which by combining the integrals can be written as 

  (           )  

∫                                                    
  
  

                   (2.4.5) 

Where 

     
     

  
           

 

  
 {      }                               (2.4.6) 

Expanding V in the increment (2.4.5) in a Taylor series about the point x
*
(t) and 

     , the increment    becomes (note the cancelation of                   

     (           ) 

∫   
                 

  

  

  

      
                 

  
       

 
 

  
{ 
       

   
 (     )

 
 

       

   
 (     )

 
 

 
       

      
          }                       (2.4.7) 

Here, the partial derivatives are w.r.t. x(t) and      at the optimal condition (*) and 

* is omitted for simplicity . 

• Step 3: First Variation: Now, we obtain the variation by retaining the terms that 

are linear in       and       as 

∫   
                 

  

  
  

      
                 

  
                              (2.4.8) 

To express the relation for the first variation (2.4.8) entirely in terms containing 

      (since       is dependent on      ), we integrate by parts the term 

involving      as (omitting the arguments in V for simplicity) 
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∫ (
  

  
*
 
       

  

  

     ∫ (
  

  
*
 

 

  
         

  

  

 

*(
  

  
)
 
     +

  

  
 ∫      

 

  
(
  

  
)
 
  

  
  

                             (2.4.9) 

In the above, we used the well-known integration formula 

∫       ∫    where   
  

  
           . Using (2.4.9), the relation 

(2.4.8) for first variation becomes 

  (           ) 

 ∫ (
  

  
)
 
       

  
  

 + *(
  

  
)
 
     +

  

  
  ∫

 

  
(
  

  
)
 
       

  
  

 

 ∫  (
  

  
)
 
 

 

  
(
  

  
)
 
        

  
  

 + *(
  

  
)
 
     +

  

  
                        (2.4.10) 

Using the relation (2.4.3) for boundary variations in (2.4.10), we get 

  (           )   ∫  (
  

  
)
 
 

 

  
(
  

  
)
 
        

  
  

                             (2.4.11) 

• Step 4: Fundamental Theorem: We now apply the fundamental theorem of the 

calculus of variations (Theorem 2.1), i.e., the variation of J must vanish for an 

optimum. That is, for the optimum x
*
(t) to exist,    (           )     Thus the 

relation (2.4.11) becomes 

∫  (
  

  
)
 
 

 

  
(
  

  
)
 
        

  
  

                                     (2.4.12) 

Note that the function       must be zero at t0 and tf, but for this, it is completely 

arbitrary. 

• Step 5: Fundamental Lemma: To simplify the condition obtained in the 

equation (2.4.12), let us take advantage of the following lemma called the 

fundamental lemma of the calculus of variations [38, 39, 41]. 
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Lemma (2.4.1) 

If for every function g(t) which is continuous, 

∫              
  
  

                                           (2.4.13) 

Where the function       is continuous in the interval         then the function     

g( t) must be zero everywhere throughout the interval         .(see Figure 2.5) 

Proof 

 We prove this by contradiction. Let us assume that g(t) is nonzero (positive or 

negative) during a short interval        . Next, let us select      , which is 

arbitrary, to be positive (or negative) throughout the interval where  g( t) has a 

nonzero value. By this selection of      , the value of the integral in (2.4.13) will 

be nonzero. This contradicts our assumption that g( t) is non-zero during the 

interval. 

Thus g( t) must be identically zero everywhere during the entire interval 

        in (2.4.13). Hence the lemma. 

 

Figure 2.5 A Nonzero g(t) and an Arbitrary       
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• Step 6: Euler-Lagrange Equation: Applying the previous lemma to (2.4.12), a 

necessary condition for x
*
(t) to be an optimal of the functional J given by (2.4.1) is 

(
                  

  
)
 
 

 

  
(
                 

  
)
 
                                 (2.4.14) 

or in simplified notation omitting the arguments in V, 

(
  

  
*
 
 

 

  
(
  

  
*
 
   

for all            . This equation is called Euler equation, first published in 1741 

[42]. 

Theorem (2.4.1) 

 Let          be a functional that is differentiable at      . If I has a local 

extremum at     then           . 

Proof 

 To be explicit, suppose that I has a minimum at   : there exists r > 0 such that 

                 for all h such that ‖ ‖      . Suppose that 

                               

    
 

 

            

|            |
   

We note that ‖  ‖           , and so with N chosen large enough, we have  

‖  ‖    for all  n > N. It follows that for n >N, 

  
              

‖  ‖
 

|            |

‖  ‖
        

Passing the limit as n→∞, we obtain  |            |   , a contradiction 

2.5 The simplest variational problem. Euler-Lagrange equation 

The simplest variational problem can be formulated as follows: 

Let           be a function with continuous first and second partial derivatives 

with respect to        ). 
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 Then find                such that            and           , and which is an 

extremum for the functional 

     ∫                  
  

  

 

In other words, the simplest variational problem consists of finding an extremum 

of a functional of the form (2.13), where the class of admissible curves comprises 

all smooth curves joining two fixed points; see Figure 2.6. We will apply the 

necessary condition for an extremum (established in Theorem 2.4.1) to the solve 

the simplest variational problem described above. This will enable 

us to solve the brachistochrone problem. 

 

Figure 2.6: Possible paths joining the two fixed points 

         and  (  )     . 

Theorem (2.5.1) 

 Let I be a functional of the form 

     ∫                  
  

  

 

where           is a function with continuous first and second partial derivatives 

with respect to          and                such that           and          . 

If I has an extremum at   , then    satisfies the Euler-Lagrange equation: 
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                                                   (2.5.1) 

(This equation is abbreviated by     
 

  
     ) 

Proof  

The proof is long and so we divide it into several steps. 

Step1. First of all we note that the set of curves in           satisfying         

            and             do not form a linear space! So Theorem (2.4.1) is 

not applicable directly. Hence we introduce a new linear space X, and consider a 

new functional          which is defined in terms of the old functional I. 

Introduce the linear space 

    {               |                }, with the           -norm. Then for 

all            satisfies                       
              . 

Defining Ĩ             , we note that          has an extremum at 0. It 

follows from Theorem (2.4.1) that Ĩ(0) = 0. Note that by the 0 in the right hand side 

of the equality, we mean the zero functional, namely the continuous linear map 

from X to  , which is defined by      for all        

Step2. We now calculate Ĩ(0). We have 

          ∫  (                      )   ∫                 
  

  

  

  

 

 ∫               
  

  

                                     

Recall that from Taylor‘s theorem, if F possesses partial derivatives of order 2 in 

some neighborhood N of        
    , then for all             , there exists      

            such that 

                   
    

        
 

  
         

 

   
        

 

  
  |
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   |

     
 
           

          
 
     

 

Hence for       such that‖  ‖ is small enough 

          ∫  
  

  
       

  

  

              
  

   
                         

 
 

  
∫      

 

  
      

 

   
  

  

  

|                                        

 

It can be checked that there exists a M>0 such that 

 

  
∫      

 

  
      

 

   
  

  

  

|                                         ‖ ‖ 

And so Ĩ(0) is map 

  ∫  
  

  
       

  
  

              
  

   
                                           (2.5.2) 

Step3. Next we show that if the map in (2.10) is the zero map, then this implies 

that (2.9) holds. Define 

     ∫
  

  
                  

  

  

 

Integrating by parts, we find that 

∫  
  

  
       

  

  

                 ∫            
  

  

 

and so from (2.10), it follows that Ĩ'(0) = 0 implies that 

∫        
  

   
       

  

  

                                

Step4. Finally we will complete the proof by proving the following. 
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Lemma (2.5.1) 

 If              and ∫              
  
  

 for all 

       [      ]                           

then there exists a constant k such that          for all              

Proof 

 Let k be the constant defined by the condition 

∫             
  

  

 

and  Let          ∫           
  
  

 

furthermore 

∫            
  

  

 ∫                
  

  

 

 ∫                (  )         
  

  

 

Thus                            

Applying lemma 2.2 we obtain 

      
  

   
                                    . 

Differentiating with respect to t, we obtain (2.5.2). This completes the proof of 

Theorem (2.5.2) 

          Since the Euler-Lagrange equation is in general a second order differential 

equation, it solution will in general depend on two arbitrary constants, which are 

determined from the boundary conditions            and            .  

The problem usually considered in the theory of differential equations is that of 

finding a solution which is defined in the neighborhood of some point and satisfies 

given initial conditions (Cauchy‘s problem). However, in solving the Euler-



 

58 
 

Lagrange equation, we are looking for a solution which is defined over all of some 

fixed region and satisfies given boundary conditions. Therefore, the question of 

whether or not a certain variational problem has a solution does not just reduce to 

the usual existence theorems for differential equations. 

          Note that the Euler-Lagrange equation is only a necessary condition for the 

existence of an extremum. This is analogous to the case of        given by 

         , for which 

         , although f clearly does not have a minimum or maximum at 0. See 

Figure 2.7. In fact, the existence of an extremum is sometimes clear from the 

context of the problem. From example, in the brachistochrone problem, it is clear 

from the physical meaning. Similarly in the problem concerning finding the curve 

with the shortest distance between two given points, this is clear from the 

geometric meaning. If in such scenarios, there exists only one critical curve2 

satisfying the boundary conditions of the problem, then this critical curve must a 

fortiori be the curve for which the extremum is achieved. 

 

Figure 2.7: The derivative vanishes at 0, although it is not a point at which the 

function has a maximum or a minimum. 

The Euler-Lagrange equation is in general a second order differential equation, but 

in some special cases, it can be reduced to a first order differential equation or 

where its solution can be obtained entirely by evaluating integrals. 
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Chapter 3 

The Optimal Control  

3.1 Introduction  

              Optimal control theory is about controlling the given system in some 

‗best‘ way. The optimal control strategy will depend on what is defined as the best 

way. This is usually specified in terms of a performance index functional. As a 

simple example, consider the problem of a rocket launching a satellite into an orbit 

about the earth. An associated optimal control problem is to choose the controls 

(the thrust attitude angle and the rate of emission of the exhaust gases) so that the 

rocket takes the satellite into its prescribed orbit with minimum expenditure of fuel 

or in minimum time. We first look at a number of specific examples that motivate 

the general form for optimal control problems, and having seen these, we give the 

statement of the optimal control.  

 Example of optimal control: 

Example (3.1.1) (Economic growth) We first consider a mathematical model of a 

simplified economy in which the rate of output Y is assumed to depend on the rates 

of input of capital K (for example in the form of machinery) and labour force L, 

that is, 

           

where P is called the production function. This function is assumed to have the 

following ‗scaling‘ property 

                   

with  
 

 
 , and defining the output rate per worker as   

 

 
 and the capital rate per 

worker as     
 

 
 , we have 
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         (

 

 
  
 

 
*                   

A typical form of Π is illustrated in Figure 2.1; we note that Π(k) > 0, but         

Π''(k) < 0. Output is either consumed or invested, so that 

           

 

 

 Figure3.1 Production function 

Where C and I are the rates of consumption and investment, respectively. 

The investment is used to increase the capital stock and replace machinery, that is 

     
  

  
          

Where μ is called the rate of depreciation. Defining    
 

 
 as the consumption rate 

per worker, we obtain 

       (    )        
 

    

  

  
          

Since 

 

  
 
 

 
  

 

 

  

  
 
 

 

  

  
 

it follows that 
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Assuming that labour grows exponentially, that is            
    , we have 

 
  

  
                                   

This is the governing equation of this economic growth model. The consumption 

rate per worker, namely c, is the control input for this problem. 

The central planner‘s problem is to choose c on a time interval [0, T] in some best 

way. But what are the desired economic objectives that define this best way? One 

method of quantifying the best way is to introduce a ‗utility‘ function U; which is a 

measure of the value attached to the consumption. The function U normally 

satisfies    (c) ≤ 0, which means that a fixed increment in consumption will be 

valued increasingly highly with decreasing consumption level. 

This is illustrated in Figure 3.2. We also need to optimize consumption for [0, T], 

but with some discounting for future time. So the central planner wishes to 

maximize the ‗welfare‘ integral 

      ∫              
 

 

 

Where δ is known as the discount rate, which is a measure of preference for earlier 

rather than later consumption. If δ = 0, then there is no time discounting and 

consumption is valued equally at all times; as δ increases, so does the discounting 

of consumption and utility at future times. 

The mathematical problem has now been reduced to finding the optimal 

consumption path {               }  which maximizes W subject to the constraint 
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Figure 3.2: Utility function U. 

and with          . 

Example (3.1.2) (Exploited populations) many resources are to some extent 

renewable (for example, fish populations, grazing land, forests) and a vital problem 

is their optimal management. With no harvesting, the resource population x is 

assumed to obey a growth law of the form 

                               
  

  
                                                                 (3.1.1) 

A typical example for ρ is the Verhulst model 

             
 

  
  

where    is the saturation level of population, and    is a positive constant. With 

harvesting, (3.1) is modified to 

  

  
                     

Where h is the harvesting rate. Now h will depend on the fishing effort e (for 

example, size of nets, number of trawlers, and number of fishing days) as well as 

the population level, so that we assume 

                 

Optimal management will seek to maximize the economic rent defined by 
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assuming the cost to be proportional to the effort, and where p is the unit price. 

          The problem is to maximize the discounted economic rent, called the present 

value V , over some period [0, T ], that is, 

     ∫                          
 

 

  

Subject to 

  

  
                          

and the initial condition          . 

3.2 Functional 

The examples from the previous section involve finding extremum values of 

integrals subject to a differential equation constraint. These integrals are particular 

examples of a ‗functional‘. 

         A functional is a correspondence which assigns a definite real number to each 

function belonging to some class. Thus, one might say that a functional is a kind of 

function, where the independent variable is itself a function. 

Examples (3.2.1)  

The following are examples of functionals: 

1. Consider the set of all rectifiable plane curves1. A definite number associated 

with each such curve, is for instance, its length. Thus the length of a curve is a 

functional defined on the set of rectifiable curves. 

2. Let x be an arbitrary continuously differentiable function defined on           

Then the formula 

     ∫ (
  

  
   *

 

  
  

  

 

defines a functional on the set of all such functions x. 
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3. As a more general example, let           be a continuous function of three 

variables. Then the expression 

      ∫  (     
  

  
     *   

  

  

 

Where x ranges over the set of all continuously differentiable functions defined on 

the interval           defines a functional. 

By choosing different functions F, we obtain different functionals. For example, if 

           √        

Then I(x) is the length of the curve {                 }  as in the first example, 

while if  

                 

Then I(x) reduce to the case considered in the second example. 

4. Let        and          be continuously differentiable functions of their 

arguments. Given a continuous function u on        , let x denote the unique 

solution of 

  

  
                                            

Then I given by 

       ∫               
  

  

    

defines a functional on the set of all continuous functions u on         .  

                 The examples discussed in above can be put in the following form. As 

mentioned in the introduction, we assume that the state of the system satisfies the 

coupled first order differential equations 
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      (                                 )                

  :                                                                                                 : 

  :                                                                                                 : 

   
  

      (                                 )                 

 

on         , and where the m variables          form the control input vector u. 

We can conveniently write the system of equations above in the form 

  

  
     (         )            [      ]  

We assume that              
 , that is, each component of u is a continuous 

function on         . 

         It is also assumed that           possess partial derivatives with respect to   , 

          and              and these are continuous. (So f is continuously 

differentiable in both variables.) The initial value of x is specified                , 

which means that specifying u(t) for              determines x . 

        The basic optimal control problem is to choose the control              
  

such that: 

1. The state x is transferred from    to a state at terminal time    where some (or all 

or none) of the state variable components are specified; for example, without loss 

of generality         is specified for     {       }  

2. The functional 

       ∫               
  

  

    

is minimized. 
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A function    that minimizes the functional I is called an optimal control, the 

corresponding state    is called the optimal state, and the pair         is called an 

optimal trajectory.  

Definition (3.2.1) 

 Let     be an interval (finite or infinite). We say a finite-valued function 

          is piecewise continuous if it is continuous at each      , with the 

possible exception of at most a finite  number of t, and if u is equal to either its left 

or right limit at every      . 

 

Figure 3.3:the graph to the left is an example of a piecewise continuous 

function.  

The graph to the right is not ,because the value of the function at t
*
 is not the left or 

right limit. 

            Although somewhat nonstandard terminology, requiring piecewise 

continuous functions to equal their left or right limits eliminates a great many 

headaches farther down the road. In words, a piecewise continuous function can 

have finitely many ―jump discontinuities" from one continuous segment to another. 

It cannot have a value that is an isolated single point (Figure 3.4). 

            Suppose          is piecewise continuous. Let         be 

continuous in three variables. Then, by the solution x of the differential equation 

                                                                    (3.2.1) 
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it is meant a continuous function          which is differentiable, with x' 

satisfying the above expression, wherever u is continuous. Equivalently, if I = [a , 

b], then x satisfies 

              ∫  (           )   
 

 

 

An initial condition for x(a) will normally be specified. 

Definition (3.2.2) 

 Let          be continuous on I and differentiable at all but finitely points of I. 

Further, suppose that x' is continuous wherever it is defined. Then, we say   is 

piecewise differentiable. 

            Note, if u is piecewise continuous, and x satisfies (3.2.1), then x is 

piecewise differentiable. Also, the actual value of u at its discontinuities is 

irrelevant in determining x. All controls considered will be piecewise continuous, 

and we will not be concerned with values at discontinuities. 

Definition (3.2.3)  

Let           We say k is continuously differentiable if k' exists and is 

continuous on I. 

Definition (3.2.4) 

A function k(t) is said to be concave on [a , b] if 

                                 

                                    

A function k is said to be convex on [a; b] if it satisfies the reverse inequality, or 

equivalently, if -k is concave. The second derivative of a twice differentiable 

concave function is non-positive; relating this to terminology used in calculus, 

concave here is ―concave down" and convex is ―concave up." If k is concave and 

differentiable, then we have a tangent line property 
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for all              . In words, the slope of the secant line joining two points is 

less than the slope of the tangent line at the left point, and greater than the slope of 

the tangent line at the right point. See Figure 3.4. 

 

 

Figure 3.4 The graph of a concave function k(t). The secant line and tangent 

lines for two points           are shown. 

            Analogously, a function k(x , y) in two variables is said to be concave if 

                                                                 

for all       and all                  in the domain of k. If k is such a 

function and has partial derivatives everywhere, then the analogue to the tangent 

line property is 

                                                               

for all pairs of points                       in the domain of k. 
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Definition (3.2.5)  

              A function k is called Lipschitz if there exists a constant c (particular to k) 

such that  

|           |   |     |for all points       in the domain of k. The constant c 

is called the Lipschitz constant of k. 

3.3 The Basic Problem and Necessary Conditions: 

In our basic optimal control problem for ordinary differential equations, we use 

u(t) for the control and x(t) for the state. The state variable satisfies a differential 

equation which depends on the control variable: 

                       

As the control function is changed, the solution to the differential equation will 

change. Thus, we can view the control-to-state relationship as a map 

                 (of course, x is really a function of the independent variable t, 

we write x(u) simply to remind us of the dependence on u). Our basic optimal 

control problem consists of finding a piecewise continuous control u(t) and the 

associated state variable x(t) to maximize the given objective functional, i.e 

   
 

∫  (           )  
  

  

 

                                   Subject to                                                     (3.3.1) 

                                                                             

Such a maximizing control is called an optimal control. By       free, it ismeant 

that the value of     ) is unrestricted. For our purposes, f and g will always be 

continuously differentiable functions in all three arguments. Thus, as the control(s) 

will always be piecewise continuous, the associated states will always be piecewise 

differentiable. 



 

70 
 

The principle technique for such an optimal control problem is to solve a set of 

―necessary conditions" that an optimal control and corresponding state must 

satisfy. It is important to understand the logical difference between necessary 

conditions and suffcient conditions of solution sets. 

Necessary Conditions: If u
*
 (t), x

*
(t) are optimal, then the following conditions 

hold ... 

Sufficient Conditions: If u
*
(t), x

*
(t) satisfy the following conditions ..., then u

*
(t), 

x
*
(t) are optimal. For now, let us derive the necessary conditions. Express our 

objective functional in terms of the control: 

     ∫  (           )   
  

  

 

 where x = x(u) is the corresponding state. 

         The necessary conditions that we derive were developed by Pontryagin and 

his co-workers in Moscow in the 1950's . Pontryagin introduced the idea of 

―adjoint" functions to append the differential equation to the objective functional. 

Adjoint functions have a similar purpose as Lagrange multipliers in multivariate 

calculus, which append constraints to the function of several 

variables to be maximized or minimized. 

            Assume a (piecewise continuous) optimal control exists, and that u
*
 is such 

a control, with x¤ the corresponding state. Namely,                  for all 

controls u. 

 Let h(t) be a piecewise continuous variation function and     a constant. Then 

                      

is another piecewise continuous control. Let    be the state corresponding to the 

control   , namely,    satisfies    

               
 

  
                                                              (3.3.2) 
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wherever    is continuous. 

 Since all trajectories start at the same position, we take           (Figure 3.5). 

 

Fig 3.5 The optimal control u* and state x* (in solid) plotted together with 

          (dashed). 

It is easily seen that              for all t as    . Further, for all t 

      

  
|
   

       

In fact, something similar is true for       . Because of the assumptions made on 

g, it follows that 

         

for each fixed t. Further, the derivative 

 

  
     |

   
 

exists for each t. The actual value of quantity will prove unimportant. We need 

only to know that it exists. 

The objective functional at    is 

      ∫                   
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We are now ready to introduce the adjoint function or variable ¸. Let      be a 

piecewise differentiable function on         to be determined. By the Fundamental 

Theorem of Calculus, 

∫
 

  
           

  

  

         
            

       

which implies 

∫
 

  
           

  

  

         
            

        

 

Adding this 0 expression to our J(  ) gives 

∫ [ (             )  
 

  
(         )]

  

  

         
            

      

 ∫ [ (             )  (          )       (             )]
  

  

    

       
            

      

where we used the product rule and the fact that            
 

  
    at all but 

finitely many points. Since the maximum of J with respect to the control u occurs 

at u
*
, the derivative of J(u

*
) with respect to ϵ (in the direction h) is zero, i.e., 

  
 

  
     |

   
    

   

           

 
 

This gives a limit of an integral expression. A version of the Lebesgue Dominated 

Convergence Theorem above allows us to move the limit (and thus the derivative) 

inside the integral. This is due to the compact interval of integration and the 

piecewise differentiability of the integrand. Therefore, 
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     |

   

 ∫  
 

  
 (             )  (          )

  

  

      (             )  |
   

 
 

  
      

     |
   

 

Applying the chain rule to f and g, it follows 

  ∫ [  
   

  
   

   

  
      

   

  
     (  

   

  
   

   

  
*] |

   
  

  

  

 

      
   

  
    |

   
                 (3.3.3) 

where the arguments of the                 terms are (t, x
*
(t), u*(t)). 

Rearranging the terms in (3.4.3) gives 

  ∫ *                 
   

  
    |

   
                +

  
  

   

      
   

  
    |

   
                                (3.3.4) 

We want to choose the adjoint function to simplify (3.3.4) by making the 

coefficients of 

   

  
   |

   
 

vanish. Thus, we choose the adjoint  function ¸λ(t) to satisfy 

       [  (   
          )        (  

          )]           (adjoint equation), 

and the boundary condition 

                                      (transversality condition). 

Now (3.5) reduces to 

  ∫ (  (   
          )        (    

          ))
  

  

        

As this holds for any piecewise continuous variation function h(t), it holds for 
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       (   
          )        (   

          ) 

In this case 

  ∫ (  (   
          )        (    

          ))
   

  

    

which implies the optimality condition 

  (   
          )        (   

          )                   . 

These equations form a set of necessary conditions that an optimal control and 

state must satisfy. In practice, one does not need to rederive the above equations in 

this way for a particular problem. In fact, we can generate the above necessary 

conditions from the Hamiltonian H, which is defined as follows, 

                                     

                                                                    = integrand + adjoint * RHS of DE: 

We are maximizing H with respect to u at u
*
, and the above conditions can be 

written in terms of the Hamiltonian: 

            
  

  
                                            (Optimality condition), 

 

            
  

  
                                       (adjoint equation), 

                                                                           (transversality condition). 

We are given the dynamics of the state equation: 
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3.4 Pontryagin's Maximum Principle: 

The Pontryagin maximum principle is stated somewhat differently from our usage. 

Our version is correct only under more stringent conditions than have been fully 

stated. We shall set forth the Pontryagin maximum principle and then note the 

differences between it and the version given in earlier solutions. 

The problem 

Find a piecewise continuous control vector                        and an 

associated continuous and piecewise differentiable state vector       

                , defined on the fixed time interval          , that will 

                            max∫  (           )  
  
  

                                        (3.4.1) 

 subject to the differential equations 

  
       (           )                                           (3.4.2) 

initial conditions 

                                                                   (3.4.3) 

terminal conditions 

                                                              

                                                                               

                   

                                                                                   

and control variable restriction 

                                                                          (3.4.5) 

We assume that           ⁄            ⁄  are continuous functions of all their 

arguments, for all 

                               . 
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Theorem (3.4.1) 

Suppose that          and          are both continuously differentiable functions 

in their three arguments and concave in u. Suppose u¤ is an optimal control for 

problem (3.5.1),with associated state x
*
, and u

*
 ¸ a piecewise differentiable 

function with ¸      ¸ 0 for all t. Suppose for all         

      (   
               )  

Then for all controls u and each        , we have 

 (                 )   (                  )  

Proof 

 Fix a control u and a point in time        . Then, 

       (                  )   (                 ) 

                         [ (             )       (             )] 

                                    [ (            )       (            )]  

                         [ (             )   (            )] 

     [ (             )   (            )] 

The transition from line 3 to line 4 is attained from applying the tangent line 

property to f and g, and because ¸λ(t)   . 

               An identical argument generates the same necessary conditions when the 

problem is minimization rather than maximization. In a minimization problem, we 

are minimizing the Hamiltonian point wise, and the inequality in Pontryagin's 

Maximum Principle in reversed. Indeed, for a minimization problem with f, g 

being convex in u, we can derive 

 (                 )   (                  ) 

by the same argument as in Theorem 3.4.1. 

              We have converted the problem of finding a control that maximizes (or 

minimizes) the objective functional subject to the differential equation and initial 
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condition, to maximizing the Hamiltonian point wise with respect to the control. 

Thus to find the necessary conditions, we do not need to calculate the integral in 

the objective functional, but only use the Hamiltonian. Later, 

we will see the usefulness of the property that the Hamiltonian is maximized 

pointwise by an optimal control. 

            We can also check concavity conditions to distinguish between controls 

that maximize and those that minimize the objective functional [14]. If 

   

   
           

then the problem is maximization, while 

   

   
           

goes with minimization. 

          We can view our optimal control problem as having two unknowns, u
*
 and 

x
*
, at the start. We have introduced an adjoint variable λ, which is similar to a 

Lagrange multiplier. It attaches the differential equation information onto the 

maximization of the objective functional. The following is an outline of how this 

theory can be applied to solve the simplest problems. 

1. Form the Hamiltonian for the problem. 

2. Write the adjoint differential equation, transversality boundary condition, and 

the optimality condition. Now there are three unknowns, u
*
, x

*
, and λ. 

3. Try to eliminate u¤ by using the optimality equation       , i.e., solve for u
*
 

in terms of x
*
 and λ. 

4. Solve the two differential equations for x
*
 and λ ¸ with two boundary conditions, 

substituting u
*
 in the differential equations with the expression for the optimal 

control from the previous step. 

5. After finding the optimal state and adjoint, solve for the optimal control. 
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Example (3.4.1) 

   
 

∫        
 

 

 

                                  Subject to                                        

Can we see what the optimal control should be? The goal of the problem is to 

minimize this integral, which does not involve the state. Only the integral of 

control (squared) is to be minimized. Therefore, we expect the optimal control is 0. 

We verify with the necessary conditions.  

We begin by forming the Hamiltonian H 

                  

The optimality condition is 

  
  

  
                   

 

 
  

We see the problem is indeed minimization as 

   

   
     

The adjoint equation is given by 

    
  

  
               

for some constant c. But, the transversality condition is 

                  

Thus, λ=0, so that     
  

 
     . 

 So, x
*
 satisfies      and x(0) = 1. 

Hence, the optimal solutions are 

                       

and the state function is plotted in Figure 3.6 
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Figure 3.6 Optimal state for Example 3.4.1 plotted as a function of time. 

 

Example (3.4.2) 

   
 

 

 
∫ (         )  

  

  

 

                                            Subject to                             

The 
 

 
 which appears before the integral will have no effect on the minimizing 

control and, thus, no effect on the problem. It is inserted in order to make the 

computations slightly neater. You will see how shortly. Also, note we have omitted 

the phrase ―x (1) free" from the statement of the problem. This is standard notation, 

in that a term which is unrestricted is simply not mentioned. We adopt this 

convention from now on. 

Form the Hamiltonian of the problem 

  
 

 
      

 

 
            

The optimality condition gives  
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 The problem is a minimization problem as 

   

   
      

We use the Hamiltonian to find a differential equation of the adjoint λ, 

       
  

  
                

Substituting the derived characterization for the control variable u in the equation 

for x', we arrive at 

(
  
  
)  (

       
      

) (
 
 
) 

The eigenvalues of the coefficient matrix are 2 and -2. Finding the eigenvectors, 

the equations for x and λ are 

(
 
 
)       (

 
  

)       (
 
 
)       

Using          and λ(1) = 0, we find        
   and    

 

      
.  

Thus,  using the optimality equation, the optimal solutions are 

   
    

      
    

 

      
     

   
    

      
    

 

      
     

 



 

81 
 

 

Figure 3.7 Optimal control and state 

 

3.5 Existence and Other Solution Properties: 

            We developed necessary conditions to solve basic optimal control 

problems. However, some difficulties can arise with this method. It is possible that 

the necessary conditions could yield multiple solution sets, only some of which are 

optimal controls. Further, recall that in the development of the necessary 

conditions, we began by assuming an optimal control exists. It is also possible that 

the necessary conditions could be solvable when the original optimal control 

problem has no solution. We expect the objective functional evaluated at the 

optimal state and control to give a finite answer. If this objective functional value 

turns out to be         , we would say the problem has no solution. An example 

of this is given below. 
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Example (3.5.1) 

   
 

∫ (         )  
 

 

 

                                         Subject to                         . 

The Hamiltonian and the optimality condition are: 

              

  

  
                  

 

  
 

From the adjoint equation and its boundary condition, 

       
  

  
                

We can directly calculate 

          

Note that the concavity with respect to the control u is correct for a maximization 

problem, 

          

 

as       . Next, we calculate the optimal state using the differential equation 

and its boundary condition 

          
 

       
                  

 

and find that     

        
 

      
 

 

 
   , 

      
 

      
 

 



 

83 
 

 

 

 

 

 

 

 

 

 

Figure 3.8 the graph of u
*
plotted in logarithmic scale. The value of u

*
tends to 

infinity as t approaches 1.  

 

3.5.1 Existence and Uniqueness Results 

Theorem (3.5.1) 

                    Consider 

      ∫  (           )  
  

  

 

                                   Subject to         (           )                 

Suppose that                       are both continuously differentiable 

functions in their three arguments and concave in x and u. suppose u
*
 is a control, 

with associated state x
*
, and  λ a piecewise differentiable function, such that u

*
, x

*
, 

and λ together satisfy on          

          

              

       , 
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Then for all controls u, we have 

            

 

Proof 

                Let u be any control, and x its associated state. Note, as          is 

concave in both the x and u variable, we have by the tangent line property 

                                
                  

      

This gives 

           ∫                    
  

  

 

 ∫                   
                        

       
  
  

                (3.5.1) 

Substituting 

      
                       

      and 

      
                 

      

as given by the hypothesis, the last term in (3.6.1) becomes 

∫ (          )(                 
     )   

  

  

 (          )(           
     )    

Using integration by parts, and recalling¸            and                  we see 

∫       
  

  

(          )   ∫                  
  

  

   

 ∫       (             )   (           )   
  

  

 

Making this substitution, 



 

85 
 

          

 ∫                          
  

  

            
     

             
          

Taking into account         and that g is concave in both x and u, this gives the 

desired result                        

3.5.2 Principle of Optimality 

              An important result in both optimal control and dynamic programming is 

the Principle of Optimality. It concerns optimizing a system over a subinterval of 

the original time span, and in particular, how the optimal control over this smaller 

interval relates to the optimal control on the full time period. 

Theorem (3.5.2) 

Let u
*
 be an optimal control, and x

*
 the resulting state, for the problem 

   
 

        
 

∫  (           )  
  

  

 

Subject to         (           )                                  (3.5.2) 

Let    be a fixed point in time such that            . Then, the restricted 

functions 

       |
       

 ,  form an optimal pair for the restricted problem 

   
 

         
 

∫  (           )  
  

  
 

Subject to         (           )                                (3.5.3) 

 

Further, if u
*
 is the unique optimal control for (3.5.2), then u

^*
 is the unique 

optimal control for (3.5.3). 
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Proof 

 This proof is done by contradiction. Suppose, to the contrary, that u
^ *

is not 

optimal, i.e., there exists a control   
  on the interval         such that 

       
           Construct a new control u1 on the whole interval [     ] as 

follows 

      {
                  

  
              

 

Let x1 be the state associated with control u1. Notice that u1 and u
*
 agree on [t0 ,t

^
], 

so that x1 and x
*
 will also agree there. Hence, 

            (∫       

  

  

            
  +  (∫       

  

  

              + 

       
               

 

However, this contradicts our initial assumption that u
*
 was optimal for (3.5.2). 

Thus, no such control   
  exists, and u

^*
 is optimal for (3.5.3). 

The proof of the result concerning uniqueness follows in almost exactly the same 

manner and is left. 

Example (3.5.2) 

   
 

∫       
 

 

 

 

         

                                     Subject to                       
 

 
      

First, we will solve this example on [0, 2], then solve the same problem on a 

smaller interval    [1, 2]. The Hamiltonian in this example is 

    
 

 
          

The adjoint equation and transversality condition give 
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and the optimality condition leads to 

  
  

  
                         

Finally, from the state equation, the associated state is 

      
 

 
        

Now, consider the same problem, except on the interval [1, 2], i.e., 

   
 

∫       
 

 

 

 

          

                                     Subject to                       
 

 
     

Clearly, the Principle of Optimality can be applied to find an optimal pair 

immediately, namely, the pair found above. The original problem on the interval 

[0, 2] has the same optimal control as the above problem on [1, 2]. Let us solve this 

example by hand, though, to reinforce the power of the theorem. The Hamiltonian 

will be the same, regardless of interval. Because the end point remains fixed, the 

adjoint equation and transversality also remain the same: 

       
  

  
                          

while the optimality is also unchanged, 

  
  

  
                         

Using the new initial condition       
 

 
    , we find the corresponding state 

      
 

 
        

Of course, we see the same optimal pair as above, as called for by the Principle of 

optimality. 
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Example (3.5.3) 

   
 

∫       
 

 

 

 

         

                                     Subject to                       
 

 
      

Again, the Hamiltonian is the same, so that the adjoint and optimality conditions 

are unchanged. However, the transversality condition is now different, 

       
  

  
                          

So that  

                    

Using this in the state equation,          

                                                    
 

 
       

 

 
          

 

 

Figure 3.9 Optimal controls for Examples 3.6.1 (dashed) and 3.6.2. (solid) 

plotted together. 
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3.6 State Conditions at the Final Time 

               Up to this point, we have viewed the value of the state at the terminal 

time to be immaterial, i.e., the objective functional (our goal) did not explicitly 

depend on x(t1). However, there are situations where we might wish to take it into 

consideration. 

3.6.1 Payoff Terms 

Many times, in addition to maximizing (or minimizing) terms over the entire time 

interval, we will wish to also maximize a function value at one particular point in 

time, specifically, the end of the time interval. For example, suppose you want to 

minimize the tumor cells at the final time in a cancer model, or the number of 

infected individuals at the final time in an epidemic model. 

The necessary conditions must be appropriately altered. In general, consider the 

following set-up, 

   
 

*        ∫  (           )  
  

  

+ 

                                      Subject to       (           )             

Where          is a goal with respect to the final position or population level, x(t1). 

We call        a payoff term. It is sometimes referred to as the salvage term. 

Consider the resulting change in the derivation of the necessary conditions. Our 

objective functional becomes 

     ∫  (           )  
  

  

          

In the calculation of 

     
   

           

 
 

the only change occurs in the conditions at the final time 
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  ∫ [           
   

  
|
   

          ]
  

  

   

 (       (     )) 
   

 
    |

   
              (3.6.1) 

So, if we choose the adjoint variable λ to satisfy the previous adjoint equation and 

also 

             
                

      

        (      ) 

then (3.6.1) reduces to 

  ∫             
  

  

 

and the optimality condition 

      
                

        

follows as before. So, the only change in the necessary conditions is in the 

transversality condition 

        (      )  

To clarify how to calculate this adjoint final time condition, consider the following 

examples. 

Example (3.6.1) 

   
 

∫  (           )         
 

 

 

Subject to         (           )          . 

Here we have 

                          

so that the transversality condition is  
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Example (3.6.2)  

   
 

 

 
∫              

 

 

 

                                       Subject to                         . 

Note, this problem is identical to Example (3.5.1), except for the addition of the 

payoff term. So now, our goal includes minimizing the term x(1)
2
, in addition to 

the square integral of the control. We can view this as minimizing a population, 

with exponential growth, at the end of a time frame. We should expect u to be 

negative, in order to decrease x, but | | cannot be too large because of the integral.  

The Hamiltonian in this example is  

  
 

 
          

The optimality condition gives 

  
  

  
                  

Also, the adjoint equation is 

       
  

  
               

for some constant C. Hence, 

                   

So, 

                     

Which gives 

      
 

 
        

Where K is a constant. Recall, the transversality condition here is 

       (    )   (     )         

We have the system of linear equations 
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which can be solved to give C = 2, K = 0. Thus  

                        

and u
*
 is negative as expected. 

 

 

Figure 3.10 The optimal state for Example 3.2 (solid) and Example 

3.1(dashed). 

Example (3.6.3) 

            Let x(t) represent the number of tumor cells at time t (with exponential 

growth factor  ), and u(t) the drug concentration. We wish to simultaneously 

minimize the number of tumor cells at the end of the treatment period and the 

accumulated harmful effects of the drug on the body. So, the problem is 

   
 

     ∫        
 

 

 

                                       Subject to                             . 
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This model is very simple and unrealistic; we use it for illustrative purposes only. 

A more sophisticated and interesting model is used in Lab 

Note that          here, so that          . First, we construct the Hamiltonian 

and then calculate the necessary conditions: 

              

  

  
                 

 

 
   

    
  

  
              

        

This gives the adjoint variable, 

              

Hence, we obtain the optimal control 

      
       

 
   

 and we can then solve for the optimal state 

           
       

 
          

This ODE can be solved using an integration factor to find 

         
      

        

  
  

 

3.6.2 States with Fixed Endpoints 

There are various possibilities of fixing the position of the state at the beginning or 

at the end of the time interval or both. The objective functional could depend on 

the final or initial position. Consider the problem 

   
 

∫  (           )         
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                                      Subject to        (           )  

                                                                         

This is different than the problems we have been examining, as the state is fixed at 

the end of the time interval, not at the beginning. However, the same argument we 

used in section 3.1, with the adjoint chosen appropriately, shows that the necessary 

conditions for an optimal pair u
*
, x

*
 will be as before, with only the transversality 

condition changed. Specifically, 

        (     )  

Consider the problem below, where the state is fixed at both the beginning and end 

of the time interval, 

   
 

∫  (           )         

  

  

    

                                      Subject to        (           )                           (3.6.2) 

                                                                             

 

The maximization here is over all admissible controls. That is, the set of controls 

which adhere to all stated restrictions (explicit and implicit). In the case of (3.6.2), 

this would mean all controls which steer the state from the fixed initial condition to 

the fixed final condition. A slight modification of the necessary conditions is 

needed to solve such a problem.  

Example (3.6.4) 

   
 

∫ (          )  
 

 

 

                                       Subject to                         . 

We begin by forming the Hamiltonian 
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We have no transversality condition, as x has both boundary conditions, but 

we make use of the adjoint condition, 

       
  

  
             

for some constant k. Then, the optimality condition gives 

  
  

  
           

 

 
 

   

 
  

Solving the state equation with this control gives 

      
  

 
 

  

 
   

for some constant c. Using the boundary conditions, x(0) = 0 implies c = 0, and 

         gives          
 

 
. So, 

      
    

 
                  

     

 
 

 

Example (3.6.5) 

 

   
 

 

 
∫        

 

 

 

                                  Subject to                                     

This is another variation on Examples 3.5.1 and 3.7.2 The objective functional 

once again does not depend on x, but we must choose a control that moves x from 

1 to 0. Again, we expect a negative u. The Hamiltonian is 

  
 

 
          

As before, the optimality condition gives 
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Also 

       
  

  
              

for some constant C. Thus, 

                  

So that  

             

      
 

 
        

Enforcing the boundary conditions on x, we find 

       
 

 
   

       
 

 
       

Which gives   
   

    
 and  

 

    
 , so that 

      
 

    
          

      
 

    
     

Note, in Example 3.6.2 we wanted to minimize the value of x(1)
2
 and the 

cumulative effect of the control. So, we wanted to push x(1) close to 0. Here, we 

choose the control with the smallest cumulative effect that forces the state to 0. If 

we plug the optimal control from this example into the objective functional, we 

find                 , whereas the value of J(u
*
) in Example 3.6.2 was 1. 

Not fixing the final state allows more freedom in the choice of controls, and the 

objective functional can be reduced further. The two optimal states are shown in 

Figure 3.11 
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Figure 3.11 the optimal state from Example 3.6.4 (solid) is forced to 0. The 

optimal state from Example 3.6.2 (dashed) is not. 

3.7 Bounded Controls 

               Many problems require bounds on the control to achieve a realistic 

solution. Suppose, for instance, that our control is the amount of a chemical used in 

a system. Then, clearly we require this amount to be nonnegative, i.e.,      . 

Often, the control must also be bounded above. Perhaps there are physical 

limitations on the amount of chemicals or environmental regulations which 

prohibit a certain level of use. We could also have a problem where the control is 

the percentage of some strength or use. Then           would be our bounds. 

Necessary Conditions: 

             In order to solve problems with bounds on the control, we must develop 

alternate necessary conditions. Consider the problem 

   
 

∫  (           )  
  

  

  (     )  

                           Subject to        (           )   ,          
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where a, b are fixed, real constants and a < b. Let J(u) be the value of the objective 

functional at control u, where x = x(u) is the associated state, namely, 

     ∫  (           )  
  

  

  (     ) 

Let u
*
, x

*
 be an optimal pair. Let h(t) be a piecewise continuous function where 

there exists a positive constant   , such that for all            
              

       is admissible, i.e., 

                        

Due to bounds on the controls, the derivative of the objective functional may not 

be zero at the optimal control, since u
*
 may be at the bounds (endpoints of its 

range) at some points in time; we may only know the sign of this derivative. To 

calculate this sign, we also restrict the sign of the   parameter. Let       be the 

corresponding state variable for each         . Precisely as was done in section 

above, introduce a piecewise differentiable adjoint variable ¸λ(t) and apply the 

fundamental theorem of calculus to write       as 

      ∫                                          
  

  

 

                                                               
                           (3.7.1) 

As the maximum of J(u) with respect to u at u
* 

                                
 

  
     |

   
              

           

 
                        (3.7.2) 

Note, the constant   was chosen to be positive, so the limit can only be taken from 

one side. The numerator is clearly non-positive, as u
*
 is maximal. This gives the 

inequality shown, instead of equality as in section above. However, this is all we 

will need. As we did before, choose the adjoint variable so that 
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        (      ) 

Then (3.8.1),(3.8.2) reduce to  

                                                      ∫        
  
  

                                       (3.7.3) 

and this inequality holds for all h as described above. 

Let s be a point of continuity of u
*
 with          .suppose           at s.

 

As u
*
 is continuous at s, so is       . Thus, there is a small interval I, containing 

s, on which          is strictly positive and u
*
 < b. Let 

     {         }    

Define a particular h by 

     {
                   
                         

 

Note, h > 0 on I. Further, it is easily seen that                 for all        

But, 

∫        

  

  

     ∫        
 

       

which contradicts (3.8.3). So 

                  . Further, this holds for all points of continuity s. In summary, 

                                           

                                                              (3.7.4) 

                                          

The conditions (3.8.4) are equivalent to 

                                        

                                                                (3.7.5) 
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This holds for all points of continuity t of u
*
. As they are irrelevant to the objective 

functional and the state equation, we neglect the remaining points. These new 

necessary conditions can be compiled as before.  

Forming the Hamiltonian 

                                    

the necessary conditions for x
*
 and λ ¸ are unchanged, namely 

      
  

  
              

        
  

  
           (     )   

It follows from the derivation above 

{
 
 

 
             

  

  
  

                
  

  
  

            
  

  
  

                                (3.7.6) 

 

Example (3.7.1) 

   
 

∫                       
 

 

 

                                             Subject to                        

         

Form the Hamiltonian 

                 

Then the adjoint calculation yields : 
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Now that we have found the adjoint value, we turn our attention to u
*
, which 

requires considering the sign of 
  

  
: 

  

  
         

  
  

  
                                 

           ⁄   

  
  

  
                                     

      (  ⁄ ) 

  
  

  
           

 

 
        

 

 
        

    (  ⁄ )        (  ⁄ )  

Hence, the optimal control is 

      

{
 
 
 

 
 
                   (  ⁄ )

      
 ⁄            (  ⁄ )        (  ⁄ ) 

              (  ⁄ )       

 

To find the optimal state, insert the values for u¤ into the differential equation for 

x, and solve the three cases. We find the optimal state to be 

      

{
 
 

 
 

  

   
                   (  ⁄ )

   
 

 
      

 ⁄            (  ⁄ )        (  ⁄ ) 

    
                    (  ⁄ )       
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where k1, k2, and k3 are constants. Using x(0) = 5, it follows k1 = 7. Recall, the state 

must be continuous. So, requiring x
*
 to agree at 

      (  ⁄ )  and        (  ⁄ ) 

, we find values for k1 and k3, so that 

      

{
 
 

 
                      (  ⁄ )

(  
  

 
    *    

 

 
      

 ⁄            (  ⁄ )        (  ⁄ ) 

                              (  ⁄ )       

 

 

 

 

Figure 3.12 optimal control and state 

Example (3.7.2) 

 This example deals with a one-sided control constraint. 

   
 

      ∫        
 

 

 

                                            Subject to  x
'
(t) = x(t) + u(t) ,  x(0) = 0  

        

The Hamiltonian in this problem is 
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Recall, the payoff term          is not included in the Hamiltonian, but instead 

incorporated into the transversality condition. Specifically, since      

           , we have 

       
  

  
    

       (     )     

This gives 

           

If you refer back to equation (3.8.5), you will see 
  

  
     implies u

*
 is at the lower 

bound. However, we have no lower bound in this problem. The control u can range 

over all values less than or equal to 5. So, 
  

  
     cannot occur. To find a 

representation of u
*
, we need only consider the other two cases: 

  

  
      

  

  
                                      

  

  
                                    

Hence, the above two cases give 

   {

                              
 

 
                          

 

To finish the example, we simply solve the state equation to find  x
* 
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for some constant k. We require that x
*
 be continuous, so these two expressions 

must agree at           –       . This gives             .  Hence 

   {
                                                         

 
 

 
                                    

 

 

3.8 Optimal Control of Several Variables 

             We have only examined problems with one control and one dependent 

state variable. Often, though, we will wish to consider more variables. For 

example, consider a system modeling antibiotics used to fight a viral infection. In 

addition to the number of viral particles in the blood, we might also want to follow 

the number of antibodies or white blood cells. These quantities would be 

represented as additional state variables. Further, suppose the patient was 

taking two different antibiotics that caused the body to generate antibodies at 

different rates or times. These would need to be separate control variables; see 

[20]. Further, we could examine an SIR epidemic model with vaccination levels as 

a control [15, 16, 17, 18], or a tuberculosis epidemic model involving decisions in 

allocating efforts [19].  

 Necessary Conditions 

The methods developed for one control and state are easily extended to optimal 

control of multiple state and control variables. Consider a problem with n state 

variables, m control variables, and a payoff function    

   
        

∫       

  

  

                               

  (                 )  

                         Subject to   
       (                                ) 
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    Where the functions f, gi are continuously differentiable in all variables. We 

make no requirements on m, n. In fact, m < n, m = n, or m > n are all acceptable. 

Use vector notation to change the problem to a more familiar form. 

Let                         ,   
                       ,   

     

             and                     
               

      . Then, 

we can write the problem as 

   
  

∫  (             )             
  

  

 

                         Subject to          (             )            
    

Let     be a vector of optimal control functions and     be the vector of 

corresponding optimal state variables. With n states, we will need n adjoints, one 

for each state. Introduce a piecewise differentiable vector-valued function   

                       , where each ¸   is the adjoint variable corresponding 

to   . Define the Hamiltonian 

                                          

where . is the dot product of vectors. By essentially the same argument presented 

in section above, we find the variables satisfy identical optimality, adjoint, and 

transversality conditions in each vector component. Namely,      maximizes 

               with respect to       at each t, and         , and     ¸ satisfy 

  
     

  

   
       

                                

  
      

  

   
                   

                   

  
  

   
      

               

Where  
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                         ∑  
          

      

 

   

 

By     , it is meant the partial derivative in the xj component. Note, if     , then 

         for all j, as usual. 

                    Modifications of the problems yield adjustments on the conditions 

similar to those in previous chapters. For example, if a particular state variable xi 

satisfies                               both fixed, then the corresponding  adjoint 

   has no boundary conditions. Similarly, if bounds are placed on a control 

variable           then the optimality condition is changed from. 

        
  

   
                                      

{
 
 

 
                     

  

   
   

            
  

   
   

                     
  

   
    

 

We illustrate these ideas with a few examples. 

Example (3.8.1) 

   
 

∫       
 

 

          

                                        Subject to   
                           

  
                  

Introduce two adjoint variables, one for each state variable, and form the 

Hamiltonian, 

                 

Form the adjoint and transversality conditions 
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The first adjoint       is simply a constant, say C. Then,     can be solved as 

follows, 

         

                    

Using the optimality condition, 

  
  

  
           

  
 

 
     

 
       

Finally, we make use of the state equations and boundary conditions to find 

            
     

 
(
  

 
  )             

  
           

     

 
(
  

 
 

  

 
)               

Noting that        , it follows       Thus, the optimal solution set is 

            

  
     

 

 
   

 

 
   

  
        

 

 
    

The optimal states   
   and   

 are shown in Figure 3.13 
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Figure 3.13 optimal state for example 3.9.1 

Example (3.8.2) 

   
     

∫       
 

 

 

 

     
  

 

 
     

       

                        Subject to                           

          

The Hamiltonian is 

    
 

 
  

  
 

 
  

           

The adjoint and transversality conditions yield 

       
  

  
                      

The second control has no bounds, so we can easily solve for it, 

  
  

   
         

         

 To find   
 , we note 
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By plugging the three cases back into the state equation, and requiring continuity, 

we can find  x
*
 Then, the optimal solution set (Figure 3.14) is 

                  
     

{
 
 

 
                        

 

 
   

          
 

 
   

 

 
 

                 
 

 
       

               
         

 

      

{
 
 

 
     

 

 
                            

 

 
   

   
 

 
   

 

 
               

 

 
   

 

 
 

   
 

 
   

 

 
              

 

 
       

  

 

Figure 3.14 Optimal control for example 3.8.2 
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3.8.1 Linear Quadratic Regulator Problems 

             We treat a special case in the optimal control of systems, in which the state 

differential equations are linear in x and u and the objective functional is quadratic. 

           A solution can be found in a slightly different way in this case and has a 

very nice format. In particular, we are able to eliminate the adjoint variable in the 

necessary conditions. For example, one might use such systems to model 

chemostats [21]. Our state system is given by 

                                                                                     (3.8.1) 

Where x is an n-dimensional column vector and u is a m-dimensional column 

vector. The matrices A(t),B(t) have sizes n x n and n x m respectively. 

 Note that entries of matrices of A,B can be functions of time. The objective 

functional is 

     
 

 
*           ∫                              

 

 
+               (3.8.2) 

               Where the symmetric matrices M, Q(t), and R(t) are sizes n x n, and m x 

m respectively, with M, Q(t) being positive semidefinite and R(t) being positive 

defnite for all             

The positive defnite property guarantees R(t) is invertible.  

            The superscript T refers to transpose of the matrix. We can interpret the 

objective functional as minimizing a weighted sum of the components of the state 

and the control. The matrices would be chosen to decide which components to 

emphasize. In practice, the state might be the difference between a quantity (like 

the levels of microorganisms in a chemo stat) and its desired profile, and the 

objective functional can drive certain components of the quantity close to the 

profile. 

 



 

111 
 

           Like the control and state, we write λ to mean an n-dimensional column 

vector of adjoints. The Hamiltonian becomes 

  
 

 
     

 

 
                

Some care must be taken in differentiating matrix expressions, particularly if not 

familiar with the process. We suppress the details here, but encourage the reader to 

check the calculations term-by-term. The optimality equation is 

                    

and the adjoint equation is 

                          . 

 

The assumptions of symmetry for M, Q, and R are buried in the above calculations. 

We choose to solve this problem in a different way due to the structure of the 

transversality condition and the adjoint differential equation; this method is called 

the sweep method [24, 22, 23]. Instead of using λ, we find a matrix function S(t) 

such that λ(t) = S(t)x(t). By the product rule for matrices, 

                           

Using the expressions for λ' and x'given by the state and adjoint equations, we have  

                     

Making use of the characterization of the control and the identity λ = Sx, 

                            

                                          

                                   

From the transversality condition, we obtain the matrix Riccati equation that S(t) 

must satisfy. Namely, 
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Reconsidering the characterization, we see the control is a linear function of the 

state only, a type of feedback control 

            

The matrix         is called the gain. After solving the Riccati matrix equation 

for S, the control is given by an equation in x, and x is given by an ODE in u, so 

that the problem can be solved using simple ODE methods. Therefore, we have 

totally eliminated the adjoint ¸ from the problem. See the book by Morris about 

feedback control [26] and a recent application of 

the Riccati approach [20]. 

Example (3.8.3) 

                  We consider a simple one dimensional example. 

 

 
   
 

∫                
 

 

 

Subject to                      

In this case, all the matrices are scalars (size 1 £ 1) and S(T) = M = 0, A = 0, B = Q 

= R = 1 

 The Riccati equation is 

                  

Solving as a separable equation, and using partial fractions, 

 

 
  |

   

   
|  ∫

  

    
   ∫         

Which along with S(T) = 0 gives 

     
         

         
 

The optimal control satisfies        , so that the optimal state satisfies 

         . 
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 Using partial fractions (or an integral table) we can find an antiderivative of S, and 

solve the separable equation to see 

                   

Taking into account x(0) = x0 

        
        

     
               

        

     
  

3.8.2 Higher Order Differential Equations 

            Optimal control of systems can be employed to solve maximization (or 

minimization) problems involving higher order differential equations. Consider the 

following problem, 

   
         

∫                                         
  

  

    

Subject to                                                 

                                                 

Pontryagin's Maximum Principle, as we have developed it, does not directly deal 

with this type of problem. However, it is easily converted to a systems problem by 

introducing n+1 state variables defined by   

                                       . Then, the above problem 

becomes 

   
         

∫                                           
  

  

     

                                      Subject to    
                     

  
                     

: 

: 
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          (                                       ) 

              

 

Example (3.8.4) 

   
 

 

 
∫                

 

 

 

                                   Subject to                              

Let               , to covert the problem to  

   
 

 

 
∫             

    
 

 

 

Subject to     
                    

                                          

Introduce two adjoint variables            and set up the Hamiltonian: 

  
 

 
   

 

 
  

           

  
  

  
             

        
  

   
              

        
  

   
               

Note   
       

       
      

          Thus 

                              for some constant A,B,C,D. Making use 

of the adjoint and state equation , we see  
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Using the condition                 and                  ,we find 

(

              
                  
                
            

,(

 
 
 
 

,  (

 
 
 
 

, 

Approximate value are                        , So that the optimal 

solution are 

                                             

                                              

 

3.9 Linear Dependence on the Control 

               In the preceding   section, we have examined increasingly more general 

optimal control problems. However, we now turn our attention to a special case, 

which often arises in applications. Specifically, we focus on problems that are 

linear in the control u. The method of solving such problems is sometimes quite 

different, and the optimal solution often involves discontinuities in u
*
. 

3.9.1 Bang-Bang Controls 

Consider the optimal control problem 

   
 

∫                        
  

  

 

Subject to                                     

          

Notice the integrand function f and the right-hand side of the differential equation g 

are both linear functions of the variable u. Thus, the Hamiltonian is also a linear 

function of u, and can be written 
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The necessary condition        
  

  
 is as normal. However, the optimality 

condition 

  

  
                     

Contains no information on the control. We must try to maximize the Hamiltonian 

H with respect to u using the sign of   
  

  
  , but, when                    , we 

cannot immediately find a characterization of u
*
. 

       Define                                , usually calld the switching 

function. Our characterization of u
*
 is 

      {

              

               

               
 

          If        cannot be sustained over an interval of time, but occurs only at 

finitely many points, then the control u
*
 is referred to as bang-bang. In this case, it 

is piecewise constant function, switching between only the upper and lower 

bounds. An example of such a control is given in Figure 3.15. The switches 

coincide with the places where   switches signs (so that       ), hence the 

name switching function. The actual points where this occurs are called switching 

times. 

 

FIGURE 3.15 a typical bang-bang control. 
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      If       on some interval of time, we say u
*
 is singular on that interval. A 

characterization of u
*
 on this interval must be found using other information. The 

endpoints of this interval are sometimes called switching times as well. We 

postpone the discussion of singular controls until the next section. 

       To solve a bang-bang problem numerically, the forward-backward sweep 

method can be employed. First, it must be analytically proven that the problem is 

in fact bang-bang, i.e.,        over an interval is impossible. Once this is 

established, the code is written as usual, where the characterization of u is given by 

          for i=1:N+1 

                temp = psi(t(i),x(i),lambda(i)) 

                if(temp < 0) 

                      u1(i) = a; 

               else 

                      u1(i) = b; 

               end 

          end 

          u = 0.5*(u1 + oldu); 

Where                          in the second line is replaced by the actual value 

of the function   in terms of t, x, and ¸λ, according to the specific problem. Notice, 

even though it is irrelevant from an analytical standpoint, the value of the control at 

the switching times must be assigned in our MATLAB code. Here, we have 

arbitrarily assigned u = b when    . Assigning u = a  would have been just as 

prudent. Defining u to be the average of a and b at these points is also used. It 

usually makes little difference. Finally, note the convex combination remains as 

before. This hastens the finding of the switching times. Here, we consider a few 

bang-bang examples which can be solved by hand. 
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Example (3.9.1) 

   
 

∫             
 

 

 

Subject to                          

         

The objective functional here does not depend on x, and the state does not have a 

terminal time condition. Therefore, looking at the format of the integrand of the 

objective functional we see that the optimal control should be 0. 

                The Hamiltonian is 

              

The adjoint and transeversality conditions are 

    
  

  
                

 And 

     
  

  
               

Suppose u
*
 is singular on some interval, i.e.,          . Then,        on this 

interval, so that 

       

As this holds on an interval, we can differentiate both sides, 

                             

This is clearly impossible, so u
*
 is nowhere singular, thus bang-bang. Considering 

both possible values for u
*
, 

                           

                      

for some constant k. Note, for           to satisfy ¸        , k must be zero. 

In the other case, ¸λ is constant. Hence, regardless of what the control is near t = 2, 
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     , on some interval including t = 2. However, we require λ to be continuous, 

and it is impossible for ¸        be continuously joined with       for non-

zero k. Thus,       everywhere. It follows 

  

  
                 

So that 

                   

 

Example (3.9.2) 

   
 

∫                
 

 

 

Subject to                           

          

If we view this as a simple population model with exponential growth, we seek to 

increase the population as much as possible, while keeping the cost of control 

down. 

The Hamiltonian is 

               

Using the necessary conditions and transversality condition, ¸can be immediately 

solved: 

       
  

  
                            

The switching function 

     
  

  
             

is clearly nowhere constant, thus not identically 0 over an interval. So, u
*
 is bang-

bang, and 
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       (

 

 
*  

 

For           
 

 
  

            

Along with        this gives            .on     (
 

 
)      , 

            
  

for some constant k0. As x must be continuous, the expressions        and    
  

must agree at t=     (
 

 
)  this gives           Hence, the optimal solutions 

are  

   {
                 (

 

 
*

                 (
 

 
*

 

And 

   {
                     (

 

 
*

                         (
 

 
*

 

The optimal state is shown in Figure 3.16 
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Figure 3.16: The optimal control and state for Example 3.9.2. The state 

appears differentiable here, but this is due to scale. It is in fact only 

continuous at       (
 

 
) 

3.9.2 Singular Controls 

            We now turn our attention towards singular controls, and in particular, a 

few examples. In the first example, the solution is relatively easy to guess. 

However, because it is singular, generating the optimal control via the necessary 

conditions is somewhat difficult. 

Example (3.9.3) 

   
 

∫             
 

 

 

Subject to                      

          

First, generate the necessary conditions as usual, 

                

       
  

  
                  

  
  

  
    

If     on some interval, then 
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So that on this interval 

         

Hence, we obtain 

   {
              
                 
                

                                            (3.9.1) 

          Our first goal is to establish that            on [0, 2]. Suppose not, i.e., 

suppose that 

            Somewhere. Then, as           at t = 0, there must exist 

 a              such that         
   and                 . Hence, from 

(3.9.1), it follows         and          

          Now, consider the points in time        for which λ(t) = 0. We know at 

least one such point exits, namely t = 2. Let t1 be the minimum of these points so 

that λ(t1) = 0 but λ(t) > 0 for             . Then, from (3.9.1), we see u
*
 = 0 

on         . This implies x
*
(t) = x

*
(  ) on          . As we choose t0 so that        

  
 , we see          on            Hence, by the adjoint equation,         on 

         . But, if          and λ never decreases on this interval, then λ(t1) = 0 is 

impossible. This gives our contradiction. 

          Thus,            on [0, 2].This immediately gives      on [0, 2]. As λ(2) 

= 0, we must have     0 on [0, 2]. As ¸ is a non-negative, non-increasing 

function, there is some           so that λ > 0 on [0, k) and λ = 0 on [k, 2]. 

          Suppose k = 0. Then λ = 0 everywhere, so that ¸      everywhere. But, 

           at t=0 so that ¸        . Contradiction. Now suppose k = 2. Then, u
*
 

= 0 everywhere, so that 

 x
*
= 1 everywhere. This clearly contradicts            . Hence, 0 < k < 2, and we 

have 
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            ,
                 
                 

                          

      {
                                      

                      
 

as x
*
 must be continuous. Finally, to find k, note that,      on [k , 2], which 

implies 

                                

Hence, the optimal solution set (Figure 3.17) is 

            {
                 
                  

                          

      {
                   

                  
 

 

 

 

Figure 3.17 the optimal control and state for Example 3.9.3 Here, it is clear 

the state is not differentiable at t = 1. 

3.10 Free Terminal Time Problems 

In many applications, we are concerned with maximizing (or minimizing) an 

objective functional over a non-fixed time interval. If we return to our simple 

cancer example, Example 3.3, we could instead consider a slightly different 
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problem. Before, we wanted to find a drug treatment over a given time frame [0, T] 

which would minimize the final tumor cell concentration and total harmful effects 

of the drug. Suppose, instead, we want to find a time frame and a control that 

produce an objective functional value minimum among all time frames and all 

controls. Namely, 

   
   

     ∫      
 

 

   

Subject to                            

 

Notice that the minimization is now considered over the variables u and T. This is 

the standard way of writing an optimal control problem when T is free.  

            We now have more unknowns, with the optimal control and optimal 

terminal time both to be determined. To handle this problem, and other problems 

where the terminal time is free, we must redevelop the necessary conditions.  As 

you will see, having given up information, in some sense, by allowing T to be free, 

we will gain new information in the way of a necessary condition we did not have 

before. 

          We note that we could just as easily allow the initial time, or both the initial 

and terminal times, to be free. In most applications, though, it is the final time 

which is allowed to move, so we handle this case. 

 Necessary Conditions 

Let                         be continuously differentiable functions in all three 

variables, and consider the free terminal time problem 

   
   

∫  (           )
 

  

    (      ) 

Subject to              (           )           . 

As there are two unknowns here, we write the value of the objective functional as 
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       ∫  (           )
 

 

    (      ) 

where, of course, x is the state corresponding to u. Let (u
*
 , T

*
) be an optimal pair. 

Namely, u
*
 is a control on the nonempty, finite interval [t0 , T

*
] and  

                         for all other controls u and times T. Let x
*
 be the 

corresponding state. Let h be a piecewise continuous function and    real number. 

Then, 

                       is a control. As J(u , T) reaches a 

maximum at u
*
, T

*
, we have that 

     
   

                 

 
 

It follows from the same arguments used in section 3.4  and 3.7 that 

  
  

  
        

   
  

  
           

          
            

where    refers to the partial derivative of   in the state variable or the second 

variable. 

However, this still does not give any information about the optimal final time T
*
. 

For this, we exploit the T variable of J. Consider real numbers      

                 is an admissible terminal time. It is necessary to consider u
*
 

and x
*
 on an interval larger than [t0 ,T

 *
]. First, we can assume that u

*
 is left-

continuous at T
 *
, by simply reassigning its value there if necessary. Then, set u

*
(t) 

= u
*
(T

 *
) for all t > T

 *
, so that u

*
 will be continuous at T

 *
. Now, x

*
 is also defined 

for t > T
 *
. As J(u, T) reaches its maximum at u

*
 , T

 *
, we have 
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Or equivalently 

     
   

 

 
*∫             

    

  

  (             )  ∫             
  

  

  (         )+ 

    
   

 

 
∫             

    

  

 
 (             )             

 
 

  (                )    ( 
        )    ( 

        )
   

  
      

  (                )        (               )    ( 
        ) 

  (                       )    ( 
        )   

 

We see the need for extending u
*
 and x

*
 in the first and second lines, as the values 

of t considered are greater than T
*
, in the case when     . The transition from the 

second to the third line follows via the Fundamental Theorem of Calculus and the 

product rule. This is due to our earlier assurance that u
*
 is continuous at T

*
, and 

thus x
*
 is differentiable at T

*
. 

            This gives the new necessary condition we promised. Namely, 

 (                       )    ( 
        )     

In the case when   is a function of x(T) only, this says the Hamiltonian is 0 at the 

terminal time. This proof was done on a simplified problem for convenience. It 

should be clear, however, that the same necessary conditions would arise with 

bounds on the control and multiple states and controls as before, and that this new 

necessary condition would be unchanged. What is not clear, though, is how 

problems with a state fixed at both endpoints are affected. Because we did not 

provide a development of this case, it is not obvious how a free terminal time 
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would alter the necessary conditions. In fact, the same new necessary condition 

arises. Stated formally, 

if u
*
 is an optimal control on the finite, nonempty interval      

    with control x
*
, 

for the optimal control problem 

   
   

∫  (           )
 

  

        

Subject to        (           )                      , 

then for some piecewise differentiable adjoint variable λ, the following necessary 

conditions are simultaneously satisfied by u
*
 ,  x

*
   λ : 

  
  

  
       

    
  

  
 

   (                       )          

 

Example (3.10.1) 

   
   

 

 
∫          

 

 

   

Subject to                               

          

 

Form the Hamiltonian 

  
 

 
           

The adjoint equation is   

    
  

  
      

So that      for some constant c. further 
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Clearly, as c is a constant, only one of these cases can be true. Thus, u
*
 is 

identically constant. Also, as the control must push the state from 5 down to 0, it is 

also clear that u
*
 must be negative. So, either                

If        then the Hamiltonian is 

  
 

 
     

As the terminal time is free, H must be zero at the final time. This allows us to 

solve for c giving     
 

 
. However, this contradicts what we saw above, namely, 

when           we must have 

 c > 2.  Thus,        , and 

   (                       )  

 
 

 
           

 
 

 
           

This yields         As the control must be negative, we have c = 1 and      . 

This and 

 x(0) = 5 gives               so that T
 *
 = 5. 

3.10.1Time Optimal Control 

            Of particular interest is a specific type of free terminal time problems called 

minimal time problems, or time optimal control. The idea is simple: move a state 

(or states) from a given initial location to a specified final position in minimum 
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time. It may not be immediately clear that this confirms to the form discussed 

above, but note that 

  ∫    
 

 

  

Therefore, the problem 

   
   

∫  
 

 

   

Subject to           (           )                      , 

         

is precisely what we want, namely, to find a control u which moves x from x0 to x1, 

subject to its dynamics, in minimal time. Of course, this is just as easily done with 

multiple states and controls. We make the note here that more complicated 

terminal state conditions or constraints can be used. Many times in applications, 

we are interested instead in moving the state or states from a specific initial 

condition to a certain region in minimal time. For example, we could only require  

x(T) to be close to x1, i.e             Or, if we have two states, we could simply 

require they be equal,               ,  or be close, i.e,                  . In 

general, the constraints 

                         

                      

where k is a continuously differentiable function in all variables, can be 

considered. We do not treat these conditions, as such problems are generally a 

great deal more complicated. We refer the reader to [26, 24, 27, 16]. For examples 

of such problems, see [29, 28]. 

Example (3.10.2) 

   
   

∫  
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Subject to                   
 

 
                            

 

We write the Hamiltonian 

        
 

 
     

The adjoint equation is 

    
  

  
     

which gives 

         ( ∫       
 

 

 )  

for some constant C. Note, if C = 0, then    . This gives     , which 

contradicts the Hamiltonian being 0 at T 
*
. Thus,      so that is   never zero. 

Hence, the optimality condition 

  
  

  
        

Gives 

       

Making this substitution in the state equation, we see x
*
 satisfies 

   
 

 
                

This gives the solutions 

      
   

     
        

The condition         gives 

      ⁄     
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Example (3.10.3) 

             Let x(t) represent the location of a particle at time t. Initially, it is at rest 

and is positioned at      . We can steer the particle by controlling its 

acceleration, within its designated limits. Find the acceleration which brings  x to a 

rest at position 0 in minimum time. Specifically, 

   
   

∫  
 

 

   

Subject to                                   

                           

 

First, we recast this as a systems problem 

   
   

∫  
 

 

   

Subject to      
                                

           
                          , 

           

The Hamiltonian is 

              

From the adjoint equations  

     
  

   
    

     
  

   
      

it is clear    is identically some constant, and    is a linear function in t. If    were 

identically 0, then           from which we see      . This contradicts 

         , so    is not identically 0. Further, 
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As    is linear and not identically 0, it can be 0 only at a point and only once, so 

that u
*
 is bang-bang with at most one switch. Now,                 is to begin 

and end at 0. Therefore, it is clear that u cannot be identically        , but must 

utilize the one allowed switch. It should also be clear that this  switch occurs at the 

half-way point of the interval,    ⁄ . The only thing to 

determine is which bound u
*
 begins with. 

Suppose the optimal control is 

      {
                 ⁄

            ⁄       
 

Using the state equation             
    we can see 

  
     {

                    ⁄

              ⁄       
 

Using                          
     it follows 

  
     {

   
 

 
                                           ⁄

 
 

 
       

 

 
               ⁄       

 

Now,   
   is continuous, so the two expressions must agree at    ⁄ . This

 
implies 

 

 
    ⁄        

 

 
    ⁄         ⁄   

 

 
      

         ⁄       

This contradicts the original assumption of x0 . Therefore, the optimal control, and 

resulting optimal states, must be 

      {
                  ⁄

            ⁄       
 

    
     {

   
 

 
                                            ⁄

 
 

 
       

 

 
               ⁄       
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     {

                     ⁄

              ⁄       
 

Using the fact that   
  must be continuous, we find        ⁄   , so that  

     √  
  
. 

 This can be substituted into the expressions above to finish the
 
problem. The 

optimal states are shown in Figure 3.18 

 

Figure 3.18 The Optimal states for example 3.10 
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Chapter 4 

 Biological Applications  

4.1 Introduction: 

               We now begin working on the first few interactive lab programs. They 

will allow you to experiment with optimal control problems and see the solutions. 

Most of the labs are based on current applied mathematical research, dealing with 

an array of biological problems. 

            First, while MATLAB is needed to run the provided programs, it is 

certainly not needed to solve optimal control problems in general. Any 

mathematical programming language, such as FORTRAN or C++, is capable of the 

calculations needed. On that note, however, the programs used in this workbook 

are designed so that no knowledge of MATLAB is required. For each problem, 

there is a user-friendly interface that will guide you through. Each lab consists of 

two different MATLAB programs, lab .m and code .m. For example, there are two 

programs associated with Lab 1, lab1.m and code1.m. Here, *.m is the extension 

given to all files intended for use in MATLAB. The file code1.m is the Runge-

Kutta based, forward-backward sweep solver we will building in this chapter. It 

takes as input the values of the various parameters in the problem and outputs the 

solution to the optimality system. The file lab1.m is the user- friendly interface. It 

will ask you to enter the values of the parameters one by one, compile code1.m 

with these values, and plot the resulting solutions. All the files must be in the 

directory that MATLAB treats as the home directory. 
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This is usually the work directory. If you have experience with MATLAB, you 

may wish to not use the interface and instead use only the actual codes. They 

operate as standard MATLAB 

Function files, with the parameters entered as input. This will allow you a little 

more freedom than the interface. However, the interface especially when going 

through the labs, is very convenient and will most likely save time. If you do 

choose to use only the code files, you will need to run the interface a few times 

before starting the labs in order to see exactly what they do, so that you can 

emulate them on your own. 

4.2   Forward-Backward Sweep Method 

            Consider the optimal control problem 

   
 

∫  (           )  
  

  

 

Subject  to        (           )          

We want to solve such problems numerically, that is, devise an algorithm that 

generates an approximation to an optimal piecewise continuous control u
*
. We 

break the time interval [t0 , t1] into pieces with specific points of interest 

 t0=b1 ,b2 ,……………,bN ,bN+1=t1. These points will usually be equally spaced. 

The approximation will be a vector                             where    

      . There are various methods of this type which can be employed to solve 

optimal control problems. For example, total-enumeration methods or linear 

programming techniques can be employed [30]. However, as we saw in the 

previous chapters, any solution to the above optimal control problem must also 

satisfy 

       (           )          
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  (                       )          

  
  

  
                            

   

The third equation, the optimality condition, can usually be manipulated to find a 

representation of u
*
 in terms of t, x, and λ. If this representation is substituted back 

into the ODEs for x, λ, then the first two equations form a two-point boundary 

value problem. There exist many numerical methods to solve initial value 

problems, such as Runge-Kutta or adaptive schemes, and boundary value 

problems, such as shooting methods [27, 31]. Any of these methods could be used 

to solve the optimality system, and thus, the optimal control problem (if 

appropriate existence and uniqueness results are established). 

We wish to take advantage of certain characteristics of the optimality system, 

however. First, we are given an initial condition for the state x but a final time 

condition for the adjoint ¸. Second, g is a function of t, x, and u only. Values for ¸ 

are not needed to solve the differential equation for x using a standard ODE solver. 

Taking this into account, the method we present here is very intuitive. It is 

generally referred to as the Forward-Backward Sweep method. Information about 

convergence and stability of this method can be found in [32]. A rough outline of 

the algorithm is given below. Here,                    and     

                  are the vector approximations for the state and adjoint. 

Step1. Make an initial guess for    over the interval. 

Step2. Using the initial condition                and the values for   , solve 

   forward in time according to its differential equation in the optimality system. 

Step3. Using the transversality condition ¸             and the values for  

   and   , solve    ¸ backward in time according to its differential equation in 

the optimality system. 
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Step4. Update    by entering the new    and   ¸ values into the characterization 

of the optimal control. 

Step5. Check convergence. If values of the variables in this iteration and the last 

iteration are negligibly close, output the current values as solutions. If values are 

not close, return to Step 2. 

        An example of successive control estimates is shown in Figure 4.1. We make 

a few notes about the algorithm. For the initial guess,      is almost always 

sufficient. In certain problems, where division by u occurs for example, a different 

initial guess must be used. Occasionally, the initial guess may require adjusting if 

the algorithm has problems converging. Often in Step 4, it is necessary to use a 

convex combination between the previous control values and values given by the 

current characterization. This often helps to speed the convergence. As you will 

see, this is done in the provided codes. For Steps 2 and 3, any standard ODE solver 

can be used. For the purposes, a Runge-Kutta4 routine is used. Specifically, given 

a step size h and an ODE                    the approximation of x (t + h) given 

x (t) is  

            
 

 
                                          (4.2.1) 

Where 

    (      ) 

       
 

 
       

 

 
    

       
 

 
       

 

 
                                                                                 (4.2.2) 

                   . 
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Figure 4.1 Control estimates are plotted. The first four iterations (after the initial 

guess) are plotted in the first graph, and the frst fifteen in the second. Note the 

graphs are converging to the correct control. 

The error for Runge-Kutta 4 is O(h
4
). More information on the stability and 

accuracy of this and other Runge-Kutta routines is found in numerous texts. One of 

the classic references for these methods is Butcher [16, 17]. 

               Many types of convergence tests exist for Step 5. Often times, it is 

sufficientto require  ‖      ‖  ∑ |        |
   
    to be small, where    is the 

vector of estimated values of the control during the current iteration, and old   is 

the vector of estimated values from the previous iteration. Here, ‖  ‖ refers to the l
1
 

norm for vectors, i.e., the sum of the absolute value of the terms. Both these 

vectors are of length N + 1, as there are N time steps. In this text, we use a slightly 

stricter convergence test. Namely, we will require the relative error to be negligibly 

small, i.e., 

‖        ‖

‖  ‖
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Where   is the accepted tolerance. We must make one small adjustment; we must 

allow for zero controls. So, multiply both sides by‖  ‖ to remove it from the 

denominator. Therefore, our requirement is 

 ‖  ‖  ‖        ‖     

                              ∑ |  |  ∑ |        |       
   

   
                                     (4.2.3) 

We will actually make this requirement of all variables, not just the control. 

In the lab programs, we take                        

The remainder of this chapter will be devoted to further explanation of the 

Forward-Backward Sweep algorithm by way of example. 

Example (4.2.1) 

   
 

∫               
 

 

   

                                     Subject to        
 

 
                        

         

We require B > 0 so that this is a maximization problem. Before writing the code, 

we develop the optimality system of this problem by first noting the Hamiltonian is 

         
 

 
         

Using the optimality condition, 

  
  

  
            

  

  
   

We also easily calculate the adjoint equation to find 
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Using these two differential equations and the representation of u
*
, we generate the 

numerical code as described above, written in MATLAB [5]. The code can be 

viewed in its entirety in the file code1.m, and is also shown in increments below. 

Code1.m 

1 function y = code1(A,B,C,x0) 

2 

3 test = -1; 

4  

5 delta = 0.001; 

6 N = 1000; 

7 t = linspace(0,1,N+1); 

8 h = 1/N; 

9 h2 = h/2; 

10  

11 u = zeros(1,N+1); 

12  

13 x = zeros(1,N+1); 

14 x(1) = x0; 

15 lambda = zeros(1,N+1); 

16  

17 while(test < 0) 

18  

19 oldu = u; 

20 oldx = x; 

21 oldlambda = lambda; 

22  

23 for i = 1:N 
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24 k1 = -0.5*x(i)^2 + C*u(i); 

25 k2 = -0.5*(x(i) + h2*k1)^2 + C*0.5*(u(i) + u(i+1)); 

26 k3 = -0.5*(x(i) + h2*k2)^2 + C*0.5*(u(i) + u(i+1)); 

27 k4 = -0.5*(x(i) + h*k3)^2 + C*u(i+1); 

28 x(i+1) = x(i) + (h/6)*(k1 + 2*k2 + 2*k3 + k4); 

29 end 

30  

31 for i = 1:N 

32 j = N + 2 - i; 

33 k1 = -A + lambda(j)*x(j); 

34 k2 = -A + (lambda(j) - h2*k1)*0.5*(x(j)+x(j-1)); 

35 k3 = -A + (lambda(j) - h2*k2)*0.5*(x(j)+x(j-1)); 

36 k4 = -A + (lambda(j) - h*k3)*x(j-1); 

37 lambda(j-1) = lambda(j) - ... 

38      (h/6)*(k1 + 2*k2 + 2*k3 + k4); 

39 end 

40   

41 u1 = C*lambda/(2*B); 

42 u = 0.5*(u1 + oldu); 

43   

44 temp1 = delta*sum(abs(u)) - sum(abs(oldu - u)); 

45 temp2 = delta*sum(abs(x)) - sum(abs(oldx - x)); 

46 temp3 = delta*sum(abs(lambda)) - ... 

47     sum(abs(oldlambda - lambda)); 

48 test = min(temp1, min(temp2, temp3)); 

49 end 

50   
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51 y(1,:) = t; 

52 y(2,:) = x; 

53 y(3,:) = lambda; 

54 y(4,:) = u; 

 

 

Lab1 

1 clear,close all 

2 clc 

3 y = code1(1,1,4,1); 

4 figure 

5 ax1 = subplot(3,1,1);  

6 ax2 = subplot(3,1,2);  

7 ax3 = subplot(3,1,3);  

8 x = linspace(0,1,1001); 

9 y1 = y(2,:); 

10 y2 = y(3,:); 

11 y3 = y(4,:); 

12  

13 plot(ax1,x,y1) 

14 % title(ax1,'Top Subplot') 

15 xlabel(ax1,'Time') 

16 ylabel(ax1,'State') 

17 

18 plot(ax2,x,y2) 

19 % title(ax2,'Second Subplot') 

20 xlabel(ax2,'Time'); 
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21 ylabel(ax2,'Adjoint') 

22   

23 plot(ax3,x,y3) 

24 % title(ax2,'Bottom Subplot') 

25 xlabel(ax3,'Time'); 

26 ylabel(ax3,'Control') 

 

            To begin the program, open MATLAB. At the prompt, type lab1 and press 

enter. To become acquainted with the program, perform a few test runs. Enter 

values for the constants A, B, C, and x0. At first, do not vary any parameters. The 

graphs of the resulting optimal solutions, i.e., the adjoint and the optimal control 

and state, will automatically appear. Run the program again, enter different values, 

and vary one of the parameters. Once you feel comfortable with the structure of the 

program. 

This lab will focus on using the program to characterize the optimal control and 

resulting state and to ascertain how each parameter affects the solution. First, let us 

consider the goal of the problem. On one hand, we want to use the control u to 

maximize the integral of x. On the other hand, we also want to maximize the 

negative squared value of u. This, of course, is equivalent to 

minimizing the squared value of u. Thus, we must find the right balance of 

increasing x and keeping u as small as possible. Enter the values 

                                                                    (4.2.4) 

and do not vary any parameters, then look at the solutions. Your output should 

look something like Figure 4.2. We see u begins strongly, pushing x up but steadily 

decreasing to 0. This makes logical sense when we consider the differential 

equation of x. Undisturbed by u, the state x will decrease monotonically. So, we 

want to push x up early in the time period, so that the natural decay will be less 



 

144 
 

significant. As we only care about minimizing the integral of u, and the distribution 

is irrelevant, the control should be highest early on. We see this is exactly what the 

optimal control is. Also, note that x begins to decrease at the end of the interval, as 

the control approaches zero. 

 

Figure 4.2.1 the optimal state, adjoint and control for the value (4.2.4) 

Reenter the values in (4.2.4) and then vary the initial condition with      . As 

the second state begins higher, less control is needed to achieve a similar effect. 

Notice that the second control begins lower than the first, but they quickly 

approach each other and are almost identical by   t = 0.6. This causes the two states 

to move towards each other as well, although they never actually meet. Now 

use      . This time, x begins below zero, so a greater control is needed to push 

the state up more quickly. Notice, however, we see the same effect as before, 

where the two controls eventually merge, although, much later than in the previous 
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simulation. We mention here why the requirement        is imposed. If you 

were to solve the state equation without u (i.e.,C = 0), you would find      is 

required, or division by 0 will occur and the state will blow-up in finite time. 

However, we know u will be used to increase x, so this condition is sufficient to 

give a finite state solution with the control. 

Use the (4.4) values, varying C with C = 1: We have decreased the effect u has on 

the growth of the state. The optimal control in the second system is less than in the 

first. It is worth using a greater control in the first system, as it is more effective. 

Also, the second state, unlike the others we have seen, is decreasing over the whole 

interval. What little control is used does not increase the state, but only neutralizes 

some of the natural decay. It would now take far too much control to increase the 

state. Enter the same parameter values, this time varying with C = 8. The results 

are as you might expect. The second optimal control, now more effective, is 

greater than the first. The second state increases far more than the first, but still 

decreases as its control approaches zero. Finally, note that when C is varied, we do 

not have the two controls merging together. Reenter (4.4). Choose to vary A. 

Specifically, try A = 4 as your second value. In the second system, A = 4B, so 

maximizing x(t) is four times as important as minimizing u
2
. We see this playing 

out in the solutions. A greater u is used so that x can be increased appropriately. 

Conversely, enter (4.4) varying with B = 4. In this case, minimizing u(t)
2
 is more 

important. 

We see on the graph, u(t) is pulled closer to zero, even though this causes x(t) to 

increase much less at the beginning. The constants A and B are called weight 

parameters, as they determine the importance or weight of variables in the 

objective functional. 

      If you were to compare the graphs of the optimal solutions for 

                                                           (4.2.5) 
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to the solution for 

                                                         (4.2.6) 

you would notice they were exactly the same. This is because the system is only 

influenced by the ratio of the constants A and B, not the actual values. We 

know     , so we could divide it out of the integral.  

4.3 Mosquitoes and Insecticide: 

                Mosquito- borne diseases, the best known of which is malaria, are among 

the leading causes of human deaths worldwide. Vector control is a very important 

part of the global strategy for management of mosquito-associated diseases, and 

insecticide application is the most important component in this effort. However, 

mosquito-borne diseases are now resurgent, largely because of the insecticide 

resistance that has developed in mosquito vectors and the drug resistance of 

pathogens. 

               Insecticides are a quick, powerful way to get rid of mosquitoes around the 

yard, but, unfortunately, they are only temporary. The effect usually lasts only as 

long as the insecticide is present, so as soon as it drifts away or dries out, the 

mosquitoes are back. Mosquito control officials use insecticides only when 

mosquitoes are especially thick and only in combination with other form of 

mosquito control. The same should apply to use around the house. By itself, 

insecticide is not a long-term solution. Two popular insecticides are: 

 Malathion: an organophosphate often used to treat crops against a wide array of 

insects. It can be sprayed directly onto vegetation, such as the bushes where 

mosquitoes like to rest, or used in a 5 percent solution to fog the yard. In the small 

amounts used for mosquito control it poses no threat to humans or wildlife. In fact, 

Malathion is also used to kill head lice. 
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Permethrin: one of a group of chemicals called pyrethroids, it is a synthetic form 

of a natural insecticide found in chrysanthemum flowers. It usually is mixed with 

oil or water and applied as a mist, about 1/100th of a pound per acre. Like 

malathion, permethrin kills mosquitoes by disrupting their central nervous systems. 

Not harmful to people and animals in small amounts, but it is toxic to fish and 

bees. There are three types of mosquito spraying with insecticides. Home and fog 

spraying, sprinkling ponds and swamps. The lesson will focus on sprinkling ponds 

and swamps. 

                Let x (t) be a population concentration at time t, and suppose we wish to 

reduce the population over a fixed time period. We will assume x has a growth rate 

r and carrying capacity M. The application of a substance is known to decrease the 

rate of change of x, by decreasing the rate in proportion to the amount of u and x. 

Let u(t) be the amount of this substance added at time t. For example, the 

population could be an infestation of an insect, or a harmful microbe in the body. 

Here we view x(t) as the concentration of a mosquitoes and u(t) an insecticide 

known to kill it. The differential equation representing the mold is given by 

                                     (      )                                      (4.3.1) 

Where        is the given initial population size. Note the term u(t)x(t) pulls 

down the rate of growth of the mosquitoes. The effects of both the mosquitoes and 

insecticide are negative for individuals around them, so we wish to minimize both. 

Further, while a small amount of either is acceptable, we wish to penalize for 

amounts too large. Hence, our problem is as follows 

                                                       ∫    
 

 
                                         (4.3.2) 

                                  Subject to         (      )                    

The coefficient A is the weight parameter, balancing the relative importance of the 

two terms in the objective functional.  
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        Before writing the code we develop the optimality of this problem by first 

noting the Hamiltonian is 

                    

Using the optimality condition  

  
  

  
                

  

 
 

 

The adjoint equation is  

       
  

  
          

              

                           

                             

Using these two differential equations and the representation of u
*
, we generate the 

numerical code as described above, written in MATLAB [5]. The code can be 

viewed in its entirety in the file code2.m, and is also shown in increments below. 

1   function y = code2(r,M,A,x0) 

2  

3   test = -1; 

4  

5   delta = 0.001; 

6   N = 1000; 

7   t = linspace(0,7,N+1); 

8   h = 1/N; 

9   h2 = h/2; 

10   

11   u = zeros (1,N+1); 
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12  

13   x = zeros (1,N+1); 

14   x(1) = x0; 

15   lambda = zeros (1,N+1); 

16  

17   while(test < 0) 

18  

19   oldu = u; 

20   oldx = x; 

21   oldlambda = lambda; 

22  

23   for i = 1:N 

24   k1 = M*r - x(i)*(r + u(i)); 

25   k2 = M*r-(x(i) + h2*k1)*(r + 0.5*(u(i) + u(i+1))); 

26   k3 =  M*r-(x(i) + h2*k2)*(r + 0.5*(u(i) + u(i+1))); 

27   k4 = M*r - (x(i) + h*k3)*(r + u(i+1)); 

28   x(i+1) = x(i) + (h/6)*(k1 + 2*k2 + 2*k3 + k4); 

29   end 

30  

31   for i = 1:N 

32   j = N + 2 - i; 

33   k1 = -A - lambda(j)*r +0.5*(lambda(j))^2 * x(j); 

34   k2=-A -(lambda(j)-h2*k1)*r + 0.5*(lambda(j)- h2*k1)^2*0.5*(x(j)+x(j-1)) ;  

35   k3=-A-(lambda(j)-h2*k2)*r + 0.5*(lambda(j)- h2*k2)^2 * 0.5*(x(j)+x(j-1)) ; 

36   k4 = (lambda(j)-h*k3)*r + 0.5*(lambda(j) - h*k3)^2 * x(j-1) ; 

37   lambda(j-1) = lambda(j) - ... 

38                                      (h/6)*(k1 + 2*k2 + 2*k3 + k4); 
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39   end 

  

40   u1 = (lambda/2)*x(i); 

41   u = 0.5*(u1 + oldu); 

42  

43   temp1 = delta*sum(abs(u)) - sum(abs(oldu - u)); 

44   temp2 = delta*sum(abs(x)) - sum(abs(oldx - x)); 

45   temp3 = delta*sum(abs(lambda)) - ... 

46    sum(abs(oldlambda - lambda)); 

47   test = min(temp1, min(temp2, temp3)); 

48   end 

49  

50   y(1,:) = t; 

51   y(2,:) = x; 

52   y(3,:) = lambda; 

53   y(4,:) = u; 
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4.4 Fish Harvesting 

            The area of internal water in Sudan (rivers - reservoirs - lakes) in the range 

of 2 million hectares with a total length of the Nile and its branches in the range of 

6400 km and dams represent about half of this area (million hectares), next to all 

the above Nile sources there are many bays and canals in the common Agricultural 

projects p with areas of a few thousand square meters and the volume of water in 

the tens of billions and depths from 11-20 meters. We find that the irrigation canals 

in the El-Gezira project extend 5.649 km and a depth of 7.50050 meters, along 

with other projects' channels such as: El-Manqal - El-Rahad - El-Junaid - Khashm 

Al-Qirba - Al-Suki. From what mentioned it is obvious  that the availability of 

areas and stimulated water for the establishment and success of fish farming is 

related agricultural projects. Fish breeding activity started with the establishment 

of the experimental tree farm since 1953 with the idea of the Jonglei project and its 

expected impact on fish resources in the region (dams), as well as the contribution 

to fish production by compensating areas that complain about lack of production 

and access to fish such as agricultural areas in El-Gezira and El- Managl and dry 

areas in the east and the West.  

            The contribution of fisheries to the GDP of Sudan is currently marginal. 

However, the country is endowed with water resources (by way of the Nile river 

system) and lands that can support vigorous capture fisheries and 

aquaculture. Sudan‘s capture fisheries production was almost 38400 tonnes in 

2017, 35100 tonnes from inland water catches and 3300 from marine catches. In 

2017, there were an estimated 2330 small boats and 605 powered boats. A total of 

13 686 people was reported as engaged in inland fishing in 2017, with 11% 

women.The aquaculture sector showed an increasing trend in the past few years, 

reaching 9000 tonnes in 2017. Capture fisheries activities are centered around the 
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River Nile and its tributaries, seasonal flood plains and four major reservoirs as 

well as the territorial waters of Sudan on the Red Sea. Freshwater fish culture is 

primarily based on the pond culture of the Nile tilapia Oreochromis niloticus and 

African catfish. The country is also dependant on imports of fish and fishery 

products (estimated at about USD 5.3 million in 2017) to satisfy the limited per 

capita fish consumption (about 1.1 kg in 2017). Exports are very small and were 

estimated at USD 1.5 million in 2017. 

         A large cross-section of contemporary problems in applied mathematics, 

related to Biology is concerned with the analysis and synthesis of dynamic 

processes. Fish is one of the major sources of human diet and the main source of 

protein and fat. Recently, consumers have become more conscious of fish as a 

healthier alternative meat. This is particularly due to the problems with overweight 

and cardiovascular diseases that have turn into one of the major problems in human 

health. Awareness of fish as nutritious diet has caused the demand of fish for food 

consumption to increase. The dynamics of the fish population may be dependent of 

various ecological variables, Such as the population size of natural predators, 

climate change and access of food. In order to determine optimal fishery policies, a 

suitable model for the ecosystem must be obtained. Apart from complex dynamical 

system of the ecosystem, defining optimal fishery is a complex problem in 

bioeconomics. In order to obtain a suitable definition, both ecological and 

economical viewpoints need to be taken into consideration. In this study optimal 

result is considered as the outcome which is achieved Increase the profit to the 

maximum extent of the harvest during a specific time period. 

               Suppose  x(t) represents a unit of harvested fish or population level at 

time t, where  x(0) = x0 > 0 is the initial concentration. Then, p is the price of one 
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unit, q is the catchability of the fish, and c is cost of harvesting one unit. The 

control u(t) is the effort put into harvesting at time t. The profit at time t is 

                                                             (4.4.1) 

And the total profit is 

∫                 
 

 
                                               (4.4.2) 

The optimal control problem is 

   
 

∫                 
 

 

 

Subject to:             (      )                                      (4.4.3) 

         

The Hamiltonian is 

                                                  (4.4.4) 

Using the necessary conditions and transversality condition 

       
  

  
                                              (4.4.5) 

The switching function 

  
  

  
                                                     (4.4.6) 

Consider the singular case, i.e., suppose     on some interval. Assuming 

        , this means     . So, solving for ¸ we find 

     
     

  
   

 

  
                                             (4.4.7) 

Differentiating this expression, and using the state equation for x´, it follows 

      
 

   
   

 

  
                                          (4.4.8) 

By plugging the ¸ expression (7) into the adjoint equation (5), we get 

               
 

  
                                      (4.4.9) 

Setting the expressions (8) and (9) equal to each other and doing some simple 

algebra, we find the u terms will cancel, and we arrive at the constant expression 
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for the state below. Noting that x0 = 0 during the singular interval, by plugging  x
*
 

into state equation, we can find u
* 

   
    

   
                                                          (4.4.10) 

   
    

   
                                                         (4.4.11) 

This problem bang-bang control. The singular value for the control is a constant. If 

this constant lies outside the bounds on the control, i.e., is less than 0 or greater 

than M, then the singular control is not achievable. This forces the optimal control 

to be bang-bang. Suppose, however, the singular control is possible, namely, that 

  
    

   
    

            Using these two differential equations (4.4.3), (4.4.5) and the representation 

of u
*
, we generate the numerical code as described above, written in MATLAB [5]. 

Algorithm:  

Using the Runge- kutta sweep method solving    forward in time 

for i = 1:N 

k1 = x(i)*(1-x(i)-q*u(i)); 

k2 = (x(i) + h2*k1)*(1-(x(i) + h2*k1)-q*0.5*(u(i) + u(i+1))); 

k3 = (x(i) + h2*k2)*(1-(x(i) + h2*k2)-q*0.5*(u(i) + u(i+1))); 

k4 = (x(i) + h*k3)*(1-(x(i) + h2*k3)-q*u(i+1)); 

x(i+1) = x(i) + (h/6)*(k1 + 2*k2 + 2*k3 + k4); 

Using the Runge- kutta sweep method solving    backward in time 

for i = 1:N 

j = N + 2 - i; 

k1 = -p*q*u(j)+lambda(j)*(2*x(j)+q*u(j)-1); 

k2 = -p*q*u(j)+(lambda(j)-h2*k1)*(x(j)+x(j-1)+q*u(j)-1); 
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k3 = -p*q*u(j)+(lambda(j)-h2*k2)*(x(j)+x(j-1)+q*u(j)-1); 

k4 = -p*q*u(j)+(lambda(j)-h*k3)*(x(j-1)+q*u(j)-1); 

lambda(j-1) = lambda(j) - ... 

               (h/6)*(k1 + 2*k2 + 2*k3 + k4); 

u
*
 based on the value of the switching function 

for i=1:N+1 

          temp = p*q*x(i) - c - q*x(i)*lambda(i) 

           if(temp < 0) 

                          u1(i) = 0; 

          elseif(temp == 0) 

                          u1(i) = (p*q - c)/(2*p*q^2); 

else 

                          u1(i) = M; 

            end 

end 

u = 0.5*(u1 + oldu); 
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Chapter 5 

Results and Conclusions 

5.1 Results:  

             Here we consider a general mosquito and insecticide model and all the 

parameter values are chosen hypothetically. Enter the values 

                          r =0.4,    M =10,    A = 6,    X0 =1. 

The state never decreases, with growth at the beginning and end of the interval 

Figure1. The control initially increases then decreasing to zero Figure2. Enter the 

values 

                          r =0.3,    M =5,    A = 10,    X0 =1. 

The state decreases, since beginning and constant in the middle with growth at the 

end Figure3. The control initially increases, and then levels off to become constant. 

The control eventually begins decreasing again, going all the way to 0 Figure4. 

 

 



 

157 
 

 

 

            Here we consider fish harvesting model and all the parameter values are 

chosen hypothetically. Enter the values 

                                        

 

We note that the state is increasing until it reaches the maximum limit 0.36 when 

t=7and then begin to decline as in the figure (1) and figure (2). 

Enter the value 

                                        

 

The optimum harvest strategy for getting the maximum profit here is harvesting in 

a specific time period, followed by the increase, then the decrease. Can be obtained 

the maximum return 0.36 when t = 8 in figure (3) and figure (4). 
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5.2 conclusions: 

In this research: 

First, it is not possible to completely get rid of mosquitoes and their different 

phases in ponds and swamps, but by optimal control, we will reduce it to a large 

extent and therefore we have reduced the spread of disease malaria. 

Secondly, using the maximal principle our goal is to get the best profit of fish 

harvesting without loss through by applying the Pontryagin's Maximum Principle 

of optimal control.  
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